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Sazetak

Klase Zevrea ( [14]) su uvedene u cilju preciznijeg objadnjenja regularnosti
reSenja jednacine provodenja toplote, i na taj na¢in su nasle svoju primenu u
teoriji linearnih parcijalnih jednacina, posebno u ispitivanju hipoelipti¢nosti,
lokane resivosti i u analizi prostiranja singulariteta resenja.

U ovoj tezi definiSemo klasu glatkih funkcija koje imaju ”slabiju regu-
larnost” nego Zevre funkcije, i izu¢avamo njihove osnovne osobine. Pokazu-
jemo da nase klase imaju svojsto algebre kao i da su zatvorene u odnosu na
delovanje operatora izvoda kona¢nog reda. Sta vise, konstruisemo diferenci-
jalne operatore beskonac¢nog reda i to nas dovodi do definicije ultradiferen-
cijabilnih klasa funkcija. Takode dokazujemo osobinu zatvorenosti u odnosu
na inverze, i taj rezultat je najvazniji deo u dokazu glavne teoreme koja je
formulisana u poslednjoj glavi.

Koristedi tehnike mikrolokalne analize, uvodimo i izu¢avamo odgovarajuce
talasne frontove. Nas glavni rezultat pokazuje kako se prostiru singulariteti
reSenja linearnih parcijalnih diferencijalnih jednacina u okviru nase regu-
larnosti.

Neki rezultati iz ove teze su objavljeni u [29], [30], [43], kao i u radu [31]
koji je u pripremi.






Abstract

Since their introduction in the context of regularity properties of fundamen-
tal solution of the heat operator in [14], Gevrey classes were used in many
questions related to the general theory of linear partial differential operators,
such as hypoellipticity, local solvability and propagation of singularities.

We introduce a family of smooth functions which are ”less regular” than
the Gevrey functions, and study its basic properties. In particular we prove
the standard results concerning algebra property and stability under finite
order derivation. Moreover, we construct infinite order operators which leads
us to the definition of class with ultradifferentiable property. We also prove
that our classes are inverse-closed, and this result is the essential part in the
proof of our main result presented in the final Chapter.

Moreover, using the techniques of microlocal analysis, we introduce and
investigate the corresponding wave front sets. Our main results shows how
the singularities of solutions to partial differential equations (PDE’s in short)
propagate in the framework of our regularity.

Some results of thesis are published in [29], [30] and [43], see also [31].






Preface

In this thesis we propose a new type of local regularity and analyze corre-
sponding classes of smooth functions. In particular, we introduce two pa-
rameter depending defining sequences M7 := p?,7>0,0>1 p€N,
which control the derivatives of functions, we analyze their properties, and
construct classes of smooth function which posses ultradifferentiable prop-
erty. Such classes are classes of ultradifferentiable functions since they are
closed under action of certain infinite order differential operators. Moreover,
we study nature of singularities related to their duals using the techniques
of microlocal analysis.

H.Komtasu in [21] developed methods of local analysis for studying classes
of ultradifferentiable functions and their spaces of ultradistributions as their
strong duals. Classes of test functions are inductive and projective limits
of (countable) families of Banach spaces and therefore they have Frechét
structure. In particular, the reqularity condition related to Komatsu’s classes
is given by

10%¢(z)| < AWMy, =€ K,a € N
and we refer to Chapter 1, Section 1.2, for details.
However, we propose the regularity of the form

0% (z)| < AWV M™ . e K,a e NY,

laf ?

wherefrom it follows that corresponding classes of functions are not equal to
Komatsu’s classes for any choice of parameters 7 > 0 and o > 1. Moreover,
sequence M7 fails to satisfy usual Komatsu’s conditions (see Chapter 1,
Section 2.1) and in that sense results of Chapter 2 generalizes standard results
given in [20].

In [38] Siddiqi studied the inverse closedness property of Carleman classes
by imposing an additional condition to the M,, p € N. The basic question
is: if ¢ belongs to some subclass of smooth functions and ¢ # 0 (locally) does
the ¢! belongs to the same subclass? It turns out that definition Carleman
classes corresponds to Komatsu’s definition of ultradiferentiable functions
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of Roumieu type, and therefore in Chapter 2, Section 2.7, we extend the
corresponding result for our classes using different techniques then the one
from [38]. Some of presented techniques will be used in the proof of main
results in the final Chapter 4.

For the particular choice M, = p!*, ¢t > 1, Roumieu type Komatsu classes
correspond to Gevrey classes. They were introduced by M. Gevrey to describe
regularity properties of fundamental solution of the heat operator in [14],
and thereafter used in the study of different aspects of general theory of
linear partial differential operators such as hypoellipticity, local solvability
and propagation of singularities. In particular, the well-posedness of the
Cauchy problem for weakly hyperbolic linear partial differential equations
(PDE’s) can be characterized by the Gevrey index ¢, while the same problem
is ill-posed in the class of analytic functions, (see [3,35] and the references
given there).

Since there is a gap between Gevrey classes and smooth functions, it is
of interest to study the intermediate spaces of smooth functions which are
contained in those gaps by introducing appropriate regularity conditions.
On one hand, this may serve to describe hypoellipticity properties between
smooth hypoellipticity and Gevrey hypoellipticity, which is one motivation
for work presented in this thesis, cf. [24].

Another motivation comes from microlocal analysis, where the notion of
wave front set plays a crucial role. Different authors studied different types
of wave front sets. Roughly speaking, complements of wave front sets are
conical sets of points (z,¢) € R x R¥\{0} for which the distribution u is
regular in the neighborhood of x in the directions of derivatives determined
by &.

We refer to [12], [16], [42] for classical wave front sets, WF(u), whose
complement describes the C* regularity. In particular, classical wave front
set satisfy

7 (WF(u)) = singsupp(u), u € D'(U),

where 7y is standard projection and singsupp u denotes singular support of
distribution u. However, the fundamental property is microlocal hypoelliptic-
ity which explains how the singularities of solutions to the partial differential
equations propagate. It is expressed by

WF(Pu) C WF(u) € WF(Pu) U Char(P),

where P is partial differential operator with smooth coefficients and Char(P)
is set of its characteristics. We refer to Chapter 1, Section 1.4 for details.



Wave front sets with respect to C*, denoted by WF, are introduced and
investigated in [16]. For L, = p*, t > 1, they are Gevrey wave front sets while
putting ¢ = 1 the definition of analytic wave front set arises, which is the
largest wave front set in the existing literature. They both have microlocal
hypoellipticity property and for the analytic case this property immediately
implies famous Holmgren’s uniqueness theorem from theory of PDE’s, as it
is stated in [16].

Moreover, these wave front sets are related to classes of ultradifferentiable
functions (Gevrey classes and classes of analytic functions) and therefore they
are significant for our investigation. Wave front sets introduced in Chapters
3 and Chapter 4 are different from WF for any choice of sequence L,,
and hence the modification of standard arguments in the proofs of main
results is needed. Roughly speking, we introduce wave front sets which detect
singularities that are ”stronger” then the classical C* singularities and at
the same time "weaker” than any Gevrey type singularities.

Further properties of Gevrey wave front sets are studied in [35]. Moreover,
the classical results are extended to the spaces of Gevrey ultradistributions
and partial differential operators with coefficients in Gevrey classes.

Different types of wave front sets that modify the classical wave front set
are introduced in the literature. Although their definition goes beyond the
scope of this thesis, we briefly mention the Gabor wave front set originally
defined in [17] and further developed in [36], which is based on microlo-
cal analysis on cones taken with respect to the whole of the phase space
variables. Such approach is recently successfully applied to the study of
Schrodinger equations in [4, 5,33, 44], see also the references therein. Since
versions of Gabor wave front set can be adapted to analytic and Gevrey
regularity (cf. [1,40,41]) it is natural to assume that the same holds in the
framework of regularity proposed in thesis, and this will be the subject of
future investigation.



0.1 Outline and Acknowledgements

Chapter ”Introduction” contains some of the basic notions and notations
from the theory of ultradifferentiable functions, partial differential equations
and microlocal analysis that will be used in the thesis.

Chapter ” Classes of ultradifferentiable functions” introduces a new classes
of functions, & ,, 7 > 0, 0 > 1, which describes a new type of local regu-
larity investigated in this thesis. It contains original results concerning basic
properties of the defining sequence M7, p € N (sequence that controls the
derivatives) and basic topological properties of &, ,. Main result is given in
Theorem 2.6.2, Section 2.6 where it is proven that classes €41 are closed
under action of certain ultradifferentiable operators. In the final section, we
discuss the inverse-closedness property.

A new type of wave front sets, WF,,, 7 > 0, 0 > 1, are defined and
analyzed in Chapter ”Wave front sets related to £ ,”. In section 3.2 is proven
that the local regularity described by the complement of WF , is regularity
investigated in Chapter 2. For the analysis we choose admissible sequences of
cut-off test functions, similar to one used in [16] to analyze local analyticity.
Moreover, in order to describe asymptotic behaviour in microlocalization we
intodroduce a procedure called enumeration. The notion of singular support
related to classes &;, is defined in Section 3.3 and the main result of the
Chapter is presented in Theorem 3.3.1. In the final section, we discuss unions
and intersections of WF, , with respect to parameters 7,0 which lead us to
the definition of WF(+ o, wave front set with pseudo-local property.

The main result of the final Chapter ”Microlocal analysis of solutions to
PDE’s” is Theorem 4.2.1. It contains the proof of microlocal hypoellipticity
of PDO’s with the coefficients in classes £, 1+. In the Section 4.1, the PDO’s
with constant coefficients are considered, and the non-trivial modifications
for the case of the non-constant coefficients is presented in Section 4.2. In
particular, we prove that WFy+ ., have the pseudo-property.

The results presented in this thesis are obtained in collaboration with
Professors Nenad Teofanov and Stevan Pilipovi¢. I wish to express my sincere
thanks to my mentor Professor Nenad Teofanov for understanding, endless
support and numerous discussions in the process of writing the thesis. Also I
express my gratitude to Professor Stevan Pilipovié¢, who initiated the research
presented in this thesis, for the opportunity to work within his group and
for focusing this research in the right direction. I am forever in debt to my
parents and my girls Katarina, Jovana i Biljana, for their endless love and
support during all these years. This research is carried out under the Project
no. 174024.



Chapter 1

Introduction

This chapter contains familiar results from theory of distributions, ultradif-
ferentiable functions and partial differential equations that will be used in
thesis. We begin by fixing the notation.

1.1 Notation

Nonnegative integers, integers, positive integers, real numbers, positive real
numbers and complex numbers are denoted by N, Z, Z,, R, R, and C,
respectively. The integer part (the floor function) of x € R is denoted by
|z| == max{m € N : m < z}. For a multiindices o = (ay,...,aq) and
B =(P1,...,0a) we write 0% = 9™ ...0%, |a| = |oa| +. .. |ag|, a! = a;!...ay!

1\ lef
and a < fif oy < B; for 1 < ¢ < d. Moreover, D% = (—) 0%. We will
)

also use the Stirling formula: N! = NNe=VNy/ 27TN610;7NN, for some 0 < Oy < 1,
N € Z..If U C R%is open, the we use the notation K cC U if K is compact
set with smooth boundary contained in U. Closure of set U is denoted by U.

By C™(K), m € N, we denote the Banach space of m-times continuously
differentiable functions on a compact set with smooth boundary K CC U,
where U C R% is an open set, and C*°(K) is the corresponding set of smooth
functions on K, see [20]. Moreover, by Cg°(K) we denote the space of smooth
functions supported in K. With suppu we denote the support of function
(distribution) u. Convolution is denoted with f*g(x) = [g. f(x —y)g(y)dy,
whenever the integral make sense. Open ball of radius » > 0 centered at
ro € R is denoted by B,(zo), and card A denotes the cardinal number of
A. We use the standard notation (z) = (1 + |z[*)"/? for x € R Fourier

11



12 Introduction

transform is denoted by

Foseu(z) =u(é) = /u(zls)e_%”‘””g dz.

Recall some of the properties for multinomial coefficients

< a ),_ (|a|)(|a|—a1) <|a|—a1—---—am_2>
a1, a2, ...0m ' ay a2 Am—1

jal!
_— 1.1.1
alay! ... a!’ ( )
where |a| = a; +as+ -+ ap, ar, € N, k < m. Following formula generalizes
Pascal triangle equality for binomial formula

|al S ja| =1
= >1 1.1.2
(al,...,am Z ay,...,ax — 1, ...am /)’ el 2 ( )
k=1

Moreover, since (Z) < 2" k <n,n € N we note that

( |al ) < olalglal—ar  glal—a1——am2 < gut2azttmam (1.1.3)
a1,a9,...0ny

We will also use the genarilezed Newton’s formula expressed by

n a
(t1+t2+“‘+td)n: E (a a)ttfl...tdd, TLEN,
1y -y Ud

a1taz+-+aq=n

wherefrom we conclude that for multiindex o € N? this formula implies that
laf! < d“la! (by setting t; =ty = --- = t4). Converse inequality a! < |a/! is
trivial.

For locally convex topological spaces X and Y, X < Y means that
X C Y and that the identity mapping from X to Y is continuous, and
we use I&H and h% to denote the projective and inductive limit topologies
respectively. By X’ we denote the dual of X and by (-, -)x the dual pairing
between X and X’. Set of continuous linear operators from X to Y is denoted
by L(X,Y).

Recall, a linear map B € L(X,Y), X,Y are Banach spaces, is quasi-

o
nuclear if there exists a sequence {2} in X’ such that »_ ||z xs < co and
j=1
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|Bx|ly < Z [(z,2)x|. In particular, a quasi-nuclear map A € L(X,Y) is
j=1
nuclear if there exists bounded sequences 2, € X" and y; € Y, j € Zy, and a

sequence \; € C, j € Z, such that ) |\;| < oo and Az = Z)\j(x,x;>xyj.
Jj=1 j=1

We refer to [39, Section II1.7] and [26] for an extension of nuclear and quasi-

nuclear mappings to arbitrary locally convex topological spaces.

With D'(U),E'(U) we denote the spaces of Schwartz distributions and
distributions with compact support, respectively. They are duals of spaces of
smooth compactly supported functions and smooth functions on U, denoted
by D(U) = C§°(U) and D(U) = C*(U), respectively. Recall that u € D'(U)
if for every K CC U there exists constants C' > 0 and M > 0 such that

[(u, )| <C Y sup0®p(x)], ¢ € CF(K),

o <M zeK

and if M can be chosen independently of K the we say that u is distribution
of order M.

We will also use the simplified version of Paley-Wiener theorem: If ¢ €
D(U) then for every M > 0 there exists C > 0 such |p(¢)| < C(&)~™M.
Moreover, for u € £'(U), there exists M,C > 0 such that |[a(¢)] < C(&)HM,
where M is order of u. For more general versions Paley-Wiener theorem we
refer to [20], [21].

To end these section we recall (see [42]) that the sequence {xn}nen is
bounded in D(U) if there exists compact set K CC U such that supp xy € K
for every N € N and for every m € N there exists constants C,, > 0 such

that sup sup |D%xn(x)| < C,, where C,, does not depend on N.
|a|<m z€K

Moreover the sequence {uy } ven is bounded in £'(U) if there exists K CC
U such that suppuy C K for every N € N, and for every ¢ € E(U) there
exists constant C' > 0 so that |(uy, ¢)| < C, where C' depends only on choice
of test function ¢.

Therefore, we conclude that if u € D'(U) and {xn}nyen is bounded in
D(U) then {xnyu}yen is bounded in £'(U). In particular, simple application
of Leibniz rule implies that

)] = )] € 3 35 (5) sup o) | (o),

|a|<M B<a

wherefrom the conclusion follows immediately.
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1.2 Classical spaces of ultradifferentiable func-
tions

In this section we recall Komatsu’s approach to the theory of ultradifferen-
tiable functions, see [20], and the notion of wave front set in the context of
the Gevrey regularity.

By M, = (M,),en we denote a sequence of positive numbers such that
the following conditions hold:

(Ml) Mp2 S MpflMp+17 P S Z+,
(M.2) (3C >0) M,,, <CPM,M, p,q€EN;

00 My
(MS), 231 M, < Q.
p:

Then M, also satisfies weaker conditions: (M.1)" M,M, < M,,, and
(M.2) (3C >0) My, <CPM,, p,qeN.

Let the sequence M, satisfy the conditions (M.0)—(M.3)" and let U C R?
be an open set. A function ¢ € C*°(U) is an ultradifferentiable function of
class (M) (resp. of class {M,}) if for each compact subset K CC U and
each h > 0, there exists C' > 0 (resp. for each compact subset K CC U there
exists h > 0 and C > 0) such that

sup [0%¢(x)| < Ch*' My, o€ N% (1.2.1)
zeK

For a fixed compact set K C RYand h > 0, ¢ € EM (K if ¢ € C°(K)
and if (1.2.1) holds for some C' > 0. If ¢ € C*°(R%) and all the derivatives

vanishes on the boundary of K, then ¢ € D%M”}’h. These spaces are Banach
spaces under the norm

|0 ¢(x)]
|ollctrmyny = sSup  ————.
eiMphh(K) wEN? €K h'a‘MM

Locally convex spaces (in the sequel l.c.s.) of ultradifferentiable functions
of class {M,} and of class (M,) are respectively given by

EWMBYEK) = lim EM LR = U EM LR ()

h—o0 h—o0

g{Mp}(U): lér.n g{Mp}(K): ﬂ g{Mp}(K%

KccU KccUu
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EM)(K) = @g{MP},h(K) — ﬂ EMHR(E)

h—0 h—0
EM) (1) = @ EM)(K) = ﬂ EM) (|
Kccu KccU

and their strong duals are respectively called the space of ultradistributions
of Roumieu type of class M, and the space of ultradistributions of Beurling
type of class M,

Spaces of ultradifferentiable functions of class {M,} (resp. of class (M,))
with support in K is given by

D}(Mp} — 1‘11E D{Mz)}yh(K) — U D}{Mp}vh

h—o0 h—o0

DM U) = lim DI = () DM,

KCCU KccUu
DE{MP) — 1£1 D}(Mp}rh — ﬂ D}(Mp}vh
h—0 h—0
DM(U) = Jim DY = () DY,
KCCU KccU

and its strong dual is the space of compactly supported ultradistributions of
Roumieu type of class M, (resp. of Beurling type of class M,).

In what follows, £*(U) and D*(U) stand for EIMH(U) or EMe)(U), and
for DIMe}(U) or DM)(U), respectively.

Remark 1.2.1. If M, is the Gevrey sequence, M, = p!*, t > 1, then eV )
is the Gevrey class of ultradifferentiable functions which we denote by & (U).
Note that p!*, t > 1, satisfies (M.0) — (M.3)’, while for 0 < ¢t < 1 sequence
M, = p!* fails to satisfy (M.3)". For ¢t = 1, the corresponding spaces consists
of analytic function on U, while for 0 < t < 1 spaces E}HU) consists
of entire functions. In particular, it is well known that D} (U) = {0}
when 0 < t < 1. (see Theorem 1.3.8. in [16]). With D', (U) and &+(U),
t > 1 we will denote spaces of Gevrey ultradistributions and its subspace of
ultradistributions with compact support.

Recall, ( [20], [21]), operators of the form P(z,D) = Z a,(x)D* are
|ee|=0
called ultradifferentiable operators of the class *| if a, € £*(U) and for the
case * = {M,} (resp. * = (M,)) for every K CC U, there exists h > 0 such
that for any L > 0 there exists A > 0 so that (resp. for every K CC U there
exists constant L > 0 such that for every h > 0 there exists A > 0 so that)
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el
sup |Daq(z)| < Ah|B|M\ﬂIM . o, e N

zeK ||

Following Theorem captures the basic properties of the ultradifferentiable
classes.

Theorem 1.2.1. ([20]) Let M, p € N, satisfy properties (M.0)—(M.2), and
¢, € EX(U) where U is open in RE. Then pointwise product ¢ € £*(U),

and E*(U) is closed under finite order derivation.

Further, if P(x,D) = Z ao(x) DY is ultradifferentiable operator of the
|a|=0
class *, the the mapping

P(x,D) : E(U) — &*(U),

is continuous with respect to the topology of E*(U).
Moreover, £*(U) are nuclear.

To conclude this section, we recall that associated function to the sequence
M,, p € N, M, =1, is given by
rP
T, (1) = EENP = ﬁp‘
For more details and properties of Ty, (r) we refer to [20], see also Remark
2.1.4.

Remark 1.2.2. In the following chapters we will also use several spaces whose
definition is equivalent to the definition of Komatsu’s classes, with different
conditions on the sequences. In fact, in [16] author introduce classes C*(U)
in the following way: ¢ € C*(U) if and only if for every compact set K CC U
there exists constant Cx such that

sup |D¢(z)| < Cx(Cr L), o e N?, (1.2.2)

rzeK

where L,, p € N, is the increasing sequence of positive numbers satisfying
conditions

Ly=1, p<L, Ly <CL, C>0peN. (1.2.3)

In particular, C*(U) are of Roumieu type of class M, := Lb, peN.

Moreover, the definition of Carleman classes Cy(U) (see [38], [19]) is
given by: ¢ € Cy(U), where M,, p € N, satisfies property (M.1), if for
every compact set K CC U
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sup(sup | £ ()] /M) /7 < oc.
peEN zeK

Similarly, Cy(U) are of Roumieu type of class M, p € N.

1.3 Approximate solutions to PDE’s

In this section we analyze the solutions of certain partial differential equa-
tions. We recall some of the basic notions from the theory of PDE’s.

Let P(z,D) = Z ao(x)D*, a, € C(U), be the differential operator of

la]<m

order m on U, and let P, (z,§) = Z ao (7)€%, (z,€) € U x R1\{0} denotes
its principal symbol. °

Set I' in U x RN{0} is conical if (x,6) € T implies (z,t¢) € T for
every t > 0. Moreover, the function o(z,€) defined on T is said to be
homogeneous of order k € Z if it satisfies ¢(z,t£) = tFp(z, &) for every
t > 0. We immediately note that principal symbol P, is homogeneous of
order m.

Recall ( [34]), the characteristic variety of operator P(z, D) at point T € U
is given by

Charg(P) = {(7,€) € U x R\{0} | P (%, €) = 0},

Characteristic set of operator P(x, D) on the open set U and is given by

Char(P) = | J Chars(P)

zelU

By the homogeneity of the principal symbol it follows that Char(P) is
closed conical subset of U x R?\{0}.

Let (x9,&) ¢ Char(P). Since P, € C*(U x R}N\{0}), Pn(z0,&) # 0
implies the existence of the conical neighborhood T' of (x0,&0) such that
Po(z,6) # 0, (z,€) € T. Moreover, by the homogeneity of the principal
symbol we obtain

L e L
el g

For x € K CcC m(I'), where m; denotes the standard projection, we obtain

P, |P(z,6)| > C, (2,6) €T, (1.3.1)
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the fundamental inequality

Cil€]™ < Pp(,€) < Colé™,  C1,Co > 0, (x,€) € T'N (K x RN\{0}),
(1.3.2)

where second inequality is trivial.

Note that for u, f € D'(U), P(x,D)u = f, v € C§°(U), partial integra-
tion implies that (u, PTv) = (f,v), where PTv = Z (=1)*D*(ayv), is

ja[<m

transpose operator for P. It is clear that if P, (z,€) is principal symbol of P
then P,,(x, —£) is principal symbol of P7T.

Following theorem gives the asymptotical connection between principal
symbol and the operator.

Theorem 1.3.1. (/34]) Let P(x, D) be the differential operator with smooth
coefficients of order m on U. If ¢(x) is smooth real valued function on an
open set U C RY, then asymptotically holds

6—it¢>(m)P(x7 D)(eit¢>(x)> ~ A" Po(2, V), t— 00 (1.3.3)

for every x € U, where V, denotes gradient of the function.

Remark 1.3.1. For the future references, we discuss formula (1.3.3) in more
detail. Let £ € R¥\{0} be arbitrary but fixed. For (z,£) € U x R*\{0} set
o(r,&) = x- & Clearly, V,p = £. Since the principal symbol P,, and the
chosen function ¢ are homogeneous of order m and 1, respectively, Theorem
1.3.1 implies
lim e~ P(x, D)(e™?)
|€]—o00 P m (‘T ) 5)

=1, (1.3.4)
for every x € U.

Moreover, if we choose x € C§°(U), supp x € K, then simple calculation
gives

P D) () = e N anla) D1 (e ()

la|<m
_ imt Zaa(m)z a DB (i) DBy ()
la|<m BLla (5)

= ¢ *P(z,D)(e"*)x(2)

+ > au(r) Y <g>gaﬂpﬁx(m), (1.3.5)

la]<m B<a,|B8|>1
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for r € K and ¢ € RY\{0}. Since a,, |a| < m are smooth functions we
obtain

Sl X (§)e o] < 2msp sup (D@l

lo]<m B<a,|B|>1 €K aeNd
(1.3.6)

(1.3.2), (1.3.4) and (1.3.5) implies
lim ’ = y(x 1.3.7
€[00 P, (x,€) x(@) ( )

uniformly for x € K. In that sense, if we observe the equation of the form

P(z, Djv(z,§) = x(z)e™* x € K, £ € R\{0},
e x(x)
Pu(§)

the approximative solution (for large ) is given by v(z,§) =

1.4 Localization of distributions and wave front
sets

In this section we recall some of the known wave fronts sets and their basic
properties. We begin with standard wave front set, W F(u). The regularity
proposed by the complement of W F(u) is related to C*°(U) classes. Recall
that T' is conical if for every £ € ', t& € I for every t > 0.

Definition 1.4.1. Let u € D'(U) and (z9,&%) € R? x R¥\{0}. Then
(x0,&) € WF(u) if and only if there exists an open neighborhood €2 of z,
a conic neighborhood T" of &, and a smooth compactly supported function ¢
equal to 1 on € and

COn
€Y

It can be shown ( [42], [12]) that the Definition 1.4.1 does not depend on
choice of cutoff function ¢. In that sense, the WF(u) is equivalently defined
in the following way:

(x0,&) € WF(u) if and only if there exists an open neighborhood €2 of
Zp, a conic neighborhood I' of &, and a compactly supported distribution
v e &'(U) such that v =u on Q and

C

[0(8)] sﬁ, NeEN, (€T, Cy >0,

|pu()] < NeN, (T, Cy > 0.
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Next we recall the definition of wave front sets with respect to C* (cf. [16]).
Let L,, p € N be the increasing sequence of positive numbers satisfying
(1.2.3). Then WF, is defined in the following way

Definition 1.4.2. Let v € D'(U) and (z0,&) € R? x R¥\{0}. Then
(x0,&0) & WFpr(u) if and only if there exists an open neighborhood € of
xg, a conic neighborhood I of &, and a bounded sequence {uy } nen in E'(U)
such that uy = v on  and

oy
|UN(€)|§W7 N€N7€€F>C>0'

For the choice L, = p, p € N, we obtain analytic wave front set WF 4(u)
while for L, = p', t > 1, Gevrey wave front set WF,(u). The regularity
of their complement is related to classes of analytic functions, £"(U) and
Gevrey classes &, t > 1. Therefore, following inclusion is immediate

WF(u) C WFy(u) C WFa(u), ue D).

Note that in the Definition 1.4.2 we demand the existence of sequence
of compactly supported distributions satisfying the desired decay estimates
on Fourier side. This is due to the specific choice of cutoff functions. In
particular, in [16] author used bounded sequence {xn}nen in C{°(K), such
that xy = 1 on open set {2 C K for every N € N and satisfies estimates of
the following form

D Pxn| < CETTLEL |a| < NN €N, 3 e N,

Since we cannot construct compactly supported analytic functions (D't =
{0}), this type of sequences turns out to be best possible choice to analyze
microlocal analyticity. In particular, function xn, N € N satisfies analytic
estimates up to order V.

In our approach we will impose additional admissibility conditions to
the sequences {xn}nen by introducing two parameters 7 > 0 and o > 1,
for which the estimates for derivatives are small up to certain order (see
Chapter3, Definition 3.2.1).

Let us introduce the notion of singular support of distribution.

Definition 1.4.3. Let u € D'(U). Then xy ¢ singsupp(u) (zo € singsuppy,(u))
if and only if there exists open neighborhood €2 of zy such that u € C*(2)
(u € CL(Q)).

Remark 1.4.1. For L, = p!*, t > 1, the corresponding singular support is
denoted by singsupp, (u).
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Following theorem relates the regularity of classes of smooth functions
and regularity proposed by the complement of the wave front sets.

Theorem 1.4.1. ( [16]) Let WF(u), and WF(u), uw € D'(U), be the stan-
dard and C* wave front sets, respectively. Then

m1(WF(u)) = singsupp(u),

and
m (WF(u)) = singsuppy,(u),

where 7 (z,€) = x denotes the standard projection on R% x R\ {0}.

Moreover, one of the main properties of wave front sets is microlocal
hypoellipticity stated in the following theorem.

Theorem 1.4.2. ( [16]) Let WF(u), and WF 4(u), u € D'(U), be the stan-
dard and analytic wave front sets, and Py (x,D), Pa(x,D) be the partial
differential operators of order m with smooth and analytic coefficients on U,
respectively. Then

WF(Pyou) € WF(u) € WF(Pyu) U Char Py (z, D),

and

WFA<PA’LL) Q WFA(U) Q WFA<PAU) U CharPA(x, D),

where Char denotes characteristic set of an operator.

Since the Gevrey classes are non-quasianalytic, by using compactly sup-
ported functions in D;(U), t > 1, the definition of Gevrey wave front sets can
be extended to the spaces of Gevrey ultradistributions. Although, this goes
beyond the scope of this thesis, for the completeness we recall the definitions
and main results presented in [35].

Recall, D;(U) and &/(U), t > 1, denotes the spaces of Gevrey ultradistri-
butions and Gevrey ultradistributions with compact support, respectively.

Definition 1.4.4. Let v € D,(U) and (z0,&%) € R? x R%\{0}. Then
(x0,&) & WE(u) if and only if there exists an open neighborhood Q of
xo, a conic neighborhood I of &y and v € &/(U) such that v = u on © and

N CN+1NN
0(&)] < T NeN,el,C > 0.
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Remark 1.4.2. Note that if we interchange N with tN, ¢ > 1, in (1.4.4) we
obtain

OtN+1(tN)(tN) C/'N+L Nt

IOl s =@ = Ty

N e N, ¢ e R\{0}, ¢t > 1,

(1.4.1)
for some C” > 0, where for the second inequality follows by Stirling’s formula.
This procedure we will call enumeration and it will be the essential tool in
the proof of the results in Chapter 3 and Chapter 4.

We finish this section with following Theorem that generalizes properties
of Gevrey wave front set in the context of Gevrey ultradistributions. For
the proof of microlocal hypoellipticity author uses arguments of the theory
of pseudo-differential operators, rather than standard, used for WF 4 in [16].

Theorem 1.4.3. ( [35]) Let WF(u), u € D,(U), be the Gevrey wave front
set. Then
T (WF(u)) = singsupp, (u).

Moreover, if Pa(x, D) is partial differential operator of order m with analytic
coefficients, then

WE(Psu) € WFy(u) € WF;(Pyu) U CharPa(z, D). (1.4.2)



Chapter 2

Classes of ultradifferentiable
functions

In this section we introduce subclasses of smooth function whose definition
propose a new type of local regularity. They are different from any of Ko-
matsu’s spaces (see Chapter 1, Section 1.2), and therefore we need to adapt
standard arguments developed in [20] to our case.

In the first section we establish the basic properties of the sequences
M7e = p™? , pe N, >0, 0> 1, and since they control the derivatives of
functions, we are able to prove some standard results in our case. Although
it turns out that our sequence does not satisfy Komatsu’s condition (M.2)',
we are able to prove that our classes are algebras and that they are closed
under the finite order derivation. Moreover, they are nuclear.

Our classes contains union of Gevrey classes U;~1&;, and therefore thay are
non-quasianalytic. Moreover, we are able to construct a compactly supported
function in our classes, which does not belong to Uy~1D;. The main result of
this Chapter concerns the construction of certain (ultra)differentiable oper-
ators, and construction of classes that are classes that are closed under their
action. In particular, we construct classes of ultradifferentiable functions.

We also prove the inverse-closedness property. The proof is based on
standard argument based on Faa di Bruno formula (see [38], [37]). However,
it turns out that in our case we do not need additional properties of sequences
M7 other than logarithmic convexity. We use this property to construct a
function on our classes that does not belong to U;~1&;. In the final section we
give the definition of dual spaces, although the singularities of these spaces
will be analyzed in the following chapter using the methods of microlocal
analysis.

Some results from this Chapter are published in [29].

23
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2.1 Properties of sequences M "

The following two lemmas captures the basic properties of M7 = PP
pe N, 7>0,0 > 1, which we will use in the next sections.

Lemma 2.1.1. Let 7 >0, 0 > 1 and M} =p™* ,peZ,, My° =1. Then
there exist A, B,C > 0 such that

My7 < ACP 1p7 |17/ and  [p° |17/ < BM;. (2.1.1)
Proof. By p? < |p?| + 1 and p° < 2|p? |, p € Z,, we have

o7 < 7l < pf@pa DTL””/ T < e Tl Uy T

and the left hand side inequality in (2.1.2) follows from the Stirling formula.
The right hand side inequality in (2.1.2) follows directly from the Stirling

formula:

/o

|17 < (67W’J il Lp“J)T < Blp Ve < By

for some B > 0. [

Remark 2.1.1. Moreover we note that it 7 > 0, o > 1, M = p™ and
My? = |p°|'"/?, p € N, Then

MZE ~ (27)T/ @2~ AT o, (2.1.2)

This is obtain as consequence of Stirling’s formula and the fact that |p7| ~
p° as p — oo, which follows easily by noting that p” = [p”] + ¢,, where
0<e, <1,peN.

Lemma 2.1.2. Let there be given 7 > 0 and 0 > 1. Then there exists a
positive increasing sequence Cy > 1, ¢ € N, and a constant C' > 1 so that
M7 satisfies:

(M.1) (M77)? < M7 MYy, p € Zy

p+1’

(M2y M7, < Oy M®, p.q €N,

—_~—

(MQ) MT,G’ S CPU+QUMI7)'2071,UM;'2071,U; p7 q E N

pt+q

Proof. For the proof, we put 7 = 1 without loss of generality.
Note that for p = 1, (M.1) is satisfied. Further note that the second

—20

1
derivative of the function f(¢) =7 Int, ¢t > 0, is positive for t > e*@-D and
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we can conclude that sequence In M, is convex for p — 1 € Z . This implies
(M.1).

Note that if p = 0 (or ¢ = 0) conditions (M.2)" and (M.2) are trivially
satisfied. In the sequel we assume that p,q € Z...

—_~

For (M.2)" write 0 = n+ 0 where n € Z; and 0 < § < 1 with n =
lo],0<d<1,wheno € Z,,andn=0—1,0 =1, when 0 € Z,. Then by
binomial formula we have,

n n
+0‘§ +n5_|_620_|_ ()O’—k‘k)
(p+q) p+a)"(+¢) =p ;kpq
o n n— g n g — n n o
+ Z(k)p S <"+ 20 (7 4 p"7)
k=0
S pa+2n+1qapa—5’

where for the last inequality we have used that n =0 —d and 0 < 9§ < 1. In
particular,

(p+q) " Inp+q) <p”In(p+q)+2""¢p" °In(p+q). (2.1.3)

We estimate the first summand on the righthand side of (2.1.3) as

PIn(p+q) = p"(lnpﬂn(”%))Spalnp+p"‘1q
< p’lnp+qp. (2.1.4)

For the second summand of (2.1.3) we note that since Inp < Ap°, 0 < § < 1,
we have p < C?’, for some C' > 1. Thus we obtain,

p

< 277 In O 4 2" g7p" In(1 + ¢q) . (2.1.5)

Applying the estimates (2.1.4) and (2.1.5) in (2.1.3) and taking the exponen-

tials, (M.2)" follows.

For the proof of (ﬁ) we use well know inequality (p+q)° < 271 (p7+¢°)
to conclude

o oc—1,0 o—1,0
P+% " <(p+9* Tp+9* 7. (2.1.6)
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First term on the righthand side of (2.1.6) we estimate as follows

27 In(p+¢q) = 2"_1p"<lnp +1In (1 + g)) <2777 Inp
p
+ 20—1qp0—1 S 20’—1p0' lnp 4 20—1(p + q)o ]

Taking the exponentials we obtain (p 4 ¢)% #7 < p¥ '7¢2” ' #+0)7  Second
term in (2.1.6) we estimate in the similar way. O

Remark 2.1.2. Note that for fixed 7 and o condition (M.1) is standard Ko-

—~——

matsu’s conditions (and hence the notation). From the proof of (M.2)" it
is clear that M does not satisfies condition (M.2)". Natural extension of
(M.2) would be

Mo, < CPHMIOMT, C > 0,p,q € N. (2.1.7)

Our sequence fails to satisfy (2.1.7). To see that, suppose the opposite.
Without loss of generality we may assume that 7 = 1. Then, if we put
p=¢q#0in (2.1.7) we obtain

P < (Cip)*", peZ,, (2.1.8)

where C = 220% Taking the logarithm, (2.1.8) implies 2°'Inp < InCip
which is satisfied only for finitely many p € Z,.

—_~— —_~—

Remark 2.1.3. We would like to point out that (M.2) does not imply (M.2)’,

for fixed 7 > 0 and o > 1. To see that assume that M7 satisfies (M.2).
Then we write 271 = 1 + ¢, for some € > 0 and note that

M < Cp"Jrq" M2‘7_1T,0'M2‘7_17',0' — C«p"+q" MQ"_lT,O'MsT,UMT,U
p q q p p

p+q —

—_~—

for every p,q € Z, and some C' > 1. Thus, in order to (M.2)’ be fulfilled, we
note that for fixed ¢ € Z, and some constants C’,C” > 0 it must hold

CPHT MO MET < O

and hence it follows that M;™7 < C"° which is not true for p sufficiently
large.

However, we adopt the Komatsu’s notation since the corresponding prop-
erties of the sequence M»* would imply the desired properties of the spaces
from Chapter 2, similarly as in [20].

We will also use following technical lemma in our computations.
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Lemma 2.1.3. For >0 and o > 1 it holds

= eoe ,h > 0. (2.1.9)

Proof. Set f(r) = :‘TL:U, r > 0. Clearly, f reaches it’s supremum and, by the
methods explained in [13], it is sufficient to find the max,~oln f(r). By the
standard differential calculus, note that (In f(r)) = rY(¢Inh—70lnr—7),
r > 0, and hence the only stationary point of In f(r) is ro := hre=°. Thus,

max,~oIn f(r) = f(ro) = h* Z. This implies that max,~o f(r) = e="". O

Remark 2.1.4. In the theory of ultradifferentiable functions, for a given se-
quence M,, p € N, the function T given by T'(h) = sup, hPTJ‘ZO, h >0, is
called the associated function of the sequence M, p € N (in [20] the function
Sup,,~o In hf\/[]\fo is considered instead of T'(h)). It plays an important role in
the study of the spaces of ultradifferentiable functions and their dual spaces.
Notice that Tw given by (2.1.9) is not the associated function of the se-

quence M. It is known that the associated function 77 (h) of the sequence

p!™, 7 > 0, satisfies the estimate of the form Ciec"” < T,.(h) < Cyech™ | for
some C,Cy > 0, and for every h > 0, cf. [13, Chapter IV.2]. This implies
that

C(TL(hT)Y7 < T,y (R) < C"(TL(h7))H°

for some C',C" > 0, h > 0 and for any given 7 > 0, o > 1.

2.2 Test spaces

Let us introduce our basic spaces. Fix K CC U and h > 0. Smooth function
¢ on U belongs to Banach space &;, 5 (K) if there exists A > 0 such that

0% (z)| < AR a7 o e N9 (2.2.1)

Norm is given by

_ 0°¢(z)|
] |5T,g,h(K) = 5611£d 2161113 W ;

(2.2.2)

and we immediately obtain following embeddings

Erom(K) =& oan(K), 0<hi <hy, 0<7 <7, 1<01<0,.
(2.2.3)
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Remark 2.2.1. When o = 1, we have & 1,(K) = W H(K). For more
information about classes £{P'" 1 (K) see [20].

Let DX, be the set of functions in &, ,,(K) with the supports in K.

T,0,h
Then, in the topological sense, we set
5{770'}(U) - I&H hﬂ gT,O’,h<K)7 (224)
KccU h—oo
Eroy(U) = lim lim & ,p(K), (2.2.5)
KccU h—0
D{S’,o‘} - hﬂ ng,hu (226)
h—o0
Dfrpy = im DF, (2.2.7)
h—0
D{T,U}(U) = hg Df(m—p (228)
KccU
Diroy(U) = lim D . (2.2.9)
KccUu

These spaces are l.c.s., and their topology will be discussed in the next sec-
tion. We will use the notation &, ,(U) for £ 51 (U) or £y (U) and D, ,(U)
for Dy, 41 (U) or Dir)(U) (resp. D, (U) for Df ,(U) or D, (V).

T,0)
Remark 2.2.2. From Lemma 2.1.1 it follows that the norms (2.2.2) and
~ _ |0%¢()]
1911z, .0y = sup sup s oo < 00 h >0, (2.2.10)

also can be used in the definition of &, ,(K). Moreover, for ¢ = 1 classes
given with (2.2.4) (resp. (2.2.8)) and (2.2.5) (resp. (2.2.9)) coincides with
Komatsu’s classes £ HU) (DY HU)) and EP(U) (DP7)(U)), 7 > 0.

Remark 2.2.3. Let us show that in the definition of the classes &, ,(U)

10%0|o0,rc := sup [0%¢(x)|
zeK
that appears in (2.2.2) can be replaced by

107l v (xc) i—/ 0°p(x)| dz, p>1.
K

Let K CC U be arbitrary but fixed. Note that for every h > 0
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“O|| e k)
sup 120ty o, (2.2.11)

aena Bl aTlel” =
for some €7 > 0 which depends only on K. This follows directly from the
simple inequality [|0%||zox) < |K|VP[|0%| 00k, Where | K| ;:/ de.

K
For the converse inequality we prove that for every h > 0 there exists
positive constants ¢, and Cs such that

10°¢ll e ()

W, (2.2.12)

||¢||57,U,Chh(K) < Cy sup
aeNd

We use the Sobolev embedding theorem (see [42]). For any o € N? choose
B € N such that |8] = |a| +d/p+ 1 for p > 1 or |3] = |a| +d for p = 1.
Then the Sobolev theorem implies that

10°Gllc.ic < ClO Loy, € >0,p 1.

Moreover, for o € N¢

10°0(@) oo 10°0(@)lliriey AT |BITAT
(Chh)\a|f’|a|7|a\‘7 - h\5|0|/8|7'|/3|0 (chh)‘a|g|a|7|a‘g
||a/5¢(x)||Lp(K) hIBI” el
= CTRBEBET (k)

(2.2.13)

where for the second inequality we have use the (M.2)" property of the se-
quence M?. Now if we choose ¢, = max{C", C”hQJfl}, noting that and take
supremum with respect to a € N? noting that 8 depends on a, (2.2.13)
implies (2.2.12) by observing simple inequalities

WA < Cop® N p>1, BT < crplel” 0 < ho< 1,
for suitable constants Cj, C; > 0.

Remark 2.2.4. By standard arguments (see [20]), spaces in (2.2.4) and (2.2.5)
can be represented as inductive (resp. projective) limits of countable family of
spaces as follows: Let {K;};en be the sequence of compact sets with smooth
boundary such that K; C K;,1,7 € N and U;enK; = U. Then, for j € N,

8{7,0'}(U) = @1 h_l’l;l gT,a,j<Ki)7 D{T,o}( ) lg lg D‘rg])

1—00 J—00 1—>00 J—+00
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Eroy(U) = lim lim & 51/5(K,), Doy (U) = lim Lim DF7 .

1—00 J—00 1—00 J—00
Following proposition describes the basic relations between our classes.

Proposition 2.2.1. Let o1 > 1. Then for every oo > o1 and 7 >0
lim &5, (U) = lim &, (U). (2.2.14)

T—00 T—0t

Moreover, if 0 < 7, < To, then for every o > 1 it holds

5{7'170'}<U) — 5(7’2,0’)<U) — 5{7'270'}((])- (2215)

In particular, for o > 1

lim Er0y(U) = lim Eroy (V). (2.2.16)
im oy (U) = lim Eqro(U). (2.2.17)
i e~ i o

Proof. Since in (2.2.16) and (2.2.17) we observe unions and intersections of
Eiro1(U) (resp. £y (U)) with respect to 7, the equalities follow immediately
from (2.2.15).

To prove (2.2.14), take arbitrary h > 0, 7 > 0 and € > 0 and set oy =
o1+¢. Let ¢ € & 5 n(K) for some 75 > 0 and K CC U.

We begin by noting that

Blel | ool

Holleropncro < o Rl oIl [10lerg.0, i) (2.2.18)

Further observe that there exists A, > 0 such that 7optInp < A 7op°tte =
A.7op°2, and thus p™P”" < e4<70P"* (note that A, blows up as ¢ — 07). Now,
for C' := e and ¢}, := max{1/h, 1}, we obtain

plalt |a‘T0|a\”1 (C cp)lel”

I PYE TR e R YT

- - 5]
< Trgy(Cep) = e72 @7 (2.2.19)
aeNd h

where T}, is function from Lemma 2.1.3. Now (2.2.14) follows from (2.2.18)
and (2.2.19).

Note that second embedding in (2.2.15) is trivial. For the proof of the
first embedding, let ¢ € &, ,,(K) for some k > 0. We note that

19 < sup M lalm”
Eraion () = SUP Tlal” || relal”

olle,, o), hok >0,
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Moreover,

. kel o nlel”
werve WT el =

wherefrom for any given h > 0 we obtain

19lle.y o n) < ClISlle, o pix)s

for some C' > 0. This proves the proposition.

< Trz—ﬂ,a(k'/h) = G%w/h) e

In the topological sense, let us introduce the following notation

Eov o(U) i= lim &, (U),
T—0t
goo,cr(U) = @ gT,U(U)u
T—00
Err(U) = lim £ ,(U),
o—1t
£, () = lim &.,(U),
4
50+71+(U> = m 50+70(U),

Enct a4 (U) == lim Enco(U),

o—1+

o—1t
£0+,00(U> = hﬂ 50+,U(U>7
£ n(U) = Tim En o (U),
ed
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(2.2.20)

(2.2.21)

(2.2.22)

(2.2.23)

(2.2.24)

(2.2.25)

(2.2.26)

(2.2.27)

As immediate consequence of Proposition 2.2.1 we obtain the following

corollary.

Corollary 2.2.1. We have the following strict embeddings

hﬂ gt(U) — 80+71+(U) — 500’1+(U) — gO*,oo(U) — goo,oo(U)

t—o00

(2.2.28)

where £(U), t > 1, denotes the Gevrey class of Roumieu or Beurling type.
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Proof. The embedding lim &(U) < &+ 1+(U) in (2.2.28) follows directly
t—00

from Proposition 2.2.1 when o5 > 07 = 1. Note that embedding &+ 1+ (U) <
Eson+(U) is trivial. Further note that u € £, 1+(U) implies that for every
o > 1 and some 70 > 0 u € &, ,(U). Fix 0y > 1, and let 03 > 01 > 1. Then
following embeddings holds

8T0701<U) — 80+702(U) — 50+,00(U)a

where first embedding follows from (2.2.14). Since the embedding Ey+ o (U) —
Eooo(U) is trivial, the assertion follows. O

Note that classes &, ., for every 7 > 0, 0 > 1 are larger then Gevrey
classes but their inductive limits with respect to 7 and ¢ are continuously
injected in C*°(U). In particular, they are non-quasianalytic. The precise
result is given in the next section.

2.3 Compactly supported test functions

In this section we construct a compactly supported function in D, . (U),
U is an open set in R?, following the ideas presented in [16], Sections 1.3
and 1.4. Clearly, compactly supported Gevrey functions are in D, (U).
The purpose of this section is to construct a compactly supported function
in Dy, 51 (U) which is not in D(U), for any t > 1.

We note that it is enough to show the statement for some neighborhood
of origin. See Theorems 1.3.5. and 1.4.2. in [16] for details.

Let us start with the following lemma.

Lemma 2.3.1. Let 7 > 0, 0 > 1. The sequence M7 = p™" p € N satisfies
Komatsu’s condition (M.3)'. In particular,

d I <. (2.3.1)
.]\4‘p7

p=1

Proof. From 2 < (1 + %)p < e and p?In(1 + é) =p° tIn(1 + %)p, it follows
that

1
TIn2p° ' < 7p°In <1 + —) <7’ peZ,. (2.3.2)
p
This implies
o—1 1 Tpa o—1
o < (1 n —) <et peZ,. (2.3.3)
p
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Since p° > (p— 1) 1p=(p—1)° +(p—1)""L, p € Z,, the left hand side of
(2.3.3) we gives,

— (p— 1)V — (p—1)e”
Z PP’ = Z T((p—1)7+(p—1)771)

p=1 p=1

which proves the lemma.

We immediately obtain the following corollary.

Corollary 2.3.1. Let there be given 7 > 0 and o > 1. Then there exists
a compactly supported function ¢ € Egr o (U) such that 0 < ¢ < 1 and

Jpaddz =1.

Proof. By the Denjoy-Carleman theorem (see Theorem 1.3.8. in [16]), condi-
tions (M.1) and (M.3)" implies the existence of compactly supported function
in Komatsu’s space &£ {”Tpc}(U ), for the appropriate set U. Since the constant
h in (2.2.1) is taken to the power |a|”, a € N%, classes &, ,1(U) are larger

then £ }(U), and therefore classes Dy, (U) are nontrivial. However, our
goal is to construct a function in Dy, (U) which is not in D(U), for any
t > 1. We apply methods explained in Theorem 1.3.5 in [16], and to make
the conclusion clear, we repeat some of the steps for our case.

We start with one dimensional case. Let y be the characteristic function
of interval (0,1), and for ¢ > 0 let H.(z) = tx(%). Clearly [ Hedx =1 and
we recall that

(H. % f)( / £(1) dt G nd (CintO) (2.3.5)
c
for any continuous function f on R.
Further we set
1
ap = p €N,
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and note that (2.3.4) imply

To' B 1
— T 1
MT 0'1 <277 W =a, pE N. (2.3.6)
p+

Put

U (T) = Hoy * Hyy -+ % H,,,, m € N.
Then, by [16, Theorem 1.3.5] it follows that the sequence {u,;,}men has a

uniform limit v € C*(R) supported in [0,a] where a = ) a, < oo, and
p=0
Jrudr=1.
Next we estimate the derivatives u'?) , p < m — 1. After applying p
iterations of (2.3.5) and by using (2.3.6) we obtain

H, *---xH, (x)— Hy % x H, (x—ay)|
(p) _ ‘ ap am ap m k
) (z) H -
p—1 1
< QPH—sup\Ha *Hy -+ % Hg, (2)]
Ak zeR !
k=0
p—1 1
< (T2 st @I T] [ Hotwiae)
e Oak zeR k=p+1
p T,0
1 M, MY
— 2p _<2p +1:2 p+
Hak_ HM’TU M(’;’,O’
k=0
= X(p+1)"PHYT < P pm” (2.3.7)

where we used (M.2)’ for the last inequality.
From the uniform convergence it follows that the derivatives of u also
satisfy (2.3.7), so that u € D‘[{OT‘Z]}
Next, we extend this to higher dimensions by putting () = u(x + a/2)
and ¢(z) = []0_, w(xy) for z = (21,7,...,24). Since the sequence M7
fulfills the (M.1) property, we obtain

aa¢ | _H |8akw T | < HCO% ap, S Clal"|a|ﬂa|”’
o= (ozl,ozg,...,ozd),

wherefrom ¢ € Df_, with K = [~a/2,a/2]".



Compactly supported test functions 35

Although K does not have a smooth boundary, by [16, Lemma 1.4.3] one
can find appropriate open set U and conclude that ¢ € Dy, 51 (U).
At the same time ¢ & D;(U), for any ¢ > 1. In order to use the same

construction and obtain a function in U D,(U) one should choose sequences

t>1

1t 1
{ap}pen of the form a, := b = for some t > 1, p € N (see

p+1F (p+ 1)
Theorem 1.3.5. in [16]).

: fn 7 {r'}
Then the corresponding function u belongs to UD[O,a] ,u(x) #0, z €

t>1

(0,a), where a = Zﬁk. The key observation is that we would use (M.2)
k=0
—_~/
property of the sequence p!*, ¢t > 1, instead of (M.2) in (2.3.7).
Let us explain that a < @, that is for every o,¢t > 1 and 7 > 0 there exists
po € N such that a, > a, for every p > po. In fact, we need to show simple
inequality

Cp+1))" " > (p+1)', p>po. (2.3.8)

Taking the logarithm we note that

" ' (In2+In(p+1)) > 7p° 'In(p+ 1) > tin(p + 1),

for p > [(t/7)Y@ V] := py, and (2.3.8) follows. If we set 7 =t > 1, then
inequality (2.3.8) holds for any p € N and hence we conclude that a < a.
In particular, u # u for two reasons: u vanishes outside [0, a] while @ # 0
on (a,a), and the estimates on derivatives of v and u are different (see the
calculation in (2.3.7)).

We refer to [16, Lemma 1.3.6] for a discussion about the precision of the
presented construction. ]

Remark 2.3.1. Since the construction presented in Lemma 2.3.1 and Corol-
lary 2.3.1 holds for every 7 > 0 and ¢ > 1, by (2.2.15), it follows that ¢ from
Corollary 2.3.1 also belongs to Dy, ,)(U) for some choice of 7 > 0 and o > 1.

Remark 2.3.2. Let us show that the classes D, ,(R?) are closed under trans-
lation and dilatation. In fact, without loss of generality we may assume that

¢ e Df;?c where K,, = B,(0) is closed ball of radius r centered at origin.

The conclusion that T, ¢(z) := ¢(x — x9) € ¢ € Df;zg, o € RY, is

straightforward. For A € R\{0} set Dy¢(x) := ¢(A\x). To prove that

Kr

D D X for X = max{1,\} ob
\p(x) € - onc for = max{1, A} observe
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sup |0°Dyop(z)] = sup |[N¥p(Az)| = sup |N¥o(y)] < ANC) ol e,

r€Krg z€Krg yEKr,
X Py

for « € N? and the conclusion follows. In particular, if ¢ from Corollary
2.3.1 is constructed on B,(0), 7 > 0 then the function ¢(x) := ¢(5™) €

Eror (Bar(o))-

2.4 Topological properties

Although our sequence does not satisfy Komatsu’s condition (M.2)’, in this
section we show that the spaces in (2.2.4)-(2.2.9) are nuclear. We are fol-
lowing the ideas in the proof of [20, Theorem 2.6 |, and consider only the
Roumieu case and the Beurling case follows by the similar arguments (see
Remark 2.4.1).

Let us show that for every h > 0 there exists £ > h such that identity
mapping X — Y is quasi-nuclear, where X = &, ,,(K) and Y = &, ;1 (K)
(resp. X = D, andY = DE ). This means that seminorms on &, ,(K) :=
lim Eron(K) (vesp. DE, = lim DE, ) are prenuclear, cf. [39, page 177].
h—o0 h—o0

By [39, Theorem IV 10.2] this implies that &, ,(K) (resp. DX,) is a nuclear
space.
The classes under consideration can be represented as projective and in-

ductive limits of countable family of spaces, c¢f. Remark 2.2.4. The nuclearity
of & ,(U) and D, ,(U) then follows from [39, Theorem III 7.4].

Theorem 2.4.1. Let there be given 7 > 0 and o > 1, and let K be compact
in R?. Then the spaces &, ,(K), DX, are nuclear.

T,0

Proof. We follow the idea presented in [20]. Let ¢ € &, ,(K) and let u,;,
a € N9, j € Z9, be the sequence linear functionals on &, ,,(K) given by

(8%5, ’l}j>Cd+1(K)
klol” ||l

(s Uaj) = (2.4.1)
where v; € (C(K)) is defined by the following procedure:

Choose | > 0 such that K is contained in the interior of L = [—[,1]¢ and
let C4t1(7L) be the space of all d + 1 time differentiable functions on 7L
with supported in L. Let B € L(C(K),C¢(nL)) be the (Whitney’s)
extension operator such that Bf|x = f and let t; € (C4*! (7 L))’ be given by

(ft)) = / Tweitay, ezt



Topological properties 37

From [20, Lemma 2.3] it follows that the identity operator from C4*(K) to
C(K), given by

f(z) = 1) Z 67”6]” (Bf,t; >Cd+1 y TE€ K,

jEZ
is quasi-nuclear. In particular, if we put v; = t; 0 B, j € Z%, it follows that
D willcagoy < oo, and [ fllog) < Y 1 vconml - (24.2)
jezs jeZd

By (2.2.2), (2.4.1) and the righthand side of (2.4.2) we obtain

||¢||Y = Sup SuUp - —=r -5 km\ |O¢|T|O‘|U = Z Z ’ ¢ uf’f]

dzeK
aENTT€ aeNd jeZd

It remains to show that Y [|ua, ;|| x < oo.
a,j

Note that for |a| > 1, € N4 and h > 1, by (]\/[2/)’ we obtain

hlotAI” | 4 B|Tle+BI”

{0 tag)| < Sleges KT [Tl 191l eyl
B Ia|”|a + B|letBI”
" jprdn Klol” || lel” 19llxllvsllcenaoy

lal”

C ol x 1oy s oy (2.4.3)

< (T

for some C; > 1 which includes constant from (m’ .

For 0 < h < 1, note that hle*8l” < Rl and thus by (M.2)" it follows
that

sup

7. d
1B|<d+1 kled” || rled”

k

Now we choose k > 0 such that k > max{2Ch, 204k} so the estimates
(2.4.3), and (2.4.4) imply

le|”
> Slluasle < 3 3 (5) llicuy < oo

a€eNd jeZd aeNd jeZd

W o+ P (Y e o

We conclude that for every h > 0 there exists & > h such that the identity
mapping & o4 (K) = Erox(K) (resp. DE , — DX ) is quasi-nuclear, and
the theorem is proved. O]
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Remark 2.4.1. Note that from the proof of Theorem 2.4.1 it is clear that

form every given k£ > 0 there exists h < k such that the identity mapping

Eron(K) = Eron(K) (resp. DE , — DE ) is quasi-nuclear. This implies

the nuclearity of the spaces lim Eron(K) (resp. lim DE, ), and hence the
h—07+ h—0*+

results for the Beurling case follows directly.

2.5 Algebra property

Since M7 = p™", 7 >0, 0 > 1, satisfies properties (M.1) and (M.2)', the
following proposition implies the algebra property as well as stability under
finite order derivation.

Proposition 2.5.1. Let U be open in RY, 7 > 0 and o > 1. Then spaces
E-o(U) are closed under the pointwise multiplication of functions. Moreover,
they are closed under the finite order differentiation.

Proof. Let K cC R? and for h > 0 set ¢, = min{h,h?" '}. Then for
¢, € Er o0, (K), by Leibniz formula we obtain

A e i il
B (2h)1el7 ||l
||¢H57,U,ch(K)Hngr,U,ch(K)' (251)

Further note that for h > 1, ¢, = h and for 8 < «v it holds | — |7 + |B|7 <
|a|”. Then (M.1) property of the sequence M implies

66, omir) < sup Z(

d
aeN B<a

> (5) el Wl | S L PP
=\ (20 [T - (nyer

ForO0 < h <1,¢, =h* ", andfor 8 < a, (1/h)17 < (1/h)¥ He=Bl7(1 /)2 "18I",
Combining this with (M.1) we obtain

> <a> e e o — e pT 2l
=\ @h)T [al o7 =g =5

For the proof of closedness under differentiation fix 5 € N¢, and for h > 0

!/

set ¢, = max{h, hQU_l}. Then for z € K, (M.2) property of the sequence
M7° implies
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(0 o(2)| < ol P |a + BTt (2.5.2)
< Nl@lle, 0 CI (Cle) e, (2.5.3)

—/
where €} = max{1,h* '} and Cjg is constant that appears in (M.2) (see
Lemma 2.1.2 for ¢ = |f|). This implies that for every h > 0 there exists

Chp > 0 such that ||0°¢||g 5) < Chpl|9lle, (k). Hence, the state-

ment follows. [

T,U,C‘mc/h

Remark 2.5.1. Let P = Z ao ()0 be the partial differential operator of
|| <m

order m with a, € & ,(U). Then, by the proof of Proposition 2.5.1, it

follows that P : & ,(U) — &;,(U) is continuous linear map with respect to

topology of spaces &;,(U) (see (2.2.4) and (2.2.5)). Moreover, if one of the

function in the proof of Proposition 2.5.1 is chosen from Dfa, then clearly

¢ vanishes outside of K, and hence ¢ip € DX,. In particular, if a, € DE,

7,0
la| <m, then P : & ,(U) — DX, is continuous linear operator.

2.6 Ultradifferentiable property

In this section we study the continuity properties of certain ultradifferentiable
operators P(z,0) acting on &, ,(U). Recall, if the defining sequence M,
fulfills the condition (M.2)" then the corresponding test function space is
closed under the action of ultradifferentiable operators. Since the sequence
M7 does not satisfy (2.1.7) the space & ,(U) can not be closed under the
action of P(z,0). However, if we consider

goo,o'(U) = hﬂ S(T,U)(U> = hﬂ 5{7,0}<U)7

T—00 T—00
then the following results hold true.

o0

Theorem 2.6.1. Let U be open in R4, 7> 0 ando > 1. If P(9) = Y. a,0"
|ee|=0

15 a constant coefficient differential operator of infinite order such that for

some L >0 and A >0 (resp. every L > 0 there exists A > 0) such that

Llel?

|aq| < AWa

(2.6.1)

then Ex »(U) is closed under action of P(0). In particular,
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PO): &,U)— Eo1,(U), (2.6.2)
is continuous linear mapping, where &, ,(U) denotes Eq;. oy (U) (resp. Egr01(U)).

Proof. Take ¢ € &, ,,(K) for h > 0 arbitrary but fixed. Then, for z € K,
using (M.2) we obtain

el

el
< A||¢||8T,o,h(K)W

< Al|@lle.., ) (LO) 1 (Cey) A7 g7 117 (2.6.3)

07(aa0¢(x)] < Alldlle, .00 Rt (o gl)rieter

pletBl7 Clel” Q1B | | 727 el | g 72 1A

where for the last inequality we have used that for o > 1

a7 + 1817 < o+ 8|7 < 277 (|o]” + [B]7)
with ¢, = max{h,h*” '} and C' > 1 is the constant that appears in (M\E)
(see Lemma 2.1.2).
Note that ¢, = h when 0 < h < 1 and ¢;, = %"~ when h > 1. Hence, for
the case E(uo0)(U) (resp. E(oc,o}(U)) we can choose h > 0 (resp. L > 0) such
that

LCc; < 1/2. (2.6.4)

Since the series Z (1/2)!%” is convergent, taking the sum with respect
|| =0
to o and the supremum with respect to 5 and = € K from (2.6.3) it follows
that

1P©)olle, 01, 00, ) < NIl i) (2.6.5)

for some C" > 0 and the Theorem is proved. ]

,0,Ccyy

Since M7 = p™ . 7 >0, 0 > 1 satisfies (M.1) we can prove the more
general statement than one in theorem 2.6.1. Let us introduce the following
definition.

Definition 2.6.1. A differential operator of infinite order

P(2,0) = > an(2)0” (2.6.6)
o] =0
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is said to be an ultradifferential operator of class (7,0) (resp. {r,0}) on an
open set U C R? if coefficients a,(x) belongs to &0 (U) (resp. Eqroy(U) )
and satisfies the following condition: for every K CC U there exists constant
L > 0 such that for any A > 0 there exists A > 0 (resp. for every K CC U
there exists h > 0 such that for any L > 0 there exists A > 0) such that,

Llel”

sup |0%aq(z)] < ARP’ WW’B‘UW,

zeK

a, B e N4 (2.6.7)

We say that P(z,0) is of the class 7,0 if it is of the class (7,0) or {r,0}.

Remark 2.6.1. We note that (7,1) (resp. {7,1}) are Komatsu’s ultradiffer-
entiable operators of class (p!™) (resp. {p!"}).

Theorem 2.6.2. Let 7 >0, 0 > 1, and P(x,0) be a differential operator of
class (1,0) (resp. {r,0}). Then Ex,(U) is closed under action of P(x,0).
In particular,

P(x,0): &E,(U)— Ero1,(U), (2.6.8)

is continuous linear mapping, where £ ,(U) denotes Eg;(U) (resp. Er-01(U)).

Proof. Let an, ¢ € E,n(K), a € N for h > 0 arbitrary but fixed. Then,
by (2.6.7), for x € K we obtain

B lag(z)0%(x Bﬁﬂaxa“x
1 (aa(0)00(a))] < Z@‘a @) ()

v<B

Ao, , 000 Z (5) W7 (18 — A |)71B

v<B

IA

Ller lat[7 Tlaty|”
Wh (lv + 1)

lal”

L I
Alldller.o 0 1 rmz=rra (o + A1) o

Z <6> plB=Y1" +la+|?
~

v<B

< Aglle,.. ) (CL)C CPI7|812 A0y, 5. (2.6.9)

IN

—~

where we have used (M.1)", (M.2) properties of the sequence M** and Cj, 5 =

/8 _ o o
E pIB=N" +la+v17
(”Y)

v<B
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To estimate C}, g, note that for 7 < j3,

18 =7"+la+" 2

——(lal” + 181,

and hence ) )
Chp < 2|/3|h207—1\04|ah207_1|/3|0’ 0< h<1.

For h > 1 and v < 8 we note that
8= +la+" <la+ 81" <277} (|a]” +|8]7).

This implies that

Chp < 2|5Ih2"‘1|a\h2"‘1|5|’ h>1.

Now if we put ¢, = max{hsz%l, A2 7'}, from (2.6.9) it follows that

10 (aa(2)06(2))] < Bllélle..., e (enCL) T (26,C) 7 57197 (2.6.10)

Since ¢, = hw%l, 0<h<1andc, =h¥ " for h > 1, we can choose
h >0 (resp. L > 0) such that LC¢, < 1/2. Taking the sum with respect to
a € N? and supremums with respect to 3 € N¢ and z € K, by (2.6.10) it
follows

1P(2,0)¢lle, s, e, ) < C'lIDle, i)

for some C’ > 0 and this completes the proof. ]

2.7 Inverse closedness property of classes & ;)

In this section we prove the ivnverse-closedness property of our classes E(; 5} (U).
We use this result to construct a function that does not belong to any of the
Gevrey classes &, 7 > 1, but it is in our class &, for some 7 > 0 and
o> 1.

We say that a l.c.s. of smooth functions on U, A C C*(U), is algebra if
pointwise multiplication of functions is continuous operation from A x A to
A. Moreover we assume the A is unital, i.e., it contains neutral element (in
particular, it contains function ¢(x) = 1, = € U). We recall the definition of
inverse-closedness property of algebra A.

Definition 2.7.1. Algebra A is inverse-closed in C*(U) if for any ¢ € A
1

for which ¢(z) # 0 on U follows that — € A.
¥
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Remark 2.7.1. Note that Proposition 2.5.1 implies that our classes ¢, ,3(U),
7 >0, 0 > 1, are algebras. It is consequence of the property (M.1) of the
defining sequence M7 = p™”. Tt is well known (see [21], [20]), that spaces
EWT 1> 0 are also algebras of smooth functions.

In the sequel we introduce the notion of almost increasing sequences.

Definition 2.7.2. A sequence M,, p € N, of positive numbers is almost
increasing if for some C' > 0, M, < CM, when p < g.

Following result that concerns almost increasing sequences will be used
in the following Chapters.

Lemma 2.7.1. [19] Let M, p € N, be the sequence of positive numbers that

1/p

satisfies property (M.1). Then the sequence (%) is almost increasing if

and only if there exists C > 0 such that for all 7 € N and all k; € N it holds

M,

M
! <O k' ’
i=1

J
where k = Z k;.

i=1

M;’U 1/p g71_1 o
Remark 2.7.2. Observe that ( > ) =p? , where M7 = p™" 7 >
b

M N\1/P
0, o > 1. Hence we conclude that (—pp> is almost increasing, since
p

prU_lfl < qqu_lfl’ qg>p> ((1/7)1/(071)1.

Moreover, by Lemma 2.7.1 it follows

Hki’% < orkil Ry k il kT (2.7.1)

for k = i k;.
i=1

We recall ( [38]) following result concerning inverse-closedness of C'arleman
classes, whose definition coincides with Komatsu’s definition of &Me}(U)
(classes of ultradifferentiable functions of Roumieu type) (see [20]).

Theorem 2.7.1. Let EMH(U) be Komatsu’s class of smooth functions for
which defining sequence M,, p € N, satisfies property (M.1). Then the
following conditions are equivalent:
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1/p
a) lim MY? = 0o and (—;’) s almost increasing.
p—oo P p

b) Algebra EMeY(U) is inverse-closed in C>(U).

Remark 2.7.3. We immediately note that Gevrey classes, including classes of
analytic functions on U, EP"HU), 7 > 1, (M, = p!™) are inverse-closed in
C*>(U). Also note that Theorem 2.7.1 does not hold for P HU), 0 < 7 < 1,
which consists of entire functions, since defining sequence fails to satisfy 3.
condition.

However, since our classes are larger then Komatsu’s classes & {prU}(U )
it turns out that we do not need to impose any additional conditions to
sequence M7,

In the proof of the main result in this section, we will use the generalized
version of Fad di Bruno formula presented in [22] so we fix the notation. A
multiindex o € N9 is said to be decomposed into parts pi,...,ps € N¢ with
multiplicities mq, ..., mg € N, respectively, if it holds

Q= Mup1 + Mapa + - -+ 4 Mgps, (2.7.2)

where m; € {0,1,....|a|}, |pi| € {1,...,|a|} for i € {1,...,s}. Note that
s < |a| and the total multiplicity m, given by m = my +- - -+my, also satisfies
m < |al.

Moreover if p; = (piy,-.-,pi,), ¢ € {1,...,s}, we order the parts in the
following way: p;, << p; when ¢ < j if and only that there exists k& €
{1,...,d} such that p;, =pj,,....,pi_, = pj._, and p;, < pj,-

The list (s,p,m) is called the decomposition of a and the set of all de-
compositions of the form (2.7.2) is denoted by .

For smooth functions f : U — C and g : V — U, where U,V are open in
R and RY, respectively, the generalized Faa di Bruno formula is given by

S

7°(f(g)) = a! (sgn:)eﬂ £m)(g) kr:[l %ﬂ(}%aﬂg)m’“. (2.7.3)

We illustrate the notation with the following example.

Example 2.7.1. Let d = 2 and consider the partial differential operator
3

5 In particular, o = (1,2). Then the simple calculation gives

o oy 9 v (99 Pg dg D
Ox10x3 (9) = F(9) 01073 1(9) (8901 03 + 28902 89018x2>
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w99 (09 \?
+f (9)8_3:1<8_x2> : (2.7.4)

Observe that there are four summands in (2.7.4). They correspond to the
following elements of 7 in (2.7.3) when a = (1,2) (respectively):

(1,2)=1-(1,2), (m=1)
(1,2) =1-(0,2) +1-(0,1), (m=2)
(1,2)=1-(0,1)+1-(1,1), (m=2)
(1,2) =2-(0,1) +1-(1,0), (m=3).

(
dg\1/ 0O? 1
In particular, we read 1-(0,1)+1-(1,1) as ( J ) J ) , and the

corresponding coefficient is equal to

1 1\t 1\
121 —
121!1!(0!1!) (1!1!) =2

and this is in agreement with (2.7.4).
For the complete proof of (2.7.3) and more examples we refer to [22].

Remark 2.7.4. Observe that cardnm < (1 + |a|)*™. In particular, each m;,
1 < i < s, may take values form 0 to |«| which gives |a| + 1 possibilities.
Moreover, if p; = (pi,,...,pi,), 1 < i <s, for each p;,, 1 < k < d, we also
have|a|+ 1 possibilities which is in total (Ja|+1)?. Since s < |a| we conclude
that

cardm < |af(|af + 1) < (1 4 |a|)*2.

Now we can prove the following theorem.

Theorem 2.7.2. Let U C R? be open. Classes Eq-py(U), 7> 0, 0 > 1, are
inverse-closed in C*(U).

Proof. For the proof we use the generalized Faa di Bruno formula given by
(2.7.3). Let K CC U be arbitrary but fixed. Further let ¢ € &, 5 (U), and
moreover ¢(z) # 0 for x € U. Since K is chosen arbitrary, it is sufficient to
prove that

sup |0” <$)| < ARV |07 0 e N (2.7.5)
for some A’, h' > 0.

In (2.7.3) set f(z) = i, x # 0. Since f™(z) =
observe that for v € K

(—=1)™m!

pus] , m € N,
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8“(@)20[! 3 ((gb_(g)nﬁ k:m;!(]%apkqs(x))m’“, (2.7.6)

and therefore

S

TGl Y ey L Gl

(s,p,m)E™ k=1
(2.7.7)
Since |¢(z)| > C for x € K and m = Y_;_, my < |a| observe that

m!

ma!...mgl](p(x))|mFT
for suitable constant C' > 0.
Moreover, for ¢ € &, (U) it follows that

< omtt < ol (2.7.8)

0P p()| < AR |pe TP 1 <k < s, (2.7.9)

. S .
and since o = ;| mypg, We obtain

s d s d
D mlprl =D ) mup, =Y a; = lal. (2.7.10)
k=1 Jj=1

=1 k=1

Now by (2.7.9) and (2.7.10) we have

S

H <i|8pk¢(x)|>mk < ﬁ (Ah|pk“7‘pk|7-|pk|a)mk

|
1 PR k=1

AT (ha|“ya|fla|”1)m’“'p’“'

k=1

IN

— Al (h\awﬂmmav*l
= (AR)lI7|a|Iel, (2.7.11)
Finally, using (2.7.12), (2.7.8) and (2.7.11) we obtain

)Zi_l mp|p|

S

1 m! 1 mp
0% — < Jal! — 0Pk p(x
| (¢(m))| o] (s,p,Zm)Eﬂ mal...mgl|(p(x)) [T 1}_[1 <pk!| ( >|)
< Ah|a|"+1’a|7—|a\"a!<|a| + 1)d+2
< A/h’|a\‘7+1‘a’7|a\”’
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for suitable A" > 0 and A" > 0, where we have used the bound for number
of terms in (2.7.3) (see Remark 2.7.4), and the last inequality follows from
o(Ja| + 1D)H2 < |afdtlel+t < 0"l for some C” > 0. This completes the
proof. O]

Example 2.7.2. To end this section we use inverse-closedness arguments to
construct a function ¢ € ;1 (U), 7 > 0, 0 > 1 that does not belong to

U E:(U), on some open set U, where £, 7 > 1 are Gevrey classes.

T>1
In Section 2.3 we have constructed a compactly supported function ¢ €

DE;%ZG/ 2l where
= o 1
a = Qp, a,=2""° 1 T AN o —1
pz; S (p+ 1)

whose all derivatives vanishes at the end points and ¢(x) # 0, z € (—a/2,a/2).
We also concluded that

1T
Ve DT s (2.7.12)
T>1
where D[{f Z/}Za jop T > 118 space of Gevrey functions with support [—a/2, a/2]
(see the proof of Corollary 2.3.1).

1
Let ¢(x) = @) x € (—a/2,a/2). Then by the calculation done in the

proof Theorem 2.7.2 (for d = 1) we conclude that for every K CC (—a/2,a/2)
it holds

sup [ (z)] < AWK, ke N. (2.7.13)

zeK
for some A,h > 0. In, particular ¢ € &0 (—a/2,a/2). To conclude that
o ¢ U E-(—a/2,a/2) we suppose the opposite, ¢ € E,(—a/2,a/2), for some

T>1
7 > 0. Since Gevrey classes are inverse-closed in C* (see Theorem 2.7.1) it

follows that ¢ € £€,(—a/2,a/2), and since all the derivatives of ¢ vanishes at
+a/2, it follows that ¢ € D[{”'a yajo- This is in contradiction with (2.7.12).
Note that v is compactly supported, while ¢ € D, ,, so that we obtained

an example of element from &, ;3\ Dyr,0}, Which is not in U E-.
>0

To pass to higher dimensions, using the (M.1) property of sequence M,
p € N, we conclude that f(x H o(zr), © = (21, 29,...,24), belongs to

Eroy(U) for U = (—a/2,a/2)". To aV01d the fact that the boundary of U is
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not smooth, by [16, Lemma 1.4.3] it is possible to find appropriate open set
with smooth boundary.

2.8 Dual spaces

To complete this Chapter, we define the dual spaces for D, ,(U) and &, ,(U).

Definition 2.8.1. The space of ultradistributions of type 7,0, D, (U), 7 >
0, 0 > 1 is the set of of all linear functionals v on D, ,(U) satisfying the
following estimates: in the case (7,s) (resp. {7,0}) for every K CC U there
exists constants A, h > 0 (resp. for every h > 0 there exists A > 0) such that

[(u, @) < A sup W7 (Ja["") " sup [D¢(x)], ¢ € DY, (2.8.1)

aENd zeK

&l ,(U) is subspace of D] ,(U) of ultardistributions of type 7,0 with compact
support.

Remark 2.8.1. From the Proposition 2.2.1 we immediately obtain following
embeddings

D'(U) = D;,(U) = Dy(U),

and
EU) = & ,(U) — &(U),

for every 7 > 0 and t, 0 > 1 where D;(U) is space of Gevrey ultradistributions
and &/(U) is space of Gevrey ultradistribution with compact support.



Chapter 3

Wave front sets related to &;

In the previous Chapter we have established new type of local regularity and
proved the basic properties of the related classes. The goal of this Chapter
is to define a new type of wave front sets and to show that local regularity
of their complement is regularity proposed by &.,, 7 >0, o0 > 1.

Following the ideas presented in [16] we introduce the notion of singular
supports related to our classes and prove that they are equal to the standard
projection of introduced wave front sets. This is done by careful analysis of
sequences of cut-off test functions which lead to specific admissibility condi-
tion. The elements of such sequences have small estimates on derivatives up
to the finite order, and it turns out that they are convenient for our analysis.

One of the main ingredients of the following proofs is the procedure which
we call enumeration (see also proof of the Lemma 3.1.1). We say that two
conditions of the form (3.2.1) are equivalent if one is obtained from another
after replacing N with positive, increasing sequence ay such that ay — oo,
N — oo. This procedure we call enumeration, and write N — ay and uy
instead of u,,,.

Note that this procedure involves a change of variables (with respect to
N € N) which "speeds up” or "slows down” the decay estimates of single
members of the corresponding sequences, while retaining the asymptotic be-
havior when N — oo. In other words, although the estimates of the terms
of a sequence before and after enumeration are different for each N € N, its
asymptotic behavior remains the same.

We also prove the microlocal propery of finite order partial differential
operators (PDO’s in short) with the coefficients in classes £ ,3. In last
section, we define intersections and unions of our wave front sets, which leads
us to the definition of wave front set with microlocal hypoellipticity property.

Main results of this Chapter are published in [43].

49
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3.1 Different types of local regularity

As a part of motivation for our work, we start with the following lemma which
describes decay properties on the Fourier transform side. Basic ingredient
of the proof is procedure that we call enumeration which will be frequently
used in the forthcoming proofs.

Lemma 3.1.1. Let U be the open set in R, Q C K cC U and u € C°(U).
Further, let {uy}nyen, be the sequence of compactly supported smooth func-
tions such that, suppuy C K, uy = u on ), and which satisfies one of the
following regularity conditions:

Nt
N ()] SA%, N eN,£ e RN\{0},t>0 (3.1.1)
[un(€)] < A%, N eN, £ € R\{0}, t > 1 (3.1.2)
N
[un ()] < A%L—]]\VCT, N eN, £ e RN\{0},0<t<1. (3.1.3)

for some (different) constants A,h > 0. Then
(3.1.1) = (3.1.2) = (3.1.3) .
Proof. Note that after enumeration N — N/* (3.1.1) is equivalent to

N
()] < A%, N eN,¢ e R0}, (3.1.4)

and hence, putting uy instead of uy1/. condition (3.1.1) is equivalent to the
condition related to local analyticity (see [16]). Now from (3.1.4) is clear that
(3.1.1) = (3.1.2).

If we apply the same enumeration as for (3.1.1) to the condition (3.1.3)
note that we obtain

th/t LNl/tJ It
ISR

that is, after enumeration and letting ¢t = 1/0, by Proposition 2.2.1 and
Remark 2.2.2, (3.1.3) is equivalent to

lun (&) < A N e N, ¢ € RA\{0}, (3.1.5)

h/NG N©°
i (€)] < A % N €N, ¢ € RA{0}. (3.1.6)
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If (3.1.5) we put uy instead of uyo (0 = 1/t), by the simple inequality
NIt < CNM  t,o0 >1, N € N it follows that (3.1.2) = (3.1.3). This proves
the lemma. O

Remark 3.1.1. Moreover, for 7 > 0 and o > 1, we introduce new regularity
condition

N WV N1/
un(€)] <

By the similar arguments as in Lemma 3.1.1, we note that by applying Stir-
ling’s formula and enumeration N — 7N, (3.1.7) is equivalent to

BN NTNC
[un (€] < AW, N € N, ¢ € R)\{0}, (3.1.8)

and hence the simple inequality of the form N!* < ON™ 7> 0, t,0 > 1,
N € N implies that (3.1.1) = (3.1.2) = (3.1.7). Note that for 0 = 1/¢,
(3.1.7) < (3.1.3) when 7 = 1, while (3.1.7) = (3.1.3) when 7 € (0,1).

3.2 New type of local regularity of distribu-
tions

In this section, by using (3.1.7), we define a new type of wave front set of
an distribution. We will use the technique from the proof of [16, Proposition
8.4.2], developed for the analytic wave front set, and construct a (bounded)
sequence of cutoff functions in a similar way:.

Let 7>0,0>1QCK ccUC R? where Q and U are open in R,
and the closure of 2 is contained in K. We use standard notation D'(U)
for Schwartz distributions and £'(U) for their subspace of distributions with
compact support.

Let w € D'(U). Following the idea presented in [16], we analyze the
nature of regularity related to the condition

Iy WNNIT/o
[un(§)] < AW, N €N, ¢ € R\{0}. (3.2.1)

where {uy}nyen is bounded sequence in £'(U) such that uy = u in © and
A, h are some positive constants.

An essential part of the upcoming definition of the wave front set concerns
the sequences of the following form.
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Definition 3.2.1. Let 7 > 0, 0 > 1, and Q C K CC U such that the closure
of Q is contained in K. A sequence {xx}nen of functions in C§°(K) is said
to be 7, 0-admissible with respect to K if

a) xy = 1 in a neighborhood of Q, for every N € N,

b) there exists a positive sequence Ag such that

sup D™ x(a)] < AR N o] < [(N/7)V7), (322)

reK
for every N € N and 3 € N¢.

Remark 3.2.1. A similar approach based on the sequence of functions {¢y } yen
"analytic up to the order N” is used to extended results on Schwartz dis-
tributions from [16] to Gevrey type ultradistributions, cf. [35, Proposition
1.4.10, Corollary 1.4.11]. When 7 > 0, 0 > 1 and 8 = 0 in (3.2.2) we obtain

Nl/o || 1,
sup|0aXN(x)| §A|a+l%|a|a| |
zeK |Oé|”
Nr/a
< A sup —— a1l = Al e Nal ool < [(N/7)7),
r>0 1777

and yy is therefore ”quasi-analytic up to the order |(N/7)Y?|”. Note that
"the order of quasi-analyticity” of yy tends to infinity as 7 — 0% for fixed
N €N and o > 1.

Following Lemma is direct consequence of [16, Theorem 1.3.5 and Theo-
rem 1.4.2].

Lemma 3.2.1. Let there be givenr >0, 7 >0, 0 > 1 and v € R?. There
exists T,0-admissible sequence {xn}nen with respect to Ba.(xg) such that
xy =1 on B,.(xg), for every N € N.

Proof. Fix r > 0. Following the notation of the quoted Theorems, we set

di, = V7] k < |(N/7)Y?|, N € N. Note that

L(N/m) 7]

for every N € N.
Since the infimum of distances between points in Bs, /4(2¢) and R\ By, /4(o)
is /2, Theorem 1.4.2 from [16] implies that for every N € N there exists a
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smooth function yn such that supp xy € Brra(20), Xn = 1 on Bs,/a(w0),
and

|al

sup | D xn (2 |<A|a|Hdk Al (N/r)e flel < Clel| NV lel - (3.2.3)

zeK

for |a| < [(N/7)Y?]|, N € N, where the constant C' > 0 depends on 7 and
0.

Next we choose a non- negatlve function § € C§°(B,/4(wo)) , [O(x)de =1
and note that xy = 0 x xn clearly satisfies (3.2.2) for every N € N, 1f we let
B derivatives act on 6 and « derivatives act on xy. Hence {xn}nen is a7, 0-
admissible sequence with respect to Ba.(zo) and the lemma is proved. O

Remark 3.2.2. We would like to emphasize some of the properties of 7,0-
admissible sequences. Note that if we put @ = 0 in (3.2.2), we obtain that
the sequence {xn}nyen is bounded in C*°(U). Moreover, by applying the
Fourier transform, by standard calculations it follows

IXn ()] < A\;HlLNl/Uﬂa\@—\al—lﬂ\, la| < [(N/7)Y7], (3.2.4)

for every N € N, ¢ € R?, where (£) = (1+]£|?)"/2. Moreover, since {xn }nen
is bounded in C*>°(U), for u € D'(U), {xnu}nen is bounded in E'(U).

Let {un}nen be bounded sequence in £'(U). Recall that Paley-Wiener
type theorems, and the fact that e=®¢ € C®(R?), for every £ € RY, implies
that

i (€)] = [(un, e %) < (M, (3.2.5)
for some C' > 0 independent of N, where M is order of distribution .

We first show how the condition (3.2.1) can be related to the regularity
of elements from &, (V).

Proposition 3.2.1. Let u € D'(U), 7 > 0, 0 > 1, Q C U with the closure
contained in U and let {un}nen be a bounded sequence in E'(U), uxy = u on

Q and such that (3.2.1) holds. Then u € &g, }(Q).

Proof. After the enumeration N — N and by Lemma 2.1.1, condition
(3.2.1) is equivalent to

LN NTNG

BT N €N, ¢ € R\{0}. (3.2.6)

[un(§)] < A

for some A, k > 0.
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By the Fourier inversion formula and the fact that uy = u in 2 we obtain

/ / a/\ 27m;r§d€
[€1<1 [€1>1

<L+I,, NeNacN zecQ (327

(h* |a| ") "M Du(2)]

— (hla\" ‘Tlal"

where h > 0 will be chosen later on. Using (3.2.5) we estimate I; by

i = (e fa o)

E iy (§) et de|

1€]<1
< (R ool / (€)Mde. (3.2.8)
|€]<1

If h > 1 we conclude that I; < 7 where C; does not depend on a. To
estimate [, note that by (3.2.6) we have

I = (Hefafler)

| i@
l§1>1

< AR [T NT NV / j€le=Nde < C(K* Jh)lel”,

[€1>1

where for the last inequality we chose N = |a|+d+1, and use (ﬁ’ property
of M7, p € N. Now, for h > k2°" we conclude that I, < Cy, and Cy does

not depend on . Hence, if we take h > max{1,k%" '}, we conclude that
u € E(7,,1(12), and the statement is proved. O

Therefore the condition (3.2.1) implies local regularity related to the
classes £¢;»3(U) from Chapter 2. For the opposite direction, if v € E;,51(£2)
we need to observe 7, o-admissible sequences, where 7 = 7°/(“=1_ The precise
statement is the following.

Proposition 3.2.2. Let Q C K cC U, Q C K,u € D'(U), and let {xn }nen
be the 7,0-admissible sequence with respect to K, where 7 = 77/=D 7 >0,
o>1. Ifu€ &n(Q), then {xnu}nen is bounded in E'(U), xyu = u on
Q, and

BN NI1FTV o

IXvu(é)] < AWv N €N, ¢ e RA\{0}. (3.2.9)

That is, after enumeration N — TN, {xnu}nen satisfies (3.2.1). for some
Ah>0.
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Proof. Put uy = xyu, N € N. By the Remark 3.2.2, {ux}nen is bounded
in &'(U). Note also that uy = u on Q and suppuy C K.

Since u € &g 51(Q), from (3.2.2) for |a| < [(N/F)V7], 2 € Q, and for
some k > 1 we obtain

Douy(z)] < 3 (“)wa-ﬁx]v(x)HDﬁu(xn

BLa B
QN pla=Bl+1| prt/o (|8l 1817 arlBl1”
llle, ) Y 3 A RA R i 6]

BLa

IN

IN

A||U||£ k(Q)(QA) L(N/7)1/7 | LN1/UJ L(N/%)l/oJkN/i— LNl/aJ%
< Allulle, . @BY NN NZQVETIN (39 90)

for some B > 0, where for the last inequality we have used that 7 = 7/(°=1),
Next we note that there exists ¢ > 0, such that

NY7In N < eNYoNI-Vo — N

Y

wherefrom Nz INYT < ON for some C > 1 (which depends on 7 and
o). Hence (3.2.10) can be estimated by

[D%un ()] < Allulle

7,0,k

(Q)hNN%(%)l/(071>N, (3.2.11)

for some h > 0. Applying the Fourier transform to (3.2.11) for |a| =

| (N/7)7] we obtain

hNN%(%)I/(Gfl)N
HIERE

[un (§)] < Allulle, , w2 N eN, e RN\{0}. (3.2.12)
Finally, after the enumeration N — 7N, we note that (3.2.12) and Stirling’s
formula imply (3.2.9), and the proposition is proved. ]

Remark 3.2.3. When ¢ = 1 and 7 # 1 the proof of Proposition 3.2.2 does
not hold. In particular, when 0 < 7 < 1 the order of quasi-analyticity of xx
given by |[N'/7/ Tﬁj tends to infinity when o — 17 for fixed N € N, while
for 7 > 1 it tends to zero. (see Remark 3.2.1). This suggests that in the study
of the ”critical” behavior when o — 11 the dependence of the parameter 7
on ¢ becomes inevitable. For 7 = ¢ = 1 Proposition 3.2.2 coincides with
necessity part of [16, Proposition 8.4.2.].

Now we define the wave front set in D’(U) with respect to the condition
(3.2.1). Propositions 3.2.1 and 3.2.2 imply that the decay estimates from
the condition (3.2.1) are related to the regularity defined by £, (U) from
Chapter 1.
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Definition 3.2.2. Let 7 > 0 and 0 > 1, D'(U), t > 1, and (z¢,&) €
U x RN\{0}. Then (z9,&) € WF{;01(u) (resp. WF(;4)(u)) if there exists
open conic neighborhood Q x I" of (xg, &) and a bounded sequence {uy}yen
in &'(U) such that uy = u on © and (3.2.1) holds for some constants A, h > 0
(resp. for every h > 0 there exists A > 0).

Remark 3.2.4. It follows immediately from the definition that WF; ,y(u),
u € D'(U), is closed subset of U x R%\{0}. Note that for 7 > 0 and o > 1

WF{T,U} (u) g WF{l,l}(u) = WFA(U)

Moreover, when 0 < 7 < 1 and ¢ = 1 we have WF4(u) € WF 13 (u).
However, since Proposition 3.2.2 does not hold when 0 < 7 < 1 and 0 = 1
(see Remark 3.2.3), we are not able to prove the usual relation between
WF¢,13(u) and the singular support of u, see Theorem 3.3.1. This suggests
that the singularities related to W F(;;, should be studied by a different
approach (see [32]).

Remark 3.2.5. We would like to point out that our wave front sets WEF; ;,
are not equal to W Fy, studied in [16], for any choice of 7 > 0, ¢ > 1 and
the sequence L,, p € N. Recall that Hormander started the construction
presented in Section 8.4. in [16] by imposing two conditions on the sequence
L, (1) L, >pand (2) L,y <CL,, for some C > 0 which does not depend
on p. We also note that L, = M;:,l/ P p € N, where M, are sequences used by
Komatsu in [20], for the definition of classes of ultradifferentiable functions.

It would be sufficient to prove that sequence L77 := (M] 7)1/P does not
satisfy Hormander’s condition (2), for any 7 > 0 and ¢ > 1. Since L}* =
p™®" ', it is clear that is satisfies (1) for every 7 > 0 and ¢ > 1. Assume that
o > 2. By the computations presented in Lemma 2.3.1 it follows that

(p+ 1)t
prcrfl

o—2

>(2p)"" °, peN,

which clearly implies we cannot choose C' > 0 such that (M;’”)l/p satisfy
condition (2) for o > 2.
For the case 1 < o < 2, we note that precise estimate gives

o—1 1 o—1

(p+ 1) < (1) (p 1) =7 (14 2‘9)7” (p+1)7,

and if we assume that (2) holds for some large C' > 0, the calculation above
]_ o—1

would imply that (1 + —)™ (p+ 1)" < C and this is true only for finitely
p

many p € N.
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3.3 Singular support related to the classes

87',0

In this section define the notion of singular support related to &, ,, 7 > 0,
o > 1 and prove that it is equal to the standard projection of WF, ,. The
following inequality, which holds for some C' > 0, will be frequently used in
the sequel:

NIDYTL o N1 emYIN < oN (3.3.1)

LNl/UJ L(
(the second inequality follows from Stirling’s formula).
We start with the following Lemma.

Lemma 3.3.1. Let u € D'(U), 7 > 0, 0 > 1 and set 7 = 79/(°=D . Let
K cc U, F be a closed cone, and {xn}nen be a T,o0-admissible sequence

with respect to K. Then {xnu}nen is a bounded sequence in E'(U), and if
WF oy (uw) N (K x F) =0, then for some A, h > 0 we have

RN NV

— P A
|XNUJ<§)| = A ’£|L(N/71)1/UJ )

NeN,(eF. (3.3.2)
Proof. Let (z9,&) € K x F, and set 19 := 74,¢ > 0. Furthermore, let
{xn~}nen be the 7, o-admissible sequence with respect to B,,(x), By, (zo) C
) C K. Boundedness of {xyu}nen follows by Remark 3.2.2.

Since (x9,&) € WF {753 (u) we choose uy, 2 and I' as in Definition 3.2.2
so that

. hN NIT/7
[un(§)| < A T NeN, ¢el, (3.3.3)

for some A, h > 0. The condition (3.3.3) is equivalent to

N RNV e
< -
|uN(£)| = A |£“(N/,;)1/UJ ;

NeN, el (3.3.4)
after applying Stirling’s formula and the enumeration N — N/7.

Let 'y be an open conical neighborhood of &, with the closure contained
in I" and choose € > 0 such that £ —n € I" when £ € Ty and |n| < €|¢|. Then,
since YnNU = XNUN, We Write

Y N U = X un(E—n)dn = I+1. 'y, N € N.
e = ([ [ )Rinemdn =il eToNe
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To estimate I, note that for |n| < ¢|¢| we have

&= nl = [€] = Inl > (1 —¢)l¢].

Thus, by using (3.2.4) for « =0 and |3| = d+ 1 and (3.3.4), we obtain

L] = ’/ (mun(§—mn) dn(
|n|<6|§|
RN NI e

< / R ()] A I
Inl<ele] [
N ]7:71/0-/0'
ca N 7 /<77)d1d77
(1= DIV Jps
B NI

¢ €Ty, N eN. (3.3.5)

To estimate I, note that for |n| > €|¢| we have

€ =l <[&l+Inl < (1 +1/e)lnl,

and thus, using (3.2.4) for |a| = [(N/7)'/7], together with (3.2.5) and (4.1.2),
for every 3 € N¢ and some M > 0 we obtain

I = )/ (mun(€—n dn‘
\77|>6|§|
N/T)l/GJJrlLNl/aJLN/T )]

< 7 () PIC (e =)™ dn
(elgLerme] nl>ele
AN+1LN1/UJ LN/ ]
B8 -8 M
S <€’£|)L(N/7~_)1/0J Rd<77> <(1 + 1/5)77> 7d/)7

A/N+1N|7~"1/"/a
< _
= A

§ el

for some A’ > 0, where for the last inequality we have chosen || = M +d+1.
Thus, the statement follows for (x,&) € B,,(zo) x Ty.
In order to extend the result to K x F' we use the same idea as in the
proof of [16, Lemma 8.4.4]. Since the intersection of F' with the unit sphere
is a compact set, there exists a finite number of balls B%o@j (z9), and cones
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I'; that covers F, j < n, n € Z,, and note that (3.3.2) remains valid if

n
{xn~}n~en is chosen so that supp xny C B,, = ﬂ Brmy&j (xo), & €Ty
j=1
Moreover, since K is compact set, it is covered by a finite number of balls

B, , k<n,n € Z,. By [20, Lemma 5.1.] there exist non-negative functions

Tz,
xx € C5°(B,,, j2), k < n, such that > x; = 1 on a neighborhood of K.
k=1

Next, for every N € N we choose a non-negative function ¢ € Cg°(B,,, /2)
such that [ ¢n(z) =1 and

su[g | D% ()| < Cle LNl/UJM,
S

for |a| < [(N/7)'7], where the constant C' > 0 depends on 7 and o, cf.

(16, Theorem 1.4.2.]. Now, for xnyr = ¢n * Xk, we have > ynyr = 11in a
k=1
neighborhood of K, and each xnx, 1 < k < n, satisfies (3.2.2).

To conclude the proof we note that if {xn}nen is a 7, o-admissible se-
quence with respect to K, then x X also satisfies estimate of type (3.2.2),
for 1 < k < n. This follows by simple application of Leibniz rule. Thus,

(3.3.2) holds if we replace xny by xnyXxnk- Since Y XnXnk = Xn, the result
k=1
follows. O

Now we can define singular support of distributions with respect to classes
5{7’,0}-
Definition 3.3.1. Let 7 > 0 and 0 > 1, u € D'(U) and xy € U. Then

zo ¢ singsuppy, ,(u) if and only if there exists neighborhood € of zy such
that u € £, ().

Following theorem is consequence of Propositions 3.2.1, 3.2.2, and Lemma
3.3.1.

Theorem 3.3.1. Let 7 >0 ando > 1, u € D'(U). Letm : UxRN{0} - U
be the standard projection given with m(x,&) = x. Then

singsuppy, 1 (1) = T (WF (703 (u)) . (3.3.6)

Proof. Choose xg & m1(WF(; 5 (u)). Then we can choose compact neighbor-
hood K of z such that WF; 53 (u) N (K x RN\{0}) = 0. By Lemma 3.3.1,
there exists a bounded sequence {uy}nen in E'(U) such that uy = w on
some open set 2, and

WV NIT/o

[un ()] <A

< AT N €N, ¢ € R\{o0}. (3.3.7)
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holds for some A, h > 0. Then Proposition 3.2.1 implies that v € £ 5(12),
that is, o & singsuppy, ,(u).

Conversely, if z( ¢ singsupp {T’U}(u), then there exist neighborhood 2 of
xo such that u € & 51(2). Then by the Proposition 3.2.2, there exists a
bounded sequence {uy}yen in £'(U) such that uy = w on Q and (3.3.7)
holds. This completes the proof. ]

To conclude this section we make a short comment about WF; ,(u),
u € D'(U). Recall that for 0 < 7 < p and ¢ > 1 it holds

Ert(U) = oy (U) = &y (U). (3.3.8)

(see Proposition 2.2.15). By what we have proved so far, the regularity
related to the complement of WF; ,, is regularity of the classes & ,3. Thus,
combining result of the Proposition 2.2.15 with the results of this section we
obtain the following Corollary.

Corollary 3.3.1. Let u € D'(U), t > 1. Then for 0 <7 < p and o > 1 it
holds

WF (u) € WF{,01(u) € WF(,0) (1) € WF ;03 (1) € [\ WF,(u) € WFA(u),

t>1

where WF; and WF 4 are Gevrey and analytic wave front sets, respectively.

3.4 Microlocal property of PDO’s with re-
spect to Wk,

In this section we prove the microlocal property of finite order PDO’s with
coefficients in £(; »3(U) with respect to WF¢, ,3(u), v € D'(U). In particular,
following theorem holds.

Theorem 3.4.1. Let

P(z,D) = Y  as(z)D"

|ao| <m

be a differential operator of order m on U with ay € E(U), |a| < m, and
letueD'(U), 7>0,0>1. Then

WF{TJ}(P(ZE, D)u) g WF{T’U} (u),

The statement directly follows from the next lemma.
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Lemma 3.4.1. Letu € D'(U), 7 > 0,0 > 1. Then
WE {0y (0ju) € WF 53 (u), 1<) <d.
If, in addition ¢ € E 0y (U), then
WF 701 (¢u) € WF 7 01 (u). (3.4.1)

Proof. To prove the first part of the Lemma, fix 1 < j < d. If (z9,&) &
WE, ,(u), then by the definition there exists a conical neighborhood Q x I
of (z0,&), and a bounded sequence {uy} in u € £'(U) such that uy = u on
() such that after the enumeration N — N? we obtain

R hN”NTN“

for some A, h > 0 (resp. for every h > 0 there exists A > 0.)
For zg € €2, we note that

P hN(N + 1)7(N+1)" hN NTN?
|8juN+1(€)| S A|§| |§|N+1 S Al W7 N € N7 5 € F7

- (3.4.3)

where for the second inequality we used the (M.2) property of M7,

For the second part, set 7 = 751 and fix (20, &) ¢ W Fi7 01 (u). Then by
the definition, there exists open conic neighborhood €2 x I' of (z,&) and a
bounded sequence {uy}yen in £'(U) such that uy = u on Q and

WV NIT/o

[un (€] < A T NeN, el (3.4.4)

Choose a compact neighborhood K,, CC 2 of g, and let {xn}nyen be 7,0-
admissible sequence with respect K,,. Set xny = ¢xn, N € N, and note that

Xnt = Xnuy. Since M77 = p™ satisfies (M.2)" (see Lemma 2.1.2) for some
positive increasing sequence Cy, ¢ € N, and h > 1 we obtain

Dol < E 3 (5) ()i vtlio ot

0<a y<pB

o ﬁ a— o ||la— c T 7
<> <5> (V)Aﬁ PN Jlomdl ol y o |l

0<a v<p

/ g Q a— o ||a— / g 7|67
< ) 3 ()l L e o6

<a

(3.4.5)
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for z € Ky, |a| < [(N/7)V7], B € N?, where b/ = h?""". Now it is clear
that by putting |o| = 0 in (3.4.5) we obtain,

|DPYn ()] < Ch, 1€ Ky,
and hence by applying Fourier transform it follows

(@l < Cae)™™, BeN’ el
for suitable Cy > 0. In particular, since E(; ) (U) — C*(U) it follows that
XN = ¢xn, N € N, is bounded in C*°(U) and hence xyu, N € N, is
bounded in &'(U).

Moreover, note that by the same type of estimates as in (3.2.10) for
la| = [(N/7)7] and B € N, by (3.4.5) we obtain that

D5 n ()] < C;NHN%(%)UUN’ﬁ €N’ z€ K,

and hence after applying Fourier transform it follows
()] < CNFINTE@Y N (gy~lal=Bl - 3 e N4 g e T, (3.4.6)

for some constants C5 > 0.
Now using (3.4.4) and (3.4.6) and arguing in the same way as in the proof
of Lemma 3.3.1, one can find open cone I'y C I' such that

z—1/o

= hNN 4 N
<A
|XNU(€)| — A ‘éyt(N/‘F)l/aJ )

N e N, & €Ty,

for suitable A, h > 0. After enumeration N — 7N the statement follows. [

3.5 Intersections and unions of WL,

In this section we consider the intersections and unions of the wave front sets
WF.,, 7> 0, 0 > 1. It turns out that, from the microlocal point of view,
the regularity related to the complement of these unions and intersections
coincides with the regularity proposed by the classes (2.2.24)-(2.2.27) from
Chapter 2.

In particular, for u € D'(U), we consider

WFo+ 1+ (u) = [ [ | WFr0(w). (3.5.1)

o>17>0

WFoo1+(u) = () | WFr0 (), (3.5.2)

o>17>0
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WFo+ o) = | [| WFro(u (3.5.3)
o>17>0

w) = |JWF.o(w). (3.5.4)
o>17>0

where we recall that WF, ;(u) denotes WF; 51(u) or WF(, ;) (u) for 7 €
[0, 00] and o € [1, 00].

Remark 3.5.1. Recall (cf. Corollary 3.3.1),
WF{p’g} (u) - WF(pyg) (U) - WF{T’U} (u) ,u € D,(U) (355)

Moreover, we conclude that ﬂ WF - 01 (u ﬂ WF(; 0 (u) and U WFy, o1 (u) =

>0 7>0 >0
U WEF(;0)(u), and hence in (3.5.1)-(3.5.4) it is suflicient to observe the in-

>0
tersections and unions of WF; ;3 (u).

We start with the following technical result.

Lemma 3.5.1. Let u € D'(U), and 0y > 01 > 1. Then

U WE o (u) € [} WE.o,

7>0 7>0

Proof. Let (x0,&) & (o0 WF{r.0,3(v). Then there exists 7o > 0 such that
(20,&) & WF{r,5,3(u). Hence there exists open conic neighborhood € x I’
of (z0,&) and a bounded sequence {uy}yen in E'(U) such that uy = u on
2 such that, after enumeration N — N7 (see also Lemma 2.1.2),

th’l NTONUl

un (§)] < AT’

N eN,¢eT, (3.5.6)

for some constants A, h > 0.
We need to prove that for every 7 > 0, (x0,&) & WF{r0,3(v). This
follows easily from (3.5.6), noting that (see the proof of the [29, Proposition
1.]) for every 7 > 0 and h > 0 there exists A; > 0 such that

hN"l NT()N"I < jélth"'?]\/"rN‘Q7 N e N,

and the Lemma is proved.
m

As an immediate consequence of the Lemma 3.5.1 we obtain the following
Corollary.
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Corollary 3.5.1. Foru € D'(U), it holds

WF(u) C WEo+ 1+ (u) C WFE 1+ (u)
C WFo (1) € WF oo oo(u) C [ WF-(u), (3.5.7)

T>1
where WF and WF, are standard and Gevrey wave front sets, respectively.

Proof. Note that the last inclusion follow directly from Lemma 3.5.1 for o5 >
o1 = 1 by taking the unions and intersections with respect to 7 > 1. The only
nontrivial inclusion left is the third one. Assume that (20, &0) & WFEo+ oo(u),
that is, for every o > 1 (z0,&) ﬂ WF, ,(u). Fix some 0 = o1 > 1

>0
and let 0, > 0y. By Lemma 3.5.1 it follows that (z0,&) & U,~q WFre, (1)

Hence it follows that that there exists ¢ > 1 such that for every 7 > 0
(wo,&0) & WF, (u) and therefore (x¢, &) € WF . 1+ (u). ]

Let us extend the definition of singular support (see Chapter3) related to
classes - »3(U), 7 € (0,00) and o € (1,00) to the borderline cases.

Definition 3.5.1. Let 7 € [0,00| and ¢ € [1,00], u € D'(U) and z( € U.
Then z¢ ¢ singsuppy, ,,(u) if and only if there exists neighborhood € of g
such that u € & 1 ().

Let m : U x RA\{0} — U denotes the standard projection given by
m(z,§) = x. From Propositions 3.2.1, 3.2.2, and Lemma 3.3.1 it follows
that for a given u € D'(U), 7 > 0 and o > 1, we have singsuppy, ,(u) =
T (WF{TJ} (u))

For the borderline cases 7 € {0, 00} and o € {1, 00} we have the following.

Theorem 3.5.1. Let m; : U x RN\{0} — U be the standard projection given
with m(x,&) = x. Then

7T1(VVF so(U)) = 1ngsupp0+70+(u), (3.5.8)
1 (WFo+ o+ (1)) = singsupp,, () , (3.5.9)
1 (WFo 1+ (1)) = singsuppg+ . (u), (3.5.10)
1 (WFo+ oo (1)) = singsupp,, 1+ (u). (3.5.11)

Proof. Recall that classes £, 1+ have the ultradifferentiable property, that
is, for every o > 1 classes £ , are closed under the action of ultradifferen-
tiable operators of the class 7, o (see Definition 2.6.1 and Theorem 2.6.2 from
Chapter 2).
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We prove here only 71 (WFg+ o (u)) = singsupp,, ;+(u) and leave the other
equalities to the reader.

Assume that 2o & m (WFo+ (1)), so that there is a compact neighbor-
hood K CcC U of zy such that

K x RO{0} € (WFs () = (N J(WPpy@)', (3512)

o>17>0

where (WFy, 51 (u))¢ denotes the complement of the set WF(; ,(u) in U X
R%\{0}. Therefore, if (x,£) € K x R*\{0} then for every o > 1 there exist
7o > 0 such that (z,§) € WF;, o1 (u).

Let o > 1 be arbitrary but fixed, and set 7 = Tg/(a_l). From Lemma
3.3.1, it follows that there is a 7y, o-admissible sequence {xn }yen such that
uy = xnu, N € N is a bounded sequence in £'(U), uy = u on some €2 C K,

and ,
__ WY NI /e g
Ixvu(€) SAW7 N € N, ¢ € R\{0},

which after enumeration N — 73N becomes

_ RN NImo/e p

By Proposition 3.2.1 it follows that u € &, »}(U), and since o can be chosen
arbitrary, we conclude that u € £, 1+(U) (see Proposition 2.2.1). Therefore
singsupp,, 1+ (1) C T (WFo+ o0 (1))

For the opposite inclusion, assume that zy ¢ singsupp., ;+(u). Then
u € Exo1+(12), for some Q which is a neighborhood of zy. In particular, for
every o > 1 there exists 79 > 0 such that v € &, ,(©). Fix ¢ > 1 and
put 7 = 7'67/(0_1). Now we use a 7y, o-admissible sequence {xn}nen and
Proposition 3.2.2 implies (3.5.13). It follows that (2¢,§) € (WF (5 01 (u))°
for every ¢ > 1 and for some 7y > 0. Hence, by the equality in (3.5.12)
it follows that (z9,€) € WFo+ o (u) for every £ € R¥\{0} and therefore
zo & m(WFo+ o (u)), wherefrom 71 (WFo+ (1)) C singsupp,, ;+(u), which
finishes the proof. O






Chapter 4

Microlocal analysis of solutions
to the PDE’s

In this Chapter we analyze propagation of singularities of solutions to linear
PDE’s within our framework. Following the ideas presented in Theorem
8.6.1. in [16] for WF 4 we use 7, o- admissible sequences in our construction.
In the first section we consider constant coefficients PDO’s. In that case
Hormanders operators [?; commutes, and by that we are able to modify the
standard construction and to be more rigorous in the calculation. However, it
is not possible to prove the microlocal hypoellipticity of PDO’s with respect
to WF,,, and by considering WF+ o, we obtain the desired result.

We also prove the more general result when PDO’s are with coefficients
in &7 5. In this case the proof is non-trivially different since it involves some
of the techniques used in Chapter 2, Section 2.7.

Main results of this Chapter are published in [30]. See also [31].

4.1 Microlocal hypoellipticity of constant co-
efficients PDO’s

In the sequel we prove the following result.

Theorem 4.1.1. Let 7 > 0, 0 > 1. Let u € D'(U) and P(D) the constant
coefficient differential operator of order m. Then if P(D)u = f in D'(U), it
holds

WF{go—lT’U}(f) - WF{Qa—lT’U}(u) - WF{T,U}(f> U Char(P) (4.1.1)

Proof. The first embedding in (4.2.49) follows form Corollary 3.4.1. We will
prove the second embedding for the operators with constant coefficients, and

67
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note that the proof is more technical for the non-constant coefficient since we
can not use commutation relations of some operators in that case. However,
the idea of the proof is the same, so this more general case will be discussed
later.

Therefore it remains to prove that

WF{Qa—lTﬂ} (U) - WF{T7U} (P(D)u) U Char(P(D))

The following inequality, which holds for 7 > 0, ¢ > 1 and for some
C > 0, will be frequently used:

(/7))
]

|INVe < NNTVTe < oN NI (4.1.2)

Assume that (z9,&) € WF (7,01 (P(D)u)UChar(P(D)). Then there exists
a compact set K containing xy and a closed cone I' containing &, such that
P (x,€) # 0 when (z,€) € K xI" and (K x I') " WF, 53 (P(D)u) = 0.

Let 7 = 77-7 and let {xn~}n~en, be a7, o-admissible sequence with respect
to K.

Put uy = xoonyu, N € N, so that

un(§) = /U<JI>X20N(J})€_m5dI, ¢cRY NeN.

The easy part of the proof is the estimate of |[ux(€)|, N € N, for "small”
values of ¢ € T, that is when |¢| < [N/ ]. In fact, since {ux} yen is bounded
in £'(U), Paley-Wiener theorems (see [21]), and the fact that e=¢ € C°°(R2),
for every ¢ € R? implies that |[Un(&)| = [(un,e ") < C{E)M, for some
C, M > 0 independent of N. Hence, from (4.1.2) we have

~ Oy o~ ~ Ol 7»;71/0
LN (6)] < [NV VDY g (e)] < ACNNT N,

where A, C' > 0 do not depend on N. After enumeration N — 7NN we obtain

7=

ONNEZEN N NIE
e S A
€] €]

un ()] < A

which estimates |uy(€)| when € € T, [£] < [NY7], N € N,

It remains to estimate |ty (€)|, when € € T, |¢] > |[NY/7]| and for N € N
large enough (so that N — oo implies || — 00).

As in the proof of [16, Theorem 8.6.1], in Subsection 4.1.1 we use the
technique of approximate solution (see also [34, Theorem 1, Section 1.6]) to
obtain

—ix-€

Yoon (z)e ¢ = PT(D) (%w]\;(m,ﬁ)> + en(z, €)e™™¢ (4.1.3)
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r €K, e, |€] > |[NY7], that is, the following representation holds:

an(€) = / u(@)en (@, €)e~ ™ da + / u(z)PY (D) (%) dx

= /u(m)eN(x,§)6_izédx+/P(D)u(x) <$J(\r§()x,f)> dz, (4.1.4)
where
L(X)7 |-m al
wy(z,€) = (ah@“ 'am) (RMR2 ... R xaon)(2,6),  (4.1.5)

@ =Y () wmren @, @

A1y eeny A

J
reK, T, |¢] > [NV, and we put & = a; + 2as + - - - + may,.

The derivation of (4.1.4) and the calculation of wy(z,&) and ey(x,§) is
done in Subsections 4.1.1 and 4.1.2, so we continue with the estimation of
the first term in (4.1.4).

Estimated number of terms in ey(x, &) given in Subsection 4.1.1, and the
estimates of DP(R{'...R%" x40y ) given by (4.1.30) (Subsection 4.1.3) imply

[(u(z),en(a, e < A Y [Difen(a, e ™)

lo| <M

AY Y @) |DEB %) Dl (2, €)

|| <M B<La

IN

z—1/o

_ I?TU F\1/o|—
S

z—1/o
CONNI"—=—
= A — e K €T, (4.1.7)
|12 @)

for suitable constants A,C > 0 and [{| large enough. After enumeration
N — 72971N | (4.1.7) is equivalent to

CN NI

[(u(z), en(z,§)e™™)| < A

< W, {EEK,fGF,

which estimates the first term on the righthand side of (4.1.4). In fact,
we will use a slightly weaker estimate which is obtained from (4.1.7) after

enumeration
N = N+ [72"Y (M 4+ d+1)7]. (4.1.8)
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It remains to estimate the second term on the righthand side of (4.1.4) for
|¢| > | N'/7|. This is the hardest part of the proof. By the Lemma 3.3.1 there
exists a bounded sequence { fy}nyen in £ (U) such that fy = f = P(D)u in
a neighborhood of K and there exists a cone V such that I' ¢ V and

W N1
< R —
[F(fn) )] < A\n!“N/ﬂ”“J , neV. (4.1.9)

Since {x2-n ()} nen is bounded in C§°(U), by the Paley-Wiener theorem
(see also Remark 3.2.2) it follows that for every M > 0 there exists C' > 0
which does not depend on N so that |X2on(n)| < C(n)™, N € N. From
suppxny C K, N € N, it follows that

Wl(suppr(x,f)) - Ka N € Na

and since fy = f in a neighborhood of K, we have wy f = wy fy in D'(U),
where we put N’ = N — [2°717(M + d + 1)7]. Therefore (and since F(g; -

g2)(&) = (F(q1) * F(92))(£)))

(FC)e ™ wn (- €)/Pu(€)) = %(f)]:wf(fzv'(ﬂf)wzv(x,f))(f)
1
= Pn@) Jua T I M F el ) () dn = 1+ Lo,
where
1

=59 AKE& F(fn) (€ = 0) Fasy(wi(@,€)) (1, €) dn, (4.1.10)
=g [ FE Do 0 Odn (@111

T Pu() Sy N T e RSV ST -

and 0 < ¢ < 1 is chosen so that £ —n € V when £ € T', £ > LNl/"J, and
nl <elgl.
Since |n| < ¢|¢] implies |£€ —n| > (1 — ¢)[€|, by using the computation of
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Foosy(wn)(n, €) from Subsection 4.1.4, we estimate [; as follows:

1
W< g P I F om0l dy
ni<e
hN’N/!T/O—
. /|< €l Am‘fﬁn(wzv)(n,&)!dn
n<e
hN’N/!T/O-
= / | Fon(wn)(n,€)] dn
(1= )ENWYT Jiicee "
WY NI/ o
< it B L(N/T)/J/ ~ .
= A © | Rl di
hév/N/!T/g

< 2 L l¢] > [NV, 4.1.12
=~ 2 yg‘LNII/UJ 9 56 7|§| L J ( )

We used the Paley-Wiener theorem for {Ys-x} and trivial inequality
Pa(€)] > 1 when [¢] > |NV7 .

[t remains to estimate I. Note that |n| > ¢|¢| implies |€—n| < (141/¢)|n|,
and by Paley-Wiener type estimates we have |F(fx)(n)] < C(n)M, where
C > 0 does not depend on N’. Therefore

2 >~
’ ( )’ In|>el€|

2% (N )l | Famsy(wn) (0, €|
S B o
In|>el¢] <n>L2 7 (N'/7)1/7 | +d+1

| F (& = M| Fasn(wn)(n,§)] dn

1171/ o
SUpneRd<77>L2 T (N /7)Y |+ M+d+1

’5“2 S (N /7)1

< CN+1

[ Fasn(wn (2,€)) (1, )],

when £ € T, |¢| > [NV ].
To finish the proof, we show that if £ € T, || > | N'/?| then there exists
h > 0 such that

= /o
supd<77>L2 TVRYTEMA 0 Y, 6)] < BNPNTSON, (4.1.13)
neR

Since N' = N — [297'7(M + d + 1)7], it follows that

N+ [20° V5 (M +d+ 1)\ Vo _ 10
1 (M+d+ H) > 2 (N'/AY7 + M +d+ 1.

B (4.1.14)

(/7)Y = (

If & < [(N/F)V7] —m, |B] = [(N/7)"/?] then
& + 8] < 2L(N/7)V7) < [2(N/7)V7], (4.1.15)
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From (4.1.15), when € K and £ € T, |¢] > | NY/?] it follows that

()7 |-m

Dluy(eol < Y ( al )supl(DBR‘flez---R%WXM)(I,&)I

=0 a1, az...0m /) zeK
L(X)7 |—m
< |a| ‘ﬂfGCGH,BHl LN1/0J6+\5|
- =0 a1,ag...0n

< [NV S ( [al )CG+IﬂI+1SC!L(N/?)”"JHLNUUJBL

ap,ag...am

Since 7 (supp wy(z,€)) € K and |B] = | (N/7)Y7], we obtain

7)l/e #)1/o o #\1/o z=1/o
|U|L(N/ ) Jlfx%n(wN>(777§)| < /NI LNl/ JL(N/ Wl < oNHI NS N
(4.1.16)

where we used the first part of (4.1.2). Now (4.1.14) and (4.1.16) gives
1?% 1/7\1 /o
sup ()2 7 DI L (w) (0, 6))
neR4

7)o /e
< sup (MDY F L (wy) (0, 6)] < C"™VHINTTN D (4.1.17)

and (4.1.13) follows. Therefore

z—1/0

NN
j€[1277" (v Ry

L] < A (4.1.18)

for suitable constants A,h > 0. After enumeration given by (4.1.8), and
z—1/0

using (M.2)" property of the sequence N =~ we conclude that (4.1.18) is
equivalent to

7—1/c

WY N1
€[1277" vy

] < A

(4.1.19)

for some A, h > 0. After enumeration N — 72°~'N we finally obtain

o—1

. WV N1
< P
|UN(§)| — A ’£‘LN1/0J )

for some A, h > 0, and the proof is finished.
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4.1.1 Derivation of the representation of uy(¢)

Formally, we are searching for v(z, ) so that
x(6) = [ ule)r(o)e s = [ ule)PT (D)o, €)da,

¢ cT, ¢ > |[NY?], where PT(D) = Z (—1)1%la, D is the transpose
lo|<m

operator of P(D), and v(z,£) is the solution of the equation
P"(D)v(x,&) = xorn(2)e ™, ze€ K (€T, [¢] > |NV7].  (4.1.20)

e—ixEXZUN
Pr(§)
by the calculation done in Chapter 1, Section 1.3, we choose v(x,&) of the

—ix€
%{i—x)’g)’ for some U}(7§> S COO(K)7 where z € K’ g < F7

Note that solves equation (4.1.20) approximately for large €. Led

form v(x, &) =

€] > [NVe).
Then (4.1.20) becomes

(I - R(©)w(z,&) = xeon(z) w€K,EET, > |NV7], (4121

where R($) = Y7 Ri(€), Rj(€) = p;(§) Y aaD®, and p;(€) are homoge-

|| <j
neous functions of order —j. In fact, formal calculation gives

w(z, e
B (8)

- 2 (a) (1), DA (e DPu(x, €)

= PT(D)( )

= (g)<—1>alaa(<;i>(gﬁ)Dﬁw<x,£>,

forr € K and € €T, |¢] > |[NY?]. Since % is homogeneous of order
la| — | B| —m with respect to &, it follows that (4.1.20) would imply (4.1.21).

Now, successive applications of the operator R in (4.1.21) give

R (&w(z, &) —RF (&w(x,&) = R (E)xarn(x), x€ K, €T, |E > [NV,
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for every k € {1,..., N}, so that after summing up those N equalities we
obtain

=

w(z, &) = RV (Quw(w,§) = ) RY(E)xzen(2),

0

B
Il

which gives formal approximate solution

w(x, &) = Z RFyaon(2,€)
k=0

-y ( o )RgleQ...R;mXQUN(x,g). (4.1.22)
a1,0a9,...,0m
la|=0

The operators R;*(£), 1 < k < m, are of order less then or equal to ka;, and
homogeneous of order —ka, with respect to €. Since P(D) have constant
coefficients, the operators I?; commute, and we used the generalized Newton
formula, cf. [35].

We proceed with the following approximation procedure. We consider
partial sums

w(2.) = ( al )(R%IR;Q R (@,),

ai,as...a
S—=0 1, U2 m

¢eTl, ¢ > |NY?],and N € N is large enough, so that (4.1.21) takes the
form (4.1.3) and the error term ey is given by:

(6 =Y PR [ S ste)

A1y eeey Ay

The precise calculation which leads to (4.1.3) is given in Subsection 4.1.2.

1
Note that the number of terms in (4.1.6) is bounded by 4-2LF)?!since from
(Z) < 2" k <n,n € N, we obtain

Y

( |a| ) < 2\a|2\a|7a1 2\a|7a17~--fam_2 < 2a1+2a2+-~-+mam
a1, a9, ...0y - -

and therefore

()7 =metk

m
< |a| > < E 2a1+2a2-"+mam
A1y ooy ) 4
k=l o= |(X)5 |—m+1

7
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< 2L(g)%J—m+l Z ok < 4. QL(%)%J’ (4.1.23)
k=1

where we put G = ay + 2as + - - - + May,.

4.1.2 The calculation of the error term

For multinomial coefficients

(Y () () )
ay, as,...am) a sy A1
|al!

= jal=aifartFam g €N, k<m, (41.24)
alas! ... ay,!

a generalization of Pascal’s triangle equality for the binomial formula gives

|al - la] -1
- >1 4.1.25
(al,...,am Z a,..,ap —1,...ay,)’ o] 2 1, ( )
k=1

wherefrom for |a| > 1, and putting & = a4 + 2as + - - - + ma,, we obtain

A=

(&)

]—m

a
< ’ ‘ )Rtlll ...R%’LXQUN
0 A1y eeey Ay

“ al—1 “
Z ( | | ))Rll...R?nmXQJN
A,y .o, A — 1, .y

I
/N

|CL| a ap+1 Am
( )Rllek Rm XQO‘N
Ay, ...

Q. Oy

- ZRk< Z (Ch |Cl|a )R’fl---RZ;"xzoN), (4.1.26)
k=1 )

=0 veey Ay

where for the second equality we interchange the summation and substitute
ag with ap + 1.
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Hence, for |a| > 0 we have

- a a a Q.
= XN — D o | .l . )R;...R;“...RmmXQUN
k=1 G:L(%%J—m—kﬂ T
m ()7 |—mk al
a
=xev— Y. > S >R§“...Rg;nxm, (4.1.27)
— 1y Um

where for the second equality we used (4.1.26) and for the last one we sub-
stitute a, with a; — 1.
Therefore, if we set

NS (o, e e

A1y eeey Ay

then the computation of this subsection gives the equality (4.1.3), which in
turn implies the fundamental representation (4.1.4).

4.1.3 Estimates for D’(R{"...R% yosx)

Note that for N large enough we have
(L(N/F)Y7 |+ M)” < 27N (N/7 4+ M?) < 2°N/7
so that for |5| < M the following estimate holds:

& + 18] < LIN/A)Vo] + M = [(N/T)7 + M] < [2(N/7)°].
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Thus, forz € K, £ €T, and & > |(N/7)Y?| —m, by using (4.1.2) we obtain

[DY(R R xarw) (2, €)| < €7 S ASTIIR N |+
< |§|m—L(N/?)””JAL(N/%)I/"J+M+1 NV L(N/F)Y/7 |+ M
< gt (4.1.28)

for some C' > 0, which is, after enumeration N — N + 2°7'7(m + M)’
bounded by

‘€|mfL((N+2"_1‘F(m+M)”)/7‘)1/f’jAN+2"_17‘(m+M)"+1

1/0

X (N + 275 (m + M)7) s (VH27Hman?),

for some A > 0. Moreover,

257 (N/F)V7 + 2% (m + M))

F

<N + 277 7 (m + M)")l/ff
= 2 (N/AY 4+ m+ M. (4.1.29)

;71/0'
Finally, (4.1.29), (M.2)" property of N~ ¥ and Stirling’s formula give the
estimate

|IDP R ... RO xgo ()| < |€]712 7 N/T) (4.1.30)

for some C' > 0.

4.1.4 The computation of F,_,,(wy)(n,§)
From

(R Rig o) (7, ) = H ©) Y caD™arn()

lo|<&

for suitable constants c,, it follows that

Foon (R Ry X2on) (0, €) = Hpj ) > Raen(n),

lo|<&

so that

'Fﬂc—m(wN)(nu £)
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Note that the number of terms in F,_,, (wy)(n, €) is bounded by C2LN/7)"7]
for some C' > 0 which does not depend on .
When || < ¢elé], € €T, |¢] > |[NY/?], and N sufficiently large we have

(o ) (IT0m@leepy) 3 cifaento)

j=1 o] <&

< ACLV/DY7) |X2on (M),

for some A, C' > 0, and we used

m

[1(ps©)llegP)® < Ae® < A, ¢ eT,[¢ > [NV,

j=1

which follows from ¢ < 1 and the fact that [['_, (|p;(£)[|§])®% is homogeneous
of order zero. O

4.2 Microlocal hypoellipticity of non-constant
coefficients PDO’s

In the finial section we extend the result of the Theorem 4.1.1 to the case of
the partial differential operators with non-constant coefficients. In particular,
we prove the following result.

Theorem 4.2.1. Let uw € D'(U) and P(z,D) = Z ao(z)D* be partial
|| <m

differential operator of order m with the coefficients aq(x) € Egr»y(U). Then

if P(z,D)u = f in D'(U), it holds

WF{QQU—IT#T}(JC) C WFg20-174) (u) C WF{.EU}(f) U Char(P(z, D)). (4.2.1)

Proof. The first embedding in (4.2.1) is given by Theorem 3.4.1, so it remains
to prove that

WF 920175} (u) C WF (0 (f) U Char(P(x, D)).

Assume that (29,&) € WF (703 (P (2, D)u) U Char(P(x, D)). Then there
exists a compact set K containing xy and a closed cone I' containing &, such
that P, (z,&) # 0 when (z,§) € K x I" and

(K % 1)1 (WF 7.0y (P(z, D)u) U Chax(P(z, D)) ) = 0.
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Since K is fixed, the distributions involved in the proof are of finite order.
Let 7 = 777 and let {x~}n~en, be a7, o-admissible sequence with respect
to K.
Put uy = x2onu, N € N, so that

un(§) = /U(I)XQGN(x)e_ixgdx, £cRY NeN.

The estimate of |ix (£)| when [£] < | NY/7] is the easiest part of the proof.
In fact, the estimate (3.2.5) together with

LNl/gJ L(N/T)l/UJ S NNT—l/a/o. S CNN!T_l/G/U_
gives
7’:1/0 o~ p 7—;1/(; o 7—,—1/0’
I an ()] < [NV I i (6)] < ACYNTEN,

where A, C' > 0 do not depend on N. After enumeration N — 7N we obtain

71-1/c

_ CNN N AN N!T
< <
|U’N<£)’ — A |§||_N1/O‘J — |§|LN1/”J )

which estimates |ty (€)| when € € T, [¢] < [NV7]|, N € N,

It remains to estimate |uy(€)| when € € T, [¢| > [N'V?] and for N € N
large enough. Asin the proof of [16, Theorem 8.6.1], we search for appropriate
functions wy (z,€) and ey(7,€), v € K, £ €T, |€] > [ N'/7], so that

671:1:-5

Xzon () = e P (z, D) (W

un(e,©) tex(e.O). (122
v€K e, ¢ > [NV].
The identity (4.2.2) implies that

un(§) = /u(x)eN(x,f)e”édx—l— /u(:c)PT(:c,D) (%) dx
e wy (x,§)

= [werenta. et + [ Pla D) (A

) dz, (4.2.3)
zeK, €T, ¢ > [NV,
Put

)7 | —m}, (4.2.4)

N
Ki={keN[0<mk<|(~
-



80 Microlocal analysis of solutions to the PDE’s

and
1

N 1 N
Ko ={k eN| L(?)?J —m < mk < L(?)EJ} (4.2.5)
We refer to Subsection 4.2.1 for calculations which lead to

(X)7 |-m

wy(r, €)=Y R ==3"" 3" (RyRy ... Ryxeen)(w,§), (4.2.6)

kekq kelkCq Sr=0
(X7 ]
en(z,§) =Y RF=>" (Rj,R;, ... Rj, x2on)(x,€), (4.2.7)
keCa keka Gk:L(g)%J—m-Fl

re K, T, ¢ > NV, G =git+jot - +ir,di €{1,....,m} 1 <i<k.

Moreover
Ri(x,&) = ) cay(x,6)D",

|al<j

for suitable functions ¢, j(x, &) which are homogeneous of order —; and
Do j(z, &) < |E|7AR BV, BeNzeK,.6el  (4.238)

for some A, h > 0 and || < j. Again, we refer to Subsection 4.2.1 for details
concerning the representation (4.2.3) and proceed with estimating terms on
the right hand side of (4.2.3).

The number of summands in wy(x,§) and ey(x,€) is bounded by A -
CLN/DY?] for some constants A, C' > 0, which is the same number as in the
case of operators with constant coefficients (when operators R; commute),
see Remark 4.2.1.

Since the operators R, 1 < 7 < m do not commute, in the sequel we use
different arguments than in [29]. If M denotes the order of distribution wu,
then the estimates of D?(Rj,...R;, x20n) from Subsection 4.2.3 (cf. (4.2.48))

imply
[(u(z),en(z,€)e ™) < A Y D3 (en(,E)e™™)| (4.2.9)

la|<M
7~_71/o
CNNI"—=—
j€[1277" (v o)

x € K, £ € T, for suitable constants A,C' > 0 and |¢| large enough. After
enumeration N — 72°7'N we conclude that (4.2.9) is equivalent to

l=o = o 7-1/o
< AJeMg| 12T WIDVII=MON N 4

CON NP

|(u(z), en(z,&)e™™C)| < AW, re K el
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which is the estimate for the first term on the righthand side of (4.2.3).

To estimate the second term on the righthand side of (4.2.3) for || >
| N7, we choose {fn}nen in E'(U) (see Lemma 3.3.1) such that fy = f =
P(z, D)u in a neighborhood of K and there exists a cone V such that T C V/
and _

’ (fN)( )’ AW, nev. (4.2.10)
Note that wy f = wy fy in D'(U), where we put
N' =N —[27'F(M +d +1)7],

and M denotes the order of distribution f. Therefore

O 0w )/ Pl ) = Farel @) B )0
= [ Flhede = TGS =1
where
L= FORE -0 F G (@211
b= FUEnF O a2

and 0 < € < 1 is chosen so that ¢ —n € V when £ € T, £ > LNI/"J, and
nl < el¢].

Let ji,...,Jk € {1,...,m} be fixed. Since y2on(+), N € N, is bounded in
Ci°(K), note that R; R;, ... Rj, x2on(+, &), N € N, is also bounded in C§°(K)
for every £ € I'. Moreover, since the coefficients of P, (-, ¢) are in C*°(U) and

Po(x,€) # 0 when x € K and £ € T, it follows that 1, F, P }fjngGN(" 5)7

N € N, is bounded in C§°(K) when ¢ € T', and moreover it is homogeneous
of order —m — &;. Hence, by Paley-Wiener type estimates it follows that for
every M > 0 there exists C' > 0, independent of N € N, such that

(leRj2 . RijZUN(Z'a f)

[Fam P, ©)

Yol < ClelmS iy~

Ciny™, neRY,

IA

when ¢ € T and |¢] > [NY7] > 1.



82 Microlocal analysis of solutions to the PDE’s

When M = d + 1 this estimate, together with (4.2.6), implies that there
exists C' > 0 such that

()3 )-m .
O e | IR M C s S

< UYLy -t (4.2.13)

Since |n| < ¢|¢| implies |£ —n| > (1 —¢)[¢|, by using (4.2.13), we estimate
I, as follows:

3
ns [ FRE I

|~
8
\_/

nNe s, >
Aﬂ@a AWV‘HW( (n, &)l dn

N’ T/o
= : )jwvs/f) L/N,W J / h *)””“<n>—d—1 dn
— &
hN/NI!T/O‘
< A22—17
&[N

el ¢ > [NV (4.2.14)

It remains to estimate I5. Note that |n| > ¢[£| implies [ — n| < (1 +
1/e)|n|. Moreover, since f is distribution of order M by Paley-Wiener type
estimates we have |F(fn/)(n)| < C(n)™, where C > 0 does not depend on
N’. Therefore

U}N(ZE, f)
Pp(z,8)

1?% /7:1/0
< / (€ — )M ()2 T WDVl
[n|>¢l€]

)(n,)|dn

|fm<‘;:;(; Dol
(77>L (N’/r>1/0J+d+1

LIS [ (€= )l P
In|=el¢]

1?70 17\ o wy (z
sup, cga ()% 7 (/) J+M+d+1\fm<P:<x§>><n 3l

|§‘L2 T (N /7)1 |

< CN+1

when ¢ €T, |¢| > [NV ].
To finish the proof, we show that if ¢ € T, || > | N'/?| then there exists
h > 0 such that

1?% r1F\ /o w 1‘, 2977 /o
sup <77>L2 (N5 J+M+d+1‘]_—m_m<PN( 5))(77,§)| < NN N
neRd m(xaf)

(4.2.15)
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Arguing in the similar way as in the proof of [30, Theorem 1.1], it is
sufficient to prove

sup\Dﬁ%| < ONHINTIEEN g < (V)R (4.2.16)

zeK m\4s

for some C' > 0, when & € T, |¢] > | NY/?]. Recall (see Subsection 4.2.1),

1 [eg o
sup | DY 5——| <[] "M,y eNger,
()

zeK Pm

for some C' > 0. Moreover, from (4.2.48) (see Subsection 4.2.3) it follows
that

ﬁ
sup | DYwy (z,€)] < VY Z ISI_G’“

zeK keK1  G,=0

Z <6k + ’7|)C6k+v—ak(6k + |y - ak)7(6k+|’)’|_ak)g LNI/UJak

ag
ap<Gr+|v|
(4.2.17)

for some C" > 0, when £ € T".
Hence, for z € K and £ € T, |£] > [N/ we obtain

|D6“’N |< 3 Z( )ng g1 ()

keK1 v<B

gy 5 2 ()e0)

keEK1v<B  6x=0 ar<Gp+|yl
C’|5*7|U+1’ﬁ_7|T|5*7|006k+|"/|*ak<6 +|’Y’ _ ) T(Sk+|v|—ax) LNI/UJak Sr—m

< CNHES T NV jlel mz Z >
keky Y<B Gr=0  ap<Gp+t|yl
6 [eg
(5) < kT !B|>( w18 = an)” (6 +|8l— ak) (4.2.18)
g Ak

for 8 < [(N/7)'/7], where we used (M.1) property of the sequence M} =
P
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Further observe that
(& + [B] — ) EHl=a0” < (|o(N/7) e )R

90 z—1/c

< CNNTF N, (4.2.19)

and
| NVe [IBl=m < | NV |LN/AYP) < o' (4.2.20)

for some C’,C” > 0. Using the estimate for number of terms in wy, by
(4.2.18), (4.2.19) and (4.2.20), the estimate (4.2.16) follows.

Now by the similar arguments as in the proof of [30, Theorem 1.1], we
conclude that

5N e wn (2, §)
2 M F )(0,6)]

sup (2, )

=\1/c wy(T, 2971/
< sup (O E, (00 ) < o RN g9 01)
neER4 Pm(xvg)

where we used (4.1.2) and

Wi (
CK
7T1<Supp Pm(ft, )) =
Hence (4.2.15) follows.
Therefore y
AN NN
|| < A — , (4.2.22)
€]1277 (V)
for suitable constants A, h > 0. After enumeration
N = N+ [72°"Y (M +d+1)7], (4.2.23)
20'7:71/0'N

(so that N’ — N) and using (M.2)" property of the sequence N~ = , We
conclude that (4.2.22) is equivalent to

20 z—1/c

WV NI
|12 (el

L] < A (4.2.24)

for some A, h > 0. After enumeration N — 72°"! N we finally obtain
WY NI

[un(§)| < AW)

for some A, h > 0, and the proof is finished.
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Remark 4.2.1. We would like to point out that the number of terms in sums
(4.2.6) and (4.2.7) is bounded by same expression as for the case when oper-
ators IR; commute. In particular, note that in that case by using Newton’s
generalized formula we obtain

en(z, &) => RF=>" Y <CL1 '|'“'| am>R§1...R;m

ke kea a1+-+am=k

_ S ( o )RT...RZ,T. (4.2.25)
ay,

ey Oy
()7 |—m<m(ar+-+am)<[(X)7 |

F

Since m > 1, it follows that a; 4+ 2as +. .. ma,, < m(a; +as+...a,). Hence
we conclude that

3 P X ()

()% |—m<m(ar++am)<L(X) 7] m(art-tam)<|(3)7)
> .
1 A1y...,0m
a1+-+mam<[(¥)7 |

< AClHel

IN

IN

for some A, C' > 0 where the last inequality follows by (4.1.23).

4.2.1 Representing uy(£) by approximate solution
If

in(6) = [ ule) (o) s = [ ule) P, Dy, ),

¢erl, ¢ > [NV, where PT(x, D) = Z bo () D is the transpose oper-
la|<m

ator of P(x, D) and by () € &0 (U) (since Eg; 0 (U) is closed under finite

order differentiation), then v(z, &) is the solution of the equation

e PT(x, Dyv(z,€) = xoon(z), € K, ECT, 6] > |NY].  (4.2.26)
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e w(w, §)

Pr(z,€)
w(+, &) € C(K), so that we may rewrite the left hand side of (4.2.26) as

¢ PT (4 D)( (x()w—gf T Z Z( ) z)D* P (e —me)Dﬁ<P:((;)€)>

la|<m fLa

- X2 (5) ()

la|<m B<a v<pB

D”( B (1% §)>D5_7w(:ﬂ), (4.2.27)

for (z,€) € K x I, the conical neighborhood of (xg, &) such that K x I' N
(WF{Qa—lTJ}(f) U Char(P)) - @

Next we use the powerful technique of approximate solution (cf. [16,34])
to rewrite (4.2.27) in the following convenient form:

= S5 () (e g1

la|<m B<a v<p
(4.2.28)

Similarly as in [16] and [29] we assume that v(z,§) = , for some

where

m

R(xaf) = ZR]‘(-T,S), RJ(:U>£) = Z ij(l‘,f)Da, (4'2'29)

i=1 o<
for suitable functions ¢, j(x, &) which are homogeneous of order —j and
1D coj(a, ) < [E[7ART BT BeNYze K,¢eT  (4.2.30)

for some A, h > 0 and |a| < 7, cf. [29].
This representation, together with (4.2.26) and (4.2.27), gives

(I — R(z,9)w(z,&) = xaon(z) z€ K, EET,[E]>[NV7], (4.2.31)

which can be solved as follows.
Successive applications of the operator R to both sides of (4.2.31) gives

Rk_l(x,f)w(x,«f) - Rk(x,ﬁ)w(x, f) = Rk_l(xaf)X2<’N($)7

re K, €T, |¢| > [NY7] for every k € {1,..., N}, so that after summing
up those N equalities we obtain

=

U)(I,f) —RN<1’,£)’LU(£I,’,€> = Rk(%f)XWN@)a

0

i
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which gives formal approximate solution

= 3" Riyaen(2,€) (4.2.32)

k=0

If we consider the partial sums of the form

(X7

= Z o Ry xeon) (2, 6), (4.2.33)

kekq S&,=0
where KC; is given by (4.2.4), we obtain
(I — R)wn(z,€) = xoon(z) —en(x,€), NeN,ze K el (4.2.34)

It remains to calculate the error term ey(x,&), which is done in Subsection

4.2.2.

We finish this subsection by showing (4.2.28) implies the estimate (4.2.30).
An essential argument in this part of the proof is the inverse-closedness prop-
erty presented in Theorem 2.7.2.

Recall,

@ —1 = i 11 1 Pk T I
b (Pm(xuf)) B !(8,§€7r (Pm(xjf))j—l-l H ,]k: (p D P ( 75)) X
(4.2.35)

for o € N9, where sum is taken over all decompositions (s, p,j) of the
form

Q= Jip1 + Jap2 + -+ + JsDs, (4.2.36)

with j = Zyz € {0,1,....]al}, pi € N |pi| € {1,...,]al} for i €

{1,...,s}, s < |a]. (see Section 2.7)
Smce the coefficients of P, (x,&) are in £, (U) it follows that

sup | D Py (1, €)] < AR |y 76, (4.2.37)
zeK

for some A, h > 0. Moreover, from (K x I') N Char(P) = () it follows that

sup [P (x, )| = C'l¢]™ (4.2.38)
zeK
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Hence, by using (4.2.35), (4.2.37) and (4.2.38) we obtain

s

|Da<%x,g)>| < ol 3 '!...js!ui;(:v,é)pHH(l|Dpkpm(x’§)|>jk

(s,p,g)E™ k=1
£ 5!
< ol IR ‘
(s,g&r E|mUFD gy G P, §) [
s 1 " o\ Jk
H (_lAhlka |pk‘7‘pk| )
w1 Pk

< JgTmARI ool

for some A, A’, h,h’ > 0, where the last inequality follows by calculation
from the proof of Theorem 2.7.2.

In particular, we have proved that € Erony (K) for some h >0

_
Pon(,€)

and for every £ € I'. From the algebra property of extended Gevrey classes

it follows that b, (z)0" € Eropy(K) for some h' > 0, where |y| <

_
Ep(,€)

|a| < m and b, (z) are the coefficients of PT(z, D).

4.2.2 The calculation of the error term

Here we show that (4.2.33) and (4.2.34) imply

al=

L(F)7]
en(z,8) = (Rj,R;, ... Rj, X2on) (2, ), (4.2.39)

Rk = (X)7 J-mt1

Az

for N e Nz e K, £ €T, where &, = j1 +jo+ -+ + Jx, Ji € {1,...,m},
1 <i <k, and K is given by (4.2.5).
Notice that the order of operator R*, k € N, is mk. Hence we compute

Z Rk o Z Rk+1

ke]Cl ke’CQ
o LD VI
keks {kEN\mgmkSL(g)%J}

=I-Y R (4.2.40)

keKa
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where KC; is given by (4.2.4) and in the last equality we used

Q=

N
Kin{keN|m<mk<|(=
=

)71}

— (ke NJm<mk < [(2)}] —m),

Moreover, since the operators R;, 1 < 7 < m, do not commute we can write

(

saoy 'S o,

kelCq kekq S&,=0
and
LX)z
SR 3 leRh .R,
ke kex 1
(SO S 25 _L(g o-

where &y =j1+jo+ -+ i, i €{l,....m}, 1 <i<k.
In particular, we conclude that if wy and ey are given by (4.2.6) and
(4.2.7), (4.2.40) implies

(I — R)ywn(z,&) = xoon(z) —en(x,§), NeNze K el

4.2.3 Estimates for D’(R;,...R;, X2°N)

Put
Gr=ji+ i (VD] —m <& < [(N/)V7],
for k € N such that mk < [(N/7)Y7] (see Subsection 4.2.2), and let || < M

where M is order of distribution w.
In the sequel we follow the idea presented in [16, Lemmas 8.6.2 and 8.6.3].

Recall, R;(z,§) = Z Ca,j(x,£)D*, and note that successive applications of
ol <j

the Leibniz rule implies that D?(R;,...R;, x20n) can be written as a sum of

terms of the form

(choéjpji (fL‘, 6))(D71 Caj,,jo (x7 5)) s (D%_lcajk Jk (:L’, 5))(D%X2"N)'

Put a; = || so that
ap + - +ar = & + 18], (4.2.41)

ao < |4, (4.2.42)
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and

aigijt—ﬂﬁ\, 1<i<k (4.2.43)
From (4.2.30) it follows that
IDVteg, (@, 6)] < €A 10"yl e Nz e K €T, (4.2.44)
for some A, h > 0 and |oy,| < ji;, i =1,..., k. Moreover,
DV yaon| < CHH NV |0 4 e K,

since aj, < & + |B] < [2(N/7)V7].
Observe that the number of multiindices 7, ...,v with the property
(4.2.41) is (6’“ 18
ag,y .. .,0k
over all multiindices 7, ..., 7, which satisfies (4.2.41)-(4.2.43).
Hence, for x € K and £ € T, |[£| > [ N'/?]| we estimate

). In the sequel we write Z when the sum is taken

|DBRj1"-Rij20N($a€)| <

S (H 1Dy i, €)1) - 1D xarnd
< |£|—6kz (6k+|6|)(HAhaZ ‘a rag_ > (CakJrlLNl/oJak)

< |€[mm NI g LR L p LN 2N/ 4

G + ﬁ k Taj_, o |ak
Z (ao,k. .. !aL) <Hai’1 > ' LNl/ J

=1
k
~\1/o |, 1 6 Ta?.
< ||l / JhN+1Z (a0k+|5|>(HaZ 11) | NV
’t =1

for some h' > 0. By the almost increasing property of M7 = p™” it follows
that

k
o l... |

Tag_ Qg- Af—1- o
H aiil 1 S Ca0+ +ak—1 ‘(a/O + R _I_ ak_l)’r(ao—i- +ak_1)
= (ag+ -+ ap_1)!

ag! -+ ap_

(S + 18] - )

— Sk HlBl-ay <6k + 18] — )T(Gk+|5|*ak)a7
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wherefrom
6k+’6’) i Tad_ 1 a0!~~~ak,1!
a/‘fl 1 . N /O’ Qg <
Z(ag,...,ak <gl1 ) L J _Z(Gk‘i“ﬁ‘—ak)'
. O'Sk+IBl—ak (‘6’f + WP! '(Gk + |B| — ag,)TErFBlmaR)” ) /o |ar
ag: ... Q-1
- Z S + 18] CORHBI-ak (&, 4 |B| — ay,)"(ErHElmaR)T | N1/7 |ox
ag

ap<Gr+|B]
(4.2.45)

Further, for N large enough we have
(L(N/D)Y7 ] + M)7 <2771 (N/7 + M) < 2°N/7
so that for |5] < M the following estimate holds:
Gk + 18] < [(N/D)Y7) + M < [2(N/7)1°].

This, together with (I\/A2)’ property of M7 = p™ gives

(8 + 18] — ar) AT < (/7)) - UV
< CWNDYL (N 7)Y TLNR )
< O'NNTEON, (4.2.46)
Moreover since
[NV jae < | NV RN < oN, (4.2.47)

for sufficiently large C' > 0, by (4.2.46) and (4.2.47) we obtain

Z (Gk + ’6’>C¢Gk+|5|_ak(6k + 18] — a) 7Gx HIBI=aR)7 | N/ |

ag
a<Sr+|A]

7—1/o

<hN+1N p N

for some h > 0, which implies that for z € K, £ € T’

)

m—| (N/7)!/ i1/o
|DPR;,...R;, xoo n (1, €)| < |€ LN/DY N+ N =5 N

Choosing the appropriate enumerations and similar estimates as in [29, Sub-
section 4.3] we conclude that

N 7=1/o
IDPRy,.. Ry, xaow(,€)| < [¢] 7127 N/DMIImMp N4 N = (4.2.48)

for some h > 0, which gives the desired estimate.



Remark 4.2.2. Note that Lemma 2.7.1 is used twice in the proof of Theorem
4.2.1. That lead us to the conclusion that the Theorem does not hold for
wave fronts sets WEF(; 1y, when 0 < 7 < 1, if we choose partial differential
operators with quasi-analytic coefficients. In particular, M, =p!", 0 <7 < 1
fails to satisfy Komatsu’s condition (M.4)" since Stirling’s formula implies
that Mo 1/p
(—p) ~Cph, p— oo,
pp
for some C' > 0. Hence the representation (4.2.29), with ¢, , |a| < 7,
1 < 7 < m satisfying the desired estimate of the form (4.2.30), is not possible.
Moreover, for our analysis we have chosen 7,0— admissible sequences
where 7 = 79/(®=1 and hence we obtain ”critical behaviour” for the case
0 <7< 1and o =1. (see Remark 3.2.1, Chapter 3).

This leads us to the lead us to the wave front set, WF+ o, with the
pseudo-local property. In particular, following Corollary is an immediate
consequence of the Remark 3.5.1 and Theorem 4.2.1.

Theorem 4.2.2. Let u € D'(U) and P(z, D) the differential operator of
order m with coefficients in Ex 1+ (U). Then if P(x,D)u = f in D'(U), it
holds

WF0+7oo(f) - WF0+7OO(U) - WF0+7oo(f) U Char(P(a:, D)) (4249)

Proof. Let ¢ > 1 be arbitrary but fixed, P(xz, D) = Z ao(x)D* partial
jal<m

deifferential operator such that a, € £ (U), |a| < m. In particular, a, €

Etro0y(U) for some 7,. Set 7 = max 7, to conclude that a, € 0 (U) for

la<m

all |a| < m. Now the statement follows directly from Theorem 4.2.1. ]
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