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Abstract

Numerical methods and algorithms for solving of partial differential equations, especially parallel
algorithms, are an important research topic, given the very broad applicability range in all areas of
science. Rapid advances of computer technology open up new possibilities for development of faster
algorithms and numerical simulations of higher resolution. This is achieved through parallelization
at different levels that practically all current computers support.

In this thesis we develop parallel algorithms for solving one kind of partial differential equations
known as nonlinear Schrödinger equation (NLSE) with a convolution integral kernel. Equations
of this type arise in many fields of physics such as nonlinear optics, plasma physics and physics of
ultracold atoms, as well as economics and quantitative finance. We focus on a special type of NLSE,
the dipolar Gross-Pitaevskii equation (GPE), which characterizes the behavior of ultracold atoms
in the state of Bose-Einstein condensation.

We present novel parallel algorithms for numerically solving GPE for a wide range of modern
parallel computing platforms, from shared memory systems and dedicated hardware accelerators
in the form of graphics processing units (GPUs), to heterogeneous computer clusters. For shared
memory systems, we provide an algorithm and implementation targeting multi-core processors using
OpenMP. We also extend the algorithm to GPUs using CUDA toolkit and combine the OpenMP and
CUDA approaches into a hybrid, heterogeneous algorithm that is capable of utilizing all available
resources on a single computer.

Given the inherent memory limitation a single computer has, we develop a distributed memory
algorithm based on Message Passing Interface (MPI) and previous shared memory approaches. To
maximize the performance of hybrid implementations, we optimize the parameters governing the
distribution of data and workload using a genetic algorithm. Visualization of the increased volume
of output data, enabled by the efficiency of newly developed algorithms, represents a challenge in
itself. To address this, we integrate the implementations with the state-of-the-art visualization tool
(VisIt), and use it to study two use-cases which demonstrate how the developed programs can be
applied to simulate real-world systems.
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Sažetak

Numerički metodi i algoritmi za rešavanje parcijalnih diferencijalnih jednačina, naročito paralelni
algoritmi, predstavljaju izuzetno značajnu oblast istraživanja, uzimajući u obzir veoma široku pri-
menljivost u svim oblastima nauke. Veliki napredak informacione tehnologije otvara nove mogućno-
sti za razvoj bržih algoritama i numeričkih simulacija visoke rezolucije. Ovo se ostvaruje kroz
paralelizaciju na različitim nivoima koju poseduju praktično svi moderni računari.

U ovoj tezi razvijeni su paralelni algoritmi za rešavanje jedne vrste parcijalnih diferencijalnih
jednačina poznate kao nelinearna Šredingerova jednačina sa integralnim konvolucionim kernelom.
Jednačine ovog tipa se javljaju u raznim oblastima fizike poput nelinearne optike, fizike plazme i
fizike ultrahladnih atoma, kao i u ekonomiji i kvantitativnim finansijama. Teza se bavi posebnim
oblikom nelinearne Šredingerove jednačine, Gros-Pitaevski jednačinom sa dipol-dipol interakcionim
članom, koja karakteriše ponašanje ultrahladnih atoma u stanju Boze-Ajnštajn kondenzacije.

U tezi su predstavljeni novi paralelni algoritmi za numeričko rešavanje Gros-Pitaevski jednačine
za širok spektar modernih računarskih platformi, od sistema sa deljenom memorijom i specijalizo-
vanih hardverskih akceleratora u obliku grafičkih procesora, do heterogenih računarskih klastera.
Za sisteme sa deljenom memorijom, razvijen je algoritam i implementacija namenjena višejezgarnim
centralnim procesorima korišćenjem OpenMP tehnologije. Ovaj algoritam je proširen tako da radi i
u okruženju grafičkih procesora korišćenjem CUDA alata, a takođe je razvijen i predstavljen hibri-
dni, heterogeni algoritam koji kombinuje OpenMP i CUDA pristupe i koji je u stanju da iskoristi
sve raspoložive resurse jednog računara.

Imajući u vidu inherentna ograničenja raspoložive memorije koju pojedinačan računar pose-
duje, razvijen je i algoritam za sisteme sa distribuiranom memorijom zasnovan na Message Passing
Interface tehnologiji i prethodnim algoritmima za sisteme sa deljenom memorijom. Da bi se maksi-
malizovale performanse razvijenih hibridnih implementacija, parametri koji određuju raspodelu po-
dataka i računskog opterećenja su optimizovani korišćenjem genetskog algoritma. Poseban izazov
je vizualizacija povećane količine izlaznih podataka, koji nastaju kao rezultat efikasnosti novorazvi-
jenih algoritama. Ovo je u tezi rešeno kroz integraciju implementacija sa najsavremenijim alatom
za vizualizaciju (VisIt), što je omogućilo proučavanje dva primera koji pokazuju kako razvijeni
programi mogu da se iskoriste za simulacije realnih sistema.

v



Chapter 1

Introduction

The study of dynamical evolution of various physical systems is essential for their understanding
and represents a key ingredient for possible applications. It is still debated how deterministic
nature is, but the majority of models we use to describe systems in nature are deterministic. This
means that we use first and second order differential equations to model their dynamic behavior.
Even quantum systems, although notorious for their probabilistic behavior, are described in the
deterministic mathematical framework and their evolution can be cast into the form of second
order differential equations. Apart from very simple models, systems with multiple degrees of
freedom are usually described by partial differential equations. At the most fundamental level,
these equations are linear and the superposition principle applies. However, due to large numbers of
degrees of freedom for realistic systems, the complexity of the corresponding systems of equations is
prohibitively large to address either analytically or numerically. Therefore, the effective models with
much smaller dimensionality are often used, albeit not without introducing additional complexities,
such as nonlinearity of the system. This is true for many-body physics problems, especially physics
of ultracold atoms, plasma physics and many others. There are however, systems where nonlinearity
is inherent, such as nonlinear optics. Whatever the case may be, nonlinearity is always a source
of interesting and novel phenomena and has to be carefully studied. As usual, this translates to
mathematical complexity in solving of the corresponding nonlinear partial differential equations.
Therefore, the development of mathematical methods and computer algorithms for solving of such
kind of equations is of very broad interest, not only in physics, but also in applied physics and
engineering, astrophysics, chemistry, quantitative finance, etc.

As far as analytical methods are concerned, our options are limited to a small number of exactly
solvable models or application of approximative techniques. While the number of such techniques
is considerable, many of them have the disadvantage of lacking the proper way to estimate errors
associated with the obtained results. Even for methods where such an estimate is possible, only
the lowest order calculations can be done within reason, and calculation of higher order corrections
usually requires an exponentially growing number of symbolic operations, making the approach
intractable. This is the reason why numerical simulations are so widely used today, and they
represent the main tool for studying large number of systems in nature, as well as social systems.

Numerical simulations of realistic systems are often computationally very intensive, substantially
more so in higher number of dimensions. Therefore, they cannot be performed efficiently on a single,
serial computing resource, and instead require parallel processing. Parallel algorithms for solving
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CHAPTER 1. INTRODUCTION 2

partial differential equations are an important research topic today, given the fact that practically all
current computers support some form of multiprocessing. The development of parallel algorithms
for solving a particular type of partial differential equations, nonlinear Schrödinger equation (NLSE)
type, represents the main topic of this thesis.

Multi-core central processing units (CPU) form the first level of parallelism available in all
modern computers. Individual cores of the CPU may perform tasks in parallel while sharing a
single view of data in memory. By extension, several multi-core CPUs may be packaged within
a single computer and given access to the shared memory to further increase a system’s parallel
processing capabilities. Developing parallel algorithms for shared memory systems is relatively
easy, however maximizing the efficiency of their implementation is often hindered by the fact that
many systems do not provide uniform memory access times, instead relying on non-uniform memory
access (NUMA) design. Also, data coherence issues arise when caching is employed within separate
cores. Numerous hardware and software technologies exist to enable better utilization and simpler
control of shared memory systems, with OpenMP emerging as the most widespread application
programming interface for such computing platforms.

Next level of parallelism in this hierarchy is provided by the dedicated hardware accelerators,
such as graphics processing units (GPU) and early Intel Xeon Phi coprocessors. These accelerators
feature a vastly different hardware architecture to the one found in CPUs, often use their own
separate main memory, and come packaged as an add-on for the existing computer. The difference
in architecture is reflected in the programming model, whose successful utilization usually requires
a significant modification of the underlying shared memory algorithm. In this thesis, we focus on a
specific type of accelerator, the Nvidia GPU, which is programmed using CUDA toolkit. Combining
parallelism of the CPU with the one found in the GPU to take full advantage of the resources one
computer has is challenging. While CPU and GPU have separate memories, they cannot easily
be programmed as a distributed memory system, and can instead be considered a heterogeneous
computing resource, which requires development of hybrid algorithms to be fully exploited. These
algorithms must shuffle data between CPU and GPU efficiently, overlap computation, and ensure
correctness of concurrent operations through synchronization.

Combining several computers into a computer cluster forms the final level of parallelism. Even
with the rate at which current CPU and GPU technologies advance, a single computer may not
have enough memory, processing power, or both, to address the computational requirements of
numerical simulations of high resolution. Therefore, computer clusters, comprised of large number
of individual computer nodes interconnected via high-speed networking infrastructure, and accom-
panied by software solutions that allow for the whole system to be used in a parallel manner (e.g.,
Message Passing Interface, MPI) are created to fill this gap and complete the hierarchy. These
systems have distributed memory, meaning that computational tasks on each node of the cluster
operate only on data that are local to that node, and access to remote data is obtained through
communication with one or more remote computational tasks. Today, each individual cluster node
itself represents a shared memory system and the algorithm may or may not exploit this to attain
finer level of parallelism granulation. Distributed memory algorithms must take all this into account
and provide a data distribution scheme that facilitates efficient communication between computing
nodes and maximizes the computation on local data.

Efficient use of such diverse computing systems requires domain-specific knowledge and the
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development of parallel algorithms that take into consideration the specifics of the hardware the
system contains, as well as parallelization of numerical methods used to solve the given problem.
We explore all levels of parallelism across the entire hierarchy of modern hardware resources in this
thesis.

As mentioned above, parallel algorithms for solving NLSE are of great importance in the
physics of ultracold atoms, which studies the properties of matter at very low temperatures, at
the nanokelvin level. At these temperatures, rarified gases of alkali metal elements exhibit a phase
transition known as Bose-Einstein condensation [1, 2, 3, 4, 5], which produces a new state of quan-
tum matter, characterized by a coherent, collective behavior. Bose-Einstein condensation is a purely
quantum effect and does not have a classical counterpart. It is one of macroscopic quantum phenom-
ena, together with superfluidity, superconductivity and lasers. Bose-Einstein condensates (BEC)
and ultracold atoms are one of hot research topics because they provide previously unimaginable
control over parameters, properties and behavior patterns of the system. In particular, short-range
contact interaction strength in such systems can be tuned over many orders of magnitude, and
can even switch the sign, i.e., can be made either attractive or repulsive. Furthermore, the dimen-
sionality of the system can also be tuned using the external trapping potential, making possible
crossovers from three spatial dimensions (3D) to two (2D) or one (1D). This can be even performed
dynamically, by changing the shape of the trapping potential from a spherical one to disc-shaped
or cigar-shaped one. BECs have possible applications in quantum computing [6, 7], as well as in
quantum simulations of other systems. As of today, they are considered the only feasible Feynman
simulators [8].

Despite this versatility, contact interactions in BEC systems, realized through s-wave scatter-
ing of atoms or molecules, are extremely short-ranged and usually have very limited effect on the
properties of the system. Therefore, in the last decade special attention was devoted to the study
of systems in which, alongside the omnipresent contact interactions, atoms or molecules also ex-
hibit long-range dipole-dipole interaction. The dipolar BEC was first realized in 2005 [9] with
chromium atoms (52Cr), which possess a small permanent magnetic dipolar moment. Since then,
new atomic and molecular species with larger permanent or induced magnetic (168Er, 164Dy) or
electric (39K87Rb, 87Rb133Cs, 7Li133Cs) dipolar moments are broadly investigated, and some of
them are successfully condensed. Heteronuclear molecular species with large permanent electric
dipole moments, which should become experimentally accessible in the next few years, will have
orders of magnitude larger dipole-dipole interactions and will enable full exploration of the strong
interaction regime. The presence of long-range interactions can lead to interesting new phenomena,
such as phases with nontrivial order (ferromagnetic, antiferromagnetic, striped, etc.), and therefore
this field is a topic of intensive research efforts by many groups worldwide.

This motivates us to study numerical algorithms for solving of nonlinear partial differential
equations used for effective description of dipolar BEC systems. On one hand, it is an interesting
problem in physics in itself, with many possible applications and expected new breakthroughs in
the near future. On the other hand, it is also a challenging computer science problem that requires
development of novel algorithms, parallelization and the use of latest computer technology.

To begin the development of a (parallel) computer algorithm, we start from the mathematical
formulation of the problem, which at its core is a many-body physics problem, involving a Hamilto-
nian with quantum fields, i.e., the formalism of the second quantization. BEC systems are usually
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realized with dilute atomic or molecular gases and therefore, in first-order approximation, we can
neglect quantum fluctuations. Since the temperature is of the order of nanokelvin, we can neglect
thermal excitations as well, which leads to the well-known mean-field theory [10, 11], with the field
operators replaced by the classical fields, i.e., the single-particle wave function of the system. This
effective wave function Ψ(r; t) depends on position r = (x, y, z) and time t, and satisfies mean-field
Gross-Pitaevskii equation (GPE), which for the contact interaction case reads

i~
∂

∂t
Ψ(r; t) =

[
− ~2

2m∇
2 + V (r) + gNat|Ψ(r; t)|2

]
Ψ(r; t) , (1.1)

where m is the mass of the atomic or molecular species, ~ is the reduced Planck constant, Nat

is the number of particles in the condensate and V (r) is the trapping potential that confines the
condensate, usually a harmonic function. As already mentioned, Eq. (1.1) includes only contact
interaction, represented by a nonlinear term with the interaction strength g determined by the
s-wave scattering length. Without the nonlinear term, Eq. (1.1) represents the usual Schrödinger
equation, where the first term on the right-hand side is the kinetic energy, and V (r) is the potential.
The cubic term that arises from atomic interactions makes the equation nonlinear, and therefore
it is usually called nonlinear Schrödinger equation. It is worth noting that similar equations also
arise in other fields of physics and engineering, in different contexts. The stability and existence
of solutions to GPE strongly depends on the sign of nonlinearity g. Namely, if g is positive, which
corresponds to repulsive interactions, the system is stable and the above equation always has a
physically meaningful solution. On the other hand, if g is negative, the system is stable only up to
a critical number of particles and beyond this number it collapses.

For atomic and molecular species with dipolar moments we have to take into account the dipolar
interaction term, which yields the dipolar GPE in the form

i~
∂

∂t
Ψ(r; t) =

[
− ~2

2m∇
2 + V (r, t) + gNat|Ψ(r; t)|2 +Nat

∫
Udd(r− r′)|Ψ(r′; t)|2dr′

]
Ψ(r; t) . (1.2)

The dipolar interaction term is given by a convolution integral that contains the position-dependent
dipolar potential Udd(r − r′). While contact interaction is fixed for a given system, the dipolar
interaction strongly depends on the relative orientation and distance of the dipoles, and can be
both attractive and repulsive. This greatly affects stability of the system, similarly to the case
of pure contact interaction: if the interaction is predominantly attractive, the system is unstable
beyond a critical number of particles, while for predominantly repulsive interaction the system is
unconditionally stable.

The dynamics of dipolar BEC system is described using the time-dependent GPE presented
above. Typically, we start from a given state Ψ(r, t = 0), and propagate it in time to obtain the
state of the system at some future time t. However, if the system is in the stationary, ground state,
its time propagation reduces to just phase rotation, so that it can be written as Ψ0(r)e−iµt/~, where
Ψ0(r) is a real-valued function which satisfies the time-independent GPE

µΨ0(r) =
[
− ~2

2m∇
2 + V (r) + gNatΨ0(r)2 +Nat

∫
Udd(r− r′)|Ψ0(r′)|2dr′

]
Ψ0(r) , (1.3)

where µ is the chemical potential of the system which corresponds to the energy of the system in that
state. By employing the Wick rotation, the solution of time-independent equation can be obtained
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formally by turning to the imaginary time, starting from an arbitrary initial state and propagating
the wave function until the convergence is reached. Therefore, the development of methods and
algorithms for solving of GPE in both real and imaginary time is of practical interest and enables
us to fully study the behavior and properties of BEC systems, from calculation of stationary states
to dynamical evolution of a given state subject to a particular experimental protocol.

Numerical methods for solving partial differential equations require significant computing re-
sources, in particular in presence of nonlinearities. The nonlinearities such as those in dipolar GPE
further increase the complexity of the corresponding algorithms, insofar as BEC systems are often
of multi-scale nature. For example, if the system dynamically develops features at different, inde-
pendent length scales, such as vortices, density waves or collective oscillations, the smallest scale
dictates the discretization spacing. Thus, it may turn out that the minimal mesh size, which is
necessary for accurate modeling of the system, is too large to be handled by a single processing
element. The necessity of employing fine-grained discretization schemes is so prevalent in many
areas where equations of the NLSE type are used that the development of parallel algorithms and
their implementation represents an important challenge.

Therefore it is not surprising that this challenge was already addressed, and that there are several
approaches developed and tailored specifically for solving of GPE. Most of them are inherently
serial and focus solely on the equation for the contact interaction only. Algorithms and software
implementations for the dipolar GPE are practically missing, in particular parallel algorithms do
not exist in public domain or in the literature. This thesis addresses the identified development gap
and provides a significant step forward in the area of numerical methods and parallel algorithms for
solving equations the NLSE type, of interest for the fields of ultracold atoms, nonlinear optics, and
other areas.

Research results presented in this thesis contribute to the fields of scientific computing and
parallel programming, as well as complexity modeling and optimization of hybrid algorithms. In
particular, the main contribution of this thesis is the development of parallel algorithms for solving
of GPE and related equations of the NLSE type. The thesis proposes and implements several
parallel algorithms for a range of modern computing architectures:

• Shared memory systems consisting of one or more multi-core CPUs;

• Hardware accelerators in the form of GPUs;

• Heterogeneous systems combining the multi-core CPUs with the GPUs;

• Distributed memory systems - computer clusters with multi-core CPU nodes;

• Distributed memory systems - computer clusters with GPU-enabled nodes;

• Distributed memory systems - computer clusters with multi-core CPU & GPU-enabled nodes.

Development and implementation of the hybrid algorithms that fully overlap the computation on
all resources required major research effort, however, tuning them to get the best performance on
a specific hardware combination was even more challenging. This is addressed by automating the
tuning of hybrid implementations via a genetic algorithm, where a general method was developed
such that it can be applied to other heterogeneous algorithms. In addition to the development of
the above parallel algorithms, the optimal data distribution scheme for hybrid algorithms targeting
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heterogeneous systems is also presented. This scheme was selected during the research leading to
this thesis and represents another contribution, as can be verified by its use for the hybrid Fourier
transform algorithm, which was developed within the thesis as well. The hybrid Fourier transform
algorithm is highly efficient as it enables simultaneous computation on both CPU and GPU, and can
be reused independently for other purposes, thus representing an important contribution in itself.
The thesis concludes its research by investigating and modeling the complexity of the developed
parallel algorithms. The proposed models are tested and experimentally verified through a thor-
ough measurement of the performance of developed programs. Finally, the thesis investigates the
possibilities for visualization of large-scale simulations in real time and demonstrates its practical
implementation on the example of study of vortex formation in dipolar BECs.

Following on from this introductory chapter, we discuss approaches to solving NLSE and specifi-
cally GPE along with the description of the numerical algorithm employed by all programs developed
as part of this thesis, in Chapter 2. The chapter starts with an overview of both analytical and
well as numerical methods for solving NLSE and GPE, accompanied by a survey of available solvers
based on the numerical methods (Section 2.1). Next, we present the dimensionless dipolar GPEs
in 3D, 2D and 1D (Section 2.2) which we numerically solve in this thesis, before moving on to the
description of the semi-implicit split-step Crank-Nicolson numerical method which forms the basis
of the algorithms used in the implementations (Section 2.3). In addition to the main method to
solve the dipolar GPE, in Section 2.4 we give expressions for several relevant physical quantities
that can be calculated from the wave function and used to study properties of BEC systems.

With the main numerical method described, we proceed to the description of the shared memory
algorithm in Chapter 3. In Section 3.1 we describe how the numerical method can be used to
construct a computer algorithm targeting shared memory systems, followed by a description of the
serial implementation in Section 3.2 and parallel implementation in Section 3.3.

The shared memory algorithm can be extended to hardware accelerators like graphics processing
units (GPUs), which we demonstrate in Chapter 4. To get a better understanding of how the
algorithm can be implemented, we provide a brief overview of the main concepts of the programming
on GPU in Section 4.1. This is followed by the description of the implementation of the shared
memory algorithm using CUDA in Section 4.2.

Combining the algorithms from Chapter 3 and 4 to produce a new, hybrid, algorithm which
simultaneously employs both CPU and GPU is discussed in Chapter 5. The hybrid algorithm is
described in Section 5.1, followed by a naive implementation in Section 5.2, where we also note the
inherent problems with such approach. The ways to improve it are discussed in Section 5.3.

Given that the single computer may not satisfy the requirements of large-scale simulations in
terms of amount of processing power or available memory, in Chapter 6 we show how the algorithms
from Chapters 3, 4 and 5 can be extended with MPI to work with distributed memory systems like
computer clusters. To enable this, we demonstrate how data are distributed to separate processes in
Section 6.1. Working with only a subset of data required changes to the way we perform computation
in the main loop of our algorithms, which we describe in Section 6.2. In Section 6.3 we show how
distributed memory processing can be used to improve the input and output (I/O) operations of
the developed programs.

To get a better understanding of the results of the simulations created with our programs and
enable study of the properties of BEC systems, in Chapter 7 we investigate how the programs can be
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extended to provide easy and efficient visualization of produced data. We show how the programs
can be integrated into a visualization tool (Section 7.1), and how the running simulations can be
made interactive (Section 7.2).

Chapter 8 is dedicated to the detailed performance evaluation of all developed programs. To
extract the best performance out of the hybrid implementations, we developed several optimization
techniques which automatically tune the parameters governing the division of work between CPU
and GPU, details of which are given in Section 8.1. This is followed by the description of the
methodology used for the tests (Section 8.2), and results of the tests along with their modeling are
presented in Sections 8.3 and 8.4.

An example of how the programs can be used for research into the behavior of BEC systems is
given in Chapter 9. We demonstrate how the real-world experiments can be simulated in Section 9.1,
which also serves as the ultimate verification not only of the algorithms and their implementations,
but also of the physical model and mean-field approximation applied. In Section 9.2 we show how
simulations of potential new phenomena can be performed using our programs on the example of
study of the dipole-dipole interaction effects on the critical velocity for the emergence of vortices in
a dipolar BEC.

We provide a summary of the work done as part of this thesis and an outlook of future research
directions in Chapter 10.



Chapter 2

Methods for solving nonlinear
Schrödinger equation

Nonlinear partial differential equations are known to be difficult to solve. The same is true for the
GPE and NLSE in general, although their nonlinearity is not that severe. Numerous methods for
solving such kind of equations have been developed, each with different advantages and setbacks.
In this chapter we discuss relevant methods for solving one form of NLSE known as dipolar GPE
and provide details on the numerical method underpinning the algorithms presented in this thesis.

In Section 2.1 we give an overview of well-known methods used to solve GPE and similar NLSE.
We cover both analytic approaches and numerical methods, and go over the most popular solvers.
The dimensionless form of dipolar GPE in 3D as well as the effective equations of reduced dimen-
sionality are presented in Section 2.2. Our numerical method of choice, split-step semi-implicit
Crank-Nicolson method, upon which all algorithms in this thesis are based, is the subject of Sec-
tion 2.3. Relevant physical quantities which are usually calculated during numerical simulations of
imaginary- and real-time propagation of the GPE are discussed in Section 2.4.

2.1 Overview of solutions of NLSE and GPE

While linear differential equations of different kinds can be generally always solved and the super-
position principle allows for a construction of solutions satisfying any given initial (or boundary)
conditions, this is not the case with nonlinear differential equations, including NLSE and GPE.
In general, unless a special method exists for a particular type of nonlinear equations, one has to
use approximative approaches, either analytical or numerical. Here we discuss the most relevant
methods for NLSE-type of equations.

Perturbative approach, where the unknown function is expressed as a power series in an ap-
propriate small parameter, is one of the most popular analytical methods. In the case of NLSE
and GPE, it leads to a hierarchical system of coupled linear equations in the coefficients of the
power series. These equations are coupled due to nonlinearity, and usually cannot be solved ana-
lytically. The hierarchy has to be cut at a given order of the smallness parameter, which brings
an infinitely large system to a finite size and enables its solving. At the same time, cutting the
hierarchy introduces an approximation and associated error to the obtained solution.

8
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There are also physics-motivated approaches, where one neglects certain terms in NLSE/GPE
if they are known to be sufficiently small. For example, when studying the ground state of a BEC
with strong interactions, the kinetic energy is usually small compared to other terms, and can
be neglected. This is done in the Thomas-Fermi approximation, which reduces the corresponding
time-independent NLSE/GPE into an algebraic equation. This method can be also applied in real-
time propagation if kinetic energy is guaranteed to always remain sufficiently small, however this
cannot be known in advance and has to be independently verified. Thomas-Fermi approximation
can be reliably used only for very strong interactions or in the limit of infinite interaction. In the
other limit, when interaction is very weak, NLSE/GPE reduces to the usual Schrödinger equation,
whose solutions can be obtained by the methods tailored for this type of equations, including known
analytical solutions. One can even combine these methods with the perturbative expansion in the
small interaction strength.

Another physics-motivated approach is the variational method, where one assumes certain math-
ematical form of the solution containing several unknown parameters (ansatz). These parameters
are then optimized and their values are obtained (usually) by minimizing the corresponding func-
tional (action or energy, in the language of physics). The approximative solution obtained in this
way is the best in a given class of functions, however it is difficult to assess its quality or the
associated error. Selection of a suitable ansatz depends on our knowledge of the behavior of the
system, i.e., solutions for particular cases or limits, numerical solutions for some values of system
parameters, or experimental data. The more we know about the properties of the system, we are
able to build this knowledge into an ansatz that describes more reliably the dynamical behavior
and possible solutions of the equations we seek to solve.

In addition to the analytic methods, various numerical methods also play an important role, as
in many cases they are the only way to study the given physical system in detail. These methods
can be roughly categorized in three groups:

• split-step methods,

• finite difference methods and

• spectral methods.

In split-step methods, propagation in time is separated into several substeps, such that each of
them can be performed either analytically or numerically. In addition to errors associated with each
individual substep, splitting the time propagation also introduces an overall error that has to be
taken into account when estimating the total error of the solution. Finite difference methods rely
on the discretization of the corresponding equation and solving it as a system of linear algebraic
equations. Note that variations of these methods are usually combined with other approaches,
in particular with split-step methods. Spectral methods assume that the solution is written in a
complete basis of orthonormal special functions, and the equations for the corresponding coefficients
are calculated numerically. The choice of a basis is made so that it leads to numerically tractable
system of equations, with most popular examples being the Fourier or Laplace decomposition.

In the case of the dipolar GPE, the convolution integral representing the dipole-dipole interaction
term is usually calculated via the discrete Fourier transformation (DFT), which has to be combined
with the chosen method of solution.
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There are several available solvers for NLSE and GPE and we briefly review the most popular
ones: BEC-GP [12, 13, 14, 15] and DBEC-GP [16, 17, 18] families of solvers, TS-MPI [19], GPUE
[20], NLSEmagic [21], GPELab [22, 23], GSGPEs [24], ATUS-PRO [25] and GPFEM [26]. All of
these solvers are publicly available and published in journals such as Computer Physics Communi-
cations.

Published serial implementations have been in development since the 2000s, however they are
largely superseded by the parallel implementations. One such notable and highly cited Fortran im-
plementation by Muruganandam and Adhikari [12] combines split-step and finite difference methods,
and utilizes Crank-Nicolson scheme to produce solvers for 1D, 2D and 3D GPE with contact in-
teraction only. Parallelizations of these solvers have been developed in C with OpenMP [13] and
MPI [14], and in Fortran with OpenMP [15]. New branch that includes the dipolar interaction was
published in 2015 [16], and we have subsequently parallelized these solvers using CUDA [17], as
well as OpenMP and MPI [18]. Parallelizations of the dipolar programs are presented in this thesis
in detail. Note that only the solvers in this branch are capable of taking into account the dipolar
interaction. As far as other software packages mentioned below are concerned, only one of them
(GPELab) has this capability, while all others can solve GPE with the contact interaction only.

One of such parallel solvers is the Trotter-Suzuki-MPI library (TS-MPI) [19]. This library pro-
vides a parallel and distributed implementation based on the Trotter-Suzuki algorithm [27]. The
library contains kernels for efficient computation on CPU and GPU, as well as a hybrid implemen-
tation, allowing for the simultaneous use of CPU and GPU. Additionally, TS-MPI exposes several
external application programming interfaces (APIs), and can thus be used from Python or C++.
Unfortunately, TS-MPI library can only be used for 1D and 2D problems, and there is no support
for 3D systems.

Specialized GPU solvers also exist, an example of which are GPUE [20] and NLSEmagic [21].
GPUE is based on a time-splitting pseudospectral method, implemented in CUDA and targeting
only 2D systems. Being implemented in CUDA, it relies on external Python routines to process the
output. It supports only a single GPU, and there is no support for multiple GPUs within the same
computer or any form of distributed computation. NLSEmagic can be used to simulate the NLSE
in 1D, 2D and 3D. It utilizes a fully-explicit fourth-order Runge-Kutta scheme in time and both
second- and fourth-order finite difference scheme in space. While implemented in C and CUDA,
NLSEmagic is designed to interface with MATLAB. Like GPUE, it also uses only a single GPU.

There are also solvers implemented fully in MATLAB, like GPELab [22, 23] and GSGPEs [24].
GPELab is a toolbox able to solve stationary and dynamics problems in 1D, 2D and 3D, including
the contact, dipole-dipole and user-provided interactions, as well as rotation of the system, stochastic
effects and multi-components problems. It is based on a semi-implicit backward Euler scheme, a
pseudo-spectral approximation and a Krylov subspace method [28]. While very popular due to its
versatility, GPELab was shown to have very bad performance when compared to implementations
based on compiled languages [29]. The other MATLAB-based implementation, GSGPEs, has fewer
features and can only be used for the computation of the ground state of systems. It also relies on
spectral decomposition method to perform this task.

Two solvers based on the finite element method are ATUS-PRO [25] and GPFEM [26]. ATUS-
PRO calculates the solutions of the stationary and the time-dependent 1D, 2D and 3D GPE with
contact interaction. Programs in this package are implemented in C++ by means of the deal.II
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library, and support running in parallel on distributed memory systems using MPI. Numerical
method employed in the solver is based on the fully implicit Crank-Nicolson method, while stationary
states are obtained with a constrained Newton-like method. The other finite element-based solver,
GPFEM, can be used to compute the stationary solutions of GPE with rotation, in 2D or 3D. It
is implemented in FreeFem++, a free finite element toolbox with its own language. An interesting
feature of this solver is that it offers two numerical methods for minimization of GP energy for
the user to choose from: a steepest descent method based on Sobolev gradients and a minimization
algorithm based on the optimization library Ipopt. This toolkit also provides several post-processing
tools for tasks such as identification of quantized vortices, that can help in extracting values of
physical quantities from the simulations.

As we can see from this overview, many of the previous implementations focus on a specific
problem (e.g., computation of the stationary state), or on a specific dimensionality. Only DBEC-
GP solver and GPELab are able to address the dipolar interaction, however the first one is serial
and the other one is implemented in MATLAB, leading to their poor performance, in particular
when treating 3D systems. One of the aims of this thesis is to overcome this problem and to develop
and implement parallel algorithms, which are presented in later chapters.

2.2 Dipolar GPE in 3D, 2D and 1D

Many important properties of BEC systems at low temperatures can be successfully described
using the mean-field theory, where quantum fluctuations are neglected and where we assume zero
temperature, as already mentioned in Chapter 1. If we take into account scattering of the atoms or
molecules through the nonlinear contact interaction term, and the dipole-dipole interaction assuming
a fixed orientation of the dipoles along z direction, the corresponding mean-field Gross-Pitaevskii
equation has a form

i~
∂

∂t
Ψ(r; t) =

[
− ~2

2m∇
2 + V (r) + gNat|Ψ(r; t)|2 +Nat

∫
Udd(r− r′)|Ψ(r′; t)|2dr′

]
Ψ(r; t) , (2.1)

where the nonlinearity g = 4π~2as/m is determined by the s-wave scattering length as, a quantity
used in atomic physics for characterizing the interactions of atoms in the low-energy limit. Nat

is the total number of condensed particles and V (r) is the trapping potential, usually anisotropic
quadratic function of the form

V (r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (2.2)

where ωx, ωy and ωz are the corresponding frequencies. However, in general, it may be any arbitrary
function depending on position and time V (r, t). The normalization condition of the wave function
is given by ∫

dr|Ψ(r; t)|2 = 1 , (2.3)

which ensures that the number of particles in the system is fixed to Nat at all times. The boundary
conditions the solution has to satisfy read

lim
r→±∞

Ψ(r; t) = 0 . (2.4)
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The dipolar interaction potential is given by

Udd(R) = Cdd

4π
1− 3 cos2 θ

|R|3 , (2.5)

where R = r − r′ determines relative position of the dipoles, θ is the angle between R and the
orientation of dipoles, and Cdd = µ0µ̄

2 for magnetic dipoles and Cdd = d2/ε0 for electric dipoles.
To compare contact and dipolar interactions, a new length scale is introduced, characterizing the
dipole-dipole interaction:

add = Cddm

12π~2 , (2.6)

which also allows the dipolar GPE to be written in a more compact way.
In order to numerically simulate GPE, we first have to cast it into dimensionless form and

to express all quantities through dimensionless variables. To achieve this, we start by choosing
a reference frequency ω̃, which may be equal to one of the trap frequencies, or have some other
value. Now we can express the trap frequencies by the corresponding dimensionless quantities,
ωx = γω̃, ωy = νω̃ and ωz = λω̃. We also use ω̃ to define a unit of time 1/ω̃ and to introduce the
dimensionless time as t̃ = tω̃. The corresponding harmonic oscillator length l =

√
~/mω̃ is used as

a unit of length, and the dimensionless coordinates are defined as x̃ = x/l, ỹ = y/l and z̃ = z/l.
Finally, we express the wave function in a dimensionless form by Ψ̃ = l3/2Ψ. Using this rescaling,
GPE (2.1) reduces to

i
∂

∂t̃
Ψ̃(r̃; t̃) =

[
− 1

2∇̃
2 + 1

2(γ2x̃2 + ν2ỹ2 + λ2z̃2) + 4πãsNat|Ψ̃(r̃; t̃)|2

+ 3ãddNat

∫
dr̃′Vdd(r̃− r̃′)|Ψ̃(r̃′; t̃)|2

]
Ψ̃(r̃; t̃) , (2.7)

where the dimensionless dipolar interaction potential reads

Vdd(R̃) = 1− 3 cos2 θ

|R̃|3
, (2.8)

and we have introduced the dimensionless scattering length ãs = as/l and the dipole-dipole inter-
action length ãdd = add/l.

It is worth noting that the above conversion to dimensionless quantities is not the only way to
do so. For example, we can additionally rescale the time so that instead of t̃ we use 2t̃. This would
make the factor of 1/2 disappear from the kinetic energy and harmonic potential terms, which may
be preferred in some cases. If we additionally drop the tilde symbol from all quantities, GPE takes
the form

i
∂

∂t
Ψ(r; t) =

[
−∇2 + γ2x2 + ν2y2 + λ2z2 + gNat|Ψ(r; t)|2

+ gddNat

∫
dr′Vdd(r− r′)|Ψ(r′; t)|2

]
Ψ(r; t) , (2.9)

where the dimensionless nonlinearity is defined as g = 8πas/l and the dimensionless dipolar inter-
action strength is gdd = 6add/l.

In many cases, the geometry of the system is such that one can use effective equations with re-
duced dimensionality. Lower dimensional equations are analytically more complex and less tractable,
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but their numerical complexity significantly reduces and thus this effective approach is widely used
whenever possible.

In disc-shaped external potentials, when one of the trapping frequencies is much larger than the
other two, we can effectively use 2D geometry and derive appropriate equations assuming that a BEC
system remains confined to a ground state of harmonic oscillator in the third (confining) direction.
We can consider two physically distinct cases, when the dipoles are oriented along the confining
direction (λ� γ, ν) and when the dipoles are in the 2D plane (e.g., ν � γ, λ). The corresponding
dimensionless effective equations have been derived in Ref. [16]. For the first case, when the dipoles
are orthogonal to the plane, the wave function is written as Ψ(r; t) = Ψ0(z;λ)Ψ2D(r2D; t), where
the ground state in z direction is given as

Ψ0(z;λ) =
(
λ

π

)1/4
e−λz

2/2 , (2.10)

and r2D = (x, y) is 2D radius vector. Using this substitution, GPE (2.9) reduces to

i
∂

∂t
Ψ2D(r2D; t) =

[
−∇2

2D + γ2x2 + ν2y2 + g2DNat|Ψ2D(r2D; t)|2

+ gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D; t)h2D

(
k2D√

2λ

)]
Ψ2D(r2D; t) , (2.11)

where ∇2D represents 2D gradient operator, the effective dimensionless interaction strengths are
g2D =

√
λ/(2π) 8πas/l and gdd,2D =

√
λ/(2π) 8πadd/l, k2D = (kx, ky) is the 2D k-vector, and

ñ2D(k2D; t) =
∫
dr2De

ik2D·r2D |Ψ2D(r2D; t)|2 , (2.12)

h2D(ξ) = 2− 3
√
πξ exp(ξ2){1− erf(ξ)} . (2.13)

For the second case, when dipoles lie in the plane, the wave function can be expressed as Ψ(r; t) =
Ψ0(y; ν)Ψ2D(r2D; t), where the ground state is defined by Eq. (2.10) and 2D radius vector is now
r2D = (x, z). The corresponding effective 2D GPE has a form

i
∂

∂t
Ψ2D(r2D; t) =

[
−∇2

2D + γ2x2 + λ2z2 + g2DNat|Ψ2D(r2D; t)|2

+ gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D; t)j2D

(
k2D√

2ν
, kz

)]
Ψ2D(r2D; t) ,

(2.14)

where ∇2D now represents 2D gradient operator in x-z plane, g2D =
√
ν/(2π) 8πas/l and gdd,2D =√

ν/(2π) 8πadd/l are the effective interaction strengths, k2D = (kx, kz) is the corresponding 2D
k-vector, and

j2D(ξ, kz) = −1 + 3
√
π
k2
z

2νξ exp(ξ2){1− erf(ξ)} . (2.15)

Similar dimensional reduction can be performed for BEC systems in elongated, cigar-shaped
traps [16], where again we can distinguish two cases: when the dipoles are orthogonal to the trap
axis (without loss of generality, we consider just the geometry ν, λ� γ) and when they are parallel
to the trap axis (γ, ν � λ). In a cigar-shaped trap, a BEC system is assumed to remain confined
to a ground state of a harmonic oscillator in two transversal directions (y and z in the first case,
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and x and y in the second), and we consider the wave function to depend only on one remaining
coordinate. In the first case, the wave function is written as Ψ(r; t) = Ψ0(y; ν)Ψ0(z;λ)Ψ1D(x; t),
and assuming axial symmetry (ν = λ) the effective 1D GPE can be expressed in a closed form

i
∂

∂t
Ψ1D(x; t) =

[
− ∂2

∂x2 + γ2x2 + g1DNat|Ψ1D(x; t)|2

+ gdd,1DNat

∫ ∞
−∞

dkx
2π e

−ikxxñ1D(kx; t)j1D

(
kx√
2ν

)]
Ψ1D(x; t) , (2.16)

where interactions strengths are g1D = 4νas/l and gdd,1D = 4νadd/l, and

ñ1D(kx; t) =
∫ ∞
−∞

dxeikxx|Ψ1D(x; t)|2 , (2.17)

j1D(ξ) = 1√
π

∫ ∞
−∞

dkye
−k2

yh2D

(√
ξ2 + k2

y

)
. (2.18)

In the second case, when dipoles are parallel to the trap axis (γ, ν � λ), the wave function is
written as Ψ(r; t) = Ψ0(x; γ)Ψ0(y; ν)Ψ1D(z; t). Again, assuming axial symmetry (γ = ν) the closed
form of the effective 1D GPE reads

i
∂

∂t
Ψ1D(z; t) =

[
− ∂2

∂z2 + λ2z2 + g1DNat|Ψ1D(z; t)|2

+ gdd,1DNat

∫ ∞
−∞

dkz
2π e

−ikzzñ1D(kz; t)h1D

(
kz√
2γ

)]
Ψ1D(z; t) , (2.19)

where interaction strengths are g1D = 4γas/l and gdd,1D = 2γadd/l, and

h1D(ξ) =
∫ ∞

0
du

[
3ξ2

u+ ξ2 − 1
]
e−u . (2.20)

The above equations in 3D, as well as the effective equations in 2D and 1D are solved by the
algorithms and programs presented in this thesis.

2.3 Split-step Crank-Nicolson method for the GPE

With the dimensionless form of GPE introduced in the previous section, we proceed with the de-
scription of split-step semi-implicit Crank-Nicolson method [30], the approach we use to numerically
solve GPE in 3D as well as effective 2D and 1D equations. The basic idea behind this method is
to divide the calculation of the solution into multiple steps at two levels. First, time propagation is
discretized and the total propagation time T is divided into N time steps, each of length ∆ = T/N .
At the second level, each time step is divided into several substeps, dealing with different parts of
the Hamiltonian governing the time propagation. This second level of splitting uses semi-implicit
Crank-Nicolson (CN) method, which we describe in detail here.

We first demonstrate how this method works on a simple example in 1D, before moving on to
the solution of full dipolar GPE. Let us consider the equation of the general form

i
∂

∂t
Ψ(x; t) = HΨ(x; t) , (2.21)

where the Hamiltonian H contains the kinetic term, i.e., the Laplacian, as well as other non-
derivative terms, including the potential and nonlinear terms. Time propagation starts from a
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known initial condition at t = t0 and proceeds in N time steps of the duration ∆. To propagate the
wave function in one time step, we split H into two parts, H = H1 +H2, where H1 contains all non-
derivative terms, while H2 is the remaining Laplacian. This allows us to make an approximation
and split Eq. (2.21) into two parts, which we consider and solve separately, one after the other,

i
∂

∂t
Ψ(x; t) = H1Ψ(x; t) , (2.22)

i
∂

∂t
Ψ(x; t) = H2Ψ(x; t) . (2.23)

Equation (2.22) is solved first, with an initial value Ψ(x; t0) at t = t0, to obtain an intermediate
solution at t = t0 + ∆. This intermediate solution is then used as the initial value for Eq. (2.23),
yielding the final solution Ψ(x; t0 +∆) at t = t0 +∆. This procedure then continues in the next time
step until we finish time propagation. As we mentioned above, the time splitting is an approximation
and introduces an error of the order of ∆2, which may be neglected when used with small time step
∆. However, such a scheme allows us to treat the larger part of the Hamiltonian exactly, even for
arbitrarily large nonlinear terms, as we show below.

Let us denote the wave function at time tn = t0 +n∆ by Ψn(x) and the corresponding intermedi-
ate solution of Eq. (2.22) by Ψn+1/2(x). Since H1 does not contain any derivatives, the intermediate
solution can be explicitly calculated as

Ψn+1/2(x) = Ond(H1)Ψn(x) ≡ e−i∆H1Ψn(x) , (2.24)

where we use Ond(H1) to denote the time evolution operator with respect to H1 and the suffix “nd”,
short for “non-derivative”, to differentiate it from other similar operators we use.

Next step is to perform the time propagation w.r.t. H2, by using semi-implicit CN scheme,

i
Ψn+1(x)−Ψn+1/2(x)

∆ = 1
2H2

[
Ψn+1(x) + Ψn+1/2(x)

]
, (2.25)

where the partial derivative ∂/∂t is approximated using a two-point formula connecting the values
of the wave function in the present and the future time step. On the right-hand side hand, the
Laplacian ∂2/∂x2 is written in a semi-implicit form, which averages the wave function over the
present and the future time step. This averaging makes the scheme unconditionally stable [31, 32].

The solution of this time-discretized equation with the initial condition Ψn+1/2(x), obtained in
the previous substep, yields the wave function Ψn+1(x) at time tn+1. Formally, it is solved as

Ψn+1(x) = OCN(H2)Ψn+1/2(x) ≡ 1− i∆H2/2
1 + i∆H2/2

Ψn+1/2(x) . (2.26)

Similarly to the Ond(H1) operator, the OCN(H2) operation denotes the time evolution operator
w.r.t. H2. To actually solve Eq. (2.25), we also have to discretize spatial coordinate and introduce a
mesh with Nx equidistant points, separated by a spacing h. Mesh points are defined by xi = −L+ih,
where L = Nxh/2 determines the size of the spatial interval [−L, L] considered to be relevant, i.e.,
such that the wave function is sufficiently small outside of it and we can safely set it to zero in our
calculations. If we denote the wave function at time tn and position xi by Ψn

i , Eq. (2.25) can be
written as

i
Ψn+1
i −Ψn+1/2

i

∆ =
Ψn+1
i+1 − 2Ψn+1

i + Ψn+1
i−1 + Ψn+1/2

i+1 − 2Ψn+1/2
i + Ψn+1/2

i−1
2h2 , (2.27)
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where each Laplacian is approximated using a three-point formula. The associated discretization
error is of second order in h, the same as in time step ∆, as discussed previously. This makes
discretization errors negligible for small enough discretization steps. Equation (2.27) can be written
as a series of tridiagonal equations in unknown wave function values at tn+1,

A−i Ψn+1
i−1 +A0

iΨn+1
i +A+

i Ψn+1
i+1 = Bi , (2.28)

where the coefficients

A−i = A+
i = −i ∆

2h2 , (2.29)

A0
i = 1 + i

∆
h2 , (2.30)

Bi = i
∆

2h2

(
Ψn+1/2
i+1 − 2Ψn+1/2

i + Ψn+1/2
i−1

)
+ Ψn+1/2

i , (2.31)

are all known. To solve Eq. (2.28), we use forward recursion relation, and assume the solution in a
form

Ψn+1
i+1 = αiΨn+1

i + βi , (2.32)

where coefficients αi and βi need to be determined. If we substitute Eq. (2.32) into Eq. (2.28) we
obtain

Ψn+1
i = γi

(
A−i Ψn+1

i−1 +A+
i βi −Bi

)
, (2.33)

where γi = −1/(A0
i + A+

i αi). We can now use the backward recursion relation to obtain the
coefficients αi and βi,

αi = γi+1A
−
i+1 , βi = γi+1(A+

i+1βi+1 −Bi+1) . (2.34)

The strategy to apply the aforementioned recursion relations from Eqs. (2.32)–(2.34) is to perform
a backward sweep of the mesh to determine αi and βi, for i running from Nx − 2 to 0. The initial
values on endpoints are chosen to be αNx−1 = βNx−1 = 0, which ensures that the value of the
wave function at the border is always zero. With the coefficients αi, βi and γi determined, and the
boundary condition Ψn+1

0 = 0 fixed to provide that the wave function is equal to zero at x0 = −L,
we can determine the solution for the entire space range at time tn+1 using a forward sweep from
Eq. (2.32). This completes the single iteration and procedure continues on until end of propagation
is reached.

Note that, apart from unconditional stability and small discretization errors, the above scheme
has one additional advantage, namely it conserves the normalization of the wave function. This can
be monitored throughout the calculation and used as a criterion to assess the quality and validity
of the obtained solution.

The method illustrated above in 1D can be straightforwardly generalized to solving 3D problems.
For a full 3D dipolar GPE (2.9), discretization of time is performed in the same way, while spatial
coordinates are discretized analogously with Nx, Ny and Nz mesh points in the corresponding
direction, and with spacings hx, hy and hz, respectively. Time propagation in each iteration is now
divided into four substeps, corresponding to the following parts the Hamiltonian:

H1 = γ2x2 + ν2y2 + λ2z2 + gNat|Ψ(r; t)|2 + gddNat

∫
dr′Vdd(r− r′)|Ψ(r′; t)|2 , (2.35)

H2 = − ∂2

∂x2 , H3 = − ∂2

∂y2 , H4 = − ∂2

∂z2 . (2.36)
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To propagate the wave function w.r.t. H1, we need to calculate the expression (2.35) at each mesh
point. This requires evaluation of the dipolar term given by the convolution integral, which can be
written and calculated as∫

dr′Vdd(r− r′)|Ψ(r′; t)|2 = F−1
[
F
[
Vdd(r)

]
F
[
|Ψ(r; t)|2

]]
, (2.37)

where F represents Fourier transform and F−1 its inverse. These can be computed using the
standard Fast Fourier Transform (FFT) algorithm. Note that F

[
Vdd(r)

]
does not change between

time steps, and can be computed analytically, yielding

F
[
Vdd(r)

]
= 3 cos2 θ − 1 , (2.38)

where θ is the angle between the orientation of dipoles and vector k. As we assume that the dipoles
are oriented in z direction, cos θ = kz/k. This leaves us with two Fourier transforms in each time
step and in particular motivates our interest for implementation of this approach on GPUs.

The above method is applicable to real-time dynamics of the system, given that its initial state
is known. However, we can extend the method to also enable calculation of the ground state. This is
achieved by switching to imaginary-time propagation, when real time t is replaced by an imaginary
quantity τ = it. Mathematically, this corresponds to a Wick rotation [33] and yields imaginary-time
analogue of GPE,

− ∂

∂τ
Ψ(r; τ) = HΨ(r; τ) , (2.39)

where H = H1 +H2 +H3 +H4 is the same as above. Although such a Wick rotation is just a formal
mathematical transformation of GPE and does not have any physical motivation, time propagation
of the above equation leads to a solution of the time-independent GPE (1.3),

Ψ0(r) = lim
τ→∞

Ψ(r; τ) , (2.40)

provided that the normalization of the wave function is kept equal to unity during the time propa-
gation, as it is not conserved any more. Equation (2.40) follows from the decomposition of the wave
function in the eigenbasis of the Hamiltonian for the Schrödinger equation and also holds for GPE
[12]. Therefore, to obtain a ground state we start with an arbitrary initial state (usually taken to be
a Gaussian) and propagate it in imaginary time until the convergence is achieved. We also note that
the ground state of a system described by GPE can always be represented by a real-valued wave
function, which can be exploited to obtain the solution faster. Namely, working with real-valued
data on a computer is faster than with the complex-valued ones, since all mathematical calcula-
tions require less operations. Practically, this works as follows: the time propagation w.r.t. H1 is
performed using a formula analogous to Eq. (2.24),

Ψn+1/2 = Ond(H1)Ψn ≡ e−∆H1Ψn , (2.41)

while the coefficients of the CN scheme (2.29)–(2.31) are now real-valued and (in 1D) defined as

A−i = A+
i = ∆

2h2 , A0
i = 1− ∆

h2 , Bi = − ∆
2h2

(
Ψn+1/2
i+1 − 2Ψn+1/2

i + Ψn+1/2
i−1

)
+ Ψn+1/2

i . (2.42)

Here ∆ represents time step in imaginary time and generalization to 3D is straightforward.
Similar procedure is applied to solve effective GPEs of reduced dimensionality. In 2D, depending

on the orientation of dipoles, the Hamiltonian corresponding to GPE (2.11) or (2.14) is written in
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the split form H = H1 + H2 + H3. The non-derivative part H1 is already expressed in the form
suitable for evaluation using FFT, while the Laplacians H2 and H3 are addressed using the CN
scheme, as described above. Effective 1D GPEs (2.16) and (2.19) are solved in the same way, using
the split form of the Hamiltonian H = H1 +H2. Similarly to 2D case, the non-derivative part H1

is written in k-space and allows for efficient evaluation using FFT.
With the main numerical method described above, we can define a computer algorithm for real-

and imaginary-time propagation in 1D, 2D and 3D. While this is the main goal that will be addressed
in subsequent chapters, we first give expressions for calculation of relevant physical quantities in
the next section.

2.4 Calculation of relevant physical quantities

Numerical methods presented in this thesis enable us to solve different variants of GPE in a number
of physically relevant problems. However, in order to study properties of physical systems described
by those equations as well as their dynamical evolution, we have to extract values of relevant physical
quantities from the current state of the system, i.e., from the wave function in a given time t. The
most useful quantities are chemical potential, energy, and expectation value of the system size.
In particular, convergence of these quantities during the imaginary-time propagation is used as a
criterion for the convergence of the wave function to the ground state of the system.

Chemical potential µ can be defined for stationary states of a BEC and follows from the time-
independent GPE (1.3):

µ = 1
2

∫
dr
[
|∇Ψ(r)|2 + (γ2x2 + ν2y2 + λ2z2)|Ψ(r)|2 + gNat|Ψ(r)|4

+ gddNat

∫
dr′Vdd(r− r′)|Ψ(r′)|2|Ψ(r)|2

]
. (2.43)

The corresponding energy of the system E is given by a similar expression in which the interaction
energy terms contain an additional factor of 1/2:

E = 1
2

∫
dr
[
|∇Ψ(r)|2 + (γ2x2 + ν2y2 + λ2z2)|Ψ(r)|2 + 1

2gNat|Ψ(r)|4

+ 1
2gddNat

∫
dr′Vdd(r− r′)|Ψ(r′)|2|Ψ(r)|2

]
. (2.44)

The above equations are written for the rescaling of time t̃ = 2ω̃t, used throughout previous section.
If other standard rescaling of time is used, t̃ = ω̃t, the factor of 1/2 in front of both Eqs. (2.43) and
(2.44) should be removed. Note that the dimensionless values of µ and E can be converted back to
physical units by multiplying them with ~ω̃.

Similarly, we can define chemical potential and energy for stationary states of effectively 2D and
1D systems. For 2D case when dipoles are oriented perpendicular to the plane, described by GPE
(2.11), chemical potential is given by

µ = 1
2

∫
dr2D

[
|∇2DΨ2D(r2D)|2 + (γ2x2 + ν2y2)|Ψ2D(r2D)|2 + g2DNat|Ψ2D(r2D)|4

+ gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D)h2D

(
k2D√

2λ

)
|Ψ2D(r2D)|2

]
, (2.45)
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while the energy can calculated as

E = 1
2

∫
dr2D

[
|∇2DΨ2D(r2D)|2 + (γ2x2 + ν2y2)|Ψ2D(r2D)|2 + 1

2g2DNat|Ψ2D(r2D)|4

+ 1
2gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D)h2D

(
k2D√

2λ

)
|Ψ2D(r2D)|2

]
. (2.46)

In the second 2D case, when dipoles lie in the plane, the chemical potential and energy are given
by

µ = 1
2

∫
dr2D

[
|∇2DΨ2D(r2D)|2 + (γ2x2 + λ2z2)|Ψ2D(r2D)|2 + g2DNat|Ψ2D(r2D)|4

+ gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D)j2D

(
k2D√

2ν
, kz

)
|Ψ2D(r2D)|2

]
, (2.47)

E = 1
2

∫
dr2D

[
|∇2DΨ2D(r2D)|2 + (γ2x2 + λ2z2)|Ψ2D(r2D)|2 + 1

2g2DNat|Ψ2D(r2D)|4

+ 1
2gdd,2DNat

∫
dk2D

(2π)2 e
−ik2D·r2D ñ2D(k2D)j2D

(
k2D√

2ν
, kz

)
|Ψ2D(r2D)|2

]
. (2.48)

The same applies to 1D systems described by GPE (2.16), where in the case when dipoles are
orthogonal to the trap axis, the chemical potential and energy can be expresses by

µ = 1
2

∫ ∞
−∞

dx

[ ∣∣∣∣dΨ1D(x)
dx

∣∣∣∣2 + γ2x2|Ψ1D(x)|2 + g1DNat|Ψ1D(x)|4

+ gdd,1DNat

∫ ∞
−∞

dkx
2π e

−ikxxñ1D(kx)j1D

(
kx√
2ν

)
|Ψ1D(x)|2

]
, (2.49)

E = 1
2

∫ ∞
−∞

dx

[ ∣∣∣∣dΨ1D(x)
dx

∣∣∣∣2 + γ2x2|Ψ1D(x)|2 + 1
2g1DNat|Ψ1D(x)|4

+ 1
2gdd,1DNat

∫ ∞
−∞

dkx
2π e

−ikxxñ1D(kx)j1D

(
kx√
2ν

)
|Ψ1D(x)|2

]
, (2.50)

while in the case when dipoles are parallel to the trap axis these quantities are defined by

µ = 1
2

∫ ∞
−∞

dz

[ ∣∣∣∣dΨ1D(z)
dz

∣∣∣∣2 + λ2z2|Ψ1D(z)|2 + g1DNat|Ψ1D(z)|4

+ gdd,1DNat

∫ ∞
−∞

dkz
2π e

−ikzzñ1D(kz)h1D

(
kz√
2γ

)
|Ψ1D(z)|2

]
, (2.51)

E = 1
2

∫ ∞
−∞

dz

[ ∣∣∣∣dΨ1D(z)
dz

∣∣∣∣2 + λ2z2|Ψ1D(z)|2 + 1
2g1DNat|Ψ1D(z)|4

+ 1
2gdd,1DNat

∫ ∞
−∞

dkz
2π e

−ikzzñ1D(kz)h1D

(
kz√
2γ

)
|Ψ1D(z)|2

]
. (2.52)

Note that both of the above quantities can be generalized and calculated also during real-time
propagation, however only time-dependent energy is physically relevant.
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Another set of useful quantities is related to the size of the system, which can be calculated for
the ground state as well as during dynamical evolution of the system. Typical measure of system’s
size in a given direction is expectation value of the coordinate square, such as

〈x2〉 =
∫
drx2|Ψ(r; t)|2 , 〈y2〉 =

∫
dr y2|Ψ(r; t)|2 , 〈z2〉 =

∫
dr z2|Ψ(r; t)|2 , (2.53)

and the system size is then estimated as a root-mean-square (RMS) of the corresponding expectation
value

xrms =
√
〈x2〉 , yrms =

√
〈y2〉 , zrms =

√
〈z2〉 . (2.54)

The size of the whole system is usually estimated by the quadratic mean of coordinate RMS sizes,

rrms =
√
〈x2〉+ 〈y2〉+ 〈z2〉 . (2.55)

Note that all RMS sizes calculated in this way are dimensionless and can be converted to physical
units by multiplying them with the harmonic oscillator length l.

We can define analogous quantities for systems of reduced dimensionality where, for example,
coordinate RMS sizes of 2D systems can be expressed by

〈x2〉 =
∫
dr2D x

2|Ψ2D(r2D; t)|2 , 〈y2〉 =
∫
dr2D y

2|Ψ2D(r2D; t)|2 , (2.56)

while for 1D systems the RMS size is given by

〈x2〉 =
∞∫
−∞

dxx2|Ψ1D(x; t)|2 . (2.57)

Of course, the above equations depend on the 2D or 1D system geometry, i.e., on the coordinates
used to describe the system.

Finally, in order to visualize the system, one can consider the appropriate density distribution.
For 3D systems, the density is given by

n(r; t) = |Ψ(r; t)|2 , (2.58)

and analogously for 2D and 1D systems. We can also consider effective, lower-dimensional density
projections, that can be more easily visualized. For example, for 3D systems we can define the
effective 2D and 1D density by integrating out the full 3D density over some of the coordinates,

n2D(r2D; t) =
∫ ∞
−∞

dz |Ψ(r; t)|2 , n1D(x; t) =
∫
dr2D |Ψ(r; t)|2 . (2.59)

Similar density projections can be defined for 2D systems as well. All densities and density projec-
tions calculated in this way are dimensionless and can be converted to physical units by multiplying
them with the appropriate unit (l−3 in 3D, l−2 in 2D and l−1 in 1D).



Chapter 3

Algorithm for shared memory
systems

Numerical analysis from Chapter 2 outlines the algorithm we present in this chapter. Similarly to
the numerical analysis, the algorithm is based on Refs. [12, 13, 16]. Here we present an improved
serial and a new, parallelized version for shared memory computer systems.

Initial algorithm for solving the GPE with contact interaction term using Crank-Nicolson method
was published in Ref. [12], which also includes a serial implementation in Fortran. This was followed
by the serial and parallel implementations written in C [13]. An extension of the algorithm to
include the dipolar interaction term was published in Ref. [16]. The authors provided two serial
implementations, in C and Fortran. Their algorithm was used as a starting point for all algorithms
and implementations presented in this thesis.

In Section 3.1 we will give an overview of the baseline algorithm for dipolar GPE [16] and
discuss options for its parallelization on shared memory systems, followed by the description of the
improved serial implementation in Section 3.2. Typical numerical simulations that make use of
presented serial implementations of the algorithm are extremely computationally demanding, and
therefore the parallelization approach was an obvious route forward, details of which are given in
Section 3.3.

3.1 Description of the algorithm

In this section we give a brief description of the algorithm for the application of numerical methods
presented in Chapter 2, which is instructive in understanding how to implement it on a shared
memory computer.

We start with the description of the discretization scheme used by the algorithm. Let Nx, Ny
and Nz be the number of points in each direction, corresponding to the x, y and z directions in one,
two or three dimensions (1D, 2D and 3D, respectively). In other words, the number of points in 1D
is defined by Nx, in 2D by Nx and Ny, and in 3D by Nx, Ny and Nz. Discretization points in each
direction are equidistant, with their spacing defined in dimensionless units by variables dx, dy and
dz, illustrated in Figure 3.1.

21
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Figure 3.1: Example of 1D, 2D and 3D meshes with Nx, Ny and Nz discretization points in x, y and
z direction, respectively, and the corresponding spacings dx, dy and dz.

The mesh determines how the space is discretized, but the actual values of the wave function,
which is also discretized by the mesh, need to be stored in a separate array. For convenience, we
refer to this array as psi variable. This variable is defined as a vector of size Nx in 1D, as Nx× Ny

matrix in 2D and as Nx× Ny× Nz tensor in 3D. In real-time propagation, the wave function values
are complex, while in imaginary-time propagation they are purely real, which determines the type
of psi variable.

Time is discretized according to tn = t0 + n∆, with the time step ∆ stored in a variable dt.
Taking into account the time step and the total amount of physical time we wish to simulate, we
determine the number of iterations required (n). The main part of the algorithm is a loop where
each iteration corresponds to one time step of the propagation. Inside the loop, we update the wave
function by propagating it in time with respect to different parts of the Hamiltonian, according to
the split-step scheme described in Chapter 2. This is illustrated in Figure 3.2.

Figure 3.2: Main loop of the real-time propagation algorithm in 3D.

In each step of the main loop, wave function values are computed along the discretization mesh
in several smaller steps. First such substep is the calculation of the dipolar interaction term. We
have two further substeps in 1D, pertaining to Eq. (2.22) w.r.t. H1 and Eq. (2.23) w.r.t. H2. In
2D and 3D we follow a similar procedure and add further substeps for H3 and H4. Each substep
produces intermediate values of the wave function that are used in the next substep. The order of
the substeps dealing with parts of the Hamiltonian with spatial derivatives (H2, H3 and H4) can be
arbitrary, a feature useful in hybrid and distributed memory algorithms. Propagation of the wave
function w.r.t. H1 relies on the availability of the dipolar interaction term value, which is computed
in the first substep, before we start with the update of the wave function.

The dipolar interaction term is computed according to Eq. (2.37), using the discrete Fourier
transform (DFT). DFT of a sequence is commonly implemented by relying on the Fast Fourier
transform (FFT) algorithm via an external library. From Eq. (2.37) it follows that we first need a
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DFT of a sequence consisting of absolute squares of wave function values. The resulting complex-
valued sequence is then multiplied by the Fourier transform of the dipolar potential. This transform
is a known function (2.38), precomputed for a chosen spatial mesh and stored in an array. Next, by
performing the inverse DFT we get the dipolar interaction term stored in the resulting array, which
we then use to propagate the wave function w.r.t. H1. In 2D and 3D, we need multidimensional
DFT, which can be computed by the composition of a sequence of 1D DFTs along each direction.

The substep in which the wave function is propagated w.r.t. the Hamiltonian part without
spatial derivatives (H1) proceeds according to Eq. (2.24), by employing further nested loops over
mesh points. Part of the H1 is the trap potential V (r), which, like Fourier transform of the dipolar
potential, can be computed only once during the initialization, and then reused. We assume that
the trap potential is static in all algorithms described in this thesis. In case of a time-varying trap
potential, the algorithm can be modified to update the trap potential before this substep, i.e., at
the beginning of each iteration.

The remaining substep, or substeps in 2D and 3D, propagates the wave function by relying on
the Crank-Nicolson scheme. We need to perform a backward sweep of the mesh in each direction
to determine corresponding coefficients α, β and γ for each direction, according to Eqs. (2.32)–
(2.34), followed by a forward sweep to determine the solution for the entire space range. Since the
coefficients α and γ for each direction are independent of the current state of the wave function,
they can be computed beforehand, during initialization.

The algorithm for imaginary-time propagation is similar to the one discussed above, with the
addition of the normalization step at the end of each iteration of the main loop, as illustrated
in Figure 3.3. To normalize the wave function, we first need to compute its norm, according to
Eq. (2.3), and then to divide the wave function values with that norm.

Figure 3.3: Main loop of the imaginary-time propagation algorithm in 3D, which introduces an
additional step of normalization.

In Section 2.4, we introduced other physical quantities of interest that are computed from the
wave function, namely chemical potential, energy and the RMS of system’s physical extent (size),
which give us more insight into the state of the simulation and allows us to observe and measure
time evolution of a BEC. These quantities do not have to be computed in each iteration. Instead,
they can be calculated periodically after a predefined number of iterations.

We see that the algorithm is computationally very demanding, as it requires multiple passes over
the entire mesh in each iteration of the main loop. In 2D and 3D, the total number of discretized
points sharply increases, making this problem even greater. As we have identified above, several
variables can be moved out of the main loop and computed only once, however the remaining
calculations are still very demanding, hence the need for parallelization.

The described substeps cannot be executed concurrently, as the intermediate values they produce
are used in subsequent substeps. Instead, parallelization of the algorithm can only be achieved by
focusing on the mesh loops inside substeps. This is an obvious choice for shared memory systems,
as all data stored in the memory is local and accessible to all participating processes, removing the
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need for data transfers between processes. The loops themselves can easily be parallelized if they
do not contain recursive relations. This is true for the substeps dealing with the computation of the
dipolar term and propagation w.r.t. H1, as well as periodical computation of chemical potential,
energy and RMS of BEC’s size. Substep involving H2 cannot be easily parallelized in 1D, as it
has recursive relations in both backward and forward sweeps. In general, recursive relations can be
parallelized using the scan algorithm [34] (also known as the generalization of prefix sum algorithm
[35]), however the implementation complexity of such an algorithm made us discard this approach.
In 2D and 3D, we can exploit the fact that the recursive relations appear only in the innermost
loops of the substeps involving H2, H3 and H4. Thus, we can achieve parallelization by dividing
the work among the processes at the level of the outermost loop.

Given the algorithm and parallelization strategy, in next two sections we present serial and
parallel implementations.

3.2 Serial implementation

Basis for the programs presented in this section was originally developed in Fortran and published
in 2009 in Ref. [12], however without considering the dipolar interaction term. Fortran and C imple-
mentations that take into account both contact and dipolar interaction term have been published in
2015 in Ref. [16] as package DBEC-GP, which can be downloaded from the journal repository [36]
or alternatively from the local repository [37]. This package consists of 10 Fortran 90/95 programs,
as well as 10 corresponding C programs. For each programming language, there is one program
for solving full GPE in 3D, two programs for solving the effective 2D GPE and two for solving
the effective 1D GPE, implemented separately for imaginary- and real-time propagation. Here we
present improved versions of the latter C programs. Note that these programs may not be suitable
for long-running simulations, due to their serial nature. They are superseded by all other programs
presented in this thesis, which vastly out-perform programs presented in this section. Another issue
with serial and other shared memory programs is their inherent limitation on mesh sizes due to
memory constraints of a single computing node. This will be addressed in Chapter 6.

Implementation-wise, the main difference between real- and imaginary-time programs is that
the wave function is complex in real-time propagation, and real in imaginary-time. Real values
are stored in double precision, as single precision type is inadequate for wave function values since
the lower precision in computation leads to faster accumulation of numerical errors. In C-based
implementations, complex values are stored in double complex type, which is part of the C99
standard [38] of the C language. The implication of using complex numbers is that real-time
propagation is more demanding both in terms of memory and computation. However, they have
a different purpose: imaginary-time versions of programs are used for calculation of the stationary
(ground) state of a physical system, which is then typically used as the initial value of the wave
function for real-time propagation.

All programs share the similar structure and reuse common routines whenever possible. Here
we present the general flow of implementation, with examples from 1D, 2D and 3D programs.

Before the main time-propagation loop can begin, we need to allocate space for the variables,
and set them to their initial values. Matrices and tensors used in 2D and 3D programs are allocated
as contiguous arrays of required type (real or complex), with a pointer scheme that allows access to
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elements in 2D or 3D, see Listing 3.1. This allows us to access elements of matrices/tensors in a more
intuitive way, e.g., psi[i][j][k], as opposed to computing the 1D index every time (for example,
psi[i * Ny * Nz + j * Nz + k]). The underlying flat allocation scheme is not required, but has
turned out to be very useful during the implementation of GPGPU and heterogeneous programs,
described in Chapters 4 and 5.

Listing 3.1: Allocation of a real-valued vector, matrix and tensor. Allocation of complex-valued
arrays is analogous.
// Double vector allocation
double *alloc_double_vector(long Nx) {

double *vector;

if((vector = (double *) malloc((size_t) (Nx * sizeof(double)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the vector.\n"); exit(EXIT_FAILURE);

}
return vector;

}
// Double matrix allocation
double **alloc_double_matrix(long Nx, long Ny) {

long i;
double **matrix;

if((matrix = (double **) malloc((size_t) (Nx * sizeof(double *)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the matrix.\n"); exit(EXIT_FAILURE);

}
if((matrix[0] = (double *) malloc((size_t) (Nx * Ny * sizeof(double)))) == NULL) {

fprintf(stderr, "Failed to allocate memory for the matrix.\n"); exit(EXIT_FAILURE);
}
for(i = 1; i < Nx; i ++)

matrix[i] = matrix[i - 1] + Ny;

return matrix;
}
// Double tensor allocation
double ***alloc_double_tensor(long Nx, long Ny, long Nz) {

long i, j;
double ***tensor;

if((tensor = (double ***) malloc((size_t) (Nx * sizeof(double **)))) == NULL) {
fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);

}
if((tensor[0] = (double **) malloc((size_t) (Nx * Ny * sizeof(double *)))) == NULL) {

fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);
}
if((tensor[0][0] = (double *) malloc((size_t)(Nx * Ny * Nz * sizeof(double)))) == NULL){

fprintf(stderr, "Failed to allocate memory for the tensor.\n"); exit(EXIT_FAILURE);
}
for(j = 1; j < Ny; j ++)

tensor[0][j] = tensor[0][j-1] + Nz;
for(i = 1; i < Nx; i ++) {

tensor[i] = tensor[i - 1] + Ny;
tensor[i][0] = tensor[i - 1][0] + Ny * Nz;
for(j = 1; j < Ny; j ++)

tensor[i][j] = tensor[i][j - 1] + Nz;
}

return tensor;
}
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Propagation of the wave function w.r.t. different parts of the Hamiltonian has been implemented
in separate functions, where function calcnu takes into accountH1 part of the Hamiltonian, calclux
propagates the wave function w.r.t. H2, calcluy corresponds to propagation determined by H3

(in 2D and 3D programs) and calcluz does the same for H4 (in 3D programs). Calculation of
the dipolar interaction term, upon which function calcnu relies, has been implemented separately,
in function calcpsidd2. Afterwards, the value of the wave function is propagated for each mesh
point, as shown in Listing 3.2.

Listing 3.2: Loops are employed to propagate the wave function in each mesh point, as illustrated
here on a 1D real-time calcnu function.
void calcnu(double complex *psi, double *psidd2) {

long i;
double psi2, psi2lin, psidd2lin, tmp;

for(i = 0; i < Nx; i ++) {
psi2 = cabs(psi[i]);
psi2 *= psi2;
psi2lin = psi2 * g;
psidd2lin = psidd2[i] * gd;
tmp = dt * (pot[i] + psi2lin + psidd2lin);
psi[i] *= cexp(- I * tmp);

}
}

The function calcpsidd2 computes the DFT of the input sequence by means of the FFT algo-
rithm. The authors in Ref. [16] relied on the FFTW library [39] for this task, a well-known and
widely used FFT library. In their implementation they have used the ordinary DFT of complex
data, which takes a complex-valued input and produces a complex-valued output of identical size,
a so-called C2C transform. This can be improved by observing the fact that in Eq. (2.37) the
input of the transform is |Ψ(r)|2, which is purely real, even when Ψ(r) is complex-valued. DFT of
a real-valued input produces an output that has Hermitian symmetry, with one half of the output
being the complex conjugate of the other half, making it redundant. Many FFT libraries, FFTW
included, are able to exploit this symmetry to provide a special real-to-complex (R2C ) transform.
R2C transform is both faster, due to fewer operations involved, and requires less memory, because
only half of the output is retained. To use R2C instead of C2C transforms, we have to ensure that
the size of output array is sufficient (e.g., Nx * Ny * (Nz / 2 + 1) * sizeof(double complex)

in 3D), and use the appropriate R2C functions from FFTW (see Listing 3.3). Performing any type
of transform with FFTW involves creation and execution of a plan, which specifies all details of the
transform.

Listing 3.3: Real-to-complex and complex-to-real FFTW calls used in calcpsidd2 function. Shown
here is the 1D variant of the function, used in real-time propagation.
// Here we use in-place FFT, so we need to ensure proper padding of input and output arrays
psidd2 = alloc_double_vector((Nx / 2 + 1) * 2);
psidd2fft = (fftw_complex *) psidd2;

// Create plans during initialization
plan_forward = fftw_plan_dft_r2c_1d(Nx, psidd2, psidd2fft, FFTW_MEASURE);
plan_backward = fftw_plan_dft_c2r_1d(Nx, psidd2fft, psidd2, FFTW_MEASURE);
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void calcpsidd2(double complex *psi, double *psidd2, fftw_complex *psidd2fft) {
long i;
double tmp;
// Prepare input for FFT
for(i = 0; i < Nx; i ++) {

tmp = cabs(psi[i]);
psidd2[i] = tmp * tmp;

}
// Execute R2C transform
fftw_execute_dft_r2c(plan_forward, psidd2, psidd2fft);
// Resulting output array has Nx / 2 + 1 elements
for(i = 0; i < Nx / 2 + 1; i ++) {

psidd2fft[i][0] *= potdd[i];
psidd2fft[i][1] *= potdd[i];

}
// Execute C2R transform
fftw_execute_dft_c2r(plan_backward, psidd2fft, psidd2);
// Rescale the result of FFT
for(i = 0; i < Nx; i ++) {

psidd2[i] /= Nx;
}
// Handle boundary case
psidd2[Nx - 1] = psidd2[0];

}

Functions calclux, calcluy and calcluz perform the time propagation with respect to parts
of the Hamiltonian involving spatial partial derivatives by solving the tridiagonal system that arises
from Crank-Nicolson method. Implementation of forward recursion and backward substitution is
shown in Listing 3.4.

Listing 3.4: 3D real-time functions calclux, calcluy and calcluz.
// Time propagation with respect to H2 (x-part of the Laplacian).
void calclux(double complex ***psi, double complex *cbeta) {

long i, j, k;
double complex c;

for(j = 0; j < Ny; j ++) {
for(k = 0; k < Nz; k ++) {

cbeta[Nx - 2] = psi[Nx - 1][j][k];
for(i = Nx - 2; i > 0; i --) {

c = - Ax * psi[i + 1][j][k] + Ax0r * psi[i][j][k] - Ax * psi[i - 1][j][k];
cbeta[i - 1] = cgammax[i] * (Ax * cbeta[i] - c);

}
psi[0][j][k] = 0.;
for(i = 0; i < Nx - 2; i ++) {

psi[i + 1][j][k] = calphax[i] * psi[i][j][k] + cbeta[i];
}
psi[Nx - 1][j][k] = 0.;

}
}

}
// Time propagation with respect to H3 (y-part of the Laplacian).
void calcluy(double complex ***psi, double complex *cbeta) {

long i, j, k;
double complex c;

for(i = 0; i < Nx; i ++) {
for(k = 0; k < Nz; k ++) {

cbeta[Ny - 2] = psi[i][Ny - 1][k];
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for(j = Ny - 2; j > 0; j --) {
c = - Ay * psi[i][j + 1][k] + Ay0r * psi[i][j][k] - Ay * psi[i][j - 1][k];
cbeta[j - 1] = cgammay[j] * (Ay * cbeta[j] - c);

}
psi[i][0][k] = 0.;
for(j = 0; j < Ny - 2; j ++) {

psi[i][j + 1][k] = calphay[j] * psi[i][j][k] + cbeta[j];
}
psi[i][Ny - 1][k] = 0.;

}
}

}
// Time propagation with respect to H4 (z-part of the Laplacian).
void calcluz(double complex ***psi, double complex *cbeta) {

long i, j, k;
double complex c;

for(i = 0; i < Nx; i ++) {
for(j = 0; j < Ny; j ++) {

cbeta[Nz - 2] = psi[i][j][Nz - 1];
for(k = Nz - 2; k > 0; k --) {

c = - Az * psi[i][j][k + 1] + Az0r * psi[i][j][k] - Az * psi[i][j][k - 1];
cbeta[k - 1] = cgammaz[k] * (Az * cbeta[k] - c);

}
psi[i][j][0] = 0.;
for(k = 0; k < Nz - 2; k ++) {

psi[i][j][k + 1] = calphaz[k] * psi[i][j][k] + cbeta[k];
}
psi[i][j][Nz - 1] = 0.;

}
}

}

In Listing 3.4 we observe the pattern employed in higher-dimensional programs. Depending
on the spatial direction of the computation we perform, i.e., the function used, nested loops are
reordered appropriately so that the innermost one corresponds to the computation direction. This
pattern is used in other functions whenever we need to access elements in a matrix/tensor in a
specific spatial direction.

In imaginary-time propagation, the algorithm mandates that at the end of every time step an
additional substep, normalization of the wave function, is required. To compute the wave func-
tion norm, we have to integrate over all space, according to Eq. (2.3). Numerical integration is
implemented in function simpint using composite Simpson’s rule,

∫ b

a

dx f(x) ≈ h

3

n/2∑
i=1

[
f(x2i−2) + 4f(x2i−1) + f(x2i)

]
, (3.1)

where n is the number of subintervals, step size h is h = (b− a)/n and xi = a+ ih. Computing the
norm and subsequent normalization of the wave function is illustrated in Listing 3.5. Note that in
real-time propagation the norm of the wave function is preserved, and therefore we do not perform
the normalization at the end of every time step. However, keeping track of the norm is still useful
as a check of correctness, and we calculate it at the regular intervals. The implementation remains
mostly the same, with the last step (performing the normalization of the wave function) omitted in
real-time propagation.
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Listing 3.5: Numerical integration via composite Simpson’s rule and its usage in computation of the
norm and normalization of the wave function, as used by the 1D imaginary-time programs. The
equivalent real-time function is similar, with the last step removed.
// Numerical integration via composite Simpson’s rule
double simpint(double h, double *f, long N) {

int c;
long i;
double sum;

sum = f[0];
for (i = 1; i < N - 1; i ++) {

c = 2 + 2 * (i % 2);
sum += c * f[i];

}
sum += f[N - 1];

return sum * h / 3.;
}

void calcnorm(double *norm, double *psi, double *tmpx) {
long i;
double tmp;

for(i = 0; i < Nx; i ++) {
tmpx[i] = cabs(psi[i]);
tmpx[i] *= tmpx[i];

}

*norm = sqrt(simpint(dx, tmpx, Nx));
tmp = 1. / *norm;

for(i = 0; i < Nx; i ++) {
psi[i] *= tmp;

}
}

The chemical potential and energy are computed in function calcmuen, while RMS size is cal-
culated in function calcrms. Chemical potential and energy are computed in the same function
because Eqs. (2.43) and (2.44) used to compute these quantities differ only in a coefficient in front
of the nonlinear term. Computation of these quantities requires calculation of spatial derivatives of
the wave function, which is implemented in function diff using Richardson extrapolation formula
of the fourth order [40],

f ′(x) ≈ f(x− 2h)− 8f(x− h) + 8f(x+ h)− f(x− 2h)
12h . (3.2)

Finally, expressions for the chemical potential and energy are integrated using composite Simpson’s
rule. The implementation of calcmuen with the aforementioned calculations in 1d case is illustrated
in Listing 3.6.

Listing 3.6: Calculation of chemical potential and energy in 1D imaginary-time calcmuen function.
Also shown is the numerical differentiation function, based on Richardson extrapolation formula.
void calcmuen(double *mu, double *en, double *psi, double *dpsix, double *psidd2, double

*tmpxi, double *tmpxj) {
long i;
double psi2, psi2lin, psidd2lin, dpsi2;
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diff(dx, psi, dpsix, Nx);
calcpsidd2(psi, psidd2);

for(i = 0; i < Nx; i ++) {
psi2 = psi[i] * psi[i];
psi2lin = psi2 * g;
psidd2lin = psidd2[i] * gd;
dpsi2 = dpsix[i] * dpsix[i];
tmpxi[i] = (pot[i] + psi2lin + psidd2lin) * psi2 + dpsi2;
tmpxj[i] = (pot[i] + 0.5 * psi2lin + 0.5 * psidd2lin) * psi2 + dpsi2;

}
*mu = simpint(dx, tmpxi, Nx);
*en = simpint(dx, tmpxj, Nx);

}
// Calculation of numerical derivative using Richardson extrapolation formula
void diff(double h, double *f, double *df, long N) {

long i;

df[0] = 0.;
df[1] = (f[2] - f[0]) / (2. * h);

for(i = 2; i < N - 2; i ++) {
df[i] = (f[i - 2] - 8. * f[i - 1] + 8. * f[i + 1] - f[i + 2]) / (12. * h);

}

df[N - 2] = (f[N - 1] - f[N - 3]) / (2. * h);
df[N - 1] = 0.;

}

In 2D and 3D, partial derivatives need to be calculated for each direction. Previously published
implementations [13, 16] allocate separate arrays for each partial derivative, that can consume sig-
nificant amount of memory if the mesh size is large. By reorganizing the computation of derivatives
slightly, we can reuse a single array for all calculations involving partial derivatives. This small
change leads to significant reduction in memory usage, especially in 3D programs. For this reason
we have relied on this type of memory usage optimizations for all programs presented in this thesis.

Calculation of RMS sizes in function calcrms is straightforward, given the simplicity of their
definitions (2.53)–(2.57). Relevant portion of the implementation in 1D is shown in Listing 3.7.
Implementation in 2D and 3D relies on the concepts we already presented, hence no further details
will be given.

Listing 3.7: Computation of the RMS size in 1D in imaginary-time propagation.
void calcrms(double *rms, double complex *psi, double *tmpx) {

long i;
double psi2;

for(i = 0; i < Nx; i ++) {
psi2 = cabs(psi[i]);
psi2 *= psi2;
tmpx[i] = x2[i] * psi2;

}
*rms = sqrt(simpint(dx, tmpx, Nx));

}

In order to use the programs to simulate a given physical system, we need to provide the appro-
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priate input parameters. The parameters of the programs, e.g., the discretization scheme, number of
time steps, trap anisotropy coefficients, coefficients of nonlinear terms, interaction strengths, names
of output files and others, are specified in the input file. Input files are passed to the programs as
runtime arguments, where they are parsed, and the variables obtained in this way are used to initial-
ize the space mesh, the wave function, trap and dipolar potentials, and Crank-Nicolson coefficients.
Listing 3.8 shows how initialization of space mesh and associated wave function, trap potential and
Crank-Nicolson coefficients is implemented in 1D. Initialization of the dipolar potential, which is
not listed here, has a slightly longer implementation and is available in Ref. [16]. In 2D and 3D
this step is performed in an analogous way, and is also not given here.

Listing 3.8: Initialization of space mesh and associated wave function, trap potential and Crank-
Nicolson coefficients in 1D real-time programs.
// Initialization of the space mesh and the initial wave function.
void initpsi(double complex *psi) {

long i;
double cpsi = sqrt(sqrt(pi / vgamma));

for(i = 0; i < Nx; i ++) {
x[i] = (i - Nx2) * dx; x2[i] = x[i] * x[i];

}
for(i = 0; i < Nx; i ++) {

psi[i] = exp(- 0.5 * vgamma * x2[i]) / cpsi;
}

}
// Initialization of the potential.
void initpot() {

long i;
double vgamma2 = vgamma * vgamma;

for(i = 0; i < Nx; i ++) {
pot[i] = 0.5 * par * (vgamma2 * x2[i]);

}
}
// Crank-Nicolson scheme coefficients generation.
void gencoef() {

long i;

Ax0 = 1. + I * dt / dx2;
Ax0r = 1. - I * dt / dx2;
Ax = - 0.5 * I * dt / dx2;

calphax[Nx - 2] = 0.;
cgammax[Nx - 2] = - 1. / Ax0;
for (i = Nx - 2; i > 0; i --) {

calphax[i - 1] = Ax * cgammax[i];
cgammax[i - 1] = - 1. / (Ax0 + Ax * calphax[i - 1]);

}
}

With all the relevant variables allocated and initialized to the proper values, the time propagation
can now proceed. This is achieved by calling the previously described computation functions in
the main loop, as illustrated in Listing 3.9. Note that in the imaginary-time propagation, as
mentioned earlier, the normalization has to be performed at the end of every time step. In the
current implementation, the number of time iterations is predefined in the input file.
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Listing 3.9: Main loop of the time propagation, for 3D imaginary-time programs.
//Read input, allocate and initialize variables
...
// Main loop of time propagation
for(i = 0; i < Nrun; i ++) {

calcpsidd2(psi, psidd2, psidd2fft);
calcnu(psi, psidd2);
calclux(psi, cbeta);
calcluy(psi, cbeta);
calcluz(psi, cbeta);
// In imaginary-time propagation, we need additional normalization step
calcnorm(&norm, psi, tmpxi, tmpyi, tmpzi);
// Optionally, physical quantities can be computed after certain number of steps
if (i % 1000 == 0) {

... // Call ’calcmuen’, ’calcrms’ or output functions
}

}
// Write summary file, clean up and exit
...

After the predefined number of time steps, programs can compute physical quantities like chem-
ical potential or energy, or they can write to a file the current density profile (absolute square of the
wave function), which can be used for further analysis and/or visualization. Final density profile
of the imaginary-time propagation can be used as the initial value for wave function propagation
in real time. 2D and 3D programs also provide integrated (effective) 1D density profiles, obtained
by integrating the densities over all spatial variables but one. Furthermore, 3D programs can write
integrated 2D density profiles, obtained in a similar way. Output mesh can coincide with the mesh
used by the program, or can be coarser, controlled by the outstpx, outstpy and outstpz input
parameters. Two examples of such output functions are given in Listing 3.10.

Listing 3.10: Examples of output functions from 2D real-time programs that compute and write
density and integrated density to a file.
void outpsi2xy(double complex **psi, FILE *file) {

long i, j;

for(i = 0; i < Nx; i += outstpx) {
for(j = 0; j < Ny; j += outstpy) {

fprintf(file, "%8le %8le %8le\n", x[i], y[j], cabs(psi[i][j]) * cabs(psi[i][j]));
}
fprintf(file, "\n"); fflush(file);

}
}

void outdenx(double complex **psi, double *tmp, FILE *file) {
long i, j;

for(i = 0; i < Nx; i += outstpx) {
for(j = 0; j < Ny; j ++) {

tmp[j] = cabs(psi[i][j]) * cabs(psi[i][j]);
}
fprintf(file, "%8le %8le\n", x[i], simpint(dy, tmp, Ny)); fflush(file);

}
}

Additionally, all programs write the summary output file, which contains the information on the
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input parameters, and the computed norm, chemical potential and energy. A sample summary file
is given in Listing 3.11.

Listing 3.11: Example of a summary output file of 3D real-time propagation.
Real time propagation 3D, OPTION = 2

Number of Atoms N = 5000, Unit of length AHO = 0.00000100 m
Scattering length a = 100.00*a0, Dipolar ADD = 132.70*a0
Nonlinearity G_3D = 332.4918, Strength of DDI GD_3D = 105.33272
Parameters of trap: GAMMA = 0.50, NU = 1.00, LAMBDA = 1.50

# Space Stp: NX = 128, NY = 96, NZ = 80
Space Step: DX = 0.200000, DY = 0.200000, DZ = 0.200000

# Time Stp : NSTP = 0, NPAS = 100, NRUN = 900
Time Step: DT = 0.005000
Dipolar Cut off: R = 10.000

* Change for dynamics: GPAR = 1.500, GDPAR = 1.000 *

--------------------------------------------------------
Norm Chem Ener/N <r> |Psi(0,0,0)|^2

--------------------------------------------------------
Initial: 1.0000 5.81621 4.33909 2.54499 0.02162
After NPAS iter.: 1.0000 5.81920 4.33911 2.54358 0.02181
After NRUN iter.: 1.0000 6.93923 5.00916 2.63297 0.01448

--------------------------------------------------------

Clock Time: 290 seconds
CPU Time: 290 seconds

The 10 improved programs developed here use the same naming convention as the original C
programs. They can be downloaded from the local repository [37].

3.3 Parallelization on shared memory systems

It can be observed that the implementation described in the previous section is computationally very
demanding, especially in 2D and 3D. This results in long execution time when a large discretization
scheme is used, which makes the programs less appealing for fine-grained simulations, thus making
parallelization a necessity. Parallel implementation on shared memory systems using C language
can be achieved in multiple ways, using a wide array of technologies. These range from automatic
parallelizations built in compilers [41] to specialized language extensions like Unified Parallel C
[42, 43] and Cilk Plus [44]. Given that the parallelization efforts of previous work in Ref. [13] was
focused on using OpenMP, which was shown to achieve 80-90% of the ideal speedup, we adopted
the same approach.

OpenMP is designed for shared memory systems containing multiple processors/cores. It pro-
vides an explicit programming model, based around the concept of using multiple threads to ac-
complish parallelism. OpenMP is published as an open specification [45], and there are numerous
compilers which implement support for it. Usually, a special flag is passed to the compiler (-fopenmp
in GCC or -qopenmp in newer versions of Intel’s compiler) to instruct it to parallelize the code using
OpenMP.

Parallelization in OpenMP is achieved using the fork-join model, wheremaster thread spawns (or
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forks) a number of slave threads to perform a task in parallel, at the end of which the slave threads
join back to the master thread. It relies on compiler directives (called pragmas) and runtime library
routines to achieve this task. Programmers declare parallel regions of the code by using compiler
directives. When a master thread encounters such regions, it creates a team of parallel threads
that execute the statements in the region. When threads complete all statements in the parallel
region, they synchronize and terminate, leaving only the master thread to continue with the serial
execution of the program. This flow is illustrated in Figure 3.4. The number of threads can be
different for any parallel region, however in most cases the number of threads is equal to the number
of processing cores available in the system. Such is the case with the programs presented here.

Figure 3.4: The fork-join model, used by OpenMP.

To create parallel regions, we must declare them with the compiler directives. Each OpenMP
directive in C begins with the keyword #pragma omp, followed by a directive name and its optional
clauses, and ends with the new line. When dealing with loops, the declaration of a parallel region
can be shortened, as demonstrated in Listing 3.12. While the second approach results in a cleaner
code that is easier to follow, the first one provides additional flexibility. We use both approaches
in our programs, depending on whether we need to perform any additional work or just parallelize
the loop at hand. Special care must be taken to ensure that each thread has a copy of intermediate
variables it writes, defined in the surrounding parallel region. Otherwise, the compiler would assume
that variable is shared among threads, and each thread would write its own value, overwriting the
data of other threads and leading to concurrency problems.

Listing 3.12: OpenMP compiler directives.
#include<omp.h> // Include the appropriate OpenMP header
...
#pragma omp parallel // Spawns a team of parallel threads
{

#pragma omp for private(i) // Divides loop iterations between the spawned threads
for(i = 0; i < Nx; i ++) {

tmpx[i] = psi[i] * psi[i];
}

}

#pragma omp parallel for private(i) // Shorter, combined parallel worksharing construct
for(i = 0; i < Nx; i ++) {

tmpx[i] = psi[i] * psi[i];
}

Our programs rely on OpenMP to parallelize the most computationally demanding functions,
namely calcnu, calclux, calcluy, calcluz, calcpsidd2, calcnorm, calcmuen and calcrms. Un-
fortunately, OpenMP currently does not provide any support for parallel input and output (I/O),
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leaving this task entirely to the programmer. Performing efficient read/write operations on a single
file in multi-threaded environment is a complex task, and because of this no effort was made to
improve the I/O functions in our programs, and they remain serial.

Since most of the computation in our programs is done in a series of loops, the parallelization
is achieved by assigning the portion of each loop to a different thread. In 1D, that approach would
take the form presented in Listing 3.13.

Listing 3.13: OpenMP parallelization of 1D loop, demonstrated on real-time calcrms function.
void calcrms(double *rms, double complex *psi, double *tmpx) {

long i;
double psi2;

#pragma omp parallel for private(i)
for(i = 0; i < Nx; i ++) {

psi2 = cabs(psi[i]);
psi2 *= psi2;
tmpx[i] = x2[i] * psi2;

}
*rms = sqrt(simpint_th(dx, tmpx, Nx));

}

However, we can observe that this technique would not always work in 1D programs, because
of the recursive relations in calclux function. The first loop requires that cbeta[i] is computed
before cbeta[i - 1], and similarly with the psi in the second loop. The scan algorithm could be
used to parallelize the loops of this function, however improvements over the serial implementation
would be visible only for simulations with very large number of discretization points (over a million),
which are rarely needed. In multidimensional programs this approach would be even less effective,
as the outer loops are independent and are better suited for parallelization than the innermost loop
with recursive relations. Since the serial implementation in 1D can be considered to be sufficiently
fast on modern hardware, and due to the complexity that parallelization of calclux would entail,
the focus here is placed on improving 2D and 3D variants of the programs. 1D programs remain
only partially parallelized, with all functions except for calclux being threaded.

In multidimensional programs, the outer loops are independent and their work can be divided
between threads. Listing 3.14 illustrates how the loop of 2D real-time calcnu function is parallelized
with OpenMP. The OpenMP runtime would divide the work in such a way that each thread would
process approximately Nx / nthreads elements (with nthreads being the number of threads in
the parallel region), where each element contains the whole inner loop. During computation, values
of several expressions are stored in temporary variables. As mentioned before, each thread must
have a private copy of these variables to avoid overwriting data, so we must specify them in the
parallel construct. This concept is used in the parallelization of calcnu, calclux, calcluy, calcluz
functions and portions of the calcpsidd2 function.

When working with dynamically allocated arrays, for example when writing temporary results
to an array, the variables cannot be made private just by declaring them in the parallel region.
Instead, we have to extend the allocated array so that each thread has a separate portion. For
instance, instead of allocating a vector of Nx elements, we allocate a nthreads×Nx matrix, and use
each row in a different thread. Even though this concept increases the amount of memory programs
use, that increase is not significant as the number of threads is relatively low compared to typical
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Listing 3.14: OpenMP parallelization of 2D loop, demonstrated on real-time calcnu function.
void calcnu(double complex **psi, double **psidd2) {

long i, j;
double psi2, psi2lin, psidd2lin, tmp;

#pragma omp parallel for private(i, j, psi2, psi2lin, psidd2lin, tmp)
for (i = 0; i < Nx; i ++) {

for (j = 0; j < Ny; j ++) {
psi2 = cabs(psi[i][j]);
psi2 *= psi2;
psi2lin = psi2 * g;
psidd2lin = psidd2[i][j] * gd;
tmp = dt * (pot[i][j] + psi2lin + psidd2lin);
psi[i][j] *= cexp(- I * tmp);

}
}

}

vector sizes. An implementation of this concept is shown in Listing 3.15, which demonstrates how
calcnorm function can be parallelized in 2D. The threads fill out their portion of the tmpy temporary
array, and perform the integration on their portion of the array. The listing also shows how a single
thread in a parallel region can be used to compute the final result. As the variable holding the
final result is not declared to be private, its value is visible to all threads, and can be used in the
parallel region that follows. Other than calcnorm function, parallelization is achieved in this way
in calcmuen and calcrms, so we would not go into their specifics here.

Listing 3.15: Concept used in parallelization of functions requiring temporary storage, demonstrated
on imaginary-time calcnorm function.
#pragma omp parallel
#pragma omp master
nthreads = omp_get_num_threads();
...
tmpx = alloc_double_matrix(nthreads, Nx); // Allocate separate array for each thread
tmpy = alloc_double_matrix(nthreads, Ny);
...
void calcnorm(double *norm, double **psi, double **tmpx, double **tmpy) {

int threadid;
long i, j;
double tmp;

#pragma omp parallel private(threadid, i, j)
{

threadid = omp_get_thread_num(); // Get a thread identification number

#pragma omp for
for (i = 0; i < Nx; i ++) {

for (j = 0; j < Ny; j ++) {
tmpy[threadid][j] = psi[i][j] * psi[i][j]; // Store data in separate slots

}
(*tmpx)[i] = simpint(dy, tmpy[threadid], Ny);

}
#pragma omp barrier // Wait for all threads to complete

#pragma omp single
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{
*norm = sqrt(simpint(dx, *tmpx, Nx));
tmp = 1. / *norm; // ’tmp’ is a shared variable, visible to all other threads

}

#pragma omp for
for (i = 0; i < Nx; i ++) {

for (j = 0; j < Ny; j ++) {
psi[i][j] *= tmp;

}
}

}
}

These functions rely on numerical integration, which essentially computes a sum of a sequence,
an operation also known as reduction. Reduction can be handled with OpenMP via a special
directive, as we can see in Listing 3.16, which shows how the simpint function was parallelized.
Note that we need parallelized version of numerical integration only when invoked from outside the
threaded loops, as the computation loops themselves are parallelized. Further attempts to perform
nested parallelization would not yield any improvement in this case.

Listing 3.16: OpenMP parallelization of numerical integration, using the reduction clause.
double simpint_th(double h, double *f, long N) {

int c;
long i;
double sum = f[0];

#pragma omp parallel for private(i, c) reduction(+:sum)
for (i = 1; i < N - 1; i ++) {

c = 2 + 2 * (i % 2);
sum += c * f[i];

}
sum += f[N - 1];

return sum * h / 3.;
}

The final portion of the programs that has to be parallelized is the DFT. Instructing FFTW to
use OpenMP is a simple task, and requires minimal changes to the code. Before any plan is created
or any FFTW function is used, we initialize the threaded FFTW by calling two functions shown in
Listing 3.17. The plan creation and execution remain unchanged. Finally, the compiled programs
should be linked with the threaded FFTW, by linking to -lfftw3_omp in addition to the -lfftw3.

Listing 3.17: Initialization of threaded FFTW.
#pragma omp parallel
#pragma omp master
nthreads = omp_get_num_threads();
...
fftw_init_threads();
fftw_plan_with_nthreads(nthreads);
// Create plans as usual, e.g., 3D FFT plans
plan_forward = fftw_plan_dft_r2c_3d(Nx, Ny, Nz, **psidd2, psidd2fft, FFT_MEASURE);
plan_backward = fftw_plan_dft_c2r_3d(Nx, Ny, Nz, psidd2fft, **psidd2, FFT_MEASURE);

This step completes the OpenMP parallelization of the programs from previous section. The
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remaining portions of the code, mainly output functions, are not suitable for parallelization, and
were thus not improved.

Using the concepts described, we have parallelized all programs in 1D, 2D and 3D, for both
imaginary- and real-time propagation, resulting in 10 parallel programs. The programs form a
package named DBEC-GP-OMP, a subset of a package DBEC-GP-OMP-CUDA-MPI, published in
Ref. [18] and available for download from Refs. [46, 37]. Names of the programs are the same as
in serial implementation with the suffix “-th” added. Detailed performance review of parallelized
programs presented in this section will follow in Chapter 8.



Chapter 4

Solving NLSE using GPU
accelerators

With the shared memory algorithm described and parallelized in the previous chapter, we can con-
sider using an accelerator processor to achieve even better performance. Use of special-purpose
hardware architectures to accelerate computationally demanding applications is becoming standard
practice in the scientific community. In this chapter we will present the algorithm and implemen-
tation which uses one such accelerator, namely the graphics processing unit (GPU). As their name
implies, GPUs have been originally designed for graphics-oriented tasks, however nowadays their
enormous processing power can be used for general-purpose computation, giving rise to a prac-
tice that is now known as general-purpose computing on graphics processing units (GPGPU). They
achieve this by relying on the large number of slower low-power processing cores, designed to pro-
cess many parallel streams of data simultaneously, but are ill-suited for complex processing of few
streams of data. This is in contrast to modern CPUs, which have few very fast latency-oriented
cores, designed to handle single or few streams of data with complex processing (such as regular
desktop applications). As a result, GPUs are better suited to handle tasks that significantly benefit
from parallelization, which is why we considered using them for our algorithms.

Using GPUs for general-purpose computing by programming only with graphics primitives
would be very time consuming and error-prone, severely limiting the usefulness of GPUs in high-
performance computing. Fortunately, GPU vendors have recognized this and developed the inter-
faces for general-purpose programming on GPUs. There are two competing APIs in this space,
CUDA [47] and OpenCL [48]. CUDA (formerly an acronym for Compute Unified Device Architec-
ture) is a mature, proprietary, C, C++ and Fortran API and computing platform created by Nvidia,
available since 2007. All Nvidia GPUs from that time onward support CUDA, with each generation
of GPUs adding more features. GPUs from other vendors are not supported. It is available for free,
but is not open-source.

On the other hand, OpenCL, initially developed by Apple, but since transferred to Khronos
group, is the standardized approach to programming on heterogeneous platforms. As such, it is not
limited only to GPUs from a single vendor (like CUDA is with Nvidia), rather it supports a plethora
of different platforms, from CPUs and GPUs to digital signal processors (DSPs), field-programmable
gate arrays (FPGAs) and more. Nvidia GPUs also support OpenCL, however it is implemented on
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top of CUDA, and often has worse performance than using pure CUDA [49]. OpenCL specification
is based on the subset of C language, and is similar in functionality to CUDA. Being a standard
though, OpenCL often lags a bit with adding new functionality when compared to CUDA, which is
controlled by a single company. Note that this is usually not a problem, even for advanced usage.

With the functionality being similar in both CUDA and OpenCL, the choice between the two
is often based on the available hardware or developer’s personal preference. Since the PARADOX
supercomputing facility, where all our programs were developed and tested, has Nvidia GPUs, we
have decided to use CUDA for implementation of our algorithm.

In the following sections of this chapter we will first describe the CUDA programming and
execution model, taking note of the features we used in our programs, and then proceed with the
explanation of the changes to the algorithm required by the implementation using CUDA, and finish
with the important details of the implementation itself.

4.1 CUDA programming and execution model

Hardware architecture of Nvidia (and other) GPUs differs in some significant ways to the x86 CPU
architecture. Understanding these differences is the key to exploiting the full potential of GPUs.
CPU architectures have historically been focused on increasing performance for serial applications,
however this trend has slowed down due to energy consumption and heat dissipation problems
that arose with increasing clock frequency. Since then the CPU architectures switched to using
multiple processing units, giving rise to the multi-core systems which are in use today. On the
other hand, GPUs have been focused with increasing performance of floating-point calculations in
response to the demand from video game industry. So instead of investing in advancing control
logic and branch prediction that would rival the current CPU designs, GPU vendors have focused
on increasing throughput through the use of massive number of threads. This approach has been
dubbed many-core, signifying the larger number of threads than the multi-core systems have. The
software written for this type of computing platform is expected to work with the large number of
parallel threads, which the hardware takes advantage of to hide the latency of the memory accesses
or arithmetic operations.

Hardware implementation of aforementioned concepts comes in a form of Streaming Multipro-
cessor (SM). The Nvidia GPU architecture is built around an array of these SMs, each executing in
parallel with the others. Inside each SM there is a number of CUDA cores that execute a sequential
thread, various caches, special function units (SFU) that are used for transcendental operations
(e.g., sin, cos) and a small amount of shared memory available to all CUDA cores within the SM.
A simplified architecture of a CUDA device is shown in Figure 4.1. Modern Nvidia GPUs have a
large number of SMs and cores, which, when combined, allow for hundreds or even thousands of
simultaneous threads to execute. For example, the previous-generation Tesla M2090 has 512 cores,
while the newer Tesla K80 has 4992 CUDA cores. Cores execute in Single Instruction Multiple
Thread (SIMT) model, similar to the Single Instruction Multiple Data (SIMD) model [50]. This
means that all cores within the same group execute the same instruction at the same time, in lock-
step fashion. These groups are called warps, and in current hardware implementations, each warp
has 32 threads. One peculiar behavior of SIMT is in case of conditionals, which SIMT handles by
disabling the threads that would not execute the same code, and then rerun the same code with the
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previously disabled threads re-enabled. This has negative performance impact, therefore conditional
computation that would cause thread divergence should be avoided in GPU code, if possible.

Figure 4.1: Simplified architecture of modern Nvidia GPU.

Within each SM, there is also a small amount of cache memory, named shared memory, which
is available to all threads within the SM. Because it resides on-chip, shared memory is much faster
than main GPU memory, but it is limited in size, with most GPUs having access to 48–96 KB. This
type of memory is useful for many scenarios, such as user-managed data caches or high-performance
cooperative parallel algorithms (like parallel reductions, which we use in our algorithm for numerical
integration).

The main memory of the GPU (named global memory in CUDA terminology), its RAM, is
separate from the main memory of the host computer on which the GPU is installed. GPU is
connected to a host through PCI-Express, and all data transfers between the host and GPU device
have to go through this I/O bus. Data is usually transferred between the GPU and host memory
using direct memory access (DMA), either in synchronous or asynchronous fashion. Alternatively,
GPU may access host’s memory through so called mapped memory, where data transfers happen
on the fly, however, accessing memory in this way is usually far slower and should thus be used
sparingly. Current-generation Nvidia GPUs offer between 2 GB and 24 GB of memory, which is
enough for some use-cases, but still noticeably less than amount of RAM memory current high-end
computing nodes have. This means that for memory-demanding programs, such as the ones we
describe in this thesis, efficient use of GPU memory is paramount.

CUDA execution model states that instructions are issued and executed per warp. This is also
true for global memory operations. The CUDA device combines, or coalesces, these global memory
load/store operations issued by threads of a warp into as few transactions as possible, to maximize
memory throughput. Additionally, for data to be read or written by memory transactions it must
be naturally aligned, i.e., its first address must be a multiple of their size (32, 64, or 128 bytes).
This means that the most favorable memory access pattern is achieved when all threads in a warp
access consecutive global memory locations, and in the case of multidimensional data, its innermost
dimension must be padded to the nearest natural boundary. The difference between coalesced and
non-coalesced (non-sequential or unaligned) access pattern is illustrated in Figure 4.2. Failure to
meet the coalesced access pattern will result in more transactions per instruction, reducing the
memory throughput and increasing execution time. Memory coalescence is also very important
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when dealing with multidimensional data. For accesses to this type of data to be fully coalesced,
the number of elements in its innermost dimension must be a multiple of the warp size. In particular,
this means that data whose innermost dimension is not a multiple of this size will be accessed much
more efficiently if it is actually allocated with a number of elements in its innermost dimension
rounded up to the closest multiple of this size.

Figure 4.2: Different memory access patterns on GPU device.

Programming for CUDA devices in done via a C-like language, which is essentially an extension
of C language to support GPU computation. CUDA programming model reflects the heterogeneous
nature of a system which has a GPU, by making a distinction between the host code, which executes
on the CPU, and the device code, which executes on the GPU. Host code may contain any valid C
code, whereas device code is declared by special language extensions. Any given CUDA source file
may contain a mixture of host and device code. Because CUDA source file with device code is not
valid C, it needs to be compiled with a special compiler, the Nvidia C compiler (nvcc). Internally,
nvcc works by splitting the source files into host and device code, compiling them separately, and
then linking them into a final executable. It can also be used to compile and link only the device
code, which is useful when integrating CUDA code into existing programs.

A key component of CUDA programming model is the kernel, a specially annotated function
that executes on the CUDA device. When the kernel is invoked, or launched, it is executed by
a large number of threads on the device. Kernels do not create or manipulate threads directly,
instead the number of threads is defined during kernel launch and device takes control of creating
and scheduling them for execution. To differentiate between the threads and to assign different
work for them, special variables exist which can only be used inside kernels. Kernel is launched
using a special syntax, in the form of kernel_name«< ... »>(...), where the launch parameters
are specified. Listing 4.1 demonstrates the basic definition and execution of a CUDA kernel.

Listing 4.1: Example of a simple CUDA program, with transferring data to/from GPU device,
executing a kernel, and allocating/deallocating resources.
#include <stdio.h>
// Kernels are functions defined with ’__global__’ and returning ’void’
__global__ void square(int Nx, double *psi, double *psi2) {

int i = blockIdx.x * blockDim.x + threadIdx.x; // Compute the thread index in a grid
if (i < Nx) psi2[i] = psi[i] * psi[i]; // Ensure that we don’t go out of bounds

}

void main() {
int Nx = 1<<20; // 1048576
double *h_data, *h_data2, *d_data, *d_data2;
// Allocate data on host and device
data = (double*) malloc(Nx * sizeof(double));
data2 = (double*) malloc(Nx * sizeof(double));
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cudaMalloc(&d_data, Nx * sizeof(double));
cudaMalloc(&d_data2, Nx * sizeof(double));
// Initialize ’h_data’
for (int i = 0; i < Nx; i++) { ... }
// Copy data from host to device
cudaMemcpy(d_data, h_data, Nx * sizeof(double), cudaMemcpyHostToDevice);
// Invoke kernel with 256 threads per block, 4096 blocks in total
square<<<(Nx + 255) / 256, 256>>>(Nx, d_data, d_data2);
// Copy the result from device back to host
cudaMemcpy(h_data2, d_data2, Nx * sizeof(double), cudaMemcpyDeviceToHost);
// Use ’h_data2’ for anything
for (int i = 0; i < Nx; i++) { ... }
// Free resources
cudaFree(d_data); cudaFree(d_data2); free(h_data); free(h_data2);

}

Collection of threads that are generated by a kernel launch are referred to as a grid. When a host
code launches a kernel, the CUDA runtime system generates a grid of threads that are organized
in a two-level hierarchy. On the first level, each grid is organized into an array of thread blocks,
which are in turn organized as an array of threads on the second level. All thread blocks of a
grid are of the same size, and (on current CUDA devices) each thread block can contain up to
2048 threads. The number of threads in each thread block and the number of thread blocks are
specified in the host code with kernel launch parameters. This hierarchy allows CUDA programming
model to be scalable regardless of the underlying GPU architecture. CUDA runtime is in charge of
scheduling thread blocks for execution on available SMs. Because there is no guarantee of which
thread blocks are currently executing nor is their order of execution known in advance, there is no
way to synchronize between thread blocks. Instead, it is expected that algorithms will be designed
in a way so that they do not require synchronization between thread blocks. The array of thread
blocks in a grid and the array of threads in a block are not necessarily 1D, and may be organized
as 2D or 3D arrays. In fact, these arrays are always 3D, with unused dimensions initialized to 1.
Figure 4.3 illustrates the thread hierarchy on an example with 2D array of thread blocks.

Figure 4.3: Execution of 2D array of thread blocks on a different number of SMs.

Kernels operate on device memory and in most cases have no access to host memory. Just
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like the memory in a traditional C program, memory on the device must first be allocated, and
then freed after use. Working with device memory is very similar to the way we work with host
memory. There are four main memory operations, cudaMalloc, cudaMemcpy, cudaMemset and
cudaFree, which are the counterparts of the standard C functions malloc, memcpy, memset and
free, respectively. In most cases, CUDA programs follow the same processing flow, where the data
required for computation is first copied from the host’s memory to the device, then one or more
kernels are invoked that perform some computation using that data, and finally the resulting data
is copied back to the host. Since the memory transfers use the PCI-Express bus to copy the data
between memories of host and device, they are in general much slower than the computation on
either the host or the device. For this reason it is very important to minimize memory transfers,
as well as to use asynchronous operations to overlap memory transfer with computation. We relied
on these techniques in our heterogeneous implementation, with details presented in Chapter 5.

An important aspect of CUDA programming is error handling. All CUDA runtime functions
return an error code and it is good practice to check for errors after any CUDA runtime function is
invoked. Since the errors they produce usually do not terminate the whole program, failure to check
for errors can lead to many unexpected situations and complicate debugging. In examples which
we present throughout this thesis we will omit the error checking for brevity, however the proper
error handling is in fact implemented in all of the GPU-related portions of the programs presented.

In this section we have described only the most basic concepts of GPU programming with
CUDA. Many details have been omitted as we focus on the core concepts that we relied on in our
implementations. More detailed description of CUDA can be found in [51, 52, 53].

4.2 CUDA implementation of shared memory algorithm

The significant differences in architecture of the GPU and its accompanying execution model on
one side, and CPU architecture with its conventional execution model on the other side, did not
result in significant changes to the main algorithm we employ. From the algorithm’s point of view,
both CPU and GPU are shared memory systems with multiple processing units, even though they
are vastly different, and therefore can be used in a similar manner. Main loop of the algorithm
remains unchanged, as well as each substep. Auxiliary algorithms, like the algorithm for numerical
integration, which are more dependent on the execution model, need to be adapted to the new
environment, as we will describe below.

While the algorithm and thus the flow of the programs remain conceptually the same, actual
implementation on CUDA platform required significant changes to C/OpenMP programs. We have
focused our efforts on using GPU for computationally demanding functions performing time evo-
lution of the wave function (calcpsidd2, calcnu, calclux, calcluy and calcluz), normalization
(calcnorm) and calculation of physical quantities (calcmuen, calcrms). As 1D variants of the
programs are sufficiently fast even in their serial implementation, and the inherent difficulty in
parallelizing recursive relations which are part of calclux, calcluy and calcluz functions, we
have implemented the algorithm on GPU for 2D and 3D variants of the programs. In the resulting
implementation, CPU host was used for initialization of variables, control of program flow, and I/O.
Computation functions were reimplemented as CUDA kernels, while the initialization and output
functions have remained host-only and serial. Since the initialization of variables uses host RAM
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memory, programs require the same amount of host and device memory. Before any computation
begins, variables are copied to GPU device, where they remain during computation, and only wave
function variable (psi) is returned back to CPU memory when it is required for writing output.
Implementation was done in several steps, each offloading more computation to the GPU.

The first step in migration to the CUDA platform was to use CUDA built-in types for complex
numbers instead of the ones provided by the C99 standard. This was necessary only in real-
time propagation programs because complex numbers, as implemented in C99 standard of the C
language, are not directly supported in CUDA device code. However, converting them to CUDA
built-in complex types is possible as they share the same binary representation. Complex numbers
in CUDA do not support all the operations that C99 standard provides. Namely, the function to
compute the complex exponential of a number, which we rely on in function calcnu, is missing. This
function can be replaced by an approximation using sincos function available in Linux (though it
is not part of a standard C library).

Next step was to replace the FFTW library used by C/OpenMP programs with the cuFFT
library, which is available in CUDA. cuFFT provides two interfaces: the native one and the FFTW
one [54]. FFTW interface is intended to be used as a drop-in replacement for FFTW, allowing
programs written primarily with FFTW in mind to use CUDA GPUs with minimal modifications to
the source code. While this interface could be used as a temporary solution during the development
of CUDA programs, our goal of using CUDA for all computation relating to the propagation of the
wave function could only be reached with the native cuFFT interface. This interface is modeled
after FFTW but differs from it in the way plans are created and executed. In cuFFT, precision and
type of data of the transform is determined by the functions initiating execution of plans, which
results in a slightly different sequence of function calls. We used cuFFT in much the same way as
FFTW, for doing R2C and C2R FFT transforms.

With the computation of FFT offloaded to GPU, we proceed and port the remaining wave
function propagation functions to GPU. Most of the computation functions have nested loops, either
two or three levels deep. This could naturally be mapped onto a 2D or 3D grid of threads, with each
thread processing a single element of the corresponding arrays. This is the standard approach when
writing CUDA kernels, called monolithic kernel, and is often found in CUDA textbooks. While
this way of writing kernels is sufficient for our needs, we have opted to use grid-stride loops when
writing kernels, as proposed in Ref. [55]. Basic grid-stride loop is illustrated in Listing 4.2. The
stride of the loop is the total number of threads in the grid, which means that all memory accesses
are coalesced for maximum performance, in the same way as in the monolithic approach. Addition
of a loop in a kernel does not add to its instruction complexity, which would impact performance.
This is because we need instructions of the same complexity in the form of conditional statements in
the monolithic kernel to ensure that we do not access data out of bounds. We should also note that
we have found grid-stride loops to be more flexible and easier to debug. Kernels with grid-stride
loops can be launched with just a single thread and a single block, which would essentially make
the kernel serial in nature and thus far easier to debug.

The remaining functions we ported, calcnorm, calcmuen and calcrms, rely on 1D spatial in-
tegration implemented with composite Simpson’s rule. This function requires computation of a
sum of elements of an array, which is trivial to implement in serial or OpenMP code, but can
be much more difficult using CUDA due to lack of global synchronization between thread blocks.
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Listing 4.2: Example of 1D grid-stride loop.
int i, tid_x, grid_stride_x;

tid_x = blockIdx.x * blockDim.x + threadIdx.x;
grid_stride_x = blockDim.x * gridDim.x;

for (i = tid_x; i < d_Nx; i += grid_stride_x) {
...

}

Nvidia GPUs have support for atomic operations, which could be used to significantly simplify the
implementation, however, only the latest-generation Nvidia GPUs have the hardware support for
atomic operations on double precision data. Alternative implementations of atomic operations on
double precision data rely on compare-and-swap (CAS) instructions that may incur a performance
penalty [56]. For this reason we have based our implementation of composite Simpson’s rule on the
reduction algorithm from Ref. [57]. We extended the reduction algorithm to support array sizes
which are not powers of two and to compute three sums simultaneously. The algorithm operates in
two steps, implemented as two kernel invocations. In the first invocation, each thread block creates
a partial sum using a tree-based approach with shared memory and stores the partial result in main
memory. In the second kernel invocation, this time with only one thread block, the partial sums
from previous invocation are combined to produce the final result. An illustration of the algorithm
is given in Figure 4.4, and its implementation is shown in Listing 4.3.

Figure 4.4: Two-phase reduction algorithm on CUDA device. In this example, four thread blocks
are used in the first phase, while a single block computes the final result in the second phase.

Listing 4.3: Implementation of composite Simpson’s rule with CUDA.
// Initiate temporary storage on device
void simpint_init(long N) {

sum = alloc_double_vector_device(1);
sumi = alloc_double_vector_device(1);
sumj = alloc_double_vector_device(1);
sumk = alloc_double_vector_device(1);
tsumi = alloc_double_vector_device(ceil(1. * N / CUDA_BLOCK_SIZE / 2));
tsumj = alloc_double_vector_device(ceil(1. * N / CUDA_BLOCK_SIZE / 2));
tsumk = alloc_double_vector_device(ceil(1. * N / CUDA_BLOCK_SIZE / 2));

}
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double simpint_gpu(double h, double *f, long N) {
double f_sum;

dim3 block; dim3 grid; int shmem;
block.x = CUDA_BLOCK_SIZE; // For example, 128
grid.x = ceil(1. * N / block.x / 2);
shmem = 3 * block.x * sizeof(double);
// Compute partial sums and reduce to a single block
simpint1d_kernel1<<<grid, block, shmem>>>(tsumi, tsumj, tsumk, f+1, f, f+2, N-2, 2);
// Compute final sums with just one block
simpint1d_kernel1<<<1, block, shmem>>>(sumi, sumj, sumk, tsumi, tsumj, tsumk, grid.x,1);
// Compute the final result of integration
simpint1d_kernel2<<<1,1>>>(h, sum, sumi, sumj, sumk, f, N);
cudaMemcpy(&f_sum, sum, 1 * sizeof(double), cudaMemcpyDeviceToHost);

return f_sum;
}

__global__ void simpint1d_kernel1(double *sumi, double *sumj, double *sumk, double *ini,
double *inj, double *ink, long N, int step) {

extern __shared__ double psumi[]; // Shared memory for partial sums
double *psumj = &psumi[blockDim.x]; double *psumk = &psumi[2 * blockDim.x];
double tsumi = 0.; double tsumj = 0.; double tsumk = 0.;

int tid = threadIdx.x;
long idx = (blockIdx.x * blockDim.x + tid) * step;

if (idx < N) {
tsumi += ini[idx]; tsumj += inj[idx]; tsumk += ink[idx];

}

psumi[tid] = tsumi; psumj[tid] = tsumj; psumk[tid] = tsumk;

__syncthreads();

// Start the shared memory loop on the next power of 2 less than the block size.
// If block size != power of 2, accumulate the intermediate sums in the remainder range.
int pow2 = blockDim.x;

if (pow2 & (pow2-1)) {
while (pow2 & (pow2-1)) {

pow2 &= pow2-1;
}
if (tid >= pow2) {

psumi[tid-pow2] += psumi[tid];
psumj[tid-pow2] += psumj[tid];
psumk[tid-pow2] += psumk[tid];

}
__syncthreads();

}
for (int th = pow2 >> 1; activeThreads; activeThreads >>= 1) {

if (tid < activeThreads) {
psumi[tid] += psumi[tid+activeThreads];
psumj[tid] += psumj[tid+activeThreads];
psumk[tid] += psumk[tid+activeThreads];

}
__syncthreads();

}
if (tid == 0) {

sumi[blockIdx.x] = psumi[0]; sumj[blockIdx.x] = psumj[0]; sumk[blockIdx.x] = psumk[0];
}
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}

__global__ void simpint1d_kernel2(double h, double *sum, double *sumi, double *sumj,
double *sumk, double *f, long N) {

*sum = *sumj + 4. * *sumi + *sumk;
if(N % 2 == 0) *sum += (5. * f[N - 1] + 8. * f[N - 2] - f[N - 3]) / 4.;
*sum = *sum * h / 3.;

}

The aforementioned algorithm works well in situations where we need just one call of the in-
tegration function. However, in our programs, this routine is often called inside nested loops.
Invoking two kernels in each iteration creates an overhead that makes this approach slower than
the OpenMP-threaded programs. In case of nested loops, we can use the similar approach used
in calclux, calcluy and calcluz functions, by performing the whole integration in each GPU
thread. Just like in the case of recursive relations, the integration via composite Simpson’s rule
is much slower on GPU threads than on CPU threads, however the large number of parallel GPU
threads successfully hides their individual latency. Since both approaches have strengths and weak-
nesses, we used a combination of both in our implementation of calcnorm, calcmuen and calcrms

functions. These functions share a common flow, shown in Listing 4.4.

Listing 4.4: Performing reduction along multiple directions, demonstrated on the 3D real-time
calcrms function.
void calcrms(...) {

// Prepare data in a tensor
calcrms_kernel1x<<<dimGrid3d, dimBlock3d>>>(psi, tmpyzx, d_x2);
// Reduce from 3D to 2D
simpint3d_kernel<<<dimGrid2d, dimBlock2d>>>(dx, tmpyzx, tmpyz, Ny, Nz, Nx);
// Reduce from 2D to 1D
simpint2d_kernel<<<dimGrid1d, dimBlock1d>>>(dz, tmpyz, tmpy, Ny, Nz);
// Reduce from 1D to scalar
rms[1] = sqrt(simpint_gpu(dy, tmpy, Ny));
...

}

__global__ void simpint2d_kernel(double h, cudaPitchedPtr matrix, double *vector, long N1,
long N2) {

...
for (i = blockIdx.x * blockDim.x + threadIdx.x; i < N1; i += blockDim.x * gridDim.x) {

matrixrow = get_double_matrix_row(matrix, i);
vector[i] = simpint(h, matrixrow, N2); // Each thread calls sequential function

}
}

__global__ void simpint3d_kernel(double h, cudaPitchedPtr tensor, cudaPitchedPtr matrix,
long N1, long N2, long N3) {

...
for (i = blockIdx.y * blockDim.y + threadIdx.y; i < N1; i += blockDim.y * gridDim.y) {

matrixrow = get_double_matrix_row(matrix, i);
for (j = blockIdx.x * blockDim.x + threadIdx.x; j < N2; j += blockDim.x * gridDim.x){

tensorrow = get_double_tensor_row(tensor, i, j);
matrixrow[j] = simpint(h, tensorrow, N3);

}
}

}
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In Section 3.1 we mentioned that we perform flat allocation of CPU memory even when deal-
ing with multidimensional data. This property was especially useful when transitioning to GPU.
Contiguous (flat) memory allowed us to transfer whole multidimensional variables with one call
to cudaMemcpy. While we also used flat allocations on GPU, we did not rely on double or triple
pointers to index our variables. Using them is possible on GPU, however correct usage is much
more complicated, and may reduce performance [58]. Since we are focused on 2D and 3D variants
of our programs, we also had to ensure that we are optimally accessing memory of multidimen-
sional variables. To this end, we have used pitched memory allocations, to make sure that the
allocation is appropriately padded to allow coalesced access. Pitched memory can be allocated
with cudaMallocPitch or cudaMalloc3D which perform the same allocation routine, just with a
slightly different interface. Transferring pitched data to/from GPU is also done with special func-
tions, cudaMemcpy2D and cudaMemcpy3D, which follow the same differences. We settled on using
cudaMalloc3D and cudaMemcpy3D in our programs, which we found to be more convenient due to
the fact that cudaMalloc3D neatly groups all allocation-related variables in one C structure. The
pitch of allocation must be used to access elements of an allocated array, which makes the index
calculation slightly different, as shown in Listing 4.5. Note that in these functions the innermost
dimension (Nz in our case) is specified first, and the slowest changing (Nx) last, resulting in an
unusual order when compared to the memory allocation functions we presented in the previous
chapter. Nevertheless, this is just a cosmetic issue which does not impact performance in any way.

Listing 4.5: Accessing pithed memory on a device.
// Allocated memory resides in a special structure
struct cudaPitchedPtr tensor;
cudaMalloc3D(&tensor, make_cudaExtent(Nz * sizeof(double), Ny, Nx);

// Define code for accessing specified row
// Equivalent to double *row = tensor[slice][row] on host
__device__ double *get_double_tensor_row(cudaPitchedPtr tensor, long slice, long row) {

return (double *)((((char *)tensor.ptr) + slice * tensor.pitch * tensor.ysize) + row *
tensor.pitch);

}

// From device code, access the specified row, and k-th element inside
// Equivalent to double val = tensor[i][j][k] in host code
double *tensorrow = get_double_tensor_row(tensor, i, j);
double val = tensorrow[k];

Changes required to support pitched memory were in most cases straightforward, however special
care has to be taken when working with cuFFT, as its basic interface does not assume that memory
is padded. Similarly to the advanced interface of FFTW, the advanced interface of cuFFT supports
working with a subset of a larger (in this case padded) multidimensional array. Using pitched
memory does not cause a significant increase in memory usage on GPU in most cases. On the
other hand, parallelization of outer loops requires additional per-thread memory, in the same way
as in OpenMP parallelization. Since GPU usually executes more threads simultaneously than what
is available on the CPU, this increase can be significant. Given that GPUs in most cases have
less RAM than their host, high memory usage means that the GPU can be used for much smaller
problem sizes.

To curb memory usage, we reused memory as much as possible, and reduced the memory foot-
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print of some functions. We allocate up to four matrices/tensors (for 2D and 3D, respectively),
which are used throughout the programs. These four matrices/tensors hold wave function values
(variable psi), temporary data, trap potential (pot) and Fourier transform of the dipolar potential
(potdd).

Allocating data for the two potentials that we use has been made optional, and can be exploited
to further reduce memory usage. We exposed this functionality through POTMEM input parameter.
The three possible values of POTMEM are 0, 1 and 2. Setting the value of POTMEM to 2 instructs the
programs to allocate two separate matrices/tensors which will be used to store trap potential and
dipolar potential in GPU memory. This provides the best performance at the expense of increased
memory usage, and thus smaller maximum mesh size. Setting POTMEM to 1 will allocate only one
matrix/tensor, which will store one of the two potentials, as needed. The required potential will be
copied asynchronously in the background while other computations on GPU take place. Initially, the
matrix/tensor will store trap potential. During execution of the calcpsidd2 function, the dipolar
potential will be copied over the trap potential, and after it is no longer needed, the trap potential
will replace it for the rest of the computation. This cycle will repeat itself in each iteration of the
wave function propagation. The last option, setting POTMEM to 0, will not allocate any memory
for the potentials on GPU, and will instead expose the host memory of the potentials as mapped
memory. Leaving the POTMEM parameter undefined will instruct the programs to try and select the
optimal value based on the size of the mesh. Figure 4.5 illustrates the three different settings of
the POTMEM parameter. We suggest using POTMEM value of 2 if possible, or leaving it undefined, and
using values of 1 or 0 if programs do not correctly predict the optimal value, or the problem cannot
fit into GPU memory.

Figure 4.5: Illustration of placement of relevant variables in CPU and GPU memory.

We allocate matrix/tensor for temporary data as a flat array of double or double complex
values, in the same way as for the other matrices/tensors. This matrix/tensor is used in real-time
propagation functions calclux, calcluy and calcluz to store the Crank-Nicolson coefficients.
Alternatively, complex matrix/tensor can be further divided into two matrices/tensors of double
values. Since the arrays we get in this way are also used in computation of R2C FFT, we had
to ensure the matrix/tensor had the proper size, that is 2 * Nx * (Ny / 2) and 2 * Nx * Ny *

(Nz / 2) in 2D and 3D variants of programs, respectively. To use this memory allocation scheme
effectively, we had to reorganize some of the computations inside calcmuen and calcpsidd2. In
fact, the memory optimizations of those two functions mentioned in Chapter 3 were inspired by
the optimizations we had to introduce in GPU variants of programs. Changes required in these
functions are conceptually very similar to the ones we presented in Chapter 3, therefore we will
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not go into all of their details here. One notable difference is the additional restriction we have to
place on FFT computation in order to keep its memory usage in check. We do this by ensuring
that cuFFT reuses temporary storage we already allocated to store its intermediate results. By
default, cuFFT will allocate memory for intermediate results separate from the already allocated
input/output arrays. This can be changed, however we must ensure that we have allocated enough
memory to meet cuFFT demands. The amount of memory required for FFT temporary data varies
with the transform size due to different algorithms used. Some transform sizes require much more
memory than others, in some cases up to eight times more [54]. This amount can be larger than
what we have already allocated, in which case the programs will select a nearest larger transform
size that can fit in the allocated memory and perform the computation as if the user has entered
the corresponding number in the input file for the mesh size. The output of programs will report if
it had to make these adjustments to the mesh size.

When all the memory optimizations are combined, we get an approximately 50% reduction in
the memory usage compared to the initial GPU implementation. This not only allowed us to use
this implementation for much larger mesh sizes, but also to use similar optimizations to improve all
variants of programs descried in this thesis.

CUDA programs have been grouped and published as DBEC-GP-CUDA package in Ref. [17],
which can be downloaded from Refs. [59, 37]. The package consists of 2D (corresponding to x-
y and x-z planes) and 3D programs, in both imaginary- and real-time propagation, resulting in 6
programs in total. We followed the similar naming convention as in the case of OpenMP-parallelized
programs, by adding a suffix “-cuda” to the base program name. Performance evaluation of these
programs is given in Chapter 8.



Chapter 5

Hybrid algorithm for
heterogeneous computing systems

In this chapter we describe the hybrid algorithm targeting heterogeneous systems. While this
algorithm can be implemented on every heterogeneous system where processing resources have
separate memory (i.e., the memory is not shared), here we focus on platforms consisting of CPUs
and GPUs on the same computer, as it is the most common heterogeneous platform. Thus, the
algorithm described here is a combination of algorithms from Chapters 3 and 4, further extended to
allow for simultaneous computation. The resulting hybrid algorithm and its implementation is made
possible by the fact that pure GPU solution does not use CPU for any computation, rather the CPU
is used only to control the execution of GPU kernels and perform I/O operations. Modern computers
with powerful GPUs usually also have a powerful multi-core CPUs, so using only GPU presents a
missed opportunity to achieve better performance through the use of all available resources.

Our goal was to extend the algorithm so that we can reuse as many portions of the CPU and
GPU programs as we can. We did this by introducing GPU support over the base OpenMP-
parallelized CPU programs from Chapter 3. Numerically most demanding functions were extended
to asynchronously offload computation to GPU, and then proceed with the computation on CPU
using multiple threads.

The most important part of creating a hybrid algorithm is the distribution of data between CPU
and GPU in a way that maximizes the performance of any function involved in time propagation
of the wave function. We first give a detailed description of how data is distributed, followed by a
description of hybrid computation functions and hybrid FFT in Section 5.1. Details of basic imple-
mentation that uses all available CPU cores and GPUs are given in Section 5.2. The implementation
of the data distribution scheme revealed that the time it takes to transfer the data to GPU and
back dominates the execution time. To optimize the implementation and minimize the impact of
data transfers, we have used CUDA streams to hide the latency of data transfers, as demonstrated
in Section 5.3 along with other memory usage optimizations we applied.

52
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5.1 Description of the hybrid algorithm

In order to use CPU and GPU at the same time, we have to divide the work efficiently between
them. If we put aside the obvious hardware architecture difference between CPU and GPU which we
described in Section 4.1, we can consider the computer with GPU as being similar to the distributed
memory system consisting of two computing nodes with different characteristics. Both CPU and
GPU have their own memory, and are connected through a fast interconnect, in this case the PCI-
Express. This means that we need an approach similar to the one distributed memory algorithms
use to achieve the desired parallelization. The most important difference here is that all data is
available in main (CPU) memory, and only portions of it need to be transferred to GPU memory,
as opposed to the true distributed memory systems, where no single part of the system has all the
data. Therefore, the general approach to perform this type of hybrid computation is to:

(i) designate a portion of data to be processed by GPU,

(ii) copy that data to GPU while simultaneously using CPU for computation over the remaining
data,

(iii) transfer the data back from GPU, overwriting old data, and

(iv) synchronize CPU and GPU.

This flow is illustrated in Figure 5.1.

Figure 5.1: Flow of data between host and device.

Not every function is feasible for simultaneous computation on CPU host and GPU device.
Functions calculating physical properties (chemical potential, energy, norm and RMS size), or func-
tions not executed in each iteration are not suitable for computation on GPU for various reasons.
Specifically, functions which require multiple invocations of numerical integration do not achieve
noticeable speedup on GPU, and when coupled with data transfer, actually perform worse than
on CPU alone. We have therefore focused our efforts on speeding up only the functions relating
to time propagation of the wave function, which are invoked in each step of the main loop, i.e.
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calcnu, calclux, calcluy, calcluz and calcpsidd2. The function computing the norm of the
wave function was not offloaded to GPU for real-time propagation, as it is not invoked in each
iteration. On the other hand, in imaginary-time propagation, in which normalization is performed
as the last step of each iteration, we perform a concurrent computation on both CPU and GPU
only for the normalization step (i.e., dividing the wave function by the norm), not the computation
of the norm itself.

Data can be offloaded in various ways [60, 61] and, in general, any data distribution scheme
which targets distributed memory systems may be used. However, we settled on a simple approach
using 1D decomposition, also known as slab decomposition.

When using slab decomposition, data is distributed along one dimension, usually the slowest-
changing one, and the remaining dimension (in 2D programs) or dimensions (in 3D programs) of
data remain local. This means that we can perform computation on the local data efficiently, and
no data exchanges are necessary. Depending on a data access pattern, in our programs we rely on
decompositions either along the x direction (discretized with the Nx spatial points), or along the y
direction (discretized with the Ny spatial points). In 3D programs, there is no need to decompose
the data along the z direction. In case we need data from the distributed dimension to become local
in order to perform some computation (e.g., to update the wave function values in calclux function
when data are decomposed along the x direction), we have to reassemble data in host memory and
decompose again along the appropriate dimension. Figure 5.2 illustrates this concept.

Figure 5.2: Two offload patterns used. If offloaded along x direction, the y direction remains local,
however if we need to access whole x direction data, we need to decompose along y direction.

With the decomposition scheme in place, we can consider how to divide the computation of the
wave function propagation in time between CPU and GPU. Once the data have been distributed
between CPU and GPU, on the CPU side only the exit condition of the outer loop needs to be
adjusted, so that the CPU processes a smaller number of elements (e.g., by replacing Nx with cpuNx).
Similar changes are required on the GPU side as well, however we also need to ensure that GPU has
valid data to work with, and that data are reassembled in host memory after the computation on
GPU is done. Introduction of offloading to GPU did not require significant changes to the functions
calculating individual parts of the wave function propagation, and all changes are similar.

Initially, we distribute the data along the slowest-changing dimension. This allows CPU and
GPU to simultaneously perform computation of wave function propagation w.r.t. H1 and H3 parts
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of the Hamiltonian (and H4 when working in 3D). The propagation of the wave function w.r.t. H2,
corresponding to the x direction, can be done locally only if we decompose the data along the y
direction before invoking the function calclux on CPU and GPU. Note that we do not have to
transfer data from GPU back to host memory at the end of each function, due to the fact that
time propagation w.r.t. H2, H3 and H4 parts of the Hamiltonian can be done in arbitrary order in
each step. Without this, the time propagation workflow of 3D programs would have to involve the
following steps, according to Figure 3.2:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,

3. propagate the wave function w.r.t. H1

4. reassemble the data in host memory,

5. transfer the data decomposed along y direction to GPU,

6. propagate the wave function w.r.t. H2

7. reassemble the data in host memory,

8. transfer the data decomposed along x direction to GPU,

9. propagate the wave function w.r.t. H3

10. propagate the wave function w.r.t. H4

11. reassemble the data in host memory.

Rearranging the order of time-propagation substeps allows us to remove one transfer of data to
GPU and its subsequent reassembly in host memory:

1. calculate the dipolar term,

2. transfer the data decomposed along x direction to GPU,

3. propagate the wave function w.r.t. H1

4. propagate the wave function w.r.t. H3

5. propagate the wave function w.r.t. H4

6. reassemble the data in host memory.

7. transfer the data decomposed along y direction to GPU,

8. propagate the wave function w.r.t. H2

9. reassemble the data in host memory,
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Therefore, we use the above, optimized sequence in our 3D programs, and similarly in 2D.
To complete our hybrid algorithm, we also need to distribute computation of the dipolar term

between CPU and GPU, where complexity arises in performing DFT on distributed data. Currently
available FFT libraries target either CPU or GPU for their computation, but unfortunately not
both at the same time. There are numerous attempts to develop specialized FFT libraries which
would enable this [62, 63, 64], however a full-featured library with support for R2C transforms with
advanced data layout is still not available. The approach we used is to rely on existing libraries for
actual transforms, but perform data distributions manually. The libraries we use, FFTW on CPU
and cuFFT on GPU, support advanced data layouts as well as working on a subset of the whole
data, allowing for an efficient implementation.

To perform the Fourier transform simultaneously on CPU host and GPU device, we split the
single multidimensional transform into a series of 1D transforms along each dimension of the input
data, which can be computed on CPU and GPU independently. This approach is known as the
row-column algorithm [65], and is often used in FFT libraries. The essence of this algorithm can
best be summarized in an example of a 2D FFT. Given a matrix Nx× Ny, we compute the DFT in
the following way:

1. Transfer portion of the input array, decomposed along the x direction, to device memory.
We transfer last gpuNx× Ny consecutive array elements to GPU. This can be done as a single
memory copy operation due to the flat allocation that was used. The choice whether to offload
data to GPU memory from the beginning or the end of the input array is arbitrary.

2. Perform DFT along the y direction on both CPU and GPU concurrently. CPU will perform
cpuNx such transformations, while the GPU will perform gpuNx 1D DFTs. Each of these
transforms will take a subset of the input array, which are Ny / 2 + 1 elements apart. Note
that CPU will not do anything with the last gpuNx× Ny elements.

3. Copy the array with the transform back from GPU to CPU, writing over the stale data
with the relevant portion transformed on GPU. After this step, we have the complete array
transformed along the y direction residing in host memory.

4. Transfer portion of the input array, decomposed along the y direction, to GPU memory.
Similarly to step 1, we transfer last Nx× gpuNy elements to GPU.

5. Perform DFT along the x direction on both CPU and GPU. This time, CPU will perform
cpuNy / 2 + 1 such transformations, while GPU will perform remaining gpuNy / 2 transfor-
mations. The halving of the number of transformations is due to use of R2C transformations.
In each transform, elements are Ny / 2 + 1 places apart, while the first element of each
transform is adjacent to the previous one.

6. Copy the array with the transform back from GPU to CPU. With this step completed, we
have the full FFT of the input array residing in host memory. This step may be omitted if
the computation that follows does not require the FFT of input data to be fully assembled
in host memory. This is the case in our algorithm, as we use the resulting transformed array
only for subsequent computation on GPU. Since the memory transfer is expensive, omitting
this step leads to significant performance improvement.
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The inverse Fourier transform can be done in an analogous way. In 3D, the general principle
remains the same, however, we do not separate the DFT into three 1D transforms, but to one
2D and one 1D transform. We do this due to better performance of 2D transforms, which in both
libraries used is found to be better than two 1D transforms. Figure 5.3 illustrates the DFT algorithm
described above.

Figure 5.3: Hybrid algorithm for concurrent FFT on host and device.

5.2 Implementation of the hybrid algorithm

The hybrid algorithm was implemented by extending the C/OpenMP implementation with the data
distribution scheme from the previous section, while the computation functions on the GPU device
were taken from the CUDA implementation described in Section 4.2. This allowed us to reuse much
of the existing code, with straightforward modifications.

Decomposition of data was implemented efficiently using the CUDA built-in functionality for
copying memory to and from the GPU. In case of decomposition along the x direction, we divide
the data into two (possibly uneven) parts with sizes cpuNx and gpuNx, where cpuNx + gpuNx = Nx.
Now the CPU works with the first cpuNx×Ny elements in 2D programs and cpuNx×Ny×Nz elements
in 3D programs, while the GPU works with remaining gpuNx × Ny elements in 2D programs and
cpuNx×Ny×Nz elements in 3D programs. Listing 5.1 shows how the memory is copied from host to
device in this scenario. The opposite, copying from device to host, is done in a similar way, where
only the source and destination pointers are exchanged in the copy parameters.

Listing 5.1: Initialization and copying of data from host to device, distributed along the x direction.
// Allocate host data
double *h_matrix = alloc_double_matrix(Nx, Ny);

// Allocate only the required amount of data on device
struct cudaPitchedPtr d_matrix_x = alloc_double_matrix_device(gpuNx, Ny);

// Prepare memcpy operation
struct cudaMemcpy3DParms cpy_x_h2d;
cpy_x_h2d.srcPtr = make_cudaPitchedPtr(h_matrix[cpuNx], Ny * sizeof(double), Ny, gpuNx);
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cpy_x_h2d.dstPtr = d_matrix_x;
cpy_x_h2d.extent = make_cudaExtent(Ny * sizeof(double), gpuNx, 1);
cpy_x_h2d.kind = cudaMemcpyHostToDevice;

// Copy data from host to device
cudaMemcpy3D(&cpy_x_h2d);

Similar concept is applied when distributing data along the y direction. This time CPU works
with Nx × cpuNy in 2D (Nx × cpuNy × Nz in 3D), while the GPU portion is Nx × gpuNy in 2D,
Nx× gpuNy× Nz in 3D (Listing 5.2).

Listing 5.2: Initialization and copying of data from host to device, distributed along the y direction.
// Allocate only the required amount of data on device
struct cudaPitchedPtr d_matrix_y = alloc_double_matrix_device(Nx, gpuNy);

// Prepare memcpy operation
struct cudaMemcpy3DParms cpy_y_h2d;
cpy_y_h2d.srcPtr = make_cudaPitchedPtr(h_matrix[0], Ny * sizeof(double), Ny, Nx);
cpy_y_h2d.srcPos = make_cudaPos((cpuNy) * sizeof(double), 0, 0);
cpy_y_h2d.dstPtr = d_matrix_y;
cpy_y_h2d.extent = make_cudaExtent(gpuNy * sizeof(double), Nx, 1);
cpy_y_h2d.kind = cudaMemcpyHostToDevice;

// Copy data from host to device
cudaMemcpy3D(&cpy_y_h2d);

We can also notice how the flat allocation of memory on CPU is once again useful. Without it,
the transfer of data between CPU and GPU would be much more complicated, involving copying
individual rows of the innermost dimension. Flat allocation allows for a single copy operation to
be invoked to copy the whole GPU portion of the data. It is also much easier to further divide the
copy operation when using CUDA streams, as we will demonstrate in Section 5.3.

With the data transfer mechanism in place, we can focus on enabling concurrent computation.
CUDA kernel launches are asynchronous with regard to the CPU, allowing us to combine them with
OpenMP-based computation on CPU. There are numerous ways to implement GPU offloading. We
have investigated three possible approaches, which we now describe.

Figure 5.4: Three strategies considered for GPU offloading.
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The approach we decided to use, illustrated on Figure 5.4(a), involves the use of OpenMP nested
parallelism. We first create a parallel region that consists of two threads, one of which will invoke
the GPU functions, while the other will do the same for CPU functions. The GPU-related thread
invokes the required functions and waits for their completion. Meanwhile, the CPU-related thread
spawns new (nested) threads, which perform the CPU computation with the changed loop exit
condition (Listing 5.3). The optimal number of newly spawned threads is equal to nthreads - 1,
where nthreads is the total number CPU cores in the system.

Listing 5.3: Use of nested OpenMP parallelism to control both host and device computation.
void hybrid_function(...) {
...

#pragma omp parallel private(threadid) num_threads(2)
{

threadid = omp_get_thread_num();

if (threadid == 0) {
gpu_function(); // Async calls on device
sync_with_gpu(); // Wait for completion

}

if (threadid == 1 || omp_get_num_threads() != 2) {
cpu_function(...); // Invokes nested parallelism

}
}

...
}

void cpu_function(...) {
...

nthreads = omp_get_num_threads();

#pragma omp parallel for private(...) num_threads(nthreads - 1)
for (...) { ... }

...
}

The second approach, illustrated in Figure 5.4(b), does not use nested parallelism. Instead of
dedicating one thread to GPU-related tasks, here we asynchronously invoke GPU functions from
the master thread. Before performing computation on CPU using OpenMP threads, we instruct
the GPU to perform the work from the master CPU thread. Next we invoke the CPU computation
via OpenMP threads (one for each CPU core), and finally, after CPU completes its computation,
we synchronize with the GPU to avoid race conditions (Listing 5.4). This approach works because
GPU supports asynchronous calls. Kernel invocations are naturally asynchronous with regard to
the CPU, while the memory transfer calls can be asynchronous, a feature which will be explained in
detail in Section 5.3. While simpler to implement, this solution performs worse than aforementioned
implementation with a dedicated GPU thread. This is because the asynchronous GPU calls still
require some CPU work, and the frequent context switches the operating system has to make to
service the GPU calls negatively affects performance of OpenMP threads.

Final approach we considered involves using each OpenMP thread for both CPU and GPU
functions. This way, each OpenMP thread was responsible for transferring optimal amount of data
to GPU and back, and invoking kernels on GPU, as illustrated in Figure 5.4(c). This approach did



CHAPTER 5. HYBRID ALGORITHM FOR HETEROGENEOUS COMPUTING SYSTEMS 60

Listing 5.4: Use of asynchronous calls to device functions while using OpenMP for computation on
host.
void hybrid_function(...) {
...

gpu_function();

#pragma omp parallel private(threadid, ...)
{

threadid = omp_get_thread_num();

#pragma omp for
for (...) { ... }

}

sync_with_gpu();
...
}

not bring observable performance improvement and led to a much more complex implementation,
requiring more bookkeeping, especially with the introduction of multi-GPU support. Additionally,
the flexibility of choosing an ideal amount of data to offload to GPU for each function was somewhat
lost because the amount of data offloaded to GPU was now controlled by the number of active
OpenMP threads. The introduction of per-thread default streams in CUDA 7.0 (not available at
the time of development) could have been used to simplify the implementation, however it would
have still been more complex than our other approach, and would not solve the flexibility issue. For
these reasons we have discarded this approach.

At this point, we have an implementation that performs most of the computation simultaneously
on CPU and GPU, but we also need to implement hybrid FFT routines. The hybrid row-column
algorithm from the previous section for DFT can be implemented using existing libraries very effi-
ciently, without the requirement to make the input data of every transform consecutive in memory.
The only complexity of this approach is that we have to use the advanced interface of FFTW and
cuFFT that allows setting appropriate offsets, strides and number of transforms manually. We can
see how this works in Listing 5.5, which demonstrates how a 3D FFT can be divided between host
and device. This approach does not require more memory than regular multidimensional CPU or
GPU FFT. We have tested several combinations of in-place and out-of-place transforms, and have
concluded that on the device, the transform along the x direction (when data is distributed along
the y direction) performs much better when done out-of-place, while for all other transforms the
difference between in-place and out-of-place operation is usually not significant. In our case, switch-
ing from one type of transform to another is easy, the only change needed is to allocate memory for
the output array, and pass its pointer to the planner.

Listing 5.5: Creating and executing plans for concurrent FFT on host and device.
// Allocate proper amount of data on host
double ***tensor = alloc_double_tensor(Nx, Ny, Nz);
fftw_complex *fft_array = alloc_complex_vector(Nx * Ny * (Nz/2+1));

// Using FFTW’s ’advanced’ interface on host
int fft_rank = 2; int nfr[] = {Ny, Nz}; int howmany = cpuNx;
int idist = Ny * (Nz/2+1) * 2; int odist = Ny * (Nz/2+1);
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int istride = 1; int ostride = 1;
int *inembed = NULL, *onembed = NULL;
// Define an out-of-place plan for cpuNx transforms of size Ny * (Nz/2+1)
plan_fw_row = fftw_plan_many_dft_r2c(fft_rank, nfr, howmany, **tensor, inembed, istride,

idist, fft_array, onembed, ostride, odist, FFTW_MEASURE);

fft_rank = 1; int nfc[] = {Nx}; howmany = cpuNy * (Nz/2 + 1);
idist = 1; odist = 1;
istride = Ny * (Nz/2+1); ostride = Ny * (Nz/2 + 1);
// Define an in-place plan for cpuNy * (Nz/2 + 1) transforms of size Nx
plan_fw_col = fftw_plan_many_dft(fft_rank, nfc, howmany, fft_array, inembed, istride,

idist, fft_array, onembed, ostride, odist, FFTW_FORWARD, FFTW_MEASURE);
...
// Plans can be executed with the following command
fftw_execute_dft_r2c(plan_fw_row, **tensor, fft_array);
fftw_execute_dft(plan_fw_col, fft_array, fft_array);

// Allocate proper amount of data on device
struct cudaPitchedPtr d_tensor_x = alloc_double_tensor_device(gpuNx, Ny, (Nz/2+1)*2);
struct cudaPitchedPtr d_tensor_y = alloc_double_tensor_device(Nx, gpuNy, (Nz/2+1)*2);
struct cudaPitchedPtr d_tensor_y_tran = alloc_double_tensor_device(Nx, gpuNy, (Nz/2+1)*2);

// Using equivalent cuFFT calls on device
fft_rank = 2; int nfr[] = {Ny, Nz}; howmany = gpuNx;
idist = Ny * (d_tensor_x.pitch / sizeof(cufftDoubleReal));
odist = Ny * (d_tensor_x.pitch / sizeof(cufftDoubleComplex));
istride = 1; ostride = 1;
int inembed_fwr[] = {Ny, d_tensor_x.pitch / sizeof(cufftDoubleReal)};
int onembed_fwr[] = {Ny, d_tensor_x.pitch / sizeof(cufftDoubleComplex)};
// Define an in-place plan for gpuNx transforms of size Ny * (Nz/2+1), padded by ’pitch’
cufftMakePlanMany(plan_fw_row, fft_rank, nfr, inembed_fwr, istride, idist, onembed_fwr,

ostride, odist, CUFFT_D2Z, howmany, &ws_fwr);

fft_rank = 1; int nfc[] = {Nx}; howmany = gpuNy * (Nz/2+1);
idist = 1; odist = 1;
istride = gpuNy * (d_tensor_y.pitch / sizeof(cufftDoubleComplex));
ostride = gpuNy * (d_tensor_y_tran.pitch / sizeof(cufftDoubleComplex));
int inembed_fc[] = {Nx}; int onembed_fc[] = {Nx};
// Define an out-of-place plan for gpuNy * (Nz/2+1) transforms of size Nx,padded by ’pitch’
cufftMakePlanMany(plan_fw_col, fft_rank, nfc, inembed_fc, istride, idist, onembed_fc,

ostride, odist, CUFFT_Z2Z, howmany, &ws_fwc);
...
// Plans can be executed with the following command
cufftExecD2Z(plan_fw_row, (cufftDoubleReal *) d_tensor_x.ptr, (cufftDoubleComplex *)

d_tensor_x.ptr)
cufftExecZ2Z(plan_fw_col, d_tensor_y.ptr, d_tensor_y_tran.ptr, CUFFT_FORWARD);

Implementation described so far utilizes all available CPU cores, but only a single GPU. Since a
computer may have multiple GPUs installed, we have implemented support for using all available
GPUs. Currently, CUDA supports up to four GPUs in a single computer, meaning we can offload
up to four times the amount of data to GPUs. We have tested the programs on a computer with
up to three GPUs, maximum allowed by the hardware at PARADOX supercomputing facility.

CUDA provides a simple API for choosing which GPU is in use, via the cudaSetDevice function.
Every command issued afterward targets the selected device. The developer only needs to keep track
of pointers used for each device. This simple mechanism allows us to keep our data transfer routines
intact, and add support for multiple GPUs with little effort. The general concept we used is to loop
over available GPUs, and issue the desired operations on each device (Listing 5.6).
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Listing 5.6: Changing the currently active GPU device.
cudaGetDeviceCount(&nDevices);

for (i = 0; i < nDevices; i ++) {
cudaSetDevice(i);
... // Issue commands as usual

}

This approach has only one drawback, and that is that it will issue the same amount of work to
all GPUs, which may not be optimal if GPUs are different. We believe that the trade-off between
the simplicity of implementation and feature-completeness was worthwhile, because in most HPC
installations, all GPUs within a single computing node are of the same model. Alternatively, we
could have also made our programs aware of the differences between multiple GPUs installed.
CUDA has an API for discovering features of GPUs which would be useful in selecting the optimal
parameters for the amount of work for each CPU, however it would still be a significant effort to
implement this in our programs, and for the users to optimally use this functionality.

During implementation of the algorithm described in this section we noticed that the majority
of the execution time on GPU is spent waiting for the memory transfers to complete. To perform a
single multidimensional FFT, we need four memory transfers, which, if implemented in a sequential
manner, becomes the main bottleneck. In the next section we describe a technique to mitigate this.

5.3 Optimization of data transfers

Transferring memory is usually a significantly slower process than computation, to such an extent
that if memory copies between host and device are common, that defeats the whole purpose of using
GPU. In our implementation, several copies are needed during one iteration of the wave function
propagation, limiting the use of GPU to smaller mesh sizes.

There are several remedies to this problem. An obvious one is to reduce the amount of data
transferred, by only transferring subsets of data that are required on the GPU side. The programs
presented here minimize the amount of data involved by copying only the parts of arrays required by
the computation that immediately follows. Although this technique brings observable improvement,
it alone is not enough to consider the problem solved. In fact, reducing the amount of data that is
copied to GPU and back also means that we use less GPU memory, allowing for use of larger meshes
on GPU, which in turn take more time to transfer. Therefore, we rely on additional optimizations
in order to improve memory transfer.

To be able to do this, we have to understand and exploit the nature of data transfers between
CPU and GPU. Data allocations on the CPU side are pageable by default, and the operating system
can swap-out memory pages at any point. The GPU cannot access data directly from pageable CPU
memory, so when a data transfer from pageable host memory to GPU memory is invoked, the CUDA
driver must first allocate a temporary page-locked, or pinned, host array, copy the host data to the
pinned array, and then transfer the data from the pinned array to device memory.

As can be seen in Figure 5.5, pinned memory is used as a staging area for transfers. We can
avoid the cost of the transfer between pageable and pinned host arrays either by directly allocating
CPU arrays in pinned memory, or by declaring that already allocated array should be page-locked,
or pinned. Pinned memory has its downsides: if the operating system cannot swap-out pages, it
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Figure 5.5: Memory copy between host and device using pageable (left) and pinned (right) memory.

may run out of resources, causing it to behave in an unexpected way. Consequently, pinned memory
should not be overused. Since our programs transfer only subsets of whole arrays, pinning just those
parts allows us to benefit from improved transfer speeds, as well as leave the rest of the memory
allocated as pageable, in case the operating system wishes to swap it out.

Even with the use of pinned memory, the data transfer times are still large in comparison to the
computation time, and leave the GPU idle during transfer. Most CUDA GPUs support simultaneous
data transfers and computation via CUDA streams, which are sequences of operations that execute
on the device in order by which they are issued by the host code. While operations within a stream
are guaranteed to execute in the prescribed order, operations in different streams can be interleaved
and, when possible, they can even run concurrently. Proper use of streams allows us to overlap data
transfers and computation, thus mitigating the slow transfer speeds. Streams are actually always
used internally within CUDA runtime, and unless a stream is specified explicitly, all operations are
queued to the default stream where they appear to be synchronous due to their order of execution.

Streams are relatively simple to use when there are multiple operations on disjoint arrays queued
for execution. However, when there is just one transfer to GPU, followed by computation on that
data and transfer of data back from GPU, streams alone do not offer a way to improve performance.
Therefore, to obtain speedup we divide the data into smaller chunks, which can then be transferred
and processed independently (Figure 5.6). This idea allows us to reduce the idle time of GPU, from
the time it takes to transfer the whole array to GPU and back, to the time it takes to transfer just
one chunk to GPU and back, which can be significant.

Figure 5.6: Dividing data into smaller chunks and transferring them using streams reduces the GPU
idle time. The idle time is reduced to the time it takes to complete one host to device (H2D) copy
operation and one device to host (D2H) copy operation.

The overlap illustrated in Figure 5.6 is possible only on certain CUDA GPUs. In general, the
overlap depends on the order the operations are issued to a stream, and the number of copy engines
that the GPU has. Operations in each engine’s queue are executed in the order they are issued.
Therefore, to queue all operations, we have two choices, shown in Listing 5.7.
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Listing 5.7: Two approaches to issuing commands to CUDA streams.
h_data = ... // Allocate data on host
d_data = ... // Allocate data on device
str = ... // Initialize ’nStreams’ CUDA streams

// Asynchronous copy v1
for (i = 0; i < nStreams; i++) {

int offset = i * streamSize;
cudaMemcpyAsync(&d_data[offset], &h_data[offset], size, cudaMemcpyHostToDevice, str[i]);
kernel<<<gridSize, blockSize, 0, str[i]>>>(d_data, offset);
cudaMemcpyAsync(&h_data[offset], &d_data[offset], size, cudaMemcpyDeviceToHost, str[i]);

}

// Asynchronous copy v2
for (i = 0; i < nStreams; i++) {

int offset = i * streamSize;
cudaMemcpyAsync(&d_data[offset], &h_data[offset], size, cudaMemcpyHostToDevice, str[i]);

}
for (i = 0; i < nStreams; i++) {

int offset = i * streamSize;
kernel<<<gridSize, blockSize, 0, str[i]>>>(d_data, offset);

}
for (i = 0; i < nStreams; i++) {

int offset = i * streamSize;
cudaMemcpyAsync(&h_data[offset], &d_data[offset], size, cudaMemcpyDeviceToHost, str[i]);

}

Depending on the number of copy engines, overlaps may be different, or not exist at all. If a
GPU has two copy engines, one for transferring to and one for transferring back from the GPU,
the overlap obtained by the first approach is ideal, while the second one is not. If there is one copy
engine, the situation is different, with the second approach performing better. This is shown on
Figure 5.7.

Figure 5.7: Difference between one and two copy engines for overlapping data transfer and compu-
tation.
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Nvidia Tesla line of GPUs usually has two copy engines, while the consumer-oriented GeForce
line has just one [66]. On newer Nvidia GPUs with Compute Capability 3.5 and higher this is not
a problem, so both approaches have equal performance. However, we decided to aim for maximum
compatibility and implemented both approaches, and our programs themselves select the correct
approach at runtime. We created separate functions for different cases, and a function pointer to
select between the two. Number of copy engines (among other things) for CUDA device in use
can be obtained from CUDA runtime. With this piece of information programs choose the correct
functions during initialization.

In Figures 5.6 and 5.7 we assume that the time required for transfer and computation is approx-
imately the same. This, however, is not necessarily easy to achieve, as it depends on the size and
number of chunks that the GPU will process. Users can control the size and number of chunks in
our programs, and a detailed guide to choosing the best parameters is given in Chapter 8.



Chapter 6

Distributed memory algorithm

Algorithms presented in previous chapters target a single computer, where they use all available
CPU and/or GPU resources. Next logical step is to extend them to multiple machines, i.e., clusters
of computing nodes with distributed memory model, where no single process contains the whole
dataset. Using multiple computing nodes can help us achieve two goals, namely faster computation
on existing mesh sizes due to more computing resources being available, and availability of larger
mesh sizes that cannot fit on a single computing node. In a distributed memory system, we often
need to exchange data between processes running in parallel on different computing nodes. Explicit
message passing is typically deployed to facilitate data exchanges and achieve parallelism.

The most popular standardized protocol for message passing paradigm is the Message Passing
Interface (MPI) [67], which we use in our implementations targeting distributed memory clusters.
For this development, focus was placed only on the 3D variants of our programs. We made this
decision because modern computers (especially powerful cluster nodes) have enough memory for 1D
or 2D calculations our programs require. An MPI algorithm with three different implementations
came out as a result of this effort. The three implementations are:

1. pure CPU version built on top of shared memory algorithm from Chapter 3,

2. pure GPU version built on top of CUDA implementation of the shared memory algorithm
described in Chapter 4 and

3. hybrid version based on the algorithm described in Chapter 5.

Henceforth, we refer to these implementations as OpenMP/MPI, CUDA/MPI and Hybrid/MPI,
respectively. Two of the three implementations, the OpenMP/MPI and CUDA/MPI implementa-
tions, have been published in Ref. [18] and is available for download [46, 37]. The Hybrid/MPI
implementation is also publicly available [37].

In the following sections, we demonstrate how the algorithms from previous chapters can be
extended with a data distribution scheme to enable their execution on distributed memory systems,
and how MPI can be successfully used in the implementation of these new algorithms. All three
implementations we developed share a common data distribution scheme, and thus share the same
general structure, so we describe them together in this chapter, emphasizing the differences in im-
plementations where applicable. We start with the description of data decomposition among the
nodes in the cluster (Section 6.1), and how the necessary transpose of data can be implemented.

66
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In Section 6.2 we move on to the description of the changes in computation imposed by the dis-
tributed environment. Finally, in Section 6.3, we describe the changes needed to input and output
components in the new environment.

6.1 Data distribution scheme

When we design algorithms for distributed memory systems there are two general approaches we can
take. We can either focus our efforts on developing distributed algorithms, or we can dynamically
redistribute the data by doing a transpose among processes in order to apply our existing algorithms
on each computing node.

In the first approach, we would have to develop many novel algorithms from scratch, such as
a parallel tridiagonal solver used in the functions calclux, calcluy and calcluz, or a parallel
Fourier transform working on distributed data, and in the case of a heterogeneous architecture,
further divided between CPU and GPU. This would require a significant effort, and while in the
end it may provide significant performance improvement, the complexity of the implementation
would be detrimental to future modifications.

The other approach, to redistribute the data, requires only development of transpose routines
necessary to transform the data so that any desired dimension is local to a process. Thus, the
second approach is preferred here due to its simplicity. The existing algorithms, optimized for a
single machine, remain mostly unchanged and preserve all of the original logic. Conceptually, the
most important changes are that we now initialize only the relevant portion of data on each process,
and rely on data transposes to bring the nonlocal data to each process.

Working with 3D data allows us to have a 1D, 2D or 3D decomposition, as shown in Figure 6.1.
In 1D or 2D decompositions we can arbitrarily choose the dimensions which would be split among
the processes. The 3D decomposition would imply that no single dimension is local to any process,
a scenario that would require us to develop distributed algorithms from scratch, which we do not
pursue.

Figure 6.1: Decomposition of 3D data along one (left), two (center) and three (right) dimensions.

The 1D decomposition (slab decomposition, Figure 6.1, left), which we have already used as the
data distribution method in our hybrid algorithm, is the simplest way to distribute the data among
separate processes here as well. In this decomposition approach, each MPI process is assigned one
or more 2D slices of data s shown in the figure. The downside of this type of decomposition is its
scalability. In order to perform a transpose over slab-decomposed data, all processes communicate to
must exchange data, which in cases of large number of processes (over 1000), can lead to scalability
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issues [68]. On the other hand, in 2D decomposition, also known as block or pencil decomposition,
MPI processes are organized in a 2D array and each contains one or more 1D blocks of data as
shown in Figure 6.1 (center). The block decomposition requires only between processes in a single
logical row or column, which scales better.

Transposing data in both of these decomposition types can be implemented using all-to-all MPI
functions, e.g., MPI_Alltoall or MPI_Alltoallv. However, 2D decomposition is more difficult to
implement since the communication pattern is quite complex [69], e.g., the cost of communications
is very sensitive to the orientations of blocks and their associated memory patterns. The packing
and unpacking of memory buffers for the MPI library must be handled with great care for efficiency.
All this is further complicated by the fact that we need two such decompositions, depending on the
dimension which we need to be local to each process. In the implementation of 1D decomposition,
there is an alternative way to transpose the data, via the FFTW library, whose implementation
of transpose routines relies on internal mechanisms used in the computation of multidimensional
FFT. This approach is simpler and has an additional benefit in that FFTW routines can operate
in-place, whereas MPI_Alltoall-based approach can only operate out-of-place. Even for out-of-
place transposes, FFTW’s routine should be equal or faster, since one of the possible algorithms
that FFTW uses for an out-of-place transpose is simply to call MPI_Alltoall.

Since PARADOX cluster used during the development has slightly more than a hundred nodes
(with a total of 1696 cores), we have decided to base our algorithm and its implementations on the
1D decomposition. In order to avoid its scalability issues for large number of processes, we use MPI
only for communication between nodes in a cluster, whereas all computation within a single node
remains unchanged, with OpenMP, CUDA, or a combination of the two. Similarly to approach
used in our hybrid algorithm, here we also decompose along the x and y direction, according to
data access patterns, an example of which we show in the next section. This means that each
process holds localNx × Ny × Nz amount of data (or Nx × localNy × Nz), where localNx = Nx /

nprocs and nprocs is the number of MPI processes (localNy = Ny / nprocs). Transpose along
the innermost, fastest changing dimension is not required by any computation.

With the data distributed among the MPI processes, we need an efficient transpose routine to
redistribute the data along a different dimension. As mentioned before, one easy way to achieve
this is to use the transpose routines from the FFTW library, which we use in the OpenMP/MPI
and Hybrid/MPI implementations. Transpose interface in FFTW works in a similar way as the rest
of the library, i.e., it involves creating end executing a plan (Listing 6.1). We use a special type of
transpose routine from FFTW, where data is locally transposed. The full transpose of data would
require performing an additional, local transpose operation, which we omit since we can perform all
computation with locally transposed data. This means that the data after such partial transpose
operation are stored structured as Nx × localNy × Nz in row-major order, instead of the expected
localNy × Nx × Nz structure in row-major order. Similar procedure can be used to transpose the
data back to its original layout. This way, we do not have to change the data access pattern, we
only have to adjust the loop limits. To instruct FFTW to perform transpose in this way, we have
to pass an additional flag when creating a transpose plan.

While it is very easy to use, FFTW transpose interface currently works only on data stored
in host memory of each computing node, not the GPU memory. As a consequence, we had to
implement our own transpose routines for CUDA/MPI version. We used the MPI data types and
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Listing 6.1: The transpose operation implemented using FFTW, using locally transposed data
layout.
// Allocate required memory
double ***tensor = alloc_double_tensor(localNx, Ny, Nz);
double ***tensor_t = alloc_double_tensor(Nx, localNy, Nz);

// Create a plan with a special flag specifying that output should be locally transposed
fftw_plan plan_tran_x = fftw_mpi_plan_many_transpose(Nx, Ny * Nz, 1, localNx, localNy *

Nz, **tensor, **tensor_t, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_OUT);
fftw_plan plan_tran_y = fftw_mpi_plan_many_transpose(Ny * Nz, Nx, 1, localNy * Nz,

localNx, **tensor_t, **tensor, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_IN);

//Execute like a regular FFTW plan
fftw_execute(plan_tran_x);
fftw_execute(plan_tran_y);

all-to-all communication (by using MPI_Alltoall function or a series of MPI_Isend and MPI_Irecv

functions) to perform this task. We implemented the same locally transposed input/output data
layout. Figure 6.2 shows the communication pattern required to perform such transpose operation.
Since the result of the transpose is the same with FFTW and our own implementation, we made
available the choice between the two transpose routines as a compile-time variable in Hybrid/MPI
implementation, allowing users to select routine to be used.

Figure 6.2: Communication pattern of transpose operation between four processes. Note that the
data after the operation are locally transposed, i.e., do not represent full transpose in general case.

Two custom MPI data types were required, representing a portion of the data which is to be
exchanged in x and y dimension. Special care must be taken to account for the third dimension,
which is padded in CUDA implementation and should thus be expressed in bytes and not in the
actual number of elements. To achieve this, we use MPI vector type, as described in Listing 6.2.

Listing 6.2: The transpose operation implemented using MPI, using locally transposed data layout.
struct tran_params { // We use a structure to keep the data relevant to transpose

void *orig_buf, *tran_buf; // Data buffers
int *orig_cnts, *tran_cnts; // Counts
int *orig_displ, *tran_displ; // Displacements
MPI_Datatype *orig_types, *tran_types; // Custom MPI types
int nprocs; // Number of processes
MPI_Request *send_req, *recv_req; // Used to track async sends and recv’s

};
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struct tran_params init_transpose_double(int nprocs, long localNx, long localNy, long Ny,
long Nz, void *send_buf, size_t send_pitch, void *recv_buf, size_t recv_pitch) {

long i;
MPI_Datatype tran_dtype;
MPI_Datatype lxyz_dtype, xlyz_dtype;
struct tran_params tran;

// Create a custom data type representing a Ny * Nz matrix, pitched, in bytes
MPI_Type_contiguous(localNy * (send_pitch / sizeof(double)), MPI_DOUBLE, &tran_dtype);
MPI_Type_commit(&tran_dtype);

// MPI vector representing the data to be sent to each process
MPI_Type_create_hvector(localNx, 1, Ny * send_pitch, tran_dtype, &lxyz_dtype);
MPI_Type_create_hvector(localNx, 1, localNy * recv_pitch, tran_dtype, &xlyz_dtype);
MPI_Type_commit(&lxyz_dtype);
MPI_Type_commit(&xlyz_dtype);

... // Allocate tran_params variables (*_cnts, *_displ, *_types, *_req)

// Set the parameters for each process
for (i = 0; i < nprocs; i ++) {

orig_cnts[i] = 1;
tran_cnts[i] = 1;

orig_displ[i] = i * localNy * send_pitch;
tran_displ[i] = i * localNx * localNy * recv_pitch;

orig_types[i] = lxyz_dtype;
tran_types[i] = xlyz_dtype;

}

return tran;
}

void transpose(struct tran_params tran) {
long i;

// Exchange data using asynchronous send and receive
for (i = 0; i < tran.nprocs; i++) {

MPI_Irecv(((char *)tran.tran_buf) + tran.tran_displ[i], 1, tran.tran_types[i], i, 0,
MPI_COMM_WORLD, &(tran.recv_req[i]));

MPI_Isend(((char *)tran.orig_buf) + tran.orig_displ[i], 1, tran.orig_types[i], i, 0,
MPI_COMM_WORLD, &(tran.send_req[i]));

}
for (i = 0; i < tran.nprocs; i++) {

MPI_Wait(&(tran.recv_req[i]), MPI_STATUSES_IGNORE);
MPI_Wait(&(tran.send_req[i]), MPI_STATUSES_IGNORE);

}

// Alternatively, we can use MPI_Alltoallw
//MPI_Alltoallw(tran.orig_buf, tran.orig_cnts, tran.orig_displ, tran.orig_types,

tran.tran_buf, tran.tran_cnts, tran.tran_displ, tran.tran_types, MPI_COMM_WORLD);
}

// To initialize the transpose operation
d_tensor = alloc_double_tensor_device(localNx, Ny, Nz);
d_tensor_t = alloc_double_tensor_device(Nx, localNy, Nz);
tran_tensor = init_transpose_double(nprocs, localNx, localNy, Ny, Nz, d_tensor.ptr,

d_tensor.pitch, d_tensor_t.ptr, d_tensor_t.pitch);
transpose(tran_tran_tensor);
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An interesting property of the CUDA/MPI implementation is that the transpose routine is
invoked on data residing in GPU memory, as opposed to the other two distributed memory imple-
mentations. This is possible due to the functionality available in some of the modern, CUDA-aware
MPI implementations, where MPI runtime can directly access data in GPU memory without the
need for copying to the host memory. Otherwise, we would need to copy the data to host memory
before any MPI routine is called, a task known to be a bottleneck, which would make CUDA/MPI
implementation far less usable. A list of CUDA-aware MPI implementations is available in Ref.
[70]. During testing and development of the three distributed memory implementations, we have
used Open MPI library [71], which can be compiled with support for CUDA.

6.2 Distributing the computation over multiple processes

With our data distribution scheme explained in the previous section, we can outline the changes
required to the computation functions. We first have to ensure that each process works with a
different portion of the data, or rather, initialize equal, non-overlapping portions of data on each
process. This requires that the number of discretization points of each dimension that will be
distributed must be divisible by the number of processes. By introducing additional processing
logic it is possible to support the distribution of non-equal portions of data, however, we decided
against such implementation since it leads to unbalanced computing load. Note that this is not
a significant restriction because users can always adapt and select slightly larger or smaller, but
evenly divisible mesh.

Data initialization begins by calculating the amount of data each process will get. Based on that
we calculate each process’ logical offset into the data, so we can initialize only the relevant portion.
Initially, we distribute the data along the x dimension and perform a transpose operation whenever
the data need to be local in that dimension. Listing 6.3 shows how each process can identify and
initialize only the portion of data that logically belongs to it.

Listing 6.3: Example of initialization of the relevant portion of data on each process.
// Get the rank of the current process and total number of processes
MPI_Comm_rank(MPI_COMM_WORLD, &rank);
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
// Compute offsets
long localNx = Nx / nprocs; long offsetNx = rank * localNx;
// Allocate memory for data
psi = alloc_double_tensor(localNx, Ny, Nz);
// Example of initialization of relevant portion of wave function
for (i = 0; i < Nx; i ++) {

x[i] = (i - Nx / 2) * dx; x2[i] = x[i] * x[i];
}
...
for (i = 0; i < localNx; i ++) {

for (j = 0; j < Ny; j ++) {
for (k = 0; k < Nz; k ++) {

tmp = exp(- 0.5 * (vgamma * x2[offsetNx + i] + vnu * y2[j] + vlambda * z2[k]));
psi[i][j][k] = tmp / cpsi;

}
}

}
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Now that each process has initialized the relevant portion of the data, the only change to the
computation functions is the adjustment of the exit clause (limit) of the outermost loop. Compu-
tation in the inner loops that require other two dimensions to be local remains unchanged. This
means that functions calcnu, calcluy and calcluz do not require any changes other than mod-
ifications of the loop limits, as their relevant portion of data is already local. Function calclux,
which requires x dimension to be local, is changed so that we first transpose the data, afterward
perform the computation as before, and then transpose the data back to original layout (Listing
6.4).

Listing 6.4: Pseudocode of the changed caclux function.
// Using FFTW transpose for OpenMP/MPI implementation
void calclux(...) {

...
fftw_execute(plan_transpose_x); // Transpose ’psi’ and place the result in ’psi_t’
... // Compute calclux using ’psi_t’, with the outer loop limit set at ’localNy’
fftw_execute(plan_transpose_y); // Transpose ’psi_t’ back to original ’psi’

}

// Using custom MPI transpose for Hybrid/MPI and CUDA/MPI implementations
void calclux(...) {

...
transpose(tran_psi);
...
transpose_back(tran_psi);

}

This is also a common pattern for other functions that require x dimension to be local, namely,
parts of computation of chemical potential and energy, as well as RMS size. These functions also
require communication between processes to gather results of computation at root process (usually
the process with the lowest identification number, i.e., 0), which post-processes them (if needed)
and writes the summary output. Listing 6.5 demonstrates this pattern.

Listing 6.5: Pseudocode of the data gathering pattern employed by cacnorm, cacmuen and cacrms

functions.
void calcnorm(...) {

...// Place the temporary data in ’tmpx’ as before
void *sendbuf = (rank == 0) ? MPI_IN_PLACE : *tmpx;
MPI_Gather(sendbuf, localNx, MPI_DOUBLE, *tmpx, localNx, MPI_DOUBLE, 0, MPI_COMM_WORLD);

if (rank == 0) {
*norm = sqrt(simpint(dx, *tmpx, Nx));

}

MPI_Bcast(norm, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
...

}

The final piece is the computation of Fourier transforms in a distributed memory environment.
Fourier transform for OpenMP/MPI implementation is a straightforward task, because FFTW
library supports MPI, and uses the same slab decomposition. FFTW’s MPI transform algorithms
work by first computing transforms of the data local to each process, then by globally transposing
the data to redistribute them among the processes and performing a transform of the new data
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local to each process, and optionally transposing back. This sequence corresponds to the row-
column algorithm, which we have already seen in our hybrid algorithm in Chapter 5. An example of
the row-column algorithm in a distributed memory system for 2D Fourier transform is illustrated in
Figure 6.3. If the final data transpose is omitted, the transform results are produced in transposed
order, distributed over y dimension. This has a significant performance advantage, at the cost of
having to change the data layout of the Fourier transform of the dipolar potential (variable potdd).
This was a simple matter of allocating memory in a different layout to fit the transposed order and
reordering the loops in the initialization of the dipolar term.

Figure 6.3: Illustration of four stages of the row-column FFT algorithm.

In the case of CUDA/MPI and Hybrid/MPI implementations though, it is not possible to use
FFTW’s MPI transforms. The cuFFT library does not have support for MPI, and our Hybrid/MPI
implementation relies on the heterogeneous Fourier transform we described in Section 5.2. However,
we can still use transpose routines in conjunction with the row-column algorithm. To mimic the
behavior of FFTW’s MPI transforms with transposed order, we rely on the same transpose routines
we used earlier, either ones available in FFTW for the Hybrid/MPI implementation, or the ones we
developed for the CUDA/MPI version. Listing 6.6 illustrates how we perform FFT using FFTW’s
MPI transforms, using cuFFT and our own transpose routines CUDA/MPI, as well as using cuFFT
and FFTW with FFTW transposes in Hybrid/MPI implementation.

Listing 6.6: Three different implementations of distributed FFT: using FFTW, cuFFT and both.
We show only the forward FFT, the inverse transform that follows is done analogously.
// FFT plan creation and usage with FFTW MPI interface, used in OpenMP/MPI implementation
fftw_plan plan_fw = fftw_mpi_plan_many_dft_r2c(3, n, 1, localNx, localNy, psidd2[0][0],

psidd2fft, MPI_COMM_WORLD, FFT_MEASURE | FFTW_MPI_TRANSPOSED_OUT);
...
fftw_execute(plan_fw); // Executed as any other plan

// FFT with cuFFT , used in CUDA/MPI implementation
int dim = 2;
long long nfr[] = {Ny, Nz};
long long howmany = localNx;
long long idist = Ny * (psidd2.pitch / sizeof(cufftDoubleReal))
long long odist = Ny * (psidd2.pitch / sizeof(cufftDoubleComplex));
long long istride = 1, ostride = 1;
long long inembedfr[] = {Ny, psidd2.pitch / sizeof(cufftDoubleReal)};
long long onembedfr[] = {Ny, psidd2.pitch / sizeof(cufftDoubleComplex)};

cufftMakePlanMany64(plan_fwr, dim, nfr, inembedfr, istride, idist, onembedfr, ostride,
odist, CUFFT_D2Z, howmany, &ws_fwr);

dim = 1;
long long nfc[] = {Nx};
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howmany = localNy * (Nz/2 + 1);
idist = 1; odist = 1;
istride = localNy * psidd2_t.pitch / sizeof(cufftDoubleComplex);
ostride = localNy * psidd2_t.pitch / sizeof(cufftDoubleComplex);
long long inembedfc[] = {Nx}, onembedfc[] = {Nx};
cufftMakePlanMany64(plan_fwc, dim, nfc, inembedfc, istride, idist, onembedfc, ostride,

odist, CUFFT_Z2Z, howmany, &ws_fwr);
// Create a transpose plan
tran_dd2 = init_transpose_complex(nprocs, localNx, localNy, Ny, Nz/2 + 1, psidd2.ptr,

psidd2.pitch, psidd2_t.ptr, psidd2_t.pitch);
...
cufftExecD2Z(plan_fwr, (cufftDoubleReal *) psidd2.ptr, (cufftDoubleComplex *) psidd2.ptr);
transpose(tran_dd2);
cufftExecZ2Z(plan_fwc, (cufftDoubleComplex *) psidd2_t.ptr, (cufftDoubleComplex *)

psidd2_t.ptr, CUFFT_FORWARD);

// FFT using FFTW on host and cuFFT on device, as used in Hybrid/MPI implementation
... // Initialize FFT plans on host and device as in Listing 5.5
// Make transpose plan
plan_tr_psidd2_x = fftw_mpi_plan_many_transpose(Nx, Ny * (Nz/2 + 1), 2, localNx, localNy *

(Nz/2 + 1), (double *) psidd2fft, (double *) psidd2fft, MPI_COMM_WORLD, FFTW_ESTIMATE
| FFTW_MPI_TRANSPOSED_OUT);

#pragma omp parallel private(threadid) num_threads(2)
{

threadid = omp_get_thread_num();
if (threadid == 0) {

... // Copy data to GPU, perform FFT along Ny and Nz, and sync data back
}
if (threadid == 1 || omp_get_num_threads() != 2) {

... // Perform FFT on host, using FFTW without MPI
}

}

fftw_execute(plan_tr_psidd2_x); // Transpose data using FFTW

#pragma omp parallel private(threadid) num_threads(2)
{

threadid = omp_get_thread_num();
if (threadid == 0) {

... // Copy data to GPU, perform FFT along Nx, without syncing back
}
if (threadid == 1 || omp_get_num_threads() != 2) {

... // Perform FFT on host, using FFTW without MPI
}

}

The patterns we described in this section are used throughout the three implementations. Since
their use is relatively straightforward, for brevity we will not go through all the individual changes.

6.3 Improvements of input and output operations

With the introduction of multiple computing nodes, each working on a separate set of data, the
I/O components of our programs needed to be adjusted accordingly. Note that the input mentioned
in this section is the output of imaginary-time propagation programs, used as input for real-time
propagation. Input files containing parameters (passed via -i argument during program startup)
are very small, and identical for every process, thus there is no need for handling them in any special
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way.
A naive approach to reading input data in a cluster environment is to let one process read all

data, and then distribute them to all other processes. This is inefficient, since it relies on I/O
throughput of a single node to perform the read, and therefore scales badly. Additionally, the input
may be very large, larger than the available memory of a single node, requiring additional processing
logic to read and split the data. As far as output is concerned, a simple approach would be to let
each process write its own portion of the data in a separate file, ensuring only that processes do not
overwrite each other’s output. While the simplicity of this approach to I/O is appealing, it may
result in potentially many files being created, which complicates analysis of the results, forcing users
to rely on some external process to collect, combine and otherwise process the output. Alternatively,
we could send all data to one process, which would then write all output data aggregated. This
approach again has scalability issues similar to the naive approach to reading input data, as it would
limit the mesh size to the size of the single node’s memory. Efforts to remedy this, for example by
sequentially obtaining and writing data from other processes would further reduce the performance.

Another limiting factor is the sheer amount of data written. Previous implementations used a
textual output, which is simple to analyze and process. With larger mesh sizes, however this output
grows to become very large. Textual representation of floating-point values stored in memory that
we used before takes up more space than the equivalent binary representation, and we can reduce
the size of textual representation only by decreasing precision.

In light of these limitations, we have decided to use MPI for I/O as well, and to switch from
textual to binary representation of data. While it is possible to write textual data with MPI, by
calculating the offset based on the amount of bytes the text is going to occupy, this solution is
not preferred due to the reasons mentioned above. Textual output could still be obtained from
binary representation using hexdump command, available in most UNIX-like operating systems. We
have included an example script that will convert binary output to a textual one as part of the
documentation of our MPI programs.

MPI has a simple mechanism for writing to and reading from files based on the offset into data
at which each process will perform its work (Figure 6.4). Behind the scenes, MPI runtime will
choose an optimal way to perform I/O.

Figure 6.4: I/O using MPI, where each process accesses a portion of the file at a different offset.

Reading or writing data with MPI in binary form is straightforward, as illustrated by several
output functions shown in Listing 6.7. We did not use the approach of single-node implementations,
where small amount of data is written to a file in each iteration of the loop. Instead, we now use
temporary variables to prepare data for output, and write them all at once. In case of very large
outputs, like 3D density profiles, MPI buffers may be too small to write all data at once, so in that
case we can simply write a 2D slice in a loop. Writing output this way has obvious performance
benefits, and the amount of additional memory required for the temporary variables is negligible in
a distributed memory system.
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Listing 6.7: Examples of output functions implemented using MPI I/O.
// Write integrated XY density
void outdenxy(double ***psi, double ***outxy, double *tmpz, MPI_File file) {

long i, j, k;
// Compute the appropriate offset for each process
MPI_Offset fileoffset= rank * 3 * sizeof(double) * (localNx / outstpx) * (Ny / outstpy);

for (i = 0; i < localNx; i += outstpx) {
for (j = 0; j < Ny; j += outstpy) {

for (k = 0; k < Nz; k ++) {
tmpz[k] = psi[i][j][k] * psi[i][j][k];

}
// Prepare output data
outxy[i / outstpx][j / outstpy][0] = x[offsetNx + i];
outxy[i / outstpx][j / outstpy][1] = y[j];
outxy[i / outstpx][j / outstpy][2] = simpint(dz, tmpz, Nz);

}
}
// Write all prepared data at once, leaving MPI to choose the best strategy for I/O
MPI_File_write_at_all(file, fileoffset, **outxy, (localNx / outstpx) * (Ny / outstpy) *

3, MPI_DOUBLE, MPI_STATUS_IGNORE);
}

// Write integrated Y density
void outdeny(double ***psi_t, double **outy, double *tmpx, double *tmpz, MPI_File file) {

long i, j, k;
MPI_Offsetfileoffset = rank * 2 * sizeof(double) * (localNy / outstpy);
fftw_execute(plan_transpose_x); // With a transpose we can make required data local

for (j = 0; j < localNy; j += outstpy) {
for (i = 0; i < Nx; i ++) {

for (k = 0; k < Nz; k ++) {
tmpz[k] = psi_t[i][j][k] * psi_t[i][j][k];

}
tmpx[i] = simpint(dz, tmpz, Nz);

}
outy[j / outstpy][0] = y[offsetNy + j];
outy[j / outstpy][1] = simpint(dx, tmpx, Nx);

}
MPI_File_write_at_all(file, fileoffset, *outy, (localNy / outstpy) * 2, MPI_DOUBLE,

MPI_STATUS_IGNORE);
}

// Write final density
void outdenxyz(double ***psi, double ***outxyz, MPI_File file) {

long i, j, k;
MPI_Offsetf ileoffset = rank * sizeof(double) * localNx * Ny * Nz;

for (i = 0; i < localNx; i += outstpx) {
for (j = 0; j < Ny; j += outstpy) {

for (k = 0; k < Nz; k += outstpz) {
outxyz[0][j][k] = psi[i][j][k] * psi[i][j][k];

}
}
// MPI I/O returns error if the array is too large, so we write Ny * Nz at a time.
MPI_File_write_at_all(file, fileoffset, **outxyz, (Ny / outstpy) * (Nz / outstpz),

MPI_DOUBLE, MPI_STATUS_IGNORE);
fileoffset += (Ny / outstpy) * (Nz / outstpz) * sizeof(double);

}
}
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// Reading the output of imaginary-time programs in real-time programs
void readdenxyz(double complex ***psi, double *tmpz, MPI_File inputfile) {

long i, j, k;
MPI_Offset fileoffset = rank * sizeof(double) * localNx * Ny * Nz;

for (i = 0; i < localNx; i ++) {
for (j = 0; j < Ny; j ++) {

// Read whole row at a time, faster then each element individually
MPI_File_read_at(file, fileoffset, tmpz, Nz, MPI_DOUBLE, MPI_STATUS_IGNORE);
for (k = 0; k < Nz; k ++) {

psi[i][j][k] = sqrt(tmpz[k]);
}
fileoffset += Nz * sizeof(double);

}
}
MPI_File_close(&file);

}

Note that in some output functions we require data along x direction to be local to each process.
We use the same techniques described in the previous two sections to achieve this, therefore we will
not go into those details again.



Chapter 7

Interacting with simulation

Programs presented in previous chapters are not interactive. That is, programs are parametrized via
an input file and produce a summary output, and optionally write the density profiles of the wave
function to disk at predefined intervals. This output can then be analyzed further or visualized with
some visualization tool. While this workflow is sufficient for many use-cases, sometimes it is useful
to analyze and visualize data as it is being generated, as well as to interact with the simulation (for
example, to start, pause, stop, or restart the simulation) and modify parameters it is running. This
type of visualization is called in-situ visualization, meaning that it is applied on datasets in-place
where they are computed (host memory of a computer), rather than writing files to disk, and then
reading them back into a visualization tool. The ability to steer the visualized simulation, e.g.,
by stopping the simulation if we are not satisfied with the intermediate results, or modifying the
parameters of a running simulation, can help reduce resource consumption and reduce the time
it takes to obtain the desired results. In situ visualization can also be a valuable research tool,
allowing users to investigate phenomena that appear during the simulation, even if not anticipated
previously.

Creating a visualization component and embedding it in our programs would be an arduous
task. The preferred approach therefore is to link a visualization component of an existing tool that
supports in-situ visualization to our programs. There are plenty of such tools available, but two
have garnered a lot of attention in the scientific community: ParaView [72] and VisIt [73]. Both
are powerful and mature products with similar functionality, distributed under an open-source
license. ParaView relies on a library called Catalyst to provide in-situ visualization support, which
is a reduced version of the ParaView’s server component, allowing a program to share data with
ParaView for visualization. Similar capabilities are available within VisIt with the libsim library.
In addition to data sharing between the simulation and VisIt, libsim also enables the opposite flow
of information, sending data from the client to the simulation, enabling simulation steering. We
chose to use libsim and VisIt for our visualizations and steering since it offers a simple C API,
which was easier to include in existing programs.

In the following sections, we describe how we used libsim component of VisIt to provide visu-
alization of data from our programs and enable simulation steering.

78
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7.1 Visualization of data

VisIt is a free, open-source, platform-independent, distributed, parallel, visualization tool for vi-
sualizing data defined on 2D and 3D, structured and unstructured meshes, as well as plots of 1D
data. VisIt uses a client-server model (viewer-compute engine), where the server is parallelized and
can be distributed on a cluster. This architecture allows for remote visualization, allowing us to
perform large-scale visualization on a powerful computer cluster while running viewer component
on an ordinary desktop computer connected to a cluster. VisIt’s compute engine handles coordi-
nation between distributed processes and, given the information on how the data are distributed,
can reassemble and process them for visualization (e.g., generate a plot and send it to the viewer
component). Figure 7.1 depicts VisIt’s compute engine accessing data in parallel.

Figure 7.1: Illustration of VisIt’s components. VisIt’s compute engine reads data files in parallel
and sends data to the viewer component, which user controls via GUI.

A scenario where processes of a program write separate data files is illustrated in Figure 7.1.
Data created in such way are analyzed and visualized as a post-processing step. In order to make
the simulation interactive, and to remove the need for writing data to disk, we have to allow VisIt’s
compute engine access to our data directly in memory. To do this, we rely on Visit’s libsim library.
This library can be inserted into a program to make the simulation behave like a VisIt compute
engine. The libsim library and the accompanying data-access code gives VisIt’s data-processing
routines access to the simulation’s calculated data without the need for the simulation to write files
to disk (Figure 7.2). Simulation instrumented in this way can begin its processing while periodically
listening for connections from an instance of VisIt using libsim. When an incoming connection
is detected, libsim loads its dynamic runtime library that contains the VisIt compute engine’s
data-processing functions. Once the runtime is loaded, the simulation connects to VisIt’s viewer,
which can make requests for plots as if the simulation was an ordinary VisIt compute engine.
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Figure 7.2: Schematic depiction of VisIt getting data from an instrumented parallel simulation.

User’s requests for data from VisIt’s viewer are passed to the simulation, which has to provide
data through a set of callback functions. These callback functions are the main part of the integra-
tion with VisIt, as they provide information on what the simulation is doing, its current state, what
data are available, how they can be represented, and how they are distributed among the processes.
In addition to the callback functions, we also have to change the flow of our program to integrate
libsim. General flow of a simulation with libsim integrated is illustrated in Figure 7.3.

Figure 7.3: Main simulation loop with libsim integrated.

Restructuring programs to integrate libsim can be done in many ways, however we selected a
pattern that VisIt uses in its examples and which is also recommended by VisIt’s developers. Focus
was placed on 3D variants of the programs, specifically, the MPI-parallelized versions described
in Chapter 6, however other versions of programs would also be suitable candidates for integra-
tion with VisIt. We note that the necessary changes were not difficult to implement. While the
changes are extensive, the only conceptually major change is the restructuring of the main loop to
support connections from VisIt. Much of the restructured code can be shared between real- and
imaginary-time programs, so we used a single implementation for most of the functions commu-
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nicating with libsim. The differences were handled with conditional compilation, allowing us to
enable the different functionality via a compiler switch. Listing 7.1 shows the flow of simulation
after restructuring.

Listing 7.1: The flow of simulation in 3D programs after integration with libsim.
void main(...) {

... // Initialize variables and simulation data
SimData *sim = ...; // Structure containing simulation state and variables
SimMainLoop(sim);
... // Free resources and clean up

}

void SimMainLoop(SimData *sim) {
int blocking, vstate, err = 0;

// Register VisIt commands (start/stop, pause...), variables, on-demand output...
SimRegisterCommands(sim);
do {

// Determines if the simulation should wait for user input or run anyway
blocking = (sim->running == SIM_STOPPED) ? 1 : 0;

if(sim->par_rank == 0) {
vstate = VisItDetectInput(blocking, fileno(stdin)); // Detect user input, if any

}
MPI_Bcast(&vstate, 1, MPI_INT, 0, MPI_COMM_WORLD);

switch(vstate) {
case 0:

SimNextStep(sim); // If there was no user input, proceed with the next iteration
break;

case 1:
// Initial case, user attempts to connect to VisIt
if(VisItAttemptToCompleteConnection() == VISIT_OKAY) {

// Set command callbacks
VisItSetCommandCallback(SimCommandCallback, (void*)sim);
VisItSetSlaveProcessCallback2(SlaveProcessCallback, (void*)sim);
// Set simulation metadata and variable callback
VisItSetGetMetaData(SimGetMetaData, (void*)sim);
VisItSetGetMesh(SimGetMesh, (void*)sim);
VisItSetGetVariable(SimGetVariable, (void*)sim);
VisItSetGetCurve(SimGetCurve, (void*) sim);
VisItSetGetDomainList(SimGetDomainList, (void*)sim);

} else {
... // Handle connection error

}
break;

case 2:
// User has sent an UI command, decode and process it
if(!ProcessVisItCommand(sim)) {

VisItDisconnect(); // Disconnect in case of failure
sim->done = 1;

}
break;

case 3:
// User has sent an console command, decode and process it
SimProcessConsoleCommand(sim);
break;

default:
... // Other states should not happen, handle errors if they do
break;
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}
} while (!sim->done && err == 0); // Loop until simulation is stopped or reaches the end

}

As part of the restructuring, we introduced a structure called SimData that represents the
simulation’s global state, has pointers to all important variables, and is used to pass information
inside callback functions. We define several callback functions that return information about data in
our programs and register them with VisIt by calling the appropriate function from VisItSetGet*

set.
First callback function to be invoked is VisItSetGetMetaData, which provides metadata about

the simulation. This is the function invoked when VisIt connects to the simulation, and the obtained
metadata is used to determine which meshes and variables are available. The associated callback
function must return a handle to a SimulationMetaData object that contains lists of metadata
objects. Listing 7.2 demonstrates creation of some of the metadata used. For 3D programs, we
define one 3D mesh, and three 2D meshes (every combination of two axes). These meshes represent
the base on top of which the corresponding 2D or 3D variables will be visualized. The 3D mesh is
used as a base for the variable containing the absolute square of the wave function (|ψ|2), while the
2D meshes are used for the 2D integrated density profiles the programs generate. VisIt supports
numerous types of meshes for many different use-cases. Due to the nature of the data in our
programs, a rectilinear mesh is the best choice for our data, as it directly corresponds to the spatial
grid we use. Rectilinear meshes are specified by lists of coordinate values for each axis, which map
to spatial grid variables we already defined in our programs. For variables representing 1D arrays,
there is no concept of 1D mesh, rather they are defined as curves in VisIt, and are visualized as
ordinary plots. Using meshes and curves we have augmented the output system of our programs,
which can now also send data to VisIt for visualization instead of just writing the computed output
to a file.

Listing 7.2: The portion of the metadata exported from the 3D program to VisIt.
visit_handle SimGetMetaData(void *cbdata) {

visit_handle md = VISIT_INVALID_HANDLE;
SimData *sim = (SimData *)cbdata;
// Allocate main SimulationMetaData object
if(VisIt_SimulationMetaData_alloc(&md) == VISIT_OKAY) {

// Define empty handles to meshes, variables and curves
visit_handle xyzmd = VISIT_INVALID_HANDLE;
visit_handle xymd = VISIT_INVALID_HANDLE;
visit_handle xzmd = VISIT_INVALID_HANDLE;

#ifndef REAL
visit_handle psimd = VISIT_INVALID_HANDLE;

#endif
visit_handle psi2md = VISIT_INVALID_HANDLE;
...
VisIt_SimulationMetaData_setMode(md, (sim->running == SIM_STOPPED) ?

VISIT_SIMMODE_STOPPED : VISIT_SIMMODE_RUNNING);
VisIt_SimulationMetaData_setCycleTime(md, sim->step, sim->time);
// 3D mesh (XYZ) metadata
if(VisIt_MeshMetaData_alloc(&xyzmd) == VISIT_OKAY) {

VisIt_MeshMetaData_setName(xyzmd, "xyz_mesh");
VisIt_MeshMetaData_setMeshType(xyzmd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(xyzmd, 3);
VisIt_MeshMetaData_setSpatialDimension(xyzmd, 3);
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VisIt_MeshMetaData_setNumDomains(xyzmd, sim->par_size);

VisIt_MeshMetaData_setXLabel(xyzmd, "z");
VisIt_MeshMetaData_setYLabel(xyzmd, "y");
VisIt_MeshMetaData_setZLabel(xyzmd, "x");

VisIt_SimulationMetaData_addMesh(md, xyzmd);
}
// 2D mesh (XY) metadata
if(VisIt_MeshMetaData_alloc(&xymd) == VISIT_OKAY) {

VisIt_MeshMetaData_setName(xymd, "xy_mesh");
VisIt_MeshMetaData_setMeshType(xymd, VISIT_MESHTYPE_RECTILINEAR);
VisIt_MeshMetaData_setTopologicalDimension(xymd, 2);
VisIt_MeshMetaData_setSpatialDimension(xymd, 2);
VisIt_MeshMetaData_setNumDomains(xymd, sim->par_size);

VisIt_MeshMetaData_setXLabel(xymd, "y");
VisIt_MeshMetaData_setYLabel(xymd, "x");

VisIt_SimulationMetaData_addMesh(md, xymd);
}
... // Remaining 2D meshes

#ifndef REAL
// psi variable
if(VisIt_VariableMetaData_alloc(&psimd) == VISIT_OKAY) {

VisIt_VariableMetaData_setName(psimd, "psi");
VisIt_VariableMetaData_setMeshName(psimd, "xyz_mesh");
VisIt_VariableMetaData_setType(psimd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(psimd, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, psimd);
}

#endif
// psi2 variable
if(VisIt_VariableMetaData_alloc(&psi2md) == VISIT_OKAY) {

VisIt_VariableMetaData_setName(psi2md, "psi^2");
VisIt_VariableMetaData_setMeshName(psi2md, "xyz_mesh");
VisIt_VariableMetaData_setType(psi2md, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(psi2md, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, psi2md);
}
// Density (XY) variable
if(VisIt_VariableMetaData_alloc(&denxymd) == VISIT_OKAY) {

VisIt_VariableMetaData_setName(denxymd, "density_xy");
VisIt_VariableMetaData_setMeshName(denxymd, "xy_mesh");
VisIt_VariableMetaData_setType(denxymd, VISIT_VARTYPE_SCALAR);
VisIt_VariableMetaData_setCentering(denxymd, VISIT_VARCENTERING_NODE);

VisIt_SimulationMetaData_addVariable(md, denxymd);
}
... // Other 2D variables
/* Density (X) curve */
if(VisIt_CurveMetaData_alloc(&denxmd) == VISIT_OKAY) {

VisIt_CurveMetaData_setName(denxmd, "density_x");
VisIt_SimulationMetaData_addCurve(md, denxmd);

}
... // Remaining curves
// Custom commands
visit_handle cmd = VISIT_INVALID_HANDLE;
if(VisIt_CommandMetaData_alloc(&cmd) == VISIT_OKAY) {
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VisIt_CommandMetaData_setName(cmd, "START/PAUSE");
VisIt_SimulationMetaData_addGenericCommand(md, cmd);

}
... // Remaining commands

}

return md;
}

Once VisIt’s GUI is populated by the metadata obtained, the user can request the visualization
of variables from the simulation, which will call the associated callback. For example, if one wants
to visualize a variable labeled psiˆ2, one selects the appropriate command from the VisIt’s GUI,
and in the background, VisIt will use libsim to call the SimGetMesh (callback function registered
in Listing 7.1) to get the info about the 3D mesh, then SimGetVariable to get the actual data,
and other callback functions as needed. Listing 7.3 shows the portion of these callback functions.
As part of the callback mechanism, functions receive the string with the name of the desired object
(mesh, variable, curve, . . . ), which can be used to provide different data. In this way we can define
a single function to return all possible meshes or variables.

Listing 7.3: Portions of the mesh, variable and curve callbacks.
visit_handle SimGetMesh(int domain, const char *name, void *cbdata) {

visit_handle h = VISIT_INVALID_HANDLE;
visit_handle hxc, hyc, hzc;
SimData *sim = (SimData *)cbdata;

if(strcmp(name, "xyz_mesh") == 0) {
if(VisIt_RectilinearMesh_alloc(&h) != VISIT_ERROR) {

VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);
VisIt_VariableData_alloc(&hzc);

VisIt_VariableData_setDataD(hxc, VISIT_OWNER_SIM, 1, sim->var.localNx /
sim->out.outstpx + sim->ghost, sim->var.xstp + (sim->var.offsetNx /
sim->out.outstpx));

VisIt_VariableData_setDataD(hyc, VISIT_OWNER_SIM, 1, sim->var.Ny /
sim->out.outstpy, sim->var.ystp);

VisIt_VariableData_setDataD(hzc, VISIT_OWNER_SIM, 1, sim->var.Nz /
sim->out.outstpz, sim->var.zstp);

VisIt_RectilinearMesh_setCoordsXYZ(h, hzc, hyc, hxc); // We use inverted order

return h;
}

}
... // Remaining meshes
return h;

}

visit_handle SimGetVariable(int domain, const char *name, void *cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
long ntuples;
SimData *sim = (SimData *)cbdata;

if(strcmp(name, "psi^2") == 0) {
VisIt_VariableData_alloc(&h);
ntuples = (sim->var.localNx / sim->out.outstpx + sim->ghost) * (sim->var.Ny /

sim->out.outstpy) * (sim->var.Nz / sim->out.outstpz);
VisIt_VariableData_setDataD(h, VISIT_OWNER_SIM, 1, ntuples, **(sim->var.psi2));
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return h;
}
... // Remining variables
return h;

}

visit_handle SimGetCurve(const char *name, void *cbdata) {
visit_handle h = VISIT_INVALID_HANDLE;
SimData *sim = (SimData *)cbdata;

// Note that only rank 0 calls this function
if(strcmp(name, "density_x") == 0) {

if(VisIt_CurveData_alloc(&h) != VISIT_ERROR) {
visit_handle hxc, hyc;
VisIt_VariableData_alloc(&hxc);
VisIt_VariableData_alloc(&hyc);

VisIt_VariableData_setDataD(hxc, VISIT_OWNER_SIM, 1, sim->var.Nx /
sim->out.outstpx, sim->var.xstp);

VisIt_VariableData_setDataD(hyc, VISIT_OWNER_SIM, 1, sim->var.Nx /
sim->out.outstpx, sim->var.denx);

VisIt_CurveData_setCoordsXY(h, hxc, hyc);

return h;
}

}
... // Remaining curves
return h;

}

In our simulations, we distribute data among multiple processes, and this information must
also be passed via libsim. VisIt supports working with distributed data through the concept of
domains. A domain is a unit of work assigned to a given process that corresponds to a portion of
the mesh. By decomposing the meshes into multiple domains, VisIt is able to handle large-scale
simulations. Therefore, in a distributed simulation, we have to provide VisIt with information on
how domains abut, via another callback function. Additionally, each domain needs information on
its adjacent domains, to ensure continuity between domains. This information is provided via ghost
nodes. There are a few ways to provide information on ghost nodes, in our case the simplest way
was to extend the data on each process to include the first spatial points of adjacent processes. The
overlap of data obtained in this way is designated as a ghost node between adjacent domains. This
has proved to be simple to implement, as it does not require changes to any computation. Instead,
the processes exchange data just prior to sending them to VisIt, with a call to MPI_Sendrecv. Since
the amount of data is small, the impact on memory usage and simulation performance is negligible.
Figure 7.4 illustrates this concept.

Figure 7.4: Exchange of data between neighboring processes to construct ghost nodes.
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This and other callback functions are implemented in a similar manner to the ones presented
above, i.e., they all return a handle to an object that contains the necessary information. By
providing the aforementioned metadata, VisIt can now connect to our programs, and visualize
variables as they are updated. Figure 7.5 illustrates some of the visualizations made possible with
this integration.

Figure 7.5: Examples of visualizations in VisIt: 3D pseudocolor plot (left), 2D pseudocolor plot
(center) and curve plot (right).

We note that, while interacting with the simulation is very useful, sometimes the classic, ap-
proach where analysis of data happens after the simulation, is preferred. To enable this usage
scenario, we added support of exporting data to VisIt as files independent of the running simula-
tion. For visualization purposes, VisIt supports numerous formats via plugins, however two formats
stand out as being the most commonly used: Silo and VTK. Silo [74] is data format and library
for reading and writing a wide variety of scientific data, developed together with VisIt. It is mostly
used for data intended to be visualized with VisIt, however it can be used with other tools as well.
VTK [75] stands for Visualization Toolkit and is a software system for 3D computer graphics, image
processing and visualization. It is developed by the same company that is also the primary devel-
oper of ParaView. VTK supports two different file formats, the legacy textual format that is easy
to write either by hand or a library, and the newer XML-based format which has more advanced
features and is often written with its own library. As all three file formats (Silo, textual VTK and
XML-based VTK) meet our needs, the choice between them was based on personal preference and
ease of use. We decided to use textual VTK, which we found to be more widespread in scientific
communities, has good compatibility with the major visualization tools, and is simple to use. VisIt
provides sample programs for writing textual VTK files, which we used as the base for our imple-
mentation. In this way the same set of meshes and variables can be exported as VTK files. Since the
binary output produced by our programs can still be useful for data analysis without visualization,
we decided to keep it together with VTK output.

7.2 Simulation steering

With changes shown in the previous section VisIt viewer component can connect to our programs
and visualize the exported variables. However, the simulation is still independent of VisIt, and runs
even if there is no connection from VisIt. In this section we describe how our simulation is extended
to accept commands from VisIt.
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VisIt supports issuing custom commands that can be used to send data to the simulation. The
data sent can be interpreted as instructions to alter the simulation state. There are three ways to
send data to the simulation: via simulation window in viewer GUI, via a custom user interface, or
via console interface. In order to cover more use-cases, we implemented support for all three ways
of commanding.

Simulation window, available after VisIt connects to a simulation, allows custom commands to
be specified, which are accessible as push buttons the user can interact with. Pushing a button
invokes a callback function in the simulation, which can perform some action based on the button
selected. While useful for some basic commanding, this approach is very limited because there is
no way to send any parameters to the simulation. That means that the callback function can only
perform work based on the name of the command. For this reason, we use this functionality only for
the most basic commands, i.e., start/pause the simulation, reset the simulation to the initial state,
perform one step of time propagation, force the update of VisIt’s plots, and stop the simulation
and free the resources. To create these commands, they first must be registered with VisIt as part
of the metadata callback (Listing 7.1). This essentially provides labels that will be written on the
buttons. After that, along with other callbacks, we provide a callback to a function that will be
invoked when a user clicks on a button in the simulation window. Listing 7.4 demonstrates this.

Listing 7.4: Registering basic VisIt commands.
// Callback for VisIt’s Simulation window
void SimCommandCallback(const char* cmd, const char* args, void* cbdata) {

if (strcmp(cmd, "START/PAUSE") == 0) {
SimUIStartPauseClick(cbdata);

} else if (strcmp(cmd, "RESET") == 0) {
SimUIResetClick(cbdata);

} else if (strcmp(cmd, "NEXT STEP") == 0) {
SimUIStepClick(cbdata);

} else if (strcmp(cmd, "UPDATE PLOTS") == 0) {
SimUIUpdatePlotClick(cbdata);

} else if (strcmp(cmd, "STOP") == 0) {
SimUIStopClick(cbdata);

}
}
void SimUIStartPauseClick(void* cbdata) {

SimData* sim = (SimData*) cbdata;
sim->running = !sim->running;
// Temporary disable the Simulation window so that the user can not issue multiple

commands and cause concurrency problems
SimSetupUI(sim, !sim->running);
VisItTimeStepChanged(); // Notify VisIt so that the GUI is refreshed with the new data

}
void SimUIStepClick(void* cbdata) {

SimData* sim = (SimData*) cbdata;
SimSetupUI(sim, 0);
SimNextStep(sim); // Perform next step in the time propagation and update GUI
SimSetupUI(sim, 1);

}
... // Remaining three functions omitted for brevity

Greater flexibility can be obtained by creating a custom GUI. They are made using Qt toolkit
[76], in which VisIt’s GUI itself is made. Custom GUIs are designed using Qt Designer tool,
which is a part of Qt software package. While simulation window only allows push buttons to be
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programmed, custom UIs support three different widgets (at the time of writing): push button,
check box, and spin box widget. Push button widgets work the same way as in simulation window,
allowing some predefined action to be taken. On the other hand, check box widgets can be used to
change the value of some boolean parameter in the simulation, while spin box widgets can be used
to change a numeric value of some variable. Noticeably missing is the support for text input widget,
which would be useful to send some textual (or decimal) value to the simulation. Support for
additional widgets may come in a future version of VisIt, however we find the current widgets to be
adequate for most cases. By using these three widget types we implemented support for: toggling
computation of output variables (which may significantly speed up each step of the simulation),
toggling automatic updates of VisIt’s plots, writing current state of variables on-demand in multiple
formats, and performing the selected number of steps in the simulation (Listing 7.5). The basic
commands of the simulation window were also implemented in the custom GUI. In addition to
sending data to the simulation, custom GUIs can also receive data from it. In this way, the custom
GUI may present some information to the user. For example, we use this functionality to display
the current iteration number on the custom UI.

Listing 7.5: Registering VisIt commands for the custom GUI. The callbacks for individual actions
are similar to the functions in Listing 7.4
void SimRegisterCommands(SimData* sim) {

// Simulation control
VisItUI_clicked("btnStartPause", SimUIStartPauseClick, sim); // Button
VisItUI_clicked("btnStep", SimUIStepClick, sim);
VisItUI_clicked("btnReset", SimUIResetClick, sim);
VisItUI_clicked("btnStop", SimUIStopClick, sim);
VisItUI_clicked("btnUpdatePlot", SimUIUpdatePlotClick, sim);
VisItUI_stateChanged("boxAutoUpdate", SimUIAutoUpdateChange, sim); // Check box
VisItUI_valueChanged("spnStep", SimUIStepValue, sim); // Spinner
// Variables to track
VisItUI_stateChanged("boxMuen", SimUIMuenChange, sim);
VisItUI_stateChanged("boxRms", SimUIRmsChange, sim);
VisItUI_stateChanged("boxPsi2", SimUIPsi2Change, sim);
VisItUI_stateChanged("boxDenX", SimUIDenXChange, sim);
VisItUI_stateChanged("boxDenY", SimUIDenYChange, sim);
VisItUI_stateChanged("boxDenZ", SimUIDenZChange, sim);
...
// Output
VisItUI_stateChanged("boxTextOut", SimUITextOutChange, sim);
VisItUI_stateChanged("boxVtkOut", SimUIVtkOutChange, sim);
VisItUI_stateChanged("boxAutoOut", SimUIAutoOutChange, sim);
VisItUI_clicked("btnOutput", SimUIOutputClick, sim);

}

The custom GUI can be invoked from the simulation window, and interaction with it causes the
registered functions to be called. Again, a simple mechanism based on a name of the widget user
is interacting with is used to differentiate between the widgets in the GUI. The simulation window
and the custom GUI are shown in Figure 7.6.
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Figure 7.6: Simulation window with five programmable buttons (left) and more advanced custom
GUI (right).

GUIs created in Qt Designer are essentially XML files, and the user does not have to compile
them or link them in any special way with VisIt. The user only has to place the XML file of the
GUI in a directory where VisIt can find it. They are completely independent of the simulation itself,
and their (un)availability does not interfere with the simulation.

The third option for issuing commands to the simulation is via the console interface. This
interface allows the user to type commands in the console window of the running simulation. This
way of commanding predates other two approaches and is perhaps the most flexible. This flexibility
comes from the fact that anything the user types in the console gets sent to the simulation as a
string that can be further processed in any way. Therefore, with sufficiently capable parser, the
console interface can alleviate the current limitations of GUI commanding. Additionally, this is
the only available interface when VisIt is started without its GUI component. VisIt can be started
without its GUI and scripted to perform many advanced actions, however this scenario is out of
scope for this thesis. Since we did not focus on advanced scripting with VisIt, we implemented the
console interface to have the same functionality as the graphical one.

We added support for the console interface as a special case in the main VisIt loop inside the
simulation, as illustrated in Listing 7.1. VisItDetectInput returns a value of 3 to denote that the
command issued was a console command, and we process it with the SimProcessConsoleCommand

function. This function may then perform any work based on user’s input. We do not present its
implementation because it covers the same functionality already presented.



Chapter 8

Performance evaluation and
modeling

In previous chapters we presented various parallel implementations of programs solving the dipolar
GP equation without providing details of their measured performance. This chapter is dedicated
to filling that gap. Before performance evaluation, all programs were tested for correctness to make
sure they produce the same results as original serial programs, and extended to record execution
time of the main loop.

We tested various scaling scenarios, strong and weak, from a single computing node to the cluster.
All testing was done at the PARADOX supercomputing facility located at the Scientific Computing
Laboratory, Center for the Study of Complex Systems of the Institute of Physics Belgrade.

Performance of hybrid implementations is highly dependent on the amount of work offloaded to
GPU(s), so the key to maximizing performance of these versions is proper selection of parameters
which control this feature. We used evolutionary computation techniques to find the optimal solu-
tions, as described in Section 8.1. In the remaining two sections we give an overview of the tests
and the methodology they relied on (Section 8.2), and present the performance results and their
modeling in Sections 8.3 and 8.4. Section 8.5 discusses how to select the optimal algorithm for a
given hardware platform.

8.1 Optimization of input parameters for hybrid implemen-
tations

Hybrid implementations, running on a single computer or a cluster with multiple computing nodes,
can potentially offer the best performance of all algorithms presented in this thesis, by utilizing
all allocated computing resources. For this to happen, work must be divided between CPU and
GPU in such a way as to maximize their throughput and minimize their idle time. A question that
naturally arises is how to achieve this for any possible mesh size for a given CPU/GPU combination.
Unfortunately, there is no single best way to divide the work, since processing powers of CPUs and
GPUs vary significantly. For example, in a computer where a powerful new GPU is paired with
an older type of CPU, more work should be offloaded to the GPU, and vice versa for computers
with a powerful CPU and low-performing GPU. Even if the installed CPU and GPU offer similar
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performance in terms of floating point operations per second (as is the case for the PARADOX
cluster), the differing architectures mean that certain portions of the algorithm are better suited to
CPU or GPU. If we were to divide the work naively, e.g., equally, this would lead to unbalanced
computation, as illustrated in Figure 8.1(a), which in turn increases the computation time.

Figure 8.1: Execution timeline in a hybrid system: (a) with equal data distribution, leading to
unbalanced computation time; (b) with optimized data distribution and ideal computation load.

To get over this problem, our hybrid implementations have an option to manually specify each
parameter that controls the work being done on a GPU. Ideally, this flexibility would allow us to
overlap computation on CPU and GPU as much as possible, thus minimizing the execution and
idle time of each resource. The execution timeline for the ideal case looks like the illustration in
Figure 8.1(b).

The aforementioned parameters include the total amount of data transferred to GPU, the number
of chunks, kernel grid size parameters and a special parameter controlling whether some functions
will even be offloaded to GPU or not, which is useful in situations where the CPU is much more
powerful than the GPU. In 3D programs, this amounts to 33 integer-valued parameters for which
we would like to find the optimal values for the desired mesh size on a given computing system
(with given hardware characteristics). Furthermore, there are constraints that the parameters must
satisfy. For example, the total amount of data transferred to GPU must be divisible by the number
of chunks, and the size of a block that kernel launches must fit within the limits imposed by the
underlying GPU.

To evaluate any combination of parameters, the programs have to be executed, and their exe-
cution time measured. The search space of 33 parameters is clearly too large to be exhaustively
traversed in a reasonable amount of time. Fortunately, we can reduce the number of parameters we
have to search through at any single time by grouping them based on the synchronization point.
After the CPU and GPU synchronize, data have to be divided again, so the only relevant parameters
in the region between two synchronization points are the ones controlling the division of work and
the ones controlling the kernels which are executed in that region. During a single iteration, CPU
and GPU have to synchronize four times:

1. after the FFT on local dimensions,

2. after the inverse FFT on the non-local dimension,

3. before calclux function, and
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4. after calclux (which represents the end of a single iteration).

This gives us four distinct parameter sets to optimize: PS1 with 6 parameters, PS2 also with 6
parameters, PS3 with 15 parameters and PS4 with 5 parameters. We can consider each parameter
set independently.

We investigated several approaches to optimization of parameter sets: naive brute-force search,
iterative optimization via gradient descent, and metaheuristic via genetic algorithm. Our goal was
not to find the best possible optimization algorithm for our problem, but rather than to implement
a reasonably good one. By this we mean the algorithm which is not difficult to implement, which
will give us a set of parameters that are close to the optimal ones, and will not take a long time to
finish. Our focus was on 3D variants of both single node and MPI versions of hybrid programs. The
concepts presented here apply equally to 2D variants and there is no important difference between
the single node and the MPI version, so we will not make this distinction in the remainder of this
section. We will now describe how the three approaches were implemented.

A brute-force search (BFS), or exhaustive search, considers every possible combination of pa-
rameter values in order to find the optimal one. Even with parameters divided into smaller sets, the
exhaustive search takes too long, and is only feasible if we narrow down the ranges of all parameters
involved. Unfortunately, this is only possible when we have a deep understanding of the perfor-
mance of the CPU and GPU models used, when we can provide a reasonable guess for the optimal
solution. An alternative is to consider only certain values along the range of a single parameter,
rather than every value in the range. This approach is feasible and we were able to find reasonably
good parameter values using it. The downside is that this way we may miss the optimal values
of parameters, as they often lie between the selected test points. For instance, on one PARADOX
computing node and a mesh size 256 × 256 × 256, with the work divided between CPU and GPU
along the outermost, x dimension, if we test only for the values of offloaded data to GPU that are
multiples of 32 (i.e., 32× 256× 256, 64× 256× 256, etc.), we will miss the optimal value which lies
around 140 × 256 × 256 (assuming all other parameters are fixed). Even though BFS is often not
feasible, it is useful as the baseline for the evaluation of other methods we implemented.

With the BFS implemented as a baseline, we switched our focus to the implementation of an
iterative optimization algorithm. A well-known and widely used algorithm is gradient descent (GD)
[77]. It is an iterative procedure in which every iteration aims to get closer to the minimum of the
given function F (x), where x represents a vector of function parameters. If the function F (x) is
defined and differentiable around some point a, then F (x) decreases fastest in the direction of the
negative gradient of F at a. GD exploits this fact and defines b as

b = a − γ∇F (a) , (8.1)

so that F (b) ≤ F (a), for γ small enough. This observation is used as a building block for the
algorithm. We start from an initial guess x0 for a location of the minimum of F and construct a
sequence xn(n ≥ 1) such that:

xn = xn−1 − γ∇F (xn−1) . (8.2)

This sequence will eventually converge to the local minimum, if one exists. GD is most applicable to
functions for which the gradient can be computed analytically, however it can also be used when the
derivative can only be obtained numerically. To apply it here, the execution time of our programs
will be the function F that we minimize, and its arguments are the n = 33 parameters that control
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the GPU. The execution time is measured as the average time of a single iteration of the main time-
propagation loop, sampled over a given number of iterations. As explained earlier, we can divide the
problem into four separate minimization problems, with four sets of parameters of dimensionality
mi (i = 1, 2, 3, 4), in the same way as in BFS. To numerically compute the k-th partial derivative of
one of the minimization functions at a set of candidate parameters a1, a2, . . . , am, we use first order
approximation:

∂F

∂xk
(a1, . . . , am) ≈ F (a1, . . . , ak + hk, . . . , am)− F (a1, . . . , ak, . . . , am)

hk
, (8.3)

where hk is the increment of a given parameter. Since the parameters are integer-valued, we have to
carefully choose the value of hk, to be as small as possible, while still satisfying all the constraints
that the corresponding parameter may have w.r.t. other parameters. We note that in order to
evaluate the full gradient of F at (a1, . . . , am) we need to execute our programs m+ 1 times.

We stress that execution times of our programs are not always the same due to the hardware,
software and OS scheduling issues, making the minimization functions noisy. This noise affects the
calculation of the gradient and could point the algorithm in the wrong direction. We can detect
this by checking if the value of minimization function has increased in subsequent GD iteration,
and discard this move if necessary. While useful, resorting to this tactic means that in case the GD
gets stuck in a local minimum, it will not be able to get out and thus will never reach the global
minimum. A naive way to check if this is the case would be to start over from a different initial
point, and see if the GD algorithm converges to the same minimum. There are more sophisticated
approaches to addressing this issue, which we discuss later.

In general, it is not possible to completely eliminate noise, due to inherent problems of accurately
measuring time on a computer. However, we can try to minimize it by increasing the precision of
execution time measurement of our programs. This can be achieved by averaging execution times
over larger number of iterations of the main time-propagation loop. Unfortunately, this also means
that the total execution time of the GD algorithm will significantly increase.

Another issue in our implementation of GD arises when we have to select the next values of
our parameters based on the output values of previous GD iteration. These output values are real-
valued, meaning that we need to convert them to integers somehow. Simply rounding them up or
down to the nearest integer will not be enough, especially for small value of γ. For example, if we
set the initial value of some parameter to 10, and after one GD iteration the proposed value of that
parameter is 10.2, rounding it down will reset the value back to 10, effectively discarding the whole
GD iteration. To avoid getting stuck in this way, our implementation selects the next possible value
in the direction of change. In the example above it would mean selecting 11 as the new value. This
change makes it impossible for the algorithm to converge, but it will usually stay close the minimum
where all proposed solutions are of similar quality.

With the GD algorithm implemented as described above, we are able to get a set of optimized
parameters from a random set of initial values. However, such optimized parameters are often
suboptimal, and do not have the best performance. This is due to the fact that in most cases the
GD will converge to the nearest local minimum, and there is no guarantee that that local minimum
is also the global one. Using our previous example from BFS, a mesh of 256× 256× 256, with GD
we obtain that local minima exist for all power of two values, i.e., parameters suggest offloading
2n × 256 × 256 to the GPU. If we randomly select a small initial value, GD will get stuck in the
nearest local minimum, which in this example will be far from the global one, thus producing a
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very bad solution. We can attempt to avoid getting stuck in a local minimum by adapting the
parameter γ, also known as learning rate in machine learning literature. Keeping the learning rate
high for a first few iterations would allow the algorithm to find the general location of the minimum,
after which we could gradually lower the learning rate until convergence is achieved, in a process
called annealing [78]. In practice this did not completely solve the problem, as we found that the
optimal learning rate to start with varies with the initial set of parameters and the mesh size, and
thus has to be manually selected. This complicates attempts to automate the process of finding
the optimal parameters for a range of mesh sizes, which we needed as part of the tests of both
hybrid implementations. A method to remove the manual tuning of the learning rate exists [79],
but we find it to be too complex to implement for our programs, because it would require significant
changes to the way the parameters are selected.

From the discussion above, we conclude that the GD is not the best-suited method for the
optimization in our case, mostly because our minimization function is noisy and the numerical
computation of the gradient is costly. Derivative-free optimization methods would be better suited
to the problem, e.g., stochastic approximation algorithms like simultaneous perturbation (SPSA)
[80, 81], or metaheuristics like genetic algorithms. We decided to use a genetic algorithm approach,
as it is simple to understand and implement, as well as easy to adjust to get the desired behavior.

Genetic algorithm (GA) is an optimization method based on natural selection that mimics the
process found in biological evolution [82]. GA works by creating a population of individual solutions,
which it then evaluates and modifies, creating a new population, and iterating this process. Unlike
the classical algorithms like GD, which iterate a single candidate solution towards the optimal
one, the GA iterates a population of solutions in which the best individuals approach the optimal
solution. The initial population is usually created at random, giving the GA different points in
the search space to start from. The individual solutions are evaluated using a user-supplied fitness
function, giving each individual a score based on how well they perform the given task. Individuals
with the highest score are then selected to “reproduce” and create new offspring, after which they
may be mutated randomly. The offspring form a new population, and the process can be repeated
again. The GA continues until a suitable solution is found, or after a certain number of generations
has passed.

To implement a GA, we first have to decide how to represent an individual. Individuals are
created based on their blueprint, called chromosome in GA terminology. The most often used
representation is bit-string [83], where all properties of an individual (its genes) are serialized to
an array of bits, and then concatenated. More advanced representations exist, e.g., for encoding
real values, permutations and general data structures [84, 85], however since our individuals are
sets of integer parameters, we did not develop any special representation and instead we used
ordinary arrays of integers as a chromosome. Therefore, each gene in a chromosome is a single
GPU parameter of our programs. Individuals need to be evaluated using a fitness function. In
our case, this means executing the programs with the parameters extracted from the individual’s
chromosome, and reporting the execution time as fitness score, with lower execution time being
better.

Next step is the implementation of the three GA operators: selection, reproduction (crossover in
GA terminology) and mutation. Each operator can be implemented in different ways. Most common
type of the selection operator is roulette wheel selection. This is a type of fitness-proportionate



CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 95

selection, with the idea to give each individual a slice of the circular roulette wheel based on their
fitness. The wheel is then spun, and when the roulette ball stops, the individual in whose region
the ball stopped is selected. In this way, the fittest individuals have the greatest chance of being
selected for reproduction, while the ones with very low score quickly die out. We also tested an
alternative type of selection, the tournament selection. In this type of selection, we randomly select
several individuals, and host a tournament for them. The individual with the best fitness score
wins, and is selected for reproduction. By changing the size of the tournament we can control the
selection pressure, e.g., by using small tournament size in the first few iterations we can prevent
premature convergence and increase it in later generations when we have explored the search space
enough. In our tests, the tournament selection gave slightly better results for smaller populations,
by keeping the population diverse in early generations. For larger population size, both selection
rules performed equally. Alongside the main selection algorithm, we also used elitist selection, where
first few individuals are copied to the next generation without changing their chromosome. This
prevented the loss of the best individuals in the next generation, but has to be used carefully as it
may lead to premature convergence to a suboptimal solution.

To produce the next generation, selected individuals should combine their chromosomes and
produce offspring. This is the task of the crossover operator. Crossover exchanges parts of the
chromosomes, mimicking the biological recombination from nature. In its most basic form, crossover
works by randomly selecting a point and exchanging segments before and after the point to create
two new offspring from two parents. This type of crossover is called single-point crossover, and
is illustrated in Figure 8.2(a). Other popular crossover techniques are two-point crossover and
uniform crossover, illustrated in Figures 8.2(b) and 8.2(c). Two-point crossover is similar to the
single-point crossover, just with two points instead of one. On the other hand, in the uniform
crossover each gene of the offspring is selected randomly, either from the first parent or from the
second one, with some fixed probability, typically 0.5. Using the uniform crossover leads to a wider
exploration of the search space [86], but this may not always result in better performance of the
operator [87]. We tested single- and two-point crossover and found that there is little difference in
terms of performance between them. Since some of our parameters have constraints, it is important
to select only the crossover points which lead to an allowed recombination of genes. Unfortunately,
this made the implementation of uniform crossover impossible, and we did not pursue it further.

Figure 8.2: Three different crossover techniques in GA: a) single-point crossover, b) two-point
crossover and c) uniform crossover.

The final step in producing the next generation is to apply the mutation operator on the new
population. The mutation operator randomly changes genes to new values, which is equivalent of
performing a random walk through the search space. Changing every gene would not be desired, so
mutation operates with a very small probability, meaning most of the genes will be left unchanged.
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When chromosomes are implemented as bits, the mutation would be equivalent to flipping a random
bit. However, we could not implement mutation this way, as random changes to the chromosome
would often result in non-functioning individuals, e.g., parameter constraints would not be satisfied.
Special care must be taken to ensure that the mutation produces a healthy individual, similarly to
the crossover operator. The importance of mutation operator and its relation to the crossover is
often debated [88, 89], with its role being defined as “to maintain diversity within the population and
inhibit premature convergence” [90], as the crossover operator does not introduce new information
to the population. In our tests, the mutation plays a crucial role if the population size is small, e.g.,
less than 20 individuals, in accordance with Refs. [91, 92]. If the population size is large, e.g., over
200 individuals, the positive effects of mutation on the population fitness are not that evident.

GA is typically iterated for a fixed number of generations, as is the case in our implementation.
Alternatively, we could have implemented some exit clause in the main loop of the GA which would
stop the evolution after the best individuals have not been improved for some number of generations.
After each run of the GA, there is usually several highly fit individuals in the population. Since
randomness is an integral part of any GA, different runs of the algorithm produce slightly different
results. Therefore, our GA does not converge to a single solution, but produces candidate solutions
that have very similar parameter values and overall fitness. Among the candidate solutions, there
may be small differences in the amount of data offloaded to GPU or the kernel parameters, with the
execution times negligibly different. The number of generations required to produce a good solution
also varies due to the randomness in the initial population and the population size. In our tests, it
has a value between 10 and 50.

The implementation described above provides only the basis for a successful application of GA
to the problem at hand. As can be seen, there are several important parameters of GA to tune
in order to get optimal results. These include the population size, the number of generations,
mutation rate, and the selection parameters (e.g., elite selection rate, the tournament size). We did
not perform thorough testing of the performance of the GA that would allow us to obtain the best
values for these parameters, as we were more focused on the quality of the candidate solutions GA
creates. However, we observed that our GA finds good solutions faster if the initial population size
is between 100 and 200, with the number of generations between 10 and 20, depending on the set
of parameters we wish to optimize.

To get a perspective of how the three optimization methods perform, we tested them by com-
paring their final solutions, as well as by recording the number of program executions needed to get
to the optimal set of parameters. For this test, we used 3D real-time propagation hybrid program
on a single computing node. All three methods were allowed to execute the program up to 1000
times. The mesh sizes used range from 80 × 80 × 80 to 600 × 600 × 600, all of which could poten-
tially be offloaded to GPU. We tested parameter set PS3 (with 15 parameters), which control the
execution of FFT and the kernels in the subsequent calcnu, calcluy and calcluz functions. The
BFS algorithm was used as the baseline. Note that the range of parameters and a small number
of allowed executions implies that the BFS algorithm takes the values of parameters with large
stride, potentially missing the optimal solution. GD method is used as described, with the learning
rate γ initially set to a higher value, which was gradually decreased. We performed the GD for
60 iterations, which amounts to 960 program executions. The GA was run on a population of 100
individuals, for 10 generations, amounting to the same the number of program executions as the
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BFS. We have used mutation rate of 5%, and the tournament selection, with the tournament size
equal to 10% of the population size. Elitism was also included, with the top 2% of the population
copied over. All algorithms were tested five times, to minimize the effects of random initialization
of both GD and GA methods. The results are shown in Table 8.1.

Table 8.1: A comparison of three optimization methods. Reported times are given in milliseconds,
for a single iteration of the main time-propagation loop, averaged over 50 iterations. The last
column contains the minimal execution times obtained by manual tuning. The reported time for
each algorithm represents the minimal achieved value in five test runs.

Mesh size BFS GD GA Best
80× 80× 80 7 6 6 6
128× 128× 128 18 27 16 16
240× 240× 240 154 272 135 126
256× 256× 256 181 199 169 156
360× 360× 360 343 387 312 298
480× 480× 480 981 1049 868 829
512× 512× 512 1452 1628 1312 1242
600× 600× 600 2591 2984 2227 2159

From the results we conclude that the GA was the most effective optimization method of the
three approaches. As expected, GA found better solutions than BFS due to large strides BFS
had to use. The randomness in the initial population has a big effect on the convergence of the
GA method, sometimes enabling it to find the optimal solution after just three generations. Even
if the fitness of the initial population is very bad, the GA still converges to very good solutions
after 10 generations. On the other hand, GD performed very poorly, mainly because the noise in
program execution times has often thrown it in the wrong direction. Also, GD would get stuck in
the nearest local minimum, which often was not the global one. When the initial position of GD is
near the global minimum it converged to toward the optimal solution, which was rarely the case.
For mesh sizes larger than the tested ones (relevant for MPI-based implementations), corresponding
to a larger range of parameters, GD would be even less effective. Both BFS and GD can be made
more usable if the range of parameters can be narrowed, i.e., if we know the relative performance
of the GPU in comparison to the CPU. However, the GD would still be somewhat inefficient, due
to its higher susceptibility to noise.

Since the GA method is shown to be superior to the other two approaches, we use GA as our
optimization method of choice in the next two sections.

8.2 Testing methodology

All programs were tested on the PARADOX-IV cluster, which is a part of the PARADOX super-
computing facility. This cluster is comprised of computing nodes with two Intel Xeon E5-2670
Sandy Bridge CPUs (with a total of 2× 8 = 16 cores), with 32 GB of RAM and one Nvidia Tesla
M2090 GPU with 6 GB of GPU RAM, each connected by InfiniBand QDR interconnect. We used
Intel’s compiler (version 2016) to compile the serial and OpenMP programs, and CUDA 7.5 for
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the GPU portions of the CUDA and hybrid programs. MPI-based implementations were compiled
with Open MPI (version 1.10), which itself relied on underlying Intel and CUDA compilers. In
the case of Hybrid/MPI programs, we performed tests using both FFTW and our own transpose
routines. We found the minimal execution times to be about the same for both approaches, but the
FFTW transpose would sometimes exhibit very bad performance due to the creation of suboptimal
communication plan. For this reason, the execution times reported for Hybrid/MPI implementation
are obtained using only our own transpose routines.

The base of all performance evaluations was the measured execution time of critical regions of
the programs, i.e., the portions performing wave function propagation in imaginary or in real time.
This measurement excluded the time spent in other parts of the programs, e.g., initialization of
OpenMP/CUDA/MPI environment, memory allocation and deallocation, creation and destruction
of FFTW plans, initialization of variables and I/O operations. Measuring average execution time of
a single iteration of the main time-propagation loop allows us to predict the performance and total
execution time of a given simulation, as the number of iterations is specific to the problem at hand
and may vary significantly between different simulations. All measurements were collected using
high precision timers based on clock_gettime POSIX function on the CPU side, and CUDA event
API on the GPU side. The execution time of a single iteration of serial programs depends on the
mesh size, controlled by variables Nx, Ny and Nz. For parallel programs, we can measure speedup
and scaling efficiency as a function of the varying number of processing elements (OpenMP threads
or MPI processes).

We tested performance of 1D, 2D and 3D programs on a range of mesh sizes, for a varying number
of OpenMP threads and MPI processes, as shown in Table 8.2. Mesh sizes were chosen from the
corresponding range, and we did not focus solely on mesh sizes which maximize performance of
the programs, to obtain a more realistic assessment. We varied the number of OpenMP threads
from 1 to 16, in increments of one thread. Similarly, we tested the MPI-based implementations by
varying number of MPI processes, each bound to a different cluster node. In this way we tested
MPI-based implementations on 2, 4, 8, 12, 16, 20, 24, 28 and 32 computing nodes. Note that
varying the number of processing elements is not applicable to the single-GPU implementations of
the programs, as they always use all available processing resources on a GPU. Only one of the two
1D and 2D programs were tested (corresponding to x direction in 1D and x-y plane in 2D), because,
performance-wise, there is no difference between them (e.g., imag1dX-th vs. imag1dZ-th).

The main performance indicator is the execution time, the wall-clock time of one iteration of
the main loop, averaged over 5 executions of 1000 iterations, reported in milliseconds. Using the
results obtained, we calculated the speedup of all programs compared to the published serial C
implementation. We were also interested in examining the scaling efficiency, or scalability, of the
OpenMP and MPI programs. We tested both strong scaling, when the mesh size stays the same
but the number of processing elements varies, and weak scaling, when the amount of work each
processing element performs stays the same while the number of processing elements increases.
More formally, given the execution time of a single iteration of serial programs (T (1)), and the
corresponding execution time for parallel programs performed with N processing elements (T (N)),
we calculated speedup as S(N) = T (1)/T (N) and strong scaling efficiency as E(N) = S(N)/N .
Weak scaling is computed as EW (N) = TW (1)/TW (N), where TW (1) is the execution time of a
program using single processing element performing the work assigned to it, while TW (N) is the
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Table 8.2: Performance testing matrix, showing the mesh sizes and numbers of processing elements
(threads or processes) used to test the programs, as well as the baseline program used for comparison.

Mesh size Processing elements
Program

Min Max Min Max
Baseline

OpenMP programs
imag1dX-th 1000 1000000 imag1d
real1dX-th 1000 1000000

1 16
real1d

imag2dXY-th 1000 × 1000 15000 × 15000 imag2dXY
real2dXY-th 1000 × 1000 13000 × 13000

1 16
real2dXY

imag3d-th 50 × 50 × 50 800 × 800 × 800 imag3d
real3d-th 50 × 50 × 50 800 × 800 × 800

1 16
real3d

CUDA programs
imag2dXY-cuda 1000 × 1000 15000 × 15000 imag2dXY
real2dXY-cuda 1000 × 1000 13000 × 13000

1 1
real2dXY

imag3d-cuda 50 × 50 × 50 600 × 600 × 600 imag3d
real3d-cuda 50 × 50 × 50 540 × 540 × 540

1 1
real3d

Hybrid programs
imag2dXY-hetero 1000 × 1000 15000 × 15000 imag2dXY-th
real2dXY-hetero 1000 × 1000 13000 × 13000

16+1 16+1
real2dXY-th

imag3d-hetero 50 × 50 × 50 600 × 600 × 600 imag3d-th
real3d-hetero 50 × 50 × 50 600 × 600 × 600

16+1 16+1
real3d-th

OpenMP/MPI programs
imag3d-mpi 480 × 480 × 250 1920 × 1920 × 960 imag3d-th
real3d-mpi 480 × 480 × 250 1920 × 1920 × 960

1×16 32×16
real3d-th

CUDA/MPI programs
imag3d-mpicuda 480 × 480 × 250 1920 × 1920 × 960 imag3d-cuda
real3d-mpicuda 480 × 480 × 250 1920 × 1920 × 960

1 32
real3d-cuda

Hybrid/MPI programs
imag3d-mpihetero 480 × 480 × 250 1920 × 1920 × 960 imag3d-hetero
real3d-mpihetero 480 × 480 × 250 1920 × 1920 × 960

1×(16+1) 32×(16+1)
real3d-hetero

execution time of a program using N processing elements performing N times more work. We
achieve this by increasing the mesh size.

8.3 Performance test results and modeling of single node
programs

In this section we present the results obtained for single computing node OpenMP, CUDA and
hybrid programs, and compare them to the previously published [13] serial implementation.

Strong scaling performance test results for the OpenMP-based implementation using methodol-
ogy described in the previous section are given in Table 8.3 and Figure 8.3. They show the obtained
execution times, speedups and strong scaling efficiencies for different number of OpenMP threads.
Columns Nth = 1, Nth = 2, Nth = 4, Nth = 8 and Nth = 16 in Table 8.3 correspond to the number
of threads used, while the last column shows the obtained speedup S(16) with 16 OpenMP threads
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compared to one OpenMP thread. Strong scaling efficiency E(Nth) = S(Nth)/Nth in Figure 8.3 is
calculated as a fraction of the obtained speedup compared to a theoretical maximum. The mesh
size used in 1D is 105, in 2D 104 × 104, while in 3D the mesh size is 480 × 480 × 480. Execution
times and speedups of imag1dZ-th, real1dZ-th, imag2dXZ-th, and real2dXZ-th (not reported here)
are similar to those of imag1dX-th, real1dX-th, imag2dXY-th, and real2dXY-th, respectively.

Table 8.3: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node OpenMP programs (in milliseconds) for different number of OpenMP threads Nth and
speedup S(16) in strong scaling tests. The speedup is calculated w.r.t. the execution times of
previously published serial versions of programs [13], given in the second column.

Program Serial Nth = 1 Nth = 2 Nth = 4 Nth = 8 Nth = 16 S(16)
imag1dX-th 9.1 7.1 4.7 3.4 2.9 2.8 2.5
real1dX-th 15.2 14.2 10.5 8.2 7.3 7.2 2.0
imag2dXY-th 13657 7314 4215 2159 1193 798 9.2
real2dXY-th 17281 11700 6417 3271 1730 1052 11.1
imag3d-th 16064 9353 5201 2734 1473 888 10.5
real3d-th 22611 17496 9434 4935 2602 1466 11.9

The change from C2C to R2C FFT routine has a big impact on the execution time of single-
threaded (Nth = 1) programs compared to the previous serial programs. As we can see from the
table, these improvements alone yield a speedup of 1.3 to 1.9 in 2D and 3D programs, and somewhat
smaller speedup for 1D programs, 1.1 to 1.3. The use of additional threads brings about further
speedup (reported in the last column) of 2 to 2.5 for 1D programs, and 9 to 12 for 2D and 3D
programs. In Figure 8.3 we see that the efficiency rapidly decreases for 1D programs, even though
speedup increases with the number of threads used. This is expected, as parts of the algorithm
dealing with the recursive relations for calculation of the CN coefficients are inherently serial. In
1D, already with Nth = 4 threads we almost achieve the maximal speedup, while still keeping the
efficiency around 50%. We also see that, as expected, speedup and efficiency of multidimensional
programs behave quite well as we increase the numbers of threads. In particular, we note that the
efficiency always remains above 60%, making the use of all available CPU cores worthwhile.

From Figure 8.3 we observe that the speedup of 1D programs saturate quickly due to inherent
serial nature of the portion of the algorithm, while in 2D and 3D the speedup behaves almost
linearly. Despite their obvious differences, all curves in Figure 8.3 can be successfully modeled
based on Amdahl’s law [93]. Namely, the measured execution time T (Nth) of one iteration of the
main loop can be expressed as

T (Nth) = T (1)
(
s+ p

Nth

)
, (8.4)

where Nth is the number of threads used, T (1) is the execution time of a single-threaded run, s
is the serial fraction of the loop code, and p is the corresponding parallel fraction. By definition,
s+ p = 1, and therefore the speedup can be modeled by

S(Nth) = T (1)
T (Nth) = 1

1− p+ p/Nth
, (8.5)

where the parallel fraction of the main loop code p is the only fit parameter. Table 8.4 gives the
obtained model fit parameter values for the data from Figure 8.3. As we can see, the fits match
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Figure 8.3: Speedup in the execution time and strong scaling efficiency of OpenMP programs com-
pared to single-threaded runs for: (a) imag1dX-th, (b) real1dX-th, (c) imag2dXY-th, (d) real2dXY-
th, (e) imag3d-th, (f) real3d-th. Solid lines represent fits to measured data, where fit model functions
are given in the text and obtained fit parameters are listed in Table 8.4. Note that the model pa-
rameter p is fitted only to the speedup data, and then used to plot the efficiency model curve.

the obtained measurement data very well. Note that the efficiency can be expressed in terms of the
speedup model

E(Nth) = S(Nth)
Nth

= 1
Nth

1
1− p+ p/Nth

, (8.6)

and is not fitted independently. Figure 8.3 shows that this model with the parameter p fitted on
the speedup data matches very well with the efficiency data points.

Table 8.4: Values of obtained strong scaling model fit parameter p and the estimated fit errors for
OpenMP-parallelized programs.

Program p ∆p
imag1dX-th 0.662 0.004
real1dX-th 0.541 0.003
imag2dXY-th 0.9514 0.0007
real2dXY-th 0.9706 0.0004
imag3d-th 0.9635 0.0008
real3d-th 0.9762 0.0006
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From the obtained values of the parallel fraction of the algorithm, we see that 2D and 3D
programs are almost ideally parallelizable, with p over 95%. In 1D case, however, the parallel
fraction is around 66% for imaginary-time propagation and around 54% for real-time propagation,
due to the fact that calculation of CN coefficients in the function calclux cannot be parallelized.
Note that the parallel fraction of imaginary-time 1D program is higher than that of the real-time
1D program due to the larger amount of arithmetic operations required to process complex-valued
data in the real-time version of the serial function calclux.

OpenMP programs were also tested for weak scalability. We were mostly interested in 3D
variants of the programs, which we tested by fixing the amount of work to 6,912,000 spatial points
of the mesh, which corresponds to a mesh size of 240 × 240 × 120. By increasing the number of
OpenMP threads, we also increase the mesh size to be the multiple of 6,912,000. This means that
the mesh has to be increased in such a way that, when divided among the threads, each thread
gets 6,912,000 spatial points to process. The mesh sizes that satisfy this requirement cannot always
be obtained by multiplying all three array dimensions with the same number, so we have to work
with mesh sizes in which the size of each dimension may be different. For such mesh sizes, we
tested all possible combinations, however no significant difference has been observed. Table 8.5
contains mesh sizes we used for testing for Nth = 1, 2, 4, 8, 12, 16 threads, along with the execution
times (in milliseconds) and the weak scaling efficiency. The testing was also done for Nth = 6
and 10 threads, but the corresponding mesh sizes are omitted from the table for brevity. However,
Figure 8.4 presents complete data collected in this test, for all Nth values, averaged over mesh sizes
used. The figure shows that the real-time 3D programs have better weak scaling efficiency, which is
about 75% at 16 threads, while imaginary-time programs demonstrate smaller, but still significant
efficiency of about 60%.
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Figure 8.4: Weak scaling efficiency of OpenMP-parallelized 3D programs, averaged over all mesh
sizes tested for each value of Nth. Solid lines represent fits to measured data, where fit model
functions are given in the text.

To model weak scaling efficiency, we compare execution times of a single iteration of the main
loop TW (Nth), performed with Nth threads, where for each value of Nth the total amount of work
is Nth times the work being performed in a single-threaded run, i.e., the amount of work per thread
is constant. The weak scaling efficiency is defined as

EW (Nth) = TW (1)
TW (Nth) , (8.7)

where TW (1) = T (1) is the execution time of a single-threaded run for a given workload (in our case,
6,912,000 spatial points). The expected execution time of a workload assigned to a simulation with
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Table 8.5: Weak scaling efficiency of OpenMP-parallelized 3D programs. Wall-clock execution times
TW are given in milliseconds, efficiencies EW in percents.

imag3d-th real3d-th
Mesh size

TW EW TW EW

Nth = 1
120× 240× 240 699 98.2 1259 99.5
240× 120× 240 711 96.5 1271 100
240× 240× 120 686 100 1275 98.2

Nth = 2
240× 240× 240 718 95.5 1254 99.9

Nth = 4
240× 240× 480 755 90.9 1312 95.5
240× 480× 240 778 88.2 1301 96.3
480× 240× 240 754 91 1310 95.6

Nth = 8
240× 480× 480 875 78.4 1405 89.9
480× 240× 480 847 81 1393 89.1
480× 480× 240 886 77.5 1431 87.7

Nth = 12
360× 480× 480 1010 67.9 1532 81.7
480× 360× 480 981 69.9 1514 82.7
480× 480× 360 1004 68.4 1581 79.2

Nth = 16
480× 480× 480 1155 59.4 1680 74.5

Nth threads, executed in a single-threaded run, is NthT (1). In weak scaling tests, this workload is
executed with Nth threads and therefore the expected execution time can be modeled by

TW (Nth) = NthT (1)
(

1− p+ p

Nth

)
. (8.8)

According to this argument, we model the weak scaling efficiency by a single-parameter function

EW (Nth) = 1
p+ (1− p)Nth

. (8.9)

We fitted this model to data presented in Figure 8.4 and the obtained fit parameters are given in
Table 8.6. As we can see from the figure, the above model is an excellent fit to experimental data,
and both 3D OpenMP-parallelized programs have high (above 95%) parallel fraction of the code,
in agreement with the results of strong scaling tests (Table 8.4).

Table 8.6: Values of obtained weak scaling model fit parameter p and the estimated fit errors for
OpenMP-parallelized programs.

Program p ∆p
imag3d-th 0.958 0.002
real3d-th 0.9792 0.0009



CHAPTER 8. PERFORMANCE EVALUATION AND MODELING 104

Overall, we conclude that imaginary-time OpenMP-parallelized programs show smaller speedup
and efficiency across all tests, except in 1D. This can be attributed to the additional step of wave
function normalization in each iteration of the imaginary-time propagation, as well as the fact that
real-time programs work with complex-valued data that require more arithmetic operations for
the same mesh size. Since much of the computation inside loops requires simple arithmetic, the
throughput of the CPU is often not fully exploited in imaginary-time programs, thus the pressure
of memory bandwidth makes these programs less efficient. The real-time programs are also affected
by this, however to a somewhat lesser extent.

Next, we consider the CUDA implementation of the shared memory algorithm. GPU functions
as a single processing element, therefore we cannot test CUDA implementation by varying both
the mesh size and the number of processing elements. However, just varying the mesh size gives
us valuable insight into the behavior of this implementation, due to the difference in programming
models and the libraries used. Tables 8.7 and 8.8 show the execution times (in milliseconds) for a
number of mesh sizes tested, as well as the average speedup compared to the serial programs [13].
Figure 8.5 shows the speedup obtained for all mesh sizes tested, and red horizontal lines represent
average speedups obtained for each program. Note that the dispersion of data is due to the use of
FFTW_ESTIMATE flag in library calls to FFTW in the serial programs. Use of this flag results in a
choice of suboptimal FFT algorithm for some mesh sizes. The vertical lines in Figure 8.5 denote the
change in POTMEM parameter. The speedups left of the first vertical line are obtained with POTMEM=2

and thus demonstrate the best speedup. Second group of results, between the two vertical lines, is
obtained with POTMEM=1, and we note that the speedup decreases slightly, while the results right of
the second vertical line are obtained with POTMEM=2, and show the smallest speedup due to the use
of mapped memory. The 2D programs in x-z plane exhibited very similar performance to those of
x-y plane, and therefore we did not include them in the figures.

Table 8.7: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 2D CUDA programs (in milliseconds) for different mesh sizes, and average speedup
w.r.t. to the execution times of serial 2D programs [13].

Program 20002 40002 60002 80002 100002 120002 Avg. speedup
imag2dXY-cuda 24.1 104.3 235.2 386.1 657.1 1150.4 10
real2dXY-cuda 29.9 112.4 266.4 444.0 749.0 1528.3 14

Table 8.8: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 3D CUDA programs (in milliseconds) for different mesh sizes, and average speedup
w.r.t. to the execution times of serial 3D programs [13].

Program 1003 2003 3003 4003 5003 Avg. speedup
imag3d-cuda 10.6 79.3 298.8 674.5 1260.2 7.1
real3d-cuda 10.9 84.1 302.5 682.4 1467.4 13.5
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Figure 8.5: Speedup in the execution time of CUDA programs compared to the serial programs for
all tested mesh sizes: (a) imag2dXY-cuda, (b) real2dXY-cuda, (c) imag3d-cuda, (d) real3d-cuda.
Red horizontal lines represent the average speedup, while dashed vertical lines represent different
values of POTMEM parameter (see text).

For small mesh sizes, the GPU remains underutilized, resulting in a smaller speedup. For large
mesh sizes, where the GPU memory usage approaches the limit, we also see declining speedup. This
is due to the inevitable use of POTMEM parameter, which keeps some arrays in the host memory when
they cannot fit in the memory of the GPU. Overall, the CUDA implementation shows execution
times similar to the OpenMP implementation for imaginary-time propagation, and slightly lower for
real-time propagation. We stress that these results strongly depend on the type of GPU used and
that the obtained speedups may be even better for newer-generation GPUs (e.g., Kepler-, Maxwell-,
Pascal- and Volta-based GPUs).

Hybrid OpenMP/CUDA implementation was tested on a range of mesh sizes, similarly to the
OpenMP- and CUDA-based implementations. Since OpenMP implementation showed that all cores
should be used for 2D and 3D programs, we kept the number of OpenMP threads fixed at 16 in our
hybrid algorithm. The parameters governing the amount of data offloaded to GPU were optimized
using our GA method from Section 8.1. An illustrative subset of the results for 3D programs is
shown in Table 8.9, which gives execution times for a single iteration of the main loop, for different
mesh sizes. A comparison of execution times of hybrid and pure OpenMP programs with Nth = 16
threads is given in Figure 8.6(a), while Figure 8.6(b) compares the performance of hybrid and pure
CUDA programs, for all tested mesh sizes.

Table 8.9: Wall-clock execution times of a single iteration of the main time-propagation loop of
single-node 3D hybrid programs (in milliseconds) for different mesh sizes. Offload parameters are
optimized using the GA optimization method.

803 2003 3203 4403 5603 6803 8003

imag3d-hetero 6.3 67.1 271.4 678.9 1493.3 2750.9 4461.6
real3d-hetero 8.0 94.7 374.1 922.8 1985.2 4020.2 6676.6
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Figure 8.6: Speedup in the execution time of 3D hybrid programs compared to: (a) OpenMP
programs with Nth = 16 threads, (b) CUDA programs. Dashed horizontal lines correspond to a
speedup value S = 1.

From Figure 8.6 we see that the hybrid implementation outperforms the OpenMP one for all
mesh sizes except for the smallest one. The same applies to the comparison of imaginary-time
hybrid and CUDA programs, while real-time hybrid program outperforms the corresponding CUDA
program only for mesh sizes larger than 400×400×400. Although one would expect that the speedup
of the optimized hybrid algorithm is always equal to or larger than one, we see that this is not the
case for all mesh sizes in Figure 8.6. This is due to the fact that the hybrid FFT algorithm is
always employed in hybrid programs, meaning that even if no or all data are offloaded to GPU,
the splitting of FFT will still take place. Therefore, in these limiting cases we do not obtain pure
OpenMP or CUDA algorithms that would yield maximal performance. Splitting the computation
of FFT along one direction in calcpsidd2 function disables some of the potential optimizations
that libraries like FFTW and cuFFT exploit, and introduces data copies between host and device
which cannot be fully offset using CUDA streams. The hybrid algorithm can compensate for this
if the amount of offloaded data to GPU is sufficiently large, which is not the case for the smallest
mesh size.

Given that pure CUDA programs performing imaginary-time propagation demonstrated smaller
speedup than the corresponding OpenMP programs (Figure 8.5 vs. Figure 8.3), it is expected
that CUDA portion of the hybrid imaginary-time propagation programs would yield smaller im-
provement, which is evident when we compare hybrid implementation with the OpenMP one in
Figure 8.6(a), except for the largest mesh sizes. We can reach the same conclusion if we consider
that, in real-time propagation, CUDA implementation shows the highest speedup of all single-node
programs, and therefore the corresponding hybrid programs show better speedup than imaginary-
time propagation programs parallelized with OpenMP. On the other hand, when compared with the
CUDA implementation in Figure 8.6(b), the situation is reversed, and we see much better perfor-
mance of the hybrid imaginary-time propagation programs, while the hybrid real-time propagation
programs achieve speedup larger than one only for mesh sizes larger than 400 × 400 × 400. This
result can be attributed to the fact that in real-time propagation the amount of data copied between
host and device is larger, given that some of the copied arrays are complex-valued.

Also, we can observe that the speedup in Figure 8.6(a) declines with mesh size. This is due to
the memory saturation of the GPU device, as only a small portion of the data can be offloaded
when the mesh is large. The amount of data offloaded to GPU for all tested mesh sizes is given in
Table 8.10, where we can see that the total amount of data processed by the GPU declines with
increasing mesh size. As a result, the computation is unbalanced, given that the host has to work
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with a much larger portion of the data. This is reflected in the optimization step, where our GA
quickly converges to the highest possible mesh size that can be offloaded to the device, implying
that a greater amount of device memory would be required to get a balanced computation.

Table 8.10: Optimal fraction of total data offloaded to GPU for different mesh sizes in hybrid 3D
programs, obtained using the GA optimization method.

Mesh size
GPU portion of data [%]

imag3d-hetero real3d-hetero
PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

80× 80× 80 20 3 60 33 23 3 40 10
120× 120× 120 12 10 25 28 23 10 25 27
160× 160× 160 15 7 31 24 44 19 34 23
200× 200× 200 38 27 37 28 44 26 46 26
240× 240× 240 38 28 40 30 38 28 47 25
280× 280× 280 40 31 30 33 46 22 37 25
320× 320× 320 33 38 29 36 45 28 69 44
360× 360× 360 41 33 27 36 49 33 43 31
400× 400× 400 38 25 30 38 46 24 47 21
440× 440× 440 31 35 29 39 45 35 43 32
480× 480× 480 16 19 22 41 45 33 62 35
520× 520× 520 40 31 28 46 45 25 40 37
560× 560× 560 38 41 30 43 36 24 35 32
600× 600× 600 37 27 30 43 29 29 29 28
640× 640× 640 36 40 30 43 24 22 24 23
680× 680× 680 26 38 28 38 20 16 20 20
720× 720× 720 23 26 25 32 17 13 17 17
760× 760× 760 21 22 25 27 14 14 14 13
800× 800× 800 19 23 23 21 11 8 12 12

To make an optimal choice of programs to be used on a single node for a particular hardware
platform, one has to perform detailed tests using the methodology presented in Section 8.2. The
results presented in this section apply to hardware comparable to the one available at PARADOX
supercomputing facility, but one can expect similar behavior for all modern types of CPU and GPU.

8.4 Performance test results and modeling of MPI programs

Following on from the previous section, here we present the results obtained for MPI-parallelized
programs, executed on a computer cluster consisting of varying number of computing nodes, and
compare them with the corresponding single-node programs.

MPI programs are highly dependent on the configuration of the cluster, mainly on the speed
of interconnect, but also on the distribution of processes and threads, NUMA configuration, MPI
configuration, etc. Getting the best performance out of the programs requires some experimentation
with several different configurations. The results presented are obtained without extensive tuning
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of the cluster or MPI runtime, with the aim to show the base performance.
Strong scaling of MPI-based implementations is tested in a similar way to the single-node testing,

by varying number of cluster nodes Np from 2 to 32. On each node, a single MPI process is launched,
which then uses the node’s resources, either by further spawning 16 OpenMP threads in case of
OpenMP/MPI and Hybrid/MPI implementations, or by invoking the CUDA kernels utilizing the
node’s GPU in case of CUDA/MPI implementation. In this test, the baseline used for comparison
was the equivalent single-node implementation, i.e., OpenMP/MPI programs are compared with
OpenMP programs executing with Nth = 16 threads, CUDA/MPI programs are compared to the
single-node pure CUDA programs, and Hybrid/MPI programs is compared to the single-node hybrid
programs.

Mesh size we use in this test is 480× 480× 250. Since the values of Nx and Ny parameters must
be divisible by the number of processes Np, this mesh cannot be distributed over 28 processes. In
this case we use slightly modified mesh, taking into account the multiple of 28 that is closest to
480, yielding a mesh size of 476× 476× 250. Data is never distributed along z direction, so no such
requirement exists for Nz. The resulting mesh has slightly fewer spatial points, and thus less work
per process, potentially allowing for a better performance, but in our tests the smaller mesh did not
have a significant impact on the measured execution time.

Note that strong scaling tests, where the mesh size is fixed, inevitably lead to saturation and
decrease in measured speedup and efficiency values. Whatever the chosen mesh size, increase in the
number of cluster nodes used will eventually yield insufficient amount of work per MPI process, such
that communication will start to dominate over computation. Therefore, in our strong scaling tests
we can expect that execution times initially decrease with increasing values of Np, but eventually
performance of MPI-based programs will decline. This issue is addressed by considering weak scaling
tests.

The illustrative portion of obtained execution times of a single iteration of the main loop for the
three MPI-parallelized implementations are shown in Table 8.11, together with the execution times
of the corresponding baseline single-node program. Columns Np = 4, Np = 8, Np = 16, Np = 24
and Np = 32 correspond to the number of cluster nodes used, while the last column shows the
obtained speedup S(32) with Np = 32 nodes compared to baseline single-node programs.

Table 8.11: Wall-clock execution times of a single iteration of the main time-propagation loop of
OpenMP/MPI, CUDA/MPI and Hybrid/MPI programs (in milliseconds) for different number of
MPI processes Np and speedup S(32) in strong scaling tests. The speedup is calculated w.r.t. the
baseline execution times of the corresponding single-node programs (OpenMP, CUDA and hybrid,
respectively), given in the second column.

Program Baseline Np = 4 Np = 8 Np = 16 Np = 24 Np = 32 S(32)
imag3d-mpi 1124 541 262 134 89 64 17.5
real3d-mpi 2140 700 358 207 155 98 21.8
imag3d-mpicuda 579 438 210 103 71 59 9.8
real3d-mpicuda 800 609 291 142 95 79 10.1
imag3d-mpihetero 489 299 162 99 84 81 6.0
real3d-mpihetero 613 407 255 154 135 101 6.0
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The maximal speedup of OpenMP/MPI implementation ranges from 17 for imaginary-time
propagation to 22 for real-time propagation programs for Np = 32. The complete measurement
results for speedup and efficiency are depicted in Figure 8.7(a) and 8.7(b), where we see that
the speedup grows linearly with the number of nodes used, while the efficiency remains mostly
constant in the range between 40% and 60%, thus making the use of OpenMP/MPI programs
highly advantageous for simulations with large mesh size. In general, we can expect even better
efficiency for larger mesh sizes.

Similar behavior is observed for CUDA/MPI implementation. The obtained speedup with
Np = 32 nodes ranges from 9 to 10, with the slightly lower efficiency, between 30% and 40%,
as shown in Figure 8.7(c) and 8.7(d). Even though the efficiency is lower for this implementation,
the speedup still grows linearly and the execution times are lower than for the OpenMP/MPI im-
plementation. This makes CUDA/MPI programs ideal choice for use on GPU-enabled computer
clusters. Additional benefit of using CUDA/MPI programs is their low CPU usage (using only one
CPU core per cluster node), allowing for the possibility that the same cluster nodes are used for
other CPU-intensive simulations in a time-sharing fashion.

As we see in Figure 8.7(e) and 8.7(f), the linear growth of speedup is also present for the
Hybrid/MPI implementation, however, as the amount of work per-process shrinks, the efficiency
drastically drops down to 20% with Np = 32 nodes. For the mesh size used in this test, we observe
that the Hybrid/MPI implementation performs very well on Np < 16 processes, providing the
lowest execution times, but with Np ≥ 16 processes its execution times become larger than for
the CUDA/MPI implementation (especially for real-time propagation programs), and eventually
even for the OpenMP/MPI implementation, as illustrated in Figure 8.8. This is again due to the
insufficient amount of work each computing node performs after data are distributed among the
MPI processes, which can be seen from the amount of data offloaded to GPU for all tested values of
Np in Table 8.12. Similar saturation in performance will eventually happen for the OpenMP/MPI
and CUDA/MPI implementations, just for larger values of Np.

We thus conclude that Hybrid/MPI implementation has the best performance of the three
MPI-based implementations if the amount of work per process remains high enough to justify the
use of hybrid algorithm. Otherwise, either of the other two MPI-based implementations should
be considered first. The energy efficiency of this and other MPI-based implementations was not
explored due to the difficulty in making precise measurements. If the energy consumption is not
an issue, Hybrid/MPI implementation will yield the best performance, providing the cluster has
powerful GPUs installed and the mesh size used is large enough.

We now model the speedup and strong scaling efficiency of MPI-based programs. In general,
the execution time of a program can be expressed as

T (Np) = α+ βL+ γ
M

Np
+ βV

M

N2
p
, (8.10)

where α represents the average time to perform serial portion of the code, L is the communication
latency associated with one MPI message, β is the frequency of MPI messaging, γ is the average
time to process one spatial point, V is related to data transfer speed (throughput), and M is the
mesh size (Nx× Ny× Nz). The communication overhead of one all-to-all message passing instance is
equal to L+ VM/N2

p , where each of Np processes communicates its M/Np part of the mesh evenly
to all other processes, leading to a message size of M/N2

p . Taking into account that in the strong
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Figure 8.7: Speedup in the execution time and strong scaling efficiency of MPI-based programs
compared to single-node runs: (a) imag3d-mpi, (b) real3d-mpi, (c) imag3d-mpicuda, (d) real3d-
mpicuda, (e) imag3d-mpihetero, (f) real3d-mpihetero. Solid lines represent fits to measured data,
where fit model functions are given in the text and obtained fit parameters are listed in Table 8.13.
Note that the model parameters are fitted only to the speedup data, and then used to plot the
efficiency model curve.

scaling tests the mesh size is fixed, the above model can be simplified to

T (Np) = T (1)
(
a+ b

Np
+ c

N2
p

)
, (8.11)

while the speedup can be modeled by

S(Np) = T (1)
T (Np) = 1

a+ b/Np + c/N2
p
. (8.12)

This model is fitted to the obtained strong scaling measurement data and the results are presented
in Table 8.13, while the corresponding model curves are shown as solid lines in Figure 8.7. As we
see, the proposed model agrees very well with the experimental data. The only exception is the
speedup and efficiency of real-time OpenMP/MPI program (real3d-mpi) on Np = 32 processes,
where FFTW library creates an optimal transform plan that works very well with the given mesh
size. However, changing the mesh size even slightly gives the performance comparable to the model
prediction. We note that the value of the model parameter c is negative for real-time Hybrid/MPI
program (real3d-mpihetero), which should not be the case since is parameter is related to data
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Table 8.12: Optimal fraction of total data offloaded to GPU per process for different values of Np

in Hybrid/MPI programs, obtained using the GA optimization method in strong scaling tests.

Np

GPU portion of data [%]
imag3d-mpihetero real3d-mpihetero

PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

1 30 17.5 34.4 36.7 45.2 32.5 55 35
2 25 10 17.5 16.7 20.8 11.5 23.8 16
4 10 5.2 9.2 9.4 10 5.2 15 6.7
8 5 2.9 5.8 6.7 6.3 2.1 6.7 5
12 3.3 1.7 4.2 4.2 4 1.3 5 3.3
16 2.9 1.3 2.9 2.1 3.1 0.4 2.9 2.1
20 1.7 0.6 2.5 1 2.5 0.4 2.5 1.7
24 1.7 1.3 2.1 1.7 2.1 1.3 2.5 0.8
28 1.7 0.4 2.1 1.3 1.7 0.4 1.7 1.3
32 0.8 0.4 1.7 0.8 1.5 0.4 2.1 0.8
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Figure 8.8: Speedup in the execution time of Hybrid/MPI programs in strong scaling tests compared
to the other two MPI-based programs: (a) OpenMP/MPI, (b) CUDA/MPI.

transfer speed. However, due to uncertainty of the optimization choice by the GA method and the
fact that the fraction of total data offloaded to GPU gradually decreases (Table 8.12), leading from
real hybrid algorithm to almost pure OpenMP/MPI one with hybrid FFT, it is not surprising that
the obtained value differs from expected. Taking into account relatively large fit error ∆c/c = 60%
for this parameter, we can still use expression (8.12) to model performance of Hybrid/MPI programs.

Next, we test weak scaling of MPI-based implementations. The same number of cluster nodes
(and thus MPI processes) was used as in previous tests, while the starting mesh, which corresponds
to a unit workload, had a size of 480 × 480 × 480, amounting to 110,595,000 spatial points. This
number of spatial points was kept constant per process, similarly to the weak test of OpenMP
programs. There is an exception to this scheme, the case when programs are executed on Np = 28
nodes, as the scaled number of spatial points cannot be evenly distributed among 28 processes.
In this case we compare the weak scalability by scaling up a starting mesh of 476 × 476 × 476,
which has 107,850,176 spatial points, just slightly less than for other values of Np. The base of
comparison was the execution time of a single iteration of the main loop with the corresponding
MPI-based program running as a single process (Np = 1). While we used this configuration as the
baseline, we do not recommend running MPI-based programs with Np = 1 processes, because no
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Table 8.13: Values of obtained strong scaling model fit parameters a, b and c, as well as the estimated
fit errors for MPI-parallelized programs.

Program a ∆a b ∆b c ∆c
imag3d-mpi 0.008 0.006 1.6 0.2 1.4 0.4
real3d-mpi 0.026 0.006 1.1 0.1 0.2 0.3
imag3d-mpicuda 0.025 0.008 2.3 0.2 2.8 0.6
real3d-mpicuda 0.020 0.008 2.3 0.2 2.8 0.6
imag3d-mpihetero 0.104 0.009 1.7 0.2 0.9 0.5
real3d-mpihetero 0.09 0.02 2.7 0.3 -1.0 0.6

special handling of such case has been implemented. This means that MPI-parallelized programs
are always transposing the data, which is unnecessary with Np = 1 as all data is local to the
single process. Instead, we recommend using single-node variants of the programs outside cluster
environment.

Table 8.14 lists mesh sizes used and execution times obtained for Np = 1, 2, 4, 8, 12, 16, 24 and
32 cluster nodes. We also tested weak scaling on Np = 20 and 28, but have excluded them from the
table for brevity. A complete comparison is shown in Figure 8.9. The ordering of mesh dimensions
had a slightly greater impact than with single-node OpenMP programs, varying up to 10% for the
OpenMP/MPI programs, and less for the other two MPI-based implementations. This means that
for meshes of the same size, thus implying equal work, execution times were mostly lower for those
with larger values of Nx (e.g., the execution time for a 960 × 480 × 960 mesh is lower than for a
480× 960× 960 one). However, no distinct pattern emerges that would give us a clue as to which
order is the most favorable. Upon inspection, we find that the difference in execution times is due
to the different FFT plans employed by the FFTW and cuFFT libraries. The communication time
remains mostly the same, as is expected since the amount of data exchanged is the same.
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Figure 8.9: Weak scaling efficiency of three MPI-based implementations, averaged over all mesh sizes
tested for each value of Np. Solid lines represent fits to measured data, where fit model functions
are given in the text.
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Table 8.14: Weak scaling of MPI-based programs. Wall-clock execution times TW are given in milliseconds, efficiencies EW in percents.
imag3d-mpi real3d-mpi imag3d-mpicuda real3d-mpicuda imag3d-mpihetero real3d-mpihetero

Mesh size
TW EW TW EW TW EW TW EW TW EW TW EW

Np = 1
480 × 480 × 480 1758 100 2956 100 4338 100 6346 100 1971 100 2877 100

Np = 2
480 × 480 × 960 3858 45.6 4910 60.2 3785 114.6 5430 116.9 2044 96.4 2878 100
480 × 960 × 480 3704 47.5 5035 58.7 3825 113.4 5573 113.9 1997 98.7 2928 98.3
960 × 480 × 480 3758 46.8 5506 53.7 3871 112.1 5609 113.1 2019 97.6 2980 96.5

Np = 4
480 × 960 × 960 4267 41.2 6033 49.2 2995 144.8 4278 148.3 2149 91.7 3009 95.6
960 × 480 × 960 3877 45.4 5223 56.6 3042 142.6 4318 146.9 2218 88.9 3274 87.9
960 × 960 × 480 4000 44 5063 58.4 3078 140.9 4424 143.4 2148 91.8 3106 92.6

Np = 8
960 × 960 × 960 4327 40.6 6285 47 2952 146.9 4167 152.3 2369 83.2 3338 86.2

Np = 12
1440 × 960 × 960 4400 40 6729 43.9 2902 149.5 4254 149.2 2335 84.4 3504 82.1
960 × 1440 × 960 4268 41.2 6263 47.2 2953 146.9 4167 152.3 2412 81.7 3440 83.6
960 × 960 × 1440 4234 40.2 6299 46.9 2865 151.4 4153 152.8 2413 81.7 3351 85.9

Np = 16
1920 × 960 × 960 4356 40.4 6419 46 3001 144.5 4278 148.3 2392 82.4 3434 83.8
960 × 1920 × 960 4266 41.2 6376 46.4 2970 146.1 4170 152.2 2552 77.2 3525 81.6
960 × 960 × 1920 4234 40.2 6508 45.4 2888 150.2 4148 153 2639 74.7 3606 79.8

Np = 24
1440 × 1920 × 960 4677 40 6895 42.9 2924 148.4 4266 148.8 2552 77.3 3770 76.3
1440 × 960 × 1920 4796 38.3 7076 41.8 2984 145.4 4235 149.8 2611 75.5 3699 77.8
1920 × 1440 × 960 4470 40.6 6439 45.9 3007 144.2 4286 148.1 2546 77.4 3504 82.1
1920 × 960 × 1440 4450 40.8 6425 46 2984 145.3 4251 149.3 2551 77.3 3550 81.1
960 × 1440 × 1920 4364 41.1 6846 43.2 2879 150.7 4105 154.6 2682 73.5 3725 77.2
960 × 1920 × 1440 4346 41 6806 43.4 2878 150.7 4133 153.5 2501 78.8 3562 80.8

Np = 32
1920 × 1920 × 960 4452 39.5 6704 44.1 3183 136.3 4518 140.5 2585 76.3 3715 77.5
1920 × 960 × 1920 4520 38.9 6802 43.4 3163 137.2 4480 141.7 2632 74.9 3769 76.3
960 × 1920 × 1920 4301 40.9 6663 44.4 3014 143.9 4351 145.9 2776 71 3933 73.0
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The results of weak scaling tests warrant further discussion as the execution times and plotted
efficiencies appear misleading. On one hand, OpenMP/MPI programs show poor scaling results,
achieving only 40% efficiency, while on the other hand the CUDA/MPI show efficiency well above
100%, a seemingly impossible result. The lower efficiency of the OpenMP/MPI programs is due
to the very good performance of the baseline run. Here, the FFTW creates a very good FFT and
transpose plans, which exploit the fact that all data are local, and thus have very good execution
time. With Np = 2 nodes the execution time increases significantly, and efficiency drops to about
45-55%. However, adding more work and nodes has much smaller impact on efficiency, which only
drops to 40-45% with Np = 32 nodes. If we use Np = 2 as the baseline, we see that the efficiency
remains above 80%, a very good result.

In contrast to the OpenMP/MPI version, CUDA/MPI version performs very badly when exe-
cuted on one node. Due to message sizes, MPI implementation used (Open MPI) relies on asyn-
chronous copies through host memory [94] to perform the required communication. This results in
bad performance due to a lack of overlap when copying data, as there is only one process involved.
With Np = 2 processes the situation improves, as multiple streams are used, much like how we em-
ploy streams to overlap computation and data transfers in implementation of the hybrid algorithm.
Between Np = 4 and 16 processes we get the best performance, and further increasing the number
of processes only slightly reduces efficiency due to the size and amount of messages passed. If we
compare the weak scaling efficiency with the best result as the baseline (obtained with Np = 16
processes), we see that the efficiency is lower than for the OpenMP/MPI version, due to the different
transpose routine used and divided multidimensional FFT that has to be employed. However, we
stress that, in terms of absolute execution times, CUDA/MPI is faster than OpenMP/MPI version
for Np ≥ 4.

The Hybrid/MPI version behaves as expected and demonstrates weak scaling efficiency of about
70-75% with Np = 32 nodes. Since data are transposed only in host memory, this version does not
suffer the penalty of memory copies like the CUDA/MPI version, and therefore achieves much better
efficiency with small number of cluster nodes. In terms of absolute execution times, Hybrid/MPI
version is the fastest of all three implementations for Np ≥ 2 and is therefore the algorithm of
choice for distributed memory systems. Of course, it assumes previous optimization of offloading
parameters using the GA method, which itself is time-consuming and has to be taken into consid-
eration when making the choice. Table 8.15 provides data on the optimal fraction of total data
offloaded to GPU in our weak scaling tests. As the number of processes increases, one expects that
the amount of data offloaded to GPU remains constant, which is the case, as we see from the table.
The only exceptions are when the value of Ny is greater than Nx where we see a larger fraction of
data offloaded to GPU in PS2 and PS4, and when the value of Ny is smaller than Nx where we see
a smaller fraction of data offloaded to GPU in PS2 and PS4.
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Table 8.15: Optimal fraction of total data offloaded to GPU in weak scaling tests for different mesh
sizes in Hybrid/MPI programs, obtained using the GA optimization method.

Mesh size
imag3d-mpihetero real3d-mpihetero

PS1 PS2 PS3 PS4 PS1 PS2 PS3 PS4

Np = 1
480× 480× 480 35 20 31 44 46 30 40 35

Np = 2
480× 480× 960 46 33 33 47 38 29 37 38
480× 960× 480 50 67 17 47 45 60 19 40
960× 480× 480 50 15 70 34 43 15 67 35

Np = 4
480× 960× 960 40 65 18 47 40 63 17 37
960× 480× 960 50 10 67 42 40 12 75 33
960× 960× 480 33 29 33 40 45 22 33 40

Np = 8
960× 960× 960 53 25 33 47 40 27 40 28

Np = 12
1440× 960× 960 37 20 53 45 42 18 60 63
960× 1440× 960 40 38 27 47 45 35 27 35
960× 960× 1440 50 25 38 45 45 25 40 40

Np = 16
1920× 960× 960 47 13 67 27 42 13 80 30
960× 1920× 960 47 47 35 37 47 53 20 25
960× 960× 1920 50 20 33 33 47 20 40 27

Np = 24
1440× 1920× 960 47 40 30 53 47 33 25 63
1440× 960× 1920 50 17 60 45 47 13 60 70
1920× 1440× 960 40 20 50 40 45 20 53 27
1920× 960× 1440 53 13 60 45 45 10 80 25
960× 1440× 1920 50 30 27 47 45 30 27 27
960× 1920× 1440 40 50 18 45 45 50 20 30

Np = 32
1920× 1920× 960 47 27 33 30 47 17 40 27
1920× 960× 1920 50 13 60 40 47 10 80 40
960× 1920× 1920 47 47 40 33 47 40 23 27

To model the obtained weak scaling results, we start from equation (8.10) for the execution time
of a single iteration of the main loop. In weak scaling tests, the mesh size is increased proportionally
to the number of MPI processes Np, and therefore the execution time is given by

TW (Np) = α+ βL+ γ
MNp

Np
+ βV

MNp

N2
p

= α+ βL+ γM + βV
M

Np
. (8.13)
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The weak scaling efficiency
EW (Np) = TW (1)

TW (Np) , (8.14)

can thus be modeled by
EW (Np) = 1

a+ b/Np
. (8.15)

We fitted this model to data presented in Figure 8.9 and the obtained fit parameters are given in
Table 8.16. Note that the model is fitted to CUDA/MPI scaling data only for Np ≥ 4. The agree-
ment between the model and measurement data is very good, although we note that the parameter
b has negative values, contrary to its expected relation to the communication cost. Therefore, we
conclude that the above expression can be successfully used for modeling of the performance of all
three MPI-based implementations.

Table 8.16: Values of obtained weak scaling model fit parameters a and b, as well as the estimated
fit errors for MPI-parallelized programs.

Program a ∆a b ∆b
imag3d-mpi 2.56 0.06 -0.9 0.3
real3d-mpi 2.32 0.05 -1.3 0.2
imag3d-mpicuda 0.70 0.02 -0.1 0.2
real3d-mpicuda 0.68 0.02 -0.1 0.2
imag3d-mpihetero 1.32 0.03 -0.6 0.2
real3d-mpihetero 1.27 0.03 -0.6 0.2

To summarize, in all test results of MPI-based programs, we note an expected declining of the
scaling efficiency. This is due to the introduction of distributed transposes of data, creating overhead
that negatively impacts scaling efficiency. It is most evident in both strong and weak scaling tests
of the CUDA/MPI version, as the transpose algorithm is inferior to the one provided by FFTW,
used in OpenMP/MPI implementation. In our tests, all three MPI versions of programs failed to
achieve actual speedup (S(Np) > 1) on less than Np = 4 nodes, due to the introduction of these
transpose routines. We therefore recommend using MPI versions only on Np = 4 or more cluster
nodes.

8.5 Selecting optimal algorithm

In previous sections we presented results of detailed performance tests and associated models for all
developed programs. Here we provide general guidelines for obtaining the best performance from
each implementation.

We note that the extensive testing performed shows that the best performance can be achieved
by evenly distributing the workload among the MPI processes and OpenMP threads, and by using
mesh sizes which are optimal for FFT. In particular, the single-node OpenMP programs have
the best performance if the number of spatial points in all directions, controlled by parameters
Nx, Ny and Nz, is divisible by the number of OpenMP threads used. Similarly, the OpenMP/MPI
implementation achieves the best performance if Nx and Ny are divisible by a product of the number
of MPI processes and the number of OpenMP threads used.
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On the other hand, CUDA implementation works best if all the data for a given mesh size can
fit into the GPU memory with the POTMEM parameter set to 2. In the case of a small mesh size,
CUDA programs may not be able to saturate all Streaming Multiprocessors (SM) of a given GPU,
and in this case the OpenMP programs may be considered first. For CUDA/MPI programs, the
best performance is achieved if Nx and Ny are divisible by a product of the number of MPI processes
and the number of SMs in the GPU used. Note that CUDA-based implementations write output
files (e.g., density profiles) by transferring data from GPU memory to host memory, where a single
thread writes to a file. Therefore, these implementations may not be suitable for simulations that
require the output to be written frequently, after a small number of time propagation steps.

Best performance of hybrid implementations can be obtained by following the same guidelines.
Furthermore, we recommend using these programs with the optimization methods described in
Section 8.1 to optimally divide the work between host and device. If manual tuning of offload
parameters is required, we recommend that the guidelines above are followed for both CPU and
GPU portions of the mesh. In the case of large disparity in the performance of host or device,
hybrid versions will not provide the lowest execution times, and in such cases the pure CPU or
GPU implementations with or without MPI could be better suited.

In addition to the guidelines for mesh sizes presented above, all programs benefit from the
mesh size which is also optimal for FFT. The best FFT performance on CPU with FFTW library
is obtained if Nx, Ny and Nz can be expressed as 2a3b5c7d11e13f , where e and f are either 0 or
1, and the other exponents are non-negative integer numbers [95]. Similarly, for cuFFT the best
performance is achieved for transform sizes of the form 2a3b5c7d [96]. In hybrid implementations,
the same applies to the host and device portions of Nx and Ny, i.e., cpuNx, cpuNy, gpuNx and gpuNy.



Chapter 9

Demonstration of usability of
developed programs

The programs developed as part of this thesis can be used to model and study a variety of systems.
In this chapter we demonstrate the versatility of developed programs on a simulation of a BEC. We
use the MPI-based programs to simulate the effects of a moving obstacle in an oblate atomic BEC.
The obstacle, a repulsive Gaussian laser beam, moves through the condensate and sheds quantum
vortices, elementary excitation of a superfluid [10, 11]. The vortices appear only when the obstacle
is moving above some critical speed, consistent with the Landau’s criterion of superfluidity. At
low obstacle velocities above a critical value, vortex dipoles emerge, and as the speed is increased
further, individual vortices and rotating vortex pairs are also formed.

In Section 9.1 we document how our programs can be used to simulate the experiment reported
in Ref. [97], and compare experimental and numerical results. The experiment measured critical
velocity for the emergence of vortex dipoles and rotating vortex pairs in a BEC of sodium atoms
(23Na), which do not exhibit the dipolar interaction. Therefore, in this section we also demonstrate
how our programs can be modified to switch off the dipolar interaction term when solving GPE. The
agreement of the results obtained numerically and experimental observations provides an external
check of the correctness of our algorithms and their implementations.

Next, in Section 9.2, we investigate the formation of vortices in a dipolar BEC of dysprosium
atoms (164Dy). Our simulations follow the same methodology as the experiment with sodium
atoms, only with atomic species exhibiting strong dipolar interaction. We study effects of the
dipolar interaction on the critical velocity for the emergence of vortices, as well as the interplay
between contact and dipolar interaction. The visualization extensions presented in Chapter 7 have
proven to be indispensable during these simulations, as they allow much easier study of the results
and control of the simulation.

9.1 Formation of vortices in BEC

BEC is a superfluid quantum liquid and one of its hallmarks are quantized vortices, which appear as
elementary excitations of the system. Quantization of vortices is connected to excitation spectrum
and, according to Landau’s criterion, leads to the existence of a minimal velocity an obstacle moving
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through the superfluid has to have in order to generate such elementary excitations. This critical
velocity vc can be experimentally measured and, in principle, depends on the experimental protocol
used.

Reference [97] reports the study of vortex formation in an oblate BEC of Nat = 3.2×106 sodium
atoms. The trapping potential frequencies used are (ωx, ωy, ωz) = 2π × (9, 9, 400) Hz, and the
s-wave scattering length determining the strength of contact interaction was as = 51.9 a0, where
a0 = 0.0529 nm is the Bohr radius. The moving obstacle is realized by a repulsive Gaussian laser
beam corresponding to an additional potential of the form

VB(r; t) = V0 exp
{
−2 [y − y0(t)]2 + z2

σ2

}
, (9.1)

where V0 represents the strength of the beam, σ is the 1/e2 beam waist, while y0(t) = vt determines
the center of the beam (0, y0(t), 0). In our simulations, as in the experiment, the initial position
of the beam is at the condensate center and then it moves with the velocity v along y direction for
24 µm. Afterwards, the beam is switched off linearly during 0.5 s. Illustration of the experimental
setup is given in Figure 9.1. Using imaginary-time propagation, we calculate the ground state of the
system with the trapping potential V (r)+VB(r; t), where harmonic part V (r) is defined by Eq. (2.2),
with the frequencies given above. The experiment measured critical velocity for the emergence of
vortex dipoles, pairs of vortices of the opposite sign. We numerically addressed this setup and
calculated this critical velocity for the values of the parameters σ = 1.3 l and V0 = 250 ~ω̃, where
l = 6.98777µm is the harmonic oscillator length for the referent frequency ω̃ = ωx.

Figure 9.1: Illustration of the experimental setup used in Ref. [97] to study vortex formation in a
BEC of sodium atoms. A repulsive Gaussian laser beam is initially at the center of the condensate
and moves along y direction with a constant velocity v until it reaches its final position. The beam
is then switched off during a period of 0.5 s. For sufficiently large velocity vortices and vortex pairs
are generated.

Before it was possible to run simulations with the parameters described above, we had to make
changes to the programs to model the experiment precisely. First, we had to exclude the dipolar
interaction term from the propagation of the wave function, since sodium atoms have negligible
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dipole moment. While we can set the corresponding input parameters to zero, this would still result
in unnecessary computation. A better approach is to remove (or comment out) the portions of
the code relating to the calculation of the dipolar interaction term (calling of calcpsidd2 function
and, optionally, the associated allocations and deallocations), and adjust the calcnu function not to
include the dipolar interaction term. This is a very simple change, resulting in modification of a few
lines of the code, however, the performance impact is significant, due to the code calling the FFT
functions no longer being part of the main loop. A single iteration of the main loop now performs
roughly 30-40% faster.

Final change was related to the implementation of time-dependent potential V (r) + VB(r; t).
Initialization of V (r) remains the same, i.e., it is initialized before the main loop and stored in
an array, while calculation of VB(r; t) is implemented in a separate function that is called in each
iteration within the main loop. Two distinct phases of VB(r; t) exist: one relating to the movement
of the beam, and the other relating to the beam shutdown during 0.5 s. Each phase is implemented
as a separate function, and the active phase is determined by the current time, i.e., iteration number.

Figure 9.2 shows several snapshots of a typical dynamical evolution of the system. Imaginary-
time propagation yields ground state of the system, which is shown in Figure 9.2(a), where we plot
integrated 2D density profile in y-z plane. To model local inhomogeneities always present in the
experiment, we add uniformly distributed random noise to the wave function of the order of 10%.
Such modified ground state represents initial state of the system, and the beam starts to move along
y direction at time t = 0 with the speed v = 1.26 mm/s. Figures 9.2(b) and 9.2(c) show 2D density
profile of the system at times t = 52.17 ms and t = 358.1 ms, respectively. In Figure 9.2(b) the beam
already reached its final position and its switch-off started. We can observe that several vortices
(vortex dipoles) are generated and that the used speed exceeds the critical velocity. Generated
vortices are stable and can be seen after extended period of time, Figure 9.2(c). To confirm that
we indeed have vortices and not just localized density minima, we plot the x = 0 slice of the phase
of the wave function in Figure 9.3. We observe characteristic braiding and jumps of the phase in
the vicinity of density minima, which is a well-known hallmark of a vortex.

Figure 9.2: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving
at speed v = 1.26 mm/s > vc, when several vortices are generated. Each panel shows integrated
2D density profile in y-z plane at different time t. All lengths are expressed in units of µm, and
particle density is given in units Nat/l

2.
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Figure 9.3: Time evolution of the wave function phase of BEC of sodium atoms with an obstacle
moving at speed v = 1.26 mm/s > vc, when several vortices are generated. Each panel shows x = 0
slice of the phase of the wave function in y-z plane at different time t. All lengths are expressed in
units of µm.

When the obstacle is moving with an under-critical velocity, no vortices are generated, as in
Figure 9.4. The velocity v = 0.87 mm/s is just slightly lower than the the critical one, and we
can see precursors of vortices at the beam edge in Figures 9.4(a) and 9.4(b). At higher velocities,
vortices emerge, as we have seen in Figure 9.2. At even higher velocities, Figure 9.5, rotating vortex
pairs are generated, in addition to individual vortices.

Figure 9.4: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving
at speed v = 0.87 mm/s . vc, when no vortices are generated. Each panel shows integrated 2D
density profile in y-z plane at different time t. All lengths are expressed in units of µm, and particle
density is given in units Nat/l

2.

The obtained results are in good agreement with experimental findings of Ref. [97] and show
that the programs developed within this thesis can be successfully used to model BEC systems with
contact interaction, even for the most complex setup, when vortices are generated due to a moving
obstacle.
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Figure 9.5: Time evolution of 2D density profile of BEC of sodium atoms with an obstacle moving
at speed v = 1.4 mm/s � vc, when rotating vortex pairs are also generated. Each panel shows
integrated 2D density profile in y-z plane at different time t. A rotating vortex pair is highlighted
in panel (c). All lengths are expressed in units of µm, and particle density is given in units Nat/l

2.

9.2 Effects of dipolar interactions on vortex formation in
BEC

To further test our programs, we model vortex formation in a BEC of dysprosium atoms (164Dy),
which exhibit strong magnetic dipole moment. In particular, we study effects of the dipolar inter-
action strength for varying s-wave scattering lengths on the critical velocity for the emergence of
vortices, which was not investigated experimentally. Dysprosium atoms have the largest magnetic
dipole moment (m = 10µB) available in ultracold atom experiments, corresponding the character-
istic dipole-dipole interaction length add = 132 a0. External magnetic field can be used to align all
atomic dipoles in the same direction, as well as to tune their strength up to a maximal value given
above. The same applies to the s-wave scattering length, which determines the contact interaction
strength and which can also be tuned using the Feshbach resonance technique. Following Ref. [98],
we take the same range of possible values for as as for add, i.e., up to a maximal value of 132 a0.
With this we show how the developed programs can be used to model and theoretically address new
physical phenomena, before they are studied experimentally. Such approach is essential for the de-
sign of many upcoming experiments, since otherwise it would be extremely difficult to predict what
would be the relevant range of physical quantities to be measured, thus making it very challenging
to perform the experiments. Having the results of detailed numerical simulations for the particular
system enables experiments to target appropriate range of all relevant quantities, and to focus on
discovering new phenomena.

The experiment follows the same methodology as in previous section and uses the same pa-
rameters where applicable. Namely, the trap frequencies remain the same, i.e., (ωx, ωy, ωz) =
2π × (9, 9, 400) Hz, as well as strength of the beam V0 = 250 ~ω̃. Due to the strong dipolar
interactions affecting the stability of the BEC, we had to use a much smaller number of atoms,
Nat = 8× 104. This resulted in a much smaller BEC, so we had to reduce the 1/e2 beam waist to
σ = l, where l = 2.617µm is harmonic oscillator length corresponding to dysprosium atoms. Also,
we positioned the beam outside of the condensate, and move it all the way to the other side, as
illustrated in Figure 9.6. The potential VB(r; t) has the same form (9.1) as in previous section, just
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the center of the beam is now given by y0(t) = y00 + vt, where y00 = −15 in units of l.

Figure 9.6: Illustration of the setup we use to study vortex formation in a dipolar BEC of dysprosium
atoms. A repulsive Gaussian laser beam is initially outside of the condensate and moves along y
direction with a constant velocity v until it reaches its final position on the other side. For sufficiently
large velocity vortices are generated.

Modifications to the programs presented in the previous section can be reused for this numerical
experiment and we only need to re-enable previously disabled calculation of the dipolar term in the
main time propagation loop. As before, the ground state of the system is obtained using imaginary-
time program, which then serves as the initial state of the real-time propagation program, with
uniformly distributed random noise of 10% added. To calculate critical velocity vc for the emergence
of vortices, we search for the minimal speed of the laser beam for which two vortices appear, as
illustrated in Figure 9.6.

Figure 9.7 shows several 2D density profiles of a typical dynamical evolution of the system for
velocity v = vc = 0.16 mm/s. The ground state, obtained through imaginary-time propagation is
shown in Figure 9.7(a). The beam, initially outside of the condensate, moves along the y direction,
as seen in Figures 9.7(b) through 9.7(f). In Figure 9.7(c) the precursors of the vortices form on the
edges of the beam, which then separate from the beam if v ≥ vc, a situation seen in Figure 9.7(d).
In Figures 9.7(e) and 9.7(f) we see that the generated vortices are stable, and survive for long
propagation times.

Figure 9.8 shows results of our numerical study of the dipolar interaction effects on the critical
velocity. We see that for large values of the s-wave scattering length, i.e., for the contact interac-
tion comparable or larger than the dipole interaction, effects of decreasing add are very small and
probably could not be experimentally measured. On the other hand, when contact interaction is
tuned down so that the dipole interaction starts to dominate the behavior of the system, critical
velocity depends much stronger on add and could be easily measured in future experiments.

The above study represents an example on how our programs can be used to verify and compare
results of current experiments, as well as to theoretically investigate new phenomena and plan future
experiments.
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Figure 9.7: Time evolution of 2D density profile of BEC of dysprosium atoms for as = 66a0 and
add = 44a0, with an obstacle moving at speed v = vc = 0.16 mm/s, when two individual vortices
are generated. Each panel shows integrated 2D density profile in y-z plane at different time t. All
lengths are expressed in units of µm, and particle density is given in units Nat/l

2.

as = 44 a0

as = 66 a0

as = 99 a0

as = 132 a0

v c
  (

m
m

/s
)

0.14

0.145

0.15

0.155

0.16

0.165

0.17

add / a0

0 11 22 33 44 55 66 77 88 99 110 121 132

Figure 9.8: Critical velocity vc for the emergence of vortices generated by a moving obstacle as a
function of the characteristic dipolar interaction length add (in units of a0) for varying values of the
s-wave scattering length as.



Chapter 10

Conclusions and future work

The main contribution of this thesis is the development of parallel algorithms for solving nonlin-
ear differential equations of Gross-Pitaevskii type with a convolution integral kernel, as well as
six implementations of the algorithms. The algorithms are based on the split-step, semi-implicit
Crank-Nicolson method, while the convolution integral is solved using Fourier transform. Several
parallelization approaches were considered, targeting both shared memory and distributed memory
systems, with an emphasis on heterogeneous computing platforms. Algorithm for shared-memory
architectures based on multi-core processing units is presented in Chapter 3 and its extension to
specialized accelerator architecture in the form of GPUs is given in Chapter 4. Combination of the
two approaches is given in Chapter 5, where we propose a hybrid algorithm targeting heterogeneous
computer architectures, which fully harnesses the power of modern heterogeneous parallel resources
of a single computer. While the (discrete) Fourier transform can be computed using the specialized
FFT libraries that target specific hardware architecture, in a hybrid environment this is not easily
achievable as no FFT library for heterogeneous architectures exists. Therefore, as part of the hybrid
implementation, we have developed a heterogeneous algorithm for discrete Fourier transform, which
combines the specialized multi-core and GPU FFT libraries. Our heterogeneous FFT algorithm re-
mains general enough that it can easily be used outside the programs we developed, potentially
simplifying the development of future heterogeneous algorithms which rely on Fourier transform.

The shared memory algorithms were further extended using MPI, allowing them to be executed
in a distributed computing environment, e.g., on a computer cluster. This work is presented in
Chapter 6. The benefit of distributed memory programs is twofold: they can be used to speed up the
computation of simulations that can be executed on a single computer, and enable the simulations
of higher resolution, which due to large memory requirements cannot fit in the memory of a single
computer. Three implementations are given, targeting different computer cluster installations, from
the ones based entirely on multi-core CPUs or GPUs, to the heterogeneous ones where the high-
performing CPU and GPU are installed on the same computing node.

Two additional important contributions of this thesis are presented in Chapter 8. The first is
the parameter optimization method for heterogeneous algorithms, which we developed to optimize
the performance of our hybrid implementations. We have studied three approaches, based on
brute-force search, gradient descent and genetic algorithm, and found the optimizer based on a
genetic algorithm to be best suited to the problem. This method allows us to quickly find the
optimal division of work between CPU host and GPU device, and we note that it can be adapted

125



CHAPTER 10. CONCLUSIONS AND FUTURE WORK 126

to work with other heterogeneous algorithms. The second contribution relates to the assessment of
the efficiency of all developed programs through extensive performance evaluation. Testing results
confirm that optimization of all programs described throughout the thesis yield highly efficient
implementations. This chapter also includes detailed performance models for programs at different
parallelization approaches. The developed methodology can be directly used in the evaluation of
the expected performance of our programs on different computing resources.

The larger volume of data produced by the higher-resolution simulations could negatively im-
pact user’s ability to analyze the data and extract new information. We have addressed this by
providing extensive integration with the VisIt visualization system, presented in Chapter 7. In situ
visualization enables higher level of interaction with the simulation, through modification of the
simulation’s parameters while the simulation is running, visualization of its current state and con-
trol of its course. More traditional, post-mortem visualization is also possible, using standardized
visualization file format. The usefulness of the developed integrations can be seen in Chapter 9, in
which we demonstrate the usability of the developed programs on the example of study of vortex
formation in BECs with a moving obstacle. Here, the visualization of high-resolution simulations
was integral to the observations and measurements that were made.

In the future, we plan to address several important topics that include multi-component BEC
systems, fast-rotating BECs, as well as other types of interaction, such as spin-orbit coupling.
The main challenge for the development of multi-component programs is their increased memory
requirement and therefore a distributed memory approach seems suitable to address this problem.
Fast-rotating BECs are described by a Hamiltonian that includes additional, first-order partial
derivatives w.r.t. spatial coordinates, which will require substantial changes in the implementation
of Crank-Nicolson method in all approaches. Finally, different forms of the spin-orbit coupling,
which represents a hot topic in the physics of ultracold atoms, will require combining of multi-
component algorithm with the improved Crank-Nicolson method to allow study of novel physical
systems that exhibit this type of interaction.
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Prošireni sažetak

Algoritmi za rešavanje parcijalnih diferencijalnih jednačina, posebno paralelni numerički algoritmi,
danas predstavljaju veoma značajnu oblast istraživanja, posebno uzimajući u obzir da su praktično
svi današnji računari zasnovani na sistemima sa više procesorskih jedinica. Višejezgarni proce-
sori predstavljaju osnovni nivo paralelizma koji postoji u svim modernim računarima, a grafički
akceleratori (engl. Graphics Processing Unit, GPU) i druge vrste koprocesora (npr. Intel Xeon
Phi kartice) su sledeći nivo u ovoj hijerarhiji. Računarski klasteri, koji se sastoje od velikog
broja računara povezanih brzom mrežnom infrastrukturom, uz odgovarajuća softverska rešenja koja
omogućavaju da se ceo sistem koristi na paralelan način (npr. pomoću Message Passing Interface,
MPI paradigme), kompletiraju ovu veoma heterogenu hijerarhiju. Efikasno korišćenje velikih raču-
narskih sistema zahteva domen-specifična znanja i razvoj paralelnih algoritama koji uzimaju u obzir
hardverske osobine sistema, kao i mogućnosti paralelizacije numeričkih metoda koji se koriste za
rešavanje datog problema.

Jedna od oblasti gde su ovakvi algoritmi od velikog značaja je fizika ultrahladnih atoma, koja
proučava osobine materije na veoma niskim temperaturama, reda nanokelvina. Na tim temperatu-
rama gasovi nekih elemenata ili jedinjenja doživljavaju fazni prelaz pod nazivom Boze-Ajnštajn kon-
denzacija i prelaze u novo stanje, koje se odlikuje koherentnim kvantnim kolektivnim ponašanjem.
Ovakvi sistemi su od velikog interesa jer pružaju ranije nezamislivu kontrolu nad eksperimenta-
lnim parametrima i omogućavaju primene u kvantnom računarstvu, kao i simuliranje drugih kva-
ntnih sistema (Fajnmanov kvantni simulator), opisanih sličnim jednačinama. U poslednjoj deceniji
su posebno proučavani sistemi u kojima se, pored sveprisutne kontaktne interakcije, pojavljuje
i dipol-dipol interakcija, a eksperimentalna realizacija Boze-Ajnštajn kondenzacije sa atomima ve-
likog dipolnog momenta (erbijum, disprozijum) u poslednjih par godina je otvorila novu istraživačku
oblast u kojoj se proučavaju dominantni efekti anizotropne dipolne interakcije.

Osnovni opis ovakvih fizičkih sistema daje teorija srednjeg polja. Dok za uobičajene kvantne
sisteme možemo da koristimo linearnu parcijalnu diferencijalnu Šredingerovu jednačinu, u slučaju
Boze-Ajnštajn-kondenzovanih sistema teorija srednjeg polja daje nelinearnu Šredingerovu jednačinu,
odnosno Gros-Pitaevski jednačinu (GPJ). U prisustvu dipol-dipol interakcije ona sadrži nelinearni
integralni kernel konvolucionog tipa, i rešavanje ovakvih jednačina zahteva primenu jednog ili više od
nekoliko poznatih numeričkih metoda. U poglavlju 1 dat je kratak uvod u oblast, kao i formulacija
osnovnih problema.

Ova teza se bavi razvojem i implementacijom paralelnih algoritama za rešavanje Gros-Pitaevski
jednačine sa dipolnom interakcijom, bazirane na CUDA (na GPU) i OpenMP paralelizaciji (na više-
jezgarnim procesorima) u okviru jednog računara, MPI paralelizaciji na nivou računarskog klastera,
kao i kombinacije ovih pristupa. Razvijeni algoritmi omogućavaju ne samo rešavanje vremenski za-
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visne GPJ, nego i vremenski nezavisne jednačine, prelaskom na propagaciju u imaginarnom vremenu.
Ovakvi algoritmi omogućavaju efikasno rešavanje GPJ u velikom broju primena u fizici ultrahla-
dnih atoma, nelinearnoj optici, primenjenoj fizici, astrofizici, kao i u kvantitativnim finansijama, u
kojima se takođe koriste jednačine sličnog tipa. Tokom izrade disertacije su razvijena softverska
rešenja u programskom jeziku C i detaljno izmerena poboljšanja koja ona donose u odnosu na druge
pristupe. Takođe je razmotren problem in situ vizuelizacije podataka dobijenih tokom izvršavanja
numeričkih simulacija i rešavanja vremenski zavisne i vremenski nezavisne GPJ. Sve implementacije
opisane u ovoj tezi su otvorenog koda, i dostupne su za preuzimanje [37].

Za rešavanje GPJ i jednačina sličnog tipa koristi se veliki broj metoda, a kratak pregled rele-
vantne literature je dat u poglavlju 2. Analitički se koriste različite aproksimativne metode, kao što
je Tomas-Fermi aproksimacija, koja zanemaruje kinetičku energiju sistema, odnosno Laplasijan u
GPJ. Koriste se i varijacioni metodi, kod kojih se za rešavanje GPJ pretpostavi funkcionalni oblik
talasne funkcije, a onda se na osnovu ekstremizacionog uslova nalazi optimalno rešenje. Oba ova
pristupa su popularna jer omogućavaju analitički tretman problema, ali, sa druge strane, ne daju
mogućnost kontrole niti ocene greške takve aproksimacije.

Perturbativni razvoj (na primer, aproksimacija Bogoljubova, Hartri-Fok-Bogoljubova, Hartri-
Fok-Bogoljubov-Popova) predstavlja sledeći nivo u analitičkom tretmanu ovakvih sistema i pruža
mogućnost ocene greške, ali uz izuzetnu matematičku kompleksnost rešenja, koja u mnogim slučaje-
vima praktično onemogućava korišćenje ovog pristupa. Postoje i malobrojni neperturbativni metodi,
ali je njihova primenljivost veoma sužena na mali broj konkretnih problema (npr. solitonska rešenja
u jednodimenzionalnom slučaju).

Pored analitičkih metoda, veoma značajnu ulogu imaju i numerički metodi za rešavanje GPJ,
koji u velikom broju slučajeva predstavljaju jedinu mogućnost za proučavanje datih fizičkih sistema.
U ove pristupe spadaju spektralne metode, metode podeljenog koraka, kao i metode konačne ra-
zlike elemenata. U slučaju GPJ sa dipolnom interakcijom, konvolucioni integral se obično rešava
višestrukim korišćenjem diskretne Furijeove transformacije. Svaki od ovih metoda ima prednosti i
mane kada se razmatraju njihova stabilnost i preciznost, a jedan od pristupa koji garantuje apso-
lutnu stabilnost i odlično skaliranje grešaka diskretizacije je semi-implicitni Krenk-Nikolson metod
podeljenog koraka (KN). Ranije je slučaj kontaktne interakcije razvijen serijski algoritam koji imple-
mentira ovaj metod [12], kao i njegova paralelizovana verzija pomoću OpenMP pristupa [13]. Za
slučaj GPJ sa dipol-dipol interakcijom ranije je razvijen samo serijski algoritam [16]. Ovo predstavlja
odlično rešenje za jednodimenzionalne probleme, dok u dve i tri prostorne dimenzije vreme izvrša-
vanja simulacija za sisteme u razumnoj diskretizaciji veoma brzo postaje suviše veliko da bi ovi
algoritmi mogli praktično da se koriste. Zbog toga je jedan od otvorenih problema razvoj efikasnih
paralelnih algoritama na heterogenim platformama koji će omogućiti brzo rešavanje GPJ za sisteme
sa finom diskretizacijom u dve i tri prostorne dimenzije. Pošto je izračunavanje konvolucionog in-
terakcionog integrala bazirano na korišćenju diskretne Furijeove transformacije, od velike koristi je
upotreba GPU kartica, koje mogu značajno da ubrzaju izvršavanje ovakvih algoritama. Takođe, u
trodimenzionalnim slučajevima velika količina podataka koja je neophodna za opis sistema često
zahteva distribuiranje izračunavanja na više računara, odnosno primenu MPI paralelizacije. Svi ovi
problemi su predmet aktivnog istraživanja u ovoj oblasti.

U poglavlju 3 predstavljen je algoritam za rešavanje GPJ sa dipolnim članom namenjen si-
stemima sa deljenom memorijom. Algoritam se oslanja na KNmetod podeljenog koraka i omogućava
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efikasne implementacije na sistemima gde je celokupan sadržaj memorije vidljiv svim računskim
resursima. Opis algoritma započinjemo definicijom diskretizacione šeme, koja definiše način na
koji su prostor i vreme diskretizovani pomoću konačnog broja tačaka. Razlikujemo tri slučaja, u
zavisnosti od broja prostornih dimenzija problema koji rešavamo. Srž algoritma je petlja u kojoj
jedna iteracija odgovara jednom vremenskom koraku propagacije. Unutar petlje, vrednosti talasne
funkcije se računaju u odnosu na različite delove Hamiltonijana, u skladu sa šemom podeljenog
koraka opisanom u poglavlju 2. Svaki korak glavne petlje podeljen je na više manjih koraka. U pr-
vom od njih se računa vrednost dipolnog člana GPJ i na egzaktan način propagira vrednost talasne
funkcije u odnosu na članove Hamiltonijana koji ne sadrže prostorne izvode, dok se u preostalim
koracima talasna funkcija propagira u odnosu na delove Hamiltonijana sa prostornim izvodima
pomoću KN metoda. Vrednost dipolnog člana se računa korišćenjem diskretne Furijeove transfor-
macije. Prilikom propagacije u imaginarnom vremenu, neophodan je dodatni korak normalizacije
talasne funkcije u svakoj iteraciji glavne petlje.

S obzirom na to da se u svakoj iteraciji više puta računa vrednost talasne funkcije u svim
tačkama diskretizacione šeme, lako se može zaključiti da je algoritam računski izuzetno zahtevan.
Ovo je dodatno izraženo u dve i tri dimenzije, gde ukupan broj diskretizacionih tačaka brzo raste
povećanjem rezolucije, te se javlja potreba za paralelizacijom.

Osim algoritma, u poglavlju 3 su opisane i serijska i paralelna implementacija. Serijska imple-
mentacija je napisana u programskom jeziku C, sadrži 10 programa, i oslanja se na prethodne
implementacije u programskim jezicima Fortran i C [12, 13, 16]. Implementirani su zasebni programi
za rešavanje GPJ u jednoj, dve i tri dimenzije, u realnom i imaginarnom vremenu. Za računanje
vrednosti dipolnog člana GPJ korišćena je FFTW biblioteka. Radi preglednosti, koraci u glavnoj
petlji su implementirani u zasebnim funkcijama, što olakšava buduće izmene programa u skladu sa
potrebama eksperimenata i drugih primena. Takođe, da bi se smanjila količina numeričkih operacija
u svakoj iteraciji, vrednosti koje se ne menjaju (potencijal zamke i dipol-dipol interakcije, koeficijenti
KN šeme, itd.) se izračunavaju samo jednom i smeštaju u memoriju, a zatim se po potrebi koriste
tokom propagacije vrednosti talasne funkcije.

Paralelna implementacija algoritma za sisteme sa deljenom memorijom je zasnovana na OpenMP
tehnologiji. Ova tehnologija omogućava paralelizaciju korišćenjem niti koje se mogu izvršavati
paralelno na višejezgarnim procesorima. Nitima se ne manipuliše direktno, već se putem instrukcija
u programskom kodu označavaju regioni koji će biti paralelizovani, na osnovu kojih kompajler
generiše paralelni kod. Paralelizacija petlji u kojima pojedinačne iteracije nemaju međusobnih
zavisnosti na ovaj način postaje veoma jednostavna. Međutim, u slučaju da se u petlji javljaju
rekurzivne relacije, kao što je slučaj u funkcijama koje implementiraju KN šemu, paralelizacija
je moguća jedino uz obimnu izmenu algoritma, od koje smo zbog kompleksnosti odustali. Ovo
znači da u jednoj dimenziji nije moguće ostvariti paralelizaciju svakog koraka u iteraciji, što nije
velik problem imajući u vidu da broj tačaka u diskretizacionoj šemi nije velik u ovim programima.
U programima koji rešavaju GPJ u dve ili tri dimenzije problem rekurzivnih relacija efektivno
nestaje, jer se rekurzije javljaju samo u unutrašnjoj petlji što ostavlja mogućnost da se paralelizuje
spoljašnja petlja. U ovom pristupu neophodno je jedino obezbediti zaseban prostor u memoriji za
privremene promenljive koje svaka nit koristi. Posledica ovakvog pristupa je veće zauzeće memorije
zbog privremenih promenljivih, međutim ukupno povećanje nije veliko, a svakako je opravdano
značajno boljim performansama koje ova implementacija ima u odnosu na serijsku, što je pokazano
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u poglavlju 8. Osim petlji u funkcijama, neophodno je paralelizovati i računanje vrednosti dipolnog
člana GPJ, za koji se koristi FFTW biblioteka. Ova biblioteka već podržava OpenMP, čime je
paralelizacija ovog koraka značajno olakšana.

Algoritam za sisteme sa deljenom memorijom se može prilagoditi i implementirati na grafičkim
procesorima (GPU), što je tema poglavlja 4. Iako algoritam nije značajno izmenjen, zbog različitog
programskog modela koji GPU koristi implementacija je značajno kompleksnija. Naša implemetacija
za grafičke procesore je zasnovana na CUDA tehnologiji, koju koriste Nvidia grafički procesori. GPU
arhitektura se fundamentalno razlikuje od tradicionalne arhitekture koje poseduju centralni proce-
sori računara, i njeno razumevanje je neophodno da bi se iskoristio pun potencijal grafičkih proce-
sora. Dok su centralni procesori dizajnirani da izvršavaju raznorodne zadatke korišćenjem relativno
malog broja jezgara, grafički procesori su dizajnirani isključivo za floating-point operacije, za šta
koriste velik broj GPU niti. Niti se izvršavaju po modelu Single Instruction Multiple Thread, gde sve
izvršavaju istu instrukciju nad različitim podacima, uz značajno manju kontrolu nad međusobnom
sinhronizacijom. Grafički procesori poseduju svoju RAM memoriju, odvojenu od glavne memorije
računara, i svi podaci kojima GPU efikasno pristupa moraju biti dostupni u njegovoj memoriji.
Iako novi grafički procesori imaju i do 24 GB memorije, to je ipak osetno manje od glavne memorije
najmodernijih računara, koji često imaju i po 128 GB. Iz tog razloga, optimalno korišćenje GPU
memorije je ključno za njihovu efikasnu primenu.

CUDA grafički procesori se programiraju pomoću ekstenzije programskog jezika C, nazvanog
CUDA C. CUDA pravi razliku između koda koji se izvršava na glavnom procesoru i koji je pisan
u neizmenjenom programskom jeziku C, i koda koji se izvršava na grafičkom procesoru za koji
je neophodno korišćenje proširenog jezika C i specijalizovanog kompajlera. Centralno mesto u
CUDA programskom modelu zauzima koncept kernel-a, odnosno funkcija koje programer definiše,
a koje se izvršavaju na grafičkom procesoru. Kerneli se pozivaju korišćenjem specijalne sintakse,
i prilikom poziva CUDA kreira željeni broj niti koje izvršavaju telo funkcije. Unutar kernela je
moguće napraviti razliku između pojedinačnih niti korišćenjem posebnih varijabli preko kojih se
može izračunati njihov broj ili mesto u hijerarhiji izvršavanja.

Grafički procesori se, iako međusobno imaju sličnu hardversku arhitekturu, značajno razlikuju
po svojim računskim kapacitetima. Da bi se omogućio razvoj programa koji ne zavise od računskog
kapaciteta grafičkog procesora, CUDA model izvršavanja se oslanja na logičku hijerarhiju na dva
nivoa. Na prvom nivou se nalazi skup svih niti koje će se izvršiti, nazvan grid, koji je podeljen u
niz blokova iste veličine, dok drugi nivo čine niti unutar blokova. Veličina grida i blokova se definiše
pri pozivu kernela. Prilikom izvršenja programa, CUDA određuje koliko blokova će se paralelno
izvršavati, u zavisnosti od kapaciteta grafičkog procesora. Bitna posledica ovakvog modela je da ne
postoji garancija o broju blokova koji se izvršavaju ili njihovom redosledu, što znači da sinhronizacija
između njih nije moguća. Sinhronizacija niti je moguća jedino unutar jednog bloka. Ovo u značajnoj
meri utiče na dizajn algoritama za grafičke procesore, koji se često moraju značajnije menjati da bi
mogli da se efikasno implementiraju.

Implementacija našeg algoritma na GPU je zahtevala značajne izmene u odnosu na OpenMP
paralelizaciju. S obzirom na to da se implementacija algoritma u značajnoj meri oslanja na ko-
rišćenje petlji bez međuzavisnosti njihovih iteracija, implementacija nije zahtevala veće izmene
algoritma i upotrebu sinhronizacije. Jedino je pomoćni algoritam za numeričku integraciju, baziran
na Simpsonovom pravilu, morao da se izmeni u značajnijoj meri. S druge strane, implementacija
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predstavlja veliki tehnički izazov jer zahteva korišćenje CUDA tipova podataka za reprezentaciju
kompleksnih brojeva, specifičan način (de)alokacije memorije i pristup indeksima nizova, aritmetiku
sa pokazivačima, izmenu biblioteke za Furijeovu transformaciju, itd. Takođe, posebna pažnja je bila
posvećena optimizaciji upotrebe memorije, odnosno smanjenju ukupne memorije koju program za-
uzima na grafičkom procesoru, što je postignuto reorganizacijom računskih operacija i naprednom
upotrebom pokazivača. Na ovaj način, u CUDA implementaciji smo uspeli da smanjimo upotrebu
memorije i do 50% u odnosu na OpenMP implementaciju.

Moderni računarski sistemi često poseduju snažan višejezgarni centralni procesor povezan sa
grafičkom karticom sličnih računskih performansi. Korišćenjem programa iz poglavlja 3 ili 4 se može
koristiti samo jedan od ovih resursa. Bolji pristup je razvoj hibridnog algoritma i implementacije koji
će objediniti oba resursa u jedan heterogeni sistem, što se razmatra u poglavlju 5. U ovom poglavlju
je opisan hibridni algoritam, od načina podele podataka između dva resursa do podele obrade
podataka na svakom od njih, a takođe je predstavljena implementacija i optimizacija dobijenog
rešenja.

Prvi korak u dizajnu hibridnog algoritma je razvoj efikasne šeme podele podataka i posla između
dva resursa. Imajući u vidu da su memorije centralnog i grafičkog procesora odvojene i različitog
su kapaciteta, nije opravdano šemu bazirati na modelu koji zahteva da sadržaj obe memorije bude
istovetan. Umesto toga, potrebno je logički podeliti podatke na deo koji će obrađivati grafički
procesor i deo koji će obrađivati centralni procesor. U slučaju da je jednom resursu potreban deo
podataka na kojima radi drugi resurs, ove podatke je potrebno preraspodeliti kopiranjem u odgo-
varajuću memoriju. Pritom treba omogućiti da se simultano računanje na oba resursa nesmetano
nastavi, kao i da ne dođe do problema sa sinhronizacijom. Upravo takvu šemu koristi naš hibridni
algoritam i ona predstavlja važan doprinos ove teze. Korisnost šeme je takođe vidljiva kroz hibridni
algoritam za Furijeovu transformaciju, koji je razvijen za potrebe programa, ali se može lako isko-
ristiti i za druge hibridne algoritme koji zahtevaju ovu transformaciju. Ovaj algoritam je primenljiv
na višedimenzionu Furijeovu transformaciju i funkcioniše tako što deli transformaciju na dva dela:
deo koji se može izračunati na svakom resursu sa podacima koji se nalaze u lokalnoj memoriji, i deo
za koji je potrebna distribucija podataka po dimenziji koja nije lokalna.

Hibridna implementacija osnovnog algoritma je zasnovana na delovima koda OpenMP i CUDA
implementacija. Glavne funkcije za računanje vremenske propagacije talasne funkcije se mogu
iskoristiti uz male izmene granica petlji. Međutim, ovako naivna implementacija bi bila veoma
neefikasna, jer bi oba resursa bila neiskorišćena tokom preraspodele podataka. Implementacija se
može unaprediti tako što se računske operacije nad jednim delom podataka podele u manje celine i
povežu u jedan tok (engl. stream) koji ima definisan redosled izvršavanja. Upotrebom više tokova
moguće je u potpunosti preklopiti raspodelu podataka i računanje nad njima, i time značajno
povećati efikasnost hibridne implementacije. U ovom slučaju nastaje problem da za maksimalno
iskorišćenje oba resursa moramo precizno da odredimo količinu podataka koju će svaki procesor
obraditi, kao i broj tokova koji će biti korišćen, što nije jednostavan zadatak jer umnogome zavisi
od performansi oba resursa. Rešenje ovog problema je predstavljeno u poglavlju 8, u formi metoda
za automatsku optimizaciju parametara podele podataka.

Algoritmi predstavljeni u poglavljima 3, 4 i 5 namenjeni su izvršavanju na jednom računaru,
gde mogu da koriste sve dostupne resurse. Sledeći korak je njihovo proširenje na sisteme sa di-
stribuiranom memorijom, odnosno na računarske klastere, što je tema poglavlja 6. Karakteristika
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ovakvih sistema je model memorije u kome nijedan računarski resurs ne poseduje kompletan skup
podataka. Pristup podacima koji pripadaju nekom drugom resursu zahteva njihov prenos kroz
mrežni interfejs, što je značajno sporije od rada sa lokalnim podacima. Algoritmi za ovakve sisteme
treba da poseduju šemu distribucije podataka koja maksimalno iskorišćava lokalnost podataka, a
podacima udaljenih resursa pristupa samo kada je to neophodno. U okviru poglavlja 6 predstavljeno
je proširenje glavnog algoritma na sisteme sa distribuiranom memorijom, kao i tri implementacije.
Algoritam koristi model razmene poruka da pristupi podacima na drugim računarima u klasteru,
dok se za implementaciju koristi Message Passing Interface (MPI). Sve tri implementacije koriste
MPI samo za razmenu podataka, dok se za paralelno računanje nad lokalnim podacima koriste
algoritmi koje smo prethodno razvili. Tri implementacije su:

1. Implementacija koja radi samo sa centralnim procesorima, zasnovana na algoritmu za deljenu
memoriju, odnosno njegovoj OpenMP paralelizaciji iz poglavlja 3 (OpenMP/MPI),

2. Implementacija koja radi samo sa grafičkim procesorima, a zasnovana je na implementaciji iz
poglavlja 4 (CUDA/MPI),

3. Hibridna implementacija zasnovana na algoritmu predstavljenom u poglavlju 5 (Hybrid/MPI).

Sve implementacije koriste istu šemu distribucije podataka i imaju sličnu strukturu. Prilikom
razvoja, fokus je stavljen na programe koji rešavaju GPJ u tri dimenzije, jer je potreba za nji-
hovom paralelizacjiom najveća. Korišćenje ovih implementacija na sistemima sa distribuiranom
memorijom pomaže nam da ostvarimo dva cilja, tj. omogućava nam da upotrebom više računarskih
resursa skratimo vreme izvršavanja simulacija za datu rezoluciju, dok nam takođe omogućavaju i da
izvršavamo simulacije sa značajno većom rezolucijom, za koje kapacitet memorije jednog računara
nije dovoljan i koje na drugi način ne bi ni mogle da budu izvršene.

Predstavljeni algoritam za distribuirane sisteme se oslanja na podelu podataka po jednoj di-
menziji, što znači da svaki resurs (ili proces u MPI terminologiji) ima u svojoj lokalnoj memoriji
podatke u preostale dve dimenzije. Inicijalno su podaci podeljeni između procesa po x koordinati,
što omogućava da svaki proces u svojoj lokalnoj memoriji propagira talasnu funkciju u odnosu
na delove Hamiltonijana koji sadrže prostorne izvode po y i z koordinati. Da bi talasnu funkciju
propagirali u odnosu na deo Hamiltonijana sa prostornim izvodima po x koordinati neophodno je
transponovati podatke, tako da se obezbedi lokalnost podataka po celokupnoj x koordinati u svakom
procesu. Operacija transponovanja podataka zauzima centralno mesto u ovim programima i njihove
performanse su direktno povezane. U tezi smo ispitivali dva načina transponovanja podataka: kori-
šćenjem FFTW biblioteke koja ovu operaciju pruža kao svoju dodatnu funkcionalnost, i putem ru-
tine koju smo sami razvili za ovu potrebu. Uzimajući u obzir da OpenMP i hibridna implementacija
već koriste FFTW prilikom računanja vrednosti dipolnog clana GPJ, upotreba ove biblioteke za
transponovanje podataka ne unosi dodatne zavisnosti u program, odnosno jedini preduslov je da je
FFTW biblioteka kompajlirana sa podrškom za MPI. Međutim, CUDA implementacija se ne oslanja
na ovu biblioteku, već koristi cuFFT biblioteku koja radi isključivo sa grafičkim procesorima, i koja
ne poseduje ekvivalentnu operaciju za transponovanje, niti bilo kakvu podršku za MPI. Da bi rešili
ovaj problem, razvili smo novu rutinu za ovu operaciju, koja koristi MPI tipove podataka i ko-
munikaciju između svih procesa da bi ostvarila neophodnu razmenu podataka. Uz upotrebu MPI
implementacije koja pristupa memoriji grafičkog procesora direktno, bez potrebe za prebacivanjem
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u glavnu memoriju, ova rutina ima odlične performanse. Takođe, pošto dva navedena pristupa op-
eraciji transponovanja kao rezultat imaju identičan raspored podataka u memoriji, u Hybrid/MPI
implementaciji su oba pristupa omogućena i korisnik prilikom kompajliranja programa može da
odabere koju implementaciju želi.

Osim operacije transponovanja koja nam je neophodna da bi izvršili propagaciju talasne funkcije
u odnosu na odgovarajući deo Hamiltonijana, potreban nam je i algoritam za računanje vrednosti
dipolnog člana GPJ. Da bi se njegova vrednost izračunala, neophodno je koristiti algoritam za
diskretnu Furijeovu transformaciju koji radi na sistemima sa distribuiranom memorijom. U slučaju
OpenMP/MPI implementacije, ovo je jednostavan zadatak, jer FFTW biblioteka ima podršku za
MPI i koristi identičan model podele podataka između procesa. U Hybrid/MPI programima bilo je
neophodno proširiti algoritam za Furijeovu transformaciju iz poglavlja 5. Osnovni koncept podele
po dimenzijama i korišćenja tokova podataka ostaje nepromenjen, s tim što je u ovom slučaju
neophodno i dodatno transponovati podatke i obezbediti odgovarajući raspored podataka u me-
moriji. Kao i u slučaju hibridnog algoritma za Furijeovu transformaciju na jednom računaru, i ovaj
algoritam predstavlja dodatni doprinos teze koji se može primeniti izvan okvira programa za koje
je razvijen. U slučaju CUDA/MPI implementacije može se primeniti ista ideja podele podataka,
dodatno olakšana činjenicom da su svi podaci jednog procesa u memoriji grafičkog procesora, te
nije neophodno korišćenje tokova podataka i njihovo prebacivanje u glavnu memoriju računara.

Korišćenje MPI programa omogućava simulacije eksperimenata značajno veće rezolucije, te se
javlja problem ispisa vrednosti koje program računa. Sa jedne strane, ukoliko bi MPI procesi unutar
programa ispisivali svoje lokalne podatke u zasebne fajlove, korisniku bi ostao nezavidan zadatak
da te fajlove objedini na korektan način i analizira. Sa druge strane, tekstualni zapis koji programi
iz poglavlja 3, 4 i 5 koriste postaje neadekvatan za simulacije visoke rezolucije usled ogromne
veličine fajlova. MPI programi koje smo razvili ovaj problem rešavaju korišćenjem MPI input/output
operacija. Umesto u zasebne fajlove, svi procesori pišu u jedan, binarni fajl koji zadržava preciznost
podataka iz programa, i pritom zauzima manje prostora na disku od tekstualnog zapisa.

Sa povećanim obimom izlaznih podataka, javio se i problem njihove analize i vizuelizacije, kako
nakon završetka izvršavanja simulacije, tako i tokom samog izvršavanja. Ovim problemom se bavi
poglavlje 7. Vizuelizacija podataka tokom izvršavanja simulacije, tzv. in situ vizuelizacija, je veoma
korisna jer omogućava značajno bržu analizu rezultata, a ukoliko dodatno pruža mogućnost uticaja
na tok simulacije (na primer, kroz modifikaciju ulaznih parametera dok se simulacija izvršava),
takođe značajno smanjuje i vreme koje je korisniku potrebno da putem simulacija ispita neki fizički
fenomen. Pored vizuelizacije ove vrste, veoma je korisno i pojednostaviti vizuelizaciju podataka
nakon završetka simulacije korišćenjem standardnog formata. Oba navedena slučaja korišćenja smo
pokrili kroz integraciju razvijenih programa sa VisIt sistemom za analizu i vizuelizaciju podataka.

VisIt je program otvorenog koda koji omogućava vizuelizaciju podataka iz velikih simulacija,
čije napredne funkcionalnosti predstavljaju poslednju reč tehnologije u oblasti analize i vizuelizacije
podataka. Oslanja se na klijent-server arhitekturu, gde se server izvršava paralelno na sistemu sa
distribuiranom memorijom, te se uz pomoć njega može prikazati veliki skup podataka poput onog
iz naših MPI programa. VisIt može da pristupi podacima na više načina od kojih smo mi koristili
dva pristupa: putem fajlova zapisanih u VTK formatu koje VisIt može da pročita i putem libsim

biblioteke koja omogućava in situ vizuelizaciju.
Proširenje programa da pored dosadašnjeg tekstualnog ili binarnog zapisa svoje podatke zapisuje
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i u VTK formatu je olakšano postojanjem više biblioteka za ovu namenu, dok se za osnovne potrebe
može iskoristiti postojeći slobodan kod koji ne unosi dodatne zavisnosti u program. Na ovaj način
smo omogućili programima da ispisuju profile gustine u tri dimenzije i integrisane dvodimenzione
profile gustine talasne funkcije koje se kao VTK fajlovi mogu lako vizuelizovati ne samo u VisIt-u
već i u drugim programima koji podržavaju ovaj format.

Integracija sa VisIt-om putem libsim biblioteke omogućava da se podacima u memoriji pristupi
kao da su resursi koje VisIt može da prikaže na ekranu, bez potrebe za njihovim upisom na disk.
Pošto putem ove integracije komponenta VisIt sistema zadužena za vizuelizaciju radi zajedno sa
procesom koji poseduje podatke, nema dodatne potrebe za razmenom podataka između procesa, te
se ovaj pristup izuzetno dobro skalira prilikom izvršavanja na velikom broju računara u klasteru.
Putem ove biblioteke smo omogućili vizuelizaciju stanja svih relevantnih promenljivih u programu.
Osim vizuelizacije, libsim je iskorišćen i za kontrolu same simulacije. VisIt i libsim poseduju
više mehanizama za kontrolu toka simulacije. Na osnovnom nivou, VisIt omogućava da se definišu
funkcije u programu koje se pozivaju pritiskom na dugme u korisničkom interfejsu VisIt-a, što smo
iskoritili za osnovne komande pokretanja, zaustavljanja, prekida i ponovnog pokretanja simulacije.
Naprednija funkcionalnost je moguća kroz razvoj dodatnog modula koji VisIt pretvori u korisnički
interfejs koji se prikazuje korisniku. Kroz ovaj mehanizam moguća je naprednija kontrola simu-
lacije putem prosleđivanja parametra, ali potpuna kontrola trenutno ipak nije moguća, i predmet je
aktivnog istraživanja za proširenje u budućoj verziji VisIt-a. I pored nedostataka, kroz ovaj meha-
nizam smo omogućili izmenu svih bitnih parametera i obezbedili kontrolu toka simulacije do nivoa
pojedinačne iteracije glavne petlje. Osim dva navedena pristupa, moguće je napraviti i konzolni in-
terfejs, putem kojeg se programu iz VisIt-a šalju tekstualne naredbe. Ovaj mehanizam je ograničen
samo sposobnošću programa da tumači tekstualne naredbe, i uz dovoljno napredan parser moguće
je ostvariti potpunu kontrolu nad simulacijom. Ovaj interfejs smo iskoristili da obezbedimo istu
funkcionalnost koja je dostupna i preko specijalizovanog grafičkog interfejsa. Razvijeni sistem kon-
trole simulacije, kao i vizuelizacija podataka nakon završetka simulacije bili su od ogromne koristi
tokom istraživanja predstavljenog u poglavlju 9.

Performanse svih implementacija su izmerene u detaljnim testovima predstavljenim u poglavlju
8. Kao osnovna metrika je korišćeno vreme izvršavanja, odnosno mereno je vreme izvršavanja jedne
iteracije glavne petlje, usrednjeno nad 1000 iteracija, za različite veličine diskretizacione šeme. U
opštem slučaju, vreme trajanja jedne simulacije najviše zavisi od veličine diskretizacione šeme,
koja kontroliše broj tačaka a samim tim i broj iteracija u petljama glavnih funkcija. Naravno,
vreme izvršavanja simulacija zavisi linearno od ukupnog broja iteracija glavne petlje, koja kontroliše
fizičko vreme propagacije i koja je specifična za eksperiment koji se simulira. Imajući ovo u vidu,
predložena metrika nam omogućava da steknemo sliku o performansama programa i predvidimo
njegovo vreme izvršavanja za buduće simulacije. Svi testovi su izvršeni na PARADOX-IV klasteru
Laboratorije za primenu računara u nauci, u okviru Nacionalnog centra izuzetnih vrednosti za
izučavanje kompleksnih sistema Instituta za fiziku u Beogradu. PARADOX klaster se sastoji od
preko 100 računara, svaki sa dva Sandy Bridge Xeon procesora (ukupno 16 jezgara po računaru),
32 GB RAM memorije i Nvidia Tesla M2090 grafičkom karticom.

Testirano je skaliranje programa koji se izvršavaju na jednom računaru u odnosu na serijsku
implementaciju, kao i skaliranje MPI implementacija u odnosu na paralelizacije na jednom računaru.
Proučavano je i jako i slabo skaliranje, gde se jako skaliranje odnosi na slučaj kada je veličina
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problema (diskretizacione šeme) konstantna, a povećava se broj paralelnih resursa, dok je kod
slabog skaliranja količina računskih operacija po pojedinačnom resursu konstantna, a povećava se
broj paralelnih resursa, što je praćeno i povećanjem diskretizacione šeme na odgovarajući način. Na
osnovu dobijenih rezultata, za sve programe je izračunato ubrzanje, kao odnos vremena koje jedan
računarski resurs provede u jednoj iteraciji glavne petlje u odnosu na vreme za istu operaciju u
paralelnom programu, kao i efikasnost skaliranja, koja predstavlja ostvareno skaliranje u odnosu na
idealno teorijsko linearno skaliranje. Osim predstavljenih rezultata, razvijeni su i modeli performansi
većine programa.

Pre ocenjivanja samih performansi, proučavali smo optimizaciju hibridnih implementacija što je
poseban problem koji se pojavljuje samo kod hibridnih algoritama. Za razliku od ostalih algoritama
kod kojih se optimizacija završava na programskom nivou, tokom implementacije, performanse
hibridnih implementacija dodatno, na značajan način, zavise od iskorišćenosti centralnog i grafičkog
procesora, koju određuju parametri podele podataka. Izbor optimalnih vrednosti ovih parametara
nije lak zadatak, jer zahteva duboko razumevanje performansi hardvera koji se koristi, i u opštem
slučaju veoma je teško ručno izabrati optimalne parametre. To je zahtevalo razvoj metoda koji će
biti u stanju da izabere optimalne parametre na osnovu pokretanja programa i merenja njegovog
vremena izvršavanja, bez intervencije korisnika. Ispitivana su tri pristupa, od naivnog pretraživanja
najbolje konfiguracije putem iscrpne pretrage, preko metoda zasnovanog na algoritmu opadajućeg
gradijenta, do metaheurističke metode zasnovane na genetskom algoritmu.

U programima koji rešavaju GPJ u tri prostorne dimenzije postoji ukupno 33 parametra koji
određuju podelu i obradu podataka na oba resursa, što kao posledicu ima veoma velik prostor pre-
traživanja. Problem se može olakšati ako parametre grupišemo u četiri grupe čiji se izbor prirodno
nameće, na osnovu tačaka u algoritmu na kojim je neophodno da se oba resursa sinhronizuju. Svaki
skup parametara je relevantan samo do tačke naredne sinhronizacije, te se može pretražiti zasebno.

I pored navedene podele problema u manje grupe, iscrpno pretraživanje nije odgovarajuće zbog
velikog broja kombinacija koje treba proveriti. Ukoliko se umesto svake vrednosti svakog parametra
isproba svaka n-ta vrednost, možemo značajno smanjiti vreme ovakve pretrage, ali uz rizik da
odabrano rešenje ne bude zaista optimalno, odnosno da se u pretraživanju slučajno „preskoči”
optimalna kombinacija parametara.

Drugi metod koji smo ispitivali, algoritam opadajućeg gradijenta, je zasnovan na računanju
gradijenta funkcije koju minimizujemo, i koja u našem slučaju predstavlja vreme izvršavanja datog
programa. Pošto ova funkcija ne može da se napiše u analitičkoj formi, njen gradijent možemo da
izračunamo jedino pomoću numeričke aproksimacije. Ovo se pokazalo kao suviše problematično, jer
je šum pri merenju vrednosti funkcije značajan, odnosno dva ili više pokretanja programa sa istim
vrednostima parametara neće imati identična vremena izvršavanja, pri čemu razlike imaju veliki
uticaj na izvršavanje algoritma pretrage. To znači da algoritam često može pretragu da usmeri u
pogrešnom pravcu. Takođe, pošto ovakav algoritam u osnovi radi sa realnim brojevima, a vrednosti
naših parametara mogu biti samo celobrojne, javlja se i problem izbora novih vrednosti parametara
na osnovu rezultata jedne iteracije algoritma. Ove probleme smo pokušali da rešimo na više načina,
međutim nijedan pokušaj nije uspeo da u potpunosti otkloni sve manjkavosti ovog pristupa, što
nas je navelo na zaključak da algoritam opadajućeg gradijenta nije pogodan za problem koji smo
pokušali da rešimo.

Treći pristup je baziran na genetskom algoritmu (GA) koji je dizajniran da oponaša prirodnu
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selekciju, po uzoru na biološku evoluciju u prirodi. GA funkcioniše tako što kreira populaciju od
individualnih probnih rešenja problema, koju potom oceni, modifikuje i kreira novu. Ovaj proces
se ponavlja dok se ne dođe do željenog rešenja. Inicijalna populacija se obično formira slučajnim
izborom, što omogućava ovom algoritmu da započne pretragu prostora iz više tačaka. Svako indi-
vidualno rešenje u populaciji se ocenjuje uz pomoć funkcije koju zadaje korisnik. Na osnovu ocena,
najbolje individue se izaberu za „reprodukciju”, i na osnovu njih se formira nova generacija, a pro-
ces se ponavlja. U našem slučaju, individue u populaciji predstavljaju jednu (validnu) kombinaciju
parametara podele posla u hibridnom algoritmu, dok je funkcija kojom se ocenjuju vreme izvrša-
vanja programa sa parametrima koje definišu individuu. Kvalitet GA zavisi od implementacije tri
ključna operatora: selekcije, reprodukcije i mutacije. Svaki od operatora može biti implementiran
na više načina, i za sva tri smo razvili i testirali više potencijalnih implementacija.

Selekcija diktira način na koji se biraju najbolje individue iz populacije. Ovaj izbor može biti
proporcionalan njihovoj oceni, a može biti zasnovan i na nekoj drugoj metrici ili pak proizvoljan.
Treba imati u vidu da je moguće da dođe do prerane konvergencije ka neoptimalnom rešenju uko-
liko se biraju samo najbolje individue, odnosno potrebno je napraviti operator selekcije koji ne
zanemaruje sva rešenja i daje evolutivnu mogućnost nekim od slabije ocenjenih individua. Ovo
se najčešće radi tako što se relaksira selekcija u prvih nekoliko generacija, da bi neke individue
sa slabijom ocenom nakon reprodukcije omogućile bolje pretraživanje prostora. Isprobali smo tri
oblika selekcije i među njima utvrdili da oblik selekcije poznat pod nazivom turnir daje najbolje
rezultate. Ovakva selekcija podrazumeva da se slučajno izabere određen broj jedinki iz populacije
i iz ovog skupa odabere najbolja. Kontrolom veličine turnira se može smanjiti pritisak na izbor
najboljih jedinki i sprečiti prerana konvergencija.

Reprodukcija je operator koji određuje način na koji će se parametri od dve izabrane individue
kombinovati da se napravi nova jedinka, a da se pritom dobije validna kombinacija, odnosno skup
parametara pomoću kojih se program može izvršiti. Mi smo ispitali više implementacija, međutim
nijedna se nije pokazala kao značajno bolja od drugih.

Poslednji operator, mutacija, podrazumeva izmenu slučajno izabranog parametra u jedinki i
ekvivalentan je slučajnom prolazu kroz prostor pretraživanja. Mutacija funkcioniše sa malom verova-
tnoćom, u našem slučaju do 5%. Uticaj mutacije u GA je diskutabilan i često osporavan, međutim
u našem slučaju je bio koristan za sprečavanje konvergencije ka neoptimalnom rešenju u slučaju
kada se koristi mala populacija.

Poređenjem tri metoda optimizacije na različitim veličinama diskretizacione šeme utvrdili smo
da GA daje najbolje rezultate. Metod iscrpnog pretraživanja je uspevao da nađe skup parametara
blizak optimalnom, ali predloženo rešenje obično nije bilo optimalno, usled prevelikog broja koraka
koji bi ovaj metod morao da koristi da bi uspeo da ispita veći deo prostora pretrage. Metod zasnovan
na algoritmu opadajućeg gradijenta je pokazao najgore performanse, iz razloga koje smo već naveli.
GA je pronalazio odlična rešenja, veoma blizu najboljeg rešenja otkrivenog ručnom proverom, i
jedini njegov nedostatak je to što osim za slučaj najmanje diskretizacione šeme, nije uspevao da
konvergira ka egzaktno najboljem rešenju. Umesto toga, u poslednjoj generaciji GA nalazilo se
nekoliko veoma sličnih rešenja koja su sva veoma blizu najbolje kombinacije parametara, što je
dovoljno dobar rezultat za naše potrebe. Pošto se GA pokazao kao bolje rešenje od preostala dva
pristupa, izabrali smo njega za optimizaciju hibridnih programa i pristupili testiranju.

Ubrzanje i jako skaliranje OpenMP programa je određeno poređenjem njihovog vremena izvrša-
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vanja sa prethodno objavljenim serijskim programima. Pritom su testirane performanse sa različitim
brojem OpenMP niti, od jedne do 16 niti. Imajući u vidu da je ova implementacija unapređena
u odnosu na serijsku, najviše u delu gde se koristi Furijeova transformacija, već sa jednom niti se
dobijaju bolja vremena izvršavanja, dok se povećanjem broja niti do 16 dobija dodatno ubrzanje
od 11 do 12 puta, u zavisnosti od programa. Efikasnost skaliranja je veoma dobra, od 60-80%.
Programi koji rade u jednoj prostornoj dimenziji ostvaruju manje ubrzanje, usled dela programa
koji je ostao serijski. U ovom slučaju maksimalno ubrzanje je između 2 i 3, dostupno već sa 4 niti,
i daljim povećanjem broja niti se ne dobija značajnije ubrzanje. Dobijeni rezultati su saglasni sa
Amdalovim zakonom i mogu se modelirati na osnovu njega, što je detaljnije prikazano u poglavlju
8. Slabo skaliranje OpenMP programa je takođe testirano, pri čemu smo se fokusirali na programe
koji rešavaju GPJ u tri prostorne dimenzije. Efikasnost ovog skaliranja je takođe veoma dobra,
gde programi za propagaciju u realnom vremenu ostvaruju efikasnost od oko 75%, dok programi
u imaginarnom vremenu ostvaruju nešto nižu efikasnost, oko 60%. Ova razlika je usled upotrebe
kompleksnih brojeva u propagaciji u realnom vremenu, što zahteva više računskih operacija, dok se
pri radu sa realnim brojevima puno iskorišćenje procesora ne ostvaruje usled ograničenog kapaciteta
protoka memorije. Pored toga, u imaginarnom vremenu je obavezan i dodatan korak normalizacije
talasne funkcije, što takođe negativno utiče na performanse ovih programa. Ovaj oblik skaliranja
smo takođe modelirali na jednostavan način, funkcijom sa jednim parametrom, koji odgovara frakciji
koda koji se izvršava paralelno.

CUDA programi su testirani malo drugačije, jer grafički procesor funkcioniše kao jedan, paralelan
računarski resurs. Samim tim, nije moguće testiranje ove implementacije promenom broja para-
lelnih računskih resursa. Međutim, promenom veličine diskretizacione šeme možemo dobiti uvid u
ponašanje grafičkog procesora i predvideti njegove performanse. U našim testovima, CUDA imple-
mentacija je pokazala ubrzanje od 10 do 14 za programe u dve prostorne dimenzije, u zavisnosti od
tipa vremenske propagacije. Programi koji rešavaju GPJ u tri prostorne dimenzije su pokazali nešto
manje ubrzanje, od 7 za programe u imaginarnom vremenu do 14 za programe u realnom vremenu.
Najveća ubrzanja su ostvarena za diskretizacione šeme koje nisu ni suviše male, a ni previše velike.
Rad sa malim diskretizacionim šemama ne zahteva dovoljno računskih operacija da bi se grafički
procesor u potpunosti iskoristio, dok se u slučaju velikih šema, koje u potpunosti popunjavaju me-
moriju grafičkog procesora, takođe vidi pad performansi usled potrebe za prebacivanjem podataka
iz glavne memorije računara.

Proučavanje performansi programa koji se izvršavaju na jednom računaru završeno je testom
hibridne implementacije. S obzirom na to da su testovi OpenMP programa pokazali da je potrebno
koristiti svih 16 niti u programima koji rešavaju GPJ u više od jedne prostorne dimenzije, u
ovim testovima smo uvek koristili maksimalni broj niti (16), dok je optimalna raspodela podataka
između centralnog i grafičkog procesora dobijena korišćenjem genetskog algoritma za zadatu veličinu
diskretizacione šeme. Osim u slučaju malih diskretizacionih šema, ova implementacija pruža naj-
bolje performanse od svih programa koji se izvršavaju na jednom računaru. Za male diskretizacione
šeme, nakon podele posla, nijedan od resursa nema dovoljno podataka za obradu i ne može da
bude u potpunosti iskorišćen, te se ne ostvaruje ubrzanje. Takođe, do pada performansi dolazi i za
velike diskretizacione šeme, jer u ovom slučaju ograničenje dostupne memorije na grafičkom proce-
soru onemogućava dalje ubrzanje. Algoritam za optimizaciju parametara za velike diskretizacione
šeme brzo konvergira ka modelu raspodele posla gde je memorija grafičkog procesora u potpunosti



PROŠIRENI SAŽETAK 145

iskorišćena, što je znak da nam za bolje performanse treba više memorije na GPU.
MPI programi su testirani na različitom broju računara u klasteru, od 2 do 32. Na svakom

računaru je pokrenut jedan MPI proces, koji u slučaju OpenMP/MPI i Hybrid/MPI implementacije
pokreće svojih 16 niti, dok u slučaju CUDA/MPI implementacije pristupa instaliranom grafičkom
procesoru. Osnova za poređenje tri MPI implementacije je bila ekvivalentna implementacija za
jedan računar, tj. OpenMP/MPI programi su poređeni sa OpenMP programima koji se izvršavaju
sa 16 niti, CUDA/MPI programi su poređeni sa CUDA implementacijom koja koristi jednu grafičku
karticu, dok su Hybrid/MPI programi upoređeni sa hibridnim programima namenjenim izvršavanju
na jednom računaru. Performanse svakog MPI programa, pa tako i programa koje smo mi razvili,
umnogome zavise od konkretnog klastera na kom se izvršavaju, najviše od brzine protoka podataka
kroz mrežu. Pronalaženje najbolje konfiguracije klastera za konkretan problem zahteva dosta truda i
može da stvori pogrešnu sliku o performansama programa. Rezultati koje smo predstavili su dobijeni
bez specijalnog podešavanja klastera, sa ciljem da se pokažu osnovne performanse na osnovu kojih
bi se, uz razvijene modele, moglo predvideti ponašanje programa na drugim klasterima. Zbog toga
razvijena metodologija testiranja performansi programa predstavlja jedan od značajnih doprinosa
ove teze.

Prilikom testiranja jake efikasnosti MPI programa za fiksnu veličinu problema, odnosno bez
izmene veličine diskretizacione šeme, jasno je da će na dovoljno velikom broju računara performanse
početi da opadaju, usled nedovoljne količine posla po jednom procesu i prevelike cene razmene
podataka. Prema tome, iako povećanjem broja MPI procesa odnosno računara očekujemo da će
vremena izvršavanja glavne petlje početi da se smanjuju, takođe očekujemo i da će za dovoljno
veliki broju procesa doći do zasićenja, nakon čega će efikasnost početi da opada. Ovo znači da iako
na malom broju procesa možemo da uočimo linearno skaliranje, modeli performansi ne mogu biti
bazirani na linearnim funkcijama i moraju da uzmu u obzir i parametre vezane za brzinu mreže.
Modeli koje smo razvili razmatraju ove detalje i pokazuju dobro slaganje sa eksperimentalnim
rezultatima za performanse sve tri MPI implementacije.

U testovima jakog skaliranja, OpenMP/MPI programi su pokazali odlično ubrzanje, koje ide
do 17 za programe u imaginarnom vremenu i do 22 za programe u realnom vremenu, koristeći 32
računara i ukupno 512 jezgara. Efikasnost ostaje uglavnom konstantna i kreće se u rasponu od 40%
do 60%. Pritom, ubrzanje raste skoro linearno, što čini ovu implementaciju veoma pogodnom za
simulacije sa veoma velikim diskretizacionim šemama. Slično ponašanje je uočeno i kod CUDA/MPI
programa, gde je ubrzanje manje, od 9 do 10, uz manju efikasnost, od 30% do 40%. Iako je
ubrzanje manje, treba imati u vidu da su apsolutna vremena izvršavanja CUDA/MPI programa
manja od OpenMP/MPI programa, što ovu implementaciju čini veoma pogodnom za klastere koji
sadrže grafičke procesore, naročito manje klastere. Na Hybrid/MPI programima je uočljiv pad
efikasnosti sa povećanjem broja procesa, pošto je količina posla po samom procesu veoma mala, te
dalja podela između centralnog i grafičkog procesora ne donosi bolje performanse. Međutim, ako
posmatramo samo vremena izvršavanja, na manje od 16 procesa Hybrid/MPI implementacija ima
najbolje performanse, što znači da je ova implementacija najpogodnija ako količina posla po procesu
ostane dovoljno velika da opravda upotrebu hibridnog algoritma. U suprotnom, treba razmotriti
bilo koju od druge dve implementacije.

U testovima slabog skaliranja korišćena je slična metodologija kao i u testovima OpenMP pro-
grama. Kao osnovu za poređenje koristili smo vreme izvršavanja jedne iteracije glavne petlje MPI
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programa pokrenutog sa jednim procesom. Pokretanje MPI programa sa samo jednim procesom se
ne preporučuje jer se operacija transponovanja podataka izvršava iako nema potrebe za njom. Ovo
takođe može da utiče na rezultate testova, što je vidljivo u rezultatima OpenMP/MPI i CUDA/MPI
implementacija. OpenMP/MPI programi, koji se oslanjaju na FFTW biblioteku za transponovanje
podataka, pokazuju veoma dobre performanse kad se koristi samo jedan proces, jer FFTW prepozna
ovaj slučaj i podatke transponuje na efikasniji način. Usled toga, prividno se dobija efikasnost od
samo 40%. Međutim, ukoliko bi se kao osnova za poređenje koristilo vreme izvršavanja programa
sa dva procesa, videlo bi se da efikasnost ostaje iznad 80% prilikom upotrebe 32 procesa, što je
odličan rezultat. Sa druge strane, CUDA/MPI implementacija ostvaruje veoma loše performanse
kad se koristi samo jedan proces, što je posledica upotrebe memorije centralnog procesora za op-
eraciju transponovanja u ovom slučaju. Sa dva ili više procesa ovi programi ostvaruju mnogo bolje
vreme izvršavanja, pa efikasnost može da bude čak i veća nego kod OpenMP/MPI programa, što
nije očekivano jer je algoritam za transponovanje inferioran u odnosu na rutine koje pruža FFTW
biblioteka. U ovom slučaju potrebno je uzeti apsolutno vreme izvršavanja na 16 procesa kao osno-
vu za poređenje da bi se dobila prava slika o efikasnosti skaliranja ove implementacije, koja je
manja nego kod OpenMP/MPI implementacije. U testovima Hybrid/MPI implementacije se do-
bije efikasnost skaliranja od oko 75% i, usled upotrebe glavne memorije za transponovanje, ova
implementacija nema probleme kao CUDA/MPI implementacija i pogodna je za izvršavanje na bilo
kom broju procesa. Ako se porede samo vremena izvršavanja, ova implementacija se nameće kao
najbolje rešenje, jer količina posla po procesu ostaje dovoljno velika da opravda upotrebu hibridnog
algoritma. Naravno, podrazumeva se da se pre izvršavanja simulacija optimizuju parametari podele
podataka pomoću GA, i ovo optimizaciono vreme takođe treba uzeti u razmatranje prilikom izbora
algoritma.

Da rezimiramo, u svim testovima MPI programa koji su obavljeni, uočena je očekivana opada-
juća efikasnost skaliranja, prouzrokovana potrebom za transponovanjem podataka u sistemu sa
distribuiranom memorijom. Imajući sve rezultate u vidu, poglavlje 8 se završava savetima za izbor
najboljeg algoritma za zadati problem.

Programi razvijeni u okviru ove teze se mogu koristiti za modeliranje i proučavanje raznih fizičkih
sistema. U okviru poglavlja 9 demonstrirana je njihova upotrebljivost za proučavanje formiranja
vorteksa u Boze-Ajnštajn kondenzatima. Korišćeni su MPI programi da bi se simulirali efekti pro-
laska prepreke kroz kondenzat. Prepreka, u formi odbojnog laserskog snopa, prolazi kroz kondenzat,
pri čemu njeno kretanje dovodi do formiranja kvantnih vorteksa. Odvajanje vorteksa od prepreke
se dešava jedino ukoliko se ona kreće brzinom većom od kritične, u skladu sa Landauovim kriter-
ijumom za superfluidnost. Pošto se kretanje prepreke simulira kao promena potencijala u GPJ
jednačini, programi su morali da budu izmenjeni tako da rade sa dinamičkim, vremenski zavisnim
potencijalom da bi se ovo istraživanje omogućilo. Izmene programa su bile veoma jednostavne, što
ide u prilog algoritmu podeljenog koraka koji nam omogućava da sve izmene budu lokalizovane u
funkcijama koje su jednostavne za razumevanje i lake za paralelizaciju, i pri tom su odvojene od
Krenk-Nikolson šeme.

Pomoću izmenjenih programa smo najpre simulirali rezultate ostvarene u skorašnjem eksperi-
mentu [97], u kojem je merena kritična brzina na kojoj se formiraju rotirajući parovi vorteksa u
Boze-Ajnštajn kondenzatu sačinjenom od atoma natrijuma. Pošto ovi atomi nemaju dipolni mo-
ment, programi su dodatno izmenjeni i uklonjeno je računanje vrednosti dipol-dipol interakcije.
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Pokazana je saglasnost između rezultata dobijenih numeričkim simulacijama i u eksperimentu, što
predstavlja jaku nezavisnu proveru ispravnosti naših algoritama i njihovih implementacija.

Osim navedene simulacije kondenzata sa atomima bez dipolnog momenta, takođe smo istraživali
i formiranje vorteksa u kondenzatu od atoma disprozijuma, kod kojih se mora uzeti u obzir snažna
dipol-dipol interakcija. Korišćena je ista metodologija za određivanje kritične brzine neophodne za
formiranje vorteksa i proučen je uticaj jačine kontaktne i dipol-dipol interakcije na kritičnu brzinu.
Zavisnost kritične brzine od jačine dipol-dipol interakcije do sada nije proučavana eksperimentalno,
pa rezultati predstavljeni u poglavlju 9 predstavljaju originalni naučni doprinos koji će biti osnova
za dodatna istraživanja u narednom periodu.

Budući pravci istraživanja uključuju razvoj paralelnih numeričkih algoritama za višekompo-
nentne Boze-Ajnštajn-kondenzovane sisteme, za brzo rotirajuće sisteme, kao i za druge vrste inter-
akcija između atoma. Glavni izazov u razvoju algoritama za višekomponentne sisteme predstavljaće
njihovi povećani memorijski zahtevi, pa očekujemo da će algoritmi za računarske klastere sa dis-
tribuiranom memorijom biti osnova za dalje istraživanje u ovom pravcu. Sa druge strane, brzo
rotirajući sistemi će zahtevati izmenu Krenk-Nikolson šeme, zbog prisustva dodatnih prostornih
izvoda u Hamiltonijanu. Novi programi koji će omogućiti rešavanje GPJ uopštene na ovaj način,
posebno uz implementaciju dodatnih tipova interakcije, biće od interesa za širu naučnu zajednicu
koja u istraživanju koristi rešavanje ovakvih parcijalnih diferencijalnih jednačina.
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