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Introduction

Nothing takes place in the world
whose meaning is not that of
some maximum or minimum.

Leonhard Euler

One of the major use of mathematics in the real world is solving prob-
lems as efficiently as possible. Finding optimal result under given circum-
stances is called optimization. It is present in almost every area of appli-
cation and embedded as a fundamental approach in the analysis of deci-
sion making problems as well as in the analysis of physical, technical and
many other systems. In business setting, investors seek to maximize profit,
whereas to minimize loss and risk. While designing technical systems, en-
gineers seek to optimize performance of their designs, to minimize effort or
to maximize benefit.

An optimization problem is given in a form of minimizing or maximiz-
ing some objective function of one or several variables, possibly subject to
constraints on these variables. In majority cases, obtaining optimal solu-
tion of optimization problem is very hard, expensive or even impossible.
Optimization techniques are used to find an approximation of the optimal
solution. Wide variety of numerical optimization methods have been de-
veloped for different types of problems. More than sixty years ago, the
most of proposed optimization methods were deterministic. Deterministic
methods assume a perfect information about the objective function and
its derivatives. However, almost all real world problems are faced with
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uncertainty and involve parameters which are unknown at the time of for-
mulation. For example, making investment decisions in order to increase
profit usually depends on future interest rates, future demands and future
prices. As a consequence, mathematical models cannot be fully specified
since the future outcomes are not deterministic. Minimization and max-
imization of a function with the presence of randomness are refereed to
stochastic optimization. Randomness can enter the problem through the
objective function or through the set of constraints. Stochastic optimiza-
tion algorithms have been growing rapidly in popularity over the last years
and have become widely available, [56]. Like in deterministic case, there is
no single method available for solving all optimization problems efficiently.

Within the thesis we consider unconstrained minimization problems in
noisy environment. In this set-up, the objective function and its gradient
are random, i.e., disturbed by the random variables (stochastic noises).
This means that only noisy observations of the objective function and
its gradient are available. Noisy environment is modelled by adding a
random variable and a random vector to the true values of the objec-
tive function and its gradient, respectively. The fundamental approach
for solving unconstrained minimization problem in noisy environment is
Stochastic Approximation (SA) algorithm. It is originally proposed for
finding roots of nonlinear scalar function by Robbins and Monro, [45], and
later extended to multidimensional systems by Blum, [5]. Iterative rule of
SA algorithm is motivated by deterministic gradient decent method and
uses only noisy gradient observation. Various modifications of SA algo-
rithm are proposed to improve and accelerate the optimization process,
[1, 4, 11, 24, 29, 30, 42, 55, 65, 67, 68]. These modifications are based on
the step size and/or search direction selection which are fundamental issues
in the iterative rule of the SA algorithm.

In the thesis, we focus on modifications of SA algorithm based on adap-
tive step sizes. The first SA algorithm with adaptive step size scheme is
proposed by Kesten, [24], for one dimensional case and by Delyon and Judit-
sky, [11], for multidimensional problems. These adaptive step size schemes
are based on monitoring frequency of sign changes of the differences between
two successive iterates. We propose a class of adaptive step size schemes
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for SA algorithms based only on previously observed noisy function values.
Two main schemes are proposed. In both schemes, at each iterate, interval
estimates of the optimal function value are constructed using fixed number
of previously observed (noisy) function values. If the observed (noisy) func-
tion value in kth iterate is smaller than the lower limit of the interval, we
consider this scenario as a good one, since it represents a sufficient decrease
of the objective function. In this case, we suggest using a larger step size in
the next (k + 1)th iterate. If the function value in kth iterate is larger than
the upper limit of the interval, we reject the current iterate by taking zero
step size in the next iterate. Similar approach is implemented in [55, 66].
Otherwise, if the function value lies in the interval, we propose a small safe
step size. In this manner, a faster progress of the algorithm is ensured when
it is expected that larger steps will improve the performance of the algo-
rithm. The proposed schemes differ in the intervals that we construct at
each iterate. In the first scheme, we drew our inspiration from the interval
estimation theory. We construct a symmetrical interval that can be viewed
as a confidence-like interval for the optimal function value. The bounds of
the interval are shifted means of the fixed number of previously observed
function values. We suggest taking a value comparable to the standard de-
viation of the noise for the width of the interval. The generalization of this
scheme is also presented. In the second scheme, we have used the Extreme
Value Statistics to construct the intervals. For the lower and upper bounds
of the interval, we suggest a minimum and a maximum of previous noisy
function values, respectively. Using the proposed schemes, the generated
sequences of step sizes are sequences of discrete random variables. However,
they still keep desirable properties for the convergence in a stochastic sense.
The almost sure convergence of SA algorithms with the proposed step size
schemes is achieved under certain set of assumptions. A special case when
the descent direction is a quasi-Newton direction is discussed separately.

The outline of the thesis is as follows. Fundamentals of numerical op-
timization are given in Chapter 1, while overview of optimization in noisy
environment is presented in Chapter 2. The new adaptive step size schemes
for SA algorithms are proposed in Chapter 3. Properties of the generated
step size sequences are analysed. Convergence theory of the SA algorithms
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with the new step size schemes is developed. The results of numerical ex-
periments are given in Chapter 4. They verify efficiency of the proposed
algorithms in comparison to classical SA algorithm as well as to other rel-
evant adaptive SA algorithms.
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Chapter 1

Preliminaries on
Optimization

Begin at the beginning, the
King said gravely, and go on till
you come to the end: then stop.

Lewis Carroll, Alice in
Wonderland

The chapter presents a short summary of numerical optimization. Op-
timality conditions that verify whether some point is the optimal solution
are derived. The most important numerical algorithms for unconstrained
optimization are presented and analysed. Also, some basic notations and
review of significant results for easier reference are introduced. This chapter
mostly relies on [40].

1.1 Problem Statement

Optimization problems are given in a form of minimizing or maximizing a
function of one or several variables, possibly subject to constraints on these
variables. Therefore, three ingredients are necessary to form optimization
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problem: decision variable, objective function that we want to maximize or
minimize and the set of constraints that needs to be satisfied. Identifying
the objective function, variable and constraints depends on a given problem
and represents the first step in the optimization process. It the thesis, we
focus only on unconstrained minimization problems. Even though we are
considering only a minimization problem, there is no fundamental difference
between a minimization and a maximization problem. If we are interested
in maximizing the function f(x), this would be equivalent to minimizing
the function −f(x). So, it suffices just to think in terms of minimization
problems.

The problem that we consider is given by

min
x∈Rn

f(x), (1.1)

where f : Rn → R is continuously differentiable function. We assume that
f(x) is nonlinear, possibly noncovex and bounded from below.

1.2 Optimality Conditions

A point where the objective function f(x) reaches its lowest value is called
a global minimizer of f(x). The formal definition is as follows.

Definition 1 (Global minimizer) The point x∗ ∈ Rn is a global minimizer
of f : Rn → R if f(x∗) ≤ f(x) for all x ∈ Rn. If this inequality is strict,
then x∗ is a strict global minimizer.

According to the Definition 1, obtaining global minimizer requires some
information about the function at every point. If it is difficult or impossible
to find the global minimizer, then at least we would like to find a point where
the function f(x) achieves the smallest value in the open neighbourhood of
x∗. Such point is called a local minimizer.

Definition 2 (Local minimizer) The point x∗ ∈ Rn is a local minimizer of
f : Rn → R if there is an open neighbourhood B of x∗ such that f(x∗) ≤
f(x) for all x ∈ B. If this inequality is strict, then x∗ is a strict local
minimizer.
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It seems that the only way to determine whether the point x∗ is a local
minimum is to examine all points in its neighbourhood and check whether
some of them has smaller function value. Therefore, obtaining local min-
imum also requires information about the function at an infinite number
of points. Since we assume f(x) to be a smooth function, there are more
efficient ways to identify local minimum.

The first-order necessary conditions for optimality are the following.

Theorem 1.2.1 [40] (First-order necessary conditions) If x∗ is a local
minimizer and f(x) is continuously differentiable in an open neighbourhood
B of x∗, then ∇f(x∗) = 0.

The point x∗ which satisfies the condition∇f(x∗) = 0 is called a station-
ary point of the function f(x). Note that ∇f(x∗) = 0 does not necessarily
mean that x∗ is a local minimizer. According to Theorem 1.2.1, any local
minimizer must be a stationary point. The first derivatives do not provide
enough information to claim whether the point is a minimizer, thus we need
to make use of the second derivatives. We state the second-order necessary
conditions below.

Theorem 1.2.2 [40] (Second-order necessary conditions) If x∗ is a local
minimizer of f(x) and ∇2f(x) exists and is continuous in an open neigh-
bourhood B of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is positive semidefinite
matrix.

The second-order sufficient conditions that guarantee that x∗ is a local
minimizer can be derived.

Theorem 1.2.3 [40] (Second-order sufficient conditions) Suppose that
∇2f(x) is continuous in an open neighbourhood B of x∗, ∇f(x∗) = 0 and
∇2f(x∗) is positive semidefinite. Then, x∗ is a strict local minimizer of f .

If conditions from Theorem 1.2.3 are satisfied, we can say that the point
x∗ is a local minimizer. Note that the second-order sufficient conditions
guarantee that the point is a strict local minimizer. Also, note that the
second-order sufficient conditions are not necessary. A point x∗ may be a
strict local minimizer, and yet may fail to satisfy the sufficient conditions.
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1.3 Overview of Algorithms

In most situations, we are not likely to find directly a solution of the prob-
lem (1.1). Numerical algorithms for unconstrained optimization are used
to find an approximation of the optimal solution. These algorithms are it-
erative methods. They start from some initial point x0 ∈ Rn and according
to a certain iterative rule form a sequence of points {xk}k∈N. Elements
of this sequence are called iterates and represent estimates of the optimal
solution. The iterative rule is determined by a mapping φ : Rn → Rn such
that xk+1 = φ(xk). Algorithms often use information about the objective
function at the current iterate f(xk), or sometimes use the sequence history
x0, ..., xk to generate the next iterate, xk+1. Usually, we wish the mapping
φ(x) to generate a sequence of points such that a decrease in the objec-
tive function at each iterate is achieved. Algorithms with this property
are called descent. Ideally, the generated sequence {xk} converges to the
optimal solution of the problem (1.1).

The initial point also has an important role in the optimization process.
If an algorithm generates a sequence that converges to the optimal solution
for an arbitrary starting point, then the algorithm is globally convergent.
When we are able to localize the solution in some subset, the starting point
should be chosen from that subset. In this case, if generated sequence
converges to the optimal solution, the algorithm is locally convergent.

In practical implementations, algorithms are finite and use some termi-
nation criterion to stop generating a new iterate. They often stop when
the problem has been solved with a desired accuracy, or when no further
progress can be made. For example, the termination criteria can be reach-
ing the maximum allowable number of iterates, maximum allowable number
of function evaluations or gradient norm tolerance.

Through the thesis we consider algorithms of the following type - Algo-
rithm 1.

The existing algorithms of this type differ in the way and on the criteria
used to compute the search direction dk and the step size ak. In this
section we will discuss how to choose ak and dk. There are two fundamental
strategies for moving from the current iterate xk to a new iterate xk+1, [40].
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Algorithm 1: Directional Search Algorithm

Step 0. Initialization. Specify an initial point x0 ∈ Rn.
Set k = 0.

Step 1. Direction selection. Determine the search direction dk.

Step 2. Step size selection. Choose the step size ak > 0.

Step 3. Update iterate. Calculate xk+1 = xk + akdk.

Step 4. If some termination criterion is satisfied, then stop.
Else, set k = k + 1 and go to Step 1.

These techniques are line search methods and trust region methods. In the
thesis, we consider only line search methods. More about trust region
methods can be found in [10, 40].

Assume that xk is the current iterate. The line search method searches
for a new iterate xk+1 with a lower function value along the line xk + adk.
So, the algorithm first chooses a search direction dk from the current point
xk and then computes the step ak along the direction dk. The efficiency of
the line search method depends on choices of both the direction dk and the
step length ak.

The ideal choice of the step size ak is the global minimizer of the one-
dimensional minimization problem

min
a>0

m(a) = f(xk + adk). (1.2)

It is often expensive to solve (1.2) exactly, thus algorithms find an ap-
proximate solution in practice. In cases where the solution can be found
exactly, the methods are called exact line search methods. In practice, we
do not want to spend too much time on searching the step size. Typical
line search algorithms try out a sequence of candidate values for the step
size and accept one of these values when certain conditions are satisfied,
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[40].
As stated above, a simple condition we could impose on the step size

ak is to require a reduction in the objective function

f(xk + akdk) < f(xk). (1.3)

The condition (1.3) is satisfied if dk is a descent direction. The direction
dk is called descent direction if

∇f(xk)
Tdk < 0. (1.4)

Most line search algorithms require dk to be descent direction because this
property guarantees that the function f(x) can be reduced along this direc-
tion, [40]. However, this requirement is not enough to produce convergence.
One way to achieve convergence of the line search methods is to make addi-
tional assumptions on both, the step size ak and the direction dk. Since we
want to decrease the function values, the step sizes should be small enough
to get sufficient decrease and long enough to make progress. The most often
used sufficient decrease condition is the Armijo rule

f(xk + akdk) ≤ f(xk) + ηak∇f(xk)
Tdk, (1.5)

where η ∈ (0, 1). In practice η is usually set to 10−4. The curvature
condition

∇f(xk + akdk)
Tdk ≥ c∇f(xk)

Tdk (1.6)

where 0 < η < c < 1, ensures that the step size is not too short. The
conditions (1.5) and (1.6) together are called the Wolfe conditions. The
condition (1.6) can be written as m′(ak) ≥ m′(0). A step length may sat-
isfy the Wolfe conditions without being particularly close to a minimizer of
m(a). Obtaining the step size that is in neighbourhood of the stationary
point of function m(a), can be done by imposing the strong Wolfe condi-
tions. They consist of the Armijo condition (1.5) and

|∇f(xk + akdk)
Tdk| ≤ c|∇f(xk)

Tdk|

instead of (1.6).
The result of the existence of the step size sequence that satisfies the

(strong) Wolfe conditions is given in the next theorem.
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Lemma 1.3.1 [40] Suppose that the function f : Rn → R is continuously
differentiable and let dk be a descent direction for the function f(x) at the
point xk. Also, suppose that f(x) is bounded below on {xk + adk|a > 0}.
If 0 < η < c < 1, then there exist intervals of step lengths satisfying the
(strong) Wolfe conditions.

Lemma 1.3.1 states that if the objective function f(x) is smooth and
bounded below, there exist the step sizes that satisfy the Wolfe conditions.

Now, we discuss requirements on the search direction. Denote by θk the
angle between the direction dk and the negative gradient direction −∇f(xk)
and define

cos θk =
−∇f(xk)

Tdk
‖∇f(xk)‖‖dk‖

.

Theorem 1.3.1 [40] (Zoutendijk theorem) Suppose that the function f :
Rn → R is continuously differentiable on an open set N containing the
level set L = {x ∈ Rn| f(x) ≤ f(x0)} where x0 is the initial iterate.
Furthermore, suppose that the gradient ∇f(x) is Lipschitz continuous on N

and that dk is a descent search direction. Also, suppose that f(x) is bounded
below on Rn and that the step size ak satisfies the Wolfe conditions. Then,∑

k≥0
cos2 θk‖∇f(xk)‖2 <∞.

This result also holds for the strong Wolfe conditions. Zoutendijk theorem
implies that

lim
k→∞

cos2 θk‖∇f(xk)‖2 = 0.

Therefore, if we have a sequence of search directions dk such that
there exists a positive constant δ such that cos θk ≥ δ for all k, then
limk→∞ ‖∇f(xk)‖ = 0. In other words, the gradient norms converge to
zero, if the search directions are orthogonal with the gradient.

Next subsections are devoted to possible choices of the search direction.
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1.3.1 Gradient Descent Algorithm

The most intuitive search direction is the negative gradient

dk = −∇f(xk). (1.7)

The Algorithm 1 which uses the negative gradient direction (1.7) is called
the Gradient descent algorithm. It is also called the Steepest descent al-
gorithm because along this direction the objective function decreases most
rapidly. Since we have assumed that f(x) is smooth, we can use the Taylor
expansion to approximate the function value f(xk+d). Observing only the
first two terms of the Taylor series at the point xk, we have

f(xk + d) ≈ f(xk) +∇f(xk)
Td. (1.8)

The idea is to minimize the approximation (1.8) to obtain the search di-
rection. Restricting the direction to be in the unit ball, solution of the
problem

min
||d||=1

∇f(xk)
Td (1.9)

represents the unit direction d of the most rapid decrease. The minimum of
(1.9) is reached for d = −∇f(xk)/||∇f(xk)|| and this direction makes the
smallest inner product with the gradient ∇f(xk). Consequently, unnormal-
ized direction (1.7) is called the steepest descent direction. The negative
gradient direction is orthogonal to the contour of objective function and
satisfies descent direction condition unless xk is a stationary point.

The following theorem ensures that under certain assumptions on f(x),
Gradient descent algorithm with exact line search converges regardless of
the initial starting point x0, i.e., it exhibits global convergence.

Theorem 1.3.2 [15] (Convergence of Gradient Descent Algorithm with
Exact Line Search) Suppose that f(x) is continuously differentiable on the
set L = {x ∈ Rn|f(x) ≤ f(x0)}, where L is a closed and bounded set. Sup-
pose further that the sequence {xk} is generated by the Gradient descent
algorithm with step size ak obtained by the exact line search. Then, every
accumulation point x of the sequence {xk} satisfies ∇f(x) = 0.
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The Gradient descent algorithm is very applicable. The only cost is
the cost of calculating the gradient at current iterate. However, it has
several drawbacks. The main drawback is that it can be very slow. The
convergence rate is at most linear. Even if we apply the exact line search,
we cannot expect improvement of the convergence rate. Note that in terms
of the Zountedijak theorem, cos θk = 1 for all k.

There are many examples where the objective function f(x) is expensive
and calculating gradient is hard or not available analytically. In these
situations, approximations of the true gradient at each iterate are used.
These methods are called gradient-free methods. Approximations via finite
difference are the most frequently used. For example, the central finite
difference estimator of gradient is given by

∇̂f(xk) =


f(xk+he1)−f(xk−he1)

2h
f(xk+he2)−f(xk−he2)

2h
...

f(xk+hen)−f(xk−hen)
2h

 ,
where ei denotes the vector with 1 on the ith place and zeros elsewhere and
h > 0. Instead of parameter h, a sequence of parameters {hk}k∈N which
usually tends to zero can be used to obtain more accurate approximation,
[10].

1.3.2 Newton’s Algorithm

In this subsection, we assume that the objective function is twice contin-
uously differentiable. Then, the objective function can be approximated
around the current iterate xk using the second order Taylor expansion

f(xk + d) ≈ f(xk) +∇f(xk)
Td+

1

2
dT∇2f(xk)d. (1.10)

Our aim is to minimize the right hand side of (1.10) which is quadratic
function of x. Assuming that the Hessian ∇2f(xk) is nonsingular, differ-
entiating right hand side of (1.10) with respect to x and setting the result
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equal to zero, the Newton direction is derived

dk = −[∇2f(xk)]
−1∇f(xk). (1.11)

The direction (1.11) is a descent direction if the Hessian ∇2f(xk) is a posi-
tive definite matrix. The Algorithm 1 which uses Newton’s direction (1.11)
is called Newton’s algorithm.

The classical Newton’s algorithm does not apply line search. It takes
full Newton’s step ak = 1 at each iterate.

Now, we state the main convergence result.

Theorem 1.3.3 [40](Quadratic Convergence of Newton’s Algorithm) Sup-
pose that f(x) is twice differentiable and that the Hessian ∇2f(x) is Lip-
schitz continuous in a neighbourhood of a solution x∗ at which the suffi-
cient conditions are satisfied. Consider the sequence of iterates generated
by Newton’s algorithm, {xk}. Then

(i) if the starting point x0 is sufficiently close to x∗, the sequence of
iterates {xk} converges to x∗;

(ii) the rate of convergence of {xk} is quadratic;

(iii) the sequence of gradient norms {||∇f(xk)||} converges quadratically
to zero.

1.3.3 Quasi-Newton Algorithm

If we compare the Gradient descent and Newton’s algorithm, the following
conclusions can be drawn. The Gradient descent algorithm is much simpler
than Newton’s algorithm because it reduces the computation costs. It is
more expensive to evaluate the Hessian of f(x) than the gradient and each
Hessian is used to solve only one linear system of equations in Newton’s
algorithm. Also, when ∇2f(x) is not positive definite, Newton’s direction
may not even be defined, since [∇2f(x)]−1 may not exist. Even when it is
defined, it may not satisfy the descent property in which case it is unsuitable
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as a search direction. On the other side, the Gradient descent algorithm
has a slower rate of convergence than Newton’s algorithm.

In order to overcome the shortcomings of both methods, algorithms
that mimic Newton’s idea have been proposed. These algorithms use less
expensive second-order approximations, but still outperform Gradient de-
scent algorithm. The algorithms are called quasi-Newton algorithms and
they are the most widely used for nonlinear optimization problems. There
are many different quasi-Newton algorithms, but they are all based on ap-
proximating the Hessian by another matrix with lower evaluation and linear
algebra costs.

Let us consider the following quadratic model of the objective function
at current iterate xk

qk(d) = fk + dT∇fk +
1

2
dTBkd, (1.12)

where Bk is a symmetric positive definite approximation of the Hessian
∇2f(xk) which is updated at each iterate and fk = f(xk). The minimizer
of (1.12) is called a quasi-Newton direction and it is given by

dk = −B−1k ∇fk. (1.13)

At the next iterate xk+1 = xk + akdk, the model (1.12) becomes

qk+1(d) = fk+1 + dT∇fk+1 +
1

2
dTBk+1d.

A logical condition is that ∇qk+1 should be equal to the gradient of the
objective function at xk+1 and xk. Since ∇qk+1(0) = ∇fk+1, one condition
is already satisfied. The other condition states that

∇qk+1(−sk) = ∇qk+1(−akdk) = ∇fk+1 − akBk+1dk = ∇fk.

It follows that Bk should satisfy the following equation

Bk+1sk = yk, (1.14)
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where

sk = xk+1 − xk and yk = ∇fk+1 −∇fk.

The equation (1.14) is known as the secant equation. As Bk+1 is symmetric
and positive definite, multiplying the secant equation with sTk yields to

0 < sTkBk+1sk = sTk yk.

It follows that sk and yk satisfy the curvature condition. This inequality
does not hold in general, except for strongly convex functions. When the
curvature condition is satisfied, the secant equation always has a solution
Bk+1 but does not provide unique solution. Therefore, additional conditions
have to be imposed. Obtaining a unique Bk+1 can be done by requiring
Bk+1 to be the closest matrix to the current matrix Bk in a norm among all
symmetric matrices satisfying the secant equation. That is, Bk+1 should
be a solution to the following problem

min ‖B −Bk‖ subject to BT = B, Bsk = yk. (1.15)

Depending on the used matrix norm, different updating formulas for Bk+1

are obtained by solving problem (1.15). Using the weighted Frobenius
norm, [40], the Davidon-Fletcher-Powell (DFP) formula for updating ap-
proximation of the Hessian is obtained

Bk+1 = (E − 1

yTk sk
yks

T
k )Bk(E −

1

yTk sk
yks

T
k ) +

1

yTk sk
yky

T
k

where E is the identity matrix.
Using the Sherman-Morrison-Woodbury formula, the inverse Hessian

approximation Hk ≈ [∇2f(xk)]
−1 can be derived. For the DFP update of

Bk, the inverse approximation is the following

Hk+1 = Hk −
Hkyky

T
kHk

yTkHkyk
+
sks

T
k

yTk sk
.

There are also other attractive updating formulas. The most used is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula, which is considered to
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be the most effective of all quasi-Newton updating formulas. It is derived
by solving the following problem

min ‖H −Hk‖ subject to HT = H, sk = Hyk.

Using the weighted Frobenius norm just like in (1.15) the following unique
solution is obtained

Hk+1 = (E − 1

yTk sk
sky

T
k )Hk(E −

1

yTk sk
yks

T
k ) +

1

yTk sk
sks

T
k . (1.16)

The Algorithm 1 which uses the direction (1.13), where B−1k is given by
(1.16) is called the BFGS algorithm.

Theorem 1.3.4 [40] (Convergence theorem; BFGS Algorithm) Suppose
that f(x) is twice continuously differentiable. The level set L = {x ∈
Rn|f(x) ≤ f(x0)} is convex and there exist positive constants m and M
such that

m||z||2 ≤ zT∇2f(x)z ≤M ||z||2, (1.17)

for all z ∈ Rn and x ∈ L. Let B0 be any symmetric positive definite initial
matrix and let x0 be a starting point for which (1.17) is satisfied. Then,
the sequence {xk} generated by BFGS Algorithm with ak computed from a
line search with Armijo rule converges to the minimizer x∗ of f(x).

Theorem 1.3.5 [40] (Superlinear convergence of the BFGS Algorithm)
Suppose that f(x) is twice continuously differentiable and that the Hessian
matrix ∇2f(x) is Lipschitz continuous at a minimizer x∗. Suppose also
that the sequence {xk} generated by the BFGS algorithm with ak computed
from a line search with Armijo rule converges to x∗ and that

∞∑
k=0

||xk − x∗|| <∞

holds. Then, {xk} converges to x∗ at a superlinear rate.



Chapter 2

Stochastic Approximation

Creativity is the ability to
introduce order into the
randomness of nature.

Eric Hoffer

In this chapter, fundamentals of stochastic optimization are presented.
Unconstrained minimization problem in noisy environment is introduced
and a general framework of stochastic approximation (SA) algorithm as core
approach for solving the stated problem is presented. The most important
modifications of SA algorithm, based on step size sequence and/or on search
directions, are formulated. The most relevant theoretical results are stated.

2.1 Optimization in Noisy Environment

The collection of algorithms for minimizing or maximizing an objective
function when uncertainty is involved refers to stochastic optimization.
Nowadays, stochastic optimization algorithms have become standard ap-
proaches for solving challenging optimization problems.

Even though stochastic optimization refers to all optimization problems
with involved randomness, unconstrained optimization problem in noisy en-
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vironment is considered in the thesis. In this set-up, true values of the ob-
jective function and its gradient are not available, but they are measurable
with an error term of stochastic nature. The error term is called stochastic
noise or simply noise in the literature. Hence, the objective function and its
gradient depend on a random variable and a random vector, respectively,
both of them belong to some probability space that might be known or
unknown, depending on application.

A noise is present whenever physical system measurements or computer
simulations are used for approximations. For example, it is present in
problems of estimating quantiles or estimating Markov’s chain schemes,
i.e., in problems where estimates are formed by Monte Carlo simulations
according to a statistical distribution. Furthermore, it arises in problems
where data are collected while the system is still operating or in problems
where physical data are processed sequentially, with each sequential data
point being used to estimate some average criterion, [56].

Let us formulate the problem statement now. We consider the mini-
mization problem

min
x∈Rn

f(x), (2.1)

where f : Rn → R is a continuously differentiable, possibly nonconvex
function bounded below on Rn. Additionally, we assume that the objective
function f(x) and its gradient ∇f(x) = g(x) are disturbed by the noise.
Denote by ξ and ε a random variable and a random vector, respectively,
defined on a probability space (Ω,F, P ). Then, noisy observations of the
objective function and its gradient are given at each x ∈ Rn by

F (x) = f(x) + ξ and G(x) = g(x) + ε,

where ξ and ε represent the random noise terms. Also, we assume that
there is a unique solution x∗ ∈ Rn of the problem (2.1).

For convenience, we use the following notation. We observe measure-
ments of the objective function and its gradient at current iterate xk

Fk = fk + ξk and Gk = gk + εk, (2.2)
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where Fk = F (xk), fk = f(xk), Gk = G(xk) and gk = g(xk). Note that
in this set-up, the noise terms depend on k. It means that we allow noise-
generating processes to change with k. In most real applications, noise usu-
ally occurs independently, satisfying the classical statistical assumptions of
being independent and identically distributed (i.i.d.). Also, it is important
to distinguish noisy measurement presented in (2.2) and the term noisy
data which is often present in the literature. For instance, consider the
least squares or maximum likelihood estimation problems. If we have avail-
able only noisy input data, it does not entail noisy measurements of the
objective function and/or gradient in the estimation process. These prob-
lems are solved on noisy data sets, but the sum of squares and maximum
likelihood function are deterministic. This is often called off-line estimation
method, [56].

Like in deterministic case, iterative algorithms are used for finding an
approximation of optimal solution of the problem (2.1). The presence of
noise affects an optimization algorithm throughout the entire process and
it might mislead the optimization process which can result in false optimal
solution.

2.2 Stochastic Approximation

In this section, we introduce one of the first and most used optimization
methods for solving (2.1). The method is known as Stochastic Approxima-
tion (SA) algorithm. Originally, SA algorithm is proposed in the pioneer
work of Robbins and Monro, [45], for solving the root-finding problem

g(x) = 0,

where g : Rn → Rn and only noisy measurements of g(x) are available. SA
algorithm is also known as Robins-Monro algorithm in the literature. This
approach can be utilized for solving the problem (2.1) if the function g(x) is
the gradient of the objective function f(x). Thus, SA algorithm represents
iterative stochastic optimization algorithm that attempts to find zeroes of a
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nonlinear systems of equation or stationary points of functions which can-
not be computed directly, but only estimated via noisy observations. The
iterative rule of SA algorithm is motivated by the deterministic Gradient
descent algorithm. For a given initial approximation x0, SA algorithm can
be written as

xk+1 = xk − akGk, k = 0, 1, . . . , (2.3)

where ak > 0. The sequence {ak} is called the sequence of step sizes or the
gain sequence.

The rich convergence theory has been developed for the SA algorithm.
Under suitable conditions, the convergence is achievable in a stochastic
sense. Mean square convergence, E[‖xk − x∗‖2] → 0 as k → ∞, is estab-
lished by Robbins and Monro, [45]. A stronger result, almost sure (a.s.)
convergence is proved by Chen, [9] and Spall, [56].

The standard convergence conditions for the sequence {ak} are the fol-
lowing

ak > 0 ∀k,
∑
k

ak =∞ and
∑
k

a2k <∞. (2.4)

The conditions (2.4) imply that the step size ak should decay neither too
fast nor too slow. The condition

∑
k ak =∞ requires the step size sequence

to approach zero sufficiently slow in order to avoid false convergence of the
algorithm. The condition

∑
k a

2
k <∞ provides sufficiently fast decay of the

step size sequence in order to avoid influence of the noise when the iterates
are close to the optimal solution.

Denote by {xk} a sequence generated by SA algorithm (2.3) and de-
note by Fk the σ-algebra generated by x0, x1, . . . , xk. The set of standard
convergence assumptions is the following.

A1 For any ε > 0 there exists a constant βε > 0 such that

inf
||x−x∗||>ε

(x− x∗)T g(x) = βε > 0.

A2 The observation noise (εk,Fk+1) is a martingale difference sequence
with

E(εk|Fk) = 0 and E[||εk||2] <∞ a.s. for all k,
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where {Fk} is a family of non-decreasing σ-algebras.

A3 There exists a constant c > 0 such that

||g(x)||2 + E(||εk||2|Fk) ≤ c(1 + ||x− x∗||2) a.s. for all k and x ∈ Rn.

Assumption A1 gives a strong condition on the shape of the true gradi-
ent g(x). Assumption A2 represents a classical zero-mean noise condition.
Under assumption A2, the noisy gradient G(x) is an unbiased estimator of
the true gradient g(x). Assumption A3 provides restrictions on the magni-
tude of g(x), i.e., ‖g(x)‖2 and the variance elements of observation noise can
not grow faster than a quadratic function of x. By the zero-mean condition
A2, the following relation can be obtained from assumption A3

E(||Gk||2|Fk) ≤ c(1 + ||xk − x∗||2) a.s. for all k.

Finally, we state the main convergence result for the SA algorithm.

Theorem 2.2.1 [9] Assume that A1-A3 hold. Let {xk} be a sequence gen-
erated by SA algorithm (2.3), where the step size sequence {ak} satisfies
the conditions (2.4). Then, the sequence {xk} converges to x∗ a.s. for an
arbitrary initial approximation x0.

We also state the theorem of Robbins and Siegmund which is used in
the proof of the Theorem 2.2.1.

Theorem 2.2.2 [46] If Uk, βk, ξk and ζk, k = 1, 2, . . . are nonnegative Fk-
measurable random variables such that

E(Uk+1|Fk) ≤ (1 + βk)Uk + ξk − ζk, k = 1, 2, . . .

then on the set
{∑

k βk < +∞,
∑

k ξk < +∞
}

, Uk converges a.s. to a

random variable and
∑

k ζk < +∞ a.s.
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The conditions (2.4) are the most relevant conditions from user’s input
point of view. The step size sequence is crucial for performance of the SA
algorithm and it affects the convergence rate. A common example of a
sequence that satisfies the conditions (2.4) is the scaled harmonic sequence

ak =
a

k + 1
, (2.5)

where a > 0. One of the most used sequences is the following generalization
of the sequence (2.5)

ak =
a

(k + 1)α
, (2.6)

where a > 0 and 0.5 < α ≤ 1. In practical implementations, users have to
choose the best values for a and α. Both of these sequences, (2.5) and (2.6),
are designed to yield convergence of the SA algorithm. However, these step
size sequences make the iterative process quite slow. The step sizes are
proportional to 1/k. Hence, they become small for large k and as a result,
the progress is slow.

Under some regularity conditions, the asymptotic normality of iterates
of the SA algorithm is proved, [16]. If the step sizes (2.6) are used, the
following result can be obtained

k
α
2 (xk − x∗)

d→ N(0,Σ) k →∞,

where
d→ denotes convergence in distribution, α governs the decay rate

for {ak} and Σ denotes the covariance matrix dependent on the step size
sequence {ak} and on the Hessian H(x) of the function f(x). Therefore,
iterates {xk} have asymptotic normal distribution with mean x∗ and covari-
ance matrix Σ/kα. The maximum convergence rate is obtained for α = 1
when the step size has the standard form (2.6) under conditions (2.4).

Although being optimal, α = 1 is not the best choice in the practical
implementation. Taking a lower value of α has a superior behaviour in finite
time. In many situations, users choose a constant step size with α = 0 to
avoid small step sizes when k is large, [70]. The lower value of α will
provide larger steps when iterates are close to the solution. On the other
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hand, a larger a can produce unstable behaviour in early iterates when the
denominator is still small. If we take a smaller a, we will ensure stability
in earlier iterates, but have a slow progress later.

An asymptotically optimal step size can be obtained by minimizing the
covariance matrix Σ and it is given by

ak =
||H(x∗)−1||
k + 1

,

where H(x∗) is the Hessian of the function f(x) at x∗, [3].
Spall, [55], has suggested introducing a stability constant A ≥ 0 in the

denominator of the step size (2.6) to improve performance of the algorithm

ak =
a

(k + 1 +A)α
. (2.7)

Choosing A > 0 in (2.7) allows taking a larger a without risking unstable
behaviour in the early iterates. A reasonable choice for A is about 5− 10%
of the total number of expected or allowed iterates.

Due to its simplicity, SA algorithm has become popular among re-
searchers. Various modifications have been proposed to improve optimiza-
tion process and they are mainly based on the step size selection and/or
search direction. The following sections review some of the most important
modifications.

2.3 Stochastic Approximation with Descent Di-
rection

In Section 1.3, we have introduced the algorithms which use descent di-
rections. It is impossible to check the condition g(xk)

Tdk < 0 in noisy
environment because only noisy measurements of the gradient are avail-
able. However, the idea of descent direction can be mimicked. We use the
definition of descent direction proposed in [30]. According to the definition,
the direction dk is a descent if

GTk dk < 0, (2.8)
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where Gk is the available noisy measurement given by (2.2). For a given
initial approximation x0, iterates of the descent direction SA algorithm are
defined by

xk+1 = xk + akdk, k = 0, 1, . . . , (2.9)

where dk satisfies (2.8) and ak > 0. The gradient SA algorithm (2.3) is a
special case of the algorithm (2.9).

Convergence of the descent direction SA algorithm (2.9) is also achiev-
able in the stochastic sense. Instead of assumption A1, two additional
assumptions on the direction dk are used.

Let {xk} be a sequence generated by descent direction SA algorithm
(2.9) and Fk the σ-algebra generated by x0, x1, . . . , xk. The additional con-
vergence conditions are the following:

A4 For all k, there exists c1 > 0 such that direction dk satisfies

(xk − x∗)TE(dk|Fk) ≤ −c1||xk − x∗|| a.s.

A5 For all k, there exists c2 > 0 such that

||dk|| ≤ c2||Gk|| a.s.

The assumption A4 limits the influence of noise on dk and it is analogous
to assumption C4 used in [55]. On the other hand, the assumption A5
connects the available noisy gradient with descent direction. If dk = −Gk,
assumption A5 is satisfied with any c2 ≥ 1.

Theorem 2.3.1 [30] Assume that A2-A5 hold. Let {xk} be a sequence gen-
erated by descent direction SA algorithm (2.9), where the step size sequence
{ak} satisfies the conditions (2.4). Then the sequence {xk} converges to x∗

a.s. for an arbitrary initial approximation x0.

Similar method, a descent direction form of SA algorithm, is studied by
Bertsekas and Tsitsiklis, [4].
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2.4 Stochastic Approximation with Line Search

The line search methods can significantly improve the performance of algo-
rithms in deterministic framework. The implementation of the line search
methods in noisy environment produces large step sizes, [36, 57, 63, 64].
The large step sizes can cause zig-zag behaviour or even lead the iterative
sequence out of the solution’s neighbourhood. On the other hand, SA step
sizes that satisfy the conditions (2.4) become very small very fast. The
larger steps are advantageous in earlier stages when iterates are far away
from the optimal solution. The smaller steps are desirable when the iterates
are close to the solution, i.e., when the iterates reach some neighbourhood
of the solution. The two-phase algorithms that consist of both algorithms,
line-search and SA, are proposed in [29, 30]. These algorithms combine SA
steps that satisfy conditions (2.4) and steps determined by the line search
method. The line search rule is used at the initial stages of the optimization
process and SA algorithm is used afterwards. The algorithms are formu-
lated using the negative gradient direction and with the general descent
direction.

Let us consider the gradient form of the two-phase algorithm. The
algorithm is called Gradient Stochastic Line Search (GSLS) algorithm.

The GSLS algorithm uses the Armijo line search rule adjusted for noisy
environment given by

Fk(xk − akGk) ≤ Fk − ĉak‖Gk‖2,

where ĉ is a small positive constant. The algorithm switches from the line
search to the SA method, if the following inequality is violated

‖Gk‖ ≥ C,

where C is some positive constant.
The convergence analysis of the GSLS algorithm consists of two parts.

The first part shows that there is a finite number of line search steps. After
the line search step is executed in a finite number of steps, the algorithm
switches to SA steps almost surely. The almost sure convergence of the
proposed method is ensured due to infinitely many SA consecutive steps.
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Algorithm 2: Gradient Stochastic Line Search (GSLS) Algorithm

Step 0. Choose x0 ∈ Rn, ĉ ∈ (0, 1), C, δ(C) > 0, and {ak} that satisfies
(2.4). Set k = 0 and p = 1.

Step 1. Calculate Gk.

Step 2. If p = 1 then calculate Fk and go to Step 3, else go to Step 4.

Step 3. If ‖Gk‖ ≥ C choose α > δ(C) such that the inequality

Fk(xk − αGk) ≤ Fk − ĉα‖Gk‖2

is satisfied, set ak = α and go to Step 5.

Else set p = 2.

Step 4. Take ak from the predefined SA gain sequence.

Step 5. Define xk+1 = xk − akGk, set k = k + 1 and go to Step 1.
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The additional convergence assumptions are the following.

A6 The gradient g(x) is Lipschitz continuous, i.e., there exists a positive
constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y|| for all x, y ∈ Rn.

A7 Observation noises are bounded and there exists a positive constant
M such that

‖ξk(x)‖ ≤M, ‖εk(x)‖ ≤M a.s.

for all k and x ∈ Rn.

Assumption A7 is similar to the one used by Wardi, [64].

Theorem 2.4.1 [29] Suppose that assumptions A1-A3 and A6-A7 hold
and that the Hessian ∇f2(x∗) exists and is nonsigular. Let

C = max{4(1− ĉ)
αĉ

,
M + 2

√
2ML+ 1

1− ĉ
},

where

α =
(1− ĉ)(2

√
2ML+ 1)

2L(M + 2
√

2ML+ 1)
.

Then, the sequence {xk} generated by GSLS algorithm converges a.s. to x∗.

The two phases algorithm which uses a descent direction is called De-
scent stochastic line search (DSLS) algorithm, [30].

The authors use the descent direction given by (2.8) and the line search
rule

Fk(xk + akdk) ≤ Fk + c̃akG
T
k dk,

where c̃ is a small positive constant.
The convergence analysis of DDLS algorithm is analogous to the analy-

sis of GSLS algorithm. Two additional assumptions, A8 and A9, common
to the descent direction method in deterministic optimization, are imposed.
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Algorithm 3: Descent Direction Line Search (DDLS) Algorithm

Step 0. Choose x0 ∈ Rn, c̃ ∈ (0, 1), C, δ(C) > 0, and {ak} that satisfies
(2.4). Set k = 0 and p = 1.

Step 1. Take dk such that (2.8) holds.

Step 2. Select ak.

Step 2.1. If p = 1 go to Step 2.2, else to Step 2.3.

Step 2.2. If ||Gk|| ≥ C chose ak > δ(C) such that (2.10) holds. Go
to Step 3. Else, p=2.

Step 2.3. Take ak from the predefined gain sequence.

Step 3. Define xk+1 = xk + akdk.

Step 4. Set k = k + 1 and go to Step 1
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A8 There exists a positive constant δ such that

GTk dk ≤ −δ||Gk||||dk|| a.s.

A9 There exists a positive constant ∆ ∈ (0,∆) such that

||dk|| ≥ ∆ a.s.

The main convergence theorem is the following.

Theorem 2.4.2 [30] Suppose that assumptions A2-A9 hold. Let

C ≥ max{2M + 1

αc1δ∆
,
M + 2

√
2ML+ 1

δ(1− c̃)
},

where

α =
δ(1− c̃)(2

√
2ML+ 1)

2Lc3(M + 2
√

2ML+ 1)
.

Then, the sequence {xk} generated by DDLS algorithm converges a.s. to
x∗.

2.5 Stochastic Approximation with Adaptive
Step Sizes

2.5.1 Accelerated Stochastic Approximation

One of the first algorithms with an adaptive step size scheme is Acceler-
ated SA algorithm. It is introduced by Kesten, [24], for problems in one
dimension and extended to multidimensional case by Delyon and Judicky,
[11]. Kesten’s idea is that frequent changes of the sign of the difference
xk+1 − xk = akGk indicate that the current iterate is near the optimal so-
lution x∗. In this case, a smaller step size in the next iterate is proposed. If
the changes are not frequent, a larger step size should be used in the next
iterate.
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The iterative sequence of the Accelerated SA algorithm is generated by
the iterative rule of the gradient SA algorithm (2.3) with the step sizes {ak}
defined by

zk = zk−1 + I(GTkGk−1 < 0)

ak = a(zk) k = 1, 2, . . . (2.10)

where z0 = 0, I(·) stands for an indicator function and a(·) is some deter-
ministic sequence.

For example, the following step size sequence

ak =
a

zk + 1
(2.11)

can be used, where a > 0.

An almost sure convergence of the Accelerated SA algorithm is estab-
lished under a certain set of assumptions, [11].

The most important issue in establishing convergence of the Accelerated
SA algorithm is to show that infinitely many sign changes occur, i.e., that
zk → ∞ when k → ∞. The authors have obtained an estimate of the
convergence rate of zk

k which stands for the change of the sign frequency of
GTkGk−1

lim
k→∞

zk
k
− P (εTk εk−1)→ 0 a.s.

Under additional conditions, asymptotic normality of the Accelerated SA
algorithm for the special choice of the step sizes (2.11) is established

√
k(xk − x∗)

d→ N(0, V ) k →∞,

where V is unique positive solution of certain Lyapunov equation, [11].
Thus, the Accelerated SA algorithm is an asymptotic equivalent to the SA
algorithm.
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2.5.2 Switching Stochastic Approximation

Kesten’s idea of adjusting the step sizes at each iterate has recently been
modified by Xu and Dai, [68]. The switching step size scheme based on the
quantity zk

k for the gradient SA algorithm (2.3) is proposed. The suggested
step sizes are random variables that satisfy the condition (2.4) almost surely.

The switching step size scheme is defined by

ak =

{
a

(k+1+A)α , lk ≥ v
a

(k+1+A)β
, lk < v

, (2.12)

where lk = | zkk − P (εT1 ε2 < 0)|, 0.5 ≤ α < β ≤ 1 and v is a small positive
constant.

According to (2.12), a relatively small value of lk indicates that the
iterates are close to the solution and that a smaller step size should be used
in the next iterate. If the value of lk is relatively large, the iterates are
far away from the optimal solution and a larger step size should be used.
The dividing criterion lk is formed using the probability P (εT1 ε2 < 0). In
practice, this probability is unknown. Since it represents probability and
belongs to the [0, 1], authors propose taking 1

2 . When distribution of εT1 ε2
is symmetric around zero, then P (εT1 ε2 < 0) = 1

2 . The authors show that
if g(xk) → 0, then lk → 0 in L2. Almost sure convergence of lk is still an
open problem.

The gradient SA algorithm generated by (2.3) with the step sizes scheme
(2.12) is called the Switching SA algorithm. Almost sure convergence is
proved under assumptions A1-A3 and the following additional assumption
on the noise terms

A10 {εk} is a sequence of i.i.d. continuous random variables which are
independent of xk and gk.

We state the main convergence results.

Theorem 2.5.1 [68] Let assumptions A1-A3 and A10 hold. Then, the se-
quence {xk} generated by Switching SA algorithm with the step sizes (2.12)
converges a.s. to x∗.
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The step size choice can be improved by taking

ak =
a

(k + 1 +A)q(
zk
k
)
,

where q( zkk ) is some function of zk
k . Here, the step size ak changes to-

gether with the dividing criterion lk at each iterate. The authors have also
proposed

q(
zk
k

) = max [1− |zk
k
− 1

2
|, 0.501]

and
q(
zk
k

) = min [1,
zk
k

+ 0.501].

The quantity q( zkk ) is large when the iterates are far away from the opti-
mal solution. Otherwise, q( zkk ) is small when the iterates are close to the
optimum.



Chapter 3

Stochastic Approximation
with New Adaptive Step
Sizes

When it is obvious that the
goals cannot be reached, don’t
adjust the goals, adjust the
action steps.

Confucius

In this chapter, a new class of adaptive step size schemes for the SA
algorithms is introduced. The two main schemes are introduced and their
properties are derived. The schemes are based on the previously observed
noisy function values. The convergence theory of SA algorithms with the
new schemes is developed.
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3.1 Preliminaries

For convenience, let us formulate the main problem again. We consider the
following minimization problem in noisy environment

min
x∈Rn

f(x), (3.1)

where f : Rn → R is a continuously differentiable, nonlinear and possibly
nonconvex function bounded below on Rn. A unique solution x∗ ∈ Rn of
(3.1) exists. We assume that observations of the objective function and its
gradient disturbed by the noise

F (x) = f(x) + ξ and G(x) = g(x) + ε, (3.2)

are available for all x ∈ Rn, where ξ and ε represent the random noise terms
defined on a probability space (Ω,F, P ). Moreover, we make an additional
assumption on the noise terms {ξk}

A11 {ξk} is a sequence of i.i.d. continuous random variables with a com-
mon probability density function (pdf), p(y) > 0 a.s. ∀y ∈ R.

From the formulation of problem (3.1) and according to the definition
of noisy function value F (x), (3.2), the noise terms ξk, k = 0, 1, 2, . . . . are
already identically distributed. One example of the noise terms that satisfy
A11 is a sequence of i.i.d. normal random variables.

In this chapter, a new class of adaptive step size schemes which are
based on the fixed number of previously observed noisy function values is
presented. At each iterate, using the proposed schemes, interval estima-
tions of the optimal objective function are constructed. The bounds of the
intervals are used to determine whether the objective function has been
improved. If the current objective function value is larger than the upper
interval bound, we declare the iterate as unsuccessful. A zero step size is
used in the next iterate. If the function value is smaller than the lower
bound of the interval, we declare the iterate as successful one and propose
a larger step size in the next iterate. In this manner, we will ensure a
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faster progress of the algorithm and avoid small steps especially when the
number of iterates gets large. In other words, the schemes avoid using the
step sizes proportional to 1/k when it is expected that the larger steps will
improve the process. If the function value lies in the interval, the step size
is obtained by a harmonic rule.

We introduce two main adaptive step size schemes that can be applied
to both, gradient and descent direction, SA algorithms. The first scheme
estimates optimal function value at each iterate by forming a confidence-
like interval for the optimal function values. The interval bounds are shifted
means of the previously observed noisy function values. This scheme can
be generalized by using a convex combination of the previously observed
noisy function values instead of the mean. The second scheme uses Extreme
Value Statistics to form the intervals, i.e., maximum and minimum of the
previously observed noisy function values as the interval bounds.

The SA algorithms with the proposed step size schemes require an ad-
ditional measurement, Fk, at each iterate compared to the standard SA
algorithms. However, we believe that tracking the objective function val-
ues may considerably improve the knowledge of the optimization process.
The similar reasoning that using the observed function values to accept or
reject steps can improve the algorithm’s stability is discussed in [56, 66].
This is also a feature by which our algorithms differ from the Accelerated
and Switching SA algorithms. So, the additional measurement at each it-
erate might be sometimes a good decision, as our numerical results will
demonstrate. On the other hand, the proposed schemes also might be good
choice for derivative-free settings, when we can only rely on the noisy func-
tional values. In this case, the gradient will be approximated using only
functional values, for example with finite differences. We did not consider
this case in our numerical experiments, since we suppose that the noisy
gradient measurements are known.

3.2 Mean-Sigma Stochastic Approximation

In this section, we present the first adaptive step size scheme.
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3.2.1 Step Size Scheme

As mentioned above, we monitor the previously observed function values
to get an insight into whether the objective function is improving. In the
kth iterate, we construct a confidence-like interval

Jk = (
1

m(k)

m(k)∑
j=1

Fk−j − σ,
1

m(k)

m(k)∑
j=1

Fk−j + σ),

using m(k) previously observed (noisy) function values
Fk−1, Fk−2, ..., Fk−m(k), where m(k) = min{k,m}. If the observed
(noisy) function value in kth iterate Fk, is smaller than the lower bound
of the interval, we consider this scenario as a good one, i.e., we consider
that a sufficient decrease of the objective function is achieved. In this
case, we propose taking a larger step size in the next (k + 1)th iterate.
Inspired by [42] we chose ak = aθsk , which for large k and large θ, remains
large in comparison to step size of the form (2.7). We can still obtain
properties of the sequence {ak} suitable for convergence analysis. As it
will be demonstrated later, we recommend taking θ close to 1. Note that
θ is the key parameter in controlling the length of the step size when
good scenario occurs. The step size ak = aθsk with θ ∼= 1 will produce
longer steps than steps of SA form while the iterates are far away from the
solution, but also when the number of iterates becomes large. This can be
suitable when we believe that there is strong influence of the noise. If Fk is
greater than the upper limit of the interval, we reject the current iterate.
Zero step size is used, as implemented, for example in [66]. Otherwise, if
Fk lies in the interval, we propose a small safe step size of the form similar
to the classical SA step size (2.7).

The formal formulation of the adaptive step size scheme is the following

ak =


aθsk , Fk <

1
m(k)

∑m(k)
j=1 Fk−j − σ

0, Fk >
1

m(k)

∑m(k)
j=1 Fk−j + σ,

a
(tk+1+A)α , otherwise

(3.3)

where m(k) = min{k,m}, σ > 0 and
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• m ∈ N, θ ∈ (0, 1), a > 0, A ≥ 0, 0.5 < α ≤ 1,

• sk = sk−1 + I
{
Fk <

1
m(k)

∑m(k)
j=1 Fk−j − σ

}
for k = 1, 2, . . . and s0 =

0,

• tk = tk−1+I
{

1
m(k)

∑m(k)
j=1 Fk−j − σ ≤ Fk ≤ 1

m(k)

∑m(k)
j=1 Fk−j + σ

}
for

k = 1, 2, . . ., and t0 = 0.

The scheme (3.3) is called mean-sigma step size scheme. SA algorithm (2.9)
with the steps generated by the mean-sigma adaptive step size scheme (3.3)
is called Mean-Sigma SA algorithm.

Algorithm 4: Mean-Sigma SA Algorithm

Step 0. Choose x0 ∈ Rn, m ∈ N, σ > 0, θ ∈ (0, 1), a > 0, A ≥ 0 and
0.5 < α ≤ 1. Set k = 0.

Step 1. Choose dk such that (2.8) holds.

Step 2. Calculate Fk and select ak according to the criterion (3.3).

Step 3. Calculate xk+1 = xk + akdk.

Step 4. If some termination criterion is satisfied then stop.
Else, set k = k + 1 and go to Step 1.

A special case of Algorithm 4 is when a negative noisy gradient is chosen
as the search direction, i.e., dk = −Gk.

The inspiration for intervals Jk is drawn from the interval estimation
theory. If the observed function value Fk is considered as an estimate of
the optimal function value f∗ = f(x∗), then the sequence of the observed
function values Fk−1, Fk−2, ..., Fk−m(k) can be considered as its sample of
length m(k). The interval Jk can be viewed as a confidence-like interval for
the expected optimal function value f∗, since it is symmetrical around the
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sample mean 1
m(k)

∑m(k)
j=1 Fk−j . Therefore, if the next estimate Fk of f∗ is

in the interval Jk, we decide to proceed with slow but safe steps.

The convergence of Mean-Sigma SA algorithm is established for an ar-
bitrary constant σ > 0. In practical implementation, the choice of the
constant σ is closely related to the noise level. It can be easily shown that
in the case of an i.i.d. white noise with variance σ2, i.e., E(ξk) = 0 and
V ar(ξk) = σ2, for all k, the mean-square error (MSE) of the function value
estimator Fk of the optimal value f∗ is equal to σ2 + (fk − f∗)2, where
fk = f(xk) is the true function value at xk. Now, since the variance of
the sampling distribution of Fk is often approximated reasonably well by
MSE of Fk, [28], it is justified to relate the noise level σ to constant in
the interval Jk. Although the noise level may not be known, in many real
phenomenon the order of magnitude of the noise is known. For example, in
physical measurements, it is usually the error of the measuring instrument.
In cases when there is no information about the magnitude, procedures
that estimate noise are applied first.

3.2.2 Properties of the Adaptive Step Size Sequence

In this subsection, we will show that the sequence {ak} generated by the
mean-sigma adaptive step size scheme (3.3) satisfies the conditions (2.4)
a.s. under assumptions A11.

The mean-sigma scheme (3.3) generates a sequence of random variables.
The distribution of the step size ak is the following

ak :

(
0 a

(tk+1+A)α aθsk

p1k p2k p3k

)
,

where

p1k = P (ak = 0) = P (Fk >
1

m(k)

m(k)∑
j=1

Fk−j + σ),
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p2k = P (ak =
a

(tk + 1 +A)α
)

= P (
1

m(k)

m(k)∑
j=1

Fk−j − σ ≤ Fk ≤
1

m(k)

m(k)∑
j=1

Fk−j + σ),

p3k = P (ak = aθsk) = P (Fk <
1

m(k)

m(k)∑
j=1

Fk−j − σ),

and p1k + p2k + p3k = 1. The probabilities p1k, p
2
k and p3k cannot be derived

explicitly, not even in the i.i.d. case, i.e., when fk = 1
m(k)

∑m(k)
j=1 fk−j . Also,

they depend on the distribution of the noise terms.
Let us denote by Ak the event that m(k) consecutive zero steps occur

Ak =
{
ak−1 = ak−2 = . . . = ak−m(k) = 0

}
. (3.4)

Lemma 3.2.1 Assume that A11 holds. Let the step size sequence {ak} be
defined by the mean-sigma step size scheme (3.3). Then, for k = 1, 2, . . .
and m ∈ N the following inequality holds

P (Ak) > 0, (3.5)

where Ak is defined by (3.4).

Proof. This lemma states that m(k) consecutive zero steps occur with
nonzero probability. We will prove it by assuming the contrary, that there
exists k ∈ N such that

0 = P (Ak) = P (Fk−i >
1

m(k)

m(k)∑
j=1

Fk−i−j + σ, i = 1, 2, . . . ,m(k)).

Consider the events
{
Fk−i > max1≤j≤m(k) Fk−i−j + σ

}
, i = 1, 2 . . . ,m(k).

Obviously,
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{
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ

}
⊆

Fk−i > 1

m(k)

m(k)∑
j=1

Fk−i−j + σ

 ,

for i = 1, 2 . . . ,m(k) which further implies

m(k)⋂
i=1

{
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ

}
⊆

m(k)⋂
i=1

Fk−i > 1

m(k)

m(k)∑
j=1

Fk−i−j + σ

 .

Thus, we obtain

P (

m(k)⋂
i=1

Fk−i > max
1≤j≤m(k)

Fk−i−j + σ) ≤ P (

m(k)⋂
i=1

Fk−j >
1

m(k)

m(k)∑
j=1

Fk−i−j + σ).

Consequently,

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ, i = 1, 2, ...,m(k))

≤ P (Fk−i >
1

m(k)

m(k)∑
j=1

Fk−i−j + σ, i = 1, 2, ...,m(k)).

We have

P (Fk−i > max
1≤j≤m(k)

Fk−i−j + σ, i = 1, 2, . . . ,m(k)) = 0.

Let us define δ-neighbourhood of the optimal value f∗ = f(x∗). We say that
y is in δ-neighbourhood of the optimal value f∗ if |y−f∗| < δ, where δ > 0.
Denote by Bk

δ
2

the event

Bk
δ
2

=

{
fk−i is in

δ

2
− neighbourhood of f∗, i = 1, 2, . . . , 2m(k)

}
.
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Now, we chose δ > 0 such that

P (Bk
δ
2

) > 0. (3.6)

Note that such δ > 0 exists. For example, we can take

δ = 2 · max
1≤i≤2m(k)

|fk−i − f∗|+ 1.

For this choice of δ, we have P (Bk
δ
2

) = 1.

Now,

0 = P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ, i = 1, 2, . . . ,m(k)

)
(3.7)

≥ P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)
P (Bk

δ
2

).

So, (3.6) and (3.7) imply

P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)
= 0.

Under the realization of the event Bk
δ
2

, it can be shown that

fk−i − δ < fk−j < fk−i + δ, (3.8)

for all i, j = 1, 2, ..., 2m(k). Now, using (3.8), under the realization of the
event Bk

δ
2

, the inequality

ξk−i > max
1≤j≤m(k)

ξk−i−j + σ + δ

implies

Fk−i > max
1≤j≤m(k)

Fk−i−j + σ,
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and this is true for any i = 1, 2, . . . ,m(k). Therefore,

0 = P

(
Fk−i > max

1≤j≤m(k)
Fk−i−j + σ, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)
≥ P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ + δ, i = 1, 2, . . . ,m(k)

∣∣Bk
δ
2

)
= P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ + δ, i = 1, 2, . . . ,m(k)

)
, (3.9)

since the last conditional probability is independent of the condition. Re-
lation (3.9) implies

P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ + δ, i = 1, 2, . . . ,m(k)

)
= 0.

Now,

0 = P

(
ξk−i > max

1≤j≤m(k)
ξk−i−j + σ + δ, i = 1, 2, . . . ,m(k)

)
= P (ξk−i > ξk−i−j , i, j = 1, 2, . . . ,m(k))

≥ P
(
ξk−1 > ξk−2 + σ + δ > . . . > ξk−2m(k) + (2m(k)− 1)(σ + δ)

)
= I(σ + δ). (3.10)

On the other hand,

I(σ + δ) =

∫ ∞
−∞

p(xk−1)dxk−1

∫ xk−1−(σ+δ)

−∞
p(xk−2)dxk−2 · · ·∫ xk−2m(k)+1−(2m(k)−1)(σ+δ)

−∞
p(xk−2m(k))dxk−2m(k) > 0

almost surely for all δ > 0, since p(x) > 0 a.s. by A11, and I(δ) is a
decreasing function with

lim
δ→0

I(δ) =
1

(2m(k))!
and lim

δ→+∞
I(δ) = 0,
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which is a contradiction with (3.10). Therefore, the relation (3.5) holds for
all k.

Under realization of the event Ak we have that fk = 1
m(k)

∑m(k)
j=1 fk−j .

Now, when we know that m(k) consecutive zero steps occur with nonzero
probability, we can state the following lemma for conditional distribution
of the step size ak.

Lemma 3.2.2 Assume that A11 holds. Let the step size sequence {ak} be
defined by the mean-sigma step size scheme (3.3). Then, for all k = 1, 2, . . .

P (ak = 0|Ak) > 0,

P (ak = aθsk |Ak) > 0

and

P (ak =
a

(tk + 1 +A)α
|Ak) > 0,

where Ak is the event defined by (3.4). Moreover, for all k = 1, 2, ...

P (ak = 0) > 0.

P (ak = aθsk) > 0

and

P (ak =
a

(tk + 1 +A)α
) > 0.

Proof. First note that the conditional probabilities are well defined be-
cause of the Lemma 3.2.1. Under the realization of the event Ak we have
that fk = 1

m(k)

∑m(k)
j=1 fk−j .

Let us start with the first inequality P (ak = 0|Ak) > 0. According to
the step size rule (3.3) we have
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P (ak = 0|Ak) = P (Fk >
1

m(k)

m(k)∑
j=1

Fk−j + σ|Ak)

= P (fk + ξk >
1

m(k)

m(k)∑
j=1

(fk−j + ξk−j) + σ|Ak)

= P (ξk >
1

m(k)

m(k)∑
j=1

ξk−j + σ|Ak)

= P (ξk −
1

m(k)

m(k)∑
j=1

ξk−j > σ), (3.11)

since the conditional probability is independent of the condition. Let us
define Yk by

Yk = ξk −
1

m(k)

m(k)∑
j=1

ξk−j ,

and let pYk(·) be its pdf. We can think of Yk as a difference of two ran-

dom variables, ξk with pdf p(·) and Zk,m(k) = 1
m(k)

∑m(k)
j=1 ξk−j with pdf

pk,m(k)(·). By the convolution formula for two independent random vari-
ables X and Y , the pdf of their sum X + Y is

pX+Y (z) =

∫ ∞
−∞

pY (z − t)pX(t)dt, (3.12)

where pX(·) is pdf of X, and pY (·) is pdf of Y . Now, using (3.12) we can
derive recursively the distribution of the random variable Zk,m(k), since ξk
are all independent random variables, by A11. The derived pdf pk,m(k)(·)
is always positive because it only depends on p(·) which is, by A11, always
positive. The pdf of Yk is

pYk(y) =

∫ ∞
−∞

p(t)pk,m(k)(y − t)dt,
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and it is always positive, since p(·) and pk,m(k)(·) are always positive. There-
fore, by (3.11), we have

P (ak = 0|Ak) = P (Yk > σ) =

∫ ∞
σ

pYk(y)dy > 0. (3.13)

Similarly, we have

P (ak = aθsk |Ak) = P (Yk < −σ) =

∫ −σ
−∞

pYk(y)dy > 0 (3.14)

and

P (ak =
a

(tk + 1 +A)α
|Ak) = P (−σ ≤ Yk ≤ σ) =

∫ σ

−σ
pYk(y)dy > 0,

(3.15)
since σ > 0. Additionally, from Lemma 3.2.1 and (3.13)-(3.15), for all
k = 1, 2, ... we have

P (ak = 0) ≥ P (ak = 0|Ak) · P (Ak) > 0,

P (ak = aθsk) ≥ P (ak = aθsk |Ak) · P (Ak) > 0

and

P (ak =
a

(tk + 1 +A)α
) ≥ P (ak =

a

(tk + 1 +A)α
|Ak) · P (Ak) > 0,

which completes the proof.

The previous lemma leads to the important result which is stated below.

Lemma 3.2.3 Assume that A11 holds. Let the step size sequence {ak} be
defined by the mean-sigma step size scheme (3.3). Then, there are infinitely
many steps ak = a

(tk+1+A)α and infinitely many steps ak = aθsk almost
surely.
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Proof. Let us first consider the sequence of events Tk =
{
ak = a

(tk+1+A)α

}
,

k = 1, 2, . . . . Define {Tk i.o.} as the event that an infinite number of events
Tk, k = 1, 2, . . . occur. The abbreviation i.o. means for infinitely often.
We will show that the event {Tk i.o.} occurs almost surely, i.e.,

P ({Tk i.o.}) = P ({w|w ∈ Tk for infinitely many k ∈ {1, 2, . . .}}) = 1.
(3.16)

Let us consider the subsequence
{
Tk(m+1)

}
k

of the sequence {Tk}k. It is
a sequence of independent events, because they depend on different ran-
dom variables ξk, which are independent by A11. Analogously, we define
the event {Tk(m+1) i.o.} as the event that an infinite number of events
Tk(m+1), k = 1, 2, . . . occur. The event {Tk(m+1) i.o.} is a member of
the σ-algebra

⋂∞
k=1

{
σ(Tn(m+1)), n ≥ k

}
. Therefore, we can apply the Kol-

mogorov 0 − 1 law which states that σ-algebra
⋂∞
k=1

{
σ(Tn(m+1)), n ≥ k

}
contains only events of probability 0 or 1, [13]. According to the Kol-
mogorov 0− 1 law

P ({Tk(m+1) i.o.}) ∈ {0, 1} . (3.17)

Let us assume that

P ({Tk(m+1) i.o.}) = 0.

Because of the inclusion

∞⋂
k=1

Tk(m+1) ⊆ {Tk(m+1) i.o.},

we have that

P

( ∞⋂
k=1

Tk(m+1)

)
≤ P ({Tk(m+1) i.o.}),

which together with (3.18), imply

P

( ∞⋂
k=1

Tk(m+1)

)
= 0. (3.18)
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As we mentioned before, Tk(m+1), k = 1, 2, . . . are independent events, so
(3.18) is equivalent to

∞∏
k=1

P (Tk(m+1)) = 0,

which implies that there exists k0 ∈ N such that P (Tk0(m+1)) = 0, i.e.,
P (ak0 = a

(tk0+1+A)α ) = 0, which is in contradiction to Lemma 3.2.2.

Therefore,
P ({Tk(m+1) i.o.}) > 0. (3.19)

The relation (3.19) together with (3.17), imply

P ({Tk(m+1) i.o.}) = 1. (3.20)

Now, because of the inclusion

{Tk(m+1) i.o.} ⊆ {Tk i.o.},

we have that

P ({Tk(m+1) i.o.}) ≤ P ({Tk i.o.}).

The last inequality together with (3.20) imply (3.16), i.e., almost surely
there are infinitely many steps ak = a

(tk+1+A)α . Analogously, we can show
that almost surely there are infinitely many steps ak = aθsk , which com-
pletes the proof.

Remark 3.2.1 As a consequence of Lemma 3.2.3 we have that almost
surely infinitely many consequtive steps ak = 0 cannot occur, since almost
surely there are infinitely many nonzero steps. This finding will help us
during the practical implementation. We can impose a correction condi-
tion and limit the number of consecutive zero steps in the following way.
If there is some predefined number of successive steps ak = 0, then in the
next iterate we are going to take a nonzero safe step of the form (2.7).
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Theorem 3.2.1 Assume that A11 holds. Then, the step size sequence {ak}
defined by the mean-sigma step size scheme (3.3) satisfies the conditions
(2.4) almost surely.

Proof. Let us denote events C and D by C = {k|Fk < 1
m(k)

∑m(k)
j=1 Fk−j −

σ} and D = {k| 1
m(k)

∑m(k)
j=1 Fk−j −σ ≤ Fk ≤ 1

m(k)

∑m(k)
j=1 Fk−j +σ}. By the

definition of the sequence {ak}, (3.3), the following relations hold a.s.

∑
k

ak =
∑
k∈C

aθsk +
∑
k∈D

a

(tk + 1 +A)α
=∞,

and ∑
k

a2k =
∑
k∈C

(aθsk)2 +
∑
k∈D

(
a

(tk + 1 +A)α
)2 <∞.

The first relations hold since there are infinitely many steps ak = a
(tk+1+A)α

by Lemma 3.2.3. The second relation holds because there are infinitely
many steps ak = aθsk, also by Lemma 3.2.3. So, the step size sequence {ak}
satisfies the conditions (2.4) a.s.

We will conclude this section with a short discussion about the pa-
rameter σ in the step size scheme (3.3). In each iterate, we construct a
confidence-like interval Jk with the sample size m(k). Instead of a standard
deviation of the mean of m(k) previously observed noisy function values,
standard deviation of the noise terms ξ is taken. Note that

1

m(k)

m(k)∑
j=1

[Fk−j − E(Fk−j)]
2 =

1

m(k)

m(k)∑
j=1

[fk−j + ξk−j − E(fk−j + ξk−j)]
2

=
1

m(k)

m(k)∑
j=1

[ξk−j − E(ξk−j)]
2. (3.21)
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Now, taking expectation of (3.21) we have

E[
1

m(k)

m(k)∑
j=1

[Fk−j − E(Fk−j)]
2] = E[

1

m(k)

m(k)∑
j=1

[ξk−j − E(ξk−j)]
2]

=
1

m(k)

m(k)∑
j=1

E[[ξk−j − E(ξk−j)]
2]

=
1

m(k)

m(k)∑
j=1

D[ξk−j ]

= σ2. (3.22)

We can interpret the result (3.22) in the following way. If we consider Fk−j
as an estimator of the true function value fk−j , then the mean value of
any m(k) consecutive mean square errors (MSE) of the objective function
is equal to the variance of noise ξ.

3.2.3 Generalization of the Mean-Sigma Scheme

The mean-sigma step size scheme (3.3) can be extended to allow using
information from the previous iterates in a more general way, [33]. The
proposed generalized step size scheme allows past function values to have
different influence on the selection of a new step size length. It allows
constructing the bigger steps when a sufficient decrease in the objective
function is monitored. Let xk be the current iterate. We wish to determine
the step size ak for the next iterate. Denote by

∑m(k)
j=1 λk,jFk−j a convex

combination of m(k) previous noisy function values Fk−1, Fk−2, ..., Fk−m(k),
where m(k) = min{k,m}, m ∈ N and λk,j ≥ λ > 0, j = 1, 2, . . . ,m(k) such

that
∑m(k)

j=1 λk,j = 1, for all k.
The generalized mean-sigma step size scheme is given by

ak =


bθsk , Fk <

∑m(k)
j=1 λk,jFk−j − σ

0, Fk >
∑m(k)

j=1 λk,jFk−j + σ,
a

(tk+1+A)α , otherwise

(3.23)
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where

• m(k) = min{k,m}, m ∈ N, σ > 0, θ ∈ (0, 1), b ≥ a > 0, A ≥ 0,
0.5 < α ≤ 1,

• λk,j ≥ λ ≥ 0, j = 1, . . . ,m(k) such that
∑m(k)

j=1 λk,j = 1,

• sk = sk−1 + I
{
Fk <

∑m(k)
j=1 λk,jFk−j − σ

}
, for k = 1, 2, . . ., and s0 =

0,

• tk = tk−1 + I
{∑m(k)

j=1 λk,jFk−j − σ ≤ Fk ≤
∑m(k)

j=1 λk,jFk−j + σ
}

, for

k = 1, 2, . . ., and t0 = 0.

Adaptive step sizes defined by the scheme (3.23) differ from the steps

generated by the mean-sigma scheme (3.3) in the expression
∑m(k)

j=1 λk,jFk−j
which allows previous function values to be taken with different weights at
each iterate. In this way, the step size scheme (3.23) can use more effectively
the information about the optimization process stored in previous function
values. Another advantage is that the bigger step sizes can be taken when
a sufficient decrease in the objective function is observed.

The step sizes generated by (3.23) have the same properties as the steps
generated by (3.3). The SA algorithm (2.9) with the step sizes generated
by (3.23) is called CC-Adaptive SA algorithm. In the rest of the thesis, we
focus on the Mean-Sigma SA algorithm, but the same conclusions can be
drawn for the CC-Adaptive SA Algorithm.

3.3 Min-Max Stochastic Approximation

In this section, the second adaptive step size scheme is presented.

3.3.1 Step Size Scheme

The mean-sigma scheme (3.3) estimates the optimal function value at each
iterate by forming the interval Jk using the previously observed noisy func-
tion values. In order to enhance the interval estimate, an approach that
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Algorithm 5: CC-Adaptive SA Algorithm

Step 0. Choose x0 ∈ R, σ > 0, m ∈ N, θ ∈ (0, 1), b ≥ a > 0, A ≥ 0,
0.5 < α ≤ 1 and λ > 0. Set k = 0.

Step 1. Choose dk such that (2.8) holds and

λk,j ≥ λ > 0, j = 1, . . . ,m(k) such that
∑m(k)

j=1 λk,j = 1.

Step 2. Calculate Fk and select ak according to the criterion (3.23).

Step 3. Calculate xk+1 = xk + akdk.

Step 4. If some termination criterion is satisfied then stop.
Else, set k = k + 1 and go to Step 1.

has a direct insight into whether the objective function is improving is sug-
gested. We propose using the minimum and the maximum of m(k) previous
noisy function values instead of the shifted mean. Therefore, in each iterate
the following interval is constructed

J̃k = ( min
1≤j≤m(k)

Fk−j , max
1≤j≤m(k)

Fk−j).

This approach allows a new step only if there is relatively strong statistical
evidence of the improvement of the objective function. The formal rule of
the new step size scheme is

ak =


aθsk , Fk < min1≤j≤m(k) Fk−j
0, Fk > max1≤j≤m(k) Fk−j ,

a
(tk+1+A)α , otherwise

(3.24)

where m(k) = min{k,m}, and

• m ∈ N, θ ∈ (0, 1), a > 0, A ≥ 0, 0.5 < α ≤ 1,

• sk = sk−1 + I
{
Fk < min1≤j≤m(k) Fk−j

}
for k = 1, 2, . . . and s0 = 0,
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• tk = tk−1 + I
{

min1≤j≤m(k) Fk−j ≤ Fk ≤ max1≤j≤m(k) Fk−j
}

for k =
1, 2, . . ., and t0 = 0.

The scheme (3.24) is called min-max step size scheme. SA algorithm
(2.9) with the steps generated by the min-max adaptive step size scheme
(3.24) are called Min-Max SA algorithm.

Algorithm 6: Min-Max SA Algorithm

Step 0. Choose x0 ∈ Rn, m ∈ N, θ ∈ (0, 1), a > 0, A ≥ 0 and 0.5 < α ≤ 1.
Set k = 0.

Step 1. Choose dk such that (2.8) holds.

Step 2. Calculate Fk and select ak according to the criterion (3.24).

Step 3. Calculate xk+1 = xk + akdk.

Step 4. If some termination criterion is satisfied then stop.
Else, set k = k + 1 and go to Step 1.

According the min-max scheme (3.24), if Fk is larger than the maximum
of m(k) previously observed function values, the step ak = 0 is taken in
the next iterate. If Fk is smaller than the minimum of m(k) previously
observed function values, we suggest step size ak = aθsk in the next iterate.
Otherwise, if Fk is inside J̃k, we propose a backup step size similar to the
step size (2.7), substituting k with tk which counts the mentioned events.

Remark 3.3.1 Note that bounds of the interval J̃k, events{
Fk < min1≤j≤m(k) Fk−j

}
and

{
Fk > max1≤j≤m(k) Fk−j

}
are modifi-

cations of the lower and upper records statistics {Fk < min1≤j≤k−1 Fj}
and {Fk > max1≤j≤k−1 Fj}, respectively. The difference is that bounds of
the interval J̃k consist only of m(k) previous random variables Fk−j. The
record statistics arise in many areas such as climatology, sports, medicine,
traffic, industry and they are very popular among researches, [39]. The
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records theory is developed only when Fj , j = 1, . . . , k are i.i.d. random
variables. In this case, both, upper and lower, record statistics are mutually
independent and infinitely many of them occur. These results do not hold
for the bounds of J̃k because the bounds are not i.i.d. Theory of non i.i.d.
records is only developed for the special case when there is a certain linear
trend among the variables.

3.3.2 Properties of the Adaptive Step Size Sequence

We will show that under assumption A11, the step size sequence {ak},
defined by the min-max scheme (3.24), satisfies the conditions (2.4) almost
surely.

Rewriting (3.24), the step size ak has the following discrete distribution

ak :

(
0 a

(tk+1+A)α aθsk

p1k p2k p3k

)
,

where

p1k = P (ak = 0) = P (Fk > max
1≤j≤m(k)

Fk−j),

p2k = P (ak =
a

(tk + 1 +A)α
) = P ( min

1≤j≤m(k)
Fk−j ≤ Fk ≤ max

1≤j≤m(k)
Fk−j)

and

p3k = P (ak = aθsk) = P (Fk < min
1≤j≤m(k)

Fk−j).

Since the step sizes generated by (3.24) are discrete random variables,
our first step is to determine the distribution of the step sizes and the fre-
quency of the events

{
Fk > max1≤j≤m(k) Fk−j

}
,
{
Fk < min1≤j≤m(k) Fk−j

}
and

{
min1≤j≤m(k) Fk−j ≤ Fk ≤ max1≤j≤m(k) Fk−j

}
. Note that we only

need infinitely many events
{

min1≤j≤m(k) Fk−j ≤ Fk ≤ max1≤j≤m(k) Fk−j
}

to satisfy (2.4).
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Lemma 3.3.1 If the noise terms ξk are i.i.d. continuous random variables
and fk = fk−j , j = 1, . . . ,m(k), then the following inequalities hold

P (Fk > max
1≤j≤m(k)

Fk−j) =
1

m(k) + 1
,

P (Fk < min
1≤j≤m(k)

Fk−j) =
1

m(k) + 1
,

P ( min
1≤j≤m(k)

Fk−j ≤ Fk ≤ max
1≤j≤m(k)

Fk−j) =
m(k)− 1

m(k) + 1
.

Proof. Let us denote by Φ(x) the cumulative distribution function (cdf)
of any random variable ξk. If we denote by Φk

j (x) the cdf of the random
variable Fk−j , then from Fk−j = fk−j + ξk−j , we have that

Φk
j (x) = P (Fk−j ≤ x) = P (fk−j + ξk−j ≤ x) = P (ξk−j ≤ x− fk−j)

= Φ(x− fk−j). (3.25)

Denote by Φk
(m(k))(x) the cdf of the random variable max1≤j≤m(k) Fk−j .

The i.i.d. property of the noise terms implies that Fk−j , j = 1, ...,m(k) are
also independent continuous random variables, so the equality (3.25) and
the assumption fk = fk−j , j = 1, . . . ,m(k) imply that

Φk
(m(k))(x) = P ( max

1≤j≤m(k)
Fk−j ≤ x) = P (Fk−1 ≤ x, · · · , Fk−m(k) ≤ x)

= P (Fk−1 ≤ x) · · ·P (Fk−m(k) ≤ x) = Φk
1(x) · · ·Φk

m(k)(x)

= Φ(x− fk−1) · · ·Φ(x− fk−m(k)) = (Φ(x− fk))m(k). (3.26)

For any two independent continuous random variables X and Y with cdfs
ΦX(x) and ΦY (x) respectively, the probability of the event {X > Y } can
be expressed as

P (X > Y ) =

∫ +∞

−∞
ΦY (x)Φ′X(x)dx. (3.27)
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So, (3.25)-(3.27) and the independence of the random variables Fk and
max1≤j≤m(k) Fk−j imply that

P (Fk > max
1≤j≤m(k)

Fk−j) =

∫ +∞

−∞
(Φ(x− fk))m(k)Φ′(x− fk)dx

=

∫ 1

0
ym(k)dy =

1

m(k) + 1
,

since Φ(x) is a cdf and limx→−∞Φ(x) = 0 and limx→+∞Φ(x) = 1. Simi-
larly, it can be derived that

P (Fk < min
1≤j≤m(k)

Fk−j) =
1

m(k) + 1

and finally,

P ( min
1≤j≤m(k)

Fk−j ≤ Fk ≤ max
1≤j≤m(k)

Fk−j) = 1− 2

m(k) + 1
=
m(k)− 1

m(k) + 1
,

which completes the proof.

Remark 3.3.2 If the noise terms are i.i.d. continuous random variables
and if there are m(k) consecutive zero steps ak−1 = ak−2 = . . . = ak−m(k) =
0, then xk = xk−1 = xk−2 . . . = xk−m(k), so fk = fk−j for j = 1, . . . ,m(k).
Therefore, Lemma 3.3.1 holds.

Remark 3.3.2 helps us to recognize the importance of having
m(k) consecutive zero steps, i.e., the importance of the event Ak ={
ak−1 = ak−2 = . . . = ak−m(k) = 0

}
. Our next step is to investigate the

probability of having m(k) consecutive zero steps.

Lemma 3.3.2 Assume that A11 holds. Let the step size sequence {ak} be
defined by the min-max step size scheme (3.24). Then, for k = 1, 2, . . . and
m ∈ N, the following inequality holds

P (Ak) > 0, (3.28)

where Ak =
{
ak−1 = ak−2 = . . . = ak−m(k) = 0

}
.
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Proof. Assume the contrary that there exists k ∈ N such that

P (Ak) = 0.

It follows

0 = P (Ak)

= P (

m(k)⋂
i=1

{
Fk−i > max

1≤j≤m(k)
Fk−i−j

}
)

= P (Fk−1 > max
1≤j≤m(k)

Fk−1−j , . . . , Fk−m(k) > max
1≤j≤m(k)

Fk−m(k)−j)

= P (Fk−1 > Fk−2 > . . . > Fk−m(k) > max
1≤j≤m(k)

Fk−m(k)−j)

≥ P
(
Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)
.

Therefore, we have

P
(
Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)
= 0.

Similarly, like in the proof of Lemma 3.2.1, let Bk
δ
2

, denote the event

Bk
δ
2

=

{
fk−j is in

δ

2
− neighbourhood of the f∗, j = 1, . . . , 2m(k)

}
.

We chose δ > 0 such that
P (Bk

δ
2

) > 0. (3.29)

Now,

0 = P
(
Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)

)
≥ P

(
Fk−1 > Fk−2 > . . . > Fk−2m(k)|Bk

δ
2

)
P (Bk

δ
2

). (3.30)

So, from (3.29) and (3.30) we obtain
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P
(
Fk−1 > Fk−2 > . . . > Fk−m(k) > . . . > Fk−2m(k)|Bk

δ
2

)
= 0. (3.31)

However, if fk−j , j = 1, 2, . . . , 2m(k) are in a δ
2−neighbourhood of the

optimal value f∗, then we have

|fk−j − fk−i| ≤ |fk−j − f∗|+ |f∗ − fk−i| <
δ

2
+
δ

2
= δ,

for all j, i = 1, 2, . . . , 2m(k) and

fk−i − δ < fk−j < fk−i + δ.

Under the realization of the event Bk
δ
2

, the inequalities

ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1

imply that for j = 1, 2, . . . , 2m(k)− 1

Fk−j = fk−j + ξk−j > fk−j + ξk−j−1 + δ

> fk−j−1 + ξk−j−1 = Fk−j−1.

So,

P
(
Fk−j > Fk−j−1, j = 1, 2, . . . , 2m(k)− 1|Bk

δ
2

)
≥

P
(
ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1|Bk

δ
2

)
. (3.32)

Now, (3.31) and (3.32) imply that

P
(
ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1|Bk

δ
2

)
= 0. (3.33)

Since the conditional probability in (3.33) is independent of the condition,
we can rewrite relation (3.33) as

P (ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1) = 0. (3.34)
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Note that

I(δ) = P (ξk−j > ξk−j−1 + δ, j = 1, 2, . . . , 2m(k)− 1)

= P
(
ξk−1 > ξk−2 + δ > ξk−3 + 2δ > ... > ξk−2m(k) + (2m(k)− 1)δ

)
=

∫ ∞
−∞

p(xk−1)dxk−1

∫ xk−1−δ

−∞
p(xk−2)dxk−2 · · ·∫ xk−2m(k)+1−(2m(k)−1)δ

−∞
p(xk−2m(k))dxk−2m(k) > 0 (3.35)

almost surely for all δ > 0 since p(x) > 0 a.s. by A11. Moreover, I(δ) is a
decreasing function, with

lim
δ→0

I(δ) =
1

(2m(k))!
and lim

δ→+∞
I(δ) = 0.

The relation (3.35) is in contradiction to (3.34). Therefore, (3.28) holds for
all k.

Now, when we know that m(k) consecutive zero steps occur with
nonzero probability, we can show that there is nonzero probability of occur-
ring each of the steps ak = aθsk, ak = 0 and ak = a

(tk+1+A)α at each iterate
k.

Lemma 3.3.3 Assume that A11 holds. Let the step size sequence {ak} be
defined by the min-max step size scheme (3.24). Then, for all k = 1, 2, . . .

P (ak = aθsk) > 0, P (ak = 0) > 0 and P (ak =
a

(tk + 1 +A)α
) > 0.

Proof. From Remark 3.3.2 and Lemma 3.3.1, it follows

P (ak = aθsk) ≥ P (ak = aθsk |Ak) · P (Ak) =
1

m(k) + 1
· P (Ak) > 0,

P (ak = 0) ≥ P (ak = 0|Ak) · P (Ak) =
1

m(k) + 1
· P (Ak) > 0
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and

P (ak =
a

(tk + 1 +A)α
) ≥ P (ak =

a

(tk + 1 +A)α
|Ak) · P (Ak)

=
m(k)− 1

m(k) + 1
· P (Ak) > 0.

Note that the conditional probabilities P (·|Ak) are well defined because of
Lemma 3.2.2.

Lemma 3.3.3 ensures that infinitely many nonzero steps occur almost
surely.

Lemma 3.3.4 Assume that A11 holds. Let the step size sequence {ak} be
defined by the min-max step size scheme (3.24). Then, there are infinitely
many steps ak = aθsk and infinitely many steps ak = a

(tk+1+A)α almost
surely.

Proof. The proof is analogous to the proof of Lemma 3.2.3.

Remark 3.3.3 Analogous conclusion as in Remark 3.3.2 holds. Almost
surely infinitely many consecutive steps ak = 0 cannot occur, since almost
surely there are infinitely many nonzero steps.

Lemma 3.3.4 ensures that the step size sequence {ak} satisfies the con-
ditions (2.4).

Theorem 3.3.1 Assume that A11 holds. Then, the step size sequence
{ak} defined by the min-max step size scheme (3.24) satisfies the condi-
tions (2.4).

Proof. The proof is analogous to the proof of Theorem 3.2.1.
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3.4 Convergence Analysis

In this section, we establish the convergence of the proposed algorithms.
The case of negative gradient and the case of arbitrarily descent direction
are discussed separately.

The SA convergence theorems, Theorem 2.2.1 and Theorem 2.3.1, as-
sume deterministic step sizes {ak} that satisfy the conditions (2.4). In order
to use these results when the step sizes ak are stochastic, we need to assume
the following. The steps ak are Fk-measurable, where Fk is the σ-algebra
generated by x0, x1, x2, . . . xk, and {xk} is a sequence generated by the cor-
responding algorithm. This assumption is similar to the assumption in [49].
Moreover, the step size conditions (2.4) are satisfied almost surely in this
case. Under these additional assumptions, the SA convergence theorems,
Theorem 2.2.1 and Theorem 2.3.1, also hold when the step sizes ak are
stochastic.

Theorem 3.4.1 Assume that A2-A5 and A11 hold. Let {xk} be a sequence
generated by Mean-Sigma SA, Min-Max SA or CC-Adaptive SA algorithm.
Then, the sequence {xk} converges to x∗ a.s. for an arbitrary initial ap-
proximation x0.

Corollary 3.4.1 Assume that A1-A3 and A11 hold. Let {xk} be a se-
quence generated by Mean-Sigma, Min-Max or CC-Adaptive SA algorithm
with dk = −Gk. Then, the sequence {xk} converges to x∗ a.s. for an
arbitrary initial approximation x0.

Theorem 3.4.1 and Corollary 3.4.1 also hold for the SA algorithms with
the generalized scheme (3.23).

3.5 Quasi-Newton Stochastic Approximation

Let us consider the SA algorithm (2.9). Assume that a quasi-Newton di-
rection dk = −B−1k Gk is chosen as the search direction. The quasi-Newton
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directions might yield inaccurate and unstable information in noisy envi-
ronment. One possible remedy is to impose the following condition on Bk

for all k ≥ 1, Bk depends only on (k − 1)th sample set. (3.36)

This is already successfully tested in [30, 52, 69]. Note that if the condition
(3.36) holds, because of the zero-mean assumption A2, we have

E[dk|Fk] = E[−B−1k Gk|Fk] = −B−1k E[Gk|Fk] = −B−1k E[gk + εk|Fk]
= −B−1k gk.

Assumption A4 can be rewritten as

A4’ for all k there exists c′1 > 0 such that

(xk − x∗)TB−1k gk ≥ c′1||xk − x∗|| a.s.

Another condition on Bk that we impose is the following

there exist µ1, µ2 > 0 such that for all k ≥ 1, µ1E � B−1k � µ2E. (3.37)

Here, E denotes the n × n identity matrix, and notation M � N means
that the matrix N −M is positive semidefinite. If the condition (3.37) is
satisfied, then we have

||dk|| = || −B−1k Gk|| ≤ µ2||Gk||,

so assumption A5 holds.
Now, we state the convergence theorem for a descent direction method

with a quasi-Newton direction and SA step sizes, that follows from previous
discussion and Theorem 2.3.1.

Theorem 3.5.1 Assume that A2, A3 and A4’ hold. Let {xk} be a sequence
generated by (2.9), with the step size sequence {ak} satisfying the conditions
(2.7). A quasi-Newton direction dk = −B−1k Gk is chosen with Bk that
satisfies conditions (3.36) and (3.37). Then the sequence {xk} converges
to x∗ a.s. for an arbitrary initial approximation x0.
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Corollary 3.5.1 Assume that A2, A3, A4’ and A11 hold. Let {xk} be
a sequence generated Mean-Sigma SA, Min-Max SA or CC-Adaptive SA
algorithm where dk = −B−1k Gk is a quasi-Newton direction. Assume that
Bk satisfies the conditions (3.36) and (3.37). Then the sequence {xk} con-
verges to x∗ a.s. for an arbitrary initial approximation x0.

Convergence of Mean-Sigma, Min-Max or CC-Adaptive SA algorithms
with a quasi-Newton direction can be also established under slightly differ-
ent assumptions. We will remove assumption A4’, and we impose similar
assumption to assumption A3.

A3’ There exists a constant c′ > 0 such that

E(||Gk||2|Fk) ≤ c′ a.s. for all k.

Assumption A3’ is also used in [8] for minimization problems arising in su-
pervised machine learning, where the objective function is strongly convex.
To establish a convergence after these changes, an assumption on Lipschitz
continuity of the gradient g(x) is needed (assumption A6).

Now, we can formulate the second convergence theorem for a descent
direction method with a quasi-Newton direction and SA step sizes.

Theorem 3.5.2 Assume that A2, A3’ and A6 hold. Let {xk} be a sequence
generated by (2.9), where dk = −B−1k Gk is a quasi-Newton direction, and
Bk satisfies the conditions (3.36) and (3.37). Then, for an arbitrary initial
approximation x0,

lim
k→∞

||gk|| = 0 a.s.

Proof. For each k and some t ∈ (0, 1), since xk+1 = xk + akdk, we have

f(xk+1) = f(xk) + akg(xk + takdk)
Tdk

= f(xk) + akg
T
k dk + ak(g(xk + takdk)− gk)Tdk

≤ f(xk) + akg
T
k dk + ak||g(xk + takdk)− gk|| · ||dk||.
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Assumption A6 and t ∈ (0, 1) imply that

f(xk+1) ≤ f(xk) + akg
T
k dk + a2kL||dk||2.

For dk = −B−1k Gk, because of the condition (3.37), we have

f(xk+1) ≤ f(xk)− akgTk B−1k Gk + a2kL|| −B−1k Gk||2

≤ f(xk)− akgTk B−1k Gk + a2kLµ
2
2||Gk||2.

It holds because of (3.36) and (3.37) and assumptions A2 and A3’. Now,
taking the conditional expectation with respect to Fk, we have

E[f(xk+1)|Fk] ≤ f(xk)− akgTk E[B−1k Gk|Fk] + a2kLµ
2
2E[||Gk||2|Fk]

≤ f(xk)− akgTk B−1k gk + a2kLµ
2
2E[||Gk||2|Fk]

≤ f(xk)− akµ1||gk||2 + a2kLµ
2
2c
′.

Substracting f∗ = f(x∗) from the both sides we obtain

E[f(xk+1)− f∗|Fk] ≤ f(xk)− f∗ − akµ1||gk||2 + a2kLµ
2
2c
′,

where Uk = f(xk) − f∗ are nonnegative random variables. Using that∑
k a

2
k <∞, from the Theorem of Robbins and Siegmund, we have that Uk

converges a.s. to a random variable U and
∑

k akµ1||gk||2 <∞ a.s. Because
of
∑

k ak = ∞, we have that limk→∞ ||gk|| = 0 a.s. which completes the
proof.

Finally, the second convergence result for algorithms with the proposed
step size schemes follows.

Corollary 3.5.2 Assume that A2, A3’, A6 and A11 hold. Let {xk} be a
sequence generated by Mean-Sigma SA, Min-Max SA or CC-Adaptive SA
algorithm, where dk = −B−1k Gk is a quasi-Newton direction. Assume that
Bk satisfies the conditions (3.36) and (3.37). Then, for an arbitrary initial
approximation x0,

lim
k→∞

||gk|| = 0 a.s.



Chapter 4

Numerical Implementation

In theory, theory and practice
are the same. In practice, they
are not.

Yogi Berra

The sensitivity analysis of mean-sigma (3.3) and min-max (3.24)
schemes with respect to the parameter θ for different levels of noise is
conducted. Mean-Sigma SA and Min-Max SA algorithms are tested using
different search directions. These algorithms are compared to classical SA
algorithms with deterministic steps (2.7) and Switching SA algorithm with
the scheme (2.12). The generalized step size scheme (3.23) is also tested.
The CC-Adaptive SA algorithm is compared to Mean-Sigma SA algorithm
and classical SA algorithm in the application to the linear regression mod-
els.

4.1 Testing Procedure

Numerical implementation is carried out on a collection of 20 test problems
selected from [38] and [44]. The test functions and the problem dimensions
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n are given in Table 4.1, while the detail description of all problems is listed
in Appendix. All test problems have the form of nonlinear least squares

f(x) =
r∑
i=1

f2i (x).

No Problem n

1 The Gaussian function 3

2 The Box 3-dimensional function 3

3 The variably dimensioned function 4

4 The Watson function 4

5 The Penalty Function 1 10

6 The Penalty Function 2 4

7 The Trigonometric Function 10

8 The Beale Function 2

9 The Chebyquad Function 10

10 The Gregory and Karney Tridiagonal Matrix Function 4

11 The Hilbert Matrix Function 4

12 The De Jong Function 1 3

13 The Branin RCOS Function 2

14 The Colville Polynomial 4

15 The Powell 3D Function 3

16 The Himmelblau function 2

17 The Fletcher-Powell helical valley function 3

18 The Biggs EXP6 function 6

19 Strictly Convex 1 10

20 Strictly Convex 2 10

Table 4.1: Test problems
Test problemi

The problems are transformed into noisy ones by adding the normal
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distributed noise

ξ ∼ N(0, s2) and ε ∼ N(0, s2En×n),

to the function and gradient, where s denotes the noise level and En×n is
the identity matrix. We have tested two different noise levels, s = 0.4, 1.
The objective function and the gradient value at the current iterate xk
are calculated using sample average approximation with the sample size
3. For each test problem and each algorithm, N = 50 independent runs
starting from the same initial point are conducted. The final iterate xend,
the final function value Fend and the final gradient value Gend are used as
exit parameters. The algorithms stop if the gradient value is small enough,
||Gk|| ≤ c, where c = min{

√
ns, 1} or the maximal number of 200n function

evaluations is reached, with each gradient evaluation counted as n function
evaluations. The runs are classified into three categories:

1. convergent runs

2. partially convergent runs

3. divergent runs.

The run is convergent if the method stops due to the gradient tolerance,
||Gend|| ≤ c. The number of convergent runs is denoted by Nconv. If
||Gend|| > 200

√
n, the run is divergent. The number of divergent runs

is denoted by Ndiv. Finally, the run that stopped due to exhausting the
maximal number of allowed function evaluations is partially convergent.
Their number is denoted by Npar. In these cases the maximal number
of function evaluation is not large enough to achieve convergence with the
given gradient tolerance, but the function values are nevertheless decreased
so the algorithm makes some progress.

Algorithms are tested using both, the gradient and descent direction.
The BFGS direction dk = −B−1k Gk, is used as the descent direction. The
update formula is

Bk+1 = Bk −
Bkδkδ

T
k Bk

δTk Bkδk
+

∆k∆
T
k

∆kδk
, (4.1)
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where

δk = xk+1 − xk and ∆k = G(xk+1, εk)−G(xk, εk).

The gradient difference ∆k was calculated using the same sample set, at xk
and xk+1, according to the theoretical analysis developed in the previous
chapter.

The specification of the parameters for calculations of the step sizes is
the following. The values of parameters a, A and α are given in Table 4.2.
For the parameter σ in the step size scheme (3.3), we use the noise level s
which, as we explained earlier, is closely related to the variance of the sam-
pling distribution of the estimator Fk of the optimal value f∗. Additional
results where these values differ are available in [59]. The most suitable
value for parameter m is derived empirically. We have used m = 10. Per-
formance of the algorithms for different values of m is available in [34, 59].

Consecutive zero steps that can occur during the implementation of
both proposed schemes (3.3) and (3.24) may lead to no progress of the
algorithm. As an additional implementation issue, we limit the number of
consecutive zero steps. The following correction is applied. If the number
of consecutive zero steps is greater than some predetermined number mcorr,
in the next iterate the step size ak = a

(tk+1+A)α is used. The mcorr = m+ 1
is used as the correction value.

4.2 Sensitivity Analysis

In this subsection, we analyze Mean-Sigma SA and Min-Max SA algo-
rithms with respect to the parameter θ for different levels of noise. A
Mean-Squared Error (MSE) of the objective function estimator is used as
a sensitivity measure. MSE is given by

MSE(f) =
∑

i:||G(i)||≤c

(y(i) − f∗)2/Nconv,

wherey(i) is last approximate of the optimal function value, i = 1, 2, . . . , 50
and f∗ is the optimal function value.
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Problem a A α

1 1 1 0.75

2 1 100 0.501

3 0.1 1 0.75

4 0.1 1 0.75

5 0.1 1 0.75

6 0.1 100 0.501

7 1 100 0.501

8 1 100 0.501

9 0.1 100 0.75

10 0.5 1 0.501

11 0.5 1 0.501

12 0.1 100 0.75

13 0.5 1 0.501

14 1 100 0.501

15 0.1 100 0.75

16 0.5 1 0.501

17 1 0 0.602

18 1 0 0.602

19 0.5 100 0.501

20 0.1 100 0.75

Table 4.2: Initialization of the parameters a, A and α
Vrednosti parametara a, A i α

The following abbreviations are used:

• MSGD - Mean-Sigma SA algorithm with dk = −Gk

• MSDD - Mean-Sigma SA algorithm with dk = −B−1k Gk

• MMGD - Min-Max SA algorithm with dk = −Gk

• MMDD - Min-Max SA algorithm with dk = −B−1k Gk.
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The comparative results of MSGD and MSDD are listed in Table 4.3 and
Table 4.4. The results of MMGD and MMDD are presented in Table 4.5 and
Table 4.6. We report results for two values of the parameter θ = 0.75, 0.999.

prb σ
MSGD MSDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

1
0.4 5.00E-05 3.92E-04 7.50E-05 2.88E-04
1 3.04E-03 3.92E-04 9.88E-04 2.88E-04

2
0.4 9.80E-05 6.72E-02 6.88E-04 8.33E-06
1 1.10E-02 5.26E-03 1.68E+01 1.39E-03

3
0.4 fail fail 9.68E-03 2.00E-06
1 fail fail 3.56E-02 1.16E-02

4
0.4 6.05E-03 fail 1.12E+01 1.06E+01
1 1.36E-03 1.88E-01 fail 3.15E+00

5
0.4 fail fail fail fail
1 fail fail fail fail

6
0.4 9.68E-04 3.92E-04 5.20E-02 3.09E-02
1 1.15E-03 1.25E-03 1.66E+00 1.76E-01

7
0.4 2.00E-04 1.28E-04 2.00E-04 1.28E-04
1 fail fail fail fail

8
0.4 fail fail 1.77E-01 1.41E-01
1 fail fail 9.41E-01 7.71E-01

9
0.4 8.63E-07 5.11E-05 6.43E-04 4.21E-07
1 fail fail fail fail

10
0.4 1.53E-01 8.57E-02 1.58E+00 1.87E+00
1 1.77E-02 1.24E-01 2.66E-01 3.65E-01

Table 4.3: Mean-Sigma: MSE(f) for Problems 1-10
Mean-Sigma: MSE(f) za probleme 1-10

According to the results, performances of the algorithms are sensitive
with respect to the parameter θ, regardless of the chosen scheme, direction
and noise. Choosing a larger θ decreases MSE in almost all cases for smaller
level of noise s = 0.4, regardless of the chosen direction. When s = 1, taking
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prb σ
MSGD MSDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

11
0.4 7.22E-04 9.80E-05 1.38E-01 9.50E-03
1 3.04E-03 5.00E-03 1.46E-01 fail

12
0.4 2.05E-03 7.20E-05 8.02E+00 1.89E-01
1 4.42E-03 3.87E-03 2.46E+03 5.87E+01

13
0.4 8.93E-08 1.53E-01 3.58E-01 6.52E-01
1 8.17E-04 9.21E-03 6.26E+00 1.64E+00

14
0.4 fail fail fail fail
1 fail fail fail fail

15
0.4 5.83E-03 2.05E-03 1.77E-02 7.74E-03
1 6.50E-03 fail 2.03E-02 5.00E-03

16
0.4 fail fail 2.76E-01 2.61E-01
1 fail 2.28E-01 4.64E+00 2.50E-01

17
0.4 fail fail fail 6.78E-03
1 fail fail fail 1.42E+00

18
0.4 2.65E-03 2.37E-03 1.97E-03 7.68E-03
1 3.44E-03 5.27E-02 4.47E-01 2.75E-01

19
0.4 1.46E-03 2.00E-04 1.88E-02 5.45E-04
1 8.33E-04 fail 1.19E+00 fail

20
0.4 1.46E-03 6.48E-04 2.74E-02 1.46E-03
1 fail 3.72E-01 3.05E+00 2.92E-01

Table 4.4: Mean-Sigma: MSE(f) for Problems 11-20
Mean-Sigma: MSE(f) za probleme 11-20

the larger θ does not produce always such clear pattern in reduction of MSE
as for the smaller noise. Therefore, when there exists a strong influence of
the noise, it may be useful to take a smaller θ. The smaller θ will produce
larger steps at the beginning of the process.

Regardless of the chosen direction and the level of noise, taking a larger
θ is superior in the number of convergent runs. Moreover, regardless of the
noise level and chosen θ, it may be concluded that algorithms with BFGS
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prb σ
MMGD MMDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

1
0.4 7.20E-05 5.00E-05 2.42E-04 2.47E-04
1 1.46E-03 2.59E-03 8.16E-04 2.47E-04

2
0.4 3.38E-04 1.80E-05 1.79E+01 8.33E-06
1 9.80E-05 1.28E-04 1.30E-01 7.37E-04

3
0.4 fail fail fail 5.94E-04
1 fail fail fail 2.88E-02

4
0.4 1.69E-03 7.75E-04 fail fail
1 2.46E-03 3.31E-03 fail fail

5
0.4 fail fail fail fail
1 fail fail fail fail

6
0.4 2.90E-04 1.80E-05 6.88E-03 3.11E-03
1 8.03E-04 2.88E-04 2.70E-02 2.23E-01

7
0.4 3.20E-05 1.28E-04 2.32E-04 1.28E-04
1 fail fail fail fail

8
0.4 2.63E-04 fail 7.78E+00 9.62E-01
1 2.59E-03 fail 2.94E+01 7.22E-01

9
0.4 3.78E-05 3.10E-05 3.26E-03 5.83E-04
1 fail fail 6.97E-03 6.97E-03

10
0.4 2.45E-01 1.29E-01 6.57E-01 5.32E-01
1 2.44E-01 1.28E-01 3.57E-01 3.75E+00

Table 4.5: Min-Max: MSE(f) for Problems 1-10
Min-Max: MSE(f) za probleme 1-10

direction (MSDD and MMDD) have higher number of convergent runs than
gradient algorithms (MSGD and MMGD).

In most of the cases, MMGD yields smaller MSE than MSGD. This
finding holds regardless of the chosen m, [34, 59]. Therefore, Extreme
Value Statistics may be more suitable criteria for the step size selection
when the direction is negative gradient. On the other hand, it seems that
MSDD behaves superior than MMDD, especially for larger level of noise.
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prb σ
MMGD MMDD

θ = 0.75 θ = 0.999 θ = 0.75 θ = 0.999

11
0.4 5.71E-03 5.78E-04 2.24E-01 1.05E-01
1 1.04E-02 1.06E-03 3.69E+00 8.88E-02

12
0.4 fail 4.50E-04 3.87E+01 9.88E-01
1 fail 1.57E-03 2.01E+02 1.52E+01

13
0.4 9.78E-06 1.24E-06 1.93E-03 3.45E-01
1 4.59E-05 6.10E-03 1.88E+01 9.34E-01

14
0.4 fail fail fail fail
1 fail fail fail fail

15
0.4 3.06E-04 2.00E-03 1.48E-02 1.61E-02
1 1.25E-03 1.11E-02 2.30E-02 1.67E-03

16
0.4 6.91E-03 fail fail 1.44E-02
1 5.53E-03 fail fail fail

17
0.4 fail fail 1.98E-01 4.56E+00
1 fail fail 8.74E+01 8.44E-01

18
0.4 fail 2.65E-03 2.08E+01 3.24E-03
1 2.59E-03 5.02E-03 5.69E-02 1.16E-01

19
0.4 3.38E-04 5.12E-04 3.44E-03 2.00E-04
1 3.20E-03 7.84E-02 fail 1.27E+01

20
0.4 3.43E-01 8.82E-04 5.15E-02 2.37E-03
1 fail 2.12E-01 2.62E+01 fail

Table 4.6: Min-Max: MSE(f) for Problems 11-20
Min-Max: MSE(f) za probleme 11-20

4.3 Comparison of the Algorithms

The performance of Mean-Sigma SA and Min-Max SA algorithms is com-
pared to SA algorithms with the classical steps (2.7) and the switching step
size scheme (2.12). The following abbreviations are used

• SAGD - Gradient SA algorithm (2.3) with the step sizes (2.7)
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• SADD - Descent direction SA algorithm (2.9) with dk = −B−1k Gk
and the step sizes (2.7).

• XDGD - Switching SA algorithm

The number of function evaluations in successful and partially successful
runs is chosen as the performance measures

πij =
1

|Nconij
⋃
Nparij |

∑
r∈Nconij

⋃
Nparij

fcalcrij
nj

,

where Nconij is the number of successful runs for ith Algorithm to solve
problem j, Nparij is the number of partially successful runs for ith Al-
gorithm to solve problem j, fcalcrij is the number of function evaluations
needed for ith Algorithm to solve problem j in rth run and nj is the di-
mension of problem j, i = 1, · · · , 7, j = 1, · · · , 20, r = 1, · · · , 50. We used
θ = 0.999.

Overviews of the successful, partially successful and unsuccessful runs
for the noise levels s = 0.4 and s = 1 are given in Figure 4.1 and Figure 4.2,
respectively. The results demonstrate that Mean-Sigma SA and Min-Max
SA algorithms have the smallest number of divergent runs and the highest
number of convergent runs regardless of the chosen direction and the noise
level. Algorithms MSDD and MMDD are significantly better than the
corresponding SADD algorithm for both noise levels. Mean-Sigma SA and
Min-Max SA algorithms are competitive with the Switching SA algorithm
which confirms that taking noisy function values as a criterion for adjusting
steps can improve the optimization process.

Figure 4.3 and Figure 4.4 show performance profiles for s = 0.4 and
s = 1, respectively. For both levels of noise, Mean-Sigma SA and Min-
Max SA algorithms outperform all other tested algorithms regardless of
the chosen direction and noise level.
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Figure 4.1: Percentages of successful, partially successful and divergent
runs, s = 0.4
Procenti uspešnih, delimično uspešnih i divergentnih postupaka, s = 0.4
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Figure 4.2: Percentages of successful, partially successful and divergent
runs, s = 1

Procenti uspešnih, delimično uspešnih i divergentnih postupaka, s = 1

4.4 Application to Regression Models

In this section we consider a linear regression model given in the matrix
form

y = Xβ + ε, (4.2)
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Profil učinka, s = 0.4
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Figure 4.4: Performance profile, s = 1
Profil učinka, s = 1

where

• y = (y1, y2, ..., yn)T is the vector of dependent variables,
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• X = [xij ]n×p is the matrix of independent variables,

• β = (β1, β2, ..., βp)
T is the vector of associated regression coefficients,

• ε = (ε1, ε2, ..., εn)T is the vector of i.i.d. random errors with E(εi) = 0
and D(εi) = s2.

The most commonly used method for estimating the unknown param-
eters β1, β2, ..., βp is the Ordinary Least-Square (OLS) method, where the
residual square error

RSS =
n∑
i=1

(
yi −

p∑
j=1

xijβj
)2

is minimized. In other words, the parameter estimates are obtained by
solving the unconstrained OLS optimization problem

β̂ols = arg min
β∈Rp

n∑
i=1

(
yi −

p∑
j=1

xijβj
)2
. (4.3)

The estimators obtained by the OLS method are unbiased and consis-
tent. However, they often have low bias, but large variance. To overcome
this deficiency of the OLS method and improve the estimates, introduction
of an additional information via the process of regularization is suggested.
Tibshirani introduced the Least Absolute Shrinkage and Selection Operator
(LASSO) regularization method, [61]. LASSO regularization is a process of
adding constraints in the form of L1-norm of the parameter vector β. The
associated unconstrained optimization problem is given by

β̂lasso = arg min
β∈Rp

{ n∑
i=1

(
yi −

p∑
j=1

xijβj
)2

+ µ

p∑
j=1

|βj |
}
. (4.4)

Due to the nature of the L1 penalty, the LASSO method automatically does
the selection of independent variables. In practice, the value of µ, as the
level of regularization, is predefined, or it is chosen from some candidate set
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using selection methods as Cross-Validation, Bayesian information criterion
or Akaike information criterion.

SA algorithm (2.3) with the steps (2.7), Mean-Sigma SA algorithm and
CC-Adaptive SA algorithm are applied for solving the problem (4.4) in
order to find the estimates of the parameter vector β in the regression
model (4.2). The direction dk = −Gk is taken. The abbreviation CCGD is
used for CC-Adaptive SA algorithm which uses negative gradient direction,
while the abbreviations for the other two algorithms are the same as in the
previous sections (SAGD and MSGD).

The application is illustrated on the following example.

Example 1 [61] In this example we are looking for the estimate of the
parameter β in Y = Xβ + ε, where the true value of β is

β = (3, 1.5, 0, 0, 2, 0, 0, 0)T .

We simulated N = 50 data sets of n = 100 observations, where the
random errors εi, i = 1, 2, ..., n are i.i.d. with normal distributions

εi ∼ N(0, s2), i = 1, 2, ..., n,

with s = 3. The column vectors Xi, i = 1, 2, ..., p of the matrix X of inde-
pendent variables are chosen to have n-dimensional normal distributions

Xj ∼ N(0, C), j = 1, 2, ..., p,

where the covariance matrix C = [cij ] is such that cij = ρ|i−j|, i, j =
1, 2, ..., p, with ρ = 0.5, [62]. The K-fold cross-validation with K = 5 is
used to estimate the regularization level µ in (4.4), [14]. As a candidate
set for the regularization parameter µ, the set {0, 0.01, 0.1, 1, 10, 100} is
considered.

The values of parameters used in the step sizes are a = 0.001, A =
0, 10, 100, α = 0.602, m = 10, θ = 0.99 and b = 1. Results that we present
are obtained with m = 10 and θ = 0.99. The coefficients λk,j are chosen as
follows

λk,1 =

{
1, Fk >

∑m(k)
j=1 λ̃k,jFk−j

λ̃k,1, otherwise
,
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and

λk,j =

{
0, Fk >

∑m(k)
j=1 λ̃k,jFk−j

λ̃k,j , otherwise
, j = 2, ...,m(k),

where

λ̃k,j = λ, j 6= j̃ and λ̃k,j̃ = 1− (m(k)− 1)λ,

λ = 0.01 and j̃ is such that Fk−j̃ = max1≤j≤m(k) Fk−j . The gradient of the
objective function in (4.4) is approximated by the finite differences with
step h = 10−5.

Comparison of the algorithms is based on the evaluation of Mean Square
Error (MSE) and Median Square Error (MedianSE) defined by

MSE =
1

N

N∑
k=1

(β̂k − β)TC(β̂k − β)

and

MedianSE = Median{(β̂k − β)TC(β̂k − β), k = 1, 2, ..., N},

respectively, where β̂k is the kth estimate of the parameter β.
MSE and MedianSE for different values of the parameter A and differ-

ent initial iterates β0 in the optimization processes are given in Table 4.7,
Table 4.8 and Table 4.9.

MSGD and CCGD have been equally successful with little difference in
MSEs or MedianSEs, almost always in favour of (3.3), except for A = 10
and initial point β0 = (0, 0, 0, 0, 0, 0, 0, 0)T , when result in bigger MSE and
MedianSE.

MSGD and CCGD have better performance when the optimization pro-
cess starts far from the solution. SAGD is very sensitive with respect to
the choice of the parameter A, which is not the case for the algorithm with
the new step size schemes.



86 Numerical Implementation

MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 0.67713284 0.65167476
MSGD 0.73254119 0.65512802
CCGD 0.73114389 0.64433737

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 0.81613584 0.73665411
MSGD 0.71485402 0.66087552
CCGD 0.72263938 0.66571446

Table 4.7: MSE and MedianSE, A = 0
MSE i MedijanaSE, A = 0

MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 0.72407352 0.70555047
MSGD 0.74199922 0.67134859
CCGD 0.73055080 0.65525906

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 1.05999336 0.99529997
MSGD 0.71411317 0.66605187
CCGD 0.72268785 0.66862433

Table 4.8: MSE and MedianSE, A = 10
MSE i MedijanaSE, A = 10
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MSE MedianSE

β0 = (0, 0, 0, 0, 0, 0, 0, 0)T

SAGD 1.13762219 1.17352551
MSGD 0.71541790 0.64763942
CCGD 0.72503869 0.65551539

β0 = (10, 10, 10, 10, 10, 10, 10, 10)T

SAGD 2.21081217 2.15215925
MSGD 0.70413645 0.63140689
CCGD 0.70862254 0.63606241

Table 4.9: MSE and MedianSE, A = 100
MSE i MedijanaSE, A = 100



Future Work

Science is always wrong, it never
solves a problem without
creating ten more.

George Bernard Shaw

In the thesis we have proposed two adaptive step size schemes for SA al-
gorithms. According to the schemes, the step sizes selection is based on the
previously observed noisy function values. Larger steps are used if values
of the objective function are decreased sufficiently. Under a non restric-
tive assumption of i.i.d. continuous random noise with a positive pdf, the
generated step size sequences have the desired SA step size property. The
almost sure convergence of SA algorithms with the proposed adaptive step
size schemes is established. Numerical results verify better performance of
the SA algorithms with new adaptive step sizes compared to the existing
algorithms with adaptive step sizes. In the future, it will be challenging to
analyze convergence in a more general case of state dependent noise and
with no restrictions to its pdf, since we have obtained good numerical re-
sults in these cases too. It will also be interesting to introduce variability
in constants m and σ.



Appendix

The list of test problems is the following.
Problem 1. [38] Gaussian function; n = 3, r = 15

fi(x) = x1 exp(
−x2(ti − x3)2

2
)− yi and ti = (8− i)/2,

where y1 = y15 = 0.0009, y2 = y14 = 0.004, y3 = y13 = 0.0175, y4 =
y12 = 0.0540, y5 = y11 = 0.1295, y6 = y10 = 0.2420, y7 = y9 = 0.3521 and
y8 = 0.3989, x0 = (0.4, 1, 0), x∗ − unknown, f∗ = 1.12793 · 10−8;

Problem 2. [38] Box three-dimensional function; n = 3, r = 10

fi(x) = exp[−tix1]− exp[−tix2]− x3(exp[−ti]− exp[−10ti]),

where ti = i
10 , i = 1, ...,m, x0 = (0, 10, 5), x∗ = (1, 10, 1) or (10, 1,−1) or

x1 = x2 and , x3 = 0, f∗ = 0;

Problem 3. [38] The variably dimensioned function; n = 4, r = 8

f1(x) = x1 − 0.2, fi(x) = 10−5/2(exp(
xi
10

) + exp(
xi−1
10

)− yi),

where 2 ≤ i ≤ n, and

fi(x) = 10−5/2(exp(
xi−n+1

10
)− exp(

−1

10
)), n < i < 2n,

f2n(x) = (
n∑
j=1

(n− j + 1)x2j )− 1, yi = exp(
i

10
) + exp(

i− 1

10
),
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x0 = (0.75, 0.5, 0.25, 0), x∗ − unknown, f∗ = 9.37629 · 10−6;

Problem 4. [38] The Watson function; n = 6, r = 13

fi(x) = x3e
−tix1 − x4e−tix2 + x6e

−tix5 − yi,

ti = 0.1i, yi = e−ti − 5e−10ti + 3e−4ti ,

x0 = (10, 10, 1, 1, 10, 1), x∗ = (1, 10, 1, 5, 4, 3), f∗ = 0;

Problem 5. [38] Penalty function I; n = 10, r = 11

fi(x) = 10−5/2(xi − 1), 1 ≤ i ≤ 10, fn+1(x) = (
n∑
j=1

x2j )− 1
4 ,

x0 = (1, 1, ..., 1), x∗ − unknown, f∗ = 7.08765 · 10−5;

Problem 6. [38] Penalty function II; n = 4, r = 8

f1(x) = x1 − 0.2, fi(x) = 10−5/2(exp(
xi
10

) + exp(
xi−1
10

)− yi),

2 ≤ i ≤ n, and

fi(x) = 10−5/2(exp(
xi−n+1

10
)− exp(

−1

10
)), n < i < 2n,

and

f2n(x) = (
n∑
j=1

(n− j + 1)x2j )− 1, yi = exp(
i

10
) + exp(

i− 1

10
),

x0 = (1/2, 1/2, ..., 1/2), x∗ − unknown, f∗ = 9.37629 · 10−6;

Problem 7. [38] Trigonometric function; n = 10, r = 10, i = 1, . . . , n

fi(x) = n−
n∑
j=1

cosxj + i(1− cosxi)− sinxi,
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x0 = (1, 0, ..., 1, 0), x∗ − unknown, f∗ = 0;

Problem 8. [38] Beale function; n = 2, r = 3, i = 1, . . . , n

fi(x) = yi − x1(1− xi2),

y1 = 1.5, y2 = 2.25, y3 = 2.625 x0 = (1, 1), x∗ = (3, 0.5), f∗ = 0;

Problem 9. [38] Chebyquad function; n = 10, r = 10

fi(x) = 1
n

n∑
j=1

Ti(xj)−
∫ 1

0
Ti(x)dx,

Ti is the i-th Chebyshev polynomial shifted to the interval [0, 1],∫ 1

0
Ti(x)dx = 0 for i-odd,

∫ 1

0
Ti(x)dx =

−1

i2 − 1
for i-even.

x0 = (1/(n+ 1), 2/(n+ 1), ..., n/(n+ 1)), x∗−unknown, f∗ = 6.50395·
10−3;

Problem 10. [38] The Gregory and Karney Tridiagonal Matrix Function;
n = 4

f(x) = x′Ax− 2x1,

where A is the (−1, 2,−1) tridiagonal matrix, except that A(1, 1) = 1,
x0 = (0, 0, 0, 0), x∗ = (n, n− 1, ..., 2, 1), f∗ = −n;

Problem 11. [38] The Hilbert Matrix Function; n = 4

f(x) = xTAx,
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where A is n × n Hilbert matrix, i.e., aij = 1
i+j−1 for i, j = 1, · · · , n,

x0 = (1, 1, 1, 1), x∗ = (0, 0, 0, 0), f∗ = 0;

Problem 12. [38] The De Jong Function 1; n = 3

f(x) =
n∑
i=1

x2i ,

x0 = (−5.12, 0, 5.12), x∗ = (0, 0, 0), f∗ = 0;

Problem 13. [38] The Branin RCOS Function; n = 2

f(x) = (x2 −
5.1

4π
x21 +

5

π
x1 − 6)2 + 10(1− 1

8π
) cosx+ 10,

x0 = (−1, 1);

Problem 14. [38] The Colville Polynomial; n = 4;

f(x) = 100(x2 − x1)2 + (1− x1)2 + 90(x4 − x3)2

+ (1− x3)2 + 10.1((x2 − 1)2 + (x4 − 1)2) + 19.8(x2 − 1)(x4 − 1),

x0 = (1/2, 1,−1/2,−1), x∗ = (−π, 12.275), x∗ = (π, 2.275), x∗ =
(9.42478, 2.475), f∗ = 0.397887;

Problem 15. [38] The Powell 3D Function; n = 3;

f(x) = 3− (
1

1 + (x1 − x2)2
)− sin (πx2x3/2)− exp [−(

x1 + x2
x2

)− 2]2,

(0, 1, 2), x∗ = (0, 0, 0);

Problem 16. [38]The Himmelblau function; n = 2;

f(x) = (x21 + x− 11)2 + (x1 + x22 − 7)2,



4.4 Application to Regression Models 93

x0 = (−1.3, 2.7), x∗ = (3, 2), x∗ = (3, 2), x∗ = (−.2805118, 3.131312),
x∗ = (−3.779310,−3.283186), x∗ = (3.584428,−1.848126), f∗ = 0;

Problem 17. [44] The Fletcher-Powell helical valley function; n = 3

f(x) = 100(x3 − 10θ)2 + 100(
√
x21 + x22 − 1)2 + x23,

x0 = (−1, 0, 0), x∗ = (1, 0, 0), f∗ = 10;

Problem 18. [44] The Biggs EXP6 function; n = 6,m = 13, i = 1, . . . , n

fi(x) = x3e
−tix1 − x4e−tix2 + x6e

−tix5 − yi,

ti = 0.1i, yi = e−ti − 5e−10ti + 3e−4ti

x0 = (10, 10, 1, 1, 10, 1), x∗ = (1, 10, 1, 5, 4, 3), f∗ = 0;

Problem 19. [44] The Strictly Convex 1; n = 10

f(x) =

n∑
i=1

(exi − xi)

x0 = (1/n, ..., i/n, ..., 1), x∗ = (0, ..., 0), f∗ = 10;

Problem 20. [44] The Strictly Convex 2; n = 10

f(x) =

n∑
i=1

i
10(exi − xi), x = (x1, ..., xn)

x0 = (1, ..., 1), x∗ = (0, ..., 0), f∗ = 5.5;
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Čuva se: u biblioteci Departmana za matematiku i informatiku, Novi Sad
ČU
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aproksimacije (SA). U disertaciji se predlaže nova klasa šema za pri-
lagod̄avanje dužina koraka u svakoj iteraciji. Odabir dužina koraka
u predloženim šemama se zasniva na vrednostima funkcije cilja. U
svakoj iteraciji formira se intervalna ocena optimalne vrednosti funkcije
cilja koristeći samo registrovane vrednosti funkcije cilja iz fiksnog broja
prethodnih iteracija. Ukoliko je vrednost funkcije cilja u trenutnoj iteraciji
veća od gornje granice intervala, iteracija se odbacuje. Korak dužine 0 se
koristi u narednoj iteraciji. Ako je trenutna vrednost funkcije cilja manja
od donje granice intervala, predlaže se duži korak u narednoj iteraciji.
Ukoliko vrednost funkcije leži u intervalu, u narednoj iteraciji se koristi
korak dobijen harmonijskim pravilom. Na ovaj način se obezbed̄uje brži
progres algoritma i izbegavaju mali koraci posebno kada se povećava
broj iteracija. Šeme izbegavaju korake proporcionalne sa 1/k kada se
očekuje da će duži koraci pobolǰsati proces optimizacije. Predložene šeme
se razlikuju u intervalima koji se formiraju u svakoj iteraciji. U prvoj
predloženoj šemi se formira veštački interval poverenja za ocenu optimalne
vrednosti funkcije cilja u svakoj iteraciji. Granice tog intervala se uzimaju
za kriterijume dovoljnog smanjenja ili rasta funkcije cilja. Predlaže se i
uopštenje ove šeme tako što se umesto srednje vrednosti koristi konveksna
kombinacija prethodnih vrednosti funkcije cilja. U drugoj šemi, kriter-
ijum po kom se prilagod̄avaju dužine koraka su minimum i maksimum
prethodnih registrovanih vrednosti funkcije cilja. Nizovi koji se formiranju
predloženim šemama zadovoljavaju uslove potrebne za konvergenciju SA
algoritma skoro sigurno. SA algoritmi sa novim šemama za prilagod̄avanje
dužina koraka su testirani na standardnim test problemima i upored̄eni sa
SA algoritmom i njegovim postojećim modifikacijama. Rezultati pokazuju
napredak u odnosu na klasičan algoritam stohastičke aproksimacije
sa determinističkim nizom dužine koraka kao i postojećim adaptivnim
algoritmima. Takod̄e se razmatra primena novih algoritama na LASSO
regresijske modele. Algoritmi su primenjeni za ocenjivanje parametara
modela.
IZ
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