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SUMMARY 

 

 

Phylogenetic analysis of hantaviral molecular evolution of in 

different rodent species 

 

 

Introduction 

Hantaviruses, members of the order Bunyavirales, family Hantaviridae, are enveloped 

viruses with a negative sense three-segmented RNA genome, consisting of large – L (6.5–

6.6 kb), medium – M (3.6–3.7 kb) and small – S (1.7–2.0 kb) segments, coding for viral 

polymerase, viral glycoprotein precursor further processed into two separate envelope 

glycoproteins (Gn and Gc) and viral nucleocapsid protein, respectively. Hantaviruses are 

unique among the bunyaviruses in not being transmitted by an arthropod vector. These 

viruses are persistently active in their natural reservoirs including rodents, insectivores and 

bats. In nature, hantaviruses are circulating via horizontal transmission among infected 

natural reservoirs. Their primary natural hosts are rodents belonging to four different 

subfamilies, including Sigmodontinae, Arvicolinae, Murinae and Neotominae. Newly 

published data have extended hantavirus hosts to insectivores (families Soricidae and 

Talpidae) and bats (order Chiroptera). Hantaviruses are commonly divided into two 

groups: old world hantaviruses, present in Europe and Far East,  mostly including 

pathogenic hantavirus species that cause hemorrhagic fever with renal syndrome (HFRS), 

and new world hantaviruses, present in the Americas, defined as etiological agents of 

hantavirus pulmonary syndrome (HPS). Mortality rates of these zoonotic diseases, caused 

by pathogenic hantaviruses, vary with up to 12%-18% for HFRS and 60% for HPS. Human 

infection occurs through respiratory exposure to contaminated secreta and excreta including 

urine, saliva, and feces. Humans are not among the natural hosts of hantaviruses and they 

are thought to be dead-end hosts, without further virus transmission, with the exception of 

few reported cases of human-to-human transmission of Andes virus (ANDV) in Argentina 

and Chile. 



 

 

 

Hantaviruses, as segmented RNA viruses, are known to be highly variable with 

substitution rates of 10-2 to 10-4 substitutions/site/year. Genetic drift, homologous 

recombination and reassortment have been main proposed mechanisms for genetic diversity 

of hantaviruses. This thesis focuses on the evolutionary analyses of hantaviral sequence 

data. Multitude of phylogenetic methods, including phylodynamic and phylogeographic 

analyses, were employed to examine complex biological processes, such as evolutionary 

dynamics, natural selection, recombination and migration of hantaviruses. 

 

The Aims of the Study 

 The aims of this study were to detect and genetically characterize hantavirus RNA 

recovered from different rodent reservoirs captured in Serbia. Moreover, the objectives 

included investigation of molecular evolution of hantaviruses by phylogenetic analysis of 

different genomic segments, including phylodinamic and phylogeographic analysis. 

Finally, the aim was to investigate the presence and properties of homologous 

recombination in hantavirus genomes. 

 

Materials and Methods 

The study was based on the sample pool from previous surveys conducted on the 

total of 350 rodents trapped in Serbia on several occasions during 5-year period (2007-

2011). Of 350 rodents, 110 animals were genetically tested within the study of this thesis. 

The total RNA was extracted from tissues samples using the TRIZOL Reagent (GibcoBRL, 

Invitrogen, Karlsruhe, Germany). Nested-PCR (Polymerase chain reaction) method was 

used for amplification of the all three hantavirus segments. All obtained specific PCR 

products were directly sequenced and further analyzed by different phylogenetic and other 

bioinformatics approaches. For different purpose of phylogenetic analysis several data sets 

of partial L, M and S segments were made. The obtained L segment sequences were first 

analyzed by BLAST at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to determine 

similarity scores to specific hantaviruses. Further phylogenetic analysis was done under the 

best fit model of nucleotide substitution, obtained by jModelTest 0.1.1. Phylogenetic trees 

were inferred using different methods, including ML and Bayesian methods. Potential 



 

 

 

recombination events were analyzed by BootScan method. In order to investigate the 

ancestral location and the spread of the virus, appropriate data set was analyzed using 

Bayesian framework with Markov Chain Monte Carlo (MCMC) method implemented in 

the Beast software package v 1.8.4. 

 

Results 

In total, encompassing all the tested rodent species, 6/110 (5.5%) genetically tested 

samples in the study were found positive for hantavirus. Positive samples were found in the 

species A. flavicollis, A. agrarius, G. glis and M. arvalis. Notably, A. flavicollis was the most 

abundant tested species, with hanta RNA positivity rate of 9.7% among the seropositive animals, 

4.3% in total. According to the BLAST analysis, obtained isolates from three A. flavicollis, one 

A. agrarius and one G. glis were identified as Dobrava-Belgrade virus (DOBV) and the isolate 

recovered from M. arvalis was identified as Tula virus (TULV). Phylogenetic analysis based on 

partial L segment confirmed the results obtained by BLAST analysis. Namely, in the 

phylogenetic tree based on 37 L segment sequences, strains from Serbia clustered in a 

distinctive branch of Dobrava genotypes with strains from Greece, Slovenia and Turkey. In 

addition, partial M segment was recovered from all three samples of A. flavicollis. Overall 

nucleotide distance among all examined DOBV M segment sequences was 15.07% (SD±0.07). 

In the phylogenetic tree based on partial 16 M segment sequences all three Serbian sequences, 

isolated from A. flaviollis, were clustered together with other strains belonging to Dobrava 

genotype. Partial S segment was recovered from all samples, except one from A. flavicollis. 

Overall nucleotide diversity found in the partial S segment alignment was in the expected range 

of 7.95% (SD±0.06), with average distance between all Serbian strains of 2.21% (SD±0.09). In 

the phylogenetic tree based on 180 partial S segment sequences isolated from human and 

rodent samples all Serbian strains were also clustered together within Dobrava genotype. In the 

phylogenetic analysis of TULV S segment sequences were included two sequences from 

Serbia: TULV strain from M. subterraneus (AF017659) and the other one from M. arvalis, 

together with 64 sequences originating from different European and Asian countries. 

Phylogenetic tree based on 66 TULV S segment sequences of 570 nt (400-966 nt) showed the 

existence of different clusters matching to territory of sequences origin. Sequences from Serbia 

were closely related to those from East Slovakia (Y13980 and Y13979), forming clearly 



 

 

 

separated cluster. Moreover, based on Bootscan recombination analysis, Serbian strains were 

detected as potential recombinants. Obtained results revealed the existence of two 

recombination peaks exceeding the cut-off of 70% bootstrap in both sequences from Serbia: 

one peak corresponding to S segment regions from positions around 600 to 750 nt that clustered 

together with TULV sequences from Czech Republic and West Slovakia; while the other 

clearly resolved peak, between positions 750 and 950 nt, clustered with TULV sequences from 

Russia. Reconstructed phylogenetic subtrees were in correlation with corresponding peaks 

proposed by bootscan analysis. Moreover, phylogeographic analysis results of TULV S 

segment sequences placed the root of origin in Kazahstan, with posterior probability 1.  

 

Conclusions 

During the five-year study period (2007-2011) two hantaviruses, Dobrava-Belgrade 

virus (DOBV) and Tula virus (TULV), were genetically characterized in four different rodent 

species: A. flavicollis, A. agrarius, G. glis and M. arvalis. Glis glis species was found as the 

novel host and putative natural reservoir of DOBV, since this species, or any other species of 

the Gliridae rodent family, has not been previously associated with hantaviral infection. 

Potential DOBV spillover infection from A. flavicollis could not be excluded. Molecular 

screening of A. flavicollis from mountain Tara in western Serbia detected the presence of 

DOBV in tested animals, revealing this locality as a novel DOBV focus in the Balkans. 

Phylogenetic analyses of all three RNA segments (L, M and S) revealed that all Serbian DOBV 

strains from the novel focus belong to the DOBV-Dobrava genotype. Molecular screening of 

different rodent species in central Serbia detected TULV in M. arvalis. Phylogenetic analysis of 

both L and S segment sequences of the newly detected TULV strain was suggestive of 

geographically related clustering, as previously shown for the majority of hantaviruses. 

Exploratory recombination analysis, supported by phylogenetic and amino acid pattern 

analysis, revealed the presence of recombination in the S segment of the Serbian TULV, 

resulting in mosaic-like structure, similar to the one of Kosice strain originating from east 

Slovakia. Phylogeographic analysis of TULV S segment sequences placed the potential root 

and origin of TULV spread in central Asia, most probably in Kazahstan. Phylogeographic 

analysis implyed single introduction of TULV to Europe from central Asia, with the complex 



 

 

 

pattern of local viral migration, including single introduction to Serbia with further spread 

locally and also to Slovakia. 

 

Keywords: hantavirus, DOBV, TULV, rodents, phylogenetic analysis, recombination, 

phylogeography 

Scientific field: Molecular Medicine / Virology
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Filogenetska analiza molekularne evolucije hantavirusa u različitim  

vrstama glodara 

 

 

 

 

Uvod 

Hantavirusi, taksonomski svrstani u red Bunyavirales, familija Hantaviridae, su virusi 

sa omotačem i negativnim jednolančanim RNK genomom koji je segmentiran i sastoji se od 

velikog – L (6.5–6.6 kb), srednjeg – M (3.6–3.7 kb) i malog – S (1.7–2.0 kb) segmenta. L 

segment kodira virusnu polimerazu, M segment kodira glikoproteinski prekursor od koga 

nastaju dva glikoproteina (Gn i Gc) i S segment kodira nukleokapsidni protein. Za razliku od 

ostalih bunjavirusa, transmisija hantavirusa se ne odvija putem artropodnog vektora. Ovi virusi 

trajno cirkulišu  u svojim prirodnim rezervoarima koji obuhvataju glodare, insektivore i slepe 

miševe. U prirodi, hantavirusi se prenose putem horizontalne i vertikalne transmisije između 

zaraženih životinja. Najznačajniji rezervoari hantavirusa su glodari koji pripadaju različitim 

potfamilijama (Sigmodontinae, Arvicolinae, Murinae and Neotominae). Hantavirusi su 

podeljeni u dve grupe: hantavirusi starog sveta (prisutni u Evropi i na dalekom istoku) koji 

obuhvataju patogene vrste hantavirusa koji izazivaju hemoragijsku groznicu sa bubrežnim 

sindromom (HGBS) i hantavirusi novog sveta (prisutni u Americi) koji obuhvataju patogene 

vrste hantavirusa koji izazivaju hantavirusni pulmonarni sindrom (HPS). Stopa smrtnosti kod 

ovih zoonoza, uzrokovanih patogenim vrstama hantavirusa, varira od 12-18% za HGBS i do 

60% za HPS. Čovek  se inficira resporatornim putem u kontaktu sa izlučevinama zaraženih 

životinja (urin, feces, pljuvačka). S obzirom da čovek nije prirodni domaćin hantavirusa, dalji 

interhumani prenos hantsvirusa nije moguć, sa izuzetkom nekoliko opisanih slučajeva prenosa 

Andes virusa (ANDV) u Čileu i Argentini. Hantavirusi, kao virusi sa segmentiranim RNK 

genomom , spadaju u visoko varijabilne mikroorganizme sa supstitucionom stopom od 10-2 - 

10-4 izmena/mestu/godini. Genetički drift, homologa rekombinacija i izmena genskih segmenata 

su glavni mehanizmi koji leže u osnovi evolucije hantavirusa. U ovom istraživanju smo se 

fokusirali na analizu evolucije hantavirusa. Različite filogenetske metode, uključujući 
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filodinamsku i filogeografsku analizu, su primenjene u svrhu izučavanja bioloških procesa kao 

što su dinamika evolucije, prirodna selekcija, rekombinacija i kretanje hantavirusa. 

 

Ciljevi 

Ciljevi ove studije bili su detekcija i genetska karakterizacija hantavirusne RNK 

dobijene iz različitih prirodnih rezervoara. Istraživanje je takođe obuhvatilo analizu 

molekularne evolucije sva tri segmenta genoma hantavirusa primenom različitih filogenetskih 

metoda, uključujući filodinamsku i filogeografsku analizu. Poslednji cilj je bio ispitivanje 

prisustva homologe rekombinacije u okviru hantavirusnog genoma. 

 

Materijali i metode 

U okviru ove teze su molekuarnim metodama testirani uzorci 110 glodara koji su bili 

dostupni za analizu iz ukupnog pula od 350 uzoraka dobijenih u više izlovljavanja tokom 

petogodišnjeg perioda (2007-2011), u okviru drugih istraživanja. Ukupna RNK iz tkiva je 

izolovana primenom TRIZOL-nog reagensa GibcoBRL, Invitrogen, Karlsruhe, Germany). 

Delovi sva tri segmenta su umnoženi metodom reakcije lančane polimerizacije u dva kruga (engl. 

„nested polymerase chain reaction“-nested PCR). DNK sekvence svih pozitivnih PCR produkata su 

analizirane filogenetskim i drugim bioinformatičkim metodama, uz formiranje odgovarajućih setova 

sekvencu za analizu uključivanjem postojećih u NCBI bazi podataka 

(http://blast.ncbi.nlm.nih.gov). . Početna identifikacija dobijenih sekvenci L segmenta vršena je 

primenom BLAST alatke, poređenjem sa postojećim sekvencama u NCBI bazi podataka 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi). Filogenetska analiza je rađena na osnovu nukleotidnog 

supstitucionog modela, određenog primenom jModelTest-a 0.1.1. Filogenetska stabla su 

konstruisana primenom metoda maksimalne verovatnoće i Bajesove statistike. Potencijalna 

rekombinacija je analizirana primenom BootScan metode. U cilju ispitivanja putanja širenja 

virusa, odgovarajući set sekvenci je analiziran primenom Bajesove statistike implementirane u 

Beast program v 1.8.4. 

 

Rezultati 

             Pozitivan nalaz hantavirusne RNK nađen je u 6/110 (5.5%) ukupno testiranih uzoraka, 

uključujući sve testirane vrste glodara. Pozitivni uzorci su nađeni među vrstama: A. flavicollis, 

http://blast.ncbi.nlm.nih.gov/Blast.cgi


Rezime 

 

 

A. agrarius, G. glis i M. arvalis. Najvbrojnija testirana vrsta bio je A. flavicollis, gde je procenat 

pozitivnih uzoraka na hanatvirusnu RNK bio 9,7% među seropositivnim životinjama (ukupno 

4.3%). Na osnovu BLAST analize, pet dobijenih sekvenci, od kojih su tri izolovane iz A. 

flavicollis-a, jedna iz A. agrariusa i jedna iz G. glisa su identifikovane kao Dobrava-Beograd 

virus (DOBV). Šesta sekvenca, koja je izolovana iz M. arvalis-a, je identifikovana kao Tula 

virus (TULV). Filogenetska analiza seta sekvenci za L segment potvrdila je prethodno dobijene 

rezultate primenom BLAST analize. U filogenetskom stablu, konstruisanom na osnovu seta od 

37 sekvenci za L segment, sve sekvence poreklom iz Srbije su se grupisale zajedno sa 

sekvencama iz Grčke, Slovenije i Turske koje su definisane kao Dobrava genotip. M segment 

je uspešno izolovan iz sva tri uzorka A. flavicollis-a. Ukupna nukleotidna distanca na nivou M 

segmenta iznosila je 15.07% (SD±0.07). U filogenetskom stablu, konstruisanom na osnovu 16 

parcijalnih sekvenci za M segment, sva tri srpska izolata su svrstana u isti u okviru Dobrava 

genotipa. Sekvence za S segment su dobijene iz svih uzoraka koji su prethodno bili pozitivni na 

L segment, osim iz jednog uzorka A. flavicollis-a. Ukupna nukleotidna distanca na nivou S 

segmenta iznosila je 7.95% (SD±0.06), dok je prosečna nukleotidna distanca za sve isolate iz 

Srbije iznosila 2.21% (SD±0.09). U filogenetskom stablu konstruisanom na osnovu 180 

parcijalnih sekvenci S segmenta, svi izolati iz Srbije su takođe svrstani u isti klaster u okviru 

Dobrava genotipa. U filogenetsku analizu  sekvenci S segmenta TULV uključena su dva srpska 

izolata (sekvenca iz iz M. arvalisa dobijen u ovoj studiji i ranije publikovna izolat iz M. 

subterraneusa) zajedno sa još 64 sekvence preuzete sa NCBI baze podataka. U filogenetskom 

stablu konstruisanom na osnovu 66 sekvenci, dužine 570 nt (400-966 nt), jasno se vidi 

postojanje nekoliko klastera koji odgovaraju treitoriji sa koje su sekvence izolovane. Srpski 

izolati su se jasno klasterovali sa izolatima (Y13980 and Y13979) iz istočne Slovačke. 

Rekombinaciona bootscan analize ukazala je na postojanje rekombinacije u navedenim 

sekvencama iz Srbije. Dobijeni rezultati su pokazali postojanje dva rekombinaciona pika sa 

butstrep podrškom iznad 70% u oba srpska izolata: prvi pik, koji je odgovarao regionu S 

segmenta između pozicijant 600 i 750, se klasterovao zajedno sa sekvencama iz Češke 

Republike i zapadne Slovačke, dok je drugi pik, koji je odgovarao regionu S segmenta između 

pozicija nt 750 i 950, se klasterovao zajedno sa sekvencama iz Rusije. Parcijalna filogenetska 

stabla („podstabla“), koja su konstruisana na osnovu dobijenih pikova bila su u jasnoj korelaciji 

sa rezultatima dobijenim bootscan analizom. Rezultati filogeografske analize, rađene na osnovu 
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sekvenci S segmenta TULV pokazali su da je najverovatnije mesto porekla ovog virusa 

Kazahstan sa posteriornom verovatnoćom od 1.  

 

Zaključak 

U uzorcima iz ispitivanog petogodišnjeg perioda (2007-2011.) genetički je dokazano 

prisustvo dva hantavirusa: Dobrava-Beograd virus (DOBV) i Tula virus (TULV), u četiri 

različite glodarske vrste: A. flavicollis, A. agrarius, G. glis i M. arvalis. Od navedenih, vrsta 

Glis glis do sada nije bila opisana kao domaćin i mogući DOBV rezervoar, kao ni bilo koja 

druga vrsta iz familije Gliridae. Nije isključeno potencijalno prelivanje infekcije iz vrste A. 

flavicollis. Molekularnim skrinignom utvrđeno je prisustvo DOBV u uzorcima jedinki A. 

flavicollis izlovljenih u regiji planine Tare u zapadnoj Srbiji, što predstavlja 

novodokumentovano prirodno žarište DOBV infekcije na Balkanu. Filogenetskom analizom 

sva tri genomska segmenta utvrđeno je da svi novo-okarakterisani DOBV sojevi spadaju u 

DOBV-Dobrava genotip virusa. Molekularnim skrinignom različitih uzoraka glodara iz 

centralne Srbije utvrđeno je prisustvo TULV u jedinki M. arvalis. Filogenetska analiza 

navedenog soja, uporedno sa postojećim sekvencama u bazi podataka, pokazala je grupisanje u 

skladu sa geografskim poreklom uzorka, kao što je od ranije poznao za većinu hantavirusa. 

Ekspolrativna analiza rekombinacije, uporedo sa filogenetskom analizom i analizom 

aminokiselinskih obrazaca, pokazala je postojanje rekombinacije u ispitivana 2 TULV soja iz 

Srbije. Slična struktura rekombinacije je ranije opisana kod TULV sojeva Košice, iz Slovačke. 

Filogeografskom analizom svih sekvecni TULV S segmenta u postojećim bazama podataka 

geografski izvor širenja TULV je lociran u srednjoj Aziji, najverovatnije u Kazahstanu, odakle 

je virus jednokratno uveden u Evropu, sa složenim daljim širenjem u okviru kog je jednokratno 

uveden u regiju Srbije odakle se najverovatnije proširio ka Slovačkoj. 

 

Ključne reči: hantavirus, DOBV, TULV, glodari, filogenetska analiza, rekombinacija, 

filogeografija 

Naučna disciplina: Molekularna medicina / Virusologija 
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Hantaviruses are endemically present in the Balkan region, particularly in Serbia, where 

sporadic cases and/or outbreaks of disease caused by these pathogens have been reported 

repeatedly. The first clinical and epidemiological evidence of hantaviral infection in Serbia date 

to the middle of the last century (Heneberg et al., 1964). In 1986, the first serological findings 

of hantaviral infection in both humans and small mammals in Serbia were made (Gligic et al., 

1989a, 1989b). In 1989, the first isolation of Belgrade virus (subsequently named Dobrava–

Belgrade virus) was made from a human sample in Belgrade, Serbia (Gligic et al., 1992). 

Moreover, in the Balkans, Serbia was the first country where Tula virus was detected, in 

European pine vole, M. subterraneus (Song et al., 2002). So far, serological findings imply 

circulation of multiple hantaviruses in Serbia, whereas molecular data about circulating 

hantaviruses in Serbia are lacking. 
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1.1. HISTORICAL OVERVIEW 

 Epidemic hemorrhagic fever was described for the first time among soldiers of the 

United Nations during the war between North and South Korea in 1951 (Smadel, 1953; Powel, 

1953). Ever since, it has been known as Korean hemorrhagic fever (KHF) and it has remained 

endemic in the vicinity of the demilitarized zone between North and South Korea. The main 

symptoms were fever, headache, pain in the back and abdomen, a flushed face and various 

haemorrhagic manifestations with mortality rate of 5-10%. However, at the same time similar 

illness was also described in Sweden, whereas during 1930's Japanese physicians had met a 

disease with similar symptoms in Manchuria (Myhrman, 1951). At that time, illness was 

extensively investigated, but the etiological agent was not detected. 

In former Yugoslavia, the first case with similar symptoms was recognized in 1951 

(Simic, 1952). The patient was a soldier who got infected in the forest surrounding Fojnica in 

Bosnia and Herzegovina (B&H), a region where a few outbreaks with hundreds of HFRS cases 

have been noted further on (Hukic et al., 2011). In the following years clinical cases of 

hemorrhagic fever were also recognized in Albania (Eltari et al., 1987), Bulgaria (Verbevand 

Gabev, 1963), Greece (Antoniadis et al., 1984) and Romania (Manasia et al., 1977). The first 

documented epidemic was reported in a military camp in the forest of Fruska Gora in Serbia in 

1961 (Heneberg et al., 1964). Subsequent epidemic occurred few years later, in 1967, located in 

B&H (region of Fojnica and Foca) and also in Croatia (Plitvice Lakes) (Vesenjak-Hirjan et al., 

1971). 

Throughout the following years there have been many failed attempts to isolate the 

causative agent of KHF. Finally, in 1978 Hantaan virus (HTNV) was isolated by Lee and 

collaborators, from field mouse Apodemus agrarius caught at the banks of the river Hantaan, 

located at the border between North and South Korea (Lee et al., 1978). Very soon after its’ 

initial isolation, in 1982, the etiological agent of haemorrhagic fever was isolated in former 

Yugoslavia (Antonijevic and Gligic, 1982). Virus was isolated from a female patient, by 

propagating of human material into mouse brain.  

Almost at the same time hemorrhagic fever with similar clinical symptoms had been 

recognized in Scandinavia where it was called Nephropathia Epidemica (NE) (Lahdevirta, 

1971). In 1980 Puumala virus (PUUV), ethological agent of NE, was isolated from Myodes 

glareolus (bank vole) (Yanagihara et al., 1984). Both above mentioned diseases (KHF and NE)  
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are named hemorrhagic fever with renal syndrome (HFRS) and characterized by the same 

geographic distribution from Europe to Far East. 

However, the first ever hantavirus was isolated in India in 1971, from shrew (Suncus 

murinus) (Carey et al., 1971). Relatedness of this Thottapalayam hantavirus to other 

hantaviruses was recognized many years later. 

In the Americas, the first hantavirus was described in 1983. It was Prospect Hill (PHV) 

hantavirus, isolated from meadow vole (Microtus pennsylvanicus) (Yanagihara et al., 1984). 

However, this virus has never been associated with any disease, so it was the first model for a 

non-pathogenic hantavirus. In contrast to it, Sin Nombre (SNV) virus was isolated as 

ethological agent of hantavirus pulmonary syndrome (HPS), near the Four Corners point in the 

United States in 1993 (Childs et al., 1994). 

 

1.2. HANTAVIRUS CLASSIFICATION 

Hantaviruses are commonly divided into two groups: old world hantaviruses, present in 

Europe and Far East, mostly including pathogenic hantavirus species that cause HFRS, and new 

world hantaviruses, present in the Americas, defined as etiological agent of HPS.  Table 1 lists 

all known rodent- soricomorph- and chiroptera-borne hantaviruses together with their 

geographic distribution (Jonsson et al., 2010; Yanagihara et al., 2014). 

 Taxonomically, over 40 hantavirus species were grouped within the Hantavirus genus 

of the family Bunyaviridae (Heyman et al., 2009). The family Bunyaviridae also included four 

other genera Tospovirus, Phlebovirus, Nairovirus and Orthobunyavirus (Elliott et al., 2000). 

However, in the new classification proposed by International Committee on Taxonomy of 

Viruses (ICTV) the new order, Bunyavirales, has been established and further divided into 

three viral families: Feraviridae, Fimoviridae and Hantaviridae (https://talk.ictvonline.org/ictv-

reports/ictv_online_report/). The family Hantaviridae includes one genus (Orthohantavirus) 

with 41 species. 

 The features encompassing all these viruses into a single family are similar morphology 

including envelope of the virus and tripartite single stranded RNA genome (Pringle, 1991). 

However, hantaviruses are unique in the former Bunyaviridae family in not being transmitted 

by an arthropod vector.  
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Table 1 Geographic distribution of rodent- soricomorph- and chiroptera-borne hantaviruses 

Order Family Subfamily Host species Virus name 
Geographic 
distribution 

Rodentia Muridae Murinae Apodemus agrarius 

Hantaan virus, Dobrava-

Belgrade virus 

China, South 

Korea, Russia, 

Europe 

   Apodemus flavicollis Dobrava-Belgrade virus Balkans 

   Apodemus ponticus Dobrava-Belgrade virus Russia 

   Rattus spp. Seoul virus Worldwide 

   Apodemus agrarius Saarema virus Europe 

   Apodemus peninsulae Amur  virus Far East Russia 

   Apodemus peninsulae Soochong  virus South Korea 

 Arvicolidae Arvicolinae Myodes glareolus Puumala virus 

Europe, Asia and 

America 

   Microtus fortis Khabarovsk  virus Far East Russia 

   Myodes regulus Muju  virus South Korea 

   Microtus pennsylvanicus Prospect Hill virus Maryland 

   Microtus arvalis Tula virus Russia and Europe 

   Microtus californicus Isla Vista  virus North America 

   Lemmus sibericus Topografov  virus Siberia 

 Cricetidae Neotominae Peromyscus maniculatus Sin Nombre  virus North America 

   Peromyscus leucopus Monongahela virus North America 

   Peromyscus leucopus New York virus North America 

   Peromyscus boylii Limestone Canyon virus  North America 

   

Reithrodontomys 

mexicanus Rio Segundo virus Cost Rica 

 Cricetidae Sigmodontinae Sigmodon hispidus Black Creek Canal virus North America 

   Oryzomys palustris Bayou virus North America 

   Oryzomys couesi Playa de Oro virus Mexico 

   Oryzomys couesi Catacamas virus Honduras 

   Oligoryzomys fulvescens Choclo virus  Panama 

   Zygodontomys brevicauda Calabazo virus Panama 

   Sigmodon alstoni Cano Delgadito virus Venezuela 

   

Oligoryzomys 

longicaudatus Andes virus 

Argentina and 

Chile 

   Oligoryzomys chocoensis Bermejo virus Argentina 

   Akodon azarae Pergamino virus Argentina 

   Oligoryzomys flavescens Lechiguanas virus Argentina 

   Necromys obscurus Maciel virus  Argentina 

   

Oligoryzomys 

longicaudatus Oran virus Argentina 

   Calomys laucha Laguna Negra virus 

Paraguay, Bolivia, 

Argentina 

   Holochilus chacoensis Alto Paraguay virus  Paraguayan Chaco 

   Akodon montensis Ape Aime virus Eastern Paraguay 

   Oligoryzomys nigripes Itapúa virus Eastern Paraguay 

   Oligoryzomys microtis Rio Mamore virus Bolivia and Peru 
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   Necromys lasiurus Araraquara virus Brazil 

   Oligoryzomys nigripes Juquitiba virus  Brazil 

   Akodon montensis Jabora virus Brazil, Paraguay 

Soricomorpha Soricidae  Suncus murinus Thottapalayam virus India 

   Crocidura douceti Bowe  virus Guinea 

   Crocidura lasiura Imjin  virus Korea 

   Crocidura obscurior Azagny  virus Cote d'Ivoire 

   Crocidura shantungensis Jeju  virus Korea 

   Crocidura theresae Tanganya  virus Guinea 

   Myosorex geata Uluguru  virus Tanzania 

   Myosorex zinki Kilimanjaro  virus Tanzania 

   Anourosorex squamipes Cao Bang  virus Vietnam 

   Anourosorex yamashinai Xinyi  virus Taiwan 

   Blarina brevicauda Camp Ripley  virus United States 

   Blarina carolinensis Iamonia  virus United States 

   Neomys fodiens Boginia  virus Poland 

   Sorex araneus Seewis  virus Switzerland 

   Sorex caecutiens Amga  virus Russia 

   Sorex cinereus Ash River  virus United States 

   Sorex cylindricauda Qiandao Lake  virus China 

   Sorex isodon Yakeshi  virus China 

   Sorex minutus Asikkaia  virus Czech Republic 

   Sorex monticolus Jemez Springs  virus United States 

   Sorex roboratus Kenkeme  virus Russia 

   Sorex unguiculatus Sarufutsu  virus Japan 

 Talpidae  Talpa europaea  Nova  virus Hungary 

   Urotrichus talpoides Asama virus Japan 

   Neurotrichus gibbsii Oxbow  virus United States 

   Scaptonyx fusicaudus Dahonggou Creek  virus China 

   Scalopus aquaticus Rockport  virus United States 

Chiroptera Hippsideridae  Hipposideros pomona Xuan Son  virus Vietnam 

 Nycteridae  Nycteris hispida Magboi  virus Sierra Leone 

 Rhinolophidae  Rhinolophus sinicus Longquan  virus China 

 Vespertilionidae  Neoromicia nanus Mouyassue  virus Cote d'Ivoire 

   Pipistrellus abramus Huangpi  virus China 

 

 

1.3. VIRUS STRUCTURE AND LIFE CYCLE 

1.3.1. Virion structure 

Hantaviruses are manly round with 120-160 nm in diameter. These are enveloped 

viruses, with a negative sense three-segmented RNA genome, consisting of large – L (6.5–6.6 

kb), medium – M (3.6–3.7 kb) and small – S (1.7–2.0 kb) segments, coding for viral 

polymerase, viral glycoprotein precursor further processed into two separate envelope  
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glycoproteins (Gn and Gc) and viral nucleocapsid protein, respectively (Plyusnin et al., 1996) 

(Figure 1). The lipid envelope of hantaviruses is spiked by peplomeres consisting of Gn and 

Gc proteins. Each of the three segments contains non-coding sequences (NCR) on both the 5' 

and 3' ends (Plyusnin et al., 1996).  

 

 

Figure 1. Schematic of the structure of Bunyaviridae family members. All three segments (L, 

M and S) are encapsidated by nucleocapsid protein N. Gn and Gc glycoproteins are embedded 

in lipid envelope. Modified from Minskaya, 2003. 

 

 As the result of existence of these conserved, complementary terminal structures on the 

ends of the L, M, and S segments, each segment can form circular structures called panhandles 

(Figure 2). They are thought to play an important role in viral transcription and in the proposed 

prime-and-realign mechanism of replication. 
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Figure 2. Structure and genome organization of hantaviruses 

 

 L segment encodes the viral RNA-dependent RNA polymerase (RdRp), consisting of 

approximately 2530 amino acid residues. Detailed analysis of amino acid alignment of all 

RNA-dependent RNA polymerases showed existence of five conserved motifs A, B, C, D, E 

(Poch et al., 1989). In addition to these motifs, premotif A and motif E were identified in 

viruses with segmented negative-strand RNA genome. Almost all these motifs are placed in the 

palm subdomain of the L segment and form an active site (Amroun et al., 2017).  

M segment encodes glycoprotein precursor (GPC), consisting of approximately 1180 

amino acid residues. Previous studies have shown that this protein is being cleaved to Gn and 

Gc glycoproteins which form a complex on the outer surface of the virion (Huiskonen et al., 

2010; Battisti et al., 2011). Gn and Gc proteins form square-shaped surface spikes protruding 

from the viral membrane, with each spike complex made of four Gn and four Gc subunits. This 

Gn/Gc complex probably interacts with specific cellular surface proteins, β3-integrins, 

facilitating cellular entry in target cells (Gavrilovskaya et al., 1998).  

S segment codes for a nucleocapsid (N) protein of approximately 430 amino acids. It is 

highly conserved among different hantaviruses (Muyangwa et al., 2015). It has been shown that 

huge amount of this protein are expressed in early stages of infection and therefore the early 

immune response in patients infected by hantaviruses is directed mainly against the N protein  
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(Vapalahti et al., 1995). This protein has the most important role in RNA replication and 

encapsidation of each segment. It encapsidates each of the three genomic RNAs, thereby 

forming three ribonucleoproteins. 

 

1.3.2. Hantaviral life cycle 

Hantaviruses infect endothelial, epithelial, macrophage, follicular dendritic, and 

lymphocyte cells, by attaching viral glycoprotein to the receptor(s) on the host’s cell surface 

(Jonsson et al., 2010). These viruses target polarized cells from the apical and basolateral 

membrane surfaces. The replicative cycle of hantaviruses occurs in the cytoplasm of infected 

cells (Plyusnin et al., 2012). Hantaviruses attach to several cellular receptors including β3-

integrins as receptors for pathogenic hantaviruses and β1-integrins for non-pathogenic 

hantaviruses (Gavrilovskaya et al., 1999). Hantaviruses enter the cell via receptor mediated 

endocytoses (Figure 3). This process can be clathrin-dependent or not (Simon et al. 2009; 

Lozach et al. 2010). Primarily, virus is uncoated to release the three ribonucleoproteins into the 

cytoplasm. The next step is transcription by viral RdRp (vRdRp), producing the S, M, and L 

mRNAs. For initialization of this process, vRdRp needs primers which are obtained by a cap-

snatching mechanism. N protein attaches to caps of host mRNAs and protects them from their 

own cellular RNA degradation machinery (Mir et al., 2008). Free ribosomes are the site of final 

translation of the S and L messenger RNAs (mRNAs), while translation of the M-segment 

transcript occurs on membrane-bound ribosomes. Namely, the glycoprotein precursor is 

proteolytically processed into Gn and Gc during import into the endoplasmatic reticulum (ER) 

and further transported to the Golgi complex. The nucleocapsid protein is the most abundant 

viral protein and is synthesized early in the course of infection. Immediately after initial 

transcription, the RdRp switches from transcription to replication of all three genomic segments 

(L, M and S). Viral negative sense genomic RNAs (gRNAs) are converted by the action of 

RdRp to positive sense anti-genomic RNAs (agRNAs) and vice versa resulting in newly 

synthesized viral RNA segments. The newly formed viral RNAs are encapsidated by the N 

protein to form the ribonucleoproteins. The final step in virion maturation of bunyaviruses is 

assembling with the Golgi apparatus, followed by transport to cytoplasmic membrane via large  

 



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
10 

 

Golgi vesicles (Kuismanen et al. 1982; Salanueva et al. 2003). Enveloped virions are released 

to the extracellular space. 

 

 

Figure 3. Replication cycle of hantaviruses Modified from Islam et al., 2011. 

 

1.4. PATHOGENESIS OF HANTAVIRUS DISEASES 

Hantaviruses proven to be human pathogens are mostly rodent borne, while 

hantaviruses found in shrews, moles and bats are still of undetermined pathogenicity for 

humans (Papa, 2012; Schlegel et al., 2012; Song et al., 2007). The geographic distribution of 

pathogenic hantaviruses and principal associated pathologies in humans are presented in 

Figure 4. Pathogenic hantaviruses are the causative agents of at least two human zoonotic 

diseases: hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome 

(HPS), with mortality rates of up to 12%-18% and 60%, respectively (Kovacevic et al., 2008; 

Jonsson et al., 2010 Papa, 2012). 
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Human infection occurs through respiratory exposure to contaminated rodent secreta 

and excreta. Incubation period is relatively long, 2-4 weeks. The symptoms of flu-like disease 

start suddenly and in some cases rapidly progress to severe or deadly forms of disease. The 

presence of hantavirus RNA in blood before disease onset has been described, however, IgG or 

IgM antibodies are not detected before the appearance of symptoms (Rasmuson et al., 2011; 

Ferres et al., 2007). 

Upon viral entry through respiratory route, the first barrier for virus ingress to target 

cells is mucus covering respiratory epithelium. The trapped microbes, including hantaviruses, 

are subsequently being removed from the lungs to the throat by movements of ciliated cells 

through mucus (Flint et al., 2009). The lowest parts of the respiratory tract, the alveoli, lack 

both cilia and mucus and macrophages lining the alveoli are important for digestion of 

microbes (Flint et al., 2009). The next obstacle for virus entry is intact respiratory epithelium, 

which forms a particle-impermeable barrier. Once the virus surpasses these barriers, it spreads 

to the lung endothelium and further to other organs. The final target cells are endothelial cells 

of capillaries and small vessels in numerous organs and tissues (Nuovo et al., 1996). As 

mentioned above, β3-integrins serve as receptors for pathogenic hantaviruses. Virus entry to 

endothelial cells induces the breakdown of their barrier function resulting in the so-called 

“vascular leak” mechanism (Manigold and Vial, 2014). Nevertheless, cytopathic effect (CPE) 

is not recognized in hantavirus infected endothelial cells. Therefore, illness and cell damage in 

hantaviral infection are the result of immunopathological mechanisms involving innate and 

adaptive immune responses (Schonrich et al., 2008). 

In clinical practice, diagnostic tests most commonly used for diagnosis of hantavirus 

infection are based on enzyme-linked immunosorbent assay, indirect immunofluorescence or 

strip immunoblot (Manigold and Vial, 2014). All these tests aim to detect IgG/IgM antibodies 

against hantavirus nucleocapsid antigen (N-antigen), which is mostly conserved in 

hantaviruses. Moreover, almost all patients have IgM and IgG antibodies during the acute phase 

of the disease. Gn and Gc proteins are not considered of major diagnostic importance, since 

these proteins appear later in the clinical course and they are less conserved compared to the N 

protein. 
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Currently, there are no drugs approved by the Food and drug administration agency 

(FDA) for the treatment of patients infected with hantaviruses (Papa, 2012). Therefore, 

treatment is mainly symptomatic, including hydration, blood pressure regulation, oxygenation 

support and dialysis, if required. The use of ribavirin has been reported, which is a nucleoside 

analog with broad-spectrum antiviral activity. 

 

1.4.1. Hemorrhagic fever with renal syndrome (HFRS) 

HFRS is caused by Old World hantaviruses, present in Europe and in Far East (Figure 

4) The causative hantavirus strains are Dobrava-Belgrade virus (DOBV), Saarema virus 

(SAAV), Seoul virus (SEOV), Puumala virus (PUUV) and Hantaan virus (HTNV).  

 

Figure 4. Geographical distribution of pathogenic hantaviruses and principal associated 

pathologies in humans. HCPS = hantavirus cardiopulmonary syndrome; HFRS = haemorrhagic 

fever with renal syndrome; NE = nephropathia epidemica. Modified from Manigold and Vial, 

2014. 
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Clinical course of HFRS usually develops in five distinctive phases: febrile, 

hypotensive, oliguric, diuretic and convalescent. Incubation period, ranging from 10 days to 6 

weeks, is followed by flu-like symptoms in infected patients (Manigold and Vial, 2014). This 

febrile phase is characterized by myalgia, headache, abdominal pain and malaise, and also 

neurological, cardiovascular and gastrointestinal symptoms (Lednicky, 2013). The hypotensive 

phase is characterized by symptoms of vascular leakage, often associated to thrombocytopenia 

and shock. The oliguric phase lasts up to 5 days with risk for hypertension, pulmonary oedema 

and renal insufficiency. Consequently, half of fatalities due to HFRS occur during this phase. 

The initiation of the diuretic phase usuaully suggests the initiation of patients’ recovery, and it 

is followed by a convalescent phase. Main laboratory findings are thrombocytopenia, 

leukocytosis or leucopenia, elevated levels of hematocrit (due to extravasation of fluid), serum 

urea and creatinine, and proteinuria. Depending on the hantavirus strain, both mild and severe 

forms of disease exist. Namely, DOBV and HTNV mostly cause severe forms of the disease 

with fatality rate of approximately 12-18% (Kovacevic et al., 2008; Vaheri et al., 2013). Mild 

forms of the disease are caused by SEOV and PUUV with fatality rates of 0.4%-2% (Vaheri et 

al., 2013). 

 

1.4.2. Hantavirus pulmonary syndrome (HPS) 

HPS is caused by New World hantaviruses, present in the Americas (Jonsson et al., 

2010), as shown in Figure 4. Incubation period for these viral infections varies, ranging from 

17 days for SNV to 38 days for Andes virus (ANDV) (Manigold and Vial, 2014). The febrile 

phase is characterized by the same symptoms as with HFRS and lasts up to 5 days. These 

symptoms are followed by thrombocytopenia, leucocytosis or leucopenia, elevated haematocrit, 

peripheral immunoblasts, abnormal liver function tests, mild increase in creatinine, 

hyponatraemia and proteinuria. In advanced stages of HPS, more specific symptoms appear, 

such as cough and dyspnoea, tachycardia and hypotension. Approximately 50% of infected 

patients develop cardiopulmonary phase characterized by dyspnoea, cough, tachycardia and 

hypotension, followed by rapidly progressive pulmonary oedema caused by capillary leakage 

and low cardiac output. Severity and case fatality rates of HPS vary depending on the strain  
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(circulating in the geographic regions), e.g. it is 25%-40% in Panama and 10% in Paraguay 

(Armein et al., 2013).  

 

1.5. HANTAVIRUS ECOLOGY 

Unlike other bunyaviruses, arthropod vectors are not involved in the transmission of 

hantaviruses. These viruses are persistently active in their natural reservoirs including rodents, 

insectivores and bats (Guo et al., 2013). In nature, hantaviruses are circulating via horizontal 

transmission among infected natural reservoirs. Hantaviruses are primarily rodent borne, with 

each species being mainly associated with particular rodent host (Maes et al., 2009; Jonsson et 

al., 2010). Rodents (order Rodentia, families Muridae and Cricetidae) of the Murinae, 

Arvicolinae, Sigmodontinae and Neotominae subfamilies serve as reservoir hosts for most 

hantavirus species. Nevertheless, the association of a particular hantavirus to specific rodent 

host species is not exclusive, hence they have also been detected in alternative rodent hosts, e.g. 

DOBV virus in A. agrarius and TULV in Microtus agrestis, Microtus rossiaemeridionalis, 

Microtus subterraneus, and Arvicola amphibius (Scharninghausen et al., 1999; Schlegel et al., 

2012; Song et al., 2002). These findings might be the result of hantavirus spillover among 

sympatric species, which is promoted by complex biogeographic and anthropogenic pressures 

on the environment (Hjelle and Yates, 2001; Klingstrom et al., 2002; Zou et al., 2008). 

Moreover, hantaviruses are also hosted by insectivores (families Soricidae and 

Talpidae) (Guo et al., 2013). Newly published data have extended hantavirus hosts to bats 

(order Chiroptera) (Sumibcay et al., 2012; Weiss et al., 2012; Guo et al., 2013).  

Ecology and distribution of hantaviruses are directly related to the distribution of their 

natural hosts (Figure 5) (Jonsson et al., 2010). 

Old World hantaviruses, which are circulating in Europe and Asia, are carried by 

species of four different rodent genera (Apodemus, Microutus, Myodes, Rattus and Arvicola) 

and two insectivore families (Soricidae, Talpidae). 

Apodemus species (subfamily Murinae) are widely spread in Europe and Asia, 

underlying broad distribution of hantaviruses in this part of the World. Apodemus-borne 

hantaviruses, including HTNV and DOBV, are known to be the etiological agents of HFRS. 

HTNV and HTNV-like viruses were detected in three different Apodemus species (A. agrarius,  
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A. ponticus, and Apodemus peninsulae) in China, South Korea and Russia. In Europe, 

Apodemus species host various hantaviruses which are the etiological agents of HFRS.  

 

Figure 5. Map of the world illustrating the location of known hantaviruses by host group and 

associated mammalian hosts. Modified from Guo et al., 2013 

 

Since its first description in Serbia in the past century, DOBV was detected throughout 

the Balkan Peninsula (Papa, 2012). Furthermore, it is associated with different rodent host 

species that are members of the subfamily Murinae. Earlier phylogenetic analysis revealed 

separate genetic lineages or genotypes of DOBV hosted by different Apodemus species (Papa, 

2012). According to a new proposed classification, Dobrava-Belgrade virus species can be 

subdivided into four genotypes (Dobrava, Kurkino, Saaremaa and Sochi) in relation to their 

phylogeny, host reservoir, geographical distribution and pathogenicity for humans (Klempa et 

al., 2013; Vaheri et al., 2013). The Kurkino and Saaremaa genotypes are associated with the 

striped field mouse, Apodemus agrarius, Dobrava genotype with the yellow-necked field 

mouse, A. flavicollis, while Sochi genotype is associated with the Caucasian wood mouse, 

Apodemus ponticus. Among them, the Dobrava and Sochi genotypes are associated with more 

severe disease than that caused by Kurkino and Saaremaa. 
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Hantaviruses are also detected in different species of voles (Arvicolinae). Species of 

voles belonging to the genus Microtus are widely spread in Europe, North America and Asia. In 

Europe, TULV was firstly isolated in 1987 from M. arvalis and M. rossiaemeridionalis 

(Plyusnin et al., 1994). In the same year, TULV was also isolated in Russia from Microtus 

arvalis, and Microtus levs (previously Microtus rossiaemeridionalis). On the other hand, 

Khabarousk and Vladivostok viruses were isolated from Microtus fortis in Russia and Japan 

(Avšič-Županc et al., 2015). Moreover, Microtus agrestes was found to be the reservoir of 

TULV in Germany and Switzerland (Schlegel et al., 2012). In America, different hantavirus 

species were detected in Microtus pennsylvanicus, Microtus californicus and in Microtus 

ochrogaster.  

Myodes glareolus (previously Clethrionomys glareolus), carrier of PUUV, is the most 

widespread mammal species. This bunk vole species is widely spread in Europe (except of the 

Mediterranean region). In Asia, Myodes rufocanus and Myodes regulus are known hosts for 

Hokkaido virus (HOKV) in Japan, and Muju virus (MJUV) i Korea, respectively (Avšič-

Županc et al., 2015).  

Lately, Arvicola amphibious was also identified as carrier of TULV in Germany and 

Switzerland (Schlegel et al., 2012) 

Different species of the Rattus genus are also hosts of hantaviruses. Seoul virus 

(SEOV)is harbored by Rattus norvegicus (Avšič-Županc et al., 2015). The worldwide 

distribution of SEOV is the consequence of the global distribution of its host reservoir. 

 New World hantaviruses, present in the Americas, are mostly associated with members 

of the rodent subfamilies Neotominae and Sigmodontinae. Since the first hantavirus detection in 

America (PHV), many additional hantaviruses have been isolated from different rodent species 

(Bi and Formenty, 2008; Yanagihara et al., 2014). SNV, the first etiological agent of HPS, was 

isolated from Peromyscus maniculatus (Childs et al., 1994). Moreover, the most important 

hantavirus in South America is ANDV, causative agent of HPS in Argentina (Calderon et al., 

1999). In the following years different studies published data with newly detected hantavirus 

hosts es. In Mexico, hantaviruses are in association with deer mice (Peromyscus spp.), harvest 

mice (Reithrodontomys spp.), and cotton rats (Sigmodon spp.) (Milazzo et al., 2012);  
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Oligoryzomys fulvescens is host of hantaviruses in Panama (Armién et al., 2016), while 

Acodon azarae is host of hantaviruses in Argentina (Maroli et al., 2015). 

 Rodents have been the only known hantavirus reservoirs for a long time. As already 

mentioned, the first ever hantavirus (Thottapalayam virus) was isolated in India (Carey et al., 

1971). Moreover, the first hantavirus, detected in Africa (Guinea) was recovered from an 

insectivore (Crocidura theresae, family Soricidae) (Klempa et al., 2006). In the following 

years, Sorex spp. was detected as a common hantavirus host es in several European countries. 

So far, pathogenicity of these viruses is not elucidated (Kang et al., 2009; Yashina et al., 2010; 

(A) Schlegel et al., 2012). Several important scientific reports are connected with discovery of 

shrew-borne hantaviruses (Klempa, 2009). Shrew-borne hantaviruses have been found in 

widely separated parts of the world. Insectivores and rodents are evolutionary very divergent, 

leading to the assumption that other mammals may also harbor hantaviruses. Moreover, the 

pathogenicity of insectivore-borne hantaviruses has not been investigated yet. Finally, there is 

significant distinction between rodent- and shrew-borne hantaviruses at the amino acid level. 

This fact is the possible reason why these viruses were not detected for such long period. 

Lately, hantaviruses have been detected in bats (Yanagihara et al., 2014; Zhang 2014; 

2015). Namely, the first hantaviruses found in bats (families Nycteridae and Vespertilionidae) 

originated from a National park in Sierra Leone and near Mouyassué village in Côte d'Ivoire 

(Sumibcay et al., 2012; Weiss et al., 2012). Moreover, hantaviruses were found to be associated 

with different species of Rhinolophus genera in Asia (Guo et al., 2013). Hantaviruses were also 

detected in Pipistrellus abramus and Hipposideros pomona, originated from Asia and Vietnam, 

respectively (Guo et al., 2013; Arai et al., 2013). Although, hantaviruses were found only in 

few bat species, these species belong to both known suborders:  suborder Yinpterochiroptera, 

which includes three families, Hipposideridae, Rhinolophidae and Pteropodidae, and suborder 

Yangochiroptera, which includes two families, Nycteridae and Vespertilionidae. The 

knowledge regarding the pathogenicity and role in the general evolution of hantaviruses 

isolated from bats is very limited and needs to be resolved in future. 

Quite recently, the connection between hantavirus natural reservoirs and environmental 

and climate changes has been studied (Dearing and Dizney, 2010). Small mammals are very 

sensitive to climate and habitat changes. Climate changes influence food availability and winter  
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conditions may affect the distribution of small mammals. The example which decidedly 

confirms the association between climate and rodent population is the hantavirus outbreak in 

1993 in the US Four Corners region (Klempa, 2009). Namely, a dramatic increase of rainfall 

associated with the 1992–1993 El Niño resulted in an increased abundance of rodent food, 

which led to 20-fold increase in rodent population resulting toa hantavirus outbreak.Later 

studies have also shown the influence of climate changes on increasing number of HFRS in 

some European countries (Clement et al., 2009; Linard et al., 2007). They showed that higher 

temperature during summer and autumn can influence on pathogen dynamics and subsequently 

increase the number of HFRS cases. In contrast, climate changes have negative effect on the 

vole population s in Scandinavia (Klempa, 2009). It is known that voles, hosts of PUUV, have 

3-4-year population cyclesfacilitating the transmission and spread of PUUV. Lately, these 

population cycles have been disturbed by climate fluctuations. Changes in climatic patterns of a 

phenomenon known as North Atlantic Oscillation (NAO), resulted in mild and wet winters, 

which have led to a decrease in vole population. Although it may seem illogical, this 

phenomenon can be explained by the fact that shorter period of protective snow cover 

combined with more frequent freezing and thawing periods, producing an ice rather than snow 

cover, resulted in decreased vole wintering success. 

Landscape alternation during the past century resulted in transformation of land to 

farms, pastures, roads, and urban centers. Disturbed habitats are more convenient to generalist 

species, such as small mammals, able to tolerate and quickly adapt to ecological changes. In 

this way the scene was set for increased frequency of hantavirus transmission to humans (Mills, 

2005).   

Hantavirus infection of natural reservoirs is considered to be persistent and 

asymptomatic (Hardestam et al., 2008, Yanagihara et al., 1985; Bernshtein et al., 1999). 

However, some negative influence of hantaviruses on host's survival has been described, such 

as slower growth of infected animals and histopathological changes in infected tissues. As the 

result of persistent infection, animals transmit the viruses among themselves and shed virus in 

urine, saliva, and feces (Kruger et al., 2015). In the environment, virus particles remain 

infectious for several weeks – depending on environmental factors including humidity and 

temperature (Hardestam et al., 2007). 
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It has been shown that hantaviruses persist better in wet and cold environment 

compared to dry and warm conditions in laboratory experiments. All these changes can further 

influence the epidemiology of hantaviruses. A peak in viral load in rodents’ excretions is 

detected few weeks after their initial contact with the virus. In the following prolonged chronic 

stage, the viral load is lower, resulting in significantly lower virus transmission potential 

(Hardestam et al., 2008; Yanagihara et al., 1985; Bernshtein et al., 1999).  

Some previous studies have also shown the role of kinship in virus transmission 

between closely related animals. For example, investigation of TULV and PUUV spread in 

populations of Cricetidae species revealed that infected animals were more closely related to 

each other than non-infected ones, emphasizing the importance of virus transmission in hatches 

(Deter et al., 2008). On the other hand, in a study that examined the influence of kinship among 

rodents of Apodemus flavicollis species on hantavirus spread, the frequency of relatives was 

higher in seronegative in relation to seropositive group. 

 

1.6. HANTAVIRUS EPIDEMIOLOGY 

Human infection occurs through inhalation of contaminated secreta and excreta (urine, 

saliva, and feces). Virus transmission to humans has only rarely occured directly by rodent bite 

(Douron et al., 1984). Risk factors increasing the possibility of hantavirus transmission to 

humans mostly include rural- and forest-related activities (Watson et al., 2013). Therefore, 

farmers, shepherds, forestry workers and soldiers are in highest risk for infection (Papa, 2012). 

Males are infected more often, with approximate 3:1 male to female ratio. Furthermore, the 

highest number of infected persons is detected among adults, and only few studies reported 

hantavirus infection in children (Peco-Antić et al., 1991; Bogdanovic et al., 1995; Eboriadou et 

al., 1999). Humans are not among the natural hosts of hantaviruses and they are thought to be 

dead-end hosts, without further virus transmission, with the exception of few reported cases of 

human-to-human transmission of ANDV in Argentina and Chile (Wells et al., 1997; Ferres et 

al., 2007). Figure 6 shows the number of reported annual clinical cases of hantavirus infections 

since 2000. 

The first HPS case was recognized in 1993 in the Four Corners area in USA, and it was 

caused by SNV (Childs et al., 1994). In the following years HPS was spread through North and  
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Figure 6. Reported clinical cases of hantavirus infections/year since 2000. Data included for 

each country is the average number of laboratory confirmed cases per year since 2000, with 

preference given to national/international registry reports. Imported cases are excluded. 

Modified from Watson et al., 2013. 

 

South America with confirmed cases in Argentina, Bolivia, Brazil, Canada, Chile, Panama, 

Paraguay and Uruguay (Avšič-Županc et al., 2015). Currently over 15 different hantavirus 

species were identified as the etiological agents of HPS. Two different pathogenic strains of 

hantaviruses are predominant in the Americas, including SNV in North America and ANDV in 

South America. According to the results reported by Centers for Disease Control and 

Prevention, Atlanta, Georgia (USA) as of January 2017 until July 2017 a total of 728 cases of 

hantavirus Infections have been reported in the United States 

(https://www.cdc.gov/hantavirus/surveillance/index.html). However, the mortality rate is much 

higher compared to HFRS, around 40%. Moreover, in a study from Brazil, Araraquara virus 

(ARQV) has shown to be very virulent hantavirus, with 50% case fatality rate (Kruger et al., 

2015). However, the presence of antibodies against HPS-causing hantaviruses has also been 

detected in asymptomatic infections or mild febrile cases (Watson et al., 2014). Brazilian  
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retrospective seroepidemiological study reported 2.3% seropositivity, while a study in Peru 

reported 0.3% seropositive individuals (Watson et al., 2014). 

The first serologically confirmed cases in Africa were reported in 1984 in Benin, 

Burkina Faso, Central African Republic and Gabon (Gonzalez et al., 1984). However the first 

hantavirus, named Sangassou virus (SANGV), was found using a pan-hanta-PCR protocol in 

African wood mouse (Hylomyscus simus) trapped in a forest habitat in Guinea (Klempa et al., 

2006). In the following years hantavirus infection was detected in Senegal, Nigeria, Egypt, 

Djibouti and Guinea (Avšič-Županc et al., 2015). Recently, independent studies reported 1-2% 

SANGV seroprevalence in Guinea and in the South African Cape Region (Witkowski et al., 

2014; Klempa et al., 2010). Moreover, a study conducted in Sangassou village in Guinea 

reported seroprevalence of 4.4%. Reported data showed that this medical problem is 

underestimated in Africa, possibly because the lack of appropriate hantavirus antigens in 

diagnostic tests. 

Asia is the continent where the epidemic hemorrhagic fever was firstly described. China 

is the country with the highest number of reported cases and deaths. During the period 1950-

2007 more than 1.5 million cases were reported in China (Zhang et al., 2010). However, in 

2007 after implementation of different preventive measures, 11248 cases were reported. Similar 

to other parts of the world, individual HFRS cases and outbreaks are influenced by ecological 

and occupational factors. More than 70% of HFRS cases are related to rural areas of China. 

These areas are characterized by poor housing conditions and high density of rodents’ 

population. Severe forms of illness have been caused by HTNV and Amur/Soochong virus, 

with 15% fatality rate (Avšič-Županc et al., 2015). HTNV was first isolated from A. agrarius in 

1978 (Lee et al., 1978). This hantavirus is known to be the causative agent in 70% of HFRS 

cases (Ryou et al., 2007). HTNV is the most important causative agent of HFRS in South Korea 

with high number of reported cases (Jonsson et al., 2010). Significant prevalence of anti-

hantavirus antibodies has also been noted in other Asian countries, including Thailand, 

Indonesia and India (Jonsson et al., 2010). Although SEOV is present worldwide, the highest 

prevalence of SEOV infection was observed in Asia. This virus is the etiological agent of 

moderate form of disease with 1-2% of mortality rate. Unlike HTNV, SEOV is more  
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commonly found as a cause of HFRS in cities and urbanized areas, mainly due to the 

distribution of its natural host (Rattus spp).  

 Infections caused by hantaviruses are constantly present in European countries. During 

the period 2000-2009, the average number of annual reported cases was 3,138. Two different 

species of hantaviruses are known to cause HFRS in Europe: PUUV and DOBV. PUUV is 

widely present in central and northern Europe, since its natural reservoir (M. glareolus) is the 

most common rodent species in this part of the World. In some countries, such as Finland, 

Germany, Sweden and European part of Russia, thousands of PUUV cases occur in peak 

epidemic years. HFRS caused by PUUV is known as nephropathia epidemica (NE) and it 

mostly is characterized by mild symptoms. DOBV, on the other hand, is predominant in south-

eastern Europe (Balkan region). This virus causes severe forms of HFRS with mortality rate up 

to 12%. Individual cases and outbreaks are reported yearly, with approximately 40,000-60,000 

cases annually in China as the most endemic country (accounting for 99% of all reported HFRS 

cases) (Avsic-Zupanc et al., 2016). Earlier phylogenetic analyses revealed separate genetic 

lineages or genotypes of DOBV hosted by different Apodemus species (Papa, 2012). However, 

new proposed classification subdivided DOBV species into four genotypes (Dobrava, Kurkino, 

Saaremaa and Sochi) in relation to their phylogeny, host reservoir, geographical distribution 

and pathogenicity for humans (Klempa et al., 2013; Vaheri et al., 2013). The Kurkino and 

Saaremaa genotypes are associated with A. agrarius, Dobrava genotype with A. flavicollis, and 

Sochi genotype with A. ponticus. DOBV genotypes induce HFRS with significant differences 

in case-fatality rate, from >10% in DOBV hosted in A. flavicollis to ≤1% in DOBV hosted in A. 

agrarius (Gligic, 2008; Papa, 2012).  

DOBV is endemic in the Balkan region, where severe cases are reported every year. In 

Romania during the period of 1956-1977 the number of clinically confirmed HFRS cases was 

27 (Manasia et al., 1977). Since 2008, when the laboratory diagnostic of hantaviruses was 

established in the National Reference Laboratory for Vector-Borne Infections, 17 additional 

HFRS cases have been diagnosed. All patients had severe form of the disease and all were 

exposed to occupation risk (Heyman et al., 2011; Maftei et al., 2012). 

During the period of 1954-1986, 399 HFRS cases were diagnosed in Bulgaria, with 

serologically confirmed DOBV infection in 90% of all cases (Chumakov et al., 1988). From  
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2000-2010, 36 HFRS cases have been reported in the Rila-Pirin-Rodopa mountain ranges (Papa 

and Christova, 2011). All cases were clinically and serologically confirmed. 

Cases of human infection caused by hantaviruses are also reported in Greece. The first 

serologically confirmed case was diagnosed in 1981 (Lee and Antoniadis, 1981). Up to 2001, 

210 cases were reported in Greece (Heyman and Vaheri, 2008; Papa and Antoniadis, 2001). 

The most endemic regions are in the northwest and northeast parts of the country where 80% of 

total HFRS cases are observed. Two pathogenic hantaviruses are found in Greece: DOBV and 

PUUV and the predominant one is DOBV. As two viruses are present as causative agents of 

HFRS, the forms of HFRS vary from mild to severe, with average mortality rate 9% (Papa and 

Antoniadis, 2001). 

In Albania, the first HFRS reports dated from 1987 (Eltari et al., 1987). From 2003-

2006, 17.7% of cases clinically suspected as viral hemorrhagic fever, were confirmed as HFRS 

(Papa et al., 2008). 

The first case of HFRS in former Yugoslav Republic of Macedonia was reported in 

1987. In a 3-year study period (October 1987- July 1990), 10 patients were recognized as 

HFRS cases caused by DOBV (Polenakovic et al., 1995). The fatality rate was 10%.  

The first clinical case of HFRS in Slovenia was reported in 1954 (Radosevic and 

Mohacek, 1954). Subsequently, the presence of few different hantavirus species (DOBV 

(genotypes Dobrava and Kurkino), PUUV, TULV and Seewis virus) were detected in Slovenia 

(Avsic-Zupanc et al., 2014). DOBV is known to cause severe forms of HFRS, since it was 

initially isolated in 1992 from A. flavicollis (Avsic -Zupanc et al., 1992). On the other hand, 

PUUV is causative agent of mild and moderate forms of HFRS, with significantly lower 

mortality rate. From 1999-2008, 208 clinically and laboratory confirmed cases were reported in 

Slovenia (Kraigher et al., 2012). DOBV was detected in 134 patients and PUUV was detected 

in 377 patients. The overall fatality rate was 4.5%.  

Hantaviruses are endemic throughout Croatia with some exceptions, including the 

coastal region and the islands. In this country, HFRS is caused by DOBV or PUUV, but two-

third of cases are caused by PUUV (Markotic et al., 1996). The first documented clinical case 

was reported in 1952 (Radosevic and Mohacek, 1954). Since then, sporadic cases have been 

reported annually with few outbreaks. Dinara region, first recognized as endemic during an  
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outbreak in 1995, was the region with the highest proportion of DOBV infections (Kuzman et 

al., 1997). During an outbreak in 2001, 401 HFRS cases were reported. DOBV IgM antibodies 

were detected in 17% patients (Kuzman et al., 2003).  

Bosnia & Herzegovina (B&H) is known to be highly endemic country for hantaviruses. 

The first clinical case was reported in 1967 and since then 732 HFRS cases were diagnosed 

(Heyman et al., 2011). Three different hantaviruses, including PUUV, DOBV and SEOV are 

known to circulate in B&H (Clement et al., 1994; Hukic et al., 2011). However, almost 50% of 

HFRS cases are caused by PUUV (Hukic et al., 2011). In general population, surveilled 

seroprevalence to PUUV was 6%, while the seroprevalence to DOBV was 1.5%. Some large 

outbreaks have been documented in the past (Hukic et al., 2010). The first large epidemic 

occurred in 1989 with an overall fatality of 6.6% (Gligic et al., 1992b). The next epidemic was 

recognized during the war in 1995, with mortality rate of 7.3% (Markotic et al., 1996). Most 

patients were soldiers; 190 patients with symptoms compatible with HFRS were admitted in the 

hospital, and HFRS was confirmed in 128 patients (Lundkvist et al., 1997).   

Recognition of HFRS cases in Montenegro dates from 1967. Ever since, four outbreaks 

were reported in Montenegro. High number of cases was detected in the northeast part of the 

country (Berane, Plav, Mojkovac, Pluzine and Kolasin). DOBV is the most common causative 

agent of HFRS (90%). The average mortality of DOBV cases is 4.8% (Gledovic et al., 2008).  

Epidemiological studies from Serbia described sporadic individual human cases or 

episodic outbreaks of HFRS induced by hantavirus infection. The first isolation of Dobrava–

Belgrade virus was made from an HFRS patient in Belgrade, Serbia, in 1992 (Gligic et al., 

1992). Soon thereafter, a new hantavirus strain was isolated from A. flavicollis captured in 

Dobrava, Slovenia, and its genome was analyzed (Avsic -Zupanc et al., 1992). In 1993, based 

on a 420-bp sequence of the S fragment, the Belgrade virus and the Dobrava virus were found 

to be genetically highly similar (Taller et al., 1993). Therefore, both viruses are now considered 

to be the same and were named Dobrava–Belgrade virus (DOBV). The first serologically 

confirmed HFRS case in Serbia was reported in 1979 (Diglisic et al., 1994). Up to now, 

manyserologically confirmed HFRS cases were observed annually, with outbreaks occurring in 

1986, 1989 and 1995–96 (Gligic et al., 1988, 1989, 1992; Diglisic et al., 1994; Avsic-Zupanc et 

al., 2000). The most recent available data about HFRS patients in Serbia refer to 2002, during a  
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large epidemic in Serbia and Montenegro with 128 confirmed cases, including genetic detection 

of DOBV (Papa et al., 2006). Moreover, Puumala-like virus and TULV were also detected in 

Serbia (Diglisic et al., 1994; Song et al., 2002). PUUV-like virus was isolated during the 

epidemic in Pozarevac in 1988. The disease was diagnosed in four children and one adult; one 

child died. The PUU-like virus was isolated from Mus musculus captured in Pozarevac, 

auggesting that M. musculus can play important role in hosting and transmitting hantaviruses 

causing severe form of HFRS. In a study conducted during 1983-1989, rodents were captured 

in former Yugoslavia (Bosnia, Croatia, Montenegro, Slovenia and Serbia); the captured rodents 

were A. agrarius, A, flavicollis, Apodemus sylvaticus, M. subterraneus, M. arvalis and Microtus 

multiplex, and TULV was detected in M. subterraneus using molecular methods, captured in 

Serbia in 1987. TULV was first isolated from M. arvalis and M. rossiaemeridionalis captured 

in the Tula region in Russia (Plyusnin et al., 1994). At the same time, TUV was also detected in 

Slovakia, near the town Malacky; virus was recovered from M. arvalis (Sibold et al., 1995). In 

the following years, TULV was detected in various European countries (Bowen et al., 1997; 

Heyman et al., 2002; Plyusnin et al., 1995; Sibold et al., 1999). Moreover, TULV was also 

isolated from Arvicola amphibious trapped in Germany and Switzerland, representing the first 

detection of TULV in Eurasian water vole (Schlegel et al., 2012). . For a long time TULV was 

considered as non-pathogenetic hantavirus. However, human infections caused by TULV have 

been recently reported in at least two occasions in Czech Republic and in France (Zelena et al., 

2013; Reynes et al., 2015). It has been suggested that TULV has the possibility of 

recombination (Sibold et al., 1999a). 

 

1.7. EVOLUTION OF HANTAVIRUSES 

The study of evolution and relatedness of genes and organisms may be performed using 

different approaches - for example, morphological characteristics are still important for 

taxonomy. However, increasing number of molecular data (nucleotide and amino acid 

sequences) are nowadays used to explore phylogenetic relationships. Sometimes, the only way 

to examine relatedness among organisms is the use of morphological characteristics, as is the 

case for mummies and fossils. Since viruses do not leave fossil records, the only way to study 

their past is through phylogenetic relationships of existing viruses. 
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Currently, the characteristics of the viral genome are important source of information. 

Understanding the processes that lie behind genetic diversity and access to an early 

evolutionary history is important for understanding the current properties of pathogens and for 

designing preventive, therapeutic and public health measures. Phylogenetic analysis includes 

reconstruction of the evolutionary history based on genomic data and represents fundamental 

element in molecular and epidemiological studies. Reconstruction of phylogenetic trees 

provides insights into the evolutionary relationships of viral strains combined with the 

possibility to investigate anyepidemiological links. 

 Based on evolutionary theory, all organisms have evolved from a single common 

ancestor. However, different molecular mechanisms are responsible for variations in genomes 

of each organism which results in biodiversity. The mechanism to infer relationships among 

genes is by analyzing mutations. Namely, phylogenetic methods assume the appropriate level 

of similarity between examined sequences that share a common ancestor. This means that 

sequences can be analyzed together using phylogenetic methods only if they have not 

accumulated too much variation. Therefore, the term “homology” is used only when the 

common ancestor is recent enough for the sequence information to have retained enough 

similarity for it to be used in phylogenetic analysis. Taxonomic comparison showed that related 

species are limited in a number of mutations, which are usually found on the third codon 

position of an open reading frame (ORFs), therefore, the evolution in proteins is lower than that 

in nucleotides. 

 Evolutionary relatedness between genes can be approached using phylogeny, therefore 

showing which genes are most related. The best way to illustrate evolutionary relationships 

among genes is to construct phylogenetic tree, a graphical representation resembling the 

structure of a tree, hence the name. In order to construct a phylogenetic tree, it is necessary 

homologous sites of examined sequences to be compared with each other (positional 

homology). This can be achieved by aligning the homologous sequences in such way that 

homologous sites form columns in the alignment. 

 Various models can be applied to infer phylogeny based on a set of viral sequences. 

These models are used to reconstruct the evolutionary history of a population of gene 

sequences based on sequence similarity in the form of a phylogenetic tree with individual nodes  
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on a tree representing a hypothetical most recent common ancestor of the observed gene 

sequences located at the tips of the tree. Two broadly used methodical approaches are distance-

based and criterion-based or algorithmic. Distance-based methods [Neighbor-joining (NJ), 

Fitch–Margoliash (FM), and Unweighted Pair Group Method with Arithmetic Means 

(UPGMA)] are based on the pair-wise distance matrix, which means the degree of differences 

between sequence pairs. These methods cluster taxa according to a pre-defined set of rules. 

When a fast method for inferring relationships between taxa is required, NJ trees have been 

shown to provide a good approximation to the minimum evolution tree, particularly for large 

datasets. 

 Criterion based methods are Maximum Likelihod (ML), Bayesian and Maximum 

Parsimony (MP) method. ML method, under the best fitting model of evolution, searches the 

likelihood of all trees and the tree with the highest likelihood becomes chosen as the best tree. 

Bayesian method also uses concept of likelihood, but it does not search only one best tree. In 

contrast to ML, this method calculates posterior probability of trees and chooses the one with 

the highest probability. Disadvantage of this algorithm is that it is computationally demanding, 

especially for large data sets. Prior to analysis, Bayesian method requires the researcher to 

specify model parameters (prior distribution). In Bayesian phylogenetic inference posterior 

probabilities are obtained by exploring tree space using a sampling technique, called Markov 

chain Monte Carlo (MCMC). The collection of post-burn-in samples obtained after 

convergence to the stationary distribution is an approximation to the posterior distribution of 

the parameter under consideration. The advantage of this method compared to ML is the 

possibility of comparison of two alternative hypotheses. After MCMC analysis, it should be 

summarize tree samples from a Bayesian phylogenetic analysis. In this tree the sum of the 

posterior probabilities of clades is maximized [the maximum clade credibility (MCC) tree]. 

Bayesian phylogenetic inference programs, such as BEAST (Bayesian Evolutionary Analysis 

by Sampling Trees, Drummond and Rambaut, 2007), utilize genetic sequence data and time-

structured sampling information under a strict or relaxed evolutionary clock model to infer past 

population dynamics, including substitution rate, divergence times, and demographic growth, 

and returns a posterior set of rooted, time-structured trees. Using a Bayesian MCMC algorithm,  
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the analysis returns the rate of nucleotide substitution and the time to the most recent common 

ancestor (TMRCA) at the root and at each of the nodes. 

 MP method infers the best tree topology for a set of aligned sequences that can be 

explained with the smallest number of character changes. This method infers the minimum 

number changes required along its branches for each nucleotide position in sequence to explain 

the observed states at the terminal nodes. The sum of this score for all positions is called 

parsimony length of the tree and it is computed for different tree topologies. 

Molecular mechanisms which play important role in evolution of each organism are 

mutations, recombination, reassortment, natural selection and genetic drift. 

 Recombination is a widespread mechanism of molecular evolution. Populations of 

many different organisms have experienced this genetic exchange. Changes in genome created 

by this mechanism generally result in major evolutionary leaps, including acquired resistance 

against drugs. In general, recombination affects evolutionary history by changing it and 

therefore it can not be neglected. Moreover, there are several potential scenarios for 

recombination which should be mentioned. The first one is the situation when homologous 

region of nucleotide sequence is being replaced from donor to acceptor sequence. The result of 

this event is homologous recombination. The other scenario results in crossovers at non-

homologous sites. The outcome of this event is non-homologous recombination. Additionally, 

exchange can be detected in both sequences (symmetrical recombination), or one sequence can 

be the donor and the second to be the acceptor (non-symmetrical recombination).  

 Since viruses are the obligate cellular parasites, recombination is only possible if two 

different viral strains co-exist in the same cell. Genetic exchange can occur in both DNA and 

RNA viruses, with either segmented or non segmented genomes. However, the occurrence of 

recombination is facilitated in viruses with segmented genome. Actually, during co-infection, 

different segments can be easily exchanged in the same host cell. The result of this process is 

called reassortment (Lemey and Posada, 2009). 

 Recombination, as one of molecular mechanisms responsible for genetic diversity has 

been described in different families within RNA viruses (Worobey and Holmes, 1990). 

However, for a long period of time it was thought that recombination was absent in RNA 

viruses except polioviruses (Copper et al., 1974). The most likely mechanism proposed for this  
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process is copy-choice model, primarily described for poliovirus (Copper et al., 1974). This 

process requires jumping of RNA-dependent RNA polymerase (RdRp) from one RNA 

molecule to another, during RNA replication. During this process polymerase remains bound 

with nascent nucleic acid chain allowing formation of genetically distinct viral strains (Simon-

Loriere and Holmes, 2011). However, it was documented to occur with very low frequency in 

negative stranded RNA viruses (Chare et al., 2003). Actually, the best evidence of 

recombination among negative stranded RNA viruses is seen in hantaviruses (Han and 

Worobey, 2011). Genome structure and life cycle of viruses may play important role in 

occurrence of recombination in these viruses.  

Exchange of genes or parts of genes through the process of recombination results in 

mosaic genomes consisting of parts with different evolutionary history.  

Recombination and reassortment can be analyzed on the level of nucleotide sequences, 

but also on the amino acid level. Therefore, several programs have been developed for 

recombination analysis. The most commonly used is the Recombination Detection Program 

(RDP) (Salminen and Martin 2009). 

Natural selection is the most powerful evolutionary mechanism and the best 

explanation of the complexity of life forms and organisms. It is exerted through different 

effects on organisms. The first one is positive selection, which increases the frequency of a 

beneficial mutation until it becomes fixed in the population. The other effect is negative 

selection which decreases the frequency of a deleterious mutation until it is eliminated. 

Additionally, selection does not affect the frequency of neutral mutations. Several approaches 

have been developed in order to detect possible selection, including those which detect 

selection in single genomic regions within a single population and comparative approaches 

which extend basic methods, either to multiple loci within a genome or to multiple populations. 

The methods which can be applied on single genomic regions are summary statistic methods 

and dN/dS methods (Pybus and Shapiro, 2009).  

 Summary statistic methods represent the simplest methods to detect the presence of 

selection. Using these methods, statistics that summarize the relative frequency of polymorphic 

sites are been calculated from studied alignment. Obtained statistics are then compared against 

the values expected to occur under a “null model” of neutral evolution. If the statistics are  
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considerably different from their expected values, then the neutral null model can be rejected 

(Pybus and Shapiro, 2009).  

In protein coding sequences, mutations can be classified as synonymous (silent) or non-

synonymous (replacement). dN/dS methods reflect the difference in the selective forces acting 

on silent versus replacement changes, where dN and dS are considered as per replacement or 

silent site, respectively, thereby indicating that random mutations create more replacement 

changes than silent changes due to the structure of the genetic code. If all replacement fixations 

are neutral, the ratio dN/dS is equal to one. If dN/dS<1, the rate of replacement fixation is 

slower, indicating that negative selection has acted more strongly on replacement changes. In 

case dN/dS >1, means thatpositive selection must have occurred, because no other obvious 

process can result in a faster fixation rate for replacement changes. The most common used 

dN/dS methods are single likelihood ancestor counting (SLAC) method and the fixed-effects 

likelihood (FEL) method (Pybus and Shapiro, 2009). 

Genetic drift is a variation in the relative frequency of mutations which fluctuate 

randomly through time, with no net tendency towards increase or decrease, until the mutations 

become either fixed or eliminated. These fluctuations are very small in large populations, 

however they are very important because new mutations begin at very low frequencies and 

therefore they are highly susceptible to elimination. Important consequence of genetic drift is 

that mutations are fixed significantly slower compared to selection (Vandamme, 2009). 

Continual increase of genetic data and advances in statistical inference allow for new 

opportunities for phylodynamic studies of infectious diseases (Faria et al., 2011). Rapid 

evolution of viruses as etiological agents of infectious diseases means that the epidemiological 

and ecological processes that shape their genetic diversity act on approximately the same time 

scale as mutations fixed in viral populations (Holmes, 2008). The result of this interaction is a 

spatial phylodynamic process that can be recovered from genomic data using phylogeographic 

analyses. The relevance of this analysis is multiple, including prediction of emergence of 

infectious diseases by detecting the key host species and the geographic areas from which 

pathogens spread and prediction of the impact of movement of natural reservoirs on the spread 

of viral diseases. 
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Phylogenetic reconstruction provides initial insight into the origin of viral strains. 

Phylogenetic trees embed spatial diffusions as evidence of transitions among locations (Faria et 

al., 2011). Herein, spatial diffusion can be treated as a process of trait evolution where the 

particular trait — in this case, geographic location, is considered as an inherited property of the 

virus. The next step is to estimate ancestral locations using appropriate method, which are 

categorized according to the criterion used to choose between alternative hypothesis and 

according to the process used to model the traits change across the tree. Namely, each process 

can be specified for traits distributed discretely, e.g., in cases when viruses originate from 

different countries or cities. On the other hand, process can be specified for traits which are 

distributed continuously, for example, when latitude and longitude coordinates are used as 

spatial locations for viral samples. Indeed, Bayesian statistical framework is probably the best 

due to flexibility in hypothesis testing.  

Spatiotemporal reconstructions can be assessed by two different phylogeography 

approaches; phylogeographic inference in discrete space and phylogeography in continuous 

space and time (Lemey et al., 2009; Lemey et al., 2010). If sequence sampling locations are 

considered as discrete states, a continous-time Markov chain (CTMC) can be used to model 

diffusion between locations (Lemey et al., 2009). Because all rates are generally not required to 

explain adequately the diffusion process, the estimation procedure would gain efficiency 

through focusing on a limited set of well-supported migration pathways. Therefore, this 

problem can be resolved by introducing Bayesian stochastic search variable selection (BSSVS) 

model which enables to construct a Bayes factor test that identifies the most parsimonious 

description of the phylogeographic diffusion process.  

However, such discrete transitions do not explicitly model the diffusion process in 

continuous space (Lemey et al., 2010). For continuous geographic coordinates (latitude and 

longitude), Brownian diffusion (BD) finds analogues to the CTMC. This random-walk model 

allows fully exploring two-dimensional space, and delivering a more realistic representation of 

the diffusion process, particularly for continuously distributed samples. 

 Genetic drift and reassortment have been proposed as the main mechanisms explaining 

genetic diversity of hantaviruses as segmented negative–sense RNA viruses (Plyusnin et al., 

2002). Genetic drift represents the fixation of variation through random processes resulting in  
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changes over generations (Bennett et al., 2014). This mechanism is the underlying force of 

hantavirus diversification upon transmission to a new host. Namely, possible scenario of 

hantavirus diversification has involved a host switch from a shrew ancestor into bats, and, 

subsequently, into rodents, followed by additional cross-species transmission events within 

some of these orders. 

Reassortment is generally defined as an exchange of genetic segment(s) between 

parental viruses. Since the genome of hantaviruses consists of three segments, reassortment is 

one of the important mechanisms in hantavirus evolution. Moreover, reassortment between 

closely related viruses appears to occur frequently when their hosts share the same niche, but 

infrequently between genetically distinct hantaviruses, especially for the viruses whose hosts 

have no opportunity to contact each other (Zhang, 2014). This evolutionary force has been 

detected in both Old World and New World hantaviruses. Results of molecular phylogenetic 

analyses have indicated possible reassortment between S and M segments of DOBV-Af 

(Dobrava genotype) and DOBV-Aa (Kurkino genotype) (Klempa et al., 2003). Reassortment 

was also detected in HTNV lineages originated from Republic of Korea (Kim et al., 2016). 

Jabora and Juquitiba hantaviruses, isolated in Paraguay, were also defined as reassortants (Chu 

et al., 2011). 

Natural selection is known important mechanism for hantavirus evolution (Bennett et 

al., 2014). Diversity of hantaviruses has been shaped by negative selection, resulting in 

proportionally less substitutions affecting phenotype than expected. However, positive selection 

has not been proven yet. It is possible that positive selection plays an episodic role, for example 

following a host switch. 

 Hantaviruses represent possibly the best example of long-term association between 

RNA viruses and their hosts. Hantaviruses were considered to had strongly cospeciated with 

rodents and insectivores as their hosts, since these mammals shared last common ancestor 

approximately 100 million years ago (Ramsden et al., 2009). This fact was also based on 

phylogenetic inference of members of the Hantavirus genus which revealed three constantly 

well-defined clades, each associated with only one of the three subfamilies of Muroid rodents: 

Arvicolinae, Murinae, and Sigmodontinae (Plyusnin et al. 1996). Nevertheless, since the 

hantaviruses were at that time also isolated from insectivores, overall phylogenetic inference of  
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both rodent- and insectivore-borne hantaviruses revealed that neither one of these formed 

monophyletic clade (Arai et al., 2008).  Following the assumption of codivergence, the rate of 

molecular evolutionary change in hantaviruses has been estimated at approximately 10-7 

nucleotide substitutions per site, per year (Hughes and Friedman, 2000; Sironen et al., 2001). 

Additionally, substitution rates obtained for other RNA viruses are 10-2 to 10-4 

substitutions/site/year, which are several orders of magnitude higher than that reported for 

hantaviruses (Jenkins et al. 2002; Hanada et al. 2004). Based on these findings, hantaviruses 

would be considered among the slowest evolving viruses. However, since the hantaviruses use 

an RNA-dependent RNA polymerase for replication with error rates in the region of one 

mutation per genome replication, a low rate of nucleotide substitution is inconsistent. Few years 

later, it was confirmed that these viruses exhibit short-term substitution rates of 10-2 to 10-4 

substitutions/site/year (Ramsden et al. 2008). According to this result it was strongly suggested 

that hantaviruses are evolving significantly faster than it was predicted based on shared 

divergence times with their rodent hosts. 

 Phylogenetic analyses of the available S or M sequences revealed that all known 

hantaviruses form four ‘phylogroups’ (Figure 7 and Figure 8). The phylogroup I includes 

hantaviruses isolated from insectivores. This group engaged a basal position in the phylogenetic 

tree, according to the Bayesian Maximum Clade Credibility (MCC) tree (which is 

automatically rooted on the assumption of a molecular clock such that basal viral lineages can 

be identified) (Guo et al., 2013). Hantaviruses placed in phylogroup II originate from bats and 

the more divergent Nova virus (NVAV) identified in the European common mole (Talpa 

europaea) in Hungary (Kang et al., 2009). Phylogroup III consists of all other known 

insectivore-associated hantaviruses together with all known Murinae-associated hantaviruses, 

forming two distinct clades. Phylogroup IV includes two monophyletic groups corresponding 

to hantaviruses sampled from Arvicolinae, Neotominae, and Sigmodontinae rodent subfamilies. 

Similar results were obtained when the phylogenetic analysis was based on M segment, except 

that the second phylogroup was placed in the basal position, followed by phylogroups I, III, and 

IV (Guo et al., 2013). These phylogenetic data imply that the ancestor of the extant 

hantaviruses might have first appeared in Chiroptera and/or Soricomorpha (Guo et al., 2013). 
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Figure 7. Phylogenetic tree based on the available entire coding regions of the hantavirus S 

segment estimated using the Maximum Likelihood (ML) method. The numbers above or below 

branches indicate bootstraps. Colors indicate Chiroptera-borne viruses (red), Soricomorpha-

borne viruses (purple), Murinae-borne viruses (blue), Arvicolinae-borne viruses (light green), 

and Sigmodontinae/Neotominae-borne viruses (dark green). Modified from Zhang, 2014. 
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Figure 8. Phylogenetic tree based on the available entire coding regions of the hantavirus M 

segment estimated using Maximum Likelihood (ML) method. The numbers above or below 

branches indicate bootstraps. Colors indicate Chiroptera-borne viruses (red), Soricomorpha-

borne viruses (purple), Murinae-borne viruses (blue), Arvicolinae-borne viruses (light green), 

and Sigmodontinae/Neotominae-borne viruses (dark green). Modified from Zhang, 2014. 

 

Up to now, spatial diffusion of hantaviruses represent an unexplored scientific field. In 

general, phylogeography has played an important role in the evolution of hantaviruses and 

therefore has strongly influenced the hantavirus diversification. Geographic structure of 

hantaviruses is strongly affected by host distribution (Figure 9). For example, DOBV and 

SAAV are restricted to Europe, since the distribution of their natural reservoirs is limited to 

Europe; TULV and Seewis virus (SWSV) are in circulation throughout Europe and Russia, 

while PUUV is known to be present in Europe and Asia. Likewise, exchange of hantaviruses 

between more or less distinct hosts is also possible (Sschlegel et al., 2012; Guo et al., 2013).  
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Figure 9. Phylogeography of hantaviruses. Maximum clade credibility tree based on the S 

segment using BEAST v1.8 (MCMC run for 50 million generations), with estimates of node 

geographic state indicated by color of the descending branch and probability at node. The scale 

bar indicates number of substitutions per site. Modified from Bennett, 2014. 
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The phylogenetic data showed that Asia represents possible geographic origin of the 

major lineages of hantaviruses, from where they spread to the Americas separately in shrews 

and rodents (Bennett et al., 2014). 

The currently unresolved questions are related to the discovery of new species of small 

mammals serving as natural hosts of hantaviruses and their importance as a sources of 

zoonoses, as well as the role of changes in the host, the degree of co-evolution of hantaviruses 

with their hosts, and the molecular mechanisms of hantaviral genome evolution. The questions 

may be answered as additional whole genome sequences will be available in the NCBI 

database. 
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2. AIMS OF THE STUDY 
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The current thesis focuses on the evolutionary analysis of hantaviral sequence data. 

Multiple phylogenetic methods, including phylodynamic and phylogeographic analysis, were 

employed to examine complex biological processes, such as evolutionary dynamics, natural 

selection, recombination and migration of hantaviruses. 

 

Specific aims of the study were: 

 

1. To investigate the presence of hantaviral genome  in various rodents trapped in 

Serbia by molecular methods and to genetically characterize the hantavirus RNA,   

 

2. To study the molecular evolution of hantaviruses applying phylogenetic,  

phylodynamic and phylogeographic analyses on the three hantaviral RNA segments. 

 

3. To explore and characterize the occurrence of homologous recombination in the 

hantavirus genome. 
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3. MATERIALS AND METHODS 
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3.1. STUDY DESIGN AND ETHICAL APPROVAL 

The study was designed as molecular and phylogenetic investigation of hantaviruses 

detected in different animal reservoirs. It was performed at the Institute of Microbiology and 

Immunology, Faculty of Medicine, University of Belgrade in collaboration with the Institute 

for Biological Research Sinisa Stankovic, University of Belgrade and the Military Medical 

Academy, Belgrade. Before the study initiation, the protocol was approved by the Ethical 

Committee of the School of Medicine, University of Belgrade. 

 

3.2. RODENT TRAPPING AND SPECIES IDENTIFICATION 

 The study sample was based on animal tissues  of 350 rodents trapped on several 

occasions during a 5-year period (2007-2011) at eight different trapping sites in Serbia, by 

collaborating researchers from the Institute for Biological Research Sinisa Stankovic, 

University of Belgrade and the Military Medical Academy, Belgrade (Table AI, Appendix)  . 

These trappings had been performed within different studies not related to hantavirus research. 

However, the trapping sites corresponded to the vicinity of hantavirus natural hosts and 

humans, thus the resulting pool of samples could be used for hantavirus research.  

The included trapping sites were situated in central, west and south Serbia (Figure 10). 

Avala Mountain (511 meters above sea level) and Kosutnjak park-forest are popular 

recreational sites located near Belgrade, the capital city of Serbia. The region of the Ravanica 

River, at altitude ranging between 580 and 716 meters, is located in central Serbia; this location 

is characterized by hilly and wooded terrain of mixed deciduous forest (beech, oak, oak, hazel, 

hornbeam) with wild pear and apple trees on the fringes. Cer and Tara mountains are located in 

western Serbia; Cer Mountain with altitude of 689 meters above sea level is located 100 km 

west of Belgrade, while Tara Mountain with altitude 1000-1500 meters above sea level is a 

popular tourist center. Vranje is a city in southern Serbia, known as potential focus of 

hantaviruses, with high number of reported HFRS cases. Lisine is a waterfall in eastern Serbia 

situated at an altitude of 380 meters. Zajecar is a city in eastern Serbia. 

For the purpose of this research, rodents belong to different families (Murine, 

Arvicolinae and Glirinae) were studied. Blood and tissue (liver, kidney or lung) samples were 

taken from each captured animal and stored at -80°C until use. The animals trapped in the  
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region of Ravanica River and Zajecar (165/350) were identified to species level according to 

morphological characteristics. All other animals (185/350) had previously been identified to 

species level by a recently developed ISSR-PCR (Inter Simple Sequence Repeat-Polymerase 

Chain Reaction) analysis (Bugarski-Stanojevic et al., 2011). 

From this pool of animal samples, 110 tissue specimens of different animals were 

available for hantavirus genetic analysis and characterization within the current study. Fourty-

six out of 110 sampled animals had been previously found serologically positive to either 

hantaviral antigens or antibodies, whereas 64/110 samples were tested using molecular 

approach only.  

 

 
 Figure 10. Map of trapping sites in Serbia 

 



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
43 

 

3.3. RNA EXTRACTION FROM TISSUE SAMPLES 

Total RNA was extracted from tissues samples using the TRIZOL Reagent (GibcoBRL, 

Invitrogen, Karlsruhe, Germany). Applied procedure is based on the acid guanidine 

isothiocyanate-phenol-chloroform method (Chomczynski and Sacchi, 1987). Namely, TRIZOL 

reagent is suitable for rapid isolation of total RNA from different tissues. During the 

homogenization and cell lysis step of the sample, TRIZOL reagent maintains the integrity of 

RNA and at the same time degrades the cells and cellular components. Addition of chloroform 

leads to splitting the mixture into the aqueous and organic phase. RNA remains exclusively in 

the aqueous phase of which it is recovered by precipitation with isopropanol. This technique is 

particularly suitable in working with small amount of samples.  

Briefly, small pieces of analyzed tissues, approximately 10 mg, were homogenized in 

liquid nitrogen using a mortar and pestle. The mixture was then transferred to a 1.5 ml sterile 

tube containing 1 ml of TRIZOL. After 5 min of incubation at room temperature, 200 μl of 

chloroform was added. Obtained mixture was then mixed by vortexing for 10-15 sec and 

incubated at room temperature for 3 min. Homogenate was further centrifuged at 12,000 g for 

15 min at 4°C and the aqueous phase was transferred in a new sterile tube. In order to 

precipitate RNA, 500 μl of cold isopropyl alcohol was added and the mixture was incubated at 

room temperature for 10 min, followed by centrifugation at 12,000 g for 10 min at 4°C. 

Obtained supernatant was removed and the pellet was washed twice with 1 ml of 75% ethanol, 

using centrifugation at 7,500 g for 5 min at 4°C after every step. The pellet was then air-dried 

and dissolved in 25 µL of RNase-free water with 5 U of RNase inhibitor. 

 

3.4. NESTED POLYMERASE CHAIN REACTION 

Total RNA was used as the starting template for reverse transcriptase polymerase chain 

reaction (RT-PCR). All samples were initially tested using a pan-hanta protocol which 

amplifies a 412-bp fragment of the L RNA segment of all known hantaviruses (Table 2). All 

reagents used for the PCR reaction mix, were thawed in refrigerator and put on ice during the 

mix preparation. For the first round of the PCR assays (outer PCR), RNA was reverse 

transcribed using the One Step RNA PCR Kit (Qiagen, Hilden, Germany). Reaction mix was 

prepared according to manufacturer’s instructions. Cycling parameters were also optimized  
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according to manufacturer’s instructions with some changes of annealing temperature, when 

necessary. 

 

Table 2. Primer pairs used in nested PCR and cycle sequencing reaction. 

Primer Sequence (5'-3') 

Hantavirus 

species Segment  Reference 

HAN-L-F1 ATGTAYGTBAGTGCWGATGC all L Klempa et al., 2006 

HAN-L-R1 AACCADTCWGTYCCRTCATC all L Klempa et al., 2006 

HAN-L-F2 TGCWGATGCHACIAARTGGTC all L Klempa et al., 2006 

HAN-L-R2 GCRTCRTCWGARTGRTGDGCAA all L Klempa et al., 2006 

DOB-S-F1  GTAGTAGGCTCCCTAAAAAGC DOBV S this study 

DOB-S-R1  GGGATTACATAAAGCATGGGA DOBV S this study 

DOB-S-F2 CACTACACTAAAGATGGCAA DOBV S this study 

DOB-S-R2 GGATAATGCAACAAATACAATTA DOBV All this study 

OSM55 TAGTAGTAKRCTCC DOBV All Kang et al., 2010 

RT-DOB TAG TAG TAK RCT CCC TAA ARA G DOBV All Sibold et al., 2001 

D1162C AGT TGI AT(I+C) CCC ATI GA(I+C) TGT DOBV S Sibold et al., 2001 

D955C ACC CAI ATT GAT GA(I+C) GGT GA DOBV S Sibold et al., 2001 

D113 GAT GCA GAI AAI CAI TAT GAR AA DOBV S Sibold et al., 2001 

D357 GA(I+C) ATT GAT GAA CCI ACA GG  DOBV S Sibold et al., 2001 

M1470c CCI GGI TTI CAT GGI TGG GC DOBV M Klempa, 2004 

M2029R CCA TGI GCI TTI TCI KTC CA  DOBV M Klempa, 2004 

M1674c TGT GAI RTI TGI AAI TAI GAG TGT GA DOBV M Klempa, 2004 

M1990R TCI GCI STI GCI GCC CA DOBV M Klempa, 2004 

PPT334C TAT GGI AAT GTC CTT GAT GT TULV S Bowen et al., 1997 

PPT986R GCA CAI GCA AAI ACC CA TULV S Bowen et al., 1997 

PPT376C CCI AGT GGI CAI ACA GC TULV S Bowen et al., 1997 

PPT716R AAI CCI ATI ACI CCC AT TULV S Bowen et al., 1997 

S5 TACAGAGCAGCAGATTACCTGA TULV S Song et al., 2002 

  

Standard conditions were:  

 8 μl of 5x OneStep RT-PCR Buffer  

 1,6 μl of dNTP mix  

 1.6 μl of forward primer in 0.6 μM final concentration (Invitrogen by Life 

Technologies, Carlsbad, California, USA) (Table 2)  

 1.6 μl of reverse primer in 0.6 μM final concentration (Invitrogen by Life Technologies, 

Carlsbad, California, USA) (Table 2)  
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 15.6 μl of RNAse-free water  

 10 μl of RNA template. 

Final reaction volume was 40μl.  

Prepared PCR reaction mix was further proceeded in the thermal cycler “Eppendorf 

Mastercycler ep gradient S”. Samples were initially reverse transcribed at 50°C for 40 minutes 

followed by denaturation at 94°C for 15 minutes. After an initial denaturation step the cycling 

was further consisted of three steps (94°C for 30; primers were annealed for 1 minute at an 

appropriate temperature; 72 ºC for 3 minute) repeated 40 times and followed by a final 

elongation step for 10 minutes at 72 ºC.  

Second round (inner PCR) was prepared using Thermo scientific dream taq PCR master 

mix (2X) (Applied Biosystem, Foster City, California).  

Standard conditions were: 

 25 μl of DreaMountainaq PCR Master Mix (2X)  

  2 μl of Fw primer in 0.6 μM final concentration (Invitrogen by Life Technologies, 

Carlsbad, California, USA) (Table 2) 

 2 μl of Rev primer in 0.6 μM final concentration (Invitrogen by Life Technologies, 

Carlsbad, California, USA) (Table 2) 

 16 μl of nuclease free water  

 5μl of outer DNA template  

Final reaction volume was 50μl.  

 

Prepared PCR reaction mix was further proceeded in the thermal cycler “Eppendorf 

Mastercycler ep gradient S”. Samples were initially denaturated at 94°C for 15 minutes. After 

an initial denaturation step the cycling was further consisted of three steps (94°C for 30; 

primers were annealed for 1 minute at an appropriate temperature; 72 ºC for 3 minute) repeated 

40 times and followed by a final elongation step of 10 minutes at 72 ºC. 

For both rounds of PCR, positive and negative controls were tested along with the 

samples, in order to check whether the procedure is working and to determine any possible 

contamination. 
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The initial PCR for all examined samples was done using degenerated primers for 

detection partial L segment of all known hantaviruses. All samples which were positive for the 

presence of partial L segment were further analyzed by using different pairs of primers for 

amplification of fragments of S and M segments (Table 2). DOBV S segmet sequences 

isolated from A. flavicollis were amplified and sequenced using DOB-S-F1, DOB-S-F2, 

DOB-S-F2 and DOB-S-S2 primers, while DOBV S segmet sequences isolated from A. 

agrarius and G. glis were amplified and sequenced using OSM55, RT-DOB, D1162C, 

D955C, D113 and D357 primers. DOBV M segment sequences were amplified and 

sequenced using M1470c, M2029R, M1674c, M1990R primers. TULV S segmet sequence 

was amplified and sequenced using PPT334C, PPT986R, PPT376C, PPT716R and S5 

primers. PCR protocols were prepared in the same way as described above with appropriate 

annealing temperatures. 

In addition to the primers described in literature, a number of hantavirus specific 

primers were designed within the current study (DOB-S-F1, DOB-S-F2, DOB-S-F2, DOB-S-

S2), using the appropriate toll at the NCBI database (www.ncbi.nlm.nih.gov/tools/primer-

blast/).  

All lyophilized primers were diluted in sterile distilled water to a stock concentration of 

100 pmol/μl and stored at -20°C until required. Prior to the PCR testing, primers were 

equilibrated to working concentrations of 20 pmol/μl and also stored at -20 °C. Annealing 

temperature of each primer was calculated according to the melting temperature of primers, 

which was calculated using PerlPrimer (http://perlprimer.sourceforge.net). 

 

3.5. AGAROSE GEL ELECTROPHORESIS 

Analysis of the PCR products was performed by electrophoresis in 2% agarose gel. The 

basic principle of this method is based on the fact that charged particles of different masses, 

under the influence of the electric field, passes different paths in agarose gel. The same TAE 

(Tris-acetate-EDTA) buffer was used for both, gel and electrophoreses (Sambrook et al., 1989). 

The 50x stock of TAE was diluted 50:1 with distilled water to prepare the working solution, 

containing 40mM Tris, 20mM acetic acid, and 1mM EDTA. 2% agarose gel was prepared by 

dissolving 2g of agarose in 100ml TAE buffer and heating to the melting point. Ethidium  

http://perlprimer.sourceforge.net/
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bromide (EtBr 25 μg/ml, Serva Electrophoresis GmBH, Heidelberg, Germany) was added in 

the solution for visualization of the DNA bands. 5 μl of samples were mixed with 2 μl of the 

gel loading dye (0.125% Bromophenol blue, 40% Sucrose) and approximately 7 μl of mixture 

was loaded per lane on agarose gel. The Gene RulerTM 1 kb DNA ladder (DNA Standard 

100bp - Serva Electrophoresis GmBH, Heidelberg,) was used as a molecular length size 

marker. Electrophoresis reactions were run at 120 V. Visualization of the DNA was performed 

under UV light with a wavelength between 280 and 320 nm.   

 

3.6. CYCLE SEQUENCING RECTION 

3.6.1. Purification of pcr products  

Amplified PCR products (which were defined as positive on the agarose gel), were 

further purified with MinElute Purification Kit (Qiagen, Hilden, Germany) kit, following the 

manufacturer’s instructions. The purification protocol based on silica membrane spin was used, 

which allows binding of nucleic acids to a silica membrane inside a spin column (Sambrook et 

al., 1989). 

 General protocol was as follows: 

 Firstly, 200 μl of Buffer PB and 40 μl product of the nested PCR reaction were roughly 

mixed and applied to MinElute column and centrifuge for 1 min at 18,000 x g. Flow-

through was discarded and the MinElute column was put back into the same collection 

tube.  

 Then, 750 μl Buffer PE was added to the MinElute column and centrifuged twice for 1 

min at 18,000 x g. Flow-through was discarded and the MinElute column was put back 

into the same collection tube. The column was centrifuged for an additional 1 min at 

maximum speed.  

 At last, MinElute column was placed in a clean 1.5 ml microcentrifuge tube. 10 μl 

Buffer EB (10 mM Tris·Cl, pH 8.5) was added to the center of the membrane, let the 

column stand for 1 min, and then, centrifuge for 1 min at 18,000 x g. 

Obtained filtrate was used for the cyclic sequencing reaction. 
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3.6.2. Cycle sequencing reaction  

Purified PCR products were subjected to direct sequencing of both the sense (forward) 

and antisense strands (reverse). DNA sequencing was carried out using the Sanger cycle 

sequencing method. Sanger sequencing is based on the selective incorporation of chain-

terminating dideoxynucleotides by DNA polymerase during in vitro DNA replication (Sanger 

et al, 1977). Chain termination sequencing reactions were set up in house, using BigDye 

Terminator v3.1. Cycle Sequencing kit (Applied Biosystems Incorporated, Foster City, CA) 

according to manufacturer’s instructions. Fluorescently labeled dyes are attached to ACGT 

extension products in DNA sequencing reactions. The dyes come in four colors red (for 

thymidine), blue (for cytosine), black (for guanine) and green (for adenine). The dyes are 

incorporated using either 5’-dye label primers or 3’-dye label dideoxynucleotide terminators. 

For each sample two cycle sequencing reactions were set, using inner PCR primers described in 

Table 2.  

General protocol was as follows:  

 1μl each primer 5 μM working concentration  

 1μl of purified RT-PCR product,  

 2μl 5× Cycle sequencing dilution buffer  

 2μl BigDye  

 4μl ultrapure water.  

Final reaction volume was 10μl. 

The sequencing PCR included 40 cycles of 96 ◦C for 30 s, 50 ◦C for 7 s and 60◦C for 4 

min. After running the sequencing reaction, non-incorporated dideoxynucleoside triphosphates 

were removed by 75% isopropyl alcohol precipitation and the pellet was resuspended in 20μl 

High Density Formamide (Applied Biosystems Incorporated, Foster City, CA) for denaturation 

and detected in an ABI Prism 310- Genetic Analyzer capillary electrophoresis system (Applied 

Biosystem, Foster City, CA, USA). Results were analyzed with the Sequencing analysis 

software v.5.2 (Applied Biosystem, Foster City, USA). 

 

 

 



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
49 

 

3.7. SEQUENCE DATASETS 

 Several datasets of hantavirus L, M and S segment sequences of the studied 

hantaviruses were used in phylogenetic analyses.  Each dataset contained the newly detected 

DOBV and/or TULV sequences together with sequences downloaded from the NCBI database 

(http://www.ncbi.nlm.nih.gov/nuccore).  

The studied data set for DOBV L segment contained 37 sequences of 260 nt in length. 

One data set of 16 sequences was created for the M segment analyses of DOBV (434 nt in 

length), In course of different phylogenetic analyses 4 different data sets of DOBV S segment 

were made, consisting of: 180 sequences of 494 nt in length for general phylogenetic 

exploration; 68 sequences of 528 nt in length and 36 sequences of 789 nt in length for defining 

the novel HFRS focus, and 67 sequences of 501 nt in length for exploring novel host reservoir.  

Four different data sets were constructed for TULV. Two sets, for general phylogenetic 

L and S segment analyses, were made of 21 sequences (322 nt in length) for L, and 66 

sequences (570 nt in length) for the S segment. Moreover, in order to analyze possible 

recombination events, a set of 22 S segment TULV sequences comprising 928 nt (position 400-

1324 nt according to the S segment reference strain NC005227) were aligned. 

For the purpose of phylogeographic analysis, one dataset for TULV S segment 

sequences was made with two inclusion criteria for each sample:  knowledge of the exact place 

of origin and collection date. The data set was made of 137 S segment sequences of 543 nt in 

length. 

 Complete list of all sequences with the NCBI accession numbers and relevant data is 

shown in Table AII, Appendix. 

 

3.8. PHYLOGENETIC ANALYSES 

 Phylogenetic analysis requires multiple sequences need to be formatted in a single file. 

However, different phylogenetic software packages use different formats resulting in about 18 

common used formats. Therefore, all formerly prepared sequence datasets were firstly 

converted in different sequence formats, including FASTA, NEXUS and PHYLIP 

(http://phylogeny.lirmm.fr/phylo_cgi/data_converter.cgi). Sets of previously formatted 

sequences were aligned in appropriate software package. This step is very important for further  

http://www.ncbi.nlm.nih.gov/nuccore
http://phylogeny.lirmm.fr/phylo_cgi/data_converter.cgi
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phylogenetic analysis, because the quality of alignment directly affects the results obtained in 

further analysis. 

In this study sequence alignment was done using ClustalW software with progressive 

multiple sequence alignment approach. ClustalW, implemented in Molecular Evolutionary 

Genetics Analyses (MEGA version 5.1) software, took a set of input sequences and carried out 

the entire progressive alignment procedure automatically (Tamura et al., 2011). After aligning 

sequences in pairs, program generated distance matrix that can be used to make a simple initial 

tree of the sequences. Obtained guide tree generated using the Neighbor-Joining method, was 

used to lead the multiple alignment. 

Manual editing is the next step in the analysis and it is needed to be done in order to 

correct obvious alignment errors and to remove gaps. To be precise, there is no need to delete 

all positions with gaps, because they also contain some useful information. If the columns in 

the alignment are not overly gapped (less than 50%), they can be kept in the alignment. 

Since phylogenetic reconstruction is a problem of statistical inference, the use of a 

model of nucleotide substitution (evolutionary model) becomes obligatory. Therefore, in order 

to construct phylogenetic tree it is necessary to carry out the best-fit model of nucleotide 

substitution. jModelTest 0.1.1  is suitable tool to calculate statistical selection of best-fit models 

of nucleotide substitution (Posada 2008). It implements five different model selection 

strategies: hierarchical and dynamical likelihood ratio tests (hLRT and dLRT), Akaike and 

Bayesian information criteria (AIC and BIC), and a decision theory method (DT). All models 

were selected according to the Akaike Information Criterion (AIC) using all 88 proposed 

models.  

 

3.8.1. Identification and characterization of hantaviral RNA obtained from 

different animal reservoirs  

The obtained L segment sequences were first analyzed by BLAST at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) in order to determine similarity scores to specific 

hantaviruses. After initial identification of hantavirus species using BLAST, all positive 

samples were further analyzed for the amplification of partial M and S segment fragments  
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using appropriate pairs of primers (Table 2).  Final confirmation of species was done based on 

phylogenetic clustering.  

 

 3.8.2. Phylogenetic trees reconstruction 

Different evolution mechanisms (mutations, recombination and natural selection) play 

important role in divergence of sequences. The measure of this divergence is called genetic 

distance. An essential requirement for computing genetic distances is the prior definition of a 

model of substitution, which provides a statistical description of this stochastic process. 

Therefore, after the sequence alignments were made and the best fitting model of evolution for 

each alignment was defined, genetic distance can be inferred. In this study PAUP software 

package was employed to calculate genetic distance under the best fitting evolutionary model 

(Swofford, 2003). 

The next step in phylogenetc analysis is inferring the phylogenetic trees. Phylogenetic 

tree is a diagram that depicts the relationships between sequences including in analysis. 

Phylogenetic trees were inferred using different methods, including ML and Bayesian methods. 

PHYML program was used for ML inference of phylogenies (Guindon et al., 2010). The input 

sequence format for this program is PHYLIP. BEAST and MrBayes programs were employed 

to infer phylogenetic trees using Bayesian method (Tamura et al., 2011; Drummond and 

Rambaut, 2007; Ronquist and Huelsenbeck, 2003). The input sequence file for these programs 

was NEXUS file. 

 Bootstrapped replicates of phylogenies were sampled to assess support for clades. 

Bootstrap analysis is a simple and effective technique to test the relative stability of groups 

within a phylogenetic tree. Briefly, for an alignment of sequences where the rows represent 

different taxa and the columns are sites along the genome, columns of sites are randomly 

sampled with replacement to create a new alignment of the same size as the original. For the 

random sample a tree is then inferred. This resampling process is usually repeated many times 

(usually 1000 times). Overall, under normal circumstances, considerable confidence can be 

given to branches or groups supported by more than 70%. This technique can be applied 

together with almost all methods for construction of phylogenetic trees.  
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The final trees, together with bootstrap values, were visualized and edited by FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

Each sequence contained certain amount of evolutionary information and the 

maximum-likelihood approach can be used to study it. Likelihood-mapping method, 

implemented in TreePuzzle, can be employed to investigate the phylogenetic signal of each 

sequence. Briefly, this program analyzed sequences using likelihood-mapping method of 

10,000 randomly chosen quartets (set of four sequences), under the best fitting substitution 

models described above (Strimmer & von Haeseler, 1997). A likelihood map was consisted of 

dots placed on the triangle surface. Each dot placed in the corners of triangle represent fully 

resolved phylogenies in which one tree is clearly better than the others, unlike the dots placed 

in the center of the triangle which represent star-like signal. The results of this analysis showed 

whether the data are suitable for a further phylogenetic reconstruction. 

Prior to further phylogenetic analysis all datasets were studied using this program. 

Firstly, sets were converted in appropriate format (PHYLIP) for this program. Likelihood-

mapping analyses were done under the appropriate sets of parameters, including best fitting 

model for each set and 10000 randomly chosen quartets.  

 

3.8.3. Selective pressure 

Considering natural selection as one of the important molecular mechanisms for virus 

evolution and therefore it is very important to asses the potential presence of selection pressure. 

Codon-based models of molecular evolution are able to infer signatures of selection from 

sequence alignments by estimating the mean ratio of synonymous (dS) and non-synonymous 

substitutions (dN). Overall selection pressure was estimated using the single likelihood ancestor 

counting (SLAC) method from the HyPhy package, a computational phylogenetics software 

package intended to perform maximum likelihood analyses of genetic sequence data and 

equipped with tools to test various statistical hypotheses  (Pond and Frost, 2005), available at 

http://www.datamonkey.org. 

 

 

 

http://tree.bio.ed.ac.uk/software/figtree/
https://en.wikipedia.org/wiki/Computational_phylogenetics
http://www.datamonkey.org/
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3.8.4. Recombination analysis 

Since recombination is not rare event in highly variable viruses, detection of this 

evolutionary mechanism is very important for further phylogenetic analysis. Therefore, after 

alignments of all datasets have been generated and the best fitting models were determined, 

sequences were examined using different recombination detection programs. 

 Initially, Recombination Detection Program version 4 (RDP4) was employed to 

examine potential recombination events in all datasets 

(http://web.cbio.uct.ac.za/~darren/rdp.html). RDP4 is very potential program containing several 

different recombination detection methods to both detect and characterize the recombination 

events. In addition to original RDP method, it includes the BOOTSCANning, the 

GENECONV, the Maximum Chi Square, the CHIMAERA, the Sister Scanning, the 3SEQ and 

the BURT methods (Martin et al., 2015). After loading the sequence FASTA file, under the 

button Option it is possible to adjust parameters for all methods. All above mentioned methods 

were used in our study and the results were interpreted according to manual instructions for 

each method. 

BootScan method, implemented in SimPlot, is also broadly used method for 

identification of recombination (https://sray.med.som.jhmi.edu/scroftware/simplot/) (Lole et al., 

1999). This method compares query sequence (potential recombinant) to a set of known non-

recombinants (reference sequences) and identifies whether the query sequence is recombinant, 

but also the locations of potential breakpoint positions and the probable origins of different 

tracts of sequence within a recombinant. Different parameters, such as window size, step size 

and bootstrap value, can be set using the BootScan options. The result is shown in the form of 

curve, which represents comparison between the sequence being analyzed and reference 

sequence(s). 

In order to analyze possible recombination events a set of 22 S segment TULV 

sequences 928-nt long (position 400-1324 nt according to S segment reference strain 

NC005227) were aligned. The TULV sequences were grouped according to clustering taken 

fromthe S phylogenetic tree; it contained four groups: one, consisted of sequences from Czech 

Republic and West Slovakia; a second with sequences from Germany and Poland; a third with 

sequences from Russia, while two sequences from Serbia were the (forth) query group.  



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
54 

 

Bootscan analysis was performed with Kimura (2-parameter) distance model, with window size 

of 160 bp and a step size of 20 bp, while70% bootstrap value was defined as the cutoff level.  

 Identification of signature amino acid (AA) sequence differences between the examined 

strains was performed using VESPA (viral epidemiology signature pattern analysis) program 

(Korber and Myers, 1992). VESPA identifies site specific signature residues, defined as 

positions for which the most common AA differs between a query and a reference alignment. 

The sequences which were suggested to be potential recombinants have been set as query 

sequences in this analysis and they were compared to two reference data sets consisted of 62 

sequences 190 aa long (used for reconstruction of S segment phylogenetic tree), and 18 full 

length S segment sequences (309 aa long) (scanned for recombination testing). In addition, the 

pattern of amino acid substitutions in Slovakian and Serbian strains were manually comparedto 

those from Russia and Czech Republic. 

 

3.8.5. Bayesian phylogenetic analysis of phylodinamics and phylogeography 

BEAST is a program for Bayesian analysis of molecular sequences using a Markov 

Chain Monte Carlo (MCMC) method. It can be used as a method of choice for reconstructing 

phylogenies, but also for phylodynamic and phylogeographic analyses. A set of 137 TULV S 

segment sequences was analyzed using BEAST v 1.8.4.  

Estimation of demographic growth, substitution rate and phylogeographic distribution 

was performed in a Bayesian framework using the  MCMC method implemented in BEAST for 

viral dataset that exhibited sufficient temporal structure, as tested using root-to-tip regression 

analyses in TempEst (Rambaut et al., 2016).  

Changes in effective population size through time were estimated using Bayesian 

Skyline Plot analysis, implemented in BEAST. Log-normal molecular clock and Bayesian 

Skyline as the tree prior were set in analysis. Moreover, 3 partitions: codon positions “1, 2 and 

3 option” was selected so that each codon position has its own rate of evolution. Bayesian 

skyline plot was reconstructed in Tracer v1.6. using tree files obtained in BEAST analyses. 

The substitution rate was calculated under the Log-normal molecular clock model 

together with the constant population demography as tree prior in two separate runs in  
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50,000,000 steps each, with sampling at every 5000 steps and the results were combined using 

LogCombiner 1.8.4 (implemented in BEAST) with 10% burn-ins removed from each run.  

Phylogeographic analysis is very useful tool to trace the historical dispersal and 

migration patterns of pathogens. In order to investigate the ancestral location in viral spread, 

the alignment was made of 137 sequences of S segment TULV (543 nt in length). Each 

included sequences fulfilled two inclusion criteria: availability of exact place of origin and 

collection date. Assessment of TULV ancestral locations was done in continuous space by 

activating the Homogenous Brownian model. Additionally, a model was applied that allows 

for branch-specific rate variation in the diffusion process (termed ‘relaxed random walks’, 

RRWs) in order to test the rate of TULV spread. This model is known as Cauchy RRW model. 

Comparison of both applied models, Homogenous Brownian model and Cauchy RRW model, 

was done by estimating marginal likelihoods (MLE) using path sampling (PS) and stepping 

stone sampling (SS), which have recently been implemented in BEAST (Baele at al., 2012, 

2013). Typically, PS/SS model selection is performed after doing a standard MCMC analysis. 

Log-normal molecular clock model together with the constant population demography was 

found to be best fit for our dataset. All runs were consisted of 108 generations and sampled 

every 10,000 steps. 

Tracer v 1.6 (http://tree.bio.ed.ac.uk/software/tracer/) was used to analyze the output of 

BEAST for each analysis. This software assessed the convergence of the Markov chain 

calculating the effective sample size (ESS) for each parameter, representing the number of 

independent samples that would be the equivalent to the autocorrelated samples produced by the 

MCMC. For this analysis ESS values higher than 100 were considered sufficiently robust. 

Maximum clade credibility tree (MCCT) was generated by TreeAnnotator, also 

implemented in BEAST package. This tool takes a single target tree and annotates it with the 

summarized information including, the average node ages, the posterior support and the 

average rate of evolution on each branch. The final tree was visualized and edited by FigTree 

(http://tree.bio.ed.ac.uk/software/figtree/). 

In order to analyze the output from Bayesian phylogeographic analysis, SpreaD3 

(Spatial Phylogenetic Reconstruction of EvolutionAry Dynamics) program was used  

 

http://tree.bio.ed.ac.uk/software/figtree/
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(https://rega.kuleuven.be/cev/ecv/software/SpreaD3_tutorial#sectionOne). This is a tool for 

analyzing and visualizing discrete and continuous trait evolutionary histories associated with 

phylogenies. Namely, the MCC tree is converted to a java script object (JSON) file. Next the 

JSON file is then used for rendering the visualization using a Data Driven Document (D3) 

library. 

Analysis of temporal structure of sequences is very important step in phylogeographic 

analysis. Widely used software for this analysis is TempEst program (Rambaut et al., 2016). 

Briefly, this program is designed to examine dated-tip trees (where sequences have been 

collected at different dates) and contemporaneous trees (where all sequences have been 

collected at the same time). The input data for this program is a phylogenetic tree previously 

generated in appropriate program under the maximum likelihood (ML) approach. The 

correlation coefficient, obtained as result of the program, indicates wether analyzed sequence 

data are suitable to be inferred under a molecular-clock assumption. If the correlation 

coefficient is <0.2, the dataset is not suitable for further phylogenetic analysis; 0.2-0.4 means 

weak temporal structure of examined sequences; >0.4 means that the analyzed dataset is 

suitable for phylogenetic analysis. For the purpose of this analysis,, the phylogenetic trees were 

initially constructed in PHYML program. Obtained trees together with sampling date were 

input information for analysis in TempEst program. Obtained results were presented as chart of 

the distribution of root-to-tip distances (a regression against sampling date for dated tips). 
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4.1. RODENT POPULATION UNDER STUDY 

Tissue samples from 110 animals were genetically tested for hantavirus RNA within the 

current study, as shown in Table 3, depicting also the trapping sites and year of trapping. Forty-

six out of 110 sampled animals had previously been found serologically positive to either 

hantaviral antigens or antibodies, whereas 64/110 samples had been tested using molecular 

approach only (Table 4). 

 

Table 3. List of animals tested within the current study. Location and year of trapping 

are shown. 

Host species 
Number of 

animals 
Trapping site 

Year of 

trapping 

Apodemus flavicollis 9 Ravanica River 2007 

Apodemus flavicollis 6 Tara Mountain 2008 

Apodemus flavicollis 30 Zajecar 2009 

Apodemus flavicollis 4 Tara Mountain 2009 

Apodemus flavicollis 1 Avala Mountain 2009 

Apodemus flavicollis 5 Kosutnjak 2010 

Apodemus flavicollis 3 Avala Mountain 2010 

Apodemus flavicollis 3 Vranje 2010 

Apodemus flavicollis 8 Ravanica River 2011 

Apodemus sylvaticus 2 Ravanica River 2007 

Apodemus sylvaticus 9 Zajecar 2009 

Apodemus agrarius 4 Ravanica River 2007 

Apodemus agrarius 1 Ravanica River 2011 

Myodes glareolus 5 Ravanica River 2007 

Myodes glareolus 3 Zajecar 2009 

Myodes glareolus 7 Ravanica River 2011 

Microtus arvalis 2 Ravanica River 2007 

Microtus subterraneus 1 Zajecar 2009 

Glis glis 2 Ravanica River 2007 

Glis glis 2 Zajecar 2009 

Glis glis 1 Ravanica River 2011 

Mus musculus 2 Zajecar 2009 
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Table 4. List of animals sampled for genetic detection of hantaviral RNA, with their serostatus, 

as defined previously 

Rodent species Total  

Number (%) serologically 

pre-screened 

Number (%) tested using 

molecular methods only 

A. flavicollis  70  31 (44.28) 39 (55.72) 

A. agrarius 5 4 (80) 1 (20) 

A. sylvaticus 10 2 (20) 8 (80) 

G. glis 5 2 (40) 3 (60) 

M. arvalis 2 2 (100) 0 (0) 

M. glareolus 15 5 (33.33) 10 (66.67) 

M. musculus 2 0 (0) 2 (100) 

M. subterraneus 1 0 (0) 1 (100) 

Total 110 46 (41.82) 64 (58.18) 

 

4.2. HANTAVIRUS DETECTION AND IDENTIFICATION 

In total, encompassing all the tested rodent species, 6/110 (5.5%) genetically tested 

samples in the study were found positive for hantavirus RNA, including different host and virus 

species. Positive samples were found in the species A. flavicollis, A. agrarius, G. glis and M. 

arvalis. The list of positive samples according to species is given in Table 5. Of note, all the 

positive samples were within the serologically prescreened and postitive group. Initial 

identification using BLAST at NCBI (http://blast.ncbi.nlm.nih.gov/Blast.cgi), of the partial L 

segment sequences obtained from three A. flavicollis, one A. agrarius and one G. glis revealed 

DOBV. The sequence recovered from M. arvalis was identified as TULV, with the same 

approach.  

Table 5. List of rodents positive for the presence of hantavirus RNA, correlated to previously 

defined serostatus 

 DOBV positive samples TULV positive samples 

Rodent 

species 
total seropositive total seropositive 

A. flavicollis  3/70 (4.3%) 3/31 (9,7%) 0 0 

A. agrarius 1/5 (20%) 1/4 (25%) 0 0 

G. glis 1/5 (20%) 1/2 (50%) 0 0 

M. arvalis  0 1/2 (50%) 1/2 (50%) 

Total 5/80 (6.3%) 5/37 (13.5%) 1/2 (50%) 1/2 (50%) 

 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Among the L segment positive samples, partial S segment was recovered from five 

samples (S segment was not recovered from one sample of A. flavicollis), while partial M 

segment was recovered from three A. flavicollis samples only. A total of 14 hantavirus 

sequences were obtained within the current study. Accession numbers of the newly obtained 

Serbian hantavirus sequences, deposited in the NCBI database, are listed in Table 6. 

 

          Table 6. Accession numbers of Serbian hantavirus sequences of the current study. 

Virus 

species 

Genome 

segment 
Host species 

Identification 

number 

Accession 

number 

DOBV L Apodemus flavicollis LT-RS1 KF425495 

DOBV L Apodemus flavicollis LT-RS2 KF425496 

DOBV L Apodemus flavicollis LT-RS3 KF425497 

DOBV L Apodemus. agrarius DOBV_RAV71 KF177177 

DOBV L Glis glis DOBV_RAV69 KF177176 

DOBV M Apodemus flavicollis MT-RS1 NA 

DOBV M Apodemus flavicollis MT-RS2 NA 

DOBV M Apodemus flavicollis MT-RS3 NA 

DOBV S Apodemus flavicollis ST-RS1 KF425493 

DOBV S Apodemus flavicollis ST-RS3 KF425494 

DOBV S Apodemus agrarius DOBV_RAV71S KJ437510 

DOBV S Glis glis DOBV_RAV69S KJ437511 

TULV L Microtus arvalis TULV_RAV31 KF177178 

TULV S Microtus arvalis TULV_RAV31S KF557547 

 

Further phylogenetic analyses of M and S segments were performed using state of the 

art phylogenetic methods together with corresponding sequences retrieved from NCBI 

database. The accession numbers of all sequences (newly detected and those retrieved from 

NCBI database) are listed in Table AII, Appendix. The best-fit models of nucleotide 

substitution chosen for each alignment of sequences are listed in Table 7. 
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Table 7. Best-fit models of nucleotide substitution calculated based on jModelTest 

0.1.1 

Virus 

species 

Segment Number of 

sequences 

Length of 

alignment 

Best-fit models of 

nucleotide substitution* 

DOBV L 9 312 TIM2+G+I 

DOBV S 67 501 TPM1uf +G+I 

DOBV L 9 318 TIM2 + I 

DOBV S 36 789 TrN + G 

DOBV S 68 528 TPM2uf+I+G 

DOBV L 37 260 TrN+I+G 

DOBV S 180 494 TVM+I+G 

DOBV S 180 494 TVM+I+G 

DOBV S 36 789 Trn+G 

DOBV M 16 434 TrN+G 

TULV L 21 322 TPM2u + G 

TULV S 66 570 TIM2 + G + I 

TULV S 137 543 GTR +G+I 

*Detailed description is given at the end of the text in the list of abberviations 

 

4.3. COMPARATIVE PHYLOGENETIC ANALYSIS OF PARTIAL L, M AND S 

SEGMENT SEQUENCES OF DOBV 

 In order to characterize genetic diversity of viral strains isolated from Serbia and asses 

their phylogenetic relationships, Serbian sequences were compared to all corresponding DOBV 

L, M and S sequences reported in NCBI database until December 2016. Serbian sequences 

included in the study were isolated from natural reservoirs and humans from 2007-2011. 

However, M segment dataset was made only from Serbian sequences isolated from natural 

reservoirs together with sequences retrieved from NCBI. The overall number of different 

DOBV strains originating from Serbia, reported in the NCBI database until the date of the 

study was 24  
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(Table AII, Appendix). Geographic distribution of all Serbian strains was mostly in central 

and southern parts of Serbia (Figure 11). 

 

 

Figure 11. All NCBI deposited DOBV sequences from Serbia until the date of the study, by 

geographic location. Sequences obtained within this study are shown in green. Sequence names 

are derived from NCBI accession number and year of collection. Human/rodent source material 

is depicted by the relevant symbol. 



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
63 

 

4.3.1. Phylogenetic analysis of partial DOBV L segment sequences 

Detailed phylogenetic analysis was done based on 37 partial L segment sequences 

(position 3023 to 3282 nt according to reference strain NC005235). The alignment consisted of 

22 Serbian sequences together with respective 15 L segment sequences existing in the GenBank 

database. Of 22 sequences originating from Serbia, 17 were taken from human cases and five 

were taken from rodents (three from A. flavicollis, one from A. agrarius and one from G. glis). 

All Serbian sequences recovered from rodentswere obtained in the current study. Studied 

nucleotide alignment corresponded to 86 aa (position 995-1081aa) of the L protein.  

Overall nucleotide divergence among the studied DOBV sequences was 10.81% 

(SD±0.06), while the mean nucleotide divergence between Serbian strains was 14.09% 

(SD±0.06). Based on molecular analysis of the L segment sequences, 126 variable sites were 

detected, of which 29 sites were with changes in aa chain. When the Serbian sequences were 

compared to the corresponding nt and aa reference strain, it was found that they possess 56 

variable sites and 7 nonsynonymus changes in the aa chain. 

Phylogenetic trees constructed by using the Bayesian methods implemented in the 

MrBayes software package, confirmed the results obtained by BLAST analysis. Namely, three 

sequences obtained from A. flavicollis, one sequence from A. agrarius and one sequence from 

G. glis clustered together with DOBV strains. Moreover, based on this phylogeny, strains from 

Serbia clustered in a distinctive branch of Dobrava genotype with strains from Greece, Slovenia 

and Turkey with posterior probability of 1 (Figure 12). Within Dobrava genotype cluster, three 

Serbian strains isolated from A. flavicollis (originating from Tara Mountain in western Serbia) 

were closely related to human isolates also originating from western Serbia.  Furthermore, 

sequences isolated from A. agrarius and G. glis (trapped in central Serbia) were tightly 

clustered together with human strains from central Serbia. SEOV and HTNV reference strains 

were used as outgroups. 
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Figure 12. Phylogenetic tree based on 37 L segment DOBV sequences inferred using the 

Bayesian methods. Numbers on branches indicate posterior node probabilities. Scale bar 

represents number of nucleotide substitutions per site. DOBV genotypes Saaremaa, Dobrava, 

Kurkino and Sochi are shown in blue, green, red and purple, respectively. Sequences are 

indicated by GeneBank Accession Number, abbreviated host name (A. flavicollis – Af, A. 

agrarius – Aa, A. ponticus – Ap and Human - Hu) and name of the country. 
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4.3.2. Phylogenetic analysis of partial DOBV M segment sequences 

The alignment for partial M segment consists of 16 sequences, including three newly 

detected sequences from A. flavicollis. The length of alignment is 434 nt. Corresponding GPC 

protein sequences comprise 144 aa (positions 573-717). Prior to phylogenetic analyses, all 

sequences included in the study were analysed for recombination and no putative recombinant 

regions could be detected. 

Overall nucleotide divergence, calculated based on 16 DOBV M sequences, was 

15.07% (SD±0.07). The average distance among Serbian sequences was 0.47% (SD±0.04). 

Molecular analysis of all sequences included in the study revealed 152 variable sites of which 

16 were nonsynonymus mutations. Howerver, molecular analysis of Serbian M segment 

sequences revealed 32 variable sites within the studied region and one aa change in all three 

Serbian strains compared to the corresponding nt and aa reference strain.  

General topology of phylogenetic tree showed 4 clusters corresponding to previously 

defined DOBV genotypes: Dobrava, Kurkino, Sochi and Saaremaa (Figure 13). In the 

phylogenetic tree constructed for M segment sequences of DOBV, based on Bayesian methods, 

all three newly detected Serbian strains clustered within the Dobrava genotype with posterior 

node probability of 1. 
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Figure 13. Phylogenetic tree based on 16 M segment sequences of DOBV, inferred using the 

Bayesian methods. Numbers on branches indicate posterior node probabilities. Scale bar 

represents number of nucleotide substitutions per site. DOBV genotypes Saaremaa, Dobrava, 

Kurkino and Sochi are shown in blue, green, red and purple, respectively. Sequences indicated 

by GeneBank Accession Number, abbreviated host name (A. flavicollis – Af, A. agrarius – Aa, 

A. ponticus – Ap and Human - Hu) and country. 
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4.3.3. Phylogenetic analysis of partial DOBV S segment sequences 

Detailed phylogenetic analysis of partial S segment sequences of DOBV was done 

based on 180 partial S segment sequences (position 364855 nt). Within studied region, 16 

sequences were from Serbia: four detected in animals (A. flavicollis, A. agrarius and G. glis) 

and 12 detected previously from human HFRS cases. Corresponding N protein sequences 

comprise 164 aa (position 122-285 nt). Putative recombination signal was not detected in the 

studied alignment.  

Pair-wise comparisons of all S segment nucleotide sequences showed divergence of 

7.95% (SD±0.06), with average distance between all Serbian strains samples of 2.21% 

(SD±0.09). Diversity among sequences from human cases from Serbia was higher compared to 

those from rodents (2.30%, SD±0.01 vs. 1.83%, SD±0.01). Molecular analysis of all S segment 

sequences revealed 189 variable sites within the examined region. However, 22 mutations were 

nonsynonymus (changes in aa) when the studied sequences were compared to the 

corresponding nt and aa reference strain. Moreover, molecular analysis of Serbian strains 

compared to reference strain revealed 55 variables sites of which three were nonsynonymus. 

Prior to further phylogenetic analysis, alignment was examined by means of likelihood 

mapping. Majority (89.4%) of the random quartets in the examined alignment were equally 

distributed in the three corners of the triangle (Figure 14) approaching the threshold of 90%.  

General topology of phylogenetic tree showed 4 clusters corresponding to the 

previously defined DOBV genotypes: Dobrava, Kurkino, Sochi and Saaremaa (Figure 15). All 

DOBV Serbian strains clustered within the Dobrava genotype. Fourteen Serbian sequences 

formed two discrete branches. Two sequences clustered with Greek, Bulgarian and Albanian 

strains, and three sequences formed separate branches. Almost all clades in the phylogenetic 

tree had high posterior probability, which exceeded 0.5. SEOV and HTNV reference strains 

were used as outgroups. 
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Figure 14. Likelihood mapping analysis using quartet grouping of 180 partial S segment 

sequences of DOBV. Number of quartets in the corners represents fully resolved phylogeny, 

whereas number of quartets in the center represents phylogenetic noise. 
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Figure 15. Phylogenetic tree based on 180 S segment sequences of DOBV, inferred using 

Bayesian methods. Numbers on branches indicate posterior node probabilities. Scale bar 

represents number of nucleotide substitutions per site. DOBV genotypes Saaremaa, Dobrava, 

Kurkino and Sochi are shown in blue, green, red and purple, respectively. Sequences indicated 

by GeneBank Accession Number, abbreviated host name (A. flavicollis – Af, A. agrarius – Aa, 

A. ponticus – Ap and Human - Hu) and country. 
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Moreover, temporal structure of the studied alignment was also examined using root-to-

tip regression analyses. Since the obtained correlation coefficient was negative, implying that 

the existing dataset of DOBV S segment sequences is not sufficiently informative for further 

phylogenetic analysis, the estimation of demographic growth, substitution rate and 

phylogeographic distribution of DOBV was not done (Figure 16). 

 

Figure 16. Root-to-tip regression analyses. Plot of the root-to-tip genetic distance 

against sampling time is shown for phylogeny estimated from alignment of 180 S 

segment sequences of TULV.  
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To examine the nature of codon selection on the aligned DOBV S segment sequences, 

we performed per-site SLAC, based on the NJ tree. The initial DOBV S segment alignment 

consisted of 180 sequences. However, selection analysis was done based on 151 sequences and 

the rest of 29 genetically identical sequences were excluded. The examined number of sites in 

DOBV alignment was 164. At the protein level, there were 22 amino acid variable sites. The 

overall value of the dN/dS ratio based on SLAC analysis was dN/dS = 0.0225, log L= - 4653.26 

for p < 0.1 (Figure 17). Number of calculated codon sites under negative selection was 118.  

 

 

Figure 17. Selective pressure on examined portion of DOBV nucleocapsid protein based on 

SLAC analysis. 

 

4.4. DETAILED PHYLOGENETIC ANALYSIS OF DOBV IN THE NEWLY FOUND 

NATURAL HOST 

 As stated under 4.2., DOBV L and S segment sequences were recovered from G. glis 

and A. agrarius. The animals were captured within the rodent trapping performed in autumn 

2007, during several consecutive nights, using overnight strategically placed baited wooden  
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live traps. The trapping site was in central Serbia (Figure 18), in the region of the Ravanica 

River (44° 00′ 17.89″ N, 21° 35′ 26.00″ E). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18. Map of Serbia showing the location (Ravanica, approximately 150 km south of 

Belgrade) where the DOBV-positive G. glis was trapped.  . The location is indicated by a solid 

blue triangle. 

 

The obtained partial L and S segment sequences were phylogenetically characterized. 

Detailed L segment based phylogenetic analysis showed divergence of 1.3% between two 

newly detected DOBV sequences from Serbia, whereas the nucleotide divergence between 

newly detected S segment sequences from Serbia was 0.9%. Deduced amino acid sequences of 

two newly detected strains were mutually identical in both genetic segments tested. 

Ravanica 
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In the phylogenetic trees constructed for L and S segment datasets (Figure 12 and 

Figure 15), newly detected sequences were closely related to other strains originating from 

Serbia with high bootstrap support. In general, analyzed strains in both phylogenetic trees were 

placed in distinct highly supported clusters, matching the harbouring hosts within each DOBV 

genotype. Although new sequences were recovered from G. glis and A. agrarius, they clustered 

together with DOBV sequences obtained from A. flavicollis and human cases (within Dobrava 

genotype). The species G. glis, or any other species of the Gliridae rodent family, has not been 

previously associated with hantaviral infection.  

 

4.5. PHYLOGENETIC ANALYSIS OF DOBV FROM NEWLY DESCRIBED FOCUS IN 

THE BALKANS 

A part of the study in this doctoral research was performed on samples collected in the 

region of Tara Mountain (43°53048″N, 19°32023″E), where a total of 50 A. flavicollis were 

trapped on several occasions during the 3-year study period (2008–2010) (Table 3, Figure 19). 

Three of 50 rodent samples were DOBV-positive (the samples were marked as RS1 to RS3). 

Partial L segment sequences were taken from all three samples, while partial S sequences were 

taken from two (RS1 and RS3).  

The recovered L segment sequences (318 nt, position 2999–3316) encode 106 amino 

acids (positions 988–1087) of the RdRp. Nucleotide and amino acid divergence among the 

newly detected sequences from Serbia was 1.1% and 1.3%, respectively. 

The obtained 789-bp (position 291–1079 nt) DOBV S segment sequences ( KF425493,   

KF425494) comprise 263 amino acids of the N protein (aa 86–348). Nucleotide divergence 

between RS samples was 0.8%, with amino acid divergence 0.4%. 

The topology of both phylogenetic trees (L and S segments) showed that sequences 

recovered from A. flavicollis in Tara mountain were closely related to other Serbian strains with 

high bootstrap support (Figures 12 and 20). Obtained result implied geographically related 

clustering. 
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 Figure 19. Map of Serbia showing the location of the new natural focus at the Tara mountain. 

Position of Serbia in the Balkans depicted in the lower right corner. 
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Figure 20. Phylogenetic tree of DOBV rodent isolates, based on 36 isolates of S segment 

sequences (789 nt, position 291–1079), generated by Mr Bayes software package. Sequences 

indicated by GeneBank Accession Number, host name with abbreviation (A. flavicollis –Af, A. 

agrarius – Aa, A. ponticus - Ap and Hu – isolate from human case) and country. DOBV 

genotypes are marked. 
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4.6. COMPARATIVE PHYLOGENETIC ANALYSIS OF PARTIAL L AND S 

SEGMENT SEQUENCES OF TULV 

Eight European common voles, M. arvalis, were trapped in 2007 at Ravanica region 

(44° 00′ 17.89″ N, 21° 35′ 26.00″ E), in central Serbia, approximately 150 km south of 

Belgrade (Table 3, Figure 18). However, only two were available for genetic testing. When 

these two rodent samples were tested in the present study, one was found positive. The obtained 

partial L segment sequence was first analyzed by BLAST at NCBI 

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) and the sequence was identified as TULV strain. 

 

4.6.1. Phylogenetic analysis of the partial TULV L segment sequences 

L segment sequence for the TULV strain from M. arvalis was 322 nucleotides long, 

corresponding to positions 2981-3302 nt of TULV L segment reference sequence (NC005226), 

partially encompassing L-protein-encoding sequence of 106 amino acids. Nucleotide 

divergence of 21 analyzed nucleotide sequences ranged from 0% to 22.98% (mean nt distance 

was 16.23%, SD±4.5), while between the Serbian one and all other sequences included in the 

analysis, it ranged from 15.58% to 20.24% (mean nt distance was 17.53%, SD±1.3). Diversity 

of newly detected sequence involved 57 synonymous and no non-synonymous substitutions in 

the examined partial L segment region, in comparison to the reference sequence (NC005226).  

Reconstructed tree (Figure 21) comprised 21 L segment sequences originating from 

different countries, including Germany, Switzerland, Czech Republic, Slovenia and Serbia. 

Newly characterized Serbian sequence clustered separately but closely related to those isolated 

from Germany. The second cluster was formed by sequences originating from Slovenia and 

Czech Republic. The last cluster contained sequences also from Germany. 
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Figure 21. ML phylogenetic trees based on 21 TULV L segment sequences. For better 

viewing, clusters of phylogenetically closely related sequences were compressed to triangles 

(size proportional to the number of sequences). Both trees were rooted with PUUV as outgroup.  
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4.6.2. Phylogenetic analysis of the partial TULV S segment sequences 

S segment phylogenetic analysis included two sequences from Serbia: TULV sequence 

from M. subterraneus (AF017659; earlier described) and the one from M. arvalis (described in 

present study), together with 64 sequences retrieved from GEnBank originating from various 

European and Asian countries.  

The topology accuracy of the phylogenetic tree constructed for the S segment data set 

was inferred by using the likelihood mapping method (Figure 22). Obtained results of analysis 

support tree-like evolution. Namely, the fact that 9.3% of the dots fell in the central area and 

90.7% at the corners of the triangles indicated that the alignment contained sufficient 

phylogenetic information. 

Overall nucleotide divergence among analyzed sequences ranged from 0% to 22.67% 

(mean nt distance was 16.23%; SD±5.1). Mean nucleotide distances between sequences from 

M. subterraneus strain and M. arvalis with all other sequences of the study were 17.78% and 

18.57%, respectively. The highest diversity was observed between TULV sequences from 

Kazakhstan and all other analyzed sequences, with nt difference from 17.19% to 22.67% (mean 

nt distance was 20.35%, SD±0.9). Nucleotide divergence between two sequences from Serbia 

was 13.16%, while the derived amino acids were identical. Furthermore, both sequences from 

Serbia were closely related to sequences originating from eastern Slovakia (Y13979 and 

Y13980) with nucleotide difference of 11.93% and 10.88% respectively, for sequences from M. 

subterraneus and 7.54% and 8.77% for M. arvalis. Comparing sequences from Serbia with the 

TULV reference strain (NC005227), nucleotide diversity involved seven nonsynonymous 

substitutions in the examined alignment. The overall frequency of detected amino acid changes 

was 3.68% in the studied genetic region.  

Phylogenetic tree based on 66 TULV S segment sequences of 567 nt (358-924 nt) 

showed the existence of different clusters matching to territory of sequences origin (Figure 23). 

Sequences from Serbia were closely related to those from eastern Slovakia (Y13980 and 

Y13979), forming a clear separate cluster. Sequences from western Slovakia were placed 

together with sequences from Czech Republic. In addition to the aforementioned clusters, it 

was possible to distinguish 4 clusters matching to the geographic region of the country. 
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Figure 22. Likelihood mapping analysis using a quartet grouping of 66 S segment sequences of 

TULV. Number of quartets in the corners represents fully resolved phylogeny, whereas number 

of quartets in the center represents phylogenetic noise. 
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Figure 23. ML phylogenetic trees based S segment of 66 examined TULV sequences. For 

better viewing, clusters of phylogenetically closely related sequences were compressed to 

triangles (size proportional to the number of sequences). Both trees were rooted with PUUV as 

outgroup. 
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To examine the nature of codon selection on the aligned TULV S segment sequences, 

we performed per-site SLAC, under based on the NJ tree. 

The analyzed TULV S segment alignment consisted of 137 sequences. The examined 

number of sites in the TULV alignment was 181. At the protein level, there were 51 amino acid 

variable sites. The overall value of the dN/dS ratio based on SLAC analysis was dN/dS = 

0.0197, log L= -10470.52 for p < 0.1 (Figure 24). Number of calculated codon sites under 

negative selection was 170.  

 

 

Figure 24. Selective pressure on examined portion of TULV nucleocapsid protein based on 

SLAC analysis. 

 

4.7. RECOMBINATION ANALYSIS OF TULV STRAINS 

Since the TULV sequences from eastern Slovakia (Y13980 and Y13979) had already 

been described as recombinants, and two Serbian strains were closely related with these 

sequences, we analyzed the potential presence of recombination in Serbian strains (Figure 25).  
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Figure 25. Locations of the trapping sites of TULV sequences in Serbia, and geographical 

position of Serbia in Europe, depicting also the trapping site of the Kosice strain from Slovakia. 

 

 The studied alignment consisted of 22 nearly full length TULV S segment sequences, 

of 928 nt in length. In order to investigate the presence of phylogenetic noise, the alignment 

was investigated by means of likelihood mapping. The fact that 2% of the dots fell in the 

central area and 98% at the corners of the triangles indicates that the alignment contained 

sufficient phylogenetic information (Figure 26).  
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Figure 26. Likelihood mapping analysis using a quartet grouping of 22 TULV S segment 

sequences alignment. Number of quartets in the corners represents fully resolved phylogeny, 

whereas number of quartets in the center represents phylogenetic noise. 
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Bootscan recombination analysis by Simplot of 928 nt (400-1324) S segment sequences 

revealed the existence of two recombination peaks exceeding the cut-off of 70% bootstrap in 

both sequences from Serbia: one peak corresponding to S segment regionsfrom positions 

around 600-750 that clustered together with TULV sequences from Czech Republic and West 

Slovakia, while the other clearly resolved peak, was located between positions 750 and 950, 

and clustered with TULV sequences from Russia (Figure 27). Reconstructed phylogenetic 

subtrees were clearly in correlation with corresponding peaks proposed by bootscan analysis 

(Figure 28). According to these results sequences from Serbia may be considered as 

recombinant forms containing sequences originated from Russia and Czech Republic. Notably, 

positive recombination signal was not picked up by RDP4 in either Serbian or Slovakian 

strains. 

Analysis of variable positions in the N protein revealed uniform pattern of 10 amino 

acids specific to studied recombinant strains (AF017659, Y13979, Y13980 and newly detected 

sequence), of which six amino acid sites were comprised within signature differences identified 

by VESPA analysis. Based on these observations it is possible to distinguish regions along the 

N protein of the examined strains, corresponding alternately to strains from Russia and Czech 

Republic. The list of detected mutations together with aa positions in the N protein is 

summarized in Table 8. 

 

 

 

 

 

 

 

 

 



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 
85 

 

 

 

Figure 27. Bootscan analysis of 928 nt long S segment alignment of TULV, as analyzed in Simplot (Window: 160 bp, Step:       

20 bp, GapStrip: On, Reps: 100, Kimura (2-parameter), T/t: 2.0, Neighbor-Joining); The peak values exceeding 70% were 

considered to be significant.
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Figure 28. Reconstructed phylogenetic subtrees including positions according to bootscan analysis: S segment positions 400–600 nt 

(circled in yellow), 600–750 nt (circled in red) and 750–950 nt (circled in yellow), as indicated on the bar, showing alternate clustering 

of Serbian sequences according to positions analyzed; TULV sequences used in the analysis are listed in the text. 
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Table 8. Amino acid sequence variation of N protein in Serbian and Slovakian TULV strains. Numbers denote the position of aa in the 

N protein. Boxes shaded in gray represent aa positions within signature pattern specific to examined recombinant sequences, as 

obtained by VESPA. 
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4.8. BAYESIAN PHYLOGENETIC ANALYSIS OF TULV PHYLODYNAMICS AND 

PHYLOGEOGRAPHY  

The phylogeny, including population dynamic, evolutionary rates and phylogeographic 

analysis were co-estimated in a Bayesian framework using MCMC method implemented in the 

BEAST package v 1.8.4. A total of 137 TULV sequences with known time and location of 

sampling were included in the analysis. The alignment was of 543 nt in length, corresponding 

to nt positions 418-960 of TULV S segment reference sequence. 

Prior to phylogeographic analysis, phylogenetic noise of the dataset was investigated by 

means of likelihood mapping. The assessment of 10,000 randomly chosen quartets showed that 

only 7.8% fell in the central area of the likelihood map, and 92.2% were at the corners of the 

triangle, which suggested that the alignment contained sufficient phylogenetic information 

(Figure 29).  
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Figure 29. Likelihood mapping analysis using a quartet grouping 137 S segment sequences of 

TULV. Number of quartets in the corners represents fully resolved phylogeny, whereas number 

of quartets in the center represents phylogenetic noise 

 

 Temporal structure of sequences included in this study was also examined using root-

to-tip regression analyses. Obtained correlation coefficient was 0.31 (Figure 30), close to the 

the threshold of 0.4 indicating that the analyzed dataset is suitable for further phylogenetic 

analysis. 
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Figure 30. Root-to-tip regression analyses. Plot of the root-to-tip genetic distance against 

sampling time is shown for phylogeny estimated from alignment of 137 S segment sequences 

of TULV. 

 

 Initially, we analyzed population dynamics using Bayesian skyline plot analysis, which 

depicts the changes in effective population size over time (Figure 31). The effective population 

size of examined strains seems to be constant over time. 

Relaxed Log normal clock together with constant population size as tree prior were 

found to be the best model for calculation of substitution rate. Under these conditions, the  
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estimated substitution rate of analyzed part of the S segment was 1.787 x 10-3 (SE of mean = 

1.72 x 10-4; 95% HPD interval: 8.75 x 104 – 2.55 x 10-3) integrated in BEAST v.1.8.4. 

 

 

Figure 31. Bayesian skyline plots representing the estimates of the effective number of TULV 

S segment sequences in the studied population. The y-axis measures the effective number of 

infections in log10 scale while the x-axis represents time in years with 0 (zero point) indicating 

the most recent year of sampling (2013). The line showing the median estimate of effective 

number of infections over time and blue colored areas limiting the 95% HPD interval. 

 

Based on log marginal likelihood calculated using stepping stone sampling, Cauchy 

PRW was the best chosen model to investigate gene flow on a time-scaled genealogy by 

implementing geographic coordinates (latitude and longitude) for continous space. Moreover, 

Log-normal molecular clock model together with the constant population demography was 

found to be the best fit for our dataset. ESS values for each parameter was higher than 100.  

The most possible root of MCC tree was placed in central Asia, most probably in 

Kazahstan, with posterior probability of 1 (Figure 32). The exact place of origin was assessed 

around Aqtöbe city in Kazahstan. The root age was assessed to be around 300 years ago.  
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Studied TULV strains formed three well supported clades matching the geographical 

origin: the clade closest to the tree root consisted of sequences from Russia and Kazahstan; the 

second clade contained strains originating from western and central Europe (Germany, France, 

and Poland); the third clade consisted of sequences from western and southeast Europe (France, 

Luxemburg, Germany, Austria, Czech Republik, Slovakia, Slovenia, Croatia and Serbia) were 

found, together with recombinant strains from Serbia and east Slovakia. 

The patterns of viral spread suggested by phylogeographic analysis were plotted 

(Figure 33). The routes of viral spread included further distribution across Russia and further to 

Europe. Moreover, phylogeographic analysis suggested single introduction of TULV to Europe 

from central Asia, with the complex pattern of local viral migration throughout Europe further 

on. Obtained results also showed single introduction of TULV from Czech Republic to Serbia 

with further spread locally and to Slovakia.  
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Figure 32. The maximum clade credibility (MCC) tree of TULV S partial sequences. The branches are colored on the basis of the 

most probable location of the nodes. The thickness of the branches reflects the posterior probabilities (values below 50 are thin) and 

the scale at the bottom of the tree represents the number of years before the most recent sampling time (2013)
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Figure 33. The patterns of TULV spread generated by SpreaD 
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5. DISCUSSION



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 

96 

 

Hantaviruses are known to be endemic in the Balkan region, where sporadic cases 

and/or outbreaks of HFRS have been reported repeatedly. In south Balkan countries, 

including Greece, Romania, Albania, Macedonia, Serbia and Montenegro, DOBV is 

considered to be the predominant cause of HFRS cases. However, in the north Balkan 

countries, like Slovenia and Croatia more PUUV infections are observed (Avsic-Zupanc 

et al., 2014). Hantavirus seroprevalence to either antibodies and/or antigens was found on 

average in 16% of A. flavicollis, 8.1% A. agrarius and 16% of M.glareolus, with 

significant differences observed between epidemic and non-epidemic years (Avsic-

Zupanc et al., 2014). While during the non-epidemic years the prevalence of hantaviruses 

in hosts in endemic areas of HFRS in the former Yugoslavia was on average 9.2%, the 

prevalence of infection was on average 19.7% and 23% for the epidemic years 1986 and 

1989, respectively (Avsic-Zupanc et al., 1990; Avsic-Zupanc et al., 1993; Avsic-Zupanc 

et al., 1994; Gligic et al., 1992; Lukac et al., 1990). Ever since the first clinical and 

epidemiological evidence of HFRS in Serbia dating to the middle of last century, 

serological evidence of hantaviral infection has been detected in both humans and animal 

reservoirs. The first serological results on hantaviruses in small mammals in Serbia were 

published in 1986, and concerned the localities Rugovo and Čačak, with 34% and 30% 

seroprevalence, respectively (Gligic et al., 1989). In the following decade, hantavirus antigen 

and/or antibodies-positive rodents have been repeatedly found in these and other foci, at 

similar or slightly lower rates (Gligic, 2008). Positive detection of hantaviral antigens and/or 

antibodies has been found in multiple rodent species (A. flavicollis, A. sylvaticus, A. agrarius, 

A. microps, M. arvalis, M. subterraneus, M. musculus, R. norvegicus, My. glareolus) and 

insectivores (Sorex alpinus, S. araneus, Crocidura suaveolens) (Gligic et al., 1988). So far, 

serological findings imply circulation of multiple hantaviruses in Serbia, including HFRS-

causing DOBV, PUUV, but also TULV (Gligic et al., 1988; Papa, 2012). Moreover, reported 

frequency of serological DOBV detection in Apodemus rodents or small mammals in other 

Balkan countries ranges from 3.6% in Bosnia and Herzegovina, 6.3% in Croatia, 17% in 

northern Croatia and Hungary to 21.21% in Slovenia (Lundkvist et al., 1997; Avsic-Zupanc 

et al., 2000; Plyusnina et al., 2009, 2011; Nemeth et al., 2011). In endemic regions in Grrece, 

13% of A. flavicollis are infected by DOBV (genogroup Dobrava) (Papa et al., 2001).  
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However, until the study presented in this doctoral thesis, hantaviral genetic analyses from 

either human or rodent populations in Serbia were very scarce. Only one study reported three 

DOBV sequences for M and two sequences for S segment obtained from three patients 

during an epidemic in Serbia and Montenegro (Papa et al., 2006). Regarding the genetic data 

obtained from small mammalss, PUU-like virus and TULV RNA were detected in M. 

musculus M. subterraneus, respectively (Diglisic et al., 1994; Song et al., 2002). 

Nevertheless, detailed molecular characterization of hantaviruses circulating in Serbia has not 

been performed yet, leaving the natural hosts and geographical distribution of hantaviruses in 

its reservoir host in Serbia largely unknown. As such, this study provides the first effort to 

gain insight into the molecular epidemiology of hantaviruses in wild rodents in Serbia. 

The present study of 110 rodent samples encompassed molecular investigation and genetic 

characterization of hantaviruses recovered from different rodent reservoirs of three 

subfamilies (Murinae, Arvicolinae and Glirinae). This thesis focuses on the evolutionary 

analysis of hantaviral sequence data using multiple phylogenetic methods. These methods 

were employed to examine complex biological processes, such as evolutionary dynamics, 

natural selection, recombination and migration of hantaviruses. However, the present study 

was not designed to evaluate the seroprevalence of hantavirus antigens/antybodies in 

natural reservoirs. Since the pool of animals and samples that gave rise to the study 

population was collected within research unrelated to hantaviruses, the resulting rodent 

population was too diverse and could not be considered representative for sero- and 

epidemiological surveys. Hence, the obtained proportions of positive animals may only be 

taken as informative. Nevertheless, although the percentage of positive samples found in ths 

study (6.3% in total, among species that tested postitive, 5.5% overall, including all the 

viruses and hosts) may seem low, in particular for the endemic region, the overall 

percentage of  hantavirus RNA detection in similar studies that used molecular approach 

varies widely. Similar to our finding of 4.3% molecular positivity of the total of tested A. 

flavicollis (9.7% among seropositive animals) and 2% , in the study designed to examine 

hantavirus infection in host population in south Bulgaria, the prevalence of hantavirus RNA 

among studied animals was 7.7% in A. flavicollis and 1.43 % in A. agrarius 

(Chassovnikarova et al., 2013). Moreover, in Bulgaria 691 rodents were captured in three 

different HFRS-endemic regions during 2011-2012 and DOBV RNA was recovered from  
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six Apodemus mice: five of species A. flavicollis and one A. agrarius (Christova et al., 

2015) In the Kırklareli province, located in Turkish Thrace (neighbouring Bulgaria), 

DOBV RNA was detected in eight of 73 rodents (Polat et al., 2018). In the study 

designed to test the presence of hantaviruse in Poland, five of 60 tested small mammals 

(belong to four different species; A. agrarius, M. agrestis, My. glareolus, S. araneus) were 

found to be hantavirus RNA positive (Wójcik-Fatla et al., 2013). In the study which 

tested the occurrence of SEOV in the wild rat population in the Netherlands, two out of 

16 animals were found to be positive using molecular methods (Verner-Carlsson et al., 

2015). 

The possible explanation for seemingly low prevalenve of hantavirus RNA among 

the tested animals is that viremia is very brief (7-10 days) before the host develops 

detectable antibody, following by simultaneous presence of both anti hantaviral antibody 

and hantaviral RNA in blood of rodents in the period of 3 months and then consequent 

clearance of virus from the blood (Kuenzi et al., 2005). Simultaneously, hantavirus is 

established in certain cells and can be transmitted via urine, feces, and saliva. During the 

period of chronic infection hantaviral RNA may be alternately detected. Viral RNA is 

probably consistently present in the blood of chronically infected animals, however, 

under the limits of PCR detectability (Kuenzi et al., 2005). Finally, when focusing on the 

molecular positivity rate among the seropositive animals, the obtained results might 

reflect some discrepancy of low detectable hantaviral RNA among seropositive animals. 

However, the prevalence of hantavirus RNA positive samples among seropositive 

animals varied widely among different studies (Avsic-Zupanc et al., 2000; Chandy et al., 

2013).  

DOBV positive animals were captured in western (three A. flavicollis) and central 

(one A. agrarius and one G. glis) Serbia. M. arvalis was also captured in central Serbia.In 

general, DOBV is known to be mostly associated with different Apodemus species, including 

A. flavicollis, A. agrarius, and A. ponticus (Papa et al., 2016). Since DOBV genoypes 

Dobrava and Sochi have the potential to cause severe form of HFRS in humans, with high 

mortality rate, knowledge of the distribution and infection rates of their natural hosts, A. 

flavicollis and A. ponticus, respectively, is very important and helpful for the Public Health. 
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Rodent species of the Apodemus genus are the most widespread compared to all other 

groups of small mammals. These small mammals inhabit Palearctic zone (Corbet & 

Ovenden, 1980; Orlov et al. 1996). Currently, around 20 different species have been 

described, of which roughly half inhabit Europe and North Africa and species of the other 

half inhabit Asia (Musser & Carleton, 1993; Wilson & Reeder, 2005).  

 A. flavicollis inhabits wide range from southern England and Wels to the west, to 

Belarus and Ukraine to the east and from southern Finland and Sweden to the north to Spain 

and Greece to the south (Bugarski-Stanojevic, 2010). This species inhabits the entire 

Apennine and the Balkan Peninsula. A. flavicollis is granivorous rodent species and therefore 

it can be found in deciduous forests with high seed production, mostly accompanied by A. 

sylvaticus (Balaz and Ambros, 2012). Moreover, this small terrestrial mammal species 

utilizes nest boxes as hiding place, shelter and food storage. A. flavicollis is characterized by 

great mobility, but it is strictly depended on the forest environment. The assumed mean home 

range size for A. flavicollis was 625 m2 for males and 551 m2 for females (Vukicevic-Radic et 

al., 2006). In the present study three A. flavicollis captured in west Serbia found to be DOBV 

positive. 

A. agrarius has the largest range of distribution of all Apodemus species, including 

parts of Europe and Asia.  In Europe, it inhabits areal from Baltic region to the north to 

Turkey to the south, including Balkan Peninsula, Greece and Bulgaria. Eastward, it ranges to 

Caucasus, including parts of Kyrgyzstan and Kazakhstan, the western part of the Baikal 

region, north-western China and Mongolia. Moreover, A. agrarius inhabits the region of 

Amur River, the Far East of Russia, Korea, and even some Japanese islands (Bugarski-

Stanojevic, 2010). This rodent species is commonly found in grassy fields, cultivated areas, 

and woodlands. A. agrarius is also granivorous, with seed and fruits of trees being their 

predominant food resource. Mean home range size assumed for this species was 716 m2 for 

and 585 m2 for females (Vukicevic-Radic et al., 2006). In our study, A. agrarius is cinfirmed 

to be a DOBV, host, with one positive animal trapped in central Serbia. 

  The distribution range of G. glis is mostly in concordance with deciduous forest zone 

in the western Palearctic (Krystufek, 2010). This small mammal is widespread in western, 

central, and southeastern Europe except Denmark, France and the majority of the Iberian  
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Peninsula. They frequently inhabit deciduous and mixed woodland with high amount of 

mast seeders. The most preferable habitats are the edges of forest with sparse trees but 

dense herb and structured forests with high trees and dense understory. In general, the 

key trees in the decidous and mixed forests are mast seeders, belonging to genus Quercus 

and Fagus. Since the seed is the preferable food of these mammals, the yearly fluctuation in 

its produce noticeably affects the main physiological event in G. glis, hibernation. Moreover, 

the oscillation in seed production is followed by skipping reproduction cycle. Adult forms of 

edible dormouse have small home-range sizes (< 1-7 ha), with males having larger home 

ranges than females with high site fidelity suggesting that dispersal occurs during the 

juvenile/yearling stage (Marteau and Sara, 2015). DOBV RNA was found in one G. glis 

captured in central Serbia. 

 Regarding phylogenetic analysis based on molecular approaches, it provides highly 

reliable insight in evolutionary relations among virus strains (Hofmann et al., 2014). All three 

hantavirus genome segments can be used for genotyping and for studying the virus 

phylogeny. However, sometimes the results obtained for all three segments are incongruent, 

due to possible recombination and reassortment events. The number of reported sequences 

within certain segment of hantaviruses (especially for M and L segment sequences) may also 

influence the obtained results. 

Phylogenies for partial DOBV L, M and S segment alignments obtained using 

different phylogenetic methods within the current study were highly consistent. Obtained 

results provided insight into the phylogenetic relatedness of newly detected sequences from 

Serbia and sequences retrieved from NCBI.  

Phylogenetic analysis of DOBV L segment sequences placed all Serbian strains (the 

newly detected strains and those retrieved from the database), within the Dobrava genotype. 

In the phylogenetic tree, the newly detected sequences isolated from A. agrarius and G. glis, 

were placed together with Serbian sequences isolated from A. flavicollis and human HFRS 

cases. The positioning of the newly detected Serbian sequences, isolated from A. agrarius 

and G. glis, on the phylogenetic tree could possibly reflect local host switching of DOBV 

between A. flavicollis and A. agrarius. However, the number of available sequences for L 

segment is rather limited (37, including 22 sequences originating from Serbia) to allow 

broader conclusions. 
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Moreover, the possibility of host switching is supported by the fact that these two 

Apodemus species are known to share the same habitat. In this aspect, detailed phylogenetic 

analysis was done based on the S segment of DOBV. 

The analyzed DOBV L segment protein coding sequence included the complete motif 

B and almost complete inter-motif (between motifs A and B) of the L protein (pos. 988–1087 

aa). Motifs B, E and pre-motif A found in all RNA-dependent RNA polymerases are 

responsible for positioning of the template and primer relative to the active site (Nemirov et 

al., 2003). In all aligned DOBV L protein sequences in our study, motif B (pos. 1044–1065 

aa) was fully conserved and the A-to-B inter-motif was highly conserved with rare amino 

acid changes, suggesting their importance in enzyme function (Kukkonen et al., 2005).  

Phylogeny of the M segment mirrored the classification of DOBV into four 

genotypes, in spite of the relatively short length of the studied region (434 nt compared to the 

3601 nt of the completee length of DOBV M segment ) and limited number of sequences 

included. Notably, only 13 M segment sequences spanning the studied region were found in 

the database. Serbian strains were placed within Dobrava genotype and showed local-

geographic clustering. Studied M segment region (pos. 573-717 aa) encompasses the 

glycoprotein precursor cleavage sites placed at the position 647, thus it included small coding 

parts of both Gn and Gc proteins (Guardado-Calvo and Rey, 2017). This functional constrain 

influences the variability of the analyzed M segment region that was found to be highly 

conserved with only 16 variable sites witin the studied aa region. 

Phylogeny of DOBV S segment was assessed based on 180 DOBV S segment 

sequences. The studied dataset contained animal and human isolates. Phylogenetic analyses 

indicated local geographical clustering of all Serbian sequences, regardless of either the host 

or year of collection. Serbian strains were placed in several different clusters within Dobrava 

genotype, conforming to location of isolation (central or western Serbia). A similar topology 

of the phylogenetic tree was described in previous studies, with the exception of SAAV 

whose exact position depends on the length of studied S segment sequences (Klempa et al., 

2005; Papa et al., 2006; Papa 2012; Schlegel et al., 2009).  

 The N protein of hantaviruses is of approximately 430 (429 to 433) aa residues and 

has a molecular weight of approximately 50 kDa (Kaukinen et al., 2005). Within each 

hantavirus species, the primary structure of N protein is highly conserved. The pattern of N  
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protein is characterized by three conserved domains separated by two more variable regions 

spanning aa residues from approximate positions 50 to 80 and from 230 to 310. The amino-

terminal part of N protein forms the main human IgG epitope (pos. 1–118 aa) (Kaukinen et 

al., 2005). The central conserved domain (pos. 175–217 aa) contains a large cluster of 15 

lysines/arginines residues located between positions 136 and 213. Particularly, all 15 positive 

charges are completely conserved in all known hantaviruses. This cluster overlaps with the 

RNA-binding domain.The region of the S segment under study codes for the partial  

conserved amino-terminal N protein, forming genome RNA binding domain (pos. 122–285 

aa), important for RNP assembly (Kaukinen et al., 2005).  

Obtained results, based on phylogenies of all three DOBV segments, imply DOBV as 

one of main hantavirus circulating in Serbia. Genetic detection of DOBV in A. agrarius and 

A. favicollis is in line with a fact that these rodents are the most common Apodemus species 

on the territory of Serbia. These results are in congruence with previous serological and 

molecular studies of hantaviruses on the territory of Serbia (Gligic et al., 1988; Papa, 2012). 

Specimens of DOBV positive A. agrarius and G. glis were trapped in 2007 in the 

region of Ravanica River at altitudes ranging between 580 m and 716 m, along hilly and 

wooded terrain of mixed deciduous forest (beech, oak, oak, hazel, hornbeam) with wild pear 

and apple trees on the fringes. Detailed S segment based phylogenetic analysis suggested 

local geographically specific clustering. However, clustering pattern also reflected the main 

host species harboring DOBV (A. flavicollis and A. agrarius): newly acquired DOBV strains 

from Serbia isolated from A. agrarius and G. glis clustered together with other DOBV 

sequences associated with the rodent A. flavicollis within Dobrava genotype.  

Based on the clustering in the S segment phylogenetic tree, both newly described 

sequences (isolated from A. agrarius and G. glis) were found to be very similar to DOBV 

strains isolated from patients who originated from central and southern Serbia, implying local 

circulation of DOBV strains between different hosts. Furthermore, one of two DOBV 

sequences was retrieved from G. glis. Previously, this species, or any other species of the 

Gliridae rodent family, has not been associated with DOBV infection. This finding implies an 

uncommon DOBV spillover event; further studies are underway to explore the scope and 

nature of DOBV infection in Gliridae rodent species in Serbia. 
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A. flavicollis is considered the main rodent reservoir of DOBV-Dobrava genotype in 

the Balkan region (Papa, 2012). Considering phylogenetic results, it may also be regarded as 

the putative source of spillover infection for the other species (A. agrarius and G. glis).  

In general, spillover may play very important role in evolution and emergence of 

hantaviruses. It represents a fundamental precondition for genetic reassortment and 

recombination of viruses. The process of spillover is also prerequisite for virus host switching 

between different species. After the occurrence of spillover, it takes some time for the virus 

to establish replication and transmission cycle within the new host. Under these conditions, 

virus switch from one to another host species may be considered. However, recent findings 

indicate that host switch might be less rare event than previously believed (Schlegel et al., 

2009, Schmidt-Chanasit et al., 2010; Schlegel et al., 2012). Recent results of phylogenetic 

analysis of DOBV Kurkino genotype strains originating from Germany, confirmed the 

evidence of multiple spillovers with several strains isolated from A. flavicollis clustering 

together with sequences isolated from A. agrarius (Schlegel et al., 2009). 

Moreover, spillover of TULV was described between different host genera, such as 

Microtus and Arvicola, sharing the last common ancestor more than three million years ago 

(Schlegel et al., 2012). A comparative phylogenetic analysis showed the presence of spillover 

in TULV strains isolated from sympatrically occurring M. arvalis and M. agrestis hosts 

(Schmidt-Chanasit et al., 2010).  

For a long time rodents were considered the original mammalian hosts of primordial 

hantaviruses (Zhang, 2014). Recently, this concept has been strongly challenged in favor of 

host switching and local host-specific adaptation. The fact that the first ever hantavirus was 

TPMV isolated in 1971 from the Asian house shrew (Suncus murinus) has long been 

neglected. In addition, in 2007 the second hantavirus was isolated also from shrew Crocidura 

theresae, sampled from Guinea. However, only recent studies showed that phylogeny of 

hantaviruses and their hosts need to be reassessed, indicating that importance of their 

evolutionary history is far more complex than previously thought. New data also point that 

insectivores and bats play important role in hantavirus evolution. The fact that the 

hantaviruses from both the Chiroptera and Soricomorpha form paraphyletic groups 

powerfully suggests that ancestral hantaviruses cross between mammalian orders (Zhang, 

2014).  
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Furthermore, the significance of virus–host switching lies in the emergence of 

pathogenic viruses, presumably through acquisition of genes associated with virulence and 

tissue targeting. As outcome of the above mentioned, it is clear that cross-species hantavirus 

transmission, as well as geographic dispersal of Chiroptera, Soricomorpha and Rodentia, 

have also contributed to the high biodiversity and near global distribution of those 

hantaviruses known today. However, since the sequence database of hantaviruses is limited 

yet, it is aforehand to make final conclusions regarding the significance of co-divergence and 

host switching in the similarities between the phylogeny of hantaviruses and their 

mammalian reservoir hosts (Yanagihara et al., 2014). Namely, the phylogenetic relationship 

among hantaviruses and their hosts can be explained by periodic episodes of co-divergence 

through deep evolutionary time. 

DOBV (Dobrava genotype) is the causative agent of the most severe form of HFRS 

in Europe, with case-fatality up to 12%-18% (Gligic et al., 2008). Considering that Apodemus 

rodents are the main natural reservoir of DOBV, detailed epidemiological investigation of 

DOBV infection in these small mammals is a pre-conditional first step in organizing 

measures to prevent spread to humans. In our research, three samples of A. flavicollis, 

captured on Tara Mountain were hantavirus positive. All animals were trapped on the 

touristic complex of Tara Mountain. Up to now, western Serbia, where mountain Tara is 

located, has not been investigated for the presence of hantaviruses in the animal reservoirs. 

As such, this study represents the first effort to study the possible circulation of hantaviruses 

in this part of Serbia. Regarding human infection, the majority of reported serologically 

documented DOBV human infections so far in Serbia occurred in the south of the country, 

represented by the Vranje trapping site in this study (Papa et al., 2006). Two of the locations 

in our work were Kosutnjak and Avala, in the municipality of Belgrade, where the first 

human DOBV case was detected (Gligic et al., 1992). During the period of animal collection, 

40 cases of human hantavirus infection were immunologically detected in Serbia 

(unpublished data from National Reference Laboratory for ARBO viruses and HF viruses). 

Unfortunately, epidemiological data regarding the exact or most probable place of infection 

are very scarce or completely missing. Detection of hantavirus genome in A. flavicollis 

animals and identification of a new endemic focus in western Serbia indicate the need for  
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permanent monitoring. Testing should include both endemic and non-endemic areas, 

especially areas with frequent human visits. 

DOBV L segment sequences were obtained from three A. flavicollis captured on Tara 

Mountain (RS1 to RS3), whereas S RNA segment sequences were obtained from two of them 

(RS1 and RS3). Absence of amplification for the S segment in the RS2 isolate suggests better 

detection sensitivity by degenerate primers for the L segment (Klempa et al., 2006).  

It is important to emphasize that newly acquired sequences from Tara Mountain 

clustered together with Serbian human isolates included within S segment phylogenetic tree 

regardless of the date of collection. A similar trend, concerning high phylogenetic similarity 

regardless of temporal distance, has also been shown in Greek and Slovenian sequences from 

humans and animals. This phenomenon points to unidirectional transmission of infection, 

from mice to man. In accordance with that, the short residence time of the virus in human 

tissue could be insufficient to induce fixation of virus genome changes in different hosts 

(Schilling et al., 2007). 

TULV is widespread across Eurasia, including France, Germany, the Netherlands, 

Austria, Slovenia, Croatia, Hungary, Poland and Russia, where numerous mammal species 

have been shown to be its reservoirs, including M. arvalis, M. subterraneus, M. 

rossiaemeridionalis, M. agrestis, M. gregalis, A. amphibius and Lagurus lagurus (Schlegel et 

al., 2012; Schmidt-Chanasit et al., 2010). Serbia was the first country in the Balkans where 

TULV was detected (Song et al., 2002).  Molecular analysis of the TULV L segment of the 

new Serbian strain showed no evidence of aa divergence, compared to the reference sequence 

(NC005226). Examined L segment region mostly encompassed conserved region, including 

motif B. This motif, responsible for the positioning of template and primer relative to the 

active site, is one of six L protein conserved motifs (premotif A and motifs A, B, C, D, E) in 

all hantaviruses (Nemirov et al., 2003). 

Phylogenetic analysis of both L and S segment sequences included in the study is suggestive 

of geographically related clustering, as previously shown for majority of hantaviruses (Avsic-

Zupanc et al., 2000; Plyusnin et al., 1996). In addition, obtained molecular data do not 

suggest host related clustering, with the presence of particular natural reservoirs in different 

branches of phylogenetic tree. Phylogenetic tree based on partial S segment alignment 

showed that both strains from Serbia clustered together with those from East Slovakia  



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 

106 

 

(Y13980 and Y13979), that have already been shown to be recombinants (Kosice strain) 

(Sibold et al., 1999). Herein, we reported the evidence of putative recombination events in 

two TULV sequences from Serbia. The analyzed sequences of both Serbian strains covered 

most of the S segment coding region, including partial central domain and near complete C-

terminal domain of the nucleocapsid protein. Using Simplot, the first recombination 

breakpoint was detected in the conserved region of the central domain (around position 600), 

while the other two breakpoints (around the positions 750 and 950) were observed in the 

variable region of the C-terminal domain. Two of these breakpoint positions (600 and 950) 

corresponded to those described in PUUV sequences (AJ314598, AJ314599) (Sironen et al., 

2001). However, the obseredved TULV recombination pattern in our study could not be 

detected using the RDP4. Of note, reanalysis by RDP4 of the mentioned PUUV recombinants 

did not reveal the reported recombination breakpoints either (data not shown), illustrating the 

lack of sensitivity of this approach for mosaic like recombination pattern. Similar 

recombination breakpoints have also been described in transfection-mediated TULV 

recombinants (Plyusnin et al., 2002). 

Separate phylogenetic analysis of putative recombinantion regions has been proposed 

as gold-standard for detection of recombination (Han and Worobey, 2011). Thus, 

phylogenetic analysis of subalignments based on bootscan analysis, confirmed the positions 

of recombinant peaks. The putative recombination breakpoints found in Serbian TULV 

sequences are of very similar pattern to those in Kosice lineage from Slovakia. Likewise, 

both sets of recombinant sequences contain the same pattern of nonsynonymous nucleotide 

substitutions in both conserved and variable part of nucleocapsid protein (Table 1).  

The two Serbian TULV sequences were retrieved from different host reservoirs and 

on different locations. Namely, the first sequence was retrieved from M. subterraneus 

captured in Cacak region, western Serbia (Song et al., 2002), while the newly detected 

sequence was obtained from M. arvalis trapped in central Serbia, some 100 km eastward. No 

major geographical obstacles exist between the two trapping sites (e.g. rivers, mountains…), 

which could facilitate local migration of host rodents and spread of the recombinant virus.  

Spillover spread of hantavirus infection among voles living in sympatry has been described 

(Schlegel et al., 2012; Schmidt-Chanasit et al., 2010). The two TULV host species have been  
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shown to occur sympatricaly on the territory of Serbia (Gligic et al. 2008). Furthermore, 

Serbian TULV sequences were isolated in different time points, 20 years apart (1987 and 

2007). The time span of 20 years between the detection of the two sequences might be the 

reason for the high nucleotide diversity (13.16%) between the two Serbian sequences of 

reflecting the accumulation of nucleotide point mutations. In contrast, to the nucleotide 

diversity between sequences from Slovakia, both obtained in 1995 was much less (2.47%). 

In general, M. arvalis occupies the whole Europe, from the Ukraine and central Russia to 

Atlantic coast of France (Heckel et al., 2005). This common vole inhabits subterraneous 

borrows in the open habitats like fields and meadows (Schweizer et al., 2007). The dispersal 

capacity of voles is very restricted, with several hundred meters or few kilometers within one 

day (Schweizer et al., 2007). The consequence of this limited movement of voles is reduction 

in the opportunity of TULV dissemination on long distance. On the other hand, voles tend to 

build subterraneus burrows in their natural habitats which serve as shelters for colonies of 

voles during the winter (Heckel et al., 2005). This type of complex social behavior may 

increase the possibility of direct TULV transmission among these small rodents (Deter et al., 

2008). In addition, indirect transmission of TULV through contaminated excretes and 

environment also influences the spread of TULV. 

Recombination isone of the molecular mechanisms responsible for genetic diversity 

and it has been described in various families of RNA viruses (Worobey and Holmes, 1990). 

The most likely mechanism proposed for this process is copy-choice model, primarily 

described for poliovirus (Copper et al., 1974). This process requires jumping of RdRp from 

one to another RNA molecule during RNA replication. During this process polymerase 

remains bound with nascent nucleic acid chainallowing formation of genetically distinct viral 

strains (Simon-Loriere and Holmes, 2011). However, it was documented to occur with very 

low frequency in negative stranded RNA viruses (Chare et al., 2003). Actually, the best 

evidence of recombination among negative stranded RNA viruses is seen in hantaviruses 

(Han and Worobey, 2011). Genome structure and life cycle of viruses may play important 

role in occurrence of recombination.  

Secondary structure in genome organization of segmented RNA viruses may 

influence the rate of recombination, facilitating the transition of RNA polymerase. Hairpin-

like secondary structure has been described between nt 332 and nt 368 of TULV S segment,  



Phylogenetic analysis of hantaviral molecular  

evolution in different rodent species 

 

 

108 

 

and its link has been identified to potential recombination hot spots (Plyusnina and Plyusnin, 

2005). This structure might be involved in initiating transition in positioning of the RNA 

polymerase. The regions of recombination breakpoints described in both Serbian sequences 

are found immediately downstream this secondary structure position. 

Persistent infection is an important factor influencing the rate of recombination, facilitating 

coinfection of infected cell with two different virus lineages (Sibold et al., 1999; Simon-

Loriere and Holmes, 2011). Hantaviruses establish persistent infection within their natural 

hosts, so they have higher probability of recombination compared to other negative sense 

RNA viruses causing acute infection. Besides, the existence of different hantavirus strains on 

the same geographical territory is essential for recombination to occur (Sibold et al., 1999). 

The first evidence of homologous recombination within the hantaviral S genomic 

segment was discovered in TULV lineage Kosice, originating from East Slovakia, where 

mosaic-like structure of the S segment was seen, consistent with several recombination 

events (Sibold et al., 1999). The existence of recombinant TULV lineages within S segment 

was also confirmed in experimental conditions, where the existence of recombination hot-

spots is correlated to features of the S segment secondary structure (Plyusnin et al., 2002). 

The same evolutionary mechanism was observed in PUUV, with recombination breakpoints 

detected around the positions 440/630 and 940/1130, as well as in HTNV (Sironen et al., 

2001; Chare et al., 2003). Additionally, the possible event of recombination is reported 

between different DOBV strains in A. agrarius and A. flavicollis in nature (Klempa et al., 

2003b). 

The occurrence of recombinant TULV forms with similar recombination pattern in 

different parts of Europe raise the question of two possible scenarios: one being direct 

dispersion of recombinant TULV lineage between Slovakia and Serbia, and the other being 

independent occurrence of TULV recombination events in different European regions. 

Geographical distance between the two trapping sites (Kosice and Ravanica) of over 700 km, 

including obstacles (e.g. rivers, mountains), would pose a major barrier in direct spread, 

whereas the possibility of repeated, independent occurrence of such similar recombination 

breakpoints has, so far, been taught to be extremely low (Han and Worobey, 2011). 

 The function of the portion of 164 aa of DOBV N protein (122-285 aa) 

analyzed in our study is responsible for RNP assembly and this part of N protein includes 15  
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highly conserved lysines/arginines residues. The type of detected aa changes and evidence of 

negative selection (p < 0.1) in action on this region both imply a high tendency for protein 

structure conservation. Protein function plays an important role in selection pressure, 

restraining fixation of new mutations. Consequently, examined part of DOBV S segment has 

lower nucleotide divergence compared to the examined L segment region (7.17% versus 

10.81%, respectively), conversely to the results obtained in comparison of their whole-

nucleotide sequences (Nemirov et al., 2003; Papa, 2012). 

Regarding the analysis of TULV N protein, it included 189 aa (positions 120-308 aa). 

This studied region includes the conserved RNA-binding domain, but it also parlty covers the 

variable domain (aa positions 230-308). Obtained results showed the evidence of negative 

selection (p < 0.1), in both conserved and variable studied nucleocapsid region. The possible 

role of purifying selection in this case might be to act against deleterious variants in protein-

coding gene by selective pressure over time. 

 The results of substitution rate of TULV strains isolated in different parts of the world 

over time spanning 28 years (1987-2015) revealed that the rate of accumulation of nucleotide 

changes is 1.787 x 10-3 substitutions/site/year. The substitution rate of molecular evolution 

obtained in a previous study, which ranged from 1.99 x 10-2 to 8.87 x 10-3 

substitutions/site/year, is in concordance with our results (Ramsden et al., 2008). This high 

substitution rate in TULV is the consequence of many factors regarding the viral life cycle, 

such as mutation rate, generation time, transmission and natural selection (Duffy et al., 2008). 

Hantaviruses possess RdRp for replication, which lacks the proofreading and repair 

mechanisms and operates with an error rate of ~1 mutation/replication/genome (Drake 1999). 

Previously calculated mutation rate for hantaviruses (1 x 10-3 to 3 x 10-3) is in concordance 

with the obtained substitution rate in our study (order of 10-3 substitutions/site/year) 

(Ramsden et al., 2008) 

Time span, which is here 28 years, is an important factor for estimation of long-term 

evolutionary rates of viruses. Sampling over longer time period may more accurately denote 

the real substitution rate. In contrast, if the analyzed time span is not sufficient, the number of 

nucleotide substitutions may include deleterious mutations that would later be removed by 

purifying selection. 
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Evolution and diversification of hantaviruses have been largely influenced by 

migration pattern of viruses and their hosts. In general, the pattern of hantavirus divergence is 

in congruence with distribution of their hosts. Ceratin groups of both rodent-borne and 

shrew-borne hantaviruses are geographically restricted to either New World or Old World 

hantaviruses, while other hantaviruses are globally distributed. Nevertheless, mechanisms 

and timing of virus diversification have not been fully resolved yet. For example, host 

switching may play important role in virus divergence. Sympatrical occurrence of different 

rodent species may facilitate the process of host switching and, therefore, influences the 

hantavirus diversification. 

 Geographic distribution of hantaviruses has been explored in multiple studies so far 

(Bennett et al., 2014, Torres-Perez et al., 2011, Souza et al., 2014). Obtained results of some 

studies placed the putative root of potential hantavirus origin in Asia, with further local and 

global viral spread, e.g. independent spreaded to Americas, as colorfully depicted in Figure 9 

(Bennett et al., 2014). Arvicolinae associated hantaviruses probably emerged in China. 

Initialy, these hantaviruses had probably been adapted to the Myodes genus and gave rise to 

viral spread towards North Europe and further evolution of viruses such as PUUV. By the 

same time Arvicolinae associated hantaviruses were adapted to the Microtus genus and 

spread towards central Asia (e.g. Kazakhstan), Europe and North America. TULV, as the 

member of Microtus genus-associated hantaviruses, might be an ancestral hantavirus species 

in Europe and Asia. 

 TULV is widely distributed since its main host reservoir (M. arvalis) occupies whole 

Europe (Heckel et al., 2005). As also confirmed within this study, based on detailed 

phylogenetic analysis of both L and S segment sequences, TULV is characterized by 

geographically related clustering, as previously shown for majority of hantaviruses (Avsic-

Zupanc et al., 2000; Plyusnin et al., 1996). Furthermore, host related clustering is not present 

within TULV sequences, since different natural reservoirs can be observed in different 

branches of phylogenetic tree. These facts underlined the importance of analyzing the 

migration pathways of TULV strains in order to reconstruct the possible origin and dispersion 

pathways of the different viral strains. Herein, phylogeographical approach based on 

Bayesian methods was used which simultaneously identifies the possible pattern of virus 

migration and the root of virus origin. 
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 Phylogeographical study was based on 137 TULV S segment strains isolated from 69 

locations within Europe and central Asia with large time span of isolation of 28 years (1987-

2015). The TULV dataset comprised four recombinant strains: two from east Slovakia 

(Sibold et al., 1999), where the host animals (M. arvalis) were trapped in 1995 in Kosice 

region, and two from Serbia (one from M. subterraneus captured in 1987 in Cacak region 

(west Serbia) and the other from M. arvalis captured in 2007 in Ravanica region (central 

Serbia) (Song et al., 2002). In view of the the same pattern of recombination and time span of 

animal trapping of 20 years, we speculated that TULV of this genetic shape has become a 

stable part of virus population, allowing their inclusion into the analysis.  

 Phylogeographic analysis performed using Cauchy RRW model together with Log-

normal molecular clock and constant population size as tree prior, revealed that potential root 

and origin of spread of all known TULV clades was placed in central Asia, most probably in 

Kazahstan. According to our findings, the common ancestor, placed in the root of TULV 

origin, probably existed around 300 years ago. This result is in accordance with some 

previously published data (Saxenhofer et al., 2017). However, it is very likely that this 

finding does not depict accurately the time of TULV origin with the age of origin being 

highly underestimated. The possible cause might be the lack of sensitivity of existing 

Bayesian methods, since the extinct basal viral lineages in the data set could not be in the 

analysis. It has already been speculated that application of molecular clock analyses 

calibrated by contemporary sequences proved to be accurate in inferringshort-term evolution, 

whereas errors could arise at larger time scales, especially for highly variable viruses, due to 

the large number of accumulated mutations and consequent effect of saturation (Worobey et 

al., 2010, Saxenhofer et al., 2017).  

 In our reconstruction, initial TULV spread started locally, throughout Russia and 

Kazahstan and then the virus was introduced into central Europe (Czech Republic) by a 

single pathway. The possible reason underlying this dispersal pattern might simply be the 

distance between central Asia and central Europe. Namely, voles as the most important hosts 

of TULV, have very limited dispersal areal with only few hundred meters a day (Schweizer 

et al., 2007). TULV further spread locally throughout Europe and central Asia. Soon after 

TULV was introduced into Czech Republic, it entered Serbia once as recombinant strain and 

further spread in two directions: locally and also to Slovakia. This is in consistence with the 
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fact that Serbian strains were the result of recombination among TULV sequences originating 

from Czech Republic and Russia. Moreover, these results imply that the recombination event 

had happened previously, probably on the territory of Czech Republic, upon single 

introduction of TULV into Czech Republic from Russia. Nevertheless, phylogeny based on 

TULV S segment showed that TULV strains originating from Czech Republic were closely 

related to sequences from Austria, implying that TULV might have alternatively been 

introduced to Czech Republic from Austria and recombined with sequences from Russia 

further on.  

 In this doctoral thesis we explored molecular data of DOBV and TULV by means of 

phylogenetic analysis, including different methods (Neighbor-Joining, maximum likelihood 

and Bayesian statistics). Obtained results revealed some new data regarding the ecology and 

evolution of hantaviruses. Detection of potentially new hantavirus host species provides 

better insight within pull of host sources of hantavirus infection. Moreover, detection of 

recombination and detailed phylogenetic analysis of recombination pattern, as molecular 

mechanism of evolution of hantavirusnog genome, may improve knowledge regarding the 

evolution of hantavirues. Results obtained by investigation of spatial and temporal 

transmission patterns derived from time-calibrated phylogeny of hantavirus sequences may 

facilitate understanding of the process of disease emergence and spread. 

Hantaviruses belong to the increasing group of emerging zoonotic pathogens. Since 

many countries worldwide have been affected by hantaviruses, the understanding and 

recognition of this problem has been improved over the past few decades. Among others, 

extensive research of hantavirus natural reservoirs and development of more sensitive 

diagnostic tools can act strongly against this global health problem. However, factors like 

climate change and landscape alternation still affect the geographic distribution, abundance 

and the dynamic of the carrier rodent species, and therefore change the epidemiology of 

hantaviruses. Consequently, comprehensive research on hantavirus ecology, evolution, 

pathogenesis, and diagnostics are still needed. 
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According to the defined objectives and based on the obtained results the following 

conclusions have been reached: 

 During the five-year study period (2007-2011) two hantaviruses, Dobrava-

Belgarde virus (DOBV) and Tula virus (TULV), were genetically 

characterized in four different rodent species: A. flavicollis, A. agrarius, G. 

glis and M. arvalis. 

 

 Glis glis species was found as the novel host and putative natural reservoir of 

DOBV, since this species, or any other species of the Gliridae rodent family, 

has not been previously associated with hantaviral infection. Phylogenetic 

analyses of the obtained sequences did not exclude the potential DOBV 

spillover infection from A. flavicollis. 

 

 Molecular screening of A. flavicollis from mountain Tara in western Serbia 

detected the presence of DOBV in tested animals, revealing this locality as a 

novel DOBV focus in the Balkans. 

 

 Phylogenetic analyses of all three RNA segments (L, M and S) revealed that 

all Serbian DOBV strains from the novel focus belong to the DOBV-Dobrava 

genotype. 

 

 Molecular screening of different rodent species in central Serbia detected 

TULV in M. arvalis. Phylogenetic analysis of both L and S segment 

sequences of the newly detected TULV strain was suggestive of 

geographically related clustering, as previously shown for the majority of 

hantaviruses. 

 

 Exploratory recombination analysis, supported by phylogenetic and aa pattern 

analysis, revealed the presence of recombination in the S segment of the 

Serbian TULV, resulting in mosaic-like structure, similar to the one of Kosice 

strain originating from east Slovakia. 
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 Population dynamics of TULV was found to be relatively constant in size 

with high estimated substitution rate  of 1.787 x 10-3 substitutions/site/year. 

 

 Phylogeographic analysis encompassing all relevant TULV S segment 

sequences present in the NCBI database at the time of the analysis placed the 

potential root and origin of TULV spread in central Asia, most probably in 

Kazahstan. 

 

 Phylogeographic analysis implyed single introduction of TULV to Europe 

from central Asia, with the complex pattern of local viral migration, including 

single introduction to Serbia with further spread locally and also to Slovakia. 
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LIST OF ABBREVIATIONS AND ACRONYMS 

 

aa Amino Acid 

agRNAs anti-genomic RNAs 

AIC Akaike information criteria 

AI association index 

ANDV Andes virus 

ARQV Araraquara virus 

BIC Bayesian information criteria 

BLAST Basic Local Alignment Search Tool  

BD Brownian diffusion 

BEAST Bayesian Evolutionary Analysis by Sampling Trees 

CPE cytopathic effect 

CTMC continous-time Markov chain 

DT decision theory method 

dS Synonymous substitutions 

dN non-synonymous substitutions 

D3 Data Driven Document 

dLRT dynamical likelihood ratio tests 

DNA Deoxyribonucleic Acid  

DOBV Dobrava Belgrade virus 

FDA Food and drug administration agency 

FEL fixed-effects likelihood 

FASTA  text-based format for representing nucleotide sequences  

GTR +G+I gamma-distributed rate heterogeneity and  

a proportion of invariant sites 

GPC glycoprotein precursor 

gRNAs genomic RNAs 

hLRT Hierarchical likelihood ratio tests 

HTNV Hantaan virus 

HFRS hemorrhagic fever with renal syndrome 
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HPS hantavirus pulmonary syndrome 

ICTV International Committee on Taxonomy of Viruses 

JSON java script object 

KHG Korean hemorrhagic fever 

MC maximum exclusive single-state clade size 

MLE marginal likelihoods 

MP Maximum Parsimony 

MCMC Markov chain Monte Carlo 

MCC maximum clade credibility 

mRNAs messenger RNAs 

ML Maximum Likelihod 

NVAV Nova virus 

NCBI National Center for Biotechnology Information  

NEXUS text-based format for representing nucleotide sequences  

NE Nephropathia Epidemica 

NJ Neighbor- Joining 

NCR non-coding sequence 

NAO North Atlantic Oscillation 

ORFs open reading frame 

PS path sampling 

PS parsimony score 

PSTs posterior sets of trees 

PUUV Puumala virus 

PHV Prospect Hil virus 

ORFs open reading frame 

PHYLIP text-based format for representing nucleotide sequences  

RNA Ribonucleic Acid  

RdRp RNA-dependent RNA polymerase 

RDP Recombination Detection Program 

RT-PCR reverse transcriptase polymerase chain reaction 

REL random effects likelihood 
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RDP4 Recombination Detection Program version 4 

RRWs relaxed random walks 

SpreaD3 Spatial Phylogenetic Reconstruction of EvolutionAry Dynamics 

SLAC single likelihood ancestor counting 

SAAV Saarema virus 

SEOV Seoul virus 

SANGV Sangassou virus 

SNV Sin Nombre virus 

SS stepping stone sampling 

TIM2 + I transitional model 2 of nucleotide substitution and  

a proportion of invariant sites 

TIM2+G+I transitional model with gamma-distributed rate  

heterogeneity and a proportion of invariant sites 

TPM1uf +G+I threeparameter model with gamma-distributed rate  

heterogeneity and a proportion of invariant sites 

TrN + G Tamura-Nei model with gamma-distributed  

rate heterogeneity 

TPM2u + G 3-parametar model 2 and gamma distributed 

 rate heterogeneity 

TrN93 Tamura-Nei model 

TAE Tris-acetate-EDTA 

TPMV Thottapalayam virus 

TMRCA the most recent common ancestor 

TULV Tula virus 

VESPA viral epidemiology signature pattern analysis 

vRdRp viral RNA-dependent RNA polymerase 
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APPENDIX  

 

 

Table AI. List of trapped rodents together with sampling location and year of trapping. 

 

Host species 

Number of 

animals Location Year 

Apodemus flavicollis 50 Ravanica River 2007 

Apodemus agrarius  14 Ravanica River 2007 

Apodemus sylvaticus 8 Ravanica River 2007 

Myodes glareolus 17 Ravanica River 2007 

Microtus arvalis 8 Ravanica River 2007 

Glis glis 4 Ravanica River 2007 

Apodemus flavicollis 33 Tara Mountain 2008 

Apodemus flavicollis 14 Kosutnjak 2008 

Apodemus flavicollis 11 Lisine 2008 

Apodemus flavicollis 16 Tara Mountain 2009 

Apodemus flavicollis 8 Kosutnjak 2009 

Apodemus flavicollis 15 Avala Mountain 2009 

Apodemus flavicollis 17 Cer Mountain 2009 

Apodemus flavicollis 3 Lisine 2009 

Apodemus flavicollis 32 Zajecar 2009 

Apodemus sylvaticus 8 Zajecar 2009 

Myodes glareolus 3 Zajecar 2009 

Microtus subterraneus 1 Zajecar 2009 

Glis glis 2 Zajecar 2009 

Mus musculus 2 Zajecar 2009 

Apodemus flavicollis 1 Tara Mountain 2010 

Apodemus flavicollis 35 Kosutnjak 2010 

Apodemus flavicollis 17 Avala Mountain 2010 

Apodemus flavicollis 3 Cer Mountain 2010 

Apodemus flavicollis 12 Vranje 2010 

Apodemus flavicollis 7 Ravanica River 2011 

Apodemus agrarius 1 Ravanica River 2011 

Myodes glareolus 7 Ravanica River 2011 

Glis glis 1 Ravanica River 2011 

 

 

 

 

 



 

 

 

146 

Table AII. Accession numbers of all sequences, including newly detected and those retrieved 

from NCBI database included in the study 

 

 

DOBV L segment NC005235 Af GR 99 

DOBV L segment JQ026206 Af DE 08 

DOBV L segment KF536033 Hu DE 10 

DOBV L segment KJ425422 Aa DE 02 

DOBV L segment KF536031 Hu DE 08 

DOBV L segment JF920148 Ap/Hu RU 09 

DOBV L segment KM192208 Ap RU 08 

DOBV L segment KP878309 Ap RU 13 

DOBV L segment KM192209 Ap RU 08 

DOBV L segment GU904042 Af SL 09 

DOBV L segment KT885041 Af SL 15 

DOBV L segment GU904039 Aa SK 09 

DOBV L segment AJ410618 Aa EE 00 

DOBV L segment KF039740 Hu TR 10 

DOBV L segment KF177177 Aa RS 07 

DOBV L segment KF177176 Gg RS 07 

DOBV L segment KF425495 Af RS 08 

DOBV L segment KF425496 Af RS 08 

DOBV L segment KF425497 Af RS 08 

DOBV L segment KY649161 Hu CRS 07 

DOBV L segment KY649167 Hu CRS 07 

DOBV L segment KY649175 Hu WRS 07 

DOBV L segment KY649172 Hu CRS 07 

DOBV L segment KY649168 Hu CRS 08 

DOBV L segment KY649174 Hu CRS 08 

DOBV L segment KY649163 Hu SRS 09 

DOBV L segment KY649164 Hu SRS 09 

DOBV L segment KY649173 Hu CRS 09 

DOBV L segment KY649176 Hu ERS 09 

DOBV L segment KY649165 Hu WRS 10 

DOBV L segment KY649162 Hu SRS 10 

DOBV L segment KY649169 Hu SRS 10 

DOBV L segment KY649177 Hu NRS 10 

DOBV L segment KY649178 Hu ERS 10 

DOBV L segment KY649170 Hu SRS 11 

DOBV L segment KY649171 Hu SRS 11 

DOBV L segment KY649166 Hu BA 11 
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DOBV M segment NC005234 Af GR 99 

DOBV M segment AJ410616 Af GR 99 

DOBV M segment AY168577 Af SK 98 

DOBV M segment GU904035 Af SI 09 

DOBV M segment MT-RS1 Af RS 08 

DOBV M segment MT-RS2 Aa RS 08 

DOBV M segment MT-RS3 Af RS 08 

DOBV M segment AY961616 Aa SK 99 

DOBV M segment AY168578 Aa SK 97 

DOBV M segment AJ009774 Aa ES 00 

DOBV M segment GQ205413 Af DE 08 

DOBV M segment GQ205412 Aa DE 08 

DOBV M segment GQ205410 Af DE 07 

DOBV M segment GQ205409 Aa DE 07 

DOBV M segment GQ205411 Af DE 07 

DOBV M segment JF920149 Hu RU 09 

 

DOBV S segment NC005233 Af GR 99 

DOBV S segment KT315637 Af TR 09 

DOBV S segment KT315635 Af TR 09 

DOBV S segment KT315636 Af TR 09 

DOBV S segment KT315640 Af TR 09 

DOBV S segment KT315639 Af TR 09 

DOBV S segment KT315638 Af TR 09 

DOBV S segment KT315642 Af TR 09 

DOBV S segment KT885043 Af SI 15 

DOBV S segment KC848494 Af HU 07 

DOBV S segment KC848495 Af HU 07 

DOBV S segment KC848497 Af HU 07 

DOBV S segment KC848496 Af HU 07 

DOBV S segment KC848498 Af HU 07 

DOBV S segment KC848499 Aa HU 06 

DOBV S segment KC848500 Aa HU 06 

DOBV S segment KC848501 Aa HU 06 

DOBV S segment FN813292 Af HR 03 

DOBV S segment FN813291 Aa HR 03 

DOBV S segment KC676600 Af HR 08 

DOBV S segment KC676599 Af HR 08 

DOBV S segment KC676593 Af HR 08 

DOBV S segment KC676591 Af HR 08 

DOBV S segment KC676590 Af HR 08 

DOBV S segment KC676589 Af HR 08 

DOBV S segment KC676605 As HR 07 

DOBV S segment KC676604 Af HR 07 

DOBV S segment KC676602 Af HR 07 
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DOBV S segment KC676598 Af HR 08 

DOBV S segment KC676595 Af HR 08 

DOBV S segment KC676596 Af HR 08 

DOBV S segment KC676597 Af HR 08 

DOBV S segment KC676594 Af HR 08 

DOBV S segment KC676607 As HR 07 

DOBV S segment KF776810 Af SI 08 

DOBV S segment KF776809 Af SI 07 

DOBV S segment KF776798 Af SI 07 

DOBV S segment KF776806 Af SI 07 

DOBV S segment KF776829 Af SI 00 

DOBV S segment KF776821 Af SI 08 

DOBV S segment KF776820 Af SI 01 

DOBV S segment KF776812 Af SI 00 

DOBV S segment KF776827 Af SI 02 

DOBV S segment KF776824 Af SI 99 

DOBV S segment KF776818 Af SI 02 

DOBV S segment KF776816 Af SI 01 

DOBV S segment KF776815 Af SI 01 

DOBV S segment KF776808 Af SI 95 

DOBV S segment KF776803 Af SI 02 

DOBV S segment KF776799 Af SI 02 

DOBV S segment KF776828 Af SI 95 

DOBV S segment KF776823 Af SI 95 

DOBV S segment KF776819 Af SI 01 

DOBV S segment KF776817 Af SI 01 

DOBV S segment KF776813 Af SI 95 

DOBV S segment KF776811 Af SI 95 

DOBV S segment KF776814 Af SI 01 

DOBV S segment KF776804 Af SI 99 

DOBV S segment KF776807 Af SI 07 

DOBV S segment KF776805 Af SI 95 

DOBV S segment KF776851 Hu SI 08 

DOBV S segment KF776795 Hu SI 12 

DOBV S segment KF776797 Hu SI 08 

DOBV S segment KF776848 Hu SI 10 

DOBV S segment KF776845 Hu SI 08 

DOBV S segment KF776844 Hu SI 08 

DOBV S segment KF776835 Hu SI 05 

DOBV S segment KF776832 Hu SI 00 

DOBV S segment KF776830 Hu SI 05 

DOBV S segment KF776850 Hu SI 09 

DOBV S segment KF776838 Hu SI 07 

DOBV S segment KF776833 Hu SI 00 

DOBV S segment KF776793 Hu SI 12 
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DOBV S segment KF776837 Hu SI 07 

DOBV S segment KF776843 Hu SI 08 

DOBV S segment KF776796 Hu SI 12 

DOBV S segment KF776794 Hu SI 12 

DOBV S segment KF776840 Hu SI 08 

DOBV S segment KF776836 Hu SI 05 

DOBV S segment KF776831 Hu SI 01 

DOBV S segment KF776826 Hu SI 00 

DOBV S segment KF776841 Hu SI 08 

DOBV S segment KF776839 Hu SI 08 

DOBV S segment KF776849 Hu SI 08 

DOBV S segment KF776846 Hu SI 10 

DOBV S segment KF776842 Hu SI 08 

DOBV S segment KT971007 Af AL 06 

DOBV S segment KT971006 Af AL 06 

DOBV S segment KT971010 Af AL 06 

DOBV S segment KT971005 Af AL 06 

DOBV S segment KT971009 Af AL 06 

DOBV S segment KT971008 Af AL 06 

DOBV S segment KT971014 Af AL 07 

DOBV S segment KT971013 Af AL 07 

DOBV S segment KT971011 Af AL 07 

DOBV S segment KT971012 Af AL 07 

DOBV S segment KF039739 Hu TR 10 

DOBV S segment KP878313 Hu RU 13 

DOBV S segment KP878312 Ap RU 13 

DOBV S segment JQ026204 Af DE 08 

DOBV S segment JF920151 Ap RU 08 

DOBV S segment JF920152 Ap RU 08 

DOBV S segment JF920150 Hu RU 09 

DOBV S segment GU904029 Af SI 09 

DOBV S segment EU562989 Aa RU 05 

DOBV S segment EU562991 Aa RU 05 

DOBV S segment EU562990 Aa RU 05 

DOBV S segment AF442622 Ap RU 00 

DOBV S segment AF442623 Hu RU 00 

DOBV S segment GQ205407 Aa DE 08 

DOBV S segment GQ205408 Af DE 08 

DOBV S segment GQ205405 Aa DE 05 

DOBV S segment GQ205401 Aa DE 07 

DOBV S segment GQ205403 Aa DE 07 

DOBV S segment GQ205406 Af DE 05 

DOBV S segment GQ205404 Aa DE 07 

DOBV S segment GQ205402 Af DE 07 

DOBV S segment EU188449 Ap RU 01 
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DOBV S segment EU188452 Aa RU 02 

DOBV S segment AJ410619 Af GR 99 

DOBV S segment AJ131672 Aa RU 98 

DOBV S segment AJ131673 Aa RU 98 

DOBV S segment AJ616854 Aa DK 00 

DOBV S segment AY168576 Af SK 98 

DOBV S segment AJ269549 Aa SK 98 

DOBV S segment AJ269550 Aa SK 98 

DOBV S segment AJ269554 Af SK XX 

DOBV S segment AY533120 Aa SK 01 

DOBV S segment AY961615 Aa SK 01 

DOBV S segment AY533118 Aa SK 01 

DOBV S segment AY961618 Aa SK 01 

DOBV S segment AJ009775 Aa EE 97 

DOBV S segment AJ009773 Aa EE 96 

DOBV S segment JQ344114 Aa DE 09 

DOBV S segment JF499666 Hu HR 95 

DOBV S segment HQ174469 Hu BG 10 

DOBV S segment HQ174470 Hu BG 10 

DOBV S segment HQ174468 Hu BG 09 

DOBV S segment FJ986109 Hu CZ 08 

DOBV S segment GQ205398 Aa RU 02 

DOBV S segment GQ205396 Hu RU 07 

DOBV S segment GQ205394 Hu RU 07 

DOBV S segment GQ205397 Hu RU 07 

DOBV S segment GQ205395 Hu RU 07 

DOBV S segment GQ205393 Hu RU 07 

DOBV S segment AF060024 Hu GR 96 

DOBV S segment AF060022 Hu GR 87 

DOBV S segment AF060020 Hu GR 87 

DOBV S segment AF060018 Hu GR 87 

DOBV S segment AF060016 Hu GR 85 

DOBV S segment AF060014 Hu GR 86 

DOBV S segment AF060023 Hu GR 86 

DOBV S segment AF060021 Hu GR 89 

DOBV S segment AF060019 Hu GR 90 

DOBV S segment AF060017 Hu GR 85 

DOBV S segment AF060015 Hu GR 85 

DOBV S segment AF039525 Hu GR 90 

DOBV S segment FN377828 Aa HU 00 

DOBV S segment FN377826 Af HU 00 

DOBV S segment AJ251996 Af SI 90 

DOBV S segment AJ251997 Af SI 93 

DOBV S segment KJ154958 Hu SRS 13 

DOBV S segment KF425493 Af WRS 08 



 

 

 

151 

DOBV S segment KF425494 Af WRS 08 

DOBV S segment KJ437510 Aa CRS 07 

DOBV S segment KJ437511 Gg CRS 07 

DOBV S segment DQ305280 Hu SRS 02 

DOBV S segment DQ305281 Hu SRS 02 

DOBV S segment DQ305279 Hu ME 02 

DOBV S segment KY649189 Hu CRS 07 

DOBV S segment KY649184 Hu CRS 08 

DOBV S segment KY649183 Hu CRS 09 

DOBV S segment KY649181 Hu SRS 10 

DOBV S segment KY649180 Hu WRS 10 

DOBV S segment KY649179 Hu SRS 10 

DOBV S segment KY649185 Hu NRS 10 

DOBV S segment KY649186 Hu ERS 10 

DOBV S segment KY649187 Hu BA 11 

DOBV S segment KY649188 Hu SRS 11 

DOBV S segment KY649182 Hu SRS 11 

 

TULV L segment NC005226 Ma CZ 95 

TULV L segment HQ728465 Ma DE 08 

TULV L segment HQ728463 Ma DE 08 

TULV L segment HQ728461 Ma DE 08 

TULV L segment HQ728459 Aa DE 99 

TULV L segment HQ728457 Aa DE 99 

TULV L segment HQ728455 Aa SW 09 

TULV L segment HQ728453 Aa DE 08 

TULV L segment HQ728466 Ma DE 08 

TULV L segment HQ728464 Ma DE 08 

TULV L segment HQ728462 Ma DE 08 

TULV L segment HQ728460 Mag DE 09 

TULV L segment HQ728458 Aa DE 99 

TULV L segment HQ728456 Aa DE 08 

TULV L segment HQ728454 Aa DE 09 

TULV L segment FJ495102 Ms SI 97 

TULV L segment FJ495100 Mag SI 02 

TULV L segment FJ495101 Ma SI 99 

TULV L segment FJ495099 Ma SI 01 

TULV L segment AJ005637 Ma CZ 95 

TULV L segment KF177178 Ma RS 07 

 

TULV S segment Z69991 CZE MOR 95 

TULV S segment Z48741 CZE MOR 94 

TULV S segment Z48573 CZE MOR 94 

TULV S segment Z30945 RUS TUL 87 

TULV S segment Z30944 RUS TUL 87 
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TULV S segment Z30943 RUS TUL 87 

TULV S segment Z30942 RUS TUL 87 

TULV S segment Z30941 RUS TUL 87 

TULV S segment Y13980 SVK KOS 95 

TULV S segment Y13979 SVK KOS 95 

TULV S segment U95305 AUT KOR 95 

TULV S segment U95304 AUT WEL 95 

TULV S segment U95303 AUT WEL 95 

TULV S segment U95302 AUT WEL 95 

TULV S segment NC005227 CZE MOR 94 

TULV S segment KU139605 FRA MIL 12 

TULV S segment KU139604 FRA ELS 12 

TULV S segment KU139603 LUX LUX 12 

TULV S segment KU139602 LUX LUX 12 

TULV S segment KU139601 DEU KOB 12 

TULV S segment KU139598 DEU THE 06 

TULV S segment KU139597 DEU SOE 09 

TULV S segment KU139596 DEU RUE 09 

TULV S segment KU139595 DEU RUE 09 

TULV S segment KU139594 DEU GRI 11 

TULV S segment KU139593 DEU MUE 07 

TULV S segment KU139592 DEU MUE 07 

TULV S segment KU139591 DEU MUE 07 

TULV S segment KU139590 DEU MUE 07 

TULV S segment KU139589 DEU LAU 13 

TULV S segment KU139587 DEU KIR 12 

TULV S segment KU139586 DEU KIR 12 

TULV S segment KU139585 DEU KIR 12 

TULV S segment KU139584 DEU KIR 12 

TULV S segment KU139583 DEU KIR 12 

TULV S segment KU139582 DEU BAL 12 

TULV S segment KU139581 DEU BAL 12 

TULV S segment KU139580 DEU BAL 12 

TULV S segment KU139579 DEU TRE 09 

TULV S segment KU139576 DEU TRE 09 

TULV S segment KU139573 DEU SCH 06 

TULV S segment KU139572 DEU GOT 08 

TULV S segment KU139571 DEU GOT 07 

TULV S segment KU139570 DEU GOT 05 

TULV S segment KU139569 DEU GOT 05 

TULV S segment KU139567 DEU GOT 08 

TULV S segment KU139566 DEU GOT 05 

TULV S segment KU139565 DEU SIE 05 

TULV S segment KU139564 DEU SIE 08 

TULV S segment KU139562 DEU LOH 09 



 

 

 

153 

TULV S segment KU139561 DEU KOE 08 

TULV S segment KU139559 DEU CUN 06 

TULV S segment KU139558 DEU GAT 11 

TULV S segment KU139557 DEU MUC 10 

TULV S segment KU139555 DEU HUE 09 

TULV S segment KU139554 DEU HUE 09 

TULV S segment KU139553 DEU GRO 07 

TULV S segment KU139549 DEU BIE 09 

TULV S segment KU139548 DEU LUG 10 

TULV S segment KU139547 DEU CRA 09 

TULV S segment KU139546 DEU WAL 04 

TULV S segment KU139545 DEU MOR 08 

TULV S segment KU139544 DEU MOR 07 

TULV S segment KU139543 DEU MOR 07 

TULV S segment KU139542 DEU HAU 05 

TULV S segment KU139541 DEU HAU 05 

TULV S segment KU139540 DEU WOL 08 

TULV S segment KU139539 DEU WOL 08 

TULV S segment KU139538 DEU WES 08 

TULV S segment KU139537 DEU WES 06 

TULV S segment KU139536 DEU GOE 10 

TULV S segment KU139535 DEU SCH 12 

TULV S segment KU139534 DEU SCH 12 

TULV S segment KU139533 DEU TRE 07 

TULV S segment KU139532 DEU LAU 07 

TULV S segment KU139531 DEU HTX 09 

TULV S segment KU139530 DEU HTX 09 

TULV S segment KU139529 DEU HTX 09 

TULV S segment KU139528 DEU HTX 09 

TULV S segment KU139527 DEU FRA 07 

TULV S segment KT946591 FRA CHE 15 

TULV S segment KP013578 RUS KRA 09 

TULV S segment KP013577 RUS KRA 11 

TULV S segment KP013576 RUS KRA 11 

TULV S segment KP013575 RUS KRA 11 

TULV S segment KP013574 RUS KRA 11 

TULV S segment KP013573 RUS KRA 08 

TULV S segment KP013572 RUS KRA 08 

TULV S segment KP013571 RUS KRA 08 

TULV S segment KP013570 RUS KRA 11 

TULV S segment KP013569 RUS KRA 11 

TULV S segment KP013568 RUS KRA 08 

TULV S segment KJ742928 RUS CRI 09 

TULV S segment KJ742927 RUS CRI 09 

TULV S segment KF776875 SLO LJU 13 
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TULV S segment KF557547 SRB RAV 07 

TULV S segment KF184328 AUT SAN 08 

TULV S segment KF184327 AUT SAN 08 

TULV S segment HQ697357 DEU HEU 08 

TULV S segment HQ697355 DEU HEU 08 

TULV S segment HQ697354 DEU HEU 08 

TULV S segment HQ697353 DEU HEU 08 

TULV S segment HQ697352 DEU BIE 09 

TULV S segment HQ697351 DEU SIE 08 

TULV S segment HQ697350 DEU WIN 99 

TULV S segment HQ697349 DEU WIE 99 

TULV S segment HQ697348 DEU ROE 99 

TULV S segment HQ697347 DEU ECK 09 

TULV S segment HQ697346 DEU DUE 09 

TULV S segment HQ697345 SWZ NOF 09 

TULV S segment HQ697344 DEU SCH 08 

TULV S segment GU300137 DEU GOT 06 

TULV S segment GU300135 DEU GOT 06 

TULV S segment EU439952 DEU GOT 05 

TULV S segment EU439949 DEU GOT 05 

TULV S segment EU439948 DEU GOT 05 

TULV S segment EU439947 DEU GOT 05 

TULV S segment EU439946 DEU GOT 05 

TULV S segment DQ768143 DEU BRA 05 

TULV S segment DQ662094 DEU BRA 04 

TULV S segment DQ662087 DEU BRA 04 

TULV S segment AM945879 KAZ TAL 03 

TULV S segment AM945878 KAZ KAR 03 

TULV S segment AM945877 KAZ KAR 03 

TULV S segment AJ223601 SVK KOZ 94 

TULV S segment AJ223600 SVK KOZ 94 

TULV S segment AF442621 RUS OMS 97 

TULV S segment AF442620 RUS OMS 97 

TULV S segment AF442619 RUS OMS 97 

TULV S segment AF442618 RUS OMS 98 

TULV S segment AF289821 DEU COT 98 

TULV S segment AF289820 DEU COT 98 

TULV S segment AF289819 DEU COT 98 

TULV S segment AF164094 CRO ZAG 95 

TULV S segment AF164093 DEU GRA 97 

TULV S segment AF063892 POL LOD 95 

TULV S segment AF017659 SRB BEL 87 
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Izjava o autorstvu 

 

 

 

Potpisani-a  Valentina Ćirković 

broj upisa MM03/10 

 

Izjavljujem 

da je doktorska disertacija pod naslovom:  
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vrstama glodara” 

 

 rezultat sopstvenog istraživačkog rada, 
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 da su rezultati korektno navedeni i  
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Izjava o istovetnosti štampane i elektronske verzije 
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Broj upisa   MM03/10 

Studijski program  Molekularna medicina 
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Potpisani Valentina Ćirković 
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Prilog 3. 

Izjava o korišćenju 
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Univerziteta u Beogradu unese moju doktorsku disertaciju pod naslovom: 
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arhiviranje.  
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mogu da koriste  svi koji poštuju odredbe sadržane u odabranom tipu licence Kreativne 

zajednice (Creative Commons) za koju sam se odlučio/la. 

1. Autorstvo 

2. Autorstvo - nekomercijalno 

3. Autorstvo – nekomercijalno – bez prerade 

4. Autorstvo – nekomercijalno – deliti pod istim uslovima 

5. Autorstvo –  bez prerade 

6. Autorstvo –  deliti pod istim uslovima 

(Molimo da zaokružite samo jednu od šest ponuđenih licenci, kratak opis licenci dat je na 

poleđini lista). 

 

  Potpis doktoranda 
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1. Autorstvo - Dozvoljavate umnožavanje, distribuciju i javno saopštavanje dela, i 

prerade, ako se navede ime autora na način određen od strane autora ili davaoca licence, 

čak i u komercijalne svrhe. Ovo je najslobodnija od svih licenci. 
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javno saopštavanje dela, bez promena, preoblikovanja ili upotrebe dela u svom delu, ako 

se navede ime autora na način određen od strane autora ili davaoca licence. Ova licenca 

ne dozvoljava komercijalnu upotrebu dela. U odnosu na sve ostale licence, ovom 

licencom se ograničava najveći obim prava korišćenja dela.  

 4. Autorstvo - nekomercijalno – deliti pod istim uslovima. Dozvoljavate umnožavanje, 

distribuciju i javno saopštavanje dela, i prerade, ako se navede ime autora na način 

određen od strane autora ili davaoca licence i ako se prerada distribuira pod istom ili 

sličnom licencom. Ova licenca ne dozvoljava komercijalnu upotrebu dela i prerada. 

5. Autorstvo – bez prerade. Dozvoljavate umnožavanje, distribuciju i javno saopštavanje 

dela, bez promena, preoblikovanja ili upotrebe dela u svom delu, ako se navede ime 

autora na način određen od strane autora ili davaoca licence. Ova licenca dozvoljava 

komercijalnu upotrebu dela. 

6. Autorstvo - deliti pod istim uslovima. Dozvoljavate umnožavanje, distribuciju i javno 

saopštavanje dela, i prerade, ako se navede ime autora na način određen od strane autora ili 

davaoca licence i ako se prerada distribuira pod istom ili sličnom licencom. Ova licenca 

dozvoljava komercijalnu upotrebu dela i prerada. Slična je softverskim licencama, odnosno 

licencama otvorenog koda. 

 

 

 

 

 

 

 


