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FORMATION OF DARK-STATE POLARITONS
AND TWO-POLARITON BOUND STATES IN
ARRAYS OF ATOMS AND OPTICAL
CAVITIES

Abstract

This thesis covers a theoretical analysis of non-interacting and interacting quasi
particles, called polaritons. Polaritons are composites, based on photonic and atomic
excitations in a tunable and controlled manner. Dark-state polaritons, as a subclass
of polaritons, are very curious objects, as they can act as a quantum memory of
photons within an ensemble of alkali-metal atoms in A-type configuration which
admit electromagnetically induced transparency (EIT). This thesis focus on the
formation of dark-state polaritons in degenerate two-level systems, where two light
fields, a quantum probe and a classical driving field, couple the same transition
between the ground state and excited state manifold. An algorithm is going to
be derived in order to determine the dispersion relation and inherent composition
of the dark-state polaritons in the degenerate two-level system. The algorithm is
based on a microscopic equation of motion technique and provides an extension of
the non-degenerate case. Depending on the polarization of the light fields, it will be
shown that either one or two dark-state polaritons can exist. Further, the calculated
dark-state polaritons can be used in order to perform a frequency conversion and
even a conversion of linear light polarization.

In the second part of the thesis, interacting polaritons in arrays of coupled QED
cavities will be discussed. In first place, the standard Jaynes-Cummings model is
discussed in order to provide a better insight to polaritons in QED cavities. Then,
a modified Jaynes-Cummings model is introduced and derived in order to study
dark-polaritons and their interaction. It will be shown that dark-polaritons directly
depend on the common single photon detuning of the two coupling fields, quantum
probe and classical driving field. The interaction between dark-polaritons will be
discussed where the emergence of dark-polariton bound pairs will be shown. By
tuning the Stark-shift due to the classical control field, the number and the com-
position of dark-polariton bound pairs can be controlled. It will be demonstrated
that there exists a dark-polariton bound pair which differs from the aforementioned
ones, because it represents a ground state of the system. Using that kind of a dark-
polariton bound pair, storage and retrieval of a single photon can be performed,
even though that the photons are in a two-photon bound state.

In the last part of the thesis, disorder between QED cavities will be introduced
in a controlled manner through staggered inter-cavity photon hopping strengths J;
and Jo. Further, the appearance of a dark-polariton bound pair of a completely



different type will be presented.
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OOPMUPAIBLE TAMHUX ITIOJIAPUTOHA U
JABO-IIOJTIAPUTOHCKUNX BE3AHUX
CTAIHA YV HUSOBUMA ATOMA "N
OIITUKNX MUKPOPE3OHATOPA

Pe3sume

OBa Te3a mpejcTaB/ba TEOPHUJCKY aHAIM3Y HemHTeparyjyhux m mareparyjyhux
KBa3U-4ECTHIIA, T3B. HostapuToHa. [lomapuronu cy kKomOuHamuje (pOTOHCKUX U aTOM-
CKHX eKCIIUTallfja V KOHTPOJIUCAHO MPOMEH/PHBOM ONIHOCY. Bpcra mosapurtona,
TaMHHU II0JIADUTOHHU, Cy Beoma HeoOmduHu obOjekTu Oyjyhu jga Mory ja ciyzke Kao
KBaHTHA Memopuja 3a (poToHe yHyTap aHcamO/a aroMa ajkKaaHux meranaa y A-
KOH(UTYpaIju, a y Be3u ca ePEeKTOM eJIeKTPOMATrHeTHO WH/IYKOBaHE TPAHCIapeH-
nuje (ENT). Tesa ce hokycupa Ha npoydaBarbe (hopMUparha TAMHUX IOJAPUTOHA Y
CHCTEMHMA Ca JIBa HUBOA, OCHOBHUM H MOOYDeHUM, KOjH IOCEY]y MHOMOCTPYKOCTH
AdereHepucCaiux I110JHuBOa U CHPErHyTU CY KBAHTHUM HpO6HI/IM "N KJIaCU4YHUM KOH-
TPOJIHUM JIACEPCKUM ToJheM. buhe u3Besgen ajaropuraM 3a J00Ujame JAUCIEP3UOHEe
pesnaiuje u oArosapajyher cactaBa TaMHHX MOJapPUTOHA Y CUCTEMUMA Ca JIBA-HUBOA
U JereHepanujoM. AJITOpHTaM je 3aCHOBAH HAa TEXHHUITM MUKPOCKOICKHX jeTHAYHHA
KpeTarma H IIpecTaB/ba IpOoIIuperhe caydaja 0e3 jperenepanuje. buhe mokasano ja
V 3aBUCHOCTH O/ TIOJIApU3allfje T0/ha MOTY TTOCTOjaTH jeJaH WM JIBA TaMHa MTOIapu-
ToHa. Tako A00MjeHM TaMHW IOJAPUTOHU MOTY OMTH KOpHUIITheHH 3a KOHBEP3Hjy
dpekBennyje u JIMHEAPHE MOJapPU3allije CBEeTIOCTH.

Y apyrowm neny Tese pazmarpalieMo nHTeparyjyhe nojaputone y HU30BUMa CIIPer-
HYTHX KBaHTHO-€JIEKTPOIUHAMUYKHX ONTUYKUX MUKpope3oHaTopa. Kao npso, npu-
kKa3aH je crapgapanu [lejuc-KamuarcoB momen ma 6u ce 06e3deauo 0ObH YBUI Y
HOJIAPUTOHE YHYTAP ONTHYKHX MUKPOPE30HATOPA. 3aTUM je yBeJeH MOAn(pUKOBAHN
[lejuc-KamunrcoB mozes paju mpoydaBama TaMHUX [MOJAPUTOHA U UHTEPAKIIHje
Mehy muma. Buhe mokaszano ja TaMHH IOJIADUTOHH JUPEKTHO 3aBHUCE O] 3aje]I-
HUYKe jeHOMDOTOHCKe pasjeneHocT (JIeTjyHUHra) KOpUIieHnX 10J/ba, KBAHTHOT
HpOoOHOT M KJACHYHOT KOHTposHor. Murepakmuja u3amehy Ttamuux moaapurToHa he
OuTH IPOJNCKYTOBaHA, IPH deMy he OMTH 1OKa3aHa I10jaBa BE3aHOI apa TaMHHX
nostaputona. llogemasamem [TlTapkoBor momepaja ycjiel KOHTPOIHOT MOJba MOZKE
ce yTuiaTi Ha Opoj m ocobmHe TWUX Be3aHWX mnapora. bwuhe mokazano ma mocroju
Be3aHU Iap TAMHHUX IOJApUTOHA KOjU Ce PA3JHUKYje O/ IMOMEHYTHUX IIOIITO IpeJI-
CTaBJ/ba, OCHOBHO CTalbe cUcTeMa. TakaB Be3aHHU Iap TAMHHUX HMOJapHTOHA oMoryhaBa
3apobsbaBatbe U MITYUTABAIGE JeJHOI OJ1 JBa Be3aHa (POTOHA. Y IOCJIEIHEM ey
Te3e Ouhe yBeaeHO KOHTPOJINCAHO Heypeheme y 0OJIMKYy HAM3MEHHIHIX TTapamMerapa,
crpesama Melly MukpopesoHaropuma, J; u Jo, m 6uhe mokasaHa rojaBa IMOTIYHO
HOBOT' THIIA BE3aHOI MMapa TAMHHUX ITOJIAPUTOHA.
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Introduction and Thesis Outline

1.1 Introduction

An important aspect in the research of physics is the emergence of cross-connections
between two promising research fields. One such prosperous connection can bee seen
in cavity-QED (cavity quantum electrodynamics). It brings together quantum optics
with many-body physics (condensed matter physics). Quantum optics itself has its
roots in studying fundamental quantum features of matter and their interaction with
light which has led to new developments such as different kinds of lasers and their
numerous applications. Light is composed of particles, called photons. They carry
information of the light polarization, which is determined through the components
of the electric and magnetic field, and their spin. As bosonic particles, they have
an integer spin. One of the most extensively studied aspects of quantum optics is
the interaction of laser light with atomic vapours. Especially laser excited alkali-
metal-atom vapours are in the focus of interest because of many ongoing emergent
electromagnetically induced coherent effects. Those provide the opportunity for
numerous applications. Moreover, a deep inquiry of coherent effects, transfer of
coherence and population precedes to a better understanding of various phenomena
in quantum optics and laser-matter interaction in general.

Characteristic examples of coherent effects are those that originate from coupling
a single atomic excited state with two long-lived ground atomic states by the use of
two laser fields. The laser fields are called probe and pump. These two laser fields
and the atomic three-level system form a so called A-configuration. This system
enables the realization of interference between two transition pathways, which are

generated by the laser fields, and the creation of so called dark-states. Dark-states
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represent coherent superpositions between the two long-lived ground atomic states,
uncoupled from the excited state. Very remarkable features are connected to the
dark-states, among them the increase of transparency if the pair of laser fields in
two-photon Raman resonance prepare the absorbing medium into the dark-state.
This is the common physical picture of coherent population trapping (CPT) [1I, 2]
and electromagnetically induced transparency (EIT) [3| 4], [5]. Within the spectral
bandwidth of the EIT there is a strong dispersive behaviour of the index of refraction
which results in the non linearity of EIT media and slow, stopped and stationary
light [6, [7, [8]. Slow, stopped and stationary light are also directly related to the for-
mation of so called dark-state polaritons (DSPs). DSPs are in particular low energy,
single probe photon driven, collective excitations that do not have a contribution of
the excited atomic states. They were firstly introduced by Lukin and Fleischhauer as
an extension to the well-known concept of adiabatic Raman polaritons in A-systems
that admit EIT [9] [10]. Their formation relies on the dark-states and assumes an
adiabatic change of the pump field. Further, DSPs possess unique properties and
features which have made them attractive for theoretical and experimental stud-
ies. Lukin and co-workers have shown the usage of DSPs as a storage medium
for photons[I1]. Quantum states of photons are transferred onto collective Raman
excitations in a loss-free and reversible manner, thereby the state of photons e.g.
spin or polarization is stored in the atomic spin-coherences between the two ground
state levels. Additionally, it has been shown by Chong et al. that DSPs in dou-
ble A-system enable the down-conversion of frequencies in alkali-metal atoms [12].
Furthermore, DSPs have shown to mediate coherent interactions between atoms in
atomic vapours [13]. An additional property of DSPs, which was shown by Unayan
and co-workers, is the spinor like behaviour and fulfilment of a Dirac like equation
of motion in case two pairs of counter-propagating laser fields interact with a tri-
pod linkage in atomic vapours [14]. However, CPT and EIT can also be observed
in multilevel systems as those involving two atomic degenerate-level manifolds with
multiple Zeeman substates. The observation of CPT and EIT in such systems is also
a direct consequence of the existence of a dark-state within the ground atomic level
if F, > F, (F, and F, being the angular momenta quantum numbers of the ground
and excited state respectively). Theoretical investigations of these kind of systems
haven’t been that intense, compared to non-degenerate case. Especially degenerate
two-level system have been under minor consideration. A better understanding of

them could lead to new applications, especially with possible new building blocks in
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quantum information processing. In these systems, multiple dark-states and hence
multiple DSPs can be observed. The multiplicity of them depends on the considered
polarization of the coupling fields as it has been shown in [15].

Quantum optics and many-body physics share two common features which are
the type of considered particles and the non linearity of interactions between them.
One aspect of interest in many-body physics are strong correlations between bosonic
systems, but clearly between fermionic systems as well. A well-known model that
incorporates strong correlated bosonic systems is the so called Bose-Hubbard-model
(BHM). It is defined for strongly interacting bosons on an optical lattice and ac-
counts for large number of bosonic particles [16, [17, [18]. BHM with its inherent
nonlinearity is mainly given by the onsite potential Ugyys which appears along
with the combination of number operators of the form n(n — 1). Depending on
the strength of the onsite potential Ugg s relatively to other parameters of the sys-
tem, one can observe the appearance of quantum phase transitions (QPT). BHM in
particular supports quantum phase transitions of Mott-insulator to super-fluid [16].
Mott-insulators are in general described by a gap in the eigenspectrum of the BHM,
zero compressibility and localized bosonic excitations. Mott-insulator to the super-
fluid transition is linked through a Bose glass phase [16], whose characteristic is a
finite compressibility without the presence of a gap. Mean-field theory has shown
to be an accurate method in order to study ground state QPTs of this kind [16] [19].

Strong correlations between photons, atoms and photons and between atoms
gained a remarkable interest around 2004 and were substantially inspired by the
study of strong correlations in many-body physics. To obtain strong correlations
of photons, photon-photon interactions are required. One proposal of introducing
photon-photon interactions within alkali-metal atomic vapours was based on the
mechanism of photon exchange that is very weak [20]. Further, atom-photon inter-
actions in EIT media are not that weak due to the provided nonlinearity but are
not strong enough to reach strong correlations as the probe field is considered and
defined as weak [10, [11], 15]. As a consequence, QED cavities have been proposed to
enhance these interactions and correlations. QED cavities because on one hand, to
quantize the light-matter interaction and on the other hand to reach the strong cou-
pling regime as the absorption cross section for photons is reduced. Consequently,
the cooperativity parameter 7 increases which is a key feature of the strong cou-
pling regime. The description of quantized light-matter interactions is based on the

standard Jaynes-Cummings model (JC) which was firstly introduced in [2I]. They
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focused on a single mode cavity that interacts nearly resonantly with a single two-
level atom and showed a nonlinear behaviour of the spectrum. This nonlinearity
in the spectrum, known as Kerr-nonlinearity, induces an effective photon-photon
repulsion. It is directly related to the photon-blockade effect which can be tuned by
controlling the level spacing as well as cavity mode frequency [22, 23]. A measure
for the photon-photon repulsion is the effective photon number dependent onsite
repulsion strength U(n). The eigenstates of the Jaynes-Cummings model are called
polaritons. To be more precise, in optical cavities these eigenstates are also known
as bright-polaritons because they have a contribution of the excited atomic level.

Exploration of strongly interacting bosons in quantum optics as in condensed-
matter physics is doable by increasing the number of coupled QED cavities and
forming one- and two-dimensional lattices. This increase in the number of cou-
pled QED cavities leads to an extension of the standard Jaynes-Cummings model
to a standard Jaynes-Cummings-Hubbard model (JCH). It provides an opportu-
nity to simulate the Bose-Hubbard model and its properties as well as features,
but with fewer number of bosonic particles. Thus, the complicated many particle
Bose-Hubbard Hamiltonian can be effectively reduced in complexity by considering
JCH of coupled QED cavities. An important advantage that has attracted a lot of
attention in the scientific community of quantum optics as well as condensed-matter
physics [24]. Similarly to the BH model, the JCH model supports QPT of Mott- to
superfluid, but for photons, as Greentree and co-workers have shown [25].

Apart from strong photon-photon and atom-atom interactions, strongly inter-
acting polaritons in coupled QED cavities have encouraged profound theoretical in-
vestigations. Hartmann and co-workers have demonstrated that interacting DSPs in
QED cavities with atoms in N-configuration can be exactly mapped to the BH model
and show the Mott-insulator to superfluid QPT [26]. Mott-insulator to superfluid
transition for interacting polaritons in Jaynes-Cummings and Jaynes-Cummings-
Hubbard lattices has been under extensive study in the past few years [27, 28] 29].
Remarkably, even for interacting polaritons in one-dimensional arrays of coupled
QED cavities a glassy phase of polaritons called polariton glass was discovered [30].
Analogues of extrinsic semiconductors, which are made of interacting polaritons in
one-dimensional arrays of coupled QED cavities, have been demonstrated. It was
shown that doping can be performed by changing the single photon detuning in a
staggered way which in turn affects the Mott-insulator to superfluid QPT [31]. As

polaritons in one-dimensional arrays of QED cavities are strongly interacting, one
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question arises. Can bound states of polaritons be formed out of the interaction?
Very little is known about polaritonic bound states. Wong and Law have demon-
strated the existence of two-polariton bound states in the standard one-dimensional
JCH model where the involved polaritons are bright-polaritons [32]. Recently, it
has been shown that an equivalent spin-orbit interaction in two-polariton bound
states exists [33]. A profound investigation of two-polariton bound states and dark-
polariton bound pairs (DPBPs), which haven’t been considered so far, can lead to
rich physics and new applications. Possible applications are creation of lattices based
on two-polariton bound states or DPBPs, quantum networks or optical topological

insulators.

1.2 Thesis outline

This thesis deals with a theoretical investigation of coherent effects which are related
to DSPs in degenerate two-level system admitting EIT. In a further step, interacting
dark-polaritons are considered in one-dimensional arrays of coupled QED cavities.
In order to provide existence of dark-polaritons, a new model is derived. This
new model represents a modified Jaynes-Cummings- Hubbard model which supports
the formation of DPBPs in the two-excitation subspace. It will be shown that
for uniform inter-cavity photon hopping there exists a ground state DPBP which
functions as a quantum memory of a single photon, even though the two photons are
tightly bound to the atomic bound state which protects one of the photons from the
storage and retrieval process. Moreover, we consider a disordered array of coupled
QED cavities. The disorder is introduced through a staggered, non-uniform inter-
cavity photon hopping. Under this setting and in dependence of (non)-compensating
control field Stark shift, quantum state transfer of a ground state DPBP between

the two sub lattices is reported. The thesis is organized as follows:

e chapter 2: Here we provide the theoretical basics in order to follow the re-
sults. Especially, we provide the background of the non-degenerate microscopic
equation of motion for DSP-field operator. In depth, we not only derive and
discuss the standard and modified Jaynes-Cummings model, but also compare

them.

e chapter 3+4: In this chapter a detail presentation of the results, obtained



1.2 Thesis outline

by investigating the degenerate two-level system in an ultra cold atomic gas of
alkali-metal atoms as well as the investigation of interacting dark-polaritons in
the two-excitation subspace of an array of coupled QED cavities with uniform

inter-cavity photon hopping configuration is given.

chapter 5: In this chapter a detail presentation of the results, obtained by
investigating dark-polaritons in the two-excitation subspace of an array of cou-
pled QED cavities with staggered inter-cavity photon hopping configuration

is provided.

chapter 647: In this last chapter conclusions are drawn. Further, future

investigations, which are based on the so far obtained results, are discussed.
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Dark-state polaritons in free space

and polaritons in cavity-QED

2.1 Theory of dark-state polaritons in free space

2.1.1 Electromagnetically induced transparency and dark-

state polaritons

Three-level A system (shown in Fig. represents the simplest system presenting
two physically closely related coherent phenomena - coherent population trapping
(CPT) and electromagnetically induced transparency (EIT). Basic physical picture
of these phenomena is based on the existence of dark states that are uncoupled to
the laser fields. The atoms trapped into the dark state cannot be further excited by
the laser fields and cannot fluorescence -they are dark.

Let us consider the case when the two fields are in Raman resonance with a

v

Qp, wy Qc, we

1

Figure 2.1: Three-level A system. Pump field (label p) couples the transition 1 — 3,
while control field (label C) couples the transition 2 — 3. €, and Q¢ are Rabi
frequencies of the fields, w, and wc are carrier frequencies, while A is the transition
detuning (common single-photon detuning).
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common single-photon detuning A. The A system Hamiltonian in a basis composed

from the states |¢1), [12) and |1)3), respectively,

0 0 2, (t)
Ht) =k | 0 0 19(t) (2.1)
350 3 %E) A

has the following eigenenergy ¢¢(t) = 0 and eigenstate Wy(t) = QQE'TS)|¢1> — %’*’Tg]%%

with Q(t) = /I (8)[2 + [Qc(¢)[2. Tt is important to note that the state Wo(t) is

composed entirely from ground states 1 and 2 and has no contribution of the excited
state 3. Moreover, the state Wo(t) is a dark state that is effectively decoupled
from the excited state 3, since H(¢)W((¢) = 0. This decoupling is a consequence of
destructive interference of the probability amplitude for the transition 1 — 3 with
the probability amplitude for the transition 2 — 3. If the medium is prepared in this
state, there is no possibility of excitation by means of the coupling laser fields. This
leads to an enhanced transparency of the medium when the laser fields are close
to Raman resonance. Increased transparency for near resonant coupling fields is
common to CPT and EIT. Preparation into the dark state via optical pumping (via
spontaneous decay from the excited state 3 is one way to trap population into that
state. Note once again that necessary conditions for the CPT and EIT appearance
are the existence of dark states and two-photon Raman resonance of the coupling
laser fields.

Formation of dark-state polaritons in optically thick media is related to the
Raman adiabatic passage (naturally provided in EIT) and can either happen via
optical pumping, i.e., by an incoherent process, or via a coherent preparation scheme.
Optical pumping requires that the atomic ensemble is initially prepared in a mixed
state. An undesirable property of optical pumping is the unrecoverable loss of
photons. However, in coherent preparation all atoms are initially in a pure state,
e.g. |1) if |1) is a non degenerate ground state with a sufficient energy gap to the
state |2). This is achievable by the so called stimulated Raman adiabatic passage
(STIRAP). STIRAP assures that the atoms return to their initial state after the
interaction with the weak coupling field. Further, it conserves the number of photons
in the weak field. A key point within STIRAP is that the two coupling fields €2,(¢)
and €.(t) change adiabatically, thus a complete transfer of the initial population

from |1) to |2) is reversible and therefore conserved.
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2.1.2 Dark-state polariton-field operator equation

Suppose we have a two level system which is prepared in the ground state |¢g) with
the energy Fy. Further, a time independent Hamiltonian H governs the system’s
evolution so that H|ty) = Fo|th). We are looking for a field operator AT with the
property H (AT [1o)) = (E0+hw)AT|@/JO>, where hw corresponds to the energy gap that
divides the ground and excited state (this is basically the amount of energy needed
to excite the system). Time-independent Schrodinger equation for the excited state

AU%} yields the following requirement for the field operator

F[(ATW}O» = (Eo + M)ATW& (2.2)
ATHyo) = EyAl|hy)

)

]

A A~

(HAT — ATH)|¢) = hwA|yo)

where the action on the state |t¢)g) is implicitly assumed.

If we extend the single two level to a degenerate two level system with the
two coupling fields, weak quantum probe field and classical driving field, the field
operator Al is going to be expressed by a superposition of operators as it will be

presented in chapter 3 Dark-state polaritons in a degenerate two-level system.

2.2 Bright-polaritons in cavity-QED:

Jaynes-Cummings Model

In 1963, the two American physicists Edwin Jaynes and Fred Cummings proposed a
theoretical model in order to investigate the relation between quantum theory and
the semi-classical theory of radiation. In fact, they were motivated by describing
the process of spontaneous emission [21]. Within their approach they analysed
the interaction of a monochromatic electromagnetic field mode with a quantum
mechanical two-level system. Although this model is obviously an approximation,
it turned out to be of crucial importance in order to understand the fundamental
interaction between light and matter. The fact that Jaynes and Cummings found
a quantum mechanical description of light-matter interaction that showed a very
good quantitative agreement with experiments, strongly enhanced the progress in

the field of Quantum Optics and has been a corner stone especially in this field
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le}

fie

g

Figure 2.2: Energy structure of the two-level system. The two-level system consists
of a ground state |g) with energy Fy = 0 and an excited state |e) with energy E. = he.

of physics ever since. In the following years and decades the further developments,
based on their model, led to multiple applications and improvements such as masers,
lasers and optical trapping and cooling techniques [34], 35, [36]. A derivation of this
model can be found in almost every physics book concerning quantum optics, see for
instance the Refs. [37, 38 B9, 40, [41]. In this thesis I derive the Jaynes-Cummings
Model where I focus on the derivation of the two-level system Hamiltonian as well as
the interaction Hamiltonian. I mainly point out the two-level system Hamiltonian
and the interaction Hamiltonian because in case of the modified Jaynes-Cummings

Model, which is going to be derived in the sequel section, they change significantly.

2.2.1 Two-level system Hamiltonian

I now consider a two-level system that is placed in an optical micro-cavity and
interacts with the intra-cavity field mode. Further, I assume that the two-level
system has an energy structure as depicted in Figure . It consits of a ground
state |g) with energy Ey = 0 and an excited state |e) with energy E. = he.

By taking this point of view, I make the most general ansatz to deal with this kind
of system which is applicable to all experimental setups. Since the energy eigenstates
and their respective eigenvalues are known by definition, one can immediately write

down the Hamiltonian of this system in the energy representation:
Hatom = hele)(e] + 0]g){g]. (2.3)

By choosing a specific representation for the abstract eigenstates |g), |e), one can
transform this Hamiltonian in a more convenient form. Obviously, there are quite a

lot of possible representations. I use the simplest representation and associate the

10
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kets with the two dimensional Cartesian unit vectors as follows

0 1
l9) = <1> ey = (0) : (2.4)

As we use this representation for the state vectors, it leads to a matrix representation
for the projection operators in the Hamiltonian (2.3). Inserting (2.4)) into (2.3 yields

A 10 0 1 he 0
Hatom = he +0 = . (25)
0 0 0 0 0 0
Furthermore, remembering the definition of the Pauli matrices:

) 01\ 0 —i\ 1 0
Oy = , Oy = , 0, = , (2.6)
1 0 1 0 0 -1

and their combinations

0 0

1 0 0
67 = (6, +1i6,) = : 2.7b
(6 +i5,) (1 0) (2.7h)

1 0 1
ot = 5(636 +i0y) = ( ) (2.7a)

one finds that, suitable combinations of the state vectors can be expressed in terms
of these matrices. In fact, it can be shown that, in this choice of representation, the

following relations hold

01\ .
le)(g| = (0 0) =" (2.8a)

00\ .
|g) (el = (1 0) =0 (2.8b)

From the above relations follows, that the operators 6, 6~ are the creation and
annihilation operators of the two-level system, i.e. 61 creates an atomic excitation,
whereas 6~ destroys it. With the help of these relations, one finds for the remaining

projection operators the following form

_l’_

65 lgdgl = 576 (2.9)

I
Q>

le){e] = o

11
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Hence, one can finally express the projection operators, occurring in the two-level
Hamiltonian, in terms of combinations of Pauli matrices. If we plug in the expres-
sions (2.9)) into (2.3), the desired simplified form of the atomic Hamiltonian reads

Hapom = hie6T 6~ = Refig, (2.10)

where I introduced the occupation number operator n, = 676~ for the two-level
system. Formally, this Hamiltonian shows quite similarities with the Hamiltonian

of the monochromatic free electromagnetic field
- .1
Hfield = hw(n+§) (211)

Namely, the Hamiltonian takes on the form of a product of the occupation num-
ber of the excited level and the energy of this level. Note that, in literature one
often finds other notations for this Hamiltonian corresponding to another choice
of energies. Furthermore, one can see that the Hamiltonian (2.10)) commutes with
the occupation-number operator n, and, therefore, the conserved quantities for this
Hamiltonian are the excitations of the two-level system. After having derived the
quantum mechanical description of the energy contributions of the intra-cavity pho-
ton field and the two-level system, I now investigate the energy contribution arising

from the interaction between those two, in the following section.

2.2.2 Interaction Hamiltonian

In the previous section, I derived the Hamiltonian for a two-level system without
specifying the actual experimental setup. However, in order to derive the interaction
Hamiltonian in the following paragraph, I need to be more precise, since there is a
variety of possible realizations of this system, leading to very different interactions.
For example, one can implement the two-level system using the spin of an electron,
which could be manipulated by a magnetic field. Hence, the interaction Hamiltonian
for this case would be proportional to the magnetic field. On the other hand, one
can use the electronic transitions in an atom, to realize the system. In this case the
electron would couple to the electric field vector. Within this thesis I focus on the
latter case. Hence, the energy states |g), |€) correspond to electronic states. The
transition between these states is characterized by the electronic-transition dipole

moment. In this case the interaction is mediated via the coupling of the electri-

12
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cal field to the transition dipole moment. Assuming that the wavelength of the
monochromatic electric field is large compared to the dimension of the atom, one
can work in the so called dipole approrimation. In this approximation, one considers
only the field strength at the centre-of-mass position of the atom. Thus, using this

approach, the classical interaction Hamilton function takes on the form
Hiy = —qr-E(R 1), (2.12)

where the vector R labels the centre-of-mass position of the atom and qr is the
classical electronic dipole moment. Since I assume that the intra-cavity photon field
is monochromatic ( specified by the mode index p) and has a fixed polarization o,
I drop the index p and o in the electric field E(R,t) and, thus, the explicit form of
the quantized form of the electric field is given by

E(R, ) = ila(t)u(R) — ' (t)u*(R))], (2.13)

where I introduced the abbreviation

fw
2e

SIS

£ = (25, (2.14)

Note that, the photonic ladder operators a(t), a'(t) in the above equation are now
formally time dependent. The reason for this is, that I absorbed the time dependence

of the mode function u(R), which is characterized as a plane wave, and defined
a(t) = ae”™*, (2.15)

To the end of this section, I drop the explicit time dependence for the sake of clarity.
In order to write down the fully quantized version of , one still needs to find
the quantum mechanical description of the dipole moment. Trying to use the same
procedure as in , I expand the dipole operator in the energy eigenbasis of the

two-level system. This approach leads to
qr = ZI ilqr(7)(J (2.16)

where the indices i and j label the respective energy eigenstates |g), |e). Since

transition dipole moments can just arise from electronic transition from |g) to |e)

13



2.2 Bright-polaritons in cavity-QFED:
Jaynes-Cummings Model

or vice versa, the terms corresponding to the even transitions (e|qr|e) and (g|qr|g),

have to be zero. Hence, I define

q(e|r|g), (2.17a)
p" = qlglr|e). (2.17Db)

These results yield the following expression for the dipole operator expansion (|2.16]):

qr =poT +p o. (2.18)

For the last equivalence in ([2.18]), I used the relation of the state vectors to the Pauli
matrices, introduced in (2.9). Subsequently, one can combine expressions ([2.13]) and
(2.18) to give the quantized version of the interaction Hamiltonian (2.12)), which
reads

A

Hjp = —i€lau(R) — a'u*(R)](p6+ 4+ p*67). (2.19)

Expanding this expression yields
Hin = —iflau(R) - pé* + au(R) - p*6~ —afu*(R) - ps™ —alu*(R) - p 6. (2.20)

Having a closer look at the occurring terms, one can see that, two of them describe
rather unphysical processes, that violate conservation laws. In fact, the term pro-
portional to ag~ describes the decay of the excited atomic level together with the
annihilation of an intra-cavity photon field, whereas the term proportional to af6"
describes the excitation of the atom together with the creation of a photon. Both
processes obviously violate the conservation of energy and particle number in the
system and, hence, I neglect them in the further calculations. This approach is
known in the literature as the rotating wave approzimation (RWA)[38, 40], 41] and

leads to a Hamiltonian of the form

where I introduced the complex coupling strength g defined by hg = {u(R) - p and
hg* = ¢€u*(R)-p*. Note that the implicit time dependence of the Hamiltonian ([2.21))
due to relation ([2.15)) vanishes in a rotating frame and, thus, can be neglected in
the following considerations. At first appearance it seems that, one has arrived at

the simplest form for the interaction Hamiltonian. However, I show within the next

14
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section that there exists a property of the Hamiltonian (2.21)), which leads to an

even more compact form.

2.2.3 Symmetry of the interaction Hamiltonian

Within this section I am going to examine the invariance of the Hamiltonian
under global U(1) phase transformations. This symmetry offers the possibility to
restrict the complex coupling strength g to real values and, thus, leads to the final
form of the interaction part of the Jaynes-Cummings Hamiltonian. The standard
approach to analyse this property of the Hamiltonian is to apply a global phase
transformation to either the state vectors or the appearing operators. I use the first

method and perform the following transformation for the two-level eigenstates
le)" = ee), |g) — €Plg). (2.22)

The introduced parameters o and 3 are global constants independent of space and
time. Using the relations (2.8) I see that this transformation immediately yields
new expressions for the annihilation and creation operators of the two-level system,

namely
ot = e Pt 57 o emilefg (2.23)

By inserting these expressions into (2.10)), it is easy to see that the performed phase
transformation leaves the Hamiltonian invariant.
I:I/

L om = heoT 67 = hee' @ Pt e PG = he6T6T = Hypom. (2.24)

Following the same procedure, I analyse the symmetry of the Hamiltonian for the
free electromagnetic field (2.11]), by performing a global phase transformation on

the photonic annihilation and creation operators as follows
N

i — ea, al — e ?al, (2.25)

with the global constant ¢. An investigation of the effect of this transformation on

equation ([2.11)) immediately shows that the Hamiltonian of the intra-cavity photon

15
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field stays invariant:

H piog = hw (a*’a’ + %) = hw (eiwe% + %) = hw (a*a + %) = Hjicta-
(2.26)
Therefore, both, the intra-cavity field Hamiltonian as well as the two-level system
Hamiltonian remain invariant under some global phase transformation. The in-
teresting question is: what happens to the interaction part? This can be easily
investigated by simultaneously performing both transformations and

on equation ([2.21]), which results in the modified interaction Hamiltonian:
Hipy = —ih [gacte'@To=P) — g*algmemil0Ta=d)] (2.27)

Furthermore, using the fact that complex numbers can be separated into a real

modulus and a complex phase, equation (2.27)) can be rewritten as
Hine = —ih|g| [a6T e OToT0) — gig—emil0otaf] (2.28)

where I defined g = |g|e?. The arbitrariness of the introduced parameters «, 3 and
¢ allows to choose their values in such a way as to compensate the phases of the

coupling constant. For this reason, I demand that the following relation has to hold
|
9+¢+0¢—5:§. (2.29)

Here I choose § because I want to use the over determination to get rid of the
prefactor i in (2.28]). With the phase parameters obeying equation (2.29)), one finally

arrives at the most compact formulation of the interaction Hamiltonian, which reads

Hyy = hg (a6" +a'67), (2.30)
where the coupling constant g is now a real quantity and is defined as

hg = &Ju(R) - pl. (2.31)

2.2.4 Jaynes-Cummings model Hamiltonian

The Jaynes-Cummings (JC) system is depicted schematically in Figure (2.3). In

this picture I have indicated the main processes one has to deal with in further
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E.=c

B, =0

Figure 2.3: Two-level system in a micro-cavity and the most important processes
in this system. Yellow arrows indicate the creation annihilation of cavity photons,
green arrows indicate the excitation and relaxation of the two-level system and the
red arrows indicate the loss processes (A = 1).

calculations. Specifically, there are: the creation and annihilation of intra-cavity
photons via the photonic operators a,af, the excitation and relaxation of the two-
level system via the electronic operators 6%, 6. Furthermore, there are additional
processes, which haven’t been discussed so far. These new processes, which are
indicated by the red waving arrows, correspond to loss processes in the cavity. In
a real experiment, there will be two main sources for energy dissipation out of
the system. The first one is simply due to the fact that, in general there is a
non-vanishing probability for spontaneous emission of a photon from the excited
level of the atom. In my formulation this probability is proportional to v. The
second process amounts for the fact, that the cavity itself is not perfectly closed
and, therefore, gives rise to the possibility of a photon to leak out of the cavity at
a rate \. However, within the further calculations, I explicitly neglect these loss

processes, assuming that the coupling g is much bigger than the dissipation, i.e.

92
n=_3>L (2.32)

This approach is known in the literature as working in the strong coupling regime
with 7 the cooperativity parameter.This regime has already been shown to be ex-
perimentally feasible in many different setups [42, [43] 44 45| 46|, 47, 48, 149, [50,
51, B2, B3, B4]. From equation , I deduce that, this regime can be estab-
lished by maximizing the electronic-transition dipole moment and choosing a small

cavity volume. For completeness, I mention that there also exists some calculations
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[53, 55, 56, 57, 58] and experiments [59, [60], that explicitly describe and test the dis-
sipative regime by taking loss processes into account. Hitherto, I have thoroughly
derived and justified the basic constituents of the form of the Jaynes-Cummings

Hamiltonian. Therefore, I can now write down the full Hamiltonian, which reads
H7° = Hyjaq + Huom + Hi. (2.33)

Shifting the energy of the system by %‘" in order to get rid of the zero-point energy
contribution, which arises from the electromagnetic field Hamiltonian, one finds the
following form for the Jaynes-Cummings Hamiltonian in the rotating wave approx-
imation:

H7C = hwala + heo 6~ + hg (a6™ +a'67). (2.34)

One can further transform this expression to a more convenient form, by introducing

the composed occupation number operator
h=a'a+6T6, (2.35)

and the detuning parameter

A=ec—w, (2.36)

which is a measure for the detuning between the monochromatic photon field fre-

quency and the two-level transition frequency. The resulting Hamiltonian reads
H7C = hwi + hAGT6~ + hg (a6t +a'e7), (2.37)

which I will use within the further calculations. First, I notice some general prop-
erties of this Hamiltonian. One thing I observe is that in the case of resonant
pumping, i.e. A = 0 the second term vanishes, leaving just the contribution pro-
portional to Aw and the interaction term, which is proportional to g. Considering
the latter, I place emphasis on the fact that, this term describes the conversion of
atomic excitations to photonic excitations and vice versa. The next step to analyse
the Jaynes-Cummings model is to determine the eigenstates and eigenvalues of the
Hamiltonian . It turns out that to perform these calculations, the rotating
wave approximation introduced in Section is absolutely crucial. Within this
approximation it is possible to analytically diagonalize the Hamiltonian. However,

as proposed by Feranchuk et. al.[61] and others [37, 62, [63] [64], [65] it is also possible
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to analytically solve the Jaynes-Cummings model without the RWA, but within this
thesis, I explicitly make use of this simplification. In order to diagonalize the Hamil-
tonian ([2.37)), one has to investigate its commutator with the occupation number

operator n, which leads to
7, 70| = o, i] + B [,6767] + hg ([a,a67] + [a,al67]) . (2.38)

Remembering that each operator commutes with itself and noticing that the follow-

ing relations have to hold
la,6%] = [a,67] = [a',67] = [al,67] =0, (2.39)

since the appearing operators a',a and 6,5~ operate on independent subspaces,

one can immediately conclude that
[n,a'a] = [p,6767] =0. (2.40)
Hence, the commutator simplifies to
7, 17| = hg ([,a6] + [,a67]) (2.41)

Using the fundamental commutator relations for the photonic ladder operators as

bosonic operators and the commutator relation of the Pauli matrices:
[6%,67] =0., (2.42)

one can easily calculate the remaining commutators, which results in the following

relations

(667,46 =ac", [6767,al67] =—al6™, (2.43)
laa,a6"] = —ac™, [a'a,a'67] =ale,

[A,a6%] = [R,a'67] = 0. (2.44)
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Thus, I found the very important property, that the Jaynes-Cummings Hamiltonian

H’C commutes with the bosonic occupation number operator n:
[ﬁ, I?[JC} —0. (2.45)

This result has two essential implications. The first one is that 7 obviously describes
a conserved quantity in the Jaynes-Cummings model. This quantity is the number
of so called polaritons in the system. In the present model, a polariton is basically
a coupled excitation of the atomic and the photonic system. The second important
implication is that H’C and 7 share a common set of eigenstates, in which both
operators are diagonal. In order to find these states, it is advisable to have a closer
look at the occupation number operator. As introduced in , this operator
is the sum of the occupation number operators for the intra-cavity photon field
f, = a'a and the occupation number operator 7, = 66~ of the two-level system,
respectively. Because these operators commute as well, they also share a set of
common eigenstates. Nevertheless, since they operate in different subspaces and,
therefore, have distinct sets of eigenvalues, the only possible candidate for a common
set of eigenstates are the product states of the photonic Fock states and the atomic

two-level states. For this reason, I consider the ansatz
np, s) = [np) ®1s), s €{eg}, (2.46)
where these new states have to satisfy the eigenvalue equations

p| Ny, 8) = np|nyp, 8), (2.47)

Na|Np, S) = Ng|ny, S).

Furthermore, the new set of product states inherits the completeness and orthogo-

nality relations from the subspaces of its components yielding

SN g, s) g, s =1, (2.48)

n=0 s=e,g

(1, 8’| - (M, 8) = Oyt O, (2.49)

P

Throughout this thesis, I refer to these product states as the bare basis set of the

Jaynes-Cummings model. The presented set of states leads, according to equations
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(2.46) and (2.47)), to the following eigenvalue equation of the polariton occupation

number operator
ny, s) = (R + M) [np, 8) = (np +14) [Ny, 8) = nnp, 5). (2.50)

Remembering from Section that n, can only take on the values 1 and 0,
corresponding to the excitation states |e) and |g), one can immediately deduce from
the important fact that for a fixed number n of polaritons there exist two
possible micro states. Having found a set of eigenstates of the polariton occupation
number operator,now, one can make use of this result and write down the represen-
tation of the Jaynes-Cummings Hamilton operator with respect to the bare basis by

using the completeness relation (2.48)):

o0

9= 373 ny, s) (g, s| A7), 8') (). (2:51)

np,np=0 s,s’

Arranging the occurring terms according to the number of polaritons and using
the orthogonality relation , leads to a block-diagonal form of the Hamilton
operator. Omne can see that separates into the ground-state contribution
and an infinite number of blocks of higher order contributions with fixed polariton

number n:

~

H7C = |0, g)hog,04(0, g1 (2.52)
+ |1, 9)h1g0e(0, € + |1, g)hugag(L, g[ + 10, €) hoe,14(L, g| + 0, €)Proe 060, €]

+ 12, 9)hage(l, e + |2, 9 hog29(2, gl + [1, €)hie24(2, g| + 1, €)huc1e(L, €]

+ 13, 9) hag2e(2, €| + 13, 9) hag 343, G| + 12, €) haoe 2 (2, €] + |2, €) hae 34 (3, g

+ ...,

where I used the abbreviation hyg /s = (n, 5|ﬁ JCn’ &'} for the respective matrix
elements. This expression can be transformed to a simpler form by introducing

(2 x 2) matrices for each polariton number, leading to a Hamiltonian of the form

H'C =ho+ ) Iy, (2.53)
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where n labels the number of polaritons and the operators fzo, h,, are defined as

ilO = ’0’g><0’g|f{‘jc|0,g><07g|, (254>

) Ij_,JC If]JC 1
hﬁ(( (n.glH"n.g)  (n. g0~ 1,¢) ) (255)

n_1)6|HJC|nag> <n_176|HJC‘n_176>

Remembering the analysis of Section (2.2.1)), one can calculate the matrix entries
using the action of the ladder operators on their respective eigenstates. With the

properties

6767 In,g) =0, 676 In—1,e)=|n—1¢), (2.56)
de|n7g> = 77/|?7,7 g>7 de|n - 17€> = (n o 1)|n - 17€>7
aot|n,g) = Vnln —1,e) actin —1,e) =0,

a'67|n,g) =0, a'67|In—1,e) = /nln, g),

one finds, that the sub Hamiltonians (2.55)) have the following representation in the
bare basis

(2.57)

n —

Lo fuon hg/n
hgy/n hwn+hA)

Thus, the problem of finding the eigenvalues of the potentially infinite Hamiltonian
is reduced to the much simpler task of finding the two eigenvalues of matrix
. Mathematically this is a well known situation, which can be solved in general
by evaluating the characteristic polynomial of the respective matrix. In the present

case this approach yields the following equation
(hwn — E,)(hwn + hRA — E,) — h*g*n = 0, (2.58)
which immediately gives the eigenvalues as

Epte = hwn + (A £ x,(A)) n>1
P 2 (A £ xa(A)) (2.59)
EOZO n =
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(Epi—wn)/g

Figure 2.4: Plot of the energy eigenvalues (2.59) of the Jayne’s-Cummings model
versus the detuning (h = 1).

Xn(A) is the generalized Rabi frequency and has the form

Xn(A) = /A2 + 4¢°n. (2.60)

In Figure , I plot the energy eigenvalues versus the detuning. One can
see from this picture that for a fixed polariton number n the spectrum contains a
set of two non-degenerated energy eigenvalues. One can see clearly that these eigen-
values naturally separate into so called upper and lower polariton branches, with
the vacuum state as the only eigenstate belonging to both of them. Furthermore,
one finds that the energy eigenvalues remain completely non-degenerated, even if
the system is not in resonance. The splitting between states with the same number

of polaritons is, according to equation (2.59)), given by

OE, = Eny — Enm = xn(A) = /A2 4+ 4¢2n. (2.61)

Notice, that this splitting does not only depend on the detuning A, which is ex-
pected, but also on the occupation number n in a non-linear way. Having obtained

the energy eigenvalues, I can now calculate the respective eigenvectors by solving
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the eigenvalue equation

fwn hgyvn\ ot 5. at ' (2.62)
hgy/m hun+hA) \ g g

To this end, I additionally assume that the eigenvectors are normalized and therefore

their coefficients have to satisfy the relation
(@) + (%) =1 (2.63)

Hence, the coefficients a™ and 3* depend on each other. Because of that, I just
have to consider one of the equations described by (12.62)). Choosing the first one, I
find that the coefficients have to satisfy the relation

hwna™ + hgy/nft = B, a”. (2.64)
Inserting (2.63) yields:

(hwn — B, )a™ + hgy/ny/1 — (at)?2 =0, (2.65)
SHA +xalA))a* = hgv/iny/T= (@72

(A+xa(A)* (") =4g°n [1 = (")) .

Hence, one finds for the first coefficient a*:

2
ot gvn

V(A + xa(A))? + dgPn
Applying (2.63]) once more, the second coefficient S becomes:
A (A
g+ — + Xn(A) (2.67)

VBT B+ A0

In principle, one could directly use these expressions. Yet, relation (2.63) implicates,
that there should also exist a mapping for the coefficients a and ST onto the unit

circle. This observation justifies the parametrization

sin (60,,) := a*, cos(0,) = B+. (2.68)
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That does not look like a huge improvement, but using some trigonometric addition

theorems, one can show that this approach simplifies the form of the eigenstate

coefficients. Using an addition theorem for the cosine leads to:

cos (260,) = cos? (6,) — sin? (6,,) = (A + xn(A))? — 4¢°n

(B + (D) F dgPn
2024 2Ax,(A)

C2G(A) + 2Ax.(4)

 2A(A +xa(A))

2 (D) (a(A) + A)

which, in turn, leads to the neat relation:

cos (26,,) =

Xn<A)'

A corresponding theorem for the sine yields:

o g/ +4)
sin (26n) = 2sin (6n) cos (0n) = T3 TA))? ¥ g7

_ Agvn(xa(A) +4A)
- 26(A)(a(A) + A)

and thus, one finds:
: 2gv/n
sin (20,,) = ——.
(261) Xn(A)

(2.69)

(2.70)

(2.71)

(2.72)

The combination of equation (2.70) and equation ([2.72]) results in the concise ex-

pression

on (26,) = 29\/_

(2.73)

Performing the same calculations for the second set of probability amplitudes, one

finds the analogue relations:

- 2gv/n
V(A = xa (D)2 +4gn

(A —xld)
VB =X 8) + g

b =

(2.74)

(2.75)

In order to determine the corresponding expressions in the parametrized picture,

which were introduced in relation (2.68)), one needs to take a closer look at the
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squared amplitudes. After some transformations:

()2 = 4g°n N 4g°n(A + xa(A))?
(A= xa(Q)2+4gPn (A = Xa(D))2(A + xa(A))? + 492 (A + xa(A))?
(2.76)
B 4g°n(A + xa(A))? _ 4g°n(A + xa(A))?
(A7 = 2(A)) + 4g°n(B + xa(D)P  (—4gPn)? + 2gPn(A + xa(A))?
o 4g2n(A + Xn(A))Z _ (A+ Xn(A))Z
4°n(4g°n + (A + xa(A))?)  (4g°n+ (A + xa(A))?)
one gets the important relation:
(@7)? = (87) (2.77)
Following the same argumentation for 57, yields:
(6—)2 _ (A B XTL(A))2 _ 492”(A — XTL(A))2 (2 78)
(A —xn(A)2+4¢°n (A = xn(A))?4g?n + (49°n)? '
a 4g°n(A — xa(A))? _ 4g°n
T 442 2 _ 2 2 (A2 _ 42 2 (AZ—x2(A))?
1P(AT = 2B+ (AT = 2A)E  agen 4 CEEE
B 4g°n B 4g°*n
B (A—xn(A)2(A+xn (D)2 442 2’
4gPn + (S EIEEE 4g°n + (A + xn(A))
which indicates that
(67)% = (") (2.79)

However, there is still an uncertainty left. The calculations of the squared amplitudes
(a®)?, (8%)? harbour the risk to loose some signs. If I consider the case of zero
detuning, I find that 5~ indeed has to fullfil the relation 5~ = —a™. Now, I finally
arrive at the desired form of the Jaynes-Cummings eigenstates, that for n > 1 the

polariton eigenstates are given by

In,+) : =sin (0,)|n, g) + cos (6,)|n — 1,¢) (2.80a)
|n, —) : = cos (6,)|n,g) —sin (0,)|n — 1,¢), (2.80b)

whereas the vacuum state corresponding to n = 0 takes on the form

|0,£) = |0, g) = |0). (2.81)
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According to (2.73)) the occurring mixing angle 6, is defined as:

L 29vn (2.82)

0, = — arctan

2 A

Besides, using the orthogonality relation defined in (2.49)), one can show that the

Jaynes-Cummings eigenstates are orthonormal and obey the relation

<m7 a|n, ﬁ> = 5m,n5a,,3- (283)

2.3 Dark-polaritons in cavity-QED:
Modified Jaynes-Cummings Model

When the two American physicists Edwin Jaynes and Fred Cummings proposed
their theoretical model, they were focusing on the interaction of a monochromatic,
electromagnetic field mode with a quantum mechanical two-level system. The key
feature here is that we have a single field which is quantized itself and the detuning,
which describes the depletion of the excited level of the quantum mechanical two-
level system through a non-resonant coupling of the atomic transition |g)—|e) by
the monochromatic electromagnetic field, is arbitrary. However, what happens to
the standard JC-model if we add an additional classical field and a further atomic
level 7 The answer to this question leads us to the modified Jaynes-Cummings
(MJC)-model which is going to be discussed within this section. First, we derive
the MJC-model Hamiltonian and discuss its properties as well as the properties of

the eigenstates. Furthermore, we compare the two models.

2.3.1 DModified Jaynes-Cummings model Hamiltonian

We consider a single photon in a single mode QED cavity in which a A three-level
atom is embedded. The ground levels are |g) and |f) with their level energies w,
and wy, whereas the excited level |e) with level energy w. is detuned by a large,
common single photon detuning A with respect to two coupling fields. The cavity
field with frequency wy couples the transition |g) — |e) with strength gog. Further, a
classical control field with frequency w,. and Rabi-frequency €2 couples the transition

|f)—|e). Hence, |A] > go, 2. The system depicted is shown in Figure (2.5). Our

27



2.8 Dark-polaritons in cavity-QFED:
Modified Jaynes-Cummings Model

o

)

g}

Figure 2.5: Three-level system in a single mode QED cavity with far detuned excited
level |e). Blue arrow indicates the cavity mode coupling of the transition |g) — |e) with
a strength gg, while the red arrow indicates the classical control field coupling of the
transition |f) — |e) with a Rabi-frequency 2. A represents the common single photon
detuning(h = 1).

bare model Hamiltonian (% = 1) has the form

f{bare(t) = [:Ic + ]:Ia + f{mt(t)7 (284&
A, = wila, (2.84b

)
)

H, = WeOgg + WO ff + Welee, (2.84c¢)
Hin(t) = —(goGeg + 950" 64 + Qe "G (2.84d)
+ Qe l5y,),

where H. denotes the free field Hamiltonian of the QED cavity, H, stands for the free
atomic Hamiltonian and flmt(t) describes the interaction of the fields with the atom.
a' (a) is the photonic creation (annihilation) operator and 6.5 = |a){(8] (o, €
{g,f}) are the atomic operators. Hygr(t) in satisfies the time-dependent
Schrodinger equation

W0, U(t)) = H'(t)|¥(t)). (2.85)

We move to a rotating frame in which (2.84)) is time-independent. The corresponding
gauge transformation [12, [I5] has the form (A = 1)

HY = U(t) Hyare () U () + 0, (U () U (1), (2.86)
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where U (t) is a unitary transformation. Under the gauge 1) ﬁbare(t) reads

H},. = He+ Hy + Hipy, (2.87a)
H, = woé'a, (2.87b)
Hy = wybgg + (Wi + we)Ff s + Webee, (2.87¢)

Hint = —(Go@6eg + G50 Gge + b0y + Q67.). (2.87d)

U(t) = e™9¢s has been chosen as the unitary transformation in deriving .
Assume that the A three-level atom is initially prepared in the state |g, n) = |g)®|n).
n represents the arbitrary but fixed number of excitations with n = 1,2,3... and |n)
the corresponding number state. Under the action of HL _ onto the state |g,n) =

lg) ® |n), we get the relations

Hiy,olg,m) = (won +wy)lg, n) — gov/nle,n — 1) (2.88a)
Hyyole,n — 1) = (wo(n — 1) + we)le,n — 1) — ggv/nlg,n) — Q| f,n — 1) (2.88b)
Hgglre|f7n - 1) = (WO(n - 1) +wf + Wc>|f;n - 1) - Q|€,n - 1> (288C)

In the subspace {|g,n),|e,n —1),|f,n — 1)}, HL _has the matrix-representation

(wor + wy) —gov/n 0
hba’r’e = _98\/5 CU()(TL — 1) + We - . (289)
0 —Q (wo(n — 1) + wy + we)

Under Raman resonance condition wyn 4+ wy, = wy + w. = we — A, we get

(won + wy) —go/n 0
hbare = —96\/5 (Wo(n — 1) + we) - . (290)
0 —Q (won — 1) + wy + we)

Under a rotating-wave approximation, ([2.90)) is reduced to

0 —govn 0
hpoman — | _gx/n A —QF | (2.91)
0 -0 0

In addition, as we have a far detuned excited state |e,n—1), i.e. |A| > go, Q2 [66] we

can adiabatically eliminate the contribution of the excited state |e,n — 1) directly
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on the level of (2.91)). This yields to

( : _lgol’n  _ giQvn

mJC) __ A A

A I L (2.92)
A A

(2.92) represents the matrix-form of the modified Jaynes-Cummings Hamiltonian
(mJC) in the subspace {|g,n), |f,n—1)}. The operator form of the modified Jaynes-

Cummings Hamiltonian (mJC) reads

H™C) = Hg + Hyp, (2.93a)
. 2 0 2
Hg = —(%fﬂa&gg + %&ff), (2.93b)
N *Q Q*
e = =8l 6,y + Lavy,). (2.93¢)

The term Hg incorporates the influence of Stark shifts of the detuned fields, while
H;,, represents the interaction of the cavity field and the atom, where G = o2/ A s
the effective atom-photon coupling constant. Hamiltonians H s and ]ffmt constitute
the modified Jaynes-Cummings Hamiltonian. In the sequel, we are going to discuss

the eigenstates of H™/) and look at the effect of the control field Stark shift.

2.3.2 Eigenstates of the modified Jaynes-Cummings model

Hamiltonian

In the following, we calculate the eigenenergies and eigenstates of HmIO) We show
that dependently on whether one compensates the control field Stark shift by using
external fields or not, the eigenenergies, composition of the eigenstates and the
mixing angle 6, differ significantly. First, we consider the case of non-compensated
control field Stark shift. H/€) of reduces in the subspace {|g,n),|f,n—1)}

as

__lgol?n —G\/ﬁ
hom) — (_G*A\/H Cop > , (2.94)
A
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with n = 1,2,3, ... the total number of excitations and corresponding number state

|n). The eigenenergies are given as

E{ =0 (2.95)
BT = (‘gff + %) (2.96)
The eigenstates to the eigenenergies o o ) and E(,,z read
In, DPM)Y :=sin (8,)|f,n — 1) — cos (6,,)|g,n) (2.97a)
In, DP)Y := cos (6,)|f,n — 1) + sin (6,,)|g, n) (2.97b)
with the occurring mixing angle #,, which is defined as:
0, = 5 arctan (2|go|\/_) (2.98)

However, |n, DP®)) are called dark-polaritons. A dark-polariton is a quasiparticle
which is a superposition of photonic and atomic excitations, where the atomic ex-
citations have only contributions of ground levels |¢g) and |f) and not the excited
level |e). Such dark-polaritons are very similar to the known dark-state polari-
tons [10, 1], but with one major difference. Dark-state polaritons are defined at
Raman-resonance of two coupling fields and formed independently of the single pho-
ton detuning. Instead, dark-polaritons, which are also defined at Raman-resonance,
are formed for a large single, common photon detuning A of the two coupling fields,
i.e. |A| > gm, Q. The dependence on A enables to tune the eigenstate |n, DP®))

from an excited to a ground eigenstate. This follows from the eigenenergy E(_m,g of

the dark-polariton |n, DP™)). If A > 0 (A < 0), |n, DP™) is an excited (a ground)
eigenstate and |n, DP(7)) a ground (an excited) eigenstate. Note that |n, DP™))
is a degenerate eigenstate because the corresponding eigenenergy Efrmn) does not de-
pend on the dark-polariton number n. |n, DP(7)) is a degenerate eigenstate as well
for n > 2. Thus, the spectrum is descrete and degenerate in dependence of the
dark-polariton number n. Now, we switch to the case of compensated control field
Stark shift. Compensation is achieved by using an additional field, which couples the
ground state |f) with some far off resonant excited state [67]. Within (2.94) we set

the control field Stark shift % to zero. Hence, the new block-matrix representation
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KmeomP) iy the subspace {|g,n), |f,n — 1)} reads

_lpolPn
pmocomp) <—G*A\/ﬁ 0\/5> : (2.99)

with n = 1,2,3, ... the total number of excitations and corresponding number state
|n). The block-matrix (2.99) is a 2 x 2 matrix and can be analitically diagonalized.

The eigenenergies are given as

E(comp,m) |g0|2n+ ’g0|\/ﬁ |g0’2n+4|Q|2

= — 2.100

—,n ZA ( )
E(comp,m) _ _|g0|2n + |g0’\/ﬁ |g0|2n + 4|Q|2
Hn 2A '

(comp m) and E comp m)

The respective eigenstates to the eigenenergies F are

In, DPSD Y - = sin (6,,)] f,n — 1) + cos (6,,)]g, n) (2.101a)
In, DPC(O%I) :=cos (0,)|f,n— 1) —sin (6,)|g, n), (2.101b)

with the occurring mixing angles 6,, which is defined as:

0, :% arctan (% . (2.102a)
A(Q,n) =2V2 x Qv/n (2.102D)
B(go,$2,n) = +/C(g0,82,m) (2.102¢)
C(go, 2, n) = |goln® + 4|Q|*n + D(go, 2, n) (2.102d)
D(go, %, 1) = |go|nv/n/|gol?n + 4[QJ2 (2.102e)

In, DPc(oin)Lp> are dark-polaritons, but of a different type compared to the case of

non-compensated control field Stark shift. First of all, the eigenenergies E{"P™

with s = +, — depend on the generalized Rabi-frequency £(n) = +/|go|?n + 4|2/
Secondly, |n, DPc(oin%p> have a common mixing angle 6,, that depends on the gener-
alized Rabi-frequency £(n) as well. In addition, the two dark-polariton branches,

represented through |n, DPC(OiW)Lp> are separated by the energy amount

2 4|2
E(comp,m) . E(compm) |90‘\/ﬁ |gO, n -+ | | ) (2103)

—,n —+,n
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The seperation energy is directly dependent on the generalized Rabi-frequency £(n)
and the common single photon detuning A as well. This seperation is related to the
photon-photon repulsion. It is a consequence of the onsite repulsion U(n) which is

a measure of the Kerr-nonlinearity [23].

2.3.3 Comparison of the standard and modified Jaynes-

Cummings model Hamiltonian

On the level of the individual Hamiltonians, major differences are that at first, in
H(™IO) the number operator depends on the projection operator 4, of the ground
level |g) which is not the case in H/?). Second, in HC) the atom-cavity field
coupling strength G = ¢,,€2/A is rescaled by the common single photon detuning A
and the Rabi-frequency €2, where G is chosen to be real. Regarding the eigenstates, a
key difference between H(™/?) and H) is that in the modified Jaynes-Cummings
model we have eigenstate dependence on the control field Stark shift. In addition,
within the modified Jaynes-Cummings model, we only have a dependence on ground
levels, whereas in the standard Jaynes-Cummings model there exists a dependence
on the excited level. Hence, these dependency affect the coherences. Namely, the
bright-polaritons in the standard Jaynes-Cummings model only consist of optical
coherences 0., and are explored to spontaneous emission, while in the modified
Jaynes-Cummings model, dark-polaritons only consist of spin coherences ¢, and
no exploration to spontaneous emission is present. This enables the usage of dark-
polaritons as a quantum memory for photons over their spin-coherences likewise the
dark-state polaritons [10, 11, 12, 68, 69} 70l [7T) [72, (73, [74L [75] [76], 77, [78), (79, 80, [15].
Changing the mixing angles in and (2.102) over rotations from 0—7, which
corresponds to an adiabatical change of the Rabi-frequency €2, photons are transfered
to and stored in the spin-coherences in a reversible manner. Optical coherences
have shorter coherence times compared to the spin coherences which have longer
coherence times. Coherence times of spin-coherences are in the range of us to ms

in dark-state polaritons [10], [11]. Similar is the case for dark-polaritons.
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3

Dark-state polaritons in a

degenerate two-level system

We investigate the formation of dark-state polaritons in an ensemble of degenerate
two-level atoms admitting electromagnetically induced transparency. Using a gener-
alization of microscopic equation-of-motion technique, multiple collective polariton
modes are identified depending on the polarizations of two coupling fields. For each
mode, the polariton dispersion relation and composition are obtained in a closed
form out of a matrix eigenvalue problem for arbitrary control field strengths. We
illustrate the algorithm by considering the F, = 2 — F, = 1 transition of the D,
line in 8"Rb atomic vapour. In addition, an application of dark-state polaritons to
the frequency and/or polarization conversion, using D; and Dj transitions in cold

Rb atoms, is given.

3.1 Degenerate two-level system

‘
.
L

[ ] g

Figure 3.1: Schematic of a degenerate two-level system, having a ground state man-
ifold g and an excited state manifold e, driven by a strong classical control field (thick
line) of Rabi frequency 2 and by a weak quantum probe field & (dashed line) of
different polarizations.
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3.1 Degenerate two-level system

In this section, we present a general formalism of dark-state polaritons in a
degenerate two-level system. It is a generalization of the neat approach of Ref. [12].
We consider a gas sample of N atoms, where NNV is large. Let us denote by JH, the
Hilbert space of the atomic states in the ground state manifold g and let H,. be
the Hilbert space of atomic excited states in the manifold e. The corresponding
ground- and excited-state energies are denoted by hw, and fuw., respectively. A
strong classical control field of Rabi frequency € and a weak quantum probe field
é, which differ in polarizations and both propagate along the z axis, couple the
transition g — e (see Fig. . The corresponding raising and lowering operators of
the control (probe) field, VI and V, (\A/pT and ‘A/p), connect the states in manifold g to
the states in manifold e and vice versa. We assume that dim H, > dim F, holds, so
that the system admits electromagnetically induced transparency [81) 82] 83]. This
assures the existence of the Hilbert space 9{3 of the states in manifold ¢g that are
dark to the g — e transition for the control field [84]. Formally, we can view the
raising operator VJ as a linear mapping f/cT : Hy — H.. The space fHZ is then the
null space of the mapping VCT

3y = {lg) € 3, | Vilg) = 0}. (3.1)

3.1.1 Model Hamiltonian

We will now present the model Hamiltonian and the dynamics of the lowest en-
ergy excitations of the ensemble of degenerate two-level atoms. The free atomic

Hamiltonian has the form

Hy =Y (hw,ly(r) + hwl(r)), (3.2)

r

where the summation index r counts the atomic positions, while ﬁg and I, are the
projection operators onto the states in the manifolds g and e, respectively. The free

photon Hamiltonian, including multiple quantum probe field modes, is

Hy = hwgaldy, (3.3)
k

where &L and a, are the creation and annihilation operators of the probe photons
with the wave vector k and frequency wy = clk| ~ wey = we — wy. The atom

interaction with the probe field is given through the minimal coupling Hamiltonian
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3.1 Degenerate two-level system

H,=— Z Z hg, G, €™ V;(T) +He., (3.4)
k r
with coupling constant hg, = 22% dge, where dg. is the effective electric dipole

moment of the g — e transition, ¢, is the vacuum permittivity and V is the quan-
tization volume. The interaction of the atomic ensemble with the classical control

field of the carrier frequency w. ~ we, and the wave vector k. is of the form

~

H(t) = =Y hQe ™ Vi(r) + He. (3.5)

For simplicity, we have used the rotating-wave approximation. In addition, for an
atomic operator A(r) we define a Fourier-transformed operator A(k) = 3=, A(r)e™" //N.
Note that (A(k))T — Af(—k). Especially, one has 3 A(r) = VNA(k=0). In terms

of the Fourier-transformed operators, various Hamiltonian parts are

Hy = hw, VN I, (k=0) + hw, VN L (k=0), (3.6a)

H,=-> hgVNaVi(k)+Hec, (3.6b)
k

H,(t) = —hQVNe V1 (k,) + H.c. (3.6¢)

The entire Hamiltonian of the ensemble of degenerate two-level atoms interacting
with the probe and the control field is H(t) = Hyy + Hyn + H, + H,(t).

3.1.2 Dark-state polaritons

Now, we focus on the dark-state polaritons in an ensemble of degenerate two-level
atoms. Various features of the method in Ref. [12], which are obvious per se in the
case of a simple A system, need to be properly adapted to the degenerate two-level
system. Additional complexity of the system we investigate also yields some new
inherent requirements.

First of all, we remove the time dependence from the Hamiltonian H (t) by per-

forming the following unitary gauge transformation

Hy = U () H(6)UI() — hwe (VN L(k=0) + ) afay), (37)

36



3.1 Degenerate two-level system

where
U.(t) = exp [iwet (VN L(k=0) + ) dfay)]. (3.8)
k
Eventually, we restate the time-dependent Schrédinger equation ik d;|é(t)) = H(t)|6(t))

as

im oL [U.(0)]6(1))] = Hr[U.(0)|6()]. (3.9)

Solutions of Eq. can be obtained by finding the energy eigenstates of the time-
independent Hamiltonian Hr.

Assume that the atomic ensemble is initially prepared in the collective vacuum
state with no probe photons |gy,0) = |go) ® |0) = ®,|go)» ® |0). Analogously with
the A system case [I1], [12], the atomic ground state |go) must be dark with respect
to the control field, i.e.

Vj[g@ =0, or equivalently |go) € fHZ. (3.10)

Additional requirements on the state |go) will be specified afterwards.

Dark-state polaritons are particular low-energy, single probe photon driven, col-
lective excitations that do not have a contribution of the excited atomic states. To
obtain DSPs, we look for a polariton excitation operator qB,TC such that in the low
energy, single excitation case QZB;UQO, 0) is an eigenstate of Hy with the energy hw(k).

This leads to the following relation

[Hr, 0} = hw(k)é) + -+, (3.11)

where dots represent the terms that are omitted in the single excitation case and also
terms that give zero when acting on the collective vacuum state |gg,0). Note that,
for notational simplicity, we keep in mind that all subsequent commutators always
act on the state |go,0). In agreement with Refs. [11, [12], we neglect Langevin noise
effects, which do not influence the adiabatic evolution of the DSPs.

Collective atomic excitations are driven by the probe photons. Hence, we begin

by calculating the commutator

[Hr,a}] = h(wp— we)a) — hge VN VI(K). (3.12)
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3.1 Degenerate two-level system

The states that arise from the interaction with the probe field are the pure photon
excitation ! |go,0), and the collective atomic excitation Vg(k)|gg, 0), up to a nor-
malization constant. Hence, in addition to dL the operator ‘A/pf(k:) is also a member of

the polariton excitation operator ¢E,T€ Next, we determine the commutation relation

[Hr, V()] = h(weg— we) Vi (k) — R (VU1 (k)
—Zhgk,ak, (V VI (k—F). (3.13)

Note that v N [fll(k), Ag(l{?/)} = [1211, 1212} (k-+E") holds for any two atomic operators
Ay and Ay. The new operators, (‘A/CXA/;)(k—kc) and ak,(V VT)(k—k’), appearing in
yield the collective states via stimulated emission. The former can readily be
included into the polariton excitation operator QASL It creates the spatially dependent
coherence among the atomic ground states |go) and ch/p” go), i.e. the ground state
coherence wave. When we commute the latter operator with Hy, we get the operator
ak,,(V VT)(k—k/)(lz,f/pT)(k’—k”). The emergence of such operators of increasing
complexity continues and ends with d;m [T, (V,VH (KD — kYD), where k& = £.
This case corresponds to a formidably complex DSP mode that is not tractable.
Tractable modes are obtained by imposing one further requirement on the collective
vacuum state. Namely, it is crucial that upon action ‘7]"7PT| go) we end up with the

state |go), i.e
V.V g0) = Aplgo), (3.14)

where )\, > 0 is the corresponding eigenvalue. Thus, one obtains (‘A/pf/;j)(k—k’ )
190,0) = \pV/Ndrir|go, 0), so that the relation (3.13) greatly simplifies to

(1, VI (k)] = h(weg— we) VI (k) — R (VV)) (k—ke)
— hgi\,V'Nal. (3.15)

To proceed further, we define the excited atomic state |e) = Vpﬂ 90)/+/Ap associ-
ated with the action of the probe field. Clearly, it has the property ‘A/p|e) = /Al %0)
and it is an eigenstate of V;f/p, ie. \A/pr/p|e> = Mple). The eigenstates |go) and |e)
are "tuned” to the polarization of the probe field. These are so called polarization-
dressed states, first introduced and used in [84] for problems of interaction of reso-

nant elliptically polarized light with atomic and molecular energy levels degenerate
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3.1 Degenerate two-level system

in angular momentum projections. Next, let us consider the commutators

[Hr, (V,V)(k—k.)] = =RV V, V1) (K), (3.16)

and also

=Y hgpal, (VVIV.V (k—F). (3.17)

Similar to the discussion of the relation (3.13)), in order to avoid the appearance of
probe photons with all wave vectors, we require that ‘A/pf/;f/cf/;ﬂ go)  |go). That can
hold provided that

VIV g0) = AVl lao) i VIVile) = Adle), (3.18)

where A\, > 0 is the corresponding eigenvalue. Thus, the excited atomic state |e) is

a common eigenstate of the operators f/ﬁ/p and VJVC Under such a condition, the

relation ([3.16]) becomes

[Hr, (VV) (k—ke)] = —RQAV, (K), (3.19)
while (3.17) turns into
[Hy, (VIV.VH(R)] = A [Hr, Vi(K)], (3.20)

where the last commutator is found in . Hence, under the previous conditions
no new components of the polariton excitation operator QASL appear. Stimulated
emission, which is driven by the control field, transfers the atoms from the excited
state |e) into the ground state |f) = V.|e)/v/A.. The states |go) and |e) are coupled
by the probe field, while the states |e) and |f) are coupled by the control field.
Thus, for each eigenvalue pair (A, A.) the three states |go), |e) and |f) form an
independent A system that is related to one independent collective DSP mode. The
number of such A systems, i.e. tractable DSP modes, can be at most equal to the

total number of DSP modes, i.e. to the dimensionality of the dark space ng.
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3.1 Degenerate two-level system

Now, we collect the necessary commutation relations

[Hr.a}] = hws— we)a) — hge VNV (k), (3.21a)
[Hr, Vi (k)] = h(wey— we) V)i (k) — hgi\,V/ N, 521
— W V.V (k=ke), '
[Hr, (VV)(k—k)] = —hQAV, (k), (3.21c)
so that the polariton excitation operator is of the form
. . Vi(k) (VVH(k—k)
Ol = Qi + B —Lrt + YL’ (3.22)

VA Ve

where the band index n enumerates the different polariton species. Orthonormal
collective excitations |go, 1), |e(k),0) and | f(k—k.),0) result from the action of the
operators aj, ‘A/},T(k)/\/)\_p and (VCYA/J)(/{—/{C)/\/W on the collective vacuum state
|go, 0), respectively,

190: 1k) = ®+[g0)r ® |1k), (3.23a)
1 ,

|6(k’), 0> - \/_N Z elkr|e>7" ®r’7ér ’gO)W X |0>, (3231:))

£ (k=ko),0) = %N DI f) @ o) @ 10). (3.23¢)

Note that the collective states |e(k),0) and | f(k—k.),0) are entangled. This enables

the usage of the polariton state

|Onk) = k|0, 1) + Brk|€(k), 0) + k| f (k—ke), 0) (3.24)

as a resource for quantum information processing [5].

We determine the c-numbers oy, B and v, by inserting into (|3.11])
and make use of . This leads to three self-consistency equations that we can
represent in the basis {|go, 1), |e(k),0),|f(k—k.),0)} as

wp—we —GVN 0 | |am Qi
— VN weg—we =2 | Bur| = walk) | Bur |, (3.25)
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3.2 Dark state polaritons in rubidium vapour

where g, = gk\/)\_p and Q = Qv .. Our effective Hamiltonian in Eq. is similar
to the one in [12], but with a major difference. The effective coupling constant gy
and the effective Rabi-frequency € differ from the corresponding one in Ref. [12]
because of the inclusion of the eigenvalues A\, and A.. The mentioned difference
clearly arises as a consequence of the degenerate two-level atomic system.

The dark-state polaritons are obtained as one of the solutions of the eigenproblem
(3.25). The other two solutions are bright-state polaritons, similarly as in [12].

Exactly at the Raman resonance, w, = w,, there is an eigenvector [— #ﬁ, 0, 1] .
This eigenvector has no contribution of the excited atomic states and represents a
stable dark-state polariton that is insensitive to incoherent decay processes acting
on the excited atoms. Expansion around the resonance wj, ~ wey and we ~ we, yields

a linearized solution for the dark-state polaritons

_ o lep
9% 2N + Q[

w(k) (W — we), (3.26a)

Q(wk— we)

Q
=% ==k (3.26b)
VN G2 + Q2

ay =

An interesting property of the DSP solution is that it only depends on the Raman

detuning wy — w, of the coupling fields and on the coupling parameters g; and Q. It

does not depend on the energy spacing we, of the underlying degenerate two-level
system.

The algorithm for finding tractable DSP modes in a degenerate two-level system

can be summarized as:
(1) Determine the dark space H¢ for the operator Vi

(2) Find all states |go) from J—Cg and pairs of eigenvalues (\,, A;) such that f/p {};}T‘ g0) =
Aplg0) and ‘A/CTVC‘A/pT’g@ = )\ch”gO) hold;

(3) For every such pair of eigenvalues obtain DSPs |¢x(\,, A¢)) from (3.24]) and
(3:26).

3.2 Dark state polaritons in rubidium vapour

In this section we apply the general formalism to the rubidium vapour. Control and

probe fields couple the hyperfine levels 55,2, Fy = 2 and 5Py, F. = 1 of 87Rb.
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3.2 Dark state polaritons in rubidium vapour

The atomic lowering operators of the control and probe fields are, respectively,
(3.27)

where e, and e, are polarizations of the fields. The vector operator V is defined by
[84), 185]

~

Jo J, 1
V = (=Dt Itl SR, L 1) (2], +1)¢ & 7
(-1) V@F. +1)(27,+1) S
X (3.28)
XY Y {Fymg| Fe,me; 1, )| Fy, mg) (Fe,mele,

g=—1mg,me

where I = 3/2 is the nuclear quantum number of 8Rb, {:::} is the Wigner 6;-
symbol and (Fy, my|F., me; 1, q) is the Clebsch-Gordan coefficient that connects the

excited level state |F,,m.) to the ground level state |Fy, m,) via polarization e,

1 .
€ = :Fﬁ(ex + Zey)? € =€, (329)

given in some orthonormal basis of polarization vectors. We choose the coordinate
system such that the fields propagate along the z axis, and define a basis of Zeeman

states relative to this quantization axis. The bases of the individual Hilbert spaces
H. and H, are

€= {’17_1>6a|170>e7’171>e}7 (330&)

9 = {|27 _2>gv |27 _1>g> ’2’ O>g> ’27 1>g? |27 2>g}' (3'3Ob)

We will show that according to the appropriate choice of the polarizations of the

coupling fields, one or two DSP modes can be obtained.

3.2.1 Case of orthogonal circular polarizations

Let the control field couples o~ transitions, while the probe field couples ot tran-

sitions, i.e. e, = e, and e, = e_; (see Fig. [3.2). The lowering operators of the
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3.2 Dark state polaritons in rubidium vapour

|1)71>e |1,0>e |111)e

|2: _2>g |2’ _1>g |270)9 |27 1)9 ‘2’ 2)9

Figure 3.2: Zeeman sublevel scheme of the transition F, = 2 — F, = 1 at the
D; line of 8"Rb. Solid lines denote o~ transitions coupled by the control field while
dashed lines denote o transitions coupled by the probe field.

coupling fields, VC and ‘A/;j, are represented in the basis € U G with the matrices

033 035
0O 0 O
0O 0 O
v,=| | , (3.31a)
5z 00 055
0 1 0
1
I 0 O 7
033 035
1
7% 0 O
1
v=| 02 ¥ , (3.31D)
1 075
0 0 55
0O 0 O
0O 0 O

where zeros 0,,, denote rectangular m x n null matrices. Ground level dark space

determined from the null space of VZ is
3y = {12, -2)g, 12, — 1), }. (3.32)

Both dark states are appropriate as the initial state |go). Below we tabulate the

corresponding states and eigenvalues of the A system:
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3.2 Dark state polaritons in rubidium vapour

|11_1)e ‘130)6 |1:1)e

|2: _2>g |21 _1)9 |270)9 |27 1)9 ‘2’ 2)9

Figure 3.3: Zeeman sublevel scheme of the transition F, = 2 — F, = 1 at the
D, line of 8Rb. Solid lines denote control field linearly polarized along y axis while
dashed lines denote probe field linearly polarized along x axis.

|90) le) |f) Moo | A
1| ]2,-2), | [1,=1) | [2,0), | 1/2 | 1/12

II |27_1>9 |170>e |271>g 1/4 1/4

that lead to two DSP modes:

_ 2
~ Glge[2N + (22
Q
V1) X — —=—~=19s;
k \/égk\/ﬁ 0
2v/3 Qwy, — we)

w' (k)

(we— we), (3.33a)

L) + | (k—ke),0)

18 = (e ) (3310
S T PN R o
Q
W}Ig) X = q \/N’g(l)la 1k> + |fﬂ<k_kc)7 O>
k
2w — we)

We see that for orthogonal circular polarizations of the coupling fields, the maxi-
mal number of tractable DSP modes exists. This is the generic case, because relevant

independent A system(s) can be easily recognized.

3.2.2 Case of orthogonal linear polarizations

Now analyze the case of the control field polarization along the y axis and the probe

field polarization along the x axis, i.e. e, = e, and e, = e, (see Fig. [3.3). The
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3.2 Dark state polaritons in rubidium vapour

matrices representing the atomic lowering operators Vc and ‘A/;j in the basis EUG are

033 035
Lo o0
0 L 0
V. =i 2v2 , (3.35a)
1y L 9
26 26 5,5
1
0 W 0
0 o 1
033 035
Lo 0
0 L 0
Vv, = 2v2 . (3.35b)
1 1
“as 0 55 Oss
1
0 5% 0
o 0 -1

In this case, the ground level dark space is

1 1
HE={ — —|2,—1), + —|2,1),,
g { \/§| >g \/El >g

1 V3 1
ﬁ|2’_2>9_ 7|2’0>g+%|2’2>g7}7 (336)

but only the first dark state satisfies all necessary conditions for the vacuum state

of the tractable mode. The states and eigenvalues of the corresponding A system

1 1
|90> - _E|27 _1>9 + E|27 1>g7 (337&)
le) = I1,0)e, (3.37b)
1 1
|f> - E|27_1>9+ﬁ’271>97 (337C)
A=1/4,  A.=1/4. (3.37d)
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3.8 Frequency and polarization conversion

We identify one DSP mode

_ 2 B
w(k) = BN £ [ |Q|2(wk We), (3.38a)
) ¢ = — Tl 1)+ £k k). )
2w — we)

PN T e 0 (3.38b)

while the other one is non-tractable.

From the above examples, it can be seen that the choice of the polarization
of the coupling fields yields entirely different DSP modes. This is reflected in the
composition of the DSP state as well as in the polariton dispersion relation. Note
that different polariton dispersion relations would lead to distinct slow light group
velocities. In the next section we outline one possible application of DSP modes in

degenerate two-level systems for frequency and/or linear polarization conversion.

3.3 Frequency and polarization conversion

Let us consider the DSP modes that can be formed from the states within 55 s,
F, = 1 hyperfine level of ®Rb atoms, when the control and the probe field have

orthogonal linear polarizations. There are three relevant atomic transitions:
(a) 5S1y2, Fy=1—=5P ), F. =1,
(b) 5S1/2, Fy=1—=5P35, F. =1,
(c) 5Sij2, Fy=1—= 5Py, F. =0.

The first belongs to the Dy line. The last two belong to the D, line and can be

rendered non-overlapping by using ultracold rubidium atoms.
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3.8 Frequency and polarization conversion

In the case of orthogonal linear polarizations e, = e, and e, = e, of the fields

that are resonant to the D; line transition (a), we have

1 1
|90> = _E‘lﬂ_1>g+ﬁ|171>g7 (339&)
€)= [1,0)., (3.39D)
1 1
|f> = E|17_1>9+ﬁ’171>97 (339C)
Ap = 1/12, Ae = 1/12. (3.39d)

When considering the D, line transition (b) with the same polarizations of the

coupling fields as in the previous case, e, = e, and e, = e, we find

1 1
|90> = _E|17_1>9+E|171>9’ (340&)
le) = [1,0), (3.40b)
1 1
|f> - ﬁ|17_1>9+ﬁ|171>97 (340C)
Ay =5/24, A= 5/24. (3.40d)

x?

Finally, for the swapped linear polarizations, e, = e, and e, = e,, of the fields

coupling the Dy line transition (c), we have

1 1
|90) = —E\L 1)y + E'l’ 1)g, (3.41a)
le) = |0,0)., (3.41D)

1 1
f) = EH’_D"JFE“’DQ’ (3.41c)
A, =1/6, A =1/6. (3.41d)

Note, if the polarizations of the fields had not been swapped, the states |go) and f)
would have been interchanged.

As can be seen from Eqs. —, the DSP modes are formed from the same
states |go) and | f) in all three cases, but the considered transitions and polarizations
of the coupling fields are different. This provides the possibility for frequency [76] [86),
87] and/or polarization conversion [88], [89] of linearly polarized light. First, one can

store a pulse of the probe light polarized along the y axis into the atomic coherence
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3.8 Frequency and polarization conversion

among the states |go) and |f) using the transition (a) and the control field polarized
along the z axis. The retrieval process, using the transition (b) and the control field
polarized along the x axis, would release the pulse at a different frequency, but of
the same optical quantum state and polarization along the y axis as the original
probe pulse. However, the pulse retrieved using the transition (c¢) and the control
field polarized along the y axis would be in the same optical quantum state as the
original probe pulse, but of different carrier frequency and linear polarization along
the x axis, i.e. orthogonal to the original one. Moreover, this realization does not
suffer from the energy loss in the retrieved pulse, since the ratios of the probe and

control Clebsch-Gordan coefficients are the same among all three transitions [89].
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4

Dark-polariton bound pairs in

coupled QED cavity arrays

We investigate a one-dimensional modified Jaynes-Cummings-Hubbard (MJCH)
chain of N identical QED cavities with nearest neighbour photon tunnelling and
periodic boundary conditions. Each cavity contains an embedded three-level atom
which is coupled to a cavity mode and an external classical control field. In the case
of two-excitations and common large detuning of two Raman-resonant fields, we
show the emergence of two different species of dark-polariton bound pairs (DPBPs)
that are mutually localized in their relative spatial coordinates. Due to the high
degree of controllability, we show the appearance of either one or two DPBPs, hav-
ing the energies within the energy gaps between three bands of mutually delocalized
eigenstates. Interestingly, in a different parameter regime with negatively detuned
Raman fields, we find that the ground state of the system is a DPBP which can be
utilized for the photon storage, retrieval and controllable state preparation. More-

over, we propose an experimental realization of our model system.

4.1 Model system and effective model Hamilto-
nian

An extension of the modified Jaynes-Cummings model to an one-dimensional array
of coupled QED cavities is realized. This will lead us to the modified Jaynes-
Cummings Hubbard model as our effective model Hamiltonian. It includes the

hopping between adjacent cavities. First, we state the model system and second,
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4.1 Model system and effective model Hamiltonian

present the effective model Hamiltonian.

4.1.1 Model system

Figure 4.1: One-dimensional array of N coupled, identical QED cavities with uni-
form inter-cavity photon hopping strength J under periodic boundary conditions.
Green transparent sphere in each cavity represents a three-level atom with two ground
levels |g) and |f), and an excited level |e). The atomic configuration is given in Figure

(2.5) of the theory chapter 2.

The system we consider consists of a one-dimensional array of N coupled QED
cavities see Figure . We assume periodic boundary conditions, i.e., the cavity
labelled by n = N + 1 corresponds to the cavity n = 1. Each cavity embeds a
three-level atom with two ground levels |g) and |f), and an excited level |e). The
level energies are w,, wy and we, respectively and the excited level |e) is detuned by
the common single photon detuning A. In reality, the levels can be either fine or
hyperfine levels of alkali-metal atoms. Their D1 or D2 line transitions are nowadays
easily accessible via available lasers and optical modes of QED cavities. One mode
of a tunable cavity [90, Q1] of frequency w,,, couples the transition |g) — |e) with
the strength g,,, and the classical control field of frequency w. and Rabi-frequency
2, couples the transition |f) — |e). This configuration is known to feature vacuum
induced transparency, as first experimentally demonstrated by the group of Vuleti¢
[92]. Both g,, and 2 are typically in MHz range for alkali-metal atoms, which are

strongly coupled to QED cavities, and for moderate laser powers.

4.1.2 Effective model Hamiltonian

As we consider a one-dimensional chain of N identical coupled QED cavities, the de-
rived modified Jaynes-Cummings model for a single QED cavity is valid for all QED

cavities in the one-dimensional chain. Therefore, our effective model Hamiltonian
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4.2 Formation of dark-polariton bound pairs

(modified Jaynes-Cummings Hubbard model) (A = 1) has the form

HMICH) = O 4 (4.1a)
H™C) = Hg + Hyy, (4.1b)
N 2 2
2 Im At 4 4 0,
fis= =3 (Rajacy + o) (419
pn=1
N
Hie = =G Y (&6 +e,6), (4.1d)
pn=1
N
Hhop = _JZ(éLHéu + éLéuH), (4.1e)
pn=1
where ¢f, (¢,) is the photonic creation (annihilation) operator and &é’g = |a) (0]

(a,8 € {g,f}) are the atomic operators for the site number p. The term Hg
incorporates the influence of Stark shifts of the detuned fields, while Hipe represents
the interaction of the cavity field and the atom, where G = g,,2/A is the effective
atom-photon coupling constant which is set to be real. Hamiltonians H s and ]:Imt
constitute the modified Jaynes-Cummings Hamiltonian. As will be shown in the
sequel, the Stark shifts have profound influence on the energy eigenspectrum. H hop
describes the photon hopping between adjacent cavities, based on evanescent field
coupling, with J as the inter-cavity photon hopping strength. Similar effective
Hamiltonian has been previously used to describe a network of fibre coupled cavities,
embedded with three-level atoms [67]. However, while that scheme requires the
compensation of the level Stark shifts, here we utilize the individual Stark shifts to
achieve tunability. Our effective model Hamiltonian supports the formation of
dark-polariton bound pairs. We will see that the different dark-polaritons, which
have been discussed in Section II, are actually involved in the formation of the
energy bands and the bound states. Moreover, we show and discuss that the bound
states are formed due to the presents of a force called Kerr-nonlinearity which is

determined by the onsite repulsion.

4.2 Formation of dark-polariton bound pairs

In the following, we discuss the formation of dark-polariton bound pairs in our

system. In order to exploit the invariance of the system under cyclic permutations
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4.2 Formation of dark-polariton bound pairs

of the sites, we introduce the following operators via discrete Fourier transforms

N
27i
d e wrke, (4.2)

i 1
p = ——
VN e
1N
a(k) _ 27y o (1)
S, =—= ) e NH'g 4.2Dh)
af Z o (
VN o g
where £k = 0,1,...,N—1 is related to the (discrete) quasi-momentum of the exci-

tation. Similarly to [32], we work in the two-excitation subspace that is spanned
by the states |kj)r = bj0!|@o), |k)plj)a = 0L |@o) and |kj)a = 847591 @),
The subscripts F' and A stand for the photonic and atomic excitations respectively.
The state [®g) = ®)_,]g),/0), is the ground state of the system, where [0), de-
notes the vacuum state of the cavity number p. We note that the excitations
(polaritons) are in our case dark in a sense that they do not have the contribu-
tion of the excited levels |e) and are not subjected to spontaneous emission. The
atomic excitations |kj)4 are in general not orthogonal to each other because of
A(K' g |kg)a = g0 0 + O jrOjr — %5k+j,k’+j’- by, and B;f fulfil the bosonic commuta-

tion relation [l;k, l;;] = Oy, while the atomic operators fulfil the commutation relation

(k) (J)T
[ng’ gf ]

the pth cavity. Under the action of H on the states which form the two-excitation

% 25:1 e T 15 with 6" as the Pauli z matrix for the atom in

subspace, we get the relations

Hkj)r = (i + w; — 2a)|kj) e — G(|k)als)r + [5)alk)r) (4.3a)
HIk)alj)r = (wj — a = b)|k)alj)r — (\kj>A+ |kj)r)

a
PN ()l 4R + e S W (4.3b)
(k'.3")€SP (k:’ i"YeSp
H|j)alk)r = (wr — a = b)[5) alk)p — (ij>A+ kj)F)
a
P S (KAl 4 1 al) ) + e S K (4.30)
(k'.3")ESP (k’ i")ESP

Hlkj)a = =GRy alj) e + 17 alk)r) — 20[k)., (4.3)

where w; = —2J cos(2) for | € {k,j}, a = g2 /A and b = Q?/A. Within Eq. (4.3p)
and Eq. (4.3c) we have a sum over the set Sp = {(k,J) |0 <k <j<N-—-1,k+j =
P (mod N)} that is determined by the quasi-momentum P. From Eqs. (4.3a)-(4.3d)

we can deduce that the quasi-momentum P is a conserved quantity and hence a good
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4.2 Formation of dark-polariton bound pairs

quantum number. Apart from the quasi-momentum, the total number of excitations
(dark polaritons) N = Z (e, + a(“ )) is a conserved quantity.

We can construct the complete set of eigenvectors by solving the eigenproblem
within each of the subspaces P = 0,1,..., N —1. Following [32], we restrict the
discussion to the case of even N and odd P. A general dark two-polariton eigenvector
\\IIEDD)) has the form

|\IIEDD)> ZZ (arjlkd)r + Brjlk) ald) r + Bijli) alk) e + viilkj) ). (4.4)

(k7])eSP

\\IJEDD)) satisfies the time-independent Schrodinger equation H ]\I!;D)> = A\\IJEDD)) which
yields within each of the subspaces P = 1,3,..., N—1 an eigenproblem that is given

by the subsequent set of linear equations

Ao = (Wi +w; — 2a)ag; — G(Brj + 51,93) (4.5a)
ABrj = —Goyy + (w; —a — b)ﬂkj — Gy (4.5b)
a
+NZ(/8k/’+6k/ Z’yk//
(k',3)€ESP (k’ €SP
ABy; = —Gag; + (wp —a — b)ﬁkj — G’ykj (4.5¢)
a
t5 Y By + Biy) + Z Vi
(k'.5")€SP (k’ i"YeSp
Mg = —G(Brj + 5@) — 2015, (4.5d)

where A is the corresponding eigenvalue. As it was demonstrated in [32], for various
values of the quasi-momentum P the majority of eigenvalues are at most distributed
among three bands. When all three bands are well resolved, it was shown that each
of the two band gaps contains an eigenenergy of the single two-polariton bound
state. For sufficiently large inter-cavity photon hopping strength J comparing to
the strength of the atom-photon interaction, the bands start to overlap.

However, since we are not dealing with the standard JCH model, but rather with
a modified one, we find some important differences and new features. Namely, as
opposed to [32] there is only one mutually localized DPBP within one of the existing
band gaps, while the other one joins the adjacent outer band. The other DPBP can
reappear provided that the Stark shift of the control field is compensated. In both
cases, when A < 0, g,, > Q and g2 /|A| 2 1.5 J, the ground state of the system is
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4.2 Formation of dark-polariton bound pairs
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Figure 4.2: (A) Normalized eigenvalues dependence on the quasi-momentum P
for N = 30 cavities. Dark-polariton bound pair state (red curve) appears in the low-
energy band gap. The eigenvalues are joined by lines for ease of visualization. (B)-(D)
Joint probabilities for different types of double excitations associated to DPBP state
for P = 1. Used parameters: A > 0, g, = 0.05|A[, © = 0.06 |A| and J = 0.001 |A].

DPBP of a different type than the aforementioned ones. In the sequel, we report on
the state composition of the different DPBP types.

The Kerr-nonlinearity is a known force in light-atom interactions which depends
on the atomic level structure as well as on the coupling strength of light-atom
interactions. In our case, the strength of light-atom interaction is described by
the effective coupling strength G = ¢,,2/A. Tuning g,, and/or Q directly affects
the Kerr-nonlinearity. Compared to [32], we can not only tune and control the
Kerr-nonlinearity by the cavity mode coupling strength g,,, but also by the Rabi-
frequency €. This force can be attractive or repulsive [26, 22, 93] 04, [05]. This
force generates the bound state of two dark-polaritons in our case. A measure of

the Kerr-nonlinearity is the on site repulsion U(n) which is in general defined as
Un) = (B, — E)(n+1) — (B — E_)(n) (4.6)

with E. the eigenenergies of the considered eigenstates. In case of the standard
Jaynes-Cummings model, the on site repulsion U(n) = x(n+1)—x(n) is determined
by the generalized Rabi-frequency x(n) [96]. This will be different in our case as
we will see in the following. In our DPBPs we have bound photons and bound
atoms. In [97] they have experimentally shown bound states of atoms in coupled

QED cavities, when atoms occupy the same site.
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4.2 Formation of dark-polariton bound pairs

4.2.1 Dark-polariton bound pairs in the regime of non-com-

pensated control field Stark shift

We focus on the single DPBP solution of Egs. which is given in red colour
within Fig. (A) representing the energy eigenspectrum of the model Hamiltonian
H in dependence of odd values of quasi-momentum P. Three energy bands are
visible for the used parameter values. We define the gap between the two upper
energy bands as the high-energy band gap and in accordance the gap between the
two lower energy bands as the low-energy band gap. The dark-polaritons, which
are involved in the formation of energy bands and the single DPBP in Fig. [1.2[A),
are given in . This can be seen by solving Egs. for inter-cavity hopping
J = 0. Note that the bands are a consequence of repulsively interacting dark-
polaritons of different types with respect to the eigenenergies E(iqu By different

types here, we mean that the dark-polariton with eigenenergy E(IQ interacts with

(m)

the dark-polariton of eigenenergy E_;/ in a repulsive way at the same site p. This

is a consequence of the on site repulsion U(n). On different sites, dark-polaritons
with eigenenergies Efrmn) and E(_m,f are non-interacting. Instead, the mentioned Kerr-
nonlinearity, expressed through the on site repulsion U(n) = %, enables the single
DPBP state formation by the two dark-polaritons with eigenenergies E(_mrz which is
placed at the same site p in case of A > 0. There is an additional DPBP, formed
by the two dark-polaritons with eigenenergies E(fji in case of A > 0, but is not
visible in the spectrum as it is attached to the central band. On the contrary,
formation of single DPBP interchanges for A < 0. Our determined U(n) from [96]
is mainly affected by the cavity field coupling strength g,,. By increasing g,, we
increase the on site repulsion U(n) which directly enhances the interaction between
(m)

—-n

Thus, single DPBP is strengthened. Due to the interaction, the single DPBP lies

the two dark-polaritons with eigenenergies E', at the same site p with A > 0.
inside the energy band gaps. Depending on the sign of the common single photon
detuning A, DPBP lies either in the high or low energy band gap. In the case
A > 0, DPBP lies in the low-energy band gap, whereas in the opposite case it
resides within the high-energy band gap. In order to get some information on the

inherent state composition of the single DPBP, we calculate, in line with [32], the
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4.2 Formation of dark-polariton bound pairs

joint probabilities

At A
)| an ATa
pee = (V)| (4.72)
(D) A m
par = [(TE]e 6T | @) 2, (4.7h)
(D
paa = (5651610 @) 2, (4.7¢)

of finding pure photonic, photon-atom and pure atomic excitations, respectively, in
cavities at positions n and m. These excitations (pure photonic, pure atomic and
photon-atom) reflect the unique property of dark-polaritons in which the superposi-
tion of photonic and collective atomic excitations can be tuned by changing €2 in first
place. In our case, we can not only change €2, but also g,, as we use tunable cavities
[90, OT]. For a given value of quasi-momentum P, all three joint probabilities only
depend on the relative distance |n — m/| within the cavities.

In Fig.4.2(B)44.2(D) we present the joint probabilities for the single DPBP state
of Fig. (A) We have chosen the number of coupled QED cavities to be N = 30,
single photon detuning A > 0, cavity-mode coupling strength g,, = 0.05|A|, the
control field Rabi-frequency ©Q = 0.06 |A|, inter-cavity photon hopping strength
J = 0.001|A|, and subspace P = 1. One can see that the DPBP excitations are
well confined together, and all three possible excitation types coexist with roughly
equal contributions. The state composition gradually changes by decreasing the
contribution of double atomic excitations when P approaches the mid-range values.
This regime is roughly characterized by g, ~ Q and (g2, + Q?)/|A] > 5J. The
energy band gaps close when decreasing the ratio of (g2, + Q?)/|A| and J. At the

same time DPBP becomes relatively delocalized, similarly as in [32].

4.2.2 Dark-polariton bound pairs in the regime of compen-

sated control field Stark shift

The tunability of our model enables not only the control of the shape of the energy
bands, but also the emergence of an additional DPBP state. Namely, if the control
field Stark shift is compensated by using an additional field, which couples the
ground state |f) with some far off resonant excited state [67], another DPBP state
appears in the formerly empty energy band gap. Such add reflects in the removal
of the parameter b from the Egs. (4.5]). The energy bands in Fig. [1.3[(A), shown for

discrete and distinct quasi-momenta P, are formed by the dark-polaritons in (2.101]).
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4.2 Formation of dark-polariton bound pairs

This can be seen by solving Eqs. (4.5)) for the inter-cavity hopping strength J = 0

and set the parameter b equal to zero. The on site repulsion U(n), which assures the

gmVnt+14/ 92, (n+1)+4Q2 —gm/n/ g2, n+402
A

for positive and negative single common photon detuning A. Thus, the on site

formation of the two DPBPs, is given as U(n) =

repulsion U(n) is invariant under the sign change of A. Distinctly to the DPBP
formation under non-compensated control field Stark shift, the on site repulsion
U(n) apart from the cavity field coupling strength g,,, directly depends on the
Rabi-frequency €2. This gives the opportunity to effectively control and enhance the
interaction through g¢,, and 2. Further, In Fig. [4.3(A) one can observe that each of
the two energy band gaps now contain a single DPBP state (blue and red curves). We
used the same parameter values as in Fig. , but with compensated control field
Stark shift. In Figs.[4.3(B){4.3(D) and Figs. [1.3(E){4.3[G) we characterize the state
composition of lower and higher energy DPBP state, respectively, by considering the
joint probabilities as in the previous subsection. The DPBP in the lower energy band
gap is dominantly composed of two-photon excitation, while in the other DPBP state
atom-photon excitation prevails. Moreover, higher energy DPBP state is further
apart from the outer energy band and it is relatively more localized than the lower
energy DPBP state. We checked that the same behaviour persists for other values
of quasi-momentum P. Note that the described situation is for A > 0, while it

interchanges for A < 0.
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4.2 Formation of dark-polariton bound pairs
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Figure 4.3: (A) Normalized eigenvalues dependence on the quasi-momentum P for
N = 30 cavities. Two dark-polariton bound pair states (blue and red curves) appear
in both energy band gaps. The eigenvalues are joined by lines for ease of visualiza-
tion. (B)-(D) Joint probabilities for different types of double excitations associated
to lower energy DPBP state. (E)-(G) Joint probabilities for different types of double
excitations associated to higher energy DPBP state for P = 1. Used parameters:
A >0, g =0.05]|A], 2 =0.06|A| and J = 0.001 |A|.
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4.3 Quantum memory of light in a dark-polariton

bound pair
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Figure 4.4: (A) Normalized eigenvalues dependence on the quasi-momentum P for
N = 30 cavities. Dark-polariton bound pair state (red curve) appears as the ground
state. The eigenvalues are joined by lines for ease of visualization. (B)-(D) Joint
probabilities for different types of double excitations associated to DPBP state for
P = 1. Used parameters: A < 0, g, = 0.05|Al, 2 =0.001|A| and J = 0.00125 |A|.

In the parameter regime where the common single photon detuning A is negative
and the cavity-atom coupling strength g, is significantly larger than the control
field Rabi frequency 2, we have a single DPBP state which is the ground state
of the system. It is well separated from the rest of the energy spectrum when
g% /|A| Z 1.5 J. This is presented in Fig. [4.4( A). DPBP state composition, given in
Figs. [1.4(B){4.4(D) by the corresponding joint probabilities, reveals that the state
is dominantly composed of combined atomic and photonic excitations which are
localized in their relative spatial coordinates. Note that this DPBP state is of a
completely different type than the ones found in the previous section.

It is important that this state also enables the storage of a single photon in
the form of a collective atomic spin coherence excitation to which the other photon
is closely bound. Namely, when 2 — 0 adiabatically, a DPBP becomes a pure
combination of an atomic and photonic excitation. From this we can deduce that
one photon remains attached to the atomic spin coherence wave. This is reminiscent

of the atom-photon molecule.
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4.3 Quantum memory of light in a dark-polariton bound pair
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Figure 4.5: (A) Normalized eigenvalues dependence on the quasi-momentum P for
N = 30 cavities. Dark-polariton bound pair state (red curve) appears as the ground
state. The eigenvalues are joined by lines for ease of visualization. (B)-(D) Joint
probabilities for different types of double excitations associated to DPBP state for
P =1. Used parameters: A <0, g, = 0.05|Al, Q@ =0.001|A| and J = 0.002 |A|.

The state composition can be tuned by increasing the relative importance of
the inter-cavity photon hopping, e.g., by increasing |A|. This is achieved gradually
for distinct values of quasi-momentum, starting from the values P = 1, N — 1 and
proceeding towards the mid-range values of P. Figure [1.F(A) shows the energy
spectrum in such a case. For P € {1,3,N — 3, N — 1} the DPBP state is pre-
dominantly composed of two-photon excitations which become delocalized in their
relative spatial positions, as can be seen in Figs. [1.5(B){4.5(D). The reason for
such behaviour can be traced back to the emergence of the avoided crossings of
the ground state and the first excited state near the edges of the quasi-momentum
zone. The crossings shift towards the P-zone centre as the influence of the photon
hopping is being increased. For the quasi-momentum values between the crossings,
the DPBP state remains dominantly of the atom-photon type. In the case when the
control field strength adiabatically reduces to zero, the DPBP state becomes of a
pure two-photon type. Therefore, this corresponds to the retrieval procedure of the

previously stored photon excitation.
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4.4 FExperimental realization

4.4 Experimental realization

Our model system is a large, one-dimensional mJCH chain of N coupled QED
cavities. In order to realize it, we need a structure, in which large arrays of coupled
QED cavities can be realized. Promising candidates are photonic band gap cavities
[44) [45]. Tt is manageable to produce and position them with high precision and
in large numbers. A tempting alternative are photonic crystals as they offer the
possibility of fabricating large arrays of QED cavities in one- or two dimensional
lattices as well as networks [98, 99, T00]. A third possibility would be the use of
toroidal micro-QED cavities that are coupled via tapered optical fibres [101]. Single
atoms, embedded in each QED cavity are three-level atoms where the excited level is
far detuned by the common single photon detuning with respect to the two coupling
fields. In real experiments Cs and ultra cold ®Rb atoms have shown to be very
suitable [97], 511 [102]. For Cs in a toroidal micro-QED cavity it has be shown that
gm in the strong coupling regime reaches the value of ~ 50M H z [51]. This fits pretty
well with our theoretically chosen value for the formation of individual DPBP inside
the energy band gaps, but also for the ground DPBP at A < 0 with its potential

use as a quantum memory for a single photon.
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5)

Dark-polariton bound pairs in
disordered coupled QED cavity

arrays

We investigate a one-dimensional modified Jaynes-Cummings-Hubbard (mJCH) chain
of N identical QED cavities with staggered nearest neighbour photon tunnelling and
periodic boundary conditions. Each cavity contains an embedded three-level atom
which is coupled to a cavity mode and an external classical control field. Through the
staggered nearest neighbour photon tunnelling, two sublattices b and ¢ are defined.
Moreover, the staggered configuration of nearest neighbour photon tunnelling repre-
sents one way of realizing induced disorder which substantially differs from so called
random disorder within condensed matter physics, e.g intrinsic imperfections, distor-
tions and defects inside or of the crystal lattice itself. Further, we choose the common
large detuning, Rabi frequency and cavity field coupling strength to be equal in and
between the two sublattices b and c¢. In the case of two-excitations and common
large detuning of two Raman-resonant fields, we show the emergence of bhilocaliza-
tion within the sublattices and their coupling for the parameter regime g, > €.
For weak inter-cavity photon hopping strength .J5, bound photons characterize the
bilocalization in the individual sublattices, where the sublattice coupling instead is
governed by bound spin coherences of the dark-polariton bound pair (DPBP). The
appearance of bilocalization does not depend on the entire (not)-compensation of

the classical control field Stark shift.
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5.1 Model system and effective model Hamilto-

nian

5.1.1 Model system

Jl J2 Jl J2

Figure 5.1: One-dimensional array of N coupled QED cavities in staggered config-
uration with respect to the inter-cavity photon hopping strengths J; and Jy under
periodic boundary conditions. Green transparent sphere in each cavity represents a
three-level atom with two ground levels |g) and |f), and an excited level |e). The
atomic configuration is given in Figure of the theory chapter 2.

The system under consideration consists of a one-dimensional array of N coupled
QED cavities in a staggered configuration with respect to two inter-cavity photon
hopping strengths J; and J, see Figure . We assume periodic boundary condi-
tions, i.e., the cavity labelled by n = N + 1 corresponds to the cavity n = 1. The
staggered hopping define two sublattices which we denote by b and c¢. Each cavity
embeds a three-level atom with two ground levels |¢g) and |f), and an excited level
le). The level energies are w,, wy and w,, respectively. In reality, the levels can
be either fine or hyperfine levels of alkali-metal atoms. Their D1 or D2 line transi-
tions are nowadays easily accessible via available lasers and optical modes of QED
cavities. One mode of a tunable cavity [90], 91] of frequency w,, couples the transi-
tion |g) — |e) in the sublattice b (¢) with the strength g® (g¢,), while the classical
control field of frequency wy couples the transition |f) — |e) with Rabi-frequency
Qb (92°). The fields are detuned from the respective transitions by common single
photon detuning A’ (A€). This configuration is known to feature vacuum induced
transparency, as first experimentally demonstrated by the group of Vuleti¢ [92].
The values of coupling strengths are typically in MHz range for alkali-metal atoms

strongly coupled with QED cavities, and for moderate laser powers.

5.1.2 Effective model Hamiltonian

As we consider a one-dimensional, staggered chain of N identical coupled QED
cavities, the derived modified Jaynes-Cummings model for a single QED cavity

in [I03] is valid for all QED cavities in the one-dimensional chain, but has to be
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5.1 Model system and effective model Hamiltonian

properly adapted to the staggered hopping configuration. Therefore, our effective

model Hamiltonian (A = 1) has the form

}AI = IA{(mJC) -+ f{hop; (51&)
F[(mJC) _ f{(mJC) + [A{C(mJC’)’ (51b)
Hhop == Hhop + thp, (51C)

where the terms corresponding to modified Jaynes-Cummings model on the two

sublattices are

FIlEmJC) = ﬁg + Hyp,, (5.2a)
N b\2 b2
b (gm) N (Q) ~ ()
iy = =30 (e ithe + 5, (5.20)
pn=1
N
fh, = -GS (0}6%) + buo ), (5.2¢)
pn=1
and
H{mO = Hg + H,, (5.3a)
N 2
e (95.)° P ()
HS - _Z ( Ac CH '“ 9(5) e Ac flJﬁ (53b)
pn=1
N
Hi = =G Y (@77 +afl). (5.3¢)
pn=1

Staggered photon hopping between adjacent cavities of the two sublattices, based
on evanescent field coupling, with J; and J; as the inter-cavity photon hopping

strengths, is given by

Y =~y Z bfé, + élby), (5.4a)
p=1

A~ N ~

2 =~y Y (Bhéu1 + b)), (5.4D)
pn=1

IA)T (b, ) and ¢}, (¢,) are the photonic creation (annihilation) operators, a((w = |a),. (B
and Taﬁ = |a),(B] (o,B € {g, f}) are the atomic operators in the sublattices b

and ¢, respectively, for the site number . The term H b (ﬁg) incorporates the
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5.2 Formation of dark-polariton bound pairs

influence of Stark shifts of the excited levels of the atoms in the sublattice b (c).
HY . (HE

int int

G = g®.Q°/AY (G¢ = ¢°,0°/A°) is the effective atom-photon coupling constant

) represents the cavity-atom interaction within the sublattice b (c), where

~

which is set to be real. Hamiltonians Hg(c) and ﬁzg? constitute the modified Jaynes-
Cummings Hamiltonian in the sublattice b(c). As will be shown in the sequel, the
Stark shifts have profound influence on the state composition of the ground state
DPBP in the sublattices itself and in the linkage of the two sublattices. Similar
effective Hamiltonian has been previously used to describe a network of uniform fibre
coupled cavities, embedded with three-level atoms [67]. However, while that scheme
requires the compensation of the level Stark shifts, here we utilize the individual level
Stark shifts to achieve tunability. Our effective model Hamiltonian supports
the formation of dark-polariton bound pairs, but now in a staggered configuration.
As we concentrate our discussion on the ground state DPBP, which was found in

[103], we will see how its state composition and localization property change under

various staggered configurations.

5.2 Formation of dark-polariton bound pairs

In the following, we discuss the formation of dark-polariton bound pairs in our
system. In order to exploit the invariance of the system under cyclic permutations
of the sites, we introduce the following operators via discrete Fourier transforms for

each sublattice b and ¢

N
~ ]_ s ~
bk = ﬁ Z 6727‘[”6 blﬂ (55&)
pn=1
| X
27
o= —= Y e wrke, (5.5b)
pn=1
| X
~(k _2mig .
5 = = 2 TGy, (5.50)
pn=1
| X
~(k _2mig
iy D DT (5.50)
pn=1
where k = 0,1, ..., N—1 isrelated to the (discrete) quasi-momentum of the excitation

and is clearly independent of the individual sublattices. Similarly to [32, 103], we

work in an extended two-excitation subspace that is spanned by the states |kj )gf) =
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5.2 Formation of dark-polariton bound pairs

bt R0), 1K) 1)y = Blay" Do), k)Y = 6,7 607" o), ki) = &), 1R)15)
= 7 21@0), k)5 = 78 @), NP1 = Bella), MDY = o3 |20),
P = 727165 0, [k)P15)5 = bl |®o) and [k)P11)Y = 63T |).
The subscripts F' and A stand for the photonic and atomic excitations respec-
tively, whereas b and ¢ stand for the corresponding sublattices. The state |®g) =
|Do) )| D) (@) = = @ 1lg) b)|g> |0),, is the ground state of the system, where |0),
denotes the vacuum state of the cavity number p. We note that the excitations
(polaritons) are in our case dark in a sense that they do not have the contri-
bution of the excited levels |e) and are not subjected to spontaneous emission.

D) are in general not orthogonal to each other be-

The atomic eX(:ltatlons \kj>
cause of b)) <k/j/|]€j> = Opp0jjr + Op il — %(5k+j7k/+j/. Ek,b} and ék,éj ful-
fil the bosomc commutation relation [bk,bT] = [Ck, j]&kj, while the atomic op-
. . ~ (k) ~(j . 2mi k) ~(p)
erators fulfil the commutation relation [5,, gjf ] = —% Z Le N HU=RG and
[T;f), ;gc ] = —+ Z Lem R with 699 and 7 as the Pauli z matrices for
the atom in the pth cav1ty of the two sublattices b and ¢. Under the action of H on
the states which form the two-excitation subspace, fort the sublattice b we get the

relations

N () A (b b)| -\ (b A (b b A (b
Hkg)® = —2a"1k5) 2 — GE(R) D15 E + 1D D)D) + wrl /)2 1k + w; k)P 15)

(5.6a)
A b), -\ (b A (b b) -\ (b A (b
HIY )Y = —GPlej)? — (> + ) k) D158 — G¥ks) Y
ab ) Yy | 2G° NG!
5 2 (ODINE + 1TIRE) + == DK (5.6b)
(k',5")ESP (k',3")eSp

Hm?w?:—@WM%wf+wm@m@—G%ﬁ@
b

+ 8 S ONE +1HPID) + 2 Sk (5.6¢)

(k‘/ '/)GSP (k/ IGSP
Hlkj)y = =G (R P1E + 1)V k) ) — 20°k5) Y, (5.6d)
where a® = |gg§,|2 and b’ = ‘%b‘ are the individual Stark- shifts of the cavity and

control field, w; = —J; — Joe' ¥ with [ € {k,j} and G® = g’” " the effective atom-

photon coupling constant within the sublattice b. Moreover, for the sublattice ¢ we
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5.2 Formation of dark-polariton bound pairs

get the relations

Hkj)e = —2alkj) — Gk D19 + 1) D 1%)E) + wils) 2 1k) &

+wilk)215)5, (5.7a)
HIE)P1)E = =Gelki)y — (a° + 1) [k)T]5) ) — Gy
FES RPN + DI + 2 W), (5.7)
(K',j')esSp (K',5')E€Sp
H15) 1) = =Gk — (@ + 0) )P k) — Glk) Y
+§i§mewm”+MVWk“ + 2w, (5.70)
(K',j')esSp (k:’ J)ESP
Hlkg)y = =G(1R)P 1) + 1) D 1k)E) — 26°]k) Y, (5.7d)
where a® = —‘QQLJQ and 0 = —|QACC|2 are the individual Stark-shifts of the cavity

—i27l

and control field, wy = —J; — Jee™~ with [ € {k,j} and G° = %%
atom-photon coupling constant within the sublattice c. Within Eqs 5.6|) and .
which refer to the sublattices b and ¢, we have a sum over the set Sp = {(k, 7)]10<
k<j<N-1,k+j = P(modN)} that is determined by the quasi-momentum
P. So far, we have described the action of the model Hamiltonian (4.1)) within the

individual sublattices b and ¢ without considering the coupling of nearest neighbour
QED cavities of the sublattices. The coupling between nearest neighbour QED
cavities is governed by the inter cavity hopping of photons which characterizes the

appearance of the kets [k) % |71 [£) D11 16Y9 1) and [£)P 5. As the model
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5.2 Formation of dark-polariton bound pairs

Hamiltonian (5.1 acts on these kets, we end up with the relations

A1) = —(@® + a) )21 — G D) — G k)L — whlkg) Y

— wi k), (5.8a)
HHPIK)E = —(a" +a) )P 10 — G PIkE — Gk — wilki) P
— wjlkg) ¥, (5.8D)
B = =+ )R 1HE = Gk P1H)E + ki) — G P15) Y
w1k D1, (5.8¢)
a7 Pk = —(a + )N PR = G (5) & 1k)E + ki) — Gl PR
— Wil )5 (5.8d)
Hk)P15)E = —(a" + 09T = G P = G P15)E — wjlk) 1508
(5.8¢)
A 7P =—(a +09) NP1k — LT R — G52 1k)E — wils) k)
(5.8f)
HIE)P1ST = =@ + 09k P15)5 = 615 T 1% — Gk Y1 (5.8g)
a7 YIRS = =0+ )5 YIRS = GRS — Gl k). (5.8h)

In case of Eqgs. (5.8a)-(5.8h) no sum over the set Sp = {(k,j) | 0 < k < j <
N —1,k+j = P(modN)} appears. This is clearly a consequence of introducing
a staggered configuration of the inter-cavity photon hopping J; and J,. Further,
from Egs. , and we can deduce that the quasi-momentum P is a
conserved quantity and hence a good quantum number. Apart from the quasi-
momentum, the total number of excitations (dark polaritons) in each sublattice
Nb = Z (bTb - 0 ) and N°¢ = ij:l(éltéu + T}’;)) is a conserved quantity. From
this, it fallows that the total number of excitations (dark polaritons) of the complete
system N = N’ + N¢is a conserved quantity as well.

We can construct the complete set of eigenvectors by solving the eigenproblem
within each of the subspaces P = 0,1,..., N —1. Following [32] 103], we restrict
the discussion to the case of even N and odd P. A general dark two-polariton

eigenvector \\IIEDD)) in a staggered configuration of coupled QED cavities has the
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5.2 Formation of dark-polariton bound pairs

form

O = ST (Y + 19+ 15O+ 1P, (5.9a)
(k,j)eSp

i) = %| k)2 + 8O D1 + B DR + A0 k) Y, (5.9b)

£ =af |ky> +ﬁkj|k>°’>|]>c>+ﬁkj DIk + mumﬁf, (5.9¢)

f,ifc CNYRN D + PN RIS + BENRRIN + 8L D k) &+

7 kY b>|]>c>+m 1 DIR, (5.9d)

1P = 5PN + 510 kY. (592)

\\IJEDD)) satisfies the time-independent Schridinger equation H ]\I!J(PD)> = )\\\IJEDD)) which
yields within each of the subspaces P = 1,3,..., N—1 an eigenproblem that is given

by the subsequent set of linear equations for the sublattice b

)\a;b.) = —92q° a Gb(ﬂ + BI;(JB ) + %0‘;5

¢ )Y, (5.10a)

, BC b 2Gb b
M = =Gl = (905 + Z b BN+ B = O+ T 3ol
Sp

(5.10b)
b
"B) _ (b) b () BC) o ), 2G ()
)\Bkj — Oék] (a + b B SZ 6[4 + ﬁk’ 5/ + W ﬁ G ")/kj + T SZfYk/jla
(5.10c¢)
M) = =GB + B7) — 200, (5.10d)
and sublattice ¢
Ay = —2a¢af) — G(BY) + BY ) ;;a,(jf) + iy, (5.11a)

(© . ¢ () _ e (), 2G° (©)
A3 = —Goal) — (@ + )8y + Z )4+ B + wiB — e +T;7’W’

(5.11b)
A = —Gealf) = (a° + )87 + Z )+ BN + B — Gl + 2 3,
Sy
(5.11c)
Mg = =GB + 85) — 267 (5.11d)
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5.8 Effects of staggered hopping induced disorder on ground state DPBP

Up to now, in (5.10)) and (5.11]) the eigenproblem of decoupled sublattices b and ¢
have been presented. However, the eigenproblem, which considers the coupling of
the individual sublattices b and ¢ through the staggered inter-cavity photon hopping

J1 and J,, are given by the sequel set of linear equations

Aaff;c) — (@ +a )akl;c) Gbﬁ(bc GoB' @ 4 o a’(w) +wk05](3; (5.12a)
A = —(a? + a)a Y — GPBYY — GeB 1 wial) + wial?, (5.12b)
)\B(bc _ algl;c) (a° + bb)ﬁ(bc GC,YIES'C) + %ﬂkj : (5.12c)
VA "(be) _ b%(ch) ~(a+ bb)ﬁk;)c _ GC’Y;;(jbC) + WZ@;(;)’ (5.12d)
/\B(cb cak(l?c) (a® + 1) 3 (cb) _ 7k(]bc + wjgk] , (5.12e¢)
B (eb) _ _Gc&kl;c (a® + bc)ﬁkg ,y](w +wk5k] ’ (5.12f)
/kac) _GCB(bc a3 (©B) (b 1 bc)v,(f;c, (5.12g)
)\'ij . Gcﬁk (be) Gbﬁ(cb (bb + bc) ' (be) , (5.12h)

where ) is the corresponding eigenvalue. Eqs. (5.10)), (5.11]) and (5.12)) represent the

most general form of the eigenproblem to our chosen model system. It generalizes
the eigenproblem in [I03]. We can recover the results in [I03] by choosing uniform
inter-cavity photon hopping, e.g. J; = J5 and equal effective atom-photon coupling
constant G* = G¢ := G. In the sequel section, we focus on the ground state DPBP
as found in [I03], discuss staggered induced disorder and its effects on the ground

state DPBP.

5.3 Effects of staggered hopping induced disorder
on ground state DPBP

In the following, we consider the aspect of induced disorder through the staggered
photon hopping [104] in combination with the control field Stark shift. We can basi-
cally tune the disorder by an overall or staggered (non-)compensation of the control
field Stark shift. Thereby, we keep the effective atom-photon coupling constants G°
and G¢ constant and equal. This means that the coupling strengths ¢’ , ¢¢,, the
individual Rabi frequencies °, ¢ and the common single photon detunings AP,
A€ are individually equal. As we restrict the discussion to the ground state DPBP,
g =g = gm > =0°=Q, A’ = A°:= A < 0 and G® = G° := G has to hold

as mentioned and introduced in [T03].
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5.8 Effects of staggered hopping induced disorder on ground state DPBP

5.3.1 Staggered photon hopping in the regime of non-compen-
sated and compensated control field Stark shift

We concentrate on the ground state DPBP and its state composition within an array
of N = 20 coupled QED cavities with periodic boundary conditions and odd discrete
quasi-momenta P where the overall control field Stark shift is not compensated. The
used parameters for the cavity field coupling strengths in each sublattice b and ¢
are g, = 0.05|A| with A = —1000. The value of g, fits well with the realization of
strong coupling in toroidal microcavities, embedded with Cs-atoms and the discover
of ground state DPBP [103] [51]. Further, the Rabi frequencies in each QED cavity
within the sublattices b and ¢ have been chosen to be 2 = 0.003|A|, while the inter-
cavity photon hopping parameters fulfil the conditions J; > Jy with Js kept fixed
and J; > G as well as G > J,. In order to get inherent information on the state
composition of the ground state DPBP, we follow in line with [32] [103] and calculate
the joint probabilities

P = (@) hbfénm| P, (5.130)
P = (R BL657 | 0) 2, (5.13b)
ik = 15637 6 07 |@g) 2, (5.13¢)
Py} = (v |ﬁ| o), (5.13d)
P} = (w1l 75 o) 2, (5.13¢)
) = (v ;?” gf @) 2, (5.13¢)

Py = (V5] Wr o, (5.13g)

Pty = (W[} 7 5 @) 2, (5.13h)
be n m .
Pfaxa) = |(\I/§3 )| ;f)T gf )T@ ), (5.131)

i = (v IWI ol (5.13;)
cb m
ply) = (O 100 | @g) 2, (5.13K)

where pffz) = p((fj) holds. First of all, we set J, = 0 and take J; # 0. This
configuration corresponds to so called decoupled dimers. Dimers are formed by the

nearest neighbour QED cavities of the sublattice b and ¢ with the coupling, given by
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5.8 Effects of staggered hopping induced disorder on ground state DPBP

the inter-cavity photon hopping strength J;. The state composition of the ground
state DPBP is dominated by the combined excitation of the atom and photon type
in each sublattice, but equally distributed. Sublattice linkage is also dominated by
the combined excitation of the atom and photon type. From this we can deduce that
one photon remains attached to the atomic spin coherence wave. This is reminiscent
of the atom-photon molecule. The state composition can be tuned by increasing the
relative importance of the inter-cavity photon hopping Ji, e.g., by increasing |A|.
This is achieved gradually for distinct values of quasi-momentum, starting from
the values P = 1, N — 1 and proceeding towards the mid-range values of P. As
we reach the critical value of the inter-cavity photon hopping J. = 0.0039|A|, we
have a change from bound spin coherences to bound photons within the individual
sublattices as well as at the sublattice connection. The arrangement changes as we
include J,. Namely, if we switch on Js, keep it fixed and fulfil the requirement that
J1 > Jy, ground state DPBP in the individual sublattices b and ¢ appears as a
two-photon bound state while at the sublattice connection as a bound state of spin
coherences. Hence, the weak inter-cavity photon hopping strength .J5 introduces
a so called bi-localization as seen in [104], but in our case it slightly differs. We
have bound photons and bound spin coherences at the same time, whereas [104]
only has bound photons or free spin coherences. If we compensate the control field
Stark shift, the arrangement of excitations and the composition of the ground state
DPBP remains the same as in the case of non-compensated Stark shift. Thus,
in the staggered configuration of inter-cavity hopping strengths J; and J,, control
field Stark shift does not have any affect on the arrangement of excitations and
its composition regarding the ground state DPBP, which was not the case in the
uniform configuration of inter-cavity hopping within our work [103]. By switching off
the Rabi frequency adiabatically, i.e. @ — 0, increase J; equidistantly by 0.0003|A|
as it has been previously done and keep J, fixed, we see a transfer of pure bound
spin coherences between the sublattices independently of (not)-compensating the

control field Stark shift.
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6

Conclusions

To sum up, we have investigated the formation of dark-state polaritons in an ensem-
ble of degenerate two-level atoms with ground state Hilbert space H, and excited
state Hilbert space H., where dim H, > dim H, holds. We elaborated an algorithm,
which is a generalization of the Sawada-Brout-Chong approach [12]. Under suitable
conditions, the polariton mode dispersion relation and composition can be stated
in a closed form. Such DSPs do not depend on the energy spacing of the two-level
system, but rather on the Raman detuning of the coupling fields. For each polariton
mode, the effective field coupling parameters depend on the appropriate eigenval-
ues of the atomic operators \A/pT\A/p and VIV, that determine the eigenproblem for
the polariton species. The application of the general procedure is given for 8Rb
atomic transition F, = 2 — F, = 1 of the D; line. Two cases of polarizations of the
control and probe field are analysed, when the two fields have orthogonal circular
polarizations and when both are linearly polarized in the orthogonal directions. In
the former case, two DSP modes are identified, while in the latter case, only one
DSP mode can be determined. The formation of the modes as well as their disper-
sion relation critically depend on the polarizations chosen. Possible application of
DSP modes in ultracold 8’Rb atoms for frequency and/or linear polarization con-
version without energy loss in the retrieved pulse is presented. Our algorithm can
be extended to degenerate systems with more levels and might have applications in
quantum information processing as a building block for a preparation and read out
schemes with the DSPs as qubit states.

Moreover, we have derived a modified Jaynes-Cummings model from the bare
model under two conditions: (i) two-photon Raman resonance of the cavity mode

and classical control field (ii) common single photon detuning |A| > ¢,,,Q2 . We
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have shown that the eigenstates on one hand depend on the common single photon
detuning and on the other hand, their composition differs with respect to the control
field Stark shift. Furthermore, we have extended the modified Jaynes-Cummings
model to a modified Jaynes-Cummings-Hubbard model where an array of N coupled
QED cavities, each having an embedded single three-level atom, is considered. The
modified Jaynes-Cummings-Hubbard model supports DPBPs. The formation of two
different species of spatially localized dark-polariton bound pairs (DPBPs) has been
elaborated when there are exactly two excitations in the system. It was shown that
the onsite repulsion U(n) as a consequence of the Kerr-nonlinearity represents the
attractive force between interacting dark-polaritons and enables the existence of
DPBP states. Furthermore, it is demonstrated that our model system offers a high
degree of tunability that can affect both quantitative and qualitative behaviour. In
particular, the number of DPBP states can be controlled by (not) compensating the
Stark shift due to the control field. Further, in the regime when cavity-atom coupling
overwhelms the influence of the control field, and the common single photon detuning
of the fields is negative, we obtained a ground DPBP eigenstate on which the storage
and read out of a single photon can be effectively performed. An experimental
realization is proposed for our model system. Cs atom has been mentioned as a
promising candidate as its value of the cavity mode coupling strength g, fits very
well with our theoretically chosen and determined one.

In addition, disorder has been introduced into the modified Jaynes-Cummings-
Hubbard model by a staggered arrangement of inter-cavity photon tunnelling strengths
J1 and J,. This staggered arrangement leads to a formation of two sublattices b and
c¢. Under the assumptions (i) g, > 2, (ii) common single photon detuning A < 0,
(iii) inter-cavity photon hopping strength J; > J; as well as equality of the common
single photon detuning, Rabi frequency and cavity mode coupling strength in and
between the sublattices, bilocalization occurs. Within the sublattices, bilocalization
is given by bound photons while the sublattice coupling is provided by bound spin
coherences of the ground state DPBP. However, if the the Rabi frequency 2 — 0
adiabatically and we increase J; equidistantly, bound spin coherences of the ground
state DPBP are transferred between the sublattices. Depending on the Rabi fre-
quency, our system can be used to transfer quantum states either of bound photons

or dark-polariton bound pairs given by bound spin coherences.
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7

Outlook

In case of dark-polariton bound pairs several open questions remain for future inves-
tigations. If we look at the uniform configuration, which means that the inter-cavity
hopping strength is equal within the array of coupled QED cavities, the number of
excitations can be increased. Due to the cyclic symmetry in k-space, which is de-
termined through the quasi-momentum P as a good quantum number, up to seven
excitations can be studied. Furthermore, a more sophisticated atomic level structure
can be considered, e.g a tripod configuration with contra-propagating fields. These
kind of structures are interesting because spinor-like polaritons have been observed
in these level structures. So, an effective spin bound state might be able to real-
ize. On the other hand, the one-dimensional modified Jaynes-Cummings-Hubbard
model could be extended to two dimensions and optical lattices could be studied
with respect to the inter-cavity photon hopping strength J; or J,. A realization of
a frustrated Heisenberg spin system might be possible. Frustration could be intro-
duced through the non-uniform (staggered) inter-cavity photon hopping strengths
Jy and Js.
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