UNIVERSITY OF BELGRADE FACULTY OF CIVIL ENGINEERING

Nikola D. Tošić

BEHAVIOUR OF REINFORCED CONCRETE BEAMS MADE WITH RECYCLED AND WASTE MATERIALS UNDER LONG-TERM LOADING

DOCTORAL DISSERTATION

UNIVERZITET U BEOGRADU GRAĐEVINSKI FAKULTET

Nikola D. Tošić

PONAŠANJE ARMIRANOBETONSKIH GREDNIH ELEMENATA OD BETONA SA RECIKLIRANIM I OTPADNIM MATERIJALIMA POD DUGOTRAJNIM OPTEREĆENJEM

DOKTORSKA DISERTACIJA

Supervisor:

Prof. Snežana Marinković, PhD civ. eng.

University of Belgrade, Faculty of Civil Engineering

Committee Members:

Prof. Snežana Marinković, PhD civ. eng.

University of Belgrade, Faculty of Civil Engineering

Prof. Jorge de Brito, PhD civ. eng.

Instituto Superior Técnico, University of Lisbon

Assistant prof. Nenad Pecić, PhD civ. eng.

University of Belgrade, Faculty of Civil Engineering

Assistant prof. Ivan Ignjatović, PhD civ. eng.

University of Belgrade, Faculty of Civil Engineering

Defense date:

Abbreviations

ACI America Concrete Institute

CoV Coefficient of Variation

CDW Construction and **D**emolition Waste

EC2 EN 1992-1-1

FEM Finite Element Method

HVFAC High Volume Fly Ash Concrete

IPCC Intergovernmental Panel on Climate Change

ITZ Interface Transition Zone

LOI Loss On Ignition

NA Natural Aggregate

NAC Natural Aggregate Concrete

MC10 Model Code 2010

OD Oven-**D**ry

RAC Recycled Aggregate Concrete

RCA Recycled Concrete Aggregate

RH Relative Humidity

SEM Scanning Electron Microscopy

SSD Saturated-Surface Dry

w/c water-cement ratio

w/cm water-cementitious materials ratio

XRF X-Ray Fluorescence

Symbols

Symbol	Name	Unit
A_{sl}	longitudinal tensile reinforcement area	mm^2
E_{cm}	mean 28-day modulus of elasticity of concrete	GPa
F_c	compression force in concrete	kN
F_s	tensile force in reinforcement	kN
$F_{s'}$	compression force in reinforcement	kN
I_c	gross cross-section moment of inertia	mm^4
I_e	effective cross-section moment of inertia	mm^4
$I_{i,1}$	transformed cross-section moment of inertia in state 1	mm^4
$I_{i,2}$	transformed cross-section moment of inertia in state 2	mm^4
J	creep compliance	1/Pa
M	bending moment	kNm
M_{cr}	cracking moment	kNm
M_{ult}	flexural strength	kNm
V_a	volume of entrained air	kg/m ³
W_i	section modulus of transformed reinforced concrete cross-section	mm^3
W_c	section modulus of gross concrete cross-section	mm^3
а	shear span	m
b	cross-section width	mm
d	cross-section effective depth	mm
d_1	tensile reinforcement center of gravity	mm

compressive reinforcement center of gravity	mm
carbonation depth	mm
maximum aggregate particle size	mm
distributed self-weight	kN/m
cross-section height	mm
notional size of a concrete member	mm
characteristic 28-day concrete compressive cylinder strength	MPa
mean 28-day concrete compressive cylinder strength	MPa
concrete flexural tensile strength	MPa
mean 28-day concrete axial tensile strength	MPa
concrete splitting tensile strength	MPa
longitudinal reinforcement yield stress	MPa
span	m
cement mass	kg
fly ash mass	kg
natural sand 0/4 mm mass	kg
natural gravel 4/8 mm mass	kg
natural gravel 8/16 mm mass	kg
coarse RCA 4/8 mm mass	kg
coarse RCA 8/16 mm mass	kg
water mass	kg
curvature	1/m
maximum crack spacing	mm
loading age	days
age at start of environmental exposure	days
mean crack width	mm
characteristic crack width	mm
depth of compression zone	mm
	carbonation depth maximum aggregate particle size distributed self-weight cross-section height notional size of a concrete member characteristic 28-day concrete compressive cylinder strength mean 28-day concrete compressive cylinder strength concrete flexural tensile strength mean 28-day concrete axial tensile strength concrete splitting tensile strength longitudinal reinforcement yield stress span cement mass fly ash mass natural gravel 4/8 mm mass natural gravel 8/16 mm mass coarse RCA 4/8 mm mass coarse RCA 8/16 mm mass coarse RCA 8/16 mm mass water mass curvature maximum crack spacing loading age age at start of environmental exposure mean crack width characteristic crack width

Symbol	Name	Unit
γ_c	specific density of cement	kg/m ³
γ_{FA}	specific density of fly ash	kg/m ³
γ_{fresh}	concrete density in fresh state	kg/m ³
γ_{hard}	concrete density in hardened state	kg/m ³
$\gamma_{NA,I}$	natural sand 0/4 mm OD density	kg/m ³
$\gamma_{NA,II}$	natural gravel 4/8 mm OD density	kg/m ³
γ _{NA,III}	natural gravel 8/16 mm OD density	kg/m ³
$\gamma_{RCA,II}$	coarse RCA 4/8 mm OD density	kg/m ³
γ _{RCA,III}	coarse RCA 8/16 mm OD density	kg/m ³
γ_w	specific density of water	kg/m ³
$oldsymbol{arepsilon}_{\mathcal{C}}$	longitudinal strain in concrete	mm/mm
$oldsymbol{arepsilon}_{cas}$	longitudinal autogenous shrinkage strain in concrete	mm/mm
$oldsymbol{arepsilon}_{cbc}$	longitudinal basic creep strain in concrete	mm/mm
$oldsymbol{arepsilon}_{cdc}$	longitudinal drying creep strain in concrete	mm/mm
$oldsymbol{arepsilon}_{cc}$	longitudinal creep in concrete	mm/mm
$oldsymbol{arepsilon}_{cds}$	longitudinal drying shrinkage strain in concrete	mm/mm
$oldsymbol{arepsilon}_{ci}$	longitudinal initial strain in concrete	mm/mm
$oldsymbol{arepsilon}_{CS}$	longitudinal shrinkage strain in concrete	mm/mm
$oldsymbol{arepsilon}_{pl}$	longitudinal plastic strain in concrete	mm/mm
ε_r	longitudinal reversible strain in concrete	mm/mm
$oldsymbol{arepsilon}_{s,c}$	longitudinal strain in compressive reinforcement	mm/mm
$oldsymbol{arepsilon}_{sm}$	longitudinal mean strain in reinforcement	mm/mm
$oldsymbol{arepsilon}_{s,t}$	longitudinal strain in tensile reinforcement	mm/mm
$oldsymbol{arepsilon}_{uk}$	reinforcement elongation at maximum force	mm/mm
μ	mean value	(-)
ζ	distribution coefficient representing the extent of cracking	(-)
ξ	neutral axis position coefficient	(-)
σ	standard deviation	(-)

σ_c	axial stress in concrete	MPa
$\sigma_{s,c}$	axial stress in compressive reinforcement	MPa
$\sigma_{s,t}$	axial stress in tensile reinforcement	MPa
ρ	longitudinal tensile reinforcement ratio	
ho'	longitudinal compressive reinforcement ratio	
ϕ	creep coefficient	(-)

Dedicated to the vision and effort of professor Snežana Marinković

Acknowledgements

Perhaps there are doctoral dissertations which truly deserve to be signed by only one name. The one you are about to read is not among them.

The one person I am most indebted to for this work is my supervisor, professor Snežana Marinković. She has been the one from whom I have learned all that was necessary to complete this goal. She has been a true mentor on this journey. If there is any value to be found in this work, then it is thanks to her. All of the qualities of this dissertation go to her credit, and if there are any errors and faults, they are only mine.

To professor Ivan Ignjatović I owe special thanks for standing side by side me throughout my PhD studies. Alongside him, I developed a love for laboratory work and learned how to be excited about experiments.

To professors Nenad Pecić and Jorge de Brito I express my appreciation for their help during the writing of my thesis, for their valuable help, insight, comments and feedback. I hope I have achieved the level of quality of this dissertation that they believed it could reach.

I wish to thank Jelena Dragaš for all her help, she was my closest colleague during my PhD studies. I would also like to acknowledge the contributions of professor Branislav Bajat and colleagues Vedran Carević, Ivan Milićević, Aleksandar Radević, Milutin Pejović and Mladen Jović. Their help in carrying out the experiments and measurements is greatly appreciated. I especially want to thank Milutin Pejović for introducing me to the wonders of LATEX in which this thesis was written.

Without the support of the University of Belgrade's Faculty of Civil Engineering and all of my colleagues, this dissertation could not be completed. The work presented herein was financially supported by the Ministry for Education, Science and Technological Development of the Republic of Serbia and the Swiss National Science Foundation. Important contributions were also made by companies Čelikinvest, Deneza M, Gradient and GP Planum AD. This support is gratefully acknowledged.

Acknowledgments for helping me in my work go not only for professional, but also personal and emotional support.

Limited space here does not allow me to fully express how thankful I am to my partner, Milica, for being my companion in life. With her, my every day is filled with love received and, I hope, love given back. This journey required support, patience and understanding and, luckily for me, she had all of them. I thank my father for teaching me so much about life, even though my learning at times caused him pain. I thank my mother for igniting within me the flame of curiosity and love for learning.

I also wish to express special thanks to Aleksandar Stojanović and professors Branislav Radeljić and Gordana Vuleta. Talks with them, as colleagues in academia and as dear friends, have been invaluable for my development as a researcher and a teacher.

UNIVERSITY OF BELGRADE

Abstract

Faculty of Civil Engineering Department of Materials and Structures

Behaviour Of Reinforced Concrete Beams Made With Recycled And Waste Materials Under Long-term Loading

Concrete is the second most-used material in the world after water and its production places a large strain on natural resources and the environment. This has prompted the search for sustainable alternatives to traditional Portland cement concrete. Among these 'green concretes', most promising, in the case of Serbia, are recycled aggregate concrete (RAC) and high-volume fly ash concrete (HVFAC).

In recent decades, there has been a rising importance of serviceability limit states in the design of reinforced concrete structures, notably, the importance of deflections. For natural aggregate concrete (NAC), there is considerable literature concerning shrinkage, creep and deflections of reinforced NAC members, together with a significant number of calculation models. However, for RAC and HVFAC, no such models exist and the number of available experimental results in literature is limited.

In order to fill this knowledge gap, this thesis describes the results of an experimental programme in which reinforced NAC, RAC and HVFAC beams were tested under sustained load. Three concrete mixtures were prepared: NAC, RAC with 100% coarse recycled concrete aggregate and HVFAC in with a 1:1 cement:fly ash ratio. The mixtures were designed to have the same 28-day compressive strength and initial slump.

Six, 3.2 m-span simply supported reinforced concrete beams were made from all three mixtures (two beams from each mixture) and loaded in four-point bending with a sustained load at the ages of 7 and 28 days, maintained for 450 days. The load was determined so that beams loaded at the same age were loaded to an identical stress—to—strength at loading age ratio. On the beams, deflections, strains, crack spacing and crack widths

were measured. Accompanying specimens were cast for measuring mechanical proper-

ties, shrinkage and creep.

Shrinkage was the highest for RAC, followed by NAC and then HVFAC. Creep was mea-

sured on RAC and HVFAC prisms loaded after 7 and 28 days. The creep coefficient was

higher for RAC and no clear dependence on loading age was found. The results on all

six beams showed a similar increase of normalized deflections: 2.03–2.36 times the ini-

tial deflection. The changes of compressive and tensile strains, crack spacing and crack

widths were also presented and discussed.

Two models for calculating deflections were analysed: MC10 and ACI 435R (ACI). Both

were assessed on individual deflection curves and a large database of 140 results on NAC

beams using numerical integration of curvatures. Influencing parameters on both mod-

els' accuracy and precision were identified and corrections were proposed in the form of

MC10+ and ACI+ models. The simplified versions of both models were compared with

their respective rigorous methods and deviations between the models were corrected.

Finally, the corrected MC10+ and ACI+ models were tested on own and existing results

from literature for deflections of RAC and HVFAC beams. The MC10+ model was shown

to be applicable to RAC beams if corrections are introduced for shrinkage and creep. The

ACI+ could not be shown to be directly applicable to RAC beams. For HVFAC, only

own experimental results were available, but both models significantly overestimated their

deflections, pointing to a possible difference in tension stiffening of HVFAC compared

with NAC.

Key words: concrete; reinforced concrete beam; recycled concrete aggregate; fly ash;

creep; shrinkage; deflections; modeling

Scientific field: Civil and Structural Engineering

Scientific sub-field: Concrete Structures

UDC number: 624.012.45.04(043.3)

UNIVERZITET U BEOGRADU

Rezime

Građevinski fakultet

Katedra za materijale i konstrukcije

Ponašanje armiranobetonskih grednih elemenata od betona sa recikliranim i otpadnim materijalima pod dugotrajnim opterećenjem

Beton je drugi najkorišćeniji materijal na svetu nakon vode i njegova proizvodnja je odgovorna za veliku potrošnju prirodnih sirovina i uticaj na životnu sredinu zbog čega su istraživači počeli potragu za održivim alternativama konvencionalnim betonima od Portland cementa. Među ovim 'zelenim betonima', u Srbiji najviše potencijala imaju betoni sa recikliranim agregatom (RAC) i betoni sa velikim sadržajem letećeg pepela (HVFAC).

Prethodnih decenija je došlo do porasta značaja graničnih stanja upotrebljivosti (pre svega ugiba) pri projektovanju armiranobetonskih konstrukcija. Za betone od prirodnog agregata (NAC), postoji brojna literatura o skupljanju, tečenju i ugibima armiranobetonskih NAC elemenata, zajedno sa značajnim brojem proračunskih modela. Međutim, za RAC i HVFAC, takvi modeli ne postoje, a broj postojećih eksperimentalnih rezultata je ograničen.

U cilju sticanja ovih nedostajućih znanja, u ovoj disertaciji su opisani rezultati eksperimentalnog programa u kome su armirane grede od NAC, RAC i HVFAC betona ispitane pod dugotrajnim opterećenjem. Spravljene su tri betonske mešavine: NAC, RAC sa 100% krupnog agregata od recikliranog betona i HVFAC sa odnosom cement:leteći pepeo 1:1. Mešavine su spravljene sa ciljanom istom čvrstocom pri pritisku nakon 28 dana i istim početnim sleganjem.

Šest armiranobetonskih grednih nosaca raspona 3.2 m je spravljeno od navedene tri mešavine (po dve grede od svake mešavine) i opterećeno koncentrisanim silama u trećinama raspona nakon 7 i nakon 28 dana tokom 450 dana. Grede opterećene pri istoj starosti su opterećene

tako da se u njima postigne identičan odnos napon/čvrstoća pri pritisku u trenutku optereći-

vanja. Na gredama su mereni ugibi, dilatacije i razmaci i širine prslina. Izbetonirani su i

prateći uzorci za merenje mehaničkih karakterisitka, skupljanja i tečenja.

Skupljanje je bilo najveće u slucaju RAC betona, praćeno NAC i HVFAC betonima.

Tečenje je mereno na RAC i HVFAC betonima opterećenim nakon 7 i 28 dana. Ko-

eficijent tečenja je bio veći u slucaju RAC betona ali nije primećena njegova zavisnost od

vremena opterećivanja. Rezultati na gredama su pokazali slično uvećanje normalizovanih

ugiba za svih šest greda: 2.03–2.36 puta početni ugib. Promene u naponima pritiska i

zatezanja, razmaku i širini rslina su takođe prikazane i analizirane.

Analizirana su dva modela za proračun ugiba: MC10 i ACI 435R (ACI). Oba modela

su ocenjena putem pojedinačnih vremenskih krivih ugiba i na velikoj bazi podataka sa

140 rezultata ugiba NAC armiranih greda, putem numeričke integracije krivina. Za oba

modela su identifikovani parametri koji imaju uticaj na preciznost i tačnost modela i pred-

ložene su izmene u formi MC10+ i ACI+ modela. Pojednostavljene metode proračuna u

oba modela su upoređene sa rigoroznim pristupom i rezlike su korigovane.

Na kraju, korigovani MC10+ i ACI+ modeli su ispitani na sopstvenim i postojećim rezul-

tatima iz literature ugiba RAC i HVFAC armiranih greda. Za MC10+ model je utvrđeno

da je primenjiv na RAC grede ukoliko se uvedu korekcije za tečenje i skupljanje. Za

ACI+ model nije moguć utvrditi njegovu direktnu primenjivost na RAC grede. Za HV-

FAC armirane grede su bili dostupni samo sopstveni rezultati. Oba modela su značajno

precenila ugibe ovih greda, ukazujući na mogucnost postojanja drugačijeg sadejstva za-

tegnutog betona i armature u slučaju HVFAC betona.

Ključne reči: beton; armiranobetonska greda; agregat od recikliranog betona; leteći

pepeo; tečenje; skupljanje; ugib; modeliranje

Naučna oblast: Građevinarstvo

Uža naučna oblast: Betonske konstrukcije

UDK broj: 624.012.45.04(043.3)

Contents

Al	bbrev	iations								ii
Sy	mbol	s								iii
A	cknov	vledgem	nents							viii
Αl	bstrac	:t								X
Re	ezime									xii
Li	st of l	Figures								xviii
Li	st of T	Fables								xxiv
1	Intr		n to the Thesis							1
	1.1	Backg	round							1
	1.2	Motiva	ation for the Research							4
	1.3	Object	tives of the Research							5
	1.4	Metho	dology and Outline of the Thesis							6
	1.5	Organi	ization of the Thesis		•			•		7
2			Review – Shrinkage, Creep and Deflections of Re	inf	ore	ce	d	C	n.	
		e Beams	-							10
	2.1		uction							10
	2.2		age							14
		2.2.1	Introduction							14
		2.2.2	Plastic Shrinkage							15
		2.2.3	Autogenous Shrinkage							16
		2.2.4	Drying Shrinkage							17

		2.2.5	Differential Shrinkage	. 19
	2.3	Creep		. 20
		2.3.1	Introduction	. 20
		2.3.2	Nature of Creep	. 21
		2.3.3	Factors Influencing Creep	. 24
	2.4	Deflec	tions of Reinforced Concrete Beams	. 25
		2.4.1	Introduction	
		2.4.2	Deflections of Cracked Members	. 26
		2.4.3	Factors Influencing Deflections	. 32
	2.5	Model	s for Calculating Shrinkage, Creep and Deflections of Reinforced	
		Concre	ete Beams	. 36
		2.5.1	Introduction	. 36
		2.5.2	Experimental Research	. 38
		2.5.3	Models for Calculating Shrinkage and Creep	. 54
		2.5.4	Models for Calculating Deflections	. 78
	2.6	Recyc	led Aggregate Concrete	. 92
		2.6.1	Introduction	. 92
		2.6.2	Shrinkage and Creep of RAC	. 101
		2.6.3	Deflections of reinforced RAC beams	. 107
	2.7	High-v	volume Fly Ash Concrete	. 119
		2.7.1	Introduction	. 119
		2.7.2	Shrinkage and Creep of HVFAC	. 125
		2.7.3	Deflections of reinforced HVFAC beams	. 129
	2.8	Summ	ary	. 131
3	Exp	eriment	tal Programme – Long-term Behaviour of Reinforced Concre	te
	Bear	ms Und	er Sustained Loads	134
	3.1	Scope	of the Experimental Programme	. 134
	3.2	Materi	al Properties of Component Materials	. 135
		3.2.1	Natural Aggregate	. 135
		3.2.2	Recycled Concrete Aggregate – RCA	. 138
		3.2.3	Fly Ash	. 142
		3.2.4	Cement	. 144
		3.2.5	Reinforcement	. 144
	3.3	Mixtu	re Design of Concretes	. 145
		3.3.1	Mixture Design Methodology	. 145
		3.3.2	Natural Aggregate Concrete – NAC	. 146
		3.3.3	Recycled Aggregate Concrete – RAC	. 148
		3.3.4	High-volume Fly Ash Concrete – HVFAC	. 150
	3.4	Reinfo	orced Concrete Beams	. 152
		3.4.1	Beam Design and Specifications	. 152

		3.4.2	Beam Ca	sting	160
		3.4.3	Accompa	nying Concrete Test Specimens	162
		3.4.4	_	ading Procedure and Measurements	
	3.5	Summa	ary		177
4	Resu	ılts of tl	ne Experin	nental Programme	178
	4.1	Introdu	action		178
	4.2	Materi	al Propertion	es of Concretes	179
		4.2.1	Workabil	ity	179
		4.2.2	Fresh and	Hardened Density	181
		4.2.3	Compress	sive Strength	183
		4.2.4	Tensile St	trength	185
		4.2.5	Modulus	of Elasticity	186
		4.2.6	Shrinkage	2	188
		4.2.7	Creep .		191
	4.3	Results	s on Reinfo	orced Concrete Beams	196
		4.3.1	Load Cal	culation and Applications	196
		4.3.2	Deflection	ns	198
		4.3.3	Crack Spa	acing and Crack Widths	204
		4.3.4	Strains		212
	4.4	Summa	ary		230
5	Ana	lysis, Di	scussion a	and Implications of the Results	233
	5.1	Aim of	f the Analy	rsis of the Results	233
	5.2	Analys	sis of the M	Iechanical Properties of Concretes	234
		5.2.1	Compress	sive Strength	234
		5.2.2	Modulus	of Elasticity	240
		5.2.3	Tensile St	trength	248
	5.3	Analys	sis of Shrii	nkage and Creep Results - Comparison with Existing	
		Models	s		252
		5.3.1	Shrinkage	.	253
		5.3.2	Creep .		262
	5.4	Analys	sis of Beam	Deflection Results Using Existing Models	270
		5.4.1	Assessme	ent and Correction of Existing Models for NAC	271
			5.4.1.1	Assessment and Correction of Model Code 2010 Model	272
			5.4.1.2	Assessment and Correction of the ACI 435R Model	296
		5.4.2	Models for	or Calculating Deflections of reinforced RAC and HV-	
			FAC Men	mbers	309
			5.4.2.1	Application of the Improved Model Code 2010 MC10+	
				Model	
			5.4.2.2	Application of the Improved ACI 435R ACI+ Model	326

Contents

	5.5	Summary	332		
6	Conc 6.1 6.2	Conclusions from this Research	335 335 340		
A	Expo	erimental Measurements	342		
В	Anal	ysis of Shrinkage and Creep Results	441		
C	Asse	ssment and Correction of MC10 model	517		
D	Asse	ssment and Correction of ACI model	552		
E	App	licability of Model Code 2010	593		
F	App	licability of ACI 318 and ACI 435R	611		
Bil	bliogr	aphy	625		
Cu	rricu	lum Vitae	641		
Αu	uthorship Statement 642				

List of Figures

2.1	Shrinkage strain components in (a) normal-strength and (b) high-strength	1.5
	concrete (Gribniak et al., 2008)	17
2.2	Deformation of concrete under a sustained stress for a fixed duration	21
2.3	Stress and strain distribution in fully cracked cross-section in flexure	27
2.4	Cracked reinforced concrete member in flexure	28
2.5	Moment-curvature relation in a cracked reinforced concrete member in	
	flexure	29
2.6	Curvature of a reinforced concrete beam a) at time t_0 and b) at time t .	
	Adapted from (Ghali et al., 2002)	31
2.7	Definition of different moduli of elasticity (FIB, 2013)	33
2.8	Examples of deviations in data curves caused by testing procedures or	
	reporting (Hubler et al., 2015a)	41
2.9	Basic rheological models (Fathifazl and Razaqpur, 2013)	55
2.10	Reinforcement strain in a reinforced concrete member under pure tension	80
2.11	Moment–curvature diagrams for pure bending	84
2.12	Example of a mobile crusher, (Ignjatović, 2009): (1) loading tray, (2)	
	primary sieves, (3) crusher, (4) conveyor belt, (5) machine chassis, (6)	
	engine, (7) command board, (8) magnetic separator and (9) secondary	
	sieves)	94
2.13	Schematic of a process in a stationary recycling facility, provided by Re-	
	cycling Kombinatie REKO BV, the Netherlands	94
2.14	Recycled concrete aggregate particles	95
2.15	Setup for sustained loading test, (Sato et al., 2007)	109
2.16	The view of the test stand showing the method of loading beams in natural	
	scale: (1 – test stand, 2 – beam R-LT made of recycled aggregates, 3 –	
	actuator loading the beam), (Łapko and Grygo, 2010)	110
2.17	Dimensions, reinforcement and loading scheme of the beams in long-term	
	tests, (Ajdukiewicz and Kliszczewicz, 2011)	111
2.18	Results of long-term tests of beams with different contribution of recycled	
	aggregate, (Ajdukiewicz and Kliszczewicz, 2011)	112
2.19	Schematic test set-up for sustained loading, (Choi and Yun, 2013)	114

2.20	Beam test elevation: (a) UT series beams; (b) UC series beams; and (c) CC series beams, (Knaack and Kurama, 2015)
2 21	Test equipment under sustained load, (Seara-Paz et al., 2016)
	Fly ash sample (left) and scanning electron microscopy (SEM) image (right) 120
	Test setup of long-term experiment: (a) Shrinkage beam; (b) Simply sup-
2.23	ported beam; and (c) Continuous beam, (Liu et al., 2008)
	ported seam, and (c) continuous seam, (Lia et al., 2000)
3.1	Particle size distribution of NA – sand and gravel
3.2	Demolition of a highway bridge
3.3	Mobile recycling machine
3.4	Column core carbonation
3.5	Stockpiling of RCA
3.6	Particle size distribution of coarse RCA
3.7	Fly ash collection system
3.8	Fly ash particle size distribution
3.9	Aggregate mixture distribution for NAC
3.10	Aggregate mixture distribution for RAC
3.11	Aggregate mixture distribution for HVFAC
3.12	Schematic representation of a four-point bending test
3.13	Reinforcement layout of the beams
3.14	Reinforcement in the formwork
3.15	Vertical-axis pan mixer
3.16	Placing concrete in the formwork
3.17	Concrete test specimens
3.18	Compressive strength testing
3.19	Splitting tensile strength testing
3.20	Flexural tensile strength testing
3.21	Modulus of elasticity testing
3.22	Mechanical strain gauge
3.23	Prisms for measuring shrinkage
3.24	Steel frames for testing creep – in the laboratory (left) and scheme (right) 166
3.25	Prisms positioned in the frame
3.26	Load for beams
3.27	Steel support structure
3.28	Steel support roller – fixed (left) and free (right)
3.29	Raising beams onto supports
3.30	Steel 'hands' on beams
3.31	Steel cart
3.32	Steel cart aligned with steel 'hands'
	Raising the steel cart
	After releasing the car-jacks

Dial indicator	172
Calibration of dial indicator	172
Precise self-adjusting level instrument	173
Ruler on a steel cap next to a dial indicator	173
Representation of self-weight deflection calculation	174
Layout of steel pins for strain measurements	175
Marking crack lengths and widths	176
Measuring crack widths with a crack gauge	176
Forms of slump, (EN 12350-2, 2010)	180
Slump measurements – NAC	181
Slump measurements – RAC	182
Slump measurements – HVFAC	182
Time evolution and comparison of compressive strengths	185
Time evolution and comparison of the modulus of elasticity	187
Temperature and humidity in the laboratory during the experiment	189
Time evolution of shrinkage strain, linear time scale	190
Time evolution of shrinkage strain, logarithmic time scale	190
Stress-dependent strain for RAC prisms	193
Stress-dependent strain for HVFAC prisms	193
Creep compliance curves for RAC and HVFAC	194
Creep strain of RAC	195
Creep strain of HVFAC	195
Specific creep strain for RAC and HVFAC	196
Time evolution of normalized mid-span deflections for beams loaded after	
7 days	202
Time evolution of normalized mid-span deflections for beams loaded after	
28 days	202
Time evolution of deflections along the length of beam NAC7 (left) and	202
	203
	203
, <u> </u>	203
	203
· · · · ·	
_	
•	
Crack pattern for beam RAC28 at t_0 and 450 d	
ı	
Time evolution of compressive concrete strain in beam NAC7	
	Calibration of dial indicator Precise self-adjusting level instrument Ruler on a steel cap next to a dial indicator Representation of self-weight deflection calculation Layout of steel pins for strain measurements Marking crack lengths and widths Measuring crack widths with a crack gauge Forms of slump, (EN 12350-2, 2010) Slump measurements – NAC Slump measurements – RAC Slump measurements – HVFAC Time evolution and comparison of compressive strengths Time evolution and comparison of the modulus of elasticity Temperature and humidity in the laboratory during the experiment Time evolution of shrinkage strain, linear time scale Stress-dependent strain for RAC prisms Stress-dependent strain for RAC prisms Creep compliance curves for RAC and HVFAC Creep strain of RAC Creep strain of HVFAC Specific creep strain for RAC and HVFAC Time evolution of normalized mid-span deflections for beams loaded after 7 days Time evolution of deflections along the length of beam NAC7 (left) and NAC28 (right) Time evolution of deflections along the length of beam RAC7 (left) and RAC28 (right) Time evolution of deflections along the length of beam HVFAC (left) and HVFAC28 (right) Crack pattern for beam NAC7 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam HVFAC7 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam RAC28 at t ₀ and 450 d Crack pattern for beam HVFAC28 at t ₀ and 450 d Crack pattern for beam HVFAC28 at t ₀ and 450 d

4.28	Time evolution of tensile steel strain in beam NAC7	214
4.29	Close view of middle cross-sections of beam NAC7	215
4.30	Strain distribution of cross-section A6-7 in beam NAC7	215
4.31	Strain distribution of cross-section A8-9 in beam NAC7	215
4.32	Time evolution of compressive concrete strain in beam NAC28	216
4.33	Time evolution of tensile steel strain in beam NAC28	217
4.34	Close view of middle cross-sections of beam NAC28	218
4.35	Strain distribution of cross-section A7-8 in beam NAC28	218
4.36	Strain distribution of cross-section A8-9 in beam NAC28	219
4.37	Time evolution of compressive concrete strain in beam RAC7	220
4.38	Time evolution of tensile steel strain in beam RAC7	220
	Close view of middle cross-sections of beam RAC7	
4.40	Strain distribution of cross-section A6-7 in beam RAC7	221
4.41	Strain distribution of cross-section A7-8 in beam RAC7	222
4.42	Strain distribution of cross-section A8-9 in beam RAC7	222
4.43	Time evolution of compressive concrete strain in beam RAC28	223
4.44	Time evolution of tensile steel strain in beam RAC28	223
4.45	Close view of middle cross-sections of beam RAC28	224
4.46	Strain distribution of cross-section A8-9 in beam RAC28	225
4.47	Time evolution of compressive concrete strain in beam HVFAC7	226
4.48	Time evolution of tensile steel strain in beam HVFAC7	226
4.49	Close view of middle cross-sections of beam HVFAC7	227
4.50	Strain distribution of cross-section A8-9 in beam HVFAC7	227
4.51	Time evolution of compressive concrete strain in beam HVFAC28	228
4.52	Time evolution of tensile steel strain in beam HVFAC28	229
4.53	Close view of middle cross-sections of beam HVFAC28	229
4.54	Strain distribution of cross-section A7-8 in beam HVFAC28	230
5.1	Predictions of NAC compressive strength time evolution	237
5.2	Predictions of RAC compressive strength time evolution	238
5.3	Predictions of HVFAC compressive strength time evolution	239
5.4	Time evolution of the NAC modulus of elasticity	242
5.5	Predictions of the NAC modulus of elasticity from compressive strength .	243
5.6	Time evolution of the RAC modulus of elasticity	244
5.7	Predictions of the RAC modulus of elasticity from compressive strength .	245
5.8	Time evolution of the HVFAC modulus of elasticity	246
5.9	Predictions of the HVFAC modulus of elasticity from compressive strength	247
5.10	Determining the initial offset for NAC shrinkage measurements	253
5.11	Original and calibrated NAC shrinkage curve according to model B4	255
5.12	Original and calibrated RAC shrinkage curve according to model B4	256
5.13	Original and calibrated HVFAC shrinkage curve according to model B4 .	256

5.14	Original and calibrated NAC shrinkage curve according to model MC10	257
5.15	Original and calibrated RAC shrinkage curve according to model MC10	257
5.16	Original and calibrated HVFAC shrinkage curve according to model MC10	258
5.17	Original and calibrated NAC shrinkage curve according to model EC2	258
5.18	Original and calibrated RAC shrinkage curve according to model EC2	259
5.19	Original and calibrated HVFAC shrinkage curve according to model EC2	259
5.20	Original and calibrated NAC shrinkage curve according to model ACI 209R	260
5.21	Original and calibrated RAC shrinkage curve according to model ACI 209R	260
5.22	Original and calibrated HVFAC shrinkage curve according to model ACI	
	209R	260
5.23	Original and calibrated NAC shrinkage curve according to model GL2000	261
5.24	Original and calibrated RAC shrinkage curve according to model GL2000	261
5.25	Original and calibrated HVFAC shrinkage curve according to model GL2000	262
5.26	Original (left) and calibrated (right) creep compliance curves for RAC7	
	C	265
5.27	Original (left) and calibrated (right) creep compliance curves for HV-	
	FAC7 and HVFAC28 according to B4	265
5.28	Original (left) and calibrated (right) creep compliance curves for RAC7	
	\mathcal{E}	266
5.29	Original (left) and calibrated (right) creep compliance curves for HV-	•
7.0 0	č	266
5.30	Original (left) and calibrated (right) creep compliance curves for RAC7	267
5 21		267
5.31	Original (left) and calibrated (right) creep compliance curves for HV-	267
5 22	e	207
3.32	Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to ACI 209R	268
5 33	Original (left) and calibrated (right) creep compliance curves for HV-	200
3.33		268
5 34	Original (left) and calibrated (right) creep compliance curves for RAC7	200
3.31		269
5.35	Original (left) and calibrated (right) creep compliance curves for HV-	_0,
0.00		269
5.36	Assessment of deflection curves for beams from (Gilbert and Nejadi, 2004)	
		275
5.37	Assessment of deflection curves for slabs from (Gilbert and Nejadi, 2004)	
		276
5.38	Calculated vs. experimental values of deflections, according to MC10: a)	
	initial, b) final and c) initial and final deflections	280
5.39	The influence of M_{max}/M_{cr} (left) and compressive strength (right) on	
	a_{calc}/a_{exp} , MC10	283

5.40	The influence of L/d (left) and $t - t_0$ (right) on a_{calc}/a_{exp} , MC10	283
	The influence of ρ (left) and ρ' (right) on a_{calc}/a_{exp} , MC10	284
5.42	Proposed function for the β coefficient	286
5.43	Proposed function for the exponent α	288
5.44	Deflection curves for beams from (Gilbert and Nejadi, 2004), comparison	
	of MC10+ and MC10	289
5.45	Deflection curves for slabs from (Gilbert and Nejadi, 2004), comparison of MC10+ and MC10	290
5.46	Initial parametric analysis and comparison of the simplified and rigorous MC10+ procedures	293
5.47	Assessment of deflection curves for beams from (Gilbert and Nejadi, 2004) according to ACI	297
5.48	Assessment of deflection curves for slabs from (Gilbert and Nejadi, 2004) according to ACI	298
5.49	Calculated vs. experimental values of deflections, according to ACI: a)	
	initial, b) final and c) initial and final deflections	300
5.50	The influence of M_{max}/M_{cr} (left) and compressive strength (right) on	
	a_{calc}/a_{exp} , ACI	301
5.51	The influence of L/d (left) and $t - t_0$ (right) on a_{calc}/a_{exp} , ACI	302
5.52	The influence of ρ (left) and ρ' (right) on a_{calc}/a_{exp} , ACI	302
5.53	Deflection curves for beams from (Gilbert and Nejadi, 2004), comparison	
	of ACI+ and ACI	304
5.54	Deflection curves for slabs from (Gilbert and Nejadi, 2004), comparison	205
	of ACI+ and ACI	305
5.55	Initial parametric analysis and comparison of the simplified and rigorous	207
5 5 C	ACI+ procedures	307
	Assessment of deflection curves for RAC beams, MC10+	312
	Assessment of deflection curves for HVFAC beams, MC10+	312
	Calibration of deflection curves for HVFAC beams, MC10+	314
5.59	Proposed modulus of elasticity multiplying factors for RCA concretes of	222
7 (0	different characteristic cube strenghts, (Lye et al., 2016a)	322
5.60	Compilation of relative <i>increase of</i> shrinkage of RCA concrete with re-	
	spect to NA concrete at different strength grades, (Lye et al., 2016c). Note:	222
<i>5 (</i> 1	text in italic added by author.	322
5.61	Proposed creep multiply factor of concrete made with different RCA con-	
	tent for various strength levels, (Lye et al., 2016b). Note: compressive strength is related to cube strength	272
5.60	Assessment of deflection curves for beams from own experimental pro-	343
5.02	gramme, ACI+	327
	51 minino, 1 x C 1	ا ہے د

List of Tables

2.1	Range of the most important parameters, (Espion, 1988) 4	4
2.2	Coefficients α_i (FIB, 2013) 6	7
2.3	Coefficients α_{dsi} in Equation 2.107	0
3.1	Physical and mechanical properties of NA and RCA	
3.2	Properties of the parent concrete	
3.3	Chemical and physical properties of fly ash	
3.4	Mixture proportions of NAC	
3.5	Mixture proportions of RAC	9
3.6	Mixture proportions of HVFAC	
3.7	Position of dial indicators	
3.8	Position of steel caps for geodetic measurements	3
4.1	Slump classes according to (EN 206-1, 2000)	-
4.2	Slump test results	0
4.3	Fresh and hardened densities of the concretes	3
4.4	Cube compressive strengths of the concretes	3
4.5	Compressive strengths of the concretes converted to standard cylinder	
	strength	
4.6	Splitting and flexural tensile strengths of the concretes	
4.7	Modulus of elasticity of the concretes	
4.8	Temperature and humidity monthly averages	
4.9	Measured shrinkage strains	
4.10	r	
4.11	1	
	Time evolution of experimental creep coefficient	
	Applied load and bending moments	
4.14	Ratios between the total imposed, cracking and ultimate bending moments 19	8
4.15	Calculated initial stresses in the beams	8
	Calculated initial strains in the beams	
4.17	Measured and calculated deflections from self-weight	0
4.18	Time evolution of mid-span deflection of the beams	0

4.19	Time evolution of normalized mid-span deflection of the beams	201
4.20	Crack spacing and crack widths for the beams	211
4.21	Compressive concrete strain in beam NAC7	213
4.22	Tensile steel strain in beam NAC7	213
4.23	Compressive concrete strain in beam NAC28	216
4.24	Tensile steel strain in beam NAC28	216
4.25	Compressive concrete strain in beam RAC7	219
4.26	Tensile steel strain in beam RAC7	219
4.27	Compressive concrete strain in beam RAC28	222
4.28	Tensile steel strain in beam RAC28	223
4.29	Compressive concrete strain in beam HVFAC7	225
	Tensile steel strain in beam HVFAC7	
4.31	Compressive concrete strain in beam HVFAC28	228
4.32	Tensile steel strain in beam HVFAC28	228
5.1	Predictions of NAC compressive strength	236
5.2	Predictions of RAC compressive strength	
5.3	Predictions of HVFAC compressive strength	
5.4	Time evolution of the NAC modulus of elasticity	
5.5	Predictions of the NAC modulus of elasticity from compressive strength :	
5.6	Time evolution of the RAC modulus of elasticity	
5.7	Predictions of the RAC modulus of elasticity from compressive strength	
5.8	Time evolution of the HVFAC modulus of elasticity	
5.9	Predictions of the HVFAC modulus of elasticity from compressive strength	247
5.10	Predictions of NAC tensile strength according to Eurocode 2 and Model	
	Code 2010	249
5.11	Predictions of NAC modulus of rupture according to ACI 318-11	250
5.12	Predictions of RAC tensile strength according to Eurocode 2 and Model	
		250
5.13	Predictions of RAC modulus of rupture according to ACI 318-11	251
5.14	Predictions of HVFAC tensile strength according to Eurocode 2 and Model	
		251
	Predictions of HVFAC modulus of rupture according to ACI 318-11	
	Comparison of calculated and measured shrinkage strain after 477 days . :	254
5.17		255
	1	263
	1	264
	Range of most important parameters in the database	
	Statistical parameters for deflections according to MC10	
5.22	Statistical parameters for deflections according to MC10+	288

5.23	Statistical parameters for deflections according to the MC10+ simplified	
	procedure	295
5.24	Summary of rigorous and simplified MC10+ methods	295
5.25	Statistical parameters for deflections according to ACI	301
5.26	Statistical parameters for deflections according to ACI+	303
5.27	Statistical parameters for deflections according to the ACI+ simplified	
	procedure	308
5.28	Summary of rigorous and simplified ACI+ methods	308
5.29	Comparison of parameters in the three studies on RAC beams	316
5.30	Statistical parameters for deflections of RAC, HVFAC and companion	
	NAC beams, MC10+	318
5.31	Statistical parameters for deflections of RAC, HVFAC and companion	
	NAC beams, MC10+ with corrections for RAC	324
5.32	Statistical parameters for deflections of RAC, HVFAC and companion	
	NAC beams, ACI+	329
5.33	Statistical parameters for deflections of RAC, HVFAC and companion	
	NAC beams, ACI+ with corrections for RAC	331

Chapter 1

Introduction to the Thesis

1.1 Background

The history of concrete closely follows the history of human development. Even though it existed in both ancient Rome and Egypt (Aćić, 2012), its use was limited and relatively rare. Then came the industrial revolution and with the abundance of newly available energy and means of production also came the concrete revolution.

In 1824 Johnson Aspden patented Portland cement, in the 1860s Joseph Monier invented reinforced concrete and finally, in the 1920s Eugene Freyssinet invented prestressed concrete (Aćić, 2012). The foundations of modern concrete had been laid. Further developments were extremely fast (superplasticizers, fibre reinforcement, self-compacting concrete, ultra-high performance concrete, etc.) and continue on today.

Owing to its many advantages over other construction materials, concrete has been the undisputed champion of the built environment. The possibility of it being reinforced to compensate for its low tensile strength; the ability to be cast in place or prefabricated in any desired shape; the ability to produce a wide variety of its properties suitable for any situation; the possibility of producing it with practically unskilled labour; these are all reasons why every developed country has relied and every developing country is relying on concrete—or, more broadly speaking, on cement-based materials—for its built environment. The conclusion of any analysis is the same: there can be no development and

improvement in the conditions of human existence without concrete (Du Plessis, 2002). This is also a political statement, especially for developing countries in which 65% of the population lives in slums and for whom a better quality of life is a necessity (World Bank, 2016).

All the advantages of concrete presented so far are the reason why it is the second most-used material on Earth—the first one being water—with an annual global production of 20 billion tons (WBCSD, 2009). This huge amount of concrete requires equally large amounts of its component materials: 15 billion tons of aggregates (river or crushed stone) (Langer et al., 2004) and 4.2 billion tons of cement (USGS, 2015); the amount of cement produced is around 600 kg per capita, higher than annual per capita food consumption (Scrivener et al., 2016).

Although concrete has a low embodied energy compared with other materials, the sheer scale of its use means a significant impact on the environment. This impact is mostly expressed in two ways and both can be viewed from a local and global perspective.

The first impact is through the production of cement. Beside depleting natural resources, cement production necessarily releases CO₂ because of the chemical reaction involved in clinker production:

$$CaCO_3 + heat \rightarrow CaO + CO_2$$
 (1.1)

Using current practice, each kg of cement produced is associated with an average of 842 g of CO₂; however, Equation 1.1 imposes a natural limit of around 500 g of CO₂ per kg of ordinary Portland cement (Scrivener et al., 2016). Taking into account the global annual cement production of 4.2 billion tons, the cement industry is actually responsible for 7–10% of all anthropogenic CO₂ emissions (which are around 30 gigatons, while 780 gigatons come from natural sources) (Scrivener et al., 2016). If we consider that the Intergovernmental Panel on Climate Change (IPCC) mitigation scenario is 450 ppm of CO₂ in the atmosphere (0.045% and a 2°C increase in temperature relative to the preindustrial level) then a 50% reduction in anthropogenic CO₂ emissions is necessary by 2050.

The second significant impact of concrete is its end-of-life, i.e. what happens after any concrete, plain or reinforced, has been decommissioned and demolished. Currently, most of it is still simply landfilled. What remains after the demolition of concrete structures is construction and demolition waste (CDW), and in huge quantities. In the EU alone, around 850 million tons of CDW are generated annually, accounting for approximately 30% of total waste generated (Fisher and Werge, 2011). Although CDW is generally inert and non-hazardous, its amount is posing a problem which is, in practice, mostly dealt with by countries with scarce natural resources or areas for landfilling such as the Netherlands and Japan (Ignjatović, 2009).

How will these problems be solved in the future? The construction industry is obviously an important part of the sustainability and sustainable development discourse since the built environment is of such importance for humanity's quality of life and since 'human beings are at the centre of concern for sustainable development' (UNEP, 1992).

Among several possible approaches being currently investigated, two are the subject of this thesis.

The first one is the recycling of CDW to produce recycled aggregates in order to replace natural ones in concrete. This approach has the benefit of saving natural resources and reducing the amount of CDW being landfilled. In this thesis, the focus will be on the product of reinforced or plain concrete recycling – recycled concrete aggregate or RCA, and on concretes in which it is used – recycled aggregate concrete or RAC. RAC is any concrete in which there is a complete or partial replacement of fine, coarse or both fine and coarse fractions of natural aggregate by RCA. There are several reasons why RCA and RAC are in the focus of this thesis. RCA has superior properties compared with other recycled CDW such as masonry; also, the share of reinforced concrete in total concrete production (which is currently around 25%) is expected to increase, particularly in developing countries (in Europe this share is close to 58%) (Scrivener et al., 2016).

The second approach is the partial replacement of cement by supplementary cementitious materials, usually industrial by-products. In this thesis, fly ash will be discussed in particular and the production of high-volume fly ash concrete or HVFAC. HVFAC is any concrete in which more than 30% of the total cementitious material is fly ash. Since it has pozzolanic properties, and is produced globally in large quantities— around 900–1000

megatons (Scrivener et al., 2016)—fly ash is an ideal candidate for cement replacement. This is not to say that the primary concern of sustainable development shouldn't be the reduction of dependency on coal as an energy source (fly ash being the by-product of its combustion in thermal power plants), but that something useful should be done with the waste already being generated.

These possible solutions are nothing new and have been investigated by researchers, in some cases for several decades. However, not all topics have been given equal attention. For example, out of almost 100 publications annually about the use of RCA in structural RAC (Silva, 2015) most deal with material properties (short-term mechanical or durability-related) and only a few about full-scale tests of structural elements; with HVFAC the situation is even worse. Scarce research exists on long-term material properties of RAC and HVFAC and on long-term behaviour of RAC and HVFAC structural elements, a topic that is obviously neglected but which is, for several reasons, important. Filling this gap is the aim of this thesis: shrinkage and creep of RAC and HVFAC and the long-term behaviour of RAC and HVFAC beams under sustained loads.

1.2 Motivation for the Research

It was stated in section 1.1 that the impact of concrete on the environment can be viewed from a global and local perspective. Both views have been the *spiritus movens* behind this thesis.

Globally, there is a question of the availability of RCA and fly ash to produce sufficient quantities of RAC and HVFAC to offset the negative impacts of concrete. Extensive research exists on this, examining the material flows in CDW recycling and coal combustion. The answer is that RCA and fly ash will not solve all of concrete's problems (Scrivener et al., 2016). They are merely one of the many solutions that must be implemented in order to achieve this. However, this is where the local perspective comes in: never mind that the global amounts of RCA and fly ash are insufficient for the global production of concrete if locally, e.g. in Serbia, zero kg of RCA and fly ash are used in structural concrete. The aim is to start and at least use these materials in the amounts in which they are available, i.e. better something than nothing.

Again from a global perspective, the motivation of this research was to fill existing gaps in knowledge on the behaviour of reinforced RAC and HVFAC members. The knowledge gap was identified in the long-term behaviour of these elements under sustained loads. But what would be the merit of such research?

Concrete is a unique material in the sense that it has time-dependent properties. These changes over time are mostly positive—reflected in the increase of mechanical properties—but they can also be negative or deleterious, such are durability-related properties and shrinkage and creep (properties very specific to concrete and explained in detail in Chapter 2). Additionally, the low tensile strength of concrete means that members subjected to bending crack and there is a change of stiffness and ultimately, deflections.

Through this research, the aim was to compare reinforced RAC and HVFAC beams with companion reinforced natural aggregate concrete (NAC) beams, observe the differences in their long-term behaviour under sustained loads and formulate new analytical expressions for prediction models so that they can be used on reinforced RAC and HVFAC beams. This would be directly useful for expanding knowledge on the behaviour of such members as well as enabling practicing engineers to reliably use design procedure for reinforced RAC and HVFAC members. There is significant importance in controlling deflection in reinforced concrete structures: controlling appearance, preventing damage to non-structural elements and loss of utility. Beside this, the research results could be indirectly useful in other applications through the knowledge gained on the shrinkage and creep behaviour of RAC and HVFAC compared with NAC, e.g. in controlling long-term losses of prestress force in prestressed RAC and HVFAC members.

1.3 Objectives of the Research

From the background and motivation for the research, come its objectives. It is necessary that the objectives be clearly defined, achievable and their completion measurable.

The first objective of the research is the systematisation in one place of the multidisciplinary knowledge on the long-term behaviour of concrete, deflections of reinforced concrete members made with recycled and waste materials. The primary goal of such a

systematisation is to allow the description of the state-of-art in the field and the identification of possible knowledge gaps which then provide the justification for carrying out research on the selected topic. A secondary aim of this step is to allow any potential reader to find all the necessary information to understand the state-of-art in this field, the experimental results of the research and their interpretation as well as to point to significant literature for the interested reader.

The second objective is to design a suitable experimental programme for testing all the phenomena of interest (shrinkage, creep and deflections of reinforced concrete beams) and explain it in sufficient detail to allow reproducibility of the results. The objective should be to design the experiment in such a way as to overcome the deficiencies which have become evident from previous research campaigns.

Such an experimental programme will yield useful experimental results, enrich the existing database in literature so that detailed and meaningful analyses can be possible.

After gathering own and existing results, comprehensive analyses will be performed. Their objective is to reach accurate and precise methods for predicting the behaviour of NAC, RAC and HVFAC beams under sustained loads. In order to achieve this, existing method must be analysed in-depth and, if necessary, corrected. Only than can they be adapted to RAC and HVFAC.

In the end, important conclusions will be drawn about the potential of concretes made with recycled and waste materials (viz. RAC and HVFAC) to be used as structural concrete, from the aspect of deflections of members in bending.

1.4 Methodology and Outline of the Thesis

After defining all of the objectives of the research, a methodology has to be put forward through which these objectives will be reached and from the adopted methodology, the outline of the thesis will logically follow.

The first step in the research was a systematic literature review. Its purpose was to synthesize current knowledge of the phenomena of interest for the thesis: concrete shrinkage

and creep, the deflections of reinforced concrete members, existing prediction models for shrinkage, creep and deflections and existing research on RAC and HVFAC. Throughout this section, an attempt was made to include as much multidisciplinary knowledge as possible, make connections with other field of research and also present a historic context for the development of research on this topic.

The second step was the design of a single-factor experiment – since a direct comparison of concretes made with recycled and waste materials and ordinary cement concrete was the objective, the type of concrete had to be the only variable in the experiment with all other parameters kept constant.

The analysis of results had to extract as much insights from the experiments as possible and at the same time build upon the knowledge gathered through the literature review. The analysis included the assessment of existing prediction models for shrinkage, creep and deflections themselves, and the assessment of how they behave when applied to RAC and HVFAC.

1.5 Organization of the Thesis

This document is prepared as a doctoral dissertation and presented to the University of Belgrade in fulfillment of the thesis requirement for the degree of Doctor of Philosophy in Civil Engineering. As such, it is prepared according to University guidelines concerning the thesis' appearance and organization.

The thesis is divided into six chapters.

Chapter 1, i.e. the current chapter, provides the general background and motivation for the research, presenting the sustainability problems of the concrete industry's current practice and the potential solutions investigated in the thesis. This chapter also presents the specific objectives of the thesis and the methodology and outline of how to achieve them: the investigation of long-term behaviour of reinforced RAC and HVFAC beams under sustained loads and their comparison with reinforced NAC beams.

Chapter 2 presents a literature review and state-of-art on phenomena of interest. The processes of concrete shrinkage and creep are briefly explained, relying on the results of

newest research. The specifics of calculating deflections of reinforced concrete members subjected to bending are then presented. Afterward, existing experimental research on these topics is presented as well as models used for predicting these phenomena in the case of NAC. Finally, the 'green' concretes investigated in this thesis (RAC and HVFAC) are presented, briefly from a general aspect of their basic properties and specifics and in more detail concerning existing research on their long-term behaviour under sustained loads.

Chapter 3 explains in detail the experimental setup and design. Three concrete mixtures were prepared: NAC, RAC and HVFAC. Mixtures of all three concretes were designed and their rheological and mechanical properties were verified experimentally. The main part of the experiment consisted of casting six 3.2 m-span simply supported reinforced concrete beams loaded in four-point bending with a sustained load at ages of 7 and 28 days (two beams made from each concrete). The load was applied for 450 days and deflections, concrete and reinforcement strains were measured.

Chapter 4 is a systematical presentation of the experimental results. For all the tested concretes, fresh and hardened properties were tested and the results reported for workability of the mixtures, density, compressive and tensile strength and the modulus of elasticity. Further on the material level, shrinkage and creep results obtained on prisms are reported. As for the reinforced concrete beams, after a detailed description of the load calculation for each beams, the measured deflections and strains are presented.

Chapter 5 contains several analyses of the results. The first group of analyses concerns the mechanical properties of concrete: compressive and tensile strength and the modulus of elasticity. Code expressions were used to predict these values and agreement between experimental and calculated results was tested. The second group of analyses concerns experimental results on shrinkage and creep of prisms. Existing calculation models, presented in Chapter 2, were used for comparison with measured values. The flexibility of each model was tested by fitting predicted curves to experimental results through the variation of models' free parameters. The final group of analysis deals with beam deflections. First, existing calculation models, also presented in Chapter 2, were analysed in-depth on NAC beams and their performance was corrected, thus improving their accuracy and precision. After that, these models were tested on RAC and HVFAC beams, on own and

existing experimental results, and necessary corrections were proposed in order to make these models equally applicable to RAC and HVFAC beams compared with NAC beams.

Chapter 6 presents the conclusions reached after carrying out the experimental programme and analysing the results. From the conclusions and their limitations, recommendations are drawn for further research necessary in this area.

Chapter 2

Literature Review – Shrinkage, Creep and Deflections of Reinforced Concrete Beams

2.1 Introduction

In section 1.1 it was stated that concrete is the second-most used material in the world after water. And yet, it is a product which is not produced under the same conditions everywhere, or according to the same or similar standards worldwide (unlike cement). It is a locally-manufactured material whose constituent materials and properties can vary widely.

Thus, from the same constituent materials, both 'good' and 'bad' concrete can be made; technology and knowledge of concrete chemistry is what makes a difference (Neville, 1995). 'Good' concrete is one which has satisfactory properties in both the fresh and hardened state. In the fresh state, concrete has to maintain a consistency which enables adequate transport and placement, whereas in the hardened state it must possess sufficient strength and durability.

In its most basic form, concrete is produced from three components: water, cement and aggregates. When talking about structural (reinforced) concrete, 'cements' are bonding

materials, mostly comprising compounds of lime (calcareous cements) which exhibit a setting and hardening behaviour in contact with water; they are, therefore, called hydraulic cements.

The most common aggregate types used in the production of (structural) concrete are natural river sand and gravel or crushed stone aggregates. They are usually separated into so-called 'fine' aggregates (with particles smaller than 4 mm) and 'coarse' aggregates (particles larger than 4 mm).

In its most usual form, one cubic meter of concrete is produced using 300–400 kg/m³ of cement, 150–200 kg/m³ of water, 600–800 kg/m³ of fine aggregate and 1000–1200 kg/m³ of coarse aggregate. After mixing cement and aggregates and adding water, the silicates and aluminates of lime in cement (oxides) build complex compounds such as calcium hydroxide and calcium silicate hydrate, thus forming a paste matrix around the aggregates, binding them into an 'artificial rock'.

Because of its many advantages, most of which were already listed in section 1.1, concrete was the ideal material to pair with reinforcement and produce structural reinforced concrete. It is estimated that in European countries, as much as 58% of cement is used in reinforced concrete. Even if this percentage is smaller worldwide (only around 25%) it is still expected to rise (Scrivener et al., 2016). Hence, the great importance of producing concrete structures which will be versatile and long-lasting.

During the twentieth century, the average strength of structural concrete, steadily increased, up to the point at which now there are 'ultra high-strength concretes' readily available worldwide, with compressive strengths exceeding 100 MPa. This trend has led to the fact that strength requirements are no longer the deciding aspect in the design of reinforced concrete structures. Rather, the ruling criteria have become serviceability and durability requirements. In this thesis, the focus will be on serviceability.

Serviceability of a reinforced concrete structure is defined as its ability to 'perform adequately in normal use' (FIB, 2013). Most modern codes for the design of reinforced concrete structures deal with so-called Serviceability Limit States or SLS, i.e. limit states concerned with the performance of a structure under 'service loads' (characterized by the fact that partial safety coefficients are generally taken equal to 1.0).

As defined in (FIB, 2013), 'depending on the type and function of a structure or a structural element the verification of different serviceability limit states may be relevant, such as the limitation of

- stresses,
- · crack widths,
- deformations and
- · vibrations.

In the case of reinforced concrete elements such as slabs and beams (members mostly loaded in bending), the serviceability limit state of deformations refers to deflections, i.e. vertical displacements of the member relative to its supports.

It is precisely deflections which are the interest of this thesis. One major area where deflections are a critical factor in design are slabs; their thickness is usually decided after deflection control and not strength considerations. Furthermore, deflection control is becoming more important, in the light of increasing importance of serviceability limit states in the design of reinforced concrete structures. An interesting analysis of this trend is given by Andrew Beeby in (FIB Bulletin 52, 2010): 'In reinforced concrete members, the deflection is roughly proportional to the stress in the reinforcement and the levels of stress used in reinforcement has steadily increased. This has occurred firstly due to changes in the strength of reinforcing steels and secondly due to reductions in the overall safety factors as our confidence in the material has increased. A lower overall safety factor or use of a higher strength steel automatically means a higher level of stress under service loads. In addition to this, modern buildings tend to require longer spans than those designed 30 to 50 years ago and there has been constant pressure to economise by using less materials. Though it is not possible to draw definite conclusions, it could well be argued that structures designed today may be four or more times more flexible than those designed 50 years ago.'

The main reasons for controlling deflections in design have been given in section 1.2 and they refer to the serviceability of a structure – controlling appearance, preventing damage

to non-structural elements and loss of utility. Control of appearance is mostly related to the discomfort that occupants of a room start to feel when they perceive a floor to be sagging. From research done on this topic, different limits in the form of a fraction of a structures' span have been proposed. For example, the general consensus is that no sagging will be noticed if the deflection of a reinforced concrete member, relative to its supports, is lower than span/250 (Beeby and Narayanan, 2005). The other important consideration is the damage to non-structural elements, mostly in the form of cracking of partitions and finishes. Although some limits have been proposed for these cases as well, clearly it is a more difficult limit to asses as it depends on the nature of the partition. The limits given in modern codes are usually in the range of span/300 to span/500 (only for the deflection that occurs after the partitions have been installed).

As will be seen later, calculating deflections of reinforced concrete members is a highly complex task depending on many factors and with many sources of variability – the fact that the stiffness of reinforced concrete members changes after cracking and due to creep and shrinkage, the fact that the concrete tensile strength has a high scatter and the modulus of elasticity is very difficult to adequately measure, etc. Even in controlled, laboratory conditions, it is not surprising (and is even a good result) when calculated deflections differ $\pm 20\%$ from measured ones. The relatively good precision of mathematical models for other aspects of reinforced concrete behaviour has unreasonably led many engineers to trust deflection calculations too much when in fact they are often only valid as a relative measure of a member's deformability.

Taking all of this into account, this section aims to present a state-of-the-art on the behaviour of reinforced concrete beams under long-term loading, with a special look on what work has been done on this topic for RAC and HVFAC.

The main influencing parameters of the long-term deflection behaviour of reinforced concrete beams will be explained in detail. The first two sections are dedicated to two aspects most specific to concrete and its long-term behaviour – shrinkage and creep. Afterward, in section 2.4, the remaining parameters of importance to reinforced concrete beams are presented.

Only describing and understanding a phenomenon is not the ultimate goal of any engineering endeavour; rather, it is the ability to make calculations, predictions and design.

First, existing experimental research on the material and structural level is discussed. After this, existing models for calculating shrinkage, creep and deflections are presented in section 2.5.

Finally, a review of the progress of research on RAC and HVFAC is given, in the area of shrinkage, creep and especially the behaviour of reinforced beams made from these concretes under long-term loading.

Throughout the chapter, beside trying to present the newest insights gained by researchers, it was also attempted to present things in a 'historical' perspective. This kind of view can perhaps be helpful in understanding how the current knowledge was reached and what were the driving factors behind the progress or lack thereof.

2.2 Shrinkage

2.2.1 Introduction

Shrinkage of concrete can be basically, and in somewhat lay terms, defined as a time-dependent volumetric change of an unloaded concrete specimen at a constant temperature. Behind this definition, lies a 130 year-long history of trying to understand the underlying processes of shrinkage ever since it was first observed in 1887 (Le Chatelier, 1887). The complex nature of the material makes this a difficult task.

Shrinkage is a deformation, and deformation of concrete can occur under mechanical, thermal and hygral actions. Mechanical actions (external forces, displacements, etc.) and thermal actions (temperature variations of climatic or industrial origin) are not of interest since shrinkage is the deformation of *unloaded concrete at a constant temperature* (here, load is considered in the strictly mechanical sense). This leaves only hygral actions; they are actions related to the movement of water. Hygral actions result either from variations in ambient conditions (which generate flows and consequently, gradients) or from an internal source or sink (resulting in a loss of equilibrium with the environment and also in flows and gradients) (Acker and Ulm, 2001).

This water movement occurs in several stages and processes which will be discussed in the following subsections. Thus far, research has shown that the *free* or *unrestrained shrinkage* of concrete can be divided into three categories:

- plastic shrinkage,
- · autogenous shrinkage, and
- drying shrinkage.

2.2.2 Plastic Shrinkage

There are four major compounds (all of them oxides) in Portland cement:

- Tricalcium silicate or C_3S ($3CaO \cdot SiO_2$) comprising 45–55% of cement,
- Dicalcium silicate or C_2S ($2CaO \cdot SiO_2$) comprising 20–30% of cement,
- Tricalcium aluminate or C_3A ($3CaO \cdot Al_2O_3$) comprising 6–10% of cement, and
- Tetracalcium aluminoferite or C_4AF ($4CaO \cdot Al_2O_3 \cdot Fe_2O_3$) comprising 15–20% of cement.

After adding water, these oxides build more complex compounds among which the most important are calcium hydroxide or CH ($Ca(OH)_2$ or $CaO \cdot H_2O$) and calcium silicate hydrate or C-S-H (with a very complex formula). What is most important to note is that hydration itself produces so-called *chemical shrinkage* because the volume of hydrated products is smaller than the sum of volumes of unhydrated cement and water. For example, in the case of hydration of C_3S , chemical shrinkage can be in the order of 3–10% (Tazawa, 1999).

However, prior to the setting of concrete the extent of shrinkage is small. As soon some stiffness of the system has developed, contraction due to the consumption of water by hydration is significantly restrained. While hydration continues, water can also be lost (not consumed) by evaporation from the surface. This is called *plastic shrinkage* as the

concrete is still in the plastic state. Plastic shrinkage is most affected by the amount of water lost from the surface – influenced by temperature, ambient relative humidity (RH) and wind speed. Also, plastic shrinkage increases with increasing cement content and decreasing water/cement (*w/c*) ratio (Neville, 1995).

However, although plastic shrinkage can present a danger to hardening concrete and cause cracking, it can be prevented by lowering (or eliminating) the rate of evaporation from the concrete surface, i.e. with proper curing. It is recommended that the rate of evaporation be under 1 kg/m² per h (Neville, 1995).

2.2.3 Autogenous Shrinkage

After initial setting, volume changes continue to occur. Because cement hydration continues beyond this point, a certain amount of water is necessary for it. This amount is a relatively small share of the mixing water: 15–20 l per 100 kg of cement, or less than half of the initial water in ordinary concrete (Acker and Ulm, 2001). If there is no external supply of water into concrete then a withdrawal of water from newly-formed capillary pores of the cement gel (produced in the process of chemical shrinkage) starts to take place. This process is known as *self-desiccation* and the resulting macroscopic volume change is called *autogenous shrinkage*. With continuing cement hydration, capillary and gel water are consumed. The hardened paste shows shrinkage because of the negative pressure caused by the formation of menisci in the pores. The precise mechanism of this process can be explained by capillary tension theory (Tazawa, 1999; Bažant et al., 1997).

The *autogenous shrinkage strain*, ε_{cas} , typically reaches values of about 0.04% after 28 days and 0.1% after five years (Neville, 1995). This is true for concretes with a w/c ratio greater than 0.45; it can quickly increase to 0.3% for w/c ratios lower than 0.4 (Acker and Ulm, 2001). Because of its low values for usual w/c ratios, autogenous shrinkage needn't, for practical purposes, be distinguished from shrinkage caused by drying of the concrete. It was, in fact, overlooked by researchers for a long time; since its evolution closely matches the evolution of compressive strength, most of it occurs in the first few days after setting, while shrinkage measurements (at least in the past) started several days after casting (Acker and Ulm, 2001).

Nonetheless, for certain concretes autogenous shrinkage is very important. Most notably, high-strength and ultra high-strength concretes with extremely low w/c ratios. This is also acknowledged by modern prediction models which treat autogenous shrinkage very seriously (Hubler et al., 2015b). Additionally, cements with high C_3A and C_4AF contents also experience higher autogenous shrinkage compared with ordinary concretes, while blended cements with fly ash generally show lower values (Neville, 1995).

2.2.4 Drying Shrinkage

If plastic shrinkage can be mitigated by proper curing, and autogenous shrinkage is generally negligible for ordinary concretes, then *drying shrinkage* must definitely be taken into account. While autogenous shrinkage is a process of water consumption, which could develop without moisture exchange with the environment, drying shrinkage is dependent on water evaporation and hence always entails a moisture exchange with the concrete's surroundings, Figure 2.1.

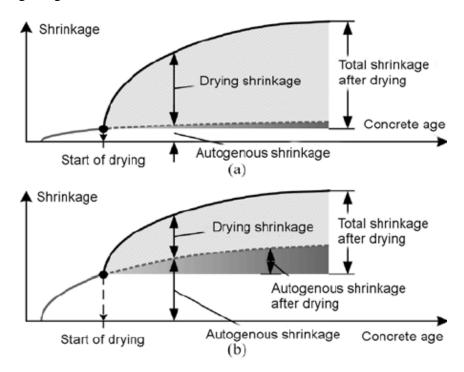


FIGURE 2.1: Shrinkage strain components in (a) normal-strength and (b) high-strength concrete (Gribniak et al., 2008)

The drying process in concrete doesn't begin until the formwork is removed – except for the exposed side, which is another important reason for curing. At first, *free water* from the pores evaporates, causing little or no shrinkage. As drying proceeds, *adsorbed water* is removed and the volumetric change of unrestrained hydrated cement paste in this phase is approximately equal to the loss of a water layer one molecule thick, from the surface of gel particles (Neville, 1995). The thickness of a water molecule is ca. 1% of the gel particle's size, upon complete drying a *drying shrinkage strain*, ε_{cds} , of 10% could theoretically be expected; values up to 4% have been observed on cement paste, but 0.2–0.6% are most common apparent values for concrete(Neville, 1995; Acker and Ulm, 2001). The specific mechanism of the structural changes occurring in the pores is very complex. Sometimes the pores aren't thick enough to fully develop adsorbed layers of water, causing large disjoining pressures (Bažant et al., 1997) exerted by the hindered adsorbed layers on pore walls; other times a removal of *intercristallyine water* also occurs.

The relation between water loss and drying shrinkage depends highly on the 'neatness' of the cement paste. The more porous the cement paste, the higher the content of free water that can evaporate causing no shrinkage. Drying shrinkage is also a process that depends on the size of the specimen since at each point drying is related to the distance of that point from the nearest surface (where moisture exchange takes place). The transport of water is described by diffusion theory and it is usually assumed that the rate of diffusion of vapor is proportional to the square root of time elapsed (Mensi and Acker, 1988). In other words, what happens in a cylinder of diameter D_1 after time t_1 also happens in a cylinder of diameter kD_1 after time k^2t_1 . However, the presence of edges further complicates this relation. The times for drying to finish (drying is a finite process because there is a finite amount of water in concrete) can be very long -10 years for a specimen 160 mm in diameter, but 300 years for 1 m of concrete (Acker and Ulm, 2001).

The explanations so far have been in regard to cement paste – the higher the w/c ratio, the higher the shrinkage (since there is more evaporable water). Aggregates, their amount and stiffness, have the highest influence in restraining the shrinkage of cement paste. The ratio of shrinkage of concrete S_c to the shrinkage of the cement paste S_p , depends on the aggregate content a and is

$$S_c = S_p \cdot (1 - a)^n \tag{2.1}$$

where experimental values of *n* vary between 1.2 and 1.7 (L'Hermite, 1960). The variations are partly due to the wide range of aggregate properties and the restraint they offer, some of them even showing shrinkage themselves (some dolerites and basalts, whereas granite, limestone and quartzite are non-shrinking).

The chemical composition of cement (excluding blended cements) is believed not to be a significant influence on shrinkage, while particle size can affect it through faster and more complete hydration of finer particles.

2.2.5 Differential Shrinkage

The discussion so far has been about free or unrestrained shrinkage. However, in structural members several sources of restraint exist. Beside the aggregate in concrete, other restraints are the non-shrinking reinforcement and the boundary or support conditions of the structural member. Since drying takes place at the surface of a concrete element, shrinkage varies with the size and shape of the element and is a function of the surface/volume ratio called the *notional size*, h_0 , of a concrete member

$$h_0 = 2 \cdot A_c / u \tag{2.2}$$

where A_c is the cross-sectional area and u the perimeter of the part exposed to drying. The notional size is linearly related to the logarithm of shrinkage and to the logarithm of the time required for half the shrinkage to be completed (Neville, 1995).

The stresses induced by restrained shrinkage are partly relieved by relaxation and creep. However, when drying occurs rapidly *shrinkage cracking* can occur. It is exactly this shrinkage cracking that is of main concern when designing concrete structures. As stated earlier, the *w/c* ratio has one of the most important impacts on shrinkage. When it is large it increases shrinkage and reduces strength, making concrete more prone to cracking. An increase in the cement content also increases shrinkage, but strength as well. The stresses induced by shrinkage are through time relieved by creep and by the increase of strength (but not of the modulus of elasticity in the case of restrained shrinkage, as it increases stress). Cracking can only be avoided if the stress induced by free shrinkage and reduced by creep at all times remains lower than the tensile strength of concrete. It can be seen

that there is a complex interplay of time-dependent processes that determines whether shrinkage cracking will occur.

2.3 Creep

2.3.1 Introduction

In concrete, the relation between stress and strain is a function of time. This is schematically shown in Figure 2.2. It can be seen that there is an increase in strain under sustained stress in excess of the initial strain at the time the stress is applied and the shrinkage strain that also increases during this period. Since this increase can be several times as large as the instantaneous strain at loading, creep can be of considerable importance when analysing concrete structures.

Under normal loading conditions, the instantaneous strain depends on the speed of load application and includes an initial, elastic part, $\varepsilon_{ci}(t_0)$, and a plastic part, $\varepsilon_{pl}(t_0)$, where t_0 denotes the time of stress application. Since load application can only theoretically be truly *instantaneous*, this strain also includes some creep strain (hence the importance in achieving as short a load application as possible in experiments). After the application of stress $\sigma(t_0)$, the shrinkage strain, ε_{cs} , continues to develop as shown by the dashed line in Figure 2.2. At any time t, the strain in excess of the instantaneous strain, $\varepsilon_{ci}(t_0) + \varepsilon_{pl}(t_0)$, and the shrinkage strain, $\varepsilon_{cs}(t)$ is called the creep strain, $\varepsilon_{cc}(t)$. If the stress is removed at a time t_1 , a new instantaneous strain, $\varepsilon_{ci}(t_1)$, and a delayed *reversible strain*, ε_r , will be realized. This new instantaneous unloading strain will generally be lower than the instantaneous strain caused by loading because of the increase of the modulus of elasticity from t_0 to t_1 . The creep strain will now develop in the opposite direction, in time decreasing the overall strain towards an asymptotic value (always greater than the shrinkage strain).

As stated previously, the creep strain at the end of loading may be three to four times the instantaneous strain, which is 'truly exceptional for a mineral' (Acker and Ulm, 2001). As with shrinkage, the role of water is of primary importance. Creep under conditions of no moisture exchange with the environment is called *basic creep*, ε_{cbc} , whereas creep

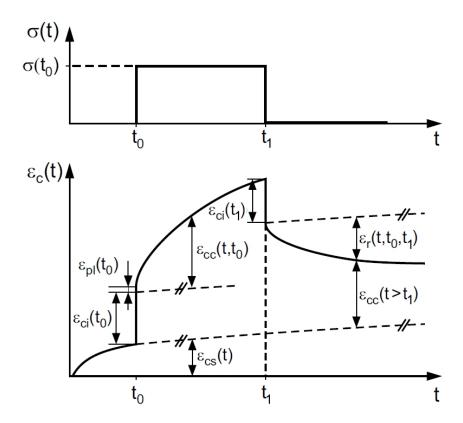


FIGURE 2.2: Deformation of concrete under a sustained stress for a fixed duration

under moisture exchange with the environment is called *drying creep*, ε_{cdc} . Beside being important, the role of water is also somewhat paradoxical: in cases with no exchange of water with the ambient (basic creep), the lower the evaporable water content in concrete, the lower the creep; however, with water exchange with the environment (drying creep), the greater the drying, the greater the creep (Acker and Ulm, 2001). In other words, creep is greater when there is water exchange with the environment (drying creep in excess of basic creep). This was first pointed out by Pickett (1942).

2.3.2 Nature of Creep

Creep of concrete was probably first observed at the beginning of the twentieth century (Hatt, 1907). At that stage, beside empirical macroscale observations, it wasn't possible to offer physically meaningful interpretations of creep. However, by the middle of the century it was known that the process depended on the adsorption and desorption of water and that 'an analysis based on thermodynamics is especially instructive' (Powers, 1968).

In the meantime, with the development of testing equipment, it became possible to study the phenomenon of creep on ever smaller scales. So far, perhaps the most detailed study is that by Vandamme and Ulm (2009). In it, the authors explain the nanogranular origin of creep. Since in concrete, it is the hydrated cement paste that displays creep behaviour—the aggregates mostly offer restraint—the authors decided to perform nanoindentation tests of C-S-H since it is the major component contributing to the structure of the paste. The hypothesis was that C-S-H creep is 'likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics' (Vandamme and Ulm, 2009).

In fact, by studying cement pastes produced using w/c ratios between 0.15 and 0.40, the authors noted three structurally distinct but compositionally similar C-S-H forms: low density, high density and ultra-high density. The low density C-S-H is produced in concretes with high w/c ratios whereas the high and ultra-high density C-S-H arises in concretes with low w/c ratios. Nanoindentation 'creep' tests, with a 180 s holding time of the indenter tip, were carried out to assess the creep compliance rate and creep compliance of C-S-H. The creep compliance, J(t), one of the most important descriptions of creep, can be defined as the ratio of strain to stress at a certain time, i.e. $J(t) = \varepsilon(t)/\sigma$; the creep compliance rate is then the time derivative of the compliance. The results were promising in showing that nanoscale creep measurements during a short period are as exact as macroscopic creep tests carried out over years and that the most likely place for the creep deformation is the particle-to-particle contact of nanosized C-S-H.

Upscaling from the nano realm, another study with important experimental findings is the one by Zhang et al. (2014). The study consisted of minutes-long microindentation creep tests on cement paste (C-S-H particles are nanosized whereas the composite level of the cement paste is microsized), and years-long macroscopic creep tests on concrete. The study focused on basic creep, i.e. the samples were sealed to prevent desiccation. For both micro- and macroscale tests, the authors found that after a transient period, the creep function was well captured by a logarithmic function of time. The non-logarithmic part lasted for days in the macroscale tests but for seconds in the microscale tests. Since, as stated earlier, the creep of concrete is determined by the cement paste properties (its porosity and C-S-H properties), excellent agreement was found between microindentation tests on pastes and microscopic uniaxial tests on concrete, relating the uniaxial creep

modulus to the contact creep modulus (the creep modulus is defined as the ratio of initial applied stress to *creep strain*). The authors also found that a 5 min long microindentation test can be useful in predicting the long-term logarithmic creep kinetics of a concrete sample. This approach potentially circumvents the problems of macroscale concrete creep tests – their length, the need to control many parameters over a long period as well as the need to run several experiments in parallel (compensating for shrinkage, decomposing shrinkage and creep into autogenous/basic and drying components). However, just how useful and applicable this procedure will be, taking into consideration the high price of micro- and nanoindentation equipment and the need for skilled handling of it, remains to be seen.

In order to take into account all of the afore-mentioned processes, a complex theory is needed, but one with a good, physical justification. One of the most successful attempts at doing this is the 'microprestress-solidification' theory, put forward by Bažant et al. (1997). The rationale behind the theory is that the justification for creep and the aging properties of concrete must be sought in changes in the microstructure. In the solidification theory, the process of cement hydration is modeled by the gradual deposition of non-aging layers of new hydration products on the walls of capillary pores in the hardened cement paste, i.e. a volume growth of the hydration products (Bažant et al., 1997). The result is an increased stiffness of the material and its macroscopic viscosity.

However, it was soon realized that the solidification theory cannot offer a complete explanation of concrete creep since the volume growth of hydration products is relatively short-lived whereas creep behaviour displays significant long-term aging. Hence, in (Bažant et al., 1997), the authors presented an improvement of the solidification theory in which the viscosity of the flow term of the compliance function was hypothesized to be 'a function of tensile microprestress carried by the bonds and bridges crossing the micropores (gel pores) in the hardened cement gel'. This microprestress is thought to be generated by the disjoining pressure of hindered adsorbed water in micropores and large, localized volume changes caused by hydration and drying. Long-term creep is then considered to be caused by shear slips between opposite walls of the micropores in which the bonds and bridges break and the tensile microprestress transverse to the slip plane gets released. This theory formed the basis of what would first become the B3 creep and shrinkage model (Bažant and Baweja, 1995a) and later the further improved B4 model (Wendner

et al., 2013). These models are definitely one of the most advanced of their type and they will be analysed in more detail in section 2.5.

2.3.3 Factors Influencing Creep

Since a lot of the underlying processes concerning the hydrated cement paste are similar in both creep and shrinkage (autogenous/basic and drying), creep and shrinkage share the majority of their influencing factors. However, they are more numerous in the case of creep since it involves the presence of an external mechanical load.

As for aggregates, as stated earlier, they mostly just offer restraint to creep; their grading and porosity doesn't seem to present a significant influence. In the increasing order of the creep exhibited by concrete with the respective aggregates, they are basalt; quartz; gravel; marble and granite; and sandstone (Neville, 1995).

In the range of 'usual' stresses for a concrete structure, i.e. 0.4–0.6 of strength at time of loading, creep is proportional to stress. The upper limit of this 'linear creep' is reached when severe microcracking occurs. However, there is also a limit above which creep will produce *time failure*; this happens when it is loaded at stress levels above 0.8–0.9 of its strength (Neville, 1995). What is perhaps most important is that creep is inversely proportional to the strength at the time of loading. This means that it can be *normalized* and expressed in terms of a stress–strength ratio.

Cement influences creep only insofar as it influences strength development. If loaded with a same stress–strength ratio at the time of loading, creep will increase in the order of S, N, R classes of cement and, for the same applied stress, in the order R, N, S. These classes define the compressive strength development of cement with S, N, R being labels for slow, normal and rapid hardening cements, respectively (EN 197-1, 2000). The *pattern* of creep and creep recovery is, in principle, not affected by the addition of fly ash or slag. Nonetheless, these supplementary cementitious materials affect packing densities and hence permeability and diffusivity, possibly affecting drying creep. Because for a given mix strength and modulus of elasticity are related, that means that creep and modulus of elasticity are also related and inextricably connected (Neville, 1995).

One of the most important external factors is relative humidity. Generally, creep is higher the lower the relative humidity. It also increases with temperature (more drying and water desorption). Creep has been found to decrease with an increase in size of the specimen. It depends on the drying at the surface and is therefore greater at the surface than within the core of the specimen. As drying reaches the core the concrete ages and gains strength, reducing creep. In sealed concrete, no size-effect can be present (basic creep). The size-effect is also most easily expressed through the already mentioned notional size, h_0 .

2.4 Deflections of Reinforced Concrete Beams

2.4.1 Introduction

Deflections are among the most complex limit states of reinforced concrete structures for modeling. The difficulty mostly arises from the difference between reinforced concrete and homogeneous materials such as steel for which well-known and simple formulae are easily applicable. Reinforced concrete is a composite material in which one material—concrete—displays time-dependent mechanical properties and the other—reinforcement—does not. Because of this, a redistribution of stresses occurs in the composite. Additionally, cracks are generally expected to open whenever the tensile strength of concrete is exceeded. The consequent reduction in stiffness of the member has a significant effect on its deflections.

The many factors influencing deflections of reinforced concrete members—which will be discussed in section 2.4.3—are mostly known and understood above the limit of practical applicability in the day-to-day design of reinforced concrete structures. In other words, the research of factors influencing deflections has overtaken the advance in producing calculation and prediction models capable of using this attained knowledge (Pecić, 2012).

The need for successfully calculating—for design purposes the more precise term would be 'predicting'—deflections is increasing. On the one hand, there is increasing use of high strength and ultra-high strength concretes for which the design requirements for serviceability limit states are generally ruling over the ones for ultimate limit states. On the other hand, there is (or should be) an increasing use of 'green' concretes, i.e. sustainable

alternatives to traditional cement concrete produced using waste or recycled materials, for which serviceability is one of their lesser-known behavioural aspects.

2.4.2 Deflections of Cracked Members

The discussion in this section will be restricted only to non-prestressed reinforced concrete members under bending moments and no external axial forces.

Initially, the reinforced concrete cross-section resists the bending moment with its gross cross-section properties. However, as soon as the tensile strength of concrete is exceeded—in section 2.4.3 there will be further discussion on which tensile strength—cracking occurs. After cracking, the normal stresses in concrete below the crack tip cannot be tensile. Afterward, the internal forces in the cross-section must be resisted by the reinforcement and the uncracked part of the concrete. In other words, there is a redefinition of what the 'effective' cross-section actually is. There is a part of uncracked concrete which continues to be effective and is subjected to compression (and, in reality, some tension not exceeding the tensile strength of concrete) and there is the reinforcement below the crack tip subjected to tension, Figure 2.3 (Pecić, 2012). At sections away from cracks, concrete continues to contribute in tension and consequently, to the stiffness of the member.

From this follows that two distinct states of a reinforced concrete cross-section can exist. In state 1, the full area of the concrete cross-section is effective while in state 2 concrete in tension is ignored – the cross-section is composed of reinforcement in tension and concrete in compression and is said to be *fully cracked* (Ghali et al., 2002).

Some basic assumptions are necessary for the analysis of such cross-sections. Firstly, concrete in tension is ignored. Secondly, plane cross-sections are assumed to remain plane. Thirdly, strains in concrete and reinforcement are assumed to be compatible and finally, both materials are assumed to be ideally linear elastic. To facilitate analysis, a *transformed fully cracked section* is introduced, composed of A_c , the area of the compression zone and $\alpha_e \cdot A_s$, the transformed area of reinforcement, where $\alpha_e = E_s/E_c$ is the ratio of the reinforcement-to-concrete moduli of elasticity. If the bending moment acting on the cross-section is sustained, i.e. long-term, creep and shrinkage will produce changes

in strains which are reflected as changes in A_c and E_c , i.e. the transformed fully cracked section is itself time-dependent.

In Figure 2.3 exactly such a transformed fully cracked section is shown. In it, the notation and sign convention that will be followed in the remainder of the thesis is given. A positive bending moment is a sagging one which produces compression in the top fibre. Both tensile strain in the reinforcement and compressive strain in concrete are taken as positive. A positive bending moment produces a positive curvature. Finally, when the axial force is zero, the neutral axis is at the centroid of the transformed fully cracked section (Ghali et al., 2002).

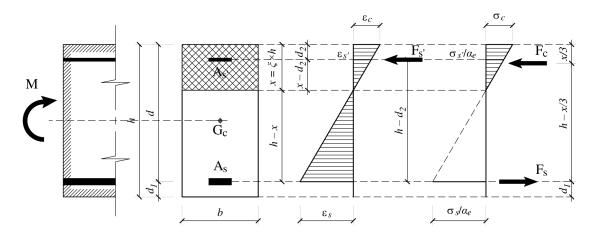


FIGURE 2.3: Stress and strain distribution in fully cracked cross-section in flexure

When calculating deflections of cracked reinforced concrete members using approximate methods, their stiffness has to be evaluated between the two extreme states mentioned earlier. Hence, a member's stiffness varies from a minimum value at the cracked section (state 2) and a maximum value midway between two cracks (state 1). The greatest difficulty in the calculation is accurately interpolating between these two states. Between two cracks, concrete restrains the elongation of steel and carries a part of the tensile force from the reinforcement. Thus, the strain in reinforcement, as stiffness, varies from a maximum value at the cracks to a minimum value midway between two cracks. This contribution to stiffness of concrete in the tension zone is called *tension stiffening* (Ghali et al., 2002). Ignoring its effect can lead to a serious overestimation of deflections.

A cracked reinforced concrete member, under a bending moment $M > M_{cr}$, is shown in Figure 2.4, where M_{cr} is the cracking moment of a reinforced concrete cross-section.

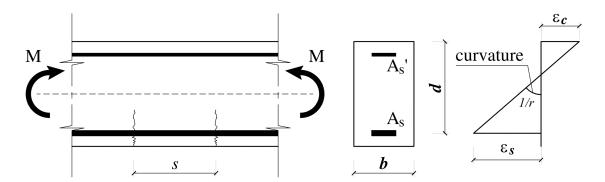


FIGURE 2.4: Cracked reinforced concrete member in flexure

The curvature at a cracked or uncracked section, 1/r, can be expressed in two ways. In terms of the bending moment and flexural stiffness or in terms of strains.

$$1/r = \frac{M}{EI} \tag{2.3}$$

$$1/r = \frac{\varepsilon_c + \varepsilon_s}{d} \tag{2.4}$$

The reinforcement stress varies between two extremes – at the cracks, and midway between them. Assuming tension stiffening, the mean reinforcement strain can be considered to be

$$\varepsilon_{sm} = (1 - \zeta)\varepsilon_{s1} + \zeta\varepsilon_{s2} \tag{2.5}$$

where ε_{s1} and ε_{s2} are the reinforcement strains in states 1 and 2, respectively, and ζ is a distribution coefficient varying between 0 and 1, representing the extent of cracking. For the case of bending it can be represented as

$$\zeta = 1 - \beta_1 \beta_2 \left(\frac{M_{cr}}{M}\right)^2 \tag{2.6}$$

where, (at least in the European tradition) β_1 and β_2 are coefficients taking into account the bond properties of reinforcement and the duration of loading (FIB, 2013). It was

earlier assumed that cracking has the same influence on curvature as on reinforcement strain. Hence, the mean curvature can be expressed as

$$(1/r)_m = (1 - \zeta) \cdot (1/r)_1 + \zeta \cdot (1/r)_2 \tag{2.7}$$

where $(1/r)_1$ and $(1/r)_2$ are curvatures corresponding to states 1 and 2, respectively. The interpolation between these two curvatures is shown in Figure 2.5.

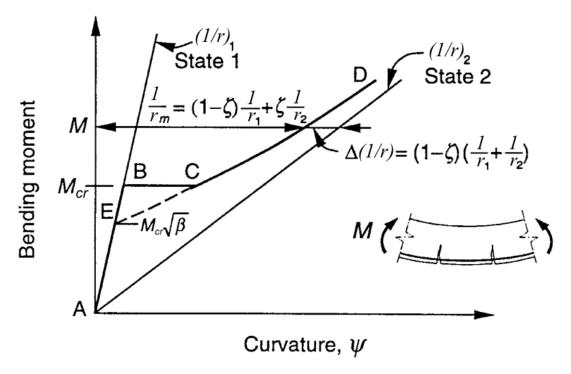


FIGURE 2.5: Moment–curvature relation in a cracked reinforced concrete member in flexure

The cracked member has a mean flexural stiffness

$$(EI)_m = \frac{M}{(1/r)_m} \tag{2.8}$$

and the curvatures $(1/r)_1$ and $(1/r)_2$ are given by

$$(1/r)_1 = \frac{M}{E_c I_1} \tag{2.9}$$

$$(1/r)_2 = \frac{M}{E_c I_2} \tag{2.10}$$

where I_1 and I_2 are the moments of inertia of transformed uncracked and fully cracked sections, respectively. The modulus of elasticity E_c is used as a reference for calculating the transformed sections (Ghali et al., 2002).

The behaviour of a reinforced concrete member in flexure, its moment–curvature relation, is given by lines ABCD in Figure 2.5. This is representative of a reinforced concrete loaded for the first time under short-term loading (Ghali et al., 2002). However, in other instances, the section EBC should be replaced by the section EC, an extension of the curve CD. This takes into consideration possible cracking caused by loads, shrinkage and temperature during construction, which happens under the reduced cracking moment $\sqrt{\beta}M_{cr}$, where $\beta = \beta_1\beta_2$.

In Figure 2.6 an example is given, showing the variation of curvature in a simply supported reinforced concrete beam under a distributed load. At the time of loading, t_0 , the bending moment exceeds M_{cr} over the section 2a–3a. Sections 1–2a and 3a–4 remain uncracked, in state 1 and with a smaller corresponding curvature. The curvature of any cracked cross-section between points 2a and 3a corresponds to state 2 and is significantly larger than for state 1. However, the mean curvature, taking into account the tension stiffening effect is shown by the dashed line between curvatures for states 1 and 2. It can be seen that it is the closest to state 2 at midspan where the extent of cracking is the greatest. At time t, the overall curvatures for both states increase because of creep and shrinkage effects. However, the extent of the cracked zone also increases to the zone between points 2b–3b, even though the beam is under a constant load. This is also because of creep and shrinkage effects and is represented by the 'reduced' cracking moment value of $\sqrt{\beta} M_{cr}$ for time t in Figure 2.5.

Generally, from this point, two distinct approaches can be taken. One is typical for the European tradition and relies on the numerical integration of curvatures at various sections. In its simplest form, the curvature is calculated twice – for states 1 and 2, and the values are interpolated using ζ (FIB, 2013; EN 1992-1-1, 2004). The other approach is more characteristic for the North American tradition, and involves estimating an 'effective

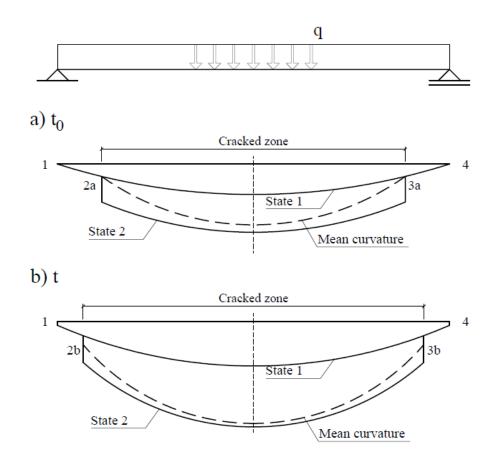


FIGURE 2.6: Curvature of a reinforced concrete beam a) at time t_0 and b) at time t. Adapted from (Ghali et al., 2002)

moment of inertia', I_e , to be used in deflection calculation. The most famous form of this approach is the empirical equation of Branson (ACI 318-11, 2011):

$$I_e = \left(\frac{M_{cr}}{M}\right)^m I_c + \left[1 - \left(\frac{M_{cr}}{M}\right)^m\right] I_2 \tag{2.11}$$

where $M \ge M_{cr}$ and m = 3 (or sometimes m = 4 when calculating the curvature of an individual section).

Both of the above-mentioned approaches will be explained in more detail in section 2.5.4.

2.4.3 Factors Influencing Deflections

In this section the most important factors that have an influence on the deflections of reinforced concrete members will be presented. In the general case, 11 factors can be distinguished (Pecić, 2012):

- 1. geometrical properties of the member (span, shape and size of cross-section);
- 2. moduli of elasticity of concrete and reinforcement;
- 3. concrete tensile strength
- 4. area and distribution of reinforcement in cross-sections;
- 5. load intensity and history;
- 6. stiffness reduction caused by cracking and tension stiffening;
- 7. member structural system (shape of bending moment diagram);
- 8. moment redistribution in statically indeterminate systems caused by stiffness reduction;
- 9. shrinkage;
- 10. creep;
- 11. moment redistribution in statically indeterminate systems caused by shrinkage and creep.

Geometrical properties of the member

The geometrical properties of a reinforced concrete member are its span(s), shape and size of its cross-sections. These properties determine the member's stiffness and, through it, influence deflections. Within the experimental programme of this thesis, only simply supported beams with a rectangular cross-section are analysed.

Moduli of elasticity of concrete and reinforcement

In the case of reinforcement, the modulus of elasticity is considered constant under usual conditions for structural members, i.e. normal temperature.

In the case of concrete, describing the modulus of elasticity is more complicated. First of all, since concrete is a composite, its modulus of elasticity depends on the stiffness of its components – paste and aggregate, and their respective amounts. Generally, both paste and aggregates behave linearly under stress, however, because of the presence of the aggregate–paste interface transition zone (ITZ), concrete does not (Neville, 1995; Müller et al., 2013).

Another important influence on the modulus of elasticity is the speed of load application. When the load is applied rapidly (<0.01 s), the recorded strains decrease significantly. If the load is applied during 5 s to 2 min, the strains steadily increase. However, for a load application duration longer than 2 min there is no further significant increase (Neville, 1995). The moisture conditions during testing also play an important role. The time development of the modulus of elasticity is much less pronounced than the development of compressive strength.

There is also a distinction between different moduli for the same concrete, Figure 2.7. The most common definition is that of the tangent modulus ($E_{ci} = E_{cm}$ in Figure 2.7) at the origin of the stress–strain diagram. It is approximately equal to the slope of the secant of the unloading branch for rapid unloading. For calculating deflections, however, some codes recommend a reduced value (by approximately 15%) – E_c in Figure 2.7, (Pecić, 2012).

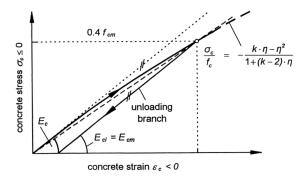


FIGURE 2.7: Definition of different moduli of elasticity (FIB, 2013)

Concrete tensile strength

The tensile strength of concrete is important for deflections because it defines the cracking moment M_{cr} and subsequently the cracked region of the member where the interpolation between states 1 and 2 is necessary.

Cracking is usually considered to occur when the *flexural strength of concrete*, $f_{ctm,fl}$, is exceeded. This flexural strength is actually a numerically transformed tensile strength, f_{ctm} , but greater than f_{ctm} . The fact that $f_{ctm,fl} > f_{ctm}$ is explained by a 'size effect' by which it is increasing in relation to the cross-section height. In reality, it is the shape of tensile stresses before cracking that is behind this effect. Below the neutral axis and prior to cracking, the tensile stress diagram is not linear but slightly parabolic and convex. Thus, the cracking moment is not equal to Wf_{ctm} , but to a slightly larger value and this is taken into account by transforming the tensile strength into the flexural strength (Pecić, 2012).

However, in time, in reinforced concrete members shrinkage causes tensile stresses on the more heavily reinforced side (usually the one that will be in tension under load) and reduces or 'eats away' part of the flexural strength. Hence, in calculations it is useful to use a *reduced flexural strength*, $f_{ctm,fl,red}$, which can for simplicity be taken as f_{ctm} (Pecić, 2012).

The actual tensile strength defined in codes is the *axial tensile strength*, considered to be a true material property. Since testing it properly requires sophisticated testing machines, it is usually approximated by the *splitting tensile strength*, $f_{ctm,sp}$. The splitting tensile strength can be taken as equal to the axial tensile strength since it isn't subject to a size effect, moisture conditions don't affect it significantly and cracking is initiated in the middle of the specimen, not on the edges (Müller et al., 2013).

Tensile strength does not increase in proportion to the compressive strength since paste is more brittle for higher strengths and it depends crucially on the bond between the paste and aggregates. An important characteristic of concrete tensile strength is its large scatter. The lower and upper bound values (5% and 95% percentiles) are approximately 30% from the mean value and care should be taken when choosing between the characteristic or mean values (Müller et al., 2013).

Area and distribution of reinforcement in cross-sections

The area and distribution of reinforcement in a concrete member influence the transformed section's stiffness and restrain shrinkage and creep of concrete.

Load intensity and history

Load influences deflections through the bending moments it induces in the member which in turn determine the member's stresses, strains and curvature. Although the load history is an important factor when calculating deflections of a cracked member, it is not studied in this thesis, i.e. a single constant load is adopted during over the entire duration of the experiment.

Stiffness reduction caused by cracking and tension stiffening

The influence of stiffness reduction caused by cracking and the effects of tension stiffening have already been discussed in section 2.4.2 in terms of interpolations between states 1 (uncracked section) and 2 (fully cracked cross-section).

Member structural system

The main influence of the structural system—simply supported beam, cantilever, etc.—on deflections is through the shape of the bending moment diagram. In the experimental programme of this thesis only simply supported beams were studied.

Moment redistribution in statically indeterminate systems caused by stiffness reduction

Reinforced concrete structures are usually loaded sequentially and thus, cracking occurs stepwise in the most stressed regions. In statically indeterminate systems, this leads to a certain redistribution of internal forces. The redistributed moments change the curvature of the member compared with the elastic solution and produce different deflections. Since only simply supported beams are studied in this thesis, this factor wasn't considered for further analysis.

Shrinkage and creep

Shrinkage and creep are the most important factors influencing the time evolution of deflections in reinforced concrete members. Since shrinkage is restrained by reinforcement, it produces curvature in the case of non-symetrically reinforced cross-sections (which is

usually the case). The effect of creep is to further increase curvature through the increase of compressive strains in concrete. This increase can be significant in reinforced concrete structures since a large part of their load is dead load, because of their large self-weight.

Shrinkage and creep were discussed in sections 2.2 and 2.3, respectively, and their effect on curvature in section 2.4.2.

Moment redistribution in statically indeterminate systems caused by shrinkage and creep

In time, shrinkage and creep increase the curvature of reinforced concrete members in flexure. In statically indeterminate systems this increase is usually incompatible with the 'statically redundant' supports because of the restraining effect of reinforcement. The induced 'secondary' reactions cause bending moments which change the final bending moment diagram and curvature. As stated earlier, since only simply supported beams are studied in this thesis, this factor wasn't considered for further analysis.

2.5 Models for Calculating Shrinkage, Creep and Deflections of Reinforced Concrete Beams

2.5.1 Introduction

The knowledge and understanding of all of the phenomena described in the previous sections is only valuable if it is useful to engineers in practice. It was already mentioned that the current understanding exceeds the calculation tools and time necessary to perform them, currently at the disposal of practicing engineers. If however, these complex models, e.g. finite element analyses, progress to a point where they truly become 'practical, every-day tools for design office engineers' (FIB Task Group 4.4, 2008), these engineers will be required to understand the background and operation of such models.

One way to reach this kind of understanding is through literature reviews and state-ofthe-art reports. One such review is given in this section. The aim of the section is to present models available for calculating or 'predicting' shrinkage and creep of concrete and deflections of reinforced concrete beams.

First, in the following section, two types of experimental research are presented. The first type are long-term tests on plain concrete specimens (loaded and not loaded). Through these tests it is possible to validate and calibrate shrinkage and creep behaviour of different concretes. The largest database compiled for this purpose, at the Northwestern University's Infrastructure Technology Institute, the 'NU-ITI database on concrete creep and shrinkage' is presented (Bažant and Li, 2013). A discussion of relevant features of the results contained in the database is offered and some implications are discussed.

The second type of experimental research discussed in section 2.5.2 are sustained loading tests on reinforced concrete beams. The database of these tests, compiled by Espion (1988), is presented. In it, the author presents a brief but useful discussion of each experimental investigation that entered the database. However, in this section, beside a global overview, only selected individual experiments will be presented in more detail.

In section 2.5.3 individual models for predicting shrinkage and creep are presented and explained. The models are the following:

```
• the B4 model (Bažant et al., 2015),
```

- the MC10 model (FIB, 2013),
- the EC2 model (EN 1992-1-1, 2004),
- the ACI 209R-92 model (ACI 209R-92, 1992), and
- the GL2000 model (Gardner and Lockman, 2001).

Finally, section 2.5.4 provides an overview of models for predicting the deflections of reinforced concrete members. The models are divided into two distinct groups, depending on the approach taken in interpolating the curvatures of members between states 1 and 2 (see section 2.4.2):

• the European tradition, best exemplified by (FIB, 2013) and (EN 1992-1-1, 2004), and

• the North American tradition, best exemplified by (ACI 318-11, 2011) and (ACI 435R-95, 2003).

2.5.2 Experimental Research

Experimental research on the material level

The first part of this section presents an overview of the 'NU-ITI database on concrete creep and shrinkage', available for free download at http://iti.northwestern.edu (Bažant and Li, 2013). The database itself, its historical background, use and statistical justification are presented in more detail in (Bažant and Li, 2008; Hubler et al., 2015a; Wendner et al., 2015b) and used as sources for this section.

Databases of results of concrete shrinkage and creep now have a 50 year-old tradition. The first one was prepared in the 1960s for the first CEB-FIP Model Code and its shrinkage and creep model (CEB-FIP, 1978). Afterward, another one was compiled for the 1971 ACI 209 model. These efforts were continued in the 1970s at the Northwestern University within the work on the BP model (Bažant and Panula, 1978). The work was expanded through a subcommittee of the RILEM Committee TC107, chaired by professor Harald S. Müller. This led to the creation of the RILEM-ACI 209 Database in 1992, subsequently expanded in 2008 and 2010 (Hubler et al., 2015a).

The most recent version of the database, the 'NU-ITI database on concrete creep and shrinkage' was assembled in 2010–2013 at the Northwestern University's Infrastructure Technology Institute, mainly by the support from the U.S. Department of Transportation. The information in this database was mostly extracted from numerous journal articles, conference proceedings and reports. In its newest form, the database also attempts to fill the gap of missing information on the behavior of high performance concretes with very low *w/c* ratios which rely heavily on cement replacement and admixtures (all concretes that are significantly affected by chemical reactions other than cement hydration, i.e. high strength, SCC, and green concretes). Information is now also provided about the admixtures content and the mineralogical composition of aggregates. (Hubler et al., 2015a).

The NU-ITI database contains 1751 shrinkage curve (1217 'total', 417 autogenous and 117 drying shrinkage curves) and 1370 creep curves (734 'total' and 636 basic creep curves). Of these, approximately 800 creep and 1050 shrinkage curves are for concretes containing admixtures. A large majority of the concretes (68% of the creep curves and 80% of the shrinkage curves) were made with regular cement (type R or equivalent) and the remainder is equally distributed between concretes with rapid or slow hardening cements. Also importantly, all the creep data in the database was obtained for sustained uniaxial compressive stress lower than 40% of the compressive strength.

Since both shrinkage and creep are phenomena that evolve over several decades, it is precisely multi-decade tests and loading which are of interest for calibrating prediction models. Unfortunately, most of the data in the database is crowded into short load durations, into short drying times, and also into short ages at loading. Additionally, most of the tested specimens are crowded into small thicknesses. Unedited, the database is 'unsuitable for statistical regression because the conditional coefficient of variation (CoV) of compliance data shows them to be strongly heteroscedastic', i.e. containing sub-populations that have different variabilities from others (Bažant and Li, 2008).

Of all the data, 96% is from tests not exceeding 6 years and only two sets extend beyond 12 years. To somehow alleviate this deficiency, data was included on the multi-decade deflections (most of them excessive) of 69 large-span (>80 m) prestressed bridges. Such bridges are useful, if they have deflected excessively, because they are highly sensitive to creep, their multi-decade deflections are mainly caused by creep under self-weight and after 3 years since the span closing the deflection evolves approximately proportionally to the compliance function (Hubler et al., 2015a). Their deflections are useful for optimizing the parameters that control the terminal slope of the compliance function in the logarithmic time scale (Bažant and Li, 2008).

Further on the topic of data variability in the database, it is dominated by differences in concrete composition, aggregate type, and admixture effects, and is many times higher than the scatter in individual laboratory tests of one and the same concrete (Hubler et al., 2015a). Hence, in addition to global statistics of the database, the individual tests must be used when trying to evaluate the shape of predicted individual curves.

Discussing the database, Hubler et al. (2015a) offer several important guidelines for using and interpreting it, as well as for carrying out future experiments. The authors cite which individual studies from the database should be used to assess the time shape of drying shrinkage and creep curves (these include the longest tests from the database, 5–18 years long) and check shrinkage and creep influencing factors (age at exposure/loading, relative humidity, specimen size and ambient temperature). Notably, when checking the shape of the shrinkage curves in a logarithmic plot, an asymptotic value must be observed as well as an initial evolution following a straight line of slope 1/2, dictated by diffusion theory (Hubler et al., 2015a; Wittmann et al., 1987). This follows from the smoothing formula for shrinkage, given by Wittmann et al. (1987) as:

$$\varepsilon_{sh} = \varepsilon_{\infty} \cdot \left[1 + \left(\frac{\tau_{sh}}{t} \right)^r \right]^{-\frac{1}{2}r} \tag{2.12}$$

where ε_{sh} is the shrinkage strain, ε_{∞} is the final shrinkage strain, τ_{sh} is the shrinkage halftime, t is the duration of drying and r is a constant, usually taken as 0.4 or 1.0. From Equation 2.12 it can be seen that for short drying times t, shrinkage strain is proportional to \sqrt{t} :

$$\varepsilon_{sh} \propto \sqrt{t}$$
 (2.13)

When the logarithm is taken of both sides, the equation becomes

$$log(\varepsilon_{sh}) \propto log(t)^{1/2}$$
 (2.14)

$$log(\varepsilon_{sh}) \propto (1/2) \cdot log(t)$$
 (2.15)

The distribution of input parameters for shrinkage and creep in the NU-ITI database covers a wide range of *w/c* ratios between 0.3 and 0.7; however, this does not correspond to a similar distribution of compressive strength. The 28-day compressive strength are concentrated around two ranges: at values around 45–50 MPa typical for normal concretes,

and at high values near 100 MPa typical of concretes with modern cements. For creep, the mean test duration is only 240 days and for shrinkage 180 days. Interestingly, data from different countries was shown to correlate differently to input parameters (Hubler et al., 2015a).

Also very useful, Hubler et al. (2015a) provide examples of testing and reporting deficiencies, as shown in Figure 2.8: (a) change of relative humidity, (b) change in temperature, (c) insufficient environmental controls, (d) omitted initial response, (e) measurement begun before initial setting, (f) possible digitization error, (g) initial drying shrinkage measurement not following diffusion theory (delayed measurement start), (h) initial creep strain does not follow asymptotic creep trend (delayed measurement start) and (i) retrofitting of the structure.

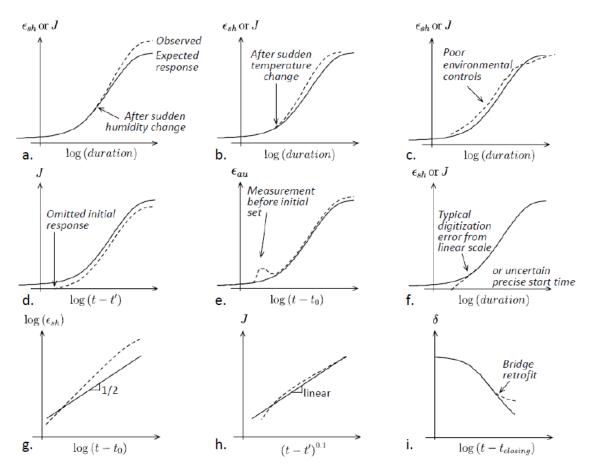


FIGURE 2.8: Examples of deviations in data curves caused by testing procedures or reporting (Hubler et al., 2015a)

As a conclusion of the discussion on the database, important guidelines for carrying out and reporting future tests are provided by Hubler et al. (2015a). Some of the most important ones are given in the following:

- the specimen dimensions, a detailed description of the test setup, and testing procedure should be provided; the sensor type, location, and gauge length should always be reported;
- the temperature and relative humidity of environment should be monitored automatically, along with the deformation data, for the entire test duration;
- the concrete composition should be specified precisely; beside the class of cement used, the mix proportions, admixtures, and the type of aggregate should also be mentioned; the particle size distribution and the mineralogic composition are useful; companion tests of strength and modulus of elasticity should be reported;
- since the shrinkage strain distribution near the specimen ends is highly nonuniform, it is important to use long specimens and the distance of the gauge contact points from the specimen ends should not be less than two diameters;
- for creep tests, the rate or duration of load application at the beginning of creep tests is essential information and should always be reported; all the measurements should start before the load is applied and the short-term deformation during the load application must be included;
- if the stress-strength ratios are reported, the reference strength value must be specified, too; if the strains are normalized by strength, the strength at the time of load application should be used and reported;
- the measurements of creep should not be reported in terms of the creep coefficient, but directly as the compliance, since this avoids uncertainty regarding the modulus of elasticity that was used to convert the measured strains into the creep coefficient;
- the creep compliance curves should always be plotted against the logarithm of load duration (a linear scale can show clearly only the part of response corresponding to only one decade in the logarithm of duration, while the values of shorter times cannot be distinguished and the values for longer times lie outside the diagram);

- the reported data should always include the total deformation, including the initial value upon load application;
- if anything other than raw data is presented, the methods of data preparation should always be explained; and
- multiple specimens for shrinkage and creep tests should always be used; from these, both the mean curve and the envelope of measurements or confidence limits should be plotted, and outlier curves identified; if some individual tests show conflicting trends, the individual test curves rather than just their average should be published.

Experimental research on the structural level

The second type of database and experimental research discussed in this section are sustained loading tests on simply supported reinforced concrete beams.

The most comprehensive database of such tests is the one compiled by Espion (1988) for the purpose of the 1990 paper by Espion and Halleux (1990) discussing the variability of predictions of deflections made with the ACI and CEB-FIP models.

In the database, the author conducted a survey of 397 results from 45 experimental programmes. An important distinction was made straight away between test carried out in North America (123 results from 18 research programmes) as opposed to those carried out in the rest of the world. This distinction was made based on the fact that North American tests were, when the environmental conditions were in fact controlled, carried out under RH < 50% whereas in the rest of the world more damp conditions were used (RH > 50%).

From the initial set of results, 180 were eliminated based on various reasons:

- lack of essential data,
- not being truly sustained load tests (sequential loading, unloading, etc.),
- beams remaining uncracked during the experiment,
- continuous beams, and
- other.

The final database contained 217 results from 29 experimental programmes. Within the database 83.4% of the results are on beams with rectangular cross-sections (117 beams and 64 slabs), while the rest are T-sections, inverted T-sections or hollow sections. The relative humidity of the environment was 'dry' in 34.5% of the cases, uncontrolled in 22.1% and 'damp' in the rest.

A very useful tabular presentation of the data of all the results entering the database is given by Espion (1988). Briefly, the range of the most important parameters is shown in Table 2.1.

TABLE 2.1: Range of the most important parameters, (Espion, 1988)

Span:	1000–7925 mm
Depth:	75–350 mm
Span/depth:	7.5–69
f_{cm} :	9.9–45.7 MPa
ρ:	0.3-3.9 %
ho':	0-1.67%
<i>t</i> ₀ :	7–232 days
$t-t_0$:	60-3101 days

The database actually contains results dating back to the probably first observation of concrete creep in 1907 (Hatt, 1907). However, these early experimental programmes were more qualitative than anything else and the first 'usable' results are the ones from 1927 (Faber, 1928) while the first ones to carry out tests under controlled environmental conditions were Glanville and Thomas (1939).

When analysing the results in the final database and when designing new experiments, several important factors should be taken into account. All of them account for the difficulties in executing proper and 'realistic' sustained loading tests on reinforced concrete beams (Pecić, 2012).

One of the factors is the size effect that is often introduced into experiments through the use of smaller cross-sections than are common in engineering practice. They are usually the consequence of equipment and laboratory restraints; however, they lead to an

increased effect of shrinkage, any deviation of the reinforcement position has a large influence and the ratio of uncracked-to-cracked sections of the member can differ compared with full-scale members (Pecić, 2012).

The use of smaller cross-sections often leads to the beams being more heavily reinforced than 'realistic' members – deflections are mostly a problem of slabs which are mainly lightly reinforced. Larger reinforcement ratios also lead to a greater restraint of shrinkage. The overly reinforced sections can lead to high stresses in concrete, even at moderate stress levels in the reinforcement (Pecić, 2012).

Another important factor is the 'speed' of measuring deflections. The loading process is usually gradual and incremental and can last for some time; measuring the 'initial' deflection can be delayed for several hours even, meaning that it will contain an unknown portion of creep. Jaccoud and Favre (1982) measured deflections 'instantly' after loading and after 5 min, observing a 10% increase in that time, whereas in some cases it took Washa and Fluck (1952) up to eight hours to perform the first measurement.

In view of the diversity of concretes existing today, types of admixtures, use of recycled and waste materials, the data provided in the database can seem scarce. For example, only compressive strength is reported for each result, taking the approach to determine all other properties based on code expressions. In effect, this implies testing a complete range of a code's predictive capabilities, not just deflections. Other information, such as mixture proportion, cement type or w/c ratio, are unavailable. Also, for deflections, their complete time curves aren't provided but only the final measurements. As with the 'NU-ITI database on concrete creep and shrinkage', here also there is a bias toward shorter testing times with the longest experimental programme lasting just over eight years (Espion, 1988). Furthermore, some errors in data entry have been noticed when comparing database results with original papers, e.g. compressive strengths of series C slabs in (Jaccoud and Favre, 1982); hence, care should be taken when analyzing data which is only reported in the database without having access to the original material.

Taking all of this into account, only four studies stand out as exemplars of excellent experimental design and a thoroughly methodological approach (Pecić, 2012). Comparative to their scope they are the ones that enable the most conclusions to be made and offer best practice examples for future studies. They are

- 1. the experiments carried out by Washa and Fluck (1952),
- 2. the research campaign by Corley and Sozen (1966),
- 3. experiments by Bakoss et al. (1983), and
- 4. the campaign by Jaccoud and Favre (1982).

'Effect of compressive reinforcement on the plastic flow of reinforced concrete beams' (Washa and Fluck, 1952)

Washa and Fluck started their first experimental campaign in 1947 on reinforced concrete slabs. However, their most famous experiment is the one on simply supported reinforced concrete beams, from 1952. The experiment was designed to test the influence of compressive reinforcement on deflections, the effect of which was noticed even by Faber (1928).

In total, 34 beams were tested. They had four types of cross-sections, with widths 152–305 mm and depths 76–305 mm and spans 3.81–6.10 m (span/depth ratios 20, 30, 50 and 70). In effect, they simulated both beams and slabs. However, for those beams with the lowest depth any variation in reinforcement position could have had significant effects. All of them were loaded after 14 days and deflections were measured for 2.5 years under uncontrolled environmental conditions. The important thing is that within each cross-section type there was a pair of beams with only tensile reinforcement, and pairs of beams with compressive reinforcement equal to half and full area of tensile reinforcement. This large number of results is the greatest quality of this experiment, especially the fact that each beam type was produced in pairs, meaning that strain values were actually averages of four, and deflections were averages of two measurements.

The beams were heavily reinforced ($\rho = 1.58-1.68\%$) because they were designed as balanced sections. Hence, the load level is substantial as are the effects of shrinkage and creep.

The mixture was designed for a target compressive strength of 24 MPa, but the measured values after 28 days ranged from 20.7 to 29.3 MPa. Importantly, the modulus of elasticity had unusually low values, well below code predictions – after 28 days, it was between 19.1 and 23.9 GPa (Washa and Fluck, 1952). The concrete tensile strength was not measured.

The beams were cast in wooden formworks 75 mm above their final position and cured for five days with wet canvas or burlap. After 14 days, they were raised on supports with hydraulic jacks. The supports were made of steel pipe sections, resting on concrete blocks. The beams were loaded with a distributed load consisting of concrete block and bricks. However, the loading procedure was time-consuming and in some instances the first readings were taken hours after loading was completed.

For measuring deflections, brass plugs were cast onto the top of each beam along the longitudinal center line, one over each support and one at mid-length, i.e. three point leveling was used and in this way the authors attempted to also measure the deflections from self-weight (which was actually the only load in series E). Plugs were also cast on the sides of the beams at the level of tensile and compressive reinforcement and strains were measured using a Berry strain gauge of undisclosed gauge length. However, in (Washa and Fluck, 1956), the same authors provide important information about strain measurements. In this experiment, which tested continuous beams—and the results of which won't be considered in this thesis—strains were measured in three ways. Using the same method of brass plugs cast into the sides of the beams at the level of tensile and compression reinforcement; measuring strains directly on exposed bars (wooden blocks were cast into the sides and later chipped out to reveal the bars); and using SR-4 electrical strain gauges. The measurements by the Barry strain gauge (with 250 and 500 mm gauge lengths) showed a close match between the ones on the concrete surface and directly on the reinforcement. However, there were erratic differences between them and the SR-4 strain gauges, possibly because the SR-4 strain gauges measured strains on a smaller gauge length with poor bond between the bars and concrete (caused by the waterproofing of the strain gauges).

In (Washa and Fluck, 1952), the authors also tested shrinkage and creep on prisms. The specimens for testing creep were loaded by a stress equal to the compressive stress in the top fibre of the beams. The creep coefficient measured on the prisms was 4.6 after 2.5 years, and the shrinkage strain was 0.75‰.

The results of the experiment highlighted the important effect of compressive reinforcement on the long-term deflection behaviour of reinforced concrete members. The authors presented immediate deflections of the beams (A) and the increase in deflections after 2.5

years (B). The ratio of these two values (B/A) ranged from 0.76 to 2.27. More importantly, among each group of beams with the same geometry, the beams with full compression reinforcement averaged only 46% of the increase in deflections compared with the corresponding beams with no compression reinforcement; in the case of beams with half compression reinforcement, this was 62%. A similar trend was found when analysing strain at the level of compression reinforcement, the increase in strain (caused by shrinkage and creep) was 37% and 58% for beams with full and half compression reinforcement, respectively, compared with beams with only tensile reinforcement.

The results of this study were, and still are, among the most valuable to researchers studying the long-term behaviour of reinforced concrete members. These results were among the few selected by ACI Committee 435 on which the original 1972 ACI method for deflection control was calibrated (Espion and Halleux, 1990).

'Time-dependent deflections of reinforced concrete beams' (Corley and Sozen, 1966)

This is another well-known and often referenced experimental programme comprising four simply supported reinforced concrete beams. The beams had 76.2/109.5 and 76.2/152.4 mm cross-sections and a 1.83 m span. The variable was the reinforcement ratio – 1.37%, 2.02% and 3.03%, moderate to very high. One of the beams was loaded and immediately unloaded (not under sustained load). The concrete had a compressive strength of 24.13 MPa while other mechanical properties were not measured.

The beams were cast in wooden formworks and cured with wet burlap for 24 hours. After curing and during the test the beams and all test specimens were under controlled environmental conditions (RH = 50%).

Deflection were measured using dial indicators on the top side of the beam and strains were measured on Whittemore gauge points (with a 250 mm gauge length Whittemore strain gauge) installed in holes on the beams' sides, left after chipping out 10 mm long Plexiglas rods cast into the sides. Each beam had three sets of five gauge lines on each side, enabling the measurement of strain distribution across the cross-section height.

The load was applied at quarter points of the beams using steel springs and maintained for 700 days (Corley and Sozen, 1966). The springs were calibrated using an extensometer, and loading each beam lasted approximately 15 min. Each time a reading was performed,

the springs were adjusted to return the load level to its initial value, however only very small drops were observed.

The creep coefficient measured on test cylinders was approximately 3 after 700 days, while the shrinkage strain was 0.3‰. The increase in deflections cannot be compared directly between beams since they had different dimensions, reinforcement ratios and load levels, but for all three of them, the ratio of long-term—to–initial deflections was between 2.19 and 2.54.

Also importantly, from the strain measurements, the authors found agreement with a linear strain distribution along the height of the cross-section in the cracked section of the beams (despite some local deviations). Additionally, they observed the formation of new cracks in a period of up to 60 days after loading and in the later stages of the tests they noted that 'the neutral axis moved to a position below the top of the cracks' and that 'the upper portions of the cracks were observed to close as this happened' (Corley and Sozen, 1966).

'Long-term tests on reinforced concrete beams' (Bakoss et al., 1983)

This campaign consisted of long-term tests on two simply supported and two continuous reinforced concrete beams. The beams had a 100/150 mm cross-section and a 3.75 m span (span/depth ratio of 25). The simply supported beams had a 1.69% reinforcement ratio. After being moist-cured for 14 days, they were transported to a laboratory with RH varying between 35% and 75%. After 28 days, the beams were loaded in third points and the load was kept for 500 days on one beam (1B2) and immediately removed from the other (1B1).

The 28-day concrete compressive strength was 39 MPa and the modulus of elasticity was 31.2 GPa. The measured creep coefficient and shrinkage strain are only provided graphically but, after 528 days, they are approximately 2.4 and 0.65‰ respectively. The initial deflection of beam 1B2 was 8.94 mm and after 500 days, 25.02 mm (a ratio of 2.8).

'Fleche des structures en béton armé: Verification experimentale d'une methode de calcul' (Jaccoud and Favre, 1982)

This is probably the most famous and well-designed experimental programme. It was carried out at EPFL in Switzerland by the very researchers responsible for the CEB bilinear model for calculating deflections of reinforced concrete members.

The experimental campaign consisted of four series of tests—A, B, C and D—on reinforced concrete one-way and two-way slabs. One of the greatest advantages of these tests is the fact that they are very well designed in terms of reinforcement ratios and span/depth ratios, the scale factor does not exceed two (Pecić, 2012). Because of this, and the richness in number of results, this experimental programme enabled the researchers and anyone interpreting the results after them to make a large number of reliable conclusions.

Series B and D were two-way slabs and since these types of members are not of direct interest for this thesis, their setup and results will not be discussed here. Series A were slabs tested after 15 days with a load level equal to 40% of their ultimate load for one year. The variable was the curing regime for each of the five slabs in this series.

By far the most interesting and relevant series was series C, comprising 11 one-way slabs. All of the slabs were identical in geometry and reinforcement – 750/160 mm cross-section, 3.1 m span, reinforced with $5 \oslash 12$ bars. The series was separated into two groups – C1–C3 and C11–C22, with C0 being a trial slab.

The slabs C1–C3 were loaded with 60% of their ultimate load (i.e. full service load) but at different speeds: 12 seconds, 10 min and 10 hours, after which rapid cycles of loading and unloading followed. As with series A, B and D, these slabs are not of particular interest for this thesis.

The seven slabs in the group C11–C22 were loaded at five different load levels: 0.2, 0.3, 0.4, 0.5 and 0.6 of their ultimate load. Slab C11, loaded at 20% of its ultimate load, remained uncracked; slabs C12 and C22, loaded at 30% of their ultimate load, were practically at the cracking load level; and the remainder of the slabs were fully cracked.

The slabs were loaded in four point bending, at points 1 m from the supports, after 28 days, for a period of 510 days (some of them only 1 year). The environmental conditions were controlled with an average RH = 60%.

Deflections were measured with dial indicators 'instantly' after loading, after 5 min, 1 h, every day up to 28 days, 6 months, 1 year and 510 days. The deflections measured after 5 min were adopted as 'initial' but importantly, there was up to a 15% increase between the 'instantaneous' deflections and these nominally 'initial' ones after 5 min.

Strains were measured with a mechanical Huggenberger strain gauge with a 100 mm gauge length and using pins glued directly to the concrete surface. Immediately after loading, the crack pattern wasn't fully developed; it was completed only after two to three weeks in the flexural span and only after three to four months on the whole slab. The crack spacing was noticed to be roughly equal to the stirrup spacing.

Alongside the slabs, specimens were tested for mechanical properties and shrinkage and creep was measured on accompanying prisms.

The 15-day compressive strength of series A was approximately 25.2 MPa for slabs A1–3 and 40.35 MPa for slabs A4–5. The modulus of elasticity was 23.35 and 33.25 GPa for slabs A1–3 and A4–5, respectively. For series C, the 28-day compressive strength was between 28.8 and 32 MPa, and the modulus of elasticity between 28.3 and 30.9 GPa. Interestingly, for tensile strength, the authors actually measured the flexural tensile strength (modulus of rupture) but reported it as pure tensile strength taken as 50% of the measured flexural strength value. The creep coefficient measured on prisms was 2.52 for slabs A1–3, 2.24 for slabs A4–5 and 2.31 for series C. The measured shrinkage strain was 0.52% for slabs A1–3, 0.39% for slabs A4–5 and 0.35% for series C.

After a one year period, the slabs from series A had a final-to-initial deflection ratio between 2.15 and 2.84 for slabs A1–3 and 3.1 and 3.6 for slabs A4–5. For slabs in series C, after 538 days, this ratio decreased with increasing load levels, from 4.38 for slab C12 (loaded to 0.2 of ultimate load), to 2.08 for slab C15 (loaded to 0.6 of ultimate load). With the results from series C, the authors captured a wide range of load-deflection behaviour of reinforced concrete members, as shown on Figure 2.5.

The period after 1988

After the database by Espion (1988), there have not been many experimental programmes studying long-term behaviour of reinforced concrete members similar to the ones compiled in the database (simply supported beams, normal-strength concrete, rectangular cross-sections, etc.) There have been some, but most others have dealt with very specific topics.

Some examples are studies on the influence of repeated or variable loading (Arangjelovski et al., 2012; Criel et al., 2014), high load levels (0.7, 0.8, 0.9 of ultimate load) (Reybrouck et al., 2015) and different deterioration mechanisms such as freeze-thaw action or chloride-induced corrosion (Gao et al., 2016; Duan et al., 2016).

The reason for this is perhaps a lowered interest for the 'ordinary' problem of long-term deflections of reinforced concrete members which was considered 'solved' after the introduction of CEB and ACI deflection prediction models in the 1970s. The attention then turned to problems of beams with special load conditions, concrete composition, etc. The attention of the scientific community turned to other things, and perhaps as a consequence, one of the rare 'ordinary' experimental programmes on long-term behaviour of reinforced concrete members under sustained loads was published only as a report and not as a peer-reviewed article.

'An experimental study on flexural cracking in reinforced concrete members under sustained loads' (Gilbert and Nejadi, 2004)

This experimental programme is one of many carried out at the University of South Wales, Australia. One of them entered into Espion's database – Bakoss et al. (1983).

Within the scope of this new programme, six beams and six slabs were cast and moist cured for 14 days after which they were exposed to sustained loads. All specimens were simply supported with a 3.5 m span and loaded for 400 days. The six beams were loaded in four point bending and the six slabs were loaded uniformly by a distributed load. Deflections at mid-span, crack patterns and widths, steel and concrete strains were measured. Concrete compressive and tensile strength as well as the modulus of elasticity were measured at different times.

The parameters varied in the tests were the tensile reinforcement, concrete cover and load level. For both the beams and the slabs, two identical specimens were made for each combination of reinforcement and cover. One was loaded to about 50% of its ultimate load (type 'a') and the other to around 30% of its ultimate load (type 'b').

The beams had either a 250/340 mm or a 250/325 mm cross-section with an effective depth of 300 mm in all cases—the concrete cover was 40 or 25 mm (the L/d ratio was

11.67). The reinforcement ratio were 0.54% and 0.80% with no compression reinforcement. The beams were loaded to load levels 25–45% of their ultimate load (reinforcement stress 128–226 MPa).

The slabs had a 400/155 mm cross-section (130 mm effective depth, L/d = 26.92) and reinforcement ratios of 0.44%, 0.65% and 0.87% with no compression reinforcement. The slabs were loaded to levels 32-50% of their ultimate load (reinforcement stress 159-252 MPa).

On the beams and slabs, steel strains were measured using 13 electronic strain gauges attached to one of the main reinforcement bars. For measuring concrete surface strains, a DEMEC strain gauge with a 250 mm base length was used and 11 target points were distributed in the critical moment region. A microscope with a magnification factor of 40 was used for measuring crack widths. The development, propagation, extent and width of cracking were observed and recorded throughout the test. Dial gauges were used to measure the deflection at the middle of each specimen.

Companion specimens for measuring mechanical properties and creep and shrinkage were also cast. Cylinders 150 and 100 mm in diameter and 300 and 200 mm in height were used, 100/100/500 mm prisms and 600/600/160 mm blocks (for drying shrinkage). The specimens were cured and kept under same conditions as the beams and slabs (3 days of moist curing and covering with wet hessian until the 14th day).

The concrete had a 28-day compressive strength of 24.8 MPa (with values also reported for 7, 14 and 21 days), a splitting tensile strength of 2.8 MPa and a flexural strength of 5.6 MPa; the modulus of elasticity was 24.95 GPa. The creep coefficient measured on prisms was 1.71 after 394 days and the shrinkage strain was 0.83%.

The initial deflections were between 2 and 5.8 mm for beams and 3.7 and 11.8 mm for slabs, whereas the final deflections after 400 days were 7.4–13.3 mm for beams and 19.9–32.5 mm for slabs – the final-to-initial deflection ratio was between 2.5 and 4 for beams and 2.8 and 5.4 for slabs.

Crack widths and spacing was an important part of the study and so, a lot of results were reported about them. Since the concrete cover was also varied among identically reinforced beams, after loading, the beam with the larger cover had larger crack widths, as

expected. However, long-term crack widths were similar for both covers. Crack widths ranged from 0.03 to 0.15 mm after loading and from 0.03 to 0.38 mm after 400 days. However, they were measured at the bottom concrete fibre and not at the level of reinforcement. The crack widths increased linearly with reinforcement stress. Initial crack spacing was 200–300 mm for beams and 130–190 mm for slabs and after 400 days 130–200 mm for beams and 95—130 mm for slabs, i.e. new cracks appeared.

The authors also provided comprehensive annexes to the report with practically all measurements as raw data which is extremely useful for analysis, predictions and reproduction. It is precisely these reports which raise certain questions about the reliability of the results. Namely, when the initial deflections reported in Table 10 in (Gilbert and Nejadi, 2004) are compared with the raw data measurements in the annexes, it can be seen that, e.g. the results for slabs S2-a and S3-a are 'switched' and that the initial deflection for slab S1-b is not 3.7 but 2.72 mm. Furthermore, in the case of identically reinforced slabs such as S1-a and S1-b (differing only in the load level) the slab with a higher initial deflection, S1-a, shows a drastically lower long-term increase of deflections compared with slab S1-b which is under a smaller load – the final-to-initial deflection ratios are 3.5 and 5.4, respectively. This is also seen in the case of slabs S2-a and S2-b as well as S3-a and S3-b, which raises the question of the accuracy of measuring initial deflections.

Further still, when an attempt is made to convert mechanical strain gauge readings provided in the annexes into strains, the reported results cannot be obtained in most cases. Hence, serious care should be taken whether these results are reliable for use in any type of analysis.

2.5.3 Models for Calculating Shrinkage and Creep

Initially, shrinkage and creep models were purely empirical, calibrated on experimental data that actually didn't cover the entire range of practical interest for all parameters. These basic models comprised combinations of idealized springs and dashpots representing the elastic and viscous behaviour of concrete. They had a mechanistic basis for the observed instantaneous and time-dependent deformations of concrete under sustained load.

Most famous among them are the Maxwell and Kelvin models Figure 2.9, governed by simple relations describing the viscoelastic response of materials under sustained uniaxial stress given by eqs. (2.16) and (2.17), respectively:

$$\varepsilon(t) = \sigma \left[\frac{1}{E(t_0)} + \frac{A}{v_M L} (t - t_0) \right]$$
 (2.16)

$$\varepsilon(t) = \frac{\sigma A \alpha_k}{L} \left[1 - e^{\frac{-(t - t_0)}{\alpha_K \nu_K}} \right]$$
 (2.17)

where $\varepsilon(t)$ is the total strain at time t, σ is the sustained stress, $E(t_0)$ is the modulus of elasticity of the spring at time of loading t_0 , α_k is a spring constant, v_M and v_K are dashpot viscosity-dependent constants (for the Maxwell and Kelvin models, respectively) and L and A are the characteristic length and area used to define the spring stiffness.

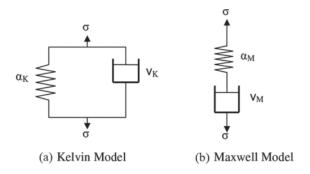


FIGURE 2.9: Basic rheological models (Fathifazl and Razaqpur, 2013)

In the Maxwell Model, the creep rate is constant, which does not agree with the observed decrease in concrete creep rate with time whereas in the Kelvin Model, the elastic deformation component evolves exponentially while, in reality, it is reached practically instantly. All of these limitations have prompted researchers and engineers to develop more complex models. Some of the more important ones were the Kelvin-Voigt (KV) and Dischinger (D) models (Mola and Pellegrini, 2012).

In 1995, the B3 model was published by Bažant and Baweja (Bažant and Baweja, 1995a). It was a result of several advances that included a vast expansion of the experimental database on concrete shrinkage and creep (as discussed earlier), the compilation of a computerized data bank, the development of computerized statistical procedures and optimizations for data fitting and comparison and an improved understanding of the physical

processes underlying shrinkage and creep (ageing, diffusion processes, thermally activated processes and microcracking and their mathematical modelling).

The model was an improvement of previous models developed at Northwestern University: the BP and BP-KX models. The justification and refinements of the model were also presented to the scientific community and heavily discussed: the statistics, sensitivity, updating and theoretical basis of the model (Bažant and Baweja, 1995b,c).

The B4 model

Sadly, it was the disastrous experience of the Koror-Babeldaob bridge collapse in Palau in 1996 that provided a strong impulse for the latest advance in shrinkage and creep prediction models. The collapse of this bridge, caused by an unsuccessful retrofit, shed light on another problem – excessive creep deflections, which reached 1.61 m (compared with the design camber), and a prestress loss of almost 50%. This disastrous experience led to the creation of the RILEM Committee TC-MDC (Multi-Decade Creep) (Bažant et al., 2015).

The final result of the commission's work was the B4 model, a major improvement upon the previous B3 model and the fourth in a series of progressively improved models developed at Northwestern University since 1978. Since the general mathematical form of the B3 model was theoretically supported by the solidification theory, theory of microprestress relaxation in the nanostructure, activation energy concepts, moisture diffusion theory and damage models for microcracking, the same mathematical form was retained in the B4 model, except for autogenous shrinkage. However, formulas giving the dependence of the creep and shrinkage parameters on the concrete strength, mix composition, cement and aggregate types, and curing procedure were revised and refined to include the effects of admixtures such as fly ash, silica fume, water reducers and superplasticizers. These dependencies were captured with optimized parameters, as were the effects of different cement types and aggregate types (Wendner et al., 2013).

Along with the model, the authors presented a thorough discussion on the optimization methods used for the model (Wendner et al., 2015a) and gave detailed statistical justifications for multi-decade creep and autogenous shrinkage of concrete (Wendner et al., 2015b; Hubler et al., 2015b).

The B4 model was calibrated for the following range of its parameters (original notation is used):

$$0.22 < w/c < 0.87, \quad 1.0 < a/c < 13.2$$
 (2.18)

$$15MPa \le \overline{f}_c \le 70MPa, \quad 200 kg/m^3 \le c \le 1500 kg/m^3$$
 (2.19)

$$-25^{\circ}C \le T \le 75^{\circ}C \tag{2.20}$$

$$20^{\circ}C < T_{cur} < 30^{\circ}C \tag{2.21}$$

$$12 \le V/S \le 120 \tag{2.22}$$

where a/c is the aggregate-cement ratio, \overline{f}_c is the mean cylinder compressive strength (f_{cm}) , c is the cement content, T is the ambient temperature, T_{cur} is the curing temperature and V/S is the volume-surface ratio (for members with a constant cross-section this is equal to half the notional size, i.e. $0.5h_0$).

The model B4 assumes the relation in Equation 2.23 for total concrete strain ε at time t under a constant stress σ applied at age t'. Within the service stress range (up to approximately $0.45\overline{f}_c$ creep is considered to depend linearly on stress (and any other nonlinearity is caused by cracking).

$$\varepsilon(t) = J(\hat{t}, \hat{t}') \cdot \sigma + \varepsilon_{sh,total}(\tilde{t}, \tilde{t}_0) + \alpha_T \cdot \Delta T$$
(2.23)

in which $J(\hat{t},\hat{t}')$ is the creep compliance function, $\varepsilon_{sh,total}(\tilde{t},\tilde{t}_0)$ is the total shrinkage strain (negative for a decrease in volume), $\Delta T(t)$ is the temperature difference from the reference temperature at time t and α_T is the thermal coefficient of expansion.

The times \hat{t} , \hat{t}' , \tilde{t} and \tilde{t}_0 are transformed and temperature-adjusted ages t, t', $t-t_0$ and t_0 , respectively (current age, age at loading, duration of exposure to environmental conditions and start of environmental exposure, respectively).

$$\tilde{t}_0 = t_0 \beta_{Th}, \quad \beta_{Th} = exp \left[\frac{U_h}{R} \left(\frac{1}{293} - \frac{1}{T_{cur} + 273} \right) \right]$$
 (2.24)

$$\tilde{t} = (t - t_0)\beta_{Ts}, \quad \beta_{Ts} = exp\left[\frac{U_s}{R}\left(\frac{1}{293} - \frac{1}{T_{cur} + 273}\right)\right]$$
 (2.25)

$$\hat{t}' = t_0 \beta_{Th} + (t' - t_0) \beta_{Ts}, \ \hat{t} = \hat{t}' + (t - t') \beta_{Tc}, \ \beta_{Tc} = exp \left[\frac{U_c}{R} \left(\frac{1}{293} - \frac{1}{T_{cur} + 273} \right) \right]$$
 (2.26)

where U_h , U_s and U_c are activation energies of hydration, moisture diffusion and creep, respectively and R is the gas constant. In absence of data, $U_h/R = U_s/R = U_c/R = 4000$ K can be adopted.

An additional important insight from Equation 2.23 is that the B4 model doesn't use the creep coefficient ϕ which most engineers are used to. However, the B4 model does define it as

$$\phi(t,t') = E(t') \cdot J(t,t') - 1 \tag{2.27}$$

As stated in (Bažant et al., 2015), the creep coefficient should always be calculated this way. The modulus of elasticity E(t') should be calculated from the short-duration compliance J(t,t') for $\Delta=t-t'$, typically around 1.5 min. This is highly important since various combinations of ϕ and E corresponding to any chosen Δ -value between 0.1 s and 2 h yield the same compliance. Hence, using incompatible E-values (e.g. from code expressions) with an experimentally reported creep coefficient can cause significant errors (Bažant et al., 2015).

From Equation 2.23, the total shrinkage strain is defined as a non-interactive sum of autogenous shrinkage, ε_{au} and drying shrinkage ε_{sh} :

$$\varepsilon_{sh,total}(\tilde{t},\tilde{t}_0) = \varepsilon_{sh}(\tilde{t},\tilde{t}_0) + \varepsilon_{au}(\tilde{t},\tilde{t}_0)$$
(2.28)

Drying shrinkage is defined by

$$\varepsilon_{sh}(\tilde{t}, \tilde{t}_0) = \varepsilon_{sh\infty}(\tilde{t}_0) \cdot k_h \cdot S(\tilde{t})$$
(2.29)

where $\varepsilon_{sh\infty}(\tilde{t}_0)$ is the age-corrected final drying shrinkage, k_h is the humidity dependence of drying shrinkage and $S(\tilde{t})$ is the drying shrinkage time curve.

$$\varepsilon_{sh\infty}(\tilde{t}_0) = -\varepsilon_0 k_{\varepsilon a} \frac{E(7\beta_{Th} + 600\beta_{Ts})}{E(\tilde{t}_0 + \tau_{sh}\beta_{Ts})}$$
(2.30)

$$\varepsilon_0 = \varepsilon_{cem} \left(\frac{a/c}{6}\right)^{p_{\varepsilon a}} \left(\frac{w/c}{0.38}\right)^{p_{\varepsilon w}} \left(\frac{6.5c}{\rho}\right)^{p_{\varepsilon c}}, \quad \rho = 2350 \, kg/m^3 \tag{2.31}$$

For eqs. (2.30) and (2.31), ε_{cem} , $p_{\varepsilon a}$, $p_{\varepsilon w}$ and $p_{\varepsilon c}$ should be taken from Table 1 and $k_{\varepsilon a}$ from Table 6 in (Bažant et al., 2015).

The modulus of elasticity at any time t can be determined from the modulus of elasticity after 28 days— E_{28} in model B4 or E_{cm} in Eurocode 2 (EN 1992-1-1, 2004)—which in turn, can be determined from code-based expressions.

$$E(t) = E_{28} \sqrt{\frac{t}{4 \, days + (6/7)t}} \tag{2.32}$$

while Bažant et al. (2015) recommend

$$E_{28} = 4734 MPa \sqrt{\frac{\overline{f}_c}{MPa}} \tag{2.33}$$

The humidity dependence k_h is defined according to relative humidity h as

$$k_h = \begin{cases} 1 - h^3 & h \le 0.98\\ 12.94(1 - h) - 0.2 & 0.98 \le h \le 1 \end{cases}$$
 (2.34)

Finally, in drying shrinkage, the time curve is given by

$$S(\tilde{t}) = tanh\sqrt{\frac{\tilde{t}}{\tau_{sh}}}$$
 (2.35)

with the shrinkage 'halftime' τ_{sh} being

$$\tau_{sh} = \tau_0 k_{\tau a} \left(k_s \frac{2V/S}{1 \, mm} \right)^2 \tag{2.36}$$

and

$$\tau_0 = \tau_{cem} \left(\frac{a/c}{6}\right)^{p_{\tau a}} \left(\frac{w/c}{0.38}\right)^{p_{\tau w}} \left(\frac{6.5c}{\rho}\right)^{p_{\tau c}}, \quad \rho = 2350 \, kg/m^3 \tag{2.37}$$

The correction factor for the aggregate type, $k_{\tau a}$, the cement type-dependent parameter τ_{cem} and exponents $p_{\tau a}$, $p_{\tau w}$ and $p_{\tau c}$ are given in Table 6 and Table 1 in (Bažant et al.,

2015), respectively. The shape parameter k_s takes into account the specimen geometry:

$$k_s = \begin{cases} 1.00 & \text{infinite slab} \\ 1.15 & \text{infinite cylinder} \\ 1.25 & \text{infinite square prism} \\ 1.30 & \text{sphere} \\ 1.55 & \text{cube} \end{cases}$$
 (2.38)

Autogenous shrinkage is one of the major improvements of the B4 model in comparison with the B3 model. The autogenous shrinkage strain ε_{au} is calculated as

$$\varepsilon_{au}(\tilde{t},\tilde{t}_0) = \varepsilon_{au\infty} \left[1 + \left(\frac{\tau_{au}}{\tilde{t} + \tilde{t}_0} \right)^{\alpha} \right]^{r_t}, \quad \alpha = r_{\alpha}(\frac{w/c}{0.38})$$
(2.39)

The final autogenous shrinkage strain is given by

$$\varepsilon_{au\infty} = -\varepsilon_{au,cem} \left(\frac{a/c}{6}\right)^{r_{\varepsilon a}} \left(\frac{w/c}{0.38}\right)^{r_{\varepsilon w}} \tag{2.40}$$

and the autogenous shrinkage 'halftime' as

$$\tau_{au} = \tau_{au,cem} \left(\frac{w/c}{0.38}\right)^{r_{\tau_w}} \tag{2.41}$$

The values of parameters $\varepsilon_{au,cem}$, $\tau_{au,cem}$ and r_{α} and the exponents $r_{\varepsilon a}$, $r_{\varepsilon w}$, $r_{\tau w}$ and r_t are provided in Table 2 in (Bažant et al., 2015).

As for the creep compliance function, it is given in the following format

$$J(\hat{t}, \hat{t}') = q_1 + R_T \cdot C_0(\hat{t}, \hat{t}') + C_d(\hat{t}, \hat{t}', \tilde{t}_0)$$
(2.42)

The creep compliance is decomposed into the instantaneous compliance q_1 which is extrapolated from compliance curves between 0.1 s and 1 h to zero load duration (approximately independent of loading age t'), the basic creep compliance C_0 and the drying creep compliance C_d .

$$q_1 = \frac{1}{E_0} = \frac{p_1}{E_{28}} \tag{2.43}$$

where p_1 is a cement type dependent factor given in Table 3 of (Bažant et al., 2015).

Temperature effects are taken into account by 'horizontal scaling' (time transformations) and 'vertical scaling' using the factor R_T :

$$R_T = exp\left[\frac{U_c}{R}\left(\frac{1}{293} - \frac{1}{T + 273}\right)\right] \tag{2.44}$$

The basic creep compliance is defined via its time rate, i.e. its time derivative:

$$\dot{C}_0(t,t') = \frac{n(q_2t^{-m} + q_3)}{(t-t') + (t-t')^{1-n}} + \frac{q_4}{t}, \quad (m = 0.5, n = 0.1)$$
(2.45)

Parameters q_2 , q_3 and q_4 represent aging viscoelastic creep, non-aging viscoelastic creep and flow, respectively.

$$q_2 = \frac{p_2}{1 \, GPa} \left(\frac{w/c}{0.38}\right)^{p_{2w}} \tag{2.46}$$

$$q_3 = p_3 q_2 \left(\frac{a/c}{6}\right)^{p_{3a}} \left(\frac{w/c}{0.38}\right)^{p_{3w}} \tag{2.47}$$

$$q_4 = \frac{p_4}{1 \, GPa} \left(\frac{a/c}{6}\right)^{p_{4a}} \left(\frac{w/c}{0.38}\right)^{p_{4w}} \tag{2.48}$$

Parameters p_2 , p_3 and p_4 and exponents p_{2w} , p_{3a} , p_{3w} , p_{4a} and p_{4w} are given in Table 3 in (Bažant et al., 2015).

Finally, the drying creep compliance is defined as

$$C_d(\hat{t}, \hat{t}', \tilde{t}_0) = q_t \langle exp[-p_{5H} \cdot H(\hat{t}, \tilde{t}_0)] - exp[-p_{5H} \cdot H_c(\hat{t}'_0, \tilde{t}_0)] \rangle^{0.5}$$
 (2.49)

where $\hat{t}_0' = max(\hat{t}', \tilde{t}_0)$ if $\hat{t} \geq \hat{t}_0'$; otherwise $C_d(\hat{t}, \hat{t}', \tilde{t}_0) = 0$.

The drying creep parameter q_5 is

$$q_5 = \frac{p_5}{1 \, GPa} \left(\frac{a/c}{6}\right)^{p_{5a}} \left(\frac{w/c}{0.38}\right)^{p_{5w}} |k_h \cdot \varepsilon_{sh\infty}(\tilde{t}_0)|^{p_{5\varepsilon}} \tag{2.50}$$

with parameter p_5 and exponents p_{5a} , p_{5w} and $p_{5\varepsilon}$ given in Table 3 in (Bažant et al., 2015).

Lastly,

$$H(\hat{t}, \tilde{t}_0) = 1 - (1 - h) \tanh \sqrt{\frac{\hat{t} - \tilde{t}_0}{\tau_{sh}}}$$

$$(2.51)$$

$$H_c(\hat{t}'_0, \tilde{t}_0) = 1 - (1 - h) \tanh \sqrt{\frac{\hat{t}'_0 - \tilde{t}_0}{\tau_{sh}}}$$
 (2.52)

Since the B4 model uses as its input parameters the characteristics of the concrete mix, it is not always applicable in practice, since in most situations the designer knows only the required compressive strength of the concrete; in fact, all other models except the B4 model are formulated based only on compressive strength. Therefore, a simplified version of the B4 model is also proposed, called 'B4s', which uses the mean compressive strength f_{cm} as its single input parameter. Several equations of the full B4 model are replaced with simplified ones in the B4s.

Shrinkage:

$$\varepsilon_0 = \varepsilon_{s,cem} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{\varepsilon f}} \tag{2.53}$$

Drying shrinkage halftime:

$$\tau_0 = \tau_{s,cem} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{\tau f}} \tag{2.54}$$

Autogenous shrinkage:

$$\varepsilon_{au}(\tilde{t}, \tilde{t_0} = \varepsilon_{au\infty} \cdot \left[1 + \left(\frac{\tau_{au}}{\tilde{t} + \tilde{t_0}}\right)^{\alpha_s}\right]^{r_t}$$
(2.55)

Final autogenous shrinkage:

$$\varepsilon_{au\infty} = -\varepsilon_{au,cem} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{r_{\varepsilon f}} \tag{2.56}$$

Autogenous shrinkage halftime:

$$\tau_{au} = \tau_{au,cem} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{r_{\tau f}} \tag{2.57}$$

Aging viscoealstic creep:

$$q_2 = \frac{s_2}{1GPa} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{2f}} \tag{2.58}$$

Non-aging viscoelastic creep:

$$q_3 = s_3 \cdot q_2 \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{3f}} \tag{2.59}$$

Flow:

$$q_4 = \frac{s_4}{1GPa} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{4f}} \tag{2.60}$$

Drying creep:

$$q_5 = \frac{s_5}{1GPa} \cdot \left(\frac{f_{cm}}{40MPa}\right)^{s_{5f}} |k_h \cdot \varepsilon_{sh\infty}|^{p_{5\varepsilon}}$$
(2.61)

All of the parameters for the model B4s are provided in Tables 7, 8 and 9 in (Bažant et al., 2015).

The MC10 model

Coming from a long, mostly European tradition, the MC10 is the latest in a series of *fib* Model Code shrinkage and creep models (FIB, 2013). The first model was published in the CEB-FIP Model Code 1978 (MC78) (CEB-FIP, 1978). The MC78 model represented a generalisation of the (KV) and (D) models and treated the creep coefficient as a sum of a 'sudden creep deformation at time of loading', a developing non-aging and a developing aging part of creep (Mola and Pellegrini, 2012).

A major improvement over the shortcomings of the MC78 model was the CEB-FIP Model Code 1990 (MC90) (CEB-FIP, 1991). In it, the creep coefficient was a product function

with components for taking into account various influencing factors. The model eliminated the problems of the 'sudden creep deformation' of MC78. Importantly, the model assumed the influence of relative humidity and member notional size on all creep components meaning that creep is purely regarded as drying creep and thus has a final value (Mola and Pellegrini, 2012). Furthermore, it was found that the model displayed strange behaviour in some cases. For example, after unloading, the model displays a decreasing and then increasing creep compliance, i.e. a negative delayed elasticity—violating the principles of thermodynamics (Mola and Pellegrini, 2012)!

This was the background of the *fib* Model Code 2010 (MC10) model which it had to overcome (FIB, 2013). The model carries several major changes. Most importantly shrinkage and creep are both separated into their constituent components: autogenous and drying shrinkage; and basic and drying creep. For the creep model, the creep coefficient is a sum of the basic and drying creep coefficients, both product functions expressing influencing factors. In MC10, the basic creep function is not limited, expressing the still-unresolved question of whether basic creep actually ever reaches a final value; the drying creep function remains limited (Mola and Pellegrini, 2012).

The MC10 defines the total strain $\varepsilon_c(t)$ at time t of a concrete member uniaxially loaded at time t_0 under a constant stress $\sigma_c(t_0)$ as

$$\varepsilon_c(t) = \varepsilon_{ci}(t_0) + \varepsilon_{cc}(t) + \varepsilon_{cs}(t) + \varepsilon_{cT}(t)$$
(2.62)

or

$$\varepsilon_c(t) = \varepsilon_{c\sigma}(t, t_0) + \varepsilon_{cn}(t) \tag{2.63}$$

where $\varepsilon_{ci}(t_0)$ is the initial strain at loading, $\varepsilon_{cc}(t)$ is the creep strain at time $t > t_0$, $\varepsilon_{cs}(t)$ is the shrinkage strain, $\varepsilon_{cT}(t)$ is the thermal strain, $\varepsilon_{c\sigma}(t)$ is the stress-dependent strain (initial and creep strain) and $\varepsilon_{cn}(t)$ is the stress-independent strain (shrinkage and thermal strain).

The MC10 model is considered to be applicable in the following parameter range:

$$20MPa \le f_{cm} \le 130MPa,$$
 (2.64)

$$5^{\circ}C < T < 30^{\circ}C$$
 (2.65)

$$40\% \le RH \le 100\% \tag{2.66}$$

Within the service stress range ($\sigma_c \le 0.4 f_{cm}$), creep is assumed to be linearly dependent on stress. For a constant stress $\sigma_c(t_0)$ applied at t_0 :

$$\varepsilon_{c\sigma}(t,t_0) = \sigma_c(t_0) \cdot \left[\frac{1}{E_{ci}(t_0)} + \frac{\phi(t,t_0)}{E_{ci}} \right] = \sigma_c(t_0) \cdot J(t,t_0)$$
 (2.67)

where $J(t,t_0)$ is the creep compliance function and $E_{ci}(t_0)$ is the modulus of elasticity at the time of loading ($E_{ci} = E_{cm}$ is the 28-day modulus of elasticity). Additionally, MC10 offers the possibility of adjusting any time (e.g. t or t_0) to take into account temperature effects:

$$t_T = \sum_{i=1}^{n} \Delta t_i \cdot exp \left[13.65 - \frac{4000}{273 + T(\Delta t_i)} \right]$$
 (2.68)

where t_T is the temperature-adjusted age of concrete and δt_i is the number of days when a temperature T prevails.

The effect of cement type on the creep coefficient can be taken into account by modifying the age at loading using the following expression:

$$t_{0,adj} = t_{0,T} \left[\frac{9}{2 + t_{0,T}^{1.2}} + 1 \right]^{\alpha}$$
 (2.69)

where $t_{0,T}$ is time t_0 adjusted according to Equation 2.68 and α is a coefficient dependent on the type of cement.

$$\alpha = \begin{cases} -1 & \text{for cement class } 32.5\text{N} \\ 0 & \text{for cement classes } 32.5\text{R and } 42.5\text{N} \\ 1 & \text{for cement classes } 42.5\text{R}, 52.5\text{N and } 52.5\text{R} \end{cases}$$
 (2.70)

The creep coefficient $\phi(t,t_0)$ is given as

$$\phi(t,t_0) = \phi_{bc}(t,t_0) + \phi_{dc}(t,t_0) \tag{2.71}$$

with $\phi_{bc}(t,t_0)$ representing basic creep and $\phi_{dc}(t,t_0)$ representing drying creep.

The basic creep coefficient is calculated as

$$\phi_{bc}(t,t_0) = \beta_{bc}(f_{cm}) \cdot \beta_{bc}(t,t_0) \tag{2.72}$$

$$\beta_{bc}(f_{cm}) = \frac{1.8}{(f_{cm})^{0.7}} \tag{2.73}$$

$$\beta_{bc}(t,t_0) = \ln\left[\left(\frac{30}{t_{0,adj}} + 0.035\right)^2 \cdot (t - t_0) + 1\right]$$
(2.74)

The drying creep coefficient is calculated as

$$\phi_{dc}(t,t_0) = \beta_{dc}(f_{cm}) \cdot \beta(RH) \cdot \beta_{dc}(t_0) \cdot \beta_{dc}(t,t_0)$$
(2.75)

$$\beta_{dc}(f_{cm}) = \frac{412}{(f_{cm})^{1.4}} \tag{2.76}$$

$$\beta(RH) = \frac{1 - \frac{RH}{100}}{\sqrt[3]{0.1 \frac{h_0}{100}}}$$
 (2.77)

$$\beta_{dc}(t_0) = \frac{1}{0.1 + t_{0,adj}^{0.2}}$$
 (2.78)

$$\beta_{dc}(t,t_0) = \left[\frac{(t-t_0)}{\beta_h + (t-t_0)}\right]^{\gamma(t_0)}$$
 (2.79)

$$\gamma(t_0) = \frac{1}{2.3 + \frac{3.5}{\sqrt{t_{0,adj}}}} \tag{2.80}$$

$$\beta_h = 1.5h_0 + 250\alpha_{f_{cm}} \le 1500\alpha_{f_{cm}} \tag{2.81}$$

$$\alpha_{f_{cm}} = \left(\frac{35}{f_{cm}}\right)^{0.5} \tag{2.82}$$

where RH is relative humidity in % and h_0 is the member notional size (in mm).

MC10 also offers the possibility of extending the applicability range of its creep model to stresses in the range of $0.4 f_{cm}(t_0) \le \sigma_c \le 0.6 f_{cm}(t_0)$ transforming the creep coefficient $\phi(t,t_0)$ into the nonlinear creep coefficient $\phi_{\sigma}(t,t_0)$.

$$\phi_{\sigma}(t, t_0) = \phi(t, t_0) \cdot exp[1.5(k_{\sigma} - 0.4)], \quad \text{for } 0.4 < k_{\sigma} < 0.6$$
 (2.83)

where $k_{\sigma} = \sigma_c/f_{cm}(t_0)$ is the stress–strength ratio.

As for shrinkage, the total shrinkage strain at time t after the start of drying at time t_s , $\varepsilon_{cs}(t,t_s)$ is decomposed into an autogenous shrinkage strain ε_{cas} and a drying shrinkage strain ε_{cds} .

$$\varepsilon_{cs}(t, t_s) = \varepsilon_{cas}(t) + \varepsilon_{cds}(t, t_s) \tag{2.84}$$

Autogenous shrinkage is modeled as

$$\varepsilon_{cas}(t) = \varepsilon_{cas0}(f_{cm}) \cdot \beta_{as}(t) \tag{2.85}$$

and drying shrinkage as

$$\varepsilon_{cds}(t, t_s) = \varepsilon_{cds0}(f_{cm}) \cdot \beta_{RH} \cdot \beta_{ds}(t - t_s)$$
 (2.86)

with

$$\varepsilon_{cas0}(f_{cm}) = -\alpha_{as} \left(\frac{f_{cm}/10}{6 + f_{cm}/10}\right)^{2.5} \cdot 10^{-6}$$
 (2.87)

$$\beta_{as}(t) = 1 - exp(-0.2\sqrt{t})$$
 (2.88)

$$\varepsilon_{cds0}(f_{cm}) = [(220 + 110\alpha_{ds1}) \cdot exp(-\alpha_{ds2}f_{cm})] \cdot 10^{-6}$$
(2.89)

$$\beta_{RH} = \begin{cases} -1.55 \left[1 - \left(\frac{RH}{100} \right)^3 \right] & \text{for } 40\% \le RH \le 99\% \cdot \beta_{s1} \\ 0.25 & \text{for } RH \ge 99\% \cdot \beta_{s1} \end{cases}$$
 (2.90)

$$\beta_{ds}(t - t_s) = \left(\frac{(t - t_s)}{0.035h_0^2 + (t - t_s)}\right)^{0.5}$$
(2.91)

$$\beta_{s1} = \left(\frac{35}{f_{cm}}\right)^{0.1} \le 1.0 \tag{2.92}$$

Coefficients α_{as} , α_{ds1} and α_{ds2} are given in Table 2.2.

TABLE 2.2: Coefficients α_i (FIB, 2013)

Strength class of cement	α_{as}	α_{ds1}	α_{ds2}
32.5N	800	3	0.013
32.5R, 42.5N	700	4	0.012
42.5R, 52.5N, 52.5R	600	6	0.012

The EC2 model

Between the time Model Code 1990 and 2010 were published, in 2004 Eurocode 2 was adopted by CEN and its member states (EN 1992-1-1, 2004). Relying heavily on MC90, Eurocode 2 offered a very similar model for creep and shrinkage (EC2). In defining the creep compliance and creep coefficient, EC2 is basically equal to MC90 (except for a few coefficients in the equations). This carries with it all of the before-mentioned short-comings (treating creep as a purely drying phenomenon). An improvement exists in the definition of shrinkage since MC90 does not recognize autogenous from drying shrinkage whereas EC2 does. Nonetheless, EC2 is the ruling code of design in most of Europe and consequently, its shrinkage and creep models are as well.

EC2 considers that creep is linearly related to stress up to stress levels of $0.45 f_{ck}(t_0)$ where t_0 is the concrete age at loading. However, the creep coefficient $\phi(t,t_0)$ is related to the tangent modulus of elasticity $E_c = 1.05 E_{cm}$, rather than simply E_{cm} . All concrete ages can be transformed to take into account the effects of cement type and temperature using the same expressions as in MC10, i.e. eqs. (2.68) and (2.69).

EC2 gives the following expression for the creep strain:

$$\varepsilon_{cc}(t,t_0) = \phi(t,t_0) \cdot \left(\frac{\sigma_c}{E_c}\right)$$
 (2.93)

The total stress-dependent strain can then be calculated as

$$\varepsilon_{c\sigma}(t,t_0) = \sigma_c(t_0) \cdot \left[\frac{1}{E_c(t_0)} + \frac{\phi(t,t_0)}{E_c} \right] = \sigma_c(t_0) \cdot J(t,t_0)$$
 (2.94)

Identically to MC10 (and in fact MC90), EC2 allows the correction of the creep coefficient for stress levels above $0.45 f_{ck}(t_0)$ using the same expression, i.e. Equation 2.83.

EC2 does not explicitly prescribe equations for calculating $\phi(t,t_0)$, rather provides nomograms for its visual assessment. A detailed analytical method is given only in the 'informative' Annex B (EN 1992-1-1, 2004).

From Annex B, the creep coefficient can be determined as

$$\phi(t, t_0) = \phi_0 \cdot \beta_c(t, t_0) \tag{2.95}$$

where ϕ_0 is the notional creep coefficient which can be estimated from

$$\phi_0 = \phi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \tag{2.96}$$

$$\phi_{RH} = \begin{cases} 1 + \frac{1 - RH/100}{0.1 \sqrt[3]{h_0}} & \text{for } f_{cm} \le 35 \, MPa \\ \left[1 + \frac{1 - RH/100}{0.1 \sqrt[3]{h_0}} \cdot \alpha_1 \right] \cdot \alpha_2 & \text{for } f_{cm} > 35 \, MPa \end{cases}$$
(2.97)

$$\beta(f_{cm}) = \frac{16.8}{\sqrt{f_{cm}}} \tag{2.98}$$

 $\beta(t_0)$ is equal to MC10's $\beta_{dc}(t_0)$ and can be calculated using Equation 2.78.

The development of creep in Equation 2.95 is described in the same way as in MC10, using Equation 2.79 except that in EC2, $\gamma(t_0) = 0.3$ and β_h is defined as

$$\beta_h = \begin{cases} 1.5[1 + (0.012RH)^{18}]h_0 + 250 \le 1500 & \text{for } f_{cm} \le 35 \text{ MPa} \\ 1.5[1 + (0.012RH)^{18}]h_0 + 250\alpha_3 \le 1500\alpha_3 & \text{for } f_{cm} \ge 35 \text{ MPa} \end{cases}$$
(2.99)

The coefficients α_1 , α_2 and α_3 in eqs. (2.97) and (2.99) are given by

$$\alpha_1 = \left[\frac{35}{f_{cm}}\right]^{0.7} \quad \alpha_2 = \left[\frac{35}{f_{cm}}\right]^{0.2} \quad \alpha_3 = \left[\frac{35}{f_{cm}}\right]^{0.5}$$
 (2.100)

On the other hand, shrinkage is defined in more detail in the main body of Eurocode 2, with the total concrete shrinkage strain ε_{cs} equal to the sum of the autogenous shrinkage strain, ε_{ca} , and the drying shrinkage strain, ε_{cd} .

The autogenous shrinkage strain is expressed as

$$\varepsilon_{ca}(t) = \beta_{as}(t) \cdot \varepsilon_{ca}(\infty) \tag{2.101}$$

where

$$\beta_{as}(t) = 1 - exp(-0.2t^{0.5}) \tag{2.102}$$

$$\varepsilon_{ca}(\infty) = 2.5(f_{ck} - 10) \cdot 10^{-6} \tag{2.103}$$

Importantly, in Equation 2.103 the characteristic strength $f_{ck} = f_{cm} - 8$ must be used.

The drying shrinkage strain is described as

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0} \tag{2.104}$$

where $\beta_{ds}(t,t_s)$ represents the time evolution of drying shrinkage from the beginning of drying at time t_s until time t_s , k_h is a notional size dependent coefficient and $\varepsilon_{cd,0}$ is the nominal unrestrained drying shrinkage (tabulated in the main body of Eurocode 2 or calculated using expressions in Annex B).

$$\beta_{ds}(t,t_s) = \frac{(t-t_s)}{(t-t_s) + 0.04h_0^{1.5}}$$
 (2.105)

$$k_h = \begin{cases} 1.0 & \text{for } h_0 = 100 \, mm \\ 0.85 & \text{for } h_0 = 200 \, mm \\ 0.75 & \text{for } h_0 = 300 \, mm \\ 0.70 & \text{for } h_0 \ge 500 \, mm \end{cases}$$
 (2.106)

$$\varepsilon_{cd,0} = 0.85 \left[(220 + 110\alpha_{ds1}) \cdot exp\left(-\alpha_{ds2} \frac{f_{cm}}{f_{cmo}} \right) \right] \cdot 10^{-6} \cdot \beta_{RH}$$
 (2.107)

where $f_{cmo} = 10$ MPa, coefficients α_{ds1} and α_{ds2} are cement type dependent and are given in Table 2.3.

$$\beta_{RH} = 1.55 \left[1 - \left(\frac{RH}{100} \right)^3 \right] \tag{2.108}$$

TABLE 2.3: Coefficients α_{dsi} in Equation 2.107

Strength class of cement	α_{ds1}	α_{ds2}
S	3	0.13
N	4	0.12
R	6	0.11

The ACI 209R-92 model

The ACI 209R-92 model probably has the longest history of all the shrinkage and creep models currently in use and since it is codified by the American Concrete Institute (ACI 209R-92, 1992) it is still widely used in North America. Its history dates back to 1971 when ACI Committee 209 recommended a model developed by Branson and Crhistiason (ACI 209.2R-08, 2008). The model was later slightly modified in 1982 and again in 1992. The model is relatively simple and purely empirical, hence, it does not actually model shrinkage and creep phenomena. It captures basic influencing factors on an empirical basis: concrete age (at loading, at end of curing), relative humidity, notional member size and cement type.

Both shrinkage and creep are modeled with hyperbolic curves tending to an asymptotic value. This final value is then modified by the time development function and its shape can be corrected to take into account basic influencing factors (ACI 209.2R-08, 2008).

The shrinkage strain $\varepsilon(t,t_c)$ at time t measured from the end of curing (start of drying), t_c , is calculated as

$$\varepsilon(t, t_c) = \frac{(t - t_c)^{\alpha}}{f + (t - t_c)^{\alpha}} \cdot \varepsilon_{shu}$$
 (2.109)

where f (in days) and α are parameters taking into account member shape and size. ACI 209.2R-08 (2008) recommends using $\alpha = 1$ and calculating f using the volume-surface ratio (V/S) as

$$f = 26 \cdot exp[1.42 \cdot 10^{-2} \cdot (V/S)] \tag{2.110}$$

The ultimate shrinkage strain ε_{shu} is given as

$$\varepsilon_{shu} = 780 \cdot \gamma_{sh} \cdot 10^{-6} \, mm/mm \tag{2.111}$$

with γ_{sh} being a product function of seven factors influencing shrinkage:

$$\gamma_{sh} = \gamma_{sh,tc} \cdot \gamma_{sh,RH} \cdot \gamma_{sh,vs} \cdot \gamma_{sh,s} \cdot \gamma_{sh,\psi} \cdot \gamma_{sh,c} \cdot \gamma_{sh,\alpha}$$
 (2.112)

 $\gamma_{sh,tc}$ takes into account the duration of moist curing,

$$\gamma_{sh.tc} = 1.202 - 0.2337log(t_c) \tag{2.113}$$

 $\gamma_{sh,RH}$ takes into account relative humidity h (in decimals),

$$\gamma_{sh,RH} = \begin{cases} 1.4 - 1.02h & \text{for } 0.40 \le h \le 0.80\\ 3.00 - 3.0h & \text{for } 0.80 \le h \le 1.00 \end{cases}$$
 (2.114)

 $\gamma_{sh,vs}$ takes into account the member size,

$$\gamma_{sh,vs} = 1.2 \cdot exp[-0.00472(V/S)]$$
 (2.115)

 $\gamma_{sh,s}$ takes into account the slump s of fresh concrete,

$$\gamma_{sh,s} = 0.89 + 0.00161 \cdot s \tag{2.116}$$

 $\gamma_{sh,\psi}$ takes into account the weight ratio of fine-to-coarse aggregate ψ ,

$$\gamma_{sh,\psi} = \begin{cases} 0.30 + 0.014 \cdot \psi & \text{for } \psi \le 50\% \\ 0.90 + 0.002 \cdot \psi & \text{for } \psi > 50\% \end{cases}$$
 (2.117)

 $\gamma_{sh,c}$ takes into account the cement content c in kg/m³,

$$\gamma_{shc} = 0.75 + 0.00061 \cdot c \tag{2.118}$$

and finally, $\gamma_{sh,\alpha}$ takes into account the air content α (in percent).

$$\gamma_{sh,\alpha} = 0.95 + 0.008 \cdot \alpha \ge 1.0 \tag{2.119}$$

The creep compliance function at time t after loading at time t_0 is defined as

$$J(t,t_0) = \frac{1 + \phi(t,t_0)}{E_{cm}(t_0)}$$
 (2.120)

where $E_{cm}(t_0)$ is the modulus of elasticity at time t_0 and $\phi(t,t_0)$ the creep coefficient at t_0 .

The modulus of elasticity at time t_0 can be calculated from the compressive strength at t_0 , $f_{cm}(t_0)$ (in MPa) and concrete density γ_c (in kg/m³):

$$E_{cm}(t_0) = 0.043 \cdot \gamma_c^{1.5} \sqrt{f_{cm}(t_0)}$$
 (2.121)

or simply as

$$E_{cm}(t_0) = 5000 \cdot \sqrt{f_{cm}(t_0)} \tag{2.122}$$

The time development of compressive strength is given in relation to its 28-day value, f_{cm} :

$$f_{cm}(t) = \left[\frac{t}{a+b\cdot t}\right] \cdot f_{cm} \tag{2.123}$$

where constants *a* and *b* are functions of curing type and cement type. For moist-cured concrete *a* is 4.0 and 2.3 for cement types I and III, respectively, whereas *b* is 0.85 and 0.92. Cement types I and III can roughly be approximated to European N and R cements (ACI 209.2R-08, 2008).

The creep coefficient is a product of the ultimate creep coefficient and a time-development function:

$$\phi(t,t_0) = \frac{(t-t_0)^{\Psi}}{d+(t-t_0)^{\Psi}} \cdot \phi_u$$
 (2.124)

The shape and size effects can be taken into account by adopting $\psi = 1$ and calculating d = f according to Equation 2.110.

The ultimate creep coefficient ϕ_u is a product function of six factors influencing creep:

$$\phi_u = 2.35 \cdot \gamma_c \tag{2.125}$$

$$\gamma_c = \gamma_{c,to} \cdot \gamma_{c,RH} \cdot \gamma_{c,vs} \cdot \gamma_{c,s} \cdot \gamma_{c,\psi} \cdot \gamma_{c,\alpha} \tag{2.126}$$

 $\gamma_{c,t0}$ takes into account loading ages greater than seven days for moist-cured concrete,

$$\gamma_{c,t0} = 1.25 \cdot t_0^{-0.118} \tag{2.127}$$

 $\gamma_{c,RH}$ takes into account relative humidity h (in decimals),

$$\gamma_{c,RH} = 1.27 - 0.67h \quad \text{for } h \ge 0.40$$
 (2.128)

 $\gamma_{c,vs}$ takes into account the member size,

$$\gamma_{c,vs} = \frac{2}{3} \cdot \left\{ 1 + 1.13 \cdot exp[-0.0213(V/S)] \right\}$$
 (2.129)

 $\gamma_{c,s}$ takes into account the slump s of fresh concrete,

$$\gamma_{c,s} = 0.82 + 0.00264 \cdot s \tag{2.130}$$

 $\gamma_{c,\psi}$ takes into account the weight ratio of fine-to-coarse aggregate ψ ,

$$\gamma_{c,\psi} = 0.88 + 0.0024 \cdot \psi \tag{2.131}$$

and finally, $\gamma_{c,\alpha}$ takes into account the air content α (in percent).

$$\gamma_{c,\alpha} = 0.46 + 0.09 \cdot \alpha \ge 1.0 \tag{2.132}$$

The GL2000 model

The GL2000 model was developed by Gardner and Lockman (2001) as a modification of a previous 'Atlanta 97' model from 1993 (ACI 209.2R-08, 2008). It is a simple model, intended to be mostly used by design-office engineers and hence, based on input parameters known at the design stage: compressive strength, age at loading, size and relative humidity. According to the authors, the model can be used regardless of what chemical admixtures or mineral by-products are used in the concrete, casting temperature or curing regime.

The shrinkage strain $\varepsilon_{sh}(t,t_c)$ at time t, measured from the end of curing t_c is defined as

$$\varepsilon_{sh}(t,t_c) = \varepsilon_{shu} \cdot \beta(h) \cdot \beta(t-t_c)$$
 (2.133)

where ε_{shu} is the ultimate shrinkage strain, $\beta(h)$ is a correction factor for the effect of relative humidity and $\beta(t-t_c)$ is the time development of drying.

$$\varepsilon_{shu} = 900 \cdot k \cdot \left(\frac{30}{f_{cm}}\right)^{0.5} \cdot 10^{-6} \tag{2.134}$$

with k being a cement type dependent coefficient equal to 1.0, 0.75 and 1.15 for cement types I, II and III, respectively.

$$\beta(h) = (1 - 1.18 \cdot h^4) \tag{2.135}$$

$$\beta(t - t_c) = \left[\frac{(t - t_c)}{(t - t_c) + 0.12(V/S)^2} \right]$$
 (2.136)

The creep compliance is composed of the elastic and creep strains. The elastic strain is related to the modulus of elasticity at the time of loading $t_0 - E_{cm}(t_0)$. The creep strain is related to the 28-day creep coefficient $\phi_{28}(t,t_0)$ and the 28-day modulus of elasticity – E_{cm} (hence the name '28-day creep coefficient').

$$J(t,t_0) = \frac{1}{E_{cm}(t_0)} + \frac{\phi_{28}(t,t_0)}{E_{cm}}$$
 (2.137)

 $\phi_{28}(t,t_0)$ includes three terms: the first two represent basic creep and the third one drying creep.

$$\phi_{28}(t,t_0) = \Phi(t_c) \cdot \left[2 \cdot \frac{(t-t_0)^{0.3}}{(t-t_0)^{0.3} + 14} + \left(\frac{7}{t_0}\right)^{0.5} \cdot \left(\frac{(t-t_0)}{(t-t_0) + 7}\right)^{0.5} + \right. \\ \left. + 2.5 \cdot (1 - 1.086 \cdot h^2) \cdot \left(\frac{(t-t_0)}{(t-t_0) + 0.12 \cdot (V/S)^2}\right)^2 \right]$$
(2.138)

$$\Phi(t_c) = \begin{cases}
1 & \text{if } t_0 = t_c \\
\left[1 - \left(\frac{(t_0 - t_c)}{(t_0 - t_c) + 0.12 \cdot (V/S)^2}\right)^{0.5}\right]^{0.5} & \text{if } t_0 > t_c
\end{cases}$$
(2.139)

Comparison of different models

The statistical comparison of the presented models is a very complex and somewhat controversial task. A detailed investigation into this problem falls outside the scope of this thesis. However, few important insight will be presented in brief.

First of all, there is in fact no consensus on how to actually compare the models, at what level and using what indicators. Some of the more commonly used methods for determining a model's deviation from test data include (ACI 209.2R-08, 2008):

- Comparison of individual prediction curves to individual sets of test data, requiring a case-by-case evaluation;
- Comparison of test data and calculated values using linear regression;
- Evaluation of residuals (if there is a trend in the data, this method may be biased); and
- Calculation of a coefficient of variation or standard error of regression normalized by the data centroid.

Some of the statistical descriptors used so far to compare different models have been the $\overline{\omega}_{BP}$ coefficient of variation developed by Bažant and Panula (1978); this method involves weighting data points according to which time decade they belong to.

The 'CEB statistical indicators' are the coefficient of variation V_{CEB} , mean square error F_{CEB} and mean deviation M_{CEB} , developed in 1990 by the CEB General Task Group 9 headed by Müller and Hilsdorf (ACI 209.2R-08, 2008).

The Gardner coefficient of variation, ω_G , developed by Gardner (2004) also calculates the mean observed value and root mean square of the difference between calculated and observed values in half-logarithmic scale for several time intervals. A coefficient of variation is obtained by dividing the average root mean square normalized by the average value.

Importantly, not all studies conducting such tests reach the same conclusions, further signaling the lack of consensus on the approach required for this subject.

In (ACI 209.2R-08, 2008), a comparison is made between the ACI 209R-92, GL2000, B3 (previous version of the B4) and MC90-99 (improved version of MC90) models.

Two sets of input information were used from RILEM data sets. The first set of inputs consisted only of measured 28-day compressive strength with all other concrete properties derived from it; the second set used all available measured properties for each mix. The duration after drying was divided into seven half-log decades. Then, the root mean square was calculated for all comparisons in each half-log decade and the coefficient of variation was the average root mean square divided by the average experimental value for the same half-log decade.

The analysis showed that for shrinkage strain prediction, the B3 and GL2000 models provided the best results whereas for creep compliance the GL2000, MC90-99 and B3 models all gave acceptable predictions. Except for the ACI 209R-92 model, using more directly measured properties improved the quality of predictions (ACI 209.2R-08, 2008).

Al-Manaseer and Prado (2015) carried out a comparison of the ACI 209R-92, B3, GL2000, MC90-99, MC10 and AASHTO 2012 models. The authors observed the CEB coefficient of variation, the CEB mean square error, the CEB mean deviation and a modified coefficient of variation (with different statistical weighting of data points).

Three 'plans', i.e. increasingly strict data selection criteria were used to select data from the RILEM and NU-ITI databases. As a result, the authors found that for shrinkage, ACI 209R-92 showed the best overall performance (followed by B3, MC90-99, MC10, GL2000 and AASHTO 2012); for creep ACI 209R-92 was also the best performer (followed by B3, GL2000, MC90-99, MC10 and AASHTO 2012). However, the authors do note that data selection criteria, used database and selected statistical method can influence model ranking (Al-Manaseer and Prado, 2015).

Finally, Hubler et al. (2015b) and Wendner et al. (2015b) provide statistical justification of the B4 model for shrinkage and creep, respectively, and compare it with the ACI 209R-92, B3, GL2000, MC10 and MC90-99 models using the NU-ITI laboratory and bridge databases.

The authors tried not rely strictly on scatter plots of measured vs. predicted values since this does not reflect statistical trends and the statistics become dominated by short-term measurements and old data and the scatter due composition variability masks the scatter in the shape of time evolution curves (Hubler et al., 2015b). In both studies, the authors first validated the B4 model on selected individual time curves and then performed a comparison with complete database values.

For shrinkage, the B4 and B4s models provided the best overall fit, followed by the MC90-99, MC10, B3 and GL2000 models. The ACI 209R-92 model can be refitted to represent the initial shape quite well, second only to the B4 model (Hubler et al., 2015b). Looking at the time development of residuals, the B4 and B4s models are overall conservative with the least underestimation through all half-decades while maintaining a relatively narrow scatter band. In comparison, the residuals of MC10 increase in time, whereas the ACI

209R-92 model shows the most inconsistent behavior (in the beginning, the shrinkage is underestimated, between 30 and 1000 days it is overestimated, and ultimately tends to underestimations again).

As for creep, similar conclusions were reached. The CoV of residuals for short-term laboratory creep test data was found to be the lowest for the B4 and GL200 models. The models MC90-99 and ACI 209R-92 which have a wrong functional form (horizontal asymptote) are clearly shown as inadequate by the multi-decade bridge data. The GL2000 model is an exception since its functional form corresponds to MC90-99 but is calibrated in such a way that it approaches a horizontal asymptote only long after the longest measurement times, thus mimicking a terminal slope of the creep compliance in logarithmic time (Wendner et al., 2015b). When both laboratory and bridge databases are combined, the best behaviour is shown by the B4 and B4s models, followed by the B3, MC10 and GL2000 models.

2.5.4 Models for Calculating Deflections

As mentioned in section 2.5.1, two distinct traditions—or 'families' of models—for calculating deflections will be presented here: the European and North American traditions. The general philosophy behind each of them has been presented in section 2.4.2.

The European tradition has traditionally been tied to calculating curvatures—or, directly, deflections—of reinforced concrete members in states 1 and 2 and then interpolating between them, whereas the North American tradition has been to interpolate on the level of the sectional moment of inertia rather than curvature which depends on it.

Even though in recent years there has been significant advance in the availability and practicability of nonlinear finite element method (FEM) software (DIANA, Abaqus, Ansys, etc.) that can be used to analyse deflections of reinforced concrete members (employing different 'smeared' or 'discrete' cracking models to more accurately capture the cracking behaviour of reinforced concrete), the two approaches presented herein are still most easily used by design-office engineers and can be sufficiently accurate for this purpose.

The European tradition

Among European countries, organized around the CEB (Comité Européen du Béton, later: Comité Euro-international du Béton), and after 1998, the *fib*, there is a long-lasting tradition of calculating deflections of reinforced concrete structures in a certain way. The first codification of their unified approach was given in the Model Code 1978 and its final installment is in the Model Code 2010, while preparations are ongoing for the new Model Code 2020 (in the meantime, there was the Model Code 1990). The latest installment of the official design code of most European countries is, of course, the Eurocode 2 (EN 1992-1-1, 2004) which uses a method which can be assessed as intermediate between the Model Codes 1990 and 2010.

In this section, the method outlined in Eurocode 2 will be presented in detail but the historic background and context to its origin through the previous Model Codes will also be given.

The foundation of all European models has been the realization that the load-deflection (or moment-curvature) behaviour of all reinforced concrete elements lies between two limits given by states 1 (uncracked) and 2 (fully cracked), as shown in Figure 2.5. The main task of a design method is then, to find the most appropriate way to interpolate between these two states.

Starting from an analysis of a member in pure tension (CEB, 1985), (Figure 2.10) it was shown that a mathematical formulation for the 'average' steel strain in a cracked member, ε_{sm} can be given by the following expression:

$$\varepsilon_{sm} = (1 - \zeta) \cdot \varepsilon_{s1} + \zeta \cdot \varepsilon_{s2} \tag{2.140}$$

where ε_{s1} and ε_{s2} are reinforcement strains for state 1 and 2, respectively and ζ is the distribution coefficient between states 1 and 2, originally given by the following relation:

$$\zeta = 1 - \frac{\sigma_{sr}^2}{\sigma_s^2} \tag{2.141}$$

where σ_{sr} is the reinforcement stress, calculated on the basis of a cracked section, under a load combination causing a maximum stress in concrete in tension equal to its tensile

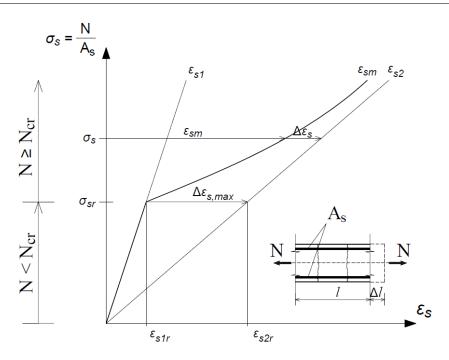


FIGURE 2.10: Reinforcement strain in a reinforced concrete member under pure tension

strength f_{ct} (suggested as f_{ctm} or $f_{ctk,0.05}$ by (CEB, 1985)) and σ_s is the reinforcement stress at a cracked section under the considered load combination.

In order to take into account bond quality of the reinforcement and the influence of load duration or repetition, two coefficients were originally introduced $-\beta_1$ and β_2 :

$$\zeta = \begin{cases} 1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{\sigma_{sr}}{\sigma_s}\right)^2 & \text{for } \sigma_s \ge \sqrt{\beta_1 \cdot \beta_2} \cdot \sigma_{sr} \\ 0 & \text{for } \sigma_s < \sqrt{\beta_1 \cdot \beta_2} \cdot \sigma_{sr} \end{cases}$$
(2.142)

where β_1 was 1 for deformed bars and 0.5 for smooth bars and β_2 was 1 for first loading and 0.5 for long-term or repetitive loading (CEB-FIP, 1978).

Moving from pure tension to pure flexure, the same approach is assumed to be valid. However, now the stresses can be replaced with moments (since both are calculated with the fully-cracked transformed section modulus $W_{2,i}$):

$$\zeta = \begin{cases} 1 - \beta_1 \cdot \beta_2 \cdot \left(\frac{M_{cr}}{M}\right)^2 & \text{for } M \ge \sqrt{\beta_1 \cdot \beta_2} \cdot M_{cr} \\ 0 & \text{for } M < \sqrt{\beta_1 \cdot \beta_2} \cdot M_{cr} \end{cases}$$
(2.143)

The authors of (CEB, 1985) were explicit that M_{cr} should be calculated as

$$M_{cr} = W_{1,i} \cdot f_{ct} \approx W_c \cdot f_{ct} \tag{2.144}$$

where $W_{1,i}$ is the section modulus of the uncracked transformed section, W_c the section modulus of the gross concrete cross-section and f_{ct} should be taken either as $f_{ctk,0.05}$ (5% fractile) if the calculation is a matter of avoiding damage or as f_{ctm} if it is a matter of calculating deflections.

Several important points stand out in the discussion so far. First of all, since the first Model Code was introduced in 1978, the β_1 coefficient has become obsolete with smooth bars not being allowed by current Eurocode 2 or Model Code 2010 standards. However, a 'controversy' around the choice of the β_2 coefficient (later, simply β), and its physical meaning, remains.

It can actually be seen that the cracked zone of a member is given not by M_{cr} but by $\sqrt{\beta} \cdot M_{cr}$. The idea behind the coefficient β (henceforth this symbol will be used when referring to the original β_2 coefficient) is to roughly reduce the cracking moment, or more precisely tensile strength, in order to take into account several phenomena such as the effects of restrained shrinkage, cracking caused by previous loading and creep, see Figure 2.5. In this sense, $\beta = 1$ is only appropriate for first loading of a completely uncracked member. For long-term effects, $\beta = 0.5$ was shown to be adequate (Gilbert and Ranzi, 2011); this value reduces the importance and effect of properly selecting the tensile strength by basically reducing f_{ctm} by approximately 30%.

However, whether $\beta=1$ is appropriate for short-term and first loading is questionable. In (CEB-FIP, 1991) the value $\beta=0.8$ was given and even $\beta=0.7$ is sometimes recommended for early loading ages (Gilbert and Ranzi, 2011). Nonetheless, Eurocode 2 and Model Code 2010 have reverted back to $\beta=1$ for calculating initial deflections.

Even so, the original expressions Equation 2.142 and Equation 2.143 delimited the cracked zone simply by comparing σ_s to σ_{sr} , i.e. M to M_{cr} . No doubt this was the source of much confusion that developed later around the procedure.

The question surrounding the proper choice of M_{cr} is made even more questionable after it is realized that the tensile strength for calculating M_{cr} has already been reduced by using f_{ctm} instead of the 'natural' choice of flexural strength $f_{ct,fl}$ ((ACI 318-11, 2011) indeed still uses f_r , i.e. the modulus of rupture). This only further raises concern whether the distribution coefficient ζ is in fact properly formulated—a concern voiced even in (CEB, 1985).

Moving past this discussion, the procedure given in Eurocode 2, section 7.4, will be presented in detail (EN 1992-1-1, 2004).

The general format for predicting a cracked reinforced concrete member's behaviour is given as

$$\alpha = \zeta \cdot \alpha_2 + (1 - \zeta) \cdot \alpha_1 \tag{2.145}$$

where α is any deformation parameter (curvature, rotation or deflection). The distribution coefficient is given by

$$\zeta = \begin{cases} 1 - \beta \cdot \left(\frac{\sigma_{sr}}{\sigma_{s}}\right)^{2} & \text{for } \sigma_{s} \geq \sqrt{\beta} \cdot \sigma_{sr} \\ 0 & \text{for } \sigma_{s} < \sqrt{\beta} \cdot \sigma_{sr} \end{cases}$$
 (2.146)

for the general case and by

$$\zeta = \begin{cases} 1 - \beta \cdot \left(\frac{M_{cr}}{M}\right)^2 & \text{for } M \ge \sqrt{\beta} \cdot M_{cr} \\ 0 & \text{for } M < \sqrt{\beta} \cdot M_{cr} \end{cases}$$
 (2.147)

for the case of pure bending. As said previously, β is 1 for a single short-term load and 0.5 for long-term or repeated load. It must be pointed out that the inequalities for which ζ is not equal to zero are *not* stated explicitly in Eurocode 2. This has the potential of causing confusion especially when β is smaller than one, since the reduction of the cracking moment by $\sqrt{\beta}$ can easily be overlooked.

The most general approach is based on calculating curvatures under the assumption that curvatures from different effects can be superimposed and that, in that case, the total curvature (1/r)(t) at time t is equal to the sum of the curvature caused by load, $(1/r)_l$ and curvature caused by shrinkage $(1/r)_{cs}$.

$$(1/r)(t) = (1/r)_l + (1/r)_{cs}$$
(2.148)

Each of the terms in Equation 2.148 is then calculated for both states 1 and 2 and interpolated using Equation 5.30. The most rigorous approach is to calculate curvatures for states 1 and 2 in numerous sections along the member, interpolate them and perform a double numerical integration. The process is more complex and time-consuming, however, for sufficient accuracy, 10 section are usually adequate (FIB Bulletin 52, 2010).

The assumed evolution of curvature in different states, as a function of the bending moment M, and for different times $t = t_0$ and t = t, is given in Figure 2.11.

Curvatures caused by loading, if the assumption is made that the material is linear elastic, can be calculated according to Equation 2.3. The question then only remains, what values for E and I should be taken for states 1 and 2 and for times $t = t_0$ and t = t?

For initial deflections, E_{cm} should be taken along with $I_{1,i}$ (moment of inertia of the transformed uncracked section).

For long-term deflection, $I_{2,i}$ (moment of inertia of the transformed fully-cracked section) should be taken and for the modulus of elasticity, the *effective modulus* should be taken as

$$E_{c,eff}(t,t_0) = \frac{E_c}{1 + \phi(t,t_0)}$$
 (2.149)

It should be noted that in Equation 2.149, the *tangent* modulus ($E_c = 1.05 \cdot E_{cm}$) should be used, since in Eurocode 2 the creep coefficient is related to it and not to E_{cm} (even though this is in contrast to clause 7.4.3(5) of Eurocode 2). The effective modulus method—actually the inverse of the compliance function—is one the oldest approximate methods for taking creep into account in long-term deflection calculations (Jirásek and Bažant, 2001).

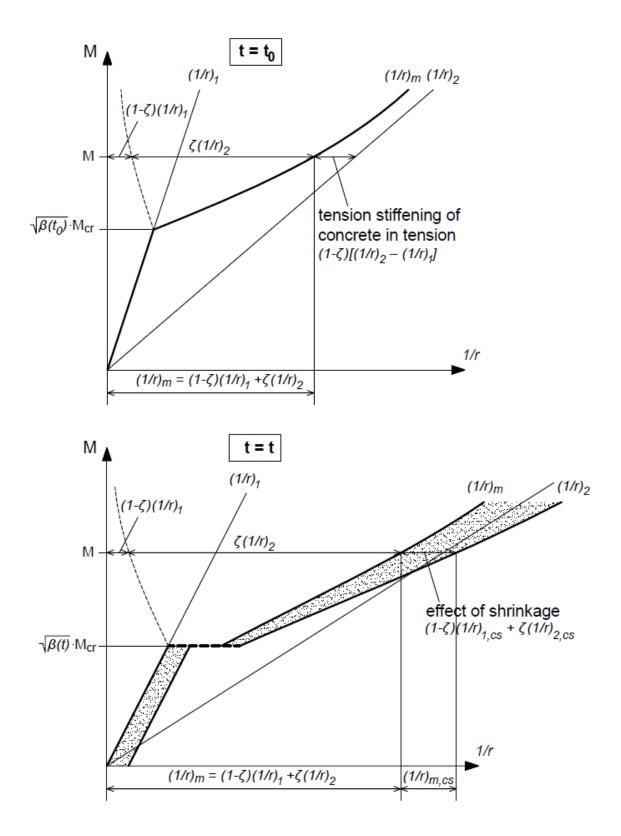


FIGURE 2.11: Moment–curvature diagrams for pure bending

The effective modulus method is only valid for single-step (constant) loads. For more complex loading histories, the *age-adjusted effective modulus method* can be used in which

$$E_{c,eff}(t,t_0) = \frac{E_c}{1 + \chi(t,t_0)\phi(t,t_0)}$$
(2.150)

in which $\chi(t,t_0)$ represents the so-called aging coefficient which is actually

$$\chi(t,t_0) = \frac{E_c}{E_c - R(t,t_0)} - \frac{1}{\phi(t,t_0)}$$
 (2.151)

where $R(t,t_0)$ is the *relaxation function* (describing stress development for a constant strain). The advantage of this approach is that the aging coefficient varies very little (from 0.5 to 1), with 0.8 being the most common value (Jirásek and Bažant, 2001).

Alternatively to the age-adjusted modulus method, the *effective creep coefficient*, ϕ_{eff} can be used. For several loads, e.g. q_1 , q_2 and q_3 , applied at ages t_1 , t_2 and t_3 , respectively, ϕ_{eff} can be defined as

$$\phi_{eff}(t) = \frac{q_1 \cdot \phi(t, t_1) + q_2 \cdot \phi(t, t_2) + q_3 \cdot \phi(t, t_3)}{q_1 + q_2 + q_3}$$
(2.152)

and then used in Equation 2.149.

Finally, curvatures caused by load, on the level of an individual cross-section, can be obtained by

$$(1/r)_{1,l} = \begin{cases} \frac{M}{E_{cm} \cdot I_{1,i}} & \text{for } t = t_0\\ \frac{M}{E_{c,eff} \cdot I_{1,i}} & \text{for } t = t \end{cases}$$
 (2.153)

for state 1, and using

$$(1/r)_{2,l} = \begin{cases} \frac{M}{E_{cm} \cdot I_{2,i}} & \text{for } t = t_0\\ \frac{M}{E_{c,eff} \cdot I_{2,i}} & \text{for } t = t \end{cases}$$
 (2.154)

for state 2. In the end, they are interpolated using Equation 5.30.

For shrinkage effects, Eurocode 2 provides the following expression for calculating curvatures caused by shrinkage:

$$(1/r)_{i,cs} = \varepsilon_{cs} \cdot \alpha_e \frac{S_{i,i}}{I_{i,i}}$$
 (2.155)

where i stands for states 1 or 2, ε_{cs} is the free shrinkage strain, α_e is the modular ratio $(E_s/E_{c,eff})$, $S_{i,i}$ is the first moment of area of the reinforcement about the transformed section's centroid (cracked or uncracked) and $I_{i,i}$ is, of course, the transformed section's moment of inertia (also cracked or uncracked).

Just like curvatures caused by load, curvatures caused by shrinkage are calculated for states 1 and 2 as $(1/r)_{1,cs}$ and $(1/r)_{2,cs}$ and interpolated using Equation 5.30.

Some useful examples of numerical integration of curvatures using Excel-based spreadsheets are given in (FIB Bulletin 52, 2010; Beeby and Narayanan, 2005).

The question of the accuracy of calculating deflections is a very important one and it has influenced different methods significantly. Some of the most important sources of uncertainty, according to Beeby and Narayanan (2005), are

- actual load level compared with design load level,
- variability of concrete tensile strength,
- variability of concrete modulus of elasticity,
- variability of creep and shrinkage,
- behaviour of cracked tension zone,
- temperature effects and

• age of loading and load history.

Although in laboratory conditions, where most, if not all, effects are known, an accuracy of around $\pm 20\%$ is achievable; in practice, it is likely far worse (Beeby and Narayanan, 2005). Simply the scatter of tensile strength for a given compressive strength, which is around $\pm 30\%$ (FIB Bulletin 52, 2010), can have profound influences on deflection predictions, especially for load levels close to the cracking load and for small reinforcement ratios. For example, a simple analysis of a simply supported beam with a 0.4% reinforcement ratio and a low load level, showed that using $f_{ctk,0.05}$ for calculating $f_{ctk,0.95}$, the predictions 121% above the ones obtained when using f_{ctm} and when using $f_{ctk,0.95}$, the predictions were only 43% of those obtained using f_{ctm} .

The differences are lower for larger reinforcement ratios and load levels but still, such uncertainties can make a complex procedure like numerical integration pointless if the results can oscillate so much. This is why, ever since Model Code 1978, there was a search for simplified procedures which would be simple enough for manual calculation but still provide similar accuracy as numerical integration.

One of the earliest and most famous ones, was the *bilinear* method, proposed by Jaccoud and Favre, on the basis of their experimental programme presented in (Jaccoud and Favre, 1982). It was then elaborated in (CEB, 1985). The idea behind the bilinear method was to calculate the deflection from load only twice—once for the uncracked condition and once for the cracked condition—using the following expressions

$$a_{i,l} = K \cdot \frac{M_{max} \cdot l^2}{E \cdot I_{i,i}} \tag{2.156}$$

where a_i are the deflections in states 1 and 2 (a_1 and a_2 , respectively), K is a coefficient dependent on the shape of the bending moment diagram (e.g. for a simply supported beam and uniformly distributed load K = 0.104), M_{max} is the critical bending moment, usually the largest moment in a beam's span (or the support moment of a console), E is the appropriate modulus of elasticity for states 1 and 2 (E_{cm} and $E_{c,eff}$, respectively) and $I_{i,i}$ the transformed section's moment of inertia for states 1 and 2.

For long-term deflections, the shrinkage deflection for states 1 and 2 should be calculated as

$$a_{i,cs} = \delta_{cs} \cdot \varepsilon_{cs} \frac{S_i \cdot l^2}{I_{i,i} \cdot 8}$$
 (2.157)

where δ_{cs} is a coefficient dependent on the member's support conditions (e.g. 1 for a simply supported beam).

The question is then how to interpolate only once, using which value for ζ ? In other words, which value should M take in Equation 2.147? The solution proposed by Jaccoud nad Favre was to take the geometric mean of moments M_{cr} and M_{max} , i.e. $\sqrt{M_{cr} \cdot M_{max}}$. Substituting this into Equation 2.147 leads to the following expression:

$$\zeta = \begin{cases} 1 - \beta \cdot \frac{M_{cr}}{M_{max}} & \text{for } M_{max} \ge \sqrt{\beta} \cdot M_{cr} \\ 0 & \text{for } M_{max} < \sqrt{\beta} \cdot M_{cr} \end{cases}$$
(2.158)

This solution yielded a bilinear moment–deflection diagram (excluding shrinkage), i.e. the moment–deflection relationship remained linear after cracking.

The method was in use for a long time, however, its solutions were not on the safe side. This was famously shown by Espion and Halleux (1990). In this paper, the authors compared the simplified approaches of CEB and ACI on their compiled database of 217 results (Espion, 1988). While the comparison is explained in more detail after presenting the ACI method, for now it is sufficient to say that the mean value of predictions using the bilinear method was 0.968 for initial deflections and 0.905 for long-term deflections (with a standard deviation of 0.313 and 0.215, respectively). The results were even worse when the authors restricted the database to the 21 results from the 1950s used for calibrating the ACI procedure (mean values were close to 0.8 for both initial and long-term deflections). This clearly demonstrated that the bilinear method was not on the safe side (sometimes by a large margin) and that the geometric averaging of moments was too low (this can even be seen from original diagrams in (Jaccoud and Favre, 1982), e.g. Figure 28).

In order to remain on the safe side, but also maintain a simplified procedure, the approach taken in Eurocode 2 and later in Model Code 2010 was to simply substitute M_{max} for M in Equation 2.147 so that the distribution coefficient becomes

$$\zeta = \begin{cases} 1 - \beta \cdot \left(\frac{M_{cr}}{M_{max}}\right)^2 & \text{for } M_{max} \ge \sqrt{\beta} \cdot M_{cr} \\ 0 & \text{for } M_{max} < \sqrt{\beta} \cdot M_{cr} \end{cases}$$
(2.159)

This is recommended by numerous authors Gilbert and Ranzi (2011); Beeby and Narayanan (2005); FIB Bulletin 52 (2010). The results can differ from numerical integration, usually not more than 10%, but they are always on the safe side. While Eurocode 2 is not explicit about this (clause 7.4.3.(7) simply states that 'in most cases it will be acceptable to compute the deflection twice, assuming the whole member to be in the uncracked and fully cracked condition in turn, and then interpolate'), Model Code 2010 is explicit in saying that the distribution coefficient ζ should be calculated at the 'most unfavourable section'.

The shortcomings of the current approach seem to have been recognized by the *fib* since, in (FIB, 2013), there is a proposal of an alternative to interpolating curvatures (or deflections) and it is actually similar to the ACI approach – finding an equivalent stiffness:

$$(EI)_{eff} = \frac{(EI)_1 \cdot (EI)_2}{\zeta \cdot (EI)_1 + (1 - \zeta) \cdot (EI)_2}$$
(2.160)

A very useful instruction on the application of the presented methods can be found in more detail in (CEB, 1985; FIB Bulletin 52, 2010; Gilbert and Ranzi, 2011).

The North American tradition

The traditional approach to calculating deflections in North America (USA and Canada, but also Australia), is the effective moment of inertia method, based on work done by Branson in the 1970s. In the USA, it is codified in (ACI 318-11, 2011) and (ACI 435R-95, 2003).

Unlike in the European tradition, here, the interpolation between states 1 and 2 is performed at the level of the moment of inertia using Equation 2.11.

The rigorous procedure for calculating deflections involves determining the curvature in numerous sections along the member length and performing a double numerical integration. A simplified procedure, suitable for manual calculation, is to assume uniform cross-section properties along the entire member's length (according to the section with the maximum bending moment). The code ACI 435R-95 (2003) prescribes as the exponent in Equation 2.11 m=3 with no distinction between the rigorous and simplified approaches. Only in Annex B of (ACI 435R-95, 2003) is it mentioned that Branson originally calibrated the exponent as m=4 in Equation 2.11 for individual cross-sections when calculating curvatures.

Again, the distinction between the uncracked and cracked regions of a reinforced concrete member given by the M_{cr} value is highly important. (ACI 318-11, 2011) explicitly states that the cracking moment should be calculated using the gross concrete section modulus W_c and the modulus of rupture (flexural tensile strength) f_r . However, to adequately take into account shrinkage effects, Scanlon and Bischoff (2008) found that a reduction of the cracking moment is necessary, and proposed a reduced value of the modulus of rupture $(2/3 \cdot f_r)$. Nonetheless, this approach is known to overestimate stiffness after cracking for members with relatively small reinforcement ratios (Gilbert and Ranzi, 2011).

The simplest form of this procedure is

$$a_{LT} = a_L + \lambda_t \cdot a_{sus} \tag{2.161}$$

where a_{LT} is the long-term deflection, a_{sus} the deflection under sustained loads (both determined using the effective moment of inertia) and λ_t is a time-dependent multiplier for time t. As can be seen, the approach is based on the simple multiplication of the sustained load deflection calculated as

$$a_{sus} = K \cdot \frac{M_{sus}l^2}{E_c(t_0)I_e} \tag{2.162}$$

using the effective moment of inertia I_e (2.11) but also the modulus of elasticity at the time of loading t_0 and not the effective modulus as in the European approach. Further, the coefficient λ_t is given by

$$\lambda_t = \frac{\xi}{1 + 50 \cdot \rho'} \tag{2.163}$$

In Equation 2.163, ρ' is the reinforcement ratio of compressive reinforcement and ξ is a time-dependent factor given graphically in (ACI 435R-95, 2003) and equal to

$$\xi = \begin{cases} 1.0 & \text{for 3 months} \\ 1.2 & \text{for 6 months} \\ 1.4 & \text{for 12 months} \\ 2.0 & \text{for 5 years or more} \end{cases}$$
 (2.164)

Another, modified method is offered in (ACI 435R-95, 2003) for calculating creep (a_{cr}) and shrinkage (a_{sh}) deflections separately.

$$a_{cr} = \lambda_c \cdot a_{sus} \tag{2.165}$$

$$a_{sh} = k_{sh} \cdot \left(A_{sh} \cdot \frac{|\varepsilon_{cs}|(t)}{h} \right) \cdot l^2 \tag{2.166}$$

$$\lambda_c = \frac{0.85 \cdot C_t}{1 + 50 \cdot \rho'} \tag{2.167}$$

where C_t is the creep coefficient at time t ($\phi(t,t_0)$),

$$A_{sh} = \begin{cases} 0.7 \cdot (\rho - \rho')^{1/3} \cdot (\frac{\rho - \rho'}{\rho})^{1/2} & \text{for } \rho - \rho' \le 3\% \\ 0.7 \cdot \rho^{1/3} & \text{for } \rho' = 0 \\ 1.0 & \text{for } \rho - \rho' > 3\% \end{cases}$$
(2.168)

and k_{sh} is a statical system dependent factor (= 0.125 for simply supported beams).

Comparison of the methods

It is fairly obvious that the effective moment of inertia method as proposed by ACI is simpler than the European methods and accounts for less factors. The ACI method was calibrated on a small number of regionally specific results (Espion and Halleux, 1990) and when compared with European methods on a larger, unbiased database its performance is significantly poorer (Espion and Halleux, 1990). On the database compiled by Espion (1988), the authors compared the ACI simplified approach with the CEB bilinear method. When predicting initial deflections, the ACI simplified procedure and the CEB bilinear method demonstrate mean values of 0.988 and 0.968, respectively, with standard deviations of 0.310 and 0.313, respectively. However, when predicting the long-term deflection values (last reported values of each study in the database), the CEB bilinear method has a mean value of 0.905 and standard deviation of 0.215 (90% confidence interval is 0.552–1.258), whereas the ACI simplified procedure has a mean value of 1.114 and standard deviation of 0.375 (90% confidence interval is 0.499-1.729) (Espion and Halleux, 1990). Also importantly, and as expected, the prediction ability of both models is the most imprecise when the load level is around the cracking load level (Espion and Halleux, 1990). As stated before, this study was very indicative at the time and important in practically abandoning the CEB bilinear methods in future installments of the Model Code and subsequently, Eurocode 2; nonetheless, it did not produce a similar change in the ACI approach.

2.6 Recycled Aggregate Concrete

2.6.1 Introduction

Section 1.1 presented some basic background to the sustainability problems of concrete production worldwide. One of them was the problem of landfilling large amounts of CDW. Studies on how to utilize this waste were started several decades ago (Nixon, 1978) and are carried out today in increasing numbers.

One of the main strategies of treating CDW is to extract from it parts which can be recycled into aggregates for concrete production. This can be done with several materials

such as plain or reinforced concrete and masonry. The focus of this section, and this thesis in general, will be on the aggregates obtained by crushing plain or reinforced concrete waste. The final product of this process are aggregates called recycled concrete aggregates or RCA, and any new concrete produced with them is called recycled aggregate concrete or RAC.

The problems that recycling of CDW tries to solve are the depletion of natural resources (river or crushed stone aggregates) and the use of large land areas for landfilling. Following from this, the countries with the largest interest in recycling CDW and which, in fact, use it most intensively, are those with scarce sources of natural materials or with limited land available for landfilling. Such are Japan, the Netherlands and Denmark, and indeed, they recycle the most: 98%, 90% and 81%, respectively (Ignjatović, 2009). Most other countries, in Europe and around the world are lagging far behind.

Because of its growing use, many standards and organizations have finally started to produce guidelines and classifications of products obtained from CDW recycling. In Europe, EN 12620 (2010) categorizes crushed concrete aggregates as R_c according to the percentage of pure RCA in the product (which can also include mortar and masonry units). The standard recognizes three classes of R_c : R_{c90} , R_{c70} and R_{c50} if the aggregates contain more than 90%, 70% and 50% of crushed concrete, respectively. Other aggregates classified by EN 12620 (2010) include unbound or hydraulically bound aggregates R_u , recycled masonry products R_b , recycled bitumen materials R_a and others, as well as combinations of them.

Recycling of concrete waste is itself a process not unlike the one used to produce crushed stone aggregate (the main difference being the presence of potential impurities and contaminants and reinforcement). It can be carried out in mobile or stationary recycling facilities. Schematics of such facilities are given in figs. 2.12 and 2.13, respectively. As can be seen, both usually involve a one- or two-stage crushing and sieving process using jaw crushers, horizontal and vertical impact crushers, cone crushers (the choice of which depends on the size of the input waste and determines the size and quality of the output), magnetic separators and sieves.

The choice between using a mobile or stationary facility depends on many factors including the availability of the process equipment, the desired quality of the final product, the

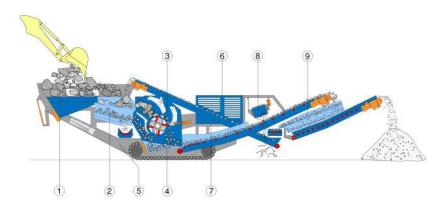


FIGURE 2.12: Example of a mobile crusher, (Ignjatović, 2009): (1) loading tray, (2) primary sieves, (3) crusher, (4) conveyor belt, (5) machine chassis, (6) engine, (7) command board, (8) magnetic separator and (9) secondary sieves)

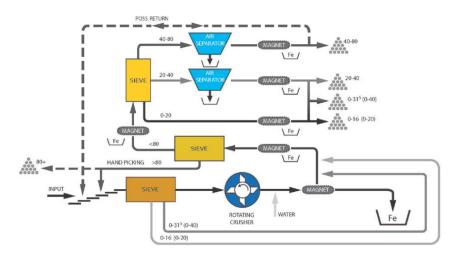


FIGURE 2.13: Schematic of a process in a stationary recycling facility, provided by Recycling Kombinatie REKO BV, the Netherlands

space and time available on the demolition site, the transport distance between the demolition site and the nearest recycling plant (Silva, 2015). Much has been written on the economic feasibility of recycling plants (Duran et al., 2006; Nunes et al., 2007; Coelho and De Brito, 2013a,b) and the conclusion is that they can be sustainable and profitable investments; however, sometimes certain stimulating policies are necessary such as increasing taxes on landfilling or the consumption of natural aggregates and subsidizing the recycling industry.

Since concrete is composed of natural aggregates bound by hardened cement mortar, after

crushing concrete waste, the final product, RCA, is composed of natural aggregate particles with some 'residual cement paste' bound to them, i.e. the product is a two-phase material, Figure 2.14.

FIGURE 2.14: Recycled concrete aggregate particles

This 'residual cement paste' is one of the defining characteristics of RCA and it influences most of its properties. It, in turn, depends on the quality of the original concrete that was recycled, something that is most often unknown when producing RCA. Since cement paste is more porous, less dense and has greater water absorption than natural aggregates, so does RCA have lower density, higher porosity and greater water absorption compared with natural (both river and crushed stone) aggregates. Most of the studies on RCA have actually focused on two properties: density and water absorption, being the easiest to measure and having the greatest importance when producing RAC. Just as an example, the 'final' water absorption of natural aggregates is rarely above 1% by mass, whereas for RCA it can be 3.5–10% in the case of coarse RCA (particle size > 4 mm) (Xiao et al., 2005; Rahal, 2007) and even 5.5–13% in the case of fine RCA (particle size < 4 mm) (Evangelista and de Brito, 2007). This large water absorption of fine RCA has lead to it mostly being avoided (or forbidden) when producing RAC (leaving another problem of unused fines left after recycling) (RILEM TC 121-DRG, 1994).

This large water absorption poses many challenges to designing RAC mixtures for a target strength and especially workability. In this regards, many approaches can be taken. Usually, the aggregates are used in an oven-dry condition and additional water is added to compensate for RCA absorption (usually not for the 'final' absorption, but, e.g. for the 1

h or 2 h absorption). However, many underlying processes that occur during mixing and hardening remain unclear. RCA display different absorption kinetics compared with natural aggregates, with most absorption occurring very rapidly (Belin et al., 2014). The role of the absorbed water on the ITZ between the new cement paste and RCA (in this case two ITZs exist: new cement paste—natural aggregate and new cement paste—residual cement paste) is also unclear; some researchers point to it being weakened and porous (Poon et al., 2004) whereas others point to a potential internal curing effect of the absorbed water in RCA (Seara-Paz et al., 2016). Even the usual method of determining water absorption of aggregates using EN 1097-6 (2000) can lead to possibly erroneous results in the case of RCA as heating RCA at 110°C can lead to the evaporation of not only free water but chemically bound water as well (Tam et al., 2008). Their weaker properties often end up leading to more cement used in mixture design to achieve the same compressive strength as the companion NAC (Marinković et al., 2010).

Beside all of this, water absorption and density remain the most useful characteristics for the classification of RCA and recently a simple and straight-forward approach was proposed by Silva et al. (2014). The authors classified all recycled products (RCA, recycled masonry aggregates and mixed recycled aggregates) according to water absorption, ovendry density and the Los Angeles coefficient value (EN 1097-2, 2010) into four categories (A, B, C and D) each with three subcategories (I, II and III). The authors carried out an extensive literature review and analyzed the probabilities of a recycled aggregate falling into each category given according to its properties (e.g. according to literature there is a 77.7% chance that coarse RCA will fall into category B with an oven-dry (OD) density 2100–2300 kg/m³, water absorption 5–8.5% and Los Angeles coefficient < 45).

Another important aspect to keep in mind regarding RCA is their potential contamination with different contaminants to which the original concrete is exposed to (chlorides, sulphates, etc.). Although significant contamination is not common in concrete structures, this highlights the importance of properly screening, processing and categorizing waste coming into the recycling facility (Silva et al., 2014). There is though, one process that is otherwise considered deleterious to concrete which can in fact be beneficial in the case of RCA and that is carbonation. The residual cement paste on RCA particles can be carbonated and through this process the properties of RCA can be improved (decreased water absorption) and also a certain amount of CO₂ can be absorbed (Thiery et al., 2013; Tam

et al., 2016). However, questions remain on how much carbonation is possible under atmospheric conditions and what is the true RCA CO₂ sequestration potential (Habert et al., 2017).

In his doctoral dissertation Silva (2015) comprehensively studied existing literature to draw conclusions about different influences RCA has on main mechanical, time-dependent and durability-related properties of concrete. A similar analysis with similar conclusions was carried out by Ignjatović (2013), also in his doctoral dissertation. These two studies will be mostly relied upon to present general conclusions about mechanical properties of RAC compared with companion NAC. This was done because both studies contain comprehensive literature reviews and analysis of collected data. In this way, their conclusions are very robust and reliable, especially because in both studies they are practically the same. For later sections, when analyses are carried out, the use of specific studies will be necessary, but for this section, where only general conclusions are needed, these reviews are the best source of data.

For compressive strength, Silva (2015) studied the influence of the RCA replacement level, RCA moisture content, quality of the original concrete from which RCA was produced, *w/c* ratio, chemical admixtures and additions. A comprehensive statistical analysis revealed that for example, a 100% coarse RCA content can lead to approximately 20% higher or 40% lower compressive strengths compared with companion NAC (produced with a same *w/c* ratio), practically the same conclusions are reached by Ignjatović (2013). But generally, for a given *w/c* ratio, there will be an increase in strength loss with a decrease in RCA quality and for an increasing replacement ratio. The influence of chemical admixtures was not detected and the use of additions (such as fly ash) has a similar effect on RAC and NAC. Importantly, RAC was sometimes observed to display a larger strength gain after 28 days compared with NAC (possible internal curing effects of RCA or delayed hydration of the unhydrated part of the residual cement paste in RCA). Importantly for design and codes, no significant increase in the scatter of compressive strength results was observed for RAC.

For tensile strength, Silva (2015) studied the influences of the RCA replacement level, mixing procedure, chemical admixtures and additions, and found that tensile strength decreases with increasing RCA content; an increase of up to 10% and decrease of up to 20% was found by Ignjatović (2013). Again, the strength development of RAC seemed

to be more pronounced than for NAC. Concerning the use of Eurocode 2, the author noted that the relationship between tensile and compressive strength was unaffected by RCA or mineral additions, (Silva, 2015). However, for both NAC and RAC, the author found that the time development of tensile strength should be corrected since there was an increasing skewness in predictions with increasing age (tensile strength tended to get increasingly underestimated), (Silva, 2015). Hence, a new relationship was proposed:

$$f_{ctm}(t) = \left(e^{\left\{a\left[1 - \left(\frac{28}{t}\right)^b\right]\right\}}\right)^c \cdot f_{ctm}$$
 (2.169)

where a is a coefficient that depends on curing (10 for water curing and 9 for air curing), b = 0.0025 and c = 3.

One of the properties in which RAC differs from NAC the most—and one which is of great importance for calculating deflections—is the modulus of elasticity. The modulus of elasticity, as was said before, depends on the stiffness of both the cement paste and aggregates and the ITZ between them; these are all aspects in which RAC significantly differs from NAC. Although the modulus of elasticity depends on these many factors, modern design codes mostly relate it only to compressive strength, i.e. in (EN 1992-1-1, 2004) using the following expression:

$$E_{cm} = 22 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \tag{2.170}$$

This is mostly the case because in the design stage it is still unknown which aggregates will be used in concrete production. The influence of aggregates is recognized in Eurocode 2 by offering a correction coefficient to multiply Equation 2.170 if the type of aggregates are known: 0.7, 0.9, 1.0 and 1.2 for sandstone, limestone, quartzite and basalt aggregates, respectively.

With serviceability limit states increasingly governing design, it is probable to expect the prediction of the modulus of elasticity to become more complex in the future.

As for RAC, a lot of research has been done so far and it has been successfully compiled and analysed in (Silva, 2015; Ignjatović, 2013). Again, these two reviews are useful as they analyse a large number of data, unlike other research dealing with the modulus of

elasticity of RAC which provide predicting equations but only based on own or limited data and usually not as a function of RCA percentage (Li, 2009; Corinaldesi, 2010).

Unsurprisingly, both reviews found that the modulus of elasticity decreases with increasing RCA percentage and decreasing RCA quality. Compensation of RCA water absorption was found to be paramount in achieving a good ITZ and consequently, a modulus of elasticity comparable with NAC. The use of chemical admixtures and mineral additions was found to have the same effect on NAC and RAC.

Silva (2015) and Ignjatović (2013) thoroughly analysed the relationship between the modulus of elasticity and compressive strength of RAC and reached very similar conclusions. Ignjatović (2013) found that for a 100% coarse RCA content, the modulus of elasticity can be expected to fall within 110% and 60% of the modulus of companion NAC (produced with a same *w/c* ratio); for RAC with a 50% coarse RCA content, this range was between 110% and 80%. Similarly, for 588 concrete mixes with both fine and coarse RCA, Silva (2015) found that 95% of results were above the prediction made by Eurocode 2 for sandstone aggregates (correction coefficient of 0.7).

This is in line with other findings, e.g. by the Standing Committee of Concrete of Spain which in 2004 suggested a correction coefficient of 0.8 for RAC with 100% coarse RCA, or the relationship proposed by Seara-Paz (2015)

$$E_{cm} = 22 \cdot \left(\frac{f_{cm}}{10}\right)^{0.3} \cdot (1 - 0.0024 \cdot \%RCA)$$
 (2.171)

which leads to correction coefficients of 0.76 and 0.88 for RAC with 100% and 50% of coarse RCA, respectively. Furthermore, the Chinese RAC standard DG/TJ07-008 proposes the following equation for the modulus of elasticity of RAC with 100% coarse RCA:

$$E_c = \frac{10^5}{2.8 + (40.1/f_{cu})} \tag{2.172}$$

which produces a 20% reduction compared with the predictions for NAC in Chinese code GB50010-2002 (Li, 2009):

$$E_c = \frac{10^5}{2.2 + (34.7/f_{cu})} \tag{2.173}$$

Another comprehensive review was conducted by (Lye et al., 2016a) in which the authors also compiled a comprehensive database of NAC and RAC moduli of elasticity. The cited conclusions of other researchers and organizations point to reductions of the modulus of elasticity between 5% and 40% for RAC with 100% coarse RCA. The authors also prepared a useful diagram which determines the relative modulus of elasticity of RAC compared with NAC depending on the coarse RCA content and compressive strength of concrete (Lye et al., 2016a). For example, for a 30 MPa compressive strength and a 100% coarse RCA content, the reduction in modulus is 20% and decreases with increasing strength (but not significantly).

Taking all of these finding into account, if existing correction coefficients in Eurocode 2 are to be used, a recommendation could be made to use the correction coefficient of 0.9 (limestone aggregates) for RAC with 50% of coarse RCA and 0.7 (for sandstone aggregates) for RAC with 100% of coarse RCA.

As for other mechanical properties such as bond strength and bond behaviour, most research has found it to be practically identical to companion NAC (produced with a same *w/c* ratio) (Ignjatović, 2013).

Durability-related properties such as carbonation resistance, chloride ion penetration and freeze-thaw resistance have also been studied extensively, but are not the topic of this thesis. In general, RAC produced with the same compressive strength as NAC will have a lower carbonation resistance and greater chloride ion penetration Silva (2015).

Even though only around 25% of concrete produced globally is reinforced concrete (Scrivener et al., 2016), the use of RCA is of paramount importance. If structural concrete is recycled and then RCA used in lower-grade applications such as road base and sub-base (as it is in most cases) then what we actually have is not recycling but 'down-cycling' because natural resources are still needed for new structural-grade concrete. However, so far only a negligible portion of available RCA has been used in structural applications. The questions regarding mixture design are definitely among the existing problems but also the

lack of standards and regulations and, more importantly, design codes that treat structural RAC members.

Fortunately, there exist truly numerous tests on RAC structural members. These tests range from reinforced concrete beams tested in shear and flexure—a database of 217 results from 16 studies was compiled by Tošić et al. (2016)—to RAC frames (Xiao et al., 2006), pushover (Pacheco et al., 2015) and shake-table (Xiao et al., 2012) tests of RAC structures. The conclusions of all these studies are very encouraging: if RAC is produced with the same strength as NAC, their structural behaviour (mainly ultimate strength) will be practically identical regardless of coarse RCA percentage in the mix. Silva et al. (2016) and Tošić et al. (2016) have studied the possibility of designing reinforced concrete beams in flexure and shear using Eurocode 2 provisions. The results are encouraging and point to a clear applicability of existing design codes for determining the ultimate flexural and shear strength of this type of RAC structural members.

2.6.2 Shrinkage and Creep of RAC

On a material level, shrinkage and creep of RAC have been relatively extensively studied, though not systematically and with widely varying approaches. The aim of researchers has been to identify ways in which RCA affects shrinkage and creep of RAC. One way this is achieved is through the stiffness of RCA since aggregate stiffness provides the major source of restraint to shrinkage and creep. Another important factor however, is the residual cement paste on RCA particles, part of which can be unhydrated. It can have a complex influence on these phenomena through its porousness, volume fraction, quality, etc.

Although shrinkage and creep, like other RAC properties, have not yet been codified, there exists a sufficient number of experimental results for a meaningful statistical analysis.

Shrinkage of RAC

Silva (2015) collected results on RAC shrinkage from 77 studies that included both fine and coarse RCA use. Generally, as with other mechanical properties, a RCA content lower than 30% had insignificant influence on shrinkage; but, when 100% coarse RCA was used,

shrinkage of RAC was 10-110% greater relative to NAC (produced with a same w/c ratio) (Silva, 2015).

However, an important problem exists with all of these studies, and that is their duration. The problem of results being skewed toward shorter times is pronounced for NAC, as discussed in section 2.5.2, but even more so for RAC. In his analysis, Silva (2015) had to rely on measurements after only 90 days, which is insufficient to reach the 'leveling-off' of the shrinkage curve.

As expected, the use of dry RCA and absorption compensation was shown to produce better results than using pre-saturated aggregates (Leite, 2001; Ferreira et al., 2011).

An important study was carried out by Ajdukiewicz and Kliszczewicz (2002) in which the influence of parent concrete (used for producing RCA) was studied. Although a general increase in shrinkage of 10–30% compared with NAC was observed, no significant influence of parent concrete quality was detected. It should be noted however, that the parent concrete was a laboratory produced concrete, crushed at a relatively early age.

Also, not many studies have tested shrinkage and creep of RAC by separating them into their components – autogenous and drying shrinkage, and basic and drying creep. One notable exception are two studies (Gómez-Soberón, 2002; Goméz-Soberón, 2002) in which measurements were carried out for 270 days on sealed and unsealed specimens. Importantly, both components of shrinkage and creep were greater in RAC than companion NAC (produced with a same *w/c* ratio).

Silva (2015) also carried out a comparison of RAC shrinkage results with predictions by several models: EC2, ACI 209R-92, B3 (the previous version of the B4 model), MC99 (an intermediate between MC90 and MC10) and GL2000. As expected, all models displayed a degree of correlation to the results (R^2 between 0.55 and 0.66) with ACI 209R-92 providing the best fit of experimental data (R^2 = 0.66). Because the results initially couldn't provide information on whether their scatter was larger compared with NAC, the data was broken up into several ranges of RCA content (0–25%, 25–50%, 50–75% and 75–100%). Again, ACI 209R-92 was the most accurate.

Importantly though, all existing models were *more precise* in estimating RAC shrinkage than NAC shrinkage. An interesting explanation was offered by Silva (2015): since the

existing models were calibrated on databases containing concretes as far back as 1953, 'it is possible that they were modeled after concrete materials exhibiting a worse shrinkage behaviour than that of present concrete mixtures'. Since RAC generally has greater creep than (modern) NAC, then the models are better at predicting RAC than NAC shrinkage. However, Silva (2015) also noted an 'increasing divergence and spread of data with time as comparison is made between the actual shrinkage data with that of a model's prediction'. This is the side of the story related to short measurement times. Existing models have been calibrated on databases with results from much longer measurement times (and weighted them accordingly) and hence, tend to be equally precise in predicting both shortand long-term shrinkage. The fact of the matter is that these models may predict short-term shrinkage of RAC better, but not long-term, which can be actually more important.

Another, recently published, comprehensive review of RAC shrinkage was carried out by Lye et al. (2016c). In it, the authors carried out a similar study to the one they did for the modulus of elasticity (Lye et al., 2016a). They first identified current conclusions and recommendations about RAC shrinkage by researchers and organizations and found that generally they estimate a 10–50% increase in shrinkage for RAC with 100% coarse RCA relative to companion NAC. After this, they carried out their own analysis and for results from 199 publications from 29 countries since 1978, found the average increase in shrinkage of RAC with 100% coarse RCA to be 33% relative to companion NAC; for a 20% coarse RCA content, the increase was 10% signifying RCA's importance even at low replacement levels (Lye et al., 2016c).

The authors then produced a useful diagram for an easy assessment of relative shrinkage of RAC with respect to NAC as a function of RCA content and compressive strength. The diagram is primarily intended for correcting Eurocode 2 shrinkage predictions. So, for example, for a 30 MPa compressive strength and a 100% coarse RCA content, the increase is almost 50% and it decreases with decreasing RCA content and increasing compressive strength (it is much more sensitive to RCA content) (Lye et al., 2016c).

Creep of RAC

The situation with existing results on RAC creep is relatively similar to shrinkage. Silva (2015) identified 11 studies dealing with this phenomenon and a wide variety of test conditions, loading ages and duration, specimen sizes, etc. Again, as with shrinkage, most

of the time only unsealed specimens were tested. A further unknown and unexplained influence with RAC creep is the residual cement mortar – how much creep the parent concrete underwent during its service life can have an effect on the creep properties of RAC (Fathifazl and Razaqpur, 2013).

Because of the expected increase in creep with increasing RCA content, Silva (2015) studied the expected increase in RAC creep relative to companion NAC (produced with a same *w/c* ratio). According to his analysis, for RAC with 100% coarse RCA, the 95% upper confidence limit for increase in creep compliance (which is the most objective measure) relative to NAC was 81%; when looking at the creep coefficient and creep strain, this increase was 82% and 91%, respectively. From this, Silva (2015) proposed creep coefficient correction factors of 1.2, 1.4 and 1.8 for RAC with 20%, 50% and 100% of coarse RCA, respectively. These corrections are significantly greater than those proposed by RILEM (RILEM TC 121-DRG, 1994) which are 1.0 and 1.25 for RAC with up to 20% and 100% coarse RCA, respectively.

Just like the analysis of RAC shrinkage, Silva (2015) carried out comparison of RAC creep results with predictions made by EC2, ACI 209R-92, B3, MC99 and GL2000 models. As with shrinkage, ACI 209R-92 showed the best accuracy of predictions, even after separating the data according to RCA content. The same explanation was offered: since the existing models were calibrated on data going back as far as 1936, 'it is possible that they were modeled after concrete materials exhibiting a worse creep behaviour than that of present concrete mixes'. Since RAC generally has greater shrinkage than (modern) NAC, then the models are better at predicting RAC than NAC creep (Silva, 2015). But, as for shrinkage, the explanation possibly has another side: existing models have been calibrated on databases with results from much longer measurement times (and weighted them accordingly) and hence, tend to be equally precise in predicting both short- and long-term shrinkage. Since existing RAC creep measurements are usually much shorter, it is possible that the models are indeed better at predicting short-term RAC creep, but not long-term creep.

Just like for RAC modulus of elasticity and shrinkage, Lye et al. (2016b) carried out a similar review of RAC creep. The authors first found current conclusions and recommendations about RAC creep by researchers and organizations and found that generally they estimate a 15–60% increase in creep for RAC with 100% coarse RCA relative to

companion NAC whereas for low replacement percentages, e.g. 20%, no corrections are recommended. Then, they performed their own analysis and for results from 27 countries since 1984, found the average increase in creep of RAC with 100% coarse RCA to be 32% relative to companion NAC; for a 20% coarse RCA content, the increase was 20%, contrary to prior findings (Lye et al., 2016b).

The authors also made a diagram for an easy assessment of the necessary creep correction factor for RAC with respect to NAC as a function of RCA content and compressive strength. The diagram is primarily intended for correcting Eurocode 2 creep coefficient predictions. For example, for a 30 MPa compressive strength and a 100% coarse RCA content, the creep correction factor is approximately 1.4 and it decreases with decreasing RCA content and increasing compressive strength (Lye et al., 2016b).

As for modeling RAC creep, only a few authors had attempted to tackle this problem. Fan et al. (2014) presented a possible model for predicting the increase in RAC creep relative to companion NAC. The authors used the model presented by Neville (1995) and based on Equation 2.1, substituting shrinkage for creep. However, the authors' model is very intricate and has a downside of being based on companion NAC properties; hence, it is not a true 'design' model for RAC and won't be presented here in detail.

A more successful attempt, at least in the author's opinion, is the correction of the ACI 209R-92 model proposed by Fathifazl and Razaqpur (2013). In their proposal, the authors begin with eqs. (2.125) and (2.126) and introduce a new correction coefficient multiplying the ultimate creep coefficient: the RCA coefficient K_{RCA} .

The derivation of this coefficient starts from the fact that RCA has several influences on RAC creep: it increases the fines and air content of RAC and its residual cement paste has creep properties. Hence, 'the creep of RAC is a function of its residual mortar content and the extent of recoverable creep in that mortar' (Fathifazl and Razaqpur, 2013). Hence, the authors hypothesize that the coefficient K_{RCA} is comprised of two other coefficients representing the influences of these two parameters.

$$K_{RCA} = K_{RM} \cdot K_{RC} \tag{2.174}$$

In Equation 2.174, K_{RM} is the residual mortar coefficient and K_{RC} is the recoverable creep coefficient. The first coefficient is defined as

$$K_{RM} = \frac{\left[1 - V_{RCA} \cdot (-RMC + 1 + R)\right]^{\frac{2.4}{1.2 + 0.6} \frac{E_{RAC}}{E_{NAC}}}}{\left[1 - V_{RCA}\right]^{1.33}}$$
(2.175)

where V_{RCA} is the volume of coarse RCA in RAC, R is the volumetric ratio of fresh coarse natural aggregate to coarse RCA in RAC, E_{RAC} and E_{NAC} are the elastic moduli of RAC and NAC, respectively, and RMC is the residual mortar content of RCA defined as percent weight of residual mortar to the total weight of RCA.

The recoverable creep coefficient is given

$$K_{RC} = 1 - \beta \cdot K_t \cdot \left(\frac{V_{RCA} \cdot RMC}{1 - V_{RCA} \cdot (1 + R)}\right)^{1.33}$$

$$(2.176)$$

where β is a coefficient between 0 and 1, corresponding to 100% and zero recoverable creep, and

$$K_t = \frac{t^{0.6}}{10 + t^{0.6}} \tag{2.177}$$

where t is the time in days after the application of sustained load.

The proposed approach was used by the authors to test the long-term behaviour of own cylindrical specimens of RAC, but produced with a different mixture proportioning method – the Equivalent Mortar Volume (EMV) method, based on targeting the same total mortar volume in NAC (only new mortar) and RAC (new and residual mortar) (Fathifazl et al., 2009). The results, although on a small number of results, showed that the K_{RCA} coefficient could be used to improve creep behaviour predictions of existing models.

2.6.3 Deflections of reinforced RAC beams

The deflections of full-scale reinforced RAC beams *per se* have not been the subject of many investigations. The study of their long-term behaviour under sustained loads has been identified by the author as the topic in only six experimental programmes (the results of which have been presented in more than six publications): (Maruyama et al., 2005; Sato et al., 2007; Ajdukiewicz and Kliszczewicz, 2011; Choi and Yun, 2013; Knaack and Kurama, 2015; Seara-Paz et al., 2016; Seara-Paz, 2015; Łapko and Grygo, 2010). The studies cover a period of approximately 10 years and, within them, 44 beams in total were tested. As a number of tests, 44 is not insignificant. However, as will be seen after briefly presenting these experiments, because of the sheer number of possible parameters that can be varied and the way in which tests can be designed and carried out, of these 44 tests, very few can be compared across different experimental programmes.

In order to complement these results, certain conclusions can be drawn from studies in which short-term flexural behaviour of reinforced RAC beams was studied. It was previously mentioned that a database of these results was compiled by Tošić et al. (2016). In some of the studies in the database, comments were made on cracking behaviour and cracking patterns, as well as short-term deflections under what the authors labeled as 'service load' (usually equal to approximately 40% of the beam's ultimate load).

The general conclusion of these studies on the short-term behaviour of RAC beams(Sato et al., 2007; Ajdukiewicz and Kliszczewicz, 2007; Ignjatović, 2013; Ignjatović et al., 2013), is that the crack spacing and crack widths of reinforced RAC beams are greater than in companion NAC beams, up to 30% and 70% in (Sato et al., 2007). Deflections under a short-term 'service load' level were found to be greater in RAC beams than in companion NAC beams in a wide range from 20% to 100% Ajdukiewicz and Kliszczewicz (2007). However, it is important to distinguish what is meant by 'companion NAC' in each experimental programme. Namely, in (Sato et al., 2007; Ajdukiewicz and Kliszczewicz, 2007) companion NAC is NAC produced with the same *w/c* ratio as RAC whereas in (Ignjatović, 2013; Ignjatović et al., 2013) companion NAC is NAC which has the same strength and workability as RAC.

Code predicted short-term 'service load' deflections (EC2 and ACI 209R-92) were within 10% of the measured deflections for both RAC and NAC beams (when the 'service load'

bending moment is greater than the cracking moment) (Ignjatović, 2013). All of these results are indicative of the influence of RCA quality on the ITZ zone (for cracking) and their stiffness on the modulus of elasticity of RAC (for deflections).

'Time-dependent behaviour of reinforced recycled concrete beams' (Maruyama et al., 2005)

This is the first experimental programme dealing with long-term behaviour of reinforced RAC beams under sustained loads. It was part of a broader study on the flexural behaviour of reinforced recycled beams, published by Sato et al. (2007).

In their experiment, the authors compared two NAC beams ('VC') with two RAC beam made from both coarse and fine RCA ('CFRC'). The RCA itself was produced by crushing old laboratory concrete of known quality (made with *w/c* ratios of 0.45 and 0.63). The produced NAC and RAC (with a 0.6 *w/c* ratio) had significantly different 28-day compressive strengths: 36.4 and 21.4 MPa, respectively. The moduli of elasticity were also quite different but also generally low: 24.4 and 18.1 GPa for NAC and RAC, respectively.

A peculiar characteristic of the experiment was the second varied parameter, beside the concrete type – the 'curing' type. Namely, two beams were stored and loaded under 'wet' conditions, i.e. they were sealed with saturated paper at room temperature (it is unclear how often the paper was rewet), and the other two under 'dry' conditions, i.e. they were exposed to room temperature after one week of wet curing.

The beams had a 150/200 mm cross-section and a 2800 mm span. They were loaded in four-point bending with a flexural span of 800 mm. The reinforcement ratio was 1.05% consisting of two $\oslash 13$ mm bars with a yield stress of approximately 340 MPa. The experimental setup is shown in Figure 2.15.

The NAC and RAC beams were loaded after at the 'temperature adjusted concrete age' of 21 and 25 days, respectively. The external force was applied using a tendon with screwing nuts. The load was equal to a force necessary for inducing a 100 MPa stress in reinforcement (as calculated for a cracked section) and it was monitored using a load cell and maintained for 380 days.

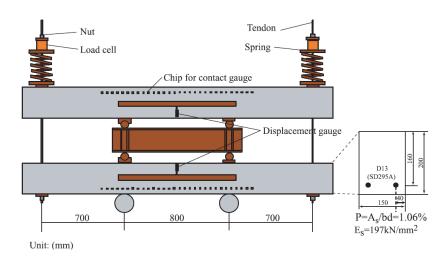


FIGURE 2.15: Setup for sustained loading test, (Sato et al., 2007)

Deflections and crack widths were measured. Deflection at midspan was measured using a displacement transducer with a 1/1000 mm precision. Chips for contact gauges, at intervals of 40 mm, were attached on the sides of beams at the same depth as the reinforcement in order to measure the crack width.

Rather than deflections, the authors plotted curvature determined from midspan deflection. For beams under 'wet' curing, there was practically no increase in curvature after loading whereas the beams under 'dry' conditions experienced an increase in curvature with the RAC beam's curvature being 1.8 times greater than the NAC beam's. Larger crack widths and smaller crack spacing was reported for RAC beams.

Overall, this experiment has an interesting concept of testing drying conditions. However, the execution of curing and the experiment overall, doesn't allow full interpretation or replication of the results. Also, basing the imposed load on reinforcement rather than concrete stress for concretes of different strengths, doesn't allow an easy comparison of results since the stress-to-strength-at-loading ratio $(\sigma_c/f_{cm}(t_0))$ will differ.

'Long term deformations of recycled aggregate concrete (RAC) beams made of recycled concrete' (Łapko and Grygo, 2010)

The results of this study were published in a conference proceeding and hence, do not offer much detail.

As part of a wider experimental campaign, Łapko and Grygo (2010) tested two reinforced concrete beams (one RAC and one NAC, of similar compressive strengths) as simply supported beams in four point bending under a constant load for 15 weeks.

The beams had a 120/200 mm cross-section and a 3200 mm span. The longitudinal tensile reinforcement consisted of $3\oslash 12$ mm bars, the longitudinal compressive reinforcement of $2\oslash 10$ mm bars and stirrups were $\oslash 6$ mm bars. The constant value of the load was applied in the form of two concentrate forces located at the third-points of the span and kept for 15 weeks Figure 2.16.

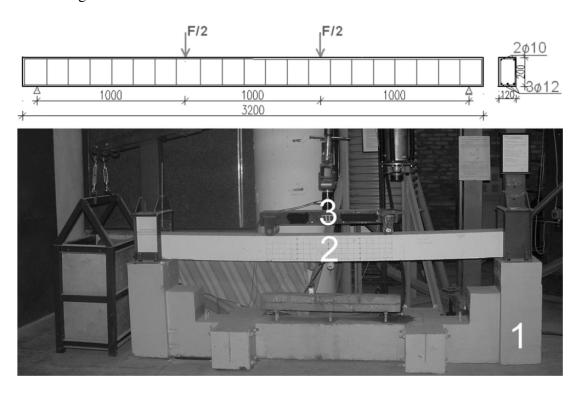


FIGURE 2.16: The view of the test stand showing the method of loading beams in natural scale: (1 – test stand, 2 – beam R-LT made of recycled aggregates, 3 – actuator loading the beam), (Łapko and Grygo, 2010)

Beside a graph plotting the results, only one comment is given that 'the differences between deflections of the two beams after 15 weeks of testing were about 20%' (Łapko and Grygo, 2010).

'Long-term behaviour of reinforced-concrete beams and columns made of recycled aggregate concrete' (Ajdukiewicz and Kliszczewicz, 2011)

The reinforced RAC beams tested under sustained loads by Ajdukiewicz and Kliszczewicz (2011) were a part of a wider programme (Ajdukiewicz and Kliszczewicz, 2002). The most important characteristic of it was the study of RCA quality influence on RAC properties. The authors first produced concrete from quartzite, granite and basalt natural aggregates; then, they crushed these concretes to produce coarse and fine RCA. Finally, nine concrete mixtures (and eventually beams) were designed, divided into three groups: (1) NAC with quartzite aggregates and RAC with only coarse, and fine and coarse RCA from original quartzite NAC (QNN, QRN and QRR, respectively); (2) NAC with granite aggregates and RAC with only coarse, and fine and coarse RCA from original granite NAC (GNN, GRN and GRR, respectively); and (3) NAC with basalt aggregates and RAC with only coarse, and fine and coarse RCA from original basalt NAC (BNN, BRN and BRR, respectively).

The QNN, QRN and QRR concretes had a compressive strength of around 43 MPa, the GNN, GRN and GRR concretes around 53 MPa and the BNN, BRN and BNN concretes around 100 MPa (within the three groups the strengths were very similar).

In the experimental phase, nine reinforced concrete beams were produced with a reinforcement layout shown in Figure 2.17. The sustained load was applied in third points of the beams with an intensity equal to 1/3 of each beams calculated flexural capacity. The beams were loaded with concrete blocks and the load was controlled using dynamometers. The load was sustained for 400 days when the beams were unloaded and monitored up to 480 days.

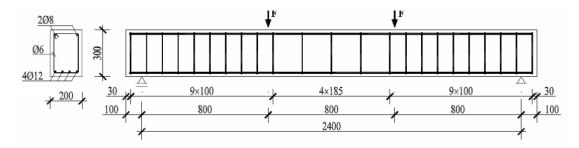


FIGURE 2.17: Dimensions, reinforcement and loading scheme of the beams in long-term tests, (Ajdukiewicz and Kliszczewicz, 2011)

The publication in which these results were published was a conference proceeding and hence, not much more information on the execution of the programme was provided.

Additionally, there are no numerical values of the measured deflections, only diagrams shown in Figure 2.18.

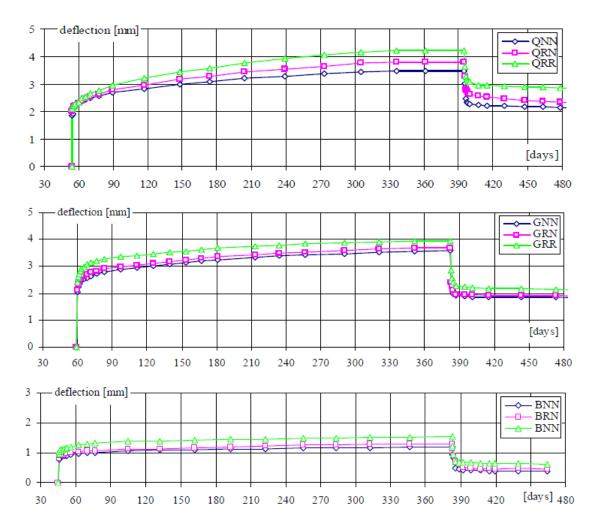


FIGURE 2.18: Results of long-term tests of beams with different contribution of recycled aggregate, (Ajdukiewicz and Kliszczewicz, 2011)

What little can be inferred from the diagrams is that for all three groups of concretes, deflections increase in the order of NAC, RAC with only coarse RCA and RAC with both coarse and fine RCA. Also importantly, the shapes of time curves are identical for all concretes, even though they are plotted in linear time scale.

'Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate' (Choi and Yun, 2013)

In this study from 2013, the authors used both fine and coarse RCA from demolished concrete structures in Daejeon, South Korea. Based on the water absorption results, the RCA was of great quality with coarse RCA having water absorption of 1.86% and fine RCA of 3.64%.

In total, three beams were tested: one NAC beam (C30-0.5 ω), one RAC beam with coarse RCA (RL30-0.5 ω) and one RAC beam with fine RCA (RH30-0.5 ω). All concretes were produced for a target compressive strength $f_{cm} = 30$ MPa. C30-0.5 ω and RL30-0.5 ω beams were prepared with w/c = 0.45 and the RH30-0.5 ω beam with w/c = 0.5. However, the achieved compressive strengths were 31.61 MPa for C30-0.5 ω , 39.66 MPa for RL30-0.5 ω and 36.10 MPa for RH30-0.5 ω . The modulus of elasticity is reported as 26.25, 28.48 and 27.53 GPa for C30-0.5 ω , RL30-0.5 ω and RH30-0.5 ω , respectively; unfortunately, no information about concrete tensile strength is given. Also, no information was given on the state in which RCA was used however, from the mix designe it can be seen that actually the water content was constant in all three mixes and the cement content varied.

The tested beams had a 170/200 mm cross-section and a 2000 mm span. They were reinforced with a 0.5% reinforcement ratio comprising $2\oslash 10$ mm bars in the tension zone. Compressive reinforcement consisted of $2\oslash 6$ mm bars and $\oslash 6$ mm stirrups were used, spaced at 100 mm.

The beams were loaded to 50% of their ultimate load capacity for approximately one year (the loading age is unclear), Figure 2.19. The loading process lasted 2 h and after it was completed initial deflections and strains due to the superimposed load were recorded at the mid-span of each beam and monitored using linear variable differential transducers (LVDTs) and an electrical strain gauge installed at the mid-span to measure the tensile strain in reinforcement and compressive strain in concrete. The deflection and strains were monitored every day by a data logger and automatic data acquisition system. The crack length was measured and recorded simultaneously.

Important to note is that there were very large temperature variations during testing as the temperature even went below zero degrees Celsius (for almost 100 days) and up to 30°C. After approximately one year, the beams were unloaded and tested until failure in a universal testing machine.

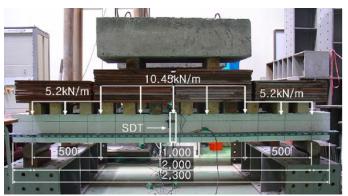


FIGURE 2.19: Schematic test set-up for sustained loading, (Choi and Yun, 2013)

As for the results, fewer cracks were observed in the C30-0.5 ω beam but instantly after loading only one crack was visible in C30-0.5 ω and two in RL30-0.5 ω and RH30-0.5 ω beams. Also, very small deflections were reached after 380 days: maximum for RH30-0.5 ω was 2.29 mm from an instantaneous deflection of 1.18 mm; 2.10 mm for C30-0.5 ω from 1.01 mm; 1.80 mm for RL30-0.5 ω from 0.91 mm).

As for compressive strains in concrete (20 mm from beam top) and tensile strains in reinforcement, strange trends are observed with both strains simply linearly increasing with time in a linear time plot.

One of the major drawbacks of this experimental programme is definitely the uncontrolled temperature change and a low level of cracking observed in the beams. The 'strange' reinforcement strain results (their linear increase with time) and very poor agreement with ACI 209R-92 predictions (completely wrong shape of time curve) draw serious doubt upon the use value of these results for further analysis.

'Sustained service load behavior of concrete beams with recycled concrete aggregates' (Knaack and Kurama, 2015)

The experimental campaign by Knaack and Kurama (2015) is the most abundant one in results. In total, 18 reinforced beams were tested under sustained loads – 6 NAC and 12 RAC beams.

Only coarse RCA was used to replace 0, 50 and 100% of natural aggregate. RCA was sourced from a demolished concrete foundation of a late 1920s manufacturing plant in

South Bend, IN, USA. The water absorption of RCA was 6.06% and the residual mortar content 30.4%.

The three concretes (basically NAC, RAC50 and RAC100) were produced with a w/c ratio equal to 0.44, for a target compressive strength $f_{cm} = 40$ MPa, slump of 125 ± 25 mm and air content 5.0 $\pm1.5\%$. Importantly, during mixing, over-saturated RCA was used and the excess water measured and taken into account. An air-entraining agent and high-range water reducing admixture were used as well.

The compressive strength of all the concretes varied relatively widely with f_{cm} for NAC between 33 and 50 MPa, for RAC50 between 38 and 50 MPa and for RAC100 between 36 and 49 MPa.

The 18 beams that were produced had a 150/230 mm cross-section and a 3700 mm span. There were two reinforcement layouts: the UT series had only tensile reinforcement and the UC and CC series also had compressive reinforcement and stirrups. The tensile reinforcement was the same for all series and consisted of $2\oslash 16$ mm Grade 420 bars, while the compressive and transverse reinforcement in series UC and CC consisted of $2\oslash 10$ mm Grade 420 bars and $\oslash 10$ mm stirrups spaced at 95 mm, respectively. Six beams were cast in each series.

The cause for a distinction between series was the fact that series UT and UC were loaded with an imposed load that was designed not to induce immediate cracking, whereas the CC series was loaded with an imposed load such that there was immediate cracking of the beams. The beams were moist-cured under plastic sheeting for two days, and then removed from their forms to be stored inside the laboratory until testing.

Each beam was subjected to four-point bending using concrete blocks to simulate superimposed service loads for a period of at least 119 days, Figure 2.20. The weight of the concrete blocks was determined so that it corresponded to 75% of the cracking load for the UT and UC series and to 65% of the predicted linear creep limit load (ruled by $0.45f_{cm}$) for the CC series. To apply the load, the blocks were first placed on four screw jacks, which were then lowered slowly and uniformly until the block touched down on the beam with little impact.

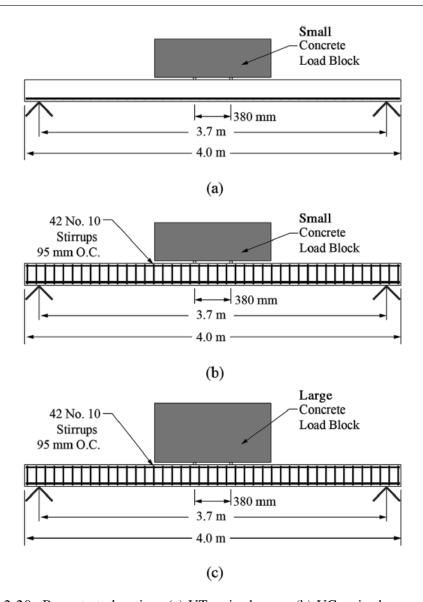


FIGURE 2.20: Beam test elevation: (a) UT series beams; (b) UC series beams; and (c) CC series beams, (Knaack and Kurama, 2015)

The testing was organized in three cycles with six beams being tested in each cycle: two NAC, RAC50 and RAC100 beams, one tested after 7 and the other after 28 days. These loading ages were selected since they are 'generally considered as standard for concrete testing' (Knaack and Kurama, 2015). The first two rounds of six beams were loaded for 119 days (approximately 4 months), and the last round of six beams was loaded for 170 and 226 days (approximately 5.5 and 7.5 months beginning at ages of $t_0 = 28$ days and 7 days, respectively).

The authors state that since the beams were stored indoors, only minor changes in temperature occurred and because all the beams from one set were tested simultaneously, they were under the same conditions and thus, comparisons are possible.

The beam midspan deflection was measured and recorded using a string potentiometer and a data logger. Strain readings were taken with a mechanical strain gauge with a gauge length of 152 mm on brass inserts which were placed along two vertical lines over the depth of the beam and spaced ± 76 mm from the midspan. Each line consisted of eight brass inserts, with the top and bottom inserts placed 25 mm from the top and bottom of the beam, respectively, and 25 mm on center between adjacent inserts.

As for the results of this experimental programme, it was designed and executed in such a way that many conclusions can be drawn. The main drawback however, is the fact that the loading of two series of beams (UT and UC) was chosen so that it didn't induce immediate cracking in the beams but cracks did occur over time. This makes for a very difficult situation when predicting deflections using any model and isn't very representative of loading conditions of many reinforced concrete members. Another drawback is the relatively short period during which measurements were taken.

Nonetheless, what is observed is that an increase in the RCA content leads to increases in both the instantaneous and long-term deflections. This increase is greater for the 'uncracked' series (69% from NAC to RAC100) than for 'fully cracked' series (21%) because of the greater role of concrete in the transformed section.

The effects of compression reinforcement and loading age seem to be identical in NAC and RAC beams. The shape of the deflection time curves is identical and strain distribution is linear in all beams. Finally, a significant lowering of the neutral axis was observed over time. This lowering was more pronounced for higher RCA contents and it was smaller for beams loaded after 28 days.

'Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage' (Seara-Paz et al., 2016)

This investigation belongs to the third phase of a long research project, whose main objective was to carry out a full study of structural recycled concrete (Seara-Paz, 2015). For

the production of RAC, coarse RCA was obtained from the demolished concrete structures, with water absorption equal to 5.4%. Two series of concretes were produced with w/c ratios of 0.50 and 0.65, named H50 and H65, respectively. Each series comprised four types of concretes made with different replacement percentages of virgin coarse aggregate with RCA (20%, 50% and 100%); and NAC (0% replacement). Hence, eight mixtures were made: H50-0, H50-20, H50-50, H50-100, H65-0, H65-20, H65-50 and H65-100. It should be noted that RCA was saturated for 10 min prior to mixing to compensate for an estimated 80% of its water absorption. The achieved compressive strengths ranged from 60 to 43 MPa for H50 concretes (H50-0 to H50-100) and from 47 to 32 MPa for H65 concrete (H65-0 to H65-100).

In this experimental campaign, eight simply supported reinforced beams were tested. The beams had a 200/300 mm cross-section and were 3600 mm in length. The beams were loaded in four-point bending (the clear span was 3400 mm and the flexural span 850 mm) at the age of 42 days and the load was sustained for 1000 days. The beams were reinforced with $2 \oslash 16$ mm bars in the tension zone (reinforcement ratio 0.8%), $2 \oslash 8$ mm bars in the compression zone and $\oslash 8$ mm stirrups spaced at 180 mm.

The beams were cured under wet burlap for 48 h and afterward stored in laboratory conditions. Temperature and relative humidity were monitored for the entirety of the test; mean temperature was 15°C and mean relative humidity 75% (relatively high, with maximum values of up to 90%.

The load was applied using a clever lever mechanism that allowed for a constant load, Figure 2.21. The load intensity was determined according to the concrete compressive strength and modulus of elasticity with an aim of obtaining a maximum compressive stress of $0.4f_{cm}(t)$.

Simultaneously with beams, cylindrical specimens were tested for shrinkage and creep. The creep strains observed on the beams were lower than on cylinders because of the restraining effect of reinforcement; therefore 'it can be considered that beam strains are mainly attributed to creep effect, while shrinkage can be neglected' (Seara-Paz et al., 2016). While concrete prisms made with 20% and 50% of RCA showed an increase of 9–26%, those made of RAC with 100% replacement developed a specific creep (creep strain per unit of stress, $\varepsilon_{cr}/\sigma_c$) that is 51–84% higher than that of NAC. Higher creep

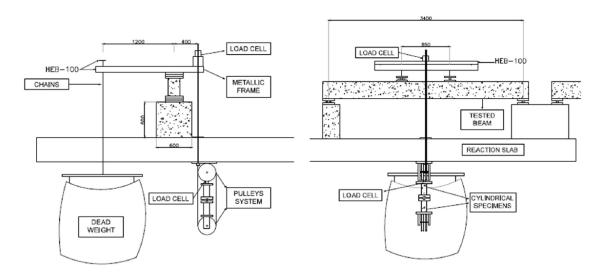


FIGURE 2.21: Test equipment under sustained load, (Seara-Paz et al., 2016)

is observed in RAC at early ages compared with NAC. As for deflections, *normalized* deflections (deflection at time t divided by the instantaneous deflection) increase with increasing RCA content. For NAC this increase after 1000 days is around 60–70% of the initial deflection while for RAC100 it is 120–150%. However, it should be kept in mind that because NAC and RAC were produced with the same w/c ratio, their moduli of elasticity were different – the modulus of elasticity of RAC100 was approximately 30% smaller than that of NAC.

2.7 High-volume Fly Ash Concrete

2.7.1 Introduction

According to World Bank data for 2013, 41.3% of electricity produced worldwide came from coal burning sources World Bank (2016); unfortunately, in Serbia this figure was 73.1%. After coal combustion in thermal power plants, a fine micron-sized powder remains, called fly ash, Figure 2.22; this residue is collected from the combustion gases before it is released into the atmosphere. Following from this, huge amounts of fly ash are generated worldwide. In Serbia for instance, there are six coal-burning power plants producing 6 million tons of fly ash every year with 200 million tons already landfilled. Global

production of fly ash is estimated at approximately 900 megatons per year (Scrivener et al., 2016) and currently only one third is being used, mostly because of its very variable quality (since it is a waste material).

As can be seen from Figure 2.22, most of the fly ash particles are solid or hollow spheres. Their size can vary from less than one μm up to more than 100 μm , with a typical size of around 20 μm (Rashad, 2015); the specific gravity of fly ash can vary between 1900 and 2800 kg/m³.

Fly ash mostly consists of silicon, aluminium, iron and calcium oxides with magnesium, sulphur, sodium, potassium and carbon being minor constituents (Rashad, 2015). Fly ash is typically classified as so-called class C or class F according to (ASTM-C618-12a, 2012). The classification is based on the sum of silicon, aluminium and iron oxide percentages with a minimum 70% for class F and 50% for class C. Class F fly ash is also called low-calcium with CaO contents under 10%. In Europe, the standard to which fly ash must conform—when used in concrete—is (EN 450-1, 2012).

FIGURE 2.22: Fly ash sample (left) and scanning electron microscopy (SEM) image (right)

Dating back to the 1930s, fly ash had been used as a partial replacement of clinker in Portland cement, or as an addition in concrete to improve its durability, while also limiting the amount of early heat generation (Dragaš et al., 2016). A current trend is to attempt to replace high percentages of cement in concrete with supplementary cementitious materials, of which fly ash is the most abundant one globally. As explained earlier, concrete in which more than 30% of the total cementitious material is fly ash is called high-volume fly ash

concrete or HVFAC. Research on HVFAC has generally taken one of three approaches starting from a reference NAC (Dragaš et al., 2016): (i) partial cement replacement, with the same water/cementitious material (*w/cm*) ratio in HVFAC as in the companion NAC, (ii) partial cement replacement, with a lower *w/cm* ratio in HVFAC than in NAC and (iii) partial aggregate replacement.

The high contents of fly ash in these concretes influence both the chemical reaction of cement hydration and its kinetics. As a pozzolan, fly ash influences cement hydration through the so-called pozzolanic reaction which occurs when fly ash is mixed with water, together with cement. In it, the glass phase silica (SiO₂) and alumina (Al₂O₃) progressively react with Ca(OH)₂ formed by cement hydration (mullite and quartz are ineffective), forming hydrates of calcium silicate (C-S-H):

$$Ca(OH)_{2} + [SiO_{2} + Al_{2}O_{3}] \longrightarrow \begin{cases} 3CaO \cdot 2SiO_{2} \cdot 3H_{2}O \\ 3CaO \cdot Al_{2}O_{3} \cdot 6H_{2}O \\ 3CaO \cdot Al_{2}O_{3} \cdot 3CaSO_{4} \cdot 32H_{2}O \end{cases}$$
(2.178)

This reaction reduces the Ca(OH)₂ content, which is deleterious for compressive strength, while at the same time, it increases the C-S-H gel which is responsible for the formation of the structure of the hardened cement. Therefore, in concrete containing fly ash, the hydration of cement forms the hardened structure, and the pozzolanic reaction of fly ash improves the structure, ensuring strength development for a long time (Hwang et al., 2004). The hydration products of the fly ash–cement mix are practically the same as those of Portland cement, under normal curing conditions, only the development of hydration products is much slower for low-calcium (class F) fly ash; for high-calcium (class C) fly ash it is about the same as in Portland cement under normal curing conditions (Wesche, 2004). For the effect of fly ash on C₃S hydration, there have been conflicting reports in literature (both acceleration and delay of hydration has been found), whereas for its effect on C₃A and C₄AF hydration, fly ash was generally found to slow down the reaction (Wesche, 2004).

The fineness of fly as is considered to be more important than its chemical composition in determining its reactivity and improving strength characteristics of mortars and concretes – finer material will dissolve and react faster in the liquid phase of the hydrating system; it

has also been suggested that the reactivity of fly ash depends on the temperature at which the coal is burned rather than on the quality of coal (Wesche, 2004).

Stimulating the use of fly ash in concrete has its downsides as well. Burning coal to produce electricity is by far the largest source of anthropogenic CO₂ and in some countries coal fired electricity production is being phased out (Scrivener et al., 2016). Also, since fly ash is a by-product/waste, its availability varies regionally. Originally, they were sold at a low price, thereby reducing the cost of cement. This is now changing in many regions due to heightened demand (Scrivener et al., 2016). They also were considered to be CO₂ free, but allocation of environmental loads is now under discussion. This could be detrimental for stimulating its increased use (Marinković et al., 2016).

As for how much cement can actually be replaced with fly ash, there is no prescribed limit. However, (EN 206-1, 2000) does introduce a limit as to how much fly ash can be taken into account for the 'binder potential' of HVFAC. This is done through the 'k-value' concept which limits the 'active' fly ash in HVFAC to 33% of the cement amount (EN 206-1, 2000). The k-value concept is used to replace the *w/c* ratio with the water/(cement+k·fly ash) ratio, where the k-value depends on the cement type (Dragaš et al., 2016). The minimum cement content is corrected by taking into account the fly ash content needed to give the required durability. As a result, the amount of fly ash used as a direct replacement of cement is generally around 25–30%. Research has shown that with these cement replacement levels, the compressive strength at all ages is similar to or slightly lower than that of the companion NAC (Dragaš et al., 2016).

Because of its widely varying availability and properties, although many studies on HV-FAC have been carried out, systematising, analysing and comparing all of this research is a difficult, if not impossible task. Rashad (2015) carried out a comprehensive literature review on some of the most important mechanical and durability-related properties of HV-FAC. However, all that was possible through this kind of review was a listing of studies and short commentary on the results; no deeper analysis was possible. Nonetheless, such a literature review is valuable.

The main characteristic of HVFAC is caused by the pozzolanic properties of fly ash and its speed compared with cement hydration: 45–55% of fly ash in paste (fly ash + cement + water) mixtures causes a lower degree of reaction (almost 80% of fly ash particles don't

react in the first 90 days) (Rashad, 2015); HVFAC will exhibit lower early-age strengths compared with companion NAC (Dragaš et al., 2016); however, a lower heat of hydration is an advantage of HVFAC.

Studying compressive strength, Rashad (2015) divided HVFAC into three categories: 45–55% of fly ash, <60% and <70% of fly ash in the total cementitious materials. There was a definite reduction in compressive strength compared with companion NAC (produced with the same w/cm ratio) and it reached 25–55% after 7 days and 8–20% after 90 days for HVFAC with 45–55% of fly ash in the total cementitious materials; around 40% after 28 days and 25–30% after 90 days for HVFAC with < 60% of fly ash in the total cementitious materials; and 50–60% after 28–90 days for HVFAC with < 70% of fly ash in the total cementitious materials.

One of the ways to obtain higher compressive strengths is to reduce the *w/cm* ratio of HV-FAC compared with the companion NAC. Research has shown that similar or higher compressive strength of HVFAC can be achieved by decreasing the *w/cm* ratio and through the use of superplasticizers which is necessary in the range of 0.2–3.0% of total cementitious materials (Dragaš et al., 2016).

Similar to compressive strength, reductions in HVFAC tensile strength compared with companion NAC produced with the same **w/cm** ratio, both flexural and splitting, and modulus of elasticity were also found (Rashad, 2015). For tensile strength they were in the range of 35–45% after 28 days for HVFAC with 45–55% of fly ash and reduced to 20–35% after 90 days. The decrease of the modulus of elasticity was found to be between 10% (after 90 days and for lower fly ash contents) and 60% (after seven days and higher fly ash contents).

Finally, another very interesting possibility for using fly ash in concrete is a partial replacement of fine aggregate. In many experimental investigations this was shown to benefit practically all HVFAC mechanical properties, mostly because of a finer packing density (Dragaš et al., 2016).

However, a very important parameter in the development of HVFAC mechanical properties is the curing regime. This is evidenced by a study carried out by Ramezanianpour and Malhotra (1995), in which four different curing regimes were applied to several concrete

mixes containing, among others, NAC and HVFAC and compressive strength was monitored until 180 days. One curing regime was standard moist curing after demoulding, the second was curing at room temperature after demoulding, the third was curing at room temperature after two days of moist curing and the fourth was curing at 38°C and 65% RH.

The NAC (RA1 in the experiment) had 372 kg/m³ of cement and a 0.5 *w/c* ratio, one HVFAC (RA4) had 92 kg/m³ of fly ash and 280 kg/m³ of cement and a 0.5 *w/c* ratio and another HVFAC (RA5) had 216 kg/m³ of fly ash and 156 kg/m³ of cement and a 0.35 *w/c* ratio. For practical purposes, the differences between the first three curing regimes are of interest.

Compared with the first curing regime of moist curing, the NAC had a 17% and 5% lower 28-day compressive strength under the second and third curing regime, respectively. For HVFAC with less fly ash (RA4), these percentages were 27% and 5% respectively, and for the HVFAC with more fly ash 35% and 14%. Even more importantly, for NAC the increase in compressive strength between 28 and 180 days was 25% for moist curing but only 10% and 7% under the second and third curing regime, respectively. For HVFAC with less fly ash and under standard curing this increase was 41% but only 9% and 11% under the second and third curing regime, respectively. For HVFAC with more fly ash and under standard curing this increase was 38% but -8% and 6% under the second and third curing regime, respectively! These kind of results have prompted researchers to recommend at least seven days of moist curing when high amounts of fly ash are used (Thomas, 2007).

As for durability-related properties, fewer studies are available. Nonetheless, a decreased carbonation resistance can be noticed in HVFAC with increasing fly ash contents (Rashad, 2015). For chloride ion permeability, there seems to be a positive effect of the presence of fly ash in the paste matrix. This reduction in permeability can cause an improvement in long-term durability and resistance to various forms of deterioration. The addition of fly ash also results in considerable pore refinement (Rashad, 2015). Finally, for freezing and thawing, according to available studies it can be concluded that there is no apparent difference between HVFAC and companion NAC (Rashad, 2015).

2.7.2 Shrinkage and Creep of HVFAC

Although a relatively large number of studies on shrinkage and creep of HVFAC had been carried out in the past, until recently there was little work on trying to model its long-term behaviour. As with other mechanical properties, so too for shrinkage and creep, the large variability of fly ash leads to difficulties in comparing results from different experimental campaigns. Another potential problem is that often, not only HVFAC is investigated but also concretes with other supplementary cementitious materials such as slag, and sometimes even ternary mixtures (cement + fly ash + slag). Hence, the focus can often be on a more general 'high-volume supplementary cementitious material concrete' rather than simply HVFAC.

Some general conclusions can however be drawn from the available literature. From the literature review in (Rashad, 2015), the author studied drying shrinkage and generally found a decrease in free drying shrinkage with the increase of fly ash content – up to a 50% decrease for a 50% fly ash content. The author posits that the inclusion of high volumes of fly ash in the matrix reduced the water demand of HVFAC, and produced a finer paste structure, and as a result the loss of pore water within the paste system was restricted and consequently the drying shrinkage reduced (Rashad, 2015). The lower shrinkage of HVFAC compared with companion NAC was also explained as a result of reduced cement paste content and a lower amount of hydrated paste (caused by the slower pozzolanic reaction) (Atiş, 2003).

As for creep, similar trends are expected. However, complex interactions with a different compressive strength development compared with NAC can be expected, e.g. when comparing HVFAC and companion NAC proportioned to have the same strength *at the time of loading*, HVFAC will exhibit lower creep due to the larger increase in compressive strength (ACI Committe 232, 1986). Comparing creep behaviour with code predictions, e.g. for HVFAC with 50% of fly ash loaded after 28 days and sustained under load for 180 days, significant underestimation of creep behaviour using the EC2 model has been reported (Dragaš et al., 2016). This is in line with previous studies and has led Chen et al. (2017) to formulate a correction of the EC2 model for 'concretes with high volumes of supplementary cementitious materials' or SCM concretes.

The authors were primarily interested in concrete-filled steel tube (CFT) columns which are an interesting application for HVFAC because they successfully solve the problem of lower early strengths (Chen et al., 2017). In order to develop a full improvement of the EC2 model, the authors also introduced corrections into equations predicting the time development of compressive strength and the modulus of elasticity. The models were validated using a database of experimental results and two full-scale CFT columns with SCM concrete that were tested under sustained loading. After this, a parametric study was conducted. One of the major factors influencing SCM concrete creep was identified as the 'binder ratio': C/(S+A) or $CaO/(SiO_2+Al_2O_3)$ (taken as the total amount in fly ash and cement). The results of the final parametric study indicated that SCM concretes with a C/(S+A) ratio greater than 0.5 behaved similarly to NAC (Chen et al., 2017).

The database compiled by Chen et al. (2017) contains results from 18 experimental programmes with SCM concretes (13 of which are purely HVFAC studies) and includes the following main parameters:

- sealed and unsealed specimens,
- cement replacement levels between 0 and 60% with fly ash,
- cement replacement levels between 0 and 80% with slag,
- cement replacement levels between 0 and 90% of cement with blended fly ash and slag,
- water-cementitious material (w/cm) ratios ranging from 0.21 to 0.66,
- age at loading (t_0) from 7 to 149 days, and
- initial load normalized by (28-day or initial) strength (n_c) ranging from 0.20 to 0.60.

As a first step, the authors evaluated the modulus of elasticity of SCM concretes using the default EC2 equation to test results from nine studies:

$$E_c(t) = \beta_{cc}^{0.3}(t) \cdot E_{cm} \tag{2.179}$$

with $\beta_{cc}(t)$ being the compressive strength time development coefficient given by

$$\beta_{cc}(t) = exp\left[s \cdot \left(1 - \sqrt{\frac{28}{t}}\right)\right] \tag{2.180}$$

where *s* is a coefficient dependent on the cement type.

$$s = \begin{cases} 0.20 & \text{for cement classes CEM 42.5R, CEM 52.5N and CEM 52.5R} \\ 0.25 & \text{for cement classes CEM 32.5R and CEM 42.5N} \\ 0.38 & \text{for cement class CEM 32.5N} \end{cases}$$
 (2.181)

Comparing the EC2 predictions for $E_c(t)$ with the database results, Chen et al. (2017) found that 80% of the results fell within $\pm 20\%$ of the EC2 predictions. Building upon the known importance of the C/(S+A) ratio for the rate of the pozzolanic reaction, the authors proposed a correction of the EC2 predictions in the following form:

$$E_c(t) = \beta_E(t) \cdot E_{cm} \tag{2.182}$$

with $\beta_E(t)$ now being a completely new time development coefficient for the modulus of elasticity.

$$\beta_E(t) = \left\{ exp \left[s \cdot \left(1 - \sqrt{\frac{28}{t}} \right) \left(-1.60 \cdot \frac{C}{S+A} + 5.26 \right) \right] \right\}^{0.3}$$
 (2.183)

A new comparison made using Equation 2.182 showed an improved accuracy of the predictions with a mean value of 0.99 and a coefficient of variation of 0.14 (Chen et al., 2017).

Compressive strength was evaluated using results from five studies and the default EC2 prediction:

$$f_c(t) = \beta_{cc}(t) \cdot f_{cm} \tag{2.184}$$

with $\beta_{cc}(t)$ given by Equation 2.180.

The authors investigated the correlation between compressive strength and the C/(S+A) ratio and found that $\beta_{cc}(t)$ decreased with increasing C/(S+A) ratios for ages under 28 days and increased with increasing C/(S+A) ratios for ages over 28 days (Chen et al.,

2017). Hence, an improved formula was proposed:

$$f_c(t) = \beta_C(t) \cdot f_{cm} \tag{2.185}$$

with $\beta_C(t)$ being a new time development coefficient for compressive strength.

$$\beta_C(t) = exp\left[s \cdot \left(1 - \sqrt{\frac{28}{t}}\right)\beta_{cc}\left(\frac{C}{S+A}\right)\right]$$
 (2.186)

where $\beta_{cc}\left(\frac{C}{S+A}\right)$ is given by

$$\beta_{cc} \left(\frac{C}{S+A} \right) = \begin{cases} -0.38 \cdot \frac{C}{S+A} + 2.12 & t < 28 \ days \\ -1.15 \cdot \frac{C}{S+A} + 3.7 & t > 28 \ days \end{cases}$$
 (2.187)

The accuracy of the new equations was tested on data that wasn't used for their calibration. The mean value of the predicted results divided by the measured was 1.00 and the coefficient of variation was 0.15 (Chen et al., 2017).

Finally, creep was evaluated on 69 results from seven studies. The experimentally studied variables included sealed and unsealed curing conditions, compressive strength (22–62 MPa), age at first loading (t_0) (7–90 days), and initial stress levels (n_c) (0.23–0.34). The replacement ratios were 12–58% with fly ash, 4.5–68% of slag and up to 50% of slag plus fly ash. Comparison with EC2 predictions showed that the EC2 model tended to overestimate the creep of SCM concretes since over 60% of the calculated values exceed the $\pm 30\%$ limit (Chen et al., 2017).

As a result, the authors modified the EC2 model and again compared them to the database results. The starting point for the modifications was the study of the influence of the C/(S+A) ratio and w/cm ratio on SCM concrete creep; previous studies revealed that a lower w/cm ratio results in a more compact ITZ between SCMs and cement paste, which decreases the creep of SCM concretes (Chen et al., 2017). Plotting relationships ϕ_{test}/ϕ_{EC2} to C/(S+A) and to the w/cm ratio led to the following modifications of eqs. (2.95) and (2.96):

$$\phi(t,t_0) = \phi_{RH} \cdot \beta(f_{cm}) \cdot \beta(t_0) \cdot \beta\left(\frac{C}{S+A}\right) \cdot \beta\left(\frac{w}{cm}\right) \cdot \beta_c(t,t_0)$$
 (2.188)

$$\beta\left(\frac{C}{S+A}\right) = 0.17 \cdot \frac{C}{S+A} + 0.87 \tag{2.189}$$

$$\beta\left(\frac{w}{cm}\right) = 0.74 \cdot \frac{w}{cm} + 0.37\tag{2.190}$$

When looking at the modified predictions, for all the results, a mean value of the predicted results divided by the measured results was 0.99 and the coefficient of variation was 0.16 (Chen et al., 2017).

The obtained results are a promising indication that the long-term behaviour of SCM concretes—at least on the material level—can be successfully predicted using existing models.

2.7.3 Deflections of reinforced HVFAC beams

Research on the deflection and long-term behaviour of reinforced HVFAC is probably the most lacking in the field of structural HVFAC application. So far, research has mostly concentrated on short-term flexural and shear strength. In a few of those investigations, observations have been made about the cracking and deflection behaviour of these beams.

Arezoumandi et al. (2013) investigated, in a very large experimental programme, the shear strength of reinforced HVFAC beams made with class C fly ash that represented 70% of the total cementitious materials in two different concretes. Eight beams were made from each of these two concretes and they were tested in shear with varying transverse and longitudinal reinforcement ratios.

A comment was made by the authors that 'in terms of crack morphology, crack progression, and load–deflection response, the behaviour of the both the HVFAC-H and HVFAC-L (the two concrete types) beams was virtually identical' (Arezoumandi et al., 2013).

Soman and Sobha (2014) tested the flexural behaviour of reinforced HVFAC beams with 50% of class F fly ash. The mix contained 200 kg/m³ of cement and 200 kg/m³ of fly ash. HVFAC and companion NAC both had a compressive strength of around 47 MPa after 28 days and similar moduli of elasticity and splitting tensile strengths.

The beams had a 100/150 mm cross-section and a 1200 mm and so, can't really be considered to be full-scale (making conclusions about anything related with a size effect

very difficult). The beams were tested in four-point bending until failure. The authors noted smaller deflections for HVFAC beams at all load levels, smaller crack spacings and smaller crack widths (Soman and Sobha, 2014).

Yoo et al. (2015) tested a series of reinforced concrete beams in flexure with 0%, 35% and 50% of fly ash, various tensile reinforcement ratios and different compressive strengths. The authors observed that 'the deflection, strain, crack load, yield load and ultimate load observed in the members were seen to be practically indifferent to the content in fly ash since the structural behavior of the test members with fly ash replacement ratio of 35% and 50% was quasi-similar to that of the members without fly ash' (Yoo et al., 2015). A slight increase in deflections of HVFAC beams was explained by the fact that because of its smaller density, HVFAC has a smaller modulus of elasticity and hence, slightly larger deflections.

As for long-term tests of reinforced HVFAC beams under sustained loads, the author of this thesis could identify only two studies: (Luo et al., 2006) and (Liu et al., 2008).

Unfortunately, (Luo et al., 2006) is in Chinese and was not available to the author, except for the abstract which is given in its entirety:

Using the construction of the railway between Luoyan and Zhanjiang as background, based upon the experimental results of shrinkage and creep of eight non-glued concrete beams with different mixtures of high-performance fly ash, the shrinkage, creep and camber of beams with different mixtures of high-performance fly ash concrete under long-term loadings are investigated. The effects of the environmental factors such as temperature, humidity are also explored, the experimental results over 300 days indicate that the non-glued concrete beams with 20–40% high performance fly ash not only have better workability and mechanical properties, but also exhibit better long-term performance. Compared with concrete beams of same strength but without fly ash, they have higher late-stage strength and compressive elastic modulus, lower shrinkage and less creep with desirable social and economic profitability.

The other study, (Liu et al., 2008), is in English, however, its results are not in fact very useful. The experimental programme carried out by the authors included six self-compacting reinforced concrete (SCC) beams and three 'normally vibrated' reinforced concrete beams. All of the mixtures contained 396 kg/m³ of cement and 180 kg/m³ of

fly ash (31% of total cementitious material). Ultra-pulverized fly ash produced by the Electric Plant of Xiangtan city in Hunan province was used. Out of the six SCC beams, three were simply supported, two were 'shrinkage' beams and one was a two-span continuous beams. Out of the three 'vibrated' beams, two were simply supported and one was a 'shrinkage' beam. Unfortunately, in all of the beams the reinforcement ratio was also varied.

The test setup is shown in Figure 2.23. The deflections at midspan and support of the beams were measured by a dial gauge with a precision of 0.01 mm and the concrete strain at the level of reinforcement was measured by a dial gauge with a higher precision of 0.001 mm (Liu et al., 2008). Relative humidity was kept constant by a dehumidifying machine. The test was started on January 26, 2005 and lasted for 540 days. The temperature in the laboratory however, varied between 5°C and 35°C.

FIGURE 2.23: Test setup of long-term experiment: (a) Shrinkage beam; (b) Simply supported beam; and (c) Continuous beam, (Liu et al., 2008)

As can be seen from such a description, there were simply too many parameters varied in nine beams ('vibration type', reinforcement, statical system, etc.). Additionally, no companion NAC was produced nor were code comparisons made. Hence, the presented results are of little value for further investigation.

2.8 Summary

This chapter presented a review of current knowledge and understanding of several phenomena important for long-term behaviour of reinforced concrete members under sustained loads.

First, two properties specific to concrete—shrinkage and creep—were briefly presented. Both processes were shown to be tied to microstructural changes in concrete over time and to the movement of water within concrete. Other influencing factors such as aggregate stiffness and ambient conditions were briefly mentioned. Additionally, newest research and findings on these topics, such as nanoindentation tests on C-S-H, were also presented.

Deflections of reinforced concrete members and approaches to their calculation were discussed afterward. The changes in members' stiffness caused by cracking were presented and European and North American traditions in estimating their curvatures were explained. Other influencing factors on deflections of reinforced concrete members were also introduced, such as the geometrical properties of the member, moduli of elasticity of concrete and reinforcement, concrete tensile strength, shrinkage and creep.

Next, models currently available for shrinkage, creep and deflection calculation were presented. First, databases on concrete shrinkage and creep and on long-term behaviour of reinforced concrete beams under sustained loads were discussed. It was explained how these two databases were compiled, what information they contain and what are some of their drawbacks, e.g. bias toward shorter testing times. Second, models for calculating and predicting concrete shrinkage and creep were given. These were the B4, MC10, EC2, ACI 209R-92 and GL2000 models. Their formulation, advantages and drawbacks were presented. Finally, two families of models for calculating and predicting deflections of reinforced concrete members were given: the European tradition of models (with the latest installments being MC10 and EC2) and the North American tradition of models (with the latest installments being ACI 318 and ACI 435R).

In the following section, a literature review was elaborated on RCA and RAC. The main reasons in favour of CDW recycling were given and some important properties of RCA presented. A review on the observed influence of RCA on basic mechanical RAC properties was laid out. A discussion on the shrinkage and creep of RAC was presented in more detail with a special look on proposed corrections of existing prediction models. Finally, experimental programmes dealing with the long-term behaviour of reinforced RAC beams under sustained loads was presented. Test setups and concepts as well as results were discussed.

In the last section of this chapter, HVFAC was studied. First, an overview of global fly ash production and use was given and then its use in HVFAC was discussed. From a literature review, the main properties of HVFAC and differences compared with NAC were presented. For a more in-depth analysis, a newly proposed model for creep prediction of HVFAC was outlined. In the end, some results from short- and long-term tests on reinforced HVFAC beams were presented.

Chapter 3

Experimental Programme – Long-term Behaviour of Reinforced Concrete Beams Under Sustained Loads

3.1 Scope of the Experimental Programme

In this thesis, the long-term behaviour of reinforced concrete beams made from recycled and waste materials, under sustained loads, was tested and compared with beams made from traditional NAC. The recycled materials used were coarse RCA and the waste material was fly ash.

Three concrete mixtures were prepared—NAC, RAC with 100% coarse RCA and HVFAC with a 1:1 cement:fly ash ratio. First, the material properties of the component materials were determined. This included assessing aggregate, fly ash and cement properties such as density and water absorption.

Second, all three mixtures were designed and their rheological and mechanical properties were verified experimentally. The mixtures were proportioned in such a way as to possess approximately the same workability and compressive strength. For workability, an initial slump of 100–150 mm and a slump of 50–90 mm after 30 min were targeted. As for

compressive strength, the aim was a mean value of 35 MPa after 28 days on a 100 mm cubic sample.

Finally, six 3.2 m-span simply supported reinforced concrete beams were made from all three concrete mixtures and loaded in four-point bending with a sustained load at ages of 7 and 28 days (two beams made from each concrete mixture).

The load was applied for 450 days and it was determined by adopting a fixed stress–to–strength-at-loading ratio ($\sigma_c/f_{cm}(t_0)$) for all beams loaded at the same age. This ratio was chosen to be 0.45 in the case of beams loaded after 28 days; this is the limit provided by Eurocode 2, below which the linear theory of creep is assumed to apply (EN 1992-1-1, 2004). For the beams loaded after seven days, this ratio was chosen as 0.60; this value is provided by MC10 as the upper value for which the effect of high stresses on creep can be accounted for by its model (FIB, 2013). Additionally, although the beams loaded after seven days would initially display non-linearity in creep behaviour, the increase in compressive strength from 7 to 28 days and creep itself would gradually decrease the $\sigma_c/f_{cm}(t)$ ratio; using Eurocode 2 relations for the time evolution of compressive strength and creep, it was calculated that after 28 days the $\sigma_c/f_{cm}(t)$ ratio would decrease to approximately 0.45.

On all the beams, deflections, concrete and reinforcement strains were measured. Accompanying specimens for mechanical properties, as well as shrinkage and creep were also prepared and tested.

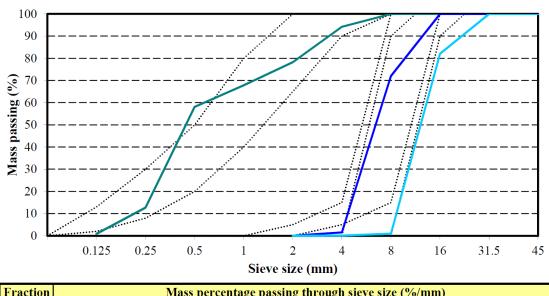
3.2 Material Properties of Component Materials

3.2.1 Natural Aggregate

The natural aggregate (NA) used in this experiment was a commercially available river aggregate—both sand and gravel—'Dunavac' aggregate from an excavation site on the Danube river in the vicinity of Belgrade. The aggregate was purchased from Gradient d.o.o., Belgrade.

The aggregate was obtained in three distinct particle sizes:

- fraction I (0/4 mm) sand
- fraction II (4/8 mm) gravel
- fraction III (8/16 mm) gravel


The aggregate was stored on an open-air storage site for 18 months before being used. From the storage site it was transported to the Faculty of Civil Engineering where the following properties were tested:

- particle size distribution,
- water absorption,
- density,
- aggregate crushing value,
- aggregate shape index and
- aggregate flakiness index.

The particle size distribution was determined using the dry sieving procedure given in (EN 933-1, 1997). The results are represented in Figure 3.1. Also plotted on the figure are reference areas for each fraction (dotted lines).

As can be seen, sand is slightly above the limit on the 0.5 mm sieve (58% passing, with a limit of 50%); the particle size distribution of the sand is skewed toward smaller particle sizes. Fractions II and III (gravel) are somewhat skewed toward larger particle sizes. For fraction II the percentage of particles passing through sieve size 8 mm is 72% whereas the lower limit is 90%; for fraction III the percentage of particles passing through sieve size 16 mm is 82% and the lower limit 90%.

Although the separate fractions are not completely within the reference areas for each fraction separately, when the concrete mixes were designed care was taken to ensure that the particle size distribution of the mixed aggregates (0–16 mm) was within recommended limits (SRPS U.M1.057, 1984).

Fraction		Mass percentage passing through sieve size (%/mm)											
mm	0.063	0.125	0.250	0.500	1	2	4	8	16	22.4	31.5	45	
0-4		1	13	58	68	78	94	100	100	100	100	100	
4-8						0	2	72	100	100	100	100	
8-16						0	0	1	82	100	100	100	

FIGURE 3.1: Particle size distribution of NA – sand and gravel

Physical and mechanical properties of the aggregate fractions are given in Table 3.1. The OD and saturated-surface dry (SSD) densities of the aggregates were determined according to the methods given in (EN 1097-6, 2000) and water absorption according to (EN 1097-6, 2000).

The aggregate crushing value for the coarse aggregates was determined by crushing the samples in a cylinder as per (SRPS B.B8.033, 1994). This test was deemed to be an indication of the aggregates' stiffness which is an important factor affecting concrete properties such as the modulus of elasticity, creep and shrinkage. The test was carried out on both gravel fractions (II and III) and the results are below the limit set by (SRPS B.B2.009, 1986) for use of aggregates in concrete—a crushing value below 30%.

The aggregate shape index was determined according to (SRPS B.B8.049, 1984) and the aggregate flakiness index according to (SRPS B.B8.048, 1984). The results are below the limit set by (SRPS B.B2.009, 1986) for use of aggregates in concrete—a shape index lower than 0.18.

TABLE 3.1: Physical and mechanical properties of NA and RCA

			Water ab	sorption	Crushing	Shape	Flakiness
Aggregate	OD density	SSD density	30 min	24 h	value	index	index
	(kg/m^3)	(kg/m^3)	(%)	(%)	(%)	(-)	(%)
NA I	2573	2604	_	1.20	_	_	_
NA II	2548	2580	_	1.24	13.22	0.123	31.0
NA III	2591	2618	_	1.04	18.23	0.164	34.0
RCA II	2390	2478	3.01	3.67	16.29	0.108	19.2
RCA III	2359	2545	3.55	4.05	21.64	0.118	33.8

3.2.2 Recycled Concrete Aggregate – RCA

The RCA used in the experimental programme was obtained by demolishing an existing 40 year old highway bridge in the vicinity of Belgrade, Serbia, Figure 3.2. The aggregate was obtained by crushing columns and the deck of the bridge in a GIPO GISLER POWER construction site mobile crusher, Figure 3.3. The demolition and crushing were carried out by Planum AD, Belgrade.

The demolished structure was relatively clean from impurities as the asphalt had been scraped of the deck prior to demolition. The aggregates were sieved into two grain sizes for testing: II (4/8 mm) and III (8/16 mm).



FIGURE 3.2: Demolition of a highway bridge

FIGURE 3.3: Mobile recycling machine

Since very little was known about the original structure, $\oslash 100/100$ mm cores were taken from the columns and the deck and compressive strength (f_{cm}) and carbonation depth (d_k) were tested (EN 14630, 2006) and the results are shown in Figure 3.4 and in Table 3.2. As can be seen from the results, the parent concrete was presumably made with a high w/c ratio and natural river gravel which is consistent with the majority of the types of concrete produced in that period in Serbia. It should also be noted that at the time of its construction blended cements were extensively used in Serbia.

FIGURE 3.4: Column core carbonation

The demolition and crushing were carried out in July 2014. The resulting concrete waste was a mixture of demolished columns and segments of the bridge deck, in an unknown proportion. After sieving by Gradient d.o.o., Belgrade, the aggregate was stored on an

TABLE 3.2: Properties of the parent concrete

	f _{cm} (MPa)	$d_k \text{ (mm)}$
Column	23	25
Deck	35	0

open-air storage site for 18 months before being used. During stockpiling, RCA was covered with plastic sheets in order to decrease the rate of carbonation, Figure 3.5. From the storage site it was transported to the Faculty of Civil Engineering where the following properties were tested:

- particle size distribution,
- water absorption,
- density,
- aggregate crushing value,
- aggregate resistance to fragmentation,
- aggregate shape index and
- aggregate flakiness index.

FIGURE 3.5: Stockpiling of RCA

The particle size distribution was determined using the dry sieving procedure given in (EN 933-1, 1997). The results are shown in Figure 3.6. Also plotted on the Figure are reference areas for each fraction (dotted lines).

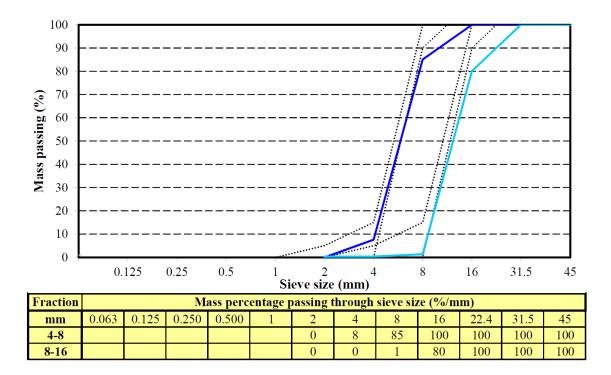


FIGURE 3.6: Particle size distribution of coarse RCA

As can be seen, both fractions II and III have slightly smaller passing percentages than the minimum values on the larger sieve sizes, which means they are skewed toward larger particle sizes. Although the separate fractions are not completely within the reference areas for each fraction separately, when the concrete mixes were designed care was taken to ensure that the particle size distribution of the mixed aggregates (NA and RCA, 0–16 mm) was within recommended limits (SRPS U.M1.057, 1984).

Physical and mechanical properties of RCA are given in Table 3.1. The same standards were used as for NA. The final (24 h) water absorption values of 3.67% and 4.05% for fractions II and III, respectively, are common for RCA made only from concrete waste. Together with OD density values (which are about 10% lower compared with NA), this aggregate can be classified as class B-I according to the classification proposed by Silva et al. (2014); this is actually a relatively lower quality for recycled aggregates made only

from concrete waste but still does not prevent them from being used in the production of RAC.

Additionally, water absorption after 30 min was also determined for RCA. This was considered important as it represents a typical transport scenario for ready-mixed concrete in Serbia and a period during which concrete workability should be maintained. The 30 min water absorption values were 3.01% for fraction II and 3.55% for fraction III; ca. 83–87% of absorption occurred within the first 30 min. The crushing value for RCA is also approximately 10% lower compared with NA. The shape and flakiness indices of RCA are comparable or even superior to that of NA.

Only for RCA, the resistance to fragmentation was determined according to (EN 1097-2, 2010) for fractions 4/8 mm and 8/11.2 mm—which is an intermediate fraction prescribed by the standard. The obtained values of the Los Angeles coefficient were 23.8% and 27.5%, respectively. These values can be used as an indicator of the amount of residual cement paste attached to the original aggregates in NA. The values are relatively good and comparable to natural limestone aggregates. These results are below the limit set by (SRPS B.B2.009, 1986) for use of aggregates in concrete – a crushing value below 30% and a Los Angeles coefficient lower than 30.

3.2.3 Fly Ash

The fly ash used in this study was obtained from the Nikola Tesla B power plant in Obrenovac, Serbia. In 2010, a new fly ash separation and transportation system was installed which enabled the collection of fly ash from four separate locations, each with an increasingly smaller particle size, Figure 3.7.

For this study, fly ash was collected from the final hopper as it was assumed to have the smallest mean particle size. The particle size distribution was performed using a Malvern Instruments Mastersizer 2000 and the results are presented in Figure 3.8. The mean particle size of the sample was $8.53 \mu m$ which signifies a very fine fly ash; such a small mean particle size is a very important parameter as it can have significant influence on concrete properties. The specific density of fly ash was determined using a Le Chatelier flask as 2075 kg/m³ (ASTM C188-15, 2015).

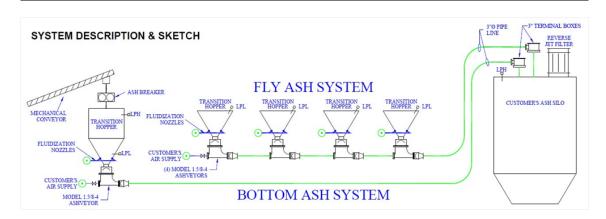


FIGURE 3.7: Fly ash collection system

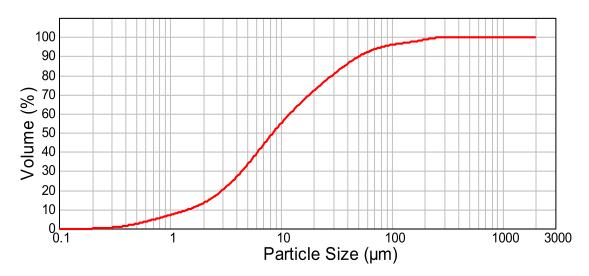


FIGURE 3.8: Fly ash particle size distribution

The chemical composition and physical properties were assessed by X-ray fluorescence (XRF) analysis and the results are given in Table 3.3.

As can be seen, the tested sample meets all of the (EN 450-1, 2012) criteria and according to the loss on ignition (LOI) it would be classified as category A fly ash. As for the (ASTM-C618-12a, 2012) criteria, according to them, this sample would be classified as class F fly ash, which is a far more common fly ash type (low-calcium fly ash) than class C.

TABLE 3.3: Chemical and physical properties of fly ash

Durananta	Cement CEM II/	F11-	EN 450-1:2012
Property	A-M(S-L)42.5R	Fly ash	requirement (%)
SiO ₂ (%)	21.04	58.24	_
Al_2O_3 (%)	5.33	20.23	_
Fe_2O_3 (%)	2.37	5.33	_
$SiO_2 + Al_2O_3 + Fe_2O_3(\%)$	_	83.80	>70
TiO ₂ (%)	_	0.45	_
CaO (%)	60.43	7.62	_
MgO (%)	2.43	2.01	<4
P_2O_5 (%)	_	0.00	<5
SO ₃ (%)	3.55	2.21	<3
$Na_2O(\%)$	0.22	0.52	<5
$K_2O(\%)$	0.70	1.51	_
MnO (%)	_	0.03	_
LOI (%)	3.53	2.10	< 5
Fineness (>45 μ m) (%)	_	11.71	<12

3.2.4 Cement

The cement used in this study was commercially available CEM II Portland-composite cement produced by Lafarge in Beočin, Serbia. The cement type was CEM II/A-M(S-L)42.5R according to (EN 197-1, 2000).

The composition of this cement is 80-94% Portland cement clinker, 6-20% ground slag and limestone and 0-5% gypsum and mineral fillers, Table 3.3. The specific density of the cement is 3050-3150 kg/m³.

3.2.5 Reinforcement

The reinforcement was provided by Deneza M, Belgrade. The $\oslash 10$ mm ribbed bars were grade B500C (yield stress $f_{yl} = 574$ –600 MPa, ultimate strain $\varepsilon_{uk} = 10.4$ –12.6%) while the $\oslash 6$ mm plain bars were grade SAE1108 (yield stress $f_{yl} = 395$ MPa, ultimate strain $\varepsilon_{uk} = 32\%$).

3.3 Mixture Design of Concretes

3.3.1 Mixture Design Methodology

As stated in the introduction, the mixture proportioning of all the concretes was carried out with two goals in mind: workability and compressive strength. These two goals or criteria are considered to be simple and understandable when choosing or designing ready-mixed concrete and still sufficiently informative about the desired behaviour and properties of concrete. Workability addresses the question of how and using which technology can concrete be placed as well as its durability, indirectly through placing and compacting. Compressive strength is an indicator of both physical–mechanical properties as well as durability-related properties.

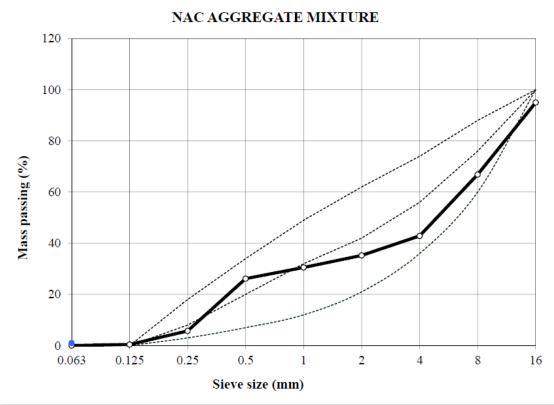
For this experimental programme, three criteria were set:

- initial slump 100–150 mm,
- 50–90 mm slump after 30 min and
- 28-day compressive strength of 35 MPa (water cured 100 mm cubic samples).

The chosen slump values mean an initial slump class S3 and a slump class S2 after 30 min (EN 206-1, 2000). These slump classes enable such concretes to be pumped—after an initially high slump, after 30 min (when casting can be expected, at the earliest) slump is sufficient for pumping.

When converted to a $\oslash 150/300$ mm cylinder, the target mean compressive strength (f_{cm}) is $35 \cdot 0.75 = 26.25$ MPa. Instead of simply subtracting 8 MPa from the mean compressive strength to obtain the characteristic compressive strength (f_{ck}), i.e. the concrete class, a more precise approach was adopted. Since the concretes would be cast in laboratory conditions, a smaller scatter of the results can be expected and a CoV of not more than 10%. Hence, the characteristic compressive strength can be assessed as a 5%-fractile, $26.25 - 1.645 \cdot 0.1 \cdot 25.5 = 21.93$ MPa. Such a characteristic compressive strength would classify this concrete as class C20/25. This class of concretes is suitable for environments with a low risk of carbonation-induced corrosion (XC1) and no risk of damage to concrete

(X0). Practically this means it is suitable for casting indoor members such as slabs and beams—members in which the behaviour under long-term loading is of particular interest.


All this is not to say that higher compressive strengths can't be produced from the recycled and waste materials used in this study, but taking into account the constraints imposed by the equipment, technology and experience, this choice was considered to be the most appropriate. Additionally, all of the produced mixtures were very similar to concretes produced in the past by the same research team (Ignjatović, 2013; Dragaš et al., 2016). This meant that there existed significant experience in producing the targeted compressive strengths and workability. For an experiment which required so much careful planning and precision, as this one, the choice was made to use mixtures with which the research team was familiar.

3.3.2 Natural Aggregate Concrete – NAC

The mixture proportioning procedure for NAC relied heavily on previous experiences at the University of Belgrade's Faculty of Civil Engineering. The experimental programme carried out within the scope of a previous PhD thesis (Ignjatović, 2013), consisted of designing a NAC with a 36 MPa mean compressive strength (albeit on a 150 mm cubic sample). Starting from this mixture and taking into account new aggregate properties, trial mixes were cast to test both workability and compressive strength. Since a lower compressive strength was targeted, the amount of cement was decreased and the *w/c* ratio increased, all assessed through trial mixtures.

First, a particle size distribution for the aggregate mixture was chosen, so as to conform with the limits given in (SRPS U.M1.057, 1984). The mass percentages in the aggregate mixture were 45%, 30% and 25% for fractions I, II and III, respectively, Figure 3.9. Secondly, through the volumetric equation (Equation 3.1), the total amount of aggregate (used in the OD condition) was determined and then divided into fractions from the particle size distribution. The percentage of entrained air was determined as 2.5% by testing trial mixtures. No admixtures were used.

$$\frac{m_c}{\gamma_c} + \frac{m_w}{\gamma_w} + \frac{m_{NA,I}}{\gamma_{NA,I}} + \frac{m_{NA,II}}{\gamma_{NA,II}} + \frac{m_{NA,III}}{\gamma_{NA,III}} + V_a = 1$$
(3.1)

Fraction				Mass percentage passing through sieve size (%/mm)									
mm	%	0.063	0.125	0.250	0.500	1	2	4	8	16	22.4	31.5	45
0-4	45		1	13	58	68	78	94	100	100	100	100	100
4-8	30					0	0	2	72	100	100	100	100
8-16	25						0	0	1	80	100	100	100
Total	100		0	6	26	31	35	43	67	95	100	100	100

FIGURE 3.9: Aggregate mixture distribution for NAC

where γ_c was taken as 3150 kg/m³ and γ_w as 1000 kg/m³.

The final mixture proportions are given in Table 3.4.

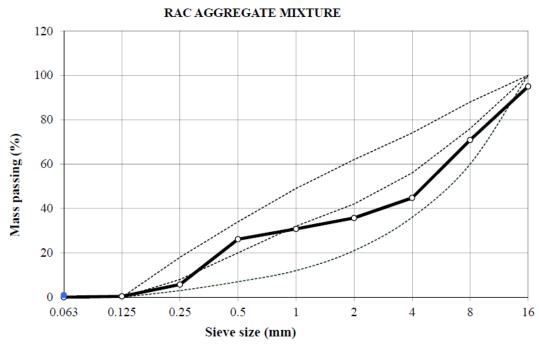
TABLE 3.4: Mixture proportions of NAC

_				Natural aggregate						
Concrete	m_c	m_w	w/c	$m_{NA,I}$	$m_{NA,II}$	$m_{NA,III}$	V_a			
	(kg/m^3)	(kg/m^3)	(-)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(%)			
NAC	285	175	0.614	815	543	453	2.5			

The mixing procedure began with mixing sand and coarse aggregate in the mixing pan for approximately 1 min. After this, cement was added and everything was mixed together for another minute. Finally, water was added during the next 30 s and the mixing continued for approximately another 2.5 min – meaning an overall mixing time of 5 min.

3.3.3 Recycled Aggregate Concrete – RAC

Similar to NAC, as explained in section 3.3.2, the mixture proportions for RAC were determined by relying primarily on experience gained within the scope of a previously completed PhD thesis (Ignjatović, 2013).


As with NAC, first a particle size distribution of the aggregate mixture was calculated. The mass percentages in the aggregate mixture were 45%, 30% and 25% for fractions I, II and III, respectively, Figure 3.10.

Again, through the volumetric equation (Equation 3.2), the total amount of aggregate (used in the OD condition) was determined and then divided into fractions from the particle size distribution. The percentage of entrained air was determined as 4% by testing trial mixtures. No admixtures were used.

$$\frac{m_c}{\gamma_c} + \frac{m_w}{\gamma_w} + \frac{m_{NA,I}}{\gamma_{NA,I}} + \frac{m_{RCA,II}}{\gamma_{RCA,II}} + \frac{m_{RCA,III}}{\gamma_{RCA,III}} + V_a = 1$$
(3.2)

As for additional water Δm_w necessary for RCA water absorption, initially it was taken according to RCA absorption after 30 min, i.e. 3.05% and 3.55% for fractions II and III, respectively. Taking into account the mixture proportions in Table 3.5, this would have amounted to 30.7 kg/m³ of additional water. However, trial mixtures showed that their slump was excessive and hard to control. Hence, using new trial mixtures, a reduced amount of additional water was determined as $\Delta m_w = 21.5$ kg/m³. The final mixture proportions are given in Table 3.5. The $(w/c)_{eff}$ ratio denotes the *effective* water-cement ratio, i.e. not taking additional water into account.

The mixing procedure was identical to that of NAC; it began with mixing sand and coarse aggregate in the mixing pan for approximately 1 min. After this, cement was added and

Fraction				Mass percentage passing through sieve size (%/mm)									
mm	%	0.063	0.125	0.250	0.500	1	2	4	8	16	22.4	31.5	45
0-4	45		1	13	58	68	78	94	100	100	100	100	100
4-8	30					1	1	8	85	100	100	100	100
8-16	25						0	0	1	80	100	100	100
Total	100		0	6	26	31	36	45	71	95	100	100	100

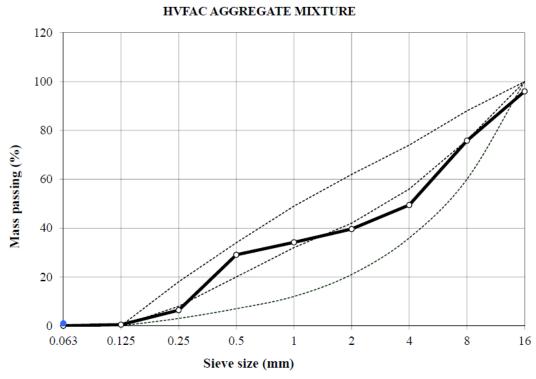
FIGURE 3.10: Aggregate mixture distribution for RAC

TABLE 3.5: Mixture proportions of RAC

					Natural sand	RO	CA	
Concrete	m_c	m_w	$\Delta m_{\scriptscriptstyle W}$	$(w/c)_{eff}$	$m_{NA,I}$	$m_{RCA,II}$	$m_{RCA,III}$	V_a
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(-)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(%)
RAC	285	175	21.5	0.614	767	511	426	4.0

everything was mixed together for another minute. Finally, water was added during the next 30 s and the mixing continued for approximately another 2.5 min – meaning an overall mixing time of 5 min.

3.3.4 High-volume Fly Ash Concrete – HVFAC


The mixture design of HVFAC for this experimental programme was based on previous knowledge gained through joint work on a PhD thesis dealing with the flexural and shear behaviour of HVFAC beams with colleague Jelena Dragaš.

The methodology through which the mixture used in this study was arrived at is described in detail in (Dragaš et al., 2016). In that study, a comprehensive two-phase investigation into different HVFAC mixtures was carried out. The goals aimed for, when proportioning HVFAC mixtures were (1) a 28-day compressive strength similar to the 'control' NAC mixture (suitable for structural applications), (2) a suitable early (3- or 7-day compressive strength) and (3) a workability that enables easy casting.

Dragaš et al. (2016) tested mixtures with different cement and fly ash amounts, but also, in some mixtures, replaced part of the sand with fly ash. In the final phase of their programme, the authors produced concretes with 200 kg/m³ of cement and 200–400 kg/m³ of fly ash (in 50 kg/m³ increments), as well as concretes with 150 kg/m³ of cement and 150–350 kg/m³ of fly ash (in 50 kg/m³ increments). It's important to note that in all other mixtures, except the ones with 150 and 200 kg/m³ of both cement and fly ash, a part of the sand was replaced with fly ash—the coarse aggregate was kept constant and sand was decreased as much as it was allowed by the particle size distribution limits.

For this experimental programme, one of the above mentioned mixtures had to be chosen. The concretes with 150 kg/m^3 of cement did not achieve high enough 28-day compressive strengths (all were lower than 30 MPa on a 100 mm cubic sample). Within the concretes with 200 kg/m^3 of cement, only the mixtures with $200 \text{ and } 250 \text{ kg/m}^3$ of fly ash had a suitable workability (slump > 100 mm). From these two, the mixture with 200 kg/m^3 of fly ash was chosen since it did not have sand replacement with fly ash—which would have potentially introduced a new and insufficiently known influence into the research—and it did not require the use of superplasticizers (which neither NAC nor RAC required).

Determining the mixture proportions, as with NAC, first a particle size distribution of the aggregate mixture was calculated. The mass percentages in the aggregate mixture were 50%, 30% and 20% for fractions I, II and III, respectively, Figure 3.11.

Fraction				Mass percentage passing through sieve size (%/mm)									
mm	%	0.063	0.125	0.250	0.500	1	2	4	8	16	22.4	31.5	45
0-4	50		1	13	58	68	78	94	100	100	100	100	100
4-8	30					1	1	8	85	100	100	100	100
8-16	20						0	0	1	80	100	100	100
Total	100		0	6	29	34	40	49	76	96	100	100	100

FIGURE 3.11: Aggregate mixture distribution for HVFAC

Again, through the volumetric equation (Equation 3.3), the total amount of aggregate (used in the OD condition) was determined and then divided into fractions from the particle size distribution. The percentage of entrained air was determined as 1.5% by testing trial mixtures. No admixtures were used.

$$\frac{m_c}{\gamma_c} + \frac{m_{FA}}{\gamma_{FA}} + \frac{m_w}{\gamma_w} + \frac{m_{NA,I}}{\gamma_{NA,I}} + \frac{m_{NA,II}}{\gamma_{NA,II}} + \frac{m_{NA,III}}{\gamma_{NA,III}} + V_a = 1$$
(3.3)

where γ_{FA} was taken as 2075 kg/m³.

The final mixture proportions are given in Table 3.6.

TABLE 3.6: Mixture proportions of HVFAC

					Nat	ural aggre	gate	
Concrete	m_c	m_{FA}	m_w	w/(c+FA)	$m_{NA,I}$	$m_{NA,II}$	$m_{NA,III}$	V_a
	(kg/m^3)	(kg/m^3)	(kg/m^3)	(-)	(kg/m^3)	(kg/m^3)	(kg/m^3)	(%)
HVFAC	200	200	195	0.488	810	486	324	1.5

As with NAC and RAC, the mixing procedure began with mixing sand and coarse aggregate in the mixing pan for approximately 1 min. After this, cement and fly ash were both added and everything was mixed together for another minute. Finally, water was added during the next 30 s and the mixing continued for approximately another 2.5 min—giving an overall mixing time of 5 min.

3.4 Reinforced Concrete Beams

3.4.1 Beam Design and Specifications

This was the main experimental phase of the research. After determining properties of the component materials and their suitability for concrete production and after verifying the concrete mix designs, reinforced concrete beams were cast in order to test their long-term behaviour under sustained loading.

For this purpose, the following experimental programme, explained in detail below, was carried out. The decision was made to test reinforced concrete beams in four-point bending, as this type of loading causes only bending moments in the part of the span between the applied loads, thus eliminating any influence of shear stresses, Figure 3.12. This makes it easier to analyse the effects of creep and shrinkage.

Upon consideration of the previously published studies, taking into account the most usual dimensions of the tested specimens, a choice was made to produce beams with a 3.2 m span and a b/h = 160/200 mm cross-section (Espion, 1988). This meant a span-to-height ratio l/h = 20. Although this value may be more representative of slabs than beams, it was retained; it was chosen as sufficient to provide measurable deflections, achievable with the



FIGURE 3.12: Schematic representation of a four-point bending test

available loading equipment. The actual wooden formwork designed for the beams had a length of 3.5 m; with a 3.2 m span, a 150 mm overhang was provided on each side for adequate reinforcement anchorage.

The beams were reinforced with $2\oslash 10$ mm bars as bottom reinforcement (a reinforcement ratio of $\rho=0.58\%$) and $2\oslash 6$ mm bars as top reinforcement (a reinforcement ratio of $\rho'=0.21\%$). For transverse reinforcement, $\oslash 6$ mm stirrups were adopted and spaced at 100 mm in the shear spans and 200 mm between the applied loads. The concrete cover was 20 mm. A reinforcement plan of the beams is shown in Figure 3.13 and the reinforcement in the formwork in Figure 3.14.

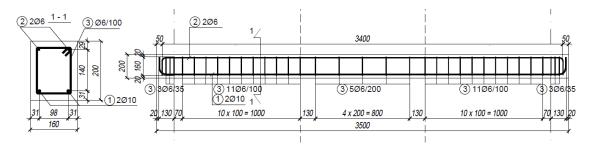


FIGURE 3.13: Reinforcement layout of the beams

From the stated properties of the beams and the target compressive strength of the concretes, it was possible to calculate the flexural strength (ultimate bending moment M_{ult}) of the beams from the following equation—assuming a parabola–rectangle stress–strain

FIGURE 3.14: Reinforcement in the formwork

relation for concrete and a bi-linear stress-strain relation for reinforcement, with a horizontal top branch

$$M_{ult} = A_{sl} f_{yl} d(1 - 0.513 \frac{A_{sl} f_{yl}}{b d f_{cm}})$$
 (3.4)

where A_{sl} is the area of the longitudinal tensile reinforcement, f_{yl} is the reinforcement yield stress, d is the cross-section effective depth, b is the cross-section width and f_{cm} is the mean concrete compressive strength.

$$M_{ult} = 157 \cdot 574 \cdot 169 \cdot (1 - 0.513 \cdot \frac{157 \cdot 574}{160 \cdot 169 \cdot 26.25}) \cdot 10^{-6} = 14.24 \, kNm$$
 (3.5)

It was also possible to calculate the cracking moment M_{cr} of the beams by using the predicted value of the reduced flexural tensile strength of the concretes—taking into account the size effect on tensile strength and the reduction due to shrinkage—equal to the mean axial tensile strength, as recommended in (Pecić, 2012).

$$f_{ctm} = 0.3 \cdot (f_{cm} - 8)^{\frac{2}{3}} = 0.3 \cdot (26.25 - 8)^{\frac{2}{3}} = 2.08 MPa$$
 (3.6)

$$M_{cr} = W_c \cdot f_{ctm} = \frac{160 \cdot 200^2}{6} \cdot 2.08 \cdot 10^{-6} = 2.21 \, kNm$$
 (3.7)

where W_c is the section modulus of the gross concrete cross-section.

Both of these moments should be taken as first approximations, with real values expected to vary. However, knowing them enables the calculation of an appropriate long-term load. By 'appropriate load', what is meant is a load that satisfies several criteria simultaneously (the most important one being whether it is achievable using available equipment).

First, the bending moment induced by that load should not exceed ca. $0.6 \cdot M_{ult}$, or the so-called 'service load'. Second, this bending moment should be sufficiently greater than the cracking moment so that a developed cracked state of the beam is produced, at least in the middle part of the span. Finally, and in connection with this, certain target initial strains and stresses in both concrete and tensile reinforcement need to be met. The initial strain in the tensile reinforcement should be in the range of 1.0-1.5% so that, with a modulus of elasticity E_s of 210 GPa, the stress is in the range of 210–315 MPa. This would ensure a developed cracked state and initial crack-widths in the order of 0.08-0.1 mm.

At the same time, the compressive stress in the top fibre of the section must be below the adopted $\sigma_c/f_{cm}(t_0)$ ratio. A final constraint to keep in mind is the availability of the applied load and the limits imposed by the test setup design—the space requirements.

The stresses and strains in the cracked cross-section were calculated assuming plane sections, no contribution of concrete in tension and linear elastic material properties.

If the internal forces consist of a concrete compressive force, a top reinforcement compressive force and a bottom reinforcement tensile force, then, from moment and axial force equilibrium conditions, the neutral axis position can be calculated.

$$\xi^{2} + 2 \cdot \alpha_{e} \cdot (\rho + \rho') \cdot \xi - 2 \cdot \alpha_{e} \cdot \left(\rho + \rho' \cdot \frac{d_{2}}{d}\right) = 0$$
(3.8)

Where ξ is the neutral axis position coefficient, α_e is the modular ratio (ratio of steel-to-concrete moduli of elasticity), ρ is the longitudinal tensile reinforcement ratio, ρ' is the longitudinal compressive reinforcement ratio, d_2 is the distance of the center of gravity of

the compression reinforcement to the top compressed fibre of the cross-section and d is the beam effective depth.

The modulus of elasticity is estimated using Eurocode 2 provisions (EN 1992-1-1, 2004) as

$$E_{cm} = 22 \cdot (f_{cm}/10)^{0.3} = 22 \cdot 26.25^{0.3} = 29.39 \, GPa$$
 (3.9)

With an effective depth of 169 mm and a compressive reinforcement centre of gravity 29 mm from the top of the beam, the neutral axis position can be calculated as

$$\xi^2 + 2 \cdot \frac{210}{29.39} \cdot (0.58 + 0.21) \cdot 10^{-2} \cdot \xi - 2 \cdot \frac{210}{29.39} \cdot \left(0.58 + 0.21 \cdot \frac{29}{169}\right) \cdot 10^{-2} = 0 \quad (3.10)$$

Solving Equation 3.10 yields a result $\xi = 0.246$ and a compressive zone depth of 0.246 · 169 = 41.6 mm. Then, the compressive stress in the top fibre is given by

$$\sigma_c = \frac{M}{b \cdot d^2} \cdot \frac{\xi}{\frac{\xi^2}{2} \cdot (1 - \frac{\xi}{3}) + \alpha_e \cdot \rho' \cdot (\xi - \frac{d_2}{d}) \cdot (1 - \frac{d_2}{d})}$$
(3.11)

From the prescribed $\sigma_c/f_{cm}(t_0)$ ratios, the maximum bending moment in the beam can be calculated.

In the case of beams loaded after 28 days, this ratio is 0.45 and the maximum compressive stress is $0.45 \cdot 26.25 = 11.81$ MPa. The maximum bending moment M(28) is then calculated as 6.28 kNm. Since the beam self-weight is approximately $0.16 \cdot 0.2 \cdot 25 = 0.8$ kN/m, the imposed force acting at the thirds of the span, is

$$G(28) = \frac{M(28) - g \cdot l^2 / 8}{a} = \frac{6.28 - 0.8 \cdot 3.2^2 / 8}{1.07} = 4.92 \, kN \tag{3.12}$$

where G(28) is the imposed force applied at thirds of the beam span at a concrete age of 28 days.

The total imposed load is 2.4.92 = 9.84 kN or ca. 984 kg. The stresses and strains are

$$\sigma_c = 0.45 \cdot 26.25 = 11.8 MPa \tag{3.13}$$

$$\sigma_{s,t} = \alpha_e \cdot \sigma_c \cdot \frac{1-\xi}{\xi} = \frac{210}{29.39} \cdot 11.8 \cdot \frac{1-0.249}{0.249} = 258.9 MPa$$
 (3.14)

$$\sigma_{s,c} = \alpha_e \cdot \sigma_c \cdot \frac{\xi - d_2/d}{d_2/d} = \frac{210}{29.39} \cdot 11.8 \cdot \frac{0.249 - 29/169}{29/169} = 25.4 MPa$$
 (3.15)

$$\varepsilon_c = \sigma_c / E_{cm} = 11.8 / 29390 = 0.4\%_0$$
 (3.16)

$$\varepsilon_{s,t} = \sigma_{s,t}/E_s = 258.9/210000 = 1.23\%_0$$
 (3.17)

$$\varepsilon_{s,c} = \sigma_{s,c}/E_s = 25.4/210000 = 0.12\%$$
 (3.18)

The tensile reinforcement strains and stresses are in the targeted range. The imposed bending moment-to-cracking moment ratio is $M(28)/M_{cr} = 6.28/2.21 = 2.84$ and the imposed bending moment-to-flexural strength is $M(28)/M_{ult} = 6.28/14.24 = 0.44$. These ratios and the values of strains and stresses are promising in terms of an expected developed cracked state. The mean value of crack widths can be predicted according to Eurocode 2 provisions. Since the Eurocode 2 procedure calculates the characteristic crack widths w_k , to obtain the mean value w_m , w_k must be divided by 1.7.

$$w_m = \frac{s_{r,max}}{1.7} \cdot (\varepsilon_{sm} - \varepsilon_{cm}) \tag{3.19}$$

where $s_{r,max}$ is the maximum crack spacing, ε_{sm} is the mean tensile strain in the bottom reinforcement and ε_{cm} is the mean compressive strain in the concrete between cracks.

$$s_{r,max} = k_3 \cdot c + k_1 \cdot k_2 \cdot k_4 \cdot \emptyset / \rho_{p,eff}$$
(3.20)

where $k_3 = 3.4$, c is the cover to the longitudinal reinforcement, k_1 is a coefficient taking into account bond properties (=0.8 for high-bond bars), k_2 is a coefficient taking into account the strain distribution (=0.5 for bending), $k_4 = 0.425$, \oslash is the longitudinal reinforcement diameter and $\rho_{p,eff}$ is the effective reinforcement ratio.

$$\rho_{p,eff} = A_{sl}/A_{c,eff} = A_{sl}/(b \cdot h_{c,ef})$$
(3.21)

where $A_{c,eff}$ is the effective area of the concrete in tensions surrounding the reinforcement and $h_{c,ef}$ is the lesser of $2.5 \cdot (h-d)$, (h-x)/3 or h/2

$$\rho_{p,eff} = 157/[160 \cdot (200 - 0.246 \cdot 169)/3] = 1.86\%$$
 (3.22)

$$s_{r,max} = 3.4 \cdot 26 + 0.8 \cdot 0.5 \cdot 0.425 \cdot 10/0.0186 = 179.8 \, mm$$
 (3.23)

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{\sigma_{s,t} - k_t \cdot \frac{f_{ct,eff}}{\rho_{p,eff}} \cdot (1 + \alpha_e \cdot \rho_{p,eff})}{E_s}$$
(3.24)

where k_t is a factor dependent on the duration of the load (=0.6 for short-term loading) and $f_{ct,eff}$ is the mean concrete axial tensile strength at first crack occurrence (= f_{ctm}).

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{258.9 - 0.6 \cdot \frac{2.08}{0.0186} \cdot (1 + 7.34 \cdot 0.0186)}{210} = 0.8\%$$
 (3.25)

Finally, the mean crack width is

$$w_{m,28} = \frac{179.8}{1.7} \cdot 0.00087 = 0.09 \, mm \tag{3.26}$$

This value is within the predicted and desired range.

In a similar manner, the calculations can be performed for the beams loaded after seven days, keeping in mind that the targeted $\sigma_c/f_{cm}(7)$ ratio is 0.60. Using Eurocode 2 formulae for predicting mechanical properties at ages other than 28 days, the procedure can be repeated.

$$f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm} \tag{3.27}$$

$$f_{ctm}(t) = (\beta_{cc}(t))^{\alpha} \cdot f_{ctm}$$
(3.28)

$$E_{cm}(t) = (f_{cm}(t)/f_{cm})^{0.3} \cdot E_{cm} = (\beta_{cc}(t))^{0.3} \cdot E_{cm}$$
(3.29)

$$\beta_{cc} = exp\left\{s\left[1 - \left(\frac{28}{t}\right)^{\frac{1}{2}}\right]\right\} = 0.818\tag{3.30}$$

where the coefficient $\alpha = 1$ for a concrete age t < 28 days and s is dependent on the cement type (=0.2 for class CEM 42.5R).

Hence, the mechanical properties after seven days are

$$f_{cm}(7) = 0.818 \cdot 26.25 = 21.47 \, MPa \tag{3.31}$$

$$f_{ctm}(7) = (0.818)^1 \cdot 2.08 = 1.70 MPa$$
 (3.32)

$$E_{cm}(t) = (0.818)^{0.3} \cdot 29.39 = 27.65 \, GPa$$
 (3.33)

Chapter 3 Experimental Programme – Long-term Behaviour of Reinforced Concrete Beams Under Sustained Loads

$$\xi^2 + 2 \cdot \frac{210}{27.65} \cdot (0.58 + 0.21) \cdot 10^{-2} \cdot \xi - 2 \cdot \frac{210}{27.65} \cdot \left(0.58 + 0.21 \cdot \frac{29}{169}\right) \cdot 10^{-2} = 0 \quad (3.34)$$

The neutral axis position is calculated as $\xi = 0.252$ using Equation 3.34 and the compressive zone depth is $0.252 \cdot 169 = 42.6$ mm.

By limiting the compressive stress to $0.6 \cdot 21.47 = 12.88$ MPa, the required imposed bending moment is calculated from Equation 3.11 as M(7) = 7.01 kNm. Since the beam self-weight is approximately $0.16 \cdot 0.2 \cdot 25 = 0.8$ kN/m, the imposed force acting at the thirds of the span, is calculated as

$$G(7) = \frac{M(7) - g \cdot l^2 / 8}{a} = \frac{7.01 - 0.8 \cdot 3.2^2 / 8}{1.07} = 5.60 \, kN \tag{3.35}$$

The total imposed load is then 2.5.6 = 11.2 kN or ca. 1120 kg. The stresses and strains are

$$\sigma_c = 0.60 \cdot 21.47 = 12.9 MPa \tag{3.36}$$

$$\sigma_{s,t} = \frac{210}{27.65} \cdot 12.9 \cdot \frac{1 - 0.252}{0.252} = 290 \, MPa \tag{3.37}$$

$$\sigma_{s,c} = \frac{210}{27.65} \cdot 12.9 \cdot \frac{0.252 - 29/169}{29/169} = 31.1 MPa$$
 (3.38)

$$\varepsilon_c = 12.9/27650 = 0.46\% \tag{3.39}$$

$$\varepsilon_{s,t} = 290/210000 = 1.38\% \tag{3.40}$$

$$\varepsilon_{s,c} = 31.1/210000 = 0.15\%$$
 (3.41)

Again, the tensile reinforcement strains and stresses are in the targeted range. The imposed bending moment-to-cracking moment ratio is $M(7)/M_{cr} = 7.01/1.8 = 3.88$ and the imposed bending moment-to-flexural strength is $M(7)/M_{ult} = 7.01/14.24 = 0.49$.

Finally, the crack widths are calculated as

$$\rho_{p,eff} = 157/[160 \cdot (200 - 0.252 \cdot 169)/3] = 1.88\%$$
(3.42)

$$s_{r,max} = 3.4 \cdot 26 + 0.8 \cdot 0.5 \cdot 0.425 \cdot 10/0.0188 = 178.8 \, mm$$
 (3.43)

$$\varepsilon_{sm} - \varepsilon_{cm} = \frac{290 - 0.6 \cdot \frac{1.70}{0.0188} \cdot (1 + 7.8 \cdot 0.0188)}{210} = 1.08\%$$
 (3.44)

$$w_{m,7} = \frac{178.8}{1.7} \cdot 0.00108 = 0.11 \, mm \tag{3.45}$$

As can be seen, the initial stress, strain and crack width values for beams loaded after 7 days are very close to those for the beam loaded after 28 days, even slightly higher. This is because of the higher $\sigma_c/f_{cm}(t_0)$ ratio. In the case of the beam loaded after seven days, if we calculate the $\sigma_c(7)/f_{cm}$ ratio as 12.8/26.25 = 0.49 it can be seen that through compressive strength increase—from 21.47 to 26.25 MPa—the $\sigma_c/f_{cm}(t_0)$ ratio will drop to 0.49 by the 28^{th} day. Creep will further decrease the concrete compressive stress, to a value very close to 0.45. This means that all six beams will have a $\sigma_c(28)/f_{cm}$ ratio equal to 0.45.

3.4.2 Beam Casting

In the experimental phase, two beams were cast from each concrete, one to be loaded after 7 days and the other after 28 days. These loading ages were selected as being representative of 'early' and 'standard' loading ages of typical reinforced concrete structures, e.g. buildings.

Depending on the concrete and loading age, the beams were named NAC7, NAC28, RAC7, RAC28, HVFAC7 and HVFAC28. The beams were cast in the Faculty of Civil Engineering's Laboratory for Concrete and Rheology in the following sequence—NAC beams on January 25, RAC beams on February 2 and HVFAC beams on February 10, 2016. A vertical-axis Controls pan mixer with a 701 capacity was used, Figure 3.15. One

FIGURE 3.15: Vertical-axis pan mixer

day prior to casting, two formworks were prepared by placing the previously delivered reinforcement cage—provided and prepared by Deneza M, Belgrade. The formworks were lubricated by commercially available formwork oil, Oplatonal. The volume of each beam was $0.16 \cdot 0.2 \cdot 3.5 = 0.112 \text{ m}^3$ and the pan mixer was loaded up to 40 1 in each mixing. This means that the beams were cast in approximately four batches each. To aid placing, a 50 mm diameter vibrator was used to homogenize the concrete and release entrapped air, Figure 3.16. After casting, the beams were cured for 24 h. During this period, they

FIGURE 3.16: Placing concrete in the formwork

were covered with jute matting which was kept wet and above which plastic sheets were placed. After 24 h, one side of the formwork was opened and the beams were slightly moved to separate them from the other side of the formwork; thus, they were left lying on the bottom side of the formwork, drying under laboratory conditions. The accompanying test specimens (described in section 3.4.3) were cured in the same way.

Strictly speaking, this curing regime is not in accordance with the Serbian design code for reinforced concrete structures (Ivković and Pakvor, 1989) which prescribes curing of concrete for at least seven days or until 60% of the characteristic compressive strength is reached. Since there was no testing of compressive strength after one day, the curing regime cannot be said to comply with these provisions. Nonetheless, curing concrete for only one day is standard practice in the Serbian construction industry, at least for the majority of structures such as buildings, and the aim was to simulate this in the experiment. From the insights of previous research, it was expected that this curing regime would have an impact on the evolution of mechanical properties of the concretes, especially HVFAC.

The laboratory in which the experiment was conducted is situated in the basement of the Faculty of Civil Engineering. The laboratory is 8.2·12.7 m with one corner being

occupied by steel frames for testing creep, which will be explained in the subsequent section. The fact that the laboratory is situated underground and has no windows makes controlling temperature and humidity easier. The room is equipped with a Mitsubishi air-conditioning unit capable of controlling temperature. However, there is no option for directly maintaining a set RH. Prior testing of the AC unit showed that when the temperature is set at 21° C, RH will oscillate around $50 \pm 10\%$. This was deemed satisfactory and sufficiently representative of realistic conditions for indoor structural elements, and for the entire duration of the experiment the AC units were set to maintain a temperature of 21° C. Both temperature and RH were recorded with a EasyLog USB measuring device.

3.4.3 Accompanying Concrete Test Specimens

In this section, the casting and testing of accompanying concrete specimens is explained. Alongside the reinforced concrete beams, concrete specimens were necessary in order to measure and track the development of important mechanical properties of each concrete.

The mechanical properties selected for measurement were concrete compressive strength (f_c) , tensile splitting $(f_{ct,sp})$ and flexural strengths $(f_{ct,fl})$ and the modulus of elasticity (E_c) . For concrete compressive strength, 100/100/100 mm cubes were selected and tested according to (ISO 4012, 1978). This was considered to be the most practical option, requiring the least amount of concrete and it was possible since the maximum aggregate size used was $d_{max} = 16$ mm. For testing splitting tensile strength, 0150/150 mm cylinders were used and for flexural tensile strength, 120/120/360 mm prisms; tests were carried out according to (ISO 4108, 1980) and (ISO 4013, 1978), respectively. The modulus of elasticity was determined using 0150/300 mm cylinders according to (ISO 6784, 1982).

Beside mechanical properties, it was essential to measure long-term properties of the concretes – creep and shrinkage. For this purpose, 120/120/360 mm prisms were used.

Since the evolution of concrete properties was of interest, a large number of specimens were necessary. For all mechanical properties, a measurement at a certain age (e.g., 28 days) consisted of testing three specimens; the value reported for the property is the mean value of these three results.

Concrete compressive strength was tested at six ages: 7, 28, 90, 240 and 450 days. Since all the specimens were kept in the same laboratory as the reinforced concrete beams, it was decided to determine compressive strength after 28 days for standard water curing conditions as well (in order to enable comparability with other results and codes). In total, this meant six instances of compressive strength measurements for each concrete. With three cubes necessary for each occasion, this amounted to 21 cubes cast for testing compressive strength of each concrete.

The modulus of elasticity was measured at the same ages as compressive strength: 7, 28, 90, 240 and 450 days. Since these were non-destructive tests, only three large cylinders were necessary per concrete.

The specimens were cast in steel moulds on the same day as the beams. Good placing was ensured by vibrating the specimens on a vibrating table. They were cured in the same manner – 24 h curing with wet jute matting. After this, the specimens were unmoulded and kept in the Laboratory for Concrete and Rheology alongside the beams until testing, except for the three cubes cured in a water tank for 28 days, Figure 3.17. All of the tests of mechanical properties were carried out at the Faculty of Civil Engineering's Laboratory for Testing Materials. Compressive and tensile strengths were determined on a 600 kN Amsler hydraulic press, Figures 3.18 to 3.20. The modulus of elasticity was measured using a 2500 kN Amsler hydraulic press and a Controls measuring ring with a dial indicator, Figure 3.21. Creep and shrinkage were measured on three prisms each, with creep being measured for the same loading ages as the beams: 7 and 28 days. The specimens were cast and afterward cured together with the cubes and cylinders, i.e. one day of wet curing and consequent storage in the Laboratory for Concrete and Rheology under controlled environmental conditions (as explained in section 3.4.2). The strain measurements were carried out by an INSIZE mechanical strain gauge with a 100 mm base, Figure 3.22. In order to be able to start shrinkage measurements as soon as possible, immediately after the end of the curing period—24 h after casting—the specimens' surface was dried with an electric fan and steel pins for strain measurements were glued using HBM's X60 two-component fast-curing adhesive, which enabled measurements after just 15 min. For

FIGURE 3.17: Concrete test specimens

FIGURE 3.18: Compressive strength testing

FIGURE 3.19: Splitting tensile strength testing

FIGURE 3.20: Flexural tensile strength testing

FIGURE 3.21: Modulus of elasticity testing

FIGURE 3.22: Mechanical strain gauge

shrinkage, the steel pins were positioned in the middle of two opposite sides of each prism. In this way, it was possible to start shrinkage measurements 24 h after casting, i.e. almost immediately after the end of the curing period. During the entire experiment, the prisms for measuring shrinkage were held in the upright position, Figure 3.23. Creep was

FIGURE 3.23: Prisms for measuring shrinkage

tested in special steel frames, using a lever arm mechanism to multiply the weight of the applied load, Figure 3.24. Each frame allows for three prisms to be placed inside, with the rotatable steel plates above them ensuring axial load application, as much as possible.

One important constraint existed in the case of steel frames. Only four frames were functional and usable in the laboratory and six were necessary – three concretes and two loading ages. Because of this, creep tests were not performed on NAC, only shrinkage. This enabled the complete testing of RAC and HVFAC for both loading ages. Omitting NAC from creep tests was chosen as the least bad option since there are already relatively abundant results for NAC creep (for this range of compressive strengths, loading ages and other relevant conditions) which are in most cases successfully predicted by existing models (Al-Manaseer and Prado, 2015; Bažant and Baweja, 1995c; Wendner et al., 2015b). Here also, it was considered that creep of this NAC will be successfully predicted by existing models and to a certain degree deduced from strain results on reinforced concrete beams. To assess the multiplication factor of the frames, a trial test was carried out on each frame. Concrete prisms were set in the frame and a load cell was placed on top of

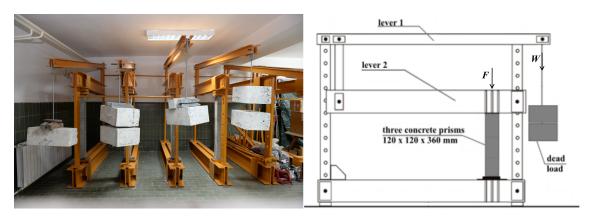


FIGURE 3.24: Steel frames for testing creep – in the laboratory (left) and scheme (right)

them to electronically record the force acting on the prisms. Before hanging any load to the frame, a force of 40.6 kN was recorded on the load cell, simply from the self-weight of the frame. Afterward, measured weights were hung on the frame and the force recorded for each step of loading as well as unloading. In this way the following equation was derived for the force in the frame, valid for all frames

$$F = 0.99 \cdot W + 40.6 \tag{3.46}$$

where F is the force acting on the prisms in the frame (kN) and W is the weight of the load hung on the frame (kN).

Steel pins for measuring strains were glued on all four sides of the specimens, similar to the specimens for shrinkage. In this case, SikaDur 31 two-component adhesive was used since it has a 24 h setting time and there was no time constraint – the first measurements were seven days after casting. Also, groups of three prisms were glued together using the same adhesive, controlling for their verticality.

On the day of loading—after 7 and 28 days—compressive strength, tensile strength and the modulus of elasticity were tested. From the compressive strength and the desired $\sigma_c/f_{cm}(t_0)$ ratio (whose precise determination will be explained in the following section) the necessary force acting on the prisms was calculated. From this value and Equation 3.46 the required weight of load was determined. For the specimens loaded after 7 days, with a 14400 mm² specimen area and a 12.88 MPa stress limit (calculated in section 3.4.1), a 185.5 kN force would be necessary. From Equation 3.46, an imposed load of 146

kg can be determined. The specimens loaded after 28 days had a 11.81 MPa stress limit (calculated in section 3.4.1) and a 170 kN force would be required. From Equation 3.46, an imposed load of 130.7 kg can be determined. For loading, lead weights were used in combination with 200/300/800 mm segments of reinforced concrete beams (left over after the previous experiment in (Ignjatović, 2013).

First, the block of three glued prisms was placed in the frame. The upper steel beams were then raised and held in that position until the prisms were positioned, centred and the remaining gap between the upper steel plate and the prisms filled by wedging additional steel plates, Figure 3.25. Before lowering the steel beams the initial or 'zero' measurement was read. Then, the steel beams were lowered and the previously chosen and measured load hung onto the frame. The first reading was taken after 5 min, regarded as the elastic deformation of the specimens. Subsequently, measurements were taken after 1 h and 6 h on the first day, every day during the first week, every seven days during the first month and every 30 days until 450 days.

FIGURE 3.25: Prisms positioned in the frame

Given the information and methods described above, it is clear that the creep and shrinkage measurements were not fully compliant with existing standard procedures and recommendations (Acker et al., 1998; C512/512M-10, 2010; SRPS U.M1.027:1983, 1983; SRPS U.M1.029:1983, 1983). The experimental programme deviates from some standards in specimen size and shape, loading device, measurement base length and curing

and storing conditions. However, the standards themselves vary widely in these aspects and the main points of importance have been achieved in this experiment: controlled environmental conditions for storing the specimens (the same as the beams which they accompany), a base of measurements in the middle third of the specimens (an equally distributed stress state and avoidance of edge effects), allowed unrestrained shrinkage for shrinkage specimens and a constantly applied axial compression force for creep specimens.

3.4.4 Beam Loading Procedure and Measurements

As stated in section 3.4.1 the beams were cured for 24 h. After this period, one side of the formwork was opened and the equipping of the beam with measuring devices began. In order to continue, it is first necessary to set out an explanation and justification of the experiment disposition and of the chosen measurement procedures.

First, the experiments disposition: a four-point bending test with sustained loads. It was necessary to design a test setup that would overcome as many of the deficiencies of previous experiments as possible. The most important characteristic that was desired was instantaneous loading of the beams. This was observed to be a major deficiency in previous experiments, in some of which, the period between loading and first measurements lasted up to 8 h (Washa and Fluck, 1952). Beside this, the test setup had to enable the application of sufficient loading that would cause a developed state of cracks in the beam with an easily observable and measurable deflection. Since the load would consist of 200/300/800 mm segments of reinforced concrete beams (left over after the previous experiment in (Ignjatović, 2013)), this would need to be taken into account when designing the test setup, Figure 3.26. The following design was adopted: for each beam, a steel support structure was designed and constructed by Čelikinvest d.o.o., Belgrade, Figure 3.27. As can be seen, each one consisted of two Vierendeel columns constructed from 80/80/3 mm rectangular steel tubes, connected by a longitudinal beam, a 80/40/3 mm rectangular steel tube. The height of the columns was chosen so that measurements on the beam could be made from a comfortable standing position; hence, the supports were positioned 1100 mm above the floor.

The supports were designed so that one would be fixed and the other free. To enable rotation, they were made from $\bigcirc 51/3.5$ mm steel tubes—with strengthening inside—either

FIGURE 3.26: Load for beams

fixed or free to roll, Figure 3.28. The role of the longitudinal beam was to prevent differential movement of the columns and to enable the placement of dial indicators for deflection measurements. The load application was designed in the following manner.

FIGURE 3.27: Steel support structure

After manually raising the beams onto the supports—usually 4–5 persons, using steel rods and reinforcement loops in the beams, Figure 3.29—two pairs of ' Π ' shaped steel 'hands' were placed over the beam—dividing the span into three parts (107–106–107 cm), Figure 3.30. The 'hands' were made from 60/60/3 mm rectangular steel tubes with steel plates on their ends with drilled $\oslash 13$ mm holes.

For each beam, a steel cart was designed for placing the load, Figure 3.31. The cart was made from 60/60/3 mm and 40/40/2 mm rectangular steel tubes. The weight of the

FIGURE 3.28: Steel support roller – fixed (left) and free (right)

steel cart and 'hands' was 60 kg; this was taken into account when the applied load was calculated. It also had vertical steel plates welded to its upper side and horizontal steel plates welded to its bottom side, all with drilled $\oslash 13$ mm holes. The purpose of the

FIGURE 3.29: Raising beams onto supports

FIGURE 3.30: Steel 'hands' on beams

horizontal plates was to enable the placement and removal of wheels. The wheels would be mounted on the cart; the cart would be loaded by placing pre-measured concrete beam segments; the cart would be driven underneath the beams and the vertical plates on the cart aligned with the vertical plates on the end of the steel 'hands', Figure 3.32 (photo is from the workshop, before painting). The steel cart would then be raised by four manual car-jacks in each corner of the cart; bolts would be screwed to connect the 'hands' with the cart; the wheels would be removed from the cart, Figure 3.33. Finally, a 'zero' reading of strains and deflections would be made (more on this later) and the car-jacks would be released simultaneously; thus, an instant application of the load would be achieved, Figure 3.34. The method for the precise determination of the applied loads is given in section 3.4.1. Precise values for each beam are given in section 4.3.1. Deflections were

FIGURE 3.31: Steel cart

FIGURE 3.32: Steel cart aligned with steel 'hands'

FIGURE 3.33: Raising the steel cart

FIGURE 3.34: After releasing the car-jacks

measured in two ways. First, the deflections after applying the load were measured with dial indicators. Seven dial indicators were positioned above each beam. They were held with magnetic holders placed on the longitudinal steel beam and were in contact with a small steel plate glued on the top surface of the beams, Figure 3.35. The position of the dial indicators, relative to one support axis, is given in Table 3.7 for each beam.

The indicators above the supports and in the shear span were generic commercially available indicators with 0.01 mm precision and a 10 mm range; the three indicators in the middle span were SZOMET CZ indicators with 0.01 mm precision with a 30 mm range. Prior to their use, the indicators were calibrated, Figure 3.36. The first or 'zero' reading on the indicators was taken after positioning and bolting the cart below the beam, but before releasing the car-jacks. The first measurement was taken 5 min after loading and subsequently after 1 h and 6 h on the first day, every day during the first week, every seven

days during the first month and every 30 days until 450 days. However, this way of mea-

FIGURE 3.35: Dial indicator

FIGURE 3.36: Calibration of dial indicator

suring deflections obviously cannot measure the deflection of the beams from self-weight since its 'zero' reading is only made after raising the beams on supports. Indeed, with dial indicators it is impossible. To overcome this, a method using geodetic measurements was devised. Although the self-weight of the beams should not crack the beams—and a

TABLE 3.7: Position of dial indicators

Daam	Position relative to support (mm)							
Beam	I_1	I_2	I_3	I_4	I_5	I_6	I_7	
NAC7	-25	570	1170	1570	1970	2580	3170	
NAC28	0	600	1200	1600	1940	2600	3200	
RAC7	10	610	1210	1610	2000	2600	3200	
RAC28	-10	595	1200	1590	1990	2590	3190	
HVFAC7	5	600	1200	1590	2000	2600	3200	
HVFAC28	-5	595	1195	1595	1990	2590	3185	

deflection of only approximately 0.4 mm was expected (calculated as an elastic deflection of the uncracked section under distributed self-weight) i.e. 4–7% of the initial deflection due to the applied load—it was important to measure this deflection. One reason is the verification of the elastic deflection prediction of the uncracked beams and the other is the verification that the beams remained uncracked until loading—premature cracking of the beams would be detected through suspiciously large deflections from self-weight.

This new method was as follows: after the curing period of the beam i.e. 24 h, five steel caps were glued onto the upper surface of each beam. The exact position of each cap relative to one support is given in Table 3.8. Some differences between their positions on each beam are noticeable. The aim was to position them close to supports, force application positions and the middle of the span; however, some deviations were unavoidable.

TABLE 3.8: Position of steel caps for geodetic measurements

D	Position relative to support (mm)						
Beam	C_1	C_2	C_3	C_4	C_5		
NAC7	20	1230	1610	1930	3120		
NAC28	50	1260	1640	2000	3150		
RAC7	60	1260	1560	1960	3160		
RAC28	40	1240	1640	1940	3140		
HVFAC7	50	1250	1650	1950	3150		
HVFAC28	50	1250	1650	1940	3140		

The measurements were performed with a precise self-adjusting level instrument Zeiss 007 KONI and a vertical ruler with a millimeter graduation and spherical level hangs up on it, Figures 3.37 and 3.38. The accuracy of these measurements was assessed as 0.1 mm. A leveling benchmark was positioned on one of the columns in the laboratory. First, two

FIGURE 3.37: Precise self-adjusting level instrument

FIGURE 3.38: Ruler on a steel cap next to a dial indicator

days after casting the beams, while still in the formwork i.e. prior to any movement, the

initial reading was taken. Second, immediately after raising the beam onto the supports the second reading was taken. With the first measurement in the formwork, an initial diagram of the relative vertical position of all the steel caps could be obtained i.e. an initial 'centre-line' of the beam. After the second reading a new 'centre-line' could be drawn, consisting of the deflection from self-weight, but superimposed on the initial 'centre-line'. Hence, after deducting the relative positions of the first reading from the second, the final value of deflections from self-weight could be calculated, Figure 3.39. After these two measurements, additional ones were performed after 28, 90, 180, 365 and 450 days, as a control of the dial indicator measurements.

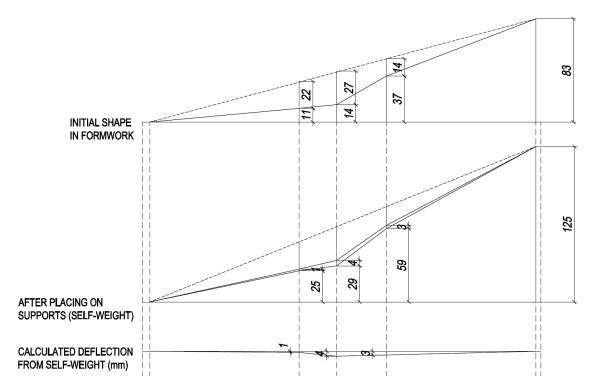


FIGURE 3.39: Representation of self-weight deflection calculation

Strains were measured using the same INSIZE mechanical strain gauge with a 100 mm base, as for creep and shrinkage prisms, Figure 3.22. Of interest were tensile strains in the bottom reinforcement and the compressive strains in the concrete. This type of strain gauge requires special steel pins and their position on the beam is given in Figure 3.40. Pins were present on both sides of each beam.

Since the four-point bending test provides a constant bending moment in the span between the applied forces, strain readings were concentrated in this area; only one reading position was placed adjacent to the load application position, in the shear spans.

To measure tensile strains in the bottom reinforcement, the pins were placed at the height of the bottom bars, 31 mm from the bottom of the beam. These pins were glued directly onto the concrete surface using the SikaDur 31 two-component adhesive. Through prior literature review (Cottingham et al., 1961; Jaccoud and Favre, 1982; Washa and Fluck, 1956) and a trial beam test, this type of pin position was determined to give sufficiently similar results as when the pins were placed 'directly' on the reinforcement.

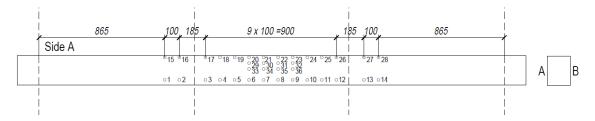


FIGURE 3.40: Layout of steel pins for strain measurements

For the top reinforcement, measuring strains 'directly' was never on option since the perpendicular steel bars necessary for this type of measurement would decrease the compressive zone of concrete. Since the accent of this experiment was not placed on the compressive reinforcement as a variable parameter, these strains were not measured; rather, they were calculated from the strain distribution in the cross-section. In all sections, beside the pins at the height of the bottom reinforcement, pins were positioned as near to the top of the beam as possible, 5 mm from the top. To obtain a strain distribution, in the middle of the beam, in three sections (Figure 3.40) steel pins were positioned along the height of the beam: at heights of 31, 115, 155 and 197 mm. In this way, the change in the position of the neutral axis could be monitored more precisely.

Finally, cracks were monitored, viz. crack widths and crack propagation. This was especially important for several reasons. First, the aim was to assess the physical implications of deflection calculations – the lowering of the neutral axis due to creep (Ghali et al., 2002; Pecić, 2012). This would be enabled by coupling the crack propagation measurements with strain measurements. Second, the aim was also to assess whether there exist differences in the cracking behaviour between NAC, RAC and HVFAC beams, already

investigated under short-term loading by previous studies (Arezoumandi et al., 2015; Ignjatović et al., 2013; Kang et al., 2014).

A first inspection of each beam was performed after raising it on supports. Subsequently, 1 h after loading, cracks were measured in detail; their position and lengths were identified and highlighted with a marker and their widths were measured, Figure 3.41. All measurements were performed under a flash light and crack widths were measured with a commercially available crack gauge, Figure 3.42. Further measurements were performed 7, 28, 90, 180, 365 and 450 days after loading.

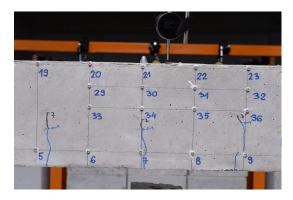


FIGURE 3.41: Marking crack lengths and widths

FIGURE 3.42: Measuring crack widths with a crack gauge

A detailed listing of all measurements, in raw data form, are provided in Appendix A.

Finally, since the majority of the measurements in this experimental programme were manual, it was especially important to keep the measurement error and uncertainty at a minimum. One way of doing so is to have the same type of measurement be taken always under the same conditions (time of day, reading position, etc.) and by the same person. Hence, every testing of mechanical properties of concrete was carried out by a (at the time) fellow PhD student, teaching assistant and colleague – Aleksandar Radević. The geodetic measurements were performed by professor Branislav Bajat and (at the time) teaching assistant Milutin Pejović, also from the University of Belgrade's Faculty of Civil Engineering. The majority of crack measurements were performed by a fellow PhD student, teaching assistant and colleague—Vedran Carević; some early measurements were performed by assistant professor Ivan Ignjatović, also from the University of Belgrade's Faculty of Civil Engineering. Finally, all of the readings on dial indicators and using the

mechanical strain gauge (on prisms and beams) were carried out by the author of this thesis, Nikola Tošić.

3.5 Summary

In this section, the experimental programme of the thesis was described. The main goal was to design an experiment testing the long-term behaviour of reinforced concrete beams made from recycled and waste materials, under sustained loads.

The recycled materials used were coarse RCA and the waste material was fly ash. Material properties of the component materials were determined. This included assessing aggregate, fly ash and cement properties such as density and water absorption.

Three types of concretes were prepared: NAC, RAC and HVFAC. Mixtures of all three concretes were designed and their rheological and mechanical properties were verified experimentally. The mixtures were proportioned so as to have approximately the same workability and compressive strength. An initial slump of 100–150 mm and a slump of 50–90 mm after 30 min were targeted. The aim was also a 28-day mean compressive strength of 35 MPa (on a 100 mm cubic sample).

The main part of the experiment consisted of casting six 3.2 m-span simply supported reinforced concrete beams loaded in four-point bending with a sustained load at ages of 7 and 28 days (two beams made from each concrete). The load was applied for 450 days and it was determined by adopting a fixed $\sigma_c/f_{cm}(t_0)$ for all beams loaded at the same age. On all the beams, deflections, concrete and reinforcement strains were measured. Accompanying specimens for mechanical properties, as well as shrinkage and creep were also prepared and tested.

Chapter 4

Results of the Experimental Programme

4.1 Introduction

This chapter presents the results of the experimental programme described in Chapter 3.

It is divided into two major parts – material properties of concretes and results on reinforced concrete beams. The first part presents the results on the material level of the studied concretes – NAC, RAC and HVFAC. Their physical and mechanical properties are presented: workability, fresh and hardened density, compressive and tensile strength, modulus of elasticity, shrinkage and creep. The results are presented in graphical and numerical/tabular form and briefly commented on in the text. However, a deeper analysis of the results is reserved for section 5.2.

In the second part of this chapter, the results obtained on the six reinforced concrete beams are presented. This first includes a detailed description of how the load was calculated and applied to each particular beam, depending on the measured mechanical properties of the concrete. The load was different in each case because, as explained earlier, the aim was to achieve equal $\sigma_c/f_{cm}(t_0)$ ratios in beams loaded at the same age (7 and 28 days). In section 4.3.2, the deflections of the beams are presented in full detail. In section 4.3.3, crack spacing and crack width measurements are presented. Finally, section 4.3.4 describes the measurement results of strains in the beams.

4.2 Material Properties of Concretes

4.2.1 Workability

The workability of the concrete mixes was determined through a slump test, carried out in accordance with (EN 12350-2, 2010). As was stated in section 3.1, the mixes were produced targeting an initial slump of 100–150 mm, and a slump of 50–90 mm after 30 min. These values correspond to slump classes S3 and S2, respectively, as defined in (EN 206-1, 2000), Table 4.1.

TABLE 4.1: Slump classes according to (EN 206-1, 2000)

Class	Slump in mm
S 1	10 to 40
S2	50 to 90
S 3	100 to 150
S 4	160 to 210
S 5	≥ 220

In section 3.4.2 it was explained that the volume of the concrete mixer was such that approximately 4–5 batches were necessary for each beam and a further 6–7 for the accompanying specimens. Hence, initial slump was controlled for several batches; for the slump after 30 min, one batch was chosen (usually the last one) and after measuring its initial slump, the concrete was returned into the mixer, left to rest, covered with a plastic sheet and only remixed for 10 sec every 5 min.

In accordance with (EN 12350-2, 2010), the slump type was also checked – whether it is a 'true' or 'shear' slump, i.e. whether 'the concrete remains substantially intact and symmetrical', Figure 4.1. The test is only valid if it yields a true slump.

The results of the slump test on all the mixes are given in Table 4.2. As per (EN 12350-2, 2010), the results are rounded to the nearest 10 mm.

The results in italic are for the shear slump measurements which are not valid according to (EN 12350-2, 2010). Unfortunately, slump after 30 min was not measured for HVFAC

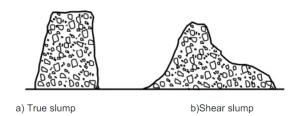


FIGURE 4.1: Forms of slump, (EN 12350-2, 2010)

TABLE 4.2: Slump test results

Batch No.	Time (min)	Slump form	Slump (mm)	Slump class
NAC 1	5	True	60	S2
NAC 4	5	Shear	150	<i>S3</i>
NAC 4	30	True	90	S 2
NAC 5	5	Shear	130	<i>S3</i>
RAC 1	5	Shear	190	S4
RAC 2	5	Shear	180	<i>S4</i>
RAC 3	5	True	180	S 4
RAC 8	5	True	70	S 2
RAC 12	5	True	80	S2
RAC 12	30	True	50	S2
HVFAC 1	5	True	70	S2
HVFAC 7	5	True	100	S 3
HVFAC 12	5	True	30	S 1

because the last batch had an initial slump of 30 mm and it was expected it would have no slump after 30 min.

From Table 4.2 it can be seen that the target slump values were only partially achieved. Initial slump was difficult to control and it varied between batches of the same concrete; shear slump can be associated with higher slump values (above 130–150 mm) – in these cases it is sometimes difficult to distinguish between true and shear slump. Initial slump was more easily controlled in the case of NAC and HVFAC although the workability of HVFAC was generally poorer than for the other concretes. However, initial slump was problematic in the case of RAC where it exceeded the target slump class S3. This can be related to the water absorption of the aggregates and its kinetics. The initial absorption is probably overestimated with the used water amount which leads to higher slump values.

Importantly, however, the 30 min slump was (barely) achieved. The 30 min slump was also achieved in the case of NAC but not in the case of HVFAC.

Nonetheless, the differences between concretes are comparable with or even smaller than the differences between different batches of the same concrete. In the end, all concretes were sufficiently workable for placement—at least in laboratory conditions—and the results were accepted as such.

The pictures of the slump measurements are shown in Figures 4.2 to 4.4.

FIGURE 4.2: Slump measurements – NAC

4.2.2 Fresh and Hardened Density

The fresh density, γ_{fresh} of the mixes was determined immediately after casting, by first measuring the weight of empty molds for accompanying specimens (cubes, cylinders and prisms), then measuring their weight with concrete inside, subtracting the weights and dividing by the volume of the mold.

FIGURE 4.3: Slump measurements – RAC

FIGURE 4.4: Slump measurements – HVFAC

The hardened densities were determined after demoulding all the specimens (45 in total for each concrete), $\gamma_{hard,1}$ and after 28 days on three 100 mm cubes used for testing compressive strength (kept in the laboratory alongside the beams), $\gamma_{hard,28}$.

The results are presented in Table 4.3, with the mean value μ rounded to the nearest 10 kg/m³ and the CoV given in percentages.

As expected, both fresh and hardened densities are in the decreasing order of NAC, RAC, HVFAC. The CoVs of measurements for all concretes are very small and the ratio of fresh-to-hardened densities is also very similar for all concrete and equal to approximately 1.04, i.e. there is a 4% reduction in density between the fresh and hardened states (after 28 days). Also, the HVFAC's hardened density is relatively low, 2200 kg/m³, but still

TABLE 4.3: Fresh and hardened densities of the concretes

	γ_{fresh}		$\gamma_{hard,1}$		Yhard,28	
Concrete	$\mu \text{ (kg/m}^3)$	CoV (%)	$\mu \text{ (kg/m}^3)$	CoV (%)	$\mu \text{ (kg/m}^3)$	CoV (%)
NAC	2430	2.67	2390	1.61	2340	1.67
RAC	2340	1.54	2310	1.01	2240	0.75
HVFAC	2300	1.27	2280	1.20	2200	1.90

well-above the threshold for normal-weight concrete of 2000 kg/m³ defined in (EN 206-1, 2000).

4.2.3 Compressive Strength

One of the two main targets when designing the concrete mixtures was the compressive strength. As explained in section 3.1, the target was a mean value of 35 MPa after 28 days on a 100 mm cubic sample. Compressive strength was tested after 7, 28, 90, 240 and 450 days on cubes kept in the laboratory alongside the beams and after 28 days on water-cured cubes. All reported measurements are average values from three cubes and the CoV within any three cubes tested on the same day, never exceeded 10%.

The results are presented in Table 4.4. The values in parentheses given in bold are 28-day compressive strengths of water-cured samples. In Table 4.5, the cube compressive strengths were converted to standard cylindrical specimens using a conversion factor of 0.75.

TABLE 4.4: Cube compressive strengths of the concretes

	$f_{cm,cube}(7)$	$f_{cm,cube}(28)$	$f_{cm,cube}(90)$	$f_{cm,cube}(240)$	$f_{cm,cube}(450)$
Concrete	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
NAC	32.9	40.7 (33.9)	40.7	45.2	43.7
RAC	32.2	37.4 (33.3)	38.8	39.2	43.7
HVFAC	21.8	30.1 (30.6)	34.5	33.0	34.1

As can be seen from the results, the target cube compressive strength of 35 MPa was overshot in the case of NAC, approximately achieved in the case of RAC and undershot

TABLE 4.5: Compressive strengths of the concretes converted to standard cylinder strength

	$f_{cm}(7)$	$f_{cm}(28)$	$f_{cm}(90)$	$f_{cm}(240)$	$f_{cm}(450)$
Concrete	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
NAC	24.7	30.5 (25.5)	30.5	33.9	32.8
RAC	24.2	28.1 (25.0)	29.1	29.4	32.8
HVFAC	16.4	22.6 (23.0)	25.9	24.8	25.6

by about 15% in the case of HVFAC. If water-cured samples are looked at, then the target is approximately achieved for both NAC and RAC, and again undershot by about 15% in the case of HVFAC. One potential solution to the problem could have been the use of superplasticizers in the case of HVFAC – this would enable a decrease of the *w/b* ratio and hence higher compressive strength (and probably greater slump). However, it was chosen not to use superplasticizers in this study in order not to introduce further uncertainties into the experiment.

An interesting effect can be noticed when looking at the ratio of compressive strengths of samples kept in the laboratory versus the water-cured ones. For both NAC and RAC, there is a significant (17% and 11%, respectively) reduction of compressive strength for water-cured samples, whereas the effect is not present in HVFAC. This is probably a combined effect of water availability and cement hydration kinetics in these concretes (i.e. the effect of the pozzolanic reaction of HVFAC).

The time evolution of compressive strength and a comparative view of different concretes is given in Figure 4.5 alongside error bars representing highest and lowest values measured on individual specimens.

From Figure 4.5 several interesting things can be observed. Firstly, the time evolution of compressive strength is most pronounced for HVFAC, with $f_{cm}(t)/f_{cm}(28)$ ratios of 0.73, 1.15, 1.10 and 1.13 for 7, 90, 240 and 450 days, respectively. The time evolution of compressive strength is low for this type of concrete, if usual research results are taken as a benchmark. An identical mixture was previously produced with the same fly ash (Dragaš et al., 2016); the mix had 7, 28 and 90-day cube strengths of 22.7, 34.2 and 44.2 MPa. The 7-day strengths are practically identical but the 28 and 90-day values are now

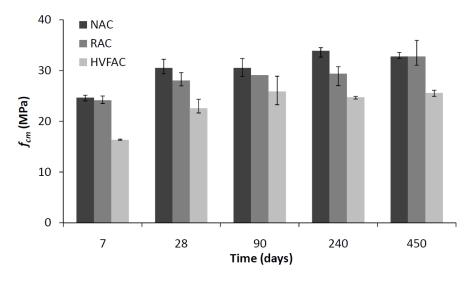


FIGURE 4.5: Time evolution and comparison of compressive strengths

13% and 28% lower; the $f_{cm}(t)/f_{cm}(28)$ ratios for 7 and 90 days were 0.66 and 1.29 respectively. However, there exists a significant difference between these two series of results – the curing regime. In (Dragaš et al., 2016), the cubes were cured in water until testing, whereas here they were air cured after demoulding. This effect should be viewed in conjunction with the results from Ramezanianpour and Malhotra (1995) explained in section 2.7.1: in this particular case, one day of wet curing slowed down and decreased the development of compressive strength, mostly after 28 days. Nonetheless, this curing regime is more realistic and similar to construction practice in Serbia.

As for NAC, the $f_{cm}(t)/f_{cm}(28)$ ratios are 0.81, 1.00, 1.11 and 1.07, and for RAC 0.86, 1.04, 1.05, 1.17. In accordance with earlier findings, the time evolution of RAC strength was slightly more pronounced than for NAC.

For all three concretes there were certain variations in compressive strength over time, for example, the NAC 90-day strength was the same as the 28-day strength; but these are mean values and it can be seen that the scatter of results overlaps significantly.

4.2.4 Tensile Strength

As explained in section 3.4.3, splitting tensile strength $f_{ct,sp}$ and flexural tensile strength $f_{ct,fl}$ (on 120/120/360 mm prisms) were determined for all concretes at the age of 7 and

HVFAC

1.2

28 days.

The results are presented in Table 4.6. All of the reported values are averages of three tested specimens. Not surprisingly, the CoV for splitting tensile was larger than for compressive strength: between 12% and 25%; however, the CoV for flexural tensile strength was lower: between 3% and 10%.

	$f_{ct,sp}(7)$	$f_{ct,sp}(28)$	$f_{ct,fl}(7)$	$f_{ct,fl}(28)$
Concrete	(MPa)	(MPa)	(MPa)	(MPa)
NAC	2.0	2.4	5.6	6.7
RAC	2.0	2.5	5.4	6.4

2.1

4.3

5.2

TABLE 4.6: Splitting and flexural tensile strengths of the concretes

The results show that NAC and RAC have practically the same tensile strengths (both splitting and flexural) and a practically identical time evolution of those strengths. For NAC, the increase in splitting and flexural tensile strength from 7 to 28 days is 17% and 16% respectively, whereas it is 20% and 15% for RAC. HVFAC has lower tensile strengths, especially the splitting tensile strength after 7 days (only 60% of the NAC and RAC splitting tensile strength); after 28 days it catches up to 86%.

Among all the concretes, there is a relatively uniform ratio of splitting-to-flexural tensile strength. For NAC, this ratio is 2.83 and 2.77 after 7 and 28 days, respectively; for RAC 2.75 and 2.59; and for HVFAC 3.65 and 2.51.

4.2.5 Modulus of Elasticity

Measuring the modulus of elasticity E_{cm} , although extremely important for this study, proved to be in some ways difficult and problematic, precisely for RAC for which it is the most important. As stated in section 3.4.3, the measurements were made on cylinders at the ages of 7, 28, 90, 240 and 450 days. The measurements were always made on the same three cylinders throughout the entire experiment. When the measurements were successful, the CoV between the three samples never exceeded 15%.

However, for RAC after 7 days, one result was detected as an outlier (its value was only 60% of the other two); hence, it was discarded and $E_{cm}(7)$ for RAC is the average of two values. At the age of 28 days, when RAC was being tested, there was a malfunction of the measuring equipment after the first measurement and the remaining two could not be measured at all. Hence, the reported value of $E_{cm}(28)$ for RAC is a single value. Unfortunately, 7 and 28 days were the most critical because load calculation for the beams depended on them. The values obtained in this way were sufficiently in line with expectations and they were accepted. Later analysis will show whether this was fully justified.

The values are given numerically in Table 4.7 and graphically in Figure 4.6 with error bars representing highest and lowest measured values on individual cylinders.

	$E_{cm}(7)$	$E_{cm}(28)$	$E_{cm}(90)$	$E_{cm}(240)$	$E_{cm}(450)$
Concrete	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)
NAC	30.1	32.2	32.4	33.2	34.5
RAC	26.2	30.8	25.3	26.4	28.6
HVFAC	25.2	28.7	27.7	29.7	30.2

TABLE 4.7: Modulus of elasticity of the concretes

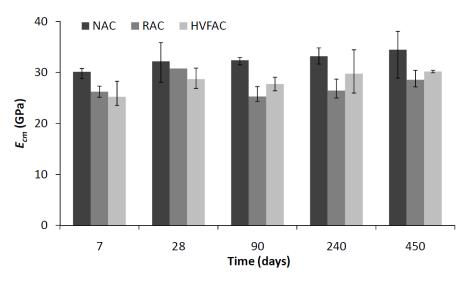


FIGURE 4.6: Time evolution and comparison of the modulus of elasticity

The first thing that can be noticed is that NAC has the highest modulus of elasticity at all ages, and around a value which is to be expected for this strength class (ca. 30 GPa),

but also the highest scatter of results. Both RAC and HVFAC have 10–15% lower values at all times, with HVFAC having a slightly larger modulus of elasticity. The value which stands out is $E_{cm}(28)$ for RAC—the single measured value—it clearly doesn't fit the trend for RAC and the average value would probably have been lower.

The time evolution of the modulus of elasticity for all the concretes is barely noticeable (this is expected, the time evolution of the modulus of elasticity is much slower than for compressive strength). As with compressive strength, there are some variations over time with the modulus of elasticity seemingly decreasing; however, these are mean values and when looking at the scatter it can be seen that it overlaps significantly between consecutive measurements.

4.2.6 Shrinkage

It was explained in section 3.4.3 that shrinkage was measured on 120/120/360 mm prisms with three prisms for each concrete; as outlined, the measurements were performed with a mechanical strain gauge and steel pins glued to two sides of each prisms. Hence, the obtained shrinkage strain values for each concrete are averages of six measurements.

The first important thing to note are the environmental conditions in the laboratory during the experiment. The changes in temperature and humidity are shown in Figure 4.7. It can be seen that temperature indeed remained relatively constant during the entire period oscillating between 18°C and 25°C. Humidity, on the other hand, displays much larger variations between 28% and 68% with an average value of 48.5%. However, some long-term changes and trends are observable: in the period January–October 2016 humidity was higher, between 45% and 60%. Then, in the period November 2016–January 2017 it dropped to an average of 32.9% and started increasing again until May 2017 in which it averaged 54%. Temperature and humidity monthly averages are given in Table 4.8.

Table 4.9 presents the shrinkage measurements for NAC, RAC and HVFAC. The results show a relatively large shrinkage strain for all concretes after 477 days of drying. The results are shown graphically in figs. 4.8 and 4.9 in linear and logarithmic time scales, respectively.

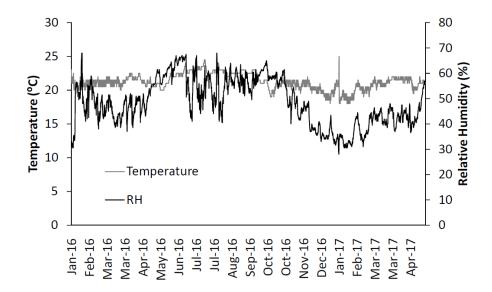


FIGURE 4.7: Temperature and humidity in the laboratory during the experiment

TABLE 4.8: Temperature and humidity monthly averages

Temperature (°C)	RH (%)
20.8	44.1
21.2	49.9
21.2	44.7
21.6	47.1
20.9	58.2
22.6	59.9
23.2	54.5
22.6	55.0
22.3	57.5
20.7	58.0
21.0	46.3
19.8	36.6
19.5	32.9
20.4	39.0
21.3	42.6
21.2	42.7
21.2	53.6
	20.8 21.2 21.2 21.6 20.9 22.6 23.2 22.6 22.3 20.7 21.0 19.8 19.5 20.4 21.3 21.2

TABLE 4.9: Measured shrinkage strains

	$\mathcal{E}_{\mathcal{CS}}(t,t_s)(\%_0)$					
	7 d	28 d	96 d	186 d	477 d	
NAC	-0.143	-0.342	-0.540	-0.557	-0.645	
RAC	-0.155	-0.385	-0.583	-0.660	-0.782	
HVFAC	-0.125	-0.315	-0.410	-0.492	-0.597	

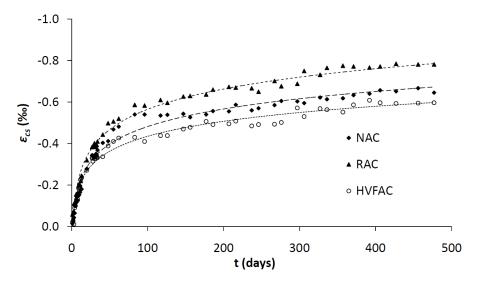


FIGURE 4.8: Time evolution of shrinkage strain, linear time scale

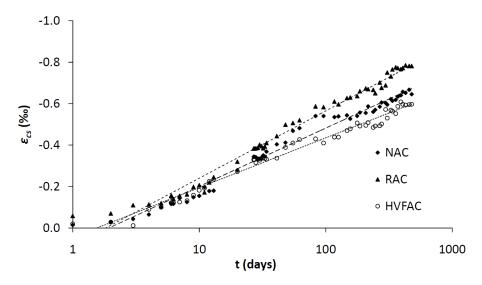


FIGURE 4.9: Time evolution of shrinkage strain, logarithmic time scale

It should be noted that the measurements on NAC prisms displayed swelling during the first two days of measurements, up to +0.1% and then started decreasing, reaching a final measured value of -0.545%. However, the observed swelling is probably a consequence of the surface layer of concrete being too wet and influencing the adhesive with which steel pins for measurements were glued. Hence, all NAC measurements were scaled by a negative strain of 0.1% thus obtaining the final value of -0.645%.

NAC showed the largest scatter of results until it stabilized after 28 days at a CoV of 15%; for RAC and HVFAC the CoV stabilized at around 20% and 12% after 28 days, respectively, however, no swelling was measured. From the figures it can be seen that shrinkage follows a logarithmic function very nicely, but the slopes of the function are clearly different, as can be seen in Figure 4.9 – the slopes decrease in the order of RAC, NAC and HVFAC, indicating decreasing shrinkage trends. The time development of shrinkage is such that after 7, 28, 96 and 186 days, NAC reaches 22%, 53%, 84% and 86% of the value after 477 days, respectively; for RAC these percentages are 20%, 49%, 75% and 84%; for HVFAC, they are 21%, 49%, 75% and 84%.

After 477 days, RAC and HVFAC respectively have a 21% larger and 7% smaller shrinkage strain compared with NAC.

4.2.7 Creep

As described in section 3.4.3, creep was measured only for RAC and HVFAC in steel frames in which three prisms of each concrete were loaded after 7 and 28 days, Figure 3.25. As explained earlier, strains were measured using a mechanical strain gauge and pins glued to all four sides of the prism. Unfortunately, during the measurements, on several prisms the steel pins fell off and on those prisms, measurements weren't taken on all four sides (it was never less than three sides). However, upon closer examination of the measurements, a large scatter was observed (40% and 20% for RAC loaded after 7 and 28 days, respectively and 40% and 35% for HVFAC loaded after 7 and 28 days, respectively). This indicated that the load was not ideally axially applied but that there was a certain eccentricity present. However, the results were nonetheless averaged (a few clear outliers were eliminated) and taken into account.

First, in Table 4.10, the overall results are presented. The total strain 450 days after loading is given as $\varepsilon_c(450)$, the initial strain is $\varepsilon_{ci}(t_0)$; also given is the shrinkage strain ε_{cs} and the creep strain ε_{cc} obtained after subtracting the initial and shrinkage strains from the total strain. From this creep strain, the *experimental creep coefficient* ϕ_{exp} is calculated as

$$\phi_{exp}(t) = \frac{\varepsilon_{cc}(t)}{\varepsilon_{ci}(t_0)} \tag{4.1}$$

Finally, the stress to which the prisms were loaded is given $(\sigma_c(t_0))$ and the $\sigma_c/f_{cm}(t_0)$ ratios which confirm that the target ratios were achived.

TABLE 4.10: Results obtained on prisms for creep measurements

	$\varepsilon_c(450)$	$\varepsilon_{ci}(t_0)$	$\varepsilon_{cs}(450)$	$\varepsilon_{cc}(450)$	$\phi_{exp}(450)$	$\sigma_c(t_0)$	$\sigma_c/f_{cm}(t_0)$
	(%o)	(%o)	(%o)	(%o)	(-)	(MPa)	(-)
RAC7	-3.413	-0.775	-0.782	-1.856	2.395	14.50	0.60
RAC28	-2.849	-0.594	-0.782	-1.473	2.480	12.78	0.45
HVFAC7	-2.345	-0.664	-0.595	-1.086	1.634	9.84	0.60
HVFAC28	-1.857	-0.493	-0.597	-0.767	1.554	10.20	0.45

First, when the initial strain $\varepsilon_{ci}(t_0)$ is looked at in more detail, it can be seen that, when the corresponding modulus of elasticity is calculated from the initial strain and stress $\sigma_c(t_0)$, 30–40% lower values are calculated compared with experimental results on the modulus of elasticity; this can primarily be attributed to different loading speeds between creep and modulus of elasticity measurements and the fact that the first reading on prisms was taken 5 min after loading.

Secondly and most interestingly, practically the same experimental creep coefficient is obtained for both loading ages for both RAC and HVFAC, even though the prisms loaded after 7 days are loaded up to a level that is supposed to be in the region of non-linear creep; in the case of RAC, a slightly larger creep coefficient is obtained for a loading age of 28 days and a lower $\sigma_c/f_{cm}(t_0)$ ratio! Because of the scatter of measurements, the creep coefficients for different loading ages can be considered to be the same.

Probably the most important results to analyse are the stress-dependent strains $\varepsilon_{c\sigma}(t,t_0) = \varepsilon_{ci}(t_0) + \varepsilon_{cc}(t)$ (given by Equation 2.67), shown in figs. 4.10 and 4.11. A clear logarithmic time evolution of stress-dependent strain can be seen from the figures. For HVFAC, the lines for the two loading ages are parallel, reflected in the practically identical creep coefficients in Table 4.10. However, for RAC, the gap between the lines slowly decreases, also reflected by the creep coefficient being slightly larger for the loading age of 28 days, Table 4.10.

FIGURE 4.10: Stress-dependent strain for RAC prisms

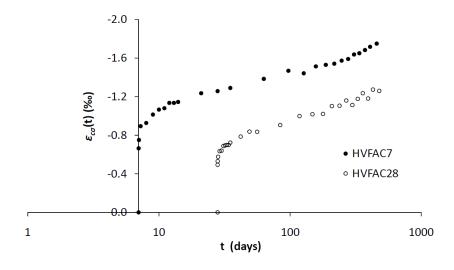


FIGURE 4.11: Stress-dependent strain for HVFAC prisms

From the stress-dependent strain and initial stress, the creep compliance $J(t,t_0)$ can be calculated using Equation 2.67. The compliances for RAC and HVFAC and both loading ages, are given in Figure 4.12 and Table 4.11. RAC and HVFAC loaded after 7 days practically represent the same line, as would be expected for prisms loaded to the same $\sigma_c/f_{cm}(t_0)$ ratio; however, for the loading age of 28 days, HVFAC has a significantly smaller value of the compliance function.

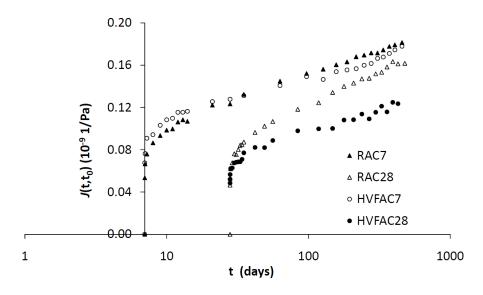


FIGURE 4.12: Creep compliance curves for RAC and HVFAC

TABLE 4.11: Compliance function values for RAC and HVFAC

	$J(t,t_0)(10^{-9} \text{ 1/Pa})$						
	5 min	7 d	28 d	90 d	180 d	450 d	
RAC7	0.053	0.107	0.132	0.152	0.163	0.181	
RAC28	0.046	0.087	0.107	0.124	0.143	0.162	
HVFAC7	0.068	0.116	0.131	0.149	0.155	0.178	
HVFAC28	0.048	0.071	0.082	0.098	0.108	0.124	

Further analysing the results, the creep strain for RAC and HVFAC is shown in Figure 4.13 and Figure 4.14, respectively. Here, again, the logarithmic evolution of the creep strain can be seen as well and the parallelness of lines representing different loading ages investigated. In Figure 4.15, the 'specific creep strain' is presented (creep strain divided by stress). As can be seen, for RAC there is practically no non-linear creep effect (lines for

both loading ages, i.e. for both $\sigma_c/f_{cm}(t_0)$ ratios are very similar), whereas for HVFAC this effect is very visible.

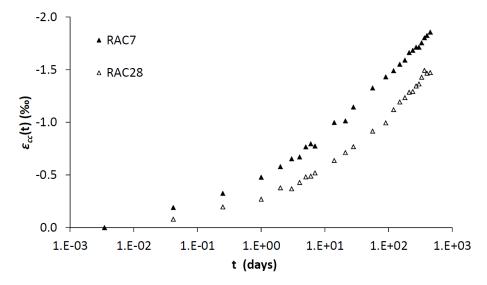


FIGURE 4.13: Creep strain of RAC

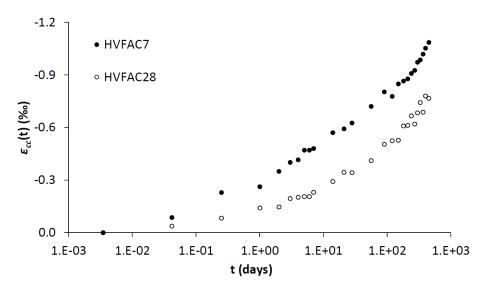


FIGURE 4.14: Creep strain of HVFAC

From the creep strain of RAC and HVFAC, the experimental creep coefficient is calculated according to Equation 4.1 and its time evolution is given in Table 4.12. After 7, 28, 90 and 180 days, ϕ_{exp} of RAC loaded at 7 days reaches 42%, 62%, 71% and 86% of its value after 450 days; for RAC loaded at 28 days these percentages are 35%, 52%, 68% and 84%. As for HVFAC, for a loading age of 7 days, after 7, 28, 90 and 180 days, ϕ_{exp} reaches 44%,

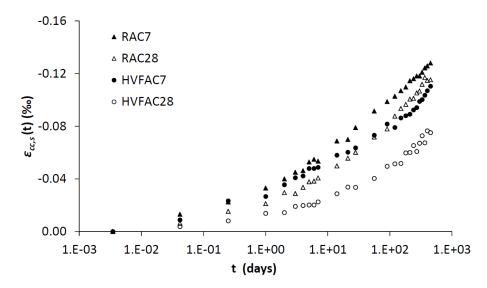


FIGURE 4.15: Specific creep strain for RAC and HVFAC

58%, 74% and 80% of its value after 450 days, and for a loading age of 28 days these percentages are 30%, 45%, 66% and 80%.

TABLE 4.12: Time evolution of experimental creep coefficient

	$\phi_{exp}(t,t_0)$						
	7 d	28 d	90 d	180 d	450 d		
RAC7	1.000	1.477	1.846	2.053	2.395		
RAC28	0.877	1.295	1.676	2.077	2.480		
HVFAC7	0.723	0.942	1.210	1.303	1.634		
HVFAC28	0.466	0.694	1.024	1.235	1.554		

4.3 Results on Reinforced Concrete Beams

4.3.1 Load Calculation and Applications

The general outline of the beam design, load calculation and method of application was provided in 3.4.1. In that section, the initial design of a 'target' beam was shown and the procedure outlined. Then, after the mechanical properties of the concrete were determined

experimentally, it was possible to precisely calculate the necessary load for each beam in order to achieve the target $\sigma_c/f_{cm}(t_0)$ ratio.

Following the procedure from section 3.4.1 and taking into account all experimental results (density, compressive and tensile strength and modulus of elasticity), load values were calculated. The distributed self-weight and additional dead load are given in Table 4.13 along with the bending moments these loads produce.

Beam	g (kN/m)	2·G (kN)	M_g (Nm)	M_G (Nm)	M_{tot} (Nm)
NAC7	0.77	12.42	983	6645	7628
NAC28	0.77	10.94	983	5853	6836
RAC7	0.74	12.94	942	6923	7865
RAC28	0.74	10.12	942	5414	6356
HVFAC7	0.72	8.54	922	4569	5491
HVFAC28	0.72	8.28	922	4430	5352

TABLE 4.13: Applied load and bending moments

Because of their similar measured compressive strength and modulus of elasticity, NAC and RAC are loaded to similar bending moments in both loading ages, whereas HVFAC is loaded to a lower bending moment.

The ratio of the total imposed-to-cracking moment and total imposed-to-ultimate moment are given in Table 4.14. The cracking moment is calculated as

$$M_{cr} = W_i \cdot f_{ctm} \tag{4.2}$$

where W_i is the section modulus of the transformed cross-section and f_{ctm} is taken as $0.9 \cdot f_{ct,sp}$, as per (EN 1992-1-1, 2004). The ultimate bending moment is calculated according to Equation 3.4.

In section 3.4.1 it was shown that for 28 days, the ratios were expected to be 2.84 and 0.44 for M_{tot}/M_{cr} and M_{tot}/M_{ult} , respectively, and for 7 days 3.88 and 0.49. Looking at the values in Table 4.14 it can be seen that, again, for NAC and RAC the targets are almost completely achieved (except that M_{tot}/M_{ult} is slightly overshot for 28 days); on the other

hand, for HVFAC the load level necessary to achieve the target $\sigma_c/f_{cm}(t_0)$ ratios is overall lower.

TABLE 4.14: Ratios between the total imposed, cracking and ultimate bending moments

Beam	M _{tot} (Nm)	M _{cr} (Nm)	M_{tot}/M_{cr}	M_{ult} (Nm)	$\overline{M_{tot}/M_{ult}}$
NAC7	7628	2071	3.68	14178	0.54
NAC28	6836	2473	2.76	14379	0.48
RAC7	7865	2093	3.76	14155	0.56
RAC28	6356	2584	2.46	14304	0.44
HVFAC7	5491	1260	4.36	13642	0.40
HVFAC28	5352	2182	2.45	14080	0.38

Table 4.15 presents the calculated initial stresses in concrete, tensile and compression reinforcement, along with compressed zone depth and achieved $\sigma_c/f_{cm}(t_0)$ ratio. Finally, Table 4.16 presents the calculated initial strains in concrete, tensile and compression reinforcement, obtained by dividing the stresses in Table 4.15 by the measured moduli of elasticity, provided in Table 4.7.

TABLE 4.15: Calculated initial stresses in the beams

Beam	x (mm)	σ_c (MPa)	σ_{s1} (MPa)	σ_{s2} (MPa)	$\sigma_c/f_{cm}(t_0)$
NAC7	40.3	14.8	313.1	27.5	0.60
NAC28	39.2	13.6	280.0	22.0	0.45
RAC7	42.6	14.4	324.7	35.0	0.59
RAC28	40.0	12.4	260.8	22.1	0.44
HVFAC7	43.3	9.9	227.1	25.9	0.60
HVFAC28	41.1	10.2	220.0	20.9	0.45

4.3.2 Deflections

The procedure for measuring deflections was elaborated in section 3.4.4. Since these data are the most important results of the experimental programme, special care was taken to obtain properly measured values. For that purpose, an attempt was made to measure deflections from self-weight using geodetic readings, as outlined in section 3.4.4.

TABLE 4.16: Calculated initial strains in the beams

Beam	\mathcal{E}_{c} (%o)	ε_{s1} (%o) (MPa)	ε_{s2} (%o)
NAC7	-0.49	1.57	0.14
NAC28	-0.42	1.40	0.11
RAC7	-0.55	1.62	0.18
RAC28	-0.40	1.30	0.11
HVFAC7	-0.39	1.14	0.13
HVFAC28	-0.35	1.10	0.10

After performing a geodetic reading when the beams were still in the formwork, the next measurements were taken immediately after raising the beams onto supports. Knowing the precise density of the concretes, i.e. the self-weight of the beams (Table 4.13), and the span of 3.2 m, the deflection from self-weight could be calculated. Since M_g is always smaller than M_{cr} , the deflection from self-weight was calculated for state 1, i.e. uncracked state of the beam:

$$a_{sw,1} = 0.104 \cdot \frac{M_g \cdot l^2}{E_{cm} \cdot I_{i,1}} \tag{4.3}$$

where $I_{i,I}$ is the moment of inertia of the transformed cross-section in state 1.

In this way, the experimental and calculated deflections from self-weight are given in Table 4.17. Generally, the expected deflections from self-weight are around 0.3 mm. The measured values, on the other hand, match the calculated ones in only three cases: NAC7, NAC28 and RAC7 (the precision of the instrumentation was 0.1 mm). The higher values for RAC28 and HVFAC28 could potentially point to the presence of several cracks in the beams. However, the result for HVFAC7 casts a doubt over these measurements. It is in fact very possible that a lot of the measured deflection from self-weight was actually the 'straightening out' of the beams which were, to a certain degree, warped in the framework (this is especially true for HVFAC7). In this case, since there was only one steel cap for geodetic measurements along the center line on top of the beam (Figure 3.38) it could be that the results for RAC28, HVFAC7 and HVFAC28 in fact represent this phenomenon and not the presence of cracks – the beams were visually inspected prior to loading and no

cracks were visible. It is for this reason that these results should not be taken into account in the analysis.

TABLE 4.17: Measured and calculated deflections from self-weight

Beam	$a_{sw,exp}(t_0)$ (mm)	$a_{sw,calc}(t_0)$ (mm)
NAC7	0.23	0.31
NAC28	0.39	0.29
RAC7	0.50	0.33
RAC28	1.16	0.29
HVFAC7	-0.41	0.34
HVFAC28	0.99	0.30

The results obtained with dial indicators (not including deflections until the application of the imposed load, in other words, not including deflections from self-weight) are given in Table 4.18. It can be seen that for all the beams except HVFAC28 the deflection limit of L/250 (12.8 mm) is surpassed after 450 days (but not immediately after loading). A direct comparison of these values is not very meaningful since the beams were loaded to different load levels and had different moduli of elasticity. More interesting would be to consider the time evolution of the 'normalized deflection', i.e. $a(t-t_0)/a(t_0)$, given in Table 4.19.

TABLE 4.18: Time evolution of mid-span deflection of the beams

	$a(t_0)$	a(7)	a(28)	a(90)	a(180)	a(450)
Beam	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)
NAC7	9.17	12.44	14.42	16.35	17.23	18.94
NAC28	8.11	10.92	12.52	13.85	14.92	16.51
RAC7	10.89	14.43	16.90	19.12	20.39	22.47
RAC28	6.23	8.76	10.36	11.65	12.91	14.69
HVFAC7	6.13	8.75	10.04	10.79	11.33	12.45
HVFAC28	4.04	5.22	6.01	6.61	7.33	8.72

Table 4.19 shows a very similar time evolution of normalized deflections for all the beams except RAC28 and HVFAC28. This is shown visually in figs. 4.16 and 4.17. All three beams loaded after 7 days display a practically identical time evolution, whereas for the beams loaded after 28 days, RAC28 has a much more pronounced time evolution reaching

TABLE 4.19: Time evolution of normalized mid-span deflection of the beams

	$a(t-t_0)/a(t_0)$						
Beam	7 d	28 d	90 d	180 d	450 d		
NAC7	1.36	1.57	1.76	1.88	2.07		
NAC28	1.35	1.54	1.71	1.84	2.04		
RAC7	1.33	1.55	1.76	1.87	2.06		
RAC28	1.41	1.66	1.87	2.07	2.36		
HVFAC7	1.43	1.64	1.76	1.85	2.03		
HVFAC28	1.29	1.49	1.64	1.81	2.16		

a ratio of 2.36 after 450 days and HVFAC28 seems to start more slowly than NAC28 and RAC28 but increases the rate of its time evolution towards the end, reaching a ratio of 2.16. While the results for beam RAC28 are in agreement with the results for creep obtained on prisms (in which creep of prisms loaded after 28 days seemed to be more pronounced and catching up with those loaded after 7 days), the results for beam HVFAC28 are surprising since prisms loaded after 28 days showed a much smaller compliance compared with prisms loaded after 7 days, Figure 4.12. This points to a possible variation of actual mechanical properties of RAC and HVFAC after 28 days which could have led to the application of a different load than was intended, but this point will be discussed in the following chapter.

So far, the results were for mid-span deflections, but also useful are the deflections along the length of the beam. The time evolution of these deflections for NAC7 and NAC28, RAC7 and RAC28, and HVFAC7 and HVFAC28 is given in Figure 4.18, Figure 4.19 and Figure 4.20, respectively. Only on beams RAC7 and HVFAC7 the deflections seem to be somewhat unsymmetrical; a still-significant increase can be observed between 180 and 450 days. Also, the lower load level of beams loaded after 28 days is observable through their lower deflections compared with beams loaded after 7 days but this effect is more pronounce in RAC and HVFAC beams than in NAC beams.

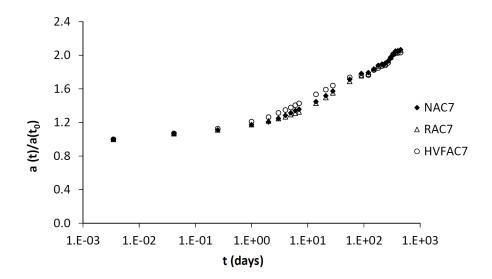


FIGURE 4.16: Time evolution of normalized mid-span deflections for beams loaded after 7 days

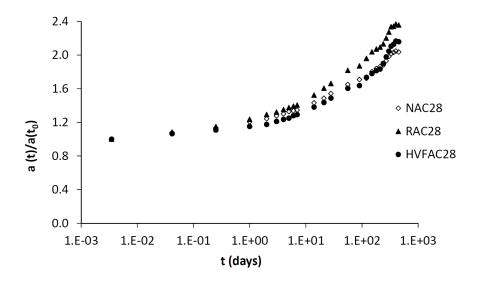


FIGURE 4.17: Time evolution of normalized mid-span deflections for beams loaded after 28 days

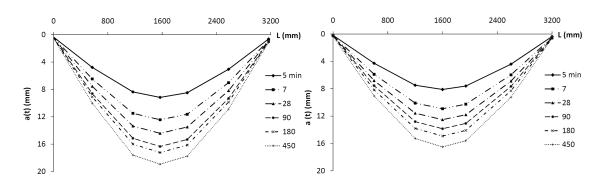


FIGURE 4.18: Time evolution of deflections along the length of beam NAC7 (left) and NAC28 (right)

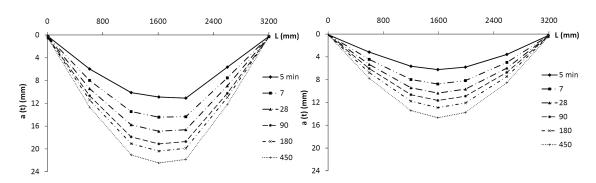


FIGURE 4.19: Time evolution of deflections along the length of beam RAC7 (left) and RAC28 (right)

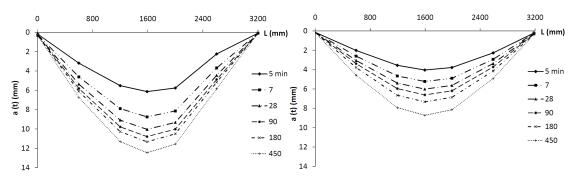


FIGURE 4.20: Time evolution of deflections along the length of beam HVFAC7 (left) and HVFAC28 (right)

4.3.3 Crack Spacing and Crack Widths

Cracks were monitored on all beams throughout the experiment. As outlined in section 3.4.4, this consisted of marking the height and width of cracks as well as noting whether new cracks appeared during the experiment.

After raising the beams onto supports and before applying the superimposed dead load, all of them were checked for pre-existing cracks and none were found on any of the beams. After the beams were loaded, the first measurement of cracks was performed after 1 h, then subsequently after 7, 28, 90, 180, 365 and 450 days. Here, crack patterns are shown for all beams at times t_0 (measured 1 h after loading) and 450 days, figs. 4.21 to 4.26. The patterns are shown for both sides of the beams, one above the other, to avoid overlapping on one image.

Looking at the figures, several things can be noticed. First, as expected, the crack pattern is much more developed in NAC and RAC than in HVFAC beams as they are loaded to a larger M_{tot}/M_{ult} ratio, i.e. a higher tensile steel stress. Within NAC and RAC beams, those loaded after 7 days have more pronounced crack patterns than those loaded after 28 days, again because of the higher tensile steel stress. Second, there is an increase in the width of the cracked zone between t_0 and 450 days – new cracks appeared, both outside the initial cracked zone and between existing cracks; this is the confirmation of the 'reduction' of the cracking moment, i.e. the reduction of tensile strength caused by shrinkage.

Finally, a certain asymmetry can be observed in the crack patterns – the number of cracks on sides A and B does not always match and some cracks are not perpendicular to the beam's longitudinal axis. For example, in Figure 4.21, at time t_0 the crack on side A between steel pins 6 and 7 has no matching crack between steel pins 9 and 8 on side B; rather, its counterpart is the crack between steel pins 8 and 7 on side B. Beside natural deviation of crack planes caused by the distribution of aggregate grains in the concrete, this asymmetry can also be caused by warping of the beams. This problem was already mentioned when deflections from self-weight were discussed. This fact means that averaging of strains on sides A and B must be done carefully, taking into account which cracks correspond to each other on both sides, this will be done in section 4.3.4.

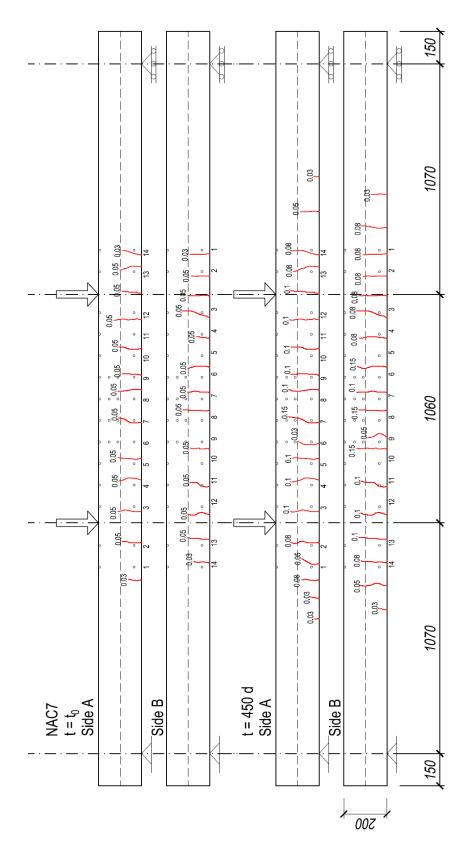


FIGURE 4.21: Crack pattern for beam NAC7 at t_0 and 450 d

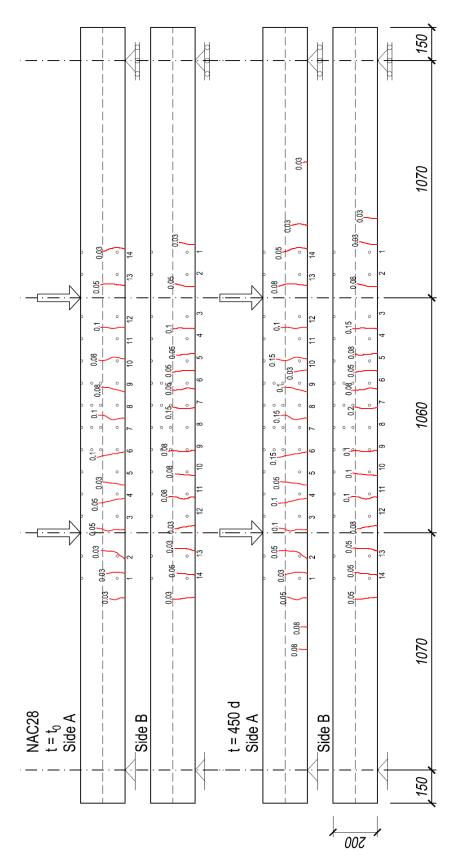


FIGURE 4.22: Crack pattern for beam NAC28 at t_0 and 450 d

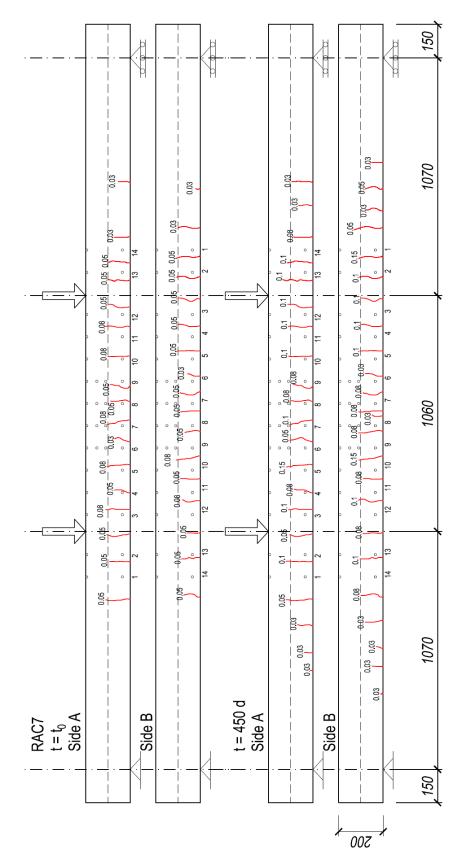


FIGURE 4.23: Crack pattern for beam RAC7 at t₀ and 450 d

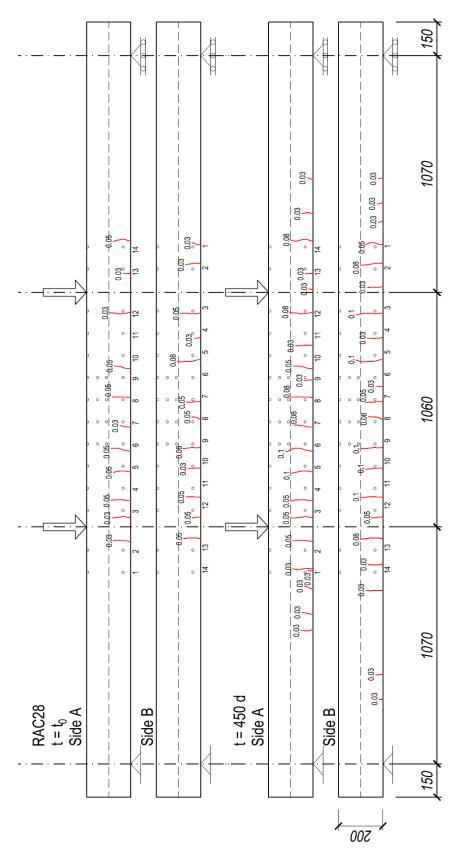


FIGURE 4.24: Crack pattern for beam RAC28 at t_0 and 450 d

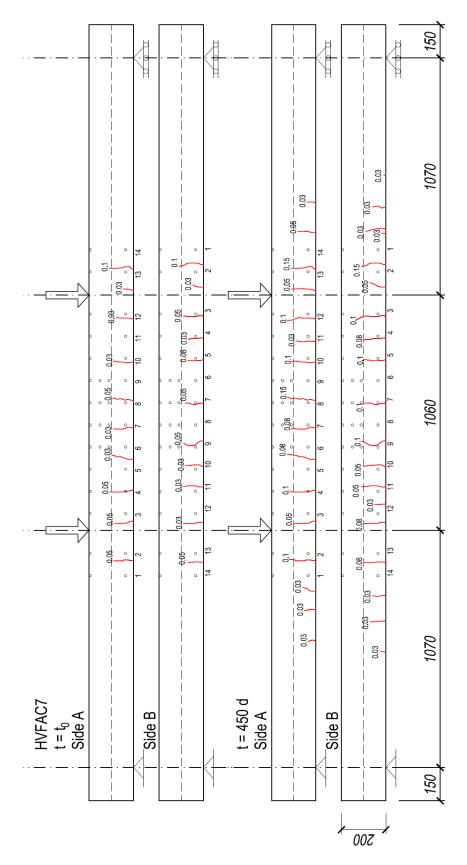


FIGURE 4.25: Crack pattern for beam HVFAC7 at t_0 and 450 d

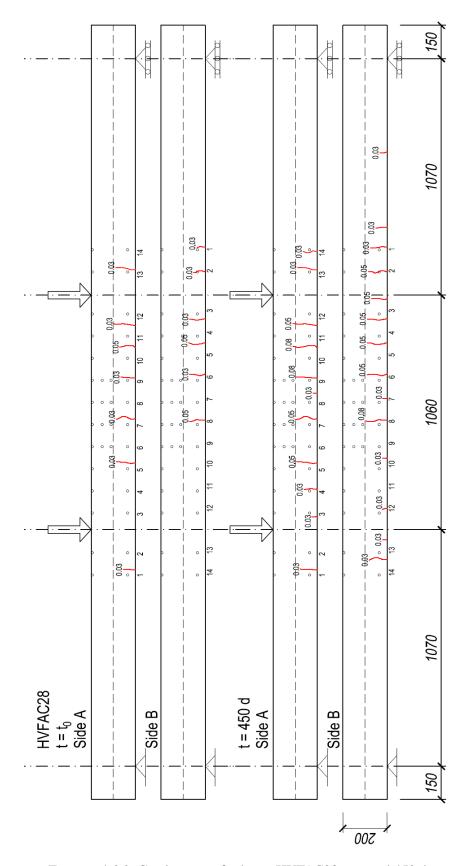


FIGURE 4.26: Crack pattern for beam HVFAC28 at t_0 and 450 d

Also important to note is that the cracks generally propagated over the beam's height, sometimes by as much as 100 mm, but mostly by 10–30 mm. Although the crack patterns are shown only for t_0 and 450 days, this propagation—as well as the increase in crack width—mostly occurred at earlier times – between 7 and 90 days. Between this period new cracks appeared between existing cracks; however, the widening of the cracked zone, i.e. the cracks outside the initial cracked zone, generally appeared much later, between 365 and 450 days, only when shrinkage could sufficiently reduce the cracking moment.

The four-point bending test chosen for this experiment is useful for analysing cracks since the entire flexural span of the beam is under a constant bending moment with no shear forces. Consequently, crack widths and spacings will be analysed only for this region. The average (mean) crack spacing s_m and crack width w_m , minimum and maximum crack widths (w_{min} and w_{max}) are given in Table 4.20 for times t_0 and 450 days; in the table they are also related to the calculated tensile steel stress.

TABLE 4.20:	Crack	spacing	and	crack	widths	for the	e beams

			t_0			450 days			
Beam	σ_{s1}	S_m	w_m	w _{min} -w _{max}	S_m	w_m	$w_{min}-w_{max}$		
	(MPa)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		
NAC7	313.1	134.3	0.05	0.05-0.05	115.8	0.10	0.03-0.15		
NAC28	280.0	119.5	0.08	0.03-0.15	110.4	0.11	0.03-0.20		
RAC7	324.7	102.0	0.06	0.03-0.08	97.4	0.09	0.03-0.15		
RAC28	260.8	123.6	0.05	0.03-0.08	102.5	0.07	0.03-0.10		
HVFAC7	227.1	145.4	0.04	0.03-0.08	125.9	0.08	0.03-0.15		
HVFAC28	220.0	153.1	0.04	0.03-0.05	128.9	0.05	0.03-0.08		

From Table 4.20 the negative correlation between the tensile steel stress and crack spacing, and the positive correlation between the tensile steel stress and crack width can be seen; the only outlier seems to be beam NAC28 which has a smaller crack spacing and larger crack widths compared with beam NAC7 even though its tensile steel stress is 10% lower. RAC beams—under similar tensile steel stress as NAC beams—have smaller or similar crack spacing and somewhat smaller crack widths, contradictory to some previous findings in literature, see section 2.6.3. HVFAC beams, in this experiment, under markedly lower tensile steel stress levels, show significantly larger crack spacing and smaller crack widths. Interestingly, the range of crack widths (minimum—maximum) is much wider in

NAC and RAC beams compared with HVFAC beams in which the crack widths are more uniform. In all of the beams, the $s_m(450)/s_m(t_0)$ crack spacing ratio was between 0.83 and 0.95, indicating that the beams were loaded to such a load level that an almost completely developed crack pattern was achieved at t_0 , only one or two new cracks appeared in the flexural span over 450 days.

It should also be said that crack widths were measured in discrete values of 0.03, 0.05, 0.08, 0.10, 0.15 and 0.20 mm, as was possible using the crack gauge, Figure 3.42.

4.3.4 Strains

Strains were measured in the manner described in section 3.4.4. Since the first measurements were taken 5 min after applying the superimposed dead load, the total strains obtained in this way *do not include* shrinkage strain up to loading nor mechanical strain caused by self-weight of the beam (in state 1).

Analysing the strains in the flexural span, special consideration was given to the crack pattern, figs. 4.21 to 4.26. Since measurements were taken on both sides, averaging had to be done very carefully, by looking at the position of each crack on both sides (see the example given in section 4.3.3). The expected values of total strain, calculated on the basis of a cracked cross-section (in state 2), are given in Table 4.16. Values which deviated significantly from these values were disregarded (e.g. some tensile steel strains were negative); these cases mostly turned out to be cases where the crack didn't appear immediately or didn't cross the level of tensile reinforcement.

The compressive concrete (measured 3 mm from the top concrete surface) and tensile steel strains for beam NAC7 are tabulated in Table 4.21 and Table 4.22, respectively and shown graphically in Figure 4.27 and Figure 4.28, respectively. In both the tables and figures, the position of the strain is denoted by the number of steel pins on side A, while the values are actually averages of side A and corresponding side B (selected after considering the crack pattern).

As can be seen, the total compressive concrete strain follows a logarithmic time evolution, and after 450 days reaches values 3.29–3.63 times larger than those 5 min after loading.

TABLE 4.21: Compressive concrete strain in beam NAC7

$\mathcal{E}_{\mathcal{C}}$ (%0)									
A6-7	A8-9	A9-10	A10-11	A11-12					
-0.57	-0.59	-0.46	-0.48	-0.59					
-1.27	-1.34	-1.05	-1.14	-1.27					
-1.57	-1.63	-1.32	-1.40	-1.57					
-1.73	-1.79	-1.45	-1.53	-1.73					
-1.95	-2.01	-1.63	-1.74	-1.94					
	-0.57 -1.27 -1.57 -1.73	-0.57 -0.59 -1.27 -1.34 -1.57 -1.63 -1.73 -1.79	A6-7 A8-9 A9-10 -0.57 -0.59 -0.46 -1.27 -1.34 -1.05 -1.57 -1.63 -1.32 -1.73 -1.79 -1.45	A6-7 A8-9 A9-10 A10-11 -0.57 -0.59 -0.46 -0.48 -1.27 -1.34 -1.05 -1.14 -1.57 -1.63 -1.32 -1.40 -1.73 -1.79 -1.45 -1.53					

TABLE 4.22: Tensile steel strain in beam NAC7

	ε_{s1} (%o)										
Beam	A6-7	A8-9	A9-10	A10-11	A11-12						
5 min	1.59	1.07	1.40	1.42	1.51						
28 d	1.97	1.33	1.72	1.82	1.89						
90 d	2.08	1.39	1.76	1.92	1.97						
180 d	2.08	1.37	1.75	1.87	1.95						
450 d	2.17	1.43	1.83	1.95	2.05						

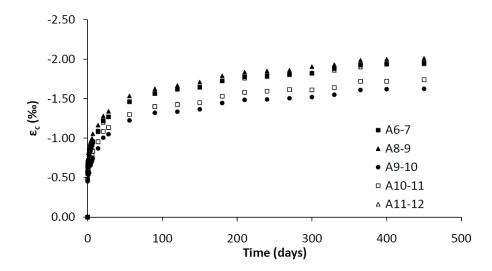


FIGURE 4.27: Time evolution of compressive concrete strain in beam NAC7

Meanwhile, the total tensile steel strain follows a mild linear increase in time, and after 450 days reaches values 1.31–1.37 times larger than those 5 min after loading. Although, theoretically there should be practically no increase in tensile steel strain over time, its

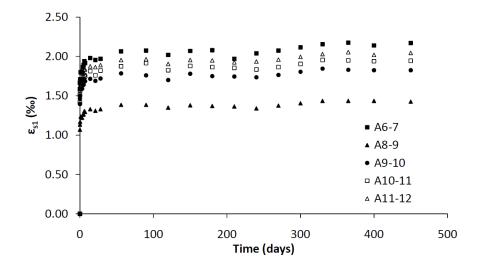


FIGURE 4.28: Time evolution of tensile steel strain in beam NAC7

presence here is the consequence of the measurement method. In fact, strain was measured on the concrete surface *at the level of tensile reinforcement*; hence, the increase in strain over time can be explained by the loss of concrete tension stiffening between two measurement points. Nonetheless, the values are, on average, close to the predicted values in Table 4.16, notwithstanding that the measured values omitted part of the shrinkage and mechanical strain from self-weight and were taken 3 mm below the top surface; still, the values agreed within 10–20%.

As noted in section 3.4.4, three cross-sections in the middle of the beam were equipped with steel pins along the beam height in order to measure the strain distribution across the cross-section height. From the crack pattern in Figure 4.21 it was seen that two cross-sections contained cracks: A6-7 (and B7-8) and A8-9 (and B6-7), Figure 4.29.

For these two cross-sections, the strain distribution along their height is shown for 5 min, 90 and 450 days after loading, in figs. 4.30 and 4.31.

From the figures, it can be seen that the strains are distributed linearly, as shown by the drawn trendlines. The lowering of the neutral axis is also clearly visible. From the trendline equations, the increase in the compressed zone depth was calculated as 56.1 to 89.9 mm for section A6-7 and 58.7 to 98.8 mm for section A8-9.

FIGURE 4.29: Close view of middle cross-sections of beam NAC7

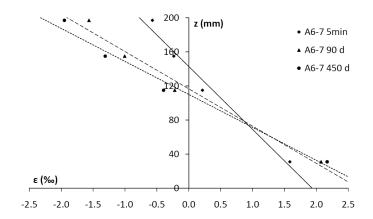


FIGURE 4.30: Strain distribution of cross-section A6-7 in beam NAC7

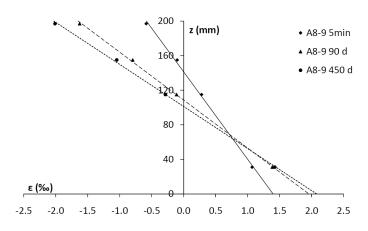


FIGURE 4.31: Strain distribution of cross-section A8-9 in beam NAC7

The compressive concrete and tensile steel strains for beam NAC28 are tabulated in Table 4.23 and Table 4.24, respectively and shown graphically in Figure 4.32 and Figure 4.33, respectively.

TABLE 4.23: Compressive concrete strain in beam NAC28

	\mathcal{E}_{c} (%o)										
Beam	A3-4	A4-5	A5-6	A7-8	A8-9	A10-11	A11-12				
5 min	-0.65	-0.42	-0.49	-0.45	-0.48	-0.39	-0.52				
28 d	-1.08	-0.83	-0.89	-0.85	-0.91	-0.82	-0.94				
90 d	-1.23	-1.02	-1.02	-0.99	-1.10	-0.98	-1.13				
180 d	-1.36	-1.13	-1.16	-1.14	-1.26	-1.15	-1.27				
450 d	-1.53	-1.33	-1.31	-1.29	-1.45	-1.34	-1.46				

TABLE 4.24: Tensile steel strain in beam NAC28

	ε_{s1} (%o)										
Beam	A3-4	A4-5	A5-6	A7-8	A8-9	A10-11	A11-12				
5 min	1.36	1.10	1.69	1.18	1.23	1.29	1.65				
28 d	1.74	1.40	2.13	1.67	1.56	1.66	2.24				
90 d	1.80	1.44	2.20	1.73	1.61	1.66	2.32				
180 d	1.84	1.44	2.26	1.80	1.63	1.66	2.38				
450 d	1.86	1.47	2.38	1.93	1.69	1.73	2.50				

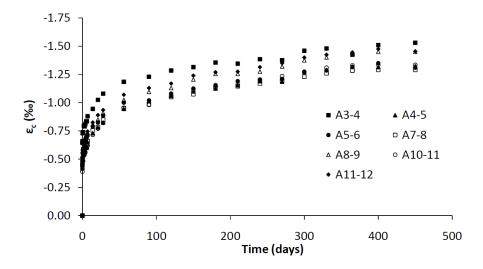


FIGURE 4.32: Time evolution of compressive concrete strain in beam NAC28

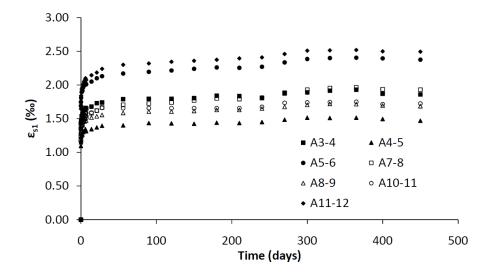


FIGURE 4.33: Time evolution of tensile steel strain in beam NAC28

The shape of the time curves of the strains are similar to those in the case of beam NAC7. However, in beam NAC28 the steel strain increases 1.34–1.64 times its initial value, a greater increase than in beam NAC7; at the same time, the compressive concrete strain increased 2.37–3.15 times its initial value, a less pronounced increase than in the case of beam NAC7. The smaller increase in compressive strain is expected, since the beam is under a smaller $\sigma_c/f_{cm}(t_0)$ ratio, but the larger increase in tensile steel strain is not. The results is, nonetheless, in concordance with the measured larger crack widths and smaller crack spacing in beam NAC28.

The measured initial compressive concrete strain is, on average 23% greater than calculated, the measured tensile steel strain is only 4% lower than calculated. The variation between strains measured in different cross-sections does not seem much wider than in the case of beam NAC7.

There are two possible explanations for the observed phenomenon: (1) the measured modulus of elasticity is not correct and is, in fact, smaller – this explains the underestimated compressive concrete strain, but not so much the increase in steel strain and larger crack widths; or (2) there was some deviation in the position of the tensile reinforcement, i.e. the effective depth is smaller than designed – this would mean a larger tensile steel stress and larger crack widths.

Again, from the crack pattern in Figure 4.22, it was found that two cross-sections contained cracks: A7-8 (and B7-8) and A8-9 (and B6-7), Figure 4.34. For these two cross-sections, the strain distribution along their height is shown for 5 min, 90 and 450 days after loading, in figs. 4.35 and 4.36. The strains follow a clear linear distribution and the lowering of the neutral axis is observable. From the trendline equations, the increase in the compressed zone depth was determined as 51.2 to 73.1 mm for section A7-8 and 51.8 to 82.9 mm for section A8-9.

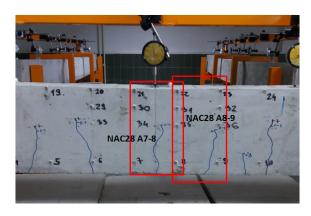


FIGURE 4.34: Close view of middle cross-sections of beam NAC28

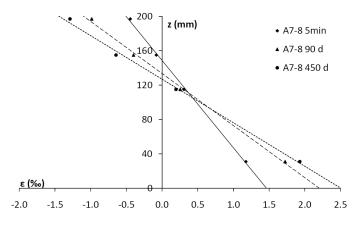


FIGURE 4.35: Strain distribution of cross-section A7-8 in beam NAC28

These were the results on the two NAC beams.

For beam RAC7, the compressive concrete and tensile steel strains are tabulated in Table 4.25 and Table 4.26, respectively and shown graphically in Figure 4.37 and Figure 4.38, respectively.

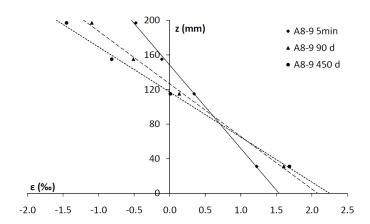


FIGURE 4.36: Strain distribution of cross-section A8-9 in beam NAC28

TABLE 4.25: Compressive concrete strain in beam RAC7

	$\mathcal{E}_{\mathcal{C}}$ (%o)									
Beam	A3-4	A4-5	A5-6	A6-7	A7-8	A8-9	A10-11	A11-12		
5 min	-0.65	-0.55	-0.75	-0.48	-0.90	-0.61	-0.44	-0.73		
28 d	-1.42	-1.26	-1.45	-1.30	-1.62	-1.37	-1.23	-1.52		
90 d	-1.74	-1.57	-1.76	-1.58	-1.98	-1.70	-1.50	-1.83		
180 d	-1.90	-1.75	-1.90	-1.75	-2.13	-1.87	-1.70	-2.00		
450 d	-2.21	-2.02	-2.13	-2.00	-2.40	-2.16	-1.94	-2.24		

TABLE 4.26: Tensile steel strain in beam RAC7

		$oldsymbol{arepsilon}_{s1}$ (%o)									
Beam	A3-4	A4-5	A5-6	A6-7	A7-8	A8-9	A10-11	A11-12			
5 min	1.72	0.79	1.89	0.91	1.68	1.80	1.54	1.67			
28 d	2.02	0.93	2.24	1.01	1.85	2.16	1.82	1.94			
90 d	2.11	0.94	2.34	1.07	1.91	2.21	1.84	2.05			
180 d	2.17	0.94	2.41	1.07	1.95	2.25	1.84	2.08			
450 d	2.22	0.91	2.46	1.06	1.95	2.29	1.83	2.13			

Since the beams RAC7 and NAC7 are loaded to practically identical $\sigma_c/f_{cm}(t_0)$ and M_{tot}/M_{ult} ratios, similar increases in concrete and steel strains would be expected. Indeed, the concrete compressive strain increased 2.68–4.21 times its initial value in beam RAC7 compared with 3.29–3.63 in beam NAC7. The steel tensile strain increased 1.16–1.30 times its initial value in beam RAC7 compared with 1.31–1.37 in beam NAC7; the

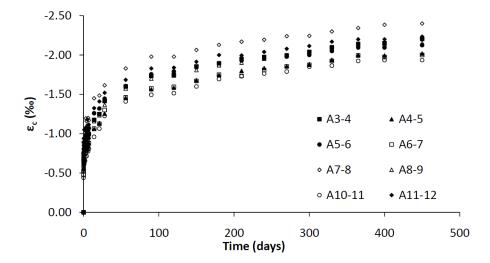


FIGURE 4.37: Time evolution of compressive concrete strain in beam RAC7

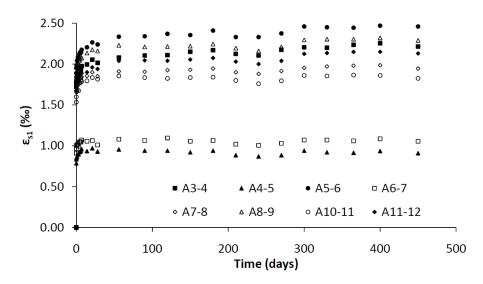


FIGURE 4.38: Time evolution of tensile steel strain in beam RAC7

effects of shrinkage and creep in RAC7 seem to be more pronounced. Compared with predicted strain values, the concrete compressive strain was underestimated by as much as 25%, again pointing to a possibly different modulus of elasticity than the one measured.

In beam RAC7 the crack pattern is developed the most of all the beams, in all three cross-sections with steel pins along the beam height (A6-7 and B8-9; A7-8 and B7-8; and A8-9 and B6-7) cracks were observed on both sides and thus strain distributions in all three cross-sections were possible, Figure 4.39.



FIGURE 4.39: Close view of middle cross-sections of beam RAC7

They are shown for 5 min, 90 and 450 days after loading, in figs. 4.40 to 4.42. As in NAC beams, the strains follow a linear distribution and the lowering of the neutral axis is clear. From the trendline equations, the increase in the compressed zone depth was determined as 63.6 to 109.0 mm for section A6-7, 59.9 to 84.6 mm for section A7-8 and 53.8 to 88.8 mm for section A8-9.

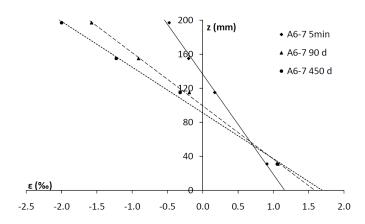


FIGURE 4.40: Strain distribution of cross-section A6-7 in beam RAC7

For beam RAC28, the compressive concrete and tensile steel strains are tabulated in Table 4.27 and Table 4.28, respectively and plotted in Figure 4.43 and Figure 4.44, respectively.

Since the beams RAC28 and NAC28 are also loaded to identical $\sigma_c/f_{cm}(t_0)$ ratios and very similar M_{tot}/M_{ult} ratios, increases in concrete and steel strains can be expected to be similar. The concrete compressive strain increased 3.19–3.63 times its initial value

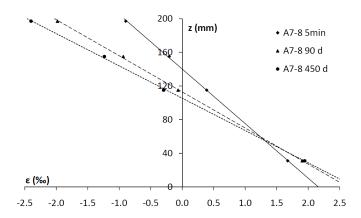


FIGURE 4.41: Strain distribution of cross-section A7-8 in beam RAC7



FIGURE 4.42: Strain distribution of cross-section A8-9 in beam RAC7

TABLE 4.27: Compressive concrete strain in beam RAC28

	$\mathcal{E}_{_{C}}$ (%o)										
Beam	A3-4	A4-5	A5-6	A8-9	A9-10	A11-12					
5 min	-0.43	-0.38	-0.39	-0.40	-0.39	-0.43					
28 d	-0.84	-0.81	-0.82	-0.86	-0.80	-0.83					
90 d	-1.02	-0.98	-1.01	-1.04	-1.00	-1.03					
180 d	-1.19	-1.17	-1.18	-1.22	-1.16	-1.16					
450 d	-1.37	-1.38	-1.36	-1.45	-1.36	-1.38					

TABLE 4.28: Tensile steel strain in beam RAC28

	\mathcal{E}_{s1} (%0)										
Beam	A3-4	A4-5	A5-6	A8-9	A9-10	A11-12					
5 min	0.98	0.81	1.05	1.48	1.01	1.18					
28 d	1.29	1.14	1.41	2.12	1.33	1.56					
90 d	1.31	1.11	1.42	2.15	1.33	1.57					
180 d	1.37	1.15	1.48	2.27	1.42	1.64					
450 d	1.50	1.24	1.57	2.44	1.51	1.72					

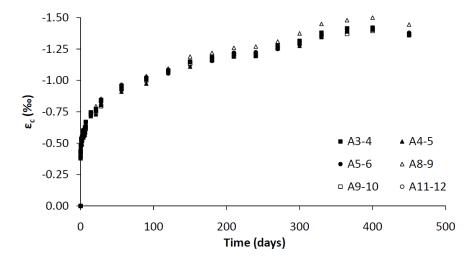


FIGURE 4.43: Time evolution of compressive concrete strain in beam RAC28

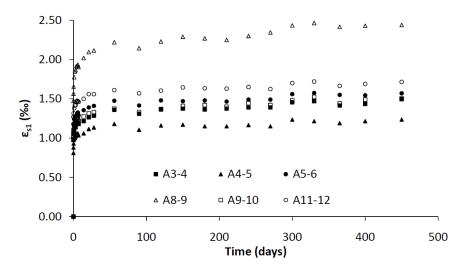


FIGURE 4.44: Time evolution of tensile steel strain in beam RAC28

in beam RAC28 compared with 2.37–3.15 in beam NAC28. The steel tensile strain increased 1.45–1.65 times its initial value in beam RAC28 compared with 1.34–1.64 in beam NAC28. Again, the effects of shrinkage and creep in RAC seem to be more pronounced than in NAC; interestingly, both beams loaded after 28 days show higher increases in tensile steel strain compared with beams loaded after 7 days. Compared with predicted strain values, the concrete compressive strain was underestimated by only 10% on average.

In beam RAC28 the crack pattern is less developed and a crack was observed in only one cross-section with steel pins along the beam height on both sides, namely section A8-9 (and B7-8), Figure 4.39.

FIGURE 4.45: Close view of middle cross-sections of beam RAC28

The strain distribution for this section is shown for 5 min, 90 and 450 days after loading, in Figure 4.46. As before, the strains follow a linear distribution and the neutral axis moves downward over time. From the trendline equations, the increase in the compressed zone depth was determined as 52.4 to 76.5 mm.

These were the results on the two RAC beams. The two HVFAC beams, although loaded to identical $\sigma_c/f_{cm}(t_0)$ ratios as NAC and RAC beams, were, at the same time, loaded to lower M_{tot}/M_{ult} ratios, Table 4.14. This led to HVFAC beams having a less developed crack pattern, smaller crack widths and lower tensile steel and compressive concrete strains.

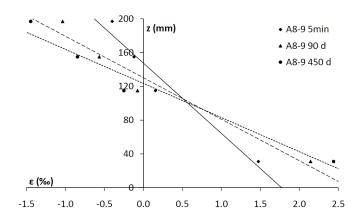


FIGURE 4.46: Strain distribution of cross-section A8-9 in beam RAC28

The compressive concrete and tensile steel strains for beam HVFAC7 are given in numerical form in Table 4.29 and Table 4.30, respectively and in graphical form in Figure 4.47 and Figure 4.48, respectively.

TABLE 4.29: Compressive concrete strain in beam HVFAC7

	$\mathcal{E}_{\mathcal{C}}$ (%o)							
Beam	A3-4	A5-6	A7-8	A9-10				
5 min	-0.41	-0.38	-0.38	-0.41				
28 d	-0.83	-0.85	-0.88	-0.87				
90 d	-0.98	-0.93	-1.00	-0.99				
180 d	-1.09	-1.05	-1.13	-1.11				
450 d	-1.25	-1.19	-1.30	-1.29				

TABLE 4.30: Tensile steel strain in beam HVFAC7

Beam	A3-4	A5-6	A7-8	A9-10
5 min	1.00	0.85	1.21	1.14
28 d	1.32	1.05	1.65	1.48
90 d	1.31	1.04	1.66	1.44
180 d	1.26	1.01	1.63	1.42
450 d	1.32	1.06	1.65	1.49

The increase in compressive concrete strain for beam HVFAC7 is 3.04–3.41 times its initial value, about 10% less than in the case of beam NAC7. The increase in tensile

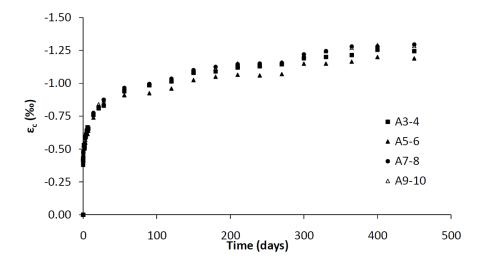


FIGURE 4.47: Time evolution of compressive concrete strain in beam HVFAC7

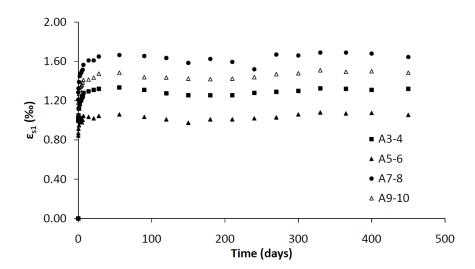


FIGURE 4.48: Time evolution of tensile steel strain in beam HVFAC7

steel strain is 1.25–1.36 times its initial value, practically identical to beam NAC7. This points to a less pronounced effect of shrinkage and creep in beam HVFAC7 compared with NAC7. Also important is that predicted strain values (both compressive and tensile) are within 10% of measured values.

Because of the aforementioned less developed crack pattern, only one cross-section with pins along the beam height was suitable for analysing the strain distribution – section A8-9 (and B7-8), Figure 4.49.

The strain distribution for this section is shown for 5 min, 90 and 450 days after loading,

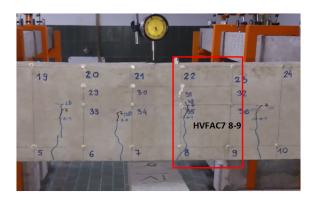


FIGURE 4.49: Close view of middle cross-sections of beam HVFAC7

in Figure 4.50. As before, the strains follow a linear distribution and the neutral axis moves downward over time. From the trendline equations, the increase in the compressed zone depth was determined as 50.6 to 75.6 mm.

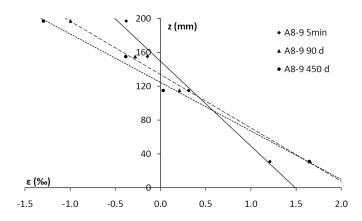


FIGURE 4.50: Strain distribution of cross-section A8-9 in beam HVFAC7

Finally, for beam HVFAC28, the compressive concrete and tensile steel strains are given in numerical form in Table 4.31 and Table 4.32, respectively and in graphical form in Figure 4.51 and Figure 4.52, respectively.

The increase in compressive concrete strain over 450 days for beam HVFAC28 was 2.95–3.02 of its initial value, mostly in the middle of the range for NAC28 (2.37–3.42). The increase in tensile steel strain for beam HVFAC28 was 1.36–1.56 times its initial value, practically identical to beam NAC28 (1.34–1.64). As with NAC28 compared with NAC7 and RAC28 compared with RAC7, so too for HVFAC28, the increase in tensile steel strain is greater than for HVFAC7. Compared with predicted strain values, the measured

TABLE 4.31: Compressive concrete strain in beam HVFAC28

		$\mathcal{E}_{\mathcal{C}}$ (%o)	
Beam	A7-8	A9-10	A10-11
5 min	-0.30	-0.29	-0.30
28 d	-0.53	-0.50	-0.55
90 d	-0.61	-0.58	-0.63
180 d	-0.77	-0.73	-0.77
450 d	-0.90	-0.86	-0.90

TABLE 4.32: Tensile steel strain in beam HVFAC28

		ε_{s1} (%o)	
Beam	A7-8	A9-10	A10-11
5 min	0.77	0.71	0.75
28 d	1.00	0.88	1.09
90 d	1.04	0.90	1.10
180 d	1.02	0.87	1.07
450 d	1.16	0.97	1.16

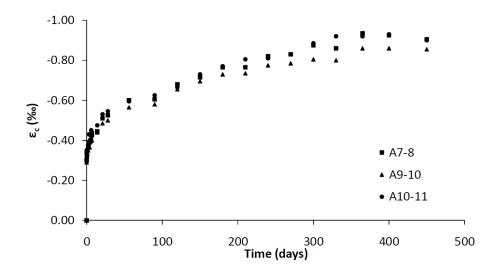


FIGURE 4.51: Time evolution of compressive concrete strain in beam HVFAC28



FIGURE 4.52: Time evolution of tensile steel strain in beam HVFAC28

compressive strain was within 10%; however, the measured tensile steel strain was almost 30% lower, on average, than the predicted value – looking at the underdeveloped crack pattern of beam HVFAC28, this possibly points to a much smaller tensile steel stress than targeted.

As for beam HVFAC7, only one cross-section with pins along the beam height was suitable for analysing the strain distribution in beam HVFAC28 – section A7-8 (and B7-8), Figure 4.53.

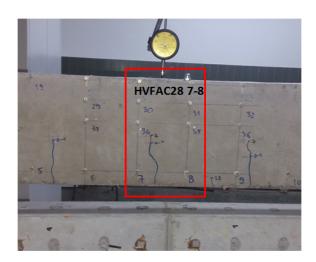


FIGURE 4.53: Close view of middle cross-sections of beam HVFAC28

The strain distribution for this section is shown for 5 min, 90 and 450 days after loading, in Figure 4.54. As before, the strains follow a linear distribution and the neutral axis moves downward over time. From the trendline equations, the increase in the compressed zone depth was determined as 50.6 to 79.1 mm.

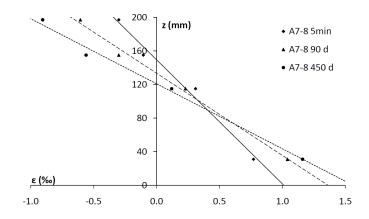


FIGURE 4.54: Strain distribution of cross-section A7-8 in beam HVFAC28

4.4 Summary

This chapter presented the results of the experimental programme in detail. All results concerning fresh and hardened concrete properties, obtained on accompanying test specimens, were presented, as well as the main experimental results obtained on reinforced concrete beams.

Material Properties of Concretes

The workability of the concretes proved somewhat hard to consistently control, varying by \pm one slump class from the target class S3 (measured after 5 min). The target slump after 30 min of class S2 was achieved for NAC and RAC, but not for HVFAC.

The densities of the concretes decreased in the order of NAC, RAC, HVFAC, with 28-day hardened densities of 2340, 2240 and 2200 kg/m³, respectively.

The target 28-day compressive strength of 35 MPa on a 100 mm cube was achieved for NAC and RAC (with an overshot of 5–10%) but not in the case of HVFAC which missed

the target by 5 MPa. The time evolution of compressive strength showed a slowing down and even decrease after 240 days.

The tensile splitting and flexural strengths were measured after 7 and 28 days. NAC and RAC had practically the same tensile strengths at both times: splitting tensile strengths of 2 MPa after 7 days and 2.4 (NAC) and 2.5 (RAC) after 28 days. HVFAC had a much lower 7-day splitting strength of 1.2 MPa, rising to 2.1 MPa after 28 days.

The 28-day moduli of elasticity for NAC, RAC and HVFAC were 32.2, 30.8 and 28.7 GPa, respectively. There time evolution was almost negligible, not more than 20% between 7 and 450 days.

The shrinkage strain after 450 days for NAC, RAC and HVFAC was -0.645, -0.782 and -0.597 %. The time evolution of shrinkage followed a logarithmic function.

Creep was measured only on RAC and HVFAC prisms, loaded after 7 and 28 days. The experimental creep coefficients for RAC loaded after 7 and 28 days were 2.395 and 2.480, respectively, and for HVFAC loaded after 7 and 28 days, 1.634 and 1.554, respectively. Taking all the measurement imprecision and scatter into account, these creep coefficients basically represent the same values (for RAC and HVFAC), showing no effect of higher stress levels (non-linear creep) to which specimens loaded after 7 days were exposed to. While creep compliance for RAC7, RAC28 and HVFAC7 prisms are very similar, the creep compliance for HVFAC28 prisms is significantly smaller.

Results on Reinforced Concrete Beams

Starting from target $\sigma_c/f_{cm}(t_0)$ ratios of 0.6 and 0.45 for beams loaded after 7 and 28 days, respectively, taking into account measured mechanical properties of the beams (modulus of elasticity and compressive strength), the superimposed dead load was calculated for each beam. In the end, beams NAC7 and RAC7 were loaded to 0.54 and 0.56 of their ultimate strengths, respectively, beams NAC28 and RAC28 to 0.48 and 0.44 of their ultimate strengths, respectively, and beams HVFAC7 and HVFAC28 to 0.40 and 0.38 of their ultimate strengths, respectively. This meant that beams NAC7 and RAC7 had similar tensile steel stresses, as well as beams NAC28 and RAC28, and beams HVFAC7 and HVFAC28.

The deflections of the beams from self-weight could not be successfully measured using geodetic readings. While some results showed good agreement with theoretical values,

the warping of other beams meant that those readings were useless for this purpose. The dial gauge readings showed that mid-span deflections increased very similarly for all six beams: the ratios of final-to-initial deflections were in a narrow range of 2.03–2.16 with only RAC28 having a larger ratio of 2.36. Over time, the deflections developed following a clear logarithmic trend.

Crack patterns, spacings and widths were analysed for all beams. Generally, the beams loaded after 7 days had a more developed crack pattern compared with beams loaded after 28 days. Over the course of 450 days the width of the cracks increased, the cracked zone widened and new cracks opened between existing cracks, reducing the average crack spacing by approximately 15%.

The strains in the beams showed a relatively good agreement with predicted values, with an average variation of around 15–20% for compressive concrete strains. The compressive concrete strains increased logarithmically, by roughly 2.5–3.5 times their initial value; higher increases were in beams loaded after 7 days. The tensile steel strains increased linearly by roughly 1.2-1.6 times their initial value; higher increases were in beams loaded after 28 days. The strain distribution in mid-span cross-sections was linear along the height of the beam and the neutral axis was observed to move downward in the cross-section, increasing the depth of the compressed zone.

Chapter 5

Analysis, Discussion and Implications of the Results

5.1 Aim of the Analysis of the Results

Beside Chapter 3, the current chapter is the most important one in this thesis. It is primarily concerned with analyses of the obtained experimental results. The conducted analyses serve to verify the adequacy and proper execution of the experimental programme itself, but also to provide new insight into the studied phenomena. In line with section 1.3, the main objective of this chapter is to 'reach accurate and precise methods for predicting the behaviour of NAC, RAC and HVFAC beams under sustained loads'.

The chapter begins with the analyses of the mechanical properties of the produced concrete mixes, section 5.2. Although the results of this part of the experiment were not numerous (compressive and tensile strengths, modulus of elasticity), and a lot of systematic research on this topic exists (sections 2.6 and 2.7), it was still important to verify the obtained results. This is especially important taking into consideration certain problems with measurements (e.g. modulus of elasticity of RAC, section 4.2.5), which are bound to happen in any experimental programme. Hence, the primary goal of this section was to establish a reliable *range* of mechanical properties of the produced concretes for the analyses in subsequent sections.

The second section of this chapter, 5.3, presents analyses of shrinkage and creep results obtained on accompanying prisms. The section contains comparisons with predictions provided by the models presented in section 2.5.3: model B4, MC10, EC2, ACI 209R-92 and GL2000 models. The experimental results are analysed in comparison with model predictions and relative to each other, i.e. differences between NAC, RAC and HVFAC are studied. The general 'fit' of the results to model predictions is discussed.

The third section, 5.4 is central to this chapter, providing analyses of beam deflection results which were presented in section 4.3.2. In order to achieve the objective of reaching accurate and precise methods for predicting the behaviour of NAC, RAC and HVFAC beams under sustained loads, two families of models for predicting deflections were studied, originating from the European and North American traditions, section 2.5.4. First, for both families of models, the rigorous approach based on numerical integration was studied and compared with selected reliable experimental results presented in section 2.5.2. Through this comparison, it was determined whether corrections are necessary in the rigorous form of the models. Second, the rigorous form of the models was compared with their respective simplified versions and necessary calibrations were performed in order to achieve the same accuracy and precision on the previously selected experimental results. Third, the models were applied to existing results on RAC and HVFAC beams and conclusions about their applicability to them were reached.

5.2 Analysis of the Mechanical Properties of Concretes

5.2.1 Compressive Strength

Compressive strength of the concretes (converted from cubes to cylinders) was given in Table 4.5 and Figure 4.5. In section 4.2.3 the obtained results were presented and commented on. It was stated that the presented values were averages of three measurements (with a CoV generally not exceeding 10% on any particular test). It was noted also that there were some peculiar results such as a relative decrease in the mean strength between two test dates in some instances as well as the unexpectedly low time evolution of compressive strength for HVFAC.

Since the compressive strength was one of the targets when designing concrete mixes and a ruling criterion in the experimental setup design—through the $\sigma_c/f_{cm}(t_0)$ ratio—it is important to establish reasonable *ranges* within which the compressive strength of each concrete actually lies. This is also important since all the presented models for calculating shrinkage, creep or deflections use compressive strength as an input parameter (with the exception of the B4 model). Whether using measured experimental data for input mechanical properties or deriving them from code expressions based on compressive strength, it is useful to have a range within which the actual results fit reasonably well.

Hence, this section will assess what is the range within which compressive strength lies, specifically at the ages of 7 and 28 days since these were the loading ages for the beams. The range will be defined by the following values:

- $f_{c,inf}$ lower 'characteristic' value of compressive strength;
- f_{cm} mean value of compressive strength;
- $f_{c,sup}$ upper 'characteristic' value of compressive strength.

Since all code expressions predict other mechanical properties from the 28-day compressive strength (as well as the time evolution of compressive strength itself), the measured mean $f_{cm,exp}$ values were taken as a starting point (30.5, 28.1 and 22.6 MPa for NAC, RAC and HVFAC, respectively). From these values, using a maximum observed CoV of 10%, the lower and upper 'characteristic' values were obtained by adding, i.e. subtracting, $1.65 \cdot 0.1 \cdot f_{cm,exp}$ – representing, in fact, 5 and 95 percentile values of a normal distribution with mean $f_{cm,exp}$. Hence, $f_{c,inf}(28)$ and $f_{c,inf}(28)$ were obtained; these value represent a reasonable range within which the actual value of the 28-day concrete compressive strength lies.

Since compressive strength was measured after 7, 28, 90, 240 and 450 days, the next step was to assess how well code expressions predict the development of compressive strength for each concrete. For this purpose, the code expressions given in Eurocode 2 (EN 1992-1-1, 2004) and ACI 318-11 (ACI 318-11, 2011) were tested (the Model Code 2010 expressions is identical to Eurocode 2 and models B4 and GL2000 use the ACI 318-11 formula).

According to EC2, mean compressive strength at time t, $f_{cm}(t)$, is derived from the 28-day mean compressive strength:

$$f_{cm}(t) = \beta_{cc}(t) \cdot f_{cm} \tag{5.1}$$

where β_{cc} is the time evolution function given in Equation 2.180 with a cement typedependent coefficient s defined in Equation 2.181. As outlined in section 3.2.4, cement type 42.5 R S-L was used for which s = 0.2.

According to ACI 318-11, the time evolution of compressive strength is given by Equation 2.123 taking coefficients a and b as 4 and 0.85, respectively.

For all three concretes, the time evolution of compressive strength was calculated from three values: $f_{c,inf}(28)$, $f_{cm,exp}$ and $f_{c,sup}(28)$, according to Eurocode 2 and ACI 318-11. For NAC, $f_{cm} = 30.5$ MPa; $f_{c,inf}(28) = 30.5 - 1.65 \cdot 0.1 \cdot 30.5 = 25.5$ MPa and $f_{c,sup}(28) = 30.5 + 1.65 \cdot 0.1 \cdot 30.5 = 35.6$. The results are given in Table 5.1 and Figure 5.1.

TABLE 5.1: Predictions of NAC compressive strength

-			Eurocode	e	ACI			
Time	$f_{cm,exp}$	$\overline{f_{c,inf}}$	f_{cm}	$f_{c,sup}$	$f_{c,inf}$	f_{cm}	$f_{c,sup}$	
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	
7	24.7	20.9	25.0	29.1	17.9	21.5	25.0	
28	30.5	25.5	30.5	35.6	25.5	30.5	35.6	
90	30.5	27.9	33.4	38.9	28.5	34.1	39.8	
240	33.9	29.1	34.8	40.6	29.4	35.2	41.0	
450	32.8	29.6	35.5	41.3	29.7	35.6	41.4	

In Table 5.1, the values in bold are the 28-day lower-bound, mean and upper-bound compressive strengths, which were the input for both code predictions, calculated from $f_{cm,exp}$. Conclusions are perhaps easier to make by looking at Figure 5.1; in it, Eurocode 2 predictions are given by full lines and ACI 318-11 predictions by the dotted lines. It can be seen that experimentally obtained values lie comfortably within the range predicted from upper- and lower-bound values (except for 7-day strength which is underestimated by ACI

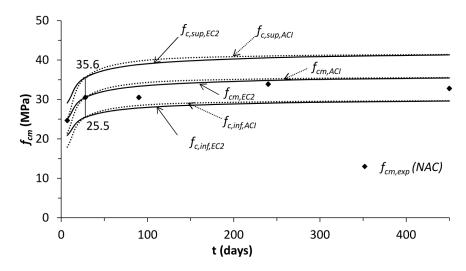


FIGURE 5.1: Predictions of NAC compressive strength time evolution

318-11, probably because it doesn't account for the rapid-hardening cement type). Also, the measured values lie closest to the line calculated from $f_{cm,exp}$ (although 240 and 450-day strengths are somewhat below this line). This is important for the reliability of the measurements. Hence, the ranges provided in Table 5.1 can be used in further analyses, e.g. the 7-day compressive strength will be considered to lie between 20.9 and 29.1 MPa, with a 'most probable' value of 25.0 MPa.

The same was performed for RAC and HVFAC. The results for RAC are given in Table 5.2 and Figure 5.2.

TABLE 5.2: Predictions of RAC compressive strength

		-	Eurocode			ACI			
Time	$f_{cm,exp}$	$\overline{f_{c,inf}}$	f_{cm}	$f_{c,sup}$	$f_{c,inf}$	f_{cm}	$f_{c,sup}$		
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)		
7	24.2	19.2	23.0	26.8	16.5	19.7	23.0		
28	28.1	23.4	28.1	32.7	23.4	28.1	32.7		
90	29.1	25.6	30.6	35.7	26.2	31.4	36.5		
240	29.4	26.7	32.0	37.3	27.0	32.4	37.7		
450	32.8	27.2	32.6	38.0	27.3	32.7	38.1		

As with NAC, the measured values, $f_{cm,exp}(t)$, lie within the range predicted from the upper- and lower-bound compressive strengths, close to the predictions from $f_{cm,exp}$.

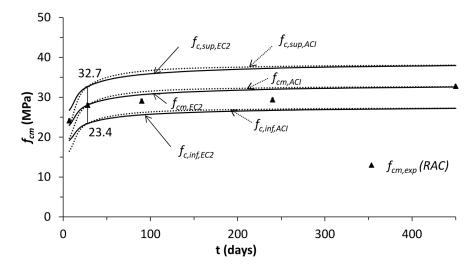


FIGURE 5.2: Predictions of RAC compressive strength time evolution

However, the 90 and 240-day strengths are somewhat below this middle line. Again, the analysis provides a reliable interval for RAC compressive strength.

For HVFAC, beside the Eurocode 2 and ACI 318-11 predictions, the expression proposed by (Chen et al., 2017) was also used to predict compressive strength from $f_{cm,exp}$. The equation is given in Equation 2.185 and is actually a modification of the $\beta_{cc}(t)$ function with the introduction of the C/(S+A) ratio, Equation 2.186. For the specific HVFAC mixture used in this experiment, the C/(S+A) ratio can be calculated from the chemical composition of cement and fly ash, Table 3.3. Since the amounts of cement and fly ash are equal per m³, the ratio can be calculated as

$$\frac{C}{S+A} = \frac{60.43 + 7.62}{(21.04 + 58.24) + (5.33 + 20.33)} = 0.649$$
(5.2)

The results of the compressive strength predictions are given in Table 5.3 and Figure 5.3.

As with NAC and RAC, the measured values line within the range of predictions from the upper- and lower-bound values, very close to the mean line. However, what is noticeable is the extreme discrepancy between the measured values and predictions using the expression proposed by Chen et al. (2017). This slow evolution of HVFAC compressive strength was mentioned previously in section 4.2.3 and attributed mostly to the curing regime – the fly ash reacted much less with cement and the pozzolanic reaction was of

			Eurocode	e	ACI			Chen et al. (2017)
Time	$f_{cm,exp}$	$\overline{f_{c,inf}}$	f_{cm}	$f_{c,sup}$	$f_{c,inf}$	f_{cm}	$f_{c,sup}$	f_{cm}
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
7	16.4	15.4	18.5	21.5	13.3	15.9	18.5	15.5
28	22.6	18.9	22.6	26.3	18.9	22.6	26.3	22.6
90	25.9	20.6	24.7	28.7	21.1	25.2	29.4	29.3
240	24.8	21.5	25.8	30.0	21.8	26.1	30.4	33.3
450	25.6	21.9	26.2	30.6	22.0	26.3	30.6	35.2

TABLE 5.3: Predictions of HVFAC compressive strength

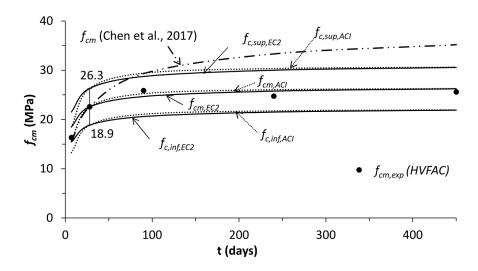


FIGURE 5.3: Predictions of HVFAC compressive strength time evolution

much lower intensity. In a way, this concrete is more like a concrete with 200 kg/m³ of cement and filler (in the form of fly ash) than a typical HVFAC. Nonetheless, it is on the safe side to assume time evolution of compressive strength identical to NAC. Hence, the obtained ranges of compressive strength provide a reliable assessment of real compressive strength values. The result also serves as a reminder about the implications of predictions such as the one by Chen et al. (2017) – the preconditions for their validity are not always clear or explicitly stated.

5.2.2 Modulus of Elasticity

For the modulus of elasticity, an analysis similar to the one for compressive strength was carried out. The measurements of the modulus of elasticity were the most unreliable ones, with specific problems concerning the measurement of the RAC modulus of elasticity—as discussed in section 4.2.5. Hence, it was very important to first verify the experiment results, their validity and reliability.

For this purpose, a *range* of values within which the modulus of elasticity reasonably lies, was searched for. From the values measured after 28 days, $E_{cm,exp}$, upper and lower 'characteristic values, $E_{c,sup}(28)$ and $E_{c,inf}(28)$ were calculated as 5 and 95 percentile values by adding, i.e. subtracting, $1.65 \cdot 0.1 \cdot E_{cm,exp}$.

From these three values, the time evolution of the modulus of elasticity was predicted using Eurocode 2 (EN 1992-1-1, 2004), Model Code 2010 (FIB, 2013) and ACI 318-11 expressions (ACI 318-11, 2011).

Eurocode 2 and Model Code 2010 predict the time evolution of the modulus of elasticity using the same function β_{cc} as for compressive strength. However, since the observed increase in the modulus of elasticity over time is less pronounced, both codes use an exponential version of the β_{cc} function, only with different exponents; Eurocode 2 predicts a smaller increase in the modulus of elasticity.

The Eurocode 2 uses the following expression

$$E_c(t) = E_{cm} \cdot \beta_{cc}^{0.3} \tag{5.3}$$

whereas Model Code 2010 uses the following

$$E_c(t) = E_{cm} \cdot \beta_{cc}^{0.5} \tag{5.4}$$

Meanwhile, ACI 318-11 doesn't give an explicit function. However, since the modulus of elasticity is predicted form the square root of compressive strength at any time using

equation Equation 2.122, it can be concluded that ACI 318-11 implies that the time evolution of the modulus of elasticity follows a function which is the square root of the function for compressive strength, i.e.

$$E_c(t) = E_{cm} \sqrt{\frac{t}{4 + 0.85 \cdot t}} \tag{5.5}$$

Finally, from the three values at 28 days – $E_{c,sup}(28)$ and $E_{cm,exp}$ and $E_{c,sup}(28)$, the time evolution of the modulus of elasticity was calculated for ages 7, 90, 240 and 450 days. Values are given in Table 5.4 and in Figure 5.4. Values are given for Eurocode 2 and ACI 318-11 and not for Model Code 2010 since they are very similar to the values according to Eurocode 2, always within 10%.

TABLE 5.4: Time evolution of the NAC modulus of elasticity

]	Eurocode	e	ACI				
Time	$E_{cm,exp}$	$\overline{E_{c,inf}}$	E_{cm}	$E_{c,sup}$	$E_{c,inf}$	E_{cm}	$\overline{E_{c,sup}}$		
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)		
7	30.1	25.3	30.3	35.3	22.5	27.0	31.5		
28	32.2	26.9	32.2	37.5	26.9	32.2	37.5		
90	32.4	27.6	33.1	38.5	28.4	34.0	39.7		
240	33.2	28.0	33.5	39.0	28.9	34.6	40.3		
450	34.5	28.1	33.7	39.2	29.0	34.7	40.5		

It can be seen that the measured values of the modulus of elasticity all lie within the range obtained from the upper- and lower-bound values of E_{cm} . They practically all lie on the line which predicts the time evolution of the modulus of elasticity from its mean 28-day value. Notably, ACI 318-11 provides a slightly larger increase in the modulus after 28 days but also lower values at the age of 7 days.

This was the first step in the analysis, the verification of experimental results. The second step was to test the code expressions for predicting the modulus of elasticity from compressive strength.

The Eurocode 2 expression is given in Equation 2.170 and the ACI 318-11 expression in Equation 2.122. Model Code 2010 uses a similar expression to Eurocode 2, the only

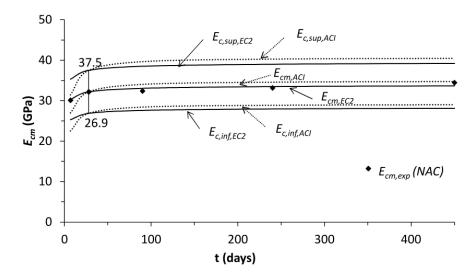


FIGURE 5.4: Time evolution of the NAC modulus of elasticity

difference being in the coefficient of the equation which is 22 for Eurocode 2 and 21.5 for Model Code 2010. This is an insignificant difference, so only the Eurocode 2 expression will be studied here.

The predicted values are given in Table 5.5 and Figure 5.5. The figure shows only lines obtained using the upper- and lower-bound values of compressive strength; this is because the ranges are relatively narrow and all three lines for both codes would make the figure illegible.

TABLE 5.5: Predictions of the NAC modulus of elasticity from compressive strength

			Eurocode			ACI	
Time	$E_{cm,exp}$	$\overline{E_{c,inf,calc}}$	$E_{cm,calc}$	$E_{c,sup,calc}$	$E_{c,inf,calc}$	$E_{cm,calc}$	$E_{c,sup,calc}$
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)
7	30.1	27.4	29.0	30.3	21.2	23.2	25.0
28	32.2	29.1	30.8	32.2	25.3	27.6	29.8
90	32.4	29.9	31.6	33.1	26.7	29.2	31.5
240	33.2	30.3	32.0	33.5	27.1	29.7	32.0
450	34.5	30.5	32.2	33.7	27.2	29.8	32.2

Figure 5.5 clearly shows that both codes underestimate experimentally measured values. Eurocode 2 predicts them relatively well, most closely by using the upper-bound value of compressive strength $f_{c,sup}$, whereas ACI 318-11 underestimates the modulus of elasticity

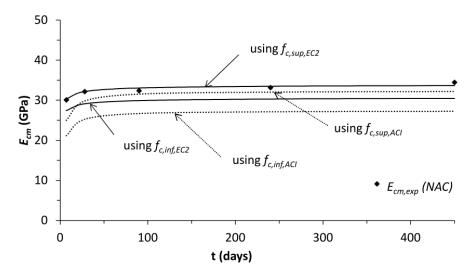


FIGURE 5.5: Predictions of the NAC modulus of elasticity from compressive strength

at all ages. If predictions using f_{cm} are considered, then for Eurocode 2, the modulus values after 7 and 28 days (important because of the loading ages of beams) are 96.3% and 95.6% of the measured values, respectively; for ACI 318-11, they are 77% and 85.7% for 7 and 28 days, respectively. Because of the importance of the modulus of elasticity in the experimental programme and setup, this conclusion has to borne in mind when carrying out further analyses.

RAC was the mixture for which the modulus of elasticity results are most unreliable, especially those at 7 and 28 days. It was explained previously that the 7-day value is the average of two measurements and the 28-day value is a single measurement, which seems to be nearer to the upper-bound limit of $E_c(t)$ values.

Because of this, a slightly different approach was taken for RAC: the 7-day value was taken as a starting point from which upper and lower 'characteristic' values, $E_{c,inf}(7)$ and $E_{c,sup}(7)$, were calculated. Then, from these three values, new E_{cm} values were determined and from them, the time evolution of the modulus of elasticity was predicted, Table 5.6 and Figure 5.6.

For Eurocode 2 predictions, all experimental values lie within the range between upperand lower-bound values of E_{cm} ; however, the scatter is significant. It is clear that the only value close to the upper-bound is the 28-day value (the single measurement), which points to the probability of the actual 28-day modulus value being lower than experimentally

]	Eurocode	е	ACI				
Time	$E_{cm,exp}$	$\overline{E_{c,inf}}$	E_{cm}	$E_{c,sup}$	$E_{c,inf}$	E_{cm}	$E_{c,sup}$		
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)		
7	26.2	21.9	26.2	30.6	21.9	26.2	30.6		
28	30.8	23.3	27.9	32.5	26.1	31.3	36.4		
90	25.3	23.9	28.6	33.3	27.6	33.1	38.5		
240	26.4	24.2	29.0	33.8	28.0	33.6	39.1		
450	28.6	24.3	29.1	33.9	28.2	33.7	39.3		

TABLE 5.6: Time evolution of the RAC modulus of elasticity

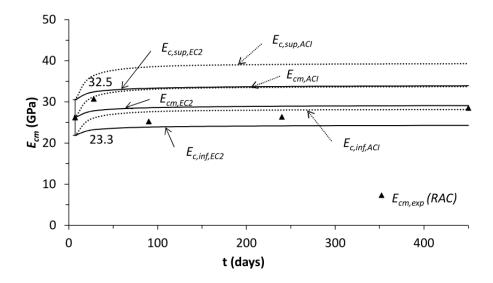


FIGURE 5.6: Time evolution of the RAC modulus of elasticity

determined. Meanwhile, the ACI 318-11 predictions are very imprecise and overestimate the modulus value at all ages except 28 days. This is because they were back-calculated from the 7-day value and the rate of increase in the ACI 318-11 formula is very large for early ages.

As for predictions from compressive strength, the results are given in Table 5.7 and Figure 5.7. *The Eurocode 2 predictions were determined using a correction coefficient of 0.9* in Equation 2.170, the correction coefficient recommended by EC2 for limestone aggregates. This was found to provide the best fit of results and is in line with conclusion of other researchers about the RAC modulus of elasticity being lower compared with NAC (see section 2.6.1), (Silva, 2015; Ignjatović, 2013; Lye et al., 2016a).

			Eurocode			ACI	
Time	$E_{cm,exp}$	$\overline{E_{c,inf,calc}}$	$E_{cm,calc}$	$E_{c,sup,calc}$	$E_{c,inf,calc}$	$E_{cm,calc}$	$\overline{E_{c,sup,calc}}$
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)
7	26.2	24.1	25.4	26.6	20.3	22.2	24.0
28	30.8	25.6	27.0	28.3	24.2	26.5	28.6
90	25.3	26.3	27.7	29.0	25.6	28.0	30.2
240	26.4	26.6	28.1	29.4	26.0	28.5	30.7
450	28.6	26.7	28.2	29.6	26.1	28.6	30.8

TABLE 5.7: Predictions of the RAC modulus of elasticity from compressive strength

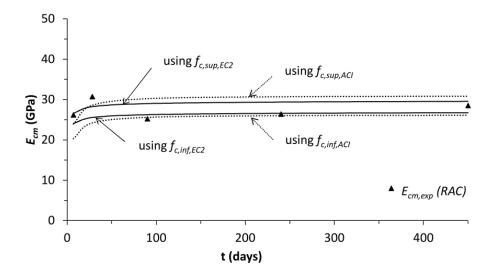


FIGURE 5.7: Predictions of the RAC modulus of elasticity from compressive strength

Both the Eurocode 2 and ACI 318-11 predictions, limited in Figure 5.7 by lines obtained from $f_{c,inf}(28)$ and $f_{c,sup}(28)$, pass between experimental values, which is mostly because of their large scatter. If the predictions from f_{cm} are analysed, then according to Eurocode 2, the predicted 7 and 28-day values are 96.9% and 87.7% of the measured results; for ACI 318-11 these percentages are 84.7% and 86% for 7 and 28 days, respectively. Again, special care should be taken when considering the proper value of E_{cm} in further analysis, however, the results obtained in this section present reasonable ranges for carrying out sensitivity analyses.

For HVFAC, the same procedure as for NAC was followed, i.e. upper and lower 'characteristic' values of E_{cm} were calculated from $E_{cm,exp}$ and from these values the time

evolution of the modulus was predicted according to Eurocode 2 and ACI 318-11. Additionally, the expression proposed by (Chen et al., 2017) was also tested. The expression is a modification of the Eurocode 2 procedure and was outlined in section 2.7.2, eqs. (2.182) and (2.183). The results are given in Table 5.8 and Figure 5.8.

]	Eurocode			ACI	Chen et al. (2017)	
Time	$E_{cm,exp}$	$E_{c,inf}$	E_{cm}	$E_{c,sup}$	$E_{c,inf}$	E_{cm}	$E_{c,sup}$	E_{cm}
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)
7	25.2	22.6	27.0	31.5	20.1	24.1	28.0	22.3
28	28.7	24.0	28.7	33.4	24.0	28.7	33.4	28.7
90	27.7	24.6	29.5	34.3	25.3	30.3	35.3	32.1
240	29.7	24.9	29.8	34.8	25.7	30.8	35.9	33.9
450	30.2	25.1	30.0	35.0	25.8	30.9	36.1	34.7

TABLE 5.8: Time evolution of the HVFAC modulus of elasticity

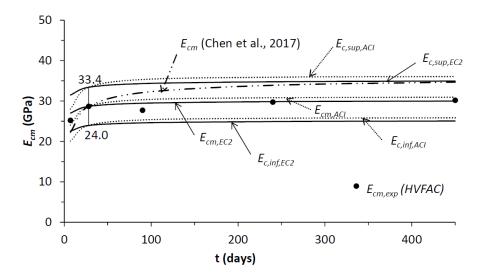


FIGURE 5.8: Time evolution of the HVFAC modulus of elasticity

The results show that the measured values fit well with predictions from E_{cm} , both for Eurocode 2 and ACI 318-11. It can also be seen that the increase in the modulus of elasticity is negligible after 28 days, standing in contrast to other findings and predictions by Chen et al. (2017), again pointing to the effect of curing regime. Nonetheless, experimental values seem validated and can be trusted in further analyses.

The values of the modulus of elasticity predicted from compressive strength are given in Table 5.9 and Figure 5.9. The results are similar to NAC: Eurocode 2 provides satisfying predictions with all measured values falling within the narrow range of predictions from $f_{c,inf}(28)$ and $f_{c,sup}(28)$; the ACI 318-11 predictions are, again, well below measured values, only approaching them when the upper-bound compressive strength is used. For Eurocode 2, the 7 and 28-day predicted values are 105.1% and 97.9% of measured moduli; for ACI 318-11, these percentages are 79% and 82.9% for 7 and 28 days, respectively. Once more, these results must be taken into account in further analyses when using the modulus of elasticity.

TABLE 5.9: Predictions of the HVFAC modulus of elasticity from compressive strength

			Eurocode			ACI	
Time	$E_{cm,exp}$	$\overline{E_{c,inf,calc}}$	$E_{cm,calc}$	$E_{c,sup,calc}$	$E_{c,inf,calc}$	$E_{cm,calc}$	$\overline{E_{c,sup,calc}}$
(days)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)	(GPa)
7	25.2	25.1	26.5	27.7	18.2	19.9	21.5
28	28.7	26.6	28.1	29.4	21.7	23.8	25.6
90	27.7	27.3	28.9	30.2	23.0	25.1	27.1
240	29.7	27.7	29.2	30.6	23.3	25.5	27.6
450	30.2	27.8	29.4	30.8	23.4	25.6	27.7

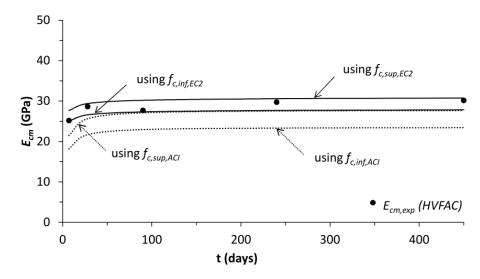


FIGURE 5.9: Predictions of the HVFAC modulus of elasticity from compressive strength

5.2.3 Tensile Strength

Unlike compressive strength and the modulus of elasticity, tensile strength was measured only at the ages of 7 and 28 days, section 4.2.4, in the form of splitting and flexural tensile strengths.

The tensile strength of concrete is an important parameter when calculating deflections of reinforced concrete structures as it directly determines the cracking moment and, indirectly, through the ratio of applied—to—cracking moment, the extent of cracking in the member. As was outlined in section 2.5.4, the European models (EC2 and MC10) are calibrated on cracking moments determined from axial tensile strength f_{ctm} whereas the North American models rely on the modulus of rupture f_r (flexural tensile strength) when calculating the cracking moment.

Since tensile strength was not measured after 28 days, analysing its time evolution was not possible. Hence, only code predictions of it were studied in this section. For Eurocode 2 and Model Code 2010 f_{ctm} is important and so, splitting tensile strength was converted to axial tensile strength according to code recommendations.

Eurocode 2 states that tensile strength may be taken as:

$$f_{ct} = 0.9 \cdot f_{ct,sp} \tag{5.6}$$

while Model Code 2010 recommends

$$f_{ct} = f_{ct,sp} \tag{5.7}$$

Hence, for these two codes $f_{ctm,exp}$ was calculated according to eqs. (5.6) and (5.7) using results from Table 4.6. The second step was to predict tensile strength values from compressive strength. For this purpose, both codes provide the following expression:

$$f_{ctm} = 0.3 \cdot f_{ck}^{(2/3)} = 0.3 \cdot \left(f_{cm} - 8 MPa \right)^{(2/3)}$$
 (5.8)

From $f_{c,inf}(28)$, f_{cm} and $f_{c,sup}(28)$, the lower 'characteristic, mean and upper 'characteristic' values of f_{ctm} were calculated. From each of them, using the expression for the time evolution of tensile strength, the 7-day value $f_{ctm}(7)$ was also predicted:

$$f_{ctm}(t) = f_{ctm} \cdot \beta_{cc}^{(2/3)} \text{ for } t \le 7 \text{ days}$$

$$(5.9)$$

where β_{cc} is the same function given by Equation 2.180.

The results for NAC are given in Table 5.10. It can be seen that the Model Code 2010 recommendation for taking splitting tensile strength equal to axial tensile strength is more precise in the case of NAC: both the 7 and 28-day predicted values show excellent agreement with measurements if the MC10 approach is adopted.

TABLE 5.10: Predictions of NAC tensile strength according to Eurocode 2 and Model Code 2010

Time	$f_{ctm,exp,EC2}$	$f_{ctm,exp,MC10}$	$f_{ct,inf,calc}$	$f_{ctm,calc}$	$f_{ct,sup,calc}$
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
7	1.80	2.00	1.65	1.96	2.24
28	2.16	2.40	2.02	2.39	2.74

As for ACI 318-11, the modulus of rupture was predicted according to the following expression:

$$f_r(t) = 0.62 \cdot \sqrt{f_{cm}(t)}$$
 (5.10)

It can be seen then, that the tensile strength follows the same time evolution function as the modulus of elasticity: the square root of the function for compressive strength. The modulus of rupture was calculated using the three compressive strength values, $f_{c,inf}(28)$, f_{cm} and $f_{c,sup}(28)$ and compared with the experimentally measured flexural tensile strength $f_{ct,fl}$.

The results for NAC are given in Table 5.11. It can be seen that the modulus of rupture predictions according to ACI 318-11 significantly underestimate experimental values

even when predicted from $f_{c,sup}(28)$. This means that special care should be taken if experimentally determined values are used as input for deflection calculations.

TABLE 5.11: Predictions of NAC modulus of rupture according to ACI 318-11

Time	$f_{ct,fl,exp}$	$f_{r,inf,calc}$	$f_{rm,calc}$	$f_{r,sup,calc}$
(days)	(MPa)	(MPa)	(MPa)	(MPa)
7	5.60	2.63	2.87	3.10
28	6.70	3.13	3.43	3.70

The same procedure was repeated for RAC and HVFAC. Additionally, for RAC, the modification of time evolution of tensile strength, as proposed by Silva (2015) (Equation 2.169), was also tested. The results for RAC are given in tables 5.12 and 5.13.

TABLE 5.12: Predictions of RAC tensile strength according to Eurocode 2 and Model Code 2010

			Silva (2015)			
Time	$f_{ctm,exp,EC2}$	$f_{ctm,exp,MC10}$	$f_{ct,inf,calc}$	$f_{ctm,calc}$	$f_{ct,sup,calc}$	f_{ctm}
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
7	1.80	2.00	1.52	1.81	2.08	2.05
28	2.25	2.50	1.86	2.21	2.54	2.25

The predictions from mean compressive strength f_{cm} according to EC2 and MC10 are closer to $f_{ctm,exp}$ values when f_{ctm} is taken as $0.9 \cdot f_{ct,sp}$ as proposed by Eurocode 2. This is in contrast to NAC where the MC10 recommendation of $f_{ctm} = f_{ct,sp}$ provided better agreement with predictions. This points to a comparatively lower tensile strength of RAC relative to NAC, something which is in line with previous findings (Silva, 2015; Ignjatović, 2013).

The time evolution correction according to Equation 2.169 was calculated using $f_{ctm,exp,EC2}$ as a starting point. The obtained $f_{ctm}(7)$ value is higher than experimentally measured. Hence, in this case, the proposed equation does not improve Eurocode 2 predictions.

ACI 318-11 predictions of the RAC modulus of rupture again significantly underestimate measured values.

TABLE 5.13: Predictions of RAC modulus of rupture according to ACI 318-11

Time	$f_{ct,fl,exp}$	$f_{r,inf,calc}$	$f_{rm,calc}$	$f_{r,sup,calc}$
(days)	(MPa)	(MPa)	(MPa)	(MPa)
7	5.40	2.52	2.75	2.97
28	6.40	3.00	3.28	3.54

The results for HVFAC are given in tables 5.14 and 5.15. In this case, EC2 and MC10 do not offer good predictions, neither of $f_{ctm,exp,EC2}$ nor $f_{ctm,exp,MC10}$ mostly because the increase in tensile strength between 7 and 28 days appears to be too big for these expressions to cover. The 28-day value is predicted relatively well from f_{cm} or $f_{c,sup}(28)$, but the 7-day value is too low and can't be reached by the current time evolution function. If the measurements can be trusted, than this points to a possibly different rate of tensile strength evolution in HVFAC compared with NAC. Similar to the corrections for the time evolution of compressive strength and modulus of elasticity, proposed by Chen et al. (2017), a relation should be found for the time evolution of HVFAC tensile strength. However, the currently available number of experimental results does not permit such an analysis.

TABLE 5.14: Predictions of HVFAC tensile strength according to Eurocode 2 and Model Code 2010

Time	$f_{ctm,exp,EC2}$	$f_{ctm,exp,MC10}$	$f_{ct,inf,calc}$	$f_{ctm,calc}$	$f_{ct,sup,calc}$
(days)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)
7	1.08	1.20	1.20	1.47	1.70
28	1.89	2.10	1.47	1.79	2.08

As for ACI 318-11 predictions, they are again significantly below experimental values.

TABLE 5.15: Predictions of HVFAC modulus of rupture according to ACI 318-11

Time	$f_{ct,fl,exp}$	$f_{r,inf,calc}$	$f_{rm,calc}$	$f_{r,sup,calc}$
(days)	(MPa)	(MPa)	(MPa)	(MPa)
7	4.30	2.26	2.47	2.67
28	5.20	2.69	2.95	3.18

5.3 Analysis of Shrinkage and Creep Results – Comparison with Existing Models

This section presents the analyses of the shrinkage and creep results obtained on prisms given in sections 4.2.6 and 4.2.7.

The results are analysed using the calculation models presented in section 2.5.3: B4, MC10, EC2, ACI 209R-92 and GL2000.

The aim of this section was to assess the ability of each model to capture the evolution of shrinkage and creep of the studied concrete mixes both quantitatively and qualitatively. This kind of assessment is important since these models are to be used later in the calculation of deflections; their results—shrinkage strain and creep coefficient—are important input parameters in the deflection calculation models.

For both shrinkage and creep, the procedure consisted of an initial calculation by the models using required input variables (compressive strength, mix characteristics) and default values of the models' 'free parameters', i.e. constants or variables in the models which cannot be predicted precisely or constrained by the model but have to be estimated theoretically or experimentally.

After an initial assessment of the overall agreement of the predictions with measured values, an optimal 'fit' or choice of the models' free parameters was found in order to improve predictions. The importance of this step lies in the verification of the general mathematical formulation of each model – how 'flexible' each model is in describing the shrinkage and creep processes of the studied concrete mixes. This means the testing of the *form* of each model's equations, regardless of the values of free parameters in them (which are optimized by fitting to experimental data); this is primarily a qualitative assessment of the shape of shrinkage and creep curves predicted by the models.

It is important to note that this was the only aim of this 'fitting' of free parameters – the calibrated shrinkage and creep models *were not* used in analyses of deflections.

5.3.1 Shrinkage

For shrinkage, all the concrete mixes were studied—NAC, RAC and HVFAC—since results were available for all of them.

An initial step carried out in the analyses was the identification of initial offset in shrinkage measurements, as explained in (Hubler et al., 2015b). Since according to diffusion theory the initial slope of the shrinkage curve is 1/2 in a log-log plot (Hubler et al., 2015a; Wittmann et al., 1987), early measurements were analysed and if found not to lie on such a line, a 'time offset' was applied to them in order to translate them into physically consistent results.

A diagram of how this was done for NAC is shown in Figure 5.10 resulting in an offset of two days for the first two measurements; the procedure was repeated for RAC (requiring no offset) and HVFAC (an offset of one day for the first three measurements).

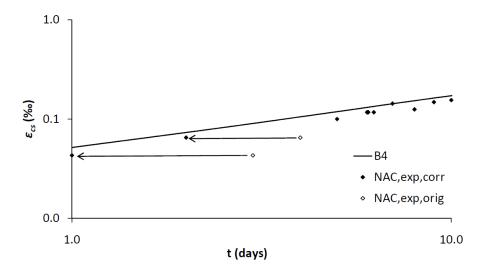


FIGURE 5.10: Determining the initial offset for NAC shrinkage measurements

After this, shrinkage strain curves were calculated according to the five models and compared with the experimentally obtained ones (corrected for the initial offset). In model B4, as an input for the type of aggregates, in the case of RAC sandstone was chosen since RCA is a softer aggregate and it was shown that modeling it with sandstone is a good estimate for predicting the modulus of elasticity (Silva et al., 2015); for NAC and HVFAC, quartzite was selected. Also in model B4, correction factors for fly ash were used given

in Table 4 in (Bažant et al., 2015) (for a fly ash content greater than 30% of cement). A problem arises when using the B4 model for HVFAC: the model requires as input the w/c ratio, but always defined in terms of the mass of cement (not taking fly ash into account in any way). For the HVFAC mix in this study, this results in a w/c ratio of 0.975 which is well outside the range of input parameter values for which it was formulated (see Equation 2.18); hence, the results for HVFAC obtained using HVFAC must be interpreted taking this fact into account. Detailed calculations are given in Appendix B.

First, the comparison of shrinkage strain values after 477 days is given in Table 5.16.

TABLE 5.16: Comparison of calculated and measured shrinkage strain after 477 days

	$\varepsilon_{cs,calc}(477)/\varepsilon_{cs,exp}(477)$					
Concrete	B4	MC10	EC2	ACI 209R	GL2000	
NAC	0.63	1.22	1.14	1.25	0.79	
RAC	1.04	1.03	0.96	1.09	0.68	
HVFAC	1.18	1.42	1.31	1.31	0.99	

This information by itself does not tell much, except that the models mostly overestimate shrinkage after 477 days (except the GL2000 model for all mixes and the B4 model for NAC) and that, overall, the best predictions are for RAC. The obtained predictions are generally within the scatter of all the models: the CoV of all the models is 30–40%, (Hubler et al., 2015b).

The next step was the fitting of the models to the results by varying the models' free parameters. The B4 model states that its 'model parameters' (free parameters) must be considered as statistical variables (Bažant et al., 2015). The model parameters of model B4 (presented in section 2.5.3) are q_1 , q_2 , q_3 , q_4 , q_5 , τ_{sh} , $\varepsilon_{sh\infty}$, τ_{au} and $\varepsilon_{au\infty}$ and Bažant et al. (2015) provide explicit 5% and 95% confidence limits for each parameter. Meanwhile, the other models do not state explicitly what are their free parameters or their confidence limits, this has to be deduced from the models' equations. Only the MC10 model provides 5% and 95% confidence limits for the total shrinkage strain and creep coefficient, i.e. for the calculation output rather than for model parameters; nonetheless, even this information is useful.

A brief overview of free parameters which were calibrated in each shrinkage model is given in Table 5.17 and the parameters are highlighted in Appendix B. The fitting/calibration procedure consisted of minimizing the mean value of the residuals (difference between calculated and measured values at each time t). It should be noted that more complex approaches exist, e.g. minimizing the CoV of the residuals and weighting them according to time decades, but they were not adopted herein.

Model	Model parameter	Eq. with the parameter
B4	$k_{\varepsilon a}; k_{\tau a}$	Equation 2.30; Equation 2.36
MC10	α_{ds1}	Equation 2.89
EC2	$lpha_{ds1}$	Equation 2.107
ACI 209R	$780 \cdot 10^{-6}$	Equation 2.111
GL 2000	$900 \cdot 10^{-6}$	Equation 2 134

TABLE 5.17: Shrinkage models' parameters which were calibrated

The B4 model.

In figs. 5.11 to 5.13, the original and calibrated shrinkage curves according to models B4 for NAC, RAC and HVFAC are shown, respectively.

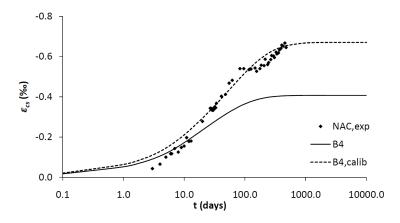


FIGURE 5.11: Original and calibrated NAC shrinkage curve according to model B4

First looking at NAC in Figure 5.11, in the experimental results, a horizontal shift in values around 100 days can be noticed. This can probably be attributed to changes in ambient conditions in the laboratory (mostly relative humidity, Figure 4.7), since this kind of horizontal shift is more or less also visible in RAC and HVFAC (where more

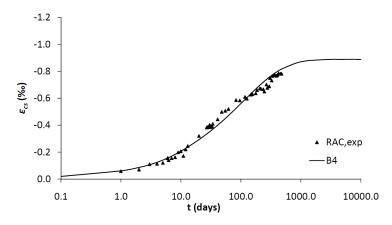


FIGURE 5.12: Original and calibrated RAC shrinkage curve according to model B4

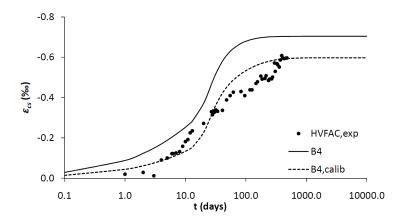


FIGURE 5.13: Original and calibrated HVFAC shrinkage curve according to model B4

than one is visible). It is therefore in question, how the evolution of shrinkage might have proceeded without this change in conditions. Nonetheless, the calculated values grossly underestimate the measured results; hence, the B4 model had to be fitted to the experimental NAC data and this was possible to a good degree. However, what cannot be inferred from the measurements is whether they are indeed approaching the leveling-off part of the curve or not; the measurement might in fact suggest that shrinkage will continue to increase.

As for RAC, shown in Figure 5.12, with the input of sandstone aggregates, the shrinkage curve shows very good agreement with measurements and hence, no fitting was necessary. On the other hand, for HVFAC, shown in Figure 5.13, the B4 model shows a very poor prediction, before and after fitting; the shrinkage curve shape is qualitatively inappropriate for the experimental results. This is most probably the result of inputting the very high w/c

ratio of 0.975 into the model, for which it was not formulated. Hence, with the exception of HVFAC, the B4 model is able to capture the evolution of shrinkage of the studied concrete mixes by fitting its free parameters.

The MC10 model

The original and calibrated time curves according to MC10 are shown in figs. 5.14 to 5.16 for NAC, RAC and HVFAC, respectively.

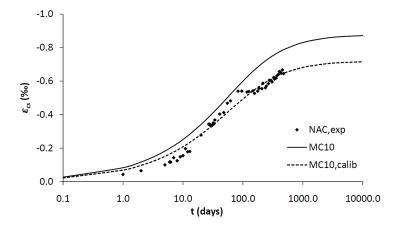


FIGURE 5.14: Original and calibrated NAC shrinkage curve according to model MC10

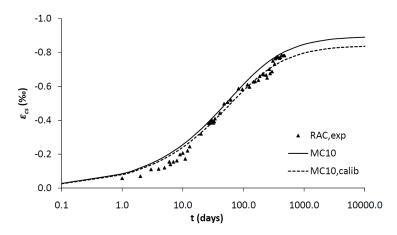


FIGURE 5.15: Original and calibrated RAC shrinkage curve according to model MC10

The results show an initial overestimation of the measured values, smallest in the case of RAC. After fitting the curves by varying the model's free parameters, the shrinkage of all three concretes is described very well (even HVFAC, unlike in the case of model B4). This flexible mathematical formulation of the MC10 model is very important for its future implementation in design codes. Again, from the diagrams it cannot be concluded

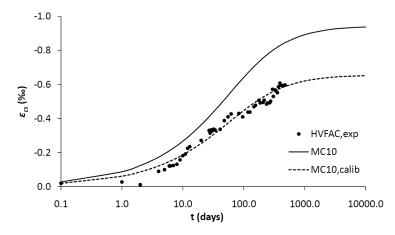


FIGURE 5.16: Original and calibrated HVFAC shrinkage curve according to model MC10

whether the leveling-off of the curve is actually being approached by measured values, probably another 500 days or even more are necessary.

The EC2 model

For EC2, original and calibrated time curves are shown in figs. 5.17 to 5.19 for NAC, RAC and HVFAC, respectively.

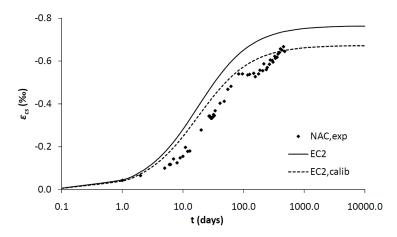


FIGURE 5.17: Original and calibrated NAC shrinkage curve according to model EC2

Just as MC10, uncalibrated EC2 shrinkage curves overestimate the measured values and fitting of the curves was necessary (except for RAC). However, the mathematical formulation of EC2 is not as flexible as that of MC10 and, as can be seen, the qualitative description of shrinkage evolution is not as good in this case. This kind of results is expected since the MC10's shrinkage model is an improvement of the EC2 model.

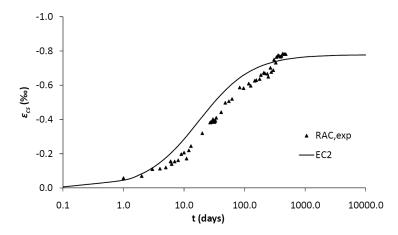


FIGURE 5.18: Original and calibrated RAC shrinkage curve according to model EC2

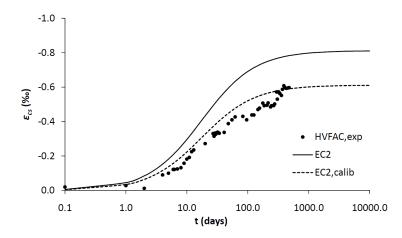


FIGURE 5.19: Original and calibrated HVFAC shrinkage curve according to model EC2

The ACI 209R model

Original and calibrated time curves according to ACI 209R-92 are shown in figs. 5.20 to 5.22 for NAC, RAC and HVFAC, respectively.

All of the shrinkage curves initially overestimate the measured values, but also show very good agreement for early shrinkage in three all cases. It is plausible that, if there was no horizontal shift in the measured values around 100 days, the curves would describe all three concrete mixes very well. Nonetheless, all curves were refitted to better match the experimental values. The model seems sufficiently capable of describing the shrinkage curves of the studied NAC, RAC and HVFAC mixes.

The GL2000 model

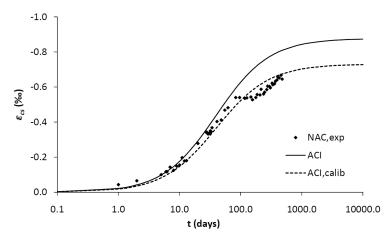


FIGURE 5.20: Original and calibrated NAC shrinkage curve according to model ACI 209R

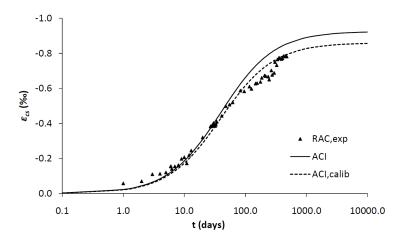


FIGURE 5.21: Original and calibrated RAC shrinkage curve according to model ACI $209\mbox{R}$

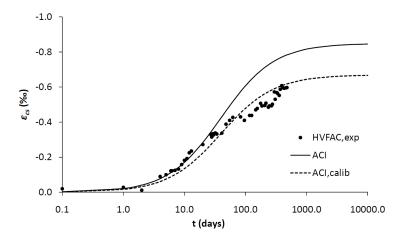


FIGURE 5.22: Original and calibrated HVFAC shrinkage curve according to model ACI 209R

Finally, for the GL2000 model, the original and calibrated time curves are shown in figs. 5.23 to 5.25 for NAC, RAC and HVFAC, respectively.

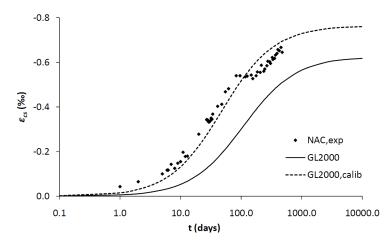


FIGURE 5.23: Original and calibrated NAC shrinkage curve according to model GL2000

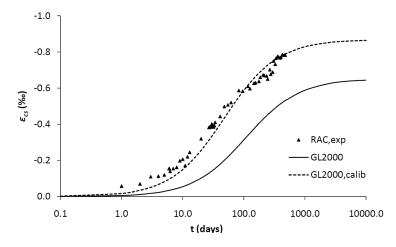


FIGURE 5.24: Original and calibrated RAC shrinkage curve according to model GL2000

The GL2000 model originally underestimated all three shrinkage curves (the best prediction of the final value was for HVFAC). After fitting, the experimentally obtained values were predicted reasonably well, both quantitatively and qualitatively.

In summary, all of the five analysed models predicted experimental shrinkage values within their generally established CoVs. The best predictions according to all models are for RAC, even not requiring any calibration for models B4 and EC2. The other models and other mixes (NAC and HVFAC) required the recalibration of models' free parameters to obtain better predictions. This was possible in all cases except for HVFAC using model B4, in which case the shape of shrinkage curve could not be matched to experimental

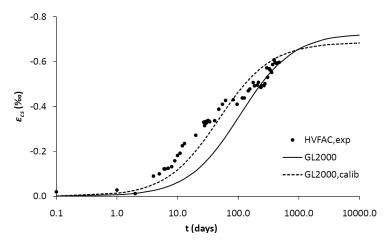


FIGURE 5.25: Original and calibrated HVFAC shrinkage curve according to model GL2000

values; the reason for this was the extremely high w/c ratio, as required by the model to be input as strictly water-to-cement.

5.3.2 Creep

Creep results were analysed for RAC and HVFAC prisms loaded after 7 and 28 days, comparing measured values with predictions obtained using models B4, MC10, EC2, ACI 209R and GL2000. An identical procedure was followed as in the case of shrinkage: creep compliance curves were calculated using default model settings and compared with the experimentally obtained compliances and, if necessary, the calculated curves were calibrated to better fit experimental ones by varying models' free parameters. The choice was made to analyse creep compliance curves rather than creep coefficients because of the possible incompatibility issues when calculating the creep coefficient using the wrong value of the modulus of elasticity (see section 2.5.3 and Equation 2.27).

A detailed presentation of input parameters and creep compliance calculation for all the models is given in the Appendix B, but some comment is also needed here. For model B4, the same problem arose in the case of HVFAC as for shrinkage: the necessary input of the *w/c* ratio as 0.975 meant that the specimens HVFAC7 and HVFAC28 (HVFAC loaded after 7 and 28 days, respectively) were outside the B4's range of applicability. Beside this, existing correction coefficients for fly ash were used. As an input for creep calculation,

the B4 model also requires the shrinkage halftime and final shrinkage strain; these were taken as *calibrated* values obtained in 5.3.1.

In models MC10 and EC2, the non-linear creep coefficient was taken into account because of the $\sigma_c/f_{cm}(t_0)$ ratios of the prisms. Only the model B4 directly calculates the creep compliance $J(t,t_0)$, whereas in the case of other models, creep compliance was calculated from the creep coefficient and the appropriate moduli of elasticity prescribed by each code (see section 2.5.3).

A comparison of creep compliance values after 450 days is given in Table 5.18.

TABLE 5.18:	Comparison	of calculated and	d measured creep	compliance after	450 days

	$J_{calc}(450,t_0)/J_{exp}(450,t_0)$					
Concrete	B4			ACI 209R		
RAC7	1.22	1.14	1.11	0.76	0.89	
RAC28	1.02	0.84	0.86	0.64	0.74	
HVFAC7	2.45	1.19	1.05	0.87	0.97	
HVFAC28	2.64	1.25	1.17	0.93	1.04	

The results in Table 5.18 show that the model B4 grossly overestimates the creep compliance of HVFAC, a consequence of the input of a *w/c* ratio outside the model's applicability range. This issue is probably something that should be dealt with in new versions of the model (the upcoming B5 model). As for all the other models—and B4 predictions for RAC—they are both greater and smaller than experimental values but mostly within the models' previously assessed CoVs which lie in the range of 15–40%, (Wendner et al., 2015b). Hence, no conclusion can be drawn about RAC and HVFAC relative to NAC.

An important insight from Table 5.18 is that models ACI 209R and GL2000 which do not have the capacity to take into account non-linear creep at higher stress—to—strength ratios, generally underestimated all creep compliances; meanwhile, MC10 and EC2, which do possess corrections for non-linear creep, overestimated creep compliance. The exception is RAC28 which is underestimated by all models except B4. The explanation behind this probably lies in the modulus of elasticity. Namely, when calculating creep compliance, the modulus of elasticity was calculated from compressive strength. In MC10 and EC2, the correction factor 0.9 was used (for limestone aggregates) whereas ACI 209R and GL2000

do not have any proposed correction factors; it seems that for RAC28 a lower correction factor is needed.

The next step consisted in evaluating the shape of individual creep compliance curves and their fit to experimental data. In the same manner as was done for shrinkage strain, the models' free parameters were calibrated by minimizing the mean value of the residuals. Again, the aim was the verification of the general mathematical formulation of each model – the testing of the *form* of each model's equations, regardless of the values of free parameters in them (which are optimized by fitting to experimental data). A brief overview of free parameters which were calibrated in each creep model is given in Table 5.19 and these parameters are highlighted in Appendix B.

TABLE 5.19: Creep models' parameters which were calibrated

Model parameter	Eq. with the parameter
$p_1; p_{2w}$	Equation 2.43; Equation 2.46
p_{3a} and p_{3w}	Equation 2.47
p_{4a} and p_{4w}	Equation 2.48
p_{5a} and p_{5w}	Equation 2.50
1.8; 412	Equation 2.73; Equation 2.76
16.8; 1.5	Equation 2.98; Equation 2.99
26 and $1.42 \cdot 10^{-2}$	Equation 2.110
ψ ; 2.35	Equation 2.124; Equation 2.125
0.3, 0.5 and 2	Equation 2.138
	p_1 ; p_{2w} p_{3a} and p_{3w} p_{4a} and p_{4w} p_{5a} and p_{5w} 1.8; 412 16.8; 1.5 26 and 1.42 · 10 ⁻² ψ ; 2.35

The B4 model

Figure 5.26 presents the comparison between the uncalibrated and calibrated creep compliance curves for RAC7 and RAC28 according to B4 and experimental values.

A very good agreement can be seen for RAC28, practically requiring no calibration. Compliance was overestimated for RAC7, however. The model was easily able to fit the experimental curves after calibration. While their is currently a 'convergence' of RAC7 and RAC28 compliances, the model B4 predicts that the higher creep rate of RAC28 relative to RAC7 will slow down and that their compliances will remain parallel from around 1000 days onward.

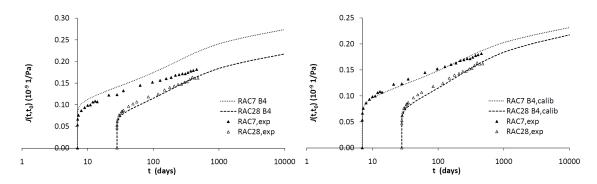


FIGURE 5.26: Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to B4

Figure 5.27 shows the original and calibrated creep compliance curves for HVFAC7 and HVFAC28 as well as the experimental curves.

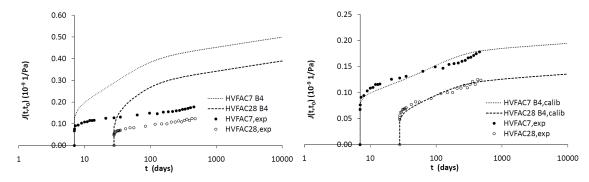


FIGURE 5.27: Original (left) and calibrated (right) creep compliance curves for HVFAC7 and HVFAC28 according to B4

The initially gross overestimation is, of course, due to the high w/c ratio input into the model. After calibration, the compliances fit the data very well, remaining parallel over time.

Thus, the B4 model can be adapted very well to fit the experimental data of RAC and HVFAC at both loading ages, which was expected as it is a very sophisticated and versatile model.

The MC10 model

Figure 5.28 presents the comparison between the uncalibrated and calibrated creep compliance curves for RAC7 and RAC28 according to MC10 and experimental values.

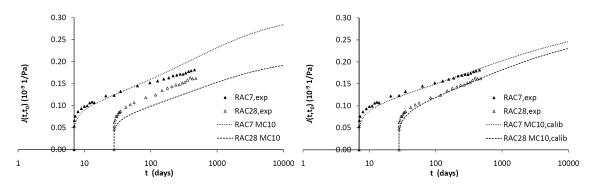


FIGURE 5.28: Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to MC10

Figure 5.29 presents the comparison between the uncalibrated and calibrated creep compliance curves for HVAC7 and HVAC28 according to MC10 and experimental values.

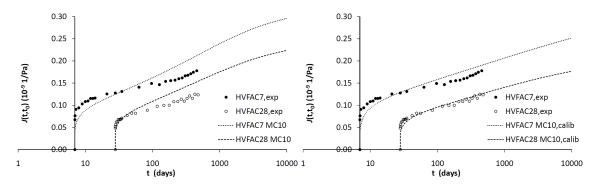


FIGURE 5.29: Original (left) and calibrated (right) creep compliance curves for HVFAC7 and HVFAC28 according to MC10

For both RAC and HVFAC there is an initial good match between predicted and measured values and with little calibration MC10 is able to capture the evolution of creep compliance of all four groups of specimens very well. This ability of MC10 is very important as it will be the foundation of design codes such as the new revision of Eurocode 2, and its creep and shrinkage models are an important part of it. The easiness of using MC10 compared with B4, along with their comparable flexibility, makes MC10 a good tool for practicing engineers.

The EC2 model

For EC2, the comparison between original and calibrated creep compliance curves and experimental values is shown in Figure 5.30 for RAC7 and RAC28 and in Figure 5.31 for HVFAC7 and HVFAC28.

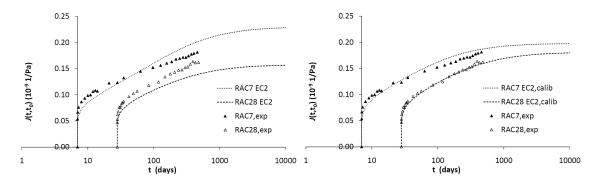


FIGURE 5.30: Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to EC2

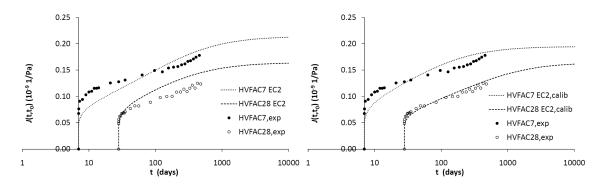


FIGURE 5.31: Original (left) and calibrated (right) creep compliance curves for HVFAC7 and HVFAC28 according to EC2

It is interesting to compare the calculated compliance curves according to EC2 and MC10 and observe the difference in shape. The new MC10 creep model, with a basic creep component without a final value, makes a clear difference compared with EC2's creep model which basically only has a drying part, reaching a final value fairly soon, between 1 000 and 10 000 days.

The EC2 model is still relatively able to capture the shape of experimental compliances (not so much that of HVFAC7), but the fit is clearly poorer compared with B4 and MC10.

The ACI 209R model

For ACI 209R, the comparison between original and calibrated creep compliance curves and experimental values is shown in Figure 5.32 for RAC7 and RAC28 and in Figure 5.33 for HVFAC7 and HVFAC28.

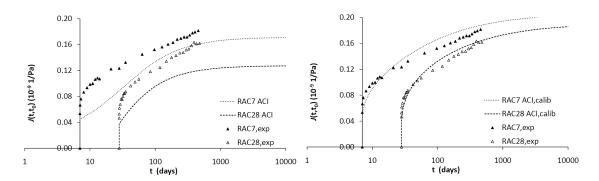


FIGURE 5.32: Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to ACI 209R

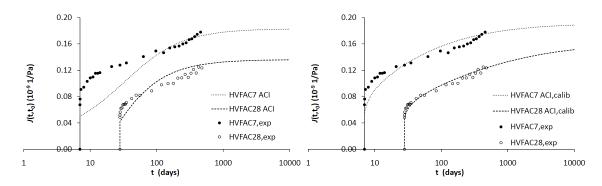


FIGURE 5.33: Original (left) and calibrated (right) creep compliance curves for HVFAC7 and HVFAC28 according to ACI 209R

Initially, the ACI 209R model provides a poor fit of experimental creep compliance for all groups of specimens, both qualitatively and quantitatively. Fitting the curves is possible but requires relatively heavier intervention in the model since it does not have many free parameters. Calibration is done by varying the ultimate creep coefficient of 2.35 in Equation 2.125, the exponent ψ in Equation 2.124 and the coefficient d = f given by expression Equation 2.110.

However, even after calibration, the obtained fit is inferior to B4, MC10 and EC2, especially for RAC.

The GL2000 model

Finally, for model GL2000, the comparison between original and calibrated creep compliance curves and experimental values is shown in Figure 5.34 for RAC7 and RAC28 and in Figure 5.35 for HVFAC7 and HVFAC28.

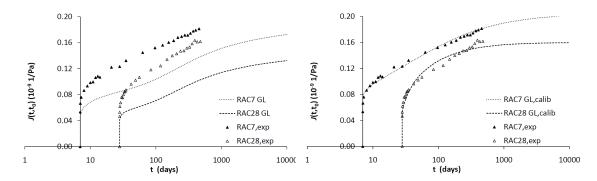


FIGURE 5.34: Original (left) and calibrated (right) creep compliance curves for RAC7 and RAC28 according to GL2000

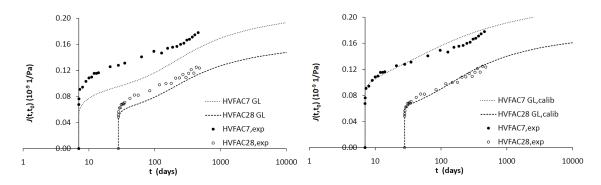


FIGURE 5.35: Original (left) and calibrated (right) creep compliance curves for HVFAC7 and HVFAC28 according to GL2000

The initial predictions by GL2000 for both RAC and HVFAC are not good (especially in the case of RAC) and, as in the case of ACI 209R, calibration is difficult because free parameters are not clearly identified. An intervention was possible in Equation 2.138 where the first two terms represent basic creep and the third term drying creep. Calibration was done by varying the exponents of each term related to time since loading $(t - t_0)$ (initially 0.3, 0.5 and 2.0 for the first, second and third component of Equation 2.138, respectively). Thus, the shape of the compliance curve could be changed as well as its time shift.

The calibrated compliances provide a relatively good fit of experimental data, except for RAC28 which could not be described well with GL2000.

In conclusion, of the five tested creep models, B4 and MC10 proved to be the most versatile and flexible, with MC10 being easier and more intuitive to use, at least from an

engineer's perspective. The other models, EC2, ACI 209R and GL2000, could not describe the compliance curves qualitatively as well as B4 and MC10, with ACI 209R having showing the poorest performance. RAC and HVFAC did not seem to display any significant differences compared with NAC, outside the regular predictive ability of the studied models.

5.4 Analysis of Beam Deflection Results Using Existing Models

This section presents the main analytical part of this thesis. In it, the main results of the experimental programme, i.e. beam deflections, are analysed using existing, previously presented calculation models (see section 2.5.4).

Two existing models were analysed in-depth: Model Code 2010 (MC10) and ACI 435R (ACI). Within the 'European tradition', Eurocode 2 could also have been analysed; however, MC10 was chosen over it for two reasons: (1) the models are very similar, differing practically only in their respective shrinkage and creep models and (2) MC10 will form the basis of the new revision of Eurocode 2; hence, analysing it will provide valuable insight for this process, regarding serviceability limit states.

The general analysis procedure carried out in this section, for both models, was as follows.

First, an initial assessment of the basic mathematical formulation of each model was carried out on a small, selected set of experimental results; in this analysis all input variables are experimentally obtained values. This initial assessment is a qualitative test of the functional *form* of the basic mathematical expressions of the models, namely Equation 2.147 for MC10 and Equation 2.11 for ACI 318 and ACI 435R. These equations contain certain 'free parameters' (coefficient β and exponent 2 in MC10 and exponent m in ACI) but this step is not concerned with their 'default' values. Rather, this step means searching for *any* value of these free parameters for which the models provide a good fit of experimental data. In other words, a qualitative assessment of the shape of the predicted deflection curves is performed by comparing them with measured values.

Second, the precision and accuracy of each model was tested on a large database; in this analysis all input parameters are calculated according to code expressions, i.e. the overall capability of the codes is tested. Herein, accuracy is understood as the closeness of the model predictions to experimental values (closeness to a calculated—to—experimental ratio of 1.0) and precision is understood as the scatter of the results (CoV).

Third, the results are analysed in order to identify key parameters influencing models' precision and accuracy. Corrections are proposed for both models in terms of modifications of the models' free parameters or the functional form of mathematical expressions. The achieved improvements are presented.

Fourth, the applicability of corrected MC10 and ACI models to RAC and HVFAC beams is analysed on a new database of RAC, HVFAC and companion NAC beams, compiled using own and previously published existing results. A statistical analysis is used to demonstrate whether a significant difference exists between the models' performance on NAC and RAC beams. For HVFAC, due to a lack of data, only a qualitative assessment is given.

Each of the steps is elaborated upon in more detail in the following subsections.

5.4.1 Assessment and Correction of Existing Models for NAC

This subsection presents the assessment and subsequent improvement of the MC10 and ACI models for calculating deflections, based on analyses of NAC beams.

The first step was the validation of the core mathematical formulation of each model and its flexibility. As with shrinkage and creep models, this is a key feature of a model and cannot be inferred from an analysis of precision and accuracy on a large database. For this purpose, carefully selected individual deflection curves (containing a large number of values over a long time period) must be chosen. Then, using as input only measured values of mechanical properties, shrinkage and creep, deflections must be calculated and compared with measured values.

This kind of analysis allows for the assessment of the models' ability to fit individual deflection curves. The analyses are carried out using the models' rigorous methods, i.e. numerical integration of curvatures.

After this step, a larger database was compiled using results on NAC beams from literature, selected according to transparent criteria, outlined in the following subsection. In this case, results consisting of only initial and 'final' deflections are sufficient. Since the aim of this step is to determine the models' accuracy and precision, measured values are used only for basic input parameters, such as concrete compressive strength, and everything else is calculated using code expressions (modulus of elasticity, tensile strength, shrinkage and creep). This way, the overall predictive capability of the model is captured.

The results of this step allow for the identification of influencing parameters on the models' accuracy and precision and their eventual deficiencies. In the final step, corrections were proposed for both models and the possible improvements studied.

5.4.1.1 Assessment and Correction of Model Code 2010 Model

The first model that was analysed was MC10 (FIB, 2013). As outlined in section 2.5.4 it is the latest in the European tradition of models for calculating deflection, based on interpolating the stiffness of a reinforced concrete member between states 1 and 2 using the distribution coefficient ζ .

Creep effects on deflections are accounted for by the effective modulus method. Here, MC10 is somewhat inconsistent. Since the creep compliance function is defined by Equation 2.67, strictly speaking, the effective modulus should be taken as the inverse of the creep compliance function. This is precisely what is given in MC10 in equation (7.2-41) in section 7.2.4.10 on 'Approximate algebraic formulation for the constitutive relation: age-adjusted effective modulus (AAEM) method', (FIB, 2013):

$$E_{c,eff}(t,t_0) = \frac{1}{J(t,t_0)} = \frac{E_c(t_0)}{1 + [E_c(t_0)/E_{ci}] \cdot \phi_{28}(t,t_0)}$$
(5.11)

However, in section 7.6.5.2 of MC10, 'Deformations due to bending with or without axial force', the effective modulus is given by equation (7.6-18), (FIB, 2013):

$$E_{c,eff} = \frac{E_{ci}}{1+\phi} \tag{5.12}$$

This definition of the effective modulus is also given in EC2, equation (7.20), (EN 1992-1-1, 2004). It can be argued that the difference between the effective modulus obtained using these two methods is negligible, indeed, for early enough loading ages (e.g. under 90 days), it is below 5–10%. However, for the sake of methodological consistency, in this thesis, the effective modulus was calculated as the inverse of the creep compliance function, i.e. according to Equation 5.11.

Expressions predicting mechanical properties from compressive strength are almost identical to EC2. There is a difference in tensile strength – EC2 recommends taking $f_{ctm} = 0.9 \cdot f_{ct,sp}$, whereas MC10 recommends $f_{ctm} = f_{ct,sp}$. A difference also exists in expressions for predicting the modulus of elasticity and its time evolution (discussed in 5.2.2) but the differences are not significant. The area where significant differences exist are the shrinkage and creep models, discussed in section 2.5.3. Again, the superiority of MC10's shrinkage and creep models and the fact that it will be the basis for the new revision of EC2 were the reasons for selecting it for this analysis.

For the first step, the validation of the model's mathematical formulation—in essence, the adequacy of the approach of using a distribution coefficient in the first place—had to be carried out on NAC beams for which entire deflection curves were available, over a sufficiently long period (close to 1000 days) and with all necessary mechanical properties experimentally measured (so as to only test the distribution coefficient). For this purpose, only one of the studies presented in section 2.5.2 was adequate – the study by Gilbert and Nejadi (2004).

The experimental programme of the study is given in section 2.5.2. The report of that study provides comprehensive raw data for all necessary input: mechanical properties, shrinkage, creep and deflections over a period of 380 days (measured in sufficiently small time intervals). Strictly speaking, the measured creep coefficient and shrinkage strain should not be applied directly in calculation of deflections since they were determined on prisms and not on beams or slabs – a different nominal thickness would cause slightly different results. However, this effect was consciously neglected. A detailed table with all input data is given in the Appendix C.

The study is very useful for this analysis as it contains both beams (larger reinforcement

ratios and smaller L/d ratios) and slabs (smaller reinforcement ratios and larger L/d ratios), both loaded to lower and higher load levels; also, the compressive strength is that of ordinary structural grade concrete.

After entering all input data, deflections were calculated using numerical integration of curvatures in 50 cross-sections (an example of the Excel-based software used for this purpose is provided in the Appendix C). In this study, deflections from self-weight were not measured. If the beam does not crack under self-weight but cracks under imposed load, the measured deflection contains the deflections from imposed load and the increase in the deflection from self-weight that occurs when changing from state 1 to state 2. Hence, strictly speaking, when calculating the deflection, the deflection from self-weight in state 1 should be subtracted from the total calculated deflection (for self-weight + imposed load):

$$a_{calc,real} = a_{calc,tot} - a_{calc,sw}^{I}$$
 (5.13)

The situation is even more complicated for beams which do crack under self-weight. In the end, *no correction of measured deflections for deflection from self-weight was taken into account* throughout the study for the following reasons: the magnitude of deflection from self-weight is usually very small compared with deflection from imposed load, the significance of this deflection decreases over time (as the long-term deflection increases) and many studies are not clear on the exact procedure of measuring deflections. A detailed listing of all calculated values is provided in Appendix C.

Although entire deflections curves were calculated, still the β coefficient in Equation 2.147 was taken as 1.0 for initial deflection and 0.5 for all points after that. This fact raises a particularly interesting point which will be discussed later and that is 'When should the β coefficient change from 1.0 to 0.5?'

Here, for easier discussion, the results for beams and slabs are shown graphically in Figure 5.36 and Figure 5.37, respectively.

The figures reveal a lot about the abilities MC10. When looking at all 12 members (6 beams and 6 slabs) a generally good agreement between calculated and measured deflections can be seen, at least qualitatively, which is precisely what is being assessed here.

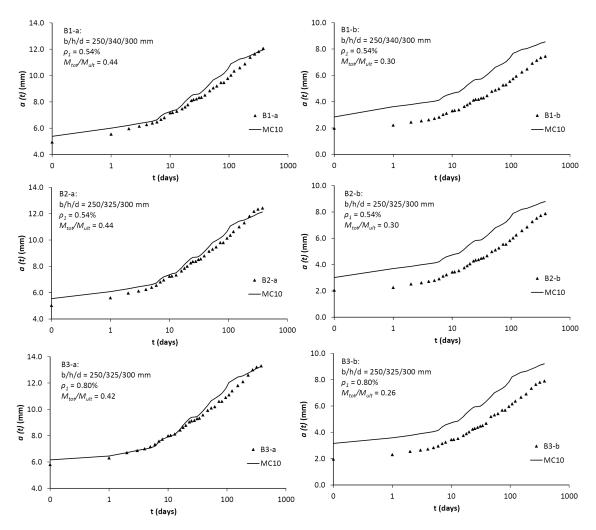


FIGURE 5.36: Assessment of deflection curves for beams from (Gilbert and Nejadi, 2004) according to MC10

On average, for all 12 specimens, the experimental values are overestimated by 19.8%, which, by itself is not bad. The calculated–to–experimental ratio varies from 0.94 to 2.52, and the CoV of the ratio is 15.5%. The situation is worse for initial deflections which are overestimated, on average, 51.3%. Final deflections (after 380 days) are overestimated by only 4.5% with a CoV of 6.5%.

Hence, the model performs much better for long-term deflections than for initial deflections (at least on this dataset, a general conclusion cannot be made based on it). This is expected, taking into account the larger significance of the modulus of elasticity and tensile strength for initial deflections – for both of these mechanical properties, the application of values measured on cylindrical specimens to beams or slabs is questionable at

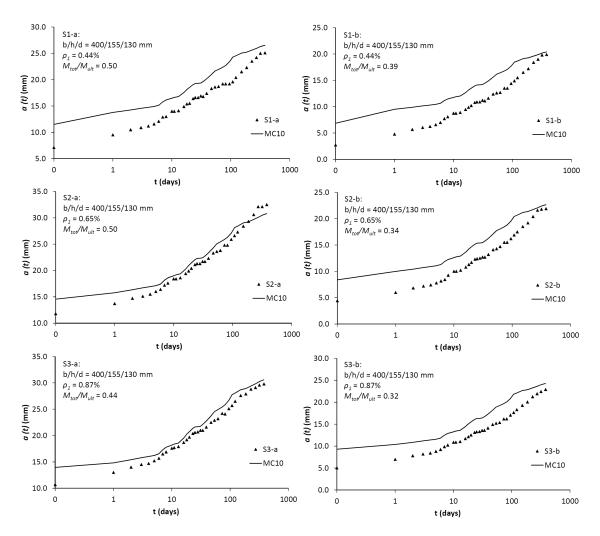


FIGURE 5.37: Assessment of deflection curves for slabs from (Gilbert and Nejadi, 2004) according to MC10

best; and both of these properties lose significance over time – tensile strength through the β coefficient, and the modulus of elasticity through the effective modulus method.

It should also be noted that the calculated curves are not smooth because of the experimental shrinkage and creep curves which are not smooth (probably because of uncontrolled ambient conditions).

An important fact which the figures reveal is that deflections of both beams and slabs loaded to higher load levels (left side of both figures, '-a' samples) were better predicted than for corresponding beams and slabs loaded to lower load levels (left side of both figures, '-b' samples). Also, calculated deflections of beams were generally in better

agreement with experimental values than in the case of slabs, pointing to a possible effect of the reinforcement ratio or the L/d ratio.

Nonetheless, this short analysis validates the functional form of the mathematical expressions in MC10, leading to the next phase of the analysis.

First, criteria were selected based on which a large database of tests on NAC beams under sustained loads could be formed allowing a statistical analysis of the MC10 model. As explained in section 2.5.2, the largest existing database is the one compiled by Espion (1988). However, the database contains studies covering a large time span (more than 60 years) and some information in the database is missing (or assumed), e.g. relative humidity and ambient temperature. Therefore stricter criteria had to be applied, to reduce the number of results from (Espion, 1988) to a smaller but more reliable database.

The following criteria were set up:

- Studies carried out after 1945 (mostly because of construction technology and cement production);
- Reinforced concrete members with rectangular cross-sections;
- Deformed bars used:
- Four-point bending (4PB) or uniformly distributed load (UDL) tests (because of the similar shape of the bending moment diagram, most common in real members);
- The total imposed load caused cracking immediately after loading, i.e. beams were cracked throughout the entire experiment (this was considered most representative of realistic in-service behaviour of reinforced concrete members);
- Compressive strength between 20 and 50 MPa;
- Cross-section height greater than 100 mm;
- L/d ratio smaller than 40; and
- Loading age t_0 smaller than 90 days.

From the database in (Espion, 1988), only 12 studies complied with these criteria: beside the earlier presented studies (Washa and Fluck, 1952; Jaccoud and Favre, 1982; Bakoss et al., 1983), other selected studies were (P.C.A., 1950; Sattler, 1956; Hajnal-Konyi, 1963; Branson and Metz, 1963; Pauw and Meyers, 1964; Lutz et al., 1967; Dajung, 1984; Van Nieuwenburg, 1984; Clarke et al., 1988). These studies correspond to references [18], [11], [22], [23], [26], [29], [44], [45] and [46] in (Espion, 1988).

In addition, two more studies entered into the database: (Gilbert and Nejadi, 2004) and own experimental results from this thesis (NAC7 and NAC28). Thus, in total there were 14 studies in the database with exactly 70 reinforced concrete beams, yielding 140 data points (70 initial and 70 final deflections). All input data for the database is provided in Appendix C.

The range of the most important parameters in the database are given in Table 5.20 along-side the values of those parameters in own beams. From Table 5.20 it can be seen that own beams have relatively average values of geometric properties and compressive strength but a small reinforcement ratio. The loading age and load duration have usual values while the load intensity and increase of normalized deflection have values toward the lower end of the distribution in the database.

TABLE 5.20: Range of most important parameters in the database

	Database	Own experiment
Span:	1829–6400 mm	3200 mm
Depth:	120-340 mm	200 mm
Span/depth:	10.7-39.9	18.9
f_{cm} :	21.4–39.6 MPa	30.5 MPa
ρ:	0.44-3.53%	0.58%
ho':	0-1.67%	0.21%
t_0 :	7–53 days	7–28 days
$t-t_0$:	60–2025 days	450 days
M_{max}/M_{cr} :	1.12-11.00	2.51-3.35
I_I/I_{II} :	1.09-7.18	5.19-5.61
$a(t-t_0)/a(t_0)$	1.50-7.31	2.04-2.07

Unfortunately, for most studies relative humidity and temperature are not available and were taken as reported in (Espion, 1988). Shrinkage strain and creep coefficient were calculating using the MC10 model. Non-linear creep was taken into account in the following manner: in the first step, the regular creep coefficient was determined and using it, the effective modulus calculated – this reduces the initial $\sigma_c/f_{cm}(t_0)$ ratio; if it was still above 0.4, then the non-linear creep coefficient was calculated and applied. Shrinkage strain was taken as 0 for all initial deflections even if in some cases curing had stopped before the beam was loaded. The reason for this is that before laying the beam on supports, its bottom side is in the formwork and no evaporation of water can take place, hence, shrinkage does not cause curvature in the same way as it would if the beam was on supports.

In some studies, compressive strength was not measured after 28 days and had to be recalculated to f_{cm} . In these cases, unless known to be otherwise, cement was taken as 'class N', i.e. the coefficient s in Equation 2.181 was taken as 0.25. Also, the modulus of elasticity was always determined for quartzite aggregates (no correction coefficient was applied) since the information on aggregate type was not available.

After calculating all 140 deflections by numerical integration, the calculated—to—experimental ratio of deflections, a_{calc}/a_{exp} was determined. For all 140 values, the mean a_{calc}/a_{exp} ratio was 1.073 with a CoV of 25.3%. As a starting point, this is a very good result, at least in terms of mean value which is on the safe side; however, the CoV is on the upper bound of acceptable values for a useful prediction model. The range of values was 0.642—2.807, i.e. the distribution is skewed right and to a large degree. The plot of calculated vs. experimental values is shown in Figure 5.38.

Therefore, it serves to carry out a deeper analysis of the data. The first step is to separate initial from long-term (or 'final') deflections. Here, a question can be raised about the usefulness of calculating initial deflections in reinforced concrete members at all, when it is known that they will not be the highest value of deflections and, in the majority of cases, will not be critical in design. This is partly true only for standard reinforced concrete members in buildings, under 'usual' loads (dead and live loads); it is not true for other types of structures such as bridges and for specific types of loading, e.g. certain transient load situations for which short-term deflections are important. It is also the author's opinion that a good model must be able to capture the *entire* time evolution of a phenomenon, i.e. deflections, rather than just a part of it. It is noted that the model itself *is*

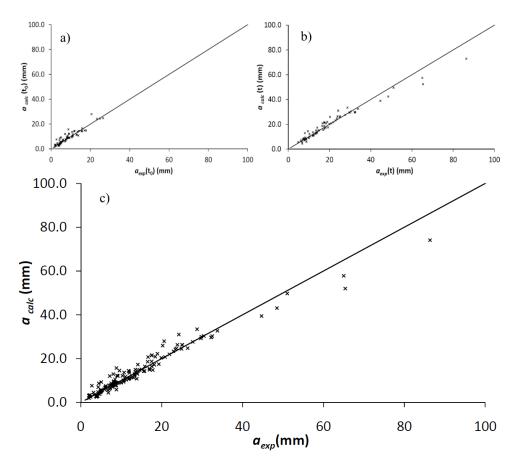


FIGURE 5.38: Calculated vs. experimental values of deflections, according to MC10: a) initial, b) final and c) initial and final deflections

somewhat different in the case of initial deflections (no shrinkage and creep, hence, strictly speaking no effective modulus. Also, any error that occurs when measuring deflections, e.g. caused by the imprecision of the instrumentation or arising from faulty manipulation (prolonged application of load, causing the initially measured deflection to contain creep effects), is relatively greater compared with initial deflections than compared with long-term deflections, since these will always be larger. Nonetheless, both initial and final deflections were analysed in this thesis.

For the 70 initial deflections, the mean a_{calc}/a_{exp} ratio was 1.127 and the CoV 30.5%. For the 70 final deflections, the mean was 1.020 and the CoV 15.5%. Now, a distinction between initial and final deflections is clearly visible. The model has a 10% higher mean and a twice(!) as large CoV for initial deflections. It behaves poorly for initial deflections but very good for final deflections (the CoV is reasonably low). The two most important

reasons behind the worse performance of the model on initial deflections are: (1) the difficulty of measuring initial deflections precisely (a part of the error is on the side of experimental values) and (2) the underestimation of the cracking moment and modulus of elasticity (a part of the error is on the side of the model).

It is also possible that precisely because of reason (1), the overall distribution is skewed right and thus, leads to a wrong impression about the model's performance on initial deflections when the error is on the side of experimental values. Hence, a 'box and whiskers' procedure was performed to identify outliers in the distribution of a_{calc}/a_{exp} ratios. In short, the procedure consists of ranking all 140 values in increasing order; determining distribution quartile values: first a distribution is divided in two parts by its median (middle) value, then the upper and lower parts are also divided by their medians; the difference of the medians of the upper and lower parts (the upper and lower quartiles, Q_1 and Q_3 respectively), the so-called 'inter-quartile range' or iqr is multiplied by 1.5 and subtracted from the lower and added to the upper quartiles. These values $(Q_1 - 1.5 \cdot iqr)$ and $Q_3 + 1.5 \cdot iqr$) are the new limits of the distribution, any value lying outside can be considered to be an outlier and can be disregarded from the distribution.

Doing this, the limits are determined as 0.582 and 1.474. This leaves out 12 outliers (all above 1.474), and importantly, 10 of them are initial deflections. The new sample of 128 values has a mean a_{calc}/a_{exp} ratio of 1.010 and a CoV of 14.9%. The 60 initial deflections have a mean ratio 1.017 and CoV 16.7% and the 68 final deflections have a mean 1.004 and CoV 13.0%. These are excellent values, the means are practically equal to 1.00 and the CoVs are below 15%.

There is one more phenomenon to consider. Namely, it is possible, using geometric characteristics of members in state 1 and 2, to calculate the deflections in state 1 and 2, i.e. the extremes between which real values lie. When this is done, it can be observed that some *experimental* values lie below the calculated deflection for state 1 or above the deflection for state 2. This means that they can never be 'reached' by interpolating between these two states using the distribution coefficient ζ . Out of the 128 'filtered' results, 49 are like this. Since these are results that cannot be calculated using the distribution coefficient, this means that the error lies elsewhere: in the expressions for predicting the tensile strength and modulus of elasticity, in the shrinkage and creep models (for final deflections) and again, in the precision of experimental measurements. The remaining 79 results are the

ones on which ζ does have an influence. For them, the mean a_{calc}/a_{exp} ratio is 1.076 with a CoV of 11.6%. There are 41 initial deflections with a mean 1.088 and CoV 14.2% and 38 final deflections with a mean 1.062 and CoV 7.8%. It is noticeable that the means are now slightly higher but the CoVs are lower, even below 10% for final values.

All of the statistical parameters discussed in the previous paragraphs are given in Table 5.21.

Database	Deflections	n	μ	σ	CoV
	all	140	1.073	0.272	0.253
Full database	initial	70	1.127	0.344	0.305
	final	70	1.020	0.158	0.155
	all	128	1.010	0.150	0.149
No outliers	initial	60	1.017	0.170	0.167
	final	68	1.004	0.131	0.130
	all	79	1.076	0.125	0.116
$a_{calc}^{I} < a_{exp} < a_{calc}^{II}$	initial	41	1.088	0.154	0.142

final

38

1.062

0.083

0.078

TABLE 5.21: Statistical parameters for deflections according to MC10

An initial idea can be to try and improve the shrinkage and creep part of MC10, e.g. by replacing MC10's shrinkage and creep model with that of B4s (B4s must be used instead of B4 because the only input can be compressive strength). This was done and the data is given in Appendix C. The creep coefficient was calculated from Equation 5.11 by inputing the creep compliance obtained by B4s.

Here, only a comparison with final deflections is meaningful. The mean a_{calc}/a_{exp} ratio for the 70 'MC10+B4s' final deflections is 1.167 with a CoV 19%. Hence, both the CoV and the mean are 10% higher compared with using MC10's creep and shrinkage model. As a consequence, this approach was not analysed further and only the MC10 model was used in its entirety.

Going back to the full database (excluding outliers), although the results are excellent, a search for potential influencing parameters is still worthwhile. This was done in the following.

In Figure 5.39 the influences of the M_{max}/M_{cr} ratio and compressive strength on the a_{calc}/a_{exp} ratio are given. Considering everything above 1.5 to be an outlier (as determined previously), no trend can be discerned except that, and this is potentially important, all of the outliers are in the region of $M_{max}/M_{cr} < 2.7$.

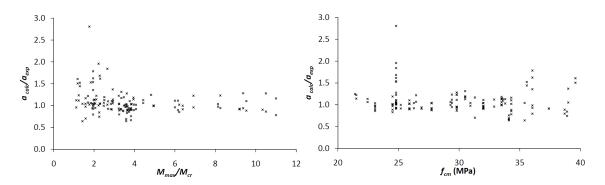


FIGURE 5.39: The influence of M_{max}/M_{cr} (left) and compressive strength (right) on a_{calc}/a_{exp} , MC10

Figure 5.40 displays the influences of the L/d ratio and time since loading $(t - t_0)$ on a_{calc}/a_{exp} . Again, excluding outliers above 1.5, no trends are observable. The high scatter of initial deflections (point $t - t_0 = 0$) is clearly visible.

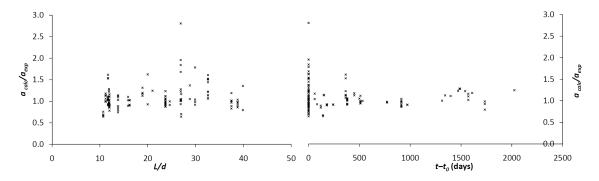


FIGURE 5.40: The influence of L/d (left) and $t - t_0$ (right) on a_{calc}/a_{exp} , MC10

Finally, Figure 5.41 shows the influences of the tensile and compressive reinforcement ratios ρ and ρ' on a_{calc}/a_{exp} . For the tensile reinforcement ratio ρ , as for M_{max}/M_{cr} , all the outliers are concentrated in an area of lower values, $\rho < 1\%$. Even disregarding outliers, there is a small downward trend in the data. As for ρ' , the only observation that can be made is that practically all the variance in the data lies in the specimens with no compressive reinforcement. It can then be hypothesized that based on a single piece of information

– whether the member has compressive reinforcement – much can be concluded about the reliability of deflection predictions for that member.

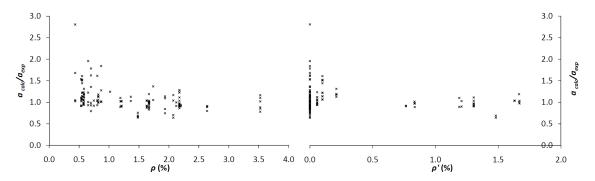


FIGURE 5.41: The influence of ρ (left) and ρ' (right) on a_{calc}/a_{exp} , MC10

There seems to exist an influence of load level and reinforcement ratio on the accuracy and precision of deflection predictions by MC10. Importantly, both of these parameters are actually proxy values for a more fundamental parameter which is the tensile stress in reinforcement. Lower tensile stress in reinforcement means a less cracked state of the member, closer to state 1 and a greater effect of the concrete part of the cross-section. Through this, all of the uncertainties regarding the expressions for mechanical properties, shrinkage and creep exert an influence on deflection predictions; it seems that the trend is toward conservative predictions in such cases.

Another open problem with the method, mentioned earlier is the β coefficient and its transition from 1.0 to 0.5 At what point in time should this change occur? After 5 minutes, 1 day, 10 days, 100 days? It is unclear. The current interpretation is that $\beta = 1$ should be used only for initial deflections *and* first loading, and $\beta = 0.5$ for all other cases.

The question of the β coefficient will be addressed first. Determining the β coefficient should involve two stages. The first stage is determining its dependence on the type of loading – first loading or repeated loading. The problem of repeated loading is not the subject of this thesis and for the purposes herein, β is recommended as 0.5 for repeated loading. As was stated in section 2.5.4 and by other researchers (Gilbert and Ranzi, 2011), such a value of β amounts to reducing f_{ctm} by approximately 30%, this reduction being mostly shrinkage-induced.

The other case is that of first loading. It is reasonable to believe that β should be 1.0 upon first loading and decrease after that. It is also reasonable to argue that its value should not

be below 0.5. But how should it evolve over time? Indeed, if it amounts to a reduction of tensile strength by shrinkage, then its evolution should match the time evolution of shrinkage. And the time evolution of shrinkage is best described by a hyperbolic tangent function, as is done in model B4 (see Equation 2.35). Model B4 proposes Equation 2.35 as an expression for the shrinkage time curve, a hyperbolic tangent function of the square root of time, normalized by the so-called shrinkage half-time. From own and existing results it can be seen that the shrinkage curve reaches the leveling-off part around 1000 days; this time should then be taken as the moment when β should become 0.5.

Hence, the following expression is proposed for the β coefficient, for the case of first loading:

$$\beta = 1 - 0.5 \cdot \tanh\sqrt{\frac{(t - t_0)}{50}} \ge 0.5 \tag{5.14}$$

The full definition of β should be:

$$\beta = \begin{cases} 1 - 0.5 \cdot \tanh\sqrt{\frac{(t - t_0)}{50}} \ge 0.5 & \text{for first loading} \\ 0.5 & \text{for repeated loading} \end{cases}$$
 (5.15)

The β function described by Equation 5.14 is shown in Figure 5.42. It can be seen that the function levels off very quickly, e.g. after 100 days its value is 0.556. Hence, the improvement in the quality of predictions cannot be expected to be significant. However, what it brings is a physical meaning to the β coefficient and a continuous function describing it.

The second correction of MC10 should aim for addressing the influence of the tensile stress in reinforcement, directly, or through one of its proxy values $-M_{max}/M_{cr}$ or ρ . It is the author's opinion that the reinforcement ratio is the best choice as it is always directly available to the engineer in the design phase and is more robust than σ_{s1} which has to be calculated or M_{max}/M_{cr} in which M_{cr} depends on cross-section geometry (and reinforcement ratio!) and tensile strength.

Nonetheless, a brief discussion on the choice of the reinforcement ratio is in order because it needn't be clear straight away *which* reinforcement ratio should be used as a parameter.

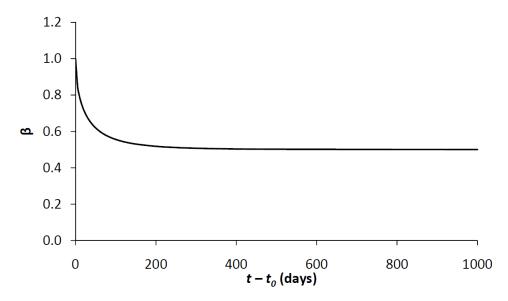


FIGURE 5.42: Proposed function for the β coefficient

There are actually two different types of reinforcement ratios that can be relevant for calculating deflections: (1) required reinforcement ratio (from ultimate limit state analysis) or adopted reinforcement ratio (equal to or greater than the required) and (2) reinforcement ratio in relation to the width of the compression or tension zone of the concrete cross-section. The combination of these gives four reinforcement ratios in total. In this study, the reinforcement ratio to be used as an input parameter was chosen as the adopted reinforcement ratio relative to the compression zone.

Unfortunately, with the available database of experimental results it is actually not possible to test which reinforcement ratio should be used. First, because practically all tested beams had the reinforcement required by ultimate limit state design, i.e. the adopted reinforcement ratio is equal to the required. Second, all of the beams in the analysed database had a rectangular cross-section (this was one of the selection criteria) for which the reinforcement ratio is the practically the same whether it is defined relative to the width of the compression or tension zone. The database by Espion (1988) does contain beams with different cross-section shapes (T, inverted T and rectangular hollow box sections), however their number relative to rectangular cross-sections is small – they comprise only 16.6% of the author's database and probably could not reveal which reinforcement ratio should be used.

After the choice of which reinforcement ratio should be used as input, the question is where can an intervention be made? The expression for the distribution coefficient ζ can be reformulated from Equation 2.147 to

$$\zeta = \begin{cases} 1 - \beta \cdot \left(\frac{M_{cr}}{M}\right)^{\alpha} & \text{for } M \ge \beta^{1/\alpha} \cdot M_{cr} \\ 0 & \text{for } M < \beta^{1/\alpha} \cdot M_{cr} \end{cases}$$
(5.16)

In other words, the exponent in Equation 5.16 needn't be equal to 2 (as it was not in the bilinear method). Decreasing α decreases the predicted deflection and this is what needs to happen in the area of small tensile reinforcement ratios or continuously with decreasing tensile reinforcement ratio. A similar idea has been laid out in by Zilch and Zehetmaier (2009). Here, an expression of the following form is proposed:

$$\alpha = \begin{cases} 1 & \text{for } \rho \le 0.13\% \\ 0.175 \cdot \left(\ln(\rho) + 10 \right) & \text{for } 0.13\% < \rho \le 4.0\% \\ 2 & \text{for } 4.0\% < \rho \end{cases}$$
 (5.17)

where ρ is in %. The expression is limited by $\rho = 0.13\%$ and 4.0%, the current minimum and maximum reinforcement ratios according to EC2. Between these two values, α changes logarithmically between 1 and 2, Figure 5.43.

After these two proposed changes, deflections were calculated again using numerical integration on this 'corrected' MC10, called herein *MC10*+. The results are laid out in detail in Appendix C. Here, a table with statistical descriptors of the results, similar to Table 5.21 is given as Table 5.22.

Comparing Table 5.22 with Table 5.21 some differences, although definitely not statistically significant, can be seen. First, on the full database, both the mean value and CoV of a_{calc}/a_{exp} for initial deflections have been improved; this is completely thanks to the α coefficient. Also, for the database without outliers, all deflections (all, initial and final) have a mean value of a_{calc}/a_{exp} equal to 1.00 (considering three significant digits), with CoVs unchanged. There is also slight improvement in the $a_{calc}^{I} < a_{exp} < a_{calc}^{II}$ version of the database.

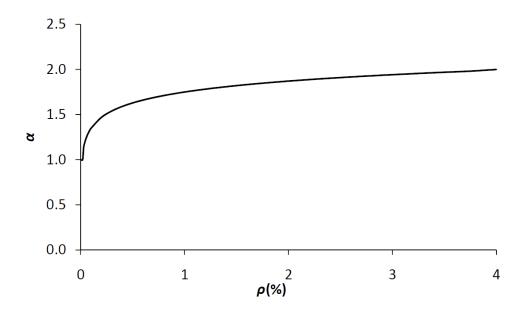


FIGURE 5.43: Proposed function for the exponent α

TABLE 5.22: Statistical parameters for deflections according to MC10+

Database	Deflections	n	μ	σ	CoV
	all	140	1.045	0.244	0.233
Full database	initial	70	1.083	0.304	0.281
	final	70	1.008	0.157	0.156
	all	130	0.996	0.148	0.149
No outliers	initial	62	0.999	0.167	0.167
	final	68	0.993	0.130	0.131
	all	81	1.055	0.127	0.120
$a_{calc}^{I} < a_{exp} < a_{calc}^{II}$	initial	43	1.062	0.157	0.148
	final	38	1.047	0.084	0.080

It is interesting now to look again at individual deflections curves from (Gilbert and Nejadi, 2004) and analyse the effect of the proposed 'MC10+' corrections. The comparison of MC10 and MC10+ is shown in Figure 5.44 for beams and Figure 5.45 for slabs.

Even if the database shows only a slight, statistically not significant, improvement, the individual deflection curves show a significant change in predictions. All of the calculated curves have shifted toward smaller deflections, but importantly, the shift has been the greatest for those members for which original predictions were most imprecise, namely, most of the slabs and beams loaded to lower load levels ('-b' specimens). More accurately,

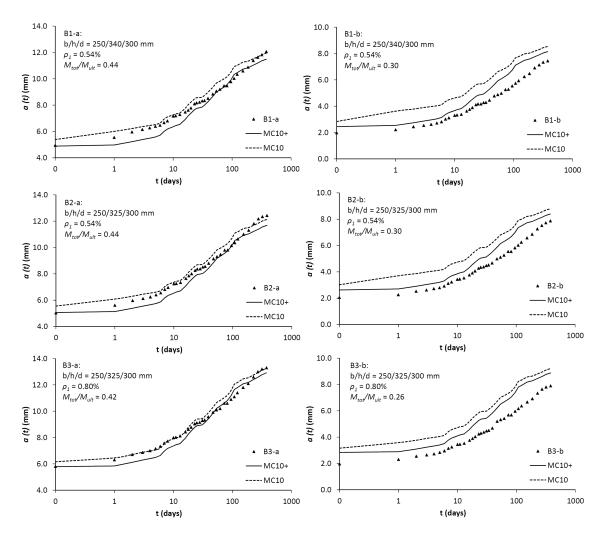


FIGURE 5.44: Deflection curves for beams from (Gilbert and Nejadi, 2004), comparison of MC10+ and MC10

while the original MC10 overestimated deflections in (Gilbert and Nejadi, 2004) by 19.8% on average (with a CoV of 15.5% and a range of a_{calc}/a_{exp} values of 0.94–2.52), the MC10+ overestimated deflections only 4.6% on average with a CoV of 11.2%; the range of a_{calc}/a_{exp} values is 0.87–1.95. Hence, a clear improvement is observable.

Overall, the proposed corrections lead to a more meaningful model, with improved performance and, hence, they will be retained for the remainder of the study.

All of the previous analyses were concerned with the MC10's rigorous method, i.e. numerical integration of curvatures. In practice, this process can be time-consuming and, in practice, is something not all design engineers are fully acquainted with (nor do they

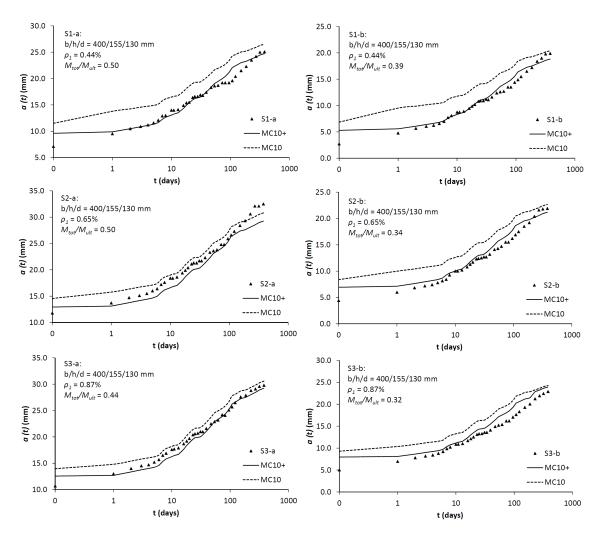


FIGURE 5.45: Deflection curves for slabs from (Gilbert and Nejadi, 2004), comparison of MC10+ and MC10

need to be). Because of this, ever since the European tradition of models for calculating deflections began, there was a search for a simplified procedure that would not require the use of numerical integration of curvatures.

The idea behind such an approach is formulated in both EC2 and MC10, and is expressed best by clause 7.4.3(7) of EC2: 'The most rigorous method of assessing deflections...is to compute the curvatures at frequent sections along the member and then calculate the deflection by numerical integration. In most cases it will be acceptable to compute the deflection twice, assuming the whole member to be in the uncracked and fully cracked condition in turn, and then interpolate...'. This means calculating the distribution coefficient ζ (Equation 2.147) only once. But using which value of M?

The first attempt at such a simplified procedure was the bilinear method, laid out in section 2.5.4 in which the geometric mean of M_{cr} and M_{max} (usually the maximum moment along the span) was entered into the equation whereby the exponent in Equation 2.147 was reduced to 1. However, as already discussed, this approach is not on the safe side, (Espion and Halleux, 1990).

Over time, the bilinear method was abandoned (perhaps even forgotten as it is never mentioned in newer literature on the subject). The current recommendation in practically all literature is to compute the ζ coefficient according to Equation 2.147 using as M the maximum bending moment along the span (FIB, 2013; Beeby and Narayanan, 2005; FIB Bulletin 52, 2010), and to assume that the shape of the curvature diagram is the same as the shape of the bending moment diagram. As stated by Beeby and Narayanan (2005) the error produced in this way is greater when the load level is close to the cracking load, but generally below 10%, and importantly, always on the safe side.

This is to be tested next. If a simplified procedure is to exist in MC10, as it definitely should, its accuracy should be as close as possible to the rigorous method. This kind of thinking has been behind previous attempts at proposing simplified methods which are equally accurate and precise as the rigorous one (Pecić, 2012; Pecić et al., 2017).

For this purpose, the simplified and rigorous methods must be compared in a parametric analysis, considering the $a_{simp}/a_{num.int.}$ ratio. This is most easily done in a dimensionless format which greatly reduces the number of parameters in the model.

For the rigorous method, a simply supported beam under uniformly distributed load is analysed using numerical integration of curvatures in 50 cross-sections. The MC10+ method is used. The simplified method uses only one value of the ζ coefficient over the entire span of the beam, i.e. the approach recommended by (FIB, 2013; Beeby and Narayanan, 2005).

It can be shown that a dimensionless analysis can be carried out and that the model can be reduced to only two free parameters: the load ratio given as M_{max}/M_{cr} and the cross-section geometry and reinforcement ratio given as I_I/I_{II} (the ratio of moments of inertia for states 1 and 2). This is true if shrinkage is disregarded in the analysis, as has been done here. The conclusions would not change significantly if it had been incorporated.

If we start from the expression for the deflection of a simply supported beam under uniformly distributed load:

$$a = \frac{5}{48} \cdot L^2 \cdot \left(\frac{1}{r}\right)_{eff} \tag{5.18}$$

and rearrange to

$$\frac{a}{L^2} = \frac{5}{48} \cdot \left(\frac{1}{r}\right)_{eff} \tag{5.19}$$

we can write $(1/r)_{eff}$ as

$$\left(\frac{1}{r}\right)_{eff} = (1 - \zeta) \cdot \left(\frac{1}{r}\right)_1 + \zeta \cdot \left(\frac{1}{r}\right)_2 \tag{5.20}$$

and replace it in Equation 5.19 also replacing $(1/r)_1 = M_{max}/(E \cdot I_I)$ and $(1/r)_2 = M_{max}/(E \cdot I_{II})$

$$\frac{a}{L^2} = \frac{5}{48} \cdot \left[(1 - \zeta) \cdot \frac{M_{max}}{E \cdot I_I} + \zeta \cdot \frac{M_{max}}{E \cdot I_{II}} \right]$$
 (5.21)

Both sides can be multiplied by $E \cdot I_{II}/M_{cr}$ to obtain

$$\frac{a \cdot E \cdot I_{II}}{M_{cr} \cdot L^2} = \frac{5}{48} \cdot \left[(1 - \zeta) \cdot \frac{M_{max}}{M_{cr}} \cdot \frac{I_{II}}{I_I} + \zeta \cdot \frac{M_{max}}{M_{cr}} \right]$$
(5.22)

which after reorganizing, finally gives

$$\frac{a \cdot E \cdot I_{II}}{M_{cr} \cdot L^2} = \frac{5}{48} \cdot \frac{M_{max}}{M_{cr}} \left[(1 - \zeta) \cdot \frac{1}{I_I / I_{II}} + \zeta \right]$$
 (5.23)

This way, the model is reduced to only two parameters. From this dimensionless form, deflection is obtained by multiplying the right-hand side of the equation by $M_{cr} \cdot L^2/(E \cdot I_{II})$.

The Excel-based spreadsheet in which the calculations were made is given in Appendix C. The parametric analysis was based by first adopting β and α coefficients. The β coefficient was taken as 0.5 or 1.0 and α as 1.0 or 2.0. The M_{max}/M_{cr} and I_I/I_{II} ratios were varied between 1.1 and 10.0 in 0.5 increments, while M_{max}/M_{cr} was varied in 0.1 increments between 1.1 and 1.5. Ratios equal to 1.0 were not considered as they correspond to an uncracked beam. After calculating the 'normalized' deflections according to both the simplified method and rigorous methods, their ratio, $a_{simp}/a_{num.int.}$, was determined. This resulted in four sets of tables with 1512 individual values which also given in Appendix C.

Here, for easier assessment, all four sets of data are visualized as a 3D surface in Figure 5.46.

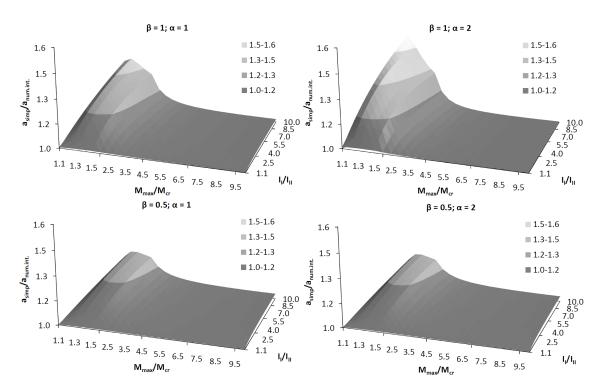


FIGURE 5.46: Initial parametric analysis and comparison of the simplified and rigorous MC10+ procedures

An interesting phenomenon can be observed. Precisely as Beeby and Narayanan (2005) stated, the simplified procedure is the most inaccurate for lower load levels. However, the inaccuracy is well above 10%. The 3D surface is mostly flat at a value of $a_{simp}/a_{num.int}$. = 1. However, for M_{max}/M_{cr} ratios below 1.5 and practically for all I_I/I_{II} ratios in this

region, the 3D surface starts rising sharply. This increase is less pronounced for $\beta = 0.5$ and for $\alpha = 1$. As an extreme, for $\beta = 1$ and $\alpha = 2$, $I_I/I_{II} = 10$ and $M_{max}/M_{cr} = 1.1$, $a_{simp}/a_{num.int.} = 1.529$. Hence, the simplified method produces an error of 50%!

In order to correct this, an expression is necessary to reduce a_{simp} in this region. For practical purposes, a correction which would be bivariate, i.e. which would depend upon both M_{max}/M_{cr} and I_I/I_{II} would be too complicated. A much simpler approach would be to compensate only for the load level. Such an expression would have to target an 'average' compensation, leaving some parts of the 3D surface below 1 and others above.

In this study, a correction factor γ is proposed, to be applied directly to the calculated deflection using the simplified procedure, a_{simp} , to obtain a'_{simp} :

$$\gamma = \begin{cases}
0.4 \cdot \left(1 + \frac{M_{max}}{M_{cr}}\right) & \text{for } \frac{M_{max}}{M_{cr}} \leq 1.5 \\
1 & \text{for } \frac{M_{max}}{M_{cr}} > 1.5
\end{cases}$$
(5.24)

Applying this equation to the four data sets in the parametric analysis, a new distribution is obtained in which the lowest value of the $a'_{simp}/a_{num.int}$. ratio is now 0.842 whereas the highest is 1.297 (see Appendix C). Thus, the maximum error has been decreased to 30% which is acceptable, since it only occurs for a narrow range of M_{max}/M_{cr} and I_I/I_{II} values (between 1.1 and 1.5 and 8 and 10, respectively). The same is true for the ratios lower than 1: this is the case when both M_{max}/M_{cr} and I_I/I_{II} are between 1.1 and 1.5. Since the error is 15%, it can be accepted.

Finally, this correction of the simplified procedure was tested on the compiled database. Applying the same filters on the database, the calculated—to—experimental values are given in Table 5.23.

The proposed simplified method shows a slightly worse accuracy and precision compared with the rigorous MC10+ method; this is acceptable for a simplified procedure, considering that it is *always on the safe side*. In fact, in the entire database, there is only one beam for which the simplified procedure predicts a smaller deflection compared with the rigorous method and the difference in that case is 3%. There are 10 beams in the database for which M_{max}/M_{cr} is below 1.5, i.e. to which the proposed γ correction factor applies. Without the correction factor, the mean a_{simp}/a_{exp} ratio for these 10 beams would be 1.397

TABLE 5.23: Statistical parameters for deflections according to the MC10+ simplified procedure

Database	Deflections	n	μ	σ	CoV
	all	140	1.094	0.289	0.264
Full database	initial	70	1.155	0.368	0.319
	final	70	1.034	0.160	0.155
	all	127	1.022	0.148	0.145
No outliers	initial	59	1.027	0.165	0.161
	final	68	1.018	0.132	0.130
	all	78	1.091	0.117	0.107
$a_{calc}^{I} < a_{exp} < a_{calc}^{II}$	initial	40	1.101	0.144	0.131
i cure	final	38	1.081	0.081	0.075

with a CoV of 27.5%. The use of γ lowers the mean to 1.254 and the CoV to 26.6%; at the same time, for the rigorous method, the mean of $a_{num.int.}/a_{exp}$ is 1.164 with a CoV of 24.6%. Hence, the simplified method is only 7% more conservative compared with the rigorous one.

A brief overview of the rigorous and simplified MC10+ methods, with a summary of the proposed corrections, is provided in Table 5.24.

TABLE 5.24: Summary of rigorous and simplified MC10+ methods

	Rigorous method	Simplified method	
Level at which interpolation is performed	Curvature	Deflection	
Basic formulation	$(1/r)_{eff} = (1 - \zeta)(1/r)_I +$	$a = \left[(1 - \zeta)a_I + \right]$	
	$+\zeta(1/r)_{II}$	$+ \stackrel{ extstyle -}{\zeta} \cdot a_{II} \Big] \cdot \gamma$	
Distribution coefficient ζ	Equation 5.16	Equation 5.16	
Moment <i>M</i> in Equation 5.16	Moment <i>M</i> in each cross-section	M_{max} over entire span	
Cracking moment reduction factor β	Equation 5.15	Equation 5.15	
Exponent α	Equation 5.17	Equation 5.17	
Correction factor γ	n/a	Equation 5.24	

This analysis proves the efficiency of the proposed corrections of the MC10 rigorous and simplified procedures and establishes the MC10+ proposal.

5.4.1.2 Assessment and Correction of the ACI 435R Model

After the assessment and correction of MC10 and the proposal of modifications in the form of model 'MC10+', the same approach was applied to the ACI 318 Building Code Requirements for Structural concrete and ACI 435R report by Committee 435 on the control of deflections in concrete structures, (ACI 318-11, 2011; ACI 435R-95, 2003). Herein, a greater emphasis is placed on the report ACI 435R-95 (2003) since it is strictly focused on the control of deflections, and its procedure for taking into account shrinkage and creep is more sophisticated compared with ACI 318-11 (2011).

Creep is taken into account by calculating the deflection increase caused by creep according to eqs. (2.165) and (2.167). This amounts to something alike the effective modulus method, at least for beams with no compression reinforcement. Deflection caused by shrinkage is calculated according to Equation 2.166. The drawback of this equation is that shrinkage deflection calculated according to it is not affected by the state of cracking of the member, nor by creep.

For the purposes of this study, when calculating the effective moment of inertia using Equation 2.11, the exponent m=3 was adopted. As stated in section 2.5.4, the code mentions m=4 citing Branson in Appendix B, however the m=3 is the only prescribed value. As it will be shown later, the value m=3 also fits experimental results much better (the higher the exponent, the closer the effective moment of inertia is to state 2, hence, the greater the deflection).

The first step was to check the mathematical formulation of the model itself, i.e. the equations for the effective moment of inertia and shrinkage and creep effects on deflections. Again, the study by Gilbert and Nejadi (2004) was used together with all experimentally determined values of mechanical properties, shrinkage and creep. For determining the cracking moment, the reported modulus of rupture f_r , was used. The input data and results of numerical integration in 50 cross-sections are given in Appendix D.

The comparison of experimental and calculated deflections curves are given in Figure 5.47 and Figure 5.48 for beams and slabs, respectively.

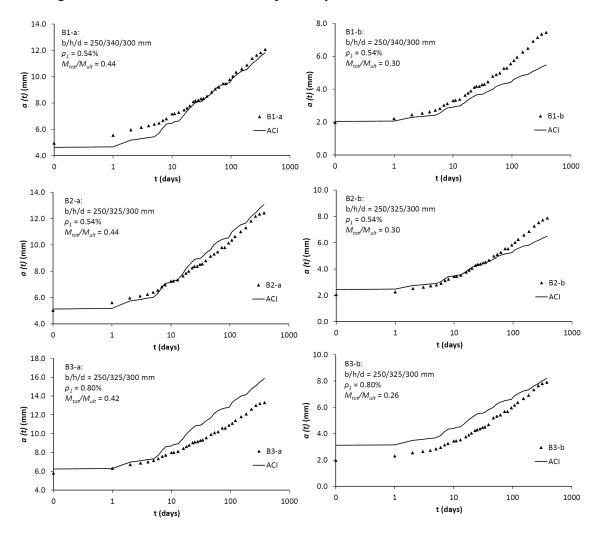


FIGURE 5.47: Assessment of deflection curves for beams from (Gilbert and Nejadi, 2004) according to ACI

The results in figs. 5.47 and 5.48 reveal a varying degree of matching between predictions and experimental results. Some calculated deflection curves fit experimental results very well, e.g. B2-a, S2-a; others overestimate deflections completely or increasingly over time, e.g. B3-b and B3-a; while others underestimate them, e.g. S1-a and S1-b.

This underestimation of deflections was not present in MC10 and here it is most pronounced for lightly reinforced members, i.e. slabs. This is something already mentioned by Gilbert and Ranzi (2011) as a deficiency of the model. Another important phenomenon

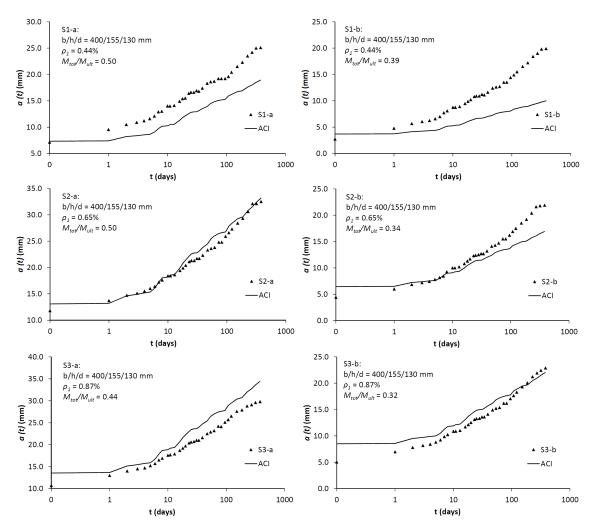


FIGURE 5.48: Assessment of deflection curves for slabs from (Gilbert and Nejadi, 2004) according to ACI

is the divergence of calculated and measured values, either to the side of under- or overestimating experimental values. This possibly points to the inadequate formulation of shrinkage and creep effects on deflection.

For all 12 specimens, the mean a_{calc}/a_{exp} ratio is 0.979 with a CoV of 18.8%; however, the range of values is 0.493–1.687, i.e. a less right skewed distribution compared with MC10. The 12 initial deflections are overestimated by 22.8% on average with a CoV of 19.9% and the 12 final deflections (after 380 days) are underestimated by 8.37% on average with a CoV of 21.9%. This means that the accuracy of the model decreases over time while its precision remains relatively the same.

It must be kept in mind that this is a qualitative assessment only, on the results from one study. As such, it cannot be the sole reason for any changes to the model before its overall accuracy and precision are tested on a larger database, the same one on which MC10 was tested. This time, as previously, all mechanical properties and shrinkage and creep are predicted by ACI 435R expressions and then deflections are calculated using numerical integration of curvatures.

The formation of the database was described in section 5.4.1.1 and, as explained, it contains 70 NAC beams with 140 results (70 initial and 70 'final' deflections). All input data and calculated deflections are given in Appendix D. When calculating shrinkage, the ACI model requires the input of curing time in days. For studies for which this information was available, the reported curing time was input. For other studies, 14 days was the input since it yield the $\gamma_{sh,tc}$ coefficient equal to 1.0 (this was done only if $t_0 > 14$ days. Also, since for most studies slump, fine–to–coarse aggregate ratio and air content were unknown, the corresponding coefficients in the ACI model were taken equal to 1.0.

For the entire database, the mean a_{calc}/a_{exp} ratio was determined as 1.104 with a CoV of 22.9% and a range of values 0.641–2.037. The plot of calculated vs. measured values is given in Figure 5.49. Compared with MC10, the mean is only slightly larger (1.104 compared with 1.073), the CoV is 10% lower and the range is significantly less right skewed (the lower value is the same whereas the highest value is 2.037 for ACI compared with 2.807 for MC10). This points to a more uniform prediction by ACI with less outlying results.

Separating the database into initial and final deflections gives the following results: a mean a_{calc}/a_{exp} of 1.135 and CoV of 24.8% for initial deflections and a mean of 1.072 and CoV of 20.2% for final deflections. As MC10, ACI better predicts final deflections. However, the differences are less pronounced for ACI.

The 'box and whiskers' technique identified lower and upper outlier values as 0.561 and 1.571, respectively, leaving out 10 results (all above the upper value, four of them final deflections). The filtered sample of 130 results now has a mean a_{calc}/a_{exp} ratio of 1.053 and a CoV of 16.9%. Separated into initial and final deflections the results are a mean of 1.069 and CoV of 17.2% for initial deflections and a mean of 1.038 and CoV of 16.5% for final deflections. The results are improved and with an acceptable accuracy and precision.

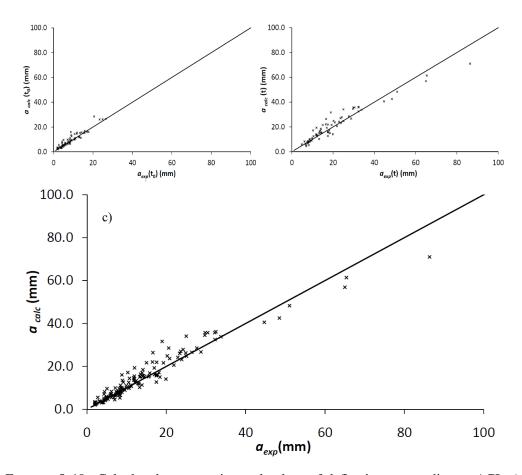


FIGURE 5.49: Calculated vs. experimental values of deflections, according to ACI: a) initial, b) final and c) initial and final deflections

Further filtering the database by eliminating experimental values below the deflection in state 1 or above the deflection in state 2 (the results which cannot be reached interpolating between the two states), reduces it to 105 results with a mean 1.089 and CoV 17.7%. Of these 105, 48 are initial deflections with a mean 1.124 and CoV 15.7% and 57 are final deflections with a mean 1.061 and CoV 16.3%. The results are the same for final deflections but worse for initial deflections.

All statistical parameters are given in Table 5.25.

The first improvement that was attempted was the replacement of ACI's shrinkage and creep models with B4s and GL2000. The input data and results for these analyses are given in Appendix D. Since the change only affects final deflections, only they will be discussed here.

Database	Deflections	n	μ	σ	CoV
	all	140	1.104	0.253	0.229
Full database	initial	70	1.135	0.282	0.248
	final	70	1.072	0.217	0.202
	all	130	1.053	0.178	0.169
No outliers	initial	64	1.069	0.184	0.172
	final	66	1.038	0.171	0.165
	all	105	1.089	0.177	0.163
$a_{calc}^c < a_{exp} < a_{calc}^{II}$	initial	48	1.124	0.177	0.157
care	final	57	1.061	0.173	0.163

TABLE 5.25: Statistical parameters for deflections according to ACI

Replacing ACI's shrinkage and creep models with B4s lead to a mean a_{calc}/a_{exp} ratio for final deflections of 1.864 and a CoV of 36.4%. Clearly, the results have not improved but have deteriorated significantly. As for GL2000, the mean a_{calc}/a_{exp} ratio for final deflections is obtained as 1.188 with a CoV 26.1%. The model GL2000 provides approximately 10% higher predictions with an approximately 20% higher CoV. In conclusion, none of the two models are adequate to replace ACI's shrinkage and creep models and will not be considered in the remainder of the analysis.

After this, an attempt was made to identify influencing parameters. In Figure 5.50, the influences of load level (through the M_{max}/M_{cr} ratio) and compressive strength on a_{calc}/a_{exp} are given. There is no discernible trend in the data; even the outliers (data above 1.57) are relatively evenly spread out.

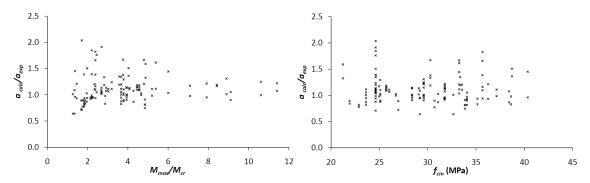


FIGURE 5.50: The influence of M_{max}/M_{cr} (left) and compressive strength (right) on a_{calc}/a_{exp} , ACI

In Figure 5.51, the influences of the L/d ratio and time under load $(t-t_0)$ on a_{calc}/a_{exp} are given. Again, no clear trend is identifiable. Finally, in Figure 5.52, the influences of tensile and compression reinforcement ratios on a_{calc}/a_{exp} are given.

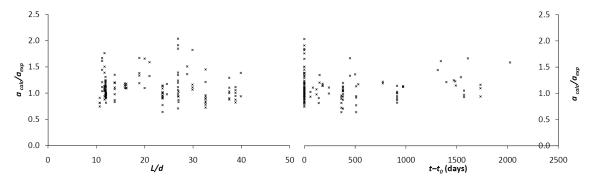


FIGURE 5.51: The influence of L/d (left) and $t - t_0$ (right) on a_{calc}/a_{exp} , ACI

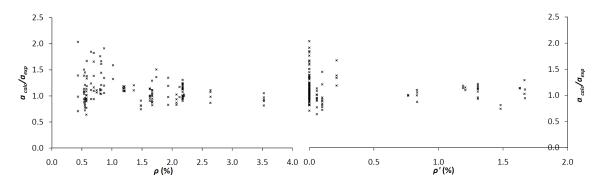


FIGURE 5.52: The influence of ρ (left) and ρ' (right) on a_{calc}/a_{exp} , ACI

Here, the outliers can be seen to lie mostly in the region of lower reinforcement ratios, but also a significant number of the values lower than 1.0 is in this region. This is in agreement with the comments by Gilbert and Ranzi (2011) that the ACI method can underestimate deflections of beams with low reinforcement ratios (generally below 0.5%); this is corroborated by the fitting of deflection curves from (Gilbert and Nejadi, 2004) (slabs S1-a and S1-b).

The ACI method seems to provide reasonably good results on the database, and some variability on individual deflection curves. Addressing the issue of individual curves would require reformulation of the model itself. What can be done without reformulating the model is to deal with the underestimation of deflections of lightly reinforced members. Similar to the recommendations made by Gilbert and Ranzi (2011), an upper bound to the

effective moment of inertia, $I_{e,max}$, is proposed here. If the effective moment of inertia, I_e is calculated using Equation 2.11 with m = 3, then $I_{e,max}$ should be defined as

$$I_{e,max} = \begin{cases} max\{0.5 \cdot I_c, I_e\} & \text{for } \rho \leq 0.5\% \\ max\{\rho \cdot I_c, I_e\} & \text{for } 0.5\% < \rho \leq 1.0\% \\ max\{I_c, I_e\} & \text{for } 1.0\% < \rho \end{cases}$$
(5.25)

This equation sets the upper limit to the effective moment of inertia to 50% of the uncracked section's moment of inertia for reinforcement ratios lower than 0.5%, then linearly increases it to 100% of the uncracked section's moment of inertia for reinforcement ratios greater than 1.0% (ρ should be input in percentages).

By using this correction—this model can be called 'ACI+'—deflections are again calculated on the database. Detailed results are given in Appendix D while the statistical descriptors are given in Table 5.26. A slight increase in all values is seen compared with Table 5.25, but practically negligible. The range of data is now 0.701–2.147, indicating a slight shift toward higher values, which was the aim of the correction.

TABLE 5.26: Statistical parameters for deflections according to ACI+

Database	Deflections	n	μ	σ	CoV
	all	140	1.115	0.256	0.230
Full database	initial	70	1.149	0.293	0.255
	final	70	1.081	0.209	0.193
	all	129	1.060	0.173	0.163
No outliers	initial	63	1.073	0.184	0.171
	final	66	1.048	0.162	0.155
	all	104	1.098	0.169	0.154
$a_{calc}^c < a_{exp} < a_{calc}^{II}$	initial	47	1.131	0.175	0.155
cure 1 cure	final	57	1.072	0.160	0.149

Applying this correction to the beams in (Gilbert and Nejadi, 2004) and again analysing the deflection curves, leads to figs. 5.53 and 5.54.

For some specimens there is no change, e.g. beams B3-a and B3-b and slabs S3-a and S3-b (the ones with the reinforcement ratios of 0.80% and 0.87%, respectively), whereas

the greatest increase is precisely in the specimens with the lowest reinforcement ratio: S1-a and S2-b ($\rho = 0.44\%$). The increase for slab S1-b is 26%, but still far below the experimental value. The effect is not ideal, but it is positive and in the right direction.

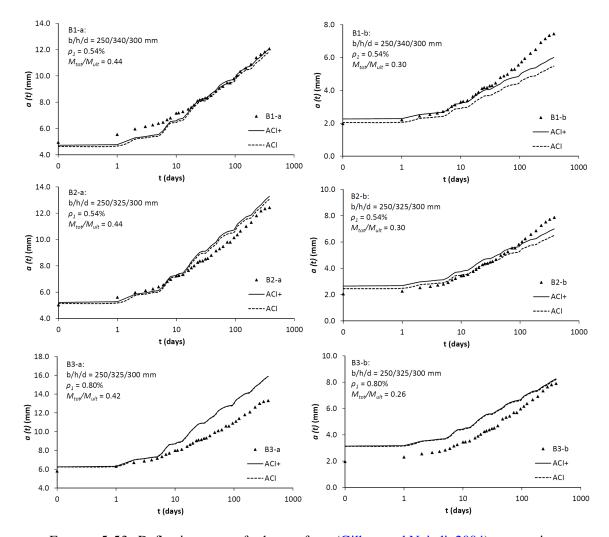


FIGURE 5.53: Deflection curves for beams from (Gilbert and Nejadi, 2004), comparison of ACI+ and ACI

Overall, the mean a_{calc}/a_{exp} ratio is now 1.102 with a CoV 15.5%; at the same time, the mean has increased to above 1.0 and the CoV has slightly decreased due to this correction. For initial deflections the mean is now 1.290 and CoV 21.2%, i.e. both have slightly increased. The final deflections are now underestimated by 5.27% on average with a CoV 17.7%, hence, this descriptor has improved. This demonstrates that this minor correction which is not difficult to implement in calculations definitely leads to more safe results overall.

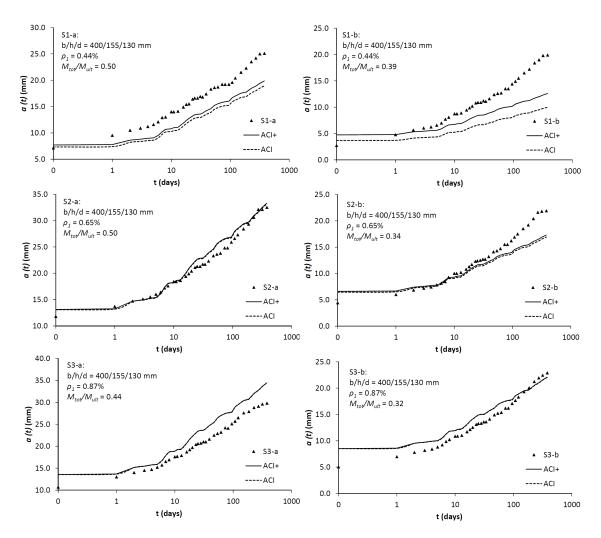


FIGURE 5.54: Deflection curves for slabs from (Gilbert and Nejadi, 2004), comparison of ACI+ and ACI

Just as MC10, so too does ACI have a simplified version of its method for calculating deflections. The simplified method consists of only calculating the effective moment of inertia once, for the cross-section under the maximum bending moment and assuming that these properties apply to the entire member. The next step in the analysis is to determine how accurate and precise is the ACI simplified approach compared with the rigorous method based on numerical integration of curvatures. The model can also be reduced to two independent variable – the load intensity, via the M_{max}/M_{cr} ratio, and the cross-section geometry and reinforcement ratio, via the I_c/I_{II} ratio.

Starting from the ACI equation for deflections of a simply supported beam under uniformly distributed load (not taking into account deflections caused by shrinkage)

$$a = \frac{5}{48} \cdot \frac{M_{max} \cdot L^2}{E \cdot I_e} \tag{5.26}$$

and multiplying it by $(E \cdot I_{II})/M_{cr}$, we obtain

$$\frac{a \cdot E \cdot I_{II}}{M_{cr} \cdot L^2} = \frac{5}{48} \cdot \frac{M_{max}}{M_{cr}} \cdot \frac{I_{II}}{I_e}$$
 (5.27)

By changing I_e with Equation 2.11 with m = 3 and rearranging, the following expression is obtained:

$$\frac{a \cdot E \cdot I_{II}}{M_{cr} \cdot L^2} = \frac{5}{48} \cdot \frac{M_{max}}{M_{cr}} \cdot \frac{1}{\left(\frac{1}{M_{max}/M_{cr}}\right)^3 \cdot \frac{I_c}{I_{II}} + \left[1 - \left(\frac{1}{M_{max}/M_{cr}}\right)^3\right]}$$
(5.28)

The model is reduced to two dimensionless parameters. The deflection can be calculated by multiplying the right-hand side of Equation 5.28 by $M_{cr} \cdot L^2/(E \cdot I_{II})$. The effective moment of inertia can further be limited according to the correction proposed in Equation 5.25. An example calculation and comparison of the rigorous and simplified ACI methods is given in Appendix D.

Now the $a_{simp}/a_{num.int.}$ ratio, the ratio of simplified-to-rigorous method predictions, depends on ρ (because of the limitation to $I_{e,max}$), M_{max}/M_{cr} and I_c/I_{II} . A parametric analysis, similar to the one for MC10 was carried out, varying M_{max}/M_{cr} and I_c/I_{II} between 1.1 and 10.0 in 0.5 increments, while M_{max}/M_{cr} was varied in 0.1 increments between 1.1 and 1.5. The reinforcement ratio was taken as 0.5, 0.75 and 1.0. This generated three sets of data with 1254 data points in total, given in Appendix D. The three data sets are visualised in Figure 5.55.

The simplified procedure is always more conservative than the rigorous method, which is a good thing, but $a_{simp}/a_{num.int.}$ deviates from 1.0 significantly in the region of lower load levels $(M_{max}/M_{cr} < 3)$ for almost all values of I_c/I_{II} . The highest value of $a_{simp}/a_{num.int.}$ is 1.329 (for $\rho > 1.0\%$ $M_{max}/M_{cr} = 1.4$ and $I_c/I_{II} = 10$). The shape of the 3D surface is irregular in this zone, with first rising, then falling $a_{simp}/a_{num.int.}$ values.

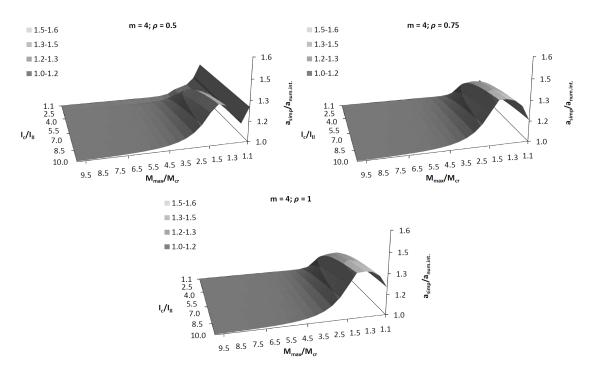


FIGURE 5.55: Initial parametric analysis and comparison of the simplified and rigorous ACI+ procedures

To correct for this behaviour analytically is extremely difficult, if at all possible. Hence, a simpler approach was adopted here. A correction factor γ is proposed which should multiply a_{simp} – the deflection calculated using the simplified procedure:

$$\gamma = \begin{cases} 0.9 & \text{for } M_{max}/M_{cr} \le 3\\ 1.0 & \text{for } M_{max}/M_{cr} > 3 \end{cases}$$
 (5.29)

The deflection is simply reduced by 10% if the load level M_{max}/M_{cr} is below 3. This leads to a new set of data given also in Appendix D in which the highest value of $a_{simp}/a_{num.int}$. is now 1.196 while the lowest value is 0.903. The underestimation by the simplified method is now 10% in the extreme case, which is acceptable (occurring at lower load levels and lower I_c/I_{II} ratios), while the highest value of $a_{simp}/a_{num.int}$. is reduced from 1.329 to 1.196, i.e. the overestimation is 20% instead of 33%.

Finally, the proposed corrected simplified method is tested on the full database. Statistical descriptors of its performance are given in Table 5.27.

TABLE 5.27: Statistical parameters for deflections according to the ACI+ simplified procedure

Database	Deflections	n	μ	σ	CoV
	all	140	1.121	0.259	0.231
Full database	initial	70	1.155	0.291	0.252
	final	70	1.087	0.219	0.201
	all	129	1.066	0.178	0.167
No outliers	initial	63	1.081	0.187	0.173
No outliers	final	66	1.051	0.168	0.160
	all	104	1.103	0.175	0.159
$a_{calc}^c < a_{exp} < a_{calc}^{II}$	initial	47	1.139	0.178	0.156
cure 1 cure	final	57	1.073	0.169	0.158

The proposed corrected simplified method provides practically identical predictions as the rigorous ACI+ method which is an excellent indication of its applicability. The previous analyses prove the efficiency of the proposed corrections of the ACI rigorous and simplified procedures and establish the ACI+ proposal.

A brief overview of the rigorous and simplified ACI+ methods, with a summary of the proposed corrections, is provided in Table 5.28.

TABLE 5.28: Summary of rigorous and simplified ACI+ methods

	Rigorous method	Simplified method
Effective moment of inertia, I_e	$I_e = \left(rac{M_{cr}}{M} ight)^m I_c +$	$\left[1-\left(\frac{M_{cr}}{M}\right)^m\right]I_{II}$
Moment M in I_e	Moment <i>M</i> in each	M_{max} over
Moment W III I _e	cross-section	entire span
Exponent m in I_e	3	3
$I_{e,max}$	Equation 5.25	Equation 5.25
Deflection	$a = k \cdot \frac{M_{max}L^2}{E_c I_{e,max}}$	$a = \gamma \cdot k \cdot \frac{M_{max}L^2}{E_c I_{e,max}}$ Equation 5.29
Correction factor γ	n/a	Equation 5.29

5.4.2 Models for Calculating Deflections of reinforced RAC and HV-FAC Members

After looking at the models for calculating deflections in detail, it is now time to analyse how they perform in predicting the short- and long-term deflections of reinforced concrete beams made with recycled and waste materials, in this case, RAC and HVFAC beams.

There are two questions which this section will attempt to answer.

The first one is 'Can the existing deflection calculation models qualitatively describe the time evolution of deflections of RAC and HVFAC beams as well as they can for NAC beams?' The answer to this question lies in testing individual deflection curves of RAC and HVFAC beams, with all input data obtained experimentally, just as it was done for NAC beams when the general form of mathematical expressions of the MC10 and ACI models was tested. For this purpose, experimental results from own tests and those carried out by Seara-Paz (2015) will be used, since they provide the only detailed deflection curves with sufficient reported data for RAC and HVFAC beams available to the author (in fact, the only deflection curves for HVFAC beams available at all). The results of this analysis should point to whether the effect of tension stiffening is adequately captured for RAC and HVFAC beams using the MC10+ and ACI+ models.

After establishing an answer to the first question, this section will then try to answer whether the existing deflection calculation models (incorporating corrections proposed in this thesis) perform with the same accuracy and precision on a database of RAC and HV-FAC beams as they do on companion NAC beams. In order to achieve this goal, another database will be compiled, consisting of as many results on RAC and HVFAC beams as possible. Unfortunately, as will be seen, this is not so many results; for HVFAC beams, own experimental results are the only results available. Hence, no statistical analysis is possible for HVFAC except for a broad qualitative assessment and recommendations for future research. The case for RAC beams is better, but will still require more work to be done at the material level, on models for calculating creep and shrinkage; a large drawback in previous research (reported in section 2.6.3 is that many studies only report results in graphical form (not allowing for the use of precise values in databases) or do not report sufficient additional information.

Nonetheless, conclusions and recommendations about calculating deflections of RAC and HVFAC beams will be drawn from these analyses. The significance of this research lies in the fact that (to the best of the author's knowledge) it is first of its kind for concretes made with recycled and waste materials.

5.4.2.1 Application of the Improved Model Code 2010 MC10+ Model

Although an argument could be made that the structural behaviour of reinforced RAC and HVFAC members is different than of companion NAC members, this does not yet warrant the introduction of new design expressions specifically for these members. Rather, the first thing that should be tested are existing models. This was the case in previous studies dealing with ultimate flexural and shear strength of reinforced RAC beams (Tošić et al., 2016) where design provisions of Eurocode 2 for flexural and shear strength were shown to be applicable to RAC beams.

The same approach will be used herein. The hypothesis to be tested is that any difference in the performance of deflection prediction models between RAC, HVFAC and NAC beams can be completely explained by taking into account differences in *mechanical* and *time-dependent* properties of these concretes. In other words, if the predictions of the RAC and HVFAC modulus of elasticity, tensile strength, shrinkage and creep are corrected, then the deflection prediction models will show the same accuracy and precision as they have for NAC beams – their *structural* behaviour is hypothesized to be identical.

In section 5.4.1.1, the performance of the MC10 model was assessed on NAC beams, through a validation of its mathematical form on individual deflection curves and through an assessment of its accuracy and precision on a database of NAC beams. Influencing parameters were analysed and corrections proposed in the form of the MC10+ model. In this section, the MC10+ model will be applied to predicting deflections of RAC and HVFAC beams, much in the same procedure as in section 5.4.1.1.

A first step will be to analyse individual deflection curves of RAC and HVFAC beams and check the behaviour of the model. The second step will be to assess its precision and accuracy on a new database of RAC and HVFAC beams.

For the first step, detailed results of long-term deflections of RAC and HVFAC beams are needed. Because this step entails only using the part of the MC10+ model for calculating deflections, all other mechanical properties must be experimentally measured values. Unfortunately, of all the literature reported in sections 2.6.3 and 2.7.3, only the experimental programme by Seara-Paz (2015) meets these demands. The author would here like to thank prof. Sindy Seara-Paz for the raw data provided in personal correspondence. Results from other experiments are either incompletely reported, with important data missing, or the deflections themselves are given in visual form, graphically; this way, precise values needed for the analysis cannot be extracted and using them as given would not be methodologically consistent (personal correspondence was also attempted in several cases but results could not be obtained).

Hence, for this step of the analysis, own experimental results were used together with results from (Seara-Paz, 2015). Deflection curves were analysed for six RAC beams: two RAC beams with 50% of coarse RCA, H50-50 and H65-50 from (Seara-Paz, 2015); and four RAC beams with 100% of coarse RCA, H50-100 and H65-100 from (Seara-Paz, 2015) and RAC7 and RAC28 from own experimental programme. As for HVFAC beams, only the two beams HVFAC7 and HVFAC28 from own experimental programme were available. The input data and calculation of deflections using the rigorous MC10+method are given in Appendix E. The results are shown in Figure 5.56 for RAC beams and in Figure 5.57 for HVFAC beams.

First, let's take a look at RAC beams. Figure 5.56 can be looked at from several perspectives. Looking at all six beams, the mean value of the a_{calc}/a_{exp} ratio is 1.042 with a CoV of 14.5%, i.e. a very good results. Initial deflections are predicted with a mean of 1.179 and a CoV of 22.5% whereas final deflections have a mean a_{calc}/a_{exp} ratio of 1.039 and a CoV of 14.1%. Again, the model behaves much better when dealing with final deflections, although it should be noted that in (Seara-Paz, 2015), the time after loading when initial measurements were taken differed for different beams and could contribute to the scatter of results.

The next logical step would be to analyse separately beams with 50% and 100% of coarse RCA, i.e. beams H50-50 and H65-50 vs. beams H50-100, H65-100, RAC7 and RAC28. It seems that no conclusion can be drawn for beams with 50% of coarse RCA, they even show greater scatter than beams with 100% of coarse RCA. However, this is in accordance

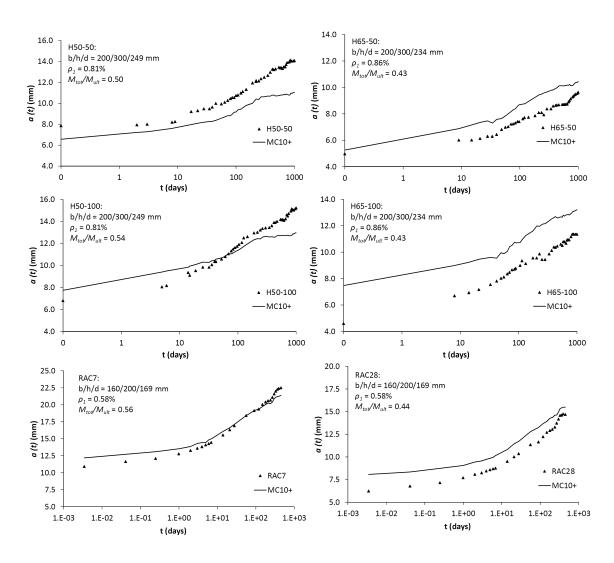


FIGURE 5.56: Assessment of deflection curves for RAC beams, MC10+

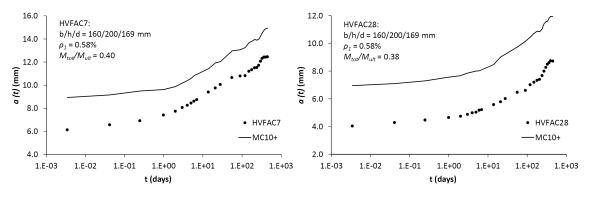


FIGURE 5.57: Assessment of deflection curves for HVFAC beams, MC10+

with findings by Tošić et al. (2016) who found that beams with 50% of coarse RCA had a higher scatter of flexural and shear strength than beams with 100% coarse RCA.

It can be noticed that three figures on the left side are beams loaded to a load level of 0.50–0.56 of ultimate load, whereas the three figures on the right are beams loaded to 0.43–0.44 of ultimate load. So one way of analysing the results is according to load level. This perspective is consistent with previous findings that the MC10+ behaves more conservatively for lower load levels.

Another way of looking at Figure 5.56 is according to compressive strength. Compressive strength of the concretes decreases in the order of H50-50, H50-100, H65-50, H65-100, RAC7/RAC28. If we separate them again into three figures on the left and right side (according to load level), we can see that in each 'column' the predictions become more conservative with *decreasing* compressive strength – on the left side in the order of H50-50, H50-100, RAC7 and on the right side in the order of H65-50, H65-100 and RAC28. For beam H50-50 with a compressive strength of 53.1 MPa at loading, the predictions are unconservative as are for beam H50-100 after around 100 days (compressive strength of 45.3 MPa at loading). These two figures show a suspicious 'leveling-off' of the predicted deflection curve after ca. 200 days which does not correspond to measurements. This is possibly caused by a change in the environmental conditions to which prisms for measuring creep were exposed; this is not reflected in beams since they were not on the same level in the laboratory (Seara-Paz, 2015).

Unfortunately, from Figure 5.56 nothing conclusive can be said about modeling tension stiffening in RAC beams using ζ according to Equation 5.16 or interpolating betweeen states 1 and 2 using Equation 5.30, since there are results which are conservative, unconservative and equal to experimental measurements. A clearer view can be gained after analysing a larger database of results and also using code expressions for predicting mechanical and time-dependent properties of RAC.

As for HVFAC, since HVFAC7 and HVFAC28 are the only results available, no 'larger database' will be possible. The results in Figure 5.57 show an overestimation of deflections for both beams. For beam HVFAC7, the mean a_{calc}/a_{exp} ratio is 1.245 with a CoV of 5.5%; for beam HVFAC28 the mean a_{calc}/a_{exp} ratio is 1.516 with a CoV of 6.4%. The predicted deflection curves smoothly follow the experimental ones (as evidenced by

the extremely low CoV) and systematically overestimate measured values (the overestimation slightly decreases over time). The HVFAC beams were loaded to 0.38–0.40 of their ultimate load; MC10+ does tend to somewhat overestimate deflections in this case, however not by this much (24.5% and 51.6%). This discrepancy can be explained by a larger tension stiffening effect in HVFAC beams compared with companion NAC beams.

Probably the simplest way to take this effect into account would be to multiply ζ with a reduction factor, e.g. c_{FA} , as $c_{FA} \cdot \zeta$. This kind of change of ζ was actually already envisioned in (CEB, 1985). Then, Equation 5.30 would take the following form:

$$\alpha = c_{FA} \cdot \zeta \cdot \alpha_2 + (1 - c_{FA} \cdot \zeta) \cdot \alpha_1 \tag{5.30}$$

where α is a deformation parameter; in the case of this analysis α is the curvature.

Looking at Figure 5.57, it would seem that c_{FA} should not be a constant value. But only from these two results it cannot be concluded on which parameters it depends. As an example, a fitting of c_{FA} was carried out for HVFAC7 and HVFAC28 and the results are shown in Figure 5.58; the appropriate value of c_{FA} was determined as 0.70 for beam HVFAC7 and 0.55 for beam HVFAC28. Perhaps an average value of c_{FA} should be (2/3), however more experiments are necessary.

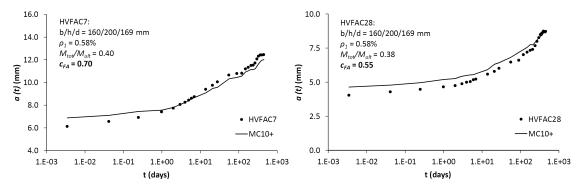


FIGURE 5.58: Calibration of deflection curves for HVFAC beams, MC10+

The next step in the analysis was to compile a database of RAC, HVFAC and companion NAC beams from the available literature. This step is analogous to the second step in section 5.4.1.1, i.e. it assesses the accuracy and precision of the MC10+ model when the only input is compressive strength and all other data is calculated by code expressions.

The only studies with usable results for RAC beams, beside own results, were studies by Knaack and Kurama (2015) and Seara-Paz (2015). In total, this gave a database with 30 beams: 10 NAC beams – two own, six from (Knaack and Kurama, 2015) and two from (Seara-Paz, 2015); eight RAC50 beams (beams with RAC in which 50% of coarse aggregate is RCA) – six from (Knaack and Kurama, 2015) and two from (Seara-Paz, 2015); 10 RAC100 beams (in which 100% of coarse aggregate is RCA) – two own, six from (Knaack and Kurama, 2015) and two from (Seara-Paz, 2015); and 2 HVFAC beams (own results). However, these 30 beams only allowed for 58 results: 30 initial and 28 'final' deflections. This is because for two beams in (Knaack and Kurama, 2015) final deflections are not reported. It is important to note that the water absorption of RCA from (Knaack and Kurama, 2015) and two from (Seara-Paz, 2015) is very similar: 6.06% and 5.4% respectively. Together with the water absorption between 3.67% and 4.05% for RCA used in own experimental programme, this means that any conclusions drawn in this study are only valid for RCA obtained by crushing concrete waste and having water absorption of 3.67–6.06% and density of 2320–2570 kg/m³.

Another defficiency of the compiled database is the fact that out of the 18 beams tested by Knaack and Kurama (2015), 12 were designed not to crack immediately after loading but to do so over time. This is the worst situation for the model since wrongly predicting whether a beam is cracked or not leads to serious errors in calculated deflections. Since these beams account for 12 out of the total 30 (40%), the database is heavily skewed towards this type of very difficult situation for the model. Also, the duration of tests in (Knaack and Kurama, 2015) is only 119 days and these 18 beams (60% of the total 30) also heavily skew the database towards shorter load duration.

Additionally, Knaack and Kurama (2015) and Seara-Paz (2015) did carry out four-point bending tests, but the forces did not act in thirds of the span but at a closer distance. Thus, the shape of the bending moment diagram is somewhat different to the shape for which MC10+ was tested in section 5.4.1.1; nonetheless, this is not expected to have an influence on the analysis.

The database with all input data is given in Appendix E. The main parameters in the three studies are presented and compared in Table 5.29. It can be seen that the RCA used in own experiments had the lowest water absorption compared with those used by Knaack and Kurama (2015) and Seara-Paz (2015). The geometric properties of all the beams are

very similar but compressive strengths in own experiments were the lowest among all tested beams, in the other two studies this parameter varied widely. Reinforcement ratios are also relatively similar with those used in own beams being the smallest. The duration of the tests varied widely with the experiment by Knaack and Kurama (2015) being the shortest, perhaps even too short. The load level was by far the greatest in own experiments leading to similar $a(t-t_0)/a(t_0)$ ratios for beams RAC7 and RAC28. As expected, since Knaack and Kurama (2015) tested a lot of beams very close to and even below cracking load (at t_0), this ratio is the highest for their experiment, going up to 7.40 (after only 119 days!).

TABLE 5.29: Comparison of parameters in the three studies on RAC beams

	Own experiment	Seara-Paz (2015)	Knaack and Kurama (2015)
RCA absorption:	3.67-4.05%	5.40%	6.06%
Span:	3200 mm	3400 mm	3700 mm
Depth:	200 mm	300 mm	230 mm
Span/depth:	18.9	13.7–14.5	18.5
f_{cm} :	28.1 MPa	33.6–53.7 MPa	35.7–49.6 MPa
ρ:	0.58%	0.81 – 0.86%	1.32%
ho':	0.21%	0.20 – 0.22%	0.00-0.47%
<i>t</i> ₀ :	7 and 28 days	42 days	7 and 28 days
$t-t_0$:	450 days	1000 days	119 days
M_{max}/M_{cr} :	2.52-3.75	1.85-2.41	0.81–2.50
I_I/I_{II} :	5.08-5.49	5.03-5.67	2.69–3.21
$a(t-t_0)/a(t_0)$	2.06-2.36	1.78-2.47	2.40-7.40

For all the beams (NAC, RAC and HVFAC) mechanical properties were calculated using MC10 expressions, i.e. no corrections were applied to either RAC or HVFAC – they were treated the same as NAC. Also, some input data which was not available had to be assumed: in all NAC beams (and in the first step, in all RAC and HVFAC beams as well), for the prediction of the modulus of elasticity quartzite aggregates were assumed; unless known otherwise, cement class N was assumed (necessary for the time evolution function β_{cc}). The deflections were calculated by both the rigorous (numerical integration of curvatures in 50 cross-sections) and simplified MC10+ methods and the results are given in Appendix E.

The first step is to see how was the cracking state of beams from (Knaack and Kurama, 2015) predicted and to eliminate uncracked beams. Out of the 34 results from (Knaack and Kurama, 2015) which entered the database (18 initial and 16 final deflections), 12 were predicted to be uncracked. Out of these 12, 6 were final deflections – in reality these 6 beams did crack by the time they reached 119 days so this is an error by the model; the other 6 were initial deflections rightly predicted as uncracked beams. However, this means that 22 out of the 34 results were predicted as cracked beams. Among these 22, 11 are for the beams which were designed to crack immediately after loading (CC series). The other 11 results consisted of 5 final deflections of the UT and UC series, rightly predicted to be cracked after 119 days. But 6 were initial deflections of UT series beams, wrongly predicted as cracked initially whereas in the experiment they did not crack immediately after loading. These beams then have seriously overestimated deflection and a serious impact on the database. Such a situation can seriously warp the results of the database since they are over-represented in it (10% of the results); in reality, members that are in service loaded so close to the cracking load are mostly slabs, but they are usually twoway slabs for which deflection calculation differs. The reason why these six results will be retained in the database is that they are evenly distributed: two NAC, RAC50 and RAC100 beams. The final database contained 46 results; statistical descriptors are given in Table 5.30.

The reported 46 results all entered Table 5.30 since a 'box and whiskers' analysis didn't reveal any outliers among them.

The first impression after looking at Table 5.30 is the very large overestimation of HV-FAC deflections in absolute value and relative to NAC and RAC beams. In the previous analysis of deflection curves, where all input values were taken as experimentally measured, the overestimation of deflection was, on average, 24.5% and 51.6% for HVFAC7 and HVFAC28, respectively. Now, the overestimation is 45.1% for HVFAC7 and 89.7% for HVFAC28. This means that new imprecision has been added through the introduction of code expressions for mechanical and time-dependent properties of HVFAC.

This is expected, since it was shown that MC10 overestimates the shrinkage and creep of the tested concretes, figs. 5.16 and 5.29. In section 5.3.1, MC10 was shown to overestimate shrinkage of this HVFAC mix by ca. 10% and in section 5.3.2 it was shown that MC10 overestimates creep of HVFAC7 by ca. 20% and of HVFAC28 by ca. 25%

TABLE 5.30: Statistical parameters for deflections of RAC, HVFAC and companion NAC beams, MC10+

Database	Deflections	10	Rigorous method			Simplified method		
	Deflections	n	$\overline{\mu}$	σ	CoV	μ	σ	CoV
	all	16	1.085	0.221	0.204	1.169	0.250	0.214
NAC	initial	8	1.194	0.236	0.198	1.308	0.263	0.201
	final	8	0.975	0.148	0.152	1.029	0.143	0.139
	all	11	0.966	0.264	0.274	1.047	0.276	0.264
RAC50	initial	6	1.088	0.301	0.277	1.195	0.286	0.240
	final	5	0.820	0.111	0.136	0.869	0.127	0.146
	all	15	1.009	0.257	0.254	1.092	0.288	0.264
RAC100	initial	8	1.138	0.224	0.197	1.254	0.247	0.197
	final	7	0.862	0.219	0.254	0.907	0.218	0.240
HVFAC	all	4	1.674	0.263	0.157	1.748	0.288	0.165
	initial	2	1.629	0.332	0.204	1.723	0.376	0.218
	final	2	1.719	0.298	0.173	1.774	0.325	0.183

(these are, of course, predictions on prisms). When these differences compound together (tension stiffening, shrinkage, creep, mechanical properties) they get multiplied and the overestimation increases.

This means that, in order to calculate deflections of reinforced HVFAC members, the following work needs to be done in the future: (1) more experiments must be carried out, varying different parameters both on beams and concrete specimens; (2) code expressions for calculating the modulus of elasticity, tensile strength, shrinkage and creep need to be corrected, in them, special attention must be paid to the effect of the curing regime; and (3) after (1) and (2) is completed, the tension stiffening effect must be analysed and the distribution coefficient ζ corrected.

As for RAC and companion NAC beams, several trends appear. First of all, as for the large NAC database in section 5.4.1.1, accuracy and precision are better for final than for initial deflections. The NAC results in Table 5.30 should be compared with the 'no outliers' NAC database in Table 5.22. This smaller NAC database differs in mean values and CoVs from the larger one, mostly for initial deflections. The reason for this is certainly the overrepresentation of beams loaded very close to the cracking load in (Knaack and Kurama, 2015). Nonetheless, the aim in this section is to compare this smaller NAC database

with companion RAC50 and RAC100 beams. What is important is whether there are statistically significant differences between these three data sets.

Looking at the data, what captures attention is the underestimation of final deflections for both RAC50 and RAC100 beams, in absolute terms and relative to companion NAC beams. Whether these differences are statistically significant or not, this underestimation points to several potential causes: (1) mechanical and time-dependent effects of RAC are not predicted well by MC10 (overestimation of the modulus of elasticity and underestimation of shrinkage and creep) and (2) tension stiffening is overestimated in RAC beams. But how can these two causes be distinguished?

It was seen earlier that Figure 5.56 could not reveal a definite conclusion about tension stiffening in RAC beams. Hence, a sequential approach will be taken. If there are indeed two causes of the model's underestimation of deflections of RAC beams, then, the first cause is connected with code expressions for f_{ctm} , E_{cm} , ε_{cs} and $\phi(t,t_0)$ while the second cause is in relation with the MC10+ expression for ζ . It is logical then, to first attempt a correction of code expressions for mechanical and time-dependent properties of RAC and check whether such a change can account for the entire deviation in the model's performance. If it can not, then a solution must be found in additional corrections of the distribution coefficient ζ , i.e. in changing the model for tension stiffening for RAC beams.

Correcting code expressions for each of the mentioned properties (f_{ctm} , E_{cm} , ε_{cs} and $\phi(t,t_0)$) is a difficult and complex task – a thesis can be dedicated to almost each of them separately. Hence, it is useful to try to rely on previously published review works on these topics, which do exist and were presented in section 2.6.2. In this thesis, previously published recommendations will be used for correcting mechanical and time-dependent properties of RAC. This does not preclude the necessity of making new comprehensive databases and literature reviews in order to overcome some of the deficiencies of the currently available studies which will be pointed out along the analysis. Recommendations for such future research along with guidelines will be presented in the end.

The first mechanical property of RAC which will be looked at is tensile strength f_{ctm} . The most comprehensive literature review on this topics was carried out by Silva (2015). In it, the author concluded that the Eurocode 2 expression for predicting tensile strength of RAC from compressive strength

$$f_{ctm} = 0.3 \cdot (f_{cm} - 8)^{2/3} \tag{5.31}$$

which is identical to the one in MC10, does not need to be altered for RAC. There was only a recommendation to alter the time evolution of tensile strength since it tended to underestimated for longer times, i.e. not changing the expression is on the safe side. In this thesis, *no changes* were implemented for RAC tensile strength.

This leaves the modulus of elasticity, shrinkage and creep. Silva (2015) analysed the Eurocode 2 expression for E_{cm} , Equation 2.170, which can be considered identical to MC10, the difference is in the coefficient – 22 vs. 21.5. The author proposed using a correction factor of 0.7 for the RAC modulus of elasticity, regardless of compressive strength or aggregate replacement ratio. This is a relatively crude recommendation and so it will not be used here.

An alternative was found in the previously presented work by Lye et al. (2016a). This study is a part of a three-part research into the elastic modulus, shrinkage, creep of RAC (Lye et al., 2016a,b,c). All three studies were carried out according to identical principles and have as an end-result useful, practical tools for correcting these properties of RAC. The concept of these studies will be explained in detail in the following.

Each of the three studies begins with a comprehensive literature review: 393 publications for the modulus of elasticity, 286 for shrinkage and 100 for creep. The studies then narrow this down to RAC produced with coarse RCA, i.e. aggregates derived from crushed concrete (no recycled masonry aggregates or mixed recycled aggregates) – 284 publications for the modulus of elasticity, 199 for shrinkage and 62 for creep. Unfortunately, the studies do not provide a range of water absorption or density for the RCA used in those studies; hence, the range of applicability of the authors' conclusions is not explicitly stated.

The basic variable analysed by the studies is the ratio of RAC-to-companion NAC for each property, e.g. $E_{cm,RAC}/E_{cm,NAC}$ (companion NAC is not explicitly defined as having the same w/c ratio). First, the data were separated according to the RCA replacement ratio and through a 'box and whiskers' technique outliers were eliminated. Additionally, RAC-to-companion NAC ratios which were not on the 'safe side', i.e. ratios greater than

1 for the modulus of elasticity and smaller than 1 for shrinkage and creep, were also eliminated from the analyses. The authors tried to identify different influencing factors: RCA content, compressive strength, w/c ratio, curing (for shrinkage and creep), age at loading (for creep), etc. The authors concluded that RAC content and compressive strength were the two most significant influencing factors on all three properties.

Then, the authors tested the appropriateness of predicting E_{cm} , shrinkage and creep of RAC using $Eurocode\ 2$ expressions. It is important to note that for studies which lacked certain necessary input data, assumptions were made for those parameters. Now, the basic variable considered is the RAC-to-'Eurocode 2 prediction for NAC' ratio for E_{cm} , shrinkage and creep. Since there were two independent variables in the data (RCA content and compressive strength), through a multiple regression, expressions were derived for the RAC-to-'Eurocode 2 prediction for NAC' ratio for each property, in the form of 'trendlines' or lines of best fit (unfortunately, analytic expressions were not provided).

The end result of all three studies, (Lye et al., 2016a,b,c), are bivariate diagrams which provide an estimate of relative increase/decrease of E_{cm} , shrinkage and creep of RAC compared with Eurocode 2 predictions for NAC on the vertical axis, one of the parameters (RCA content or compressive strength) on the horizontal axis and a family of lines for the other parameter. These diagrams are shown in figs. 5.59 to 5.61.

The use of these diagrams is straightforward. The authors provide the following example: 'using Eurocode 2, concrete made with CEM 42.5N cement and natural aggregate with characteristic cube strength of 37 MPa, having notional size of 820 mm, loading at 7 days in an environment of 50% RH, is estimated to have creep coefficient of 2.50. If 50% of the natural aggregate is replaced by RCA, a creep multiply factor of 1.275 would apply (Figure 5.61). Thus, the estimated creep coefficient of concrete made with 50% RCA would be 3.19 instead of 2.50 for concrete made with 100% NA' (Lye et al., 2016b).

These diagrams and the databases on which they are founded offer the possibility of analytically modifying MC10 shrinkage and creep models in future research and reaching a comprehensive design procedure for reinforced RAC members. However, for this thesis, the results in (Lye et al., 2016a,b,c) had to be used in the given graphical form. There was an obstacle to directly reading values from the diagrams – they were produced for use in conjunction with Eurocode 2 and in this section, MC10 is analysed.

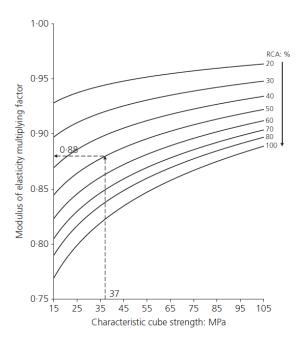


FIGURE 5.59: Proposed modulus of elasticity multiplying factors for RCA concretes of different characteristic cube strenghts, (Lye et al., 2016a)

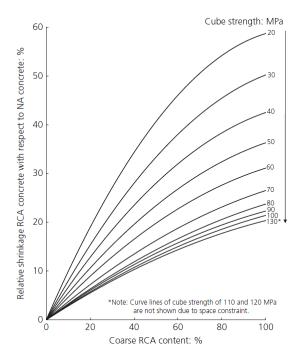


FIGURE 5.60: Compilation of relative *increase of* shrinkage of RCA concrete with respect to NA concrete at different strength grades, (Lye et al., 2016c). Note: text in italic added by author.

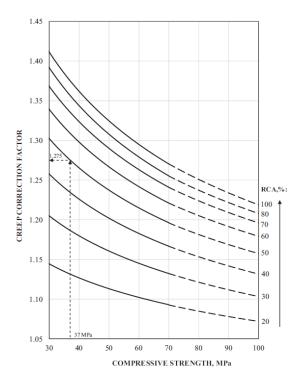


FIGURE 5.61: Proposed creep multiply factor of concrete made with different RCA content for various strength levels, (Lye et al., 2016b). Note: compressive strength is related to cube strength.

The way to overcoming this obstacle was in re-scaling the diagrams relative to MC10 predictions for NAC. In the example above, Eurocode 2 predicted a creep coefficient of 2.50 for NAC and a multiply factor of 1.275, i.e. a RAC creep coefficient of 3.19. The goal is to obtain 3.19 but through the multiplication of the MC10 prediction for NAC. For the given input, MC10 predicts a creep coefficient of 2.82 and thus, a multiplication factor of 1.127 is necessary. Mathematically, the transformation looks like this:

$$c_{EC2} \cdot \phi_{EC2} = c_{MC10} \cdot \phi_{MC10} \tag{5.32}$$

$$c_{MC10} = c_{EC2} \cdot \frac{\phi_{EC2}}{\phi_{MC10}} \tag{5.33}$$

where c_{EC2} and c_{MC10} are the correction factors for Eurocode 2 and MC10, respectively and ϕ_{EC2} and ϕ_{MC10} are Eurocode 2 and MC10 predictions for the NAC creep coefficient, respectively.

For the previously compiled database of deflections of RAC beams, first Eurocode 2 predictions were determined for E_{cm} , shrinkage and creep (for NAC of identical compressive strength). Then, the diagrams were imported into AutoCAD, scaled appropriately, and for each RAC compressive strength (converted from cylinder to cube using a 1.25 coefficient, according to Lye et al. (2016a)) the correction factors c_{EC2} for E_{cm} , shrinkage and creep were determined. Finally, MC10 predictions for E_{cm} , shrinkage and creep (for NAC of identical compressive strength) were calculated, and the new correction factor c_{MC10} was determined from Equation 5.33 (where ϕ is interchangeable with ε_{cs} or E_{cm}). It should be noted that there is no re-scaling for the modulus of elasticity since Eurocode 2 and MC10 predictions are within 2.5%.

The correction factor for the modulus of elasticity was in the range of 0.82–0.90 (lower values are generally for RAC100), for shrinkage strain the range was 1.05–1.52 (higher values are for RAC100) and for creep the range was 1.31–1.79 (higher values are for RAC100). This updated database, together with newly calculated deflections is reported in Appendix E.

The statistical descriptors of the new data set are given in Table 5.31. The results for NAC and HVFAC are unchanged but are repeated for clarity.

TABLE 5.31: Statistical parameters for deflections of RAC, HVFAC and companion NAC beams, MC10+ with corrections for RAC

Database	Deflections	10	Rigo	rous me	thod	Simplified method		
	Deficctions	n	$\overline{\mu}$	σ	CoV	μ	σ	CoV
	all	16	1.085	0.221	0.204	1.169	0.250	0.214
NAC	initial	8	1.194	0.236	0.198	1.308	0.263	0.201
	final	8	0.975	0.148	0.152	1.029	0.143	0.139
	all	11	1.063	0.272	0.256	1.130	0.259	0.229
RAC50	initial	6	1.138	0.336	0.295	1.299	0.299	0.230
	final	5	0.973	0.160	0.164	1.013	0.154	0.152
	all	15	1.132	0.255	0.225	1.208	0.275	0.228
RAC100	initial	8	1.201	0.243	0.202	1.304	0.261	0.2
	final	7	1.053	0.263	0.250	1.098	0.267	0.243
HVFAC	all	4	1.674	0.263	0.157	1.748	0.288	0.165
	initial	2	1.629	0.332	0.204	1.723	0.376	0.218
	final	2	1.719	0.298	0.173	1.774	0.325	0.183

The results for RAC50 and RAC100 beams are now improved, most importantly, the final deflections are now much better predicted. The average values of the a_{calc}/a_{exp} ratio for both initial and final deflections are very similar to NAC for both RAC50 and RAC100 samples. Also seen from the table, is the similarity of the samples according to the simplified method as well as the fact that the simplified method remains 'on the safe side', with consistently conservative predictions compared with the rigorous one; however, its scatter is no worse than for the rigorous method.

In order to verify whether MC10+ now has statistically the same accuracy and precision for NAC and RAC beams, a set of *t*-tests were carried out on these small samples. The mean a_{calc}/a_{exp} ratios were compared and the following hypotheses were tested:

*Null hypothesis H*₀: $\mu_{NAC} = \mu_{RAC,i}$

Alternative hypothesis H_1 : $\mu_{NAC} \neq \mu_{RAC,i}$

Level of significance: $\alpha = 0.05$

where μ_{NAC} is the mean a_{calc}/a_{exp} ratio for the NAC sample and $\mu_{RAC,i}$ is the mean a_{calc}/a_{exp} ratio for either RAC50 or RAC100. In other words, a two-tailed t-test was carried out to determine whether the difference between the means of RAC samples and the NAC sample are significantly different. The test statistic is the t score which is then compared with a critical t score dependent on the number of degrees of freedom of the samples and the level of significance. If the calculated t score is greater than the critical one, there is a statistically significant difference between the sample means, i.e. the null hypothesis should be rejected.

The *t*-test can also be reported in terms of the *p*-value which if smaller than 0.05 suggests the rejection of the null hypothesis. The *p*-value is the probability of getting a certain difference in means if the null hypothesis is true; e.g. a *p*-value of 0.03 for a certain difference in mean values means that *if the null hypothesis is true* then there is only a 3% chance of getting such a difference; a the level of significance of 0.05, every *p*-value below 0.05 means that the null hypothesis should be rejected.

The t-test was carried out comparing rows in Table 5.31: 1 vs. 4 and 7; 2 vs. 5 and 8; and 3 vs. 6 and 9. All of the obtained p-values were greater than 0.05: 0.820 and 0.583; 0.719 and 0.952; and 0.975 and 0.485, for the listed pairs, respectively. Hence,

statistically, the MC10+ behaves the same on NAC and RAC beams with corrected predictions for the modulus of elasticity, shrinkage and creep. This means that all of the variation between NAC and RAC in Table 5.30 can be explained by the differences on the level of mechanical and time-dependent properties of RAC. Thus, there is no need to correct the modeling of tension stiffening for RAC beams, and the coefficient ζ can be used according to Equation 5.16.

This conclusion is in line with findings by Santana Rangel et al. (2017). In this study the authors tested the tension stiffening behaviour of RAC with 50% coarse aggregate replacement and for two concrete strengths (25 and 65 MPa) and found no effect of RCA presence when compared with a companion NAC of same compressive strength. Combined with their findings, the conclusion that for calculating deflections, tension stiffening can be taken to be the same in RAC as in NAC beams seems plausible: under usual serviceability load levels, steel stresses are such that bond properties of RAC and NAC do not differ significantly.

What is necessary, is further work on adapting MC10 shrinkage and creep models to RAC, not through diagrams as in (Lye et al., 2016a,b,c), but through analytic expressions incorporated directly into the models.

5.4.2.2 Application of the Improved ACI 435R ACI+ Model

Just as the applicability of MC10+ to RAC and HVFAC beams was described in the previous section, the applicability of the 'ACI+' model is tested in this one. The ACI 435R model with corrections proposed in section 5.4.1.2—the ACI+ model—is tested in the same way.

First, the mathematical form of the model is used to test deflection curves of own experimental results – RAC7, RAC28, HVFAC7 and HVFAC28 beams. Unfortunately, the beams tested by Seara-Paz (2015) could not be used here, since values for one parameter were missing – flexural tensile strength of concrete was not tested, only splitting tensile strength. The data for the four own beams are given in Appendix F together with calculated deflection curves. The results are shown in Figure 5.62.

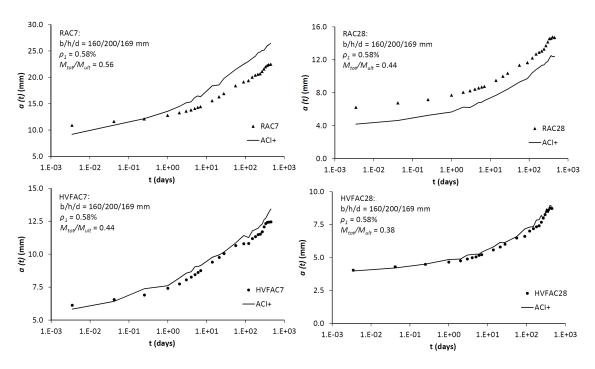


FIGURE 5.62: Assessment of deflection curves for beams from own experimental programme, ACI+

There are some unexpected outcomes of this analysis. The RAC deflections are predicted sufficiently well, taking into account how the model behaved on results from (Gilbert and Nejadi, 2004) shown in section 5.4.1.2. Nothing conclusive can be said about modeling tension stiffening. However, the HVFAC deflection curves are matched almost perfectly by the ACI+ model. The mean a_{calc}/a_{exp} ratio for RAC beams is 0.969 with a CoV of 18.4% (for RAC7 the mean is 1.113 and for RAC28 0.806); for HVFAC beams, the mean a_{calc}/a_{exp} ratio is 1.036 with a CoV of 2.7% (!) (for HVFAC7 the mean is 1.041 and for HVFAC28 1.030). It could of course be argued that these are only two results for HVFAC beams, and too much should not be read into them; nonetheless, they at least suggest that the effective moment of inertia approach, together with experimental values is capable of successfully describing HVFAC deflection curves. The inaccuracy of MC10+, hypothesized to be in connection with an underestimated tension stiffening effect present in HVFAC, disappears in ACI+ perhaps because of the use of the modulus of rupture (flexural tensile strength) instead of axial tensile strength. In fact, the cracking moments predicted by ACI+ are 2.21 and 1.52 times greater compared with MC10+ predictions for HVFAC7 and HVFAC28, respectively. This approach is probably better for concretes with a greater tensions stiffening effect, such as HVFAC.

In the next step, the ACI+ model was tested on the same database of NAC, RAC and HVFAC beams containing own experimental results and results by Knaack and Kurama (2015) and Seara-Paz (2015), as was MC10+, using only compressive strength as input and calculating mechanical properties, shrinkage and creep with code expressions. The input data and calculated deflections are given in Appendix F.

The first important thing to mention is that all of the 58 results in the database were calculated to be cracked beams. This means that the ACI+ model didn't recognize any of the UC and UT series' initial deflections as those of uncracked beams, i.e. the cracking moment is significantly underestimated. This would introduce extremely errors into the database since the deflection of such beams assessed as cracked (when they are in fact uncracked) can be overestimated by up to 300%! Also, there are 11 of such results, i.e. 19% of the total database; this would significantly warp statistical descriptors of the samples and render any meaningful analysis impossible.

But how is it possible that the ACI+ model which uses the modulus of rupture underestimates the cracking moments while MC10+ which uses axial tensile strength does not? The answer is twofold: (1) the modulus of rupture was predicted using the reduction factor (2/3) as recommended by Scanlon and Bischoff (2008) and (2) for calculating M_{cr} , ACI uses the gross section modulus W_c whereas MC10+ uses the transformed section modulus W_i . In the end, in many cases MC10+ ends up predicting a larger cracking moment than ACI+.

If the reduction factor of (2/3) for the modulus of rupture is abandoned, then, ACI would predict 16 beams to be uncracked. Among these 16, only half (8) would be rightly predicted to be uncracked (initial deflection of UC and UT series by Knaack and Kurama (2015)), the other 8 would be final deflections of these beams (which are cracked after 119 days). Looking at it from a design point of view, the use of the reduction factor (2/3) is preferable as it leads to results on the safe side, so it will be retained.

For further statistical analysis, these 11 results were removed from the database, for reasons mentioned above. The prediction of the cracking moment by the model is one aspect of its behaviour and the accuracy and precision of predicting deflections of cracked members is another. Hence, 47 results were retained. The statistical descriptors of the samples for the rigorous and simplified method are given in Table 5.32. For all the sample, a

'box and whiskers' analysis was performed to identify outliers and only one results was eliminated from the RAC100 sample.

TABLE 5.32: Statistical parameters for deflections of RAC, HVFAC and companion NAC beams, ACI+

Database	Deflections	10	Rigo	rous me	thod	Simplified method		
Database	Deflections	n	$\overline{\mu}$	σ	CoV	μ	σ	CoV
	all	16	1.302	0.329	0.253	1.192	0.284	0.238
NAC	initial	6	1.436	0.456	0.318	1.307	0.308	0.236
	final	10	1.222	0.213	0.174	1.124	0.260	0.231
	all	11	1.035	0.281	0.271	0.934	0.250	0.268
RAC50	initial	4	1.234	0.352	0.285	1.105	0.302	0.273
	final	7	0.922	0.183	0.198	0.836	0.168	0.201
	all	15	1.140	0.324	0.284	1.073	0.337	0.314
RAC100	initial	6	1.349	0.166	0.123	1.273	0.161	0.126
	final	9	1.000	0.334	0.334	0.940	0.364	0.387
HVFAC	all	4	1.828	0.229	0.125	1.841	0.180	0.098
	initial	2	1.709	0.289	0.169	1.719	0.195	0.113
	final	2	1.948	0.126	0.065	1.963	0.015	0.008

First, a brief discussion on the results for HVFAC beams. In Figure 5.62, using all measured input data, the ACI+ model predicted their deflections excellently. Now, when mechanical and time-dependent properties are calculated from code expressions, the model's performance is very poor. Not forgetting that there are only two HVFAC beams in the database, this results points to the need for correcting code expressions for calculating the modulus of elasticity, modulus of rupture, shrinkage and creep from compressive strength. However, much more experiments on HVFAC specimens and full-scale beams are necessary.

The performance of the ACI+ model on NAC beams is worse than on the database in Table 5.26, of course, because of the many beams loaded very close to cracking load from (Knaack and Kurama, 2015). However, since there are four such beams per sample (NAC, RAC50 and RAC100), the overall effect on the statistical descriptors of the samples should be the same, provided that the model behaves the same for NAC and RAC. Yet, it can be seen that RAC50 and RAC100 samples have lower a_{calc}/a_{exp} ratios, both for initial and final deflections, compared with NAC; the ratios for final deflections are

especially important since they are smaller than or equal to 1.0. Also, because most of the beams are loaded close to their cracking load, the correction factor γ (Equation 5.29, for $M_{max}/M_{cr} < 3$) applies in the simplified procedure and leads to somewhat lower values of predictions compared with the rigorous method (as discussed earlier, this is up to 5–10% and is considered acceptable).

Just like when MC10+ was analysed, here also, the difference in the model's performance on RAC beams can be due to: (1) poor predictions of RAC mechanical and time-dependent properties by ACI code expressions and (2) incorrect modeling of tension stiffening for RAC beams. The way to distinguishing between these two causes is to eliminate them one by one. The same approach is taken for ACI+ as was for MC10+ – first, cause (1) is dealt with by correcting prediction models for the modulus of elasticity, shrinkage and creep. Again, the studies (Lye et al., 2016a,b,c) and the diagrams they produced, were used. The detailed description of the studies was given in the previous section.

In order to re-scale the diagrams in (Lye et al., 2016a,b,c) from Eurocode 2 to ACI, the same procedure was used as in section 5.4.2.1. First, the property (E_{cm} , shrinkage or creep) is calculated according to Eurocode 2. Then, the correction factor for Eurocode 2, c_{EC2} is determined using the diagrams in (Lye et al., 2016a,b,c) (importing them into AutoCAD, scaling and reading precise values). Then, the same property is calculated according to ACI and the correction factor for ACI, c_{ACI} is calculated as

$$c_{ACI} = c_{EC2} \cdot \frac{\phi_{EC2}}{\phi_{ACI}} \tag{5.34}$$

where ϕ is interchangeable with ε_{cs} or E_{cm} . All the data calculated this way, as well as corrected deflections of RAC beams are given in Appendix F. The correction factor for the modulus of elasticity was in the range of 0.89–0.97, for shrinkage strain in the range of 1.03–1.43 and for creep coefficient in the range of 1.23–2.35.

The statistical descriptors of the new data sets are given in Table 5.33. The results for NAC and HVFAC are unchanged but repeated for clarity.

The results for RAC50 and RAC100 samples are now better, all above one, and close to the values for NAC, although all samples still have relatively large CoVs. As in the case of MC10+, a set of *t*-tests was carried out to determine whether there are statistically

TABLE 5.33: Statistical parameters for deflections of RAC, HVFAC and companion NAC beams, ACI+ with corrections for RAC

Database	Deflections	10	Rigorous method			Simplified method		
	Deficetions	n	μ	σ	CoV	μ	σ	CoV
	all	16	1.302	0.329	0.253	1.192	0.284	0.238
NAC	initial	6	1.436	0.456	0.318	1.307	0.308	0.236
	final	10	1.222	0.213	0.174	1.124	0.260	0.231
	all	11	1.204	0.281	0.233	1.084	0.255	0.235
RAC50	initial	4	1.255	0.350	0.279	1.123	0.301	0.268
	final	7	1.174	0.259	0.221	1.062	0.248	0.234
	all	13	1.304	0.308	0.236	1.202	0.303	0.252
RAC100	initial	6	1.389	0.169	0.122	1.306	0.161	0.123
	final	7	1.231	0.390	0.317	1.114	0.377	0.338
HVFAC	all	4	1.828	0.229	0.125	1.841	0.180	0.098
	initial	2	1.709	0.289	0.169	1.719	0.195	0.113
	final	2	1.948	0.126	0.065	1.963	0.015	0.008

significant differences between corresponding samples in Table 5.33. The mean a_{calc}/a_{exp} ratios were compared and the following hypotheses were tested:

*Null hypothesis H*₀: $\mu_{NAC} = \mu_{RAC,i}$

Alternative hypothesis H_1 : $\mu_{NAC} \neq \mu_{RAC,i}$

Level of significance: $\alpha = 0.05$

where μ_{NAC} is the mean a_{calc}/a_{exp} ratio for the NAC sample and $\mu_{RAC,i}$ is the mean a_{calc}/a_{exp} ratio for either RAC50 or RAC100. The results of the t-test are reported in terms of the p-value which if smaller than 0.05 suggests the rejection of the null hypothesis. The t-test was carried out comparing rows in Table 5.33: 1 vs. 4 and 7; 2 vs. 5 and 8; and 3 vs. 6 and 9. All of the obtained p-values were greater than 0.05: 0.427 and 0.986; 0.524 and 0.820; and 0.686 and 0.950, for the listed pairs, respectively.

Hence, statistically, the ACI+ behaves the same on NAC and RAC beams *with corrected predictions for the modulus of elasticity, shrinkage and creep*. This means that all of the variation between NAC and RAC in Table 5.32 can be explained by the differences on the

level of mechanical and time-dependent properties of RAC. Thus, there is no need to correct the modeling of tension stiffening for RAC beams, but there is a need for modifying code expressions for the modulus of elasticity, shrinkage and creep.

5.5 Summary

In this Chapter, analyses of experimental results and existing shrinkage, creep and deflection prediction models were presented.

In section 5.2, mechanical properties obtained in the experimental programme were analysed. Experimentally measured compressive strength, tensile strength and modulus of elasticity were compared with code predictions by Eurocode 2 and ACI 318. These analyses established how well can these mechanical properties and their time evolution be predicted using code expressions.

The analysis showed that compressive strength and its time evolution for all three concrete mixtures (NAC, RAC and HVFAC) can be successfully predicted using both EC2 and ACI 318. However, other corrections for HVFAC proposed by Chen et al. (2017) are not applicable to HVFAC cured for only one day.

The modulus of elasticity could also be sufficiently well predicted for all three mixtures by EC2 and ACI318. The measured value for RAC after 28 days, $E_{cm,RAC}$, was determined to probably be an upper bound value, i.e. this measurement obtained from only one cylinder probably overestimated the true value of the modulus of elasticity at that time.

Splitting tensile strength could be predicted well for NAC and RAC by EC2 but not for HVFAC, whereas the modulus of rupture predictions by ACI 318 underestimated the measured flexural tensile strength for all three mixtures.

In section 5.3, shrinkage and creep results were analysed using existing prediction models B4, MC10, EC2, ACI 209R and GL2000. Calculated shrinkage and creep compliance curves were fitted to experimental data by varying model parameters in order to verify the mathematical form of each model and its capacity to describe the time evolution of shrinkage and creep of the NAC, RAC and HVFAC mixtures. This was done only to show

the capabilities of each model and their applicability to RAC and HVFAC – the calibrated versions of the models were not used in further analysis. Further research and work is needed to globally calibrate and correct creep and shrinkage models on databases of RAC and HVFAC results.

In this study, for shrinkage, MC10 was found to be the most versatile model, fitting measured data very well after calibration. MC10 was followed by model B4 which only had problems describing the evolution of shrinkage of HVFAC because of the necessary input of a very high w/c ratio. The remaining models could not perform as well as these too.

For creep, again MC10 and B4 behaved similarly well with full capability of fitting experimental results of RAC and HVFAC, loaded after 7 and 28 days. The other models could not perform as well as MC10 and B4.

In the last section of this Chapter, section 5.4, existing models for calculating deflections (the MC10 and ACI 435R) were analysed and applied to own and already existing experimental results. First, both models were analysed on a comprehensive database of NAC beams and their accuracy and precision were tested. Through such an analysis, corrections were proposed in order to improve the performances of both models.

After this, the applicability of such corrected models (labeled as MC10+ and ACI+) on RAC and HVFAC beams was assessed. A new database was compiled, containing results on RAC, HVFAC and companion NAC beams. Analyses demonstrated that MC10+ can be used to predict deflections of RAC beams *if* corrections are applied when calculating the RAC modulus of elasticity, shrinkage and creep. In this study, such corrections were based on previously published results in literature, but more work is needed on a comprehensive analytic correction of MC10 and ACI models for the shrinkage and creep. With the corrections applied herein, both models possessed the same accuracy and precision for RAC beams as for NAC beams.

The available results for HVFAC, in the case of model MC10+ point to both a need to correct code expressions predicting mechanical and time-dependent properties *and* the need to correct the modeling of tension stiffening. In the case of the ACI+ model, the results suggest that only a correction of code expressions for mechanical and time-dependent properties is necessary.

Overall, this thesis provides easy-to-use corrections to existing models for calculating deflections, improving their observed deficiencies. Based on a database of 26 experimental results for RAC beams, this thesis has shown that existing models can be applied to them with no changes in the expressions concerning deflections, but with necessary changes in expressions predicting mechanical and time-dependent properties; the direction for further research is pointed out, in the field of analytic adaptations of shrinkage and creep models for RAC. For HVFAC beams, this thesis has provided first-ever results of the behaviour of such reinforced beams under sustained load. The analysis of own results from two HVFAC beams has revealed the need for a more comprehensive change of the models for calculating deflections – both tension stiffening and the modeling of shrinkage and creep need to be corrected. This insight provides guidance for further research which should enlarge the database of experimental results on HVFAC and reinforced HVFAC members.

Chapter 6

Conclusions

6.1 Conclusions from this Research

The research done within the scope of this thesis was motivated by the desire to promote the use of sustainable alternatives to traditional cement concrete in the form of RAC and HVFAC. In particular, the thesis addressed the problem of serviceability of reinforced members made from these concretes, specifically deflections of reinforced concrete beams. The increasing importance of serviceability criteria in design and the lack of experimental results on RAC and HVFAC in this field were the motivating factors for choosing this topic.

The experimental investigation carried out at the University of Belgrade's Faculty of Civil Engineering and described herein had the aim of shedding new light on the phenomenon of long-term deflections of reinforced RAC and HVFAC beams under sustained loads and formulating practical design procedures for the serviceability limit state of deflections for such members. Before the experiment could be conceptualized and carried out, extensive literature had to be reviewed in order to identify knowledge gaps in the state-of-art of the field. Through this work and all that was described in previous chapters, the following conclusions can be drawn in several areas.

From a comprehensive review of current knowledge on shrinkage, creep and deflections of reinforced concrete structures, as well as on the special features of these properties in RAC and HVFAC, the following conclusions are drawn:

- 1. The understanding of the phenomena of shrinkage and creep of concrete has reached considerable depth: both processes are now understood at the level of chemical and nano-mechanical changes in concrete's structure. However, the design practice of structural engineering has not kept pace with these developments. Most models for calculating shrinkage and creep of concrete are empirical and based on proxy variables as input parameters (e.g. compressive strength);
- 2. Deflections of reinforced concrete members are a serviceability limit state that has become increasingly important over the last several decades as stronger concretes have been developed for which the ultimate limit state is less and less critical. Deflections of reinforced concrete members depend on many parameters material properties of concrete and steel, shrinkage and creep, geometric properties and reinforcement ratios of the member, loading and environmental conditions, etc. Together with cracking, all of this makes the calculation of deflections of reinforced concrete members a very complex task;
- 3. Shrinkage and creep of RAC are generally found to be greater than that of a companion NAC produced with the same *w/c* ratio. This relative increase depends on many factors, among them the compressive strength of RAC and the quality and content of RCA. In the broadest terms, the increase in both shrinkage and creep of RAC with 100% coarse RCA and a compressive strength 30–40 MPa can be up to 40% compared with companion NAC. For HVFAC, existing research and reviews suggest that HVFAC with an identical compressive strength to a companion NAC will display smaller shrinkage and creep strains;
- 4. Studies of the behaviour of reinforced RAC and HVFAC members under sustained loads are very scarce. Only six experimental campaigns were identified for RAC beams and none for HVFAC. The studies have found a general trend of greater deflections and greater increases of deflections over time for RAC beams compared with companion NAC beams.

Based on the experimental programme described in this thesis and its results, the following conclusions are drawn:

- 5. Out of the three concrete mixtures produced in this experiment—NAC, RAC and HVFAC—NAC and RAC had very similar mechanical properties: 28-day compressive strengths of 30.5 and 28.1 MPa, respectively; 28-day moduli of elasticity of 32.2 and 30.8 GPa, respectively; and a 28-day splitting tensile strength of 2.4 and 2.5 MPa, respectively. HVFAC on the other hand had a 28-day compressive strength of 22.6 MPa, a 28-day modulus of elasticity of 28.7 GPa and a 28-day splitting tensile strength of 2.1 MPa. The reason for the lower compressive strength of HVFAC lies in the curing regime consisting of only one day of wet curing;
- 6. After 477 days, the shrinkage strain was 0.645% for NAC 0.782% for RAC and 0.597% for HVFAC. The shrinkage of RAC was 22% greater and of HVFAC 8% smaller than that of NAC. The experimental creep coefficient was 2.395 and 2.480 for RAC loaded after 7 and 28 days, respectively; and 1.634 and 1.554 for HVFAC loaded after 7 and 28 days, respectively. There is practically no difference in the creep coefficient of specimens loaded after 7 and after 28 days even though specimens loaded after 7 days were loaded to a stress—to—strength at loading age ratio of 0.60 and those loaded after 28 days to a ratio of 0.45;
- 7. The normalized increase in deflections after 450 days was in the range of 2.03–2.36 for all six tested beams. This narrow range of results is caused by the relatively large load level (M_{tot}/M_{ult}) applied to the beams (0.38–0.56) which caused a significant extent of cracking and decreased the influence of shrinkage and creep on deflections through the smaller compressed zone in the members;

Based on the analyses performed on own and existing results from literature, concerning shrinkage and creep of RAC and HVFAC as well as deflections of reinforced RAC and HVFAC beams, the following conclusions are drawn:

8. Own experimental results in the form of measured mechanical properties of NAC, RAC and HVFAC (compressive and tensile strength and the modulus of elasticity) and their time evolution can be successfully described by code expressions in

- EC2 and ACI 318. For predicting the RAC modulus of elasticity from compressive strength using the EC2 expression, a correction coefficient of 0.9 is necessary. Specific expression proposed by some researchers for HVFAC are not applicable in cases where the curing regime differs significantly from 28 days of wet curing;
- 9. Experimental shrinkage curves of NAC, RAC and HVFAC are best described by fitting models B4, MC10 and ACI 209R. Models EC2 and GL2000 show poorer performance. Model B4 is not successfully applicable to HVFAC when fly ash is not taken into account in determining *w/c*. Experimental creep compliance curves of RAC and HVFAC loaded after 7 and 28 days are best described by fitting models B4 and MC10. Models EC2, ACI 209R and GL2000 show poorer performance;
- 10. An analysis of the MC10 model for calculating deflections (the rigorous method of numerical integration of curvatures) on individual deflection curves and a large database of 140 results on NAC beams revealed the influence of the load level and reinforcement ratio on the accuracy and precision of the model. A correction was proposed by introducing an analytical expression for the β coefficient as well as for the exponent α used in calculating the distribution coefficient ζ . With these corrections, excellent accuracy and precision of the model were achieved. The simplified procedure for calculating deflections according to MC10 was compared with the rigorous approach and combinations of parameters in which it significantly overestimated deflections were identified. A simple correction coefficient was proposed that leads to very similar accuracy and precision of the rigorous and simplified MC10 methods;
- 11. An analysis of the ACI 435R model for calculating deflections (the rigorous method of numerical integration of curvatures) was also carried out on individual deflection curves and a large database of 140 results. The analysis revealed a need for introducing an upper bound to the effective moment of inertia calculated by the method, in the range of low reinforcement ratios. With this correction, the model's performance improved. The simplified version of the ACI 435R method was compared with the rigorous approach and a simple correction coefficient was introduced to correct for the significant overestimation that the simplified procedure displayed at lower load levels;

- 12. Based on a database of 16 results on NAC beams and 26 results on RAC beams from three experimental programmes (own and two previously published), the corrected MC10 model shows a greater variability on RAC beams compared with companion NAC beams. Previously published recommendations for the correction of Eurocode 2 predictions of the modulus of elasticity, shrinkage and creep were transformed into corrections for MC10. Using them, the corrected MC10 model for deflections shows no statistically significant difference in performance on RAC beams, compared with companion NAC beams. This means that all of the variance was in the code expressions for mechanical and time-dependent properties;
- 13. The corrected MC10 model was tested on own experimental results on HVFAC beams (only ones available) and, when all measured input data is used, the model significantly overestimates deflections (on average ca. 40%). This points to the need for correction the way in which tension stiffening is taken into account, possibly through a reduction of the distribution coefficient ζ . Unfortunately, only two values are not sufficient for determining this coefficient. When deflections are calculated using input data predicted from compressive strength using code expressions, the overestimation increases further. This means that these code expressions must be corrected as well;
- 14. Based on a database of 16 results on NAC beams and 26 results on RAC beams from three experimental programmes (own and two previously published), the corrected ACI 435R model also shows a greater variability on RAC beams compared with companion NAC beams. Previously published recommendations for the correction of Eurocode 2 predictions of the modulus of elasticity, shrinkage and creep were transformed into corrections for ACI 435R. Using them, the corrected ACI 435R model for deflections showed no statistically significant difference in performance on RAC beams, compared with companion NAC beams. This means that all of the variance was in the code expressions for mechanical and time-dependent properties;
- 15. The corrected ACI 435R model was also tested on own experimental results on HV-FAC beams and, when all measured input data is used, the model estimates deflection excellently. This means that there is potentially no need to correct the expression for the effective moment of inertia. However, when deflections are calculated using input data predicted from compressive strength using code expressions, the

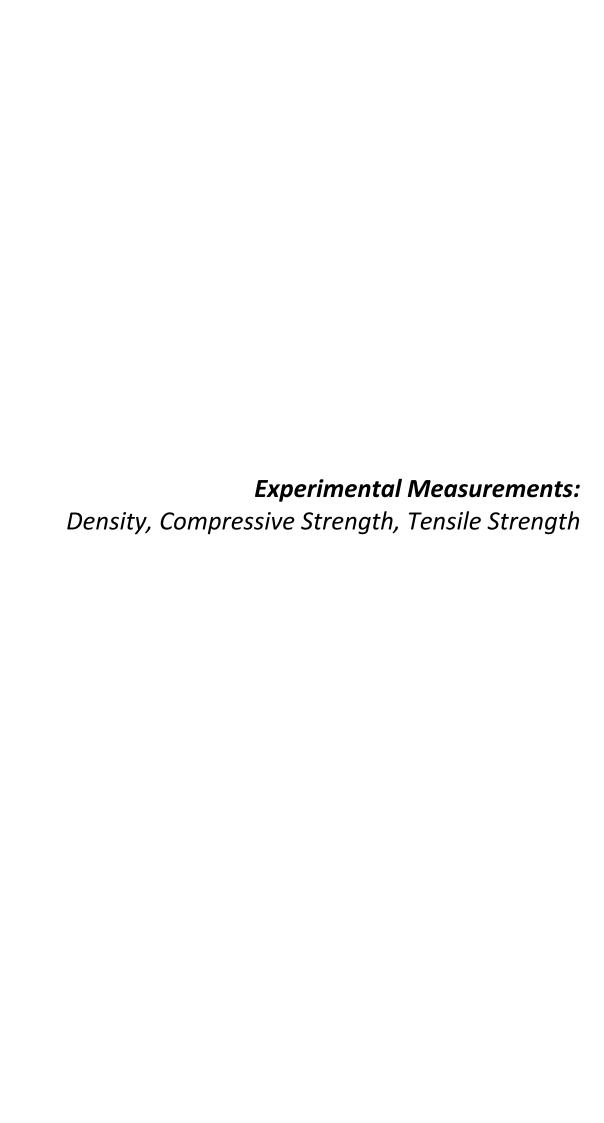
calculated values grossly overestimate experimental values. This means that these code expressions must be corrected as well.

6.2 Recommendations for Further Research

Usually, when an experiment is designed, at that time it can seem to the researcher that his ideas are 'air-tight' and it is easy to overlook things that could go wrong. This is what Richard Feynman famously warned about when he said 'The first principle is that you must not fool yourself – and you are the easiest person to fool.'

Only when the results of the experiment start coming in and are analysed, does the researcher realize in what ways could the experiment have been better or could have provided material for better conclusions. However, this is an illusion. Had the experiment been different, the problems to which it would have given rise would only have been different, not non-existent. So is the case with the experiment in this thesis.

Only after analysing the results, did the author of this thesis realize in which ways he could have done things differently. But this is good thing as it points to new unanswered questions in the field and provides a basis for future research and a continuation of work.


The results of this thesis allow the for the formulation of the following recommendations for future research:

- More experimental and theoretical work is needed on shrinkage and creep of RAC and HVFAC. For RAC, what is needed is the formulation of analytical expressions for shrinkage and creep which can be incorporated into existing prediction models. For HVFAC, first of all, much more experimental results are needed before any analytical expressions and code corrections can be proposed. What needs to be taken special care of in the case of HVFAC, are the curing conditions which profoundly influence the development of mechanical properties;
- Many more experiments are needed on RAC and HVFAC beams under sustained loads. In the case of RAC beams, these tests must incorporate different load levels and different reinforcement ratios and varying ambient and curing conditions. After

this, statically indeterminate beams should be tested. For HVFAC beams, beside the same tests described for RAC, additional studies on tension stiffening must be carried out in the form of tensile creep tests and axial tension tests on reinforced HVFAC ties.

Appendix A

Experimental Measurements

C1 cubbe Type About 100 TOO Chart About 200 TOO About 200 TO	CASTI	CASTING DATE	01-10-02									
cube 100x100 100 0.001 3447 MAC 1 5814 5897 2289 2447 cube 100x100 100 0.001 3444 MAC 2 6887 5880 2422 2423 cube 100x100 100 0.001 3432 MAC 3 6887 5880 2427 2487 cube 100x100 100 0.001 3432 MAC 4 6887 5880 2427 2481 cube 100x100 100 0.001 3439 MAC 6 6887 5880 2427 2481 cube 100x100 100 0.001 3389 MAC 6 6887 5887 2421 2431 cube 100x100 100 0.001 3447 MAC 8 6887 5889 2422 2431 cube 100x100 100 0.001 3447 MAC 8 5894 5887 3289 2412 cube 100x100 100 0.001	Cast sign	Туре	Base (mm)	Height (mm)	Volume (m³)	Cast weight (g)		Weight with specimen (g)		Specimen after demoulding (g)	Y fresh (Kg/m³)	V hard,1 (kg/m ³ ,
cube 100x100 100 0.001 3344 MAC 2 5885 5844 21289 2457 5589 2427 2489 2445 2589 2457 2489 2457 2489 2445 2489	C1	eqno	100×100	100	0.001	3401	NAC 1	5814	2807	2389	2413	2389
cube 100x100 100 0.001 33.54 MAC 3 5887 5880 2472 2487 cube 100x100 100 0.001 3432 MAC 5 5880 5875 2421 2487 cube 100x100 100 0.001 3419 MAC 5 5880 5875 2427 2487 cube 100x100 100 0.001 3389 MAC 5 5887 5837 2427 2487 cube 100x100 100 0.001 3389 MAC 1 5887 5837 2437 2445 cube 100x100 100 0.001 3448 MAC 1 5887 5837 2437 2447 cube 100x100 100 0.001 3448 MAC 1 5824 5824 2337 2447 cube 100x10 100 0.001 3448 MAC 1 5782 5778 2337 2447 cube 100x10 100 0.001	C2	cnpe	100×100	100	0.001	3404	NAC 2	5855	5844	2398	2451	2398
cube 100x100 100 3412 MAC 5 5897 5808 2427 2489 cube 100x100 100 0.001 3419 MAC 5 5887 5866 2426 2491 2481 cube 100x100 100 0.001 3389 MAC 7 5886 5897 2426 2491 2481 cube 100x100 100 0.001 3389 MAC 7 5887 5866 2426 2491 2491 cube 100x100 100 0.001 3389 MAC 7 5884 5834 2426 2491 cube 100x100 100 0.001 3418 MAC 7 5884 5834 2432 2432 cube 100x10 100 0.001 3418 MAC 1 5828 5828 2389 2432 2432 cube 100x10 100 0.001 3418 MAC 1 5782 5789 2432 2431 cube	C3	cnpe	100×100	100	0.001	3354	NAC 3	2887	5880	2452	2533	2452
cube 100x100 100 0.001 3819 NAC 6 5887 5866 2421 2491 cube 100x100 100 0.001 3889 NAC 6 5887 5887 2426 2491 cube 100x100 100 0.001 3839 NAC 9 5884 5895 2380 2491 cube 100x100 100 0.001 3449 NAC 10 5884 5895 2380 2380 cube 100x100 100 0.001 3449 NAC 10 5844 5896 2380 2380 cube 100x100 100 0.001 3449 NAC 12 5889 5895 2381 2381 cube 100x100 100 0.001 3417 NAC 12 5889 5895 2481 2381 2381 cube 100x100 100 0.001 3417 NAC 13 5892 5895 2381 2381 cube 100x100 100 </td <td>C4</td> <td>cnpe</td> <td>100×100</td> <td>100</td> <td>0.001</td> <td>3432</td> <td>NAC 4</td> <td>5921</td> <td>2008</td> <td>2427</td> <td>2489</td> <td>2427</td>	C4	cnpe	100×100	100	0.001	3432	NAC 4	5921	2008	2427	2489	2427
cube 100x100 100 3398 NAC 7 6836 2426 2427 2437 cube 100x100 100 0.001 3398 NAC 9 5837 5891 2425 2437 cube 100x100 100 0.001 3383 NAC 10 5864 5897 2887 2387 2428 2478 cube 100x100 100 0.001 3448 NAC 10 5864 5896 2387 2389 2388 cube 100x100 100 0.001 3448 NAC 10 5829 5829 5389 2383 2388 cube 100x100 100 0.001 3444 NAC 10 5829 5829 5896 2383 2384 cube 100x100 100 0.001 3444 NAC 10 5829 5829 5896 2383 2384 cube 100x100 100 0.001 3444 NAC 12 7789 5788 2384 2384<	C2	cnpe	100×100	100	0.001	3419	NAC 5	2880	5875	2421	2461	2421
cube 100x100 100 0.001 3399 NAC 7 6836 6831 2412 2437 cube 100x100 100 0.001 3446 NAC 9 6844 6834 2387 2389 2389 cube 100x100 100 0.001 3418 NAC 10 5814 5884 2381 2389 2389 cube 100x100 100 0.001 3417 NAC 11 5738 5389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2389 2489 2389 2489 2389 2489 2389 2389 2489 2389 2389 2489 2389 2489 2389 2389 2489 2389 2389 2489 2389 2389 2489 2389 2389 2489 2389 2389 2389 2389 2389 2389 2389 2389 2389	92	eqno	100×100	100	0.001	3386	NAC 6	2877	2866	2426	2491	2426
cube 100x100 100 0001 3383 NAC 6 66671 6874 2225 2426 2399 cube 100x100 100 0001 3418 NAC 10 5814 5834 2387 2389 2389 cube 100x100 100 0001 3418 NAC 12 5844 5826 2380 2389 cube 100x100 100 0001 3418 NAC 12 5829 5820 2389 2389 cube 100x100 100 0001 3414 NAC 12 5889 5822 2389 2389 cube 100x100 100 0001 3414 NAC 14 5789 5786 2283 2384 cube 100x100 100 0001 4401 NAC 14 5789 5786 2389 2389 cube 100x100 100 0001 4401 NAC 17 7785 5786 2389 2388 cube 100x100	C2	eqno	100×100	100	0.001	3399	NAC 7	5836	5831	2412	2437	2412
cube 100x100 100 0.0071 3445 NAC 9 6844 6894 2289 2289 2398 cube 100x100 100 0.007 3479 NAC 13 6892 5286 2289 2389 cube 100x100 100 0.007 3417 NAC 13 5829 5506 2339 2389 cube 100x100 100 0.007 3417 NAC 13 5829 5506 2433 2389 cube 100x100 100 0.007 3417 NAC 14 5789 5786 2383 2384 cube 100x100 100 0.007 3418 NAC 14 5789 5786 2383 2384 cube 100x100 100 0.007 3418 NAC 18 5789 5786 2384 2384 cube 100x100 100 0.007 3418 NAC 18 5789 5784 2384 2384 cube 100x100 10	C8	eqno	100×100	100	0.001	3383	NAC 8	5851	5847	2425	2468	2425
cube 100x100 100 0.0071 3418 NAC 10 5814 5806 2389 2389 2389 cube 100x100 100 0.0071 3417 NAC 12 5628 5289 2369 2389 2413 2418 cube 100x100 100 0.0071 3417 NAC 12 5628 5289 2366 2433 2518 cube 100x100 100 0.001 3391 NAC 16 5789 5786 2383 2384 cube 100x100 100 0.001 4314 NAC 16 7786 7786 2383 2384 cube 100x100 100 0.001 4516 NAC 18 7786 7786 2383 2384 cube 100x100 100 0.001 4516 NAC 18 7786 7786 2384 2442 2442 cube 100x100 100 0.001 4416 NAC 18 7786 7786 2784 <th< td=""><td>కు</td><td>cnpe</td><td>100×100</td><td>100</td><td>0.001</td><td>3445</td><td>NAC 9</td><td>5844</td><td>5834</td><td>2381</td><td>2399</td><td>2381</td></th<>	కు	cnpe	100×100	100	0.001	3445	NAC 9	5844	5834	2381	2399	2381
cube 100x100 100 0.001 3359 NAC 11 5747 5728 2391 2411 cube 100x100 100 0.001 3417 NAC 14 5782 5782 5366 2433 2516 cube 100x100 100 0.001 3418 NAC 14 5782 5786 2383 2384 cube 100x100 100 0.001 3418 NAC 14 5782 5786 2383 2384 cube 100x100 100 0.001 4801 NAC 19 7186 7180 2332 2384 cube 100x100 100 0.001 4801 NAC 19 7186 7180 2332 2384 cube 100x100 100 0.001 4416 NAC 19 7186 7180 2332 2384 cube 100x100 100 0.001 4416 NAC 19 7180 2364 2445 cube 100x100 100 0.0	C10	cnpe	100×100	100	0.001	3418	NAC 10	5814	5805	2380	2396	2380
cube 100x100 100 0.001 3417 NAC 12 5828 5822 2333 2413 2115 cube 100x100 100 0.001 3414 NAC 14 5789 5580 2433 2215 cube 100x100 100 0.001 3414 NAC 14 5789 5786 2383 2384 cube 100x100 100 0.001 4801 NAC 18 7180 2384 2384 cube 100x100 100 0.001 4801 NAC 18 7180 2384 2384 cube 100x100 100 0.001 4801 NAC 18 7180 2384 2384 cube 100x100 100 0.001 4801 NAC 18 7186 2384 2384 cube 100x100 100 0.001 4801 NAC 18 7186 7180 2384 2884 cube 100x100 100 0.001 4801 NAC 18	C11	cnpe	100×100	100	0.001	3359	NAC 11	5747	5738	2369	2388	2369
cube 100x100 100 0.001 3414 NAC 14 5782 5606 2433 2554 cube 100x100 100 0.001 3419 NAC 16 5789 5786 2383 2584 cube 100x100 100 0.001 4401 NAC 18 7785 5786 2384 2384 cube 100x100 100 0.001 4707 NAC 18 7785 7785 2335 2538 cube 100x100 100 0.001 4516 NAC 18 7780 25846 2334 2538 cube 100x100 100 0.001 4516 NAC 18 7780 25846 2334 2584 cube 100x100 100 0.001 4516 NAC 21 7780 25846 2334 2669 cube 100x100 100 0.001 4616 NAC 21 7780 25846 2334 2465 2669 cube 100x100 <t< td=""><td>C12</td><td>cnpe</td><td>100×100</td><td>100</td><td>0.001</td><td>3417</td><td>NAC 12</td><td>5828</td><td>5822</td><td>2391</td><td>2411</td><td>2391</td></t<>	C12	cnpe	100×100	100	0.001	3417	NAC 12	5828	5822	2391	2411	2391
cube 100x100 100 0.001 3418 NAC 14 5782 5778 2283 2284 cube 100x100 100 0.001 4801 NAC 16 7789 5780 2384 2384 cube 100x100 100 0.001 4801 NAC 16 7785 7786 2384 2384 2384 cube 100x100 100 0.001 4707 NAC 18 7785 7786 2384 2384 2384 cube 100x100 100 0.001 4707 NAC 18 7786 7786 2384 2883 2884 cube 100x100 100 0.001 4875 NAC 18 7789 25845 2412 2683 cube 100x100 100 0.003 18485 NAC 1 7789 27840 2415 2684 cube 100x100 100 0.003 18455 NAC 1 7789 25845 2415 2688 cu	C13	cnpe	100×100	100	0.001	3414	NAC 13	5929	9069	2433	2515	2433
cube 100x100 100 0.001 3391 NAC 16 5789 5786 2384 2384 cube 100x100 100 0.001 4707 NAC 17 7185 7180 2332 2384 cube 100x100 100 0.001 4707 NAC 19 7185 7180 2332 2689 cube 100x100 100 0.001 4516 NAC 19 7185 7180 2335 2689 cube 100x100 100 0.001 4707 NAC 19 7186 7180 2336 2689 cube 100x100 100 0.003 18485 NAC 21 7789 27956 1242 2465 cube 100x100 100 0.003 18485 NAC 21 7789 27950 12652 2894 cube 100x100 100 0.003 18485 NAC 2 27940 27850 1245 2384 cube 100x100 100	C14	cnpe	100×100	100	0.001	3418	NAC 14	5782	2778	2353	2364	2353
cube 100x100 1000 0.001 4801 NAC 16 7185 7180 2264 2284 cube 100x100 100 0.001 4576 NAC 18 7180 2355 2235 2234 cube 100x100 100 0.001 4576 NAC 18 7180 2384 2425 2689 cube 100x100 100 0.003 18485 NAC 20 25886 2442 2445 2465 cube 100x100 100 0.003 18485 NAC 21 25880 25845 2445 2465 cube 100x100 100 0.003 15320 NAC 21 27980 27936 2445 2465 cube 100x100 100 0.003 1532 NAC 21 27980 27930 1265 2465 cylinder \$150 0.0027 6434 NAC 2 17796 1265 2475 cylinder \$150 0.0027 6434 NAC 2 </td <td>C15</td> <td>cnpe</td> <td>100×100</td> <td>100</td> <td>0.001</td> <td>3391</td> <td>NAC 15</td> <td>2789</td> <td>98/9</td> <td>2383</td> <td>2398</td> <td>2383</td>	C15	cnpe	100×100	100	0.001	3391	NAC 15	2789	98/9	2383	2398	2383
cube 100x100 100 0.001 4707 NAC 18 7165 7785 2332 2348 cube 100x100 100 0.001 4516 NAC 18 7186 7180 2334 2669 cube 100x100 100 0.003 18485 NAC 20 25880 2845 2442 2466 cube 100x100 100 0.003 18320 NAC 21 27980 27955 1242 2466 cube 100x100 100 0.003 18320 NAC 1 27980 27956 1242 2466 cylinder 6150 300 0.0033 15240 NAC 2 27940 12635 2440 cylinder 6150 150 0.0027 6408 NAC 2 12795 12635 2440 cylinder 6150 150 0.0027 6408 NAC 4 12840 3780 1286 2394 cylinder 6150 150 0.0027 6446 </td <td>C16</td> <td>cnpe</td> <td>100×100</td> <td>100</td> <td>0.001</td> <td>4801</td> <td>NAC 16</td> <td>7185</td> <td>7180</td> <td>2364</td> <td>2384</td> <td>2364</td>	C16	cnpe	100×100	100	0.001	4801	NAC 16	7185	7180	2364	2384	2364
cube 100x100 100 0.001 4516 NAC 19 7180 2355 2669 cube 100x100 100 0.003 18485 NAC 20 25880 25845 2442 2465 cube 100x100 100 0.003 18485 NAC 21 27960 27950 17550 2445 2465 cube 100x100 100 0.0053 15240 NAC 21 27980 27930 12655 2394 cylinder \$150 0.0053 15295 NAC 2 27940 27930 12655 2396 cylinder \$150 0.0027 6237 NAC 1 12705 12690 6359 2440 cylinder \$150 150 0.0027 6438 NAC 2 1775 1775 6239 2405 cylinder \$150 150 0.0027 6438 NAC 3 12765 6239 2405 cylinder \$150 150 0.0027 6524 <	C17	cnpe	100×100	100	0.001	4707	NAC 17	7050	7045	2332	2343	2332
cube 100x100 100 0.003 18485 NAC 20 25880 25845 2394 2465 cube 100x100 100 0.0033 18320 NAC 21 27980 27955 12530 2388 cube 100x100 100 0.0053 15320 NAC 21 27980 27955 12530 2394 cylinder \$150 0.0027 6237 NAC 3 17790 12690 6389 2440 cylinder \$150 0.0027 6237 NAC 1 12705 12690 6389 2440 cylinder \$150 0.0027 6438 NAC 4 1280 1280 6287 240 cylinder \$150 0.0027 6446 NAC 5 1275 12765 6287 240 cylinder \$150 0.0027 6446 NAC 6 12745 12765 6287 240 cylinder \$150 0.0027 6446 NAC 6 12745 12765	C18	cnpe	100×100	100	0.001	4516	NAC 18	7185	7180	2355	5669	2355
cube 100x100 100 0.003 18485 NAC 20 25880 25845 2442 2465 cube 100x100 100 0.0053 15320 NAC 21 27960 27930 12615 2396 cylinder g150 300 0.0053 15290 NAC 2 27940 27930 12615 2396 cylinder g150 300 0.0053 1529 NAC 2 12795 12690 6209 2402 cylinder g150 150 0.0027 6438 NAC 2 12775 12760 6237 2402 cylinder g150 150 0.0027 6434 NAC 2 12775 12780 6239 2402 cylinder g150 150 0.0027 6436 NAC 4 12796 12790 6239 2402 cylinder g150 150 0.0027 6436 NAC 5 12736 12790 6237 2402 cylinder g150	C19	eqno	100×100	100			NAC 19			2394		2394
cube 100x100 100 NAC 21 NAC 21 27980 2415 288 cylinder Ø150 300 0.0053 15320 NAC 1 27940 27955 12536 2396 cylinder Ø150 300 0.0053 15296 NAC 3 27940 27930 12615 2396 cylinder Ø150 150 0.0027 6237 NAC 1 12705 12690 6369 2440 cylinder Ø150 150 0.0027 6438 NAC 2 12776 12690 6397 2402 cylinder Ø150 150 0.0027 6446 NAC 4 12776 12760 6236 2379 cylinder Ø150 150 0.0027 6446 NAC 5 12746 12705 6216 2376 cylinder Ø150 150 0.0027 6446 NAC 5 12746 12705 6216 2376 prism 120x120 150 0.0027	C20	cnpe	100×100	100	0.003	18485	NAC 20	25880	25845	2442	2465	2442
cylinder \$\psi\text{titled}{150}\$ \$\psi\text{titled}{150}	C21	cnpe	100×100	100			NAC 21			2415		2415
cylinder \(\phi\)150 300 0.0053 15240 NAC 2 27940 27930 12615 2394 cylinder \(\phi\)150 300 0.0053 15295 NAC 1 12790 6369 2440 cylinder \(\phi\)150 150 0.0027 6408 NAC 2 12775 12760 6299 2402 cylinder \(\phi\)150 150 0.0027 6434 NAC 3 12810 6299 2405 cylinder \(\phi\)150 150 0.0027 6446 NAC 4 12810 6299 2405 cylinder \(\phi\)150 150 0.0027 6446 NAC 5 12745 12705 6239 2405 cylinder \(\phi\)150 150 0.0027 6446 NAC 6 12745 12705 6239 2405 cylinder \(\phi\)150 150 0.0027 6446 NAC 6 12745 12765 6299 2405 cylinder 160 0.0027 <td>LC1</td> <td>cylinder</td> <td>Ø150</td> <td>300</td> <td>0.0053</td> <td>15320</td> <td>NAC 1</td> <td>27980</td> <td>27955</td> <td>12530</td> <td>2388</td> <td>2364</td>	LC1	cylinder	Ø150	300	0.0053	15320	NAC 1	27980	27955	12530	2388	2364
cylinder φ150 300 0.0053 15295 NAC 2 27985 27970 12535 2394 cylinder φ150 150 0.0027 6237 NAC 2 12705 12690 6389 2440 cylinder φ150 150 0.0027 6434 NAC 2 12756 6297 2405 cylinder φ150 150 0.0027 6524 NAC 4 12830 12706 6232 2379 cylinder φ150 150 0.0027 6524 NAC 5 12765 6236 2376 cylinder φ150 150 0.0027 6446 NAC 5 12745 12765 6236 2376 prism 120x120 380 0.0052 19315 NAC 6 31206 17400 2376 prism 120x120 380 0.0052 21055 NAC 4 33845 33410 17360 1740 prism 120x120 380 0.0052 21055	7C2	cylinder	Ø150	300	0.0053	15240	NAC 2	27940	27930	12615	2396	2380
cylinder φ150 150 0.0027 6237 NAC 1 12705 12690 6369 2440 cylinder φ150 150 0.0027 6408 NAC 2 12775 12765 6297 2402 cylinder φ150 150 0.0027 6434 NAC 3 12810 6299 2405 cylinder φ150 150 0.0027 6446 NAC 5 12745 12706 6298 2405 cylinder φ150 150 0.0027 6403 NAC 6 12745 12705 6298 2376 prism 120x120 360 0.0022 18835 NAC 6 12730 17850 6298 2376 prism 120x120 360 0.0052 19355 NAC 4 33845 33845 17860 240 prism 120x120 360 0.0052 21055 NAC 5 33460 3330 12340 2403 prism 120x120 360 <t< td=""><td>FC3</td><td>cylinder</td><td>Ø150</td><td>300</td><td>0.0053</td><td>15295</td><td>NAC 3</td><td>27985</td><td>27970</td><td>12535</td><td>2394</td><td>2364</td></t<>	FC3	cylinder	Ø150	300	0.0053	15295	NAC 3	27985	27970	12535	2394	2364
cylinder Ø150 150 0.0027 6408 NAC 2 12775 12765 6297 2402 cylinder Ø150 150 0.0027 6434 NAC 3 12810 12790 6299 2405 cylinder Ø150 150 0.0027 6434 NAC 4 12830 12705 6239 2405 cylinder Ø150 150 0.0027 6446 NAC 5 12745 12705 6216 2379 cylinder Ø150 150 0.0027 6446 NAC 5 1730 1205 6236 2379 prism 120x120 360 0.0052 18315 NAC 5 31260 31265 2304 prism 120x120 360 0.0052 21055 NAC 5 33460 33430 12340 2407 prism 120x120 360 0.0052 21055 NAC 5 33460 33430 12340 2344 prism 120x120 360 <	SC1	cylinder	Ø150	150	0.0027	6237	NAC 1	12705	12690	6989	2440	2403
cylinder Ø150 150 0.0027 6434 NAC 4 12810 12790 6299 2405 cylinder Ø150 150 0.0027 6524 NAC 4 12830 12800 6232 2379 cylinder Ø150 150 0.0027 6446 NAC 5 1775 6298 2376 prism 120x120 350 0.0022 18835 NAC 6 31205 12096 2396 prism 120x120 360 0.0052 19315 NAC 2 31260 31205 1785 2304 prism 120x120 360 0.0052 21365 NAC 3 33845 33815 1280 2407 prism 120x120 360 0.0052 21015 NAC 4 33865 33430 12340 2407 prism 120x120 360 0.0052 21015 NAC 5 33480 33430 12340 2411 prism 120x120 360 0.0052	SC2	cylinder	Ø150	150	0.0027	6408	NAC 2	12775	12765	6297	2405	2376
cylinder φ150 150 0.0027 6624 NAC 4 12830 12800 6232 2379 cylinder φ150 150 0.0027 6446 NAC 5 12745 12705 6216 2376 cylinder φ150 150 0.0027 6443 NAC 5 12730 12755 6298 2387 prism 120x120 360 0.0052 19315 NAC 2 31260 31205 1285 2304 prism 120x120 360 0.0052 21055 NAC 3 33845 33585 12460 2403 prism 120x120 360 0.0052 21055 NAC 5 33480 3330 12345 2424 prism 120x120 360 0.0052 21025 NAC 6 3340 3330 12345 2424 prism 120x120 360 0.0052 21460 NAC 6 3340 3330 12345 2414 prism 120x120	SC3	cylinder	Ø150	150	0.0027	6434	NAC 3	12810	12790	6539	2405	2376
Cylinder Ø150 150 0.0027 6446 NAC 5 12745 6276 2376 Cylinder Ø150 150 0.0027 6403 NAC 6 12730 12755 6298 2387 prism 120x120 360 0.0052 18835 NAC 3 31260 31205 17890 2367 prism 120x120 360 0.0052 21365 NAC 3 33845 31205 17865 240 prism 120x120 360 0.0052 21025 NAC 3 33845 33815 12460 2403 prism 120x120 360 0.0052 21025 NAC 5 33480 33430 12346 2401 prism 120x120 360 0.0052 21025 NAC 6 33480 33205 12240 2401 prism 120x120 360 0.0052 21026 NAC 6 33360 33205 12240 2414 prism 120x120 360	SC4	cylinder	Ø150	150	0.0027	6524	NAC 4	12830	12800	6232	2379	2351
cylinder Ø150 150 0.0027 6403 NAC 6 12730 12755 6298 2387 prism 120x120 360 0.0052 18835 NAC 1 31030 30980 12090 2352 prism 120x120 360 0.0052 21365 NAC 2 31260 31285 2407 prism 120x120 360 0.0052 21015 NAC 4 33845 33845 12460 2407 prism 120x120 360 0.0052 21025 NAC 6 33460 33370 12345 2424 prism 120x120 360 0.0052 20845 NAC 6 33460 33370 12345 2424 prism 120x120 360 0.0052 21460 NAC 7 33260 33205 12210 2346 prism 120x120 360 0.0052 21460 NAC 9 33160 12240 2411 prism 120x120 360 0.0052 <td>SC5</td> <td>cylinder</td> <td>Ø150</td> <td>150</td> <td>0.0027</td> <td>6446</td> <td>NAC 5</td> <td>12745</td> <td>12705</td> <td>6216</td> <td>2376</td> <td>2345</td>	SC5	cylinder	Ø150	150	0.0027	6446	NAC 5	12745	12705	6216	2376	2345
prism 120x120 360 0.0052 18835 NAC 1 31030 30980 12090 2352 prism 120x120 360 0.0052 19315 NAC 2 31260 11825 2304 prism 120x120 360 0.0052 21365 NAC 3 33845 17285 2407 prism 120x120 360 0.0052 21015 NAC 4 33645 33585 17460 2440 prism 120x120 360 0.0052 21025 NAC 5 3340 3350 12345 2447 prism 120x120 360 0.0052 20860 NAC 7 3340 3350 12210 2386 prism 120x120 360 0.0052 20460 NAC 10 36400 12040 2467 prism 120x120 360 0.0052 22660 NAC 10 36100 12045 2447 prism 120x120 360 0.0052 21025 NAC 10 <td>SC6</td> <td>cylinder</td> <td>Ø150</td> <td>150</td> <td>0.0027</td> <td>6403</td> <td>NAC 6</td> <td>12730</td> <td>12755</td> <td>6298</td> <td>2387</td> <td>2376</td>	SC6	cylinder	Ø150	150	0.0027	6403	NAC 6	12730	12755	6298	2387	2376
prism 120x120 360 0.0052 19315 NAC 2 31260 31205 11825 2304 prism 120x120 360 0.0052 21365 NAC 3 33845 33815 12385 2407 prism 120x120 360 0.0052 21015 NAC 4 33665 33585 12460 2440 prism 120x120 360 0.0052 21025 NAC 5 33480 33350 12345 2424 prism 120x120 360 0.0052 20880 NAC 7 33260 33205 12210 2386 prism 120x120 360 0.0052 20480 NAC 8 33960 33065 12416 2447 prism 120x120 360 0.0052 21460 NAC 10 36120 36120 12475 2447 prism 120x120 360 0.0052 21025 NAC 11 33700 12475 2447 prism 120x120 360<	P1	prism	120×120	360	0.0052	18835	NAC 1	31030	30980	12090	2322	2332
prism 120x120 360 0.0052 21365 NAC 3 33845 33815 12385 2407 prism 120x120 360 0.0052 21015 NAC 4 33665 33585 12460 2440 prism 120x120 360 0.0052 21025 NAC 5 33480 33505 12340 2403 prism 120x120 360 0.0052 20845 NAC 7 33250 33205 12210 2386 prism 120x120 360 0.0052 2080 NAC 9 33960 33965 2417 prism 120x120 360 0.0052 22660 NAC 10 36100 12010 2596 prism 120x120 360 0.0052 22660 NAC 11 33710 36130 12475 2447 prism 120x120 360 0.0052 21025 NAC 11 33790 12475 2467 prism 120x120 360 0.0052 21026	P2	prism	120×120	360	0.0052	19315	NAC 2	31260	31205	11825	2304	2281
prism 120x120 360 0.0052 21015 NAC 4 33665 33585 12460 2440 prism 120x120 360 0.0052 21025 NAC 5 33480 33585 12340 2403 prism 120x120 360 0.0052 20845 NAC 7 3340 33370 12345 2424 prism 120x120 360 0.0052 20880 NAC 7 33960 33965 12210 2386 prism 120x120 360 0.0052 2260 NAC 10 36120 3100 12040 2596 prism 120x120 360 0.0052 2260 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 21025 NAC 11 33760 33730 12475 2405 prism 120x120 360 0.0052 21026 NAC 12 33790 33730 12475 2405 prism 120x120<	P3	prism	120×120	360	0.0052	21365	NAC 3	33845	33815	12385	2407	2389
prism 120x120 360 0.0052 21025 NAC 5 33480 33430 12340 2403 prism 120x120 360 0.0052 20845 NAC 6 33410 33370 12345 2424 prism 120x120 360 0.0052 20880 NAC 7 33260 33205 12210 2386 prism 120x120 360 0.0052 21460 NAC 9 33180 33160 12140 2367 prism 120x120 360 0.0052 22660 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 21025 NAC 11 33760 33635 12475 2467 prism 120x120 360 0.0052 21026 NAC 12 33760 33730 12475 2465 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x	P4	prism	120×120	360	0.0052	21015	NAC 4	33665	33585	12460	2440	2404
prism 120x120 360 0.0052 20845 NAC 6 33410 33370 12345 2424 prism 120x120 360 0.0052 20880 NAC 7 33250 33205 12210 2386 prism 120x120 360 0.0052 21460 NAC 9 33180 33160 12040 2367 prism 120x120 360 0.0052 22660 NAC 10 36120 36100 13030 2596 prism 120x120 360 0.0052 21025 NAC 12 33160 33120 12475 2405 prism 120x120 360 0.0052 21190 NAC 12 33120 12470 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21190 NAC 14 33695 12445 2418	P5	prism	120×120	360	0.0052	21025	NAC 5	33480	33430	12340	2403	2380
prism 120x120 360 0.0052 20880 NAC 7 33250 33205 12210 2386 prism 120x120 360 0.0052 21460 NAC 8 33960 33985 12210 2361 prism 120x120 360 0.0052 22660 NAC 10 36120 36100 12140 2566 prism 120x120 360 0.0052 21025 NAC 11 3310 36150 12475 2405 prism 120x120 360 0.0052 21025 NAC 12 33120 12270 2405 prism 120x120 360 0.0052 21190 NAC 12 33790 33730 12475 2437 prism 120x120 360 0.0052 21190 NAC 14 33695 12445 2418	P6	prism	120×120	360	0.0052	20845	NAC 6	33410	33370	12345	2424	2381
prism 120x120 360 0.0052 21460 NAC 8 33960 33985 12255 2411 prism 120x120 360 0.0052 20910 NAC 9 33180 33160 12140 2367 prism 120x120 360 0.0052 22660 NAC 10 36120 36100 13030 2596 prism 120x120 360 0.0052 21025 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 21990 NAC 12 33760 33730 12270 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P7	prism	120×120	360	0.0052	20880	NAC 7	33250	33205	12210	2386	2355
prism 120x120 360 0.0052 20910 NAC 9 33180 33160 12140 2367 prism 120x120 360 0.0052 22660 NAC 10 36120 36100 13030 2596 prism 120x120 360 0.0052 21025 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 21990 NAC 12 33120 12270 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P8	prism	120×120	360	0.0052	21460	NAC 8	33960	33985	12255	2411	2364
prism 120x120 360 0.0052 22660 NAC 10 36120 36100 13030 2596 prism 120x120 360 0.0052 21025 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 20690 NAC 12 33160 33120 12270 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P9	prism	120×120	360	0.0052	20910	NAC 9	33180	33160	12140	2367	2342
prism 120x120 360 0.0052 21025 NAC 11 33710 33635 12475 2447 prism 120x120 360 0.0052 20690 NAC 12 33160 12270 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P10	prism	120×120	360	0.0052	22660	NAC 10	36120	36100	13030	2596	2514
prism 120x120 360 0.0052 20690 NAC 12 33160 33120 12270 2405 prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P11	prism	120×120	360	0.0052	21025	NAC 11	33710	33635	12475	2447	2406
prism 120x120 360 0.0052 21190 NAC 13 33790 33730 12450 2431 prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P12	prism	120×120	360	0.0052	20690	NAC 12	33160	33120	12270	2405	2367
prism 120x120 360 0.0052 21130 NAC 14 33665 33695 12445 2418	P13	prism	120×120	360	0.0052	21190	NAC 13	33790	33730	12450	2431	2402
	P14	prism	120×120	360	0 00 60	21130	VV) VIV	10000	10000	27707	0770	1010

	СОМ	PRESSIVE	STRENGTH]	
		P (kN)	f_c (kN/cm ²)	AVG	DATE	m (g)
	NAC15	335	3.35			2338
7	NAC11	331	3.31	3.29	01-02-16	2319
	NAC19	320	3.2			2344
	NAC21	430	4.3			2356
28	NAC18	400	4.0	4.07	22-02-16	2295
	NAC8	392	3.92			2368
	NAC9	385	3.85			2309
90	NAC16	405	4.05	4.07	24-04-16	2304
	NAC17	432	4.32			2268
	NAC5	460	4.6			2356
240	NAC6	435	4.35	4.52	21-09-16	2358
	NAC7	460	4.6			2348
	NAC4	432	4.32			n/a
450	NAC10	433	4.33	4.38	19-04-17	n/a
	NAC20	448	4.48			n/a

	SPLITT	ING TENSIL	E STRENGTH			
		P (kN)	f_t^{sp} (kN/cm ²)	AVG	DATE	m (g)
	NAC4	80	0.23			6131
7	NAC2	51	0.14	0.20	01-02-16	6214
	NAC3	80	0.23			6214
	NAC1	74	0.21			6253
28	NAC5	97	0.27	0.24	22-02-16	6120
	NAC6	84	0.24			6195

	FLEXU	RAL TENSIL	E STRENGTH			
		P (kN)	f_t^{fl} (kN/cm ²)	AVG	DATE	m (g)
	NAC13	16	0.50			12280
7	NAC14	19	0.59	0.56	01-02-16	12260
	NAC15	19	0.59			12415
	NAC9	22	0.69			11895
28	NAC5	21	0.66	0.67	22-02-16	12090
	NAC11	21	0.66			12250

	CASTIN	CASTING DATE	02-02-16			DEMOULDING DATE	NING DATE	03-02-16				
Cast	Cast sign	Туре	Base (mm)	Height (mm)	Volume (m³)	Cast weight (g)	Specimen sign	Weight with specimen (g)	Weight with sample before demoulding (g)	Specimen after demoulding (g)	Y fresh (kg/m³)	^У hard,1 (kg/m ³)
)	C1	cnpe	100×100	100	0.001	3445	R1	5753	5742	2292	2308	2292
7	22	cnpe	100×100	100	0.001	3423	R2	5756	5741	2311	2333	2311
7	33	cnpe	100×100	100	0.001	3401	R3	5737	5727	2317	2336	2317
)	24	eqno	100×100	100	0.001	3405	R4	5754	5744	2329	2349	2329
)	25	eqno	100×100	100	0.001	4801	R5	7115	2602	2287	2314	2287
)	90	eqno	100×100	100	0.001	3416	R6	2280	2929	2328	2364	2328
)	22	eqno	100×100	100	0.001	3388	R7	5728	5711	2317	2340	2317
)	28	cnpe	100×100	100	0.001	3423	R8	5759	5735	2301	2336	2301
)	6C	eqno	100×100	100	0.001	3384	R9	5752	5743	2342	2368	2342
S	:10	cnpe	100×100	100	0.001	3402	R10	5773	5749	2326	2371	2326
S	:11	cnpe	100×100	100	0.001	3364	R11	2206	5690	2313	2342	2313
S	:12	eqno	100×100	100	0.001	3347	R12	5692	5685	2332	2345	2332
S	:13	eqno	100×100	100	0.001	3412	R13	5752	5735	2317	2340	2317
2	:14	eqno	100×100	100	0.001	3422	R14	5720	5713	2290	2298	2290
S	:15	eqno	100×100	100	0.001	3392	R15	2777	5768	2362	2385	2362
S	:16	eqno	100×100	100	0.001	3429	R16	22/65	5756	2317	2336	2317
2	:17	eqno	100×100	100	0.001	4709	R17	7015	2000	2289	2306	2289
C	:18	eqno	100×100	100	0.001	4821	R18	2602	2080	2255	2274	2255
S	:19	eqno	100×100	100			R19			2320		2320
S	:20	cnpe	100×100	100	0.003	18495	R20	25515	25485	2301	2340	2301
S	:21	eqno	100×100	100			R21			2325		2325
7	C1	cylinder	Ø150	300	0.0053	15330	R1	27560	27520	12155	2307	2293
7	C2	cylinder	Ø150	300	0.0053	15250	R2	27585	27535	12220	2327	2305
77	ဒ	cylinder	Ø150	300	0.0053	15320	R3	27630	27565	12180	2322	2297
Š	,C1	cylinder	Ø150	150	0.0027	6243	R1	12520	12305	6038	2368	2278
Si	,C2	cylinder	Ø150	150	0.0027	6427	R2	12555	12500	06030	2312	2275
Si	c3	cylinder	Ø150	150	0.0027	6454	R3	12510	12495	6028	2285	2274
Si	C4	cylinder	Ø150	150	0.0027	6544	R4	12605	12595	6042	2287	2279
S	.C5	cylinder	Ø150	150	0.0027	6463	R5	12335	12505	6032	2215	2276
Š	C6	cylinder	Ø150	150	0.0027	6409	R6	12555	12535	6101	2319	2302
F	51	prism	120×120	360	0.0052	18830	R1	30910	30835	11915	2330	2298
F	52	prism	120×120	360	0.0052	19320	R2	31420	31340	11945	2334	2304
4	23	prism	120×120	360	0.0052	20880	R3	33120	34560	12095	2361	2333
F	54	prism	120×120	360	0.0052	21000	R4	33390	33010	11960	2390	2307
F	55	prism	120×120	360	0.0052	21015	R5	33410	33325	12180	2391	2350
F	90	prism	120×120	360	0.0052	21220	R6	33050	32985	12020	2282	2319
F	57	prism	120×120	360	0.0052	21130	R7	33285	33230	12025	2345	2320
F	28	msind	120×120	360	0.0052	23010	R8	35220	35160	12035	2355	2322
F	Б	prism	120×120	360	0.0052	21345	R9	33485	33420	11910	2342	2297
Р	10	prism	120×120	<i>098</i>	0.0052	22655	R10	34880	33230	12015	2358	2318
Р	111	prism	120×120	360	0.0052	21065	R11	33300	33065	12105	2360	2335
Р	12	prism	120×120	360	0.0052	21055	R12	33175	33130	11990	2338	2313
Р	13	prism	120×120	360	0.0052	21045	R13	33455	33375	12165	2394	2347
Р	14	prism	120×120	360	0.0052	20680	R14	33070	33000	12210	2390	2355
۵	74.0	20,20	120×120	360	24000	20045	714	33225	02440	00707	0000	,,,,,

	COM	PRESSIVE S	STRENGTH]	
		P (kN)	f_c (kN/cm ²)	AVG	DATE	m (g)
	R16	333	3.33			2266
7	R9	313	3.13	3.22	09-02-16	2287
	R6	319	3.19			2280
	R2	395	3.95			2250
28	R12	360	3.6	3.74	01-03-16	2219
	R8	368	3.68			2246
	R1	388	3.88			2213
90	R11	388	3.88	3.88	02-05-16	2238
	R14	388	3.88			2209
	R3	405	4.05			2243
240	R7	410	4.1	3.92	29-09-16	2244
	R17	360	3.6			2257
	RAC1 C	480	4.80			n/a
450	RAC2 C	415	4.15	4.38	27-04-17	n/a
	RAC3 C	419	4.19			n/a

	SPLITT	ING TENSIL	E STRENGTH			
		P (kN)	f_t^{sp} (kN/cm ²)	AVG	DATE	m (g)
	R1	74	0.21			5944
7	R2	58	0.16	0.20	09-02-16	5928
	R6	77	0.22	•		5984
	R4	67	0.19			5896
28	R5	103	0.29	0.25	01-03-16	5885
	R6	90	0.25			5875

	FLEXU	RAL TENSIL	E STRENGTH			
		P (kN)	f_t^{fl} (kN/cm ²)	AVG	DATE	m (g)
	R14	17	0.53			11980
7	R10	17	0.53	0.54	09-02-16	11780
	R9	18	0.56			11755
	R8	20	0.63			11750
28	R15	19	0.59	0.64	01-03-16	11825
	R3	22	0.69			11790

CASTING DATE	IG DATE		10-02-16			БЕМОИГБ	DEMOULDING DATE	11-02-16		nomicono		
ın Type Base (mm)	Base (mm)			Height (mm)	Volume (m³)	Cast weight (g)	Specimen sign	Weight with specimen (g)	Wel samp demo	Specimen after demoulding (g)	Y fresh (kg/m³)	Y _{hard,1} (kg/m ³)
cube 100x1	100x1	100×100	_	100	0.001	3367	FA1	5666	5662	2288	2299	2288
100x100	100×100	38		100	0.001	3422	FA2 FA3	5/40	5/34	8527	2318	2298
cabe 100x100	100x100	8 8		100	0.001	3383	FA4	5691	0695	2532	2308	2232
cube 100x100	100×100	8		100	0.001	3411	FA5	5737	5725	2299	2326	2299
cube 100x100	100×100	90		100	0.001	3406	FA6	2202	2698	2286	2301	2286
100×100	100×100	0 8		100	0.001	3428	FA7	5735	5732	2299	2307	2299
cube 100x100	100×100	9 9	7	100	0.001	3401	FAS	5675	200C	2254	22/4	2254
cube 100x100	100×100	88	7	100	0.001	4800	FA10	7055	7045	2237	2255	2237
cube 100x1	100×100	90	10	00	0.001	3414	FA11	5694	2688	2269	2280	2269
cube 100x100	100×100	90	10	0	0.001	4822	FA12	7075	2070	2244	2253	2244
cube 100x100	100×100	90	100)	0.001	3423	FA13	5694	5688	2254	2271	2254
cube 100x100	100×100	8	100		0.001	3396	FA14	5744	5740	2336	2348	2336
cube 100x100	100×100	90	100		0.001	3423	FA15	5730	5727	2299	2307	2299
cube 100x100	100×100	00	100		0.001	3445	FA16	5738	5734	2283	2293	2283
cube 100x100	100×100	0 5	100	T	0.001	3388	FA17	5659	5651	2258	2271	2258
cube 100x1	100×100	0 5	100		0.001	3392	FA18	5680	5664	2266	2288	2266
cube 100x100	100x100 100x100	8 8	100		0.003	18495	FA20	25410	25395	2285	2305	2285
cube 100x100	100×100	00	100				FA21			2304		2304
cylinder Ø150	Ø150		00E		0.0053	15220	FA1	27320	27290	12045	2282	2272
	Ø150		300		0.0053	15295	FA2	27515	27485	12140	2305	2290
cylinder Ø150	Ø150		300	_	0.0053	15320	FA3	27510	27450	12090	2299	2281
cylinder	Ø150		150		0.0027	6502	FA1	12575	12555	6027	2291	2274
cylinder Ø150	Ø150		15(0.0027	9689	FA2	12470	12460	6045	2291	2281
cylinder Ø150	Ø150		150		0.0027	6238	FA3	12325	12320	8909	2296	2289
Cylinder Ø150	Ø130		150		0.0027	040	1744 EA5	12505	12720	9509	2222	2222
cylinder 6150	0150		150		0.0027	6532	FAG	12575	12555	6010	2280	2267
prism 120x120	120x120		36	0	0.0052	23010	FA1	35000	35000	11990	2313	2313
prism 120x120	120×120		390		0.0052	18835	FA2	30575	30575	11710	2265	2259
prism 120x120	120×120		98	0	0.0052	19315	FA3	30935	30935	11615	2242	2241
prism 120x120	120×120		390		0.0052	22655	FA4	35000	34940	12280	2381	2369
prism 120x120	120×120		36(0.0052	21065	FA5	33180	33165	12050	2337	2324
prism	120×120		098		0.0052	21315	FA6	33480	33470	12075	2347	2329
prism 120x120	120×120		390		0.0052	21005	FA7	32680	32680	11665	2252	2250
prism 120x120	120×120		36(0.0052	21055	FA8	33085	33085	11940	2321	2303
prism 120x120	120x120		36	0	0.0052	20935	FA9	32960	32960	11985	2320	2312
120x120	120×120		36	30	0.0052	20675	FA10	32670	32670	11935	2314	2302
prism 120x120	120×120			360	0.0052	20850	FA11	32770	32770	11875	2299	2291
msind		120x120		360	0.0052	21130	FA12	32950	32950	11785	2280	2273
		120x120	<u> </u>	360	0.0052	21215	FA13	33020	33020	11765	2277	2269
prism 120x120	120×120		_	360	0.0052	21045	FA14	32925	32925	11850	2292	2286
prism 120x120	120×120			360	0.0052	21010	FA15	32795	32790	11755	2273	2268

HVFAC

	COMP	RESSIVE S	TRENGTH			
		P (kN)	f_c (kN/cm ²)	AVG	DATE	m (g)
	FA6	217	2.17			2204
7	FA7	217	2.17	2.18	17-02-16	2222
	FA18	220	2.2			2192
	FA15	325	3.25			2210
28	FA9	289	2.89	3.01	09-03-16	2229
	FA	290	2.9			2149
	FA10	310	3.1			2147
90	FA5	385	3.85	3.45	10-05-16	2218
	FA2	339	3.39			2214
	FA8	325	3.25			2165
240	FA10	332	3.32	3.30	07-10-16	2146
	FA16	332	3.32			2192
	HVFAC1 C	332	3.32			n/a
450	HVFAC2 C	348	3.48	3.41	05-05-17	n/a
	HVFAC3 C	343	3.43			n/a

	SPLITTII	NG TENSILE	STRENGTH			
		P (kN)	f_t^{sp} (kN/cm ²)	AVG	DATE	m (g)
	FA4	50	0.14			5922
7	FA5	44	0.12	0.12	17-02-16	5865
	FA1	30	0.08			5883
	FA3	73	0.21			5852
28	FA6	82	0.23	0.21	09-03-16	5831
	FA2	65	0.18			5836

	FLEXUR	AL TENSILE	STRENGTH			
		P (kN)	f_t^{fl} (kN/cm ²)	AVG	DATE	m (g)
	FA1	14	0.44			11715
7	FA4	13	0.41	0.43	17-02-16	11975
	FA15	14	0.44			11460
	FA10	18	0.56			11550
28	FA5	16	0.50	0.52	09-03-16	11655
	FA6	16	0.50			11660

Experimental Measurements:Modulus of Elasticity

	Elasticity modulus [GPa]	30.767 30.767	30.767	Elasticity modulus [GPa]	30.767 30.767 30.767 30.767		Elasticity modulus [GPa]	28.809 28.809 28.809
	strain	0.2575 0.2575	average	strain	0.2575 0.2575 0.2575 average		strain	0.2750 0.2750 average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	7.922	_	Δσ [Mpa]	7.922	ס	Δσ [Mpa]	7.922
0.06 KN 10.60 KN 0.04 KN 7.07 KN	ΔР	140.00	12440 g	ΔР	140.00	12350 g	ΔР	140.00
Ging = Ping = +Ging = +Ping =	difference	123 103 103	II E	difference	103 103 103	E	difference	123 110 110
	reading 2	2938 2938 2938		reading 2	3121 3124 3124		reading 2	2108 2111 2111
0.05 kN/cm ² 8.84 kN 0.842 kN/cm ² 48.84 kN	reading 1	2815 2835		reading 1	3018 3021 3021		reading 1	1985 2001 2001
0.05 KN 8.84 KN 0.842 KN 148.84 KN	Age	_		Age	2		Age	7
8 G & G	Testing	01-02-16		Testing	01-02-16		Testing	01-02-16
cm cm² m	Casting	25-01-16		Casting	25-01-16		Casting	25-01-16
6.71	Specimen	-		Specimen	2		Specimen	က
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	NAC		Concrete	NAC		Concrete	NAC

	Elasticity modulus [GPa]	32.628 32.628	32.628	Elasticity modulus [GPa]	35.858	25.650	Elasticity modulus [GPa]	28.075 28.075	28.075
	strain	0.2775 0.2775	average	strain	0.2525	average	strain	0.3225 0.3225	average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Мра]	9.054	<u>—</u>	Δσ [Mpa]	9.054	_	Δσ [Mpa]	9.054	w
0.06 KN 10.60 KN 0.04 KN 7.07 KN	ΔР	160.00	12370 g	ΔР	160.00	12310 g	ΔР	160.00	
Gingr Pingr HPingr A	difference	<u> </u>	E	difference	101	II E	difference	129 129	
	reading 2	3161 3163			3355 3355		reading 2	3104 3106	
0.05 kN/cm² 8.84 kN 0.955 kN/cm² 68.84 kN	reading 1	3050 3052		reading 1	3254 3254		reading 1	2975 2977	
0.05 KN 8.84 KN 0.955 KN 168.84 KN	Age	28		Age	28		Age	28	
ρ Ω	Testing	22-02-16		Testing	22-02-16		Testing	22-02-16	
cm cm ² mm	Casting	25-01-16		Casting	25-01-16		Casting	25-01-16	
6.71	Specimen	-		Specimen	2		Specimen	ε	
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	NAC		Concrete	NAC		Concrete	NAC	

	Elasticity modulus [GPa]	32.628 32.924	32.776	Elasticity modulus [GPa]	32.924 32.924 32.924		Elasticity modulus [GPa]	31.493 31.493 31.493
	strain	0.2775	average	strain	0.2750 0.2750 average		strain	0.2875 0.2875 average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	9.054		Δσ [Мра]	9.054	6	Δσ [Mpa]	9.054
0.06 KN 10.60 KN 0.04 KN 7.07 KN	ΔР	160.00	12305 g	ΔР	160.00	12255 g	ΔР	160.00
Giner = + + Giner = + + + + + + + + + + + + + + + + + +	difference	123 111 110	II E	difference	122 110 110	E	difference	127 115 115
	reading 2	2585 2586		reading 2	2476 2476		reading 2	2445 2445
0.05 kN/cm² 8.84 kN 0.955 kN/cm² 68.84 kN	reading 1	2462 2475 2476		reading 1	2354 2366 2366		reading 1	2318 2330 2330
0.05 KN 8.84 KN 0.955 KN 168.84 KN	Age	06		Age	06		Age	06
0 0 E C	Testing	24-04-16		Testing	24-04-16		Testing	24-04-16
cm cm m	Casting	25-01-16		Casting	25-01-16		Casting	25-01-16
6.71	Specimen	-		Specimen	2		Specimen	က
Specimen cylinder $d = 15$ $d = 15$ $h = 30$ $A = 17$	Concrete	NAC		Concrete	NAC		Concrete	NAC

	Elasticity modulus [GPa]	31.658 31.658	31.658	Elasticity modulus [GPa]	34.824	34.824		Elasticity modulus [GPa]	33.044
	strain	0.3575 0.3575	average	strain	0.3250	average		strain	0.3425
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	11.318	_	Δσ [Mpa]	11.318		5	Δσ [Mpa]	11.318
0.06 kN 10.60 kN 0.04 kN 7.07 kN	ΔР	200.00	12285 g	ΔР	200.00		12225 g	ΔР	200.00
Ginar = Pinar = ±Ginar = #Pinar =	difference	153 146 143	II E	difference	130 0		E	difference	137 0
	reading 2	3318 3318 3318		reading 2	3270			reading 2	3156
0.05 kN/cm ² 8.84 kN 1.182 kN/cm ² 08.84 kN	reading 1	3165 3172 3175 3175		reading 1	3140			reading 1	3019
0.05 kN 8.84 kN 1.182 kN	Age	240		Age	240			Age	240
ρ Q	Testing	21-09-16		Testing	21-09-16			Testing	21-09-16
cm cm ² mm	Casting	25-01-16		Casting	25-01-16			Casting	25-01-16
6.71	Specimen	-		Specimen	2			Specimen	င
Specimen cylinder d = 15 h = 30 A = 17 Lo =	Concrete	NAC		Concrete	NAC			Concrete	NAC

				Elasticity modulus IGPal		38.078	Elasticity modulus [GPa]		36.378		Elasticity modulus [GPa]	00 29.103 50 28.693 28.898
				strain	0.2675	average	strain	0.2800	average		strain	0.3500 0.3550 average
0.06 kN/cm ² 0.60 kN	0.04 kN/cm ²	Z	ס	Δσ [Мра]	10.186	5	Δσ [Мра]	10.186	ισ	D	До [Мра]	10.186
0.06 kN 10.60 kN	0.04	7.07 KN	O.	ΔP	180.00	C,	ΔP	180.00		.	ΔР	180.00
Gingr III	±0 _{incr} =	#Fingr	E	difference	115 107 107	E	difference	112		II E	difference	151 140 142
				reading 2	2550 2550 2550		reading 2	2484 2483			reading 2	2823 2825 2827
0.05 kN/cm ² 8.84 kN	c	1.069 kN/cm² 88.84 kN		reading 1	2435 2443 2443		reading 1	2372 2371			reading 1	2672 2685 2685
0.05 kN 8.84 kN		1.069 kN 188.84 kN		Age	450		Age	450			Age	450
σ ₀		۾ ۳ ۾		Testing	19-04-17		Testing	19-04-17			Testing	19-04-17
cm	sm ^z	шш		Casting	25-01-16		Casting	25-01-16			Casting	25-01-16
cylinder 15 c 30 c	176.71 cm ²	200 mm		Specimen	-		Specimen	2			Specimen	ဧ
Specimen cylinder d = 15 h = 30	A =	_O =		Concrete	NAC		Concrete	NAC			Concrete	NAC

						Elasticity modulus (GPa)	17.412 17.412	as outlier!		Elasticity modulus [GPa]	25.150 25.150	25.150		Elasticity modulus [GPa]	27.319 27.319
						strain	0.3900	Classified as outlier!)	strain	0.2700	average		strain	0.2900
0.06 kN/cm ²	X	0.04 kN/cm ²	Z Z		б	Δσ [Mpa]	9.054	100		Δσ [Mpa]	6.791	10	D	До [Мра]	7.922
0.00	10.60 kN	0.04	7.07 kN		11890 g	ΔP	160.00		11970 g	ΔР	120.00 0.729		11930 g	ΔР	140.00 0.842
₫incr =	P _{ing} II	±o _{incr} =	±Pinar =		II E	difference	156 156		E	difference	108 108		II E	difference	116 116
						reading 2	3100 3100			_	3414 3414			reading 2	3395 3395
0.05 kN/cm ²	Z X		0.955 kN/cm ²	X N		reading 1	2944 2944			reading 1 reading 2	3306 3306			reading 1	3279 3279
0.05	8.84 kN		0.955	168.84 kN		Age	7			Age				Age	7
□ 00	P ₀		u u	۳ اا		Testing	09-02-16			Testing	09-02-16			Testing	09-02-16
cm	cm	sm²		лш		Casting	02-02-16			Casting	02-02-16			Casting	02-02-16
	30	176.71 cm ²		200 mm		Specimen	-			Specimen	7			Specimen	က
d = 15	h =	= 4		= O7		Concrete	RAC			Concrete	RAC			Concrete	RAC

		Elasticity strain modulus [GPa]	0.0000 #DIV/0! 0.0000 #DIV/0!	Unsuccessful test!		Elasticity strain modulus [GPa]	0.2575 30.767 0.2575 30.767	age 30.767		Elasticity strain modulus [GPa]	0000 # 0000 # 1ccessfu
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ²	Z 50		7.922	Unst	_	Δσ [Mpa] s	7.922	average	ס	Δσ [Mpa] s	7.922 0.0 0.0 Unsu
0.06 kN 10.60 kN 0.04 kN	7.07 KN 11825 g	ΔР	140.00		11905 g	ΔР	140.00		11855 g	ΔР	140.00
α incr Hα incr Hα incr Hα incr G	II II Se E T	difference	0 0		II E	difference	103		II E	difference	0 0
		reading 2				reading 2	2867 2867			reading 1 reading 2	
0.05 kN/cm ² 8.84 kN	0.842 kN/cm² 48.84 kN	reading 1				reading 1	2764 2764			reading 1	
0.05 kN 8.84 kN	0.842 KN 148.84 KN	Age	28			Age	28			Age	28
П П I	۳ م ا اا	Testing	01-03-16			Testing	01-03-16			Testing	01-03-16
cm cm²	ш Ш	Casting	02-02-16			Casting	02-02-16			Casting	02-02-16
6.71	200 mm	Specimen	-			Specimen	2			Specimen	က
d = 15 d = 15 h = 30 A = 17	= 	Concrete	RAC			Concrete	RAC			Concrete	RAC

	Elasticity modulus [GPa]	24.306 24.306	24.306	Elasticity modulus [GPa]	24.306 24.306 24.306		Elasticity modulus [GPa]	27.231 27.231 27.231
	strain	0.3725	average	strain	0.3725 0.3725 average		strain	0.3325 0.3325 average
0.06 kN/cm ² 10.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	9.054	_	Δσ [Mpa]	9.054	5 1	Δσ [Mpa]	9.054
0.06 KN 10.60 KN 0.04 KN 7.07 KN	ΔР	160.00	11845 g	ΔР	160.00	11975 g	ΔР	160.00
Ginar = 150 inar = 140	difference	170 149 149	II E	difference	157 149 149	E	difference	140 133 133
	reading 2	2270 2270		reading 2	2295 2298		reading 2	2170 2170
0.05 kN/cm² 8.84 kN 0.955 kN/cm² 68.84 kN	reading 1	2100 2121 2121		reading 1	2138 2149 2149		reading 1	2030 2037 2037
0.05 kN 8.84 kN 0.955 kN	Age	06		Age	06		Age	06
8 C E E	Testing	02-05-16		Testing	02-05-16		Testing	02-05-16
cm cm² mm	Casting	02-02-16		Casting	02-02-16		Casting	02-02-16
5.71	Specimen	-		Specimen	5		Specimen	င
Specimen cylinder $d = 15$ $h = 30$ $A = 17I$ $Lo = 12I$	Concrete	RAC		Concrete	RAC		Concrete	RAC

	Elasticity modulus [GPa]	25.625 25.625	25.625	Elasticity modulus [GPa]	24.996 24.996	24.996		Elasticity modulus [GPa]	28.693 28.693	28.693
	strain	0.3975 0.3975	average	strain	0.4075 0.4075	average		strain	0.3550	average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	До [Мра]	10.186	_	Δσ [Mpa]	10.186	10	ත	Δσ [Мра]	10.186	10
0.06 kN 10.60 kN 0.04 kN 7.07 kN	ΔР	180.00	11815 g	ΔР	180.00		11780 g	ΔР	180.00	
Gincr = Pincr = +Oincr = +Pincr =	difference	159 159	E	difference	163 163		E	difference	142 142	
	reading 2	3143 3143		reading 2	3022 3022			reading 2	2918 2918	
0.05 kN/cm² 8.84 kN 1.069 kN/cm² 88.84 kN	reading 1	2984 2984		reading 1	2859 2859			reading 1	2776 2776	
0.05 kN 8.84 kN 1.069 kN	Age	240		Age	240			Age	240	
0 0 E E	Testing	29-09-16		Testing	29-09-16			Testing	29-09-16	
cm cm² mm	Casting	02-02-16		Casting	02-02-16			Casting	02-02-16	
6.71	Specimen	-		Specimen	2			Specimen	က	
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	RAC		Concrete	RAC			Concrete	RAC	

	Elasticity modulus [GPa]	28.099 28.099	28.099	Elasticity modulus [GPa]	27.162 27.162	27.162		Elasticity modulus [GPa]	30.406 30.406	30.406
	strain	0.3625	average	strain	0.3750 0.3750	average		strain	0.3350 0.3350	average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	10.186	50	Δσ [Мра]	10.186		ס	До [Мра]	10.186	
0.06 kN 10.60 kN 0.04 kN 7.07 kN	ΔР	180.00		ΔР	180.00			ΔP	180.00	
6 incr = 1.0 incr = 1.	difference	145 145	E	difference	150 150		E	difference	134 134	
	reading 2	2903 2903		reading 2	2285 2285			reading 2	2987 2987	
0.05 kN/cm² 8.84 kN 1.069 kN/cm² 88.84 kN	reading 1	2758 2758		reading 1	2135 2135			reading 1	2853 2853	
0.05 kN 8.84 kN 1.069 kN	Age	450		Age	450			Age	450	
0 Q E E	Testing	27-04-17		Testing	27-04-17			Testing	27-04-17	
cm cm² mm	Casting	02-02-16		Casting	02-02-16			Casting	02-02-16	
6.71	Specimen	-		Specimen	2			Specimen	ဗ	
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	RAC		Concrete	RAC			Concrete	RAC	

	Elasticity modulus [GPa]	28.294 28.294	28.294	Elasticity modulus [GPa]	23.517 23.517	23.517	Elasticity modulus [GPa]	23.827 23.827 23.827	
	strain	0.1600	average	strain	0.1925 0.1925	average	strain	0.1900 0.1900 average	>
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	До [Мра]	4.527	_	Δσ [Mpa]	4.527	_	Δσ [Мра]	4.527	
0.06 kN 10.60 kN 0.04 kN 7.07 kN	ΔР	80.00	11825 g	ΔР	80.00	11795 g	ΔР	80.00	
Oincr = + Gincr = + Pincr = - T	difference	64	E	difference	77	II E	difference	76	
	reading 2	1945 1945		reading 2	2697 2697		reading 2	3016 3017	
0.05 kN/cm² 8.84 kN 0.503 kN/cm² 88.84 kN	reading 1	1881		reading 1	2620 2620		reading 1	2940 2941	
0.05 kN 8.84 kN 0.503 kN 88.84 kN	Age	_		Age	7		Age	7	
0 Q E E	Testing	17-02-16		Testing	17-02-16		Testing	17-02-16	
cm cm [∠] mm	Casting	10-02-16		Casting	10-02-16		Casting	10-02-16	
6.71	Specimen	-		Specimen	2		Specimen	က	
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	HVFAC		Concrete	HVFAC		Concrete	HVFAC	

	Elasticity modulus [GPa]	30.866 30.866	30.866	Elasticity modulus [GPa]	26.894 26.894 26.894		Elasticity modulus [GPa]	28.294 28.294	28.294
	strain	0.2200	average	strain	0.2525 0.2525 average		strain	0.2400	average
0.06 kN/cm ² 0.60 kN 0.04 kN/cm ² 7.07 kN	Δσ [Mpa]	6.791		Δσ [Mpa]	6.791	D	До [Мра]	6.791	to
0.06 kN, 10.60 kN 0.04 kN, 7.07 kN	ΔР	120.00	11760 g	ΔР	120.00	11710 g	ΔР	120.00	
Gincr = 15 Gincr = 14 Pincr = 15 E	difference	88 88 88	II E	difference	101	II E	difference	96 96	
	reading 2	2744 2744		reading 2	2336 2336		reading 2	2236 2237	
0.05 kN/cm² 8.84 kN 0.729 kN/cm² 28.84 kN	reading 1	2656 2656		reading 1	2235 2235		reading 1	2140 2141	
0.05 kN 8.84 kN 0.729 kN	Age	28		Age	28		Age	28	
00 0 E E	Testing	09-03-16		Testing	09-03-16		Testing	09-03-16	
cm cm² mm	Casting	10-02-16		Casting	10-02-16		Casting	10-02-16	
5.71	Specimen	-		Specimen	7		Specimen	င	
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	HVFAC		Concrete	HVFAC		Concrete	HVFAC	

0.06 kN/cm²	Z	0.04 kN/cm ²	Z		Δσ [Mpa] strain modulus	7.922 0.3000 26.408 0.3000 26.408	average 26.408	Aσ [Mpa] strain modulus [GPa]	7.922 0.2725 29.073 0.2725 29.073 average 29.073		Δσ [Mpa] strain modulus [GPa]
0.06	10.60 kN	0.04 x	7.07 kN	11635 g	ΔP	140.00	11700 g	ΔP	140.00	11650 g	ΔP
Ging. II	P _{ing} "	±o _{incr} =	±Pincr =	# E	difference	135 120 120	и Е	difference	117 109 109	E	difference
					reading 1 reading 2 difference	1925 1925		reading 2	2118		reading 2
0.05 kN/cm²	Z		0.842 kN/cm ²	Z Y	reading 1	1790 1805 1805		reading 1	2001 2009 2009		reading 1
0.05	8.84 kN		0.842	148.84 KN	Age	06		Age	06		Age
u d	P ₀ H		g m	۳ E	Testing	10-05-16		Testing	10-05-16		Testing
ш	сш	sm²		E E	Casting	10-02-16		Casting	10-02-16		Casting
	30 0	176.71 cm ²		200 mm	Specimen	-		Specimen	7		Specimen
Specimen cylinder d = 15	≡ L	= A			Concrete	HVFAC		Concrete	HVFAC		Concrete

± one 4 kN/cm² 148.84 kN m = 11620 g Age reading 1 reading 2 difference and sing 2 April (Mpal) and strain strain modulus (Mpal) and strain Elasticity (Mpal) and strain Elasticity (Mpal) and strain Elasticity (Mpal) and strain Appendix (Mpal) and strain Elasticity (Mpal) and strain Elasticity (Mpal) and strain Appendix and strain	E CE
±Plnσ = 11620 g m = 11620 g m = 11620 g m = 11620 g An = 11620 g Ap Ag [Mpa] strain reading 2 strain reading 2 strain reading 2 average reading 2 140.00	$30 ext{cm} ext{P}_0 = 176.71 ext{cm}^2$
m= 11620 g reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 40 2878 3000 122 140.00 7.922 0.3050 300 122 140.00 7.922 0.3050 300 3100 110 1468 g average 40 2990 3100 110 140.00 7.922 0.2750 2990 3100 110 140.00 7.922 0.2750 2990 3100 110 140.00 7.922 0.2750 average m = 11635 g m = 11635 g reading 1 reading 2 difference ΔP ΔP [Mpa] strain reading 3014 3106 92 140.00 7.922 0.2300	
reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 1 reading 2 difference ΔP Δσ [Mpa] strain reading 3 difference ΔP Δσ [Mpa] δρ	200 mm P _m =
:40 2878 3000 122 140.00 7.922 0.3050 2878 3000 122 140.00 7.922 0.3050 3000 122 m = 11685 g reading 1 reading 2 difference ΔP ΔΦ [Mpa] strain reading 2 reading 1 reading 2 difference ΔP ΔΦ [Mpa] strain reading 3 reading 1 reading 2 difference ΔP ΔΦ [Mpa] strain reading 3 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300	Casting Testing
m = 11685 g m = 11685 g m = 11685 g cading 2 difference and and an analysis Δρ [Mpa] strain average reading 1 reading 2 difference and and analysis Δρ [Mpa] strain average reading 2 difference and analysis Δρ [Mpa] And [Mpa] strain average E 40 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300	10-02-16 07-10-16
140 2990 3100 110 140.00 7.922 0.2750 140 2990 3100 110 140.00 7.922 0.2750 140 2990 3100 110 146.35 9.2750 0.2750 140 3014 3106 92 140.00 7.922 0.2300 140 3014 3106 92 140.00 7.922 0.2300	
:40 2990 3100 110 140.00 7.922 0.2750 2990 3100 110 m = 11635 g m = 11635 g reading 1 reading 2 difference ΔP Δσ [Mpa] strain r 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300	Casting Testing A
m 11635 g reading 1 reading 2 difference ΔP Δσ [Mpa] strain moor [G] 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 0.2300 0.2300	10-02-16 07-10-16
:40 m= 11635 g meading 1 reading 2 difference ΔP Δσ [Mpa] strain mo :40 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 0.2300 0.2300	
reading 1 reading 2 difference ΔP Δσ [Mpa] strain moor TG :40 3014 3106 92 140.00 7.922 0.2300 3014 3106 92 140.00 7.922 0.2300	
3014 3106 92 140.00 7.922 0.2300 3014 3106 92 0.2300	Casting Testing
	10-02-16 07-10-16

	Elasticity modulus [GPa]	30.434 30.434	30.434	Elasticity modulus [GPa]	30.180 30.180		Elasticity modulus [GPa]	29.931 29.931 29.931
	strain	0.2975 0.2975	average	strain	0.3000 0.3000		strain	0.3025 0.3025 average
0.06 kN/cm² 0.60 kN 0.04 kN/cm² 7.07 kN	До [Мра]	9.054	5	Δσ [Mpa]	9.054	5	До [Мра]	9.054
0.06 kN 10.60 kN 0.04 kN 7.07 kN	ΔР	160.00		ΔР	160.00		ΔР	160.00
Gingr = 1.0 Gingr	difference	119	II E	difference	120 120	II E	difference	129 121 121
	reading 2	2313 2313		reading 2	2734 2734		reading 2	2654 2656 2656
0.05 kN/cm² 8.84 kN 0.955 kN/cm² 68.84 kN	reading 1	2194 2194		reading 1	2614 2614		reading 1	2525 2535 2535 2535
0.05 kN 8.84 kN 0.955 kN	Age	450		Age	450		Age	450
0 0 0 E E	Testing	05-05-17		Testing	05-05-17		Testing	05-05-17
cm cm [×] mm	Casting	10-02-16		Casting	10-02-16		Casting	10-02-16
6.71	Specimen	-		Specimen	2		Specimen	က
Specimen cylinder d = 15 h = 30 A = 171 Lo =	Concrete	HVFAC		Concrete	HVFAC		Concrete	HVFAC

Experimental Measurements:Shrinkage

	0.000 12255 0 -0.191 -0.160 0.000 0.000 12270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.154 0.100 0.060 0.080 -0.229 -0.277 0.110 0.120	0.189 -0.161 0.020 -0.010 0.005 -0.234 0.080 0.050	-0.050 -0.035 -0.060 -0.050	-0.166 -0.040 -0.060 -0.050 -0.240 -0.288 0.000 0.010	-0.166 -0.040 -0.060 -0.050 -0.050 -0.240 -0.288 0.000 0.010	-0.167 -0.070 -0.070 -0.070 -0.041 -0.168 -0.050 -0.080 -0.065 -0.0341	-0.168 -0.050 -0.050 -0.055 -0.243 -0.251 -0.020 -0	-0.130 -0.120 -0.125 -0.295 -0.070 -0.080	-0.100 -0.120 -0.110 -0.247 -0.292 -0.070 -0.030 -0.050	-0.120 12075 1.59 -0.245 -0.292 -0.050 -0.030 -0.215 -0.215 -0.304 -0.160 -0.150	-0.308 -0.230	-0.285 -0.308 -0.230 -0.190	-0.285 -0.285 -0.308 -0.230	-0.263 -0.308 -0.330 -0.190		-0.264 -0.309 -0.240 -0.200	-0.309 -0.220 -0.200	-0.310 -0.250 -0.210	0.270 -0.316 -0.300 -0.270 -0.285	-0.318 -0.390 -0.290	-0.325 -0.410 -0.360 -0.327 -0.420 -0.380	0.284 0.328 -0.410 -0.390	-0.327 -0.450 -0.380 -0.415	-0.327 -0.430	-0.329 -0.470 -0.400 -0.435	-0.330 -0.450 -0.410 -0.333 -0.480 -0.440	-0.329 -0.470 -0.400	_	-0.292 -0.333 -0.520 -0.440	-0.330 -0.520 -0.410	-0.335 -0.540 -0.460	-0.333 -0.530 -0.440	2.89 -0.295 -0.337 -0.550	-0.295 -0.337 -0.550 -0.480 -0.515	-0.337 -0.570	-0.340 -0.580 -0.510
	0.000 12255 0 -0.191 -0.160 0.000 0.000 1270 0 -0.240 -0.289 0.000 0.000 0.000 1270 0 -0.240 -0.289 0.000 0.	-0.181 -0.154 0.100 0.060 0.080 -0.229 -0.277 0.110 0.120	0.189 -0.161 0.020 -0.010 0.005 -0.234 0.080 0.050	-0.165 -0.020 -0.050 -0.035 -0.235 -0.287 0.050 0.020 -0.166 -0.040 -0.060 -0.050 0.050 0.010	-0.166 -0.040 -0.060 -0.050 -0.240 -0.288 0.000 0.010	-0.166 -0.040 -0.060 -0.050 -0.240 -0.288 0.000 0.010 -0.166 -0.040 -0.060 0.000 0.010	-0.167 -0.070 -0.070 -0.070 -0.070 -0.010 -0	-0.168 -0.050 -0.050 -0.055 -0.243 -0.251 -0.020 -0	-0.130 -0.120 -0.125 -0.295 -0.070 -0.080	-0.100 -0.120 -0.110 -0.247 -0.292 -0.070 -0.030	-0.130 -0.120 12075 1.59 -0.245 -0.292 -0.050 -0.030 -0.030 -0.250 -0.150 -0.150	-0.285 12045 1.83 -0.263 -0.308 -0.230 -0.190	-0.285 -0.308 -0.230 -0.190	-0.285 -0.308 -0.308 -0.300 -0.190	-0.263 -0.308 -0.330 -0.190	-0.262 -0.308 -0.220 -0.190	-0.264 -0.309 -0.240 -0.200	-0.309 -0.220 -0.200	-0.310 -0.250 -0.210	0.270 -0.316 -0.300 -0.270	-0.276 -0.318 -0.360 -0.290 -0.279 -0.318 -0.390 -0.290	-0.325 -0.410 -0.360 -0.327 -0.420 -0.380	0.284 0.328 -0.410 -0.390	-0.327 -0.450 -0.380	-0.327 -0.430 -0.380	-0.329 -0.470 -0.400	-0.330 -0.450 -0.410 -0.333 -0.480 -0.440	-0.329 -0.470 -0.400	-0.329 -0.500 -0.400 -0.332 -0.500 -0.430	-0.292 -0.333 -0.520 -0.440	-0.330 -0.520 -0.410	-0.335 -0.540 -0.460	-0.333 -0.530 -0.440	2.89 -0.295 -0.337 -0.550 -0.480	-0.295 -0.337 -0.550 -0.480	-0.337 -0.570 -0.480	-0.340 -0.580 -0.510
	0.000 12255 0 -0.191 -0.160 0.000 0.000 1270 0 -0.240 -0.289 0.000 0.000 0.000 1270 0 -0.240 -0.289 0.000 0.	-0.181 -0.154 0.100 0.060 0.080 -0.229 -0.277 0.110 0.120	-0.161 0.020 -0.010 0.005 -0.234 -0.284 0.000	-0.165 -0.020 -0.050 -0.035 -0.235 -0.287 0.050 -0.066 -0.060 -0.050 -0.050	-0.166 -0.040 -0.060 -0.050 -0.28 <u>8 0.000</u>	-0.166 -0.040 -0.060 -0.050 -0.050 -0.24 <mark>0 -0.288 0.000</mark>	-0.167 -0.070 -0.070 -0.070 -0.070 -0.010 -0	-0.168 -0.050 -0.050 -0.055 -0.243 -0.251 -0.020 -0	-0.130 -0.120 -0.125 -0.295 -0.070 -0.080	-0.100 -0.120 -0.110 -0.247 -0.292 -0.070 -0.030	-0.130 -0.120 12075 1.59 -0.245 -0.292 -0.050 -0.030 -0.030 -0.250 -0.150 -0.150	-0.285 12045 1.83 -0.263 -0.308 -0.230 -0.190	-0.285 -0.308 -0.230 -0.190	-0.285 -0.308 -0.308 -0.300 -0.190	-0.263 -0.308 -0.330 -0.190	-0.262 -0.308 -0.220 -0.190	-0.264 -0.309 -0.240 -0.200	-0.309 -0.220 -0.200	-0.310 -0.250 -0.210	0.270 -0.316 -0.300 -0.270	-0.276 -0.318 -0.360 -0.290 -0.279 -0.318 -0.390 -0.290	-0.325 -0.410 -0.360 -0.327 -0.420 -0.380	0.284 0.328 -0.410 -0.390	-0.327 -0.450 -0.380	-0.327 -0.430 -0.380	-0.329 -0.470 -0.400	-0.330 -0.450 -0.410 -0.333 -0.480 -0.440	-0.329 -0.470 -0.400	-0.329 -0.500 -0.400 -0.332 -0.500 -0.430	-0.292 -0.333 -0.520 -0.440	-0.330 -0.520 -0.410	-0.335 -0.540	-0.333 -0.530 -0.440	2.89 -0.295 -0.337 -0.550 -0.480	-0.295 -0.337 -0.550 -0.480	-0.337 -0.570 -0.480	-0.340 -0.580 -0.510
	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.000 12270 0 -0.240 -0.289 0.000 0.000 12270 0 -0.240 -0.289 0.000	-0.181 -0.154 0.100 0.060 0.080 -0.229 -0.277 0.110	0.189 -0.161 0.020 -0.010 0.005 -0.234 -0.284	-0.165 -0.020 -0.050 -0.035 -0.235 -0.287 0.050 -0.066 -0.060 -0.050 -0.050	-0.166 -0.040 -0.060 -0.050 -0.28 <u>8 0.000</u>	-0.166 -0.040 -0.060 -0.050 -0.050 -0.288 0.000 -0.060 -0.050 -0.050	-0.167 -0.070 -0.070 -0.070 -0.041 -0.290 -0.010	-0.168 -0.050 -0.080 -0.065 -0.050 -0.030 -0	-0.130 -0.120 -0.125 -0.247 -0.295 -0.070	-0.100 -0.120 -0.110 -0.247 -0.292 -0.070	-0.130 -0.120 12075 1.59 -0.245 -0.292 -0.050 -0.220 -0.215 -0.304 -0.160	-0.285 12045 1.83 -0.263 -0.308 -0.230	-0.285 -0.308 -0.30 -0.285 -0.308 -0.30	-0.285 -0.285 -0.308 -0.230	-0.263 -0.308 -0.230	-0.262 -0.308 -0.220	-0.264 -0.309 -0.240	-0.309 -0.220	-0.310 -0.250	-0.270 -0.316 -0.300	-0.279 -0.318 -0.390 -0.279 -0.318 -0.390	-0.325 -0.410 -0.327 -0.420	-0.281 -0.328 -0.410	-0.327 -0.450	-0.327 -0.430	-0.329 -0.470	-0.333 -0.480	-0.329 -0.470	-0.329 -0.500	-0.292 -0.333 -0.520	-0.330 -0.520	-0.335 -0.540	-0.333 -0.530	2.89 -0.295 -0.337 -0.550	0.295 -0.337 -0.550	-0.337 -0.570	-0.340 -0.580
	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.000 12270 0 <u>-0.240 -0.289</u>	0.181 -0.154 0.100 0.060 0.080 -0.279 0.279 0.279	-0.189 -0.161 0.020 -0.010 0.005 -0.234	-0.165 -0.020 -0.050 -0.035 -0.235 -0.235 -0.235 -0.240	-0.166 -0.040 -0.060 -0.050 -0.240	-0.166 -0.040 -0.060 -0.050 -0.288	-0.167 -0.070 -0.070 -0.070 -0.290 -0.241 -0.290 -0.048 -0.050 -0.080 -0.065 -0.081 -0.280	0.170 0.000 0.1005 0.005 0.005 0.001	-0.130 -0.120 -0.125 -0.295	-0.100 -0.120 -0.110 -0.247 -0.292	-0.130 -0.120 12075 1.59 -0.245 -0.292 -0.220 -0.215 -0.304	-0.285 12045 1.83 <u>-0.263</u> <u>-0.308</u>	-0.285 -0.385 -0.385	-0.285 -0.308 -0.285 -0.308	-0.263 -0.308	-0.262 -0.308	-0.264 -0.309	-0.309	-0.310	-0.270 -0.316	-0.276 -0.318	-0.325	-0.281 -0.328	-0.327	-0.327	-0.329	-0.333	-0.329	-0.329	-0.292 -0.333	-0.330	-0.335	-0.333	2.89 -0.295 -0.337	-0.295 -0.337	-0.337	-0.340
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.000 12270 0 -0.240 0.035 -0.157 0.050 0.000 0.000 12270 0 -0.240	0.181 -0.154 0.100 0.060 0.080 -0.229	-0.189 -0.161 0.020 -0.010 0.005 -0.234	-0.165 -0.020 -0.050 -0.035 -0.235 -0.235 -0.235 -0.240	-0.166 -0.040 -0.060 -0.050 -0.240	-0.166 -0.040 -0.060 -0.050 -0.240	-0.167 -0.070 -0.070 -0.070 -0.041 -0.168 -0.050 -0.080 -0.065 -0.0341	-0.150 -0.050 -0.065 -0.0543 -0.050 -0.065 -0.050 -	-0.130 -0.120 -0.125 -0.247	-0.100 -0.120 -0.110	-0.130 -0.120 12075 1.59 -0.245 -0.220 -0.215 -0.256	-0.285 12045 1.83 -0.263	-0.285 -0.285	-0.285	-0.263	-0.262	-0.264	+	+	-0.270	-0.279	-	-0.281	+-	_	+	-	+	_	-0.292	_	+	\rightarrow	2.89 -0.295	-0.295	+	
1 0000	0.000 12255 0 -0.191 -0.160 0.000 0.000 12270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.181 -0.154 0.100 0.060 0.080	-0.189 -0.161 0.020 -0.010 0.005	-0.165 -0.020 -0.050 -0.035 -0.166 -0.040 -0.060 -0.050	-0.166 -0.040 -0.060 -0.050	-0.166 -0.040 -0.060 -0.050	-0.167 -0.070 -0.070 -0.070 -0.168 -0.050 -0.080 -0.065	-0.168 -0.050 -0.080 -0.065	-0.130 -0.120 -0.125	-0.100 -0.120 -0.110	-0.130 -0.120 12075 1.59	-0.285 12045 1.83	-0.285	-0.285						++	_		-	+		ш	_	₩	+	Н	t	\dagger		2.89			
	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.181 -0.154 0.100 0.060	0.189 -0.161 0.020 -0.010	-0.165 -0.020 -0.050	-0.166 -0.040 -0.060	-0.166 -0.040 -0.060 -0.166 -0.040 -0.060	-0.167 -0.070 -0.070	-0.168 -0.050 -0.080	-0.130 -0.120	-0.100 -0.120 -0.110	-0.130 -0.120	-0.285	+	+	3.275	7.5					_		0	2.30			2.53		1	2.57			+				
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.000 0.000 0.000	0.181 -0.154 0.100 0.060	0.189 -0.161 0.020 -0.010	-0.165 -0.020 -0.050	-0.166 -0.040 -0.060	-0.166 -0.040 -0.060 -0.166 -0.040 -0.060	-0.167 -0.070 -0.070	-0.168 -0.050 -0.080	-0.130 -0.120	-0.100 -0.120	-0.130	H	+	+	3.275	65	+			0	01021		11000	000			11960			11955				11915			
1	0.000 12255 0 -0.191 -0.160 0.000 0.000 0.035 -0.186 -0.157 0.050	-0.181 -0.154 0.100	-0.189 -0.161 0.020	-0.165 -0.020	-0.166 -0.040	-0.166 -0.040	-0.167 -0.070	-0.168 -0.050	-0.130	-0.100	+	-0.300	000	+	۲	-0.265	-0.265	-0.295	-0.310	-0.370	-0.455	-0.530	-0.530	-0.500	-0.480	-0.510	-0.535	-0.520	-0.530	-0.565	-0.560	-0.560	-0.555	-0.595	-0.595	-0.605	-0.620
1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.000 12255 0 -0.191 -0.160 0.035 -0.135 -0.157	-0.181 -0.154	-0.189 -0.161	-0.165	-0.166	-0.166	-0.167	-0.168	+		210		o o	-0.300	-0.310	-0.300	-0.270	-0.320	-0.320	-0.380	-0.400	-0.520	-0.550	-0.510	-0.490	-0.520	-0.530	-0.540	-0.540	-0.590	-0.590	-0.590	-0.560	-0.500	-0.620	-0.610	-0.630
1	0.000 12255 0 -0.191	-0.181	-0.189	_	ш	+	+	++	0.170	2	٩	-0.270	-0.270	-0.270	-0.240	-0.250	-0.260	-0.270	-0.300	-0.360	-0.540	-0.540	-0.510	-0.490	-0.470	-0.500	-0.510	-0.500	-0.520	-0.540	-0.530	-0.530	-0.550	-0.590	0.570	0.600	-0.610
1	0.000 12255 0			-0.195	-0.195	-0.195	-0.198	000	1	-0.172	-0.173	-0.190	-0.190	-0.190	-0.191	-0.188	-0.187	-0.192	-0.192	-0.198	-0.200	-0.212	-0.215	-0.211	-0.209	-0.212	-0.218	-0.214	-0.214	-0.219	-0.219	-0.219	-0.216	-0.220	-0.222	-0.221	-0.223
1 6	0.000	0.105	22					-0.196	-0.204	-0.201	-0.202	-0.218	0.218	-0.218	-0.215	-0.216	-0.217	-0.218	-0.221	-0.227	-0.242	-0.245	-0.242	-0.240	-0.238	-0.241	-0.240	-0.241	-0.243	-0.245	-0.244	-0.244	-0.246	-0.250	-0.248	-0.251	-0.252
1 6	0.000	0.105	22								1.59	1.80								9	7.17		70.0	70.7			2.49			2.49				2.77			
-		0.105	S R							00007	12060	12035								10077	C661.		11065	000			11950			11950				11915			
			0.045	0.000	-0.005	-0.005	-0.050	-0.055	-0.023	-0.075	-0.080	-0.235	-0.235	-0.235	-0.240	-0.230	-0.230	-0.230	-0.265	-0.280	-0.325	-0.405	-0.375	-0.400	-0.395	-0.425	-0.465	-0.425	-0.430	-0.470	-0.485	-0.505	-0.500	-0.490	-0.510	-0.530	-0.535
1 8	0.000	0.110	0.020	-0.040	-0.040	-0.040	-0.080	-0.090	-0.070	-0.130	-0.110	-0.280	-0.280	-0.280	-0.290	-0.270	-0.280	-0.300	-0.310	-0.360	-0.420	-0.480	-0.450	-0.480	-0.480	-0.500	-0.510	-0.510	-0.510	-0.560	-0.590	-0.610	-0.580	-0.590	-0.630	-0.620	-0.650
1 0	0.000	0.100	0.070	0.040	0.030	0.030	-0.020	-0.020	-0.060	-0.020	-0.050	-0.190	0.190	-0.190	-0.190	-0.170	-0.180	-0.180	-0.220	-0.200	-0.230	-0.330	-0.300	-0.320	-0.310	-0.350	-0.340	-0.340	-0.350	-0.380	-0.380	-0.400	-0.420	-0.390	-0.390	-0.430	-0 420
1 0	-0.217	-0.206	-0.215	-0.221	-0.221	-0.221	-0.225	-0.226	-0.231	-0.230	-0.228	-0.245	-0.245	-0.245	-0.246	-0.246	-0.245	-0.245	-0.248	-0.253	-0.259	-0.265	-0.262	-0.267	-0.265	-0.267	-0.273	-0.268	-0.268	-0.273	-0.276	-0.278	-0.275	-0.276	-0.280	-0.279	-0.282
1	-0.150	-0.140	-0.143	-0.146	-0.147	-0.147	-0.152	-0.152	-0.156	-0.152	-0.155	-0.169	0.169	-0.169	-0.169	-0.167	-0.168	-0.168	-0.172	-0.170	-0.173	-0.183	-0.180	-0.183	-0.181	-0.185	-0.187	-0.184	-0.185	-0.188	-0.188	-0.190	-0.192	-0.189	-0.189	-0.193	-0.192
0000	0.000	-0.029	-0.065	-0.100	-0.117	-0.117	-0.143	-0.148	-0.197	-0.178	-0.180	-0.343	-0.343	-0.343	-0.342	-0.333	-0.338	-0.330	-0.368	-0.412	-0.468	-0.540	-0.535	-0.543	-0.527	-0.557	-0.555	-0.560	-0.570	-0.605	-0.603	-0.622	-0.613	-0.633	-0.640	-0.652	-0.667
1	0.000	0.100	0.035	0.000	-0.017	-0.017	-0.043	-0.048	260.0-	920.0-	-0.080	-0.243	-0.243	-0.243	-0.242	-0.233	-0.238	-0.230	-0.268	-0.312	-0.388	-0.440	-0.435	-0.443	-0.427	-0.457	-0.487	-0.460	-0.470	-0.505	-0.503	-0.522	-0.513	-0.533	-0.540	-0.552	295.0-
1 0	0.100	2.000	4.000	5.000	6.003	6.250	7.000	9.000	11.000	12.000	13.000	27.000	27.003	27.250	28.000	30.000	31.000	33.000	34.000	48.000	55.000	83.000	117.000	147.000	156.000	186.000	207.000	237.000	246.000	276.000	306,000	327.000	336.000	371.000	392.000	427.000	456.000
0.000	1.000	3.000	5.000	00002	7.003	7.250	8.000	10.000	12.000	13.000	14.000	28.00	28.00	28.25	29.00	31.00	32.00	34.00	35.00	49.00	63.00	97.00	118.00	148.00	157.00	187.00	208.00	238.00	247.00	277.00	307 00	328.00	337.00	372.00		+-	_
0	0 0	00	00	00	2	0 0	00	000	0	0 0	0 0	0	ر د د	0	0 0	0	0 0	0	0 0	000	00	0 0							00	0 /			00	00	0 0	00	0
0	0 0	00	00	0 0	0	- 9	0 0	000	00	0	0 0	0	0 +	- 9	0	00	0	0	0	000	00	0 0	0 0	00	0	0 0	0 0	0	0 0	0	5 C	0	0 0	0	0 0	0	0
0	1 0	6	2 1	9 /	7	7	ω σ	1 10	12	13	14	28	28	28	50	31	32	8 8	35	49	93	97	118	148	157	187	208	238	247	277	298	328	337	372	393	428	457
	2:00	00:9	1:00	1:30	11:30	1:30	4:00	2:00	5:00	00:00	3:00	1:00	3.00	00:6	16:00	0:00	13:00	00:0	12:00	00:6	5:00	4:00	4:00	1:00	12:00	5:00	3:00	7:00	5:00	4:00	1.00	3:00	12:00	5:00	0:00	2:00	00:9
1:00	7 7				- 1		_		-			H		-					+	\blacksquare					+	+	+	H	+			+					
-		-16	-16	-16	-16	-16	2.1	2 2 2 1	102	17-02	15-02	22-02	22-02	22-02	23-02	25-02	6-02	3-02	-02	388	315	4 3	18	318	9 1		ers I wh	121	4 1	النا	. 1	-101	2 2	31-01	21-02	28-03	26-04
25-01-16		28-01-16	30-01-16	_	5min after load 7 01-02-16	01-02-16	02-02-	04-0	90	0		Н	5min after load 28		H	H	2	28.	29	4 5	28-(18-(22-(21-0	30-0	30-0	20-08	19-09-	19-10-	28-10-	78-11-	18-12	27-	ľ	Ħ	т	
0		1 0 0	7 3 5 7	12:00 1 0 0 12:00 1 12:00 2 0 0 12:00 4 0 0 11:00 5 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 11:00 5 0 0 0 0 0 11:00 5 0 0 0 0 0 11:00 5 0 0 0 0 0 0 11:00 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12:00 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1 1	12:00 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 1 1 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0	12.00	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 1 1 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0	12:00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12:00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12:00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	12:00	12:00 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0	12:00 1 0 0 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0

	Am(%)	(%) III	0														2.18		2.52											2.94			7	ر. ا			3.27				3.27				4	3.69			3.73
	٠	(6)	11915														11655		11615						Ī					11565			F 4 7	1.040			11525				11525		Ť	T	!	11475	Ħ		11470
	(-/0/-)	Cavr (700)	0.000	-0.030	0.060	0.030	-0.110	-0.160	-0.160	-0.160	-0.140	-0.155	-0.160	-0.195 0.40F	0.193	-0.240	-	-0.305	-0.390	0.390	-0.390	-0.385	-0.390	-0.410	-0.400	-0.375	-0.385	-0.450	-0.505	-0.520	0.525	-0.590	-0.605	-	-0.635	0.645	0.680	+	-0.665	-0.710	-0.690	-0.700	0.760	-0.780	-0.790	+	-0.780	-0.795	-0.790
	(-/0/-)	+	+	-0.030	-	0.000	-0.070	-0.120	\dashv	4	-0.100	-0.120	-0.120	-0.150	-0.160	+	+	Н	-0.340	+	┿	-0.330	Н	-0.350	-	+	+	+		-0.440	+	+	-0.550	+	+	-	-0.610	+	0.600	+	Н	_	+	0.650	++	0.680	+	+	-0.700
Prism P1	Ъ	╅	+	-	+	-0.120	+	-0.200	\dashv	+	-	\dashv	_	+	-0.230	╀	-0.280	Н	+	+	-0.440	+	H	-	+	-0.440	+	+	-0.570	+	0.000	+	+	+	+	-0.720	+	+	-0.730	+	Н	-+	+	+	+	-0.880	+	-	-0.880
		Ť	Н	-	+	-0.109	+	-0.175	\dashv	-	_	+	_	-0.178	+	╁	H	-0.188	+	-0.197	H	╁	Н	_	+	-0.194	+	+	_	-0.207	+	+	Н	-0.219	H	-	-0.224	+	-0.223	+	-0.225	+	+	-0.230	H	-0.231	+	+	-0.233
	2	5 1	+	-	+	186	+	-0.192	\dashv	4	-	-	_	+	0.193	+	-0.200	Ш	-	+	+	-0.216	Н		-	-0.216	_	\perp	_	_	_	4	ш	4	-	_	_	-		_	ш	_	_		ш	_	\perp	-0.262	-
l	A m/0/.1	(%) III	0		Ì	Ī							Ì				2.38		2.76						Ì					3.22				+			3.55	H		+	3.60		Ì	Ī	H	4.01	Ħ		4.06
	Н	(6) II	11960			Ì									Ì		11675		11630						1					11575			7 7 7 7	6661.1			11535				11530		Ī	Ì	000	11480	Ħ		11475
	(-/6/-)	Cavr (/00)	0.000	-0.085	-0.080	-0.120	-0.140	-0.180	-0.180	-0.180	-0.160	-0.175	-0.190	-0.225	-0.233	-0 250	-0.280	-0.355	-0.405	-0.405	-0.405	-0.415	-0.420	-0.425	-0.420	-0.425	-0.450	-0.480	-0.540	-0.550	-0.300	-0.625	-0.655	-0.665	-0.670	-0.680	-0.715	-0.705	-0.710	-0.740	-0.715	-0.735	-0.795	-0.780	-0.820	-0.820	-0.820	-0.835	-0.840
	(-/0/-)	£2 (/00)	0.000	-0.080	-0.060	000	-0.090	-0.130	-0.130	-0.130	-0.110	-0.140	-0.130	-0.150	-0.130	-0.170	-0.210	-0.280	-0.310	-0.310	-0.310	-0.310	-0.310	-0.320	-0.320	-0.320	-0.350	-0.380	-0.430	-0.440	0.400	-0.520	-0.540	-0.530	-0.550	-0.560	-0.600	-0.590	0.600	-0.630	-0.600	-0.600	-0.66U 0.640	-0.670	-0.660	-0.670	-0.680	0.690	-0.630
Prism P4	(/0/ 3	£4 (700)	0.000	-0.090	-0.100	0.130	-0.190	-0.230	-0.230	-0.230	-0.210	-0.210	-0.250	-0.300	-0.320	-0.330	-0.350	-0.430	-0.500	-0.500	-0.500	-0.520	-0.530	-0.530	-0.520	-0.530	-0.550	-0.580	-0.650	099.0-	0.000	-0.730	-0.770	-0.790	-0.790	-0.800	-0.830	-0.820	-0.820	-0.850	-0.830	-0.870	0.930	-0.970	-0.980	0.970	-0.960	0.980	-0.930
		70 -	-0.241	-0.249	-0.247	-0.251	-0.250	-0.254	-0.254	-0.254	-0.252	-0.255	-0.254	-0.256	-0.230	-0.258	-0.262	-0.269	-0.272	-0.272	-0.272	-0.272	-0.272	-0.273	-0.273	-0.273	-0.276	-0.279	-0.284	-0.285	-0.207	-0.293	-0.295	-0.294	-0.296	-0.297	-0.301	-0.300	-0.301	-0.304	-0.301	-0.301	-0.307	-0.308	-0.307	-0.308	+	-	-0.308
	2	5 1	-0.159	-	-	-0.178	-	Н	-	-0.182	-	-	-+	-	+	+	₩		-0.209	+	╀	-0.211	Н	-	+	-	+	+		_	-	+	\vdash	+	\vdash	_	+	+	-0.241	_	Н	_	_	_	+	_	-	-0.257	
	Am/0/.1	(%)IIIT	0														2.13	H	2.47											2.85			H	78.7			3.14	Н			3.18		Ī			3.56			3.60
	(w) ca	(B) III	11945														11690		11650											11605			44.700	_			11570	_		_	11565				000	11520			11515
	(-/0/ 3	Cavr (/00)	0.000	-0.060	-0.070	-0.15	-0.110	-0.125	-0.125	-0.125	-0.120	-0.135	-0.135	-0.175	-0.190	-0.170	-0.215	-0.300	-0.355	-0.355	-0.355	-0.355	-0.350	-0.370	-0.365	-0.355	-0.375	-0.400	-0.450	-0.450	-0.473	-0.535	-0.570	-0.585	-0.585	-0.585	-0.625	-0.640	-0.625	-0.655	-0.625	-0.630	-0.095	-0.695	-0.715	-0.715	-0.715	-0.725	-0.715
	(-/6/-3	£2 (/00)	0.000	-0.050	-0.050	0000	020:0-	-0.090	060'0-	060.0-	-0.090	060.0-	-0.070	-0.130	-0.140	-0.130	-0.180	-0.260	-0.280	-0.280	-0.280	-0.290	-0.290	-0.300	-0.290	0.270	-0.290	-0.310	-0.360	-0.350	065.0-	-0.450	-0.470	-0.480	-0.480	-0.470	-0.510	-0.530	-0.520	-0.560	-0.520	-0.510	-0.580	-0.560	-0.570	-0.580	-0.590	009:0-	-0.580
Prism P2	(7/0)	(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.000	-0.070	-0.090	-0.130	-0.150	-0.160	-0.160	-0.160	-0.150	-0.180	-0.200	0.220	-0.240	-0.210	-0.250	-0.340	-0.430	-0.430	-0.430	-0.420	-0.410	-0.440	-0.440	-0.440	-0.440	-0.490	-0.540	-0.550	0.000	-0.620	0.670	069.0-	-0.690	002.0-	-0.740	-0.750	0.730	-0.750	-0.730	-0.750	0.810	-0.830	-0.860	-0.850	-0.840	0.850	-0.850
	5	D2 _	-0.173	-0.178	-0.178	-0.101	-0.18	-0.182	-0.182	-0.182	-0.182	-0.182	-0.18	-0.186	-0.107	-0.186	-0.191	-0.199	-0.201	-0.201	-0.201	-0.202	-0.202	-0.203	-0.202	2.0-	-0.202	-0.204	-0.209	-0.208	-0.212	-0.218	-0.22	-0.221	-0.221	-0.22	-0.224	-0.226	-0.225	-0.229	-0.225	-0.224	0.231	-0.229	-0.230	-0.231	-0.232	-0.233	-0.231
	ž		-0.176	-0.183	-0.185	-0.191	-0.191	-0.192	-0.192	-0.192	-0.191	-0.194	-0.196	-0.198	-0.200	-0 197	-0.201	-0.21	-0.219	-0.219	-0.219	-0.218	-0.217	-0.22	-0.22	-0.22	-0.22	-0.225	-0.23	-0.231	-0.232	-0.238	-0.243	-0.245	-0.245	-0.246	-0.25	-0.251	-0.249	-0.251	-0.249	-0.251	-0.257	-0.259	-0.262	-0.261	-0.26	-0.261	-0.261
	ε _{cs} (‰)	-	0.000	-0.058	-0.070	-0.110	-0.120	-0.155	-0.155	-0.155	-0.140	-0.155	-0.162	-0.198	-0.207	-0.220	-0.245	-0.32	-0.383	-0.383	-0.383	-0.385	-0.387	-0.402	-0.395	-0.385	-0.393	-0.443	-0.498	-0.507	-0.520	-0.583	-0.610	-0.597	-0.630	-0.637	-0.000	-0.670	-0.667	-0.33	-0.677	-0.688	-0.750	-0.765	-0.775	-0.772	-0.772	-0.785	-0.782
	+-+	s	0.100	1.000	2.000	3.000	5.000	6.000	6.003	6.042	6.250	7.000	8.000	9.000	11,000	12 000	13.000	20.000	27.000	27.003	27.250	28.000	29.000	30.000	31.000	32.000	34.000	41.000	48.000	55.000	92.000	96.000	117.000	147,000	156.000	177.000	207.000	216.000	237.000	267.000	276.000	297.000	306.000	336.000	357.000	371.000	406.000	427.000	477.000
	20 2/10	dys, ed	1.000	2.000	3.000	7.000	000.9	7.000	7.003	7.042	7.250	8.000	9.000	0.000	2000	3 000	14.000	21.00	28.00	28.00	28.25	29.00	30.00	31.00	32.00	33.00	35.00	42.00	49.00	56.00	00.00	+	H	+	H	+	208.00	H	238.00	+	Н	+	+	337.00	358.00	372.00	\top	428.00	
	Minutes	+	0	0	0	0 0		0		0	0	1	0	Ť	00		0	0	+	Ω C			0	0	0		0		0	0		0	H	0 0	0 1	0 0		H	0 0		0		0 0	t		0 0	Ħ	0 0	
Age	M. STICH	+	0	0	0 0		0	0	0	1	9	0	0 0	0 0		0	0	0	0	9 F	. 9	0	0	0	0 0	0 0	00	0	0	0 0		00	0 0	00	0	00	00	0	00	0	0	0 0	0 0	00	0	0 0	00	0 0	0 0
	F	Days) 	2	3	4 ռ	9	7	7	7	7	8	6	0 1	10	13	14	21	28	28	28	29	30	31	32	33	35	42	49	56	00	97	118	48	157	178	208	217	238	89	277	298	307	337	158	372	407	428	78
L	t	11:00	15:00			19:00		14:00	14:00	14:00	15	4		12:00	+				11:00	+	-	13:00			+	17:00			11:00		12:00	+	14:00				13:00		12:00 2			11:00			H	16:00	H		17:00 4
RAC	F	ľ	H	_		+			-	\dashv		+	+	+	+		_		+	+	-			-	+	1				+	+			+			-	\blacksquare	H	+		-					+		+
	ot co	02-02-16	03-02-16	04-02-16	05-02-16	07-02-16	08-02-16	09-02-16	09-05-16	09-02-16	09-02-16	10-02-16	11-02-16	12-02-16	14-02-16	15-02-16	16-02-16	23-02-16	01-03-16	01-03-16	01-03-16	02-03-16	03-03-16	04-03-16	05-03-16	05-03-16	08-03-16	15-03-16	22-03-16	29-03-16	26.04-16	09-04-16	30-05-16	29-06-16	08-07-16	29-07-16	28-08-16	06-09-16	27-09-16	27-10-16	05-11-16	26-11-16	05-12-16	04-01-17	25-01-17	08-02-17	15-03-17	05-04-17	25-05-17

		m (g)	-	11665														11240	11195												11150				11145			11130	8				11125				11075				11075
		Eavr (%o)	1 8	0.000	-0.015	-0.030	-0.090	-0.110	-0.130	-0.130	-0.130	0.130	-0.125	-0.150	-0.170	-0.185	-0.195	-0.220	-0.223	-0.345	-0.345	-0.345	-0.330	-0.345	-0.345	-0.350	-0.340	-0.345	-0.350	-0.415	-0.425	-0.440	-0.440	-0.480	-0.480	-0.493	-0.525	-0.530	-0.540	-0.515	-0.530	-0.530	-0.535	-0.555	-0.600	-0.585	-0.580	-0.640	-0.630	-0.630	-0.640
	-	ε ₂ (‰)	1 8	0.000	-0.040	-0.040	-0.110	-0.120	-0.160	-0.160	0.100	0.160	0.130	0.180	-0.200	-0.230	-0.220	0.270	0.230	-0.370	-0.370	-0.370	-0.360	-0.350	-0.360	0.360	0.330	-0.340	-0.360	-0.420	-0.430	0.460	-0.470	-0.490	0.490	-0.520	-0.540	0.530	-0.540	-0.530	-0.540	-0.540	0.540	-0.550	-0.600	-0.580	0.560	0.640	-0.630	-0.640	-0.630
1	╮┡	£1 (‰)	1 6	0.000	+	Н	-0.070		88	-0.100	+	-0.100	+	-0.120	-	H	+	+	+	+	+	Н	\dashv	\dashv	-0.330	+	+	-0.350	+-	4	+	-0.420	+	+	+	-0.490	+	-0.530	┿	+	H	-0.520	+	╫	+	Н	+	-0.640	H	+	-0.640
	ľ	D2	\dashv	0.167	+	-0.171	Н	_	-0.183	Ŧ	+		0 182	+	t.	-0.190	-	+	-0.192	+	₩	-0.204	H	-0.202	+	-0.203	+	+	-0.203	-	+	-0.213	+	+	+	-0.219	+	-0.220	+		Н	Ħ	-0.221	_	+-	H	+	-0.231	H	-	-0.231
	-	10	4	+	+		-0.603	4	+	909.0-	+	909.0-	+	+	-0.610	Ш	-0.613 -0	_	+	╄	-0.628			+	-0.629	+	+	+	-	-1	+	-0.638	+	H	-	-	+	_	+	\vdash	Ш	_	0.649	+	╁	Н	-	-0.660	++	-	-0.660
ŀ		Δm(%)	Ħ	٥	۲۹	9	٩	٠	٩١	ې د	، ٻ	ې د	۽ ر	ېږ	· Υ	٥-	_	7- 69.7	2 00 0	H	ρ) -	٩	ų ·	٩١	ې د	7 9	۲۲	Ŷ	-	4.25	ی ې	ې ې	H	4.29	ې	Q.	7 0 7	÷	P	٩	\dashv	4.42	, 0	Ŷ	o ·	4.80	+	Ŷ	Q C	4.80
		m (g) Δ		11875														11555	11520											-	11370				11365			11350	+			_	11350	T			11305	+-			11305
		Eavr (%o)	1 0	0.000	-0.003	0.010	-0.080	-0.095	-0.120	-0.120	-0.120	-0.120	0.130	-0.130	-0.165	-0.195	-0.235	-0.235	-0.330	-0.345	-0.345	-0.345	-0.330	-0.340	-0.330	-0.335	0.340	-0.335	-0.350	-0.390	-0.415	-0.430	-0.430	-0.420	-0.420	-0.433	-0.505	-0.475	-0.500	-0.475	-0.470	-0.485	-0.495	-0.530	-0.560	-0.565	-0.555	-0.605	-0.590	-0.580	-0.575
		ε ₂ (‰)	1 6	0.000	0.000	0.020	-0.070	-0.070	0.100	-0.100	9.100	001.0	0.030	0 100	-0.150	-0.170	-0.180	0.180	03.00	-0.300	-0.300	-0.300	-0.280	-0.300	-0.300	0.300	0.320	0.300	-0.320	-0.340	0.380	0.390	-0.330	-0.370	-0.370	-0.420	-0.460	0.430	-0.440	-0.420	-0.410	-0.440	0.430	-0.470	-0.510	-0.500	-0.490	0.560	-0.540	-0.530	-0.520
	Prism P11	£1 (‰)	1 8	0.000	-0.020	0.000	-0.090	-0.120	-0.140	-0.140	-0.140	-0.140	0.150	-0.190	-0.180	-0.220	-0.290	-0.290	200	-0.390	-0.390	-0.390	-0.380	-0.380	-0.360	-0.370	0.370	-0.370	-0.380	-0.440	-0.450	-0.470	-0.470	-0.470	-0.470	-0.520	-0.550	-0.520	-0.560	-0.530	-0.530	-0.530	-0.560	-0.590	-0.610	-0.630	-0.640	-0.650	-0.640	-0.630	-0.620
ľ		D2	1 0	-0.232	-0.232	-0.230	-0.239	-0.239	-0.242	-0.242	-0.242	-0.242	-0.241	-0.242	-0.247	-0.249	-0.250	-0.250	-0.230	-0.262	-0.262	-0.262	-0.260	-0.262	-0.262	-0.262	-0.20-	-0.262	-0.264	-0.266	-0.270	-0.271	-0.269	-0.269	+	+	+	-0.275	-0.276	-0.274	-0.273	-0.276	-0.275	-0.279	-0.283	-0.282	-0.281	-0.288	-0.286	-	-0.285
	-	1	1 6	+	-0.163	Н	-0.170	_	+	-0.175	+	-0.175	+	+	╁	Н	-0.190	+	+	-0.200	+	-0.200	-	-	-0.197	+	+	+	-	-	4	+	-0.206	\vdash	4	+	-0.216	_	+	\vdash	Ш	_	+	+	-	-0.224	-	_	-0.225	_	-0.224
		Δm(%)	H	0													+	4.43	4 76	۰										-	2.01			H	2.01			r 13	+			+	5.13	Ī			5.50	+			5.50
		m (g)	-000,	12085													_	11550	11510	+											11480			-	11480			11465	1				11465				11420	-			11420
		£avr (%o)	1 8	0.000	-0.050	-0.015	-0.100	-0.095	-0.115	-0.115	-0.13	-0.115	0.140	-0.180	-0.210	-0.195	-0.245	-0.250	-0.200	-0.300	-0.300	-0.300	-0.285	-0.315	-0.305	-0.320	-0.325	-0.315	-0.310	-0.360	-0.390	-0.410	-0.420	-0.415	-0.415	-0.460	-0.490	-0.470	-0.485	-0.465	-0.475	-0.465	-0.475	-0.505	-0.545	-0.540	-0.520	-0.580	-0.570	-0.570	-0.575
		£2 (%0)	1	0.000	-0.040	0.000	-0.110	-0.080	-0.110	-0.110	-0.110	-0.110	-0.110	-0.150	-0.210	-0.170	-0.230	-0.240	-0.240	-0.280	-0.280	-0.280	-0.270	-0.290	-0.290	-0.310	0.250	-0.320	-0.310	-0.340	-0.370	-0.380	-0.410	-0.390	-0.390	-0.430	-0.460	-0.440	-0.450	-0.440	-0.440	-0.440	-0.460	-0.320	-0.510	-0.500	-0.480	-0.560	-0.550	-0.550	-0.550
	Prism P9	٤٦ (%)	1 8	0.000	-0.050	-0.030	060.0-	-0.110	-0.120	-0.120	-0.120	0.120	0.170	-0.210	-0.210	-0.220	-0.260	-0.260	0.200	-0.320	-0.320	-0.320	-0.300	-0.340	-0.320	-0.330	0.330	-0.320	-0.310	-0.380	-0.410	0.440	-0.430	-0.440	0.440	-0.490	-0.520	0.500	-0.520	-0.490	-0.510	-0.490	0.490	-0.540	-0.580	-0.580	-0.560 -0.610	0.600	-0.590	-0.590	0.09.0
		D2	1	-0.169	-0.174	-0.169	-0.180	-0.177	-0.180	-0.180	-0.180	-0.180	-0.100	-0.184	-0.190	-0.186	-0.192	-0.193	-0.193	-0.197	-0.197	-0.197	-0.196	-0.198	-0.198	-0.200	-0.200	-0.200	-0.200	-0.203	-0.206	-0.207	-0.210	-0.208	-0.208	-0.212	-0.215	-0.213	-0.214	-0.213	-0.213	-0.213	-0.215	-0.216	-0.220	-0.219	-0.217	-0.225	-0.224	-0.224	-0.224
		ы	1 :	-0.141	-0.146	-0.144	-0.150	-0.152	-0.153	-0.153	-0.153	-0.153	-0.130	-0.162	-0.162	-0.163	-0.167	-0.167	-0.109	-0.173	-0.173	-0.173	-0.171	-0.175	-0.173	-0.175	-0.174	-0.173	-0.172	-0.179	-0.182	-0.185	-0.182	-0.185	-0.185	-0.190	-0.193	-0.191	-0.193	-0.190	-0.192	-0.190	-0.190	-0.195	-0.199	-0.199	-0.197	-0.201	-0.200	-0.200	-0.200
	Ecs (%)	(au) sh	1 0	0.000	-0.028	-0.012	-0.090	-0.100	-0.122	-0.122	-0.122	-0.122	-0.123	-0.158	-0.182	-0.192	-0.225	-0.235	-0.272	-0.330	-0.330	-0.330	-0.315	-0.333	-0.327	-0.335	-0.336	-0.332	-0.337	-0.388	-0.410	-0.427	-0.430	-0.438	-0.438	-0.478	-0.507	-0.492	-0.508	-0.485	-0.492	-0.493	-0.502	-0.530	-0.568	-0.563	-0.552	-0.608	-0.597	-0.593	-0.595
		t-t _s	1	0.100	2.000	3.000	4.000	2.000	000.9	6.003	0.042	6.250	000.	0000	000.01	11.000	12.000	3.000	27 000	27.003	Н	27.250	-	29.000	30.000	37.000	33 000	34.000	41.000	18.000	55.000	000.29	000.00	H	_	_	_	186.000	16.000	237.000	246.000	267.000	276.000	306.000	327.000	36.000	357.000	+	H		456.000
	ŀ	Days, eq		+	+		5.000	-	+	+	+	0000 8	+	10.000	╁		13.000	+	+	28.00	H	28.25	-	+	+	32.00	t	+	42.00	=	Ŧ	63.00	t		+	157.00 1	Ħ	7 00 800	+	Н	Н	_	+	+	+	H	+	393.00	Ħ	-	457.00 478.00 4
	ŀ	Minutes Day		0 0		0 4	0 5					0 0	Ť			0 12	Ħ	Ť	0 0			0 2				0 0				0 4		T	0 0	H	0 12		Н	0 0			0 24		0 27				0 35			Ħ	0 47
	ĕΉ	=									1			+			+	1	+		-			_	1	+		+		_	1	1		H	+		H				-			+							
	ŀ	s Hours	0 (0 0			0	0			- (Φ C	1	+	0	0	+		+			9	0	_	1	0 0		0		-	0			3 0	0 0		H	. ~	0 0		0 2	3 0	٥ ۵	0 0	3		0 0				0 0
	1	Days	0		3 6			9	7	7 1	1 /		0 0					1	+	28				30				35			56	+	+	H	+		H	18/	+		247	268		+					H		45/
		Time	11:00	16:00	12:00	20:00	20:00	15:00	10:55	11:00	12:00	17:00	11.00	12:00	13:00	11:00	16:00	14:00	10.25	10:35	11:30	16:30	15:00	15:00	20:00	0.00	18:00	17:00	12:00	15:00	12:00	14:00	14:00	12:00	13:00	15:00	16:00	13:00	13:00	12:00	16:00	11:00	12:00	13:00	14:00	13:00	13:00	11:00	11:00	10:00	17:00
	1	Date	10-02-16	11-02-16	13-02-16	14-02-16	15-02-16	16-02-16	17-02-16	17-02-16	17-02-16	17-02-16	19-02-16	20-02-16	21-02-16	22-02-16	23-02-16	24-02-16	02-03-16	09-03-16	09-03-16	09-03-16	10-03-16	11-03-16	12-03-16	13-03-16	15-03-16	16-03-16	23-03-16	30-03-16	06-04-16	13-04-16	17-05-16	07-06-16	16-06-16	16-07-16	06-08-16	15-08-16	14-09-16	05-10-16	14-10-16	04-11-16	13-11-16	13-12-16	03-01-17	12-01-17	02-02-17	09-03-17	23-03-17	13-04-17	02-06-17
		HVFAC	Casting	After demoulding	2 E	4	5	9	Before loading 7	5min after load 7	≡ ₹	uo «	οσ	10	7	12	13	44	28	78	28	28	29	30	31	33	8 8	35	42	49	56	63	46	118	127	157	178	18/	217	238	247	268	277	307	328	337	358 372	393	407	428	478

Experimental Measurements: Creep

RAC7										ш р	14.5	MPa			
					Age										
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	ε _{tot} (‰)	ε _{cσ} (‰)	€ _{CS} (‰)	£ _{Ci} (‰)	€ _{CC} (‰)	Фехр	E _{cc,s} (%o)	J (10 ⁻⁹ 1/Pa)
	02-02-16	11:00	0	0	0	0.000	ı	000'0	0.000	000'0	1	1	-	1	1
Before loading	09-02-16	10:45	7	0	0	7.000	0.000	-0.155	0.000	-0.155	0.000				0.000
5min after loading	09-02-16	11:15		0	2	7.003	0.003	0:6:0-	-0.775	-0.155	-0.775	000'0	000'0	000'0	0.053
	09-02-16	12:15		1	0	7.042	0.042	-1.121	996:0-	-0.155	-0.775	-0.191	0.246	-0.013	0.067
	09-02-16	17:15	2	9	0	7.250	0.250	-1.241	-1.101	-0.140	-0.775	-0.326	0.420	-0.022	0.076
	10-02-16	13:30	∞	0	0	8.000	1.000	-1.409	-1.254	-0.155	-0.775	-0.479	0.618	-0.033	0.086
	11-02-16	16:00	6	0	0	000.6	2.000	-1.516	-1.354	-0.162	-0.775	-0.579	0.747	-0.040	0.093
	12-02-16	12:00	10	0	0	10.000	3.000	-1.627	-1.428	-0.198	-0.775	-0.653	0.843	-0.045	660.0
	13-02-16	12:00	11	0	0	11.000	4.000	-1.653	-1.446	-0.207	-0.775	-0.671	998.0	-0.046	0.100
	14-02-16	20:00	12	0	0	12.000	2.000	-1.713	-1.541	-0.172	-0.775	-0.766	0.988	-0.053	0.106
	15-02-16	20:00	13	0	0	13.000	000'9	-1.791	-1.571	-0.220	-0.775	962.0-	1.027	-0.055	0.108
	16-02-16	15:00	14	0	0	14.000	7.000	-1.795	-1.550	-0.245	-0.775	-0.775	1.000	-0.053	0.107
	23-02-16	16:00	21	0	0	21.00	14.00	-2.093	-1.773	-0.320	-0.775	866'0-	1.287	690'0-	0.122
	01-03-16	11:00	28	0	0	28.00	21.00	-2.172	-1.788	-0.383	-0.775	-1.013	1.308	-0.070	0.123
	08-03-16	11:00	35	0	0	35.00	28.00	-2.330	-1.920	-0.410	-0.775	-1.145	1.477	-0.079	0.132
	05-04-16	14:00	63	0	0	63.00	26.00	-2.621	-2.101	-0.520	-0.775	-1.326	1.711	-0.091	0.145
	09-05-16	14:00	26	0	0	97.00	90.00	-2.789	-2.206	-0.583	-0.775	-1.431	1.846	660.0-	0.152
	08-06-16	14:00	127	0	0	127.00	120.00	-2.862	-2.265	265.0-	-0.775	-1.490	1.923	-0.103	0.156
	08-07-16	12:00	157	0	0	157.00	150.00	-2.956	-2.326	0.630	-0.775	-1.551	2.001	-0.107	0.160
	07-08-16	16:00	187	0	0	187.00	180.00	-3.026	-2.366	099'0-	-0.775	-1.591	2.053	-0.110	0.163
	06-09-16	13:00	217	0	0	217.00	210.00	-3.106	-2.436	029.0-	-0.775	-1.661	2.143	-0.115	0.168
	06-10-16	12:00	247	0	0	247.00	240.00	-3.108	-2.458	09'0-	-0.775	-1.683	2.172	-0.116	0.170
	05-11-16	11:00	277	0	0	277.00	270.00	-3.165	-2.488	229:0-	-0.775	-1.713	2.211	-0.118	0.172
	05-12-16	11:00	307	0	0	307.00	300.00	-3.238	-2.488	052'0-	-0.775	-1.713	2.210	-0.118	0.172
	04-01-17	14:00	337	0	0	337.00	330.00	-3.294	-2.529	592'0-	-0.775	-1.754	2.263	-0.121	0.174
	08-02-17	16:00	372	0	0	372.00	365.00	-3.349	-2.578	-0.772	-0.775	-1.803	2.326	-0.124	0.178
	15-03-17	12:00	407	0	0	407.00	400.00	-3.371	-2.599	-0.772	-0.775	-1.824	2.354	-0.126	0.179
	04-05-17	16:00	457	0	0	457.00	450.00	-3.413	-2.631	-0.782	-0.775	-1.856	2.395	-0.128	0.181

						Prism P	12						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	-	_	-	-	-	_	-	_	_	-	_	_	_
-0.400	-0.208	-0.182	0.154	0.000	-	0.000	-	0.000	_	0.000	-	0.000	_
-0.443	-0.300	-0.333	0.094	-0.430	0.000	-0.920	0.000	-1.510	0.000	-0.600	0.000	-0.760	0.000
-0.449	-0.328	-0.378	0.076	-0.490	-0.060	-1.200	-0.280	-1.960	-0.450	-0.780	-0.180	-0.990	-0.230
-0.445	-0.336	-0.402	0.066	-0.450	-0.035	-1.280	-0.375	-2.200	-0.705	-0.880	-0.295	-1.080	-0.335
-0.448	-0.353	-0.430	0.051	-0.480	-0.050	-1.450	-0.530	-2.480	-0.970	-1.030	-0.430	-1.240	-0.480
-0.447	-0.366	-0.459	0.042	-0.470	-0.033	-1.580	-0.653	-2.770	-1.253	-1.120	-0.513	-1.350	-0.583
-0.450	-0.377	-0.469	0.033	-0.500	-0.027	-1.690	-0.727	-2.870	-1.317	-1.210	-0.567	-1.450	-0.647
	-0.383	-0.474	0.030			-1.750	-0.778	-2.920	-1.358	-1.240	-0.588	-1.495	-0.683
	-0.389	-0.486	0.025			-1.810	-0.873	-3.040	-1.513	-1.290	-0.673	-1.550	-0.773
	-0.398	-0.497	0.015			-1.900	-0.915	-3.150	-1.575	-1.390	-0.725	-1.645	-0.820
	-0.399	-0.498	0.016			-1.910	-0.900	-3.160	-1.560	-1.380	-0.690	-1.645	-0.795
	-0.431	-0.548	-0.014			-2.230	-1.145	-3.660	-1.985	-1.680	-0.915	-1.955	-1.030
	-0.440	-0.564	-0.022			-2.320	-1.172	-3.820	-2.082	-1.760	-0.932	-2.040	-1.052
	-0.458	-0.589	-0.037			-2.500	-1.325	-4.070	-2.305	-1.910	-1.055	-2.205	-1.190
	-0.491	-0.636	-0.067			-2.830	-1.545	-4.540	-2.665	-2.210	-1.245	-2.520	-1.395
	-0.511	-0.670	-0.081			-3.030	-1.682	-4.880	-2.942	-2.350	-1.322	-2.690	-1.502
	-0.519	-0.685	-0.088			-3.110	-1.748	-5.030	-3.078	-2.420	-1.378	-2.765	-1.563
	-0.531	-0.700	-0.096			-3.230	-1.835	-5.180	-3.195	-2.500	-1.425	-2.865	-1.630
	-0.538	-0.711	-0.101			-3.300	-1.875	-5.290	-3.275	-2.550	-1.445	-2.925	-1.660
	-0.546	-0.722	-0.112			-3.380	-1.945	-5.400	-3.375	-2.660	-1.545	-3.020	-1.745
	-0.547	-0.727	-0.110			-3.390	-1.975	-5.450	-3.445	-2.640	-1.545	-3.015	-1.760
	-0.553	-0.732	-0.119			-3.450	-2.008	-5.500	-3.468	-2.730	-1.608	-3.090	-1.808
	-0.561	-0.739	-0.126			-3.530	-2.015	-5.570	-3.465	-2.800	-1.605	-3.165	-1.810
	-0.567	-0.749	-0.130			-3.590	-2.060	-5.670	-3.550	-2.840	-1.630	-3.215	-1.845
	-0.573	-0.758	-0.134			-3.650	-2.113	-5.760	-3.633	-2.880	-1.663	-3.265	-1.888
	-0.574	-0.760	-0.138			-3.660	-2.123	-5.780	-3.653	-2.920	-1.703	-3.290	-1.913
	-0.580	-0.771	-0.142			-3.720	-2.173	-5.890	-3.753	-2.960	-1.733	-3.340	-1.953

						Prism P	13						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	_	_	_	_	_	_	_	_	-	_	-	_	
0.055	-0.153	-0.182	-0.203	0.000	1	0.000	_	0.000	_	0.000	_	0.000	_
0.026	-0.274	-0.285	-0.223	-0.290	0.000	-1.210	0.000	-1.030	0.000	-0.200	0.000	-0.683	0.000
0.020	-0.301	-0.301	-0.234	-0.350	-0.060	-1.480	-0.270	-1.190	-0.160	-0.310	-0.110	-0.833	-0.150
0.012	-0.316	-0.325	-0.236	-0.430	-0.155	-1.630	-0.435	-1.430	-0.415	-0.330	-0.145	-0.955	-0.288
0.009	-0.333	-0.343	-0.242	-0.460	-0.170	-1.800	-0.590	-1.610	-0.580	-0.390	-0.190	-1.065	-0.383
0.002	-0.349	-0.359	-0.248	-0.530	-0.233	-1.960	-0.743	-1.770	-0.733	-0.450	-0.243	-1.178	-0.488
-0.013	-0.363	-0.367	-0.256	-0.680	-0.347	-2.100	-0.847	-1.850	-0.777	-0.530	-0.287	-1.290	-0.564
-0.012	-0.366	-0.373	-0.257	-0.670	-0.328	-2.130	-0.868	-1.910	-0.828	-0.540	-0.288	-1.313	-0.578
-0.014	-0.372	-0.375	-0.260	-0.690	-0.383	-2.190	-0.963	-1.930	-0.883	-0.570	-0.353	-1.345	-0.646
-0.017	-0.382	-0.386	-0.267	-0.720	-0.365	-2.290	-1.015	-2.040	-0.945	-0.640	-0.375	-1.423	-0.675
-0.022	-0.383	-0.386	-0.265	-0.770	-0.390	-2.300	-1.000	-2.040	-0.920	-0.620	-0.330	-1.433	-0.660
-0.034	-0.417	-0.424	-0.288	-0.890	-0.435	-2.640	-1.265	-2.420	-1.225	-0.850	-0.485	-1.700	-0.853
-0.043	-0.427	-0.434	-0.290	-0.980	-0.462	-2.740	-1.302	-2.520	-1.262	-0.870	-0.442	-1.778	-0.867
-0.055	-0.443	-0.453	-0.302	-1.100	-0.555	-2.900	-1.435	-2.710	-1.425	-0.990	-0.535	-1.925	-0.988
-0.070	-0.477	-0.489	-0.323	-1.250	-0.595	-3.240	-1.665	-3.070	-1.675	-1.200	-0.635	-2.190	-1.143
-0.077	-0.503	-0.511	-0.331	-1.320	-0.602	-3.500	-1.862	-3.290	-1.832	-1.280	-0.652	-2.348	-1.237
-0.079	-0.515	-0.521	-0.332	-1.340	-0.608	-3.620	-1.968	-3.390	-1.918	-1.290	-0.648	-2.410	-1.286
-0.085	-0.526	-0.533	-0.340	-1.400	-0.635	-3.730	-2.045	-3.510	-2.005	-1.370	-0.695	-2.503	-1.345
-0.090	-0.534	-0.543	-0.343	-1.450	-0.655	-3.810	-2.095	-3.610	-2.075	-1.400	-0.695	-2.568	-1.380
-0.098	-0.540	-0.549	-0.350	-1.530	-0.725	-3.870	-2.145	-3.670	-2.125	-1.470	-0.755	-2.635	-1.438
-0.097	-0.547	-0.552	-0.348	-1.520	-0.735	-3.940	-2.235	-3.700	-2.175	-1.450	-0.755	-2.653	-1.475
-0.096	-0.551	-0.557	-0.355	-1.510	-0.698	-3.980	-2.248	-3.750	-2.198	-1.520	-0.798	-2.690	-1.486
-0.103	-0.558	-0.571	-0.361	-1.580	-0.695	-4.050	-2.245	-3.890	-2.265	-1.580	-0.785	-2.775	-1.498
-0.109	-0.562	-0.580	-0.364	-1.640	-0.740	-4.090	-2.270	-3.980	-2.340	-1.610	-0.800	-2.830	-1.538
-0.114	-0.569	-0.585	-0.370	-1.690	-0.783	-4.160	-2.333	-4.030	-2.383	-1.670	-0.853	-2.888	-1.588
-0.111	-0.571	-0.590	-0.371	-1.660	-0.753	-4.180	-2.353	-4.080	-2.433	-1.680	-0.863	-2.900	-1.601
-0.111	-0.581	-0.594	-0.372	-1.660	-0.743	-4.280	-2.443	-4.120	-2.463	-1.690	-0.863	-2.938	-1.628

						Prism P	11						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cr} (‰)
_	-	-	-	-	-	-	-	-	-	-	-	-	-
0.068	-0.314	-0.228	-0.160	0.000	ı	0.000	-	0.000	-	0.000	_	0.000	_
-0.018	-0.480	-0.319	-0.170	-0.860	0.000	-1.660	0.000	-0.910	0.000	-0.100	0.000	-0.883	0.000
-0.041	-0.515	-0.323	-0.185	-1.090	-0.230	-2.010	-0.350	-0.950	-0.040	-0.250	-0.150	-1.075	-0.193
-0.059	-0.545	-0.337	-0.182	-1.270	-0.425	-2.310	-0.665	-1.090	-0.195	-0.220	-0.135	-1.223	-0.355
-0.080	-0.572	-0.348	-0.217	-1.480	-0.620	-2.580	-0.920	-1.200	-0.290	-0.570	-0.470	-1.458	-0.575
-0.088	-0.594	-0.354	-0.220	-1.560	-0.693	-2.800	-1.133	-1.260	-0.343	-0.600	-0.493	-1.555	-0.666
-0.102	-0.607	-0.369	-0.226	-1.700	-0.797	-2.930	-1.227	-1.410	-0.457	-0.660	-0.517	-1.675	-0.749
-0.104	-0.608	-0.370	-0.226	-1.720	-0.808	-2.940	-1.228	-1.420	-0.458	-0.660	-0.508	-1.685	-0.751
-0.117	-0.623	-0.376	-0.229	-1.850	-0.973	-3.090	-1.413	-1.480	-0.553	-0.690	-0.573	-1.778	-0.878
-0.125	-0.632	-0.380	-0.233	-1.930	-1.005	-3.180	-1.455	-1.520	-0.545	-0.730	-0.565	-1.840	-0.893
-0.126	-0.633	-0.380	-0.232	-1.940	-0.990	-3.190	-1.440	-1.520	-0.520	-0.720	-0.530	-1.843	-0.870
-0.154	-0.676	-0.413	-0.254	-2.220	-1.195	-3.620	-1.795	-1.850	-0.775	-0.940	-0.675	-2.158	-1.110
-0.166	-0.688	-0.419	-0.254	-2.340	-1.252	-3.740	-1.852	-1.910	-0.772	-0.940	-0.612	-2.233	-1.122
-0.183	-0.714	-0.432	-0.263	-2.510	-1.395	-4.000	-2.085	-2.040	-0.875	-1.030	-0.675	-2.395	-1.258
-0.220	-0.751	-0.458	-0.280	-2.880	-1.655	-4.370	-2.345	-2.300	-1.025	-1.200	-0.735	-2.688	-1.440
-0.238	-0.783	-0.473	-0.286	-3.060	-1.772	-4.690	-2.602	-2.450	-1.112	-1.260	-0.732	-2.865	-1.554
-0.251	-0.794	-0.479	-0.288	-3.190	-1.888	-4.800	-2.698	-2.510	-1.158	-1.280	-0.738	-2.945	-1.621
-0.256	-0.810	-0.489	-0.293	-3.240	-1.905	-4.960	-2.825	-2.610	-1.225	-1.330	-0.755	-3.035	-1.678
-0.268	-0.823	-0.495	-0.296	-3.360	-1.995	-5.090	-2.925	-2.670	-1.255	-1.360	-0.755	-3.120	-1.733
-0.273	-0.835	-0.500	-0.305	-3.410	-2.035	-5.210	-3.035	-2.720	-1.295	-1.450	-0.835	-3.198	-1.800
-0.271	-0.835	-0.504	-0.301	-3.390	-2.035	-5.210	-3.055	-2.760	-1.355	-1.410	-0.815	-3.193	-1.815
-0.278	-0.839	-0.511	-0.306	-3.460	-2.078	-5.250	-3.068	-2.830	-1.398	-1.460	-0.838	-3.250	-1.846
-0.278	-0.851	-0.519	-0.309	-3.460	-2.005	-5.370	-3.115	-2.910	-1.405	-1.490	-0.795	-3.308	-1.830
-0.285	-0.857	-0.526	-0.315	-3.530	-2.060	-5.430	-3.160	-2.980	-1.460	-1.550	-0.840	-3.373	-1.880
-0.291	-0.865	-0.532	-0.318	-3.590	-2.113	-5.510	-3.233	-3.040	-1.513	-1.580	-0.863	-3.430	-1.931
-0.295	-0.868	-0.536	-0.318	-3.630	-2.153	-5.540	-3.263	-3.080	-1.553	-1.580	-0.863	-3.458	-1.958
-0.297	-0.877	-0.536	-0.322	-3.650	-2.163	-5.630	-3.343	-3.080	-1.543	-1.620	-0.893	-3.495	-1.986

										g =	12.78	MPa			
					Age										
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	£tot (%0)	ε _{cσ} (‰)	£ _{CS} (‰)	ε _{ci} (‰)	ε _{cc} (%ο)	Фехр	ε _{cc,s} (%ο)	ε _{cc,s} (‰) J (10 ⁻⁹ 1/Pa)
)	02-02-16	11:00	0	0	0	0.000	_	0.000	1	0.000	_	1	-	1	
Before loading (01-03-16	10:55	28	0	0	28.000	0.000	-0.383	0.000	-0.383	0.000				0.000
5min after loading (01-03-16	11:05	28	0	2	28.003	0.003	-0.978	-0.594	-0.383	-0.594	0.000	000'0	0.000	0.046
)	01-03-16	12:00	28	1	0	28.042	0.042	-1.058	-0.675	-0.383	-0.594	-0.081	0.136	900'0-	0.053
)	01-03-16	17:00	28	9	0	28.250	0.250	-1.174	-0.791	-0.383	-0.594	-0.197	0.331	-0.015	0.062
)	02-03-16	13:00	29	0	0	29.000	1.000	-1.250	-0.865	-0.385	-0.594	-0.271	0.456	-0.021	0.068
)	03-03-16	14:00	30	0	0	30.000	2.000	-1.359	-0.973	-0.387	-0.594	-0.378	269.0	-0.030	0.076
)	04-03-16	13:00	31	0	0	31.000	3.000	-1.365	-0.963	-0.402	-0.594	-0.369	0.621	-0.029	0.075
)	05-03-16	14:00	32	0	0	32.000	4.000	-1.418	-1.023	-0.395	-0.594	-0.429	0.722	-0.034	080.0
)	06-03-16	17:00	33	0	0	33.000	5.000	-1.462	-1.077	-0.385	-0.594	-0.483	0.812	-0.038	0.084
)	07-03-16	16:00	34	0	0	34.000	000'9	-1.477	-1.083	-0.393	-0.594	-0.489	0.823	-0.038	0.085
)	08-03-16	11:00	35	0	0	35.000	7.000	-1.525	-1.115	-0.410	-0.594	-0.521	228'0	-0.041	0.087
,	15-03-16	18:00	42	0	0	42.00	14.00	-1.675	-1.232	-0.443	-0.594	-0.638	1.073	-0.050	0.096
,	22-03-16	11:00	49	0	0	49.00	21.00	-1.805	-1.307	-0.498	-0.594	-0.713	1.199	-0.056	0.102
7	29-03-16	12:00	99	0	0	26.00	28.00	-1.870	-1.363	-0.507	-0.594	-0.769	1.295	090'0-	0.107
7	26-04-16	12:00	84	0	0	84.00	26.00	-2.098	-1.512	-0.587	-0.594	-0.918	1.544	-0.072	0.118
.,	30-05-16	14:00	118	0	0	118.00	90.00	-2.200	-1.590	-0.610	-0.594	-0.996	1.676	-0.078	0.124
7	29-06-16	11:00	148	0	0	148.00	120.00	-2.342	-1.715	-0.627	-0.594	-1.121	1.886	-0.088	0.134
7	29-07-16	15:00	178	0	0	178.00	150.00	-2.425	-1.788	-0.637	-0.594	-1.194	2.010	-0.093	0.140
,	28-08-16	13:00	208	0	0	208.00	180.00	-2.502	-1.828	-0.673	-0.594	-1.234	2.077	-0.097	0.143
,	27-09-16	12:00	238	0	0	238.00	210.00	-2.546	-1.879	-0.667	-0.594	-1.285	2.163	-0.101	0.147
,	27-10-16	14:00	268	0	0	268.00	240.00	-2.588	-1.887	-0.702	-0.594	-1.293	2.175	-0.101	0.148
7	26-11-16	11:00	298	0	0	298.00	270.00	-2.628	-1.940	-0.688	-0.594	-1.346	2.265	-0.105	0.152
7	26-12-16	13:00	328	0	0	328.00	300.00	-2.691	-1.959	-0.732	-0.594	-1.365	2.297	-0.107	0.153
, 7	25-01-17	15:00	358	0	0	358.00	330.00	-2.798	-2.023	-0.775	-0.594	-1.429	2.405	-0.112	0.158
)	01-03-17	10:00	393	0	0	393.00	365.00	-2.855	-2.088	-0.767	-0.594	-1.494	2.515	-0.117	0.163
)	05-04-17	11:00	428	0	0	428.00	400.00	-2.846	-2.061	-0.785	-0.594	-1.467	2.468	-0.115	0.161
. 4	25-05-17	17:00	478	0	0	478.00	450.00	-2.849	-2.068	-0.782	-0.594	-1.473	2.480	-0.115	0.162

						Prism P7	7						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	_	-	_	_	-	-	_	-	_	-	_	_	_
-0.22	-0.23	-0.226	-0.308	0	1	0	_	0	_	0	-	0.000	_
-0.286	-0.258	-0.278	-0.393	-0.660	0.000	-0.280	0.000	-0.520	0.000	-0.850	0.000	-0.578	0.000
-0.294	-0.265	-0.285	-0.402	-0.740	-0.080	-0.350	-0.070	-0.590	-0.070	-0.940	-0.090	-0.655	-0.077
-0.302	-0.271	-0.296	-0.414	-0.820	-0.160	-0.410	-0.130	-0.700	-0.180	-1.060	-0.210	-0.748	-0.170
-0.318	-0.275	-0.305	-0.424	-0.980	-0.318	-0.450	-0.168	-0.790	-0.268	-1.160	-0.308	-0.845	-0.266
-0.326	-0.285	-0.312	-0.438	-1.060	-0.397	-0.550	-0.267	-0.860	-0.337	-1.300	-0.447	-0.943	-0.362
-0.326	-0.284	-0.315	-0.441	-1.060	-0.382	-0.540	-0.242	-0.890	-0.352	-1.330	-0.462	-0.955	-0.359
-0.332	-0.285	-0.322	-0.445	-1.120	-0.448	-0.550	-0.258	-0.960	-0.428	-1.370	-0.508	-1.000	-0.411
-0.336	-0.289	-0.325	-0.454	-1.160	-0.498	-0.590	-0.308	-0.990	-0.468	-1.460	-0.608	-1.050	-0.471
-0.337	-0.29	-0.327	-0.454	-1.170	-0.500	-0.600	-0.310	-1.010	-0.480	-1.460	-0.600	-1.060	-0.473
-0.342	-0.294	-0.331	-0.459	-1.220	-0.533	-0.640	-0.333	-1.050	-0.503	-1.510	-0.633	-1.105	-0.501
-0.356	-0.301	-0.35	-0.477	-1.360	-0.640	-0.710	-0.370	-1.240	-0.660	-1.690	-0.780	-1.250	-0.613
-0.372	-0.313	-0.363	-0.492	-1.520	-0.745	-0.830	-0.435	-1.370	-0.735	-1.840	-0.875	-1.390	-0.698
-0.375	-0.318	-0.369	-0.5	-1.550	-0.767	-0.880	-0.477	-1.430	-0.787	-1.920	-0.947	-1.445	-0.744
-0.401	-0.335	-0.396	-0.526	-1.810	-0.947	-1.050	-0.567	-1.700	-0.977	-2.180	-1.127	-1.685	-0.904
-0.41	-0.341	-0.406	-0.543	-1.900	-1.013	-1.110	-0.603	-1.800	-1.053	-2.350	-1.273	-1.790	-0.986
-0.425	-0.354	-0.422	-0.555	-2.050	-1.147	-1.240	-0.717	-1.960	-1.197	-2.470	-1.377	-1.930	-1.109
-0.441	-0.36	-0.428	-0.565	-2.210	-1.297	-1.300	-0.767	-2.020	-1.247	-2.570	-1.467	-2.025	-1.194
-0.446	-0.365	-0.437	-0.576	-2.260	-1.310	-1.350	-0.780	-2.110	-1.300	-2.680	-1.540	-2.100	-1.233
-0.449	-0.366	-0.44	-0.582	-2.290	-1.347	-1.360	-0.797	-2.140	-1.337	-2.740	-1.607	-2.133	-1.272
-0.454	-0.368	-0.443	-0.587	-2.340	-1.362	-1.380	-0.782	-2.170	-1.332	-2.790	-1.622	-2.170	-1.274
-0.456	-0.371	-0.449	-0.59	-2.360	-1.395	-1.410	-0.825	-2.230	-1.405	-2.820	-1.665	-2.205	-1.323
-0.467	-0.375	-0.455	-0.598	-2.470	-1.462	-1.450	-0.822	-2.290	-1.422	-2.900	-1.702	-2.278	-1.352
-0.477	-0.387	-0.465	-0.605	-2.570	-1.518	-1.570	-0.898	-2.390	-1.478	-2.970	-1.728	-2.375	-1.406
-0.48	-0.39	-0.473	-0.613	-2.600	-1.557	-1.600	-0.937	-2.470	-1.567	-3.050	-1.817	-2.430	-1.469
-0.482	-0.39	-0.473	-0.612	-2.620	-1.558	-1.600	-0.918	-2.470	-1.548	-3.040	-1.788	-2.433	-1.453
-0.48	-0.389	-0.472	-0.614	-2.600	-1.542	-1.590	-0.912	-2.460	-1.542	-3.060	-1.812	-2.428	-1.452

						Prism P6	3						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	_	-	_	_	_	-	_	_	_	-	_	-	_
-0.386	-0.252	-0.152	-0.639	0	_	0	_	0	-	0	-	0.000	_
-0.502	-0.293	-0.154	-0.719	-1.16	0	-0.41	0	-0.02	0	-0.800	0	-0.605	0.000
-0.521	-0.303	-0.156	-0.724	-1.350	-0.190	-0.510	-0.100	-0.040	-0.020	-0.850	-0.050	-0.680	-0.075
-0.539	-0.315	-0.160	-0.736	-1.530	-0.370	-0.630	-0.220	-0.080	-0.060	-0.970	-0.170	-0.800	-0.195
-0.562	-0.322	-0.155	-0.745	-1.760	-0.598	-0.700	-0.288	-0.030	-0.008	-1.060	-0.258	-0.880	-0.273
-0.577	-0.330	-0.159	-0.760	-1.910	-0.747	-0.780	-0.367	-0.070	-0.047	-1.210	-0.407	-0.995	-0.387
-0.583	-0.333	-0.158	-0.757	-1.970	-0.792	-0.810	-0.382	-0.060	-0.022	-1.180	-0.362	-0.995	-0.372
-0.592	-0.335	-0.160	-0.762	-2.060	-0.888	-0.830	-0.408	-0.080	-0.048	-1.230	-0.418	-1.030	-0.413
-0.598	-0.342	-0.162	-0.768	-2.120	-0.958	-0.900	-0.488	-0.100	-0.078	-1.290	-0.488	-1.095	-0.488
-0.600	-0.342	-0.162	-0.767	-2.140	-0.970	-0.900	-0.480	-0.100	-0.070	-1.280	-0.470	-1.090	-0.475
-0.606	-0.345	-0.161	-0.773	-2.200	-1.013	-0.930	-0.493	-0.090	-0.043	-1.340	-0.513	-1.135	-0.503
-0.632	-0.359	-0.164	-0.788	-2.460	-1.240	-1.070	-0.600	-0.120	-0.040	-1.490	-0.630	-1.280	-0.615
-0.656	-0.372	-0.167	-0.801	-2.700	-1.425	-1.200	-0.675	-0.150	-0.015	-1.620	-0.705	-1.410	-0.690
-0.671	-0.377	-0.170	-0.807	-2.850	-1.567	-1.250	-0.717	-0.180	-0.037	-1.680	-0.757	-1.465	-0.737
-0.709	-0.397	-0.176	-0.829	-3.230	-1.867	-1.450	-0.837	-0.240	-0.017	-1.900	-0.897	-1.675	-0.867
	-0.407	-0.178	-0.842			-1.550	-0.913	-0.260	-0.013	-2.030	-1.003	-1.790	-0.958
	-0.416	-0.181	-0.860			-1.640	-0.987	-0.290	-0.027	-2.210	-1.167	-1.925	-1.077
	-0.428	-0.178	-0.863			-1.760	-1.097	-0.260	0.013	-2.240	-1.187	-2.000	-1.142
	-0.435	-0.179	-0.875			-1.830	-1.130	-0.270	0.040	-2.360	-1.270	-2.095	-1.200
	-0.438	-0.181	-0.883			-1.860	-1.167	-0.290	0.013	-2.440	-1.357	-2.150	-1.262
	-0.440	-0.180	-0.886			-1.880	-1.152	-0.280	0.058	-2.470	-1.352	-2.175	-1.252
	-0.443	-0.178	-0.890			-1.910	-1.195	-0.260	0.065	-2.510	-1.405	-2.210	-1.300
	-0.448	-0.177	-0.895			-1.960	-1.202	-0.250	0.118	-2.560	-1.412	-2.260	-1.307
	-0.463	-0.187	-0.900			-2.110	-1.308	-0.350	0.062	-2.610	-1.418	-2.360	-1.363
	-0.466	-0.188	-0.913			-2.140	-1.347	-0.360	0.043	-2.740	-1.557	-2.440	-1.452
	-0.464	-0.186	-0.911			-2.120	-1.308	-0.340	0.082	-2.720	-1.518	-2.420	-1.413
	-0.466	-0.183	-0.911			-2.140	-1.332	-0.310	0.108	-2.720	-1.522	-2.430	-1.427

						Prism P	5						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	_	-	_	_	_	-	_	1	_	-	_	_	_
-0.204	-0.217	-0.225	-0.285	0	_	0	_	0	-	0	-	0.000	-
-0.342	-0.273	-0.212	-0.349	-1.38	0	-0.56	0	0.13	0	-0.64	0	-0.600	0.000
-0.362	-0.282	-0.212	-0.358	-1.580	-0.200	-0.650	-0.090	0.130	0.000	-0.730	-0.090	-0.690	-0.090
-0.388	-0.296	-0.213	-0.371	-1.840	-0.460	-0.790	-0.230	0.120	-0.010	-0.860	-0.220	-0.825	-0.225
-0.409	-0.304	-0.205	-0.373	-2.050	-0.668	-0.870	-0.308	0.200	0.072	-0.880	-0.238	-0.875	-0.273
-0.431	-0.315	-0.206	-0.385	-2.270	-0.887	-0.980	-0.417	0.190	0.063	-1.000	-0.357	-0.990	-0.387
-0.435	-0.315	-0.205	-0.386	-2.310	-0.912	-0.980	-0.402	0.200	0.088	-1.010	-0.352	-0.995	-0.377
-0.445	-0.322	-0.206	-0.395	-2.410	-1.018	-1.050	-0.478	0.190	0.072	-1.100	-0.448	-1.075	-0.463
-0.452	-0.326	-0.206	-0.394	-2.480	-1.098	-1.090	-0.528	0.190	0.062	-1.090	-0.448	-1.090	-0.488
-0.456	-0.328	-0.206	-0.400	-2.520	-1.130	-1.110	-0.540	0.190	0.070	-1.150	-0.500	-1.130	-0.520
-0.466	-0.333	-0.206	-0.406	-2.620	-1.213	-1.160	-0.573	0.190	0.087	-1.210	-0.543	-1.185	-0.558
-0.496	-0.347	-0.209	-0.424	-2.920	-1.480	-1.300	-0.680	0.160	0.090	-1.390	-0.690	-1.345	-0.685
-0.523	-0.362	-0.212	-0.433	-3.190	-1.695	-1.450	-0.775	0.130	0.115	-1.480	-0.725	-1.465	-0.750
-0.539	-0.368	-0.213	-0.444	-3.350	-1.847	-1.510	-0.827	0.120	0.113	-1.590	-0.827	-1.550	-0.827
-0.585	-0.393	-0.212	-0.466	-3.810	-2.227	-1.760	-0.997	0.130	0.203	-1.810	-0.967	-1.785	-0.982
-0.612	-0.399	-0.212	-0.477	-4.080	-2.473	-1.820	-1.033	0.130	0.227	-1.920	-1.053	-1.870	-1.043
-0.639	-0.414	-0.214	-0.492	-4.350	-2.727	-1.970	-1.167	0.110	0.223	-2.070	-1.187	-2.020	-1.177
-0.662	-0.423	-0.206	-0.499	-4.580	-2.947	-2.060	-1.247	0.190	0.313	-2.140	-1.247	-2.100	-1.247
-0.677	-0.430	-0.208	-0.504	-4.730	-3.060	-2.130	-1.280	0.170	0.330	-2.190	-1.260	-2.160	-1.270
-0.684	-0.433	-0.208	-0.510	-4.800	-3.137	-2.160	-1.317	0.170	0.323	-2.250	-1.327	-2.205	-1.322
-0.692	-0.439	-0.209	-0.517	-4.880	-3.182	-2.220	-1.342	0.160	0.348	-2.320	-1.362	-2.270	-1.352
-0.705	-0.442	-0.210	-0.524	-5.010	-3.325	-2.250	-1.385	0.150	0.325	-2.390	-1.445	-2.320	-1.415
-0.715	-0.448	-0.207	-0.531	-5.110	-3.382	-2.310	-1.402	0.180	0.398	-2.460	-1.472	-2.385	-1.437
-0.731	-0.464	-0.211	-0.540	-5.270	-3.498	-2.470	-1.518	0.140	0.402	-2.550	-1.518	-2.510	-1.518
-0.737	-0.463	-0.211	-0.548	-5.330	-3.567	-2.460	-1.517	0.140	0.393	-2.630	-1.607	-2.545	-1.562
-0.745	-0.463	-0.210	-0.546	-5.410	-3.628	-2.460	-1.498	0.150	0.422	-2.610	-1.568	-2.535	-1.533
-0.746	-0.463	-0.211	-0.547	-5.420	-3.642	-2.460	-1.502	0.140	0.408	-2.620	-1.582	-2.540	-1.542

HVFAC7										II b	9.84	MPa			
					Age										
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	£ _{tot} (‰)	ε _{cσ} (‰)	€ _{CS} (%0)	€ _{ci} (‰)	€cc (‰)	Фехр	ε _{cc,s} (‰)	J (10 ⁻⁹ 1/Pa)
Casting	10-02-16	11:00	0	0	0	0.000	1	0.000	1	0.000	1	1	-	1	1
Before loading	17-02-16	10:00	7	0	0	7.000	0.000	-0.122	0.000	-0.122	0.000				0.000
5min after loading	17-02-16	11:00	7	0	2	7.003	0.003	-0.786	-0.664	-0.122	-0.664	0.000	0.000	0.000	0.068
1h	17-02-16	12:00	7	1	0	7.042	0.042	-0.873	-0.751	-0.122	-0.664	-0.086	0.130	600'0-	0.076
ų9	17-02-16	17:00	7	9	0	7.250	0.250	-1.016	-0.894	-0.122	-0.664	-0.229	0.345	-0.023	0.091
1	18-02-16	13:00	8	0	0	8.000	1.000	-1.052	-0.927	-0.125	-0.664	-0.263	0.395	-0.027	0.094
2	19-02-16	11:00	6	0	0	9.000	2.000	-1.146	-1.014	-0.132	-0.664	-0.350	0.527	-0.036	0.103
3	20-02-16	12:00	10	0	0	10.000	3.000	-1.224	-1.066	-0.158	-0.664	-0.401	0.604	-0.041	0.108
4	21-02-16	13:00	11	0	0	11.000	4.000	-1.262	-1.080	-0.182	-0.664	-0.416	0.625	-0.042	0.110
5	22-02-16	11:00	12	0	0	12.000	5.000	-1.327	-1.135	-0.192	-0.664	-0.471	0.709	-0.048	0.115
9	23-02-16	16:00	13	0	0	13.000	000'9	-1.361	-1.136	-0.225	-0.664	-0.471	0.709	-0.048	0.115
7	24-02-16	14:00	14	0	0	14.000	000'2	-1.380	-1.145	-0.235	-0.664	-0.480	0.723	-0.049	0.116
14	02-03-16	13:00	21	0	0	21.00	14.00	-1.507	-1.235	-0.272	-0.664	-0.571	0.859	850'0-	0.126
21	09-03-16	12:00	28	0	0	28.00	21.00	-1.587	-1.257	-0.330	-0.664	-0.593	0.892	090'0-	0.128
28	16-03-16	17:00	35	0	0	35.00	28.00	-1.622	-1.290	-0.332	-0.664	-0.626	0.941	-0.064	0.131
99	13-04-16	14:00	63	0	0	63.00	26.00	-1.811	-1.385	-0.427	-0.664	-0.720	1.084	620'0-	0.141
06	17-05-16	14:00	6	0	0	97.00	00'06	-1.878	-1.468	-0.410	-0.664	-0.804	1.210	-0.082	0.149
120	16-06-16	13:00	127	0	0	127.00	120.00	-1.881	-1.442	-0.438	-0.664	-0.778	1.171	620'0-	0.147
150	16-07-16	15:00	157	0	0	157.00	150.00	-1.992	-1.514	-0.478	-0.664	-0.849	1.278	980'0-	0.154
180	15-08-16	13:00	187	0	0	187.00	180.00	-2.022	-1.530	-0.492	-0.664	-0.866	1.303	880'0-	0.155
210	14-09-16	13:00	217	0	0	217.00	210.00	-2.050	-1.542	-0.508	-0.664	-0.878	1.321	680'0-	0.157
240	14-10-16	16:00	247	0	0	247.00	240.00	-2.065	-1.573	-0.492	-0.664	-0.909	1.368	-0.092	0.160
270	13-11-16	12:00	277	0	0	277.00	270.00	-2.093	-1.591	-0.502	-0.664	-0.926	1.394	-0.094	0.162
300	13-12-16	13:00	307	0	0	307.00	300.00	-2.167	-1.637	-0.530	-0.664	-0.973	1.464	660'0-	0.166
330	12-01-17	13:00	337	0	0	337.00	330.00	-2.214	-1.650	-0.563	-0.664	-0.986	1.484	-0.100	0.168
365	16-02-17	17:00	372	0	0	372.00	365.00	-2.270	-1.684	-0.587	-0.664	-1.019	1.534	-0.104	0.171
400	23-03-17	11:00	407	0	0	407.00	400.00	-2.314	-1.717	-0.597	-0.664	-1.053	1.584	-0.107	0.174
450	12-05-17	11:00	457	0	0	457.00	450.00	-2.345	-1.750	-0.595	-0.664	-1.086	1.634	-0.110	0.178

						Prism P	12						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	-	-	-	_	_	-	-	-	_	-	-	-	_
	-0.367	-0.418	-0.174			0.000	_	0.000	_	0.000	_	0.000	_
	-0.431	-0.523	-0.261			-0.640	0.000	-1.050	0.000	-0.870	0.000	-0.853	0.000
	-0.439	-0.536	-0.272			-0.720	-0.080	-1.180	-0.130	-0.980	-0.110	-0.960	-0.107
	-0.457	-0.553	-0.278			-0.900	-0.260	-1.350	-0.300	-1.040	-0.170	-1.097	-0.243
	-0.461	-0.559	-0.282			-0.940	-0.297	-1.410	-0.357	-1.080	-0.207	-1.143	-0.287
	-0.470	-0.570	-0.286			-1.030	-0.380	-1.520	-0.460	-1.120	-0.240	-1.223	-0.360
	-0.480	-0.580	-0.295			-1.130	-0.453	-1.620	-0.533	-1.210	-0.303	-1.320	-0.430
	-0.485	-0.582	-0.300			-1.180	-0.480	-1.640	-0.530	-1.260	-0.330	-1.360	-0.447
	-0.490	-0.592	-0.304			-1.230	-0.520	-1.740	-0.620	-1.300	-0.360	-1.423	-0.500
	-0.498	-0.595	-0.309			-1.310	-0.567	-1.770	-0.617	-1.350	-0.377	-1.477	-0.520
	-0.498	-0.598	-0.309			-1.310	-0.557	-1.800	-0.637	-1.350	-0.367	-1.487	-0.520
	-0.513	-0.613	-0.323			-1.460	-0.670	-1.950	-0.750	-1.490	-0.470	-1.633	-0.630
	-0.522	-0.622	-0.330			-1.550	-0.702	-2.040	-0.782	-1.560	-0.482	-1.717	-0.655
	-0.522	-0.626	-0.333			-1.550	-0.700	-2.080	-0.820	-1.590	-0.510	-1.740	-0.677
	-0.542	-0.649	-0.355			-1.750	-0.805	-2.310	-0.955	-1.810	-0.635	-1.957	-0.798
	-0.549	-0.662	-0.360			-1.820	-0.892	-2.440	-1.102	-1.860	-0.702	-2.040	-0.898
	-0.555	-0.660	-0.358			-1.880	-0.923	-2.420	-1.053	-1.840	-0.653	-2.047	-0.877
	-0.567	-0.673	-0.369			-2.000	-1.003	-2.550	-1.143	-1.950	-0.723	-2.167	-0.957
	-0.570	-0.676	-0.373			-2.030	-1.020	-2.580	-1.160	-1.990	-0.750	-2.200	-0.977
	-0.575	-0.681	-0.376			-2.080	-1.05333	-2.630	-1.193	-2.020	-0.763	-2.243	-1.003
	-0.574	-0.683	-0.377			-2.070	-1.06	-2.650	-1.23	-2.030	-0.79	-2.25	-1.027
	-0.579	-0.686	-0.381			-2.120	-1.1	-2.680	-1.25	-2.070	-0.82	-2.29	-1.057
	-0.564	-0.702	-0.403			-1.970	-0.92167	-2.840	-1.382	-2.290	-1.012	-2.367	-1.105
	-0.57	-0.708	-0.408			-2.030	-0.94833	-2.900	-1.408	-2.340	-1.028	-2.423	-1.128
	-0.578	-0.718	-0.417			-2.110	-1.005	-3	-1.485	-2.430	-1.095	-2.513	-1.195
	-0.579	-0.719	-0.421			-2.120	-1.005	-3.01	-1.485	-2.470	-1.125	-2.533	-1.205
	-0.58	-0.724	-0.427			-2.130	-1.01667	-3.06	-1.537	-2.530	-1.187	-2.573	-1.247

						Prism P	13						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	_	-	_	_	_	-	_	_	_	-	_	_	_
-0.101	-0.182	-0.254	-0.2	0.000	_	0.000	_	0	_	0	_	0.000	_
-0.214	-0.272	-0.285	-0.242	-1.130	0.000	-0.900	0.000	-0.310	0.000	-0.420	0.000	-0.690	0.000
-0.221	-0.287	-0.289	-0.242	-1.200	-0.070	-1.050	-0.150	-0.350	-0.040	-0.420	0.000	-0.755	-0.065
-0.245	-0.300	-0.297	-0.254	-1.440	-0.310	-1.180	-0.280	-0.430	-0.120	-0.540	-0.120	-0.898	-0.208
-0.252	-0.306	-0.294	-0.252	-1.510	-0.377	-1.240	-0.337	-0.400	-0.087	-0.520	-0.097	-0.918	-0.224
-0.263	-0.316	-0.302	-0.268	-1.620	-0.480	-1.340	-0.430	-0.480	-0.160	-0.680	-0.250	-1.030	-0.330
-0.270	-0.327	-0.311	-0.266	-1.690	-0.523	-1.450	-0.513	-0.570	-0.223	-0.660	-0.203	-1.093	-0.366
-0.273	-0.331	-0.312	-0.269	-1.720	-0.530	-1.490	-0.530	-0.580	-0.210	-0.690	-0.210	-1.120	-0.370
-0.286	-0.337	-0.315	-0.274	-1.850	-0.650	-1.550	-0.580	-0.610	-0.230	-0.740	-0.250	-1.188	-0.428
-0.288	-0.339	-0.318	-0.274	-1.870	-0.637	-1.570	-0.567	-0.640	-0.227	-0.740	-0.217	-1.205	-0.412
-0.290	-0.344	-0.320	-0.277	-1.890	-0.647	-1.620	-0.607	-0.660	-0.237	-0.770	-0.237	-1.235	-0.432
-0.301	-0.360	-0.328	-0.287	-2.000	-0.720	-1.780	-0.730	-0.740	-0.280	-0.870	-0.300	-1.348	-0.508
-0.320	-0.366	-0.332	-0.292	-2.190	-0.852	-1.840	-0.732	-0.780	-0.262	-0.920	-0.292	-1.433	-0.534
-0.322	-0.371	-0.335	-0.296	-2.210	-0.870	-1.890	-0.780	-0.810	-0.290	-0.960	-0.330	-1.468	-0.568
-0.335	-0.385	-0.350	-0.312	-2.340	-0.905	-2.030	-0.825	-0.960	-0.345	-1.120	-0.395	-1.613	-0.618
-0.351	-0.396	-0.358	-0.313	-2.500	-1.082	-2.140	-0.952	-1.040	-0.442	-1.130	-0.422	-1.703	-0.724
-0.353	-0.393	-0.353	-0.313	-2.520	-1.073	-2.110	-0.893	-0.990	-0.363	-1.130	-0.393	-1.688	-0.681
-0.367	-0.410	-0.362	-0.320	-2.660	-1.173	-2.280	-1.023	-1.080	-0.413	-1.200	-0.423	-1.805	-0.758
-0.368	-0.412	-0.365	-0.324	-2.670	-1.170	-2.300	-1.030	-1.110	-0.430	-1.240	-0.450	-1.830	-0.770
-0.372	-0.414	-0.366	-0.323	-2.710	-1.193333333	-2.320	-1.033	-1.120	-0.423	-1.230	-0.423	-1.845	-0.768
-0.372	-0.416	-0.368	-0.326	-2.710	-1.21	-2.340	-1.07	-1.14	-0.46	-1.26	-0.47	-1.863	-0.803
-0.378	-0.419	-0.367	-0.328	-2.770	-1.26	-2.370	-1.09	-1.13	-0.44	-1.28	-0.48	-1.888	-0.818
-0.384	-0.423	-0.375	-0.337	-2.830	-1.291666667	-2.410	-1.102	-1.210	-0.492	-1.370	-0.542	-1.955	-0.857
-0.39	-0.427	-0.38	-0.34	-2.890	-1.318333333	-2.450	-1.108	-1.260	-0.508	-1.400	-0.538	-2.000	-0.868
-0.387	-0.433	-0.382	-0.344	-2.860	-1.265	-2.510	-1.145	-1.28	-0.505	-1.44	-0.555	-2.023	-0.868
-0.396	-0.435	-0.384	-0.35	-2.950	-1.345	-2.530	-1.155	-1.3	-0.515	-1.5	-0.605	-2.070	-0.905
-0.4	-0.441	-0.389	-0.352	-2.990	-1.387	-2.590	-1.217	-1.350	-0.567	-1.520	-0.627	-2.113	-0.949

						Prism P1	14						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
-	_	-	_	ı	-	_	_	-	_	-	_	-	_
-0.154	-1.18	-0.203	-0.83	0.000	-	0.000	-	0	_	0	-	0.000	_
-0.274	-1.200	-0.224	-0.849	-1.200	0.000	-0.200	0.000	-0.210	0.000	-0.190	0.000	-0.450	0.000
-0.289	-1.222	-0.223	-0.848	-1.350	-0.150	-0.420	-0.220	-0.200	0.010	-0.180	0.010	-0.538	-0.088
-0.310	-1.245	-0.234	-0.853	-1.560	-0.360	-0.650	-0.450	-0.310	-0.100	-0.230	-0.040	-0.688	-0.238
-0.322	-1.252	-0.230	-0.855	-1.680	-0.477	-0.720	-0.517	-0.270	-0.057	-0.250	-0.057	-0.730	-0.277
-0.330	-1.265	-0.238	-0.862	-1.760	-0.550	-0.850	-0.640	-0.350	-0.130	-0.320	-0.120	-0.820	-0.360
-0.338	-1.280	-0.240	-0.867	-1.840	-0.603	-1.000	-0.763	-0.370	-0.123	-0.370	-0.143	-0.895	-0.408
-0.344	-1.283	-0.245	-0.871	-1.900	-0.640	-1.030	-0.770	-0.420	-0.150	-0.410	-0.160	-0.940	-0.430
-0.352	-1.290	-0.251	-0.876	-1.980	-0.710	-1.100	-0.830	-0.480	-0.200	-0.460	-0.200	-1.005	-0.485
-0.356	-1.295	-0.253	-0.877	-2.020	-0.717	-1.150	-0.847	-0.500	-0.187	-0.470	-0.177	-1.035	-0.482
-0.358	-1.297	-0.255	-0.878	-2.040	-0.727	-1.170	-0.857	-0.520	-0.197	-0.480	-0.177	-1.053	-0.489
-0.373	-1.313	-0.265	-0.886	-2.190	-0.840	-1.330	-0.980	-0.620	-0.260	-0.560	-0.220	-1.175	-0.575
-0.384	-1.323	-0.267	-0.892	-2.300	-0.892	-1.430	-1.022	-0.640	-0.222	-0.620	-0.222	-1.248	-0.589
-0.386	-1.332	-0.271	-0.895	-2.320	-0.910	-1.520	-1.110	-0.680	-0.260	-0.650	-0.250	-1.293	-0.633
-0.413	-1.362	-0.282	-0.910	-2.590	-1.085	-1.820	-1.315	-0.790	-0.275	-0.800	-0.305	-1.500	-0.745
-0.421	-1.363	-0.285	-0.909	-2.670	-1.182	-1.830	-1.342	-0.820	-0.322	-0.790	-0.312	-1.528	-0.789
-0.425	-1.368	-0.284	-0.907	-2.710	-1.193	-1.880	-1.363	-0.810	-0.283	-0.770	-0.263	-1.543	-0.776
-0.438	-1.379	-0.292	-0.914	-2.840	-1.283	-1.990	-1.433	-0.890	-0.323	-0.840	-0.293	-1.640	-0.833
-0.441	-1.385	-0.295	-0.914	-2.870	-1.300	-2.050	-1.480	-0.920	-0.340	-0.840	-0.280	-1.670	-0.850
-0.444	-1.388	-0.296	-0.918	-2.900	-1.313333333	-2.080	-1.493	-0.930	-0.333	-0.880	-0.303	-1.698	-0.861
-0.447	-1.39	-0.296	-0.921	-2.930	-1.36	-2.100	-1.53	-0.93	-0.35	-0.91	-0.35	-1.718	-0.898
-0.449	-1.394	-0.298	-0.92	-2.950	-1.37	-2.140	-1.56	-0.95	-0.36	-0.9	-0.33	-1.735	-0.905
-0.461	-1.41	-0.3	-0.922	-3.070	-1.461666667	-2.300	-1.692	-0.970	-0.352	-0.920	-0.322	-1.815	-0.957
-0.469	-1.417	-0.305	-0.917	-3.150	-1.508333333	-2.370	-1.728	-1.020	-0.368	-0.870	-0.238	-1.853	-0.961
-0.473	-1.424	-0.309	-0.925	-3.190	-1.525	-2.440	-1.775	-1.06	-0.385	-0.95	-0.295	-1.910	-0.995
-0.481	-1.43	-0.315	-0.93	-3.270	-1.595	-2.500	-1.825	-1.12	-0.435	-1	-0.335	-1.973	-1.048
-0.484	-1.436	-0.313	-0.928	-3.300	-1.627	-2.560	-1.887	-1.100	-0.417	-0.980	-0.317	-1.985	-1.062

HVFAC28										α =	10.2	MPa			
,					Age										
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	E _{tot} (%o)	ε _{cσ} (‰)	ε _{cs} (%ο)	€ _{ci} (‰)	€ _{CC} (‰)	Фехр	E _{cc,s} (%o)	J (10 ⁻⁹ 1/Pa)
Casting	10-02-16	11:00	0	0	0	0.000	1	000'0	1	0.000	1	1	-	_	1
Before loading	09-03-16	10:25	28	0	0	28.000	0.000	-0.330	0.000	-0.330	000.0				0.000
5min after loading	09-03-16	10:35	28	0	2	28.003	0.003	-0.823	-0.493	-0.330	-0.493	0.000	0.000	0.000	0.048
1h	09-03-16	11:30	28	1	0	28.042	0.042	-0.861	-0.531	-0.330	-0.493	-0.037	0.076	-0.004	0.052
eh	09-03-16	16:30	28	9	0	28.250	0.250	-0.907	-0.577	-0.330	-0.493	-0.083	0.169	-0.008	0.057
1	10-03-16	15:00	29	0	0	29.000	1.000	-0.949	-0.634	-0.315	-0.493	-0.141	0.285	-0.014	0.062
2	11-03-16	15:00	30	0	0	30.000	2.000	-0.973	-0.640	-0.333	-0.493	-0.147	0.297	-0.014	0.063
3	12-03-16	20:00	31	0	0	31.000	3.000	-1.015	-0.688	-0.327	-0.493	-0.195	0.395	-0.019	0.067
4	13-03-16	18:00	32	0	0	32.000	4.000	-1.030	-0.695	-0.335	-0.493	-0.202	0.409	-0.020	0.068
5	14-03-16	00:6	33	0	0	33.000	2.000	-1.038	669.0-	-0.338	-0.493	-0.206	0.417	-0.020	690.0
9	15-03-16	18:00	34	0	0	34.000	000'9	-1.034	669.0-	-0.335	-0.493	-0.206	0.417	-0.020	690.0
7	16-03-16	17:00	35	0	0	35.000	7.000	-1.055	-0.723	-0.332	-0.493	-0.230	0.466	-0.023	0.071
14	23-03-16	12:00	42	0	0	42.00	14.00	-1.123	-0.786	-0.337	-0.493	-0.293	665.0	-0.029	0.077
21	30-03-16	15:00	49	0	0	49.00	21.00	-1.226	-0.838	-0.388	-0.493	-0.344	869'0	-0.034	0.082
28	06-04-16	12:00	99	0	0	26.00	28.00	-1.246	-0.836	-0.410	-0.493	-0.343	0.694	-0.034	0.082
56	04-05-16	14:00	84	0	0	84.00	26.00	-1.335	-0.905	-0.430	-0.493	-0.412	0.834	-0.040	0.089
06	07-06-16	12:00	118	0	0	118.00	90.00	-1.437	-0.998	-0.438	-0.493	-0.505	1.024	-0.050	0.098
120	07-07-16	13:00	148	0	0	148.00	120.00	-1.488	-1.018	-0.470	-0.493	-0.524	1.063	-0.051	0.100
150	06-08-16	16:00	178	0	0	178.00	150.00	-1.528	-1.021	-0.507	-0.493	-0.528	1.069	-0.052	0.100
180	05-09-16	13:00	208	0	0	208.00	180.00	-1.598	-1.103	-0.495	-0.493	-0.609	1.235	-0.060	0.108
210	05-10-16	12:00	238	0	0	238.00	210.00	-1.591	-1.106	-0.485	-0.493	-0.613	1.242	-0.060	0.108
240	04-11-16	11:00	268	0	0	268.00	240.00	-1.653	-1.160	-0.493	-0.493	-0.667	1.351	-0.065	0.114
270	04-12-16	11:00	298	0	0	298.00	270.00	-1.685	-1.113	-0.572	-0.493	-0.620	1.257	-0.061	0.109
300	03-01-17	14:00	328	0	0	328.00	300.00	-1.746	-1.178	-0.568	-0.493	-0.684	1.387	-0.067	0.115
330	02-02-17	13:00	358	0	0	358.00	330.00	-1.788	-1.236	-0.552	-0.493	-0.743	1.505	-0.073	0.121
365	09-03-17	11:00	393	0	0	393.00	365.00	-1.789	-1.181	-0.608	-0.493	-0.688	1.394	-0.067	0.116
400	13-04-17	10:00	428	0	0	428.00	400.00	-1.867	-1.273	-0.593	-0.493	-0.780	1.581	-0.076	0.125
450	02-06-17	17:00	478	0	0	478.00	450.00	-1.857	-1.260	-0.597	-0.493	-0.767	1.554	-0.075	0.124

						Prism P	12						
D1	D2	D3	D4	ε, (‰)	ε _{1.cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr.cc} (‰)
_	_	_	_	_	_	_	_	_	-	_	-	_	-
-0.304	-0.278	-0.609	-0.154	0.000	-	0.000	_	0.000	_	0.000	_	0.000	_
-0.326	-0.313	-0.683	-0.218	-0.220	0.000	-0.350	0.000	-0.740	0.000	-0.640	0.000	-0.488	0.000
-0.327	-0.317	-0.690	-0.225	-0.230	-0.010	-0.390	-0.040	-0.810	-0.070	-0.710	-0.070	-0.535	-0.047
-0.330	-0.322	-0.697	-0.232	-0.260	-0.040	-0.440	-0.090	-0.880	-0.140	-0.780	-0.140	-0.590	-0.103
-0.333	-0.321	-0.704	-0.242	-0.290	-0.085	-0.430	-0.095	-0.950	-0.225	-0.880	-0.255	-0.638	-0.165
-0.333	-0.323	-0.709	-0.244	-0.290	-0.067	-0.450	-0.097	-1.000	-0.257	-0.900	-0.257	-0.660	-0.169
-0.335	-0.328	-0.716	-0.250	-0.310	-0.093	-0.500	-0.153	-1.070	-0.333	-0.960	-0.323	-0.710	-0.226
-0.339	-0.325	-0.716	-0.254	-0.350	-0.125	-0.470	-0.115	-1.070	-0.325	-1.000	-0.355	-0.723	-0.230
-0.339	-0.326	-0.717	-0.254	-0.350	-0.122	-0.480	-0.122	-1.080	-0.332	-1.000	-0.352	-0.728	-0.232
-0.339	-0.326	-0.716	-0.253	-0.350	-0.125	-0.480	-0.125	-1.070	-0.325	-0.990	-0.345	-0.723	-0.230
-0.338	-0.330	-0.719	-0.257	-0.340	-0.118	-0.520	-0.168	-1.100	-0.358	-1.030	-0.388	-0.748	-0.258
-0.343	-0.329	-0.730	-0.265	-0.390	-0.163	-0.510	-0.153	-1.210	-0.463	-1.110	-0.463	-0.805	-0.311
-0.352	-0.339	-0.740	-0.281	-0.480	-0.202	-0.610	-0.202	-1.310	-0.512	-1.270	-0.572	-0.918	-0.372
-0.356	-0.337	-0.746	-0.285	-0.520	-0.220	-0.590	-0.160	-1.370	-0.550	-1.310	-0.590	-0.948	-0.380
-0.358	-0.344	-0.760	-0.301	-0.540	-0.220	-0.660	-0.210	-1.510	-0.670	-1.470	-0.730	-1.045	-0.458
-0.361	-0.352	-0.772	-0.317	-0.570	-0.242	-0.740	-0.282	-1.630	-0.782	-1.630	-0.882	-1.143	-0.547
-0.365	-0.349	-0.778	-0.323	-0.610	-0.250	-0.710	-0.220	-1.690	-0.810	-1.690	-0.910	-1.175	-0.548
-0.368	-0.353	-0.783	-0.330	-0.640	-0.243	-0.750	-0.223	-1.740	-0.823	-1.760	-0.943	-1.223	-0.558
-0.372	-0.357	-0.793	-0.339	-0.680	-0.295	-0.790	-0.275	-1.840	-0.935	-1.850	-1.045	-1.290	-0.638
-0.374	-0.356	-0.791	-0.340	-0.700	-0.325	-0.780	-0.275	-1.820	-0.925	-1.860	-1.065	-1.290	-0.648
-0.377	-0.365	-0.799	-0.348	-0.730	-0.347	-0.870	-0.357	-1.900	-0.997	-1.940	-1.137	-1.360	-0.709
-0.380	-0.366	-0.800	-0.352	-0.760	-0.298	-0.880	-0.288	-1.910	-0.928	-1.980	-1.098	-1.383	-0.653
-0.387	-0.366	-0.810	-0.357	-0.830	-0.372	-0.880	-0.292	-2.010	-1.032	-2.030	-1.152	-1.438	-0.712
-0.387	-0.373	-0.815	-0.366	-0.830	-0.388	-0.950	-0.378	-2.060	-1.098	-2.120	-1.258	-1.490	-0.781
-0.390	-0.369	-0.815	-0.366	-0.860	-0.362	-0.910	-0.282	-2.060	-1.042	-2.120	-1.202	-1.488	-0.722
-0.394	-0.380	-0.829	-0.376	-0.900	-0.417	-1.020	-0.407	-2.200	-1.197	-2.220	-1.317	-1.585	-0.834
-0.393	-0.378	-0.827	-0.379	-0.890	-0.403	-1.000	-0.383	-2.180	-1.173	-2.250	-1.343	-1.580	-0.826

						Prism P	3						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	-	_	-	-	ı	_	_	-	_	-	_	_	_
-0.001	-0.210	-0.393	-0.098	0.000	ı	0.000	_	0.000	_	0.000	_	0.000	_
-0.045	-0.270	-0.447	-0.136	-0.440	0.000	-0.600	0.000	-0.540	0.000	-0.380	0.000	-0.490	0.000
-0.052	-0.270	-0.451	-0.141	-0.510	-0.070	-0.600	0.000	-0.580	-0.040	-0.430	-0.050	-0.530	-0.040
-0.058	-0.276	-0.457	-0.143	-0.570	-0.130	-0.660	-0.060	-0.640	-0.100	-0.450	-0.070	-0.580	-0.090
-0.059	-0.279	-0.461	-0.152	-0.580	-0.155	-0.690	-0.105	-0.680	-0.155	-0.540	-0.175	-0.623	-0.148
-0.062	-0.282	-0.461	-0.150	-0.610	-0.167	-0.720	-0.117	-0.680	-0.137	-0.520	-0.137	-0.633	-0.139
-0.067	-0.285	-0.466	-0.154	-0.660	-0.223	-0.750	-0.153	-0.730	-0.193	-0.560	-0.183	-0.675	-0.188
-0.068	-0.287	-0.467	-0.159	-0.670	-0.225	-0.770	-0.165	-0.740	-0.195	-0.610	-0.225	-0.698	-0.203
-0.068	-0.289	-0.469	-0.157	-0.670	-0.222	-0.790	-0.182	-0.760	-0.212	-0.590	-0.202	-0.703	-0.204
-0.069	-0.290	-0.468	-0.156	-0.680	-0.235	-0.800	-0.195	-0.750	-0.205	-0.580	-0.195	-0.703	-0.208
-0.070	-0.292	-0.471	-0.157	-0.690	-0.248	-0.820	-0.218	-0.780	-0.238	-0.590	-0.208	-0.720	-0.228
-0.079	-0.295	-0.478	-0.166	-0.780	-0.333	-0.850	-0.243	-0.850	-0.303	-0.680	-0.293	-0.790	-0.293
-0.087	-0.307	-0.488	-0.178	-0.860	-0.362	-0.970	-0.312	-0.950	-0.352	-0.800	-0.362	-0.895	-0.347
-0.089	-0.311	-0.488	-0.180	-0.880	-0.360	-1.010	-0.330	-0.950	-0.330	-0.820	-0.360	-0.915	-0.345
-0.101	-0.318	-0.498	-0.190	-1.000	-0.460	-1.080	-0.380	-1.050	-0.410	-0.920	-0.440	-1.013	-0.423
-0.108	-0.326	-0.504	-0.200	-1.070	-0.522	-1.160	-0.452	-1.110	-0.462	-1.020	-0.532	-1.090	-0.492
-0.115	-0.332	-0.510	-0.207	-1.140	-0.560	-1.220	-0.480	-1.170	-0.490	-1.090	-0.570	-1.155	-0.525
-0.118	-0.332	-0.513	-0.209	-1.170	-0.553	-1.220	-0.443	-1.200	-0.483	-1.110	-0.553	-1.175	-0.508
-0.125	-0.342	-0.518	-0.217	-1.240	-0.635	-1.320	-0.555	-1.250	-0.545	-1.190	-0.645	-1.250	-0.595
-0.124	-0.341	-0.515	-0.217	-1.230	-0.635	-1.310	-0.555	-1.220	-0.525	-1.190	-0.655	-1.238	-0.593
-0.130	-0.343	-0.522	-0.225	-1.290	-0.687	-1.330	-0.567	-1.290	-0.587	-1.270	-0.727	-1.295	-0.642
-0.136	-0.349	-0.525	-0.226	-1.350	-0.668	-1.390	-0.548	-1.320	-0.538	-1.280	-0.658	-1.335	-0.603
-0.142	-0.353	-0.532	-0.233	-1.410	-0.732	-1.430	-0.592	-1.390	-0.612	-1.350	-0.732	-1.395	-0.667
-0.145	-0.356	-0.533	-0.237	-1.440	-0.778	-1.460	-0.638	-1.400	-0.638	-1.390	-0.788	-1.423	-0.711
-0.145	-0.359	-0.532	-0.236	-1.440	-0.722	-1.490	-0.612	-1.390	-0.572	-1.380	-0.722	-1.425	-0.657
-0.152	-0.362	-0.539	-0.245	-1.510	-0.807	-1.520	-0.657	-1.460	-0.657	-1.470	-0.827	-1.490	-0.737
-0.150	-0.361	-0.538	-0.244	-1.490	-0.783	-1.510	-0.643	-1.450	-0.643	-1.460	-0.813	-1.478	-0.721

						Prism P	8						
D1	D2	D3	D4	ε ₁ (‰)	ε _{1,cc} (‰)	ε ₂ (‰)	ε _{2,cc} (‰)	ε ₃ (‰)	ε _{3,cc} (‰)	ε ₄ (‰)	ε _{4,cc} (‰)	ε _{avr} (‰)	ε _{avr,cc} (‰)
_	-	-	-	_	_	_	-	-	-	_	-	_	_
-0.237	-0.200	-0.315	-0.188	0.000	-	0.000	-	0.000	_	0.000	_	0.000	_
-0.291	-0.290	-0.352	-0.208	-0.540	0.000	-0.900	0.000	-0.370	0.000	-0.200	0.000	-0.503	0.000
-0.292	-0.293	-0.354	-0.212	-0.550	-0.010	-0.930	-0.030	-0.390	-0.020	-0.240	-0.040	-0.528	-0.025
-0.301	-0.303	-0.348	-0.212	-0.640	-0.100	-1.030	-0.130	-0.330	0.040	-0.240	-0.040	-0.560	-0.058
-0.302	-0.305	-0.359	-0.213	-0.650	-0.125	-1.050	-0.165	-0.440	-0.085	-0.250	-0.065	-0.598	-0.110
-0.309	-0.310	-0.361	-0.215	-0.720	-0.177	-1.100	-0.197	-0.460	-0.087	-0.270	-0.067	-0.638	-0.132
-0.310	-0.314	-0.365	-0.219	-0.730	-0.193	-1.140	-0.243	-0.500	-0.133	-0.310	-0.113	-0.670	-0.171
-0.314	-0.315	-0.365	-0.218	-0.770	-0.225	-1.150	-0.245	-0.500	-0.125	-0.300	-0.095	-0.680	-0.173
-0.314	-0.318	-0.364	-0.221	-0.770	-0.222	-1.180	-0.272	-0.490	-0.112	-0.330	-0.122	-0.693	-0.182
-0.315	-0.317	-0.363	-0.220	-0.780	-0.235	-1.170	-0.265	-0.480	-0.105	-0.320	-0.115	-0.688	-0.180
-0.317	-0.320	-0.365	-0.221	-0.800	-0.258	-1.200	-0.298	-0.500	-0.128	-0.330	-0.128	-0.708	-0.203
-0.325	-0.330	-0.371	-0.227	-0.880	-0.333	-1.300	-0.393	-0.560	-0.183	-0.390	-0.183	-0.783	-0.273
-0.336	-0.341	-0.380	-0.233	-0.990	-0.392	-1.410	-0.452	-0.650	-0.222	-0.450	-0.192	-0.875	-0.314
-0.339	-0.345	-0.378	-0.232	-1.020	-0.400	-1.450	-0.470	-0.630	-0.180	-0.440	-0.160	-0.885	-0.303
-0.344	-0.359	-0.382	-0.238	-1.070	-0.430	-1.590	-0.590	-0.670	-0.200	-0.500	-0.200	-0.958	-0.355
-0.363	-0.370	-0.394	-0.248	-1.260	-0.612	-1.700	-0.692	-0.790	-0.312	-0.600	-0.292	-1.088	-0.477
-0.368	-0.378	-0.401	-0.250	-1.310	-0.630	-1.780	-0.740	-0.860	-0.350	-0.620	-0.280	-1.143	-0.500
-0.375	-0.383	-0.406	-0.254	-1.380	-0.663	-1.830	-0.753	-0.910	-0.363	-0.660	-0.283	-1.195	-0.516
-0.384	-0.391	-0.412	-0.258	-1.470	-0.765	-1.910	-0.845	-0.970	-0.435	-0.700	-0.335	-1.263	-0.595
-0.383	-0.392	-0.409	-0.258	-1.460	-0.765	-1.920	-0.865	-0.940	-0.415	-0.700	-0.345	-1.255	-0.598
-0.386	-0.398	-0.417	-0.265	-1.490	-0.787	-1.980	-0.917	-1.020	-0.487	-0.770	-0.407	-1.315	-0.649
-0.396	-0.400	-0.418	-0.265	-1.590	-0.808	-2.000	-0.858	-1.030	-0.418	-0.770	-0.328	-1.348	-0.603
-0.401	-0.408	-0.425	-0.272	-1.640	-0.862	-2.080	-0.942	-1.100	-0.492	-0.840	-0.402	-1.415	-0.674
-0.405	-0.416	-0.427	-0.276	-1.680	-0.918	-2.160	-1.038	-1.120	-0.528	-0.880	-0.458	-1.460	-0.736
-0.409	-0.417	-0.426	-0.274	-1.720	-0.902	-2.170	-0.992	-1.110	-0.462	-0.860	-0.382	-1.465	-0.684
-0.416	-0.424	-0.434	-0.280	-1.790	-0.987	-2.240	-1.077	-1.190	-0.557	-0.920	-0.457	-1.535	-0.769
-0.414	-0.423	-0.433	-0.279	-1.770	-0.963	-2.230	-1.063	-1.180	-0.543	-0.910	-0.443	-1.523	-0.753

Experimental Measurements:Beam Deflections

	ı		ı	
			ì	
•	ι			Ì
	ı	ć	1	ĺ

	16										16			٠.													
p9	07-02-16	0.73	6.11	15.08	10.4	14.54	10.36	2.03	2402	2017	29-08-16	0.76	3.33	10.32	5.32	9.76	7.25	1.8									
2d	06-02-16	0.73	6.26	15.32	10.65	14.78	10.53	2.04	1004	200	30-07-16	0.76	3.41	10.45	5.46	6.6	7.33	1.81									
4d	05-02-16	0.73	6.4	15.56	10.92	15.02	10.67	2.05	1504	500	30-06-16	0.76	3.63	10.83	98'9	10.27	2.63	1.83									
3d	04-02-16	0.72	6.57	15.86	11.25	15.33	10.76	2.06	1204	2021	31-05-16	0.76	3.84	11.2	6.25	10.64	7.81	1.85	450d		26-04-17	0.76	2.49	8.85	3.75	8.29	6.31
2d	03-02-16	0.72	92'9	16.22	11.63	15.69	10.98	2.08	700	5	01-05-16	92'0	3.89	11.3	6.34	10.72	7.87	1.85	400d		07-03-17	92'0	2.59	9.01	3.91	8.45	6.4
	Position (mm)	0	530	1200	1600	2000	2670	3200			Position (mm)	0	530	1200	1600	2000	2670	3200		:	Position (mm)	0	530	1200	1600	2000	2670
										ľ			٥.	~	4	U5	9	U7			le ge	_	2	3	4	2	
	Dial gauge	U1	N2	EN	U4	SU 05	90	U7			Dial gauge	LO.	U2	EN	U4	N	90	\supset		i	Dial gauge	LO.	U2	EN	Ď	Ö	9N
	Dial gauge	U1	U2	n3	N4	O5	90	U7	,		Dia	2	O US	Š	Ď)	⊃	כ			Dig	₽	Ď	Π	Ď	Š	ñ
1d	02-02-16 Dial	<u> </u>	6.84 U2	16.51 U3		16 US	11.16 U6	2.1	789		28-03-16 Dia	0.76 U1	4.25 UZ			11.35 U	8.24 U	1.88 U	360d		31-01-17 Di e	0.76 U			3.9		
6h 1d		0.72	6.84	16.51		16	11.16	2.1	700	1		0.76	4.25	11.9	6.99	11.35	8.24	1.88	330d 360d			0.76	2.57	8.99		8.42	6.4
	02-02-16	0.72 0.72	7.2 6.84	17.13 16.51	11.94	16.62 16	11.67 11.16	2.1	-	5	28-03-16	0.75 0.76	4.95 4.25	11.9	8.27 6.99	12.55 11.35	8.24	1.94 1.88			12-16 31-01-17	0.76 0.76	2.76 2.57	9.33 8.99	3.9	8.93 8.42	6.61 6.4
l9	01-02-16 02-02-16	0.72 0.72 0.72	7.37 7.2 6.84	17.49 17.13 16.51	12.51 11.94	16.97 16.62 16	11.77 11.67 11.16	2.15 2.13 2.1	P80	201	29-02-16 28-03-16	0.75 0.75 0.76	5.22 4.95 4.25	5 13.56 13.09 11.9	8.77 8.27 6.99	13.01 12.55 11.35	9.3 9.01 8.24	1.95 1.94 1.88	330d		27-12-16 31-01-17	0.76 0.76 0.76	2.96 2.76 2.57	9.68 9.33 8.99	4.26 3.9	9.29 8.93 8.42	6.84 6.61 6.4
1h 6h	01-02-16 01-02-16 02-02-16	0.72 0.72 0.72 0.72	7.72 7.37 7.2 6.84	18.08 17.49 17.13 16.51	12.88 12.51 11.94	17.56 16.97 16.62 16	12.13 11.77 11.67 11.16	2.15 2.13 2.1	700	227	22-02-16 29-02-16 28-03-16	0.75 0.75 0.76	5.57 5.22 4.95 4.25	14.15 13.56 13.09 11.9	9.41 8.77 8.27 6.99	13.61 13.01 12.55 11.35	7 9.7 9.3 9.01 8.24	1.98 1.95 1.94 1.88	300d 330d		27-11-16 27-12-16 31-01-17	0.76 0.76 0.76	3.15 2.96 2.76 2.57	10.02 9.68 9.33 8.99	4.63 4.26 3.9	9.47 9.29 8.93 8.42	7.06 6.84 6.61 6.4
5m 1h 6h	01-02-16 01-02-16 01-02-16 02-02-16	0.88 0.72 0.72 0.72 0.72	12.5 7.72 7.37 7.2 6.84	26.45 18.08 17.49 17.13 16.51	13.52 12.88 12.51 11.94	26.05 17.56 16.97 16.62 16	17.19 12.13 11.77 11.67 11.16	2.84 2.2 2.15 2.13 2.1	7000	227	15-02-16 22-02-16 28-03-16	0.74 0.75 0.75 0.76	6.03 5.57 5.22 4.95 4.25	14.95 14.15 13.56 13.09 11.9	10.25 9.41 8.77 8.27 6.99	14.41 13.61 13.01 12.55 11.35	9.7 9.3 9.01 8.24	2.02 1.98 1.95 1.94 1.88	270d 300d 330d		28-10-16 27-11-16 27-12-16 31-01-17	0.76 0.76 0.76 0.76 0.76	3.28 3.15 2.96 2.76 2.57	10.23 10.02 9.68 9.33 8.99	4.99 4.63 4.26 3.9	9.67 9.47 9.29 8.93 8.42	7.19 7.06 6.84 6.61 6.4

								-25	220	1170	1570	1970	2580	3170
,					Age						Deflections			
NAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	U1 (mm)	U2 (mm)	U3 (mm)	U4 (mm)	U5 (mm)	U6 (mm)	U7 (mm)
Casting	25-01-16	11:00	0	0	0	0.000	1	-	-	-	1	-	_	1
Before loading	01-02-16	13:25	7	0	0	7.000	0.000	0	0	0	0	0	0	0
5min after loading	01-02-16	13:30	7	0	5	7.003	0.003	0.16	4.78	8.37	9.17	8.49	90'9	0.64
1h	01-02-16	14:30	7	1	0	7.042	0.042	0.16	5.13	8.96	9.81	9.08	5.42	0.69
6h	01-02-16	20:30	7	9	0	7.250	0.250	0.16	5.3	9.32	10.18	9.43	5.52	0.71
1	02-02-16	14:30	8	0	0	8.000	1.000	0.16	99'9	9.94	10.75	10.05	6.03	0.74
2	03-02-16	14:30	6	0	0	9.000	2.000	0.16	5.74	10.23	11.06	10.36	6.21	0.76
ဇ	04-02-16	12:00	10	0	0	10.000	3.000	0.16	5.93	10.59	11.44	10.72	6.43	0.78
4	05-02-16	14:00	11	0	0	11.000	4.000	0.15	6.1	10.89	11.77	11.03	6.52	0.79
5	06-02-16	15:00	12	0	0	12.000	5.000	0.15	6.24	11.13	12.04	11.27	99'9	8.0
9	07-02-16	20:00	13	0	0	13.000	000'9	0.15	6.39	11.37	12.29	11.51	6.83	0.81
7	08-02-16	13:00	14	0	0	14.000	7.000	0.14	6.47	11.5	12.44	11.64	7.02	0.82
14	15-02-16	20:00	21	0	0	21.00	14.00	0.14	6.93	12.3	13.28	12.44	7.49	0.86
21	22-02-16	11:00	28	0	0	28.00	21.00	0.13	7.28	12.89	13.92	13.04	7.89	0.89
28	29-02-16	12:00	35	0	0	35.00	28.00	0.13	7.55	13.36	14.42	13.5	8.18	6.0
26	28-03-16	15:00	63	0	0	63.00	26.00	0.12	8.25	14.55	15.7	14.7	8.95	96.0
06	01-05-16	14:00	26	0	0	97.00	90.00	0.12	8.61	15.15	16.35	15.33	9.32	0.99
120	31-05-16	14:00	127	0	0	127.00	120.00	0.12	8.66	15.25	16.44	15.41	9:38	0.99
150	30-06-16	12:00	157	0	0	157.00	150.00	0.12	8.87	15.62	16.83	15.78	9:26	1.01
180	30-07-16	15:00	187	0	0	187.00	180.00	0.12	60.6	16	17.23	16.15	98.6	1.03
210	29-08-16	13:00	217	0	0	217.00	210.00	0.12	9.17	16.13	17.37	16.29	9.94	1.04
240	28-09-16	12:00	247	0	0	247.00	240.00	0.12	9.22	16.22	17.47	16.38	10	1.04
270	28-10-16	14:00	277	0	0	277.00	270.00	0.12	9.35	16.43	17.7	16.58	10.13	1.06
300	27-11-16	11:00	307	0	0	307.00	300.00	0.12	9.54	16.77	18.06	16.76	10.35	1.08
330	27-12-16	12:00	337	0	0	337.00	330.00	0.12	9.74	17.12	18.43	17.12	10.58	1.09
365	31-01-17	15:00	372	0	0	372.00	365.00	0.12	9.93	17.46	18.79	17.63	10.79	1.11
400	07-03-17	11:00	407	0	0	407.00	400.00	0.12	9.91	17.44	18.78	17.6	10.79	1.11
450	26-04-17	16:00	457	0	0	457.00	450.00	0.12	10.01	17.6	18.94	17.76	10.88	1.12

		0	5m	1h	l9	1d			2d	3d	4d	2 q	p9
Dial	Position (mm)	22-02-16	22-02-16	22-02-16	22-02-16	23-02-16	Dial gauge	Position (mm)	24-02-16	25-02-16	26-02-16	27-02-16	28-02-16
) 1		8.88	8.69	89.8	8.67	8.66) D	0	8.65	8.65	8.65	8.65	8.64
N2	530	17.82	13.54	13.17	12.91	12.59	U2	530	12.42	12.26	12.14	12.02	11.96
N3	1200	28.89	21.4	20.8	20.38	19.85	N3	1200	19.57	19.32	19.13	18.94	18.86
U4	1600	27.49	19.38	18.74	18.29	17.71	U4	1600	17.41	17.14	16.95	16.73	16.64
O5	2000	28.26	20.65	20.06	19.63	19.1	N2	2000	18.8	18.55	18.36	18.15	18.07
9N	2670	14.09	89.6	9.34	80.6	8.77	90	2670	8.61	8.45	8.33	8.22	8.16
U2	3200	2.01	1.64	1.61	1.59	1.57	U2	3200	1.55	1.54	1.53	1.52	1.52
		7 d	14d	21d	28d	p99			p06	120d	150d	180d	210d
Dial gauge	Position (mm)	29-02-16	07-03-16	14-03-16	21-03-16	18-04-16	Dial gauge	Position (mm)	22-05-16	21-06-16	21-07-16	20-08-16	19-09-16
U1	0	8.64	8.65	8.64	8.64	8.63	J 1	0	8.63	8.62	8.61	8.61	8.61
U2	530	11.93	11.51	11.28	11.01	10.51	U2	530	10.26	10.07	9.81	9.62	9.54
N3	1200	18.79	18.14	17.73	17.31	16.48	N3	1200	16.08	15.77	15.36	15.09	14.9
U4	1600	16.57	15.88	15.43	14.97	14.12	U4	1600	13.64	13.53	12.87	12.57	12.38
O5	2000	18	17.33	16.9	16.46	15.6	N2	2000	15.19	14.88	14.46	14.17	13.99
9N	2670	8.12	7.72	7.47	7.2	6.68	90	2670	6.43	6.23	5.97	5.79	5.68
LO7	3200	1.51	1.5	1.49	1.48	1.44	U2	3200	1.43	1.42	1.41	1.4	1.4
		240d	270d	P00E	330d	365d			400d	450d			
Dial gauge	Position (mm)	19-10-16	18-11-16	18-12-16	17-01-17	21-02-17	Dial gauge	Position (mm)	28-03-17	17-05-17			
U1	0	8.6	8.59	8.59	8.59	8.59	U	0	8.59	8.59			
U2	530	9.46	9.22	8.99	8.83	8.75	U2	530	8.7	8.76			
N3	1200	14.78	14.4	14.01	13.76	13.63	N3	1200	13.52	13.61			
U4	1600	12.24	11.83	11.41	11.15	11.01	U4	1600	10.88	10.98			
O2	2000	13.85	13.46	13.06	12.81	12.68	OS	2000	12.56	12.65			
90	2670	9.6	5.36	60'9	4.94	4.85	90	2670	4.78	4.83			
U2	3200	1.4	1.38	1.36	1.35	1.35	U2	3200	1.35	1.35			

		<u> </u>																												
3200		U6 (mm) U7 (mm)	1	0.00	0.37	0.4	0.42	0.44	0.46	0.47	0.48	0.49	0.49	0.5	0.51	0.52	0.53	0.57	0.58	0.59	9.0	0.61	0.61	0.61	0.63	0.65	0.66	99.0	99.0	99.0
2600		U6 (mm)	1	0.00	4.41	4.75	5.01	5.32	5.48	5.64	5.76	2.87	5.93	2.97	6.37	6.62	68.9	7.41	99.7	7.86	8.12	8.3	8.41	8.49	8.73	6	9.15	9.24	9.31	9.26
1940		U5 (mm)	ı	0.00	7.61	8.2	8.63	9.16	9.46	9.71	6.6	10.11	10.19	10.26	10.93	11.36	11.8	12.66	13.07	13.38	13.8	14.09	14.27	14.41	14.8	15.2	15.45	15.58	15.7	15.61
1600	Deflections	U4 (mm)	1	0.00	8.11	8.75	9.5	9.78	10.08	10.35	10.54	10.76	10.85	10.92	11.61	12.06	12.52	13.37	13.85	13.96	14.62	14.92	15.11	15.25	15.66	16.08	16.34	16.48	16.61	16.91
1200	O	U3 (mm)	1	0.00	7.49	8.09	8.51	9.04	9.32	9.57	9.76	9.95	10.03	10.1	10.75	11.16	11.58	12.41	12.81	13.12	13.53	13.8	13.99	14.11	14.49	14.88	15.13	15.26	15.37	15.28
009			1	00.00	4.28	4.65	4.91	5.23	5.4	5.56	2.68	2.8	5.86	5.89	6.31	6.54	6.81	7.31	7.56	7.75	8.01	8.17	8.28	8.36	9.8	8.83	8.99	9.07	9.12	90.6
0		U1 (mm) U2 (mm)	1	0.00	0.19	0.2	0.21	0.22	0.23	0.23	0.23	0.23	0.24	0.24	0.23	0.24	0.24	0.25	0.25	0.26	0.27	0.27	0.27	0.28	0.29	0.29	0.29	0.29	0.29	0.29
		From loading (days)	-	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	000'9	7.000	14.00	21.00	28.00	56.00	90.00	120.00	150.00	180.00	210.00	240.00	270.00	300.00	330.00	365.00	400.00	450.00
		Days, eq	0.000	28.000	28.003	28.042	28.250	29.000	30.000	31.000	32.000	33.000	34.000	35.000	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00
	Age	Minutes	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Hours	0	0	0	1	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Days	0	28	28	28	28	29	30	31	32	33	34	35	42	49	26	84	118	148	178	208	238	268	298	328	358	393	428	478
		Time	11:00	11:30	12:05	13:00	19:00	16:00	14:00	10:00	13:00	19:00	20:00	12:00	16:00	00:6	11:00	15:00	14:00	11:00	13:00	13:00	17:00	15:00	16:00	13:00	16:00	10:00	12:00	11:00
		Date	25-01-16	22-02-16	22-02-16	22-02-16	22-02-16	23-02-16	24-02-16	25-02-16	26-02-16	27-02-16	28-02-16	29-02-16	07-03-16	14-03-16	21-03-16	18-04-16	22-05-16	21-06-16	21-07-16	20-08-16	19-09-16	19-10-16	18-11-16	18-12-16	17-01-17	21-02-17	28-03-17	17-05-17
		NAC28	Casting	Before loading	5min after loading	1h	9h	1	2	3	4	2	9	7	14	21	28	99	06	120	150	180	210	240	270	300	330	365	400	450

ı	•
ı	
3	2
٩	3
•	ν

		0	2m	1h	49	1d			2d	pg	4d	2q	p9
Dial gauge	Position (mm)	09-02-16	09-02-16	09-02-16	09-02-16	10-02-16	Dial gauge	Position (mm)	11-02-16	12-02-16	13-02-16	14-02-16	15-02-16
U1	0	11.38	11.13	11.11	11.1	11.09	LO		11.08	11.07	11.07	11.06	11.05
N2	530	14.27	8.3	7.88	7.62	7.23	U2	530	96.9	6.78	6.65	6.49	6.38
N3	1200	23.4	13.28	12.58	12.13	11.5	EN	1200	11.04	10.76	10.54	10.28	10.09
U4	1600	25.08	14.19	13.46	12.98	12.3	U4	1600	11.81	11.51	11.28	11	10.8
O5	2000	24.21	13.12	12.44	12.02	11.4	SU NS	2000	10.94	10.65	10.45	10.18	66.6
90	2670	16.24	10.59	10.26	10	9.62	90	2670	9.35	9.19	90'6	8.9	8.79
U2	3200	6.82	92.9	6.55	6.55	6.54	L 1	3200	6.54	6.53	6.53	6.53	6.53
		р2	14d	21d	28d	26d			P06	120d	150d	180d	210d
Dial gauge	Position (mm)	16-02-16	23-02-16	01-03-16	08-03-16	05-04-16	Dial gauge	Position (mm)	09-05-16	08-06-16	08-07-16	07-08-16	06-09-16
U	0	11.05	11.01	10.99	10.97	10.92	LO 1		10.88	10.88	10.86	10.84	10.83
N2	530	6.29	5.64	5.19	4.84	4.06	U2	530	3.6	3.48	3.09	2.87	2.76
N3	1200	9.95	8.89	8.19	7.63	6.22	n3	1200	5.51	5.31	4.66	4.32	4.15
U4	1600	10.65	9.53	8.78	8.18	69'9	U4	1600	5.96	5.73	90'9	4.69	4.52
O2	2000	98.6	8.81	8.11	7:57	6.17	OS	2000	5.5	5.32	4.66	4.32	4.15
90	2670	8.71	8.08	99.7	7.31	6.46	90	2670	9	5.87	5.48	5.27	5.16
U2	3200	6.53	6.52	6.51	6.51	6.5	L 1	3200	6.49	6.49	6.49	6.49	6.48
		240d	270d	900E	930d	909E			400d	450d			
Dial gauge	Position (mm)	06-10-16	05-11-16	05-12-16	04-01-17	08-02-17	Dial gauge	Position (mm)	15-03-17	04-05-17			
5		10.83	10.81	10.8	10.79	10.77	U L	0	10.77	10.76			
N2	530	2.69	2.44	2.16	1.91	1.73	U2	530	1.61	1.61			
N3	1200	4.04	3.65	3.2	2.81	2.55	n3	1200	2.42	2.35			
U4	1600	4.41	3.99	3.51	3.1	2.83	U4	1600	2.68	2.61			
N2	2000	4.05	3.67	3.2	2.82	2.74	O5	2000	2.43	2.37			
90	2670	5.09	4.84	4.57	4.31	4.15	90	2670	4.07	4.02			
U2	3200	6.48	6.48	6.47	6.47	6.47	U7	3200	6.47	6.47			

								10	610	1210	1610	2000	2600	3200
,					Age						Deflections			
RAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	U1 (mm)	U2 (mm)	U3 (mm)	U4 (mm)	U5 (mm)	U6 (mm)	U7 (mm)
Casting	02-02-16	11:00	0	0	0	0.000	1	_	-	-	1	-	_	1
Before loading	09-02-16	13:05	7	0	0	7.000	0.000	00.0	00.0	0.00	0.00	0.00	0.00	0.00
5min after loading	09-02-16	13:35	7	0	5	7.003	0.003	0.25	2.97	10.12	10.89	11.09	5.65	0.26
1h	09-02-16	14:30	7	1	0	7.042	0.042	0.27	6:36	10.82	11.62	11.77	2.98	0.27
eh	09-02-16	19:30	7	9	0	7.250	0.250	0.28	6.65	11.27	12.10	12.19	6.24	0.27
1	10-02-16	13:30	8	0	0	8.000	1.000	0.29	7.04	11.90	12.78	12.81	6.62	0.28
2	11-02-16	16:00	6	0	0	9.000	2.000	0.30	7.31	12.36	13.27	13.27	68.9	0.28
3	12-02-16	12:00	10	0	0	10.000	3.000	0.31	7.49	12.64	13.57	13.56	20.7	0.29
4	13-02-16	12:00	11	0	0	11.000	4.000	0.31	7.62	12.86	13.80	13.76	7.18	0.29
2	14-02-16	20:00	12	0	0	12.000	5.000	0.32	7.78	13.12	14.08	14.03	7.34	0.29
9	15-02-16	20:00	13	0	0	13.000	000'9	0.33	7.89	13.31	14.28	14.22	7.45	0.29
7	16-02-16	15:00	14	0	0	14.000	7.000	0.33	7.98	13.45	14.43	14.35	7.53	0.29
14	23-02-16	16:00	21	0	0	21.00	14.00	0.37	8.63	14.51	15.55	15.40	8.16	0.30
21	01-03-16	12:00	28	0	0	28.00	21.00	0.39	90.6	15.21	16.30	16.10	8:28	0.31
28	08-03-16	11:00	35	0	0	35.00	28.00	0.41	9.43	15.77	16.90	16.64	8.93	0.31
26	05-04-16	14:00	63	0	0	63.00	26.00	0.46	10.21	17.18	18.39	18.04	9.78	0.32
06	09-02-16	14:00	26	0	0	97.00	90.00	0.50	10.67	17.89	19.12	18.71	10.24	0.33
120	08-06-16	14:00	127	0	0	127.00	120.00	0.50	10.79	18.09	19.35	18.89	10.37	0.33
150	08-07-16	12:00	157	0	0	157.00	150.00	0.52	11.18	18.74	20.02	19.55	10.76	0.33
180	07-08-16	16:00	187	0	0	187.00	180.00	0.54	11.40	19.08	20.39	19.89	10.97	0.33
210	06-09-16	13:00	217	0	0	217.00	210.00	0.55	11.51	19.25	20.56	20.06	11.08	0.34
240	06-10-16	12:00	247	0	0	247.00	240.00	0.55	11.58	19.36	20.67	20.16	11.15	0.34
270	05-11-16	11:00	277	0	0	277.00	270.00	0.57	11.83	19.75	21.09	20.54	11.40	0.34
300	05-12-16	11:00	307	0	0	307.00	300.00	0.58	12.11	20.20	21.57	21.01	11.67	0.35
330	04-01-17	14:00	337	0	0	337.00	330.00	0.59	12.36	20.59	21.98	21.39	11.93	0.35
365	08-02-17	16:00	372	0	0	372.00	365.00	0.61	12.54	20.85	22.25	21.47	12.09	0.35
400	15-03-17	12:00	407	0	0	407.00	400.00	0.61	12.66	20.98	22.40	21.78	12.17	0.35
450	04-05-17	16:00	457	0	0	457.00	450.00	0.62	12.66	21.05	22.47	21.84	12.22	0.35

		0	5m	1h	6h	1d			2d	3d	4d	2d	p9
Leid	Position						C	Position					
gauge		01-03-16	01-03-16	01-03-16	01-03-16	02-03-16	gauge		03-03-16	04-03-16	05-03-16	06-03-16	07-03-16
U 1		9.8	8.55	8.55	8.56	8.56	LU		8.56	8.57	8.57	8.57	8.57
U2	530	9.54	6.38	6.12	5.94	5.66	U2	530	5.49	5.39	5.28	5.2	5.14
N3	1200	28.85	23.2	22.7	22.35	21.85	N3	1200	21.54	21.37	21.28	21.06	20.95
U4	1600	28.65	22.42	21.89	21.49	20.95	U4	1600	20.6	20.42	20.22	20.08	19.97
O.S	2000	28.19	22.39	21.9	21.53	21.02	U5	2000	20.7	20.52	20.35	20.21	20.1
90	2670	11.83	8.26	8.04	7.74	7.43	9N	2670	7.22	7.11	66.9	6.91	6.85
U2	3200	10.73	10.48	10.46	10.46	10.45	10	3200	10.44	10.44	10.42	10.42	10.42
		Р2	14d	21d	28d	26d			P06	120d	150d	180d	210d
Dial gauge	Position (mm)	08-03-16	15-03-16	22-03-16	29-03-16	26-04-16	Dial gauge	Position (mm)	30-05-16	29-06-16	29-07-16	28-08-16	27-09-16
7	0	8.57	8.57	8.57	8.57	8.58	5		8.58	8.58	8.58	8.57	8.57
U2	530	5.1	4.71	4.43	4.22	3.68	U2	530	3.5	3.19	2.9	2.79	2.71
N3	1200	20.88	20.35	19.76	19.42	18.52	N3	1200	18.21	17.75	17.28	17.07	16.93
4O	1600	19.89	19.16	18.65	18.29	17.32	U4	1600	17	16.44	15.96	15.74	15.6
O.S	2000	20.03	19.35	18.88	18.53	17.6	N2	2000	17.29	16.79	16.31	16.1	15.98
90	2670	6.85	6.38	80.9	5.86	5.29	90	2670	5.1	4.79	4.5	4.38	4.29
U2	3200	10.41	10.39	10.38	10.37	10.34	10	3200	10.33	10.31	10.3	10.29	10.28
		240d	270d	P00E	330d	365d			400d	450d			
Dial gauge	Position (mm)	27-10-16	26-11-16	26-12-16	25-01-17	01-03-17	Dial gauge	Position (mm)	25-05-17	25-05-17			
U 1	0	8.57	8.57	8.57	8.57	8.58	U 1		8.58	8.59			
U2	530	2.57	2.32	2.07	1.85	1.83	U2	530	1.74	1.78			
N3	1200	16.72	16.33	15.92	15.56	15.51	N3	1200	15.34	15.43			
U4	1600	15.36	14.94	14.49	14.09	14.06	U4	1600	13.9	13.96			
O5	2000	15.75	15.35	14.93	14.56	14.51	O5	2000	14.37	14.43			
90	2670	4.15	3.89	3.63	3.39	3.35	9N	2670	3.26	3.3			
70	3200	10.27	10.26	10.24	10.23	10.23	L 1	3200	10.22	10.22			

								-10	262	1200	1590	1990	2590	3190
					Age					_	Deflections			
RAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	U1 (mm)	U2 (mm)	U3 (mm)	U4 (mm)	U5 (mm)	U6 (mm)	U7 (mm)
Casting	02-02-16	11:00	0	0	0	0.000	1	-	-	1	1	1	1	ı
Before loading	01-03-16	13:55	28	0	0	28.000	0.000	00.0	00.0	0.00	0.00	0.00	00'0	00'0
5min after loading	01-03-16	14:05	28	0	5	28.003	0.003	0.05	3.16	5.65	6.23	5.80	3.57	0.25
1h	01-03-16	15:00	28	1	0	28.042	0.042	0.05	3.42	6.15	92'9	6.29	3.79	0.27
6h	01-03-16	20:00	28	9	0	28.250	0.250	0.04	3.60	6.50	7.16	99.9	4.09	0.27
1	02-03-16	13:00	58	0	0	29.000	1.000	0.04	3.88	7.00	7.70	7.17	4.40	0.28
2	03-03-16	14:00	30	0	0	30.000	2.000	0.04	4.05	7.31	8.05	7.49	4.61	0.29
3	04-03-16	13:00	31	0	0	31.000	3.000	0.03	4.15	7.48	8.23	79.7	4.72	0.29
4	05-03-16	14:00	32	0	0	32.000	4.000	0.03	4.26	7.57	8.43	7.84	4.84	0.31
2	06-03-16	17:00	33	0	0	33.000	5.000	0.03	4.34	7.79	8.57	7.98	4.92	0.31
9	07-03-16	16:00	34	0	0	34.000	000'9	0.03	4.40	7.90	89.8	8.09	4.98	0.31
7	08-03-16	11:00	32	0	0	35.000	7.000	0.03	4.44	76.7	8.76	8.16	4.98	0.32
14	15-03-16	18:00	42	0	0	42.00	14.00	0.03	4.83	8.50	9.49	8.84	5.45	0.34
21	22-03-16	11:00	49	0	0	49.00	21.00	0.03	5.11	60.6	10.00	9.31	2.75	0.35
28	29-03-16	12:00	99	0	0	26.00	28.00	0.03	5.32	9.43	10.36	99.6	26.9	0.36
99	26-04-16	12:00	84	0	0	84.00	56.00	0.02	5.86	10.33	11.33	10.59	6.54	0.39
06	30-02-16	14:00	118	0	0	118.00	90.00	0.02	6.04	10.64	11.65	10.90	6.73	0.40
120	29-06-16	11:00	148	0	0	148.00	120.00	0.02	6.35	11.10	12.21	11.40	7.04	0.42
150	29-07-16	15:00	178	0	0	178.00	150.00	0.02	6.64	11.57	12.69	11.88	7.33	0.43
180	28-08-16	13:00	208	0	0	208.00	180.00	0.03	6.75	11.78	12.91	12.09	7.45	0.44
210	27-09-16	12:00	238	0	0	238.00	210.00	0.03	6.83	11.92	13.05	12.21	7.54	0.45
240	27-10-16	14:00	268	0	0	268.00	240.00	0.03	6.97	12.13	13.29	12.44	2.68	0.46
270	26-11-16	11:00	298	0	0	298.00	270.00	0.03	7.22	12.52	13.71	12.84	7.94	0.47
300	26-12-16	13:00	328	0	0	328.00	300.00	0.03	7.47	12.93	14.16	13.26	8.20	0.49
330	25-01-17	15:00	358	0	0	358.00	330.00	0.03	69.7	13.29	14.56	13.63	8.44	0.50
365	01-03-17	10:00	393	0	0	393.00	365.00	0.02	7.71	13.34	14.59	13.68	8.48	0.50
400	05-04-17	11:00	428	0	0	428.00	400.00	0.02	7.80	13.51	14.75	13.82	8.57	0.51
450	25-05-17	17:00	478	0	0	478.00	450.00	0.01	7.76	13.42	14.69	13.76	8.53	0.51

p9 pg		22-02-16 23-02-16					17.08 16.93		6.72 6.72	180d 210d		15-08-16 14-09-16			18.5 18.37	12.52 12.37	14.44 14.3	5.57 5.49	6.7 6.71									
4d		9				15.59			6.72	150d		16-07-16 15		7.55	18.65	12.67	14.57	2.66	6.7									
39		20-02-16	6.28	9.37	21.5	15.8	17.44	7.45	6.72	120d		16-06-16	6.21	7.75	18.98	13.04	14.91	5.86	6.7		450d	12-05-17	6.16	6.83	17.47	11.4	13.38	4.9
2d		19-02-16	6.29	9.56	21.79	16.11	17.72	7.63	6.72	90d	:	17-05-16	6.21	7.76	18.99	13.06	14.92	5.86	6.7		400d	23-03-17	6.16	6.84	17.49	11.42	13.4	4.91
-	:	Position (mm)	0	930	1200	1600	2000	2670	3200		Position	(mm)	0	530	1200	1600	2000	2670	3200	I		Position (mm)	0	530	1200	1600	2000	2670
		Dial gauge	U1	U2	n3	U4	O5	90	LO		Dial	gauge	LU	U2	n3	U4	NS	90	U2			Dial	101	U2	N3	U4	US	9
1d		18-02-16	6.29	9.73	22.08	16.44	18.02	7.81	6.72	26d		13-04-16	6.21	7.85	19.12	13.2	15.05	5.93	6.71		909E	16-02-17	6.16	6.84	17.51	11.43	13.42	4 92
- Gh		17-02-16	6.3	10.02	22.55	16.95	18.48	8.09	6.72	28d		16-03-16	6.23	8.21	19.69	13.81	15.62	6.29	6.72		330d	12-01-17	6.17	6.9	17.6	11.53	13.59	4 99
1h		17-02-16	6.31	10.2	22.85	17.29	18.78	8.25	6.72	21d		09-03-16	6.23	8.39	19.95	14.1	15.89	6.47	6.72		900E	13-12-16	6.17	7.04	17.83	11.78	13.76	5 14
5m		17-02-16	6.33	10.38	23.25	17.72	19.18	8.5	6.72	14d		02-03-16	6.24	8.59	20.28	14.45	16.21	6.67	6.72		270d	13-11-16	6.18	7.24	18.16	12.15	14.09	5.36
0		17-02-16	6.53	13.57	28.77	23.85	24.94	10.74	6.81	7 d		24-02-16	6.26	8.96	20.88	15.1	16.8	7.05	6.72		240d	14-10-16	6.19	7.39	18.4	12.33	14.33	5.51
	:	Position (mm)	0	530	1200	1600	2000	2670	3200		Position	(mm)	0	530	1200	1600	2000	2670	3200			Position	0	530	1200	1600	2000	2670
		Dial gauge	1	72	J3	74	O5	90	U2		Dial	gauge	11	U2	N3	U4	U5	90	U2			Dial	1	U2	U3	U4	U5	90

								2	009	1200	1590	2000	2600	3200
,					Age						Deflections			
HVFAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	U1 (mm)	U2 (mm)	U3 (mm)	U4 (mm)	U5 (mm)	U6 (mm)	U7 (mm)
Casting	10-02-16	11:00	0	0	0	0.000	1	_	-	-	1	-	_	1
Before loading	17-02-16	11:55	7	0	0	7.000	0.000	00.0	00.0	0.00	0.00	0.00	00'0	0.00
5min after loading	17-02-16	12:00	2	0	5	7.003	0.003	0.20	3.19	5.52	6.13	5.76	2.24	0.09
1h	17-02-16	13:00	2	1	0	7.042	0.042	0.22	3.37	5.92	6.56	6.16	2.49	0.09
eh	17-02-16	18:00	7	9	0	7.250	0.250	0.23	3.55	6.22	06.9	6.46	2.65	0.09
1	18-02-16	13:00	8	0	0	8.000	1.000	0.24	3.84	69.9	7.41	6.92	2.93	0.09
2	19-02-16	11:00	6	0	0	9.000	2.000	0.24	4.01	6.98	7.74	7.22	3.11	0.09
3	20-02-16	12:00	10	0	0	10.000	3.000	0.25	4.20	7.27	8.05	7.50	3.29	0.09
4	21-02-16	13:00	11	0	0	11.000	4.000	0.25	4.32	7.45	8.26	7.69	3.40	0.09
2	22-02-16	11:00	12	0	0	12.000	5.000	0.26	4.44	7.63	8.45	7.86	3.52	0.09
9	23-02-16	16:00	13	0	0	13.000	000'9	0.27	4.54	7.78	8.61	8.01	3.61	60.0
7	24-02-16	14:00	14	0	0	14.000	7.000	0.27	4.61	7.89	8.75	8.14	3.69	0.09
14	02-03-16	13:00	21	0	0	21.00	14.00	0.29	4.98	8.49	9.40	8.73	4.07	0.09
21	09-03-16	12:00	28	0	0	28.00	21.00	0.30	5.18	8.82	9.75	9.02	4.27	60.0
28	16-03-16	11:00	32	0	0	35.00	28.00	0.30	5.36	9.08	10.04	9.32	4.45	0.09
26	13-04-16	14:00	63	0	0	63.00	26.00	0.32	5.72	9.62	10.65	9.89	4.81	0.10
06	17-05-16	14:00	26	0	0	97.00	90.00	0.32	5.81	9.78	10.79	10.02	4.88	0.11
120	16-06-16	13:00	127	0	0	127.00	120.00	0.32	5.82	9.79	10.81	10.03	4.88	0.11
150	16-07-16	15:00	157	0	0	157.00	150.00	0.33	6.02	10.12	11.18	10.37	5.08	0.11
180	15-08-16	13:00	187	0	0	187.00	180.00	0.34	6.11	10.27	11.33	10.50	5.17	0.11
210	14-09-16	13:00	217	0	0	217.00	210.00	0.34	6.20	10.40	11.48	10.64	5.25	0.10
240	14-10-16	16:00	247	0	0	247.00	240.00	0.34	6.18	10.37	11.52	10.61	5.23	0.10
270	13-11-16	12:00	277	0	0	277.00	270.00	0.35	6.33	10.61	11.70	10.85	5.38	0.10
300	13-12-16	13:00	307	0	0	307.00	300.00	0.36	6.53	10.94	12.07	11.18	2.60	0.10
330	12-01-17	13:00	337	0	0	337.00	330.00	0.36	6.67	11.17	12.32	11.35	5.75	0.10
365	16-02-17	17:00	372	0	0	372.00	365.00	0.37	6.73	11.26	12.42	11.52	5.82	0.10
400	23-03-17	11:00	407	0	0	407.00	400.00	0.37	6.73	11.28	12.43	11.54	5.83	0.10
450	12-05-17	12:00	457	0	0	457.00	450.00	0.37	6.74	11.30	12.45	11.56	5.84	0.10

																			Ì										
p9	15-03-16	11.53	26.58	22.64	25.98	20.21	26.65	10.95	2104	1	05-10-16	11.53	25.32	20.52	23.74	18.11	25.37	10.86											
2d	14-03-16	11.53	26.65	22.76	26.1	20.32	26.73	10.95	1804	5	05-09-16	11.53	25.37	20.59	23.82	18.19	25.42	10.86											
4d	13-03-16	11.53	26.67	22.8	26.16	20.38	26.77	10.95	1504	5	06-08-16	11.53	25.43	20.7	23.96	18.38	25.48	10.88											
3d	12-03-16	11.53	26.72	22.89	26.26	20.46	26.8	10.96	1204	5	07-07-16	11.53	25.55	20.9	24.14	18.5	25.6	10.88		450d	02.06.17	02-00-17	11.53	24.57	19.31	22.43	16.9	24.65	10.84
2d	11-03-16	11.54	26.79	23.01	26.4	20.59	26.88	10.96	909	5	07-06-16	11.53	25.77	21.28	24.54	18.86	25.84	10.9		400d	13 04 17	13-04-17	11.53	24.57	19.29	22.4	16.89	24.63	10.84
	Position (mm)	0	530	1200	1600	2000	2670	3200	_		Position (mm)	0	530	1200	1600	2000	2670	3200	_		Position	(mm)	0	530	1200	1600	2000	2670	3200
	Dial gauge	N1	N2	N3	U4	O2	90	U2			Dial gauge	U1	N2	N3	U4	O2	90	U2			Dial	gauge	U	N2	N3	U4	O2	90	N2
П																													
	16			~		•				Ī	16	~	_			•	•				7	, ,			~		.0	21	.0
1d	10-03-16	11.54	26.85	23.13	26.5	20.69	26.97	10.96	564	5	04-05-16	11.53	25.84	21.41	24.67	18.99	26.09	10.9	- 1	365d	00 03 17	09-00-17	11.53	24.66	19.43	22.55	17.05	24.72	10.85
6h 1d	09-03-16 10-03-16					20.85 20.69			28d 56d	1	06-04-16 04-05-16	11.53 11.53						10.93 10.9	ŀ	330d 365d	02 02 17 00 03 17		11.53 11.53		19.5 19.43			24.91 24.72	
H	, and the second	11.54	26.94	23.28	26.67		27.05	10.97	-	5		11.53	26.1	21.85		19.42	26.19	10.93	-	1		02-02-17		24.7	19.5	22.65	17.12	24.91	10.85
(9h	09-03-16	11.54 11.54	27.02 26.94	23.45 23.28	26.85 26.67	20.85	27.15 27.05	10.98	780	2	06-04-16	11.53	26.35 26.1	22.05 21.85	25.14	19.62 19.42	26.29 26.19	10.93 10.93		330d	02 02 14	71-20-20	11.53 11.53	24.84 24.7	19.74 19.5	22.89 22.65	17.12	24.91 24.91	10.85
1h 6h	09-03-16 09-03-16	11.54 11.54 11.54	27.14 27.02 26.94	23.69 23.45 23.28	27.11 26.85 26.67	21.02 20.85	27.29 27.15 27.05	10.98 10.98 10.97	214 284	33	30-03-16 06-04-16	11.53 11.53 11.53	26.35 26.35 26.1	22.26 22.05 21.85	25.57 25.35 25.14	19.62 19.42	26.43 26.29 26.19	10.94 10.93 10.93		300d 330d	71 00 00 71 10 00	03-01-17	11.53 11.53	24.99 24.84 24.7	19.74 19.5	23.16 22.89 22.65	17.58 17.35 17.12	24.91 24.91	10.85 10.85 10.85
5m 1h 6h	09-03-16 09-03-16 09-03-16	11.66 11.54 11.54	29.15 27.14 27.02 26.94	27.24 23.69 23.45 23.28	31.15 27.11 26.85 26.67	21.27 21.02 20.85	29.56 27.29 27.15 27.05	11.19 10.98 10.97	144 244 284	33	23-03-16 30-03-16 06-04-16	11.53 11.53 11.53 11.53	26.55 26.35 26.35 26.1	22.59 22.26 22.05 21.85	25.93 25.57 25.35 25.14	19.82 19.62 19.42	26.63 26.43 26.29 26.19	10.95 10.94 10.93 10.93		270d 300d 330d	04 12 46 03 01 17 02 02 17	03-01-17	11.53 11.53 11.53	25.18 24.99 24.84 24.7	20.28 19.98 19.74 19.5	23.47 23.16 22.89 22.65	17.88 17.58 17.35 17.12	25.22 25.13 24.91 24.91	10.85 10.85 10.85 10.85

								ç-	262	1195	1595	1990	2590	3185
					Age						Deflections			
HVFAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	U1 (mm)	U2 (mm)	U3 (mm)	U4 (mm)	U5 (mm)	U6 (mm)	U7 (mm)
Casting	10-02-16	11:00	0	0	0	0.000	1	-	_	1	1	-	_	ı
Before loading	09-03-16	13:40	28	0	0	28.000	0.000	00.0	0.00	0.00	0.00	0.00	00'0	0.00
5min after loading	09-03-16	13:50	28	0	5	28.003	0.003	0.12	2.01	3.55	4.04	3.78	2.27	0.21
1h	09-03-16	14:45	28	1	0	28.042	0.042	0.12	2.13	3.79	4.30	4.03	2.41	0.21
9h	09-03-16	19:45	28	9	0	28.250	0.250	0.12	2.21	3.96	4.48	4.20	2.51	0.22
1	10-03-16	15:00	29	0	0	29.000	1.000	0.12	2.30	4.11	4.65	4.36	2.59	0.23
2	11-03-16	15:00	30	0	0	30.000	2.000	0.12	2.36	4.23	4.75	4.46	2.68	0.23
က	12-03-16	20:00	31	0	0	31.000	3.000	0.13	2.43	4.35	4.89	4.59	2.76	0.23
4	13-03-16	18:00	32	0	0	32.000	4.000	0.13	2.48	4.44	4.99	4.67	2.79	0.24
5	14-03-16	9:00	33	0	0	33.000	5.000	0.13	2.50	4.48	5.05	4.73	2.83	0.24
9	15-03-16	18:00	34	0	0	34.000	000'9	0.13	2.57	4.60	5.17	4.84	2.91	0.24
7	16-03-16	11:00	32	0	0	35.000	7.000	0.13	2.60	4.65	5.22	4.89	2.93	0.24
14	23-03-16	12:00	42	0	0	42.00	14.00	0.13	2.80	4.98	5.58	5.23	3.13	0.25
21	30-03-16	15:00	49	0	0	49.00	21.00	0.13	2.80	5.19	5.80	5.43	3.27	0.26
28	06-04-16	12:00	99	0	0	26.00	28.00	0.13	3.05	5.39	6.01	5.63	3.37	0.26
99	04-05-16	14:00	84	0	0	84.00	56.00	0.13	3.31	5.83	6.48	6.06	3.47	0.29
06	07-06-16	12:00	118	0	0	118.00	90.00	0.13	3.38	5.96	6.61	6.19	3.72	0.29
120	07-07-16	13:00	148	0	0	148.00	120.00	0.13	3.60	6.34	7.01	6.55	3.96	0.31
150	06-08-16	16:00	178	0	0	178.00	150.00	0.13	3.72	6.54	7.19	6.67	4.08	0.31
180	05-09-16	13:00	208	0	0	208.00	180.00	0.13	3.78	6.65	7.33	6.86	4.14	0.33
210	05-10-16	12:00	238	0	0	238.00	210.00	0.13	3.83	6.72	7.41	6.94	4.19	0.33
240	04-11-16	11:00	268	0	0	268.00	240.00	0.13	3.97	96.9	7.68	7.17	4.34	0.34
270	04-12-16	11:00	298	0	0	298.00	270.00	0.13	4.16	7.26	7.99	7.47	4.43	0.34
300	03-01-17	14:00	328	0	0	328.00	300.00	0.13	4.31	7.50	8.26	7.70	4.65	0.34
330	02-02-17	13:00	358	0	0	358.00	330.00	0.13	4.45	7.74	8.50	7.93	4.65	0.34
365	09-03-17	11:00	393	0	0	393.00	365.00	0.13	4.49	7.81	8.60	8.00	4.84	0.34
400	13-04-17	10:00	428	0	0	428.00	400.00	0.13	4.58	7.95	8.75	8.16	4.93	0.35
450	02-06-17		478	0	0	478.00	450.00	0.13	4.58	7.93	8.72	8.15	4.91	0.35

Experimental Measurements:Beam Strains

1 870 970 1 2 -0.728 -0.661 -0.655 -0.65 -0.647 -0.647 2 1150 1250 3 4 -0.018 0.001 0.005 0.008 0.007 0.009 3 1250 1350 4 5 -0.248 -0.144 -0.135 -0.133 -0.128 -0.127 4 1350 1450 5 6 -0.122 0.066 0.079 0.085 0.096 0.097 5 1450 1550 6 7 -0.205 -0.036 -0.027 -0.021 -0.012 -0.01 6 1550 1650 7 8 0.099 0.082 0.084 0.085 0.081 0.082 7 1650 1750 8 9 -0.016 0.089 0.097 0.1 0.107 0.109 8 1750 1850 9 10 -0.596 -0.457 -0.448 -0.446 -0.438 -0.436 9 1850 1950 10 11 -0.422 -0.276 -0.266 -0.261 -0.253 -0.251 10 1950 2050 11 2 -0.216 -0.063 -0.053 -0.049 -0.042 -0.039 11 2230 2330 13 14 -0.173 0.029 0.042 0.052 0.063 0.065		NAC	7			0	5m	1h	6h	1d	2d
1 870 970 1 2 -0.728 -0.661 -0.655 -0.65 -0.647 -0.647 2 1150 1250 3 4 -0.018 0.001 0.005 0.008 0.007 0.009 3 1250 1350 4 5 -0.248 -0.144 -0.135 -0.133 -0.128 -0.127 4 1350 1450 5 6 -0.122 0.066 0.079 0.085 0.096 0.097 5 1450 1550 6 7 -0.205 -0.036 -0.027 -0.021 -0.012 -0.01 6 1550 1650 7 8 0.099 0.082 0.084 0.085 0.081 0.082 7 1650 1750 8 9 -0.016 0.089 0.097 0.1 0.107 0.109 8 1750 1850 9 10 -0.596 -0.457 -0.448 -0.446 -0.438 -0.436 9 1850 1950 10 11 -0.422 -0.276 -0.266 -0.261 -0.253 -0.251 10 1950 2050 11 2 -0.216 -0.063 -0.053 -0.049 -0.042 -0.039 11 2230 2330 13 14 -0.173 0.029 0.042 0.052 0.063 0.065		Α	BOTT	OM							
2		From (mm)	To (mm)	Dis	sks	01-02-16	01-02-16	01-02-16	01-02-16	02-02-16	03-02-16
3 1250 1350 4 5 -0.248 -0.144 -0.135 -0.133 -0.128 -0.127 4 1350 1450 5 6 -0.122 0.066 0.079 0.085 0.096 0.097 5 1450 1550 6 7 -0.205 -0.306 -0.027 -0.021 -0.012 -0.016 6 1550 1650 7 8 0.099 0.082 0.084 0.085 0.081 0.082 7 1650 1750 8 9 -0.016 0.089 0.097 0.1 0.107 0.109 8 1750 1850 9 10 -0.596 -0.457 -0.448 -0.446 -0.438 -0.436 9 1850 1950 10 11 -0.422 -0.276 -0.266 -0.261 -0.253 -0.251 10 1950 2050 11 12 -0.216 -0.063 -0.053 -0.049 -0.042 -0.039 11 2230 2330 13 14 -0.173 0.029 0.042 0.052 0.063 0.065 A	1	870	970	1	2	-0.728	-0.661	-0.655	-0.65	-0.647	-0.647
4 1350 1450 5 6 -0.122 0.066 0.079 0.085 0.096 0.097 5 1450 1550 6 7 -0.205 -0.036 -0.027 -0.021 -0.012 -0.01 6 1550 1650 7 8 0.099 0.082 0.084 0.085 0.081 0.082 7 1650 1750 8 9 -0.016 0.089 0.097 0.1 0.107 0.109 8 1750 1850 9 10 -0.596 -0.457 -0.448 -0.446 -0.438 -0.436 9 1850 1950 10 11 -0.422 -0.276 -0.266 -0.261 -0.253 -0.251 10 1950 2050 11 12 -0.216 -0.063 -0.053 -0.049 -0.042 -0.039 11 2230 2330 13 14 -0.173 0.029 0.042 0.052	2	1150	1250	3	4	-0.018	0.001	0.005	0.008	0.007	0.009
To To To To To To To To	3	1250	1350	4	5	-0.248	-0.144	-0.135	-0.133	-0.128	-0.127
6 1550 1650 7 8 0.099 0.082 0.084 0.085 0.081 0.082 7 1650 1750 8 9 -0.016 0.089 0.097 0.1 0.107 0.109 8 1750 1850 9 10 -0.596 -0.457 -0.448 -0.446 -0.438 -0.438 9 1850 1950 10 11 -0.422 -0.276 -0.266 -0.261 -0.253 -0.251 10 1950 2050 11 12 -0.216 -0.063 -0.053 -0.049 -0.042 -0.039 11 2230 2330 13 14 -0.173 0.029 0.042 0.052 0.063 0.065 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.121 -0.159 -0.168 -0.164 -0.167 -0.165 13 1150 1250 17	4	1350	1450	5	6	-0.122	0.066	0.079	0.085	0.096	0.097
Top	5	1450	1550	6	7	-0.205	-0.036	-0.027	-0.021	-0.012	-0.01
R	6	1550	1650	7	8	0.099	0.082	0.084	0.085	0.081	0.082
9	7	1650	1750	8	9	-0.016	0.089	0.097	0.1	0.107	0.109
10	8	1750	1850	9	10	-0.596	-0.457	-0.448	-0.446	-0.438	-0.436
11 2230 2330 13 14 -0.173 0.029 0.042 0.052 0.063 0.065 A	9	1850	1950	10	11	-0.422	-0.276	-0.266	-0.261	-0.253	-0.251
R	10	1950	2050	11	12	-0.216	-0.063	-0.053	-0.049	-0.042	-0.039
From (mm) To (mm) Disks	11	2230	2330	13	14	-0.173	0.029	0.042	0.052	0.063	0.065
12		Α	TO	Р							
13		From (mm)	To (mm)	Dis	sks						
14 1250 1350 18 19 -0.229 -0.28 -0.288 -0.286 -0.293 -0.298 15 1350 1450 19 20 -0.255 -0.303 -0.314 -0.312 -0.319 -0.324 16 1450 1550 20 21 0.057 0.003 -0.008 -0.007 -0.013 -0.02 17 1550 1650 21 22 0.025 -0.028 -0.037 -0.037 -0.093 -0.049 18 1650 1750 22 23 -0.093 -0.156 -0.178 -0.181 -0.192 -0.198 19 1750 1850 23 24 -0.146 -0.185 -0.186 -0.182 -0.19 -0.194 20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 </td <td>12</td> <td>870</td> <td>970</td> <td>15</td> <td>16</td> <td>-0.121</td> <td>-0.159</td> <td>-0.168</td> <td>-0.164</td> <td>-0.167</td> <td>-0.165</td>	12	870	970	15	16	-0.121	-0.159	-0.168	-0.164	-0.167	-0.165
15 1350 1450 19 20 -0.255 -0.303 -0.314 -0.312 -0.319 -0.324 16 1450 1550 20 21 0.057 0.003 -0.008 -0.007 -0.013 -0.02 17 1550 1650 21 22 0.025 -0.028 -0.037 -0.037 -0.093 -0.049 18 1650 1750 22 23 -0.093 -0.156 -0.178 -0.181 -0.192 -0.198 19 1750 1850 23 24 -0.146 -0.185 -0.186 -0.182 -0.19 -0.194 20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.539 -0.241 22 230 2330 27 28 -0.177 -0.221 -0.234 </td <td>13</td> <td>1150</td> <td>1250</td> <td>17</td> <td>18</td> <td>-0.237</td> <td>-0.288</td> <td>-0.295</td> <td>-0.295</td> <td>-0.304</td> <td>-0.309</td>	13	1150	1250	17	18	-0.237	-0.288	-0.295	-0.295	-0.304	-0.309
16 1450 1550 20 21 0.057 0.003 -0.008 -0.007 -0.013 -0.02 17 1550 1650 21 22 0.025 -0.028 -0.037 -0.037 -0.093 -0.049 18 1650 1750 22 23 -0.093 -0.156 -0.178 -0.181 -0.192 -0.198 19 1750 1850 23 24 -0.146 -0.185 -0.186 -0.182 -0.19 -0.194 20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.539 -0.547 22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 From (mm) To (mm) Disks 23 1450 1550 29 30 </td <td>14</td> <td>1250</td> <td>1350</td> <td>18</td> <td>19</td> <td>-0.229</td> <td>-0.28</td> <td>-0.288</td> <td>-0.286</td> <td>-0.293</td> <td>-0.298</td>	14	1250	1350	18	19	-0.229	-0.28	-0.288	-0.286	-0.293	-0.298
17 1550 1650 21 22 0.025 -0.028 -0.037 -0.037 -0.093 -0.049 18 1650 1750 22 23 -0.093 -0.156 -0.178 -0.181 -0.192 -0.198 19 1750 1850 23 24 -0.146 -0.185 -0.186 -0.182 -0.19 -0.194 20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.539 -0.547 22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 From (mm) To (mm) Disks 23 1450 1550 29 30 -0.266 -0.276 -0.287 -0.284 -0.289 -0.292 24 1550 1650 30 3	15	1350	1450	19	20	-0.255	-0.303	-0.314	-0.312	-0.319	-0.324
18 1650 1750 22 23 -0.093 -0.156 -0.178 -0.181 -0.192 -0.198 19 1750 1850 23 24 -0.146 -0.185 -0.186 -0.182 -0.19 -0.194 20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.539 -0.547 22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 From (mm) To (mm) Disks 23 1450 1550 29 30 -0.266 -0.276 -0.287 -0.284 -0.289 -0.292 24 1550 1650 30 31 0.004 0.005 -0.006 -0.005 -0.01 -0.012 25 1650 1750 31 32<		1450	1550	20	21	0.057	0.003	-0.008	-0.007	-0.013	-0.02
19	17	1550	1650	21	22	0.025	-0.028	-0.037	-0.037	-0.093	-0.049
20 1850 1950 24 25 -0.478 -0.524 -0.536 -0.533 -0.539 -0.544 21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.539 -0.547 22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 From (mm) To (mm) Disks -0.276 -0.287 -0.284 -0.289 -0.292 24 1550 1650 30 31 0.004 0.005 -0.006 -0.005 -0.01 -0.012 25 1650 1750 31 32 0.322 0.32 0.307 0.31 0.309 0.303 26 1450 1550 34 35 0.171 0.221 0.209 0.214 0.213 0.213	18	1650	1750	22	23	-0.093	-0.156	-0.178	-0.181	-0.192	-0.198
21 1950 2050 25 26 -0.459 -0.523 -0.532 -0.532 -0.532 -0.539 -0.547 22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 From (mm) To (mm) Disks	19	1750	1850	23	24	-0.146	-0.185	-0.186	-0.182	-0.19	-0.194
22 2230 2330 27 28 -0.177 -0.221 -0.234 -0.23 -0.235 -0.241 A MIDDLE From (mm) To (mm) Disks -0.276 -0.287 -0.284 -0.289 -0.292 23 1450 1550 29 30 -0.266 -0.276 -0.287 -0.284 -0.289 -0.292 24 1550 1650 30 31 0.004 0.005 -0.006 -0.005 -0.01 -0.012 25 1650 1750 31 32 0.322 0.32 0.307 0.31 0.309 0.303 26 1450 1550 33 34 -0.299 -0.28 -0.295 -0.29 -0.29 -0.294 27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213	20	1850	1950	24	25	-0.478	-0.524	-0.536	-0.533	-0.539	-0.544
A MIDDLE Secondary MIDDLE Secondary MIDDLE	21	1950	2050	25	26	-0.459	-0.523	-0.532	-0.532	-0.539	-0.547
From (mm) To (mm) Disks State of the process of the	22	2230			28	-0.177	-0.221	-0.234	-0.23	-0.235	-0.241
23 1450 1550 29 30 -0.266 -0.276 -0.287 -0.284 -0.289 -0.292 24 1550 1650 30 31 0.004 0.005 -0.006 -0.005 -0.01 -0.012 25 1650 1750 31 32 0.322 0.32 0.307 0.31 0.309 0.303 26 1450 1550 33 34 -0.299 -0.28 -0.295 -0.29 -0.29 -0.294 27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213		Α	MIDE								
24 1550 1650 30 31 0.004 0.005 -0.006 -0.005 -0.01 -0.012 25 1650 1750 31 32 0.322 0.32 0.307 0.31 0.309 0.303 26 1450 1550 33 34 -0.299 -0.28 -0.295 -0.29 -0.29 -0.294 27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213		_	- (
25 1650 1750 31 32 0.322 0.32 0.307 0.31 0.309 0.303 26 1450 1550 33 34 -0.299 -0.28 -0.295 -0.29 -0.29 -0.294 27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213	23	1450	1550			-0.266	-0.276	-0.287	-0.284	-0.289	-0.292
26 1450 1550 33 34 -0.299 -0.28 -0.295 -0.29 -0.29 -0.294 27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213		1550	1650					-0.006	-0.005	-0.01	
27 1550 1650 34 35 0.171 0.221 0.209 0.214 0.213 0.213		1650	1750	31	32	0.322	0.32	0.307	0.31	0.309	0.303
	_	1450	1550	33	34	-0.299	-0.28	-0.295	-0.29	-0.29	-0.294
28 1650 1750 35 36 -0.158 -0.123 -0.135 -0.13 -0.132 -0.133		1550	1650		35	0.171	0.221	0.209	0.214	0.213	0.213
:::: 55 55 55 5::55 5::55 5::55	28	1650	1750	35	36	-0.158	-0.123	-0.135	-0.13	-0.132	-0.133

					0	5m	1h	6h	1d	2d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	01-02-16	01-02-16	01-02-16	01-02-16	02-02-16	03-02-16
1	870	970	1	2	0.014	0.087	0.091	0.095	0.101	0.099
2	1150	1250	3	4	-0.692	-0.543	-0.536	-0.533	-0.526	-0.525
3	1250	1350	4	5	-0.305	-0.168	-0.158	-0.153	-0.146	-0.149
4	1350	1450	5	6	0.989	1.129	1.134	1.139	1.147	1.146
5	1450	1550	6	7	0.359	0.468	0.473	0.477	0.483	0.479
6	1550	1650	7	8	-0.128	0.02	0.027	0.03	0.039	0.036
7	1650	1750	8	9	-0.469	-0.429	-0.423	-0.421	-0.418	-0.419
8	1750	1850	9	10	-0.185	-0.026	-0.019	-0.013	-0.005	-0.008
9	1850	1950	10	11	-0.321	-0.337	-0.336	-0.334	-0.341	-0.345
10	1950	2050	11	12	-0.032	0.128	0.138	0.144	0.15	0.154
11	2230	2330	13	14	-0.18	-0.098	-0.092	-0.091	-0.083	-0.087
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.232	-0.273	-0.279	0.278	-0.281	-0.289
13	1150	1250	17	18	-0.27	-0.324	-0.33	-0.341	-0.336	-0.341
14	1250	1350	18	19	-1.107	-1.157	-1.164	-1.162	-1.165	-1.176
15	1350	1450	19	20	-0.502	-0.554	-0.553	-0.56	-0.565	-0.566
16	1450	1550	20	21	0.045	-0.009	-0.013	-0.014	-0.019	-0.026
17	1550	1650	21	22	-0.217	-0.277	-0.279	-0.286	-0.29	-0.298
18	1650	1750	22	23	-0.201	-0.245	-0.246	-0.249	-0.255	-0.261
19	1750	1850	23	24	-0.222	-0.273	-0.274	-0.277	-0.281	-0.288
20	1850	1950	24	25	-0.276	-0.336	-0.34	-0.345	-0.349	-0.358
21	1950	2050	25	26	-0.048	-0.097	-0.102	-0.102	-0.108	-0.115
22	2230	2330	27	28	-0.178	-0.217	-0.221	-0.223	-0.228	-0.234
	В	MIDD)LE							
	From (mm)	To (mm)		sks						
23	1450	1550	29	30	-0.475	-0.493	-0.495	-0.496	-0.5	-0.505
24	1550	1650	30	31	-0.21	-0.247	-0.25	-0.253	-0.256	-0.261
25	1650	1750	31	32	-0.217	-0.217	-0.218	-0.218	-0.222	-0.227
26	1450	1550	33	34	-0.425	-0.404	-0.403	-0.404	-0.404	-0.407
27	1550	1650	34	35	-0.215	-0.191	-0.188	-0.189	-0.19	-0.192
28	1650	1750	35	36	-0.199	-0.2	-0.202	-0.202	-0.203	-0.206

	NAC	7			3d	4d	5d	6d	7d	14d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	04-02-16	05-02-16	06-02-16	07-02-16	08-02-16	15-02-16
1	870	970	1	2	-0.65	-0.643	-0.643	-0.642	-0.642	-0.638
2	1150	1250	3	4	0.002	0.01	0.01	0.01	0.009	0.012
3	1250	1350	4	5	-0.13	-0.123	-0.123	-0.121	-0.123	-0.115
4	1350	1450	5	6	0.099	0.107	0.109	0.116	0.115	0.125
5	1450	1550	6	7	-0.011	-0.003	0.001	0.002	0.001	0.01
6	1550	1650	7	8	0.072	0.076	0.072	0.074	0.072	0.073
7	1650	1750	8	9	0.103	0.111	0.113	0.115	0.115	0.12
8	1750	1850	9	10	-0.439	-0.433	-0.433	-0.427	-0.43	-0.425
9	1850	1950	10	11	-0.253	-0.246	-0.244	-0.239	-0.241	-0.233
10	1950	2050	11	12	-0.043	-0.036	-0.033	-0.03	-0.029	-0.026
11	2230	2330	13	14	0.069	0.077	0.081	0.087	0.087	0.096
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.15	-0.149	-0.151	-0.157	-0.155	-0.166
13	1150	1250	17	18	-0.314	-0.315	-0.316	-0.322	-0.321	-0.334
14	1250	1350	18	19	-0.303	-0.302	-0.305	-0.308	-0.308	-0.322
15	1350	1450	19	20	-0.332	-0.334	-0.337	-0.341	-0.34	-0.355
16	1450	1550	20	21	-0.027	-0.029	-0.031	-0.036	-0.036	-0.052
17	1550	1650	21	22	-0.054	-0.055	-0.054	-0.061	-0.063	-0.074
18	1650	1750	22	23	-0.202	-0.206	-0.206	-0.209	-0.213	-0.226
19	1750	1850	23	24	-0.201	-0.202	-0.205	-0.208	-0.209	-0.222
20	1850	1950	24	25	-0.549	-0.552	-0.551	-0.553	-0.558	-0.57
21	1950	2050	25	26	-0.552	-0.556	-0.556	-0.561	-0.565	-0.58
22	2230	2330	27	28	-0.245	-0.248	-0.247	-0.253	-0.256	0.267
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.296	-0.302	-0.302	-0.304	-0.306	-0.315
24	1550	1650	30	31	-0.017	-0.018	-0.017	-0.021	-0.023	-0.03
25	1650	1750	31	32	0.299	0.298	0.297	0.294	0.292	0.285
26	1450	1550	33	34	-0.296	-0.297	-0.295	-0.298	-0.298	-0.306
27	1550	1650	34	35	0.212	0.211	0.213	0.213	0.214	0.207
28	1650	1750	35	36	-0.135	-0.136	-0.136	-0.136	-0.138	-0.145

_					3d	4d	5d	6d	7d	14d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	04-02-16	05-02-16	06-02-16	07-02-16	08-02-16	15-02-16
1	870	970	1	2	0.103	0.108	0.107	0.111	0.108	0.103
2	1150	1250	3	4	-0.524	-0.516	-0.515	-0.511	-0.512	-0.507
3	1250	1350	4	5	-0.146	-0.142	-0.141	-0.135	-0.137	-0.131
4	1350	1450	5	6	1.15	1.154	1.154	1.16	1.16	1.161
5	1450	1550	6	7	0.484	0.484	0.483	0.489	0.487	0.489
6	1550	1650	7	8	0.04	0.043	0.044	0.053	0.049	0.053
7	1650	1750	8	9	-0.417	-0.418	-0.42	-0.413	-0.416	-0.418
8	1750	1850	9	10	-0.002	0.001	0	0.009	0.005	0.009
9	1850	1950	10	11	-0.347	-0.351	-0.355	-0.351	-0.354	-0.362
10	1950	2050	11	12	0.162	0.162	0.166	0.173	0.173	0.177
11	2230	2330	13	14	-0.081	-0.082	-0.079	-0.076	-0.077	-0.077
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.292	-0.297	-0.296	-0.297	-0.301	-0.312
13	1150	1250	17	18	-0.347	-0.347	-0.35	-0.351	-0.354	-0.365
14	1250	1350	18	19	-1.182	-1.183	-1.184	-1.188	-1.194	-1.206
15	1350	1450	19	20	-0.577	-0.578	-0.581	-0.583	-0.588	-0.6
16	1450	1550	20	21	-0.031	-0.034	-0.038	-0.038	-0.046	-0.055
17	1550	1650	21	22	-0.302	-0.302	-0.306	-0.307	-0.315	-0.326
18	1650	1750	22	23	-0.265	-0.267	-0.272	-0.271	-0.274	-0.285
19	1750	1850	23	24	-0.292	-0.293	-0.296	-0.298	-0.303	-0.312
20	1850	1950	24	25	-0.361	-0.362	-0.367	-0.367	-0.372	-0.385
21	1950	2050	25	26	-0.119	-0.119	-0.124	-0.123	-0.129	-0.143
22	2230	2330	27	28	-0.239	-0.239	-0.241	-0.244	-0.25	-0.261
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.508	-0.509	-0.512	-0.512	-0.517	-0.526
24	1550	1650	30	31	-0.266	-0.265	-0.27	-0.269	-0.275	-0.283
25	1650	1750	31	32	-0.231	-0.229	-0.231	-0.231	-0.236	-0.244
26	1450	1550	33	34	-0.409	-0.407	-0.409	-0.408	-0.413	-0.418
27	1550	1650	34	35	-0.195	-0.193	-0.196	-0.195	-0.197	-0.205
28	1650	1750	35	36	-0.209	-0.207	-0.207	-0.209	-0.213	-0.216

_	NAC	7			21d	28d	56d	90d	120d	150d
	Α	BOTT	OM.							
	From (mm)	To (mm)	Dis	sks	22-02-16	29-02-16	28-03-16	01-05-16	31-05-16	30-06-16
1	870	970	1	2	-0.641	-0.64	-0.639	-0.638	-0.645	-0.64
2	1150	1250	3	4	0.007	0.007	0.006	0.005	0.001	0.006
3	1250	1350	4	5	-0.121	-0.118	-0.113	-0.112	-0.116	-0.112
4	1350	1450	5	6	0.123	0.128	0.138	0.137	0.133	0.139
5	1450	1550	6	7	0.007	0.007	0.017	0.02	0.013	0.019
6	1550	1650	7	8	0.063	0.06	0.057	0.057	0.053	0.058
7	1650	1750	8	9	0.117	0.118	0.124	0.124	0.12	0.125
8	1750	1850	9	10	-0.427	-0.425	-0.42	-0.424	-0.43	-0.423
9	1850	1950	10	11	-0.237	-0.234	-0.226	-0.22	-0.234	-0.226
10	1950	2050	11	12	-0.027	-0.025	-0.019	-0.012	-0.02	-0.013
11	2230	2330	13	14	0.098	0.104	0.117	0.119	0.111	0.118
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.18	-0.185	-0.202	-0.21	-0.216	-0.216
13	1150	1250	17	18	-0.349	-0.353	-0.372	-0.382	-0.387	-0.388
14	1250	1350	18	19	-0.332	-0.336	-0.354	-0.361	-0.366	-0.368
15	1350	1450	19	20	-0.369	-0.375	-0.395	-0.405	-0.409	-0.412
16	1450	1550	20	21	-0.064	-0.069	-0.09	-0.1	-0.106	-0.11
17	1550	1650	21	22	-0.085	-0.092	-0.109	-0.118	-0.121	-0.12
18	1650	1750	22	23	-0.237	-0.244	-0.264	-0.271	-0.276	-0.279
19	1750	1850	23	24	-0.236	-0.241	-0.26	-0.27	-0.27	-0.273
20	1850	1950	24	25	-0.581	-0.588	-0.606	-0.614	-0.614	-0.619
21	1950	2050	25	26	-0.592	-0.6	-0.624	-0.63	-0.635	-0.639
22	2230	2330	27	28	-0.281	-0.287	-0.304	-0.313	-0.317	-0.321
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.325	-0.332	-0.35	-0.357	-0.36	-0.362
24	1550	1650	30	31	-0.038	-0.042	-0.053	-0.062	-0.065	-0.068
25	1650	1750	31	32	0.275	0.273	0.259	0.251	0.249	0.248
26	1450	1550	33	34	-0.313	-0.315	-0.325	-0.331	-0.332	-0.335
27	1550	1650	34	35	0.203	0.2	0.194	0.188	0.185	0.185
28	1650	1750	35	36	-0.152	-0.154	-0.163	-0.167	-0.172	-0.172

_					21d	28d	56d	90d	120d	150d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	22-02-16	29-02-16	28-03-16	01-05-16	31-05-16	30-06-16
1	870	970	1	2	0.101	0.112	0.117	0.118	0.114	0.116
2	1150	1250	3	4	-0.508	-0.505	-0.498	-0.503	-0.507	-0.504
3	1250	1350	4	5	-0.138	-0.129	-0.126	-0.124	-0.128	-0.125
4	1350	1450	5	6	1.158	1.162	1.17	1.169	1.163	1.172
5	1450	1550	6	7	0.488	0.491	0.496	0.496	0.493	0.494
6	1550	1650	7	8	0.051	0.054	0.063	0.062	0.058	0.062
7	1650	1750	8	9	-0.419	-0.417	-0.415	-0.414	-0.416	-0.413
8	1750	1850	9	10	0.012	0.015	0.024	0.023	0.019	0.02
9	1850	1950	10	11	-0.371	-0.372	-0.378	-0.38	-0.379	-0.382
10	1950	2050	11	12	0.181	0.189	0.202	0.201	0.2	0.206
11	2230	2330	13	14	-0.08	-0.078	-0.072	-0.073	-0.075	-0.074
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.325	-0.327	-0.339	-0.353	-0.355	-0.357
13	1150	1250	17	18	-0.377	-0.383	-0.398	-0.412	-0.418	-0.419
14	1250	1350	18	19	-1.221	-1.224	-1.239	-1.251	-1.256	-1.256
15	1350	1450	19	20	-0.613	-0.617	-0.633	-0.642	-0.645	-0.648
16	1450	1550	20	21	-0.067	-0.072	-0.091	-0.102	-0.105	-0.111
17	1550	1650	21	22	-0.34	-0.345	-0.362	-0.373	-0.378	-0.379
18	1650	1750	22	23	-0.298	-0.303	-0.318	-0.332	-0.336	-0.339
19	1750	1850	23	24	-0.324	-0.33	-0.344	-1.353	-1.358	-1.36
20	1850	1950	24	25	-0.397	-0.404	-0.419	-0.432	-0.436	-0.44
21	1950	2050	25	26	-0.155	-0.16	-0.175	-0.19	-0.193	-0.195
22	2230	2330	27	28	-0.274	-0.28	-0.295	-0.306	-0.309	-0.313
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.536	-0.541	-0.554	-0.563	-0.565	-0.569
24	1550	1650	30	31	-0.296	-0.299	-0.31	-0.32	-0.323	-0.327
25	1650	1750	31	32	-0.253	-0.257	-0.265	-0.274	-0.277	-0.28
26	1450	1550	33	34	-0.425	-0.425	-0.434	-0.438	-0.441	-0.443
27	1550	1650	34	35	-0.213	-0.214	-0.22	-0.227	-0.232	-0.233
28	1650	1750	35	36	-0.225	-0.224	-0.23	-0.235	-0.236	-0.238

	NAC	\ 7		J	400.1	040.1	0.40.1	070	000.1	000.1
	NAC				180d	210d	240d	270d	300d	330d
	Α	BOTT								
	From (mm)	To (mm)	_	sks	30-07-16	29-08-16	28-09-16	28-10-16	27-11-16	27-12-16
1	870	970	1	2	-0.642	-0.642	-0.645	-0.643	-0.64	-0.634
2	1150	1250	3	4	0.005	0.005	0.004	0.005	0.007	0.01
3	1250	1350	4	5	-0.113	-0.113	-0.114	-0.113	-0.111	-0.106
4	1350	1450	5	6	0.14	0.14	0.138	0.142	0.146	0.152
5	1450	1550	6	7	0.021	0.0018	0.016	0.02	0.023	0.029
6	1550	1650	7	8	0.053	0.05	0.052	0.052	0.052	0.054
7	1650	1750	8	9	0.123	0.122	0.12	0.125	0.127	0.131
8	1750	1850	9	10	-0.426	-0.425	-0.425	-0.423	-0.421	-0.416
9	1850	1950	10	11	-0.228	-0.229	-0.231	-0.228	-0.224	-0.218
10	1950	2050	11	12	-0.016	-0.015	-0.017	-0.01	-0.011	-0.005
11	2230	2330	13	14	0.12	0.12	0.119	0.126	0.13	0.14
	Α	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.223	-0.226	-0.225	-0.227	-0.232	-0.232
13	1150	1250	17	18	-0.396	-0.399	-0.4	-0.403	-0.407	-0.409
14	1250	1350	18	19	-0.375	-0.378	-0.38	-0.379	-0.382	-0.383
15	1350	1450	19	20	-0.417	-0.422	-0.422	-0.425	-0.428	-0.429
16	1450	1550	20	21	-0.117	-0.121	-0.124	-0.125	-0.128	-0.133
17	1550	1650	21	22	-0.132	-0.133	-0.136	-0.137	-0.139	-0.141
18	1650	1750	22	23	-0.286	-0.289	-0.292	-0.293	-0.297	-0.298
19	1750	1850	23	24	-0.281	-0.285	-0.287	-0.287	-0.291	-0.293
20	1850	1950	24	25	-0.623	-0.63	-0.631	-0.632	-0.633	-0.634
21	1950	2050	25	26	-0.646	-0.65	-0.651	-0.653	-0.658	-0.66
22	2230	2330	27	28	-0.325	-0.332	-0.333	-0.335	-0.338	-0.338
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.368	-0.373	-0.374	-0.375	-0.378	-0.379
24	1550	1650	30	31	-0.073	-0.075	-0.077	-0.076	-0.078	-0.078
25	1650	1750	31	32	0.24	0.239	0.238	0.237	0.235	0.236
26	1450	1550	33	34	-0.34	-0.34	-0.342	-0.343	-0.343	-0.343
27	1550	1650	34	35	0.181	0.18	0.178	0.177	0.177	0.179
28	1650	1750	35	36	-0.176	-0.178	-0.18	-0.179	-0.179	-0.179
				'						
					180d	210d	240d	270d	300d	330d
	В	BOTT	OM.							

					180d	210d	240d	270d	300d	330d
	В	BOTT	ОМ							
	From (mm)	To (mm)	Dis	sks	30-07-16	29-08-16	28-09-16	28-10-16	27-11-16	27-12-16
1	870	970	1	2	0.116	0.113	0.115	0.115	0.121	0.124
2	1150	1250	3	4	-0.502	-0.508	-0.504	-0.506	-0.498	-0.497
3	1250	1350	4	5	-0.126	-0.127	-0.129	-0.126	-0.122	-0.118
4	1350	1450	5	6	1.169	1.167	1.165	1.169	1.175	1.178
5	1450	1550	6	7	0.494	0.494	0.491	0.493	0.497	0.499
6	1550	1650	7	8	0.062	0.059	0.059	0.062	0.067	0.069
7	1650	1750	8	9	-0.416	-0.419	-0.416	-0.412	-0.411	-0.411
8	1750	1850	9	10	0.023	0.021	0.022	0.024	0.029	0.032
9	1850	1950	10	11	-0.39	-0.392	-0.39	-0.392	-0.391	-0.392
10	1950	2050	11	12	0.206	0.205	0.203	0.209	0.215	0.219
11	2230	2330	13	14	-0.075	-0.078	-0.076	-0.076	-0.07	-0.07
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.364	-0.367	-0.367	-0.371	-0.368	-0.373
13	1150	1250	17	18	-0.428	-0.431	-0.434	-0.437	-0.437	-0.441
14	1250	1350	18	19	-1.268	-1.271	-1.273	-1.276	-1.274	-1.279
15	1350	1450	19	20	-0.656	-0.66	-0.659	-0.662	-0.661	-0.665
16	1450	1550	20	21	-0.12	-0.126	-0.126	-0.127	-0.132	-0.136
17	1550	1650	21	22	-0.388	-0.394	-0.394	-0.396	-0.396	-0.403
18	1650	1750	22	23	-0.348	-0.352	-0.353	-0.355	-0.357	-0.363
19	1750	1850	23	24	-1.367	-1.372	-1.371	-1.374	-1.375	-1.376
20	1850	1950	24	25	-0.447	-0.451	-0.45	-0.453	-0.453	-0.459
21	1950	2050	25	26	-0.203	-0.208	-0.208	-0.212	-0.212	-0.217
22	2230	2330	27	28	-0.32	-0.324	-0.324	-0.332	-0.328	-0.333
	В	MIDE								
	From (mm)	To (mm)		sks						
23	1450	1550		30	-0.575	-0.581	-0.581	-0.582	-0.581	-0.584
24	1550	1650	30	31	-0.334	-0.337	-0.339	-0.343	-0.341	-0.345
25	1650	1750	31	32	-0.286	-0.287	-0.29	-0.29	-0.288	-0.292
26	1450	1550	33	34	-0.446	-0.451	-0.45	-0.452	-0.445	-0.45
27	1550	1650	34	35	-0.238	-0.242	-0.241	-0.244	-0.24	-0.242
28	1650	1750	35	36	-0.243	-0.247	-0.247	-0.246	-0.244	-0.245

_	NAC	7			365d	400d	450d
	Α	BOTT	OM				
	From (mm)	To (mm)	Dis	sks	31-01-17	07-03-17	26-04-17
1	870	970	1	2	-0.633	-0.639	-0.635
2	1150	1250	3	4	0.01	0.007	0.009
3	1250	1350	4	5	-0.107	-0.11	-0.109
4	1350	1450	5	6	0.155	0.151	0.153
5	1450	1550	6	7	0.031	0.025	0.027
6	1550	1650	7	8	0.052	0.051	0.05
7	1650	1750	8	9	0.13	0.13	0.128
8	1750	1850	9	10	-0.416	-0.419	-0.419
9	1850	1950	10	11	-0.218	-0.22	-0.219
10	1950	2050	11	12	-0.001	-0.006	-0.004
11	2230	2330	13	14	0.144	0.136	0.137
	Α	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.236	-0.24	-0.24
13	1150	1250	17	18	-0.416	-0.421	-0.42
14	1250	1350	18	19	-0.389	-0.392	-0.391
15	1350	1450	19	20	-0.438	-0.44	-0.44
16	1450	1550	20	21	-0.139	-0.142	-0.142
17	1550	1650		22	-0.147	-0.147	-0.148
18	1650			23	-0.305	-0.306	-0.306
19	1750	1850	23	24	-0.3	-0.301	-0.301
20	1850	1950	24	25	-0.643	-0.642	-0.645
21	1950	2050	25	26	-0.665	-0.668	-0.667
22	2230	2330	27	28	-0.347	-0.349	-0.35
	Α	MIDD			-	-	
	From (mm)	To (mm)		sks			
23	1450	1550	29	30	-0.386	-0.386	-0.386
24	1550	1650	30	31	-0.084	-0.087	-0.086
25	1650	1750	31	32	0.226	0.227	0.228
26	1450	1550	33	34	-0.347	-0.35	-0.348
27	1550	1650	34	35	0.176	0.17	0.173
28	1650	1750	35	36	-0.185	-0.186	-0.184

_					365d	400d	450d
	В	BOTT	OM				
	From (mm)	To (mm)	Dis	sks	31-01-17	07-03-17	26-04-17
1	870	970	1	2	0.12	0.123	0.123
2	1150	1250	3	4	-0.496	-0.498	-0.495
3	1250	1350	4	5	-0.119	-0.119	-0.119
4	1350	1450	5	6	1.175	1.177	1.177
5	1450	1550	6	7	0.5	0.5	0.5
6	1550	1650	7	8	0.071	0.07	0.074
7	1650	1750	8	9	-0.414	-0.412	-0.41
8	1750	1850	9	10	0.033	0.031	0.034
9	1850	1950	10	11	-0.397	-0.393	-0.393
10	1950	2050	11	12	0.218	0.218	0.021
11	2230	2330	13	14	-0.07	-0.071	-0.07
	В	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.377	-0.38	-0.381
13	1150	1250	17	18	-0.444	-0.448	-0.45
14	1250	1350	18	19	-1.286	-1.287	-1.288
15	1350	1450	19	20	-0.67	-0.671	-0.672
16	1450	1550	20	21	-0.14	-0.142	-0.144
17	1550	1650	21	22	-0.406	-0.406	-0.408
18	1650	1750	22	23	-0.366	-0.369	-0.368
19	1750	1850	23	24	-1.381	-1.383	-0.385
20	1850	1950	24	25	-0.462	-0.466	-0.467
21	1950	2050	25	26	-0.221	-0.224	-0.225
22	2230	2330	27	28	-0.338	-0.342	-0.34
	В	MIDD	LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.587	-0.591	-0.59
24	1550	1650	30	31	-0.347	-0.352	-0.352
25	1650	1750	31	32	-0.296	-0.299	-0.299
26	1450	1550	33	34	-0.454	-0.456	-0.456
27	1550	1650	34	35	-0.246	-0.248	-0.245
28	1650	1750	35	36	-0.248	-0.252	-0.248

NAC7	Charle							026	1200	1000	1400	04	1600	1700	1800	1900	0000	COCC
	4-6	Î			Age			31	7777	1300	1400	1500	TONO	>> 14	,	224	2000	7280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	8	6	10	11
	25-01-16	11:00	0	0	0	0.000		31	31	31	31	31	31	31	31	31	31	31
	01-02-16	13:25	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
g	01-02-16	13:30	7	0	5	7.003	0.003	0.670	0.190	1.040	1.880	1.690	-0.170	1.050	1.390	1.460	1.530	2.020
1h	01-02-16	14:30	7	1	0	7.042	0.042	0.730	0.230	1.130	2.010	1.780	-0.150	1.130	1.480	1.560	1.630	2.150
ų9	01-02-16	20:30	7	9	0	7.250	0.250	0.780	0.260	1.150	2.070	1.840	-0.140	1.160	1.500	1.610	1.670	2.250
-	02-02-16	14:30	8	0	0	8.000	1.000	0.810	0.250	1.200	2.180	1.930	-0.180	1.230	1.580	1.690	1.740	2.360
	03-02-16	14:30	6	0	0	0006	2.000	0.810	0.270	1.210	2.190	1.950	-0.170	1.250	1.600	1.710	1.770	2.380
	07 00 76	14.20	0,1	0	0	10.000	3000	0.790	0000	1 100	2270	1 040	022.0	1 190	1 570	1,690	1 720	0000
	04-02-10	14.30	01	0 (0 0	10.000	000.0	0.700	0.200	1.100	2.210	1.340	0.270	T.130	1.370	T.050	1.730	2.420
4	05-02-16	14:00	11	0	0	11.000	4.000	0.850	0.280	1.250	2.290	2.020	-0.230	1.270	1.630	1.760	1.800	2.500
	06-02-16	15:00	12	0	0	12.000	5.000	0.850	0.280	1.250	2.310	2.060	-0.270	1.290	1.630	1.780	1.830	2.540
	07-02-16	20:00	13	О	O	13.000	00009	0.860	0.280	1.270	2.380	2.070	-0.250	1.310	1.690	1.830	1.860	2.600
	00 00 16	12:00	1.0	0	0 0	14,000	2000	0000	022.0	1,170	0200	0,00	0.00	2,010	1.000	1.030	020	000
	07-70-00	13:00	14	0	0	14.000	000.7	0.000	0.270	T.23U	2.370	2.000	-0.270	1.510	T.000	0.010	1.6/0	2.000
	15-02-16	20:00	21	0	0	21.00	14.00	0.900	0.300	1.330	2.470	2.150	-0.260	1.360	1.710	1.890	1.900	2.690
	22-02-16	11:30	28	0	0	28.00	21.00	0.870	0.250	1.270	2.450	2.120	-0.360	1.330	1.690	1.850	1.890	2.710
	20-02-16	12.00	35	c	c	35,00	00 80	088.0	0.250	1 200	2 500	2 120	0 300	1 240	1 710	1 880	1 010	2 770
	01-70-67	12.00	000	0		00.00	20.00	0.000	0.230	7.300	2.300	2.120	0000	045.7	01/1	T-000	OTC:T	2.7.70
	28-03-16	15:00	63	0	0	63.00	56.00	0.890	0.240	1.350	2.600	2.220	-0.420	1.400	1.760	1.960	1.970	2.900
	01-05-16	14:00	97	0	0	97.00	90.00	0.900	0.230	1.360	2.590	2.250	-0.420	1.400	1.720	2.020	2.040	2.920
	31-05-16	14:00	127	0	0	127.00	120.00	0.830	0.190	1.320	2.550	2.180	-0.460	1.360	1.660	1.880	1.960	2.840
	30-06-16	12.00	157			157.00	150.00	088.0	0770	1 360	2.610	2240	0.440	1 110	1 730	1 960	2 030	2 010
	30-00-10	12.00	/CT	0 (0	00.751	T30.00	0.000	0.240	T.300	2.010	2.240	-0.410	1.410	1.730	DOC.1	2.030	2.510
	30-07-16	15:00	187	0	0	187.00	180.00	0.860	0.230	1.350	2.620	2.260	-0.460	1.390	1.700	1.940	2.000	2.930
	29-08-16	13:00	217	0	0	217.00	210.00	0.860	0.230	1.350	2.620	2.068	-0.490	1.380	1.710	1.930	2.010	2.930
	28-09-16	12:00	247	0	0	247.00	240.00	0.830	0.220	1.340	2.600	2.210	-0.470	1.360	1.710	1.910	1.990	2.920
	20 10 16	14.00	777			00 222	00 020	0.000	0000	1 250	0776	2 250	0270	1 110	1 720	1 040	030.0	2000
	22-10-10	14.00	117	0	0 0	00.772	270.00	0.030	0.230	1.330	2.040	2.230	-0.470	1.410	1.730	1.940	2.000	2.990
	27-11-16	11:00	307	0	0	307.00	300.00	0.880	0.250	1.370	2.680	2.280	-0.470	1.430	1.750	1.980	2.050	3.030
	27-12-16	12:00	337	0	0	337.00	330.00	0.940	0.280	1.420	2.740	2.340	-0.450	1.470	1.800	2.040	2.110	3.130
365	31-01-17	15:00	372	0	0	372.00	365.00	0.950	0.280	1.410	2.770	2.360	-0.470	1.460	1.800	2.040	2.150	3.170
	07-03-17	11:00	407	0	0	407.00	400.00	0.890	0.250	1.380	2.730	2.300	-0.480	1.460	1.770	2.020	2.100	3.090
	26-04-17	16.00	757	0 0) (457.00	450.00	0.830	0.220	1 390	2 750	2 320	-0.490	1 440	1 770	050.2	2 120	3 100
	01 01 15	0000	101	0 0	0 0	00.705	00.000		2		2	2		2	2		1	9
	01-01-10		/0/	o	0	00.707	700.00											
												SIDE	P POI IOM	(200)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	2	9	7	∞	6	10	11
Caeting	25-01-16	11.00	c	c	c	0000	(adam)	31	3.1	21	21	21	3.1	3.1	21	3.1	31	21
	27-01-10	11.00	ו כ	0	0 0	0.000	1 0000	76	76	7000	75	75	75	76	37	76	76	7000
	01-02-16	13:25	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-02-16	13:30	7	0	2	7.003	0.003	0.730	1.490	1.370	1.400	1.090	1.480	0.400	1.590	-0.160	1.600	0.820
	01-02-16	14:30	7	1	О	7.042	0.042	0.770	1.560	1.470	1.450	1.140	1.550	0.460	1.660	-0.150	1.700	0.880
	01-02-16	20:30	, ,		0 0	7 250	0.250	0.810	1 590	1 520	1 500	1 180	1 580	0.480	1 720	0.130	1 760	0 800
	01-02-10	20.30	. 0	0	0	7.230	0.230	0.010	1.330	1.320	1.300	1.100	1.300	0.400	1.720	0.200	1,000	0.030
	91-70-70	14:30	×	0	0	8.000	000.1	0.870	1.660	1.590	1.580	1.240	1.670	0.510	1.800	-0.200	1.820	0.970
2	03-02-16	14:30	6	0	0	9.000	2.000	0.850	1.670	1.560	1.570	1.200	1.640	0.500	1.770	-0.240	1.860	0.930
	04-02-16	14:30	10	0	0	10.000	3.000	068'0	1.680	1.590	1.610	1.250	1.680	0.520	1.830	-0.260	1.940	0.990
	05 02 16	14.00	11		• •	11,000	4000	0.000	1 760	1,620	1 650	1 250	1 710	0.510	1 960	0000	1 040	0000
- 4	02 02 10	00.11	11.0			42,000	000	0.00	200.1	200	0.00	222	1111	0.00	000	00000	1.000	2000
	00-07-10	13:00	77	>	0	12.000	000.6	0.930	1.770	1.040	T-050	1.240	1.720	0.430	1.650	-0.340	1.960	T.010
	07-02-16	20:00	13	0	0	13.000	6.000	0.970	1.810	1.700	1.710	1.300	1.810	0.560	1.940	-0.300	2.050	1.040
	08-02-16	13:00	14	0	0	14.000	7.000	0.940	1.800	1.680	1.710	1.280	1.770	0.530	1.900	-0.330	2.050	1.030
	15-02-16	20:00	21	0	0	21.00	14.00	0.890	1.850	1.740	1.720	1.300	1.810	0.510	1.940	-0.410	2.090	1.030
	22-02-16	11.30	36	c	c	28.00	21.00	0280	1 840	1 670	1 690	1 200	1 790	0 200	1 070	0.500	2 130	1 000
	05-05-TO	00.11	07	0	0	20.00	20.00	0.000	1.040	7.070	000.	1,000	1.000	00000	1.370	00000	2.130	7.000
	29-02-16	12:00	35	O	0	35.00	28.00	0.980	1.870	1.760	1.730	1.320	1.820	0.520	2.000	-0.510	2.210	1.020
	28-03-16	15:00	63	0	0	63.00	26.00	1.030	1.940	1.790	1.810	1.370	1.910	0.540	2.090	-0.570	2.340	1.080
	01-05-16	14:00	45	О	C	97.00	90.00	1.040	1.890	1.810	1.800	1.370	1.900	0.550	2.080	-0.590	2.330	1.070
	21-05-16	14.00	127			127.00	120.00	1 000	1 250	1 770	1 740	1 240	1 860	0.530	0000	0850	2 220	1 050
	31-03-10	12.00	127			127.00	120.00	1.000	1.000	1,000	1.740	1.340	1.000	0.00	2.040	0.530	2.320	1.000
	30-00-TD	17:00	15/	0	0	157.00	150.00	T.020	1.880	1.800	1.830	1.350	1.900	0.360	2.050	-0.010	2.380	T.000
	30-07-16	15:00	187	0	0	187.00	180.00	1.020	1.900	1.790	1.800	1.350	1.900	0.530	2.080	-0.690	2.380	1.050
	29-08-16	13:00	217	0	0	217.00	210.00	0.990	1.840	1.780	1.780	1.350	1.870	0.500	2.060	-0.710	2.370	1.020
	28-09-16	12:00	247	0	0	247.00	240.00	1,010	1.880	1.760	1.760	1.320	1.870	0.530	2.070	069'0-	2.350	1.040
	28-10-16	14:00	777	0	C	277.00	270.00	1.010	1.860	1.790	1.800	1.340	1.900	0.570	2.090	-0.710	2.410	1.040
	27-11-16	11.00	207	c	c	207 00	300.00	1 070	1 0/0	1 930	1 860	1 290	1 050	0850	2 140	0020	07170	1 100
000	27 42 46	12.00	100	0		00.700	00.000	1,000	010	1.030	1.000	1.300	1.000	0000	0.110	0.70	2.170	11.100
330	24 24 47	12.00	755		0	337.00	330.00	1.100	1.930	1.670	1.09U	T.400	1.970	000.0	2.170	07.0-	010.2	1.100
	31-01-1/	15:00	3/2	0	0	372.00	365.00	1.060	1.960	1.860	1.860	1.410	1.990	0.550	2.180	-0.760	2.500	1.100
	07-03-17	11:00	407	0	0	407.00	400.00	1.090	1.940	1.860	1.880	1.410	1.980	0.570	2.160	-0.720	2.500	1.090
	26-04-17	16:00	457	0	0	457.00	450.00	1.090	1.970	1.860	1.880	1.410	2.020	0.590	2.190	-0.720	0.530	1.100

				g =	14.54	MPa		L				SIE	SIDE A TOP (‰)	(09)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
NAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
Casting	25-01-16	11:00	0	0	0	0.000	1	197	197	197	197	197	197	197	197	197	197	197
Before loading	01-02-16	13:25	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-02-16	13:30	7	0	2	7.003	0.003	-0.380	-0.510	-0.510	-0.480	-0.540	-0.530	-0.630	-0.390	-0.460	-0.640	-0.440
1h	01-02-16	14:30	7	1	0	7.042	0.042	-0.470	-0.580	-0.590	-0.590	-0.650	-0.620	-0.850	-0.400	-0.580	-0.730	-0.570
- Qh	01-02-16	20:30	7	9	0	7.250	0.250	-0.430	-0.580	-0.570	-0.570	-0.640	-0.620	-0.880	-0.360	-0.550	-0.730	-0.530
,	02-02-16	14:30	∞	0	0	8.000	1.000	-0.460	-0.670	-0.640	-0.640	-0.700	-1.180	-0.990	-0.440	-0.610	-0.800	-0.580
2	03-02-16	14:30	6	0	0	9.000	2.000	-0.440	-0.720	-0.690	-0.690	-0.770	-0.740	-1.050	-0.480	-0.660	-0.880	-0.640
3	04-02-16	14:30	10	0	0	10.000	3.000	-0.290	-0.770	-0.740	-0.770	-0.840	-0.790	-1.090	-0.550	-0.710	-0.930	-0.680
4	05-02-16	14:00	11	0	0	11.000	4.000	-0.280	-0.780	-0.730	-0.790	-0.860	-0.800	-1.130	-0.560	-0.740	-0.970	-0.710
2	06-02-16	15:00	12	0	0	12.000	2.000	-0.300	-0.790	-0.760	-0.820	-0.880	-0.790	-1.130	-0.590	-0.730	-0.970	-0.700
9	07-02-16	20:00	13	0	0	13,000	000'9	-0.360	-0.850	-0.790	-0.860	-0.930	-0.860	-1.160	-0.620	-0.750	-1.020	-0.760
7	08-02-16	13.00	14	C	C	14 000	7 000	-0.340	-0.840	0 790	-0.850	-0 930	0880-	-1 200	0.630	0080-	-1.060	062 0-
- 1	45 02 46	13.00	+ T	0	0	74.000	000.1	0.340	0.040	0.000	0.000	4.000	0.000	4.220	0.030	0000-	T.000	0.7.0
14	15-02-16	70:00	7.1	Э	0	21.00	14.00	-0.450	-0.970	-0.930	-1.000	-1.090	-0.990	-1.330	-0.760	-0.920	-1.210	4.440
21	22-02-16	11:30	28	0	0	28.00	21.00	-0.590	-1.120	-1.030	-1.140	-1.210	-1.100	-1.440	-0.900	-1.030	-1.330	-1.040
28	29-02-16	12:00	32	0	0	35.00	28.00	-0.640	-1.160	-1.070	-1.200	-1.260	-1.170	-1.510	-0.950	-1.100	-1.410	-1.100
56	28-03-16	15:00	63	O	С	63.00	26.00	-0.810	-1.350	-1.250	-1 400	-1.470	-1.340	-1.710	-1.140	-1.280	-1.650	-1.270
00	01 05 16	14.00	20	0 0	0 0	00 20	00 00	0000	1 450	1 220	1 500	1 570	1 430	1 700	1 240	1 260	1710	1 260
06	01-02-10	14:00	16	5 6	0	00.76	00.06	-0.690	-1.45U	-1.32U	DDC-T-	0/CT-	-1.430	007.T-	-1.24U	095.T-	OT / T-	nac-T-
120	31-05-16	14:00	127	0	0	127.00	120.00	-0.950	-1.500	-1.370	-1.540	-1.630	-1.460	-1.830	-1.240	-1.360	-1.760	-1.400
150	30-06-16	12:00	157	0	0	157.00	150.00	-0.950	-1.510	-1.390	-1.570	-1.670	-1.450	-1.860	-1.270	-1.410	-1.800	-1.440
180	30-07-16	15:00	187	0	0	187.00	180.00	-1.020	-1.590	-1.460	-1.620	-1.740	-1.570	-1.930	-1.350	-1.450	-1.870	-1.480
210	29-08-16	13.00	217	C	C	217 00	210.00	-1 050	-1 620	-1 490	-1 670	-1 780	-1 580	-1 960	-1 390	-1 520	-1910	-1 550
240	35 00 16	12.00	747) (00 276	00.000	1 040	1 630	1 510	1 670	1 010	1.610	1 000	1 410	1 530	1 020	1 560
070	25-02-10	14.00	722	0	0	00.772	00.025	1.040	1,030	4.520	1.070	1.010	1,630	0000	1 410	000.1	1040	1.000
270	20-10-10	14:00	117	5 6	0 (277.00	270.00	-T.000	-T-000	00C-T-	-1.700	-T.62U	-1.620	-2.000	-1.410	-T.540	-T.940	U0C.1-
300	27-11-16	11:00	307	0	0	307.00	300.00	-1.110	-1.700	-1.530	-1.730	-1.850	-1.640	-2.040	-1.450	-1.550	-1.990	-1.610
330	27-12-16	12:00	337	0	0	337.00	330.00	-1.110	-1.720	-1.540	-1.740	-1.900	-1.660	-2.050	-1.470	-1.560	-2.010	-1.610
365	31-01-17	15:00	372	0	0	372.00	365.00	-1.150	-1.790	-1.600	-1.830	-1.960	-1.720	-2.120	-1.540	-1.650	-2.060	-1.700
400	07-03-17	11:00	407	0	0	407.00	400.00	-1.190	-1.840	-1.630	-1.850	-1.990	-1.720	-2.130	-1.550	-1.640	-2.090	-1.720
450	26-04-17	16:00	457	0	0	457.00	450.00	-1.190	-1.830	-1.620	-1.850	-1.990	-1.730	-2.130	-1.550	-1.670	-2.080	-1.730
700	01-01-18		707	0	О	707.00	200.00											
												SIE	SIDE B TOP (%)	(99)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	12	13	14	15	16	17	18	19	20	21	22
:			٠				(days)			1	-		-					
Casting	25-01-16	11:00	0	0	0	0.000	I	197	197	197	197	197	197	197	197	197	197	197
Before loading	01-02-16	13:25	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nin after loading	01-02-16	13:30	7	0	5	7.003	0.003	-0.410	-0.540	-0.500	-0.520	-0.540	-0.600	-0.440	-0.510	-0.600	-0.490	-0.390
1h	01-02-16	14:30	7	1	0	7.042	0.042	-0.470	-0.600	-0.570	-0.510	-0.580	-0.620	-0.450	-0.520	-0.640	-0.540	-0.430
6h	01-02-16	20:30	7	9	0	7.250	0.250	5.100	-0.710	-0.550	-0.580	-0.590	-0.690	-0.480	-0.550	069'0-	-0.540	-0.450
-	02-02-16	14:30	00	0	0	8.000	1.000	-0.490	-0.660	-0.580	-0.630	-0.640	-0.730	-0.540	-0.590	-0.730	-0.600	-0.500
2	03-02-16	14:30	6	C	C	0006	2.000	-0.570	-0.710	069.0-	-0.640	-0.710	-0.810	-0.600	-0.660	-0.820	-0.670	-0.560
۰ ۳	04-02-16	14.30	2 5	0 0	0 0	10.00	3000	0.600	022.0-	0 750	0.750	0.750	0.850	-0.640	002.0	038.0	0.710	0.510
> <	05-02-10	14.30	7 7	0 0	0	11,000	0.000	0.000	077.0	027.0	027.0	007.00	0.000	0400	0.710	0000	0.710	0.010
+ u	05-02-10	15.00	17	0	0	12,000	5000	0.030	0000	0.7.0	007.0	0000	0000	0.000	0.740	0.000	0750	0.00
0	00-02-10	00.00	12	0		12,000	000:0	0.040	0.600	0.770	0.730	0.630	0.630	0.750	0.740	0.010	0.00	0.00
0 1	07-02-16	13.00	13	5 6	0	14,000	0.000	0.690	-0.010	0.010	0.010	-0.030	006.0-	007.0-	-0.700	016.0-	-0.730	0.000
- ;	08-02-10	13.00	+ -	0		74.000	000.7	0.000	0.040	0.870	0.000	0.010	0.390	0.730	0.010	006.0-	0.010	02.00
4-	15-02-16	70:00	1.7	0	0	21.00	14.00	-0.800	-0.950	-0.990	-0.980	-1.000	-1.090	-0.840	-0.900	060'T-	-0.950	-0.830
21	22-02-16	11:30	28	0	0	28.00	21.00	-0.930	-1.070	-1.140	-1.110	-1.120	-1.230	-0.970	-1.020	-1.210	-1.070	-0.960
28	29-02-16	12:00	35	0	0	35.00	28.00	-0.950	-1.130	-1.170	-1.150	-1.170	-1.280	-1.020	-1.080	-1.280	-1.120	-1.020
26	28-03-16	15:00	63	0	0	63.00	26.00	-1.070	-1.280	-1.320	-1.310	-1.360	-1.450	-1.170	-1.220	-1.430	-1.270	-1.170
06	01-05-16	14:00	6	0	0	97.00	90.00	-1.210	-1.420	-1.440	-1.400	-1.470	-1.560	-1.310	-11.310	-1.560	-1.420	-1.280
120	31-05-16	14.00	127	O	C	127.00	120.00	-1 230	-1 480	-1 490	-1 430	-1 500	-1 610	-1 350	-11 360	-1 600	-1 450	-1 310
150	30-06-16	12:00	157	0	C	157.00	150.00	-1.250	-1.490	-1.490	-1.460	-1.560	-1.620	-1380	-11.380	-1.640	-1.470	-1.350
180	30-07-16	15:00	187	0	O	187.00	180.00	-1.320	-1.580	-1.610	-1.540	-1.650	-1.710	-1.470	-11.450	-1.710	-1.550	-1.420
210	29-08-16	13.00	217) C) C	217.00	210.00	-1 350	-1.610	-1 640	-1 580	-1 710	-1 770	-1510	-11 500	-1 750	1,600	-1 460
240	22-00-22	12:00	777	0 0	0 0	20.712	240.00	1.350	1 640	1.660	1 570	1 710	1 770	1 520	-11 400	1 740	1,600	1 460
270	28-10-16	14:00	277	0 0	0 0	277.00	220.02	-1 390	-1 670	1.690	-1 600	-1 720	-1 790	-1540	-11 520	022.1-	-1 640	-1 540
200	20-10-10	14.00	777	0	0	00.772	270.00	1,350	1,670	1.030	1.000	17.70	1 700	0+C-T-	11 530	0//T-	-T.040	1.040
330	27-11-16	13:00	307	5 0	0	307.00	300.00	-1.350	-T.570	1.070	-T.390	-1.770	-1.790	-T.550	-11.550	1 070	-T.040	-T.500
330	27-12-16	12:00	337	0 0	0 0	337.00	330.00	-1.410	-1./10	-1.720	-1.630	-T.81U	-1.860	079T-	-11.540	-1.83U	-T.69U	-T.55U
365	31-01-17	15:00	37.2	o	0	372.00	365.00	-1.450	-1.740	-1.790 1.000	-1.680	-1.85U	-1.890	-1.65U	-11.590	-1.860	-1.730	-1.500
450	07-03-17	11:00	407	0	0 0	407.00	400.00	-1.480	-T./8U	-1.800	-T.090	-1.87U	-1.89U	-1.08U	4 620	-T.900	-T./60	-1.04U
450	71-40-97	16:00	45/	0	0	457.00	450.00	-1.490	-1.800	-1.810	-1.700	-1.890	-1.910	-T.670	-1.630	-1.910	-T.//0	-1.620

NAC7				g =	T4:04	BAILA				SIDE A WILDOLD (780)	(00/)		
NAC.					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	23	24	25	56	27	28
Casting	25-01-16	11:00	0	0	0	0.000	-	155	155	155	115	115	115
Before loading	01-02-16	13:25	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-02-16	13:30	7	0	2	7.003	0.003	-0.100	0.010	-0.020	0.190	0.500	0.350
€ ;	01-02-16	14:30	7	1	0	7.042	0.042	-0.210	-0.100	-0.150	0.040	0.380	0.230
- i	01-02-16	20:30	7	9	0	7.250	0.250	-0.180	-0.090	-0.120	0.090	0.430	0.280
_ «	02-02-16	14:30	∞ (0	0	8.000	1.000	-0.230	-0.140	-0.130	0.090	0.420	0.260
2 0	03-02-16	14:30	6	0	0	9.000	2.000	-0.260	-0.160	-0.190	0.050	0.420	0.250
3	04-02-16	14:30	01.	0	0	10.000	3.000	-0.300	0.210	-0.230	0.030	0.410	0.230
4 ա	05-02-16	14:00	11	0 0	o	11.000	4.000	-0.360	-0.220	-0.240	0.020	0.400	0.220
C	05-02-16	15:00	12	0 0	5	12.000	9.000	-0.350	0.210	-0.250	0.040	0.420	0.220
9	07-02-16	20:00	13	0	0	13.000	6.000	-0.380	-0.250	-0.280	0.010	0.420	0.220
, ;	08-02-16	13:00	14	0	0	14.000	000.7	-0.400	-0.270	-0.300	0.010	0.430	0.200
14	15-02-16	20:00	21	0	0	21.00	14.00	-0.490	-0.340	-0.370	-0.070	0.360	0.130
21	22-02-16	11:30	28	0	0	28.00	21.00	-0.590	-0.420	-0.470	-0.140	0.320	090.0
28	29-02-16	12:00	35	0	0	35.00	28.00	-0.660	-0.460	-0.490	-0.160	0.290	0.040
56	28-03-16	15:00	63	0	0	63.00	26.00	-0.840	-0.570	-0.630	-0.260	0.230	-0.050
90	01-05-16	14:00	97	0	0	97.00	90.00	-0.910	-0.660	-0.710	-0.320	0.170	-0.090
120	31-05-16	14:00	127	0	0	127.00	120.00	-0.940	-0.690	-0.730	-0.330	0.140	-0.140
150	30-06-16	12:00	157	0	0	157.00	150.00	-0.960	-0.720	-0.740	-0.360	0.140	-0.140
180	30-07-16	15:00	187	0	0	187.00	180.00	-1.020	-0.770	-0.820	-0.410	0.100	-0.180
210	29-08-16	13:00	217	0	0	217.00	210.00	-1.070	-0.790	-0.830	-0.410	060'0	-0.200
240	28-09-16	12:00	247	0	0	247.00	240.00	-1.080	-0.810	-0.840	-0.430	0.070	-0.220
270	28-10-16	14:00	277	0	0	277.00	270.00	-1.090	-0.800	-0.850	-0.440	090'0	-0.210
300	27-11-16	11:00	307	0	0	307.00	300.00	-1.120	-0.820	-0.870	-0.440	090'0	-0.210
330	27-12-16	12:00	337	0	0	337.00	330.00	-1.130	-0.820	-0.860	-0.440	0.080	-0.210
365	31-01-17	15:00	372	0	0	372.00	365.00	-1.200	-0.880	-0.960	-0.480	0:020	-0.270
400	07-03-17	11:00	407	0	0	407.00	400.00	-1.200	-0.910	-0.950	-0.510	-0.010	-0.280
450	26-04-17	16:00	457	0	0	457.00	450.00	-1.200	-0.900	-0.940	-0.490	0.020	-0.260
200	01-01-18		707	0	0	707.00	700.00						
										SIDERM	SIDE B MIDDI E (%.)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Dave	Hours	Minitos	Days or	From loading		7.7	25	3,6	7.0	38
	2		cána		200	ha 'afan	(days)		1.7	67	0.7	/ 7	07
Casting	25-01-16	11:00	0 1	0	0	0.000	1 0	155	155	155	115	115	115
before loading	01-02-16	13:25	, ,	0	0 1	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
omin arter loading	01-02-16	13:30	, ,	0 6	Λ	7.003	0.003	-0.180	-0.370	0.000	0.210	0.240	-0.010
= &	01-02-16	14:30	, ,	T	0	7.042	0.042	-0.200	-0.400	-0.010	0.220	0.270	-0.030
5 -	02-02-16	14.30	, α	0 0	0	0000 8	1,000	0.250	0.450	0.010	0.210	0.200	0.030
- 0	02-02-10	14:30	οσ	0 0	0 0	0000	2,000	0.230	0.510	0.000	0.210	0.230	0.040
1 co	03-02-10	14:30	10	0 0	0 0	10,000	3,000	0.330	0.560	-0.140	0.160	0.230	0.070
9 4	04-02-10	14:30	11	0 0	0 0	11 000	9.500	0.230	0.550	-0.140	0.180	0.200	0.100
- K	06-02-16	15.00	12	0	0	12 000	2000	-0.370	-0 600	-0.140	0.160	0.190	-0.080
9	07-02-16	20:00	13	0	0	13.000	0009	-0.370	0.590	-0.140	0.170	0.200	-0.100
7	08-02-16	13:00	14	0	0	14.000	2.000	-0.420	-0.650	-0.190	0.120	0.180	-0.140
14	15-02-16	20:00	21	0	0	21.00	14.00	-0.510	-0.730	-0.270	0.070	0.100	-0.170
21	22-02-16	11:30	28	0	0	28.00	21.00	-0.610	-0.860	-0.360	0.000	0.020	-0.260
28	29-02-16	12:00	35	0	0	35.00	28.00	-0.660	-0.890	-0.400	0.000	0.010	-0.250
56	28-03-16	15:00	63	0	0	63.00	26.00	-0.790	-1.000	-0.480	-0.090	-0.050	-0.310
06	01-05-16	14:00	6	0	0	97.00	00.06	-0.880	-1.100	-0.570	-0.130	-0.120	-0.360
120	31-05-16	14:00	127	0	0	127.00	120.00	-0.900	-1.130	-0.600	-0.160	-0.170	-0.370
150	30-06-16	12:00	157	0	0	157.00	150.00	-0.940	-1.170	-0.630	-0.180	-0.180	-0.390
180	30-07-16	15:00	187	0	0	187.00	180.00	-1.000	-1.240	-0.690	-0.210	-0.230	-0.440
210	29-08-16	13:00	217	0	0	217.00	210.00	-1.060	-1.270	-0.700	-0.260	-0.270	-0.480
240	28-09-16	12:00	247	0	0	247.00	240.00	-1.060	-1.290	-0.730	-0.250	-0.260	-0.480
270	28-10-16	14:00	277	0	0	277.00	270.00	-1.070	-1.330	-0.730	-0.270	-0.290	-0.470
300	27-11-16	11:00	307	0	0	307.00	300.00	-1.060	-1.310	-0.710	-0.200	-0.250	-0.450
330	27-12-16	12:00	337	0	0	337.00	330.00	-1.090	-1.350	-0.750	-0.250	-0.270	-0.460
400	07-03-17	11:00	37.2	0 0	0 0	407.00	400 00	-1.120	-1.370	-0.790	-0.230	-0.310	-0.430
450	07 03 E7	16.00	101	0 0		00.101	00.001	007.7	7.170	0.000	0.5	0.00	0.00

1 870 970 1 2 -0.035		NAC	28			0	5m	1h	6h	1d	2d
1 870 970 1 2 -0.035		Α	BOT	ГОМ							
2		From (mm)	To (mm)	Dis	sks	22-02-16	22-02-16	22-02-16	22-02-16	23-02-16	24-02-16
3 1250 1350 4 5 -0.12 -0.015 -0.011 -0.006 -0.001 0 4 1350 1450 5 6 -0.508 -0.326 -0.322 -0.315 -0.307 -0.307 5 1450 1550 6 7 -0.088 -0.086 -0.091 -0.093 -0.092 -0.09 6 1550 1650 7 8 -0.127 -0.053 -0.046 -0.039 -0.03 -0.02 7 1650 1750 8 9 -0.172 -0.028 -0.022 -0.018 -0.012 -0.00 8 1750 1850 9 10 -0.412 -0.412 -0.407 -0.405 -0.403 -0.40 9 1850 1950 10 11 -1.711 -1.553 -1.546 -1.541 -1.536 -1.53 10 1950 2050 11 12 -0.186 -0.013 0 0.008 0.018 0.02 11 2230 2330 13 14 -0.186 -0.173 -0.175 -0.176 -0.177 -0.177 A TOP To (mm) Disks 12 870 970 15 16 -0.408 -0.444 -0.446 -0.448 -0.454 -0.454 13 1150 1250 17 18 -1.015 -1.07 -1.074 -1.079 -1.081 -1.081 14 1250 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.287 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.60 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.062 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.328 -0.320 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 34 35 -0.391	1	870	970	1	2	-0.035	0.033	0.04	0.043	0.049	0.049
1350	2	1150	1250	3	4	-0.225	-0.09	-0.083	-0.079	-0.073	-0.071
5 1450 1550 6 7 -0.088 -0.086 -0.091 -0.093 -0.092 -0.09 6 1550 1650 7 8 -0.127 -0.053 -0.046 -0.039 -0.03 -0.02 7 1650 1750 8 9 -0.172 -0.028 -0.022 -0.018 -0.012 -0.00 8 1750 1850 9 10 -0.412 -0.412 -0.407 -0.405 -0.403 -0.403 9 1850 1950 10 11 -1.711 -1.553 -1.546 -1.541 -1.536 -1.53 10 1950 2050 11 12 -0.186 -0.013 0 0.008 0.018 0.02 11 2230 2330 13 14 -0.186 -0.173 -0.175 -0.176 -0.177 -0.17 From (mm) To (mm) Disks -0.172 -0.175 -0.176 -0.177 -0.454 <td>3</td> <td>1250</td> <td>1350</td> <td>4</td> <td>5</td> <td>-0.12</td> <td>-0.015</td> <td>-0.01</td> <td>-0.006</td> <td>-0.001</td> <td>0</td>	3	1250	1350	4	5	-0.12	-0.015	-0.01	-0.006	-0.001	0
6 1550 1650 7 8 -0.127 -0.053 -0.046 -0.039 -0.03 -0.02 7 1650 1750 8 9 -0.172 -0.028 -0.022 -0.018 -0.012 -0.00 8 1750 1850 9 10 -0.412 -0.412 -0.407 -0.405 -0.403 -0.40 9 1850 1950 10 111 -1.711 -1.553 -1.546 -1.541 -1.536 -1.53 10 1950 2050 11 12 -0.186 -0.013 0 0.008 0.018 0.02 11 2230 2330 13 14 -0.186 -0.173 -0.175 -0.176 -0.177 -0.17 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.408 -0.444 -0.446 -0.448 -0.448 -0.454 -0.454 13 1150 1250 17 18 -1.015 -1.07 -1.074 -1.079 -1.081 -1.081 14 1250 1350 18 19 -0.661 -0.708 -0.713 -0.715 -0.72 -0.72 15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.077 -1.075 -1.075 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 20 52 66 -0.269 -0.319 -0.32 -0.326 -0.328 -0.328 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks From (mm) To (mm) Disks 23 1450 1550 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.246 26 1450 1550 33 34 -0.157 27 1550 1650 33 34 -0.167 28 -0.391	4	1350	1450	5	6	-0.508	-0.326	-0.322	-0.315	-0.307	-0.303
To To To To To To To To	5	1450	1550	6	7	-0.088	-0.086	-0.091	-0.093	-0.092	-0.092
8 1750 1850 9 10 -0.412 -0.412 -0.407 -0.405 -0.403 -0.40 9 1850 1950 10 11 -1.711 -1.553 -1.546 -1.541 -1.536 -1.53 10 1950 2050 11 12 -0.186 -0.013 0 0.008 0.018 0.02 11 2230 2330 13 14 -0.186 -0.173 -0.175 -0.176 -0.177 -0.17 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.408 -0.444 -0.446 -0.448 -0.454 -0.455 13 1150 1250 17 18 -1.015 -1.07 -1.074 -1.079 -1.081 -1.08 14 1250 1350 18 19 -0.661 -0.708 -0.713 -0.715 -0.72 -0.72 15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.32 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.238 -0.391 -0.39 24 1550 1650 33 34 -0.157 27 1550 1650 34 35 -0.391	6	1550	1650	7	8	-0.127	-0.053	-0.046	-0.039	-0.03	-0.027
9 1850 1950 10 11 -1.711 -1.553 -1.546 -1.541 -1.536 -1.53 10 1950 2050 11 12 -0.186 -0.013 0 0.008 0.018 0.02 11 2230 2330 13 14 -0.186 -0.173 -0.175 -0.176 -0.177 -0.17 A TOP	7	1650	1750	8	9	-0.172	-0.028	-0.022	-0.018	-0.012	-0.009
10	8	1750	1850	9	10	-0.412	-0.412	-0.407	-0.405	-0.403	-0.401
11	9	1850	1950	10	11	-1.711	-1.553	-1.546	-1.541	-1.536	-1.531
A TOP From (mm) To (mm) Disks	10	1950	2050	11	12	-0.186	-0.013	0	0.008	0.018	0.021
From (mm) To (mm) Disks 12 870 970 15 16 -0.408 -0.444 -0.446 -0.448 -0.454 -0.45 13 1150 1250 17 18 -1.015 -1.07 -1.074 -1.079 -1.081 -1.08 14 1250 1350 18 19 -0.661 -0.708 -0.713 -0.715 -0.72 -0.72 15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.33 19 1750 1850 23	11	2230	2330	13	14	-0.186	-0.173	-0.175	-0.176	-0.177	-0.178
12		Α	TO	Р							
13 1150 1250 17 18 -1.015 -1.07 -1.074 -1.079 -1.081 -1.08 14 1250 1350 18 19 -0.661 -0.708 -0.713 -0.715 -0.72 -0.72 15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.3 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051		From (mm)	To (mm)	Dis	sks						
14 1250 1350 18 19 -0.661 -0.708 -0.713 -0.715 -0.72 -0.72 15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32	12	870	970	15	16	-0.408	-0.444	-0.446	-0.448	-0.454	-0.455
15 1350 1450 19 20 -0.224 -0.276 -0.28 -0.284 -0.287 -0.29 16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.60 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779	13	1150	1250	17	18	-1.015	-1.07	-1.074	-1.079	-1.081	-1.086
16 1450 1550 20 21 -0.555 -0.595 -0.598 -0.6 -0.604 -0.604 17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 From (mm) To (mm) Disks 23 1450 1550 30	14	1250	1350	18	19	-0.661	-0.708	-0.713	-0.715	-0.72	-0.721
17 1550 1650 21 22 -1.019 -1.064 -1.067 -1.07 -1.075 -1.07 18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.33 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.639 -0.641 -0.64	15	1350	1450	19	20	-0.224	-0.276	-0.28	-0.284	-0.287	-0.291
18 1650 1750 22 23 -0.321 -0.375 -0.379 -0.38 -0.386 -0.38 19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks	_	1450	1550	20	21	-0.555	-0.595	-0.598	-0.6	-0.604	-0.606
19 1750 1850 23 24 -0.673 -0.735 -0.741 -0.744 -0.748 -0.75 20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.32 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 34 35	17	1550	1650	21	22	-1.019	-1.064	-1.067	-1.07	-1.075	-1.076
20 1850 1950 24 25 -0.012 -0.047 -0.051 -0.055 -0.057 -0.06 21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 34 35 -0.157 -0.391 -0.238 -0.241 -0.243 -0.243 <td>18</td> <td>1650</td> <td>1750</td> <td>22</td> <td>23</td> <td>-0.321</td> <td>-0.375</td> <td>-0.379</td> <td>-0.38</td> <td>-0.386</td> <td>-0.39</td>	18	1650	1750	22	23	-0.321	-0.375	-0.379	-0.38	-0.386	-0.39
21 1950 2050 25 26 -0.269 -0.319 -0.32 -0.326 -0.328 -0.328 -0.33 22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks Disks -0.389 -0.389 -0.391 -0.39 23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 -0.238 -0.241 -0.243 -0.24 27 1550 1650 34 35 <td< td=""><td>19</td><td>1750</td><td>1850</td><td>23</td><td>24</td><td>-0.673</td><td>-0.735</td><td>-0.741</td><td>-0.744</td><td>-0.748</td><td>-0.751</td></td<>	19	1750	1850	23	24	-0.673	-0.735	-0.741	-0.744	-0.748	-0.751
22 2230 2330 27 28 -0.75 -0.775 -0.779 -0.782 -0.784 -0.78 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 -0.391 -0.391 27 1550 1650 34 35 -0.391 -0.391 -0.241 -0.243 -0.244	20	1850	1950	24	25	-0.012	-0.047	-0.051	-0.055	-0.057	-0.061
A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 27 1550 1650 34 35 -0.391		1950	2050	25	26	-0.269	-0.319	-0.32	-0.326	-0.328	-0.334
From (mm) To (mm) Disks -0.388 -0.389 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 -0.391 -0.391 -0.391 -0.389 -0.241 -0.243 -0.243 -0.24	22	2230			28	-0.75	-0.775	-0.779	-0.782	-0.784	-0.787
23 1450 1550 29 30 -0.376 -0.388 -0.389 -0.389 -0.391 -0.39 24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 -0.391 27 1550 1650 34 35 -0.391		Α	MIDE								
24 1550 1650 30 31 -0.624 -0.637 -0.639 -0.639 -0.641 -0.64 25 1650 1750 31 32 -0.22 -0.235 -0.238 -0.241 -0.243 -0.24 26 1450 1550 33 34 -0.157 -0.391 -0.391 -0.391 -0.391		_	_								
25	_										-0.393
26 1450 1550 33 34 -0.157 27 1550 1650 34 35 -0.391					_						-0.642
27 1550 1650 34 35 -0.391	_				_		-0.235	-0.238	-0.241	-0.243	-0.247
E. 1000 1.000 0.100				33							
		1550	1650	34	35	-0.391					
<u> 28 1650 1750 35 36 -1.474 -1.432 -1.449 -1.452 -1.449 -1.45</u>	28	1650	1750	35	36	-1.474	-1.432	-1.449	-1.452	-1.449	-1.452

_					0	5m	1h	6h	1d	2d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	22-02-16	22-02-16	22-02-16	22-02-16	23-02-16	24-02-16
1	870	970	1	2	-0.142	-0.137	-0.136	-0.134	-0.133	-0.135
2	1150	1250	3	4	-0.218	-0.062	-0.052	-0.044	-0.034	-0.032
3	1250	1350	4	5	-0.284	-0.185	-0.178	-0.169	-0.164	-0.163
4	1350	1450	5	6	-0.962	-0.866	-0.859	-0.855	-0.848	-0.85
5	1450	1550	6	7	-0.334	-0.233	-0.228	-0.225	-0.214	-0.217
6	1550	1650	7	8	-0.027	0.134	0.14	0.146	0.157	0.155
7	1650	1750	8	9	0.006	0.103	0.103	0.102	0.105	0.1
8	1750	1850	9	10	-0.267	-0.111	-0.104	-0.098	-0.089	-0.089
9	1850	1950	10	11	-0.476	-0.362	-0.356	-0.354	-0.345	-0.343
10	1950	2050	11	12	-0.338	-0.202	-0.194	-0.19	-0.183	-0.177
11	2230	2330	13	14	-0.215	-0.136	-0.132	-0.126	-0.118	-0.117
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	0.194	0.161	0.161	0.156	0.155	0.151
13	1150	1250	17	18	-0.21	-0.263	-0.262	-0.269	-0.271	-0.276
14	1250	1350	18	19	-0.073	-0.116	-0.117	-0.121	-0.125	-0.131
15	1350	1450	19	20	0.403	0.357	0.356	0.362	0.349	0.343
16	1450	1550	20	21	1.16	1.119	1.118	1.114	1.11	1.105
17	1550	1650	21	22	-0.296	-0.34	-0.342	-0.344	-0.349	-0.352
18	1650	1750	22	23	-0.641	-0.682	-0.682	-0.684	-0.689	-0.692
19	1750	1850	23	24	-0.205	-0.25	-0.252	-0.256	-0.261	-0.263
20	1850	1950	24	25	-0.421	-0.458	-0.459	-0.463	-0.467	-0.469
21	1950	2050	25	26	-0.357	-0.431	-0.43	-0.439	-0.439	-0.445
22	2230	2330	27	28	-0.187	-0.216	-0.216	-0.22	-0.223	-0.225
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.242	-0.249	-0.247	-0.251	-0.254	-0.256
24	1550	1650	30	31	-0.242	-0.245	-0.244	-0.246	-0.246	-0.25
25	1650	1750	31	32	0.043	0.031	0.035	0.032	0.031	0.027
26	1450	1550	33	34	-0.154	-0.127	-0.123	-0.125	0.125	0.126
27	1550	1650	34	35	-0.003	0.058	0.063	0.065	0.066	0.063
28	1650	1750	35	36	-0.146	-0.145	-0.143	-0.144	-0.146	-0.145

	NAC	28			3d	4d	5d	6d	7d	14d
	Α	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	25-02-16	26-02-16	27-02-16	28-02-16	29-02-16	07-03-16
1	870	970	1	2	0.052	0.054	0.056	0.057	0.058	0.059
2	1150	1250	3	4	-0.068	-0.066	-0.064	-0.065	-0.063	-0.062
3	1250	1350	4	5	0.004	0.005	0.007	0.008	0.008	0.009
4	1350	1450	5	6	-0.298	-0.296	-0.293	-0.292	-0.293	-0.288
5	1450	1550	6	7	-0.092	-0.092	-0.094	-0.091	-0.092	-0.098
6	1550	1650	7	8	-0.022	-0.018	-0.017	-0.013	-0.015	-0.01
7	1650	1750	8	9	-0.003	-0.003	-0.001	0.001	0	0.004
8	1750	1850	9	10	-0.398	-0.4	-0.4	-0.397	-0.399	-0.401
9	1850	1950	10	11	-1.528	-1.526	-1.525	-1.522	-1.522	-1.521
10	1950	2050	11	12	0.027	0.03	0.033	0.037	0.035	0.041
11	2230	2330	13	14	-0.176	-0.178	-0.178	-0.177	-0.178	-0.184
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.454	-0.457	-0.46	-0.457	-0.458	-0.468
13	1150	1250	17	18	-1.084	-1.088	-1.091	-1.093	-1.095	-1.102
14	1250	1350	18	19	-0.726	-0.728	-0.73	-0.732	-0.735	-0.744
15	1350	1450	19	20	-0.289	-0.293	-0.295	-0.297	-0.3	-0.307
16	1450	1550	20	21	-0.607	-0.607	-0.609	-0.61	-0.615	-0.622
17	1550	1650	21	22	-1.078	-1.081	-1.083	-1.084	-1.088	-1.097
18	1650	1750	22	23	-0.39	-0.394	-0.396	-0.397	-0.401	-0.409
19	1750	1850	23	24	-0.752	-0.756	-0.759	-0.759	-0.763	-0.771
20	1850	1950	24	25	-0.063	-0.065	-0.072	-0.069	-0.072	-0.081
21	1950	2050	25	26	-0.332	-0.336	-0.337	-0.339	-0.342	-0.35
22	2230	2330	27	28	-0.788	-0.789	-0.791	-0.792	-0.795	-0.803
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.392	-0.393	-0.395	-0.394	-0.398	-0.401
24	1550	1650	30	31	-0.643	-0.644	-0.646	-0.646	-0.65	-0.654
25	1650	1750	31	32	-0.248	-0.248	-0.253	-0.253	-0.259	-0.262
26	1450	1550	33	34						
27	1550	1650	34	35						
28	1650	1750	35	36	-1.451	-1.45	-1.452	-1.449	-1.452	-1.458

					3d	4d	5d	6d	7d	14d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	25-02-16	26-02-16	27-02-16	28-02-16	29-02-16	07-03-16
1	870	970	1	2	-0.132	-0.13	-0.132	-0.129	-0.132	-0.133
2	1150	1250	3	4	-0.029	-0.025	-0.023	-0.021	-0.024	-0.016
3	1250	1350	4	5	-0.161	-0.157	-0.16	-0.155	-0.156	-0.156
4	1350	1450	5	6	-0.846	-0.844	-0.845	-0.841	-0.843	-0.842
5	1450	1550	6	7	-0.212	-0.21	-0.213	-0.208	-0.212	-0.207
6	1550	1650	7	8	0.161	0.164	0.163	0.168	0.165	0.172
7	1650	1750	8	9	0.103	0.103	0.101	0.103	0.1	0.1
8	1750	1850	9	10	-0.084	-0.08	-0.082	-0.078	-0.08	-0.077
9	1850	1950	10	11	-0.34	-0.338	-0.339	-0.335	-0.341	-0.336
10	1950	2050	11	12	-0.171	-0.17	-0.174	-0.166	-0.17	-0.165
11	2230	2330	13	14	-0.115	-0.114	-0.115	-0.11	-0.116	-0.108
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	0.149	0.148	0.146	0.145	0.143	0.135
13	1150	1250	17	18	-0.278	-0.28	-0.282	-0.283	-0.286	-0.294
14	1250	1350	18	19	-0.13	-0.132	-0.135	-0.136	-0.137	-0.147
15	1350	1450	19	20	0.343	0.34	0.339	0.339	0.337	0.327
16	1450	1550	20	21	1.104	1.103	1.098	1.097	1.097	1.087
17	1550	1650	21	22	-0.352	-0.354	-0.358	-0.358	-0.359	-0.369
18	1650	1750	22	23	-0.689	-0.692	-0.696	-0.694	-0.696	-0.708
19	1750	1850	23	24	-0.264	-0.266	-0.27	-0.272	-0.272	-0.28
20	1850	1950	24	25	-0.469	-0.47	-0.474	-0.47	-0.477	-0.484
21	1950	2050	25	26	-0.446	-0.446	-0.448	-0.446	-0.453	-0.459
22	2230	2330	27	28	-0.225	-0.227	-0.23	-0.229	-0.232	-0.24
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.255	-0.257	-0.258	-0.257	-0.259	-0.267
24	1550	1650	30	31	-0.248	-0.249	-0.251	-0.251	-0.253	-0.258
25	1650	1750	31	32	0.03	0.028	0.027	0.028	0.025	0.019
26	1450	1550	33	34	-0.126	-0.125	-0.127	-0.124	-0.125	-0.132
27	1550	1650	34	35	0.064	0.065	0.067	0.066	0.064	0.06
28	1650	1750	35	36	-0.146	-0.145	-0.148	-0.146	-0.148	-0.153

	NAC	28			21d	28d	56d	90d	120d	150d
	Α	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	14-03-16	21-03-16	18-04-16	22-05-16	21-06-16	21-07-16
1	870	970	1	2	0.059	0.064	0.066	0.065	0.068	0.066
2	1150	1250	3	4	-0.058	-0.057	-0.049	-0.048	-0.047	-0.048
3	1250	1350	4	5	0.011	0.014	0.013	0.016	0.016	0.015
4	1350	1450	5	6	-0.283	-0.28	-0.275	-0.272	-0.27	-0.269
5	1450	1550	6	7	-0.095	-0.098	-0.098	-0.097	-0.098	-0.1
6	1550	1650	7	8	-0.006	-0.001	0.004	0.006	0.008	0.011
7	1650	1750	8	9	0.006	0.009	0.012	0.014	0.014	0.015
8	1750	1850	9	10	-0.402	-0.401	-0.399	-0.398	-0.399	-0.4
9	1850	1950	10	11	-1.519	-1.514	-1.512	-1.51	-1.51	-1.51
10	1950	2050	11	12	0.048	0.053	0.058	0.063	0.065	0.068
11	2230	2330	13	14	-0.186	-0.187	-0.192	-0.19	-0.191	-0.191
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.478	-0.48	-0.492	-0.498	-0.501	-0.506
13	1150	1250	17	18	-1.112	-1.116	-1.13	-1.134	-1.139	-1.143
14	1250	1350	18	19	-0.751	-0.755	-0.768	-0.776	-0.779	-0.786
15	1350	1450	19	20	-0.311	-0.314	-0.327	-0.33	-0.333	-0.339
16	1450	1550	20	21	-0.626	-0.629	-0.642	-0.647	-0.652	-0.654
17	1550	1650	21	22	-1.101	-1.106	-1.115	-1.119	-1.125	-1.126
18	1650	1750	22	23	-0.416	-0.42	-0.432	-0.439	-0.443	-0.45
19	1750	1850	23	24	-0.779	-0.785	-0.799	-0.803	-0.806	-0.807
20	1850	1950	24	25	-0.088	-0.093	-0.109	-0.112	-0.119	-0.125
21	1950	2050	25	26	-0.358	-0.361	-0.376	-0.381	-0.386	-0.392
22	2230	2330	27	28	-0.809	-0.812	-0.824	-0.827	-0.833	-0.837
	Α	MIDDLE								
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.405	-0.407	-0.414	-0.416	-0.421	-0.425
24	1550	1650	30	31	-0.659	-0.662	-0.67	-0.675	-0.681	-0.683
25	1650	1750	31	32	-0.267	-0.272	-0.276	-0.281	-0.287	-0.291
26	1450	1550	33	34						
27	1550	1650	34	35						
28	1650	1750	35	36	-1.459	-1.458	-1.46	-1.464	-1.468	-1.47

					21d	28d	56d	90d	120d	150d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	14-03-16	21-03-16	18-04-16	22-05-16	21-06-16	21-07-16
1	870	970	1	2	-0.13	-0.128	-0.123	-0.121	-0.123	-0.121
2	1150	1250	3	4	-0.015	-0.009	-0.002	-0.003	0	0
3	1250	1350	4	5	-0.152	-0.149	-0.152	-0.154	-0.154	-0.154
4	1350	1450	5	6	-0.839	-0.836	-0.833	-0.83	-0.833	-0.828
5	1450	1550	6	7	-0.205	-0.204	-0.201	-0.199	-0.199	-0.198
6	1550	1650	7	8	0.176	0.18	0.183	0.185	0.186	0.189
7	1650	1750	8	9	0.098	0.098	0.095	0.096	0.096	0.091
8	1750	1850	9	10	-0.072	-0.069	-0.066	-0.064	-0.062	-0.058
9	1850	1950	10	11	-0.333	-0.331	-0.329	-0.325	-0.326	-0.326
10	1950	2050	11	12	-0.159	-0.158	-0.156	-0.156	-0.157	-0.154
11	2230	2330	13	14	-0.109	-0.108	-0.107	-0.106	-0.111	-0.11
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	0.132	0.126	0.114	0.108	0.104	0.099
13	1150	1250	17	18	-0.299	-0.305	-0.317	-0.324	-0.327	-0.335
14	1250	1350	18	19	-0.151	-0.156	-0.167	-0.169	-0.178	-0.181
15	1350	1450	19	20	0.323	0.318	0.306	0.302	0.296	0.292
16	1450	1550	20	21	1.085	1.077	1.066	1.059	1.056	1.048
17	1550	1650	21	22	-0.371	-0.379	-0.39	-0.393	-0.4	-0.404
18	1650	1750	22	23	-0.709	-0.714	-0.726	-0.732	-0.735	-0.739
19	1750	1850	23	24	-0.283	-0.292	-0.302	-0.303	-0.312	-0.315
20	1850	1950	24	25	-0.487	-0.492	-0.503	-0.509	-0.515	-0.516
21	1950	2050	25	26	-0.465	-0.472	-0.479	-0.484	-0.49	-0.492
22	2230	2330	27	28	-0.244	-0.25	-0.262	-0.264	-0.27	-0.273
	В	MIDE	DLE							
	From (mm)	To (mm) Disks		sks						
23	1450	1550	29	30	-0.27	-0.272	-0.281	-0.283	-0.29	-0.291
24	1550	1650	30	31	-0.261	-0.262	-0.27	-0.271	-0.278	-0.279
25	1650	1750	31	32	0.016	0.013	0.004	-0.003	-0.006	-0.004
26	1450	1550	33	34	-0.131	-0.134	-0.138	-0.137	-0.141	-0.143
27	1550	1650	34	35	0.063	0.059	0.05	0.048	0.046	0.049
28	1650	1750	35	36	-0.153	-0.157	-0.16	-0.158	-0.163	-0.165

	NAC	28			180d	210d	240d	270d	300d	330d
	Α	BOTT								
	From (mm)	To (mm)	_	sks	20-08-16	19-09-16	19-10-16	18-11-16	18-12-16	17-01-17
1	870	970	1	2	0.07	0.071	0.071	0.073	0.076	0.077
3	1150 1250	1250 1350	3	5	-0.045 0.018	-0.043 0.018	-0.051 0.018	-0.041 0.022	-0.044 0.025	-0.038 0.024
4	1350	1450	5	6	-0.267	-0.266	-0.265	-0.258	-0.253	-0.252
5	1450	1550	6	7	-0.207	-0.200	-0.203	-0.236	-0.233	-0.232
6	1550	1650	7	8	0.014	0.014	0.015	0.023	0.029	0.031
7	1650	1750	8	9	0.016	0.019	0.019	0.022	0.028	0.029
8	1750	1850	9	10	-0.4	-0.399	-0.401	-0.399	-0.4	-0.399
9	1850	1950	10	11	-1.51	-1.51	-1.51	-1.5	-1.501	-1.499
10	1950	2050	11	12	0.069	0.072	0.074	0.081	0.085	0.085
11	2230	2330	13	14	-0.193	-0.192	-0.195	-0.191	-0.195	-0.196
_	A	To		alea						
12	From (mm) 870	To (mm)	_	sks	-0.512	-0.513	-0.513	-0.517	0.510	-0.521
12 13	1150	970 1250	17	16 18	-1.149	-1.143	-1.151	-0.517	-0.519 -1.16	-1.156
14	1250	1350		19	-0.788	-0.792	-0.796	-0.797	-0.806	-0.808
15	1350	1450		20	-0.341	-0.344	-0.346	-0.346	-0.352	-0.353
16	1450	1550	20		-0.656	-0.658	-0.662	-0.664	-0.668	-0.669
17	1550	1650	21	22	-1.135	-1.135	-1.14	-1.14	-1.145	-1.147
18	1650	1750	22	23	-0.454	-0.453	-0.459	-0.462	-0.468	-0.469
19	1750	1850	23		-0.817	-0.818	-0.821	-0.823	-0.827	-0.832
20	1850	1950		25	-0.127	-0.129	-0.134	-0.139	-0.141	-0.145
21	1950	2050		26	-0.394	-0.394	-0.399	-0.403	-0.409	-0.412
22	2230 A	2330 MIDE		28	-0.842	-0.842	-0.846	-0.848	-0.853	-0.855
	From (mm)	To (mm)		sks						
23	1450	1550		30	-0.426	-0.424	-0.427	-0.431	-0.433	-0.434
24	1550	1650	30		-0.687	-0.688	-0.691	-0.695	-0.696	-0.698
25	1650	1750	31	32	-0.288	-0.293	-0.297	-0.314	-0.315	-0.318
26	1450	1550	33							
27	1550	1650	34							
28	1650	1750	35	36	-1.472	-1.473	-1.474	-1.473	-1.472	-1.475
					400-1	040-1	040-1	070-1	200-1	2004
_	B	R∩TT	ОМ		180d	210d	240d	270d	300d	330d
	B From (mm)	BOTT								
	From (mm)	To (mm)	Dis	sks	20-08-16	19-09-16	19-10-16	18-11-16	18-12-16	17-01-17
1 2										
	From (mm) 870	To (mm) 970	Dis	sks 2	20-08-16 -0.123 0.002 -0.154	19-09-16 -0.123	19-10-16 -0.123	18-11-16 -0.12	18-12-16 -0.117	17-01-17 -0.12
3 4	From (mm) 870 1150 1250 1350	To (mm) 970 1250	Dis 1 3 4 5	sks 2 4	20-08-16 -0.123 0.002	19-09-16 -0.123 0.003	19-10-16 -0.123 0.004 -0.15 -0.827	18-11-16 -0.12 0.007	18-12-16 -0.117 0.013	17-01-17 -0.12 0.014
2 3 4 5	From (mm) 870 1150 1250 1350 1450	To (mm) 970 1250 1350 1450 1550	Dis 1 3 4 5 6	5 6 7	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191
2 3 4 5 6	From (mm) 870 1150 1250 1350 1450 1550	To (mm) 970 1250 1350 1450 1550 1650	Dis 1 3 4 5 6 7	5 6 7 8	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206
2 3 4 5 6 7	From (mm) 870 1150 1250 1350 1450 1550 1650	To (mm) 970 1250 1350 1450 1550 1650 1750	Dis 1 3 4 5 6 7	5 6 7 8	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091
2 3 4 5 6 7 8	From (mm) 870 1150 1250 1350 1450 1550 1650 1750	To (mm) 970 1250 1350 1450 1550 1650 1750 1850	Dis 1 3 4 5 6 7 8	5 6 7 8 9	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043
2 3 4 5 6 7 8 9	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950	Dis 1 3 4 5 6 7 8 9	5 6 7 8 9 10	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318
2 3 4 5 6 7 8	From (mm) 870 1150 1250 1350 1450 1550 1650 1750	To (mm) 970 1250 1350 1450 1550 1650 1750 1850	Dis 1 3 4 5 6 7 8 9 10	5 6 7 8 9	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043
2 3 4 5 6 7 8 9	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050	Dis 1 3 4 5 6 7 8 9 10 11	5 6 7 8 9 10 11	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142
2 3 4 5 6 7 8 9 10	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm)	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm)	Dis 1 3 4 5 6 7 8 9 10 11 13 P	5 6 7 8 9 10 11 12 14	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098
2 3 4 5 6 7 8 9 10 11	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 970	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 15	5 6 7 8 9 10 11 12 14	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098
2 3 4 5 6 7 8 9 10 11	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 970 1250	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 15 17	5 6 7 8 9 10 11 12 14	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352
2 3 4 5 6 7 8 9 10 11	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 970 1250 1350	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 15 17 18	\$\frac{1}{5}\$ \$\frac{6}{6}\$ \$\frac{7}{8}\$ \$\frac{9}{10}\$ \$\frac{11}{12}\$ \$\frac{14}{14}\$ \$\frac{1}{18}\$ \$\frac{1}{19}\$	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.326 -0.15 -0.109 0.095 -0.339 -0.339 -0.187	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202
2 3 4 5 6 7 8 9 10 11 	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO To (mm) 970 1250 1350 1450	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 17 18 19	\$\frac{1}{5} \\ \begin{array}{cccccccccccccccccccccccccccccccccccc	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.187 0.287	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO To (mm) 970 1250 1350 1450 1550	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 17 18 19 20	5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041	19-10-16 -0.123 0.004 -0.15 -0.827 -0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043	18-11-16 -0.12 0.007 -0.148 -0.823 -0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 17 18 19 20 21	5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21 22	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO To (mm) 970 1250 1350 1450 1550	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 17 18 19 20 21 22	5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409	19-10-16 -0.123 0.004 -0.15 -0.827 -0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043	18-11-16 -0.12 0.007 -0.148 -0.823 -0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028
2 3 4 5 6 7 8 9 10 11 	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1650	To (mm) 970 1250 1350 1450 1550 1650 1750 1950 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750	Dis 1 3 4 5 6 7 8 9 10 11 13 P Dis 17 18 19 20 21 22 23	5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21 22 23	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ks 2 4 5 6 7 8 9 10 11 12 14 18 16 18 19 20 21 22 23 24 25 26	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.494	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.524 -0.498	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 1850 1950 1950 1950 1950 1950	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 ks 2 4 5 6 7 8 9 10 11 12 14 5 ks 16 18 19 20 21 22 23 24 25	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	From (mm) 870 1150 1250 1350 1450 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1650 1750 1850 1850 1850 1850 1850 1850 1850 18	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 MIDE	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sks 2 4 5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21 22 23 24 25 26 28	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.494	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.524 -0.498	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 8 From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1650 1750 1850 1950 2230 8 From (mm)	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1750 1850 1950 2050 2330 MIDE To (mm)	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sks 2 4 5 6 7 8 9 10 11 12 14 Sks 16 18 19 20 21 22 23 24 25 26 28 Sks	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.494 -0.276	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 8 From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1650 1750 1850 1650 1750 1850 1850 1850 1950 2230 8 From (mm)	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1750 1850 1750 1850 1850 1950 20330 MIDE To (mm)	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5ks 2 4 5 6 7 8 9 10 11 12 14 5ks 16 18 19 20 21 22 23 24 25 26 28 30 30 30 30 30 30 30 30 30 30	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.494 -0.276	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 8 From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 8 From (mm) 1450 1550	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1750 1850 1750 1850 1750 1850 1750 1850 1950 2050 2330 MIDE To (mm) 1550	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5ks 2 4 5 6 7 8 9 10 11 12 14 16 18 19 20 21 22 23 24 25 26 28 30 31	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.494 -0.276	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282 -0.299 -0.287	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292 -0.304 -0.289
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1850 1950 1850 1950 1850 1950 1850 1950 1850 1950 1850 1650	To (mm) 970 1250 1350 1450 1550 1650 1750 1950 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 TO (mm) 1550 1650 1750 1850 1950 2050 2330 TO (mm)	Dis 1 1 3 4 4 5 6 6 7 8 9 10 11 1 1 1 3 1 9 20 21 22 23 24 25 27 2	Sks 2	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.3407 -0.742 -0.319 -0.519 -0.276	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281 -0.299 -0.285 -0.007	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282 -0.299 -0.287 -0.012	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285 -0.301 -0.286 -0.009	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292 -0.304 -0.289 -0.015
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 1450 1550 1650 1750 1850 1950 1950 1950 1950 1950 1950 1950 19	To (mm) 970 1250 1350 1450 1550 1650 1750 1850 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1750 1850 1750 1850 1750 1850 1750 1850 1950 2050 2330 MIDE To (mm) 1550	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5ks 2 4 5 6 7 8 9 10 11 12 14 16 18 19 20 21 22 23 24 25 26 28 30 31	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.494 -0.276	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282 -0.299 -0.287	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292 -0.304 -0.289
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 22 23 24 25 26	From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1950 2230 B From (mm) 870 1150 1250 1350 1450 1550 1650 1750 1850 1850 1950 1850 1950 1850 1950 1850 1950 1850 1950 1850 1650	To (mm) 970 1250 1350 1450 1550 1650 1750 1950 2050 2330 TO (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050 2330 To (mm) 1550 1650 1750 1850 1950 2050 2330	Dis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sks 2	20-08-16 -0.123 0.002 -0.154 -0.828 -0.196 0.192 0.095 -0.056 -0.326 -0.15 -0.109 0.095 -0.339 -0.187 0.287 1.042 -0.407 -0.742 -0.319 -0.519 -0.276 -0.297 -0.284 -0.008 -0.144	19-09-16 -0.123 0.003 -0.154 -0.83 -0.199 0.19 0.091 -0.058 -0.327 -0.153 -0.106 0.093 -0.34 -0.188 0.286 1.041 -0.409 -0.741 -0.323 -0.521 -0.498 -0.277 -0.296 -0.282 -0.007 -0.144	19-10-16 -0.123 0.004 -0.15 -0.827 -0.195 0.193 0.092 -0.056 -0.324 -0.151 -0.107 0.092 -0.343 -0.191 0.283 1.043 -0.409 -0.745 -0.324 -0.524 -0.498 -0.281 -0.299 -0.285 -0.007 -0.145	18-11-16 -0.12 0.007 -0.148 -0.823 -0.193 0.198 0.092 -0.05 -0.321 -0.145 -0.104 0.087 -0.346 -0.193 0.281 1.037 -0.414 -0.748 -0.325 -0.522 -0.5 -0.282 -0.299 -0.287 -0.012 -0.146	18-12-16 -0.117 0.013 -0.146 -0.819 -0.193 0.203 0.085 -0.045 -0.318 -0.141 -0.1 0.083 -0.35 -0.199 0.278 1.032 -0.416 -0.749 -0.331 -0.53 -0.504 -0.285 -0.301 -0.286 -0.009 -0.147	17-01-17 -0.12 0.014 -0.147 -0.819 -0.191 0.206 0.091 -0.043 -0.318 -0.142 -0.098 0.082 -0.352 -0.202 0.274 1.028 -0.42 -0.752 -0.333 -0.532 -0.512 -0.292 -0.304 -0.289 -0.015 -0.148

	NAC	28			360d	400d	450d
	Α	BOTT	OM				
	From (mm)	To (mm)	Dis	sks	30-12-00	03-02-01	25-03-01
1	870	970	1	2	0.079	0.075	0.076
2	1150	1250	3	4	-0.035	-0.045	-0.046
3	1250	1350	4	5	0.024	0.022	0.018
4	1350	1450	5	6	-0.25	-0.252	-0.255
5	1450	1550	6	7	-0.102	-0.107	-0.102
6	1550	1650	7	8	0.034	0.03	0.028
7	1650	1750	8	9	0.029	0.026	0.023
8	1750	1850	9	10	-0.397	-0.399	-0.398
9	1850	1950	10	11	-1.5	-1.503	-1.501
10	1950	2050	11	12	0.087	0.083	0.083
11	2230	2330	13	14	-0.195	-0.199	-0.197
	Α	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.526	-0.528	-0.528
13	1150	1250	17	18	-1.152	-1.162	-1.167
14	1250	1350	18	19	-0.81	-0.813	-0.813
15	1350	1450	19	20	-0.355	-0.359	-0.357
16	1450	1550	20	21	-0.672	-0.676	-0.675
17	1550	1650	21	22	-1.15	-1.146	-1.15
18	1650	1750	22	23	-0.475	-0.473	-0.474
19	1750	1850	23	24	-0.834	-0.835	-0.835
20	1850	1950	24	25	-0.146	-0.153	-0.148
21	1950	2050	25	26	-0.413	-0.416	-0.417
22	2230	2330	27	28	-0.858	-0.862	-0.859
	Α	MIDD	LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.437	-0.437	-0.436
24	1550	1650	30	31	-0.703	-0.702	-0.703
25	1650	1750	31	32	-0.317	-0.321	-0.32
26	1450	1550	33	34			
27	1550	1650	34	35			
28	1650	1750	35	36	-1.472	-1.477	-1.479

_					360d	400d	450d
	В	BOTT	OM				
	From (mm)	To (mm)	Dis	sks	30-12-00	03-02-01	25-03-01
1	870	970	1	2	-0.119	-0.121	-0.116
2	1150	1250	3	4	0.013	0.013	0.012
3	1250	1350	4	5	-0.145	-0.149	-0.149
4	1350	1450	5	6	-0.819	-0.817	-0.818
5	1450	1550	6	7	-0.192	-0.193	-0.192
6	1550	1650	7	8	0.205	0.203	0.204
7	1650	1750	8	9	0.09	0.088	0.091
8	1750	1850	9	10	-0.044	-0.044	-0.045
9	1850	1950	10	11	-0.317	-0.319	-0.32
10	1950	2050	11	12	-0.142	-0.144	-0.145
11	2230	2330	13	14	-0.1	-0.101	-0.102
	В	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	0.077	0.066	0.078
13	1150	1250	17	18	-0.355	-0.358	-0.353
14	1250	1350	18	19	-0.205	-0.199	-0.204
15	1350	1450	19	20	0.272	0.27	0.273
16	1450	1550	20	21	1.025	1.022	1.023
17	1550	1650	21	22	-0.422	-0.427	-0.423
18	1650	1750	22	23	-0.753	-0.755	-0.756
19	1750	1850	23	24	-0.337	-0.34	-0.334
20	1850	1950	24	25	-0.536	-0.532	-0.534
21	1950	2050	25	26	-0.505	-0.512	-0.511
22	2230	2330	27	28	-0.292	-0.297	-0.292
	В	MIDD	LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.305	-0.309	-0.305
24	1550	1650	30	31	-0.291	-0.296	-0.292
25	1650	1750	31	32	-0.019	-0.018	-0.017
26	1450	1550	33	34	-0.149	-0.152	-0.147
27	1550	1650	34	35	0.04	0.036	0.036
28	1650	1750	35	36	-0.167	-0.174	-0.167

				Q =	13.42	MPa						SIDE	SIDE A BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
NAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	8	6	10	11
Casting	25-01-16	11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading	22-02-16	11:30	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	22-02-16	12:05	28	0	5	28.003	0.003	0.680	1.350	1.050	1.820	0.020	0.740	1.440	0.000	1.580	1.730	0.130
1h	22-02-16	13:00	28	1	0	28.042	0.042	0.750	1.420	1.100	1.860	-0.030	0.810	1.500	0.050	1.650	1.860	0.110
6h	22-02-16	19:00	28	9	0	28.250	0.250	0.780	1.460	1.140	1.930	-0.050	0.880	1.540	0.070	1.700	1.940	0.100
1	23-02-16	16:00	29	0	0	29.000	1.000	0.840	1.520	1.190	2.010	-0.040	0.970	1.600	0.090	1.750	2.040	0.090
2	24-02-16	14:00	30	0	0	30.000	2:000	0.840	1.540	1.200	2.050	-0.040	1.000	1.630	0.110	1.800	2.070	0.080
3	25-02-16	10:00	31	0	0	31.000	3.000	0.870	1.570	1.240	2.100	-0.040	1.050	1.690	0.140	1.830	2.130	0.100
7	26.02.16	13.00	33			32,000	4 000	0000	1 500	1 250	2 120	0000	1 000	1 690	0130	1 950	2 160	0000
+ 4	20-02-10	13.00	32	0	0 0	32.000	000:	0.030	1.330	1.230	2.120	0.040	1.030	1.030	0.120	1.630	2.100	0000
0 (27-02-10	19:00	55	0	0	23.000	0.000	0.910	1.010	1.270	0CT.7	-0.000	1.100	1.710	0.120	1.000	2.190	0.000
9	28-02-16	20:00	34	0	0	34.000	000.9	0.920	1.600	1.280	2.160	-0.030	1.140	1.730	0.150	1.890	2.230	0.090
7	29-02-16	12:00	35	0	0	35.000	2.000	0.930	1.620	1.280	2.150	-0.040	1.120	1.720	0.130	1.890	2.210	0.080
14	07-03-16	16:00	42	0	0	42.00	14.00	0.940	1.630	1.290	2.200	-0.100	1.170	1.760	0.110	1.900	2.270	0.020
24	14 02 16	00.0	i or	0	0	00 07	21.00	0.000	1.670	1 210	2 250	0200	1 210	1 700	0100	1 030	2 240	000
17	14-03-10	9:00	45	0	0	49.00	21.00	0.940	T.070	015.1	2.230	-0.070	1.210	1.700	0.100	1.920	2.540	0.000
28	21-03-16	11:00	26	0	0	26.00	28.00	0.990	1.680	1.340	2.280	-0.100	1.260	1.810	0.110	1.970	2.390	-0.010
56	18-04-16	15:00	84	0	0	84.00	26.00	1.010	1.760	1.330	2.330	-0.100	1.310	1.840	0.130	1.990	2.440	-0.060
06	22-05-16	14:00	118	0	0	118.00	90.00	1.000	1.770	1.360	2.360	-0.090	1.330	1.860	0.140	2.010	2.490	-0.040
120	21 05 15	11.00	140	0 0	0	148.00	00.000	1 030	700	0000	00000	0000	010.1	1 000	00,100	070.0	0.110	010
071	21-0p-1p	00:11	148	0	0	148.00	120.00	T.U30	T./80	T.350	2.380	-0.T00	1.350	1.850	0.130	2.010	2.510	-0.050
150	21-07-16	13:00	178	0	0	178.00	150.00	1.010	1.770	1.350	2.390	-0.120	1.380	1.870	0.120	2.010	2.540	-0.050
180	20-08-16	13:00	208	0	0	208.00	180.00	1.050	1.800	1.380	2.410	-0.120	1.410	1.880	0.120	2.010	2.550	-0.070
210	19-09-16	17:00	238	0	O	238.00	210.00	1.060	1.820	1.380	2.420	-0.140	1.410	1.910	0.130	2.010	2.580	-0.060
240	10-10-16	15.00	368	c		00 890	240.00	1 060	1 740	1 380	2.430	0.160	1 120	1 010	0110	2 010	2 600	0000
070	10-10-10	10.00	202	0		208.00	00.075	1.000	1.740	1,300	0.4.0	0.140	1.120	1040	0.120	2.010	000.7	0.00
270	10-11-10	10:00	230	0 (0 (298.00	270.00	T.000	1.040	1.420	2.300	-0.140	1.300	1.940	0.130	2.110	2.570	-0.050
300	18-12-16	13:00	328	0	0	328.00	300.00	1.110	1.810	1.450	2.550	-0.170	1.560	2.000	0.120	2.100	2.710	-0.090
330	17-01-17	16:00	358	0	0	358.00	330.00	1.120	1.870	1.440	2.560	-0.170	1.580	2.010	0.130	2.120	2.710	-0.100
365	21-02-17	10:00	393	0	0	393.00	365.00	1.140	1.900	1.440	2.580	-0.140	1.610	2.010	0.150	2.110	2.730	-0.090
400	28-03-17	12:00	428	0	0	428.00	400.00	1.100	1.800	1.420	2.560	-0.190	1.570	1.980	0.130	2.080	2.690	-0.130
450	17-05-17	11:00	478	0	O	478.00	450.00	1.110	1.790	1.380	2.530	-0.140	1.550	1.950	0.140	2.100	2.690	-0.110
200	22 02 12		002	0	0	00 002	00 002											
000	22-01-10		07/	0	>	720.00	700.00											
												1010	(/o) PACTTOG G 1013	10/				
												JOIN .	P BOI ION	(200)			0000	
					Age		:	920	1200	1300	1400	1500	1600	1700	1800	1900	2000	7280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	т	2	3	4	2	9	7	∞	6	10	11
Casting	25-01-16	11.00	c	c	c	0000	-	31	31	31	31	31	31	31	31	31	3.1	31
Casimiy	22-01-10	11.00	0 6	0		000.0	0000	75	2000	750	75	77	77	77	75	2000	77	75
Berore loading	77-07-19	11:30	87	O	0	78.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	22-02-16	12:05	28	0	5	28.003	0.003	0.050	1.560	0.990	0.960	1.010	1.610	0.970	1.560	1.140	1.360	0.790
1h	22-02-16	13:00	28	1	0	28.042	0.042	090'0	1.660	1.060	1.030	1.060	1.670	0.970	1.630	1.200	1.440	0.830
6h	22-02-16	19:00	28	9	O	28.250	0.250	080	1.740	1.150	1.070	1.090	1.730	0.960	1.690	1 220	1.480	0.890
	23-02-16	16.00	39	0 0	0 0	000 62	1 000	0600	1 840	1 200	1 140	1 200	1 840	0000	1 780	1 310	1 550	0.070
- c	23 02 10	14.00	2			000.02	0000	0.00	1.070	22.5	2,750	7,700	1.010	0.000	100	200	1.000	
7	24-02-16	14:00	30	o	o	30.000	2.000	0.070	T.85U	1.210	1.120	T.170	1.82U	0.940	T./80	1.330	1.610	0.980
3	25-02-16	10:00	31	0	0	31.000	3.000	0.100	1.890	1.230	1.160	1.220	1.880	0.970	1.830	1.360	1.670	1.000
4	26-02-16	13:00	32	0	0	32.000	4.000	0.120	1.930	1.270	1.180	1.240	1.910	0.970	1.870	1.380	1.680	1.010
2	27-02-16	19:00	33	0	0	33.000	2:000	0.100	1.950	1.240	1.170	1.210	1.900	0.950	1.850	1.370	1.640	1.000
e	28-02-16	20.00	3.4	c	O	34 000	6,000	0.130	1 970	1 290	1 210	1 260	1 950	0 970	1 890	1 410	1 720	1 050
, ,	20 02 20	12.00	100			000.10	2000	0.100	1.070	0000	7 700	2007	2000	0.00	1.000	1 250	1,000	200
,	23-02-10	12.00	CC	0	0	23.000	0000.7	0.100	1.340	T.200	T.130	1.220	T.920	0.340	T.0/0	1.330	T.000	0.990
14	07-03-16	16:00	42	0	0	42.00	14.00	0.090	2.020	1.280	1.200	1.270	1.990	0.940	1.900	1.400	1.730	1.070
21	14-03-16	00:60	49	0	0	49.00	21.00	0.120	2.030	1.320	1.230	1.290	2.030	0.920	1.950	1.430	1.790	1.060
28	21-03-16	11:00	26	0	0	26.00	28.00	0.140	2.090	1.350	1.260	1.300	2.070	0.920	1.980	1.450	1.800	1.070
56	18-04-16	15:00	84	0	0	84.00	26.00	0.190	2.160	1.320	1.290	1.330	2.100	0.890	2.010	1.470	1.820	1.080
ОО	22-05-16	14.00	118	c		118 00	00.00	0.210	2 150	1 300	1 320	1 350	2 120	0 000	2 030	1 510	1 820	1 000
120	21 05 15	11.00	140	0 0	0 0	140.00	120.00	0.110	3 180	1 200	1 200	1 250	2 130	0000	2 050	1:0:0	1 010	0.00
150	21-00-10	12.00	110	0	0	148.00	120.00	0.130	2,100	1,300	1,240	1.330	2.130	0.500	2.030	1.300	1.010	010.1
000	21-01-10	13.00	0/1	0 1	0 1	170.00	130.00	0.210	2.100	1.300	1.340	T-200	2.100	0.030	2.090	T.300	T.040	OCO.T
180	70-08-19	13:00	807	O	0	208.00	180.00	0.190	7.200	1.300	1.340	1.380	2.190	0.890	2.110	1.500	1.880	T.060
210	19-09-16	17:00	238	0	0	238.00	210.00	0.190	2.210	1.300	1.320	1.350	2.170	0.850	2.090	1.490	1.850	1.090
240	19-10-16	15:00	268	0	0	268.00	240.00	0.190	2.220	1.340	1.350	1.390	2.200	0.860	2.110	1.520	1.870	1.080
270	18-11-16	16:00	298	0	0	298.00	270.00	0.220	2.250	1.360	1.390	1.410	2.250	0.860	2.170	1.550	1.930	1.110
300	18-12-16	13:00	328	0	0	328.00	300.00	0.250	2.310	1.380	1.430	1.410	2.300	0.790	2.220	1.580	1.970	1.150
330	17-01-17	16:00	358	0	O	358.00	330.00	0.220	2.320	1.370	1.430	1.430	2.330	0.850	2.240	1.580	1.960	1.170
365	21-02-17	10.00	393	0	0	393.00	365.00	0.230	2 310	1 390	1 430	1 420	2 320	0.840	2 230	1 590	1 960	1 150
400	28-03-17	12:00	478	0 0	0 0	00 827	00 007	0.210	2 310	1 350	1.450	1 410	2 300	0.820	2 230	1 570	1 940	1 140
450	12 05 17	14.00	420			428.00	400.00	0.210	2.300	1.330	1.400	1.4.0	2.300	0.020	0000	1.270	1.340	1,140
430	17-03-17	11:00	4/0	0	0	478.00	420.00	0.250	7.300	T.330	1.440	1.420	2.310	0.830	7.220	T.360	T.930	T.130

NAC28 Date Casting 25-01-16 Before loading 25-01-16 5min after loading 22-02-16 6h 22-02-16 6h 22-02-16 7 24-02-16 3 25-02-16 4 24-02-16 5 24-02-16 6 28-02-16 7 29-02-16 14 07-03-16 21 14-03-16 28 21-03-16 20 22-02-16 56 18-04-16 90 21-03-16 120 21-03-16 120 21-03-16 120 21-03-16 120 21-03-16 120 21-03-16 120 21-03-16 210 21-03-16 210 21-03-16 210 21-03-16 210 21-03-16 210 21-03-16 210 21-03-16 210 21-03-16	Time 11:00 11:00 11:00 11:00 10:00 10:00 10:00 11:00	Days 0 0 28 28 28 28 28 30 31 31 32 34 49 49 49 56 40 118 118 118 148	Hours	Age Minutes 0	Days, eq 0.000	From loading (days)	920 12 197	1200	1300	1400	\sim	1600	1700	1800	1900	2000	2280
		Days 0 0 0 0 28 28 28 28 28 39 31 31 31 31 31 31 31 31 31 31 31 31 31	Hours	Minutes 0	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
		0 28 28 28 28 29 30 31 31 31 31 32 42 42 42 42 42 42 42 42 42 42 42 42 42	0 0 0 0 0 0 0 0 0	0	0.000	1	197					101	197	197	197		
		28 28 28 29 30 31 31 31 32 42 49 49 49 49 49 49 49 49 49 49 49 49 49	0 0 0 0 0 0 0 0	0				197	197	197	197	197	-			197	197
		28 28 28 30 31 31 31 32 33 34 49 49 49 49 49 49 49 49 49 49 49 49 49	0 0 0 0 0 0		28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		28 29 30 31 31 32 33 34 42 42 42 42 42 42 42 42 42 42 42 42 42	1 0 0 0 0 0	5	28.003	0.003	-0.360	-0.550	-0.470	-0.520	-0.400	-0.450	-0.540	-0.620	-0.350	-0.500	-0.250
		28 20 30 31 31 32 33 34 42 42 42 42 42 42 42 42 42 42 42 42 42	90000	0	28.042	0.042	-0.380	-0.590	-0.520	-0.560	-0.430	-0.480	-0.580	-0.680	-0.390	-0.510	-0.290
		29 30 31 32 33 34 42 42 49 56 84 118 118 178	0 0 0 0	0	28.250	0.250	-0.400	-0.640	-0.540	-0.600	-0.450	-0.510	-0.590	-0.710	-0.430	-0.570	-0.320
		30 31 32 33 34 34 42 42 49 49 64 118 118 118 208	0 0 0 0	0	29.000	1.000	-0.460	-0.660	-0.590	-0.630	-0.490	-0.560	-0.650	-0.750	-0.450	-0.590	-0.340
		31 32 33 34 42 42 49 56 84 118 118 178	0 0 0	0	30.000	2.000	-0.470	-0.710	-0.600	-0.670	-0.510	-0.570	-0.690	-0.780	-0.490	-0.650	-0.370
		32 33 34 35 42 42 49 56 84 118 178 208	0 0	0	31.000	3.000	-0.460	-0.690	-0.650	-0.650	-0.520	-0.590	-0.690	-0.790	-0.510	-0.630	-0.380
		33 34 35 42 49 56 84 118 118 178 208	0	0	32.000	4.000	-0.490	-0.730	-0.670	-0.690	-0.520	-0.620	-0.730	-0.830	-0.530	-0.670	-0.390
	+++++++++++++++++++++++++++++++++++++++	34 35 42 49 56 84 118 178 208		0	33.000	5.000	-0.520	-0.760	069.0-	-0.710	-0.540	-0.640	0220-	-0.860	-0.600	-0.680	-0.410
	 	35 42 49 56 84 118 178 208	•		24,000	0.000	0.320	0.700	0.000	0.720	0110	010.0	0.7.50	0.000	0.000	0.000	0.40
	+++++++++++++++++++++++++++++++++++++++	35 42 49 56 84 118 148 178	0	0	34.000	0.000	-0.490	-0.780	-0.710	-0.730	-0.550	-0.050	-0.760	-0.860	-0.570	-0.700	-0.420
		42 49 56 84 118 178 208	0	0	35.000	7.000	-0.500	-0.800	-0.740	-0.760	-0.600	-0.690	-0.800	-0.900	-0.600	-0.730	-0.450
		49 56 84 118 148 178 208	0	0	42.00	14.00	-0.600	-0.870	-0.830	-0.830	-0.670	-0.780	-0.880	-0.980	-0.690	-0.810	-0.530
	+++++	56 84 118 148 178 208	C	C	49.00	21.00	-0.700	0.970	006.0-	-0.870	-0.710	-0.820	-0.950	-1.060	-0.760	0880-	-0.590
	++++++	208 84 118 148 178 208			26.00	00.80	0.720	1 010	0000	0000	0770	028.0	0000	-1 120	0.810	0000	0.630
	+++++	208	0	0	00.00	20.00	0.720	7.710	0.040	0.000	0.740	0.070	0.550	1.120	0.010	0.020	0.020
		118 148 178 208	O	О	84.00	26.00	-0.840	-1.150	-1.070	-1.030	-0.870	-0.960	OTT.T-	-T.26U	-0.970	-T.U./U	-0.740
		148 178 208	0	0	118.00	90.00	-0.900	-1.190	-1.150	-1.060	-0.920	-1.000	-1.180	-1.300	-1.000	-1.120	-0.770
		178	0	0	148.00	120.00	-0.930	-1.240	-1.180	-1.090	-0.970	-1.060	-1.220	-1.330	-1.070	-1.170	-0.830
		208	c	C	178.00	150.00	086 0-	-1 280	-1 250	-1 150	066 0-	-1 070	-1 290	-1 340	-1 130	-1 230	-0 870
	++	208	0	0	200.00	100.00	0.300	1.200	1,230	1,130	0.330	4400	1,230	1.340	4450	1.230	0.00
			0	0	708.00	180.00	-1.040	-1.340	-1.270	-1.1/0	-1.010	-1.160	-1.330	-T.440	-1.150	-1.250	-0.920
	+	238	0	0	238.00	210.00	-1.050	-1.280	-1.310	-1.200	-1.030	-1.160	-1.320	-1.450	-1.170	-1.250	-0.920
		268	0	0	268.00	240.00	-1.050	-1.360	-1.350	-1.220	-1.070	-1.210	-1.380	-1.480	-1.220	-1.300	-0.960
		298	c	C	298 00	270.00	-1 090	-1 320	-1 360	-1 220	-1 090	-1 210	-1 410	-1 500	-1 270	-1 340	-0 980
	t	200			20.00	20.00	1,000	1.320	5000	1,200	1,000	1,200	2 4 4 2 5	1.000	2000	1,400	2000
	†	970	0	0	320.00	200.00	-1.110	-T.430	-T.430	-1.200	-1.130	-1.200	-1.470	-T.340	-T.29U	-1.400	-T.USU
		358	0	0	358.00	330.00	-1.130	-1.410	-1.470	-1.290	-1.140	-1.280	-1.480	-1.590	-1.330	-1.430	-1.050
365 21-02-17	10:00	393	0	0	393.00	365.00	-1.180	-1.370	-1.490	-1.310	-1.170	-1.310	-1.540	-1.610	-1.340	-1.440	-1.080
		428	0	0	428.00	400.00	-1.200	-1.470	-1.520	-1.350	-1.210	-1.270	-1.520	-1.620	-1.410	-1.470	-1.120
		478	0	0	478.00	450.00	-1.200	-1.520	-1.520	-1.330	-1.200	-1.310	-1.530	-1.620	-1.360	-1.480	-1.090
700 22-01-18		728	0	0	728.00	700.00											
_																	
											IIS	SIDF B TOP (%					
				Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
ţe C	Timo	Dave	Hours	Minutes	Do ove	From loading	1,	10	,	1,	31	17	10	0,	00	7,0	ν,
	1	2622	3	3		(days)		7	·	?	27	ì	2	}	27	;	1
		0	0	0	0.000	I	197	197	197	197	197	197	197	197	197	197	197
Before loading 22-02-16	11:30	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
		28	0	2	28.003	0.003	-0.330	-0.530	-0.430	-0.460	-0.410	-0.440	-0.410	-0.450	-0.370	-0.740	-0.290
	1	28	-		28.042	0.042	0330	0.520	-0.440	-0.470	-0.420	-0.460	-0.410	-0.470	0880-	-0.730	0000-
	†	07	7 4		25.042	0.042	0000	0.22.0	0.45	0.10	0.450	0.400	0.4.0	0.170	0.380	0000	0.520
	15.00	97	0	0	20.000	0.230	0.390	0.230	0.130	0.410	0.400	0.130	0.430	0.50-	0.420	-0.620	0.030
1 23-02-16	+	67	0	0	29.000	1.000	-0.390	-0.610	-0.520	-0.540	-0.500	-0.530	-0.480	-0.560	-0.460	-0.820	-0.350
		30	0	0	30.000	2.000	-0.430	-0.660	-0.580	-0.600	-0.550	-0.560	-0.510	-0.580	-0.480	-0.880	-0.380
3 25-02-16		31	0	0	31.000	3.000	-0.450	-0.680	-0.570	-0.600	-0.560	-0.560	-0.480	-0.590	-0.480	-0.890	-0.380
		32	0	0	32.000	4.000	-0.460	-0.700	-0.590	-0.630	-0.570	-0.580	-0.510	-0.610	-0.490	-0.890	-0.400
5 27-02-16	19:00	33	0	0	33.000	5.000	-0.480	-0.720	-0.620	-0.640	-0.620	-0.620	-0.550	-0.650	-0.530	-0.910	-0.430
		34	0	0	34.000	00009	-0.490	-0.730	-0.630	-0.640	-0.630	-0.620	-0.530	-0.670	-0.490	-0.890	-0.420
7 79-03-16	1	25			35,000	2,000	0.510	092.0	0.640	0.550	0.630	0.630	0550	0290	0950	0900	0.450
	+	5	0	0	20.000	000.7	0.010	00.00	0.00	0.000	0.030	0.030	0.00	0.070	0.200	0.500	0.10
	+	47	0	0	42.00	14.00	-0.590	-0.840	-0.740	-0.760	-0.730	-0.730	-0.670	-0.750	-0.630	-T.UZU	-0.530
	\dashv	49	0	0	49.00	21.00	-0.620	-0.890	-0.780	-0.800	-0.750	-0.750	-0.680	-0.780	-0.660	-1.080	-0.570
		26	0	0	26.00	28.00	-0.680	-0.950	-0.830	-0.850	-0.830	-0.830	-0.730	-0.870	-0.710	-1.150	-0.630
		84	0	0	84.00	56.00	-0.800	-1.070	-0.940	-0.970	-0.940	-0.940	-0.850	-0.970	-0.820	-1.220	-0.750
90 22-05-16	14:00	118	0	0	118.00	90.00	-0.860	-1.140	-0.960	-1.010	-1.010	-0.970	-0.910	-0.980	-0,880	-1.270	-0.770
	<u> </u>	148	C	0	148 00	120.00	006 0-	-1 170	-1 050	-1 070	-1 040	-1 040	-0 940	-1 070	-0 940	-1 330	-0.830
	-	178	0) (178.00	150.00	050 0-	-1 250	-1 080	-1 110	-1 120	-1 080	0860-	-1 100	0.950	-1 350	-0 860
180 30-08-16	t	208	0 0	0 0	208.00	180.00	066.0	1 200	1 140	1 160	1 180	1 110	1010	-1 140	086.0	1 270	0000
	Ŧ	200	0	0	220.00	180.00	0.330	4 200	4.470	4 4 10	1,100	4.420	4,000	11.140	4,000	1.370	0.000
210 19-09-16	17:00	238	0	0	238.00	210.00	-T.010	-1.300	-1.150	-1.1/0	-1.190	-1.130	000.T-	-T.180	-1.000	-1.410	-0.900
	+	768	0	0	768.00	240.00	-1.020	-1.330	-1.180	-1.200	-1.1/0	-1.130	-1.040	-1.190	-1.030	-1.410	-0.940
		298	0	0	298.00	270.00	-1.070	-1.360	-1.200	-1.220	-1.230	-1.180	-1.070	-1.200	-1.010	-1.430	-0.950
		328	0	0	328.00	300.00	-1.110	-1.400	-1.260	-1.250	-1.280	-1.200	-1.080	-1.260	-1.090	-1.470	-0.980
		358	0	0	358.00	330.00	-1.120	-1.420	-1.290	-1.290	-1.320	-1.240	-1.110	-1.280	-1.110	-1.550	-1.050
365 21-02-17	10:00	393	0	0	393.00	365.00	-1.170	-1.450	-1.320	-1.310	-1.350	-1.260	-1.120	-1.320	-1.150	-1.480	-1.050
		428	0	0	428.00	400.00	-1.280	-1.480	-1.260	-1.330	-1.380	-1.310	-1.140	-1.350	-1.110	-1.550	-1.100
		478	0	0	478.00	450.00	-1.160	-1.430	-1.310	-1.300	-1.370	-1.270	-1.150	-1.290	-1.130	-1.540	-1.050

NAC28 Casting Before loading 5min after loading 1h 6h	Date				Age			1500	1600	1700	1500	1600	1700
NAC28 Casting Before loading 5min after loading 1h 6h	Date	Ī						7	,,,,,				i
Casting Before loading 5min after loading 1h 6h		Time	Days	Hours	Minutes	Days, eq	From loading (davs)	23	24	25	26	27	28
Before loading 5min after loading 1h 6h	25-01-16	11:00	0	0	0	0.000	-	155	155	155	115	115	115
5min after loading 1h 6h	22-02-16	11:30	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
th 6h	22-02-16	12:05	28	0	5	28.003	0.003	-0.120	-0.130	-0.150	0.000	0.000	0.420
-Gh	22-02-16	13:00	28	1	0	28.042	0.042	-0.130	-0.150	-0.180	0.000	0.000	0.250
	22-02-16	19:00	28	9	0	28.250	0.250	-0.130	-0.150	-0.210	0.000	0.000	0.220
1	23-02-16	16:00	29	0	0	29.000	1.000	-0.150	-0.170	-0.230	0.000	0.000	0.250
2	24-02-16	14:00	30	0	0	30.000	2.000	-0.170	-0.180	-0.270	0.000	0.000	0.220
8	25-02-16	10:00	31	0	0	31.000	3.000	-0.160	-0.190	-0.280	0.000	0.000	0.230
4	26-02-16	13:00	32	0	0	32.000	4.000	-0.170	-0.200	-0.280	0.000	0.000	0.240
2	27-02-16	19:00	33	0	0	33.000	2.000	-0.190	-0.220	-0.330	0.000	0.000	0.220
9	28-02-16	20:00	34	0	0	34.000	000'9	-0.180	-0.220	-0.330	0.000	0.000	0.250
7	29-02-16	12:00	35	0	0	35.000	7.000	-0.220	-0.260	-0.390	0.000	0.000	0.220
14	07-03-16	16:00	42	0	0	42.00	14.00	-0.250	-0.300	-0.420	0.000	0.000	0.160
21	14-03-16	9:00	49	0	0	49.00	21.00	-0.290	-0.350	-0.470	0.000	0.000	0.150
28	21-03-16	11:00	99	0	0	26.00	28.00	-0.310	-0.380	-0.520	0.000	0.000	0.160
99	18-04-16	15:00	84	0	0	84.00	26.00	-0.380	-0.460	-0.560	0.000	0.000	0.140
06	22-05-16	14:00	118	0	0	118.00	00.06	-0.400	-0.510	-0.610	0.000	0.000	0.100
120	21-06-16	11:00	148	0	0	148.00	120.00	-0.450	-0.570	-0.670	0.000	0.000	090'0
150	21-07-16	13:00	178	0	0	178.00	150.00	-0.490	-0.590	-0.710	0.000	0.000	0.040
180	20-08-16	13:00	208	0	0	208.00	180.00	-0.500	-0.630	-0.680	0.000	0.000	0.020
210	19-09-16	17:00	238	0	0	238.00	210.00	-0.480	-0.640	-0.730	0.000	0.000	0.010
240	19-10-16	15:00	268	0	0	268.00	240.00	-0.510	-0.670	-0.770	0.000	0.000	0.000
270	18-11-16	16:00	298	0	0	298.00	270.00	-0.550	-0.710	-0.940	0.000	0.000	0.010
300	18-12-16	13:00	328	0	0	328.00	300.00	-0.570	-0.720	-0.950	0.000	0.000	0.020
330	17-01-17	16:00	358	0	0	358.00	330.00	-0.580	-0.740	-0.980	0.000	0.000	-0.010
365	21-02-17	10:00	393	0	0	393.00	365.00	-0.610	-0.790	-0.970	0.000	0.000	0.020
400	28-03-17	12:00	428	0	0	428.00	400.00	-0.610	-0.780	-1.010	0.000	0.000	-0.030
450	17-05-17	11:00	478	0	0	478.00	450.00	-0.600	-0.790	-1.000	0.000	0.000	-0.050
200	22-01-18		728	0	0	728.00	700.00						
										SIDE B MI	SIDE B MIDDLE (%)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading (davs)	23	24	25	26	27	28
Casting	25-01-16	11:00	0	0	0	0000	-	155	155	155	115	115	115
Before loading	22-02-16	11:30	28	0	0	28.000	0000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	22-02-16	12:05	28	0	5	28.003	0.003	-0.070	-0.030	-0.120	0.270	0.610	0.010
1h	22-02-16	13:00	28	1	0	28.042	0.042	-0.050	-0.020	-0.080	0.310	0.660	0.030
- Qh	22-02-16	19:00	28	9	0	28.250	0.250	-0.090	-0.040	-0.110	0.290	0.680	0.020
1	23-02-16	16:00	29	0	0	29.000	1.000	-0.120	-0.040	-0.120	2.790	0.690	0.000
2	24-02-16	14:00	30	0	0	30.000	2.000	-0.140	-0.080	-0.160	2.800	0.660	0.010
3	25-02-16	10:00	31	0	0	31.000	3.000	-0.130	-0.060	-0.130	0.280	0.670	0.000
4	26-02-16	13:00	32	0	0	32.000	4.000	-0.150	-0.070	-0.150	0.290	0.680	0.010
2	27-02-16	19:00	33	0	0	33.000	2.000	-0.160	-0.090	-0.160	0.270	0.700	-0.020
9	28-02-16	20:00	34	0	0	34.000	000'9	-0.150	-0.090	-0.150	0.300	0.690	0.000
7	29-02-16	12:00	35	0	0	35.000	7.000	-0.170	-0.110	-0.180	0.290	0.670	-0.020
14	07-03-16	16:00	42	0	0	42.00	14.00	-0.250	-0.160	-0.240	0.220	0.630	-0.070
21	14-03-16	00:60	49	0	0	49.00	21.00	-0.280	-0.190	-0.270	0.230	0.660	-0.070
28	21-03-16	11:00	26	0	0	26.00	28.00	-0.300	-0.200	-0.300	0.200	0.620	-0.110
26	18-04-16	15:00	84	0	0	84.00	26.00	-0.390	-0.280	-0.390	0.160	0.530	-0.140
06	22-05-16	14:00	118	0	0	118.00	90.00	-0.410	-0.290	-0.460	0.170	0.510	-0.120
120	21-06-16	11:00	148	0	0	148.00	120.00	-0.480	-0.360	-0.490	0.130	0.490	-0.170
150	21-07-16	13:00	178	0	0	178.00	150.00	-0.490	-0.370	-0.470	0.110	0.520	-0.190
180	20-08-16	13:00	208	0	0	208.00	180.00	-0.550	-0.420	-0.510	0.100	0.450	-0.190
210	19-09-16	17:00	238	0	0	238.00	210.00	-0.540	-0.400	-0.500	0.100	0.470	-0.200
240	19-10-16	15:00	268	0	0	268.00	240.00	-0.570	-0.430	-0.500	0.090	0.460	-0.220
270	18-11-16	16:00	298	0	0	298.00	270.00	-0.570	-0.450	-0.550	0.080	0.480	-0.190
300	18-12-16	13:00	328	0 0	0	328.00	300.000	-0.590	-0.440	-0.520	0.070	0.450	-0.170
365	21-02-17	10:00	308	o c	o c	358.00	330.00	-0.620	0.470	0.530	0.050	0.420	-0.230
400	28-02-17	12.00	428	0 0	0 0	428.00	400.00	-0.670	-0.540	-0.610	0.030	0.390	-0.210
450	17-05-17	11.00	478	0 0	0	478.00	450.00	-0.630	-0.500	-0.600	0.020	0.390	-0.210

_	RAC	7			0	5m	1h	6h	1d	2d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	09-02-16	09-02-16	09-02-16	09-02-16	10-02-16	11-02-16
1	870	970	1	2	-0.215	-0.064	-0.053	-0.051	-0.044	-0.039
2	1150	1250	3	4	-0.299	-0.127	-0.12	-0.115	-0.111	-0.106
3	1250	1350	4	5	-0.352	-0.291	-0.284	-0.284	-0.282	-0.278
4	1350	1450	5	6	-0.239	-0.03	-0.023	-0.019	-0.012	-0.007
5	1450	1550	6	7	-0.535	-0.467	-0.46	-0.455	-0.453	-0.451
6	1550	1650	7	8	-0.315	-0.128	-0.122	-0.121	-0.117	-0.113
7	1650	1750	8	9	-0.205	-0.002	0.004	0.006	0.014	0.024
8	1750	1850	9	10	-2.049	-1.995	-1.991	-1.988	-1.99	-1.984
9	1850	1950	10	11	-0.019	0.137	0.145	0.147	0.154	0.159
10	1950	2050	11	12	-0.116	0.056	0.056	0.06	0.067	0.072
11	2230	2330	13	14	0.974	1.075	1.09	1.093	1.095	1.102
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-2.252	-2.312	-2.317	-2.318	-2.328	-2.333
13	1150	1250	17	18	-0.169	-0.245	-0.249	-0.253	-0.262	-0.266
14	1250	1350	18	19	-0.398	-0.454	-0.456	-0.461	-0.47	-0.475
15	1350	1450	19	20	-0.162	-0.242	-0.245	-0.25	-0.255	-0.262
16	1450	1550	20	21	-0.289	-0.328	-0.33	-0.335	-0.343	-0.347
17	1550	1650	21	22	-1.304	-1.39	-1.391	-1.398	-1.407	-1.411
18	1650	1750	22	23	-0.08	-0.151	-0.151	-0.157	-0.165	-0.168
19	1750	1850	23	24	-1.309	-1.397	-1.397	-1.405	-1.412	-1.416
20	1850	1950	24	25	-0.817	-0.865	-0.866	-0.871	-0.879	-0.882
21	1950	2050	25	26	-0.014	-0.096	-0.095	-0.101	-0.106	-0.11
22	2230	2330	27	28	-0.133	-0.199	-0.188	-0.194	-0.202	-0.203
	Α	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.413	-0.432	-0.428	-0.433	-0.436	-0.44
24	1550	1650	30	31	-0.493	-0.509	-0.507	-0.512	-0.515	-0.517
25	1650	1750	31	32	-0.365	-0.384	-0.385	-0.388	-0.392	-0.394
26	1450	1550	33	34	-0.117	-0.109	-0.106	-0.108	-0.109	-0.108
27	1550	1650	34	35	1.042	1.088	1.091	1.087	1.088	1.088
28	1650	1750	35	36	-0.944	-0.922	-0.919	-0.92	-0.922	-0.92

_					0	5m	1h	6h	1d	2d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	09-02-16	09-02-16	09-02-16	09-02-16	10-02-16	11-02-16
1	870	970	1	2	-0.241	-0.119	-0.113	-0.108	-0.102	-0.098
2	1150	1250	3	4	-0.162	0	0	0.006	0.011	0.015
3	1250	1350	4	5	-0.982	-0.831	-0.826	-0.816	-0.82	-0.811
4	1350	1450	5	6	-0.381	-0.301	-0.301	-0.298	-0.3	-0.299
5	1450	1550	6	7	-0.202	-0.045	-0.038	-0.033	-0.027	-0.026
6	1550	1650	7	8	-0.222	-0.074	-0.071	-0.068	-0.066	-0.062
7	1650	1750	8	9	-3.013	-2.899	-2.895	-2.892	-2.893	-2.892
8	1750	1850	9	10	0.914	1.083	1.088	1.091	1.095	1.098
9	1850	1950	10	11	-0.488	-0.392	-0.389	-0.385	-0.384	-0.383
10	1950	2050	11	12	-1.16	-0.988	-0.984	-0.979	-0.976	-0.97
11	2230	2330	13	14	-0.136	-0.016	0.026	0.029	0.036	0.042
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970		16	-0.097	-0.132	-0.137	-0.138	-0.147	-0.152
13	1150	1250	17	18	0.278	0.215	0.211	0.194	0.182	0.178
14	1250	1350	18		-1.021	-1.061	-1.078	-1.076	-1.083	-1.087
15	1350	1450	19	20	-0.808	-0.886	-0.897	-0.902	-0.911	-0.913
16	1450	1550	20	21	0.322	0.271	0.267	0.262	0.252	0.249
17	1550	1650	21	22	1.683	1.59	1.593	1.589	1.576	1.576
18	1650	1750	22	23	-2.497	-2.553	-2.56	-2.569	-2.576	-2.582
19	1750	1850	23	24	-0.182	-0.252	-0.251	-0.255	-0.266	-0.267
20	1850	1950	24	25	0.864	0.81	0.807	0.803	0.796	0.792
21	1950	2050	25	26	-0.594	-0.647	-0.651	-0.655	-0.665	-0.667
22	2230	2330	27	28	0.153	0.111	0.109	0.105	0.098	0.095
	В	MIDD								
	From (mm)	To (mm)	Dis							
23	1450	1550	29	30	0.219	0.204	0.202	0.198	0.192	0.192
24	1550	1650	30	31	-0.15	-0.175	-0.178	-0.184	-0.187	-0.19
25	1650	1750	31	32	-0.918	-0.939	-0.939	-0.941	-0.949	-0.949
26	1450	1550	33	34	0.386	0.42	0.419	0.418	0.415	0.417
27	1550	1650	34	35	-0.161	-0.129	-0.128	-0.127	-0.132	-0.132
28	1650	1750	35	36	-1.515	-1.489	-1.49	-1.489	-1.493	-1.492

_	RAC	7			3d	4d	5d	6d	7d	14d
	Α	BOTT	OM.							
	From (mm)	To (mm)	Dis	sks	12-02-16	13-02-16	14-02-16	15-02-16	16-02-16	23-02-16
1	870	970	1	2	-0.04	-0.034	-0.033	-0.029	-0.03	-0.026
2	1150	1250	3	4	-0.106	-0.105	-0.103	-0.101	-0.102	-0.099
3	1250	1350	4	5	-0.278	-0.275	-0.274	-0.268	-0.272	-0.275
4	1350	1450	5	6	-0.008	-0.003	0	0.003	0.003	0.009
5	1450	1550	6	7	-0.455	-0.451	-0.451	-0.447	-0.449	-0.454
6	1550	1650	7	8	-0.116	-0.112	-0.112	-0.107	-0.111	-0.11
7	1650	1750	8	9	0.021	0.023	0.026	0.033	0.028	0.035
8	1750	1850	9	10	-1.989	-1.987	-1.987	-1.984	-1.985	-1.988
9	1850	1950	10	11	0.154	0.16	0.161	0.166	0.162	0.163
10	1950	2050	11	12	0.069	0.073	0.074	0.08	0.075	0.078
11	2230	2330	13	14	1.098	1.102	1.105	1.111	1.104	1.103
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-2.34	-2.337	-2.343	-2.342	-2.345	-2.36
13	1150	1250	17	18	-0.276	-0.274	-0.277	-0.278	-0.28	-0.3
14	1250	1350	18	19	-0.483	-0.481	-0.484	-0.486	-0.487	-0.508
15	1350	1450	19	20	-0.272	-0.269	-0.272	-0.274	-0.276	-0.293
16	1450	1550	20	21	-0.357	-0.353	-0.358	-0.358	-0.36	-0.378
17	1550	1650	21	22	-1.421	-1.417	-1.42	-1.424	-1.424	-1.441
18	1650	1750	22	23	-0.178	-0.176	-0.179	-0.181	-0.183	-0.202
19	1750	1850	23	24	-1.426	-1.423	-1.425	-1.429	-1.429	-1.446
20	1850	1950	24	25	-0.893	-0.887	-0.893	-0.894	-0.896	-0.913
21	1950	2050	25	26	-0.122	-0.12	-0.124	-0.125	-0.126	-0.144
22	2230	2330	27	28	-0.213	-0.212	-0.215	-0.217	-0.219	-0.236
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.448	-0.446	-0.447	-0.446	-0.451	-0.46
24	1550	1650	30	31	-0.526	-0.522	-0.526	-0.524	-0.528	-0.536
25	1650	1750	31	32	-0.403	-0.4	-0.403	-0.403	-0.406	-0.416
26	1450	1550	33	34	-0.115	-0.113	-0.116	-0.113	-0.116	-0.122
27	1550	1650	34	35	1.08	1.083	1.081	1.082	1.079	1.07
28	1650	1750	35	36	-0.929	-0.925	-0.926	-0.925	-0.928	-0.933

_					3d	4d	5d	6d	7d	14d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	12-02-16	13-02-16	14-02-16	15-02-16	16-02-16	23-02-16
1	870	970	1	2	-0.101	-0.095	-0.096	-0.092	-0.09	-0.088
2	1150	1250	3	4	0.012	0.018	0.02	0.022	0.024	0.024
3	1250	1350	4	5	-0.82	-0.807	-0.808	-0.806	-0.806	-0.805
4	1350	1450	5	6	-0.301	-0.3	-0.301	-0.299	-0.298	-0.301
5	1450	1550	6	7	-0.028	-0.022	-0.021	-0.021	-0.02	-0.015
6	1550	1650	7	8	-0.065	-0.061	-0.061	-0.062	-0.058	-0.056
7	1650	1750	8	9	-2.894	-2.888	-2.887	-2.892	-2.885	-2.883
8	1750	1850	9	10	1.1	1.103	1.104	1.1	1.107	1.107
9	1850	1950	10	11	-0.383	-0.381	-0.38	-0.384	-0.376	-0.378
10	1950	2050	11	12	-0.971	-0.966	-0.963	-0.971	-0.962	-0.961
11	2230	2330	13	14	0.042	0.042	0.045	0.043	0.051	0.058
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.158	-0.157	-0.162	-0.16	-0.163	-0.179
13	1150	1250	17	18	0.173	0.175	0.167	0.168	0.167	0.143
14	1250	1350	18	19	-1.096	-1.094	-1.104	-1.099	-1.103	-1.117
15	1350	1450	19	20	-0.92	-0.922	-0.926	-0.923	-0.927	-0.942
16	1450	1550	20	21	0.24	0.239	0.238	0.238	0.233	0.212
17	1550	1650	21	22	1.561	1.564	1.563	1.563	1.569	1.53
18	1650	1750	22	23	-2.588	-2.59	-2.593	-2.595	-2.602	-2.621
19	1750	1850	23	24	-0.281	-0.276	-0.277	-0.278	-0.282	-0.303
20	1850	1950	24	25	0.784	0.787	0.781	0.782	0.777	0.762
21	1950	2050	25	26	-0.68	-0.675	-0.678	-0.675	-0.682	-0.698
22	2230	2330	27	28	0.09	0.089	0.086	0.088	0.08	0.069
	В	MIDE								
	From (mm)	To (mm)	Dis	_						
23	1450	1550	29	30	0.181	0.185	0.183	0.186	0.179	0.166
24	1550	1650	30	31	-0.198	-0.198	-0.2	-0.198	-0.203	-0.214
25	1650	1750	31	32	-0.958	-0.955	-0.957	-0.951	-0.962	-0.97
26	1450	1550	33	34	0.409	0.411	0.409	0.416	0.408	0.4
27	1550	1650	34	35	-0.141	-0.137	-0.137	-0.131	-0.139	-0.146
28	1650	1750	35	36	-1.5	-1.495	-1.497	-1.488	-1.5	-1.507

1 870 970 1 2 -0.023 -0.021 -0.011 -0.009 -0.01 2 1150 1250 3 4 -0.098 -0.096 -0.092 -0.091 -0.089 3 1250 1350 4 5 -0.272 -0.273 -0.273 -0.273 -0.273 -0.275 4 1350 1450 5 6 0.016 0.018 0.026 0.027 0.025 5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11	-0.006	120d	90d	56d	28d	21d			<i>,</i> (RAC	_
1 870 970 1 2 -0.023 -0.021 -0.011 -0.009 -0.01 2 1150 1250 3 4 -0.098 -0.096 -0.092 -0.091 -0.089 3 1250 1350 4 5 -0.272 -0.273 -0.273 -0.273 -0.273 -0.275 4 1350 1450 5 6 0.016 0.018 0.026 0.027 0.025 5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11	-0.006							ГОМ	BOT	Α	
2 1150 1250 3 4 -0.098 -0.096 -0.092 -0.091 -0.089 3 1250 1350 4 5 -0.272 -0.273 -0.273 -0.273 -0.275 4 1350 1450 5 6 0.016 0.018 0.026 0.027 0.025 5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086		08-06-16	09-05-16	05-04-16	08-03-16	01-03-16	sks	Dis	To (mm)	From (mm)	
3 1250 1350 4 5 -0.272 -0.273 -0.273 -0.273 -0.275 4 1350 1450 5 6 0.016 0.018 0.026 0.027 0.025 5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106	0.000	-0.01	-0.009	-0.011	-0.021	-0.023	2	1	970	870	1
4 1350 1450 5 6 0.016 0.018 0.026 0.027 0.025 5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.111 1.108 1.114 A TOP From (mm) To (mm) Disks -2.388 <td>-0.088</td> <td>-0.089</td> <td>-0.091</td> <td>-0.092</td> <td>-0.096</td> <td>-0.098</td> <td>4</td> <td>3</td> <td>1250</td> <td>1150</td> <td>2</td>	-0.088	-0.089	-0.091	-0.092	-0.096	-0.098	4	3	1250	1150	2
5 1450 1550 6 7 -0.45 -0.455 -0.451 -0.452 -0.448 6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.116 1.11 1.108 1.114 A TOP -0.86 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309	-0.278	-0.275	-0.273	-0.273	-0.273	-0.272	5	4	1350	1250	3
6 1550 1650 7 8 -0.105 -0.106 -0.101 -0.1 -0.099 7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.11 1.108 1.114 A TOP From (mm) To (mm) Disks -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516	0.027	0.025	0.027	0.026	0.018	0.016	6	5	1450	1350	4
7 1650 1750 8 9 0.041 0.042 0.05 0.051 0.05 8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.116 1.11 1.108 1.114 A TOP From (mm) To (mm) Disks	-0.453	-0.448	-0.452	-0.451	-0.455	-0.45	7	6	1550	1450	5
8 1750 1850 9 10 -1.988 -1.991 -1.991 -1.992 -1.991 9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.106 1.11 1.108 1.114 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 <td>-0.099</td> <td>-0.099</td> <td>-0.1</td> <td>-0.101</td> <td>-0.106</td> <td>-0.105</td> <td>8</td> <td>7</td> <td>1650</td> <td>1550</td> <td>6</td>	-0.099	-0.099	-0.1	-0.101	-0.106	-0.105	8	7	1650	1550	6
9 1850 1950 10 11 0.167 0.167 0.17 0.168 0.167 10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.106 1.11 1.108 1.114 A TOP	0.051	0.05	0.051	0.05	0.042	0.041	9	8	1750	1650	7
10 1950 2050 11 12 0.086 0.086 0.097 0.097 0.096 11 2230 2330 13 14 1.106 1.106 1.11 1.108 1.114 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461	-1.993	-1.991	-1.992	-1.991	-1.991	-1.988	10	9	1850	1750	8
11 2230 2330 13 14 1.106 1.106 1.111 1.108 1.114 A TOP To (mm) Disks 12 870 970 15 16 -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26	0.168	0.167	0.168	0.17	0.167	0.167	11	10	1950	1850	9
A TOP TOR From (mm) To (mm) Disks 12 870 970 15 16 -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.492 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465	0.097	0.096	0.097	0.097	0.086	0.086	12	11	2050	1950	10
From (mm) To (mm) Disks -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922	1.11	1.114	1.108	1.11	1.106	1.106	14	13	2330	2230	11
12 870 970 15 16 -2.368 -2.382 -2.4 -2.412 -2.415 13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25								Р	TO	Α	
13 1150 1250 17 18 -0.309 -0.321 -0.342 -0.356 -0.359 14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>sks</td> <td>Dis</td> <td>To (mm)</td> <td>From (mm)</td> <td></td>							sks	Dis	To (mm)	From (mm)	
14 1250 1350 18 19 -0.516 -0.524 -0.547 -0.558 -0.561 15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 <td>-2.422</td> <td>-2.415</td> <td>-2.412</td> <td>-2.4</td> <td>-2.382</td> <td>-2.368</td> <td>16</td> <td>15</td> <td>970</td> <td>870</td> <td>12</td>	-2.422	-2.415	-2.412	-2.4	-2.382	-2.368	16	15	970	870	12
15 1350 1450 19 20 -0.3 -0.31 -0.33 -0.343 -0.348 16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.367	-0.359	-0.356	-0.342	-0.321	-0.309	18	17	1250	1150	13
16 1450 1550 20 21 -0.386 -0.398 -0.418 -0.432 -0.434 17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.568	-0.561	-0.558	-0.547	-0.524	-0.516	19	18	1350	1250	14
17 1550 1650 21 22 -1.448 -1.461 -1.481 -1.492 -1.495 18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.353	-0.348	-0.343	-0.33	-0.31	-0.3	20	19	1450	1350	15
18 1650 1750 22 23 -0.21 -0.222 -0.245 -0.258 -0.26 19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.44	-0.434	-0.432	-0.418	-0.398	-0.386	21	20	1550	1450	16
19 1750 1850 23 24 -1.454 -1.465 -1.483 -1.5 -1.5 20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-1.501	-1.495	-1.492	-1.481	-1.461	-1.448	22	21	1650	1550	17
20 1850 1950 24 25 -0.922 -0.935 -0.954 -0.969 -0.972 21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.266	-0.26	-0.258	-0.245	-0.222	-0.21	23	22	1750	1650	18
21 1950 2050 25 26 -0.153 -0.163 -0.182 -0.194 -0.195 22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-1.506	-1.5	-1.5	-1.483	-1.465	-1.454	24	23	1850	1750	19
22 2230 2330 27 28 -0.245 -0.256 -0.277 -0.291 -0.294	-0.978	-0.972	-0.969	-0.954	-0.935	-0.922	25	24	1950	1850	20
	-0.201	-0.195	-0.194	-0.182	-0.163	-0.153	26	25	2050	1950	21
	-0.3	-0.294	-0.291	-0.277	-0.256	-0.245	28			2230	22
A MIDDLE								DLE	MIDE	Α	
From (mm) To (mm) Disks							sks	Dis	To (mm)	From (mm)	
23 1450 1550 29 30 -0.467 -0.478 -0.493 -0.502 -0.504	-0.51							ì			_
24 1550 1650 30 31 -0.542 -0.551 -0.564 -0.573 -0.572	-0.579	-0.572	-0.573	-0.564	-0.551		-		1650		
25 1650 1750 31 32 -0.422 -0.434 -0.447 -0.458 -0.461	-0.465		-0.458	-0.447				-	1750		_
26 1450 1550 33 34 -0.125 -0.131 -0.14 -0.143 -0.145	-0.146	-0.145	-0.143	-0.14		-0.125	34	33	1550	1450	_
27 1550 1650 34 35 1.065 1.055 1.05 1.042 1.045	1.046	1.045	1.042	1.05	1.055	1.065	35	34	1650	1550	
28 1650 1750 35 36 -0.937 -0.944 -0.952 -0.958 -0.96	-0.96	-0.96	-0.958	-0.952	-0.944	-0.937	36	35	1750	1650	28

_					21d	28d	56d	90d	120d	150d
	В	BOTT	ГОМ							
	From (mm)	To (mm)	Dis	sks	01-03-16	08-03-16	05-04-16	09-05-16	08-06-16	08-07-16
1	870	970	1	2	-0.083	-0.091	-0.081	-0.081	-0.078	-0.079
2	1150	1250	3	4	0.028	0.024	0.033	0.034	0.034	0.036
3	1250	1350	4	5	-0.801	-0.805	-0.8	-0.802	-0.803	-0.802
4	1350	1450	5	6	-0.302	-0.311	-0.301	-0.303	-0.3	-0.302
5	1450	1550	6	7	-0.013	-0.017	-0.011	-0.016	-0.014	-0.014
6	1550	1650	7	8	-0.052	-0.061	-0.054	-0.056	-0.053	-0.052
7	1650	1750	8	9	-2.885	-2.891	-2.881	-2.883	-2.881	-2.884
8	1750	1850	9	10	1.112	1.105	1.116	1.116	1.124	1.119
9	1850	1950	10	11	-0.374	-0.381	-0.376	-0.379	-0.377	-0.378
10	1950	2050	11	12	-0.95	-0.96	-0.951	-0.947	-0.948	-0.941
11	2230	2330	13	14	0.064	0.061	0.076	0.075	0.077	0.083
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.189	-0.205	-0.221	-0.231	-0.234	-0.244
13	1150	1250	17	18	0.135	0.123	0.109	0.092	0.091	0.082
14	1250	1350	18	19	-1.129	-1.148	-1.166	-1.168	-1.169	-1.18
15	1350	1450	19	20	-0.949	-0.969	-0.982	-0.993	-0.995	-1.003
16	1450	1550	20	21	0.205	0.191	0.172	0.16	0.154	0.146
17	1550	1650	21	22	1.53	1.517	1.494	1.475	1.478	1.467
18	1650	1750	22	23	-2.625	-2.648	-2.66	-2.669	-2.671	-2.68
19	1750	1850	23	24	-0.308	-0.323	-0.335	-0.352	-0.354	-0.36
20	1850	1950	24	25	0.755	0.739	0.722	0.711	0.71	0.698
21	1950	2050	25	26	-0.704	-0.725	-0.741	-0.754	-0.753	-0.767
22	2230	2330	27	28	0.061	0.044	0.032	0.023	0.021	0.011
	В	MIDE								
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	0.159	0.146	0.134	0.126	0.126	0.114
24	1550	1650	30	31	-0.222	-0.236	-0.248	-0.257	-0.257	-0.268
25	1650	1750	31	32	-0.975	-0.991	-0.999	-1.011	-1.009	-1.017
26	1450	1550	33	34	0.398	0.384	0.38	0.374	0.375	0.367
27	1550	1650	34	35	-0.149	-0.162	-0.168	-0.174	-0.175	-0.182
28	1650	1750	35	36	-1.506	-1.522	-1.522	-1.527	-1.524	-1.534

1 2 3 4 5 6 7 8 9	A rom (mm) 870 1150 1250 1350 1450 1650 1750 1850 1950 2230	BOTT To (mm) 970 1250 1350 1450 1550 1650 1750 1850 1950 2050		sks 2 4 5 6 7 8 9 10	07-08-16 -0.005 -0.086 -0.274 0.032 -0.453 -0.097 0.054	06-09-16 -0.007 -0.089 -0.28 0.025 -0.455 -0.1	06-10-16 -0.011 -0.09 -0.28 0.022 -0.459	05-11-16 -0.009 -0.087 -0.279 0.03	05-12-16 0.003 -0.083 -0.273 0.041	04-01-17 0.004 -0.081 -0.275 0.042
1 2 3 4 5 6 7 8 9	870 1150 1250 1350 1450 1550 1650 1750 1850 1950	970 1250 1350 1450 1550 1650 1750 1850 1950	1 3 4 5 6 7 8	2 4 5 6 7 8	-0.005 -0.086 -0.274 0.032 -0.453 -0.097	-0.007 -0.089 -0.28 0.025 -0.455	-0.011 -0.09 -0.28 0.022	-0.009 -0.087 -0.279 0.03	0.003 -0.083 -0.273 0.041	0.004 -0.081 -0.275
2 3 4 5 6 7 8 9	1150 1250 1350 1450 1550 1650 1750 1850 1950	1250 1350 1450 1550 1650 1750 1850 1950	3 4 5 6 7 8 9	4 5 6 7 8 9	-0.086 -0.274 0.032 -0.453 -0.097	-0.089 -0.28 0.025 -0.455	-0.09 -0.28 0.022	-0.087 -0.279 0.03	-0.083 -0.273 0.041	-0.081 -0.275
3 4 5 6 7 8 9	1250 1350 1450 1550 1650 1750 1850 1950	1350 1450 1550 1650 1750 1850 1950	4 5 6 7 8	5 6 7 8	-0.274 0.032 -0.453 -0.097	-0.28 0.025 -0.455	-0.28 0.022	-0.279 0.03	-0.273 0.041	-0.275
4 5 6 7 8 9	1350 1450 1550 1650 1750 1850 1950	1450 1550 1650 1750 1850 1950	5 6 7 8	6 7 8 9	0.032 -0.453 -0.097	0.025 -0.455	0.022	0.03	0.041	
5 6 7 8 9	1450 1550 1650 1750 1850 1950	1550 1650 1750 1850 1950	6 7 8 9	7 8 9	-0.453 -0.097	-0.455				0.042
6 7 8 9 10	1550 1650 1750 1850 1950	1650 1750 1850 1950	7 8 9	8	-0.097		-0.459	0.450		
7 8 9 10	1650 1750 1850 1950	1750 1850 1950	8	9		-0.1		-0.458	-0.452	-0.454
8 9 10	1750 1850 1950	1850 1950	9	,	0.054		-0.102	-0.1	-0.094	-0.093
9	1850 1950	1950	_	10		0.05	0.045	0.05	0.062	0.063
10	1950		10		-1.992	-1.994	-1.998	-1.995	-1.99	-1.988
		2050		11	0.17	0.165	0.161	0.164	0.172	0.172
	2230		11	12	0.1	0.096	0.092	0.096	0.107	0.107
11		2330	13	14	1.111	1.106	1.104	1.105	1.112	1.112
	Α	TO	Р							
Fre	rom (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-2.427	-2.429	-2.434	-2.437	-2.436	-2.441
13	1150	1250	17	18	-0.372	-0.377	-0.381	-0.385	-0.39	-0.394
14	1250	1350	18	19	-0.576	-0.58	-0.585	-0.587	-0.589	-0.595
15	1350	1450	19	20	-0.358	-0.362	-0.366	-0.369	-0.367	-0.375
16	1450	1550	20	21	-0.449	-0.452	-0.458	-0.462	-0.462	-0.468
17	1550	1650	21	22	-1.509	-1.512	-1.516	-1.518	-1.52	-1.523
18	1650	1750	22	23	-0.274	-0.276	-0.282	-0.286	-0.288	-0.295
19	1750	1850	23	24	-1.513	-1.516	-1.52	-1.523	-1.526	-1.529
20	1850	1950	24	25	-0.986	-0.988	-0.995	-0.997	-0.998	-1.003
21	1950	2050	25	26	-0.209	-0.213	-0.216	-0.22	-0.222	-0.229
22	2230	2330	27	28	-0.308	-0.313	-0.318	-0.319	-0.322	-0.328
	Α	MIDE	DLE							
Fre	rom (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.516	-0.515	-0.52	-0.524	-0.525	-0.53
24	1550	1650	30	31	-0.584	-0.584	-0.59	-0.59	-0.593	-0.596
25	1650	1750	31	32	-0.471	-0.474	-0.481	-0.478	-0.48	-0.484
26	1450	1550	33	34	-0.149	-0.151	-0.154	-0.156	-0.154	-0.157
27	1550	1650	34	35	1.035	1.033	1.03	1.028	1.03	1.026
28	1650	1750	35	36	-0.964	-0.962	-0.971	-0.972	-0.968	-0.972

_					180d	210d	240d	270d	300d	330d
	В	BOTT	ГОМ							
	From (mm)	To (mm)	Dis	sks	07-08-16	06-09-16	06-10-16	05-11-16	05-12-16	04-01-17
1	870	970	1	2	-0.076	-0.079	-0.084	-0.078	-0.071	-0.072
2	1150	1250	3	4	0.037	0.032	0.03	0.034	0.04	0.042
3	1250	1350	4	5	-0.803	-0.806	-0.81	-0.806	-0.801	-0.802
4	1350	1450	5	6	-0.304	-0.306	-0.306	-0.305	-0.303	-0.302
5	1450	1550	6	7	-0.012	-0.018	-0.02	-0.015	-0.01	-0.009
6	1550	1650	7	8	-0.051	-0.057	-0.059	-0.054	-0.052	-0.05
7	1650	1750	8	9	-2.882	-2.889	-2.888	-2.884	-2.882	-2.88
8	1750	1850	9	10	1.125	1.116	1.119	1.12	1.126	1.123
9	1850	1950	10	11	-0.378	-0.383	-0.386	-0.384	-0.379	-0.381
10	1950	2050	11	12	-0.939	-0.945	-0.948	-0.937	-0.935	-0.938
11	2230	2330	13	14	0.086	0.077	0.077	0.086	0.093	0.098
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.248	-0.252	-0.253	-0.256	-0.262	-0.265
13	1150	1250	17	18	0.073	0.078	0.072	0.068	0.063	0.059
14	1250	1350	18	19	-1.191	-1.196	-1.196	-1.199	-1.21	-1.208
15	1350	1450	19	20	-1.011	-1.014	-1.016	-1.018	-1.023	-1.027
16	1450	1550	20	21	0.142	0.137	0.133	0.128	0.126	0.12
17	1550	1650	21	22	1.462	1.457	1.456	1.449	1.45	1.442
18	1650	1750	22	23	-2.687	-2.681	-2.69	-2.695	-2.699	-2.703
19	1750	1850	23	24	-0.365	-0.368	-0.369	-0.371	-0.377	-0.379
20	1850	1950	24	25	0.693	0.686	0.684	0.681	0.678	0.673
21	1950	2050	25	26	-0.77	-0.776	-0.777	-0.777	-0.781	-0.789
22	2230	2330	27	28	0.006	0.005	0.001	0	-0.007	-0.007
	В	MIDE								
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	0.112	0.108	0.108	0.103	0.099	0.098
24	1550	1650	30	31	-0.27	-0.275	-0.28	-0.278	-0.281	-0.286
25	1650	1750	31	32	-1.023	-1.026	-1.027	-1.028	-1.034	-1.033
26	1450	1550	33	34	0.363	0.36	0.358	0.359	0.355	0.354
27	1550	1650	34	35	-0.184	-0.187	-0.188	-0.189	-0.192	-0.192
28	1650	1750	35	36	-1.535	-1.534	-1.54	-1.54	-1.539	-1.539

	RAC	7			365d	400d	450d
	Α	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	08-02-17	15-03-17	04-05-17
1	870	970	1	2	0.003	0.005	0.003
2	1150	1250	3	4	-0.078	-0.077	-0.079
3	1250	1350	4	5	-0.275	-0.275	-0.277
4	1350	1450	5	6	0.041	0.042	0.041
5	1450	1550	6	7	-0.455	-0.452	-0.455
6	1550	1650	7	8	-0.091	-0.091	-0.093
7	1650	1750	8	9	0.064	0.063	0.06
8	1750	1850	9	10	-1.985	-1.986	-1.992
9	1850	1950	10	11	0.173	0.173	0.17
10	1950	2050	11	12	0.109	0.11	0.105
11	2230	2330	13	14	1.113	1.11	1.108
	Α	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-2.446	-2.448	-2.449
13	1150	1250	17	18	-0.398	-0.4	-0.402
14	1250	1350	18	19	-0.599	-0.601	-0.604
15	1350	1450	19	20	-0.377	-0.379	-0.381
16	1450	1550	20	21	-0.474	-0.475	-0.476
17	1550	1650	21	22	-1.528	-1.53	-1.528
18	1650	1750	22	23	-0.299	-0.302	-0.302
19	1750	1850	23	24	-1.533	-1.534	-1.536
20	1850	1950	24	25	-1.009	-1.01	-1.013
21	1950	2050	25	26	-0.23	-0.232	-0.237
22	2230	2330	27	28	-0.335	-0.336	-0.341
	Α	MIDE)LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.53	-0.531	-0.536
24	1550	1650	30	31	-0.6	-0.598	-0.602
25	1650	1750	31	32	-0.488	-0.489	-0.491
26	1450	1550	33	34	-0.16	-0.159	-0.162
27	1550	1650	34	35	1.025	1.025	1.022
28	1650	1750	35	36	-0.974	-0.974	-0.976

_					365d	400d	450d
	В	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	08-02-17	15-03-17	04-05-17
1	870	970	1	2	-0.073	-0.071	-0.072
2	1150	1250	3	4	0.043	0.042	0.043
3	1250	1350	4	5	-0.801	-0.802	-0.806
4	1350	1450	5	6	-0.304	-0.301	-0.3
5	1450	1550	6	7	-0.01	-0.006	-0.009
6	1550	1650	7	8	-0.05	-0.049	-0.055
7	1650	1750	8	9	-2.881	-2.879	-2.882
8	1750	1850	9	10	1.123	1.127	1.126
9	1850	1950	10	11	-0.382	-0.378	-0.381
10	1950	2050	11	12	-0.934	-0.931	-0.937
11	2230	2330	13	14	0.092	0.097	0.085
	В	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.27	-0.269	-0.271
13	1150	1250	17	18	0.054	0.056	0.054
14	1250	1350	18	19	-1.214	-1.215	-1.212
15	1350	1450	19	20	-1.031	-1.032	-1.03
16	1450	1550	20	21	0.116	0.116	0.113
17	1550	1650	21	22	1.438	1.432	1.427
18	1650	1750	22	23	-2.711	-2.706	-2.71
19	1750	1850	23	24	-0.386	-0.384	-0.388
20	1850	1950	24	25	0.665	0.668	0.666
21	1950	2050	25	26	-0.793	-0.793	-0.802
22	2230	2330	27	28	-0.015	-0.013	-0.013
	В	MIDE	LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	0.095	0.096	0.096
24	1550	1650	30	31	-0.293	-0.29	-0.288
25	1650	1750	31	32	-1.038	-1.038	-1.04
26	1450	1550	33	34	0.35	0.352	0.351
27	1550	1650	34	35	-0.195	-0.196	-0.2
28	1650	1750	35	36	-1.543	-1.535	-1.534

				g = 0	14.22	MPa						SIDE	SIDE A BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
RAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	80	6	10	11
Casting	02-02-16	11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading	09-02-16	11:30	2	0	0	7.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	000.0	0.000	0.000	0000
5min after loading	09-02-16	13:35	7	0	5	7.003	0.003	1.510	1.720	0.610	2.090	0.680	1.870	2.030	0.540	1.560	1.720	1.010
1h	09-02-16	14:30	7	1	0	7.042	0.042	1.620	1.790	0.680	2.160	0.750	1.930	2.090	0.580	1.640	1.720	1.160
6h	09-02-16	19:30	7	9	0	7.250	0.250	1.640	1.840	0.680	2.200	0.800	1.940	2.110	0.610	1.660	1.760	1.190
1	10-02-16	13:30	8	0	0	8.000	1.000	1.710	1.880	0.700	2.270	0.820	1.980	2.190	0.590	1.730	1.830	1.210
2	11-02-16	16:00	6	0	0	9.000	2.000	1.760	1.930	0.740	2.320	0.840	2.020	2.290	0.650	1.780	1.880	1.280
۲	12-02-16	12.00	10	c	c	10.000	3,000	1 750	1 930	0770	2 3 1 0	0080	1 990	0966	0090	1 730	1 850	1 240
2	12-02-16	12.00	10	0	0	10.000	3.000	1.750	1.930	0.740	2.310	0.000	1.990	7.200	0.000	1.750	1.65U	1.24U
4	13-02-16	12:00	TT.	O	Э	11.000	4.000	1.810	T.940	0.770	7.350	0.840	2.030	7.280	0.620	1.790	1.890	T.28U
5	14-02-16	20:00	12	0	0	12.000	5.000	1.820	1.960	0.780	2.390	0.840	2.030	2.310	0.620	1.800	1.900	1.310
9	15-02-16	20:00	13	0	0	13.000	000.9	1.860	1.980	0.840	2.420	0.880	2.080	2.380	0.650	1.850	1.960	1.370
7	16-02-16	15:00	14	0	0	14.000	7.000	1.850	1.970	008'0	2.420	0.860	2.040	2.330	0.640	1.810	1.910	1.300
14	23-02-16	16.00	2.1	C	c	2100	14.00	1 890	2 000	0.770	2 480	0.810	2.050	2 400	0.610	1 820	1 940	1 290
2 5	23 02 10	10.00	17			0000	20.00	1.030	2000	0000	001.7	0.00	2,000	200	0.010	1.020	000	1.500
1.7	01-03-16	12:00	87	0	o	78.00	21.00	1.920	2.010	0.800	2.550	0.850	2.100	7.460	0.610	1.850	2.020	T.320
28	08-03-16	11:00	35	0	0	35.00	28.00	1.940	2.030	0.790	2.570	0.800	2.090	2.470	0.580	1.860	2.020	1.320
56	05-04-16	14:00	63	0	0	63.00	26.00	2.040	2.070	0.790	2.650	0.840	2.140	2.550	0.580	1.890	2.130	1.360
Ор	09-05-16	14:00	47			97.00	00.00	2.060	2.080	0 790	2 660	0.830	2.150	2 560	0.570	1 870	0.130	1 340
86	07-00-60	14.00	70	0	0	00.76	00.00	2.000	2.000	0.730	2.000	0.030	2.130	2.300	0.00	0.00.1	OCT.2	040.1
120	08-00-16	14:00	17/	0	Э	127.00	120.00	7.050	7.100	0.770	2.640	0.870	7.160	2.550	0.580	1.860	7.170	1.400
150	08-07-16	12:00	157	0	0	157.00	150.00	2.090	2.110	0.740	2.660	0.820	2.160	2.560	0.560	1.870	2.130	1.360
180	07-08-16	16:00	187	0	0	187.00	180.00	2.100	2.130	0.780	2.710	0.820	2.180	2.590	0.570	1.890	2.160	1.370
210	06-09-16	13.00	217	C	C	217.00	210.00	2 080	2 100	0.720	2 640	0.800	2 150	2 550	0.550	1 840	2 120	1 320
070	00 00 TO	13.00	777	0	0	00.712	00.072	0.000	000	027.0	0.00	0.000	007.1	0000	0.00	1.010	000	2000
240	QT-DT-QD	12:00	747	0	0	247.00	240.00	2.040	2.090	0.720	2.610	0.760	2.130	2.500	0.510	1.800	2.080	T.300
270	05-11-16	11:00	277	0	0	277.00	270.00	2.060	2.120	0.730	2.690	0.770	2.150	2.550	0.540	1.830	2.120	1.310
300	05-12-16	11:00	307	0	0	307.00	300.00	2.180	2.160	0.790	2.800	0.830	2.210	2.670	0.590	1.910	2.230	1.380
330	04-01-17	14:00	337	C	0	337.00	330.00	2.190	2.180	0.770	2.810	0.810	2,220	2.680	0.610	1.910	0.230	1.380
365	08-02-17	16:00	277	0 0	0 0	377.00	365 00	2 180	2 2 1 0	022.0	0000	0080	2 240	2 690	0.640	1 920	030.0	1 200
500	11-20-00 11-00-11	10.00	276	0	0	372.00	203.00	2.100	2.2.10	0.770	2.900	0.800	2.240	2.030	0.040	1.920	0000	OCC.T
400	15-03-1/	12:00	407	0	0	407.00	400.00	7.200	7.220	0.770	2.810	0.830	2.240	7.680	0.630	1.920	7.260	1.360
450	04-05-17	17:00	457	0	0	457.00	450.00	2.180	2.200	0.750	2.800	0.800	2.220	2.650	0.570	1.890	2.210	1.340
												SIDE	SIDE B BOTTOM (%)	(%)				
٠					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	1	2	6	4	2	9	7	∞	6	10	11
							(days)											
Casting		11:00	0	0	0	0.000	I	31	31	31	31	31	31	31	31	31	31	31
Sefore loading	09-02-16	11:30	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading		13:35	7	0	2	7.003	0.003	1.220	1.620	1.510	0.800	1.570	1.480	1.140	1.690	096.0	1.720	1.200
45		14:30		,	0	2007	0000	1 200	0.01	7 500	00000	1.070	1 1 1 0 0	1,190	7.40	0000	1 760	1 630
Ξ ;	03-05-16	14:30	,	7	0	7.042	0.042	T.28U	1.620	T.56U	0.800	1.640	1.510	T.180	T./40	0.990	09/T	T.62U
6h	09-02-16	19:30	7	9	0	7.250	0.250	1.330	1.680	1.660	0.830	1.690	1.540	1.210	1.770	1.030	1.810	1.650
-	10-02-16	13:30	∞	0	0	8.000	1.000	1.390	1.730	1.620	0.810	1.750	1.560	1.200	1.810	1.040	1.840	1.720
2	11-02-16	16:00	6	0	0	000.6	2.000	1.430	1.770	1.710	0.820	1.760	1.600	1.210	1.840	1.050	1.900	1.780
e	12-02-16	12.00	10			10.000	3,000	1 400	1 740	1 620	0 800	1 740	1 570	1 190	1 860	1.050	1 890	1 780
0 7	12 02 16	12:00	11	0 0	0 0	11,000	4 000	1 460	1 800	1 750	0.000	1 900	1 610	1 250	1 990	1.070	1 040	1 700
+ 1	01-20-61	12.00	11	0 0	0 (10.000	000.4	T-400	1.000	001.1	0.010	1.000	1.010	1.230	0.69.1	0.070	0+C-T	T. 7.00
Ω	14-02-16	20:00	17	O	Э	12.000	000.6	1.450	T.820	1.740	0.800	1.810	1.610	1.260	1.900	1.080	1.970	1.810
9	15-02-16	20:00	13	0	0	13.000	000.9	1.490	1.840	1.760	0.820	1.810	1.600	1.210	1.860	1.040	1.890	1.790
7	16-02-16	15:00	14	0	0	14.000	2.000	1.510	1.860	1.760	0.830	1.820	1.640	1.280	1.930	1.120	1.980	1.870
14	23-02-16	16:00	21	0	0	21.00	14.00	1.530	1.860	1.770	0.800	1.870	1.660	1.300	1.930	1.100	1.990	1.940
21	01-03-16	12.00	28	c	c	2800	21.00	1 580	1 900	1 810	0 790	1 890	1 700	1 280	1 080	1 140	2 100	0000
	02 03 20	11.00	27.0			0000	00.00	1.00	1.000	1.010	0.100	0.00	7.70	2000	1.00	4 070	000	,
20	07-07-00	11.00	33	0 0	0 0	55.00	26.00	1.500	1.000	1.770	0.700	1.030	1.610	1.22U	0.910	1.070	000.2	0.450
99	05-04-16	14:00	63	0	0	63.00	56.00	1.600	1.950	1.820	0.800	1.910	1.680	1.320	2.020	1.120	2.090	2.120
06	09-05-16	14:00	97	0	0	97.00	90.00	1.600	1.960	1.800	0.780	1.860	1.660	1.300	2.020	1.090	2.130	2.110
120	08-06-16	14:00	127	0	0	127.00	120.00	1.630	1.960	1.790	0.810	1.880	1.690	1.320	2.100	1.110	2.120	2.130
150	08-07-16	12.00	157	C	O	157 00	150.00	1 620	1 980	1 800	0 790	1 880	1 700	1 290	050 6	1 100	2 190	2 190
180	07 00 16	16:00	107	0 0	0 0	197.00	180.00	1 650	1 990	1 790	022.0	1 900	1 710	1 210	2110	1 100	0700	0000
000	07-00-10	13.00	107			247.00	240.00	1,030	1000	057.1	0.770	1.300	1.7.10	7.240	2.020	4 010	017.7	2420
012	91-60-90	13:00	777	0 1	o	217.00	210.00	1.02U	1.940	T./60	0.750	1.640	1.050	T.240	2.020	1.050	OCT.2	Z.13U
240	06-10-16	12:00	747	0	0	247.00	240.00	1.570	1.920	1.720	0.750	1.820	1.630	1.250	2.050	1.020	7.120	2.130
270	05-11-16	11:00	277	0	0	277.00	270.00	1.630	1.960	1.760	0.760	1.870	1.680	1.290	2.060	1.040	2.230	2.220
300	05-12-16	11:00	307	0	0	307.00	300.00	1.700	2.020	1.810	0.780	1.920	1.700	1.310	2.120	1.090	2.250	2.290
330	04-01-17	14:00	337	0	0	337.00	330.00	1.690	2.040	1.800	0.790	1.930	1.720	1.330	2.090	1.070	2.220	2.340
365	08-02-17	16:00	372	0	C	372.00	365.00	1.680	2.050	1.810	0.770	1.920	1.720	1.320	060.6	1.060	0966	2.280
400	15-02-17	12:00	270	0 0	0 0	407.00	400.00	1 700	2070	1 800	0000	1 060	1 720	1 240	2 130	1 100	0000	2 220
001	13-03-17	12.00	407	0 0	0 0	407.00	400.00	1.700	2.040	1.000	0.000	1.900	1.730	1.340	2.130	0.100	062.2	2.330
450	04-05-17	17:00	45/	0	0	457.00	450.00	1.690	7.050	1.760	0.810	1.930	1.6/0	1.310	7.170	1.070	7.230	7.710

				g =	14.22	MPa						SIC	SIDE A TOP (%)	(0				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
RAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
Casting	02-02-16	11:00	0	0	0	0.000	1	197	197	197	197	197	197	197	197	197	197	197
Before loading	09-02-16	11:30	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	09-02-16	13:35	7	0	2	7.003	0.003	-0.600	-0.760	-0.560	-0.800	-0.390	-0.860	-0.710	-0.880	-0.480	-0.820	-0.660
1h	09-05-16	14:30	7	1	0	7.042	0.042	-0.650	-0.800	-0.580	-0.830	-0.410	-0.870	-0.710	-0.880	-0.490	-0.810	-0.550
6h	09-02-16	19:30		9	0	7.250	0.250	-0.660	-0.840	-0.630	-0.880	-0.460	-0.940	-0.770	-0.960	-0.540	-0.870	-0.610
1	10-02-16	13:30	80	0	0	8.000	1.000	-0.760	-0.930	-0.720	-0.930	-0.540	-1.030	-0.850	-1.030	-0.620	-0.920	-0.690
2	11-02-16	16:00	6	0	0	00006	2.000	-0.810	-0.970	-0.770	-1.000	-0.580	-1.070	-0.880	-1.070	-0.650	-0.960	-0.700
1 6	31 50 51	13:00	, ,	0	0 0	10.000	3 000	0000	1 070	0.000	1,100	0000	1170	0000	1170	0.25.0	1 000	0000
0 4	12-02-16	12:00	11	5 0	0	11,000	3.000	-0.000	1.050	0.000	1 070	-0.000	1130	-0.900	1110	0.700	1.060	0.000
+ 1	T2-70-CT	12.00	11	0 (0 0	00000	4.000	0.000	000T-	-0.030	0/0'T-	-0.640	05T-T-	-0.900	-1.140	-0.700	-T.UOU	-0.790
2	14-02-16	20:00	12	0	0	12.000	5.000	-0.910	-1.080	-0.860	-1.100	-0.690	-1.160	-0.990	-1.160	-0.760	-1.100	-0.820
6	15-02-16	20:00	13	0	0	13.000	6.000	-0.900	-1.090	-0.880	-1.120	-0.690	-1.200	-1.010	-1.200	-0.770	-1.110	-0.840
7	16-02-16	15:00	14	0	0	14.000	7.000	-0.930	-1.110	-0.890	-1.140	-0.710	-1.200	-1.030	-1.200	-0.790	-1.120	-0.860
14	23-02-16	16:00	21	0	О	21.00	14.00	-1.080	-1.310	-1.100	-1.310	-0.890	-1.370	-1.220	-1.370	-0.960	-1.300	-1.030
24	91 00 10	13:00	30	0	0 0	2000	21.00	1 160	1 400	1 100	1 290	0200	1 440	1 200	1 450	1 050	1 200	1 120
1.7	01-03-10	17.00	207	0	0	20.00	20.00	1,200	1.700	4.260	-1.300	1,000	-T:440	-T-300	4.700	-1.030	066.1-	4.220
28	08-03-16	11:00	35	0	0	35.00	28.00	-1.300	-1.520	-1.260	-1.480	-1.090	-1.570	-1.420	-1.560	-1.180	-1.490	-1.230
56	05-04-16	14:00	63	0	0	63.00	26.00	-1.480	-1.730	-1.490	-1.680	-1.290	-1.770	-1.650	-1.740	-1.370	-1.680	-1.440
06	09-05-16	14:00	97	0	0	97.00	90.00	-1.600	-1.870	-1.600	-1.810	-1.430	-1.880	-1.780	-1.910	-1.520	-1.800	-1.580
120	08-06-16	14:00	127	0	О	127.00	120.00	-1.630	-1.900	-1.630	-1.860	-1.450	-1.910	-1.800	-1.910	-1.550	-1.810	-1.610
150	08-07-16	12.00	157	c	c	157.00	150.00	-1 700	-1 080	1 700	-1 010	1510	-1 970	-1 860	-1 970	-1 610	-1 870	-1 670
200	00-00-TO	15.00	101			107.00	100.00	1,700	0.00	1.700	1,050	1.010	2010	1.000	2000	1,000	4.070	1.070
001	9T-90-70	16:00	18/	0	0	187.00	180.00	-T./5U	-2.030	-1.780	-T.96U	-T.500	-2.050	-T.94U	-2.040	-1.690	-T.95U	-T./5U
210	06-09-16	13:00	217	0	0	217.00	210.00	-1.770	-2.080	-1.820	-2.000	-1.630	-2.080	-1.960	-2.070	-1.710	-1.990	-1.800
240	06-10-16	12:00	247	0	0	247.00	240.00	-1.820	-2.120	-1.870	-2.040	-1.690	-2.120	-2.020	-2.110	-1.780	-2.020	-1.850
270	05-11-16	11:00	277	0	0	277.00	270.00	-1.850	-2.160	-1.890	-2.070	-1.730	-2.140	-2.060	-2.140	-1.800	-2.060	-1.860
300	05-12-16	11:00	307	0	0	307.00	300.00	-1.840	-2.210	-1.910	-2.050	-1.730	-2.160	-2.080	-2.170	-1.810	-2.080	-1.890
330	04-01-17	14:00	337	c	0	337 00	330.00	-1 890	-2 250	-1 970	-2 130	-1 790	-2 190	-2 150	-2 200	-1 860	-2 150	-1 950
365	08-02-17	16.00	277	0	0 0	27.700	365.00	1 940	2 200	2,010	2.150	1 050	2 240	2 100	2 2 40	-1 020	2 160	2020
700	45 00 17	10.00	270			372.00	00.000	1.010	2.230	2.010	2.130	1.000	0,500	2.230	012.2	1.020	2.100	20.7
904	15-03-17	12:00	407	0 (0 (407.00	400.00	-1.960	-2.310	-2.030	-2.170	-T.85U	-2.250	-2.220	-2.250	-1.930	-2.180	-2.030
450	04-05-17	17:00	457	0	0	457.00	450.00	-1.970	-2.330	-2.060	-2.190	-1.870	-2.240	-2.220	-2.270	-1.960	-2.230	-2.080
												SIC	SIDE B TOP (%)					
_					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	12	13	14	15	16	17	18	19	20	21	22
Caeting	31 60 60	11.00	c	c	c	0000	(a fam)	107	107	107	107	107	107	107	107	107	107	107
Castilly	07-70-70	00.TT	0 1	o (0 (0.000	1 0	767	161	191	161	191	161	161	161	767	197	127
Before loading	09-02-16	11:30	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nin after loading	09-02-16	13:35	7	0	5	7.003	0.003	-0.350	-0.630	-0.400	-0.780	-0.510	-0.930	-0.560	-0.700	-0.540	-0.530	-0.420
1h	09-05-16	14:30	7	1	0	7.042	0.042	-0.400	-0.670	-0.570	-0.890	-0.550	-0.900	-0.630	069.0-	-0.570	-0.570	-0.440
6h	09-02-16	19:30	7	9	0	7.250	0.250	-0.410	-0.840	-0.550	-0.940	-0.600	-0.940	-0.720	-0.730	-0.610	-0.610	-0.480
1	10-01-16	13:30	. α	0 0	0 0	8 000	1 000	0.500	0.960	0620	-1 030	-0.700	-1 070	-0 790	-0.840	-0.680	-0.710	0.550
	11 00 16	16:00	0 0	0	0 0	0000	0000	0.550	0.000	0.550	1 050	0.7.0	1 070	0.00	0.0.0	0.000	0.720	0000
7 0	01-20-11	13.00	D 0	0	0	9.000	2,000	-0.330	-1.000	-0.000	-T-020	-0.730	-T.U/U	-0.030	0.000	-0.720	-0.730	0.000
0 4	12-02-16	12:00	10	0	0 0	10.000	3.000	-0.010	-1.050	-0.730	1140	-0.620	-1.22U	0.910	0.930	0.000	-0.000	-0.030
4	91-70-51	12:00	11	0	0	11.000	4.000	-0.600	-1.U3U	-0.730	-1.140	-0.830	-1.190	-0.930	-0.940	-0.770	-0.81U	-0.640
ç	14-02-16	20:00	12	0	0	12.000	9.000	-0.650	-1.110	-0.830	-1.180	-0.840	-1.200	-0.960	-0.950	-0.830	-0.840	-0.670
9	15-02-16	20:00	13	0	0	13.000	6.000	-0.630	-1.100	-0.780	-1.150	-0.840	-1.200	-0.980	-0.960	-0.820	-0.810	-0.650
7	16-02-16	15:00	14	0	0	14.000	7.000	-0.660	-1.110	-0.820	-1.190	-0.890	-1.140	-1.050	-1.000	-0.870	-0.880	-0.730
4	23-02-16	16:00	21	0	0	21.00	14.00	-0.820	-1.350	-0.960	-1.340	-1.100	-1.530	-1.240	-1.210	-1.020	-1.040	-0.840
21	01-03-16	12:00	28	0	0	28.00	21.00	-0.920	-1.430	-1.080	-1.410	-1.170	-1.530	-1.280	-1.260	-1.090	-1.100	-0.920
28	08-03-16	11:00	35	0	C	35.00	28.00	-1.080	-1.550	-1.270	-1.610	-1.310	-1.660	-1.510	-1.410	-1.250	-1.310	-1.090
25.0	91-00-50	14:00	65		0 0	63.00	00.62	-1 240	1 690	1 450	1 740	1500	1 890	1 630	1 530	1 420	-1 170	1 210
8 8	07-40-00	14.00	50	0 0	0	03:00	00.00	-1.240	OCO.T-	0.4.1	0+7.T-	0001-	-1.630	OCO.T-	05.1-	1.420	1.600	017.1-
06	09-05-16	14:00	97	0	0	97.00	90.00	-1.340	-1.860	-1.470	-1.850	-1.620	-2.080	-1.720	-1.700	-1.530	-1.600	-1.300
120	08-06-16	14:00	127	0	0	127.00	120.00	-1.370	-1.870	-1.480	-1.870	-1.680	-2.050	-1.740	-1.720	-1.540	-1.590	-1.320
150	08-07-16	12:00	157	0	0	157.00	150.00	-1.470	-1.960	-1.590	-1.950	-1.760	-2.160	-1.830	-1.780	-1.660	-1.730	-1.420
180	07-08-16	16:00	187	0	0	187.00	180.00	-1.510	-2.050	-1.700	-2.030	-1.800	-2.210	-1.900	-1.830	-1.710	-1.760	-1.470
210	06-09-16	13:00	217	0	0	217.00	210.00	-1.550	-2.000	-1.750	-2.060	-1.850	-2.260	-1.840	-1.860	-1.780	-1.820	-1.480
240	06-10-16	12:00	247	0	0	247.00	240.00	-1.560	-2.060	-1.750	-2.080	-1.890	-2.270	-1.930	-1.870	-1.800	-1.830	-1.520
270	05-11-16	11:00	277	0	0	277.00	270.00	-1.590	-2.100	-1.780	-2.100	-1.940	-2.340	-1.980	-1.890	-1.830	-1.830	-1.530
300	05-12-16	11:00	307	0	0	307.00	300.00	-1.650	-2.150	-1.890	-2.150	-1.960	-2.330	-2.020	-1.950	-1.860	-1.870	-1.600
330	04-01-17	14:00	337	0	0	337.00	330.00	-1.680	-2.190	-1.870	-2.190	-2.020	-2.410	-2.060	-1.970	-1.910	-1.950	-1.600
365	08-02-17	16:00	372	0	0	372.00	365.00	-1.730	-2.240	-1.930	-2.230	-2.060	-2.450	-2.140	-2.040	-1.990	-1.990	-1.680
400	15-03-17	12:00	407	0	0	407.00	400.00	-1.720	-2.220	-1.940	-2.240	-2.060	-2.510	-2.090	-2.020	-1.960	-1.990	-1.660
450	04-05-17	17:00	457	0	0	457.00	450.00	-1.740	-2.240	-1.910	-2.220	-2.090	-2.560	-2.130	-2.060	-1.980	-2.080	-1.660
																		7

				Q =	14.22	MPa				SIDE A M.	SIDE A MIDDLE (%)		
					Age			1500	1600	1700	1500	1600	1700
RAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (davs)	23	24	25	56	27	28
Casting	02-02-16	11:00	0	0	0	0.000	-	155	155	155	115	115	115
Before loading	09-02-16	11:30	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	09-02-16	13:35	7	0	5	7.003	0.003	-0.190	-0.160	-0.190	080.0	0.460	0.220
1h	09-02-16	14:30	7	1	0	7.042	0.042	-0.150	-0.140	-0.200	0.110	0.490	0.250
6h	09-02-16	19:30	7	9	0	7.250	0.250	-0.200	-0.190	-0.230	0.090	0.450	0.240
-	10-02-16	13:30	8	0	0	8.000	1.000	-0.230	-0.220	-0.270	0.080	0.460	0.220
2	11-02-16	16:00	6	0	0	9.000	2.000	-0.270	-0.240	-0.290	060'0	0.460	0.240
က	12-02-16	12:00	10	0	0	10,000	3.000	-0.350	-0.330	-0.380	0.020	0.380	0.150
4	13-02-16	12:00	11	0	0	11.000	4.000	-0.330	-0.290	-0.350	0.040	0.410	0.190
2	14-02-16	20:00	12	0	0	12.000	5.000	-0.340	-0.330	-0.380	0.010	0.390	0.180
9	15-02-16	20:00	13	0	0	13,000	000.9	-0.330	-0.310	-0.380	0,040	0.400	0.190
7	16-02-16	15:00	14	0	0	14,000	7.000	-0.380	-0.350	-0.410	0.010	0.370	0.160
14	23-02-16	16:00	21	0	0	21.00	14.00	-0.470	-0.430	-0.510	-0.050	0.280	0.110
21	01-03-16	12.00	28	0 0	0	28.00	21.00	-0 540	-0.490	-0.570	-0.080	0.230	0.070
28	08-03-16	11.00	35	0 0	0 0	35.00	28.00	0.550	0.580	0.500	-0.140	0.130	0000
21 22	05-04-16	14:00	CC CY	0 0	0 0	62.00	56.00	0000	0.710	0000	0.230	0000	000.0
8 8	00-04-10	14:00	50 0	0 0	0 0	03:00	00:00	0.000	0.07	0.020	0.250	0.000	0.000
420	09-03-10	14.00	76	> <	> 0	127.00	90.00	0.030	0.000	0.000	-0.200	0.000	-0.140
120	00-00-10	14:00	127		0	127.00	120.00	0.910	-0.790	-0.900	-0.200	0.030	-0.100
150	08-07-16	12:00	15/	0	0	157.00	150.00	0.970	-0.860	-T.000	-0.290	0.040	-0.160
180	07-08-16	16:00	18/	0	0	187.00	180.00	-T.030	-0.910	-T.060	-0.320	0.0.0-	-0.200
210	06-09-16	13:00	217	0	0	217.00	210.00	-1.020	-0.910	-1.090	-0.340	-0.090	-0.180
240	06-10-16	12:00	247	0	0	247.00	240.00	-1.070	-0.970	-1.160	-0.370	-0.120	-0.270
270	05-11-16	11:00	277	0	0	277.00	270.00	-1.110	-0.970	-1.130	-0.390	-0.140	-0.280
300	05-12-16	11:00	307	0	0	307.00	300.00	-1.120	-1.000	-1.150	-0.370	-0.120	-0.240
330	04-01-17	14:00	337	0	0	337.00	330.00	-1.170	-1.030	-1.190	-0.400	-0.160	-0.280
365	08-02-17	16:00	372	0	0	372.00	365.00	-1.170	-1.070	-1.230	-0.430	-0.170	-0.300
400	15-03-17	12:00	407	0	0	407.00	400.00	-1.180	-1.050	-1.240	-0.420	-0.170	-0.300
450	04-05-17	17:00	457	0	0	457.00	450.00	-1.230	-1.090	-1.260	-0.450	-0.200	-0.320
										SIDERMI	SIDE B MIDDIE (%)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	23	24	25	26	27	28
Caeting	02-02-16	11.00	c	C	0	0000	(cán)	155	155	155	115	115	115
Before loading	00 02 16	11.20		0 0	0 0	2000	0000	000	0000	000	CTT O	CTT	
Emin offer loading	09-02-16	13.25	, _	0 0	ם	7,000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Juliu arter roadiing	09-02-16	13.33	, _	5 -	n c	7.003	0.000	0.130	0.230	0.210	0.540	0.320	0.200
= 4	09-02-16	10:30	, _	1 4	0	7.042	0.042	-0.170	-0.280	0.220	0.330	0.330	0.250
5 -	10 03 16	13:30	, 0	D C	o	0.000	0.230	0.220	0.540	0.230	0.520	0.540	0.200
- c	11 02 16	15.00	0 0	0 0	0 0	9.000	000.	0.270	0.000	0.310	0.230	0.230	0.220
3 6	12 02 16	13:00	٠ ر۲	> <	0 0	30,000	2.000	0.200	0.400	0.010	0.510	0.230	0.230
0 4	12 02 16	12:00	1	0	> 0	11,000	3.000	0.360	0.400	004.00	0.230	0.200	0.130
4 r	13-02-16	12:00	11	0	0	11.000	4.000	-0.350	-0.500	-0.390	0.230	0.240	0.180
ဂ	14-02-16	20:00	7T.	0	0	12.000	9.000	-0.360	-0.500	-0.390	0.230	0.240	0.180
0 1	15-02-16	20:00	13	0 0	0	13.000	9.000	-0.330	-0.480	-0.330	0.300	0.300	0.270
, ;	16-02-16	15:00	14	0 0	0	14.000	000.7	-0.400	-0.530	-0.440	0.220	0.220	0.150
14	23-02-16	16:00	17	0 0	0	21.00	14.00	-0.530	-0.640	-0.520	0.140	0.150	0.080
1.7	01-03-16	12:00	87	0	0	28.00	20.00	-0.600	-0.720	0.570	0.1.20	0.120	0.090
07	08-03-16	11:00	35	0	0	35.00	72.00	-0.730	-0.850	-0.730	-0.020	010.0-	0.070
8 8	03-04-10	14.00	00	> 0	0	03.00	36.00	0.000	0.500	0.010	-0.000	-0.070	-0.070
90	09-05-16	14:00	197	0 0	0	97.00	90.00	-0.930	-1.070	-0.930	-0.120	-0.130	-0.120
120	08-08-16	13:00	177	0	5 0	127.00	120.00	-0.930	-T.U/U	0.910	-0.110	-0.140	-0.090
180	07 00 16	16:00	107	0 0	0 0	187.00	180.00	1 070	1 200	1 050	0220	0.220	0000
210	06-00-16	13.00	217	0 0	0 0	217.00	210.00	1110	1 250	1 000	0.250	0.250	0.200
240	06-10-16	12:00	247	0 0	0	247.00	240.00	-1 110	-1 300	-1 090	-0.280	-0.270	-0.250
270	05-11-16	11.00	277	0 0	0	277.00	270.00	-1 160	-1 280	-1 100	-0.270	-0.280	-0.250
300	05-12-16	11.00	307	0	0	307.00	300 00	-1 200	-1 310	-1 160	-0.310	-0.310	-0 240
330	04-01-17	14:00	337	0 0	0	337.00	330.00	-1.210	-1.360	-1.150	-0.320	-0.310	-0.240
365	08-02-17	16:00	372	0	0	372.00	365.00	-1.240	-1.430	-1.200	-0.360	-0.340	-0.280
400	15-03-17	12:00	407	0	0	407.00	400.00	-1.230	-1.400	-1.200	-0.340	-0.350	-0.200
			4-7	c	c	00 224	470.00	000	,	,			

	RAC	28			0	5m	1h	6h	1d	2d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	01-03-16	01-03-16	01-03-16	01-03-16	02-03-16	03-03-16
1	870	970	1	2	-0.202	-0.17	-0.162	-0.158	-0.154	-0.15
2	1150	1250	3	4	-0.168	-0.073	-0.071	-0.065	-0.058	-0.054
3	1250	1350	4	5	-0.152	-0.073	-0.065	-0.062	-0.053	-0.052
4	1350	1450	5	6	-1.578	-1.474	-1.466	-1.461	-1.453	-1.451
5	1450	1550	6	7	-0.16	-0.1	-0.096	-0.094	-0.087	-0.083
6	1550	1650	7	8	-0.007	-0.016	-0.013	-0.018	-0.015	-0.017
7	1650	1750	8	9	-0.01	0.118	0.13	0.138	0.152	0.158
8	1750	1850	9	10	-0.097	-0.008	-0.003	-0.002	0.006	0.009
9	1850	1950	10	11	-0.181	-0.137	-0.128	-0.129	-0.122	-0.117
10	1950	2050	11	12	-0.467	-0.343	-0.332	-0.328	-0.32	-0.316
11	2230	2330	13	14	-0.117	-0.129	-0.126	-0.131	-0.133	-0.132
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.13	-0.158	-0.159	-0.159	-0.167	-0.166
13	1150	1250	17	18	-0.519	-0.567	-0.565	-0.57	-0.577	-0.578
14	1250	1350	18	19	-0.35	-0.387	-0.387	-0.389	-0.395	-0.397
15	1350	1450	19	20	-0.143	-0.186	-0.18	-0.19	-0.197	-0.197
16	1450	1550	20	21	-0.156	-0.189	-0.189	-0.192	-0.199	-0.2
17	1550	1650	21	22	-0.267	-0.317	-0.314	-0.32	-0.328	-0.327
18	1650	1750	22	23	-0.234	-0.267	-0.268	-0.271	-0.277	-0.278
19	1750	1850	23	24	-0.396	-0.434	-0.436	-0.439	-0.443	-0.448
20	1850	1950	24	25	-0.328	-0.368	-0.369	-0.371	-0.377	-0.384
21	1950	2050	25	26	-0.217	-0.258	-0.258	-0.264	-0.268	-0.27
22	2230	2330	27	28	-0.25	-0.29	-0.288	-0.292	-0.299	-0.298
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.279	-0.292	-0.29	-0.294	-0.294	-0.294
24	1550	1650	30	31	-0.237	-0.248	-0.249	-0.252	-0.255	-0.253
25	1650	1750	31	32	-0.53	-0.541	-0.539	-0.542	-0.545	-0.546
26	1450	1550	33	34	-0.563	-0.552	-0.551	-0.552	-0.55	-0.55
27	1550	1650	34	35	0.281	0.308	0.31	0.308	0.31	0.312
28	1650	1750	35	36	-0.387	-0.385	-0.387	-0.387	-0.387	-0.382

					0	5m	1h	6h	1d	2d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	01-03-16	01-03-16	01-03-16	01-03-16	02-03-16	03-03-16
1	870	970	1	2	-0.231	-0.146	-0.147	-0.145	-0.141	-0.136
2	1150	1250	3	4	-0.138	-0.026	-0.019	-0.014	-0.009	-0.006
3	1250	1350	4	5	-0.619	-0.574	-0.573	-0.564	-0.56	-0.555
4	1350	1450	5	6	-0.42	-0.307	-0.302	-0.294	-0.29	-0.283
5	1450	1550	6	7	-0.83	-0.813	-0.813	-0.81	-0.806	-0.805
6	1550	1650	7	8	-0.246	-0.079	-0.073	-0.063	-0.053	-0.044
7	1650	1750	8	9	-0.423	-0.426	-0.428	-0.429	-0.431	-0.431
8	1750	1850	9	10	-0.581	-0.476	-0.471	-0.464	-0.458	-0.454
9	1850	1950	10	11	-0.586	-0.503	-0.497	-0.49	-0.486	-0.486
10	1950	2050	11	12	-0.227	-0.127	-0.127	-0.115	-0.115	-0.107
11	2230	2330	13	14	-0.007	0.03	0.034	0.039	0.043	0.049
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	2.07	2.035	2.032	2.031	2.026	2.024
13	1150	1250	17	18	-0.246	-0.29	-0.291	-0.297	-0.298	-0.303
14	1250	1350	18	19	-0.321	-0.358	-0.359	-0.361	-0.368	-0.372
15	1350	1450	19	20	-0.191	-0.231	-0.233	-0.234	-0.241	-0.243
16	1450	1550	20	21	-0.222	-0.263	-0.265	-0.267	-0.273	-0.276
17	1550	1650	21	22	-0.412	-0.459	-0.462	-0.462	-0.469	-0.473
18	1650	1750	22	23	-0.553	-0.596	-0.599	-0.603	-0.607	-0.611
19	1750	1850	23	24	-0.498	-0.533	-0.537	-0.541	-0.544	-0.547
20	1850	1950	24	25	-0.013	-0.052	-0.055	-0.061	-0.066	-0.065
21	1950	2050	25	26	-1.089	-1.127	-1.13	-1.133	-1.138	-1.14
22	2230	2330	27	28	0.453	0.418	0.413	0.411	0.404	0.401
	В	MIDD								
	From (mm)	To (mm)		sks						
23	1450	1550		30	-0.198	-0.21	-0.213	-0.215	-0.218	-0.219
24	1550	1650	30	31	-0.024	-0.037	-0.036	-0.042	-0.044	-0.045
25	1650	1750	31	32	-0.538	-0.55	-0.553	-0.556	-0.559	-0.56
26	1450	1550	33	34	-0.205	-0.201	-0.202	-0.204	-0.203	-0.204
27	1550	1650	34	35	-0.06	-0.031	-0.031	-0.031	-0.029	-0.026
28	1650	1750	35	36	-0.878	-0.88	-0.882	-0.885	-0.885	-0.884

	RAC	28			3d	4d	5d	6d	7d	14d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	04-03-16	05-03-16	06-03-16	07-03-16	08-03-16	15-03-16
1	870	970	1	2	-0.151	-0.15	-0.151	-0.147	-0.151	-0.149
2	1150	1250	3	4	-0.056	-0.049	-0.051	-0.049	-0.052	-0.046
3	1250	1350	4	5	-0.051	-0.048	-0.048	-0.046	-0.05	-0.045
4	1350	1450	5	6	-1.45	-1.449	-1.449	-1.446	-1.448	-1.443
5	1450	1550	6	7	-0.084	-0.084	-0.082	-0.08	-0.085	-0.081
6	1550	1650	7	8	-0.019	-0.02	-0.019	-0.018	-0.023	-0.025
7	1650	1750	8	9	0.16	0.164	0.164	0.167	0.164	0.174
8	1750	1850	9	10	0.01	0.012	0.008	0.013	0.008	0.012
9	1850	1950	10	11	-0.122	-0.119	-0.12	-0.116	-0.122	-0.118
10	1950	2050	11	12	-0.316	-0.312	-0.315	-0.311	-0.313	-0.308
11	2230	2330	13	14	-0.136	-0.135	-0.134	-0.135	-0.14	-0.145
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.173	-0.172	-0.174	-0.172	-0.18	-0.191
13	1150	1250	17	18	-0.583	-0.581	-0.584	-0.585	-0.589	-0.597
14	1250	1350	18	19	-0.404	-0.401	-0.402	-0.404	-0.41	-0.417
15	1350	1450	19	20	-0.199	-0.201	-0.202	-0.204	-0.211	-0.218
16	1450	1550	20	21	-0.204	-0.205	-0.206	-0.206	-0.211	-0.218
17	1550	1650	21	22	-0.332	-0.333	-0.335	-0.337	-0.342	-0.352
18	1650	1750	22	23	-0.284	-0.285	-0.285	-0.285	-0.291	-0.297
19	1750	1850	23	24	-0.45	-0.45	-0.451	-0.452	-0.457	-0.466
20	1850	1950	24	25	-0.378	-0.383	-0.388	-0.394	-0.388	-0.399
21	1950	2050	25	26	-0.272	-0.273	-0.276	-0.275	-0.28	-0.29
22	2230	2330	27	28	-0.305	-0.304	-0.306	-0.307	-0.311	-0.32
	Α	MIDD								
	From (mm)	To (mm)	Dis	sks						
23	1450	1550		30	-0.298	-0.296	-0.298	-0.299	-0.303	-0.309
24	1550	1650	30	31	-0.256	-0.256	-0.258	-0.259	-0.264	-0.268
25	1650	1750	31	32	-0.547	-0.547	-0.548	-0.551	-0.554	-0.56
26	1450	1550	33	34	-0.552	-0.549	-0.551	-0.551	-0.555	-0.557
27	1550	1650	34	35	0.309	0.31	0.308	0.309	0.305	0.304
28	1650	1750	35	36	-0.391	-0.39	-0.389	-0.39	-0.393	-0.397

_					3d	4d	5d	6d	7d	14d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	04-03-16	05-03-16	06-03-16	07-03-16	08-03-16	15-03-16
1	870	970	1	2	-0.135	-0.126	-0.131	-0.134	-0.133	-0.13
2	1150	1250	3	4	-0.005	-0.001	0.005	0	0	0.003
3	1250	1350	4	5	-0.557	-0.552	-0.553	-0.554	-0.556	-0.557
4	1350	1450	5	6	-0.282	-0.28	-0.277	-0.278	-0.281	-0.274
5	1450	1550	6	7	-0.805	-0.803	-0.804	-0.804	-0.808	-0.807
6	1550	1650	7	8	-0.043	-0.037	-0.036	-0.036	-0.039	-0.026
7	1650	1750	8	9	-0.432	-0.431	-0.434	-0.434	-0.436	-0.439
8	1750	1850	9	10	-0.454	-0.452	-0.449	-0.448	-0.453	-0.445
9	1850	1950	10	11	-0.483	-0.479	-0.48	-0.48	-0.481	-0.481
10	1950	2050	11	12	-0.111	-0.106	-0.106	-0.107	-0.107	-0.106
11	2230	2330	13	14	0.047	0.051	0.05	0.051	0.049	0.05
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	2.024	2.021	2.019	2.019	2.013	2.004
13	1150	1250	17	18	-0.305	-0.305	-0.308	-0.307	-0.311	-0.321
14	1250	1350	18	19	-0.375	-0.375	-0.375	-0.378	-0.382	-0.392
15	1350	1450	19	20	-0.248	-0.249	-0.249	-0.252	-0.253	-0.266
16	1450	1550	20	21	-0.279	-0.283	-0.283	-0.284	-0.289	-0.3
17	1550	1650	21	22	-0.477	-0.478	-0.482	-0.481	-0.486	-0.495
18	1650	1750	22	23	-0.613	-0.613	-0.614	-0.616	-0.62	-0.63
19	1750	1850	23	24	-0.551	-0.55	-0.553	-0.553	-0.558	-0.568
20	1850	1950	24	25	-0.07	-0.071	-0.073	-0.073	-0.079	-0.089
21	1950	2050	25	26	-1.145	-1.147	-1.145	-1.148	-1.153	-1.16
22	2230	2330	27	28	0.398	0.399	0.397	0.397	0.391	0.38
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.223	-0.221	-0.222	-0.224	-0.227	-0.235
24	1550	1650	30	31	-0.049	-0.047	-0.049	-0.048	-0.053	-0.063
25	1650	1750	31	32	-0.563	-0.56	-0.562	-0.564	-0.567	-0.576
26	1450	1550	33	34	-0.206	-0.205	-0.207	-0.207	-0.211	-0.117
27	1550	1650	34	35	-0.03	-0.027	-0.026	-0.029	-0.034	-0.038
28	1650	1750	35	36	-0.888	-0.887	-0.887	-0.891	-0.893	-0.9

	RAC	28			21d	28d	56d	90d	120d	150d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	22-03-16	29-03-16	26-04-16	30-05-16	29-06-16	29-07-16
1	870	970	1	2	-0.144	-0.146	-0.147	-0.152	-0.151	-0.149
2	1150	1250	3	4	-0.047	-0.043	-0.038	-0.044	-0.038	-0.035
3	1250	1350	4	5	-0.04	-0.039	-0.034	-0.041	-0.038	-0.033
4	1350	1450	5	6	-1.439	-1.436	-1.43	-1.435	-1.433	-1.431
5	1450	1550	6	7	-0.077	-0.076	-0.072	-0.077	-0.075	-0.071
6	1550	1650	7	8	-0.026	-0.029	-0.03	-0.033	-0.032	-0.036
7	1650	1750	8	9	0.181	0.184	0.194	0.184	0.193	0.2
8	1750	1850	9	10	0.015	0.016	0.022	0.017	0.022	0.025
9	1850	1950	10	11	-0.118	-0.114	-0.11	-0.115	-0.111	-0.11
10	1950	2050	11	12	-0.301	-0.299	-0.292	-0.297	-0.294	-0.289
11	2230	2330	13	14	-0.146	-0.147	-0.148	-0.151	-0.15	-0.154
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.191	-0.198	-0.21	-0.22	-0.224	-0.233
13	1150	1250	17	18	-0.601	-0.609	-0.619	-0.628	-0.633	-0.64
14	1250	1350	18	19	-0.42	-0.426	-0.435	-0.446	-0.452	-0.456
15	1350	1450	19	20	-0.222	-0.227	-0.236	-0.245	-0.251	-0.258
16	1450	1550	20	21	-0.226	-0.229	-0.241	-0.25	-0.253	-0.262
17	1550	1650	21	22	-0.356	-0.363	-0.372	-0.383	-0.387	-0.397
18	1650	1750	22	23	-0.305	-0.31	-0.319	-0.328	-0.332	-0.342
19	1750	1850	23	24	-0.469	-0.472	-0.49	-0.498	-0.502	-0.51
20	1850	1950	24	25	-0.409	-0.415	-0.423	-0.427	-0.434	-0.441
21	1950	2050	25	26	-0.294	-0.297	-0.313	-0.32	-0.325	-0.332
22	2230	2330	27	28	-0.327	-0.332	-0.344	-0.352	-0.356	-0.365
	Α	MIDD)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.313	-0.315	-0.325	-0.334	-0.335	-0.341
24	1550	1650	30	31	-0.274	-0.275	-0.284	-0.292	-0.296	-0.3
25	1650	1750	31	32	-0.565	-0.567	-0.573	-0.583	-0.586	-0.593
26	1450	1550	33	34	-0.559	-0.561	-0.561	-0.57	-0.57	-0.574
27	1550	1650	34	35	0.299	0.298	0.294	0.286	0.285	0.28
28	1650	1750	35	36	-0.402	-0.403	-0.408	-0.413	-0.416	-0.421
	<u>-</u>									
					21d	28d	56d	90d	120d	150d
	В	BOTT								
	From (mm)	To (mm)	Dis	sks	22-03-16	29-03-16	26-04-16	30-05-16	29-06-16	29-07-16

_					21d	28d	56d	90d	120d	150d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	22-03-16	29-03-16	26-04-16	30-05-16	29-06-16	29-07-16
1	870	970	1	2	-0.127	-0.126	-0.121	-0.129	-0.119	-0.112
2	1150	1250	3	4	0.008	0.006	0.009	0.006	0.01	0.013
3	1250	1350	4	5	-0.547	-0.549	-0.544	-0.55	-0.545	-0.545
4	1350	1450	5	6	-0.269	-0.267	-0.264	-0.268	-0.265	-0.26
5	1450	1550	6	7	-0.805	-0.805	-0.805	-0.806	-0.804	-0.807
6	1550	1650	7	8	-0.018	-0.017	-0.006	-0.011	-0.003	0.002
7	1650	1750	8	9	-0.44	-0.444	-0.446	-0.451	-0.445	-0.45
8	1750	1850	9	10	-0.442	-0.441	-0.434	-0.441	-0.43	-0.434
9	1850	1950	10	11	-0.475	-0.472	-0.468	-0.476	-0.468	-0.471
10	1950	2050	11	12	-0.095	-0.095	-0.085	-0.089	-0.084	-0.085
11	2230	2330	13	14	0.055	0.055	0.062	0.057	0.063	0.062
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15		1.997	1.988	1.977	1.97	1.972	1.959
13	1150	1250	17	18	-0.324	-0.332	-0.343	-0.348	-0.349	-0.356
14	1250	1350	18	19	-0.394	-0.405	-0.414	-0.422	-0.428	-0.437
15	1350	1450	19	20	-0.267	-0.274	-0.283	-0.2891	-0.299	-0.304
16	1450	1550	20	21	-0.304	-0.312	-0.321	-0.328	-0.337	-0.343
17	1550	1650	21	22	-0.5	-0.507	-0.52	-0.525	-0.533	-0.542
18	1650	1750	22	23	-0.631	-0.639	-0.651	-0.653	-0.661	-0.667
19	1750	1850	23	24	-0.57	-0.579	-0.591	-0.597	-0.606	-0.612
20	1850	1950	24	25	-0.089	-0.098	-0.11	-0.112	-0.123	-0.129
21	1950	2050	25	26	-1.161	-1.168	-1.18	-1.184	-1.191	-1.198
22	2230	2330	27	28	0.378	0.371	0.357	0.352	0.344	0.339
	В	MIDE								
	From (mm)	To (mm)		sks						
23	1450	1550	29	30	-0.237	-0.243	-0.251	-0.256	-0.262	-0.266
24	1550	1650	30	31	-0.064	-0.068	-0.078	-0.084	-0.09	-0.094
25	1650	1750	31	32	-0.577	-0.583	-0.588	-0.591	-0.597	-0.601
26	1450	1550	33	34	-0.117	-0.122	-0.126	-0.13	-0.133	-0.137
27	1550	1650	34	35	-0.034	-0.04	-0.043	-0.049	-0.052	-0.052
28	1650	1750	35	36	-0.899	-0.903	-0.905	-0.907	-0.91	-0.913

	RAC	28			180d	210d	240d	270d	300d	330d
	Α	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	28-08-16	27-09-16	27-10-16	26-11-16	26-12-16	25-01-17
1	870	970	1	2	-0.15	-0.151	-0.149	-0.152	-0.149	-0.149
2	1150	1250	3	4	-0.037	-0.038	-0.035	-0.036	-0.03	-0.029
3	1250	1350	4	5	-0.035	-0.038	-0.035	-0.038	-0.029	-0.029
4	1350	1450	5	6	-1.43	-1.432	-1.428	-1.423	-1.42	-1.419
5	1450	1550	6	7	-0.073	-0.073	-0.068	-0.067	-0.065	-0.067
6	1550	1650	7	8	-0.037	-0.036	-0.036	-0.043	-0.042	-0.046
7	1650	1750	8	9	0.198	0.194	0.201	0.208	0.216	0.219
8	1750	1850	9	10	0.023	0.022	0.025	0.026	0.027	0.032
9	1850	1950	10	11	-0.113	-0.114	-0.11	-0.113	-0.108	-0.105
10	1950	2050	11	12	-0.29	-0.29	-0.288	-0.288	-0.281	-0.278
11	2230	2330	13	14	-0.156	-0.155	-0.156	-0.16	-0.16	-0.162
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.233	-0.236	-0.236	-0.246	-0.248	-0.253
13	1150	1250	17	18	-0.643	-0.645	-0.645	-0.655	-0.659	-0.666
14	1250	1350	18	19	-0.461	-0.465	-0.465	-0.471	-0.474	-0.478
15	1350	1450	19	20	-0.261	-0.263	-0.265	-0.27	-0.274	-0.279
16	1450	1550	20	21	-0.266	-0.269	-0.271	-0.274	-0.281	-0.285
17	1550	1650	21	22	-0.401	-0.407	-0.404	-0.405	-0.413	-0.418
18	1650	1750	22	23	-0.346	-0.349	-0.351	-0.352	-0.361	-0.367
19	1750	1850	23	24	-0.51	-0.514	-0.515	-0.519	-0.525	-0.531
20	1850	1950	24	25	-0.446	-0.45	-0.45	-0.448	-0.461	-0.465
21	1950	2050	25	26	-0.334	-0.34	-0.34	-0.339	-0.348	-0.355
22	2230	2330	27	28	-0.368	-0.371	-0.372	-0.374	-0.384	-0.392
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.345	-0.348	-0.347	-0.348	-0.355	-0.361
24	1550	1650	30	31	-0.304	-0.308	-0.306	-0.308	-0.313	-0.318
25	1650	1750	31	32	-0.596	-0.599	-0.598	-0.597	-0.606	-0.61
26	1450	1550	33	34	-0.578	-0.579	-0.577	-0.578	-0.581	-0.585
27	1550	1650	34	35	0.278	0.275	0.277	0.278	0.273	0.27
28	1650	1750	35	36	-0.423	-0.426	-0.424	-0.424	-0.429	-0.435

_					180d	210d	240d	270d	300d	330d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	28-08-16	27-09-16	27-10-16	26-11-16	26-12-16	25-01-17
1	870	970	1	2	-0.117	-0.121	-0.12	-0.115	-0.111	-0.111
2	1150	1250	3	4	0.012	0.011	0.013	0.008	0.016	0.017
3	1250	1350	4	5	-0.546	-0.55	-0.546	-0.545	-0.54	-0.538
4	1350	1450	5	6	-0.256	-0.259	-0.253	-0.259	-0.248	-0.244
5	1450	1550	6	7	-0.806	-0.807	-0.805	-0.813	-0.809	-0.809
6	1550	1650	7	8	0	0	0.003	0.005	0.015	0.018
7	1650	1750	8	9	-0.45	-0.451	-0.449	-0.46	-0.455	-0.455
8	1750	1850	9	10	-0.433	-0.434	-0.433	-0.438	-0.427	-0.425
9	1850	1950	10	11	-0.473	-0.47	-0.47	-0.47	-0.462	-0.466
10	1950	2050	11	12	-0.085	-0.082	-0.082	-0.081	-0.074	-0.072
11	2230	2330	13	14	0.062	0.066	0.063	0.06	0.069	0.072
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	1.954	1.953	1.95	1.942	1.938	1.929
13	1150	1250	17	18	-0.36	-0.367	-0.362	-0.374	-0.377	-0.381
14	1250	1350	18	19	-0.44	-0.443	-0.444	-0.449	-0.453	-0.458
15	1350	1450	19	20	-0.309	-0.312	-0.311	-0.319	-0.321	-0.327
16	1450	1550	20	21	-0.348	-0.353	-0.353	-0.356	-0.361	-0.369
17	1550	1650	21	22	-0.544	-0.549	-0.549	-0.556	-0.56	-0.569
18	1650	1750	22	23	-0.672	-0.677	-0.675	-0.68	-0.684	-0.69
19	1750	1850	23	24	-0.616	-0.622	-0.621	-0.624	-0.624	-0.634
20	1850	1950	24	25	-0.135	-0.136	-0.137	-0.143	-0.144	-0.154
21	1950	2050	25	26	-1.202	-1.205	-1.204	-1.209	-1.212	-1.218
22	2230	2330	27	28	0.335	0.327	0.331	0.322	0.317	0.314
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.27	-0.274	-0.275	-0.277	-0.281	-0.285
24	1550	1650	30	31	-0.097	-0.1	-0.099	-0.105	-0.107	-0.112
25	1650	1750	31	32	-0.607	-0.61	-0.608	-0.61	-0.615	-0.618
26	1450	1550	33	34	-0.141	-0.146	-0.142	-0.144	-0.148	-0.152
27	1550	1650	34	35	-0.057	-0.062	-0.057	-0.058	-0.058	-0.06
28	1650	1750	35	36	-0.917	-0.92	-0.917	-0.921	-0.923	-0.928

	RAC	28			360d	400d	450d
	Α	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	30-12-00	03-02-01	25-03-01
1	870	970	1	2	-0.15	-0.151	-0.147
2	1150	1250	3	4	-0.035	-0.033	-0.03
3	1250	1350	4	5	-0.032	-0.03	-0.027
4	1350	1450	5	6	-1.419	-1.422	-1.419
5	1450	1550	6	7	-0.068	-0.068	-0.062
6	1550	1650	7	8	-0.047	-0.046	-0.039
7	1650	1750	8	9	0.213	0.213	0.216
8	1750	1850	9	10	0.025	0.028	0.03
9	1850	1950	10	11	-0.112	-0.113	-0.108
10	1950	2050	11	12	-0.286	-0.282	-0.28
11	2230	2330	13	14	-0.164	-0.164	-0.159
	Α	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.256	-0.258	-0.256
13	1150	1250	17	18	-0.668	-0.669	-0.664
14	1250	1350	18	19	-0.485	-0.486	-0.484
15	1350	1450	19	20	-0.283	-0.284	-0.279
16	1450	1550	20	21	-0.29	-0.291	-0.288
17	1550	1650	21	22	-0.427	-0.425	-0.42
18	1650	1750	22	23	-0.37	-0.374	-0.368
19	1750	1850	23	24	-0.53	-0.534	-0.532
20	1850	1950	24	25	-0.47	-0.472	-0.468
21	1950	2050	25	26	-0.358	-0.361	-0.357
22	2230	2330	27	28	-0.395	-0.396	-0.394
	Α	MIDE	LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.362	-0.363	-0.362
24	1550	1650	30	31	-0.321	-0.323	-0.319
25	1650	1750	31	32	-0.613	-0.614	-0.612
26	1450	1550	33	34	-0.588	-0.587	-0.587
27	1550	1650	34	35	0.265	0.266	0.268
28	1650	1750	35	36	-0.437	-0.437	-0.434

_					360d	400d	450d
	В	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	30-12-00	03-02-01	25-03-01
1	870	970	1	2	-0.115	-0.113	-0.113
2	1150	1250	3	4	0.014	0.015	0.018
3	1250	1350	4	5	-0.543	-0.54	-0.538
4	1350	1450	5	6	-0.254	-0.247	-0.246
5	1450	1550	6	7	-0.81	-0.808	-0.804
6	1550	1650	7	8	0.014	0.017	0.016
7	1650	1750	8	9	-0.457	-0.457	-0.451
8	1750	1850	9	10	-0.43	-0.428	-0.426
9	1850	1950	10	11	-0.468	-0.465	-0.464
10	1950	2050	11	12	-0.077	-0.075	-0.066
11	2230	2330	13	14	0.066	0.069	0.071
	В	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	1.928	1.925	1.931
13	1150	1250	17	18	-0.387	-0.385	-0.382
14	1250	1350	18	19	-0.464	-0.465	-0.461
15	1350	1450	19	20	-0.331	-0.332	-0.327
16	1450	1550	20	21	-0.372	-0.372	-0.369
17	1550	1650	21	22	-0.572	-0.572	-0.567
18	1650	1750	22	23	-0.694	-0.697	-0.691
19	1750	1850	23	24	-0.636	-0.639	-0.634
20	1850	1950	24	25	-0.156	-0.158	-0.155
21	1950	2050	25	26	-1.223	-1.223	-1.218
22	2230	2330	27	28	0.308	0.307	0.31
	В	MIDE)LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.29	-0.292	-0.287
24	1550	1650	30	31	-0.115	-0.116	-0.111
25	1650	1750	31	32	-0.619	-0.621	-0.619
26	1450	1550	33	34	-0.155	-0.156	-0.153
27	1550	1650	34	35	-0.066	-0.065	-0.063
28	1650	1750	35	36	-0.928	-0.928	-0.924

				d =	12.32	MPa						SIDE	SIDE A BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
RAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	8	6	10	11
Casting	02-02-16	11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-03-16	14:05	28	0	5	28.003	0.003	0.320	0.950	0.790	1.040	0.600	-0.090	1.280	0.890	0.440	1.240	-0.120
1h	01-03-16	15:00	28	1	0	28.042	0.042	0.400	0.970	0.870	1.120	0.640	-0.060	1.400	0.940	0.530	1.350	-0.090
6h	01-03-16	20:00	28	9	0	28.250	0.250	0.440	1.030	0.900	1.170	0.660	-0.110	1.480	0.950	0.520	1.390	-0.140
,	02-03-16	13:00	56	O	0	29.000	1.000	0.480	1.100	0.990	1.250	0.730	-0.080	1.620	1.030	0.590	1.470	-0.160
2	03-03-16	14:00	30	0	0	30,000	2.000	0.520	1 1 40	1 000	1 270	0.770	-0 100	1 680	1 060	0.640	1 510	-0 150
1 0	02 02 10	13.00	50 50	0	0	21.000	2000	0.350	1,130	1.000	1,200	0.7.0	0.100	1 100	1.000	0.0	117	0.1.0
2	04-03-16	13:00	31	0 0	0 0	31.000	3.000	0.510	1.120	1.010	1.280	0.760	-0.120	1.700	1.070	0.590	1.510	-0.190
4	05-03-16	14:00	32	o	0	32.000	4.000	0.520	1.190	T.040	1.290	0.760	-0.130	1.740	T.090	0.620	1.550	-0.I8U
5	06-03-16	17:00	33	0	0	33.000	5.000	0.510	1.170	1.040	1.290	0.780	-0.120	1.740	1.050	0.610	1.520	-0.170
6	07-03-16	16:00	34	0	0	34.000	000.9	0.550	1.190	1.060	1.320	0.800	-0.110	1.770	1.100	0.650	1.560	-0.180
7	08-03-16	11:00	35	0	0	35.000	7.000	0.510	1.160	1.020	1.300	0.750	-0.160	1.740	1.050	0.590	1.540	-0.230
14	15-03-16	18:00	42	O	0	42.00	14.00	0.530	1 2 2 0	1 070	1 350	0 790	-0 180	1 840	1 090	0.630	1 590	-0.280
2.5	22 02 CC	11.00	70	0	0	00.04	21.00	00000	1,210	1,100	1,300	0000	0.100	1010	1,000	0000	1,000	002.0
17	27-CD-72	11.00	49	0	0	49.00	21.00	0.300	1.210	1.120	1.390	0.030	-0.TSO	1.910	1.120	0.030	T.000	-0.290
28	29-03-16	12:00	26	0	0	56.00	28.00	0.560	1.250	1.130	1.420	0.840	-0.220	1.940	1.130	0.670	1.680	-0.300
26	26-04-16	14:00	84	0	0	84.00	56.00	0.550	1.300	1.180	1.480	0.880	-0.230	2.040	1.190	0.710	1.750	-0.310
06	30-05-16	11:00	118	O	0	118.00	90.00	0.500	1.240	1.110	1.430	0.830	-0.260	1.940	1.140	0.660	1.700	-0.340
120	30 06 16	15.00	140	0	0	149.00	120.00	0.550	1 200	1 140	1 450	0000	0.350	0000	1 100	002.0	1 730	0000
071	25-00-10	13.00	T40	0 0	0 (140.00	120.00	0.310	1.300	1.140	1.430	0.030	-0.230	2.030	T.130	0.700	T./30	0.000
150	29-07-16	13:00	178	0	0	178.00	150.00	0.530	1.330	1.190	1.470	0.890	-0.290	2.100	1.220	0.710	1.780	-0.370
180	28-08-16	12:00	208	0	0	208.00	180.00	0.520	1.310	1.170	1.480	0.870	-0.300	2.080	1.200	0.680	1.770	-0.390
210	27-09-16	14:00	238	0	0	238.00	210.00	0.510	1.300	1.140	1.460	0.870	-0.290	2.040	1.190	0.670	1.770	-0.380
240	27-10-16	11:00	268	O	0	268.00	240.00	0.530	1.330	1.170	1.500	0.920	-0.290	2.110	1.220	0.710	1.790	-0.390
270	26-11-16	13:00	298) (0 0	298 00	00 020	0.500	1 320	1 140	1 550	0.930	0.350	2 180	1 230	0.680	1 790	-0.430
000	25 12 25	15.00	220	0 0	0	220.00	200000	0.200	2020	1 220	1:330	0.00	0.00	2 200	1,230	0.000	1 000	0000
300	21-07-02	13.00	920	0	0	326.00	300.00	0.550	1.300	1.250	1.300	0.950	-0.330	2.200	1.240	0.750	1.000	-0.450
330	25-01-17	10:00	358	0	0	358.00	330.00	0.530	1.390	1.230	1.590	0.930	-0.390	2.290	1.290	0.760	1.890	-0.450
365	01-03-17	11:00	393	0	0	393.00	365.00	0.520	1.330	1.200	1.590	0.920	-0.400	2.230	1.220	0.690	1.810	-0.470
400	05-04-17	12:00	428	0	0	428.00	400.00	0.510	1.350	1.220	1.560	0.920	-0.390	2.230	1.250	0.680	1.850	-0.470
450	25-05-17	17:00	478	0	0	478.00	450.00	0.550	1.380	1.250	1.590	0.980	-0.320	2.260	1.270	0.730	1.870	-0.420
												SIDE	SIDE B BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Davs	Hours	Minutes	Davs, ed	From loading	Ţ	2	8	4	2	9	7	8	6	10	11
			,				(days)				Ī							
Casting		11:00	0	0	0	0.000	I	31	31	31	31	31	31	31	31	31	31	31
Sefore loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading		14:05	28	0	2	28.003	0.003	0.850	1.120	0.450	1.130	0.170	1.670	-0.030	1.050	0.830	1.000	0.370
4		15.00	28	-	c	28.042	0.042	0.840	1 190	0.460	1 180	0.170	1 730	-0.050	1 100	0 890	1 000	0.410
eh i	01 03 16	20.00	07	1 4	0	20.042	250.0	0.000	1240	0.10	1 260	0000	1 000	0.00	1170	0.000	1,000	0.450
5,	01-03-10	20.00	97	0	0 0	20.230	0.230	0.000	1.240	0.330	1.200	0.200	1.030	-0.000	1.170	0.960	1.120	0.400
-	02-03-16	13:00	29	0	0	29.000	1.000	0.900	1.290	0.590	1.300	0.240	1.930	-0.080	1.230	1.000	1.120	0.500
2	03-03-16	14:00	30	0	0	30.000	2.000	0.950	1.320	0.640	1.370	0.250	2.020	-0.080	1.270	1.000	1.200	0.560
3	04-03-16	13:00	31	0	0	31.000	3.000	0.960	1.330	0.620	1.380	0.250	2.030	-0.090	1.270	1.030	1.160	0.540
4	05-03-16	14:00	32	0	0	32.000	4.000	1.050	1.370	0.670	1.400	0.270	2.090	-0.080	1.290	1.070	1.210	0.580
5	06-03-16	17:00	33	0	0	33.000	2:000	1.000	1.430	0.660	1.430	0.260	2.100	-0.110	1.320	1.060	1.210	0.570
9	07-03-16	16:00	34	0	0	34.000	000.9	0.970	1.380	0.650	1.420	0.260	2.100	-0.110	1.330	1.060	1.200	0.580
7	08-03-16	11.00	35	O	O	35,000	7 000	0.980	1 380	0.630	1 390	0220	2 070	-0.130	1 280	1 050	1 200	0.560
14	15-03-16	18:00	42) c	0 0	42.00	14.00	1 010	1 410	0.620	1 460	0 230	2 200	-0.160	1 360	1 050	1 210	0.570
<u>t</u> 8	13-03-10	14.00	747	0	0	42.00	14.00	1.010	1.410	0.020	1.400	0.230	2.200	0.100	1.300	1.030	1.210	0.370
7.7	22-03-16	11:00	49	0	0	49.00	21.00	1.040	1.460	0.720	1.510	0.250	2.280	-0.170	1.390	1.110	1.320	0.620
28	29-03-16	12:00	26	0	0	56.00	28.00	1.050	1.440	0.700	1.530	0.250	2.290	-0.210	1.400	1.140	1.320	0.620
56	26-04-16	14:00	84	0	0	84.00	56.00	1.100	1.470	0.750	1.560	0.250	2.400	-0.230	1.470	1.180	1.420	0.690
06	30-05-16	11:00	118	0	0	118.00	90.00	1.020	1.440	0.690	1.520	0.240	2.350	-0.280	1.400	1.100	1.380	0.640
120	29-06-16	15:00	148	0	0	148.00	120.00	1.120	1.480	0.740	1.550	0.260	2.430	-0.220	1.510	1.180	1.430	0.700
150	29-07-16	13:00	178	0	0	178.00	150.00	1.190	1.510	0.740	1.600	0.230	2.480	-0.270	1.470	1.150	1.420	0.690
180	28-08-16	12:00	208	O	C	208.00	180.00	1.140	1.500	0.730	1.640	0.240	2.460	-0.270	1.480	1.130	1.420	0.690
210	27-09-16	14.00	238	0		238 00	210.00	1 100	1 490	069.0	1 610	0.230	2 460	-0.280	1 470	1 160	1 450	0.730
240	27-10-16	11.00	890	0 0	0 0	268.00	20.00	1 110	1 510	0.22.0	1 670	0.250	2 400	0.260	1 400	1 160	1 450	002.0
270	25.11.16	13.00	208	0 0	0 0	208.00	00.075	1 160	1.460	072.0	1.610	0.170	2 510	0.270	1 430	1 160	1 460	0.670
000	26 12 16	15.00	900			238.00	20.000	1,200	1.100	0.750	1 730	0.1.0	2.210	0.00	1:40	7 240	1.400	0.00
230	25-12-10	15:00	320	0 0	0	328.00	300.00	1.200	1.340	0.790	1.750	0.210	2.610	0.520	1.540	1.240	1.33U	0.700
330	23-01-17	11:00	000	0	0	338.00	350.00	1.200	1.330	0.010	1.700	0.210	2.040	0.520	1.300	1,100	1.330	0.730
303	05 04 17	13:00	000	0	0	00.000	363.00	1100	1.520	002.0	1 720	0.200	2.500	0.340	1.510	1 210	1.500	0.750
400	05-04-17	12:00	478	0 0	0 0	428.00	400.00	1.180	1.530	0.790	1.730	0.220	2.630	-0.340	1.530	1.210	1.520	0.760
450	71-50-57	17:00	4/8	0	0	478.00	450.00	1.180	1.560	0.810	J./40	0.250	7.620	-0.280	1.550	1.220	1.610	0./80

				α =	12.32	MPa		L				SIIS	SIDE A TOP (%)	(0)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
RAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
Casting	02-02-16	11:00	0	0	0	0.000	1	197	197	197	197	197	197	197	197	197	197	197
Before loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	00000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-03-16	14:05	28	0	5	28.003	0.003	-0.280	-0.480	-0.370	-0.430	-0.330	-0.500	-0.330	-0.380	-0.400	-0.410	-0.400
£	01-03-16	15:00	28	1	0	28.042	0.042	-0.290	-0.460	-0.370	-0.370	-0.330	-0.470	-0.340	-0.400	-0.410	-0.410	-0.380
eh	01-03-16	20:00	28	9	0	28.250	0.250	-0.290	-0.510	068:0-	-0.470	-0.360	-0.530	-0.370	-0.430	-0.430	-0.470	-0.420
1	02-03-16	13:00	29	0	0	29.000	1.000	-0.370	-0.580	-0,450	-0.540	-0.430	-0.610	-0.430	-0.470	-0.490	-0.510	-0.490
2	03-03-16	14:00	30	0	0	30.000	2.000	-0.360	-0.590	-0.470	-0.540	-0.440	-0.600	-0.440	-0.520	-0.560	-0.530	-0.480
e	04-03-16	13.00	31		c	31 000	3 000	-0.430	-0.640	-0.540	-0.560	-0.480	-0.650	-0.500	-0.540	-0 500	-0.550	0.550
0 4	05-03-16	17.00	32	0 0	0 0	32,000	9.000	-0.430	0.620	-0.540	-0.580	0.480	0.000	-0.510	0.540	-0.550	0.550	0.570
+ 4	02-03-10	14.00	35			32.000	000.4	-0.420	0.020	0.510	000.0	0.450	0.000	0.710	010.0	0.000	00.00	0100
o «	06-03-16	17:00	33	0	0	33.000	0.000	-0.440	-0.650	-0.520	-0.590	-0.500	-0.680	-0.510	-0.550	-0.600	-0.590	-0.560
9	07-03-16	16:00	34	0	0	34.000	6.000	-0.420	-0.660	-0.540	-0.610	-0.500	-0.700	-0.510	-0.560	-0.660	-0.580	-0.570
7	08-03-16	11:00	35	0	0	35.000	7.000	-0.500	-0.700	-0.600	-0.680	-0.550	-0.750	-0.570	-0.610	-0.600	-0.630	-0.610
14	15-03-16	18:00	42	0	0	42.00	14.00	-0.610	-0.780	-0.670	-0.750	-0.620	-0.850	-0.630	-0.700	-0.710	-0.730	-0.700
21	22-03-16	11:00	49	C	0	49.00	21.00	-0.610	-0.820	-0.700	-0.790	-0.700	-0.890	-0.710	-0.730	-0.810	-0.770	-0.770
28	20-03-16	12.00	95			5600	28.00	0890	0000-	092 0-	0.840	-0.730	0.960	0.750	0.760	028.0-	008.0-	0 650
2 5	27-03-10	12.00	200			00.00	20.02	0.000	0.000	001.0	0.040	0.70	0.000	0.700	0.7.00	0.070	0.000	0.020
96	26-04-16	14:00	84	0	0	84.00	26.00	-0.800	-1.000	-0.850	-0.930	-0.850	-1.050	-0.850	-0.940	-0.950	-0.960	-0.940
06	30-05-16	11:00	118	0	0	118.00	90.00	-0.900	-1.090	-0.960	-1.020	-0.940	-1.160	-0.940	-1.020	-0.990	-1.030	-1.020
120	29-06-16	15:00	148	0	0	148.00	120.00	-0.940	-1.140	-1.020	-1.080	-0.970	-1.200	-0.980	-1.060	-1.060	-1.080	-1.060
150	29-07-16	13:00	178	0	0	178.00	150.00	-1.030	-1.210	-1.060	-1.150	-1.060	-1.300	-1.080	-1.140	-1.130	-1.150	-1.150
180	28-08-16	12:00	208	0 0		208 00	180.00	-1 030	-1 240	-1 110	-1 180	-1100	-1 3/10	-1 120	-1110	-1 180	-1 170	-1 180
240	22.00.10	14.00	202		0	200.00	240.00	1,050	1 200	1150	1,200	1130	1.340	1150	7,140	1,000	0000	1.100
210	27-09-16	14:00	238	0 1	0	238.00	210.00	-1.060	-T.25U	-1.150	-1.200	-1.130	-1.400	-1.150	-1.180	-1.220	-1.230	-1.210
240	27-10-16	11:00	268	0	0	268.00	240.00	-1.060	-1.260	-1.150	-1.220	-1.150	-1.370	-1.170	-1.190	-1.220	-1.230	-1.220
270	26-11-16	13:00	298	0	0	298.00	270.00	-1.160	-1.360	-1.210	-1.270	-1.180	-1.380	-1.180	-1.230	-1.200	-1.220	-1.240
300	26-12-16	15:00	328	0	0	328.00	300.00	-1.180	-1.400	-1.240	-1.310	-1.250	-1.460	-1.270	-1.290	-1.330	-1.310	-1.340
330	25-01-17	10:00	358	C	O	358.00	330.00	-1.230	-1.470	-1.280	-1.360	-1.290	-1.510	-1.330	-1.350	-1.370	-1.380	-1 420
365	01-03-17	11.00	363	0	0	393 00	365.00	-1 260	-1 490	-1 350	-1 400	-1 340	-1 600	-1 360	-1 340	-1 420	-1 410	-1 450
400	OF 04 17	12:00	900	0 0	0	00.000	400.00	1 200	1 500	1 260	1 410	1 2 50	1.000	1,000	1 300	1 440	277	7 460
450	03-04-17	12.00	470	0	0	428.00	400.00	1 260	-1.300	1 240	1 200	1220	-1.30U	12400	1.360	1,440	-1.440	-1.400
450	71-60-67	17:00	4/8	0	0	478.00	450.00	-1.250	-T.45U	-1.34U	-1.360	-T.320	-1.53U	-1.34U	-T.36U	-1.400	-T.400	-T.440
												1	(a) a C F a F	_				
					Δη			020	1200	1300	1400	1500	3DE B I OF (20)	1700	1800	1900	0000	2280
	Oato	Time	Dave	Hours	Minites	Days or	From loading	12	13	14	17.	16	17	10	19	200	21	33
			2622			h- (- ((days)	:	î		2	1		2	2	î	i	ł
Casting	02-02-16	11:00	0	0	0	0.000	ı	197	197	197	197	197	197	197	197	197	197	197
sefore loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-03-16	14:05	28	O	2	28.003	0.003	-0.350	-0.440	-0.370	-0.400	-0.410	-0.470	-0.430	-0.350	-0.390	-0.380	-0.350
45	01 03 16	15.00	07	,	0	20.02	0.000	00000	0.450	0000	000	0.420	0010	0.450	0000	0.00	0.200	0000
= 8	01-02-10	13.00	97	7	0 (20.042	0.042	-0.300	-0.430	-0.300	-0.420	-0.430	-0.300	-0.400	-0.390	-0.420	-0.410	-0.400
- Qu	01-03-16	20:00	87	9	0	28.250	0.250	-0.390	-0.510	-0.400	-0.430	-0.450	-0.500	-0.500	-0.430	-0.480	-0.440	-0.420
1	02-03-16	13:00	29	0	0	29.000	1.000	-0.440	-0.520	-0.470	-0.500	-0.510	-0.570	-0.540	-0.460	-0.530	-0.490	-0.490
2	03-03-16	14:00	30	0	0	30.000	2.000	-0.460	-0.570	-0.510	-0.520	-0.540	-0.610	-0.580	-0.490	-0.520	-0.510	-0.520
က	04-03-16	13:00	31	0	0	31.000	3.000	-0.460	-0.590	-0.540	-0.570	-0.570	-0.650	-0.600	-0.530	-0.570	-0.560	-0.550
4	05-03-16	14:00	32	0	0	32.000	4.000	-0.490	-0.590	-0.540	-0.580	-0.610	-0.660	-0.600	-0.520	-0.580	-0.580	-0.540
2	06-03-16	17:00	33	0	0	33.000	2.000	-0.510	-0.620	-0.540	-0.580	-0.610	-0.700	-0.610	-0.550	-0.600	-0.560	-0.560
9	07-03-16	16:00	34	O	0	34.000	000.9	-0.510	-0.610	-0.570	-0.610	-0.620	-0.690	-0.630	-0.550	-0.600	-0.590	-0.560
7	08-03-16	11:00	35	0	С	35.000	7.000	-0.570	-0.650	-0.610	-0.620	-0.670	-0.740	-0.670	-0.600	-0.660	-0.640	-0.620
14	15-03-16	18:00	42		c	4200	14.00	-0.660	-0.750	-0.710	-0.750	-0.780	-0.830	022 0-	0.700	0.750	-0.710	0.730
5 5	22 03 15	11.00	40		0	00.04	21.00	0.220	0.730	0.720	0.750	0000	0000	0.700	0.7.0	0.750	077.0	0.70
17	22-03-10	12.00	4 1	0 0	0	49.00	22.00	-0.730	-0.700	-0.730	-0.700	-0.620	-0.000	-0.700	-0.720	-0.700	07/0-	00.00
87.	29-03-16	12:00	56	0	0	56.00	78.00	-0.820	-0.860	-0.840	-0.830	-0.900	-0.950	-0.860	-0.810	-0.850	-0.790	-0.820
96	26-04-16	14:00	84	0	0	84.00	26.00	-0.930	-0.970	-0.930	-0.920	-0.990	-1.080	-0.980	-0.930	-0.970	-0.910	-0.960
06	30-05-16	11:00	118	0	0	118.00	90.00	-1.000	-1.020	-1.010	-0.981	-1.060	-1.130	-1.000	-0.990	-0.990	-0.950	-1.010
120	29-06-16	15:00	148	0	0	148.00	120.00	-0.980	-1.030	-1.070	-1.080	-1.150	-1.210	-1.080	-1.080	-1.100	-1.020	-1.090
150	29-07-16	13:00	178	0	0	178.00	150.00	-1.110	-1.100	-1.160	-1.130	-1.210	-1.300	-1.140	-1.140	-1.160	-1.090	-1.140
180	28-08-16	12:00	208	0	0	208.00	180.00	-1.160	-1.140	-1.190	-1.180	-1.260	-1.320	-1.190	-1.180	-1.220	-1.130	-1.180
210	27-09-16	14:00	238	0	0	238.00	210.00	-1.170	-1.210	-1.220	-1.210	-1.310	-1.370	-1.240	-1.240	-1.230	-1.160	-1.260
240	27-10-16	11:00	268	0	0	268.00	240.00	-1.200	-1.160	-1.230	-1.200	-1.310	-1.370	-1.220	-1.230	-1.240	-1.150	-1.220
270	26-11-16	13:00	298	0	0	298.00	270.00	-1.280	-1.280	-1.280	-1.280	-1.340	-1.440	-1.270	-1.260	-1.300	-1.200	-1.310
300	26-12-16	15:00	328	0	0	328.00	300.00	-1.320	-1.310	-1.320	-1.300	-1.390	-1.480	-1.310	-1.260	-1.310	-1.230	-1.360
330	25-01-17	10:00	358	0	0	358.00	330.00	-1.410	-1.350	-1.370	-1.360	-1.470	-1.570	-1.370	-1.360	-1.410	-1.290	-1.390
365	01-03-17	11:00	393	0	0	393.00	365.00	-1.420	-1.410	-1.430	-1.400	-1.500	-1.600	-1.410	-1.380	-1.430	-1.340	-1.450
400	05-04-17	12:00	428	0	0	428.00	400.00	-1.450	-1.390	-1.440	-1.410	-1.500	-1.600	-1.440	-1.410	-1.450	-1.340	-1.460
450	25-05-17	17:00	478	O	0	478.00	450.00	-1.390	-1.360	-1.400	-1.360	-1.470	-1.550	-1.380	-1.360	-1.420	-1.290	-1.430

				σ=	12.32	MPa				SIDE A M	SIDE A MIDDLE (%)		
					Age			1500	1600	1700	1500	1600	1700
RAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (davs)	23	24	25	56	27	28
Casting	02-02-16	11:00	0	0	0	0.000	(- Kana)	155	155	155	115	115	115
Before loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-03-16	14:05	28	0	2	28.003	0.003	-0.130	-0.110	-0.110	0.110	0.270	0.020
1h	01-03-16	15:00	28	1	0	28.042	0.042	-0.110	-0.120	-0.090	0.120	0.290	0.000
6h	01-03-16	20:00	28	9	0	28.250	0.250	-0.150	-0.150	-0.120	0.110	0.270	0.000
1	02-03-16	13:00	53	0	0	29.000	1.000	-0.150	-0.180	-0.150	0.130	0.290	0.000
2	03-03-16	14:00	30	0	0	30.000	2.000	-0.150	-0.160	-0.160	0.130	0.310	0.050
3	04-03-16	13:00	31	0	0	31.000	3.000	-0.190	-0.190	-0.170	0.110	0.280	-0.040
4	05-03-16	14:00	32	0	0	32.000	4.000	-0.170	-0.190	-0.170	0.140	0.290	-0.030
2	06-03-16	17:00	33	0	0	33.000	5.000	-0.190	-0.210	-0.180	0.120	0.270	-0.020
9	07-03-16	16:00	34	0	0	34.000	00009	-0.200	-0.220	-0.210	0.120	0.280	-0.030
7	08-03-16	11:00	35	0	0	35.000	7.000	-0.240	-0.270	-0.240	0.080	0.240	-0.060
14	15-03-16	18:00	42	0	0	42.00	14.00	-0.300	-0.310	-0.300	0.060	0.230	-0.100
21	22-03-16	11.00	49	0	0	49.00	21.00	-0.340	-0.370	-0.350	0.040	0.180	-0 150
28	29-03-16	12:00	95	0	0	26.00	28.00	0.350	0.250	0.220	0.000	0.170	0.150
24	25-03-10	14:00	000	o c	0 0	00.00	28.00	0.000	0.70	0.570	0.020	0.120	0.10
8 8	20-04-10	11:00	110	0 0	0 0	110,00	00.00	0.100	0.470	0.430	0.020	0.130	0.250
30	30-03-10	15.00	140	0	0	148.00	90.00	0.000	0.000	0.000	0.0.0	0.030	0.200
120	29-00-10	15:00	140	0	0	146.00	120.00	0000	065.0-	0000-	-0.070	0.040	-0.230
150	29-07-16	13:00	1/8	0	0	1/8.00	150.00	-0.620	-0.630	-0.630	-0.110	-0.010	-0.340
180	28-08-16	12:00	208	0	0	208.00	180.00	-0.660	-0.670	-0.660	-0.150	-0.030	-0.360
210	27-09-16	14:00	238	0	0	238.00	210.00	-0.690	-0.710	-0.690	-0.160	-0.060	-0.390
240	27-10-16	11:00	268	0	0	268.00	240.00	-0.680	-0.690	-0.680	-0.140	-0.040	-0.370
270	26-11-16	13:00	298	0	0	298.00	270.00	-0.690	-0.710	-0.670	-0.150	-0.030	-0.370
300	26-12-16	15:00	328	0	0	328.00	300.00	-0.760	-0.760	-0.760	-0.180	-0.080	-0.420
330	25-01-17	10:00	358	0	0	358.00	330.00	-0.820	-0.810	-0.800	-0.220	-0.110	-0.480
365	01-03-17	11:00	393	0	0	393.00	365.00	-0.830	-0.840	-0.830	-0.250	-0.160	-0.500
400	05-04-17	12:00	428	0	0	428.00	400.00	-0.840	-0.860	-0.840	-0.240	-0.150	-0.500
450	25-05-17	17:00	478	0	0	478.00	450.00	-0.830	-0.820	-0.820	-0.240	-0.130	-0.470
										SIDERM	SIDE B MIDDI F (%)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	23	24	25	26	27	28
	7 20 00	00 77			d		(days)				1,77	14.5	
Casting	02-02-16	00:11	0	0	o	0.000	1	155	155	155	115	115	CTT
Before loading	01-03-16	13:55	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	01-03-16	14:05	28	0	2	28.003	0.003	-0.120	-0.130	-0.120	0.040	0.290	-0.020
‡ ;	01-03-16	15:00	28	1	0	28.042	0.042	-0.150	-0.120	-0.150	0:030	0.290	-0.040
eh	01-03-16	20:00	28	9	0	28.250	0.250	-0.170	-0.180	-0.180	0.010	0.290	-0.070
1	02-03-16	13:00	29	0	0	29.000	1.000	-0.200	-0.200	-0.210	0.020	0.310	-0.070
2	03-03-16	14:00	30	0	0	30.000	2.000	-0.210	-0.210	-0.220	0.010	0.340	-0.060
3	04-03-16	13:00	31	0	0	31.000	3.000	-0.250	-0.250	-0.250	-0.010	0.300	-0.100
4	05-03-16	14:00	32	0	0	32.000	4.000	-0.230	-0.230	-0.220	0.000	0.330	-0.090
5	06-03-16	17:00	33	0	0	33.000	5.000	-0.240	-0.250	-0.240	-0.020	0.340	-0.090
9	07-03-16	16:00	34	0	0	34.000	0000'9	-0.260	-0.240	-0.260	-0.020	0.310	-0.130
7	08-03-16	11:00	35	0	0	35.000	7.000	-0.290	-0.290	-0.290	-0.060	0.260	-0.150
14	15-03-16	18:00	42	0	0	42.00	14.00	-0.370	-0.390	-0.380	0.880	0.220	-0.220
21	22-03-16	11:00	49	0	0	49.00	21.00	-0.390	-0.400	-0.390	0.880	0.260	-0.210
28	29-03-16	12:00	99	0	0	26.00	28.00	-0.450	-0.440	-0.450	0.830	0.200	-0.250
56	26-04-16	14:00	84	0	0	84.00	26.00	-0.530	-0.540	-0.500	0.790	0.170	-0.270
06	30-05-16	11:00	118	0	0	118.00	00'06	-0.580	-0.600	-0.530	0.750	0.110	-0.290
120	29-06-16	15:00	148	0	0	148.00	120.00	-0.640	-0.660	-0.590	0.720	0.080	-0.320
150	29-07-16	13:00	178	0	0	178.00	150.00	-0.680	-0.700	-0.630	0.680	0.080	-0.350
180	28-08-16	12:00	807	0	0	208.00	180.00	-0.720	-0.730	069.0-	0.640	0.030	-0.390
210	27-09-16	14:00	238	0	0	238.00	210.00	-0.760	-0.760	-0.720	0.590	-0.020	-0.420
240	27-10-16	11:00	268	0	0	268.00	240.00	-0.770	-0.750	-0.700	0.630	0.030	-0.390
270	26-11-16	13:00	298	0	0	298.00	270.00	-0.790	-0.810	-0.720	0.610	0.020	-0.430
300	26-12-16	15:00	328	0	0	328.00	300.00	-0.830	-0.830	-0.770	0.570	0.020	-0.450
330	25-01-17	10:00	358	0	0	358.00	330.00	-0.870	-0.880	-0.800	0.530	0.000	-0.500
365	01-03-17	11:00	393	0	0	393.00	365.00	-0.920	-0.910	-0.810	0.500	-0.060	-0.500
400	05-04-17	12:00	428	0	0	428.00	400.00	-0.940	-0.920	-0.830	0.490	-0.050	-0.500
450	25-05-17	17:00	478	0	0	478.00	450.00	-0.890	-0.870	-0.810	0.520	-0.030	-0.460

_	HVFA	C7			0	5m	1h	6h	1d	2d
	Α	BOTT	OM.							
	From (mm)	To (mm)	Dis	sks	17-02-16	17-02-16	17-02-16	17-02-16	18-02-16	19-02-16
1	870	970	1	2	-0.134	-0.045	-0.038	-0.037	-0.027	-0.026
2	1150	1250	3	4	-0.225	-0.114	-0.111	-0.107	-0.099	-0.096
3	1250	1350	4	5	-0.192	-0.2	-0.207	-0.211	-0.213	-0.215
4	1350	1450	5	6	-0.922	-0.829	-0.823	-0.82	-0.816	-0.814
5	1450	1550	6	7	-0.177	-0.078	-0.074	-0.071	-0.06	-0.056
6	1550	1650	7	8	-0.177	-0.187	-0.186	-0.188	-0.191	-0.193
7	1650	1750	8	9	-0.088	0.03	0.036	0.04	0.047	0.052
8	1750	1850	9	10	-0.114	0	0.004	0.008	0.015	0.02
9	1850	1950	10	11	-0.126	-0.077	-0.074	-0.074	-0.069	-0.064
10	1950	2050	11	12	-0.221	-0.11	-0.108	-0.101	-0.097	-0.092
11	2230	2330	13	14	-0.217	-0.104	-0.102	-0.103	-0.096	-0.091
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.121	-0.154	-0.157	-0.165	-0.166	-0.166
13	1150	1250	17	18	-0.122	-0.166	-0.167	-0.178	-0.179	-0.179
14	1250	1350	18	19	-0.183	-0.219	-0.22	-0.225	-0.232	-0.231
15	1350	1450	19	20	-0.516	-0.56	-0.564	-0.569	-0.573	-0.576
16	1450	1550	20	21	-0.414	-0.451	-0.454	-0.459	-0.462	-0.465
17	1550	1650	21	22	-0.288	-0.327	-0.33	-0.335	-0.34	-0.34
18	1650	1750	22	23	-0.228	-0.268	-0.273	-0.278	-0.281	-0.282
19	1750	1850	23	24	-0.092	-0.131	-0.135	-0.14	-0.142	-0.145
20	1850	1950	24	25	-0.403	-0.446	-0.45	-0.455	-0.46	-0.464
21	1950	2050	25	26	0.517	0.465	0.462	0.463	0.457	0.455
22	2230	2330	27	28	-0.442	-0.49	-0.494	-0.499	-0.503	-0.506
	Α	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.264	-0.27	-0.28	-0.283	-0.284	-0.286
24	1550	1650	30	31	-0.137	-0.147	-0.149	-0.151	-0.154	-0.154
25	1650	1750	31	32	0.594	0.577	0.577	0.573	0.569	0.57
26	1450	1550	33	34	-0.739	-0.73	-0.732	-0.729	-0.732	-0.728
27	1550	1650	34	35	-0.174	-0.17	-0.182	-0.181	-0.186	-0.184
28	1650	1750	35	36	0.699	0.726	0.726	0.726	0.725	0.729

_					0	5m	1h	6h	1d	2d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	17-02-16	17-02-16	17-02-16	17-02-16	18-02-16	19-02-16
1	870	970	1	2	-0.091	-0.004	0.004	0.006	0.013	0.015
2	1150	1250	3	4	0.046	0.146	0.153	0.152	0.158	0.163
3	1250	1350	4	5	0.097	0.157	0.161	0.162	0.167	0.172
4	1350	1450	5	6	0.677	0.79	0.795	0.799	0.802	0.806
5	1450	1550	6	7	-0.471	-0.469	-0.469	-0.474	-0.471	-0.47
6	1550	1650	7	8	-1.042	-0.918	-0.909	-0.905	-0.899	-0.892
7	1650	1750	8	9	-0.178	-0.07	-0.063	-0.061	-0.068	-0.045
8	1750	1850	9	10	-4.006	-3.93	-3.931	-3.925	-3.922	-3.917
9	1850	1950	10	11	-0.152	-0.064	-0.062	-0.06	-0.054	-0.048
10	1950	2050	11	12	-0.149	-0.132	-0.133	-0.133	-0.13	-0.128
11	2230	2330	13	14	-0.127	-0.043	-0.038	-0.035	-0.029	-0.022
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.027	-0.117	-0.121	-0.117	-0.132	-0.129
	1150	1250	17	18	0.3	0.268	0.267	0.266	0.253	0.257
14	1250	1350	18	19	-0.127	-0.174	-0.177	-0.171	-0.179	-0.179
15	1350	1450	19	20	-1.371	-1.413	-1.418	-1.418	-1.426	-1.427
16	1450	1550	20	21	-0.203	-0.245	-0.25	-0.25	-0.258	-0.261
17	1550	1650	21	22	-0.135	-0.171	-0.174	-0.174	-0.186	-0.182
18	1650	1750	22	23	-0.215	-0.249	-0.254	-0.254	-0.261	-0.26
19	1750	1850	23	24	-1.213	-1.245	-1.249	-1.25	-1.257	-1.254
20	1850	1950	24	25	-1.161	-1.199	-1.201	-1.2	-1.21	-1.208
21	1950	2050	25	26	-0.197	-0.231	-0.233	-0.238	-0.244	-0.243
22	2230	2330	27	28	-0.139	-0.174	-0.176	-0.177	-0.186	-0.184
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.129	-0.139	-0.141	-0.141	-0.144	-0.144
24	1550	1650	30	31	-0.369	-0.381	-0.382	-0.382	-0.388	-0.386
25	1650	1750	31	32	-0.179	-0.186	-0.187	-0.187	-0.191	-0.189
26	1450	1550	33	34	-0.134	-0.139	-0.142	-0.139	-0.144	-0.143
27	1550	1650	34	35	-0.254	-0.219	-0.22	-0.216	-0.217	-0.213
28	1650	1750	35	36	-0.175	-0.146	-0.147	-0.146	-0.146	-0.142

	HVFA	C7			3d	4d	5d	6d	7d	14d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	20-02-16	21-02-16	22-02-16	23-02-16	24-02-16	02-03-16
1	870	970	1	2	-0.023	-0.02	-0.016	-0.015	-0.012	-0.012
2	1150	1250	3	4	-0.091	-0.088	-0.085	-0.083	-0.081	-0.077
3	1250	1350	4	5	-0.217	-0.221	-0.224	-0.223	-0.224	-0.232
4	1350	1450	5	6	-0.811	-0.809	-0.814	-0.81	-0.806	-0.806
5	1450	1550	6	7	-0.054	-0.05	-0.051	-0.046	-0.042	-0.038
6	1550	1650	7	8	-0.196	-0.197	-0.201	-0.201	-0.202	-0.21
7	1650	1750	8	9	0.056	0.058	0.06	0.061	0.065	0.067
8	1750	1850	9	10	0.023	0.026	0.027	0.029	0.032	0.035
9	1850	1950	10	11	-0.065	-0.063	-0.066	-0.064	-0.062	-0.064
10	1950	2050	11	12	-0.091	-0.088	-0.088	-0.086	-0.085	-0.082
11	2230	2330	13	14	-0.091	-0.088	-0.088	-0.087	-0.084	-0.084
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.17	-0.175	-0.177	-0.177	-0.178	-0.189
13	1150	1250	17	18	-0.186	-0.189	-0.193	-0.194	-0.194	-0.203
14	1250	1350	18	19	-0.237	-0.239	-0.248	-0.247	-0.245	-0.256
15	1350	1450	19	20	-0.58	-0.583	-0.588	-0.588	-0.588	-0.598
16	1450	1550	20	21	-0.468	-0.471	-0.475	-0.477	-0.476	-0.487
17	1550	1650	21	22	-0.344	-0.347	-0.352	-0.354	-0.353	-0.363
18	1650	1750	22	23	-0.289	-0.291	-0.295	-0.296	-0.297	-0.307
19	1750	1850	23	24	-0.147	-0.152	-0.156	-0.159	-0.156	-0.168
20	1850	1950	24	25	-0.468	-0.473	-0.478	-0.478	-0.479	-0.492
21	1950	2050	25	26	0.446	0.447	0.438	0.439	0.44	0.425
22	2230	2330	27	28	-0.512	-0.513	-0.52	-0.522	-0.52	-0.532
	Α	MIDE								
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.288	-0.292	-0.296	-0.298	-0.295	-0.304
24	1550	1650	30	31	-0.156	-0.159	-0.162			
25	1650	1750	31	32	0.567	0.564	0.559			
26	1450	1550	33	34	-0.73	-0.731	-0.732	-0.734	-0.727	-0.733
27	1550	1650	34	35	-0.189	-0.191	-0.195	-0.198	-0.199	-0.207
28	1650	1750	35	36	0.73	0.728	0.723	0.725	0.726	0.725

_					3d	4d	5d	6d	7d	14d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	20-02-16	21-02-16	22-02-16	23-02-16	24-02-16	02-03-16
1	870	970	1	2	0.017	0.016	0.014	0.02	0.022	0.019
2	1150	1250	3	4	0.161	0.163	0.162	0.163	0.167	0.162
3	1250	1350	4	5	0.172	0.171	0.173	0.175	0.178	0.175
4	1350	1450	5	6	0.808	0.807	0.808	0.811	0.813	0.811
5	1450	1550	6	7	-0.471	-0.477	-0.475	-0.477	-0.475	-0.484
6	1550	1650	7	8	-0.891	-0.891	-0.889	-0.888	-0.882	-0.875
7	1650	1750	8	9	-0.045	-0.045	-0.043	-0.044	-0.041	-0.044
8	1750	1850	9	10	-3.916	-3.914	-3.918	-3.917	-3.913	-3.915
9	1850	1950	10	11	-0.046	-0.048	-0.046	-0.045	-0.04	-0.041
10	1950	2050	11	12	-0.129	-0.131	-0.127	-0.13	-0.127	-0.133
11	2230	2330	13	14	-0.023	-0.023	-0.02	-0.02	-0.016	-0.022
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.138	-0.14	-0.15	-0.145	-0.144	-0.163
13	1150	1250	17	18	0.25	0.245	0.241	0.243	0.24	0.229
14	1250	1350	18	19	-0.182	-0.186	-0.19	-0.19	-0.191	-0.202
15	1350	1450	19	20	-1.43	-1.433	-1.434	-1.437	-1.438	-1.448
16	1450	1550	20	21	-0.265	-0.267	-0.27	-0.273	-0.272	-0.282
17	1550	1650	21	22	-0.19	-0.193	-0.196	-0.199	-0.198	-0.211
18	1650	1750	22	23	-0.266	-0.268	-0.271	-0.274	-0.273	-0.282
19	1750	1850	23	24	-1.259	-1.265	-1.266	-1.264	-1.269	-1.279
20	1850	1950	24	25	-1.216	-1.216	-1.218	-1.222	-1.22	-1.232
21	1950	2050	25	26	-0.247	-0.255	-0.255	-0.26	-0.259	-0.271
22	2230	2330	27	28	-0.191	-0.193	-0.196	-0.198	-0.199	-0.212
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.15	-0.151	-0.152	-0.152	-0.154	-0.16
24	1550	1650	30	31	-0.392	-0.394	-0.395	-0.397	-0.399	-0.407
25	1650	1750	31	32	-0.194	-0.198	-0.198	-0.197	-0.198	-0.207
26	1450	1550	33	34	-0.149	-0.149	-0.15	-0.153	-0.151	-0.16
27	1550	1650	34	35	-0.217	-0.218	-0.216	-0.218	-0.215	-0.222
28	1650	1750	35	36	-0.146	-0.145	-0.145	-0.148	-0.144	-0.15

	HVFA	C7			21d	28d	56d	90d	120d	150d
	Α	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	09-03-16	16-03-16	13-04-16	17-05-16	16-06-16	16-07-16
1	870	970	1	2	-0.012	-0.01	-0.007	-0.009	-0.013	-0.015
2	1150	1250	3	4	-0.075	-0.075	-0.072	-0.077	-0.079	-0.082
3	1250	1350	4	5	-0.24	-0.24	-0.241	-0.24	-0.243	-0.248
4	1350	1450	5	6	-0.805	-0.806	-0.802	-0.805	-0.807	-0.811
5	1450	1550	6	7	-0.036	-0.035	-0.031	-0.035	-0.043	-0.043
6	1550	1650	7	8	-0.215	-0.215	-0.219	-0.22	-0.219	-0.227
7	1650	1750	8	9	0.069	0.072	0.076	0.074	0.069	0.067
8	1750	1850	9	10	0.037	0.04	0.045	0.039	0.034	0.036
9	1850	1950	10	11	-0.065	-0.064	-0.066	-0.068	-0.069	-0.077
10	1950	2050	11	12	-0.084	-0.081	-0.077	-0.08	-0.083	-0.086
11	2230	2330	13	14	-0.084	-0.081	-0.077	-0.082	-0.088	-0.089
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.195	-0.198	-0.206	-0.213	-0.214	-0.222
13	1150	1250	17	18	-0.21	-0.214	-0.223	-0.229	-0.232	-0.238
14	1250	1350	18	19	-0.265	-0.272	-0.279	-0.281	-0.288	-0.295
15	1350	1450	19	20	-0.606	-0.613	-0.615	-0.618	-0.624	-0.63
16	1450	1550	20	21	-0.494	-0.501	-0.507	-0.51	-0.513	-0.521
17	1550	1650	21	22	-0.368	-0.376	-0.381	-0.385	-0.39	-0.396
18	1650	1750	22	23	-0.313	-0.32	-0.325	-0.33	-0.333	-0.341
19	1750	1850	23	24	-0.174	-0.179	-0.187	-0.191	-0.194	-0.202
20	1850	1950	24	25	-0.499	-0.506	-0.512	-0.521	-0.521	-0.528
21	1950	2050	25	26	0.42	0.414	0.408	0.401	0.401	0.492
22	2230	2330	27	28	-0.536	-0.543	-0.544	-0.551	-0.548	-0.559
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.308	-0.314	-0.319	-0.322	-0.324	-0.332
24	1550	1650	30	31						
25	1650	1750	31	32						
26	1450	1550	33	34	-0.736	-0.738	-0.74	-0.745	-0.748	-0.752
27	1550	1650	34	35	-0.211	-0.218	-0.22	-0.221	-0.222	-0.228
28	1650	1750	35	36	0.722	0.718	0.718	0.714	0.71	0.704

_					21d	28d	56d	90d	120d	150d
	В	BOTT	ГОМ							
	From (mm)	To (mm)	Dis	sks	09-03-16	16-03-16	13-04-16	17-05-16	16-06-16	16-07-16
1	870	970	1	2	0.025	0.025	0.024	0.024	0.027	0.02
2	1150	1250	3	4	0.165	0.168	0.171	0.166	0.165	0.159
3	1250	1350	4	5	0.175	0.176	0.176	0.176	0.169	0.167
4	1350	1450	5	6	0.813	0.818	0.815	0.812	0.816	0.812
5	1450	1550	6	7	-0.482	-0.48	-0.483	-0.486	-0.497	-0.491
6	1550	1650	7	8	-0.877	-0.872	-0.873	-0.873	-0.872	-0.88
7	1650	1750	8	9	-0.042	-0.04	-0.043	-0.041	-0.048	-0.055
8	1750	1850	9	10	-3.919	-3.913	-3.914	-3.916	-3.919	-3.922
9	1850	1950	10	11	-0.04	-0.038	-0.038	-0.038	-0.043	-0.044
10	1950	2050	11	12	-0.131	-0.132	-0.132	-0.129	-0.132	-0.137
11	2230	2330	13	14	-0.019	-0.017	-0.019	-0.018	-0.025	-0.026
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.164	-0.164	-0.175	-0.176	-0.179	-0.189
13	1150	1250	17	18	0.224	0.222	0.208	0.209	0.206	0.196
14	1250	1350	18	19	-0.207	-0.207	-0.219	-0.222	-0.226	-0.232
15	1350	1450	19	20	-1.457	-1.458	-1.469	-1.47	-1.472	-1.481
16	1450	1550	20	21	-0.287	-0.29	-0.304	-0.304	-0.308	-0.319
17	1550	1650	21	22	-0.214	-0.218	-0.231	-0.232	-0.237	-0.242
18	1650	1750	22	23	-0.29	-0.291	-0.303	-0.304	-0.305	-0.313
19	1750	1850	23	24	-1.286	-1.286	-1.296	-1.296	-1.297	-1.304
20	1850	1950	24	25	-1.235	-1.235	-1.248	-1.251	-1.254	-1.261
21	1950	2050	25	26	-0.277	-0.281	-0.297	-0.296	-0.301	-0.304
22	2230	2330	27	28	-0.217	-0.218	-0.23	-0.234	-0.236	-0.244
	В	MIDE								
	From (mm)	To (mm)	Dis							
23	1450	1550	29	30	-0.167	-0.167	-0.176	-0.176	-0.181	-0.191
24	1550	1650	30	31	-0.412	-0.413	-0.422	-0.425	-0.425	-0.433
25	1650	1750	31	32	-0.209	-0.21	-0.22	-0.221	-0.224	-0.231
26	1450	1550	33	34	-0.163	-0.163	-0.17	-0.167	-0.171	-0.178
27	1550	1650	34	35	-0.22	-0.219	-0.227	-0.227	-0.234	-0.237
28	1650	1750	35	36	-0.151	-0.152	-0.159	-0.159	-0.166	-0.171

	HVFA	AC7			180d	210d	240d	270d	300d	330d
	Α	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	15-08-16	14-09-16	14-10-16	13-11-16	13-12-16	12-01-17
1	870	970	1	2	-0.013	-0.015	-0.013	-0.011	-0.008	-0.005
2	1150	1250	3	4	-0.081	-0.082	-0.079	-0.078	-0.076	-0.075
3	1250	1350	4	5	-0.246	-0.248	-0.244	-0.249	-0.25	-0.252
4	1350	1450	5	6	-0.808	-0.808	-0.806	-0.806	-0.804	-0.801
5	1450	1550	6	7	-0.043	-0.043	-0.043	-0.039	-0.038	-0.036
6	1550	1650	7	8	-0.224	-0.228	-0.223	-0.225	-0.227	-0.231
7	1650	1750	8	9	0.071	0.068	0.071	0.073	0.078	0.08
8	1750	1850	9	10	0.038	0.037	0.04	0.043	0.046	0.049
9	1850	1950	10	11	-0.074	-0.076	-0.072	-0.071	-0.071	-0.068
10	1950	2050	11	12	-0.084	-0.082	-0.082	-0.079	-0.08	-0.074
11	2230	2330	13	14	-0.088	-0.086	-0.084	-0.082	-0.078	-0.075
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.224	-0.226	-0.225	-0.226	-0.233	-0.235
13	1150	1250	17	18	-0.239	-0.241	-0.241	-0.242	-0.25	-0.249
14	1250	1350	18	19	-0.303	-0.302	-0.299	-0.303	-0.312	-0.318
15	1350	1450	19	20	-0.632	-0.633	-0.633	-0.632	-0.64	-0.642
16	1450	1550	20	21	-0.522	-0.526	-0.524	-0.527	-0.532	-0.536
17	1550	1650	21	22	-0.398	-0.4	-0.399	-0.403	-0.407	-0.409
18	1650	1750	22	23	-0.343	-0.346	-0.344	-0.345	-0.352	-0.354
19	1750	1850	23	24	-0.203	-0.206	-0.204	-0.206	-0.213	-0.216
20	1850	1950	24	25	-0.531	-0.535	-0.535	-0.538	-0.545	-0.547
21	1950	2050	25	26	0.491	0.492	0.497			
22	2230	2330	27	28	-0.562	-0.563	-0.561	-0.562	-0.568	-0.573
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.334	-0.334	-0.336	-0.337	-0.344	-0.345
24	1550	1650	30	31						
25	1650	1750	31	32						
26	1450	1550	33	34	-0.755	-0.754	-0.755	-0.754	-0.758	-0.755
27	1550	1650	34	35	-0.23	-0.234	-0.23	-0.232	-0.239	-0.238
28	1650	1750	35	36	0.703	0.702	0.703	0.706	0.705	0.704
					180d	210d	240d	270d	300d	330d

_					180d	210d	240d	270d	300d	330d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	15-08-16	14-09-16	14-10-16	13-11-16	13-12-16	12-01-17
1	870	970	1	2	0.021	0.022	0.027	0.027	0.03	0.032
2	1150	1250	3	4	0.16	0.159	0.158	0.157	0.163	0.161
3	1250	1350	4	5	0.167	0.169	0.17	0.171	0.169	0.173
4	1350	1450	5	6	0.809	0.811	0.811	0.814	0.813	0.816
5	1450	1550	6	7	-0.492	-0.494	-0.49	-0.495	-0.496	-0.492
6	1550	1650	7	8	-0.876	-0.879	-0.897	-0.869	-0.876	-0.872
7	1650	1750	8	9	-0.047	-0.048	-0.035	-0.041	-0.047	-0.046
8	1750	1850	9	10	-3.918	-3.918	-3.918	-3.916	-3.912	-3.911
9	1850	1950	10	11	-0.045	-0.044	-0.042	-0.041	-0.041	-0.037
10	1950	2050	11	12	-0.135	-0.136	-0.135	-0.133	-0.136	-0.135
11	2230	2330	13	14	-0.027	-0.026	-0.025	-0.023	-0.023	-0.019
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.195	-0.194	-0.192	-0.188	-0.202	-0.204
13	1150	1250	17	18	0.193	0.19	0.193	0.19	0.184	0.18
14	1250	1350	18	19	-0.233	-0.238	-0.238	-0.241	-0.243	-0.245
15	1350	1450	19	20	-1.482	-1.487	-1.485	-1.489	-1.491	-1.496
16	1450	1550	20	21	-0.319	-0.323	-0.323	-0.326	-0.331	-0.333
17	1550	1650	21	22	-0.245	-0.246	-0.249	-0.249	-0.255	-0.258
18	1650	1750	22	23	-0.316	-0.321	-0.319	-0.319	-0.326	-0.328
19	1750	1850	23	24	-1.307	-1.309	-1.308	-1.311	-1.319	-1.317
20	1850	1950	24	25	-1.262	-1.266	-1.268	-1.27	-1.271	-1.274
21	1950	2050	25	26	-0.307	-0.31	-0.309	-0.308	-0.314	-0.317
22	2230	2330	27	28	-0.248	-0.25	-0.249	-0.251	-0.256	-0.259
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.191	-0.194	-0.193	-0.193	-0.195	-0.198
24	1550	1650	30	31	-0.435	-0.439	-0.437	-0.436	-0.442	-0.445
25	1650	1750	31	32	-0.232	-0.236	-0.235	-0.232	-0.236	-0.239
26	1450	1550	33	34	-0.178	-0.181	-0.178	-0.179	-0.178	-0.184
27	1550	1650	34	35	-0.237	-0.243	-0.241	-0.238	-0.237	-0.238
28	1650	1750	35	36	-0.171	-0.175	-0.174	-0.172	-0.174	-0.173

	HVFA	C7			365d	400d	450d
	Α	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	16-02-17	23-03-17	12-05-17
1	870	970	1	2	-0.007	-0.009	-0.008
2	1150	1250	3	4	-0.073	-0.076	-0.071
3	1250	1350	4	5	-0.252	-0.251	-0.256
4	1350	1450	5	6	-0.8	-0.803	-0.806
5	1450	1550	6	7	-0.034	-0.042	-0.04
6	1550	1650	7	8	-0.228	-0.23	-0.229
7	1650	1750	8	9	0.081	0.075	0.074
8	1750	1850	9	10	0.048	0.045	0.044
9	1850	1950	10	11	-0.071	-0.074	-0.074
10	1950	2050	11	12	-0.076	-0.078	-0.079
11	2230	2330	13	14	-0.077	-0.079	-0.08
	Α	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.236	-0.239	-0.239
13	1150	1250	17	18	-0.251	-0.254	-0.254
14	1250	1350	18	19	-0.312	-0.319	-0.32
15	1350	1450	19	20	-0.642	-0.647	-0.648
16	1450	1550	20	21	-0.537	-0.539	-0.539
17	1550	1650	21	22	-0.411	-0.414	-0.413
18	1650	1750	22	23	-0.358	-0.359	-0.36
19	1750	1850	23	24	-0.216	-0.22	-0.221
20	1850	1950	24	25	-0.547	-0.555	-0.554
21	1950	2050	25	26			
22	2230	2330	27	28	-0.572	-0.576	-0.578
	Α	MIDE)LE				
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.345	-0.35	-0.349
24	1550	1650	30	31			
25	1650	1750	31	32			
26	1450	1550	33	34	-0.756	-0.762	-0.762
27	1550	1650	34	35	-0.238	-0.24	-0.238
28	1650	1750	35	36	0.702	0.699	0.696

_					365d	400d	450d
	В	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	16-02-17	23-03-17	12-05-17
1	870	970	1	2	0.032	0.031	0.029
2	1150	1250	3	4	0.161	0.16	0.159
3	1250	1350	4	5	0.172	0.171	0.169
4	1350	1450	5	6	0.814	0.818	0.816
5	1450	1550	6	7	-0.488	-0.49	-0.493
6	1550	1650	7	8	-0.873	-0.869	-0.875
7	1650	1750	8	9	-0.046	-0.052	-0.051
8	1750	1850	9	10	-3.914	-3.91	-3.911
9	1850	1950	10	11	-0.04	-0.039	-0.042
10	1950	2050	11	12	-0.136	-0.135	-0.135
11	2230	2330	13	14	-0.019	-0.02	-0.022
	В	TO	Р				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.205	-0.208	-0.206
13	1150	1250	17	18	0.182	0.18	0.179
14	1250	1350	18	19	-0.251	-0.251	-0.252
15	1350	1450	19	20	-1.501	-1.501	-1.499
16	1450	1550	20	21	-0.339	-0.341	-0.34
17	1550	1650	21	22	-0.261	-0.26	-0.262
18	1650	1750	22	23	-0.332	-0.332	-0.332
19	1750	1850	23	24	-1.32	-1.322	-1.319
20	1850	1950	24	25	-1.275	-1.28	-1.278
21	1950	2050	25	26	-0.317	-0.325	-0.323
22	2230	2330	27	28	-0.264	-0.266	-0.263
	В	MIDE					
	From (mm)	To (mm)	Dis	sks			
23	1450	1550	29	30	-0.202	-0.203	-0.201
24	1550	1650	30	31	-0.448	-0.448	-0.446
25	1650	1750	31	32	-0.242	-0.243	-0.243
26	1450	1550	33	34	-0.187	-0.181	-0.185
27	1550	1650	34	35	-0.242	-0.244	-0.245
28	1650	1750	35	36	-0.177	-0.18	-0.183

				= 0	9.85	MPa						SIDE	SIDE A BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
HVFAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	8	6	10	11
Casting	10-02-16	11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading	17-02-16	11:55	2	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	000'0	0.000	0.000	0.000
5min after loading	17-02-16	12:00	7	0	5	7.003	0.003	0.890	1.110	-0.080	0.930	0.990	-0.100	1.180	1.140	0.490	1.110	1.130
1h	17-02-16	13:00	7	1	0	7.042	0.042	0.960	1.140	-0.150	0.990	1.030	-0.090	1.240	1.180	0.520	1.130	1.150
eh	17-02-16	18:00	7	9	0	7.250	0.250	0.970	1.180	-0.190	1.020	1.060	-0.110	1.280	1.220	0.520	1.200	1.140
1	18-02-16	13:00	8	0	0	8.000	1.000	1.070	1.260	-0.210	1.060	1.170	-0.140	1.350	1.290	0.570	1.240	1.210
2	19-02-16	11:00	6	0	0	000.6	2.000	1.080	1.290	-0.230	1.080	1.210	-0.160	1.400	1.340	0.620	1.290	1.260
3	20-02-16	12:00	10	О	0	10.000	3.000	1.110	1.340	-0.250	1.110	1.230	-0.190	1.440	1.370	0.610	1.300	1.260
9	21-02-16	13:00	11	0 0	0 0	11,000	4 000	1 140	1 370	067.0	1 130	1 270	0000	1 460	1 400	0.630	1 330	1 200
	22.02.12	13.00	17			12,000	000.4	1 100	1,400	0.230	1,000	1 260	0.240	1,400	1.100	0000	1 220	1 200
0	97-77-77	13:00	77	0 0	0 (12.000	0000	1.180	T.400	-0.320	1.080	1.250	-0.240	1.480	1.410	0.600	1.330	1.29U
6	23-02-16	16:00	13	0	0	13.000	000.9	1.190	1.420	-0.310	1.120	1.310	-0.240	1.490	1.430	0.620	1.350	1.300
7	24-02-16	14:00	14	0	0	14.000	7.000	1.220	1.440	-0.320	1.160	1.350	-0.250	1.530	1.460	0.640	1.360	1.330
14	02-03-16	13:00	21	0	0	21.00	14.00	1.220	1.480	-0.400	1.160	1.390	-0.330	1.550	1.490	0.620	1.390	1.330
21	09-03-16	13:00	28	0	0	28.00	21.00	1.220	1.500	-0.480	1.170	1.410	-0.380	1.570	1.510	0.610	1.370	1.330
28	16-03-16	17.00	35			35.00	28.00	1 240	1 500	-0.480	1 160	1 120	0 380	1,600	1 540	0.620	1 400	1 360
2 5	10-03-10	74.00	5			0000	20.00	4 270	000.7	004.0	4 200	1.420	0.300	1.000	1.340	0.020	004:7	1.100
20	13-04-16	14:00	63	0	0	63.00	26.00	1.270	1.530	-0.490	1.200	1.460	-0.420	1.640	1.590	0.600	T:440	T.400
06	17-05-16	14:00	97	0	0	97.00	90.00	1.250	1.480	-0.480	1.170	1.420	-0.430	1.620	1.530	0.580	1.410	1.350
120	16-06-16	13:00	127	0	0	127.00	120.00	1.210	1.460	-0.510	1.150	1.340	-0.420	1.570	1.480	0.570	1.380	1.290
150	16-07-16	15:00	157	0	0	157.00	150.00	1.190	1.430	-0.560	1.110	1.340	-0.500	1.550	1.500	0.490	1.350	1.280
180	15-08-16	13:00	187	0 0		187.00	180.00	1 210	1 440	005.0	1 1 10	1 3/10	0.770	1 500	1 520	0.520	1 370	1 290
040	17.00-10	13.00	1207		0	107.00	240.00	1 100	1.440	0.510	1140	1340	0.170	0001	1.320	0.520	000.1	1 240
710	14-09-16	13:00	717	0	0	217.00	210.00	1.190	1.430	-0.560	1.140	1.340	-0.510	1.560	1.510	0.500	068.I	1.310
240	14-10-16	16:00	247	0	0	247.00	240.00	1.210	1.460	-0.520	1.160	1.340	-0.460	1.590	1.540	0.540	1.390	1.330
270	13-11-16	12:00	277	0	0	277.00	270.00	1.230	1.470	-0.570	1.160	1.380	-0.480	1.610	1.570	0.550	1.420	1.350
300	13-12-16	13:00	307	0	0	307.00	300.00	1.260	1.490	-0.580	1.180	1.390	-0.500	1.660	1.600	0.550	1.410	1.390
330	12-01-17	13.00	337	O	c	337.00	330.00	1 290	1 500	-0 600	1 210	1 410	-0.540	1 680	1 630	0.580	1 470	1 420
365	16-02-17	17:00	277	0 0	0 0	27.700	365.00	1 270	1 520	0.000	1 220	1 420	0.510	1 690	1.620	0 2 2 0	1 450	1 400
200	10-02-17	11.00	372	0 0	0	372.00	303.00	1.270	1.320	0.000	1.220	1.430	0.510	T.030	1.020	0000	004.7	1.100
400	23-03-17	TT:00	407	0	0	407.00	400.00	1.250	1.490	-0.590	1.190	1.350	-0.530	1.630	1.590	0.520	1.430	T.380
450	12-05-17	15:00	457	0	0	457.00	450.00	1.260	1.540	-0.640	1.160	1.370	-0.520	1.620	1.580	0.520	1.420	1.370
												SIDE	SIDE B BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	7	2	3	4	2	9	7	∞	6	10	11
- deligation	77 60 07	44.00	d	d	d	0000	(days)	,	,	,	,	,	,	,	,,	ć	ť	ť
Casting		00:TT	o	0	o	0.000	1	31	31	31	31	31	31	31	37	31	3.1	31
sefore loading		11:55	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading		12:00	7	0	2	7.003	0.003	0.870	1.000	0.600	1.130	0.020	1.240	1.080	0.760	0.880	0.170	0.840
1h		13:00	7	1	0	7.042	0.042	0.950	1.070	0.640	1.180	0.020	1.330	1.150	0.750	006.0	0.160	0.890
 Gh	17-02-16	18:00	7	י ע		7 250	0.250	0.970	1.060	0590	1 220	-0.030	1 370	1 170	0.810	0.000	0.160	0.000
5 -	17-02-10	10.00		0 0	0	0.230	0.530	0.970	1.000	0.030	1.220	0.030	1.370	1.1/0	0.610	0.920	0.100	0.520
-	18-07-16	13:00	×	0	0	8.000	1.000	1.040	1.120	0.700	1.250	0.000	1.430	1.100	0.840	0.980	0.130	0.980
2	19-02-16	11:00	6	0	0	9.000	2.000	1.060	1.170	0.750	1.290	0.010	1.500	1.330	0.890	1.040	0.210	1.050
3	20-02-16	12:00	10	0	0	10.000	3.000	1.080	1.150	0.750	1.310	0.000	1.510	1.330	0.900	1.060	0.200	1.040
4	21-02-16	13:00	11	0	0	11.000	4.000	1.070	1.170	0.740	1.300	-0.060	1.510	1.330	0.920	1.040	0.180	1.040
5	22-02-16	13:00	12	0	0	12,000	2.000	1.050	1.160	0.760	1.310	-0.040	1.530	1.350	0.880	1.060	0.220	1.070
9	23-02-16	16.00	13	c	c	13,000	0009	1110	1170	0.780	1 340	-0.060	1 540	1 340	080	1 070	0 190	1 070
	27 20 77	1 4:00	1.0	0 0	0 0	14,000	2000	1 130	1 210	0.000	1 260	0.000	1,500	1 270	0000	1 120	0000	
44	24 02 70	900	1 6			24.000	1.000	1,100	1,210	0.010	1.300	0.01	1.000	2,000	0.000	7.150	0.220	010.1
4	02-03-16	13:00	77	0	0	21.00	14.00	1.100	1.160	0.780	1.340	-0.130	1.670	1.34U	0.910	011.1	0.100	T.050
21	09-03-16	13:00	28	0	0	28.00	21.00	1.160	1.190	0.780	1.360	-0.110	1.650	1.360	0.870	1.120	0.180	1.080
28	16-03-16	17:00	35	0	0	35.00	28.00	1.160	1.220	0.790	1.410	-0.090	1.700	1.380	0.930	1.140	0.170	1.100
56	13-04-16	14:00	63	0	0	63.00	26.00	1.150	1.250	062'0	1.380	-0.120	1.690	1.350	0.920	1.140	0.170	1.080
06	17-05-16	14:00	26	0	0	97.00	00:06	1.150	1.200	0.790	1.350	-0.150	1.690	1.370	0.900	1.140	0.200	1.090
120	16-06-16	13.00	127) () (127.00	120.00	1 180	1 190	0.720	1 390	0250	1 700	1 300	0.870	1 090	0.170	1 020
150	10-00-10	13.00	127	0	0	127.00	470.00	1,100	0011	027.0	1.330	0.200	1,730	4.220	0.670	1.030	0.1.0	1.020
061	1P-0/-TP	15:00	15/	0	0	157.00	150.00	1.110	1.130	0.700	1.350	-0.200	1.620	1.230	0.840	1.080	0.120	DTO.L
180	15-08-16	13:00	187	0	0	187.00	180.00	1.120	1.140	0.700	1.320	-0.210	1.660	1.310	0.880	1.070	0.140	1.000
210	14-09-16	13:00	217	0	0	217.00	210.00	1.130	1.130	0.720	1.340	-0.230	1.630	1.300	0.880	1.080	0.130	1.010
240	14-10-16	16:00	247	0	0	247.00	240.00	1.180	1.120	0.730	1.340	-0.190	1.450	1.430	0.880	1.100	0.140	1.020
270	13-11-16	12:00	277	0	0	277.00	270.00	1.180	1.110	0.740	1.370	-0.240	1.730	1.370	0.900	1.110	0.160	1.040
300	13-12-16	13:00	307	0	0	307.00	300.00	1.210	1.170	0.720	1.360	-0.250	1.660	1.310	0.940	1.110	0:130	1.040
330	12-01-17	13:00	337	0	0	337.00	330.00	1.230	1.150	0.760	1.390	-0.210	1.700	1.320	0.950	1.150	0.140	1.080
365	16-02-17	17:00	372	0	C	372.00	365.00	1.230	1.150	0.750	1.370	-0.170	1.690	1.320	0.920	1,120	0.130	1.080
400	23-03-17	11:00	407	0	0	407.00	400.00	1.220	1.140	0.740	1.410	-0.190	1.730	1.260	096.0	1.130	0.140	1.070
450	12-05-17	15:00	757) () (457.00	750.00	1 200	1 130	0.720	1 390	0220	1 670	1 270	0.050	1 100	0.140	1 050
450	1T-CO-7T	TO:OO	457	0	0	457.00	450.00	1.2UU	T.130	0.720	1.35U	-U.22U	1.6/0	1.270	0.550	1.100	U.14U	γ.τ

				<u>0</u> =	9.85	MPa						SIC	SIDE A TOP (%)	(00				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
HVFAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
Casting	10-02-16	11:00	0	0	0	0.000	1	197	197	197	197	197	197	197	197	197	197	197
Before loading	17-02-16	11:55	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	17-02-16	12:00	7	0	5	7.003	0.003	-0.330	-0.440	-0.360	-0.440	-0.370	-0.390	-0.400	-0.390	-0.430	-0.520	-0.480
1h	17-02-16	13:00	7	1	0	7.042	0.042	-0.360	-0.450	-0.370	-0.480	-0.400	-0.420	-0.450	-0.430	-0.470	-0.550	-0.520
6h	17-02-16	18:00	7	9	0	7.250	0.250	-0.440	-0.560	-0.420	-0.530	-0.450	-0.470	-0.500	-0.480	-0.520	-0.540	-0.570
1	18-02-16	13:00	∞	0	0	8.000	1.000	-0.450	-0.570	-0.490	-0.570	-0.480	-0.520	-0.530	-0.500	-0.570	-0.600	-0.610
2	19-02-16	11:00	6	0	0	9.000	2.000	-0.450	-0.570	-0.480	-0.600	-0.510	-0.520	-0.540	-0.530	-0.610	-0.620	-0.640
3	20-02-16	12:00	10	0	0	10.000	3.000	-0.490	-0.640	-0.540	-0.640	-0.540	-0.560	-0.610	-0.550	-0.650	-0.710	-0.700
4	21-02-16	13:00	11	0	0	11.000	4.000	-0.540	-0.670	-0.560	-0.670	-0.570	-0.590	-0.630	-0.600	-0.700	-0.700	-0.710
5	22-02-16	13:00	12	0		12,000	2 000	095 0-	-0.710	-0.650	-0.770	-0.610	-0.640	-0.670	-0.640	-0.750	002.0-	-0 780
, c	22.02.10	13.00	77			42,000	0000	0.00	0.710	0.000	0.720	0.010	0.00	0.070	0.010	0.7.0	0000	0000
Q	73-07-19	16:00	13	0	0	13.000	6.000	-0.560	-0.720	-0.640	-0.720	-0.630	-0.660	-0.680	-0.670	-0.750	-0.780	-0.800
7	24-02-16	14:00	14	0	0	14.000	7.000	-0.570	-0.720	-0.620	-0.720	-0.620	-0.650	-0.690	-0.640	-0.760	-0.770	-0.780
14	02-03-16	13:00	21	0	0	21.00	14.00	-0.680	-0.810	-0.730	-0.820	-0.730	-0.750	-0.790	-0.760	-0.890	-0.920	-0.900
21	09-03-16	13.00	28	C	C	2800	21.00	-0 740	-0 880	-0.820	-0 900	-0800	-0.800	-0.850	-0820	096 0-	070 0-	-0 940
	07 00 77	1000	2 .		0	2000	00.00	0.110	0000	0.000	0.000	0.00	0000	0.000	0.010	0000	000	2 4
97	16-03-16	17:00	35	0	0	35.00	78.00	-0.770	-0.920	-0.890	-0.970	-0.870	-0.880	-0.920	-0.870	-1.030	-1.030	-T.UIU
56	13-04-16	14:00	63	0	0	63.00	26.00	-0.850	-1.010	-0.960	-0.990	-0.930	-0.930	-0.970	-0.950	-1.090	-1.090	-1.020
06	17-05-16	14:00	46	0	0	97.00	00'06	-0.920	-1.070	-0.980	-1.020	-0.960	-0.970	-1.020	-0.990	-1.180	-1.160	-1.090
120	16-06-16	13.00	127	C	C	127 00	120.00	0500-	-1 100	-1.050	-1 080	0000-	-1 020	-1 050	-1 020	-1 180	-1 160	-1 060
120	07-00-07	13.00	121		0	127.00	00.021	0.000	4.450	1,130	11.000	0.030	4.000	4.430	4.400	4.010	0.01.	1.000
150	16-07-16	15:00	15/	0	0	157.00	150.00	-1.010	-1.160	-1.120	-1.140	-1.070	-1.080	-1.130	-1.100	-1.250	-0.250	-1.1/0
180	15-08-16	13:00	187	0	0	187.00	180.00	-1.030	-1.170	-1.200	-1.160	-1.080	-1.100	-1.150	-1.110	-1.280	-0.260	-1.200
210	14-09-16	13:00	217	0	0	217.00	210.00	-1.050	-1.190	-1.190	-1.170	-1.120	-1.120	-1.180	-1.140	-1.320	-0.250	-1.210
240	14-10-16	16.00	747	C	O	247 00	240.00	-1 040	-1 190	-1 160	-1 170	-1100	-1 110	-1 160	-1 120	-1 320	-0.200	-1 190
020	17 17 10	20.00	777	0	0	00.772	00.025	1.010	1,200	1.100	1,160	1,100	7.110	1170	1140	1.020	0000	1,200
270	13-11-10	12:00	//7	0	0	277.00	270.00	-T.USU	-1.200	-1.200	-1.150	-1.130	-1.15U	-1.1/0	-1.140	-1.350	0.000	-1.200
300	13-12-16	13:00	307	0	0	307.00	300.00	-1.120	-1.280	-1.290	-1.240	-1.180	-1.190	-1.240	-1.210	-1.420	0.000	-1.260
330	12-01-17	13:00	337	0	0	337.00	330.00	-1.140	-1.270	-1.350	-1.260	-1.220	-1.210	-1.260	-1.240	-1.440	0.000	-1.310
365	16-02-17	17:00	372	0	0	372.00	365.00	-1.150	-1.290	-1.290	-1.260	-1.230	-1.230	-1.300	-1.240	-1.440	0.000	-1.300
400	23-03-17	11:00	407	0	0	407.00	400,00	-1.180	-1.320	-1.360	-1.310	-1.250	-1.260	-1.310	-1.280	-1.520	0.000	-1.340
450	12-05-17	15:00	457	0	0	457.00	450.00	-1.180	-1.320	-1.370	-1.320	-1.250	-1.250	-1.320	-1.290	-1.510	0.000	-1.360
												SIE	SIDE B TOP (%)	(0)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	12	13	14	15	16	17	18	19	20	21	22
:							(days)											
Casting	10-02-16	11:00	0	0	0	0.000	1	197	197	197	197	197	197	197	197	197	197	197
Before loading	17-02-16	11:55	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	17-02-16	12:00	7	0	5	7.003	0.003	-0.900	-0.320	-0.470	-0.420	-0.420	-0.360	-0.340	-0.320	-0.380	-0.340	-0.350
1h	17-02-16	13:00		, ,	0	7 042	0.042	0000	-0.330	0.500	0770-	0770-	-0 300	-0 300	0.360	0000	0.360	0 370
= 5	17-02-T0	13.00	1 -	1	0 0	7.042	240.0	0.940	-0.330	0.500	0.470	-0.470	0.000	0.330	0.300	004:0-	-0.300	0.370
uq	17-02-16	18:00	,	9	0	7.250	067.0	-0.900	-0.340	-0.440	-0.470	-0.4 /0	-0.390	-0.390	-0.3 /0	-0.390	-0.410	-0.380
1	18-02-16	13:00	∞	0	0	8.000	1.000	-1.050	-0.470	-0.520	-0.550	-0.550	-0.510	-0.460	-0.440	-0.490	-0.470	-0.470
2	19-02-16	11:00	6	0	0	9.000	2.000	-1.020	-0.430	-0.520	-0.560	-0.580	-0.470	-0.450	-0.410	-0.470	-0.460	-0.450
9	20-02-16	12:00	10	0	0	10.000	3.000	-1.110	-0.500	-0.550	-0.590	-0.620	-0.550	-0.510	-0.460	-0.550	-0.500	-0.520
4	21-02-16	13:00	11	0	0	11.000	4.000	-1.130	-0.550	-0.590	-0.620	-0.640	-0.580	-0.530	-0.520	-0.550	-0.580	-0.540
5	22-02-16	13.00	12	C	0	12 000	5 000	-1 230	-0 590	-0.630	-0.630	-0.670	-0.610	-0.560	-0 530	-0 570	-0 580	-0.570
9	22 22 22	20.00	1 (12,000	0000	1.100	0.00	0000	0000	0.00	0.010	0.200	0.230	0.00	0000	
0 1	23-05-10	10.00	CT .	0	0 0	13.000	0.000	-T.100	-0.370	-0.030	-0.000	-0.700	-0.040	-0.390	0.510	0.010	-0.030	0.030
,	24-02-16	14:00	14	0	0	14.000	000.7	-1.1/0	-0.900	-0.640	-0.670	-0.690	-0.630	-0.580	-0.560	-0.590	-0.620	-0.600
14	02-03-16	13:00	21	0	0	21.00	14.00	-1.360	-0.710	-0.750	-0.770	-0.790	-0.760	-0.670	-0.660	-0.710	-0.740	-0.730
21	09-03-16	13:00	28	0	0	28.00	21.00	-1.370	-0.760	-0.800	-0.860	-0.840	-0.790	-0.750	-0.730	-0.740	-0.800	-0.780
28	16-03-16	17:00	35	0	0	35.00	28.00	-1.370	-0.780	-0.800	-0.870	-0.870	-0.830	-0.760	-0.730	-0.740	-0.840	-0.790
56	13-04-16	14.00	63	c	0	63.00	26.00	-1 480	-0 920	0.920	0800-	-1010	0 960	-0 880	0830	028 0-	-1 000	0.910
8 8	10 11 10 17	4.00	200	0		00.00	00.00	1,400	0.020	0.020	0000	1.010	0.00	0000	0000	0.00	0000	010.0
06	QT-CO-/T	14:00	16	5 (o (97.00	90.00	-1.490	-0.910	-0.950	-0.990	OTO.T-	-0.970	-0.890	-0.830	-0.900	-0.990	0.950
120	16-06-16	13:00	127	0	0	127.00	120.00	-1.520	-0.940	-0.990	-1.010	-1.050	-1.020	-0.900	-0.840	-0.930	-1.040	-0.970
150	16-07-16	15:00	157	0	0	157.00	150.00	-1.620	-1.040	-1.050	-1.100	-1.160	-1.070	-0.980	-0.910	-1.000	-1.070	-1.050
180	15-08-16	13:00	187	0	0	187.00	180.00	-1.680	-1.070	-1.060	-1.110	-1.160	-1.100	-1.010	-0.940	-1.010	-1.100	-1.090
210	14-09-16	13:00	217	0	0	217.00	210.00	-1.670	-1.100	-1.110	-1.160	-1.200	-1.110	-1.060	-0.960	-1.050	-1.130	-1.110
240	14-10-16	16:00	247	0	0	247.00	240.00	-1.650	-1.070	-1.110	-1.140	-1.200	-1.140	-1.040	-0.950	-1.070	-1.120	-1.100
270	13-11-16	12:00	277	0	0	277.00	270.00	-1.610	-1.100	-1.140	-1.180	-1.230	-1.140	-1.040	-0.980	-1.090	-1.110	-1.120
300	13-12-16	13.00	307	C		307.00	300.00	-1 750	-1 160	-1 160	-1 200	-1 280	-1 200	-1 110	-1 060	-1 100	-1 170	-1 170
330	12 22 22	13.00	700	0	0	227.00	00.000	1770	1,200	1,100	1 250	2007	1 220	1 130	1.000	1,130	1,200	1 200
330	12-01-17	13:00	750	0	0	00.756	00.055	0//T-	1 100	1 240	1 200	-T.500	1.250	4 4 70	4.070	1140	1 200	1 250
363	16-02-17	17:00	3/2	0	0	372.00	365.00	-1.78U	1 200	1.240	-1.300	-1.36U	1.250	1170	1,000	-1.140	1.200	1 270
400	71-80-87	11:00	407	0 (0	407.00	400.00	-1.810	-1.200	-1.240	-1.300	-1.380	-1.250	-1.1/0	-1.090	-1.190	-1.280	-1.270
450	17-97-17	15:00	45/	0	0	457.00	450.00	-1.790	-1.210	-1.250	-1.280	-1.3 /0	-1.270	-1.1/0	-1.060	-1.170	-1.260	-1.240

		_		Q =	9.85	MPa				JUL AIV	SIDE A MIDDLE (700)		
					Age		:	1500	1600	1700	1500	1600	1700
HVFAC7	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	23	24	25	56	27	28
Casting	10-02-16	11:00	0	0	0	0.000	1	155	155	155	115	115	115
Before loading	17-02-16	11:55	7	0	0	7.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	17-02-16	12:00		0	2	7.003	0.003	-0.060	-0.100	-0.170	0.090	0.040	0.270
1h	17-02-16	13:00	7	1	0	7.042	0.042	-0.160	-0.120	-0.170	0.070	-0.080	0.270
9	17-02-16	18:00	7	9	0	7.250	0.250	-0.190	-0.140	-0.210	0.100	-0.070	0.270
1	18-02-16	13:00	8	0	0	8.000	1.000	-0.200	-0.170	-0.250	0.070	-0.120	0.260
2	19-02-16	11:00	6	0	0	000.6	2.000	-0.220	-0.170	-0.240	0.110	-0.100	0.300
3	20-02-16	12:00	10	0	0	10.000	3.000	-0.240	-0.190	-0.270	0.090	-0.150	0.310
4	21-02-16	13:00	11	0	0	11.000	4.000	-0.280	-0.220	-0.300	080'0	-0.170	0.290
2	22-02-16	13:00	12	0	0	12.000	5.000	-0.320	-0.250	-0.350	0.070	-0.210	0.240
9	23-02-16	16:00	13	0	0	13,000	000.9	-0.340	0.000	0.000	0,050	-0.240	0.260
7	24-02-16	14:00	14	0	0	14.000	7.000	-0.310	0.000	0.000	0.120	-0.250	0.270
14	02-03-16	13:00	21	0	0	21.00	14.00	-0.400	0.000	0.000	0.060	-0.330	0.260
21	09-03-16	13.00	28) C)	28.00	21.00	-0.440	0000	0000	0.030	025.0-	0.230
17	16 03 16	12:00	25	0	0	28.00	28.00	0.10	000.0	000.0	0.030	0.5.0-	0.230
70	10-03-10	17.00	33		5 0	33.00	26.00	-0.300	0,000	0.000	0.010	-0.440	0.190
90	13-04-10	14:00	62	5 (5 (03:00	20.00	0.550	0.000	0.000	-0.010	-0.460	0.130
06	17-05-16	14:00	97	0	0	97.00	90.00	-0.580	0.000	0.000	-0.060	-0.470	0.150
120	16-06-16	13:00	127	0	0	127.00	120.00	-0.600	0.000	0.000	-0.090	-0.480	0.110
150	16-07-16	15:00	157	0	0	157.00	150.00	-0.680	0.000	0.000	-0.130	-0.540	0.050
180	15-08-16	13:00	187	0	0	187.00	180.00	-0.700	0.000	0.000	-0.160	-0.560	0.040
210	14-09-16	13:00	217	0	0	217.00	210.00	-0.700	0.000	0.000	-0.150	-0.600	0.030
240	14-10-16	16:00	247	0	0	247.00	240.00	-0.720	0.000	0.000	-0,160	-0,560	0.040
270	13-11-16	12:00	277	0	0	277.00	270.00	-0.730	0.000	0.000	-0.150	-0.580	0.070
300	13-12-16	13:00	307	0	0	307.00	300.00	-0.800	0.000	0.000	-0.190	059.0-	0.060
330	12-01-17	13.00	337	0 0	0	337.00	330 00	-0.810	0000	0000	-0.160	-0.640	0.050
365	16-02-17	17:00	372	0 0	0	372.00	365.00	-0.810	0000	0000	-0.170	-0.640	0.030
400	23-03-17	11.00	407	0	0	407 00	400 00	-0.860	0000	0000	-0.230	0990-	0000
450	12-05-17	15:00	457	0 0	0	457.00	450.00	-0.850	0000	0000	-0.230	-0.640	-0.030
8	17-00-71	17:00) of	0	>	00.75	00.001	0.830	0.000	0.00	0.230	0.0-	0.00
										SIDE B MI	SIDE B MIDDLE (%)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	23	24	25	56	72	28
Caeting	10.02.16	11.00	c	c	c	0000	(days)	155	155	155	115	115	115
Casting	10-02-10	11.00	o 1	0	0 0	0.000	1 0	0000	CCT	CCT	CTT	CIT	CTT
berore loading	17-02-16	11:55	\	0 0	0 1	000.7	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ornin arter loading	17-02-16	12:00	, ,	0,	ς (7.003	0.003	-0.100	-0.120	-0.070	-0.050	0.350	0.290
ul.	17-02-16	13:00	,		0	7.042	0.042	-0.120	-0.130	-0.080	-0.080	0.340	0.280
ug ,	17-02-16	18:00	/	9	0	7.250	0.250	-0.120	-0.130	-0.080	-0.050	0.380	0.290
	18-02-16	13:00	×	0	0	8.000	000.T	-0.150	-0.190	-0.120	-0.100	0.370	0.290
2	19-02-16	11:00	6	0	0	9.000	2.000	-0.150	-0.170	-0.100	-0.090	0.410	0.330
· ·	20-02-16	12:00	10	0	0	10.000	3.000	-0.210	-0.230	-0.150	-0.150	0.370	0.290
4	21-02-16	13:00	11	0	0	11.000	4.000	-0.220	-0.250	-0.190	-0.150	0.360	0.300
2	22-02-16	13:00	12	0	0	12.000	5.000	-0.230	-0.260	-0.190	-0.160	0.380	0.300
9	23-02-16	16:00	13	0	0	13.000	6.000	-0.230	-0.280	-0.180	-0.190	0.360	0.270
7	24-02-16	14:00	14	0	0	14.000	7.000	-0.250	-0.300	-0.190	-0.170	0.390	0.310
14	02-03-16	13:00	21	0	0	21.00	14.00	-0.310	-0.380	-0.280	-0.260	0.320	0.250
21	09-03-16	13:00	28	0	0	28.00	21.00	-0.380	-0.430	-0.300	-0.290	0.340	0.240
28	16-03-16	17:00	35	0	0	35.00	28.00	-0.380	-0.440	-0.310	-0.290	0.350	0.230
56	13-04-16	14:00	63	0	0	63.00	26.00	-0.470	-0.530	-0.410	-0.360	0.270	0.160
06	17-05-16	14:00	6	0	0	97.00	00.06	-0.470	-0.560	-0.420	-0.330	0.270	0.160
120	16-06-16	13:00	127	0	0	127.00	120.00	-0.520	-0.560	-0.450	-0.370	0.200	0.090
150	16-07-16	15:00	157	0	0	157.00	150.00	-0.620	-0.640	-0.520	-0.440	0.170	0.040
180	15-08-16	13:00	187	0	0	187.00	180.00	-0.620	-0.660	-0.530	-0.440	0.170	0.040
210	14-09-16	13:00	217	0	0	217.00	210.00	-0.650	-0.700	-0.570	-0.470	0.110	0.000
240	14-10-16	16:00	247	0	0	247.00	240.00	-0.640	-0.680	-0.560	-0.440	0.130	0.010
270	13-11-16	12:00	277	0	0	277.00	270.00	-0.640	-0.670	-0.530	-0.450	0.160	0:030
300	13-12-16	13:00	307	0	0	307.00	300.00	-0.660	-0.730	-0.570	-0.440	0.170	0.010
330	12-01-17	13:00	337	0	0	337.00	330.00	-0.690	-0.760	-0.600	-0.500	0.160	0.020
365	16-02-17	17:00	372	0	0	372.00	365.00	-0.730	-0.790	-0.630	-0.530	0.120	-0.020
400	23-03-17	11:00	407	0	0	407.00	400.00	-0.740	-0.790	-0.640	-0.470	0.100	-0.050

	HVFA	C28			0	5m	1h	6h	1d	2d
	Α	BOTT	OM.							
	From (mm)	To (mm)	Dis	sks	09-03-16	09-03-16	09-03-16	09-03-16	10-03-16	11-03-16
1	870	970	1	2	0.079	0.114	0.116	0.12	0.118	0.124
2	1150	1250	3	4	-0.072	-0.084	-0.085	-0.084	-0.088	-0.085
3	1250	1350	4	5	-0.279	-0.243	-0.237	-0.231	-0.233	-0.228
4	1350	1450	5	6	-0.686	-0.609	-0.601	-0.594	-0.594	-0.587
5	1450	1550	6	7	1.328	1.326	1.328	1.333	1.331	1.333
6	1550	1650	7	8	-1.85	-1.77	-1.764	-1.757	-1.757	-1.751
7	1650	1750	8	9	-0.378	-0.347	-0.345	-0.336	-0.338	-0.335
8	1750	1850	9	10	-0.413	-0.341	-0.339	-0.331	-0.332	-0.327
9	1850	1950	10	11	-0.58	-0.501	-0.498	-0.487	-0.488	-0.483
10	1950	2050	11	12	-0.945	-0.872	-0.862	-0.858	-0.854	-0.85
11	2230	2330	13	14	-0.357	-0.269	-0.263	-0.255	-0.253	-0.248
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.212	-0.231	-0.233	-0.231	-0.233	-0.235
13	1150	1250	17	18	-0.365	-0.396	-0.396	-0.395	-0.399	-0.401
14	1250	1350	18	19	-0.79	-0.81	-0.809	-0.808	-0.811	-0.813
15	1350	1450	19	20	0.507	0.472	0.47	0.471	0.468	0.466
16	1450	1550	20	21	-0.293	-0.319	-0.322	-0.319	-0.322	-0.325
17	1550	1650	21	22	-0.479	-0.51	-0.512	-0.511	-0.514	-0.516
18	1650	1750	22	23	-0.223	-0.254	-0.257	-0.257	-0.259	-0.261
19	1750	1850	23	24	-0.187	-0.215	-0.218	-0.216	-0.219	-0.221
20	1850	1950	24	25	-0.419	-0.451	-0.455	-0.453	-0.455	-0.456
21	1950	2050	25	26	-0.582	-0.618	-0.619	-0.62	-0.622	-0.622
22	2230	2330	27	28	-0.173	-0.202	-0.203	-0.203	-0.207	-0.205
	Α	MIDD								
	From (mm)	To (mm)		sks						
23	1450	1550		30	-0.595	-0.606	-0.611	-0.607	-0.609	-0.61
24	1550	1650	30	31	-0.562	-0.573	-0.578	-0.573	-0.577	-0.578
25	1650	1750	31	32	-0.155	-0.169	-0.171	-0.17	-0.171	-0.169
26	1450	1550	33	34	-0.156	-0.159	-0.163	-0.159	-0.161	-0.159
27	1550	1650	34	35	-0.542	-0.529	-0.531	-0.525	-0.526	-0.524
28	1650	1750	35	36	-0.461	-0.456	-0.459	-0.456	-0.458	-0.455

_					0	5m	1h	6h	1d	2d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	09-03-16	09-03-16	09-03-16	09-03-16	10-03-16	11-03-16
1	870	970	1	2	-0.203	-0.158	-0.159	-0.155	-0.153	-0.154
2	1150	1250	3	4	-1.623	-1.568	-1.572	-1.597	-1.6	-1.602
3	1250	1350	4	5	-0.286	-0.216	-0.212	-0.186	-0.182	-0.183
4	1350	1450	5	6	-0.337	-0.267	-0.267	-0.26	-0.261	-0.259
5	1450	1550	6	7	-1.754	-1.703	-1.704	-1.697	-1.696	-1.694
6	1550	1650	7	8	-0.281	-0.207	-0.206	-0.2	-0.199	-0.198
7	1650	1750	8	9	-0.217	-0.167	-0.163	-0.154	-0.156	-0.154
8	1750	1850	9	10	-0.458	-0.426	-0.43	-0.426	-0.427	-0.427
9	1850	1950	10	11	-0.768	-0.743	-0.744	-0.737	-0.739	-0.737
10	1950	2050	11	12	-0.479	-0.418	-0.42	-0.413	-0.412	-0.41
11	2230	2330	13	14	-0.163	-0.124	-0.125	-0.118	-0.121	-0.118
	В	TO	P							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.277	-0.301	-0.302	-0.3	-0.306	-0.303
13	1150	1250	17	18	0.002	-0.026	-0.025	-0.026	-0.032	-0.033
14	1250	1350	18	19	-0.875	-0.903	-0.909	-0.905	-0.909	-0.911
15	1350	1450	19	20	-0.512	-0.542	-0.545	-0.543	-0.547	-0.548
16	1450	1550	20	21	-2.376	-2.405	-2.409	-2.404	-2.41	-2.413
17	1550	1650	21	22	-0.663	-0.692	-0.697	-0.695	-0.698	-0.7
18	1650	1750	22	23	-0.424	-0.446	-0.452	-0.448	-0.45	-0.455
19	1750	1850	23	24	0.429	0.409	0.402	0.394	0.372	0.371
20	1850	1950	24	25	-1.662	-1.683	-1.696	-1.702	-1.615	-1.618
21	1950	2050	25	26	-0.158	-0.185	-0.191	-0.187	-0.191	-0.193
22	2230	2330	27	28	0.181	0.158	0.156	0.156	0.153	0.152
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.337	-0.346	-0.351	-0.349	-0.352	-0.351
24	1550	1650	30	31	-0.256	-0.266	-0.27	-0.267	-0.27	-0.272
25	1650	1750	31	32	-0.226	-0.236	-0.237	-0.236	-0.239	-0.239
26	1450	1550	33	34	-0.189	-0.221	-0.224	-0.223	-0.221	-0.222
27	1550	1650	34	35	-1.118	-1.069	-1.073	-1.069	-1.07	-1.07
28	1650	1750	35	36	-0.591	-0.57	-0.568	-0.565	-0.567	-0.568

_	HVFA	C28			3d	4d	5d	6d	7d	14d
	Α	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	12-03-16	13-03-16	14-03-16	15-03-16	16-03-16	23-03-16
1	870	970	1	2	0.122	0.123	0.122	0.121	0.124	0.13
2	1150	1250	3	4	-0.088	-0.089	-0.091	-0.093	-0.091	-0.092
3	1250	1350	4	5	-0.227	-0.226	-0.228	-0.227	-0.224	-0.219
4	1350	1450	5	6	-0.589	-0.586	-0.586	-0.589	-0.581	-0.577
5	1450	1550	6	7	1.334	1.331	1.322	1.327	1.327	1.331
6	1550	1650	7	8	-1.753	-1.75	-1.752	-1.751	-1.748	-1.742
7	1650	1750	8	9	-0.337	-0.334	-0.336	-0.336	-0.334	-0.33
8	1750	1850	9	10	-0.326	-0.325	-0.327	-0.328	-0.325	-0.319
9	1850	1950	10	11	-0.485	-0.483	-0.485	-0.485	-0.482	-0.476
10	1950	2050	11	12	-0.852	-0.849	-0.851	-0.851	-0.843	-0.842
11	2230	2330	13	14	-0.249	-0.246	-0.248	-0.247	-0.242	-0.237
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.237	-0.236	-0.239	-0.242	-0.239	-0.241
13	1150	1250	17	18	-0.402	-0.401	-0.405	-0.406	-0.404	-0.408
14	1250	1350	18	19	-0.815	-0.814	-0.817	-0.819	-0.816	-0.819
15	1350	1450	19	20	0.464	0.464	0.462	0.459	0.461	0.456
16	1450	1550	20	21	-0.326	-0.329	-0.329	-0.332	-0.33	-0.331
17	1550	1650	21	22	-0.517	-0.519	-0.519	-0.522	-0.52	-0.522
18	1650	1750	22	23	-0.265	-0.263	-0.266	-0.267	-0.266	-0.27
19	1750	1850	23	24	-0.226	-0.224	-0.225	-0.23	-0.228	-0.23
20	1850	1950	24	25	-0.462	-0.461	-0.462	-0.465	-0.463	-0.467
21	1950	2050	25	26	-0.63	-0.626	-0.628	-0.633	-0.628	-0.635
22	2230	2330	27	28	-0.21	-0.207	-0.211	-0.214	-0.212	-0.213
	Α	MIDD	LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.614	-0.612	-0.615	-0.615	-0.612	-0.614
24	1550	1650	30	31	-0.58	-0.58	-0.581	-0.583	-0.581	-0.584
25	1650	1750	31	32	-0.176	-0.173	-0.174	-0.178	-0.175	-0.176
26	1450	1550	33	34	-0.168	-0.161	-0.164	-0.167	-0.162	-0.165
27	1550	1650	34	35	-0.528	-0.524	-0.526	-0.529	-0.523	-0.525
28	1650	1750	35	36	-0.46	-0.456	-0.457	-0.463	-0.459	-0.457

_					3d	4d	5d	6d	7d	14d
	В	BOTT	OM							
	From (mm)	To (mm)	Dis	sks	12-03-16	13-03-16	14-03-16	15-03-16	16-03-16	23-03-16
1	870	970	1	2	-0.155	-0.151	-0.154	-0.151	-0.153	-0.15
2	1150	1250	3	4	-1.602	-1.599	-1.601	-1.599	-1.597	-1.595
3	1250	1350	4	5	-0.182	-0.177	-0.178	-0.178	-0.176	-0.172
4	1350	1450	5	6	-0.26	-0.258	-0.259	-0.259	-0.256	-0.254
5	1450	1550	6	7	-1.695	-1.69	-1.692	-1.688	-1.686	-1.684
6	1550	1650	7	8	-0.199	-0.195	-0.198	-0.197	-0.195	-0.192
7	1650	1750	8	9	-0.155	-0.152	-0.155	-0.157	-0.153	-0.15
8	1750	1850	9	10	-0.423	-0.422	-0.423	-0.424	-0.421	-0.421
9	1850	1950	10	11	-0.738	-0.737	-0.737	-0.739	-0.738	-0.732
10	1950	2050	11	12	-0.41	-0.409	-0.407	-0.407	-0.405	-0.399
11	2230	2330	13	14	-0.119	-0.116	-0.118	-0.116	-0.115	-0.112
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.309	-0.308	-0.309	-0.309	-0.311	-0.315
13	1150	1250	17	18	-0.036	-0.035	-0.039	-0.038	-0.04	-0.042
14	1250	1350	18	19	-0.918	-0.912	-0.918	-0.919	-0.919	-0.922
15	1350	1450	19	20	-0.549	-0.548	-0.553	-0.552	-0.551	-0.557
16	1450	1550	20	21	-2.415	-2.415	-2.416	-2.416	-2.416	-2.42
17	1550	1650	21	22	-0.703	-0.701	-0.703	-0.705	-0.707	-0.709
18	1650	1750	22	23	-0.457	-0.456	-0.458	-0.46	-0.461	-0.464
19	1750	1850	23	24	0.367	0.369	0.367	0.366	0.366	0.36
20	1850	1950	24	25	-1.623	-1.621	-1.623	-1.624	-1.623	-1.629
21	1950	2050	25	26	-0.197	-0.195	-0.197	-0.198	-0.197	-0.203
22	2230	2330	27	28	0.149	0.151	0.148	0.149	0.146	0.144
	В	MIDE)LE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.355	-0.353	-0.358	-0.355	-0.356	-0.36
24	1550	1650	30	31	-0.276	-0.272	-0.276	-0.275	-0.273	-0.277
25	1650	1750	31	32	-0.242	-0.238	-0.244	-0.243	-0.244	-0.247
26	1450	1550	33	34	-0.225	-0.222	-0.227	-0.223	-0.224	-0.226
27	1550	1650	34	35	-1.073	-1.069	-1.072	-1.071	-1.07	-1.074
28	1650	1750	35	36	-0.569	-0.567	-0.571	-0.573	-0.571	-0.572

_	HVFA	C28			21d	28d	56d	90d	120d	150d
	Α	BOTT	ГОМ							
	From (mm)	To (mm)	Dis	sks	30-03-16	06-04-16	04-05-16	07-06-16	07-07-16	06-08-16
1	870	970	1	2	0.126	0.131	0.132	0.133	0.133	0.132
2	1150	1250	3	4	-0.098	-0.096	-0.098	-0.096	-0.102	-0.106
3	1250	1350	4	5	-0.222	-0.219	-0.217	-0.216	-0.217	-0.216
4	1350	1450	5	6	-0.582	-0.575	-0.573	-0.578	-0.571	-0.571
5	1450	1550	6	7	1.327	1.328	1.32	1.331	1.327	1.318
6	1550	1650	7	8	-1.743	-1.743	-1.737	-1.736	-1.736	-1.736
7	1650	1750	8	9	-0.331	-0.331	-0.328	-0.329	-0.33	-0.331
8	1750	1850	9	10	-0.32	-0.32	-0.317	-0.317	-0.317	-0.317
9	1850	1950	10	11	-0.477	-0.477	-0.475	-0.476	-0.474	-0.476
10	1950	2050	11	12	-0.84	-0.841	-0.837	-0.836	-0.835	-0.836
11	2230	2330	13	14	-0.236	-0.235	-0.23	-0.231	-0.226	-0.228
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.246	-0.25	-0.252	-0.254	-0.259	-0.265
13	1150	1250	17	18	-0.415	-0.418	-0.422	-0.423	-0.43	-0.438
14	1250	1350	18	19	-0.826	-0.829	-0.834	-0.836	-0.843	-0.849
15	1350	1450	19	20	0.448	0.447	0.44	0.439	0.432	0.426
16	1450	1550	20	21	-0.338	-0.341	-0.348	-0.346	-0.356	-0.36
17	1550	1650	21	22	-0.53	-0.531	-0.538	-0.538	-0.545	-0.551
18	1650	1750	22	23	-0.275	-0.277	-0.285	-0.283	-0.293	-0.298
19	1750	1850	23	24	-0.234	-0.237	-0.244	-0.243	-0.251	-0.257
20	1850	1950	24	25	-0.47	-0.475	-0.48	-0.483	-0.491	-0.497
21	1950	2050	25	26	-0.64	-0.643	-0.647	-0.649	-0.655	-0.663
22	2230	2330	27	28	-0.223	-0.223	-0.23	-0.231	-0.236	-0.243
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.619	-0.624	-0.626	-0.628	-0.633	-0.638
24	1550	1650	30	31	-0.589	-0.591	-0.593	-0.591	-0.598	-0.602
25	1650	1750	31	32	-0.181	-0.186	-0.188	-0.191	-0.193	-0.201
26	1450	1550	33	34	-0.17	-0.171	-0.17	-0.174	-0.176	-0.182
27	1550	1650	34	35	-0.53	-0.532	-0.533	-0.535	-0.538	-0.542
28	1650	1750	35	36	-0.461	-0.465	-0.465	-0.468	-0.472	-0.476

					21d	28d	56d	90d	120d	150d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	30-03-16	06-04-16	04-05-16	07-06-16	07-07-16	06-08-16
1	870	970	1	2	-0.153	-0.149	-0.148	-0.146	-0.147	-0.146
2	1150	1250	3	4	-1.598	-1.593	-1.592	-1.59	-1.591	-1.592
3	1250	1350	4	5	-0.176	-0.172	-0.171	-0.171	-0.17	-0.169
4	1350	1450	5	6	-0.258	-0.255	-0.253	-0.253	-0.253	-0.254
5	1450	1550	6	7	-1.684	-1.681	-1.679	-1.679	-1.674	-1.678
6	1550	1650	7	8	-0.193	-0.188	-0.186	-0.187	-0.186	-0.186
7	1650	1750	8	9	-0.154	-0.15	-0.15	-0.15	-0.151	-0.151
8	1750	1850	9	10	-0.424	-0.419	-0.416	-0.416	-0.416	-0.416
9	1850	1950	10	11	-0.738	-0.735	-0.734	-0.734	-0.736	-0.734
10	1950	2050	11	12	-0.402	-0.4	-0.396	-0.397	-0.394	-0.393
11	2230	2330	13	14	-0.114	-0.113	-0.111	-0.11	-0.11	-0.108
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.323	-0.324	-0.329	-0.329	-0.337	-0.34
13	1150	1250	17	18	-0.052	-0.051	-0.059	-0.059	-0.068	-0.072
14	1250	1350	18	19	-0.93	-0.928	-0.933	-0.936	-0.936	-0.943
15	1350	1450	19	20	-0.562	-0.562	-0.568	-0.572	-0.579	-0.581
16	1450	1550	20	21	-2.43	-2.429	-2.433	-2.435	-2.444	-2.446
17	1550	1650	21	22	-0.714	-0.716	-0.724	-0.725	-0.733	-0.734
18	1650	1750	22	23	-0.471	-0.472	-0.479	-0.481	-0.489	-0.492
19	1750	1850	23	24	0.355	0.356	0.349	0.349	0.341	0.338
20	1850	1950	24	25	-1.637	-1.635	-1.644	-1.644	-1.652	-1.654
21	1950	2050	25	26	-0.21	-0.21	-0.218	-0.22	-0.226	-0.227
22	2230	2330	27	28	0.138	0.139	0.131	0.128	0.124	0.12
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.366	-0.362	-0.368	-0.371	-0.376	-0.379
24	1550	1650	30	31	-0.283	-0.284	-0.288	-0.287	-0.297	-0.297
25	1650	1750	31	32	-0.253	-0.25	-0.257	-0.26	-0.265	-0.268
26	1450	1550	33	34	-0.23	-0.23	-0.233	-0.234	-0.241	-0.237
27	1550	1650	34	35	-1.078	-1.077	-1.079	-1.079	-1.082	-1.085
28	1650	1750	35	36	-0.578	-0.575	-0.578	-0.581	-0.582	-0.583

_	HVFA	C28			180d	210d	240d	270d	300d	330d
	Α	BOTT	ГОМ							
	From (mm)	To (mm)	Dis	sks	05-09-16	05-10-16	04-11-16	04-12-16	03-01-17	02-02-17
1	870	970	1	2	0.128	0.129	0.129	0.131	0.137	0.14
2	1150	1250	3	4	-0.107	-0.105	-0.11	-0.111	-0.11	-0.109
3	1250	1350	4	5	-0.22	-0.218	-0.217	-0.215	-0.209	-0.208
4	1350	1450	5	6	-0.575	-0.574	-0.573	-0.566	-0.56	-0.559
5	1450	1550	6	7	1.314	1.323	1.312	1.313	1.305	1.312
6	1550	1650	7	8	-1.738	-1.735	-1.739	-1.734	-1.73	-1.73
7	1650	1750	8	9	-0.334	-0.331	-0.331	-0.33	-0.327	-0.323
8	1750	1850	9	10	-0.32	-0.32	-0.316	-0.313	-0.308	-0.307
9	1850	1950	10	11	-0.478	-0.476	-0.476	-0.471	-0.467	-0.465
10	1950	2050	11	12	-0.836	-0.836	-0.833	-0.829	-0.823	0.821
11	2230	2330	13	14	-0.231	-0.23	-0.228	-0.223	-0.217	-0.212
	Α	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.269	-0.27	-0.274	-0.273	-0.277	-0.279
13	1150	1250	17	18	-0.441	-0.443	-0.446	-0.448	-0.453	-0.45
14	1250	1350	18	19	-0.854	-0.855	-0.858	-0.86	-0.86	-0.862
15	1350	1450	19	20	0.421	0.42	0.418	0.415	0.414	0.412
16	1450	1550	20	21	-0.365	-0.365	-0.371	-0.372	-0.373	-0.377
17	1550	1650	21	22	-0.554	-0.554	-0.559	-0.562	-0.563	-0.566
18	1650	1750	22	23	-0.301	-0.303	-0.308	-0.31	-0.312	-0.313
19	1750	1850	23	24	-0.261	-0.26	-0.265	-0.266	-0.266	-0.269
20	1850	1950	24	25	-0.499	-0.502	-0.505	-0.507	-0.51	-0.512
21	1950	2050	25	26	-0.663	-0.667	-0.669	-0.672	-0.674	-0.677
22	2230	2330	27	28	-0.246	-0.248	-0.251	-0.253	-0.256	-0.255
	Α	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.641	-0.641	-0.644	-0.644	-0.645	-0.648
24	1550	1650	30	31	-0.606	-0.606	-0.607	-0.608	-0.61	-0.612
25	1650	1750	31	32	-0.202	-0.202	-0.205	-0.208	-0.213	-0.208
26	1450	1550	33	34	-0.184	-0.185	-0.186	-0.186	-0.19	-0.188
27	1550	1650	34	35	-0.544	-0.545	-0.546	-0.547	-0.546	-0.547
28	1650	1750	35	36	-0.479	-0.479	-0.481	-0.48	-0.479	-0.48

					180d	210d	240d	270d	300d	330d
	В	BOT	ГОМ							
	From (mm)	To (mm)	Dis	sks	05-09-16	05-10-16	04-11-16	04-12-16	03-01-17	02-02-17
1	870	970	1	2	-0.15	-0.146	-0.146	-0.142	-0.146	-0.137
2	1150	1250	3	4	-1.596	-1.594	-1.594	-1.59	-1.589	-1.588
3	1250	1350	4	5	-0.175	-0.173	-0.171	-0.166	-0.166	-0.163
4	1350	1450	5	6	-0.257	-0.254	-0.254	-0.25	-0.249	-0.244
5	1450	1550	6	7	-1.682	-1.682	-1.676	-1.67	-1.673	-1.67
6	1550	1650	7	8	-0.189	-0.188	-0.185	-0.181	-0.178	-0.174
7	1650	1750	8	9	-0.155	-0.158	-0.155	-0.153	-0.151	-0.148
8	1750	1850	9	10	-0.418	-0.42	-0.417	-0.413	-0.413	-0.41
9	1850	1950	10	11	-0.733	-0.738	-0.735	-0.735	-0.735	-0.73
10	1950	2050	11	12	-0.395	-0.397	-0.395	-0.392	-0.389	-0.385
11	2230	2330	13	14	-0.111	-0.115	-0.112	-0.107	-0.106	-0.101
	В	TO	Р							
	From (mm)	To (mm)	Dis	sks						
12	870	970	15	16	-0.345	-0.347	-0.35	-0.352	-0.358	-0.355
13	1150	1250	17	18	-0.078	-0.078	-0.082	-0.085	-0.091	-0.089
14	1250	1350	18	19	-0.949	-0.953	-0.951	-0.953	-0.961	-0.966
15	1350	1450	19	20	-0.584	-0.586	-0.589	-0.59	-0.594	-0.59
16	1450	1550	20	21	-2.455	-2.455	-2.455	-2.46	-2.462	-2.464
17	1550	1650	21	22	-0.741	-0.741	-0.747	-0.746	-0.754	-0.748
18	1650	1750	22	23	-0.499	-0.5	-0.503	-0.504	-0.509	-0.509
19	1750	1850	23	24	0.331	0.33	0.328	0.327	0.322	0.322
20	1850	1950	24	25	-1.662	-1.663	-1.665	-1.666	-1.673	-1.669
21	1950	2050	25	26	-0.235	-0.237	-0.239	-0.241	-0.246	-0.246
22	2230	2330	27	28	0.112	0.11	0.11	0.109	0.103	0.107
	В	MIDE	DLE							
	From (mm)	To (mm)	Dis	sks						
23	1450	1550	29	30	-0.384	-0.384	-0.387	-0.389	-0.393	-0.388
24	1550	1650	30	31	-0.304	-0.306	-0.304	-0.308	-0.31	-0.309
25	1650	1750	31	32	-0.273	-0.274	-0.275	-0.275	-0.278	-0.276
26	1450	1550	33	34	-0.245	-0.244	-0.249	-0.247	-0.25	-0.246
27	1550	1650	34	35	-1.089	-1.089	-1.092	-1.09	-1.095	-1.09
28	1650	1750	35	36	-0.588	-0.588	-0.588	-0.587	-0.588	-0.587

1 870 970 1 2 0.134 0.139 0.135 2 1150 1250 3 4 -0.111 -0.11 -0.108 3 1250 1350 4 5 -0.211 -0.209 -0.212 4 1350 1450 5 6 -0.56 -0.559 -0.561 5 1450 1550 6 7 1.312 1.316 1.303 6 1550 1650 7 8 -1.731 -1.721 -1.725 7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.328 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827		HVFA	C28			360d	400d	450d
1 870 970 1 2 0.134 0.139 0.135		Α	BOTT	OM				
2 1150 1250 3 4 -0.111 -0.108 3 1250 1350 4 5 -0.211 -0.209 -0.212 4 1350 1450 5 6 -0.56 -0.559 -0.561 5 1450 1550 6 7 1.312 1.316 1.303 6 1550 1650 7 8 -1.731 -1.721 -1.725 7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.328 8 1750 1850 19 10 -0.312 -0.308 -0.328 10 1950 2050 11 12 -0.827 -0.824 -0.469 10 1950 2050 11 12 -0.827 <		From (mm)	To (mm)	Dis	ks	09-03-17	13-04-17	02-06-17
3	1	870	970	1	2	0.134	0.139	0.135
4 1350 1450 5 6 -0.56 -0.559 -0.561 5 1450 1550 6 7 1.312 1.316 1.303 6 1550 1650 7 8 -1.731 -1.721 -1.725 7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.31 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457	2	1150	1250	3	4	-0.111	-0.11	-0.108
5 1450 1550 6 7 1.312 1.316 1.303 6 1550 1650 7 8 -1.731 -1.721 -1.725 7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.31 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867	3	1250	1350	4	5	-0.211	-0.209	-0.212
6 1550 1650 7 8 -1.731 -1.721 -1.725 7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.31 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217	4	1350	1450	5	6	-0.56	-0.559	-0.561
7 1650 1750 8 9 -0.33 -0.326 -0.328 8 1750 1850 9 10 -0.312 -0.308 -0.31 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.486 14 1250 1350 18 19 -0.869 -0.867 -0.866 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 <td>5</td> <td>1450</td> <td>1550</td> <td>6</td> <td>7</td> <td>1.312</td> <td>1.316</td> <td>1.303</td>	5	1450	1550	6	7	1.312	1.316	1.303
8 1750 1850 9 10 -0.312 -0.308 -0.311 9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217 A TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.56	6	1550	1650	7	8	-1.731	-1.721	-1.725
9 1850 1950 10 11 -0.467 -0.464 -0.469 10 1950 2050 11 12 -0.827 -0.824 -0.823 11 2230 2330 13 14 -0.219 -0.213 -0.217	7	1650	1750	8	9	-0.33	-0.326	-0.328
10	8	1750	1850	9	10	-0.312	-0.308	-0.31
11	9	1850	1950	10	11	-0.467	-0.464	-0.469
TOP From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0	10	1950	2050	11	12	-0.827	-0.824	-0.823
From (mm) To (mm) Disks 12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 <tr< td=""><td>11</td><td>2230</td><td>2330</td><td>13</td><td>14</td><td>-0.219</td><td>-0.213</td><td>-0.217</td></tr<>	11	2230	2330	13	14	-0.219	-0.213	-0.217
12 870 970 15 16 -0.285 -0.282 -0.282 13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 <		Α	TO	Р				
13 1150 1250 17 18 -0.46 -0.457 -0.456 14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (m		From (mm)	To (mm)	Dis	ks			
14 1250 1350 18 19 -0.869 -0.867 -0.867 15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.	12	870	970	15	16	-0.285	-0.282	-0.282
15 1350 1450 19 20 0.403 0.406 0.406 16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31	13	1150	1250	17	18	-0.46	-0.457	-0.456
16 1450 1550 20 21 -0.382 -0.38 -0.38 17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32	14	1250	1350	18	19	-0.869	-0.867	-0.867
17 1550 1650 21 22 -0.572 -0.569 -0.568 18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 <td>15</td> <td>1350</td> <td>1450</td> <td>19</td> <td>20</td> <td>0.403</td> <td>0.406</td> <td>0.406</td>	15	1350	1450	19	20	0.403	0.406	0.406
18 1650 1750 22 23 -0.319 -0.316 -0.317 19 1750 1850 23 24 -0.275 -0.273 -0.272 20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	16	1450	1550	20	21	-0.382	-0.38	-0.38
19	17	1550	1650	21	22	-0.572	-0.569	-0.568
20 1850 1950 24 25 -0.515 -0.518 -0.516 21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	18	1650	1750	22	23	-0.319	-0.316	-0.317
21 1950 2050 25 26 -0.683 -0.682 -0.679 22 2230 2330 27 28 -0.262 -0.26 -0.26 A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	19	1750	1850	23	24	-0.275	-0.273	-0.272
A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	20	1850	1950	24	25	-0.515	-0.518	-0.516
A MIDDLE From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	21	1950	2050	25	26	-0.683	-0.682	-0.679
From (mm) To (mm) Disks 23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	22	2230	2330	27	28	-0.262	-0.26	-0.26
23 1450 1550 29 30 -0.649 -0.649 -0.648 24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188		Α	MIDE					
24 1550 1650 30 31 -0.618 -0.615 -0.616 25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188		From (mm)	To (mm)	Dis	ks			
25 1650 1750 31 32 -0.214 -0.211 -0.209 26 1450 1550 33 34 -0.194 -0.19 -0.188	23	1450	1550	29	30	-0.649	-0.649	-0.648
26 1450 1550 33 34 -0.194 -0.19 -0.188	24	1550	1650	30		-0.618	-0.615	-0.616
	25	1650	1750	31	32	-0.214	-0.211	-0.209
27 1550 1650 34 35 -0.552 -0.549 -0.548	26	1450	1550	33	34	-0.194	-0.19	-0.188
2.1 1000 04 00 0.002 0.040 -0.040	27	1550	1650	34	35	-0.552	-0.549	-0.548
28 1650 1750 35 36 -0.487 -0.482 -0.483	28	1650	1750	35	36	-0.487	-0.482	-0.483

_					360d	400d	450d
	В	BOTT	ОМ				
	From (mm)	To (mm)	Dis	sks	09-03-17	13-04-17	02-06-17
1	870	970	1	2	-0.14	-0.141	-0.137
2	1150	1250	3	4	-1.591	-1.588	-1.586
3	1250	1350	4	5	-0.167	-0.166	-0.165
4	1350	1450	5	6	-0.251	-0.247	-0.247
5	1450	1550	6	7	-1.672	-1.668	-1.667
6	1550	1650	7	8	-0.176	-0.176	-0.174
7	1650	1750	8	တ	-0.151	-0.148	-0.149
8	1750	1850	9	10	-0.412	-0.411	-0.407
9	1850	1950	10	11	-0.736	-0.735	-0.734
10	1950	2050	11	12	-0.389	-0.385	-0.386
11	2230	2330	13	14	-0.107	-0.103	-0.106
	В	TO	P				
	From (mm)	To (mm)	Dis	sks			
12	870	970	15	16	-0.36	-0.36	-0.36
13	1150	1250	17	18	-0.095	-0.1	-0.094
14	1250	1350	18	19	-0.963	-0.962	-0.958
15	1350	1450	19	20	-0.596	-0.598	-0.598
16	1450	1550	20	21	-2.463	-2.467	-2.462
17	1550	1650	21	22	-0.757	-0.758	-0.755
18	1650	1750	22	23	-0.514	-0.516	-0.512
19	1750	1850	23	24	0.317	0.316	0.317
20	1850	1950	24	25	-1.675	-1.677	-1.673
21	1950	2050	25	26	-0.25	-0.252	-0.252
22	2230	2330	27	28	0.099	0.097	0.096
	В	MIDE					
	From (mm)	To (mm)	Dis	ks			
23	1450	1550	29	30	-0.394	-0.396	-0.393
24	1550	1650	30	31	-0.316	-0.314	-0.314
25	1650	1750	31	32	-0.282	-0.285	-0.283
26	1450	1550	33	34	-0.251	-0.252	-0.248
27	1550	1650	34	35	-1.09	-1.096	-1.088
28	1650	1750	35	36	-0.596	-0.592	-0.591

				u = 0	10.13	MPa						SIDE	SIDE A BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
HVFAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	1	2	3	4	5	9	7	8	6	10	11
Casting	10-02-16	11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading	09-03-16	13:40	28	0	0	28.000	0.000	0.000	000'0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	09-03-16	13:50	28	0	5	28.003	0.003	0.350	-0.120	0.360	0.770	-0.020	0.800	0.310	0.720	0.790	0.730	0.880
1h	09-03-16	14:45	28	1	0	28.042	0.042	0.370	-0.130	0.420	0.850	0.000	0.860	0.330	0.740	0.820	0:830	0.940
6h	09-03-16	19:45	28	9	0	28.250	0.250	0.410	-0.120	0.480	0.920	0.050	0.930	0.420	0.820	0.930	0.870	1.020
1	10-03-16	15:00	29	0	0	29.000	1.000	0.390	-0.160	0.460	0.920	0.030	0.930	0.400	0.810	0.920	0.910	1.040
2	11-03-16	15:00	30	0	0	30.000	2.000	0.450	-0.130	0.510	0.990	0.050	0.990	0.430	0.860	0.970	0.950	1.090
က	12-03-16	20:00	31	0	0	31.000	3.000	0.430	-0.160	0.520	0.970	090.0	0.970	0.410	0.870	0.950	0.930	1.080
4	13-03-16	18:00	32	0	0	32.000	4.000	0.440	-0.170	0.530	1.000	0:030	1.000	0.440	0.880	0.970	096'0	1.110
2	14-03-16	00:6	33	0	0	33.000	5.000	0.430	-0.190	0.510	1.000	-0.060	0.980	0.420	0.860	0.950	0.940	1.090
9	15-03-16	18:00	34	0	0	34.000	00009	0.420	-0.210	0.520	0.970	-0.010	0.990	0.420	0.850	0.950	0.940	1.100
2	16-03-16	17:00	35	0 0	0 0	35,000	2000	0.450	0.100	0.550	1 050	0.010	1 020	0.440	0880	086.0	1 020	1 150
14	10-03-10	13:00	5	0		33.000	14.00	0.430	0000	0000	1.000	0.010	1.020	0.450	0.000	0.080	1,020	1.130
4	23-03-Tp	12:00	47	0	0	42.00	14.00	0.510	-0.200	0.600	1.090	0.030	T.U8U	0.480	0.940	1.040	1.030	1.200
21	30-03-16	15:00	49	0	0	49.00	21.00	0.470	-0.260	0.570	1.040	-0.010	1.070	0.470	0.930	1.030	1.050	1.210
28	06-04-16	12:00	26	0	0	56.00	28.00	0.520	-0.240	0.600	1.110	0.000	1.070	0.470	0.930	1.030	1.040	1.220
56	04-05-16	14:00	84	0	0	84.00	26.00	0.530	-0.260	0.620	1.130	-0.080	1.130	0.500	096.0	1.050	1.080	1.270
06	07-06-16	12:00	118	0	0	118.00	00'06	0.540	-0.240	0.630	1.080	0.030	1.140	0.490	096.0	1.040	1.090	1.260
120	07-07-16	13:00	148	0 0	0 0	148.00	120.00	0.540	005.0-	0.620	1 150	-0.010	1 140	0.480	0.960	1 060	1 100	1 310
150	05 00 16	15.00	170	0	0	170.00	120.00	0520	0.300	020.0	1150	0.00	1,40	0.420	0000	1.000	1.100	1 200
130	05-08-16	15.00	1/8	0 0	0 0	178.00	150.00	0.530	-0.340	0.630	1.150	-0.100	1.140	0.470	0.960	1.040	1.090	1.290
180	05-09-16	13:00	208	0	o	208.00	180.00	0.490	-0.350	0.590	1.110	-0.140	1.120	0.440	0.930	1.020	060'T	1.250
210	05-10-16	12:00	238	0	0	238.00	210.00	0.500	-0.330	0.610	1.120	-0.050	1.150	0.470	0.930	1.040	1.090	1.270
240	04-11-16	11:00	268	0	0	268.00	240.00	0.500	-0.380	0.620	1.130	-0.160	1.110	0.470	0.970	1.040	1.120	1.290
270	04-12-16	11:00	298	0	0	298.00	270.00	0.520	-0.390	0.640	1.200	-0.150	1.160	0.480	1.000	1.090	1.160	1.340
300	03-01-17	14:00	328	0	0	328.00	300.00	0.580	-0.380	0.700	1.260	-0.230	1.200	0.510	1.050	1.130	1.220	1.400
330	02-02-17	13:00	358	0	0	358.00	330.00	0.610	-0.370	0.710	1.270	-0.160	1.200	0.550	1.060	1.150	17.660	1.450
365	09-03-17	11:00	393	С	0	393.00	365.00	0.550	-0.390	0.680	1.260	-0.160	1.190	0.480	1.010	1.130	1.180	1.380
400	12-04-17	10:00	000	0 0	0 0	00 807	00 000	0090	086.0	002.0	1 270	0130	1 290	0 5 2 0	1 050	1 160	1 210	1 440
450	02-06-17	17:00	478	0 0	0	478.00	450.00	0.560	-0 360	0.670	1 250	-0.250	1 250	0.500	1.030	1 110	1 220	1 400
				,	,													
												SIDE	SIDE B BOTTOM (%)	(%)				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	1	2	3	4	5	9	7	∞	6	10	11
Contract	10.00	11.00	d	d	d	0000	(days)	70	,	7	ř	,	,	,	70	70	,	,
Casting		11:00	0	0	0	0.000	1	31	31	31	31	31	31	31	31	31	31	31
Before loading		13:40	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
nin after loading	09-03-16	13:50	28	0	5	28.003	0.003	0.450	0.550	0.700	0.700	0.510	0.740	0.500	0.320	0.250	0.610	0.390
1h	09-03-16	14:45	28	1	0	28.042	0.042	0.440	0.510	0.740	0.700	0.500	0.750	0.540	0.280	0.240	065'0	0.380
6h	09-03-16	19:45	28	9	0	28.250	0.250	0.480	0.260	1.000	0.770	0.570	0.810	0.630	0.320	0.310	0.660	0.450
1	10-03-16	15:00	29	0	0	29.000	1.000	0.500	0.230	1.040	0.760	0.580	0.820	0.610	0.310	0.290	0.670	0.420
2	11-03-16	15:00	30	0	0	30,000	2.000	0.490	0.210	1.030	0.780	0.600	0.830	0.630	0.310	0.310	069'0	0.450
3	12-03-16	20:00	31	0	0	31,000	3.000	0.480	0.210	1.040	0.770	0.590	0.820	0.620	0.350	0.300	069.0	0.440
4	13-03-16	18:00	32	0	O	32,000	4.000	0.520	0.240	1.090	0.790	0.640	0.860	0.650	0.360	0.310	0.700	0.470
22	14-03-16	00:6	33	O	C	33.000	5.000	0.490	0.220	1.080	0.780	0.620	0.830	0.620	0.350	0.310	022.0	0.450
у	15-03-16	18:00	34	C	O	34 000	0009	0.520	0.240	1 080	0.780	0.660	0.840	0.600	0.340	0 290	0.720	0.470
7	16-03-16	17:00	35	0	0	35,000	2 000	0.500	0.260	1 100	0.810	0.680	0.860	0.640	0.370	0300	0.740	0.480
14	23-03-16	12.00	77) (0 0	4200	14.00	0 530	0.280	1 140	0.830	002.0	0800	0.670	0.370	035.0	0080	0 510
2 5	20 02 16	15.00	300	0 0	0 0	40.00	21.00	0.530	0.250	1,100	0.000	007.0	0000	0.00	0.570	00000	0220	0.000
1.7	30-03-10	13.00	U 1		0	19.00	20.00	0.300	0.230	1,140	0.7.0	0.700	0.000	0.030	0.340	0.500	0.7.0	0.4.0
07	04-04-T0	12.00	20	0	0	36.00	26.00	0.340	0.300	1.140	0.020	0.750	0.930	0.070	0.390	0.330	0.790	0.300
200	04-05-16	14:00	94	0	0 (84.00	26.00	0.550	0.310	051.1	0.840	0.750	0.950	0.670	0.420	0.340	0.830	0.520
06	07-06-16	12:00	118	0	0	118.00	90.00	0.570	0.330	1.150	0.840	0.750	0.940	0.670	0.420	0.340	0.820	0.530
120	07-07-16	13:00	148	0	0	148.00	120.00	0.560	0.320	1.160	0.840	0.800	0.950	0.660	0.420	0.320	0.850	0.530
150	06-08-16	16:00	178	0	0	178.00	150.00	0.570	0.310	1.170	0.830	0.760	0.950	0.660	0.420	0.340	0.860	0.550
180	05-09-16	13:00	208	0	0	208.00	180.00	0.530	0.270	1.110	0.800	0.720	0.920	0.620	0.400	0.350	0.840	0.520
210	05-10-16	12:00	238	0	0	238.00	210.00	0.570	0.290	1.130	0.830	0.720	0.930	0.590	0.380	0.300	0.820	0.480
240	04-11-16	11:00	268	0	0	268.00	240.00	0.570	0.290	1.150	0.830	0.780	0.960	0.620	0.410	0.330	0.840	0.510
270	04-12-16	11:00	298	0	0	298.00	270.00	0.610	0.330	1.200	0.870	0.840	1.000	0.640	0.450	0.330	0.870	0.560
300	03-01-17	14:00	328	0	0	328.00	300.00	0.570	0.340	1.200	0.880	0.810	1.030	0.660	0.450	0.330	0.900	0.570
330	02-02-17	13:00	358	0	0	358.00	330.00	0.660	0.350	1.230	0.930	0.840	1.070	0.690	0.480	0.380	0.940	0.620
365	09-03-17	11:00	393	0	0	393.00	365.00	0.630	0.320	1.190	0.860	0.820	1.050	0.660	0.460	0.320	0.900	0.560
400	13-04-17	10:00	428	0	0	428.00	400.00	0.620	0.350	1.200	0.900	0.860	1.050	0.690	0.470	0.330	0.940	0.600
450	02-06-17	17:00	478	0	0	478.00	450.00	0.660	0.370	1.210	0.900	0.870	1.070	0.680	0.510	0.340	0.930	0.570

				= 0	10.13	MPa						SIC	SIDE A TOP (%)	6				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
HVFAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (days)	12	13	14	15	16	17	18	19	20	21	22
Casting	10-02-16	11:00	0	0	0	0.000	_	195	195	195	195	195	195	195	195	195	195	195
Before loading	09-03-16	13:40	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	09-03-16	13:50	28	0	5	28.003	0.003	-0.190	-0.310	-0.200	-0.350	-0.260	-0.310	-0.310	-0.280	-0.320	-0.360	-0.290
1h	09-03-16	14:45	28	1	0	28.042	0.042	-0.210	-0.310	-0.190	-0.370	-0.290	-0.330	-0.340	-0.310	-0.360	-0.370	-0.300
eh	09-03-16	19:45	28	9	0	28.250	0.250	-0.190	-0.300	-0.180	-0.360	-0.260	-0.320	-0.340	-0.290	-0.340	-0.380	-0.300
1	10-03-16	15:00	53	0	0	29.000	1.000	-0.210	-0.340	-0.210	-0.390	-0.290	-0.350	-0.360	-0.320	-0.360	-0.400	-0.340
2	11-03-16	15:00	30	0	0	30.000	2.000	-0.230	-0.360	-0.230	-0.410	-0.320	-0.370	-0.380	-0.340	-0.370	-0.400	-0.320
۲	12-03-16	00.00	31	c	c	31,000	3,000	0.250	0220	0.250	0.430	0330	0380	0.420	0.390	0.430	0.480	0.370
0 4	12-03-10	20:00	TC	0	0	32,000	3.000	0.230	0.570	0.230	-0.430	-0.550	-0.300	-0.420	0.230	-0.430	-0.400	0.370
4	13-03-16	18:00	32	o	0	32.000	4.000	-0.240	-0.360	-0.240	-0.430	-0.360	-0.400	-0.400	-0.3 /0	-0.420	-0.440	-0.340
5	14-03-16	00:6	33	0	0	33.000	5.000	-0.270	-0.400	-0.270	-0.450	-0.360	-0.400	-0.430	-0.380	-0.430	-0.460	-0.380
9	15-03-16	18:00	34	0	0	34.000	000.9	-0.300	-0.410	-0.290	-0.480	-0.390	-0.430	-0.440	-0.430	-0.460	-0.510	-0.410
7	16-03-16	17:00	35	0	0	35.000	7.000	-0.270	-0.390	-0.260	-0.460	-0.370	-0.410	-0.430	-0.410	-0.440	-0.460	-0.390
14	23-03-16	12.00	42	C	C	4200	14.00	066 0-	-0.430	-0 290	-0.510	-0380	-0 430	-0.470	-0.430	-0 480	-0.530	-0 400
2 5	22 02 10	11:00	24			42.00	24.00	0.230	001.0	0.230	0.010	0.00	0.130	0.00	0.430	0.100	0.220	0 0
1.7	30-03-16	15:00	49	o	0	49.00	21.00	-0.340	-0.500	-0.360	-0.590	-0.450	-0.510	-0.520	-0.470	-0.510	-0.580	-0.500
28	06-04-16	12:00	26	0	0	56.00	28.00	-0.380	-0.530	-0.390	-0.600	-0.480	-0.520	-0.540	-0.500	-0.560	-0.610	-0.500
56	04-05-16	14:00	84	0	0	84.00	26.00	-0.400	-0.570	-0.440	-0.670	-0.550	-0.590	-0.620	-0.570	-0.610	-0.650	-0.570
ОО	07-06-16	12.00	118		c	118 00	00.00	-0.420	-0.580	-0.460	-0.680	0530	-0.590	-0.600	0.560	-0.640	-0.670	0.580
86	01-00-10	12.00	011	0	0	00.001	00.00	0.420	0.000	004:0-	0.000	0.030	0.000	0.000	0.00	0.00	0.070	0.00
120	07-07-16	13:00	148	0	0	148.00	120.00	-0.470	-0.650	-0.530	-0.750	-0.630	-0.660	-0.700	-0.640	-0.720	-0.730	-0.630
150	06-08-16	16:00	178	0	0	178.00	150.00	-0.530	-0.730	-0.590	-0.810	-0.670	-0.720	-0.750	-0.700	-0.780	-0.810	-0.700
180	05-09-16	13:00	208	0	0	208.00	180.00	-0.570	-0.760	-0.640	-0.860	-0.720	-0.750	-0.780	-0.740	-0.800	-0.810	-0.730
210	05-10-16	12:00	226			229.00	210.00	0 5 0	0.00	0590	0.970	0220	0.750	0000	0.730	0680	0.050	0.75.0
012	01-01-00	17.00	230	0		238.00	210.00	0.090	097.0-	0.030	0.600	-0.720	0.000	0.900	0.130	0.630	0.830	0.7.0
240	04-11-16	11:00	268	0	0	268.00	240.00	-0.620	-0.810	-0.680	-0.890	-0.780	-0.800	-0.850	-0.780	-0.860	-0.870	-0.780
270	04-12-16	11:00	298	0	0	298.00	270.00	-0.610	-0.830	-0.700	-0.920	-0.790	-0.830	-0.870	-0.790	-0.880	-0.900	-0.800
300	03-01-17	14:00	328	0	0	328.00	300.00	-0.650	-0.880	-0.700	-0.930	-0.800	-0.840	-0.890	-0.790	-0.910	-0.920	-0.830
330	77 50 50	13.00	010	0	0 0	250.00	00.000	023.0	0.000	00.20	010.0	0000	0.000	0000	0000	0200	0.000	000
000	02-02-17	13.00	930	0	0	338.00	00.000	0.070	0.030	0.720	4.040	-0.640	0.870	0.500	0.820	0.930	1,040	0.020
coc	09-03-17	00:TT	393	o	0	393.00	365.00	-0.730	-0.950	-0.790	-T.040	-0.890	-0.930	-0.960	-0.880	-0.960	-1.010	-0.890
400	13-04-17	10:00	428	0	0	428.00	400.00	-0.700	-0.920	-0.770	-1.010	-0.870	-0.900	-0.930	-0.860	-0.990	-1.000	-0.870
450	02-06-17	17:00	478	0	0	478.00	450.00	-0.700	-0.910	-0.770	-1.010	-0.870	-0.890	-0.940	-0.850	-0.970	-0.970	-0.870
												SIC	SIDE B TOP (%)	(0				
					Age			920	1200	1300	1400	1500	1600	1700	1800	1900	2000	2280
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	12	13	14	15	16	17	18	19	20	21	22
;							(days)											
Casting	10-02-16	11:00	0	0	0	0.000	I	195	195	195	195	195	195	195	195	195	195	195
sefore loading	09-03-16	13:40	28	0	0	28.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
5min after loading	09-03-16	13:50	28	0	2	28.003	0.003	-0.240	-0.280	-0.280	-0.300	-0.290	-0.290	-0.220	-0.200	-0.210	-0.270	-0.230
44	00 00 16	14.45	30	, -	, ,	20.042	0.000	0.250	022.0	0760	0 2 2 0	0000	0.240	0000	0220	0760	0 220	0.35.0
= ₹	01-cn-cn	14.43	97	7	0	20.042	0.042	-0.230	-0.270	-0.340	-0.330	-0.330	-0.340	-0.200	-0.270	-0.340	-0.330	-0.230
6h	09-03-16	19:45	28	9	0	28.250	0.250	-0.230	-0.280	-0.300	-0.310	-0.280	-0.320	-0.240	-0.350	-0.400	-0.290	-0.250
1	10-03-16	15:00	29	0	0	29.000	1.000	-0.290	-0.340	-0.340	-0.350	-0.340	-0.350	-0.260	-0.570	0.470	-0.330	-0.280
2	11-03-16	15:00	30	0	0	30.000	2.000	-0.260	-0.350	-0.360	-0.360	-0.370	-0.370	-0.310	-0.580	0.440	-0.350	-0.290
3	12-03-16	20:00	31	О	0	31.000	3.000	-0.320	-0.380	-0.430	-0.370	-0.390	-0.400	-0.330	-0.620	0.390	-0.390	-0.320
	12 02 16	10.00	32) (, ,	22,000	000 7	0.210	0220	026.0	0360	0000	0 3 6 0	0000	0090	0.440	0.220	0000
+ 1	01-60-61	10.00	35	0	0 0	32.000	0000	0.510	0.370	0.370	0.300	0.330	-0.390	0.320	-0.000	0.410	0.370	0.300
Ω	14-03-16	9:00	33	Э	0	33.000	000.6	-0.320	-0.410	-0.430	-0.410	-0.400	-0.400	-0.340	-0.620	0.390	-0.390	-0.330
9	15-03-16	18:00	34	0	0	34.000	6.000	-0.320	-0.400	-0.440	-0.400	-0.400	-0.420	-0.360	-0.630	0.380	-0.400	-0.320
7	16-03-16	17:00	35	0	0	35.000	2.000	-0.340	-0.420	-0.440	-0.390	-0.400	-0.440	-0.370	-0.630	0.390	-0.390	-0.350
14	23-03-16	12:00	42	0	0	42.00	14.00	-0.380	-0.440	-0.470	-0.450	-0.440	-0.460	-0.400	069.0-	0.330	-0.450	-0.370
21	30-03-16	15.00	70		c	1900	21.00	0.460	-0 540	-0.550	0.500	0540	0.510	0770	0770	0.250	-0.520	-0.430
90	20 00 10	20.00	7			0000	00.00	0.100	000	0000	0000	0 0	0.00	0.400	0.110	010	0.550	
97	00-04-T0	12:00	96	0	0	36.00	26.00	-0.470	0.550	-0.330	-0.300	-0.330	-0.330	-0.400	-0.730	0.270	-0.320	-0.420
56	04-05-16	14:00	84	0	0	84.00	26.00	-0.520	-0.610	-0.580	-0.560	-0.570	-0.610	-0.550	-0.800	0.180	-0.600	-0.500
06	07-06-16	12:00	118	0	0	118.00	90.00	-0.520	-0.610	-0.610	-0.600	-0.590	-0.620	-0.570	-0.800	0.180	-0.620	-0.530
120	07-07-16	13:00	148	0	0	148.00	120.00	-0.600	-0.700	-0.610	-0.670	-0.680	-0.700	-0.650	-0.880	0.100	-0.680	-0.570
150	06-08-16	16.00	178	O	O	178 00	150.00	0630-	-0.740	-0 680	069 0-	-0.700	-0 710	-0 680	-0.910	080	-0 690	-0.610
180	00 00 16	13:00	900	0 0	0 0	208 00	180.00	0.690	0.800	0770	0.220	0 7 0	0.790	0.250	0000	000 0	0.220	0 60 0
000	02-03-10	13.00	202	0		200.00	240.00	0.000	0000	0.750	0.740	0.7.00	0.700	027.0	0000	0.000	0.7.0	0.000
017	91-01-00	12:00	238	١	0	238.00	210.00	-0.700	-0.800	-0.780	-0.740	-0.790	-0.780	-0.700	0.990	-0.010	-0.790	-0.710
240	04-11-16	11:00	897	o	0	768.00	240.00	-0.730	-0.840	-0.760	-0.770	-0.790	-0.840	-0.790	-1.010	-0.030	-0.810	-0./10
270	04-12-16	11:00	298	0	0	298.00	270.00	-0.750	-0.870	-0.780	-0.780	-0.840	-0.830	-0.800	-1.020	-0.040	-0.830	-0.720
300	03-01-17	14:00	328	0	0	328.00	300.00	-0.810	-0.930	-0.860	-0.820	-0.860	-0.910	-0.850	-1.070	-0.110	-0.880	-0.780
330	02-02-17	13:00	358	0	0	358.00	330.00	-0.780	-0.910	-0.910	-0.780	-0.880	-0.850	-0.850	-1.070	-0.070	-0.880	-0.740
365	09-03-17	11:00	393	0	0	393.00	365.00	-0.830	-0.970	-0.880	-0.840	-0.870	-0.940	-0.900	-1.120	-0.130	-0.920	-0.820
400	13-04-17	10.00	428	O	C	428.00	400 00	-0.830	-1 020	-0.870	-0.860	-0910	-0 950	-0 920	-1 130	-0.150	-0 940	-0.840
450	02-06-17	17:00	478	0 0	0 0	478.00	450.00	0.830	0900-	0.63.0	0.000	0.950	0.000	0880	1 1 20	0110	-0.040	0.250
430	1T-00-70	17.00	410	O	O	470.00	430.00	-U.o.o.U	-0.500	-0.630	-0.000	-0.000	-0.920	-0.000	-1.120	-0.110	-U.54U	-U.O.

				α =	10.13	MPa				SIDE A M	SIDE A MIDDLE (%)		
L					Age			1500	1600	1700	1500	1600	1700
HVFAC28	Date	Time	Days	Hours	Minutes	Days, eq	From loading (davs)	23	24	25	56	27	28
Casting	10-02-16	11:00	0	0	0	0.000	- (- Kana)	155	155	155	115	115	115
Before loading	09-03-16	13:40	28	0	0	28.000	0.000	0.000	0.000	000'0	000'0	0.000	0.000
5min after loading	09-03-16	13:50	28	0	2	28.003	0.003	-0.110	-0.110	-0.140	-0.030	0.130	0.050
1h	09-03-16	14:45	28	1	0	28.042	0.042	-0.160	-0.160	-0.160	-0.070	0.110	0.020
leh eh	09-03-16	19:45	87	9	0	28.250	0.250	-0.120	-0.110	-0.150	-0.030	0.170	0.050
1	10-03-16	15:00	67	0	0	29.000	1.000	-0.140	-0.150	-0.160	-0.050	0.160	0.030
2	11-03-16	15:00	08	0	0	30.000	2.000	-0.150	-0.160	-0.140	-0.030	0.180	090'0
3	12-03-16	20:00	31	0	0	31.000	3.000	-0.190	-0.180	-0.210	-0.120	0.140	0.010
4	13-03-16	18:00	32	0	0	32.000	4.000	-0.170	-0.180	-0.180	-0.050	0.180	0.050
2	14-03-16	00:6	33	0	0	33.000	5.000	-0.200	-0.190	-0.190	-0.080	0.160	0.040
9	15-03-16	18:00	34	0	0	34.000	00009	-0.200	-0.210	-0.230	-0.110	0.130	-0.020
7	16-03-16	17:00	35	0	0	35.000	7.000	-0.170	-0.190	-0.200	-0.060	0.190	0.020
14	23-03-16	12:00	42	0	0	42.00	14.00	-0.190	-0.220	-0.210	-0.090	0.170	0.040
21	30-03-16	15:00	49	0	0	49.00	21.00	-0.240	-0.270	-0.260	-0.140	0.120	0.000
28	06-04-16	12:00	26	0	0	26.00	28.00	-0.290	-0.290	-0.310	-0.150	0.100	-0.040
56	04-05-16	14:00	84	0	0	84.00	26.00	-0.310	-0.310	-0.330	-0.140	0.090	-0.040
06	07-06-16	12:00	118	0	0	118.00	00:06	-0.330	-0.290	-0.360	-0.180	0.070	-0.070
120	07-07-16	13:00	148	0	0	148.00	120.00	-0.380	-0.360	-0.380	-0.200	0.040	-0.110
150	06-08-16	16:00	178	0	0	178.00	150.00	-0.430	-0 400	-0.460	-0.260	0000	-0 150
180	05-09-16	13.00	800	0	0	208.00	180.00	0.450	0 000	077.0-	082.0	0000	-0.180
210	05-03-10	12:00	238	0 0	0 0	238.00	210.00	0.450	-0.440	0.470	-0.290	-0.020	-0.180
240	03-10-10	11.00	250	0 0	0 0	258.00	240.00	0.400	0.440	0.470	0.500	0.030	0000
0470	04-11-16	11.00	200	0 0	0	200.002	240.00	0.430	0.450	0.200	0.500	0.040	0.200
300	02 01 17	14.00	967	0	0	229.00	200.00	-0.490	0.450	0.030	0.340	0.030	-0.190
2000	03-01-17	13.00	970	0	0	328.00	300.00	0.000	0.400	0.000	0.240	-0.040	-0.100
330	02-02-17	13:00	338	0	5	358.00	330.00	-0.530	-0.500	-0.530	-0.320	-0.050	-0.190
200	12 04 17	10.00	393	0 0	0	00.000	363.00	0.340	0.200	0.030	0.340	0.100	0.200
400	13-04-17	00:01	974	0	0	428.00	400.00	-0.540	-0.530	0.000	-0.340	0.070	0.210
420	02-00-17	17:00	4/8	O	o	4/8.00	450.00	-0.530	-0.540	-0.540	-0.320	-0.060	-0.220
										SIDE B M	SIDE B MIDDLE (%)		
					Age			1500	1600	1700	1500	1600	1700
	Date	Time	Days	Hours	Minutes	Days, eq	From loading	23	24	25	56	27	28
Casting	10-02-16	11.00	0	0	0	0000	(c.f.pp.)	155	155	155	115	115	115
Refore loading	09-03-16	13.40	28	0	0	28,000	000 0	0000	0000	0000	0000	0000	0000
5min after loading	09-03-16	13.50	28	0 0	טע	28.003	0.000	000.0	0.000	0.000	0000	0.000	0.000
1h	09-03-16	14.45	86	1	6	28.003	0.062	0.020	-0.140	-0.110	0.350	0.450	0.220
48	09-03-10	10.45	20	7	0	20.042	0.042	0.150	0110	0.100	0.50	0.450	0.230
5 +	10-03-16	15.00	20	0 0	0	20.230	1 000	0.150	0.110	0.130	0.550	0.450	0.200
- 6	11-03-16	15:00	30	0	0	30,000	000 6	-0.170	-0.160	-0.130	-0.330	0.480	0.230
1 65	12-03-16	00:02	31	0	0	31,000	3 000	-0.180	-0.200	-0.160	0.250	0.450	0.230
9 4	13-03-16	18:00	32	0	0	32,000	4.000	-0.160	-0.160	-0.120	-0.330	0.490	0.240
rc	14-03-16	00:6	33	0	ō	33.000	5.000	-0.210	-0.200	-0.180	-0.380	0.460	0.200
9	15-03-16	18:00	34	0	0	34.000	00009	-0.180	-0.190	-0.170	-0.340	0.470	0.180
7	16-03-16	17:00	35	0	0	35.000	7.000	-0.190	-0.170	-0.180	-0.350	0.480	0.200
14	23-03-16	12:00	42	0	0	42.00	14.00	-0.230	-0.210	-0.210	-0.370	0.440	0.190
21	30-03-16	15:00	49	0	0	49.00	21.00	-0.290	-0.270	-0.270	-0.410	0.400	0.130
28	06-04-16	12:00	95	0	ō	26.00	28.00	-0.250	-0.280	-0.240	-0.410	0.410	0.160
56	04-05-16	14:00	84	0	0	84.00	26.00	-0.310	-0.320	-0.310	-0.440	0.390	0.130
06	07-06-16	12.00	118	0	0	118.00	00 06	-0.340	-0 310	-0 340	-0.450	0 340	0.100
120	07-07-16	13.00	148	0	0	148.00	120.00	-0 390	-0.410	0.390	-0.520	0.350	0600
150	06-08-16	16:00	178	0	0	178 00	150.00	-0.420	-0.410	-0.420	-0.480	0.330	0.000
180	05-09-16	13:00	208	0	0	208.00	180.00	-0.470	-0.480	-0.470	-0.560	0.290	0.030
210	05-10-16	12:00	238	0	0	238.00	210.00	-0.470	-0.500	-0.480	-0.550	0.290	0.030
240	04-11-16	11:00	268	0	0	268.00	240.00	-0.500	-0.480	-0.490	-0.600	0.260	0.030
270	04-12-16	11:00	298	0	0	298.00	270.00	-0.520	-0.520	-0.490	-0.580	0.280	0.040
300	03-01-17	14:00	328	0	0	328.00	300.00	-0.560	-0.540	-0.520	-0.610	0.230	0:030
330	02-02-17	13:00	358	0	0	358.00	330.00	-0.510	-0.530	-0.500	-0.570	0.280	0.040
365	09-03-17	11:00	393	0	0	393.00	365.00	-0.570	-0.600	-0.560	-0.620	0.280	-0.050
400	13-04-17	10:00	428	0	0	428.00	400.00	-0.590	-0.580	-0.590	-0.630	0.220	-0.010
700	02-06-17	17:00	478	0	0	478.00	450.00	-0.560	-0.580	-0.570	-0.590	0.300	0.00

Appendix B

Analysis of Shrinkage and Creep Results

Analysis of Shrinkage and Creep Results: Shrinkage

INPUT FOR MODEL B4

	NAC	RAC	HVFAC	
a/c =	6.363	5.979	8.100	
w/c =	0.615	0.614	0.975	
c =	284.6	285.0	200.0	
V/S (mm)=	30	30	30	
k _s =	1.25	1.25	1.25	
_f _c =	30.5	28.1	22.6	
τ _{cem} =	0.016	0.016	0.010	
ρ _{τα} =	-0.33	-0.33	-0.33	
ρ _{τw} =	-0.06	-0.06	-0.06	
ρ _{τc} =	-0.10	-0.10	-0.10	
$r_0 =$	0.016	0.016	0.009	
k _{τa} =	0.59	2.30	0.59	
τ_{sh} =	53.10	207.00	29.87	
ε _{cem} =	360.0	360.0	360.0	1E-06
ρ _{εa} =	-0.80	-0.80	-0.80	
ρ _{εw} =	1.10	1.10	1.10	
$p_{\varepsilon c} =$	0.11	0.11	0.11	
ε ₀ =	568.151	596.183	747.988	1E-06
k _{εa} =	0.71	1.60	0.71	
t ₆₀₇ =	644.30	644.30	644.3	
$t_{ts} =$	57.40	220.87	220.87	
$\varepsilon_{sh,inf}$ (^t _s) =	-417.954	-960.445	-534.72	1E-06
Sii,iii (S)				
τ _{au,cem} =	1.0	1.0	1.0	
$r_{\tau w}$ =	3.0	3.0	3.0	
τ _{au} =	4.239	4.218	16.891	
ε _{au,cem} =	210.0	210.0	289.8	1E-06
$r_{\varepsilon a} =$	-0.75	-0.75	-0.75	
$r_{\varepsilon w}^{\varepsilon a} =$	-3.5	-3.5	0.0	
ε _{au,inf} =	-37.26	-39.27	-231.39	1E-06
$r_t =$	-4.50	-4.50	-4.50	00
$r_{\alpha} =$	1.00	1.00	1.20	
$\alpha =$	1.618	1.616	3.079	
u –	1.010	1.010	0.070	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NAC										
1.0	t _s (days)		T (°C)	RH (%)		S(^t)	k _h	(^t,^t _s)		(^t,^t s)	(^t,^t _s)
1.0	1	0.100	21.3	48 7	0.106	0.045	0.884	-16 6	0.0	-0.017	
β _m 2.0 21.3 48.7 2.124 0.197 0.884 -72.8 -0.5 -0.073 -0.065 1 3.0 21.3 48.7 3.2 0.240 0.884 -102.0 -3.4 -0.105 5.0 21.3 48.7 6.4 0.330 0.884 -1123.0 -8.0 -0.131 -0.117 6.0 21.3 48.7 6.4 0.333 0.884 -123.0 -8.0 -0.131 -0.117 6.0 21.3 48.7 6.4 0.333 0.884 -123.4 -8.0 -0.131 -0.117 6.0 21.3 48.7 6.6 0.340 0.884 -122.5 -8.6 -0.131 -0.117 7.0 21.3 48.7 7.4 0.558 0.884 -132.3 -10.4 -0.143 -0.143 8.0 21.3 48.7 10.6 0.407 0.884 -155.2 -16.7 -172 -153 -0.143 -0.143	•										-0.043
1 3.0 21.3 48.7 3.2 0.240 0.884 -88.7 1.6 0.0000 5.0 21.3 48.7 5.3 0.306 0.884 1.102.0 3.4 0.0105 6.0 21.3 48.7 6.4 0.333 0.884 1.132.0 8.0 0.191 0.117 6.0 21.3 48.7 6.4 0.333 0.884 1.132.0 8.0 0.191 0.117 6.0 21.3 48.7 6.4 0.333 0.884 1.123.0 8.0 0.191 0.117 6.3 21.3 48.7 6.4 0.333 0.884 1.123.0 8.0 0.191 0.117 6.3 21.3 48.7 6.6 0.340 0.884 1.125.6 8.6 0.194 0.117 7.0 21.3 48.7 7.4 0.358 0.884 1.125.6 8.6 0.0134 0.118 8.0 21.3 48.7 8.5 0.380 0.884 1.125.6 1.6 0.0134 0.118 8.0 21.3 48.7 8.5 0.380 0.884 1.125.6 1.6 0.0134 0.118 9.0 21.3 48.7 9.6 0.010 0.884 1.148.2 1.148 0.163 0.125 9.0 21.3 48.7 10.6 0.420 0.884 1.152.5 1.167 0.117 11.0 21.3 48.7 10.6 0.420 0.884 1.165.2 1.16.7 0.153 0.125 11.0 21.3 48.7 11.7 0.437 0.884 1.165.2 1.16.7 0.172 0.155 11.0 21.3 48.7 12.7 0.454 0.884 1.167.7 1.19 0.0188 0.178 13.0 21.3 48.7 21.2 0.560 0.884 1.73.3 30.8 0.084 0.178 13.0 21.3 48.7 21.2 0.560 0.884 1.73.3 30.8 0.020 0.278 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 28.7 0.26 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.8 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.62 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.60 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 38.8 0.60 0.884 2.21.3 30.9 0.202 0.343 27.0 21.3 48.7 39.8 0.60 0.884 2.22 3.3 3.0 0.202 0.208 28.0 0.21 48.7 39.8 0.60 0.884 2.20.3 3.0 3.0 0.202 0.343	β _{Th}										
4.0											
5.0 21.3 48.7 5.3 0.306 0.844 -113.1 -5.6 0.119 -0.101 6.0 21.3 48.7 6.4 0.333 0.884 -123.0 -8.0 -0.131 -0.177 6.0 21.3 48.7 6.4 0.334 0.884 -123.0 -8.0 -0.132 -0.177 6.3 21.3 48.7 6.6 0.340 0.884 -122.6 -8.6 -0.134 -0.143 7.0 21.3 48.7 7.4 0.358 0.884 -132.3 -10.4 -0.143 -0.143 9.0 21.3 48.7 9.6 0.400 0.884 -140.4 -12.7 -0.153 -0.122 -0.153 11.0 21.3 48.7 11.7 0.454 0.884 -165.7 -18.4 -0.160 -0.172 -0.155 11.0 21.3 48.7 12.2 0.560 0.884 -165.7 -19.9 -0.188 -0.762 -0.784 -13											
6.0 21.3 48.7 6.4 0.333 0.884 -123.0 8.0 -0.131 -0.117 6.3 21.3 48.7 6.4 0.334 0.884 -123.0 8.0 -0.132 -0.117 6.3 21.3 48.7 6.6 0.340 0.884 -123.0 8.6 6 -0.134 -0.117 7.0 21.3 48.7 7.4 0.358 0.884 -132.3 -10.4 -12.7 -0.153 -0.143 -0.143 8.0 21.3 48.7 9.6 0.401 0.884 -132.3 -10.4 1.27 -0.153 -0.125 9.0 21.3 48.7 9.6 0.401 0.884 -140.2 -14.8 -1.27 -0.153 -0.126 1.00 21.3 48.7 10.6 0.420 0.884 -140.2 -14.8 -16.7 -0.172 -0.153 1.00 21.3 48.7 11.7 0.437 0.884 -165.2 -16.7 -0.172 -0.155 11.0 21.3 48.7 11.7 0.437 0.884 -161.5 -18.4 -0.178 13.0 21.3 48.7 11.7 0.437 0.884 -161.5 -18.4 -0.178 13.0 21.3 48.7 13.8 0.470 0.884 -161.5 -18.4 -0.180 -0.197 12.0 21.3 48.7 13.8 0.470 0.884 -161.7 -19.9 -0.188 -0.178 13.0 21.3 48.7 21.2 0.560 0.884 -173.7 -21.3 -0.08 -0.186 20.0 21.3 48.7 21.2 0.560 0.884 -173.7 -21.3 -0.8 -0.156 20.2 21.3 48.7 22.7 0.626 0.884 -220.9 -27.7 -0.235 -0.278 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 -0.262 -0.343 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 -0.262 -0.343 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 -0.262 -0.343 27.3 21.3 48.7 22.7 0.626 0.884 -231.3 -30.9 -0.262 -0.343 27.3 21.3 48.7 22.7 0.624 0.884 223.1 3 -30.9 -0.262 -0.343 27.3 21.3 48.7 22.7 0.634 0.884 2231.3 -30.9 -0.262 -0.343 27.3 21.3 48.7 22.7 0.634 0.884 2231.3 -30.9 -0.262 -0.343 22.0 21.3 48.7 22.7 0.634 0.884 223.2 31.2 -31.2 -0.265 -0.342 29.0 21.3 48.7 32.9 0.650 0.884 223.2 31.2 -31.5 -0.269 -0.333 31.0 21.3 48.7 32.9 0.650 0.884 223.2 -31.2 -31.5 -0.269 -0.333 31.0 21.3 48.7 31.9 0.650 0.884 223.7 -32.4 -0.280 -0.333 31.0 21.3 48.7 34.0 0.664 0.884 223.7 -32.4 -0.280 -0.333 31.0 21.3 48.7 34.0 0.664 0.884 223.7 -32.0 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 223.7 -32.0 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 223.9 -3.3 3.0 -0.262 -0.343 48.7 34.7 0.666 0.884 223.7 -32.0 -0.276 -0.338 32.0 21.3 48.7 34.7 0.666 0.884 223.7 -32.0 -0.276 -0.338 32.0 21.3 48.7 34.7 0.666 0.884 223.7 -32.0 -0.276 -0.338 32.0 21.3 48.7 34.7 0.666 0.884 237.2 -31.5 0.0269 -0.333 3.0 0.021.3 48.7 34.7 0.066 0.884 237.2 -31.5											-0.100
6.0 21,3 48,7 6.4 0,334 0,884 -123.4 8.1 -0.132 -0.117 7.0 21,3 48,7 6.6 0,340 0,884 -125.6 8.6 -8.6 -0.134 -0.117 7.0 21,3 48,7 7.4 0,358 0,884 -132.3 1.0.4 -0.143 -0.143 8.0 21,3 48,7 8.5 0,380 0,884 -149.2 -14.6 0.163 -0.125 9.0 21,3 48,7 10.6 0,400 0,884 -149.2 -14.8 0.163 -0.148 10.0 21,3 48,7 10.6 0,420 0,884 -149.2 -14.8 0.163 -0.148 10.0 21,3 48,7 10.6 0,420 0,884 -161.5 -16.7 0.172 -0.155 11.0 21,3 48,7 12,7 0,454 0,884 -161.5 -18.4 0.180 -0.197 12.0 21,3 48,7 12,7 0,454 0,884 -161.5 -18.4 0.180 -0.197 13.0 21,3 48,7 12,7 0,454 0,884 -161.5 -18.4 0.180 -0.198 13.0 21,3 48,7 21,2 0,560 0,884 -206.9 -27,7 0.188 -0.178 13.0 21,3 48,7 21,2 0,560 0,884 -206.9 -27,7 0.235 -0.278 27.0 21,3 48,7 28,7 0,626 0,884 -231,3 3.0,8 0.0262 -0.343 27.0 21,3 48,7 28,7 0,626 0,884 -231,3 3.0,8 0.0622 -0.343 27.0 21,3 48,7 28,7 0,626 0,884 -231,3 3.0,9 0.0262 -0.343 27.0 21,3 48,7 28,7 0,626 0,884 -231,3 3.0,9 0.0262 -0.343 28.0 21,3 48,7 28,9 0,628 0,884 -232,3 3.0,9 0.0262 -0.343 28.0 21,3 48,7 38,9 0,624 0,884 -231,2 3.0,9 0.0263 -0.343 28.0 21,3 48,7 30,8 0,642 0,884 -232,2 3.15 -0.265 -0.342 29.0 21,3 48,7 30,8 0,642 0,884 -232,2 3.15 -0.0263 -0.343 31.0 21,3 48,7 32,9 0,657 0,884 -242,2 31,7 0.0275 -0.333 32.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.22 -0.278 -0.333 32.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.22 -0.278 -0.334 34.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -245,3 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -345,9 3.26 -0.283 -0.384 41.0 21,3 48,7 35,1 0,671 0,884 -325,9 3.66 -0.373 -0.344 48,7 3,487 5,500 0,884 -325,9 3.66 -0.373 -0.344 48,7 3,487 5,500 0,884 -325,9 3.30 -0.026 -0.334 35,0 21,3 48,7 35,0 0,884 -325,9 3.30 -0.026 -0.334 36,0 21,3 48,7 35,0 0,884 -325,9 3.30 -0.026 -0.334 36,0 21,3 48,7 35,0 0,884 -325,9 3.30 -0.390										-0.131	
6.3 21.3 48.7 6.6 0.340 0.884 -125.6 8.6 0.134 -0.117 7.0 21.3 48.7 7.4 0.358 0.884 -132.3 -10.4 0.143 -0.143 8.0 21.3 48.7 9.6 0.380 0.884 -132.3 -10.4 1.27 0.153 -0.125 9.0 21.3 48.7 9.6 0.401 0.884 -140.4 -12.7 0.153 -0.125 11.0 21.3 48.7 11.7 0.6 0.420 0.884 -155.2 -16.7 0.172 0.153 11.0 21.3 48.7 11.7 0.437 0.884 -155.2 -16.7 0.172 0.153 12.0 21.3 48.7 12.7 0.454 0.884 -167.7 -19.9 0.188 0.178 13.0 21.3 48.7 13.8 0.470 0.884 -167.7 -19.9 0.188 0.178 13.0 21.3 48.7 13.8 0.470 0.884 1.73.7 -21.3 0.195 0.180 20.0 21.3 48.7 21.2 0.560 0.884 -231.3 -30.8 0.262 0.278 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 0.022 0.343 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 0.022 0.343 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.8 0.022 0.343 27.0 21.3 48.7 22.7 0.626 0.884 -231.3 -30.9 0.262 0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.9 0.262 0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.9 0.262 0.343 28.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.343 28.0 21.3 48.7 38.9 0.628 0.884 -231.3 -30.9 0.263 0.343 28.0 21.3 48.7 39.7 0.636 0.884 -237.2 -31.2 -0.265 0.343 28.0 21.3 48.7 39.7 0.636 0.884 -237.2 -31.2 -0.265 0.343 30.0 21.3 48.7 30.8 0.642 0.884 -237.2 -31.2 -0.265 0.343 31.0 21.3 48.7 30.8 0.642 0.884 -237.2 -31.2 -0.265 0.343 32.0 1.3 48.7 30.9 0.657 0.884 -240.2 -31.7 -0.272 0.333 32.0 21.3 48.7 35.1 0.671 0.884 -240.2 -31.7 -0.272 0.333 32.0 21.3 48.7 35.1 0.671 0.884 -240.2 -31.3 -30.2 -0.275 0.338 32.0 21.3 48.7 35.1 0.671 0.884 -240.2 -34.5 -0.303 33.0 21.3 48.7 35.1 0.671 0.884 -240.2 -34.5 -0.303 34.0 21.3 48.7 35.1 0.671 0.884 -235.9 -32.6 -0.283 0.386 41.0 21.3 48.7 35.1 0.671 0.884 -236.6 -33.7 0.034 0.034 48.0 21.3 48.7 35.1 0.671 0.884 -236.6 -33.7 0.034 0.034 48.0 21.3 48.7 35.1 0.671 0.884 -236.5 -33.7 0.034 0.034 48.0 21.3 48.7 35.1 0.671 0.884 -236.5 -33.6 0.362 0.384 48.7 33.8 0.920 0.884 -336.9 -37.2 0.078 0.339 0.462 83.0 21.3 48.7 35.1 0.671 0.884 -366.6 -33.7 0.039 0.034 48.0 21.3 48.7 35.0 0.884 0.884 -386.0 -35.0 0.364 0.364 0.365 0.371 0.034 0.364 0.365 0.371 0.034 0.364 0											
7.0											
8.0 21.3 48.7 8.5 0.380 0.884 -140.4 -12.7 -0.153 0.148 9.0 21.3 48.7 9.6 0.401 0.884 -148.2 -148.2 -17.4 0.163 0.148 10.0 21.3 48.7 10.6 0.402 0.884 -155.2 -16.7 0.172 0.155 11.0 21.3 48.7 11.7 0.437 0.884 -161.5 -18.4 0.163 0.197 12.0 21.3 48.7 11.7 0.437 0.884 -161.5 -18.4 0.163 0.197 12.0 21.3 48.7 12.7 0.454 0.884 -167.7 -19.9 0.188 0.178 13.0 21.3 48.7 12.7 0.454 0.884 -167.7 -19.9 0.188 0.178 20.0 21.3 48.7 21.2 0.560 0.884 -206.9 -27.7 0.235 0.189 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.243 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.343 27.3 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 0.343 27.3 21.3 48.7 28.7 0.626 0.884 -231.3 -30.9 0.262 0.343 28.0 21.3 48.7 29.7 0.634 0.884 -232.0 30.9 0.262 0.343 28.0 21.3 48.7 30.8 0.642 0.884 -231.3 -30.9 0.262 0.343 30.0 21.3 48.7 30.8 0.642 0.884 -242.2 31.5 0.2 0.265 0.342 29.0 21.3 48.7 30.8 0.642 0.884 -240.2 31.7 0.272 0.333 30.0 21.3 48.7 31.9 0.650 0.884 -240.2 31.7 0.272 0.333 31.0 21.3 48.7 31.9 0.650 0.884 -240.2 31.7 0.272 0.333 32.0 21.3 48.7 35.1 0.671 0.884 -247.7 3.2 0 0.278 0.338 32.0 21.3 48.7 35.1 0.671 0.884 -247.9 3.2 4 0.280 0.345 34.0 21.3 48.7 35.1 0.671 0.884 -246.3 32.2 0.278 0.338 32.0 21.3 48.7 35.1 0.671 0.884 -250.5 32.6 0.283 0.368 41.0 21.3 48.7 51.0 0.753 0.884 -278.2 34.5 0.313 0.442 55.0 21.3 48.7 51.0 0.753 0.884 -278.2 34.5 0.313 0.442 55.0 21.3 48.7 51.0 0.753 0.884 -278.2 34.5 0.333 0.442 55.0 21.3 48.7 11.0 0.658 0.884 3.39.9 3.66 0.377 0.299 0.403 48.0 21.3 48.7 18.0 0.895 0.884 3.34.0 3.99 3.66 0.377 0.299 0.403 48.0 21.3 48.7 18.0 0.895 0.884 3.34.0 3.99 3.66 0.377 0.299 0.403 55.0 21.3 48.7 19.6 0.995 0.884 3.36.9 3.37 0.299 0.403 55.0 21.3 48.7 19.6 0.995 0.884 3.36.9 3.37 0.0996 0.395											
9.0 21.3 48.7 9.6 0.401 0.884 -148.2 -144.8 -0.163 -0.148											
10.0											
11.0											
12.0 21.3 48.7 12.7 0.454 0.884 -167.7 -199.9 -0.188 -0.178 13.0 21.3 48.7 13.8 0.470 0.884 -173.7 -21.3 -0.195 -0.180 20.0 21.3 48.7 21.2 0.560 0.884 -206.9 -27.7 0.235 -0.278 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 -0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 -0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 0.262 -0.343 27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.9 0.262 -0.343 27.3 21.3 48.7 28.9 0.628 0.884 -231.3 -30.9 0.262 -0.343 28.0 21.3 48.7 29.7 0.634 0.884 -231.2 -31.2 0.655 -0.342 29.0 21.3 48.7 39.7 0.634 0.884 -231.2 -31.2 0.265 -0.342 29.0 21.3 48.7 39.9 0.650 0.884 -231.2 -31.5 0.269 -0.333 31.0 21.3 48.7 32.9 0.650 0.884 -240.2 -31.7 0.272 -0.333 31.0 21.3 48.7 34.0 0.664 0.884 -240.2 -31.7 0.272 -0.333 32.0 21.3 48.7 34.0 0.664 0.884 -245.3 -32.2 0.275 -0.338 33.0 21.3 48.7 35.1 0.671 0.884 -245.3 -32.2 0.275 -0.336 34.0 21.3 48.7 35.1 0.671 0.884 -224.9 -3.24 0.280 0.345 34.0 21.3 48.7 35.1 0.678 0.884 -225.5 -32.6 0.283 0.368 41.0 21.3 48.7 35.1 0.678 0.884 -250.5 -32.6 0.283 0.368 41.0 21.3 48.7 35.1 0.678 0.884 -250.5 -32.6 0.283 0.368 41.0 21.3 48.7 35.1 0.678 0.884 -250.5 -32.6 0.283 0.368 48.0 21.3 48.7 55.4 0.753 0.884 -228.6 -35.0 0.337 0.299 0.403 48.0 21.3 48.7 55.4 0.753 0.884 -228.6 -35.0 0.333 0.482 83.0 21.3 48.7 55.4 0.753 0.884 -288.6 -35.0 0.333 0.482 83.0 21.3 48.7 55.4 0.753 0.884 -288.6 -35.0 0.333 0.482 83.0 21.3 48.7 55.4 0.893 0.894 -371.4 -36.1 0.354 0.358 96.0 21.3 48.7 56.9 0.805 0.884 -328.8 0.36.9 0.399 0.403 96.0 21.3 48.7 56.9 0.805 0.884 -388.6 0.35.0 0.333 0.482 96.0 21.3 48.7 56.9 0.805 0.884 -388.6 0.35.0 0.394 0.493 96.0 21.3 48.7 56.0 0.893 0.894 -371.4 -36.1 0.354 0.358 96.0 21.3 48.7 56.0 0.893 0.894 -371.4 -36.1 0.354 0.358 96.0 21.3 48.7 56.0 0.893 0.894 -371.4 -36.1 0.354 0.358 96.0 21.3 48.7 56.0 0.893 0.894 -371.4 -36.1 0.354 0.358 96.0 21.3 48.7 56.0 0.893 0.894 -371.4 -36.1 0.394 0.395 0.555 97.0 21.3 48.7 56.0 0.893 0.894 -36.8 0.371 0.040 0.055 97.0 21.											
13.0											
270 213 487 287 0.626 0.884 -231.3 -30.8 -0.262 -0.343 270 213 487 28.7 0.626 0.884 -231.3 -30.8 -0.262 -0.343 270 21.3 48.7 28.7 0.626 0.884 -231.3 -30.9 -0.262 -0.343 27.3 21.3 48.7 28.9 0.628 0.884 -231.2 -30.9 -0.263 -0.343 28.0 21.3 48.7 30.8 0.642 0.884 -231.2 -31.2 -0.265 -0.342 28.0 21.3 48.7 30.8 0.642 0.884 -237.2 -31.5 -0.269 -0.333 30.0 21.3 48.7 31.9 0.650 0.884 -237.2 -31.5 -0.269 -0.333 31.0 21.3 48.7 32.9 0.657 0.884 -240.2 -31.7 -0.272 -0.333 31.0 21.3 48.7 33.9 0.650 0.884 -240.2 -31.7 -0.272 -0.338 33.0 21.3 48.7 35.1 0.664 0.884 -247.9 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -247.9 -32.4 -0.280 -0.345 34.0 21.3 48.7 35.1 0.671 0.884 -240.2 -32.2 -0.278 -0.368 41.0 21.3 48.7 34.0 0.664 0.884 -250.5 -32.6 -0.263 -0.368 41.0 21.3 48.7 35.1 0.671 0.884 -250.5 -32.6 -0.263 -0.368 41.0 21.3 48.7 35.1 0.671 0.884 -250.5 -32.6 -0.263 -0.368 41.0 21.3 48.7 35.1 0.671 0.884 -250.5 -33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 55.4 0.781 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 55.4 0.781 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 65.9 0.805 0.884 -297.4 -35.4 -0.333 -0.482 83.0 21.3 48.7 10.2 0.882 0.884 -327.9 -36.6 -0.373 -0.452 60.0 21.3 48.7 10.2 0.882 0.884 -327.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 11.7 0.21.3 48.7 102.0 0.882 0.884 -325.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 103.8 0.920 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.882 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 102.0 0.884 -385.9 -37.0 0.395 -0.567 0.538 14.6 14.7 12.3 14.7 12.3 14.8 14.7 12.3 0.990 0.884 -365.9 -37.0 0.395 -0.567 0.395 0.567 0.396 0.884 -365.9 -37.0 0.395 0.567 0.396 0.884 -365.9 -		13.0			13.8	0.470	0.884			-0.195	
27.0 21.3 48.7 28.7 0.626 0.884 -231.3 -30.8 -0.262 -0.343 27.3 21.3 48.7 28.9 0.628 0.884 -231.3 -30.9 -0.262 -0.343 27.3 21.3 48.7 28.9 0.628 0.884 -231.2 -31.2 -0.265 -0.342 28.0 21.3 48.7 30.8 0.642 0.884 -231.2 -31.2 -0.265 -0.342 28.0 21.3 48.7 30.8 0.642 0.884 -231.2 -31.5 -0.269 -0.333 30.0 21.3 48.7 31.9 0.650 0.884 -240.2 -31.7 -0.272 -0.333 31.0 21.3 48.7 31.9 0.650 0.884 -240.2 -31.7 -0.272 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 -242.7 -32.0 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 -242.5 -32.0 -0.276 -0.338 32.0 21.3 48.7 35.1 0.671 0.884 -245.3 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -245.5 -32.6 -0.280 -0.345 34.0 21.3 48.7 36.1 0.671 0.884 -245.5 -32.6 -0.280 -0.346 41.0 21.3 48.7 36.1 0.678 0.884 -256.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 56.4 0.781 0.884 -265.6 -33.7 -0.299 -0.463 48.0 21.3 48.7 56.4 0.781 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 58.4 0.781 0.884 -226.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -297.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 10.0 0.650 0.884 -325.9 -36.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -325.9 -36.6 -0.373 -0.555 126.0 21.3 48.7 10.0 0.682 0.889 -37.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 10.0 0.882 0.884 -339.9 -36.6 -0.377 -0.535 126.0 21.3 48.7 165.7 0.943 0.990 0.884 -336.2 -36.6 -0.373 -0.555 126.0 21.3 48.7 165.7 0.943 0.990 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 165.7 0.943 0.980 -384.4 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.980 -384.4 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.980 -384.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 165.7 0.943 0.980 -384.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 197.6 0.995 0.884 -356.9 -37.0 0.939 -0.555 216.0 21.3 48.7 197.6 0.995 0.884 -356.9 -37.1 0.000 -0.595 21.0 0.23 48.7 197.6 0.995 0.884 -356.9 -37.1 0.000 -0.595 21.0 0.23 48.7 197.6 0.995 0.884 -366.0 -37.0 0.939 -0.557 227.0 21.3 48.7 197.6 0.996 0.884 -366.9 -37.1 0.000 -0.595 227.0 21.3 48.7 197.6 0.996 0.884 -366.9 -37.1 0.000 -0.595 227.0 21.3 48.7 197.6 0.996 0.884 -366.9 -37.1 0.000 -0.605 227.0											
270 213 487 288 0.626 0.884 -231.3 -30.9 -0.262 -0.343 28.0 21.3 48.7 28.9 0.628 0.884 -231.2 -31.2 -0.265 -0.342 28.0 21.3 48.7 30.8 0.642 0.884 -231.2 -31.2 -0.265 -0.342 28.0 21.3 48.7 30.8 0.642 0.884 -231.2 -31.5 -0.269 -0.333 30.0 21.3 48.7 31.9 0.650 0.884 -240.2 -31.7 -0.272 -0.333 31.0 21.3 48.7 32.9 0.657 0.884 -240.2 -31.7 -0.272 -0.333 31.0 21.3 48.7 33.9 0.657 0.884 -240.2 -31.7 -0.272 -0.338 32.0 21.3 48.7 35.1 0.671 0.884 -245.3 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -245.3 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -245.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 35.1 0.678 0.884 -245.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 51.0 0.678 0.884 -265.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 51.0 0.678 0.884 -265.5 -33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -226.5 -33.7 -0.299 -0.403 48.0 21.3 48.7 55.4 0.781 0.884 -226.5 -35.0 -0.324 -0.468 62.0 21.3 48.7 56.4 0.781 0.884 -226.5 -35.0 -0.324 -0.468 62.0 21.3 48.7 58.4 0.781 0.884 -226.5 -35.0 -0.324 -0.468 62.0 21.3 48.7 58.4 0.781 0.884 -226.4 -35.0 -0.324 -0.468 62.0 21.3 48.7 58.4 0.781 0.884 -226.4 -35.0 -0.324 -0.468 62.0 21.3 48.7 58.4 0.781 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 16.5 0.000 0.882 0.884 -327.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 16.6 1 0.937 0.884 -355.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 16.6 1 0.937 0.884 -335.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 16.6 1 0.937 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 16.6 1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 16.6 1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 16.6 1 0.937 0.884 -346.2 -36.8 -0.385 -0.527 17.7 0 21.3 48.7 16.6 1 0.937 0.884 -346.2 -36.8 -0.385 -0.527 17.7 0 21.3 48.7 16.6 1 0.937 0.884 -346.2 -36.8 -0.385 -0.527 17.7 0 21.3 48.7 17.0 21.3 48.7 17.0 0.990 0.884 -356.0 -37.0 0.939 -0.540 186.0 21.3 48.7 19.6 0.990 0.884 -365.0 -37.0 0.939 -0.550 2.560 2.3 48.7 2.990 0.990 0.884 -366.0 -37.1 0.400 0.655 2.70 0.21 4.8 7 2.991 0.990 0.884 -366.0 -37.1 0.400 0.655 2.70 0.21 4.8 7 3.70 0.991 0.884 -366.0 -37.1 0.400 0.6											
27.3											
28.0 21,3 48.7 29.7 0.634 0.884 -237.2 -31.2 -0.265 -0.333 30.0 21,3 48.7 30.8 0.642 0.884 -240.2 -31.7 -0.272 -0.333 31.0 21,3 48.7 32.9 0.657 0.884 -240.2 -31.7 -0.275 -0.333 32.0 21,3 48.7 34.0 0.664 0.884 -24.79 -32.4 -0.280 -0.368 33.0 21,3 48.7 35.1 0.671 0.884 -247.9 -32.4 -0.280 -0.368 41.0 21,3 48.7 43.5 0.719 0.884 -256.6 -33.7 -0.299 -0.403 48.0 21,3 48.7 43.5 0.719 0.884 -256.6 -33.7 -0.299 -0.403 48.0 21,3 48.7 65.9 0.805 0.884 -297.4 -35.4 -0.333 -0.412 55.0 21.3											
29.0 21.3 48.7 30.8 0.642 0.884 -237.2 31.5 -0.269 -0.333 30.0 21.3 48.7 31.9 0.650 0.884 -240.7 -31.7 -0.272 -0.333 31.0 21.3 48.7 32.9 0.657 0.884 -240.7 -32.0 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 -245.3 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -247.9 -32.4 -0.280 -0.345 34.0 21.3 48.7 36.1 0.678 0.884 -250.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 36.1 0.678 0.884 -250.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 43.5 0.719 0.884 -250.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 55.0 0.753 0.884 -278.2 -34.5 -0.373 -0.472 55.0 21.3 48.7 55.4 0.781 0.884 -226.5 -32.6 -0.283 -0.368 62.0 21.3 48.7 56.4 0.781 0.884 -227.2 -34.5 -0.373 -0.472 55.0 21.3 48.7 56.9 0.805 0.884 -278.2 -34.5 -0.373 -0.452 83.0 21.3 48.7 88.2 0.859 0.884 -278.2 -34.5 -0.334 -0.468 83.0 21.3 48.7 88.2 0.859 0.884 -327.4 -35.0 -0.324 -0.468 83.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 133.8 0.920 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.882 -384 -339.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 188.0 0.955 0.884 -346.3 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -356.9 -37.0 -0.394 -0.555 207.0 21.3 48.7 299.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 207.0 21.3 48.7 299.9 0.966 0.884 -356.9 -37.0 -0.399 -0.560 246.0 21.3 48.7 299.9 0.969 0.884 -356.9 -37.0 -0.399 -0.560 246.0 21.3 48.7 299.9 0.969 0.884 -366.9 -37.0 -0.399 -0.560 246.0 21.3 48.7 299.9 0.969 0.884 -366.9 -37.0 -0.399 -0.550 246.0 21.3 48.7 251.7 0.975 0.884 -366.9 -37.0 -0.399 -0.550 246.0 21.3 48.7 251.7 0.975 0.884 -366.9 -37.1 -0.400 -0.555 207.0 21.3 48.7 251.7 0.975 0.884 -366.9 -37.1 -0.400 -0.565 207.0 21.3 48.7 31.5 0.998 0.884 -366.9 -37.1 -0.400 -0.565 207.0 21.3 48.7 31.5 0.998 0.884 -366.9 -37.1 -0.400 -0.565 207.0 21.3 48.7 31.5 0.999 0.884 -366.9 -37.1 -0.400 -0.605											
30.0 21.3 48.7 31.9 0.650 0.884 -240.2 31.7 -0.272 -0.333 31.0 21.3 48.7 32.9 0.657 0.884 -240.2 31.7 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 -245.3 32.2 -0.276 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -245.3 32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -247.9 32.4 -0.280 -0.345 34.0 21.3 48.7 36.1 0.678 0.884 -250.5 32.6 -0.283 -0.368 41.0 21.3 48.7 43.5 0.719 0.884 -265.6 33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -265.6 33.7 -0.299 -0.403 48.0 21.3 48.7 55.4 0.781 0.884 -286.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 55.4 0.781 0.884 -286.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -278.2 -34.5 -0.313 -0.412 62.0 21.3 48.7 65.9 0.805 0.884 -37.4 -35.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 124.3 0.910 0.884 -385.9 -36.6 -0.373 -0.555 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.6 -0.377 -0.538 147.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.555 177.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.557 177.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.383 -0.557 177.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.383 -0.557 177.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.383 -0.557 177.0 21.3 48.7 165.7 0.943 0.884 -355.9 -30.6 -0.397 -0.555 177.0 21.3 48.7 197.6 0.955 0.884 -356.9 -30.0 -0.390 -0.540 186.0 21.3 48.7 197.6 0.955 0.884 -356.9 -37.0 -0.395 -0.557 177.0 21.3 48.7 197.6 0.955 0.884 -356.9 -37.0 -0.395 -0.557 177.0 21.3 48.7 29.9 0.966 0.884 -356.9 -37.0 -0.395 -0.557 177.0 21.3 48.7 29.9 0.966 0.884 -356.9 -37.0 -0.395 -0.557 177.0 21.3 48.7 29.9 0.966 0.884 -356.9 -37.0 -0.397 -0.558 126.0 21.3 48.7 29.3 0.966 0.884 -356.9 -37.0 -0.397 -0.558 126.0 21.3 48.7 29.9 0.966 0.884 -366.9 -37.0 -0.397 -0.550 126.0 21.3 48.7 29.9 0.966 0.884 -366.9 -37.0 -0.397 -0.550 126.0 21.3 48.7 29.9 0.966 0.884 -366.9 -37.0 -0.397 -0.550 126.0 21.3 48.7 251.5 0.985 0.884 -366.9 -37.1 -0.400 -0.555 126.0 21.3 48.7 251.5 0.985 0.884 -366.9 -37.1 -0.400 -0.555 126.0 21.3 48.7 251.5 0.985 0.884 -366.9 -37.1 -0.400 -0.555 126.0 21.3 48											
31.0 21.3 48.7 32.9 0.657 0.884 -242.7 -32.0 -0.275 -0.338 32.0 21.3 48.7 34.0 0.664 0.884 -245.9 -32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -247.9 -32.4 -0.280 -0.345 34.0 21.3 48.7 36.1 0.678 0.884 -250.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 43.5 0.719 0.884 -250.5 -32.6 -0.283 -0.368 41.0 21.3 48.7 51.0 0.753 0.884 -256.6 -33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -256.6 -33.7 -0.299 -0.403 48.0 21.3 48.7 55.4 0.781 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 55.4 0.781 0.884 -297.4 -35.4 -0.333 -0.462 83.0 21.3 48.7 65.9 0.805 0.884 -297.4 -35.4 -0.333 -0.462 83.0 21.3 48.7 88.2 0.859 0.884 -297.4 -35.4 -0.353 -0.864 96.0 21.3 48.7 102.0 0.882 0.884 -329.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 102.0 0.882 0.884 -329.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 155.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 168.0 0.955 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 168.0 0.955 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 168.0 0.955 0.884 -348.4 -36.8 -0.385 -0.557 207.0 21.3 48.7 21.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 21.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 21.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 21.9 0.966 0.884 -36.2 -36.8 -30.9 -0.590 -0.540 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.2 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.0 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.0 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.0 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.0 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.9 0.966 0.884 -36.0 -37.0 -0.394 -0.555 21.0 21.3 48.7 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0											
32.0 21.3 48.7 34.0 0.664 0.884 -245.3 32.2 -0.278 -0.350 33.0 21.3 48.7 35.1 0.671 0.884 -247.9 32.4 -0.280 -0.345 34.0 21.3 48.7 36.1 0.678 0.884 -225.5 32.6 0.283 -0.368 41.0 21.3 48.7 43.5 0.719 0.884 -265.6 33.7 0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -278.2 34.5 -0.313 -0.412 55.0 21.3 48.7 58.4 0.781 0.884 -288.6 35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -297.4 35.4 -0.333 -0.482 83.0 21.3 48.7 102.0 0.882 0.884 325.9 36.3 -0.362 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 325.9 36.3 -0.362 -0.540 117.0 21.3 48.7 133.8 0.920 0.884 336.2 36.6 0.377 -0.538 147.0 21.3 48.7 135.8 0.920 0.884 346.2 36.8 -0.383 -0.543 156.0 21.3 48.7 188.0 0.955 0.884 348.4 36.8 -0.383 -0.543 156.0 21.3 48.7 188.0 0.955 0.884 348.4 36.8 -0.383 -0.543 156.0 21.3 48.7 197.6 0.959 0.884 354.3 36.9 -0.390 -0.550 21.3 48.7 197.6 0.959 0.884 356.9 37.0 -0.394 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.394 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.394 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.394 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.394 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.395 -0.587 237.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.395 -0.587 237.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.395 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.395 -0.555 216.0 21.3 48.7 219.9 0.966 0.884 356.9 37.0 -0.395 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.6 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.995 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 251.7 0.995 0.884 362.8 37.1 -0.400 -0.555 216.0 21.3 48.7 355.9 0.986 0.884 366.0 37.2 -0.405 0.657 4.000 0.884 366.0 37.2 -0.405 0.667 4.000 0.884 366.0 37.2											
33.0 21.3 48.7 35.1 0.671 0.884 -247.9 32.4 -0.280 -0.345 34.0 21.3 48.7 36.1 0.678 0.884 -250.5 32.6 -0.283 -0.368 41.0 21.3 48.7 43.5 0.719 0.884 -265.6 33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -278.2 34.5 -0.313 -0.412 55.0 21.3 48.7 58.4 0.781 0.884 -278.2 34.5 -0.313 -0.412 55.0 21.3 48.7 65.9 0.805 0.884 -278.2 34.5 -0.333 -0.482 83.0 21.3 48.7 88.2 0.859 0.884 -317.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -317.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 124.3 0.910 0.884 -336.2 -36.6 -0.377 -0.538 126.0 21.3 48.7 133.8 0.920 0.884 -330.2 -36.6 -0.377 -0.538 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.2 36.8 -0.383 -0.557 177.0 21.3 48.7 188.0 0.955 0.884 -344.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 197.6 0.959 0.884 -356.9 -37.0 -0.391 -0.557 207.0 21.3 48.7 29.4 0.969 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 29.4 0.969 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 29.4 0.969 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 29.4 0.969 0.884 -356.8 -37.1 -0.400 -0.555 29.7 207.0 21.3 48.7 29.4 0.969 0.884 -356.8 -37.0 -0.397 -0.560 246.0 21.3 48.7 29.4 0.969 0.884 -360.2 37.0 -0.397 -0.560 246.0 21.3 48.7 29.4 0.969 0.884 -360.2 37.0 -0.397 -0.560 246.0 21.3 48.7 29.3 0.986 0.884 -360.2 37.0 -0.397 -0.560 246.0 21.3 48.7 29.3 0.986 0.884 -360.2 37.0 -0.397 -0.560 246.0 21.3 48.7 29.3 0.986 0.884 -360.8 37.1 -0.400 -0.555 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.585 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.585 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.585 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.505 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.585 297.0 21.3 48.7 293.2 0.982 0.884 -360.8 37.1 -0.400 -0.585 297.0 21.3 48.7 293.2 0.982 0.884 -366.8 37.1 -0.400 -0.585 297.0 21.3 48.7 250.0 0.986 0.884 -366.9 37.2 -0.404 -0.605 40.600 21.3 48.7 350.9 0.989 0.884 -366.9 37.2 -0.400 -0.605 40.600 21.3 48									-32.2		
41.0 21.3 48.7 43.5 0.719 0.884 -265.6 -33.7 -0.299 -0.403 48.0 21.3 48.7 51.0 0.753 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 58.4 0.781 0.884 -278.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -297.4 -35.4 -0.333 -0.482 83.0 21.3 48.7 88.2 0.859 0.884 -317.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 102.0 0.882 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 133.8 0.920 0.884 -336.2 -36.6 -0.377 -0.538 147.0 21.3 48.7 133.8 0.920 0.884 -334.2 -36.8 -0.385 -0.543 156.0 21.3 48.7 156.1 0.937 0.884 -344.2 -36.8 -0.385 -0.527 177.0 21.3 48.7 180.0 0.955 0.884 -344.2 -36.8 -0.385 -0.527 177.0 21.3 48.7 197.6 0.959 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -352.8 -36.9 -0.391 -0.557 207.0 21.3 48.7 229.4 0.969 0.884 -356.2 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -356.3 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.4 0.969 0.884 -356.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.4 0.969 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.4 0.969 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.4 0.969 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.3 0.982 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 239.2 0.982 0.884 -360.2 -37.1 -0.400 -0.655 297.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.655 297.0 21.3 48.7 325.0 0.986 0.884 -360.3 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.5 0.985 0.884 -365.0 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.3 0.986 0.884 -366.9 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.5 0.985 0.884 -366.9 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.5 0.985 0.884 -366.9 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.5 0.985 0.884 -366.9 -37.1 -0.401 -0.603 330.0 21.3 48.7 345.5 0.985 0.884 -366.9 -37.2 -0.404 -0.604 -0.605 427.0 21.3 48.7 345.5 0.985 0.884 -366.9 -37.2 -0.404 -0.605 427.0 21.3 48.7 345.5 0.996 0.884 -366.9 -37.2 -0.404 -0.607 427.0 21.3 48.7 345.5 0.996 0.884 -366.9 -37.2 -0.405 -0.667 427.0 21.3 48.7 345.5 0.996 0.884 -36									-32.4		
48.0 21.3 48.7 51.0 0.753 0.884 -278.2 -34.5 -0.313 -0.412 55.0 21.3 48.7 65.9 0.805 0.884 -288.6 -35.0 -0.324 -0.468 62.0 21.3 48.7 65.9 0.805 0.884 -317.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -317.4 -36.1 -0.354 -0.540 117.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.377 -0.538 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 166.7 0.943 0.884 -36.9 -0.390 -0.540 177.0 21.3 48.7 19.6 0.959 0.884 -352.8 -36.9 -0.390 -0.560									-32.6		
55.0 21.3 48.7 65.9 0.805 0.884 -288.6 -35.0 -0.324 -0.468 83.0 21.3 48.7 68.2 0.859 0.884 -297.4 -35.4 -0.333 -0.482 83.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.6 -0.377 -0.535 126.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.377 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -36.9 -0.390 -0.540 186.0 21.3 48.7 <td></td>											
62.0 21.3 48.7 65.9 0.805 0.884 -297.4 -35.4 -0.333 -0.482 83.0 21.3 48.7 88.2 0.859 0.884 -327.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 124.3 0.910 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 156.1 0.937 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 197.6 0.959 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -352.8 -36.9 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -358.0 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -356.0 -37.0 -0.394 -0.555 246.0 21.3 48.7 261.3 0.977 0.884 -360.0 -37.0 -0.398 -0.570 246.0 21.3 48.7 261.3 0.977 0.884 -360.2 -37.0 -0.398 -0.570 246.0 21.3 48.7 283.6 0.981 0.884 -366.2 -37.1 -0.400 -0.585 276.0 21.3 48.7 283.6 0.981 0.884 -362.8 -37.1 -0.400 -0.585 276.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.400 -0.585 276.0 21.3 48.7 325.0 0.986 0.884 -363.9 -37.1 -0.401 -0.595 327.0 21.3 48.7 325.0 0.986 0.884 -363.9 -37.1 -0.401 -0.595 327.0 21.3 48.7 348.7 325.0 0.986 0.884 -363.9 -37.1 -0.401 -0.595 327.0 21.3 48.7 325.0 0.986 0.884 -363.9 -37.1 -0.401 -0.595 327.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.595 327.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.595 327.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.595 327.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 320.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 320.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 320.0 21.3 48.7 348.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.605 -0.605 42.0 21.3 48.7 348.7 349.2 0.990 0.884 -366.9 -37.2 -0.404 -0.605 -0.605 42.0 21.3 48.7 348.7 349.0 0.990 0.884 -366.9 -37.2 -0.404 -0.605 -0.605 42.0 21.3 48.7 484.3 0.995 0.884 -366.9 -37.2 -0.404 -0.605 -0.605 42.0 21.3 48.7											
83.0 21.3 48.7 88.2 0.859 0.884 -317.4 -36.1 -0.354 -0.540 96.0 21.3 48.7 102.0 0.882 0.884 -335.9 -36.3 -0.362 -0.560 117.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.377 -0.538 147.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.385 -0.527 177.0 21.3 48.7 165.7 0.943 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.955 0.884 -354.3 -36.9 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.557 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.394											
96.0 21.3 48.7 102.0 0.882 0.884 -325.9 -36.3 -0.362 -0.540 117.0 21.3 48.7 124.3 0.910 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.377 -0.538 147.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -346.2 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -352.8 -36.9 -0.391 -0.557 207.0 21.3 48.7 21.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -356.0 -37.0 -0.394 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.585 297.0 21.3 48.7 355.0 0.985 0.884 -362.8 -37.1 -0.401 -0.603 306.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 306.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 306.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 356.9 0.980 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.603 307.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.605 207.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.605 207.0 21.3 48.7 347.3 0.988 0.884 -366.0 -37.2 -0.404 -0.667 477.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.667 477.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.665 427.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.405 -0.665 427.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.405 -0.665 427.0 21.3 48.7 431.2 0.993 0.884 -									-35.4 -36.1		
117.0 21.3 48.7 124.3 0.910 0.884 -336.2 -36.6 -0.373 -0.535 126.0 21.3 48.7 133.8 0.920 0.884 -346.2 -36.6 -0.377 -0.538 147.0 21.3 48.7 165.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -356.9 -37.0 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.395 -0.587 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 283.6 0.981 0.884 -360.2 -37.1 -0.400 </td <td></td>											
126.0 21.3 48.7 133.8 0.920 0.884 -339.9 -36.6 -0.377 -0.538 147.0 21.3 48.7 156.1 0.937 0.884 -348.4 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -354.3 -36.9 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 251.7 0.975 0.884 -356.9 -37.0 -0.397 -0.567 237.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 </td <td></td>											
147.0 21.3 48.7 156.1 0.937 0.884 -346.2 -36.8 -0.383 -0.543 156.0 21.3 48.7 165.7 0.943 0.884 -348.4 -36.8 -0.385 -0.527 177.0 21.3 48.7 188.0 0.955 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -354.3 -36.9 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -356.9 -37.0 -0.395 -0.587 237.0 21.3 48.7 229.4 0.969 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 283.6 0.981 0.884 -360.2 -37.1 -0.400 -0.585 276.0 21.3 48.7 283.6 0.981 0.884 -362.8 -37.1 -0.400 </td <td></td>											
177.0 21.3 48.7 188.0 0.955 0.884 -352.8 -36.9 -0.390 -0.540 186.0 21.3 48.7 197.6 0.959 0.884 -354.3 -36.9 -0.391 -0.5557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -356.9 -37.0 -0.394 -0.555 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.395 -0.587 237.0 21.3 48.7 261.3 0.977 0.884 -360.2 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.603 397.0 21.3 48.7 325.0 0.986 0.884 -363.9 -37.1 -0.401<		147.0	21.3	48.7						-0.383	
186.0 21.3 48.7 197.6 0.959 0.884 -354.3 -36.9 -0.391 -0.557 207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -358.0 -37.0 -0.395 -0.555 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -364.3 -37.1 -0.401 -0.603 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 </td <td></td>											
207.0 21.3 48.7 219.9 0.966 0.884 -356.9 -37.0 -0.394 -0.555 216.0 21.3 48.7 229.4 0.969 0.884 -368.0 -37.0 -0.395 -0.587 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.4001 -0.603 306.0 21.3 48.7 347.3 0.986 0.884 -365.0 -37.1 -0.401 -0.603 327.0 21.3 48.7 347.3 0.988 0.884 -365.4 -37.1 -0.402<											
216.0 21.3 48.7 229.4 0.969 0.884 -358.0 -37.0 -0.395 -0.587 237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -362.8 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -364.3 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.595 336.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 </td <td></td>											
237.0 21.3 48.7 251.7 0.975 0.884 -360.2 -37.0 -0.397 -0.560 246.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -364.3 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 </td <td></td>											
246.0 21.3 48.7 261.3 0.977 0.884 -361.0 -37.0 -0.398 -0.570 267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -365.0 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.401 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.613 357.0 21.3 48.7 394.1 0.991 0.884 -366.9 -37.2 -0.403 </td <td></td>											
267.0 21.3 48.7 283.6 0.981 0.884 -362.5 -37.1 -0.400 -0.585 276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -364.3 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.402 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.9 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 </td <td></td>											
276.0 21.3 48.7 293.2 0.982 0.884 -362.8 -37.1 -0.400 -0.605 297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -364.3 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.402 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 451.5 0.994 0.884 -367.3 -37.2 -0.405 </td <td></td>											
297.0 21.3 48.7 315.5 0.985 0.884 -363.9 -37.1 -0.401 -0.603 306.0 21.3 48.7 325.0 0.986 0.884 -364.3 -37.1 -0.401 -0.595 327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.402 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 </td <td></td>											
327.0 21.3 48.7 347.3 0.988 0.884 -365.0 -37.1 -0.402 -0.622 336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 </td <td></td>											
336.0 21.3 48.7 356.9 0.989 0.884 -365.4 -37.1 -0.403 -0.613 357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.3 -0.407										-0.401	
357.0 21.3 48.7 379.2 0.990 0.884 -365.8 -37.1 -0.403 -0.618 371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.3 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407											
371.0 21.3 48.7 394.1 0.991 0.884 -366.1 -37.2 -0.403 -0.633 392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
392.0 21.3 48.7 416.4 0.993 0.884 -366.9 -37.2 -0.404 -0.640 406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
406.0 21.3 48.7 431.2 0.993 0.884 -366.9 -37.2 -0.404 -0.657 427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
427.0 21.3 48.7 453.5 0.994 0.884 -367.3 -37.2 -0.405 -0.652 456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
456.0 21.3 48.7 484.3 0.995 0.884 -367.6 -37.2 -0.405 -0.667 477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
477.0 21.3 48.7 506.7 0.996 0.884 -368.0 -37.2 -0.405 -0.645 1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
1000.0 21.3 48.7 1062.2 1.000 0.884 -369.5 -37.2 -0.407 2500.0 21.3 48.7 2655.4 1.000 0.884 -369.5 -37.3 -0.407 5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
5000.0 21.3 48.7 5310.8 1.000 0.884 -369.5 -37.3 -0.407											
10000.0 21.3 48.7 10621.6 1.000 0.884 -369.5 -37.3 -0.407											
		10000.0	21.3	48.7	10621.6	1.000	0.884	-369.5	-37.3	-0.407	

KAC										
t _s (days)	t – t _s (days)	T (°C)	RH (%)	^t – ^t _s (days)	S(^t)	k _h	ε _{sh} (^t,^t _s) (1E-06)	ε _{au} (^t,^t _s) (1E-06)	ε _{sh,total} (^t,^t _s) (‰)	$\epsilon_{sh,exp}$ (^t,^t $_s$) (1E-06)
1	0.100	21.3	48.7	0.106	0.023	0.884	-19.5	0.0	-0.020	
•	1.0	21.3	48.7	1.062	0.072	0.884	-61.1	-0.1	-0.061	-0.058
β_{Th}	2.0	21.3	48.7	2.124	0.101	0.884	-85.8	-0.5	-0.086	-0.070
1	3.0	21.3	48.7	3.2	0.123	0.884	-104.4	-1.7	-0.106	-0.110
•	4.0	21.3	48.7	4.2	0.142	0.884	-120.6	-3.6	-0.124	-0.113
	5.0	21.3	48.7	5.3	0.159	0.884	-135.0	-5.9	-0.141	-0.120
	6.0	21.3	48.7	6.4	0.174	0.884	-147.7	-8.5	-0.156	-0.155
	6.0	21.3	48.7	6.4	0.174	0.884	-147.7	-8.5	-0.156	-0.155
	6.0	21.3	48.7	6.4	0.174	0.884	-147.7	-8.6	-0.156	-0.155
	6.3	21.3	48.7	6.6	0.177	0.884	-150.3	-9.1	-0.159	-0.140
	7.0	21.3	48.7	7.4	0.187	0.884	-158.8	-11.0	-0.170	-0.155
	8.0	21.3	48.7	8.5	0.200	0.884	-169.8	-13.4	-0.183	-0.162
	9.0 10.0	21.3 21.3	48.7 48.7	9.6 10.6	0.212 0.223	0.884 0.884	-180.0 -189.3	-15.6 -17.7	-0.196 -0.207	-0.198 -0.207
	11.0	21.3 21.3	48.7 48.7	10.6 11.7	0.223	0.88 4 0.884	-109.3 -197.8	-17.7 -19.5	-0.207	-0.207 -0.172
	12.0	21.3	48.7	12.7	0.243	0.884	-206.3	-19.5 -21.1	-0.217	-0.172
	13.0	21.3	48.7	13.8	0.253	0.884	-214.8	-22.5	-0.237	-0.245
	20.0	21.3	48.7	21.2	0.310	0.884	-263.2	-29.2	-0.292	-0.320
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.3	21.3	48.7	28.9	0.357	0.884	-303.1	-32.6	-0.336	-0.383
	28.0	21.3	48.7	29.7	0.362	0.884	-307.4	-32.9	-0.340	-0.385
	29.0	21.3	48.7	30.8	0.368	0.884	-312.4	-33.2	-0.346	-0.387
	30.0	21.3	48.7	31.9	0.373	0.884	-316.7	-33.5	-0.350	-0.402
	31.0	21.3	48.7 48.7	32.9	0.379	0.884	-321.8	-33.7 34.0	-0.356	-0.395
	32.0 33.0	21.3 21.3	48.7 48.7	34.0 35.1	0.384 0.390	0.884 0.884	-326.0 -331.1	-34.0 -34.2	-0.360 -0.365	-0.385 -0.393
	34.0	21.3	48.7	36.1	0.395	0.884	-335.4	-34.4	-0.370	-0.393 -0.410
	41.0	21.3	48.7	43.5	0.429	0.884	-364.2	-35.6	-0.400	-0.443
	48.0	21.3	48.7	51.0	0.459	0.884	-389.7	-36.4	-0.426	-0.498
	55.0	21.3	48.7	58.4	0.486	0.884	-412.6	-36.9	-0.450	-0.507
	62.0	21.3	48.7	65.9	0.511	0.884	-433.9	-37.3	-0.471	-0.520
	83.0	21.3	48.7	88.2	0.573	0.884	-486.5	-38.0	-0.525	-0.587
	96.0	21.3	48.7	102.0	0.606	0.884	-514.5	-38.3	-0.553	-0.583
	117.0	21.3	48.7	124.3	0.650	0.884	-551.9	-38.5	-0.590	-0.610
	126.0	21.3	48.7	133.8	0.666	0.884	-565.5	-38.6	-0.604	-0.597
	147.0 156.0	21.3 21.3	48.7 48.7	156.1 165.7	0.701 0.714	0.884 0.884	-595.2 -606.2	-38.8 -38.8	-0.634 -0.645	-0.627 -0.630
	177.0	21.3	48.7	188.0	0.714	0.884	-629.1	-38.9	-0.668	-0.637
	186.0	21.3	48.7	197.6	0.752	0.884	-638.5	-38.9	-0.677	-0.660
	207.0	21.3	48.7	219.9	0.774	0.884	-657.2	-39.0	-0.696	-0.673
	216.0	21.3	48.7	229.4	0.783	0.884	-664.8	-39.0	-0.704	-0.670
	237.0	21.3	48.7	251.7	0.801	0.884	-680.1	-39.0	-0.719	-0.667
	246.0	21.3	48.7	261.3	0.809	0.884	-686.9	-39.0	-0.726	-0.650
	267.0	21.3	48.7	283.6	0.824	0.884	-699.6	-39.1	-0.739	-0.702
	276.0	21.3	48.7	293.2	0.831	0.884	-705.5	-39.1	-0.745	-0.677
	297.0	21.3	48.7	315.5	0.844	0.884	-716.6	-39.1	-0.756	-0.688
	306.0	21.3	48.7	325.0	0.849	0.884	-720.8 -731.0	-39.1	-0.760	-0.750
	327.0 336.0	21.3 21.3	48.7 48.7	347.3 356.9	0.861 0.865	0.884 0.884	-731.0 -734.4	-39.1 -39.1	-0.770 -0.774	-0.732 -0.765
	357.0	21.3	48.7	379.2	0.875	0.884	-734.4 -742.9	-39.1 -39.1	-0.774	-0.705 -0.775
	371.0	21.3	48.7	394.1	0.881	0.884	-748.0	-39.2	-0.787	-0.772
	392.0	21.3	48.7	416.4	0.889	0.884	-754.8	-39.2	-0.794	-0.767
	406.0	21.3	48.7	431.2	0.894	0.884	-759.0	-39.2	-0.798	-0.772
	427.0	21.3	48.7	453.5	0.902	0.884	-765.8	-39.2	-0.805	-0.785
	456.0	21.3	48.7	484.3	0.910	0.884	-772.6	-39.2	-0.812	-0.782
	477.0	21.3	48.7	506.7	0.916	0.884	-777.7	-39.2	-0.817	-0.782
	1000.0	21.3	48.7	1062.2	0.979	0.884	-831.2	-39.2	-0.870	
	2500.0	21.3	48.7	2655.4	0.998	0.884	-847.3	-39.3	-0.887	
	5000.0	21.3	48.7 48.7	5310.8 10621.6	1.000	0.884	-849.0 840.0	-39.3 20.2	-0.888	
	10000.0	21.3	48.7	10621.6	1.000	0.884	-849.0	-39.3	-0.888	

HVFAC

HVFAC										
t _s (days)	t – t _s (days)	T (°C)	RH (%)	^t – ^t _s (days)	S(^t)	k _h	ε _{sh} (^t,^t _s) (1E-06)	ε _{au} (^t,^t _s) (1E-06)	ε _{sh,total} (^t,^t _s) (‰)	ε _{sh,exp} (^t, ^t _s) (1E-06)
1	0.400	24.2	40.7	0.406	0.060	0.884	-28.4	0.0	-0.028	()
1	0.100 1.0	21.3 21.3	48.7 48.7	0.106 1.062	0.060 0.186	0.884	-26.4 -87.9	0.0 0.0	-0.028 -0.088	-0.020
o	2.0	21.3	48.7	2.124	0.760	0.884	-07.9 -123.4	0.0	-0.000	-0.028
β_{Th}										
1	3.0	21.3	48.7	3.2	0.315	0.884	-148.9	0.0	-0.149	-0.012
	4.0 5.0	21.3 21.3	48.7 48.7	4.2 5.3	0.360 0.398	0.884 0.884	-170.2 -188.1	0.0 0.0	-0.170 -0.188	-0.090 -0.100
	6.0	21.3	48.7	6.4	0.432	0.884	-100.1 -204.2	0.0	-0.700	-0.122
	6.0	21.3	48.7	6.4	0.432	0.884	-204.2 -204.2	0.0	-0.204	-0.122
	6.0	21.3	48.7	6.4	0.433	0.884	-204.7	0.0	-0.205	-0.122
	6.3	21.3	48.7	6.6	0.439	0.884	-207.5	0.0	-0.208	-0.122
	7.0	21.3	48.7	7.4	0.461	0.884	-217.9	0.0	-0.218	-0.125
	8.0	21.3	48.7	8.5	0.488	0.884	-230.7	0.0	-0.231	-0.132
	9.0	21.3	48.7	9.6	0.512	0.884	-242.0	-0.1	-0.242	-0.158
	10.0	21.3	48.7	10.6	0.534	0.884	-252.4	-0.4	-0.253	-0.182
	11.0	21.3	48.7	11.7	0.555	0.884	-262.3	-0.9	-0.263	-0.192
	12.0	21.3	48.7	12.7	0.574	0.884	-271.3	-2.0	-0.273	-0.225
	13.0	21.3	48.7	13.8	0.591	0.884	-279.4	-3.7	-0.283	-0.235
	20.0	21.3	48.7	21.2	0.688	0.884	-325.2	-46.5	-0.372	-0.272
	27.0	21.3	48.7	28.7	0.753	0.884	-355.9	-111.4	-0.467	-0.330
	27.0	21.3	48.7	28.7	0.753	0.884	-355.9	-111.5	-0.467	-0.330
	27.0	21.3	48.7	28.7	0.753	0.884	-355.9	-111.8	-0.468	-0.330
	27.3	21.3	48.7	28.9	0.755	0.884	-356.9	-113.5	-0.470	-0.330
	28.0	21.3	48.7	29.7	0.761	0.884	-359.7	-119.5	-0.479	-0.315
	29.0	21.3	48.7	30.8	0.768	0.884	-363.0	-127.0	-0.490	-0.333
	30.0	21.3	48.7	31.9	0.775	0.884	-366.3	-134.1	-0.500	-0.327
	31.0	21.3	48.7	32.9	0.782	0.884	-369.6	-140.8	-0.510	-0.335
	32.0	21.3	48.7	34.0	0.788	0.884	-372.5	-146.9	-0.519	-0.338
	33.0	21.3	48.7	35.1	0.794	0.884	-375.3	-152.6	-0.528	-0.335
	34.0	21.3	48.7	36.1	0.800	0.884	-378.2	-157.9	-0.536	-0.332
	41.0	21.3	48.7	43.5	0.836	0.884	-395.2 -407.9	-185.4	-0.581 -0.609	-0.337
	48.0 55.0	21.3 21.3	48.7 48.7	51.0 58.4	0.863 0.885	0.884 0.884	-407.9 -418.3	-201.3 -210.9	-0.609 -0.629	-0.388 -0.410
	62.0	21.3	48.7	65.9	0.902	0.884	-416.3 -426.4	-216.9 -216.9	-0.643	-0.410
	83.0	21.3	48.7	88.2	0.938	0.884	-443.4	-225.3	-0.669	-0.430
	96.0	21.3	48.7	102.0	0.952	0.884	-450.0	-227.4	-0.677	-0.410
	117.0	21.3	48.7	124.3	0.967	0.884	-457.1	-229.2	-0.686	-0.438
	126.0	21.3	48.7	133.8	0.971	0.884	-459.0	-229.7	-0.689	-0.438
	147.0	21.3	48.7	156.1	0.980	0.884	-463.2	-230.3	-0.694	-0.470
	156.0	21.3	48.7	165.7	0.982	0.884	-464.2	-230.5	-0.695	-0.478
	177.0	21.3	48.7	188.0	0.987	0.884	-466.5	-230.8	-0.697	-0.507
	186.0	21.3	48.7	197.6	0.988	0.884	-467.0	-230.9	-0.698	-0.492
	207.0	21.3	48.7	219.9	0.991	0.884	-468.4	-231.0	-0.699	-0.495
	216.0	21.3	48.7	229.4	0.992	0.884	-468.9	-231.1	-0.700	-0.508
	237.0	21.3	48.7	251.7	0.994	0.884	-469.9	-231.1	-0.701	-0.485
	246.0	21.3	48.7	261.3	0.995	0.884	-470.3	-231.2	-0.702	-0.492
	267.0	21.3	48.7	283.6	0.996	0.884	-470.8	-231.2	-0.702	-0.493
	276.0	21.3	48.7	293.2	0.996	0.884	-470.8	-231.2	-0.702	-0.502
	297.0	21.3	48.7	315.5	0.997	0.884	-471.3	-231.3	-0.703	-0.572
	306.0	21.3	48.7	325.0	0.997	0.884	-471.3	-231.3	-0.703	-0.530
	327.0	21.3	48.7	347.3	0.998	0.884	-471.7	-231.3	-0.703	-0.568
	336.0	21.3	48.7	356.9	0.998	0.884	-471.7	-231.3	-0.703	-0.563
	357.0	21.3	48.7	379.2	0.998	0.884	-471.7	-231.3	-0.703	-0.552
	371.0 392.0	21.3	48.7 48.7	394.1 416.4	0.999 0.999	0.884 0.884	-472.2 -472.2	-231.3 -231.3	-0.704 -0.704	-0.587 -0.608
	392.0 406.0	21.3 21.3	48.7 48.7	416.4 431.2	0.999 0.999	0.884 0.884	-472.2 -472.2	-231.3 -231.3	-0.704 -0.704	-0.608 -0.597
	406.0 427.0	21.3 21.3	48.7 48.7	431.2 453.5	0.999 0.999	0.884 0.884	-472.2 -472.2	-231.3 -231.3	-0.704 -0.704	-0.597 -0.593
	427.0 456.0	21.3 21.3	46.7 48.7	453.5 484.3	0.999	0.884	-472.2 -472.2	-231.4	-0.704 -0.704	-0.593 -0.595
	430.0 477.0	21.3	48.7 48.7	404.3 506.7	0.999	0.884	-472.2 -472.2	-231.4 -231.4	-0.70 4 -0.704	-0.595
	1000.0	21.3	48.7	1062.2	1.000	0.884	-472.7	-231.4 -231.4	-0.704	0.031
	2500.0	21.3	48.7	2655.4	1.000	0.884	-472.7 -472.7	-231.4 -231.4	-0.704	
	5000.0	21.3	48.7	5310.8	1.000	0.884	-472.7	-231.4	-0.704	
	10000.0	21.3	48.7	10621.6	1.000	0.884	-472.7	-231.4	-0.704	
		-								

INPUT FOR MODEL B4 - CALIBRATED

	NAC	RAC	HVFAC	
a/c =	6.363	5.979	8.100	
w/c =	0.615	0.614	0.975	
c =	284.6	285.0	200.0	
V/S (mm)=	30	30	30	
k _s =	1.25	1.25	1.25	
_f _c =	30.5	28.1	22.6	
<i>T</i> cem =	0.016	0.016	0.010	
р _{та} =	-0.33	-0.33	-0.33	
ρ _{τw} =	-0.06	-0.06	-0.06	
$p_{\tau c} =$	-0.10	-0.10	-0.10	
$\tau_0 =$	0.016	0.016	0.009	
k _{τa} =	1.18	2.30	1.45	
r _{sh} =	106.20	207.00	73.41	
ε _{cem} =	360.0	360.0	360.0	
ρ _{εa} =	-0.80	-0.80	-0.80	
$p_{\varepsilon w} =$	1.10	1.10	1.10	
$p_{\varepsilon c} =$	0.11	0.11	0.11	
ε ₀ =	568.151	596.183	747.988	
$k_{\varepsilon a} =$	1.24	1.60	0.55	
t ₆₀₇ =	644.30	644.30	644.3	
$t_{ts} =$	113.80	220.87	220.87	
$\varepsilon_{sh,inf}$ (^t _s) =	-716.218	-960.445	-414.219	
τ _{au,cem} =	1.0	1.0	1.0	
$r_{\tau w} =$	3.0	3.0	3.0	
τ _{au} =	4.239	4.218	16.891	
ε _{au,cem} =	210.0	210.0	289.8	
$r_{\varepsilon a} =$	-0.75	-0.75	-0.75	
$r_{\varepsilon w}^{\varepsilon u} =$	-3.5	-3.5	0.0	
ε _{au,inf} =	-37.26	-39.27	-231.39	
$r_t =$	-4.50	-4.50	-4.50	
$r_{\alpha} =$	1.00	1.00	1.20	
α =	1.618	1.616	3.079	

	•	А	•	•
N	1	4	ı	

NAC										
t _s (days)	t – t _s (days)	T (°C)	RH (%)	^t - ^t _s (days)	S(^t)	k _h	ε _{sh} (^t, ^t _s)	ε _{au} (^t,^t _s) (1E-06)	$\epsilon_{sh,total}$ (^t,^t $_s$)	$\varepsilon_{sh,exp,cor}$ $(^{t},^{t}_{s})$
							(1E-06)		(‰)	(1E-06)
1	0.100	21.3	48.7	0.106	0.032	0.884	-20.3	0.0	-0.020	
	1.0	21.3	48.7	1.062	0.100	0.884	-63.3	-0.1	-0.063	-0.043
β_{Th}	2.0	21.3	48.7	2.124	0.140	0.884	-88.6	-0.5	-0.089	-0.065
1	3.0	21.3	48.7	3.2	0.171	0.884	-108.3	-1.6	-0.110	
	4.0	21.3	48.7	4.2	0.197	0.884	-124.7	-3.4	-0.128	
	5.0	21.3	48.7	5.3	0.220	0.884	-139.3	-5.6	-0.145	-0.100
	6.0	21.3	48.7	6.4	0.240	0.884	-152.0	-8.0	-0.160	-0.117
	6.0	21.3	48.7	6.4	0.240	0.884	-152.0	-8.0	-0.160	-0.117
	6.0	21.3	48.7	6.4	0.241	0.884	-152.6	-8.1	-0.161	-0.117
	6.3	21.3	48.7 49.7	6.6	0.245	0.884	-155.1 164.0	-8.6	-0.164 -0.174	-0.117
	7.0 8.0	21.3 21.3	48.7 48.7	7.4 8.5	0.259 0.276	0.884 0.884	-164.0 -174.7	-10.4 -12.7	-0.174 -0.187	-0.143 -0.125
	9.0	21.3	48.7	9.6	0.270	0.884	-17 4 .7 -184.2	-14.8	-0.199	-0.123
	10.0	21.3	48.7	10.6	0.306	0.884	-193.7	-16.7	-0.199	-0.155
	11.0	21.3	48.7	11.7	0.320	0.884	-202.6	-18.4	-0.221	-0.197
	12.0	21.3	48.7	12.7	0.333	0.884	-210.8	-19.9	-0.231	-0.178
	13.0	21.3	48.7	13.8	0.346	0.884	-219.1	-21.3	-0.240	-0.180
	20.0	21.3	48.7	21.2	0.420	0.884	-265.9	-27.7	-0.294	-0.278
	27.0	21.3	48.7	28.7	0.477	0.884	-302.0	-30.8	-0.333	-0.343
	27.0	21.3	48.7	28.7	0.477	0.884	-302.0	-30.8	-0.333	-0.343
	27.0	21.3	48.7	28.7	0.478	0.884	-302.6	-30.9	-0.334	-0.343
	27.3	21.3	48.7	28.9	0.479	0.884	-303.3	-30.9	-0.334	-0.343
	28.0	21.3	48.7	29.7	0.485	0.884	-307.1	-31.2	-0.338	-0.342
	29.0	21.3	48.7	30.8	0.492	0.884	-311.5	-31.5	-0.343	-0.333
	30.0	21.3	48.7	31.9	0.499	0.884	-315.9	-31.7	-0.348	-0.333
	31.0	21.3	48.7	32.9	0.506	0.884	-320.4	-32.0	-0.352	-0.338
	32.0	21.3	48.7	34.0	0.512	0.884	-324.2	-32.2	-0.356	-0.350
	33.0	21.3	48.7 48.7	35.1 36.1	0.519	0.884	-328.6	-32.4	-0.361	-0.345
	34.0 41.0	21.3 21.3	40.7 48.7	36.1 43.5	0.525 0.565	0.884 0.884	-332.4 -357.7	-32.6 -33.7	-0.365 -0.391	-0.368 -0.403
	41.0 48.0	21.3	48.7 48.7	4 3.5 51.0	0.600	0.88 4	-337.7 -379.9	-33.7 -34.5	-0.391 -0.414	-0.403 -0.412
	5 5.0	21.3	48.7	58.4	0.630	0.884	-398.9	-35.0	-0.434	-0.468
	62.0	21.3	48.7	65.9	0.657	0.884	-416.0	-35.4	-0.451	-0.482
	83.0	21.3	48.7	88.2	0.722	0.884	-457.1	-36.1	-0.493	-0.540
	96.0	21.3	48.7	102.0	0.753	0.884	-476.8	-36.3	-0.513	-0.540
	117.0	21.3	48.7	124.3	0.794	0.884	-502.7	-36.6	-0.539	-0.535
	126.0	21.3	48.7	133.8	0.808	0.884	-511.6	-36.6	-0.548	-0.538
	147.0	21.3	48.7	156.1	0.837	0.884	-529.9	-36.8	-0.567	-0.543
	156.0	21.3	48.7	165.7	0.848	0.884	-536.9	-36.8	-0.574	-0.527
	177.0	21.3	48.7	188.0	0.869	0.884	-550.2	-36.9	-0.587	-0.540
	186.0	21.3	48.7	197.6	0.877	0.884	-555.3	-36.9	-0.592	-0.557
	207.0	21.3	48.7	219.9	0.893	0.884	-565. <i>4</i>	-37.0	-0.602	-0.555
	216.0	21.3	48.7	229.4	0.900	0.884	-569.8	-37.0	-0.607	-0.587
	237.0	21.3	48.7	251.7	0.912	0.884	-577.4	-37.0	-0.614	-0.560
	246.0	21.3	48.7	261.3	0.917	0.884	-580.6	-37.0	-0.618	-0.570
	267.0 276.0	21.3 21.3	48.7 48.7	283.6 293.2	0.927 0.930	0.884 0.884	-586.9 -588.8	-37.1 -37.1	-0.624 -0.626	-0.585 -0.605
			46.7 48.7			0.884			-0.626 -0.631	
	297.0 306.0	21.3 21.3	46.7 48.7	315.5 325.0	0.938 0.941	0.884	-593.9 -595.8	-37.1 -37.1	-0.631 -0.633	-0.603 -0.595
	327.0	21.3	48.7 48.7	347.3	0.9 4 1 0.948	0.88 4	-600.2	-37.1 -37.1	-0.637	-0.622
	336.0	21.3	48.7	356.9	0.950	0.884	-601.5	-37.1	-0.639	-0.613
	357.0	21.3	48.7	379.2	0.955	0.884	-604.6	-37.1	-0.642	-0.618
	371.0	21.3	48.7	394.1	0.958	0.884	-606.5	-37.2	-0.644	-0.633
	392.0	21.3	48.7	416.4	0.963	0.884	-609.7	-37.2	-0.647	-0.640
	406.0	21.3	48.7	431.2	0.965	0.884	-611.0	-37.2	-0.648	-0.657
	427.0	21.3	48.7	453.5	0.968	0.884	-612.9	-37.2	-0.650	-0.652
	456.0	21.3	48.7	484.3	0.972	0.884	-615.4	-37.2	-0.653	-0.667
	477.0	21.3	48.7	506.7	0.975	0.884	-617.3	-37.2	-0.655	-0.645
	1000.0	21.3	48.7	1062.2	0.996	0.884	-630.6	-37.2	-0.668	
	2500.0	21.3	48.7	2655.4	1.000	0.884	-633.1	-37.3	-0.670	
	5000.0	21.3	48.7	5310.8	1.000	0.884	-633.1	-37.3	-0.670	
	10000.0	21.3	48.7	10621.6	1.000	0.884	-633.1	-37.3	-0.670	

KAC							_		_	_
t _s (days)	t – t _s (days)	T (°C)	RH (%)	^t - ^t _s (days)	S(^t)	K _h	ε _{sh} (^t, ^t _s) (1E-06)	ε _{au} (^t,^t _s) (1E-06)	ε _{sh,total} (^t,^t _s) (‰)	ε _{sh,exp} (^t,^t _s) (1E-06)
1	0.100	21.3	48.7	0.106	0.023	0.884	-19.5	0.0	-0.020	(12-00)
,	1.0	21.3	48.7	1.062	0.072	0.884	-61.1	-0.1	-0.061	-0.058
β_{Th}	2.0	21.3	48.7	2.124	0.101	0.884	-85.8	-0.5	-0.086	-0.070
1	3.0	21.3	48.7	3.2	0.123	0.884	-104.4	-1.7	-0.106	-0.110
,	4.0	21.3	48.7	4.2	0.142	0.884	-120.6	-3.6	-0.124	-0.113
	5.0	21.3	48.7	5.3	0.142	0.884	-120.0 -135.0	-5.9	-0.12 4 -0.141	-0.113
	6.0	21.3	48.7	6.4	0.139	0.884	-133.0 -147.7	-8.5	-0.1 4 1 -0.156	-0.120 -0.155
	6.0	21.3	48.7	6.4	0.174	0.884	-147.7 -147.7	-8.5	-0.156	-0.155
	6.0	21.3	48.7	6.4	0.174	0.884	-147.7	-8.6	-0.156	-0.155
	6.3	21.3	48.7	6.6	0.177	0.884	-150.3	-9.1	-0.159	-0.140
	7.0	21.3	48.7	7.4	0.177	0.884	-158.8	-11.0	-0.170	-0.155
	8.0	21.3	48.7	8.5	0.200	0.884	-169.8	-13.4	-0.183	-0.162
	9.0	21.3	48.7	9.6	0.212	0.884	-180.0	-15.6	-0.196	-0.198
	10.0	21.3	48.7	10.6	0.223	0.884	-189.3	-17.7	-0.207	-0.207
	11.0	21.3	48.7	11.7	0.233	0.884	-197.8	-19.5	-0.217	-0.172
	12.0	21.3	48.7	12.7	0.243	0.884	-206.3	-21.1	-0.227	-0.220
	13.0	21.3	48.7	13.8	0.253	0.884	-214.8	-22.5	-0.237	-0.245
	20.0	21.3	48.7	21.2	0.310	0.884	-263.2	-29.2	-0.292	-0.320
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.0	21.3	48.7	28.7	0.356	0.884	-302.3	-32.5	-0.335	-0.383
	27.3	21.3	48.7	28.9	0.357	0.884	-303.1	-32.6	-0.336	-0.383
	28.0	21.3	48.7	29.7	0.362	0.884	-307.4	-32.9	-0.340	-0.385
	29.0	21.3	48.7	30.8	0.368	0.884	-312.4	-33.2	-0.346	-0.387
	30.0	21.3	48.7	31.9	0.373	0.884	-316.7	-33.5	-0.350	-0.402
	31.0	21.3	48.7	32.9	0.379	0.884	-321.8	-33.7	-0.356	-0.395
	32.0	21.3	48.7	34.0	0.384	0.884	-326.0	-34.0	-0.360	-0.385
	33.0	21.3	48.7	35.1	0.390	0.884	-331.1	-34.2	-0.365	-0.393
	34.0	21.3	48.7	36.1	0.395	0.884	-335.4	-34.4	-0.370	-0.410
	41.0	21.3	48.7	43.5	0.429	0.884	-364.2	-35.6	-0.400	-0.443
	48.0	21.3	48.7	51.0	0.459	0.884	-389.7	-36.4	-0.426	-0.498
	55.0	21.3	48.7	<i>58.4</i>	0.486	0.884	-412.6	-36.9	-0.450	-0.507
	62.0	21.3	48.7	65.9	0.511	0.884	-433.9	-37.3	-0.471	-0.520
	83.0	21.3	48.7	88.2	0.573	0.884	-486.5	-38.0	-0.525	-0.587
	96.0	21.3	48.7	102.0	0.606	0.884	-514.5	-38.3	-0.553	-0.583
	117.0	21.3	48.7	124.3	0.650	0.884	-551.9	-38.5	-0.590	-0.610
	126.0	21.3	48.7	133.8	0.666	0.884	-565.5	-38.6	-0.604	-0.597
	147.0	21.3	48.7	156.1	0.701	0.884	-595.2	-38.8	-0.634	-0.627
	156.0	21.3	48.7	165.7	0.714	0.884	-606.2	-38.8	-0.645	-0.630
	177.0	21.3	48.7	188.0	0.741	0.884	-629.1	-38.9	-0.668	-0.637
	186.0	21.3	48.7 48.7	197.6 219.9	0.752 0.774	0.884 0.884	-638.5	-38.9	-0.677	-0.660
	207.0 216.0	21.3 21.3	46.7 48.7	219.9 229.4	0.77 4 0.783	0.88 4	-657.2 -664.8	-39.0 -39.0	-0.696 -0.704	-0.673 -0.670
	237.0	21.3	48.7	229. 4 251.7	0.763	0.884	-680.1	-39.0	-0.704	-0.667
	246.0	21.3	48.7	261.3	0.809	0.884	-686.9	-39.0	-0.726	-0.650
	267.0	21.3	48.7	283.6	0.824	0.884	-699.6	-39.1	-0.720	-0.702
	276.0	21.3	48.7	293.2	0.831	0.884	-705.5	-39.1 -39.1	-0.735 -0.745	-0.702
	297.0	21.3	48.7	315.5	0.844	0.884	-716.6	-39.1	-0.756	-0.688
	306.0	21.3	48.7	325.0	0.849	0.884	-720.8	-39.1	-0.760	-0.750
	327.0	21.3	48.7	347.3	0.861	0.884	-731.0	-39.1	-0.770	-0.732
	336.0	21.3	48.7	356.9	0.865	0.884	-734.4	-39.1	-0.774	-0.765
	357.0	21.3	48.7	379.2	0.875	0.884	-742.9	-39.1	-0.782	-0.775
	371.0	21.3	48.7	394.1	0.881	0.884	-748.0	-39.2	-0.787	-0.772
	392.0	21.3	48.7	416.4	0.889	0.884	-754.8	-39.2	-0.794	-0.767
	406.0	21.3	48.7	431.2	0.894	0.884	-759.0	-39.2	-0.798	-0.772
	427.0	21.3	48.7	453.5	0.902	0.884	-765.8	-39.2	-0.805	-0.785
	456.0	21.3	48.7	484.3	0.910	0.884	-772.6	-39.2	-0.812	-0.782
	477.0	21.3	48.7	506.7	0.916	0.884	-777.7	-39.2	-0.817	-0.782
	1000.0	21.3	48.7	1062.2	0.979	0.884	-831.2	-39.2	-0.870	
	2500.0	21.3	48.7	2655.4	0.998	0.884	-847.3	-39.3	-0.887	
	5000.0	21.3	48.7	5310.8	1.000	0.884	-849.0	-39.3	-0.888	
	10000.0	21.3	48.7	10621.6	1.000	0.884	-849.0	-39.3	-0.888	

HVFAC

t _s (days)	t – t _s (days)	T (°C)	RH (%)	^t - ^t _s (days)	S(^t)	k _h	ε _{sh} (^t,^t _s) (1E-06)	ε _{au} (^t,^t _s) (1E-06)	ε _{sh,total} (^t,^t _s) (‰)	ε _{sh,exp} (^t,^t s) (1Ε-06)
1	0.100	21.3	48.7	0.106	0.038	0.884	-13.9	0.0	-0.014	(12 00)
	1.0	21.3	48.7	1.062	0.120	0.884	-43.9	0.0	-0.044	-0.020
β_{Th}	2.0	21.3	48.7	2.124	0.168	0.884	-61.5	0.0	-0.062	-0.028
1	3.0	21.3	48.7	3.2	0.205	0.884	-75.1	0.0	-0.075	-0.012
	4.0	21.3	48.7	4.2	0.236	0.884	-86.4	0.0	-0.086	-0.090
	5.0	21.3	48.7	5.3	0.263	0.884	-96.3	0.0	-0.096	-0.100
	6.0	21.3	48.7	6.4	0.286	0.884	-104.7	0.0	-0.105	-0.122
	6.0	21.3	48.7	6.4	0.286	0.884	-104.7	0.0	-0.105	-0.122
	6.0	21.3	48.7	6.4	0.287	0.884	-105.1	0.0	-0.105	-0.122
	6.3	21.3	48.7	6.6	0.292	0.884	-106.9	0.0	-0.107	-0.122
	7.0	21.3	48.7	7.4	0.308	0.884	-112.8	0.0	-0.113	-0.125
	8.0	21.3	48.7	8.5	0.328	0.884	-120.1	0.0	-0.120	-0.132
	9.0	21.3	48.7	9.6	0.346	0.884	-126.7	-0.1	-0.127	-0.158
	10.0	21.3	48.7	10.6	0.363	0.884	-132.9	-0.4	-0.133	-0.182
	11.0	21.3	48.7	11.7	0.379	0.884	-138.8	-0.9	-0.140	-0.192
	12.0	21.3	48.7	12.7	0.394	0.884	-144.3	-2.0	-0.146	-0.225
	13.0	21.3	48.7	13.8	0.408	0.884	-149.4	-3.7	-0.153	-0.235
	20.0	21.3	48.7	21.2	0.491	0.884	-179.8	-46.5	-0.226	-0.272
	27.0	21.3	48.7	28.7	0.555	0.884	-203.2	-111.4	-0.315	-0.330
	27.0	21.3	48.7	28.7	0.555	0.884	-203.2	-111.5	-0.315	-0.330
	27.0 27.3	21.3 21.3	48.7 48.7	28.7 28.9	0.555 0.557	0.884 0.884	-203.2 -204.0	-111.8 -113.5	-0.315 -0.318	-0.330 -0.330
	27.3 28.0	21.3 21.3	40.7 48.7	26.9 29.7	0.563	0.88 4	-20 4 .0 -206.2	-113.5 -119.5	-0.316 -0.326	-0.330
	29.0	21.3	46.7 48.7	29.7 30.8	0.570	0.88 4	-200.2 -208.7	-119.5 -127.0	-0.326	-0.313
	30.0	21.3	48.7	31.9	0.578	0.884	-200.7 -211.6	-127.0 -134.1	-0.346	-0.333
	31.0	21.3	48.7	32.9	0.585	0.884	-211.0	-140.8	-0.355	-0.335
	32.0	21.3	48.7	34.0	0.592	0.884	-216.8	-146.9	-0.364	-0.338
	33.0	21.3	48.7	35.1	0.599	0.884	-219.3	-152.6	-0.372	-0.335
	34.0	21.3	48.7	36.1	0.605	0.884	-221.5	-157.9	-0.379	-0.332
	41.0	21.3	48.7	43.5	0.647	0.884	-236.9	-185.4	-0.422	-0.337
	48.0	21.3	48.7	51.0	0.682	0.884	-249.7	-201.3	-0.451	-0.388
	55.0	21.3	48.7	58.4	0.712	0.884	-260.7	-210.9	-0.472	-0.410
	62.0	21.3	48.7	65.9	0.738	0.884	-270.2	-216.9	-0.487	-0.427
	83.0	21.3	48.7	88.2	0.799	0.884	-292.6	-225.3	-0.518	-0.430
	96.0	21.3	48.7	102.0	0.827	0.884	-302.8	-227.4	-0.530	-0.410
	117.0	21.3	48.7	124.3	0.862	0.884	-315.6	-229.2	-0.545	-0.438
	126.0	21.3	48.7	133.8	0.874	0.884	-320.0	-229.7	-0.550	-0.438
	147.0	21.3	48.7	156.1	0.897	0.884	-328.5	-230.3	-0.559	-0.470
	156.0	21.3	48.7	165.7	0.906	0.884	-331.7	-230.5	-0.562	-0.478
	177.0	21.3	48.7	188.0	0.922	0.884	-337.6	-230.8	-0.568	-0.507
	186.0	21.3	48.7	197.6	0.928	0.884	-339.8	-230.9	-0.571	-0.492
	207.0	21.3	48.7	219.9	0.939	0.884	-343.8	-231.0	-0.575	-0.495
	216.0	21.3	48.7 48.7	229.4	0.943	0.884	-345.3	-231.1	-0.576	-0.508
	237.0 246.0	21.3	48.7 48.7	251.7 261.2	0.952	0.884	-348.6 340.7	-231.1 231.2	-0.580 0.581	-0.485
	246.0 267.0	21.3 21.3	48.7 48.7	261.3 283.6	0.955 0.962	0.884 0.884	-349.7 -352.3	-231.2 -231.2	-0.581 -0.584	-0.492 -0.493
	267.0 276.0	21.3 21.3	40.7 48.7	293.2	0.962 0.964	0.884	-352.3 -353.0	-231.2 -231.2	-0.56 4 -0.584	-0.493
	297.0	21.3	48.7	293.2 315.5	0.969	0.884	-354.8	-231.2 -231.3	-0.586	-0.572
	306.0	21.3	48.7 48.7	325.0	0.909	0.884	-355.6	-231.3 -231.3	-0.587	-0.530
	327.0	21.3	48.7	347.3	0.975	0.884	-357.0	-231.3	-0.588	-0.568
	336.0	21.3	48.7	356.9	0.976	0.884	-357.4	-231.3	-0.589	-0.563
	357.0	21.3	48.7	379.2	0.979	0.884	-358.5	-231.3	-0.590	-0.552
	371.0	21.3	48.7	394.1	0.981	0.884	-359.2	-231.3	-0.591	-0.587
	392.0	21.3	48.7	416.4	0.983	0.884	-359.9	-231.3	-0.591	-0.608
	406.0	21.3	48.7	431.2	0.984	0.884	-360.3	-231.3	-0.592	-0.597
	427.0	21.3	48.7	453.5	0.986	0.884	-361.0	-231.3	-0.592	-0.593
	456.0	21.3	48.7	484.3	0.988	0.884	-361.8	-231.4	-0.593	-0.595
	477.0	21.3	48.7	506.7	0.990	0.884	-362.5	-231.4	-0.594	-0.597
	1000.0	21.3	48.7	1062.2	0.999	0.884	-365.8	-231.4	-0.597	
	2500.0	21.3	48.7	2655.4	1.000	0.884	-366.2	-231.4	-0.598	
	5000.0	21.3	48.7	5310.8	1.000	0.884	-366.2	-231.4	-0.598	
	10000.0	21.3	48.7	10621.6	1.000	0.884	-366.2	-231.4	-0.598	

INPUT AND CALCULATION - MC10

	INPUT AND CALCULATION - MC10												
NAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β_{as} (t)	β_{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1 E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	30.5	1	0.100	21.3	48.7	0.106	0.061	-1.371	0.029	-2.4	-24.3	-0.027	
α _{as} =	600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-7.2	-76.1	-0.083	-0.043
ε_{cas0} =	-39.56	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-9.7	-107.9	-0.118	-0.065
α _{ds1} =	6		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-11.6	-131.4	-0.143	
α _{ds2} =	0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.18	-13.1	-150.6	-0.164	
ε _{cds0} =	610.28	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-14.3	-168.2	-0.183	-0.100
β _{s1} =	1.00		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-15.3	-183.2	-0.199	-0.117
$h_0 =$	60		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-15.3	-183.2	-0.199	-0.117
, i			6.0	21.3	48.7	6.4	0.388	-1.371	0.22	-15.3	-184.1	-0.199	-0.117
			6.3	21.3	48.7	6.6	0.393	-1.371	0.224	-15.5	-187.4	-0.203	-0.117
			7.0	21.3	48.7	7.4	0.411	-1.371	0.236	-16.3	-197.5	-0.214	-0.143
			8.0	21.3	48.7	8.5	0.432	-1.371	0.251	-17.1	-210	-0.227	-0.125
			9.0	21.3	48.7	9.5	0.451	-1.371	0.265	-17.8	-221.7	-0.240	-0.148
			10.0	21.3	48.7	10.6	0.469	-1.371	0.279	-18.6	-233.4	-0.252	-0.155
			11.0	21.3	48.7	11.7	0.485	-1.371	0.291	-19.2	-243.5	-0.263	-0.197
			12.0	21.3	48.7 48.7	12.7 13.8	0.500 0.514	-1.371 -1.371	0.303 0.314	-19.8 -20.3	-253.5	-0.273 -0.283	-0.178 -0.180
			13.0 20.0	21.3 21.3	48.7	21.2	0.514	-1.371 -1.371	0.314	-20.3 -23.4	-262.7 -317.9	-0.263	-0.78
			27.0	21.3	48.7	28.6	0.646	-1.371	0.43	-25.6	-359.8	-0.385	-0.270
			27.0	21.3	48.7	28.6	0.646	-1.371	0.43	-25.6	-359.8	-0.385	-0.343
			27.0	21.3	48.7	28.7	0.647	-1.371	0.431	-25.6	-360.6	-0.386	-0.343
			27.3	21.3	48.7	28.9	0.648	-1.371	0.432	-25.6	-361.5	-0.387	-0.343
			28.0	21.3	48.7	29.7	0.653	-1.371	0.437	-25.8	-365.6	-0.391	-0.342
			29.0	21.3	48.7	30.7	0.659	-1.371	0.443	-26.1	-370.7	-0.397	-0.333
			30.0	21.3	48.7	31.8	0.666	-1.371	0.449	-26.3	-375.7	-0.402	-0.333
			31.0	21.3	48.7	32.9	0.672	-1.371	0.455	-26.6	-380.7	-0.407	-0.338
			32.0	21.3	48.7 49.7	33.9	0.677	-1.371 1.271	0.461	-26.8	-385.7	-0.413	-0.350
			33.0 34.0	21.3 21.3	48.7 48.7	35.0 36.0	0.683 0.688	-1.371 -1.371	0.466 0.472	-27 -27.2	-389.9 -394.9	-0.417 -0.422	-0.345 -0.368
			41.0	21.3	48.7	43.5	0.722	-1.371	0.506	-28.6	-423.4	-0.452	-0.403
			48.0	21.3	48.7	50.9	0.750	-1.371	0.536	-29.7	-448.5	-0.478	-0.412
			55.0	21.3	48.7	58.3	0.773	-1.371	0.562	-30.6	-470.2	-0.501	-0.468
			62.0	21.3	48.7	65.7	0.793	-1.371	0.586	-31.4	-490.3	-0.522	-0.482
			83.0	21.3	48.7	88.0	0.838	-1.371	0.641	-33.2	-536.3	-0.570	-0.540
			96.0	21.3	48.7	101.8	0.859	-1.371	0.668	-34	-558.9	-0.593	-0.540
			117.0	21.3	48.7	124.0	0.885	-1.371	0.704	-35	-589	-0.624	-0.535
			126.0	21.3	48.7	133.6	0.894	-1.371	0.717	-35.4	-599.9	-0.635	-0.538
			147.0 156.0	21.3 21.3	48.7 48.7	155.8 165.4	0.912 0.918	-1.371 -1.371	0.744 0.753	-36.1 -36.3	-622.5 -630	-0.659 -0.666	-0.543 -0.527
			177.0	21.3	48.7	187.7	0.930	-1.371	0.773	-36.8	-646.8	-0.684	-0.540
			186.0	21.3	48.7	197.2	0.935	-1.371	0.781	-37	-653.5	-0.691	-0.557
			207.0	21.3	48.7	219.5	0.944	-1.371	0.797	-37.3	-666.8	-0.704	-0.555
			216.0	21.3	48.7	229.0	0.947	-1.371	0.803	-37.5	-671.9	-0.709	-0.587
			237.0	21.3	48.7	251.3	0.954	-1.371	0.816	-37.7	-682.7	-0.720	-0.560
			246.0	21.3	48.7	260.8	0.957	-1.371	0.821	-37.9	-686.9	-0.725	-0.570
			267.0	21.3	48.7	283.1	0.962	-1.371	0.832	-38.1	-696.1	-0.734	-0.585
			276.0 297.0	21.3	48.7 48.7	292.6 314.9	0.964	-1.371 -1.371	0.836 0.845	-38.1	-699.5 -707	-0.738 -0.745	-0.605 -0.603
			306.0	21.3 21.3	48.7 48.7	314.9 324.4	0.968 0.970	-1.371 -1.371	0.849	-38.3 -38.4	-707 -710.4	-0.749	-0.595
			327.0	21.3	48.7	346.7	0.973	-1.371	0.856	-38.5	-716.2	-0.755	-0.622
			336.0	21.3	48.7	356.2	0.974	-1.371	0.859	-38.5	-718.7	-0.757	-0.613
			357.0	21.3	48.7	378.5	0.977	-1.371	0.866	-38.7	-724.6	-0.763	-0.618
			371.0	21.3	48.7	393.3	0.979	-1.371	0.87	-38.7	-727.9	-0.767	-0.633
			392.0	21.3	48.7	415.6	0.981	-1.371	0.876	-38.8	-732.9	-0.772	-0.640
			406.0	21.3	48.7	430.4	0.982	-1.371	0.88	-38.8	-736.3	-0.775	-0.657
			427.0	21.3	48.7	452.7	0.984	-1.371	0.884	-38.9	-739.6	-0.779	-0.652
			456.0 477.0	21.3	48.7	483.4	0.986	-1.371 1.371	0.891	-39	-745.5	-0.785	-0.667
			477.0 1000.0	21.3 21.3	48.7 48.7	505.7 1060.2	0.987 0.998	-1.371 -1.371	0.895 0.945	-39 -39.5	-748.8 -790.7	-0.788 -0.830	-0.645
			2500.0	21.3	48.7 48.7	2650.4	1.000	-1.371 -1.371	0.945	-39.5 -39.6	-790.7 -817.4	-0.857	
			5000.0	21.3	48.7	5300.8	1.000	-1.371	0.988	-39.6	-826.7	-0.866	
			10000.0	21.3	48.7	10601.7	1.000	-1.371	0.994	-39.6	-831.7	-0.871	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	RAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	(t − t _s) _T (days)	β_{as} (t)	β_{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
c _{max} = 3.447 15-66 20 21.3 48.7 21.2 0.246 -1.371 0.129 -8.5 -11.11 -0.120 -0.07 c _{max} = 0.012 40 21.3 48.7 4.2 0.330 -1.371 0.169 -11.4 -15.50 -0.166 -0.170 ρ _H = 1 1.00 6.0 21.3 48.7 6.4 0.387 -1.371 0.20 -12.4 -1.371 -0.186 -0.202 -0.155 h _p = 1 6.0 6.0 21.3 48.7 6.4 0.387 -1.371 0.219 +1.33 -188.6 -0.202 -0.155 6.0 21.3 48.7 6.4 0.388 -1.371 0.229 -1.34 -1.886 -0.202 -0.155 6.0 21.3 48.7 7.4 0.411 -1.371 0.224 +1.35 -1.022 -1.34 -1.02 -0.200 -0.172 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.200 -0.20	$f_{cm} =$	28.1	1		21.3	48.7		0.061	-1.371	0.029			-0.027	,
Capt		600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-6.2	-78.4	-0.085	-0.058
$\begin{array}{c} a_{n,1} = \begin{array}{c} a_{n,2} = \begin{array}{c} a_{0012} \\ a_{002} = \begin{array}{c} a_{002} \\ a_{003} = \begin{array}{c} a_{0012} \\ a_{003} = \begin{array}{c} a_{002} \\ a_{003} = \begin{array}{c} a_{002} \\ a_{003} = \begin{array}{c} a_{003} \\ a_{003} = \begin{array}{c} a_{003}$	ε_{cas0} =	-34.47	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-8.5	-111.1	-0.120	-0.07
$ \begin{array}{c} \mathbf{a}_{an2} = \begin{array}{c} \mathbf{a}_{5011} \\ \mathbf{g}_{11} = \begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \mathbf{a}_{2001} = \begin{array}{c} \\ \\ \end{array} \begin{array}{c} $		6		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-10.1	-135.2	-0.145	-0.110
$ \begin{array}{c} \mathbf{r}_{\mathbf{cab}} = \\ \mathbf{g}_{\mathbf{n}} = \\ \mathbf{n} =$		0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.180	-11.4	-155.0	-0.166	-0.113
$\begin{array}{c} \mathbf{p}_{n} = \begin{array}{c} 100 \\ \mathbf{h}_{0} = \begin{array}{c} 60 \\ 60 \\ \end{array} \begin{array}{c} 48.7 \\ 6.0 \\ \end{array} \begin{array}{c} 48.7 \\ 6.4 \\ \end{array} \begin{array}{c} 6.4 \\ \end{array} \begin{array}{c} 0.387 \\ \end{array} \begin{array}{c} + 1.371 \\ 0.279 \\ \end{array} \begin{array}{c} -13.3 \\ -13.8 \\ -18.6 \\ \end{array} \begin{array}{c} -0.202 \\ -0.155 \\ \end{array} \begin{array}{c} -0.155 \\ 0.003 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.155 \\ -0.155 \\ \end{array} \begin{array}{c} -0.003 \\ 0.003 \\ -0.155 \\ -0.$	ε _{cds0} =	628.11	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-12.4	-173.1	-0.186	-0.120
h ₀ = 60 6.0 21.3 48.7 6.4 0.387 -1.371 0.220 -1.33 -1.88.6 0.2002 -0.155 6.3 21.3 48.7 6.4 0.388 -1.371 0.224 +13.5 -192.9 -0.206 -0.140 7.0 21.3 48.7 7.4 0.411 -1.377 0.236 -142 -2032 -0.207 -0.165 6.0 21.3 48.7 7.6 0.412 -1.377 0.226 -142 -2032 -0.207 -0.165 6.0 21.3 48.7 10.6 0.452 -1.377 0.229 -162 -20.0 0.227 -0.172 11.0 21.3 48.7 11.7 0.485 -1.371 0.229 -162 -20.0 -0.272 -0.172 12.0 21.3 48.7 11.7 0.485 -1.371 0.331 +1.7 -20.0 -0.172 -0.272 13.0 21.3 48.7 12.2 0.991<	$\beta_{s1} =$	1.00		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-13.3	-188.6	-0.202	-0.155
6.0 21.3 48.7 6.4 0.388 -1.371 0.222 -13.4 -1.99.5 0.203 -0.156 6.3 21.3 48.7 6.6 0.393 -1.371 0.224 -13.5 -192.9 0.206 0.140 7.0 21.3 48.7 7.4 0.411 -1.371 0.236 -14.2 -20.32 -0.217 0.155 8.0 21.3 48.7 7.4 0.411 -1.371 0.236 -14.2 -20.32 -0.217 0.155 8.0 21.3 48.7 7.5 0.451 -1.371 0.251 -14.9 -216.1 0.231 -0.162 9.0 21.3 48.7 10.7 0.5 0.451 -1.371 0.255 -1.5 5 -22.8 2 -0.244 -0.198 1.0 0.21 1.0 0.21 1.0 0.21 1.0 0.21 1.0 0.21 1.0 0.20 1.0		60		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-13.3	-188.6	-0.202	-0.155
7.0 21.3 48.7 7.4 0.411 -1.371 0.236 -14.2 -20.32 -0.217 -0.155 8.0 21.3 48.7 8.5 0.432 -1.371 0.251 -1.49, -216.1 0.231 -0.162 9.0 21.3 48.7 8.5 0.451 -1.371 0.251 -1.49, -216.1 0.231 -0.162 9.0 21.3 48.7 10.6 0.469 -1.371 0.279 -1.62 2.20.3 0.267 -0.207 11.0 21.3 48.7 11.7 0.485 -1.371 0.291 -16.2 2.20.3 0.267 -0.172 11.0 21.3 48.7 11.7 0.485 -1.371 0.291 -16.2 2.20.6 0.267 -0.172 11.0 21.3 48.7 11.7 0.485 -1.371 0.303 -1.374 -1.77 2.20.0 9.278 0.220 13.0 21.3 48.7 12.7 0.500 -1.371 0.303 -1.374 -1.77 2.20.0 9.278 0.220 21.3 48.7 12.7 0.500 -1.371 0.303 -1.374 -1.77 2.20.0 9.278 0.220 21.3 48.7 12.7 0.591 -1.371 0.360 -2.23 3.70.3 0.383 -0.383 2.70 21.3 48.7 21.2 0.591 -1.371 0.360 -2.23 3.70.3 0.383 -0.383 2.70 21.3 48.7 28.5 0.464 -1.371 0.430 -2.23 3.70.3 0.393 -0.383 2.70 2.70 21.3 48.7 28.5 0.464 -1.371 0.430 -2.23 3.70.3 0.393 -0.383 2.20 21.3 48.7 28.5 0.664 -1.371 0.430 -2.23 3.70.3 0.393 -0.383 2.20 21.3 48.7 29.7 0.669 -1.371 0.430 -2.23 3.70.3 0.394 -0.385 2.90 2.13 48.7 29.7 0.659 -1.371 0.472 -2.23 3.70.3 0.394 -0.385 2.90 2.13 48.7 3.7 0.659 -1.371 0.472 -2.23 3.70.3 0.394 -0.385 2.90 2.13 48.7 3.7 0.659 -1.371 0.472 -2.23 3.70.3 0.399 -0.385 3.30 2.13 48.7 3.7 3.8 0.666 -1.371 0.447 -2.23 3.70.3 0.399 -0.385 3.30 2.13 48.7 3.8 0.666 -1.371 0.447 -2.23 3.70.3 0.399 0.385 3.30 2.13 48.7 3.8 0.666 -1.371 0.447 -2.23 3.70.3 0.00 2.0 0.385 3.30 0.83 3.30 2.13 48.7 3.5 0.668 -1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 2.13 48.7 3.8 0.666 -1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 0.213 48.7 3.8 0.666 -1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 0.213 48.7 3.8 0.666 -1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 0.213 48.7 3.8 0.666 1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 0.213 48.7 3.8 0.666 1.371 0.471 -2.37 3.391.8 0.415 0.395 3.30 0.213 48.7 3.8 0.666 1.371 0.471 -2.37 4.055 0.404 0.387 3.30 0.425 0.395 3.30 0.213 48.7 3.8 0.005 3.30 0.885 1.371 0.471 -2.37 4.055 0.404 0.387 3.30 0.425 0.395 3.30 0.213 48.7 3.5 0.406 0.885 1.371 0.471 0.472 0.395 0.480 0.495 0.495 0.495 0.495 0.495 0.495 0.495 0.4														
8.0 21.3 48.7 8.5 0.432 -1.371 0.251 -1.49 -216.1 0.281 -0.162 9.0 21.3 48.7 9.5 0.451 -1.371 0.259 -1.62 -2.240.3 -0.267 -0.297 11.0 21.3 48.7 11.7 0.6 0.469 -1.371 0.279 -1.62 -2.40.3 -0.267 -0.207 12.0 21.3 48.7 11.7 0.800 -1.371 0.291 -1.62 -2.40.3 -0.267 -0.207 12.0 21.3 48.7 11.7 0.800 -1.371 0.291 -1.62 -2.60.6 -0.267 -0.207 12.0 21.3 48.7 11.8 0.514 -1.371 0.303 -1.72 -2.60.9 -0.278 -0.220 13.0 21.3 48.7 12.7 0.800 -1.371 0.303 -1.72 -2.60.9 -0.267 -0.248 13.0 21.3 48.7 12.8 0.614 -1.371 0.303 -1.72 -2.60.9 -0.248 13.0 21.3 48.7 12.8 0.614 -1.371 0.380 -2.0.4 -3.272 -0.233 -0.383 12.0 21.3 48.7 28.6 0.646 -1.371 0.380 -2.0.4 -3.273 -0.344 -0.383 12.0 21.3 48.7 28.6 0.646 -1.371 0.431 -2.23 -3.712 -0.394 -0.383 12.0 21.3 48.7 28.6 0.646 -1.371 0.431 -2.23 -3.712 -0.394 -0.383 12.0 21.3 48.7 28.9 0.648 -1.371 0.431 -2.23 -3.712 -0.394 -0.383 12.0 21.3 48.7 28.9 0.648 -1.371 0.431 -2.23 -3.712 -0.394 -0.383 12.0 21.3 48.7 32.7 0.659 -1.371 0.437 -2.25 -3.76.3 -0.399 -0.385 12.0 21.3 48.7 30.7 0.659 -1.371 0.449 -2.30 -3.86.7 -0.400 -0.387 13.0 21.3 48.7 33.8 0.666 -1.371 0.449 -2.30 -3.86.7 -0.410 -0.367 13.0 21.3 48.7 33.9 0.672 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 33.9 0.672 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 33.9 0.672 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 35.0 0.683 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 35.0 0.683 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 35.0 0.683 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 35.0 0.683 -1.371 0.469 -2.32 -3.91.6 -0.415 -0.395 13.0 21.3 48.7 35.0 0.683 -1.371 0.466 -2.3.3 -4.075 -0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0.367 13.0 0.406 -0														
9.0 21.3 48.7 9.5 0.451 -1.371 0.266 -1.5.5 -228.2 0.244 -0.198 10.0 21.3 48.7 10.6 0.469 -1.371 0.279 1-6.2 -24.03 -0.287 -0.207 11.0 21.3 48.7 11.7 0.485 -1.371 0.291 -1.6.7 -250.6 -0.267 -0.172 12.0 21.3 48.7 12.7 0.800 -1.371 0.291 -1.6.7 -250.9 -0.267 -0.172 20.0 21.3 48.7 12.7 0.800 -1.371 0.314 -1.77 -270.4 0.288 -0.245 20.0 21.3 48.7 21.2 0.891 -1.371 0.314 -1.77 -270.4 0.288 -0.245 27.0 21.3 48.7 21.2 0.891 -1.371 0.340 -22.3 -370.3 0.383 27.0 21.3 48.7 28.6 0.646 -1.371 0.430 -22.3 -370.3 0.383 27.0 21.3 48.7 28.6 0.646 -1.371 0.430 -22.3 -370.3 0.383 27.0 21.3 48.7 28.6 0.646 -1.371 0.430 -22.3 -370.3 0.383 27.0 21.3 48.7 28.6 0.646 -1.371 0.430 -22.3 -370.3 0.383 27.0 21.3 48.7 28.9 0.647 -1.371 0.430 -22.3 -370.3 0.383 28.0 21.3 48.7 28.9 0.672 -1.371 0.432 -22.5 -376.2 0.034 0.383 29.0 21.3 48.7 39.0 0.653 -1.371 0.443 -22.7 -381.5 0.044 0.387 29.0 21.3 48.7 39.0 0.653 -1.371 0.443 -22.7 -381.5 0.044 0.387 31.0 21.3 48.7 33.9 0.666 -1.371 0.443 -22.7 -381.5 0.044 0.387 33.0 21.3 48.7 33.9 0.677 -1.371 0.455 -23.2 391.8 0.045 0.383 33.0 21.3 48.7 33.9 0.677 -1.371 0.455 -23.2 391.8 0.045 0.383 33.0 21.3 48.7 33.0 0.688 -1.371 0.455 -23.2 391.8 0.045 0.383 33.0 21.3 48.7 35.0 0.688 -1.371 0.466 -23.5 -401.9 0.045 33.0 21.3 48.7 35.0 0.688 -1.371 0.466 -23.5 -401.9 0.045 33.0 21.3 48.7 35.0 0.688 -1.371 0.466 -23.5 -401.9 0.046 0.385 0.333 0.2 1.3 48.7 35.0 0.688 -1.371 0.506 -24.9 46.6 0.650 0.430 41.0 21.3 48.7 35.0 0.688 -1.371 0.466 -23.5 -401.9 0.046 0.042 0.385 0.046 0.041 0.047 0														
10.0														
11.0														
12.0 21.3 48.7 12.7 0.500 1.1371 0.303 1.7.2 2.66.9 0.278 0.220 13.3 48.7 13.8 0.514 1.377 0.314 1.7.7 2.704 0.288 0.245 20.0 21.3 48.7 21.2 0.591 1.371 0.380 2.04 3.27.2 0.348 0.245 27.0 21.3 48.7 28.6 0.646 1.371 0.430 22.3 3.70.3 0.393 0.383 27.0 21.3 48.7 28.6 0.646 1.371 0.430 22.3 3.70.3 0.393 0.383 27.0 21.3 48.7 28.6 0.646 1.371 0.430 22.3 3.70.3 0.393 0.383 27.0 21.3 48.7 28.9 0.646 1.371 0.430 22.3 3.70.3 0.393 0.383 27.0 21.3 48.7 28.9 0.646 1.371 0.431 22.3 3.70.2 0.394 0.383 27.3 21.3 48.7 28.9 0.648 1.371 0.431 22.3 3.70.2 0.394 0.383 28.0 21.3 48.7 28.9 0.658 1.371 0.432 22.3 3.70.0 0.394 0.383 28.0 21.3 48.7 28.9 0.659 1.371 0.437 22.5 3.70.3 0.399 0.385 29.0 21.3 48.7 31.8 0.666 1.371 0.443 22.3 3.70.0 0.394 0.383 30.0 21.3 48.7 33.9 0.672 1.371 0.443 22.3 3.70.0 0.404 0.387 33.0 21.3 48.7 33.9 0.672 1.371 0.449 23.0 3.81.7 0.410 0.402 31.0 21.3 48.7 33.9 0.672 1.371 0.449 23.0 3.91.8 0.415 0.395 33.0 21.3 48.7 33.9 0.672 1.371 0.465 22.3 3.970 0.402 0.385 33.0 21.3 48.7 33.9 0.672 1.371 0.466 22.3 3.970 0.402 0.385 4.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2														
13.0														
20.0 21.3 48.7 21.2 0.591 -1.371 0.380 -20.4 -327.2 0.383 0.383 27.0 21.3 48.7 28.6 0.046 -1.371 0.430 -22.3 -370.3 0.393 0.383 27.0 21.3 48.7 28.6 0.046 -1.371 0.430 -22.3 -370.3 0.393 0.383 27.0 21.3 48.7 28.6 0.046 -1.371 0.431 -22.3 -370.2 0.394 0.383 27.3 21.3 48.7 28.9 0.648 -1.371 0.431 -22.3 -370.2 0.394 0.383 27.0 21.3 48.7 28.9 0.648 -1.371 0.437 -22.5 -376.3 0.399 0.385 29.0 21.3 48.7 30.7 0.659 -1.371 0.437 -22.5 -376.3 0.399 0.385 29.0 21.3 48.7 30.7 0.659 -1.371 0.443 -22.7 -381.5 0.404 0.387 30.0 21.3 48.7 32.9 0.672 -1.371 0.449 -23.0 -386.7 0.410 -0.385 31.0 21.3 48.7 32.9 0.672 -1.371 0.455 -23.2 -391.8 0.415 -0.395 33.0 21.3 48.7 33.9 0.677 -1.371 0.455 -23.2 -391.8 0.415 -0.395 33.0 21.3 48.7 35.0 0.683 -1.371 0.461 -23.3 -397.0 0.420 -0.385 33.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 0.425 -0.393 34.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 0.425 -0.393 48.0 48.7 38.0 0.688 -1.371 0.466 -23.5 -401.3 0.425 -0.393 48.0 48.7 38.0 0.688 -1.371 0.566 -24.9 -435.7 0.465 -0.430 -0.410 41.0 21.3 48.7 43.5 0.722 -1.371 0.566 -24.9 -435.7 0.461 -0.443 48.0 0.384 48.7 38.0 0.688 -1.371 0.566 -24.9 -435.7 0.461 0.488 -0.498 55.0 21.3 48.7 58.3 0.773 -1.371 0.566 -24.9 -451.6 -0.488 -0.498 55.0 21.3 48.7 58.3 0.773 -1.371 0.566 -24.9 -55.2 0.550 62.0 21.3 48.7 58.3 0.773 -1.371 0.566 -24.9 -55.2 0.551 0.552 62.0 6.053 11.7 0.556 -2.5 0.650 62.0 21.3 48.7 58.3 0.773 -1.371 0.566 -27.5 -60.6 0.552 -0.550 62.0 21.3 48.7 18.7 18.0 0.885 -1.371 0.566 -27.5 -60.6 0.552 -0.550 62.0 21.3 48.7 18.7 18.0 0.885 -1.371 0.771 -30.8 6-75.2 0.650 -0.583 11.7 0.56 -2.552 0.050 11.7 0.556 -2.552 0.050 11.7 0.556 -2.552 0.050 11.7 0.556 -2.552 0.050 11.7 0.556 -2.552 0.050 11.7 0.556 -2.552 0.0561 0.557 0.056 0.056 0.057 0.058 0.057 0.														
27.0 21.3 48.7 28.6 0.646 -1.371 0.431 -22.3 370.3 -0.393 0.383 27.3 21.3 48.7 28.9 0.648 -1.371 0.431 -22.3 371.2 0.394 -0.383 27.3 21.3 48.7 28.9 0.648 -1.371 0.432 -22.3 372.0 -0.394 -0.383 28.0 21.3 48.7 39.7 0.653 -1.371 0.432 -22.3 372.0 -0.399 -0.385 29.0 21.3 48.7 30.7 0.659 -1.371 0.443 -22.7 3.815 -0.404 -0.387 30.0 21.3 48.7 31.8 0.666 -1.371 0.449 -23.0 -366.7 -0.410 -0.402 31.0 21.3 48.7 32.9 0.672 -1.371 0.449 -23.0 -366.7 -0.410 -0.402 31.0 21.3 48.7 32.9 0.672 -1.371 0.455 -23.2 391.8 -0.415 -0.395 32.0 21.3 48.7 33.9 0.677 -1.371 0.461 -23.3 -397.0 -0.420 -0.385 33.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 -1.371 0.472 -23.7 -406.5 -0.430 -0.440 44.0 21.3 48.7 35.0 0.688 -1.371 0.472 -23.7 -406.5 -0.430 -0.440 44.0 21.3 48.7 35.0 0.688 -1.371 0.472 -23.7 -406.5 -0.430 -0.440 44.0 21.3 48.7 35.0 0.759 -1.371 0.556 -24.9 -455.7 -0.461 -0.443 48.0 21.3 48.7 86.3 0.773 -1.371 0.556 -24.9 -455.7 -0.561 0.493 48.7 86.3 0.773 -1.371 0.556 -24.9 -455.7 -0.561 0.498 -0.498 55.0 21.3 48.7 86.3 0.773 -1.371 0.556 -2.9 -451.6 0.458 -0.498 55.0 21.3 48.7 86.3 0.773 -1.371 0.556 -2.7 -552.0 0.551 0.557 95.0 21.3 48.7 101.8 0.859 -1.371 0.556 -27.3 -504.6 -0.552 -0.550 83.0 21.3 48.7 101.8 0.859 -1.371 0.704 -30.5 -552.0 0.551 0.567 95.0 21.3 48.7 101.8 0.859 -1.371 0.704 -30.5 -500.2 0.501 0.567 160.0 21.3 48.7 101.8 0.859 -1.371 0.704 -30.5 -500.2 0.503 -0.563 160.0 21.3 48.7 101.8 0.859 -1.371 0.704 -30.5 -606.2 0.605 -0.653 160.0 21.3 48.7 101.8 0.859 -1.371 0.704 -30.5 -606.2 0.607 -0.667 126.0 21.3 48.7 152.5 0.944 -1.371 0.771 -30.8 -6174 -0.672 -0.672 156.0 21.3 48.7 152.5 0.944 -1.371 0.771 -30.8 -6174 -0.672 -0.673 160.0 21.3 48.7 152.5 0.944 -1.371 0.773 -32.1 6.65.7 0.069 -0.637 160.0 21.3 48.7 152.5 0.944 -1.371 0.895 -33.6 -79.7 -0.772 -0.666 2270 21.3 48.7 192.5 0.944 -1.371 0.895 -33.6 -79.7 -0.773 -0.666 2270 21.3 48.7 192.5 0.944 -1.371 0.895 -33.6 -79.7 -0.773 -0.666 2270 21.3 48				20.0		48.7	21.2	0.591		0.380	-20.4	-327.2		
27.0 21.3 48.7 28.9 0.647 1.371 0.431 -22.3 371.2 0.394 0.383 28.0 21.3 48.7 29.7 0.653 1.371 0.432 -22.3 372.0 0.394 0.383 28.0 21.3 48.7 29.7 0.653 1.371 0.443 -22.7 381.5 0.404 0.387 38.0 21.3 48.7 31.8 0.666 1.371 0.443 -22.7 381.5 0.404 0.387 38.0 21.3 48.7 31.8 0.666 1.371 0.443 -22.7 381.5 0.404 0.402 31.0 21.3 48.7 31.8 0.666 1.371 0.455 -23.2 391.8 0.415 0.404 0.395 32.0 21.3 48.7 32.9 0.672 1.371 0.455 -23.2 391.8 0.415 0.455 33.0 21.3 48.7 33.9 0.677 1.371 0.461 -23.3 397.0 0.420 0.385 33.0 21.3 48.7 35.0 0.683 1.371 0.466 -23.3 -397.0 0.420 0.385 34.0 21.3 48.7 35.0 0.688 1.371 0.466 -23.5 401.3 0.425 0.393 34.0 21.3 48.7 35.0 0.688 1.371 0.466 -23.5 401.3 0.425 0.393 34.0 21.3 48.7 35.0 0.688 1.371 0.566 -2.9 4.616 0.488 0.415 55.0 21.3 48.7 50.9 0.750 1.371 0.506 -2.9 4.616 0.488 0.498 55.0 21.3 48.7 50.9 0.750 1.371 0.566 -25.9 461.6 0.488 0.498 55.0 21.3 48.7 50.9 0.750 1.371 0.562 -266 4.840 0.551 0.557 62.0 21.3 48.7 65.7 0.793 1.371 0.562 -266 4.840 0.551 0.557 62.0 21.3 48.7 65.7 0.793 1.371 0.562 -266 4.840 0.551 0.557 62.0 21.3 48.7 101.8 0.859 1.371 0.562 -266 4.840 0.0511 0.557 62.0 450 0.557 62.0 21.3 48.7 101.8 0.859 1.371 0.562 -266 4.840 0.0511 0.557 62.0 450 0.557 62.0 21.3 48.7 101.8 0.859 1.371 0.562 -266 4.840 0.0511 0.057 62.0 26.0 4.051 0.057 62.0 2.050 0.0581 0.0583 1.371 0.562 -266 4.840 0.0511 0.057 62.0 2.6 4.052 0.052 0.052 0.052 0.052 0.052 0.0581 0.058														
27.3														
28.0 21.3 48.7 29.7 0.653 1.371 0.473 -22.5 376.3 0.399 0.385 29.0 21.3 48.7 31.8 0.666 -1.371 0.443 -22.7 381.5 0.404 0.387 30.0 21.3 48.7 31.8 0.666 -1.371 0.449 -23.0 -386.7 0.410 -0.402 31.0 21.3 48.7 32.9 0.672 -1.371 0.449 -23.0 -386.7 0.410 -0.402 31.0 21.3 48.7 32.9 0.672 -1.371 0.469 -23.3 -397.0 0.420 -0.385 32.0 21.3 48.7 35.0 0.683 1.371 0.466 -23.5 -401.3 -0.475 -0.395 33.0 21.3 48.7 35.0 0.683 1.371 0.466 -23.5 -401.3 -0.425 -0.983 34.0 21.3 48.7 43.5 0.722 -1.371 0.466 -23.5 -401.3 -0.425 -0.983 48.0 21.3 48.7 43.5 0.722 -1.371 0.566 -24.9 4.35.7 -0.461 -0.443 48.0 21.3 48.7 58.3 0.723 -1.371 0.566 -24.9 4.35.7 -0.461 -0.443 48.0 21.3 48.7 58.3 0.773 1.371 0.566 -24.9 4.35.7 -0.461 -0.463 55.0 21.3 48.7 58.3 0.773 1.371 0.566 -24.9 -43.5 -0.488 -0.498 55.0 21.3 48.7 88.0 0.838 1.371 0.566 -2.6 -484.0 -0.511 -0.507 62.0 21.3 48.7 88.0 0.838 1.371 0.566 -2.6 -6 -552.0 -0.520 83.0 21.3 48.7 101.8 0.859 1.371 0.566 -2.6 -555.0 -0.561 -0.583 117.0 21.3 48.7 153.6 0.894 1.371 0.714 -30.5 -606.2 -0.657 -0.683 117.0 21.3 48.7 155.8 0.912 -1.371 0.714 -30.5 -606.2 -0.657 -0.693 117.0 21.3 48.7 155.8 0.912 -1.371 0.714 -30.5 -606.2 -0.657 -0.693 117.0 21.3 48.7 155.8 0.912 -1.371 0.714 -30.5 -606.2 -0.657 -0.660 11.4 0.597 11.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5							28.7							
29.0 21.3 48.7 30.7 0.659 1.371 0.443 22.7 381.5 0.404 -0.387 30.0 21.3 48.7 31.8 0.666 1.371 0.449 2.3.0 3.86.7 0.410 -0.402 31.0 21.3 48.7 32.9 0.672 1.371 0.455 2.3.2 3.91.8 0.415 -0.395 32.0 21.3 48.7 32.9 0.672 1.371 0.455 2.3.2 3.91.8 0.415 -0.395 33.0 21.3 48.7 35.0 0.683 1.371 0.466 2.3.5 401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 1.1371 0.466 2.3.5 401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 1.1371 0.466 2.3.5 401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 1.1371 0.506 2.49 4.35.7 -0.461 0.443 48.0 21.3 48.7 50.9 0.750 1.1371 0.506 2.49 4.35.7 -0.461 0.443 48.0 21.3 48.7 50.9 0.750 1.1371 0.506 2.49 4.35.7 -0.461 0.498 35.0 21.3 48.7 50.9 0.750 1.1371 0.506 2.49 4.35.7 -0.461 0.498 0.500 21.3 48.7 65.7 0.793 1.1371 0.562 2.6.6 4.64.0 0.511 0.500 83.0 21.3 48.7 65.7 0.793 1.1371 0.566 2.7.3 50.40 40.0 51 0.500 83.0 21.3 48.7 65.7 0.793 1.1371 0.566 2.7.3 50.40 40.0 51 0.500 83.0 21.3 48.7 101.8 0.689 1.1371 0.560 2.9.6 552.0 0.581 0.583 117.0 21.3 48.7 101.8 0.689 1.1371 0.560 2.9.6 575.2 0.655 0.583 117.0 21.3 48.7 158.8 0.912 1.371 0.566 2.9.6 575.2 0.605 0.583 117.0 21.3 48.7 158.8 0.912 1.371 0.714 3.08 617.4 0.646 0.997 147.0 21.3 48.7 155.8 0.912 1.371 0.774 3.08 617.4 0.646 0.997 147.0 21.3 48.7 155.8 0.912 1.371 0.774 3.08 617.4 0.646 0.600 0.600 20.70 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.7 0.698 0.637 186.0 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.7 0.698 0.637 186.0 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.7 0.698 0.637 186.0 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.7 0.698 0.637 186.0 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.7 0.698 0.637 186.0 21.3 48.7 155.8 0.912 1.371 0.773 3.21 6.65.8 0.070 0.0														
30.0 21.3 48.7 31.8 0.666 -1.371 0.449 -23.0 -386.7 -0.410 -0.402 31.0 21.3 48.7 32.9 0.672 -1.371 0.461 -23.2 -391.8 0.415 -0.395 32.0 21.3 48.7 33.9 0.677 -1.371 0.461 -23.3 -397.0 -0.420 -0.385 33.0 21.3 48.7 35.0 0.683 -1.371 0.461 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.683 -1.371 0.462 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 -1.371 0.472 -23.7 -406.5 -0.450 -0.410 41.0 21.3 48.7 43.5 0.722 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 60.2 21.3 48.7 50.9 0.750 -1.371 0.556 -26.6 -484.0 -0.511 -0.507 62.0 21.3 48.7 58.3 0.773 -1.371 0.556 -26.6 -484.0 -0.511 -0.507 62.0 21.3 48.7 88.0 0.838 -1.371 0.566 -26.6 -484.0 -0.511 -0.507 88.0 1.3 48.7 88.0 0.838 -1.371 0.561 -28.9 -552.0 -0.581 -0.587 96.0 21.3 48.7 101.8 0.859 -1.371 0.566 -29.6 -575.2 -0.605 -0.583 117.0 21.3 48.7 133.6 0.884 -1.371 0.704 -30.5 -606.2 -0.637 -0.560 12.3 48.7 133.6 0.884 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.884 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 155.8 0.912 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 1560 21.3 48.7 155.8 0.912 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 1560 21.3 48.7 157.4 0.948 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 1860 21.3 48.7 127.0 0.935 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 1860 21.3 48.7 127.0 0.935 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 1860 21.3 48.7 127.0 0.935 -1.371 0.773 -32.1 -665.7 -0.988 -0.637 1860 21.3 48.7 127.0 0.935 -1.371 0.773 -32.1 -665.7 -0.988 -0.637 1860 21.3 48.7 127.0 0.935 -1.371 0.836 -33.2 -710.9 -0.770 0.770 0.770 0.770 0.771 0.771 0.88 -17.7 0.771 0.771 0.771 0.771 0.772 0.775														
31.0 21.3 48.7 32.9 0.672 -1.371 0.465 -23.2 -391.8 -0.415 -0.395 32.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 35.0 0.688 -1.371 0.472 -23.7 -40.65 -0.430 -0.410 41.0 21.3 48.7 43.5 0.722 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 -45.5 -0.430 -0.410 -0.677 62.0 21.3 48.7 56.3 0.773 -1.371 0.556 -25.9 -461.6 -0.488 -0.498 55.0 21.3 48.7 65.7 0.793 -1.371 0.566 -27.3 -504.6 -0.532 -0.520 -0.5														
32.0 21.3 48.7 33.9 0.677 -1.371 0.461 -23.3 -397.0 -0.420 -0.385 33.0 21.3 48.7 35.0 0.683 -1.371 0.466 -23.5 -401.3 -0.425 -0.393 34.0 21.3 48.7 36.0 0.688 -1.371 0.472 -23.7 -406.5 -0.430 -0.410 41.0 21.3 48.7 43.5 0.722 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 -435.7 -0.461 -0.443 48.0 21.3 48.7 58.3 0.773 -1.371 0.562 -26.6 484.0 -0.511 -0.507 62.0 21.3 48.7 65.7 0.793 -1.371 0.562 -26.6 484.0 -0.511 -0.507 62.0 21.3 48.7 88.0 0.838 -1.371 0.562 -26.9 -504.6 -0.532 -0.520 83.0 21.3 48.7 88.0 0.838 -1.371 0.664 -28.9 -552.0 -0.581 -0.587 96.0 21.3 48.7 101.8 0.859 -1.371 0.664 -28.9 -552.0 -0.581 -0.587 117.0 21.3 48.7 113.6 0.859 -1.371 0.704 -30.5 -606.2 -0.637 -0.511 126.0 21.3 48.7 155.8 0.994 -1.371 0.704 -30.5 -606.2 -0.637 -0.511 17.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -40.07 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -40.07 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -40.07 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -40.07 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -40.07 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 17.70 21.3 48.7 157.4 0.930 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 17.70 21.3 48.7 157.4 0.930 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 17.70 21.3 48.7 157.5 0.944 -1.371 0.761 -32.2 -672.5 0.005 -0.660 22.70 21.3 48.7 29.5 0.944 -1.371 0.781 -32.2 -672.5 0.005 -0.660 22.70 21.3 48.7 29.5 0.944 -1.371 0.803 -32.2 -672.5 0.005 -0.667 2.660 22.3 48.7 29.5 0.944 -1.371 0.803 -32.2 -7.655 -0.705 -0.660 22.7 3 48.7 29.5 0.944 -1.371 0.803 -32.2 -7.655 -0.705 -0.667 2.660 21.3 48.7 29.5 0.944 -1.371 0.803 -32.2 -7.655 -0.705 -0.660 2.73 48.7 29.5 0.944 -1.371 0.805 -33.2 -7.765 -0.750 -0.670 2.70 2.73 48.7 29.5 0.944 -1.371 0.806 -33.7 -7.655 -0.750 -0.670 2.73 48.7 29.5 0.944 -1.371 0.806 -33.7 -7.655 -0.750 -0.705 -0.660 2.73 48.7 29.5 0.944 -1.371 0.806 -33.7 -7.655 -0.7														
34.0 21.3 48.7 36.0 0.688 -1.371 0.566 -24.9 -435.7 -0.461 -0.443 41.0 21.3 48.7 50.9 0.750 -1.371 0.536 -25.9 -461.6 -0.488 -0.498 55.0 21.3 48.7 50.9 0.750 -1.371 0.536 -25.9 -461.6 -0.488 -0.498 55.0 21.3 48.7 65.7 0.793 -1.371 0.586 -25.9 -461.6 -0.511 -0.507 62.0 21.3 48.7 65.7 0.793 -1.371 0.686 -27.3 -50.6 -0.532 -0.520 83.0 21.3 48.7 101.8 0.899 -1.371 0.668 -29.6 -575.2 0.605 -583 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -60.62 -0.637 -0.610 126.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -604.7 -0.672 -0.627 156.0				32.0		48.7								
41.0 21.3 48.7 50.9 0.750 -1.371 0.506 -24.9 435.7 0.481 -0.443 48.0 21.3 48.7 50.9 0.750 -1.371 0.536 -25.9 4.61.6 -0.488 -0.498 55.0 21.3 48.7 58.3 0.773 -1.371 0.562 -26.6 4.84.0 -0.511 -0.507 62.0 21.3 48.7 65.7 0.793 -1.371 0.566 -22.6 -484.0 -0.511 -0.507 62.0 21.3 48.7 88.0 0.838 -1.371 0.566 -27.3 -504.6 -0.532 -0.520 83.0 21.3 48.7 88.0 0.838 -1.371 0.566 -27.3 -504.6 -0.532 -0.520 96.0 21.3 48.7 101.8 0.859 -1.371 0.668 -29.6 -575.2 -0.605 -0.583 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.717 30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.773 -32.1 -665.7 -0.689 -0.630 177.0 21.3 48.7 197.2 0.935 -1.371 0.773 -32.1 -665.7 -0.689 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.773 -32.5 -686.3 -0.719 -0.673 27.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 27.0 21.3 48.7 229.0 0.947 -1.371 0.803 -22.6 -615.5 -0.705 -0.660 27.0 21.3 48.7 229.0 0.947 -1.371 0.803 -22.6 -615.5 -0.705 -0.660 2670 21.3 48.7 229.0 0.947 -1.371 0.803 -32.5 -686.3 -0.719 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.5 -681.5 -0.724 -0.670 24.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.5 -681.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.5 -681.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.5 -681.5 -0.724 -0.670 237.0 21.3 48.7 231.4 9.068 -1.371 0.805 -33.2 -716.5 -0.750 -0.667 246.0 21.3 48.7 231.4 9.068 -1.371 0.805 -33.2 -716.5 -0.750 -0.677 237.0 21.3 48.7 232.4 0.970 -1.371 0.806 -33.2 -716.5 -0.750 -0.760 -0.762 27.0 21.3 48.7 334.9 0.968 -1.371 0.805 -33.5 -731.1 0.765 -0.750 -0.770 0.7														
48.0 21.3 48.7 50.9 0.750 -1.371 0.536 -25.9 -461.6 -0.488 -0.498 55.0 21.3 48.7 58.3 0.773 -1.371 0.562 -26.6 -484.0 -0.511 -0.507 62.0 21.3 48.7 65.7 0.783 -1.371 0.566 -27.3 -504.6 -0.532 -0.520 83.0 21.3 48.7 101.8 0.838 -1.371 0.641 -28.9 -552.0 -0.581 -0.587 96.0 21.3 48.7 101.8 0.889 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 124.0 0.865 -1.371 0.704 -30.5 -606.2 -0.637 -0.627 147.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -64.7 -0.672 -0.627 156.0 21.3 48.7 187.7 0.930 -1.371 0.733 -21.6 -648.4 -0.680 -0.630 177.0 <th></th>														
55.0 21.3 48.7 58.3 0.773 -1.371 0.562 -26.6 -484.0 -0.511 -0.502 62.0 21.3 48.7 65.7 0.793 -1.371 0.586 -27.3 -504.6 -0.532 -0.520 83.0 21.3 48.7 101.8 0.889 -1.371 0.668 -29.6 -55.2 -0.661 -0.587 96.0 21.3 48.7 101.8 0.859 -1.371 0.668 -29.6 -575.2 -0.605 -0.683 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -31.4 -60.67 -0.610 126.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 157.2 0.936 -1.371 0.773 -32.1 -665.7 -0.689 -0.637 177.0 21.3 48.7 197.2 0.936 -1.371 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
62.0 21.3 48.7 65.7 0.793 -1.371 0.586 -77.3 -504.6 -0.532 -0.520 83.0 21.3 48.7 88.0 0.838 -1.371 0.641 -28.9 -552.0 -0.581 -0.587 96.0 21.3 48.7 101.8 0.859 -1.371 0.668 -29.6 -575.2 -0.605 -0.583 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.774 -30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.774 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 155.8 0.912 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 165.4 0.918 -1.371 0.773 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 197.2 0.935 -1.371 0.773 -32.1 6-65.7 -0.998 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 246.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 246.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -591.5 -0.724 -0.670 246.0 21.3 48.7 229.6 0.806 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 229.6 0.964 -1.371 0.821 -33.0 -770.0 -0.740 -0.650 267.0 21.3 48.7 324.4 0.970 -1.371 0.832 -33.2 -716.5 -0.750 -0.760 -0.667 327.0 21.3 48.7 324.4 0.970 -1.371 0.845 -33.4 -731.1 0.765 -0.750 327.0 21.3 48.7 324.4 0.970 -1.371 0.845 -33.4 -731.1 0.765 -0.750 327.0 21.3 48.7 34.9 0.968 -1.371 0.845 -33.4 -731.1 0.765 -0.750 327.0 21.3 48.7 34.9 0.968 -1.371 0.845 -33.4 -731.1 0.765 -0.750 327.0 21.3 48.7 34.9 0.968 -1.371 0.845 -33.4 -731.1 0.765 -0.750 327.0 21.3 48.7 34.9 0.968 -1.371 0.866 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 34.9 0.968 -1.371 0.866 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 34.9 0.968 -1.371 0.866 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 356.2 0.974 -1.371 0.866 -33.5 -737.1 -0.779 -0.775 371.0 2.0772 392.0 21.3 48.7 430.4 0.982 -1.371 0.866 -33.5 -737.1 -0.779 -0.775 37														
83.0 21.3 48.7 88.0 0.838 -1.371 0.641 -28.9 -552.0 -0.581 -0.583 117.0 21.3 48.7 101.8 0.859 -1.371 0.668 -29.6 -575.2 -0.605 -0.583 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.717 -30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.774 -30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 165.4 0.918 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 187.7 0.930 -1.371 0.773 -32.1 -665.7 -0.098 -0.637 186.0 21.3 48.7 187.2 0.935 -1.371 0.781 -32.2 1 -665.7 -0.098 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 1 -665.7 -0.098 -0.637 186.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 246.0 21.3 48.7 283.1 0.962 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 324.4 0.970 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 324.4 0.970 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 34.4 0.970 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 36.2 0.974 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.732 392.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.752 392.0 21.3 48.7 36.2 0.974 -1.371 0.864 -33.9 -761.2 -0.765 -0.775 392.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 36.2 0.974 -1.371 0.869 -33.5 -737.1 -0.771 -0.765 357.0 21.3 48.7 36.2 0.994 -1.371 0.864 -33.9 -761.2 0.795 -0.772 427.0 21.3 48.7 45.0 0.98														
96.0 21.3 48.7 101.8 0.859 -1.371 0.668 -29.6 -575.2 -0.605 -0.583 117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.707 -30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 155.0 21.3 48.7 165.4 0.918 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 187.7 0.930 -1.371 0.753 -31.6 -648.4 -0.680 -0.637 186.0 21.3 48.7 187.7 0.930 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 250.8 0.957 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 250.8 0.957 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 283.1 0.962 -1.371 0.836 -33.2 -719.9 0.753 -0.677 297.0 21.3 48.7 324.4 0.970 -1.371 0.836 -33.2 -719.9 0.753 -0.677 297.0 21.3 48.7 324.4 0.970 -1.371 0.866 -33.5 -737.1 0.707.1 -0.766 -0.750 327.0 21.3 48.7 324.4 0.970 -1.371 0.866 -33.5 -737.1 0.771 -0.732 336.0 21.3 48.7 36.2 0.974 -1.371 0.866 -33.7 -745.7 0.771 -0.732 336.0 21.3 48.7 36.2 0.974 -1.371 0.866 -33.7 -745.7 0.771 -0.733 35.0 21.3 48.7 393.3 0.979 -1.371 0.866 -33.7 -745.7 0.779 -0.775 371.0 21.3 48.7 490.4 0.982 -1.371 0.860 -33.8 -758.4 0.979 -0.773 371.0 21.3 48.7 490.4 0.982 -1.371 0.860 -33.8 -758.4 0.979 -0.773 371.0 21.3 48.7 490.4 0.982 -1.371 0.860 -33.8 -758.4 0.979 -0.773 371.0 21.3 48.7 490.4 0.982 -1.371 0.860 -33.8 -758.4 0.979 -0.773 371.0 21.3 48.7 490.4 0.982 -1.371 0.860 -33.8 -758.4 0.979 -0.773 371.0 21.3 48.7 490.4 0.982 -1.371 0.884 -33.9 -761.2 0.795 -0.785 450.0 21.3 48.7 490.4 0.982 -1.371 0.889 -34.0 -767.2 0.788 -0.779 0.775 371.0 21.														
117.0 21.3 48.7 124.0 0.885 -1.371 0.704 -30.5 -606.2 -0.637 -0.610 126.0 21.3 48.7 133.6 0.894 -1.371 0.717 -30.8 -617.4 -0.648 -0.597 147.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 165.4 0.918 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 187.7 0.930 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 283.1 0.962 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 292.0 0.964 -1.371 0.832 -33.2 -716.5 -0.750 -0.760 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 324.4 0.960 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 324.4 0.970 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 36.7 0.973 -1.371 0.866 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 36.7 0.973 -1.371 0.866 -33.5 -737.1 -0.771 -0.732 392.0 21.3 48.7 36.5 0.977 -1.371 0.866 -33.5 -737.1 -0.771 -0.732 392.0 21.3 48.7 356.2 0.974 -1.371 0.866 -33.5 -737.1 -0.771 -0.732 392.0 21.3 48.7 356.2 0.974 -1.371 0.866 -33.5 -737.1 -0.771 -0.772 42.70 21.3 48.7 452.7 0.984 -1.371 0.880 -33.8 -754.4 -0.788 -0.767 42.70 21.3 48.7 452.7 0.984 -1.371 0.880 -33.8 -754.8 -0.789 -0.772 42.70 21.3 48.7 452.7 0.984 -1.371 0.880 -33.8 -754.8 -0.789 -0.772 42.70 21.3 48.7 452.7 0.984 -1.371 0.880 -33.8 -754.8 -0.789 -0.772 42.70 21.3 48.7 452.7 0.984 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 42.70 21.3 48.7 452.7 0.984 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 42.70 21.														-0.583
147.0 21.3 48.7 155.8 0.912 -1.371 0.744 -31.4 -640.7 -0.672 -0.627 156.0 21.3 48.7 165.4 0.918 -1.371 0.773 -31.6 -648.4 -0.680 -0.637 177.0 21.3 48.7 187.7 0.930 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 261.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.752 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-0.610</th></td<>														-0.610
156.0 21.3 48.7 165.4 0.918 -1.371 0.753 -31.6 -648.4 -0.680 -0.630 177.0 21.3 48.7 187.7 0.930 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 207.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 260.8 0.957 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
177.0 21.3 48.7 187.7 0.930 -1.371 0.773 -32.1 -665.7 -0.698 -0.637 186.0 21.3 48.7 197.2 0.935 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 207.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.816 -32.9 -702.7 -0.736 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.650 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 31.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688														
186.0 21.3 48.7 197.2 0.935 -1.371 0.781 -32.2 -672.5 -0.705 -0.660 207.0 21.3 48.7 219.5 0.944 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 229.0 0.947 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.816 -32.9 -70.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.836 -33.2 -716.5 -0.750 -0.677 297.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688														
207.0 21.3 48.7 219.5 0.944 -1.371 0.797 -32.5 -686.3 -0.719 -0.673 216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 356.2 0.974 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.773 -0.765 371.0 21.3 48.7 393.3 0.979 -1.371 0.866 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 393.3 0.979 -1.371 0.866 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.870 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.884 -33.9 -761.2 -0.785 -0.772 427.0 21.3 48.7 430.4 0.982 -1.371 0.884 -33.9 -761.2 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 430.4 0.982 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 430.4 0.982 -1.371 0.884 -33.9 -761.2 -0.795 -0.782 427.0 21.3 48.7 430.4 0.982 -1.371 0.884 -33.9 -761.2 -0.795 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.884 -33.9 -761.2 -0.795 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.884 -33.9 -761.2 -0.795 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.891 -34.0 -767.3 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.891 -34.0 -767.3 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.891 -34.0 -767.3 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.891 -34.0 -767.3 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.891 -34.0 -767.3 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 427.0 21.3 48.7 430.4 0.986 -1.371 0.995 -34.4 -813.8 -0.848 42500.0 21.3 48.7 1060.2 0.998 -1.371 0.995 -34.4 -813.8 -0.848 42500.0 21.3 48.7 1060.2														
216.0 21.3 48.7 229.0 0.947 -1.371 0.803 -32.6 -691.5 -0.724 -0.670 237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.821 -33.0 -707.0 -0.760 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 346.7 0.973 -1.371 0.845 -33.4 -731.1 -0.765 -0.750 3327.0 21.3 48.7 346.7 0.973 -1.371 0.849 -33.4 -731.1 -0.771 -0.733 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>														
237.0 21.3 48.7 251.3 0.954 -1.371 0.816 -32.9 -702.7 -0.736 -0.667 246.0 21.3 48.7 260.8 0.957 -1.371 0.821 -33.0 -707.0 -0.740 -0.650 267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.772 336.0 21.3 48.7 356.2 0.974 -1.371 0.866 -33.7 -745.7 -0.773 -0.775 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
267.0 21.3 48.7 283.1 0.962 -1.371 0.832 -33.2 -716.5 -0.750 -0.702 276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.8 -754.4 -0.788 -0.772 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
276.0 21.3 48.7 292.6 0.964 -1.371 0.836 -33.2 -719.9 -0.753 -0.677 297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -757.8 -0.782 -0.772 <td< th=""><th></th><th></th><th></th><th></th><th>21.3</th><th></th><th></th><th></th><th>-1.371</th><th></th><th></th><th></th><th></th><th>-0.650</th></td<>					21.3				-1.371					-0.650
297.0 21.3 48.7 314.9 0.968 -1.371 0.845 -33.4 -727.7 -0.761 -0.688 306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 427.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>														
306.0 21.3 48.7 324.4 0.970 -1.371 0.849 -33.4 -731.1 -0.765 -0.750 327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -754.4 -0.788 -0.767 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 483.4 0.986 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 477.0 21.3 48.7 483.4 0.986 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 505.7 0.987 -1.371 0.995 -34.4 -813.8 -0.848 500.0 21.3 48.7 505.7 0.987 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 505.0 1.000 -1.371 0.985 -34.5 -850.8 -0.885														
327.0 21.3 48.7 346.7 0.973 -1.371 0.856 -33.5 -737.1 -0.771 -0.732 336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.8 -754.4 -0.788 -0.767 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 477.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 505.0 1.30 -1.371 0.995 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
336.0 21.3 48.7 356.2 0.974 -1.371 0.859 -33.6 -739.7 -0.773 -0.765 357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.8 -754.4 -0.788 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 477.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 505.0 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
357.0 21.3 48.7 378.5 0.977 -1.371 0.866 -33.7 -745.7 -0.779 -0.775 371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 477.0 21.3 48.7 1060.2 0.998 -1.371 0.995 -34.4 -813.8 -0.848 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
371.0 21.3 48.7 393.3 0.979 -1.371 0.870 -33.7 -749.2 -0.783 -0.772 392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 1000.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.985 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
392.0 21.3 48.7 415.6 0.981 -1.371 0.876 -33.8 -754.4 -0.788 -0.767 406.0 21.3 48.7 430.4 0.982 -1.371 0.880 -33.8 -757.8 -0.792 -0.772 427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 452.7 0.984 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 1000.0 21.3 48.7 1060.2 0.998 -1.371 0.995 -34.0 -770.7 -0.805 -0.782 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 500.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														-0.772
427.0 21.3 48.7 452.7 0.984 -1.371 0.884 -33.9 -761.2 -0.795 -0.785 456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 1000.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														-0.767
456.0 21.3 48.7 483.4 0.986 -1.371 0.891 -34.0 -767.3 -0.801 -0.782 477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 1000.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.988 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														-0.772
477.0 21.3 48.7 505.7 0.987 -1.371 0.895 -34.0 -770.7 -0.805 -0.782 1000.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
1000.0 21.3 48.7 1060.2 0.998 -1.371 0.945 -34.4 -813.8 -0.848 2500.0 21.3 48.7 2650.4 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														
2500.0 21.3 48.7 2650.4 1.000 -1.371 0.977 -34.5 -841.3 -0.876 5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														-0.762
5000.0 21.3 48.7 5300.8 1.000 -1.371 0.988 -34.5 -850.8 -0.885														

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	(t − t _s) _T (days)	β_{as} (t)	β_{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
f _{cm} =	22.6		0.100	21.3	48.7	0.106	0.061	-1.371	0.029	-1.4	-26.7	-0.028	-0.020
α _{as} =	600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-4.3	-83.7	-0.088	-0.028
ε _{cas0} =	-23.49	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-5.8	-118.7	-0.125	-0.012
α _{ds1} =	6		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-6.9	-144.4	-0.151	
$\alpha_{ds2} =$	0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.180	-7.8	-165.6	-0.173	-0.090
ϵ_{cds0} =	670.97	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-8.5	-184.9	-0.193	-0.100
$\beta_{s1} =$	1.00		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-9.1	-201.5	-0.211	-0.122
h o =	60		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-9.1	-201.5	-0.211	-0.122
			6.0	21.3	48.7	6.4	0.388	-1.371	0.220	-9.1	-202.4	-0.212	-0.122
			6.3	21.3	48.7	6.6	0.393	-1.371	0.224	-9.2	-206.1	-0.215	-0.122
			7.0	21.3	48.7	7.4	0.411	-1.371	0.236	-9.7	-217.1	-0.227	-0.125
			8.0	21.3	48.7	8.5	0.432	-1.371	0.251	-10.1	-230.9	-0.241	-0.132
			9.0 10.0	21.3 21.3	48.7 48.7	9.5 10.6	0.451 0.469	-1.371 -1.371	0.265 0.279	-10.6 -11.0	-243.8 -256.7	-0.254 -0.268	-0.158 -0.182
			11.0	21.3	48.7	11.7	0.485	-1.371	0.291	-11.4	-267.7	-0.279	-0.192
			12.0	21.3	48.7	12.7	0.500	-1.371	0.303	-11.7	-278.7	-0.290	-0.225
			13.0	21.3	48.7	13.8	0.514	-1.371	0.314	-12.1	-288.8	-0.301	-0.235
			20.0	21.3	48.7	21.2	0.591	-1.371	0.380	-13.9	-349.6	-0.364	-0.272
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-15.2	-395.6	-0.411	-0.330
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-15.2	-395.6	-0.411	-0.330
			27.0	21.3	48.7	28.7	0.647	-1.371	0.431	-15.2	-396.5	-0.412	-0.330
			27.3 28.0	21.3 21.3	48.7 48.7	28.9 29.7	0.648 0.653	-1.371 -1.371	0.432 0.437	-15.2 -15.3	-397.4 -402.0	-0.413 -0.417	-0.330 -0.315
			29.0	21.3	48.7	30.7	0.659	-1.371	0.443	-15.5 -15.5	-407.5	-0.417	-0.333
			30.0	21.3	48.7	31.8	0.666	-1.371	0.449	-15.6	-413.0	-0.429	-0.327
			31.0	21.3	48.7	32.9	0.672	-1.371	0.455	-15.8	-418.6	-0.434	-0.335
			32.0	21.3	48.7	33.9	0.677	-1.371	0.461	-15.9	-424.1	-0.440	-0.338
			33.0	21.3	48.7	35.0	0.683	-1.371	0.466	-16.0	-428.7	-0.445	-0.335
			34.0	21.3	48.7	36.0	0.688	-1.371	0.472	-16.2	-434.2	-0.450	-0.332
			41.0	21.3	48.7	43.5	0.722	-1.371	0.506	-17.0	-465.5	-0.483	-0.337
			48.0	21.3	48.7	50.9	0.750	-1.371 1.371	0.536	-17.6	-493.1	-0.511	-0.388
			55.0 62.0	21.3 21.3	48.7 48.7	58.3 65.7	0.773 0.793	-1.371 -1.371	0.562 0.586	-18.2 -18.6	-517.0 -539.1	-0.535 -0.558	-0.410 -0.427
			83.0	21.3	48.7	88.0	0.733	-1.371	0.641	-10.0	-589.7	-0.609	-0.427
			96.0	21.3	48.7	101.8	0.859	-1.371	0.668	-20.2	-614.5	-0.635	-0.410
			117.0	21.3	48.7	124.0	0.885	-1.371	0.704	-20.8	-647.6	-0.668	-0.438
			126.0	21.3	48.7	133.6	0.894	-1.371	0.717	-21.0	-659.6	-0.681	-0.438
			147.0	21.3	48.7	155.8	0.912	-1.371	0.744	-21.4	-684.4	-0.706	-0.470
			156.0	21.3	48.7	165.4	0.918	-1.371	0.753	-21.6	-692.7	-0.714	-0.478
			177.0	21.3	48.7	187.7	0.930	-1.371	0.773	-21.8	-711.1 -710.4	-0.733	-0.507
			186.0 207.0	21.3 21.3	48.7 48.7	197.2 219.5	0.935 0.944	-1.371 -1.371	0.781 0.797	-22.0 -22.2	-718.4 -733.2	-0.740 -0.755	-0.492 -0.495
			216.0	21.3	48.7	229.0	0.947	-1.371	0.803	-22.2	-738.7	-0.761	-0.508
			237.0	21.3	48.7	251.3	0.954	-1.371	0.816	-22.4	-750.6	-0.773	-0.485
			246.0	21.3	48.7	260.8	0.957	-1.371	0.821	-22.5	-755.2	-0.778	-0.492
			267.0	21.3	48.7	283.1	0.962	-1.371	0.832	-22.6	-765.4	-0.788	-0.493
			276.0	21.3	48.7	292.6	0.964	-1.371	0.836	-22.6	-769.0	-0.792	-0.502
			297.0	21.3	48.7	314.9	0.968	-1.371	0.845	-22.7	-777.3	-0.800	-0.572
			306.0 327.0	21.3	48.7 48.7	324.4	0.970 0.973	-1.371 1.371	0.849 0.856	-22.8	-781.0 -787.4	-0.804	-0.530
			336.0	21.3 21.3	48.7	346.7 356.2	0.973	-1.371 -1.371	0.859	-22.9 -22.9	-790.2	-0.810 -0.813	-0.568 -0.563
			357.0	21.3	48.7	378.5	0.977	-1.371 -1.371	0.866	-22.9	-796.2 -796.6	-0.820	-0.552
			371.0	21.3	48.7	393.3	0.979	-1.371	0.870	-23.0	-800.3	-0.823	-0.587
			392.0	21.3	48.7	415.6	0.981	-1.371	0.876	-23.0	-805.8	-0.829	-0.608
			406.0	21.3	48.7	430.4	0.982	-1.371	0.880	-23.1	-809.5	-0.833	-0.597
			427.0	21.3	48.7	452.7	0.984	-1.371	0.884	-23.1	-813.2	-0.836	-0.593
			456.0	21.3	48.7	483.4	0.986	-1.371	0.891	-23.2	-819.6	-0.843	-0.595
			477.0	21.3	48.7	505.7	0.987	-1.371	0.895	-23.2	-823.3	-0.847	-0.597
			1000.0 2500.0	21.3 21.3	48.7 48.7	1060.2 2650.4	0.998 1.000	-1.371 -1.371	0.945 0.977	-23.4 -23.5	-869.3 -898.7	-0.893 -0.922	
			5000.0	21.3	48.7 48.7	5300.8	1.000	-1.371 -1.371	0.988	-23.5 -23.5	-090.7 -908.9	-0.922	
			10000.0	21.3	48.7	10601.7	1.000	-1.371	0.994	-23.5	-914.4	-0.938	

INPUT AND CALCULATION - MC10 - CALIBRATED

INPUT AND CALCULATION - MC10 - CALIBRATED													
NAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t - t_s)_T$ (days)	β_{as} (t)	β _{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (%)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	30.5	1	0.100	21.3	48.7	0.106	0.061	-1.371	0.029	-2.4	-19.7	-0.022	
$\alpha_{as} =$	600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-7.2	-61.9	-0.069	-0.043
ε_{cas0} =	-39.56	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-9.7	-87.7	-0.097	-0.065
$\alpha_{ds1} =$	4.5		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-11.6	-106.7	-0.118	
$\alpha_{ds2} =$	0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.18	-13.1	-122.4	-0.136	
ε _{cds0} =	495.85	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-14.3	-136.6	-0.151	-0.100
$\beta_{s1} =$	1.00		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-15.3	-148.9	-0.164	-0.117
h ₀ =	60		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-15.3	-148.9	-0.164	-0.117
0			6.0	21.3	48.7	6.4	0.388	-1.371	0.22	-15.3	-149.6	-0.165	-0.117
			6.3	21.3	48.7	6.6	0.393	-1.371	0.224	-15.5	-152.3	-0.168	-0.117
			7.0	21.3	48.7	7.4	0.411	-1.371	0.236	-16.3	-160.4	-0.177	-0.143
			8.0	21.3	48.7	8.5	0.432	-1.371	0.251	-17.1	-170.6	-0.188	-0.125
			9.0	21.3	48.7	9.5	0.451	-1.371	0.265	-17.8	-180.1	-0.198	-0.148
			10.0	21.3	48.7	10.6	0.469	-1.371	0.279	-18.6	-189.7	-0.208	-0.155
			11.0	21.3	48.7	11.7	0.485	-1.371	0.291	-19.2	-197.8	-0.217	-0.197
			12.0	21.3	48.7	12.7	0.500	-1.371	0.303	-19.8	-206	-0.226	-0.178
			13.0	21.3	48.7 49.7	13.8	0.514	-1.371 1.371	0.314	-20.3	-213.5	-0.234	-0.180
			20.0 27.0	21.3 21.3	48.7 48.7	21.2 28.6	0.591 0.646	-1.371 -1.371	0.38 0.43	-23. <i>4</i> -25.6	-258.3 -292.3	-0.282 -0.318	-0.278 -0.343
			27.0	21.3	48.7	28.6	0.646	-1.371	0.43	-25.6	-292.3	-0.318	-0.343
			27.0	21.3	48.7	28.7	0.647	-1.371	0.431	-25.6	-293	-0.319	-0.343
			27.3	21.3	48.7	28.9	0.648	-1.371	0.432	-25.6	-293.7	-0.319	-0.343
			28.0	21.3	48.7	29.7	0.653	-1.371	0.437	-25.8	-297.1	-0.323	-0.342
			29.0	21.3	48.7	30.7	0.659	-1.371	0.443	-26.1	-301.2	-0.327	-0.333
			30.0	21.3	48.7	31.8	0.666	-1.371	0.449	-26.3	-305.2	-0.332	-0.333
			31.0	21.3	48.7	32.9	0.672	-1.371	0.455	-26.6	-309.3	-0.336	-0.338
			32.0	21.3	48.7	33.9	0.677	-1.371	0.461	-26.8	-313.4	-0.340	-0.350
			33.0	21.3	48.7	35.0	0.683	-1.371	0.466	-27	-316.8	-0.344	-0.345
			34.0 41.0	21.3	48.7 48.7	36.0	0.688 0.722	-1.371 -1.371	0.472	-27.2 -28.6	-320.9 -344	-0.348 -0.373	-0.368 -0.403
			48.0	21.3 21.3	48.7	43.5 50.9	0.750	-1.371	0.506 0.536	-20.0	-344 -364.4	-0.373	-0.403
			55.0	21.3	48.7	58.3	0.773	-1.371	0.562	-30.6	-382.1	-0.413	-0.468
			62.0	21.3	48.7	65.7	0.793	-1.371	0.586	-31.4	-398.4	-0.430	-0.482
			83.0	21.3	48.7	88.0	0.838	-1.371	0.641	-33.2	-435.8	-0.469	-0.540
			96.0	21.3	48.7	101.8	0.859	-1.371	0.668	-34	-454.1	-0.488	-0.540
			117.0	21.3	48.7	124.0	0.885	-1.371	0.704	-35	-478.6	-0.514	-0.535
			126.0	21.3	48.7	133.6	0.894	-1.371	0.717	-35.4	-487.4	-0.523	-0.538
			147.0	21.3	48.7	155.8	0.912	-1.371	0.744	-36.1	-505.8	-0.542	-0.543
			156.0 177.0	21.3	48.7 48.7	165.4 197.7	0.918	-1.371 1 271	0.753	-36.3	-511.9	-0.548	-0.527
			177.0 186.0	21.3 21.3	48.7 48.7	187.7 197.2	0.930 0.935	-1.371 -1.371	0.773 0.781	-36.8 -37	-525.5 -530.9	-0.562 -0.568	-0.540 -0.557
			207.0	21.3	48.7	219.5	0.944	-1.371	0.797	-37.3	-530.9 -541.8	-0.579	-0.555
			216.0	21.3	48.7	229.0	0.947	-1.371	0.803	-37.5	-545.9	-0.583	-0.587
			237.0	21.3	48.7	251.3	0.954	-1.371	0.816	-37.7	-554.7	-0.592	-0.560
			246.0	21.3	48.7	260.8	0.957	-1.371	0.821	-37.9	-558.1	-0.596	-0.570
			267.0	21.3	48.7	283.1	0.962	-1.371	0.832	-38.1	-565.6	-0.604	-0.585
			276.0	21.3	48.7	292.6	0.964	-1.371	0.836	-38.1	-568.3	-0.606	-0.605
			297.0	21.3	48.7	314.9	0.968	-1.371	0.845	-38.3	-574.4	-0.613	-0.603
			306.0	21.3	48.7	324.4	0.970	-1.371	0.849	-38.4	-577.2	-0.616	-0.595
			327.0	21.3	48.7 49.7	346.7	0.973	-1.371 1 271	0.856	-38.5	-581.9 -584	-0.620 -0.623	-0.622 -0.613
			336.0 357.0	21.3 21.3	48.7 48.7	356.2 378.5	0.974 0.977	-1.371 -1.371	0.859 0.866	-38.5 -38.7	-584 -588.7	-0.623 -0.627	-0.613 -0.618
			371.0 371.0	21.3	48.7	393.3	0.977	-1.371	0.800	-38.7	-500.7 -591.4	-0.630	-0.633
			392.0	21.3	48.7	415.6	0.981	-1.371	0.876	-38.8	-595.5	-0.634	-0.640
			406.0	21.3	48.7	430.4	0.982	-1.371	0.88	-38.8	-598.2	-0.637	-0.657
			427.0	21.3	48.7	452.7	0.984	-1.371	0.884	-38.9	-601	-0.640	-0.652
			456.0	21.3	48.7	483.4	0.986	-1.371	0.891	-39	-605.7	-0.645	-0.667
			477.0	21.3	48.7	505.7	0.987	-1.371	0.895	-39	-608.4	-0.647	-0.645
			1000.0	21.3	48.7	1060.2	0.998	-1.371	0.945	-39.5	-642.4	-0.682	
			2500.0	21.3	48.7	2650.4	1.000	-1.371	0.977	-39.6	-664.2	-0.704	
			5000.0 10000.0	21.3 21.3	48.7 48.7	5300.8 10601.7	1.000 1.000	-1.371 -1.371	0.988 0.994	-39.6 -39.6	-671.7 -675.7	-0.711 -0.715	
			10000.0	21.3	40.7	10001.7	1.000	-1.371	0.334	-39.0	-075.7	-0.713	

RAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β _{as} (t)	β _{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	28.1	1	0.100	21.3	48.7	0.106	0.061	-1.371	0.029	-2.1	-23.4	-0.026	
$\alpha_{as} =$	600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-6.2	-73.5	-0.080	-0.058
$\epsilon_{cas0} =$	-34.47	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-8.5	-104.1	-0.113	-0.070
$\alpha_{ds1} =$	5.5		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-10.1	-126.8	-0.137	-0.110
$\alpha_{ds2} =$	0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.180	-11.4	-145.3	-0.157	-0.113
	588.86	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-12.4	-162.3	-0.175	-0.120
$\varepsilon_{cds0} =$	1.00	7L-00	6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-13.3	-176.8	-0.173	-0.155
$\beta_{s1} =$												-0.190	-0.155 -0.155
$h_0 =$	60		6.0	21.3	48.7 48.7	6.4	0.387	-1.371 1.271	0.219	-13.3	-176.8 -177.6		
			6.0 6.3	21.3 21.3	48.7 48.7	6.4 6.6	0.388 0.393	-1.371 -1.371	0.220 0.224	-13.4 -13.5	-177.0	-0.191 -0.194	-0.155 -0.140
			7.0	21.3	48.7	7.4	0.393	-1.371 -1.371	0.236	-13.3 -14.2	-190.5	-0.194	-0.155
			8.0	21.3	48.7	8.5	0.432	-1.371	0.251	-14.9	-202.6	-0.218	-0.162
			9.0	21.3	48.7	9.5	0.451	-1.371	0.265	-15.5	-213.9	-0.229	-0.198
			10.0	21.3	48.7	10.6	0.469	-1.371	0.279	-16.2	-225.2	-0.241	-0.207
			11.0	21.3	48.7	11.7	0.485	-1.371	0.291	-16.7	-234.9	-0.252	-0.172
			12.0	21.3	48.7	12.7	0.500	-1.371	0.303	-17.2	-244.6	-0.262	-0.220
			13.0	21.3	48.7	13.8	0.514	-1.371	0.314	-17.7	-253.5	-0.271	-0.245
			20.0	21.3	48.7	21.2	0.591	-1.371	0.380	-20.4	-306.8	-0.327	-0.320
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-22.3	-347.2	-0.370	-0.383
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-22.3	-347.2	-0.370	-0.383
			27.0	21.3	48.7	28.7	0.647	-1.371	0.431	-22.3	-348.0	-0.370	-0.383
			27.3	21.3	48.7	28.9	0.648	-1.371	0.432	-22.3	-348.8	-0.371	-0.383
			28.0	21.3	48.7 49.7	29.7	0.653	-1.371 1.271	0.437	-22.5	-352.8	-0.375	-0.385
			29.0 30.0	21.3 21.3	48.7 48.7	30.7 31.8	0.659 0.666	-1.371 -1.371	0.443 0.449	-22.7 -23.0	-357.6 -362.5	-0.380 -0.386	-0.387 -0.402
			31.0	21.3	48.7	32.9	0.672	-1.371 -1.371	0.455	-23.0	-367.3	-0.391	-0.402
			32.0	21.3	48.7	33.9	0.677	-1.371	0.461	-23.3	-372.2	-0.396	-0.385
			33.0	21.3	48.7	35.0	0.683	-1.371	0.466	-23.5	-376.2	-0.400	-0.393
			34.0	21.3	48.7	36.0	0.688	-1.371	0.472	-23.7	-381.1	-0.405	-0.410
			41.0	21.3	48.7	43.5	0.722	-1.371	0.506	-24.9	-408.5	-0.433	-0.443
			48.0	21.3	48.7	50.9	0.750	-1.371	0.536	-25.9	-432.7	-0.459	-0.498
			55.0	21.3	48.7	58.3	0.773	-1.371	0.562	-26.6	-453.7	-0.480	-0.507
			62.0	21.3	48.7	65.7	0.793	-1.371	0.586	-27.3	-473.1	-0.500	-0.520
			83.0	21.3	48.7	88.0	0.838	-1.371	0.641	-28.9	-517.5	-0.546	-0.587
			96.0	21.3	48.7	101.8	0.859	-1.371	0.668	-29.6	-539.3	-0.569	-0.583
			117.0	21.3	48.7	124.0	0.885	-1.371	0.704	-30.5	-568.4	-0.599	-0.610
			126.0 147.0	21.3 21.3	48.7 48.7	133.6 155.8	0.894 0.912	-1.371 -1.371	0.717 0.744	-30.8	-578.9 -600.7	-0.610 -0.632	-0.597 -0.627
			156.0	21.3	48.7	165.4	0.912	-1.371 -1.371	0.753	-31.4 -31.6	-607.9	-0.640	-0.630
			177.0	21.3	48.7	187.7	0.930	-1.371	0.773	-32.1	-624.1	-0.656	-0.637
			186.0	21.3	48.7	197.2	0.935	-1.371	0.781	-32.2	-630.5	-0.663	-0.660
			207.0	21.3	48.7	219.5	0.944	-1.371	0.797	-32.5	-643.4	-0.676	-0.673
			216.0	21.3	48.7	229.0	0.947	-1.371	0.803	-32.6	-648.3	-0.681	-0.670
			237.0	21.3	48.7	251.3	0.954	-1.371	0.816	-32.9	-658.8	-0.692	-0.667
			246.0	21.3	48.7	260.8	0.957	-1.371	0.821	-33.0	-662.8	-0.696	-0.650
			267.0	21.3	48.7	283.1	0.962	-1.371	0.832	-33.2	-671.7	-0.705	-0.702
			276.0	21.3	48.7	292.6	0.964	-1.371	0.836	-33.2	-674.9	-0.708	-0.677
			297.0	21.3	48.7	314.9	0.968	-1.371	0.845	-33.4	-682.2	-0.716	-0.688
			306.0	21.3	48.7	324.4	0.970	-1.371	0.849	-33.4	-685.4	-0.719	-0.750
			327.0	21.3	48.7	346.7	0.973	-1.371	0.856	-33.5	-691.1	-0.725	-0.732
			336.0	21.3	48.7 49.7	356.2 378.5	0.974	-1.371 1 271	0.859	-33.6	-693.5	-0.727	-0.765 0.775
			357.0 371.0	21.3 21.3	48.7 48.7	378.5 393.3	0.977 0.979	-1.371 -1.371	0.866 0.870	-33.7 -33.7	-699.1 -702.4	-0.733 -0.736	-0.775 -0.772
			392.0	21.3	48.7 48.7	393.3 415.6	0.979	-1.371 -1.371	0.876	-33.7 -33.8	-702.4 -707.2	-0.736	-0.772
			406.0	21.3	48.7	430.4	0.982	-1.371 -1.371	0.870	-33.8	-707.2 -710.4	-0.741	-0.772
			427.0	21.3	48.7	452.7	0.984	-1.371	0.884	-33.9	-713.7	-0.748	-0.772
			456.0	21.3	48.7	483.4	0.986	-1.371	0.891	-34.0	-719.3	-0.753	-0.782
			477.0	21.3	48.7	505.7	0.987	-1.371	0.895	-34.0	-722.6	-0.757	-0.782
			1000.0	21.3	48.7	1060.2	0.998	-1.371	0.945	-34.4	-762.9	-0.797	
			2500.0	21.3	48.7	2650.4	1.000	-1.371	0.977	-34.5	-788.8	-0.823	
			5000.0	21.3	48.7	5300.8	1.000	-1.371	0.988	-34.5	-797.6	-0.832	
			10000.0	21.3	48.7	10601.7	1.000	-1.371	0.994	-34.5	-802.5	-0.837	

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β _{as} (t)	β _{RH}	β_{ds} (t-t _s) _T	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (%)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	22.6	1	0.100	21.3	48.7	0.106	0.061	-1.371	0.029	-1.4	-18.3	-0.020	-0.020
α _{as} =	600		1.0	21.3	48.7	1.06	0.181	-1.371	0.091	-4.3	-57.6	-0.062	-0.028
ε _{cas0} =	-23.49	1E-06	2.0	21.3	48.7	2.12	0.246	-1.371	0.129	-5.8	-81.6	-0.087	-0.012
$\alpha_{ds1} =$	3.5		3.0	21.3	48.7	3.2	0.293	-1.371	0.157	-6.9	-99.3	-0.106	
$\alpha_{ds2} =$	0.012		4.0	21.3	48.7	4.2	0.330	-1.371	0.180	-7.8	-113.8	-0.122	-0.090
ε _{cds0} =	461.29	1E-06	5.0	21.3	48.7	5.3	0.361	-1.371	0.201	-8.5	-127.1	-0.136	-0.100
$\beta_{s1} =$	1.00		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-9.1	-138.5	-0.148	-0.122
h o =	60		6.0	21.3	48.7	6.4	0.387	-1.371	0.219	-9.1	-138.5	-0.148	-0.122
			6.0	21.3	48.7	6.4	0.388	-1.371	0.220	-9.1	-139.1	-0.148	-0.122
			6.3 7.0	21.3 21.3	48.7 48.7	6.6 7.4	0.393 0.411	-1.371 -1.371	0.224 0.236	-9.2 -9.7	-141.7 -149.3	-0.151 -0.159	-0.122 -0.125
			8.0	21.3	48.7	8.5	0.411	-1.371 -1.371	0.251	-9.7 -10.1	-149.3 -158.7	-0.169	-0.123
			9.0	21.3	48.7	9.5	0.451	-1.371	0.265	-10.6	-167.6	-0.178	-0.158
			10.0	21.3	48.7	10.6	0.469	-1.371	0.279	-11.0	-176.4	-0.187	-0.182
			11.0	21.3	48.7	11.7	0.485	-1.371	0.291	-11.4	-184.0	-0.195	-0.192
			12.0	21.3	48.7	12.7	0.500	-1.371	0.303	-11.7	-191.6	-0.203	-0.225
			13.0 20.0	21.3 21.3	48.7 48.7	13.8 21.2	0.514 0.591	-1.371 -1.371	0.314 0.380	-12.1 -13.9	-198.6 -240.3	-0.211 -0.254	-0.235 -0.272
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-15.2	-271.9	-0.287	-0.330
			27.0	21.3	48.7	28.6	0.646	-1.371	0.430	-15.2	-271.9	-0.287	-0.330
			27.0	21.3	48.7	28.7	0.647	-1.371	0.431	-15.2	-272.6	-0.288	-0.330
			27.3	21.3	48.7	28.9	0.648	-1.371	0.432	-15.2	-273.2	-0.288	-0.330
			28.0	21.3	48.7	29.7	0.653	-1.371	0.437	-15.3	-276.4	-0.292	-0.315
			29.0 30.0	21.3 21.3	48.7 48.7	30.7 31.8	0.659 0.666	-1.371 -1.371	0.443 0.449	-15.5 -15.6	-280.2 -284.0	-0.296 -0.300	-0.333 -0.327
			31.0	21.3	48.7	32.9	0.672	-1.371	0.455	-15.8	-287.8	-0.304	-0.335
			32.0	21.3	48.7	33.9	0.677	-1.371	0.461	-15.9	-291.5	-0.307	-0.338
			33.0	21.3	48.7	35.0	0.683	-1.371	0.466	-16.0	-294.7	-0.311	-0.335
			34.0	21.3	48.7	36.0	0.688	-1.371	0.472	-16.2	-298.5	-0.315	-0.332
			41.0 48.0	21.3	48.7 49.7	43.5 50.9	0.722 0.750	-1.371 1 271	0.506	-17.0 17.6	-320.0	-0.337	-0.337 -0.388
			55.0	21.3 21.3	48.7 48.7	58.3	0.773	-1.371 -1.371	0.536 0.562	-17.6 -18.2	-339.0 -355.4	-0.357 -0.374	-0.300
			62.0	21.3	48.7	65.7	0.793	-1.371	0.586	-18.6	-370.6	-0.389	-0.427
			83.0	21.3	48.7	88.0	0.838	-1.371	0.641	-19.7	-405.4	-0.425	-0.430
			96.0	21.3	48.7	101.8	0.859	-1.371	0.668	-20.2	-422.5	-0.443	-0.410
			117.0	21.3	48.7	124.0	0.885	-1.371	0.704	-20.8	-445.2	-0.466	-0.438
			126.0 147.0	21.3 21.3	48.7 48.7	133.6 155.8	0.894 0.912	-1.371 -1.371	0.717 0.744	-21.0 -21.4	-453.5 -470.5	-0.475 -0.492	-0.438 -0.470
			156.0	21.3	48.7	165.4	0.918	-1.371	0.753	-21.6	-476.2	-0.498	-0.478
			177.0	21.3	48.7	187.7	0.930	-1.371	0.773	-21.8	-488.9	-0.511	-0.507
			186.0	21.3	48.7	197.2	0.935	-1.371	0.781	-22.0	-493.9	-0.516	-0.492
			207.0	21.3	48.7	219.5	0.944	-1.371	0.797	-22.2	-504.0	-0.526	-0.495
			216.0 237.0	21.3	48.7 48.7	229.0	0.947 0.954	-1.371 -1.371	0.803	-22.2 -22.4	-507.8 -516.1	-0.530	-0.508 -0.485
			246.0	21.3 21.3	48.7	251.3 260.8	0.957	-1.371 -1.371	0.816 0.821	-22. 4 -22.5	-510.1 -519.2	-0.539 -0.542	-0.492
			267.0	21.3	48.7	283.1	0.962	-1.371	0.832	-22.6	-526.2	-0.549	-0.493
			276.0	21.3	48.7	292.6	0.964	-1.371	0.836	-22.6	-528.7	-0.551	-0.502
			297.0	21.3	48.7	314.9	0.968	-1.371	0.845	-22.7	-534.4	-0.557	-0.572
			306.0	21.3	48.7	324.4	0.970	-1.371	0.849	-22.8	-536.9	-0.560	-0.530
			327.0 336.0	21.3	48.7 48.7	346.7 356.2	0.973 0.974	-1.371 1 271	0.856	-22.9 -22.9	-541.4 542.2	-0.564 0.566	-0.568 -0.563
			357.0	21.3 21.3	46.7 48.7	378.5	0.974	-1.371 -1.371	0.859 0.866	-22.9 -22.9	-543.3 -547.7	-0.566 -0.571	-0.552
			371.0	21.3	48.7	393.3	0.979	-1.371	0.870	-23.0	-550.2	-0.573	-0.587
			392.0	21.3	48.7	415.6	0.981	-1.371	0.876	-23.0	-554.0	-0.577	-0.608
			406.0	21.3	48.7	430.4	0.982	-1.371	0.880	-23.1	-556.5	-0.580	-0.597
			427.0	21.3	48.7	452.7	0.984	-1.371	0.884	-23.1	-559.1	-0.582	-0.593
			456.0 477.0	21.3 21.3	48.7 48.7	483.4 505.7	0.986 0.987	-1.371 -1.371	0.891 0.895	-23.2 -23.2	-563.5 -566.0	-0.587 -0.589	-0.595 -0.597
			1000.0	21.3	48.7	1060.2	0.998	-1.371 -1.371	0.895	-23.2 -23.4	-597.6	-0.621	0.031
			2500.0	21.3	48.7	2650.4	1.000	-1.371	0.977	-23.5	-617.9	-0.641	
			5000.0	21.3	48.7	5300.8	1.000	-1.371	0.988	-23.5	-624.8	-0.648	
			10000.0	21.3	48.7	10601.7	1.000	-1.371	0.994	-23.5	-628.6	-0.652	

INPUT AND CALCULATION - EC2

				INF	UT AND	CALCULA	TION - E	EC2					
NAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β_{as} (t)	β_{ds} (t-t _s) _T	β_{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	30.5	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	1.9	4.4	-0.006	
$\varepsilon_{ca,inf}$ =	31.25	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	5.7	39.6	-0.045	-0.043
$h_0 =$	60		2.0	21.3	48.7	2.12	0.246	0.102	1.371	7.7	74.8	-0.083	-0.065
$k_h =$	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	9.2	107.0	-0.116	
$\alpha_{ds1} =$	6		4.0	21.3	48.7	4.2	0.330	0.186	1.371	10.3	136.4	-0.147	
$\alpha_{ds2} =$	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	11.3	162.8	-0.174	-0.100
ε_{cd0} =	733.20	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	12.1	187.0	-0.199	-0.117
			6.0	21.3	48.7	6.4	0.387	0.255	1.371	12.1	187.0	-0.199	-0.117
			6.0	21.3	48.7	6.4	0.388	0.256	1.371	12.1	187.7	-0.200	-0.117
			6.3 7.0	21.3 21.3	48.7 48.7	6.6 7.4	0.393 0.411	0.263 0.285	1.371 1.371	12.3 12.8	192.8 209.0	-0.205 -0.222	-0.117 -0.143
			8.0	21.3	48.7	8.5	0.432	0.313	1.371	13.5	229.5	-0.243	-0.125
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	14.1	248.6	-0.263	-0.148
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	14.7	266.2	-0.281	-0.155
			11.0	21.3	48.7	11.7	0.485	0.385	1.371	15.2	282.3	-0.298	-0.197
			12.0	21.3	48.7	12.7	0.500	0.406	1.371	15.6	297.7	-0.313	-0.178
			13.0	21.3	48.7	13.8	0.514	0.426	1.371	16.1	312.3	-0.328	-0.180
			20.0 27.0	21.3 21.3	48.7 48.7	21.2 28.6	0.591 0.646	0.533 0.606	1.371 1.371	18.5 20.2	390.8 444.3	-0.409 -0.465	-0.278 -0.343
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	20.2	444.3	-0.465	-0.343
			27.0	21.3	48.7	28.7	0.647	0.607	1.371	20.2	445.1	-0.465	-0.343
			27.3	21.3	48.7	28.9	0.648	0.608	1.371	20.3	445.8	-0.466	-0.343
			28.0	21.3	48.7	29.7	0.653	0.615	1.371	20.4	450.9	-0.471	-0.342
			29.0	21.3	48.7	30.7	0.659	0.623	1.371	20.6	456.8	-0.477	-0.333
			30.0	21.3	48.7	31.8	0.666	0.631	1.371	20.8	462.6	-0.483	-0.333
			31.0 32.0	21.3 21.3	48.7 48.7	32.9 33.9	0.672 0.677	0.639 0.646	1.371 1.371	21.0 21.2	468.5 473.6	-0.490 -0.495	-0.338 -0.350
			33.0	21.3	48.7	35.0	0.683	0.653	1.371	21.3	478.8	-0.500	-0.345
			34.0	21.3	48.7	36.0	0.688	0.660	1.371	21.5	483.9	-0.505	-0.368
			41.0	21.3	48.7	43.5	0.722	0.700	1.371	22.6	513.2	-0.536	-0.403
			48.0	21.3	48.7	50.9	0.750	0.732	1.371	23.4	536.7	-0.560	-0.412
			55.0	21.3	48.7	58.3	0.773	0.758	1.371	24.2	555.8	-0.580	-0.468
			62.0 83.0	21.3 21.3	48.7 48.7	65.7 88.0	0.793 0.838	0.780 0.826	1.371 1.371	24.8 26.2	571.9 605.6	-0.597 -0.632	-0.482 -0.540
			96.0	21.3	48.7	101.8	0.859	0.846	1.371	26.8	620.3	-0.647	-0.540
			117.0	21.3	48.7	124.0	0.885	0.870	1.371	27.7	637.9	-0.666	-0.535
			126.0	21.3	48.7	133.6	0.894	0.878	1.371	27.9	643.7	-0.672	-0.538
			147.0	21.3	48.7	155.8	0.912	0.893	1.371	28.5	654.7	-0.683	-0.543
			156.0	21.3	48.7	165.4	0.918	0.899	1.371	28.7	659.1	-0.688	-0.527
			177.0 186.0	21.3 21.3	48.7 48.7	187.7 197.2	0.930 0.935	0.910 0.914	1.371 1.371	29.1 29.2	667.2 670.1	-0.696 -0.699	-0.540 -0.557
			207.0	21.3	48.7	219.5	0.933	0.922	1.371	29.5	676.0	-0.706	-0.555
			216.0	21.3	48.7	229.0	0.947	0.925	1.371	29.6	678.2	-0.708	-0.587
			237.0	21.3	48.7	251.3	0.954	0.931	1.371	29.8	682.6	-0.712	-0.560
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	29.9	684.1	-0.714	-0.570
			267.0	21.3	48.7	283.1	0.962	0.938	1.371	30.1	687.7	-0.718	-0.585
			276.0 297.0	21.3 21.3	48.7 48.7	292.6 314.9	0.964 0.968	0.940 0.944	1.371 1.371	30.1 30.3	689.2 692.1	-0.719 -0.722	-0.605 -0.603
			306.0	21.3	48.7	324.4	0.900	0.946	1.371	30.3	693.6	-0.724	-0.595
			327.0	21.3	48.7	346.7	0.973	0.949	1.371	30.4	695.8	-0.726	-0.622
			336.0	21.3	48.7	356.2	0.974	0.950	1.371	30.4	696.5	-0.727	-0.613
			357.0	21.3	48.7	378.5	0.977	0.953	1.371	30.5	698.7	-0.729	-0.618
			371.0	21.3	48.7	393.3	0.979	0.955	1.371	30.6	700.2	-0.731	-0.633
			392.0 406.0	21.3	48.7 49.7	415.6 420.4	0.981	0.957	1.371	30.7	701.7	-0.732 -0.734	-0.640
			406.0 427.0	21.3 21.3	48.7 48.7	430.4 452.7	0.982 0.984	0.959 0.961	1.371 1.371	30.7 30.8	703.1 704.6	-0.734 -0.735	-0.657 -0.652
			427.0 456.0	21.3	46.7 48.7	432.7 483.4	0.986	0.963	1.371	30.8	704.6 706.1	-0.735 -0.737	-0.667
			477.0	21.3	48.7	505.7	0.987	0.965	1.371	30.8	707.5	-0.738	-0.645
			1000.0	21.3	48.7	1060.2	0.998	0.983	1.371	31.2	720.7	-0.752	
			2500.0	21.3	48.7	2650.4	1.000	0.993	1.371	31.3	728.1	-0.759	
			5000.0	21.3	48.7	5300.8	1.000	0.997	1.371	31.3	731.0	-0.762	
			10000.0	21.3	48.7	10601.7	1.000	0.998	1.371	31.3	731.7	-0.763	

RAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	(t − t _s) _T (days)	β _{as} (t)	β_{ds} (t-t _s) _T	β _{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	28.1	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	1.5	4.5	-0.006	(,,,,,
$\varepsilon_{ca,inf}$ =	25.25	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	4.6	40.7	-0.045	-0.058
$h_0 =$	60		2.0	21.3	48.7	2.12	0.246	0.102	1.371	6.2	76.8	-0.083	-0.070
$k_h =$	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	7.4	109.9	-0.117	-0.110
$\alpha_{ds1} =$	6		4.0	21.3	48.7	4.2	0.330	0.186	1.371	8.3	140.0	-0.148	-0.113
$\alpha_{ds2} =$	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	9.1	167.1	-0.176	-0.120
ε_{cd0} =	752.80	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	9.8	192.0	-0.202	-0.155
			6.0	21.3	48.7	6.4	0.387	0.255	1.371	9.8	192.0	-0.202	-0.155
			6.0 6.3	21.3 21.3	48.7 48.7	6.4 6.6	0.388 0.393	0.256 0.263	1.371 1.371	9.8 9.9	192.7 198.0	-0.203 -0.208	-0.155 -0.140
			7.0	21.3	48.7	7.4	0.411	0.285	1.371	10.4	214.5	-0.225	-0.155
			8.0	21.3	48.7	8.5	0.432	0.313	1.371	10.9	235.6	-0.247	-0.162
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	11.4	255.2	-0.267	-0.198
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	11.8	273.3	-0.285	-0.207
			11.0 12.0	21.3 21.3	48.7 48.7	11.7 12.7	0.485 0.500	0.385 0.406	1.371 1.371	12.2 12.6	289.8 305.6	-0.302 -0.318	-0.172 -0.220
			13.0	21.3	48.7	13.8	0.514	0.426	1.371	13.0	320.7	-0.316	-0.220
			20.0	21.3	48.7	21.2	0.591	0.533	1.371	14.9	401.2	-0.416	-0.320
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	16.3	456.2	-0.473	-0.383
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	16.3	456.2	-0.473	-0.383
			27.0	21.3	48.7 49.7	28.7	0.647	0.607	1.371	16.3	456.9 457.7	-0.473	-0.383
			27.3 28.0	21.3 21.3	48.7 48.7	28.9 29.7	0.648 0.653	0.608 0.615	1.371 1.371	16.4 16.5	457.7 463.0	-0.474 -0.480	-0.383 -0.385
			29.0	21.3	48.7	30.7	0.659	0.623	1.371	16.6	469.0	-0.486	-0.387
			30.0	21.3	48.7	31.8	0.666	0.631	1.371	16.8	475.0	-0.492	-0.402
			31.0	21.3	48.7	32.9	0.672	0.639	1.371	17.0	481.0	-0.498	-0.395
			32.0	21.3	48.7	33.9	0.677	0.646	1.371	17.1	486.3	-0.503	-0.385
			33.0 34.0	21.3 21.3	48.7 48.7	35.0 36.0	0.683 0.688	0.653 0.66	1.371 1.371	17.2 17.4	491.6 496.8	-0.509 -0.514	-0.393 -0.410
			41.0	21.3	48.7	43.5	0.722	0.7	1.371	18.2	527.0	-0.545	-0.443
			48.0	21.3	48.7	50.9	0.750	0.732	1.371	18.9	551.0	-0.570	-0.498
			55.0	21.3	48.7	58.3	0.773	0.758	1.371	19.5	570.6	-0.590	-0.507
			62.0	21.3	48.7	65.7	0.793	0.78	1.371	20.0	587.2	-0.607	-0.520
			83.0 96.0	21.3 21.3	48.7 48.7	88.0 101.8	0.838 0.859	0.826 0.846	1.371 1.371	21.2 21.7	621.8 636.9	-0.643 -0.659	-0.587 -0.583
			117.0	21.3	48.7	124.0	0.885	0.87	1.371	22.3	654.9	-0.677	-0.610
			126.0	21.3	48.7	133.6	0.894	0.878	1.371	22.6	661.0	-0.684	-0.597
			147.0	21.3	48.7	155.8	0.912	0.893	1.371	23.0	672.3	-0.695	-0.627
			156.0	21.3	48.7	165.4	0.918	0.899	1.371	23.2	676.8	-0.700	-0.630
			177.0 186.0	21.3 21.3	48.7 48.7	187.7 197.2	0.930 0.935	0.91 0.914	1.371 1.371	23.5 23.6	685.0 688.1	-0.709 -0.712	-0.637 -0.660
			207.0	21.3	48.7	219.5	0.944	0.922	1.371	23.8	694.1	-0.712	-0.673
			216.0	21.3	48.7	229.0	0.947	0.925	1.371	23.9	696.3	-0.720	-0.670
			237.0	21.3	48.7	251.3	0.954	0.931	1.371	24.1	700.9	-0.725	-0.667
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	24.2	702.4	-0.727	-0.650
			267.0 276.0	21.3 21.3	48.7 48.7	283.1 292.6	0.962 0.964	0.938 0.94	1.371	24.3 24.3	706.1 707.6	-0.730	-0.702 -0.677
			297.0	21.3	48.7	314.9	0.968	0.944	1.371 1.371	24.3	710.6	-0.732 -0.735	-0.688
			306.0	21.3	48.7	324.4	0.970	0.946	1.371	24.5	712.1	-0.737	-0.750
			327.0	21.3	48.7	346.7	0.973	0.949	1.371	24.6	714.4	-0.739	-0.732
			336.0	21.3	48.7	356.2	0.974	0.95	1.371	24.6	715.2	-0.740	-0.765
			357.0	21.3	48.7 49.7	378.5	0.977	0.953	1.371	24.7	717.4	-0.742	-0.775
			371.0 392.0	21.3 21.3	48.7 48.7	393.3 415.6	0.979 0.981	0.955 0.957	1.371 1.371	24.7 24.8	718.9 720.4	-0.744 -0.745	-0.772 -0.767
			406.0	21.3	48.7	430.4	0.982	0.959	1.371	24.8	721.9	-0.747	-0.772
			427.0	21.3	48.7	452.7	0.984	0.961	1.371	24.8	723.4	-0.748	-0.785
			456.0	21.3	48.7	483.4	0.986	0.963	1.371	24.9	724.9	-0.750	-0.782
			477.0	21.3	48.7	505.7	0.987	0.965	1.371	24.9	726.5	-0.751	-0.782
			1000.0 2500.0	21.3 21.3	48.7 48.7	1060.2 2650.4	0.998 1.000	0.983 0.993	1.371 1.371	25.2 25.3	740.0 747.5	-0.765 -0.773	
			5000.0	21.3	48.7	5300.8	1.000	0.997	1.371	25.3	750.5	-0.776	
			10000.0	21.3	48.7	10601.7	1.000	0.998	1.371	25.3	751.3	-0.777	

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β _{as} (t)	β_{ds} (t-t _s) _T	β _{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	22.6	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	0.7	4.8	-0.006	-0.020
$\varepsilon_{ca,inf} =$	11.50	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	2.1	43.2	-0.045	-0.028
	60	72-00	2.0	21.3	48.7	2.12	0.246	0.102	1.371	2.8	81.6	-0.043	-0.012
h o =													-0.012
k h =	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	3.4	116.8	-0.120	0.000
$\alpha_{ds1} =$	6		4.0	21.3	48.7	4.2	0.330	0.186	1.371	3.8	148.8	-0.153	-0.090
α_{ds2} =	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	4.2	177.6	-0.182	-0.100
ε_{cd0} =	799.80	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	4.5	203.9	-0.208	-0.122
			6.0	21.3	48.7	6.4	0.387	0.255	1.371	4.5	203.9	-0.208	-0.122
			6.0	21.3	48.7	6.4	0.388	0.256	1.371	4.5	204.7	-0.209	-0.122
			6.3 7.0	21.3 21.3	48.7 48.7	6.6 7.4	0.393 0.411	0.263 0.285	1.371	4.5 4.7	210.3	-0.215	-0.122 -0.125
			8.0	21.3	48.7	8.5	0.411	0.203	1.371 1.371	5.0	227.9 250.3	-0.233 -0.255	-0.132
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	5.2	271.1	-0.276	-0.158
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	5.4	290.3	-0.296	-0.182
			11.0	21.3	48.7	11.7	0.485	0.385	1.371	5.6	307.9	-0.314	-0.192
			12.0	21.3	48.7	12.7	0.500	0.406	1.371	5.8	324.7	-0.331	-0.225
			13.0	21.3	48.7	13.8	0.514	0.426	1.371	5.9	340.7	-0.347	-0.235
			20.0	21.3	48.7	21.2	0.591	0.533	1.371	6.8	426.3	-0.433	-0.272
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	7.4	484.7	-0.492	-0.330
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	7.4	484.7	-0.492	-0.330
			27.0	21.3	48.7	28.7	0.647	0.607	1.371	7.4	485.5	-0.493	-0.330
			27.3	21.3	48.7	28.9	0.648	0.608	1.371	7.5	486.3	-0.494	-0.330
			28.0	21.3	48.7	29.7	0.653	0.615	1.371	7.5	491.9	-0.499	-0.315
			29.0 30.0	21.3 21.3	48.7 48.7	30.7 31.8	0.659 0.666	0.623 0.631	1.371 1.371	7.6 7.7	498.3 504.7	-0.506 -0.512	-0.333 -0.327
			31.0	21.3	48.7	32.9	0.672	0.639	1.371	7.7	511.1	-0.512	-0.335
			32.0	21.3	48.7	33.9	0.677	0.646	1.371	7.8	516.7	-0.525	-0.338
			33.0	21.3	48.7	35.0	0.683	0.653	1.371	7.9	522.3	-0.530	-0.335
			34.0	21.3	48.7	36.0	0.688	0.66	1.371	7.9	527.9	-0.536	-0.332
			41.0	21.3	48.7	43.5	0.722	0.7	1.371	8.3	559.9	-0.568	-0.337
			48.0	21.3	48.7	50.9	0.750	0.732	1.371	8.6	585.5	-0.594	-0.388
			55.0	21.3	48.7	58.3	0.773	0.758	1.371	8.9	606.2	-0.615	-0.410
			62.0	21.3	48.7	65.7	0.793	0.78	1.371	9.1	623.8	-0.633	-0.427
			83.0	21.3	48.7	88.0	0.838	0.826	1.371	9.6	660.6	-0.670	-0.430
			96.0	21.3	48.7	101.8	0.859	0.846	1.371	9.9	676.6	-0.687	-0.410
			117.0 126.0	21.3 21.3	48.7 48.7	124.0 133.6	0.885 0.894	0.87 0.878	1.371 1.371	10.2 10.3	695.8 702.2	-0.706 -0.713	-0.438 -0.438
			147.0	21.3	48.7	155.8	0.034	0.893	1.371	10.5	714.2	-0.715	-0.470
			156.0	21.3	48.7	165.4	0.918	0.899	1.371	10.6	719.0	-0.730	-0.478
			177.0	21.3	48.7	187.7	0.930	0.91	1.371	10.7	727.8	-0.739	-0.507
			186.0	21.3	48.7	197.2	0.935	0.914	1.371	10.8	731.0	-0.742	-0.492
			207.0	21.3	48.7	219.5	0.944	0.922	1.371	10.9	737.4	-0.748	-0.495
			216.0	21.3	48.7	229.0	0.947	0.925	1.371	10.9	739.8	-0.751	-0.508
			237.0	21.3	48.7	251.3	0.954	0.931	1.371	11.0	744.6	-0.756	-0.485
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	11.0	746.2	-0.757	-0.492
			267.0 276.0	21.3	48.7 48.7	283.1	0.962	0.938 0.94	1.371 1.371	11.1	750.2	-0.761	-0.493
			297.0	21.3 21.3	48.7 48.7	292.6 314.9	0.964 0.968	0.944	1.371	11.1 11.1	751.8 755.0	-0.763 -0.766	-0.502 -0.572
			306.0	21.3	48.7	324.4	0.970	0.946	1.371	11.2	756.6	-0.768	-0.530
			327.0	21.3	48.7	346.7	0.973	0.949	1.371	11.2	759.0	-0.770	-0.568
			336.0	21.3	48.7	356.2	0.974	0.95	1.371	11.2	759.8	-0.771	-0.563
			357.0	21.3	48.7	378.5	0.977	0.953	1.371	11.2	762.2	-0.773	-0.552
			371.0	21.3	48.7	393.3	0.979	0.955	1.371	11.3	763.8	-0.775	-0.587
			392.0	21.3	48.7	415.6	0.981	0.957	1.371	11.3	765.4	-0.777	-0.608
			406.0	21.3	48.7	430.4	0.982	0.959	1.371	11.3	767.0	-0.778	-0.597
			427.0	21.3	48.7	452.7	0.984	0.961	1.371	11.3	768.6	-0.780	-0.593
			456.0	21.3	48.7	483.4	0.986	0.963	1.371	11.3	770.2	-0.782	-0.595
			477.0	21.3	48.7	505.7	0.987	0.965	1.371	11.4	771.8	-0.783	-0.597
			1000.0	21.3	48.7 49.7	1060.2	0.998	0.983	1.371	11.5 11.5	786.2	-0.798	
			2500.0 5000.0	21.3 21.3	48.7 48.7	2650.4 5300.8	1.000 1.000	0.993 0.997	1.371 1.371	11.5 11.5	794.2 797.4	-0.806 -0.809	
			10000.0	21.3	48.7	10601.7	1.000	0.998	1.371	11.5	797. 4 798.2	-0.809	
			, 5500.0	27.0	.5.7	10001.1	1.500	0.000			, 55.2	0.010	

INPUT AND CALCULATION - EC2 - CALIBRATED

			ı	NPUT AND	CALCU	LATION - I	EC2 - C/	ALIBRATED					
NAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	(t − t _s) _T (days)	β_{as} (t)	β_{ds} (t-t _s) _T	β_{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	30.5	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	1.9	3.8	-0.006	,
$\varepsilon_{ca,inf}$ =	31.25	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	5.7	34.6	-0.040	-0.043
$h_0 =$	60		2.0	21.3	48.7	2.12	0.246	0.102	1.371	7.7	65.4	-0.073	-0.065
k h =	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	9.2	93.7	-0.103	
α _{ds1} =	5		4.0	21.3	48.7	4.2	0.330	0.186	1.371	10.3	119.3	-0.130	
$\alpha_{ds2} =$	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	11.3	142.4	-0.154	-0.100
$\varepsilon_{cd0} =$	641.60	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	12.1	163.6	-0.176	-0.117
-000			6.0	21.3	48.7	6.4	0.387	0.255	1.371	12.1	163.6	-0.176	-0.117
			6.0	21.3	48.7	6.4	0.388	0.256	1.371	12.1	164.2	-0.176	-0.117
			6.3	21.3	48.7	6.6	0.393	0.263	1.371	12.3	168.7	-0.181	-0.117
			7.0	21.3	48.7	7.4	0.411	0.285	1.371	12.8	182.9	-0.196	-0.143
			8.0	21.3	48.7	8.5	0.432	0.313	1.371	13.5	200.8	-0.214	-0.125
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	14.1	217.5	-0.232	-0.148
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	14.7	232.9	-0.248	-0.155
			11.0 12.0	21.3 21.3	48.7 48.7	11.7 12.7	0.485 0.500	0.385 0.406	1.371 1.371	15.2 15.6	247.0 260.5	-0.262 -0.276	-0.197 -0.178
			13.0	21.3	48.7	13.8	0.514	0.426	1.371	16.1	273.3	-0.270	-0.176
			20.0	21.3	48.7	21.2	0.591	0.533	1.371	18.5	342.0	-0.361	-0.278
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	20.2	388.8	-0.409	-0.343
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	20.2	388.8	-0.409	-0.343
			27.0	21.3	48.7	28.7	0.647	0.607	1.371	20.2	389.5	-0.410	-0.343
			27.3	21.3	48.7	28.9	0.648	0.608	1.371	20.3	390.1	-0.410	-0.343
			28.0	21.3	48.7	29.7	0.653	0.615	1.371	20.4	394.6	-0.415	-0.342
			29.0 30.0	21.3 21.3	48.7 48.7	30.7	0.659 0.666	0.623 0.631	1.371 1.371	20.6 20.8	399.7 404.8	-0.420	-0.333 -0.333
			31.0	21.3	48.7	31.8 32.9	0.672	0.639	1.371	21.0	410.0	-0.426 -0.431	-0.338
			32.0	21.3	48.7	33.9	0.677	0.646	1.371	21.2	414.5	-0.436	-0.350
			33.0	21.3	48.7	35.0	0.683	0.653	1.371	21.3	419.0	-0.440	-0.345
			34.0	21.3	48.7	36.0	0.688	0.660	1.371	21.5	423.5	-0.445	-0.368
			41.0	21.3	48.7	43.5	0.722	0.700	1.371	22.6	449.1	-0.472	-0.403
			48.0	21.3	48.7	50.9	0.750	0.732	1.371	23.4	469.7	-0.493	-0.412
			55.0	21.3	48.7	58.3 65.7	0.773	0.758	1.371	24.2	486.3	-0.511	-0.468
			62.0 83.0	21.3 21.3	48.7 48.7	65.7 88.0	0.793 0.838	0.780 0.826	1.371 1.371	24.8 26.2	500.4 530.0	-0.525 -0.556	-0.482 -0.540
			96.0	21.3	48.7	101.8	0.859	0.846	1.371	26.8	542.8	-0.570	-0.540
			117.0	21.3	48.7	124.0	0.885	0.870	1.371	27.7	558.2	-0.586	-0.535
			126.0	21.3	48.7	133.6	0.894	0.878	1.371	27.9	563.3	-0.591	-0.538
			147.0	21.3	48.7	155.8	0.912	0.893	1.371	28.5	572.9	-0.601	-0.543
			156.0	21.3	48.7	165.4	0.918	0.899	1.371	28.7	576.8	-0.606	-0.527
			177.0	21.3	48.7	187.7	0.930	0.910	1.371	29.1	583.9	-0.613	-0.540
			186.0 207.0	21.3 21.3	48.7 48.7	197.2 219.5	0.935 0.944	0.914 0.922	1.371 1.371	29.2 29.5	586.4 591.6	-0.616 -0.621	-0.557 -0.555
			216.0	21.3	48.7	229.0	0.947	0.925	1.371	29.6	593.5	-0.623	-0.587
			237.0	21.3	48.7	251.3	0.954	0.931	1.371	29.8	597.3	-0.627	-0.560
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	29.9	598.6	-0.629	-0.570
			267.0	21.3	48.7	283.1	0.962	0.938	1.371	30.1	601.8	-0.632	-0.585
			276.0	21.3	48.7	292.6	0.964	0.940	1.371	30.1	603.1	-0.633	-0.605
			297.0	21.3	48.7	314.9	0.968	0.944	1.371	30.3	605.7	-0.636	-0.603
			306.0	21.3 21.3	48.7 49.7	324.4	0.970	0.946 0.949	1.371	30.3 30.4	607.0	-0.637	-0.595 -0.622
			327.0 336.0	21.3	48.7 48.7	346.7 356.2	0.973 0.974	0.949	1.371 1.371	30.4 30.4	608.9 609.5	-0.639 -0.640	-0.622
			357.0	21.3	48.7	378.5	0.977	0.953	1.371	30.5	611.4	-0.642	-0.618
			371.0	21.3	48.7	393.3	0.979	0.955	1.371	30.6	612.7	-0.643	-0.633
			392.0	21.3	48.7	415.6	0.981	0.957	1.371	30.7	614.0	-0.645	-0.640
			406.0	21.3	48.7	430.4	0.982	0.959	1.371	30.7	615.3	-0.646	-0.657
			427.0	21.3	48.7	452.7	0.984	0.961	1.371	30.8	616.6	-0.647	-0.652
			456.0	21.3	48.7	483.4	0.986	0.963	1.371	30.8	617.9	-0.649	-0.667
			477.0 1000.0	21.3 21.3	48.7 48.7	505.7 1060.2	0.987 0.998	0.965 0.983	1.371 1.371	30.8 31.2	619.1 630.7	-0.650 -0.662	-0.645
			2500.0	21.3	48.7 48.7	2650.4	1.000	0.983	1.371	31.2 31.3	630.7 637.1	-0.662 -0.668	
			5000.0	21.3	48.7	5300.8	1.000	0.997	1.371	31.3	639.7	-0.671	
			10000.0	21.3	48.7	10601.7	1.000	0.998	1.371	31.3	640.3	-0.672	

RAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t-t_s)_T$ (days)	β _{as} (t)	β_{ds} (t-t _s) _T	β _{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	28.1	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	1.5	4.5	-0.006	(700)
$\varepsilon_{ca,inf} =$	25.25	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	4.6	40.7	-0.045	-0.058
h o =	60		2.0	21.3	48.7	2.12	0.246	0.102	1.371	6.2	76.8	-0.083	-0.070
$k_h =$	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	7.4	109.9	-0.117	-0.110
$\alpha_{ds1} =$	6		4.0	21.3	48.7	4.2	0.330	0.186	1.371	8.3	140.0	-0.148	-0.113
$\alpha_{ds2} =$	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	9.1	167.1	-0.176	-0.120
ε_{cd0} =	752.80	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	9.8	192.0	-0.202	-0.155
			6.0	21.3	48.7	6.4	0.387	0.255	1.371	9.8	192.0	-0.202	-0.155
			6.0	21.3	48.7	6.4	0.388	0.256	1.371	9.8	192.7	-0.203	-0.155
			6.3 7.0	21.3 21.3	48.7 48.7	6.6 7.4	0.393 0.411	0.263 0.285	1.371 1.371	9.9 10.4	198.0 214.5	-0.208 -0.225	-0.140 -0.155
			8.0	21.3	48.7	8.5	0.432	0.313	1.371	10.9	235.6	-0.247	-0.162
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	11.4	255.2	-0.267	-0.198
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	11.8	273.3	-0.285	-0.207
			11.0	21.3	48.7	11.7	0.485	0.385	1.371	12.2	289.8	-0.302	-0.172
			12.0 13.0	21.3 21.3	48.7 48.7	12.7 13.8	0.500 0.514	0.406 0.426	1.371 1.371	12.6 13.0	305.6 320.7	-0.318 -0.334	-0.220 -0.245
			20.0	21.3	48.7	21.2	0.591	0.533	1.371	14.9	401.2	-0.334	-0.243
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	16.3	456.2	-0.473	-0.383
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	16.3	456.2	-0.473	-0.383
			27.0	21.3	48.7	28.7	0.647	0.607	1.371	16.3	456.9	-0.473	-0.383
			27.3	21.3	48.7	28.9	0.648	0.608	1.371	16.4	457.7	-0.474	-0.383
			28.0 29.0	21.3 21.3	48.7 48.7	29.7 30.7	0.653 0.659	0.615 0.623	1.371 1.371	16.5 16.6	463.0 469.0	-0.480 -0.486	-0.385 -0.387
			30.0	21.3	48.7	31.8	0.666	0.631	1.371	16.8	475.0	-0.492	-0.402
			31.0	21.3	48.7	32.9	0.672	0.639	1.371	17.0	481.0	-0.498	-0.395
			32.0	21.3	48.7	33.9	0.677	0.646	1.371	17.1	486.3	-0.503	-0.385
			33.0	21.3	48.7	35.0	0.683	0.653	1.371	17.2	491.6	-0.509	-0.393
			34.0	21.3	48.7 49.7	36.0	0.688	0.66	1.371	17.4	496.8	-0.514	-0.410
			41.0 48.0	21.3 21.3	48.7 48.7	43.5 50.9	0.722 0.750	0.7 0.732	1.371 1.371	18.2 18.9	527.0 551.0	-0.545 -0.570	-0.443 -0.498
			55.0	21.3	48.7	58.3	0.773	0.758	1.371	19.5	570.6	-0.590	-0.507
			62.0	21.3	48.7	65.7	0.793	0.78	1.371	20.0	587.2	-0.607	-0.520
			83.0	21.3	48.7	88.0	0.838	0.826	1.371	21.2	621.8	-0.643	-0.587
			96.0	21.3	48.7	101.8	0.859	0.846	1.371	21.7	636.9	-0.659	-0.583
			117.0 126.0	21.3 21.3	48.7 48.7	124.0 133.6	0.885 0.894	0.87 0.878	1.371 1.371	22.3 22.6	654.9 661.0	-0.677 -0.684	-0.610 -0.597
			147.0	21.3	48.7	155.8	0.034	0.893	1.371	23.0	672.3	-0.695	-0.627
			156.0	21.3	48.7	165.4	0.918	0.899	1.371	23.2	676.8	-0.700	-0.630
			177.0	21.3	48.7	187.7	0.930	0.91	1.371	23.5	685.0	-0.709	-0.637
			186.0	21.3	48.7	197.2	0.935	0.914	1.371	23.6	688.1	-0.712	-0.660
			207.0	21.3	48.7 49.7	219.5	0.944	0.922	1.371	23.8	694.1	-0.718	-0.673
			216.0 237.0	21.3 21.3	48.7 48.7	229.0 251.3	0.947 0.954	0.925 0.931	1.371 1.371	23.9 24.1	696.3 700.9	-0.720 -0.725	-0.670 -0.667
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	24.2	702.4	-0.727	-0.650
			267.0	21.3	48.7	283.1	0.962	0.938	1.371	24.3	706.1	-0.730	-0.702
			276.0	21.3	48.7	292.6	0.964	0.94	1.371	24.3	707.6	-0.732	-0.677
			297.0	21.3	48.7	314.9	0.968	0.944	1.371	24.4	710.6	-0.735	-0.688
			306.0	21.3	48.7 49.7	324.4	0.970	0.946 0.949	1.371	24.5	712.1 714.4	-0.737	-0.750 -0.732
			327.0 336.0	21.3 21.3	48.7 48.7	346.7 356.2	0.973 0.974	0.949	1.371 1.371	24.6 24.6	714.4 715.2	-0.739 -0.740	-0.732
			357.0	21.3	48.7	378.5	0.977	0.953	1.371	24.7	717.4	-0.742	-0.775
			371.0	21.3	48.7	393.3	0.979	0.955	1.371	24.7	718.9	-0.744	-0.772
			392.0	21.3	48.7	415.6	0.981	0.957	1.371	24.8	720.4	-0.745	-0.767
			406.0	21.3	48.7	430.4	0.982	0.959	1.371	24.8	721.9	-0.747	-0.772
			427.0 456.0	21.3 21.3	48.7 48.7	452.7 483.4	0.984 0.986	0.961 0.963	1.371 1.371	24.8 24.9	723.4 724.9	-0.748 -0.750	-0.785 -0.782
			456.0 477.0	21.3	48.7 48.7	505.7	0.987	0.965	1.371	24.9 24.9	724.9 726.5	-0.750	-0.782
			1000.0	21.3	48.7	1060.2	0.998	0.983	1.371	25.2	740.0	-0.765	
			2500.0	21.3	48.7	2650.4	1.000	0.993	1.371	25.3	747.5	-0.773	
			5000.0	21.3	48.7	5300.8	1.000	0.997	1.371	25.3	750.5	-0.776	
			10000.0	21.3	48.7	10601.7	1.000	0.998	1.371	25.3	751.3	-0.777	

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	$(t - t_s)_T$ (days)	β _{as} (t)	β_{ds} (t-t _s) _T	β _{RH}	ε _{cas} (t) (1E-6)	ε _{cds} (t) (1E-6)	ε _{cs} (t) (‰)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	22.6	1	0.100	21.3	48.7	0.106	0.061	0.006	1.371	0.7	3.6	-0.004	-0.020
$\varepsilon_{ca,inf} =$	11.50	1E-06	1.0	21.3	48.7	1.06	0.181	0.054	1.371	2.1	32.4	-0.035	-0.028
$h_0 =$	60		2.0	21.3	48.7	2.12	0.246	0.102	1.371	2.8	61.2	-0.064	-0.012
k h =	1.0		3.0	21.3	48.7	3.2	0.293	0.146	1.371	3.4	87.6	-0.091	0.0.2
$\alpha_{ds1} =$	4		4.0	21.3	48.7	4.2	0.330	0.186	1.371	3.8	111.6	-0.115	-0.090
$\alpha_{ds2} =$	0.11		5.0	21.3	48.7	5.3	0.361	0.222	1.371	4.2	133.2	-0.137	-0.100
$\varepsilon_{cd0} =$	599.80	1E-06	6.0	21.3	48.7	6.4	0.387	0.255	1.371	4.5	152.9	-0.157	-0.122
Cau	000.00	72 00	6.0	21.3	48.7	6.4	0.387	0.255	1.371	4.5	152.9	-0.157	-0.122
			6.0	21.3	48.7	6.4	0.388	0.256	1.371	4.5	153.5	-0.158	-0.122
			6.3	21.3	48.7	6.6	0.393	0.263	1.371	4.5	157.7	-0.162	-0.122
			7.0	21.3	48.7	7.4	0.411	0.285	1.371	4.7	170.9	-0.176	-0.125
			8.0	21.3	48.7	8.5	0.432	0.313	1.371	5.0	187.7	-0.193	-0.132
			9.0	21.3	48.7	9.5	0.451	0.339	1.371	5.2	203.3	-0.209	-0.158
			10.0	21.3	48.7	10.6	0.469	0.363	1.371	5.4	217.7	-0.223	-0.182
			11.0	21.3	48.7	11.7	0.485	0.385	1.371	5.6	230.9	-0.237	-0.192
			12.0	21.3	48.7	12.7	0.500	0.406	1.371	5.8	243.5	-0.249	-0.225
			13.0 20.0	21.3 21.3	48.7 48.7	13.8 21.2	0.514 0.591	0.426 0.533	1.371 1.371	5.9 6.8	255.5 319.7	-0.261 -0.327	-0.235 -0.272
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	7.4	363.5	-0.327	-0.272
			27.0	21.3	48.7	28.6	0.646	0.606	1.371	7.4	363.5	-0.371	-0.330
			27.0	21.3	48.7	28.7	0.647	0.607	1.371	7.4	364.1	-0.372	-0.330
			27.3	21.3	48.7	28.9	0.648	0.608	1.371	7.5	364.7	-0.372	-0.330
			28.0	21.3	48.7	29.7	0.653	0.615	1.371	7.5	368.9	-0.376	-0.315
			29.0	21.3	48.7	30.7	0.659	0.623	1.371	7.6	373.7	-0.381	-0.333
			30.0	21.3	48.7	31.8	0.666	0.631	1.371	7.7	378.5	-0.386	-0.327
			31.0	21.3	48.7	32.9	0.672	0.639	1.371	7.7	383.3	-0.391	-0.335
			32.0	21.3	48.7	33.9	0.677	0.646	1.371	7.8	387.5	-0.395	-0.338
			33.0 34.0	21.3 21.3	48.7 48.7	35.0 36.0	0.683 0.688	0.653 0.66	1.371 1.371	7.9 7.9	391.7 395.9	-0.400 -0.404	-0.335 -0.332
			41.0	21.3	48.7	43.5	0.722	0.7	1.371	8.3	419.9	-0.428	-0.337
			48.0	21.3	48.7	50.9	0.750	0.732	1.371	8.6	439.1	-0.448	-0.388
			55.0	21.3	48.7	58.3	0.773	0.758	1.371	8.9	454.6	-0.464	-0.410
			62.0	21.3	48.7	65.7	0.793	0.78	1.371	9.1	467.8	-0.477	-0.427
			83.0	21.3	48.7	88.0	0.838	0.826	1.371	9.6	495.4	-0.505	-0.430
			96.0	21.3	48.7	101.8	0.859	0.846	1.371	9.9	507.4	-0.517	-0.410
			117.0	21.3	48.7	124.0	0.885	0.87	1.371	10.2	521.8	-0.532	-0.438
			126.0	21.3	48.7	133.6	0.894	0.878	1.371	10.3	526.6	-0.537	-0.438
			147.0 156.0	21.3 21.3	48.7 48.7	155.8 165.4	0.912 0.918	0.893 0.899	1.371 1.371	10.5 10.6	535.6 539.2	-0.546 -0.550	-0.470 -0.478
			177.0	21.3	48.7	187.7	0.930	0.099	1.371	10.0	545.8	-0.557	-0.478
			186.0	21.3	48.7	197.2	0.935	0.914	1.371	10.8	548.2	-0.559	-0.492
			207.0	21.3	48.7	219.5	0.944	0.922	1.371	10.9	553.0	-0.564	-0.495
			216.0	21.3	48.7	229.0	0.947	0.925	1.371	10.9	554.8	-0.566	-0.508
			237.0	21.3	48.7	251.3	0.954	0.931	1.371	11.0	558.4	-0.569	-0.485
			246.0	21.3	48.7	260.8	0.957	0.933	1.371	11.0	559.6	-0.571	-0.492
			267.0	21.3	48.7	283.1	0.962	0.938	1.371	11.1	562.6	-0.574	-0.493
			276.0	21.3	48.7	292.6	0.964	0.94	1.371	11.1	563.8	-0.575	-0.502
			297.0 306.0	21.3 21.3	48.7 48.7	314.9 324.4	0.968 0.970	0.944 0.946	1.371 1.371	11.1 11.2	566.2 567.4	-0.577 -0.579	-0.572 -0.530
			327.0	21.3	48.7	346.7	0.973	0.949	1.371	11.2	569.2	-0.580	-0.568
			336.0	21.3	48.7	356.2	0.974	0.95	1.371	11.2	569.8	-0.581	-0.563
			357.0	21.3	48.7	378.5	0.977	0.953	1.371	11.2	571.6	-0.583	-0.552
			371.0	21.3	48.7	393.3	0.979	0.955	1.371	11.3	572.8	-0.584	-0.587
			392.0	21.3	48.7	415.6	0.981	0.957	1.371	11.3	574.0	-0.585	-0.608
			406.0	21.3	48.7	430.4	0.982	0.959	1.371	11.3	575.2	-0.587	-0.597
			427.0	21.3	48.7	452.7	0.984	0.961	1.371	11.3	576.4	-0.588	-0.593
			456.0	21.3	48.7	483.4	0.986	0.963	1.371	11.3	577.6	-0.589	-0.595
			477.0	21.3	48.7	505.7	0.987	0.965	1.371	11.4	578.8	-0.590	-0.597
			1000.0	21.3	48.7 49.7	1060.2	0.998	0.983	1.371	11.5 11.5	589.6	-0.601	
			2500.0 5000.0	21.3 21.3	48.7 48.7	2650.4 5300.8	1.000 1.000	0.993 0.997	1.371 1.371	11.5 11.5	595.6 598.0	-0.607 -0.610	
			10000.0	21.3	46.7 48.7	10601.7	1.000	0.998	1.371	11.5 11.5	598.6	-0.610	
			. 5555.0	27.0		.0001.1	1.000	0.000	1.011		000.0	0.010	

INPUT FOR THE ACI 209R MODEL

	NAC	RAC	HVFAC	
$f_{cm} =$	30.5	28.1	22.6	
V/S (mm)=	30	30	30	
f =	39.81	39.81	39.81	
α =	1	1	1	
$\varepsilon_{shu,0}$ =	780	780	780	1E-06
Y sh,∨S	1.042	1.042	1.042	
s =	<i>75</i>	110	70	
$\gamma_{sh,s}$ =	1.011	1.067	1.003	
$\psi =$	81.8	81.8	100.000	
$\gamma_{sh,\psi}$ =	1.064	1.064	1.1	
c =	284.6	285.0	200.0	
γ _{sh, c} =	0.924	0.924	0.872	
$\alpha_{air} =$	2.5	4.0	1.5	
$\gamma_{sh,\alpha} =$	1.000	1.000	1.000	
γ_{sh} =	1.124	1.186	1.088	
ε_{shu} =	876.7	925.1	848.6	1E-06

	v.	•	
•	v	н	ı

NAC								
t _s (days)	t – t _s (days)	T (°C)	RH (%)	β (t)	Y sh,tc	Y sh,RH	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t)
1	0.100	21.3	48.7	0.003	1.202	0.903	-0.003	(%)
,	1.0	21.3	48.7	0.025	1.202	0.903	-0.022	-0.043
	2.0	21.3	48.7	0.048		0.903	-0.042	-0.065
	3.0	21.3	48.7	0.070		0.903	-0.061	0.000
	4.0	21.3	48.7	0.091		0.903	-0.080	
	5.0	21.3	48.7	0.112		0.903	-0.098	-0.100
	6.0	21.3	48.7	0.131		0.903	-0.115	-0.117
	6.0	21.3	48.7	0.131		0.903	-0.115	-0.117
	6.0	21.3	48.7	0.132		0.903	-0.116	-0.117
	6.3	21.3	48.7	0.136		0.903	-0.119	-0.117
	7.0	21.3	48.7	0.150		0.903	-0.132	-0.143
	8.0	21.3	48.7	0.167		0.903	-0.146	-0.125
	9.0	21.3	48.7	0.184		0.903	-0.161	-0.148
	10.0	21.3	48.7	0.201		0.903	-0.176	-0.155
	11.0	21.3	48.7	0.216		0.903	-0.189	-0.197
	12.0	21.3	48.7	0.232		0.903	-0.203	-0.178
	13.0	21.3	48.7	0.246		0.903	-0.216	-0.180
	20.0	21.3	48.7	0.334		0.903	-0.293	-0.278
	27.0	21.3	48.7	0.404		0.903	-0.354	-0.343
	27.0	21.3	48.7	0.404		0.903	-0.354	-0.343
	27.0	21.3	48.7	0.405		0.903	-0.355	-0.343
	27.3	21.3	48.7	0.406		0.903	-0.356	-0.343
	28.0	21.3	48.7	0.413		0.903	-0.362	-0.342
	29.0	21.3	48.7	0.421		0.903	-0.369	-0.333
	30.0	21.3	48.7	0.430		0.903	-0.377	-0.333
	31.0	21.3	48.7	0.438		0.903	-0.384	-0.338
	32.0	21.3	48.7	0.446		0.903	-0.391	-0.350
	33.0	21.3	48.7	0.453		0.903	-0.397	-0.345
	34.0	21.3	48.7	0.461		0.903	-0.404	-0.368
	41.0	21.3	48.7	0.507		0.903	-0.444	-0.403
	48.0	21.3	48.7	0.547		0.903	-0.480	-0.412
	55.0	21.3	48.7	0.580		0.903	-0.508	-0.468
	62.0	21.3	48.7	0.609		0.903	-0.534	-0.482
	83.0	21.3	48.7	0.676		0.903	-0.593	-0.540
	96.0	21.3	48.7	0.707		0.903	-0.620	-0.540
	117.0	21.3	48.7	0.746		0.903	-0.654	-0.535
	126.0	21.3	48.7	0.760		0.903	-0.666	-0.538
	147.0	21.3	48.7	0.787		0.903	-0.690	-0.543
	156.0	21.3	48.7	0.797		0.903	-0.699	-0.527
	177.0	21.3	48.7	0.816		0.903	-0.715	-0.540
	186.0	21.3	48.7	0.824		0.903	-0.722	-0.557
	207.0	21.3	48.7	0.839		0.903	-0.736	-0.555
	216.0	21.3	48.7	0.844		0.903	-0.740	-0.587
	237.0	21.3	48.7	0.856		0.903	-0.750	-0.560
	246.0	21.3	48.7	0.861		0.903	-0.755	-0.570
	267.0	21.3	48.7	0.870		0.903	-0.763	-0.585
	276.0	21.3	48.7	0.874		0.903	-0.766	-0.605
	297.0	21.3	48.7	0.882		0.903	-0.773	-0.603
	306.0	21.3	48.7	0.885		0.903	-0.776	-0.595
	327.0	21.3	48.7	0.891		0.903	-0.781	-0.622
	336.0	21.3	48.7	0.894		0.903	-0.784	-0.613
	357.0	21.3	48.7	0.900		0.903	-0.789	-0.618
	371.0	21.3	48.7	0.903		0.903	-0.792	-0.633
	392.0	21.3	48.7	0.908		0.903	-0.796	-0.640
	406.0	21.3	48.7	0.911		0.903	-0.799	-0.657
	427.0	21.3	48.7	0.915		0.903	-0.802	-0.652
	456.0	21.3	48.7	0.920		0.903	-0.807	-0.667
	477.0	21.3	48.7	0.923		0.903	-0.809	-0.645
	1000.0	21.3	48.7	0.962		0.903	-0.843	
	2500.0	21.3	48.7	0.984		0.903	-0.863	
	5000.0	21.3	48.7	0.992		0.903	-0.870	
	10000.0	21.3	48.7	0.996		0.903	-0.873	

RAC	

RAC								
t _s (days)	t – t _s (days)	T (°C)	RH (%)	β <i>(t)</i>	Y sh,tc	Y sh,RH	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t) (%)
1	0.100	21.3	48.7	0.003	1.202	0.903	-0.003	
	1.0	21.3	48.7	0.025		0.903	-0.023	-0.058
	2.0	21.3	48.7	0.048		0.903	-0.044	-0.070
	3.0	21.3	48.7	0.070		0.903	-0.065	-0.110
	4.0	21.3	48.7	0.091		0.903	-0.084	-0.113
	5.0	21.3	48.7	0.112		0.903	-0.104	-0.120
	6.0	21.3	48.7	0.131		0.903	-0.121	-0.155
	6.0	21.3	48.7	0.131		0.903	-0.121	-0.155
	6.0	21.3	48.7	0.132		0.903	-0.122	-0.155
	6.3	21.3	48.7	0.136		0.903	-0.126	-0.140
	7.0	21.3	48.7	0.150		0.903	-0.139	-0.155
	8.0	21.3	48.7	0.167		0.903	-0.154	-0.162
	9.0	21.3	48.7	0.184		0.903	-0.170	-0.198
	10.0	21.3	48.7	0.201		0.903	-0.186	-0.207
	11.0	21.3	48.7	0.216		0.903	-0.200	-0.172
	12.0	21.3	48.7	0.232		0.903	-0.215	-0.220
	13.0	21.3	48.7	0.246		0.903	-0.228	-0.245
	20.0	21.3	48.7	0.334		0.903	-0.309	-0.320
	27.0	21.3	48.7	0.404		0.903	-0.374	-0.383
	27.0	21.3	48.7	0.404		0.903	-0.374	-0.383
	27.0	21.3	48.7	0.405		0.903	-0.375	-0.383
	27.3	21.3	48.7	0.406		0.903	-0.376	-0.383
	28.0	21.3	48.7	0.413		0.903	-0.382	-0.385
	29.0	21.3	48.7	0.421		0.903	-0.389	-0.387
	30.0	21.3	48.7	0.430		0.903	-0.398	-0.402
	31.0	21.3	48.7	0.438		0.903	-0.405	-0.395
	32.0	21.3	48.7	0.446		0.903	-0.413	-0.385
	33.0	21.3	48.7	0.453		0.903	-0.419	-0.393
	34.0	21.3	48.7	0.461		0.903	-0.426	-0.410
	41.0	21.3	48.7	0.507		0.903	-0.469	-0.443
	48.0	21.3	48.7	0.547		0.903	-0.506	-0.498
	55.0	21.3	48.7	0.580		0.903	-0.537	-0.507
	62.0	21.3	48.7	0.609		0.903	-0.563	-0.520
	83.0	21.3	48.7	0.676		0.903	-0.625	-0.587
	96.0	21.3	48.7	0.707		0.903	-0.654	-0.583
	117.0	21.3	48.7	0.746		0.903	-0.690	-0.610
	126.0	21.3	48.7	0.760		0.903	-0.703	-0.597
	147.0	21.3	48.7	0.787		0.903	-0.728	-0.627
	156.0	21.3	48.7	0.797		0.903	-0.737	-0.630
	177.0	21.3	48.7	0.816		0.903	-0.755	-0.637
	186.0	21.3	48.7	0.824		0.903	-0.762	-0.660
	207.0	21.3	48.7	0.839		0.903	-0.776	-0.673
	216.0	21.3	48.7	0.844		0.903	-0.781	-0.670
	237.0	21.3	48.7	0.856		0.903	-0.792	-0.667
	246.0	21.3	48.7	0.861		0.903	-0.797	-0.650
	267.0	21.3	48.7	0.870		0.903	-0.805	-0.702
	276.0	21.3	48.7	0.874		0.903	-0.809	-0.677
	297.0	21.3	48.7	0.882		0.903	-0.816	-0.688
	306.0	21.3	48.7	0.885		0.903	-0.819	-0.750
	327.0	21.3	48.7	0.891		0.903	-0.824	-0.732
	336.0	21.3	48.7	0.894		0.903	-0.827	-0.765
	357.0	21.3	48.7	0.900		0.903	-0.833	-0.775
	371.0	21.3	48.7	0.903		0.903	-0.835	-0.772
	392.0	21.3	48.7	0.908		0.903	-0.840	-0.767
	406.0	21.3	48.7	0.911		0.903	-0.843	-0.772
	427.0	21.3	48.7	0.915		0.903	-0.846	-0.785
	456.0	21.3	48.7	0.920		0.903	-0.851	-0.782
	477.0	21.3	48.7	0.923		0.903	-0.854	-0.782
	1000.0	21.3	48.7	0.962		0.903	-0.890	
	2500.0	21.3	48.7 48.7	0.984		0.903	-0.910	
	5000.0	21.3	48.7 48.7	0.992		0.903	-0.918	
	10000.0	21.3	48.7	0.996		0.903	-0.921	

10/540								
HVFAC t _s (days)	$t-t_s$	T (°C)	RH (%)	β (t)	Y sh,tc	Y sh,RH	$\varepsilon_{sh}(t,t_s)$	$\varepsilon_{cs,exp}$ (t)
1	(days) 0.100	21.3	48.7	0.003	1.202	0.903	(%) -0.003	(%) -0.020
	1.0	21.3	48.7	0.025		0.903	-0.021	-0.028
	2.0	21.3	48.7	0.048		0.903	-0.041	-0.012
	3.0	21.3	48.7	0.070		0.903	-0.059	
	4.0	21.3	48.7	0.091		0.903	-0.077	-0.090
	5.0	21.3	48.7	0.112		0.903	-0.095	-0.100
	6.0	21.3	48.7	0.131		0.903	-0.111	-0.122
	6.0	21.3	48.7	0.131		0.903	-0.111	-0.122
	6.0	21.3	48.7	0.132		0.903	-0.112	-0.122
	6.3	21.3	48.7	0.136		0.903	-0.115	-0.122
	7.0	21.3	48.7	0.150		0.903	-0.127	-0.125
	8.0	21.3	48.7	0.167		0.903	-0.142	-0.132
	9.0	21.3	48.7	0.184		0.903	-0.156	-0.158
	10.0	21.3	48.7	0.201		0.903	-0.171	-0.182
	11.0	21.3	48.7	0.216		0.903	-0.183	-0.192
	12.0	21.3	48.7	0.232		0.903	-0.197	-0.225
	13.0	21.3	48.7	0.246		0.903	-0.209	-0.235
	20.0	21.3	48.7	0.334		0.903	-0.283	-0.272
	27.0	21.3	48.7	0.404		0.903	-0.343	-0.330
	27.0	21.3	48.7	0.404		0.903	-0.343	-0.330
	27.0	21.3	48.7	0.405		0.903	-0.344	-0.330
	27.3	21.3	48.7	0.406		0.903	-0.345	-0.330
	28.0	21.3	48.7	0.413		0.903	-0.350	-0.315
	29.0	21.3	48.7	0.421		0.903	-0.357	-0.333
	30.0	21.3	48.7	0.430		0.903	-0.365	-0.327
	31.0	21.3	48.7	0.438		0.903	-0.372	-0.335
	32.0	21.3	48.7	0.446		0.903	-0.378	-0.338
	33.0	21.3	48.7	0.453		0.903	-0.384	-0.335
	34.0	21.3	48.7	0.461		0.903	-0.391	-0.332
	41.0	21.3	48.7	0.507		0.903	-0.430	-0.337
	48.0	21.3	48.7	0.547		0.903	-0.464	-0.388
	55.0	21.3	48.7	0.580		0.903	-0.492	-0.410
	62.0	21.3	48.7	0.609		0.903	-0.517	-0.427
	83.0	21.3	48.7	0.676		0.903	-0.574	-0.430
	96.0	21.3	48.7	0.707		0.903	-0.600	-0.410
	117.0	21.3	48.7	0.746		0.903	-0.633	-0.438
	126.0	21.3	48.7	0.760		0.903	-0.645	-0.438
	147.0	21.3	48.7	0.787		0.903	-0.668	-0.470
	156.0	21.3	48.7	0.797		0.903	-0.676	-0.478
	177.0	21.3	48.7	0.816		0.903	-0.692	-0.507
	186.0	21.3	48.7	0.824		0.903	-0.699	-0.492
	207.0	21.3	48.7	0.839		0.903	-0.712	-0.495
	216.0	21.3	48.7	0.844		0.903	-0.716	-0.508
	237.0	21.3	48.7	0.856		0.903	-0.726	-0.485
	246.0	21.3	48.7	0.861		0.903	-0.731	-0.492
	267.0	21.3	48.7	0.870		0.903	-0.738	-0.493
	276.0	21.3	48.7	0.874		0.903	-0.742	-0.502
	297.0	21.3	48.7	0.882		0.903	-0.748	-0.572
	306.0	21.3	48.7	0.885		0.903	-0.751	-0.530
	327.0	21.3	48.7	0.891		0.903	-0.756	-0.568
	336.0	21.3	48.7	0.894		0.903	-0.759	-0.563
	357.0	21.3	48.7	0.900		0.903	-0.764	-0.552
	371.0	21.3	48.7	0.903		0.903	-0.766	-0.587
	392.0	21.3	48.7	0.908		0.903	-0.771	-0.608
	406.0	21.3	48.7	0.911		0.903	-0.773	-0.597
	427.0	21.3	48.7	0.915		0.903	-0.776	-0.593
	456.0	21.3	48.7	0.920		0.903	-0.781	-0.595
	477.0	21.3	48 7	0.923		0.903	-0.783	-0.597

1000.0

2500.0

5000.0 10000.0 21.3

21.3

21.3

21.3

21.3

48.7

48.7

48.7

48.7

48.7

0.923

0.962

0.984

0.992

0.996

0.903

0.903

0.903

0.903

0.903

-0.783

-0.816

-0.835

-0.842

-0.845

INPUT FOR THE ACI 209R MODEL - CALIBRATED

	NAC	RAC	HVFAC	
$f_{cm} =$	30.5	28.1	22.6	
V/S (mm)=	30	30	30	
f =	39.81	39.81	39.81	
α =	1	1	1	
$\varepsilon_{shu,0}$ =	650	725	615	1E-06
Y _{sh,VS}	1.042	1.042	1.042	
s =	<i>75</i>	110	70	
$\gamma_{sh,s}$ =	1.011	1.067	1.003	
ψ =	81.8	81.8	100.000	
$\gamma_{sh, \psi} =$	1.064	1.064	1.1	
c =	284.6	285.0	200.0	
$\gamma_{sh,c} =$	0.924	0.924	0.872	
α _{air} =	2.5	4.0	1.5	
γ _{sh, α} =	1.000	1.000	1.000	
$\gamma_{sh} =$	1.124	1.186	1.088	
ε_{shu} =	730.6	859.9	669.1	1E-06

A	IΛ	\sim
IN	Н	L

NAC								
t _s (days)	$t-t_s$	T (°C)	RH (%)	β <i>(t)</i>	V	V	ε_{sh} (t,t $_s$)	$\varepsilon_{cs,exp}$ (t)
is (days)	(days)	1 (0)	KII (70)	P (9	Y sh,tc	Y sh,RH	(‰)	(%)
1	0.100	21.3	48.7	0.003	1.202	0.903	-0.002	
	1.0	21.3	48.7	0.025		0.903	-0.018	-0.043
	2.0	21.3	48.7	0.048		0.903	-0.035	-0.065
	3.0	21.3	48.7	0.070		0.903	-0.051	
	4.0	21.3	48.7	0.091		0.903	-0.066	
	5.0	21.3	48.7	0.112		0.903	-0.082	-0.100
	6.0	21.3	48.7	0.131		0.903	-0.096	-0.117
	6.0	21.3	48.7	0.131		0.903	-0.096	-0.117
						0.903		-0.117 -0.117
	6.0	21.3	48.7	0.132			-0.096	
	6.3	21.3	48.7	0.136		0.903	-0.099	-0.117
	7.0	21.3	48.7	0.150		0.903	-0.110	-0.143
	8.0	21.3	48.7	0.167		0.903	-0.122	-0.125
	9.0	21.3	48.7	0.184		0.903	-0.134	-0.148
	10.0	21.3	48.7	0.201		0.903	-0.147	-0.155
	11.0	21.3	48.7	0.216		0.903	-0.158	-0.197
	12.0	21.3	48.7	0.232		0.903	-0.169	-0.178
	13.0	21.3	48.7	0.246		0.903	-0.180	-0.180
	20.0	21.3	48.7	0.334		0.903	-0.244	-0.278
	27.0	21.3	48.7	0.404		0.903	-0.295	-0.343
	27.0	21.3	48.7	0.404		0.903	-0.295	-0.343
	27.0	21.3	48.7	0.405		0.903	-0.296	-0.343
	27.3	21.3	48.7	0.406		0.903	-0.297	-0.343
	28.0	21.3	48.7	0.413		0.903	-0.302	-0.342
	29.0	21.3	48.7	0.421		0.903	-0.308	-0.333
	30.0	21.3	48.7	0.430		0.903	-0.314	-0.333
	31.0	21.3	48.7	0.438		0.903	-0.320	-0.338
	32.0	21.3	48.7	0.446		0.903	-0.326	-0.350
	33.0	21.3	48.7	0.453		0.903	-0.331	-0.345
	34.0	21.3	48.7	0.461		0.903	-0.337	-0.368
	41.0	21.3	48.7	0.507		0.903	-0.370	-0.403
	48.0	21.3	48.7	0.547		0.903	-0.400	-0.412
	55.0	21.3	48.7	0.580		0.903	-0.424	-0.468
	62.0	21.3	48.7	0.609		0.903	-0.445	-0.482
	83.0	21.3	48.7	0.676		0.903	-0.494	-0.540
	96.0	21.3	48.7	0.707		0.903	-0.517	-0.540
	117.0	21.3	48.7	0.746		0.903	-0.545	-0.535
	126.0	21.3	48.7	0.760		0.903	-0.555	-0.538
	147.0	21.3	48.7	0.787		0.903	-0.575	-0.543
	156.0	21.3	48.7	0.797		0.903	-0.582	-0.527
	177.0	21.3	48.7	0.816		0.903	-0.596	-0.540
	186.0	21.3	48.7	0.824		0.903	-0.602	-0.557
	207.0	21.3	48.7	0.839		0.903	-0.613	-0.555
	216.0	21.3	48.7	0.844		0.903	-0.617	-0.587
	237.0	21.3	48.7	0.856		0.903	-0.625	-0.560
	246.0	21.3	48.7	0.861		0.903	-0.629	-0.570
	267.0	21.3	48.7	0.870		0.903	-0.636	-0.585
	276.0	21.3	48.7	0.874		0.903	-0.639	-0.605
	297.0	21.3	48.7	0.882		0.903	-0.644	-0.603
	306.0	21.3	48.7	0.885		0.903	-0.647	-0.595
	327.0	21.3	48.7	0.891		0.903	-0.651	-0.622
	336.0	21.3	48.7	0.894		0.903	-0.653	-0.613
	357.0	21.3	48.7	0.900		0.903	-0.658	-0.618
	371.0	21.3	48.7	0.903		0.903	-0.660	-0.633
	392.0	21.3	48.7	0.908		0.903	-0.663	-0.640
	406.0	21.3	48.7	0.911		0.903	-0.666	-0.657
	427.0	21.3	48.7	0.915		0.903	-0.668	-0.652
	456.0	21.3	48.7	0.920		0.903	-0.672	-0.667
	477.0	21.3	48.7	0.923		0.903	-0.674	-0.645
	1000.0	21.3	48.7	0.962		0.903	-0.703	
	2500.0	21.3	48.7	0.984		0.903	-0.719	
	5000.0	21.3	48.7	0.992		0.903	-0.725	
	10000.0	21.3	48.7	0.996		0.903	-0.728	

	A	•	٠,
ĸ	Д	•	

t _s (days)	$t-t_s$	T (00)	DU (0/)	0 /41			ε_{sh} (t,t _s)	ε _{cs,exp}
t _s (days)	(days)	T (°C)	RH (%)	β <i>(t)</i>	Y sh,tc	V sh,RH	(%)	(%)
1	0.100	21.3	48.7	0.003	1.202	0.903	-0.003	
	1.0	21.3	48.7	0.025		0.903	-0.021	-0.0
	2.0	21.3	48.7	0.048		0.903	-0.041	-0.0
	3.0	21.3	48.7	0.070		0.903	-0.060	-0.1
	4.0	21.3	48.7	0.091		0.903	-0.078	-0.1
	5.0	21.3	48.7	0.112		0.903	-0.096	-0.1
	6.0	21.3	48.7	0.131		0.903	-0.113	-0.1
	6.0	21.3	48.7	0.131		0.903	-0.113	-0.1
	6.0	21.3	48.7	0.132		0.903	-0.114	-0.1
	6.3	21.3	48.7	0.136		0.903	-0.117	-0.1
	7.0	21.3	48.7	0.150		0.903	-0.129	-0.1
	8.0	21.3	48.7	0.167		0.903	-0.144	-0.1
	9.0	21.3	48.7	0.184		0.903	-0.158	-0.1
	10.0	21.3	48.7	0.201		0.903	-0.173	-0.2
	11.0	21.3	48.7	0.216		0.903	-0.186	-0.1
	12.0	21.3	48.7	0.232		0.903	-0.199	-0.2
	13.0	21.3	48.7	0.246		0.903	-0.212	-0.2
	20.0	21.3	48.7	0.334		0.903	-0.287	-0.3
	27.0	21.3	48.7	0.404		0.903	-0.347	-0.3
	27.0	21.3	48.7	0.404		0.903	-0.347	-0.3
	27.0	21.3	48.7	0.405		0.903	-0.348	-0.3
	27.3	21.3	48.7	0.406		0.903	-0.349	-0.3
	28.0	21.3	48.7	0.413		0.903	-0.355	-0.3
	29.0	21.3	48.7	0.421		0.903	-0.362	-0.3
	30.0	21.3	48.7	0.430		0.903	-0.370	-0.4
	31.0	21.3	48.7	0.438		0.903	-0.377	-0.3
	32.0	21.3	48.7	0.446		0.903	-0.384	-0.3
	33.0	21.3	48.7 48.7	0.453		0.903	-0.390	-0.3
	34.0	21.3	48.7 48.7	0.461		0.903	-0.396	-0.4
	41.0 48.0	21.3	48.7 48.7	0.507		0.903	-0.436	-0.4
	48.0 55.0	21.3 21.3	48.7 48.7	0.547 0.580		0.903 0.903	-0.470 -0.499	-0.4 -0.5
	62.0	21.3	48.7 48.7	0.609		0.903	-0.499	-0.5
	83.0	21.3	48.7	0.676		0.903	-0.524	-0.5
	96.0	21.3	48.7	0.707		0.903	-0.608	-0.5
	117.0	21.3	48.7	0.746		0.903	-0.641	-0.6
	126.0	21.3	48.7	0.760		0.903	-0.654	-0.5
	147.0	21.3	48.7	0.787		0.903	-0.677	-0.6
	156.0	21.3	48.7	0.797		0.903	-0.685	-0.6
	177.0	21.3	48.7	0.816		0.903	-0.702	-0.6
	186.0	21.3	48.7	0.824		0.903	-0.709	-0.6
	207.0	21.3	48.7	0.839		0.903	-0.721	-0.6
	216.0	21.3	48.7	0.844		0.903	-0.726	-0.6
	237.0	21.3	48.7	0.856		0.903	-0.736	-0.6
	246.0	21.3	48.7	0.861		0.903	-0.740	-0.6
	267.0	21.3	48.7	0.870		0.903	-0.748	-0.7
	276.0	21.3	48.7	0.874		0.903	-0.752	-0.6
	297.0	21.3	48.7	0.882		0.903	-0.758	-0.6
	306.0	21.3	48.7	0.885		0.903	-0.761	-0.7
	327.0	21.3	48.7	0.891		0.903	-0.766	-0.7
	336.0	21.3	48.7	0.894		0.903	-0.769	-0.7
	357.0	21.3	48.7	0.900		0.903	-0.774	-0.7
	371.0	21.3	48.7	0.903		0.903	-0.776	-0.7
	392.0	21.3	48.7	0.908		0.903	-0.781	-0.7
	406.0	21.3	48.7	0.911		0.903	-0.783	-0.7
	427.0	21.3	48.7	0.915		0.903	-0.787	-0.7
	456.0	21.3	48.7	0.920		0.903	-0.791	-0.7
	477.0	21.3	48.7	0.923		0.903	-0.794	-0.7
	1000.0	21.3	48.7	0.962		0.903	-0.827	
	2500.0	21.3	48.7	0.984		0.903	-0.846	
	5000.0 10000.0	21.3 21.3	48.7	0.992		0.903 0.903	-0.853 -0.856	

H^{N}	V	FA	C

HVFAC								
t _s (days)	$t-t_s$	T (°C)	RH (%)	β <i>(t)</i>	Y sh,tc	V sh,RH	ε_{sh} (t,t _s)	$\varepsilon_{cs,exp}$ (t)
1	(days) 0.100	21.3	48.7	0.003	1.202	0.903	(‰) -0.002	(‰) -0.020
,	1.0	21.3	48.7	0.025	1.202	0.903	-0.002	-0.028
	2.0	21.3	48.7	0.048		0.903	-0.032	-0.012
	3.0	21.3	48.7	0.070		0.903	-0.047	
	4.0	21.3	48.7	0.091		0.903	-0.061	-0.090
	5.0	21.3	48.7	0.112		0.903	-0.075	-0.100
	6.0	21.3	48.7	0.131		0.903	-0.088	-0.122
	6.0 6.0	21.3 21.3	48.7 48.7	0.131 0.132		0.903 0.903	-0.088 -0.088	-0.122 -0.122
	6.3	21.3	48.7	0.136		0.903	-0.000	-0.122
	7.0	21.3	48.7	0.150		0.903	-0.100	-0.125
	8.0	21.3	48.7	0.167		0.903	-0.112	-0.132
	9.0	21.3	48.7	0.184		0.903	-0.123	-0.158
	10.0	21.3	48.7	0.201		0.903	-0.134	-0.182
	11.0 12.0	21.3 21.3	48.7 48.7	0.216 0.232		0.903 0.903	-0.145 -0.155	-0.192 -0.225
	13.0	21.3	48.7	0.232		0.903	-0.165	-0.235
	20.0	21.3	48.7	0.334		0.903	-0.223	-0.272
	27.0	21.3	48.7	0.404		0.903	-0.270	-0.330
	27.0	21.3	48.7	0.404		0.903	-0.270	-0.330
	27.0	21.3	48.7	0.405		0.903	-0.271	-0.330
	27.3	21.3	48.7	0.406		0.903	-0.272	-0.330
	28.0 29.0	21.3 21.3	48.7 48.7	0.413 0.421		0.903 0.903	-0.276 -0.282	-0.315 -0.333
	30.0	21.3	48.7	0.430		0.903	-0.288	-0.327
	31.0	21.3	48.7	0.438		0.903	-0.293	-0.335
	32.0	21.3	48.7	0.446		0.903	-0.298	-0.338
	33.0	21.3	48.7	0.453		0.903	-0.303	-0.335
	34.0	21.3	48.7	0.461		0.903	-0.308	-0.332
	41.0 48.0	21.3 21.3	48.7 48.7	0.507 0.547		0.903 0.903	-0.339 -0.366	-0.337 -0.388
	55.0	21.3 21.3	46.7 48.7	0.547		0.903	-0.388	-0.300 -0.410
	62.0	21.3	48.7	0.609		0.903	-0.407	-0.427
	83.0	21.3	48.7	0.676		0.903	-0.452	-0.430
	96.0	21.3	48.7	0.707		0.903	-0.473	-0.410
	117.0	21.3	48.7	0.746		0.903	-0.499	-0.438
	126.0 147.0	21.3 21.3	48.7 48.7	0.760 0.787		0.903 0.903	-0.509 -0.527	-0.438 -0.470
	147.0 156.0	21.3	48.7 48.7	0.797		0.903	-0.527	-0.478
	177.0	21.3	48.7	0.816		0.903	-0.546	-0.507
	186.0	21.3	48.7	0.824		0.903	-0.551	-0.492
	207.0	21.3	48.7	0.839		0.903	-0.561	-0.495
	216.0	21.3	48.7	0.844		0.903	-0.565	-0.508
	237.0 246.0	21.3 21.3	48.7 48.7	0.856 0.861		0.903 0.903	-0.573 -0.576	-0.485 -0.492
	2 4 0.0 267.0	21.3	48.7 48.7	0.870		0.903	-0.570	-0.492
	276.0	21.3	48.7	0.874		0.903	-0.585	-0.502
	297.0	21.3	48.7	0.882		0.903	-0.590	-0.572
	306.0	21.3	48.7	0.885		0.903	-0.592	-0.530
	327.0	21.3	48.7	0.891		0.903	-0.596	-0.568
	336.0	21.3	48.7	0.894		0.903	-0.598	-0.563
	357.0 371.0	21.3 21.3	48.7 48.7	0.900 0.903		0.903 0.903	-0.602 -0.604	-0.552 -0.587
	392.0	21.3	48.7	0.908		0.903	-0.608	-0.608
	406.0	21.3	48.7	0.911		0.903	-0.610	-0.597
	427.0	21.3	48.7	0.915		0.903	-0.612	-0.593
	456.0	21.3	48.7	0.920		0.903	-0.616	-0.595
	477.0	21.3	48.7	0.923		0.903	-0.618	-0.597
	1000.0 2500.0	21.3 21.3	48.7 48.7	0.962 0.984		0.903 0.903	-0.644 -0.658	
	5000.0 5000.0	21.3 21.3	46.7 48.7	0.964		0.903	-0.656 -0.664	
	10000.0	21.3	48.7	0.996		0.903	-0.666	

INPUT AND CALCULATION - GL2000

			INPUT AN	D CALCO	LATION -	GL2000			
NAC		t _s (days)	$t-t_s$	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh}(t,t_s)$	$\varepsilon_{cs,exp}$ (t)
	00.5		(days)					(%)	(‰)
f _{cm} =	30.5	1	0.100	21.3	48.7	0.934	0.001	-0.001	0.040
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.009	-0.006	-0.043
$\varepsilon_{shu,0}$ =	900	1E-06	2.0	21.3	48.7	0.934	0.018	-0.011	-0.065
k =	0.75		3.0	21.3	48.7	0.934	0.027	-0.017	
ε _{shu} =	669.4	1E-06	4.0	21.3	48.7	0.934	0.036	-0.023	
			5.0	21.3	48.7	0.934	0.044	-0.028	-0.100
			6.0	21.3	48.7	0.934	0.053	-0.033	-0.117
			6.0	21.3	48.7	0.934	0.053	-0.033	-0.117
			6.0	21.3	48.7	0.934	0.053	-0.033	-0.117
			6.3	21.3	48.7	0.934	0.055	-0.034	-0.117
			7.0	21.3	48.7	0.934	0.061	-0.038	-0.143
			8.0	21.3	48.7	0.934	0.069	-0.043	-0.125
			9.0	21.3	48.7	0.934	0.077	-0.048	-0.148
			10.0	21.3	48.7	0.934	0.085	-0.053	-0.155
			11.0	21.3	48.7	0.934	0.092	-0.058	-0.197
			12.0	21.3	48.7	0.934	0.100	-0.063	-0.178
			13.0	21.3	48.7	0.934	0.107	-0.067	-0.180
			20.0	21.3	48.7	0.934	0.156	-0.098	-0.278
			27.0	21.3	48.7	0.934	0.200	-0.125	-0.343
			27.0	21.3	48.7	0.934	0.200	-0.125	-0.343
			27.0	21.3	48.7 48.7	0.934	0.200	-0.125	-0.343
			27.3 28.0	21.3 21.3	48.7 48.7	0.934 0.934	0.201 0.206	-0.126 -0.129	-0.343 -0.342
			29.0	21.3	48.7 48.7	0.934	0.200	-0.129 -0.133	-0.342
			30.0	21.3	48.7	0.934	0.212	-0.135 -0.136	-0.333
			31.0	21.3	48.7	0.934	0.217	-0.139	-0.338
			32.0	21.3	48.7	0.934	0.229	-0.143	-0.350
			33.0	21.3	48.7	0.934	0.234	-0.146	-0.345
			34.0	21.3	48.7	0.934	0.239	-0.149	-0.368
			41.0	21.3	48.7	0.934	0.275	-0.172	-0.403
			48.0	21.3	48.7	0.934	0.308	-0.193	-0.412
			55.0	21.3	48.7	0.934	0.337	-0.211	-0.468
			62.0	21.3	48.7	0.934	0.365	-0.228	-0.482
			83.0	21.3	48.7	0.934	0.435	-0.272	-0.540
			96.0	21.3	48.7	0.934	0.471	-0.294	-0.540
			117.0	21.3	48.7	0.934	0.520	-0.325	-0.535
			126.0	21.3	48.7	0.934	0.538	-0.336	-0.538
			147.0	21.3	48.7	0.934	0.576	-0.360	-0.543
			156.0	21.3	48.7	0.934	0.591	-0.370	-0.527
			177.0	21.3	48.7	0.934	0.621	-0.388	-0.540
			186.0	21.3	48.7	0.934	0.633	-0.396	-0.557
			207.0	21.3	48.7	0.934	0.657	-0.411	-0.555
			216.0	21.3	48.7	0.934	0.667	-0.417	-0.587
			237.0	21.3	48.7 48.7	0.934	0.687	-0.430 0.435	-0.560
			246.0 267.0	21.3	48.7 48.7	0.934 0.934	0.695 0.712	-0.435 0.445	-0.570 0.585
			267.0 276.0	21.3 21.3	48.7 48.7	0.934 0.934	0.712 0.719	-0.445 -0.450	-0.585 -0.605
			297.0	21.3	48.7 48.7	0.934	0.719	-0.458	-0.603
			306.0	21.3	48.7	0.934	0.739	-0.462	-0.595
			327.0	21.3	48.7	0.934	0.752	-0.470	-0.622
			336.0	21.3	48.7	0.934	0.757	-0.473	-0.613
			357.0	21.3	48.7	0.934	0.768	-0.480	-0.618
			371.0	21.3	48.7	0.934	0.775	-0.485	-0.633
			392.0	21.3	48.7	0.934	0.784	-0.490	-0.640
			406.0	21.3	48.7	0.934	0.790	-0.494	-0.657
			427.0	21.3	48.7	0.934	0.798	-0.499	-0.652
			456.0	21.3	48.7	0.934	0.809	-0.506	-0.667
			477.0	21.3	48.7	0.934	0.815	-0.510	-0.645
			1000.0	21.3	48.7	0.934	0.903	-0.565	
			2500.0	21.3	48.7	0.934	0.959	-0.600	
			5000.0	21.3	48.7	0.934	0.979	-0.612	
			10000.0	21.3	48.7	0.934	0.989	-0.618	

								- (4.4.)	- (4)
RAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t) (%)
f _{cm} =	28.1	1	0.100	21.3	48.7	0.934	0.001	-0.001	, ,
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.009	-0.006	-0.058
ε _{shu,0} =	900	1E-06	2.0	21.3	48.7	0.934	0.018	-0.012	-0.070
k =	0.75		3.0	21.3	48.7	0.934	0.027	-0.018	-0.110
ε_{shu} =	697.4	1E-06	4.0	21.3	48.7	0.934	0.036	-0.023	-0.113
			5.0	21.3	48.7	0.934	0.044	-0.029	-0.120
			6.0	21.3	48.7	0.934	0.053	-0.035	-0.155
			6.0	21.3 21.3	48.7 48.7	0.934 0.934	0.053 0.053	-0.035 -0.035	-0.155
			6.0 6.3	21.3 21.3	48.7 48.7	0.934 0.934	0.055	-0.035	-0.155 -0.140
			7.0	21.3	48.7	0.934	0.061	-0.030	-0.155
			8.0	21.3	48.7	0.934	0.069	-0.045	-0.162
			9.0	21.3	48.7	0.934	0.077	-0.050	-0.198
			10.0	21.3	48.7	0.934	0.085	-0.055	-0.207
			11.0	21.3	48.7	0.934	0.092	-0.060	-0.172
			12.0	21.3	48.7	0.934	0.100	-0.065	-0.220
			13.0	21.3	48.7	0.934	0.107	-0.070	-0.245
			20.0	21.3	48.7	0.934	0.156	-0.102	-0.320
			27.0	21.3	48.7	0.934	0.200	-0.130	-0.383
			27.0	21.3	48.7	0.934	0.200	-0.130	-0.383
			27.0 27.3	21.3 21.3	48.7 48.7	0.934 0.934	0.200 0.201	-0.130 -0.131	-0.383 -0.383
			28.0	21.3	48.7 48.7	0.934	0.201	-0.131 -0.134	-0.385
			29.0	21.3	48.7	0.934	0.212	-0.134	-0.387
			30.0	21.3	48.7	0.934	0.217	-0.141	-0.402
			31.0	21.3	48.7	0.934	0.223	-0.145	-0.395
			32.0	21.3	48.7	0.934	0.229	-0.149	-0.385
			33.0	21.3	48.7	0.934	0.234	-0.152	-0.393
			34.0	21.3	48.7	0.934	0.239	-0.156	-0.410
			41.0	21.3	48.7	0.934	0.275	-0.179	-0.443
			48.0	21.3	48.7	0.934	0.308	-0.201	-0.498
			55.0 62.0	21.3 21.3	48.7 48.7	0.934 0.934	0.337 0.365	-0.220 -0.238	-0.507 -0.520
			83.0	21.3	48.7	0.934	0.303	-0.283	-0.520
			96.0	21.3	48.7	0.934	0.471	-0.307	-0.583
			117.0	21.3	48.7	0.934	0.520	-0.339	-0.610
			126.0	21.3	48.7	0.934	0.538	-0.350	-0.597
			147.0	21.3	48.7	0.934	0.576	-0.375	-0.627
			156.0	21.3	48.7	0.934	0.591	-0.385	-0.630
			177.0	21.3	48.7	0.934	0.621	-0.405	-0.637
			186.0	21.3	48.7	0.934	0.633	-0.412	-0.660
			207.0 216.0	21.3 21.3	48.7 48.7	0.934 0.934	0.657 0.667	-0.428 -0.434	-0.673 -0.670
			237.0	21.3	48.7 48.7	0.934	0.687	-0.434 -0.447	-0.667
			246.0	21.3	48.7	0.934	0.695	-0.453	-0.650
			267.0	21.3	48.7	0.934	0.712	-0.464	-0.702
			276.0	21.3	48.7	0.934	0.719	-0.468	-0.677
			297.0	21.3	48.7	0.934	0.733	-0.477	-0.688
			306.0	21.3	48.7	0.934	0.739	-0.481	-0.750
			327.0	21.3	48.7	0.934	0.752	-0.490	-0.732
			336.0 357.0	21.3	48.7 49.7	0.934	0.757	-0.493	-0.765 0.775
			357.0 371.0	21.3 21.3	48.7 48.7	0.934 0.934	0.768 0.775	-0.500 -0.505	-0.775 -0.772
			392.0	21.3	48.7 48.7	0.934	0.773	-0.505 -0.511	-0.772
			406.0	21.3	48.7	0.934	0.790	-0.515	-0.772
			427.0	21.3	48.7	0.934	0.798	-0.520	-0.785
			456.0	21.3	48.7	0.934	0.809	-0.527	-0.782
			477.0	21.3	48.7	0.934	0.815	-0.531	-0.782
			1000.0	21.3	48.7	0.934	0.903	-0.588	
			2500.0	21.3	48.7	0.934	0.959	-0.625	
			5000.0	21.3	48.7	0.934	0.979	-0.638	
			10000.0	21.3	48.7	0.934	0.989	-0.644	

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	22.6	1	0.100	21.3	48.7	0.934	0.001	-0.001	-0.020
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.009	-0.007	-0.028
$\varepsilon_{shu,0}$ =	900	1E-06	2.0	21.3	48.7	0.934	0.018	-0.013	-0.012
k =	0.75		3.0	21.3	48.7	0.934	0.027	-0.020	
ε _{shu} =	777.7	1E-06	4.0	21.3	48.7	0.934	0.036	-0.026	-0.090
- Silu			5.0	21.3	48.7	0.934	0.044	-0.032	-0.100
			6.0	21.3	48.7	0.934	0.053	-0.038	-0.122
			6.0	21.3	48.7	0.934	0.053	-0.038	-0.122
			6.0	21.3	48.7	0.934	0.053	-0.038	-0.122
			6.3	21.3	48.7	0.934	0.055	-0.040	-0.122
			7.0	21.3	48.7	0.934	0.061	-0.044	-0.125
			8.0	21.3	48.7	0.934	0.069	-0.050	-0.132
			9.0	21.3	48.7	0.934	0.077	-0.056	-0.158
			10.0	21.3	48.7	0.934	0.085	-0.062	-0.182
			11.0	21.3	48.7	0.934	0.092	-0.067	-0.192
			12.0	21.3	48.7	0.934	0.100	-0.073	-0.225
			13.0	21.3	48.7	0.934	0.107	-0.078	-0.235
			20.0	21.3	48.7	0.934	0.156	-0.113	-0.272
			27.0	21.3	48.7	0.934	0.200	-0.145	-0.330
			27.0	21.3	48.7	0.934	0.200	-0.145	-0.330
			27.0	21.3	48.7	0.934	0.200	-0.145	-0.330
			27.3	21.3	48.7	0.934	0.201	-0.146	-0.330
			28.0	21.3	48.7	0.934	0.206	-0.150	-0.315
			29.0	21.3	48.7	0.934	0.212	-0.154	-0.333
			30.0	21.3	48.7	0.934	0.217	-0.158	-0.327
			31.0	21.3	48.7	0.934	0.223	-0.162	-0.335
			32.0	21.3	48.7	0.934	0.229	-0.166	-0.338
			33.0	21.3	48.7	0.934	0.234	-0.170	-0.335
			34.0	21.3	48.7	0.934	0.239	-0.174	-0.332
			41.0	21.3	48.7	0.934	0.275	-0.200	-0.337
			48.0	21.3	48.7	0.934	0.308	-0.224	-0.388
			<i>55.0</i>	21.3	48.7	0.934	0.337	-0.245	-0.410
			62.0	21.3	48.7	0.934	0.365	-0.265	-0.427
			83.0	21.3	48.7 48.7	0.934	0.435	-0.316	-0.430
			96.0 117.0	21.3 21.3	48.7 48.7	0.934 0.934	0.471 0.520	-0.342 -0.378	-0.410 -0.438
			126.0	21.3	48.7 48.7	0.934	0.520	-0.376	-0.438 -0.438
			120.0 147.0	21.3	48.7 48.7	0.934	0.576	-0.391 -0.418	-0.436
			156.0	21.3	48.7	0.934	0.570	-0.429	-0.478
			177.0	21.3	48.7	0.934	0.621	-0.451	-0.507
			186.0	21.3	48.7	0.934	0.633	-0.460	-0.492
			207.0	21.3	48.7	0.934	0.657	-0.477	-0.495
			216.0	21.3	48.7	0.934	0.667	-0.484	-0.508
			237.0	21.3	48.7	0.934	0.687	-0.499	-0.485
			246.0	21.3	48.7	0.934	0.695	-0.505	-0.492
			267.0	21.3	48.7	0.934	0.712	-0.517	-0.493
			276.0	21.3	48.7	0.934	0.719	-0.522	-0.502
			297.0	21.3	48.7	0.934	0.733	-0.532	-0.572
			306.0	21.3	48.7	0.934	0.739	-0.537	-0.530
			327.0	21.3	48.7	0.934	0.752	-0.546	-0.568
			336.0	21.3	48.7	0.934	0.757	-0.550	-0.563
			357.0	21.3	48.7	0.934	0.768	-0.558	-0.552
			371.0	21.3	48.7	0.934	0.775	-0.563	-0.587
			392.0	21.3	48.7	0.934	0.784	-0.569	-0.608
			406.0	21.3	48.7	0.934	0.790	-0.574	-0.597
			427.0	21.3	48.7	0.934	0.798	-0.580	-0.593
			456.0	21.3	48.7	0.934	0.809	-0.588	-0.595
			477.0	21.3	48.7	0.934	0.815	-0.592	-0.597
			1000.0	21.3	48.7	0.934	0.903	-0.656	
			2500.0	21.3	48.7	0.934	0.959	-0.697	
			5000.0	21.3	48.7	0.934	0.979	-0.711	
			10000.0	21.3	48.7	0.934	0.989	-0.718	

INPUT AND CALCULATION - GL2000 - CALIBRATED

		וויו טו א		OLATION	- GLZUU) - CALIDI	VAILD	" , , ,	<i>(</i> ()
NAC		t _s (days)	t – t _s	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh}(t,t_s)$	$\varepsilon_{cs,exp}$ (t)
	00.5		(days)					(%)	(‰)
$f_{cm} =$	30.5	1	0.100	21.3	48.7	0.934	0.002	-0.002	
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.020	-0.015	-0.043
$\varepsilon_{shu,0}$ =	1100	1E-06	2.0	21.3	48.7	0.934	0.040	-0.031	-0.065
k =	0.75		3.0	21.3	48.7	0.934	0.059	-0.045	
ε_{shu} =	818.2	1E-06	4.0	21.3	48.7	0.934	0.077	-0.059	
			5.0	21.3	48.7	0.934	0.094	-0.072	-0.100
			6.0	21.3	48.7	0.934	0.111	-0.085	-0.117
			6.0	21.3	48.7	0.934	0.111	-0.085	-0.117
			6.0	21.3	48.7	0.934	0.112	-0.086	-0.117
			6.3	21.3	48.7	0.934	0.115	-0.088	-0.117
			7.0	21.3	48.7	0.934	0.127	-0.097	-0.143
			8.0	21.3	48.7	0.934	0.143	-0.109	-0.125
			9.0	21.3	48.7	0.934	0.158	-0.121	-0.148
			10.0	21.3	48.7	0.934	0.172	-0.131	-0.155
			11.0	21.3	48.7	0.934	0.186	-0.142	-0.197
			12.0	21.3	48.7	0.934	0.200	-0.153	-0.178
			13.0	21.3	48.7	0.934	0.213	-0.163	-0.180
			20.0	21.3	48.7	0.934	0.294	-0.225	-0.278
			27.0	21.3	48.7	0.934	0.360	-0.275	-0.343
			27.0	21.3	48.7	0.934	0.360	-0.275	-0.343
			27.0	21.3	48.7	0.934	0.360	-0.275	-0.343
			27.3	21.3	48.7	0.934	0.362	-0.277	-0.343
			28.0	21.3	48.7	0.934	0.368	-0.281	-0.342
			29.0	21.3	48.7 49.7	0.934	0.377	-0.288	-0.333
			30.0 31.0	21.3 21.3	48.7 48.7	0.934 0.934	0.385 0.392	-0.294 -0.300	-0.333
			32.0	21.3	48.7 48.7	0.934	0.392	-0.306	-0.338 -0.350
			33.0	21.3	48.7	0.934	0.407	-0.311	-0.345
			34.0	21.3	48.7	0.934	0.415	-0.317	-0.343
			41.0	21.3	48.7	0.934	0.461	-0.352	-0.403
			48.0	21.3	48.7	0.934	0.500	-0.382	-0.412
			55.0	21.3	48.7	0.934	0.534	-0.408	-0.468
			62.0	21.3	48.7	0.934	0.564	-0.431	-0.482
			83.0	21.3	48.7	0.934	0.634	-0.485	-0.540
			96.0	21.3	48.7	0.934	0.667	-0.510	-0.540
			117.0	21.3	48.7	0.934	0.709	-0.542	-0.535
			126.0	21.3	48.7	0.934	0.724	-0.553	-0.538
			147.0	21.3	48.7	0.934	0.754	-0.576	-0.543
			156.0	21.3	48.7	0.934	0.765	-0.585	-0.527
			177.0	21.3	48.7	0.934	0.787	-0.601	-0.540
			186.0	21.3	48.7	0.934	0.795	-0.608	-0.557
			207.0	21.3	48.7	0.934	0.812	-0.621	-0.555
			216.0	21.3	48.7	0.934	0.818	-0.625	-0.587
			237.0	21.3	48.7	0.934	0.832	-0.636	-0.560
			246.0	21.3	48.7	0.934	0.837	-0.640	-0.570
			267.0	21.3	48.7 49.7	0.934	0.848	-0.648	-0.585
			276.0	21.3	48.7 49.7	0.934	0.852	-0.651	-0.605
			297.0 306.0	21.3 21.3	48.7 48.7	0.934 0.934	0.861 0.864	-0.658 -0.660	-0.603 -0.595
			327.0	21.3	48.7 48.7	0.934	0.804	-0.666	-0.622
			336.0	21.3	48.7	0.934	0.875	-0.669	-0.613
			357.0	21.3	48.7	0.934	0.881	-0.673	-0.618
			371.0	21.3	48.7	0.934	0.885	-0.676	-0.633
			392.0	21.3	48.7	0.934	0.891	-0.681	-0.640
			406.0	21.3	48.7	0.934	0.894	-0.683	-0.657
			427.0	21.3	48.7	0.934	0.899	-0.687	-0.652
			456.0	21.3	48.7	0.934	0.905	-0.692	-0.667
			477.0	21.3	48.7	0.934	0.909	-0.695	-0.645
			1000.0	21.3	48.7	0.934	0.954	-0.729	
			2500.0	21.3	48.7	0.934	0.981	-0.750	
			5000.0	21.3	48.7	0.934	0.990	-0.757	
			10000.0	21.3	48.7	0.934	0.995	-0.760	

RAC		t s (days)	t – t _s (days)	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t) (%)
$f_{cm} =$	28.1	1	0.100	21.3	48.7	0.934	0.002	-0.002	
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.020	-0.017	-0.058
$\varepsilon_{shu,0}$ =	1200	1E-06	2.0	21.3	48.7	0.934	0.040	-0.035	-0.070
k =	0.75		3.0	21.3	48.7	0.934	0.059	-0.051	-0.110
ε _{shu} =	929.9	1E-06	4.0	21.3	48.7	0.934	0.077	-0.067	-0.113
Sila			5.0	21.3	48.7	0.934	0.094	-0.082	-0.120
			6.0	21.3	48.7	0.934	0.111	-0.096	-0.155
			6.0	21.3	48.7	0.934	0.111	-0.096	-0.155
			6.0	21.3	48.7	0.934	0.112	-0.097	-0.155
			6.3	21.3	48.7	0.934	0.115	-0.100	-0.140
			7.0	21.3	48.7	0.934	0.127	-0.110	-0.155
			8.0	21.3	48.7	0.934	0.143	-0.124	-0.162
			9.0	21.3	48.7	0.934	0.158	-0.137	-0.198
			10.0	21.3	48.7	0.934	0.172	-0.149	-0.207
			11.0	21.3	48.7	0.934	0.186	-0.162	-0.172
			12.0	21.3	48.7	0.934	0.200	-0.174	-0.220
			13.0 20.0	21.3 21.3	48.7 48.7	0.934 0.934	0.213 0.294	-0.185 -0.255	-0.245 -0.320
			27.0	21.3	48.7 48.7	0.934	0.294	-0.233	-0.320
			27.0	21.3	48.7	0.934	0.360	-0.313	-0.383
			27.0	21.3	48.7	0.934	0.360	-0.313	-0.383
			27.3	21.3	48.7	0.934	0.362	-0.314	-0.383
			28.0	21.3	48.7	0.934	0.368	-0.320	-0.385
			29.0	21.3	48.7	0.934	0.377	-0.327	-0.387
			30.0	21.3	48.7	0.934	0.385	-0.334	-0.402
			31.0	21.3	48.7	0.934	0.392	-0.340	-0.395
			32.0	21.3	48.7	0.934	0.400	-0.347	-0.385
			33.0	21.3	48.7	0.934	0.407	-0.353	-0.393
			34.0	21.3	48.7	0.934	0.415	-0.360	-0.410
			41.0	21.3	48.7	0.934	0.461	-0.400	-0.443
			48.0	21.3	48.7	0.934	0.500	-0.434	-0.498
			55.0	21.3	48.7	0.934	0.534	-0.464	-0.507
			62.0 83.0	21.3 21.3	48.7 49.7	0.934 0.934	0.564	-0.490 -0.551	-0.520
			96.0	21.3 21.3	48.7 48.7	0.934 0.934	0.634 0.667	-0.551 -0.579	-0.587 -0.583
			90.0 117.0	21.3	48.7 48.7	0.934	0.007	-0.579 -0.616	-0.563
			126.0	21.3	48.7	0.934	0.724	-0.629	-0.597
			147.0	21.3	48.7	0.934	0.754	-0.655	-0.627
			156.0	21.3	48.7	0.934	0.765	-0.664	-0.630
			177.0	21.3	48.7	0.934	0.787	-0.684	-0.637
			186.0	21.3	48.7	0.934	0.795	-0.690	-0.660
			207.0	21.3	48.7	0.934	0.812	-0.705	-0.673
			216.0	21.3	48.7	0.934	0.818	-0.710	-0.670
			237.0	21.3	48.7	0.934	0.832	-0.723	-0.667
			246.0	21.3	48.7	0.934	0.837	-0.727	-0.650
			267.0	21.3	48.7	0.934	0.848	-0.737	-0.702
			276.0	21.3	48.7	0.934	0.852	-0.740	-0.677
			297.0	21.3	48.7	0.934	0.861	-0.748	-0.688
			306.0	21.3	48.7 49.7	0.934	0.864	-0.750	-0.750
			327.0 336.0	21.3 21.3	48.7 48.7	0.934 0.934	0.872 0.875	-0.757 -0.760	-0.732 -0.765
			357.0	21.3 21.3	48.7 48.7	0.934 0.934	0.875 0.881	-0.760 -0.765	-0.765 -0.775
			371.0 371.0	21.3	48.7 48.7	0.934	0.885	-0.769	-0.773
			392.0	21.3	48.7	0.934	0.891	-0.774	-0.772
			406.0	21.3	48.7	0.934	0.894	-0.776	-0.772
			427.0	21.3	48.7	0.934	0.899	-0.781	-0.785
			456.0	21.3	48.7	0.934	0.905	-0.786	-0.782
			477.0	21.3	48.7	0.934	0.909	-0.789	-0.782
			1000.0	21.3	48.7	0.934	0.954	-0.829	
			2500.0	21.3	48.7	0.934	0.981	-0.852	
			5000.0	21.3	48.7	0.934	0.990	-0.860	
			10000.0	21.3	48 7	0.934	0.995	-0.864	

21.3

48.7

0.934

0.995

HVFAC		t _s (days)	t – t _s (days)	T (°C)	RH (%)	β(h) (t)	$\beta(t-t_s)$	$\varepsilon_{sh} (t,t_s)$ (%)	$\varepsilon_{cs,exp}$ (t) (%)	
$f_{cm} =$	22.6	1	0.100	21.3	48.7	0.934	0.002	-0.001	-0.020	
V/S (mm)=	30		1.0	21.3	48.7	0.934	0.020	-0.014	-0.028	
$\varepsilon_{shu,0}$ =	850	1E-06	2.0	21.3	48.7	0.934	0.040	-0.027	-0.012	
k =	0.75		3.0	21.3	48.7	0.934	0.059	-0.040		
ε _{shu} =	734.5	1E-06	4.0	21.3	48.7	0.934	0.077	-0.053	-0.090	
			5.0	21.3	48.7	0.934	0.094	-0.064	-0.100	
			6.0	21.3	48.7	0.934	0.111	-0.076	-0.122	
			6.0	21.3	48.7	0.934	0.111	-0.076	-0.122	
			6.0	21.3	48.7	0.934	0.112	-0.077	-0.122	
			6.3	21.3	48.7	0.934	0.115	-0.079	-0.122	
			7.0	21.3	48.7	0.934	0.127	-0.087	-0.125	
			8.0	21.3	48.7 48.7	0.934	0.143	-0.098	-0.132	
			9.0 10.0	21.3 21.3	48.7 48.7	0.934 0.934	0.158 0.172	-0.108 -0.118	-0.158 -0.182	
			11.0	21.3	48.7	0.934	0.172	-0.118	-0.102	
			12.0	21.3	48.7	0.934	0.200	-0.120	-0.132	
			13.0	21.3	48.7	0.934	0.213	-0.146	-0.235	
			20.0	21.3	48.7	0.934	0.294	-0.202	-0.272	
			27.0	21.3	48.7	0.934	0.360	-0.247	-0.330	
			27.0	21.3	48.7	0.934	0.360	-0.247	-0.330	
			27.0	21.3	48.7	0.934	0.360	-0.247	-0.330	
			27.3	21.3	48.7	0.934	0.362	-0.248	-0.330	
			28.0	21.3	48.7	0.934	0.368	-0.252	-0.315	
			29.0 30.0	21.3 21.3	48.7 48.7	0.934 0.934	0.377 0.385	-0.259 -0.264	-0.333 -0.327	
			31.0	21.3	48.7 48.7	0.934	0.392	-0.269	-0.327	
			32.0	21.3	48.7	0.934	0.400	-0.274	-0.338	
			33.0	21.3	48.7	0.934	0.407	-0.279	-0.335	
			34.0	21.3	48.7	0.934	0.415	-0.285	-0.332	
			41.0	21.3	48.7	0.934	0.461	-0.316	-0.337	
			48.0	21.3	48.7	0.934	0.500	-0.343	-0.388	
			55.0	21.3	48.7	0.934	0.534	-0.366	-0.410	
			62.0	21.3	48.7 48.7	0.934	0.564	-0.387	-0.427	
			83.0 96.0	21.3 21.3	48.7 48.7	0.934 0.934	0.634 0.667	-0.435 -0.458	-0.430 -0.410	
			90.0 117.0	21.3	48.7 48.7	0.934	0.007	-0.436 -0.486	-0.410	
			126.0	21.3	48.7	0.934	0.724	-0.497	-0.438	
			147.0	21.3	48.7	0.934	0.754	-0.517	-0.470	
			156.0	21.3	48.7	0.934	0.765	-0.525	-0.478	
			177.0	21.3	48.7	0.934	0.787	-0.540	-0.507	
			186.0	21.3	48.7	0.934	0.795	-0.545	-0.492	
			207.0	21.3	48.7	0.934	0.812	-0.557	-0.495	
			216.0 237.0	21.3 21.3	48.7 48.7	0.934 0.934	0.818 0.832	-0.561 -0.571	-0.508 -0.485	
			246.0	21.3	48.7	0.934	0.837	-0.574	-0.492	
			267.0	21.3	48.7	0.934	0.848	-0.582	-0.493	
			276.0	21.3	48.7	0.934	0.852	-0.584	-0.502	
			297.0	21.3	48.7	0.934	0.861	-0.591	-0.572	
			306.0	21.3	48.7	0.934	0.864	-0.593	-0.530	
			327.0	21.3	48.7	0.934	0.872	-0.598	-0.568	
			336.0	21.3	48.7	0.934	0.875	-0.600	-0.563	
			357.0 371.0	21.3	48.7 48.7	0.934	0.881	-0.604	-0.552	
			371.0 392.0	21.3 21.3	48.7 48.7	0.934 0.934	0.885 0.891	-0.607 -0.611	-0.587 -0.608	
			392.0 406.0	21.3 21.3	46.7 48.7	0.934 0.934	0.894	-0.611	-0.597	
			427.0	21.3	48.7	0.934	0.899	-0.617	-0.593	
			456.0	21.3	48.7	0.934	0.905	-0.621	-0.595	
			477.0	21.3	48.7	0.934	0.909	-0.624	-0.597	
			1000.0	21.3	48.7	0.934	0.954	-0.654		
			2500.0	21.3	48.7	0.934	0.981	-0.673		
			5000.0	21.3	48.7	0.934	0.990	-0.679		
			10000.0	21.3	48 7	0.934	0.995	-0.683		

21.3

48.7

0.934

0.995

Analysis of Shrinkage and Creep Results: Creep CREEP CALCULATION ACCORDING TO B4 - RAC7

	xp t ₀) x		0.000	0.046	53	290	0.068	920	220	0.080	184	385	787	0.096	102	107	118	124	134	40	43	147	48	52	53	58	63	191	.62				
	$ \begin{array}{ccc} J_{\text{exp}} \\ 9 & (^{\wedge t}, ^{\wedge t_0}) \times \\ 1E-9 & \end{array} $																														_	_	
	J (^t,^t_0) x 1E-9	1	0.000	0.050	0.056	0.061	0.065	0.069	0.072	0.075	0.077	0.078	0.080	0.087	0.092	0.097	0.110	0.120	0.128	0.134	0.139	0.144	0.148	0.151	0.154	0.157	0.160	0.163	0.166	0.184	0.199	0.209	0 047
	C _d (^t ₀ , ^t _s) β _s x 1E-6 (^t, ^t ₀ , ^t _s) x 1E-6	1	0.00	0.00	0.00	0.00	0.00	1.58	2.74	3.90	4.81	5.59	90.9	9.34	11.89	13.82	20.06	25.75	29.96	33.44	36.42	38.99	41.29	43.28	45.12	46.81	48.32	49.87	51.69	60.03	63.23	63.51	62 64
	p ₅ x 1E-6	0.777		p 5,a	-1.0		p 5,w	0.78		q ₅ x 1E-6	462.27																						
	H _c (^t _o ,^t _s)	0.817		P S,H	8.0		p 5, c	-0.85																									
	H (^t, ^t_s)	ı	0.822	0.822	0.822	0.822	0.819	0.816	0.814	0.811	0.808	0.805	0.803	0.786	0.770	0.757	0.713	0.674	0.647	0.626	609.0	0.595	0.583	0.573	0.564	0.556	0.549	0.542	0.534	0.500	0.488	0.487	7070
	C ₀ (^t,^t ₀) x H 1E-6	1	0.00	25.89	31.47	35.96	40.01	42.53	43.89	45.17	46.14	46.84	47.75	51.71	54.43	26.60	62.81	67.65	70.85	73.31	75.41	77.26	78.67	80.18	81.32	82.36	83.72	84.73	86.04	95.29	106.66	115.14	400 00
) **	0.0034		p 4,a	6.0-		p 4,w	2.45		14 × 1E-6	11.05																						
	p ₃	0.0393		p 3,a	-1.1		p 3,w	0.4		93 x 1E-6 94 x 1E-6	11.82																						
9	p ₂	0.0586		p 2,w	3.0					q2×1E-6 q	247.2																						
) T = 10	Q (^t,^t_0)		0.000	0.083	0.101	0.115	0.127	0.134	0.137	0.140 q	0.142	0.143	0.145	0.151	0.154	0.156	0.161	0.164	0.166	0.167	0.168	0.169	0.169	0.170	0.170	0.170	0.171	0.171	0.171	0.173	0.175	0.176	176
2000	Z (^t_o) Q									0.1410				0.1537																		0.2223	
	Q, (^t_o) Z	0.1772		r (^t_o) (_	_	_	•		_	•	•	•	_	_	•	•	•	•	_	•	_	•	_	_	_	_	•	_	•	_	
	p, 6	0.7		q, x1E-6																													
CREET CALCULATION ACCORDING TO B4 - NAC20	K	0.884					0.884	0.884	0.884	0.884	0.884	.884	.884	0.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	.884	0.884	0.884	100
5	^t-^t _o (days)									4.25 (
																																	•
	^t (days)	0.04	29.62	29.68	29.72	29.94	30.74	31.80	32.86	33.93	34.96	36.06	37.11	44.55	51.98	59.45	89.16	125.2	157.1	189.0	220.8	252.7	284.6	316.4	348.3	380.1	417.3	454.5	507.6	1062.1	2655.3	5310.7	10621
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	787
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	0.100	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000
	t _s (days)	1		βπ	1		t _o (days)	28		$^{\wedge}$ t $_o$ (days)	29.62																						
											1E-06																						
		5.979	0.614	285.0	30	1.25	28.1	36200	30800	207.00	-960.4																						
											$\varepsilon_{sh,inf} (^{\Lambda} t_s) = -\epsilon$																						
		a/c	W/C	S	V/S (F	ĸ	ام	<u>Б</u> .	_E _c (28) =	T _{sh} =	Esh.inf																						

Jexp	^t,^t_0) x 1E-9	1	0.000	990.0	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	116	126	128	131	141	149	147	154	155	157	160	162	166	168	171	0.174	0.178				
	_																													25	.1	35	60
JATATO		1	0.000	0.106	0.124	0.138	0.168	0.185	0.197	0.207	0.215	0.22	0.22	0.26	0.28	0.30	0.35	0.38	0.35	0.405	0.41	0.41	0.42	0.423	0.42	0.42	0.43	0.433	0.436	0.452	0.471	0.485	0 400
ပ်	(^t ₀ ,^t _s) p _s x 1E-6 (^t,^t ₀ ,^t _s) x 1E-6	1	0.00	00.00	00.00	00.00	16.48	25.67	32.47	38.59	43.41	48.10	52.24	74.87	91.53	104.12	136.51	153.94	161.80	166.21	169.20	170.72	172.24	173.01	173.01	173.78	173.78	173.78	174.55	174.55	174.55	174.55	174 55
	p _s x 1E-6	1243.2		p _{5,a}	-1.0		p s,w	0.78		q 5 x 1E-6	1288.27																						
H,	(^t ₀ ,^t _s)	0.779		P S,H	8.0		p 5, ε	-0.85																									
	H (^t, ^t_s)	1	0.784	0.784	0.784	0.780	0.769	0.756	0.744	0.732	0.722	0.712	0.703	0.654	0.620	0.596	0.541	0.515	0.504	0.498	0.494	0.492	0.490	0.489	0.489	0.488	0.488	0.488	0.487	0.487	0.487	0.487	7070
ပိ	(^t,^t_0) x	1	0.00	77.15	93.37	107.29	119.72	127.30	131.98	135.92	138.88	141.66	143.91	155.62	163.02	168.38	181.70	191.28	197.07	201.41	205.06	207.85	210.64	212.79	215.09	216.84	219.05	220.74	222.92	238.36	255.99	269.46	202 50
	ν) γ	002142		p 4,a	6.0-		D 4,w				16.45																			•	•		
	рз	0.091569 0.002142					p 3,w	0.4		q3 x 1E-6 q4 x 1E-6	35.14																						
	p ₂	1682 0.0					_			q2x1E-6 q3	366.24 3																						
7 4 7 7		0.021682	0			7	4	9	5			9	5	5	0	<u>ත</u>	6	က	2	9	7	7	80	80	6	6	0	0	0	Ñ	<u>რ</u>	4	7
5	,) Q (^t,^t ₀)						5 0.254		2 0.272	9 0.277				3 0.295						4 0.316											3 0.323	_	_
200) Z (^t_o)					0.2317	0.2565	0.2694	0.2772	0.2829	0.2873	0.291	0.294	0.308	0.316	0.323	0.338	0.348	0.355	0.3604	0.364	0.368	0.371	0.374	0.376	0.378	0.381	0.383	0.3861	0.40	0.4283	0.4467	0.464
יייי ו	Q, (^t_o)	0.3253		5 r (^to)	10.160																												
CREEF CALCULATION ACCURDING TO B4 - HVFACY	p,	0.7		q, x 1E-6	24.39																												
ראבור י	¥	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0 884
Af. Af.	(days)	ı	0.000	0.004	0.044	0.266	1.07	2.13	3.19	4.25	5.31	6.38	7.44	14.87	22.31	29.74	59.48	95.60	127.46	159.33	191.19	223.06	254.92	286.79	318.65	350.52	387.69	424.87	477.97	1054.73	2647.97	5303.36	10614 16
	^t (days)	0.044	7.373	7.377	7.417	7.639	8.44	9.50	10.56	11.62	12.68	13.75	14.81	22.24	29.68	37.11	66.85	102.97	134.83	166.70	198.56	230.43	262.29	294.16	326.02	357.89	395.06	432.24	485.34	1062.10	2655.34	5310.73	10621 53
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	1 (°C) 1	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days) 1	100	000	003	042	250	00	00.	10.00	11.00	5.00	3.00	4.00	1.00	9.00	2.00	3.00	2.00	2.00	27.00	17.00	7.00	2.00	7.00	00.7	17.00	2.00	00.7	2.00	0.00	0.00	0.00	0 000
	(s)	_				7.						7	7	2	8	ñ	છ	6	12	15	18	21	24	27	36	33	37	4	46	10	25	96	10
	t _s (o	1		œ	•		t _o (days)			$^{\wedge t}_o$ (days)																							
		0	2	0				0	0	_	7 1E-06																						
		8.100					22.6	•	•	29.87	Esh,inf (^ts) = -534.7																						
		a/c =	ıı		V/S (mm)=	k₃ ≡	ш	(_E c (28) =	T _{sh} =	t,)																						

× (6		9	ထ္	22	<u></u>	23	ຕ	2	90	6	6	.1	7	22	22	0	8	Q	9	89	g g	4	6	2	1	9	5	4				
J _{exp} (^t,^t ₀) x 1E-9	1	0.00	0.048	0.05	0.057	0.062	0.063	0.067	0.068	90.0	90.0	0.07	0.07	0.08	0.08	0.08	0.09	0.10	0.100	0.10	0.10	0.11	0.10	0.11	0.12	0.11	0.12	0.12				
J (^t, ^t _o , x 1E-9	1	0.000	0.074	0.084	0.093	0.100	0.119	0.130	0.140	0.147	0.152	0.158	0.186	0.206	0.219	0.256	0.278	0.290	0.298	0.304	0.308	0.311	0.315	0.317	0.319	0.321	0.323	0.326	0.342	0.361	0.375	0.389
$H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$ $H_c^{C_d}$	1 }	0.00	0.00	00.00	00.00	0.00	14.03	22.32	30.19	35.08	39.46	43.49	64.86	79.37	89.46	115.24	129.47	135.76	139.38	142.11	143.02	143.94	144.85	145.77	145.77	145.77	145.77	146.69	146.69	146.69	146.69	146 69
p s x 1E-6	1243.2		p _{5,a}	-1.0		p 5,w	0.78		q ₅ x 1E-6	1288.27																						
H _c (^t _o ,^t _s)	0.614		P S,H	8.0		D 5, E	-0.85																									
H (^t^ts)	1	0.620	0.620	0.620	0.619	0.616	0.612	0.609	0.605	0.602	0.599	0.596	0.577	0.562	0.551	0.522	0.506	0.499	0.495	0.492	0.491	0.490	0.489	0.488	0.488	0.488	0.488	0.487	0.487	0.487	0.487	0 487
C_o $(^{\Lambda}t,^{\Lambda}t_o) \times h$ $^{1E-6}$	1	0.00	46.38	56.31	64.37	71.55	75.92	78.30	80.47	82.13	83.33	84.84	91.40	95.85	99.37	109.32	117.03	122.11	126.00	129.33	132.26	134.51	136.88	138.70	140.35	142.48	144.09	146.18	160.84	178.86	192.34	205 47
p4 (0.002142		D 4,a	6.0-		D4,w	2.45		14 x 1E-6	16.45																						
p ₃	0.091569		p 3,a	-1.1		p 3,w	0.4		q₃×1E-6 q₄×1E-6	35.14																						
p ₂	0.021682 0.091569		P 2,w	3.0					q2×1E-6 0	366.24																						
Q (^t, ^t ₀)		0.000	0.083	0.101	0.115	0.127	0.134	0.137	0.140 q	0.142	0.143	0.145	0.151	0.154	0.156	0.161	0.164	0.166	0.167	0.168	0.169	0.169	0.170	0.170	0.170	0.171	0.171	0.171	0.173	0.175	0.176	0.176
Z (^to) Q	1	0.000	0.0835	0.1008	0.1155	0.1278	0.1343	0.1382	0.1410	0.1432	0.1450	0.1466	0.1537	0.1579	0.1610	0.1685	0.1738	0.1771	0.1796	0.1817	0.1835	0.1850	0.1864	0.1877	0.1888	0.1900	0.1911	0.1925	0.2018	0.2134	0.2223	0.2313
Q, (^to)	0.1772		r (^t_o)	10.5535																												
p ₁	0.7		9	24.39																												
K,	0.884		0.884 q	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884
^t-^t _o (days)	1	0.000	0.004	0.044	0.266	1.06	2.12	3.18	4.25	5.31	6.37	7.43	14.87	22.30	29.74	59.48	95.59	127.46	159.32	191.19	223.05	254.92	286.78	318.65	350.51	387.69	124.86	177.97	032.42	625.66	281.05	591.85
^t (days)									33.93																							
·	0.0	29.0	29.		29.6	30.	31.	32.	33.	34.	36.	37.	44	51.	59.	89	125	157	189	220	252	284	316	348	380	417	454	202	106	265	531	1062
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
7 (°C)	21.3								21.3																						21.3	
_	0.100	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	2000.0	10000.0
t _s (days)	1		βτη	1		t_o (days)	28		$^{\wedge t_o}$ (days)	29.678																						
										1E-06																						
	8.100	0.975	200.0	30	1.25	22.6	25200	28700	29.87	-534.7																						
	a/c =									II																						
	ø	Ä	J	N/S	×	*1	щ _і	щ [']	7.8	E _{sh,inf}																						

	J _{exp} ^t,^t_0) x 1E-9	- 000	0.053	0.067	9.000	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
	J (^t, ^t_0) (' x 1E-9	- 000	0.060	690.0	0.077	0.087	0.092	960.0	0.099	0.101	0.103	0.105	0.114	0.120	0.125	0.138	0.148	0.154	0.160	0.164	0.168	0.171	0.174	0.177	0.179	0.182	0.184	0.187	0.203	0.215	0.224	0.231
		1 0	0.00	00.00	0.00	1.63	2.75	3.35	3.97	4.45	4.89	5.32	7.56	9.23	10.01	15.17	19.40	22.48	25.09	27.44	29.45	31.30	32.82	34.26	35.61	36.84	37.95	39.41	46.01	48.36	48.56	48.56
	C _d p _s x 1E-6 (^t,^t ₀ ,^t _s) x 1E-6	0.777	p 5,a	-5.0		P 5,w	0.15		q ₅ x 1E-6	346.5																						
	H _c (^t ₀ ,^t _s) F	0.911	P S.H	8.0		p 5, c	-0.85		•																							
	H (^t, ^t_s)	0 0 13	0.913	0.913	0.912	0.907	0.900	0.895	0.889	0.884	0.879	0.874	0.845	0.822	0.803	0.744	969.0	0.665	0.641	0.621	0.605	0.591	0.580	0.570	0.561	0.553	0.546	0.537	0.500	0.488	0.487	0.487
	C ₀ (^t,^t ₀) x 1 1E-6	1000	43.20	52.29	60.10	80'.29	71.38	74.02	76.28	77.95	79.55	80.83	87.56	91.80	94.87	102.48	107.96	111.26	113.72	115.79	117.35	118.95	120.15	121.47	122.44	123.72	124.66	125.88	134.57	144.44	151.98	159.28
	p4	0.0034	p 4.a	-5		D 4,w	2.2		q4 x 1E-6	9.94																						
Q:	рз	0.0393	p 3,a	26		p 3,w	0		q ₃ x 1E-6	8.45																						
ALIBRATE	p ₂	0.0586	p 2.w	2.90					q ₂ x 1E-6	235.62																						
CREEP CALCULATION ACCORDING TO B4 - RAC7 - CALIBRATED	Q (^t,^t_0)	- 0	0.167	0.202	0.231	0.254	0.266	0.272	0.277	0.280	0.283	0.285	0.295	0.300	0.303	0.309	0.313	0.315	0.316	0.317	0.317	0.318	0.318	0.319	0.319	0.320	0.320	0.320	0.322	0.323	0.324	0.324
G TO B4 -	$Z^{(\wedge t_0)}$	1 000	0.1675	0.2022	0.2317	0.2565	0.2694	0.2772	0.2829	0.2873	0.2910	0.2941	0.3083	0.3169	0.3230	0.3381	0.3487	0.3553	0.3604	0.3646	0.3681	0.3713	0.3740	0.3765	0.3788	0.3811	0.3833	0.3861	0.4053	0.4283	0.4461	0.4642
CCORDIN	Q, (^t_0)	0.3253		10.1606																												
LATION A	p,	0.42	q, x 1E-6	13.64																												
P CALCU	K	0.884		0.884				0.884	0.884	0.884				0.884														0	0	0	0	0.884
CREE	^t-^t _o (days)	1 0	0.004	0.044	0.266	1.07	2.13	3.19	4.25	5.31	6.38	7.44	14.87	22.31	29.74	59.48	95.60	127.46	159.33	191.19	223.06	254.92	286.79	318.65	350.52	387.69	424.87	477.97	1054.73	2647.97	5303.36	10614.16
	^t (days)	0.044	7.377	7.417	7.639	8.44	9.50	10.56	11.62	12.68	13.75	14.81	22.24	29.68	37.11	66.85	102.97	134.83	166.70	198.56	230.43	262.29	294.16	326.02	357.89	395.06	432.24	485.34	1062.10	2655.34	5310.73	10621.53
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	T (°C)	21.3	27.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	0.100	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
	_	1	β _{7,h}	1		t _o (days)	7		$^{\wedge t_o}$ (days)	7.373																						
										1E-06																						
		5.979	285.0						207.00	-960.4																						
		a/c =	 	=(mm) =/A	rks ≡	_f_ =	_E c (7) =	_E _c (28) =	ı ds ⊓	$\epsilon_{sh,inf} (^{\Lambda}t_s) = -960.4$																						

J _{exp} (^t, ^t ₀) x 1E-9	1 6	0.000	9.076	1.001	.094	0.103	0.108	0.110	0.115	0.115	0.116	7.126	7.128	7.131	141	.149	747	7.154	7.155	7.157	091.	7.162	991.0	7.168	171	.174	.178				
J (^t,^t_0) (^t_x_1_0) x 1E-9		0.072	Ĭ				0.099	0.101	0.103																			.185	189	192	194
			_	_	_	_	_																								
C _d :-6 (^t,^t ₀ ,^t _t x 1E-6		9.0		0.0			7.76	6 9.02	10.20	11.	12.	17.	21.	25.	36.	44	50.	54.	56.	59.	.09	62.	63.	63.	64.	65.	65.	67.	67.	. 29	67.
C _d (^t ₀ , ^t _s) p _s x 1E-6 (^t _r ^t ₀ , ^t _s) x 1E-6	1243.2	Dra	-2.5		p 5,w	0		q s x 1E-6	489.3																						
	0.853	Den	8.0		D 5. c	-0.85																									
H (^t,^t_s)	0 1	0.857	0.857	0.854	0.846	0.837	0.827	0.819	0.811	0.803	0.796	0.754	0.722	969.0	0.628	0.582	0.557	0.540	0.528	0.519	0.513	0.508	0.504	0.501	0.498	0.496	0.494	0.488	0.487	0.487	0.487
C ₀ (^t,^t ₀) x + 1E-6	1 0	26.51	32.08	36.78	40.79	43.10	44.43	45.55	46.34	47.10	47.68	20.68	52.48	53.75	56.79	58.96	60.24	61.17	96.19	62.51	63.13	63.55	64.08	64.42	64.93	65.26	62.69	68.87	72.42	75.14	77.72
p.4	0.002142	D 4.0	-0.9		D 4.w	0.75		14 × 1E-6	3.31																						
b ₃	0.091569 0.002142	D	-1.1		p 3,w	-0.5		q3x1E-6 q4x1E-6	5.87																						
p ₂	0.021682 0.	, O	2.00					q2 x 1E-6 q	142.74																						
	0.0			0.231	0.254	0.266	0.272	0.277 q2		:83	385	362	300	303	608	313	315	316	317	317	318	318	319	319	320	320	320	322	323	0.324	324
to) Q (^t, ^to)						.2694 0.2	_																								
to) Z (^to)	•	0.0000	_	0.23	0.25	0.26	0.27	0.2829	0.2873	0.28	0.26	0.30	0.37	0.3	0.33	0.34	0.35	0.36	0.36	0.36	0.37	0.37	0.37	0.37	0.38	0.38	0.38	0.40	0.42	0.4	9.0
Q, (^t_0)	0.3253		10.1606																												
p,	1.26	g, x 1E	43.90																												
K,	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884
^t-^t _o (days)	1 0	0.000	0.044	0.266	1.07	2.13	3.19	4.25	5.31	6.38	7.44	14.87	22.31	29.74	59.48	95.60	127.46	159.33	191.19	223.06	254.92	286.79	318.65	350.52	387.69	424.87	477.97	1054.73	2647.97	5303.36	10614.16
^t (days)	0.044	7.377	7.417	.639	8.44	9.50	10.56	11.62	12.68	13.75	14.81	22.24	59.68	37.11	36.85	02.97	34.83	96.70	98.56	30.43	62.29	94.16	26.02	57.89	92.06	32.24	85.34	062.10	355.34	310.73	621.53
c) RH (%)					·		·	3 48.7		•		•	•	•	·	·	•	•	•			·	•	•	Ī	Ī	Ī	Ì		•	
() (°C)								21.3																							
t _s (days) t (days)	0.100	7.003	7.042					11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.
t s (days)	1	8,4	+		t ₀ (days)	2	3	رr ₀ (days)	7.373																						
									1E-06																						
	8.100	200.0	30	1.25	22.6	25200	28700	73.41	414.2																						
	a/c =	U	=(mm) =/A	k _s =	_f_ =	_E c(7) =	_E _c (28) =	T _{sh} =	Esh, inf ("ts) = 414.2																						

CREEP CALCULATION ACCORDING TO B4 - HVFAC7 - CALIBRATED

	J _{exp} (^t, ^t_0) x 1E-9	0000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
	J (^t,^t ₀) (^i x 1E-9	0000	0.042	0.046	0.048	0.051	0.054	0.057	0.059	0.061	0.062	0.064	0.071	0.075	0.079	0.090	0.099	0.104	0.108	0.111	0.113	0.115	0.116	0.117	0.118	0.119	0.120	0.121	0.126	0.130	0.133	0.135
		000	0.00	0.00	0.00	0.00	2.10	4.73	6.02	7.43	8.36	9.48	14.37	17.98	21.03	29.52	36.06	40.04	42.89	45.15	46.77	47.94	48.90	49.62	50.36	50.85	51.34	51.84	53.10	53.35	53.35	53.35
	C _d (^t ₀ , ^t _s) p _s x 1E-6 (^t ₁ ^t ₀ , ^t _s) x 1E-6	1243.2	D 5,a	-3.1		p s,w	0		q s x 1E-6	408.67																						
	H _c "t _{o,"} ts) P	0.715	P S,H	8.0		p 5, c	-0.85		ь																							
	H (^t^ts)	0 722	0.722	0.722	0.721	0.718	0.714	0.710	0.707	0.703	0.700	969.0	0.675	0.657	0.641	0.596	0.563	0.544	0.531	0.521	0.514	0.509	0.505	0.502	0.499	0.497	0.495	0.493	0.488	0.487	0.487	0.487
	C ₀ (^t,^t ₀) x + 1E-6	000	14.52	17.64	20.14	22.33	23.65	24.31	24.94	25.39	25.69	26.12	27.81	28.89	29.71	32.01	33.73	34.87	35.71	36.43	37.08	37.52	38.06	38.42	38.74	39.23	39.55	39.96	42.99	46.68	49.40	51.98
	, p4	0.002142	p 4,a	6.0-		D 4,w	0.75		q₄ x 1E-6	3.31																						
ŒD	b ₃	0.021682 0.091569 0.002142	p 3,a	-1.1		p 3,w	-0.5		q3 x 1E-6	5.87																						
CREEP CALCULATION ACCORDING TO B4 - HVFAC28 - CALIBRATED	p ₂	0.021682	P 2.w	2.0					q ₂ x 1E-6	142.74																						
/FAC28 - (Q (^t, ^t_0)	- 0000	0.083	0.101	0.115	0.127	0.134	0.137	0.140	0.142	0.143	0.145	0.151	0.154	0.156	0.161	0.164	0.166	0.167	0.168	0.169	0.169	0.170	0.170	0.170	0.171	0.171	0.171	0.173	0.175	0.176	0.176
TO B4 - HI	Z (^t_o)	- 0000	0.0835	0.1008	0.1155	0.1278	0.1343	0.1382	0.1410	0.1432	0.1450	0.1466	0.1537	0.1579	0.1610	0.1685	0.1738	0.1771	0.1796	0.1817	0.1835	0.1850	0.1864	0.1877	0.1888	0.1900	0.1911	0.1925	0.2018	0.2134	0.2223	0.2373
ORDING	Q, (^to)	0.1772	r (^to)	10.5535																												
TION ACC	p,	0.77	q, x 1E-6	26.83																												
CALCULA	ĸ	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884	0.884
CREEP	^t-^t _o (days)	- 000	0.004	0.044	0.266	1.06	2.12	3.18	4.25	5.31	6.37	7.43	14.87	22.30	29.74	59.48	95.59	127.46	159.32	191.19	223.05	254.92	286.78	318.65	350.51	387.69	424.86	477.97	1032.42	2625.66	5281.05	10591.85
	^t (days)	0.044	29.682	29.722	29.944	30.74	31.80	32.86	33.93	34.99	36.05	37.11	44.55	51.98	59.42	89.16	125.27	157.14	189.00	220.87	252.73	284.60	316.46	348.33	380.19	417.37	454.54	507.65	1062.10	2655.34	5310.73	10621.53
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	0.100	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
	t _s (days)	1	βτη	1		t _o (days)	28		$^{\wedge t}_o$ (days)	29.678																						
										1E-06																						
		8.100	200.0	30	1.25	22.6	25200	28700	73.41	414.2																						
		a/c =	II O	=(mm)=/	K _s =	_f_ =	_E c(7) =	$_{c}(28) =$	T _{sh} =	$\varepsilon_{sh,inf} (^{\Lambda}t_s) = -414.2$																						

m (++) m (++) m (++) J(t,to) X	√ dc (1,10) ♥ (1,10)	0000	0.000 0.000 0.039	0.056 0.060 0.085	0.117 0.157 0.222 0.048	0.201 0.365 0.516 0.058	0.306 0.652 0.921 0.073	0.378 0.832 1.176 0.083	0.428 0.948 1.340 0.089	0.467 1.035 1.462 0.094	0.500 1.105 1.562 0.097	0.528 1.164 1.645 0.100	0.553 1.216 1.718 0.103	0.682 1.464 2.068 0.116	0.770 1.622 2.292 0.124	0.840 1.741 2.460 0.130	1.031 2.053 2.901 0.147	1.184 2.289 3.234 0.159	1.286 2.440 3.447 0.167	1.368 2.562 3.619 0.173	1.439 2.664 3.764 0.179	1.500 2.752 3.888 0.183	1.554 2.829 3.998 0.187	1.603 2.899 4.096 0.191	1.647 2.961 4.184 0.194	1.688 3.018 4.264 0.197	1.730 3.079 4.350 0.200	1.770 3.134 4.428 0.203	1.821 3.205 4.529 0.207	2.155 3.677 5.196	2.479 4.162 5.880	2.647 4.451	2.752 4.677 6.609
	β _{dc} (t o) β _{dc} (t,t o)	0.5688	0.000	y (t ₀) 0.0195	0.3041 0.0405	0.0699	0.1065	0.1315	0.1487	0.1622	0.1736	0.1834	0.1922	0.2370	0.2677	0.2918	0.3584	0.4115	0.4467	0.4755	0.5000	0.5213	0.5401	0.5571	0.5724	0.5864	0.6013	0.6149	0.6326	0.7487	0.8614	0.9198	0.9564
	$eta_{dc} \left(f_{cm} ight) eta \; (RH)$	3.8611 –	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
	φ bc (t,to)	ı	0.000	0.004	0.040	0.164	0.345	0.454	0.520	0.568	909.0	0.637	0.663	0.782	0.852	0.901	1.022	1.104	1.154	1.193	1.225	1.252	1.275	1.296	1.314	1.331	1.348	1.364	1.385	1.523	1.683	1.804	1.925
	β _{bc} (t,t ₀)	ı	0.000	0.023	0.231	0.942	1.982	2.604	2.985	3.260	3.475	3.652	3.803	4.485	4.886	5.172	5.862	6.336	6.623	6.846	7.028	7.182	7.315	7.433	7.538	7.634	7.734	7.826	7.944	8.735	9.655	10.350	11.044
	eta_{bc} (f_{cm})	0.1743																															
	$(t$ - $t_o)_{\tau}$ (days)	ı	0.000	0.004	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
	t₁ (days)	7.421	7.421	7.425	7.465	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	5300.837	10601.67
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
		2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
	t_o (days)	7		ಶ	1		t 0,T	7.421		t 0,adj	12.527																						
		23.0	28.1	25.4	27.0	09	1.116	1674	14.5	0.630																							
		$f_c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E cm =	= 4	α _{fcm} =	β, =	<u>م</u> =	$\sigma/f_{cm} =$																							

	$\int_{\exp} (t, t_0) \times 1E-9$	1	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	960.0	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
	J (t,t ₀) x 1E-9	0.000	0.037	0.038	0.040	0.043	0.049	0.054	0.057	0.060	0.062	0.064	990.0	0.074	0.079	0.084	0.094	0.103	0.108	0.113	0.116	0.119	0.122	0.125	0.127	0.129	0.131	0.133	0.136	0.153	0.172	0.183	0.192
	φ o (t,t o)	ı	0.000	0.027	0.075	0.164	0.324	0.452	0.543	0.615	0.675	0.727	0.772	966.0	1.143	1.255	1.550	1.775	1.921	2.039	2.139	2.225	2.301	2.369	2.430	2.486	2.546	2.601	2.671	3.132	3.636	3.938	4.111
	φ (t,t ₀)	ı	0.000	0.025	0.069	0.151	0.298	0.416	0.500	0.567	0.622	0.669	0.711	0.918	1.053	1.156	1.428	1.635	1.770	1.878	1.970	2.049	2.119	2.182	2.238	2.290	2.345	2.395	2.461	2.885	3.349	3.627	3.84/
	φ dc (t,to) φ (t,to)	1	0.000	0.025	0.063	0.116	0.188	0.238	0.274	0.303	0.327	0.348	0.367	0.465	0.534	0.589	0.743	0.870	0.954	1.024	1.085	1.137	1.184	1.226	1.264	1.300	1.337	1.371	1.416	1.707	2.008	2.165	2.263
	β _{dc} (t, t o)	ı	0.000.0	0.0104	0.0263	0.0489	0.0788	0.1001	0.1151	0.1271	0.1372	0.1461	0.1541	0.1954	0.2244	0.2474	0.3123	0.3653	0.4009	0.4303	0.4556	0.4776	0.4973	0.5150	0.5311	0.5459	0.5616	0.5761	0.5949	0.7169	0.8434	0.9093	0.9506
	$\beta_{dc} (t_0)$	0.4705		γ (t ₀)	0.3449																												
3AC28	3 (RH) [ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
ATION ACCORDING TO MC10 - RAC28	$eta_{dc}\left(f_{cm} ight)$	3.8611																															
DING TO	$\boldsymbol{\varphi}_{bc}\left(t,t_{o} ight)$ eta_{c}		0.000	0.000	900.0	0.035	0.111	0.178	0.226	0.264	0.295	0.321	0.344	0.453	0.519	0.567	0.684	0.766	0.815	0.854	0.885	0.912	0.935	0.956	0.974	0.890	1.008	1.024	1.044	1.178	1.341	1.463	1.584
VACCOR	β _{bc} (t,t ₀) φ	ı	0.000	0.003	0.036	0.200	0.635	1.020	1.298	1.515	1.693	1.844	1.975	2.597	2.977	3.252	3.925	4.392	4.677	4.898	5.079	5.233	5.366	5.483	5.588	5.683	5.783	5.874	5.992	6.761	7.693	8.392	9.088
	$eta_{bc} \left(f_{cm} ight) \ eta_b$	0.1743															•	•	•	•			•	•			•						
CREEP CALCUI	$(t-t_o)_{\ au}$ eta_{b_b}		000	203	244	265	90	12	18	24	30	36	42	.84	.26	.68	.37	.42	7.22	9.03	2.83	2.64	4.44	5.25	3.05	98.6	5.96	4.07	2.08	0.48	0.73	5271.15	71.99
CRE	_																																
	t₁ (days)	29.68	29.68	29.68	29.72	29.96	30.74	31.80	32.86	33.92	34.98	36.04	37.10	44.52	51.94	59.36	89.02	125.	156.90	188.7	220.5	252.3	284.1	315.9	347.73	379.5	416.6	453.75	506.7	1060.1	2650.4	5300.837	10601.
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	56.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
	$t_{\it 0}$ (days) $\it t$ (days)	28		ಶ	1		t 0,7	29.685		t o,adj	34.102																						
		28.1	28.1	27.0	27.0	09	1.116	1674	12.78	0.455																							
		$f_c(t_0) =$	$f_{cm} =$	$E_c(t_0) =$	E cm =	= <i>q</i>	α _{fcm} =	β, =	σ =	$\sigma/f_{cm} =$																							

	J_{exp} (t,t_o) x 1E-9	ı	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
	J (t,t ₀) x 1E-9	0.000	0.038	0.041	0.046	0.057	0.073	0.082	0.088	0.093	0.097	0.100	0.103	0.116	0.125	0.131	0.148	0.161	0.169	0.176	0.182	0.187	0.191	0.195	0.198	0.202	0.205	0.208	0.212	0.239	0.267	0.283	0.296
	φ ° (t,t 0)	ı	0.000	960'0	0.244	0.555	0.980	1.250	1.423	1.553	1.659	1.748	1.826	2.201	2.442	2.624	3.102	3.465	3.699	3.889	4.048	4.185	4.307	4.416	4.513	4.603	4.698	4.785	4.898	5.651	6.434	6.901	7.262
	φ (t,t ₀)	1	0.000	0.079	0.200	0.455	0.804	1.025	1.168	1.275	1.361	1.434	1.498	1.806	2.004	2.153	2.546	2.843	3.035	3.191	3.321	3.434	3.534	3.623	3.703	3.776	3.855	3.926	4.019	4.636	5.279	5.663	5.958
	φ dc (t,t 0)	1	0.000	0.074	0.153	0.264	0.402	0.497	0.562	0.613	0.656	0.693	0.726	0.896	1.012	1.103	1.355	1.557	1.691	1.801	1.895	1.976	2.049	2.114	2.173	2.227	2.285	2.338	2.406	2.863	3.319	3.562	3.716
	β _{σc} (t,t ₀)	ı	0.000	0.0189	0.0392	9.0676	0.1030	0.1272	0.1439	0.1570	0.1680	0.1775	0.1860	0.2294	0.2592	0.2825	0.3472	0.3988	0.4331	0.4613	0.4853	0.5062	0.5248	0.5415	0.5566	0.5704	0.5852	0.5988	0.6163	0.7334	0.8501	0.9123	0.9519
	β _{dc} (t 0)	0.5688		y (t o)	0.3041																												
1VFAC7	β (RH)	ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
MC10 - F	$eta_{dc}\left(f_{cm} ight)$	5.2378																															
RDING TO	φ bc (t,t o)	1	0.000	0.005	0.047	0.191	0.402	0.529	909.0	0.662	0.705	0.741	0.772	0.910	0.992	1.050	1.190	1.286	1.344	1.390	1.427	1.458	1.485	1.509	1.530	1.550	1.570	1.589	1.613	1.773	1.960	2.101	2.242
N ACCO	β _{bc} (t,t0)	ı	0.000	0.023	0.231	0.942	1.982	2.604	2.985	3.260	3.475	3.652	3.803	4.485	4.886	5.172	5.862	6.336	6.623	6.846	7.028	7.182	7.315	7.433	7.538	7.634	7.734	7.826	7.944	8.735	9.655	10.350	11.044
CREEP CALCULATION ACCORDING TO MC10 - HVFAC7	$eta_{bc}\left(f_{cm} ight)$	0.203																															
REEP CAL	(t-t ₀) _T (days)	ı	0.000	0.004	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
ū	t _T (days)	7.421	7.421	7.425	7.465	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	5300.837	10601.67
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
	t _o (days)	7		8	1		t _{0,T}	7.421		t _{0,adj}	12.527																						
	~	18.5	22.6	26.5	28.1	09	1.244	1866	9.84	0.532																							
		$f_c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E _{cm} =	<i>p</i> = <i>q</i>	α _{fcm} =	β, =	g ==	α/f _{cm} =																							

	$\int_{\exp} (t,t_0) \times 1E-9$	Ì	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
	J (t,t ₀) x 1E-9	0.000	0.036	0.037	0.039	0.043	0.050	0.056	0.059	0.063	0.065	0.067	0.069	0.079	0.086	0.091	0.104	0.114	0.120	0.125	0.130	0.134	0.137	0.140	0.143	0.146	0.148	0.151	0.154	0.175	0.199	0.213	0.224
	φ _o (t,t ₀)	1	0.000	0.035	0.097	0.208	0.404	0.560	0.671	0.759	0.832	0.895	0.951	1.226	1.407	1.544	1.911	2.192	2.376	2.524	2.650	2.759	2.855	2.941	3.020	3.091	3.168	3.238	3.328	3.924	4.584	4.982	5.290
	φ (t,t ₀)	1	0.000	0.033	0.089	0.193	0.374	0.518	0.622	0.703	0.771	0.829	0.880	1.135	1.302	1.430	1.770	2.030	2.200	2.337	2.453	2.554	2.643	2.723	2.796	2.862	2.933	2.998	3.082	3.634	4.244	4.613	4.898
	$\boldsymbol{\varphi}_{dc}\left(t,t_{0}\right)$	1	0.000	0.032	0.082	0.152	0.245	0.311	0.358	0.395	0.427	0.455	0.479	0.608	0.698	0.770	0.973	1.138	1.250	1.343	1.422	1.492	1.554	1.610	1.661	1.709	1.759	1.805	1.865	2.261	2.683	2.909	3.053
	$eta_{dc} (t,t_0)$	1	0.0000	0.0100	0.0254	0.0471	0.0759	0.0964	0.1109	0.1224	0.1322	0.1408	0.1484	0.1882	0.2162	0.2384	0.3012	0.3525	0.3871	0.4158	0.4404	0.4620	0.4813	0.4987	0.5145	0.5291	0.5447	0.5590	0.5776	0.7002	0.8307	0.9008	0.9455
	$eta_{dc} (t_0)$	0.4705		γ (t ₀)	0.3449																												
IVFAC28	β (RH)	ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
MC10 - H	eta_{dc} (f_{cm})	5.2378																															
TION ACCORDING TO MC10 - HVFAC28	φ bc (t,t 0)	1	0.000	0.001	0.007	0.041	0.129	0.207	0.263	0.307	0.344	0.374	0.401	0.527	0.604	0.660	0.797	0.892	0.949	0.994	1.031	1.062	1.089	1.113	1.134	1.154	1.174	1.193	1.216	1.372	1.562	1.704	1.845
V ACCOF	β _{bc} (t,t 0)	ı	0.000	0.003	0.036	0.200	0.635	1.020	1.298	1.515	1.693	1.844	1.975	2.597	2.977	3.252	3.925	4.392	4.677	4.898	5.079	5.233	5.366	5.483	5.588	5.683	5.783	5.874	5.992	6.761	7.693	8.392	9.088
	$eta_{bc} (f_{cm})$	0.203																															
CREEP CALCULA	$(t$ - $t_o)_T$ (days)	0.000	0.000	0.003	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15	10571.99
CR	t _T (days)	29.685	29.685	29.688	29.729	29.95	30.745	31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	116.646	153.752	506.76	060.167	650.418	300.837	0601.67
	RH (%) t							48.7																									
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	28.000	38.000	8.003	8.042	8.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	18.00	48.00	78.00	08.00	38.00	68.00	98.00	328.00	358.00	393.00	128.00	178.00	0.000	500.0	0.000	0.0000
	t _o (days) t	28 2	• • •	α 7		*1		29.685		t 0,adj	٠.	•	•	,		•	•		1		• • •	• • •	• • •	• • •	··)	··)	··)	ı	ν.		• • •	~)	1
	t o 1	22.6	<u>22.6</u>	28.1	28.1	09					'n																						
								$\beta_h = 1$																									

	× 6		0	က္က	2:	9.	9	က္ဆ	o	9	9	<u>∞</u>		2	က္	2	2	2	9	0	က္က	%	0.	.5	.5	4	%	9	1				
	$\begin{pmatrix} J_{\rm exp} \\ (t,t_0) x \\ 1E-9 \end{pmatrix}$	1	0.00	0.05	0.067	0.02	0.08	0.0	0.0	0.10	0.10	0.10	0.10	0.12	0.12	0.13	0.14	0.15	0.15	0.16	0.16	0.16	0.17	0.17	0.17	0.17	0.17	0.17	0.18				
	J (t,t ₀) x 1E-9	0.000	0.039	0.041	0.045	0.056	0.072	0.082	0.088	0.093	0.096	0.099	0.102	0.114	0.121	0.126	0.140	0.149	0.155	0.160	0.164	0.167	0.170	0.173	0.175	0.177	0.180	0.182	0.184	0.202	0.222	0.235	0.246
	φ ° (t,t ₀)	1	0.000	0.042	0.152	0.456	0.889	1.153	1.318	1.439	1.536	1.616	1.684	2.004	2.200	2.343	2.704	2.964	3.127	3.256	3.363	3.454	3.534	3.606	3.669	3.728	3.789	3.845	3.918	4.400	4.921	5.269	5.579
	φ (t,t ₀)	1	0.000	0.030	0.108	0.322	0.629	0.816	0.933	1.019	1.087	1.143	1.192	1.418	1.557	1.658	1.914	2.098	2.213	2.304	2.380	2.445	2.501	2.552	2.597	2.638	2.682	2.721	2.773	3.114	3.483	3.729	3.949
	φ dc (t,t 0)	1	0.000	0.024	0.050	0.085	0.130	0.161	0.182	0.198	0.212	0.224	0.235	0.290	0.327	0.357	0.438	0.503	0.546	0.581	0.611	0.637	0.660	0.681	0.700	0.717	0.735	0.752	0.773	0.915	1.053	1.124	1.169
	β _{dc} (t,t o)	ı	0.000	0.0195	0.0405	0.0699	0.1065	0.1315	0.1487	0.1622	0.1736	0.1834	0.1922	0.2370	0.2677	0.2918	0.3584	0.4115	0.4467	0.4755	0.5000	0.5213	0.5401	0.5571	0.5724	0.5864	0.6013	0.6149	0.6326	0.7487	0.8614	0.9198	0.9564
4 <i>TED</i>	βας (t 0)	0.5688		γ (t ₀)	0.3041																												
CALIBRA	в (RH)	ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
- RAC7 -	$eta_{dc}\left(f_{cm} ight)$	1.64		gc	175																												
CORDING TO MC10 - RAC7 - CALIBRATED	φ bc (t,t o)	ı	0.000	900.0	0.058	0.237	0.499	0.656	0.751	0.820	0.875	0.919	0.957	1.129	1.230	1.302	1.476	1.595	1.667	1.723	1.769	1.808	1.841	1.871	1.897	1.921	1.947	1.970	1.999	2.199	2.430	2.605	2.780
ORDING	β _{bc} (t,t o)	ı	0.000	0.023	0.231	0.942	1.982	2.604	2.985	3.260	3.475	3.652	3.803	4.485	4.886	5.172	5.862	6.336	6.623	6.846	7.028	7.182	7.315	7.433	7.538	7.634	7.734	7.826	7.944	8.735	9.655	10.350	11.044
	$eta_{bc}\left(f_{cm} ight)$	0.2517		pc	2.6																												
CREEP CALCULATION AC	$(t$ - $t_0)_T$ (days)	ı	0.000	0.004	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
CREEP (t _T (days)		7.421																														10601.67
	RH (%) 1		48.7																														
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	7.000	7.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
	t _o (days) t	7			1			7.421		t o,adj																							
	Ť	23.0	28.1	25.4	27.0	09	1.116	1674	14.5	0.630																							
		$f_c(t_0) =$	f _{cm} =	$\boldsymbol{E}_{c}\left(t_{o}\right)=$	E cm =	<i>p</i> = <i>q</i>	α _{fcm} =	β, =	g =	$\sigma/f_{cm} =$																							

	× 6.		00	46	53	62	89	92	75	80	84	85	87	96	02	20	18	24	34	40	43	47	48	52	53	58	63	19	62				
	$ \begin{array}{ccc} x & J_{exp} \\ (t,t_0) & x \end{array} $ 1E-9							0.076																									
	J (t,t ₀) x 1E-9	0.00	0.037	0.038	0.035	0.043	0.051	0.058	0.063	0.067	0.070	0.073	0.075	0.087	0.094	0.100	0.114	0.124	0.131	0.136	0.140	0.144	0.147	0.150	0.152	0.155	0.157	0.160	0.162	0.182	0.204	0.218	
	φ ° (t,t o)	1	0.000	0.021	0.063	0.168	0.389	0.574	0.708	0.812	0.899	0.973	1.037	1.350	1.549	1.696	2.073	2.349	2.524	2.663	2.779	2.879	5.966	3.044	3.114	3.177	3.245	3.307	3.387	3.907	4.498	4.886	
	φ (t,t ₀)	1	0.000	0.019	0.058	0.155	0.358	0.529	0.652	0.748	0.828	0.896	0.956	1.244	1.426	1.562	1.909	2.164	2.325	2.453	2.560	2.651	2.732	2.803	2.868	2.927	2.989	3.046	3.119	3.599	4.143	4.501	
	φ dc (t,t0) φ (t,t0)	1	0.000	0.018	0.046	0.085	0.137	0.174	0.200	0.220	0.238	0.253	0.267	0.339	0.389	0.429	0.541	0.633	0.695	0.746	0.790	0.828	0.862	0.893	0.921	0.946	0.973	0.999	1.031	1.243	1.462	1.576	
	β _{dc} (t,t o)	ı	0.000	0.0104	0.0263	0.0489	0.0788	0.1001	0.1151	0.1271	0.1372	0.1461	0.1541	0.1954	0.2244	0.2474	0.3123	0.3653	0.4009	0.4303	0.4556	0.4776	0.4973	0.5150	0.5311	0.5459	0.5616	0.5761	0.5949	0.7169	0.8434	0.9093	
,	$eta_{dc} (t_0)$	0.4705		γ (t ₀)	0.3449																												
	β (RH)	1	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	
		2.8115	,-	qc	300		,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	,-	
	$\boldsymbol{\varphi}_{bc}\left(\boldsymbol{t},t_{o}\right)$ $\boldsymbol{\beta}_{dc}\left(\boldsymbol{f}_{cm}\right)$		000'	.001	.013	.070	.221	0.356	.452	.528	.590	.643	.688	.905	.037	.133	.368	.531	.630	.707.	.770	.824	.870	.911	.947	.980	.015	.047	.088	.356	.681	.925	
ST CAMPACO	β _{bc} (t,to) φ _b							1.020 0																									
			0.0			0.2	0.6	1.0	1.5	1.5	1.6	1.8	1.5	2.5	2.5	3.5	3.6	4.	4.6	4.8	5.0	5.7	5.3	5.4	5.6	5.6	5.7	5.8	5.6	6.7	7.6	80	
	eta_{bc} (f_{cm})	0.3485		pc	3.6																									σ.	~	10	
	(t-t ₀) _τ (days)	0.000	0.000	0.003	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15	
	t₁ (days)	29.685	29.685	29.688	29.729	29.92	30.745	31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	416.646	453.752	506.76	1060.167	2650.418	5300.837	
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	
	t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	56.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	
	t _o (days) t	28		8	1			29.685		t o,adj	۵.																						
	t _o	28.1	28.1	27.0	27.0			1674 2			n																						
				$E_c(t_0) = \frac{2}{3}$				$\beta_h = 1$																									

CREEP CALCULATION ACCORDING TO MC10 - RAC28 - CALIBRATED

	$\int_{\exp} (t,t_0) \times 1E-9$	1	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
	J (t,t ₀) x 1E-9	0.000	0.038	0.039	0.043	0.056	0.075	0.086	0.093	0.098	0.102	0.106	0.109	0.121	0.129	0.135	0.148	0.157	0.163	0.168	0.171	0.175	0.177	0.180	0.182	0.184	0.186	0.188	0.190	0.207	0.225	0.239	0.252
	φ _σ (t, t ₀)	ı	0.000	0.022	0.137	0.505	1.040	1.362	1.560	1.703	1.816	1.909	1.988	2.351	2.567	2.722	3.101	3.364	3.526	3.653	3.757	3.845	3.922	3.990	4.051	4.106	4.164	4.217	4.286	4.745	5.267	5.647	6.013
	φ (t,t ₀)	ı	0.000	0.018	0.112	0.414	0.853	1.117	1.280	1.397	1.490	1.566	1.632	1.929	2.106	2.233	2.544	2.761	2.893	2.997	3.083	3.155	3.218	3.274	3.324	3.369	3.417	3.460	3.516	3.893	4.322	4.633	4.934
	φ dc (t,t 0)	1	0.000	600.0	0.019	0.032	0.049	090.0	0.068	0.074	0.080	0.084	0.088	0.109	0.123	0.134	0.165	0.189	0.205	0.219	0.230	0.240	0.249	0.257	0.264	0.270	0.277	0.284	0.292	0.348	0.403	0.432	0.451
	β _{dc} (t,t 0)	ı	0.0000	0.0189	0.0392	0.0676	0.1030	0.1272	0.1439	0.1570	0.1680	0.1775	0.1860	0.2294	0.2592	0.2825	0.3472	0.3988	0.4331	0.4613	0.4853	0.5062	0.5248	0.5415	0.5566	0.5704	0.5852	0.5988	0.6163	0.7334	0.8501	0.9123	0.9519
RA TED	β _{dc} (t 0)	0.5688		y (t ₀)	0.3041																												
CALIBI	β <i>(RH)</i>	ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
- HVFAC7	$eta_{dc}\left(f_{cm} ight)$	0.6357		gc	50																												
TO MC10	φ bc (t,t 0)	I	0.000	0.009	0.094	0.382	0.805	1.057	1.211	1.323	1.411	1.482	1.543	1.820	1.983	2.099	2.380	2.572	2.688	2.779	2.853	2.915	2.969	3.017	3.060	3.098	3.139	3.177	3.224	3.546	3.919	4.201	4.483
SRDING	$eta_{bc}\left(t,t_{0} ight)$	I	0.000	0.023	0.231	0.942	1.982	2.604	2.985	3.260	3.475	3.652	3.803	4.485	4.886	5.172	5.862	6.336	6.623	6.846	7.028	7.182	7.315	7.433	7.538	7.634	7.734	7.826	7.944	8.735	9.622	10.350	11.044
CREEP CALCULATION ACCORDING TO MC10 - HVFAC7 - CALIBRATED	$eta_{bc}~(f_{cm})$	0.4059		pc	3.6																												
ALCULA	$(t-t_0)_T$ (days)	I	0.000	0.004	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
CREEP C	t₁ (days)	7.421	7.421	7.425	7.465	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	5300.837	10601.67
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
	t _o (days)	7		ğ	1		t 0,T	7.421		t o,adj	12.527																						
		18.5	22.6	26.5	28.1	09	1.244	1866	9.84	0.532																							
		$f_c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E _{cm} =	<i>p</i> = <i>q</i>	α _{fcm} =	β, =	ш Б	$\sigma/f_{cm} =$																							

	J _{exp} (t,t ₀) x 1E-9	1	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	690.0	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
	J (t,t ₀) x 1E-9	_	0.036	0.036	0.037	0.040	0.046	0.051	0.055	0.058	0.060	0.062	0.064	0.072	0.078	0.082	0.092	0.099	0.104	0.107	0.111	0.113	0.115	0.118	0.119	0.121	0.123	0.124	0.127	0.140	0.156	0.167	0.177
	φ (t,t 0)	1	0.000	0.013	0.043	0.121	0.290	0.433	0.536	0.617	0.683	0.740	0.790	1.030	1.181	1.293	1.578	1.785	1.916	2.019	2.106	2.180	2.245	2.303	2.355	2.402	2.452	2.498	2.558	2.948	3.397	3.699	3.968
	φ (t,t ₀)	1	0.000	0.012	0.040	0.112	0.268	0.401	0.496	0.571	0.633	0.685	0.731	0.953	1.093	1.197	1.461	1.653	1.774	1.870	1.950	2.018	2.078	2.132	2.180	2.224	2.271	2.313	2.368	2.729	3.145	3.425	3.674
	$\varphi_{dc}(t,t_0) \varphi(t,t_0)$	1	0.000	0.012	0.030	0.055	0.089	0.113	0.130	0.144	0.155	0.166	0.174	0.221	0.254	0.280	0.354	0.414	0.455	0.489	0.518	0.543	0.566	0.586	0.605	0.622	0.640	0.657	0.679	0.823	0.977	1.059	1.112
	$eta_{dc}\left(t,t_{0} ight)$	ı	0.000.0	0.0100	0.0254	0.0471	0.0759	0.0964	0.1109	0.1224	0.1322	0.1408	0.1484	0.1882	0.2162	0.2384	0.3012	0.3525	0.3871	0.4158	0.4404	0.4620	0.4813	0.4987	0.5145	0.5291	0.5447	0.5590	0.5776	0.7002	0.8307	0.9008	0.9455
RATED	$eta_{dc} (t_0)$	0.4705		γ (t ₀)	0.3449																												
8 - CALIB	β <i>(RH)</i>	ı	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104	1.3104
HVFAC2	$eta_{dc}~(f_{cm})$	1.907		qc	150																												
ORDING TO MC10 - HVFAC28 - CALIBRATED	φ bc (t,to) β	1	0.000	0.001	0.010	0.056	0.179	0.288	0.366	0.427	0.477	0.520	0.557	0.732	0.839	0.917	1.107	1.238	1.318	1.381	1.432	1.475	1.513	1.546	1.575	1.602	1.630	1.656	1.689	1.906	2.169	2.366	2.562
RDING T	β _{bc} (t,t ₀) φ	1	0.000	0.003	0.036	0.200	0.635	1.020	1.298	1.515	1.693	1.844	1.975	2.597	2.977	3.252	3.925	4.392	4.677	4.898	5.079	5.233	5.366	5.483	5.588	5.683	5.783	5.874	5.992	6.761	7.693	8.392	9.088
	eta_{bc} (f_{cm}) eta_k	0.2819		pc	2.5																												
CREEP CALCULATION ACC	$(t-t_0)_T$ β_k		000	.003	.044	. 265	1.06	2.12	3.18	4.24	5.30	5.36	7.42	4.84	2.26	9.68	9.37	5.42	27.22	59.03	90.83	22.64	54.44	86.25	18.05	49.86	96.98	24.07	77.08	30.48	20.73	71.15	571.99
EP CAL																																	
CRE		29.685																															
	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
	7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
	t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
	t _o (days)	28		ಶ	1		t 0,T	29.682		t 0,adj	34.102																						
		22.6	22.6	28.1	28.1	09	1.244	1866	10.2	0.451																							
		$f_c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E cm =	<i>p</i> = <i>q</i>	α _{fcm} =	β, =	α =	$\sigma/f_{cm} =$																							

	J_{exp} (t,t_{0}) x $1E-9$	<u> </u>	0.000	0.053	0.067	0.076	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181			
	J (t,t ₀) x 1E-9	0.000	0.037	0.044	0.051	090.0	0.072	0.079	0.085	0.089	0.093	0.095	0.098	0.112	0.121	0.128	0.146	0.160	0.168	0.174	0.179	0.183	0.187	0.190	0.192	0.195	0.197	0.199	0.201	0.214	0.223	0.226
	φ _k (t,t ₀)	ı	0.000	0.180	0.371	0.639	996.0	1.190	1.343	1.458	1.561	1.643	1.720	2.107	2.364	2.561	3.079	3.461	3.696	3.876	4.018	4.133	4.231	4.319	4.389	4.455	4.521	4.575	4.646	5.017	5.263	5.356
	φ (t,t ₀)	ı	0.000	0.137	0.283	0.487	0.737	0.908	1.025	1.112	1.191	1.254	1.312	1.608	1.803	1.953	2.349	2.641	2.820	2.957	3.065	3.153	3.228	3.295	3.349	3.399	3.449	3.490	3.544	3.828	4.015	4.086
	β _c (t,t ₀)	ı	0.000	0.033	0.068	0.117	0.177	0.218	0.246	0.267	0.286	0.301	0.315	0.386	0.433	0.469	0.564	0.634	0.677	0.710	0.736	0.757	0.775	0.791	0.804	0.816	0.828	0.838	0.851	0.919	0.964	0.981
	β,	1	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01
- RAC7	9-	1	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165	4.165 4.165
3 TO EC2	β (RH)	1	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
CORDING	β (t_o)	0.5688																														
40	(#:	92		; ;	~																											
ATION,	β (f _{cm})	3.1692		coeff.	16.8																											
CALCULATION ,	$(t-t_o)_T$ β $(f_c)_T$	- 3.16	0.000			0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.63	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42 10594 25
CREEP CALCULATION ACCORDING TO EC2 - RACT		1		0.004	0.044																										••	5300.837 5293.42 10601 67 10594 25
CREEP CALCULATION	$(t-t_o)_{\tau}$ (days)	7.421 –	7.421	7.425 0.004	7.465 0.044	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	
CREEP CALCULATION	t_{T} (days) $(t-t_{0})_{T}$ (days)	48.7 7.421 –	48.7 7.421	48.7 7.425 0.004	48.7 7.465 0.044	48.7 7.686	48.7 8.481	48.7 9.542	48.7 10.602	48.7 11.662	48.7 12.722	48.7 13.782	48.7 14.842	48.7 22.264	48.7 29.685	48.7 37.106	48.7 66.791	48.7 102.836	48.7 134.641	48.7 166.446	48.7 198.251	48.7 230.056	48.7 261.861	48.7 293.666	48.7 325.471	48.7 357.276	48.7 394.382	48.7 431.488	48.7 484.496	48.7 1060.167	48.7 2650.418	5300.837
CREEP CALCULATION ,	RH (%) t_T (days) $(t ext{-} t_0)_T$ (days)	21.3 48.7 7.421 –	21.3 48.7 7.421	21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	21.3 48.7 7.686	21.3 48.7 8.481	21.3 48.7 9.542	21.3 48.7 10.602	21.3 48.7 11.662	21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	48.7 5300.837
CREEP CALCULATION ,	$T({}^{\circ}C)$ RH(%) t_{T} (days) $(t^{-}t_{0})_{T}$ (days)	21.3 48.7 7.421 –	21.3 48.7 7.421	21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	21.3 48.7 7.686	8.00 21.3 48.7 8.481	21.3 48.7 9.542	21.3 48.7 10.602	21.3 48.7 11.662	7 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67
CREEP CALCULATION ,	t (days) $T(^{\circ}C)$ $RH(\%)$ $t_{T}(days)$ $(t^{-}t_{0})_{T}$ (days)	7 7.000 21.3 48.7 7.421 –	7.000 21.3 48.7 7.421	a 7.003 21.3 48.7 7.425 0.004	1 7.042 21.3 48.7 7.465 0.044	7.250 21.3 48.7 7.686	8.00 21.3 48.7 8.481	7.421 9.00 21.3 48.7 9.542	10.00 21.3 48.7 10.602	t _{0,adj} 11.00 21.3 48.7 11.662	7 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67

	J_{\exp} $(t,t_0) \times 1E-9$	ı	0.000	0.046	0.053	0.062	0.068	9.00	0.075	0.080	0.084	0.085	0.087	960.0	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
	J (t,t ₀) x 1E-9	0.000	0.035	0.039	0.044	0.050	0.057	0.062	0.065	0.068	0.070	0.072	0.074	0.083	0.088	0.093	0.104	0.113	0.118	0.122	0.125	0.128	0.130	0.132	0.134	0.135	0.137	0.138	0.139	0.148	0.153	0.155	0.157
	φ _k (t,t ₀)	ı	0.000	0.104	0.236	0.406	0.614	0.756	0.854	0.926	0.992	1.044	1.093	1.339	1.502	1.627	1.957	2.200	2.349	2.464	2.554	2.627	2.689	2.745	2.790	2.831	2.873	2.908	2.953	3.185	3.345	3.404	3.439
	φ (t,t ₀)	1	0.000	0.103	0.234	0.403	0.610	0.751	0.847	0.920	0.985	1.037	1.085	1.330	1.492	1.616	1.943	2.184	2.332	2.446	2.536	2.608	2.670	2.725	2.770	2.811	2.852	2.887	2.932	3.163	3.321	3.380	3.414
	β _c (t,t o)	ı	0.000	0.030	0.068	0.117	0.177	0.218	0.246	0.267	0.286	0.301	0.315	0.386	0.433	0.469	0.564	0.634	0.677	0.710	0.736	0.757	0.775	0.791	0.804	0.816	0.828	0.838	0.851	0.918	0.964	0.981	0.991
	β,	ı	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01
RAC28	9 -	ı	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445	3.445
TO EC2 -	β (RH)	1	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
ORDING	β (t_o)	0.4705																															
TON ACC	β (f_{cm})	3.1692		coeff.	16.8																												
ALCULAT	$(t$ - $t_o)_{ au}$ (days)	ı	0.000	0.003	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15	10571.99
CREEP CALCULATION ACCORDING TO EC2 - RAC28	t_T (days) $(t \cdot t_0)_T$ (days)						30.745 1.06																							•			•
CREEP CALCULAT		29.685	29.685	29.688	29.729	29.95		31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	416.646	453.752	506.76	1060.167	2650.418	5300.837	10601.67
CREEP CALCULAT	$t_{\scriptscriptstyle T}$ (days)	48.7 29.685	48.7 29.685	48.7 29.688	48.7 29.729	48.7 29.95	30.745	48.7 31.805	48.7 32.865	48.7 33.925	48.7 34.986	48.7 36.046	48.7 37.106	48.7 44.527	48.7 51.948	48.7 59.369	48.7 89.054	48.7 125.1	48.7 156.905	48.7 188.71	48.7 220.515	48.7 252.32	48.7 284.125	48.7 315.93	48.7 347.735	48.7 379.54	48.7 416.646	48.7 453.752	48.7 506.76	48.7 1060.167	48.7 2650.418	48.7 5300.837	48.7 10601.67
CREEP CALCULAT	$RH(\%)$ t_T (days)	21.3 48.7 29.685	21.3 48.7 29.685	21.3 48.7 29.688	21.3 48.7 29.729	21.3 48.7 29.95	48.7 30.745	21.3 48.7 31.805	21.3 48.7 32.865	21.3 48.7 33.925	21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67
CREEP CALCULAT	$T(^{\circ}C)$ RH (%) t_{T} (days)	21.3 48.7 29.685	28.000 21.3 48.7 29.685	21.3 48.7 29.688	28.042 21.3 48.7 29.729	28.250 21.3 48.7 29.95	21.3 48.7 30.745	30.00 21.3 48.7 31.805	31.00 21.3 48.7 32.865	21.3 48.7 33.925	33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67
CREEP CALCULAI	t (days) T (°C) RH (%) t_T (days)	28 28.000 21.3 48.7 29.685	28.000 21.3 48.7 29.685	a 28.003 21.3 48.7 29.688	1 28.042 21.3 48.7 29.729	28.250 21.3 48.7 29.95	29.00 21.3 48.7 30.745	29.685 30.00 21.3 48.7 31.805	31.00 21.3 48.7 32.865	t _{0,adj} 32.00 21.3 48.7 33.925	34.102 33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67

J_{\exp} $(t,t_0) \times IE-9$	ı	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178			
J (t,t ₀) x 1E-9	0.000	0.036	0.042	0.048	0.057	0.067	0.075	0.080	0.083	0.087	0.000	0.092	0.105	0.113	0.119	0.136	0.149	0.156	0.162	0.167	0.171	0.174	0.177	0.179	0.181	0.183	0.185	0.187	0.199	0.208	0.211
φ _k (t,t ₀)	ı	0.000	0.173	0.357	0.614	0.929	1.145	1.292	1.402	1.502	1.581	1.654	2.027	2.274	2.463	2.962	3.329	3.555	3.728	3.865	3.975	4.070	4.154	4.222	4.285	4.348	4.400	4.469	4.826	5.062	5.151
φ (t,t ₀)	ı	0.000	0.153	0.316	0.543	0.822	1.012	1.142	1.240	1.328	1.398	1.463	1.793	2.011	2.178	2.619	2.944	3.144	3.297	3.418	3.516	3.599	3.673	3.734	3.790	3.845	3.892	3.952	4.268	4.477	4.556
$eta_c (t,t_0)$	ı	0.000	0.033	0.068	0.117	0.177	0.218	0.246	0.267	0.286	0.301	0.315	0.386	0.433	0.469	0.564	0.634	0.677	0.710	0.736	0.757	0.775	0.791	0.804	0.816	0.828	0.838	0.851	0.919	0.964	0.981
β,	ı	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01
9-	ı	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644	4.644
ß <i>(RH)</i>	I	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
β (t ₀)	0.5688																														
β (f _{cm})	3.5339		coeff.	5.8																											
€.	κÿ		S	11																											
(t-t ₀) _τ β (days)		0.000			0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42 10594.25
	I		0.004	0.044																											5300.837 5293.42 10601 67 10594 25
(s) (t-t ₀) _τ (days)	7.421	7.421	7.425 0.004	7.465 0.044	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	•
t_{T} (days) $(t \cdot t_{0})_{T}$ (days)	48.7 7.421 –	48.7 7.421	48.7 7.425 0.004	48.7 7.465 0.044	48.7 7.686	48.7 8.481	48.7 9.542	48.7 10.602	48.7 11.662	48.7 12.722	48.7 13.782	48.7 14.842	48.7 22.264	48.7 29.685	48.7 37.106	48.7 66.791	48.7 102.836	48.7 134.641	48.7 166.446	48.7 198.251	48.7 230.056	48.7 261.861	48.7 293.666	48.7 325.471	48.7 357.276	48.7 394.382	48.7 431.488	48.7 484.496	48.7 1060.167	48.7 2650.418	5300.837
$RH(\%) t_T (days) \stackrel{(t-t_0)_T}{(days)}$	21.3 48.7 7.421 –	21.3 48.7 7.421	21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	21.3 48.7 7.686	21.3 48.7 8.481	21.3 48.7 9.542	21.3 48.7 10.602	21.3 48.7 11.662	21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	48.7 5300.837
$T(^{\circ}C)$ RH(%) $t_{T}(days)$ ($t_{0})_{T}$ ($days$)	21.3 48.7 7.421 –	21.3 48.7 7.421	7.003 21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	7.250 21.3 48.7 7.686	8.00 21.3 48.7 8.481	21.3 48.7 9.542	10.00 21.3 48.7 10.602	21.3 48.7 11.662	7 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67
t (days) $T(^{\circ}C)$ $RH(\%)$ t_{T} (days) $(t^{\star}t_{0})_{T}$ (days)	7 7.000 21.3 48.7 7.421 –	21.3 48.7 7.421	α 7.003 21.3 48.7 7.425 0.004	1 7.042 21.3 48.7 7.465 0.044	7.250 21.3 48.7 7.686	t _{0,T} 8.00 21.3 48.7 8.481	9.00 21.3 48.7 9.542	10.00 21.3 48.7 10.602	t _{0,adj} 11.00 21.3 48.7 11.662	12.527 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67

CREEP CALCULATION ACCORDING TO EC2 - HVFAC7

	_
č	9
>	7
•	۷
-5	Į
ŕ	L
3	>
3	r
c	Ū
ξ	7
٠	_
Ļ	Ų
C	٦
ì	_
٠.	_
(9
2	⋝
5	Ξ
ζ	1
ς	Ľ
C	1
Č	7
ò	٦,
`	=
•	4
2	>
7	₹
:	_
F	-
5	1
	j
	5
7	7
:	
2	÷
ò	٠,
•	_
Ç	L
Ļ	L
Ĺ	ũ
Č	ř
7	7

$J_{\rm exp}$ $(t,t_0) \times 1E-9$	ı	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124			
J (t,t ₀) x 1E-9	0.000	0.034	0.038	0.043	0.049	0.057	0.062	990.0	0.069	0.071	0.073	0.075	0.084	0.000	0.095	0.107	0.117	0.122	0.127	0.130	0.133	0.135	0.137	0.139	0.140	0.142	0.143	0.145	0.154	0.160	0.162 0.163
φ _k (t,t ₀)	1	0.000	0.115	0.262	0.450	0.681	0.839	0.947	1.028	1.101	1.159	1.213	1.486	1.667	1.805	2.171	2.441	2.606	2.733	2.833	2.914	2.983	3.045	3.095	3.141	3.188	3.226	3.276	3.534	3.711	3.777 3.815
φ (t,t ₀)	1	0.000	0.115	0.261	0.450	0.680	0.838	0.945	1.026	1.099	1.156	1.210	1.483	1.664	1.802	2.167	2.436	2.601	2.728	2.828	2.908	2.978	3.039	3.089	3.135	3.181	3.220	3.270	3.527	3.704	3.769 3.807
$eta_c (t,t_o)$	ı	0.000	0.030	0.068	0.117	0.177	0.218	0.246	0.267	0.286	0.301	0.315	0.386	0.433	0.469	0.564	0.634	0.677	0.710	0.736	0.757	0.775	0.791	0.804	0.816	0.828	0.838	0.851	0.918	0.964	0.981 0.991
β,	ı	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01 340.01
9	ı	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842 3.842
β (RH)	ı	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104 2.3104
β (t ₀)	0.4705																														
β (f_{cm})	3.5339		coeff.	16.8																											
$(t$ - $t_o)_T$ (days)	ı	0.000		0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15 10571.99
t_{T} (days) $(t-t_{0})_{T}$ (days)			0.003																												5300.837 5271.15 10601.67 10571.99
_	29.685	29.685	29.688 0.003	29.729	29.95	30.745	31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	416.646	453.752	506.76	1060.167	2650.418	. ,-
t ⊤ (days)	48.7 29.685	48.7 29.685	48.7 29.688 0.003	48.7 29.729	48.7 29.95	48.7 30.745	48.7 31.805	48.7 32.865	48.7 33.925	48.7 34.986	48.7 36.046	48.7 37.106	48.7 44.527	48.7 51.948	48.7 59.369	48.7 89.054	48.7 125.1	48.7 156.905	48.7 188.71	48.7 220.515	48.7 252.32	48.7 284.125	48.7 315.93	48.7 347.735	48.7 379.54	48.7 416.646	48.7 453.752	48.7 506.76	48.7 1060.167	48.7 2650.418	5300.837 10601.67
т (°C) RH (%) t _т (days)	21.3 48.7 29.685	21.3 48.7 29.685	21.3 48.7 29.688 0.003	21.3 48.7 29.729	21.3 48.7 29.95	21.3 48.7 30.745	21.3 48.7 31.805	21.3 48.7 32.865	21.3 48.7 33.925	21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	48.7 5300.837 48.7 10601.67
т (°C) RH (%) t _т (days)	21.3 48.7 29.685	21.3 48.7 29.685	21.3 48.7 29.688 0.003	21.3 48.7 29.729	21.3 48.7 29.95	29.00 21.3 48.7 30.745	21.3 48.7 31.805	31.00 21.3 48.7 32.865	21.3 48.7 33.925	33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67
t (days) T (°C) RH (%) t_T (days)	28 28.000 21.3 48.7 29.685	21.3 48.7 29.685	α 28.003 21.3 48.7 29.688 0.003	1 28.042 21.3 48.7 29.729	28.250 21.3 48.7 29.95	t _{0,T} 29.00 21.3 48.7 30.745	29.685 30.00 21.3 48.7 31.805	31.00 21.3 48.7 32.865	t _{0,adj} 32.00 21.3 48.7 33.925	34.102 33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837 21.3 48.7 10601.67

(L	i	
֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֡֓֓֓֡֡֓֓֡֓֓֡֓֡֓֓֡֡֓֡֡֓֡֡֓֡֓		
•		֡
0 20		֡
100		
֚֚֚֝֟֝֓֜֝֟֝֟֝֟֝֟֝֟֝֟֜֟֝ ֓		
Ì		
ן ן		

$\int_{\exp} (t,t_o) x$ 1E-9	ı	0.000	0.053	0.067	9.00	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
J (t,t ₀) x 1E-9	0.000	0.037	0.045	0.052	0.063	0.075	0.084	0.090	0.094	0.098	0.102	0.104	0.119	0.128	0.134	0.151	0.162	0.167	0.172	0.175	0.177	0.179	0.181	0.182	0.184	0.185	0.186	0.187	0.193	0.196	0.197	0.197
$\boldsymbol{\phi}_{\mathrm{k}}$ (t,t ₀)	1	0.000	0.200	0.414	0.710	1.074	1.319	1.483	1.615	1.720	1.815	1.897	2.298	2.557	2.748	3.212	3.517	3.685	3.804	3.895	3.963	4.022	4.068	4.104	4.140	4.172	4.200	4.231	4.395	4.486	4.518	4.532
φ (t,t ₀)	1	0.000	0.153	0.316	0.541	0.819	1.007	1.132	1.232	1.312	1.385	1.447	1.753	1.951	2.096	2.451	2.683	2.812	2.902	2.971	3.023	3.068	3.103	3.131	3.159	3.183	3.204	3.228	3.353	3.422	3.447	3.457
$eta_c (t,t_o)$	ı	0.000	0.044	0.091	0.156	0.236	0.290	0.326	0.355	0.378	0.399	0.417	0.505	0.562	0.604	0.706	0.773	0.810	0.836	0.856	0.871	0.884	0.894	0.902	0.910	0.917	0.923	0.930	996.0	0.986	0.993	966.0
β_h	I	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99
о 9 -	I	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471	3.471
β <i>(RH)</i>	I	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
β (t ₀)	0.5688		I	-5																												
β (f_{cm})	2.6410		coeff.	14																												
$(t$ - $t_o)_{\tau}$ (days)	ı	0.000	0.004	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
t₁ (days)	7.421	7.421	7.425	7.465	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	5300.837	10601.67
RH (%)	48.7	48.7																														
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	7.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t ₀ (days)	7		¤	1		t 0, T	7.421		t 0,adj	12.527																						
	23.0	28.1	25.4	27.0	09	1.166	1.045	1.116	14.5	0.630																						
	$f_c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E cm =	$p_o =$	α, =	α2 =	α ³ ≡	d =	α/f _{cm} =																						

$J_{\rm exp} (t,t_0) x$ $1E-9$	ı	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	960.0	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
J (t,t ₀) x 1E-9	0.000	0.035	0.040	0.045	0.052	0.061	0.067	0.071	0.074	0.077	0.079	0.081	0.092	0.098	0.104	0.117	0.128	0.134	0.139	0.143	0.146	0.148	0.151	0.152	0.154	0.156	0.157	0.159	0.169	0.176	0.178	0.180
φ _k (t,t ₀)	ı	0.000	0.124	0.281	0.483	0.731	0.900	1.016	1.103	1.181	1.243	1.301	1.594	1.789	1.937	2.330	2.619	2.796	2.933	3.040	3.127	3.201	3.267	3.321	3.371	3.420	3.461	3.515	3.792	3.982	4.052	4.093
φ (t,t ₀)	1	0.000	0.123	0.279	0.480	0.726	0.894	1.009	1.095	1.173	1.234	1.292	1.583	1.776	1.923	2.313	2.600	2.776	2.912	3.018	3.104	3.178	3.244	3.297	3.346	3.396	3.437	3.490	3.765	3.953	4.023	4.064
$eta_c \left(t, t_o ight)$	ı	0.000	0.030	0.068	0.117	0.177	0.218	0.246	0.267	0.286	0.301	0.315	0.386	0.433	0.469	0.564	0.634	0.677	0.710	0.736	0.757	0.775	0.791	0.804	0.816	0.828	0.838	0.851	0.918	0.964	0.981	0.991
β,	ı	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01	340.01
9-	ı	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101	4.101
β (RH)	ı	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
β (t o)	0.4705		I	1.5																												
β (f_{cm})	3.7729		coeff.	20																												
$(t$ - $t_o)_{\tau}$ (days)	ı	0.000	0.003	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15	10571.99
t_T (days) $(t-t_0)_T$ (days)		2																														
(§.	29.685		29.688	29.729	29.95	30.745	31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	416.646	453.752	506.76	1060.167	2650.418	5300.837	10601.67
t₁ (days)	48.7 29.685	29.685	48.7 29.688	48.7 29.729	48.7 29.95	48.7 30.745	48.7 31.805	48.7 32.865	48.7 33.925	48.7 34.986	48.7 36.046	48.7 37.106	48.7 44.527	48.7 51.948	48.7 59.369	48.7 89.054	48.7 125.1	48.7 156.905	48.7 188.71	48.7 220.515	48.7 252.32	48.7 284.125	48.7 315.93	48.7 347.735	48.7 379.54	48.7 416.646	48.7 453.752	48.7 506.76	48.7 1060.167	48.7 2650.418	48.7 5300.837	48.7 10601.67
$T(^{\circ}C)$ RH(%) t_{T} (days)	21.3 48.7 29.685	48.7 29.685	21.3 48.7 29.688	21.3 48.7 29.729	21.3 48.7 29.95	21.3 48.7 30.745	21.3 48.7 31.805	21.3 48.7 32.865	21.3 48.7 33.925	21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67
$T(^{\circ}C)$ RH(%) t_{T} (days)	21.3 48.7 29.685	28.000 21.3 48.7 29.685	21.3 48.7 29.688	28.042 21.3 48.7 29.729	28.250 21.3 48.7 29.95	29.00 21.3 48.7 30.745	21.3 48.7 31.805	31.00 21.3 48.7 32.865	21.3 48.7 33.925	33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67
t (days) T (°C) RH (%) t_T (days)	28 28.000 21.3 48.7 29.685	28.000 21.3 48.7 29.685	α 28.003 21.3 48.7 29.688	1 28.042 21.3 48.7 29.729	28.250 21.3 48.7 29.95	t _{0,T} 29.00 21.3 48.7 30.745	29.685 30.00 21.3 48.7 31.805	31.00 21.3 48.7 32.865	t _{0,adj} 32.00 21.3 48.7 33.925	34.102 33.00 21.3 48.7 34.986	21.3 48.7 36.046	21.3 48.7 37.106	21.3 48.7 44.527	21.3 48.7 51.948	21.3 48.7 59.369	21.3 48.7 89.054	21.3 48.7 125.1	21.3 48.7 156.905	21.3 48.7 188.71	21.3 48.7 220.515	21.3 48.7 252.32	21.3 48.7 284.125	21.3 48.7 315.93	21.3 48.7 347.735	21.3 48.7 379.54	21.3 48.7 416.646	21.3 48.7 453.752	21.3 48.7 506.76	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67

CREEP CALCULATION ACCORDING TO EC2 - RAC28 - CALIBRATED

J_{\exp} $(t,t_0)x$ $1E-9$	ı	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
J (t,t ₀) x 1E-9	0.000	0.036	0.043	0.050	0.061	0.073	0.082	0.088	0.092	0.096	0.099	0.102	0.116	0.125	0.132	0.148	0.159	0.165	0.169	0.172	0.174	0.176	0.178	0.179	0.181	0.182	0.183	0.184	0.189	0.193	0.194	0.194
φ _k (t,t ₀)	ı	0.000	0.206	0.427	0.731	1.107	1.360	1.529	1.665	1.772	1.871	1.955	2.368	2.635	2.832	3.310	3.625	3.798	3.920	4.014	4.084	4.145	4.192	4.229	4.267	4.300	4.328	4.361	4.530	4.623	4.656	4.670
φ (t,t ₀)	1	0.000	0.182	0.377	0.647	0.979	1.203	1.352	1.472	1.568	1.655	1.729	2.094	2.331	2.505	2.928	3.206	3.359	3.467	3.550	3.612	3.666	3.707	3.741	3.774	3.803	3.828	3.857	4.006	4.089	4.118	4.130
$eta_c (t,t_o)$	ı	0.000	0.044	0.091	0.156	0.236	0.290	0.326	0.355	0.378	0.399	0.417	0.505	0.562	0.604	90.70	0.773	0.810	0.836	0.856	0.871	0.884	0.894	0.902	0.910	0.917	0.923	0:630	996.0	0.986	0.993	966.0
β,	ı	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99	129.99
° 9-	ı	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147	4.147
β (RH)	ı	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
β (to)	0.5688		Н	-2																												
β (f _{cm})	3.1553		coeff.	15																												
8	ω,		S																													
$(t-t_o)_{ au}$ (days)		0.000			0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.69	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1052.75	2643.00	5293.42	10594.25
	ı		0.004	0.044			9.542 2.12																								5300.837 5293.42	
$(t ext{-} t_o)_{ au}$ (days)	ı	7.421 0.000	0.004	7.465 0.044	7.686	8.481	9.542	10.602	11.662	12.722	13.782	14.842	22.264	29.685	37.106	66.791	102.836	134.641	166.446	198.251	230.056	261.861	293.666	325.471	357.276	394.382	431.488	484.496	1060.167	2650.418	5300.837	10601.67
t_{T} (days) $(t \cdot t_{0})_{T}$ (days)	48.7 7.421 –	7.421 0.000	48.7 7.425 0.004	48.7 7.465 0.044	48.7 7.686	48.7 8.481	48.7 9.542	48.7 10.602	48.7 11.662	48.7 12.722	48.7 13.782	48.7 14.842	48.7 22.264	48.7 29.685	48.7 37.106	48.7 66.791	48.7 102.836	48.7 134.641	48.7 166.446	48.7 198.251	48.7 230.056	48.7 261.861	48.7 293.666	48.7 325.471	48.7 357.276	48.7 394.382	48.7 431.488	48.7 484.496	48.7 1060.167	48.7 2650.418	48.7 5300.837	48.7 10601.67 1
RH (%) t_{T} (days) $(t \cdot t_{O})_{T}$ (days)	21.3 48.7 7.421 –	21.3 48.7 7.421 0.000	21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	21.3 48.7 7.686	21.3 48.7 8.481	21.3 48.7 9.542	21.3 48.7 10.602	21.3 48.7 11.662	21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67 1
$T({}^{\circ}C)$ RH(%) t_{T} (days) ${}^{(t_{0})_{T}}$ (days)	21.3 48.7 7.421 –	21.3 48.7 7.421 0.000	21.3 48.7 7.425 0.004	21.3 48.7 7.465 0.044	21.3 48.7 7.686	21.3 48.7 8.481	9.00 21.3 48.7 9.542	21.3 48.7 10.602	21.3 48.7 11.662	7 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67 1
t (days) T (°C) RH (%) t_{T} (days) t^{t}_{0} (days)	7 7.000 21.3 48.7 7.421 –	21.3 48.7 7.421 0.000	a 7.003 21.3 48.7 7.425 0.004	1 7.042 21.3 48.7 7.465 0.044	7.250 21.3 48.7 7.686	t _{0,T} 8.00 21.3 48.7 8.481	9.00 21.3 48.7 9.542	10.00 21.3 48.7 10.602	t _{0,adj} 11.00 21.3 48.7 11.662	2 12.527 12.00 21.3 48.7 12.722	21.3 48.7 13.782	21.3 48.7 14.842	21.3 48.7 22.264	21.3 48.7 29.685	21.3 48.7 37.106	21.3 48.7 66.791	21.3 48.7 102.836	21.3 48.7 134.641	21.3 48.7 166.446	21.3 48.7 198.251	21.3 48.7 230.056	21.3 48.7 261.861	21.3 48.7 293.666	21.3 48.7 325.471	21.3 48.7 357.276	21.3 48.7 394.382	21.3 48.7 431.488	21.3 48.7 484.496	21.3 48.7 1060.167	21.3 48.7 2650.418	21.3 48.7 5300.837	21.3 48.7 10601.67 1

CREEP CALCULATION ACCORDING TO EC2 - HVFAC7 - CALIBRATED

CREEP CALCULATION ACCORDING TO EC2 - HVFAC28 - CALIBRATED

$\int_{\exp} (t,t_0) x$ $TE-9$) 1	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
J (t,t ₀) x 1E-9	0.000	0.034	0.037	0.041	0.046	0.051	0.055	0.058	0.061	0.062	0.064	0.065	0.072	0.077	0.081	0.091	0.100	0.105	0.109	0.112	0.115	0.118	0.120	0.122	0.124	0.126	0.128	0.130	0.143	0.154	0.159	0.161
φ _k (t,t ₀)	1	0.000	0.089	0.200	0.343	0.516	0.635	0.720	0.785	0.839	0.885	0.928	1.136	1.282	1.394	1.698	1.936	2.087	2.210	2.314	2.402	2.479	2.545	2.606	2.660	2.718	2.768	2.833	3.214	3.538	3.680	3.761
φ (t,t ₀)	ı	0.000	0.088	0.200	0.342	0.515	0.634	0.718	0.784	0.838	0.884	0.926	1.133	1.279	1.391	1.694	1.933	2.082	2.205	2.309	2.397	2.474	2.540	2.601	2.655	2.712	2.762	2.828	3.208	3.531	3.673	3.754
$eta_c \left(t, t_o ight)$	ı	0.000	0.023	0.052	0.089	0.134	0.165	0.187	0.204	0.218	0.230	0.241	0.295	0.333	0.362	0.441	0.503	0.542	0.574	0.601	0.624	0.644	0.661	0.677	0.691	90.20	0.719	0.736	0.835	0.919	0.956	0.977
β	ı	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04	850.04
° 9•	ı	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842	3.842
β (RH)	I	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104	2.3104
β (t o)	0.4705		H	10																												
β (f_{cm})	3.5339		coeff.	16.8																												
$(t-t_o)_{\tau}$ (days)	I	0.000	0.003	0.044	0.265	1.06	2.12	3.18	4.24	5.30	6.36	7.42	14.84	22.26	29.68	59.37	95.42	127.22	159.03	190.83	222.64	254.44	286.25	318.05	349.86	386.96	424.07	477.08	1030.48	2620.73	5271.15	10571.99
t₁ (days)	29.685	29.685	29.688	29.729	29.95	30.745	31.805	32.865	33.925	34.986	36.046	37.106	44.527	51.948	59.369	89.054	125.1	156.905	188.71	220.515	252.32	284.125	315.93	347.735	379.54	416.646	453.752	506.76	1060.167	2650.418	5300.837	10601.67
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t_0 (days) t (days)	28		ಶ	1		t 0,7	29.685		t 0,adj	34.102																						
	9:	22.6	18.1	28.1	09	.358	160	1.244	0.5	.451																						
	22	(/	.,	.,		1	7	1	-	0																						

CREEP CALCULATION ACCORDING TO ACI 209R - RAC7

$J_{\exp}(t,t_0)$ x 1E-9	ı	0.000	0.053	0.067	0.076	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
J (t,t ₀) x 1E-9	0.000	0.045	0.045	0.045	0.046	0.048	0.051	0.054	0.057	0.059	0.062	0.064	0.078	0.089	0.097	0.119	0.132	0.140	0.145	0.148	0.151	0.153	0.155	0.156	0.158	0.159	0.160	0.161	0.166	0.169	0.170	0.171
φ (t,t ₀)	ı	0.000	0.000	0.003	0.017	0.069	0.134	0.196	0.256	0.312	0.367	0.419	0.729	0.967	1.156	1.637	1.941	2.103	2.213	2.293	2.354	2.402	2.440	2.472	2.499	2.525	2.547	2.572	2.692	2.756		2.789
9	ı	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8	2.8
У с,RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
Y c, t0	0.9935		coeff.	2.35																												
$(t-t_0)$ (days)	1	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	9:000	7.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7				48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7		48.7	48.7	48.7
7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t_o (days) t (days)	7																															
	28.1	22.2	30	39.81	1.0	1.064	110	1.11	81.8	1.076	4	1.000																				
	$f_{cm} =$	$\boldsymbol{E}_{c}\left(\boldsymbol{t}_{o}\right)$ =	V/S (mm)=	<i>p</i>	+	V c, vs =	II S	V _{c,s} =	# *	, ₩ =	$\alpha_{air} =$	γ _{c, α} =																				

CREEP CALCULATION ACCORDING TO ACI 209R - RAC28

J_{exp} (t,t_0) x 1E-9	Ī	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	960.0	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
J (t,t ₀) x 1E-9	0.000	0.038	0.038	0.038	0.038	0.040	0.042	0.044	0.046	0.048	0.049	0.051	0.061	0.069	0.075	0.090	0.100	0.105	0.109	0.111	0.113	0.115	0.116	0.117	0.118	0.119	0.119	0.120	0.124	0.126	0.127	0.127
φ (t,t ₀)	ı	0.000	0.000	0.002	0.015	0.058	0.114	0.167	0.217	0.265	0.311	0.355	0.618	0.821	0.982	1.389	1.648	1.785	1.878	1.947	1.998	2.039	2.072	2.099	2.121	2.143	2.162	2.184	2.283	2.339	2.358	2.368
<i>»</i>	I	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377	2.377
У с,RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
y c, t0	0.8436		coeff.	2.35																												
$(t-t_0)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	9.000	7.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7		48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t_0 (days) t (days)	28																															
	28.1	26.5	30	39.81	1.0	1.064	110	1.11	81.8	1.076	4	1.000																				
	$f_{cm} =$	$\boldsymbol{E}_{c}(t_{0}) =$	V/S (mm)=	= <i>p</i>	= \$	V c,vs =	II S	۲ _{c,s} ا	# *	/ c, ψ =	$\alpha_{air} =$	γς, α =																				

CREEP CALCULATION ACCORDING TO ACI 209R - HVFAC7

$J_{\exp}(t,t_0)$ x 1E-9	I	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
J (t,t ₀) x 1E-9	0.000	0.050	0.050	0.050	0.051	0.054	0.057	0.060	0.062	0.065	0.068	0.070	0.085	960.0	0.105	0.128	0.142	0.150	0.155	0.159	0.162	0.164	0.166	0.167	0.169	0.170	0.171	0.172	0.178	0.181	0.182	0.182
φ (t,t ₀)	ı	0.000	0.000	0.003	0.016	0.065	0.126	0.185	0.241	0.294	0.346	0.395	0.687	0.911	1.090	1.542	1.830	1.982	2.086	2.161	2.218	2.264	2.300	2.330	2.355	2.379	2.400	2.425	2.537	2.598	2.618	2.629
" 9	I	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639	2.639
У с, RH	ı	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
V c, t0	0.9935		coeff.	2.35																												
$(t-t_0)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	9.000	2.000	14.000	21.000	28.000	26.000	90.00	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t_{o} (days) t (days)	7																															
	22.6	19.9	30	39.81	1.0	1.064	20	1.005	100	1.12	1.5	1.000																				
	$f_{cm} =$	$E_c(t_0) =$	V/S (mm)=	= <i>p</i>	<i>ф</i> =	V c,vs =	II S	Y c,s =	=	V c, ψ ≡	$\alpha_{air} =$	γ _{c, α} =																				

CREEP CALCULATION ACCORDING TO ACI 209R - HVFAC28

$J_{\rm exp} (t,t_0)$ x 1E-9	ı	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
J (t,t ₀) x 1E-9	0.000	0.042	0.042	0.042	0.043	0.044	0.047	0.049	0.051	0.053	0.054	0.056	0.067	0.075	0.081	0.097	0.107	0.113	0.116	0.119	0.121	0.123	0.124	0.125	0.126	0.127	0.128	0.129	0.132	0.135	0.135	0.136
φ (t,t ₀)	1	0.000	0.000	0.002	0.014	0.055	0.107	0.157	0.205	0.250	0.294	0.335	0.583	0.774	0.925	1.310	1.554	1.683	1.771	1.835	1.884	1.922	1.953	1.978	2.000	2.021	2.038	2.059	2.153	2.205	2.223	2.232
° 9-	I	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241	2.241
У с,RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
V c, t0	0.8436		coeff.	2.35																												
$(t-t_0)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	000.9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t_o (days) t (days)	28																															
	22.6	23.8	30	39.81	1.0	1.064	20	1.005	100	1.12	1.5	1.000																				
	$f_{cm} =$	$E_c(t_0) =$	V/S (mm)=	<i>q</i> =	<i>-</i>	V c,vs =	II S	/ c,s =	<i>ф</i> =	γ c, ψ =	$\alpha_{air} =$	γ _{c, α} =																				

CREEP CALCULATION ACCORDING TO ACI 209R - RAC7 - CALIBRATED

$J_{\exp}(t,t_0)$ x 1E-9	I	0.000	0.053	0.067	0.076	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
J (t, t ₀) x 1E-9	0.000	0.045	0.046	0.050	0.058	0.072	0.082	0.000	960.0	0.100	0.105	0.108	0.125	0.134	0.141	0.156	0.166	0.171	0.174	0.177	0.179	0.181	0.182	0.183	0.185	0.186	0.187	0.188	0.194	0.199	0.201	0.203
φ (t,t ₀)	1	0.000	0.024	0.103	0.286	0.596	0.831	0.997	1.125	1.231	1.321	1.398	1.764	1.980	2.131	2.470	2.675	2.786	2.865	2.925	2.973	3.012	3.045	3.073	3.097	3.121	3.142	3.169	3.311	3.417	3.469	3.504
<i>•</i>	ı	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574	3.574
У с,RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
Y c,t0	0.9935		coeff.	ဗ																												
(t-t ₀) (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	0.000	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t_o (days) t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	7																															
	28.1	22.2	30	2.00	9.0	1.064	110	1.11	81.8	1.076	4	1.000																				
	$f_{cm} =$	$\boldsymbol{E}_{c}\left(\boldsymbol{t}_{o}\right) =$	V/S (mm)=	= <i>p</i>	φ =	Y c,vs =	II S	/ c,s =	# #	γ c, ψ ≡	$\alpha_{air} =$	γ _{c, α} =																				

CREEP CALCULATION ACCORDING TO ACI 209R - RAC28 - CALIBRATED

$J_{\rm exp} (t,t_0)$ x 1E-9	I	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	960.0	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
J (t,t ₀) x 1E-9	0.000	0.038	0.038	0.041	0.046	0.055	0.062	0.067	0.072	0.075	0.079	0.082	0.096	0.104	0.111	0.127	0.137	0.143	0.147	0.150	0.153	0.155	0.157	0.159	0.160	0.162	0.163	0.164	0.173	0.180	0.183	0.186
φ (t, t ₀)	ı	0.000	0.017	0.074	0.209	0.450	0.645	0.788	0.903	1.000	1.085	1.160	1.532	1.769	1.942	2.360	2.632	2.786	2.899	2.987	3.058	3.117	3.166	3.209	3.246	3.285	3.318	3.359	3.585	3.769	3.860	3.922
,	I	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047	4.047
У с, RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
y c, t0	0.8436		coeff.	4																												
$(t-t_0)$ (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	9.000	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	28																															
	28.1	26.5	30	8.00	9.0	1.064	110	1.11	81.8	1.076	4	1.000																				
	$f_{cm} =$	$E_c(t_0) =$	V/S (mm)=	σ =	<i>φ</i> =	V c, vs =	II S	Y c,s =	=	, ₩	$\alpha_{air} =$	γ ς, α																				

CREEP CALCULATION ACCORDING TO ACI 209R - HVFAC7 - CALIBRATED

$J_{\exp}(t,t_0)$ x 1E-9	I	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
J (t,t ₀) x 1E-9	0.000	0.050	0.051	0.054	0.062	0.074	0.083	0.090	0.095	0.099	0.102	0.105	0.120	0.128	0.134	0.148	0.156	0.160	0.163	0.166	0.168	0.169	0.170	0.172	0.172	0.173	0.174	0.175	0.181	0.185	0.187	0.189
φ (t,t ₀)	I	0.000	0.019	0.081	0.225	0.468	0.653	0.783	0.884	0.967	1.037	1.098	1.385	1.555	1.674	1.940	2.101	2.188	2.250	2.298	2.335	2.366	2.391	2.413	2.432	2.451	2.468	2.489	2.600	2.684	2.725	2.752
°.	I	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807	2.807
У с, RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
Y c,t0	0.9935		coeff.	2.5																												
$(t$ - $t_0)$ (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	9.000	7.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	2.000	7.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t_o (days) t (days)	7																															
	22.6	19.9	30	2.00	9.0	1.064	20	1.005	100	1.12	1.5	1.000																				
	$f_{cm} =$	$\boldsymbol{E}_{c}\left(\boldsymbol{t}_{o}\right) =$	V/S (mm)=	<i>q</i> =	<i>φ</i> =	V c,vs =	II S	/ c,s =	<i>ф</i>	γ c, ψ =	$\alpha_{air} =$	γ ς, α =																				

CREEP CALCULATION ACCORDING TO ACI 209R - HVFAC28 - CALIBRATED

$J_{exp}(t,t_0)$ x 1E-9	ı	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
J (t,t ₀) x 1E-9	0.000	0.042	0.043	0.044	0.048	0.053	0.057	0.060	0.062	0.064	0.066	0.067	0.075	0.080	0.084	0.093	0.101	0.105	0.108	0.111	0.113	0.115	0.117	0.118	0.120	0.121	0.122	0.124	0.133	0.142	0.147	0.151
φ (t,t ₀)	ı	0.000	0.017	0.057	0.136	0.260	0.354	0.422	0.477	0.523	0.563	0.598	0.779	0.899	0.990	1.224	1.392	1.495	1.574	1.639	1.692	1.738	1.778	1.813	1.845	1.877	1.907	1.944	2.165	2.381	2.505	2.600
<i>"</i>	I	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86	2.86
У с,RH	I	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437	0.9437
V c, t0	0.8436		coeff.	က																												
$(t-t_0)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	9.000	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7		48.7	48.7	48.7	48.7	48.7	48.7	48.7		48.7	48.7	48.7	48.7	48.7		48.7	48.7	48.7	48.7
T (°C)	21.3		21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t_o (days) t (days)	28																															
	22.6	23.8	30	10.00	0.5	1.064	20	1.005	100	1.12	1.5	1.000																				
	$f_{cm} =$	$\boldsymbol{E}_{c}(t_{o}) =$	V/S (mm)=	<i>d</i> =	<i>φ</i> =	V c,vs =	II S	/ c,s =	# #	Y c, ⊕ ≡	$\alpha_{air} =$	γ _{c,α} =																				

ŗ	:
	ر
7	Į
Q	۲
	ı
C	5
2	Š
Ž	?
	200
7	i
7000	,
C)
ŀ	-
•	h
2	י
1	S
Š	3
n	2
	5
6	`
7	₹
2	2
`	4
2	2
C	Š
Ě	
רַ	2
_	Ļ
1	4
7	í
•	ر
	닐
5	Ĺ
(د
٥	L
Ú	ú
Ú	ũ
D	7
Č	3
•	_

$J_{\exp}(t,t_0)$ x 1E-9	ı	0.000	0.053	0.067	0.076	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
J (t,t ₀) x 1E-9	0.000	0.044	0.046	0.049	0.053	0.060	0.065	0.068	0.071	0.073	0.074	0.075	0.081	0.085	0.087	0.095	0.103	0.109	0.114	0.118	0.121	0.124	0.127	0.129	0.131	0.133	0.135	0.138	0.151	0.162	0.168	0.173
$\boldsymbol{\varphi}_{28}\left(t,t_{0}\right)$	I	0.000	0.042	0.115	0.242	0.428	0.556	0.641	0.703	0.752	0.792	0.826	0.977	1.069	1.140	1.356	1.561	1.710	1.835	1.942	2.034	2.114	2.184	2.246	2.301	2.358	2.409	2.473	2.835	3.124	3.279	3.404
$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	I	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.024	0.049	0.079	0.216	0.383	0.514	0.627	0.725	0.809	0.883	0.947	1.004	1.054	1.105	1.151	1.207	1.510	1.705	1.778	1.81/
$\varphi_2(t,t_0)$	I	0.000	0.022	0.077	0.186	0.354	0.471	0.548	0.603	0.645	0.679	0.707	0.816	0.866	0.894	0.943	0.963	0.972	0.977	0.981	0.984	0.986	0.987	0.989	0.880	0.991	0.991	0.992	0.996	0.999	0.999	1.000
$\boldsymbol{\varphi}_{1}\left(t,t_{0}\right)$	I	0.000	0.026	0.054	0.090	0.133	0.162	0.181	0.195	0.208	0.218	0.227	0.272	0.302	0.325	0.386	0.432	0.462	0.486	0.507	0.524	0.540	0.554	0.567	0.578	0.591	0.602	0.617	0.723	0.855	0.958	1.062
$\Phi (t_c)$	0.8778																															
$(t-t_0)$ (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	000.9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	_		t_c (days)	٢																												
	19.7	28.1	22.6	26.5	30																											
	$f_c(t_0) =$	$f_{cm} =$	$\boldsymbol{E}_{c} (t_{0}) =$	E cm =	- N/S																											

CREEP CALCULATION ACCORDING TO GL2000 - RAC28

$J_{\exp}(t,t_0)$ x 1E-9	ı	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	0.096	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
J (t,t ₀) x 1E-9	0.000	0.038	0.039	0.040	0.043	0.046	0.049	0.051	0.052	0.053	0.054	0.054	0.058	090.0	0.062	0.068	0.074	0.079	0.083	0.086	0.089	0.091	0.094	960.0	0.097	0.099	0.101	0.103	0.114	0.123	0.128	0.133
$\boldsymbol{\varphi}_{28}\left(t,t_{0}\right)$	I	0.000	0.027	0.068	0.136	0.231	0.296	0.339	0.371	0.397	0.418	0.437	0.524	0.583	0.633	0.798	0.964	1.087	1.191	1.280	1.357	1.424	1.483	1.535	1.581	1.629	1.672	1.725	2.024	2.273	2.405	2.511
$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	ı	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.024	0.049	0.079	0.216	0.383	0.514	0.627	0.725	0.809	0.883	0.947	1.004	1.054	1.105	1.151	1.207	1.503	1.704	1.778	1.817
$\varphi_2(t,t_0)$	ı	0.000	0.011	0.038	0.093	0.177	0.236	0.274	0.302	0.323	0.340	0.354	0.408	0.433	0.447	0.471	0.482	0.486	0.489	0.491	0.492	0.493	0.494	0.494	0.495	0.495	0.496	0.496	0.498	0.499	0.500	0.500
φ ₁ (t,t ₀)	I	0.000	0.026	0.054	0.090	0.133	0.162	0.181	0.195	0.208	0.218	0.227	0.272	0.302	0.325	0.386	0.432	0.462	0.486	0.507	0.524	0.540	0.554	0.567	0.578	0.591	0.602	0.617	0.720	0.853	0.957	1.062
$\phi (t_c)$	0.7435																															
$(t-t_0)$ (days)	1	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	0.000	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7																													48.7	
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	2000.0	10000.0
t _o (days) t (days)	28		t_c (days)	7																												
	28.1	28.1	26.5	26.5	30																											
	$f_c(t_0) =$	$f_{cm} =$	$E_c(t_0) =$	E cm =	= S//\																											

CREEP CALCULATION ACCORDING TO GL2000 - HVFAC7

$J_{\exp}(t,t_0)$ x 1E-9	ı	0.000	0.068	0.076	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178				
J (t,t ₀) x 1E-9	0.000	0.050	0.052	0.055	0.060	0.068	0.074	0.077	0.080	0.082	0.084	0.085	0.091	0.095	0.098	0.107	0.116	0.122	0.127	0.132	0.136	0.139	0.142	0.145	0.147	0.149	0.151	0.154	0.169	0.181	0.188	0.193
$\boldsymbol{\phi}_{28}\left(t,t_{0}\right)$	ı	0.000	0.042	0.115	0.242	0.428	0.556	0.641	0.703	0.752	0.792	0.826	0.977	1.069	1.140	1.356	1.561	1.710	1.835	1.942	2.034	2.114	2.184	2.246	2.301	2.358	2.409	2.473	2.835	3.124	3.279	3.404
$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	I	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.024	0.049	0.079	0.216	0.383	0.514	0.627	0.725	0.809	0.883	0.947	1.004	1.054	1.105	1.151	1.207	1.510	1.705	1.778	1.817
$\varphi_2(t,t_0)$	I	0.000	0.022	0.077	0.186	0.354	0.471	0.548	0.603	0.645	0.679	0.707	0.816	0.866	0.894	0.943	0.963	0.972	0.977	0.981	0.984	0.986	0.987	0.989	0.66.0	0.991	0.991	0.992	966.0	0.999	0.999	1.000
$\boldsymbol{\varphi}_{1}\left(t,t_{0}\right)$	I	0.000	0.026	0.054	0.090	0.133	0.162	0.181	0.195	0.208	0.218	0.227	0.272	0.302	0.325	0.386	0.432	0.462	0.486	0.507	0.524	0.540	0.554	0.567	0.578	0.591	0.602	0.617	0.723	0.855	0.958	1.062
$\Phi (t_c)$	0.8778																															
(t-t ₀) (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	000'9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	2.000	2.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	7		t_{c} (days)	1																												
	15.9	22.6	19.9	23.8	30																											
	$f_c(t_0) =$	$f_{cm} =$	$\boldsymbol{E}_{c} (t_{o}) =$	E cm =	- N/S																											

CREEP CALCULATION ACCORDING TO GL2000 - HVFAC28

J_{exp} (t,t_0) x 1E-9	I	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
J (t,t ₀) x 1E-9	0.000	0.042	0.043	0.045	0.048	0.052	0.054	0.056	0.058	0.059	090.0	090.0	0.064	0.067	0.069	0.076	0.083	0.088	0.092	960.0	0.099	0.102	0.104	0.107	0.108	0.110	0.112	0.115	0.127	0.138	0.143	0.148
$\boldsymbol{\phi}_{28}\left(t,t_{0}\right)$	ſ	0.000	0.027	0.068	0.136	0.231	0.296	0.339	0.371	0.397	0.418	0.437	0.524	0.583	0.633	0.798	0.964	1.087	1.191	1.280	1.357	1.424	1.483	1.535	1.581	1.629	1.672	1.725	2.024	2.273	2.405	2.511
$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	I	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.002	0.004	0.005	0.007	0.024	0.049	0.079	0.216	0.383	0.514	0.627	0.725	0.809	0.883	0.947	1.004	1.054	1.105	1.151	1.207	1.503	1.704	1.778	1.817
$\varphi_2(t,t_0)$	I	0.000	0.011	0.038	0.093	0.177	0.236	0.274	0.302	0.323	0.340	0.354	0.408	0.433	0.447	0.471	0.482	0.486	0.489	0.491	0.492	0.493	0.494	0.494	0.495	0.495	0.496	0.496	0.498	0.499		0.500
$\boldsymbol{\varphi}_{1}\left(t,t_{0}\right)$	I	0.000	0.026	0.054	0.090	0.133	0.162	0.181	0.195	0.208	0.218	0.227	0.272	0.302	0.325	0.386	0.432	0.462	0.486	0.507	0.524	0.540	0.554	0.567	0.578	0.591	0.602	0.617	0.720	0.853	0.957	1.062
$\Phi (t_c)$	0.7435																															
$(t-t_0)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	0.000	2.000	14.000	21.000	28.000	26.000	90.006	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	28		t_c (days)	7																												
	22.6	22.6	23.8	23.8	30																											
	$f_c(t_0) =$	$f_{cm} =$	$E_c(t_0) =$	$\mathbf{E}_{cm} =$	= S//																											

CREEP CALCULATION ACCORDING TO GL2000 - RAC7 - CALIBRATED coeff. coeff. coeff.

		$J_{\exp}(t,t_0)$ x 1E-9	I	0.000	0.053	0.067	0.076	0.086	0.093	0.099	0.100	0.106	0.108	0.107	0.122	0.123	0.132	0.145	0.152	0.156	0.160	0.163	0.168	0.170	0.172	0.172	0.174	0.178	0.179	0.181				
		J (t,t ₀) x 1E-9	0.000	0.044	0.075	0.078	0.081	0.087	0.092	0.095	0.098	0.100	0.103	0.105	0.115	0.122	0.128	0.143	0.153	0.159	0.163	0.167	0.170	0.172	0.174	0.176	0.177	0.178	0.180	0.181	0.190	0.196	0.199	0.201
		φ ₂₈ (t,t ₀)	1	0.000	0.827	0.884	0.980	1.133	1.256	1.348	1.424	1.490	1.549	1.602	1.879	2.072	2.221	2.609	2.880	3.039	3.157	3.249	3.323	3.384	3.435	3.480	3.518	3.557	3.591	3.633	3.861	4.029	4.108	4.161
coeff.	0.5	$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	I	0.000	0.011	0.036	0.089	0.178	0.250	0.305	0.351	0.390	0.426	0.458	0.629	0.749	0.842	1.085	1.251	1.347	1.415	1.467	1.508	1.541	1.569	1.592	1.611	1.630	1.647	1.667	1.763	1.817	1.836	1.846
coeff.	0.01	$\boldsymbol{\varphi}_{2}\left(t,t_{0}\right)$	I	0.000	0.927	0.950	0.967	0.979	0.985	0.988	0.880	0.991	0.992	0.993	966.0	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
coeff.	9.0	φ, (t,t ₀)	I	0.000	0.005	0.021	0.060	0.133	0.195	0.243	0.282	0.316	0.346	0.373	0.516	0.615	0.691	0.889	1.030	1.116	1.182	1.234	1.277	1.314	1.345	1.373	1.397	1.422	1.445	1.472	1.636	1.773	1.844	1.894
)		ϕ (t_c)	0.8778																															
		$(t$ - $t_o)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	0.000	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000	9993.000
		RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7
		7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
		t (days)	2.000	7.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0	10000.0
		t _o (days)	7		t_c (days)	1																												
			19.7	28.1	22.6	26.5	30																											
			$f_c(t_0) =$	$f_{cm} =$	$\boldsymbol{E}_{c}\left(\boldsymbol{t}_{0}\right)=$	E cm =	= S//																											

CREEP CALCULATION ACCORDING TO GL2000 - RAC28 - CALIBRATED coeff. coeff.

	$J_{exp} (t,t_0)$ $x 1E-9$	I	0.000	0.046	0.053	0.062	0.068	0.076	0.075	0.080	0.084	0.085	0.087	0.096	0.102	0.107	0.118	0.124	0.134	0.140	0.143	0.147	0.148	0.152	0.153	0.158	0.163	0.161	0.162				
	J (t,t ₀) x 1E-9	0.000	0.038	0.051	0.052	0.055	090.0	0.066	0.070	0.074	0.077	0.080	0.083	0.097	0.106	0.113	0.127	0.135	0.140	0.143	0.145	0.147	0.148	0.149	0.150	0.151	0.152	0.152	0.153	0.156	0.159	0.159	
	φ ₂₈ (t,t ₀)	ı	0.000	0.353	0.385	0.452	0.595	0.738	0.857	0.959	1.050	1.132	1.205	1.581	1.820	1.988	2.367	2.589	2.704	2.784	2.842	2.887	2.923	2.952	2.976	2.996	3.016	3.033	3.053	3.147	3.201	3.220	
coeff.	φ ₃ (t, t ₀)	I	0.000	0.011	0.036	0.089	0.178	0.250	0.305	0.351	0.390	0.426	0.458	0.629	0.749	0.842	1.085	1.251	1.347	1.415	1.467	1.508	1.541	1.569	1.592	1.611	1.630	1.647	1.667	1.761	1.817	1.836)
coeff.	$\varphi_2(t,t_0)$	ı	0.000	0.463	0.475	0.483	0.490	0.493	0.494	0.495	0.496	0.496	0.497	0.498	0.499	0.499	0.499	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500)
coeff.	φ, (t,t ₀)	I	0.000	0.000	9000	0.035	0.133	0.250	0.353	0.444	0.526	0.600	0.667	1.000	1.200	1.333	1.600	1.731	1.791	1.829	1.856	1.875	1.890	1.901	1.911	1.919	1.926	1.932	1.940	1.972	1.989	1.994	
9 1 0 9 5	ϕ (t_c)	0.7435																															
cooking to dezone haces - Calibratele coeff. coeff. coeff. coeff.	$(t$ - $t_0)$ (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	000.9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	, , , , ,
ONEET CAECOLATION A	RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	7.84 7.84 7.84	;
	T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	27.3) : I
CNEE	t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0)
	t _o (days)	28		t_{c} (days)	1																												
		28.1	28.1	26.5	26.5	30																											
		$f_c(t_0) =$	II	$E_c(t_0) =$	E cm =	п																											

CREEP CALCULATION ACCORDING TO GL2000 - HVFAC7 - CALIBRATED coeff.

		$J_{\rm exp}$ (t,t_0) x 1E-9	ı	0.000	0.068	9.00	0.091	0.094	0.103	0.108	0.110	0.115	0.115	0.116	0.126	0.128	0.131	0.141	0.149	0.147	0.154	0.155	0.157	0.160	0.162	0.166	0.168	0.171	0.174	0.178			
		J (t,t ₀) x 1E-9	0.000	0.050	0.085	0.088	0.092	0.098	0.102	0.105	0.108	0.110	0.112	0.114	0.123	0.129	0.134	0.147	0.156	0.161	0.165	0.168	0.171	0.173	0.175	0.176	0.178	0.179	0.180	0.182	0.191	0.200	0.205 0.210
		φ ₂₈ (t,t ₀)	1	0.000	0.836	0.900	0.996	1.133	1.236	1.310	1.371	1.423	1.469	1.510	1.725	1.874	1.989	2.291	2.505	2.633	2.728	2.803	2.864	2.915	2.959	2.997	3.031	3.065	3.095	3.133	3.356	3.561	3.689 3.797
coeff.	0.5	$\boldsymbol{\varphi}_{3}\left(t,t_{0}\right)$	1	0.000	0.011	0.036	0.089	0.178	0.250	0.305	0.351	0.390	0.426	0.458	0.629	0.749	0.842	1.085	1.251	1.347	1.415	1.467	1.508	1.541	1.569	1.592	1.611	1.630	1.647	1.667	1.763	1.817	1.836 1.846
coeff.	0.01	$\boldsymbol{\varphi}_{2}\left(t,t_{0}\right)$	1	0.000	0.927	0.950	0.967	0.979	0.985	0.988	0.990	0.991	0.992	0.993	966.0	0.997	0.998	0.999	0.999	0.999	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
coeff.	0.4	$\varphi_{\tau}(t,t_0)$	1	0.000	0.015	0.039	0.079	0.133	0.172	0.200	0.221	0.239	0.255	0.269	0.341	0.389	0.426	0.527	0.603	0.653	0.693	0.726	0.755	0.780	0.803	0.823	0.842	0.861	0.879	0.903	1.061	1.240	1.366 1.480
		$\Phi(t_c)$	0.8778																														
		$(t$ - $t_o)$ (days)	ı	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	5.000	000.9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	993.000	2493.000	4993.000 9993.000
Í		RH (%)	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7 48.7
		7 (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3 21.3
		t (days)	2.000	7.000	7.003	7.042	7.250	8.00	9.00	10.00	11.00	12.00	13.00	14.00	21.00	28.00	35.00	63.00	97.00	127.00	157.00	187.00	217.00	247.00	277.00	307.00	337.00	372.00	407.00	457.00	1000.0	2500.0	5000.0 10000.0
		t _o (days)	7		t _c (days)	1																											
			15.9	22.6	19.9	23.8	30																										
			$c(t_0) =$	f _{cm} =	$E_c(t_0) =$	E cm =	//S=																										

CREEP CALCULATION ACCORDING TO GL2000 - HVFAC28 - CALIBRATED coeff. coeff. 0.01 coeff.

J _{exp} (t,t ₀) x 1E-9	ı	0.000	0.048	0.052	0.057	0.062	0.063	0.067	0.068	0.069	0.069	0.071	0.077	0.082	0.082	0.089	0.098	0.100	0.100	0.108	0.108	0.114	0.109	0.115	0.121	0.116	0.125	0.124				
J (t,t ₀) x 1E-9	0.000	0.042	0.057	0.058	0.060	0.062	0.063	0.064	0.065	990.0	990.0	0.067	0.070	0.074	0.076	0.086	0.094	0.100	0.105	0.109	0.112	0.115	0.118	0.120	0.122	0.124	0.126	0.128	0.140	0.151	0.156	0.161
φ ₂₈ (t,t ₀)	ı	0.000	0.355	0.382	0.418	0.464	0.498	0.522	0.542	0.559	0.575	0.590	0.677	0.750	0.817	1.038	1.243	1.384	1.498	1.593	1.674	1.742	1.802	1.854	1.900	1.948	1.990	2.042	2.335	2.587	2.723	2.829
φ ₃ (t, t ₀)	I	0.000	0.000	0.000	0.000	0.002	0.005	0.008	0.013	0.017	0.022	0.028	0.072	0.122	0.173	0.370	0.569	0.709	0.823	0.917	966.0	1.063	1.120	1.170	1.214	1.258	1.297	1.344	1.585	1.741	1.797	1.826
$\varphi_2(t,t_0)$	I	0.000	0.463	0.475	0.483	0.490	0.493	0.494	0.495	0.496	0.496	0.497	0.498	0.499	0.499	0.499	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500		0.500
$\varphi_{\tau}(t,t_0)$	ı	0.000	0.015	0.039	0.079	0.133	0.172	0.200	0.221	0.239	0.255	0.269	0.341	0.389	0.426	0.527	0.603	0.653	0.693	0.726	0.755	0.780	0.803	0.823	0.842	0.861	0.879	0.903	1.056	1.238	1.365	1.479
ϕ (t_c)	0.7435																															
(t-t ₀) (days)	I	0.000	0.003	0.042	0.250	1.000	2.000	3.000	4.000	2.000	000.9	2.000	14.000	21.000	28.000	26.000	90.000	120.000	150.000	180.000	210.000	240.000	270.000	300.000	330.000	365.000	400.000	450.000	972.000	2472.000	4972.000	9972.000
RH (%)	48.7	48.7	48.7	48.7		48.7	48.7	48.7	48.7		48.7			48.7																	48.7	48.7
T (°C)	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3
t (days)	28.000	28.000	28.003	28.042	28.250	29.00	30.00	31.00	32.00	33.00	34.00	35.00	42.00	49.00	26.00	84.00	118.00	148.00	178.00	208.00	238.00	268.00	298.00	328.00	358.00	393.00	428.00	478.00	1000.0	2500.0	5000.0	10000.0
t _o (days)	28		t_{c} (days)	1																												
	22.6	22.6	23.8	23.8	30																											
	$f_c(t_0) =$	$f_{cm} =$	$\boldsymbol{E}_{c}\left(\boldsymbol{t}_{o}\right)=$	E _{cm} =	N/S =																											

Appendix C

Assessment and Correction of MC10 model

Assessment and Correction of MC10 model:Testing of Individual Deflection Curves

	Study information	rmation	Cross-section	uo -	u	q	Reinfor	Reinforcement	6	-	ć	ć	2	1	9	Mech	Mechanical properties	erties	č		ç	c	70	36	Loa	Loading 27	90	ç	9	Deflection	ç	
	-	4	,		,	,					4	2	f _{cm} (t ₀)		fecsp (to) fcm(to)						4	3		3	2	i	3	2		5	4	
Au		Specimen	b (mm) h (mm)		_{s1} (mm²) d (mm)	nm) p ₁ (%)	Asz	(mm²) d' (mm)	m) d ₂ (mm)	ρ ₂ (%)	type	t ₀ (days) (f	tPa) f∝	, (MPa) (MF		(MPa	E _{om} (щ	φ (-)	Δε σε	E cs (Ec.off	L (mr	P/Π	M _{L1} (Nm)	Ku	M _{L2} (Nm)	K _{L2}	a (t) (mm) t	t (days) t-t	t-t ₀ (days)	
- v	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	97 B	250	340	402	300	0.54	0 0	0 0	00	0.00 deformed	4 4	18.30	24.80	2.00	2.00	22820 2	24950 200	200000	0.000 0.0	0.000	00 22820	3500	0 11.7	3254	4 0.104	21646	0.107	4.95	14. 1. 1.	-0.1	
3 GIII	Gilbert and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00									0 11.7	3254	0		0.107	5.96	16	5	
4 -	and Nejadi	B1-a	250	340	402	300	0.54	0 0	0 6		.00 deformed	4 :	18.30	24.80	5.00									0 11.7	325	0 0		0.107	6.15	17	ю.	
5 6	Gilbert and Nejadi (2004)	0 C	250	340	402	300	0.54				.00 deformed	4 4	18.30	24.80	2 00									11.7	3254	<i>-</i>		0.107	6.39	<u> </u>	÷ 40	
	and Nejadi		250	340	402	300	0.54	0	0	0	.00 deformed	4	18.30	24.80	2.00									0 11.7	325	0	_	0.107	6.47	50	9	
80	Gilbert and Nejadi (2004)	B1-a	250	340	402	300	0.54	0 0	0 0		.00 deformed	4 ;	18.30	24.80	2.00									0 11.7	325	0 0		0.107	6.67	21	7	
	Gilbert and Nejadi (2004)	181-a	250	340	402	300	0.54	0 0	0 0	00	.00 deformed	4 4	18.30	24.80	2.00						_			11.7	325	0.104	21646	0.107	6.80	22 22	æ 5	
2 12	and Nejadi	2 6	250	8 8	402	300	0.54	0			.00 deformed	<u> </u>	18.30	24.80	2 00									117	3254	4 0.104	21646	0.107	7.19	25	= ==	
12 Gill.	and Nejadi		250	340	402	300	0.54	0	0	0	.00 deformed	4	18.30	24.80	2.00									0 11.7	3254	4 0.104	21646	0.107	7.28	27	13	
13 Gil	Gilbert and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0	0	.00 deformed	7 ;	18.30	24.80	2.00									0 11.7	325	4 0.104	21646	0.107	7.47	30	9 :	
44 4 4	and Nejadi		250	340	405	300	0.54	0 0	0 0	0 0	.00 deformed	4.	18.30	24.80	5.00									11.7	3254	4 0.104	21646	0.107	7.61	32	9 2	
15 GF	Gilbert and Nejadi (2004)	e 13	250	24 0	402	300	0.54	0 0	0 0	00	.00 deformed	4 4	18.30	24.80	8 6									71.7	325	0.104	21646	0.107	7.78	34	50	
17 G	and Nejadi		250	34.5	402	300	0.54	. 0	0		.00 deformed	<u> </u>	18.30	24.80	5.00									0 11.7	325	0		0.107	8.17	38	22	
	Gilbert and Nejadi (2004)		250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00	2.00									325			0.107	8.22	42	28	
	Gilbert and Nejadi (2004)		250	8 8	405	300	0.54	0 0	0 0		.00 deformed	4 ;	18.30	24.80	5.00	500									325			0.107	8.32	42	33	
	Gilbert and Nejadi (2004)		250	340	402	300	0.54	0 0	0 0		.00 deformed	7 7	18.30	24.80	5.00									11.7	325			0.107	8.34	84 5	34	
7. dil	Gilbert and Nejadi (2004)	0 C	250	340	402	300	0.54			0 0	.00 deformed	4 4	18.30	24.80	2 00	200								11.7	3254	4 0.104	• • •	0.107	8.84	5 6	58	
	and Neiadi		250	340	402	300	0.54	0	0		.00 deformed	. 4	18.30	24.80	2.00									0 11.7	3254			0.107	90'6	99	54	
	Gilbert and Nejadi (2004)		250	340	402	300	0.54	0	0		.00 deformed	41	18.30	24.80	2.00									0 11.7	325			0.107	9.20	9/	62	
	Gilbert and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00									0 11.7	325			0.107	9.47	87	73	
	Gilbert and Nejadi (2004)	B1-a	250	340	405	300	0.54	0 0	0 0	0 0	.00 deformed	4 ;	18.30	24.80	5.00									11.7	3254			0.107	9.47	96	82	
	Gilbert and Nejadi (2004)	- C C	250	\$ 55	402	900	0.04			0 0	.00 deformed	± 4	18.30	24.80	0.00									117	325			0.107	10.03	123	92	
	Gilbert and Nejadi (2004)	B1-8	250	8 8	402	300	0.54	0	0		.00 deformed	. 4	18.30	24.80	5.00									0 11.7	325			0.107	10.34	136	122	
	and Nejadi	B1-a	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00									0 11.7	325			0.107	10.59	166	152	
	and Nejadi	B1-a	250	340	402	300	0.54	0 6	0		.00 deformed	4 ;	18.30	24.80	2.00									0 11.7	325	_		0.107	10.88	200	186	
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	67.50 6.150	250	340	402	30.00	0.54	0 0	00	0 0	.00 deformed	4 4	18.30	24.80	2.00									0 0 11.7	3254	4 0.104		0.107	11.38	242	228	
	and Neiadi	2 m	250	34 5	402	300	0.54		. 0		.00 deformed	4	18.30	24.80	2.00									0 11.7	325			0.107	11.82	332	318	
35 GIII	Gilbert and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		.00 deformed	14	18.30	24.80	2:00					-	-			0 11.7	3254	Ĭ		0.107	12.06	394	380	
36 GIII	Gilbert and Nejadi (2004)	B1-b	250	340	402	300	0.54	0	0		.00 deformed	14	18.30	24.80	2.00									0 11.7	325				1.98	14.1	0.1	
	ĕ	81-0	250	340	402	300	0.54	0 0	0 0	0 0	.00 deformed	4 ;	18.30	24.80	5.00									11.7	3254				221	5	- (
38 6	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	B1-0	250	8 8 80 8	402	30 90	0.54	00	0 0		0.00 deformed	4 4	18.30	24.80	2.00									0 11.7	3254	4 0.104			2.54	16	N 60	
	and Nejadi	81-b	250	340	402	300	0.54	0	0		.00 deformed	7	18.30	24.80	5.00									0 11.7	325				2.62	. 8	4	
41 Gil.	Gilbert and Nejadi (2004)	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00									0 11.7	325			Ĭ	2.72	19	2	
42 Gii	Gilbert and Nejadi (2004)	81°b	250	340	402	300	0.54	0 0	0 0	0 0	.00 deformed	4 5	18.30	24.80	5.00									11.7	3254				2.82	5 50	9 1	
44 45	Gilbert and Neiadi (2004)	2 4	250	340	402	300	0.54				00 deformed	± 4	18.30	24.80	8 6									117	3254	4 0 104	13746		3.12	22	- 00	
45 Gil.	and Nejadi	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	2.00									0 11.7	325	4 0.104	13746		3.30	24	10	
	Gilbert and Nejadi (2004)	B1-b	250	8 8	405	300	0.54	0 0	0 0		.00 deformed	4 ;	18.30	24.80	5.00									0 11.7	325	4 0.104	13746		3.33	25	= ;	
48 6	Gilbert and Nejadi (2004)	810	250	24 25	402	9 6	0.54	0 0	o c	0 0	.00 deformed	4 4	18.30	24.80	2.00									0 0	325	0.104	13746		3.38	30	5 6	
	Gilbert and Nejadi (2004)	B1-b	250	340	402	300	0.54	0	0		.00 deformed	. 4	18.30	24.80	5.00									0 11.7	325	4 0.104	13746		3.76	32	. 6	
_	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0	.00 deformed	4 :	18.30	24.80	2.00									0 11.7	325	4 0.104	13746		3.89	34	20	
	Gilbert and Nejadi (2004)	9 4 9	250	340	402	30.50	0.54	0 0			.00 deformed	4 4	18.30	24.80	2.00									0 0	325	0.104	13746		4 17	39	23	
	and Nejadi	810	250	34 3	402	300	0.54	0	. 0	0	.00 deformed	. 4	18.30	24.80	5.00									0 11.7	325	4 0.104	13746		4.17	45	28	
	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0 0	.00 deformed	4	18.30	24.80	2.00									0 11.7	325	4 0.104	13746	_	4.27	45	31	
55 Gill	Gilbert and Nejadi (2004)	81-b	250	340	402	300	0.54	0 0	0 0	00	0.00 deformed	4 4	18.30	24.80	2.00	500	22820 2			0.862 0.3	0.367 0.367		3500	11.7	3254	0.104	13746	0.107	4.29	84 2	34	
	and Nejadi	B 12	250	340	402	300	0.54	. 0	0	0	0.00 deformed	<u> </u>	18.30	24.80	5.00									0 11.7	325	4 0.104	13746		4.78	6 5	54	
	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0	:00 deformed	41	18.30	24.80	2:00									0 11.7	325	4 0.104	13746	_	4.88	99	54	
	Gilbert and Nejadi (2004)	81-6	250	340	405	300	0.54	0 0	0 0	00	0.00 deformed	4 5	18.30	24.80	5.00									11.7	325	4 0.104	13746		4.98	76	62	
	and Nejadi	81 . 0	250	340	405	300	0.54	00	0	0 0	0.00 deformed	± 4	18.30	24.80	2.00									0 11.7	325	0			5.28	96	82	
	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0	.00 deformed	4	18.30	24.80	2.00									0 11.7	325	4 0.104	_	Ĭ	5.54	109	92	
	Gilbert and Nejadi (2004)	81-b	250	340	402	300	0.54	0 0	0 0	0 0	0.00 deformed	4 5	18.30	24.80	5.00	500								11.7	3254	0 0		-	5.74	122	108	
	and Nejadi	81 ₀	250	34 8	402	300	0.54	0	0	0	0.00 deformed	<u> </u>	18.30	24.80	2.00									0 11.7	325	4 0.104	13746		6.25	166	152	
	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0 0	0.00 deformed	4	18.30	24.80	2.00									0 11.7	3254	4 0.104	13746	0.107	6.48	200	186	
	and Nejadi	B1-0	250	340	402	300	0.54	0 0	0 0	0 0	.00 deformed	4 ;	18.30	24.80	5.00						34 0.76	84 959		11.7	3254	4 0.104	13746	0.107	6.91	242	228	
15 15 86 89	Gilbert and Nejadi (2004)	9 9 9	250	340	405	300	0.54	0 0		0 0	0.00 deformed	± 4	18.30	24.80	5.00						16 0.81	16 9115		0 11.7	3254	4 0.104	13746	0.107	7.34	332	318	
	and Nejadi	B1-b	250	340	402	300	0.54	0	0	0 0	.00 deformed	14	18.30	24.80	2.00						25 0.82	25 889		0 11.7	325	4 0.104	13746	0.107	7.44	394	380	

Author	9 ppc cl man (54) 182 a (54)	b (mm) b	*	(mm) d (m	P ₁ (%)	A. (nmm) A. (nm	(man)	(mm) %	40,000 40,000 6	(MP) (MP) (MP) (MP) (MP) (MP) (MP) (MP)	(May)	(489) (489)	(M78)	FE_ATS 189 and 200	E _m (MPa) Real (MPa) 2007	8) E, (WPa) 10) E, (WPa) 11) E, (WPa) 12) E, (WPa) 12) E, (WPa) 13) E, (WPa) 14) E, (WPa) 15) E, (WPa) 16)	0000 0011 0011 0011 0011 0011 0011 001	As (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	(Na) E ₂ (Na) E ₂ (Na) E ₂ (Na) E ₂ (Na)	(MPa) L1 (MPa) L1 (MPa) L1 (MPa) L1 (MPa) L1 (MPa) L2 (MPa) L2 (MPa) L2 (MPa) L3 (MPa) L4 (MP	(mm) Ld 3500 3500 3500 3500 3500 3500 3500 350	Ma. (N	A 3 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	M ₂ (Nm) K ₂ 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107 21690 0.107	a (1) (mm) 7 5.03 7 7 5.03 7 7 5.97 7 6.12 7 6.12 7 6.25	1 (days) 3 14.1 1 15 7 16 2 17 5 18	0.1 0.1 2 3 3 4 4	
Anthor Gibert and Najadi Najad		286 286 286 286 286 286 286 286 286 286	A. A	d (mm)	P. (%)	A _E (mm)	d (mm)	64 (mm)		<u>e</u>	20		(MFa)	(Max.)	5 u	ш	(1) 9	Dr. o	C C C C C C C C C C	22830 22863 22863 22863 22863 28865 18865 18865 18865 18882	(mm) Ld (mm) 3500 3500 3500 3500 3500 3500 3500 350	M _{4.0} N _{1.1.1} N _{1.1.1.1} N _{1.1.1.1} N _{1.1.1.1} N _{1.1.1.1} N _{1.1.1.1} N _{1.1.1.1.1} N _{1.1.1.1.1} N _{1.1.1.1.1.1} N _{1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.}	# Kg	M ₁₂ (Nm D 104 D 104 D 104 D 104 D 104 D 106 D 104 D 106 D 104 D 106 D	N _U	a (t)		t-t ₀ (days) 0.1 2 3 4 5 5	
Gabert and Nago Gabert and Nago Nago Nago Nago Nago Nago Nago Nago		250 250 250 250 250 250 250 250 250 250	92 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						0.00 deformed 0.	* * * * * * * * * * * * * * * * * * *	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.000 0.001 0.014 0.015 0.005 0.015 0.167 0.189 0.189 0.284 0.294 0.394 0.394 0.394 0.394 0.394 0.394 0.394 0.394	22823 20283 20282 19891 19895 19895 19882 17744 14773 17144 14504 14508 17304 17304 17304 17309 17309 17309 17309	3500 3500 3500 3500 3500 3500 3500 3500	117 117 117 117 117 117 117 117	310 310 310 310 310 310 310	0.104 216 0.104 216 0.104 216 0.104 216 0.104 216 0.104 211			14.1 15 7 16 7 17 17 18 19 19 19 19 19	0 	
Glacer and Magnetic and Magneti		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5						0.00 deformed 0.	z z z z z z z z z z z z z z z z z z z		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.000 0.003 0.003 0.005 0.007 0.108 0.108 0.108 0.208 0.308 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346	22683 22062 19881 19633 19636 19882 16882 16888 16888 16888 16898 16898 1689 1689	3500 3500 3500 3500 3500 3500 3500 3500		3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0.104 2.16 0.104 2.16 0.104 2.16 0.104 2.16 0.104 2.17			7 15 75 76 76 76 76 76 76 76 76 76 76 76 76 76	← 01 W 4 r0 d	
cliner; and space of cliner; a			52 52 52 52 52 52 52 52 52 52 52 52 52 5						0.00 defermed 0.	* * * * * * * * * * * * * * * * * * * *		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.004 0.005 0.005 0.005 0.159 0.159 0.150 0.228 0.228 0.234 0.341	19892 19533 19533 19533 19536 1744 1744 1956 1982 1982 1982 1982 1977 1377 1377 1377 1377 1377 1377 1377	3500 3500 3500 3500 3500 3500 3500 3500		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.104 2.16 0.104 2.16 0.104 2.16 0.104 2.16 0.104 2.16			2 2 17 19 19	N 64 15 0	
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52 52 52 52 52 52 52 52 52 52 52 52 52 5						000 defermed 000 d			6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.000 0.005 0.005 0.108 0.108 0.208 0.208 0.304 0.304 0.305 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306 0.306	1983 1 1983 1 1986 1 1986 1 1986 1 1744 1 1744 1 1864 1 1864 1 1877 1 1386 1 1286 1 1286 1 1286 1 1276 1 12	3500 3500 3500 3500 3500 3500 3500 3500	7	3110	0.104 216 0.104 216 0.104 217 0.104 217 0.104 217			19 19 19 19	o. 4+ ro. d	
Content and West of Conten			22 22 22 22 22 22 22 22 22 22 22 22 22						000 deformed 000 d			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.0065 0.0072 0.0072 0.0073 0.0167 0.0167 0.028 0.028 0.038 0.038 0.034 0.036 0.036 0.036 0.036	19366 1882 17144 1626 1626 1528 14804 14804 14804 14804 14804 14804 1773 13774 1367 1265 1276 1276 1276 1276 1276	3500 3500 3500 3500 3500 3500 3500 3500	1	3110	0.104 216			0 19	r LO U	
Chert and Nagorial Chert and Nag		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22 22 22 22 22 22 22 22 22 22 22 22 22						0.00 deformed	*******************	10 10 10 10 10 10 10 10 10 10 10 10 10 1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.072 0.109 0.109 0.159 0.180 0.228 0.228 0.234 0.344 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346 0.346	18382 1744 1744 1626 1620 1649 1649 1477 1377 1377 1265 1265 1265 1276 1276 1276	3500 3500 3500 3500 3500 3500 3500 3500	######################################	3110 0	0.104 216				q	
Clother and Najoral Clothe			22 22 22 22 22 22 22 22 22 22 22 22 22						0.00 deformed 0.	2	1	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.109 0.129 0.167 0.167 0.286 0.294 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340 0.340	17744 16268 16250 15828 14804 14804 14774 13774 13774 1265 1265 12760	3500 3500 3500 3500 3500 3500 3500 3500	<u> </u>	3110	0.104 216			5 20		
Gabert and Nago Gabert and Nago Gab		2550 2560 2560 2560 2560 2560 2560 2560	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						0.00 deformed 0.	<u> </u>	18 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.129 0.167 0.167 0.288 0.298 0.340 0.340 0.340 0.340 0.340 0.346 0.367 0.367	16368 16250 15828 14804 14173 14173 13304 13304 12852 12852 12852 12852 12852 12862 12760	3500 3500 3500 3500 3500 3500 3500 3500	7	2110	0.104 216			1 21	7	
Gibert and the good Gibert and		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	225 225 225 225 225 225 225 225 225 225						0.00 deformed 0.	* * * * * * * * * * * * * * * * * * *	18 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.159 0.180 0.288 0.294 0.329 0.341 0.346 0.346 0.346 0.367 0.468	16250 15828 14804 14173 13774 13304 13067 12852 12852 12852 12960 17760	3500 3500 3500 3500 3500 3500 3500 3500	7,11 7,11 7,11 7,11	21.10				6 22	8	
Gibert and Nagod		2860 2860 2860 2860 2860 2860 2860 2860	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						0.00 deformed 0.	* * * * * * * * * * * * * * * * * * *	18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30	2							0.167 0.288 0.298 0.294 0.329 0.340 0.340 0.346 0.346 0.347 0.347 0.346 0.347 0.347 0.347 0.347 0.347 0.347	15949 15828 14804 14173 13774 13067 12952 12952 12760 12760	3500 3500 3500 3500 3500 3500 3500	11.7 11.7 11.7	3110 C	0.104 21 _L			4 24	10	
Glibert and Mighting Glibert a		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	226 226 226 226 226 226 226 226 226 226						0.00 deformed 0.	z z z z z z z z z z z z z z z z z z z	18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.180 0.286 0.296 0.329 0.341 0.340 0.345 0.347 0.468	15828 14804 14173 13774 13304 12952 12952 1295 12760	3500 3500 3500 3500 3500	11.7 11.7	3110 C	0.104 216			6 25	1	
Glacer and Mayolia Glacer and Mayolia		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	226 226 226 226 226 226 226 226 226 226						0.00 deformed 0.	z z z z z z z z z z z z z z z z z z z	18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.228 0.294 0.329 0.340 0.346 0.346 0.346 0.403 0.403 0.512	14804 14173 13774 13304 12952 12952 12952 12760 12760	3500 3500 3500 3500 3500	11.7	3110 (0.104 21(4 27	13	
Glacer and Waged Glacer and Waged Wa		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	225 225 225 225 225 225 225 225 225 225						0.00 deformed 0.	z z z z z z z z z z z z z z z z z z z	1830 1830 1830 1830 1830 1830 1830 1830	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.286 0.329 0.341 0.346 0.346 0.346 0.403 0.403 0.512	14173 13774 13304 13067 12952 12952 12760 12760	3500 3500 3500 3500 3500	11.7	3110	0.104 214			30	16	
Glacer and Maging M			325 325 325 325 325 325 325 325 325 325						0.00 deformed 0.	<u> </u>	18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30 18.30	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.294 0.329 0.340 0.346 0.367 0.468 0.512 0.531	13774 13304 13067 12952 12760 12399	3500 3500 3500 3500		3110	0.104 214			5 32	18	
Gibert and Negad Gibert		2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	225 225 225 225 225 225 225 225 225 225						0.00 deformed 0.	<u> </u>	1830 1830 1830 1830 1830 1830 1830 1830	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							0.329 0.341 0.340 0.346 0.367 0.403 0.512 0.512	13304 13067 12952 12952 12760 12399	3500 3500 3500	11.7	3110	0.104 21			34	50	
Glibert and Negad			225 225 225 225 225 225 225 225 225 225						0.00 deformed 0.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1830 1830 1830 1830 1830 1830 1830 1830	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							0.341 0.346 0.346 0.367 0.403 0.512 0.512	12952 12952 12760 12399	3500 3500	11.7	3110	0.104 214			37	23	
Gilbert and Nejad Gilbert and		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	225 225 225 225 225 225 225 225 225 225						0.00 deformed	* * * * * * * * * * * * * * * * * * * *	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7							0.346 0.346 0.403 0.468 0.512 0.531	12952 12952 12760 12399	3500	11.7	3110	0.104 214			90	529	
Gibert and Nejod Gibert		28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	325 325 325 325 325 325 325 325 325 325						0.00 deformed 0.	: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	28 20 20 20 20 20 20 20 20 20 20 20 20 20	7							0.367 0.403 0.408 0.512 0.531	12399		11.7	3110	7 104 216			1 45	31	
Giber and Nejod		25 8 2 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	325 325 325 325 325 325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2							0.403 0.468 0.512 0.531	12399	3500	117	3110	0.104 2.16			- 6	25	
Gilbert and Nejad Gilbert and Nejad		256 256 256 256 256 256 256 256 256 256	325 325 325 325 325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	: \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	28.30 28.30 28.30 28.30 30 30 30	24.80 24.80 24.80 24.80 24.80 24.80							0.468	12074	3500	11.7	3110 0	0.104 216			53	38	
Gilbert and Nejad Gilbert and Nejad		256 256 256 256 256 256 256 256 256 256	325 325 325 325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	: 4 	18.30 18.30 18.30 18.30 18.30	24.80 24.80 24.80 24.80 24.80 24.80							0.531	41071	3500	11.7	3110 0	0.104 216			61	47	
Gilbert and Nejadi Gilbert and Nejadi		250 250 250 250 250 250 250 250 250 250	325 325 325 325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	4 4 4 4 4 4 4	18.30 18.30 18.30 18.30	24.80 24.80 24.80 24.80 24.80 26.80							0.531	11603	3500	11.7	3110 6	9.104 216		7 9.30	0 68	54	
Gilbert and Nejadi Gilbert and Nejadi		2 50 2 50 2 50 2 50 2 50 2 50 2 50 2 50	325 325 325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	<u> </u>	18.30 18.30 18.30	24.80 24.80 24.80 24.80 24.80 24.80 24.80							0.581	11360	3500	11.7	3110 C	0.104 216		7 9.47	7 76	62	
Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi		250 250 250 250 250 250	325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	4444	18.30 18.30	24.80 24.80 24.80 24.80							200.0	11182	3500	11.7	3110 C			7 9.80	0 87	73	
Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi		250 250 250 250 250 250	325 325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	444	18.30	24.80 24.80 24.80 8.80 8.80							0.591	11127	3500	11.7				7 9.80	96 0	82	
Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi		250 250 250 250 250	325 325 325						0.00 deformed 0.00 deformed 0.00 deformed 0.00 deformed	4 4 5	18.30	24.80 24.80 24.80							0.655	11097	3500	11.7				-	4 109	98	
Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi		250 250 250 250 250	325 325						0.00 deformed 0.00 deformed 0.00 deformed	4.5	1	24.80 24.80 80 80							0.718	10861	3500	11.7				7 10.36	6 122	108	
Gilbert and Nejadi Gilbert and Nejadi Gilbert and Nejadi		250 250 250	325						0.00 deformed 0.00 deformed	**	18.30	24.80							0.731	10455	3500	11.7	3110 0			7 10.64	4 136	122	
Gilbert and Nejadi Gilbert and Nejadi		250 250	-						0.00 detormed	⊈ :	18.30	W BU							0.762	10137	3200	11.7				7 11.00	166	152	
Clibert and Nejadi		290	325						7-1-6-00	4 :	18.30	00.43							0.772	10019	3500	11.7	3110	0.104 216		7 11.30	0 500	186	
		1,000	325						0.00 deformed	# ₹	16.30	24.80							\$ 60.0	9389	3500	11.7				11.8	7 298	972	
Gilbert		250	325						0.00 deformed	± 2	18.30	24.80							0.800	937	3500	11.7		0.104 2.16		7 1234	332	318	
105 Gilbert and Nejadi (2004)		250	325						0.00 deformed	<u> </u>	18.30	24.80							0.825	8891	3500	11.7	3110					380	
Gilbert and Nejadi		250	325						0.00 deformed	41	18.30	24.80							00000	22820	3500	11.7	ľ				14.1	0.1	
107 Gilbert and Nejadi (2004)		250	325	402					0.00 deformed	4	18.30	24.80							0.000	22593	3500	11.7	Ĭ				6 15	-	
		250	325	402					0.00 deformed	4	18.30	24.80							0.014	20262	3500	11.7	_				2 16	2	
	_	250	325	402				0	0.00 deformed	4	18.30	24.80							0.039	19891	3500	11.7	3110 0	0.104 136			2 17	3	
110 Gilbert and Nejadi (200	04) B2-b	250	325	402					0.00 deformed	4	18.30	24.80							0.052	19533	3200	11.7	_				2 18	4	
111 Gilbert and Nejadi (200	04) B2-b	250	325	402					0.00 deformed	4 ;	18.30	24.80							0.065	19366	3500	11.7	3110	0.104 130			9 19	9	
112 Gilbert and Nejadi (200	04) B2-0	750	325	402					0.00 deformed	4 5	18.30	24.80							0.072	18382	3200	11.7	3110	0.104			200	۱ ۵	
113 Gilbert and Nejadi (200	04) B2-0	067	325	402					0.00 deformed	± 5	18.30	24.80							0.109	16368	3500	11.7	3110	0.104			2 66	~ 00	
115 Gilbert and Nejadi (200	24) B2-b	520	325	402					0.00 deformed	. 4	18.30	24.80							0.159	16250	3200	11.7	3110	0.104 136			3 24	. 0	
116 Gilbert and Nejadi (200	94) B2-b	250	325	402					0.00 deformed	4	18.30	24.80							0.167	15949	3500	11.7	3110 C	0.104 136			5 25	1	
117 Gilbert and Nejadi (200	04) B2-b	250	325	402					0.00 deformed	4	18.30	24.80							0.180	15828	3500	11.7	3110 (0.104 138			3 27	13	
118 Gilbert and Nejadi (200	04) B2-b	250	325	402					0.00 deformed	₹;	18.30	24.80							0.228	14804	3500	11.7	3110	0.104 134			30	9 9	
119 Gilbert and Nejadi (2004)		250	325	204					0.00 deformed	# 5	18.30	24.80							0.200	141/3	3500	11.7	3110	0.104			37	8 6	
Gilbert and Nejadi		250	325	402					0.00 deformed	. 4	18.30	24.80							0.329	13304	3500	11.7	3110 6	0.104 136			7 37	73	
Gilbert and Nejadi		250	325	402					0.00 deformed	4	18.30	24.80							0.341	13067	3200	11.7	3110 (0.104 13%			4 39	25	
Gilbert and Nejadi		250	325	402				0	0.00 deformed	7 ;	18.30	24.80							0.340	12952	3500	11.7	3110	0.104 138			7 42	58	
124 Gilbert and Nejadi (2004)		250	325	402					0.00 deformed	4 5	18.30	24.80							0.346	12352	3500	11.7	3110	0.104			, 45 , a	34	
Gilbert and Nejadi		250	325	402					0.00 deformed	. 4	18.30	24.80							0.403	12399	3500	11.7	3110 0	0.104 136			7 53	38	
Gilbert	04) B2-b	250	325	402					0.00 deformed	4	18.30	24.80							0.468	12074	3500	11.7	3110 C	0.104 138			8 61	47	
Gilbert	04) B2-b	250	325	402				0	0.00 deformed	4 :	18.30	24.80							0.512	11603	3500	11.7	3110	0.104 138			1 68	54	
129 Gilbert and Nejadi (200	04) B2-b	250	325	402					0.00 deformed	4 4	18.30	24.80							0.531	11360	3500	11.7	3110	0.104 136			9 78	62	
Gilbert	04) B2-b	250	325	402				0	0.00 deformed	: 4	18.30	24.80	2.00						0.591	11127	3500	11.7	3110 6	0.104 136			96	82	
Gilbert	04) B2-b	250	325	402		54	0 0	0	0.00 deformed	4	18.30	24.80							0.655	11097	3500	11.7	3110 C	0.104 138			2 109	96	
133 Gilbert and Nejadi (200	04) B2-b	250	325	402		54	0	0 0	0.00 deformed	4 ;	18.30	24.80	2.00	2.00 2282					0.718	10661	3500	11.7	3110	0.104 134			2 122	108	
	04) B2-6	250	325	402		54		0 0	0.00 deformed	± 4	18.30	24.80	2.00						0.762	10455	3500	11.7	3110	0.104 136			9 130	152	
Gilbert	34) B2-b	250	325	402		47			0.00 deformed	<u> </u>	18.30	24.80	200						0.772	10019	3500	117	3110	0.104 136	590 0.107	7 686	2002	186	
Gilbert	94) B2-b	250	325	402		24	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00 2282					0.784	6866	3500	11.7	3110 6	0.104 136	890 0.107	7 7.26	6 242	228	
Gilbert and Nejadi		250	325	402		54	0 0	0	0.00 deformed	4	18.30	24.80	2.00	2.00 228.					0.800	9371	3200	11.7	3110 (0.104 138	690 0.107	7 7.52	2 286	272	
139 Gilbert and Nejadi (2004)	04) B2-b	250	325	402	300	54	0	0 0	0.00 deformed	4 5	18.30	24.80	5.00	2.00 228.					0.816	9115	3500	11.7	3110	0.104 134	690 0.103	7 7.72	332	318	
Gilbert and Nejadi		067	323	405		40			O.UU OEIOIIII EU	<u>+</u>	10.30	74.00	2.00	270 770					0.020	800	3200		3110	0.104	0.10	1,0,	1 284	200	

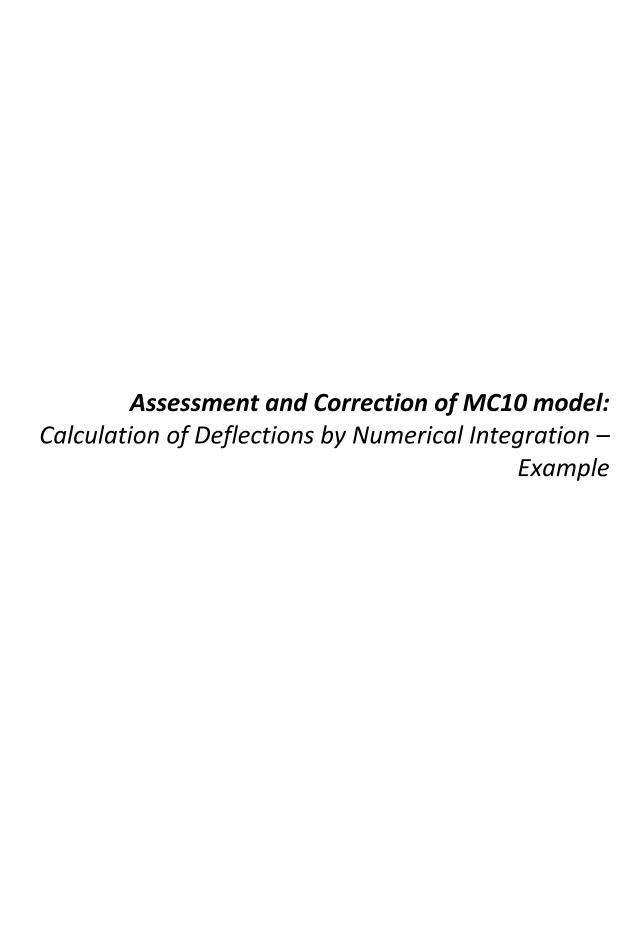
	Study information	nation 2	Cross-section	ction 4	19	9	Rei 1	Reinforcement 8	o	10	11 12	13	4	15	16	17	Mechanical p	properties	20	23	6	22 23	3 24	4 25	26	Loading 27	28	29	30	Deflection 31	32	
										!		!	f(to)		f(t) f.		(to)	!		i						i						
Author		Specimen	h (mm) d	(mm)	A _{s1} (mm ²)	d (mm) b	P ₁ (%) A	A ₂₂ (mm ²) d'	f (mm) d ₂	(mm)	ρ ₂ (%) type	t _o (days)	(MPa)	f _{em} (MPa) ((MPa) (I	(MPa) E	om (MPa) E	(MPa) φ (·	-) AE cs	(%) E cs (9)	%) E _{c,off} (∧	4Pa) L (mm	P)	M _{L1} (Nm)	, K _{L1}	M _{L2} (Nm)	K	a (t) (mm)	t (days)	t-t ₀ (days)	
141 Gilbert and Nejadi	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	0.000	0.000	0.000	22820 3	3500 1	11.7 3	110 0.1	04 31490	90 0.107		14.1	0.1	
	di (2004)	B3-a	250	325	603	300	0.80	0 0	0 0	0 0	0.00 detorme	p -	18.30	24.80	2.00	2.00	22820	24950	200000	0.011				3500	11.7	110 0.1	04 3149			15	- (
143 Gilbert and Nejadi	di (2004)	B-5-8	720	325	603	300	0.80	0 0	0	0	0.00 deforme		18.30	24.80	2.00	200	22820	24950	200000	0.138				3200	1.7	110	04 5149			9 0	V (
	1 (2004)	83.9	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformer	. 4	18.30	2 %	2.00	200	22820	24950	200000	0.184				3500	17	110	3149			- 42	0.4	
Gilbert and	1 (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	. **	18.30	2,5	2.00	2.00	22820	24950	200000	0.195				3500	1.7	110 0.1	04 3149			19	- 10	
Gilbert and	Ji (2004)	B3-a	250	325	603	300	08'0	0	0	0	0.00 deformed	1	18.30	24	2.00	2.00	22820	24950	200000	0.264				3500	1,7 3:	110 0.1	04 3149			20	9	
Gilbert	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	0.362				3500	11.7 3:	110 0.1	04 3149		7.58	21	7	
	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.431				3200	11.7	110 0.1	04 3149			22	00	
Gilbert	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	4:	18.30	24.80	2.00	2.00	22820	24950	200000	0.442				3200	11.7	110 0.1	04 3149			24	10	
	di (2004)	B3-a	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	b.	18.30	24.80	5.00	2.00	22820	24950	200000	0.471				3500	11.7	110 0.1	04 3149			25	= \$	
	di (2004)	B3-a	250	325	603	300	0.80	0	0 0	0 0	0.00 deformed	p.	18.30	24.80	2.00	2.00	22820	24950	200000	0.483				3500	11.7	110 0.1	04 3149			27	5	
	di (2004)	83-8	720	325	603	300	0.80	0	0 0	0	0.00 deformed	7 ;	18.30	24.80	2.00	2.00	22820	24950	200000	282.0				3200	1.7	110	04 3149			30	₽ 9	
	di (2004)	B-5-8	720	325	603	300	0.80	0 0	0	0	0.00 deformed		18.30	24.80	2.00	200	22820	24950	200000	0.007				3200	1.7	110	04 5149			25.	B (
Gilbert	d (2004)	D 2-4	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed		18.30	24.80	2.00	2.00	22820	24950	200000	0.7.10				3500	17	110	04 3140			5 6	23	
	u (2004)	000	2002	325	903	900	080	0 0	0 0	0 0	0.00 deformed		10.30	24.80	8.6	200	22020	24930	300000	0.102				3500	17	100	04 2140			68	52	
Gilbert	d (2004)	D 2-4	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed		18.30	24.80	2.00	2.00	22820	24950	200000	0.010				3500	17	110	04 3140			28	28	
Gilbert	1 (2004)	83.9	250	325	603	300	0.80	0	0	0	0.00 deformed	- 42	18.30	24.80	2.00	200	22820	24950	200000	0.833				3500	17 33	110 01	04 3149		929	4.5	31	
	1 (2004)	B3-a	250	325	603	300	080	0	0	0	0.00 deformed	- 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.862				3500	1.7	110 0.1	04 3149		9,33	48	34	
	1 (2004)	83.9	250	325	603	300	0.80	0	0	0	0.00 deformed	. 2	18.30	24.80	2.00	2.00	22820	24950	200000	0.919				3500	1.7	110 0.1	04 3149		9.57	53	39	
	1 (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	. **	18.30	24.80	2.00	2.00	22820	24950	200000	0.973				3500	1.7	110 0.1	04 3149		9.92	61	47	
	1 (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	1.057				3500	1.7 3.	110 0.1	04 3149		10.10	68	54	
-	di (2004)	B3-a	250	325	603	300	08'0	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2:00	22820	24950	200000	1.103				3500 '	1,7 3	110 0.1	04 3149		10.20	76	62	
	di (2004)	B3-a	250	325	603	300	08'0	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2:00	22820	24950	200000	1.138				3500	1.7 3:	110 0.1			10.60	87	73	
	di (2004)	B3-a	250	325	603	300	08'0	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	1.149				3500	11.7 3:				10.60	96	82	
	di (2004)	B3-a	250	325	603	300	08'0	0	0	0	0.00 deformed	1	18.30	24.80	2.00	2.00	22820	24950	200000	1.155				3500	11.7 3.					109	98	
	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	4.	18.30	24.80	2.00	2.00	22820	24950	200000	1.247				3500	11.7 3.					122	108	
	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24	2.00	2.00	22820	24950	200000	1.293				3500	11.7 3.	3110 0.1			11.40	136	122	
	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	4:	18.30	24	2.00	2.00	22820	24950	200000	1.368				3200	11.7					166	152	
171 Gilbert and Nejadi	di (2004)	B3-a	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	b.	18.30	\$ 5	5.00	2.00	22820	24950	200000	1.397				3500	11.7	3110 0.104				200	186	
172 Gilbert and Nejadi	di (2004)	B-5-8	720	325	603	300	0.80	0 0	0	0	0.00 deformed		18.30	\$ 7	2.00	200	22820	24950	200000	1.500				3200	1.7					•	272	
174 Gilbert and Neisch	di (2004)	83.9	250	30.5	603	30.00	080	•	0 0	0 0	0.00 deforme	. 4	1830	2 %	0.2	200	22820	24950	200000	1644				3500		110				332	318	
175 Gilbert and Nejadi	di (2004)	B3-a	250	325	603	300	0.80	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	1,713				3500	17	3110 0.1			13.30		380	
	1 (2004)	B3-b	250	325	603	300	0,80	0	0	0	0.00 deformed	14	18.30	24	2.00	2.00	22820	24950	200000	0000				3500	17 3					14.1	0.1	
177 Gilbert and Nejadi (2004)	11 (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24	2.00	2.00	22820	24950	200000	0.011				3500 ;	1.7 3:	3110 0.1	0.104 1769			15	-	
	di (2004)	B3-b	250	325	603	300	08'0	0	0	0	0.00 deformed	1	18.30	24	2.00	2.00	22820	24950	200000	0.138				3500	11.7 3.					16	2	
	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	4.	18.30	24	2.00	2.00	22820	24950	200000	0.161				3500	11.7 3					17	е е	
Gilbert	di (2004)	B3-p	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24	2.00	5.00	22820	24950	200000	0.184				3500	11.7					18	4	
181 Gilbert and Nejadi	di (2004)	B3-b	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	p -	18.30	24.80	2.00	200	22820	24950	200000	0.195				3500	11.7	110 0.1	04 1769			19	in a	
	d (2004)	B 2-0	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed		18.30	24.80	2.00	2.00	22820	24950	200000	0.264				3500	17	110	04 1769			2 6	0 10	
Gilbert	ii (2004)	B3-b	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	. 7	1830	24.80	2.00	200	22820	24950	200000	0.302				3500	17 33	110	04 1769			22	- 00	
185 Gilbert and Nejadi	1 (2004)	B3-b	250	325	603	300	08'0	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.442				3500	1.7	110 0.1	04 1769			24	10	
	11 (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	0.471				3500 ;	1.7 3:	110 0.1	04 1769			25	Ξ	
	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	47	18.30	24.80	2.00	2.00	22820	24950	200000	0.483				3500	11.7 3	110 0.1	04 1769			27	13	
Gilbert	di (2004)	83-p	290	353	603	300	0.80	0	0 0	0 0	0.00 deformed	2.7	18.30	24.80	2.00	200	22820	24950	200000	0.592				3500	11.7	0.0	04 1769			98	92	
190 Gilbert and Neisch	di (2004)	B3-0	250	325	603	900	0.80	0 0	0 0	0 0	0.00 deformer	. 4	18.30	24.80	8.0	200	22820	24950	200000	0.067				3500	17	100	04 1769			34	9 2	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.782				3500	1.7 3	110 0.1	04 1769			37	23	
	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	0.816				3500	11.7 3	110 0.1	04 1769			39	25	
	di (2004)	B3-b	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	4:	18.30	24.80	5.00	5.00	22820	24950	200000	0.833				3500	11.7	110 0.1	04 1769			42	5 28	
194 Gilbert and Nejadi	di (2004)	83-0	250	325	603	30.00	0.80	0 0	0 0	0	0.00 deformed	2. 2.	18.30	24.80	2.00	200	22820	24950	200000	0.833				3500	11.7	011	04 1769			4 4 a	23 33	
Gilbert	1 (2004)	B3-b	250	325	603	300	0,80	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	200	22820	24950	200000	0.919				3500	1.7	110 0.1	04 1769			53	38	
Gilbert	11 (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.973				3500	1.7 3	110 0.1	04 1769			61	47	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	1.057				3500	11.7 3	110 0.1	04 1769			68	54	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	4:	18.30	24.80	5.00	2.00	22820	24950	200000	1.103				3500	11.7	110 0.1	04 1769			76	62	
200 Gilbert and Nejadi	di (2004)	83.p	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	27.7	18.30	24.80	2.00	200	22820	24950	200000	1.138				3500	17 3	110 0.1	04 1769		5.69	8 8	73	
Gilbert	1 (2004)	B3-0	250	325	603	300	0.80	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	1.155				3500	1.7	110 0.1	04 1769			109	38	
Gilbert	1 (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1247				3500 '	17 3	110 0.1	04 1769			122	108	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.293				3500	11.7 3.	110 0.1	04 1769			136	122	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0 6	0 6	0 (0.00 deformed	4:	18.30	24.80	2.00	200	22820	24950	200000	1.368				3500	11.7	110 0.1	04 1769	90 0.107		166	152	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0 0	0 0	0 0	0.00 deformed	p -	18.30	24.80	2.00	200	22820	24950	200000	1.397				3500	11.7	110 0.1	04 1769	90 0.107	6.92		186	
	d (2004)	020	250	325	803	300	080	0 0	0 0	0 0	0.00 deformed		10.30	24.90	2.00	2.00	02027	24950	200000	1,569				3500	3 0	110	04 1769	00.107	7.04	242	220	
Gilbert	di (2004)	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	200	22820	24950	200000	1.644				3500	1.7	110 0.1	04 1769	90 0.107	7.81		318	
and		B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	14	18.30	24.80	2.00	2.00	22820	24950	200000	1.713				3500	1.7 3	110 0.1	04 1769	90 0.107	7.90		380	

	Study information	rmation 2	Cross-section	tion 4	2	9	Rei 7	Reinforcement 8	nt 9	10	11	12 1	13 14	15		17	Mechanica 18	ical properties	ties 20	23	1	22	23	24	25	Loading 26	ing 27	28	29	۵ %	Deflection 31	32	
													fem(to)		form (to)																		
		Specimen	b (mm) h ((mm)	A _{s1} (mm ²)	d (mm) b	P1 (%) A	A ₂₂ (mm ²) c	d' (mm) 'b	d ₂ (mm) p	ρ ₂ (%) type	e t _o (da)	ys) (MPa)	f _{om} (M.	Pa) (MPa)	(MPa)	(MPa)	E _{cm} (MPa)	a) E, (MPa)	(-) <i>d</i>	Δε σ	E 03	E.08	L (mm)	N P/I	M _{L1} (Nm)	K _{L1}	A _{L2} (Nm) K ₁	2	(t) (mm) t (t (days) t-t	t-t ₀ (days)	
211 G	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defo	deformed	14	18.30	24.80		2.00 228		24950 200000	000'0 00	00000	00000	22820	3200	26.9	2373	0.104	4437	0.104	7.14	14.1	0.1	
	Gilbert and Nejadi (2004)	s-1-2	400	155	226		0.44	0 0		0 0	0.00 defc	omed	4:	18.30	24.80	2.00								3500		2373	0.104	4437	0.104	9.53	15	- (
	Gilbert and Noindi (2004)	2 0	8 6	5 4	222		24.0				0.00 defo	,mod		0.30	24.00								•	3500		2373	0.00	4437	0.00	00.00	2 5	4 6	
	and Nejadi		400	155	226		0.44	0		0 0	0.00 defe	nmed	: 4	8.30	24.80									3500		2373	0.104	4437	0.104	11.20	- 42	4	
	and Nejadi		400	155	226		0.44	0		0	0.00 defc	nmed	4	8.30	34.80									3500		2373	0.104	4437	0.104	11.60	19	- 50	
	and Neiadi	67.0	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	12.10	20	9	
-	and Nejadi	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	12.90	21	7	
	and Nejadi	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 .	24.80									3500		2373	0.104	4437	0.104	13.00	22	8	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30	24.80									3500		2373	0.104	4437	0.104	14.00	54	10	
	Gilbert and Nejadi (2004)	S1-a	400	155	226	130	0.44	0	0 6	0	0.00 deft	deformed	₹ :	18.30	24.80									3500		2373	0.104	4437	0.104	14.00	25	Ξ:	
	Silbert and Nejadi (2004)	e 120	400	55	226		0.44	0		0 0	0.00 def.	deformed	# ;	18.30	24.80	00.2								3200		2373	0.104	4437	0.104	14.10	77	2 9	
	Silbert and Nejadi (2004)	m - 10	400	0 1	220		0.44	0 0		0 0	0.00 def.	oerormed	# ;	18.30	24.80	00.2								3200		23/3	0.104	443/	0.104	14.90	30	₽ \$	
	Gilbert and Nejadi (2004)	0 C	004	000	220		440	0		0	0.00 def	deformed	± ;	18.30	24.80	00.2								3500		2373	0.104	437	0.10	15.40	32	p 6	
	and Nejadi	<u> </u>	404	55.	226		0.44	0 0			0.00 defo	deformed		8 30	24.90									3500		2373	0.104	4437	0.00	16.40	37	33	
	and Moind	200	9 6	2 4	222		0.44				0.00 defo	deformed		0.30	34 80	00.0								3500		2373	101.0	4437	0.00	18.40	5 6	3 6	
	Gilbert and Nejadi (2004)	<u> </u>	400	3 12	226		44	0 0		0 0	0.00 def	deformed	<u>.</u>	830	24.80									3500		2373	0.104	4437	0.10	16.60	42	2 82	
	and Neiadi	20.00	400	155	226		0.44	0		0	0.00 defe	deformed	. 4	8.30	24.80	200								3500		2373	0.104	4437	0.104	16.90	4.5	3.5	
	Gilbert and Neiadi (2004)	ST	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	16.80	48	34	
	Gilbert and Neiadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	17.40	53	38	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	18.30	61	47	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	44	8.30 2	24.80									3500		2373	0.104	4437	0.104	18.60	68	54	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	18.70	76	62	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	4437	0.104	19.20	87	73	
-	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 2	24.80									3500		2373	0.104	4437	0.104	19.20	96	82	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 .	24.80									3500		2373	0.104	4437	0.104	19.20	109	98	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30 2	24.80									3500		2373	0.104	4437	0.104	19.60	122	108	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 2	24.80									3500		2373	0.104	4437	0.104	20.40	136	122	
	Gilbert and Nejadi (2004)	S1-a	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30	24.80									3200		2373	0.104	4437	0.104	21.50	166	152	
	and Nejadi	S1-a	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30 2	24.80									3200		2373	0.104	4437	0.104	22.30	200	186	
	and Nejadi	S1-a	400	155	226		0.44	0 1		0 (0.00 defc	deformed	4 :	18.30	24.80									3200		2373	0.104	4437	0.104	23.50	242	228	
	Gilbert and Nejadi (2004)		400	6 1	220		0.44	-		0	0.00 defe	deformed	± ;	18.30	24.80									3200		23/3	0.104	4437	0.104	24.20	280	212	
	and Nejadi	p 00	400	5 4	226		0.44	0 0		0 0	0.00 defe	deformed	± 2	0.30	24.80	200	200 228							3500		2373	0.104	4437	0.10	25.10	394	380	
Т	Silbert and Nejadi (2004)	200	400	100	900	ľ	0.44				0.00 defe	ome	± ;	00.00	74.00				T					3500		0200	0.104	1000	0.104	01.02	384	300	
	Gilbert and Nejadi (2004)	N 0	400	55.55	226		0.44	0 0		0	0.00 defe	deformed	± 4	18.30	24.80									3500		2373	0.104	2907	0.104	4.78	- tc	- -	
	Gilbert and Nejadi (2004)	2,00	400	15.5	226		0.44				0.00 defo	deformed	14		74.80									3500		2373	0 104	2007	0 104	5.66	9		
	Gilbert and Neiadi (2004)	S 45	400	155	226		0.44	0		0	0.00 defc	deformed	. 1		24.80								•	3500		2373	0.104	2907	0.104	6.05	1 2	4 60	
-	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	41		24.80									3500		2373	0.104	2907	0.104	6.25	18	4	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30 2	24.80									3500		2373	0.104	2907	0.104	6.58	19	2	
	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30	24.80									3500		2373	0.104	2907	0.104	6.99	20	9	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30	24.80									3500		2373	0.104	2907	0.104	7.72	21	7	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30	24.80									3200		2373	0.104	2907	0.104	8.08	22	ω :	
	Gilbert and Nejadi (2004)	ST-0	400	155	226		0.44	0 0		0 0	0.00 defc	detormed	4:	18.30	24.80									3500		2373	0.104	2907	0.104	8.76	24	2;	
	Gilbert and Nejadi (2004)	9 1 2	904	5 1	220		440	0		0	0.00 defo	deformed	± ;	0.30	24.80									3200		2373	0.104	2007	401.0	0.70	5 6	= \$	
	Gilbert and Nejadi (2004)	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	400	55.5	226		0.0	0 0			0.00 defe	deformed	‡ ‡	8.30	74.80									3500		2373	0.104	2907	0.00	9.47	30	5 6	
-	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	2907	0.104	986	32	. 8	
	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 2	24.80									3500		2373	0.104	2907	0.104	10.20	34	20	
	Gilbert and Nejadi (2004)	875	400	155	226		0.44	0 0		0 0	0.00 defc	deformed	4 :	18.30	24.80									3500		2373	0.104	2907	0.104	10.80	37	23	
	Silbert and Nejadi (2004)	27 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	94	5 19	326		440	0 0			0.00 defo	deformed	± ;	0.30	24.90									3500		2373	0.104	2007	0.10	10.90	90.4	0.70	
	Gilbert and Neiadi (2004)	S	400	155	226		0.44	0		0	0.00 defc	deformed	. 4	8.30	24.80									3500		2373	0.104	2907	0.104	11.20	4 4	3 5	
265 Gi	Gilbert and Nejadi (2004)	S1-b	400	155	226	130	0.44	0	0	0	0.00 defo	deformed	4	18.30 2	24.80	2.00 2	2.00 228	22820 249						3500	26.9	2373	0.104	2907	0.104	11.10	48	34	
	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30	24.80									3200		2373	0.104	2907	0.104	11.60	53	39	
	Gilbert and Nejadi (2004)	5 G	400	135 135	226		0.44	00		0	0.00 def	deformed	4 4	830	24.80									3500		23/3	0.104	2907	0.104	12.40	68	4 4 7	
	and Nejadi	S	400	155	226		0.44	0		0 0	0.00 defe	deformed	: 4	8.30	24.80									3500		2373	0.104	2907	0.104	12.70	92	62	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80									3500		2373	0.104	2907	0.104	13.50	87	73	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	4	18.30 .	24.80									3500		2373	0.104	2907	0.104	13.50	96	82	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 deft	deformed	4	18.30	24.80	2.00								3200		2373	0.104	2907	0.104	14.40	109	92	
	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0 0		0 0	0.00 deft	deformed	4 5	18.30	24.80	2.00								3500		2373	0.104	2907	0.104	14.90	122	108	
	and Nejadi		400	3 12	226		44	0 0		0 0	0.00 def	deformed	1 7	830	24.80									3500		2373	0.104	2907	0.104	16.50	991	152	
	and Neiadi		400	155	226		0.44	0		0	0.00 defc	deformed	4	8.30	24.80	2.00								3500		2373	0.104	2907	0.104	17.20	200	186	
	and Nejadi	S1-b	400	155	226		0.44	0		0	0.00 defc	deformed	41	8.30 2	24.80	2.00	2.00 228							3500		2373	0.104	2907	0.104	18.40	242	228	
	and Nejadi	S1-b	400	155	226		0.44	0	0	0	0.00 deft	deformed	4	18.30 2	24.80	2.00 2.	2.00 228							3500		2373	0.104	2907	0.104	19.00	286	272	
279 Gi	Gilbert and Nejadi (2004)	S1-b	400	155	226		0.44	0 0	0 0	0 0	0.00 deft	deformed	≄ ;	18.30	24.80	5.00	2.00 224							3500		2373	0.104	2907	0.104	19.80	332	318	
	Gilbert and Nejadi (2004)	Q-LS	400	CCL	977		0.44	0	0	0	0.00 det	Demo	4	18.30	24.80	2.00	22 00.2							3200		23/3	0.104	/067	0.104	19.90	384	380	

	Study information	ormation	Cross-section	ection	u	Œ	7	Reinforcement	ment	ţ	÷	5	13	Å,	45	17	Mechanica	ical properties	ies	5		33	23	976	26	Loading	ng 27	ac	30	ي ع	Deflection	33
	-	4	,		,				9	2			Ī			1	E(t ₀)	2	3	ī		1	3	1	3	3	i	3	3	3	5	4
- 1		Specimen	b (mm)	h (mm)	A _{s1} (mm²)	1 ²) d (mm)	p ₁ (%)	A ₂₂ (mm²)	n²) d" (mm)	d ₂ (mm)	ρ ₂ (%) type	e t _o (days	ys) (MPa)	f _{on} (MPa)	Pa) (MPa)	(MPa)	(MPa)	E _{om} (MPa)	Ę, ((-) ø	Δε σ	£ cs (Ec.eff (MPa)	L (mm) L	M P/	L ₁ (Nm) K,	SLI ML	12 (Nm) K12	2 a	(t) (mm) t (d	t (days) t-t ₀	t-t ₀ (days)
281	Gilbert and Nejadi (2004)	S2-a	400	155				0.65	0	0	0.00 deformed	omed	44	8.30 2	24.80	2.00		320 24950	350 200000	00000	0.000	0000	22820	3500	26.9	2373	0.104	7497	0.104	11.80	14.1	0.1
	Gilbert and Nejadi (2004)	S2-a	94 4	155				92			0.00 defc	Sillied Simed	‡ ‡	8.30	4.80	2.00							20262	3500	26.9	2373	0.104	7497	0.104	14.70	. 9	- 01
	Gilbert and Nejadi (2004)	S2-a	400	155				99	0	0	0.00 deft	pemic	14	8.30 2	4.80	2.00 2							19891	3500	26.9	2373	0.104	7497	0.104	15.10	17	е
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0	0	0.00 def	ormed	4:	8.30 2	4.80	2.00							19533	3500	26.9	2373	0.104	7497	0.104	15.50	9 !	4 1
	Gilbert and Nejadi (2004)	SZ-8	904	100				55			0.00 defe	omed	4 5	8.30	180	200							19300	3500	26.9	23/3	0.104	7497	0.104	16.00	8 6	മെയ
	Gilbert and Nejadi (2004)	SZ-a	400	155				92	. 0	0	0.00 deft	pemic	. 4	8.30	24.80	2.00							17144	3200	26.9	2373	0.104	7497	0.104	17.20	2 2	^
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0	0	0.00 deft	pemic	4	8.30 2	. 08.4	2.00 2							16368	3200	26.9	2373	0.104	7497	0.104	17.60	22	89
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0 0	00	0.00 defa	omed	4 :	8.30	4.80	2:00							16250	3200	26.9	2373	0.104	7497	0.104	18.40	24	9 ;
	Gilbert and Nejadi (2004)	S2-8	94	155				65		. 0	0.00 defe	simed simed	ī 4	8.30	4.80	2.00							15828	3500	26.9	2373	0.104	7497	0.104	18.60	27	- 65
-	Gilbert and Nejadi (2004)	S2-a	400	155				99	0	0	9 0.00 deft	pemic	4	8.30 2	4.80	2.00 2							14804	3500	26.9	2373	0.104	7497	0.104	19.40	30	91
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0	0	0.00 deft	pamic	4	8.30 2	. 08.4	2.00 2							14173	3200	26.9	2373	0.104	7497	0.104	19.90	32	18
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0 0	00	0.00 def.	omed	4 5	8.30	4.80	2:00							13774	3500	26.9	2373	0.104	7497	0.104	20.40	34	50
		S22-a	400	35.55				55.55			000 06f	nmed	1 7	8.30	4.80	200							13067	3500	26.9	2373	0.104	7497	0.104	2130	8	25.
		S2-a	400	155				99	0	0	0.00 deft	pemic	. 4	8.30 2	4.80	2.00							12952	3500	26.9	2373	0.104	7497	0.104	21.30	42	28
		S2-a	400	155				.65	0			deformed	4	8.30 2	. 08.4	2.00 2.							12952	3200	26.9	2373	0.104	7497	0.104	21.70	45	31
		S2-a	400	155				992	0		0.00	omed	4 :	8.30 2	74.80	2.00							12760	3500	26.9	2373	0.104	7497	0.104	21.70	8 1	34
-	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S22-a	904	155			30	65	0 0	00	0 0.00 deformer	omed	4 4	8.30	24.80	2.00	2.00 228						12399	3500	26.9	2373	0.104	7497	0.104	22.30	53	39
		S2-a	400	155				92	0			omed	. 4	8.30 2	4.80	2:00							11603	3500	26.9	2373	0.104	7497	0.104	23.60	. 89	54
	Gilbert and Nejadi (2004)	S2-a	400	155				99	0			pemic	14	8.30 2									11360	3500	26.9	2373	0.104	7497	0.104	23.80	9/	62
		S2-a	400	155				.65	0		0 0.00 deformed	omed	4 :	18.30 2	24.80	2.00 2							11182	3500	26.9	2373	0.104	7497	0.104	24.80	87	73
		S2-a	0 4	155				992	0 0			omed	4 5	8.30									11127	3200	26.9	2373	0.104	7497	0.104	24.80	96	82
	Gilbert and Nejadi (2004)	52-a	400	15.5				65				omed	± 4	8.30									10661	3500	26.9	2373	0.104	7497	0.104	26.60	123	92
	Gilbert and Nejadi (2004)	S2-a	400	155				92	. 0			pamic	. 4	8.30									10455	3200	26.9	2373	0.104	7497	0.104	27.30	136	122
	Gilbert and Nejadi (2004)	S2-a	400	155				92	0			pemic	4	8.30 2.									10137	3500	26.9	2373	0.104	7497	0.104	28.40	166	152
311 G	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0			peuno	4	8.30 2									10019	3500	26.9	2373	0.104	7497	0.104	29.30	200	186
	Gilbert and Nejadi (2004)	S2-a	400	155				.65	0 0			omed	4:	8.30									9599	3500	26.9	2373	0.104	7497	0.104	30.60	242	228
	Gilbert and Nejadi (2004)	S2-a	94	155				92				Sillied Simed	‡ ‡	8.30	24.80								9115	3500	26.9	2373	0.104	7497	0.104	32.10	332	318
-	Gilbert and Nejadi (2004)	S2-a	400	155				65	0			ormed	14										8891	3500	26.9	2373	0.104	7497	0.104	32.50	394	380
316 G	Gilbert and Nejadi (2004)	\$2-p	400	155				.65	0 0			omed	44.	18.30 2	24.80 2	2.00 2							22820	3500	26.9	2373	0.104	4437	0.104	4.43	14.1	0.1
	Gilbert and Nejadi (2004)	32-p	400	155				92				omed	‡ ‡										20262	3500	26.9	2373	0.104	4437	0.104	6.83	. u	- 0
	Gilbert and Nejadi (2004)	S2-b	400	155				65	0			pemic	. 4										19891	3500	26.9	2373	0.104	4437	0.104	7.18	17	1 m
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0			peuuc,	41	8.30 2									19533	3200	26.9	2373	0.104	4437	0.104	7.42	18	4
	Gilbert and Nejadi (2004)	S2-b	004	155				.65	0 0			omed	4 5	8.30									19366	3500	26.9	2373	0.104	4437	0.104	7.80	9 6	e e
	Gilbert and Nejadi (2004)	S2-0	400	155				92				omed omed	1 4	8.30	4.80								17144	3200	26.9	2373	0.104	4437	0.104	8.43	2 2	۷ د
	Gilbert and Nejadi (2004)	S2-b	400	155				99	0			peuno	41	8.30 2	4.80								16368	3500	26.9	2373	0.104	4437	0.104	9.26	22	80
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0 0			omed	4 5	8.30	4.80	2.00							16250	3500	26.9	2373	0.104	4437	0.104	10.00	24	2 5
	Gilbert and Nejadi (2004)	S2-0	400	155				92	. 0			omed omed	1 4	8.30	4.80	2.00							15828	3500	26.9	2373	0.104	4437	0.104	10.20	27	- 6
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0			pamic	4	8.30 2	. 08.4	2.00 2							14804	3200	26.9	2373	0.104	4437	0.104	10.80	30	16
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0 0			omed	4 :	8.30	94.80	2:00							14173	3500	26.9	2373	0.104	4437	0.104	11.30	32	9 9
	Gilbert and Nejadi (2004)	32-0 S2-0	400	155				65)med	± 4	8.30	4.80	2.00							13304	3500	26.9	2373	0.104	4437	0.104	12.30	37	23 23
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0			peuuc	4	8.30 2	. 08.4	2.00 2							13067	3200	26.9	2373	0.104	4437	0.104	12.40	39	25
333	Gilbert and Nejadi (2004)	S2-b S2-b	400	155		339 1	130	0.65	00	00	0 0.00 deformed	omed	4 4	8.30	4.80	2.00	2.00 228	22820 249					12952	3500	26.9	2373	0.104	4437	0.104	12.50	45	3.28
		S2-b	400	155				65	0			pamic	4	8.30 2	4.80	2.00 2							12760	3200	26.9	2373	0.104	4437	0.104	12.70	48	34
	Gilbert and Nejadi (2004)	\$2-p	64 4	155				.65	00			omed	4 2	8.30	74.80	2.00							12399	3500	26.9	2373	0.104	4437	0.104	13.20	53	39
		32-0 S2-b	400	155				65				named	‡ ‡	8.30	4.80	2.00							11603	3500	26.9	2373	0.104	4437	0.104	14.30	- 89	54.
		S2-b	400	155				.65	0	0	0 0.00 defc	deformed	4	8.30 2	. 08.4	2.00 2							11360	3200	26.9	2373	0.104	4437	0.104	14.70	9/	62
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S2-b	0 4	155				65	0 0	00	0.00 defc	deformed	4 4	8.30	4.80	2.00							11182	3500	26.9	2373	0.104	4437	0.104	15.50	87	73
		S2-b	400	155				92	. 0	0	0.00 defc	deformed	. 4	8.30	4.80	2.00							11097	3200	26.9	2373	0.104	4437	0.104	16.20	109	96
		S2-b	400	155				.65	0	0	0 0.00 deformed	peuno	4:	8.30 2	4.80	2.00							10661	3500	26.9	2373	0.104	4437	0.104	16.90	122	108
-	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	825-0 825-0	004	155				65	0 0	0 0	0 0.00 defe	omed	4 4	8.30	4.80	2.00							10455	3500	26.9	2373	0.104	4437	0.104	18.50	136	152
		S2-b	400	155				.65	0	0	0 0.00 deformed	peunc	4	8.30 2	4.80	2.00 2							10019	3200	26.9	2373	0.104	4437	0.104	19.20	200	186
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	8250 8250	400	135				65	0 0	00	0.00 det	pemo	4 4	8.30	4.80	2.00	228						9599	3500	26.9	2373	0.104	4437	0.104	20.40	242	228
349	Gilbert and Nejadi (2004)	S2-b	400	155				65	0	0) 0.00 deft	pemic	. 4	8.30 2	4.80	2.00	228						9115	3200	26.9	2373	0.104	4437	0.104	21.80	332	318
	Gilbert and Nejadi (2004)	S2-b	400	155				.65	0	0	0 0.00 def.	omed	4	8.30 2	74.80	2.00	2.00 228						8891	3500	26.9	2373	0.104	4437	0.104	21.90	394	380

Study information	ormation 2	Cross-section	E 4	10	9	Rein	Reinforcement 8	6	10	11	13	4	15	16	¥ 2	Mechanical pr 18	properties	20	23	2	22 23		24 25	5 26	Loading 27	7 28	59		Deflection 30 31	tion 32	
												f _{cm} (t ₀)		fectsp (t ₀) f _{cts}	f _{ctm} (t ₀) E _{cr}	"(to)															
Author	Specimen	b (mm) h (mm)		A ₅₁ (mm²) d ((mm)	p ₁ (%) A ₁₂	(mm²) d'	(mm) d ₂	(mm) p ₂ (%)		t _o (days)	(MPa)	f _{om} (MPa) (It			(MPa) E _{or}	"(MPa) E	(MPa) φ (-) Δε α	£ cs (Ecoff	MPa) L (mr	p/7 (m	M _{L1} (Nr	n) K _{L1}	M _{L2} (N	KL2	a (t)	(mm) t (days)) t-t ₀ (days	s)
351 Gilbert and Nejadi (2004)	S3-a	400	155	452	130	78.0	0 0	0	0 0	0.00 deformed	4.	18.30	24.80	2.00	2.00	22820	24950	200000	0.000	0.000	0.000	22820	3500	26.9	2373 0	3.104	8977 0.7	0.104	0.70	14.1	1.0
Gilbert and Nejadi	S3-8	400	55.5	452	8 8	0.87	0 0	0 0		0.00 deformed	± ‡	18.30	24.80	2.00	200	22820	24950	200000	0.138			7262	3500	26.9	2373 0			4 4	2.00	5 5	- ~
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.161			9891	3500	26.9	2373 0	_		104	4.50	17	e
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.184			9533	3500	26.9	2373 0	_		104	14.70	18	4
Gilbert and Nejadi	S3-a	400	155	452	8 8	0.87	0 0	0 0	0 0	0.00 deformed	7 ;	18.30	24.80	5.00	2.00	22820	24950	200000	0.195			9366	3500	26.9	2373 0	_		104	15.20	19	e e
357 Gilbert and Nejadi (2004)	000 C	904	1,55	452	8 6	0.07		0 0	0 0	0.00 deformed	± 5	18.30	24.80	0.00	200	22820	24950	200000	0.204			2144	3500	26.9	2373			± 10±	15.70	2 2	0 1
Gilbert and Neiadi	00 00 00	400	155	452	8 8	0.87	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	200	22820	24950	200000	0.431			9368	3500	26.9	2373 0			104	06.90	22	- 00
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	0.442			6250	3500	26.9	2373 0	_		104	17.60	24	10
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.471			5949	3500	26.9	2373 0	_		104	17.70	25	=
Gilbert and Nejadi	S3-a	400	155	452	6 :	0.87	0 1	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.483			5828	3500	26.9	2373 0	7.104		104	17.90	27	5 :
Gilbert and Nejadi	S3-a	400	52	452	8 8	0.87	0 0	0 0	0 0	0.00 deformed	4 :	18.30	24.80	5.00	5.00	22820	24950	200000	0.592			4804	3500	26.9	2373 0	0.104		104	18.70	30	9 9
	S 55 ch	904	135 135	452	8 6	0.87	0 0	0 0	0	0.00 deformed	4.5	18.30	24.80	2.00	5.00	22820	24950	300000	0.567			2774	3500	26.9	2373 0	104		40.5	9.20	35	8 6
Gilbert and Nejadi	, 00 co	904	55.5	452	8 8	0.87	0 0	0 0	0 0	0.00 deformed	± ‡	18.30	24.80	8 6	200	22820	24950	200000	0.7.10			3304	3500	26.9	2373 0	104		1 2	0.40	3.7	3 2
Gilbert and Neiadi	2000	40	3 5	452	8 5	0.87	0 0	0 0	0 0	0.00 deformed	1 4	18.30	24.80	200	200	22820	24950	20000	0.702			3067	3500	26.9	2373 0	104		104	0.40	3 6	22
Gilbert and Nejadi	S3-a	400	155	452	8	0.87	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.833			2952	3500	26.9	2373 0	0.104		104	0.70	42	28
-	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	0.833			2952	3500	26.9	2373 0	3.104 8		104	21.00	45	31
	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	0.862			2760	3500	26.9	2373 0	0.104 8	.0 2.1	104	1.00	48	34
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.919			2399	3500	26.9	2373 0	0.104 8	0	104	1.60	53	39
Gilbert and Nejadi	S3-a	400	155	452	96	0.87	0 (0 (0 (0.00 deformed	4 ;	18.30	24.80	2:00	2.00	22820	24950	200000	0.973			2074	3500	26.9				104	22.50	61	47
Gilbert and Nejadi	83.4	400	155	452	96	0.87	0 0	0 0	0 0	0.00 deformed	4 ;	18.30	24.80	2:00	2.00	22820	24950	200000	1.057			1603	3500	26.9				104	22.90	89	54
Gilbert and Nejadi	000	004	00 1	452	8 8	0.87	0	0	0	0.00 deformed	4 4	18.30	24.80	2.00	200	22820	24920	200000	1.103			1360	3500	20.9				40.4	3.20	9 10	2 0 2
375 Gilbert and Nejadi (2004)	S 55-58	94	5 4	452	8 5	0.87	0 0	0	0	0.00 deformed	4 7	16.30	24.80	2.00	200	22820	24050	200000	1140			1182	3500	26.9		104		104	24.20	90	2 6
377 Gilbert and Neiadi (2004)	20 C/C	400	3 12	452	8 5	0.87		0 0	0 0	0.00 deformed	1 4	18.30	24.80	20.5	200	22820	24950	200000	14.5			1097	3500	26.9					25.10	109	2 6
Gilbert and Nejadi	S. S. S.	400	35	452	3 6	0.87	0 0	0 0	0 0	0.00 deformed	1 4	18.30	24.80	2.00	200	22820	24950	200000	1247			7661	3500	26.9					5.70	122	90
Gilbert and Nejadi	0 00 0 00 0 00 0 00	400	155	452	8 6	0.87	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	5.00	22820	24950	200000	1293			9455	3500	26.9			, ,		96.50	136	22
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	1.368			0137	3500	26.9	Ĭ				27.60	166 1	152
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	1.397			0019	3500	26.9	_		_		27.90	200	98
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	1.506			9599	3500	26.9	_		_		58.80	242 2	528
Gilbert and Nejadi	S3-a	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.569			9371	3500	26.9					59.10	286	272
Gilbert and Nejadi	83.4	400	155	452	96	0.87	0 0	0 0	0 0	0.00 deformed	4 ;	18.30	24.80	2:00	2.00	22820	24950	200000	1.644			9115	3500	26.9					39.60	332 3	318
Gilbert and	S3-a	400	122	452	130	0.87	0	0	0	0.00 detormed	14	18.30	24.80	2.00	2.00	22820	24950	200000	1.713			8891	3500	26.9					9.80	394 3	089
386 Gilbert and Nejadi (2004)	23-0	400	155	452	8 5	0.87	0 0	0 0	0 0	0.00 deformed	4 5	18.30	24.80	2.00	2.00	22820	24950	200000	0.000			2820	3500	26.9		0.104		0.104	5.04	14.1	
Gilbert and Neiadi	S. S.	96.4	3 12	452	8 5	0.87		0 0	0 0	0.00 deformed	1 4	18.30	24.80	200	200	22820	24950	200000	0.138			1262	3500	26.9				104	7.80	5 4	- 6
Gilbert and Nejadi	S3-b	400	155	452	8 6	0.87	0	0	0	0.00 deformed	<u> </u>	18.30	24.80	2.00	2.00	22820	24950	200000	0.161		•	9891	3500	26.9				104	8.18	2 12	ا س
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	14	18.30	24.80	2:00	2.00	22820	24950	200000	0.184			9533	3500	26.9				104	8.42	18	4
Gilbert	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.195			9366	3500	26.9				104	8.80	19	2
Gilbert	S3-p	400	155	452	8 8	0.87	0 0	0 0	0 0	0.00 deformed	7 ;	18.30	24.80	5.00	2.00	22820	24950	200000	0.264			8382	3500	26.9				104	9.23	50	9 1
393 Gilbert and Nejadi (2004)	83.0	904	135 135	452	8 6	0.87		0 0	0	0.00 deformed	4 5	18.30	24.80	2.00	2.00	22820	24950	200000	0.362			7144	3500	26.9				40.5	9.87	17 6	~ 0
Gilbert	25.50	400	3 12	452	8 5	0.87		0 0	0 0	0.00 deformed	1 4	18.30	24.80	20.5	200	22820	24950	200000	0.42			5250	3500	26.9				104	0.23	24	o 6
Gilbert	83-p	400	155	452	8 6	0.87	. 0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.471			5949	3500	26.9				104	10.89	25	: =
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.483			5828	3500	26.9				104	11.03	27	13
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2:00	2.00	22820	24950	200000	0.592			4804	3500	26.9				104	17.1	30	16
Gilbert and Nejadi	S3-p	400	155	452	8	0.87	0 6	0 0	0 (0.00 deformed	4 :	18.30	24.80	5.00	2.00	22820	24950	200000	0.667			4173	3500	26.9				104	12.14	32	9 9
	83.p	400	155	452	8 6	0.87	0 0	0 0	0 0	0.00 deformed	4 4	18.30	24.80	2.00	2.00	22820	24950	200000	0.782			37.74	3500	26.9				401	2.53	34	23 50
Gilbert and Neiadi	2 68	400	155	452	8 8	0.87	0	0	0	0.00 deformed	. 4	18.30	24.80	2.00	200	22820	24950	200000	0.816			3067	3500	26.9				104	13.27	38	52
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.833			2952	3500	26.9				104	13.32	42	28
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	0.833			2952	3500	26.9				104	13.58	45	31
Gilbert and Nejadi	83-b	400	155	452	8 8	0.87	0 0	0 0	0 0	0.00 deformed	4 ;	18.30	24.80	2.00	2.00	22820	24950	200000	0.862			2760	3500	26.9				104	13.59	20 E	34
400 Gilbert and Nejadi (2004)	83.4 83.4	904	15.5	452	8 6	0.07		0 0	0 0	0.00 deformed	± ‡	18.30	24.80	2 00	2 00	22820	24950	200000	0.919			2399	3500	26.9				± 4	4.12	2 5	47
Gilbert	S3-b	400	155	452	8 6	0.87	0	0		0.00 deformed	. 4	18.30	24.80	2.00	2.00	22820	24950	200000	1.057			1603	3500	26.9				104	5.22	. 89	54
Gilbert and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.103			1360	3500	26.9	2373 0	0.104	5967 0.1	104	15.38	9/	62
410 Gilbert and Nejadi (2004)	S3-p	400	155	452	8 5	0.87	0 0	0 0	0 0	0.00 deformed	2;	18.30	24.80	2.00	2.00	22820	24950	200000	1.138			1182	3500	26.9	2373 0	0.104	5967 0.7	104	16.19	87	73
412 Cilbert and Nejadi (2004)	255-0	94	5 4	452	8 5	0.07	0 0	0	0 0	0.00 deformed	4 5	10.30	24.80	8.50	200	22020	24050	200000	24.4			1007	3500	26.9	2373	104	5967 0.	104	0.20	100	70
and Nejadi	83-p	400	155	452	8 8	0.87	0	0	0	0.00 deformed	<u> </u>	18.30	24.80	2.00	2.00	22820	24950	200000	1247			1097	3500	26.9	2373 0	104	5967 0.7	104	7.64	122	80
and Nejadi	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.293			0455	3500	26.9	2373 0	0.104 &	5967 0.1	104	18.30	136 1	122
415 Gilbert and Nejadi (2004)	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.368			0137	3500	26.9	2373 0	0.104 E	5967 0.7	104	9.30	166 1	152
416 Gilbert and Nejadi (2004)	S3-b	400	155	452	6 :	0.87	0 1	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200000	1.397			0019	3500	26.9	2373 0	7.104	2967 0.7	104	90.06	200	98
417 Gilbert and Nejadi (2004)	22.0	904	5 4	452	8 6	0.87		0 0	0	0.00 deformed	<u> </u>	18.30	24.80	2.00	200	22820	24950	200000	1.500			9599	3500	26.9	2373 0	104	5967 0.	40.	1.24	247	2 2 2
Gilbert and Neiadi	SS-CS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-SS-S	400	155	452	8 8	0.87		0	0	0.00 deformed	<u> </u>	18.30	24.80	2.00	2.00	22820	24950	200000	1.644			9115	3500	26.9	2373 0	104	5967 0.7	104	22.44	332	318
and	S3-b	400	155	452	130	0.87	0	0	0	0.00 deformed	4	18.30	24.80	2.00	2.00	22820	24950	200002	1.713			8891	3500	26.9	2373 0	0.104 E	2967 0.	104	22.90	394 3	380
																															l

Ī	22	4num.int./dexp (%)	108.8			102.1 102.6	103.9	104.5	102.0	101.7	103.9	105.7	104.5	104.8	103.4	104.8	105.5	105.9	106.7	105.6	107.3	107.2	108.7	106.9	104.2	101.2	100.3	99.1	143.3	163.8	154.9	151.6	148.2	146.0	144.0	140.0	140.4	140.2	139.6	139.0	136.4	136.3	134.0	136.0	135.6	133.0	135.2	131.1	133.2	133.6	130.7	127.4	118.4	116.3	115.0	
Deflection		a _{exp} (mm)	4.95	5.96	6.27	6.39	6.67	6.80	7.19	7.28	7.47	7.78	8.10	8.17	8.32	8.34	8.51	8.84	9.00	9.47	9.47	9.78	10.03	10.59	10.88	11.38	11.63	12.06	1.98	2.21	2.44	2.62	2.72	2.82	3.02	3.30	3.33	3.38	3.76	3.89	4.1	4.17	4.27	4.29	4.45	4.78	4.98	5.26	5.28	5.74	5.94	6.25	6.91	7.14	7.34	
	20	dnum.int.	5.39	6.22	6.45	6.53	6.93	7.10	7.33	7.41	7.76	8.22	8.47	8.56	8.60	8.74	8.98	9.36	0.0	10.00	10.16	10.49	10.90	11.26	11.34	11.52	11.67	11.95	2.84	3.62	3.78	3.97	4.03	4.12	4.35	4.62	4.68	4.74	5.05	5.41	5.61	5.68	5.72	5.83	6.03	6.36	6.73	6.89	7.03	7.67	7.76	7.96	8.18	8.31	8.44	
	19	t-t ₀ (days) (0.1	01 65	4	9	7	∞ ¢	2 €	5 3	€ 6	2 2	23	52	3 2	8	g !	47	\$ 6	73	82	95	3 28	2 5	186	228	272	380	0.1	_	7 7	0 4	2	1 0	~ 00	, 6	7	€ é	2 €	20	23	52 82	3 8	8	g !	74 7	62 5	73	8 8	108	122	152	228	272	318	
	18	S _{ll} (mm³) t	778538 785291	861000 874156	888048	894483 934060	989920	1028223	1050259	1057160	1116129	1183226	1216569	1234740	1243114	1257915	1287320	1314448	1379952	1397147	1402095	1405199	1450159	1508246	1521817	1573412	1602326	1668531	778538	785291	874156	888048	894483	934060	989920	1034410	1050259	1057160	1156169	1183226	1216569	1234740	1243114	1257915	1287320	1314448	1379952	1397147	1402095	1450159	1472454	1508246	1573412	1602326	1636705	
	17	l, (mm²) s	213089556 214846601	234485826	241458222	243129609 253310565	267610562	277386617	282996313	284738752	299679050	316605112	324959815	329520015	331606149	335303826	342648445	349410103	365655929	369918601	371131263	371888003	382983680	397258103	400576098	413176708	42022/502	436312279	213089556	214846601	234485826	241458222	243129609	253310565	26/610562	278958226	282996313	284738752	309782221	316605112	324959815	329520015	331606149	335303826	342648445	349410103	365655929	369918601	371131263	382983680	388459860	397 258 103	413176708	420227502	428587717	
	16	(mm ⁴) I _{II} (10244366 2 10373396 2			12614495 ; 13450930 ;		15539497		16196231					20658823				24158555				26025907		·		30236270				11903620				146 / 6955	5678702	16038220						20658823		~ .	22461497	24158555		24742675		26639632				31207903 4	
State II	15	(mm) I _{IIc} (m	261.08 1 260.73 1			255.4 1 253.56 1		249.31		248.05 1								237.45 2			234.09 2					227.81 2									2551.01			248.05 1					240.28 2			237.45 2		•			231.47 2		227.81		225.57 3	
	4	(mm) Z _{ll,1}	300.54 300.37			297.7 296.79		294.66								289.84					287.05			285.09				282.24			298.51			296.79	295.51		294.18					290.31				288.73					285.73		284.83		282.79	
	13	c (mm²) z _{llc;}	19733 19815	20745	21068	21150 21608	22245	22673	22913	22988	23625	24323	24660	24848	24930	25080	25373	25635	26265	26430	26475	26505	26925	27458	27585	28050	28305	28883	19733	19815	20745	21068	21150	21608	22245	22740	22913	22988	24045	24323	24660	24848	24930	25080	25373	25635	26265	26430	26475	26925	27135	27458	28050	28305	28605	
	12	A _{ll} (mm²) A _{ll}	23255 23373	24713	25184	25303 25982	26936	27585	27954	28069	29056	30160	30702	31003	31137	31379	31857	32292	33344	33622	33699	33749	34467	35389	35609	36428	36884	37928	23255	23373	24713	25184	25303	25982	26936	27689	27954	28069	29030	30160	30702	31003	31137	31379	31857	32292	33344	33622	33699	34467	34825	35389	36428	36884	37425	
			439591 443930	492793 501376	510444	514681 540772	577973	603739	618641	623321	663616	710076	733325	746063	751964	762409	783234	802582	849577	862007	865572	867764	900533	943130	953161	991415	1012971	1062788	439591	443930	492793	510444	514681	540772	603739	607938	618641	623321	691273	710076	733325	746063	751964	762409	783234	802582	849577	862007	865572	900533	916756	943130	953161	1012971	1038805	
	10		875979477 876543009	882897662 884012996	885188330	885744363 889132561	893970018	897317691	899257862	899863030	905105282	911140481	914167504	915823609	916591125	917946886	920650188	3167322	927.126500	930893128	931354983	931643478	935898556	930013632	942740831	947713569	950522238	956992115	875979477	876543009	882897662	885188330	5744363	889132561	893970018	897863925	899257862	899863030	15105262	911140481	914167504	915823609	916591125	917946886	920650188	923167322	929274101	930893128	931354983	5898556	938015852	941434899	942/40831	0522238	953876755	
State	0	(mm) I ₁ (mm ⁴)	164.83 87 164.78 87			163.94 86 163.64 86						-				161.03 97								158.91			158.08 95					164.00			163.20 88			162.67 89					161.15 97						159.82 93						157.78 95	
	80	(mm²) z _{1,1} °	88522 88558	88968 89040	89116	89153 89374	89691	89912	90041	90081	90431	90837	91042	91155	91207	91299	91484	91657	92079	92192	92224	92244	92542	92931	93024	93378	935/9	94045	88522	88258	88968	89116	89153	89374	89691	89949	90041	90081	90431	90837	91042	91155	91207	91299	91484	91657	92079	92192	92224	92542	92690	92931	93024	93579	93820	
	7	x/M _{cr} A.	2.343 2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	2.343	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	1.599	
	9	lax (Nm) Mms	24900 24900	24900	24900	24900 24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	24900	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	17000	
l _e		n) M _m)629 <	10629 <	> 629	0629 × 10629 ×	> 6290	10629 × 10629 ×	> 62901	> 6290	10629 ×	> 62901	> 62901	10629 <	> 6290	> 62901	> 6290	10629 <	> 62901 > 62901	> 6290	> 6790	> 6290	> 6290	> 6290 > 6290	10629 <	> 6290	10629 <	10629 <	> 62901	> 62901	10629 <	v > 629	> 629	> 629	> 6290 10629	> 62901	> 62901	10629 <	> 6290 > 6290	> 62901	> 659	10629 ×	> 62901	> 6290	> 6290	> 6290	, 629 10629 <	> 6290	10629 ×	> 629	> 6290	> 6290	10629 ×	> 6290	10629 <	
Cracking moment	Ω.	M _{cr} (Nm)	^ ^ 5 5	۸ ۸ 5 5	۸	^ ^ 5 5	۸	۸ ۸ 5 5	, ^	ν ;	v v	, v	^	v v	, v	۸	۸ ۲	v ,	۷ ۷ ۲	۸ ۲	۸	ν,	v v	, v	۸	ν ;	v v	۸ ۸ ۲ ک	> 10	۸	v v	, v	۸	ν,	v v	, ^	^	v ,	, v	۸	۷ =	v v	, v	^	۸ ۲	v v	, v	۸	v v	, v	۸	v ,	v v	۸ ۲	۸ ۸ 5 5	
Cracl	4	M _{sw} (Nm)	3254 3254			3254 3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254					3254	3254	3254		3254			3254	3254	3254	3254	3254	3254	3254	3254	3254	3254	3254			3254		3254				3254		3254	
	3 W. (f.)	(mm ₃)	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	5314442	
	2	imen																																																						
nation		Speci	B1-a B1-a	B1-a	B1-a	B1-a B1-a	B1-a	B1-a	B 1-a	B1-a	B1-a	B 1-a	B1-a	B1-a	D 0	B1-a	B1-a	B1-a	D C	B1-a	B1-a	B1-a	B1-a	0 7 6	B1-a	B1-a	B1-a	B 1-a	B1-b	B1-b	81-b	B1-b	B1-b	B1-b	81-b	B1-b	B1-b	81-b	0 E	B1-b	B1-b	81-5 4-5	81-5 1-5	B1-b	B1-b	81-0 4-10	B1-5	B1-b	81-5 4-5	B1-b	B1-b	81-b	B1-0	B1-b	81-b	
Study information	-		(2004) (2004)	(2004)	(2004)	(2004) (2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004)	(2004) (2004)	(2004)	(2004)	
		Author	Gilbert and Nejadi (2 Gilbert and Nejadi (2	Gilbert and Nejadi (Gilbert and Nejadi (Gilbert and Nejadi (Gilbert and Nejadi (Gilbert and Nejadi	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	Gilbert and Nejadi (Gilbert and Nejadi (2004	Gilbert and Nejadi (Gilbert and Nejadi (Gilbert and Neiadi	Gilbert and Nejadi (Gilbert and Nejadi	Gilbert and Nejadi (2004 Gilbert and Nejadi (2004	Gilbert and Nejadi (2004)	Gilbert and Nejadi (Gilbert and Nejadi	Gilbert and Nejadi (Silbert and Nejadi	Gilbert and Nejadi (2004)																																	
		٩		ω 4 Ω Ω				_		27		± £														32					g g				£ 4								3 22									65			99 F	


2241 455.00 225.00 <th>N pecimen (r</th> <th>3 4 Wi (t₀) (mm³) M_{SW} (</th> <th>4 (Nm) M_{cr}</th> <th>5 Vim) M_{er} (Nm) M_i</th> <th>6 I_{max} (Nm) M_{max}</th> <th>/ x/M_{er} A_j (r</th> <th>8</th> <th>01 (mm) (mm)</th> <th>11 S_i (mm³)</th> <th>12) A_{ll} (mm²)</th> <th>13 1²) A_{IIc} (mm²)</th> <th>14 z_{llc,1} (mm)</th> <th>15 (mm) 1</th> <th>16 I_{lic} (mm⁴)</th> <th>17 I_{II} (mm⁴)</th> <th>18 S_{II} (mm³)</th> <th>19 t-t₀ (days)</th> <th>20 anum.int. (mm)</th> <th>21 a_{nu} a_{exp} (mm) (%)</th> <th>22 Anum.int./A_{6xp} (%)</th>	N pecimen (r	3 4 Wi (t ₀) (mm³) M _{SW} (4 (Nm) M _{cr}	5 Vim) M _{er} (Nm) M _i	6 I _{max} (Nm) M _{max}	/ x/M _{er} A _j (r	8	01 (mm) (mm)	11 S _i (mm³)	12) A _{ll} (mm ²)	13 1 ²) A _{IIc} (mm ²)	14 z _{llc,1} (mm)	15 (mm) 1	16 I _{lic} (mm ⁴)	17 I _{II} (mm ⁴)	18 S _{II} (mm³)	19 t-t ₀ (days)	20 anum.int. (mm)	21 a _{nu} a _{exp} (mm) (%)	22 Anum.int./A _{6xp} (%)
10 10 10 10 10 10 10 10		4968316 4968316	v v		24800	7	2,78	၈ ၈	2241 0350	01	3 2	- IO	Ē		F	ī	8 +		- dva	110.4
10.000 1		4968316 4968316			24800 24800	2.496 2.496											3 2 3 3	6.30		105.5 105.4
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		4968316	3110 < 2110 /	9937 <	24800	2.496														104.6
11 11 12 12 12 12 13 13		4968316	3110 <	9937 <	24800	2.496	•													102.7
No.		4968316	3110 <	9937 <	24800	2.496		0												103.1
110 110		4968316	3110 <	9937 <	24800	2.496	•										_			101.6
11.1. 11.1		4968316	3110 <	9937 <	24800	2.496	•													102.4
		4968316 4968316	3110 ×	9937 <	24800	2.496	•													103.0
11.0 11.0		4968316	3110 <	> 2666	24800	2.496	•										91 18	8.14		103.7
11.1. 11.1	•	1968316	3110 <	9937 <	24800	2.496	•									•	20 20	8.34		104.2
	, ,	1968316	3110 <	9937 <	24800	2.496	,										25	80.8		103.8
1111 1111	4	968316	3110 <	> 2666	24800	2.496												8.70		103.8
1111 1111	7	1968316	3110 <	> 2	24800	2.496										_		8.73		102.6
9110 6107 3480 2480 5480 <th< td=""><td>7</td><td>1968316</td><td>3110 <</td><td>9937 <</td><td>24800</td><td>2.496</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.87</td><td></td><td>103.6</td></th<>	7	1968316	3110 <	9937 <	24800	2.496			_									8.87		103.6
9110 6100 6100 6400 2466 6100 72.24 20.24 10.00 6100 72.24 10.00 70.00 60.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00<	, ,	1968316	3110 <	9937 <	24800	2.496	,										99 39	02:0		103.9
3110 4100 <th< td=""><td>4</td><td>1968316</td><td>3110 <</td><td>9937 <</td><td>24800</td><td>2.496</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>54:</td><td>9.81</td><td></td><td>105.5</td></th<>	4	1968316	3110 <	9937 <	24800	2.496											54:	9.81		105.5
9110 6 9807 2480 8446 5112 6 9807 2510 6 9807 2480 8440 5112 6 9802 2440 8807 1 10 0 6 9807 4 10 0 8 10 0 2 10 0 9 1	•	4968316	3110 <	> 2666	24800	2.496			_								22 62	96.6		105.2
	·	4968316	3110 <	> 266	24800	2.496			_								77 73	10.15		103.6
110 C 1007 C 2000 C 246 0 0 0 0 0 0 0 0 0		4968316	3110 <	> 266	24800															105.3
9110 6 2007 2.680 0884 1927 1979 2.682 2.682 1987 1979 2.682 2.682 1979 2.682 1987 2.682 1987 2.682 2.682 1979 2.682 2.682 1979 2.682 2.682 1979 2.682 2.682 1979 2.682 2.682 1.682 1.782 1.19 1.10 3110 2.880 2.840 2.860 2.860 2.862 2.872 2.872 2.872 2.872 2.872 2.872 2.872 2.872 2.872 2.872 2.882 2.872 2.882 2.872 2.882 2.872 2.882 2.872 2.882 2.872 2.882 2.872 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882 2.882		4968316	3110 <	9937 <	24800												•			105.0
9110 6 8007 6 2460 6 246 6 277 6 177 7 100 2 100 <t< td=""><td></td><td>49663 ID 49683 16</td><td>3110 <</td><td>9937 <</td><td>24800</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td>•</td><td></td><td></td><td>105.9</td></t<>		49663 ID 49683 16	3110 <	9937 <	24800										_		•			105.9
910 6 9097 2 8090 <td></td> <td>4968316</td> <td>3110 <</td> <td>9937 <</td> <td>24800</td> <td></td> <td>103.9</td>		4968316	3110 <	9937 <	24800															103.9
3110 9 8977 2 4800 2 486 886.28 144.27 9 8997 2 28.00 2 486 886.28 144.27 9 8997 2 28.00 2 486 886.28 144.27 9 8997 2 28.00 2 486 886.28 144.27 9 8997 2 28.00 2 486 886.28 144.27 9 8997 2 28.00 2 486 9 8997 2 48 9 8997 148.77		4968316	3110 <	> 2666	24800										·					101.9
110 110		4968316		9937 <	24800				m 1											99.0
110 C		4968316		9937 <	24800															4.78
310 9837 1880 1697 1873 265 264 1873 265 264 1873 265 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 1873 264 264 1873 264 <th></th> <th>4968316</th> <th></th> <th>9937 <</th> <th>24800</th> <th></th> <th>- \</th> <th></th> <th>97.7</th>		4968316		9937 <	24800		- \													97.7
310 89937 (18600 (1861) 6400 (1860) 6400 (1860) 6400 (1860) 6400 (1860) 6400 (1860) 6400 (1860) 6400 (1860) 6500 (1860) 6500 (1860) (1860		4968316		> 2666	16800	1.691	ľ													146.5
3111 3111		4968316		9937 <	16800	1.691	Ψ,										- 0	3.70		163.8
3110 6000 1691 1692 1662 2561 2710 2000 170 2000 1690 1691 1692 1662 2676 2710 2000 170 1600 1690 1		4968316 4968316		9937 <	16800	1.691											0 9	3.87	2.52	153.4
310 400 168 6640 1654 16		4968316	3110 <	9937 <	16800	1.691											70	4.06	2.72	149.4
3110 4937 1680 1681 8662 1681 8662 1681 8662 1681 8662 1681 8662 1681 8662 1681 8662 1681 8662 1681 8694 1681 8694 1682 3684 1682 2684 2682 2686 2673 1680 1680 1681 8619 1681 8618 1681 8619 1681 8618 1681 8618 1681 8618 8618 8618 8618 8618 8618 8618 8618 8618 8618 8618 <th< td=""><td></td><td>4968316</td><td>3110 <</td><td>> 2</td><td>16800</td><td>1.691</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3 5</td><td>4.13</td><td>2.79</td><td>147.9</td></th<>		4968316	3110 <	> 2	16800	1.691											3 5	4.13	2.79	147.9
3110 3937 1800 1891 1894 <th< td=""><td></td><td>4968316</td><td>3110 <</td><td>9937 <</td><td>16800</td><td>1.691</td><td>_ ,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>9 1</td><td>4.21</td><td>2.92</td><td>144.3</td></th<>		4968316	3110 <	9937 <	16800	1.691	_ ,										9 1	4.21	2.92	144.3
310 4 590 166 169 164 169 164 169 164 169 164 169 164 169 169 164 169 169 164 169 164 169 169 169 169 164 169		4968316	3110 ×	9937 <	16800	1.691		- 4									0.0	4.45		142.7
3110 6 9897 6 1600 1691 6454 862201 1544 804000 1691 6454 862201 6454 862200 1644 80400 1691 6630 1644 804000 1691 6630 1644 804000 1691 66861 153.88 811410404 69860 22986 2790 2790 1690 1691 66861 153.88 811410404 69860 22960 22060 22050 1758140 2600 1691 870 6800 1691 870 1690 1691 870 1690 1691 870 1690 2800 1691 870 1690 1691 870 1690		4968316	3110 ×	> 266	16800	1,691	- (-										0 0	4.73		138.0
3110 4 1 6 1 8 1 1 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 4 3 4 3		4968316	3110 <	> 2666	16800	1.691											11	4.79		138.9
3110 49937 41680 1691 808981 1538 81115041 99937 4160 1691 80891 1538 81115041 99937 4160 1691 80892 153.88 81115041 2005 277.7 160 200 773.88 81115041 200 277.7 160 200 773.88 8115041 220 27.71 160 800 66 87.20 220 27.71 160 800 66 87.20 27.71 160 87.20 27.71 91 27.20 87.20		4968316	3110 <	9937 <	16800	1.691			_								00 13	4.86		137.6
3110 4 9997 4 8 8 8 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 4 3 4 </td <td></td> <td>4968316</td> <td>3110 <</td> <td>9937 <</td> <td>16800</td> <td>1.691</td> <td></td> <td></td> <td>_ ^</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td>•</td> <td>_</td> <td>5 2</td> <td>0.7</td> <td></td> <td>137.1</td>		4968316	3110 <	9937 <	16800	1.691			_ ^		•				•	_	5 2	0.7		137.1
3110 4 6987 6 1680<		4968316	3110 <	9937 <	16800	1.691	•										20 20	5.55		136.7
3110 4 <td></td> <td>4968316</td> <td>3110 <</td> <td>> 2666</td> <td>16800</td> <td>1.691</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>19 23</td> <td>5.76</td> <td></td> <td>134.8</td>		4968316	3110 <	> 2666	16800	1.691	•										19 23	5.76		134.8
3110 4 9937 4 4 5 4 4 3 </td <td></td> <td>4968316</td> <td>3110 <</td> <td>9937 <</td> <td>16800</td> <td>1.691</td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10 25</td> <td>5.84</td> <td></td> <td>134.5</td>		4968316	3110 <	9937 <	16800	1.691	•										10 25	5.84		134.5
310 4997 1680 1691 8749 1520 31179 2500 274,94 224,68 2003894 3500 457 477 4780 31170 4780		4968316	3110 <	9937 <	16800	1.691											4 4 82 78	5.85		133.8
310 9937 18800 1691 87734 62270 3187 25573 274.86 235.83 2778628 322494446 1287320 39 6 20 4 67 3110 9937 18800 1691 87907 152.0 88500500 1691 87007 152.0 887002284 89539 272.91 220.83 272.84 22464477 351.44 47 653.4 480 3110 9937 18800 1691 88420 151.48 88289394 895380 33242 220.81 220.81 350.0000 150.90 467.87 37.40 2993 244.86565 35656589 1379952 62 62 62 55.4 3110 9937 18800 1691 88444 151.24 800466 37.49 2662 27.14 219.93 2446805 36656589 14061 893 46.4 37.40 2662 27.24 219.93 2446865 365656899 1407489 37.94 46.4 37.40		4968316	3110 ×	> 7666	16800	1691	Ì				• • •				,	•	35.0	00.0		132.5
310 4 9937 4 1680 1691 87907 15.0 844063 3222 25634 2737 222461497 3494410103 131444b 47 653 438 3110 4 9837 6 1680 1691 8870 15.0 8514690 1571 22641497 354610 131444b 47 653 438 3110 4 9837 6 16800 1691 8842 15.12 840082284 96362 272.4 272.4 272.4 272.4 737 26665692 139747 73 26665628 139747 73 66665692 157 9697 86918600 15977 24616752 36991860 139747 73 73 73 73 73 73 73 73 73 74 73 73 74 73 74 73 74 73 74 73 74 74 75 74 74 74 75 74 <td< td=""><td></td><td>4968316</td><td>3110 <</td><td>9937 <</td><td>16800</td><td>1.691</td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>٠</td><td>99 99</td><td>6.20</td><td></td><td>132.7</td></td<>		4968316	3110 <	9937 <	16800	1.691	•									٠	99 99	6.20		132.7
310 9937 1880 16.6 88580000 16.9 8780.3 332978 26048 27.24 25.634 35693060 16.9 88720 16.6 878000 16.9 88720 16.6 87800 3344 26048 27.24 219.93 24186805 16.9 17.8 80.0 16.9 88474 16.12 804780 16.0 27.24 219.93 2418686 16.0 18.0 16.0 88474 16.12 804780 16.0 27.24 219.93 24486772 36900 16.0 18.0 16.0 88474 16.12 804062289 91.167 27.0		4968316	3110 <	> 2666	16800	1.691	•				.,					•	8 47	6.53		131.2
3110 99377 18800 1691 882329344 885380 33344 26262 272.47 219.43 24168255 685656569 13796 692 5.26 3110 9937 18800 1691 88442 151.32 84086258 91486 3362 26430 272.44 219.27 244167267 311783 4102096 82 5.26 3110 9937 18800 1691 88444 151.27 84095628 91746 33692 26473 271.99 218.88 24828681 3718880 382828980 86478 3749 2660 271.99 28288980 382828982 384578881 3718880 382828982 384578881 3718880 382828982 384578881 3718880 382828982 3847878 38692 284778 38692 384778 38692 384778 38692 384778 38692 384778 38692 384778 38692 384778 38692 384778 38692 384778 38692 384778		4968316	3110 <	> 2666	16800	1.691	•		_	•	.,				•	•	77 54	. 6.80		133.1
3110 < 9937 < 16800 1691 88444 151.24 840902284 912467 33692 26475 272.05 219.09 2444275 37131283 1402095 85 54 554 3110 < 9937 < 16800 1691 88424 151.24 840915679 912467 33699 26475 272.05 219.09 2444275 37131283 1402095 82 2 724 5.54 5.4 5410		4968316	3110 <	9937 <	16800	1.691	_		_		•					•	22 62	6.92		131.6
3110 < 9937 < 18800 1891 8844 15.2 840915679 914488 3749 26505 27159 21820 247426789 37143789 57143789 57143789 57143789 57143789 57143789 57143789 57143 57143789 57143 57143789 57143 57143789 57143		4968316	3110 <	9937 <	16800	1.691				., .	.,				٠. ١		73	7.09		128.0
110 110		4968316	3110 ^	9937 <	16800	1.691														130.6
3110 < 9937 < 16800 1691 88940 150.61 847991683 965974 34825 27135 270.73 216.47 26639632 388459860 1472454 122 759 6.25 820 6.26 8310 < 9937 < 16800 1691 89781 150.27 851787083 993574 35389 274.65 270.09 215.16 2700903 39725810 1508246 152 820 6.56 83110 < 9937 < 16800 1691 8922 149.57 858754703 144.278 5690 27885 280.95 212.81 224.86 70076089 152177 188 82.28 84.2 7.26 3110 < 9937 < 16800 1691 8922 149.37 861870657 106830 38694 28305 286.3 21.78 300.26577 21.78 300.26577 21.78 300.26577 21.78 300.26577 149.04 86593146 109.0418 374.25 28805 267.79 210.77 310.77 18307 18600 1691 9027 149.04 86593146 109.0418 37928 2883 267.24 209.47 321.2799 166831 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 310.24 30.04 31.2279 1668531 380 879 7.87 31.2279 31.2		4968316	3110 ×	> 7666	16800	1691	Ì										•			131.1
3110 < 9937 < 16800 1.691 89181 150.27 851787083 993574 35389 274.68 270.09 215.16 2760.0803 397258103 1508246 152 8.20 6.58 6.58 810 21.0 1		4968316	3110 <	9937 <	16800	1.691	•										,			127.9
3110 < 9937 < 16800 1.691 89274 150.14 853236545 1004113 35609 27585 269.83 214.66 27987087 400576088 1521817 186 8.27 6.86 86 310 < 8937 < 16800 1.691 89628 149.57 861870657 1066930 38684 28935 268.39 211.78 30236274 42027502 160236 272 8.55 7.52 3110 < 8937 < 16800 1.691 89629 149.37 861870657 1066930 38684 28305 268.39 211.78 30236277 42027502 160236 272 8.55 7.52 3110 < 8937 < 16800 1.691 90205 148.78 869046245 119138 37928 28883 267.24 20947 33124996 436371279 1668531 380 8.79 7.87		4968316	3110 <	> 2666	16800	1.691	•										•			124.6
3110 < 9937 < 16800 1.691 89528 149.65 88754703 1044278 39428 28050 288.9 212.81 29425414 413176708 1573412 228 8.42 7.26 3110 < 9937 < 16800 1.691 89529 149.37 861870657 1068930 38834 28305 268.39 211.78 30236270 420227502 1602326 272 8.55 7.52 3110 < 9937 < 16800 1.691 90207 149.04 865591446 1094018 37425 28605 267.79 210.57 31207930 428687705 316 8.89 7.72 3110 < 9937 < 16800 1.691 90205 148.79 889046245 1119138 37928 28883 267.24 209.47 32114996 436312279 1668531 380 8.79 7.87		4968316	3110 <	> 2666	16800	1.691	•										•			120.6
3110 < 9937 < 16800 1.691 89629 149.37 8018/0050 1.691 89629 149.37 8018/0050 36689 210.57 312/0760 42/22/502 100.226 2.72 8.55 7.52 3110 < 9937 < 16800 1.691 90070 1.49.04 865691446 1094018 37425 2.8865 2.67.79 210.57 312/0760 318 8.69 7.72 3110 < 9937 < 16800 1.691 90050 1.87 869046245 1119138 37628 28883 267.24 209.47 32114296 436312279 1686531 380 8.79 7.87		4968316	3110 <	9937 <	16800	1.691						•					2 228	8.42	7. 1	116.0
310 < 937 < 1680 1691 9029 1487 88904624 111918 37928 28883 267.24 209.47 3214296 436314279 1668531 380 879 7.87		4968316	3110 <	9937 <	16800	1.691													- 1	113.7
		4968316	3110 <	9937 <	16800	1.691										•			. 7	111.7

	-	5	3 W.* (f.)	4 5	D.	9	7	80	D .	11	12	2	4	2	9	Ξ	<u>0</u>	<u></u>	8		77 5
		Specimen		N (MM) W	- 1	max (Nm)	max/Mcr	Z _{I,1}	-	, s		A	Z llc,1	z _{ll,1} (mm)	$\overline{}$	I _{II} (mm ⁴)	S _{II} (mm³)	(days)		(mm)	m.int./e
	Nejadi (2004) Nejadi (2004)	B3-a B3-a	5249114 5249114	3110 < 3110 <	10498 <	34600	3.296	86532										0.1	6.16	5.81	106.0
	Jejadi (2004)	B3-a	5249114	•	10498 <	34600	3.296	87202										. 61 0	6.71	6.71	9 9
	lejadi (2004) lejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	87310										_ω 4	6.88	7.00	201
	lejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	87479										2	7.06	7.16	86
10 10 10 10 10 10 10 10	ejadi (2004) ejadi (2004)	B 53-8	5249114	3110 ×	10498 <	34600	3.296	8/811										9 1	7.53	7.58	2 G
Column C		B3-a	5249114	3110 <	10498 <	34600	3.296	88619										- σο	7.73	7.72	100
1	ejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	88673										9 ;	7.90	7.99	86
No. No.	ejadi (2004) ejadi (2004)	B3-a	5249114	3110 ×	10498 <	34600	3.296	88812										- 5	7.99	8.02	50
Column C	gadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	89397		_							•	9	8.48	8.43	100
Column C	sjadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	89758									•	18	8.79	8.62	101
Column C	jadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	90006										20	9.01	8.78	102
Column C	ejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	90313										23	9.28	9.04	102
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	gadi (2004)	B3-a	5249114	3110 v	10498 v	34600	3.296	90482										C) 8	9.39	9.12	50L 50C
No. Control Control	gadi (2004)	B3-a	5249114	3110 ×	10498 <	34600	3.296	90560										3 28	9.4	0 0 0	101
1.5 1.5	ejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	66906										8	9.60	9.33	102
State Stat	ejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296											39	9.87	9.57	103
State Stat	lejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296											47	10.30	9.92	103
1.	lejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296											\$;	10.65	10.10	105
1	Vejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	91869										62	10.82	10.20	106
Name	Nejadi (2004)	B3-a	5249114	3110 ×	10498 v	34600	3.296	92038										ς, ς,	11.03	10.60	401
Column C	Vejadi (2004) Najadi (2004)	D 2-a	5249114	3110	10490 \	34600	3.296	92000										2 8 8 8	1 57	10.00	100
	Nejadi (2004)	B3-a	5249114	3110 ×	10498 <	34600	3.296	92562										108	12.04	11.10	108
	Nejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	92785										122	12.18	11.40	106
1.2. 1.2.	Nejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	93147										152	12.45	11.80	105
Page 14 Page	Nejadi (2004)	B3-a	5249114	3110 <	10498 <	34600	3.296	93286										186	12.54	12.10	103
15.9 CASPITA STATE OF 10.0000 C. 20.000 15.000 15.000 25.000 15.00	Nejadi (2004)	B3-a	5249114		10498 <	34600	3.296	93817		_								228	12.75	12.60	101
18.2 50.0011 311.0 10.000 1.000 2.000 <	Nejadi (2004)	D 0-50	5249114		10496 ^	34600	3.296	94110										318	12.32	13.20	200
0004 BBD SSMF114 310 c 10068 c 2000 1841 SSMF124 310 c 10068 c 2000 1841 SSMF114 310 c 10068 c 2000 1841 SSMF114 310 c 10068 c 2000 1841 SSMF114 310 c 10068 c 2000 1841 2000 1841 2000 1841 2000 1841 2000 1841 1870 1870 2848 278, S 228, S 278, S 228, S 278, S 228, S 278, S 2	Nejadi (2004)	B3-a	5249114		10498 <	34600	3.296	94818				, (,						380	13.25	13.30	99.0
8.9. SZ64114 3110 C10468 C 20000 1981 67200 1891 67204 27424 3745 2754	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	86532	ı								ı	0.1	3.16	1.97	160
83-b SEGN14 310 () () () () () () () () () (Nejadi (2004)	B3-b	5249114		10498 <	20800	1.981	86587										-	3.58	2.31	155
Marie Mari	Nejadi (2004)	B3-b	5249114		10498 <	20800	1.981	87202										5	3.76	2.55	147
National State Control Sta	Vejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	87310										e •	3.90	2.65	147
00004 85-b Scale11 7110 10488 20800 1981 2024 2014	Jejadi (2004) Jejadi (2004)	83-0 83-b	5249114		10498 <	20800	1.981	87479										4 ư	3.98	2.73	145.8
Sept	Nejadi (2004)	B3-b	5249114		10498 <	20800	1981	87811										9	4.15	2.96	140
RB-b SEG4114 3110 c 104486 c 20800 1981 b 6872 0 2140 b 208414 c 3110 c 104486 c 20800 1981 b 6872 0 2140 b 2176 b 2552417 c 2176 b 2552417 c 2176 b 2778 c 2778 c <t< td=""><td>Nejadi (2004)</td><td>B3-b</td><td>5249114</td><td>3110 <</td><td>10498 <</td><td>20800</td><td>1.981</td><td>88287</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>^</td><td>14.4</td><td>3.15</td><td>140</td></t<>	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	88287										^	14.4	3.15	140
CACHILL T100 CA	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	88619										- 00	4.57	3.25	140
(2) (2) <td>Nejadi (2004)</td> <td>B3-b</td> <td>5249114</td> <td>3110 <</td> <td>10498 <</td> <td>20800</td> <td>1.981</td> <td>88673</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td> <td>10</td> <td>4.72</td> <td>3.45</td> <td>136</td>	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	88673							•			10	4.72	3.45	136
0004) B3-b 524914 3110 10488 2 2800 1891 2708 1070 10480 2 2004 1891 2 2801 2 2703 2 1865 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 2 1803 2 2803 <t< td=""><td>Nejadi (2004)</td><td>B3-b</td><td>5249114</td><td>3110 <</td><td>10498 <</td><td>20800</td><td>1.981</td><td>88812</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.,</td><td></td><td>Ξ:</td><td>4.79</td><td>3.46</td><td>138</td></t<>	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	88812								.,		Ξ:	4.79	3.46	138
COUNTY SEAD CARRALL COUNTY CARRALL CARRALL COUNTY CARRALL CARRALL COUNTY CARRALL CARRA	Nejadi (2004) Nejadi (2004)	B3-b	5249114	3110 ×	10498 ^	20800	1.981	88872											4.86	3.53	137
(2004) 884 b 524914 311 c 10488 c 2880 n 1981 n 9005 n 1481 n 101048 c 2880 n 1981 n 2620 n 2620 n 2670 n 2670 n 2680 n 1981 n 9000 n	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1981	89758									•	<u> </u>	5.44	3.90	139
0.044 B3-b SZ49114 3110 c 10488 c 20000 1981 90331 121104 37968 20003 207.93 2020012 45000016 67105 20.93 20000 1981 90031 1121104 37968 200.93 1871 46200016 67105 20.93 20000 1981 90500 148.36 873006202 20.819 20.818 20.818 20.819 20.819 20.819 20.819 20.819 20.818 20.818	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	90006										20	5.62	4.04	139
2.249114 3110 10488 2.2800 1981 90482 1484 819066 3861 22867 22867 22867 22867 22867 22867 22867 22867 22867 22867 22867 22867 22870 228677 22867 228677	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	90313										73	5.85	4.24	138
2.49114 3110 × 10489 × 2.0000 1891 905600 148.30 905600 148.21 385.11 2.2451 4.24599600 17000 17000 1891 905600 148.30 973098923 148.82 2.9250 2.06.61 3.24713 4.24599600 17000 98.90 98.90 148.18 973098923 148.82 2.9261 2.0000 2.0000 1.88 9.0000 148.18 973098983 149.81 2.9260 2.0000 2.0000 1.88 973098983 149.81 2.9260 2.0000 2.0000 2.0000 3.89 148.18 9720980 149.81 7.0000 2.0000 2.0000 2.0000 3.89 148.81 972000 2.0000 3.89 3.0000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.00000 3.89 3.000000 3.89 3.000000	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	90482										25	5.94	4.30	138
9.004 B.5-b SZA9114 3110 10488 2.0800 1.981 90004 1.882 90004 1.884 90004 <	Nejadi (2004) Nejadi (2004)	83-0 83-0	5249114	3110 ×	10498 <	20800	1.981	90290										3 78	0.90 0.00	4.38	25.
6.24 6.24 <th< td=""><td>Nejadi (2004)</td><td>83-b</td><td>5249114</td><td>3110 ×</td><td>10498 <</td><td>20800</td><td>1981</td><td>00006</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td>5 25</td><td>6.11</td><td>1 4</td><td>13.5</td></th<>	Nejadi (2004)	83-b	5249114	3110 ×	10498 <	20800	1981	00006		_							•	5 25	6.11	1 4	13.5
R54 C24914 3110 C 10488 C 20800 1981 91236 147.45 B8329790 1222747 39971 206.06 35940027 147.80 B8239790 1222747 39971 206.06 3784002 14890 14	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	92606										36	6.34	4.69	135
2249114 3110 10488 20800 1981 91646 145.00 288418 10432 268418 1758814 185.00 364.3 268.3 268.13 20.224 3758814 185.00 48.5 185.00 48.5 185.00 48.5 185.00 48.5 185.00 48.5 26.24 48.3 26.24 48.5 26.24 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2 48.2 <th< td=""><td>Nejadi (2004)</td><td>B3-b</td><td>5249114</td><td>3110 <</td><td>10498 <</td><td>20800</td><td>1.981</td><td>91236</td><td></td><td>•</td><td></td><td>•••</td><td></td><td></td><td>.,</td><td>Ċ</td><td></td><td>47</td><td>6.71</td><td>5.20</td><td>129</td></th<>	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	91236		•		•••			.,	Ċ		47	6.71	5.20	129
6249114 3110 10488 20800 1981 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 91889 46.61 92088 46.61 91889 46.61 92088 46.61 91889 46.61 92088 46.61 91889 46.61 </td <td>Nejadi (2004)</td> <td>B3-b</td> <td>5249114</td> <td>3110 <</td> <td>10498 <</td> <td>20800</td> <td>1.981</td> <td>91646</td> <td></td> <td></td> <td></td> <td>.,.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>%</td> <td>7.01</td> <td>5.33</td> <td>131</td>	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	91646				.,.						%	7.01	5.33	131
COLOM B3-D CAPATITA TITO TOMAS CAPATITA TITO	Nejadi (2004)	83-0	5249114	3110 ×	10498 v	20800	1.981	91869				, ,						79 62	7.33	5.42	131.9
(2004) B3-b 5249114 3110 10498 20800 1981 927523 41817 30945 263.11 2012 39510288 495470218 1914926 95 782 63.49 5249114 3110 10498 20800 1981 92562 4715 31403 262.2 1933 4128871 96.2 782 1933 4128871 96.2 782 1933 4128871 96.2 782 1983 2712 56.3 196.4 97.7 418.4 911371260 414.8 43170 316.2 26.103 412.8 78.2 1984 42.212615 51.333 418.8 42.212615 51.334 41.8 41.8 41.8 41.4 4	vejadi (2004)	B3-b	5249114	3110 ^	10498 ^	20800	1981	92036				,						82 28	7.49	5.69	13.1
8-b 524914 3110 10488 20800 1981 9256 145.71 900204109 14378 262.21 199.38 41288719 50900410 82.2 199.38 41208719 50900410 82.2 199.38 421.76 176.2 199.38 176.2 199.38 176.2 199.38 176.2 189.38 189.38 271.3 180.48 275.25 180.38 180.3 43170 180.48 275.25 180.38 275.2 180.38 275.2 180.38 275.2 180.38 275.2 180.38 275.2 280.78 180.2 180.38 275.2 280.78 180.2 180.38 275.2 280.78 180.2 180.38 275.2 280.78 180.2 180.78 280.78 180.38 280.78 280.78 180.58 280.78 280.78 180.58 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.78 280.7	Vejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	92116			•							92	7.82	5.97	131
83-b 5249114 3110 < 10498 20800 1981 937785 14541 906146441 138897 43170 3165 56153165 5153165 5153165 2001159 122 833 2624014 3110 < 10498	Nejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	92562										108	8.22	6.17	133
6246 E3-b 5249114 3110 10498 20800 1981 93147 144.94 4186 3198 261,03 19704 43639487 2626718 1952 261,03 19704 43639487 2626718 1952 261,03 1950 261,03	lejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	92785										122	8.33	6.37	130
83-b 524914 3110 < 10498 < 20800 1.981 93288 144.17 4419 25038340 144187 35722 256.77 1965 4419437 3788 864 15648 864 14618 14617 365004) 83-b 5249114 3110 < 10498 < 20800 1.981 93417 144.08 \$20030340 1496421 45200 32633 256.74 1494.7 44323931 546546642 2126948 880 880 880 82.8 880 82.004) 83-b 5249114 3110 < 10498 < 20800 1.981 9448 143.70 \$26192684 1527434 45778 32910 259.18 193.35 47625028 554946291 2166331 272 8.94 880 83.0 83-b 5249114 3110 < 10498 < 20800 1.981 9448 143.8 \$200770874 45778 32910 259.18 193.35 47565028 5549465291 2166331 272 8.94 899 83.0 92.1	lejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	93147										152	8.56	6.67	128
24911 5-0 524911 5110 < 10496 < 20800 1.981 93617 144.06 92519284 1527434 45778 32910 259.14 194.47 405.0292 554945921 2166331 2.22 8.540 1.0498 < 20800 1.981 94480 143.25 932519284 1527434 45778 32910 259.18 193.35 47525028 554945921 2166331 2.72 8.94 7.2004)	ejadi (2004)	B3-b	5249114	3110 <	10498 <	20800	1.981	93286				.,.				_		186	8.64	6.92	124.9
254911 3110 < 10498 < 20800 1.381 9480 142.82 1936426 447108 33540 2578, 19309494 514737437 258999 380 92.1 7.	lejadi (2004)	B3-D	5249114	3110 v	10498 v	20800	1.981	93817		_ `						., .		228	08.80	7.34	118
0004) B3-b 6249114 3110 < 10498 < 20800 1.981 94818 142.82 934975553 1598523 47108 33540 257.92 190.83 50306941 574373437 2249899 380 9.21 7.	vejadi (2004)	B3-b	5249114	3110 ^	10498 ^	20800	1981	94480										318	0.00	7 84	116
	Vejadi (2004)	B3-b	5249114	3110 <	10408	00000)														

		ı	Study information	ation 2	3	Cracking moment	oment 5	9	2	6	State I	=======================================	12	13	41	State II	16	17	18	19	Deflection 20 21		22
		듈	ľo	9	~ _	(Nm)	(Nm)	_{nax} (Nm) M _{max}		Z 1,1	-	S ₁ (mm³)	A _{ll} (mm²)	9		(ELE)				(days)	a exp		a _{num.Int.} /a _{exp} (%)
	1. 1. 1. 1. 1. 1. 1. 1.	ilbe	rt and Nejadi (2004) rt and Nejadi (2004)	S1-a S1-a	1705549 1705549	2373 < 2373 <	3411 < 3411 <	6810 6810	1.996 1.996						139.36	123.73	1019989	23374322	195462 197210	0.1		7.14	161.2
	Column C	ilber	t and Nejadi (2004)	S1-a	1705549	ი	3411 <	6810	1.996					- '	138.54	122.09	1188776	25778397	216571	2 0	14.25	10.50	135.7
	Marie Mari	ilber	and Nejadi (2004)	N N 0	1705549	2373 <	3411 ×	6810 6810							138.41	121.57	1217169	26562411	223486	ω 4	14.57	10.90	133.6
	Column C	ilber	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	138.22	121.45	1260601	26754104	225170	S	14.91	11.60	128.5
	Color Colo	illber ilber	and Nejadi (2004)	S1-a	1705549	2373 <	3411 ×	6810							137.84	120.7	1347475	27900109	235315	9 1	15.15	12.10	125.2
No. 10.000 No.	Column C	ilbert	and Nejadi (2004)	S-l-a	1705549	2373 <	3411 ^	6810 6810				Ì			136.98	118.97	1559870	30622181	259519	~ 00	16.15	13.00	124.2
	Color Colo	ilbert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	136.92	118.86	1575113	30800878	261124	10	16.48	14.00	117.7
Column C		ilbert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	136.79	118.59	1611065	31260838	265238	Ξ:	16.63	14.00	118.8
		libert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810							136.72	118.46	1628376	31455852	266982	ω έ	16.80	14.10	119.1
Column C	No. 10. No.	il ber	and Nejadi (2004)	0 - 0 - 0	1705549	2373 <	3411 ^	6810							135.21	116.75	1866722	33 130400	202578	ο ά	18 13	15.40	17.0 27.0
No. 10.000 1.0.000	10.10 51.4 117566 22.7 51.41 20.7 12.4 11.5 20.7 12.4 11.5 12.5 12.4 12.5	had		2 C	1705549	2373 <	3411 <	6810							135.64	116.29	1934118	35080167	299570	2 8	2 2 2	15.50	119.7
No.	15.5. 15.5. 17.55. 25.5. 17.55. 25.5. 17.55. 25.5. 17.55. 25.5. 17.55. 25.5. 17.55. 25.5. 17.55. 15.5.	lbert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						,	135.36	115.74	2019115	36034436	308224	23	19.07	16.40	116.3
	15.2. 17.0.2.2. 17.0.0.2. 17.0.2.	ilbert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810			,			_	135.21	115.44	2065583	36553586	312928	52	19.27	16.60	116.1
The control of the	14.1. 14.1. <th< td=""><td>ilbert</td><td>and Nejadi (2004)</td><td>S1-a</td><td>1705549</td><td>2373 <</td><td>3411 <</td><td>6810</td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td>135.15</td><td>115.31</td><td>2086008</td><td>36796686</td><td>315131</td><td>28</td><td>19.30</td><td>16.60</td><td>116.3</td></th<>	ilbert	and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810			_			_	135.15	115.31	2086008	36796686	315131	28	19.30	16.60	116.3
Column C		ilber	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	135.15	115.31	2086008	36796686	315131	31	19.37	16.90	114.6
Column C	100.00 51.3 TYTOOGA 25.1 25.	ilber	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810			_			_	135.03	115.07	2125184	37221783	318976	8	19.66	16.80	117.0
Column C	15.9.1. 15.9.2. <t< td=""><td>ilber</td><td>t and Nejadi (2004)</td><td>S1-a</td><td>1705549</td><td>2373 <</td><td>3411 <</td><td>6810</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>134.79</td><td>114.6</td><td>2202876</td><td>38060861</td><td>326626</td><td>39</td><td>20.17</td><td>17.40</td><td>115.9</td></t<>	ilber	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	134.79	114.6	2202876	38060861	326626	39	20.17	17.40	115.9
1. 1. 1. 1. 1. 1. 1. 1.	100.00 55.3.4 177656.0 25.3.4 17765.0 25.3.4 <td>ilber</td> <td>t and Nejadi (2004)</td> <td>S1-a</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>6810</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>134.57</td> <td>114.15</td> <td>2273746</td> <td>38833637</td> <td>333649</td> <td>47</td> <td>20.98</td> <td>18.30</td> <td>114.7</td>	ilber	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	134.57	114.15	2273746	38833637	333649	47	20.98	18.30	114.7
Name		ilber	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	134.23	113.48	2388479	40044379	344739	25	21.64	18.60	116.4
91.4 1779,640 27.5 1.4 17.5 2.5 17.5 2.5 17.5 2.5 17.5 2.5 17.5 2.5 17.5 2.5 17.5 2.5 17.5 2.5		ilbe	rt and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	134.06	113.13	2449545	40700047	350745	62	21.95	18.70	117.4
	The part	ilbe	rt and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						_	133.92	112.86	2497754	41187868	355230	73	22.36	19.20	116.4
	May 2004 S1-4 TYTOS-6 2017 - 2017 </td <td>ilbe</td> <td>rt and Nejadi (2004)</td> <td>S1-a</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>6810</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>133.88</td> <td>112.78</td> <td>2511643</td> <td>41326500</td> <td>356494</td> <td>85</td> <td>22.71</td> <td>19.20</td> <td>118.3</td>	ilbe	rt and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810							133.88	112.78	2511643	41326500	356494	85	22.71	19.20	118.3
Main	The sign of the control of the contr	i Be	rt and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810							133.86	112.73	2518607	41412897	357282	95	23.40	19.20	121.9
15.5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	The sign of the control of the contr	il De	t and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810						,	133.52	112.04	2643767	42693481	369029	108	24.29	19.60	123.9
	the which (2004) S14 (19654) S15 (2014) C1 (19654) S15 (2014) C1 (19654) S15 (2014) C1 (19654) S15 (2014) S15	ill be	rt and Nejadi (2004)	S1-a	1705549	2373 <	3411 <	6810							133.35	111.71	2706654	43323767	374880	2 5	24.54	20.40	120.3
National Column	the bland (2004) Si a 1705649 S	il De	t and Nejadi (2004)	<u>v</u> 2	1705549	2373 ^	0411 ×	6810						- 、	133.08	110.07	2610333	44339502	384230	198	20.02	00.12	10.0
S1.9 TYTOSABA 27.9 21.9 TYTOSABA 27.9 17.0 27.9	Month Month (2004) St. a Types 277.5 c. 3411 c. 6870 (1996) GREG (1751) Type (1762) 278.5 c. 3411 c. 6870 (1996) GREG (1751) Type (1762) 278.5 c. 3411 c. 6870 (1996) GREG (1751) Type (1762) Type	E G	t and Nejadi (2004)	2 0	1705549	22/3	0411 0411 0411	00 10			- ,			- 、	132.90	10.97	200000	46172002	307007	00 0	25.23	22.30	9 9
The color Si a Tricola Si a Tr	National	il De	t and Nejadi (2004)	0.7 o	1705549	2373 <	3411 ^	6810							132.39	100 79	2083200	461/3823	408020	273	25.03	23.50	109.0
St. 2 TYTOGRAM STATE	National State Trigged	1 2	t and Nejadi (2004)	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	1705549	2373 <	3411	6810			•				132 13	109.79	3188573	47960668	417947	318	26.32	25.00	105.1
1.5. 1.5.	State Contingent Continge	ilber	t and Nejadi (2004)	S-1-a	1705549	2373 <	3411 ^	0810		·					131.91	108.84	3284690	48861283	426326	380	26.53	25.10	105.7
51. 71.00 52. 71.00 52. 71.00	TOTAL DIAGRAPH STATE TOTAL DIAGRAPH STATE STAT	ilbe	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	139.36	123.73	1019989	23374322	195462	0.1	6.85	2.72	251.9
St. b TYDES-90 2373 4.41 C 200 1-4-6 C 200 1-4-6 <t< th=""><th> St. b) Tronglesson Tronglesson Tronglesson St. b) Tronglesson T</th><th>ilber</th><th>t and Nejadi (2004)</th><th>S1-b</th><th>1705549</th><th>2373 <</th><th>3411 <</th><th>5280</th><th></th><th></th><th></th><th></th><th></th><th>_</th><th>139.3</th><th>123.6</th><th>1032760</th><th>23574306</th><th>197210</th><th>-</th><th>9.51</th><th>4.78</th><th>199.0</th></t<>	St. b) Tronglesson Tronglesson Tronglesson St. b) Tronglesson T	ilber	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280						_	139.3	123.6	1032760	23574306	197210	-	9.51	4.78	199.0
St. D. T/1056-0 St. D. St. D. T/1056-0 St. D. T/1056-0 <th< td=""><td> State Stat</td><td>ilbert</td><td>and Nejadi (2004)</td><td>S1-b</td><td>1705549</td><td>2373 <</td><td>3411 <</td><td>5280</td><td></td><td></td><td></td><td></td><td></td><td>_</td><td>138.54</td><td>122.09</td><td>1188776</td><td>25778397</td><td>216571</td><td>2</td><td>9.88</td><td>5.66</td><td>174.6</td></th<>	State Stat	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280						_	138.54	122.09	1188776	25778397	216571	2	9.88	5.66	174.6
S1-b TY0056-0 S1-b TY005-0 S	STAD TYTOSS-10 277.5 4 341.4 7.5.6 13002/RED 1172.4 130.2 21.4.5 120.0 MINISHI (2004) STAD 1705649 277.5 4 341.4 7.5.6 13002/RED 1170.4 157.7 14.41 13.2. 12.4.5 12.00 MINISHI (2004) STAD 1705649 277.5 4 341.4 2.5.0 15.4.6 64459 7.5.0 13101014 12.2 12.4.4 13.2 12.4.5 12.0 12.4.7 12.0 12.4.4 <td>ilbert</td> <td>and Nejadi (2004)</td> <td>S1-b</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>5280</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>138.41</td> <td>121.84</td> <td>1217169</td> <td>26160864</td> <td>219953</td> <td>က</td> <td>10.15</td> <td>6.05</td> <td>167.8</td>	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280						_	138.41	121.84	1217169	26160864	219953	က	10.15	6.05	167.8
State Stat	S1-b TY00549 ZST3 k 3411 k ZSD9 1548 4459 7559 1569 1578 1360 1378	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280						_	138.28	121.57	1246010	26562411	223486	4	10.31	6.25	164.9
S1-D V100644 V100644 V100644 V100644 V100644 V100644 V100644 V1006444 V1006444 V1006444 V1006444<	Name Negation S1-b 17054-9 27.73 3 411 5 22.80 15-b 17054-9 17.73 14.14 13.82 11.73 11.74 14.74	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280			_			_	138.22	121.45	1260601	26754104	225170	2	10.44	6.58	158.7
1,000-19 1,000-19	ST-D T/005-84 227.3 3.411 5.260 15.48 647.62 7.50 11.716 11.717 11.414 13.68 118.96 17.43 ST-D T/005-84 227.3 3.411 5.26 15.48 647.82 75.2 114.967.1 13.68 118.86 118.96 17.17 14.414 13.68 118.86 15.91 ST-D T/005-84 227.3 3.411 5.26 15.48 64.92 75.2 15.48 17.77 14.44 13.68 118.86 15.91 ST-D T/005-84 227.3 3.411 5.28 15.48 66.95 75.41 16.28 16.84 16.84 16.87 16.84 16.87 16.84 16.87 16.84 16.87 16.84 16.84 17.78 14.41 13.68 11.84 16.87 16.84 16.84 17.78 14.44 13.68 11.84 16.87 16.84 16.87 16.84 16.84 16.84 17.78 14.44 13.68	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280			_ ,			,	137.84	120.7	1347475	27900109	235315	9 1	10.64	6.99	152.2
National Column St. 10 National Column S	National	IIIDer	and Nejadi (2004)	ST-0	1/05549	23/3 <	3411 <	2280	1.548			. ,			137.33	119.67	14 72097	29519343	249685	~ 0	1.13	7.7	744.5
Part	Silva	T de di	and Nejadi (2004)	2 4	1705549	2373	3411	3200 5280	1.340			•	- ,		136.00	10.97	1525070	30800878	253519	5 ه	14.14	0.00	5. 5.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	rand Nejadi (2004) S1-b 1706549 S273 < 3411 < 5280 1548 64677 75.19 15165594 15375 1747 1742 156510 156520 15672 1	l par	and Neiadi (2004)	2 5	1705549	2373 <	3411 ×	5280	1.548				,		136.79	118.59	1611065	31260838	265238	2 =	2,7	8.76	135.7
S1-b T105640 S1-b S1-b T105640 S1-b S1	Rich (Bold) ST-D 1705649 2273 c 3411 c 5280 1548 6503 75 od 120449734 157785 1808 1805 <th< td=""><td>bert</td><td>and Nejadi (2004)</td><td>S-1-5</td><td>1705549</td><td>2373 <</td><td>3411 <</td><td>5280</td><td>1.548</td><td></td><td>,</td><td></td><td>,</td><td>,</td><td>136.72</td><td>118.46</td><td>1628376</td><td>31455852</td><td>266982</td><td><u> </u></td><td>12.02</td><td>68.8</td><td>135.3</td></th<>	bert	and Nejadi (2004)	S-1-5	1705549	2373 <	3411 <	5280	1.548		,		,	,	136.72	118.46	1628376	31455852	266982	<u> </u>	12.02	68.8	135.3
S1-b T105540 2273 c 3411 c S260 15-88 14-89 15-89 15-89 15-89 14-89 15-89 15-89 15-89 15-89 14-89 15-89 15-89 14-89 15-89 <	S1-b 1705549 2773	lbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		_			,	136.21	117.44	1769510	33156406	282243	9	12.67	9.47	133.8
S1-b 1705549 2373 c 3411 c 2280 1548 1277 c 1556 c 1556 c 1548 c 1570 c 1556 c 1550 c 1548 c 1570 c 1556 c 1570 c	S1-b T/06549 2373 411 5280 1.548 6526 74.86 192719205 16546 1554 16579 16578 1564 16579 16578 1564 16579 16578 1564 16579 1578 1654 16579 1578 1656 1579 1578 1656 1579 1578 1656 1579 158 1656 1579 158 1657 1570 158 1570 158 158 1570 158 1570 158 158 155 1570 158 158 158 155 1570 158	liber	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		,		•	,	135.87	116.75	1866722	34305495	292578	. 62	13.16	9.86	133.4
S1-b T105549 2733 s 4411 s C280 1544 65297 7427 130000250 1554 1553 s 1544 201911 55004483 3602443 2373 s 1411 s C280 1544 65480 74.77 132000000 1554 1654 1543 1562 1549 65480 74.77 132224478 17325 1154 201911 55.00 1548 65480 74.77 132224478 17325 1154 201910 3670000 367000 </td <td>S1-b T705549 2273 4 4 5280 1548 65397 74.7 13000250 169056 1910 15709 155.0 1570 1548 65480 74.7 13300250 16905 1570 155.1 155.1 155.1 155.1 155.4 2010115 S1-b 1705549 2373 2 3411 5 5280 1548 6548 74.0 132247 1920 1568 16800 S1-b 1705549 2773 2 3411 5 5280 1548 6548 74.0 13224478 17325 156 1568 6648 74.0 1322474 1757 157 1568 16648 1700 1588 6648 74.0 13224 1568 16668 1700 1800 1568 16648 1700 1800 1568 1700 170569 1568 1700 170569 1800 1700 1800 1700 1700 1700 1700 1700</td> <td>ilber</td> <td>and Nejadi (2004)</td> <td>S1-b</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>5280</td> <td>1.548</td> <td></td> <td></td> <td>•</td> <td>•</td> <td>_</td> <td>135,64</td> <td>116.29</td> <td>1934118</td> <td>35080167</td> <td>299570</td> <td>50</td> <td>13,51</td> <td>10.20</td> <td>132.4</td>	S1-b T705549 2273 4 4 5280 1548 65397 74.7 13000250 169056 1910 15709 155.0 1570 1548 65480 74.7 13300250 16905 1570 155.1 155.1 155.1 155.1 155.4 2010115 S1-b 1705549 2373 2 3411 5 5280 1548 6548 74.0 132247 1920 1568 16800 S1-b 1705549 2773 2 3411 5 5280 1548 6548 74.0 13224478 17325 156 1568 6648 74.0 1322474 1757 157 1568 16648 1700 1588 6648 74.0 13224 1568 16668 1700 1800 1568 16648 1700 1800 1568 1700 170569 1568 1700 170569 1800 1700 1800 1700 1700 1700 1700 1700	ilber	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548			•	•	_	135,64	116.29	1934118	35080167	299570	50	13,51	10.20	132.4
51-b 7705549 2773 4 4 77 1 2 1 2 4 4 7 1 2 4	S1-b 1705549 2373	ilber	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	135.36	115.74	2019115	36034436	308224	23	13.95	10.80	129.2
51-b 17065-49 2373 4 5200 15-64 65-48 74.70 13223-478 15-34 16-34 <th< td=""><td>S1-b 1706549 2773 4 4520 1540 65489 74.70 13232447 173425 1837 1561 115.15 115.15 115.00 15.00</td><td>ilber</td><td>and Nejadi (2004)</td><td>S1-b</td><td>1705549</td><td>2373 <</td><td>3411 <</td><td>5280</td><td>1.548</td><td></td><td></td><td></td><td>•</td><td>_</td><td>135.21</td><td>115.44</td><td>2065583</td><td>36553586</td><td>312928</td><td>25</td><td>14.12</td><td>10.90</td><td>129.6</td></th<>	S1-b 1706549 2773 4 4520 1540 65489 74.70 13232447 173425 1837 1561 115.15 115.15 115.00 15.00	ilber	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548				•	_	135.21	115.44	2065583	36553586	312928	25	14.12	10.90	129.6
S1-b T705549 27.7 c 3.41 c 5.20 1.54 c 65.40 c 7.42 c 1.54 c 1.55 c <td>and Nejadi (2004) S1-b 170549 2773 4 411 5 280 1.54 470 13323478 17342 1837 155 114 114<</td> <td>ilber</td> <td>t and Nejadi (2004)</td> <td>S1-b</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>5280</td> <td>1.548</td> <td></td> <td></td> <td></td> <td>٠</td> <td>_</td> <td>135.15</td> <td>115.31</td> <td>2086008</td> <td>36796686</td> <td>315131</td> <td>28</td> <td>14.15</td> <td>10.90</td> <td>129.8</td>	and Nejadi (2004) S1-b 170549 2773 4 411 5 280 1.54 470 13323478 17342 1837 155 114 114<	ilber	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548				٠	_	135.15	115.31	2086008	36796686	315131	28	14.15	10.90	129.8
31-b 1705549 2773 4 <	and Nejacii (2004) S1-b 176649 273 s 3411 s 520 1546 13366778 1650 1650 1546 13366780 1550 1650 1540 13366780 1650 1650 1550 1540 2273 s 1411 s 2273 s	ilber	and Nejadi	S1-b	1705549	2373 <	3411 <	5280	1.548				,	_	135.15	115.31	2086008	36796686	315131	33	14.20	11.20	126.8
S1-b T705549 2373 4.11 5.20 1.548 6564 7.459 13861790 16074 1617 1416 2202876 38060861 23.30 1.548 65543 7.451 13867366 1644 65643 7.451 1634 16524 1446 2202876 38060861 23.30 1.548 6574 7.451 1445 1445 1446 2202877 3804048 3804088	and blejadi (2004) S1-b 176549 2373 4 4 6594 7459 13361979 18977 1617 134.79 114.6 2008/9 and blejadi (2004) S1-b 170549 2373 4 3411 6 6594 144.0 143285796 16944 1617 134.7 144.5 144.6 2008/9 and blejadi (2004) S1-b 1705549 2373 4 3411 6 6590 1548 6589 74.5 1442894 2007 1644 144.2 144.5	ilber	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		_		•	_	135.03	115.07	2125184	37221783	318976	8	14.45	11.10	130.2
S1-b T/05649 2773 4 4 4 4 4 4 4 4 4 4 4 4 4 5 4 4 170549 4 4 170549 4 4 170549 4 4 170549 4 4 170549 4 4 170549 4 4 170549 4 4 170549 4	and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1548 6574 1455 1458 574 (1451 1451 1451 1451 1451 1451 1451 14	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		_		,	_	134.79	114.6	2202876	38060861	326626	38	14.89	11.60	128.4
S1-b T705549 2373 4.11 5.280 1.548 6580 7.40 144238241 1624 134.23 113.48 2388479 40044379 34739 54 16754 134.23 113.48 20540 1548 6580 7.43 14433884 18526 2073 4 1705549 2773 4 1705549 2773 4 14433884 112.86 20794 1686 113.28 2447754 417064 37.90 36.49 7.30 1705549 2773 4 1705549 27.30 1.548 60061 74.27 13459846 100.96 10.96 10.96 10.96 11.78 251647 41.286 2373 41.286 2373 41.44 13456218 20095 12.86	nucl bejacil (2004) S1-b 1706549 2373 4.40 154.332371 1694.74 154.2332715 1694.74 154.2332715 1694.74 154.2332715 1694.74 154.233271 1694.74 154.233271 1694.74 154.26 1694.74 154.26 1694.74 154.86 69.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.48 66.90 15.49 16.90 20.90 16.86 113.38 112.38 112.86 20.90 No. 1 1705549 237.3 234.1 52.80 15.48 660.1 74.2 13466247 21.76 17.26 13.38 11.2.8 2016.4 No. 1 1705549 237.3 3411 52.80 15.48 660.1 74.4 13506703 17.24 13.42 17.04 243.76 No	ilber	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	134.57	114.15	2273746	38833637	333649	47	15.60	12.40	125.8
8 th 1705549 2373 s 4411 s 520 1548 65280 743 144589644 16754 134,05 143,13 1445645 370,45 1445645 1548 66043 74.28 144580644 16824 133,28 114,13 2446545 417076649 2373 s 4111 s 5280 1548 66043 74.27 14463472 2009 16864 133,28 112,78 251644 417289 356494 82 1768 17	and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 66380 74.33 13443694 196226 20734 16754 134.06 1313 2449546 and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 66041 74.27 134692046 19205 200056 20958 1691 133.86 112.78 2419546 and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 6607 74.14 135067038 200056 21895 173.88 112.78 2518677 and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 6627 74.08 135067038 200046 21899 17740 1733.8 11.77 200654 and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 6639 73.8 135067038 20042 21814 2189 173.8 11.77 200654 and Nejadi (2004) S1-b (1705549 2373 < 3411 < 5280 1.548 6639 73.8 13506703 21814 2189 1759 1759 1759 1759 1759 1759 1759 175	ilber	t and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548			•		_	134.23	113.48	2388479	40044379	344739	25	16.17	12.60	128.3
S1-b T705549 2373 s 3411 s 5280 1548 66043 7429 14808-day (2004) 1684 13.38 11.286 2497754 4187768 3550 15.8 15.8 16.8 2497754 41870680 35.9 17.0 17.0 25.0 15.4 66041 74.27 134634752 20096 13.8 11.27 25.16607 41.42897 35.2 17.0 35.0 15.4 66073 74.2 13.466218 20096 13.38 11.27 25.16607 41.42897 35.26600 35.0 15.8 17.0 35.26600 35.0 15.8 66.2 15.4 66.2 15.4 66.2 17.0 17.0 17.0 41.2 25.1 41.2 81.0 17.0 41.2 41.2 82.0 17.6 41.2 41.2 82.0 17.6 17.6 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0	and Nejadii (2004) S1-b 1706549 2373 < 3411 < 5200 1548 66043 74.29 134650046 199286 20907 16864 133.92 112.86 2497754 10004 10004 10004 10004 100054 100054	ilber	: and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		_	`		_	134.06	113.13	2449545	40700047	350745	62	16.43	12.70	129.4
S1-b 1705549 2373 2341 2520 1548 66073 74.26 134634752 200096 20956 1548 112.78 2511643 413565079 355494 82 17.08	S1-b 1705549 2373 4 4 5 6 6 7 134634752 200096 6689 13.88 11.273 2511643 Molesial (2004) S1-b 1705549 2373 4 15 6 6 7 14 134662181 200096 1689 13.88 11.273 251643767 and Nejadi (2004) S1-b 1705549 2373 3411 5 280 1.548 66240 74.41 1306703 21428 17321 133.86 11.204 2843767 and Nejadi (2004) S1-b 1705549 2373 3411 5 280 1.548 66240 74.41 13506708 17321 133.86 11.204 2843767 and Nejadi (2004) S1-b 1705549 2373 3411 5 280 1.548 66437 73.91 13593 17324 133.36 11.17 280333 and Nejadi (2004) S1-b 1705549 2373 3411 5 28	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548		_			_	133.92	112.86	2497754	41187868	355230	73	16.78	13.50	124.3
S1-b T705549 2373 4411 5280 1548 66073 7426 134862181 500812 20083 16910 133.86 112.73 2518607 41412897 357722 95 1769 S1-b 1705549 2373 3411 5280 1548 66240 74.14 13060708 20832 1242 1786 133.85 11.71 2649481 36029 108 1466 S1-b 1705549 2373 2411 5280 1548 66245 73.98 135.86 11.71 2649481 36029 108 1868 S1-b 1705549 2373 2411 5280 1548 66547 73.98 1786 1732 171.71 2847897 3787 186 195 176 178 133.88 11.71 2847897 3787 186 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486 1486	and Nejadi (2004) S1-b 1705549 2373 4 4 6 4 4 6 6 7 4 6 6 7 4 134662181 200612 20983 16910 133.68 112.73 2516607 And Nejadi (2004) S1-b 1705549 2373 4 3411 5280 1.548 6623 74.08 135569703 212191 21646 1732 117.17 2810335 and Nejadi (2004) S1-b 1705549 2373 4 3411 5280 1.548 66459 73.98 135569703 21299 17540 133.58 11.17 2810335 and Nejadi (2004) S1-b 1705549 2373 3411 5280 1.548 66511 73.99 17644 17324 133.59 11.17 2810333 And Nejadi (2004) S1-b 1705549 2373 3411 5280 1.548 66511 73.99 12093 17644 132.59 110.2 239338 <td>ilbert</td> <td>and Nejadi (2004)</td> <td>S1-b</td> <td>1705549</td> <td>2373 <</td> <td>3411 <</td> <td>5280</td> <td>1.548</td> <td></td> <td></td> <td></td> <td>•</td> <td>_</td> <td>133.88</td> <td>112.78</td> <td>2511643</td> <td>41326500</td> <td>356494</td> <td>82</td> <td>17.08</td> <td>13.50</td> <td>126.6</td>	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548				•	_	133.88	112.78	2511643	41326500	356494	82	17.08	13.50	126.6
S1-b T06549 2373 < 3411 < 5280 1548 6623 74.08 135067038 208942 21435 112.04 2643761 2364361 389029 108 1846 122 1204 2643761 2364361 389029 122 1848 24648 24	and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 6623 74.08 1352667038 208942 21426 17186 133.52 112.04 26436777777777776540 2373 < 3411 < 5280 1548 6659 73.88 1355687702 21219 1 2199 17564 173.18 133.52 112.04 26439 26430 2004) S1-b 1705549 2373 < 3411 < 5280 1548 6651 73.94 13579277 20766 2129 1761 133.88 113.78 1103.79 2847994 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 6651 73.94 1357127 20766 2129 1761 132.89 110.97 2847994 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 6652 73.1 13646272 24921 22914 18091 132.39 110.2 299398 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 66958 73.61 13648273 24921 22914 18091 132.39 109.79 3188573 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 66958 73.61 13788239 24672 2351 186782 373 < 3411 < 5280 1548 66958 73.61 13788239 24672 2351 187883814 241030 23252 18294 132.13 109.29 3188573 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1548 67085 73.52 13788239 246774 23561 18778 131.91 108.84 3284890	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	133.86	112.73	2518607	41412897	357282	92	17.69	14.40	122.9
S1-b 1705549 2373 3411 5280 1.548 66323 74 08 135586702 21291 2164 1721 133.5 11171 2700654 43323767 37480 122 18.88 1705549 2573 4380 1.548 66450 73.98 13649446 22193 22634 1750 11037 2847994 4772247 37807 16979 1760 11037 2847994 4772247 37807 16979 17618 132.98 1103 2847994 4772247 37807 16979 17618 132.98 1103 2847994 4772247 37807 16979 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 18618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 17618 1761	and Nejacil (2004) S1-b 7705549 2373 < 3411 < 5280 1548 66459 7308 135508702 212191 21644 17321 133.5 111.7 2706549 210.004	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	133.52	112.04	2643767	42693481	369029	108	18.46	14.90	123.9
and klejadi (2004) S1-b (176549 2373 < 3411 < 5280 1.548 66459 73.98 135594645 21980 17540 133.08 11.17 2810333 43399702 334329 152 19.12 1705549 2373 < 3411 < 5280 1.548 66710 73.79 136194146 229793 22674 17024 17024 17024 17024 17025 209388 4717382 17024 17025 209388 4717382 17025 200 1.548 66710 73.79 136194146 22979 22914 18001 132.99 10.97 3083700 46996915 40892 277 < 3411 < 5280 1.548 66710 73.71 136463720 224921 22914 18001 132.39 109.79 3083700 46996915 40892 272 19.88 17005 40892 2373 < 3411 < 5280 1.548 6708 73.51 13078330 246724 23561 14776 131.91 109.84 2284690 4881283 4.03378 380 2.040	and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66545 73.98 135694645 218401 21999 17540 133.08 111.17 2810333 and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66511 73.94 13571927 220766 22979 17259 1705749 1705549	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	133.35	111.71	2706654	43323767	374880	122	18.68	15.50	120.5
and Nejadi (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66511 73.94 135719237 220766 22129 17618 132.98 110.97 2847994 44722647 387807 186 19.27 1705549 2373 < 3411 < 5280 1.548 66710 73.79 136194146 229793 22634 110.2 299338 46173823 401278 228 19.60 15.64 1705549 2373 < 3411 < 5280 1.548 66823 73.71 136462720 234921 22914 18091 132.39 109.79 308370 46996915 408929 277 2 19.88 19.60 1.548 66823 73.71 136783814 241030 23.52 137823 47990686 47797 318 20.18 1705549 2373 < 3411 < 5280 1.548 670785 73.52 1377082330 246724 23.561 19.77 131.31 108.84 32.88690 48891323 42832 38.0 20.40	and Nejacii (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66511 73.94 135719237 220766 22129 17618 132.98 110.97 2847994 Nejacii (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66823 73.11 136462720 234921 22914 130.79 132.59 110.2 299388 and Nejacii (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66958 73.61 136783814 241030 23252 18294 132.13 109.29 3188573 and Nejacii (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 66958 73.61 137883814 241030 23252 18294 132.13 109.29 3188573 and Nejacii (2004) S1-b 1705549 2373 < 3411 < 5280 1.548 67085 73.51 137882330 246724 2356 16476 131.91 108.84 3284690	ilbert	and Nejadi	S1-b	1705549	2373 <	3411 <	5280	1.548					_	133.08	111.17	2810333	44339502	384230	152	19.12	16.50	115.9
S1-b 1706549 2373 < 3411 < 5280 1548 66710 73.79 136194146 229793 22634 17924 132.59 110.2 2999388 46173823 401278 228 19.60 17005549 2373 < 3411 < 5280 1548 66853 73.71 136492720 224621 22914 18091 132.39 109.79 3083700 46980695 47927 272 19.88 17005549 2373 < 3411 < 5280 1548 67955 73.61 136789314 241030 23252 18234 132.13 109.29 31885708 48906058 47747 318 20.18 17005549 2373 < 3411 < 5280 1548 67085 73.52 137082330 246724 23.561 18.77 131.91 108.84 23284590 48861783 426326 339 240.40	S1-b 1705549 2373 < 3411 < 5280 1.548 66710 73.79 136194146 229793 25634 17924 132.89 110.02 289388 S1-b 1705549 2373 < 3411 < 5280	illbert	and Nejadi	S1-b	1705549	2373 <	3411 <	5280	1.548		_			_	132.98	110.97	2847994	44722647	387807	186	19.27	17.20	112.1
S1-b 1705549 2373 < 3411 < 5280 1.548 66823 73.71 136462720 234921 22914 18091 132.39 109.79 3083700 46986915 4708929 277 19.88 1705549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 22561 14476 131.91 109.29 3188573 47960668 417947 318 20.18 S1-b 1705549 2373 < 3411 < 5280 1.548 67085 73.52 1377082330 246724 22561 14476 131.91 108.84 2284690 48861283 426326 380 20.40	S1-b 1706549 2373 < 3411 < 5280 1.548 66823 73.71 136462720 224921 22914 18091 132.39 109.79 3083700 S1-b 1706549 2373 < 3411 < 5280 1.548 66958 73.61 136783814 241030 23252 18294 132.13 109.29 3188573 S1-b 1706549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 23561 18476 131.91 108.84 3284690	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					_	132.59	110.2	2999388	46173823	401278	228	19.60	18.40	106.5
S1-b 1705549 2373 < 3411 < 5280 1.548 66958 73.61 136783814 241030 23252 18294 132.13 109.29 3188573 479609668 417947 318 20.18 S1-b 1705549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 23561 18476 131.91 108.84 3284690 48861283 426326 380 20.40	S1-b 1706549 2373 < 3411 < 5280 1.548 66658 73.61 136783814 241030 22222 18294 132.13 109.29 3188573 S1-b 1706549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 23561 16476 131.91 108.84 3294690	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548				•	_	132.39	109.79	3083700	46996915	408929	272	19.88	19.00	104.6
S1-b 1705549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 23561 18476 131.91 108.84 3284690 48861283 426326 380 20.40	S1-b 1705549 2373 < 3411 < 5280 1.548 67085 73.52 137082330 246724 23561 18476 131.91 108.84 3284690	ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548				.,	_	132.13	109.29	3188573	47960668	417947	318	20.18	19.80	101.9
		ilbert	and Nejadi (2004)	S1-b	1705549	2373 <	3411 <	5280	1.548					1	131.91	108.84	3284690	48861283	426326	380	20.40	19.90	102.5

Author Gilbert and Nejadi (2004) S2-a Gilbert and Nejadi (2004)	(mm²) Maw 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859 1766859	2373 < 2373 <	1	M _{max} /		(mm²) z _{1,1} (mm)						-			S. (mm³) 1-1	a majura		Gnim	anim int /ann
	1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899	2373 <	(Nm) M _{ma}		₹		-	S _i (mm³)	A _{II} (mm²)	A _{llc} (mm²) z	IIc,1 (mm) Z	11 (mm) 1 ₁₀	(mm ⁴) I _I ,	l _l (mm ⁴) S		t-t ₀ (days) (mm)	aexp	(%) (ww)	dxex
	1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899 1766899	V	3514 <	9870 2	2.809 6	64970 75	75.10 131940113 75.08 132016659	3659 150248	9 17826	14856	136.43	117.86	1707810	32437971	275761	0.1	14.56	11.80	123.4
	176859 176859 176859 176859 176859 176859 176859 1756859 1756859	· m	3514 <							15605	135.49	115.98	1979278	35614635	304413	. 2	16.35	14.70	111.2
	17,000 59 17,608 59 17,608 59 17,608 59 17,608 59 17,608 59 17,608 59	2373 <	3514 <							15725	135.34	115.69	2025136	36117973	308976	e •	16.72	15.10	110.7
	1756859 1756859 1756859 1756859 1756859 1756859 1756859	2373 <	3514 ×		2,809					15907	135.19	115.25	207 1697	36895543	316044	4 rc	17.12	16.00	107.0
	1756859 1756859 1756859 1756859 1756859 1756859	2373 <	3514 <				1.55 133724294			16240	134.7	114.4	2230616	38401339	329736	φ	17.42	16.40	106.2
	1756859 1756859 1756859 1756859	2373 <	3514 <							16713	134.11	113.23	2431344	40514408	349049	7	18.16	17.20	105.6
	1756859 1756859 1756859 1756859	2373 <	3514 <		2.809 6		•	2032 203856		17025	133.72	112.44	2570069	41952789	362227	ω	18.61	17.60	105.7
	1756859 1756859 1756859	2373 <	3514 <							17077	133.65	112.31	2593691	42182097	364352	10	18.99	18.40	103.2
e 28 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1756859	2373 <	3514 <	9870 2	2.809 6		74.13 135094320			17202	133.5	112	2650973	42778871	369842	-	19.18	18.40	104.2
8 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1756859	2373 <	3514 <							17259	133.43	111.86	2677507	43036079	372192	5	19.36	18.60	104.1
8 25 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1150050	2373 <	3514 <				73.89 135884			17722	132.85	110.7	2898729	45230497	392497	9	20.27	19.40	104.5
e 25 S S S S S S S S S S S S S S S S S S	AC 000 / I.	2373 <	3514 <							18028	132.46	109.93	3051900	46705302	406245	92	20.95	19.90	105.3
8 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1756859	2373 <	3514 <				64			18231	132.21	109.42	3156055	47704739	415539	20	21.44	20.40	105.1
8 22 9 8 25 9 8	1756859	2373 <	3514 <		_					18481	131.9	108.8	3287465	48929637	426975		22.05	21.10	104.5
8 25 a 8	1756859	2373 <	3514 <				73.44 137329351			18616	131.73	108.46	3360144	49592519	433165	52	22.29	21.30	104.6
e e e e e e e e e e e e e e e e e e e	1756859	2373 <	3514 <					2710 253386		18678	131.65	108.31	3394046	49896972	436058		22.33	21.30	104.8
e e e e e e e e e e e e e e e e e e e	1756859	2373 <	3514 <				3.41 137432710	2710 253386		18678	131.65	108.31	3394046	49896972	436058		22.40	21.70	103.2
	17 568 59	2373 <	3514 <				3.36 137615245	5245 256895		18788	131.52	108.04	3453923	50442487	441119	8	22.74	21.70	104.8
	1756859	2373 <	3514 <	9870 2	2.809 6		73.25 137979050			19001	131.25	107.51	3572847	51507649	451170	_	23.34	22.30	104.7
	1756859	2373 <	3514 <				,			19193	13.1 0.1	107 02	3682485	52494318	460447		24 29	23.30	104.2
	1756850	2373	2514							19495	130.63	106.27	3858825	54028249	474074		25.07	23.60	108.01
	1,00009	2373	1 1 1 1 1				130030030			9493	130.03	100.27	3030023	34020249	1,437	ŧ 8	25.07	23.00	7.00.7
	6000071	23/3	7 100	90/06	2.009					1000	130.44	100.07	3952205	04007,000	1170001	7 6	20.43	23.00	0.00.
	6689671	23/3 <	3514 <				38355606			0//61	130.29	76.601	4024808	554/5044	488634	5 !	25.90	24.80	4.4
	1756859	2373 <	3514 <				72.80 139417			19807	130.24	105.49	4047079	55646879	490331		26.30	24.80	106.1
	1756859	2373 <	3514 <							19828	130.22	105.44	4059843	55762627	491390		27.09	25.90	104.6
	1756859	2373 <	3514 <	9870 2			72.62 140027189	7189 302846		20134	129.83	104.66	4251232	57363170	506609	108	28.13	26.60	105.8
	1756859	2373 <	3514 <				,			20285	129 64	104 29	4347471	58154082	514201		28 43	27.30	104
	1756950	, , ,	1 1 1				•			20503	10.00	7 60 7	7400644	2012102	000000	4 5	20.00	20.70	- 6
	1,00039	2010	1 1 1 1 1				70.09			20019	100.00	1000	100001	29423000	220303		29.03	20.40	7.70
	1756859	23/3 <	3514 <							20613	129.23	103.47	4561522	59904478	530963		29.24	29.30	9.8
	1756859	2373 <	3514 <	9870 2	2.809 6		•	_		20946	128.82	102.63	4786050	61728438	548437			30.60	97.1
	1756859	2373 <	3514 <				•			21133	128.58	102.17	4915525	62737071	558268			32.10	93.7
	1756859	2373 <	3514 <				71.88 142433401	348678		21351	128.31	101.62	5069506	63942729	569874		30.50	32.10	95.0
	17 568 59	2373 <	3514 <				•			21554	128.06	101.12	5215337	65054121	580605	380		32.50	94.8
	1756859	2373 <	3514 <				ľ			14856	136 43	117.86	1707810	32437971	275761	0.1		4.43	189.5
Cilbert and Noisel (2004)	1756950	, , ,	1 1 1 1 1	0100	000		75.00 10.0016650			14040	100.45	14.70	1730430	22600742	270144	5 .	000	2	0 0
	8C00C/	> 5/57	4100							2 2	130.33	1./.	02457	3478635	10/7	- 1	n :	9.99	100.
	1756859	2373 <	3514 <	6810						15605	135.49	115.98	1979278	35614635	304413	2	10.42	6.83	152.5
	1756859	2373 <	3514 <	6810	938 6		74.77 133030			15725	135.34	115.69	2025136	36117973	308976	ო	10.73	7.18	149.5
	1756859	2373 <	3514 <	6810	938 6					15844	135.19	115.39	2071697	36645412	313776	4	10.91	7.42	147.1
(2004) S2-b	1756859	2373 <	3514 <	6810	938 6	65502 74	74.69 133265178	174008	19404	15902	135.12	115.25	2094215	36895543	316044	2	11.07	7.80	142.0
	1756859	2373 <	3514 <	6810						16240	134.7	114.4	2230616	38401339	329736	ç	11.30	8 16	138.5
	1756950	, 6760	7 7 7 7	2000						16712	15.4.4.4	110 00	2424244	40614400	340040	1 0	5 5 5	5 6	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
	17 20029	2373	5014	0010			- ,			10/13	13.4.	113.23	2431344	44070400	349049	- 0	11.90	5 0	4 4
Gilbert and Nejadi (2004)	1,00009	2373	4100	00 00						52071	133.72	142.44	5270009	41902/09	302221	0 9	12.21	9.20	0.70
	6000071	2070	1 100	0100						101	133.00	12.3	2333331	16070174	204000	2;	0.0	0.00	
	6080071	23/3 <	3514 ×	_ '			_	1370 208855		707/	133.5	71.	2050973	1788/17	309842	= 9	12.75	10.00	0.77
	6580571	23/3 <	3514 ×	01.89	_	66285				627	133.43	98.11.	7067797	43030079	3/2192	<u>5</u>	12.92	10.20	9797
	60000 / I	23/3	4 :: 10	0 00						77//	132.03	.0.0	67/0607	45250497	184760	₽ :	13.07	0.00	0.02
	6689671	73/3 ×	3514 <	01.89	_					18028	132.46	109.93	3051900	46705302	400245	20	14.24	11.30	126.0
	1756859	23/3 <	3514 <	6810			73.64 136698316			18231	132.21	109.42	3156055	47 704 739	415539	70	14.65	11.70	125.2
	1756859	2373 <	3514 <	6810						18481	131.9	108.8	3287465	48929637	426975	73	15.16	12.30	123.3
	1756859	2373 <	3514 <	. 0189			73.44 137329	3351 251408		18616	131.73	108.46	3360144	49592519	433165	25	15.36	12.40	123.9
	1756859	2373 <	3514 <	6810						18678	131.65	108.31	3394046	49896972	436058	78	15.39	12.50	123.1
	1756859	2373 <	3514 <	6810 1						18678	131.65	108.31	3394046	49896972	436058	31	15.46	12.70	121.7
	1756859	2373 <	3514 <	6810 1			_			18788	131.52	108.04	3453923	50442487	441119	꿇	15.75	12.70	124.0
	1756859	2373 <	3514 <	6810 1					24469	19001	131.25	107.51	3572847	51507649	451170	33	16.26	13.20	123.2
(2004) S2-b	1756859	2373 <	3514 <	6810	938 6		73.14 138317609	609 270250		19193	131.01	107.02	3682485	52494318	460447	47	17.09	14.10	121.2
(2004) S2-b	1756859	2373 <	3514 <	_	938 6			038 280412		19495	130.63	106.27	3858825	54028249	474971	\$	17.75	14.30	124.1
	1756859	2373 <	3514 <	,			,			19651	130 44	105.87	3952205	54857386	482777	62	18.05	14.70	122.8
	1756850	2373 <	3514 <	,			,			19770	130.29	105.57	4024808	55475044	488634	1 5	18.46	15.50	101
	1756950	222	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	200			•		20002	70001	200.00	0.00	4047070	6666640	10000	2 6	2 0	0 1	
	60000 / I	23/3	4 :: 10	0 00	_				•	10061	130.24	94:00	4047079	6 /00±000	49033	70 1	20.01	00.01	4 4
	6689671	× 5/57	3514 <	_					•	19828	130.22	105.44	4059843	7297979	491390		19.53	16.20	120.6
	1756859	2373 <	3514 <	6810	938		72.62 140027189	7189 302846	26494	20134	129.83	104.66	4251232	57363170	206609	108	20.43	16.90	120.9
	1756859	2373 <	3514 <	_						20285	129.64	104.29	4347471	58154082	514201		20.68	17.50	118.2
	1756859	2373 <	3514 <	,						20519	129.35	103.7	4499664	59425886	526383		21.19	18.50	114.5
	1755050	7 0220	2514	0100						20042	120.22	102 47	4564522	600004470	630063		24 27	000	44.0
	60000 / I	× 5/57	4 :: 10	0 00					•	20013	129.23	74.501	7701025	0.744086	220802		15.12	19.20	3
	1756859	2373 <	3514 <	6810			_			20946	128.82	102.63	4786050	61728438	548437		21.74	20.40	106.6
	1756859	2373 <	3514 <	6810	938 6		72.01 141985134	5134 340083	3 28367	21133	128.58	102.17	4915525	62737071	558268	272	22.06	21.60	102.1
	1756859	2373 <	3514 <	6810						21351	128.31	101.62	5069506	63942729	569874		22.41	21.80	102.8
Gilbert and Nejadi (2004)	1756850	2373 <	3514 <	6810			75 142849420			21554	128.06	101 12	5215337	65054121	580605		22.66	21 90	103.5
	200001	0.01	1	3						1	2	:			2000		20:47	200.14	3

	Study information	nation 2	ဗ	Cracking moment	moment 5	9	7	6 8	State I	+	12	13	41	State II	16	17	18	19	Deflection 20 21	21 21	22
	Author	nomicono	W ₁ (t ₀)	(mN)	(EN)	EN)		(mm²) z² (n	(mm) 1° (mm ⁴)	S. (mm³)	Α. (mm²)	Δ. (mm²)	z (mm) - "z	z* (mm) L. /	I. (mm ⁴)	L. (mm4)	S. (mm³) ++	anum.int.	a	anum.in (mm) (%)	anum.int./aexp (%)
351	Gilbert and Nejadi (2004)	S3-a	807498	2373 <		max m		30	, 22	37466	02	Ě	134.11	113.21	1344	0791	6	~	13.96		130.4
352	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						134.02	113.04	2463255	40857504	352178	← 0	14.81	13.00	113.9
354	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140		73.92 13578	135794981 222224			132.93	110.84	2868216	44957418	389937	1 ო	15.80	14.50	108.9
355	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140			136000208 226101			132.76	110.52	2934599	45587002	395828	4 1	16.02	14.70	109.0
357	Gilbert and Nejadi (2004)	53-a	1807498	2373 <	3615 <	11350	3.140		•	36687622 239200			132.22	109.44	3153355	47675531	415256	ဂ ဖ	16.54	15.70	105.7
358	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						131.59	108.17	3422472	50183191	438708	7	17.31	16.50	104.9
359	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140	67523	73.21 1381(138107823 266285			131.16	107.32	3611117	51878377	454690	ω Ę	17.78	16.90	105.2
361	Gilbert and Nejadi (2004)	53-a	1807498	2373 <	3615 <	11350	3.140						130.92	106.84	3721532	52853538	457239	2 €	18.38	17.70	103.8
362	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140			17729 274637			130.85	106.7	3757820	53162944	466775	13	18.57	17.90	103.8
363	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140			139451165 2918 140068170 3035			130.22	105.44	4056649	55741126	491208	ත් ස්	19.52	18.70	104.4
365	and Nejadi	S3-a	1807498	2373 <	3615 <	11350	3.140						129.53	104.06	4404556	58643770	518874	2 2	20.74	19.70	105.3
366	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						129.2	103.39	4578804	60073972	532547	23	21.39	20.40	104.8
367	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140		. ,				129.02	103.04	4676396	60849976	540046	5 52	21.64	20.60	105.0
360	Gilbert and Nejadi (2004)	0.5-a	180/498	23/3 <	3615 <	11350	3.140		72.19 14.14	141418566 329333 141418566 329333			128.94	102.87	47 18641	61205290	543445	3 78	21.58	27.00	104.8
370	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						128.79	102.58	4800322	61832392	549487	8	22.12	21.00	105.3
371	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						128.51	102.01	4955547	63074369	561461	39	22.75	21.60	105.3
372	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						128.25	101.49	5102915	64219313	572537	47	23.73	22.50	105.5
373	Gilbert and Nejadi (2004)	83-a	1807498	23/3 <	3615 <	11350	3.140			143209123 363441 143572022 370366			127.85	100.7	533/062	66002091	589891	¥ &	24.55	22.90	107.2
375	Gilbert and Nejadi (2004)	83-a	1807498	2373 <	3615 <	11350	3.140		71.44 1438	143845496 375527			127.48	99.95	5558548	67669950	606067	3 22	25.42	24.20	105.0
376	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						127.43	98.86	5586163	69029829	608046	82	25.84	24.10	107.2
377	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						127.41	99.81	5601984	68001085	609330	92	26.67	25.10	106.3
378	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						127	98.99	5855121	69852139	627400	108	27.76	25.70	108.0
380	Gilbert and Nejadi (2004)	0,000 0 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0 0,000 0	1807498	2373 <	3615 <	11350	3.140		70.90 1456	45618334 409334			126.48	98.6	5982432	72209981	650654	2 25	28.71	27.60	105.9
381	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140			_			126.37	97.73	6259599	72771062	656164	186	28.92	27.90	103.7
382	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140						125.92	96.83	6558382	74847178	676616	228	29.41	28.80	102.1
383	Gilbert and Nejadi (2004)	83-a	180/498	23/3 <	3615 <	11350	3.140		70.43 1471	147135804 438203			125.67	96.34	67.26917	77376430	5048123	27.5	29.82	29.10	102.5
382	Gilbert and Nejadi (2004)	S3-a	1807498	2373 <	3615 <	11350	3.140		•		67 34074	23904	125.12	95.24	7114302	78631435	714341	380	30.58	29.80	102.6
386	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307						134.11	113.21	2431344	40540791	349269	0.1	9.29	5.04	184.3
387	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307		74.32 13448				134.02	113.04	2463255	40857504	352178	← (10.37	6.98	148.6
88 88 88 88	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	1807498	2373 <	3615 <	8340 8340	2.307	66543		135600066 218512 135794981 222224	72 21995 24 22202		133.08	110.84	2807834	44350901	384380	ИЮ	10.85	7.80 8.18	139.1
390	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307						132.76	110.52	2934599	45587002	395828	4	11.39	8.42	135.3
391	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307		73.82 13609	37236 227948			132.68	110.36	2965580	45882662	398559	ω	11.57	8.80	131.4
392	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307						132.22	109.44	3153355	47675531	415256	9 1	11.82	9.23	128.1
394	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307						131.16	107.32	3611117	51878377	454690	~ 00	12.88	10.23	126.0
395	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307	67564					131.09	107.18	3643711	52155394	457259	, 6	13.26	10.87	121.9
396	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307	67668					130.92	106.84	3721532	52853538	463876	Ξ:	13.42	10.89	123.2
398	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	83.50 3.50 5.50 5.50 5.50 5.50 5.50 5.50	1807498	23/3 <	3615 <	8340	2.307		72.79 1394	138547729 274637 139451165 291831		19323	130.85	105 44	3757820	53162944	466775	<u>ნ</u> რ	13.60	11.03	123.3
388	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307					•	129.81	104.61	4261122	57477586	507730	. 8	15.05	12.14	124.0
400	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307		72.47 14048	40486983 311548		7 20374	129.53	104.06	4404556	58643770	518874	8 8	15.50	12.53	123.7
405	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307						129.02	103.04	4676396	60849976	540046	25	16.29	13.27	122.7
403	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307			141418566 329333			128.94	102.87	4718641	61205290	543445	78	16.32	13.32	122.5
404	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307			18566 329333			128.94	102.87	4718641	61205290	543445	ર જ	16.39	13.58	120.7
405	Gilbert and Nejadi (2004)	83.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4	1807498	23/3 <	3615 <	8340	2.307					20366	128.79	102.01	4800322	63074369	561461	\$ 8	17.27	13.59	122.9
407	Gilbert and Nejadi (2004)	23-p	1807498	2373 <	3615 <	8340	2.307						128.25	101.49	5102915	64219313	572537	47	18.17	14.92	121.8
408	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307	69792	-				127.85	100.7	5337062	66002091	589891	25	18.90	15.22	124.2
409	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307		71.53 1435	43572022 370366 43846496 376527			127.64	100.27	5464559	66960600	599128	2 52	19.23	15.38	125.1
5 4	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307						127.43	99.86	5586163	67867069	608046	8 7	20.07	16.20	123.9
412	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307						127.41	99.81	5601984	68001085	609330	92	20.85	17.06	122.2
413	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307		71.18 14468	144688955 391584	84 30882	2 22402	127	98.99	5855121	69852139	627400	9 5	21.83	17.64	123.7
4 4	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307		•				126.48	90.6	6183177	72209981	650654	2 25	22.66	19.30	117.4
416	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307			_			126.37	97.73	6259599	72771062	656164	186	22.85	20.06	113.9
417	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307						125.92	96.83 96.34	6558382	76000758	676616	228	23.27	21.24	109.5
4 19	Gilbert and Nejadi (2004)	83-b	1807498	2373 <	3615 <	8340	2.307	71917	70.26 1476	147693465 448838	33608	8 23691	125.39	95.77	6925641	77378439	701818	318	24.00	22.44	106.9
420	Gilbert and Nejadi (2004)	S3-b	1807498	2373 <	3615 <	8340	2.307						125.12	95.24	7114302	78631435	714341	380	24.27	22.90	106.0

0.00 0.00 <th< th=""><th>8411.35 MPa Span</th><th>M_{L1} (Nm)</th><th>M_{L2} (Nm)</th><th>M (Nm)</th><th>(1/r_{t,L})·10⁶</th><th>(1/r_{l,cs})·10⁶</th><th>(1/r_{II,L})·10⁶</th><th>(1/r_{II,cs})·10⁶</th><th>></th><th>(1/r_{tot})·10⁶ Un</th><th>Uncorrected Un rotation de</th><th>Uncorrected Cordeflection</th><th>Correction Final</th><th>Final deflection</th></th<>	8411.35 MPa Span	M _{L1} (Nm)	M _{L2} (Nm)	M (Nm)	(1/r _{t,L})·10 ⁶	(1/r _{l,cs})·10 ⁶	(1/r _{II,L})·10 ⁶	(1/r _{II,cs})·10 ⁶	>	(1/r _{tot})·10 ⁶ Un	Uncorrected Un rotation de	Uncorrected Cordeflection	Correction Final	Final deflection
44.68 1. 15.71 8. 1566-59. 0.0407 3 (448) 2.0044 0.017 0.017 0.017 0.017 0.018 <th>00:0</th> <th>0.00</th> <th>0.00</th> <th>0.00</th> <th>0.0000</th> <th>0.9560</th> <th>0.0000</th> <th>3.1648</th> <th>0.0000</th> <th>0.9560</th> <th>0.00</th> <th>00.0</th> <th>0.00</th> <th>0.00</th>	00:0	0.00	0.00	0.00	0.0000	0.9560	0.0000	3.1648	0.0000	0.9560	0.00	00.0	0.00	0.00
444 501 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 25 70 120 70	0.02	255.11	1311.88	1566.99	0.1932	0.9560	0.4107	3.1648	-22.0049	1.1492	0.074	00.00	0.77	92.0
774,10 385,564 46,684 1,28,94 1,684 1,684 1,681 0,281 0,081 0,081 0,081 0,081 0,081 0,081 0,084	0.04	499.81	2623.76	3123.57	0.3852	0.9560	0.8187	3.1648	-4.7896	1.3412	0.161	0.01	1.53	1.52
97.88 25.74 S. 25.74 S. 17.71 S. <t< td=""><td>90.0</td><td>734.10</td><td>3935.64</td><td>4669.74</td><td>0.5759</td><td>0.9560</td><td>1.2240</td><td>3.1648</td><td>-1.5904</td><td>1.5319</td><td>0.261</td><td>0.03</td><td>2.30</td><td>2.28</td></t<>	90.0	734.10	3935.64	4669.74	0.5759	0.9560	1.2240	3.1648	-1.5904	1.5319	0.261	0.03	2.30	2.28
174.4 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.2 174.4 174.2 <th< td=""><td>0.08</td><td>957.98</td><td>5247.52</td><td>6205.49</td><td>0.7653</td><td>0.9560</td><td>1.6265</td><td>3.1648</td><td>-0.4669</td><td>1.7213</td><td>0.375</td><td>0.05</td><td>3.07</td><td>3.02</td></th<>	0.08	957.98	5247.52	6205.49	0.7653	0.9560	1.6265	3.1648	-0.4669	1.7213	0.375	0.05	3.07	3.02
1,142,331 1,142,431 1,142,432 1,124 1,142,432 1,124 1,142,433 1,124 1,142,433 1,124 1,142,433 1,124 1,142,433 1,124 1,142,433 1,124 1,142,433 1,124 1,142,433 1,124 1,142	0.10	1374 49	7871 27	9245.76	1 1402	0.9360	2.0203	3.1648	0.0348	3 2807	0.303	0.00	4 60.5	3.70 4.48
174.03 174.03<	0.14	1567.13	9183.15	10750.28	1.3257	0.9560	2.8177	3.1648	0.5112	4.1736	0.957	0.18	5.37	5.19
1002.16 118.07	0.16	1749.35	10495.03	12244.38	1.5100	0.9560	3.2093	3.1648	0.6232	4.9016	1.275	0.26	6.14	5.88
2002.56 1311677 1500.135 150.146 10.00 0.00 <td>0.18</td> <td>1921.16</td> <td>11806.91</td> <td>13728.07</td> <td>1.6929</td> <td>0.9560</td> <td>3.5982</td> <td>3.1648</td> <td>0.7003</td> <td>5.5299</td> <td>1.640</td> <td>0.36</td> <td>06.9</td> <td>6.55</td>	0.18	1921.16	11806.91	13728.07	1.6929	0.9560	3.5982	3.1648	0.7003	5.5299	1.640	0.36	06.9	6.55
223.3.5 1 H420.67 1 1056 2 1056 0 9660 4 7484 3 1648 0 7096 6 178 2 427 0 84 9 142 220.4.3.5 1 1576.4.2 1 1576.4.2 1 1568.2 2 244 0 9660 5 1744 3 1688 3 4400 0 84 3 168 0 8673 3 1696 3 168 0 8673 3 169 0 84 3 168 0 8873 3 169 0 84 0 84 3 168 0 8873 3 169 0 84 0 84 0 8873 3 169 0 84 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 8873 0 869 0 84 0 889 0 889 0 84 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 0 889 <	0.20	2082.56	13118.79	15201.35	1.8746	0.9560	3.9843	3.1648	0.7555	6.0935	2.047	0.49	7.67	7.18
297.41 174.42 3 1648 0.887.9 7 1004 2.97.2 0.64 9.7. 297.42 1754.25 1816.66 2.4120 0.9690 5.1244 3 1648 0.887.9 7 1004 2.97. 0.06 297.43 1754.25 1.958.63 0.9690 5.744 3 1648 0.0750 4.407 1.05 1.05 297.25 1.958.63 2.241.64 2.978.2 0.9690 6.439 3 1648 0.0750 6.639 2.36 1.05 1	0.22	2233.55	14430.67	16664.21	2.0550	0.9560	4.3677	3.1648	0.7966	6.6128	2.492	0.65	8.44	7.79
200.02 17.0244 18.08 0.00 80.23 7.6646 0.00 80 6.1284 0.00 80 6.00 80	0.24	2374.12	15742.55	18116.66	2.2341	0.9560	4.7484	3.1648	0.8279	7.1004	2.972	0.84	9.21	8.37
2020 07 1889 08 2674 08 55016 3 1484 0.8718 8 00084 4 000 1.33 1074 2020 07 16678 18 1678 18 0.8606 6 474 3 1484 0.8677 4 000 1.33 1074 2020 07 2046 07 2.4666 0.4448 3 1484 0.8676 8 8896 5 211 1 137 1 227 2020 07 2.4666 00 2.4448 8 3 0.0466 0.4675 3 1484 0.8076 9 1009 5 29 1 127 2.266 07 2.4666 00 2.4468 7 0.666 6.452 3 1484 0.8076 9 1009 5 29 1 127 3.170 70 2.466 00 2.446 7 3 1484 0.806 6.456 3 1484 0.807 9 1100 1 123 1 123 1 124 1 123 1 124 1 123 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1 124 1	0.26	2504.28	17054.42	19558.70	2.4120	0.9560	5.1264	3.1648	0.8523	7.5642	3.485	1.06	6.97	8.91
2020 73 3 (1972) 1 (1972)	0.28	2624.03	18366.30	20990.33	2.5885	0.9560	5.5016	3.1648	0.8718	8.0098	4.030	1.33	10.74	9.41
2020.27 2020.27 <t< td=""><td>0.30</td><td>2733.36</td><td>19678.18</td><td>22411.54</td><td>2.7638</td><td>0.9560</td><td>5.8741</td><td>3.1648</td><td>0.8875</td><td>8.4407</td><td>4.606</td><td>1.63</td><td>11.51</td><td>9.88</td></t<>	0.30	2733.36	19678.18	22411.54	2.7638	0.9560	5.8741	3.1648	0.8875	8.4407	4.606	1.63	11.51	9.88
2920.774 21646.00 2466.478 3.0264 0.0004 0.0004 5.039 2.28 13.04 308.68.72 2164.61.00 2464.48.8 3.0206 64430 3.1648 0.0077 9.1006 65172 7.115 1.15 <td< td=""><td>0.32</td><td>2832.28</td><td>20990.06</td><td>23822.34</td><td>2.9378</td><td>0.9560</td><td>6.2439</td><td>3.1648</td><td>0.9005</td><td>8.8598</td><td>5.211</td><td>1.97</td><td>12.27</td><td>10.30</td></td<>	0.32	2832.28	20990.06	23822.34	2.9378	0.9560	6.2439	3.1648	0.9005	8.8598	5.211	1.97	12.27	10.30
2068 57 21464 60 24772 50 30950 64772 31648 00 31008 6475 279 1648 00 31008 6475 31648 00 31008 6475 31648 00 31008 70 </td <td>0.34</td> <td>2920.79</td> <td>21646.00</td> <td>24566.79</td> <td>3.0296</td> <td>0.9560</td> <td>6.4390</td> <td>3.1648</td> <td>0.9064</td> <td>9.0780</td> <td>5.839</td> <td>2.36</td> <td>13.04</td> <td>10.68</td>	0.34	2920.79	21646.00	24566.79	3.0296	0.9560	6.4390	3.1648	0.9064	9.0780	5.839	2.36	13.04	10.68
30066.57 2146.66 2477.26 3147.56 3147.57 3147.67 3147.68 3170.70 3164.68 3147.67 3164.68 3147.67 3147.68 3147.67 3147.68 3147.67 3147.68 3147.67 3147.68 3147.67 3147.68 3147.67 3147.68 3147.67 3147.68 <	0.36	2998.89	21646.00	24644.89	3.0392	0.9560	6.4595	3.1648	0.9070	9.1008	6.475	2.79	13.81	11.02
372.84 216.64 0.9870 6.54 2.1648 0.9870 9.1472 7.722 3.79 15.34 372.84 2.1646.00 2.24816.70 3.0846 0.9860 6.5441 3.1648 0.9907 9.172 4.96 16.88 <td>0.38</td> <td>3066.57</td> <td>21646.00</td> <td>24712.57</td> <td>3.0475</td> <td>0.9560</td> <td>6.4772</td> <td>3.1648</td> <td>0.9075</td> <td>9.1205</td> <td>7.113</td> <td>3.27</td> <td>14.58</td> <td>11.31</td>	0.38	3066.57	21646.00	24712.57	3.0475	0.9560	6.4772	3.1648	0.9075	9.1205	7.113	3.27	14.58	11.31
377.70 Z 1646.00 24815.71 3.0649 0.5050 6.514.1 3.1648 0.9083 9.1655 9.033 4.35 1.61 1.62 1.64 1.62 1.62 1.64 0.9087 9.166 0.9087 9.166 1.64 0.9087 9.166 1.64 0.9087 9.166 1.64 0.9087 9.166 1.64 0.9087 9.166 0.9087 0.166 0.9087 9.166 0.9087 0.166 0.9087 0.166 0.9087 9.166 0.9087 0.166 0.9087 0.166 0.9087 0.166 0.9087 0.166 0.9087 0.166	0.40	3123.84	21646.00	24769.84	3.0546	0.9560	6.4922	3.1648	0.9079	9.1372	7.752	3.79	15.34	11.56
23207.14 2194660 2496311 3.10449 0.93600 5.10400 9.1975	0.42	3170.70	21646.00	24816.70	3.0604	0.9560	6.5045	3.1648	0.9083	9.1508	8.392	4.35	16.11	11.76
2.25.3.17 2.1646.00 2.8195.17 3.1648.0 0.9500 9.500<	0.44	3207.14	21646.00	24853.14	3.0649	0.9560	6.5141	3.1648	0.9085	9.1615	9.033	4.96	16.88	11.92
3248.79 2 Februson 3.070 0.9500 0.5220 3.1040 0.9500 9.1750 10.31 7.05 19.8 3248.79 2 Februson 2.466.00 2.466.00 2.466.00 3.0770 0.9560 6.5220 3.1648 0.9089 9.1750 11.601 7.05 19.95 3248.79 2 Februson 2.4879.17 3.0700 0.9560 6.5220 3.1648 0.9089 9.1750 11.601 7.05 19.95 3203.17 2 Februson 2.4879.17 3.0644 3.0646 0.9560 6.5045 3.1648 0.9089 9.1750 11.601 7.05 19.95 3207.14 2.1046.00 2.4876.17 3.0644 0.9560 6.5045 3.1648 0.9089 9.1750 11.601 7.05 19.95 3207.14 2.1046.00 2.4080 0.9560 6.5495 3.1648 0.9089 9.175 11.601 7.05 19.95 3207.17 3.1046 0.9560 6.4772 3.1648 0.9089	0.46	3233.17	21646.00	24879.17	3.0681	0.9560	6.5209	3.1648	0.9087	9.1690	9.675	5.62	17.64	12.03
2.284.70 1.090 6.5260 3.1949 0.9003 91736 11,809 7.00 19.10 2.284.70 2.288.70 2.0960 6.5260 3.1648 0.9087 91736 11,809 7.00 19.10 7.86 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 7.00 19.10 <t< td=""><td>0.48</td><td>3248.79</td><td>21646.00</td><td>24894.79</td><td>3.0700</td><td>0.9560</td><td>6.5250</td><td>3.1648</td><td>0.9089</td><td>9.1736</td><td>10.317</td><td>6.32</td><td>18.41</td><td>12.09</td></t<>	0.48	3248.79	21646.00	24894.79	3.0700	0.9560	6.5250	3.1648	0.9089	9.1736	10.317	6.32	18.41	12.09
323.17 2 (1040) <	0.50	3254.00	21646.00	24900.00	3.0707	0.9560	6.5264	3.1648	6806.0	9.1/51	10.959	7.06	19.18	12.12 20.00
3207.1 21040.00 24913.1 30041 31044 31044 30041 31044 31044 30040 31044	0.32	3233 17	21646.00	24034.73	3.0700	0.9300	6.5200	2.1640	0.9089	9.1730	10001	09.0	19.93	12.03
3770,70 2766,80 276,90 3.1648 0.9083 9.1912 1.556 1.049 2.22 3170,70 24816,70 24768,84 0.956 6.445 3.1648 0.9079 9.1372 14.166 11.46 22.26 3170,70 2476,60 24716,80 6.4596 6.4436 3.1648 0.9075 9.1006 1.46 1.47 23.01 2998,89 21646,00 2474,89 3.0296 6.4596 3.1648 0.9076 9.1006 1.47 23.76 2998,89 21646,00 24644,89 3.0296 6.4596 3.1648 0.9076 9.1006 1.47 23.76 2998,89 21646,00 24440 3.0296 6.4596 3.1648 0.9076 1.6707 1.48 2.37 283,236 19678,11 2.2411,54 2.7638 0.9660 5.874 3.1648 0.9076 1.707 1.48 2.38 283,246 1968,20 5.874 3.1648 0.8760 5.878 3.1648	92.0	3207.17	21646.00	24679.17	3.0640	0.9560	6.5203	3.1648	0.9087	9.1090	12 885	0.00	21.78	11.03
312384 21046.00 24708.84 3.0946 6.4922 3.1048 0.9079 9.1325 14.166 11.46 23.01 3123.84 21646.00 24712.57 3.0475 0.9560 6.4956 3.1648 0.9075 9.1205 14.865 11.46 23.0 2998.8 21646.00 2464.48 3.0392 0.9560 6.4390 3.1648 0.9007 16.00 16.472 23.78 2998.8 21646.00 2464.48 3.0296 6.4390 3.1648 0.9005 16.707 16.73 24.55 1 2998.8 2164.00 2464.48 3.0296 6.4390 3.1648 0.9005 16.707 16.78 24.55 1 2832.2 2999.00 2382.234 2.9560 6.4390 3.1648 0.9005 16.707 16.78 25.08 1 2832.2 2999.00 2382.24 2.9560 5.5014 3.1648 0.8005 17.642 16.707 16.78 25.08 2.208 2.208 <td< td=""><td>0.00 84.0</td><td>3170.70</td><td>21646.00</td><td>24816 70</td><td>3.0604</td><td>0.9360</td><td>6.5045</td><td>3 1648</td><td>0.9083</td><td>9.1513</td><td>13.526</td><td>10.49</td><td>20.00</td><td>11.76</td></td<>	0.00 84.0	3170.70	21646.00	24816 70	3.0604	0.9360	6.5045	3 1648	0.9083	9.1513	13.526	10.49	20.00	11.76
3066.57 2164.60 2471.57 3.1648 0.9050 6.4772 3.1648 0.9075 9.1205 14.865 12.47 25.78 2998.89 21464.00 24644.89 3.0322 0.9560 6.4596 3.1648 0.9064 9.1008 15.42 12.57 24.55 1 2998.89 21464.00 2466.34 3.0322 0.9560 6.439 3.1648 0.9064 9.1008 16.47 14.53 25.32 1 24.55 1 24.55 1 24.55 1 24.55 1 24.56 2.9660 5.874 3.1648 0.9064 9.1008 16.876 16.97 16.97 25.32 1 24.57 25.32 1 16.97	0.00	3123.84	21646.00	24769.84	3.0546	0.9360	6.3043	3 1648	0.9029	9.130	14.166	11.46	23.01	11.76
2998.89 21646.00 24664.89 3.0392 0.9560 64596 3.1648 0.9074 9.1008 15.442 13.53 24.56 22920.79 21646.00 24664.89 3.0392 0.9560 64596 64596 64990 3.1648 0.9064 9.0780 16.079 14.63 25.32 1 2832.28 2.0990.06 2.2416.2 2.0296 6.6439 3.1648 0.9064 9.0780 16.079 14.63 25.32 1 283.2.2 2.0990.03 2.2686 0.9560 5.6116 3.1648 0.8763 17.888 18.20 27.62 1 2.685 2.686 5.2416 3.1648 0.8763 17.888 18.20 2.762 2 2.233 1 1.886 2.2417 1.6829 3.1648 0.8763 1.846 2.976 2 2.213 1.6829 3.1648 0.8769 1.7404 18.946 2.213 2 2.213 1.6823 1.7404 18.947 1.7404 1.8407 1.7404	0.00	3066.57	21646.00	24712.57	3.0475	0.9300	6.4772	3 1648	0.9075	9.13/2	14.805	12.47	23.78	11.30
2920.79 21646.00 24566.79 3.0296 6.4390 3.1648 0.9064 9.0780 16.079 14.63 25.32 1 2832.28 2090.06 2382.34 2.9378 0.9660 6.2439 3.1648 0.9005 8.8898 16.07 15.78 26.08 2733.36 1.9678.18 2.9660 5.8716 3.1648 0.9055 16.97 16.97 16.97 26.08 2733.40 1.9663.20 0.9660 5.1264 3.1648 0.8712 17.842 18.40 17.842 18.40 17.842 18.20 26.08 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.96 26.88 16.98 16.97 16.97 26.88 16.99 26.88 16.99 26.88 16.99 26.88 16.99 26.88 16.99 26.88 16.99 26.88 16.99 26.88	0.64	2998.89	21646.00	24644.89	3.0392	0.9560	6.4595	3.1648	0.9070	9.1008	15.442	13.53	24.55	11.02
2832.28 20990.06 2382.34 2.9378 0.9560 6.2439 3.1648 0.9005 8.8598 16.707 15.78 26.08 2733.36 19678.18 2.2411.54 2.7638 0.9560 5.8741 3.1648 0.8875 8.4407 17.312 16.77 26.85 2642.03 1676.18 0.9560 5.8741 3.1648 0.8778 18.407 17.312 16.97 26.85 2642.03 17054.28 19568.0 5.5046 3.1648 0.8723 7.6642 18.346 20.76 2504.28 1956.0 2.2341 0.9560 4.7484 3.1648 0.7966 6.0128 19.46 20.78 203.55 14430.67 1664.21 2.0560 0.9560 4.3677 3.1648 0.7966 6.0278 20.78 20.78 2082.66 1430.67 1.6929 0.9560 3.2093 3.1648 0.7704 18.941 22.03 1424.1 1.731.6 1.0560 2.9560 3.8943 3.1648<	99.0	2920.79	21646.00	24566.79	3.0296	0.9560	6.4390	3.1648	0.9064	9.0780	16.079	14.63	25.32	10.68
2733.36 19678.18 22411.54 2.7638 0.9560 58741 3.1648 0.8875 8.4407 17.312 16.97 26.85 2024.03 1696.33 2.5885 0.9560 5.5016 3.1648 0.8718 8.0088 17.888 18.20 27.62 2504.28 1696.8.0 2.4120 0.9560 4.7484 3.1648 0.8523 7.5642 17.888 18.20 27.62 2504.28 17054.25 18116.66 2.2341 0.9560 4.7644 3.1648 0.8523 7.5642 19.486 20.78 20.92 2233.55 14430.67 16664.21 2.0550 0.9560 4.3677 3.1648 0.7565 6.0235 19.426 22.13 29.92 2082.56 13118.79 1524.38 1.5679 0.7003 5.5299 20.788 20.78 20.96 3.069 1744.9 1867.13 1.666.2 1.448 0.8560 3.1648 0.7003 5.5299 20.789 20.78 20.91 <t< td=""><td>0.68</td><td>2832.28</td><td>20990.06</td><td>23822.34</td><td>2.9378</td><td>0.9560</td><td>6.2439</td><td>3.1648</td><td>0.9005</td><td>8.8598</td><td>16.707</td><td>15.78</td><td>26.08</td><td>10.30</td></t<>	0.68	2832.28	20990.06	23822.34	2.9378	0.9560	6.2439	3.1648	0.9005	8.8598	16.707	15.78	26.08	10.30
2624.03 18366.30 20990.33 2.5885 0.9560 5.5016 3.1648 0.8718 8.0098 17.888 18.20 27.62 2564.28 17054.42 19580.70 2.4120 0.9560 4.7484 3.1648 0.8279 7.5642 18.433 19.48 28.38 2504.28 17054.25 18116.66 2.2341 0.9560 4.7484 3.1648 0.7565 6.0358 19.471 20.78 29.15 2233.55 1443.06 1.6664.21 2.0560 3.9643 3.1648 0.7565 6.0358 19.871 20.78 29.15 2082.56 1443.06 1.6229 0.9560 3.5682 3.1648 0.7565 6.0359 20.78 20.13 20.13 20.13 20.14	0.70	2733.36	19678.18	22411.54	2.7638	0.9560	5.8741	3.1648	0.8875	8.4407	17.312	16.97	26.85	9.88
2504.28 17054.42 19558.70 2.4120 0.9560 5.1264 3.1648 0.8523 7.5642 18.433 19.48 28.38 2334.12 15742.55 1816.66 2.2341 0.9560 4.7844 3.1648 0.8279 7.1004 18.946 20.78 29.15 2334.12 1664.21 2.0550 0.9560 4.3677 3.1648 0.7966 6.0935 19.426 20.78 29.92 2022.56 13148.9 15201.35 18746 0.9560 3.2682 3.1648 0.7003 5.5299 20.278 22.91 31.45 1921.16 11806.91 13728.07 1.6950 3.2093 3.1648 0.7003 5.5299 20.433 3.1648 0.6322 4.9016 20.783 20.943 32.99 1567.13 9183.15 10750.28 1.327 0.9560 2.4233 3.1648 0.543 20.493 32.90 20.493 20.493 20.493 20.493 20.493 20.493 20.493 20.493 <	0.72	2624.03	18366.30	20990.33	2.5885	0.9560	5.5016	3.1648	0.8718	8.0098	17.888	18.20	27.62	9.41
2374.12 15742.55 18116.66 2.2341 0.9560 4,7844 3.1648 0.8279 7.1004 18.946 20.78 29.15 2283.55 14430.67 16664.21 2.0560 0.9560 4,3877 3.1648 0.7966 6.6128 19.426 22.13 29.92 2283.65 14430.67 16664.21 2.0560 3.9843 3.1648 0.7555 6.0935 19.871 23.50 22.13 29.92 1921.16 11806.31 13728.07 1.6929 0.9560 3.2093 3.1648 0.6232 4.9016 20.78 24.91 31.45 1749.35 10495.03 1.2244.38 1.5100 0.9560 2.8177 3.1648 0.5112 4.1736 20.960 27.80 32.99 1567.13 9183.16 1.760.28 1.3257 0.9560 2.4233 3.1648 0.5469 2.0499 3.759 1774.9 5659.39 7730.83 2.0650 2.0263 3.1648 -0.4669 1.7213 21.409	0.74	2504.28	17054.42	19558.70	2.4120	0.9560	5.1264	3.1648	0.8523	7.5642	18.433	19.48	28.38	8.91
2233.55 14430.67 16642.1 2.0550 0.9560 4.3877 3.1648 0.7566 6.6128 19.426 22.13 29.92 2082.56 13118.79 15201.35 1.8746 0.9560 3.9843 3.1648 0.7565 6.6035 19.871 23.50 30.69 2082.56 13118.79 15201.35 1.8746 0.9560 3.2093 3.1648 0.7523 4.9016 20.278 24.91 31.45 1749.35 10495.03 1.2244.38 1.5100 0.9560 2.8177 3.1648 0.6232 4.1736 20.960 27.80 32.99 1367.13 1983.15 10750.28 1.3257 0.9560 2.4233 3.1648 0.0548 2.0860 21.221 29.27 33.75 117.14 6550.39 7730.83 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 33.78 36.05 734.10 3935.64 4669.74 0.5560 0.9560 0.4107 3.1648 -1.5904	92.0	2374.12	15742.55	18116.66	2.2341	0.9560	4.7484	3.1648	0.8279	7.1004	18.946	20.78	29.15	8.37
2082.56 13118.79 15201.35 1.8746 0.9560 3.9843 3.1648 0.7555 6.0935 19871 23.50 30.69 1921.16 11806.91 13728.07 1.6929 0.9560 3.5882 3.1648 0.7003 5.5299 20.278 24.91 31.45 1749.35 10495.03 1.2100 0.9560 2.8177 3.1648 0.6232 4.9016 20.643 26.34 32.22 1567.13 9183.15 1.0750.28 1.3257 0.9560 2.8177 3.1648 0.5112 20.960 27.80 32.99 1771.44 565.93 7730.83 0.9560 2.0263 3.1648 0.0648 20.897 21.409 30.76 34.52 957.98 5247.52 6205.49 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 35.29 734.10 3935.64 4669.74 0.5759 0.9560 0.8187 3.1648 -1.5904 1.5492 21.757 35.30	0.78	2233.55	14430.67	16664.21	2.0550	0.9560	4.3677	3.1648	0.7966	6.6128	19.426	22.13	29.92	7.79
1921.16 11806.91 13728.07 1.6929 0.5660 3.5682 3.148 0.7003 5.5299 20.278 24.91 31.45 1749.35 10495.03 1.2510 0.9560 2.3203 3.1648 0.6232 4.9016 20.643 26.34 32.22 1567.13 10495.03 1.3257 0.9560 2.8177 3.1648 0.5392 20.960 27.80 32.99 1374.49 7871.27 9245.76 1.1402 0.9560 2.0263 3.1648 0.0548 20.980 27.80 32.27 1171.44 6559.39 7730.83 0.9560 2.0263 3.1648 0.0649 1.7213 21.543 33.75 957.98 5247.52 6205.49 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.577 35.30 36.82 499.81 2623.76 3123.57<	0.80	2082.56	13118.79	15201.35	1.8746	0.9560	3.9843	3.1648	0.7555	6.0935	19.871	23.50	30.69	7.18
1749.35 10495.03 12244.38 1.5100 0.9560 3.2093 3.1648 0.6232 4.9016 20.643 26.34 32.22 1567.13 9183.15 10750.28 1.3257 0.9560 2.4233 3.1648 0.5112 4.1736 20.960 27.80 32.99 1374.49 7871.27 9245.76 1.1402 0.9560 2.0263 3.1648 0.0548 2.0893 21.21 29.27 33.75 957.98 5247.52 6205.49 0.7653 0.9560 1.2248 -0.4669 1.7213 21.543 32.27 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.05 499.81 2623.76 3123.57 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 255.11 1311.88 156.69 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844	0.82	1921.16	11806.91	13728.07	1.6929	0.9560	3.5982	3.1648	0.7003	5.5299	20.278	24.91	31.45	6.55
1567.13 9183.15 10750.28 1.3257 0.9560 2.8177 3.1648 0.5112 4.1736 20.960 27.80 32.99 1374.49 7871.27 9245.76 1.1402 0.9560 2.0263 3.1648 0.3392 3.2807 21.221 29.27 33.75 177.44 6559.39 7730.83 0.9560 2.0263 3.1648 0.0548 2.0893 21.409 30.76 34.52 957.80 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 32.7 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.35 499.81 2623.76 3123.57 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 37.59	0.84	1749.35	10495.03	12244.38	1.5100	0.9560	3.2093	3.1648	0.6232	4.9016	20.643	26.34	32.22	5.88
1374.49 7871.27 9245.76 1.1402 0.9560 2.4233 3.1648 0.3392 3.2807 21.221 29.27 33.75 1171.44 6559.39 7730.83 0.9560 2.0263 3.1648 0.0548 2.0893 21.409 30.76 34.52 957.98 5247.52 6205.49 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 32.27 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.05 499.81 2623.76 3123.57 0.3560 0.4107 3.1648 -2.0049 1.1492 21.757 35.30 36.82 255.11 1311.88 1566.99 0.1932 0.9560 0.4107 3.1648 -2.0049 1.1492 21.844 36.82 37.59	0.86	1567.13	9183.15	10750.28	1.3257	0.9560	2.8177	3.1648	0.5112	4.1736	20.960	27.80	32.99	5.19
1171.44 6559.39 7730.83 0.9550 2.0263 3.1648 0.0548 2.0893 21.409 30.76 34.52 957.98 5247.52 6205.49 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 32.27 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.05 499.81 2623.76 3123.57 0.3560 0.8187 3.1648 -4.7896 1.3412 21.757 35.30 36.82 255.11 1311.88 1566.99 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 37.59	0.88	1374.49	7871.27	9245.76	1.1402	0.9560	2.4233	3.1648	0.3392	3.2807	21.221	29.27	33.75	4.48
957.98 5247.52 6205.49 0.7653 0.9560 1.6265 3.1648 -0.4669 1.7213 21.543 32.27 35.29 35.29 734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.05 499.81 2623.76 3123.57 0.3852 0.9560 0.8187 3.1648 -4.7896 1.3412 21.757 35.30 36.82 225.11 1311.88 1566.99 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 37.59	06:0	1171.44	6559.39	7730.83	0.9534	0.9560	2.0263	3.1648	0.0548	2.0893	21.409	30.76	34.52	3.76
734.10 3935.64 4669.74 0.5759 0.9560 1.2240 3.1648 -1.5904 1.5319 21.657 33.78 36.05 499.81 2623.76 3123.57 0.3852 0.9560 0.8187 3.1648 -4.7896 1.3412 21.757 35.30 36.82 255.11 1311.88 1566.99 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 37.59	0.92	957.98	5247.52	6205.49	0.7653	0.9560	1.6265	3.1648	-0.4669	1.7213	21.543	32.27	35.29	3.02
499.81 2623.76 3123.57 0.3852 0.9560 0.8187 3.1648 -4.7896 1.3412 21.757 35.30 36.82 255.11 1311.88 1566.99 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 21.844 36.82 37.59	0.94	734.10	3935.64	4669.74	0.5759	0.9560	1.2240	3.1648	-1.5904	1.5319	21.657	33.78	36.05	2.28
255.11 131.88 1566.99 0.1932 0.9560 0.4107 3.1648 -22.0049 1.1492 2.1.844 36.82 37.59	96:0	499.81	2623.76	3123.57	0.3852	0.9560	0.8187	3.1648	-4.7896	1.3412	21.757	35.30	36.82	1.52
	0.98	255.11	1311.88	1566.99	0.1932	0.9560	0.4107	3.1648	-22.0049	1.1492	21.844	36.82	37.59	0.76

bars = M or =

t = α α = α

Assessment and Correction of MC10 model: Database

	Study information	ion 2	Cross 3	Cross-section	2	9	7	Reinforcement 8	ament 9	10	£	12	13 14	15	16	17	Meci	hanical prop 19	perties	23	22	23	24	25	26	27	Loadin 28	8	8	31	Ö	lection 33 34	
Aut	thor	Specimen	p (mm)	h (mm)	A _{s1} (mm	A ₈₁ (mm²) d (mm)	p. (%)	A _{s2} (mm²)	n²) ď (mm)	d ₂ (mm)	P ₂ (%)	type	(%) T (%)	t _{est} (da	f _{cm} (t _{est} , ys) (MPa)	f _{cm} (MPa)	f _{cm} (t ₀) (MPa)	f _{ctm} (t ₀) (MPa)	E _{cm} (t ₀) (MPa)	E _{cm} (MPa)	E _s (MPa) ç) (-)	, (%) E	ipeff L	L (mm)	W P/	c (Nm) K	≱′ S	12 (Nm) K ₁₂	a (t-t _o) (mm)	\$	/s) t-t _o (day	ays)
1 0 Wa	Washa and Fluck (1952)	A1/A4	203.	304.8							47.6 1.63	1.63 deformed	50	21	14 25	00 27.7.	3 25.00	1.98	28680	30206		3.062	0.000	28680	9609	23.7	7192	0.104	18442	0.104	13.46	4 4	0 0
3 0 Wa	asha and Fluck (1952)	A2/A5	203.2						400 258	258.7 46		deformed	20 8	21	14 25	00 27.7.	3 25.00	1.98	28680	30206		0.000	0.000	28680	9609	23.7	7192	0.104	18442	0.104	15.75	. 4	0
4 + WE	Washa and Fluck (1952)	A2/A5	203.									deformed deformed	20	21	14 25	27.7	3 25.00	96.	28680	30206		3.062	0.556	7340	9609	23.7	7192	0.104	18442	0.104	32.26	4 5	913
6 t Wa	Washa and Fluck (1952)	A3/A6	203.2									0.00 deformed	20 8	21	14 25	00 27.7.	3 25.00	1.98	28680	30206		3.062	0.556	7340	9609	28.2	7192	0.104	18442	0.104	44.70	<u> </u>	913
7 0 Wa	Washa and Fluck (1952)	B1/B4	152.								- '	.67 deformed	50	21	14 20	80 23.0	7 20.80	1.64	26975	28409		0.000	0.000	26975	9609	38.8	3596	0.104	3663	0.104	23.37	4;	0 5
9 0 Wa	washa and Fluck (1952) Washa and Fluck (1952)	B7/B4 B2/B5	152.4						200 157	157.2	46 0.84	1.57 deformed 1.84 deformed	20 9	2.7	14 20	20.80 23.07	7 20.80	2 2 2 2	26975	28409		0.000	0.000	26975	9609	8.8 8.8	3596 3596	0.104	3663	0.104	24.89	<u>4</u> 4	5.0
10 t Wa	Washa and Fluck (1952)	B2/B5	152.									0.84 deformed	20	21	14 20	80 23.0	7 20.80	1.64	26975	28409		3.935	0.629	5695	9609	38.8	3596	0.104	3663	0.104	65.02	4 :	913
-	Washa and Fluck (1952)	B3/B6	152.4			00 157.2		1.67				0.00 deformed	20	21	14 20	*	7 20.86	2 2	26975	28409		3.935	0.000	5695	9609	38.8	3596	0.104	3663	0.104	86.36	± ‡	913
٠.	asha and Fluck (1952)	7/04	304.5									deformed	20	21	14 22	10 24.5	1 22.10	1.75	27526	28988		0.000	0.000	27526	3810	37.5	1756	0.104	4267	0.104	11.94	4:	0 5
- 0	. Washa and Fluck (1952)	D2/D5	304.						258 10°	101.6 25	25.4 1.67	deformed	20 20	27	4 4		1 22.10	1.75	27526	28988		3.674	0.000	27526	3810	37.5	1756	0.104	4267	0.104	14.22	4 4	813 0
16 t Was	asha and Fluck (1952)	D2/D5	304.5									0.83 deformed	20	21	14 22	10 24.5	1 22.10	1.75	27526	28988		3.674	0.618	6132	3810	37.5	1756	0.104	4267	0.104	33.78	4 1	913
o +	Washa and Fluck (1952)	D3/D6	304.8					57	0	0		deformed	50	21	14 22		1 22.16	1.75	27526	28988		3.674	0.618	6132	3810	37.5	1756	0.104	4267	0.104	48.51	14	913
0 +	P.C.A. [18] in Espion (1988)	40NA	15,					20	0 0	0 0	0.00	deformed	50	21	28 26			2.13	29901	29901		0.000	0.000	29901	3048	12.0	1346	0.104	22267	0.107	4.25		0 0
21 0 P.C	P.C.A. [18] in Esplon (1988)	60NA	152	305		1019 25	254 2.6	2.64	0 0	00	0.00	0.00 deformed	20 2	12.	28 37	40 37.40	37.40	2.98	33373	33373	200000	0.000	0.000	33373	3048	12.0	1346	0.104	29641	0.107	4.90	382	
0	C.A. [18] In Espion (1988)	a1/a2	100					75	0	0	00.00	deformed	22	21	32 26			2.11	29908	29666		0.000	0.000	29908	4000	29.9	800	0.104	1962	0.107	15.83		247
	Sattler [11] in Espion (1988)	a1/a2	10,					75	0	0	0.00	0.00 deformed	55	21				2.11	29908	29666		1.599	0.423	11450	4000	29.9	800	0.104	1962	0.104	32.21	32	84
25 0 Hajr 26 t Hajr	 Hajnal-Konyi [22] in Espion (1988) Hainal-Konyi [22] in Espion (1988) 	∞ ∞	12.	27 190.5			160.3 0.7 160.3 0.7	0.70	00	0 0	0.00	0.00 deformed 0.00 deformed	82	27	35 37			2.93	34110	32964		0.000	0.000	34110	6400	96.98 39.9	3097	0.104	1612	0.104	20.60		0
	ijnal-Konyi [22] in Espion (1988)	9	12.					70	0	0	0.00	0.00 deformed	85	21	35 37			3 2.93	34110	32964		0.000	0.000	34110	4800	29.9	1742	0.104	2967	0.104	8.80		0
	ajnal-Konyi [22] in Espion (1988) -inal-Konyi [22] in Espion (1988)	5 2	12,12					2 2	0 0	0 0	0.00	0.00 deformed 0.00 deformed	82	27	35 37			2.93	8 84110	32964		0.000	0.000	34110	3200	6.0 0.0 0.0	7742	0.104	3935	0.104	4.30		0
-	ijnal-Konyi [22] in Esplon (1988)		12.					70	0	0	0 0.00	0.00 deformed	82	21	35 37			٦ 2.93	34110			1.337	0.343	14311	3200	20.0	774	0.104	3935	0.104	14.00		1734
31 0 Brai	Branson and Metz [23] in Espion (1988) Branson and Metz [23] in Ferion (1988)	8) SB3/B 8) SB3/B	101.	721 8				2.07	00	00	0.00	0.00 deformed	20	27	28 35			2.73	32767			0.000	0.000	32767	2743	27.0	303	0.104	935	0.104	3.89	28	0 0
0	anson and Metz [23] in Espion (1986		101.6					07	0	0	00:00	deformed	20	21	28 31			2.45	31450			0.000	0.000	31450	2743	27.0	303	0.104	932	0.104	3.99	28	9 0
+	Branson and Metz [23] in Espion (1988)		101.6					07	0	0	00:00	0.00 deformed	50	21	28 31			2.45	31450			1.381	0.407	13207	2743	27.0	303	0.104	935	0.104	7.50	28	90
35 0 Par 36 t Pau	Pauw and Meyers [26] in Espion (1988) Pauw and Meyers [26] in Espion (1988)	5 E	177.8	.8 .8 .216 .8		00 165.		1.36	00	00	00:00	0.00 deformed 0.00 deformed	20 20	27	28 33	.80 33.80		2.62	32266			1.494	0.000	32266 12940	2286	13.8 8.85	627	0.104	7176	0.107	4.89	78 78 78	150
37 0 Par	Pauw and Meyers [26] in Espion (1988)		177.8					94	0 0	0 0	0.00	0.00 deformed	20	21	28 33			2.61	32202			0.000	0.000	32202	2286	13.8	627	0.104	11228	0.107	3.22		0 4
38 1 Pa. 39 0 Pau	auw and Meyers [26] in Espion (1988, iuw and Meyers [26] in Espion (1988,		177.8					94			0.00	0.00 deformed	20 20	21	28 38			2.95	33813			0.000	0.000	33813	2286	13.8	627	0.104	9643	0.107	3.71		0 0
40 t Par	nuw and Meyers [26] in Espion (1986		177.8	8 216	9 2		. .	94	0 0	0 0	0.00	deformed	20	21	28 38			7 2.95	33813			1237	0.354	15116	2286	13.8	627	0.104	9643	0.107	6.64		120
41 0 Pa. 42 t Pau	b. Fauw and weyers [26] in Espion (1966) t. Pauw and Meyers [26] in Espion (1988)		177.8	8 216	9			9.4			0.00	0.00 deformed	20 9	27	28 38			2.5	33755			1.243	0.354	15049	2286	5.5 8.5 8.5	627	0.104	14607	0.107	7.89	. 58 88	120
	rtz et al. [29] in Espion (1988)		101.6				171.5 1.4	48	0	0		deformed deformed	40	21	28 34							0.000	0.000	32361	1829	10.7	216	0.104	7963	0.107	4.10		0 0
44 1 Luiz 45 0 Luiz	Lutz et al. [29] in Espion (1989) Lutz et al. [29] in Espion (1988)	R NO	101.6	.6 203.2				1.48	258 177	177.8 25	25.4 1.48	1.48 deformed	4 4	21	34 34 34		34.10	2.64				0.000	0.000	32361	1829	10.7	216	0.104	7963	0.107	4.20	8 8	0 4
-	rtz et al. [29] in Espion (1988)	DR	101.									deformed	40	21	28 34							1.703	0.491	11972	1829	10.7	216	0.104	7963	0.107	6.80		142
47 0 Jac 48 t Jac	Jaccoud and Favre (1982) Jaccoud and Favre (1982)	¥ ¥	09		0 0	4 4	95 0.5 95 0.5					0.10 deformed 0.10 deformed	9 09	2 7	15 20		5 20.49	1.61	26895			0.000	0.000	26895 7122	3100 3100	32.6	2162 2162	0.104	2787	0.104	8.42 18.40	5 5	365
0 +	Jaccoud and Favre (1982)	A2	900		0 0	4 2				8 8		0.10 deformed	09	21	15 24			1.92	28406			0.000	0.000	28406	3100	32.6	2162	0.104	2787	0.104	6.16	5 5	0 385
0	Jaccoud and Favre (1982)	A3	80		3 ,	<u> </u>					_	0.10 deformed	8 9	21	15 19			1.52	26518			0.000	0.000	26518	3100	32.6	2162	0.104	2787	0.104	8.12		90
	Jaccoud and Favre (1982)	A3	09		0 0	4 4						0.10 deformed	09	27	15 15			2 2	32492			3.029	0.472	32492	3100	32.6	2162	0.104	2787	0.104	17.50	£ £	365
	Jaccoud and Favre (1982)	A4	009		0	4						0.10 deformed	09	21	15 36			2.77	32492			1.689	0.428	12434	3100	32.6	2162	0.104	2787	0.104	8.05	12:	365
ó ÷	Jaccoud and Favre (1982)	A5 A5	90		0 6	4 4	95 0.:					0.10 deformed	09	21	15 32		32.47	2.53	31355			0.000	0.000	31355	3100	32.6	2162	0.104	2787	0.104	3.12	£ £	365
0	Jaccoud and Favre (1982)	C12	75(0	65 1.						deformed	09	21	28 29) 29.4C	2.31	30800			0.000	0.000	30800	3100	23.7	3604	0.104	6095	0.107	2.17	58	0
- 0	Jaccoud and Favre (1982)	C12 C22	75(000	35 1						0.06 deformed 0.06 deformed	09 09	21	28 26		32.89	2.31	31974			1.937	0.428	31974	3100	23.2	3604	0.104	6095	0.107	8.29	28 88	510
- 0	Jaccoud and Favre (1982)	C22	75(0.06 deformed	9 9	12.5	28 32		32.86	2.56	31974			1.627	0.387	12173	3100	23.7	3604	0.104	6095	0.107	7.00	188	365
o +	Jaccoud and Favre (1982) Jaccoud and Favre (1982)	2 2	75(0.06 deformed 0.06 deformed	09	21	28 30	93 30.9	30.93	2.42	31326			1.845	0.000	31326	3100	2 23	3604	0.104	9305	0.107	5.29 13.28	8 88	510
0 -	Jaccoud and Favre (1982)	C14	75									0.06 deformed	09	21	28 25	40 29.4	0 29.4C	2.31	30800			0.000	0.000	30800	3100	23.7	3604	0.104	12520	0.107	8.48	58	0 5
65 0 Jac	Jaccoud and Favre (1982) Jaccoud and Favre (1982)	C2 4	75(0.58	57	\$ \$	26 0.06 26 0.06	0.06 deformed	09	21	28 25	.40 29.4 97 31.9.	7 31.97	2.49	30800			0.000	0.000	31673	3100	23.7	3604	0.104	12520	0.107	8.00	5 7 8 7 8	0 0
+ c	Jaccoud and Favre (1982)	C24	75(0.06 deformed 0.06 deformed	09	27	28 31	97 31.9	7 31.97	2.49	30762			0.000	0.423	11358	3100	23.7	3604	0.104	12520	0.107	17.52	28	510
	Jaccoud and Favre (1982)	C15	750									deformed	09	21	28 29	29 29.2.	9 29.26	2.30	30762			1.944	0.428	10449	3100	23.7	3604	0.104	15725	0.107	20.83	28	510
69 0 Ding 70 t Ding	 Ding Dajung [44] in Espion (1988) Ding Dajung [44] in Espion (1988) 	క్ట్రా క్ల	8 8	31 160 31 160		113	137 1.0 137 1.0	1.02	00	00	0.00	0.00 deformed 0.00 deformed	80 80	27	30 21	21.60 21.45	2 21.60	1.71	27831	27715	200000	3.026	0.000	27831	2880 2880	21.0	338	0.104	2904	0.107	8.45 16.62	30 30	0 2025
_	ng Dajung [44] in Espion (1988)	2.3	9 6					5 5	0 0	0 0	0.00	deformed	80	21	30 25	40 25.1	9 25.40	2.01	29375	29254	200000	0.000	0.000	29375	2880	24.6	244	0.104	3280	0.107	15.53	30	0
	ig Dajung [44] ili Espiori (1908)	à	Ö					7			0.00	neignieg	90	7	30 25	.62 04	#:07 G	2.0	29313	40767	200000	6.96.2	0.30	55	7007	0.42	# 7	0.10	2500	0.107	30.43	90	3

Chick information		Cross-social			ď	Doinforcomont	+								Mochanical	proportion								Dading				Dofloctio	
	2	3 4	LC)	9	7	8	6	10	11 12	13	4	15	16	17 1	8 15	200	21	22	23	24	25	26	27	28	29	30 31	32	33	34
												<u>_</u>	(m(tm.)	f _{cm} (t	Ī					ш							a (t-t)		
Author	Specimen	b (mm) h (mm)	A _{s1} (mm²)	d (mm)	b, (%)	Asz (mm²)	d' (mm) d	d ₂ (mm) p ₂ (%)	(%) type	RH (%)	r (°C) t _s	(days) (MI	a) fam	(MPa) (MPa)	(MPa)	(MPa)	E _{cm} (M	Pa) E _s (MPa)	(<u>-</u>) ø	£ cs (%) ((MPa)	L (mm)	M	(Nm) K _{L1}	ML2	(Nm) K ₁₂	(mm)	t ₆ (days)	t-t ₀ (days)
73 0 F.R.F.C. [45] in Espion (1988)	1-72			250	0.82	0		0	0.00		21	28	33.50	33.50	33.50	2.60 32					32170	2800	11.2	1029	0.104			.02 2	0 8
74 t F.R.F.C. [45] in Espion (1988)	1-72					0	0	0	0.00 deformed		21	28	33.50	33.50	33.50	2.60 32					10109	2800	11.2	1029	_			.29 2	3 1610
	181					0	0	0	0.00 deformed		21	28	33.50	33.50	33.50	2.60 32					32170	2800	11.2	1029	_			.39 2	9
	<u>-8</u>					0	0	0	0.00 deformed		21	28	33.50	33.50	33.50	2.60 32					9892	2800	11.2	1029	0.104			.98	3 1344
	1-91				0.82	0	0	0	0.00 deformed	_	21	28	33.50	33.50	33.50	2.60 32					32170	2800	11.2	1029	0.104			.94	0
	L6-1					0	0	0 1	0.00 deformed		12	87.	33.50	33.50	33.50	25.60					9390	2800	7.1.	1029	0.104			20.	1314
	1.52					0	0 0	0 0	0.00 deformed		7 6	8 6	29.80	29.80	29.80	8.24					30939	2800	5.5	1029	40.0			12.	200
	159					0 0	0 0	0 0	0.00 deformed		1,0	2 82	29.80	29.80	29.80	234					30939	2800	. t	1029	101.0			64	962
82 t F.R.F.C. [45] in Espion (1988)	621				2.18	0	0	0	0.00 deformed	9 9	2	28	29.80	29.80	29.80	234 38					6827	2800	. 6	1029	0.104			14.10	1541
	IF70					0	0	0	0.00 deformed		21	58	29.80	29.80	29.80	2.34 30					30939	2800	11.9	1029	0.104			36 2	0
	IF70					0	0	0	0.00 deformed	_	21	28	29.80	29.80	29.80	2.34 30					5908	2800	11.9	1029	0.104		107 17	.56 2	3 1471
	11-80					0	0	0	0.00 deformed		21	28	29.80	29.80	29.80	2.34 30					30939	2800	11.9	1029	0.104			72 2	0
	11-80					0	0	0	0.00 deformed	_	21	28	29.80	29.80	29.80	2.34 30					5179	2800	11.9	1029	0.104			20.24 2	3 1485
	11-90					0	0	0	0.00 deformed		21	28	29.80	29.80	29.80						30939	2800	11.9	1029	0.104			.10 2	0
	11:30					0	0	0	0.00 deformed		21	28	29.80	29.80	29.80						4533	2800	11.9	1029	0.104			.23 2	1491
	III-43					0	0	0	0.00 deforme		21	28	34.30	34.30	34.30						32424	2800	12.0	1029	0.104			.08 2	0
	III-43					0	0	0	0.00 deforme		21	28	34.30	34.30	34.30						8431	2800	12.0	1029	0.104			.51 2	3 1572
	III-67					0	0	0	0.00 deforme		21	28	34.30	34.30	34.30						32424	2800	12.0	1029	0.104			.58 2	9
	III-67					0	0	0	0.00 deforme		21	28	34.30								5805	2800	12.0	1029	0.104			.88 2	3 1572
	111-77				3.53	0	0	0	0.00 deformed		21	28	34.30			2.65 32					32424	2800	12.0	1029	0.104			.84 2	0
	111-77					0	0	0	0.00 deforme		21	28	34.30								4870	2800	12.0	1029	0.104			.74 2	3 1572
	1V-52					462	248	32	1.31 deformed		21	28	32.00								31683	2800	11.9	1029	0.104			.98 2	9
	1V-52					462	248	32	1.31 deforme		21	28	32.00								10483	2800	11.9	1029	0.104			.52 2	3 772
	10-70					462	248	32	1.31 deforme		21	28	32.00								31683	2800	11.9	1029	0.104			.80 2	9
	17-70					462	248	32	1.31 deforme		21	28	32.00								9022	2800	6.11	1029	0.104			.90 2	3 772
	17-80					462	248	32	1.31 deforme	09 P	21	28	32.00								31683	2800	11.9	1029	0.104			.16 2	0
	17-80					462	248	32	1.31 deforme	09 P	21	28	32.00		32.00	2.50 31					8217	2800	11.9	1029	0.104			.96 2	3 972
	17-90	150 280	770	236	2.18	462	248	32	1.31 deformed	09 P	21	58	32.00	32.00	32.00	2.50 31					31683	2800	6.1	1029	0.104			.85	0
	IV-90					462	248	32	1.31 deformed		21	28	32.00		32.00	2.50 31					7558	2800	9.11	1029	0.104				3 872
103 0 Bakoss et al. (1983)	182	100 150	226	130	1.74	0 0	0 0	00	0.00 deformed	90 90	2 2	58	39.00	39.00	39.00	2.96		33842 20000			33842	3750	8.8	629	0.104		0.107 8	8.94 28	0 0
O Cledic et al 1	102				4 4				on deferment		1 6	2	00.00		00.00	20.2	ľ				00200	0000	0.04	600	0.00		l		l
105 U Clarke et al. (#0] III Espon (1990)	14		157.	132	9	0	0 0	0 0	0.00 deformed	9 9	4 6	0 80	25.90	25.90	25.90	202	4 (3526 20000			8580	2100	. u	212	0.104			93 83	
5 2	Α2			130	121	0 0	0 0	0 0	0.00 deformed	04.4	2 6	280	25.90		25.90	202	4 (1				29526	2100	16.0	200	104				90
4	A2			130	121	0	0	0	0.00 deformed	40	2	28	25.90	_	25.90	2.05					8574	2100	16.2	209	0.104				180
al. [4	B1			130	1.21	157.1	132	20	1.21 deformed	d 40	21	28	25.90	25.90	25.90	2.05 29					29526	2100	16.2	209	0.104			.78 2	0
al. [4	B1		157.	130	1.21	157.1	132	20	1.21 deformed	d 40	21	28	25.90	25.90	25.90	2.05 29					8574	2100	16.2	209	0.104			.77 2	3 180
al. [4	B2			132	1.19	157.1	134	20	1.19 deformed	d 40	21	28	25.90	25.90	25.90	2.05 29					29526	2100	15.9	212	0.104			.30 2	0
112 t Clarke et al. [46] in Espion (1988)	B2		157.	132	1.19	157.1	134	20	1.19 deforme	d 40	21	28	25.90	25.90	25.90	2.05 29					8580	2100	15.9	212				.55 2	3 180
113 0 Gilbert and Nejadi (2004)	B1-a				0.54	0	0	0	0.00 deforme	d 40	21	28	24.80	24.80	22.36	1.77 27					27633	3200	11.7	3254				.95	0
114 t Gilbert and Nejadi (2004)	B1-a				0.54	0	0	0	0.00 deforme	d 40	22	28	24.80	24.80	22.36	1.77 27					6972	3200	11.7	3254				.06	380
115 0 Gilbert and Nejadi (2004)	81-b	250 340	402		0.54	0 0	0 (0 (0.00 deformed	d 40	21	5 28	24.80	24.80	22.36	1.77					27633	3500	1.7	3254	0.104			98	0 000
116 t Gilbert and Nejadi (2004)	0-1-0				0.54	0 0	0 0	0 0	0.00 detarme	040	77	8 6	24.80	24.80	22.30	77.					2/69	3200	7.7	3254				44.0	380
110 Gilbert and Najadi (2004)	B2-8				0.0	0 0	0 0	0 0	0.00 deformed	9 9	200	0 00	24.80	24.80	22.30	111					6063	3500	7	3110				35	380
110 C Cilbert and Nejack (2004)	B2.8				0.00	0	0 0	0 0	0.00 deformed	2 9	27 5	04 6	24.80	24 80	35 36	14 2					27633	3500	7	3110				90	9
120 + Gilbert and Najadi (2004)	B2.h				0.0	0	0	0 0	0.00 deforme	9 4	. 60	2 8	24.80	24.80	22.38	77 27					6063	3500	11 7	3110	0.104			22	380
121 0 Gilbert and Neiadi (2004)	B3-a				0.80	0	0		0.00 deformer	40	2	28	24.80	24.80	22.36	177 27					27633	3500	11.7	3110	0 104			81	
t Gilbert and Nejadi	B3-a				0.80	0	0	0	0.00 deformed	d 40	22	28	24.80	24.80	22.36	1.77 27					6953	3500	11.7	3110	0.104			.30	380
123 0 Gilbert and Nejadi (2004)	B3-b				0.80	0	0	0	0.00 deformed	d 40	21	28	24.80	24.80	22.36	1.77 27					27633	3500	11.7	3110	0.104			1 1	0
+	B3-b				0.80	0	0	0	0.00 deformed	d 40	22	28	24.80	24.80	22.36	1.77 27					6953	3200	11.7	3110	0.104			.90	380
0 Gilbert and Nejadi	S1-a				0.44	0	0	0	0.00 deformed	d 40	21	28	24.80	24.80	22.36	1.77 27					27633	3200	26.9	2373	0.104			14 1	0 #
126 t Gilbert and Nejadi (2004)	S1-a		5 226		0.44	0	0	0	0.00 deformed	d 40	22	28	24.80	24.80	22.36	1.77 27					6728	3200	56.9	2373	0.104		104 25	10 1	380
 Gilbert and Nejadi 	S1-b				0.44	0	0	0	0.00 deformed	d 40	21	28	24.80	24.80	22.36	1.77 27					27633	3200	56.9	2373	0.104			.72	0
t Gilbert and Nejadi	S1-b				0.44	0	0	0	0.00 deformed	d 40	22	58	24.80	24.80	22.36	1.77 27					6728	3200	56.9	2373	0.104			.90	380
0 Gilbert and Nejadi	S2-a				0.65	0 0	0 0	0 0	0.00 deformed	P 40	21	28	24.80	24.80	22.36	1.7		29102 20000			27633	3500	6.98	2373	0.104			11.80	0 000
130 t Gilbert and Nejadi (2004)	52-a				0.00	0	0	0	0.00 deformed	04	77 6	87 8	24.80	24.80	25.30	17.1					07533	3200	8 8 8 6	2373	0.104	4427	104	. 50	380
t Gilbert and Nejadi	52-b				0.65	0 0	0 0	0 0	0.00 deformed	04 4	20	9 8	24.00	24.80	22.30	17.1					6728	3500	8 %	2373	0.104	4437 0	104	2.0	380
133 0 Gilbert and Nejadi (2004)	S3-a				0.87	0	0	0	0.00 deformed	40	21	8 2	24.80	24.80	22.36	1.77	633 29.	005 20000			27633	3200	56.9	2373	0.104	8977 0	104 10	70	0
134 t Gilbert and Nejadi (2004)	S3-a				0.87	0	0	0	0.00 deformed	d 40	22	28	24.80	24.80	22.36	1.77 27	633 29.	102 20000			6728	3500	56.9	2373	0.104	8977 0	104 29	1 29.80	380
0	S3-b	400 155	5 452	130	0.87	0	0	0	0.00 deformed	d 40	21	28	24.80	24.80	22.36	1.77 27	27633 29	102 200000	0000	0.000	27633	3500	58.9	2373	0.104	2967 0	104	104	0
- 0	S3-b				0.87	0 [0	0 6	0.00 detormed	d 40	77.	87.	24.80	24.80	22.36	1.77 27	633 ZB.	0000 50000			6728	3200	6.97	2373	0.104	2967	104 22	. 90	380
137 U 10SIC (2017) 138 + Tošić (2017)	NAC.				0.58	20 00	17.	67 62	0.21 deformed	48.7	5.12	8 8	30.50	30.50	24.97	86.1	212	180 2000		0.000	8100	3200	9.80	1024	0.104	6645	107	7.6	450
0	NAC28				0.58	20	171	29	0.21 deformed	d 48.7	1.2	28	30.50	30.50	30.50	2.39 31	180 317	180 20000		0.000	31180	3200	18.9	1024	0.104	5853 0	107	8.11 2	30
140 t Tošić (2017)	NAC28				0.58	22	171	29	0.21 deformed	d 48.7	21.3	28	30.50	30.50	30.50	2.39 31	31180 317	180 20000		0.705	10042	3200	18.9	1024	0.104	5853 0	107 16	.51 2	450

Assessment and Correction of MC10 model: Database – Calculated Deflections

	_	2	8	Cracking moment	oment 5	9	7	8	State I	11	12	13	41	State II	16	17	18	19	Deflections 20 21	ions 21	22
	Author	Specimen	W _i (t ₀) (mm³) M _{SW} (w (Nm) Mer	(Nm)	M _{max} (Nm) M _{ms}	ax/Mcr A, (mm²) z _{ld} (n	(mm) l _i (mm ⁴)	S _i (mm³	A ₁ (mm²)	A _{llc} (mm²)	z _{llc,1} (mm)	z _{li,1} (mm)	ic (mm ⁴)	I _I . (mm²)	S _{ll} (mm³)	a _r t-t ₀ (days) (n	a _{num.int.}	xo (mm) a _{nur}	.int./aexp
← (0 Washa and Fluck (1952)	A1/A4	4002250	7192 <		25634				609942850	0 0	0 1			11254000	225850587	773660	0 0	13.90	13.46	1.033
Nω	t Washa and Fluck (1952) 0 Washa and Fluck (1952)	A2/A5	3888764	7192 <	> 924 /	25634	3.329						258.93		13075692		855330	0	14.33	15.75	0.910
4 u	t Washa and Fluck (1952)	A2/A5	3888764	7192 <	7700 <	25634	3.329			840748125 821739					41904905	599487886	1858896	913	29.54	32.26	0.916
ာဖ	t Washa and Fluck (1952)	A3/A6	3763278	7192 <	7451 <	25634	3.440								61549295		.,	913	38.86	44.70	0.869
_ 0	0 Washa and Fluck (1952)	B1/B4	1229142	3596 >	2016 <	7259	3.601			30827	0 1479				2496976			0 0	24.21	23.37	1.036
0 0	t Washa and Fluck (1952) 0 Washa and Fluck (1952)	B2/B5	1209909	3596 >	1984 <	7259	3.659	35414	99.27 1201		0 407.30 40 13511	9065		143.71	2673097	39263915		20	24.45	24.89	0.982
9 ;	t Washa and Fluck (1952)	B2/B5	1209909	3596 >	1984 ^	7259	3.659								9418383			913	57.40	65.02	0.883
1 2	0 Washa and Fluck (1952) t Washa and Fluck (1952)	B3/B6 B3/B6	1187902	3596 >	1948 × ×	7259	3.726			11491 /648 150393 136430315 537336			172.63		2901851 13250871		783738	913	72.84	26.42 86.36	0.937
5 :	0 Washa and Fluck (1952)	D1/D4	990864	1756 >	1734 <	6023	3.473								1232532			0	14.21	11.94	1.190
<u>4</u> 12	t Washa and Fluck (1952) 0 Washa and Fluck (1952)	D1/D4 D2/D5	990864	1756 >	1734 × ×	6023 6023	3.473								3467565		403842 216639	913	27.58 14.46	27.69	0.996
9	t Washa and Fluck (1952)	D2/D5	97078	1756 >	1699 <	6023	3.545			_					4643203			913	32.49	33.78	0.962
7 1	0 Washa and Fluck (1952)	D3/D6	947835	1756 >	1659 <	6023	3.631		60.13 569	56993290 130;					1528494			0 6	14.76	17.78	0.830
o 6	t wasna and Fluck (1932) 0 P.C.A. [18] in Espion (1988)	40NA	2909878	1346 ×	6198 <	23613	3.810								14824969	184749818		0	3.99	46.3	0.939
5 20	t P.C.A. [18] in Espion (1988)	40NA	2909878	1346 ^	6198 <	23613	3.810			490166327 1288			.,		45082052	359782218	•	242	9.08	10.00	0.908
2 2	0 P.C.A. [18] in Espion (1988) t P.C.A. [18] in Espion (1988)	eona Sona Sona Sona Sona Sona Sona Sona S	2949418	1346 A A	8435 × 8435 ×	30987	3.674		140.69 4149 127.28 4780	3550 54/451 18843 1169049				196.79	16046942	193936781 336408130	889874 1640776	242	9.06	9.90 0.90	0.911
23	0 Sattler [11] in Espion (1988)	a1/a2	462622		> 926	2762	2.830								394223	7980684		0	16.45	15.83	1.039
24 4	t Sattler [11] in Espion (1988)	a1/a2 o	462622	> 008	> 976 <	2762	2.830			38726112 850					1250810	16424786	141245	% <	29.67	32.21	0.921
2 8	t Hajnal-Konyi [22] in Espion (1988)	ο ∞	822534	3097 ×	2410 <	4709	1.954								1947036	29021908		173	52.28	65.40	0.799
27	0 Hajnal-Konyi [22] in Espion (1988)	10	822534	1742 <	2410 <	4709	1.954			76569719 523					664933	14750983		0	15.71	8.80	1.785
8 8	t Hajnal-Konyi [22] in Espion (1988)	2	822534	1742 <	2410 ^	4709	1.954								1947036	29021906		1734 24	29.41	29.70	0.990
8 %	t Hajnal-Konyi [22] in Espion (1988)		822534	74 4 4	2410 <	4709	1.954								1947036	29021908		1734	13.07	14.00	0.934
33	0 Branson and Metz [23] in Espion (1988)		317730	303 ×	> 298	1238	1.428						107.08		535284	7120344		0 8	2.50	3.89	0.642
3 8	t Branson and Metz [23] in Espion (1988) O Branson and Metz [23] in Espion (1988)	s) SB3/B s) SB3/M	31//30	303 303 803	× × 283 × ×	1238	1.581		59.87 191:	20788130 904 19130162 469		5368		7 4.16	1248543 561080	7331221	14180/	g o	2.81	3.99	0.704
8	t Branson and Metz [23] in Espion (1988)		319528	303 <	783 <	1238	1.581			~					1385054	12668463		09	8.75	7.50	1.167
, 3	Pauw and Meyers [26] in Espion (1988) Pauw and Meyers [26] in Fenion (1988)		1500987	627 <	3933 <	7803	1.984		104.54 1569	156913208 1330 166683927 304					2511330	39922317		0 (2)	2.51	2.44	1.030
37	0 Pauw and Meyers [26] in Espion (1988)		1548942	627 <	4043 <	11855	2.932		_	. n			184.25		3793321	51584906		9 0	3.52	3.22	1.094
8 8	t Pauw and Meyers [26] in Espion (1988)		1548942	627 <	4043 <	11855	2.932						172.16		9988968	92858192		150	7.00	6.16	1.137
8 9	t Pauw and Meyers [26] in Esploi (1999) the Pauw and Meyers [26] in Esplon (1988)		1541272	627 <	4547	10270	2.259						174.39		8536569	84533170	_	120	5.60	6.64	0.843
14	0 Pauw and Meyers [26] in Espion (1988)		1596516	627 <	4694 <	15234	3.245						180.97		5093436	61834993		0	3.71	4.66	0.797
42 43	t Pauw and Meyers [26] in Espion (1988) 0 Lutz et al. [29] in Espion (1988)	SR SR	1596516 810319	627 < 216 <	2139 ×	15234 8179	3.245		95.94 1757 96.59 782	78268752 103463	102 26640 163 7623	16354 13 6029	173.53	124.02	11528988	27134245		02.0	3.10	4.10	0.756
4 ;	Lutz et al.	SR	810319	216 <	2139 <	8179	3.824			_			160.47		5284179	53053214	• • •	142	5.86	8.80	0.666
4 4 4 4	0 Lutz et al. [29] in Espion (1988) t Lutz et al. [29] in Espion (1988)	¥ 8	863371	216 <	2279 < 2279 <	8179	3.589		_	88081066 -8, 117108702 -19		11 5412 10 7088			1279703	28646615		142	2.90	6.80	0.691
47	0 Jaccoud and Favre (1982)	¥1	1520111	2162 <	2447 <	4949	2.022			ı 					648355	14542713			8.95	8.42	1.063
84 64	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	A1 A2	1520111	2162 < 2162 <	2447 < 2910 <	4949 4949	2.022			99036080 2136 89699591 59				97.05	3015504	40088933	461160	365	20.71	18.40	1.125
20	t Jaccoud and Favre (1982)	A2	1515708	2162 <	2910 <	4949	1.701								2521475	35567990		365	18.54	17.50	1.060
5 23	0 Jaccoud and Favre (1982)	A3	1521148	2162 < 2162 <	2343 ×	4949	2.112		59.12 899.	89930247 63;					659429 3157946	14705240		365	9.26	8.12	1.141
53 5	0 Jaccoud and Favre (1982)	A4	1506283	2162 <	4172 <	4949	1.186								510774	12436877		0	3.37	2.24	1.506
Z 18	t Jaccoud and Favre (1982)	A4	1506283	2162 <	4172 <	4949	1.186								1637786	26724416		365	12.83	8.05	1.593
8 98 8	t Jaccoud and Favre (1962)	A5	1508766	2162 <	3817 <	4949 4949	1.297		58.03 945	94542185 1416			103.39	86.79	1833275	28782213	331021	365	14.40	3.12 9.55	1.508
57	0 Jaccoud and Favre (1982)	C12	3387047	3604 <	7824 <	6696	1.240								1891809	44126634		0 5	2.68	2.17	1.234
20 00	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	C22	3380311	3604 ×	8654 ×	6696 6696	1.121								1804906	42823056		0.6	1.92	8.29 2.00	0.958
09	t Jaccoud and Favre (1982)	C22	3380311	3604 <	8654 <	6696	1.121						_		5880755	9176814		365	7.84	7.00	1.120
5 6 8	0 Jaccoud and Favre (1982) t Jaccoud and Favre (1982)	5 5 8 8	3383563	3604 ×	8188 8188 8 8	12909	1.577	123968	78.68 2662 76.44 2840	266218766 1589 284041924 427			144.54		1849191 6593748	43507040 98799830		510	5.51 12.98	5.29	1.042
83	0 Jaccoud and Favre (1982)	C14	3387047	3604 <	7824 <	16124	2.061			0			•	128.84	1891809	44126634	.,	0	8.85	8.48	1.043
2 6	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	C24 C24	3387047	3604 ×	7824 < 8421 <	16124 16124	2.061	131862	76.28 28536743 78.69 26610893						6968052	102407268 43108898	355541	510	17.18 8.35	18.15 8.00	0.947
99	t Jaccoud and Favre (1982)	C24	3381738	3604 <	8421 <	16124	1.915			₀				113.3	6366086	96600243	ω	510	16.44	17.52	0.938
67	Jaccoud and Favre (1982) Laccoud and Favre (1982)	25.5	3387246	3604 <	> 1797	19329	2.481	124043	78.65 26640693 76.27 28546911	rõς			144.41	128.82	1894195	44180482	364670	0 0	11.73	11.02	1.064
8 8	0 Ding Dajung [44] in Espion (1988)	5 c	393163	336 <	672 <	3240	4.821		76.64 301	1 0		3 3511	138.33	116.67	549762	9325635	76104	0	10.52	8.45	1.245
20	t Ding Dajung [44] in Espion (1988)	£-0	393163	336 <	672 <	3240	4.821						123.83	87.65	2556313	23933077	212004	2025	20.73	16.62	1.247

Deflections	anum.int.	(min) a _{exp} (min)	30.37 30.43 6.87 6.02		7.83 7.39	8.83	15.02	6.52 7.27	13.49	7.69	883 936	17.56	10.06 10.72	20.24	11.30 13.10	24.23	6.03 7.08	- 0.4.0 - 0.4.0	26.31	10.81 13.84	33.43 28.74	0 6.65 5.98 1.112	8.80	13.90	10.34 11.16	15.47	17.48 19.28	8.94	26.31 25.02	7.027 0 2.00 4.89 1.027 180 10.61 11.83 0.897	5.18 5.09		8.77	4.74 4.30	8.55	12.06 0.	0 3.03 1.98 1.529 280 777 744 1.048	5.56 5.03	12.42	7.87	0.01 5.81 1	13.30	380 8.12 7.90 1.028	12.02 7.14	25.10	19.90	14.46	29.91 32.50 0 8.67 4.43 1	(4	13.66 10.70		22.90		450 21.91 18.94 1.157
10 10	o , (2000)	8876 72111	175263 348381	867779	79183010 348381	348381	915373	695095	1730513	141733579 695095 334245450 1814807 14	695095	1949103	695095	2073589	9 695095	2199872	926387		2360482	926387	3 2518274	149611121 565086 251803460 4044778	331803469 1014778 7		565086	1119410	1154647		223856		92509	228632	149245	77768		2000926	661465	661465	2004421		932649	2668803	670662818 2668803 3	165637	5281 79 165637	528179	234956	78177962 709827 3 27858819 234956	709827	298941	93367230 863792 3	863792		58385703 347613 4
State II	5 + com / · · · · · · · · · · · · · · · · · ·	4 _{1,1} (mm) 1 _{11c} (mm) 3 103.76 579551	76.81	172.44	211.85	211.85	169.53	183.74	128.11	183.74	183.74	118.78	183.74	113.73	183.74	108.74		168 87	191.3 102.6 69793728	168.87	24.96	193.19	193.19	160.11	193.19		155.92	102.93	83.09	85.7	108.98	84.38	97.36	114.56	126.4 98.8 1401821 303.63 267.27 8021540	213.49	267.27	252.27	198.37	198.37	238.63	178.89	251.94 178.89 65009513	126.23	103.61	103.61	120.73	95.43	95.43	135.68 116.35 1924392	89.28	89.28	158.62	167.04 134.08 3820557
5	2 (2 v (2	88 4039 2990	118966 8854 4662 201538 12139 10223	22225 16133	12139 10223	12139 10223	23128 16568	19414 14440	43357 22783	19414 14440	19414 14440	50247 24182	19414 14440	54676 24939	19414 14440	59670 25690	16671	24272 16671	69066 26611	24272 16671	78083 27485	20794 13020	20794 13020	45198 17983	20794 13020	48314 18327	51212 18613	6042 4706	10239 6691	4340 6830	5364 4300	10426 6761	12794 5464	3944	12844 5520 21098 18188	43161 31628	21098 18188	21098 18188	43220 31658	43220 31658	25959 21593	53875 36533	36533	13149 11513	27280 20561 13149 11513	27280 20561	16166	33910 16166	33910	18732	39724		8142	15832
State I		71.89 19730733	63.38 23021491 135.20 296569473	126.07 338777879	135.20 296569473	135.20 296569473	125.14 343056668	129.83 315387895	108.44 401668887	129.83 315387895	129.83 315387895	103.24 422624672	129.83 315387895	100.21 434853474	129.83 315387895	97.07 447507766	125.75 330069430	125 75 330060430	93.25 457006925	125.75 330069430	89.18 472894221	136.95 352719219	136.95 352719219	132.33 546126642	136.95 352719219	131.88 573537209	131.48 599338677	70.50 31835017	64.48 36805065	66.43 39384978	72.47 32163612	65.51 37876232	76.33 51444128	77.12 37108095	77.32 53408567 165.70 866391993	154.47 990459981	165.70 866391993	157.75 768292590	145.37 906525153	145.37 906525153	155.49 793499813	138.31 985373444	138.31 985373444	76.15 128523093	76.15 128523093	72.37 140837647	75.50 130636398	70.16 148023744	70.16 148023744	74.87 132696728	68.15 154569802 74.87 132696728	68.15 154569802	98.57 113934435	95.51 131463301
α ν		3524 6.384	3524 6.384 13616 22529 3.950 43916	3.950	4.433	4.946	4.946	6.154	6.154	6.919	8.248	8.248	9.375	9.375	10.501	10.501	6.213	0.536	9.536	11.000	11.000	6.001	8 133	8.133	9.198	9.198	10.337	2.924	2.924	3.974	4.076	4.076	3.860	3.765	3.765	2.690	1.837	2.877	2.877	1.949	3.830	3.830	20800 2.303 9859	2.280	2.280	1.768	3.222	3.222	2.223	3.618	3.618	2.659	3.350	3.350
Cracking moment	t 4	244 < 552	244 <	1029 < 5703	1029 ×	1029 < 5703	1029 < 5703	1029 < 5684	1029 <	1029 <	1029 ×	1029 <	1029 <	1029 <	> 6701	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <	1029 <		e59 ×	27.2 27.2 2.0 2.0 2.0	209 ×	209 ×	, 209 209 209		212 < 3254 < 9	3254 <	3254 <	3110 <	3110 <	3110 <	3110 <	3110 <	221 3110 < 9033 <	2373 <	2373 <	2373 <	2373 <	2373 <	2373 <	2373 <	2373 <	2373 <	873 1024 < 2289 <	1024 <
uo °	W _i (f.	CIMen	L-1 274457 1-72 2193561		1.81 2193561					II-59 2429237								III-43 2624807				N-52 2575533				IV-80 25755	IV-90 25/5533		2	A1 455406 A1 455406			B1 469016	B2 4811	B2 481173 B1-a 5228678		B1-b 5228678	B2-a 4870318	B2-a 48703				B3-b 5103221		S1-b 16877			S2-a 1730283 S2-h 1730283	S2-b 1730283		S3-a 1772362 S3-h 1772362			NAC/ 1155873
Study information	_	Aumor 0 Ding Dajung [44] in Espion (1988)	4] in Espion (1988) n Espion (1988)	Espion (1988)	1 Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988) Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	Espion (1988)	1 Espion (1988)	1 Espion (1988) Febion (1988)	n Espion (1988)	n Espion (1988)	in Espion (1988)	in Espion (1988)	in Espion (1988)	in Espion (1988)	in Espion (1988)	in Espion (1988)	in Espion (1988) in Espion (1988)	(1983)	(1983)	46] in Espion (1988) 46] in Espion (1988)	al. [46] in Espion (1988)	al. [46] in Espion (1988)	et al. [46] in Espion (1988) et al. [46] in Espion (1988)	6] in Espion (1988)	t Clarke et al. [46] in Espion (1988)) Gilbert and Neiadi (2004)	jadi (2004)	ejadi (2004)	ejadi (2004)	ejadi (2004)	ejadi (2004) ejadi (2004)	ajadi (2004)	and Nejadi (2004)	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	jadi (2004)	i Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	adi (2004)	adi (2004)	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	and Nejadi (2004)		

Assessment and Correction of MC10 model:

Database - Calculated Deflections MC10 with corrections

1		ء	35	396	912	996	366	968	924	340	173	002	957	871	932	906	913	396	366	783	970	516	631	393	123	395	107	127	731	831	383	745	380	638	980	112	055	184	579	314	134	102	114	953	955 368	924	916	998	224	242
8	97	a _{num.int.} /a _{ex}		0 0	00	0,	- 0	00	0	0.	1.1	0.1	0.0	3.00	0.6	o 0	0.6	0.0	1.2	0.7	0.6	7. 6	9.0	0.6	1.00	0.6	Ξ,	7 7	0.7	9.0	9.0	0.7	9.0	0.0	 	77	- 12	- -	=======================================	5.5		1.0	, L	0.0	. o	0.0	3 0	0.0	; 2	7.7
	17	a _{exp} (mm)	13.46	15.75	32.26 17.02	44.70	51.05	24.89	26.42	86.36	27.69	14.22	33.78	48.51	4.25	4.90	9.90	15.83 32.21	20.60	65.40	29.70	4.30	3.89	7.70	3.99	2.44	4.89	3.22 6.16	3.71	6.64	7.89	4.10	8 4.20	6.80	18.40	6.16	8.12	17.50	8.05	3.12	2.17	8.29	7.00	5.29	8.48	18.15	17.52	11.02	8.45	16.62
8	Q I	(mm)	13.68	14.12	14.67	38.72	49.31	24.10	24.41	72.58	14.00	14.25	32.34	14.56 42.23	3.96	9.6 4.4	9.04	15.71	26.08	51.19	28.80	6.52	2.45	7.65	2.76 8.42	2.43	5.41	6.94 74.0	2.71	3.60	6.96	3.06	2.86	4. 6 4. 6	20.20	6.85	8.56	20.72	12.71	4.10	2.46	9.14	7.80	5.04	8.21	16.77	16.04	11.00	10.34	20.64
L	67	a _{simp.} /a _{exp} (1.053	0.926	0.926	0.876	0.983	0.998	0.951	0.850	1.009	1.034	0.972	0.843	0.956	0.917	0.926	1.055	1.431	0.828	1.025	1.714	0.705	1.056	0.778	1.082	1.168	1.158	0.778	0.868	0.901	0.768	0.701	0.652	1.160	1.317	1.180	1.245	1.603	1.600	1243	1.105	1.078	1.106	1.069	0.973	0.970	1.075	1.250	1.253
tions	*		14.17	14.59	15.11	39.17	50.18	24.85	25.12	73.40	14.47	14.71	32.82	14.99	4.06	9.17 4.54	9.17	16.70	29.47	54.13	30.45	7.37	2.74	8.13	3.10	2.64	5.71	7.13	2.89	3.81	7.11	3.15	2.92	4.43	21.34	8.11	9.58	21.79	12.91	4.99	2.70	9.16	7.55	13.72	9.06	17.67	17.00	11.85	10.57	20.83
Deflections			1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.971	0.971	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	0.874	0.919	0.896	0.896	0.848	1.000	1.000	1.000	1.000	1.000	1.000	1.000
8	7	٨	0.942	0.890	0.896	0.948	0.953	0.908	0.911	0.956	0.899	0.902	0.951	0.907	0.920	0.959	0.958	0.903	0.677	0.838	0.838	0.677	0.488	0.692	0.577	0.709	0.846	0.929	0.781	0.881	0.943	0.913	0.902	0.948	0.842	0.583	0.708	0.853	0.619	0.348	0.299	0.648	0.582	0.529	0.697	0.848	0.829	0.777	0.937	0.968
3	1.7		1.836	1.836	1.836	1.836	1.840	1.840	1.840	1.840	1.839	1.839	1.839	1.839	1.888	1.888	1.920	1.699	1.687	1.687	1.687	1.687	1.878	1.878	1.878	1.804	1.804	1.866	1.866	1.866	1.920	1.819	1.819	1.819	1.646	1.646	1.646	1.646	1.646	1.646	1.653	1.653	1.653	1.653	1.653	1.653	1.653	1.653	1.753	1.753
8	8	α	1.000	1.000	1.000	0.500	0.500	1.000	1.000	0.500	0.500	1.000	0.500	0.500	1.000	1.000	0.512	0.570	1.000	0.500	0.500	1.000	1.000	0.601	0.601	1.000	0.530	0.530	1.000	0.543	0.543	1.000	1.000	0.533	0.504	1.000	1.000	0.504	0.504	1.000	1.000	0.502	0.504	1.000	1.000	0.502	0.502	1.000	1.000	0.500
9,	<u> </u>	t-t ₀ (days) β	913	0	913 0	913	913	0 0	0	913	913	0	913	913	0	242	242	o \$	0	4, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1734	1237	ţ °	9	° 8	9 0	150	150	0	120	120	0 ;	0	142	365	0 100	0	365	365	0 366	90	510	365	0 0	0 0	510	510	0 0	20	2025
9	2		773660 477066	855330	1858896 952407	401799	524271	269620	284751	783738	202721	216639	490921	234120 628816	844077	17/1341 889874	640776	65448	100320	205345	205345	100320	80635	141807	83200 151954	272230	539307	358407 583365	345087	615374	752146	178848	3/09/ / 144105	247289	1655/9 461160	158087	167441	475699	307096	145468	364189	868832	353113 775635	358929	837 199 364 189	868832	817977	364670	76104	212004
-	_	10			214212917									50415773 6											7331221												14705240 1					102407268 8				m «		44180482	2 12 1	
		_=												1528494 207 6730980 504																					3015504 400		659429 147						1804906 428 5880755 917					1894195 441		
II e		2			33 41904905 38 15363996																																									•				
State	9	Z _{II,1}			7 169.53									.1 87.81 8 62.77								01.0		00 1	~ 6									01.1			96.38						6 114.52	+ 5	~ ~1	-	- 10	- o	3 116.67	
,	4	Z _{IIc,1}			256.39						7 108.76	-		707.41 78 94.88								170.62		-	11 106.77	_				174.39		- '					76 108.19			108.99		135.9						144.4	₩.	_
•	2	A _{llc} (r			2 2/485 0 19672						.0 11117 .8 15694			11944 15 19578											7 5557							3 6029			.8 23530			0 23894				36097		5 23197	0 -		4 ()		3 3511	
9	Z	A _{II} (mm²)			25610						1862 4934	1711	4253	15695 36405	2169	4068 2255	3766	707	286	920	9208	5881	5352	8276	5472 8797	12320	2003	2441	1443	2231	2664	7623	860	15710	33948	1636	16973	34790	2516	15580	2741	47959	4 4 8 8	2716	2741 2741	47959	4597	2742	4323	Z.S
;	=	S _i (mm³)	0 0		567893	_	00	72040	150393	537336	0 0			130283		_	1169049	34674	52332	119348	119348	52332	45167	90418	46915 98657	133027	e .	409825					-8706	-19142	213636		63212	222143	129319	53795	161583	446680	389646	158964	161583	446680	415330	161832	43581	
	2		609942850 989485082	574720400	539014288	664967311	193410096	120107709	114917648	136430315	62919835	60081924	87061004	56993290 69054109	411514890	490166327	478048843	36005843	76569719	80928892	80928892	76569719	19063813	20788130	19130162	156913208	166683927	159850843	159382904	169809154	175770724	78268752	88081066	117108702	99036080	89699591	89930247	99586294	93800072	89394400	266391260	285367434	281502676	266218766	284041924 266391260	285367434	283237413	266406935	30131992	3615084b
State	D.	(mm) i						99.27	96.74	84.25	63.50													56.49									102.02	102.53	59.13 57.03	59.18	59.12	56.91											76.64	68.49
ď	ю	(mm²) z _{i,1}	73812	70662	96052 67874	85152	59064	35414	33932	45016	46212	44337	63950	42461 55536	52040	63841 52464	61686	16669	25026	26179	26179	25026	14209	15811	14264	40885	44589	47232	41762	45919	48691	22240	23834	29267	/4/60 82418	74612	74797	82896	77966	74367	124037	131862	130219	123968	124037	131862	130953	124043	13772	16239
		/M _{cr} A _i	3.235	3.329	3.329	3.440	3.601	3.659	3.726	3.726	3.473	3.545	3.545	3.631 3.631	3.810	3.810 3.674	3.674	2.830	1.954	1.954	1.954	1.954	1.428	1.428	1.581	1.984	1.984	2.932	2.259	2.259	3.245	3.824	3.589	3.589	2.022	1.701	2.112	2.112	1.186	1.297	1.240	1.240	1.121	1.577	1.577 2.061	2.061	1.915	2.481	4.821	4.821
	٥	(Nm) M _{max}	25634 25634	25634	25634 25634	25634	7259	7259	7259	7259	6023 6023	6023	6023	6023 6023	23613	23613 30987	30987	2762	4709	4709	4709	4709	1238	1238	1238	7803	7803	11855	10270	10270	15234	8179	8179	8179	4 94 9 9 4 9 9 4 9	4949	4949	4949	4949	4949	6696	6696	6696	12909	12503 16124	16124	16124	19329	3240	3240
		M _{max}	4. 4 ^ ^	v 0 0	v v	v .		4 4 v v		× 81	4 4 v v	· v	v v	v v	× 8.	v v	, ç	v v		v v		v 1	v v	> 2.	v v	v v	> 0	v v n	> 2	۲۰ ۱۷	1 4 \ \	v 1	v v	۷ و ا	v v	v .	/ v	v v	, v	V V	- 4 . v	4: ·	4 4 \ \	۷ ۱ چود	δ <u>4</u>	4: + v v	/ v	× ×	. 2	, v
Cracking moment	n	M _{cr} (Nm)		0,77	7451						1734	1699	166	1659						> 2410		241			< 783 < 783		> 393	\$ \$	454	A 454		< 2139		> 227	 4 4	291	234	234	: 417	381	782	782	9865	318	782	782	84.5	377.	672	ã
Crackir	4	M _{Sw} (Nm)			7192 ^			3596 >	3296		1756 >	1756	1756			1346 <		v v		3097 >		774						627 <	627 <	627 <					2162	2162	2162 <	2162	2162	2162	3604	3604	3604	3604	8 8 4 49 8 A	3604	3604	3604	336	336
	(t°)		4002250	3888764	3888764 3763278	3763278	1229142	1209909	1187902	1187902	990864	970786	970786	947835	2909878	2909878	2949418	462622	822534	822534	822534	822534	317730	317730	319528	1500987	1500987	1548942	1541272	1541272	1596516	810319	863371	863371	1520111	1515708	1521148	1521148	1506283	1508766	3387047	3387047	3380311	3383563	3387047	3387047	3381738	3387246	393163	393163
	W _i (t _o)	(mm ₃)																																																
c	٧	Specimen	A4 44	A5	A5 A6	A6	8 8	B5 B5	3 88	98 2	0 4	05		D3/D6	≰:	≰ ≰	¥.	a2 32					SB3/B	SB3/B	SB3/M SB3/M																61	2.5	V ~!	e -	າ →	4-	. 		0 ~	~
rmation		Spt	A1/A4 A1/A4	A2	AZ/A5 A3/A6	A3	8 1	B2/B5 R2/R5	B3/	B3	D1/D4	02	D2	3,6	401	40NA 60NA	109	a1,	3) 8	8) 8	9) 19	8) 12	(1988) SB.	(1988) SB	(1988) SB: (1988) SB;	(1988) R1	(1988) R1	(1988) KZ (1988) R2	(1988) R3	(1988) R3	(1988) R4	SS			¥ ¥	A2	¥3 ¥	A3	¥ \$	A5	C 2	2.5	C22	2,5	5 5	70,0	2 2	2.5	6.50	
Study information			952) 352)	952)	952) 952)	952)	952)	952)	952)	(1952)	(1952)	952)	952)	952) 352)	(1988) ا	1 (1988) -(1988)	(1988)	1 (1988) (1988)	Espion (198t	Espion (198. -spion (1986	=spion (198	Espion (198.	3 in Espion	3] in Espion	3] in Espion 31 in Espion	6] in Espion	6] in Espion	oj in Espion 6] in Espion	6] in Espion	6] in Espion	6] in Espion	oion (1988)	yon (1986)	on (1988)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	1982)	[44] in Espion (1988)	Spion (196)
			and Fluck (1: -nd Fluck (15	and Fluck (18	and Fluck (19 and Fluck (19	and Fluck (1)	and Fluck (19	and Fluck (1:	and Fluck (1)	and Fluck (1)	Washa and Fluck (1952 Washa and Fluck (1952	Washa and Fluck (1952	and Fluck (1:	and Fluck (1)	18] in Espion.	8] in Espior	18] in Espion	11 in Espior 11 in Espion	onyi [22] in E	onyi [22] in t	onyi [22] in E	onyi [22] in t	and Metz [2.	and Metz [2	and Metz [2,	d Meyers [20	nd Meyers [2	id Meyers [2 d Meyers [26	d Meyers [2,	d Meyers [2.	d Meyers [20	0 Lutz et al. [29] in Espion (1988)	n. (29) in Est I. (29) in Esp	l. [29] in Esp	Jaccoud and Favre (1982 t Jaccoud and Favre (1982	Jaccoud and Favre (1982	and Favre (1982)	and Favre (d and Favre (1982)	and Favre (1982)	and Favre (1982	and Favre (1982	and	and Favre (1982	and	and	and	and Favre (1982)	ung [44] in E	iung [44] in t
		Author	0 Washa a	0 Washa a	t washa and Fluck (1952) 0 Washa and Fluck (1952)	t Washa a	t Washaa	0 Washa a	0 Washa a	t Washa and Fluck	Washa and Fluck Washa and Fluck	0 Washa a	t Washa a	0 Washa and Fluck (1952) D: t Washa and Fluck (1952) D:	0 P.C.A. [18	0 P.C.A. 7	t P.C.A. [1	t Sattler [1]	0 Hajnal-Ko	t Hajnal-Ko	t Hajnal-K	0 Hajnal-Ko	0 Branson	t Branson	0 Branson	0 Pauw ank	t Pauwan	t Pauwang	0 Pauw and	t Pauw and	t Pauw and	0 Lutzetai	0 Lutzetal	t Lutzetai	t Jaccoud	0 Jaccoud	0 Jaccoud	t Jaccoud	t Jaccoud	0 Jaccoud	0 Jaccoud	t Jaccoud	t Jaccoud	0 Jaccoud	0 Jaccoud	t Jaccoud	t Jaccoud	0 Jaccoud	0 Ding Dajung [t Ding Daj
					4 τυ						£ 4																								4 4	49	21 20	25 22	3 23	52	27 8	82 28	8 8	£ 6	63	28 18	3 %	69	8 8 1	2

		0.911	282	172	934	117 368	766.0	893	355	226	941	337	282	861	351	221	102	781	163	107 358	733	975	34.4	304	906	.949	203	891	314	010	781 181	287	035	414	025	388	430	707	914	748	546	535	985	7/5 90%	938	339	985	768 395	255	123	Z0
28	anum.int./aexo	3			-		2 0.1	7.0.	- 0	-		- 0			- 0			- 0	_		, -			, .			-	0 +	- 0	- 0	-	0	- 0	· -	4.	- 0		- c	0 +		4.7	- 2		. 0.	3.1.1		-	- 0.5	7-		-
27	a _{sss} (mm)			10.29			3 15.02	7.2	7.69	4	0, 1			13.10						10.52							4.89		·		4.30				4.7.4	•	2.06		_	7:90	7.14	6	19.90	32.50	4.5		7	22.90	18.9.1	8.8.7	<u>o</u>
56	a _{num.int.}			12.06				6.49		_				11.27		•	9.35									12.06	4.91							2.80		_	2.95				11.04	•	19.61	29.51				22.78			
25	a _{simo} /a _{exo}				-	1.132	-		0.964	1.231		0.943		-			_	_				0.979				1.401	_				1.113				_ "	- 0					1.709		1.050	- 0						1.205	
Deflections 3 24	a _{simp.}			12.25				•		-	•	•		11.34		_	9.40			10.15						12.53			11.05		4.79	7.73	-		8.01	_	3.24				12.20	•	20.90	.,						9.77	
Def 23	>	Ì			•		1.000		•	•			•		·	•		•	•						- 1		-			-,		-															-			00.00	_
22	,J							0.968	0.974	0.987	0.981	0.985	0.993	0.988	0.973	0.986	0.988									0.862		0.955	, 0					0.631										0.929						0.782	
21	8	1.882		1.715	-		_			_		1.886	_			_		1.970	_						- 1	1.847	1.780					-					1.641	1.712	1.712	1712	1.604	1.60	1.604	1.675	1.675	1.675	1.725	1.725	1.655	1.655	2
20	82	1.000	0.501				0.500			0.500	1.000	1.000	_		1.000	_	1.000	÷ -	0	1.000	1.000	0.500	0.500	1.000	0.500	1.000	1.000	0.522	0.522	1.000	1.000	0.522	1.000	1.000	0.504	0.504	1.000	1.000	0.504	0.504	1.000	1.000	0.504	0.504	1.000	1.000	0.504	0.504	1.000	1.000	35:5
19	t-t ₀ (days)	0	531	1610	0	1344	1314	1300	0	1541	0 77	0	1485	0 5	- 64	1572	0	0	1572	0 222		772	626	0	972	200	0	180	180	0 5	8 0	180	980	90	380	380	0 086	0	380	380	0 000	0	380	380	0	088	380	380	450	808	}
18	S _{II} (mm³)						915373				695095	695095	2073589	695095	926387	2016974	926387	926387	2518274	1014778	565086	1077981	1119410	565086	1154647	110766 223856	94211	233269	228632	76407	77.768	152339	2000926	661465	2000926	2004421	9004421	932649	2668803	2668803	165637	165637	528179	709827	234956	709827 298941	863792	863792	347613	126173	3000
17	ll. (mm.)	8876	16111981	85835425	79183010	79183010	195139320	41733579	41733579	334215159	141733579	41733579	374426061	141733579	181521398	359690250	181521398	181521398	432896218	351803469	149611121	394316502	25443019	49611121	54382111	12662100 24106032	11073917	25479292	24566432	11168524	30650306 11558935	31743463	82398081	182398081	15893071	16739463	182398081	52943757	370662818	70662818	19942869	19942869	59617008	78177962	27858819	35009269	93367230	35009269 93367230	21971049 58385703	20202862	487 45955
16	(mm,) II.	551					16842524 1					11150829 1				.,	17160618 1		4			21539576 3				868509 2496384		2654727						8021540 1										049501						836290	000 190
State II							23		- 4	4		183.74 11		183.74 11												102.93 83.09 2					114.56				213.49 42		252.27 8									35				160.27	
S 14 1:	m) z _{ll.1} .	L	114.4	26.23	45.93 2	225.8 1.	224.78 10			-								-																														135.68		180.13	
13 1	n²) z _{llc.1}						16568 2															17983 2						6830 1						18188 3																6357 1	
12 1	n²).		8854	22225	12139	22488	23128	19414	19414	45893	19414	19414	54676	19414	24272	53821	24272	24272	78083	20794	20794	45198	48314	20794	51212	6042 10239	5404	10492 5364	10426																16166	33910 18732	39724	39724	8142	7729	9004
•	·		9969	281	538	538	624156	936	936	408934	9936	426936	539	426936						7881	1881	952	251	1881	934	7451 7824	17 10	2703 678	470	872	872	_		365847							83694				123945	155144 163199	848	1199 1848	3943 1823	41715	
11	S, (mm³)										•			•		_	,	2 28	213	27 8	219 127	642 321	209 341	219 127	677 357	017 o, 065 157	983 54	978 162	232 159	513 -1	128 095 -1				= .	, 5	., ÷	_	_	_			e) +	7 4	- 1						
State I	l, (mm*)	· L_					4 343056668																			0 31835017 8 36805065					3 51444128			0 866391993												5 148023744 7 132696728				0 113243127	
0	z _{1,1} (mm)	3																																																98.70	
00	A, (mm²)	1047	1361	4809	4391	4822	4856	4697	4697	6456	4697	4697	7173	4697	4960	7122	4960	4960	9259	4977	4977	6921	7198	4977	7459	1854 1854	1646	1906	1886	1732	1752	2272	8791	8791	9653	9281	8416	8561	9859	9859	6363	6363	6871	7207	6445	7207 6527	7543	7543	3351	33372	3
7	M _{max} /M _{cr}						4.946																																											2.508	
9	M _{max} (Nm)	3524	3524	22529	25279	25279	28209	34979	39329	39329	46879	53289	53289	59689	43219	43219	66329	76519	76519	38639	52369	52369	59228	66559	66559	3909	3712	3712	3709	3709	3712	3712	24900	17000	17000	24800	16800	34600	34600	20800	6810	5280	5280	9870	6810	6810 11350	11350	8340	7669	6877	5
ent 5	(MM)	552 <	252 <	5703 <	5703 <	5703 <	5703 <	5684 <	5684 ^	5684 <	5684 <	5684 ×	5684 <	5684 <	2004	> 9569	6956 <	6956 <		6439 v	6439 <	6439 ^		6439 <	6439 <	1337 <	934 <	934 ×	910 <	> 196	v v 1986	> 986	9255 <	9255 <	9255 <	8620 <	8620 <	9033 <	9033 <	9033 <	2987 <	2987 <	2987 <	3063 <	3063 <	3063 < 3137 <	3137 <	3137 <	2289 <	2742 <	7417
Cracking moment 5	×	v	4 ¢	v v	v 6.	v v	v 6.	v v	v v	v 6.	v v	v v	v 00:	v v	v v	v	v v	v v	v 6:	v v	v	v v	v v	v v	v .	v v	2 <	v v	, v	v .	v v	2 ×	21 21 A A	, A	4 c	, v	v v	/ v	v v	/ v	v v	v ۷ م ص	v v	v v	v ·	v v	v ورو	v v	4 4 v v	' V V	/ st
Cra 4	M _{Sw} (Nm)																																																	7 1024	
က	W ₁ (t ₀) (mm³)	27445	27445	219356	219356	219356	2193561	242923	242923	242923	242923	2429237	242923	242923	2624807	2624807	262480	262480	262480	257553	257553	2575533	257553	257553	257553	451561 451561	455406	455406	443820	469016	46901	481173	522867	5228678	522867	487031	487031	510322	510322	510322	168776	168776	168776	173028	1730283	1772362	177236	177236	115587	1147347	1
2																																																			
	Specimen		<u>.</u> :	-72	18	<u>φ</u> <u>φ</u>	-9-	2 22	65 =	1-59	2 2	2 8	8 =	06-II	₽ ₽ ₽	≣-43	19-III-67	1-1	11-77	N-52	10-70	17-70	12-80	06-21	06-21	182 182	A1	A1	¥ 5	E 2	B2	B2	B1-a	B1-b	B1-b	B2-a	B2-b	B3-a	B3-a	B3-b	S1-a	S1-b	S1-b	52-a	S2-b	S2-b S3-a	S3-a	83-p	NAC7	NAC28	IMOEO
Study information		(1988)	(1988)	6 6	(8)	£ 6	(8)	(8) (8)	(8)	(8)	(8) (8)	(g) (g)	(8)	(8)	(<u>(</u>	(8)	@ @	(<u>(</u>	(8)	£ 6	9 9	(8)	((((8)	(8)		1988)	1988)	1988)	1988)	1988)	1988)																			
Study] in Espion	1] in Espion	Espion (196 Espion (196	Espion (198	Espion (196 Espion (196	Espion (198	Espion (196 Espion (196	Espion (198	Espion (198	Espion (196	Espion (196 Espion (196	Espion (198	Espion (198	Espion (196 Espion (196	Espion (198	Espion (198 Fenion (198	Espion (198	Espion (198	Espion (196 Espion (196	Espion (196	Espion (198	Espion (196	Espion (196	Espion (198	983) 983)	i) in Espion (i) in Espion (ij in Espion (in Espion (et al. [46] in Espion (1988) et al. [46] in Espion (1988)	i in Espion (adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004)	adi (2004) adi (2004)	adi (2004)	adi (2004) adi (2004)	adi (2004)	adi (2004) adi (2004)			
	Author	'g Dajung [44	ng Dajung [4	7.F.C. [45] in	R.F.C. [45] in	4.F.C. [45] in 2 F.C. [45] in	7.F.C. [45] in	R.F.C. [45] in	7.F.C. [45] in	R.F.C. [45] in	2.F.C. [45] in	7.F.C. [45] in	2.F.C. [45] in	R.F.C. [45] in	7.F.C. [45] in	R.F.C. [45] in	3.F.C. [45] in	1.F.C. [45] in	R.F.C. [45] in	4.F.C. [45] in 2 F.C. [45] in	t.F.C. [45] in	R.F.C. [45] in	F.C. (45) III	2.F.C. [45] in	R.F.C. [45] in	0 Bakoss et al. (1983) t Bakoss et al. (1983)	ırke et al. [46	arke et al. [4t	irke et al. [46	irke et al. [46	t Clarke et al. [46] in Esplon 0 Clarke et al. [46] in Esplon	ırke et al. [46	bert and Nej:	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004	Gilbert and Nejadi (2004	vert and Nej	bert and Nej	vert and Neja	0 Gilbert and Nejadi (2004)	vert and Neja	Gilbert and Nejadi (2004	Gilbert and Nejadi (2004	Gilbert and Nejadi (2004	bert and Nej. vert and Nejέ	ert and Nej	Gilbert and Nejadi (2004) t Gilbert and Nejadi (2004)	Sić (2017) sić (2017)	Tošić (2017)	SIC (20 11)
	Aut																																		0	-	0 +	_			-	_		o +-	_	_		_	- 0	139 0 Toši	_
		1																																																	

Assessment and Correction of MC10 model: Database with B4s shrinkage and creep model

	Specimen b (mm)	h (mm)	A _{s1} (mm²) d(r	d (mm) p ₁ (%)	A _{s2} (mr	ď (mm)	P ₂ (%	type	RH (%) T (°C)	test (days)	(MPa) f _{cn}	(MPa) (MPa)	(MPa)	E _{cm} (t ₀) (MPa) E	щ°	(-) ø	Ecs (Ecoff	L (mm) Li	d M _{L1} ()	Nm) K _{L1}	M _{L2} (Nm)	K	(mm) t _o (days)	t-t ₀ (days)
	203.		852 852	257.2 257.2				1.63 deformed 1.63 deformed	20	21 12	4 25.00 4 25.00	27.73	5.00 1.9	3 28680 3 28680					9609 9609	23.7	7192 0.7	104 18442 104 18442		13.46	14 91
	203.2		852	257.2				0.77 deformed	20	21 12	25.00	27.73	5.00 1.9	3 28680					9609	23.7	7192 0.7	104 18442		15.75	4 2
	203.		852	257.2	ŕ			0.00 deformed	20 00	21	25.00	27.73	5.00	28680					9609	23.52	7192 0.7	104 18442		17.02	± 7
	203.		852	257.2				0.00 deformed	20	21 14	\$ 25.00	27.73	5.00 1.90	3 28680					9609	23.7	7192 0.1			44.70	14 91
	152.4		9 4	157.2				1.67 deformed	20	21 14	20.80	23.07	0.80	26975					9609	89.08	3596 0.7			23.37	4 4
	152.4		400	157.2			46	0.84 deformed	20 92	21 14	20.80	23.07	0.80	26975					9609	98.8	3596 0.7			24.89	4 4
	152.4		400	157.2			-	0.84 deformed	20	21 14	\$ 20.80	23.07	0.80 1.6	1 26975					9609	38.8	3596 0.1		0	65.02	14 91
	152.4		400	157.2	1.67	0	00	0.00 deformed	20	21	20.80	23.07	0.80	26975					9609	8.8	3596 0.7		0	26.42	± ;
	152.4		004	15/2				0.00 deformed	200	27 12	20.80	23.07	0.80	209/5					96096	38.8	3596 0.		40.0	44.04	5 5
	304.6		516	101.6				1.67 deformed	20 09	21	22.10	24.51	2.10	27526					3810	37.5			<i>-</i>	27.69	4 4
The control of the	304.8		516	101.6				0.83 deformed	20	21 14	4 22.10	24.51	2.10 1.7	27526					3810	37.5			0	14.22	4
Column C	304.8		516	101.6				0.83 deformed	20	21 12	4 22.10	24.51	2.10 1.7	5 27526					3810	37.5			0	33.78	14 91
	304.8		516	101.6	1.67	0 0	00	0.00 deformed	20	21 12	22.10	24.51	2.10	27526					3810	37.5			0 0	17.78	± ;
1	304.0		010	254	2.20		0 0	0.00 deformed	90	21 22	26.10	26.91	ľ					ľ	3048	12.0		ľ		40.3	
10 10 10 10 10 10 10 10	15.		849	254	2.20		. 0	0.00 deformed	20 92	21 28	26.90								3048	12.0				10.00	
10 10 11 12 12 12 12 12	152		1019	254	2.64	0	0	0.00 deformed	20	21 28	37.40								3048	12.0				4.90	
1	152		1019	254	2.64	0 0	0	0.00 deformed	20	21 28	3 37.40	37.40							3048	12.0		``		9.90	
1	100		100	134	0.75	0 0	0	0.00 deformed	55	21 32		26.27							4000	29.9			0 0	15.83	32
18 18 18 18 18 18 18 18	100		100	134	0.75	0	0	0.00 deformed	55	21 32		26.27 2							4000	29.9			0 0	32.21	32 8
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	25 5		24.5	160.3	0.70	0 0	00	0.00 deformed	828	21 35	37.00	36.04							6400	o; o			0 0	20.60	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	121		142	160.3	0.70		00	0.00 deformed	82	21 33	37.00	36.04							4800	5.68			0	8.80	
18 18 18 18 18 18 18 18	121		142	160.3	0.70	0	0	0.00 deformed	82	21 35	37.00	36.04							4800	29.9			0	29.70	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	127		142	160.3	0.70	0 0	0	0.00 deformed	82	21 35	37.00	36.04							3200	20.0			0	4.30	
The control of the co	127		142	160.3	0.70	0 0	0 (0.00 deformed	82	21 35	37.00	36.04							3200	20.0				14.00	
	101.6		214	101.6	2.07	0	0	0.00 deformed	20	21 28	35.40	35.40							2743	27.0				3.89	82 1
The control of the	101.6		214	101.6	2.07	0 0	0 0	0.00 deformed	20	21	35.40	35.40							2743	27.0				7.70	9 28
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	101.6		214	101.6	2.07	00	00	0.00 deformed	200	21 28	31.30	31.30							2743	27.0				3.99	8 8
	177.8		400	165.1	1.36	0 0	0	0.00 deformed	90	21 28	33.80	33.80							2286	13.8				2.44	78
	177.8		400	165.1	1.36	0 0	0	0.00 deformed	20	21 28	33.80	33.80		.,					2286	13.8				4.89	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	177.8		568	165.1	1.94	0	0	0.00 deformed	20	21 28	33.60	33.60		.,.					2286	13.8				3.22	
	177.6		200	100.1	194			0.00 deformed	00 00	24	33.90	33.00							2200	5.0				9.10	
	177.8		568	165.1	1.94	0	0	0.00 deformed	20	21 28	38.90	38.90							2286	13.8				6.64	28 12
	177.8		774	165.1	2.64	0 0	0	0.00 deformed	20	21 28	38.70	38.70		.,					2286	13.8				4.66	78
2002 2 5289 1115 144 20 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	177.8		774		2.64	0 0	0	0.00 deformed	20	21 28	38.70	38.70							2286	13.8				7.89	28 12
200 200 114 200 114 200 200 114 114 200 114 200 114 114 200 114 114 200 114 114 200 114 114 114 114 200 114 <th>101.6</th> <th></th> <td>258 258</td> <td></td> <td></td> <td>00</td> <td>00</td> <td>0.00 deformed</td> <td>40</td> <td>21 28</td> <td>34.10</td> <td>34.10</td> <td>5 5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1829</td> <td>10.7</td> <td></td> <td></td> <td></td> <td>8.10</td> <td>8 28</td>	101.6		258 258			00	00	0.00 deformed	40	21 28	34.10	34.10	5 5						1829	10.7				8.10	8 28
	101.6		258					1.48 deformed	40	21 28	34.10	34.10	. p						1829	10.7				4.20	8 8
12 14 1 66 0.05 57 100 20 0 110 deformed 60 21 15 20-40 224 20 16 1 2000 20 20 10 0 0 0 0 0 0 0 0 0 0 0 0	101.6		258					1.48 deformed	40	21 28	34.10	34.10	10	.,					1829	10.7				6.80	28 14:
120 314 95 0555 57 100 220 0 10 definition decrease 3 0 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2	009		314					0.10 deformed	09	21 16	5 20.49	22.45	49						3100	32.6				8.42	15
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	09		314					0.10 deformed	09	21	20.49	22.45	49						3100	32.6				18.40	38
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	90		415					0.10 deformed	09	72	24.14	26.45	4 :						3100	32.6				0.10	5 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	000		# ;					0.10 deformed	00 00	17	24.14	20.40	# 3	•					3100	32.0				06.71	9
10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000		4 4				,	0.10 deformed	00	24	9.04	21.52	† 6	•					3100	32.0				47.50	0 1
10. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9		2 5 6				, ,	0.10 deformed	8 0	14.5	36.43	30.50							3100	32.0				200	3 4
10. 11. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	90		5 5				, ,	0.10 deformed	80		36.13	30.50							3100	3 6				100	5 45
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8		2 6					0.10 deformed	8 9	27	32.47	34.48		, .					3100	32.6	2162			3 2 2	3 12
Fig.)09		2 2 2					0.10 deformed	09	10	32.47	35.58		, .					3100	9 6	2162		<i>i</i> c	9 6	5 th
House Hous	750		565					1 06 deformed	9	21	29.40	29.40							3100	23.7	3604 0.1			2 17	. 80
14 15 15 15 15 15 15 15	75(565					0.06 deformed	09	21	3 29.40	29.40							3100	23.7	3604		0	8.29	28 51
14 15 15 15 15 15 15 15	75(565					0.06 deformed	09	21 28	32.89	32.89	2.89 2.56	31974					3100	23.7	3604 0.7		0	2.00	782
14 15 15 15 15 15 15 15	75(565					9.06 deformed	09	21 28	32.89	32.89	2.89 2.58	31974					3100	23.7	3604 0.7		0	7.00	28 36
14 15 15 15 15 15 15 15	75(292					0.06 deformed	09	21 28	30.93	30.93	0.93 2.45	31326					3100	23.7	3604 0.7		0	5.29	78
180 6565 131 0.86 67 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	75(292					0.06 deformed	09	21 28	30.93	30.93	2						3100	23.7	3604 0.7		0	13.28	28 51
180 6565 131 0286 57 134 280 000 deformed 60 21 28 24-0 24.0 24.0 24.0 24.0 25.0 0000 00000 00000 00000 0000 0000	75(565	131				0.06 deformed	09	21 28	3 29.40	29.40 2		.,					3100	23.7	3604 0.7		0	8.48	78
180 565 131 0.88 57 134 28 0.06 deformed 60 21 28 3197 3197 249 31673 200000 0.000 15167 3 0.000 0.000 0.000 237 3040 0.1014 12520 0.107 17.52 28 0.000 0.00	75(292	131				0.06 deformed	09	21 28	3 29.40	29.40		.,					3100	23.7	_		o	18.15	28 51
160 565 131 0.88 57 134 28 0.06 deformed 60 21 28 3197 3197 3197 3249 3278 2 2000 0.00 0.00 0.00 0.00 0.00 0.00 0	75(292	131				0.06 deformed	09	21 28	31.97	31.97		.,					3100	23.7	_		0	8.00	78
100 566 131 0.586 57 134 28 0.06 deformed 60 21 28 29.29 23.29 23.07 23.07 20 20000 3070 3070 237 300 217 300 217 300 0.01 10.1 10.2 28 0.00 0.00 0.00 0.00 0.00 0.00 0.0	120		565	131				0.06 deformed	09	21	31.97	31.97	26	.,					3100	23.7			0	17.52	28 51
100 150 151 130 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	750		565	131				0.06 deformed	09	21	29.29	29.29	526	., .					3100	7. 18			0 0	11.02	8 8
160 113 137 102 0 0 0 000 deformed 80 21 30 2180 214.2 2180 177 27831 27715 200000 8121 0.566 3040 2880 21.0 396 0.104 2904 0.107 16.62 30 31 17 21.2 0 0 0 0.00 deformed 80 21 30 2.540 2.549 2.040 2.00 2.000 0.000 28375 2.890 24.6 24.4 0.104 2.890 0.107 16.53 30 31 152 154 177 2.12 0 0 0 0.00 deformed 80 21 30 2.540 2.549 2.540 2.00 2.00 4.673 0.511 5161 2.890 24.6 24.4 0.104 2.990 0.107 30.43 30	S. S.		113	137				O O deformed	80		24	21.42	80					ľ	2880	24.0			ó	8.45	30
152 154 117 2.12 0 0 0.000 deformed 80 21 30 25.40 251 25.40 2.01 28075 29254 200000 0.000 0.000 0.000 0.000 24.6 244 0.104 32.80 0.107 15.53 30 152 154 117 2.12 0 0 0 0.00 deformed 80 21 30 25.40 25.19 25.40 2.01 28075 29254 200000 4.573 0.511 5161 2890 24.6 24.4 0.104 32.80 0.107 30.43 30	ò		113	137	102	0	0	0.00 deformed	80		21.	21.42	90		27715 2	200000 8.			2880	21.0			Ö	16.62	
152 154 117 2.12 0 0 0 0.00 deformed 80 21 30 25.40 25.19 25375 29254 200000 4.673 0.511 5161 2880 246 244 0.104 3280 0.107 30.43 30	39		1	117	2.12	0 0	0	0.00 deformed	80		25.	25.19 2	.40		29254 2	200000 0.			2880	24.6			0	15.53	
	79		154	117	2.12	0 0	0	0.00 deformed	80		25.	25.19 2	.40		29254 2	200000 4.			2880	24.6			0.	30.43	

Loading

Study information	ac	Cross-section			B	Reinforcement								Mechanical properties	ronerties							Dading	dina			Defi	oction	ĺ
-	2	3 4	9	9	7	89	9	10 11	12	13 14	15	16	17 1	18 20	21	22	23	24 2	25 26	27	28	59	30	31	32		34	35
Author	naciman	h(mm)	A. (mm²)	2) d(mm)	7 (%)	A. (mm²) . d' ((mm) d (mm)	(%) °O (m	CM (%)	(30/ I	t(davs)	f _{cm} (t _{tost}) f	f _{on} (t ₀)	t ₀) f _{cbm} (t ₀) a) (MPa)	E _{cm} (t ₀)	F. (MPa)	F. (MPa) @ (=)		%) F (MPa)	(mm) (eq	3	M (Nm)		M. (Nm) K.	e 5	a (t-t ₀) (mm) t. (davs)		t-t. (davs)
0 F.R.F.C.	1-72	150	1.0		0.82	3	0	0		09	3.1			3.50	. 60	32170	200000	0.000	000		3	2 1029	5	21500		6.02	88	0
t F.R.F.C.	1-72					0	0	0.00	deformed		21 28						200000	2.540				2 1029		21500	0.107	10.29	78	1610
75 0 F.R.F.C. [45]	₹ :	150	280 30	308 250	0 0.82	0	0 (0.0	0.00 deformed	09	21 28	33.50	33.50	33.50 2	2.60 32170	32170	200000	0.000	0.000	32170 28	2800 11.	2 1029	0.104	24250	0.107	7.39	8 8	0 :
7. 0 7. 0	. ·					0	0 0	0.0	deformed	00	24 26						200000	2.490				1029		24250	0.107	11.96	8 8	45
	5					0 0	0 0	000	deformed	8 9	71 28						200000	2.483				1029		27180	0.107	15.02	8 %	1314
0 F.R.F.C.	11-52					0	0	0.0	deformed	09	21 28						200000	0.00				1029		33950	0.107	7.27	8	0
t F.R.F.C.	11-52				3 2.18	0	0	0.0	deformed	09	21 28						200000	3.368				9 1029		33950	0.107	13.49	28	1398
0 F.R.F.C.	II-59				3 2.18	0	0	0.00	deformed	09	21 26						200000	0.000				9 1029		38300	0.107	7.69	28	0
t F.R.F.C.	II-59				3 2.18	0	0	0.00	deformed	09	21 26		_				200000	3.402			00 11.	9 1029	0.104	38300	0.107	14.10	28	1541
0 F.R.F.C.	II-70				3 2.18	0	0	0.0	deformed	09	21 26		29.80	.80			200000	0.000			00 11.	9 1029	0.104	45850	0.107	9.36	28	0
t F.R.F.C.	11-70				3 2.18	0	0	0.0	deformed .	09	21 26		29.80	.80			200000	3.386			00 11.	9 1029	0.104	45850	0.107	17.56	28	1471
0 F.R.F.C.	II-80				5 2.18	0	0	0.0	deformed	09	21 25		29.80	.80			200000	0.000			00 11.	9 1029	0	52260	0.107	10.72	28	0
t F.R.F.C.	II-80				5 2.18	0	0	0.0	deformed .	09	21 26		29.80				200000	3.389			00 11.	9 1029	0	52260	0.107	20.24	28	1485
0 F.R.F.C.	06-II					0	0	0.0	deformed .	09	21 26		29.80				200000	0.000			00 11.	9 1029	_	58660	0.107	13.10	28	0
t F.R.F.C.	06-II					0	0	0.0	deformed	09	21 28		29.80				200000	3.390				9 1029	0.104	58660	0.107	24.23	78	1491
0 F.R.F.C.	111-43		•			0	0	0.0	deformed .	09	21 26		34.30				200000	0.000				0 1029		42190	0.107	7.08	28	0
-	111-43					0	0	0.0	deformed	09	21 28		34.30				200000	2.387				0 1029		42190	0.107	14.51	78	1572
0 F.R.F.C.	111-67					0	0	0.0	deformed	09	21 28		34.30				200000	0.000				1029		65300	0.107	10.58	28	0
-	111-67					0	0	0.0	deformed .	09	21 26		34.30				200000	2.387				0 1029		65300	0.107	23.88	28	1572
0	111-77				3 3.53	0	0	0.0	deformed	09	21 28		34.30				200000	0.000			00 12.	1029		75490	0.107	13.84	28	0
-	111-77					0	0	0.0	deformed	09	21 28		34.30				200000	2.387				1029		75490	0.107	28.74	28	1572
0	IV-52					462	248		deformed	09	25		32.00				200000	0.000				9 1029		37610	0.107	5.98	28	0
-	IV-52					462	248		deformed	09	21 28		32.00				200000	2.626			00 11.	9 1029		37610	0.107	10.52	28	77.2
0	14-70					462	248		deformed	09	21 28						200000	0.00			00	9 1029		51340	0.107	8.80	28	0
-	14-70					462	248		deformed	09	21 28						200000	2.626			00	1029		51340	0.107	13.90	38	77.5
	17-80					462	248		deformed	90	28						200000	0000			00	1029		58200	0 107	11 16	8 8	
+	17-80					462	248		deformed	90	28						200000	2 697				1029		58200	0 107	16 96	8	625
	08-20				2,10	462	248		deformed	8 9	71						200000	0000				1020		65530	0.107	12.85	3 8	4 0
+	06-7/1					462	248	32	deformed	8 9	71 28			30.00	2.50 31683		200000	2 697			5 5	1029	0.104	65530	0.107	19.28	3 8	625
O Dokono ot ol	100								doformon	00	200						000000	000				020		02000	0 404	200	000	
10.5 U BBKOSS et al. [41]	<u>8</u> 6		150 220		174	0 0	0 0	0000	deformed	09	20 20 20 20 20 20 20 20 20 20 20 20 20 2	39.00	39.00	38.00	2.90 33842	33842	200000	1.476			50 29	909	0.104	3250	0.107	25.03	8 8	0 6
O Clorko ot ol	74					0		000	doformod	90	24						000000	0000				040		2000	0 407	4 00	30	
i a	. 4					0 0	0 0	0.0	deformed	04	71 28		25.90				200000	3 992				212	0.10	3500	0.107	11.83	8 8	180
O Clarke at al	42					•		0.0	deformed	40.5	24						30000	0000				2000		3500	0.107	00.4	3 8	2
+ Clarke et al	42					0 0			deformed	40	71						200000	3 992				300		3500	0.107	11 92	3 8	180
O Clarke et al	1 2 2					157 1	. 65		deformed	40	28						200000	0000				500		3500	0 107	4 78	3 %	2
t Clarke et al.	. 49					157.1	132	20	deformed	40	21 28						200000	3,992				209		3500	0.107	8.77	8 8	180
O Clarke et al	. 8					157.1	135		deformed	40	74						200000	0000				212		3500	0 107	4.30	8	
t Clarke et	B 5				1.19	157.1	8 2		1.19 deformed	04	21 28			25.90	2.05 29526	29526	200000	3.992			00	212	0.104	3500	0,107	8,55	3 8	180
heial	B1-a					c	c	0 0	deformed	40	71 28				ľ	ľ	200000	0000				7 3254	ľ	21646	0 107	4 95	14	c
114 + Gilbert and Neisdi (2004)	2 6					•		0.0	deformed	40	20 20		24.80	38.82	1 77 27639		30000	5 536				3254	0.00	21646	107	12.06	2 2	380
loiol.	2 4					•		0.0	deformed	2 5	21		24 80	98			300000	0000				3254		13746	10.0	90.4	<u> </u>	3
Najadi	. 4 . 4					•		0.0	deformed	40	20 28		24.80	98			30000	5 536				3254		13746	0.107	7.44	: 5	380
Majori	2 2 2					•		0.0	deformed	2 5	21		24 80	98			300000	0000				3110		21690	10.0	203	<u> </u>	3
bejout the job	B-70						0 0	9 6	deferment	2 5	1200		00.12	25.25	2012		00000	0000				2450	,	24690	0.0	9 5	: :	0 000
O Cilbort and Majadi	87.0					0 0	0 0	0.00	deformed	2 4	27		24.00	92.50	2020		200000	0000			5 5	250	0.00	12000	0.00	25.5	ŧ;	99
U Gilbert and Nejadi	BZ-D					0 1	0 1	0.0	oerormed	04	77 - 77		24.80	27.30	2/03		200000	0.000				0110	0.104	06051	0.107	2.00	₫ ;	9
t Gilbert and Nejadi	B2-0					0	0 0	0.0	genormed	40	77 77		24.80	25.30	2703		200000	5.538			00 00	31.0	0.104	06951	0.107	/8/	₫;	380
o clibert and Nejadi	D5-8							0.0	Delouied	04	77		74.00	25.30	2/03		200000	0.000			: :	0110	0.10	01490	0.107	0.0	± ;	9
t Gilbert and Nejadi	B3-a					0	0	0.0	detormed	40	22 28		24.80	. 22.36	1.77 2.763		200000	5.538			00	3110	0.104	31490	0.107	13.30	4	380
0 Gilbert and Nejadi	B3-b					0	0	0.0	deformed .	40	21 28		24.80	22.36	1.77 2763.		200000	0.000				7 3110	0.104	17690	0.107	1.97	4	0
t Gilbert and Nejadi	B3-b					0	0	0.0	deformed	40	22 2£		24.80	22.36	1.77 2763,		200000	5.538				7 3110	0.104	17690	0.107	7.90	4	380
 Gilbert and Nejadi 	S1-a					0	0	0.0	deformed	40	21 28		24.80	22.36	1.77 2763.		200000	0.000				3 2373	0.104	4437	0.104	7.14	4	0
t Gilbert and Nejadi	S1-a					0	0	0.0	deformed .	40	22 26		24.80	22.36	1.77 2763.	•	200000	5.554				9 2373	0.104	4437	0.104	25.10	4	380
 Gilbert and Nejadi 	S1-b					0	0	0.0	deformed	40	21 28		24.80	22.36	1.77 2763.		200000	0.000				9 2373	0.104	2907	0.104	2.72	4	0
128 t Gilbert and Nejadi (2004)	S1-b					0	0	0.0	deformed	40	22 28		24.80	22.36	1.77 2763.	•	200000	5.554				3 2373	0.104	2907	0.104	19.90	4	380
129 0 Gilbert and Neiadi (2004)	S2-a					0	0	0.0	deformed	40	21 28		24.80	22.36	.77 2763.		200000	0.000				3 2373	0.104	7497	0.104	11.80	4	0
jad	S2-a					0	0	0.0	deformed	40	22 28		24.80	22.36	1.77 2763.		200000	5.554				9 2373	0.104	7497	0.104	32.50	4	380
0 Gilbert and Neiadi	S2-b					0	0	0.0	deformed	40	21 28		24.80	22.36	.77 2763		200000	0.00				3 2373	0.104	4437	0.104	4.43	4	0
+ Gilbert and Neiadi	S2-h							000	deformed	40	28		24.80	22.36	. 77 2763	29102	200000	5 554				2373	0.104	4437	0 104	21 90	. 4	380
0 Gilbert and Neiadi	S.2-3					0		000	deformed	40	28		24.80	22.36			200000	0000				2373	0.104	8977	0.104	10.70	. 4	9
+ Gilbert and Neiadi	1 60							000	deformed	40	28		24.80	22.36			200000	5 554				2373	0.104	8977	0 104	20.80	7	380
0 Gilbert	Sab					0		000	deformed	40	28		24.80	22.36			200000	0000				2373	0.104	5967	0.104	5 04	. 4	9
and Ne	Sab					0	0	0.0	deformed	40	22 28		24.80	22.36	1.77 27633		200000	5.554			00			2962	0.104	22.90	4	380
0 Tošić	NAC7			157 169	9 0.58	22	171		deformed	7	6	30.50	30.50	1 16		31180	200000	0.000				9 1024		6645	0.107	9.17	7	0
138 t Tošić (2017)	NAC7					57	171	29 0.2	deformed	48.7 21	1.3 28		30.50	24.97	1.98 28212	311	200000	3.668			00 18.	9 1024	0.104	6645	0.107	18.94	7	450
0	NAC28					57	171		deformed	7	6		30.50	.50 2		31180	200000	0.000				9 1024		5853	0.107	8.11	28	0
140 t Tošić (2017)	NAC28					22	171		deformed	7	.3		30.50	.50 2		311	200000	2.871				1024		5853	0.107	16.51	28	450

Assessment and Correction of MC10 model:

Database – Calculated Deflections With B4s shrinkage and creep model

	Study information	nation 2	ဇ	Cracking moment	oment 5	9	7	6	State I	11	12	13	41	State II	16	17	18	19	Deflections 20 21		22
	, ditt	ioni	W _i (t ₀) (mm³)	M (mN)	(EN)	M (mN)	, A	nm²) z (m	(mm) 1° (mm ⁴)	S. (mm³)	A. (mm²)	A. (mm²)	, (mm)	, (mm)	(mm ⁴)	L. (mm ⁴) S	S. (mm³) +1	anum.int.cor		(EE	q
-	0 Washa and Fluck [8]	A1/A4	002250	v	7924			1,1	Q	5	0 2961	<u> </u>	261.17	217.54	4000	20587	, ,	0	90 06	13.46	
0 6	t Washa and Fluck [8]	A1/A4 A2/A5	4002250	7192 <	7924 <	25634	3.235		152.40 114070				241.94	179.08	33647201	838646993	1606198	913	26.39	23.62	1.117
4	t Washa and Fluck [8]	A2/A5	3888764	7192 <	> 0022	25634	3.329	106169 13	6.84 944071155	1155 964102	73265	5 29032	233.36	161.93	49386419	723315723	2073912	913	33.07	32.26	1.025
വ	0 Washa and Fluck [8]	A3/A6	3763278	7192 <	7451 <	25634	3.440						256.39	207.98	15363996	214212917	952407	0 5	14.88	17.02	0.874
۸ ۵	Washa and Fluck [8]	81/B4	1229142	3596 >		7259	3.601		101.60 12488082	4	• -		174.13	145.06	2496976	39508161	257631	0	24.21	23.37	1.036
00	Washa and Fluck	B1/B4	1229142			7259	3.601						159.04	114.89	8747955	181100646	594222	913	54.93	51.05	1.076
თ ⊊	0 Washa and Fluck [8] + Washa and Fluck [8]	B2/B5 B2/R5	1209909	3596 >	1984 A A	7259	3.659		9.27 120107709 1.96 204232568	7709 72040 2568 298229			173.46	143.71	2673097	39263915	269620	0 613	24.45	24.89	0.982
=	0 Washa and Fluck [8]	B3/B6	1187902			7259	3.726						172.63	142.07	2901851	38959199	284751	0	24.75	26.42	0.937
2 5	Washa and Fluck	B3/B6	1187902	3596 >	1948 ^	7259	3.726						146.51	89.82	18514379	116975906	979640	913	99.45	86.36	1.152
5 4	0 washa and Fluck [8] + Washa and Fluck [8]	01/04 01/04	990864	1756 >	× × ×	6023 6023	3.473			9833 1133	0 1862		99.81	90.52 72.62	4083788	92158055	450545	913	30.00	27.69	1.190
12	0 Washa and Fluck [8]	D2/D5	92076	1756 >	1699 <	6023	3.545		1.89 60081924				108.15	89.3	1361406	21045968	216639	0	14.46	14.22	1.017
9 1	Washa and Fluck	D2/D5	970786	1756 >	1699 <	6023	3.545						96.54	66.07	5745357	79434576	565775	913	37.22	33.78	1.102
<u> </u>	0 Washa and Fluck [8]	D3/D6	947835	1756 >	1659 <	6023	3.631						107.41	87.81	1528494	50728323	234120	0 6	74.76	17.78	0.830
5 6	Š	40NA	2909878	1346 <	6198 <	23613	3.810						252.31	199.61	14824969	184749818	844077	0	3.99	4.25	0.939
20	t P.C.A. [18]	40NA	2909878	1346 <	6198 <	23613	3.810						219.66	134.32	62989957	436425738	2214121	242	12.22	10.00	1.222
2 8	0 P.C.A. [18]	60NA	2949418	1346 ^	8435 <	30987	3.674		0.69 41495355	0 0			250.9	196.79	16046942	193936781	889874	0 0	4.46	4.90	0.911
3 8	C P.C.A. [18]	91/a2	2949418	× 946	8435 × 076 ×	30987	3.674			o r			141 92	123.83	39811940	334650 /51	65448	242	16.45	9.90	1030
2 2	t Sattler [11]	a1/a2	462622	, v 008	> 978	2762	2.830						127.78	95,55	2229962	23367701	207676	. 2	39.36	32.21	1.222
25	0 Hajnal-Konyi [22]	80	822534	3097 >	2410 <	4709	1.954						170.62	150.76	664933	14750983	100320	0	27.93	20.60	1.356
5 29	Hajnal-Konyi	ω τ	822534	3097 >	2410 <	4709	1.954						159.43	128.38	2540449	34213304	245093	1734	56.51	65.40	0.864
78	0 Hajnal-Konyl (22) † Hajnal-Konyi (22)	2 6	822534	1742 <	2410 <	4709 4709	1954						159.43	128.38	2540449	34213304	245093	1734	31.78	8.80	1.785
8 8	0 Hajnal-Konyi [22]	12	822534	774 <	2410 <	4709	1.954						170.62	150.76	664933	14750983	100320	0	6.98	4.30	1.624
90	Hajnal-Konyi [22]	12	822534		2410 <	4709	1.954						159.43	128.38	2540449	34213304	245093	1734	14.13	14.00	1.009
ક જ	0 Branson and Metz [23]	SB3/B SB3/B	317730	203 303 303	> 798	1238	1.428						107.08	87.17	535284	7120344	80635	0 6	2.50	3.89	0.642
3 8	0 Branson and Metz [23]	SB3/M	319528	303 ×	783 <	1238	1.581		9.87 19130162				106.77	86.53	561080	7331221	83200	9 0	2.81	3.99	0.704
8	t Branson and Metz [23]	SB3/M	319528	303 <	783 <	1238	1.581						97.55	68.1	1729830	14442517	176177	09	11.27	7.50	1.503
32	0 Pauw and Meyers [26]	₩.	1500987	627 <	3933 <	7803	1.984	•					188.33	160.67	2511330	39922317	272230	0	2.51	2.44	1.030
3 29	t Pauw and Meyers [26]	Σ 6	1500987	627 <	3933 <	7803	1.984	•	99.17 16867				175.32	134.65	7980017	811/4263	358407	0.0	3.52	3.22	1.2.1
8 8	Pauw and Meyers	2 22	1548942	627 <	4043 ^	11855	2.932		6.10 175400713				170.26	124.52	11343738	100139135	743909	150	7.88	6.16	1.280
39	0 Pauw and Meyers [26]	23	1541272	627 <	4547 <	10270	2.259						184.85	153.7	3584243	49808446	345087	0	2.76	3.71	0.745
9 ;	t Pauw and Meyers [26]	22 2	1541272	627 <	4547 <	10270	2.259						174.82	133.64	8275058	82993991	602963	120	5.77	6.64	0.869
t 4 c	0 Pauw and Meyers [26]	\$ G	1596516	627 <	4694 ×	15234	3.245						180.97	145.94	11264083	61834993	436216	0 6	3.71	7.80	0.797
4 4	t Fauw and Meyers [20] 0 Lutz et al. [29]	ž &	810319	216 <	2139 <	8179	3.824		96.59 7826				173.53	143.87	1769022	27134245	178848	0	3.10	4.10	0.756
4	t Lutz et al. [29]	SR	810319	216 <	2139 <	8179	3.824						159.87	116.54	5510014	54409494	381520	142	6.31	8.80	0.717
45	0 Lutz et al. [29]	K 6	863371	216 <	2279 <	8179	3.589						176.57	149.94	1279703	28646615	144105	0 (2.90	4.20	0.691
9 4	t Lutz et al. [z9] 0 .laccoud and Eavre (1982)	A1	1520111	2162 <	2447 <	4949	2.588						108.25	96.51	648355	14542713	165579	<u>4</u>	80.00 60.00	0.80	1.063
48	t Jaccoud and Favre (1982)	Α	1520111	2162 <	2447 <	4949	2.022			_			95.63	71.26	5790911	62923382	712677	365	28.91	18.40	1.571
49	0 Jaccoud and Favre (1982)	A2	1515708	2162 <	2910 <	4949	1.701						108.52	97.05	605300	13896771	158087	0	7.50	6.16	1.218
2 20	t Jaccoud and Favre (1982)	A2 A3	1515/08	2162 <	2910 <	4949	2,112						98.62	96.38	3909020	14705240	167441	365	9.26	17.50	1.333
25	t Jaccoud and Favre (1982)	A3	1521148	2162 <	2343 <	4949	2.112						94.82	69.64	6385784	67534516	760654	365	30.52	17.50	1.744
23	0 Jaccoud and Favre (1982)	A4	1506283	2162 <	4172 <	4949	1.186		59.28 89292484				109.15	98.31	510774	12436877	141206	0 100	3.37	2.24	1.506
¥ 15	t Jaccoud and Favre (1982)	A4	1506283	2162 <	3817 <	4949	1.186						104.47	88.95	149/565	12806934	289228	365	12.83	8.05	1.594
28 8	Jaccoud and Favre	A5	1508766	2162 <	3817 <	4949	1.297						103.16	86.32	1911424	29587957	340304	365	15.23	9.55	1.595
22	0 Jaccoud and Favre (1982)	C12	3387047	3604 <	7824 <	6696	1.240		.,	0			144.42	128.84	1891809	44126634	364189	0	2.68	2.17	1.234
28	t Jaccoud and Favre (1982)	C12	3387047	3604 ×	7824 <	6696 6	1.240		74.96 29632991				132.75	105.5	10115187	130253708	1113994	510	11.47	8.29	1.384
8 9	t Jaccoud and Favre (1982)	C22	3380311	3604 ^	8654 ^	6696	1.121		• • •	n 01			135.44	110.89	7403554	106448143	904406	365	9.08	7.00	1.297
61	0 Jaccoud and Favre (1982)	C13	3383563	3604 <	8188 <	12909	1.577		•••	(0			144.54	129.07	1849191	43507040	358929	0	5.51	5.29	1.042
8 62	t Jaccoud and Favre (1982)	<u>3</u>	3383563	3604 ^	8188 <	12909	1.577			٥			133.88	107.76	8911675	119991428	1023489	510	15.12	13.28	1.139
3 2	U Jaccoud and Favre (1982) t Jaccoud and Favre (1982)	2 5	3387047	3604 ×	7824 <	16124	2.061		78.65 296329917 74.96 296329911	9911 605285		40872	132.75	105.5	1891809	130253708	1113994	510	8.85 20.29	8.48 18.15	1.118
99	0 Jaccoud and Favre (1982)	C24	3381738	3604 <	8421 <	16124	1.915						144.61	129.21	1823465	43108898	355541	0	8.35	8.00	1.043
99	t Jaccoud and Favre (1982)	C24 C15	3381738	3604 ×	8421 <	16124	1.915		5.75 289717485 8 65 266406935				134.58	109.16	8213435	113826972	364670	510	18.53	17.52	1.058
8	t Jaccoud and Favre (1982)	215	3387246	3604 <	7791 <	19329	2.481						132.66	105.33	10217655	131060725	1121121	510	24.25	20.83	1.16
69	0 Ding Dajung [44]	C-3	393163	336 <	672 <	3240	4.821		76.64 3013				138.33	116.67	549762	9325635	76104	0	10.52	8.45	1.245
2	t Ding Dajung [44]	<u>۳</u>	393163	336 ×	672 <	3240	4.821						114.28	68.55	5159696	36072009	338631	2025	31.36	16.62	1.887

	22	m.int./aexp	0.915	1.141 1.246	1.059	0.988	0.897	1.181	1.246	0.943	0.939	1.117	1.029	0.852	0.979	0.844	0.781	1.112	1.011	1.001	0.927	0.920	0.900	1.369	1.022	1.146	1.018	1.029	0.995	0.988	1.097	1.529	1.433	1.182	1.537	1.034	1.223	1.615	1.683	1.326	1.332	1.225	1.957	1.320	1.302	1.842	1.313	1.206	1.174
ione	21	_{sxp} (mm) a _{nur}	15.53 30.43	6.02 10.29	7.39	8.94	7.27	13.49	14.10	9.36	10.72	20.24	24.23	7.08	14.51	23.88	13.84	5.98	10.52	13.90	11.16	16.96	19.28	8.94	4.89	11.83	5.09 11.92	4.78	8.77	8.55	4.95	1.98	7.44	12.42	2.06	5.81	13.30	1.97 7.90	7.14	25.10	19.90	11.80 32.50	4.43	21.90	29.80	5.04	9.17	18.94 8.11	16.51
Deflections	20	a _{num.int.cor} (mm) a _e	14.22 37.94	6.87	7.83	8.83	6.52	15.93	17.58	8.83	10.06	22.61	24.93	6.03	9.35	20.14	10.81	6.65	10.63	13.91	10.34	15.60	17.35	12.24	5.00	13.55	5.18 13.99	4.92	8.72	8.45	5.43	3.03	10.66	14.68	3.17	6.01	16.27	3.18	12.02	33.28	26.50	38.60	8.67	28.91	38.80	9.28	12.04	22.85 9.69	19.39
	19	(days)	0 531	0 1610	° 45	1314	0	1398	154	0 744	0	1485	1491	0 [15/2	1572	0	0	772	772	0	972	972	0 0	0	180	180	0	180	180	380	0	380	380	0 0	380 0	380	380	0	380	380	380	0	380	380	380	0	450 0	450
	18	S _{II} (mm³) t-t ₀	72111 208624	348381 937072	348381 927256	348381	695095	1780899	1787789	695095	695095	1785165	095095 1785576	926387	926387	1900124	926387	565086	1093333	565086 1093333	565086	1101599 565086	1101599	110766	94211	293888	92509 287620	76407	172625 77768	176450	661465 2757324	661465	2757324	2757751	661465	932649	3574862	932649 3574862	165637	718844	718844	234956 943598	234956	943598	1127208	298941 1127208	137055	399846 126173	348894
	17	I _{I.} (mm ⁴) S _{II}	7278876 18706027	79183010 199356946	79183010 197449594	79183010					v 00				341917668		181521398					411673137 1		_ ^			30121002						690716609			252943757				79082697	79082697	27858819	27858819	01058146		35009269 118327694			
	16		579551 2852947		3956467 17176372 1			45728402 3			11150829 1				50400011 3					22000757 4		22246791 4 8174876 1					662/43 3635366		1689569 511308							13422936 2				7188846		1342886		10804315 1		1924392 14097404 1		4713830 836290	
State	15	_ <u>=</u>		211.85 168.23					125.61 4																						_										92.06					116.35 79.93			
	4	, (mm) z _{lı,1}	127.89 110.98	245.93 224.13	245.93 224.41	245.93	231.87	202.96	202.8	231.87	231.87	202.86	202.85	224.43	224.43	200.42	224.43	236.6	219.63	236.6 219.63	236.6	219.41	219.41	126.47	132.3	115.67	130.5	132.46	122.63	124.3	303.63	303.63	265.74	250.74	288.63	281.82	240.45	281.82	140.61	125.02	125.02	137.86	137.86	120.65	117.47	135.68	179.3	164.65 180.13	166.97
	13	, (mm²) z _{llc}	2990 5087	10223 16763	10223 16676	10223	14440	23113	23159	14440	14440	23141	23145	16671	16671	23874	16671	13020	18111	13020	13020	18178	18178	4706	4340	7997	4300 7584	3908	5875 3944	5940	18188 37133	18188	37133	37133	18188	37133 21593	42278	21593 42278	11513	23988	23988	13712	13712	27477	30025	15460 30025	6625	11314	10570
	12	A _{ll} (mm²) A _{ll}	4039 11055	12139 23542	12139 23357	12139	19414	19414	45066	19414	19414	44986	44998	24272	24272	49610	24272	20794	46311	46311	20794	46933	46933	6042	3047 5404	12979	5364 12896	6035	16498	16563	21098 55336	21098	55336	55340	21098	25959	69588	25959	13149	34248	34248	16166 42868	16166	42868	50546	18732 50546	8142	17867 7729	15884
		· (mm³)	38688 149784	201538 642047	201538 633981	201538	426936	1375359	1382081	426936	426936	1379505	1379773	598613	1484223 598613	1484223	598613	127881	329100	329100	127881	332694	332694	67451	54710	217189	53678 212568	-1872	-6268	-6268	365847	365847	1948948	2045145	386366	2045145 569683	2810459	569683 2810459	83694	462231 83694	462231	123945	123945	647329	809340	163199 809340	45943	172468 41715	144479
	10	ဟ	19730733 24286407	296569473 345027172	296569473 344141250	296569473	315387895	406439056	407084356	315387895	315387895	406838913	406869621	330069430	412419903 330069430	412419903	330069430	352719219	555875998	555875998	352719219	561358346	561358346	31835017	33444983	42382423	32163612 40742743	35701513	61406203	63755868	866391993 072198923	866391993	1072198923	996374647	768292590	996374647 793499813	101606611	793499813 1101606611	128523093	148393829 128523093	148393829	130636398	130636398	158113412	166624493	132696728 166624493	113934435	137232760 113243127	131600223
State	6	, (mm) i,		135.20 124.71	135.20 124.90	135.20	129.83	120.25						125.75	125.75	104.67	125.75					132.07		70.50	73.44	62.89	62.02	76.12	76.41	77.41	165.70			137.33		155.49				70.05	70.05	75.50	75.50	67.06	64.44	74.87 64.44	98.57	94.61 98.70	95.48
	œ	A _i (mm²) z _{i.}	10473 15392	43916 48779	43916 48681	43916 48668	46974	63745	63907	46974	46974	63845	63853	49601	67736	67736	49601	49774	70200	70200	49774	70755	70755	16336	16464	20712	16264 20512	17327	25823	26023	87910	87910	103203	99457	84160	85616	108560	85616 108560	63636	72260	72260	64454	64454	77391	82521	65272 82521	33517	38553 33372	37314
	7	I _{max} /M _{cr}	6.384	3.950	4.433	4.946	6.154	6.154	6.919	8.248	9.375	9.375	10.501	6.213	6.213 9.536	9.536	11.000	6.001	6.001	8.133	9.198	9.198	10.337	2.924	3.974	3.974	4.076	3.860	3.860	3.765	2.690	1.837	1.837	2.877	1.949	3.830	3.830	2.303	2.280	2.280	1.768	3.222	2.223	2.223	3.618	2.659	3.350	3.350 2.508	2.508
	9	M _{max} (Nm) N	3524 3524	22529	25279 25279	28209	34979	34979	39329	46879	53289	53289	59689	43219	43219 66329	66329	76519	38639	38639	52369	59229	59229	66559	3909	3712	37.12	3709	3709	3709 3712	3712	24900	17000	17000	24800	16800	34600	34600	20800	6810	6810 5280	5280	9870	6810	6810	11350	8340 8340	7669	7669 6877	6877
tuom tuom	D.	(Nm)	552 < 552 <	5703 < 5703 <	5703 < 5703 <	5703 <	5684 ×	5684 ^	5684 ^	5684 ^	2002	5684 ^	5684 ^	> 9269	v v 9269	> 9569	> 9269	6439 <	6439 <	6439 ×	6439 <	6439 <	6439 <	1337 <	934 ^	934 ^	910 910 0 v	> 196	961 × ×	> 986	9255 <	9255 <	9255 <	8620 <	8620 <	9033 <	9033 ×	9033 9033 ×	> 2987 <	2987 <	2987 <	3063 ×	3063 <	3063 <	3137 <	3137 <	2289 <	2289 < 2742 <	2742 <
Cracking moment	4	Nm) M _c		1029 < 1029 <	1029 < 1029 <			1029 <	1029 <	1029 <		1029 <			1029 ×		1029 <			1029 <		1029 <		659 ×		212 <	× × 508		209 < 212 <		3254 <		3254 <		3110 <	3110 × 3110 ×	3110 <	3110 < 3110 <	2373 <	2373 <	2373 <	2373 <	2373 <	2373 <		2373 < 2373 <	1024 <	1024 < 1024 <	1024 <
		, , , M _{SW} (274457 274457	2193561 2193561	2193561 2193561	2193561	429237	429237	2429237	429237	429237	2429237	2429237	2624807	2624807	2624807	2624807	575533	575533	2575533	575533	2575533	2575533	451561	455406	455406	443820 443820	469016	469016	481173	5228678	5228678	5228678	4870318	4870318	5103221	103221	5103221 5103221	687762	1687762	1687762	1730283	1730283	1730283	772362	1772362 1772362	155873	155873	147347
	i	W ₁ (t ₀) (mm³)		00	N (V	000	NO	CA C	NO	CA C	N	CA C	4 (7	N	N K	N	CV C	10	(1)	A CÁ	2	N 6	23						•		n in	വ	ro 4	r 4	4 4	4 ro	in i	a G	+		=	- ÷	· -	- +	-		- 1	- +	
	2	pecimen	- -	L72 L72	~ .	91	52	-52	H-59	2.5	08	8 6 8 6	06-1	III-43	III-67	-67	-77 31	-52	/-52 	0/-	.80	N-80 N-90	90	1B2	7 -	- '	. S	_	- ~	5	d - 1-	- -	1-b	2-a	2-b	3-a	3-a	2 2	1-a	¢ 1	- -	2-a 2-a	2-p	S2-b	9-a 9-a	S3-b S3-b	AC7	AC7 4C28	AC28
Study information		ซ ี	ٺ نا	<u> 1</u> 12	<u> </u>	ΙÏ	- ≐	= =	= =	= =	= =	= =	≐ ≐	= :	= =	=	= =	. ≥	≥ :	≥ ≥	2	2 2	: ≥	= #	- ∢	∢ 3	∢ ₹	ω .	മ ബ്	ed .	an in	1 00	ωà	മ്	aci à	n aá	m à	m ici	S	on io	S	os tr	o võ	ωū	່ວທົ	o ió	Z Z	ΖŻ	z
Study	1		- ·																					E:							adi (2004) idi (2004)	1di (2004)	adi (2004)	rdi (2004)	adi (2004)	adi (2004) 1di (2004)	adi (2004)	adı (2004) ıdı (2004)	adi (2004)	adi (2004) adi (2004)	tdi (2004)	adi (2004)	1di (2004)	adi (2004)	rdi (2004)	adi (2004) adi (2004)			
		Author	Ding Dajung [44] Ding Dajung [44]	0 F.R.F.C. [45] t F.R.F.C. [45]	R.F.C. [45] R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	7.F.C. [45]	R.F.C. [45]	R.F.C. [45]	R.F.C. [45]	akoss et al. [4	arkoss et al. [4 arke et al. [46]	arke et al. [46	arke et al. [46 arke et al. [46	arke et al. [46	arke et al. [46 arke et al. [46]	arke et al. [46	libert and Neja	lbert and Nejs	lbert and Nejs	lbert and Neja	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	lbert and Nejs	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	lbert and Neja	Gilbert and Nejadi Gilbert and Nejadi	lbert and Nejs	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004)	Gilbert and Nejadi (2004)	lbert and Nejs	 Gilbert and Nejadi (2 Gilbert and Nejadi (2 	ıšić (2017)	ošić (2017) všić (2017)	ošić (2017)
		Αn		73 0 F.F 74 t F.F																							10/ 0 Cig 108 t Cig		110 t Cia		113 0 Gil 114 + Gil		116 t Gil			- 0	- (_	_		_	-		+ 0	o +-	135 0 GII 136 t GII	_	_	
I			I																				-						•	-		-	•		•		,	•		•	-		-			•	,	,-	

Assessment and Correction of MC10 model:
Simplified Procedure

Simplified Method - MC10+

			Simpini	ied inietriod - inic ro	•		
α_{s}	$oldsymbol{eta}_{s}$	ζ_s					
2	1	0.960					
					0 *E*! //M *! ² \		
					$a_s *E*I_{II}/(M_{cr} *L^2)$		
					0.5042		
			Numerica	al Integration - MC1	10+		
α	β	γ				M_{max}/M_{cr}	I_1/I_{11}
2	1	1.000				5	5
_	•	γ >√β			*F*! // \ / *! ² \		
		$\gamma \sim \sqrt{\rho}$			$a*E*I_{II}/(M_{cr}*L^2)$		
					0.4947		
				only effective	State I	corresponding	defl. mult.
ξ	M/M_{cr}	defl. coeff./L	ζ	$E*I_{II}*(1/r_{eff})/M_{cr}$	$E^*I_{II}^*(1/r_I)/M_{cr}$	$E*I_{II}*(1/r)/M_{cr}$	
0.00	0.000	0.00	#DIV/0!	#DIV/0!	0.0000	0.0000	0.000
0.02	0.392	0.01	-5.508	-1.649	0.0784	0.0784	0.001
0.04	0.768	0.02	-0.695	-0.274	0.1536	0.1536	0.003
0.06	1.128	0.03	0.214	0.419	0.2256	0.4188	0.013
0.08	1.472	0.04	0.538	0.929	0.2944	0.9285	0.037
0.10	1.800	0.05	0.691	1.356	0.3600	1.3556	0.068
0.12	2.112	0.06	0.776	1.733	0.4224	1.7332	0.104
0.14	2.408	0.07	0.828	2.076	0.4816	2.0758	0.145
0.16	2.688	0.08	0.862	2.390	0.5376	2.3904	0.191
0.18	2.952	0.09	0.885	2.681	0.5904	2.6810	0.241
0.20	3.200	0.10	0.902	2.950	0.6400	2.9500	0.295
0.22	3.432	0.11	0.915	3.199	0.6864	3.1989	0.352
0.24	3.648	0.12	0.925	3.429	0.7296	3.4287	0.411
0.26	3.848	0.13	0.932	3.640	0.7696	3.6401	0.473
0.28	4.032	0.14 0.14	0.932				0.537
				3.834	0.8064	3.8336	
0.30	4.200	0.15	0.943	4.010	0.8400	4.0095	0.601
0.32	4.352	0.16	0.947	4.168	0.8704	4.1682	0.667
0.34	4.488	0.17	0.950	4.310	0.8976	4.3097	0.733
0.36	4.608	0.18	0.953	4.434	0.9216	4.4344	0.798
0.38	4.712	0.19	0.955	4.542	0.9424	4.5422	0.863
0.40	4.800	0.20	0.957	4.633	0.9600	4.6333	0.927
0.42	4.872	0.21	0.958	4.708	0.9744	4.7078	0.989
0.44	4.928	0.22	0.959	4.766	0.9856	4.7657	1.048
0.46	4.968	0.23	0.959	4.807	0.9936	4.8070	1.106
0.48	4.992	0.24	0.960	4.832	0.9984	4.8317	1.160
0.50	5.000	0.25	0.960	4.840	1.0000	4.8400	1.210
0.52	4.992	0.24	0.960	4.832	0.9984	4.8317	1.160
0.54	4.968	0.23	0.959	4.807	0.9936	4.8070	1.106
0.56	4.928	0.22	0.959	4.766	0.9856	4.7657	1.048
0.58	4.872	0.21	0.958	4.708	0.9744	4.7078	0.989
0.60	4.800	0.20	0.957	4.633	0.9600	4.6333	0.927
0.62	4.712	0.19	0.955	4.542	0.9424	4.5422	0.863
0.64	4.608	0.18	0.953	4.434	0.9216	4.4344	0.798
0.66	4.488	0.17	0.950	4.310	0.8976	4.3097	0.733
0.68	4.352	0.16	0.947	4.168	0.8704	4.1682	0.667
0.70	4.200	0.15	0.943	4.010	0.8400	4.0095	0.601
0.72	4.032	0.14	0.938	3.834	0.8064	3.8336	0.537
0.74	3.848	0.13	0.932	3.640	0.7696	3.6401	0.473
0.76	3.648	0.12	0.925	3.429	0.7296	3.4287	0.411
0.78	3.432	0.11	0.925	3.199	0.6864	3.1989	0.352
0.70	3.200	0.10	0.913	2.950	0.6400	2.9500	0.332
0.82	2.952	0.09	0.885	2.681	0.5904	2.6810	0.241
0.84	2.688	0.08	0.862	2.390	0.5376	2.3904	0.191
0.86	2.408	0.07	0.828	2.076	0.4816	2.0758	0.145
0.88	2.112	0.06	0.776	1.733	0.4224	1.7332	0.104
0.90	1.800	0.05	0.691	1.356	0.3600	1.3556	0.068
0.92	1.472	0.04	0.538	0.929	0.2944	0.9285	0.037
0.94	1.128	0.03	0.214	0.419	0.2256	0.4188	0.013
0.96	0.768	0.02	-0.695	-0.274	0.1536	0.1536	0.003
0.98	0.392	0.01	-5.508	-1.649	0.0784	0.0784	0.001
1.00	0.000	0.00	#DIV/0!	#DIV/0!	0.0000	0.0000	0.000
							24.735

M _{max} /M _{cr}	1,/1,,	β =	1	α=	1							a _{simp} /a							
1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.5 8.0 8.5 9.0 9.5	1.1 1.007 1.007 1.008 1.009 1.009 1.008 1.007 1.005 1.004 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002	1.5 1.025 1.035 1.040 1.041 1.041 1.035 1.028 1.028 1.024 1.020 1.018 1.014 1.012 1.014 1.010 1.010 1.009 1.008 1.008 1.008	2.0 1.050 1.068 1.074 1.075 1.074 1.057 1.047 1.033 1.028 1.025 1.022 1.020 1.016 1.016 1.015 1.013 1.014 1.013	2.5 1.073 1.098 1.105 1.104 1.101 1.077 1.060 1.041 1.035 1.031 1.022 1.022 1.022 1.020 1.019 1.017 1.016 1.015 1.015 1.015	3.0 1.096 1.125 1.125 1.129 1.124 1.092 1.070 1.056 1.040 1.035 1.031 1.025 1.023 1.021 1.018 1.018 1.016 1.016	3.5 1.118 1.151 1.156 1.151 1.143 1.103 1.062 1.051 1.043 1.038 1.038 1.033 1.030 1.027 1.025 1.023 1.021 1.019 1.018 1.019	4.0 1.137 1.177 1.178 1.170 1.160 1.112 1.066 1.055 1.040 1.035 1.032 1.029 1.029 1.024 1.022 1.021 1.019 1.019	4.5 1.160 1.197 1.198 1.187 1.174 1.120 1.089 1.070 1.057 1.048 1.042 1.033 1.033 1.027 1.025 1.023 1.025 1.023 1.021 1.020 1.018	5.0 1.779 1.277 1.216 1.202 1.187 1.126 1.093 1.073 1.073 1.060 1.050 1.050 1.044 1.034 1.034 1.034 1.028 1.024 1.022 1.021 1.022 1.021	5.5 1.198 1.236 1.232 1.212 1.198 1.132 1.096 1.075 1.061 1.052 1.045 1.035 1.035 1.035 1.029 1.025 1.025 1.025 1.025 1.021 1.025 1.021 1.025	6.0 1.217 1.254 1.254 1.228 1.208 1.336 1.099 1.077 1.063 1.053 1.040 1.036 1.030 1.035 1.025 1.020 1.022 1.020 1.020	6.5 1.235 1.271 1.261 1.237 1.217 1.141 1.102 1.079 1.064 1.047 1.041 1.033 1.033 1.030 1.028 1.026 1.026 1.022 1.021 1.021	7.0 1.252 1.287 1.274 1.245 1.104 1.081 1.065 1.048 1.042 1.034 1.034 1.034 1.038 1.028 1.026 1.022 1.022	7.5 1.269 1.302 1.285 1.252 1.148 1.106 1.082 1.067 1.056 1.048 1.042 1.034 1.034 1.028 1.028 1.026 1.023 1.020 1.020	8.0 1.285 1.316 1.296 1.266 1.239 1.150 1.108 1.083 1.068 1.057 1.049 1.049 1.043 1.034 1.034 1.029 1.025 1.025 1.025 1.025 1.025	8.5 1.301 1.330 1.306 1.274 1.245 1.153 1.109 1.084 1.068 1.057 1.050 1.043 1.035 1.035 1.035 1.035 1.032 1.022 1.022 1.022 1.022 1.022	9.0 1.3142 1.342 1.316 1.281 1.251 1.155 1.110 1.085 1.050 1.058 1.050 1.044 1.035 1.035 1.035 1.027 1.027 1.027 1.023 1.022 1.022	9.5 1.354 1.354 1.256 1.256 1.158 1.112 1.086 1.070 1.050 1.050 1.030 1.035 1.035 1.030 1.027 1.025 1.024 1.022 1.024	10.0 1.346 1.366 1.333 1.294 1.261 1.160 1.113 1.087 1.070 1.051 1.040 1.036 1.030 1.027 1.025 1.024 1.022
M _{max} /M _{cr} 1.1 1.2 1.3	I ₁ /I ₁₁ 1.1 1.009 1.013 1.014	β = 1.5 1.047 1.061 1.064	1 2.0 1.091 1.114 1.116	α = 2.5 1.132 1.160 1.157	2 3.0 1.171 1.199 1.192	3.5 1.207 1.234 1.221	4.0 1.241 1.265 1.246	4.5 1.273 1.293 1.267	5.0 1.303 1.318 1.286	5.5 1.331 1.340 1.302	6.0 1.358 1.360 1.317	a _{simp} / a _{6.5} 1.383 1.379 1.329	7.0 1.407 1.396 1.341	7.5 1.430 1.412 1.352	8.0 1.452 1.426 1.361	8.5 1.472 1.439 1.370	9.0 1.492 1.452 1.378	9.5 1.511 1.463 1.385	10.0 1.529 1.474 1.392
1.4 1.5 2.0 2.5	1.014 1.013 1.010 1.007	1.062 1.059 1.040 1.028	1.109 1.101 1.064 1.043	1.145 1.132 1.081 1.053	1.174 1.157 1.093 1.061	1.198 1.176 1.102 1.066	1.217 1.192 1.109 1.070	1.234 1.205 1.114 1.073	1.248 1.216 1.119 1.076	1.260 1.225 1.123 1.078	1.271 1.233 1.126 1.080	1.280 1.240 1.129 1.081	1.289 1.247 1.131 1.082	1.296 1.252 1.133 1.084	1.303 1.257 1.135 1.085	1.309 1.262 1.137 1.085	1.314 1.266 1.138 1.086	1.319 1.270 1.140 1.087	1.324 1.273 1.141 1.088
3.0 3.5 4.0 4.5 5.0	1.005 1.004 1.003 1.002 1.002	1.020 1.015 1.012 1.009 1.008	1.031 1.023 1.018 1.014 1.012	1.038 1.028 1.022 1.017 1.014	1.043 1.032 1.024 1.019 1.016	1.046 1.034 1.026 1.021 1.017	1.049 1.036 1.028 1.022 1.018	1.051 1.038 1.029 1.023 1.019	1.053 1.039 1.030 1.024 1.019	1.054 1.040 1.030 1.024 1.020	1.055 1.041 1.031 1.025 1.020	1.056 1.041 1.032 1.025 1.020	1.057 1.042 1.032 1.026 1.021	1.058 1.042 1.032 1.026 1.021	1.058 1.043 1.033 1.026 1.021	1.059 1.043 1.033 1.026 1.021	1.059 1.044 1.033 1.027 1.021	1.060 1.044 1.034 1.027 1.022	1.060 1.044 1.034 1.027 1.022
5.5 6.0 6.5 7.0 7.5	1.001 1.001 1.001 1.001 1.001	1.006 1.005 1.004 1.004 1.003	1.010 1.008 1.007 1.006 1.005	1.012 1.010 1.008 1.007 1.006	1.013 1.011 1.009 1.008 1.007	1.014 1.012 1.010 1.009 1.008	1.015 1.012 1.011 1.009 1.008	1.015 1.013 1.011 1.010 1.008	1.016 1.013 1.011 1.010 1.009	1.016 1.014 1.012 1.010 1.009	1.017 1.014 1.012 1.010 1.009	1.017 1.014 1.012 1.010 1.009	1.017 1.014 1.012 1.011 1.009	1.017 1.015 1.012 1.011 1.009	1.017 1.015 1.013 1.011 1.009	1.018 1.015 1.013 1.011 1.009	1.018 1.015 1.013 1.011 1.010	1.018 1.015 1.013 1.011 1.010	1.018 1.015 1.013 1.011 1.010
8.0 8.5 9.0 9.5 10.0	1.001 1.000 1.000 1.000 1.000	1.003 1.003 1.002 1.002 1.002	1.005 1.004 1.004 1.003 1.003	1.005 1.005 1.004 1.004 1.003	1.006 1.005 1.005 1.004 1.004	1.007 1.006 1.005 1.005 1.004	1.007 1.006 1.005 1.005 1.004	1.007 1.006 1.006 1.005 1.005	1.007 1.007 1.006 1.005 1.005	1.008 1.007 1.006 1.005 1.005	1.008 1.007 1.006 1.005 1.005	1.008 1.007 1.006 1.006 1.005	1.008 1.007 1.006 1.006 1.005	1.008 1.007 1.006 1.006 1.005	1.008 1.007 1.006 1.006 1.005	1.008 1.007 1.006 1.006 1.005	1.008 1.007 1.007 1.006 1.005	1.008 1.007 1.007 1.006 1.005	1.008 1.007 1.007 1.006 1.005
M max/M cr	1,/1,,	•										- /-							
		β = 1.5	0.5 2.0	α= 25	3.0	3.5	40	4.5	5.0	5.5	6.0	a _{simp} /a		7.5	8.0	8.5	9.0	9.5	10.0
1.1 1.2 1.3	1.1 1.002 1.004	1.5 1.013 1.019	2.0 1.026 1.037	2.5 1.039 1.055	3.0 1.051 1.071	3.5 1.063 1.087	4.0 1.075 1.103	4.5 1.087 1.117 1.127	5.0 1.098 1.131	5.5 1.110 1.145 1.154	6.0 1.121 1.158 1.167	6.5 1.132 1.171	7.0 1.143 1.183	7.5 1.153 1.194 1.200	8.0 1.163 1.206 1.210	8.5 1.174 1.216 1.220	9.0 1.184 1.227 1.229	9.5 1.194 1.237 1.238	10.0 1.203 1.247 1.246
1.2 1.3 1.4 1.5	1.1 1.002 1.004 1.004 1.005 1.005	1.5 1.013 1.019 1.022 1.023 1.024	2.0 1.026 1.037 1.043 1.045 1.046	2.5 1.039 1.055 1.062 1.065 1.065	3.0 1.051 1.071 1.080 1.083 1.083	1.063 1.087 1.097 1.099 1.098	1.075 1.103 1.113 1.114 1.112	1.087 1.117 1.127 1.128 1.125	1.098 1.131 1.141 1.141 1.137	1.110 1.145 1.154 1.153 1.148	1.121 1.158 1.167 1.164 1.158	6.5 1.132 1.171 1.179 1.175 1.167	7.0 1.143 1.183 1.190 1.184 1.176	1.153 1.194 1.200 1.194 1.183	1.163 1.206 1.210 1.202 1.191	1.174 1.216 1.220 1.210 1.198	1.184 1.227 1.229 1.218 1.204	1.194 1.237 1.238 1.225 1.210	1.203 1.247 1.246 1.232 1.216
1.2 1.3 1.4 1.5 2.0 2.5 3.0	1.1 1.002 1.004 1.004 1.005 1.005 1.005 1.005	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038 1.034	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.051 1.045	3.0 1.051 1.071 1.080 1.083 1.083 1.072 1.062 1.054	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061	1.075 1.103 1.113 1.114 1.112 1.093 1.077 1.066	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071	1.098 1.131 1.141 1.141 1.137 1.109 1.089 1.075	1.110 1.145 1.154 1.153 1.148 1.116 1.094 1.079	1.121 1.158 1.167 1.164 1.158 1.122 1.098 1.082	6.5 1.132 1.171 1.179 1.175 1.167 1.127 1.101 1.085	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.087	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094	1.194 1.237 1.238 1.225 1.210 1.150 1.116 1.096	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097
1.2 1.3 1.4 1.5 2.0 2.5	1.1 1.002 1.004 1.004 1.005 1.005 1.005	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.051	3.0 1.051 1.071 1.080 1.083 1.083 1.072 1.062	1.063 1.087 1.097 1.099 1.098 1.084 1.070	1.075 1.103 1.113 1.114 1.112 1.093 1.077	1.087 1.117 1.127 1.128 1.125 1.102 1.084	1.098 1.131 1.141 1.141 1.137 1.109 1.089	1.110 1.145 1.154 1.153 1.148 1.116 1.094	1.121 1.158 1.167 1.164 1.158 1.122 1.098	6.5 1.132 1.171 1.179 1.175 1.167 1.127 1.101	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104	1.153 1.194 1.200 1.194 1.183 1.136 1.107	1.163 1.206 1.210 1.202 1.191 1.140 1.110	1.174 1.216 1.220 1.210 1.198 1.144 1.112	1.184 1.227 1.229 1.218 1.204 1.147 1.114	1.194 1.237 1.238 1.225 1.210 1.150 1.116	1.203 1.247 1.246 1.232 1.216 1.153 1.118
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	1.1 1.002 1.004 1.005 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038 1.034 1.031 1.028 1.026 1.025 1.023	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.051 1.045 1.040 1.037 1.034 1.032 1.030	3.0 1.051 1.071 1.080 1.083 1.072 1.062 1.054 1.048 1.048 1.040 1.037 1.034	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.048 1.044 1.041	1.075 1.103 1.113 1.114 1.112 1.093 1.077 1.066 1.058 1.052 1.044 1.044	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.062 1.056 1.051 1.047	1.098 1.131 1.141 1.141 1.137 1.109 1.089 1.075 1.066 1.059 1.053 1.049 1.045	1.110 1.145 1.154 1.153 1.148 1.116 1.094 1.079 1.069 1.061 1.055 1.051	1.121 1.158 1.167 1.164 1.158 1.122 1.098 1.082 1.071 1.063 1.057 1.052 1.048	6.5 1.132 1.171 1.179 1.175 1.167 1.127 1.101 1.085 1.073 1.065 1.059 1.054 1.050	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.087 1.075 1.066 1.060 1.055 1.051	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.068 1.061 1.056 1.052	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.069 1.062 1.057 1.052	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.053	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.064 1.058 1.054	1.194 1.237 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.072 1.075 1.059	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.0 6.5 7.0	1.1 1.002 1.004 1.005 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003 1.003 1.003 1.003	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014 1.013 1.013 1.013	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038 1.034 1.031 1.026 1.025 1.025 1.022 1.022	2.5 1.039 1.055 1.062 1.065 1.065 1.051 1.045 1.040 1.032 1.034 1.032 1.030 1.026 1.026	3.0 1.051 1.071 1.080 1.083 1.083 1.072 1.062 1.054 1.048 1.043 1.040 1.037 1.034 1.032 1.031	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.044 1.044 1.038 1.036 1.036	1.075 1.103 1.113 1.114 1.112 1.093 1.077 1.066 1.058 1.052 1.048 1.044 1.041 1.038 1.036 1.034	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.062 1.056 1.051 1.047 1.043 1.041 1.038 1.036	1.098 1.131 1.141 1.141 1.147 1.109 1.089 1.075 1.066 1.059 1.053 1.049 1.045 1.045	1.110 1.145 1.154 1.153 1.148 1.116 1.094 1.079 1.069 1.061 1.055 1.051 1.047 1.044 1.041	1.121 1.158 1.167 1.164 1.158 1.122 1.098 1.082 1.071 1.063 1.057 1.052 1.048 1.045 1.043	6.5 1.132 1.171 1.179 1.175 1.167 1.107 1.085 1.073 1.065 1.059 1.054 1.050 1.044	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.087 1.075 1.060 1.055 1.051 1.044 1.044	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.068 1.061 1.056 1.056 1.048 1.045 1.043	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.069 1.062 1.057 1.052 1.046 1.046 1.043	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.053 1.053	1.184 1.227 1.228 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.064 1.058 1.054 1.054	1.194 1.237 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.072 1.065 1.059 1.055 1.051	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.055 1.048
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0	1.1 1.002 1.004 1.005 1.005 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003	1.5 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014 1.013 1.013 1.013 1.012	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.034 1.031 1.026 1.025 1.025 1.022 1.020 1.020 1.020	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.051 1.040 1.037 1.034 1.032 1.030 1.028 1.028 1.025 1.024 1.023	3.0 1.051 1.071 1.080 1.083 1.072 1.062 1.054 1.048 1.040 1.037 1.040 1.037 1.032 1.032 1.032 1.032	1.063 1.087 1.097 1.099 1.098 1.070 1.061 1.054 1.044 1.044 1.041 1.038 1.036 1.036 1.032 1.032 1.032	1.075 1.103 1.113 1.114 1.112 1.093 1.075 1.066 1.058 1.058 1.058 1.044 1.044 1.041 1.036 1.036 1.033 1.033	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.066 1.051 1.043 1.041 1.038 1.034 1.034 1.034 1.033	1.098 1.131 1.141 1.141 1.137 1.089 1.075 1.069 1.053 1.049 1.045 1.042 1.042 1.040 1.038 1.036 1.036 1.036	1.110 1.145 1.154 1.153 1.148 1.116 1.094 1.079 1.061 1.055 1.051 1.047 1.044 1.041 1.039 1.037 1.037	1.121 1.158 1.167 1.164 1.158 1.098 1.092 1.071 1.063 1.057 1.052 1.048 1.045 1.045 1.040 1.038 1.038	6.5 1.132 1.171 1.179 1.175 1.187 1.127 1.101 1.085 1.073 1.065 1.054 1.050 1.046 1.041 1.039 1.037	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.075 1.066 1.060 1.055 1.051 1.047 1.047 1.040 1.040 1.040	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.061 1.056 1.052 1.045 1.043 1.040 1.037	1.163 1.206 1.210 1.202 1.191 1.140 1.091 1.078 1.062 1.057 1.052 1.046 1.043 1.041 1.037	1.174 1.216 1.220 1.210 1.198 1.142 1.093 1.080 1.070 1.063 1.058 1.053 1.053 1.054 1.044 1.044 1.042 1.040	1.184 1.227 1.229 1.218 1.204 1.147 1.094 1.081 1.071 1.064 1.058 1.054 1.054 1.047 1.044 1.042 1.042	1.194 1.237 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.075 1.055 1.055 1.055 1.048 1.043 1.040 1.043	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.048 1.045 1.043 1.043
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0	1.1 1.002 1.004 1.005 1.005 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.003	1.5 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014 1.013 1.013 1.012 1.012	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038 1.034 1.031 1.028 1.026 1.025 1.022 1.022 1.020 1.020 1.020	2.5 1.039 1.065 1.065 1.065 1.059 1.051 1.040 1.037 1.032 1.030 1.032 1.030 1.026 1.025 1.025	3.0 1.051 1.071 1.080 1.083 1.083 1.072 1.062 1.054 1.048 1.043 1.040 1.037 1.034 1.032 1.031 1.029 1.029	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.036 1.036 1.034 1.032 1.032	1.075 1.103 1.113 1.114 1.112 1.093 1.077 1.066 1.058 1.058 1.048 1.044 1.044 1.038 1.038 1.036 1.033	1.087 1.117 1.128 1.125 1.102 1.084 1.071 1.062 1.051 1.047 1.047 1.038 1.036 1.036 1.036	1.098 1.131 1.141 1.141 1.137 1.089 1.075 1.066 1.053 1.049 1.042 1.040 1.038 1.038 1.038	1.110 1.145 1.153 1.148 1.119 1.094 1.079 1.061 1.055 1.051 1.044 1.041 1.041 1.037	1.121 1.158 1.164 1.158 1.128 1.092 1.082 1.071 1.063 1.057 1.052 1.045 1.043 1.040 1.038	6.5 1.132 1.171 1.179 1.175 1.167 1.127 1.101 1.085 1.073 1.065 1.054 1.050 1.044 1.041 1.039	7.0 1.143 1.183 1.190 1.184 1.176 1.104 1.087 1.066 1.060 1.055 1.051 1.047 1.044 1.044 1.042 1.040	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.061 1.056 1.056 1.056 1.043 1.043 1.043	1.163 1.206 1.210 1.202 1.191 1.140 1.091 1.078 1.062 1.057 1.057 1.049 1.046 1.043 1.041	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.058 1.055 1.047 1.044 1.042	1.184 1.227 1.229 1.218 1.204 1.147 1.094 1.081 1.071 1.064 1.058 1.058 1.050 1.047 1.044 1.042	1.194 1.237 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.075 1.055 1.059 1.055 1.048 1.045 1.043	1.203 1.247 1.246 1.232 1.216 1.153 1.097 1.083 1.073 1.066 1.060 1.055 1.048 1.045 1.043
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002	$\begin{array}{c} 1.5 \\ 1.013 \\ 1.019 \\ 1.022 \\ 1.023 \\ 1.024 \\ 1.022 \\ 1.020 \\ 1.018 \\ 1.020 \\ 1.018 \\ 1.017 \\ 1.016 \\ 1.015 \\ 1.014 \\ 1.013 \\ 1.013 \\ 1.012 \\ 1.011 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ \end{array}$	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.034 1.031 1.026 1.025 1.022 1.021 1.020 1.018 1.018 1.018 1.016	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.051 1.045 1.040 1.031 1.032 1.030 1.028 1.025 1.022 1.021 1.020	3.0 1.051 1.071 1.080 1.083 1.072 1.064 1.054 1.048 1.043 1.040 1.034 1.032 1.032 1.032 1.025 1.028 1.028 1.025 1.025	1.063 1.087 1.097 1.099 1.098 1.084 1.076 1.061 1.054 1.044 1.041 1.034 1.036 1.032 1.032 1.032 1.032 1.029 1.028	1.075 1.103 1.113 1.114 1.112 1.093 1.075 1.066 1.058 1.058 1.058 1.044 1.044 1.038 1.034 1.034 1.033 1.030 1.030 1.030 1.030	1.087 1.117 1.127 1.128 1.125 1.102 1.004 1.071 1.062 1.051 1.047 1.043 1.041 1.038 1.038 1.033 1.031 1.032 1.032 1.032 1.032 1.032 1.033 1.031 1.032 1.032 1.032 1.033 1.032 1.033 1.033 1.034	1.098 1.131 1.141 1.141 1.137 1.099 1.075 1.066 1.053 1.049 1.042 1.042 1.042 1.040 1.038 1.036 1.036 1.033 1.033 1.033 1.033	1.110 1.145 1.154 1.153 1.148 1.116 1.079 1.061 1.055 1.051 1.041 1.039 1.037 1.037 1.034 1.032 1.034 1.031	1.121 1.158 1.167 1.164 1.158 1.082 1.071 1.063 1.057 1.052 1.045 1.045 1.045 1.040 1.038 1.038 1.035 1.035 1.035	6.5 1.132 1.177 1.179 1.175 1.167 1.127 1.101 1.085 1.059 1.054 1.050 1.046 1.050 1.046 1.041 1.039 1.037 1.036 1.033 1.032 a simp/a	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.087 1.066 1.065 1.055 1.051 1.047 1.047 1.042 1.042 1.038 1.036 1.036 1.033 1.032	1.153 1.194 1.194 1.183 1.136 1.107 1.089 1.077 1.061 1.056 1.055 1.045 1.045 1.045 1.043 1.040 1.037 1.037 1.033	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.062 1.057 1.057 1.052 1.049 1.043 1.041 1.037 1.037 1.037	1.174 1.216 1.220 1.210 1.198 1.198 1.1080 1.070 1.063 1.058 1.053 1.050 1.044 1.042 1.042 1.044 1.042 1.038 1.038	1.184 1.229 1.218 1.204 1.147 1.114 1.081 1.071 1.064 1.058 1.058 1.058 1.054 1.050 1.047 1.042 1.042 1.042 1.038 1.038	1.194 1.238 1.225 1.210 1.150 1.150 1.166 1.092 1.065 1.059 1.055 1.051 1.048 1.043 1.040 1.039 1.039	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.051 1.043 1.043 1.043 1.043 1.043 1.043 1.039
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0	1.1 1.004 1.004 1.005 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002	1.5 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014 1.013 1.013 1.012 1.012 1.011 1.010 1.010 1.010 1.010 1.010 1.010	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.034 1.031 1.028 1.026 1.023 1.022 1.021 1.020 1.019 1.018 1.018 1.016 1.016 0.55 2.0	2.5 1.030 1.055 1.062 1.065 1.065 1.065 1.059 1.040 1.031 1.034 1.032 1.030 1.028 1.025 1.024 1.022 1.021 1.020	3.0 1.051 1.071 1.080 1.083 1.072 1.064 1.054 1.048 1.048 1.040 1.034 1.032 1.034 1.032 1.032 1.032 1.028 1.028 1.028 1.025 1.028 1.025 1.024 1.023	1.063 1.087 1.097 1.099 1.098 1.084 1.076 1.061 1.054 1.044 1.041 1.032 1.036 1.032 1.032 1.032 1.028 1.028 1.025 1.025	1.075 1.103 1.114 1.114 1.112 1.093 1.077 1.068 1.058 1.058 1.052 1.044 1.044 1.038 1.034 1.034 1.033 1.030	1.087 1.117 1.127 1.128 1.102 1.084 1.071 1.062 1.051 1.047 1.043 1.041 1.036 1.036 1.034 1.031 1.039 1.029 1.028	1.098 1.131 1.141 1.141 1.137 1.099 1.089 1.053 1.049 1.053 1.042 1.042 1.042 1.042 1.043 1.038 1.036 1.038 1.036 1.033 1.039	1.110 1.145 1.154 1.153 1.148 1.116 1.079 1.069 1.061 1.055 1.051 1.044 1.044 1.039 1.037 1.032 1.032 1.032 1.032 1.032	1.121 1.158 1.167 1.164 1.158 1.082 1.071 1.063 1.057 1.057 1.052 1.040 1.040 1.038 1.040 1.038 1.035 1.033 1.035 1.033 1.035 1.033 1.035	6.5 1.132 1.177 1.179 1.175 1.167 1.127 1.101 1.085 1.065 1.059 1.054 1.050 1.046 1.050 1.046 1.041 1.039 1.033 1.032 a simp/a .6.5 1.132 1.171	7.0 1.143 1.183 1.190 1.184 1.176 1.132 1.104 1.087 1.066 1.060 1.055 1.051 1.047 1.047 1.042 1.040 1.033 1.033 1.033 1.032	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.066 1.056 1.056 1.056 1.048 1.043 1.040 1.037 1.037 1.033 1.033	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.062 1.057 1.052 1.049 1.043 1.041 1.037 1.037 1.034 1.033	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.058 1.058 1.050 1.044 1.042 1.042 1.042 1.043 1.038	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.064 1.058 1.058 1.058 1.058 1.058 1.050 1.047 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.043 1.038 1.035	1.194 1.238 1.225 1.210 1.150 1.150 1.150 1.096 1.082 1.072 1.065 1.055 1.051 1.043 1.043 1.040 1.039 1.037 1.036 1.034	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.051 1.045 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.035 1.035 1.036
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr 1.1 1.2 1.3 1.4 1.5	1.1 1.004 1.004 1.005 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002	$\begin{array}{c} 1.5 \\ 1.013 \\ 1.019 \\ 1.022 \\ 1.023 \\ 1.024 \\ 1.024 \\ 1.022 \\ 1.020 \\ 1.0108 \\ 1.017 \\ 1.016 \\ 1.015 \\ 1.014 \\ 1.013 \\ 1.013 \\ 1.012 \\ 1.011 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.010 \\ 1.022 \\ 1.022 \\ 1.023 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ 1.024 \\ $	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.034 1.034 1.025 1.025 1.023 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.018 1.017 1.016 0.5 2.0 1.027 1.043 1.043 1.043	$\begin{array}{c} \textbf{2.5} \\ \textbf{1.035} \\ \textbf{1.062} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.059} \\ \textbf{1.07} \\ \textbf{1.045} \\ \textbf{1.045} \\ \textbf{1.045} \\ \textbf{1.037} \\ \textbf{1.030} \\ \textbf{1.030} \\ \textbf{1.026} \\ \textbf{1.024} \\ \textbf{1.023} \\ \textbf{1.021} \\ \textbf{1.021} \\ \textbf{1.021} \\ \textbf{1.022} \\ \textbf{1.021} \\ \textbf{1.020} \\ \textbf{1.025} \\ \textbf{1.025} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.065} \\ \textbf{1.066} \\ \textbf{1.065} \\ \textbf{1.066} \\ 1.066$	3.0 1.051 1.071 1.083 1.083 1.072 1.062 1.054 1.043 1.040 1.043 1.040 1.034 1.034 1.034 1.034 1.032 1.031 1.028 1.026 1.026 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.025 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.036 1.032 1.030 1.032 1.030 1.025 1.025 1.025 1.025 1.025	1.075 1.103 1.114 1.114 1.112 1.093 1.077 1.066 1.058 1.058 1.058 1.044 1.044 1.038 1.031 1.031 1.030 1.030 1.030 1.030 1.028 1.027	1.087 1.117 1.127 1.128 1.102 1.084 1.071 1.062 1.056 1.051 1.047 1.043 1.041 1.038 1.034 1.034 1.030 1.030 1.029 1.028	1.098 1.131 1.141 1.141 1.137 1.099 1.089 1.053 1.049 1.053 1.042 1.042 1.042 1.042 1.036 1.036 1.036 1.036 1.033 1.031 1.030 1.030 1.039 1.039 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.031 1.032 1.032 1.032 1.033 1.033 1.033 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034 1.034	1.110 1.145 1.154 1.153 1.148 1.116 1.094 1.069 1.061 1.055 1.051 1.044 1.044 1.041 1.032 1.032 1.032 1.032 1.032 1.032 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030	1.121 1.158 1.167 1.164 1.158 1.122 1.098 1.071 1.063 1.057 1.052 1.043 1.045 1.043 1.045 1.043 1.036 1.035 1.035 1.035 1.035 1.031	6.5 1.132 1.171 1.179 1.167 1.167 1.167 1.107 1.085 1.053 1.065 1.054 1.050 1.054 1.050 1.044 1.041 1.039 1.037 1.036 1.034 1.033 1.032 a simp/a 6.5 1.171 1.179 1.175 1.167	7.0 1.143 1.190 1.183 1.190 1.184 1.176 1.132 1.104 1.075 1.066 1.060 1.055 1.051 1.044 1.040 1.038 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.036 1.035 1.036 1.037 1.044 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.040 1.	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.068 1.056 1.056 1.056 1.048 1.043 1.040 1.037 1.037 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035	1.163 1.202 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.062 1.057 1.057 1.049 1.043 1.041 1.037 1.036 1.037 1.036 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033 1.033	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.058 1.050 1.047 1.042 1.042 1.042 1.043 1.036 1.036 1.035 1.035 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036	1.184 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.064 1.058 1.050 1.047 1.042 1.042 1.042 1.043 1.037 1.035 1.037 1.034	1.194 1.238 1.225 1.210 1.150 1.150 1.150 1.096 1.082 1.072 1.065 1.051 1.048 1.043 1.040 1.039 1.037 1.036 1.034	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.051 1.043 1.043 1.043 1.043 1.039 1.035 1.035 1.035 1.035 1.035 1.035 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.003	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.016 1.017 1.016 1.015 1.014 1.013 1.012 1.011 1.010 1.010 1.010 \$ = 1.5 1.013 1.019 1.022 1.023 1.024 1.022 1.023 1.024 1.0224 1.0224 1.0224 1.0224	2.0 1.026 1.037 1.043 1.043 1.045 1.046 1.043 1.034 1.034 1.031 1.025 1.023 1.022 1.021 1.020 1.021 1.020 1.018 1.018 1.018 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.016 1.017 1.016 1.016 1.016 1.016 1.017 1.016 1.016 1.016 1.017 1.016 1.016 1.016 1.016 1.017 1.016 1.016 1.017 1.016 1.016 1.017 1.016 1.016 1.017 1.016 1.016 1.017 1.016 1.017 1.016 1.016 1.017 1.016 1.017 1.016 1.017 1.016 1.017 1.016	2.5 1.039 1.055 1.062 1.065 1.065 1.065 1.059 1.051 1.045 1.040 1.037 1.034 1.032 1.030 1.028 1.026 1.025 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.025 1.039 1.055 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065	3.0 1.051 1.071 1.083 1.083 1.072 1.064 1.043 1.040 1.034 1.040 1.031 1.026 1.025 1.026 1.025 1.024 1.024 1.024 1.024 1.024 1.024 1.024 1.025 1.025 1.025 1.025 1.025 1.026 1.025 1.026 1.026 1.025 1.026 1.027 1.027 1.028 1.028 1.028 1.028 1.028 1.028 1.028 1.028 1.026 1.028 1.	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.038 1.036 1.036 1.036 1.032 1.032 1.032 1.029 1.028 1.025 1.025 1.025 1.025 1.025 1.026 1.025	1.075 1.103 1.114 1.112 1.093 1.075 1.066 1.058 1.058 1.048 1.041 1.038 1.034 1.034 1.032 1.029 1.028 1.027 4.0 1.075 1.103 1.114 1.112 1.093 1.013 1.114 1.112 1.093	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.066 1.051 1.047 1.043 1.041 1.033 1.034 1.033 1.031 1.039 1.029 1.028	1.098 1.131 1.141 1.141 1.141 1.169 1.089 1.075 1.053 1.045 1.042 1.045 1.042 1.042 1.042 1.042 1.042 1.038 1.036 1.036 1.030 1.039 1.030	1.110 1.145 1.154 1.153 1.148 1.116 1.079 1.061 1.055 1.055 1.051 1.047 1.047 1.044 1.039 1.035 1.031 1.035 1.031 1.030 1.035 1.031 1.030 1.035 1.031 1.030	1.121 1.158 1.167 1.164 1.158 1.082 1.071 1.063 1.057 1.057 1.048 1.045 1.045 1.045 1.045 1.045 1.035	6.5 1.132 1.171 1.179 1.175 1.167 1.107 1.085 1.059 1.050 1.050 1.044 1.041 1.037 1.036 1.033 1.032 2.171 1.179 1.175 1.177 1.177 1.177 1.127 1.1085	7.0 1.143 1.190 1.176 1.132 1.104 1.075 1.066 1.066 1.066 1.060 1.055 1.051 1.044 1.042 1.042 1.043 1.038 1.036 1.035 1.031 1.040 1.041 1.042 1.042 1.042 1.042 1.042 1.042 1.044 1.042 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.046 1.046 1.046 1.046 1.046 1.047 1.047	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.071 1.068 1.061 1.052 1.048 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.044 1.043 1.044 1.043 1.044 1.043 1.044	1.163 1.206 1.210 1.221 1.191 1.140 1.110 1.091 1.062 1.052 1.052 1.049 1.043 1.043 1.043 1.043 1.033 1.035 1.036 1.037 1.036 1.033 1.034 1.033 1.034 1.033	1.174 1.216 1.220 1.210 1.198 1.198 1.198 1.093 1.080 1.070 1.063 1.053 1.050 1.053 1.050 1.044 1.042 1.040 1.038 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.036 1.035	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.061 1.071 1.054 1.050 1.054 1.050 1.044 1.040 1.038 1.035	1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.085 1.072 1.055 1.051 1.043 1.044 1.045 1.043 1.040 1.039 1.039 1.039 1.034	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.055 1.051 1.045 1.045 1.045 1.043 1.043 1.039 1.035
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr 1.1 1.2 1.3 1.4 1.5 2.0 2.5	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.003 1.002 1.003	1.5 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.018 1.017 1.016 1.015 1.014 1.013 1.012 1.011 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010	2.0 1.026 1.037 1.043 1.045 1.043 1.046 1.043 1.038 1.038 1.026 1.026 1.025 1.021 1.020 1.018 1.018 1.018 1.016 1.016 1.016 1.016 1.016 1.026	2.5 1.039 1.055 1.062 1.065 1.065 1.059 1.040 1.031 1.031 1.032 1.032 1.025 1.025 1.025 1.021 1.020	3.0 1.051 1.071 1.080 1.083 1.072 1.064 1.054 1.048 1.043 1.040 1.034 1.032 1.032 1.032 1.025 1.025 1.025 1.025 1.024 1.023	1.063 1.087 1.097 1.099 1.098 1.084 1.076 1.061 1.054 1.044 1.041 1.034 1.036 1.032 1.032 1.032 1.032 1.028 1.025 1.025 1.025	1.075 1.103 1.114 1.112 1.093 1.076 1.068 1.058 1.058 1.058 1.058 1.044 1.041 1.038 1.036 1.034 1.031 1.030 1.028 1.027	1.087 1.117 1.127 1.128 1.102 1.084 1.071 1.062 1.056 1.051 1.043 1.041 1.036 1.034 1.033 1.031 1.030 1.029 1.028 4.5 1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.062 1.066	1.098 1.131 1.141 1.141 1.141 1.137 1.066 1.059 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.038 1.036 1.038 1.036 1.038 1.031 1.141	1.110 1.145 1.153 1.148 1.116 1.079 1.069 1.061 1.055 1.051 1.044 1.044 1.039 1.037 1.035 1.031 1.030 1.031 1.030 1.031 1.030	1.121 1.158 1.167 1.164 1.158 1.082 1.071 1.063 1.057 1.057 1.052 1.040 1.040 1.038 1.040 1.038 1.035	6.5 1.132 1.177 1.179 1.175 1.167 1.167 1.005 1.054 1.054 1.054 1.056 1.044 1.041 1.039 1.037 1.036 1.034 1.033 1.032 a simp/a 6.5 1.132 1.177 1.179 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177 1.177	7.0 1.143 1.190 1.176 1.132 1.190 1.176 1.132 1.041 1.075 1.066 1.066 1.065 1.051 1.041 1.041 1.042 1.040 1.038 1.035 1.031 1.041 1.042 1.040 1.038 1.035 1.	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.077 1.068 1.056 1.056 1.056 1.056 1.048 1.043 1.040 1.037 1.037 1.035 1.134 1.033 1.134 1.133 1.134 1.134 1.134 1.136 1.136 1.136 1.137 1.138 1.136 1.136 1.137 1.138 1.136	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.062 1.057 1.052 1.049 1.043 1.041 1.037 1.034 1.033 1.033 1.033 1.033	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.058 1.053 1.058 1.053 1.058 1.053 1.058 1.044 1.042 1.044 1.042 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.042 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045 1.044 1.045	1.184 1.229 1.218 1.204 1.147 1.114 1.081 1.071 1.064 1.058 1.050 1.047 1.044 1.050 1.044 1.042 1.040 1.038 1.035	1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.072 1.065 1.051 1.051 1.043 1.040 1.039 1.037 1.036 1.034 9.5 1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.096	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.051 1.045 1.043 1.043 1.043 1.043 1.039 1.037 1.036 1.035 1.036 1.036 1.036 1.037
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr 1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003 1.003 1.003 1.003 1.003	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.016 1.017 1.016 1.015 1.014 1.013 1.012 1.011 1.011 1.010 1.010 1.010 8 = 1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.024 1.024 1.024 1.024 1.024 1.026 1.018 1.018	2.0 1.026 1.037 1.043 1.043 1.045 1.046 1.043 1.034 1.031 1.025 1.023 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.021	2.5 1.039 1.055 1.062 1.065 1.065 1.065 1.059 1.045 1.040 1.037 1.034 1.032 1.030 1.026 1.025 1.025 1.021 1.021 1.021 1.021 1.021 1.021 1.021 1.020 a = 2.5 1.039 1.055 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.065 1.0	3.0 1.051 1.071 1.083 1.083 1.072 1.064 1.043 1.040 1.031 1.034 1.031 1.028 1.026 1.025 1.024 1.024 1.024 1.024 1.024 1.024 1.025 1.025 1.025 1.025 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.025 1.026 1.026 1.025 1.026 1.026 1.026 1.025 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.026 1.	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.038 1.036 1.036 1.032 1.030 1.029 1.028 1.025 1.025 1.063 1.087 1.099 1.099 1.099 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.094 1.070 1.099 1.098 1.084 1.070 1.099 1.098 1.084 1.075 1.091 1.094 1.076 1.094 1.044 1.044 1.044 1.044 1.044	1.075 1.103 1.114 1.112 1.093 1.077 1.066 1.058 1.058 1.058 1.048 1.041 1.038 1.031 1.031 1.030 1.032 1.028 1.027 4.0 1.075 1.103 1.114 1.112 1.093 1.075 1.103 1.114 1.112 1.093 1.076 1.058 1.058 1.058 1.058 1.058 1.058 1.058 1.058	1.087 1.117 1.127 1.128 1.125 1.102 1.084 1.071 1.062 1.084 1.029 1.028	1.098 1.131 1.141 1.141 1.141 1.173 1.109 1.089 1.053 1.045 1.042 1.045 1.042 1.042 1.042 1.043 1.036 1.036 1.034 1.036 1.033 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039	1.110 1.145 1.154 1.153 1.148 1.116 1.079 1.061 1.055 1.051 1.047 1.047 1.041 1.039 1.035 1.031 1.035 1.031 1.030 1.035 1.031 1.030 1.035 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.031 1.030 1.030 1.031 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030 1.030	1.121 1.158 1.167 1.164 1.158 1.082 1.071 1.063 1.057 1.048 1.045 1.045 1.045 1.045 1.045 1.045 1.035 1.035 1.035 1.035 1.035 1.031 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035	6.5 1.132 1.070 1.075 1.085 1.085 1.085 1.085 1.050 1.044 1.041 1.037 1.036 1.033 1.032 2.171 1.175 1.175 1.175 1.175 1.175 1.127 1.101 1.085 1.059 1.054	7.0 1.143 1.190 1.176 1.132 1.104 1.075 1.066 1.060 1.055 1.051 1.044 1.042 1.044 1.042 1.040 1.038 1.036 1.035 1.031 1.041 1.042 1.042 1.042 1.042 1.042 1.042 1.045 1.045 1.046 1.055 1.051 1.047 1.047 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.048 1.	1.153 1.194 1.200 1.194 1.183 1.136 1.107 1.089 1.071 1.068 1.061 1.052 1.048 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.035 1.043 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036 1.036	1.163 1.206 1.210 1.202 1.191 1.140 1.110 1.091 1.062 1.052 1.049 1.062 1.043 1.041 1.033 1.041 1.033 1.206 1.163 1.206 1.163 1.206 1.110 1.202 1.110 1.110 1.091 1.078 1.062 1.062 1.062 1.062 1.078	1.174 1.216 1.220 1.210 1.198 1.198 1.193 1.093 1.070 1.070 1.063 1.053 1.050 1.053 1.050 1.044 1.042 1.040 1.038 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.036 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035 1.035	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.054 1.050 1.054 1.050 1.044 1.040 1.038 1.037 1.035 1.034 9.0 1.184 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.091 1.091	1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.072 1.065 1.051 1.045 1.043 1.040 1.039 1.034	1.203 1.246 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.065 1.055 1.051 1.044 1.045 1.043 1.041 1.039 1.035 1.035 1.035 1.203 1.203 1.246 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216 1.216
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr 1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 6.5 7.0	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.003 1.005 1.	1.5 1.013 1.019 1.022 1.023 1.024 1.024 1.022 1.020 1.016 1.017 1.016 1.015 1.014 1.013 1.012 1.011 1.011 1.010 1.010 \$ = 1.5 1.013 1.019 1.022 1.023 1.024 1.022 1.023 1.024 1.022 1.020 1.018 1.017 1.016	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.038 1.038 1.038 1.025 1.025 1.021 1.022	2.5 1.039 1.025 1.065 1.065 1.065 1.065 1.065 1.059 1.045 1.040 1.037 1.034 1.032 1.030 1.028 1.021	3.0 1.051 1.071 1.083 1.083 1.072 1.064 1.043 1.043 1.040 1.031 1.031 1.031 1.028 1.025 1.024 1.024 1.023 2 3.0 1.051 1.071 1.083 1.094 1.094 1.094 1.094 1.094 1.094 1.094 1.094 1.094	1.063 1.087 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.038 1.036 1.032 1.030 1.029 1.028 1.025 1.025 1.025 1.025 1.063 1.087 1.099 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.097 1.099 1.098 1.084 1.070 1.061 1.054 1.044 1.041 1.041 1.038	1.075 1.103 1.114 1.112 1.093 1.075 1.066 1.058 1.058 1.048 1.044 1.041 1.038 1.034 1.034 1.030 1.027 4.0 4.0 4.0 1.075 1.103 1.114 1.114 1.112 1.093 1.077 1.068 1.058	1.087 1.117 1.127 1.128 1.102 1.081 1.071 1.062 1.051 1.043 1.041 1.033 1.031 1.030 1.029 1.028 4.5 1.128 1.128 1.128 1.128 1.128 1.129 1.084 1.071 1.062 1.062 1.051 1.047 1.047 1.043 1.041 1.036	1.098 1.131 1.141 1.141 1.141 1.17 1.109 1.089 1.053 1.042 1.042 1.042 1.042 1.042 1.042 1.046 1.038 1.030 1.029 5.0 1.045 1.041 1.141 1.137 1.109 1.089 1.075 1.066 1.059 1.075 1.066 1.059 1.075 1.066 1.059 1.075 1.042 1.042 1.042 1.042 1.043	1.110 1.145 1.153 1.148 1.116 1.079 1.061 1.055 1.051 1.047 1.044 1.039 1.031 1.030 5.5 1.110 1.145 1.153 1.145 1.153 1.145 1.153 1.146 1.094 1.055 1.051 1.055 1.051 1.055 1.051 1.047	1.121 1.158 1.167 1.164 1.178 1.102 1.098 1.063 1.057 1.052 1.048 1.045 1.043 1.040 1.036 1.035 1.031 1.032 1.031 1.040 1.121 1.158 1.164 1.158 1.164 1.158 1.164 1.158 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.158 1.165 1.164 1.168 1.165 1.164 1.165 1.164 1.165 1.165 1.164 1.165	6.5 1.132 1.070 1.085 1.050 1.044 1.041 1.039 1.037 1.034 1.033 1.032 1.034 1.037 1.034 1.037 1.036 1.034 1.037 1.036 1.037 1.037 1.036 1.037 1.037 1.036 1.037 1.037 1.037 1.037 1.036 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.037 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050 1.050	7.0 1.143 1.190 1.176 1.132 1.104 1.075 1.066 1.060 1.055 1.051 1.041 1.042 1.038 1.038 1.033 1.032 1.033 1.032 1.143 1.183 1.183 1.183 1.183 1.183 1.183 1.190 1.184 1.176 1.192 1.104 1.075 1.060 1.055 1.055 1.051 1.075 1.060 1.055 1.055 1.051 1.047 1.075 1.060 1.055 1.055 1.055 1.047 1.047 1.044 1.042	1.153 1.194 1.183 1.061 1.056 1.048 1.033 1.194 1.183 1.107 1.089 1.077 1.068 1.061 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.056 1.056	1.163 1.206 1.091 1.092 1.092 1.091 1.140 1.110 1.091 1.062 1.057 1.052 1.049 1.063 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.043 1.040 1.110 1.078 1.062 1.140 1.110 1.078 1.062 1.057 1.057 1.057 1.052	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.053 1.050 1.044 1.042 1.044 1.042 1.038 1.036 1.035 1.034 8.5 1.174 1.216 1.220 1.198 1.144 1.112 1.093 1.080 1.070 1.080 1.070 1.080 1.070 1.068 1.058 1.058 1.058 1.058 1.058	1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.054 1.055 1.050 1.047 1.044 1.042 1.038 1.037 1.035 1.034 9.0 1.184 1.227 1.229 1.218 1.204 1.147 1.114 1.094 1.081 1.071 1.095 1.081 1.097 1.095 1.104 1.095 1.105 1.097 1.095 1.097 1.095 1.097 1.095 1.097 1.095 1.097 1.096 1.097 1.096 1.097 1.096 1.097 1.096 1.097 1.096 1.096 1.096	1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.075 1.055 1.051 1.040 1.039 1.040 1.039 1.034 9.5 1.194 1.237 1.238 1.225 1.210 1.116 1.082 1.075 1.059 1.055 1.055 1.055 1.055 1.055 1.055 1.055 1.104 1.237 1.238 1.225 1.210 1.116 1.096 1.095 1.055	1.203 1.247 1.246 1.232 1.216 1.153 1.118 1.097 1.083 1.073 1.066 1.060 1.055 1.051 1.045 1.041 1.039 1.035 1.035 1.035 1.035 1.035 1.035 1.203
1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 M max/M cr 1.1 1.2 1.3 1.4 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.6 6.6 6.6	1.1 1.004 1.004 1.005 1.005 1.005 1.004 1.004 1.004 1.003 1.003 1.003 1.003 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.002 1.004 1.004 1.004 1.004 1.004 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.005 1.006 1.006 1.006 1.007 1.007 1.008 1.009 1.	$\begin{array}{c} 1.5 \\ 1.013 \\ 1.019 \\ 1.022 \\ 1.023 \\ 1.024 \\ 1.024 \\ 1.022 \\ 1.020 \\ 1.0108 \\ 1.017 \\ 1.016 \\ 1.015 \\ 1.014 \\ 1.013 \\ 1.013 \\ 1.012 \\ 1.011 \\ 1.010 \\ $	2.0 1.026 1.037 1.043 1.045 1.046 1.043 1.034 1.034 1.025 1.025 1.021 1.022 1.021 1.021 1.021 1.021 1.022 1.021 1.021 1.022 1.021 1.021 1.022 1.021 1.023 1.025 1.023 1.025 1.026 1.026 1.026 1.027 1.028 1.028 1.028 1.026 1.026 1.026 1.027 1.028 1.028 1.026 1.026 1.027 1.028 1.026 1.026 1.027 1.028 1.028 1.026 1.026 1.027 1.028 1.026 1.026 1.027 1.028 1.026 1.026 1.027 1.021	2.5 1.030 1.062 1.065 1.065 1.065 1.065 1.059 1.045 1.045 1.037 1.034 1.032 1.026 1.024 1.023 1.024 1.023 1.022 1.021 1.020 1.021 1.020 1.025 1.065 1.055 1.065 1.055 1.065 1.059 1.055 1.065 1.059 1.059 1.045 1.040 1.034 1.034 1.034 1.030 1.034 1.030 1.030 1.030 1.030	3.0 1.051 1.071 1.083 1.083 1.072 1.062 1.054 1.043 1.040 1.034 1.034 1.034 1.034 1.032 1.026 1.026 1.024 1.024 1.024 1.023 1.061 1.061 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.072 1.083 1.083 1.072 1.083 1.072 1.083 1.083 1.083 1.072 1.083 1.084 1.084 1.083 1.084 1.	1.063 1.087 1.097 1.099 1.098 1.084 1.076 1.054 1.041 1.041 1.036 1.032 1.030 1.028 1.026 1.025 3.5 1.067 1.098 1.084 1.097 1.098 1.098 1.098 1.098 1.097 1.096 1.098 1.098 1.097 1.098 1.098 1.098 1.098 1.097 1.096 1.098	1.075 1.103 1.114 1.112 1.093 1.076 1.068 1.052 1.048 1.044 1.038 1.034 1.034 1.033 1.031 1.030 1.028 1.027 4.0 1.075 1.103 1.114 1.112 1.093 1.114 1.112 1.093 1.015 1.016 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.052 1.053	1.087 1.117 1.127 1.128 1.102 1.084 1.071 1.062 1.056 1.051 1.043 1.041 1.036 1.034 1.031 1.030 1.029 1.028 4.5 1.087 1.117 1.127 1.127 1.125 1.102 1.084 1.071 1.066 1.051 1.066 1.051 1.066 1.051 1.066 1.051 1.063	1.098 1.131 1.141 1.141 1.137 1.099 1.083 1.036 1.038 1.036 1.038 1.036 1.039 1.042 1.040 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.039 1.049 1.040	1.110 1.145 1.153 1.148 1.16 1.094 1.069 1.061 1.055 1.051 1.044 1.041 1.039 1.037 1.032 1.032 1.030 5.5 1.1145 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.154 1.156 1.079 1.061 1.079 1.061 1.079 1.061 1.055 1.047 1.044	1.121 1.158 1.062 1.071 1.063 1.032 1.031 1.057 1.052 1.040 1.038 1.040 1.038 1.035 1.031 1.055 1.040 1.038 1.035 1.031 1.055 1.040 1.055	6.5 1.132 1.075 1.076 1.085 1.032 a simp/a 1.179 1.179 1.179 1.056 1.056 1.054 1.050 1.056 1.054 1.050 1.056	7.0 1.143 1.190 1.176 1.132 1.066 1.060 1.035 1.044 1.044 1.040 1.038 1.035 1.032 1.044 1.046 1.035 1.	1.153 1.194 1.200 1.194 1.183 1.061 1.077 1.068 1.061 1.056 1.056 1.056 1.048 1.043 1.040 1.037 1.037 1.033	1.163 1.202 1.210 1.202 1.191 1.140 1.110 1.091 1.078 1.062 1.052 1.049 1.043 1.041 1.037 1.034 1.037 1.034 1.033 1.202 1.191 1.140 1.191 1.140 1.191 1.170 1.091 1.078	1.174 1.216 1.220 1.210 1.198 1.144 1.112 1.093 1.080 1.070 1.063 1.058 1.050 1.047 1.042 1.040 1.038 1.036 1.035 1.034 1.041 1.042 1.040 1.038 1.036 1.036 1.037 1.041 1.042 1.040 1.038 1.036 1.036 1.037 1.041	1.184 1.229 1.218 1.209 1.218 1.204 1.081 1.071 1.064 1.058 1.050 1.047 1.042 1.042 1.042 1.043 1.038 1.035 1.034	1.194 1.238 1.225 1.210 1.150 1.116 1.096 1.082 1.072 1.065 1.051 1.043 1.040 1.039 1.037 1.036 1.034 9.5 1.194 1.238 1.225 1.210 1.150 1.150 1.150 1.150 1.150 1.150 1.096 1.096 1.096 1.095 1.055 1.055	1.203 1.247 1.216 1.031 1.073 1.083 1.073 1.083 1.073 1.083 1.075 1.055 1.051 1.045 1.043 1.043 1.043 1.043 1.043 1.043 1.041 1.039 1.037 1.046 1.153 1.118 1.097 1.036 1.055 1.051 1.041 1.039 1.037 1.041 1.039 1.037 1.041 1.039 1.037 1.041 1.039 1.037 1.041 1.039 1.037 1.041 1.041 1.055 1.051 1.041 1.055 1.051 1.041 1.055 1.051 1.041

Appendix D

Assessment and Correction of ACI model

Assessment and Correction of ACI model:Testing of Individual Deflection Curves

											4	f _{cm} (t ₀)	f, (to)														
		1	1	A /mm², d	(mm)	(///	, mm ² , 4, ((mm) p (mm)	(70)		M) (avel)	4Da) 4	(MDa) /MDa	(MPa)	0) E _{cm} (t ₀)	ш	MDs) E (MDs)	17 %	(70)	ļ	3	(Mm)	2	M (Mm)	3	(11)	(attack) + + (attack) +
	B1-a	250	340	402	300	25	٦,	О	0	.00 deformed	4	00		3.70	47	820	ľ	0	80 0			3254	5		Ž		-
	B1-a	250	340	405	300	0.54	0	0	0	0.00 deformed	. 4	18.30	24.80	3.70	2.47 22	22820 249	24950 200000		11 0.000	3200	0 11.7	3254	0.104	4 21646	0.107	5.55	15
	B1-a	250	340	402	300	25.0	0	0 (.00 deformed	4 :	18.30						0 0				3254				5.96	9 !
		250	340	402	300	\$ 12 5	0 0	0 0		.00 deformed	4 4	18.30	24.80	3.70	24/ 22			<i>-</i>				3254				6.15	2 4
		250	340	402	300	0.54	0	0		00 deformed	4	18.30		3.70				0				3254				6.39	19
		250	340	402	300	25.0	0	0 0		.00 deformed	4 ;	18.30	24.80	3.70				0 0				3254				6.47	8 8
	D 1-0	250	340	402	300	± 24	0 0	0 0		.00 deformed	4 5	18.30		3.70	22 27 27 20			-				3254				0.07	3 2
	2 to 100	250	340	402	300	5.0	0	0		00 deformed	4	18.30		3.70				0				3254				7.16	2 1
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30		3.70				00 0.471				3254	Ī			7.19	25
	B1-a	250	340	402	300	5.0	0	0		.00 deformed	4	18.30		3.70	2.47 22			0				3254				7.28	27
	B1-a	250	340	402	300	25.0	0 0	0 0		.00 deformed	4 ;	18.30	24.80	3.70				0 0				3254				7.47	8 8
	61-a	250	340	402	300	400	0 0	0 0		.00 deformed	4 5	18.30	24.80	3.70	2.47			> 0				3254				1.0.7	35 25
		250	340	402	900	1 2	0 0			00 deformed	<u>†</u> 4	18.30	24.80	3.70	247 22			, ,								8.70	5 8
		250	340	402	300	1 2	0 0			00 deformed	4	18.30	24.80	3.70				, ,								8.17	8
		250	340	402	300	50.0	0	0		00 deformed	4	18.30	24.80	3.70				. 0								8.22	45
		250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				0								8.32	54
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				0					_			8.34	48
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30		3.70				0			0 11.7		_		6 0.107	8.51	23
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30		3.70	2.47 22			0					_			8.84	61
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				_					_			90.6	89
	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				_					_			9.20	76
_	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				_					_			9.47	87
and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				_					_			9.47	96
and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70				_					_			9.78	109
and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				_					_			10.03	122
and Nejadi (2004)	B1-a	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70				_					_			10.34	136
	B1-a	250	340	402	300	0.54	0 1	0 1		.00 deformed	4 :	18.30	24.80	3.70												10.59	166
	B1-a	720	340	402	300	\$ 100 c	0 0	0 0		.00 deformed	4 ;	18.30	24.80	3.70								3254				10.88	200
	- 1- a	250	340	402	300	5 6	0 0			.00 deformed	± 5	16.30		3.70								3254				11.30	247
t and Neiadi (2004)		250	340	402	900	2		o c		On deformed	1 4	18.30	24.80	3.70								3254				11.83	333
(2004)	B1-a	250	340	402	300	25.0	0	0		00 deformed	4	18.30	24.80	3.70				_			0 11.7	3254				12.06	394
	B1-b	250	340	402	300	0.54	0	0		00 deformed	14	18.30	24.80	3.70				0								1.98	14.1
	B1-b	250	340	402	300	0.54	0	0	0	0.00 deformed	4	18.30	24.80	3.70	2.47 22			00 0,011			0 11.7		0.104	13746	0.107	2.21	15
	B1-b	250	340	402	300	0.54	0	0		00 deformed	14	18.30	24.80	3.70												2.44	16
	B1-b	250	340	402	300	0.54	0	0		0.00 deformed	4	18.30	24.80	3.70												2.54	17
	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70												2.62	18
	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70												2.72	19
	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70							0 113	3254	0		0	2.82	20
	B1-b	250	340	402	300	0.54	0	0		00 deformed	41	18.30	24.80	3.70							0 11.5	3254	0	_	0	3.02	21
	B1-b	250	340	402	300	0.54	0	0		00 deformed	41	18.30	24.80	3.70							0 11.5	3254	_		0	3.12	22
_	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70				00 0.442			0 11.5	3254	_		6 0.107	3.30	24
_	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70							0 11.	3254	_		o.	3.33	52
and Nejadi (2004)	B1-b	250	340	402	300	5.0	0 (0 (.00 deformed	4 :	18.30	24.80	3.70							. 11.	3254			0 0	3.38	27
and Nejadi (2004)	61-0	250	340	402	300	400	0 0	0 0		.00 deformed	4 5	18.30	24.80	3.70	2.47						117	3254	20.0		<i>i</i> c	3.63	3 %
(2004)	2 4	250	340	402	900	2		o c		On deformed	7	18 30	24.80	3 2 2							11.7	3254			<i>i</i> c	08.5	2 2
(2004)	81-b	250	340	402	300	25	0	. 0		00 deformed	4	18.30	24.80	3.70							11.7	3254			ď	4.11	37
(2004)	B1-b	250	340	402	300	0.54	0	0		00 deformed	41	18.30	24.80	3.70							0 11.7	3254	0	_	0	4.17	39
(2004)	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70	2.47 22						0 11.7	3254	0.104	_	Ö	4.17	42
(2004)	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70							0 11.7	3254	0		6 0.107	4.27	45
(2004)	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70	2.47 22						0 11.7	3254	0	_	0	4.29	48
(2004)	B1-b	250	340	402	300	0.54	0	0		00 deformed	4	18.30	24.80	3.70							0 115	3254	0.104	_	Ö	4.45	23
_	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70							0 11.	3254	0.104	4 13746	6 0.107	4.78	61
	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70							0	3254	0.104	13746	0.107	4.88	89 1
	B1-b	250	340	402	300	0.54	0	0		.00 deformed	4	18.30	24.80	3.70							17.	3254	0	_	0.107	4.98	76
	B1-b	520	340	402	300	4 :	0 (0 (.00 deformed	4 :	18.30	24.80	3.70	2.47 22				_		0	3254	0.104		0.107	5.26	8/
	B1-b	250	340	402	300	4 5	0 0	0 0		.00 deformed	4 ;	18.30	24.80	3.70	2.47 2.			- '				3254	0.104	13/46	0.107	97.5	8 8
	0-1-B	007	340	402	300	t i	0 (0 0		.uu derormed	<u> </u>	18.30	24.80	3.70	2.4/			- '				3254	0.104	13/40	0.107	60.0	60
	B1-b	250	340	402	300	4 1	0 0	0 0		.00 deformed	4 ;	18.30	24.80	3.70	2.47 2.			- '				3254	90.104	13/46	0.107	5.74	727
	61-0	720	340	402	300	\$ i	0 0	0 0		.00 deformed	4;	18.30	24.80	3.70	2.47			_ '				3254	0.104	13/46	0.107	9.0	130
	61-0	720	340	402	300	\$ i	0 0	0 0		.00 deformed	4;	18.30	24.80	3.70	2.47			_ '				3254	0.104	13/46	0.107	6.25	100
	B1-b	720	340	402	300	4 2	0 0	0 0		.00 deformed	4 4	18.30	24.80	3.70								3254	0.104	13/40	0.107	0.48	200
	B1-b	250	340	402	300	4 5	0 0	0 0	0	.00 deformed	4 ;	18.30	24.80	3.70	2.47 22			00 1.506				3254	401.0	13746	0.107	6.91	242
	81-0	067	340	402	300	# I	0 0	0 0	0	.00 deformed	4;	16.30	24.80	3.70				_ ,	_		::	3254		13/40	0.107	4.7	780
	B1-b	250	340	402	300	5.0	0	0	0	.00 deformed	4	18.30	24.80	3.70				_			11.	3254	0.104	4 13746	0.107	7.	332
(2004)	B1-b	250	340	402	300	0.54	0	0	0 0	.00 deformed	14	18.30	24.80	3.70							11.	O'CLE A			-	-	

	Column C	3 4	4 5	9	7 8	6	10	11 12	13		15 16	17	18	19	20	21 22	2 23	3 24	25	Loading 26	27	28	5	Deflection 30	31
		(11)	A., (mm²)	(mm)		ō				_	f, (t ₀) MPa) (MPa)	f _{r,red} (t ₀) (MPa)	E _{cm} (t ₀) (MPa)	(MPa)	(MPa) ø	8	_	2	M., (Nm)	ž	M _{1.2} (Nm)	ؿ			(davs)
		326		300	54	1	0	0.00 deformed	14	8.30	24.80 3			24950	200000	0.000	00	200	31			1		7	0.1
		325			45:0	00	0 0	0.00 deformed	4 5	18.30					200000				3 3				5.61	£ 4	- °
		325			7 75		00	0.00 deformed	<u>†</u> 4	18.30					200000				9 6				6.12	2 12	9 6
		325			0.54	0	0 (0.00 deformed	4	18.30					200000	_			31	_			6.25	18	4
		325	402		45.0	0	0	0.00 deformed	4 ;	18.30					200000			3500	1.7 3110	_			6.40	19	2
	No. Color	325	402		\$ 15 5	00		0.00 deformed	4 4	18.30					20000			3500	1.7 3110				6.81	2 2	٥ ٢
	No. Color	325	402		0.54	0	0 (0.00 deformed	4	18.30					200000			3500 1	1.7 3110	_			96.9	22	80
	Column	325	402		45.0	0	0	0.00 deformed	4 ;	18.30			22820		200000			3500 1	1.7 3110				7.24	24	10
	10 10 10 10 10 10 10 10	325	402		\$ 50 C	000		0.00 deformed	4 5	16.30		70 2.47	22820		200000			3500	1.7 3111	0.0			07.7	3 2	- 5
	No. 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	325	402		1 1		0	0.00 deformed	1 4	18.30		70 2.47	22820		20000			3500	1.7 3110	0.10			1 2	8 2	. 6
Column	10 10 10 10 10 10 10 10	325	402		0.54	0	0	0.00 deformed	4	18.30		70 2.47	22820		200000			3500	1.7 3110	0.10			7.85	35	18
No. 10.000 Control C	No. Color	325	402		0.54	0	٥ د	0.00 deformed	14	18.30	24.80 3	.70 2.47	22820		200000			3500 1	1.7 311	10 0.104			8.00	8	20
Column	No. Color	325	402		0.54	0	0 (0.00 deformed	4	18.30	24.80 3	.70 2.47	22820		200000			3500 1	1.7 311	10 0.104			8.26	37	23
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	325	402		0.54	0	0 6	0.00 deformed	4	18.30	_	2	22820		200000			3500 1	1.7 3110	10 0.104			8.36	39	25
No. 10.000 No.		325	402		0.54	0	0 0	0.00 deformed	4	18.30	_		22820		200000			3500 1	1.7 3110	10 0.104			8.38	45	28
No. 10.000 No.	900 Column 11 150 240 247 250 260 260 100 </td <td>325</td> <td>405</td> <td></td> <td>0.54</td> <td>0</td> <td>0</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>_</td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td>1.7 3110</td> <td>10 0.104</td> <td></td> <td></td> <td>8.51</td> <td>42</td> <td>31</td>	325	405		0.54	0	0	0.00 deformed	4	18.30	_		22820		200000				1.7 3110	10 0.104			8.51	42	31
Column	900 Cold Street C	325	405		0.54	0	0	0.00 deformed	4	18.30	89.	•	22820		200000				1.7 3110	10 0.104			8.56	48	34
10 10 10 10 10 10 10 10	900 Cold Cold officered 11 1300 247 2000 COLD	325	405		0.54	0	0	0.00 deformed	4	18.30	.80				200000					_			8.79	23	39
		325	402		0.54	0	، 0	0.00 deformed	4	18.30	.80				200000					_			9.14	61	47
Column	300 0.64 0 0.00 defermed 14 18.00 247 22820 2000 110 0.00 defermed 14 18.00 247 22820 2000 110 0.00 defermed 14 18.00 247 22820 2000 110 0.00 defermed 14 18.00 247 22820 2000 112 0.00 defermed 14 18.00 247 22820 2000 128 0.00 defermed 14 18.00 247 22820 2000 175 19.00<	325	402		0.54	0	، 0	0.00 deformed	4	18.30	.80				200000					_			9.30	89	54
10 10 10 10 10 10 10 10	300 0.64 0 0.00 defermed 14 83.0 247 2262 200 0.00 1.10 0.00 defermed 14 83.0 247 2262 200 0.00 1.10 0.00 0.00 0.00 defermed 14 83.0 247 2262 200 0.00 1.10 0.00 0.00 0.00 defermed 14 83.0 247 2262 200 0.00 1.10 0.00 0.00 0.00 defermed 14 83.0 247 2262 200 0.00 1.10 0.00	325	402		0.54	0	0 6	0.00 deformed	4	18.30	.80				200000					_			9.47	9/	62
	300 0.54 0 0.00 defermed 14 18.30 247 247 2220 300 1149 0.001 117 3110 0.104 300 0.54 0 0 0.00 defermed 14 18.30 247 2220 389 2000 117 3110 0.104 300 0.54 0 0 0.00 defermed 14 18.30 247 2220 389 2000 117 3110 0.104 300 0.54 0 0 0.00 defermed 14 18.30 247 2220 389 2000 117 3110 0.104 300 0.54 0 0 0.00 defermed 14 18.30 247 2220 389 2000 117 3110 0.104 300 0.54 0 0 0.00 defermed 14 18.30 247 2220 389 2000 117 3110 117 3110 117 3110 <t< td=""><td>325</td><td>402</td><td></td><td>0.54</td><td>0</td><td>0 (</td><th>0.00 deformed</th><td>14</td><td>18.30</td><td>98</td><td></td><td></td><td></td><td>200000</td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td>9.80</td><td>87</td><td>73</td></t<>	325	402		0.54	0	0 (0.00 deformed	14	18.30	98				200000					_			9.80	87	73
	300 0.54 0 0 0.00 oderwed 14 61.00 2.47 2000 1.165 0.00 of control 0.00 of control <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 6</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>9.80</td> <td>96</td> <td>82</td>	325	402		0.54	0	0 6	0.00 deformed	4	18.30	.80				200000					_			9.80	96	82
	300 0.54 0 0 0.00 oldermed 14 18.00 24.80 3700 24.70 228.00 13.20 0.00 oldermed 14 18.00 24.80 3700 24.70 28.00 17.20 17.00 1	325	405		0.54	0	0 (0.00 deformed	14	18.30	.80				200000					_			10.14	109	92
	900 654 0 <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>٥ د</td> <th>0.00 deformed</th> <td>41</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>10.36</td> <td>122</td> <td>108</td>	325	402		0.54	0	٥ د	0.00 deformed	41	18.30	.80				200000					_			10.36	122	108
	900 654 0 <td>325</td> <td>405</td> <td></td> <td>0.54</td> <td>0</td> <td>0 (</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>Ī</td> <td></td> <td></td> <td>10.64</td> <td>136</td> <td>122</td>	325	405		0.54	0	0 (0.00 deformed	4	18.30	.80				200000					Ī			10.64	136	122
	300 154 0 <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 (</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>Ī</td> <td></td> <td></td> <td>11.00</td> <td>166</td> <td>152</td>	325	402		0.54	0	0 (0.00 deformed	4	18.30	.80				200000					Ī			11.00	166	152
	300 154 0 <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 (</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>Ī</td> <td></td> <td></td> <td>11.30</td> <td>200</td> <td>186</td>	325	402		0.54	0	0 (0.00 deformed	4	18.30	.80				200000					Ī			11.30	200	186
	300 0.54 0 <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 6</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>11.81</td> <td>242</td> <td>228</td>	325	402		0.54	0	0 6	0.00 deformed	4	18.30	.80				200000					_			11.81	242	228
	300 0.54 0 <td></td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 6</td> <th>0.00 deformed</th> <td>4</td> <td>18.30</td> <td>.80</td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>12.17</td> <td>286</td> <td>272</td>		402		0.54	0	0 6	0.00 deformed	4	18.30	.80		22820		200000					_			12.17	286	272
30 0 54 0 0 00 defermed 14 1830 247 2250 2850 0 00 11 3110 0 14 3110	300 054 0 <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 6</td> <th>0.00 deformed</th> <td>41</td> <td>18.30</td> <td>.80</td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td>12.34</td> <td>332</td> <td>318</td>	325	402		0.54	0	0 6	0.00 deformed	41	18.30	.80		22820		200000					_			12.34	332	318
90 0.054 0 0.000 defermed 14 18.30 2.47 22200 2.8950 0.000 11 111	300 054 0 <th>325</th> <th>402</th> <th></th> <th>0.54</th> <th>0</th> <th>0 0</th> <th>0.00 deformed</th> <th>14</th> <th>30</th> <th></th> <th></th> <th></th> <th></th> <th>200000</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>12.42</th> <th>394</th> <th>380</th>	325	402		0.54	0	0 0	0.00 deformed	14	30					200000								12.42	394	380
300 0544 0 <td>300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.011 3.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.90 3.70 24.7 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0.00 defermed 14 18.30 24.90 3.70 24.7 28280 26980 20000 0.141 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00<!--</td--><td>325</td><td>402</td><td></td><td>0.54</td><td>0</td><td>0 0</td><th>0.00 deformed</th><td>4</td><td>30</td><td></td><td></td><td></td><td></td><td>200000</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>2:06</td><td>14.1</td><td>0.1</td></td>	300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.011 3.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.96 3.70 247 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0 0.00 defermed 14 18.30 24.90 3.70 24.7 28280 26980 0.00 11.7 3110 0.114 300 0.54 0 0.00 defermed 14 18.30 24.90 3.70 24.7 28280 26980 20000 0.141 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 0</td> <th>0.00 deformed</th> <td>4</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>2:06</td> <td>14.1</td> <td>0.1</td>	325	402		0.54	0	0 0	0.00 deformed	4	30					200000						•		2:06	14.1	0.1
900 154 0 <td>300 0.54 0<td>325</td><td>405</td><td></td><td>0.54</td><td>0</td><td>0</td><th>0.00 deformed</th><td>4</td><td>30</td><td></td><td></td><td></td><td></td><td>200000</td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>2.26</td><td>12</td><td>-</td></td>	300 0.54 0 <td>325</td> <td>405</td> <td></td> <td>0.54</td> <td>0</td> <td>0</td> <th>0.00 deformed</th> <td>4</td> <td>30</td> <td></td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>2.26</td> <td>12</td> <td>-</td>	325	405		0.54	0	0	0.00 deformed	4	30					200000						•		2.26	12	-
90 Column 1 2.47 2.47 2.22 2.	90 0.54 0 0.000 defermed 14 13.0 247 226.0 269.0 0.000 11.7 31.0 0.144 90 0.54 0 0.000 defermed 14 13.0 248 3.70 24.7 226.0 0.000 0.000 11.7 31.0 0.114 90 0.54 0 0 0.000 defermed 14 18.30 248 3.70 24.7 226.0 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.014 0.000 0.000 0.014 0.000 0.014 0.000 0.000 0.014 0.000 0.014 0.000 0.000 0.014 0.000 0.014	325	402		4.0	0 0	0	0.00 deformed	4:	30					200000								2.52	9 1	. 7
900 65 0	900 0.54 0 0.000 defermed 14 18.20 2.89 2.000 0.54 0.000 0.14 0.000 defermed 14 18.20 2.89 2.000 0.54 0.000 0.14 0.000 <th< td=""><td>325</td><td>402</td><td></td><td>4 2</td><td>000</td><td></td><th>0.00 deformed</th><td>4 5</td><td>000</td><td></td><td></td><td></td><td></td><td>200000</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.02</td><td>- 9</td><td>n 4</td></th<>	325	402		4 2	000		0.00 deformed	4 5	000					200000								2.02	- 9	n 4
900 654 0 <td>900 Cold deformed 14 1830 24 20 0.000 deformed 14 1830 24 252 2000 0.000 0.000 11 910 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104</td> <td>320</td> <td>404</td> <td></td> <td># F</td> <td></td> <td></td> <th>0.00 deformed</th> <td>± ÷</td> <td>000</td> <td></td> <td></td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td>27.7</td> <td>o ç</td> <td>1 4</td>	900 Cold deformed 14 1830 24 20 0.000 deformed 14 1830 24 252 2000 0.000 0.000 11 910 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104 900 0.54 0 0 0.000 deformed 14 18.30 2.47 22820 2.699 20000 117 9110 0.104	320	404		# F			0.00 deformed	± ÷	000					200000						•		27.7	o ç	1 4
900 654 0 <td>900 0.54 0 0.00 deformed 14 18.30 2.87 2.8250 2.6950 0.000 1.7 3110 0.104 900 0.54 0 0.00 deformed 14 18.30 2.89 3.70 2.47 22820 2.6950 0.000 1.7 3110 0.104 900 0.54 0 0 0.00 deformed 14 18.30 2.89 3.70 2.47 22820 2.6950 0.000 1.17 3110 0.104 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.6950 0.000 1.17 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22820 2.6950 2.000 1.17 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.47 22820 2</td> <td>325</td> <td>402</td> <td></td> <td>t 22</td> <td></td> <td></td> <th>0.00 deformed</th> <td>± 5</td> <td>200</td> <td></td> <td>•</td> <td></td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td></td> <td>•</td> <td></td> <td>2 00</td> <td>6 6</td> <td>o (4</td>	900 0.54 0 0.00 deformed 14 18.30 2.87 2.8250 2.6950 0.000 1.7 3110 0.104 900 0.54 0 0.00 deformed 14 18.30 2.89 3.70 2.47 22820 2.6950 0.000 1.7 3110 0.104 900 0.54 0 0 0.00 deformed 14 18.30 2.89 3.70 2.47 22820 2.6950 0.000 1.17 3110 0.104 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.6950 0.000 1.17 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22820 2.6950 2.000 1.17 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.47 22820 2	325	402		t 22			0.00 deformed	± 5	200		•			200000			3500	17 311		•		2 00	6 6	o (4
300 0.64 0.0 0.00 defermed 14 18.0 2.4 0.2 0.4 0.1 0.1 0.00 defermed 14 18.0 2.4 0.2 0.4 0.1 0.1 0.00 defermed 14 18.0 2.4 0.2 0.4 0.1 0.1 0.00 defermed 14 18.0 2.4 0.2 0.4 0.1 0.1 0.1 0.1 0.0	90 654 0 0.00 deformed 14 18.30 2.87 2.8250 2.6950 0.000 1.1 9.00 0.000 1.1 9.00 0.000 1.1 9.00 0.000 1.1 9.00 0.000 1.1 9.00 0.000	325	402		t 22			0.00 deformed	± 5	200		•	22820		200000			3500	17 311	2000			3 13	2 2	۸ د
900 104 0 <td>900 Giff 0<td>325</td><td>402</td><td></td><td>5 2</td><td></td><td></td><th>0.00 deformed</th><td>2 2</td><td>9 6</td><td></td><td></td><td>22820</td><td></td><td>200000</td><td></td><td></td><td>3500</td><td>17 311</td><td></td><td>•</td><td></td><td>3 23</td><td>2 %</td><td>- α</td></td>	900 Giff 0 <td>325</td> <td>402</td> <td></td> <td>5 2</td> <td></td> <td></td> <th>0.00 deformed</th> <td>2 2</td> <td>9 6</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td></td> <td>•</td> <td></td> <td>3 23</td> <td>2 %</td> <td>- α</td>	325	402		5 2			0.00 deformed	2 2	9 6			22820		200000			3500	17 311		•		3 23	2 %	- α
900 0.64 0 0.00 defermed 14 18.30 2.89 2.99 0.00 0.04 0.00 defermed 14 18.30 2.89 2.99 2.00 0.04 17 31.0 0.14 19.0 0.00	90 64 0 0.00 deformed 14 18.30 2.87 2.82 2.00 0.47 0.105 980 11.7 9110 0.104 90 0.64 0 0.00 deformed 14 18.30 2.89 2.7 2.89 2.00 0.00 11.7 9110 0.104 90 0.64 0 0 0.00 deformed 14 18.30 2.89 3.70 2.47 2.89 2.00 0.104 9.00 11.7 9110 0.104 90 0.64 0 0 0 0.00 deformed 14 18.30 2.89 3.70 2.47 2.2820 2.899 2.00 11.7 3.10 0.104 90 0.64 0 0 0.00 deformed 14 18.30 2.89 3.70 2.47 2.289 2.890 11.7 3.10 0.104 90 0.64 0 0 0.00 deformed 14 18.30 2.47 2.2820 2	325	402		t 12			0.00 deformed	± 5	0 0			22820		200000			3500	17 211	200	•		3.43	3 2	5 ه
300 654 0 <td>99 654 0 000 deformed 14 1830 2.87 2.82 2.99 0.000 0.48 0.100 9.000 0.100 0.100 0.100 0.000<td>325</td><td>402</td><td></td><td>25.0</td><td></td><td></td><th>0.00 deformed</th><td>1 7</td><td>30</td><td></td><td></td><td>22820</td><td></td><td>200000</td><td></td><td></td><td>3500</td><td>17 311</td><td>0100</td><td></td><td></td><td>3.45</td><td>7 2</td><td></td></td>	99 654 0 000 deformed 14 1830 2.87 2.82 2.99 0.000 0.48 0.100 9.000 0.100 0.100 0.100 0.000 <td>325</td> <td>402</td> <td></td> <td>25.0</td> <td></td> <td></td> <th>0.00 deformed</th> <td>1 7</td> <td>30</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td>0100</td> <td></td> <td></td> <td>3.45</td> <td>7 2</td> <td></td>	325	402		25.0			0.00 deformed	1 7	30			22820		200000			3500	17 311	0100			3.45	7 2	
30 65 6 0	30 654 0 0 000 deformed 14 830 247 277 2262 2000 0560 177 311 0104 30 654 0 0 0 0 000 deformed 14 1830 248 370 247 22620 2000 0 177 311 0114 30 654 0	325	402		54			0.00 deformed	4	30			22820		200000			3500 1	17 3110	0 104	•		3.53	22	. 5
30 65 6 0	30 0.54 0 0.00 deformed 14 18.30 2.47 2.2820 2.499 200000 0.765 3900 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20000 0.778 9.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20000 0.778 9.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.999 2.900 11.7 3110 0.104 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.999 2.900 11.7 3110 0.104 300 0.54 0 0 0.00 deformed <td>325</td> <td>402</td> <td></td> <td>75.0</td> <td>0</td> <td>0</td> <th>0.00 deformed</th> <td>4</td> <td>30</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>1.7 311</td> <td>10 0.104</td> <td>•</td> <td></td> <td>3.76</td> <td>30</td> <td>16</td>	325	402		75.0	0	0	0.00 deformed	4	30			22820		200000			3500	1.7 311	10 0.104	•		3.76	30	16
30 65 6 0 0.00 defermed 14 81.90 24.80 3.45 2.000 17.1 0.254 3900 117 31.10 0.104 138.90 0.107 4.56 34.9 30 0.55 0.0 0.0 0.00 defermed 14 18.30 2.48 3.70 2.47 2.880 2.000 0.35 117 31.0 0.104 13890 0.107 4.24 39 30 0.55 0 0 0.00 defermed 14 18.30 2.48 3.70 2.47 2.880 2.000 117 31.0 0.104 18.89 0.107 4.47 4.89 3.00 18.89 0.104 18.89 0.107 4.47 4.89 3.00 18.89 0.104 18.89 0.107 4.47 4.89 3.00 18.89 3.00 18.89 0.107 4.47 4.89 4.89 3.00 18.99 18.90 18.99 18.99 18.99 18.99 18.99	30 0.54 0 0.00 deformed 14 8130 2.47 2.2820 2.499 200000 177 0.00 deformed 17 3.10 1.17 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22820 20.990 0.702 0.309 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20.990 0.304 39.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20.90 0.30 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20.900 0.89 11.7 3110 0.104 300 0.54 0 0<	325	402		0.54	0	0 (0.00 deformed	14	30			22820		200000			3500 1	1.7 3110	10 0.104	•		3.91	32	18
30 65 6 0 0.00 deformed 14 18.0 24.0 37 24.0 270 28.0 172 38.0 117 311 0.104 138.0 0.107 4.27 37 300 0.54 0 0 0.00 deformed 14 18.0 2.480 370 2.47 2820 20.00 0.3 0.107 18.0 0.107 4.47 4.27 3.0 0.3 0.0 <	30 0.54 0 0.00 deformed 14 1830 2.47 2.2820 2.699 200000 117 3110 0.104 30 0.54 0 0 0.00 deformed 14 1830 2.47 2.820 20000 0.782 3800 117 3110 0.104 30 0.54 0 0 0.00 deformed 14 1830 2.48 3.70 2.47 2.2820 2.0000 0.883 0.340 3800 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.48 3.70 2.47 2.2820 2.000 0.383 0.346 300 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.280 3.000 137 3.14 3.70 2.47 2.280 2.000 0.890 117 3110 0.104 300	325	402		0.54	0	0 (0.00 deformed	14	30			22820		200000			3500 1	1.7 3110	10 0.104	•		4.06	8	20
30 0.54 0 0 0.00 defermed 14 18.30 24.80 3.70 2.47 2.802 2.895 2.000 117 3110 0.104 1389 0.107 4.43 39 300 0.54 0 0 0.00 defermed 14 18.30 2.480 370 2.47 2.880 2.000 117 3110 0.104 13890 0.107 4.47 4.57 380 300 0.54 0 0 0 0.00 defermed 14 18.30 2.480 370 2.47 2.880 2.000 177 3110 0.104 1889 0.107 4.47 4.57 2.880 2.000 0.93 0.94 17 310 0.14 1.89 2.480 370 2.47 2.880 2.000 0.94 1.00 1.00 4.47 4.47 4.88 2.89 2.000 0.94 0.94 0.94 2.00 0.94 0.94 0.94 0.94 0.94	300 0.54 0 0 0.00 deformed 14 8130 2.48 3.70 2.47 22820 2.499 20000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 8130 2.48 3.70 2.47 22820 2.699 20000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30	325	402		0.54	0	0 (0.00 deformed	14	30			22820		200000			3500 1	1.7 3110	10 0.104	•		4.27	37	23
30 0.54 0 0 0.00 deformed 14 18.30 24.80 37.0 24.7 28.00 18.30 39.00 11.7 31.0 0.104 138.90 0.107 4.7 4.2 2.8 2.469 20000 0.83 0.390 11.7 31.10 0.104 13890 0.107 4.7 4.7 4.8 2.8 2.469 2.000 0.83 0.36 11.7 31.0 0.104 13890 0.107 4.7 4.7 4.7 2.8 2.469 2.000 0.8 0.9 0.107 0.107 4.7 4.7 4.8 2.0 0.0 <td>30 0.54 0 0 0.00 deformed 14 8130 2.48 3.70 2.47 2.2820 2.4990 200000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0000 0.383 0.346 3800 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0990 0.396 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0990 0.9973 0.990 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.4990 2.0000 11.7 3110 0.104 300 0.54 0 0<!--</td--><td>325</td><td>402</td><td></td><td>0.54</td><td>0</td><td>0 (</td><th>0.00 deformed</th><td>14</td><td>30</td><td></td><td></td><td>22820</td><td></td><td>200000</td><td></td><td></td><td>3500 1</td><td>1.7 3110</td><td>10 0.104</td><td></td><td></td><td>4.34</td><td>39</td><td>25</td></td>	30 0.54 0 0 0.00 deformed 14 8130 2.48 3.70 2.47 2.2820 2.4990 200000 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0000 0.383 0.346 3800 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0990 0.396 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.0990 0.9973 0.990 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.480 3.70 2.47 2.2820 2.4990 2.0000 11.7 3110 0.104 300 0.54 0 0 </td <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td>0</td> <td>0 (</td> <th>0.00 deformed</th> <td>14</td> <td>30</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500 1</td> <td>1.7 3110</td> <td>10 0.104</td> <td></td> <td></td> <td>4.34</td> <td>39</td> <td>25</td>	325	402		0.54	0	0 (0.00 deformed	14	30			22820		200000			3500 1	1.7 3110	10 0.104			4.34	39	25
30 65 6 0 0.00 deformed 14 18.00 24.00 37.0 24.7 28.00 18.3 39.6 11.7 31.0 0.104 18.90 0.107 44.7 45.7 45.0 300 0.54 0 0 0.00 deformed 14 18.0 24.80 37.0 24.6 20.00 0.85 0.00 11.7 31.0 0.10 18.90 0.107 45.7 45.7 28.00 20.00 18.0 0.10 18.0 0.10 45.7 28.0 2.469 20.00 0.85 0.00 17.7 31.0 0.17 28.0 18.0 0.10 0.10 18.0 0.10 4.6 4.6 4.0 2.46 37.0 24.7 28.0 20.00 18.0 0.10 18.0 0.10 18.0 0.10 18.0 2.40 37.0 24.7 28.0 20.00 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	30 654 0 0 0.00 deformed 14 830 247 247 22820 24690 20000 6823 6364 890 117 311 0104 300 0.54 0 0 0.00 deformed 14 1830 2480 3.70 247 22820 20000 0.853 930 117 311 0.104 300 0.54 0 0 0.00 deformed 14 1830 248 3.70 247 22820 20890 0.873 3800 117 311 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.89 3.70 2.47 22820 20890 0.893 117 3110 0.104 300 0.54 0 0 0.00 deformed 14 1830 2.89 3.70 2.47 22820 20890 0.893 117 3110 0.104 300 0.54 0 0 <t< td=""><td>325</td><td>402</td><td></td><td>0.54</td><td>0</td><td>0 (</td><th>0.00 deformed</th><td>14</td><td>18.30</td><td></td><td></td><td>22820</td><td></td><td>200000</td><td></td><td></td><td>3500</td><td>1.7 3110</td><td>10 0.104</td><td></td><td></td><td>4.37</td><td>42</td><td>28</td></t<>	325	402		0.54	0	0 (0.00 deformed	14	18.30			22820		200000			3500	1.7 3110	10 0.104			4.37	42	28
30 65-6 0 0 0.00 deformed 14 18.0 24.0 37.0 24.7 22820 20490 2000 117 3110 0.104 13890 0.107 4.62 4.8 300 0.54 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 2820 20000 0.91 0.91 0.10 10.04 13890 0.107 4.67 4.8 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 20000 1.13 0.91 1.17 310 0.14 18890 0.107 4.67 4.8 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.8220 2.489 20000 1.13 0.14 18.90 0.107 4.67 2.8 3.9 2.48 3.00 1.15 3.80 1.17 3.10 0.14	300 654 0 0 0.00 deformed 14 1830 248 370 247 22820 2699 00000 0.887 3870 117 3110 0.104 300 654 0 0 0.00 deformed 14 1830 248 370 247 22820 2899 20000 117 3110 0.104 300 654 0 0 0.00 deformed 14 1830 2489 3.70 247 22820 2899 20000 117 3110 0.104 300 654 0 0 0.00 deformed 14 1830 2489 3.70 247 22820 2899 3000 117 3110 0.104 300 654 0 0 0.00 deformed 14 1830 2480 3.70 247 22820 2899 20000 117 3110 0.104 300 654 0 0 0 0.00 deformed <t< td=""><td>325</td><td>402</td><td></td><td>12.0</td><td></td><td></td><th>0.00 deformed</th><td>4</td><td>18.30</td><td></td><td></td><td>22820</td><td></td><td>20000</td><td></td><td></td><td>3500 1</td><td>1.7 3110</td><td>10 0.104</td><td></td><td></td><td>4 47</td><td>1.45</td><td>33</td></t<>	325	402		12.0			0.00 deformed	4	18.30			22820		20000			3500 1	1.7 3110	10 0.104			4 47	1.45	33
90 65 0	30 654 0 0.00 deformed 14 1830 2.89 3.70 2.47 22820 2.695 200000 177 3110 117 3110 0114 300 654 0<	325	402		0.54			0.00 deformed	14	18.30			22820		200000			3500	17 311	0 104			4 52	48	34
300 654 0 <td>300 0.54 0 0.00 deformed 14 18.30 2.48 2.78 2.282 2.495 2.0000 0.973 0.468 3.50 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.73 3110 0.104 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed<</td> <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td></td> <td></td> <th>0.00 deformed</th> <td>14</td> <td>18.30</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td>010</td> <td></td> <td></td> <td>4 67</td> <td>2</td> <td>30</td>	300 0.54 0 0.00 deformed 14 18.30 2.48 2.78 2.282 2.495 2.0000 0.973 0.468 3.50 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.73 3110 0.104 300 0.54 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22220 2.499 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed<	325	402		0.54			0.00 deformed	14	18.30			22820		200000			3500	17 311	010			4 67	2	30
90 65 0	300 654 0 0.00 deformed 14 1830 2.87 2.77 2.82 2.00 1057 0.67 3.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.699 20000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30	325	402		0.54			0.00 deformed	14	18.30			22820		200000			3500	17 311	010			4 08	6	47
300 654 0 <td>300 0.54 0 0.00 deformed 14 18.30 2.48 2.77 2.47 2.2820 2.499 200000 11.03 0.531 3.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.499 200000 11.13 9.09 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 200000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 200000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 20000 11.73 3110 0.104 300 0.54</td> <td>325</td> <td>402</td> <td></td> <td>0.54</td> <td></td> <td></td> <th>0.00 deformed</th> <td>14</td> <td>18.30</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td>010</td> <td></td> <td></td> <td>5 11</td> <td>8</td> <td>5.4</td>	300 0.54 0 0.00 deformed 14 18.30 2.48 2.77 2.47 2.2820 2.499 200000 11.03 0.531 3.00 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.499 200000 11.13 9.09 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 200000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 200000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.099 20000 11.73 3110 0.104 300 0.54	325	402		0.54			0.00 deformed	14	18.30			22820		200000			3500	17 311	010			5 11	8	5.4
900 0 54 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	300 654 0 <td>325</td> <td>1 6</td> <td></td> <td>200</td> <td></td> <td></td> <th>O O deformed</th> <td>. 5</td> <td>00.01</td> <td></td> <td></td> <td>22820</td> <td></td> <td>200000</td> <td></td> <td></td> <td>3500</td> <td>17 311</td> <td>200</td> <td></td> <td></td> <td>90.4</td> <td>9 92</td> <td>62</td>	325	1 6		200			O O deformed	. 5	00.01			22820		200000			3500	17 311	200			90.4	9 92	62
300 0.54 0 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 11.49 0.59 350 11.7 3110 0.104 13990 0.107 5.54 96 30 0.00 0.00 0.00 0.00 0.00 0.00 0.00	300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2499 200000 11.49 31.10 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.495 200000 11.49 300 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.495 200000 11.49 300 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.495 200000 11.73 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.280 2.499 200000 11.73 3110 0.104 300 0.54 <td< td=""><td>250</td><td>100</td><td></td><td>5.0</td><td></td><td></td><th>O o deformed</th><td>; 1</td><td>00.00</td><td></td><td>•</td><td>22027</td><td></td><td>200000</td><td></td><td></td><td>2000</td><td></td><td></td><td></td><td>0.00</td><td>0.50</td><td>2 2</td><td>3 6</td></td<>	250	100		5.0			O o deformed	; 1	00.00		•	22027		200000			2000				0.00	0.50	2 2	3 6
300 0.54 0 0 0.00 defermed 14 18.00 2.47 2.22 2.49 2.00 1.17 3.10 0.14 1880 0.17 5.24 0.00 <t< td=""><td>300 0.54 0 0 0.00 deformed 14 18.30 2.48 2.70 2.47 2.2220 2.489 2.0000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0 0.00 deformed <t< td=""><td>320</td><td>404</td><td></td><td># F</td><td></td><td></td><th>0.00 deformed</th><td>± ÷</td><td>200</td><td></td><td>70.</td><td>22020</td><td></td><td>200000</td><td></td><td></td><td>2200</td><td>1.7</td><td>200</td><td></td><td>0.10</td><td>500</td><td>òô</td><td>2 6</td></t<></td></t<>	300 0.54 0 0 0.00 deformed 14 18.30 2.48 2.70 2.47 2.2220 2.489 2.0000 11.7 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22220 2.489 200000 11.77 3110 0.104 300 0.54 0 0 0 0.00 deformed <t< td=""><td>320</td><td>404</td><td></td><td># F</td><td></td><td></td><th>0.00 deformed</th><td>± ÷</td><td>200</td><td></td><td>70.</td><td>22020</td><td></td><td>200000</td><td></td><td></td><td>2200</td><td>1.7</td><td>200</td><td></td><td>0.10</td><td>500</td><td>òô</td><td>2 6</td></t<>	320	404		# F			0.00 deformed	± ÷	200		70.	22020		200000			2200	1.7	200		0.10	500	òô	2 6
300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.24 0.77 3 170 0.104 13990 0.107 0.22 122 0.24 0.000 0.12 0.12 0.12 0.12 0.10 0.10 0.1	300 0.54 0 0 0 0.00 deformed 14 1830 24.89 3.70 24.7 22820 24930 200000 1.247 0.718 3800 11.7 3110 0.104 310 0.054 30 0.054 0 0 0.00 deformed 14 1830 24.89 3.70 24.7 22820 2493 200000 1.247 3800 11.7 3110 0.104 310 0	200	102		500			O.O. deformed	1 7	2 6		70.	22020		200000			2000		2 2 2		0.10	5 6	8 5	20 0
300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.23 0.772 3800 11.7 3110 0.104 1899 0.107 6.53 186 186 189 300 0.54 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.772 3800 11.7 3110 0.104 1899 0.107 6.83 186 189 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.772 3800 11.7 3110 0.104 1899 0.107 7.25 22.2 24.90 3.00 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.80 3800 11.7 3110 0.104 1899 0.107 7.25 22.2 24.90 3.00 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.80 3800 11.7 3110 0.104 1899 0.107 7.25 22.2 28.9 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.80 3800 11.7 3110 0.104 1899 0.107 7.25 22.2 28.9 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 0.80 3800 11.7 3110 0.104 1899 0.107 7.25 22.2 28.9 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.54 0.80 3800 11.7 3110 0.104 1899 0.107 7.72 32.2 28.9 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.71 310 0.104 1899 0.107 7.77 32.2 28.9 28.9 28.9 28.9 28.9 28.9 28.9 2	300 054 0 0 0 000 deformed 14 1830 2489 3.77 247 2222 2499 200000 1228 0731 3900 11.7 3110 0.104 310 0.004	250	402		500			O.O. deformed	1 7	2 6		70.	22020		200000			2000		2 2 2		0.10	20.0	5 5	2 6
300 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.381 0.772 3800 11.7 3110 0.104 13890 0.107 6.68 106 108 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.381 0.772 3800 11.7 3110 0.104 13890 0.107 6.68 2.00 1380 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.597 0.772 3800 11.7 3110 0.104 13890 0.107 7.68 2.22 2.80 2.80 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.569 0.800 3500 11.7 3110 0.104 13890 0.107 7.52 2.86 2.22 3.00 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.569 0.800 3500 11.7 3110 0.104 13890 0.107 7.72 2.86 2.22 3.80 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.564 0.800 3500 11.7 3110 0.104 13890 0.107 7.77 3.22 3.89 3.00 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.564 0.800 3500 11.7 3110 0.104 13890 0.107 7.77 3.22 3.00 0.54 0 0 0 0.000 deformed 14 1830 2.480 3.70 2.47 22820 24920 200000 1.73 310 0.704 13890 0.107 7.77 3.22 3.00 0.707 7.70 3.70 3.70 3.70 3.70 3.7	300 0.54 0 0 0 0.00 deformed 14 1830 24.80 3.70 247 22820 24992 200000 1.387 0.782 3800 11.7 3110 0.104 310 30 0.054 0 0 0.00 deformed 14 1830 24.80 3.70 247 22820 24992 200000 1.387 0.782 3800 11.7 3110 0.104 310 0.	320	402		# E			0.00 deformed	± ;	200		70.	22020		200000			2000	1.7	200		0.10	0.02	7 5	9 5
300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.35 0.772 300 11.7 3110 0.104 13890 0.107 6.88 100 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.59 100 11.7 3110 0.104 13890 0.107 7.28 22.2 24.99 200000 1.59 0.704 3900 11.7 3110 0.104 13890 0.107 7.28 22.2 24.99 200000 1.59 0.804 3800 11.7 3110 0.104 13890 0.107 7.28 22.2 24.99 200000 1.59 0.804 3800 11.7 3110 0.104 13890 0.107 7.28 22.2 24.99 200000 1.59 0.804 3800 11.7 3110 0.104 13890 0.107 7.2 32.2 3800 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.73 0.88 3800 11.7 3110 0.104 13890 0.107 7.72 32.2 3800 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.73 0.88 3800 11.7 3110 0.104 13890 0.107 7.72 32.2 32.2 3800 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 24.7 22220 24.99 200000 1.73 0.88 3800 1.77 3110 0.104 13890 0.107 7.77 33.2	300 0.54 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22220 24.99 200000 11.7 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 2220 24.99 200000 11.37 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 2220 24.99 200000 11.77 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 2220 24.99 200000 11.77 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 11.77 3110 0.104 300 0.54 0	323	402		# E			0.00 deformed	± ;	200		70 2.47	22020		200000			2200	1.7	0.00		0.10	0.20	2 2	77 5
300 U.54 U U U UUU DEGENERING 14 18.30 24.80 3.70 24.7 22.820 24.930 200000 1.594 U.77 3500 11.7 3110 U.14 18.90 1107 7.56 24.2 23.0 300 U.54 U U U U U U U U U U U U U U U U U U U	300 0.54 0 0 0 0 0.000 deformed 14 18.30 24.80 3.70 247 22820 2493 200000 1.599 0.775 3500 11.7 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 247 22820 2495 200000 1.569 0.800 3500 11.7 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 247 22820 2495 200000 1.569 0.800 3500 11.7 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 247 22820 2495 200000 1.569 0.800 3500 11.7 3110 0.104 300 0.54 0 0 0 0.000 deformed 14 18.30 24.80 3.70 247 22820 2495 200000 1.569 0.800 3500 11.7 3110 0.104 310 0.104	272	405		ŧ.			0.00 deolined	± ;	200		70.70	22020		200000			0000	1.7	0.00	06001	0.107	0.00	00 0	701
300 0.54 0 0 0 0.00 deformed 14 18.30 4.340 3.70 2.47 2.2220 24.99 200000 1.59 3500 11.7 3110 0.104 1389 0.107 7.52 30 0.54 0 0 0 0.00 deformed 14 18.30 4.349 3.70 2.47 2.2220 24.99 200000 1.69 0.80 3500 11.7 3110 0.104 1389 0.107 7.72 30 0.54 0 0 0 0.00 deformed 14 18.30 4.349 3.70 2.47 2.2220 24.99 200000 1.64 0.816 3500 11.7 3110 0.104 1389 0.107 7.72 30 0.54 0 0 0 0.00 deformed 14 18.30 4.349 3.70 2.47 2.2220 24.99 200000 1.71 0.85 3500 11.7 3110 0.104 1369 0.107 7.77 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480 200000 1.71 0.85 3500 11.7 3110 0.104 1369 0.107 7.87 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480 200000 1.71 0.85 3500 11.7 3110 0.104 13690 0.107 7.87 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480 200000 1.71 0.85 3500 11.7 3110 0.104 13690 0.107 7.87 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480 200000 1.71 0.85 3500 11.7 3110 0.104 13690 0.107 7.87 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480 200000 1.71 0.85 3500 11.7 3110 0.104 13690 0.107 7.87 380 0.54 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.2220 2.480	300 0.54 0 0 0 0.000 deformed 14 1830 24.80 3.70 247 22220 24990 200000 1598 0.800 11.7 3110 0.104 300 0.554 0 0 0 0.000 deformed 14 1830 24.80 3.70 247 22220 24990 200000 1598 0.800 11.7 3110 0.104 300 0.554 0 0 0 0.000 deformed 14 1830 24.80 3.70 247 22220 24990 200000 1598 0.800 11.7 3110 0.104 300 0.554 0 0 0 0.000 deformed 14 1830 24.80 3.70 247 22220 24990 200000 1598 0.800 11.7 3110 0.104 310 0.1	325	402		\$ i	0 0	0 0	0.00 deformed	4 ;			70 2.47	22820		200000			3500	7.7	201.00	13690	0.107	0.80	200	9 9
300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22820 2499 200000 1.54 0.85 3500 11, 3110 0.104 1369 0.107 7.72 3 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22820 2499 200000 1.74 0.85 3500 117 3110 0.104 1369 0.107 7.72 3 300 0.54 0 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22820 2499 200000 1.71 0.825 3500 117 3110 0.104 1369 0.107 7.87 3	300 0.54 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22820 24993 200000 1.599 0.800 11.7 3110 0.104 300 0.554 0 0 0 0.000 deformed 14 1830 2480 3.70 2.47 22820 24950 200000 1.644 0.816 3.500 11.7 3110 0.104 300 0.54 0 0 0.000 deformed 14 1830 2480 3.70 2.47 22820 24950 200000 1.713 0.825 3800 11.7 3110 0.104 0.10	325	402		\$ i.o	0 0	0 0	0.00 deformed	4 ;	30	24.80	70 2.47	22820		200000			3500	1.7	201.00	13690	0.107	07.7	242	977
300 0.54 0 0 0.000 dedermed 14 1830 4.248 0.3.70 2.47 22280 2499 200000 1.71 0.50 0.104 1.989 0.107 7.72 30 0.54 0 0 0.000 dedermed 14 1830 4.248 0.3.70 2.47 22280 2499 200000 1.71 0.55 3500 11.7 310 0.104 13690 0.107 7.87 380 0.54 0 0 0 0.000 dedermed 14 18.30 4.248 0.3.70 2.47 22280 2499 200000 1.71 0.825 3500 11.7 310 0.104 13690 0.107 7.87	300 0.54 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1,44 0.816 3500 1;7 3110 0.104 330 0.54 0 0 0.000 deformed 14 18.30 24.80 3.77 2.47 22820 24.99 200000 1,773 0.825 3500 11,7 3110 0.104 0.	372	402		\$0.0	0	0	0.00 deformed	4	30	24.80	70 2.47	22820		200000	_		0000	J. 7. 37. 1	0.10	13690	0.107	7.52	780	7/7
300 0.54 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.713 0.825 3500 11.7 3110 0.104 13690 0.107 7.87 ;	300 0.54 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.713 0.825 3500 11.7 3110 0.104 ·	325	405		0.54	0	0	0.00 deformed	4	30	24.80	.70 2.47	22820		200000			3500 1	1.7 3110	10 0.104	13690	0.107	7.72	332	318
		325	402		0.54	0	0 (0.00 deformed	14	30	24.80	.70 2.47	22820		200000			3500 1	1.7 311	10 0.104	13690	0.107	7.87	394	380

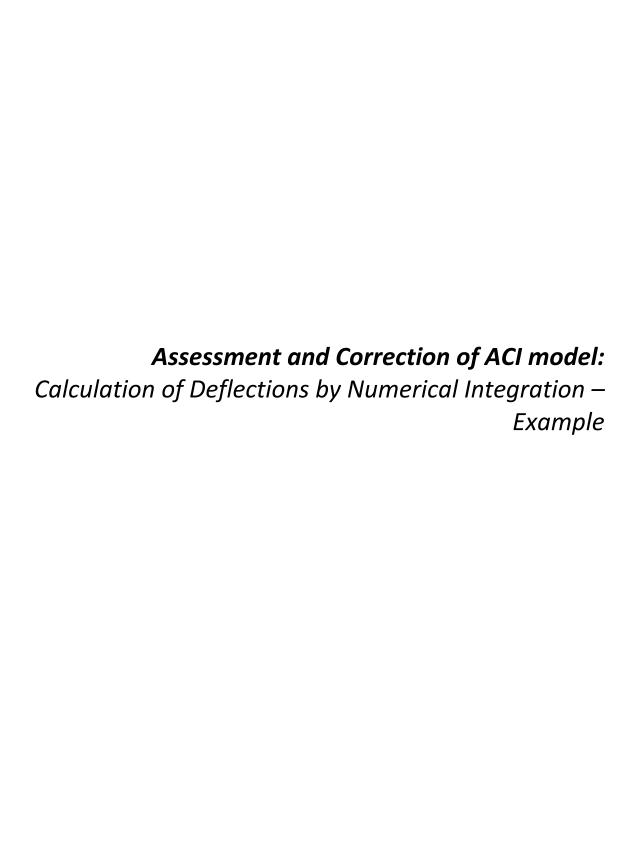
		otady imorination	2	Gross-section 3 4	4	22	9	7	8	9 10	=	12	13	4	15		7 18	19	20	21	22	23	24	25	56	27	28	29	30	31	
						, (2 mm/s			7					n(t ₀)						1			3	1	2	1	2		1	(100)	
		-	Specimen	- 6	100	A _{s1} (mm.) c	٤	8	ō	<	P ₂ (%	type	- 4	c	-	20	- LY	Ecm Com	ų,		£ cs (L (mm)	9	ML1 (NM)	į.	ML2	Ž,	a (t) (mm)	t (days)	t-t ₀ (days)	~ I+
			B3-a	250	325	603	300	0.80	0	0		00 deformed	± 4	18.30		3.70				0		3500		3.6	9 0			6.31	- 12	- 10	
			B3-a	250	325	603	300	08.0	0	0		.00 deformed	4	18.30		3.70				0	_	3200		31	0			6.71	16		2
			B3-a	250	325	603	300	0.80	0 0	0 0		.00 deformed	4 ;	18.30		3.70				0 0		3500		5 3	0			6.87			m ·
			B3-a	250	325	603	300	0.00	0 0			00 deformed	<u> </u>	18.30		3.70				6		3500		, E	ò			7.16			- 40
			B3-a	520	325	603	300	0.80	0	0		00 deformed	. 4	18.30		3.70				0		3500	11.7	3110	0			7.34	20.		9
			B3-a	250	325	603	300	0.80	0	0		.00 deformed	4	18.30		3.70				0		3500	11.7	3110	0			7.58	21	_	7
			B3-a	250	325	603	300	0.80	0	0		:00 deformed	4	18.30		3.70				0		3200	11.7	3110	0			7.72	22	۵.	8
			B3-a	250	325	603	300	0.80	0	0		:00 deformed	4	18.30		3.70				0		3200	11.7	3110	0			7.99	- 24	=	0
			B3-a	250	325	603	300	0.80	0	0		:00 deformed	4	18.30		3.70				0		3200	11.7	3110	0.10			8.02	. 52	÷	_
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			B3-a	250	325	603	300	0.80	0	0	0	:00 deformed	4	18.30		3.70				0		3200	11.7	3110	0.10			8.12	27	-	3
			B3-a	250	325	603	300	0.80	0	0	0	:00 deformed	4	18.30		3.70				0		3200	11.7	3110	0.10			8.43		16	9
No. 10.000 No.			B3-a	250	325	603	300	0.80	0	0	0	:00 deformed	4	18.30	24.80	3.70				0		3200	11.7	3110	0.10			8.62		2	80
No. 100 No.			B3-a	250	325	603	300	0.80	0	0	0	:00 deformed	14	18.30	24.80	3.70	2.47 22			0		3200	11.7	3110	0.10			8.78		7 20	0
10 10 10 10 10 10 10 10			B3-a	250	325	603	300	08'0	0	0	0	.00 deformed	4	18.30	24.80	3.70				0		3200	11.7	3110	0.10			9.06	37	23	3
19 19 19 19 19 19 19 19			B3-a	250	325	603	300	0.80	0	0	0	00 deformed	14	18.30	24.80	3.70				0		3200	11.7	3110	0.10			9.12	39	3 25	2
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			B3-a	250	325	603	300	0.80	c	C		00 deformed	4	18.30	24.80	3.70				0		3500	11.7	3110	0.10			9.16	42	25	œ
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			83.5	250	325	603	300	0.80				00 deformed	14	18.30	24.80	3 70						3500	117	3110	0,10			00.0	45	iè	
260 252 600 900 000 600 <td></td> <td></td> <td>2 2</td> <td>250</td> <td>325</td> <td>603</td> <td>900</td> <td>00.0</td> <td>0 0</td> <td></td> <td></td> <td>On deformed</td> <td>2 1</td> <td>18.30</td> <td>24.00 24.00</td> <td>3.0</td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td>3500</td> <td></td> <td>3110</td> <td>9 6</td> <td></td> <td></td> <td>0.23</td> <td>2 4</td> <td>9 6</td> <td>- <</td>			2 2	250	325	603	900	00.0	0 0			On deformed	2 1	18.30	24.00 24.00	3.0				0 0		3500		3110	9 6			0.23	2 4	9 6	- <
250 1252 100 <td></td> <td></td> <td>B-CG</td> <td>230</td> <td>250</td> <td>200</td> <td>200</td> <td>000</td> <td>0</td> <td>0</td> <td></td> <td>oo deformed</td> <td>± ;</td> <td>10.30</td> <td>24.00</td> <td>0.70</td> <td></td> <td></td> <td></td> <td>0 0</td> <td></td> <td>3300</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.5</td> <td>9 6</td> <td></td> <td>t (</td>			B-CG	230	250	200	200	000	0	0		oo deformed	± ;	10.30	24.00	0.70				0 0		3300						1.5	9 6		t (
250 155 161 100 <td> 1</td> <td></td> <td>B3-8</td> <td>027</td> <td>370</td> <td>900</td> <td>300</td> <td>0.80</td> <td>0 0</td> <td>0 0</td> <td></td> <td>.oo deformed</td> <td>4 ;</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.57</td> <td>8 8</td> <td>ς : • ·</td> <td>וכ</td>	1		B3-8	027	370	900	300	0.80	0 0	0 0		.oo deformed	4 ;	18.30	24.80	3.70				-		0000						9.57	8 8	ς : • ·	וכ
250 250 <td> Second Column</td> <td></td> <td>B3-a</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>0</td> <td>0</td> <td></td> <td>:00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>3200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9.92</td> <td></td> <td>47</td> <td>_</td>	Second Column		B3-a	250	325	603	300	0.80	0	0		:00 deformed	14	18.30	24.80	3.70				0		3200						9.92		47	_
250 255 610 200 0			B3-a	250	325	603	300	0.80	0	0		:00 deformed	14	18.30	24.80	3.70				_		3200						10.10	- 89	3 27	4
20	10 10 10 10 10 10 10 10		B3-a	250	325	603	300	0.80	0	0		00 deformed	14	18,30	24.80	3.70				_		3200						10,20	9/	9	2
25 31 61 30 0 <td> 10 10 10 10 10 10 10 10</td> <td></td> <td>B3.23</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>c</td> <td>c</td> <td></td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3 70</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>3500</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>10.60</td> <td></td> <td>7</td> <td>65</td>	10 10 10 10 10 10 10 10		B3.23	250	325	603	300	0.80	c	c		00 deformed	14	18.30	24.80	3 70				-		3500						10.60		7	65
200 201	Second Color Seco		3 6	350	326	803	900	0000				00 deformed		10.00	00 10	2 20						2500						10.60		. 0	
	10 10 10 10 10 10 10 10		D2-8	250	250	000	8	99.0	0			00 deformed	<u> </u>	0.00	24.00	2.0						0000						0.00		5 6	V L
	19 19 19 19 19 19 19 19		B-0-8	067	250	000	200	0.00	0 1			namon no	<u> </u>	10.30	74.00	0.70						0000						06.01			0 1
250 252 660 800 800 900 <td> Second Color</td> <td></td> <td>B3-a</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>0</td> <td>0</td> <td></td> <td>.00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td>3200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11.10</td> <td></td> <td>108</td> <td>80</td>	Second Color		B3-a	250	325	603	300	0.80	0	0		.00 deformed	14	18.30	24.80	3.70				_		3200						11.10		108	80
250 255 610 910 0.00 defended 14 13.00 24.00 27.00 24.00 17.00 24.00 17.00 24.00 17.00 24.00 17.00 24.00 17.00 24.00 17	15 15 15 15 15 15 15 15		B3-a	250	325	603	300	0.80	0	0		00 deformed	4	18.30	24.80	3.70				_		3200						11.40		3 122	2
250 355 613 300 0.00 defermed 14 18.30 240 377 247 2280 300 19 0 0.00 defermed 14 18.30 240 377 247 2280 300 100 0 <th< td=""><td></td><td></td><td>B3-a</td><td>250</td><td>325</td><td>603</td><td>300</td><td>0.80</td><td>c</td><td>С</td><td></td><td>00 deformed</td><td>14</td><td>18.30</td><td>24.80</td><td>3.70</td><td></td><td></td><td></td><td>-</td><td></td><td>3500</td><td></td><td></td><td></td><td></td><td></td><td>11.80</td><td></td><td>152</td><td>2</td></th<>			B3-a	250	325	603	300	0.80	c	С		00 deformed	14	18.30	24.80	3.70				-		3500						11.80		152	2
250 355 610 900 0	200 21 200		2 2	350	30.0	000	900	0000				O deformed		00.00	00.50	2.0						2600						12.40		100	1 0
250 325 610 90 0<			D0	027	020	500	900	0.00	0			non neloninen	<u> </u>	10.30	24.00	0.70						0000						12.10		200	
250 325 605 90 0<			B3-a	250	325	603	300	0.80	0	0		:00 deformed	4	18.30	24.80	3.70				_		3200			-	,		12.60		222	80
250 325 6163 300 0.80 <			B3-a	250	325	603	300	0.80	0	0		:00 deformed	4	18.30	24.80	3.70				_		3200				,,		13.00			5
250 325 660 9 0 </td <td></td> <td></td> <td>B3-a</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>0</td> <td>0</td> <td></td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3200</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>13.20</td> <td></td> <td>318</td> <td>80</td>			B3-a	250	325	603	300	0.80	0	0		00 deformed	14	18.30	24.80	3.70						3200						13.20		318	80
250 325 610 300 0.88 0 <t< th=""><th></th><th></th><th>1 2 2</th><th>250</th><th>325</th><th>603</th><th>300</th><th>0.80</th><th>c</th><th>C</th><th></th><th>00 deformed</th><th>14</th><th>18.30</th><th>24.80</th><th>3 70</th><th></th><th></th><th></th><th>_</th><th></th><th>3500</th><th></th><th></th><th></th><th></th><th></th><th>13.30</th><th></th><th></th><th></th></t<>			1 2 2	250	325	603	300	0.80	c	C		00 deformed	14	18.30	24.80	3 70				_		3500						13.30			
250 325 600 0 </td <td></td> <td></td> <td>1 00</td> <td>OHO</td> <td>100</td> <td>000</td> <td>000</td> <td>000</td> <td></td> <td></td> <td>l</td> <td>F</td> <td></td> <td>000</td> <td>04.00</td> <td>04.0</td> <td>l</td> <td>ı</td> <td>ı</td> <td>1</td> <td>l</td> <td>0000</td> <td>ľ</td> <td></td> <td>ľ</td> <td>l</td> <td>l</td> <td>4 04</td> <td>ľ</td> <td></td> <td>41-</td>			1 00	OHO	100	000	000	000			l	F		000	04.00	04.0	l	ı	ı	1	l	0000	ľ		ľ	l	l	4 04	ľ		41-
250 355 600 300 000 000 000 4 1830 248 370 247 2200 368 0 000 4 1830 248 370 247 2200 368 0 100 4 1830 248 370 247 2200 368 0 100 4 1830 248 370 247 2200 368 0 100 4 1800 248 370 247 2200 368 0 117 100 100 100 100 0<	The color The		02-0	067	370	500	300	0.80	0 (0 (.ou deformed	4 :	18.30	24.80	3.70						nnes						18.	-		
259 325 613 300 0.88 0 0.000 deformed 14 18.30 24.88 3.70 24.7 22820 24.88			B3-D	067	325	603	300	0.80	0	0		.uu deformed	4	18.30	74.80	3.70						nnee						2.3	0	•	_
259 3.25 613 300 0.86 0 <			B3-b	250	325	603	300	0.80	0	0		:00 deformed	4	18.30	24.80	3.70						3200						2.55	16		7
250 325 613 300 0.80 0 0 0.00 defermed 14 18.30 247 2252 2895 2000 0 100 defermed 14 18.30 24.80 37.0 247 2252 2895 2000 0 0 0.00 defermed 14 18.30 24.80 37.0 24.7 2252 2895 2000 0			B3-b	250	325	603	300	0.80	0	0		:00 deformed	14	18.30	24.80	3.70						3200						2.65	17	١.,	8
250 355 663 300 0.89 0 <t< td=""><td></td><td></td><td>B3-b</td><td>250</td><td>325</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>00 deformed</td><td>14</td><td>18.30</td><td>24.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>3200</td><td></td><td></td><td></td><td></td><td></td><td>2.73</td><td>18</td><td></td><td>4</td></t<>			B3-b	250	325	603	300	0.80	0	0		00 deformed	14	18.30	24.80	3.70						3200						2.73	18		4
250 325 600 900 <td>250 355 613 300 0</td> <td></td> <td>B3-h</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>c</td> <td>c</td> <td></td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3500</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>2.84</td> <td>4</td> <td>•</td> <td>Ľ</td>	250 355 613 300 0		B3-h	250	325	603	300	0.80	c	c		00 deformed	14	18.30	24.80	3.70						3500						2.84	4	•	Ľ
250 225 603 900 <td>250 325 600 900 0</td> <td></td> <td>100</td> <td>027</td> <td>3 6</td> <td>8 6</td> <td>8 8</td> <td>9 9</td> <td>0 0</td> <td></td> <td></td> <td>DO DEFENDE</td> <td>: :</td> <td>0000</td> <td>9 6</td> <td>1 2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td> <td></td> <td>5 5 5</td> <td></td> <td></td> <td></td> <td>5 6</td> <td></td> <td>, ,</td> <td>,</td>	250 325 600 900 0		100	027	3 6	8 6	8 8	9 9	0 0			DO DEFENDE	: :	0000	9 6	1 2						0000		5 5 5				5 6		, ,	,
250 3.25 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2220 2.899 200000 0.442 0.152	250 250 0.00 0		0.00	250	323	900	300	0.00	0 0	0 0		oo deormed	± ;	10.30	24.00	0.70						0000		2010	0.00			2.30			0 1
250 325 603 300 0.88 0 0 0 0 0.00 deformed 14 18.30 24.80 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 370 247 22220 24.89 27.00 24.80 27.00 24.	290 335 610 300 0.80 0 0.00 deformed 14 18.00 247 2782 2.865 2.00 0.117 31.00 0.114 7780 0.117 31.00		B3-b	250	325	603	300	0.80	0	0		.00 deformed	14	18.30	24.80	3.70						3200	11.7	3110	0.10			3.15	2	_	_
259 325 603 300 0.89 0 0 0.00 deferred 14 18.30 2.48 37.0 2.47 22820 2.489 0 0 0.00 deferred 14 18.30 2.48 37.0 2.47 22820 2.489 0 0 0 0.00 deferred 14 18.30 2.48 37.0 2.47 22820 2.489 0	250 325 610 0.00 0.		B3-b	250	325	603	300	0.80	0	0		00 deformed	4	18.30	24.80	3.70						3200	11.7	3110	0.10			3.25	52	۵.	8
250 325 610 300 100 deferred 14 18.30 248 370 247 250 2680 200 100 deferred 14 18.30 248 370 247 250 2680 200 0 100 deferred 14 18.30 248 370 247 250 2680 200 0	256 355 610 300 000 oddermed 14 18.30 24.90 2000 0177 314 0177 314 310 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0177 314 0174 315 0174 778 0177 314 0174 314		R3-h	250	325	603	300	0.80	c	C		00 deformed	14	18.30	24.80	3 70						3500	117	3110	0 10			3.45	24	1	0
290 325 610 90 0 0.00 defermed 14 18.30 24.90 37.0 24.7 28.90 36.90 36.40 46.10 46.90 <td>250 352 616 0<!--</td--><td></td><td>B3-h</td><td>250</td><td>325</td><td>603</td><td>300</td><td>0.80</td><td></td><td></td><td></td><td>00 deformed</td><td>14</td><td>18.30</td><td>24.80</td><td>3 70</td><td></td><td></td><td></td><td></td><td></td><td>3500</td><td>117</td><td>3110</td><td>0 10</td><td></td><td></td><td>3.46</td><td></td><td>-</td><td></td></td>	250 352 616 0 </td <td></td> <td>B3-h</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td></td> <td></td> <td></td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3 70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3500</td> <td>117</td> <td>3110</td> <td>0 10</td> <td></td> <td></td> <td>3.46</td> <td></td> <td>-</td> <td></td>		B3-h	250	325	603	300	0.80				00 deformed	14	18.30	24.80	3 70						3500	117	3110	0 10			3.46		-	
250 3.5 60.5 9	2.60 3.62 0.00 <th< td=""><td></td><td>2 4</td><td>250</td><td>200</td><td>000</td><td>8 8</td><td>999</td><td>•</td><td></td><td></td><td>00 deformed</td><td></td><td>0000</td><td>00.50</td><td>2 2</td><td></td><td></td><td></td><td></td><td></td><td>0000</td><td></td><td>2450</td><td></td><td></td><td></td><td>0 0</td><td></td><td></td><td>- 0</td></th<>		2 4	250	200	000	8 8	999	•			00 deformed		0000	00.50	2 2						0000		2450				0 0			- 0
250 3.25 613 300 189 0 <t< td=""><td>250 300 080<td></td><td>0-00</td><td>007</td><td>250</td><td>200</td><td>300</td><td>0.00</td><td>> 0</td><td></td><td></td><td>namon no:</td><td>± :</td><td>10.30</td><td>24.00</td><td>0.70</td><td></td><td></td><td></td><td></td><td></td><td>0000</td><td></td><td>0110</td><td>5 6</td><td></td><td></td><td>0.00</td><td></td><td></td><td>, ,</td></td></t<>	250 300 080 <td></td> <td>0-00</td> <td>007</td> <td>250</td> <td>200</td> <td>300</td> <td>0.00</td> <td>> 0</td> <td></td> <td></td> <td>namon no:</td> <td>± :</td> <td>10.30</td> <td>24.00</td> <td>0.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td> <td></td> <td>0110</td> <td>5 6</td> <td></td> <td></td> <td>0.00</td> <td></td> <td></td> <td>, ,</td>		0-00	007	250	200	300	0.00	> 0			namon no:	± :	10.30	24.00	0.70						0000		0110	5 6			0.00			, ,
250 325 613 300 1880 0 <t< td=""><td>250 325 610 0<!--</td--><td></td><td>D2-D</td><td>067</td><td>250</td><td>000</td><td>300</td><td>0.00</td><td>0 0</td><td>0 0</td><td></td><td>namon no</td><td><u> </u></td><td>10.30</td><td>24.00</td><td>0.70</td><td></td><td></td><td></td><td></td><td></td><td>0000</td><td>-</td><td>0110</td><td>20.00</td><td></td><td></td><td>0.70</td><td></td><td></td><td>0 0</td></td></t<>	250 325 610 0 </td <td></td> <td>D2-D</td> <td>067</td> <td>250</td> <td>000</td> <td>300</td> <td>0.00</td> <td>0 0</td> <td>0 0</td> <td></td> <td>namon no</td> <td><u> </u></td> <td>10.30</td> <td>24.00</td> <td>0.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td> <td>-</td> <td>0110</td> <td>20.00</td> <td></td> <td></td> <td>0.70</td> <td></td> <td></td> <td>0 0</td>		D2-D	067	250	000	300	0.00	0 0	0 0		namon no	<u> </u>	10.30	24.00	0.70						0000	-	0110	20.00			0.70			0 0
250 325 603 300 0.89 0 0 0.00 deformed 14 1830 248 3.70 247 28202 2489 3.70 247 2820 2489 3.00 0.00 0 0.00 deformed 14 1830 24.80 3.70 247 2820 2489 3.00 0.00 0 0.00 deformed 14 1830 24.80 3.70 247 2820 2489 3.00 0.00 0 0.00 deformed 14 1830 24.80 3.70 247 2820 2489 3.00 0.00 0 0.00 deformed 14 1830 24.80 3.70 247 2820 24.80 3.70 247 2820 28.90 20000 0.00 0.00 deformed 14 1830 24.80 3.70 247 2820 28.90 20000 0.00 0.00 0.00 deformed 14 1830 24.80 3.70 247 2820 28.90 20000 0.00 0.00 deforme	259 325 6103 300 0.88 0 0 0.00 deformed 14 183.0 248 370 247 2282 2859 350 117 3110 0.104 789 0.107 444 259 325 6103 300 0.88 0 0 0.00 deformed 14 183.0 24.80 3.70 247 2282 2859 350 117 3110 0.104 789 0.107 443 259 325 6103 300 0.80 0 0 0.00 deformed 14 1830 24.80 370 247 2822 3890 117 3110 0.107 439 259 325 6103 300 0.80 0 0 0.00 deformed 14 1830 24.80 370 247 2829 3890 117 3110 0.107 439 259 3255 603 300 0.80 0 0 0.00 deformed </td <td></td> <td>0-0-</td> <td>067</td> <td>250</td> <td>200</td> <td>300</td> <td>0.00</td> <td>0</td> <td>0</td> <td></td> <td>na neomen</td> <td><u> </u></td> <td>10.30</td> <td>74.00</td> <td>0.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0000</td> <td>= :</td> <td>0110</td> <td>0.00</td> <td></td> <td></td> <td>3.90</td> <td></td> <td></td> <td>0</td>		0-0-	067	250	200	300	0.00	0	0		na neomen	<u> </u>	10.30	74.00	0.70						0000	= :	0110	0.00			3.90			0
250 325 613 300 0.88 0 0 0.00 deformed 14 1830 2480 370 247 22220 2489 2000 0.782	250 325 663 300 0.89 0 <t< td=""><td></td><td>B3-D</td><td>067</td><td>372</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.uu deformed</td><td>4</td><td>18.30</td><td>74.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>nnee</td><td>7.</td><td>31.10</td><td>0.10</td><td></td><td></td><td>40.4</td><td></td><td>7</td><td></td></t<>		B3-D	067	372	603	300	0.80	0	0		.uu deformed	4	18.30	74.80	3.70						nnee	7.	31.10	0.10			40.4		7	
250 325 603 300 0.80 0 <t< td=""><td>250 325 603 300 0.80 <t< td=""><td></td><td>B3-D</td><td>067</td><td>372</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.uu deformed</td><td>4</td><td>18.30</td><td>74.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>nnee</td><td>7.1</td><td>31.10</td><td>0.10</td><td></td><td></td><td>4.24</td><td></td><td>Ý</td><td>2</td></t<></td></t<>	250 325 603 300 0.80 0 <t< td=""><td></td><td>B3-D</td><td>067</td><td>372</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.uu deformed</td><td>4</td><td>18.30</td><td>74.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>nnee</td><td>7.1</td><td>31.10</td><td>0.10</td><td></td><td></td><td>4.24</td><td></td><td>Ý</td><td>2</td></t<>		B3-D	067	372	603	300	0.80	0	0		.uu deformed	4	18.30	74.80	3.70						nnee	7.1	31.10	0.10			4.24		Ý	2
250 225 613 300 0.89 0 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22202 2.499 200000 0.833 0.340 250 3.25 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22202 2.499 200000 0.833 0.340 250 3.25 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22202 2.499 200000 0.893 0.403 250 3.25 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22202 2.499 200000 0.893 0.403 250 3.25 603 3.00 0.80 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22202 2.499	250 225 663 300 0.89 0 <t< td=""><td></td><td>B3-b</td><td>250</td><td>352</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.00 deformed</td><td>4</td><td>18.30</td><td>24.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>3200</td><td>11.7</td><td>3110</td><td>0.10</td><td></td><td></td><td>4.30</td><td></td><td>Š</td><td>2</td></t<>		B3-b	250	352	603	300	0.80	0	0		.00 deformed	4	18.30	24.80	3.70						3200	11.7	3110	0.10			4.30		Š	2
250 325 603 300 0.88 0 0 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 3.00 0.88 0.00 deformed 259 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 3.00 0.89 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 3.00 0.89 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 200000 0.89 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 200000 0.89 0 0 0.00 deformed 14 18.30 24.80 3.70 247 22220 24.89 200000 0.89 0 0 0.00 deformed 14 18.30 <	250 225 603 300 0.80 0 0 0.00 deformed 14 18.30 2.48 0 2.47 222820 2.495 0.0000 0.887 0.347 350 117 3110 0.114 1769 0.107 4.41 250 2.25 603 3.00 0.80 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 222820 2.495 0.0000 117 3.110 0.114 17690 0.107 4.51 250 2.25 603 3.00 0.80 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22282 2.480 0.000 0 0 0 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22820 2.480 3.70 2.47 22820 2.480 3.70 2.47 22820 2.480 3.70 2.47 22820 2.480 3.70		B3-b	250	325	603	300	0.80	0	0		:00 deformed	4	18.30	24.80	3.70						3200	11.7	3110	0.10			4.38		28	80
259 325 603 300 0.89 0 0 0.00 deformed 14 18.30 24.80 37.0 247 22820 24.89 200000 0.882 0.397 259 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 37.0 247 22820 24.89 200000 0.892 0.393 0.483 250 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 37.0 247 22820 24.89 200000 0.893 0.483 250 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 37.0 247 22820 24.89 300000 1.03 0.00 0 0 0.00 deformed 14 18.30 24.80 37.0 247 22820 24.89 200000 1.03 0 0 0.00 deformed 14 <td>250 325 603 300 0.80 <t< td=""><td></td><td>B3-b</td><td>250</td><td>325</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.00 deformed</td><td>14</td><td>18.30</td><td>24.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>3200</td><td>11.7</td><td>3110</td><td>0.10</td><td></td><td></td><td>4.47</td><td>. 45</td><td>3,</td><td>_</td></t<></td>	250 325 603 300 0.80 0 <t< td=""><td></td><td>B3-b</td><td>250</td><td>325</td><td>603</td><td>300</td><td>0.80</td><td>0</td><td>0</td><td></td><td>.00 deformed</td><td>14</td><td>18.30</td><td>24.80</td><td>3.70</td><td></td><td></td><td></td><td></td><td></td><td>3200</td><td>11.7</td><td>3110</td><td>0.10</td><td></td><td></td><td>4.47</td><td>. 45</td><td>3,</td><td>_</td></t<>		B3-b	250	325	603	300	0.80	0	0		.00 deformed	14	18.30	24.80	3.70						3200	11.7	3110	0.10			4.47	. 45	3,	_
250 325 603 300 0.89 0 0 0.00 deferred 14 18.30 24.80 37.0 247 22620 2489 0 0 0 0 0.00 deferred 14 18.30 24.80 37.0 247 22620 2489 0	250 325 610 90 0<		B3-b	250	325	603	300	0.80	0	0		00 deformed	14	18.30	24.80	3.70						3200	11.7	3110	0.10	_		4.51	48	37	4
250 325 6103 300 0.80 0 0 0.00 deformed 14 18.30 2.47 2.77 2.2820 2.489 370 2.47 2.870 0.973 0.488 2.90 3.25 6103 300 0.80 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.489 3.00 0.80 1.00 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.489 3.00 0.80 1.00 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.489 3.00 2.48 3.00 0.80 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.489 3.00 0.80 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 2.2820 2.489 2.00 0 0.00 deformed 14 18.30 2.48 <td>250 3.25 610 3.00 0.69 0</td> <td></td> <td>B3-b</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td>0</td> <td>0</td> <td>0</td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3.70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3500</td> <td>11.7</td> <td>3110</td> <td>0.10</td> <td>_</td> <td></td> <td>4.69</td> <td>- 23</td> <td>36</td> <td>6</td>	250 3.25 610 3.00 0.69 0		B3-b	250	325	603	300	0.80	0	0	0	00 deformed	14	18.30	24.80	3.70						3500	11.7	3110	0.10	_		4.69	- 23	36	6
290 125 610 900 offermed 14 1830 2480 970 247 2870 1697 652 290 125 610 900 100 offermed 14 1830 2480 970 247 2870 1697 6571 290 125 610 900 100 offermed 14 1830 2480 970 247 2870 2680 1109 6571 290 125 610 900 100 offermed 14 1830 2480 970 247 2870 2680 100 1139 6581 290 125 610 900 100 offermed 14 1830 2480 970 247 2870 2680 1149 0581 290 125 610 900 100 offermed 14 1830 2480 370 247 2880 1075 0581 290 125 610 100 offermed 14 1830	250 325 603 300 0.80 0 0 0.00 deformed 14 1830 247 2280 269 0 17 310 0.104 1769 0.107 5.33 250 325 603 300 0.80 0 0 0 0.00 deformed 14 18.30 2.41 2280 2.95 0.50 17 3110 0.104 1789 0.107 5.42 250 3.25 603 3.00 0.80 0 0 0 0 0.00 deformed 14 18.30 2.47 2280 2.95 0.50 17 3110 0.104 1789 0.107 5.69 250 3.25 603 3.00 0.80 0 0 0 0.00 deformed 14 18.30 2.47 2280 2.90 0.90 1.17 310 0.104 78.90 0.107 5.47 250 3.25 603 3.00 0.80 0		В3-Р	250	325	603	300	0.80				00 deformed	14	18.30	24.80	3 70						3500	117	3110	0 10	_		5.20		4	
250 325 613 300 680 0 0.00 deformed 14 1830 248 370 247 22820 2489 20000 1/10 6531 259 325 603 300 0.80 0 0 0.00 deformed 14 1830 248 370 247 22820 2489 300 0.00 1/10 0.531 259 325 603 300 0.80 0 0 0.00 deformed 14 1830 248 370 247 22820 2489 300 0.00 1/148 0.00 deformed 14 1830 248 370 247 22820 2489 300 0.00 1/148 0.00 deformed 14 1830 248 370 247 22820 2489 200000 1/148 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	250 325 605 900 600 <td></td> <td>В3-Р</td> <td>250</td> <td>325</td> <td>603</td> <td>300</td> <td>0.80</td> <td></td> <td></td> <td></td> <td>00 deformed</td> <td>14</td> <td>18.30</td> <td>24.80</td> <td>3 70</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3500</td> <td>117</td> <td>3110</td> <td>0 10</td> <td>_</td> <td></td> <td>5 33</td> <td>89</td> <td>2</td> <td>4</td>		В3-Р	250	325	603	300	0.80				00 deformed	14	18.30	24.80	3 70						3500	117	3110	0 10	_		5 33	89	2	4
290 325 600 000 000 000 000 000 000 000 000 00	250 255 613 500 0.80 0.80 0.00 deformed 14 18.30 24.80 3.70 247 22820 24900 0.00 0.17 310 0.104 17690 0.107 5.69 0.107 5.		2 4 2 2 2	350	325	803	900	OB C				00 deformed		18 30	04 80	3 70						3500	17.7	3110	0,00			5 42	78		
250 325 603 300 080 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 255 053 050 050 0 0 0 0 0 0 0 0 0 0 0 0 0		0.00	027	200	8 8	8 8	9.0	0 0			DO A COMMISSION	: :	0.00	00.15	0.0				- ,		0000		2 2	5 6			20.0	2 5	i	4 (
250 325 603 300 0.89 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.159 0.591 1.49 0.591 2.59 325 603 300 0.89 0 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.159 0.591 2.59 325 603 300 0.89 0 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.159 0.591 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.287 0.718 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.389 0.772 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.389 0.772 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.389 0.772 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 1830 2480 3.70 247 22220 2499 200000 1.50 0.704 2.50 0.704	250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.49 0.991 17 310 0.104 17690 0.107 5.69 1 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.45 0.85 350 1.17 310 0.104 17690 0.107 5.67 2.48 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.72 350 1.17 310 0.104 17690 0.107 6.77 2.48 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.72 350 1.17 310 0.104 17690 0.107 6.77 2.48 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.77 330 0.17 310 0.104 17690 0.107 6.77 2.48 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.77 330 0.17 310 0.104 17690 0.107 6.73 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.77 330 0.17 310 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.77 330 0.17 310 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.77 330 0.17 310 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.38 0.07 3.7 310 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.59 0.50 350 0.17 3.10 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.59 0.50 0.50 0.17 3.110 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.59 0.50 0.50 0.17 3.10 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.50 0.50 0.50 0.17 3.10 0.104 17690 0.107 7.54 250 325 603 300 0.80 0 0 0 0 0 0 0 0.00 defrined 14 1830 2.480 3.70 2.47 22820 2.495 20000 1.50 0.50 0.50 0.17 3.10 0.104 17690 0.107 7.54		B3-D	067	372	603	300	0.80	0	0	۰ د	.uu deformed	4	18.30	74.80	3.70	7.47			_	_	nnee	7.	31.10	0.10	_	o .	9.09	8	2	,
250 325 603 300 0.88 0 0 0 0.00 deformed 14 18.30 2.48 370 2.47 22820 2.489 370 2.47 22820 2.489 200000 1.155 0.655 250 325 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.489 200000 1.287 0.718 0.718 250 325 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.489 200000 1.388 0.782 250 325 603 300 0.89 0 0 0.00 deformed 14 18.30 2.48 3.70 2.47 22820 2.489 200000 1.388 0.72 250 325 603 300 0.89 0 0 0.00 deformed 14 18.30	250 225 603 300 0.80 0 0 0 0 0.00 defrined 14 18.30 2.480 3.70 2.47 22820 24.99 0.0000 1.27 0.178 3500 11.7 3110 0.104 17890 0.107 5.97 5.97 5.97 5.90 0.80 0 0 0 0.00 defrined 14 18.30 2.480 3.70 2.47 22820 24.99 0.0000 1.27 0.178 3500 1.17 3110 0.104 17890 0.107 6.97 6.77 5.90 2.89 0.29 0.80 0.80 0 0 0 0 0.00 defrined 14 18.30 2.480 3.70 2.47 22820 24.99 0.0000 1.27 0.178 3500 1.17 3110 0.104 17890 0.107 6.57 5.97 5.90 2.89 0.20 0.80 0 0 0 0 0.00 defrined 14 18.30 2.480 3.70 2.47 22820 24.99 0.0000 1.28 0.000 1.17 3110 0.104 17890 0.107 6.57 5.97 5.97 5.97 5.97 5.97 5.97 5.97 5		B3-b	250	325	603	300	0.80	0	0	0	.00 deformed	14	18.30	24.80	3.70	2.47 2.			_	_	3200	11.7	3110	0.10	17690	o.	5.69	96		2
250 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 00000 1.247 0.718 0.718 2.59 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 000000 1.289 0.731 2.49 0.700 0.80 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 000000 1.389 0.772 2.50 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 000000 1.389 0.772 2.50 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 000000 1.50 0.772 2.50 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 24.80 370 2.47 22820 24.99 000000 1.50 0.704 2.50 0	250 325 603 300 0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		B3-p	250	325	603	300	0.80	0	0	0	:00 deformed	4	18.30	24.80	3.70	2.47 2			_		3200	11.7	3110	0.10	17690	o	5.97	109		S
290 325 603 300 0.80 0.00 0.00 0.00 0.00 0.00 0.0	250 325 603 300 0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 deformed 14 1830 2480 3.70 247 22820 24950 200000 1.293 0.731 3500 117 3110 0.104 17690 0.107 6.57 5.70 5.20 5.20 5.20 5.20 5.20 5.20 5.20 5.2		B3-b	250	325	603	300	0.80	0	0	0	00 deformed	14	18.30	24.80	3.70	2.47 23			_		3500	11.7	3110	0.10	17690	0	6.17	122	•	00
250 225 603 300 0.80 0 0 0 0 0.000 deformed 14 1830 24.80 3.70 2.41 22220 24.99 200000 1.388 0.772 2290 325 603 300 0.80 0 0 0 0 0.000 deformed 14 1830 24.80 3.70 2.47 22220 24.99 200000 1.388 0.772 2290 325 603 300 0.80 0 0 0 0 0.000 deformed 14 1830 24.80 3.70 2.47 22220 24.99 200000 1.388 0.772 2290 32.5 603 300 0.80 0 0 0 0 0.000 deformed 14 1830 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.99 200000 1.50 0.772 2290 24.80 3.70 2.47 22220 24.80 24.	250 225 003 300 080 0 0 0 0 000 defrined 14 1830 2480 3.70 2.47 22820 2490 20000 159 0177 310 0104 1780 0177 657 259 259 250 059 0 0 0 0 0 000 defrined 14 1830 2480 3.70 2.47 22820 2490 20000 159 050 117 310 0104 1780 0107 754 259 259 255 053 300 0.80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1-00	020	3 6	8 6	8 8	8 6				DO DE COLLEGE		000	200	1 2	16					0000		5 5 5		120	5 0	0 0	1 2	•	
250 325 613 300 0.80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.380 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.380 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.380 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.596 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.596 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.596 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.596 0.772 28.00 24.80 3.70 2.47 22820 24.99 200000 1.596 0.704 24.00 3.000 24.00 3.000 24.00 3.000 24.00 3.00 24.00 3.000 24.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00	250 325 603 300 0.80 0 0 0 0 0.00 deformed 14 18.30 2.40 3.70 2.47 22820 24.99 200000 1.37 377 330 117 311 0.104 1769 0.107 6.67 350 2.40 3.70 2.47 22820 24.99 200000 1.37 372 330 117 311 0.104 1769 0.107 7.34 3.25 2.40 3.70 2.47 22820 24.99 200000 1.37 372 330 117 311 0.104 1769 0.107 7.34 3.25 2.40 3.70 2.47 22820 24.99 200000 1.37 372 330 117 311 0.104 1769 0.107 7.34 3.25 2.40 3.70 2.47 22820 24.99 200000 1.59 0.80 0.80 0.80 0.00 0.00 0.00 0.00 0.0		0.00	007	250	200	900	0.00	> 1		، د	non natorilizar	± :	10.30	74.00	0.70	74.7					0000		0110	5 :	1007	<i>•</i>	0.0	2	77	4 1
250 325 603 300 0.89 0 0 0 0.00 defarmed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.359 0.772 250 325 603 300 0.80 0 0 0 0.00 defarmed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.506 0.704 2.50 250 22.80 2.80 2.000 0.80 0 0 0 0.00 defarmed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.506 0.704 2.704 2.705 2.70 2.705	250 325 603 300 0.80 0 0 0 0 0 0.00 defrmed 14 18.30 2.8.80 3.70 2.47 22820 24.99 200000 1.50 0.10 1.17 3110 0.104 17690 0.107 6.82 2.80 2.90 0.80 0.80 0.80 0 0 0 0 0.00 defrmed 14 18.30 2.8.80 3.70 2.47 22820 24.99 200000 1.50 0.80 0.17 3110 0.104 17690 0.107 7.54 2.80 2.80 2.80 0.25 603 300 0.80 0 0 0 0 0 0.00 defrmed 14 18.30 2.8.80 3.70 2.47 22820 24.99 200000 1.50 0.80 0.17 3110 0.104 17690 0.107 7.54 2.80 2.80 2.80 0.20 0.80 0.80 0.80 0.80		B3-b	250	325	603	300	0.80	0	0	٥	.00 deformed	4	18.30	24.80	3.70	2.47 2.			_		3200	11.7	3110	0.10	1769(o.	9.9	166	•	2
250 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.506 0.784 250 250 23 300 0.89 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.599 0.800 0.000	250 325 603 300 0.80 0 0 0 0 0 000 deformed 14 18.30 24.80 3.70 2.47 22820 24.89 0.0000 15.06 0.784 3500 11.7 3110 0.104 17690 0.107 7.54 3 250 325 0.03 300 0.80 0 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 0.0000 1.694 0.800 11.7 3110 0.104 17690 0.107 7.54 3 250 325 0.03 300 0.80 0 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.694 0.805 3500 11.7 3110 0.104 17690 0.107 7.59 3 250 325 0.03 300 0.80 0 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.713 0.825 3500 11.7 3110 0.104 17690 0.107 7.59 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		B3-b	250	325	603	300	0.80	0	0	0	00 deformed	4	18.30	24.80	3.70	2.47 23			_		3200	11.7	3110	0.10	17690	0.107	6.92	200		9
250 325 603 300 0.00 0.00 0.00 0.00 0.000 downward 14 1830 24.80 37.0 2.52 2.62 2.695 2.0000 1.550 0.000 0.0	250 325 603 300 0.80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.950 200000 1.569 0.800 3500 11,7 3110 0.104 17690 0.107 7.54 7.55 250 325 603 300 0.80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.950 200000 1.713 0.825 3500 11,7 3110 0.104 17690 0.107 7.50 3.20 325 603 300 0.80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.950 200000 1.713 0.825 3500 11,7 3110 0.104 17690 0.107 7.50 3.20 320 320 320 320 320 320 320 320 320 3		R3-h	250	325	603	300	0.80	c	С	0	00 deformed	14	18.30	24.80	3.70	2 47 23					3500	11.7	3110	0.10	1769(0.107	7.34	242		œ
250 555 000 500 0.0 0 0 0 0 0 0 0 0 0 0 0	250 325 603 300 0.50 0 0 0 0.00 defarmed 14 18.30 24.40 3.70 2.47 22820 24.69 200000 1.713 0.82 350 0.104 17690 0.107 7.50 7.50 7.50 7.50 7.50 7.50 7.50 7.		2 4	250	30.0	000	8	0000				O deformed		00.00	00.10	2 2 2	16			•		0000		2440		1760	0.00	10.1	900	•	, ,
250 250 300 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	250 325 603 300 0,80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24050 200000 1,713 0.825 3500 11.7 3110 0,104 17690 0,107 7,30 3 25 603 300 0,80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1,713 0,825 3500 11.7 3110 0,104 17690 0,107 7,30 3		B3-D	067	370	500	300	0.90	0	0 1	0	.ou deformed	4	18.30	24.80	3.70	7.47			-		nnee	2 :	0110	0.10	1/09/	0.107	5	790	7/7	7 .
250 325 603 300 0.30 0.30 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.644 0.816	250 325 603 300 0.80 0 0 0 0.000 deformed 14 18.30 24.80 3.70 2.47 22820 24.950 200000 1,713 0.825 3500 11,7 3110 0,104 17690 0,107 7.90 3		B3-p	250	325	603	300	0.80	0	0	0	:00 deformed	4	18.30	24.80	3.70	2.47			_		3200	11.7	3110	0.10	17690	0.107	7.81	332	318	æ
250 325 603 300 0.80 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24950 200000 1.713 0.825			B3-b	250	325	603	300	0.80	0	0	0	00 deformed	4	18.30	24.80	3.70	2.47 22			-		3500	11.7	3110	0.10	17690	0.107	7.90	394	380	0

	Study information	rmation 2	Cross-section	ection 4	9	9	7	Reinforcement 8	ement 9	10	-	12	13	14	15	16	17	18	19	20	21	22	23	24	Loading 25	79	27 2	78	29 Defle	Deflection 30 3	31
													-	f _{cm} (t ₀)				E _{cm} (t ₀)													
	Author		p (mm)	h (mm)	A _{s1} (m	d (mm)	P1 (%)	A ₅₂ (mm ²)	m²) d'(mm)	n) d ₂ (mm)	ρ ₂ (%	type	t ₀ (days) ((a)			Pa) E _{cm}		(MPa) φ	(-) & cs	4	(mm) L/d	M	(Nm) K _{L1}	M _{L2}	λ Ω	a (t)	(mm) t (days)	ys) t-t ₀ (days)	ays)
212	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	<u>ين</u> ش ش	400	155		226 1	130	4 4	0 0	00	0 0	0.00 deformed 0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820 22820	24950	200000	0.000	0000	3500	76.9 26.9	2373	0.10	4437	0.104	9.53	14.1	 -
213	Gilbert and Nejadi (2004)		400	155				44.	0	0		0.00 deformed	4	18.30		3.70	2.47	22820	24950	200000	0.138	0.014	3500	26.9	2373	0.104		0.104	10.50	16	2
214	and Nejadi		400	155				44.	0 0	0 0		0.00 deformed	4 5	18.30		3.70	2.47	22820	24950	200000	0.161	0.039	3200	56.9	2373	0.104		9.104	10.90	4	en •
216	Gilbert and Nejadi (2004)	S - 1-8	400	155				4 4	0	0 0		0.00 deformed	4 4	18.30		3.70	2.47	22820	24950	200000	0.195	0.052	3200	50.9 26.9	2373	2 5		2 2	11.60	o 6	4 ro
217	and Nejadi	S1-a	400	155				0.44	0	0		0.00 deformed	14	18.30	24.80	3.70	2.47	22820	24950	200000	0.264	0.072	3500	26.9	2373	0.104		0.104	12.10	70	9
218	Gilbert and Nejadi (2004)	S1-a	400	135				4. 5	0 0	0 0		0.00 deformed	4 5	18.30		3.70	2.47	22820	24950	200000	0.362	0.109	3200	56.9	2373	9.104		9.104	12.90	5 2	۰ ،
220	and Nejadi	S1-a	400	155				4 4	00	00		0.00 deformed	<u>†</u> 4	18.30		3.70	2.47	22820	24950	200000	0.442	0.159	3500	26.9	2373	20.0		0.0	14.00	2 7	o 0
221	and Nejadi	S1-a	400	155				44.0	0	0		0.00 deformed	4 ;	18.30		3.70	2.47	22820	24950	200000	0.471	0.167	3500	26.9	2373	0.104		0.104	14.00	25	1 5
23 25	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	or C	400	135				44.	o c	0 0		0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.483	0.180	3500	5 9 7 7 8 9	2373	20.0		40.0	14.10	7 %	5 6
224	and Nejadi	S1-a	400	155				4.	0	0		0.00 deformed	4	18.30		3.70	2.47	22820	24950	200000	0.667	0.266	3500	26.9	2373	10.0		0.10	15.40	32 82	2 8
225	and Nejadi	S1-a	400	155				7.44	0	0		0.00 deformed	14	18.30	24.80	3.70	2.47	22820	24950	200000	0.718	0.294	3200	56.9	2373	0.104		0.104	15.50	8	20
528	Gilbert and Nejadi (2004)	S1-a	400	155				44.0	0 0	0 0		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	0.782	0.329	3500	26.9	2373	9.104		0.104	16.40	37	23
228	and Nejadi	S-l-a	400	155				4	0	0 0		0.00 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.833	0.340	3500	26.9	2373	2 2		2 2 2	16.60	42	28
229	and Nejadi	S1-a	400	155				0.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.833	0.346	3500	56.9	2373	0.104		0.104	16.90	45	31
230	and Nejadi	S1-a	400	155				4:	0 0	0 0		0.00 deformed	4:	18.30		3.70	2.47	22820	24950	200000	0.862	0.367	3200	56.9	2373	40.0		9.10	16.80	8 5	34
232	Gilbert and Nejadi (2004)	S/-a	004	155				4 4	0	0 0		0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.973	0.468	3200	50.9 50.9	2373	4 4		4 4	18.30	8 5	8 4
233	Gilbert and Nejadi (2004)	S1-a	400	155				44.	0	0		0.00 deformed	4	18.30		3.70	2.47	22820	24950	200000	1.057	0.512	3500	26.9	2373	0.104		0.104	18.60	89	54
234	Gilbert and Nejadi (2004)	S1-a	400	155				0.44	0	0		0.00 deformed	4	18.30		3.70	2.47	22820	24950	200000	1.103	0.531	3200	56.9	2373	0.104		0.104	18.70	9/	62
232	Gilbert and Nejadi (2004)	S1-a	400	155				4:	0 0	0 0		0.00 deformed	4:	18.30		3.70	2.47	22820	24950	200000	1.138	0.561	3500	26.9	2373	0.104		0.104	19.20	87	73
237	Gilbert and Nejadi (2004)	N N	400	55.5				44.0	0 0	0 0		0.00 deformed	4 4	18.30		3.70	2.47	22820	24950	200000	1.149	0.591	3500	56.9	2373	10.0		10.10	19.20	8 6	95
238		S1-a	400	155				4.	0	0		0.00 deformed	4	18.30		3.70	2.47	22820	24950	20000	1.247	0.718	3200	26.9	2373	0.10		0.10	19.60	122	108
239		S1-a	400	155				7.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	1.293	0.731	3500	26.9	2373	0.104		0.104	20.40	136	122
240	Gilbert and Nejadi (2004)	S1-a	400	155				4.5	0 0	0 0		0.00 deformed	4 5	18.30		3.70	2.47	22820	24950	200000	1.368	0.762	3500	26.9	2373	9.104		0.104	21.50	166	152
242	Gilbert and Nejadi (2004)	S o	400	155				4	0	0 0		0.00 deformed	<u>†</u> 4	18.30		3.70	2.47	22820	24950	200000	1.506	0.784	3500	26.9	2373	10.0		10.0	23.50	242	228
243	Gilbert and Nejadi (2004)	S1-a	400	155				44.0	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	1.569	0.800	3500	56.9	2373	0.104		0.104	24.20	286	272
24.5	Gilbert and Nejadi (2004)	S1-a	400	155				44.0	00	00		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	1.644	0.816	3500	26.9	2373	9.104		0.104	25.00	332	318
346	Gilbert and Neiadi (2004)	S1-b	400	144				7 44	0	0		0.00 deformed	14	18.30	24.80	3.70	2.47	22020	24950	200000	0000	0.000	3500	26.0	2373	0.104		0.104	27.0	14.1	01
247	and Nejadi	S1-b	400	155				4.0	0	0	0	0.00 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.011	0.000	3500	26.9	2373	20.0	2907	0.10	4.78	12	- -
248	Gilbert and Nejadi (2004)	S1-b	400	155				44	0	0		0.00 deformed	4:	18.30	24.80	3.70	2.47	22820	24950	200000	0.138	0.014	3500	26.9	2373	0.104		0.104	5.66	9 !	7
249	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S7-b	400	135				4. 4	00	0 0		0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.161	0.039	3500	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	2373	20.0		4 10	6.05	<u>_</u> 4	ω 4
251	Gilbert and Nejadi (2004)	S1-b	400	155				4	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.195	0.065	3500	26.9	2373	10.0		0.10	6.58	5 6	2
	Gilbert and Nejadi (2004)	S1-b	400	155				4:	0	0		0.00 deformed	4 :	18.30	24.80	3.70	2.47	22820	24950	200000	0.264	0.072	3500	26.9	2373	0.104		0.104	6.99	50	9 1
	Gilbert and Nejadi (2004)	S-1-0	904	155				4. 6	0 0	0 0		0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.362	0.109	3500	56.9	2373	20.0		4 5	7.72	2 23	~ α
582	Gilbert and Nejadi (2004)	S1-0 S1-0	40	155				4.	0	0 0		0.00 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820	24950	200000	0.442	0.159	3500	26.9	2373	10.0		2 2 2	8.76	7 7	0 0
256	Gilbert and Nejadi (2004)	S1-b	400	155				0.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.471	0.167	3200	56.9	2373	0.104		0.104	8.76	52	Ξ
257	Gilbert and Nejadi (2004)	S1-b	400	155				4. 2	0 0	0 0		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	0.483	0.180	3500	26.9	2373	20.0		0.104	8.89	27	13
259	Gilbert and Nejadi (2004)	S1-b	400	155				4.	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.667	0.266	3500	26.9	2373	10.0		0.10	9.86	32 82	8 6
260	and Nejadi	S1-b	400	155				0.44	0 0	0 0		0.00 deformed	4;	18.30	24.80	3.70	2.47	22820	24950	200000	0.718	0.294	3500	26.9	2373	0.104		0.104	10.20	8 5	20
262	Gilbert and Nejadi (2004)	S 5-1-0	400	25.				4 4	0 0	0 0		0.00 deformed	<u> </u>	18.30	24.80	3.70	2.47	22820	24950	20000	0.816	0.341	3500	26.9	2373	2 4		10.0	10.90	38	25
263	and Nejadi	S1-b	400	155				0.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.833	0.340	3500	56.9	2373	0.104		0.104	10.90	42	28
264	Gilbert and Nejadi (2004)	S1-b	400	155				4.5	0 0	0 0		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	0.833	0.346	3500	26.9	2373	9.104		0.104	11.20	45	31
586	and Nejadi	S1-b	400	155				4	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.919	0.403	3500	26.9	2373	2 4		0.10	11.60	23 9	39
267	Gilbert and Nejadi (2004)	S1-b	400	155				0.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	0.973	0.468	3200	56.9	2373	0.104		0.104	12.40	61	47
7 58 7 58 7 59 7 59	Gilbert and Nejadi (2004)	S1-b	9 4	155				44.0	0 0	00		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	1.057	0.512	3500	26.9	2373	20.0		0.104	12.60	89 %	54
279	Gilbert and Nejadi (2004)	S1-b	400	155				4.	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	1.138	0.561	3500	26.9	2373	0.10		0.10	13.50	87	73
271	Gilbert and Nejadi (2004)	S1-b	400	155				0.44	0 0	0 0		0.00 deformed	4.5	18.30	24.80	3.70	2.47	22820	24950	200000	1.149	0.591	3500	26.9	2373	0.104		0.104	13.50	8 6	82
273	Gilbert and Nejadi (2004)	S 5 5	400	55				4	0	0 0		0.00 deformed	<u> </u>	18.30	24.80	3.70	2.47	22820	24950	20000	1.247	0.718	3500	26.9	2373	2 4		10.0	14.90	122	108
274		S1-b	400	155				44.	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	1.293	0.731	3500	26.9	2373	0.104		0.104	15.50	136	122
275	and Nejadi	S1-b	400	155				4.	0 0	0 0		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	1.368	0.762	3200	26.9	2373	9.10	2907	9.10	16.50	166	152
277	Gilbert and Nejadi (2004)	S1-b	400	155				1 4	0	0 0		0.00 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820	24950	200000	1.506	0.784	3500	26.9	2373	20.0	2907	2.0	18.40	242	228
	Gilbert and Nejadi (2004)	S1-b	400	155				0.44	0	0		0.00 deformed	4	18.30	24.80	3.70	2.47	22820	24950	200000	1.569	0.800	3500	56.9	2373	0.104	2907	0.104	19.00	286	272
	Gilbert and Nejadi (2004)	S1-b	400	155				4.6	00	00		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820	24950	200000	1.644	0.816	3500	26.9	2373	0.104	2907	0.104	19.80	332	318
	Gilbert and regadi (2004)	0-10	400	8				#	>	>		O.O. deformed	ž	10.30	74:00	9.70	74:7	07077	76830	200000	017.1	0.020	2200	50.9	6767	0.10	7067	50.0	19:30	160	200

	Specimen b (mm) S2-a 400 S2-a 400					d'(mm)			_	f.		fr,red (to)	E _{cm} (t _o)		(MDs)	<u> </u>			2			1	a(t)			
	400	(mm)	σ			(1-6-1			(MPa)	(MPa)					p/ 1 (mm)		(Nm) K.,	M. 2	, Z		(mm)		avs)
	400	155			0.65	,	0	0.00 deformed	4	30				5	200000	0.000	- 1	3500		2373	0.104	7		11.80	7	0.1
			339	130		0 6	0	0.00 deformed	4:	18.30						0.011	0.000	3500	26.9	2373	0.104		104	13.70	15	- 0
	400		330	130		0 0	0 0	0.00 deformed	4 5	18.30						0.138	0.014	3500	26.9	2373	9.104		45 4	14.70	9 1	0 0
	400	•	339	130		0	0	0.00 deformed	4	18.30						0.184	0.052	3500	26.9	2373	10.0		1 2	15.50	- 8	4
	400	•	339	130		0 6	0	0.00 deformed	4	18.30						0.195	0.065	3500	26.9	2373	0.104		104	16.00	19	s)
	400		339	130		0	0 (0.00 deformed	4 ;	18.30						0.264	0.072	3500	26.9	2373	9.10		4 5	16.40	2 20	91
	904		330	130			0 0	0.00 deformed	± ÷	10.30						0.302	0.109	3200	50.90 0.00 0.00 0.00	23/3	5 5 5		± 5	17.50	- 6	- 0
	400	•	330	8 5			0 0	0.00 deformed	‡ ‡	18.30						0.43	0.129	3500	26.9	2373	1 2 5		1 2	18.40	7 7	٥ 5
	400	•	339	130		0	0	0.00 deformed	4	18.30						0.471	0.167	3500	26.9	2373	0.104		101	18.40	52	=
	400	•	339	130		0 (0	0.00 deformed	4	18.30						0.483	0.180	3500	26.9	2373	0.104		104	18.60	27	13
	400		339	130		0 (0	0.00 deformed	14	18.30		3.70 2.4	7 22820			0.592	0.228	3500	26.9	2373	0.104		104	19.40	30	16
	400		339	130		0	0	0.00 deformed	4	18.30		3.70 2.4	.7 22820			0.667	0.266	3200	56.9	2373	0.104		104	19.90	32	18
	400		338	130		0	0	0.00 deformed	4	18.30	24.80	3.70 2.4	7 22820			0.718	0.294	3200	26.9	2373	0.104			20.40	¥	20
	400		338	130		0	0 1	0.00 deformed	4 :	18.30						0.782	0.329	3500	26.9	2373	0.104			21.10	37	23
1	400		339	130		0	0 0	0.00 deformed	4;	18.30		•				0.816	0.341	3200	60.0	23/3	40.70			21.30	99	22
	400		339	130		0	0 1	0.00 deformed	4:	18.30		•				0.833	0.340	0000	6.07	23/3	40.10			21.30	42	78
	400		338	130		0	0	0.00 deformed	4	18.30	8: 3					0.833	0.346	3200	56.9	2373	0.104			21.70	45	3.1
	400		338	130		0	0	0.00 deformed	4:	18.30	20.					0.862	0.367	3200	50.9	23/3	401.0			27.70	84	34
	400	•	338	130		0	0	0.00 deformed	4	18.30	88.					0.919	0.403	3200	56.9	2373	0.104			22.30	23	38
	400	•	338	130		0	0	0.00 deformed	4	18.30	89.					0.973	0.468	3200	56.9	2373	0.104			23.30	61	47
State Stat	400	•	338	130		0	0	0.00 deformed	4	18.30	8.					1.057	0.512	3200	56.9	2373	0.104			23.60	89	24
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			339	130		0 (0	0.00 deformed	14	18.30	.80					1.103	0.531	3500	56.9	2373	0.104			23.80	92	62
10 10 10 10 10 10 10 10		•	339	130		0 (0	0.00 deformed	4	18.30	.80					1.138	0.561	3500	26.9	2373	0.104			24.80	87	73
10 10 10 10 10 10 10 10		•	339	130		0 (0	0.00 deformed	14	18,30	.80					1,149	0.591	3200	26.9	2373	0.104			24.80	96	82
10 10 10 10 10 10 10 10			339	130		0	0	0.00 deformed	4	18.30	80					1.155	0.655	3500	26.9	2373	0.104			25.90	109	6
1		•	330	130				0.00 deformed	14	18.30	2					1 247	0.718	3500	26.9	2373	0 104			26.60	122	108
Column		•	330	3 5				0.00 deformed	7 2	18.30	8 8					1 203	0.734	3500	26.03	2373	2 2			27.30	3 25	3 5
Mathematical Color Mathema		•	0000	130			0 0	0.00 deformed	<u> </u>	10.30	8 8					1 260	0.763	3500	50.90	227.3	100			20.40	30	1 5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			600	200			0 0	0.00 deformed	± ;	10.30	8 8					. 300	0.702	3200	60.9	23/3	5 5			26.40	991	70.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			339	130		0 0	0 0	0.00 deformed	4 ;	18.30	8. 8					1.397	0.772	3200	602	23/3	40.10			29.30	200	200
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			939	200			0 0	0.00 deformed	<u> </u>	18.30	8 8					000.1	0.78	0000	6.03	23/3	40.0			30.00	747	977
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			338	130		0	0	0.00 deformed	4	18.30	8 :					1.569	0.800	3200	50.9	23/3	401.0			32.10	586	717
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,		•	338	130		0	0	0.00 deformed	4	18.30	89					1.644	0.816	3200	26.9	2373	0.104			32.10	332	318
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,			338	130		0	0	0.00 deformed	14	18.30						1.713	0.825	3200	6.02	2373	0.104			32.50	394	380
400 1555 3399 150 0.056 0.00 0.00 offermed 14 1830 2.826 3.70 2.47 2220 2.826 2.800 0.00 0.00 0.00 0.00 0.00 0.00 0.0		•	338	130		، 0	0	0.00 deformed	4	18.30						0.000	0.000	3200	56.9	2373	0.104		104	4.43	14.1	0.1
10 15 15 15 15 15 15 15			339	130		٥ د	0	0.00 deformed	4	18.30						0.011	0.000	3200	26.9	2373	0.104		104	5.99	15	-
400 155 339 190 066 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0	0	0.00 deformed	4	18,30						0.138	0.014	3200	26.9	2373	0.104		104	6.83	16	2
400 155 339 150 0.65 0.00 defermed 14 13.0 2.80 370 2.40 2.00 0.00 0.14 0.00 2.20 2.20 0.00 0.14 0.00 2.20 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.00 2.20 0.00 0.14 0.10 0.14 0.10 0.14 0.14 0.1		•	339	130		0 (0	0.00 deformed	14	18.30						0.161	0.039	3500	26.9	2373	0.104		104	7.18	17	3
400 155 339 130 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0 (0	0.00 deformed	4	18.30						0.184	0.052	3500	26.9	2373	0.104		104	7.42	18	4
400 155 339 190 656 0 0 0 0 27 200 269 0 200 650 0		•	330	130				0.00 deformed	14	18.30						0 195	0.065	3500	26.9	2373	0 104		104	7.80	0	Ľ
400 155 359 150 656 0 0 0 0 247 256 259 0 259 0		•	000	3 5			0 0	0.00 deformed	7	10.00						0.00	0.000	2000	0.02	2272	5 6		1 2	9 9	2 6	0 (
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	904	,	000	200			0 0	0.00 deformed	± ;	10.30						107.0	0.072	0000	50.9	2273	5 6		5 5	0 0	2 5	1 0
Marie Mari			339	130		0	0 0	0.00 deformed	4;	18.30						0.362	0.108	3200	60.0	23/3	40.70		40.7	8.43	17 6	- 0
400 155 339 130 0 055 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	338	130		0	0	0.00 deformed	4	18.30						0.431	0.129	3200	56.9	2373	0.104		104	9.26	77	œ
156 339 130 0.65 0.0 0.00 deformed 14 18.30 2.480 3.70 2.47 2.280 2.495 0.0000 0.471 0.167 3.900 2.59 2.273 0.104 4.437 0.104 0.105 0.104 0.	400	•	338	130		0	0	0.00 deformed	4	18.30						0.442	0.159	3200	56.9	2373	0.104		104	10.00	54	10
400 1155 339 130 0.65 0.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	338	130		0	0	0.00 deformed	4	18.30						0.471	0.167	3200	56.9	2373	0.104		104	10.00	52	Ę
400 155 339 139 065 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0	0	0.00 deformed	4	18.30						0.483	0.180	3200	26.9	2373	0.104		104	10.20	27	13
400 155 339 130 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		•	339	130		0 (0	0.00 deformed	14	18,30						0.592	0.228	3200	26.9	2373	0.104		104	10.80	30	16
400 155 339 130 0 66 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0	0	0.00 deformed	14	18.30						0.667	0.266	3500	56.9	2373	0.104		104	11.30	32	18
400 155 339 150 165 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0	0	0.00 deformed	14	18.30						0.718	0.294	3500	56.9	2373	0.104		104	11.70	8	20
400 155 339 130 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	339	130		0	0	0.00 deformed	14	18.30						0.782	0.329	3500	56.9	2373	0.104		104	12.30	37	23
15 15 15 15 15 15 15 15		•	330	130			-	0.00 deformed	14	18 30						0.816	0.344	3500	0 90	2373	0 104		104	12.40	30	25
400 155 359 150 666 0 <th< td=""><td></td><td>•</td><td>330</td><td>9 6</td><td></td><td></td><td></td><td>DO deformed</td><td>. 5</td><td>00.01</td><td></td><td></td><td></td><td></td><td></td><td>0.00</td><td>0.00</td><td>2000</td><td>0.00</td><td>2373</td><td>101</td><td></td><td>104</td><td>2 2 2</td><td>3 5</td><td>2 6</td></th<>		•	330	9 6				DO deformed	. 5	00.01						0.00	0.00	2000	0.00	2373	101		104	2 2 2	3 5	2 6
400 155 359 150 0.65 0 0 0 0.00 deformed 14 1830 2480 370 247 2220 2495 20000 0.957 350 273 0.104 4437 0.104 4		,	9 6	3 5			0 0	Dalling Co.	;	00.00		•				9 6	25.0	000	900	25.00	5 5		5 5	25.30	7 4	3 6
400 155 359 130 0.65 0 0 0 0 0.00 deformed 14 1830 2489 370 247 2220 2495 20000 0.973 0.973 0.973 0.974 437 0.104 437 0.104 13.20 24.99 0.000 0.973 0.			600	200			> 0	o.oo deloimed	± ;	00.00						0.000	0.040	0000	50.9	5273	5.0		5 5	12.70	2 5	,
155 339 130 0.65 0 0 0 0.00 defermed 14 18.30 24.80 3.70 247 22820 24.93 2.000 0.019 0.03 25.9 27.7 0.104 4.37 0.104 4.37 0.104 13.20 5.0 5.0 0.00 defermed 14 18.30 24.80 3.70 24.7 22820 24.93 2.000 0.019 0.025 27.3 0.104 4.37 0.104 4.37 0.104 13.20 5.0 0.00 defermed 14 18.30 24.80 3.70 24.7 22820 24.93 2.000 0.025 2.0 2.0 0.104 4.37 0.104 13.20 0.00 0.00 defermed 14 18.30 24.80 3.70 24.7 22820 24.93 2.0 0.00 25.3 3.0 0.104 4.37 0.104 4.37 0.104 13.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	004		600	200			0 0	0.00 deformed	± ;	10.30						0.002	0.307	2200	60.9	23/3	5 5		5 5	0.21	9 6	40
155 339 130 0.65 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22820 24.95 20000 0.973 0.458 3500 25.8 27.7 0.144 4437 0.104 14.10 611 14	400		338	130		0	0	0.00 deformed	14	18.30		5.70 2.4	7282			919	0.403	3200	50.9	23/3	0.104		451.7	13.20	23	33
155 339 130 0.65 0 0 0 0.00 defermed 14 18.30 2.4.80 3.70 2.47 22820 24.99 200000 1.057 0.551 3500 2.6.9 2273 0.104 4.437 0.104 4.437 0.104 14.30 2.8.9 130 0.65 0 0 0 0.00 defermed 14 18.30 2.4.80 3.70 2.47 22820 24.99 200000 1.05 0.551 3500 2.6.9 2273 0.104 4.437 0.104 14.30 2.8 15.0 2.8 1	400	•	338	130		0	0	0.00 deformed	4	18.30		3.70 2.4	7 22820			0.973	0.468	3200	56.9	2373	0.104		104	14.10	61	47
155 339 130 0.65 0 0 0 0.00 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.651 350 0.659 0 0 0 0 0.00 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.651 350 0.65 0 0 0 0 0 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.651 350 0.65 0 0 0 0 0 0 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.651 350 0.65 0 0 0 0 0 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.651 350 0.651 370 0.104 4437 0.104 18.50 0.00 defermed 14 18.30 24.80 37.0 247 22820 24.99 200000 11.03 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0	400	•	338	130		0	0	0.00 deformed	4	18.30		3.70 2.4	7 22820			1.057	0.512	3200	56.9	2373	0.104		104	14.30	89	54
155 339 130 0.65 0 0 0 0.00 deformed 14 18.30 24.80 3.70 24.7 22820 24.89 20000 11.49 0.891 3500 26.9 27.73 0.104 443.7 0.104 418.0 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9	400		338	130		٥	0	0.00 deformed	4	18.30		3.70 2.4	.7 22820			1.103	0.531	3200	26.9	2373	0.104		104	14.70	92	62
155 338 130 0.65 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400	•	339	130		0	0	0.00 deformed	14	18.30		3.70 2.4	7 22820			1.138	0.561	3500	56.9	2373	0.104		104	15.50	87	73
155 339 130 0.65 0 0 0 0 0 0 0 0 0	400	•	330	130				0 00 deformed	14	18 30		2 70 2 4	7 22826			1 140	0.501	3500	28.0	2373	104		104	15.50	8	68
155 339 130 0.65 0 0 0 0.00 defermed 14 18.30 24.80 3.70 24.7 22820 24.99 20000 1.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	400	•	3 6	3 5			0	DO deferment	;	0000		2.0	1				1000	000	0.00	2220	5 6			00.00	3 5	9 6
155 339 130 0.65 0 0 0.00 deformed 14 18.30 2.480 3.70 2.47 22820 24.99 2.0000 1.24 8.99 0.718 3500 2.89 2273 0.144 4437 0.104 17.80 17.80 17.8 18.0 1.24 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	400		338	130		0	0	0.00 deformed	4	18.30		5.70 2.4	7977			199	669.0	0000	6.03	23/3	400		\$	10.20	8	50
155 339 130 0.65 0 0 0 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.293 0.731 3500 2.69 2273 0.104 4.437 0.104 18.50 165 185 339 130 0.65 0 0 0 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.397 0.772 3500 2.69 2273 0.104 4.437 0.104 18.20 166 165 170 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.397 0.774 3500 2.69 2.773 0.104 4.437 0.104 4.437 0.104 2.105 2.00 1.50 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.50 0.774 3500 2.69 2.73 0.104 4.437 0.104 2.109 2.20 2.20 1.50 0.00 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.50 0.704 3500 2.69 2.73 0.104 4.437 0.104 2.109 2.20 2.20 1.50 0.00 0.00.deformed 14 18.30 2.480 3.70 2.47 22820 2.499 200000 1.50 0.704 3500 2.69 2.73 0.104 4.437 0.104 2.109 2.20 2.20 1.50 0.00 0.00.deformed 14 18.30 2.480 3.70 2.47 2.2820 2.499 200000 1.50 0.704 2.50 0.704 4.437 0.104 2.109 2.20 2.20 1.50 0.00 0.00.deformed 14 18.30 2.480 3.70 2.47 2.20 0.104 2.20 0.20 2.69 2.73 0.104 4.437 0.104 2.109 2.20 2.20 1.50 0.00 0.00 0.104 2.40 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0	400		338	130		0	0	0.00 deformed	4	18.30		3.70 2.4	7 22820			1.247	0.718	3200	56.9	2373	0.104		104	16.90	122	108
155 339 130 065 0 0 0 0.00 deformed 14 18.30 24.80 370 247 22820 24.99 200000 1.389 0.772 3500 26.9 2273 0.104 4437 0.104 19.20 200 15.65 10.00 0.05 0 0 0.00 deformed 14 18.30 24.80 370 247 22820 24.99 200000 1.397 0.772 3500 26.9 2273 0.104 4437 0.104 19.20 200 15.65 10.00 0.00 deformed 14 18.30 24.80 3.70 247 22820 24.99 200000 1.596 0.500 26.9 2273 0.104 4437 0.104 21.00 200 15.65 10.00 0.05 0.00 0.00 deformed 14 18.30 24.80 3.70 247 22820 24.99 200000 1.596 0.500 26.9 2273 0.104 4437 0.104 21.00 22.00 200 15.65 10.00 0.00 deformed 14 18.30 24.80 3.70 247 22820 24.99 200000 1.596 0.500 26.9 273 0.104 4437 0.104 21.00 22.00 200 1.596 0.00 0.00 deformed 14 18.30 24.80 3.70 247 22820 24.99 200000 1.596 0.500 26.9 273 0.104 4437 0.104 21.00 22.00 200 1.596 0.00 0.00 deformed 14 18.30 24.80 3.70 247 22820 24.99 200000 1.596 0.500 26.9 273 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 1.596 0.500 0.104 4437 0.104 21.00 22.00 200 0.104 4437 0.104 21.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 4437 0.104 21.00 2.00 200 0.104 2.00 200	400	•	339	130		0	0	0.00 deformed	4	18.30		3.70 2.4	7 22820			1.293	0.731	3200	56.9	2373	0.104		104	17.50	136	122
155 339 130 0.65 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.597 0.774 3500 26.9 2773 0.104 4437 0.104 19.20 200 1.506 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.506 0.00 6.50 0 0 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.506 0.00 26.9 2773 0.104 4437 0.104 21.00 2.86 1.50 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.506 0.00 26.9 2773 0.104 4437 0.104 2.109 3.32 3.00 1.50 0.00 0.00 deformed 14 18.30 24.80 3.70 2.47 22820 24.99 200000 1.504 0.80 3.70 2.47 2.820 24.99 200000 1.504 0.80 3.70 2.47 2.820 24.90 3.70 2.47 2.820 24.90 3.70 2.47 2.820 24.90 3.70 2.47 2.820 24.90 3.70 2.47 2.820 3.80 3.70 3.70 3.70 3.70 3.70 3.70 3.70 3.7	400	•	339	130		0	С	0.00 deformed	14	18.30		3.70 2.4	7 22820			1.368	0.762	3500	56.9	2373	0.104		104	18.50	166	152
40 155 339 150 055 0 0 0 0.00 defined 14 1830 2480 3770 247 2280 2489 200000 155 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	330	130				0 00 deformed	. 7	18 30		70 07	7 22826			1 307	0.772	3500	28.0	2373	104		101	10.20	200	186
400 155 359 130 056 0 0 0 0.00demmed 14 183.0 24.80 3.70 2.47 22220 24.99 200000 1.599 0.800 25.9 2373 0.104 4437 0.104 21.80 28.80 3.70 2.47 22220 24.99 0.800 25.9 2373 0.104 4437 0.104 21.80 28.80 2.80 2.80 2.80 2.80 2.80 2.80			600	001			> 0	o.oo deloimed	± ;	00.00		7.70	7077			100.	277.0	0000	50.9	5273	5.0		5 5	19.20	202	2 2
400 155 339 130 0.65 0 0 0 0.000 deformed 14 183.0 24.80 3.70 2.47 22820 24.99 200000 1.59 0.800 26.9 2573 0.104 4437 0.104 2.160 3.000 1.55 0.39 130 0.55 0 0 0 0.000 deformed 14 183.0 2.48 0.2850 2.50000 0.164 0.816 3.9500 26.9 2573 0.104 4437 0.104 2.180 3.00000 0.155 0.39 130 0.155 0.104 4437 0.104 2.180 3.00000 0.155 0.39 0.155 0.104 4.437 0.104 2.180 3.00000 0.155 0.39 0.155 0.104 0.100 3.000 0.155 0.105 0		•	338	130	0.65	0	0	0.00 deformed	4		24.80	3.70 2.4	7 22820			1.506	0.784	3200	56.9	2373	0.104	4437 0.	104	20.40	242	778
400 155 339 130 0.65 0 0 0 0.000 deformed 14 1830 2.880 3.370 2.47 2.2520 2.4980 2.00000 1.644 0.816 3.500 2.8.9 2.373 0.104 4.437 0.1044 2.180 3.00000 1.044 0.816 3.500 2.8.9 2.373 0.104 4.437 0.104 2.180 3.00000 1.044 0.816 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 3.00000 1.044 0.044 0.044 3.00000 1.044 0.044			339	130	0.65	0	0	0.00 deformed	4		24.80	3.70 2.4	.7 22820		•	1.569	0.800	3200	56.9	2373	0.104	4437 0.	104	21.60	286	272
100 100 100 100 100 100 100 100 100 100		•	339	130	0.65	0	c	0 00 deformed	14		24 80	3.70 2.4	7 22820			1 644	0.816	3500	26.9	2373	0 104	4437 0	104	21.80	332	318
		,	000	3 5	8.6		0	O.O. delorined	: :		00.17	00	1 2002		•	5	0.00	0000	0.00	2000	5 6		5 3	00.12	700	5 6

	Study information	mation 2	Cross-section 3 4	ιΩ	9	7	Reinforcement	nent 9	10	1	12	13	4	15	16	17	18	19	20	21 22		23 24	. 25	Loading 26	3 27	7 28		Deflection 29 30	ction 31	l _
	Author	Specimen	b (mm) h (mm)	A _{sd} (mm²)	, d (mm)	p, (%)	A ₂ (mm²)	(mm)	d ₂ (mm)	p ₂ (%)	type	(days)	f _{cm} (t ₀) f _{cm}	f _r (t ₀) (MPa) (MPa)		f _{r,red} (t ₀) E _{cm} (t ₀) (MPa)	t ₀)	(MPa) E _s (I	(MPa) φ (-)	(%) *** 3	o) L (mm)	2	M ₁₄ (Nm)	E K	M _{1.2} (N	(Nm) K ₁₂	a (t)	(mm) t (davs)	s) t-t _o (days)	ays)
351	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-a S3-a	400 15			88		0 0	0 0		0.00 deformed 0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820 22820	24950 24950	200000	0.000 0	0000	3500	26.9	2373 (0.104	8977 0. 8977 0.	0.104	10.70	1.7	0. ₁
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-a S3-a		155 45	452 13 452 13	130 0.87		00	0 0	0.0	0 deformed	<u>4</u> 4	18.30	24.80	3.70	2.47	22820 22820		00000		.014	3500	26.9				2 2	14.50	16	0 0
356		S3-a	•					0 0	0		0 deformed	4 ;	18.30	24.80	3.70	2.47	22820		00000		.052	3500	26.9				40.	14.70	8 6	4 1
	and Nejadi	S3-a						00	0 0		0 deformed	<u> 4</u>	18.30	24.80	3.70	2.47	22820		00000		.072	3500	26.9				<u> </u>	15.70	20	ဂ ဖ
	Gilbert and Nejadi (2004)	S3-a						0 0	0 0		0 deformed	4 5	18.30	24.80	3.70	2.47	22820		00000		109	3500	26.9				40.	16.50	21	~ a
	and Nejadi	S3-a	•						. 0	0.0	0.00 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820		00000		159	3500	26.9				4	17.60	7 7 7	01
	Gilbert and Nejadi (2004)	S3-a						0 0	0 0	0.0	0 deformed	4 5	18.30	24.80	3.70	2.47	22820		00000	0.471 0	167	3500	26.9				40.5	17.70	52	- :
	Gilbert and Nejadi (2004)	S3-a	•						. 0	0.0	0 deformed	<u>†</u> 4	18.30	24.80	3.70	2.47	22820		00000		228	3500	26.9				2 2	18.70	3 %	91
	and Nejadi	S3-a					77	0 0	0	0.0	0 deformed	4;	18.30	24.80	3.70	2.47	22820		00000		.266	3500	26.9				40	19.20	32	18
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-8					, ,	0 0	00	0.00	U deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		329	3500	6.92				4 4	19.70	\$ k	23
	and Nejadi	S3-a	•					0	. 0	0.0	0 deformed	4	18.30	24.80	3.70	2.47	22820		00000		341	3500	26.9				2	20.60	38	25
	Gilbert and Nejadi (2004)	S3-a		-				0 0	0 0	0.0	0 deformed	4 5	18.30	24.80	3.70	2.47	22820		00000		340	3500	26.9				40.5	20.70	42	28
	Gilbert and Nejadi (2004)	S. S.									o deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		367	3500	26.9				<u> </u>	21.00	t 4	34
	Gilbert and Nejadi (2004)	S3-a	•					. 0	0		0 deformed	4	18.30	24.80	3.70	2.47	22820		00000		.403	3500	26.9				40	21.60	23	39
372	Gilbert and Nejadi (2004)	S3-a						0 0	0 0		0 deformed	4:	18.30	24.80	3.70	2.47	22820		00000		.468	3500	26.9				4 5	22.50	61	7 4 7
374	Gilbert and Nejadi (2004)	S3-8									0 deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		512	3500	26.9				<u> </u>	23.20	90 92	62
	Gilbert and Nejadi (2004)	S3-a	•					0	0	0.0	0.00 deformed	4	18.30	24.80	3.70	2.47	22820		00000		561	3500	26.9				104	24.20	87	73
	Gilbert and Nejadi (2004)	S3-a						0 0	0 0		0 deformed	4:	18.30	24.80	3.70	2.47	22820		00000		591	3500	26.9				25	24.10	96	82
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-a						0 0	0 0		U deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		718	3500	96.9				2 2	25.10	109	108
	Gilbert and Nejadi (2004)	S3-a	•					. 0	. 0		0 deformed	4	18.30	24.80	3.70	2.47	22820		00000		731	3500	26.9				4	26.50	136	122
	and Nejadi	S3-a						0	0		0 deformed	4 ;	18.30	24.80	3.70	2.47	22820		00000		762	3500	26.9				40.5	27.60	166	152
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-8									o deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		784	3500	6.02				<u> </u>	28.80	240	228
	and Nejadi	S3-a	•					. 0	. 0		0 deformed	4	18.30	24.80	3.70	2.47	22820		00000		.800	3500	26.9				104	29.10	286	272
384	Gilbert and Nejadi (2004)	S3-a		-				0 0	0 0	0.0	0.00 deformed	4;	18.30	24.80	3.70	2.47	22820		00000		.816	3500	26.9				40.5	29.60	332	318
380	Gilbert and Nejadi (2004)	S3-8							0		0 deformed	47 14	18.30	24.80	3.70	2.47	22820		00000		979	3500	56.9				104	29.80	384	380
387	Gilbert and Nejadi (2004)	83-p		55	452 13	30 0.87		. 0	. 0	0.0	0.00 deformed	<u>†</u> ‡	18.30	24.80	3.70	2.47	22820		200000	0.011	000	3500	26.9		10.0	5967 0.	0.10	6.98	15	-
	Gilbert and Nejadi (2004)	S3-b		•				0 0	0		0.00 deformed	4 5	18.30	24.80	3.70	2.47	22820		00000		014	3500	26.9				40.5	7.80	16	2 0
380	Gilbert and Nejadi (2004)	83-0								0.00	0 deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		052	3500	26.9				\$ \$	8.18	2 8	υ 4
391	Gilbert and Nejadi (2004)	S3-b		•				0	0		0 deformed	4	18.30	24.80	3.70	2.47	22820		00000		990	3500	26.9				104	8.80	19	2
388	Gilbert and Nejadi (2004)	350		•				0 0	0 0		0 deformed	4 5	18.30	24.80	3.70	2.47	22820		00000		1072	3500	26.9				4 5	9.23	8 8	9 1
39.5	Gilbert and Nejadi (2004)	S3-p						0	. 0		0.00 deformed	<u>†</u> 4	18.30		3.70	2.47	22820		00000		129	3500	26.9				2 2	10.23	52	- 00
	Gilbert and Nejadi (2004)	S3-b	- '					0 0	0 0	0.0	0.00 deformed	4;	18.30		3.70	2.47	22820		00000		159	3500	26.9				40.5	10.87	24	9 ;
	Gilbert and Nejadi (2004)	33-p									0 deformed	<u>†</u> ‡	18.30	24.80	3.70	2.47	22820		00000		180	3500	26.9				\$ 5	11.03	27	- 6
	and Nejadi	S3-b	- '	•				0 0	0		0 deformed	4;	18.30		3.70	2.47	22820		00000		228	3500	26.9				40	11.71	8 3	16
	Gilbert and Nejadi (2004)	83-0									0 deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		29 6	3500	26.9				\$ \$	12.53	3 8	20
404	and Nejadi	83-p	-	•				0	0		0.00 deformed	4 :	18.30		3.70	2.47	22820		00000	0.782 0	.329	3500	26.9				104	13.11	37	23
4 4 4 4 4 4 GZ	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	83-P						0 0	0 0	0.0	0 deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		25.25	3500	56.9				\$ Z	13.27	88 64	25 28
404	and Nejadi	9-9:S		•				0	0		0 deformed	4	18.30		3.70	2.47	22820		00000		346	3500	26.9				2	13.58	45	31
405	Gilbert and Nejadi (2004)	93-p						0 0	0 0	0.0	0 deformed	4 5	18.30		3.70	2.47	22820		00000		.367	3500	26.9				4 5	13.59	8 5	34
4 4 4 4 4 4 4 4 4 4 4 4 4	Gilbert and Nejadi (2004)	83-p								0.0	0.00 deformed	4 4	18.30		3.70	2.47	22820		00000		468	3500	26.9				\$ \$	14.92	g 5	47
408	Gilbert and Nejadi (2004)	S3-b		•				0	0	0.0	0.00 deformed	4	18.30		3.70	2.47	22820		00000		.512	3500	26.9				104	15.22	89	54
4 4 10	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S3-p						0 0	0 0	0.0	0.00 deformed	4 4	18.30	24.80	3.70	2.47	22820		00000		561	3500	26.9				2 2	15.38	76	62
4 11	Gilbert and Nejadi (2004)	S3-p						. 0	. 0	0.0	0.00 deformed	4	18.30		3.70	2.47	22820		00000		591	3500	26.9				2 2	16.20	8	82
	Gilbert and Nejadi (2004)	S3-b	- '	•				0 0	0	0.0	0.00 deformed	4;	18.30		3.70	2.47	22820		00000		.655	3500	26.9	2373 (5967 0.	40.	17.06	109	95
	Gilbert and Nejadi (2004)	83-0 3-10 3-10 3-10 3-10 3-10 3-10 3-10 3								0.0	0.00 deformed	4 4	18.30		3.70	2.47	22820		00000		731	3500	8.02	2373		5967 0.	4 4	18.30	7 %	108
4 15	Gilbert and Nejadi (2004)	9-9:S		•				0	0	0.0	0 deformed	4	18.30		3.70	2.47	22820		00000		762	3500	26.9			5967 0.	2	19.30	166	152
416	and Nejadi	S3-b						0 0	0 0	0.0	0 deformed	4 ;	18.30		3.70	2.47	22820		00000		772	3500	26.9			5967 0.	4 5	20.06	200	186
	Gilbert and Nejadi (2004)	83-p								0.0	0.00 deformed	<u>†</u> †	18.30	24.80	3.70	2.47	22820		00000	1.569	800	3500	26.9	2373	\$ \$	5967 0.	2 2	21.94	242	272
4 19	and Nejadi	S3-b	-	•			77	0	0	0.0	0 deformed	4 ;	18.30		3.70	2.47	22820		00000		.816	3500	26.9	2373 (5967 0.	401	22.44	332	318
4.20	Gilbert and Nejadi (2004)	23-D					*	0	0	0.0	n deformed	14	18.30		3.70	2.47	72820		00000		.825	3200	26.9	23/3		5967 U.	401.	22.90	355	380

	Study information		¢	Cracking moment	moment	¢		Uncracked cross-section	section	9	;	Ē	cracked cross-section	ection	;	9		Deflection	= 9	
	-	7	ო	4	S)	9	_	∞	ത	10	-	12	13	4	12	16	11	18	19	50
	Author	Specimen	W _c (mm³) M _i	M _{sw} (Nm)	M _{cr} (Nm)	M _{cr} M _{max} (Nm) (%)	M _{cr} /M _{max} (%)	(mm ⁴) S _c	(mm³) A	A _{ll} (mm²) A _{lle}	(mm²) Z _{lc,1}	(mm) z _{ll,1}	_≗	(mm ⁴) I _{II}	I, (mm ⁴) S ₁	S _{ll} (mm³) 1	a _{num.int.} t-t ₀ (days) (mm)	a _{exp}	a _{num} (//mm)	anum.int./aexp (%)
← (Gilbert and Nejadi (2004)	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	300.54	261.08		213089556	778538	0.1	4.63	4.95	93.5
Nα	Gilbert and Nejadi (2004)	7 C	4816667	3254 ×		24900	47.7	818833333	458019	23255	19733		261.08		213089556	778538	- ^	7 2.5	2.22	- o
4	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733		261.08		213089556	778538	ıπ	5.29	6.15	86.0
വ	and Nejadi	B1-a	4816667	3254 <		24900	47.7	818833333	458019	23255	19733				213089556	778538	4 1	5.38	6.27	85.8
۸ ۵	Gilbert and Nejadi (2004)	B 12 12 13 14	4816667	3254 ×	11887 <	24900	47.7	818833333	458019	23255	19733			10244366	213089556	778538	റ ഗ	5,43	6.39	83.0 88.3
- 00	and Nejadi	87.50 2.60	4816667	3254 <	•	24900	47.7	818833333	458019	23255	19733		•		213089556	778538	^	6.1	6.67	91.6
6	and Nejadi	B1-a	4816667	3254 <	Ċ	24900	47.7	818833333	458019	23255	19733		•		213089556	778538	80	6.40	6.80	8
2 :	and Nejadi	B1-a	4816667	3254 <		24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	9 :	6.46	7.16	90.2
= ;	Gilbert and Nejadi (2004)	B1-a	4816667	3254 <	11887 <	24900	7.74	818833333	458019	23255	19733		261.08	10244366	213089556	778538	- ;	6.58	7.19	31.5
7 5	and Nejadi	<u> </u>	4816667	3254 ×		24900	7.74	818833333	458019	23255	19733		261.00	10244300	213089556	778538	<u>5</u> &	20.0	7.47	- 0
5 4	and Nejadi	2 G	4816667	3254 ^		24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	5 62	7.40	7.61	97.2
15	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	20 5	7.62	7.78	97.9
16	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	23	7.89	8.10	97.4
17	and Nejadi	B1-a	4816667	3254 <		24900	47.7	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	25	8.03	8.17	98.3
9	and Nejadi	B1-a	4816667	3254 <		24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	28	8.10	8.22	98.5
19	and Nejadi	B1-a	4816667	3254 ^	11887 <	24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	ક ર	8.10	8.32	97.4
50	Gilbert and Nejadi (2004)	B1-a	4816667	3254 ×	11887 <	24900	47.7	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	778538	\$ 8	8.23	85 E	98.7
- 6	Gilbert and Nejadi (2004)	ω .	4816667	3254 ^	1188/ <	24900	1.14	818833333	458019	23255	19733		261.08	10244366	213089556	770530	9 P	0.47	0.00	C. 00
23 6	and Nejadi		481667	3254 ^		24900	47.7	81883333	458019	23255	19733			10244366	213089556	778538	7	9.72	t 90 00 00 00	100.0
2 2	and Nejadi	2 G	4816667	3254 ^		24900	47.7	818833333	458019	23255	19733	54		10244366	213089556	778538	\$ 8	9.26	9.50	100.7
25	and Nejadi	2 <u>6</u>	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	73	9.42	9.47	99.5
26	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	54		10244366	213089556	778538	82	9.48	9.47	100.1
27	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733			10244366	213089556	778538	96	9.54	9.78	97.5
28	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	778538	108	9.93	10.03	0.66
29	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	122	10.12	10.34	97.9
30	and Nejadi	87. 69.	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	152	10.43	10.59	98.5
. 6	Gilbert and Nejadi (2004)	8 12 49 42 49	4816667	3254 v	1188/ <	24900	7.74	818833333	458019	23255	19733	300.54	261.08		213089556	778538	98 - 86	10.55	10.88	97.0
33 8	and Nejadi	2 C	4816667	3254 ^	11887 <	24900	47.7	818833333	458019	23255	19733		261.08		213089556	778538	272	11.25		2.96
34	and Nejadi	B 1-8	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733		261.08		213089556	778538	318	11.55	11.82	7.76
35	and Nejadi	B1-a	4816667	3254 <	11887 <	24900	47.7	818833333	458019	23255	19733		261.08	10244366	213089556	778538	380	11.83	12.06	98.1
36	Gilbert and Nejadi (2004)	B14	4816667	3254 ^		17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	0.1	2.04	1.98	103.0
, oc	Gilbert and Nejadi (2004)	2 G	4816667	3254 ^	1188/ <	1,000	6.69 6.69	818833333	458019	23255	19733		201.08	10244366	213089556	770538	- c	2.06	2.2	83.2
9 68	and Nejadi	<u> </u>	4816667	3254 ×		17000	6. 00 6. 00	818833333	458019	23255	19733		261.08	10244366	213089556	778538	Nα	2.29	4 5	95.9
40	and Nejadi	2 <u>6</u>	4816667	3254 ^	11887 <	17000	6.69	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	778538	0.4	2.39	262	91.2
. 4	and Nejadi	8 4 5	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	· 10	2.42	2.72	89.0
42	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733			10244366	213089556	778538	9	2.54	2.82	90.1
43	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733			10244366	213089556	778538	7	2.73	3.02	90.4
4 4	Gilbert and Nejadi (2004)	B1-b	4816667	3254 <	11887 <	17000	6.00	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	778538	ω (2.86	3.12	91.7
4 4 0 4	Gilbert and Nejadi (2004)	2 G	4816667	3254 ^	1188/ <	1,000	6.69 6.69	818833333	458019	23255	19733			10244366	213089556	770538	2 7	2.90	3.30	9. 78 9. 9
4 4	and Nejadi	<u> </u>	4816667	3254 ^	11887 <	17000	6. 69 6. 69	818833333	458019	23255	197.33		261.08	10244366	213089556	778538	<u> </u>	2.93	3.50	88 69
48	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	16	3.20	3.63	88.2
49	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	18	3.35	3.76	89.1
20	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54		10244366	213089556	778538	8 8	3.45	3.89	88.7
52	Gilbert and Nejadi (2004)	<u> </u>	4816667	3254 ×	11887 <	17000	6. 00 6. 00	818833333	458019	23255	19733	4 4		10244366	213089556	778538	3 %	3.65	- 4	87.5
53	Gilbert and Nejadi (2004)	8 4 9	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	8 2	3.68	4.17	88.2
54	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	31	3.68	4.27	86.2
22	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	8	3.74	4.29	87.2
26	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.00	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	778538	39	3.86	4.45	86.7
28 2	Gilbert and Nejadi (2004)	<u> </u>	4816667	3254 ^	11887 <	17000	6. 00 0. 00 0. 00	81883333	458019	23255	19733		261.08	10244366	213089556	778538	4 4	9.39	0 4 4	85.0
29	and Nejadi	8 4 9	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54	•	10244366	213089556	778538	62	4.25	4.98	85.3
09	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54	•	10244366	213089556	778538	73	4.33	5.26	82.3
61	and Nejadi	B1-b	4816667	3254 ^	11887 <	17000	6.69	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	85	4.36	5.28	82.6
29	Gilbert and Nejadi (2004)	6 4 5 4	4816667	3254 v	1188/ <	1,000	6.99	818833333	458019	23255	19733	300.54	261.08	10244366	213089556	779538	£ 6	14.4	0. n	9.6
64	and Nejadi	8 9 9	4816667	3254 ^	11887 <	17000	6.09 6.09	818833333	458019	23255	19733		261.08	10244366	213089556	778538	2 2	4.69	5.04	79.0
92	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733		261.08	10244366	213089556	778538	152	4.84	6.25	4.77
99	and Nejadi	B14	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	186	4.89	6.48	75.5
69	and Nejadi	B1-b	4816667	3254 <	11887 <	17000	6.69	818833333	458019	23255	19733	54	261.08		213089556	778538	228	5.09	6.91	73.7
0 00	and Nejadi	<u> </u>	4816667	3254 ^	11887 <	17000	6. 00 0. 00 0. 00	81883333	458019	23255	197.33		261.08		213089556	778538	318	5.35	7 7	0.67
8 2	Gilbert and Nejadi (2004)	8 7 8 9	4816667	3254 <	11887 <	17000	69.9	818833333	458019	23255	19733	54	261.08	10244366	213089556	778538	380	5.47	4.	73.5
	,						Í							ı						I


	Study information			Cracking moment	moment			Uncracked cross-section	oss-section			Fully cr	Fully cracked cross-section	-section				Deflection	E.	
	-	2	က	4	2	9	7	80	တ	10	F	12	13	4	12	16	17	18	19	20
	Author	Specimen	W _c (mm³) M _{Sw}	(Nm)	M _{cr} (Nm)	M _{max} (Nm)	M _{cr} /M _{max} (%)	I _c (mm ⁴) S	S _c (mm³)	A _{ll} (mm²) A _{lle}	A _{lic} (mm²) z _{lic,1}	, (mm) z _{ll,1}	(mm)	I _{lic} (mm ⁴)	I ₁ . (mm ⁴) S	S _{ll} (mm³)	a _{num.int.} t-t ₀ (days) (mm)		a _{num} .	a _{num.int.} /a _{exp} (%)
71	Gilbert and Nejadi (2004)	B2-a B2-a	4401042	3110 <	10861 <		43.	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	0.1	5.13	5.03	102.0
73	Gilbert and Nejadi (2004)	B2-a	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	- 2	5.74	5.97	96.1
74	Gilbert and Nejadi (2004)	B2-a B2-a	4401042	3110 ×	10861 ×			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	ო 4	5.85	6.12 6.25	95.6
92	Gilbert and Nejadi (2004)	B2-a	4401042	3110 ^	10861		43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	t ro	6.02	6.40	. 42 4: 4-
77	Gilbert and Nejadi (2004)	B2-a	4401042	3110 <	10861 ×			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	1 0	6.32	6.55	96.5
79	Gilbert and Nejadi (2004)	62-a B2-a	4401042	3110 <			43.8 8.83	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	~ 80	7.08	6.96	101.7
80	and Nejadi	B2-a	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	9 ;	7.15	7.24	98.8
82	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	62-a B2-a	4401042 4401042	3110 ×	10861 ×		43.8 43.8	715169271	484443 484443	23255	19733	285.54	246.08 246.08	10244366	213089556	778538	13 1	7.34	2.3	100.3
83	and Nejadi	B2-a	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	16	7.84	7.64	102.6
84	Gilbert and Nejadi (2004)	B2-a	4401042	3110 ×	10861 ^		43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	æ 6	8.19	7.85	104.3
88	and Nejadi	B2-a B2-a	4401042	3110 ^				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	3 8	8.73	8.26	105.8
87	and Nejadi	B2-a	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	25	8.88	8.36	106.2
88 8	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	B2-a	4401042 4401042	3110 <	10861 ×	24800	43.8	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	8 58	8.96 9.96	8 .3 51	105.3
06	and Nejadi	B2-a	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	8	9.10	8.56	106.3
91	and Nejadi	B2-a	4401042	3110 <	10861 <		43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	33	9.37	8.79	106.6
85 83	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-a 82-a	4401042	3110 ×		24800	43.8 8.8	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	4 ½	9.64	9.14	105.5
94	and Nejadi	B2-a	4401042	3110 <			43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	62	10.24	9.47	108.1
92	Gilbert and Nejadi (2004)	B2-a	4401042	3110 <	10861 ×		43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	23	10.41	9.80	106.2
96	and Nejadi and Nejadi	62-a 82-a	4401042	3110 ×		24800	43.8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	8 8	10.54	10.14	103.9
86	and Nejadi	B2-a	4401042	3110 <	·			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	108	10.98	10.36	106.0
66	and Nejadi	B2-a	4401042	3110 <	10861 <			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	122	11.19	20.6 20.6 20.6	105.2
5 5	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-a 82-a	4401042	3110 ×	10861 ×	24800	43.8 8.8	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	152	11.53	17.00	103.2 2.2
102	and Nejadi	B2-a	4401042					715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	228	12.15	11.81	102.9
103	Gilbert and Nejadi (2004)	B2-a	4401042	3110 <	10861 ×	24800		715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	272	12.43	12.17	102.1
50	and Nejadi and Nejadi	62-a B2-a	4401042	3110 <	10861		43.8 8.8	715169271	484443 484443	23255	19733	285.54	246.08 246.08	10244366	213089556 213089556	778538	318	12.77	12.42	103.5 105.2
106	. g	B2-b	4401042	3110 <	10861 <		64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	0.1	2.45	2.06	118.9
108	Gilbert and Nejadi (2004)	82-b	4401042	3110 ×	10861 ×	16800		715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	- 0	2.75	2.52	109.7
109	and Nejadi	B2-b	4401042	3110 <				715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	က	2.81	2.62	107.3
110	Gilbert and Nejadi (2004)	82-b	4401042	3110 <	10861 ×			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	4 1	2.87	2.72	105.5
12	Gilbert and Nejadi (2004)	82-0 B2-b	4401042	3110 <		16800	2 4 6 6 8	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	ဂ ဖ	3.05	2.92	104.5 e: 35
113	and Nejadi	B2-b	4401042	3110 <	10861 <		64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	7	3.27	3.12	104.8
411	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b 82-b	4401042 4401042	3110 <	10861 ×	16800	84 86 86 87 87 87 87 87 87 87 87 87 87 87 87 87	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	æ £	3.43	3.23	106.2
116	and Nejadi	B2-b	4401042	3110 <	10861 <		64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	£	3.53	3.45	102.3
117	Gilbert and Nejadi (2004)	82-b	4401042	3110 <	10861 ×	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	£ 4	3.56	3.53	100.8
119	and Nejadi	B2-b	4401042	3110 <	10861 <	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	<u> </u>	4.00	3.91	102.3
21 5	Gilbert and Nejadi (2004)	82-b	4401042	3110 ^	10861 ×	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	2 8	4.12	4.06	101.5
2 2	Gilbert and Nejadi (2004)	B2-5	4401042	3110 <	10861	16800	6.49	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	22 23	4.35	4.34 4.34	100.2
123	and Nejadi	B2-b	4401042	3110 <	10861 <	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	78	4.39	4.37	100.5
124	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b 82-b	4401042 4401042	3110 ×	10861 ×	16800	2 2 3 3 6 6	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556 213089556	778538	F 8	4.39	4.47	98.2 98.7
126	and Nejadi	B2-b	4401042	3110 <	10861 <	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	88	4.60	4.67	98.5
127	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b 82-b	4401042 4401042	3110 ×	10861 ×	16800	6. 45 6. 6.	715169271	484443 484443	23255	19733	285.54	246.08	10244366	213089556	778538	74 75	4.75	5.11	95.9 4.06
129	and Nejadi	B2-b	4401042	3110 <	10861 <	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	62	5.06	5.26	96.2
130	Gilbert and Nejadi (2004)	B2-b	4401042	3110 <	10861 ×	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	23	5.15	5.54	93.0
132	Gilbert and Nejadi (2004)	B2-5	4401042	3110 <	10861	16800	\$ \$ 5 6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	36	5.24	5.82	0.06
133	and Nejadi	B2-b	4401042	3110 <	•			715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	108	5.47	6.02	6.06
45 45 55	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b 82-b	4401042 4401042	3110 ×	10861 ×	16800	2 2 3 3 3 3	715169271 715169271	484443 484443	23255	19733	285.54	246.08 246.08	10244366 10244366	213089556 213089556	778538	122 152	5.57	6.25	89.1
136	Gilbert and Nejadi (2004)	B2-b	4401042	3110 <	10861 <	16800		715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	186	5.81	98.9	7:48
137 138	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b 82-b	4401042 4401042	3110 ×	10861 ×	16800	2 2 8 8 8 8	715169271 715169271	484443 484443	23255	19733	285.54	246.08 246.08	10244366	213089556 213089556	778538	228 272	6.05 6.19	7.26	83.3 82.3
139	Gilbert and Nejadi (2004)	B2-b	4401042	3110 <	10861 <	16800		715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	318	6.35	7.72	82.3
140	Gilbert and Nejadi (2004)	B2-b	4401042	3110 <	10861 <	16800	64.6	715169271	484443	23255	19733	285.54	246.08	10244366	213089556	778538	380	6.50	7.87	82.6

	Study information			Cracking moment	oment			Oliciacheu cioss-section	section			ully cracl	d cross-seu	<u>.</u>					Ę	
	₩	2	ဧ	4	2	9	7	8	6	10	_	13 13	3 14		15	16	17	18	19	20
	Author	Specimen	W. (mm³) Ms	(MN)	(MN) - M	M _{cr} /M _{max}	_	ď	(mm³) A "	A (mm²) A (r	(mm²) z _{11.4} ((mm) z'''z (u	(mm) " (mm	f) I (mm ⁴)	ď	(mm³) t-t.	a _{num.int.}	unt.	(H	a _{num.int.} /a _{exp} (%)
141	Gilbert and Neiadi (2004)	9	4401042	۷	:11	34600	1	7	3665	2 2	2	3)	5501	4864		0.1	6 24	, a	107 4
142	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665	28637	23355 2	278.29 23	231.57 169	16985501 29		1091161	-	6.30	6.31	8.66
143	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 <	34600		715169271	726665				•			091161	7	6.98	6.71	104.0
4 4	Gilbert and Nejadi (2004)	B3-a	4401042	3110 ×	10861 <	34600		715169271	726665						293364864	091161	m ₹	7.72	6.87	103.6
146	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <		34600	3.4	715169271	726665	28637			•	_		091161	r LO	7.32	7.16	102.2
147	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <		34600		715169271	726665							1091161	9	69.7	7.34	104.8
48	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 <	34600		715169271	726665	28637			.57	16985501 29		1091161	~ 0	8.24	7.58	108.7
5 6	Gilbert and Nejadi (2004)	B.Sa	4401042	3110 <		34600		715169271	726665						293364864	091161	∞ ¢	0.0	7.72	0.10
151	Gilbert and Nejadi (2004)	B3-a	4401042			34600	3. 4. 4. 4.	715169271	726665				. 22			1091161	2 =	8.85	8.02	110.3
152	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665						_	1091161	. 6	8.92	8.12	109.9
153	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665				231.57 169	_	_	091161	16	9.53	8.43	113.0
₹ 1	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <		34600	31.4	715169271	726665	28637						1091161	9 9	9.6	8.62	115.5
155 25 26 27	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	10861 ^	34600	4. 1.	715169271	726665						293364864 1	1091161	8 8	10.25	8.78	116.7
157	and Nejadi	B3-a	4401042	3110 ×	10861 ^	34600	2 K	715169271	726665				. 22	16985501 29:		1091161	2 22	10.80	9.12	118.4
158	Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665				.57		_	091161	28	10.89	9.16	118.9
159	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665							1091161	31	10.89	9.29	117.2
160	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665				231.57 169	_	_	1091161	8	11.06	9.33	118.5
161	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665				- 1			1091161	33	11.38	9.57	118.9
7 2	Gilbert and Nejadi (2004)	B 5-48	4401042	3110 ×	10861 <	34600	4. 4	715169271	726665				231.57 169	16985501 29	293304804	1091161	, 4 ₇	12.71	9.92	130.7
3 2	and Nejadi	B 25-28	4401042			34600	. 4 1. 4	715169271	726665				Ì			091161	ţ &	12.45	10.70	122.1
165	and Nejadi	B 69	4401042	3110 <	10861 <	34600	31.4	715169271	726665							1091161	2 2	12.65	10.60	119.3
166	and Nejadi	B3-a	4401042		10861 <	34600	31.4	715169271	726665	28637			231.57 169		_	091161	82	12.73	10.60	120.1
167	and Nejadi	B3-a	4401042		10861 <	34600	31.4	715169271	726665							1091161	92	12.80	10.90	117.4
168	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665				_	_	_	1091161	108	13.33	11.10	120.1
169		B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665	28637			231.57 169			1091161	122	13.59	11.40	119.2
5 5	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	4. 2	715169271	726665	2863/						1091161	152	14.00	11.80	118.6
5 2	Gilbert and Nejadi (2004)	B 55-68	4401042		10861 <	34600	4. 4.	715169271	726665	28637				16985501 29.	293364864	091161	2%	14.10	12.60	117.1
173	and Nejadi	B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665	28637						091161	272	15.10	13.00	116.2
174		B3-a	4401042	3110 <	10861 <	34600	31.4	715169271	726665	28637			231.57 169	•	_	1091161	318	15.50	13.20	117.4
175	and Nejadi	B3-a	4401042		10861 <	34600	31.4	715169271	726665	28637			Ì	``	293364864 1	091161	380	15.88	13.30	119.4
176	Gilbert and Nejadi (2004)	83-p	4401042	3110 <	10861 <	20800	52.2	715169271 715169271	726665	28637			231.57 169	16985501 29.		091161	0.	3.12	7.97	138.4
178	and Nejadi	B3-5	4401042			20800	52.2	715169271	726665	28637			•			1091161	- 0	3.49	2.55	136.9
179	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637			•			1091161	ღ	3.57	2.65	134.7
180	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637					_	1091161	4	3.64	2.73	133.3
184	and Nejadi	B3-p	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637			231.57 169	16985501 29:	293364864 1	1091161	ഗ	3.68	2.8	129.6
2 28	Gilbert and Nejadi (2004)	B3-5	4401042		10861	20800	52.2	715169271	726665	28637						091161	0 1	2.00	3.15	131.4
3 \$		B3-p	4401042		10861 ^	20800	52.2	715169271	726665	28637			231.57 169			1091161	- 00	4.34	3.25	133.5
185	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637					_	1091161	10	4.39	3.45	127.2
186		B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637			•	- ,		1091161	Ξ;	4.48	3.46	129.5
187	Gilbert and Nejadi (2004)	B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637			231.57 169	6985501 29.	293364864 1	1091161	13	4.52	3.53	128.0
8 6	and Nejadi	B3-0	4401042		10861 ×	20800	52.2	715169271	726665	28637			•			1091161	5 65	5.06	3.90	129.7
190	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637					_	1091161	20	5.21	4.04	129.0
191	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637		278.29 2:	. 22	16985501 29	_	1091161	73	5.41	4.24	127.6
192	Gilbert and Nejadi (2004)	B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637					293364864 1	1091161	53 53	5.50	4.30	127.9
8 2	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637						1091161	8 8 8	5.55	4.47	124.2
195	and Nejadi	B3-b	4401042		10861 <	20800	52.2	715169271	726665	28637		278.29 23			_	1091161	8	5.64	4.51	125.1
196		B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637	23355 2		231.57 169			1091161	33	5.82	4.69	124.1
198	Gilbert and Nejadi (2004)	B3-5	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637					293364864	1091161	1 4	6.00	5.33	117.4
96	and Nejadi	B3-p	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637		278.29 23		16985501 29:		091161	62	6.39	5.42	117.9
200	and Nejadi	B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637					_	1091161	73	6.50	5.69	114.2
201	Gilbert and Nejadi (2004)	B3-b	4401042	3110 ^	10861 ^	20800	52.2	715169271	726665	28637			231.57 169	6985501 29:	293364864 1	1091161	8 8	6.55	5.69	115.1
203	and Nejadi	B3-p	4401042		10861 <	20800	52.2	715169271	726665	28637			,			1091161	8 8	6.89	6.17	111.7
204		B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637					_	1091161	122	7.03	6.37	110.4
205	and Nejadi	B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637				16985501 29	_	1091161	152	7.24	6.67	108.5
502	Gilbert and Nejadi (2004)	83-p	4401042	3110 <	10861 <	20800	52.2	715169271	726665	2863/					293364864 1	1091161	186 238	7.83	6.92	105.9
508	and Nejadi	B3-b	4401042	3110 <	10861 <	20800		715169271	726665	28637			•			091161	272	7.80	2.5	102.1
500		B3-b	4401042	3110 <	10861 <	20800	52.2	715169271	726665	28637	23355 2	278.29 2:	231.57 169	16985501 29:	293364864	1091161	318	8.01	7.81	102.6
210	Gilbert and Nejadi (2004)	B3-b	4401042	3110 <	10861 <	20800		715169271	726665	28637						091161	380	8.20	7.90	103.8

	Study information	ation		Cracking	Cracking moment			Uncracked	Uncracked cross-section	_		L	Illy cracked	Fully cracked cross-section	uo				Deflection	uo	
	-	2	က	4	2	9	7	80	6	10	£	12	13	41		15	16	17	18	19	20
	:		í		1		M _{cr} /M _{max}	4	é				•	-	•						anum.int/aexp
Š	Author	Specimen	W _c (mm²) M _{Sw}	(MM)	M _{cr} (Nm)	M _{max} (Nm	(%)	0	S _c (mn	A _{II} (mm ⁻)	A _{llc} (mm ⁻)	Z _{IC,1}	ZII,1	E)]	์ ก็	1.	t-t ₀ (days) (mm)	1		100
212	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S ta	1601667	2373 <	3953 ×	6810	0 58.0	124129167		38 1449			139.36 12. 139.36 12.	123.73 10		23374322	195462 195462	-	7.40	9.53	77.6
213	Gilbert and Nejadi (2004)	S1-a	1601667	•						_	_		•				195462	5	8.21	10.50	78.2
214	Gilbert and Nejadi (2004)	ST-a	1601667	2373 <						38 14491							195462	e ∠	8.38	10.90	76.9
216	Gilbert and Nejadi (2004)	S1-a	1601667								•		•				195462	r w	8.62	11.60	2.47 5.52
217	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681					•						195462	9	90.6	12.10	74.9
218	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	88											195462	۲ ،	9.71	12.90	75.3
220	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	اري د د د د د د د د د د د د د د د د د د د	1601667	2373 <	3953 ×	68 18	0 58.0			38 14491	12511						195462	∞ C	10.16	13.00	73.3
22	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681					•		•				195462	=	10.45	14.00	74.6
222	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681					_						195462	13	10.54	14.10	74.8
223	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681											195462	9 6	11.28	14.90	75.7
225	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	d d	1601667	2373 <	3953 ×	681		124129167			12511		139.36 12: 139.36 12:				195462 195462	20 18	11.79	15.50	78.3 78.3
226	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				14491	,		•				195462	ខ	12.57	16.40	76.6
227	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				•	•		·				195462	22	12.80	16.60	1.77
528	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	88											195462	8 8	12.91	16.60	77.8
229	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	d d	1601667	2373 <	3953 ×	6810											195462	5 7	12.91	16.90	78.4
23 23	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	6810	0 58.0			14491	12511		139.36 12:				195462	5 8	13.51	17.40	77.6
232	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				•							195462	47	13.92	18.30	76.1
233	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				. ,	, ,						195462	2 2 8	14.50	18.60	78.0
23.5	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	ري م د	1601667	2373 <	3953 ×	681				38 14491							195462	3 62	15.06	18.70	78.4
236	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				·							195462	8 2	15.16	19.20	79.0
237	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681				14491							195462	92	15.27	19.20	79.5
738	Gilbert and Nejadi (2004)	eb 2	1601667	2373 <	3953 ×												195462	8 5	15.91	19.60	81.2
240	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S d	1601667	2373 <							12511						195462	7 22	16.72	21.50	5 K
241	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <													195462	186	16.91	22.30	75.8
242	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	3953 <	681	0 58.0	124129167			12511		139.36 12;	123.73 10			195462	228	17.60	23.50	74.9
245	Gilbert and Nejadi (2004)	<u>v</u> v	1601667	2373 <	3953 ×					38 14491	•						195462	318	18.50	25.00	7.47
242	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <		6810				•							195462	380	18.94	25.10	75.5
246	Gilbert and Nejadi (2004)	S1-b	1601667	1	3953 <	528				14491							195462	0.1	3.69	2.72	135.7
247	Gilbert and Nejadi (2004)	S1-b	1601667	2373 <	3953 <	528					12511						195462	← (3.72	4.78	77.8
248 249	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	5. S.	1601667	2373 <	3953 ×	528	0 74.9	124129167					139.36 12.	123.73			195462	N 65	4.13 4.24	5.66 6.05	70.7
250	Gilbert and Nejadi (2004)	S1-b	1601667	2373 <	3953 <	5280					·						195462	4	4.32	6.25	69.1
251	Gilbert and Nejadi (2004)	S1-b	1601667	2373 <	3953 <	528				_							195462	S	4.37	6.58	66.4
252	Gilbert and Nejadi (2004)	0.1-b	1601667	2373 <	3953 ×	528	0 74.9			38 14491	12511						195462	9 1	4.60	6.99	65.8
254	Gilbert and Nejadi (2004)	S 5-1-5	1601667	2373 <	3953 ×	929 528	0 74.9				•						195462	- 00	5.18	8.08	<u> </u>
255	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9			_	_						195462	10	5.25	8.76	6.65
52 <u>9</u>	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9			- '							195462	Ξ \$	5.35	8.76	61.1
72 72 72 72 72 72	Gilbert and Nejadi (2004)	N 0.	1601667	2373 <	3953 ×	528 528	0 47 0			38 14491	12511						195462	<u>5</u> 6	5.80	9.69	61.2
259	and Nejadi	S1-b	1601667	2373 <	3953 <	258	0 74.9			_	•						195462	18	80.9	9.86	61.7
260 261	Gilbert and Nejadi (2004)	0.1-b	1601667	2373 <	3953 ×	528	0 74.9	3 124129167		38 1449	12511		139.36 12.	123.73 10			195462	2 8	6.27	10.20	61.5
262	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9				•		•				195462	22 22	6.63	10.90	60.8
263		S1-b	1601667	2373 <	3953 <	528	0 74.9	124129167		- '	12511		139.36 123	123.73 10			195462	78	6.68	10.90	61.3
59 t	Gilbert and Nejadi (2004)	<u> </u>	1601667	2373 <	3953 ×	929 528	0 74.9			- (-	,						195462	5 K	6.80	11.10	61.3
266	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9			_	Ì					3374322	195462	38	7.02	11.60	60.5
267	Gilbert and Nejadi (2004)	S1-b	1601667	2373 <	3953 ×	528	0 74.9			38 14491	12511		139.36 12.			3374322	195462	74 2	7.26	12.40	58.5
7 7 8 8 8 8	Gilbert and Nejadi (2004)	S1-5	1601667	2373 <	3923 <	528	0 74.9									3374322	195462	5 2	7.74	12.70	60.9
270	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9										195462	73	7.89	13.50	58.4
272	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S S S S S S S S S S S S S S S S S S S	1601667	2373 <	3953 ×	528 528	0 74.9			38 1449	12511	,	139.36 12.	123.73 10		3374322	195462 195462	8 8	8.05	13.50	22 S
273	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9			_	•		•				195462	108	8.41	14.90	56.4
274	Gilbert and Nejadi (2004)	S1-b	1601667	2373 <	3953 <	528	0 74.9	1241291		38 14491	12511		139.36 12;	123.73 10			195462	2 5	8.56	15.50	55.2
276	and Nejadi	S1-5	1601667	2373 <	3953 <	528	0 74.9	1241291			•						195462	186	8.94	17.20	52.0
277	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9				•	,					195462	228	9.29	18.40	50.5
279	Gilbert and Nejadi (2004)	S 45	1601667	2373 <	3953 <	528 528	0 74.9	124129167	57 103988	38 14491	12511		139.36 12.	123.73 10	1019989 2	23374322	195462	318	9.76	19.80	- 70°. - 49.3
280	and Nejadi	S1-b	1601667	2373 <	3953 <	528	0 74.9					Ì	,				195462	380	9.99	19.90	50.2

	Study information	mation		Cracking moment	moment			Uncracked cross-section	ss-section			Fully cr	Fully cracked cross-section	ection				Deflection	uo	
	-	2	က	4	2	9	7	œ	6	10	7	12	13	14	15	16	17	18	19	20
	Author	Specimen	W. (mm³) Me	(MN)	M. (Nm)	M(Nm)	M _{cr} /M _{max} (%)	I. (mm ⁴) S.	S. (mm³)	A' (mm²) A	(mm²) z _{ii.} ,	, (mm) ,	(mm)	(mm ⁴)	lı. (mm²) s.	S (mm³)	a _{numint.}	n.int.	a _{num} .	anum.int./aexp (%)
284	Gilbert and Neiadi (2004)	S2-a	-	2373 <		0870		124129167	5982	œ		136 43	117.86	7810	7971		0.1	13.08		110.8
282	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <		> 9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	, -	13.20	13.70	96.4
283	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	0.0	14.63	14.70	99.2
782 782	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3923	9870	- 04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	ა 4	15.19	15.50	7.08 0.86
286	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <			40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	2	15.33	16.00	95.8
287	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	> 9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	9 1	16.10	16.40	98.2
788 788 788	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S2-a	160 1667	2373 <			. 04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	~ 00	18.03	17.60	100.2
290	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	- 6	18.19	18.40	6.86
291	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	0286	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	7	18.53	18.40	100.7
292	Gilbert and Nejadi (2004)	S2-a S2-a	1601667	2373 <	3953	9870	1.04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	<u>ර</u> ද	18.68	18.60	100.4
294	Gilbert and Neiadi (2004)	S2-a	1601667	2373 <	3953	0/86	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	5 6	20.83	19.90	104.7
295	and Nejadi	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	20	21.43	20.40	105.0
296	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	0286 :	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	23	22.19	21.10	105.2
297	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	1.04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	52	22.58	21.30	106.0
736 736 736	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	3 5	22.78	21.70	105.0
300	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	8	23.13	21.70	106.6
301	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	39	23.81	22.30	106.8
302	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	1.04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	47	24.49	23.30	105.1
8 8	Gilbert and Neiadi (2004)	S2-a	1601667	2373 <	3923	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	ŧ 8	26.02	23.80	109.3
302	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	73	26.45	24.80	106.7
306	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	82	26.61	24.80	107.3
308	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	0870	1.04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	. 95 85	26.76	25.90	103.3
308	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3923	9870	. 04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	3 2	28.39	27.30	6.40
310	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	152	29.26	28.40	103.0
311	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	186	29.60	29.30	101.0
312	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	08870	1.04	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	228	31.55	30.60	8.00.8
314	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	> 9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	318	32.40	32.10	100.9
315	Gilbert and Nejadi (2004)	S2-a	1601667	2373 <	3953	. 9870	40.1	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	380	33.18	32.50	102.1
316	Gilbert and Nejadi (2004)	S2-b S2-b	1601667	2373 <		× 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	0. 1.	6.45	4.43 00	145.6
318	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <			58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	- 2	7.23	6.83	105.9
319	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <			58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	ю	7.39	7.18	102.9
320	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	× 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	4 u	7.53	7.42	101.5
322	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3923	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	ာ ဖ	7.99	8.16 8.16	97.9
323	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	. 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	7	8.58	8.43	101.8
324	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	ω ¢	8.98	9.26	97.0
326 326	Gilbert and Nejadi (2004)	32-b S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	2 ₩	9.25	10:00	92.5
327	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	. 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	13	9.34	10.20	91.6
328	Gilbert and Nejadi (2004)	\$2-p	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	6 6	10.00	10.80	92.6
330	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	20 9	10.77	11.70	92.1
331	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	8 8	11.17	12.30	90.8
333	Gilbert and Nejadi (2004)	82-p	160 1667	2373 <	3953	6810	28.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	6 8	11.46	12.50	7.16
334	and Nejadi	S2-b	1601667	2373 <	3953	. 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	33	11.47	12.70	90.3
332	and Nejadi	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	8 8	11.66	12.70	91.8
337	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	82-b S2-b	1601667	2373 <	3953	6810	58.0 58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	g 4	12.40	13.20	91.1 87.9
338	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	. 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	22	12.91	14.30	90.3
340	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	SZ-b	1601667	2373 <	3953	6810	28.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	3 82	13.19	14.70	89.7 86.6
34.	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	8 2	13.52	15.50	87.2
342	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	92	13.64	16.20	84.5
343	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	108	14.22	16.90	24 8 8
345	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	152	14.94	18.50	80.8
346	and Nejadi	S2-b	1601667	2373 <	3953	6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	186	15.11	19.20	78.7
¥ ¥	Gilbert and Nejadi (2004)	82-p	1601667	2373 <	3923	6810	28.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	272	16.09	21.60	74.5
349	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	. 6810	58.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	318	16.53	21.80	75.8
320	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	3953	6810	28.0	124129167	155982	17826	14856	136.43	117.86	1707810	32437971	275761	380	16.92	21.90	77.3

	Study information	mation		Cracking	Cracking moment			Uncracked cross-section	oss-section			Fully c	Fully cracked cross-section	s-section				Defle	Deflection	
	-	2	ဗ	4	ß	9	7	80	6	10	#	12	13	41	15	16	17	18	19	20
			3	į	1	1	M _{cr} /M _{max}	4	8	, (3)	2	1	1	4	4	, (113)	1	뉟	1	anum.int/aexp
		Specimen	ĔΈ	sw (Nm)	M _{cr} (Nm)	M _{max} (Nm)	(%)	Ic (mm.)		A _{II} (mm ⁻) A _{IIc}	(_ww)	Z _{lic,1} (mm) z	Z _{II,1} (mm) I _{IIC}	(um)	l _{II} (mm.)	S _{II} (mm²)	- 1.	е (шш)	a _{exp} (mm) (7	
357	Gilbert and Nejadi (2004)	03.3-a	1601667	2373 <	3953	< 11350			207975	20673	16713	¥ ¥	113.21	2431344	40540791	349269	 	13.54	13.00	126.5
353	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	= =			207975	20673	16713	134.1	113.21	2431344	40540791	349269	- 2	15.15	14.00	108.2
354	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	=			207975	20673	16713	134.11	113.21	2431344	40540791	349269	3	15.45	14.50	106.6
322	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	11350			207975	20673	16713	2	113.21	2431344	40540791	349269	4 1	15.74	14.70	107.1
357	Gilbert and Nejadi (2004)	03-a	1601667	2373 <	3953	< 11350 < 11350	¥ ¥	124129167	207975	20673	16713	¥ ¥ ± ±	113.21	2431344	40540791	349269	0	16.69	15.70	106.3
358	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	7	17.87	16.50	108.3
320	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	< 11350 11350	8. 8		207975	20673	16713	2	113.21	2431344	40540791	349269	∞ 5	18.69	16.90	110.6
36.1	Gilbert and Nejadi (2004)	00 cc-	1601667	2373 <	3953	1135011350	¥ ¥		207975	20673	16713	<u> </u>	113.21	2431344	40540791	349269	2 ⊊	19.20	17.70	108.5
362		S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	13	19.36	17.90	108.2
363	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	16	20.68	18.70	110.6
364	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	< 11350 < 11350	% % %	124129167	207975	20673	16713	2	113.21	2431344	40540791	349269	8 6	21.60	19.20	112.5
366	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	× 11350	4 8		207975	20673	16713	2 5	113.21	2431344	40540791	349269	3 2	23.01	20.40	112.8
367	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	25	23.42	20.60	113.7
368	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	78	23.62	20.70	114.1
369	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	< 11350 < 11350	85 S		207975	20673	16713	13. 13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14	113.21	2431344	40540791	349269	2 33	23.63	21.00	112.5
371	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	× 11350	¥ ¥	124129167	207975	20673	16713	<u>¥</u> ¥	113.21	2431344	40540791	349269	\$ R	24.70	21.60	4. 4.
372	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	47	25.41	22.50	112.9
373	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8	Ψ,	207975	20673	16713	134.11	113.21	2431344	40540791	349269	2 2	26.44	22.90	115.5
374	Gilbert and Nejadi (2004)	. S.3-a	1601667	2373 <	3953	< 11350 < 11350	\$ \$ 8 8		207975	20673	16713	45 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	113.21	2431344	40540791	349269	43 62	27.00	23.20	116.4
376	and Nejadi	S3-a	1601667	2373 <	3953	11350	. 8 8		207975	20673	16713	<u>¥</u>	113.21	2431344	40540791	349269	8 2	27.61	24.10	114.6
377	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	34.8		207975	20673	16713	134.11	113.21	2431344	40540791	349269	92	27.77	25.10	110.6
378	and Nejadi	S3-a	1601667	2373 <	3953	11350	8. 8.		207975	20673	16713	134.1	113.21	2431344	40540791	349269	108	28.92	25.70	112.5
380	Gilbert and Nejadi (2004)	03-a	1601667	2373 <	3953	1135011350	4 4 8 8		207975	20673	16713	<u> </u>	113.21	2431344	40540791	349269	2 12	30.38	27.60	110.1
38.	and Nejadi	S3-a	1601667	2373 <	3953	< 11350	3.48		207975	20673	16713	13.	113.21	2431344	40540791	349269	186	30.72	27.90	110.1
382	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	< 11350	34.8	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	228	32.00	28.80	111.1
38.	Gilbert and Nejadi (2004)	03-a	160 1667	2373	3953	11350	\$ \$		207975	20673	16713	¥ \$	113.21	2431344	40540791	349209	318	33.63	29.10	113.6
382	Gilbert and Nejadi (2004)	S3-a	1601667	2373 <	3953	11350	. 8 8 8		207975	20673	16713	<u>¥</u> 5	113.21	2431344	40540791	349269	380	34.44	29.80	115.6
386	Gilbert and Nejadi (2004)	S3-b	1601667	2373 <	3953	< 8340	47.4	-	207975	20673	16713	134.11	113.21	2431344	40540791	349269	0.1	8.50	5.04	168.7
387	Gilbert and Nejadi (2004)	S3-b	1601667	2373 <	3953	< 8340	47.4		207975	20673	16713	134.1	113.21	2431344	40540791	349269	-	8.57	6.98	122.8
88 88	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	45 42 42 42 43 43 43 43 43 43 43 43 43 43 43 43 43	113.21	2431344	40540791	349269	0 6	9.51	7.80	121.9
360	and Nejadi	33-p	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134	113.21	2431344	40540791	349269	2 4	06.6	8.42	117.6
391	Gilbert and Nejadi (2004)	S3-b	1601667	2373 <	3953	× 8340	4.74	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	· w	10.00	8.80	113.6
392	and Nejadi	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	91	10.50	9.23	113.8
393	Gilbert and Nejadi (2004)	033-P	1601667	2373 <	3953	× × 8340	47.4	124129167	20/9/5	20673	16/13	45 45 45 45 45 45 45 45 45 45 45 45 45 4	113.21	2431344	40540791	349269	~ α	11.26	10.23	174.1
395	and Nejadi	83-b	1601667	2373 <	3953	× × 8340	47.4	124129167	207975	20673	16713	<u>¥</u>	113.21	2431344	40540791	349269	. 6	11.91	10.87	109.6
396	and Nejadi	S3-b	1601667	2373 <	3953	< 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	=	12.13	10.89	111.4
397	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	2	113.21	2431344	40540791	349269	t 4	12.24	11.03	111.0
388	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	<u>¥</u> 5	113.21	2431344	40540791	349269	2 &	13.69	12.14	112.8
400	and Nejadi	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	20	14.10	12.53	112.5
407	Gilbert and Nejadi (2004)	033-P	1601667	2373 <	3953	× × 8340	47.4	124129167	20/9/5	20673	16/13	45 45 45 45 45 45 45 45 45 45 45 45 45 4	113.21	2431344	40540791	349269	2 23	14.61	13.11	111.4
403	and Nejadi	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	78	14.99	13.32	112.5
404	and Nejadi	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	ह उ	15.00	13.58	110.5
405 406	Gilbert and Nejadi (2004)	83 . 0	1601667	2373 <	3953	× × 8340	4.74	124129167	207975	20673	16713	¥ ¥	113.21	2431344	40540791	349269	\$ 8	15.24	13.59	112.1
407	and Nejadi	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	47	16.19	14.92	108.5
408	Gilbert and Nejadi (2004)	S3-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	1 2 8	16.86	15.22	110.8
410	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	× × 8340	474	124129167	207975	20673	16713	<u>¥</u> ¥	113.21	2431344	40540791	349269	3 82	17.51	16.19	108.2
411	and Nejadi	S3-p	1601667	2373 <	3953	< 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	82	17.63	16.20	108.8
412	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	8340	47.4	124129167	207975	20673	16713	2	113.21	2431344	40540791	349269	95	17.77	17.06	104.2
4 4 5 4 4	and Nejadi and Nejadi	83-p	1601667	2373 <	3953	× × 8340	4.74	124129167	207975	20673	16713	<u>¥</u> ¥	113.21	2431344	40540791	349269	2 2	18.87	18.30	103.1
415	and Nejadi	S3-b	1601667	2373 <	3953	< 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	152	19.46	19.30	100.8
416	Gilbert and Nejadi (2004)	83-b	1601667	2373 <	3953	× 8340	47.4	124129167	207975	20673	16713	134 1.1 1.1	113.21	2431344	40540791	349269	186	19.68	20.06	98.1
418		83-p	1601667	2373 <	3953	× × 8340	474	124129167	207975	20673	16713	<u>¥</u> ¥	113.21	2431344	40540791	349269	272	20.96	2.19	95.5
419	and Nejadi	S3-b	1601667	2373 <	3953	< 8340	47.4	124129167	207975	20673	16713	134.11	113.21	2431344	40540791	349269	318	21.53	22.44	95.9
420	Glibert and Nejadi (2004)	03-D	/001.001	> 5/57	3933	0450	4.14		2/6/07	200/3	10/13	<u>-</u>	13.21	243 1344	40240791	807645	380	22.04	77.90	2.08

Span 0.00 0.00
1311.88
2623.76
3935.64
6559.39
7871.27
10495.03
11806.91
13118.79
14430.67
15742.55
18366.30
19678.18
20990.06
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
21646.00
20990.06
19678.18
18366.30
17054.42
14430.67
13118.79
11806.91
10495.03
9183.15
7871.27
6229.39
5247.52
3935.64
1311 88
0.00

 $\begin{array}{ccc} E_c(t_0) = & \\ I_c = & \\ & & \\ & & \end{array}$

Assessment and Correction of ACI model: Database

Study information	2	Cross-section	ĸ	9	7 Reir	Reinforcement 8	6	10 11	12	13	4	5 16	17	60	19		21	22	23 24		25 26	27	Loading 28	29	30	31	Deflection 32	33	
-		. :		1					!			fem(tess)		f _{cm} (t ₀)	f,(to) f,	fr, and (t ₀) E	E _{cm} (t ₀)			:			:		:	a (t-t ₀)			
Author	nen b (mr	Ē	A ₈₁ (mm.)	1				P ₂ (%)	type	KH (%) T (°C	C best (ays) (Mra)	Com	(Mrd)	6	3	ned) Es	(<u>-</u>)	ss	L (m	5	ML1 (N	Ş	M ₁₂ (ă		t ₀ (days)	t-t ₀ (days)	1.
2 t Washa and Fluck [8]	A1/A4 20	203.2 304.8	852	257.2	1.63	852	257.2	47.6	1.63 deformed	8 8	2 7 7 7	14 25	.00 28.39	9 25.00	3.10	2.07	25000	200000	1.643	0.000	9609			0.104 184	18442 0.104	3.46	2 2 2	913	
3 0 Washa and Fluck [8]				257.2	1.63	400	258.7		0.77 deformed	20	21	14 25	00		3.10	2.07	25000										75 17	0	_
				257.2	1.63	400	258.7		0.77 deformed	8 8	2 2	14 25	.00 28.39	25.00	3.10	2.07	25000	200000									9.6	913	
6 + Washa and Fluck [8]				257.2	163	0 0	0 0	0 0	0.00 deformed	8 29	2 2	14 25	28.35	25.00	3.10	207	25000	200000					7192 0.	104			2 2	913	
7 0 Washa and Fluck [8]				157.2	1.67	400	157.2		1.67 deformed	26	21	14 20	.80 23.62	2 20.80	2.83	1.89	22804	200000					3596 0.	104 36			17 14	0	
8 t Washa and Fluck [8]				157.2	1.67	400	157.2	8 4	1.67 deformed	S 2	21	14 20	.80 23.6.	20.80	2.83	1.89	22804	200000	1.844				3596 0.	104 36		51.0	27	\$ 913	~ .
U washa and Fluck				157.2	1.67	200	157.2		0.84 deformed	8 2	2 2	41 20	1.80 23.6. 80 23.65	20.80	2.83	. 89	22804	20000	1.844				3596 U.	104	363 0.10	14 24.	50	913	- ~
and Fluck				157.2	1.67	0	0		0.00 deformed	8 8	. 5	14 20	1.80 23.62	20.80	2.83	1.89	22804	200000	0000				3596 0.	104	363 0.10	26,	121		
and Fluck				157.2	1.67	0	0		0.00 deformed	20	21	14 20	1.80 23.62	20.80	2.83	1.89	22804	200000	1.844	0.669			3596 0.	104 36	363 0.10	34 86.3	14	\$ 913	_
13 0 Washa and Fluck [8]			516	101.6	1.67	516	101.6	25.4	1.67 deformed	S 1	27	14 22	.10 25.1	22.10	2.91	1.94	23505	200000	0.000	0.000			1756 0.	104 42	267 0.10	113	4 4	0 5	
14 t Washa and Fluck [8]			516	101.6	1.67	516 258	101.6		1.67 deformed	8 2	2 2	14 22	10 25.10	22.10	2.91	1.94	23505	200000	1.827				1756 0.	104	267 0.10		99	913	
16 t Washa and Fluck [8]			516	101.6	167	258	101.6		0.83 deformed	8 8	2 2	14 22			2.91	194	23505	200000	1.827				1756 0.	104	67 0.10		1 2	913	
0 Washa and Fluck		304.8 127	516	101.6	1.67	0	0		0.00 deformed	8 8	21	14 22		0 22.10	2.91	1.94	23505	200000	0.000	0.000			1756 0.	104 42	267 0.104	17.78	. 4		
t Washa and Fluck			516	101.6	1.67	0	0	0	0.00 deformed	20	21				2.91	1.94	23505	200000		0.665								4 913	oo II e
19 0 P.C.A. [18]	A NO 4	152 305	849	254	2.20	0 0	0 0		0.00 deformed	8 2	2 5	28 26	26.90 26.71	78.90	3.22	2.15	25933	200000	0.000	0.000	3048			0.104 222	267 0.107	77 425	28	3 0	
- 0			1019	254	2.64	0	0	0	0.00 deformed	8 8	2 2				3.79	2.53	30578	200000		0.000									
-			1019	254	2.64	0	0		0.00 deformed	20	21				3.79	2.53	30578	200000		7.540								3 242	o I
23 0 Sattler [11]	a1/a2	100 160	100	\$ 5	0.75	0 0	0 0	0 0	0.00 deformed	55 15	21	32 26	26.70 26.03	3 26.70	3.20	2.13	25836	200000	0.000	0.000	4000	29.9	800 0.	0.104 19	1962 0.104	15.83	33 32	2 0	lo -
ľ				160.3	0.70	0		0	0.00 deformed	8 8	21				3.85	2.13	34044	200000		1000								* 0	• 11 -
25 U najirar-Koriyi [22] 26 t Hainal-Konvi [22]	0 00	127 190.5		160.3	0.70	0	0	0 0	0.00 deformed	8 8	2 7	35 37	.00 35.68		3.85	2.57	31044	200000	1,293	0.000					312 0.104	74 65.40	22 22	1734	
_				160.3	0.70	0	0	0	0.00 deformed	82	21				3.85	2.57	31044	200000	Ĭ	000.0								3	_
_				160.3	0.70	0 6	0	0 (0.00 deformed	85	21				3.85	2.57	31044	200000	_	0.414								3 1734	_
	6 6			160.3	0.70	0 0	0 0	0 0	0.00 deformed	8 8	2 5		.00 35.6.	38.55	3.85	2.57	31044	200000		0.000								3 1734	-
0 Branson and Metz				101.6	2.07	0	0	0	0.00 deformed	20 82	21		.40 35.15	5 35.40	3,69	2.46	29749	200000		0000								0	•II o
t Branson and Metz			214	101.6	2.07	0	0	0	0.00 deformed	25	21				3.69	2.46	29749	200000		1.445		27.0						9 8	
33 0 Branson and Metz [23]	SB3/M 10	101.6 127	214	101.6	2.07	0	0	0	0.00 deformed	90	21	28 31	31.30 31.08		3.47	2.31	27973	200000	0.000	0.000		27.0	303 0.	0.104	935 0.104	3.99	99 58	0	•
			214	101.6	1.02	0			0.00 deformed	06	1.7				3.47	2.31	20000	200000		000		43.0						90	-11-
35 t Pauw and Meyers [26]		177.8 216	400	165.1	1.36	0	0	0	0.00 deformed	8 8	21	28 33	33.80 33.56	33.80	3.60	2.40	29069	200000	1.284	0.494	2286	13.8	627 0.	0.104	7176 0.107	77 4.89	39 28	150	
			268	165.1	1.94	0	0		0.00 deformed	20	21			33	3.59	2.39	28983	200000		000.0		13.8			_			9	_
38 t Pauw and Meyers [26]			568	165.1	1.94	0 0	0 0		0.00 deformed	8 8	2, 2,		33.36	88	3.59	2.39	28983	200000		0.494		13.8	627 0.	104 112	-			150	
40 t Pauw and Meyers [26]		177.8 216	568	165.1	1.94	0	0		0.00 deformed	8 8	2 7			8 8	3.87	2.58	31185	200000		1.464		13.8	627 0.	104 98				120	
41 0 Pauw and Meyers [26]		7.8 216	774	165.1	2.64	0	0	0	0.00 deformed	99	21		.,	88	3.86	2.57	31105	200000	0.000	0.000		13.8	627 0.	104 146	_			0	
				165.1	2.64	0	0	0	0.00 deformed	90	21		.70 38.4.	2 38.70	3.86	2.57	31105	200000		0.464		13.8						3 120	- II
43 0 Lutz et al. [29]				171.5	1.48	0 0	0 0		0.00 deformed	6 6	21				3.62	2.41	29198	200000		0.000	1829	10.7							
45 0 Lutz et al. [29]	DR 0	101.6 203.2		171.5	1.48	258	177.8	25.4	1.48 deformed	£ 4	27	28 34	34.10 33.86	8 4 5	3.62	2.41	29198	200000	0.000	0.000	1829	10.7	216 0.	0.104 79	7963 0.10	77 4.20	28 28 28 28	0 2	
				171.5	1.48	258	177.8		1.48 deformed	40	21				3.62	2.41	29198	200000		0.614	1829							3 142	o II
47 0 Jaccoud and Favre (1982)			314	8 8	0.55	57	6 5 5		0.10 deformed	8 8	2 5	15 20.	1.49 22.88	20.49	2.81	1.87	22633	200000	0.000	0.000	3100	32.6	2162 0.	104 27	2787 0.10	34 8.42	2 5	2 365	o
49 0 Jaccoud and Favre (1982)			314	8 8	0.55	57	100		0.10 deformed	8	21		· 4	24	3.05	2.03	24566	200000		0000	3100		2162 0.	104 27			9	0	
50 t Jaccoud and Favre (1982)			314	38	0.55	22	100		0.10 deformed	09	21		4:		3.05	2.03	24566	200000		0.511	3100		2162 0.	104 27	787 0.10		30	365	10
51 0 Jaccoud and Favre (1982) 52 + Jaccoud and Favre (1982)			314	8 8	0.55	57	9 5		0.10 deformed	8 8	2 2	15 19	64 21.9	3 19.64	2.75	1.83	22159	200000	0.000	0.000	3100		2162 0.	104 27	787 0.10		2 5	365	o 10
53 0 Jaccoud and Favre (1982)			314	88	0.55	22	100		0.10 deformed	8	21	15 36	.13 40.35	5 36.13	3.73	2.49	30054	200000	0.000	0000	3100	32.6	2162 0.	104 27	787 0.10		4	0	
54 t Jaccoud and Favre (1982)			314	8 8	0.55	57	00 0		0.10 deformed	8 8	21	15 36	.13 40.3;	5 36.13	3.73	2.49	30054	200000	1.498	0.511	3100	32.6	2162 0.	104 27	787 0.104	98.	35	365	
55 t Jaccoud and Favre (1982)			314	8 8	0.55	57	8 6		0.10 deformed	8 8	2 2	15 32	47 36.26	32.47	3.53	2.35	28491	200000	1.498	0.000	3100	0 10	2162 0.	104 27		4 4 9 6	7 5	365	
0			565	131	0.58	29	134		0.06 deformed	8	21	28 29	.40 29.19	3 29.40	3.36	2.24	27111	200000	0.000	000.0	3100	23.7	3604 0.	104 60	6095 0.10	77 2.	7 28		
- 0			565	3	0.58	57	134		0.06 deformed	8 8	27	28 29	1.40 29.19	9 29.40	3.36	224	27111	200000	1.297	0.480	3100		3604 0.	104	95 0.10	70	53 53	3 510	
59 U Jaccoud and Favre (1982) 60 t Jaccoud and Favre (1982)			999	5 5	0.58	57	134	8 8	0.06 deformed	8 8	2 2	28 32	32.6	32.89	3.56	237	28675	200000	1.241	0.000	3100		3604 0.	104	95 0.10	7.0	2 2	365	- 10
0			565	131	0.58	22	134	18	0.06 deformed	8	21	28 30	.93 30.7	1 30.93	3.45	2.30	27807	200000	0.000	000.0			3604 0.	104 93	305 0.10	7 5.3	58		
- 0			565	5 3	0.58	27	134	8 8	0.06 deformed	8 8	27	28 30	.93 30.7	30.93	3.45	2.30	27807	200000	1.297	0.480	3100		3604 0.	104	305 0.10	13.	88	3 510	
63 U Jaccoud and Favre (1982) 64 t Jaccoud and Favre (1982)			565	13.13	0.58	57	134	8 8	0.06 deformed	8 8	2 2	28 29 29	40 29.15	29.40	3.36	224	27111	200000	1.297 (0.000			3604 0.	104 125	520 0.10	7. 18. 18.	2 22	510	
0			565	131	0.58	24	134		0.06 deformed	09	21	28 31	.97 31.74	4 31.97	3.51	2.34	28271	200000	0.000	000.0			3604 0.	104 125	520 0.10	77 8.0	00 28	9	_
- 0			565	13	0.58	57	134		0.06 deformed	8	21	28 31	.97 31.74	31.97	3.51	2.34	28271	200000	1.297	0.480			3604 0.	104 125	520 0.10	17,	25	3 510	_
67 0 Jaccoud and Favre (1982) 68 t Jaccoud and Favre (1982)	C C 5	750 160	565	5 5	0.58	57	4 4 4 4 7 7	8 8	0.06 deformed 0.06 deformed	96 96 96	2 2	28 29 29	29.08	3 29.29	3.36	224	27060	200000	0.000	0.000	3100	23.7	3604 0.	104 157 104 157	725 0.10 725 0.10),FT 7(20,1	33 28 28	3 510	
0			113	137	1.02	0	0		0.00 deformed	80	21	30 21	.60 21.24		2.88	1.92	23238	200000	0.000	000'(336 0.	104 29	304 0.10	.8 70	15 30	0	
t Ding Dajung	. 63	81 160	113	137	1.02	0 0	0 0	0 (0.00 deformed	8 8	21	30 21	.60 21.24	21.60	2.88	1.92	23238	200000	1.547	0.488			336 0.	104 29	904 0.10	70 16.	30	2025	10.
71 U Ding Dajung [44]	3 2		7 5	11:	2.12	> 0	> 0		0.00 deformed	8 8	2.7	30 25	.40 24.98		3.12	2.08	25199	200000	1.540	0.000			244	104 32	280 0.10	30,	2 22	531	

Loading

Str	Study information	Cross-section	ıo ·			Reinf	Reinforcement	4				:			;									Loading		1			Deflection	
-	2	m	4	es S	9	_	80	o	9	11 12	13	4	15	16 17		19	20	, ,	22	23	24	25	26	27	28	R	30		35	33
Author	Specimen	b (mm) h (m	¥	A, (mm²) d (d (mm) p ₁ (%)	A	(mm) d'	(mm) d ₂ (r	(mm) p ₂ (%)	e) type	RH (%) T	C) there	days) (MPa)	درا f _{em} (MPa)	r _{cm(tg)} Pa) (MPa)	(MPa)	(MPa)	Ecm(to) (MPa)	E _s (MPa)	(-) ds	(%)	L (mm)	W	(Nm) K	M	2 (Nm) K ₁₂	Ę.	a (r-t ₀) (mm) t ₀ (d	t _o (days) t-t _o	t-t _o (days)
73 0 F.R.F.C. [45]	1-72	150		308	250	0.82	0	0	0	0.00 deformed		21	28	.50	33	3			1	0.000	0.000	2800	11.2	1029	0.104	21500		3.02	28	0
74 1 F.K.F.C. [45]	1.72	8 5	087	308	580	0.82	0 0	0 0	0 0	0.00 deformed	8 8	2 5	87.8	8 8	8 8	000				0.000	0.5/0	2800	71.2	1029	0.104	24250	0.107	7 30	82 8	0191
76 t F.R.F.C. [45]	- 58	150	280	308	250	0.82	0	0	0	0.00 deformed	8 8	212	78	200	8 8	o m				1.545	0.566	2800	11.2	1029	0.104	24250	0.107	11.98	78	1344
O F.R.F.C.	1-91	150	280	308	250	0.82	0 0	0 0	0 0	0.00 deformed	8 8	27	58	99	8 8	e e				0.000	0.000	2800	11.2	1029	0.104	27180	0.107	8.94	58	0 ;
O F.R.F.C	152	130	280	308	236	2.18	0	0 0	0 0	0.00 deformed	8 8	2 2	58 78 78	6 8	8 8	3.38	225			0.000	0.000	2800	211.9	1029	0.104	33950	0.107	7.27	58 58 58 58	4121
t F.R.F.C.	11-52	150	280	770	236	2.18	0	0	0	0.00 deformed	8	21	58	90	8	6				1.547	0.567	2800	11.9	1029	0.104	33950	0.107	13.49	58	1398
81 0 F.R.F.C. [45]	1-59	150	280	077	238	2.18	0 0	0 0	0 0	0.00 deformed	8 8	2.5	58	29.80 25	29.59 29.8	.80	3 226	27295		0.000	0.000	2800	11.9	1029	0.104	38300	0.107	7.69	58	0 7
0 F.R.F.C	66-II	9 20	780	220	236	2.18	0	0	0	0.00 deformed	8 8	2 2	8 8	8 8	8 8	80 3.31	225	27295		0000	0000	2800	9.1	1029	0.104	45850	0.107	9.36	8 8	- 0
t F.R.F.C.	11-70	150	280	770	236	2.18	0	0	0	0.00 deformed	8	21	28	.80	8	80 3.34	3 226	27295		1.550	0.568	2800	11.9	1029	0.104	45850	0.107	17.56	78	1471
0 F.R.F.C.	11-80	150	280	770	236	2.18	0	0	0	0.00 deformed	9	21	28	.80	53	.80 3.3	3 225	27295		0.000	0.000	2800	11.9	1029	0.104	52260	0.107	10.72	28	0
+ F.R.F.C	1-80	0£ £	280	770	238	2.18	0 0	0 0	0 0	0.00 deformed	8 8	27	5 8	8 8	8 8	.80	3 226	27295		1.551	0.568	2800	11.9	1029	0.104	52260	0.107	20.24	8 8	1485
> +	06-1	E 5	280	0 / 2	236	2.18	0 0	0 0	0 0	0.00 deformed	8 8	72 6	87.88	28.80	29.59 29.8	000	275	27295		1.551	0.000	2800	9.1.6	1029	0.104	29860	0.107	13.10	8 8	1401
O F.R.F.C.	= 8 4 8 4	. E	280	1232	233	3,53	0	0		0.00 deformed	8 8	. 5	8 2	8 8		3.63	2.42	29287		0000	0000	2800	12.0	1029	0.104	42190	0.107	7.08	88	0
t F.R.F.C.	≡ 43	150	280	1232	233	3.53	0	0	0	0.00 deformed	09	21	28		34.06 34.3	3.6	3 2.42	29287		1.554	0.569	2800	12.0	1029	0.104	42190	0.107	14.51	28	1572
0	1II-67	150	280	1232	233	3.53	0	0	0	0.00 deformed	09	21	28		34.06 34.3	3.63	3 2.42	29287		0.000	0.000	2800	12.0	1029	0.104	65300	0.107	10.58	28	0
- 1	29-111	150	280	1232	233	3.53	0	0	0	0.00 deformed	8	21	28		34.3	3.6	3 2.42	29287		1.554	0.569	2800	12.0	1029	0.104	65300	0.107	23.88	58	1572
۰.	11-77	150	780	1232	233	3.53	0 0	0 0	0 0	0.00 deformed	88	2 5	588	34.30 34	34.06 34.3	31 3.63	2.42	29287		0.000	0.000	2800	12.0	1029	0.104	75490	0.107	13.84	58	0
	N-52	8 6	280	770	238	2.33	462	248	2 %	1.31 deformed	8 &	2 2	8 8		\$ 8		•	28267		0000	0.000	2800	11.9	1029	0.0	37610	0.107	5.98	28 68	2/6
, -	10-52	150	780	770	738	2.18	462	248	8 8	1.31 deformed	8 8	2 2	788	32.00	1.77 32.00					1.504	0.551	2800	11.9	1029	0.104	37610	0.107	10.52	8 2	772
0	IV-70	150	280	770	236	2.18	462	248	35	1.31 deformed	09	21	28			3.51				0.000	0.000	2800	11.9	1029	0.104	51340	0.107	8.80	58	0
t F.R.F.C.	0.2-70	150	280	770	236	2.18	462	248	35	1.31 deformed	9 :	21	28	e .	1.77 32.0	8				1.504	0.551	2800	11.9	1029	0.104	51340	0.107	13.90	28	772
0 F.R.F.C.	10-80	35 25 26 27	780	770	538	2.18	462	248	8 8	1.31 deformed	88	2 2	8 8	in i	1.77 32.0	en e				0.000	0.000	2800	11.9	1029	0.104	58200	0.107	11.16	8 8	0 64
100 T.F.K.F.C. [45]	06-71	35	780	2.2	236	2.18	462	248	8 8	1.31 deformed	8 8	2 2	58 78 78	n in		3.51	234			0.000	0.000	2800	9.1	1029	0.104	98200	0.107	15.85	58 78 78	9/2
t F.R.F.C.	IV-90	150	280	770	236	2.18	462	248	32	1.31 deformed	09	21	28	32.00 3	,	3.				1.523	0.558	2800	11.9	1029	0.104	65530	0.107	19.28	28	972
103 0 Bakoss et al. [41]	1B2 1B2	00 100	150	226	130	1.74	0 0	0 0	0 0	0.00 deformed	8 8	21	28	39.00 35	38.72 39.00	3.87	2.58		200000	0.000	0.000	3750	28.8	659	0.104	3250	0.107	8.94	28	0 200
1	A1	100	154	157.1	132	1.19	0	0	0	0.00 deformed	40	21	28			6			200000	0.000	0.00	2100	15.9	212	0.104	3500	0.107	4.89	28	C
	A1	9 0	154	157.1	132	1.19	0	0	0	0.00 deformed	\$ 4	21	78	25.90 25	25.72 25.91	3.16	2.11	25451	200000	1.722	0.661	2100	15.9	212	0.104	3500	0.107	11.83	78	180
0	A2	100	152	157.1	130	121	0	0	0	0.00 deformed	40	21	28			9	3 2.11	25451	200000	0.000	0.000	2100	16.2	500	0.104	3200	0.107	60'9	28	0
108 t Clarke et al. [46]	A2	9 5	152	157.1	6 6	121	0	0 9	0 8	0.00 deformed	\$:	27	58			3.1	2.17	25451	200000	1.725	0.662	2100	16.2	209	0.104	3200	0.107	11.92	58	180
٠-	20 0	8 5	152	157.1	96 6	2.5	157.1	132	8 8	1.21 deformed	\$ \$	2 5	8 8		25.72 25.9	18 8.18 18 8.18	2.17	25451	200000	0.000	0.000	2100	16.2	508	0.104	3200	0.107	4.78 77	8, 8	0 8
111 0 Clarke et al. [46]	B2 -	8 6	154	157.1	8 8	1.19	157.1	134	8 8	1.19 deformed	£ 4	2,17	788			3.1.	2.11	25451	200000	0.000	0.000	2100	15.9	212	0.104	3500	0.107	4.30	28 28	8 0
112 t Clarke et al. [46]	B2	100	154	157.1	132	1.19	157.1	134	8	1.19 deformed	9	21	28		25.72 25.9	3.1	2.11	25451	200000	1.722	0.661	2100	15.9	212	0.104	3200	0.107	8.55	28	180
113 0 Gilbert and Nejadi (2004)		250	340	402	300	0.54	0	0	0	0.00 deformed	40	21	28	24.80 24	21		-	23281	200000	0.000	0.000	3500	11.7	3254	0.104	21646	0.107	4.95	14	0
	B14a	250	340	405	300	0.54	0 6	0 0	0 (0.00 deformed	9 :	22	28		24.62 21.6		1.93	23281	200000	1.499	0.518	3500	11.7	3254	0.104	21646	0.107	12.06	4:	380
115 U Gilbert and Nejadi (2004)		250	£ 8	402	300	0.54	0 0	0 0	0 0	0.00 deformed	5 5	5 6	87.8		5 6			23287	200000	0.000	0.000	3200	11.7	3254	0.104	13/46	0.107	7.44	4.5	0 6
117 0 Gilbert and Neiadi (2004)	B248	250	325	405	300	0.54	0	0	0	0.00 deformed	£ 4	21	788		7 7			23281	200000	0.000	0.000	3500	11.7	3110	0.104	21690	0.107	5.03	<u>† 4</u>	080
118 t Gilbert and Nejadi (2004)	B2-a	250	325	402	300	0.54	0	0	0	0.00 deformed	40	22	28		2		_	23281	200000	1.512	0.524	3500	11.7	3110	0.104	21690	0.107	12.42	4	380
0 Gilbert and Nejadi		250	325	402	300	0.54	0	0	0	0.00 deformed	40	21	58	24.80 24	1.62 21.t		1.93	23281	200000	0.000	0.000	3500	11.7	3110	0.104	13690	0.107	2.06	4	0
120 t Gilbert and Nejadi (2004)	B2-b	250	325	402	300	0.54	0 0	0 0	0 0	0.00 deformed	5 5	3 5	8 8	24.80	4.62 27.1			23281	200000	21.512	0.524	3200	11.7	3110	0.104	13690	0.107	7.87	4.5	380
t Gilbert and Neiadi		250	325	603	300	0.80	0	0	0	0.00 deformed	£ 4	55	28	24.80 22	.62 21.6		193	23281	200000	1.512	0.524	3500	11.7	3110	0.104	31490	0.107	13.30	<u>† 4</u>	380
0 Gilbert and Nejadi	_	250	325	603	300	0.80	0	0	0	0.00 deformed	9	21	28	24.80 24	1.62 21.6	38 2.89	1.93	23281	200000	0.000	0.000	3200	11.7	3110	0.104	17690	0.107	1.97	4	0
t Gilbert and Nejadi	B3-b	250	325	603	300	0.80	0	0	0	0.00 deformed	9 :	22	28	24.80 24	1.62 21.t		1.93	23281	200000	1.512	0.524	3500	11.7	3110	0.104	17690	0.107	7.90	4	380
Gilbert and Nejadi Gilbert and Nejadi	S7-60	400	155	226	8 5	0.44	0 0	0 0	0 0	0.00 deformed	4 6	2 5	58	24.80 24	4.62 21.1	38 2.6	1.93	23281	200000	0.000	0.000	3500	26.9	2373	0.104	4437	0.104	7.14	4 5	0 00
125 t Gilbert and Nejadi (2004)	7 100	400	55	226	8 6	0.44	0 0	0 0		0.00 deformed	3 4	7 7	9 88	24.80 24	162 21.6	38 2.8	26.5	23281	200000	0.000	0.000	3500	26.9	2373	0.104	2907	0.104	22.10	4 4	980
t Gilbert and Nejadi		400	155	226	130	0.44	0	0	0	0.00 deformed	5 4	55	78	24.80 24	1,62 21.6	38 2.8	1.93	23281	200000	1.675	0.579	3500	26.9	2373	0.104	2907	0.104	19.90	. 4	380
		400	155	339	130	0.65	0	0	0	0.00 deformed	9 :	21	58	24.80 24	1.62 21.t	.68 2.89	1.93	23281	200000	0.000	0.000	3500	26.9	2373	0.104	7497	0.104	11.80	4	0
t Gilbert and Nejadi		400	155	338	8 6	0.65	0 0	0 0	0 0	0.00 deformed	9 9	77.	28	24.80 22	4.62 21.1	38 2.5	1.93	23281	200000	1.675	0.579	3500	26.9	2373	0.104	7497	0.104	32.50	4 ;	380
131 U Gilbert and Nejadi (2004) 132 † Gilbert and Nejadi (2004)		400	52	339	8 6	0.65	0	00	0 0	0.00 deformed	£ 4	52	8 8	24.80 22	1.62 21.6	2.2		23281	200000	0.000	0.000	3200	26.9	2373	0.104	4437	0.104	21.90	4 4	380
0 Gilbert and Nejadi		400	155	452	130	0.87	0	0	0	0.00 deformed	8	21	58		12		1.93	23281	20000	0.000	0.000	3200	26.9	2373	0.104	7268	0.104	10.70	4	0
t Gilbert and Nejadi		400	155	452	130	0.87	0	0	0	0.00 deformed	9	22	28	8	24.62 21.6	2	1.93	23281	200000	1.675	0.579	3500	26.9	2373	0.104	8977	0.104	29.80	4	380
135 0 Gilbert and Nejadi (2004) 136 t Gilbert and Nejadi (2004)	839	0 4 0 4 0 0	155	452 452	8 6	0.87	0 0	0 0	0 0	0.00 deformed 0.00 deformed	4 4	22	78 78 78	24.80	4.62 21.6 4.62 21.6	.68 2.89 .68 2.89	1.93	23281	200000	0.000	0.000	3500	26.9	2373	0.104	5967	0.104	5.04	<u>4</u> 4	380
0 Tošić (2017)		160	200	157	169	95.0	25	171	53	0.21 deformed	48.7	21.3	28	20	21	2	-	23076	200000	0.000	0.000	3200	18.9	1024	0.104	6645	0.107	9.17	7	0
	NAC7	160	200	157	169	0.58	57	17	8 8	0.21 deformed	48.7	21.3	28	92	2.2	21.0	- 0	23076	200000	1.906	0.743	3200	18.9	1024	0.104	6645	0.107	18.94	7	450
139 0 ToSic (2017) 140 t ToSic (2017)	NAC28 NAC28	160	200	157	169	0.58	57	171	88	0.21 deformed 0.21 deformed	48.7	21.3	28	30.50 30.50 30	30.28 30.5 30.28 30.5	.50 3.42	228	27613	200000	0.000	0.000	3200	18.9	1024	0.104	5853 5853	0.107	8.11 16.51	78 78 78	450

Assessment and Correction of ACI model: Database – Calculated Deflections

Study information	vrmation		Cracking moment	yment			Uncracked cross-section	ss-section			Fully cracked	Fully cracked cross-section	le.			Shrinkage		Deflections for uncracked cross-section	xed cross-s		Deflections for fully cracked cross-section	fully cracke	d cross-sect	tion		Deflection		i
-	2	6	4	10	9	7	00	6	10	F	12 13	47	15	16		deflection								17	18	19	20	
																									Brum int		anumint/Barn	
Author	Specimen	W _c (mm³) M _{SW} (Nm)		M _{cr} (Nm)	M _{max} (Nm) M _{max} /M _c		I _c (mm ⁴) S _c	S _c (mm³) A	A _{ii} (mm²) A _{ie}	, (mm²) z _{lc,1} ((mm) z _{ll,1} (mi	(mm) I _{le} (mm ⁴)	I _{II} (mm ⁴)	S ₁ (mm ₃)	1,7/1,	Ash	a _{c,L1} (mm)	a _{c,12} (mm) a,	e (mm) a	c (mm) a _{tt}	11 (mm) a ₁₁₁₂	(mm) a _{l,cs} (mm) a _{II} (mm)		t-t ₀ (days) (mm)	a _{exp} (mm)	(%)	
1 0 Washa and Fluck [8]	A1/A4	3146316	7192 >	> 9029	25634	3.940	479498602	1428634	32097	18465 2	259.37 213	213.94 12705	12705339 252162498	2498 838913	3 1.902		2.32	5.95	0.00	8.27	7.80	11.31	0.00	15.72	0 15.25	25 13.46	1,133	lm m
3 0 Washa and Fluck [8]	A2/A5	3146316	7192 >	9200	25634	3.940	479498602	1054477	29541							_			0.00	8.27	4.54	11.64		16.18				0
4 t Washa and Fluck [8]	A2/A5	3146316	7192 >	> 9099	25634	3.940	479498602	1054477	29541							0.1047			0.97	17.58	9.12	23.39		33.48				~
7 0 Washa and Fluck [8]	B1/B4	1048772	3596 >	1980 ×	7259	3.666	106555245	390107	16326										0.00	1.35	13.61	13.86		27.47				** 0
9 0 Washa and Fluck [8]	B3/B6	1048772	3596 >	1980 ×	7259	3,666	106555245	195053	13431							0.1789			0.00	5.53	13.92	14.18		28.10	0 26.			0 10
	D1/D4	819353	1756 >	1590 <	6023	3.788	52028928	334560	20423				_						00:0	7.44	4.69	11.40		16.09				~
	D1/D4	819353	1756 >	+ 0651	6023	3.788	52028928	334560	20423				_						00.00	13.73	8.67	21.07		29.74				0
	D2/D5	819353	1756 >	1590 <	6023	3.788	52028928	250920	18689										0.00	7.44	4.77	11.60		16.37				m .
	D2/D5	819353	1756 >	7590 <	6023	3.788	52028928	250920	73414		•								0.95	16.53	10.00	24.31		35.26				- "
20 t P.C.A [18]	40NA	2356633		5061	23613	4.666	359386583	664586	23414			104.01							0.40	5.91	0.54	9.20		10.14				
~	60NA	2356633	1346 <	> 2657 <	30987	5.202	359386583	676490	23644				57498 205568429						00:00	2.80	0.21	4.69		4.90				*
- 0	60NA	2356633	1346 <	5957 <	30987	5.202	359386583	676490	23644			_	_						0.43	6.56	0.45	10.27		11.15	242 10.99			_
23 0 Sattler [11]	a1/a2 a1/a2	426667	v v	941	2762	3.032	34133333	41802	4620				4001 8961213						0.00	521	5.75	34.10		19.85	0 16.87			
	ZB/182	768144		1073 <	4700	3.032	73165680	50610	6170										0.09	8 83	26.67	13.88		10.55	04 33.7	_		
-	0 00	768144		1973 <	4709	2.387	73165680	59510	6170								-		1.49	20.03	55.99	29.14			734 61.38			
0	10	768144		1973 <	4709	2.387	73165680	59510	6170										00.0	4.97	8.44	14.37						**
-	10	768144	1742 <	1973 <	4709	2.387	73165680	59510	6170										0.84	11.27	17.71	30.17			1734 34.			m
0 -	12	768144	774 <	1973 <	4709	2.387	73165680	59510	6170										0.00	220	1.67	8.47						m r
30 t Hajnal-Konyi [22] 31 0 Branson and Metz [23]	12 SB3/B	78144	303 ×	1973 <	1238	1.842	17342976	54815	5635										0.37	1.88	3.50	3.23						
-	SB3/B	273118	303 <	672 <	1238	1.842	17342976	54815	5635										0.63	4.44	2.13	6.57		9.33	60 7.			
0	SB3/M	273118	303 <	632 <	1238	1.959	17342976	58295	5825										0.00	2.00	1.07	3.29		4.36				_
-	SB3/M	273118	303 <	632 <	1238	1.959	17342976	58295	5825										0.63	4.69	2.17	6.70		9.50				~
0 -	£ 8	1382573	627 <	3320 <	7803	2.350	149317862	157143	13006										0.0	1.00	0.27	3.20		3.47				٠,
37 0 Paiw and Meyers [26]	Z &	1382573	627 <	3311 <	11855	3.580	149317862	223806	15667										0.00	153	0.57	3.90		4.11				+ ~
۰ -	22	1382573	627 <	3311 <	11855	3.580	149317862	223806	15667										0.28	3.47	0.44	8.16		8.88				
-	23	1382573	627 <	> 6998	10270	2.878	149317862	208003	15066										0.26	2.76	0.42	6.64		7.32				6
-	. R4	1382573	627 <	3560 <	15234	4.279	149317862	284169	17805										0.29	4.00	0.34	8.15		8.78				
47 0 Jaccoud and Favre (1982)	A1	1440000	2162 <	× × ×	4949	1.834	86400000	117262	18419										0.00	2.52	12.62	7.35		13.05				m h
- 0	- 75 - 75 - 75 - 75 - 75 - 75 - 75 - 75	1440000	2162 <	2929 <	4949	1.690	86400000	108035	17652										0.00	2.33	5.62	7.24		12.86				
-	A2	1440000	2162 <	> 2929 >	4949	1.690	86400000	108035	17652										0.53	5.68	12.43	16.03		28.99				
0 -	A3	1440000	2162 <	2641	4949	1.874	86400000	119771	18626										0.00	2.58	5.73	7.38		13.11				οı .
52 t Jaccoud and Favre (1962)	A A	1440000	2162 <	3583 ^	4949	1.381	86400000	88308	15913			97.59 562			_				0.00	190	5.42	6.99		12.41				o –
-	A4	1440000	2162 <	3583 <	4949	1.381	86400000	88308	15913										0.53	4.74	12.00	15.47		28.00				6
_	A5	1440000	2162 <	3390 <	4949	1.460	86400000	93152	16364										0.00	2.01	5.47	7.05		12.52				ο .
55 t Jaccoud and Favre (1982)	A5	320000	3604 <	3390 <	94949	1.460	25600000	93152	76364										0.53	14.97	27.1	15.60		7.42				N 11
-	C12	320000	3604 <	7172 <	6696	1.352	256000000	235277	29270										0.41	3.36	5.61	9.76		15.78				. –
59 0 Jaccoud and Favre (1982)	C22	3200000	3604 <	> 8652	6696	1.277	256000000	222445	28426				2071359 46803	46803193 386963					00:00	1.34	2.68	4.67		7.35	0 2.	2.02 2.00		0
-	C22	3200000	3604 <	7598 <	6696	1.277	256000000	222445	28426										0.40	3.12	5.44	9.46		15.30				_
61 0 Jaccoud and Favre (1982)	C13	320000	3604 <	7364 <	12909	1.753	256000000	229388	28877										0.00	1.85	2.70	7.17		9.87				m
	5 5	320000	3604 ^	7172 <	16124	2.248	256000000	235277	29270										00.0	237	2.71	89.6		12.39	0.23			u m
-	C14	320000	3604 <	7172 <	16124	2.248	256000000	235277	29270										0.41	5.33	5.61	20.05		26.07				0
0	C24	320000	3604 <	7492 <	16124	2.152	256000000	225623	28636							0.1148			00:00	2.28	2.69	9.62		12.31				m
66 t Jaccoud and Favre (1982)	524	320000	3604 <	7492 <	16124	2.152	256000000	225623	28636						-, -	0.1142	3 1.03		0.41	5.12	5.57	19.92		25.90	510 16.12			۰,
67 0 Jaccoud and Favre (1982) 68 † Jaccoud and Favre (1982)	5 5 5 7	3200000	3604 ×	7172 <	19329	2.695	256000000	235721	29287			127.07 2228			7 5.213	0.1148			0.00	2.85	5.61	75.17	0.00	14.88		21 111	71.0.1	
69 0 Ding Dajung [44]	5 5	345600	336 <	994	3240	4.880	27648000	55435	4747							0.1517			0.00	4.46	1.17	10.38	0.00		0 11.20	8 8	1.326	+ 10
70 t Ding Dajung [44]	53	345600	336 <	664 <	3240	4.880	27648000	55435	4747							0.151			0.48	10.81	2.70	24.03	0.48	.,	2025 26.	41 16.6	1.589	

	Study information		Crackir	Cracking moment			Uncracked cross-section	oss-section			Fully cracked cross-section	cross-section				Shrinkage	Deflections	or uncracke	Deflections for uncracked cross-section		tions for full	Deflections for fully cracked cross-section	ss-section		Deflection	tion	ĺ
•		c	,	u	q	r	o	c	9	*		7	ŭ	q		deflection								Ţ	9	ç	6
-	7	,	ŧ	n	Þ		0	n.	2	=		ŧ	2	2											2 :		07
Author	Specimen	W _c (mm³)	M _{sw} (Nm)	M _{cr} (Nm)	M _{max} (Nm)	M _{max} /M _{cr}	I _c (mm ⁴) S	S _c (mm³)	A _{ii} (mm²) A _{ie}	(mm²) z _{le1} ((mm) z _{l(1} (mm)) I _{le} (mm ⁴)	I, (mm ⁴)	S, (mm)	1°V".	Ass	Toe (mm) act	t (mm) aces	(mm) a _c (mm)	aller	(mm) a ₁₁₁₂ (mn) a _{l,cs} (mm)	a _{II} (mm)	t-t ₀ (days)	(mm) a _a	%) (mm) dx	druam int. 'dexp (%)
t Ding Daj	7.	238741		497	3524	7.091	18144341	50113	4386						2.249	0.1938	1.06	14.70						531	35.70	30.43	1.173
	1-72	1960000		4693	22529	4.801	274400000	234140	12812			78 4516556 78 4516556	56 86089337 56 86089337		3.187	0.1412	0.25	5.27						1610	17.15	10.29	1.208
0 F.R.F.C.	181	196000		4693	25279	5.387	274400000	234140	12812					7 380494	3.187	0.1412	0.11	2.56						0	8.24	7.39	1.115
76 t F.R.F.C. [45]	- F8-	1960000	1029		< 25279	5.387	274400000	234140	12812		244.39 208.78	78 4516556	56 86089337		3.187	0.1412	0.24	5.93	0.28	6.45		18.89 0.28		1344	19.33	11.98	1.614
F.R.F.C	1-9-1	1960000				6.011	274400000	234140	12812						3.187	0.1412	0.24	6.64						1314	21.69	15.02	1,444
t F.R.F.C.	11-52	1960000				7.916	274400000	541638	20770				-	_	1.777	0.1954	0.26	8.80						1398	16.39	13.49	1.215
0 F.R.F.	11-59	1960000		4419	< 39329	8.900	274400000	541638	20770		229.58 179.		21 15437937		1.77	0.1954	0.11	4.29				7.62 0.00		0 ;	7.78	7.69	1.012
	1-20 1-70	1960000				10.609	274400000	541638	20770						1.77	0.1954	0.26	11.90						1471	21.92	17.56	1.248
	08-II	1960000			< 53289	12.059	274400000	541638	20770			15 12818721		_	1.777	0.1954	0.26	13.57						1485	24.88	20.24	1.229
88 t F.R.F.C. [45]	06-11	1960000		4419	59689	13.507	274400000	541638	20770						1.777	0.1954	0.26	15.23				27.07 0.38		1491	27.84	24.23	1.149
	III-43	1960000		4746	38639	9.106	274400000	875520	25670		222.48 164.95	95 19026862	52 193200814		1.420	0.2295	0.24	4 07				6.82 0.46		1572	15.26	14.51	1.052
	1V-52	1960000		4589	38639	8.420	274400000	875520	22 194			_		1 606233	1.679	0.0911	0.19	7.21						772	12.53	10.52	1.191
_	IV-70	196000		۰ 4589	52369	11.412	274400000	875520	22194			_			1.679	0.0911	0.11	5.55						0	9.46	8.80	1.075
98 t F.R.F.C. [45]	IV-70	1960000		4589	52369	11.412	274400000	875520	22194		235.05 190.7	0.1 9079856	56 163475611		1.679	0.0911	0.19	9.84	0.18			52 0.18		772	16.96	13.90	1.220
	06-AI	1960000		4589	66559	14.504	274400000	875520	22 194						1.679	0.0911	0.19	12.63						972	21.64	19.28	1.122
0	182	375000		• 896 ×	3909	4.038	28125000	79616	9069						2.095	0.1813	1.10	5.57						0	13.48	8.94	1.508
-	182	375000		896	3909	4.038	28125000	79616	6306						2.095	0.1813	2.68	13.60						200	34.08	25.02	1.362
105 0 Clarke et al. [46]	A1	395267	212 .	833	< 3712	4.456	30435533	67899	5842		130.97 107.93	93 814736	36 12378087		2.459	0.1598	0.13	2.13			131 5.24	24 0.00		0 0	5.38	11.83	1.096
0	¥2 5	385067				4.568	29265067	66665	5798						2.447	0.1606	0.13	2.22						9 0	5.55	5.09	1.090
-	A2	385067	7 209	812 •	< 3709	4.568	29265067	66665	5798						2.447	0.1606	0.32	5.47						180	14.08	11.92	1.181
Ο.	E 2	385067		812	3709	4.568	29265067	135798	6568		131.51 111.01		34 12622646		2.318	0 (0.13	2.22				14 0.00	5.44	0 9	5.27	4.78	1.103
110 t Clarke et al. [46]	. B. G.	385067		812 4	3709	4.568	29265067	135798	6568		131.51 111.				2.318	0 0	0.25	5.24				34 0.00	10.41	180	10.09	8.77	1.151
,	B2	395267		833	3712	4.456	30435533	138267	9099						2.329	0	0.24	4.09						180	9.76	8.55	1.142
113 0 Gilbert and Nejadi (2004)	B1-a	4816667	.,	× 9285 ×	24900	2.682	81883333	448950	23021	.,					3.904	0.1225	0.22	1.49				31 0.00		0	5.38	4.95	1.087
	B1-a	4816667	7 3254			2.682	81883333	448950	23021		300.87 261.74		23 209739323		3.904	0.1225	0.49	3.38						380	12.53	12.06	1.039
115 U Gilbert and Nejadi (2004)	0 4	461666			1,000	1.831	818833333	448950	23027						3.904	0.1225	0.22	0.95				99 0.00		900	2.73	7.44	1.389
117 0 Gilbert and Nejadi (2004)	B2-a	4401042	3110			2.923	715169271	474851	23021				23 209739323		3.410	0.1225	0.24	1.71				32 0.00	6.63	0	5.7	5.03	1.135
-	B2-a	4401042			< 24800	2.923	715169271	474851	23021						3.410	0.1225	0.54	3.90				31 0.30	15.46	380	13.36	12.42	1.076
0	B2-b	4401042	3110		< 16800	1.980	715169271	474851	23021						3.410	0.1225	0.24	1.08				37 0.00	4.48	0	3.10	2.06	1.505
120 t Gilbert and Nejadi (2004)	B2-b B3-a	4401042	3110	8484	34600	1.980	715169271	474851	23021						3.410	0.1225	0.54	2.46				14 0.30	10.55	380	7.40	7.87	0.940
-	B3-a	4401042		8484	34600	4.078	715169271	712276	28355		278.65 232.31		91 288974918		2.475	0.1402	0.54	5.67				0.35		380	15.04	13.30	1.131
123 0 Gilbert and Nejadi (2004)	B3-b	4401042	3110	8484	20800	2.452	715169271	712276	28355			31 16595791			2.475	0.1402	0.24	1.39				45 0.00		0	3.47	1.97	1.761
- 0	20 00	1601667		3087	20000	2.206	124129167	101929	14343				٠.		5.397	0.1143	1.05	1.96						900	9.94	7.14	1.392
-	S1-a	1601667		× 3087 ×	: 6810	2.206	124129167	101929	14343						5.397	0.1143	2.54	4.74						380	24.76	25.10	0.986
0 .	S1b	1601667		3087	5280	1.710	124129167	101929	14343						5.397	0.1143	1.05	1.28						0 8	5.54	2.72	2.037
128 t Gilbertand Nejadi (2004) 129 0 Gilbertand Nejadi (2004)	S24b	1601667	7 2373	3087	5280	3.197	124129167	152893	14343	12402	139.5 124.01	01 993514 17 1665131	31 31941782	9 192212	3.886	0.1308	1.05	3.31	0.00	6.30	13.68 16.76 4.07 12.84	76 0.65	31.09	380	4.08 6.24	19.90	0.708
-	S2-a	1601667		3087	9870	3.197	124129167	152893	17644						3.886	0.1308	2.54	8.01						380	36.18	32.50	1.113
0	S2-b	1601667		> 3087	6810	2.206	124129167	152893	17644						3.886	0.1308	1.05	1.96						0	8.18	4.43	1.847
- 0	S2-b	1601667	7 2373	3087	6810	2.206	124129167	152893	17644		136.59 118.17	17 1665131	31941782	2 271312	3.886	0.1308	2.54	4.74			18.42	42 0.75		380	20.58	21.90	0.940
	S. S.	160 1667		3087	11350	3.677	124129167	203857	20466						3 108	0.1439	2.54	0.30						380	35.70	29.80	1 198
0	S3-p	160166		3087	8340	2.702	124129167	203857	20466						3.108	0.1439	1.05	2.63				0.00	11.43	0	9.64	5.04	1.913
- 0	S3-b	160166		3087	8340	2.702	124129167	203857	20466						3.108	0.1439	2.54	6.38				32 0.82	28.52	380	24.19	22.90	1.056
137 0 Tosic (2017) 138 1 Tošić (2017)	NAC7	1066667	7 1024 -	2035	7669	3.769	106666667	128965	9037		77.56 155.13 177.56 155.13	13 1205822 13 1205822	22 2591715	2 161122	4.116	0.0864	1.09	7.29	0.00		.82 12.17	71	34.92	450	31.63	18.94	1.381
	NAC28	1066667		2433 •	6877	2.827	106666667	107775	8231					ຸດ	4.772	0.0864	0.37	2.18				30 0.00	12.16	0	9.64	8.11	1.189
140 t Tošić (2017)	NAC28	106666		< 2433	. 6877	2.827	106666667	107775	8231				35 2235423	10	4.772	0.0864	0.83	4.89				31 0.41	27.68	450	22.04	16.51	1.335

Assessment and Correction of ACI model: Database with B4s shrinkage and creep model

	ŝ	0	13	3 0	0	113	0 5	20	13	0	913	0 0	20	913	0 9	2 0	24.	0 64	0	84	0 75	; 0	.34	0 %	0	09	0 0	0	20	20 0	0	20	20 20	0 0	109	42	365	365	20	365	92	0 5	60	510	365	0	510	510	0 0	0 0	0	0	31
33	t-t _o (days	4	41.	± 4	4	14 9	4 4	<u> </u>	14 8	14	14	4.5	4 4	4	4:	# ac	28 28	28	32	32	53	23	53 17	53	28	28	28	28	1 28	28	28	28	28	28	288	28 1	5 5				15 3	5 1							28	28	30	30 20	30 #
32	t _o (days)	146	162	.26	.02	.70	37	68	:02	.42	.36	.94	.22	178	.78	10.1	00:	06:	.83	.21	097	.80	021	.30	189	.70	1.99	44	.89	16	17.1	.64	.89	110	4.20	180	140	.16	112	.50	105	1.12	17	129	0 0	29	128	115	.52	.02	145	16.62 15.53	.43
31	a (t-t ₀) (mm)	13	23	5 25	17	44	2 2	24	44 65	14 26	96																															4 .	* *	8 2						. ,			
30	K La	2 0.10	0.10	0.10								7 0.10						0.107																																5 0.107		0.107	UL.0 0
53	M _{L2} (Nm)	1844	18442	1844	1844	1844	386	386	386	386	399	426				ľ		29641								_			717	1122	_				7963					278	278	278	609	609	\$ 6092 \$ 6095	930	1252	1252	1252	15725		328	\$ 32R
aling 28	K L1	2 0.10	0.10	0.0	2 0.10	2 0.10	0.10	0.0	6 0.10	6 0.10	0.10	0.00						0.104						0.104		0	3 0.104		0.10	0.0	0	0.10	0		0.104		0.104			0.0	0.10	0.10	0.0	4 0.10	4 4 0.0 0.10	0.10	0.0	0.10	4 4 0.0 0.0	0.10	o	0.10	0
27	M _{L1} (Nm)	719	719	719.	719	719	359	3596	328	328	328	1756	175	1756	1756	1340	1346	1346	800	800	308	174	174	7.1	300	300	303	627	627	62	627	627	62	216	216	216	216	216	216	216.	216	216	360	360	360	360	360	360	360	3604	336	336	24
26	3																												13.8	13.8	13.8	13.8	13.8	10.7	10.7	10.7	32.6	32.6	32.6	32.6	32.6	32.6	23.7	23.7	23.7	23.7	23.7	23.7	23.7	23.7	21.0	24.6	24.6
25	L (mm)	9609	9609	9609	9609	9609	9609	9609	9609	9609	9609	3810	3810	3810	3810	3048	3048	3048	4000	4000	6400	4800	4800	3200	2743	2743	2743	2286	2286	2286	2286	2286	2286	1829	1829	1829	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	3100	2880	2880	288u
24	(%)	0.000	0.742	0.742	0.000	0.742	0.000	0.000	0.881	0.000	0.881	0.000	0.000	0.838	0.000	0.000	0.686	0.000	0.000	0.687	0.000	0.000	0.363	0.000	0.000	0.514	0.000	0.000	0.502	0.504	0.000	0.411	0.412	0.000	0.00	0.621	0.777	0.000	0.000	0.809	0.473	0.000	0.000	0.589	0.000	0.00	0.565	0.589	0.000	0.000	0.000	0.000	0.511
23	· ·	0.000	4.282	4.282	0.000	4.282	0.000	0000	6.886	0.000	988.9	0.000	0.000	5.885	0.000	0.000	3.679	0.000	0.000	3.438	0.000	0.00	1.931	0.000	0.000	1.407	0.000	0.000	1.833	1.864	0.000	0.00	1.187	0.000	0.000	1.820	6.738	0.000	0.000	7.546	1.481	0.000	0.000	3.124	0.000	0.000	2.728	3.124	0.000	3 155	0.000	0.000	4.673
22	(MPa) φ	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
21	E _{cm} (t ₀) (MPa) E _s	25000	25000	25000	25000	25000	22804	22804	22804	22804	22804	23505	23505	23505	23505	25033	25933	30578	25836	25836	31044	31044	31044	31044	29749	29749	27973	29062	29069	28983	31185	31185	31105	29198	29198	29198	22633	24566	22159	30054	30054	28491	27111	27111	28675	27807	27807	27111	28271	27060	23238	23238	25199
	f _{r,red} (t ₀) E _{ci} (MPa) (M	2.07	2.07	2.07	2.07	2.07	1.89	1.89	1.89	1.89	1.89	1.94	9. 19.	1.94	1.94	218	2.15	2.53	2.13	2.13	2.57	2.57	2.57	2.57	2.46	2.46	231	2.40	2.40	2.39	2.58	2.58	2.57	2.41	2.41	187	1.87	2.03	1.83	1.83	2.49	2.35	224	2.24	2.37	2.30	2.30	224	2.34	224	1.92	1.92	2.08
19	f.(t ₀) f _{r.x} (MPa) (M	3.10	3.10	3.10	3.10	3.10	2.83	2.83	2.83	2.83	2.83	2.91	2.91	2.91	2.91	3.33	3.22	3.79	3.20	3.20	3.85	3.85	3.85	3.85	3.69	3.69	3.47	3.60	3.60	3.59	3.87	3.87	3.86	3.62	3.62	3.62	2.81	3.05	2.75	3.75	3.73	3.53	3.36	3.36	3,56	3.45	3.45	3.36	3.51	3.36	2.88	3.12	3.12
8	r _{cm} (t ₀) f _r (MPa) (M	25.00	25.00	25.00	25.00	25.00	20.80	20.80	20.80	20.80	20.80	2 2 2	2 2 2	22.10	22.10	28 00	26.90	37.40	26.70	26.70	38.55	38.55	38.55	38.55	35.40	35.40	31.30	33.80	33.80	33.60	38.90	38.90	38.70	34.10	3 2 3	34.10	20.49	24.14	19.64	19.64	36.13	32.47	29.40	29.40	32.89	30.93	30.93	29.40	31.97	29.29	21.60	25.40	25.40
17	fer (MPa) (M	28.39	28.39	28.39	28.39	28.39	23.62	23.62	23.62	23.62	23.62	25.10	25.10	25.10	25.10	26.71	26.71	37.13	26.03	26.03	35.68	35.68	35.68	35.68	35.15	35.15	31.08	33.56	33.56	33.36	38.62	38.62	38.42	33.86	33.86	33.86	22.88	26.96	21.93	21.93	40.35	36.26	29.19	29.19	32.66 32.66	30.71	30.71	29.19	31.74	29.08	21.24	24.98	24.98
16	(MPa) f _{cm}	25.00	25.00	25.00	25.00	25.00	20.80		20.80			22.10	22.10		22.10	28.00	26.90	37.40	26.70	26.70	37.00	37.00	37.00	37.00	35.40	35.40	31.30	33.80	33.80	33.60	38.90	38.90	38.70	34.10	34.10	34.10	20.49	24.14	19.64	19.64	36.13	32.47	29.40	29.40	32.89	30.93	30.93	29.40	31.97	29.29	21.60	25.40	25.40
15	fer (days) (M	14	4 ;	± 1	4	4	4 4	‡ ‡	4	4	4	4 5	± 4	4	7 ;	# ac	78	28	32	32	35	32	35	35	28	28	28 28	28	58	5 8 28	28	28 28	78	28	788	28	5 15	1 5 1	5 12	to t	5 5	£ ;	5 P	28	78 78 78 78	28	28 88	28	28 28	78 78	30	8 8	30
4	°C)	21	27	2 2	21	21	27	2 2	21	21	21	27	2 2	21	21	21	212	2.2	21	21	2.5	21	21	2 2	21	21	2 2	21	21	2 2	21	2 2	21	21	12.5	21	212	21	212	2 2	21	21	21	21	2 2	12	2 2	21	2 2	27	21	2 72	21
13	RH (%) T	20	8 8	8 8	99	92	8 8	8 8	20	92	26	8 8	8 8	25	S 8	8 2	8 8	8 5	8 8	55	8 8	8 8	85	8 8	200	20	S 5	209	8 8	R 68	20	S 5	8 8	04 6	\$ 4 5	90	8 8	8 8	8 8	8 8	8 8	8 8	8 8	8	8 8	8	8 8	8 8	8 8	8 8	08	8 8	80
12		Г	med	n pa	med	med	med	med m	med	med	med	med	g m	med	med	Damed	med	med	med	med	med	pe m	med	med	med	med	med	deformed	med	pa m	med	med	med	peu	99	med	B B B	med	B B B	med	pe m	med	med	med	pa m	med	med	pa m	pa m	med	med	med med	med
±	% type	1.63 defo	1.63 deformed	0.77 defo	0.00 defo	0.00 defo	1.67 deto	0.84 defo	0.84 defo	0.00 defo	0.00 defo	1.67 defo	0.83 defo	0.83 defo	0.00 defo	0.00 defo	0.00 defo	0.00 deformed	0.00 defo	0.00 defo	0.00 defo	0.00 defo	0.00 defo	0.00 deformed	0.00 defo	0.00 defo	0.00 deformed	0.00 defo	0.00 defo	0.00 defo	0.00 defo	0.00 deformed	0.00 defo	0.00 deformed	1.48 defo	1.48 deformed	0.10 deformed	0.10 deformer	0.10 deformed	0.10 defo	0.10 deforme	0.10 deforme	0.10 deformer 0.06 deformer	0.06 defo	0.06 defo 0.06 defo	0.06 defo	0.06 deto	0.06 defo	0.06 defo	0.06 defo	0.00 defo	0.00 deformed 0.00 deformed	0.00 deto
10	d ₂ (mm) ρ ₂ (%)	7.6	47.6	46.1	0	0	8 8	£ 4	94	0	0	25.4	25.4	25.4	0 0	0	0	0 0	0	0	0 0	0	0	00	0	0	0 0	0	0 0	0	0	0 0	0	0 0	25.4	25.4	8 8	8 8	8 8	8 8	8	88	8 8	28	8 8	8	8 8	8 18	8 8	8 8	0	00	0
6	ď (mm) d ₂ (7.2	257.2	258.7	0	0	157.2	157.2	157.2	0	0	101.6	101.6	101.6	0 0	0 0	0	0 0	0	0	0 0	0	0	00	0	0	0 0	0	0 0	0	0	0 0	0	0 0	177.8	177.8	8 6	9 5	9 0	9 5	9 0	9 5	134	134	134	134	134	134	134	134	0	0 0	0
Keinforcement 8	A _{s2} (mm²) d'(ı		852	400	0	0	400	200	200	0	0	516	258	258	0 0	0	0	00	0	0	0 0	0	0	00	0	0	0 0	0	0 0	0	0	0 0	0	00	258	258	57	57	57	57	57	22	57	22	57	57	57	57	57	57	0	00	0
7 Kelni		1.63	1.63	1.63	1.63	1.63	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1.67	1000	2.20	2.64	0.75	0.75	0.70	0.70	0.70	0.70	2.07	2.07	2.07	1.36	1.36	£ 5	1.94	1.94	2.64	1.48	148	1.48	0.55	0.55	0.55	0.55	0.55	0.55	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	1.02	2.12	2.12
9	nn) p.1 (%)	257.2	257.2	257.2	257.2	257.2	157.2	157.2	157.2	157.2	157.2	101.6	101.6	101.6	101.6	0.101	52	254	135	134	160.3	160.3	160.3	160.3	101.6	101.6	101.6	165.1	165.1	165.1	165.1	165.1	165.1	171.5	171.5	171.5	8 8	8 8	8 8	88 8	8 8	8 8	8 5	131	5 5	131	131	13	5 5	5 3	137	137	117
9	(mm²) d (mm)		852	852	852	852	400	400	400	400	400	516	516	516	516	010	849	1019	100	100	142	142	142	142	214	214	214	400	400	200	268	568	774	258	258	258	314	314	314	314	314	314	565	565	565	565	565	299	565	565	113	113	154
E +	ار م	8.8	304.8	304.8	304.8	304.8	203.2	203.2	203.2	203.2	203.2	127	127	127	127	305	305	305	160	160	190.5	190.5	190.5	190.5	127	127	127	216	216	216	216	216	216	203.2	203.2	203.2	120	120	120	120	120	120	160	160	9 09	160	160	160	160	160	160	160	152
Cross-section 3 4	n) h (mm)	33.2	203.2	203.2	203.2	203.2	152.4	152.4	152.4	152.4	152.4	304.8	304.8	304.8	304.8	152	25	25 52 54	100	100	127	127	127	127	101.6	101.6	101.6	177.8	177.8	177.8	177.8	177.8	177.8	101.6	101.6	971.0	009	009	009	009	009	009	750	750	750	750	7 20	750	750	750	84	F 29	62
	b (mm)																																																				
2	nen																																																				
LODE	Specimen	A1/A4	A1/A4	A2/A5	A3/A6	A3/A6	B1/B4	B2/B5	B2/B5	B3/B6	B3/B6	2 2	D2/D5	D2/D5	D3/D6	AUNA	40NA	60NA	a1/a2	a1/a2	00 a	, 0	10	5 5	SB3/B	SB3/B	SB3/M	72	E 8	2 22	22	22 23	2. 2.	SR	£ 5	DR.	¥	A 25	¥3 F	A3	¥ }	A5	C12	C12	55 55 55 55	C13	5 5	C14	C 24 75 75	C15	6.3	3 5	Ξ
study information																																				ć	(G)	3 (3)	(G)	5 <u>(</u> 2)	(2)	(2)	ý (ý 13) ý	(2)	(i)	(2)	(S) (S)	í (i	S (S)	3 (3)	i		
, -		Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	Fluck [8]	[6] won					× [2]	<u>1</u> 2	vi [22]	× [2]	d Metz [23]	d Metz [23]	d Metz [23]	leyers [26]	Meyers [26]	veyers [26]	Weyers [26]	Meyers [26]	Weyers	59]	[29]	29]	Jaccoud and Favre (1982)	Jaccoud and Favre (1982	Jaccoud and Favre (1982	Jaccoud and Favre (1982)	Jaccoud and Favre (1982	Jaccoud and Favre (1982	Jaccoud and Favre (1982 Jaccoud and Favre (1982	Jaccoud and Favre (1982	Jaccoud and Favre (1982 Jaccoud and Favre (1982	Jaccoud and Favre (1982 Jaccoud and Favre (1982	d Favre (198	1[44]	9 44 J	9 [44]			
	Author	Washa and	t Washa and Fluck [8	Washa and	Washa and	Washa and	Washa and	Washa and	: Washa and Fluck [8	Washa and	Washa and Fluck [Washa and Fluck	Washa and	Washa and	Washa and Fluck [8	D A MA	P.C.A. [18]	P.C.A. [18]	Sattler [11]	Sattler [11]	Hajnal-Kony	Hainal-Kony	Hajnal-Kony	Hajnal-Konyi [22]	Branson and	Branson and	0 Branson and Metz [23]	Pauw and N	t Pauw and Meyers [26]	Pauw and N	Pauw and Meyers	Pauw and Meyers	Pauw and Meyers	0 Lutz et al. [2	Lutz et al. [2	Lutz et al. [2	Jaccoud an	Jaccoud an	Jaccoud and	Jaccoud an	Jaccoud and	Jaccoudan	Jaccoud and	Jaccoud and	Jaccoud and	Jaccoud and	Jaccoudan	Jaccoud and	Jaccoudan	0 Jaccoud and Favre (1982)	Ding Dajung	Ding Dajung [44] Ding Dajung [44]	Ding Dajun,
		1	7 5	5 4 5 +	9	6 t	۰ ۵	. 6	10 t	11 0	12 t	13	15 0	16 t	17 0	1	,	21 0	ľ		25 0	_		30 0			33 0		36 t	38 2	39 0	4 40	42 t	43 0		46 t	48 +	49 0	51 0	52 t	54 5	55 0	57 0	58 t	29 40 40	61 0	62 t	64 0	65 0	67 0	_	- 0	72 1

Study information

	2	'ays)	0	0191	1344	0	4121	1398	0	1541	1471	- 0	1485	0	1491	0 2	7/6	1572	. 0	1572	0	772	0	772	0 0 0	2/6	972	0 62	000	180	0	180	180	0	081	380	0	380	380	0	380	380	0	380	380	000	380	0	380	380	0	380	380	0	450	0 !
		ys) t-t _o (days)	28	87.00	28	28	8 28	28	28	28	58	9 8	78	28	28	8 8	0 80	9 8	28 2	28	28	28	28	28	87.00	9 8	28	28	07	78	28	58	5 8 78 78	58	87	4 4	4	4 ;	± 4	4	4;	± ‡	. 4	4	4 5	<u>†</u> 4	4	4	4 4	<u> </u>	4	4 :	4 4	7	۰ ۵	58
Deflection		m) t _o (days)	6.02	7.30	11.98	8.94	15.02	13.49	7.69	14.10	9.36	10.72	20.24	13.10	24.23	7.08	10.58	23.88	13.84	28.74	5.98	10.52	8.80	13.90	11.16	12.85	19.28	8.94	4 80	11.83	5.09	11.92	8.77	4.30	8,55	12.06	1.98	7.44	12.42	2.06	7.87	13.30	1.97	7.90	7.14	2.72	19.90	11.80	32.50	21,90	10.70	29.80	5.04	9.17	18.94	0.11
30	a (†	(mm)	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.107	0.107	/01.0
Q		Nm) K	21500	21500	24250	27180	33950	33950	38300	38300	45850	45650 52260	52260	58660	58660	42190	42190	65300	75490	75490	37610	37610	51340	51340	58200	65530	65530	3250	3500	3500	3500	3500	3200	3500	3200	21646	13746	13746	21690	13690	13690	31490	17690	17690	4437	2907	2907	7497	7497	4437	8977	8977	5967	6645	6645	5655
ac		M	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104
Loading		Vm) K	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	629	212	212	500	508	508 508	212	212	3254	3254	3254	3110	3110	3110	3110	3110	3110	2373	2373	2373	2373	2373	2373	2373	2373	2373	1024	1024	1024
90	07	M _{E1} (11.2	112	11.2	11.2	2.11	11.9	11.9	11.9	11.9	. t	11.9	11.9	11.9	12.0	120	12.0	12.0	12.0	11.9	11.9	11.9	11.9	17.9	5 5	11.9	28.8	15.0	15.9	16.2	16.2	16.2	15.9	15.9	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	26.9	26.9	26.9	26.9	26.9	26.9	26.9	26.9	26.9	18.9	18.9	, G.Y
36	67	P/I (mm	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	3750	2100	2100	2100	2100	2100	2100	2100	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3200	3200	3200
24	47) T (%)	0.000	0.603	0.602	0.000	0.000	0.654	0.000	0.654	0.000	0.000	0.654	0.000	0.654	0.000	0.00	0.000	0000	0.594	0.000	0.611	0.000	0.611	0.000	0000	0.617	0.000	0.000	0.850	0.000	0.850	0.000	0.000	0.850	0.760	0.000	0.760	0.766	0.000	0.766	0.000	0.000	0.766	0.000	0.000	0.824	0.000	0.824	0.824	0.000	0.824	0.000	0.000	0.694	0.000
60	62	(-) & cs	0.000	2.540	2.490	0.000	0.000	3.368	0.000	3.402	0.000	0.000	3.389	0.000	3.390	0.000	2.307	2.387	0000	2.387	0.000	2.626	0.000	2.626	0.000	0.000	2.697	0.000	0.000	3.992	0.000	3.992	3,992	0.00	3.992	5.536	0.000	5.536	5.538	0.000	5.538	5.538	0.000	5.538	0.000	0000	5.554	0.00	5.554	5.554	0.000	5.554	5.554	0.000	3.668	0.00
00	77	E _s (MPa) φ (200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
5	Z Z		28940	28940	28940	28940	27295	27295	27295	27295	27295	27295	27295	27295	27295	29287	20287	29287	29287	29287	28284	28284	28284	28284	28284	28284	28284	31225	31223	25451	25451	25451	25451	25451	25451	23281	23281	23281	23281	23281	23281	2328	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23076	23076	2/0/2
	£(fa) E.		2.39	2.39	2.39	2.39	2.39	2.25	2.25	2.25	225	2.25	2.25	2.25	2.25	2.42	242	2.42	2.42	2.42	2.34	2.34	2.34	2.34	2.34	234	2.34	2.58	211	2.1	2.11	2.11	2.11	2.11	2.11	1.93	1.93	1.93	193	1.93	1.93	5 6 6	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1,93	1.93	1.93	1.93	1.91	1.91	27.7
0		(MPa) (N	3.59	3.59	3.59	3.59	338	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.38	3.63	3.63	3.63	3.63	3.63	3.51	3.51	3.51	3.51	3.51	2.5	3.51	3.87	3.07	3.16	3.16	3.16	3.16	3.16	3.16	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.86	2.86	3.47
ą.		(MPa) (N	33.50	33.50	33.50	33.50	33.50	29.80	29.80	29.80	28.80	8 8	29.80	29.80	29.80	34.31	5 2	35.5	8 2	34.31	32.00	32.00	32.00	32.00	32:00	32.00	32.00	39.00	38.00	25.91	25.91	25.91	25.91	25.91	25.97	21.68	21.68	21.68	21.68	21.68	21.68	21.08	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.30	21.30	30.30
17		m (MPa) (N	33.26	33.26	33.26	33.26	33.26	29.59	29.59	29.59	29.59	29.59	29.59	29.59	29.59	34.06	34.06	34.06	34.06	34.06	31.77	31.77	31.77	31.77	31.77	31.77	31.77	38.72	20.12	25.72	25.72	25.72	25.72	25.72	22.72	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	30.28	30.28	30.25
6	(t)	(MPa) f _c	33.50	33.50	33.50	33.50	29.80	29.80	29.80	29.80	29.80	29.80	29.80	29.80	29.80	34.30	34.30	34.30	34.30	34.30	32.00	32.00	32.00	32.00	32.00	32.00	32.00	39.00	25.00	25.90	25.90	25.90	25.90	25.90	25.90	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	30.50	30.50	30.30
t,		t _{best} (days) (I	28	87 8	28	28	28 28	28	28	28	78	28 78	78	28	28	28	0 80	28 8	8 2	28	28	28	28	58	87 8	28 8	28	28	07	78 78	28	5 28	78 78 78	58	87	78 78 78	28	58	28	28	28	28 6	28	28	28	788	28	28	28	788	28	28	78 78	28	8 8	07
27	±	(°C)	21	2 5	2 12	21	2 2	21	21	27	2 2	2 2	21	21	21	2.2	2 6	2 2	2 2	21	21	21	21	21	2 5	2 2	21	21	21	2 7	21	21	2 2	21	72	22	21	22	22	21	22	22	21	22	2,5	21	55	21	22	22	21	22	21 22		27 2	
ć	2	RH (%)	09	8 8	8 8	9	8 8	8	99	8 8	8 8	8 8	8 8	8	09	8 8	8 8	8 &	8 8	8	99	8	09	8 1	8 8	8 &	8	9 8	8 8	£ 4	4	\$:	3 4	\$:	04	3 4	40	4 :	£ 4	4	4 5	₽ ₹	5	40	4 6	£ 4	4	40	9 4	£ 4	9	9 :	\$ \$	48.7	48.7	40.7
ç	Ž.	type	0.00 deformed	etormed	elomed	eformed	eformed	eformed	eformed	eformed	eformed	elormed	eformed	eformed	eformed	eformed	elollied	elonned	eformed	eformed	eformed	eformed	eformed	eformed	etormed	elonned	eformed	0.00 deformed	nalilien	eformed	eformed	eformed	eformed	1.19 deformed	etormed	eformed	eformed	eformed	elonned	eformed	eformed	erormed	eformed	eformed	etormed	eformed	eformed	eformed	eformed	elomed	eformed	eformed	eformed	0.21 deformed	deformed	eformed
÷	Ē	p ₂ (%)	0.00 d	0.00	0.00	0.00	0.00	0.00	00:00	0.00	000	000	0.00	0.00	0.00	0.00	000	000	0000	0.00	1.31 d	1.31 d	1.31 d	1.31	1.31 0	13.10	1.31 d	0.00 d	0.00	0.00	00.00	0.00	1.21 0	1.19 d	1.19 0	0.00	0.00 d	0.00	0000	0.00	0.00	0000	0.00 d	0.00	0.00	0.00	0.00	0.00	0.00	000	0.00	00.00	0.00	0.21 d	0.21 d	0.2.0
40	2	d ₂ (mm) p	0	0 0	0	0	0 0	0	0	0 0	0 0	0 0	0	0	0	0 0	0	0 0	0	0	32	32	32	33	3 8	3 %	88	0 0		0	0	0 8	8 8	181	R	00	0	0 0	00	0	0 0		0	0	0 0	0	0	0	00	0	0	0	0 0	53	ଷ୍ଟ	27
u u	ח	d. (mm)	0	0 0	0	0	0 0	0	0	0	0 0	0 0	0	0	0	0 0	0	0 0	0	0	248	248	248	248	248	248	248	0		0	0	0 0	132	134	134	0	0	0 0	0 0	0	0 0		0	0	0 0	0	0	0	0 0	0	0	0	0 0	171	-	=
Reinforcement	ю	A _{s2} (mm²)	0	0 0	0	0	00	0	0	0	0 0	0 0	0	0	0	0 0	0 0	0 0	0	0	462	462	462	462	462	462	462	0	0	0	0	0 ;	157.1	157.1	T.7cT	0	0	0 0	0	0	0 0	0 0	0	0	0 0	0	0	0	00	0	0	0	0 0	57	27	õ
, R	,	p, (%)	0.82	0.82	0.82	0.82	0.82	2.18	2.18	2.18	2.18	2.18	2.18	2.18	2.18	3.53	2,53	3.53	3,53	3.53	2.18	2.18	2.18	2.18	2.18	2 18	2.18	1.74	1,10	1.19	121	121	12.12	1.19	1.19	0.54	0.54	0.54	0.54	0.54	0.54	0.80	0.80	0.80	0.44	0.44	0.44	0.65	0.65	0.65	0.87	0.87	0.87	0.58	0.58	000
œ	0	d (mm) b	250	250	250	250	236	236	236	236	538	236	236	236	236	233	2 62	233	233	233	236	236	236	236	230	236	236	130	130	3 25	130	130	8 6	132	132	30.00	300	300	300	300	300	30.00	300	300	130	8 8	130	130	130	8 8	130	130	8 6	169	99	EQ.
u	n	A _{s1} (mm ³) c	308	308	308	308	308	770	770	770	770	770	770	770	770	1232	1232	1232	1232	1232	770	770	770	770	770	770	770	226	167.1	157.1	157.1	157.1	157.1	157.1	T.74T	402	402	402	402	402	402	903	603	603	226	226	226	339	339	339	452	452	452 452	157	157	ò
ction	ŧ	(mm)		780	280	280	280	280	280	280	780	280	780	280	280	280	280	280	780	280	280	280	280	280	780	280	280	150	15.4	154	152	152	152	154	154	8 8 8	340	340	325	325	325	325	325	325	155	155	155	155	155	155	155	155	155	200	200	SOC
Cross-section	,	(mm) h (150	8 5	8 25	150	S 65	150	150	6 5	8 5	8 6	8 25	150	150	£ £	8 5	3 5	8 8	150	150	150	150	150	8 5	3 5	150	100	3 5	3 6	100	90 5	3 5	9	001	250	250	250	250	250	250	250	250	250	9 6	9 4	400	400	400	9 4	400	400	400 400	160	8 5	200
		Φ																																																						
c	7	oeci men	.5	N +	<u> </u>	Ξ	25	52	29	59	0.0	2 %	3 S	96	06	5 5	2 12	24	-7.7	1-77	V-52	-52	-20	0.70	Q 6	9 6	06-AI	182	75		٠.	0.				B1-a	B1-b	B1-b	B2-a	9	q-;	B3-a	B3-b	B3-b	S1-a	S15	٩	;-a	S2-a S2-h	9.9	ę.	- S-a	S3-b S3-b	4C7	NAC7	ACZ8
ormation		S	7-1	~ •	<u> </u>	9	2 5	: ≚	≟	≟ :	≚ ≌	<u>. 2</u>	: ≚	*	111	≐ ∃	i i	≜ ≟	≘ ≝	≡	≥	≥	≥	≥ :	≥ ≥	≥ ≥	: ≥	19	A1	Ϋ́	A2	¥ 2	. 6	B2	85.	9 9	B1	E 6	85 B	B2	B2	2 2	B3	B3	io o	S	S	SZ	SS SS	82 S2	S3	SS	SS SS	Ž	≱ :	-ANI
Study information	_																																		1000	2004)	2004)	2004)	2004)	2004)	2004)	2004)	2004)	(5004)	2004)	2004)	2004)	2004)	2004)	2004)	2004)	2004)	2004)			
			C. [45]	. (45)	(F)	C. [45]		(45)	C. [45]	C. [45]	C. [45]	ر ار (ا	. i ci	C. [45]	C. [45]	C. [45]	(1	5 C	5 5	C. [45]	C. [45]	C. [45]	C. [45]	C. [45]	. (45)	5 C	C. [45]	s et al. [41]	# III =	et al. [46]	=	et al. [46]	= =	=	جاا≒	Nejadi (Gilbert and Nejadi (Gilbert and Neiadi (3	Gilbert and Nejadi (Gilbert and Nejadi (Gilbert and Nejadi (,			Gilbert and Nejadi (3				Gilbert and Nejadi (3			Gilbert and Nejadi (Gilbert and Nejadi (; Gilbert and Nejadi (;	2017)	2017)	171.02
		Author	0 .	- 0	t F.R.F.C.	0 F.R.F.C	O F R F	t F.R.F.C	0 F.R.F.C	T F.R.F.C	0 F.R.F.O	OFRE	t F.R.F.C	0 F.R.F.C	T F.R.F.L	O F.R.F.		1 1 1 1	0 F.R.F.C	t F.R.F.C	0	-	0	- 1	٠ -	- 0		3 0 Bakoss et a	- °	۰ -	0	8 t Clarke) t Clarke	1 0 Clarke et a	c Carke	3 U Gilbert and 4 t Gilbert and	5 0 Gilbert.	6 t Gilbert		9 0 Gilbert) t Gilbert	- Gilbert	0	-	0 +	- 0	-	0	- ⊂	→	0	+ 0	o +	0		
			73	74	76	77	8/2	80	8	82	83	8 8	98	87	88	88	90	6 6	93	94	96	96	97	86	99	5 5	102	103	104	106	107	108	1 2	= :	172	. +	115	116	13	119	120	127	123	124	125	127	128	129	130	132	133	134	135	137	138	133

Assessment and Correction of ACI model:

Database – Calculated Deflections With B4s shrinkage and creep model

	Study information	ıtion		Cracking moment	moment			Uncracked cross-section	s-section			Fully crac	cracked cross-section	ection				Deflection	u.	
	-	2	ဇ	4	2	9	7	80	6	10	7	12	13	41	15	16	17	18	19	20
	Author	Specimen	W _c (mm³) M _{sw}	(EN)	M _{cr} (Nm)	M _{max} (Nm) M _m	/Mcr	(mm ⁴) S _c ((mm³) A	A _{II} (mm²) A _{II} ((mm²) z _{le.1}	(mm) z _{[[,1]}	(mm)	(mm ⁴)	(mm ⁴) S _{II}	S _" (mm³) t	a _{numint.} t-t ₀ (days) (mm)		a _{num.i} a _{exn} (mm) (%)	anum.int./aexp (%)
← с	and Fluck	A1/A4	3146316	7192		25634	3.940	479498602	1428634	32097		259.37		5339	2498	ი ი		5.25	9	1.133
ию	t washa and Fluck [6] 0 Washa and Fluck [8]	A2/A5	3146316			25634	3.940	479498602	1054477	29541	19525		208.71		245018877	938158	20	15.67	15.75	0.995
4	Washa and Fluck	A2/A5	3146316		> 9029	25634	3.940	479498602	1054477	29541	19525		208.71		245018877	938158	913	58.12	32.26	1.802
യ	Washa and Fluck	A3/A6 A3/A6	3146316		6506 ×	25634	3.940	479498602	714317	27549	20733		202.77		236047788	1057639	0 6	16.23	17.02 44.70	0.954
^	0 Washa and Fluck [8]	B1/B4	1048772		1980 <	7259	3.666	106555245	390107	16326	9310	172.66	142.12		44786844	284288	0	26.04	23.37	1.114
ω σ	t Washa and Fluck [8]	B1/B4 B2/B5	1048772	3596 >	1980	7259	3.666	106555245	390107	16326	9310		142.12	2895141	44786844	284288	913	109.09	51.05	2.137
° 6	Washa and Fluck	B2/B5	1048772		1980 <	7259	3.666	106555245	292580	14845	9583	171.76	140.32	3157485	44337891	301267	913	136.81	65.02	2.104
- 5	Washa and Fluck [8] Washa and Fluck [8]	B3/B6	1048772		1980	7259	3.666	106555245	195053	13431	9923		138.09	3505836	43769112	323052	0 5	26.59	26.42	1.006
<u>π</u> ε	t washa and Fluck [6] 0 Washa and Fluck [8]	D1/D4	819353		1590 <	6023	3.788	52028928	334560	20423	3923 11641			1414920	24031651	222281	20	15.43	11.94	1.292
4	Washa and Fluck	D1/D4	819353		1590 <	6023	3.788	52028928	334560	20423	11641				24031651	222281	913	57.55	27.69	2.078
15		D2/D5	819353		1590 ×	6023	3.788	52028928	250920	18689	12102				23632577	240350	0 5	15.68	14.22	1.103
1 1	t washa and Fluck [8] 0 Washa and Fluck [8]	D3/D6	819353		1590 ×	6023 6023	3.788	52028928	167280	17066	12675				23123743	263557	20	16.00	33.78 17.78	0.900
8 6	t Washa and Fluck [8]	D3/D6	819353		1590 <	6023	3.788	52028928	167280	17066	12675				23123743	263557	913	98.15	48.51	2.023
20	0 P.C.A. [18] t P.C.A. [18]	4 4 ANO 4	2356633	1346 A	5061 ×	23613	4.666	359386583	664586	23414	16868				203141739	936113 936113	242	4.36 18.53	10.00	1.026
12.0	0 P.C.A. [18]	60NA	2356633	1346 ^	> 2957 <	30987	5.202	359386583	676490	23644	16980	249.15		17657498	205568429	948324	0	4.82	4.90	0.984
22.5	t P.C.A. [18] 0.Samler [11]	60NA 91/92	2356633	1346 N N	9957 <	30987	3.032	359386583	676490	23644	16980 3846	249.15			205568429	73948	242	11.31	9.90	1.142
24	t Sattler [11]	a1/a2	426667			2762	3.032	34133333	41802	4620	3846	140.77	121.54		8961213	73948	, 2	67.36	32.21	2.091
	0 Hajnal-Konyi [22]	∞ ∘	768144		1973 <	4709	2.387	73165680	59510	6170	5256	169.81	149.13		15932912	108759	0 727	28.53	20.60	1.385
	t najnar-konyi [22] 0 Hajnal-Konyi [22]	10	768144	1742 <		4709	2.387	73165680	59510	6170	5256	169.81	149.13	750398	15932912	108759	ţ ○	16.05	8.80	1.824
	t Hajnal-Konyi [22]	10	768144	1742 <		4709	2.387	73165680	59510	6170	5256	169.81	149.13		15932912	108759	1734	43.12	29.70	1.452
	0 Hajnal-Konyi [22] + Hajnal-Konyi [22]	12	768144	774 ^	1973 <	4709	2.387	73165680	59510	6170	5256	169.81	149.13		15932912	108759	0 773	7.13	4.30	1.658
3 5	0 Branson and Metz [23]	SB3/B	273118			1238	1.842	17342976	54815	5635	4197	106.34	85.69		7613841	86702	0	3.23	3.89	0.830
32	t Branson and Metz [23]	SB3/B	273118	303 <	672 <	1238	1.842	17342976	54815	5635	4197	106.34	85.69		7613841	86702	9	7.83	7.70	1.017
34	U Branson and Metz [23] † Branson and Metz [23]	SB3/M	273118		632 ×	1238	1.959	17342976	58295	5825	4295	105.86	24.73		7943360	90781	9	3.47	2.99	1.373
35	0 Pauw and Meyers [26]	R.1	1382573			7803	2.350	149317862	157143	13006	10254	187.17	158.34		43131876	295675	9 0	2.70	2.44	1.107
36	t Pauw and Meyers [26]	F 8	1382573	627 <	3320 <	7803	2.350	149317862	157143	13006	10254	187.17	158.34		43131876	295675	150	7.15	4.89	1.462
38	t Pauw and Meyers [26]	R2 R2	1382573	627 <		11855	3.580	149317862	223806	15667	11748	182.96	149.93	4273886	55526092 55526092	388118	150	3.84 10.21	5.22 6.16	1.657
39	0 Pauw and Meyers [26]	R3	1382573	627 <	3569 <	10270	2.878	149317862	208003	15066	11425	183.87	151.73		52748551	367110	0 6	3.08	3.71	0.830
0 4 4	t Pauw and Meyers [26] 0 Pauw and Meyers [26]	χ γ 42	1382573	627 <	3560 ×	10270	4.279	14931/862	208003	15066	12828	183.87	151.73		52748551 65261928	367110 462645	<u> </u>	6.38 4.04	6.64 4.66	0.867
42	t Pauw and Meyers [26]	R4	1382573			15234	4.279	149317862	284169	17805	12828	179.93	143.86	5564627	65261928	462645	120	8.39	7.89	1.063
4 4 8 4	0 Lutz et al. [29] † Lutz et al. [29]	₩ 0	699181	216 ×		8179	4.845	71036830	123530	8045	6278	172.3	141.42		29259693	193908	0 242	3.33	4.10 8.80	0.812
45	0 Lutz et al. [29]	DR.	699181			8179	4.845	71036830	258194	9123	5588	175.7	148.2		31169246	153578	0	3.13	4.20	0.745
46	t Lutz et al. [29]	DR.	699181	216 <	1688 ^	8179	4.845	71036830	258194	9123	5588	175.7	148.2		31169246	153578	142	5.91	6.80	0.869
4 4 4 8	U Jaccoud and Favre (1982) t Jaccoud and Favre (1982)	F 4	1440000	2162 < 2162 <	> 5698 5698 5698	4949 4949	1.834 4.834	86400000	117262	18419 18419	15139 15139	107.38 107.38	94.76 94.76	803202	16736259 16736259	190997	365	6.55	8.42 18.40	2.342
49	0 Jaccoud and Favre (1982)	A2	1440000	2162 <	2929 <	4949	1.690	86400000	108035	17652	14632	107.81	95.61		15655337	178439	0 !	5.48	6.16	0.890
51	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	A3 A2	1440000	2162 < 2162 <	2623 < 2641 <	4949 4949	1.690	86400000	119771	1,652	14632 15276	107.27	95.61		17027594	178439	0 0	6.84	17.50 8.12	0.842
52	t Jaccoud and Favre (1982)	A3	1440000	2162 <	2641 <	4949	1.874	86400000	119771	18626	15276	107.27	94.55		17027594	194398	365	49.46	17.50	2.826
54	t Jaccoud and Favre (1962)	¥ ¥	1440000	2162 <	3583 <	4949 949	1.381	86400000	88308	15913	13446	108.79	97.59		13254472	150662	365	7.63	8.05	0.948
55	0 Jaccoud and Favre (1982)	A5	1440000	2162 <	3390 <	4949	1.460	86400000	93152	16364	13760	108.53	97.07		13862824	157690	0 18	3.78	3.12	1.212
56	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	A5 C12	320000	3604 ×	3390 <	4949 9699	1.352	86400000 256000000	93152	16364 29270	13760 24680	108.53 143.55	97.07		13862824 49053231	157690 406145	365	10.37	9.55	1.086
28	t Jaccoud and Favre (1982)	C12	3200000	3604 ×	7172 <	6696	1.352	256000000	235277	29270	24680	143.55	127.1	2227167	49053231	406145	510	8.97	8.29	1.082
6 6 9	t Jaccoud and Favre (1982)	C22 C23 C33 C34 C35 C35 C35 C35 C35 C35 C35 C35 C35 C35	3200000	3604 ×	7598 <	6696 6696	1.277	256000000	222445	28426	24091	143.94	127.88		46803193 46803193	386963	365	2.02 6.16	2.00	0.880
61	0 Jaccoud and Favre (1982)	C13	3200000	3604 <	7364 <	12909	1.753	256000000	229388	28877	24405	143.73	127.45		48013295	397254	0	4.75	5.29	0.898
62	t Jaccoud and Favre (1982)	C13	3200000	3604 ^	7364 <	12909	1.753	256000000	229388	28877	24405	143.73	127.45		48013295	397254	510	15.94	13.28	1.200
64	t Jaccoud and Favre (1982)	C14	320000	3604 ^	7172 <	16124	2.248	256000000	235277	29270	24680	143.55	127.1		49053231	406145	510	29.45	18.15	1.623
65	0 Jaccoud and Favre (1982)	C24	3200000	3604 ×	7492 <	16124	2.152	256000000	225623	28636	24238	143.84	127.68		47353248	391635	0 0	7.58	8.00	0.948
29	0 Jaccoud and Favre (1982)	C15	320000	3604 ^	7172 <	19329	2.695	256000000	235721	29287	24690	143.54	127.07		49104857	406557	0	11.21	11.02	1.017
89	t Jaccoud and Favre (1982)	C15	3200000	3604 ×	7172 <	19329	2.695	256000000	235721	29287	3774	143.54	127.07	2229828	49104857	406557	510	40.93	20.83	1.965
2 0	t Ding Dajung [44]	- P	345600	336 ×	, v 664 0	3240	4.880	27648000	55435	4747	3774	136.7	113.39	682787	10682594	87943	2025	89.07	16.62	5.359
													I							

	Study information	ırmation		Cracking	Cracking moment			Uncracked cross-section	s-section		Ì	Fully crac	cracked cross-section	ction				Deflection	_	
	-	2	ო	4	2	9	7	80	6	10	7	12	13	14	15	16	17	18 1	19	20
	Author	Specimen	W _c (mm³) M	M _{Sw} (Nm)	M _{cr} (Nm)	M _{max} (Nm) M _n	Mcr L	I _c (mm ⁴) S _c	(mm³) A	A _{ll} (mm²) A _{lle}	A _{lic} (mm²) z _{lic.1}	Z _{lc.1} (mm) Z _{ll.1}	(mm) I _{IIc} (mm ⁴)	m²) l _{li} (mm²)		S _{ll} (mm³) t-t	anumint. t-t ₀ (days) (mm)	Jint. Sexp (mm)	a _{num.int.} /a _{exp} mm) (%)	/a _{exp}
			238741		497 <	3524		4341	0113	9 9				847	7316	ထင္	0.4	0.19	15.53	0.978
	F.R.F.C. [45]	1-72	1960000	1029	4693 <	22529	4.801	274400000	234140	12812	10684	244.39	208.78			380494	- 0	7.27	6.02	1.208
	F.R.F.C. [45]	1-72	1960000	1029 <	4693 <	22529	4.801	274400000	234140	12812						380494	1610	23.26	10.29	2.260
	F.R.F.C. [45]	-81	1960000	1029	4693 ×	25279	5.387	274400000	234140	12812						380494	0 4 1 344	8.24 25.96	11.98	2.167
	F.R.F.C. [45]	1-91	1960000	1029 <	4693 <	28209	6.011	274400000	234140	12812						380494	0	9.26	8.94	1.036
	F.R.F.C. [45]	1-91	1960000	1029	4693 <	28209	6.011	274400000	234140	12812						380494	1314	29.10	15.02	1.937
	F.R.F.C. [45]	II-52	1960000	1029 ^	1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	34979	7.916	274400000	541638	20770					54379371	762800	1398	27.15	13.49	2.013
	F.R.F.C. [45]	11-59	1960000	1029 <	4419 <	39329	8.900	274400000	541638	20770			•	_	54379371	762800	0	7.78	7.69	1.012
	F.R.F.C. [45]	11-59	1960000	1029	4419 A	39329	8.900	274400000	541638	20770					54379371	762800	1541	30.73	14.10	2.179
	F.R.F.C. [45]	0/-11	1960000	1029	4 4 5 6 0 0	46879	10.609	274400000	541638	20770				12818721	54379371	762800	0 1471	9.29 36.47	9.36 17.56	0.993
	F.R.F.C. [45]	08-11	1960000	1029 <	4419 ^	53289	12.059	274400000	541638	20770						762800	0	10.57	10.72	0.986
	F.R.F.C. [45]	N-II-80	1960000	1029 <	v 4419	53289	12.059	274400000	541638	20770		229.58	179.15 1		154379371	762800	1485	41.45	20.24	2.048
	F.R.F.C. [45]	06-1	1960000	1029 ^	4 4 5 6 0 0	59689	13.507	274400000	541638	20770		229.58				762800	1491	11.84	13.10	1.904
	F.R.F.C. [45]	≡ 43	1960000	1029 <	4746 <	43219	9.106	274400000	782436	25670		222.48				992497	0	6.38	7.08	0.901
	F.R.F.C. [45]	III-43	1960000	1029 <	4746 <	43219	9.106	274400000	782436	25670		222.48				992497	1572	19.80	14.51	1.365
	F.K.F.C. [45] F.R.F.C. [45]	/9-III 11-67	1960000	1029	4746 < 4746 <	66329	13.976	274400000	782436	25670		222.48		19026862 1		992497	1572	30.17	10.58	0.926
	F.R.F.C. [45]	111-77	1960000	1029 <	4746 <	76519	16.123	274400000	782436	25670		222.48				992497	0	11.31	13.84	0.817
	F.R.F.C. [45]	22-111	1960000	1029 <	4746 <	76519	16.123	274400000	782436	25670		222.48				992497	1572	34.74	28.74	1.209
	F.R.F.C. [45]	IV-52	1960000	1029	4589 v	38639	8.420	274400000	875520	22194		235.05	190.1			606233	0 622	6.97	5.98	1.166
	F.R.F.C. [45]	10-70	1960000	1029	4589 <	52369	11.412	274400000	875520	22194		235.05		9079856		606233	0	9.46	8.80	1.075
	F.R.F.C. [45]	10-70	1960000	1029 <	4589 <	52369	11.412	274400000	875520	22194		235.05				606233	772	22.44	13.90	1.614
	F.R.F.C. [45]	IV-80	1960000	1029	4589 <	59229	12.907	274400000	875520	22194		235.05	190.1	9079856 1		606233	0 220	10.71 26.76	11.16	0.960
	F.R.F.C. [49]	06-71	1960000	1029	4589 ×	59229	14.504	274400000	875520	22194		235.05				606233	2/6	12.70	12.85	0.937
	F.R.F.C. [45]	06-VI	1960000	1029 <	4589 <	66559	14.504	274400000	875520	22194		235.05				606233	972	28.93	19.28	1.501
	Bakoss et al. [41]	182	375000	> 629	> 896	3909	4.038	28125000	79616	9069		125.72	101.43			117964	0	13.48	8.94	1.508
	Bakoss et al. [41] Clarke et al. [46]	1B2 A1	375000	659 212 ×	833 v	3909	4.038	30435533	79616	6306		125.72	101.43			117964	200	31.56 5.36	25.02 4.89	1.261
	Clarke et al. [46]	¥.	395267	212 <	833 ×	3712	4.456	30435533	62829	5842	4607	130.97	107.93			106107	180	24.02	11.83	2.030
	Clarke et al. [46]	A2	385067	509 209 209	812 ×	3709	4.568	29265067	66665	5798	4563	129.19	106.36	791717	11957625	104168	0 0	5.55	5.09	1.090
	Clarke et al. [46]	Z 18	385067	209	812 ×	3709	4.568	29265067	135798	97.80	4098	131.51	111.01		12622646	83992	<u> </u>	5.27	4.78	1.103
	Clarke et al. [46]	B1	385067	> 500	812 <	3709	4.568	29265067	135798	6568		131.51	111.01		12622646	83992	180	16.43	8.77	1.873
	Clarke et al. [46]	B2	395267	212	833 ×	3712	4.456	30435533	138267	9099		133.32	112.63	589416	13066292	85523	0 6	5.09	4.30	1.184
	Ciarre et al. [40] Gilbert and Nejadi (2004)	67 B1-a	395267 4816667	3254 <	9285 <	24900	2.682	818833333	448950	23021		300.87				765708	<u>0</u> 0	5.38	6.33 4.95	1.087
	Gilbert and Nejadi (2004)	B1-a	4816667	3254 <	9285 <	24900	2.682	818833333	448950	23021		300.87				765708	380	31.13	12.06	2.581
	Gilbert and Nejadi (2004)	814 4 4	4816667	3254 <	9285 <	17000	1.831	818833333	448950	23021		300.87				765708	0 000	2.75	1.98	1.389
	Gilbert and Nejadi (2004)	B2-a	4401042	3110 ^	8484	24800	2.923	715169271	474851	23021		285.87				765708	0	5.71	5.03	1.135
	Gilbert and Nejadi (2004)	B2-a	4401042	3110 <	8484	24800	2.923	715169271	474851	23021		285.87		9989523 2	209739323	765708	380	33.05	12.42	2.661
	Gilbert and Nejadi (2004)	82-b 82-b	4401042	3110 <	28 28 28 28 28 28 20 28	16800	1.980	715169271	474851	23021		285.87				765708	0 08	3.10	2.06	1.505
	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	8484 A	34600	4.078	715169271	712276	28355		278.65				073818	9 0	6.43	5.81	1.107
	Gilbert and Nejadi (2004)	B3-a	4401042	3110 <	8484	34600	4.078	715169271	712276	28355		278.65				073818	380	37.21	13.30	2.798
	Gilbert and Nejadi (2004)	B3-p	4401042	3110 ×	8 8 8 8 8 4	20800	2.452	715169271	712276	28355		278.65				073818	380	20.29	7.90	2.568
0	Gilbert and Nejadi (2004)	S1-a	1601667	2373 <	> 2087 <	6810	2.206	124129167	101929	14343		139.5		_		192212	0	9.94	7.14	1.392
	Gilbert and Nejadi (2004)	ν. Δ. τ.	1601667	2373 <	3087 <	6810	2.206	124129167	101929	14343		139.5	124.01	993514	23000169	192212	380	57.82	25.10	2.304
, +-	Gilbert	S1-b	1601667	2373 <	3087 <	5280	1.710	124129167	101929	14343		139.5	124.01			192212	380	32.63	19.90	1.640
0	Gilbert	S2-a	1601667	2373 <	3087 <	9870	3.197	124129167	152893	17644	14732	136.59	118.17			271312	0	14.62	11.80	1.239
- 0	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	S2-a S2-b	1601667	2373 <	3087 × 3087	9870 6810	3.197	124129167	152893 152893	487	14732	136.59 136.59			31941 /82 31941 782	271312 271312	0 0	84.69 8.18	32.50 4.43	1.847
_	Gilbert and Nejadi (2004)	S2-b	1601667	2373 <	> 2087 <	6810	2.206	124129167	152893	17644	14732	136.59				271312	380	47.87	21.90	2.186
<u> </u>) Gilbert and Nejadi (2004)	S3-4a	1601667	2373 <	3087 <	11350	3.677	124129167	203857	20466	16583 16583	134.27	113.54		39938925	343772	380	14.39 83.49	10.70	1.345
_	Gilbert and Nejadi (2004)	S3-b	1601667	2373 <	3087 <	8340	2.702	124129167	203857	20466	16583	134.27				343772	0	9.64	5.04	1.913
	Gilbert and Nejadi (2004) Tošić (2017)	S3-b NAC7	1601667	2373 <	3087 <	8340	3.769	124129167	203857	20466	16583 7182	134.27				343772	380	56.33 12.66	22.90	2.460
,	Tošić (2017)	NAC7	1066667	1024 <	2035 <	6992	3.769	106666667	128965	9037	7182	92.771			25917152	161122	450	48.76	18.94	2.574
139 0	Tošić (2017) Tošić (2017)	NAC28 NAC28	1066667	1024 ×	2433 ×	6877	2.827	106666667	107775	8231 8231	6682 6682	179.12 179.12	158.27 158.27	970995	22354235 22354235	139412 139412	450	9.64 31.30	8.11 16.51	1.189

Assessment and C owith GL2000 shri	

1	2	8	4	19	9	7	8	9 1	10 11	12	13 14	4 1:	16	117	18			21	22	23	24	25	26	27	28	53	30	31	32	33
Author	Specimen	b (mm) h (m	mu)	A ₂₁ (mm²) d (d (mm) b ₁ ((%) A ₂₂ ((mm²) d' (mm)	ım) d ₂ (mm)	P ₂ (%)		RH (%) T (°C)	t _{tost} (d	f _{cm} (t _{ost}) lays) (MPa)	f _{cm} (MPa)	f _{cm} (t ₀) (MPa)	f,(t ₀) f (MPa) (f _{r,red} (t ₀) E, (MPa) (A	E _{cm} (t ₀) (MPa) E _s	(MPa) φ (-) E cs	(%) L(i	b/l (mr	M	(Nm) K _{L1}	M	(Nm) K _{L2}		a (t-t _o) (mm) t _o (d	t ₀ (days) t-t ₀ (days	days)
1 0 Washa and Fluck [8]	A1/A4	203.2	1		ı	1.63	852	257.2		Г	90	21	14 25		3 25.00	3.10	2.07	25000	200000	0.000	0.000	9609	23.7	7192	0.104	18442	0.104	13.46	4	0
2 t Washa and Fluck [8]	A1/A4	203.2	304.8	852	257.2	1.63	852	257.2	47.6 1.	1.63 deformed	S 20	21	14 25	.00 28.39	35.00	3.10	2.07	25000	200000	2.238	0.432	9609	23.7	7192	0.104	18442	0.104	23.62	4 5	913
4 t Washa and Fluck [8]	A2/A5	203.2	304.8	852	257.2	1.63		258.7		77 deformed	8 8	27	14 25		25.00	3.10	2.07	25000	200000	2.238	0.432	9609	23.7	7192	0.104	18442	0.104	32.26	<u>+</u>	913
5 0 Washa and Fluck [8]	A3/A6	203.2	304.8	852	257.2	1.63	0	0	0 0	00 deformed	20	21	14 25	00:	٩ 25.00	3.10	2.07	25000	200000	0.000	0.000	9609	23.7	7192	0.104	18442	0.104	17.02	14	0
6 t Washa and Fluck [8]	A3/A6 B1/B4	203.2	304.8	852	257.2	1.63		157.2		0.00 deformed	S 2	21	14 25	8.8	25.00	3.10	2.07	25000	200000	2.238	0.432	9609	23.7	3506	0.104	3663	0.104	44.70	4 4	913
8 t Washa and Fluck [8]	B1/84	152.4	203.2	400	157.2	1.67		157.2		67 deformed	8 8	21	14 20.	8 8		2.83	1.89	22804	200000	2.583	0.564	9609	38.8	3596	0.104	3663	0.104	51.05	<u> </u>	913
9 0 Washa and Fluck [8]	B2/B5	152.4	203.2	400	157.2	1.67	200	157.2	46 0.	.84 deformed	92	21	14 20	.80	20.80	2.83	1.89	22804	200000	0.000	0.000	9609	38.8	3596	0.104	3663	0.104	24.89	4	0
10 t Washa and Fluck [8] 11 0 Washa and Fluck [8]	B2/B5 B3/B6	152.4	203.2	400	157.2	1.67		157.2		0.84 deformed 0.00 deformed	සි සි	21	14 20.	.80 23.62	20.80	2.83	1.89	22804	200000	2.583	0.564	9609	38.8	3596	0.104	3663	0.104	65.02	4 4	913
12 t Washa and Fluck [8]	B3/B6	152.4	203.2	400	157.2	1.67		0		:00 deformed	90	21	14 20	.80 23.62	20.80	2.83	1.89	22804	200000	2.583	0.564	9609	38.8	3596	0.104	3663	0.104	86.36	4	913
13 0 Washa and Fluck [8] 14 + Washa and Fluck [8]	40,12	304.8	127	516	101.6	1.67	516	101.6	25.4	.67 deformed	S &	21	14 22	.10 25.10	22.2	2.91	1.94	23505	200000	0.000	0.000	3810	37.5	1756	0.104	4267	0.104	11.94	4 4	913
15 0 Washa and Fluck [8]	D2/D6	304.8	127	516	101.6	1.67		101.6		83 deformed	8 8	21	14 1	10 25.10	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.91	1.94	23505	200000	0.000	0.00	3810	37.5	1756	0.10	4267	0.104	14.22	. 4	20
Washa and Fluck	D2/D5	304.8	127	516	101.6	1.67		101.6		.83 deformed	92	21			22.10	2.91	1.94	23505	200000	2.556	0.541	3810	37.5	1756	0.104	4267	0.104	33.78	4	913
17 0 Washa and Fluck [8] 18 + Washa and Fluck [8]	D3/D6	304.8	127	516	101.6	1.67	00	0 0	00	0.00 deformed	S &	21	14 22.		22.10	2.91	1.94	23505	200000	0.000	0.000	3810	37.5	1756	0.104	4267	0.104	17.78	4 4	0 613
19 0 P.C.A [18]	40NA	152	302	849	254	2.20	0	0	0 0	0.00 deformed	20	21			28	3.22	2.15	25933	200000	0.000	0.000	3048	12.0	1346	0.104	22267	0.107	4.25	28	0
- 0	40NA	152	305	849	254	2.20	0 (0 (0	1.00 deformed	S 1	27		.90 26.71	8 1	3.22	2.15	25933	200000	1.385	0.291	3048	12.0	1346	0.104	22267	0.107	10.00	58	242
	60NA 60NA	25T 25Z	302	1019	5 5 52 5	2.64	00	00	00	00 deformed	S S	21	28 37.	37.40 37.13 37.40 37.13	37.40	3.79	2.53	30578	200000	1.385	0.247	3048	12.0	1346	0.104	29641	0.107	9.90	8 88	242
23 0 Sattler [11]	a1/a2	100	160	100	134	0.75	0	0	0 0	0.00 deformed	92	21		.70 26.03	58	3.20	2.13	25836	200000	0.000	0.000	4000	29.9	800	0.104	1962	0.104	15.83	32	0
	a1/a2	100	160	100	\$	0.75	0	0	0	1.00 deformed	55	21			28	3.20	2.13	25836	200000	1.178	0.275	4000	29.9	800	0.104	1962	0.104	32.21	32	84
-	00 O	127	190.5	142	160.3	0.70	0 0	0 0	00	00 deformed	8 8	2 2		35.68	88	3.85	2.57	31044	200000	0.000	0.000	6400	39.9	3097	0.104	1612	0.104	20.60	53	1734
_	, _C	127	190.5	142	160.3	0.70	0	0	Ö	00 deformed	8 8	21		,	8 8	3.85	2.57	31044	200000	0.00	0.000	4800	29.9	1742	0.104	2967	0.104	8.80	23	0
	10	127	190.5	142	160.3	0.70	0	0	0	00.00 deformed	82	21		.00 35.64	38.55	3.85	2.57	31044	200000	1.721	0.262	4800	29.9	1742	0.104	2967	0.104	29.70	53	1734
29 0 Hajnal-Konyi [22] 30 + Hajnal-Konyi [22]	5 5	127	190.5	142	160.3	0.70	0 0	0 0	00	0.00 deformed	8 8	21		35.6	38.55	3.85	2.57	31044	200000	0.000	0.000	3200	20.0	774	0.104	3935	0.104	14.00	53	1734
-	SB3/B	101.6	127	214	101.6	2.07	0	0	0 0	00 deformed	200	21		40 35.15	35.40	3.69	2.46	29749	200000	0.000	0.000	2743	27.0	303	0.104	935	0.104	3.89	28	0
32 t Branson and Metz [23]	SB3/B	101.6	127	214	101.6	2.07	0	0	0 0	0.00 deformed	90	21		.40 35.15		3.69	2.46	29749	200000	1.136	0.223	2743	27.0	303	0.104	935	0.104	7.70	28	09
33 0 Branson and Metz [23]	SB3/M SB3/M	101.6	127	214	101.6	2.07	00	00	00	0.00 deformed	26 27	21		31.30 31.06	31.30	3.47	2.31	27973	200000	0.000	0.000	2743	27.0	303	0.104	935	0.104	3.99	28	0 0
35 0 Pauw and Meyers [26]	R1	177.8	216	400	165.1	1.36	0	0	0 0	00 deformed	200	21		80 33.56	33.80	3.60	2.40	29069	200000	0.000	0.000	2286	13.8	627	0.104	7176	0.107	2.44	28	90
36 t Pauw and Meyers [26]	₽ 8	177.8	216	400	165.1	1.36	0	0	0	0.00 deformed	98	21	28 33.	33.80 33.56	33.80	3.60	2.40	29069	200000	1.191	0.204	2286	13.8	627	0.104	7176	0.107	4.89	28	150
37 U Pauw and Meyers [26]	2 22	177.8	216	268	165.1	194		0	0 0	00 deformed	8 S	21		93.36	33.60	3,59	2.39	28983	200000	1.191	0.204	2286	13.8	627	0.104	11228	0.107	6.16	8 8	150
39 0 Pauw and Meyers [26]	23	177.8	216	268	165.1	1.94	0	0	0	00. deformed	909	21		.90 38.6	2 38.90	3.87	2.58	31185	200000	0.000	0.000	2286	13.8	627	0.104	9643	0.107	3.71	28	0
40 t Pauw and Meyers [26]	22 3	177.8	216	568	165.1	1.94	0 0	0 0	00	0.00 deformed	S 2	21		38.90 38.62	38.90	3.87	2.58	31185	200000	1.108	0.163	2286	13.8	627	0.104	9643	0.107	6.64	58	120
42 t Pauw and Meyers [26]	. A	177.8	216	774	165.1	2.64	0	0	0	00 deformed	8 8	21		70 38.42	38.70	3.86	2.57	31105	200000	1.108	0.163	2286	13.8	627	0.104	14607	0.107	7.89	28	120
0	SR	101.6	203.2	258	171.5	1.48	0	0		.00 deformed	40	21			×	3.62	2.41	29198	200000	000:0	0.000	1829	10.7	216	0.104	7963	0.107	4.10	28	0
44 t Lutz et al. [29] 45 0 Litz et al [29]	S. S.	101.6	203.2	258	171.5	1.48	0.258	0 177 8	25.4	0.00 deformed	8 8	21	28 34	34.10 33.86	8 8.10	3.62	2.41	29198	200000	1.501	0.313	1829	10.7	216	0.104	7963	0.107	8.80	28	142
Lutz et al.	DR	101.6	203.2	258	171.5	1.48		177.8		48 deformed	40	21			8	3.62	2.41	29198	200000	1.501	0.313	1829	10.7	216	0.104	7963	0.107	6.80	28	142
47 0 Jaccoud and Favre (1982)	A1	009	120	314	98	0.55	57	100		0.10 deformed	8 8	21		20.49 22.88	3 20.49	2.81	1.87	22633	200000	0.000	0.000	3100	32.6	2162	0.104	2787	0.104	8.42	15	0 0
49 0 Jaccoud and Favre (1982)	. Y	009	120	314	8 8	0.55	57	100		10 deformed	8 8	21	15 24		2 2	3.05	2.03	24566	200000	0.00	0.000	3100	32.6	2162	0.104	2787	0.104	6.16	15	0
50 t Jaccoud and Favre (1982)	A2	009	120	314	8 8	0.55	57	9 6		0.10 deformed	8 8	21		.14 26.90	24.14	3.05	2.03	24566	200000	1.726	0.331	3100	32.6	2162	0.104	2787	0.104	17.50	5 ;	365
52 t Jaccoud and Favre (1982)	\$ \$	009	120	314	8 8	0.55	27	8 6		0.10 deformed	8 8	21		21.9	19.64	2.75	183	22159	200000	1.726	0.367	3100	32.6	2162	0.104	2787	0.104	17.50	5 5	365
53 0 Jaccoud and Favre (1982)	A4	009	120	314	98	0.55	22	100		0.10 deformed	09	21		.13 40.35	36.13	3.73	2.49	30054	200000	0.000	0.000	3100	32.6	2162	0.104	2787	0.104	2.24	12	0
54 t Jaccoud and Favre (1982)	A4	009	120	314	88 8	0.55	57	9 5		0.10 deformed	8 8	21	15 36	.13 40.3.	38.13	3.73	2.49	30054	200000	1.726	0.271	3100	32.6	2162	0.104	2787	0.104	8.05	5 1	365
56 t Jaccoud and Favre (1982)	A5	009	120	3.4	8 8	0.55	57	8 9		10 deformed	8 8	21	15 32.	47 36.26	32.47	3.53	2.35	28491	200000	1.726	0.286	3100	32.6	2162	0.104	2787	0.104	9.55	5 15	365
57 0 Jaccoud and Favre (1982)	C12	750	160	265	131	0.58	57	134		.06 deformed	09	21	28 29	.40 29.1	3 29.40	3.36	2.24	27111	200000	0.000	0.000	3100	23.7	3604	0.104	9609	0.107	2.17	58	0
58 t Jaccoud and Favre (1982)	C12	750	160	565	3 3	0.58	57	134		0.06 deformed	8 8	2, 2,	28 25	.40 29.1	29.40	3.36	2.24	27111	200000	1.502	0.286	3100	23.7	3604	0.104	6095	0.107	8.29	58	510
60 t Jaccoud and Favre (1982)	C22	750	160	202	3 5	0.58	57	134		06 deformed	8 8	21	28 32	.89 32.64	32.89	3.56	2.37	28675	200000	1.344	0.226	3100	23.7	3604	0.104	9609	0.107	7.00	78	365
61 0 Jaccoud and Favre (1982)	C13	750	160	565	131	0.58	57	134		.06 deformed	08	21	28 30	.93 30.7	30.93	3.45	2.30	27807	200000	0.000	0.000	3100	23.7	3604	0.104	9305	0.107	5.29	28	0
62 t Jaccoud and Favre (1982)	C13	750	160	565	3 3	0.58	57	134		06 deformed	8 8	21	28 30	40 29.7	30.93	3.45	2.30	27807	200000	1.502	0.279	3100	23.7	3604	0.104	9305	0.107	13.28	28 88	910
64 t Jaccoud and Favre (1982)	C14	750	160	565	13	0.58	57	134		06 deformed	8 8	21	28 29	40 29.1	29.40	3.36	2.24	27111	200002	1.502	0.286	3100	23.7	3604	0.104	12520	0.107	18.15	78	510
65 0 Jaccoud and Favre (1982)	C24	750	160	565	13	0.58	57	134		.06 deformed	09	21	28 31	.97 31.7.	1 31.97	3.51	2.34	28271	200000	0.000	0.000	3100	23.7	3604	0.104	12520	0.107	8.00	28	0 :
67 0 Jaccoud and Favre (1982)	C15	750	160	565	3 5	0.58	57	134	8 8	0.06 deformed	8 8	21	28 29	.29 29.08	29.29	3.36	224	27060	200000	0.000	0.000	3100	23.7	3604	0.104	15725	0.107	11.02	78 78	0 0
68 t Jaccoud and Favre (1982)	C15	750	160	565	131	0.58	57	134		0.06 deformed	09	21	28 29	.29 29.0	3 29.29	3.36	2.24	27060	200000	1.502	0.287	3100	23.7	3604	0.104	15725	0.107	20.83	28	510
69 0 Ding Dajung [44] 70 t Ding Dajung [44]	3 3	æ æ	160	113	137	1.02	0 0	0 0	0 0	00 deformed	£ &	21	30 21	.60 21.2	21.60	2.88	1.92	23238	200000	0.000	0.398	2880	21.0	336	0.104	2904	0.107	8.45 16.62	30 30	2025
71 0 Ding Dajung [44]	Ξ:	. 23	152	154	11	2.12	0	0	0	0.00 deformed	88	21	30 25	40 24.98	3 25.40	3.12	2.08	25199	200000	0.00	0.00	2880	24.6	24	0.104	3280	0.107	15.53	8 3	0
72 t Ding Dajung [44]	1-1	62	152	154	117	2.12	0	0	0	.00 deformed	80	21	30 25	.40 24.9.	3 25.40	3.12	2.08	25199	200000	1.738	0.345	2880	24.6	244	0.104	3280	0.107	30.43	30	531

Cross-section

Study information

	(s	0 9	20	1344	1314	0 1398	0 ;	0 0	1471	1485	0 7407	. 0	1572	1572	0	2/5	72	2 0	, 0	972	72	200	0 08	30	80	80	0 08	0 08	20	980	. 80	0 08	0	g 0	980	90	0 00	0 8	g 0	180	380	081	0 0	20 0
33	t-t _o (days				28 13			28	28 14	28 14	28		28 15				7 28 7	28 28			28 9	28 5	28	28	28 1	28	28	14	<u>,</u>	4 4	4	4 4	4:	4 4	41 4	± 4	4 4	4:	4 4	44	4:	14 3	7	28 4
32	t _o (days)	.02	7.39	.98	0.02	49	69.	36	.56	24	13.10	7.08	14.51	88	84	4,6	.52	08.0	.16	96	.85	8.94 25.02	.89	60	92	12	.30	.95	1.98	44	42	.06	5.81	.30	.90	1 8	90	8.5	.43	21.90	80	.04	17	8.11 16.51
31	a (t-t ₀) (mm)	,				7 13	-:	4. 6	71 17	7 20	- (-	7	4 25	4 4							
30	K 23																					0.107			0.10							0.107			0.107	o o	o o	7 0.10	<i>.</i>	7 0.10		7 0.102 7 0.104		3 0.107
29	M _{L2} (Nm)			24250				45850	45850	5226	4, 4	, 4	7 4	, .	,-,	- 0						3250	0098 1		3200		3500		13746				e .	31490	-	4	2 28	7497	443	443		5967		5853
28	بر د	9 0.104	9 0	0.0		9 0.104		9 0.10	0.0	0.10			9 0.104					0.104	9 0	9 0.10	0 0	9 0.104	2 0.104		0.0		0.104	4 0.104			0	0.00	0	9 0	0.10	9 9	00	0.10	00	00		3 0.104 3 0.104	0	0.104
27	M _{c1} (Nm)	1029	1029	1028	1028	1029	1029	1029	1028	1029	1028	1029	1029	1029	1029	1020	1028	102	1029	1029	1029	659	212	209	200	200	212	325	325	325	3110	3110	3110	3110	3110	237	237.	237	237	237	2373	237;	102	1024
26	3	11.2	11.2	11.2	11.2	11.9	11.9	11.9	11.9	11.9	11.9	12.0	12.0	12.0	12.0	11.9	11.9	1.9	11.9	11.9	11.9	28.8	15.9	16.2	16.2	16.2	15.9	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	26.9	26.9	26.9	26.9	26.9	26.9			18.9
25	L (mm)	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	2800	3750 3750	2100	2100	2100	2100	2100	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3500	3200	3200 3200
24	(%)	0.000	0.000	0.447	0.446	0.000	0.000	0.000	0.482	0.482	0.000	0.000	0.454	0.454	0.000	0.000	0.406	0.000	0.000	0.429	0.000	0.000	0.000	0.000	0.441	0.44	0.000	0.000	0.000	0.274	0.280	0.000	0.000	0.000	0.280	0.364	0.000	0.000	0.000	0.364	0.364	0.000	0.000	0.000
23	· s	00000	0.000	2.299	2.288	2.319	0.000	0.000	2.344	2.349	0.000	0.000	2.376	2.376	0.000	0.000	1.997	1 997	0.000	2.127	2.127	0.000	0.000	0.000	1.798	1.798	0.000	0.000	0.000	0.000	1.608	0.000	0.000	0.000	1.608	1.821	0.000	0.000	0.000	1.821	1.821	0.000	0.000	0.000
22	E _s (MPa) φ	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
21	E _{cm} (t ₀) (MPa) E	28940	28940	28940	28940	27295	27295	27295	27295	27295	27295	29287	29287	29287	29287	28287	28284	28284	28284	28284	28284	31225	25451	25451	25451	25451	25451	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23281	23076	27613 27613
	f _{r,red} (t ₀) E _r (MPa) (A	2.39	2.39	2.39	2.39	225	2.25	225	2.25	225	2.25	2.42	2.42	2.42	2.42	234	2.34	2.34	2.34	2.34	2.34	2.58	2.11	2.11	2.11	2.11	2.11	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.93	1.91	228
19	f,(t ₀) f, (MPa) (A	3.59	3.59	3.59	3.59	3.38	3.38	3.38	3.38	3.38	3.38	3.63	3.63	3.63	3.63	3.51	3.51	3.51	3.51	3.51	3.51	3.87	3.16	3.16	3.16	3.16	3.16	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.89	2.86	3.42
8	f _{cm} (t ₀) f _r (MPa) (A	33.50	33.50	33.50	33.50	29.80	29.80	8.80	29.80	29.80	29.80	34.31	8 8	8.3	34.31	30.00	32.00	32.00	32.00	32.00	32.00	39.00	25.91	25.91	25.91	25.91	25.91	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.68	21.30	30.50
17	f _e (MPa) (A	33.26	33.26	33.26	33.26	29.59	29.59	29.59	29.59	29.59	29.59	34.06	34.06	34.06	34.06	34.06	31.77	31.77	31.77	31.77	31.77	38.72	25.72	25.72	25.72	25.72	25.72	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	24.62	30.28	30.28
16	f _{cm} (t _{est}) f _c	33.50	33.50	33.50	33.50	29.80	29.80	29.80	29.80		29.80	34.30	34.30	34.30	34.30	32.00	32.00	32.00	32.00	32.00	32.00	39.00	25.90	25.90	25.90	25.90	25.90	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80	24.80		24.80	24.80	24.80	24.80	30.50	30.50
15	f, (days) (l	28	78	58 28	28	78 78	58	78 78 78	28	28	28	78	28	78 2	28	28 62	28	8 8	28	28	28	28 28	28	78	28	78	28	28	78	28 28	28	28 28	28	28 28	28	28	28 28	28	78 78 78 78	28	28	28	28	28 28
4	(3)	21	2 72	2 2	21	2 2	27	2 2	2.5	212	21	27	2,7	27	21	2 2	21	2 2	212	21	21	27	21	21	27	27	21	21	21	22	52	22	21	2 2	22	22	22 23	21	27	22	52	21	21.3	21.3
13	RH (%) T	09	8 8	8 8	8 8	8 8	88	8 8	8 8	8 8	8 8	8 8	8 8	8 8	8 8	8 8	8	8 8	8 8	8 8	09	88	40	\$ 4	4 6	\$ 4	4 4	04	3 4	4 4	4	4 4	9	4 4	4 6	3 4	4 4	6 5	3 4	9 4	8 9	40	48.7	48.7
12		pemo	omed	omed	omed	omed	omed	omed	omed	omed	omed	pamo	omed	omed	omed	omed	omed	omed	omed	omed	omed	omed	omed	omed	omed	pamo	omed	pemo	omed	ormed	omed	omed	ormed	omed	omed	peumo	omed	omed	omed	omed	omed	omed	deformed	deformed
£	ρ ₂ (%) type	0.00 de	0.00 de	0.00 de	0.00 deformed	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 de	131 de	1.31 de	131 06	1.31 de	1.31 de	1.31 de 1.31 de	0.00 deformed 0.00 deformed	0.00 de	0.00 de	0.00 de	1.21 de	1.19 deformed 1.19 deformed	0.00 de	0.00 de	0.00 0.00 0.00 0.00	0.00 de	0.00 9.00 de	0.00 de	0.00 de	0.00 de	0.00 de	0.00 0.00 de	0.00 de	0.00 de	0.00 deformed	0.00 de	0.00 de	0.21 de	0.21 de 0.21 de
10	d ₂ (mm) p ₂	0 0	00	0 0	00	00	0 0	00	0 0	0	0 0	0	00	0	0 0	ج د	33	3 8	8 8	33	32	00	0	0	0 8	8 8	8 8	0 0	00	0 0	0	00	0	00	00	0	0 0	0 0	00	0 0	0	0	29	888
6	ď (mm) d ₂	0	0	0 0	0	0 0	0 0	0	00	0	0 0	0	00	0	0 0	248	248	248	248	248	248	00	0	0	130	132	134	0 0	0	0 0	0	00	0	00	00	0	0 0	0	00	0 0	0	0 0	171	171
orcement 8	(mm)	0	0	0 0	0	0 0	0 0	0	00	0	0 0	0	00	0	0 0	462	462	462	462	462	462	00	0	0	0	157.1	157.1	0 0	0	0 0	0	00	0	00	00	0	0 0	0	00	0 0	0	0 0	57	57
7	p. (%) A _{s2}	0.82	0.82	0.82	0.82	2.18	2.18	2.18	2.18	2.18	2.18	3.53	3.53	3.53	3.53	2.53	2.18	2.18	2.18	2.18	2.18	1.74	1.19	121	121	121	1.19	0.54	0.54	0.54	0.54	0.54	0.80	0.80	0.80	0.44	0.44	0.65	0.65	0.65	0.87	0.87	0.58	0.58
9	d (mm) b	250	250	250	250	738	236	236 236	236	236	236	233	233	233	233	238	236	236	238	236	236	6 6	132	8	8 5	8 6	132	300	3 8	3 30	300	300	300	300	300	8 6	8 8	130	8 6	130	8 6	130	169	169
2	A _{s1} (mm²) d (308	308	308	308	27.0	770	770	770	770	770	1232	1232	1232	1232	770	770	0//	770	770	770	226	157.1	157.1	157.1	157.1	157.1	402	402	402	402	402 402	603	603 603	603	226	226 226	339	338	339	452	452 452	157	157
E 4	₹ E		280	280	280	780 780 780	280	780 780 780	280	280	280	280	280	280	280	280	280	280	380	280	280	150 150	154	152	152	152	154	340	340	326	325	325	325	325	325	155	155	155	155	155	155	155 155	200	500
3	E F	150	8 95	05 15 15 15 15 15 15 15 15 15 15 15 15 15	8 6	S 55	150	5 5 5 6	9£ 126	8 25	05 5	8 65	051	8 65	061	8 5	130	8 5	3 25	92 5	150	6 6	100	9 6	9 5	9 6	0 00	250	250	250	250	250 250	250	250	250	400	0 4	400	9 4	400	400	400	160	160
	E) Q																																											
2	men																																											8 8
anon	Specimen	1-72	187	<u> </u>	6 6	1-52	69-11	H-59	1-70	8 8	06-11	# # F	11.43	19-11	77-111	N-52	17-52	14-70	18-80	17-80	IV-90	1B2 1B2	A1	¥5	A2	. 12	B2 B2	B1-a	B 4	B1-b	B2-a	82-b 82-b	B3-a	83-a 83-b	B3-b	S da	S15	S2-a	S2-a S2-b	S2-b	83.4	S3-b S3-b	NAC7	NAC28 NAC28
arady milonin																												14)	इ.स	5 4	9	4 4	€:	4 4	€ €	£ 9	4 4	. (4)	4 4	. () 4	्चि इ	14) 4)		
, –		[45]	<u> 5</u> 5	হু হ	25.5	<u> </u>	· [2]	<u>5</u> 5	55	2 2	(5)	<u>5</u> 5	£ 5	25.2	· [2]	<u>5</u> <u>12</u>	· 22 ·	ر ان ان	£ 2	£5 2	(45) (45)	tal.[41] tal.[41]	il. [46]	al. [46]	il. [46]		al. [46] al. [46]	1 Nejadi (2004)	1 Nejadi (2004	Nejadi (2004	1 Nejadi (2004)	J Nejadi (2004 J Nejadi (2004	J Nejadi (2004	1 Nejadi (2004 1 Nejadi (2004	Nejadi (2004		1 Nejadi (2004 1 Nejadi (2004	1 Nejadi (2004	Nejadi (2004) 1 Nejadi (2004)	1 Nejadi (2004)	Nejadi (2004	i Nejadi (2004) I Nejadi (2004)	7)	:22
	Author	0 F.R.F.C. [4) F.R.F.C. [4	TERFC F	F.R.F.C.	F.R.F.C.	0 F.R.F.C. [4	7 F.R.F.C.	TERFC F	FRFC 4	0 F.R.F.C. [4	0 F.R.F.C. [4	TERF.C. [4]	FRF.C. 4	D F.R.F.C. [4	TERFO.	t F.R.F.C. [4	4 C T T T T	0 F.R.F.C. [4	t F.R.F.C. [4	F.R.F.C.	0 Bakoss et a t Bakoss et a	0 Clarke et al. [46]	0 Clarke et al.	t Clarke et al.	Clarke et	0 Clarke et al. t Clarke et al.	0 Gilbert and Nejadi	0 Gilbert and Nejadi	t Gilbert and Nejadi		Gilbert and Nejadi Gilbert and Nejadi	0 Gilbert and Nejadi	t Gilbert and Nejadi (0 Gilbert and Nejadi (t Gilbert and Nejadi	t Gilbert and Nejadi	0 Gilbert and Nejadi 1 Gilbert and Nejadi	0 Gilbert and Nejadi	t Gilbert and Nejadi 0 Gilbert and Nejadi	t Gilbert and Nejadi		 Gilbert and Nejadi Gilbert and Nejadi 	0 Tošić (2017 + Tošić (2017	0 Tošić (2017) t Tošić (2017)
		73	75 (76	78	6 8 1		83	84 4	86 +	87	88		95	93	98 98			86		101 102 t	103 0	105 0		108	110	111	113	115	116	118	119	121	122	124	126	127 0		130			135 C	137 0	

Deflection

Loading

Cross-section

Study information

Assessment and Correction of ACI model:

Database – Calculated Deflections With GL2000 shrinkage and creep model

	Study information	ttion		Cracking moment	moment			Uncracked cross-section	s-section			Fully crack	Fully cracked cross-section	tion				Deflection		
	F	2	က	4	5	9	7	89	6	10	7	12	13 1	14	15	16	17 1	18 19	9 20	0
	Author	Specimen	W _c (mm³) M _{sw}	(Nn)	M _{cr} (Nm)	M _{max} (Nm) M,	max/Mcr	c (mm ⁴) S _c ((mm³) A	A _{ll} (mm²) A _{lle} (mm²)	Zle 1 (mm) Z _{[1,1} ((mm) I _{IIc} (mm ⁴)	·_=	(mm ⁴) S _{II} (S _" (mm³) t-t _o	a _{num.int.} t-t ₀ (days) (mm)	a	a _{num.int.} /a _{exp} (mm) (%)	/a _{exp}
	yon :	A1/A4	3146316		·	25634	3.940	38602	3634	1 2	18465	_ ,		5339	2498	ი ი	0.0	5.25	13.46	1.133
	<u>ğ</u>	A2/A5	3146316	7192 >		25634 25634	3.940	479498602	1054477	32097 29541						838913 938158			23.62	0.995
	걸	A2/A5	3146316	7192 >		25634	3.940	479498602	1054477	29541						938158			32.26	1.175
	<u> </u>	A3/A6	3146316	7192 >		25634	3.940	479498602	714317	27549						057639			17.02	0.954
		B1/B4	1048772	3596 >		7259	3.666	106555245	390107	16326						284288	0		23.37	1.114
	t Washa and Fluck [8]	B1/B4 B2/B5	1048772	3596 >	1980 ^	7259	3.666	106555245	390107	16326		172.66				284288		57.19	51.05	1.120
, 6	를 장	B2/B5	1048772	3596 >		7259	3.666	106555245	292580	14845					44337891	301267	913		35.02	1.050
- 5	i c	B3/B6	1048772	3596 >		7259	3.666	106555245	195053	13431				3505836 4		323052			26.42	1.006
<u>π</u> ε		D1/D4	819353	1756 >		6023	3.788	52028928	334560	20423						323052 222281			11.94	1.292
4 ;	Washa and Fluck	D1/D4	819353	1756 >	1590 <	6023	3.788	52028928	334560	20423						222281	913		27.69	1.218
2 5	0 Washa and Fluck [8]	D2/D5 D2/D5	819353	1756 >	1590 <	6023	3.788	52028928	250920	18689						240350	0 0		14.22	1.103
17	ž ž	D3/D6	819353	1756 >	1590 <	6023	3.788	52028928	167280	17066						263557			17.78	0.900
8 6	Ϋ́	D3/D6	819353	1756 >	1590 <	6023	3.788	52028928	167280	17066						263557	913	52.12 4	48.51	1.074
20	t P.C.A. [18]	40NA	2356633		5061 <	23613	4.666	359386583	664586	23414						936113	242		10.00	0.972
27 5	0 P.C.A. [18]	60NA	2356633	1346 <	5957 <	30987	5.202	359386583	676490	23644	16980	249.15	193.3 17	17657498 20	205568429	948324	0 0		4.90	0.984
23	(P.C.A. [10] 0 Sattler [11]	a1/a2	426667			2762	3.032	34133333	41802	4620						73948		16.87	5.83	1.066
24	t Sattler [11]	a1/a2	426667			2762	3.032	34133333	41802	4620						73948	28	34.24	32.21	1.063
25	0 Hajnal-Konyi [22] + Hajnal Konyi [22]	∞ α	768144			4709	2.387	73165680	59510	6170	5256	169.81		750398		108759	0		20.60	1.385
27	0 Hajnar-Konyi [22]	01	768144	1742 <	1973 <	4709	2.387	73165680	59510	6170	5256					108759			8.80	1.824
28	Hajnal-Konyi	10	768144			4709	2.387	73165680	59510	6170	5256	_				108759			29.70	1.349
30	0 Hajnal-Konyi [22] † Hainal-Konvi [22]	7 2	768144	774 744 8	1973 <	4709	2.387	73165680	59510	6170	5256	169.81		750398 7		108759	0		4.30	1.658
31	0 Branson and Metz [23]	SB3/B	273118			1238	1.842	17342976	54815	5635	4197					86702			3.89	0.830
32	t Branson and Metz [23]	SB3/B	273118	303	672 <	1238	1.842	17342976	54815	5635	4197	106.34				86702	09		7.70	0.866
34	U Branson and Metz [23] † Branson and Metz [23]	SB3/M	273118		632 <	1238	928	17342976	58295	5825	4295					90781	o 6	3.47 7.16	2.50	0.870
35	0 Pauw and Meyers [26]	R.	1382573		3320 <	7803	2.350	149317862	157143	13006	10254					295675	9 0		2.44	1.107
36	t Pauw and Meyers [26]	Z 6	1382573	627 <	3320 <	7803	2.350	149317862	157143	13006	10254					295675	150	5.53	4.89	1.131
38	t Pauw and Meyers [26]	Z Z	1382573	627 <	3311 ×	11855	3.580	149317862	223806	15667	11748					388118	150		5.22 6.16	1.274
39	0 Pauw and Meyers [26]	R3	1382573		3569 <	10270	2.878	149317862	208003	15066						367110	0 6		3.71	0.830
0 4 4	t Pauw and Meyers [26] 0 Pauw and Meyers [26]	R 73	1382573	627 <	3569 ×	10270	2.878	149317862	208003	15066						367110	0 <u>7</u> 1	6.07 4.04	6.64 4.66	0.914
42	t Pauw and Meyers [26]	. K	1382573			15234	4.279	149317862	284169	17805				5564627 (462645	120	96.7	7.89	1.009
43	0 Lutz et al. [29]	S G	699181	216 <		8179	4.845	71036830	123530	8045						193908	0 0	3.33	4.10	0.812
4 4	t Luz et al. [29] 0 Luz et al. [29]	DR O	699181		1688 ×	8179	4. 845 5. 845	71036830	258194	9123						153578	7 <u>4</u> 0	3.13	6.80 4.20	0.745
46	t Lutz et al. [29]	DR	699181			8179	4.845	71036830	258194	9123						153578	142		6.80	0.799
47	Jaccoud and Favre (1982) Lecond and Favre (1982)	A 4	1440000	2162 <	2699 ×	4949	1.834	86400000	117262	18419						190997	0 385		8.42	0.778
64	0 Jaccoud and Favre (1982)	A2	1440000	2162 <	2929 <	4949	1.690	86400000	108035	17652						178439	30		6.16	0.890
20	t Jaccoud and Favre (1982)	A2	1440000	2162 <	2929 <	4949	1.690	86400000	108035	17652				725134		178439	365	13.49	17.50	0.771
	t Jaccoud and Favre (1982)	A3	1440000		2641 <	4949	1.874	86400000	119771	18626						194398	365		17.50	0.959
	0 Jaccoud and Favre (1982)	A4	1440000	2162 <	3583 <	4949	1.381	86400000	88308	15913					13254472	150662	0 100		2.24	1.451
	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	A5	1440000		3390 ×	4949	1.460	86400000	93152	16364						157690	0	3.78	3.12	1.212
	t Jaccoud and Favre (1982)	A5	1440000	2162 <	3390 <	4949	1.460	86400000	93152	16364						157690	365	9.36	9.55	0.980
	0 Jaccoud and Favre (1982)	C12	3200000	3604 ^	7172 <	6696	1.352	256000000	235277	29270						406145	0 0	2.36	2.17	1.088
20	t Jaccoud and Favre (1982) 0 Jaccoud and Favre (1982)	C12 C22	3200000		7172 < 7598 <	6696	1.352	256000000	235277	29270		143.55		2071359 4		406145 386963	0 0	5.54 2.02	2.00	1.010
09	t Jaccoud and Favre (1982)	C22	3200000		> 2622	6696	1.277	256000000	222445	28426						386963	365	4.47	7.00	0.639
62	U Jaccoud and Favre (1982) t Jaccoud and Favre (1982)	5 G	3200000	3604 × ×	7364 v v	12909	1.753	256000000	229388	28877	24405					397254	510		5.29	0.898
63	0 Jaccoud and Favre (1982)	C14	3200000		7172 <	16124	2.248	256000000	235277	29270	24680	143.55				406145			8.48	0.953
65	t Jaccoud and Favre (1982) O Jaccoud and Favre (1982)	C14	3200000	3604 ×	7172 < 7492 <	16124	2.248	256000000	235277	29270	24680					406145 391635	510 0		18.15	1.012
99		C24	3200000	3604 <	•	16124	2.152	256000000	225623	28636	24238					391635	510		17.52	0.983
68	Jaccoud and Favre (1982) Laccoud and Favre (1982)	C15	3200000	3604 ^	7172 <	19329	2.695	256000000	235721	29287						406557	0 0		11.02	1.017
69	0 Ding Dajung [44]	2 e	345600	336 ×	664 ^	3240	4.880	27648000	55435	4747		136.7	113.39	682787		87943		11.20	8.45	1.325
20	t Ding Dajung [44]	C-3	345600	336 ×	964 V	3240	4.880	27648000	55435	4747						87943			16.62	1.847

	Study ir.	Study information		Crackin	Cracking moment			Uncracked	Uncracked cross-section			Fully	Fully cracked cross-section	oss-section		Ì		Deflection	uo	
	-	2	ო	4	ß	9	7	80	6	10	Ξ	12	13	4	15	16	17	18	19	20
	Author	Specimen	W _c (mm³) M	M _{Sw} (Nm)	M _{cr} (Nm)	M _{max} (P	im) M _{max} /M _{cr}	I _c (mm ⁴)	S _c (mm³)	A _{li} (mm²) ,	A _{lic} (mm²)	Z lc.1 (mm)	z _{ll,1} (mm)	I _{IIc} (mm ⁴)	I," (mm²)	S _{ll} (mm³)	a _r t-t _o (days) (n	a _{num.int.} (mm) a _{ex.}	a _{num} (mm) (%)	a _{num.int.} /a _{exp} (%)
7 2	0 Ding Dajung [44]	7.7	238741		497		3524 7.09			4386	3163	126.49			8067316	80678		0.19	15.53	0.978
73	0 F.R.F.C. [45]	1-1	1960000			, ,	529 4.801				10684	244.3					50	7.27	6.02	1.208
74	t F.R.F.C. [45]	1-72	1960000			0, 0		274400000			10684	244.39					1610	22.24	10.29	2.161
76	t F.R.F.C. [45]	<u> </u>	1960000			4 6					10684	244.39					1344	24.55	11.98	2.049
77	0 F.R.F.C. [45]	1-91	1960000		4693	2					10684	244.3					0	9.26	8.94	1.036
82 62	t F.R.F.C. [45]	I-91 II-52	1960000	1029		× ×	8209 6.01	1 274400000 6 27440000			10684	244.39		,			1314	27.48	15.02	1.830
80	t F.R.F.C. [45]	11-52	196000			'n					15126	229.58			15437937		136	20.87	13.49	1.547
28 6	0 F.R.F.C. [45]	11-59	1960000		4419	m i	_	0 274400000			15126	229.58			15437937			7.78	7.69	1.012
83 83	0 F.R.F.C. [45]	11-59 11-70	1960000			υ 4	9329 8.90 6879 10.60				15126	229.58			15437937		1541	9.29	9.36	1.686 0.993
84	t F.R.F.C. [45]	02-11	1960000			4			_		15126	229.58			15437937		147	28.13	17.56	1.602
82	0 F.R.F.C. [45]	08-11	1960000	1029 <		v ,					15126	229.58			15437937			10.57	10.72	0.986
87	0 F.R.F.C. [45]	06-11	1960000		4 4	v v					15126	229.58					0	11.84	13.10	0.904
88	t F.R.F.C. [45]	06-11	1960000			> 26	9689 13.507				15126	229.58					148	35.83	24.23	1.479
58 C	0 F.K.F.C. [45] + F.R.F.C. [45]	======================================	1960000	1029		۸ ۸ 9 4					17255	222.48					1572	6.38	7.08	0.901
91	0 F.R.F.C. [45]	111-67	1960000	1029 <		99 >			00 782436	3 25670	17255	222.48		19026862		992497		9.80	10.58	0.926
92	t F.R.F.C. [45]	111-67 111-77	1960000	1029		> 66	329 13.976 519 16.123	6 274400000 3 274400000			17255	222.48					1572	29.97	23.88	1.255
94	t F.R.F.C. [45]	7.2-III	1960000		4746		6519 16.123				17255	222.48		_			1572	34.52	28.74	1.201
92	0 F.R.F.C. [45]	IV-52	1960000	1029	4589	e c	8639 8.420	0 274400000			13484	235.05		9079856		606233	0 242	6.97	5.98	1.166
96	0 F.R.F.C. [45]	IV-32	1960000	1029		o io	_				134.84	235.05	190.1		16347561		0	9.46	8.80	1.075
86	t F.R.F.C. [45]	1/-70	1960000			io i					13484	235.0		-	16347561		772	19.31	13.90	1.389
99	0 F.R.F.C. [45] + F.R.F.C. [45]	IV-80	1960000	1029		20 00	3229 12.907 3229 12.907	7 274400000 7 274400000			13484 13484	235.0	190.1	9079856	16347561		0 626	10.71	11.16	0.960
5	0 F.R.F.C. [45]	06-71	1960000			8 9	,				13484	235.0			16347561		0	12.04	12.85	0.937
102	t F.R.F.C. [45]	IV-90	1960000				559 14.504				13484	235.0		-			972	25.34	19.28	1.314
	t Bakoss et al. [41]	182	375000	v v 629		, v	909 4.03				4857	125.73					200	39.07	25.02	1.562
	0 Clarke et al. [46]	A1	395267			v	712 4.456	6 30435533			4607	130.97				106107	0	5.36	4.89	1.096
	t Clarke et al. [46]	A 4	395267	212		v 1	712 4.456				4607	130.97					98 9	13.76	11.83	1.163
	t Clarke et al. [46]	4 2 45	385067				3709 4.568				4563	129.19					180	14.29	11.92	1.199
	0 Clarke et al. [46]	<u>m</u> 2	385067			v :	4.				4098	131.51					0 9	5.27	4.78	1.103
	t Clarke et al. [46] 0 Clarke et al. [46]	- R	385067			v v	3712 4.568	30435533			4098	133.33	112.63			83992	081	10.30	4.30	1.1/4
	t Clarke et al. [46]	B I	395267	212 <			712 4.456				4136	133.3					180	9.94	8.55	1.163
	0 Gilbert and Nejadi (2004)	B1-a	4816667			× × × × × × × × × × × × × × × × × × ×	900 2.682				19568	300.87	261.74	9989523			0 0	5.38	4.95	1.087
	0 Gilbert and Nejadi (2004)	B 다 다	4816667				900 2.662	1 818833333			19568	300.87					080	2.75	1.98	1.389
	t Gilbert and Nejadi (2004)	B1-b	4816667				000 1.831				19568	300.87					380	6.62	7.44	0.890
	Gilbert and Nejadi (2004) Gilbert and Nejadi (2004)	B2-a	4401042	3110 ×		× × × × × × × × × × × × × × × × × × ×	800 2.923				19568	285.8					380	5.71	5.03	1.135
	0 Gilbert and Nejadi (2004)	B2-6	4401042			· >	800 1.980				19568	285.8					0	3.10	2.06	1.505
	t Gilbert and Nejadi (2004)	B2-b	4401042	3110 ×		v v	800 1.980	0 715169271			19568	285.87	246.74	9989523	209739323	3 765708	380	7.51	7.87	0.954
	t Gilbert and Nejadi (2004)	B3-a	4401042				600 4.078				23175	278.6					380	15.40	13.30	1.158
	0 Gilbert and Nejadi (2004)	B3-b	4401042	3110 ^	28 8 28 8	× ×	3800 2.452				23175	278.6			288974918		380	3.47	7.97	1.761
	0 Gilbert and Nejadi (2004)	S1-a	1601667	2373	3087	, v	1 (7				12402	139.6			•		80	9.94	7.14	1.392
	t Gilbert and Nejadi (2004)	S1-a	1601667	2373	3087	v :		-			12402	139.6					380	25.75	25.10	1.026
	t Gilbert and Nejadi (2004)	87 S	1601667	2373 <		v v	5280 1.710 5280 1.710	0 124129167			12402	139.5			23000169		380	5.54 14.53	19.90	2.U37 0.730
	0 Gilbert and Nejadi (2004)	S2-a	1601667	•		v	(7)	_			14732	136.59					0	14.62	11.80	1.239
	t Gilbert and Nejadi (2004)	S2-a	1601667	2373 <		v v	9870 3.197 6810 2.206	7 124129167 6 124129167		3 17644	14732	136.59	118.17	1665131	31941782		380	37.71	32.50	1.160
	t Gilbert and Nejadi (2004)	S2-b	1601667			v					14732	136.58					380	21.31	21.90	0.973
	0 Gilbert and Nejadi (2004)	S3-a S3-a	1601667	2373 <	3087	v v	350 3.677	7 124129167 7 124129167			16583	48 48	113.54			343772	380	14.39	10.70	1.345
	0 Gilbert and Nejadi (2004)	S3-b	1601667	2373 <		v					16583	134.2					0	9.64	5.04	1.913
	t Gilbert and Nejadi (2004) 0 Tošić (2017)	S3-b NAC7	1601667	2373 <	3087	w /v					16583	134.2			39938925 25917152		380	25.08	22.90 9.17	1.095
	t Tošić (2017)	NAC7	1066667	1024 <	2035	v	92.6	_			7182	177.56					450	36.32	18.94	1.918
139	0 Tošić (2017) t Tošić (2017)	NAC28 NAC28	1066667	1024 1024	2433	v v	6877 2.827 6877 2.827	7 106666667 7 106666667	77775	5 8231 5 8231	6682	179.12 179.12	158.27	970995 970995	22354235 22354235	139412	450	9.64 24.02	8.11	1.189
												ı								

Assessment and Correction of ACI model:

Database - Calculated Deflections

ACI with corrections

Ī		aexp	1.133	1.143 0.995	1.007	0.907	1.114	1.056	0.875	0.822	1.292	1.103	1.001	0.900	1.026	0.986	1.110	1.067	1.390	0.942	1.167	1.665	0.830	0.936	0.870	1.107	1.204	1.349	0.830	0.867	1.076	0.910	0.745	0.799	0.838	0.752	0.917	1.638	1.324	1.013	0.701	1.170	0.922	0.962	0.954	0.930	1.022	1.325	1.589 0.978	1.173
	3 27	a _{num.int.} /a _{exp} nm) (%)	3.46	23.62 15.75	7 00	4.70	3.37	4.89	35.02	6.36	1.94	25.4 22.4	33.78	8.51	4.25	0.00	9.90	15.83	20.60	8.80 8.80	9.70	4.30	3.89	7.70	3.99 7.50	2.44	3.23	6.16	3.71	4.66	7.89	8.80	6.80	8.42	18.40 6.16	7.50	7.50	2.24	3.12	9.55 2.17	8.29	2:00	5.29	8.48	18.15	o.00 17.52	11.02	8.45	16.62 5.53	10.43
	5 26	t. a _{exo} (mm)	5.25	26.99 2 15.67 1			26.04 2			71.00 8	15.43 1		_ ,	16.00	4.36	9.96 4.82	0.99	6.89 1		61.60 e	. 10			7.21								8.01		6.73	5.42		- +	3.67	4.13	9.67 2.60	5.81	5.13	4.88	8.16	7.32	6.29	1.26 1	1.20	26.41 1 15.19 1	15.70
Deflection	24 25	anumint.		913					913	913	0 0	518	913	913 4	0	242	242	0 8		¥ c	1734	0	ţ 0	99	0 8	_			0 0			142		0	365	365	365	365	80	365	510	365	0 9	0 0	510	510	510		2025	531
	23 2	a _{simp} /a _{exp} (%) t-t ₀ (days)	_	1.16 1.011	1.022	0.922	1.143	1.084	0.897	0.844	1.32	1.126	1.022	0.92 0.896	1.039	1.007	1.12	1.139	1.402	1.845	1.173	1.679	0.822	0.918	0.85	1.077	1.169	1.392	0.785	0.885	1.096	0.925	0.757	0.833	0.97	0.783	0.949	1.612	1.347	1.024	0.662	1.052	0.93	0.959	0.949	0.929	1.114	1.348	1.616 0.985	1.182
	22	(E	15.49	27.40 15.92	32.98	41.21	26.72	26.98	58.35	72.86	15.76	16.02	34.53	16.35 43.45	4.42	4.87	11.09	18.03	28.87	61.94 16.24	8.	7.22	3.20	7.07	3.39	2.63	3.97	8.58	2.91	4.12	8.65	8.14	3.18	7.02	16.00 5.98	13.71	16.60	3.61	4.20	9.78	5.49	2.10	4.92	10.5/ 8.13	17.22	16.28	23.20	11.39	26.86 15.30	35.96
		a.		0.00	76.0	1.65	0.00	00.0	1.54	2.74	0.00	0.00	0.95	1.70	0.00	0.40	0.43	0.00	0.00	0.00	0.84	0.00	00:0	0.63	0.00	00'0	0.25	0.28	0.00	0.00	0.29	0.22	0.00	0.00	0.53	0.53	0.53	0.00	0.00	0.53	0.41	0.00	0.00	0.00	0.41	0.00	0.00	0.00	0.48	0.63
d method	.0 21	a _{eff,cs}	11.14	19.71 11.46	23.03	28.47	13.48	13.61	28.67	35.38	11.16	11.35	23.78	11.59 29.58	4.17	9.13 4.66	10.21	12.81	10.98	23.05	23.87	6.70	2.68	5.45	5.28 7.0	2.69	3.76	78.7	3.04	3.96	8.02	7.72	3.10	4.39	3.74	8.27	10.09	2.26	2.63	1.74	3.61	3.01	3.97	7.06	14.62	13.81	10.01	10.24	23.71	32.95
Simplified method	19 2	a _{eff,L2}	4.35	7.69	8.98	11.10	13.24	13.36		34.74		4.67	9.79	12.17	0.25	0.54	0.45							1.77	0.92	0.23	0.48	0.43	0.19	0.17	0.33	0.20	0.08	3.41	7.53							1.73	1.50	3.10	4.09	3.86	2.23	1.15	1.03	2.38
tia	-	a _{eff,L1} (mm)		232 402	402	982	365	523	523	287	724	992	992	519 519	110	110 257	257	455	503	503	503	503	879	879	905 905	808	809	418	466	624	624	938	705	859	859 923	923	997	684 884	319	319	789	000	234	377	377	1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	078 078	621	621 584	584
ment of iner	18	offmax		255879232 248852402																							51310809					29626938																10828621		
Effective moment of inertia	17			255879232 248852402	248852402	240027982	46040365	45600523	45600523	45043287	24546724	24546724	24154992	23655519	204680110	204680110	206661257	9864455	20142503	20142503	20142503	20142503	9169879	9169879	9193905	51310809	57569418	57569418	56801466	66334624	66334624	29626938	31519705	28035859	28035859	30320923	27569997	41011684	37176319	37176319	132728789	147374025	86623234	67265377	67265377	68284084	59674078 59674078	10828621	10828621	8095584
	16	. (mm ₃)	838913	838913 938158	938158	1057639	284288	301267	301267	323052	222281	240350	240350	263557	936113	936113	948324	73948	108759	108759	108759	108759	86702	86702	90781	295675	388118	388118	367110	462645	462645	193908	153578	190997	190997	178439	194398	150662	157690	157690 406145	406145	386963	397254	397254 406145	406145	391635	406557	87943	87943	80678
	15	l _i (mm ⁴) S _{ii}	498	252162498 245018877	45018877	36047788	44786844	44337891	44337891	43769112	24031651	23632577	23632577	23123743	03141739	05568429	05568429	8961213	15932912	15932912	15932912	15932912	7613841	7613841	7943360	43131876	43131876	55526092	52748551	65261928	65261928	29259693	31169246	16736259	16736259	15655337	17027594	13254472	13862824	13862824 49053231	49053231	46803193 46803193	48013295	48013280 49053231	49053231	47353248	49104857	10682594	10682594 8067316	8067316
ction	14	(mm²) I _I (5339	12705339 2 15023667 2									1589932								750398	750398	596892	596892	639715 639715																						2229828		682787 685847	
Fully cracked cross-section	13	(mm) I _{IIc} (m	L																													141.42																113.39	13.39	86:00
Fully crack	12			259.37 256.76																																												136.7		
	1	(mm²) z _{lic1}		18465																																												3774		
	10	A _{li} (mm²) A _{lic}	1	32097 29541	29541	27549	16326	14845	14845	13431	20423	18689	18689	17066	23414	23644	23644	4620	6170	6170	6170	6170	5635	5635	5825 5825	13006	13006	15667	15066	17805	17805	8045	9123	18419	18419	17652	18626	15913	16364	16364 29270	29270	28426 28426	28877	29270	29270	28636	29287	4747	4747	4386
ction			8634	28634 54477	54477	14317	90107	92580	92580	95053	34560	34360 50920	50920	67.280 67.280	64586	64586 76490	76490	41802	59510	59510	59510	59510	54815	54815	58295 58295	57143	57143	23806	08003	84 169	84 169	23530	58194	17262	17.262 08035	08035	19771	88308	93152	93152 35277	35277	22445 22445	29388	35277	35277	25623	35721 35721	55435	55435 50113	50113
Uncracked cross-section	6	S _c (mm³)																																																
Uncrack	80	I, (mm ⁴)	1	479498602 479498602																												71036830											256000000					27648000		
	7	M _{max} /M _{cr}																																														4.880		
	9	M _{max} (Nm)	2563		25634	2563																	1238	1236	1236	7803	7803	1185	10270				8178									3696 6						3240	3240	352
ment	2	(Nm)	> 9059	e506 × 6506 ×	6506 ×	9200	1980		1980		1590 <			1590 ×		5957 <		911 ×		1973 <		1973 <	672 <	672 <	632 v 632 v	3320 <	3320 <	3311 <	3569 4		3260 <	1688 ^	1688 ^	2699 <	2639 2929 v	2929		3583 ×		3390 <		/598 v 7598 v	7364 <		7172 <		7172 <	466	664 497 ^	497 <
Cracking moment		(Nm) M _{cz}	192 >	7192 >	7192 >	7192 >	3596 >	2296 >	2596 >	2596 >	1756 >	v 96/1	V 952			1346 × 1346 ×		v v			1742 <				v v 303	> 229	627 <		627 <		627 <		216 < 216 <	2162 <	162 ×	2162 <	2162 ×	2162 <	162 <	2162 804 ^	804 v	%04 %04 v v	8604 v	804 0 v	3604 v	804 v v	3604 3604 A A	336 ×	336 × 244 ×	244 ^
	4	Msw	16																							2573	2573	2573	2573	2573		699181																345600		
	3	W _e (mm³)	314	314 314	314	314	\$ 5	\$ \$	\$ 5	\$ \$	26.9	9 9	28	<u>8</u> 8	235	235	235	42	76	9 9	92	92 6	27	27	27 27	138	138	138	138	138	138	8 69	88	4	<u> </u>	4 :	± ±	44 1	4	320	320	320	320	320	320	320	320	8 8	\$ 8	23
	2	Specimen	_	+ 10	10.4	2 10		- 10	10 "	n (O	4 4	+ LO	ω α	0 0									m	m :	> >																									
nation		Spec	A1/A	A1/A4 A2/A5	A2/A	A3/A6	B1/B	B2/B	B2/B:	B3/B(0170	020	020	03/0	40N	4008 4008	60NA	a1/a2	8	∞ ⊊	9 0	4 5	SB3/I	SB3/	SB3/I	쮼	E &	2 22	2 2	%	Z 8	K &	8 8	¥	¥ 8	8.8	\$ \$	¥ 3	. A5	A5 C12	C12	7 65	C13	5 5 5	C14	C24	C15	333	3 5	7
Study information																							33	 	er ≈	E	EC ==	7 F	er =	~~	23			(385)	1982)	1982)	1982)	1982)	(982)	1982) 1982)	1982)	1982) 982)	1982)	1962)	1982)	1982)	1982) 1982)	Ì		
	-		and Fluck [8]	t Washa and Fluck [8] 0 Washa and Fluck [8]	and Fluck [8]	and Fluck [8]	and Fluck [8] and Fluck [8]	18]	<u>8</u> 8	. [8]	E F	onyi [22]	.onyl [22]	onyi [22]	onyi [22]	and Metz [25	and Metz [2;	and Metz [2; and Metz [25	d Meyers (26	nd Meyers [2t n Meyers [26	d Meyers [26	nd Meyers [2t	d Meyers [26	d Meyers [2t	t Lutzetal. [29]	= [29] = 29]	Jaccoud and Favre (1982)	and Favre (1	t Jaccoud and Favre (1982)	and Favre (1	and Favre (1982	Jaccoud and Favre (1982)	Jaccoud and Favre (1982 Jaccoud and Favre (1982	Jaccoud and Favre (1982	Jaccoud and Favre (1982 Jaccoud and Favre (1982	0 Jaccoud and Favre (1982)	and Favre (1	and Favre (t Jaccoud and Favre (1982)	Jaccoud and Favre (1982) Jaccoud and Favre (1982)	ung [44]	ung [44]	ung [44]							
		Author	0 Washa ar	t Washa ar 0 Washa ar	t Washa ar	t Washa a	0 Washa ar	0 Washa ar	t Washa ar	t Washa a	0 Washa ar	0 Washa ar	t Washa ar	U Washa a t Washa ar	0 P.C.A. [18	0 P.C.A. 13	t P.C.A. [18	0 Sattler [1	0 Hajnal-Ko	t Hajnal-Ko	t Hajnal-Ko	0 Hajnal-Ko	0 Branson	t Branson	0 Branson t Branson	0 Pauw and	t Pauw and	t Pauw and	Danwan	0 Pauw and	t Pauw an	t Lutzetal.	0 Lutzetal. [29]	0 Jaccoud	t Jaccoud a	t Jaccoud	t Jaccoud	0 Jaccoud	0 Jaccoud	t Jaccoud a		t Jaccoud	0 Jaccoud	t Jaccoud a	t Jaccoud	t Jaccoud	0 Jaccoud	0 Ding Dajung	t Ding Daju 0 Ding Daju	t Ding Daji
			-	3 2	4 4	ာဖ	ν α	ာတ	2 5	12	5 4	4 £	9 1	14	19	2 2	22	8 8	52	9 2	8	82 8	3 8	32	8 8	32	3, 38	8	86 A	. 4	42	3 4	4 4 5 4	47	84 8	8 2	25	S 2	1 22 2	21 28	8 8	3 8	198	63	2 2	8 9	67	8 8 8	2 ≿	72

1			e 9	o o	4 0	5 4	0 4	2 2	8	200	9 9	6.	4 0	2 =	2 4	9 2		5 9	=	e c		92	<u>.</u> .	1 8	22.52	9 1	0	Ξ.	3 12	4 6	2 5	- 1-	0 0	2 2 2	బ్ త	99.00	2 22	92 12	23	2 9	4	- rc	0	7 5	0 0 1	e 88	4 6	. 4 (2
	27	anum.int/aexp (%)	1.20	, t	9.1	. 4.	90.0	. 0.1	1.30	90.0	96:0	7.7	0.90	0.90	9.0	0.0	9.0	0.95	1.1	1.0	. 0	1.1	9.0	75.1	5.7	2. 1.	1.00	1.1	1. 1.	31.1	- 1	9	4.0	4.1	9.1.	96:0	1	7. 1.	4.1	2.14	0.7	1.2	1.86	9.0	2.1	. L 9.	8.1	1.194	ŗ.
	26	a _{exp} (mm) (6.02	7.39	11.98	15.02	7.27	7.69	14.10	9.36	10.72	20.24	13.10	7.08	14.51	23.88	13.84	28.74	10.52	8.80	11.16	16.96	12.85	8.94	25.02	11.83	5.09	11.92	8.77	4.30	6.35	12.06	8: 4	5.03	12.42	7.87	13.30	7.97	7.14	25.10	19.90	11.80	4.43	21.90	29.80	22.90	9.17	8.11	10.01
tion	25	a _{num.int.}		8.24	19.34	21.69	6.91	7.78	18.44	9.29	10.57	24.88	11.84	6.38	15.26	23.21	11.31	26.71	12.53	9.46	10.71	19.27	12.04	13.48	34.08	13.57	5.55	14.08	10.09	5.09	5.43	12.63	2.85	5.75	3.19	7.60	15.05	3.48	10.09	5.84	14.80	14.64	8.24	20.73	35.71	24.22	12.69	9.68	22.13
Deflection	24	a _n t-t _o (days) (m	0	0 0	1344	1314	0 0	0	1541	0 773	0	1485	1491	0	1572	1572	0	15/2	772	0 222	0	972	0 0	0	200	180	0	180	180	0 9	8 0	380	380	٥	380	380	380	380	0	380	380	380	0	380	380	380	0 450	} • 9	450
	23	a _{simp} /a _{exp}	1.234	1.704	1.642	1.465	0.956	1.016	1.314	0.996	0.989	1.233	0.906	0.904	1.055	0.974	0.819	0.932	1.196	1.079	0.962	1.14	0.939	1.536	1.387	1.169	1.111	1.203	1.171	1.205	1.052	1.004	1.4	1.083	1.024	0.929	1.157	1.676	1.449	1.022	0.763	1.317	1.868	0.947	1.241	1.843	1.442	1.156	1.297
	22	a _{simp} (mm) (%)	7.43	8.38	19.68	22.00	6.95	7.82	18.52	9.32	10.60	24.96	77 92	6.40	15.31	23.27	1.34	7.00	12.59	9.49	10.74	19.33	12.07	13.74	¥.	13.83	5.66	14.33	10.27	5.18	5.21	12.10	2.77	5.45	3.08	7.31	15.39	3.30	10.35	25.66 6.02	15.17	38.41	8.28	20.73	36.98	23.26	13.23	9.37	T4.T2
		es rii	0.00	0.00	0.28	0.28	0.00	0.00	0.39	0.00	0.00	0.39	0.00	0.00	0.46	0.00	0.00	0.00	0.18	0.00	0.00	0.18	0.00	0.00	1.18	0.00	00.0	0.39	0.00	0.00	0.00	0.29	0.00	0.00	0.30	0.30	0.35	0.00	0.00	0.00	0.65	0.00	00'0	0.75	0.82	0.00	0.00	0.00	0.41
method	21	a _{eff,cs} (mm)	7.10	8.05 8.05	8.63	0.95	6.75	7.62	17.67	9.12	10.40	24.11	11.67	6.25	14.51	22.47	11.19	5.97	2.09	9.31	0.56	8.83	1.89	11.47	8.01	5.16 12.71	5.35	3.18	9.71	4.89	5.05	11.48	2.50	5.31	12.13 2.80	6.41	3.72	3.13 7.16	7.49	3.68	8.92	11.80	5.99	14.52	28.60	7.90	1.50	8.90	9.90
Simplified method	20	a _{off,L2} (mm)		0.33				0.20	•	_ `	0.20		0.20		0.34	0.34		0.34	0.32	0.18		0.32	0.18			1.30	0.31					1.68	0.58		1.69	1.42	1.32	+ 0	101	3.01		3.74 1	3.20	1 77.7	7.56 2	7.12 1	1.72 1	1.51	3.40
	19	a _{eff,L1} (mm)						2 0	2						_												_							. 21	0 0	94	, . o to	0.0	ı, ı	υ 4	4		. 4	4 -	. — (00		- 9 (9
t of inertia	18	ä	8779149	87294226	8729422	86956426	15462136	154549622	154549622	154479900	154447812	154447812	154428073	193308338	193308336	193230560	19322018	163661436	163661436	163550249	163527202	163527202	163511966	13649404	1364940	12582151	12139231	1213923	1279727	13262579	24132076	241320769	30897853	22997454	229974542 274832446	274832446	29525812	317896342	3242002	32420025	43210984	3476230	4052875	41632875	4163281	4420839	2742590	26087776	7.002
Effective moment of inertia	17	letta	91499	87294226	94226	56426	154621366	549622	154549622	006621	544 7812	154447812	54428073	193308339	93308339	93230560	193220188	220188	61436	163550249	527.202	527202	163511966	13649404	13649404	12582151	12139231	39231	97.274	13262579	820769	\$20.769	378531 378531	74542	32446	274832446	58125	396342 396342	32420025	324 20 025 432 10 984	10984	34762307	40528754	40528754	41632811	44208390 44208390	125901	26087776	97778
Effect	-	l³) Iªr																											83992 127																				
	16	S _{II} (mm³)		337 380494			762800		_					114 992497		+ 4	114 992497	4 ←	_			_		- w			25 104168				_		23 765708		23 765708 23 765708			118 1073818 118 1073818				'82 271312 '82 271312				., .,			
	15	I _I (mm ⁴)		86089337				•	•		15437937	-		193200814			-	19320081	_	16347561		_	16347561	•			11957625		12622646							209739323		CA CA		23000169		31941782		34941782				22354235	
-section	14	(mm _*)	4516556	4516556	4516556	4516556	12818721	12818721	12818721	12818721	12818721	12818721	12818721	19026862	19026862	19026862	19026862	19026862	9079856	9079856	9079856	9079856	9079856	954705	954705	814736	791717	791717	573334	589416	9989523	9989523	9989523	9989523	9989523	9989523	16595791	16595791	993514	993514	993514	1665131	1665131	1665131	2375048	2375048	1205822	970995	CRAD /A
cracked cross-section	13	. (mm) I _{II} c	208.78	208.78	208.78	208.78	179.15	179.15	179.15	179.15	179.15	179.15	179.15	164.95	164.95	164.95	164.95	190.1	190.1	190.1	190.1	190.1	190.1	101.43	101.43	107.93	106.36	106.36	111.01	112.63	261.74	261.74	261.74	246.74	246.74 246.74	246.74	232.31	232.31	124.01	124.01	124.01	118.17	118.17	113.54	113.54	113.54	155.13	158.27	128.27
Fully cra	12	, (mm) z _{II,}	244.39	244.39	244.39	244.39	229.58	229.58	229.58	229.58	229.58	229.58	229.58	222.48	222.48	222.48	222.48	222.48	235.05	235.05	235.05	235.05	235.05	125.72	125.72	130.97	129.19	129.19	131.51	133.32	300.87	300.87	300.87	285.87	285.87 285.87	285.87	278.65	278.65	139.5	139.5	139.5	136.59	136.59	136.59	134.27	134.27	177.56	179.12	179.12
	Ŧ	(mm²) z _{llo}	10684	10684	10684	10684	15126	15126	15126	15126	15126	15126	15126	17255	17255	17255	17255	17255	13484	13484	13484	13484	13484	4857	4857	4607	4563	4563	4098	4136	19568	19568	19568	19568	19568	19568	23175	23175	12402	12402 12402	12402	14732	14732	14732	16583	16583	7182	6682	2900
	10	A _I (mm²) A _{lic}	12812	12812	12812	12812	20770	20770	20770	20770	20770	20770	20770	25670	25670	25670	25670	25670	22194	22194	22194	22194	22194	9089	6306	5842	5798	5798	6568	9099	23021	23021	23021	23021	23021 23021	23021	28355	28355 28355	14343	14343	14343	17644	17644	17644	20466	20466 20466	9037	8231	823T
tion			4140	0414	4140	04140	1638	1638	1638	1638	1638	1638	1638	2436	2436	2436	2436	2436	5520	5520	5520	5520	5520	9616	9616	7899	6665	6665	5798	8267	8950	8950	8950	4851	4851 4851	4851	2276	2276 2276	1929	1929	1929	2893	2893	2893	3857	3857	8965	107775	1775
Uncracked cross-section	6	S _c (mm³)																																															
Uncracke	00	l, (mm ⁴)	2744000	274400000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	2744000	281250	281250	304355	292650	292650	292650	30435533	8188333	8188333	8188333	7151692	7151692	7151692	7151692	7151692	1241291	1241291	1241291	1241291	1241291	1241291	1241291	1241291	1066666	106666667	മമമുമുവ
	7	M _{max} /M _{cr}	4.801	5.387	5.387	6.011	7.916	8.900	8.900	10.609	12.059	12.059	13.507	9.106	9.106	13.976	16.123	8.420	8.420	11.412	12.907	12.907	14.504	4.038	4.038	4.456	4.568	4.568	4.568	4.456	2.682	2.682	1.831	2.923	2.923	1.980	4.078	2.452	2.206	1.710	1.710	3.197	2.206	3.677	3.677	2.702	3.769	2.827	779.7
	9	(N m)	22529	25279	25279	28209	34979	39329	39329	46879	53289	53289	59689	43219	43219	66329	76519	38639	38639	52369	59229	59229	66559	3909	3909	3712	3709	3709	3709	3712	24900	24900	17000	24800	24800 16800	16800	34600	20800	6810	6810 5280	5280	9870	6810	6810	11350	8340	7669	6877	1 /90
) M _{max}	> 263	v v 263	y v v	, × 393 ×	119 v		> 611	119 ×	v 614	> 611	v 611	. 46 <	× 46 ×	46 4	> 46 <	585 v v	> 689	v v	v v 889	> 689	v v	> 896	> 998	v v	312 <	312 <	312 ×	333 <	v v		v v	, 48 i	<u>\$</u> \$	8484 A A A	. A	<u>\$</u> \$	> 780	> 787	> 280	> 780	> 780	> 787 >	> 287)87 × 187 ×	35 <	2433 ^ /	v 55
Cracking moment	9	M _{cr} (Nm)	4 .	^ ^	A 4	, A	۸ <i>۱</i>	۸ ۸ 1 4	۸	۸ ،	^ ^	4	^ 4	. A	Λ / 4 /	۸ ۸ 4 4	.4	Λ Λ 4 4	۸.	۸ ،			۸ ۸ <u>4</u> 4	· v	v ,	v v	v	v 1	, v	v ,	v v	v v	o o	v	ab ab v v	eð ei	o ao	ab ab v v	ю с v	e e v v	۰ ۲	e e v v	· v	e e v v	· v ·	ъ . v v	v v	1010 1	v
Cracki	4	M _{sw} (Nm)	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	1029	629	659	212	209	500	209	212	3254	3254	3254 3254	3110	31 10 31 10	3110	3110	31 10 31 10	2373	2373	2373	2373	2373	2373	2373	2373	1024	1024	10.24
	8	(mm³) M	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	1960000	375000	375000	395267	385067	385067	385067	395267	395267 4816667	4816667	4816667	4401042	4401042 4401042	4401042	4401042	4401042 4401042	1601667	1601667	1601667	1601667	1601667	1601667	1601667	160 166 7	1066667	1066667	1000001
		×																																															
	2	Specimen					01.0			0.0		0			4 3		-	~ 0	1 (3)	0 9	9 9	Q	0 0	·									0.0	. 15	m 0	0.0		0 0		m 0		m m		0 "		0 0	7.7	. 28	97.78
mation		Spe	172	F/2 F81	£ 5	5 5			1-56	1-7	¥ =	1-80	6 6	= 4	4-	9	7-11	- 4° - ≥	φ.	>	- 8-2	8-2	o o o o	182	182	₹ ¥	A2	\$ 5	<u> </u>	8 8	2 6	<u> </u>	<u> </u>	182	82.4	82	88	88 83	S. S.	S	S1-	8 8	82.	22.52	888	83.8	NAN	NAC28	PAR
Study information																															(2004)	(2004)	(2004)	(2004)	(2004) (2004)	(2004)	(04)	(2004)	004)	(2004)	104)	(2004)	(2004)	(2004)	004)	(2004) (2004)			
	-		45]	[4 5] [4 5]	45]	. 4. 5. 15.	45]	4. 15. 15. 15.	45]	45]	45.0	45]	45	45.	45]	4. 4. 6. 10.	45]	45. 45.	45]	[45]	4. 15. 15. 15.	45]	45 5.51	tal. [41]	tal. [41]	al. [46]	al. [46]	al. [46]	al. [46]	al. [46]	al. [45] 1 Nejadi (20	d Nejadi (20	d Nejadi (20 1 Nejadi (20	d Nejadi (20	d Nejadi (20 1 Nejadi (20	d Nejadi (20	d Nejadi (20	d Nejadi (20 1 Nejadi (20	d Nejadi (20	d Nejadi (20 1 Nejadi (20	d Nejadi (20	d Nejadi (20 1 Nejadi (20	d Nejadi (20	d Nejadi (20	d Nejadi (20	d Nejadi (20 3 Nejadi (20	(7)	: E i	()
		Author	F.R.F.C.	0 F.R.F.C. 4	F.R.F.C.	F.R.F.C.	F.R.F.C.	F.R.F.	F.R.F.C.	F.R.F.C.) F.R.F.C.	F.R.F.C.	E.R.F.	F.R.F.C.	t F.R.F.C.	F.R.F.C.	F.R.F.C.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	t F.R.F.C.	F.R.F.C.	0 F.R.F.C.	F.R.F.C.	я. В. Б. С. С.	0 Bakoss et	t Bakoss et	U Clarke et	0 Clarke et a	t Clarke et	t Clarke et	0 Clarke et a	t Clarke et a 0 Gilbert and	t Gilbert and	0 Gilbert and	0 Gilbert and	t Gilbert and 0 Gilbert and	t Gilbert and Nejadi (2	t Gilbert an	 Gilbert and Gilbert and 	0 Gilbert an.	t Gilbert an) Gilbert and	t Gilbert an	0 Gilbert and 1 Gilbert and	0 Gilbert and	t Gilbert and	t Gilbert an	U Gilbert and t Gilbert and	0 Tošić (2017)	0 Tošić (2017) 1 Tošić (2017)	t losic (zv
																											_			-	_		_	_	_			_	_	_		-	_	_		_	-	139	041

Assessment and Correction of ACI model:Simplified Procedure

Simplified method - ACI+

m	I _{eff} /I _{II}	l				2 *F*! //M *! ²)		
4	1.1024	Ι _{eff,max} /Ι _{II} 1.1024				$a_s *E*I_{ }/(M_{cr} *L^2)$ 0.2362	ı	
						0.2002		
			Nu	merical Inte	gration - ACI+	A.4. /A.4	1 /1	
m 4	ρ 0.75					M_{max}/M_{cr} 2.5	Ι _c /Ι _{II} 5	
7	0.75					$a*E*I_{II}/(M_{cr}*L^2)$	3	
						0.2145		
					only effective	Uncracked	corresponding	defl. mult.
ξ	M/M _{cr}	defl. coeff./L	I _{eff} /I _{II}	I _{eff,max} /I _{II}	E*I _{II} *(1/r _{eff})/M _{cr}	$E*I_{II}*(1/r_c)/M_{cr}$	E*I *(1/r)/M _{cr}	
0.00	0.000	0.00	#DIV/0!	#DIV/0!	#DIV/0!	0.0000	0.0000	0.000
0.02	0.196	0.01	2711.414	3.7500	0.052	0.0392	0.0392	0.000
0.04	0.384	0.02	184.965	3.7500	0.102	0.0768	0.0768	0.002
0.06	0.564	0.03	40.532	3.7500	0.150	0.1128	0.1128	0.003
0.08	0.736	0.04	14.632	3.7500	0.196	0.1472	0.1472	0.006
0.10	0.900	0.05	7.097	3.7500	0.240	0.1800	0.1800	0.009
0.12	1.056	0.06	4.217	3.7500	0.282	0.2112	0.2816	0.017
0.14	1.204	0.07	2.904	2.9035	0.415	0.2408	0.4147	0.029
0.16	1.344	0.08	2.226	2.2259	0.604	0.2688	0.6038	0.048
0.18	1.476	0.09	1.843	1.8428	0.801	0.2952	0.8010	0.072
0.20	1.600	0.10	1.610	1.6104	0.994	0.3200	0.9936	0.099
0.22	1.716	0.11	1.461	1.4613	1.174	0.3432	1.1743	0.129
0.24	1.824	0.12	1.361	1.3614	1.340	0.3648	1.3398	0.161
0.26	1.924	0.13	1.292	1.2919	1.489	0.3848	1.4893	0.194
0.28	2.016	0.14	1.242	1.2422	1.623	0.4032	1.6230	0.227
0.30	2.100	0.15	1.206	1.2057	1.742	0.4200	1.7418	0.261
0.32	2.176	0.16	1.178	1.1784	1.847	0.4352	1.8466	0.295
0.34	2.244	0.17	1.158	1.1577	1.938	0.4488	1.9382	0.330
0.36	2.304	0.18	1.142	1.1419	2.018	0.4608	2.0176	0.363
0.38	2.356	0.19	1.130	1.1298	2.085	0.4712	2.0853	0.396
0.40	2.400	0.20	1.121	1.1206	2.142	0.4800	2.1418	0.428
0.42	2.436	0.21	1.114	1.1136	2.188	0.4872	2.1875	0.459
0.44	2.464	0.22	1.109	1.1085	2.223	0.4928	2.2228	0.489
0.46	2.484	0.23	1.105	1.1051	2.248	0.4968	2.2478	0.517
0.48	2.496	0.24	1.103	1.1031	2.263	0.4992	2.2628	0.543
0.50	2.500	0.25	1.102	1.1024	2.268	0.5000	2.2678	0.567
0.52	2.496	0.24	1.103	1.1031	2.263	0.4992	2.2628	0.543
0.54	2.484	0.23	1.105	1.1051	2.248	0.4968	2.2478	0.517
0.56	2.464	0.22	1.109	1.1085	2.223	0.4928	2.2228	0.489
0.58	2.436	0.21	1.114	1.1136	2.188	0.4872	2.1875	0.459
0.60	2.400	0.20	1.121	1.1206	2.142	0.4800	2.1418	0.428
0.62	2.356	0.19	1.130	1.1298	2.085	0.4712	2.0853	0.396
0.64	2.304	0.18	1.142	1.1419	2.018	0.4608	2.0176	0.363
0.66	2.244	0.17	1.158	1.1577	1.938	0.4488	1.9382	0.330
0.68	2.176	0.16	1.178	1.1784	1.847	0.4352	1.8466	0.295
0.70	2.100	0.15	1.206	1.2057	1.742	0.4200	1.7418	0.261
0.72	2.016	0.14	1.242	1.2422	1.623	0.4032	1.6230	0.227
0.74	1.924	0.13	1.292	1.2919	1.489	0.3848	1.4893	0.194
0.76 0.78	1.824 1.716	0.12 0.11	1.361 1.461	1.3614 1.4613	1.340 1.174	0.3648 0.3432	1.3398 1.1743	0.161 0.129
0.78	1.770	0.11	1.401 1.610	1.4013 1.6104	0.994	0.3200	0.9936	0.129
0.82	1.476	0.70	1.843	1.8428	0.801	0.3200	0.8010	0.099
0.82	1.344	0.09	2.226	2.2259	0.604	0.2688	0.6038	0.072
0.86	1.204	0.08	2.220	2.2239	0.415	0.2408	0.4147	0.048
0.88	1.056	0.06	4.217	3.7500	0.282	0.2112	0.2816	0.029
0.90	0.900	0.05	7.097	3.7500	0.240	0.1800	0.1800	0.009
0.92	0.736	0.04	14.632	3.7500	0.196	0.1472	0.1472	0.006
0.94	0.564	0.03	40.532	3.7500	0.150	0.1128	0.1128	0.003
0.96	0.384	0.02	184.965	3.7500	0.102	0.0768	0.0768	0.002
0.98	0.196	0.01	2711.414	3.7500	0.052	0.0392	0.0392	0.000
1.00	0.000	0.00	#DIV/0!	#DIV/0!	#DIV/0!	0.0000	0.0000	0.000
	3.000	0.00			,, <u>D</u> , V, V;	3.0000	3.0000	10.725
								10.125

												a /a	_						
M _{max} /M _{cr}	I _c /I _{II} 1.1	m = 1.5	2.0	ρ = 2.5	0.5 3.0	3.5	4.0	4.5	5.0	5.5	6.0	a _{simp} /a 6.5	num.int 7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253	1.253
1.2	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139	1.139
1.3	1.088	1.088	1.088	1.088	1.088	1.088	1.088	1.098	1.123	1.142	1.156	1.168	1.178	1.187	1.194	1.201	1.207	1.213	1.218
1.4 1.5	1.068 1.052	1.068 1.052	1.068 1.052	1.068 1.052	1.068 1.101	1.113 1.141	1.146 1.169	1.171 1.190	1.190 1.207	1.205 1.222	1.218 1.235	1.229 1.245	1.239 1.255	1.247 1.263	1.254 1.271	1.261 1.277	1.267 1.283	1.272 1.289	1.277 1.294
2.0	1.019	1.019	1.019	1.066	1.094	1.114	1.131	1.145	1.158	1.169	1.180	1.189	1.198	1.206	1.213	1.220	1.227	1.233	1.239
2.5	1.007	1.007	1.007	1.042	1.058	1.070	1.081	1.090	1.099	1.107	1.114	1.121	1.128	1.134	1.140	1.145	1.151	1.156	1.161
3.0	1.004	1.004	1.004	1.027	1.037	1.044	1.051	1.058	1.063	1.069	1.074	1.079	1.084	1.088	1.092	1.096	1.100	1.104	1.108
3.5	1.002	1.002	1.002	1.017	1.024	1.029	1.034	1.038	1.042	1.046	1.050	1.053	1.056	1.059	1.062	1.065	1.068	1.071	1.074
4.0 4.5	1.002 1.000	1.002 1.000	1.002 1.000	1.013 1.008	1.017 1.012	1.020 1.014	1.024 1.017	1.027 1.019	1.029 1.021	1.032 1.023	1.035 1.025	1.037 1.027	1.039 1.028	1.042 1.030	1.044 1.032	1.046 1.033	1.048 1.035	1.050 1.036	1.052 1.038
5.0	1.000	1.000	1.000	1.006	1.009	1.010	1.012	1.014	1.015	1.017	1.018	1.020	1.021	1.022	1.024	1.025	1.026	1.027	1.028
5.5	1.000	1.000	1.000	1.005	1.007	1.008	1.009	1.011	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022
6.0	1.000	1.000	1.000	1.004	1.005	1.006	1.007	1.008	1.009	1.010	1.011	1.012	1.012	1.013	1.014	1.015	1.015	1.016	1.017
6.5 7.0	1.000 1.000	1.000 1.000	1.000 1.000	1.003 1.002	1.004 1.003	1.005 1.004	1.006 1.004	1.006 1.005	1.007 1.006	1.008 1.006	1.009 1.007	1.009 1.007	1.010 1.008	1.010 1.008	1.011 1.009	1.012 1.009	1.012 1.010	1.013 1.010	1.013 1.011
7.5	1.000	1.000	1.000	1.002	1.003	1.003	1.003	1.003	1.004	1.005	1.005	1.006	1.006	1.007	1.007	1.003	1.008	1.008	1.009
8.0	1.000	1.000	1.000	1.001	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.006	1.006	1.006	1.007	1.007
8.5	1.000	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.005	1.006	1.006
9.0	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004	1.004	1.005	1.005
9.5 10.0	1.000 1.000	1.000 1.000	1.000 1.000	1.001 1.001	1.001 1.001	1.001 1.001	1.002 1.001	1.002 1.002	1.002 1.002	1.002 1.002	1.003 1.002	1.003 1.002	1.003 1.002	1.003 1.003	1.003 1.003	1.004 1.003	1.004 1.003	1.004 1.003	1.004 1.004
10.0	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004
M_{max}/M_{cr}	I _c /I _{II}	m =	4	ρ =	0.75							a _{simp} /a	num.int						
	1.1	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.112	1.117	1.125	1.131	1.136	1.140	1.143	1.146	1.149	1.152	1.154	1.156
1.2	1.065	1.065	1.075	1.125	1.155	1.176	1.193	1.205	1.215	1.224	1.231	1.237	1.243	1.247	1.251	1.255	1.258	1.261	1.264
1.3 1.4	1.042 1.033	1.042 1.033	1.104 1.112	1.149 1.154	1.179 1.184	1.202 1.207	1.220 1.226	1.235 1.242	1.247 1.255	1.258 1.266	1.266 1.276	1.274 1.284	1.281 1.292	1.286 1.299	1.291 1.305	1.296 1.310	1.300 1.315	1.304 1.319	1.307 1.323
1.4	1.033	1.033	1.112	1.134	1.104	1.198	1.226	1.242	1.255	1.259	1.270	1.204	1.292	1.299	1.305	1.306	1.315	1.319	1.323
2.0	1.009	1.032	1.065	1.089	1.108	1.125	1.139	1.153	1.164	1.175	1.185	1.194	1.202	1.210	1.217	1.224	1.231	1.237	1.242
2.5	1.004	1.018	1.037	1.051	1.063	1.074	1.084	1.093	1.101	1.109	1.116	1.123	1.130	1.136	1.141	1.147	1.152	1.157	1.162
3.0	1.002	1.011	1.023	1.032	1.039	1.047	1.053	1.059	1.065	1.070	1.075	1.080	1.084	1.089	1.093	1.097	1.101	1.105	1.108
3.5	1.001 1.001	1.007	1.014 1.010	1.020 1.014	1.026 1.018	1.030 1.021	1.035 1.024	1.039 1.027	1.043	1.047 1.032	1.050 1.035	1.053 1.037	1.057 1.040	1.060 1.042	1.063	1.066	1.069 1.048	1.072 1.050	1.074 1.052
4.0 4.5	1.001	1.005 1.003	1.010	1.014	1.016	1.021	1.024	1.027	1.030 1.021	1.032	1.035	1.037	1.040	1.042	1.044 1.032	1.046 1.033	1.046	1.030	1.032
5.0	1.000	1.002	1.005	1.007	1.009	1.011	1.013	1.014	1.016	1.017	1.019	1.020	1.021	1.022	1.024	1.025	1.026	1.027	1.028
5.5	1.000	1.002	1.004	1.005	1.007	1.008	1.009	1.011	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022
6.0	1.000	1.001	1.003	1.004	1.005	1.006	1.007	1.008	1.009	1.010	1.011	1.012	1.012	1.013	1.014	1.015	1.015	1.016	1.017
6.5 7.0	1.000 1.000	1.001 1.001	1.002 1.002	1.003 1.002	1.004 1.003	1.005 1.004	1.006 1.004	1.006 1.005	1.007 1.006	1.008 1.006	1.009 1.007	1.009 1.007	1.010 1.008	1.010 1.008	1.011 1.009	1.012 1.009	1.012 1.010	1.013 1.010	1.013 1.011
7.5	1.000	1.000	1.002	1.002	1.003	1.004	1.004	1.003	1.005	1.005	1.007	1.007	1.006	1.007	1.009	1.009	1.008	1.008	1.009
8.0	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.006	1.006	1.006	1.006	1.007	1.007
8.5	1.000	1.000	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.005	1.006	1.006
9.0	1.000	1.000	1.001	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004	1.004	1.005	1.005
9.5 10.0	1.000 1.000	1.000 1.000	1.000 1.000	1.001 1.001	1.001 1.001	1.001 1.001	1.002 1.001	1.002 1.002	1.002 1.002	1.002 1.002	1.003 1.002	1.003 1.002	1.003 1.002	1.003 1.003	1.003 1.003	1.004 1.003	1.004 1.003	1.004 1.003	1.004 1.004
70.0	1.000	1.000	1.000	1.001	7.007	1.001	1.001	1.002	1.002	1.002	1.002	1.002	1.002	1.003	1.005	1.005	1.003	7.005	1.004
M_{max}/M_{cr}	I _c /I _{II}	m =	4	ρ =	1							a _{simp} /a	num.int						
	1.1	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	1.016	1.064	1.100	1.123	1.139	1.151	1.160	1.167	1.173	1.178	1.182	1.185	1.188	1.191	1.193	1.195	1.197	1.199	1.200
1.2 1.3	1.020 1.020	1.082 1.083	1.131 1.136	1.164 1.173	1.188 1.200	1.206 1.221	1.220 1.238	1.232 1.252	1.241 1.263	1.249 1.273	1.256 1.281	1.261 1.289	1.266 1.295	1.271 1.301	1.274 1.306	1.278 1.310	1.281 1.314	1.284 1.318	1.286 1.321
1.4	1.019	1.078	1.129	1.166	1.194	1.217	1.235	1.250	1.263	1.273	1.283	1.203	1.298	1.305	1.311	1.316	1.321	1.325	1.329
1.5	1.017	1.071	1.119	1.154	1.182	1.204	1.222	1.238	1.251	1.263	1.273	1.282	1.290	1.297	1.304	1.310	1.315	1.320	1.325
2.0	1.009	1.039	1.067	1.090	1.109	1.126	1.140	1.153	1.165	1.175	1.185	1.194	1.203	1.210	1.218	1.224	1.231	1.237	1.242
2.5	1.005	1.022	1.038	1.052	1.064	1.075	1.085	1.093	1.102	1.109	1.117	1.123	1.130	1.136	1.142	1.147	1.153	1.158	1.162
3.0 3.5	1.003 1.002	1.013 1.008	1.023 1.015	1.032 1.021	1.040 1.026	1.047 1.031	1.053 1.035	1.059 1.039	1.065 1.043	1.070 1.047	1.075 1.050	1.080 1.054	1.084 1.057	1.089 1.060	1.093 1.063	1.097 1.066	1.101 1.069	1.105 1.072	1.109 1.074
4.0	1.001	1.006	1.010	1.014	1.018	1.021	1.024	1.027	1.030	1.032	1.035	1.037	1.040	1.042	1.044	1.046	1.048	1.050	1.052
4.5	1.001	1.004	1.007	1.010	1.013	1.015	1.017	1.019	1.021	1.023	1.025	1.027	1.029	1.030	1.032	1.034	1.035	1.037	1.038
5.0	1.000	1.003	1.005	1.007	1.009	1.011	1.013	1.014	1.016	1.017	1.019	1.020	1.021	1.022	1.024	1.025	1.026	1.027	1.028
5.5	1.000	1.002	1.004	1.005	1.007	1.008	1.009	1.011	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022
6.0 6.5	1.000 1.000	1.001 1.001	1.003 1.002	1.004 1.003	1.005 1.004	1.006 1.005	1.007 1.006	1.008 1.006	1.009 1.007	1.010 1.008	1.011 1.009	1.012 1.009	1.012 1.010	1.013 1.010	1.014 1.011	1.015 1.012	1.015 1.012	1.016 1.013	1.017 1.013
7.0	1.000	1.001	1.002	1.003	1.004	1.003	1.005	1.005	1.007	1.006	1.009	1.009	1.008	1.008	1.009	1.009	1.012	1.013	1.013
7.5	1.000	1.001	1.001	1.002	1.003	1.003	1.004	1.004	1.005	1.005	1.005	1.006	1.006	1.007	1.007	1.008	1.008	1.008	1.009
8.0	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.006	1.006	1.006	1.006	1.007	1.007
8.5	1.000	1.000	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.005	1.006	1.006
9.0 9.5	1.000 1.000	1.000 1.000	1.001 1.000	1.001 1.001	1.001 1.001	1.002 1.001	1.002 1.002	1.002 1.002	1.003 1.002	1.003 1.002	1.003 1.003	1.003 1.003	1.004 1.003	1.004 1.003	1.004 1.003	1.004 1.004	1.004 1.004	1.005 1.004	1.005 1.004
10.0	1.000	1.000	1.000	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.003	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004

M /M	1 _c /1 _{II}		4		0.5							a' . /	a .						
M_{max}/M_{cr}	1.1	m = 1.5	2.0	ρ = 2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	a _{simp} / 6.5	a _{num.int} 7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128	1.128
1.2	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025	1.025
1.3	0.979	0.979	0.979	0.979	0.979	0.979	0.979	0.989	1.011	1.027	1.040	1.051	1.060	1.068	1.075	1.081	1.086	1.091	1.096
1.4 1.5	0.962 0.947	0.962 0.947	0.962 0.947	0.962 0.947	0.962 0.991	1.001 1.027	1.032 1.052	1.054 1.071	1.071 1.087	1.085 1.100	1.097 1.111	1.106 1.121	1.115 1.129	1.122 1.137	1.129 1.143	1.135 1.150	1.140 1.155	1.145 1.160	1.149 1.165
2.0	0.917	0.917	0.917	0.959	0.985	1.003	1.018	1.031	1.042	1.052	1.062	1.070	1.078	1.085	1.092	1.098	1.104	1.100	1.115
2.5	0.907	0.907	0.907	0.938	0.952	0.963	0.973	0.981	0.989	0.996	1.003	1.009	1.015	1.021	1.026	1.031	1.036	1.040	1.045
3.0	1.004	1.004	1.004	1.027	1.037	1.044	1.051	1.058	1.063	1.069	1.074	1.079	1.084	1.088	1.092	1.096	1.100	1.104	1.108
3.5	1.002 1.002	1.002 1.002	1.002 1.002	1.017 1.013	1.024 1.017	1.029	1.034 1.024	1.038 1.027	1.042 1.029	1.046 1.032	1.050 1.035	1.053 1.037	1.056 1.039	1.059 1.042	1.062 1.044	1.065 1.046	1.068 1.048	1.071 1.050	1.074 1.052
4.0 4.5	1.002	1.002	1.002	1.013	1.017	1.020 1.014	1.024	1.027	1.029	1.032	1.035	1.037	1.039	1.042	1.044	1.046	1.046	1.036	1.032
5.0	1.000	1.000	1.000	1.006	1.009	1.010	1.012	1.014	1.015	1.017	1.018	1.020	1.021	1.022	1.024	1.025	1.026	1.027	1.028
5.5	1.000	1.000	1.000	1.005	1.007	1.008	1.009	1.011	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022
6.0	1.000	1.000	1.000	1.004	1.005	1.006	1.007	1.008	1.009	1.010	1.011	1.012	1.012	1.013	1.014	1.015	1.015	1.016	1.017
6.5 7.0	1.000 1.000	1.000 1.000	1.000 1.000	1.003 1.002	1.004 1.003	1.005 1.004	1.006 1.004	1.006 1.005	1.007 1.006	1.008 1.006	1.009 1.007	1.009 1.007	1.010 1.008	1.010 1.008	1.011 1.009	1.012 1.009	1.012 1.010	1.013 1.010	1.013 1.011
7.5	1.000	1.000	1.000	1.002	1.003	1.004	1.004	1.003	1.004	1.005	1.007	1.007	1.006	1.007	1.009	1.009	1.008	1.008	1.009
8.0	1.000	1.000	1.000	1.001	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.006	1.006	1.006	1.007	1.007
8.5	1.000	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.005	1.005	1.006	1.006
9.0	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004	1.004	1.005	1.005
9.5 10.0	1.000 1.000	1.000 1.000	1.000 1.000	1.001 1.001	1.001 1.001	1.001 1.001	1.002 1.001	1.002 1.002	1.002 1.002	1.002 1.002	1.003 1.002	1.003 1.002	1.003 1.002	1.003 1.003	1.003 1.003	1.004 1.003	1.004 1.003	1.004 1.003	1.004 1.004
10.0	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004
M_{max}/M_{cr}	I_c/I_{II}	m =	4	ρ =	0.75							a' _{simp} /	a _{num.int}						
	1.1	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.001	1.005	1.012	1.018	1.022	1.026	1.029	1.032	1.034	1.036	1.038	1.040
1.2 1.3	0.958 0.938	0.958 0.938	0.968 0.994	1.012 1.034	1.039 1.061	1.058 1.082	1.073 1.098	1.085 1.111	1.094 1.122	1.101 1.132	1.108 1.140	1.113 1.147	1.118 1.152	1.123 1.158	1.126 1.162	1.130 1.166	1.133 1.170	1.135 1.173	1.138 1.176
1.4	0.930	0.930	1.001	1.034	1.066	1.087	1.104	1.118	1.129	1.140	1.148	1.156	1.163	1.169	1.174	1.179	1.170	1.173	1.170
1.5	0.923	0.937	0.997	1.032	1.058	1.079	1.096	1.110	1.123	1.133	1.143	1.151	1.158	1.165	1.170	1.176	1.181	1.185	1.189
2.0	0.908	0.929	0.959	0.980	0.997	1.012	1.025	1.037	1.048	1.058	1.066	1.075	1.082	1.089	1.096	1.102	1.108	1.113	1.118
2.5 3.0	0.903 1.002	0.917 1.011	0.933	0.946 1.032	0.957 1.039	0.967 1.047	0.976 1.053	0.984 1.059	0.991 1.065	0.998 1.070	1.005 1.075	1.011 1.080	1.017 1.084	1.022 1.089	1.027 1.093	1.032 1.097	1.037 1.101	1.042 1.105	1.046 1.108
3.0 3.5	1.002	1.011	1.023 1.014	1.032	1.039	1.047	1.035	1.039	1.063	1.070	1.050	1.053	1.057	1.069	1.093	1.097	1.069	1.105	1.106
4.0	1.001	1.005	1.010	1.014	1.018	1.021	1.024	1.027	1.030	1.032	1.035	1.037	1.040	1.042	1.044	1.046	1.048	1.050	1.052
4.5	1.000	1.003	1.007	1.010	1.012	1.015	1.017	1.019	1.021	1.023	1.025	1.027	1.029	1.030	1.032	1.033	1.035	1.037	1.038
5.0	1.000	1.002	1.005	1.007	1.009	1.011	1.013	1.014	1.016	1.017	1.019	1.020	1.021	1.022	1.024	1.025	1.026	1.027	1.028
5.5 6.0	1.000 1.000	1.002 1.001	1.004 1.003	1.005 1.004	1.007 1.005	1.008 1.006	1.009 1.007	1.011 1.008	1.012 1.009	1.013 1.010	1.014 1.011	1.015 1.012	1.016 1.012	1.017 1.013	1.018 1.014	1.019 1.015	1.020 1.015	1.021 1.016	1.022 1.017
6.5	1.000	1.001	1.003	1.004	1.003	1.005	1.007	1.006	1.009	1.008	1.009	1.009	1.012	1.013	1.014	1.013	1.013	1.013	1.017
7.0	1.000	1.001	1.002	1.002	1.003	1.004	1.004	1.005	1.006	1.006	1.007	1.007	1.008	1.008	1.009	1.009	1.010	1.010	1.011
7.5	1.000	1.000	1.001	1.002	1.003	1.003	1.004	1.004	1.005	1.005	1.005	1.006	1.006	1.007	1.007	1.008	1.008	1.008	1.009
8.0	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.005	1.005	1.006	1.006	1.006	1.006	1.007	1.007
8.5 9.0	1.000 1.000	1.000 1.000	1.001 1.001	1.001 1.001	1.002 1.001	1.002 1.002	1.002 1.002	1.003 1.002	1.003 1.003	1.003 1.003	1.004 1.003	1.004 1.003	1.004 1.004	1.005 1.004	1.005 1.004	1.005 1.004	1.005 1.004	1.006 1.005	1.006 1.005
9.5	1.000	1.000	1.000	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004	1.004	1.003	1.003
10.0	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004
													-						
M _{max} /M _{cr}	I ₀ /I _{II} 1.1	m = 1.5	2.0	ρ = 2.5	1 3.0	3.5	4.0	4.5	5.0	5.5	6.0	a _{simp} / 6.5	a _{num.int} 7.0	7.5	8.0	8.5	9.0	9.5	10.0
1.1	0.915	0.957	0.990	2. 5 1.010	1.025	1.036	1.044	4.5 1.050	1.056	1.060	1.064	1.067	1.070	1.072	1.074	1.076	9.0 1.077	9.5 1.079	1.080
1.2	0.918	0.973	1.018	1.048	1.069	1.086	1.098	1.109	1.117	1.124	1.130	1.135	1.140	1.144	1.147	1.150	1.153	1.155	1.158
1.3	0.918	0.975	1.022	1.056	1.080	1.099	1.114	1.127	1.137	1.146	1.153	1.160	1.165	1.171	1.175	1.179	1.183	1.186	1.189
1.4	0.917	0.970	1.016	1.050	1.075	1.095	1.111	1.125	1.136	1.146	1.155	1.162	1.169	1.175	1.180	1.185	1.189	1.193	1.196
1.5 2.0	0.915 0.908	0.964 0.935	1.007 0.960	1.039 0.981	1.064 0.998	1.084 1.013	1.100 1.026	1.114 1.038	1.126 1.048	1.137 1.058	1.146 1.067	1.154 1.075	1.161 1.082	1.168 1.089	1.173 1.096	1.179 1.102	1.184 1.108	1.188 1.113	1.192 1.118
2.5	0.904	0.920	0.935	0.947	0.958	0.967	0.976	0.984	0.992	0.998	1.005	1.011	1.017	1.022	1.028	1.033	1.037	1.042	1.046
3.0	1.003	1.013	1.023	1.032	1.040	1.047	1.053	1.059	1.065	1.070	1.075	1.080	1.084	1.089	1.093	1.097	1.101	1.105	1.109
3.5	1.002	1.008	1.015	1.021	1.026	1.031	1.035	1.039	1.043	1.047	1.050	1.054	1.057	1.060	1.063	1.066	1.069	1.072	1.074
4.0 4.5	1.001	1.006	1.010	1.014	1.018	1.021	1.024	1.027	1.030	1.032	1.035	1.037	1.040	1.042	1.044	1.046	1.048	1.050	1.052
4.5 5.0	1.001 1.000	1.004 1.003	1.007 1.005	1.010 1.007	1.013 1.009	1.015 1.011	1.017 1.013	1.019 1.014	1.021 1.016	1.023 1.017	1.025 1.019	1.027 1.020	1.029 1.021	1.030 1.022	1.032 1.024	1.034 1.025	1.035 1.026	1.037 1.027	1.038 1.028
5.5	1.000	1.003	1.003	1.005	1.003	1.008	1.009	1.011	1.012	1.013	1.014	1.015	1.016	1.017	1.018	1.019	1.020	1.021	1.022
6.0	1.000	1.001	1.003	1.004	1.005	1.006	1.007	1.008	1.009	1.010	1.011	1.012	1.012	1.013	1.014	1.015	1.015	1.016	1.017
6.5	1.000	1.001	1.002	1.003	1.004	1.005	1.006	1.006	1.007	1.008	1.009	1.009	1.010	1.010	1.011	1.012	1.012	1.013	1.013
7.0	1.000	1.001	1.002	1.003	1.003	1.004	1.005	1.005	1.006	1.006	1.007	1.007	1.008	1.008	1.009	1.009	1.010	1.010	1.011
7.5 8.0	1.000 1.000	1.001 1.000	1.001 1.001	1.002 1.002	1.003 1.002	1.003 1.002	1.004 1.003	1.004 1.003	1.005 1.004	1.005 1.004	1.005 1.004	1.006 1.005	1.006 1.005	1.007 1.006	1.007 1.006	1.008 1.006	1.008 1.006	1.008 1.007	1.009 1.007
8.5	1.000	1.000	1.001	1.002	1.002	1.002	1.003	1.003	1.004	1.004	1.004	1.003	1.003	1.005	1.005	1.005	1.005	1.007	1.006
9.0	1.000	1.000	1.001	1.001	1.001	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004	1.004	1.005	1.005
9.5	1.000	1.000	1.000	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004	1.004	1.004	1.004
10.0	1.000	1.000	1.000	1.001	1.001	1.001	1.001	1.002	1.002	1.002	1.002	1.002	1.002	1.003	1.003	1.003	1.003	1.003	1.004

Appendix E

Applicability of Model Code 2010

Testing of Individual Deflection Curves – RAC and HVFAC beams

			n ~	۲.	_ ^.	~	₩.	o			_	n -		_		6	6.7			٠.	. ~	٦.	e r	V 10	_	N ~		ıc.	۰.			· · ·	_	0.7			_	6	۰ -		_
32	4	t-t _o	0.003	0.25	. 7	63	-T- LI	. 9	1	14											400				-	. v m	. 4		. ~										330		
Deflection 31		t (days)	7.042		0 6	10	+ €	13 5													407				53	3 8	32	33	¥ 58	42									328		
30	3	a (t) (mm) t	11.62	12.10	13.27	13.57	13.80	14.28	14.43	15.55	16.30	18.30	19.12	19.35	20.02	20.39	20.56	21.09	21.57	21.98	22.40	22.47	6.23	7.16	7.70	8.05	8.43	8.57	8.76	9.49	10.00	11.33	11.65	12.21	12.03	13.05	13.29	13.71	14.10	14.59	14.75
29	2		0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107	0.107
28	3	(Nm) K _{L2}	6923	6923	6923	6923	6923	6923	6923	6923	6923	6003	6923	6923	6923	6923	6923	6923	6923	6923	6923	6923	5414	5414	5414	5414 5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414	5414
27	i	ML2	0.0 4.0 4.0 4.0 5.0	0.104	0.10	0.104	0.104	2 2	0.104	0.104	0.104	10.0	0.10	0.104	0.104	4 5	0.104	100	0.104	0.104	9 2 2	0.104	0.104	0.10	0.104	0.0 4.0 4.0 7.0	0.104	0.104	9 5	0.104	20.0	0.10	0.104	0.104	2 5	0.10	0.104	0.104	2 6	0.104	n 104
Loading 26	2	Lt (Nm) K _{Lt}	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024	1024
25	2	Σ	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	9.00	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	0. 80 0. 0.	18.9	18.9	18.9	18.9	9.00	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9	18.9
24		p/7 (w	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3200	3300	3200	3200	3200	3200	3200	3300
2	4	L (mr	21663	388	18	228	989	8 2	25	202	25	27.0	93	4	969		182	100	86	956	27	527	900	4 1	26	118	83	764	113	228	23	90	110	178	200	39	.00	133	- tz	.63	UBI
23	Щ,	(MP																																							
22	1	E cs (46 0.155																																						
21		(-) ø	00 0.246																																						
20		щ,	200000																																						
perties 19	2	E _{cm} (30800																																						
Mechanical properties	E _{cm} (t _o)	MP.	0 26200																																						0000
Mec 17	f _{ctm} (t ₀)	(MPa)	2.00																																						2000
16	fet sp (to)	(MPa)	2.00																																						
15	2	fem (I	28.10								28.10										28.10		28.10					28.10							28.10			28.10		28.10	7 28 10
14	f _{cm} (t ₆)	(MPa)	24.20	7 24.20	24.20	7 24.2C	24.24	24.20	24.20	7 24.20	24.20	24.24	24.20	7 24.20	7 24.2C	24.21	24.24	24.20	7 24.20	24.24	24.20	7 24.2C	3 28.10	28.10	3 28.10	28.10	3 28.16	3 28.10	28.10	3 28.10	28.10	28.10	3 28.10	28.10	28.10	28.10	3 28.10	3 28.10	28.10	3 28.10	28.10
13	2	t ₀ (days)		1 -1	7	1	,~ 1	- ~	7	7	~ 1	- 1	. 7	7	1	~ !	.~ ^		7	.~ ^	. 2	7	3 %	28	28	28	26	28	28	28	7 80	28	26	3 5	7 8	28	26	28	28	28	ac
12	4	type	0.21 deformed	eformed	eformed	eformed	eformed	aformed	0.21 deformed	eformed	eformed	aformed	0.21 deformed	eformed	eformed	eformed	eformed	eformed	eformed	eformed formed	0.21 deformed	eformed	0.21 deformed	eformed	eformed	0.21 deformed 0.21 deformed	eformed	eformed	elormed	0.21 deformed	aformed	2.21 deformed	0.21 deformed	eformed	aformed	0.21 deformed	eformed	0.21 deformed	eformed	0.21 deformed	permade
1		P ₂ (%) ty	0.21 de	0.21 d.	0.21 dk	0.21 d	0.21 ¢	0.21 de	0.21 dt	0.21 de	0.21 d.	0.21 0	0.21 dt	0.21 de	0.21 d	0.21 d	0.21 d	0.21 de	0.21 dt	0.21 d	0.21 dk	0.21 d	0.21 ¢	0.21 dk	0.21 d	0.21 d 0.21 d	0.21 dk	0.21 d	0.21 de	0.21 d.	0.21 0	0.21 de	0.21 d.	0.21 0	0.21 0	0.21 de	0.21 de	0.21 d	0.21 de	0.21 dk	0 21 de
10		d ₂ (mm) ρ ₂	8 8	5 23	73	59	8 8	8 8	58	59	53	8 8	3 62	59	59	ଅ ଅ	8 8	2 62	53	8 8	28	29	3 23	73	53	ද ද	8 8	8 8	8 8	53	8 8	2 2	59	81 8	8 6	8 2	59	8 8	29 62	29	90
6			<u> </u>	5 5	= =	171	5 5	17	171	171	17	- 5	: 5	171	171	Ę	Ę Ę	17	171	Ę Ę	Ę Ę	171	5 5	= =	17	= =	171	Ę ;	= =	17	2 2	1	171	= =	- 1	Ę	171	Ę ;	<u> </u>	171	171
Reinforcement		A ₅₂ (mm²) d' (24	24	22	24	24	24 6	24	24	25	2 6	24	25	24	25	2 2	5 25	22	20	24	22	24	22	22	27 57	24	24	62	22	2 6	24	24	24	ñ 15	24	24	24	ò (2	24	22
Rein.		P ₁ (%) A ₂₃	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.38	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.30	0.58	0.58	0.58	0.58	0.58	0.58
9		400	169	169	169	169	169	169	169	169	169	109	169	169	169	99	169	169	169	169	169	169	169	169	169	169	169	169	9 6	169	169	169	169	169	169	169	169	169	169	169	160
22	,	Ē	157	157	157	157	157	157	157	157	157	5 5	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	157	767	157	157	157	5 2	157	157	157	157	157	157
Ę -			200	200	200	200	200	200	200	200	200	200	200	200	200	500	500	200	200	500	200	200	200	200	200	200	200	500	200	200	200	200	200	200	200	200	200	500	200	200	200
Cross-section			8 8	8 6	8 8	160	8 8	8 8	160	160	99	3 6	3 8	160	160	8 8	8 8	8 8	160	8 8	8 8	160	8 5	8 8	160	8 8	168	8 6	8 8	160	3 6	8 8	160	8 5	8 6	8 8	160	8 6	8 8	160	180
ပ		p (mm																																							
6		E.																																							
ion	4			1.1	0 6	\C7	SAC7	RAC7	RAC7	RAC7	RAC7	ZAC 2	RAC7	RAC7	RAC7	RAC7	RAC7	RAC7	RAC7	RAC7	RAC7	RAC7	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	KACZ8	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	RAC28	00000
Study information	4	Specimen	RAC7	¥ a	2 2	2																																			
77	•	Specime	RAC7	RAG	2 2	2																																			
Stuc	-	Specime	RAC7	RAG	2 2	2																																			
Stuc	-			Tošić (2017) RAC			Tošić (2017)	Sic (2017)	Fošić (2017)	šić (2017)	Tošić (2017)	08IC (2017)	OSIC (2017) Tošić (2017)	Fošić (2017)	šić (2017)	Sic (2017)	Tošić (2017)	Sic (2017)	šić (2017)	38ić (2017) 8id (2017)	Tošić (2017)	šić (2017)	všić (2017) 816 (2017)	šić (2017)	\\$ic (2017)	Tosic (2017) Tošić (2017)	Sic (2017)	3šić (2017)	3ic (2017)	Tošić (2017)	SIC (2017)	Tošić (2017)	Tošić (2017)	sic (2017)	38ic (2017)	OSIC (2017)	ošić (2017)	Tošić (2017)	losic (2017) Fošić (2017)	Tošić (2017)	Sir (2017)

Author Toske (2017)	Specimen Specimen HVFAG7 HVFAG7 HVFAG7 HVFAG7 HVFAG7 HVFAG7 HVFAG7 HVFAG7	3 4	S	9	7	∞ .	o	10	11 12	13	_		17 (f(f.)	18	19	20	21	22 E	23	24	25	56	27			30 31	32
Author Tosk: (2017) Tosk: (2017)	Spectmen HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7											fet so (to)						ш								(ave) + (dave)	
Tosk (2017)	HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7	b (mm) h (mm)	A, (mm²) d	d (mm) b	p, (%)	A, (mm²) d' (i	d' (mm) d, (mm)	mm) p ₂ (%)	type	f _{cm} (t ₆) t _o (days) (MPa)) f _{cm} (MPa)	a) (MPa)		E _{cm} (t ₀) (MPa)	E.m (MPa)	E. (MPa)	φ (-) ε _{cc}	(%)	_	L (mm) L/d	M, (Nm)	Nm) K ₁	M ₁₂ (Nm)	(Nm) K ₁ ,	a(t)(r		t-t _o (days)
Tosk (2017)	HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7	1	157	169	28	22	7	59	0.21 deformed				ľ			Г	0000		25200	3200	18,9	1024	0.104		ı	6.13 7.0	1
Toski (2017)	HVFAC7 HVFAC7 HVFAC7 HVFAC7 HVFAC7	160 200	157	169	0.58	22	171	53	0.21 deformed	7	16.40 22	22.60 1.3	1.20 1.2	.20 25200	28700	200000	0.130	0.122	22618	3200	18.9	1024	0.104	4569 0	0.107	6.56 7.042	
Toskie (2017)	HVFAC7 HVFAC7 HVFAC7 HVFAC7			169	0.58	22	171		0.21 deformed	7			_	_			0.345	0.122	19337	3200	18.9	1024	0.104		107		5 0.25
10stc (2017) Toskc (2017)	HVFAC7 HVFAC7 HVFAC7			169	0.58	22	171		0.21 deformed	- 1			-	_			0.395	0.125	18710	3200	18.9	1024	0.104		.107	7.41	œ (
10skc (2017) 10skc (2017) 10skc (2017) 10skc (2017) 10skc (2017) 10skc (2017)	HVFAC7			169	0.58	24	171		0.21 deformed	_			-	_			0.527	0.132	17231	3200	18.9	1024	0.104		.107	7.74	o :
108ic (2017) Tosic (2017) Tosic (2017) Tosic (2017) Tosic (2017)	HVFAC/			169	0.58	24	-	8 8	0.21 deformed	٠,			- '				0.604	0.158	16466	3200	18.9	1024	9.104		107	8.05	0 ,
losic (2017) Tosic (2017) Tosic (2017) Tosic (2017) Tosic (2017)				691	0.58	/c	5		0.21 deformed	- 1			- '				0.625	0.182	1626/	3200	9.90	1024	401.0		/0L.	8.26	- 0
Tošić (2017) Tošić (2017) Tošić (2017) Tošić (2017)	HVFAC/			109	0.38	2 2	- 7		0.21 deformed	- 1			- •				0.708	0.192	15534	3200	0.0	1024	5 5		107	6.43	N 0
Tošić (2017) Tošić (2017) Tošić (2017)	HVFAC/			99	0.38	2 2	- 7		0.21 deformed	- 1			- 1				0.708	0.225	15531	3200	0.0	1024	5 6			0.01	2 4
Tošić (2017) Tošić (2017) Tošić (2017)	NATAC:			109	0.00	1 0	7 -	8 6	0.21 deformed	- 1							0.723	0.230	14364	3200	0.0	1024	5 6			0.70	
Tošić (2017)	HVFAC/			109	0.58	20	- 4	8 8	0.21 deformed	- 1			- •				0.859	0.272	14304	3200	9.0	1024	9 5			9.40	
	HVEAC4			991	0.30	2 0	7 -	8 00	0.21 deformed	- 1-							0.092	0.330	13706	3300	0.00	1024	5 5			9.73	35
Tošić (2017)	HVEAC7			169	0.30	5 6	121	8 8	0.21 deformed	- 1-							1084	0.332	12911	3200	18.9	1024	2 2			0.04	
Tošić (2017)	HVFAC7			169	0.58	22	171	2 8	0.21 deformed								1.210	0.410	12219	3200	18.9	1024	104			62.0	
Tošić (2017)	HVEACT			169	0.58	2 6	171	2 8	0.21 deformed								1171	0.438	12427	3300	18.0	1024	101				
Tošić (2017)	HVFAC7			169	0.58	22	17		0 21 deformed								1 278	0.478	11873	3200	18.9	1024	104				
Tošić (2017)	HVEAC7			169	0.58	22	1		0 21 deformed								1.303	0.492	11755	3200	18.9	1024	101				
Tošić (2017)	HVEAC7			169	0.58	22	1		0 21 deformed								1321	0.508	11669	3200	18.9	1024	101				
Tošić (2017)	HVEAC7			169	0.58	22	1		0 21 deformed								1368	0.492	11449	3200	18.9	1024	101				
Tošić (2017)	HVFAC7			169	0.58	22	171		0 21 deformed								1 304	0.502	11330	3200	18.9	1024	0 104				
Tošić (2017)	HVFAC7			169	0.58	25	17	2 8	0.21 deformed								464	0.530	11026	3200	18.9	1024	10.0				
Tošić (2017)	HVFAC7			169	0.58	22	171		0.21 deformed								1484	0.563	10943	3200	18.9	1024	104				
rošić (2017)	HVFAC7			169	0.58	22	171		0.21 deformed	7							1.534	0.587	10738	3200	18.9	1024	0.104				
rošić (2017)	HVFAC7			169	0.58	22	171		0.21 deformed	7				1.20 25200			1.584	0.597	10540	3200	18.9	1024	0.104			12.43 4	407 400
Tošić (2017)	HVFAC7			169	0.58	25	171	29	0.21 deformed	7							1.634	0.595	10349	3200	18.9	1024	0.104				
Tošić (2017)	HVFAC28	160 200	157	169	0.58	25	171		0.21 deformed	28			10 2.	10 2870C			0.000	0.330	28700	3200	18.9	1024	0.104		0.107	4.04 28.003	3 0.003
Tošić (2017)	HVFAC28			169	0.58	22	171		0.21 deformed	28			10 2.	10 2870t			0.076	0.330	26673	3200	18.9	1024	0.104				
Tošić (2017)	HVFAC28			169	0.58	22	171	58	0.21 deformed	28			10 2.	10 2870t			0.169	0.330	24553	3200	18.9	1024	0.104				
Tošić (2017)	HVFAC28			169	0.58	57	Ę.	8 8	0.21 deformed	58			10	10 2870.			0.285	0.315	22326	3200	18.9	1024	20.0			4.65	gn s
Tosic (2017)	HVFAC28			169	0.58	24	-	8 8	0.21 deformed	788			10	10 2870x			0.297	0.333	22123	3200	18.9	1024	9.104			4.75	8 1
Tošić (2017)	HVFACZ8			160	0.38	20	= [8 8	0.21 deformed				2.10	01 2870			0.395	0.327	20303	3300	0.0	1024	5 5			99	2 2
Toěić (2017)	HVEACAS			169	0.30	5 6	17	8 8	0.21 deformed				210	28700			0.417	0.338	20212	3300	18.0	1024	2 2			7.05 7.05	4 5
Tošić (2017)	HVFAC28			169	0.58	25	17	2 8	0.21 deformed	28			2.10 2.10				0.417	0.335	20251	3200	18.9	1024	10.0			5.17	2 24
Tošić (2017)	HVFAC28			169	0.58	22	171	58	0.21 deformed								0.466	0.332	19574	3200	18.9	1024	0.104			5.22	22
Tošić (2017)	HVFAC28			169	0.58	22	171	59	0.21 deformed	80							0.593	0.337	18017	3200	18.9	1024	0.104			5.58	12
Tošić (2017)	HVFAC28			169	0.58	22	171	59	0.21 deformed	80							0.698	0.388	16906	3200	18.9	1024	0.104			5.80	9 2
Tošić (2017)	HVFAC28			169	0.58	22	171	59	0.21 deformed	00							0.694	0.410	16940	3200	18.9	1024	0.104			6.01	99
Tošić (2017)	HVFAC28			169	0.58	25	171	59	0.21 deformed	28				2.10 28700			0.834	0.430	15645	3200	18.9	1024	0.104			6.48	72
Tošić (2017)	HVFAC28			169	0.58	24	171	53	0.21 deformed	28							1.024	0.438	14182	3200	18.9	1024	0.104				
Tosic (2017)	HVFAC28			169	0.58	24	171		0.21 deformed	28							1.063	0.470	13915	3200	18.9	1024	0.104				
Tosic (2017)	HVFAC28			169	0.58	24	171		0.21 deformed	28				2.10 28700			1.069	0.507	13870	3200	18.9	1024	0.104				
Tosic (2017)	HVFAC28			169	0.58	25	F ;		0.21 deformed	788			2.10 2.7	10 2870x			1.235	0.495	12842	3200	18.9	1024	9.104				208 180
Tosic (2017)	HVFAC28			109	0.00	1 0	7 -	8 6	0.21 deformed	0 00			9 6	10 20700			1 254	0.400	12200	3200	0.0	1024	5 6				
Tošić (2017)	HVFAC28			991	0.30	2 0	7 -	8 00	0.21 deformed	0 80			10 25	28700			1 257	0.493	12717	3300	0.00	1024	5 5				
Toěić (2017)	HVEAC28			160	0.00	5 12	121	3 8	0.21 deformed	2 6			2 0	28700			1 387	2.0.0	12024	3300	0.00	1024	125				
Tošić (2017)	HVEAC28			169	0.58	5 6	121	2 8	0.21 deformed	2 80		200	10	10 28700			1505	0.552	11457	3200	0.01	1024	12				
Tošić (2017)	HVFAC28			169	0.58	22	171	2 5	0.21 deformed	28		60 2	10	10 28700			1394	0.608	11990	3200	18.9	1024	104				
Tošić (2017)	HVFAC28			169	0.58	22	171	58	0.21 deformed	788		22.60 2.	10 2.	10 28700			1.581	0.593	11119	3200	18.9	1024	0.104	4430 0	107	8.75	
Tošić (2017)	HVFAC28			169	0.58	25	171	58	0.21 deformed	28		.60 2.	10 2.	10 28700			1.554	0.597	11237	3200	18.9	1024	0.104	-	107	8.72 4	

t-t _o (days)	0.1	n œ	9 2	: 23	8 8	8 8	15 15	3 25	22.8	8 88	8 8	9 6	121	130	192	220	246	268	351	382	84.4 843	477	543	597	979	661	721	751	848	879	907 975	0.1	ro ce	. 4	5 5	8 8	8 8	8 5	g 23	158	B 1:	8 8	97.8	50 5	127	146	217	243	304	348	417	440	540	594	623	691	718	810	845	876
days) t	42.1	50 45	50	64	19	81	87	106	114	128	135	150	163	172	234	262	288	310	393	427	462	519	585	639	899	703	763	793	890	921	1017	42.1	47	299	57	67	74	82	95	103	119	125	139	147	169	188	259	307	343	390	459	482 516	582	636	665	733	760	852	887	918
(t) (mm) t (7.87	8.20	8.26	9.30	9.47	9.64	9.99	10.10	10.27	10.55	10.55	10.79	10.98	11.12	11.95	12.08	12.13	12.35	12.66	12.97	13.26	13.29	13.44	13.40	13.32	13.49	13.70	13.89	14.13	14.03	14.03 14.06	6.8	8.03	9.34	9.08	9.82	9.82	10.33	10.33	10.77	11.30	11.45	11.73	11.89	12.48	12.58	12.99	13.18	13.38	13.58	13.88	13.86	14.15	14.15	14.07	14.57	14.48	14.93	15.11	15.04
æ	0.101	0.10	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.101	0.10	0.101	0.10	0.101	0.101	0.101	0.101	0.101	0.10	0.101	0.10	0.101	0.10	0.101	0.10	0.101	0.101	0.101	0.101	0.10	0.101	0.10	0.101	0.10	0.101	0.10	0.101	0.10	0.101	0.101	0.101	0.101
(Nm) K _{L2}	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940	21940 21940 21940	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530	23530
M	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104
Nm) K _{L1}	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168 2168 2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168	2168 2168	2168	2168	2168	2168	2168	2168	2168	216H
ML1	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	13.7	137
P/7 (w	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400	2400
APa) L (m	24745	2771	2377	2942	2614	3729	3315	1695	2140	1578	3352	3244	9405	8875	3473	4962	5944	5181	2604	5625	4926 5017	5108	5299	5182 4804	4911	1596	484	4638	4767	4772 1645	4645 5205 4604	3850	5424	4529	4263	3487	3955	3591	3285	3264	3420	3293	2968	2668	2250	1731	1268	6960	1259	1653 1576	1375	1568 1494	1347	1339	1380	1267	1112	1246	1106	1061
) Ecour (A	.,														_			400 15		- 1			- 1		-	418 12			- (-		0.481 14	100						-						368 12	400	426 10			-		494 1.	0.529	11 11	524 11	522 11	517 11	512 11	- (-	-	•
60) E cs (%	0.000																	0.265 0								283 0					0.306															216 0				0.305 0		299 0 319 0	308 0	314 0	312 0	307 0	0 0	300 0	0	
ΔE cs ()	0.000 0.0282 0.0																									00																				00						272 0. 287 0.	316 0.	317 0.	309 0.	332 0.	364 0.	336 0.	365 0.	
(-) ¢ (-)	200000 0.										00000		00000 0.	00000				00000		0 0		00000	00000		00000	000		00000					00000											00000		00000					00000	000	000	000	000	000	000	000	200000 1.	*
a) E _s (MPa	31550 200 31550 200					1550 200				N 61	31550 200	N 61	7	2 6	101	ÑÃ	10	1550 200	4 0	8	31550 200	10	2 0	NN	5	1550 200	1 20	5 5	4 (4	010	31550 200 31550 200 31550 200	2	OI O	1 (1)	010	1 (4)	N N	25860 200	NN	1010	25860 200	360 200	360 200	360 200	1 (7	25860 200	1 (1	2 2	1 61	~ ~	7	5860 200 5860 200	360 200	360 200	360 200	360 200	25860 200	360 200		
E _{cm} (MPa)	31770 31		770 31	_	770 31	770 31	770 31	770 31	770 31	31770 31		770 31	770 31	770 31		770 31	'n	770 31					31770 31		770 31	770 31		770 31			31770 31		36850 25 36850 25					6850 25				3850 25	850 25	1850 25		350 25		3850 25		3850 25 3850 25	350 25	350 25 350 25	350 25	350 25	350 25	350 25	350 25	350 25	350 25	000
(MPa)	144 31	144 31	144 31	144 31	144 31	144 31	144 31	31	144 31	144 31	144 31	144 31	1,44 31	144 31	144 31	144 31	144 31	144 31	31	144 31	144 31	144 31	144 31	144 31	1,44 31	144 31	144 31	144 31	144 31	144 31	44			3.23 26	123 26	123 26	123 26	123 26	23 28 29 29	123 26	123 26	23 26	123 26 29	123 26	123 26	123 28	123 28	123 26	123 26	123 26	123 26	123 26	123 26	123 26	123 26	23 28 28	123 26	123 26	1,23 26	
(MPa)	44:	4 4	4.4	4	4.2	4	4.2	4	4:	‡ ‡	4:	4 4	4	4 4	4	4 4	4	4.5	14	4:	4 4	4	4:	4 4	4	4.2	4	4.4	14	4 4	4 4 4			, .,	8 8	18	8 8	8,8	88	88	38	8 8	38	88	18	8,8	18	8 8	181	88	83	ន្តន	8,8	38	8,8	38	8 8	3 83	83	
a) (MPa)	18:13	. 81	.81	.81	.81	.81	.81	.81	.81	. 81	.81	. 8. . 8.	.81	181	.81	181	.81	.81	. 8.	.81	F 18.	.81	.81	18. 8	.81	.81	.81	.81	_	. 81			42.85 3							.85	. 85	385	. 85	.85	.85	.85	385	385	.85	. 85 . 85 . 8	.85	.85	38.	. 85	38.	.85	385	.85	85	
f _{cm} (MP	53.07 51			.07 51			07 51	07 51	107 51	07 51	107 51	07 51	.07 51	07 51	.07 51	07 51	.07 51	70.	07 51	107 51	07 51	.07 51	70.	53.07 51	.07 51	07 51	.07 51	53.07 51	07 51		53.07 51							27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42	27 42 27 42	27 42	27 42	27 42	27 42	27 42	27 42	.27 42.	
(MPa)	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53	42 53	42 53.	42 53.	42 53.	42 53.	42 53	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	42 53.	4 4 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	42 45.	42 45.	42 45.	42 45.	42 45.	42 45	42 45	42 45 45 45	42 45	42 45.	42 45.	42 45 5	42 45.	42 45.	42 45.	42 45	42 45.	42 45.	42 45	42 45.	42 45 45	42 45	42 45 5	42 45.	42 45	42 45	42 45.	42 45.	
t _o (days)																																																												
type	0.20 deformed 0.20 deformed	20 deformed 20 deformed	20 deformed	20 deformed	20 deformed	20 deformed	20 deformed	20 deformed	20 deformed	20 deformed 20 deformed	.	20 deformed 20 deformed	2 29	20 deformed	2 2	2 1	20 deformed	20 deformed	20 1	20 deformed 20 deformed	2	20 deformed	2 20	20 deformed	2 2	유우	20 deformed 20 deformed 20 deformed	Je for	20 deformed	2 2	20 deformed	20 deformed	20 deformed 20 deformed	20 deformed	20 deformed 20 deformed	20 deformed	2 2	20 deformed	2 2	20 deformed	2 22	20 deformed	20 deformed	20 deformed 20 deformed	20 deformed	20 deformed 20 deformed	B	20 deformed 20 deformed	# 4	20 deformed	20 deformed	2 2	20 deformed	20 deformed	20 deformed					
P ₂ (%)	47 0.		47 0.	47 0.	47 0.	47	47 0.	47	47 0.	47 0.	47 0.	47 0.	47 0.	47 0.0	47 0	47 0.	47	47 0.			47 0.			47 0.	47 0.		47				47 47		47 0.	47 0.	47 0.	47 0.	47 0.0	47 0	47 0.	47 0	47 0.	47 0.	47 0.	47 0.	47 0.	47 0.	47	47 0.0	47 0.	47 0.0	47 0.	47 0.	47 0.	47	47 0.	47	47 0.	47	47 0.	
d ₂ (mm	253	253	253	253	253	553	253	553	253	253	253	553	553	253	253	253	553	253	553	253	25.53	523	253	253	253	253	523	253	553	253	25.55	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	253	000
i²) ď (mm)	100.5																																																											
$_{32}$	0.81 10																																																											
p1 (%)																															249																													
1²) d (mm)	402																																																											
A _{s1} (mn	0.00																													0.0																0.0														
h (mm)																															300																													
b (mm)	20	20 20	2 8	20	50	20 2	2 2	2 2	50	8 8	20	2 8	50	2 2	50	20 20	2 2	20 50	2 2	50	20 20	20	50	8 8	20	2 2	20 2	2 8	2 2	2 8	500 500	20	20 20	20	2 2	20 2	20 20	50	8 8	5 20	20 20	20	2 2	200	20 20	2 8	20 2	2 2	20	20 20	50	2 2	20	2 2	20	20 20	20	2 2	20	
secimen	H50-50 H50-50	00-20	50-50	09-09	20-20	09-20	50-50	20-20	50-50	00-20	20-50	00-20	99-09	50-50	20-20	20-50	09-09	150-50	20-20	50-50	00-20	00-20	50-50	00-00	20-20	50-50	09-20	50-50	20-20	50-50	H50-50 H50-50	50-100	H50-100	90-100	50-100	90-100	50-100	90-100	00-100	50-100	00-100	50-100	00-100	2 2							4	44	50-100						150-100	20 400
Š	¥ £ .	ŕŶ	ťΫ́	: 坣	Ϋ́	: 坣	ťΫ	: ±	±:	ŕ£	± :	ŕ£	Ĭ	řf	ť	ŕf	± ±	ř	± ±	±:	r£	: 坣	± i	ŕ£	Ĭ	ťΫ	± ±	ťΫ́	± ±	Ϋ́£	: ¥ ¥	Í P	ž £	: 坣	ťΫ́	: ¥	ŕ£	± 1	ŕ£	¥ 5	r £	Ξï	ť £	9	H20	H50	H20	H50	H20	H20	H2C	ŸŸ	H	ť Ŧ	H20	H20	H20	ť £	± :	
	Paz (2015) Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	Paz	Paz Paz	Paz	2 Z	Paz	Paz Paz	Paz	Paz	Pag	Paz	P E	Paz	Paz	Paz	Paz	7 Z	Paz	Paz	Par	Paz Paz	Paz (2015)	Paz (2015)	Paz (2015)	282	282	ZE	Paz Pay	Pa	Paz	2gc	28.	Zg [2 2	282	2 2	Paz Paz	Paz	Paz (2015)	Pa	Paz	ZE I	282	2az	282	Zaz C	28	282	Paz (2015)	Paz (2015)	Paz (2015)	Paz (2015)	2000
	Seara-Paz (Seara	Seara	Seara	Seara	Seara	Seara	Seara-	Seara	Seara-	Seara-	Seara-	Seara-	Seara	Seara	Seara	Seara	Seara	Seara	Seara	Seara			Seara	Seara	Seara	Seara	Seara	Seara	Seara-F	Seara	Seara	Seara-F	Seara	Seara	Seara-F	Seara-F	Seara-	Seara-	Seara	Seara	Seara	Seara-	Seara	Seara	Seara	Seara	Seara		Seara	Seara-l		
	613	615	616	618	619	621	622	624	625	627	628	629	631	632	634	635	637	638	640	641	643	644	645	646	648	649	651	652	654	655	656	629	660	662	663	665	999	999	620	671	673	674	676	677	679	680	682	683	685	686	688	689	691	693	694	969	697	669	700	703

		Study information		Cracking moment	moment				State						State II					Deflection	uo	Ī
	1	1 2	ဇ	4	2	9	7	80	0	10	11	12	13	14	15	16	17	18	19	20	21	22
																			e e	날		anum.int./aexp
	Author	Specimen		M _{sw} (Nm)	M _{cr} (Nm)	M _{max} (Nm) M _{max} /M _{cl}		Z ,1	· <u>·</u>	S _i (n			A _{IIc} (mm²) z _{IIc,1}	Z _{II,1}	(mm) I _{IIC} (mm ⁴)				t-t ₀ (days) (mm)		a _{exp} (mm) (%)	Ī
508	Tošić (2017) Tošić (2017)	RAC7	1162732	1024 ×	2325 <	7947	3.418	33633	98.46 11	114482587	49263	8458	6825	178.67	157.36	1034825	23341931	145436	0.003	12.19	10.89	111.9
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	34217	•		65758	9921	7704	175.93	151.88	1488251	29926811	185323	0.25	13.13	12.10	108.5
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	34493	`		73348	10551	8028	174.82	149.65	1703129	32859835	202839	-	13.56	12.78	106.1
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	34673	`		78235	10947	8274	174.14	148.29	1844009	34716460	213830	5	13.89	13.27	104.7
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	34806	` '		81782	11232	8426	173.67	147.34	1947113	36065591	221779	ი •	14.33	13.57	105.6
410	Tošić (2017)	RAC/	1150300	1024 ×	2301 ×	7867	5.454 454.8	34836	97.42 12	20145872	82599	11297	8647		147.13	19/1585	38072127	223552	4 u	14.47	13.80	5.45 8. 8
Ċ	Tošić (2017)	BAC7	1150300	1024 <	2301 <	7947	3.454	35060	`	_	88563	11764	8704		145.62	2146653	38597346	236646	യ	14.88	14.28	104.2
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	35024	_		87601	11690	9998			2118766	38240507	234528	^	15.02	14.43	104
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	35422	`		98037	12489	2906			2426049	42082754	256812	41	16.11	15.55	103.6
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	35450	`		98731	12544	9094	171.58		2447820	42342797	258313	21	16.66	16.30	102.2
_	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	35687	`		104829	13002	9315			2631277	44560940	271049	28	17.17	16.90	101.6
- 1	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36010	•		113013	13606	9296			2876848	47501557	287704	56	18.43	18.39	100.2
522	Tosic (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36199	96.32 12		117690	13952	9753	169.52	139.05	3020211	49179065	297100	00 0	19.16	19.12	100.2
Ċ	Tošić (2017)	RAC.7	1150300	1024 <	2301 ×	7947	3.454	36415	`	27476675	123042	14339	9974			3181244	51074900	307670	150	19.4	20.02	988
•	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36485	`		124741	14465	0866			3236167	51684379	311067	180	20.07	20.39	98.4
Ċ	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36612	`		127792	14687	10075			3329104	52773983	317056	210	20.27	20.56	98.6
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36652	`		128825	14757	10105			3358676	53117163	319014	240	20.19	20.67	7.76
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36706	`		130071	14851	10145			3399283	53576440	321506	270	20.43	21.09	6.96
	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36704	`		130059	14847	10143			3396566	53553529	321359	300	20.94	21.57	97.1
_ '	Tošić (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36779	•		131843	14978	10199			3453933	54192345	324852	330	21.11	21.98	96.1
	Tosic (2017)	RAC7	1150300	1024 <	2301 <	7947	3.454	36866			133972	15128	10262			3517501	54928698	328919	365	21.25	22.25	95.5
532	Iosic (2017)	KAC7	1150300	1024 <	2301 ×	7947	3.454	36905	95.79 12	129729104	134886	15194	10289	167.85	135.71	3545380	55254685	330688	400	21.28	22.40	95.0
ľ	(2017)	1000	000001	4 4701	7 1007	1467	5	10600	ľ		00100	0520	6200			0.000	12011100	002000	000	14:17	14:77	0.00
534	Tošić (2017)	KAC28	1148404	1024 ×	> 1,87	6438	2.242	33389	96.68	113324518	42208	0212	6723		160.08	849161	20413561	12/484	0.003	8.07	0.23	128.5
	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	33849	`		55432	9020	7171	177.59	155.18	1200382	25842804	160657	0.25	8.73	7.16	122.0
_	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	34022	_		60326	9453	7431		153,58	1335516	27791746	172483	-	9.05	7.70	117.6
Ċ	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	34275	_		67335	10054	6777		151.39	1532563	30547756	189038	2	9.43	8.05	117.2
	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	34253	_		69299	10005	7752		151.57	1516638	30316034	187665	ဇ	9.55	8.23	116.0
_	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	34393	_		70580	10327	7934	175.21	150.43	1625471	31803166	196522	4	9.73	8.43	115.4
- 1	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	34519	_ ,	.	74053	10609	8080		149.45	1723787	33128045	204425	2	9.85	8.57	114.9
242	Tošić (2017)	KACZ8	1150300	1024 ×	> 9782	6438	2.239	45045 00085	97.67	18/31931	76483	10043	8109	174.00	149.33	1703851	33283854	205337	٥ ٨	9.90	0.00 20.00 20.00	0.41
	Tošić (2017)	RAC28	1150300	1024 ×	> 0.02	6438	2.239	34880	`		83793	11389	8509		146.83	2005807	36817790	226231	- 4	10.82	0.70	114.0
	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	35056	`	01	88470	11755	8699		145.64	2142654	38557120	236376	21	11.44	10.00	114.4
_	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	35189	`		91960	12026	8837	172.39		2246182	39850935	243897	28	11.73	10.36	113.2
_	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	35535	`		100969	12710	9175			2513914	43149149	262955	26	12.78	11.33	112.8
	Tošić (2017)	RAC28	1150300	1024 <	> 2876 >	6438	2.239	35719	•		105667	13064	9345			2656563	44858719	272739	06	13.24	11.65	113.6
_ ,	Tosic (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	36010	` '	_	113013	13606	9596			2876848	47501557	287704	120	13.68	12.21	112.0
550	Iosic (2017)	RAC28	1150300	1024 <	> 9287	6438	2.239	36182	96.33	126400985	117252	13922	9740	169.56	139.14	3007669	49026804	296265	150	13.94	12.69	109.8
	Tošić (2017)	RAC28	1150300	1024 <	> 0/07	6438 6438	2.23	36396	`		122549	14306	9010			3168260	50905614	306723	210	14.27	13.05	110.0
	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	36413			122983	14337	9924			3181244	51056307	307565	240	14.60	13.29	109.8
	Tošić (2017)	RAC28	1150300	1024 <	> 2876 <	6438	2.239	36537	_		125988	14555	10018		137.39	3273132	52126315	313494	270	14.63	13.71	106.7
	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	36582	_		127099	14635	10053		137.18	3307707	52512145	315637	300	14.95	14.16	105.6
_	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	36732	_		130686	14896	10164		136.49	3418344	53793976	322692	330	15.34	14.56	105.4
- 1	Tošić (2017)	RAC28	1150300	1024 <	2876 <	6438	2.239	36883	_ ,		134346	15155	10272		135.81	3528635	55074053	329734	365	15.42	14.59	105.7
228	Tosic (2017)	KAC28	1150300	1024 <	2876 <	6438	2.239	36819	95.85 12	129336386 1.	132821	15046	10227	168.04	136.09	3481476	54532889	326/49	004	15.48	14.75	105.0
	USIC (ZUL7)	RAC20	nosnel I	V 4701	> 0/07	0430	6.2.2	30030		ı	33244	130/10	10240	ı		3493302	0407040	32737	420	0.40	4.09	100.4

	1	12.0		out de cu	***************************************					1 0000					11000					9-6-0	1	
	- Canada		ဇ	4 5	2	9	7	00	6	10	Ξ	12	13	4	15 15	16	17	18	19	20 21	2 5	22
			W ₁ (t ₀)																ซี	anum.int.	a	anum.int./aexp
	Author	Specimen	(mm³) M _s	M _{sw} (Nm)	M _{cr} (Nm)	M _{max} (N	_{max} (Nm) M _{max} /M _{cr}	, A _i (mm²)	Z _{1,1}	(mm) I ₁ (mm ⁴)	S _i (mm³)	A _{li} (mm²) ⊿	տ (mm²) ։	$A_{llc} \left(mm^2\right) \ z_{llc,1} \left(mm\right) \ z_{ll,1} \left(mm\right) \ l_{llc} \left(mm^4\right)$,¹ (mm) lı		I _{II} (mm²)	S _{II} (mm³)	t-t ₀ (days) (m		a _{exp} (mm) (%)	
560	Tošić (2017)	HVFAC7	1166636	1024 <	1400 ×		5593 3.995	33699	99 98.40	0 114796941		8632	6933	178.33	156.67	1084808	24117575	150172	0.003	8.93	6.13	145.7
200	Tošić (2017)	HVEAC	1150300	1024 <	1380 ×	, .	•			`	50040	0000	7696	17. 30 77. 05.	151.0	1483555	20320993	185000	0.042	90	8 6	137.9
563	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	, u)	•			_	_	10084	7796	175.64	151.28	1542172	30686216	•	-	9.64	7.41	130.1
564	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	4)	•			`		10532	8047	174.85	149.7	1696280	32768691	202267	7	06.6	7.74	127.9
265	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	ارىس	5593 4.053			_		10788	8188	174.41	148.83	1786761	33969112	209413	က	10.20	8.05	126.8
266	Tosic (2017)	HVFAC7	1150300	1024 <	1380 <	ا ر			_	- ,		10853	8223	174.3	148.61	1809873	34277516	211247	4 r	10.42	8.26	126.1
267	Tošić (2017)	HVFAC/	1150300	1024 ×	1380 ×	., 4	5593 4.053	34/54	54 97.49	9 119765252	80423	11123	8369	173.85	147.71	1908011	3554/3/1	218738	വ	10.61	0.45 0.45	125.6
200	Tošić (2017)	HVEACT	1150300	1024 <	1380 ×	, .				`	o "	11169	8303	12.5	147.55	1924704	35260360	219993	0 1	10.05	0.0	125.0
570	Tošić (2017)	HVEACT	1150300	1024 <	1380 4	, uc						11597	8618	173.07	146 15	2083268	37796473	231936	- 4	11.45	0.73	121.8
571	Tošić (2017)	HVEAC7	1150300	1024 <	1380 ×	. 40						11697	8669	172.91	145.83	2120750	38282130	234800	2 2	11.95	9.75	122.5
572	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	. (1)			03 97.20	_		11850	8747	172.66	145.33	2178822	39013756	239056	28	12.06	10.04	120.1
573	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <					_		12279	8964	171.99	143.99	2344496	41064223	250936	56	12.99	10.65	122.0
574	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	40		153 35503		7 123258989	9 100122	12648	9145	171.42	142.86	2489543	42846416	261233	06	13.08	10.79	121.2
575	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <					•		12531	8806	171.6	143.22	2443455	42283312	258004	120	13.27	10.81	122.7
929	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	4)				•		12846	9240	171.13	142.26	2567638	43809748	266729	150	13.69	11.18	122.4
22.2	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	4)				`		12912	9272	171.02	142.06	2594785	44122753		180	13.83	11.33	122.0
218	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	ω)	5593 4.0			`		12964	9536	170.95	141.9	2615270	44383356		210	13.97	11.48	121.7
579	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	(پ				`		13100	9361	170.75	141.5	2670423	45036081	273702	240	13.91	11.52	120.7
280	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	,,				`		13173	9396	170.64	141.29	2700619	45389300	275729	270	14.02	11.70	119.8
581	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <					_	_	13370	9488	170.35	140.72	2780667	46343912	281171	300	14.30	12.07	118.4
582	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	البص				`		13425	9513	170.27	140.55	2802118	46613824		330	14.55	12.32	118.1
283	Tošić (2017)	HVFAC7	1150300	1024 <	1380 <	ا و د				_		13565	9278	170.07	140.15	2859858			365	14.78	12.42	119.0
584	Tošić (2017) Tošić (2017)	HVFAC7	1150300	1024 <	1380 ×		5593 4.053	36062	162 96.43	3 125847420	114298	13702	9640	169.88	139.76	2915932	47965289	290292	400	14.90	12.43	119.9
202	10SIC (2017)	HVFAC	0000011	> 470	1360	<u> </u>				Ī		2000	8606	60.60	38.38	020/67		293903	450	6.90	12.40	.02
586	Tošić (2017) Tošić (2017)	HVFAC28	1154402	1024 <	2424 <		5454 2.250	50 33492	.92 98.59	9 113812523	3 45195	8071	6579	179.44	158.89	926884	21661521	135138	0.003	6.95	4. 4 4. 8	172.0
200	Tošić (2017)	HVFAC28	1150300	1024 <	2416 ×	, .	5454 2.257					9750	2//0	178 11	156.22	1119441	24641407	153350	0.042	7.11	06.4	163.4
289	Tošić (2017)	HVEAC28	1150300	1024 <	2416 <	, uc.				_		9193	7276	177.26	154 54	1254122		165380	5.	7.57	5. 4	162.8
230	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	. 40				_		9236	7301	177.19	154.37	1266748			- 2	7.68	4.75	161.6
591	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	. 40	5454 2.2			`		9594	7514	176.52	153.06	1381225			l m	7.86	4.89	160.7
592	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	40				_		9645	7544	176.42	152.87	1397692	28663978		4	7.95	4.99	159.3
593	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <					_		9674	7560	176.37	152.75	1406729	28804995		2	8.01	5.05	158.7
594	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	(پ				_	_	9674	7560	176.37	152.75	1406729	28804995	178576	9	8.03	5.17	155.3
595	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	ا بيہ					_	9847	7660	176.06	152.12	1463318	29599783	183344	7	8.11	5.22	155.4
296	Tošić (2017)	HVFAC28	1150300	1024 ×	2416 <	., 4	454 2.25/	55/ 343/5	75 97.81	11/988048	74280	10284	/909	173.28	150.57	1610558	31619103	195449	4 6	8.47	2.28	151.9
598	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	, u)	5454 2.2			,		10628	8101	174.68	149.39	1730710	33214749	204968	28	9.23	6.01	153.5
599	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <		454 2.257		35 97.50	_		11082	8347	173.91	147.84	1893253	35348345		26	9.74	6.48	150.3
009	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	ω)				_		11675	8658	172.94	145.9	2112822	38174848		06	10.15	6.61	153.6
601	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	4)				2 121265836		11795	8720	172.75	145.52	2158679			120	10.45	7.01	149.1
602	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	ω)				_	_	11817	8731	172.71	145.44	2166721	38846260	238077	150	10.73	7.19	149.2
603	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	ر به				`		12312	8980	171.94	143.89	2357249	41227950	251899	180	10.88	7.33	148.5
604	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	البص	5454 2.257			_		12334	8991	171.9	143.82	2365777	41327047	252474	210	10.84	7.41	146.3
605	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	ا رسا				- '		12655	9148	171.41	142.84	2491752	42886030	261482	240	11.04	7.68	143.7
909	Tosic (2017)	HVFAC28	1150300	1024 <	2416 <	.,	5454 2.257	25366	96.98	8 122622113		12378	9012	17.98	143.68	2382894	41554595	253780	270	11.42	96. v	143.0
/00	Tošić (2017)	HVFAC20	1150300	1024 <	2410 <	, .	5454 2.25/				101570	12005	9190	07.17.	144 53	2531/36	45367510	272621	330	11.50	07.0	136.6
000	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	, .						12777	9339	171 23	142.47	2540681	43469580	264788	365	11.83	00.00	137.6
610	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	. (1)				_	٠	13309	9459	170.4	140.89	2754598	46051174		400	11.95	8.75	136.6
611	Tošić (2017)	HVFAC28	1150300	1024 <	2416 <	3)	5454 2.257		96.63	_	Ì	13232	9423	170.55	141.11	2724001	45679822		450	11.95	8.72	137.0

	Study information			Cracking n	oment				State					State II					Deflection	tion		
	F	7	w _, (t _o)	4	2	9	7	8	10	Ę	12	13	4	15	16	11	18	e e	8 20		22	
9	Author		(mm³) Msw	=	I _{cr} (Nm) I	Amax (Nm) Mm	Ma Ai(mm²) z _{t1} (m	m) I, (mm²)	S _i (mm³)	A ₁ (mm²)	A _{lc} (m	Z _{llc,1} (mm) z	11. (mm) I ₁₈	I _{Ie} (mm ⁴)	I _{II} (mm ⁴)	S _{II} (mm³)	t-t ₀ (days) (n		a _{exp} (mm) (%	(%)	
613	Seara-Paz (2015) Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64060	16.29 48956	6456 2228	18846	14786	263.04	226.06	6734066	127086695	546747	0.7	7.22	7.95	90.8	
615	Seara-Paz (2015) Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143	64412 1	16.26 4899(15.99 4929'	6751 24084	2 60		261.82	223.63	7423148	135645889	583392	n 00	7.60	8.20	97.0	
616	Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143	64492 1	15.92 49368	0918 24492			261.54	223.09	7584038	137562724	591598	6 1	7.66	8.26	92.8	
618	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64382 1	16.01 49267 16.01 49263	00033 23928	19616	15234	261.92	223.83	7365211	134921341	580282	52	8.09	9.22	87.0	
619	Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143	64442 1	15.96 49320	13383 24236	19756		261.72	223.43	7481388	136368820	586490	28	8.19	9.47	96.5	
621	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64236	16.14 4912	3046 23186	1927		262.41	224.82	7080047	131386365	565177	8 8	8.27	9.64	82.8	
622	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64311 1	16.07 49196	0699 23570	19450		262.15	224.31	7228822	133215798	573035	45	8.37	9.99	83.8	
624	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64633 1	5.30 4950°	6778 25200	20200		261.08	222.16	7859840	140904436	605818	8 28	8.70	10.10	98.1	
625	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64538 1	15.88 4941	0500 24720	1998		261.39	222.78	7672768	138640078	596147	72	8.8	10.27	85.8	
627 627	Seara-Paz (2015) Seara-Paz (2015)	H50-50	3270735	2168 <	11251 ×	24108	2.143	64658 1	15.78 49515 15.78 49525	5134 2533	2 2025		261.01	222.01	7905185	141503447	585960	e 8	8.98	10.55	85.0	
628	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	64940	15.54 49792	0787 2674	9 2089		260.12	220.22	8455078	148068170	636316	83	9.15	10.55	86.7	
629	Seara-Paz (2015)	06-06H	3270735	2168 <	11251 <	24108	2.143	64814	15.65 49673 15.31 F0057	1652 2611E	2061		260.51	221.01	8211951	145156119	623936	100	9.17	10.75	85.00 87.00 87.00	
631	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	65181 1	15.34 50018	9938 2794	21426		259.39	218.77	8930971	153606701	659875	121	9.44	10.98	85.9	
632	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	65327 1	15.22 50157	4404 28667			258.96	217.9	9213155	156896691	673802	130	9.57	11.12	96.0	
633	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	65734	14.89 50540	13494 30668			257.81	215.61	10015243	165960136	712161	149	9.79	11.32	86.5	
634	Seara-Paz (2015) Seara-Pay (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66718 1.	M.59 50884	2039 324478 0703 354061			256.82	213.65	11024028	173916265	745768	192	10.01	11.95	83.7	
636	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66754	14.07 51490	7074 3557			255.19	210.36	11994781	187680421	803408	221	10.41	12.17	85.6	
637	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66301	14.43 51072				256.31	212.61	11117238	178206894	763787	246	10.37	12.13	85.5	
638	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66618 1	14.18 51367	13674135 34928			255.52	211.03	11736696	184874834	791702	268	10.62	12.35	96.0	
639	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66442	14.41 51100	1002866 33560 2034700 3409			256.24	212.45	11305156	181181100	776203	364	70.62	12.49	0.58	
5 14	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66432	H.33 51194	٠.			255.98	211.95	11375842	180977352	775378	382	10.68	12.97	82.4	
642	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66734	M.09 51475	6			255.24	210.46	11954832	187264664	801691	420	10.78	13.26	81.3	
643	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66693	14.12 51437	٠.			255.33	210.66	11885134	186435702	798243	443	6.79	13.22	81.6	
645	Seara-Paz (2015) Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66568	4.15 51400 4.22 51320	3205990 346905			255.64	210.85	11638426	183610897	787267	543	0.73	13.29	6. 6. 6. 8.	
646	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66618 1	14.18 51367	13674135 34929			255.52	211.03	11736696	184874834	791702	574	10.77	13.38	80.5	
647	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66789	M.04 51526				255.11	210.2	12064906	188418978	806506	265	10.80	13.40	90.6	
648	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66739	14.08 51479				255.23	210.43	11964811	187372659	802087	626	10.78	13.32	81.0	
649	Seara-Paz (2015)	150-50	3270735	2168 ×	11251 <	24108	2,143	66884	o u				255.06	209.74	12/46482	1903/5/16	814682	694	9.05	13.49	4.08	
651	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143	66935	o 40				255.00	200.5	12348140	191411814	818964	721	20.02	13.70	2.07	
652	Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143		143.98 51596				254.92	209.84	12216094	189966963	812990	751	2 2 2	13.89	78.1	
653	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143		٠,				255.32	210.64	11895074	186543914	798708	813	10.77	13.95	77.2	
654	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143		٠,				255.07	210.12	12095044	188725867	807753	848	10.84	14.13	76.7	
655	Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143		4,				255.07	210.12	12095044	188725867	807753	879	10.98	14.03	78.3	
656	Seara-Paz (2015)	H50-50	3270735	2168 <	11251 <	24108	2.143		٠, .				254.92	209.84	12216094	189966963	812990	907	10.95	14.03	78.0	
658	Seara-Paz (2015) Seara-Paz (2015)	H50-50	3270735		11251 <	24108	2.143		143.97 51615	513580524 3488 516151791 36190			254.88	209.74	12246482	190375716	814682	975	2 2	14.06	6. 87 5. 4.	
629	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397		ľ			ľ	264.19	228.38	6120874	119171142		0.1	7.74	6.80	113.9	
099	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397		144.26 51273			17694	255.77	211.53	11540707	182775303		2	9.41	8.03	117.2	
661	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397		LO I				255.43	210.85	11805812	185600897		9	9.50	8.14	116.7	
299	Sears-Paz (2015)	H50-100	3319741	2168 ×	10723 <	25698	2.397		n u	164/8589 36354 17644802 3604			254.79	208.57	1231/584	191090849	828427	4 t	9.84	9.34	105.3	
664	Seara-Paz (2015)	H50-100	3319741		10723 <	25698	2.397	67256	13.68 5196(•	254.01	208.01	12969925	197935991	846134	5 6	10.09	9.50	106.3	
665	Seara-Paz (2015)	H50-100	3319741		10723 <	25698	2.397	67452 1	13.53 52147	4858 38847			253.57	207.13	13342092	201852302	862429	25	10.30	9.82	104.9	
999	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67201	13.72 51908	19310 3767			254.13	208.26	12864878	196813836	841488	32	10.28	9.85	104.7	
199	Sears-Day (2015)	150-100	3310741	2168 <	10723 <	25698	2307	67307	13.55 52.11	19675 3858C			253.04	207.28	132350495	201266455	857881	30	10.4	10.00	103.0	
699	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67568 1	13.44 52248	2898 39382		•	253.31	206.62	13568774	204151377	871945	45	10.57	10.33	102.3	
670	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67603 1	13.41 52280	7740 39542		•	253.24	206.47	13634008	204855851	874857	53	10.70	10.55	101.4	
671	Seara-Paz (2015)	H50-100	3319741		10723 <	25698	2.397	67578 1	13.43 52257	5719 39426			253.3	206.57	13579631	204354679	872724	61	25.58	10.77	100.7	
673	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67487	13.50 52.174	0026 39006			253.5	206.98	13406599	202560811	865376	60	1.05	11.30	97.8	
674	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67563 1.	13.44 52243	16483 39355		•	253.32	206.64	13557921	204047533	871517	83	11.14	11.45	97.2	
675	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67588 1	13.42 52266	8534 3947			253.28	206.53	13601365	204562212	873578	06	1.38	11.62	6.96	
677	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	67034	13.30 5241t	K2465 402TE			252.93	205.83	14264193	211357622	90000	97	\$ \$	11.80	\. 98 88 88 88 88 88 88 88 88 88 88 88 88	
678	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68080	13.05 52720	6598 4173			252.22	204.44	14546607	214182066	913386	118	11.62	12.05	96.4	
629	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68206 1	12.95 52836	1207 4230		•	251.97	203.91	14775203	216599005	923237	127	11.74	12.48	0.40	
680	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68568 1	12.68 53167	9639 4393			251.23	202.45	15463490	223471939	951435	146	11.98	12.58	95.0	
99	Sears-Day (2015)	H50-100	3319741	2168 <	10723 <	25698	2397	68010	12.19 55708 12.42 53480	R266 45508		•	249.90	20100	16124064	235/ 1612/	978366	217	2.32	12 90	9.08 4. 7.	
683	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69161	12.24 53708	6542 46572		•	250.1	200.17	16566468	234510907	996396	243	12.41	13.18	26.1	
684	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69140 1	12.25 5369	3353 46479		•	250.14	200.26	16529296	234146809	995032	265	12.58	13.34	94.3	
685	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68924 1	12.41 53494	2149 45523		19786	250.54	201.08	16136245	230160642	978828	301	12.65	13.38	95.00	
687	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68683	2.59 53273	7570 44448		19596	251.01	202	15677651	225652368	960362	382	12.61	13.58	92.8	
989	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68834	12.48 5341	5949 451236	_	19716	250.71	201.42	15966264	228469714	971911	417	12.57	13.88	90.5	
689	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68688	12.59 53278	3544 4447	10 28286	19601	251	201.99	15689607	225751391	960831	440	12.59	13.86	8008	
690	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68744 1	12.55 53328	19130 4472	10 28390	19646	250.88	201.76	15797480	226771978	964933	474	12.71	13.97	0.0	
692	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68854	2.46 53429	9604 45206		19731	250.67	201.32	16002587	228839036	973414	571	12.72	5 4 5	90.06	
693	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68864	12.46 53438	1418 45260	11 28600	19736	250.66	201.3	16014707	229030893	974165	594	12.74	14.17	89.9	
694	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68829	12.48 5340	0031 45096	28540	19711	250.72	201.43	15954168	228371268	971447	623	12.72	14.07	90.4	
695	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68904	12.43 5347	8603 45438	2867	19766	250.59	201.15	16124064	229787679	977247	658	12.72	14.21	89.5	
269	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69045	2.32 5360	2788 4605	1 2892	19875	250.31	200.61	16356560	232379272	987804	718	12.75	14.48	388	
869	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68975 1	12.37 53540	0883 45743	18 28795	19820	250.45	200.88	16221687	231084342	982545	748	12.70	14.70	86.4	
669	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	68934	12.41 53500	3912 4557	6 2872	19791	250.52	201.03	16148433	230332351	979484	810	12.70	14.93	85.1	
9 6	Sears-Paz (2015)	H50-100	3319741	2168 ×	10723 <	25698	2.397	69050	12.32 53608 12.32 53608	8624 4608 0425 4622		19880	250.3	200.59	16430442	232476691	988172	876	12.75	15.04	24. A	
702	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69251 1	12.17 53792	0522 4696		20030	249.93	199.84	16740676	236177684	1003181	904	12.85	15.01	95.6	
203	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69020 1	12.34 5358	3578 459472	.2 28875	19855	250.36	200.7	16307429	231915517	985872	972	12.96	15.11	82.8	
704	Seara-Paz (2015)	H50-100	3319741	2168 <	10723 <	25698	2.397	69146	2.25 5369	9152 4650		19950	250.13	200.23	16541680	234244074	995305	1000	12.96	15.20	85.2	
																						Ì

			Study information	2 3	Cracking moment	moment 5	9	7	8	State I	11	12	13	41	State II	16	17	18	19	Deflection 20 2		22
				W ₁ (t ₀) (mm ³)		=	M _{max} (Nm) M _m		Z	12	S _i (mm³)	Ā	ď	Z _{IIC,1} (mm)			(mm)	(mm³)	(days)	int aexp		int/a _{exp}
					2168 <	10989 <	19298	1.756		64				266.94	233.86	4819620	97457102	437452	0.1	5.26	4.96	106.0
		Seara-F				10989 <	19298	1.756		- 10			•	258.96	217.9	9218814	151516624	674026	15	7.16	5.99	119.4
		Seara-I Seara-F				10989 <	19298 19298	1.756		90				258.52	217.04	9513603 8814903	154826214 146900035	688286 654155	21 28	7.35	6.13	119.9
		Seara-				10989 <	19298	1.756		7.			•	262.03	224.07	7296934	129004941	576509	34	7.30	6.28	116.2
		Seara-F				10989 <	19298	1.756		51				260.54	222.21	7842949	135591999	622945	0 4 0 4	2.5	6.81	112.2
Column C		Seara-				10989 <	19298	1.756		38			•	260.54	221.08	8194932	139678206	622945	22	7.86	6.97	112.6
No. 10.000 No.		Seara-				10989 <	19298	1.756		2 8				258.9	217.8	9258290	151896515	675660	71	8.17	7.21	113.3
Column C		Seara-				10989 <	19298	1.756		93			•	258.62	217.23	9449341	154078646	685013	7.2	8.31	7.23	114.9
No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		Seara-				10989 <	19298	1.756		82				258.2	216.39	9740817	157373440	699165	84	8.38	7.30	114.8
No. 10. No.		Seara-F				10989 <	19298	1.756	•	49			•	256.9	213.8	10677146	167692542	743146	97	8.68	7.41	117.2
1,000, 1		Seara-				> 68601	19298	1.756	•	29			•	257.59	215.18	10172328	162109988	719351	113	8.74	7.61	114.8
1,000, 1		Seara-				10989 <	19298	1.756		69				257.68	215.37	10105129	161366614	716227	121	8.76	7.72	113.5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	No. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	Seara-				10989	19298	1.756		500				256.52	213.04	10957802	1/0/56/64	756107	142	0. 90 10. 90 10. 90	7.7	115.7
1,000, 1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Seara-F				10989 <	19298	1.756	٠	22			•	254.28	208.55	12745591	189848751	836172	212	9.43	8.10	116.5
186 186	Column C	Seara-F				10989 <	19298	1.756	•	. 82					208.65	12706494	189412415	834421	236	9.49	8.10	117.3
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Seara-				> 68601	19298	1.756	•	66					210.14	12091773	182955409	807484	260	9.58	7.92	120.9
1,000, 1	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Seara-				> 68601	19298	1.756	•	96					209.94	12176993	183831548	811130	294	9.66	8.36	115.5
1,000, 1,000,	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Seara-I				> 68601	19298	1.756		03					210.37		182002828	803527	343	9.78	8.36	116.9
16 16 16 16 16 16 16 16	No. 1,	Seara-				10989 ×	19298	1.756		9 6					201.32		177976134	815479	376	9.82	8.58	114.4
1.0 1.0	The column The	Seara-F				10989 ×	19298	1 756	•	28	,				209.7		186339153	821590	434	26.6	8.65	115.7
Hearth Control Contr	1,000, 1,000, 1,000 1,	Seara-F				10989 <	19298	1.756	•	28 2	, .,				207.26		195590426	860076	468	10.12	8.69	116.5
	The column	Seara-F				> 68601	19298	1.756	•	99	.,				207.85	13041377	192992389	849304	534	10.13	8.70	116.4
	1,500, 1	Seara-				> 68601	19298	1.756	•	99					207.8	13061257	193149410	849904	292	10.11	8.71	116.1
Hearth Control Hear	1,500, 1	Seara-I				> 68601	19298	1.756	•	29					207.9	13021517	192731610	848192	288	10.13	8.71	116.3
Hearth Control Hear	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Seara-				10989 <	19298	1.756		22					207.12	13351794	196177592	862425	617	10.14	8.72	116.3
Heart Color	1,000, 1	Seara-				10989	19298	1.756		200					206.3	13493582	19/68823/	808/66	259	10.18	0.73	116.5
165 165	18. 10.	Soara				10989	19298	1.756		9 6					205 88	13534275	201832413	87.0421	713	10.10	0.00	5.41
166.50 2014/50 218.6 1009 1120	Heart Column Hear	Spara				10989 ×	19298	1 756	•	2 2					208.002	13432693	197103425	866269	742	10.22	0.55	1110
Heigh Septem Se	Hearth Control Contr	Seara-F				> 68601	19298	1,756	•	57					207.23	13311466	195763312	860834	804	10.14	9.26	109.5
46.50 2041020 2041020 17.00 64.00 44.20 2020020 2040000<	Hearth H	Seara-				> 68601	19298	1.756	•	47					206.56	13595471	198766770	873232	838	10.22	9.33	109.6
Height	Hearth H	Seara-				> 68601	19298	1.756	•	30					205.45	14081224	203808639	893916	873	10.30	9.43	109.3
Height Control Height Height Control Height	1865 1866	Seara-				10989 <	19298	1.756	•	59					205.37	14123091	204231758	895681	868	10.36	9.48	109.4
Heart Marie Mari	Heart Control Contro	Seara-				10989 <	19298	1.756	•	34					205.73	13956120	202492300	888457	996	10.37	9.53	108.9
HIGGO DO SOMERAS 278 S. 7779 C. 20208 2770 C. 6641 C. 60004 178.45 C. 2024	Heart Control Contro	Seara-				> 69801	19298	1.750			Τ				70.502	14029007	203237025	891511	1000	7.47	9.03	108.0
H65-100 2024-464 2.886 7.77 6.70 17.50 17.54 17.54 17.53	Heistroon Control of Standard Control	Seara-F				7479 <	20208	2.710						256.	213.95	10616398	167053329	740401	- «	66.8	6.69	134.4
	146-100 10.0	Seara-F			2168 <	7479 <	20268	2.710						256	213.17	10904809	170216470	753810	. 4	9.23	6.93	133.1
Heli-Tool Stadeled Total A 2009 2 70 G000000000000000000000000000000000000	Helicology	Seara-			2168 <	> 6474	20268	2.710			•			256	212.91	11010966	171296214	758396	21	9.47	7.15	132.4
Hear-100 State-46 Fig. 16 Fig. 14 Fig. 16 Fi	Heart Color Standard Color Col	Seara-I			2168 <	7479 <	20268	2.710						256	213.11	10931284	170494272	754995	33	9.60	7.53	127.4
Heart Color Control	Heart Control Contro	Seara-			2168 <	> 479 >	20268	2.710						257.	215.77	9963314	159791614	709513	42	9.52	7.79	122.5
Heiston Standard Control Con	Hels-100 Stockeds 2 Condes 2 Type Condes 2 Type 2 3 Type<	Seara-F			2168 <	7479 <	20208	2 710					•	256.66	213.33	10851987	169585080	751178	26.05	98	8.10	122.0
H65-100 3294-645 2 file 7 779 2 codes 2 770 6 682 3 778 2 codes 2 770 6 codes 1 445 5 codes 2 770 6 codes 1 445 5 codes 2 770 6 codes 1 445 5 codes 2 770 6 codes 1 770 2 codes 2 770 6 code	H65-100 2324444 218 e 7,779 c 22226 124 pt 2225	Seara-F			2168 <	7479 <	20268	2.710			• • •		•	255.72	211.42	11579611	177538415	784728	64	10.05	8.33	120.6
Hei-100 S28-4446 2168 < 7779 < 20269 2 770 69207 144.2 5262338 3 7728 1864.6 253.4 264.6 1 4436457 216665372 96834.4 Hei-100 S28-446 2168 < 7779 < 20269 2 770 69207 144.2 5262338 3 7769 2 22.9 4 62.6 1 4436457 2 10666372 96834.4 Hei-100 S28-446 2168 < 7779 < 20269 2 770 69207 144.2 5262338 3 7709 2 22.9 4 62.6 1 4436457 2 20.6 4 64.6 1 473	Heb-100 322-aded-5 2 70.00 2 70.00 44.51 2 52-aded-5 2 70.00 4 70.00 2 70.00 4 47.51 2 52.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 2 70.00 4 47.51 2 52.00 4 47.51 2 52.00 4 50.00 4 47.51 2 52.00 4 50.00 4 47.51 2 52.00 4 50.00 4 47.51 2 52.00 4 50.00 4 47.51 2 52.00 4 50.00 4 47.51 2 52.00 4 50.00 4 47.51 4 50.00 4 50.00 4 47.51 4 50.00	Seara-			2168 <	7479 <	20268	2.710			.,		•	253.83	207.65	13121019	193824790	852717	70	10.41	8.47	123.0
H65-100 328-464 2 (18 e) 7,170 2 (22.02) 347780 2 (22.02) 347780 2 (22.02) 347780 2 (22.02) 357.44 1,389.384 2 (18 e) 7,170 3 (18 e) 7,170 3 (18 e) 2 (18 e) 7,170 3 (18 e) 2 (18 e) 3 (18 e) <td> He-100 S284446 2.88</td> <td>Seara-</td> <td></td> <td></td> <td></td> <td>7479 <</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td>.,</td> <td></td> <td>-</td> <td>253.41</td> <td>206.81</td> <td>13483421</td> <td>197603297</td> <td>868348</td> <td>7.7</td> <td>10.51</td> <td>8.64</td> <td>121.7</td>	He-100 S284446 2.88	Seara-				7479 <	20268	2.710			.,		-	253.41	206.81	13483421	197603297	868348	7.7	10.51	8.64	121.7
Heb-100 3249464 2188 7179 21288 2770 69873 414.5 50226424 37728 518.5 252.4 20.0 20.0 414.5 502244 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5 20.0 20.0 414.5	Helicolo	Seara-I				7479 <	20268	2.710					- '	252.42	204.8	14365437	206683727	905724	82	10.74	8.70	123.5
History 2294465 2168 7170 6871 4445 220446 272 6871 445 220446 2770 6871 4445 220446 272 6871 4770 6871 4445 250446 272 6871 7770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 6871 4770 2874 8883 3874 8883 3874 8874	H6F-00 CORRES CT-00 R014 CT-00 CORRES 2.71 CRANT CT-00 R014 CT-00 CT-00 <th< td=""><td>Seara-</td><td></td><td></td><td>2168 <</td><td>7479 v</td><td>20268</td><td>2.710</td><td></td><td></td><td></td><td></td><td></td><td>252.94</td><td>202.88</td><td>13893847</td><td>106433070</td><td>885800</td><td>90</td><td>10.71</td><td>97.0</td><td>110.2</td></th<>	Seara-			2168 <	7479 v	20268	2.710						252.94	202.88	13893847	106433070	885800	90	10.71	97.0	110.2
HES-100 228446 2168 7479 2000 277 4137 2014 4147 41447 4144 4144 4144 4144 4144 4144 4144 41444 41444 41444 41444	Hels-100 S204645 2.166 2.770 CORDAN 417.7 ANDIAN 417.7 <th< td=""><td>Seara-F</td><td></td><td></td><td></td><td>> 6/4/</td><td>20208</td><td>2 710</td><td></td><td></td><td></td><td></td><td>٠</td><td>253.47</td><td>206.94</td><td>13432693</td><td>197019831</td><td>865936</td><td>114</td><td>10.93</td><td>0.33</td><td>117.1</td></th<>	Seara-F				> 6/4/	20208	2 710					٠	253.47	206.94	13432693	197019831	865936	114	10.93	0.33	117.1
Heb-100 2024445 2168 7479 2026 2710 7021 4146 5044655 3071 6104 2024445 1676 2024445 2168 7479 2026 2710 7021 4146 50340255 311 01 202444 1771 2014 4166 202444 1771 2014 4166 202444 1771 2014 4166 202444 1771 2014 4166 202444 1771 2014 4166 202444 416744 202444 </td <td>Heb-Tool 2324-645 2 ftg 8 7 479 2 20268 2 770 7 7021 14.856 5 534-645 2 ftg 8 2 770 7 7021 14.856 5 534-602-8 3 70.14 1 566-702 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2</td> <td>Seara-F</td> <td></td> <td></td> <td></td> <td>> 6747</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>251.13</td> <td>202.24</td> <td>15562872</td> <td>218948881</td> <td>955486</td> <td>133</td> <td>11.27</td> <td>9,13</td> <td>123.4</td>	Heb-Tool 2324-645 2 ftg 8 7 479 2 20268 2 770 7 7021 14.856 5 534-645 2 ftg 8 2 770 7 7021 14.856 5 534-602-8 3 70.14 1 566-702 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2 70.14 2	Seara-F				> 6747	20268	2.710					•	251.13	202.24	15562872	218948881	955486	133	11.27	9,13	123.4
H65-100 2224445 2168 7 77 C 20268 2 770 70221 41.50 33349220 30.41 1 98 11 2 20.41 1 98 11 2 20.42 1 98 11 2 20.42 1 98 11 2 20.42 1 98 12 2 20.42 1 98 11 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 20 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 1 98 12 2 20.42 2 20.42 3 20.42 <td>H65-100 329-8445 2168 7.77 2.0268 27.70 70221 43.65 20.03 11.666742 20.01 11.666742 20.01 11.666742 20.01 11.666740 20.01 20.01 11.666740 20.01</td> <td>Seara-</td> <td></td> <td></td> <td>2168 <</td> <td>> 474</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td>.,</td> <td>.,</td> <td>•</td> <td>250.58</td> <td>201.16</td> <td>16094150</td> <td>224282903</td> <td>977099</td> <td>176</td> <td>11.60</td> <td>9.54</td> <td>121.6</td>	H65-100 329-8445 2168 7.77 2.0268 27.70 70221 43.65 20.03 11.666742 20.01 11.666742 20.01 11.666742 20.01 11.666740 20.01 20.01 11.666740 20.01	Seara-			2168 <	> 474	20268	2.710			.,	.,	•	250.58	201.16	16094150	224282903	977099	176	11.60	9.54	121.6
H65-100 2284445 2168 7.77 CODE 1.77 1.77 1.77 1.77 1.77 1.77 1.77	H65-100 S284445 2168 7.77 C 20268 27.70 70527 14.64 15.05 20.25 20.05 17.10 20.24446 21.68 27.70 70.25 14.54 50.350117 3811934 20.05 <td>Seara-</td> <td></td> <td></td> <td>2168 <</td> <td>7479 <</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td>.,</td> <td></td> <td></td> <td>250.71</td> <td>201.41</td> <td>15968742</td> <td>223037889</td> <td>972038</td> <td>205</td> <td>11.98</td> <td>9.54</td> <td>125.6</td>	Seara-			2168 <	7479 <	20268	2.710			.,			250.71	201.41	15968742	223037889	972038	205	11.98	9.54	125.6
H65-100 2284-445 2 168 x 77 x 70	Heli-100 3294445 2.166 7479 2.02268 2.770 70258 143.75 5.1657069 2.780 2.165 2.780 2.780 2.770 2.780 2	Seara-			2168 <	7479 <	20268	2.710			.,	_		250.25	200.5	16416331	227537645	990153	229	11.96	9.85	121.4
H65-100 2284445 2168 7.173 COORS 1.770 7.003 1.484 266-56 1.980 1.770	Heb-100 3294645 2166 7479 210268 2770 7724 4137 5136566 2146 2146 2146 2123 41413 336 41413 33	Seara-			2168 <	7479 <	20268	2.710			.,			250.66	201.33	16014269	223422982	973604	253	12.11	9.43	128.4
Helicology	High-right Standard Color Colo	Seara-			2168 <	7479 <	20268	2.710						251.02	202.03	15663687	219964855	959640	287	12.16	9.43	129.0
Heb-100 2294-45 2.108 2.710 7.027 1.45.0 2.401 2.027	Horicolocolocolocolocolocolocolocolocolocol	Seara-			2168 <	7479 ×	20268	2.710					- '	251.49	202.97	15218933	215453955	941413	336	12.38	9.85	125.7
High Control Control High Control Control High Control Con	High	Soors			2160 <	74/9 V V	20208	2.710						250.71	200.00	16220242	225037009	97.20.30	309	12.52	10.13	121.0
HES-100 202445 2168 7479 200268 2710 7408 4434 5170 600875 3477 5007 240.9 69.07 168.47 200785 900085	HEG-100 202444-6 2168 7.17 7.00 17.60 41.51 3.00 2.00 2.00 9.00 2.00	Seara			2168 <	7479 >	20208	2 710						250.43	200.00	16544069	228848276	902283	427	12.02	10.35	122.5
H65-100 3294445 2168 7479 270 7170 1431 61068125 41656 3007 2493 14651 610 2004 241 3274445 270 7173 1471 61068125 41656 3007 243 1864 1744459 23667690 1072479 1748 4016812 44168 3177 240.58 1472 250.58 270 7113 1416 46563 1478 26.33 1486 3007 243.58 1486 17742699 236847 1772699 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 1772699 236847 23687 248.58 1778 1772699 236847 246.58 1777 1772699 2370 2477 23686 247.79 1772 17427 147269 248.58 1878 246.58 1777 17726495	H65-100 3294444 2 (18) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 2 (18) 4 (19) 4 (19) 3 (14) 4 (10) 3 (14	Seara-F			2168 <	7479 <	20268	2.710						249.98	199.97	16684173	230156389	1000563	461	12.58	10.44	120.5
H65-100 2264-45 2168 7479 2006 2710 7131 4131 6109 500 31478 2006 1720 4165 4100 2006 31478 200 324<	H65-100 3204445 2 168 7.179 2 100 71158 14.18 61056 3 14.98 61056 3 2049 3 14.98 61059 3 14.98 61059 3 14.98 1 14.20 6 20 1 14.98 1 14.20 6 20 1 14.98 1 14.20 6 20 1 14.98 1 14.20 6 20 1 14.98 1 14.20 6 20 1 14.98 1 14.20 6 20 1 14.98 1 14.20 1 14.20 1 14.98 1 14.98 1 14.20 1 14.20 1 14.98 1 14.98 1 14.20 1 14.20 1 14.98 1 14.98 1 14.20 1 14.20 1 14.98 1 14.98 1 14.20 <td>Seara-F</td> <td></td> <td></td> <td>2168 <</td> <td>7479 <</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td>•</td> <td>.,</td> <td>.,</td> <td>249.23</td> <td>198.45</td> <td>17444771</td> <td>237840084</td> <td>1031027</td> <td>527</td> <td>12.67</td> <td>10.58</td> <td>119.7</td>	Seara-F			2168 <	7479 <	20268	2.710			•	.,	.,	249.23	198.45	17444771	237840084	1031027	527	12.67	10.58	119.7
H65-100 3224645 2168 7.77 7.00 7.17 7.10	H65-100 32244-45 2168 7.175 4.15 4000-85 41678 31478 2028 31478 2028 31478 2028 31478 315 415 416788 31478 2028 31478 315 415 416788 31478 2028 31478 315 416788 31478 3228 31478 314 31478 <td>Seara-</td> <td></td> <td></td> <td>2168 <</td> <td>7479 <</td> <td>20268</td> <td>2.710</td> <td></td> <td></td> <td>•</td> <td>3</td> <td></td> <td>249.33</td> <td>198.65</td> <td>17348458</td> <td>236870590</td> <td>1027241</td> <td>260</td> <td>12.64</td> <td>10.49</td> <td>120.5</td>	Seara-			2168 <	7479 <	20268	2.710			•	3		249.33	198.65	17348458	236870590	1027241	260	12.64	10.49	120.5
H65-100 329445 2168 < 7479 < 20268 2.770 71422 143.05 4239.05 416778 3177 24405 578.89 1777 24405 17784674 24159914 1041183 1475 24405 248.99 1778 24405 248.99 1778 24405 248.99 1778 24405 248.99 1778 24405 248.90 1778 24405 249.90 1778 24405 249.90 1778 24405 249.90 1778 24405 249.90 1778 24405 249.90 1778 24405 279 1747 24415 24415 2470 24415 24415 24415 24415 24415 248.90 1778 1778 24415 24	H65-100 3234645 2168 7177 4105 6124185 41878 31877 20405 2170 4110 4120 422178 31877 20405 2178 4100 4120 4120 4120 4120 4120 4120 4120 4120 4120 4120 4120 4120 4120 4188 3187 2045 4120 41418 4120	Seara-			2168 <	7479 <	20268	2.710			4	9	.,	249.26	198.51	17420659	237550368	1029847	581	12.80	10.78	118.7
Heb-100 2294-645 2108 c	Horicol	Seara-I			2168 <	7479 <	20268	2.710			4.			248.99	197	17699288	240406640	1041181	610	12.72	10.78	118.1
High-right Constant Constan	High-roop 3294645 2168 < 7479 < 20268 2770 71527 142.96 63797550 242.775 23056 23056 245.73 174.64 7172054 715.74 715	Seara-			2168 <	7479 ×	20268	2.710			4 ,			248.91	197	17784674	241159914	1044183	650	12.82	10.66	120.3
H65-100 2294-45 2.168 < 7479 < 20268 2.770 71120 43.18 54043-467 409006 31369 2.200	High-100 3294645 2 168 < 7479 < 220268 2 770 71137 143.18 G402036 3130 20200 249.35 196.00 1724448 2 29867769 17120 143.18 G4023467 2 249.00 1340 20200 249.35 196.00 1724448 2 29867769 17120 143.18 G4023457 4 09000 31340 20200 249.35 196.00 1724448 2 29867769 17120 143.18 G402377 4 09000 31340 20200 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 20200 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31340 249.35 196.00 1724448 2 29867769 17120 143.18 G402379 4 09000 31370 2 49.18 G402379 649.00 13240 3 3294645 2 168 c	Seara-			2168 ×	A 0747	20268	2.710			4 4		•	246.69	197	17/96894	241290375	1044645	9//	12.83	10.90	117.7
10. 2294645 2.168 < 7479 < 20268 2.710 7132 43.18 54056379 403500 31404 20269 2.49.33 1986 71794488 238970390 102224 H65-100 2294645 2.168 < 7479 < 20268 2.710 7123 143.18 54130647 41256 31456 20225 249.19 18.97 7142498 238970390 102224 H65-100 2294645 2.168 < 7479 < 20268 2.710 7132 143.08 5413180 541568 3.057 24.98 18.97 7142498 238970390 102224 H65-100 2294645 2.168 < 7479 < 20268 2.710 7132 143.08 5413180 41558 3.057 24.08 18.71 71262318 238956220 1038279 H65-100 2294645 2.168 < 7479 < 20268 2.710 71362 143.06 54233458 416514 2.0000 2.49 187.94 18030145 243607015 1053781	History 3294645 2168 < 7479 < 20268 2.770 71135 14316 50056379 400560 3140 20268 2.83 198.66 17494061 23294 2383190 1022241 737 129 1130 1145.00 3294645 2168 < 7479 < 20268 2.770 7123 143.10 165.26 3168 2.370 7132 143.00 152.20 142.98 2337 24.0 182.2 143.00 17224 173.00 17224 1	Seara-			2168 <	× 9747	20208	2.710			•	, (•	246.73	100	17324435	2450156/7	1026295	73.4	12.90	10.95	117.0
H65-100 3294645 2 168 < 7479 < 20268 2 770 71231 143.13 541305647 412510 31566 20225 249.19 189.37 17493061 238304459 (102904 10	H65-100 3294645 2168 < 7479 < 20268 2.710 71231 143.13 541305647 412510 31556 20325 246.19 188.37 17493061 238304359 1032904 831 13.03 11 H65-100 3294645 2168 < 7479 < 20268 2.710 71321 143.18 541305647 412510 31556 20325 246.19 188.37 17492618 238304359 1032904 869 13.03 1 H65-100 3294645 2168 < 7479 < 20268 2.710 7132 143.08 54234508 416514 3172 24405 249 197.34 18030142 244262373 1040602 891 13.10 13.10 1 H65-100 3294645 2168 < 7479 < 20268 2.710 7132 142.98 54389997 42343 32119 20531 246.67 197.34 180763 17801687 242657753 1050029 1000 13.21 1	Seara-F			2168 <	7479 <	20208	2 710	71135 1			, e.	•	249.33	8 8	17348458	236870590	1027241	797	12.92	11.15	115.9
HE-100 329445 2168 < 7479 < 200268 2.710 71321 143.08 5423101004 415286 31698 20377 246.06 198.11 17626319 239655420 1008279 HHE-100 3284445 2.168 < 7479 < 200268 2.710 71598 4249 54413712 422413 3719 2216 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 1008022 226 71973 100802145 71978 71980 71	Hels-100 3294645 2168 < 7479 < 212028 2710 71921 413.10 54201404 415596 31688 2107 24.06 189.11 71782511 2 450268 13.09 189.11 71782511 2 450268 13.09 189.11 71782511 2 450268 13.09 189.11 717827 143.00 54201469 416514 31762 2 440.0 717827 143.00 54201469 416514 31762 2 440.0 717827 143.0 7	Seara			2168 <	2479 <	20268	2 710	· -		-) r:		249 19	198	17493061	238304359	1032904	83.1	13.03	11.34	114.9
2015) H65-100 3294645 2168 < 7479 < 20268 2,710 71362 143.06 542334508 416514 31762 20400 249 197.99 17887112 240252373 1040602 2015) H65-100 3294645 2168 < 7479 < 20268 2,710 71588 142,94 544113712 423413 32119 20531 248.67 197.94 18030145 243807015 1053781	0016) H65-100 3294645 2-168 < 7479 < 20268 2710 71382 143.06 542334508 4-16514 31762 20400 2-49 197.39 17887112 24028737 1040602 891 13.10 1	Seara-			2168 <	> 479	20268	2.710	71321 1		4	.,	.,	249.06	198	17626318	239656420	1038279	866	13.08	11.34	115.4
2015) H65-100 3294645 2168 < 7479 < 20268 2.710 71588 142.94 544113712 423413 32119 20531 248.67 197.34 18030145 243607015 1053781	2016 H66-100 3294645 2168 < 7479 < 20268 2710 71522 142.98 543599917 421467 32016 20494 248.77 197.53 17831687 248.67 197.53 17831687 248.67 197.53 17831687 248.67 197.53 17831687 248.67 197.53 17831687 248.67 197.53 17831687 248.6	Seara-	2015)		2168 <	> 474	20268	2.710	_	90	4	.,		249	197	17687112	240252373	1040602	891	13.10	11.34	115.5
	2015) H65-100 3294645 2168 < 7479 < 20268 2.710 71522 142.98 543599917 421487 32016 20494 248.77 197.53 17931687 242653753 1050029 1000 13.21 1	Seara-	2015)		2168 <	> 474	20268	2.710	_	94	4	.,		248.67	197	18030145	243607015	1053781	929	13.17	11.34	116.1
2015) H65-100 3294645 2.168 < 74.79 < 20268 2.710 715.22 142.98 543599917 421487 3.2016 20494 248.77 197.53 17831687 242653753 1050029 1		Seara-	2015)		2168 <	7479 <	20268	2.710	_	86	4	•	``	248.77	197	17931687	242653753	1050029	1000	13.21	11.34	116.5

Applicability of Model Code 2010

Database – NAC, RAC and HVFAC beams

Deflection	t. (dave)	to (udys)	18.94 7 450	8.11 28 0	10.89 7 0	22.47 7 450	6.23 28 0	14.69 28 450	6.13 7 0	12.45 7 450	4.04 28 0	8.72 28 450	0.86 28 0	5.00 28 119	0.74 7 0	4.62 7 119	0.66 28 0	3.51 28 119	0.94 7 0	5.11 7 119	3.15 28 0	10.19 28 119	3.40 7 0	10.69 7 119	0.91 28 0	5.38 28 119	0.94 7 0	0.90	4.70 28 119	0.84 7 0	5.99 7 119	4.93 28 0	4.14 7 0	12.90 7 119	7.24 28 0	112 7 0	0.97 28 0	5.94 28 119	1.27 7 0	7.62 7 119	5.11 28 0	12.27 28 119	4.60 7 0	14.68 7 119	11.73 42 0	18.39 42 1000	7.87 42 0		14.08 42 1000	14.08 42 1000	14.08 42 1000 6.80 42 0 15.20 42 1000	14.08 42 1000 6.80 42 1000 15.20 42 1000 15.71 42 1000	14.08 42 1000 6.80 42 0 15.20 42 1000 1.71 42 0 1.58 42 1000 4.96 42 0	14.08 42 1000 6.80 42 1000 6.71 42 1000 6.71 42 0 11.58 42 1000 9.63 42 1000	14.08 42 1000 6.80 42 1000 15.20 42 1000 6.71 42 0 11.58 42 1000 4.96 42 1000 9.63 42 1000
6	ÿ <u>'</u>	N.2																																																					21940 0.101 23530 0.101 22530 0.101 22710 0.101 17130 0.101
Loading	<u>.</u>	ML1 (MIII) NL1	9 1024 0.104	1024	1024	1024	1024	1024	1024	1024	1024	1024	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	14/0	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	2168	2168	2168		2168		2168 2168	2168 2168 2168 2168	2168 2168 2168 2168 2168	2168 2168 2168 2168 2168	2168 2168 2168 2168 2168 2168 2168
P. C.	3	L(mm) L/d		3200	3200	3200	3200	3200	3200	3200	3200	3200	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3400	3400	3400	17/7/6	3400	3400	3400	3400 3400 3400 3400 3400	3 3 3 400 3 3 400 3 3 400 3 400	3400 3400 3400 3400 3400 3400	9002 3400 13.7 6586 3400 13.7 66854 3400 14.5 7596 3400 14.5 6177 3400 14.5
20	E _{col}	(w) 50 3	0.705	0.000	0.708	0.720	0.000	0.720	0.000	0.755	0.000	0.755	0.000	0.404	0.000	0.377	0.000	0.378	0.000	0.388	0.000	0.390	0.000	0.381	0.000	0.385	0.000	0.390	0.378	0.000	0.385	0.000	0.000	0.391	0.000	0.000	0.000	0.379	0.000	0.390	0.000	0.385	0.000	0.393	0.000	0.405	0.000	0 4 4 0	0.410	0.000	0.000	0.435	0.427 0.000 0.000	0.000 0.000 0.000 0.000 0.000	0.009 0.410 3550 0.000 0.000 3550 0.000 0.000 3654 1.083 0.427 17596 0.000 0.000 3538 1.188 0.437 16171
00	E _{cm} (t ₀) F (MPs) m (-	Es (MPd)	28212 200000																																																				35580 200000 35580 200000 36584 200000 36654 200000 35388 200000 35388 200000
Mechanical properties	f _{cm} (t ₀) f _{cm} (t ₀) (MPa)	(mra) (mra)	30.50 24.97 1.98	30.50	30.50	23.01	28.10	28.10	18.50	18.50	22.60	22.60 22.60 1.79		32.60	39.17	39.17	49.30	49.30 49.30 3.58	32.71	32.71	40.20	40.20		36.21	43.60	43.60	31.31	40.20 31.31 2.45		33,96	33.96	37.70	31.15	31.15	41.40	35.70 27.80 2.20	48.20	48.20	31.62	31.62	43.80	43.80	_	29.98	62.97	62.97		1.80 53.74 3.84							
9	fcm(twst)	(days) (mra) I _{cm} (28 30.50 30.	30.50	30.50	28.10	28.10	28.10	22.60	22.60	22.60	28 22.60 22.		32.60	50.30		49.30		42.00	42.00	40.20	40.20	46.50	46.50				28 40.20 40.							28 41.40 41.	28 35.70 35		20	09	40.60	43.80	43.80	38.50	38.50	60.7	60.7	51.8	51.8	0 0	42.9	42.9	4 4 2 : 9 4 4 6 : 9 4 6 : 9 4 6 : 9 4 6 : 9 6 6 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9	4 4 2.9 4 4 6.9 4 6.9 2 2 3	6 2 4 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0000000
	, , , , , , , , , , , , , , , , , , ,	(20) 1 (%)	48.7 21.3									48.7 21.3	44.3 23	44.3 23												44.3 23			44.3		44.3 23				44.3			44.3 23	44.3 23	44.3 23			44.3 23		75 15	75 15	75 15	75 15		75 15	75 15 75	75 15 75 15 75 15	75 15 75 75 75 75 75 75 75 75 75 75 75 75 75	75 15 15 75 75 75 75 75 75 75 75 75 75 75 75 75	75 15 75 75 75 75 75 75 75 75 75 75 75 75 75
3	-	p2(70) type	29 0.21 deformed		9 0.21 deformed								0 0.00 deformed		0 0.00 deformed			30 0.47 deformed								0 0.00 deformed			30 0.47 deformed							0 0.00 deformed							0 0.47 deformed												47 0.20 deformed 47 0.20 deformed 32 0.22 deformed 32 0.22 deformed 32 0.22 deformed 32 0.22 deformed 32 0.22 deformed
rcement	n ²) of (mm) of (r	a (mm) a ₂ (mm)	57 171 29	17	5 5	171	171	171	171	171	171	171	0 0	0 0	0 0	0 0	200	200	200	200	200	142 200 30	200		0 0	0	0 0		200	200	200	200	200		0 0		(*)	200	200	200	200	200	142 200 30	200	253	253	253	253	040	253	253	523 588 588 588	% & & & & & & & & & & & & & & & & & & &	% & & & & & & & & & & & & & & & & & & &	253 268 268 268 268 268
Reinforcement	n (%)	pt (%)	169 0.58															-	_	_	_	_	_	_	_			- `	200 1.32	-	-	-	_		- '	200 1.32	-		-	_	-	_	200 1.32	1.32		0.81	0.81	0.81		0.81	0.81	0.81 0.86 8.0	0.81 0.86 0.86 86	0.8 0.8 0.8 0.8 8 8 8	0.81 0.86 0.86 0.86 0.86
ection	8 / 8	9																																																					300 402 300 402 300 402 300 402 300 402
concrete Cross-section	7	(mm) a	0 160	0 160	0 160	0 160	0 160	0 160	0.5 160	0.5 160		0.5 160	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 150	0 200	0 200	0 200	0 200	000	0 200	0 500	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 500 0 500 0 500 0 500	0 0 500 0 0 500 0 0 500 0 500	0 200 0 200 0 200 0 0 200 0 0 200 0 500
Green concrete	9	len KAC (%)	0	0		100			0 2	0 25	728 0	728 0	0 8.	9,	0	0	0 8.	0 8.	0	0	0 8:	0 8:	0						-28 50																0						00 100 100				
Study information	- nonicono	Specin	NAC7	NAC28	RACZ8	RAC7	RAC28	RAC28	HVFAC7	HVFAC7	HVFAC	HVFAC.	Knaack and Kurama (2015) UT-0-28	Knaack and Kurama (2015) UT-0-28				ma (2015) UC-0-28	_		ma (2015) CC-0-28		ma (2015) CC-0-7	_		ma (2015) UT-50-28		ma (2015) 01-50-7							ma (2015) UT-100-28							_	(2015)	na (2015)				-							
1		1			Tošić (2017)	Tošić (2017)	0 Tošić (2017)	_	0 Tošić (2017)	Tošić (2017)	Tošić (2017)	Tošić (2017)	d Kuran	d Kurar.	nd Kurar.	and Kurar.	Knaack and Kurama (2015)	Knaack and Kurama (2015)	: Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knadck and Kurama (2015)	Knaack and Kurama (2015) Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	t Knaack and Kurama (2015) 0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	t Knaack and Kurama (2015)	Knaack and Kurama	Knaack and Kurama (2015)	Seara-Paz (2015)	az (2015)	Seara-Paz (2015)	z (2015)		az (2015)	az (2015) az (2015)	az (2015) az (2015) az (2015)	az (2015) az (2015) az (2015) az (2015)	Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015)	Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015) Seara-Paz (2015)			

Database — NAC, RAC and HVFAC beams — Calculated Deflections

Study information		Green concrete	ncrete		Cracking moment	moment				State I					State II								ă	Deflection				Ì
-	2	8		22	9	7	80	6	10	7	2 13	4	15	16	17	18	19	20	21	22 2	23 24	4 25	26	27	78	29	30	31
Author	Specimen	RAC (%) F	FA/cm (W ₁ (t ₀) (mm³) M _{sw}	(Mm)	M. (Nm)	M (Nm) N	M/M. A.	(mm²) z. (mm)	mm) [, (mm ⁴)	4) S, (mm³)	13 A. (mm²)	n²) A ₁₋ (mm²)	(mm)	Z=1 (mm)	- (mm) -	l, (mm.)	S. (mm³) 1,	[]. E	t-t _a (davs) β	8	,	>	a.i (mm)	Saim /Sava	anumint a	(mm)	ann in/ann
1 0 Tošić (2017)	NAC7	П		1155873	1024 <	> 2289 <	7669		33517	57 11	3934435 45			i c	3 158.62	946449	21971049	137055	5.186	0	L			·		11.51		1255
2 t Tošić (2017)	NAC7	0		1155873	1024 <	> 2289	7669	3.350	37680	95.22 1332	-		485 10805	166.23	3 132.48	4106533	61569046		2.165	450	0.502			0 22.43	1.184	21.90	18.94	1.156
3 0 Tošić (2017)	NAC28	0		1147347	1024 <	2742 <	6877	2.508		=		10				836290	20202862		5.605	0					1.205	9.11	8.11	1.123
4 t Tošić (2017)	NAC28	0		1147347	1024 <	2742 <	6877	2.508		= :	_					3068190	49745900		2.548	450					1.149	18.20	16.51	1.102
5 U losic (2017) 6 + Tožić (2017)	RAC/	000		1158301	1024 ×	> 0212	7947	3.749		- +	1412/386 4/	82 82	•			976901	22456637		5.082	- 4g					1.1/6	72.33	10.89	1.132
7 0 Tošić (2017)	RAC28	000		1149668	1024 <	2552 <	6438	2.523		· ÷						865435	20676848		5,486	90				•	1.480	8.59	6.23	1,379
8 t Tošić (2017)	RAC28	100		1149668	1024 <	2552 <	6438	2.523		=						3347903	52993061		2.425	450					1.258	17.74	14.69	1.208
9 0 Tošić (2017)	HVFAC7		0.5	1165265	1024 <	1678 <	5593	3.333		÷	_					1067135	23843479		4.81	0					1.457	8.55	6.13	1.394
10 t Tošić (2017)	HVFAC7	0	9	1165265	1024 <	1678 <	5593	3.333	39918	71 14	رة ا					5617893	78294775		1.831	450					1.544	18.77	12.45	1.508
11 0 Tošić (2017)	HVFAC28	0	9	1155873	1024 <	2069 <	5454	2.636		= ;			•			946449	21971049		5.186	0 2					1.989	7.53	4.04	1.863
12 t 10SIC (2017) 13 0 Knaack and Kirrama (2015)	HVFACZ8		6.0	1558/3	1476 <	3025 <	3434	1.030	36089	35.10 1340 109.28 16.88	14019666 150 18861637 107	90066 107 07343 124		31 106.73		3682633	59066915		2.132	430	1000			136	1.582	1 27	0.86	1.930
14 t Knaack and Kurama (2015)	UT-0-28	, 0		1545220	1476 <	3925 <	4489	4		5 5	. 4					10522090	112717948		1.692	119					1.157	5.55	5.00	1,110
0	VT-0-7	0		1541066	1476 <	4577 >	4497	0.983	36942	9	_	_				3600238	58215254		2.895	0				5 1.07	1.446	1.07	0.74	1.449
-	VT-0-7	0 0		1541066	1476 <	4577 >	4497	0.983		5	4			34 183.02		10369052	111695858		1.704	119				5 4.82	1.044	4.85	4.62	1.050
0 -	UC-0-28	0		1547114	1476 <	2239 >	4489	0.810	37448 1	Ε;	4 0	·0 ·		_		2820551	54052647		3.201	0 ;	1.000			13 0.92	1.394	0.93	99.0	1.403
10 0 Knaack and Kurama (2015)	UC-0-20			1590494	1476 <	4056 ×		1 100		111.28 17.60	128 202 16990206 128	28445 133		56 197.48	164.95	3439154	62113784		2.062	<u></u>	1000			125	1334	121	0.04	1 287
	UC-0-7	. 0		1590494	1476 <			1.109		52	. 6					9727253	135320005		1,633	119				•	0.944	4.63	5.11	0.905
0	CC-0-28	0 0		1562680	1476 <	4751 <	9394	1.977	37653 1	+						3042977	56993247		3.061	0	_				1.564	4.23	3.15	1.342
	CC-0-28	0		1562680	1476 <			1.977		8	N (237628 195		35 188.55	5 147.09	7121535	105765226		1.906	119	_			9.78	0.959	8.89	10.19	0.873
23 0 Knaack and Kurama (2015)	00-0-1	00		1581868	1476 <	4398 <		2.130		111.39 1762	6204280 124					3316898	60550896		2.91	0 0					1.524	4.53	3.40	1.333
- 0	IT-50.28			1524916	1476 ×			0.906		4 =	- 1					3276800	54888369		305	<u></u>					1.099	9:30	0.03	1.096
	UT-50-28	06		1524916	1476 <	4926 >	4489	0.906		~						8006299	95469140		1.918	119	_				0.734	3.97	5.38	0.739
0	UT-50-7	90 09		1557685	1476 <			1.176		~	ω.		838 10206	195.98		3937340	61583453		2.757	0	_				1.584	1.37	0.94	1.455
	UT-50-7	0 0		1557685	1476 <	3816 <		1.176		2	_			_		12848184	127117034		1.555	119	_				0.901	6.11	96.9	0.878
29 0 Knaack and Kurama (2015)	UC-50-28	88		1546303	1476 <	5567 >	4497	0.808		= =	2938561 108					2809446	53896204		3.209	0 0				0.92	1.070	0.93	0.86	1.077
- 0	UC-50-7	8 8		1587234	1476 <	4174 <		1.075		111.32 1766			188 971			3391783	61520278		2.872	0				1.15	1.366	1.15	0.84	1.372
-	UC-50-7	200		1587234	1476 <	4174 <	4489	1.075		. 2	1 00					9432064	131933664		1.657	119	0.544					4.46	5.99	0.744
	CC-50-28	90		1568034	1476 <		9369	2.075	37723 1	111.56 1749	4					3119638	57985802		3.017	0	1.000					4.38	4.93	0.888
34 U Knaack and Kurama (2015)	CC-90-7	88		1595051	1476 <	3882 <		2.407		- 6	7401523 130					3502998	120002120		2.819	> t						19.4	4.14	1.185
- 0	UT-100-28	901		1528468	1476 <			0.944	36799	7 ≃			965 9666	36 197.78	165.54	3344850	55620203		3,014	0	1,000			101		1.01	1.24	0.817
-	UT-100-28	100		1528468	1476 <			0.944		104.01 1843	106232 375					8402767	98312344		1.875	119	_					4.25	7.39	0.574
	UT-100-7	100		1567109	1476 <	3448 ^		1.304		108.75 1704	ω.				160.87	4127824	63434337		2.687	0	1.000					1.59	1.12	1.423
39 U Knaack and Kurama (2015) 40 † Knaack and Kurama (2015)	UC-100-28	900		1548737	1476 <	5452 >	4497	0.825	3/4/0	2 5	3164294 109 4797491 208	121 129 208938 179	12129 9158 17953 11839	35 190.55		2845643	94493069	279625	3.185	0 41	- ·					0.93	5.94	0.963
0	UC-100-7	100		1593756	1476 <	3937 <		1.142		-					3 164.66	3486964	62705015		2.827	0					1.065	1.27	127	0.997
42 t Knaack and Kurama (2015)	UC-100-7	100		1593756	1476 <	3937 <		1.142		105.70 2231	23172864 320		305 13929			10009124	138562820		1.611	119					0.656	4.78	7.62	0.627
44 t Knaack and Kurama (2015)	CC-100-28	001		1556042	1476 <			1.852		- 6	- ~	_				6638093	100204612		1.978	119				0 9.47	0.772	8.50	12.27	0.693
0	CC-100-7	100		1598650	1476 <	3757 <	9394	2.500		-	4			34 197.12		3554638	63587653		2.795	0	_				1.206	5.02	4.60	1.091
45 t Knaack and Kurama (2015)	CC-100-7	100		1598650	1476 <	3757 <	9394	2.500	45426 1	105.33 2267	26775073 333		062 14136	_		10462027	143735628		1.578	119				_	0.750	4.01	14.68	0.711
-	H20-0	0		3215514	2168 <	13955 <	33718	2.416		1 4	- 0	55256 203				7981147	142444736		3.48	1000	_			-	0.772	13.41	18.39	0.729
0	H50-50	0 09		3227039	2168 <	12392 <	24108	1.945		4	-		_	30 268.85		4030034	90230435		5.276	0	1.000	1.712 0.6	0.680 1.00		0.776	5.33	7.87	0.678
- 0	H50-50	20		3227039	2168 <	12392 <	24108	1.945		4,	2 .					9146232	156104739	Ψ,	3211	1000	_				0.760	9.88	14.08	0.702
	H50-100	001		3241536	2168 <	10697 <	25698	2.402	66137	144.57 5091	09185513 326	26093 234	23443 17306	256.74		10797202	174683624	748854	2,915	000	0.500			12.18	0.801	11.52	15.20	0.758
0	H65-0	0 0		3193380	2168 <	11336 <	24878	2.195		4	7			_		3680184	81281540	(,)	5.818	0	_				1.145	6.84	6.71	1.019
54 t Seara-Paz (2015) 55 0 Seara-Paz (2015)	H65-0 H65-50	0 2	_	3193380	2168 <	11336 <	24878	2.195	65715 1	146.21 4972 148.03 4736	197234448 227 173696976 118	27313 217	21795 1608(30 259.8	219.58	3836214	145165428	375628	3,425	1000	0.500	1,723 0.4	1.000	n 12.79	1.104	11.95	11.58	1.032
, -	H65-50	, 0		3200007	2168 <	10432 <	19298	1.850		4,	9 9		-	- 10		9505555	154745965	, 0	3.24	1000	0.500	1,723 0.4			1.072	9.45	9.63	0.981
57 0 Seara-Paz (2015)	H-65-100	100		3218278	2168 <	8400 <	20268	2.413	63101 1	4	69		803 1270	12 268.25	5 236.5	4268997	89793402	403346	5.299	0	1.000	1.723 0.	_	0 6.71	1.462	80.9	4.59	1.325
-	H-65-100	J 001	_	3218278	> 8912	8400 <	20208	2.413		145.01 5137	513776774 299	99564 257	722 1 <i>r</i> 95	.1.250.1.	210.23	12063455	182620843	80,600,8	2,813	1000	0.500	1.723 u.a	_		1.057	11.33	11.34	0.999

Database – NAC, RAC and HVFAC beams – RAC Corrections

	Deflection) to (days) t-to (days)	917 7 0	18.94 7 450	8.11 28 0	16.51 28 450	0.03	623 28	14.69 28 450	6.13 7 0	2.45 7 450	4.04 28 0	8.72 28 450	0.86 28 0	5.00 28 119	0.74 7 0	4.62 7 119	0.66 28 0	3.51 28 119	6.11 7 110	3.15 28 0	10.19 28 119	3.40 7 0	10.69 7 119	0.91 28 0	5.38 28 119	0.94 7 0	6.96 7 119	0.86 28 0	4.70 28 119	5.99 7 119	4.93 28 0	4.14 7 0	12.90 7 119	7.24 28 0	1.12 7 0	0.97 28 0	5.94 28 119	1.27 7 0	7 119	10 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.60 7 0	4.68 7 119	11.73 42 0	18.39 42 1000	7.87 42 0	14.08 42 1000	6.90 42 1000	6 71 42 000	11,58 42 1000		4.96 42 0	4.96 42 0
			a (t-t _o K, (mm)	0 107	0.107	0.107	0.107	0.107	0.107	0.107	0.107												0.091	0.091	0,091	0.091	0.091							0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091	0.091										0.101	0.101
The column		30	M _L , (Nm)																																										.,	.,			•	0.104 23530	0.104 22710		0.104 17130	0.104 17130
Part	Loading	29	M., (Nm) K.,												-	8.5 1476	-	_											_												- •													
Part			L (mm)																																																			
Proceedings Section Consessed on the control of the control	arties		E _{cm} (t ₀) (MPa) E _s	28212	28212	31180	31180	22513	24878	24878	25527	25527	28215	28215		31879	32508	32508	36592	36592	30613	34186	34186	31667	31667	31260	31260	26851	26851	33000	33000	27589	29781	26805	26805	28999	24067	30870	30870	25426	25426	29901	24978	24978	39946	39946								
Continue	Mechanical prop																																												82	29				# 4	\$ 45	1 5	20 43.78	42.20 43.78
			f _{cm} (t _{best}) f _{cm}	30.50	30.50	30.50	30.50	28.10	28.10	28.10	22.60	22.60	22.60	22.60					49.30	49.30	42.00	40.20	40.20	46.50	46.50	43.60														40.60	40.60	43.80	38.50	38.50	2.09	2.09	51.8	51.8	42.9	42.9	46.9	45.5	42.2	42.2
Specimen RAC by Follow Earth Follow Follow Earth		16 17	ther												23 28	23 28	23 28	23 28			•						23 28	23 28	23 28	23	2 22	3 22	23 28 28 28	23 28	23 28	22	3 22	23	23 28							15 28	15 28	15	15	15 28	15 28	46	07	0 t
Specimen RAC (PM) From Automation Specimen RAC (PM) Automation Specimen RAC (PM) Automation Automati			L (%)												7	7	7	7	7	,	•		7	7	7	7	7	7	•	•	•			•	•			•	red 44.3	ned 44.3	160			•		75 per	75 75	75	27 72	0 47	ed 75		c./	0, 1,0
Continuation Cont				l																																																		
Specimen PAC (Na) PAC Decembration Pack (Na) PAC Decembration Pack (Na) PAC Decembration Pack (Na) PAC Decembration PAC (Na) PAC (ı	F	ď. (mm)	171												0	0										0	0								0 0	0 0								253	253	253	203	202	888	888	000	897	897
Specimen PAC (Pa) PAcm b (mm) h (mm) A ₁ (mm) d (mm) A ₂ (mm) d (mm) h (mm) h (mm) h (mm) d (mm) h (mm) h (mm) h (mm) h (mm) h (mm) d (mm) h	Reinforceme		A _c (mm²)	58												1.32 0	1.32 0										1.32 0	1.32 0								1.32 0	1.32																	0.86 100.6
Specimen PAC (Pay PAcim b (rims) h		7 8		169																																													•	•				402 234
Specimen 2 3 4	s-section	9																																																				
Specimen RAG				0	0	0	0 0									0 1.	0	0	0	00	- 7		0 0	0 0	0	0 0	0	0 1.	0	0 0	00	0 0	0	0	0	0 0	0 0	0	0 1,	0 0		- =	0 0	0	0 2	0	0	0 0	0 0	0 0	, 0	č	0	5 0
riformation	Green conc	3		0	0	0	0 0	80	9 00	90	0	0	0	0	0	0	0	0	0	0 0	0		0	0 0	0	209	20	90	20	20	200	20	20	20	20	100	100	100	100	100	00.	8 6	100	100	0	0	20	900	90 4	90	, 0		90	90 20
Sudy Info 1177 11	nation	2	Specimen	NAC2	NAC7	NAC28	NAC28	PAC7	BAC28	RAC28	HVFAC7	HVFAC7	HVFAC28	HVFAC28	UT-0-28	UT-0-28	CT-0-7	CT-0-7	UC-0-28	UC-0-28	2 6	86-0-50	CC-0-28	CC-0-2	000	UT-50-28	UT-50-28	UT-50-7	UT-50-7	UC-50-28	UC-50-28	UC-50-7	CC-50-28	CC-50-7	CC-50-7	UT-100-28	UT-100-26	UC-100-28	UC-100-28	UC-100-7	00-100-7	CC-100-20	CC-100-7	CC-100-7	H50-0	H50-0	H50-50	H20-20	120-100	001-06H	H65-0	2	00-004	00-001
	Study inform	-		147)	Tošić (2017)	017)	31.5	(1)	(1)	17)	0 Tošić (2017)	Tošić (2017)	Tošić (2017)	Tošić (2017)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	nd Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	0 Knaack and Kurama (2015)	Knaack and Kurama (2015)	and Kurama (2015)	and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	and Kurama (2015)	and Kurama (2015)	and Kurama (2015)	and Kurama (2015)	Knaack and Kurama (2015)	az (2015)	az (2015)	az (2015)	az (2015) = (2045)	az (2015)	az (2015) 17 (2015)	vz (2015)	Seem Des (2045)	JE (2013)	Seala-raz (2013)												

Database — NAC, RAC and HVFAC beams — Calculated Deflections with RAC Corrections

Study information		Green concrete	Cross.	Cross-section				Reinforcement								Ι_	Mechanical properties								Loading					Deflection	
E	2 3	4	S.	9	7	80	0	10	7	12	13 14	15	16	17 1	18	19 20	21	22	23	24	25	26	27	28	59	30	31	32	33	34	32
														fcm(ttost)		f _{om} (t ₀)) f _{ctm} (t ₀)	E _{cm} (t ₀)				Ecoff							a (t-t ₀)		
	Specimen RAC (%)	FA/cm		h (mm)	A _{s1} (mm²) d (mm)			A ₅₂ (mm ²) d' (mm)		d ₂ (mm) ρ ₂ (%)	6) type	RH (%) T	tost	days) (MPa (MPa	fem	(MPa	(MPa)	(MP	E,	(-) ø	E cs (%)	(MPa)	L (mm)	PΠ	M _{L1} (Nm)	KL1	M _{L2} (Nm)			t ₀ (days) t-t ₀	(days)
1 0 Tošić (2017) N	IAC7	0	160		157	169		22	171	59	0.21 deformed	48.7	21.3	28	30.50							28212	3200		1024			0.107	9.17	7	0
	(AC)	0 6	160		157	169		57	171	8 8	0.21 deformed	48.7	21.3	28	30.50							7535	3200		1024			0.107	46.95	- 1	450
3 U 108ic (2017)	NAC28		160		127	109		97	- 1	3 8	0.21 deformed	40.7	5.5	9 0	30.50							31180	3200		1024			0.107	0.1	8 8	0 6
			160	2002	147	160	0.30	2 2	121	3 8	0.21 deformed	48.7	21.5	8 8	28.10	28.10	23.01	183 22513	13 200000	0000	0000	22513	3200	18.0	1024	2 5	9000	0.10	10.51	3 1	9
			160		157	169		57	171	8	0.21 deformed	48.7	213	28	28 10							4107	3200		1024			0.107	22.47		450
	RAC28 100		160		157	169		57	171	8	0.21 deformed	48.7	21.3	28	28.10							24878	3200		1024			0.107	6.23	- 88	0
		0	160		157	169		57	171	83	0.21 deformed	48.7	21.3	28	28.10							5286	3200		1024			0.107	14.69	8	450
	7	0.5	160		157	169		57	171	8	0.21 deformed	48.7	21.3	28	22.60							25527	3200		1024	0.104	4569	0.107	6.13	7	0
	HVFAC7	0.5	160		157	169		57	171	8	0.21 deformed	48.7	213	28	22 60							5405	3200		1024	0 104	4560	0 107	12.45		450
	EVEN 28	900	160		157	180		24	12.	8 2	0 21 deformed	48.7	. 6	2 6	3 80	22.60			•			28215	3300	2 0	1004	200	4430	107	404	- g	3
	9004191	2 0	9 9 9		5 1	9 9		1 6	ţ	3 8	0.21 deformed	40.7	5 6	2 6	8 6							502	3200	•	100	5 5	255	0.00	1 0	3 8	9
	TVFAC28	6.0	001		/61	601		/c	- 1	8 '	0.21 derormed	46.7	5.1.3	97	75.00	•	_					1323	3200		1024	5 :	4430	0.107	8.72	9 1	964
(2015)	01-0-28	0	150		387	200		0	0	0	0.00 detormed	44.3	S	58	32.60	32.60	_					31879	3700	_	1476	0.104	3013	0.091	0.86	8	0
	UT-0-28	0	150		397	200		0	0	0	0.00 deformed	44.3	ន	58	32.60	32.60 3	_					12531	3700	18.5	1476	0.104	3013	0.091	9.00	83	119
	UT-0-7	0	150		397	200		0	0	0	0.00 deformed	44.3	ន	58	50.30							32508	3700	_	1476	0.104	3021	0.091	0.74	7	0
	01-0-1	0	150		397	200		0	0	0	0.00 deformed	44.3	23	28	50.30							12711	3700	18.5	1476	0.104	3021	0.091	4.62	7	119
	UC-0-28	0	150		397	200		142	200	30	0.47 deformed	44.3	23		49.30	49.30 48						36592	3700	_	1476	0.104	3013	0.091	99'0	28	0
	UC-0-28	0	150		397	200		142	200	30	0.47 deformed	44.3	23		49.30	49.30 48	49.30 3.					17952	3700		1476	0.104	3013	0.091	3.51	78	119
	UC-0-7	0	150		397	200		142	200	30	0.47 deformed	44.3	23		42.00							30613	3700		1476	0.104	3021	0.091	0.94	7	0
20 t Knaack and Kurama (2015) U	UC-0-7	0	150		397	200		142	200	30	0.47 deformed	44.3	23		42.00	_						10739	3700	18.5	1476	0.104	3021	0.091	5.11	7	119
0 Knaack and Kurama (2015)	CC-0-28	0	150		397	200		142	200	90	0.47 deformed	44.3	23		40.20							34186	3700		1476		7918	0.091	3.15	28	0
t Knaack and Kurama (2015)	CC-0-28	0	150		397	200		142	200	30	0.47 deformed	44.3	23		40.20	40.20 40						15120	3700	18.5	1476		7918	0.091	10.19	78	119
0 Knaack and Kurama (2015)	CC-0-7	0	150		397	200		142	200	8	0.47 deformed	44.3	23		46.50							31667	3700		1476		7893	0.091	3.40	7	0
† Knaack and Kurama (2015)	CC-0-2	0	150		397	200		142	200	90	0.47 deformed	44.3	33	28	46.50	46.50	36.21					11821	3700	18.5	1476	0.104	7893	0.091	10.69	7	119
0 Knaack and Kurama (2015)	80	0	150		397	200		0	0	0	0.00 deformed	44.3	23		43.60							31260	3700		1476		3013	0.091	0.91	28	0
+ Knaack and Kurama (2015)			150		397	200		0			0 00 deformed	443	8		43.60	43.60 47						10662	3700	,	1476		3013	0.00	33	8	1,10
O Kneeck and Kurama (2015)			15.0		397	200		0 0		0 0	0.00 deformed	243	3 8		00.04				•			28851	3700		1476		3013	0.09	0.00	3 1	9
Magazin and Kurama (2015)			150		202	2002		0 0	0 0	0	0.00 deformed	0.00	3 8		40.20				•			7467	3700	- •	1470		2013	0.09	46.0	- 1	5
t knaack and kurama (2015)			130		785	200		9	0 60	٥ -	0.00 deramed	5.4	3 8	97 6	40.20		51.51					7487	3700	- '	14/0		3013	0.091	0.90	- 8	2
		0	150		397	200		142	200	8 8	0.47 deformed	44.3	8 8	5.8	49.60							33000	3700	- '	1476		3021	0.091	0.86	8 8	0 ;
t Khaack and Kurama (2015)		0	ne.		397	200		745	200	8 :	0.47 derormed	44.3	3 :	97	49.60							12286	3/00		14/0		3021	0.091	0/.4	8	8.
0 Knaack and Kurama (2015)		0	150		397	200		142	200	8	0.47 deformed	44.3	8	28	43.60	43.60						27589	3700		1476	-	3013	0.091	0.84	_	0
t Knaack and Kurama (2015)		0	150		397	200		142	200	8	0.47 deformed	44.3	8	28	43.60		33.96 2.					8247	3700		1476	0.104	3013	0.091	5.99		119
0 Knaack and Kurama (2015)		0	150		397	200		142	200	8	0.47 deformed	44.3	8	28	37.70							29781	3700	18.5	1476	-	7893	0.091	4.93	88	0
0 Knaack and Kurama (2015)		0	150		397	200		142	200	8	0.47 deformed	44.3	83	28	40.00							26805	3700		1476		7893	0.091	4	7	0
t Knaack and Kurama (2015)		0	150		397	200		142	200	90	0.47 deformed	44.3	83	58	40.00							7446	3700		1476		7893	0.091	12.90	_	119
0 Knaack and Kurama (2015)		0	150		397	200		0	0	0	0.00 deformed	44.3	23	28	41.40							28999	3700		1476		3013	0.091	124	88	0
t Knaack and Kurama (2015)		0	150		397	200		0	0	0 1	0.00 detarmed	44.3	R) I	58	41.40							9063	3700	- '	1476		3013	0.091	7.39	81	119
0 Knaack and Kurama (2015)		0	150		397	200		0	0	0 ;	0.00 detarmed	44.3	R) I	58	35.70		27.80					24067	3700		1476		3021	0.091	21.1	- :	0
0 Knaack and Kurama (2015)		0	150		397	200		142	200	8	0.47 deformed	44.3	8	28	48.20							30870	3700		1476		3021	0.091	76.0	88	0
t Knaack and Kurama (2015)	20	-	150		397	200		142	200	8 8	0.47 deramed	64.3	8 8	87.0	48.20							10/83	3700	18.5	14/6		3021	0.091	5.94	8 1	61.
U Knaack and Kurama (2015)	100	-	150		397	200	1.32	142	200	8 8	0.47 deramed	644.3	3 8	87.0	40.60	40.60	31.62					25426	3700		14/6	40.104	3021	0.091	127	- 1	٠,
(2015)		-	200		287	200		142	200	8 8	0.47 derormed	5.4	3 8	9 6	40.60							2000	3700		14/0		3027	0.091	7.07	- 8	2
U Knaack and Kurama (2015)		-	200		287	200		142	200	8 8	0.47 derormed	5.4	3 8	9 6	43.80				•			29901	3700	0.0	14/0		1918	0.091		8 8	٠,
t knaack and kurama (2015)		-	130		785	200		142	200	8 8	0.47 derormed	5.4	3 8	9 6	43.80							97.04	3700		14/0		7918	0.091	12.21	9 1	2
45 U Niddor alid Nuralia (2015)			130		287	200		7 5	98	8 8	0.47 deformed	2,4	3 8	0 0	30.30	•	29.30					07647	3700		1470		1010	0.09	00.4	- 1	5
Chidada alid Nutalita (2013)			190		180	200		7 4 5	200	8 5	0.47 deloimed	5.4	3 +	0 0	30.30							900	3700		1470		1910	0.09	9 5	- ç	<u> </u>
0 Seala-r-az (2013)			200		402	243		9.00	502	; ;	0.20 deformed	2 }	2 5	0 7	00.7							03940	3400		2400		01000	0.00	5.5	7 9	000
0 Source Des (2015)			2002		402	240	0.0	9 6	522	7 5	0.20 deformed	2 12	5 #	0 00	100.7	60.70	10.20					24100	3400	10.7	2160		21030	5 6	7 0 7	4 5	90
+ Sears Des (2015)			2002		402	240		9 6	500	7 5	0.20 deformed	2 #	5 #	0 00	0 0							13700	3400		2100		21040	5 6	1,07	4 5	000
0 Seara-Paz (2015)	H50-100		200		402	240	180	10.0	253	4	0.20 deformed	5 K	ξ	82	42.0		14.50					29887	3400	13.7	2168	2 2	23530	10.0	8.80	4 4	9
+ Sears Day (2015)	•		2002		402	240		9.00	253	7	0.20 deformed	2 15	5 ft	04 6	42.9				•			10310	3400		2168	5 5	23530		0.00	4 5	000
0 South Bar (2015)			2002		402	234		9.00	0 90	3 4	0.20 deformed	2 14	5 #	2 6	46.0	48.00	200		•			2005	3400		2160	5 5	22740	0.0	8.71	4 5	9
	2521		2002		402	234	0.00	9.00	988	4 8	0.22 deformed	2 15	ōπ	0 80	46.9	46.90	865	3.55 366				17596	3400	7.4	2168	2 5	22710	5 5	17.5	4 6	000
0 Seara-Paz (2015)			200		402	234		100.6	888	8	0.22 deformed	2 15	5 4	2 82	42.2	42.20	378 3					31495	3400	7.47	2168	2	17130	0.101	4 96	4 4	9
t Seara-Paz (2015)	165-50		200		402	234	0.86	100.6	288	1 23	0.22 deformed	22	i fü	28	42.2	42.20 4.	378 3					11281	3400	4	2168	0.104	17130	0.101	9.63	4	1000
0 Seara-Paz (2015)		0	200		402	234		100.6	588	32	0.22 deformed	75	12	28	32.4	32.40	3.61					26894	3400	14.5	2168	0.104	18100	0.101	4,59	45	0
t Seara-Paz (2015)	H-65-100 100	0	200		402	234	Ĭ	100.6	268	35	0.22 deformed	75	15	28	32.4	32.40 3.	3.61 2.					7822	3400	14.5	2168	0.104	18100	0.101	1.3	45	1000

Appendix F

Applicability of ACI 318 and ACI 435R

Applicability of ACI 318 and ACI 435R

Testing of Individual Deflection Curves – RAC and HVFAC beams

	S	Study information	Cross-section				Reinforcement				:	:	:			Mechanical properties				4				Loading				Def		Ι.
	-	N	3 4	4)	5	2 9	00	o	10	=	12	13	4	15			18 19	2	2	22	23	3 24	25	26	27	7 28		29 30	31	_
Author	ior	Specimen	(mm) h (mm)	A. (F	A ₂₁ (mm²) d (mm)	m) p, (%)	A ₂ (mm²)	ım²) d'(mm)	m) d, (mm)	n) p, (%)	type	f _{cm} (t ₀) t _o (days) (MPa)	Ī	f, (t ₀)	f _{r,red} (t ₀)	t ₀) E _{cm} (t ₀)	E	(MPa) E _s (MPa)	a) φ (=)	E ce (%o)	L (mm)	2	M ₁₄ (Nm)	E K	M, 2 (A	(Nm) K _{1,2}	a (t)	a (t) (mm) t (davs)	s) t-t _o (days)	ays)
	ić (2017)	RAC7	l		157	69	28	57	7	59	0.21 deformed	7	24.20	28.10	5.40			1			22	3200	18.9		104		ı	10.89	03	000
	Tošić (2017)	RAC7		00;	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						22	3200	18.9		104		107		7.042	0.042
510 Tošić (ić (2017)	RAC7		500	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						22	3200	18.9		104	6923 0	.107	12.10	7.25	0.25
	ic (2017)	RAC7		500	157		0.58	57	17		0.21 deformed	- 1	24.20	28.10	5.40						23	3200	18.9		\$:		107	12.78	∞ (- 1
512 TOSIC (ic (2017)	RAC7		200	15/		0.58	27	5 3		0.21 deformed	- 1	24.20	28.10	5.40						29 62	3200	9.0		4 5		107	13.27	ກຸ	2 0
	(2017)	RAC/		800	5 2		0.30	27	= 5		0.21 deformed	- 1	24.20	28.10	0.40						2 20	3200	9.0		\$ 5		107	13.57	2 ₹	o 4
	7 (2017)	2000		8 6	72.		58		12		0.21 deformed	- 1-	24.20	28.10	40						2 6	3200	0.01		1 2		107	14.08	- 5	r u
	Tošić (2017)	RAC7		00,	157		0.58	22	- 1		0.21 deformed		24.20	28.10	5.40						20 -	3200	18.9		2		107	14.28	1 52	9
	£ (2017)	RAC7		00,	157		0.58	57	171		0.21 deformed		24.20	28.10	5.40						45	3200	18.9		102		107	14.43	2 4	^
	Tošić (2017)	RAC7		00,	157		0.58	22	1		0,21 deformed		24.20	28.10	5.40						200	3200	18.9		2		107	15.55	. 72	4
	ić (2017)	RAC7		00,	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						83	3200	18.9		104		107	16.30	28	21
	ić (2017)	RAC7		300	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						10	3200	18.9		104		107	16.90	32	28
	ić (2017)	RAC7		500	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						20	3200	18.9		104		.107	18.39	63	99
	ić (2017)	RAC7		300	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						83	3200	18.9		104		.107	19.12	26	90
	ić (2017)	RAC7		300	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						26	3200	18.9		104		107	19.35	127	120
	ić (2017)	RAC7		300	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						30	3200	18.9		401.		.107	20.02	157	150
	ić (2017)	RAC7		300	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						09	3200	18.9		401.		.107	20.39	187	180
	ić (2017)	RAC7		500	157		0.58	22	171		0.21 deformed	7	24.20	28.10	5.40						20	3200	18.9		42		.107	20.56	217	210
	ic (2017)	RAC7		500	157		0.58	22	171		0.21 deformed	_	24.20	28.10	5.40						୍ଥ ପ	3200	18.9		\$.107	20.67	247	240
	ic (2017)	RAC7		500	157		0.58	57	171		0.21 deformed	_ 1	24.20	28.10	5.40						E 1	3200	18.9		\$ 5		107	21.09	277	270
	ic (2017)	RAC?		00.5	/6/		96.0	25	51		0.21 deformed	- 1	24.20	28.10	5.40						3 5	3200	18.9		4 5		707	21.57	307	300
	IC (2017)	KAC/		000	7 2		0.38	2,4	<u> </u>		0.21 deformed	- 1	24.20	28.10	0.40						3 8	3200	0.0		\$ 5		107	22.38	33/	330
	Tošić (2017)	PAC?		00.	5 75		92.00	2 2	- 5		0.21 deformed	- 1-	24.20	28.10	5.40						2 2	3200	0.00		1 2		107	22.40	407	400
	ić (2017)	RAC7	160	00.	157	169	0.58	57	17		0.21 deformed		24.20	28.10	5.40	3.60					82 -	3200	18.9		2		0.107	22.47	457	450
534 Tošić	Tošić (2017)	RAC28		200	157		0.58	22	171	53	0.21 deformed	28	28.10	28.10	6.40		30800	30800 20	200000 0	0.000	0.383	3200	18.9	1024 0	0.104		.107			0.003
	ić (2017)	RAC28		500	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						83	3200	18.9		104		.107		28.042	0.042
	ić (2017)	RAC28		500	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						83	3200	18.9		104		.107			0.25
	ić (2017)	RAC28		500	157		0.58	22	5		0.21 deformed	78	28.10	28.10	6.40						92	3200	18.9		4		107	7.70	53	-
	Tosic (2017)	RAC28		500	157		0.58	57	= =		0.21 deformed	8 8	28.10	28.10	6.40						24	3200	6.9		4 5	5414	107	8.05	8 5	ο ο
	Tošić (2017)	124C20		80	5 2		0.30	2 2	= 5		0.21 deformed	8 8	28 10	28.10	6.40						9 2	3200	0.0		1 2		107	8.43	5 8	٥ 4
	£ (2017)	RAC28		200	157		0.58	57	171		0.21 deformed	3 %	28.10	28 10	6.40						8 8	3200	189		1 2		107	8 57	8 8	- 40
	Tošić (2017)	RAC28		00,	157		0.58	22	1		0,21 deformed	8 8	28.10	28.10	6.40						88	3200	18.9		2		107	8,68	8 8	9
	ić (2017)	RAC28		300	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						10	3200	18.9		104		107	8.76	32	7
	ić (2017)	RAC28		00:	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						43	3200	18.9		104		.107	9.49	45	4
	ić (2017)	RAC28		500	157		0.58	22	171		0.21 deformed	58	28.10	28.10	6.40						86	3200	18.9		42		107	10.00	49	21
	ic (2017)	RAC28		500	157		0.58	24	₽!		0.21 deformed	8 8	28.10	28.10	6.40						07	3200	18.9		\$ 5		107	10.36	92 3	28
	Tošić (2017)	KAC28	091	90,	157	69	0.58	57	2 5		0.21 deformed	89 88	28.10	28.10	0.40	4.27					9 4	3200	9.0		\$ 5	5414	0.107	11.33	\$ 5	90
	ić (2017)	RAC28		00.	121		0.58	22	1		0.21 deformed	3 %	28.10	28.10	6.40						27	3200	0.81		1 2		107	12.21	148	120
	ić (2017)	RAC28		00,	157		0.58	57	1		0.21 deformed	88	28.10	28.10	6.40						37	3200	18.9		\$		107	12.69	178	120
	Tošić (2017)	RAC28		300	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						73	3200	18.9		104		.107	12.91	208	180
	ić (2017)	RAC28		300	157		0.58	22	171		0.21 deformed	28	28.10	28.10	6.40						.02	3200	18.9		104	5414 0	.107	13.05	238	210
	Tošić (2017)	RAC28		500	157		0.58	22	171		0.21 deformed	58	28.10	28.10	6.40						05	3200	18.9		104	5414 0	107	13.29	268	240
	ić (2017)	RAC28		500	157		0.58	27	₽ ;		0.21 deformed	8 8	28.10	28.10	6.40						8 8	3200	18.9		4 5	5414	107	13.71	298	270
0000	ic (2017)	RAC28		000	12/		96.0	27	5 5		0.21 deformed	8, 8	28.10	28.10	6.40						35	3200	9.0		4 5	2414	0.107	14.16	328	300
Ċ	IC (2017)	RAC28		8 9	157		0.30	27	1		0.21 deformed	9 8	20.10	20.10	0.40						0,7	3200	0.00		\$ 5	2414	107	14.50	900	200
Ċ	ic (2017)	RAC28		00.	5 75		0.36	2 2	- 5		0.21 deformed	8 %	28.10	28.10	6.40						5 6	3200	0.00		1 2	5414	0.107	14.09	428	400
559 Tošić	ić (2017)	RAC28		00.	157		0.58	57	17		0.21 deformed	88	28.10	28.10	6.40						82	3200	18.9		2	5414 0	107	14.69	478	450
																		ı						l						

	Study information			•		Reinforcement		:	:	:					Mechanical properties		1				i	ָר ר	Loading				Deflection		l
	1	8	2	9	4	00	o	10	++	12	13 14	4 15				19	20	21	22	23	24	52	78	27	78	29	30	31	
Author	Specimen	b (mm) h (mm)	A. (mn	A., (mm²) d (mm)	6, (%)	A., (mm²)	, d' (mm)	d, (mm)	D, (%)	type	f _{cm} (t ₀) (days) (MPa)) f _{cm} (MPa)	f, (t _o) Pa) (MPa)	f _{r,red} (t ₀) (MPa)	E _{cm} (t _o)	E.m (MPa)	a) E. (MPa)	(-)	(%)	L (mm)	P/ 1	M., (Nm)	ž	M, 2 (Nm)	č Š	a (t) (mm) t	m) t (davs)	t-t _o (davs)	(S/
		180	П	57		200				1	_			1	. 40	5	1	1		١	ı		1		1	П		,	Ş
561 Tošić (2017)	2017) HVFAC7									0.21 deformed		16.40	22.00														6.56	7 042	0.000
										deformed																			0.25
Tošić	2017)									deformed	7																		-
Tošić	2017)									deformed	7																.74	6	7
										deformed	7																.05	10	3
566 Tošić (2017)	_									deformed	7																.26	Ξ	4
	_									deformed	7																.45	12	2
	_									deformed	7																.61	13	9
	-									0.21 deformed	7																.75	4	7
	_									0.21 deformed	7																40	77	4
	_									0.21 deformed	7		22.60														.75	88	51
	-									0.21 deformed	٠,																8 1	88	28
	-									0.21 deformed	٠,																99:1	8 I	26
	2017) HVFAC7									0.21 deformed	۰,																6.79		06
										deformed	. 1																- 0	77	0 2
570 10SIC (2017)										0.21 deformed	- 1	16.40															2 2		20 00
										deformed																	48		3 5
										deformed																			240
	_									deformed																			570
										deformed	_																	307 3	300
										deformed																			330
										deformed																			365
584 Tošić (2017)		160 20	200	157 16	169 0.5	0.58 5	57 17	171 29	29 0.21	0.21 deformed	7		22.60 4	4.30 2	2.87 25	25200 287	28700 200000	1.584	4 0.597		3200 18	18.9 10	1024 0.104		4569 0.107		12.43		400
	2017) HVFAC7			,						0.21 deformed	7	16.40 2																	450
586 Tošić (2017)		160 20		157 16	9.0		57	171		0.21 deformed		22.60 2		5.20								18.9 10					4.04 28.003		0.003
	2017) HVFAC28									deformed																			242
										deformed																			57.7
ľ	2017) 2047)									deformed		22.00															8 1	8 8	- 0
				•						0.21 deformed																	2 0	3.8	u e
				•						deformed		22.60 2															66	32	4
Ċ	-									0.21 deformed															4430 0.1		.05	33	2
										0.21 deformed																	17	35	9
	_									0.21 deformed																	52	32	7
596 Tošić (2017)										0.21 deformed																	8, 28	42	4.
	2017) HVFAC28									deformed																	8 5	949	
				•						deformed																	48	8 2	9 4
				•						0.21 deformed																	F 6		06
601 Tošić (2017)				•						deformed	78	22.60 2			3.47 28							18.9 10			4430 0.1				120
				•						0.21 deformed																	.19	178 1	150
				•						deformed																	.33		180
Tošić	2017)									deformed				.,										•	_		14.		210
Tošić	2017)									deformed														•	_				240
Tošić	2017)									0.21 deformed		22.60 2												•	_				270
10810	(2017)									0.21 deformed														•	1430 0.1				300
10810	(2017) HVFAC28									0.21 deformed		22.60											> 0						330
Z Š	2017)			•						deformed											•	9.9	o		130 0.107				100
Tošić				•						0.21 deformed		22.60	22.60		3.47 28						•		. 0	4	1430 0.1			478	450
																	ı							l					

	Study Information																		
	1 2	8	4	S	9	7	œ	6	10	1	12	13	41	15	16	17	18	19	20
		M (mm ³)	(1) (1)	(m)	W (27/4)	M _{cr} /M _{max}	(manual)	(mm ³)	, (mm ²)	, mm ²)			,4	· (************************************	, (mm ³)		anum.int.		anum.int./aexp
1	Specimen RAC7	67	1024 <	3842 <			10666667		ď	Alle (IIIIII)	4lc,1 (IIIIII)		1034825		- I-	1-t ₀ (days)	9 19	4exp (IIIIII)	
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667		8458	6825	`		1034825				10.93	•	<u>2</u>
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	_		6825	`	_	1034825		_	5 0.25	•	`	100.5
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667			6825	•		1034825				13.56	12.78	106.1
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667			6825	` '	_ `	1034825			0 0	14.48	13.27	109.1
	RAC/	1066667	1024 <	3842 <	7407	4α. Σ. α.	106666667	113588	8458	6825	178.67	157.30	1034825	5 2334193	31 145436 31 145436	o «	15.17	13.57	111.8
	7000	1000001	1024	0042	1047	5 6	100000001	110000	0450	2000		- 、	1004020			. «	5.0.4	2.00	4. 6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.
	DAC.	1066667	1024 <	3842 <	7507	φ δ. α δ. α	106666667	113588		0000	•		1034825	•	_ `	o «	16.10	00.4-	9. 4. L
	7040	1066667	1024	38.42 <	7047	ξ ξ ξ ξ	10666667	113588		6825		`	•	•		o "	16.45	14.20	1.0.1
	BAC7	106667	1024 ^	3842 <	7947	4 4 5 5 5	10666667	113588		6825		157.36	•			. 41	18.38	5. 7.	118.0
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	113588		6825		•	•			2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	18.56	16.30	113.9
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	113588		6825		_	_		_			16.90	117.0
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	113588		6825			`		`			18.39	116.8
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	113588		6825		-	`	5 23341931	31 145436			19.12	117.5
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	_		6825	•	-	•		_			19.35	119.0
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	_		6825		_	`	•				20.02	117.8
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	_		6825		_	•	•	•			20.39	117.6
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667			6825		τ- ·	`					20.56	119.7
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667	113588		6825			•		· 				120.0
	KAC.	1066667	1024 <	3842 <	7947		106666667			6825									119.0
	KAC.	1066667	1024 ×	3842 <	7.047	φ δ. ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο ο	100000001	113388	0450	0280	170.07	157.30	1034825	5 2334193	31 145430	330	25.13	71.57	110.0
	RAC7	1066667	1024 <	3842 <	7947	4. 4. 5. 6. 5.	106666667			6825					_				116.7
	RAC7	106667	1024 <	3842 <	7947	48.3	10666667			6825	•		`		`			22 40	116.8
	RAC7	1066667	1024 <	3842 <	7947	48.3	106666667			6825		_	`		·			22.47	117.8
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667	, 96623	7779	9390	180.03	3 160.08	849161	1 2041356	61 127484	4 0.003	4.19	6.23	67.3
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667			6390	`	-		1 2041356	`_	O		92.9	68.5
	RAC28	1066667	1024 <	4553 <	6438	7.07	106666667			6390	•	Υ-		•	_	4 0.25		7.16	73.5
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	6390	•	_		•••	_	4	5.66		73.5
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	6390		,_ ,	849161			21 0	6.25		77.6
	KAC28	1066667	1024 <	4553 <	6438	70.7	106666667	96623	6///	6390	180.03	160.08	849161	1 20413567	61 12/484	4 4 W 4	6.27	8.23	75.5
	DAC28	1066667	1024	4555 \	0430	7.07	10666667	90023	9777	0650	•	- •	949161	•		+ <	 	0.43	70.5
	RAC28	106667	1024 <	4553 <	6438	70.7	10666667	96623	6777	6390	Ì		849161			+ 4	0.0		0.67
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667	96623	6222	6390			849161			. 4	40.7		80.4
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	6390	·		849161		`	41	7.69	9.49	81.0
	RAC28	1066667	1024 <	4553 <	6438	7.07	106666667			6390	•	_		1 2041356	61 127484	4 21	8.12	10.00	81.2
	RAC28	1066667	1024 <	4553 <	6438	7.07	106666667		7779	6390	•	-		•	_			`	81.5
	RAC28	1066667	1024 <	4553 <	6438	7.07	106666667	, 96623	7779	6390	Ì	_	849161		· _			`	82.0
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	9390	•	_	849161	.,	`			11.65	83.4
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	6390	•		849161		`			•	85.3
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667		7779	6390	•				· 	150			85.2
	KAC28	1066667	1024 <	4553 <	6438	70.7	106666667			6390								12.91	85.6
	KAC28	1066667	1024 <	4553 <	6438	70.4	106666667			0629	180.03		849161					13.05	86.7
	KAC28	106667	1024 >	4553 <	0458	7.07	100000001	90023	6///	0800	•	160.08	049161	•	61 12/464	240	1.30	13.29	85.0
	24C28	1066667	1024 ×	4555 <	0450 6438	70.7	106666667		9777	0800	·	- 、	849161	1 20413561			•	17.01	93.3
	RAC28	106667	1024 ^	4553 <	6438	70.7	10666667		9777	6390	·		849161					14.10	83.50
	RAC28	106667	1024 <	4553 <	6438	70.7	106666667		6777	6390	•		849161	• • •	`			14.59	85.7
	RAC28	1066667	1024 <	4553 <	6438	70.7	106666667			6390	`				•				3 3
			1 (0 0														14.75	628

		4. 1. for 24		-11-11-1	,													9		
	otor	study imormation	ć	Crackiii	Cracking moment	•	ı	Olicracked	Olicracked cross-section	,	;	, sim L	runy crackeu cross-section	S-section	ţ	,	ļ	Homoallad	E 5	· ·
	_	2	က	4	2	ဖ	_	œ	ത	10	-	12	13	4	15	16	17	9	19	20
	Author	Specimen	W _c (mm³) M	M _{Sw} (Nm)	M _{cr} (Nm)	M _{cr} M _{max} (Nm) (%)	M _{cr} /M _{max}	I _c (mm ⁴)	S _c (mm³)	A _l (mm²) A	A _{llc} (mm²)	Z _{IIC.1} (mm)	z _{ll.1} (mm) l	l _{le} (mm⁴)	I _I * (mm ⁴)	S _{li} (mm³)	a t-t _o (days) (i	a _{num.int.}	a _{nu} (mm) (%)	a _{num.int.} /a _{exp} (%)
260	Tošić (2017)	HVFAC7	29	1024 <	> 6508	5293		106666667	118095	\sim				1084808	24117575	150172	0.003		6.13	95.1
561	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <			106666667	118095	8632	6933	178.33	156.67	1084808	24117575	~	0.042	6.42	9.56	6.76
562 563	Tošić (2017)	HVFAC7	1066667	1024 ×	3059	5593	24.7	106666667	118095	8632	6933	178.33	156.67	1084808	24117575	150172	0.25	7.38	6.90	107.0
564	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575		- 2	8.20	7.74	105.9
565	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	l m	8.56	8.05	106.3
266	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5293		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	4	8.67	8.26	105.0
292	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	150172	2	9.02	8.45	107.1
268	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	: 5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	9	9.07	8.61	105.3
269	Tošić (2017)	HVFAC7	1066667	1024 <	3059	: 5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	7	9.14	8.75	104.5
220	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	2283		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	4	9.77	9.40	103.9
571	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_ `	21	9.95	9.75	102.1
572	Tosic (2017)	HVFAC7	1066667	1024 <	3059	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_ `	288	10.17	10.04	101.3
5/3	Tosic (2017)	HVFAC/	1066667	1024 <	3029	5593		106666667	118095	8632	6933	178.33	156.67	1084808	2411/5/5	150172	2	10.86	10.65	102.0
575	Tošić (2017) Tošić (2017)	HVEAC4	1066667	1024 <	3059	5593	2 4:7	106666667	118095	8632	0800	178 23	156.67	1084808	24117575		96 6	1.42	10.78	103.0
576	Tošić (2017)	HVEAC7	1066667	1024 <	3059	5593		10666667	118095	8632	6933	178.33	156.67	1084808	24117575		150	11 77	11 18	105.3
577	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593		10666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	180	11 88	11.33	104.9
578	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		10666667	118095	8632	6933	178.33	156.67	1084808	24117575		210	11.97	11.48	104.3
579	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		10666667		8632	6933	178.33	156.67	1084808	24117575		240	12.17	11.52	105.6
580	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		106666667		8632	6933	178.33	156.67	1084808	24117575		270	12.30	11.70	105.1
581	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		106666667	118095	8632	6933	178.33	156.67	1084808	24117575	_	300	12.63	12.07	104.6
582	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593	3 54.7	106666667	118095	8632	6933	178.33	156.67	1084808	24117575	150172	330	12.73	12.32	103.3
583	Tošić (2017)	HVFAC7	1066667	1024 <	3059 <	5593		106666667		8632	6933	178.33	156.67	1084808	24117575	_	365	12.97	12.42	104.4
584	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593	1 2	106666667		8632	6933	178.33	156.67	1084808	24117575	_	400	13.20	12.43	106.2
585	Tošić (2017)	HVFAC7	1066667	1024 <	3059	5593	3 54.7	106666667	118095	8632	6933	178.33	156.67	1084808	24117575	150172	450	13.43	12.45	107.9
286	Tošić (2017)	HVFAC28	1066667	1024 <	> 0026	5454		106666667	103693	8071	6259	179.44	158.89	926884	21661521	135138	0.003	3.98	4.04	98.5
287	Tošić (2017)	HVFAC28	1066667	1024 <	3700	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	0.042	4.21	4.30	6.76
288	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	545		106666667		8071	6229	179.44	158.89	926884	21661521	135138	0.25	4.50	4.48	100.4
289	Tošić (2017)	HVFAC28	1066667	1024 <	3700	5454		106666667		8071	6229	179.44	158.89	926884	21661521	135138	_	4.85	4.65	104.3
290	Tošić (2017)	HVFAC28	1066667	1024 <	3700	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	5 5	4.89	4.75	102.9
591	Tosic (2017)	HVFAC28	1066667	1024 <	3700 ×	5454		106666667	103693	8071	6279	179.44	158.89	926884	21661521	135138	m ·	5.19	4.89	106.1
282	Tošić (2017)	HVFAC28	1000001	1024 <	3700	0404	67.8	106666667	103693	8071	6759	179.44	158.89	926884	21661521	135138	4 π	5.23	9.4 9.0 0.0	104.0 8 c 201
594	Tošić (2017)	HVFAC28	1066667	1024 <	3700	5454		10666667	103693	8071	6579	179.44	158.89	926884	21661521	135138	n (c	5.26	5.17	1017
595	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		10666667	103693	8071	6579	179.44	158.89	926884	21661521	135138	^	5.41	5.22	103.6
296	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	4	5.80	5.58	103.9
265	Tošić (2017)	HVFAC28	1066667	1024 <	> 0028	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	21	6.15	5.80	106.0
298	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	78	6.15	6.01	102.3
599	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667	103693	8071	6229	179.44	158.89	926884	21661521	135138	56	6.59	6.48	101.7
900	Tosic (2017)	HVFAC28	1066667	1024 ×	3700	5454	67.8	106666667	103693	8071	6579	179.44	158.89	926884	21661521	135138	90 6	7.17	6.61	108.5
100	Tošić (2017) Tošić (2017)	HVFAC28	1066667	1024 ×	3700	0404		106666667	103693	8071	6759	1.67	158.80	920004	21661521	135130	150	1.5.7	10.7	04:0
200	Tošić (2017)	HVEAC28	1066667	1024 <	3700 ×	5454		106666667		8071	6579	179.4	158.89	920004	21661521	135138	180	7.85	7.33	102.2
8 8 8	Tošić (2017)	HVFAC28	1066667	1024 <	3700 ×	5454		10666667		8071	6579	179.44	158.89	926884	21661521	135138	210	7.86	7.41	106.1
605	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667		8071	6229	179.44	158.89	926884	21661521	135138	240	8.20	7.68	106.8
909	Tošić (2017)	HVFAC28	1066667	1024 <	> 0026	5454	4 67.8	106666667		8071	6229	179.44	158.89	926884	21661521	135138	270	7.96	7.99	9.66
209	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667		8071	6229	179.44	158.89	926884	21661521	135138	300	8.35	8.26	101.1
809	Tošić (2017)	HVFAC28	1066667	1024 <	3700 <	5454		106666667		8071	6579	179.44	158.89	926884	21661521	135138	330	8.71	8.50	102.5
610	Tosic (2017)	HVFAC28	1066667	1024 ×	3700	5454		106666667		8071	6279	1/9.44	158.89	926884	21661521	135138	365	8.40	8.60	97.7
611	Tošić (2017)	HVFAC28	1066667	1024 ×	3700 ×	5454	67.8	106666667	103693	8071	6579	179.44	158.89	926884	21661521	135138	4 50 0 4 50	ο α ο α	8.73 73	102.4
-	1000 (50 11)	03071411	100000	- 101	86.5	2		10000001	00000	- 20	200	5	99.50	100000	10000	201	201	8	1	9

Applicability of ACI 318 and ACI 435R Database – NAC, RAC and HVFAC beams

l		(s/t	450	0	0 0	450	0 !	450	450	0 0	450	0	119	0	119	0	119	0 1	. 0	119	0	119	119	0	119	119	0	119	. 0	119	119	0	0;	0	119	110	. 0	119	0	990	000	0	000	0 0	90	000	0	000
tion 35		s) t-t ₀ (days)		28	97	7	28	87.	- 1	- 58	78	28	28	7	7	28	7 8	~ ^	- 58	28	7	٧ م	9 8	7	_	8 88	7	780	2	7	28 28	7	28	07		28	2 ~	7	45	42	42 1	42	42 1	42	45	42 1	42	42
Deflection 34		t ₀ (days)	94	8.11	16.	.47	6.23	6.13	0.13	4.04	72	98	5.00	74	4.62	99.0	15.5	5.11	- 12	10.19	3.40	69	5 8	94	96	0.86	.84	66.	14	12.90	7.39	1.12	0.97	1.27	7.62	5.11	4.60	14.68	11.73	33	. 80	80	.20	1.58	96	.63	.59	46.
33	a (t-t _o)	m m												-																-						-					- 41	1	-		. 4	- 6	4 :	=
32		ş																												0.091																0.10	0.10	0.10
34	:	M _{L2} (5853 6923																									7893									.,				23530	22710	17130	17130	18100	701.01
ling 30		Ku	0.104	0.104	0.104	0.104	0.104	0.104	0.0	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	0.104	D.10
Loading 29		L1 (Nm)	1024	1024	1024	1024	1024	1024	1024	1024	1024	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	1476	2168	2168	2168	2168	2168	2168	2168	2168	2168	2100
28		N P/1	18.9	18.9	18.9	18.9	18.9	18.9	0.0	18.9	18.9	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5	13.7	13.7	13.7	13.7	13.7	14.5	14.5	14.5	14.5	14.5
27			3200	3200	3200	3200	3200	3200	3200	3200	3200	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3700	3400	3400	3400	3400	3400	3400	3400	3400	3400	3400
26		(%) F	0.000	0.000	0.000	0.743	0.000	0.743	0.000	0.000	0.743	0.00	0.573	0.000	0.573	0.000	0.573	0.000	0000	0.573	0.000	0.573	0.000	0.000	0.573	0.000	0.000	0.573	0.000	0.573	0.000	0.000	0.000	0.000	0.573	0.000	0000	0.573	0.000	0.478	0.478	0.000	0.478	0.000	0.000	0.478	0.000	0.478
25		£ 03	0.000	0.000	0.000	1.906	0.000	9197	1 000	0.000	1.618	0.000	1.298	0.000	1.529	0.000	1.298	1.520	0.00	1.298	0.000	1.529	1 298	0.000	1.529	0.000	0.000	1.529	0.000	1.529	1.298	0.000	0.000	0.000	1.529	1 298	0.000	1.529	0.000	1.199	1.199	0.000	1.199	0.000	0.000	1.199	0.000	1.188
24		9		200000																										200000																		
		щ		27713 20						_		_																		26524 20					26721 20								33686 20			33407 20		_
22 23	п.	W.			1.84			2.20					2.37 2	2.46 2			2.91									2.92		2.29 2			2.67 3			2.21				•	•	•			2.79 3	., .	, .,	2.76 3	2.42 2	2.42
	france	(MPa)		3.44		2.76	_	3.30	2.47	2.96	2.96	3.55	3.55	3.69	3.69	4.37	4.37			3.95			1 1		3.30	4.38			3.29		4.00		4.32	3.31	3.31	4.12	3.23	3.23	4.97	4.97	4.59	4.18	4.18	4.37	4.14	4.14	3.63	3.63
Mechanical properties 21	f,(t ₀)	(MPa)				19.77	28.30	28.30	15.90	22.76	22.76	32.83	32.83	35.39	35.39	49.65	49.65	29.55					43.91	28.28	28.28	49.96 49.96		30.67			41.70	25.12	48.55	28.56	28.56	44.12	27.09	27.09	64.22	64.22	54.80	45.39	45.39	49.62	14.64	14.64	4.28	4.28
	f _{cm} (t ₀)	M P			30.50												49.30 4					46.50 3				49.60 4					41.40		48.20				38.50			60.7 6	5 00	42.9 4		46.9	122 4	12.2 4	32.4 3	32.4
19		fem (8 8						28	28 33	28 32	28 50										28 40		8 8 8	28 43	82 8	28 28 29 29 29 29 29 29 29 29 29 29 29 29 29	28 40	8 8	28	88 8	28 4 4	28	8 8	38 38	28 35	78	8 8	3 8	78	7 28	8,8	3 83	7	81	8
18	ı	(days) (MPa)	4 4	14	4 4	14	4:	4 4	± 5	± 4	. 4	4	14	14	14	14	44 6	9 7 8	28	28	32	32	3.53	35	35	35	28	28	78	28	28	28	58	78 78	28	28 88	28	28	15	15	15	15	15	15	15 5	15	28	28
17		t _{eost}	E E	1.3	21.3	1.3	1.3	5.13	5.15	. c.	21.3	23	23	23	23	23	5 23	52 62	23	23	23	23	3 5	23	23	23 23	23	23	23	23	23.23	23	23	23	23	23.5	23	23	15	15	15	15	15	15	1 2	15	15	15
16		(°C) T		48.7 2	~ ~	7	۲.	18.7	- 1	- 1-		. 67	4.3	4.3	4.3	1.3	e. c	5.4.3	44.3	44.3	44.3	44.3	2 6	14.3	4.3	e e	4.3	14.3	. 6.	6.3	5.5	1.3	6.0	2 5	4.3	44.3	44.3	44.3	75	5 4	75	75	75	75	75	75	75	75
15		RH (%				•	•	•		1 4	. 4	4	4	4	4	4	4 ,							•	4	4 4	4			4.	4 4	4	4.	1 4														
41		type	1 deformed	1 deformed	0,21 deformed	1 deformed	1 deformed	1 deformed	deformed	1 deformed	1 deformed) deformed) deformed	0.00 deformed	0.00 deformed	7 deformed	0.47 deformed	0.47 deformed	7 deformed	0.47 deformed	0.47 deformed	0.47 deformed	deformed) deformed) deformed	0.47 deformed 0.47 deformed	0.47 deformed	0.47 deformed	7 deformed	0.47 deformed) deformed	0.00 deformed	0.47 deformed	0.20 deformed) deformed) deformed) deformed	0.20 deformed	2 deformed	2 deformed	2 deformed	2 deformed	2 detormed					
13	i	<u>چ</u>											0.0	0.0									000																									
12		d ₂ (mm)			29							_	_	_						308				_		30 90								3 8														
int 1		d' (mm)			17		171			12			0	0	0			2002		200						200		200						200					253				253					
Rei nforcement 10		A _{s2} (mm ²)	57	57	57	57	57	57	70	57	57	0	0	0	0	142	142	142	142	142	142	142	00	0	0	142	142	142	142	142	00	0	142	142	142	142	142	142	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.0
6		p1 (%)	0.58	0.58	0.58	0.58	0.58	0.58	0.0	0.58	0.58	1.32	1.32	1.32	1.32	1.32	5.5	5 5	1 8	1.32	1.32	25.5	3.5	1.32	1.32	8 8	1.32	5, 5	1.3	1.32	3.5	1.32	1.32	1.32	1.32	8. 5	1.32	1.32	0.81	0.81	0.81	0.81	0.81	98.0	0.86	0.86	0.86	0.00
80			169	169	9 1	169	169	169	89	169	169	200	200	200	200	200	200	200	200	200	200	200	200	200	200	500	200	200	200	200	200	200	200	200	200	200	200	200	249	249	249	249	249	234	234	234	234	23
7		A _{s1} (mm²) d (mm)	157	157	157	157	157	157	167	157	157	397	397	397	397	397	397	307	397	397	397	397	397	397	397	387	397	397	397	397	397	397	397	397	397	307	397	397	402	402	402	402	402	402	402	402	402	402
tion 6			200	200	200	200	200	200	800	200	200	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	300	300	300	300	300	300	300	300	300	300
Cross-section 5		p (mm) h (i	8 6	160	8 6	160	160	991	B 5	8 8	160	150	150	150	150	150	8 5	8 5	2 92	150	150	150	8 5	150	150	8 6	150	05 ts	3 65	150	9 9	150	150	8 25	150	8 5	150	150	200	200	200	200	200	500	500	200	200	200
			0 0	0	00	0	0	0 4	0.0	0.5	0.5	0	0	0	0	0	0 0	0 0		0	0	0 0		0	0	0 0	0	0 0	0	0	0 0	0	0 0	0	0	0 0	0	0	0	0 0	0	0	0	0 0	0	0	0	0
Green concrete		%) FA/cm	0 0	0	o 0	100	100	90	> <	0	0	0	0	0	0	0	0 0	0 0		0	0	0 6	20 20	20	20	20	90	20	20 20	20	90	100	100	100	100	9 9	100	100	0	0 9	20 20	100	100	0 0	20	20	100	100
Gre		RAC (%)																																														
		- 1					_		16	288	728	89	8:	4		38	. 38		. 60	92	_	, ,	9.8	.7	.7	-28 -28	-2	7-1	2-	7	28	2-6	UC-100-28	0-7	UC-100-7	0-28	CC-100-7	CC-100-7				.00	00		,	6	00 :	8
2		nen		_	~					<i>></i>		,	64	7	Ξ	UC-0-28	JC-0-28	200	00-0-28	CC-0-28	CC-0-7	000-7	T-50-28	UT-50-7	UT-50-7	UC-50-28 UC-50-28	UC-50-7	UC-50-7	CC-50-7	CC-50-7	UT-100-28	UT-100-7	5 5	UC-100-7	5-5	2 5	9	우	2	2 3	γŸ	Ŧ	Ŧ.	99	165-50	165-50	H-65-100	-69-
2		Specimen	NAC.	NAC28	RAC7	RAC7	RAC28	KACZ8	2 2	HVFAC28	HVF/	5	9-5	VT-0-7	CT-0-7	9	3 3															_	> :	00	D (3 8	8	8	£	12000	H50-50	H50-100	H50-100	H65-0	2 全	Î		
2		Specimen	NAC.	NAC28	RAC7	RAC7	RAC28	KACZ	1 4	HVE	HVF/															015) 115)	115)	015) (15)											£	Ĩ	H20	H20	H20	165 1	2 2	Ī		
																			2015)		2015)	2015)				Kurama (2015) Kurama (2015)	Kurama (2015)	Kurama (2015)						2015)			2015)	a (2015)										(610)
2							2017)	2017)											2015)		2015)	2015)				(naack and Kurama (2015) (naack and Kurama (2015)	(naack and Kurama (2015)	Knaack and Kurama (2015)						2015)			2015)	a (2015)										oedia-raz (ZU15)
2		Author	1 0 10sic (2017) NAC7 2 t Tošić (2017) NAC7		4 1 10sic (2017) NAC28 5 0 Tošic (2017) RAC7		2017)					Kurama (2015)	14 t Knaack and Kurama (2015) UT-0	15 0 Knaack and Kurama (2015) UT-0		(2015)			2015)		2015)		25 U Knaack and Kurama (2015)			29 0 Knaack and Kurama (2015) 30 t Knaack and Kurama (2015)	31 0 Knaack and Kurama (2015)	32 t Knaack and Kurama (2015) 33 0 Knaack and Kurama (2015)						2015)			2015)	t Knaack and Kurama (2015)	0 Seara-Paz (2015)	48 t Seara-Paz (2015) H5(t Seara-Paz (2015)			0 Seara-Paz (2015) + Seara-Der (2015)	0 Seara-Paz (2015)		0 Seara-Paz (2015)	-

Applicability of ACI 318 and ACI 435R

Database – NAC, RAC and HVFAC beams –

Calculated Deflections

Study information	rmation	Gre	n concrete		Cracking	Cracking moment			Uncracked cross-section	-section		-	Fully cracked cross-section	cross-section			Effective moment of inertia	ent of inertia	Simplif	Simplified method				Deflection		
-	2	3	3 4	2	9	7	89	6	10	1	12 1	13 14	15	16	17	18	19	20	21	22 2	23	24 25	25 26	27	28	53
					į	1			4		4			4	4				aentri aentra	L2 Beff.cs		a _{simp} / a _{exp}		anumint.	ĺ	anumint/aexp
Author	Specimen	KAC (%)	- FA/cm	1	MSW (NITH)	9		nax/IMI cr	0000	₹ 000	mm) Alle	4 llc,1	(mm) z _{ili} (mm)			ด็	leff CONTRACTOR	eff.max off.con	4 40	Š	00	(%)	1-t ₀ (da	iys) (mm)	dexp (mm)	- 1
2 + Točić (2017)	NACZ	0 0	0 0	106667	1024 <			3.756	10666667	128486	9015			•		160508		27345023	4 25	28.34	0.00	33.00	242	450 31	31.65 18.02	
3 0 Tošić (2017)	NAC28	. 0	. 0	1066667	1024 <	2447	< 6877	2.810	10666667	107386	8218	6673 17	79.15 158.31			_		26104710	1.51	8.86	0.00	9.33	1.151	0		
4 t Tošić (2017)	NAC28	0	0	1066667	1024 <	2447	< 6877	2.810	106666667	107386	8218	_	•		.,	~	_	26104710	3.38	19.89	0.41	21.32	1.291	450 22.	22.03 16.5	1.3
5 0 Tošić (2017)	RAC7	100	0	1066667	1024 <	1964	< 7947	4.046	106666667	133861	9216	7290 17		•	.,	~	_	27922103	1.76	12.22	00:00	13.98	1.283	0 13.		9 1.2
6 t Tošić (2017)	RAC7	100	0	1066667	1024 <	1964	< 7947	4.046	106666667	133861	9216	_	`	•	26 2671528	38 165964	_	27922103	4.33	30.13	0.41	34.87	1.552	450 33.	33.66 22.47	7 1.4
7 0 Tošić (2017)	RAC28	100	0	1066667	1024 <	2348	< 6438	2.742	106666667	111884	8393			•		_	27120831	27120831	1.51	8.22	00:00	8.76	1.406	0		3 1.4
8 t Tošić (2017)	RAC28	100	0	1066667	1024 <	2348	< 6438	2.742	106666667	111884	8393	6784	•	•	.,	_		27120831	3.39	18.45	0.41	20.03	1.364	450 20	20.69 14.69	4.1
9 0 Tošić (2017)	HVFAC7	0	0.5	1066667	1024 <	1757	< 5593	3.183	106666667	149270	9752	7606 17	76.23 152.48		44 29157505	180708	_	31560395	1.73	7.96	00:00	69.6	1.581	0	9.22 6.13	3 1.50
10 t Tošić (2017)	HVFAC7	0	0.5	1066667	1024 <	1757	< 5593	3.183	106666667	149270	9752	_	•	•	44 2915750	5	_	31560395	4.27	19.62	0.41	24.30	1.952	450 23.	`	1.8
11 0 Tošić (2017)	HVFAC28	0	0.5	1066667	1024 <	2106	< 5454	2.590	106666667	124759	8877	7084 17	77.86 155.73		51 2520660			29896618	1.53	6.81	00:0	7.50	1.857	0 7	7.73 4.0	1.9
12 t Tošić (2017)	HVFAC28	0	0.5	1066667	1024 <	2106	< 5454	2.590	106666667	124759	8877	7084 17	•			•		29896618	3.43	15.27	0.41	17.20	1.973	450 17.	17.76 8.7	2 2.0
14 t Knaack and Kurama (2015)	UT-0-28	0	0	1322500	1476 <	3131	< 4489	1.434	152087500	235575		_	•	•	_	.,	۵.	93873985	1.64	2.94	0.71	4.76 0	0.951	119 5.	5.33 5.0	0 1.06
-	UT-0-7	0	0	1322500	1476 <	3255	< 4497	1.382	152087500	226895	12928	10260 1		•		20 351034	_	96288966	1.69	3.02	0.71	4.87	1.055	119 5.	.45 4.6	1.18
18 t Knaack and Kurama (2015)	UC-0-28	0	0	1322500	1476 <	3822	< 4489	1.164	152087500	260083						•		116738821	0.97	1.73	0.49	0	0.816	119 3.	.24 3.5	1 0.923
-	UC-0-7	0	0	1322500	1476 <	2973	< 4497	1.513	152087500	337123	•		196.03 162.06	.,		_		92397852	1.72	3.07	0.49	2	0.93	119 5.	.36 5.1	1.049
0	CC-0-28	0	0	1322500	1476 <	3484	> 9394	2.696	152087500	288000	13014	_				٠		65007346	1.02	4.77	0.00	•	1.653	0	_	
	CC-0-28	0	0	1322500	1476 <	3484	< 9394	2.696	152087500	288000					_			65007346	1.92	9.05	0.49	10.29	1.01	119 12.		
0	CC-0-7	0	0	1322500	1476 <	3131	> 9369	2.992	152087500	320429				.,	_			68715426	1.07	5.00	00:00	•	1.608	0 6.	6.70 3.40	1.971
	CC-0-7	0	0	1322500	1476 <	3131	> 9369	2.992	152087500	320429				•	_			68715426	2.19	10.26	0.49		1.09	119 14.		
-	UT-50-28	20	0	1322500	1476 <	3625	< 4489	1.238	152087500	203700	12232		197.22 164.44	.,		٠.	107275411	107275411	1.24	2.22	0.71		0.698	119 4.	_	
-	UT-50-7	20	0	1322500	1476 <	2911	< 4489	1.542	152087500	253827		10725 19			•			90619440	2.01	3.58	0.71		0.814	119 6.	6.38 6.9	
-	UC-50-28	20	0	1322500	1476 <	3864	< 4497	1.164	152087500	259274	12303	•	199.16 168.32				116783337	116783337	96.0	1.73	0.49		0.608	119 3.	23 4.70	0 0.687
-	UC-20-7	20	0	1322500	1476 <	3026	< 4489	1.483	152087500	330914		•		.,	-	_		93160950	1.67	2.98	0.49	_	0.773	119 5.		
0	CC-50-28	20	0	1322500	1476 <	3370	> 9369	2.780	152087500	297 403	13233	9735 19	197.55 165.1		_			66018333	1.03	4.83	0.00	•	1.071	0	6.42 4.9	
	CC-50-7	20	0	1322500	1476 <	2902	> 9369	3.228	152087500	345461					_	_		71876896	1.10	5.16	0.00	•	1.512	0		
35 0 Knaack and Kurama (2015)	CC-50-7	20	0	1322500	1476 <	2902	> 9369	3.228	152087500	345461		10278 19	_	47 4021259	-	_	21876896	71876896	2.26	10.58	0.49		1.033	119 14.		
-	UT-100-28	100	0	1322500	1476 <	3528	< 4489	1.272	152087500	209025			_		4,	_		103931190	1.32	2.35	0.71	3.94	0.533	119 4.	4.40 7.39	
-	UT-100-7	90	0	1322500	1476 <	2743	× 4497	1.639	152087500	269314	14145	÷		•				89052466	0.0	1.69	0:00		2.112	0	2.69	
40 t Knaack and Kurama (2015)	UC-100-28	90,	0 0	1322500	1476 <	3811	4497	1.180	152087500	263010		9300	199 167.99	99 29/9100	30 56148128			114539013	9.5	1.78	0.49			.		
42 t Khaack and Kurama (2015)	00-100-7	3 5	0 0	1322500	1476 <	2820	0307	2.540	152087500	342914 275903	19283		195.83 161.66			350249	63719808	63710808	9 00	3.15	94.0		0.637	6 W	5.48 7.52 6.13 5.11	0.719
-	CC-100-28	100	0	1322500	1476 <	3634	9394	2.585	152087500	275903	12713	•				_		63719808	1.88	8.82	0.49		0.821	119		
0	CC-100-7	100	0	1322500	1476 <	2849	> 9394	3.297	152087500	352098	14498			4	-	_		72754180	1.11	5.21	0.00		1.374	0 7.		_
	CC-100-7	100	0	1322500	1476 <	2849	< 9394	3.297	152087500	352098	•	_		4	-	_		72754180	2.28	10.69	0.49		0.916	119 14.	_	
0	H50-0	0	0	3000000	2168 <	9945	< 33718	3.390	450000000	250367	•			.,	w	_		95464166	0.68	9.63	00:00		0.879	0 10.	10.24 11.73	_
-	H20-0	0	0	3000000	2168 <	9945	< 33718	3.390	450000000	250367	•			.,	~	370422		95464166	1.31	18.54	0.25		_	1000		980.1
-	H20-20	20	0	3000000	2168 <	9185	< 24108	2.625	450000000	271032	•			7	0,	_	_	111711024	0.63	6.20	00:00			_	6.61 7.87	
t Seara-Paz	H20-20	20	0	3000000	2168 <	9185	< 24108	2.625	450000000	271032	•			4	0,	(,)	`	111711024	1.21	11.93	0.25	_		1000	_	_
51 0 Seara-Paz (2015)	H50-100	100	0	3000000	2168 <	8364	< 25698	3.072	450000000	297808		13073 26	267.32 234.63	4		79 427509	111435209	111435209	0.69	7.32	00:00	8.01	~	_	7.92 6.80	0 1.165
	H50-100	100	0	3000000	2168 <	8364	< 25698	3.072	4500000000	297808	•			4	0,	-	`	111435209	.38	14.09	0.25	_	۰.	1000		
0	H65-0	0	0	3000000	2168 <	8744	< 24878	2.845	450000000	259157	•			.,	ω.	e,		99844173	0.74	7.54	0.00	_	_	_		
-	H65-0	0	0	3000000	2168 <	8744	< 24878	2.845	450000000	259157				m.		(F)		99844173	1.42	14.48	0.26	14.55	1.256	1000	15.72 11.58	~
55 0 Seara-Paz (2015)	H65-50	20	0	3000000	2168 <	8284	< 19298	2.330	450000000	273229	15563			4.		e	116321056	116321056	0.67	5.15	0.00	5.24	1.056	0	5.53 4.9	7.1
t Seara-Paz	H65-50	90	0	3000000	2168 <	8284	19298	2.330	450000000	273229				4.		· ·	- '	116321056	1.29	98.88	0.26	10.29	1.068	000	9.6	7.13
5/ U Seara-Paz (2015)	1-65-100 1-66-100	8 8	0 0	3000000	2169	1007	20200	2.790	45000000	211704	10009	13220 20	200.34 233.00	90 4019020	20 9/45/690	30 437429 30 437420	11306/423	11306/423	0.7	0.30	90:00	10.42	1,099	9 6	0.90	0.00
	201-00-	3	>	20000000	0017	1071	20202	2.1.3C	490000000	0	6000			4	,,	4	_	10001450	3	F. 12	0.20	20.7	000	2	2	4

Applicability of ACI 318 and ACI 435R

Database — NAC, RAC and HVFAC beams —

RAC Corrections

1		iys)	0	450	450	0	450	0 !	450	0	450	0	450	0 9	6 0	119	0	119	0	119	0 ;	611	0 0		119	0	119	0 9	5 0	119	0	0	119	119	0	0 0	0	119	0 0	20	119	0	000	000	0	000	000	0	000	000
tion 35		s) t-t _o (days)	7	7 28	28	7	_	28	58	7		58	. 58	28	97	- 1-	- 58	28	7	7	28	97 78	- 1	. 8	28	7	7	28	97	- 1-	28	7	7 ac	28		28	07	7	28	2 ~	7	42	42	42	42	42 1	42 1	42	42	42 1
Deflection 34		t ₀ (days)	9.17	8.11	3.51	.89	2.47	6.23	1.69	6.13	12.45	4.04	3.72	0.86	0.00	4.62	99.0	3.51	0.94	5.11	3.15	91.0	3.40	910	5.38	7.94	96'9	0.86	07.4	*65°	1.93	4.14	2.90	7.39	1.12	0.97	1.27	7.62	5.11	4.60	14.68	11.73	3.39	108	3.80	5.20	1.58	1.96	9.63	1.34
33	a (t-t _o)	(mm)																															_													_			5.5	
32		K _{L2}		53 0.107																																													0.10	0.10
34		M.2 ()4 6645)4 5853										3013																			7893									.,	.,.			2355	227	1713	713	1810
Loading 30		KL1		24 0.104	_	_	_	_	_	_	24 0.104	_																					76 0.104				76 0.104								38 0.104	38 0.10	88 0.11	38 0.10	38 0.10	98 0.104
29 Lo		M _{L1} (Nr		102/							102		- '	1476							1476							1476			5 1476			1476		1476							7 2168			7 2168		5 21(210	210
28		Ρ⁄Ί		18.9										18.5					18.5							18.5		18.5					18.5													13.7			14.5	14.
27		L (mm)	320	3200	320	320	320	320	320	320	320	320	320	370	070	370	370	370	370	370	370	3/0	370	370	370	370	370	370	270	370	370	370	3700	370	370	370	3700	370	370	370	370	340	3400	340	340	340	340	3400	3400	340
26		E cs (%)	0.000	0.000	0.743	0.000	1.063	0.000	1.063	0.000	0.743	0.000	0.743	0.000	0.073	0.573	0.000	0.573	0.000	0.573	0.000	0.573	0.000	0000	0.573	0.000	0.573	0.000	0.073	0.573	0.000	0.000	0.573	0.590	0.000	0.000	0.000	0.593	0.000	0000	0.596	0.000	0.478	0.000	0.000	0.478	0.478	0.000	0.478	0.504
25		φ (-) φ	0.000	0.000	1.618	0.000	4.481	0.000	3.706	0.000	1.906	0.000	1.618	0.000	967'.	1.529	0.000	1.298	0.000	1.529	0.000	1.298	1 530	0.000	1.932	0.000	2.586	0.000	000.0	2.345	0.000	0.000	2.600	2.200	0.000	0.000	0.000	2.744	0.000	0000	2.916	0.000	1.199	1.473	0.000	1.896	1.199	0.000	1.792	2.438
24		E _s (MPa) 9	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000	200000
23	E _{cm} (t ₀)		23162	23162	27713	20867	20867	24967	24967	19937	19937	23854	23854	28649	20049	29745	35231	35231	27180	27180	31816	31816	28290	31371	31371	25519	25519	33119	33119	26219	29888	25477	25477	29104	22878	30983	24164	24164	30010	23743	23743	40069	40069	34437	30185	30185	35221	31803	31803	27161
22			1.91	1.91	2.29	1.84	1.84	2.20	2.20	1.65	1.65	1.97	1.97	2.37	2.37	2.46	2.91	2.91	2.25	2.25	2.63	2.63	2.37	2.74	2.74	2.20	2.20	2.92	25.3	2.29	2.55	2.19	2.19	2.67	2.07	2.88	2.21	2.21	2.75	2.15	2.15	3.31	3.31	3.06	2.79	2.79	2.91	2.76	2.76	2.42
properties 21	f,(ta) f,		2.87	3.44	3.44	2.76	2.76	3.30	3.30	2.47	2.47	2.96	2.96	3.55	6.00	3.69	4.37	4.37	3.37	3.37	3.95	3.95	3.55	4 11	4.11	3.30	3.30	4.38	9.43	3.43	3.82	3.29	3.29	4.00	3.11	4.32	3.31	3.31	4.12	3.23	3.23	4.97	4.97	4.59	4.18	4.18	4.37	4.14	4.14	3.63
Mechanical properties	f _{cm} (t ₀) f _r		21.46	30.72	30.72	19.77	19.77	28.30	28.30	15.90	15.90	22.76	22.76	32.83	32.83	35.39	49.65	49.65	29.55	29.55	40.49	40.49	32.71	43.91	43.91	28.28	28.28	49.96	20.67	30.67	37.97	28.14	28.14	41.70	25.12	48.55	28.56	28.56	44.12	27.09	27.09	64.22	64.22	54.80	45.39	45.39	49.62	44.64	34.64	34.28
M 19	_	.m (MPa) (I	30.50	30.50	30.50	28.10	28.10	28.10	28.10	22.60	22.60	22.60	22.60	32.60	32.00	50.30	49.30	49.30	42.00	45.00	40.20	40.20	46.30	43.60	43.60	40.20	40.20	49.60	43.00	43.60	37.70	40.00	40.00	41.40	35.70	48.20	40.60	40.60	43.80	38.50	38.50	209	60.7	2.5	42.9	42.9	46.9	42.2	422	32.4
18	fom(tase)	(MPa) f	88 :	8 8	78	78	88	8 8	28	78	8 1	87	8 8	8 8	8 8	8 8	8	88	78	88	8 8	8 8	8 8	3 %	8	78	78	8 8	8 8	8 8	38	78	8 8	8 8	28	88 8	8 8	78	8 8	3 8	28	78	8 8	8 8	8 8	8 8	8 8	78	8 8	1 8
17	ٽ	es (days) (I	4	4 4	4	4	4	4 :	4	14	4	4	7 ;	4 :	# ;	± 4	4	14	28	28	28	87 8	35	3.5	32	32	32	32	e e	28	58	28	28 28	28	28	58	58 78	28	5 28	28 28	28	15	15	5 15	15	15	5 5	15	15	28
16		t (00)	21.3	2 2	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	21.3	5 53	3 5	3 2	23	23	23	23	23	2 2	5 2	2 2	23	23	23	23	3 5	23	23	23	23	23	23	53	23	23	23 23	23 23	23	15	15	5 12	15	15	5 5	15	15 15	12:
15		RH (%) T	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	48.7	44.3	44.0	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	244.0	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	44.3	75	75	75	75	75	75	75	75	75
4		type	eformed	0.21 deformed 0.21 deformed	formed	aformed	stormed	sformed	eformed	eformed	eformed	stormed	stormed	stormed	0.00 deformed	formed	0.47 deformed	0.47 deformed	eformed	0.47 deformed	0.47 deformed	erormed	0.47 deformed	0.00 deformed	formed	eformed	aformed	0.47 deformed	paulied formed	0.47 deformed	0.47 deformed	0.47 deformed	eformed	0.00 deformed	stormed	0.47 deformed	0.47 deformed	0.47 deformed	0.47 deformed	0.47 deformed	0.47 deformed	0.20 deformed	sformed	formed	formed	0.20 deformed	atormed	formed	sformed	aformed
13		P ₂ (%) ty	0.21 d	0.21 d	0.21 d	0.21 d	0.21 d	0.21 d	0.21 d	0.21 d	0.21 d	0.21 0	0.21 d	0.00	0.00	000	0.47 d	0.47 d	0.47 d	0.47 d	0.47 d	0.47 0	0.47.0	000	0.00	0.00 d	00'0	0.47 d	0.47.0	0.47 d	0.47 d	0.47 d	0.47 d	0.00	0.00	0.47 d	0.47 d	0.47 d	0.47 0	0.47 d	0.47 d	0.20 d	0.20 d	0.20	0.20 d	0.20 d	0.22 d	0.22 d	0.22 d	0.22 d
12		d ₂ (mm) _F	29	29	29	59	59	59	58	29	59	29	59	0 0	0 0	0 0	30	30	30	30	8 3	8 8	30 30	9 0	0	0	0	30	30	3 %	30	30	30	0	0	9 9	3 9	30	3 30	8 8	30	47	47	47	47	47	32	32	32	32
=======================================		d" (mm) d	171	17	171	171	171	171	171	171	171	171	171	0 0	> <	0 0	200	200	200	200	200	200	200	007	0	0	0	200	2002	200	200	200	200	0	0	500	200	200	200	200	200	253	253	253	253	253	268	268	268	268
Rei nforcement 10		A _{s2} (mm²) d	57	57	57	22	22	22	22	22	57	57	57	0 0	> <	0 0	142	142	142	142	142	142	142	2 0	0	0	0	142	142	142	142	142	142	0	0 !	142	142	142	142	142	142	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.6	100.6
9 Rei		p ₁ (%) A	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	0.58	25.52	26.	3.5	1.32	1.32	1.32	1.32	25.5	25. 4	. t	1 8	1.32	1.32	1.32	1.32	35. 5	1 2	1.32	1.32	5, 5	1.32	1.32	5.5	1.32	1.32	5. 5. 5. 5.	1 2	1.32	0.81	0.81	0.0	0.81	0.81	0.86	0.86	98.0	0.86
00			169	169	169	169	169	169	169	169	169	169	169	200	902	200	200	200	200	200	500	200	300	200	200	200	200	500	300	500	200	200	500	200	200	500	500	200	200	500	200	249	249	249	249	249	234	234	234	234
7		A _{s1} (mm²) d (mm)	157	157	157	157	157	157	157	157	157	157	157	397	20.7	397	397	397	397	397	397	287	307	397	397	397	397	397	307	397	397	397	397	397	397	397	397	397	397	387	397	402	405	402	402	402	402	402	402	402
tion 6			200	200	200	200	200	200	200	200	200	200	500	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	300	300	300	300	300	300	300	300	300
Cross-section 5 6		b (mm) h (i	160	8 6	160	160	160	160	9	160	160	160	160	92	8 5	65	150	150	150	150	150	92.5	8 5	3 5	150	150	150	150	8 5	150	150	150	05 15	3 25	150	8 5	8 25	150	95 5	3 25	150	200	500	200	200	200	700 700 700	200	500	200
			0	0 0	0	0	0	0	0	9.0	0.5	0.5	0.5	0 0			0	0	0	0	0 0	0 0	> <		0	0	0	0 0		0	0	0	0 0	0	0	0 0	0	0	0 0	. 0	0	0	0 0	0 0	0	0 0	0	0	0 0	, 0
Green concrete		(%) FA/cm	0	0 0	0	100	100	100	100	0	0	0	0 0	0 0			0	0	0	0	0 0	0 0	> <	9 05	20	20	20	20	00 00	20	20	20	100	9 0	100	9 5	9 0	100	90 5	9 00	100	0	0 9	20 20	100	100	00	20	20	90
ອຶ		RAC (%)																																																
2		Specimen	7	28	28	2		58	28	AC7	HVFAC7	AC28	AC28	9-58	97-70	: 2	UC-0-28	JC-0-28	7-0	7-0	9-58	97-78		IT-50-28	UT-50-28	20-7	UT-50-7	UC-50-28	20-7	20-7	CC-50-28	20-7	CC-50-7	UT-100-28	UT-100-7	UC-100-28	UC-100-7	UC-100-7	100-28	CC-100-7	CC-100-7	φ.	9 6	20 99	-100	-100	P P	-20	50	H-65-100
mation		Sper	NAC	NAC28	NAC	RAC7	RAC	RAC28	RAC28	HVFAC7	₹!	À.	₹!	<u> </u>	01-0-Z	11-0-7	3	TON	UC-0-7	UC-0-7	CC-0-28	87-0-58 CC-0-58	200	3 =	5	UT-50-7	5	Š	UC-90-2	UC-50-7	8	CC-50-7	CC-50-7	55	5	9 5	9 5	9	9 5	88	8	H20	H20-0	H50-50	H50-100	H50-100	H65-0	H65-50	H65-50	19 ±
Study information													10000	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)									
-			(2)	5.5	17)	17)	117)	5	(2017)	17)	5	(7)	(2)	Knaack and Kurama (2015)	Knaack and Kurama (Knaack and Kurama (2015)	Knaack and Kurama (Knaack and Kurama (Knaack and Kurama (2015)	Knaack and Kurama (2015) Knaack and Kurama (2015)	Knaack and Kurama (2015) Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (2015)	Knaack and Kurama (Knaack and Kurama (2015)	Knaack and Kurama (Knaack and Kurama (2015)	Knaack and Kurama (2015) Knaack and Kurama (2015)	Knaack and Kurama (CT.	ız (2015)	rz (2015)	7 (2015)	z (2015)	z (2015)	z (2015)	z (2015)	rz (2015)	z (2015)											
		Author	0 Tošić (2017)	t Tosic (2017 0 Tošić (2017	t Tošić (2017)	0 Tošić (2017	t Tošić (2017	0 Tošić (2017	t Tošić (20	0 Tošić (2017)	t Tošić (2017	0 TOSIC (2017	t Tosic (2017	0 Knaack a	1 Knaack a	t Knaack a	0 Knaack a	t Knaack a	0 Knaack a	t Knaack a	0 Knaack a	t Knaack &	U Knaack a	0 Knaack a	t Knaack a	0 Knaack a	t Knaack a	0 Knaack a	O Knasck a	t Knaacka	0 Knaack a	t Knaack a	0 Knaack a	t Knaack a	t Knaack a	0 Knaack a	0 Knaack a	t Knaack a	0 Knaack 6	0 Knaacka	t Knaack a	0 Seara-Pa	t Seara-Paz (2015)	+ Seara-Pa	0 Seara-Paz (2015)	t Seara-Paz (2015)	t Seara-Paz (2015)	0 Seara-Paz (2015)	t Seara-Paz (2015)	t Seara-Paz (2015)
			- 1	N M	4	2	9	۷.	00	6	9	= :	12	5 5	± 4	<u>.</u> 4	1	18	19	8	5 2	3 8	3 8	1 %	8	27	28	8 8	8 %	5 8	8	8	K %	37.	8	8 8	₹ 1	45	\$ 4	#	46	47	& £	2 5	51	23 23	8 %	55	28 23	8

Applicability of ACI 318 and ACI 435R

Database — NAC, RAC and HVFAC beams — Calculated Deflections with RAC Corrections

31.7													All section of				100	of the section		1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -						
Study Imormation		Gree	Green concrete		Cracking	Cracking moment			Uncracked cross-section				uny craci	ross-section			Effective moment of mertia	ent of Inertia						Derlect		
E	2	3	4	2	9	7	80	6	10	=	12 13	3 14	15	16	17	18	19	20	21	22 2	23	24 25	5 26	27	28	53
•					1				4	4		4			4				aentri aentra	JL2 Beff.cs		a _{sim} / a _{oxp}		anumint.		anumint/aexp
4 0 Tešis (2017)	Specimen Specimen	KAC (%)	- Acm	12	3w (Mm) ws	ç	m (NIM) IM	2 7EC	7222	700	E) %	١.	Z _{II,1}	1 le (mm)		ō	leff 1915	leff,max 0754E055	470	4	00		r-t ₀ (aa	iys) (mini)	dexp (mm)	
2 + Točić (2017)	NACZ	0 0	0 0	106667	1024 <			3.756	10666667	128486			177.6 155.	•			27345023	27345023	4 25	28.34	0.00	33.00	742	450 31	31.65 18.02	
3 0 Tošić (2017)	NAC28	. 0	0	1066667	1024 <	2447 <	2289	2.810	10666667	107386	8218	6673 179	79.15 158.31				26104710	26104710	1.51	8.86	00:0	9.33	1.151	0		-
4 t Tošić (2017)	NAC28	0	0	1066667	1024 <	2447 <	2 6877	2.810	106666667	107386		_	•			_	26104710	26104710	3.38	19.89	0.41	21.32	1.291	450 22.03	03 16.5	- 2.3
5 0 Tošić (2017)	RAC7	100	0	1066667	1024 <	1964	7947	4.046	106666667	142615		_	•	-		~	29284531	29284531	1.78	12.41	0.00	14.20	1.304	0 13.		9 1.2
6 t Tošić (2017)	RAC7	100	0	1066667	1024 <	1964	7947	4.046	106666667	142615		_	76.65 153.32	1357505	5 28098596	3 174322	29284531	29284531	7.93	55.18	0.59	63.70 2	2.835	450 61.	61.58 22.47	7 2.7
7 0 Tošić (2017)	RAC28	100	0	1066667	1024 <	2348 <	6438	2.742	106666667	119200		6957 178	•	•	.,		28289446	28289446	1.54	8.40	0.00	8.95	1.436	0		3 1.4
8 t Tošić (2017)	RAC28	100	0	1066667	1024 <	2348 <	6438	2.742	106666667	119200				•	٥.	_	28289446	28289446	5.94	32.33	0.59	34.98	2.381	450 36.	-	9 2.4
9 0 Tošić (2017)	HVFAC7	0	0.5	1066667	1024 <	1757 <	5593	3.183	106666667	149270		_	•	8 1432544	4 29157505	_	31560395	31560395	1.73	7.96	0.00	9.69	1.581	0	9.22 6.13	3 1.50
10 t Tošić (2017)	HVFAC7	0	0.5	1066667	1024 <	1757 <	5593	3.183	106666667	149270		_	76.23 152.48	•		_	31560395	31560395	4.27	19.62	0.41	24.30	1.952	450 23.	23.14 12.45	5 1.859
11 0 Tošić (2017)	HVFAC28	0	0.5	1066667	1024 <	2106 <	5454	2.590	106666667	124759		_	7.86 155.73	•		_	29896618	29896618	1.53	6.81	0.00	7.50	1.857	0 7	73 4.0	1.9
12 t Tošić (2017)	HVFAC28	0	0.5	1066667	1024 <	2106 <	5454	2.590	106666667	124759	7.188	7084 177	177.86 155.73	3 1157451		156808	29896618	29896618	3.43	15.27	0.41	17.20	1.973	450 17.7	76 8.7.	2 2.0
14 t Knaack and Kurama (2015)	UT-0-28	0	0	1322500	1476 <	3131 <	4489	1.434	152087500	235575	13187 10	195	5.28 160.55	•	_	٠,	93873985	93873985	1.64	2.94	0.71	4.76	0.951	119 5	33 5.0	1.06
16 t Knaack and Kurama (2015)	UT-0-7	0	0	1322500	1476 <	3255 <	< 4497	1.382	152087500	226895	_	0260 19	•	•	_		96288966	96288966	1.69	3.02	0.71	4.87	1.055	119 5.	45 4.6	1.180
-	UC-0-28	0	0	1322500	1476 <	3822 <	4489	1.164	152087500	260083		`.	•				116738821	116738821	0.97	1.73	0.49	2.86	0.816	119 3.	24 3.5	1 0.92
_	UC-0-7	0	0	1322500	1476 <	2973 <	< 4497	1.513	152087500	337123			196.03 162.06			_	92397852	92397852	1.72	3.07	0.49	4.75	0.93	119 5.	36 5.1	1.0
0	CC-0-28	0	0	1322500	1476 <	3484	9394	2.696	152087500	288000					Ī		65007346	65007346	1.02	4.77	00.0	5.21	1.653	0 6.	_	10
22 t Knaack and Kurama (2015)	CC-0-28	0	0	1322500	1476 <	3484 ^	9394	2.696	152087500	288000	13014 8		7.92 165.85	5 3301437	7 60326312	٠.	65007346	65007346	1.92	9.02	0.49	10.29	1.01	119 12.		_
0	CC-0-7	0	0	1322500	1476 <	3131 <	6986	2.992	152087500	320429	•		196.66 163.31		_		68715426	68715426	1.07	5.00	0.00	5.47	1.608	0	_	_
24 t Knaack and Kurama (2015)	CC-0-7	0	0	1322500	1476 <	3131 <	6986	2.992	152087500	320429	13770 10	196 196	6.66 163.31		-		68715426	68715426	2.19	10.26	0.49	11.65	1.09	119 14	14.22 10.6	_
-	UT-50-28	20	0	1322500	1476 <	3625 *	4489	1.238	152087500	215137	•						108417806	108417806	1.63	2.92	0.71		0.879	119 5.	31 5.38	3 0.987
28 t Knaack and Kurama (2015)	UT-50-7	20	0	1322500	1476 <	2911 4	4489	1.542	152087500	264470	•	•	-		-	_	92130812	92130812	2.86	5.11	0.71		1.121	119 8.	8.82 6.9	
-	UC-50-28	20	0	1322500	1476 <	3864	4497	1.164	152087500	276668				.,		_	117847783	117847783	1.16	2.08	0.49		0.715	119 3.		_
	UC-50-7	20	0	1322500	1476 <	3026	4489	1.483	152087500	349486	•	195 195	195.59 161.17				95182544	95182544	2.20	3.93	0.49		0.994	119 6.	72 5.99	
0	CC-50-28	20	0	1322500	1476 <	3370	6986	2.780	152087500	306578					-		67426290	67426290	1.04	4.88	0.00	5.33	1.081	0		
-	CC-50-7	20	0	1322500	1476 <	2902	6986	3.228	152087500	359656	•	195	195.24 160.47			_	73990182	73990182	1.1	5.22	00:00		1.529	0 7.	7.04 4.14	1.700
0	CC-50-7	20	0	1322500	1476 <	2902	6986	3.228	152087500	359656							73990182	73990182	3.11	14.54	0.49			_	_	
-	UT-100-28	100	0	1322500	1476 <	3528	4489	1.272	152087500	231890	•		_		_		106365216	106365216	1.95	3.48	0.73			119 6.	6.23 7.3	_
-	UT-100-7	100	0	1322500	1476 <	2743	4497	1.639	152087500	294998		_				_	92725718	92725718	0.99	1.77	0.00		2.222	0	85 1.12	
-	UC-100-28	100	0	1322500	1476 <	3811	4497	1.180	152087500	295748							116670634	116670634	1.33	2.37	0.49		0.635	119 4.	28 5.94	
42 t Knaack and Kurama (2015)	UC-100-7	8 5	0 0	1322500	1476 <	2920	4497	1.540	152087500	379196	15089 10	0626 194	194.58 159.15	5 4443710	74573301	376507	95794072	95794072	2.62	4.69	0.51	7.04	0.923	119	8.00 7.6	1.050
	CC-100-28	3 5	0 0	1322500	1476 <	3634	9394	2.585	152087500	305331							68226412	68226412	2 49	11.71	0.00		1 078	119 15	15.95	
	CC-100-7	100	0	1322500	1476 <	2849	9394	3.297	152087500	385917	_	_	·	•			77666387	77666387	1.14	5.35	0.00		1.411	0 7		_
	CC-100-7	100	0	1322500	1476 <	2849 <	9394	3.297	152087500	385917	_	_	194.37 158.73	7		.,	77666387	77666387	3.42	16.07	0.51	20.00	1.362	119 22.		_
47 0 Seara-Paz (2015)	H50-0	0	0	3000000	2168 <	9945 *	33718	3.390	450000000	250367			9.57 239.13	.,		370422	95464166	95464166	0.68	9.63	00:00		0.879	0 10.		
-	H50-0	0	0	3000000	2168 <	9945 <	33718	3.390	450000000	250367	`			.,	_		95464166	95464166	1.31	18.54	0.25	•	_	1000	_	_
0	H50-50	20	0	3000000	2168 <	9185	24108	2.625	450000000	291316	•			7	-	4	117066286	117066286	0.65	6.35	0.00		0.801	0	_	
	H50-50	20	0	3000000	2168 <	9185 <	24108	2.625	450000000	291316	•			7		~	117066286	117066286	1.38	13.58	0.25	Ŭ	_	1000 14.	14.79 14.08	3 1.050
51 0 Seara-Paz (2015)	H50-100	100	0	3000000	2168 <	8364	: 25698	3.072	4500000000	332354	•	-		4,	-	4	120338183	120338183	0.72	7.56	0.00	•	~	_		_
	H50-100	100	0	3000000	2168 <	8364 v	25698	3.072	450000000	332354	•	_		u)	-	4	120338183	120338183	1.77	18.64	0.25	20.66	1.359	1000	20.50 15.20	_
0	H65-0	0	0	3000000	2168 <	8744 <	24878	2.845	4500000000	259157	_		269.29 238.58	е) і	_	е .	99844173	99844173	0.74	7.54	0.00	7.45	_	_	8.05 6.7	1.200
	He5-0	0	0	3000000	2168 <	8744 •	24878	2.845	450000000	259157	15140 12		269.29 238.5	(5)	_		99844173	99844173	1.42	14.48	0.26	14.55	ω.	1000 15.	15.72 11.5	3 1.358
0	H65-50	20	0	3000000	2168 <	8284	19298	2.330	450000000	287 007		12800	268 23	4368862		4.	119581516	119581516	0.69	5.26	0.00	5.35	1.079	0	5.67 4.9	34.1
56 t Seara-Paz (2015)	H65-50	20	0 0	3000000	2168 <	8284	19298	2.330	450000000	287007	- '	_ `		4 1		4.	119581516	119581516	1.63	12.49	0.26	12.94	1.344	13.	72 9.6	1.425
۰ د	H-65-100	00,	0 0	3000000	2168 <	7264	20268	2.790	450000000	336062	17322	3623 265	265.94 231.88	.,		4.	119403850	119403850	0.80	6.52	0.00	6.59	1.435	0 7	7.17 4.5	e
58 t Seara-Paz (2015)	H-69-100	3	Þ	300000	V 0017	+07/	20200	77.730	450000000	330002			205.94 231.8	9201123	3 103450184	464049	1.19403850	119403850	16.3	10.71	0.27	0.10	20.	000	8	-

Bibliography

- ACI 209.2R-08 (2008). Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. American Concrete Institute, Farmington Hills, MI.
- ACI 209R-92 (1992). Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures. American Concrete Institute, Farmington Hills, MI.
- ACI 318-11 (2011). Building code requirements for structural concrete (ACI 318-11) and commentary. American Concrete Institute, Farmington Hills, MI.
- ACI 435R-95 (2003). *Control of deflection in concrete Structures*. American Concrete Institute, Farmington Hills, MI.
- ACI Committe 232 (1986). Use of fly ash in concrete Reported by ACI Comittee 232, volume 96. American Concrete Institute, Detroit.
- Acić, M. (2012). The history and development of reinforced concrete in Europe and the world with an overview of the conditions in the Kingdom of Serbia. In Acić, M. and Marinković, S., editors, *One hundred years of teaching reinforced concrete at the University of Belgrade's Faculty of Civil Engineering*, pages 13–37. Faculty of Civil Engineering, University of Belgrade Institute of Materials and Structures, Belgrade.
- Acker, P., Bažant, Z., Chem, J., Huet, C., and Wittmann, F. (1998). Measurement of time-dependent strains of concrete. *Materials and Structures*, 31(October 1998):507–512.
- Acker, P. and Ulm, F. J. (2001). Creep and shrinkage of concrete: Physical origins and practical measurements. *Nuclear Engineering and Design*, 203:143–158.
- Ajdukiewicz, A. and Kliszczewicz, A. (2002). Influence of recycled aggregates on mechanical properties of HS/HPC. *Cement and Concrete Composites*, 24:269–279.

- Ajdukiewicz, A. and Kliszczewicz, A. (2011). Long-term behaviour of reinforced-concrete beams and columns made of recycled aggregate. In *fib Symposium: Concrete engineering for excellence and efficiency, June 8-10*, pages 479–482.
- Ajdukiewicz, A. B. and Kliszczewicz, A. T. (2007). Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. *Journal of Advanced Concrete Technology*, 5(2):259–273.
- Al-Manaseer, A. and Prado, A. (2015). Statistical Comparisons of Creep and Shrinkage Prediction Models Using RILEM and NU-ITI Databases. *ACI Materials Journal*, 112(1):125–135.
- Arangjelovski, T., Markovski, G., and Mark, P. (2012). Influence of repeated variable load on long-term behavior of concrete elements. *Journal of Civil Engineering and Architecture*, 8(3):302–314.
- Arezoumandi, M., Ortega, C. a., and Volz, J. S. (2015). Flexural Behavior of High-Volume Fly Ash Concrete Beams. *Transportation Research Record: Journal of the Transportation Research Board*, 2508:22–30.
- Arezoumandi, M., Volz, J. S., Ortega, C. A., and Myers, J. J. (2013). Effect of total cementitious content on shear strength of high-volume fly ash concrete beams. *Materials and Design*, 46:301–309.
- ASTM C188-15 (2015). Standard Test Method for Density of Hydraulic Cement. ASTM International, West Conshohocken, PA.
- ASTM-C618-12a (2012). Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. ASTM International, West Conshohocken, PA.
- Atiş, C. D. (2003). High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage. *Journal of Materials in Civil Engineering*, 15(April):153–156.
- Bakoss, S., Gilbert, R., Faulkes, K., and Pulmano, V. (1983). Long-term tests on reinforced concrete beams. Technical report, University of New South Wales, Kensington.
- Bažant, Z. and Baweja, S. (1995a). Creep and shrinkage prediction model for analysis and design of concrete structures model B3. *Materials and Structures*, 28:357–365.

- Bažant, Z. and Baweja, S. (1995b). Justification and refinements of Model B3 for concrete creep and shrinkage 1. Statistics and sensitivity. *Materials and Structures*, 28:415–430.
- Bažant, Z. and Baweja, S. (1995c). Justification and refinements of model B3 for concrete creep and shrinkage 2. Updating and theoretical basis. *Materials and Structures*, 28:488–495.
- Bažant, Z., Hauggaard, A. B., Baweja, S., and Ulm, F.-j. (1997). Microprestress-solidification theory for concrete creep. I: Aging and drying effects. *Journal of Engineering Mechanics*, 123(11):1188–1194.
- Bažant, Z., Hubler, M., and Wendner, R. (2015). RILEM draft recommendation: TC-242-MDC multi-decade creep and shrinkage of concrete: material model and structural analysis. *Materials and Structures*, 48:753–770.
- Bažant, Z. and Li, G. (2008). Comprehensive database on concrete creep and shrinkage. Technical report, Infrastructure Technology Institute of Northwestern University, Evanston, IL.
- Bažant, Z. and Li, G. (2013). NU-ITI database on concrete creep and shrinkage.
- Bažant, Z. and Panula, L. (1978). Practical prediction of time-dependent deformations of concrete. Part I: Shrinkage. Part II: Basic creep. Part III: Drying creep. Part IV: Temperature effect on basic creep. *Materials and Structures*, 11:307–434.
- Beeby, A. and Narayanan, S. (2005). *Designer's guide to Eurocode 2: Design of concrete structures*. Thomas Telford, London.
- Belin, P., Habert, G., Thiery, M., and Roussel, N. (2014). Cement paste content and water absorption of recycled concrete coarse aggregates. *Materials and Structures*, 47(9):1451–1465.
- Branson, D. and Metz, G. (1963). Instantaneous and time-dependent deflections of simple and continuous reinforced concrete beams Alabama Highway Research Report. Technical report, U.S. Department of Commerce, Bureau of Public Roads.
- C512/512M-10, A. (2010). *Standard Test Method for Creep of Concrete in Compression*. ASTM International, West Conshohocken, PA.

- CEB (1985). CEB Design Manual on Cracking and Deformations. Comite Euro-International Du Beton, Lausanne.
- CEB-FIP (1978). Model Code 1978. Comite Euro-International Du Beton, Paris.
- CEB-FIP (1991). Model Code 1990. Comite Euro-International Du Beton, Paris.
- Chen, J., Kuder, K. G., Lehman, D. E., Roeder, C. W., and Lowes, L. N. (2017). Creep modeling of concretes with high volumes of supplementary cementitious materials and its application to concrete-filled tubes. *Materials and Structures*, 50(1):89.
- Choi, W.-C. and Yun, H.-D. (2013). Long-term deflection and flexural behavior of reinforced concrete beams with recycled aggregate. *Materials & Design*, 51:742–750.
- Clarke, G., Sholz, H., and Alexander, M. (1988). New method to predict the creep deflection of cracked reinforced concrete flexural members. In *Proc. ACI* 85, pages 95–101.
- Coelho, A. and De Brito, J. (2013a). Economic viability analysis of a construction and demolition waste recycling plant in Portugal Part I: Location, materials, technology and economic analysis. *Journal of Cleaner Production*, 39:338–352.
- Coelho, A. and De Brito, J. (2013b). Economic viability analysis of a construction and demolition waste recycling plant in Portugal Part II: Economic sensitivity analysis. *Journal of Cleaner Production*, 39:329–337.
- Corinaldesi, V. (2010). Mechanical and elastic behaviour of concretes made of recycled-concrete coarse aggregates. *Construction and Building Materials*, 24(9):1616–1620.
- Corley, W. G. and Sozen, M. A. (1966). Time-Dependent Deflections of Reinforced Concrete Beams. *Journa of the American Concrete Institute*, 63:373–386.
- Cottingham, W., Fluck, P. G., and Washa, G. (1961). Creep of Prestressed Concrete Beams. *Proc. ACI*, 57(2):929–936.
- Criel, P., Caspeele, R., Matthys, S., and Taerwe, L. (2014). Creep experiments and analysis of T-shaped beams subjected to loading and unloading at young age. In *Life-Cycle of Structural Systems: Design, Assessment, Maintenance and Management (IALCCE-2014)*, pages 2186–2192. CRC Press.

- Dajung, D. (1984). Experimental research on reinforced and prestressed concrete beams under long-term loading. In *RILEM Symposium on long-term observation of concrete structures*, pages 58–67.
- Dragaš, J., Tošić, N., Ignjatović, I., and Marinković, S. (2016). Mechanical and time-dependent properties of high-volume fly ash concrete for structural use. *Magazine of Concrete Research*, 68(12):632–645.
- Du Plessis, C. (2002). Agenda 21 for: Sustainable construction in developing countries a discussion document. CSIR Building and Construction Technology, Pretoria.
- Duan, A., Li, Z.-y., Zhang, W.-c., and Jin, W.-l. (2016). Flexural behaviour of reinforced concrete beams under freeze–thaw cycles and sustained load. *Structure and Infrastructure Engineering*, 2016:1–9.
- Duran, X., Lenihan, H., and O'Regan, B. (2006). A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland. *Resources, Conservation and Recycling*, 46(3):302–320.
- EN 1097-2 (2010). Tests for mechanical and physical properties of aggregates Part 2: Methods for the determination of resistance to fragmentation. CEN, Brussels.
- EN 1097-6 (2000). Tests for mechanical and physical properties of aggregates Part 6: Determination of particle density and water absorption. CEN, Brussels.
- EN 12350-2 (2010). Testing fresh concrete Part 2: Slump-test. CEN, Brussels.
- EN 12620 (2010). Aggregates for concrete. CEN, Brussels.
- EN 14630 (2006). Products and systems for the protection and repair of concrete structures Test methods Determination of carbonation depth in hardened concrete by the phenolphthalein method. CEN, Brussels.
- EN 197-1 (2000). Cement Part 1: Composition, specifications and conformity criteria for common cements. CEN, Bru.
- EN 1992-1-1 (2004). Eurocode 2: Design of concrete structures Part 1-1: General rules and rules for buildings. CEN, Brussels.

- EN 206-1 (2000). Concrete Part 1: Specification performance, production and conformity. CEN, Brussels.
- EN 450-1 (2012). Fly ash for concrete Part 1: Definition, specifications and conformity criteria. CEN, Brussels.
- EN 933-1 (1997). Tests for geometrical properties of aggregates Part 1: Determination of particle size distribution Sieving method. CEN, Brussels.
- Espion, B. (1988). Long-Term Sustained Loading Test on Reinforced Concrete Beams. Université Libre de Bruxelles Service Génie Civile, Brussels.
- Espion, B. and Halleux, P. (1990). Long-Term Deflections of Reinforced Concrete Beams: Reconsideration of Their Validity. *ACI Structural Journal*, 87(2):232–236.
- Evangelista, L. and de Brito, J. (2007). Mechanical behaviour of concrete made with fine recycled concrete aggregates. *Cement and Concrete Composites*, 29(5):397–401.
- Faber, O. (1928). Plastic Yield, Shrinkage, and Other Problems of Concrete, and their Effect on Design. *Minutes of the Proceedings of the Institution of Civil Engineers*, 225(1928):27–73.
- Fan, Y., Xiao, J., and Tam, V. W. (2014). Effect of old attached mortar on the creep of recycled aggregate concrete. *Structural Concrete*, 15(2):169–178.
- Fathifazl, G., Abbas, A., Razaqpur, A. G., Isgor, O. B., Fournier, B., and Foo, S. (2009). New Mixture Proportioning Method for Concrete Made with Coarse Recycled Concrete Aggregate. *Journal of Materials in Civil Engineering*, 21(10):601–611.
- Fathifazl, G. and Razaqpur, G. (2013). Creep rheological models for recycled aggregate concrete. *ACI Materials Journal*, 2(110):115–125.
- Ferreira, L., de Brito, J., and Barra, M. (2011). Influence of the pre-saturation of recycled coarse concrete aggregates on concrete properties. *Magazine of Concrete Research*, 63(8):617–627.
- FIB (2013). *fib Model Code for Concrete Structures 2010*. International Federation for Structural Concrete (fib), Lausanne.

- FIB Bulletin 52 (2010). Structural Concrete Textbook on Behaviour, Design and Performance, volume 2. International Federation for Structural Concrete (fib), Lausanne.
- FIB Task Group 4.4 (2008). Practitioner's guide to finite element modelling of reinforced concrete structures. Technical report, International Federation for Structural Concrete (fib), Lausanne.
- Fisher, C. and Werge, M. (2011). EU as a Recycling Society.
- Gao, Z., Liang, R. Y., and Patnaik, A. K. (2016). Effects of sustained loading and preexisting cracks on corrosion behavior of reinforced concrete slabs. *Construction and Building Materials*, 124:776–785.
- Gardner, N. J. (2004). Comparison of Prediction Provisions for Drying Shrinkage and Creep of Normal Strength Concretes. *Canadian Journal of Civil Engineering*, 31(5):767–775.
- Gardner, N. J. and Lockman, M. J. (2001). Design provisions for drying shrinkage and creep of normal-strength concrete. *ACI Materials Journal*, 98(2):159–167.
- Ghali, A., Favre, R., and Eldbadry, M. (2002). *Concrete Structures. Stresses and Deformation*. Taylor & Francis, New York.
- Gilbert, R. and Nejadi, S. (2004). An experimental study of flexural cracking in reinforced concrete members under sustained loads. Technical report, University of New South Wales, Kensington.
- Gilbert, R. and Ranzi, G. (2011). *Time-dependent behaviour of conrete structures*. Spon Press, New York.
- Glanville, W. and Thomas, F. (1939). *Studies in Reinforced Concrete: Further Investigations on the Creep Or Flow of Concrete Under Load. IV.* HM Stationary Office, London.
- Goméz-Soberón, J. M. (2002). Creep of concrete with substitution of normal aggregate by recycled concrete aggregate. *ACI Special Publication SP209-25*, pages 461–474.
- Gómez-Soberón, J. M. (2002). Shrinkage of concrete with replacement of aggregate with recycled concrete aggregate. *ACI Special Publications*, 209:475–496.

- Gribniak, V., Kaklauskas, G., and Bacinskas, D. (2008). Shrinkage in reinforced concrete structures: A computational aspect. *Journal of Civil Engineering and Management*, 14(1):49–60.
- Habert, G., Marinković, S., Brumaud, C., Ignjatović, I., Dragaš, J., and Tošić, N. (2017). Physical and Mechanical Properties of Recycled Concrete Aggregate Exposed to Natural and Accelerated Carbonation. In De Schutter, G., De Belie, N., Janssens, A., and Van Den Bossche, N., editors, *Proceedings of the Fourteenth International Conference on Durability of Building Materials and Components (XIV DBMC 2017)*, pages 1–7, Ghent. RILEM.
- Hajnal-Konyi, K. (1963). Tests on beams with sustained loading. *Magazine of Concrete Research*, 15(43):3–14.
- Hatt, W. (1907). Notes on the effect of time element in loading reinforced concrete beams. In *Proceedings of the ASTM*, pages 421–433.
- Hubler, M. H., Wendner, R., and Bažant, Z. (2015a). Comprehensive Database for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording. ACI Materials Journal, 112(4).
- Hubler, M. H., Wendner, R., and Bažant, Z. (2015b). Statistical justification of Model B4 for drying and autogenous shrinkage of concrete and comparisons to other models. *Materials and Structures*, 48:797–814.
- Hwang, K., Noguchi, T., and Tomosawa, F. (2004). Prediction model of compressive strength development of fly-ash concrete. *Cement and Concrete Research*, 34(12):2269–2276.
- Ignjatović, I. (2009). Recycled Aggregate Concrete and its Application in Reinforced Concrete Structural Elements. Magister dissertation, University of Belgrade.
- Ignjatović, I. (2013). *Ultimate strength of reinforced recycled concrete beams*. Doctoral dissertation, University of Belgrade.
- Ignjatović, I., Marinković, S., Mišković, Z., and Savić, A. (2013). Flexural behavior of reinforced recycled aggregate concrete beams under short-term loading. *Materials and Structures*, 469(6):1045–1059.

- ISO 4012 (1978). Concrete Determination of compressive strength of test specimens. International Organization for Standardization, Geneva.
- ISO 4013 (1978). *Concrete Determination of flexural strength of test specimens*. International Organization for Standardization, Geneva.
- ISO 4108 (1980). *Concrete Determination of tensile splitting strength of test specimens*. International Organization for Standardization, Geneva.
- ISO 6784 (1982). *Concrete Determination of static modulus of elasticity in compression*. International Organization for Standardization, Geneva.
- Ivković, M. and Pakvor, A. (1989). *Handbook on Concrete and Reinforced Concrete According to PBAB* 87. Faculty of Civil Engineering, University of Belgrade Institute of Materials and Structures, Belgrade.
- Jaccoud, J.-P. and Favre, R. (1982). Fleche des structures en béton armé: Verification experimentale d'une methode de calcul. Technical report, Ecole Polytechnique Federale de Lausanne, Lausanne.
- Jirásek, M. and Bažant, Z. (2001). *Inelastic analysis of strutures*. John Wiley & Sons, Inc., New York.
- Kang, T. H.-K., Kim, W., Kwak, Y.-K., and Hong, S.-G. (2014). Flexural Testing of Reinforced Concrete Beams with Recycled Concrete Aggregates (with Appendix). *Structural Journal*, 111(3):607–616.
- Knaack, A. M. and Kurama, Y. C. (2015). Sustained Service Load Behavior of Concrete Beams with Recycled Concrete Aggregates. *ACI Structural Journal*, 112(5):565–578.
- Langer, W. H., Drew, L. J., and Sachs, J. J. (2004). Aggregate and the Environment. Technical report, American Geological Institute, Alexandria, VA.
- Łapko, A. and Grygo, R. (2010). Long term deformations of recycled aggregate concrete (RAC) beams made of recycled concrete. In *Modern Building Materials, Structures and Techniques*, pages 709–712, Vilnius. Vilnius Gediminas Technical University.
- Le Chatelier, H. (1887). *Experimental researches on the constitution of hydraulic mortars*. McGraw Publishing Company, New York.

- Leite, M. B. (2001). Evaluation of the mechanical properties of concrete made with aggregates recycled from construction and demolition waste. Phd, Federal University of Rio Grande do Sul.
- L'Hermite, R. (1960). Volume changes of concrete. In *Proceedings of the Fourth International Symposium on the Chemistry of Cement*, pages 659–694, Washington DC.
- Li, X. (2009). Recycling and reuse of waste concrete in China. Part I. Material behaviour of recycled aggregate concrete. *Resources, Conservation and Recycling*, 53(3):107–112.
- Liu, X.-j., Yu, Z.-w., and Jiang, L.-z. (2008). Long term behavior of self-compacting reinforced concrete beams. *J. Cent. South Univ. Technol.*, 15:423–428.
- Luo, X. G., Zhong, X. G., and Dai, G. L. (2006). Experimental study on the deformations for shrinkage and creep of beams in non-glued prestressed high performance fly ash concrete bridges. *Gongcheng Lixue/Engineering Mechanics*, 23(7):136–141.
- Lutz, L., Sharma, N., and Gergely, P. (1967). Increase in crack-width in reinforced concrete members under sustained loading. In *Proc. ACI 64(9)*, pages 538–546.
- Lye, C. Q., Dhir, R. K., and Ghataora, G. S. (2016a). Elastic Modulus of Concrete Cast with Recycled Aggregates. *Structures and Buildings*, 169(SB5):314–339.
- Lye, C. Q., Dhir, R. K., Ghataora, G. S., and Li, H. (2016b). Creep strain of recycled aggregate concrete. *Construction and Building Materials*, 102:244–259.
- Lye, C.-q., Ghataora, G. S., and Dhir, R. K. (2016c). Shrinkage of recycled aggregate concrete. In *Structures and Buildings, Proceedings of the Institution of Civil Engineers*, pages 1–25. ICE.
- Marinković, S., Habert, G., Ignjatović, I., Dragaš, J., Tošić, N., and Bruamud, C. (2016). Life Cycle Analysis of Recycled Aggregate Concrete With Fly Ash as Partial Cement Replacement. In *Sustainable Built Environment (SBE) Regional Conference*, pages 1–7, Zurich.
- Marinković, S., Radonjanin, V., Malešev, M., and Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. *Waste Management*, 30:2255–2264.

- Maruyama, I., Oka, Y., and Sato, R. (2005). Time-dependent Behavior of Reinforced Recycled Concrete Beams. In *CONCREEP 7*.
- Mensi, R. and Acker, P. (1988). Séchage du béton: analyse et modélisation. *Materials and Structures*, 21(121):3–12.
- Mola, F. and Pellegrini, L. (2012). The New model for creep of concrete in FIP Model Code 2010. In *37th Conference on OUR WORLD IN CONCRETE AND STRUCTURES*, Singapore.
- Müller, H., Mechtcherine, V., Curbach, M., Speck, K., Dehn, F., Häußler-Combe, U., Wlaraven, J., Reinhardt, H., Lohaus, L., Oneschkow, N., Gehlen, C., and Beddoe, R. (2013). *Code-type models for concrete behaviour*. DCC Document Competence Center Siegmar Kästl e.K., Lausanne.
- Neville, A. (1995). Properties of concrete. Pearson Education Ltd, Harlow.
- Nixon, P. (1978). Recycled concrete as an aggregate for concrete a review. *Materials and Structures*, 11:371–378.
- Nunes, K., Mahler, C., Valle, R., and Neves, C. (2007). Evaluation of investments in recycling centres for construction and demolition wastes in Brazilian municipalities. *Waste Management*, 27(11):1531–1540.
- Pacheco, J., Brito, J. D., and Soares, D. (2015). Destructive Horizontal Load Tests of Full-scale Recycled Aggregate Concrete Structures. *ACI Structural Journal*, 112(6):815–826.
- Pauw, A. and Meyers, B. (1964). Effect of creep and shrinkage on the behaviour of reinforced concrete members. *ACI Special Publications*, SP-9:130–159.
- P.C.A. (1950). Unpublished P.C.A. results.
- Pecić, N. (2012). *Improved method for deflection control of reinforced concrete structures*. Phd, Faculty of Civil Engineering, Belgrade University.
- Pecić, N., Mašović, S., and Stošić, S. (2017). Verification of deflection according to Eurocode 2. *Structural Concrete*, (May):1–11.

- Pickett, G. (1942). The effect of change in moisture-content on the creep of concrete under a sustained load. *Journal of the American Concrete Institute*, 13(4):333–355.
- Poon, C. S., Shui, Z. H., and Lam, L. (2004). Effect of microstructure of ITZ on compressive strength of concrete prepared with recycled aggregates. *Construction and Building Materials*, 18(6):461–468.
- Powers, T. C. (1968). The thermodynamics of volume change and creep. *Materials and Structures*, 1(6):487–507.
- Rahal, K. (2007). Mechanical properties of concrete with recycled concrete aggregates. *Building and Environment*, 42(1):407–415.
- Ramezanianpour, A. A. and Malhotra, V. M. (1995). Effect of curing on the compressive strength, resistance to chloride-ion penetration and porosity of concretes incorporating slag, fly ash or silica fume. *Cement and Concrete Composites*, 17(2):125–133.
- Rashad, A. M. (2015). A brief on high-volume Class F fly ash as cement replacement A guide for Civil Engineer. *International Journal of Sustainable Built Environment*, 4(2):278–306.
- Reybrouck, N., Criel, P., Caspeele, R., and Taerwe, L. (2015). Modelling of Long-Term Loading Tests on Reinforced Concrete Beams. In *CONCREEP 10*, pages 745–753.
- RILEM TC 121-DRG (1994). RILEM recommendation: specifications for concrete with recycled aggregates. *Materials and Structures*, 27:557–559.
- Santana Rangel, C., Amario, M., Pepe, M., Yao, Y., Mobasher, B., and Toledo Filho, R. D. (2017). Tension stiffening approach for interface characterization in recycled aggregate concrete. *Cement and Concrete Composites*, 82:176–189.
- Sato, R., Maruyama, I., Sogabe, T., and Sogo, M. (2007). Flexural Behavior of Reinforced Recycled Concrete Beams. *Journal of Advanced Concrete Technology*, 5(1):43–61.
- Sattler, K. (1956). Betrachtungen über die Durchbiegung von Stahlbetonträgern. *Die Bautechnik*, 33(11):378–383.
- Scanlon, A. and Bischoff, P. H. (2008). Shrinkage restraint and loading history effects on deflections of flexural members. *ACI Structural Journal*, 105(4):498–506.

- Scrivener, K., Vanderley, J., and Gartner, E. (2016). Eco-efficient cements: Potential, economically viable solutions for a low-CO2, cement based materials industry. Technical report, United Nations Environmental Programme, Paris.
- Seara-Paz, S. (2015). Efect of long-term deformations in structural flexural performance and bond behaviour analysis of recycled concrete. Phd, Universidade de Coruna.
- Seara-Paz, S., González-Fonteboa, B., Martínez-Abella, F., and González-Taboada, I. (2016). Time-dependent behaviour of structural concrete made with recycled coarse aggregates. Creep and shrinkage. *Construction and Building Materials*, 122:95–109.
- Silva, R. (2015). Use of recycled aggregates from construction and demolition waste in the production of structural concrete. Doctoral dissertation, Universidade de Lisboa.
- Silva, R., De Brito, J., and Dhir, R. K. (2014). Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. *Construction and Building Materials*, 65:201–217.
- Silva, R., de Brito, J., and Dhir, R. K. (2015). Establishing a relationship between the modulus of elasticity and compressive strength of recycled aggregate concrete. *Journal of Cleaner Production*.
- Silva, R., De Brito, J., Evangelista, L., and Dhir, R. K. (2016). Design of reinforced recycled aggregate concrete elements in conformity with Eurocode 2. *Construction and Building Materials*, 105:144–156.
- Soman, M. and Sobha, K. (2014). Strength and Behaviour of High Volume Fly Ash Concrete. *International Journal of Innovative Research in Science, Engineering and Technology*, 3(5):12416–12424.
- SRPS B.B2.009 (1986). Raw materials for production of aggregates for concrete Technical requirements. ISS, Belgrade.
- SRPS B.B8.033 (1994). *Mineral aggregate Determination of crushability by compression in cylinder*. ISS, Belgrade.
- SRPS B.B8.048 (1984). *Mineral aggregate-particle shape determination with calliper*. ISS, Belgrade.

- SRPS B.B8.049 (1984). *Mineral aggregate Determination of volumetric coefficient*. ISS, Belgrade.
- SRPS U.M1.027:1983 (1983). Concrete Determination of deformation. ISS, Belgrade.
- SRPS U.M1.029:1983 (1983). Concrete Determination of deformation. ISS, Belgrade.
- SRPS U.M1.057 (1984). Concrete Grading of aggregate for concrete. ISS, Belgrade.
- Tam, V. W. Y., Butera, A., and Le, K. N. (2016). Carbon-conditioned recycled aggregate in concrete production. *Journal of Cleaner Production*, 133:672–680.
- Tam, V. W. Y., Gao, X. F., Tam, C. M., and Chan, C. H. (2008). New approach in measuring water absorption of recycled aggregates. *Construction and Building Materials*, 22(3):364–369.
- Tazawa, E.-i. (1999). Autogenous shrinkage of concrete. E & FN Spon, London.
- Thiery, M., Dangla, P., Belin, P., Habert, G., and Roussel, N. (2013). Carbonation kinetics of a bed of recycled concrete aggregates: A laboratory study on model materials. *Cement and Concrete Research*, 46:50–65.
- Thomas, M. (2007). Optimizing the Use of Fly Ash in Concrete. *Portland Cement Association*, page 24.
- Tošić, N., Marinković, S., and Ignjatović, I. (2016). A database on flexural and shear strength of reinforced recycled aggregate concrete beams and comparison to Eurocode 2 predictions. 127:932–944.
- UNEP (1992). 1992 Rio Declaration on Environment and Development. United Nations Environment Programme, Paris.
- USGS (2015). Minerals Yearbook.
- Van Nieuwenburg, D. (1984). Invloed van de werkingsduur van permanente lasten op het gedrag van elementen in gewapend beton. Technical report, Syntheseverslag Ghent, Laboratorium Magnel voor Gewapend Beton.

- Vandamme, M. and Ulm, F.-J. (2009). Nanogranular origin of concrete creep. *Proceedings of the National Academy of Sciences of the United States of America*, 106(26):10552–10557.
- Washa, G. and Fluck, P. (1952). Effect of compressive reinforcement on the plastic flow of reinforced concrete beams. *Proc. ACI*, Proc. ACI(49):89–108.
- Washa, G. and Fluck, P. G. (1956). Plastic flow of reinforced concrete continuous beams. *Proc. ACI*, 52:549–561.
- WBCSD (2009). The Cement Sustainability Initiative.
- Wendner, R., Hubler, M., and Bažant, Z. (2013). The B4 model for multi-decade creep and shrinkage prediction. In Ulm, F., Jennings, H., and Pellenq, R., editors, *CONCREEP 9*, pages 429–436. American Society of Civil Engineers.
- Wendner, R., Hubler, M. H., and Bažant, Z. (2015a). Optimization method, choice of form and uncertainty quantification of Model B4 using laboratory and multi-decade bridge databases. *Materials and Structures*, 48:771–796.
- Wendner, R., Hubler, M. H., and Bažant, Z. (2015b). Statistical justification of model B4 for multi-decade concrete creep using laboratory and bridge databases and comparisons to other models. *Materials and Structures*, 48:815–833.
- Wesche, K. (2004). Fly ash in concrete: properties and performance. Technical report, RILEM, London.
- Wittmann, F., Bažant, Z., Alou, F., and Kim, J.-K. (1987). No Title. *Cement, concrete and aggregates*, 9(2):129–153.
- World Bank (2016). World Bank Indicators.
- Xiao, J., Li, J., and Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. *Cement and Concrete Research*, 35:1187–1194.
- Xiao, J., Sun, Y., and Falkner, H. (2006). Seismic performance of frame structures with recycled aggregate concrete. *Engineering Structures*, 28(1):1–8.

- Xiao, J., Wang, C., Li, J., and Tawana, M. (2012). Shake-table model tests on recycled aggregate concrete frame structure. *ACI Structural Journal*, 109(6):777–786.
- Yoo, S., Ryu, G., and Choo, J. (2015). Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams. *Construction and Building Materials*, 93:1132–1144.
- Zhang, Q., Le Roy, R., Vandamme, M., and Zuber, B. (2014). Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing. *Cement and Concrete Research*, 58:89–98.
- Zilch, K. and Zehetmaier, G. (2009). *Bemessung im konstruktiven Betonbau: nach DIN* 1045-1 (Fassung 2008) und EN 1992-1-1 (Eurocode 2). Springer-Verlag.

Curriculum Vitae

Nikola Tošić was born in Belgrade on May 9, 1987 where he finished elementary and high school. He enrolled Bachelor studies in structural engineering at the University of Belgrade's Faculty of Civil Engineering in 2006 and obtained his Bachelor degree in 2010 with an average grade 9.4 and a grade 10 on his final project. He enrolled a Master programme in structural engineering at the University of Belgrade's Faculty of Civil Engineering in 2010 and obtained his Master degree in 2011 with an average grade 9.86 and a grade 10 on his final project titled 'Analysis of structural systems for covering football stadium tribunes with a proposed solution for FC Partizan stadium'. Nikola began his PhD studies at the University of Belgrade's Faculty of Civil Engineering in 2012. He passed all the exams envisioned by the programme with an average grade of 9.87.

After getting his Master degree in 2011, Nikola worked for two months on a student placement position in Mace Ltd. on the Shard London Bridge project. In 2012 he worked in Čelikinvest, Belgrade, as an engineer on several design and construction projects in Serbia.

From January 2013, he has been working as a teaching assistant at the University of Belgrade's Faculty of Civil Engineering on courses on reinforced and prestressed concrete structures.

Beside teaching, Nikola has participated in several research projects dealing with the search for sustainable alternatives to traditional concrete. He is the co-author of 25 journal articles and conference proceedings, five of which are in journals listed in JCR.

Nikola is an active member of the academic and research community participating in several faculty commissions and task groups. He is also a member of the board of the *fib* International Young Members Group, acting as a representative for research and universities.

Nikola is also a freelance professional proofreader and copy editor. He speaks Serbian, English, Italian, German, French and Chinese.

Изјава о ауторству

Име и презиме аутора Никола Тошић

Број индекса 901/12

Изјављујем

да је докторска дисертација под насловом

<u>"ПОНАШАЊЕ АРМИРАНОБЕТОНСКИХ ГРЕДНИХ ЕЛЕМЕНАТА ОД БЕТОНА СА РЕЦИКЛИРАНИМ И ОТПАДНИМ МАТЕРИЈАЛИМА ПОД ДУГОТРАЈНИМ ОПТЕРЕЋЕЊЕМ"</u>

- резултат сопственог истраживачког рада;
- да дисертација у целини ни у деловима није била предложена за стицање друге дипломе према студијским програмима других високошколских установа;
- да су резултати коректно наведени и
- да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица.

Потпис аутора

У Београду, <u>1.9.2017. године</u>

Изјава о истоветности штампане и електронске верзије докторског рада

Име и презиме аутора Никола Тошић

Број индекса 901/12

Студијски програм Докторске студије – Грађевинарство

Наслов рада <u>"ПОНАШАЊЕ АРМИРАНОБЕТОНСКИХ ГРЕДНИХ ЕЛЕМЕНАТА ОД</u> БЕТОНА СА РЕЦИКЛИРАНИМ И ОТПАДНИМ МАТЕРИЈАЛИМА ПОД ДУГОТРАЈНИМ ОПТЕРЕЋЕЊЕМ<u>"</u>

Ментор проф. др Снежана Маринковић, дипл. инж. грађ.

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју сам предао/ла ради похрањена у **Дигиталном репозиторијуму Универзитета у Београду**.

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора наука, као што су име и презиме, година и место рођења и датум одбране рада.

Ови лични подаци могу се објавити на мрежним страницама дигиталне библиотеке, у електронском каталогу и у публикацијама Универзитета у Београду.

Потпис аутора

Mel Darie

У Београду, 1.9.2017.

Изјава о коришћењу

Овлашћујем Универзитетску библиотеку "Светозар Марковић" да у Дигитални репозиторијум Универзитета у Београду унесе моју докторску дисертацију под насловом:

<u>"ПОНАШАЊЕ АРМИРАНОБЕТОНСКИХ ГРЕДНИХ ЕЛЕМЕНАТА ОД БЕТОНА СА РЕЦИКЛИРАНИМ И ОТПАДНИМ МАТЕРИЈАЛИМА ПОД ДУГОТРАЈНИМ</u> ОПТЕРЕЋЕЊЕМ"

која је моје ауторско дело.

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно архивирање.

Моју докторску дисертацију похрањену у Дигиталном репозиторијуму Универзитета у Београду и доступну у отвореном приступу могу да користе сви који поштују одредбе садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се одлучио/ла.

- 1. Ауторство (СС ВҮ)
- 2. Ауторство некомерцијално (CC BY-NC)
- 3. Ауторство некомерцијално без прерада (СС BY-NC-ND)
- 4.)Ауторство некомерцијално делити под истим условима (СС BY-NC-SA)
- 5. Ауторство без прерада (СС BY-ND)
- 6. Ауторство делити под истим условима (CC BY-SA)

(Молимо да заокружите само једну од шест понуђених лиценци. Кратак опис лиценци је саставни део ове изјаве).

Потпис аутора

Melibera

У Београду, <u>1.9.2017. године</u>

- 1. **Ауторство**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.
- 2. **Ауторство некомерцијално**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.
- 3. **Ауторство некомерцијално без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом лиценцом се ограничава највећи обим права коришћења дела.
- 4. **Ауторство некомерцијално делити под истим условима**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и прерада.
- 5. **Ауторство без прерада**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце. Ова лиценца дозвољава комерцијалну употребу дела.
- 6. **Ауторство делити под истим условима**. Дозвољавате умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под истом или сличном лиценцом. Ова лиценца дозвољава комерцијалну употребу дела и прерада. Слична је софтверским лиценцама, односно лиценцама отвореног кода.