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A new type of regularity with applications to
the wave front sets

doctoral dissertation

Nova vrsta regularnosti sa primenama na
talasni front

doktorska disertacija

Mentor:

Nenad Teofanov

jun 2016.





Contents
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Sažetak

Klase Ževrea ( [14]) su uvedene u cilju preciznijeg objašnjenja regularnosti
rešenja jednačine provod̄enja toplote, i na taj način su našle svoju primenu u
teoriji linearnih parcijalnih jednačina, posebno u ispitivanju hipoeliptičnosti,
lokane rešivosti i u analizi prostiranja singulariteta rešenja.

U ovoj tezi definǐsemo klasu glatkih funkcija koje imaju ”slabiju regu-
larnost” nego Ževre funkcije, i izučavamo njihove osnovne osobine. Pokazu-
jemo da naše klase imaju svojsto algebre kao i da su zatvorene u odnosu na
delovanje operatora izvoda konačnog reda. Šta vǐse, konstruǐsemo diferenci-
jalne operatore beskonačnog reda i to nas dovodi do definicije ultradiferen-
cijabilnih klasa funkcija. Takod̄e dokazujemo osobinu zatvorenosti u odnosu
na inverze, i taj rezultat je najvažniji deo u dokazu glavne teoreme koja je
formulisana u poslednjoj glavi.

Koristeći tehnike mikrolokalne analize, uvodimo i izučavamo odgovarajuće
talasne frontove. Naš glavni rezultat pokazuje kako se prostiru singulariteti
rešenja linearnih parcijalnih diferencijalnih jednačina u okviru naše regu-
larnosti.

Neki rezultati iz ove teze su objavljeni u [29], [30], [43], kao i u radu [31]
koji je u pripremi.
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Abstract

Since their introduction in the context of regularity properties of fundamen-
tal solution of the heat operator in [14], Gevrey classes were used in many
questions related to the general theory of linear partial differential operators,
such as hypoellipticity, local solvability and propagation of singularities.

We introduce a family of smooth functions which are ”less regular” than
the Gevrey functions, and study its basic properties. In particular we prove
the standard results concerning algebra property and stability under finite
order derivation. Moreover, we construct infinite order operators which leads
us to the definition of class with ultradifferentiable property. We also prove
that our classes are inverse-closed, and this result is the essential part in the
proof of our main result presented in the final Chapter.

Moreover, using the techniques of microlocal analysis, we introduce and
investigate the corresponding wave front sets. Our main results shows how
the singularities of solutions to partial differential equations (PDE’s in short)
propagate in the framework of our regularity.

Some results of thesis are published in [29], [30] and [43], see also [31].
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Preface

In this thesis we propose a new type of local regularity and analyze corre-
sponding classes of smooth functions. In particular, we introduce two pa-
rameter depending defining sequences M τ,σ

p := pτp
σ
, τ > 0, σ > 1, p ∈ N,

which control the derivatives of functions, we analyze their properties, and
construct classes of smooth function which posses ultradifferentiable prop-
erty. Such classes are classes of ultradifferentiable functions since they are
closed under action of certain infinite order differential operators. Moreover,
we study nature of singularities related to their duals using the techniques
of microlocal analysis.

H.Komtasu in [21] developed methods of local analysis for studying classes
of ultradifferentiable functions and their spaces of ultradistributions as their
strong duals. Classes of test functions are inductive and projective limits
of (countable) families of Banach spaces and therefore they have Frechét
structure. In particular, the regularity condition related to Komatsu’s classes
is given by

|∂αφ(x)| ≤ Ah|α|M|α|, x ∈ K,α ∈ Nd,

and we refer to Chapter 1, Section 1.2, for details.
However, we propose the regularity of the form

|∂αφ(x)| ≤ Ah|α|
σ

M τ,σ
|α| , x ∈ K,α ∈ Nd,

wherefrom it follows that corresponding classes of functions are not equal to
Komatsu’s classes for any choice of parameters τ > 0 and σ > 1. Moreover,
sequence M τ,σ

p fails to satisfy usual Komatsu’s conditions (see Chapter 1,
Section 2.1) and in that sense results of Chapter 2 generalizes standard results
given in [20].

In [38] Siddiqi studied the inverse closedness property of Carleman classes
by imposing an additional condition to the Mp, p ∈ N. The basic question
is: if φ belongs to some subclass of smooth functions and φ 6= 0 (locally) does
the φ−1 belongs to the same subclass? It turns out that definition Carleman
classes corresponds to Komatsu’s definition of ultradiferentiable functions
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of Roumieu type, and therefore in Chapter 2, Section 2.7, we extend the
corresponding result for our classes using different techniques then the one
from [38]. Some of presented techniques will be used in the proof of main
results in the final Chapter 4.

For the particular choice Mp = p!t, t > 1, Roumieu type Komatsu classes
correspond to Gevrey classes. They were introduced by M. Gevrey to describe
regularity properties of fundamental solution of the heat operator in [14],
and thereafter used in the study of different aspects of general theory of
linear partial differential operators such as hypoellipticity, local solvability
and propagation of singularities. In particular, the well-posedness of the
Cauchy problem for weakly hyperbolic linear partial differential equations
(PDE’s) can be characterized by the Gevrey index t, while the same problem
is ill-posed in the class of analytic functions, (see [3, 35] and the references
given there).

Since there is a gap between Gevrey classes and smooth functions, it is
of interest to study the intermediate spaces of smooth functions which are
contained in those gaps by introducing appropriate regularity conditions.
On one hand, this may serve to describe hypoellipticity properties between
smooth hypoellipticity and Gevrey hypoellipticity, which is one motivation
for work presented in this thesis, cf. [24].

Another motivation comes from microlocal analysis, where the notion of
wave front set plays a crucial role. Different authors studied different types
of wave front sets. Roughly speaking, complements of wave front sets are
conical sets of points (x, ξ) ∈ Rd × Rd\{0} for which the distribution u is
regular in the neighborhood of x in the directions of derivatives determined
by ξ.

We refer to [12], [16], [42] for classical wave front sets, WF(u), whose
complement describes the C∞ regularity. In particular, classical wave front
set satisfy

π1(WF(u)) = singsupp(u), u ∈ D′(U),

where π1 is standard projection and singsuppu denotes singular support of
distribution u. However, the fundamental property is microlocal hypoelliptic-
ity which explains how the singularities of solutions to the partial differential
equations propagate. It is expressed by

WF(Pu) ⊆WF(u) ⊆WF(Pu) ∪ Char(P ),

where P is partial differential operator with smooth coefficients and Char(P )
is set of its characteristics. We refer to Chapter 1, Section 1.4 for details.
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Wave front sets with respect to CL, denoted by WFL, are introduced and
investigated in [16]. For Lp = pt, t > 1, they are Gevrey wave front sets while
putting t = 1 the definition of analytic wave front set arises, which is the
largest wave front set in the existing literature. They both have microlocal
hypoellipticity property and for the analytic case this property immediately
implies famous Holmgren’s uniqueness theorem from theory of PDE’s, as it
is stated in [16].

Moreover, these wave front sets are related to classes of ultradifferentiable
functions (Gevrey classes and classes of analytic functions) and therefore they
are significant for our investigation. Wave front sets introduced in Chapters
3 and Chapter 4 are different from WFL for any choice of sequence Lp,
and hence the modification of standard arguments in the proofs of main
results is needed. Roughly speking, we introduce wave front sets which detect
singularities that are ”stronger” then the classical C∞ singularities and at
the same time ”weaker” than any Gevrey type singularities.

Further properties of Gevrey wave front sets are studied in [35]. Moreover,
the classical results are extended to the spaces of Gevrey ultradistributions
and partial differential operators with coefficients in Gevrey classes.

Different types of wave front sets that modify the classical wave front set
are introduced in the literature. Although their definition goes beyond the
scope of this thesis, we briefly mention the Gabor wave front set originally
defined in [17] and further developed in [36], which is based on microlo-
cal analysis on cones taken with respect to the whole of the phase space
variables. Such approach is recently successfully applied to the study of
Schrödinger equations in [4, 5, 33, 44], see also the references therein. Since
versions of Gabor wave front set can be adapted to analytic and Gevrey
regularity (cf. [1, 40, 41]) it is natural to assume that the same holds in the
framework of regularity proposed in thesis, and this will be the subject of
future investigation.



0.1 Outline and Acknowledgements

Chapter ”Introduction” contains some of the basic notions and notations
from the theory of ultradifferentiable functions, partial differential equations
and microlocal analysis that will be used in the thesis.

Chapter ”Classes of ultradifferentiable functions” introduces a new classes
of functions, Eτ,σ, τ > 0, σ > 1, which describes a new type of local regu-
larity investigated in this thesis. It contains original results concerning basic
properties of the defining sequence M τ,σ

p , p ∈ N (sequence that controls the
derivatives) and basic topological properties of Eτ,σ. Main result is given in
Theorem 2.6.2, Section 2.6 where it is proven that classes E∞,1 are closed
under action of certain ultradifferentiable operators. In the final section, we
discuss the inverse-closedness property.

A new type of wave front sets, WFτ,σ, τ > 0, σ > 1, are defined and
analyzed in Chapter ”Wave front sets related to Eτ,σ”. In section 3.2 is proven
that the local regularity described by the complement of WFτ,σ is regularity
investigated in Chapter 2. For the analysis we choose admissible sequences of
cut-off test functions, similar to one used in [16] to analyze local analyticity.
Moreover, in order to describe asymptotic behaviour in microlocalization we
intodroduce a procedure called enumeration. The notion of singular support
related to classes Eτ,σ is defined in Section 3.3 and the main result of the
Chapter is presented in Theorem 3.3.1. In the final section, we discuss unions
and intersections of WFτ,σ with respect to parameters τ, σ which lead us to
the definition of WF0+,∞, wave front set with pseudo-local property.

The main result of the final Chapter ”Microlocal analysis of solutions to
PDE’s” is Theorem 4.2.1. It contains the proof of microlocal hypoellipticity
of PDO’s with the coefficients in classes E∞,1+ . In the Section 4.1, the PDO’s
with constant coefficients are considered, and the non-trivial modifications
for the case of the non-constant coefficients is presented in Section 4.2. In
particular, we prove that WF0+,∞ have the pseudo-property.

The results presented in this thesis are obtained in collaboration with
Professors Nenad Teofanov and Stevan Pilipović. I wish to express my sincere
thanks to my mentor Professor Nenad Teofanov for understanding, endless
support and numerous discussions in the process of writing the thesis. Also I
express my gratitude to Professor Stevan Pilipović, who initiated the research
presented in this thesis, for the opportunity to work within his group and
for focusing this research in the right direction. I am forever in debt to my
parents and my girls Katarina, Jovana i Biljana, for their endless love and
support during all these years. This research is carried out under the Project
no. 174024.



Chapter 1

Introduction

This chapter contains familiar results from theory of distributions, ultradif-
ferentiable functions and partial differential equations that will be used in
thesis. We begin by fixing the notation.

1.1 Notation

Nonnegative integers, integers, positive integers, real numbers, positive real
numbers and complex numbers are denoted by N, Z, Z+, R, R+ and C,
respectively. The integer part (the floor function) of x ∈ R+ is denoted by
bxc := max{m ∈ N : m ≤ x}. For a multiindices α = (α1, . . . , αd) and
β = (β1, . . . , βd) we write ∂α = ∂α1 . . . ∂αd , |α| = |α1|+ . . . |αd|, α! = α1!...αd!

and α ≤ β if αi ≤ βi for 1 ≤ i ≤ d. Moreover, Dαi =
(1

i

)|α|
∂α. We will

also use the Stirling formula: N ! = NNe−N
√

2πNe
θN
12N , for some 0 < θN < 1,

N ∈ Z+. If U ⊆ Rd is open, the we use the notation K ⊂⊂ U if K is compact
set with smooth boundary contained in U . Closure of set U is denoted by U .

By Cm(K), m ∈ N, we denote the Banach space of m-times continuously
differentiable functions on a compact set with smooth boundary K ⊂⊂ U ,
where U ⊆ Rd is an open set, and C∞(K) is the corresponding set of smooth
functions on K, see [20]. Moreover, by C∞0 (K) we denote the space of smooth
functions supported in K. With suppu we denote the support of function
(distribution) u. Convolution is denoted with f ∗ g(x) =

∫
Rd f(x− y)g(y)dy,

whenever the integral make sense. Open ball of radius r > 0 centered at
x0 ∈ Rd is denoted by Br(x0), and cardA denotes the cardinal number of
A. We use the standard notation 〈x〉 = (1 + |x|2)1/2 for x ∈ Rd. Fourier
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12 Introduction

transform is denoted by

Fx→ξu(x) = û(ξ) =

∫
u(x)e−2πixξ dx.

Recall some of the properties for multinomial coefficients

(
|a|

a1, a2, . . . am

)
:=

(
|a|
a1

)(
|a| − a1

a2

)
. . .

(
|a| − a1 − · · · − am−2

am−1

)
=

|a|!
a1!a2! . . . am!

, (1.1.1)

where |a| = a1 +a2 + · · ·+am, ak ∈ N, k ≤ m. Following formula generalizes
Pascal triangle equality for binomial formula(

|a|
a1, ..., am

)
=

m∑
k=1

(
|a| − 1

a1, ..., ak − 1, ...am

)
, |a| ≥ 1 (1.1.2)

Moreover, since
(
n
k

)
≤ 2n, k ≤ n, n ∈ N we note that

(
|a|

a1, a2, . . . am

)
≤ 2|a|2|a|−a1 . . . 2|a|−a1−···−am−2 ≤ 2a1+2a2+···+mam . (1.1.3)

We will also use the genarilezed Newton’s formula expressed by

(t1 + t2 + · · ·+ td)
n =

∑
a1+a2+···+ad=n

(
n

a1, ..., ad

)
ta11 . . . tadd , n ∈ N,

wherefrom we conclude that for multiindex α ∈ Nd this formula implies that
|α|! ≤ d|α|α! (by setting t1 = t2 = · · · = td). Converse inequality α! ≤ |α|! is
trivial.

For locally convex topological spaces X and Y , X ↪→ Y means that
X ⊆ Y and that the identity mapping from X to Y is continuous, and
we use lim←− and lim−→ to denote the projective and inductive limit topologies
respectively. By X ′ we denote the dual of X and by 〈·, ·〉X the dual pairing
between X and X ′. Set of continuous linear operators from X to Y is denoted
by L(X, Y ).

Recall, a linear map B ∈ L(X, Y ), X, Y are Banach spaces, is quasi-

nuclear if there exists a sequence {x′j} in X ′ such that
∞∑
j=1

‖x′j‖X′ < ∞ and
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‖Bx‖Y ≤
∞∑
j=1

|〈x, x′j〉X |. In particular, a quasi-nuclear map A ∈ L(X, Y ) is

nuclear if there exists bounded sequences x′j ∈ X ′ and yj ∈ Y , j ∈ Z+, and a

sequence λj ∈ C, j ∈ Z+, such that
∞∑
j=1

|λj| <∞ and Ax =
∞∑
j=1

λj〈x, x′j〉Xyj.

We refer to [39, Section III.7] and [26] for an extension of nuclear and quasi-
nuclear mappings to arbitrary locally convex topological spaces.

With D′(U), E ′(U) we denote the spaces of Schwartz distributions and
distributions with compact support, respectively. They are duals of spaces of
smooth compactly supported functions and smooth functions on U , denoted
by D(U) = C∞0 (U) and D(U) = C∞(U), respectively. Recall that u ∈ D′(U)
if for every K ⊂⊂ U there exists constants C > 0 and M > 0 such that

|〈u, ϕ〉| ≤ C
∑
|α|≤M

sup
x∈K
|∂αϕ(x)|, ϕ ∈ C∞0 (K),

and if M can be chosen independently of K the we say that u is distribution
of order M.

We will also use the simplified version of Paley-Wiener theorem: If ϕ ∈
D(U) then for every M > 0 there exists C > 0 such |ϕ̂(ξ)| ≤ C〈ξ〉−M .
Moreover, for u ∈ E ′(U), there exists M,C > 0 such that |û(ξ)| ≤ C〈ξ〉M ,
where M is order of u. For more general versions Paley-Wiener theorem we
refer to [20], [21].

To end these section we recall (see [42]) that the sequence {χN}N∈N is
bounded in D(U) if there exists compact set K ⊂⊂ U such that suppχN ⊆ K
for every N ∈ N and for every m ∈ N there exists constants Cm > 0 such
that sup

|α|≤m
sup
x∈K
|DαχN(x)| ≤ Cm where Cm does not depend on N.

Moreover the sequence {uN}N∈N is bounded in E ′(U) if there exists K ⊂⊂
U such that suppuN ⊆ K for every N ∈ N, and for every ϕ ∈ E(U) there
exists constant C > 0 so that |〈uN , φ〉| ≤ C, where C depends only on choice
of test function ϕ.

Therefore, we conclude that if u ∈ D′(U) and {χN}N∈N is bounded in
D(U) then {χNu}N∈N is bounded in E ′(U). In particular, simple application
of Leibniz rule implies that

|〈χNu, ϕ〉| = |〈u, χNϕ〉| ≤ C
∑
|α|≤M

∑
β<α

(
α

β

)
sup
x∈K
|∂βχN(x)||∂α−βϕ(x)|,

wherefrom the conclusion follows immediately.
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1.2 Classical spaces of ultradifferentiable func-

tions

In this section we recall Komatsu’s approach to the theory of ultradifferen-
tiable functions, see [20], and the notion of wave front set in the context of
the Gevrey regularity.

By Mp = (Mp)p∈N we denote a sequence of positive numbers such that
the following conditions hold:

(M.0) M0 = 1;

(M.1) M2
p ≤Mp−1Mp+1, p ∈ Z+;

(M.2) (∃C > 0) Mp+q ≤ Cp+1MpMq, p, q ∈ N;

(M.3)′
∞∑
p=1

Mp−1

Mp
<∞.

Then Mp also satisfies weaker conditions: (M.1)′ MpMq ≤ Mp+q and
(M.2)′ (∃C > 0) Mp+q ≤ Cp+1

q Mp, p, q ∈ N.
Let the sequence Mp satisfy the conditions (M.0)−(M.3)′ and let U ⊆ Rd

be an open set. A function φ ∈ C∞(U) is an ultradifferentiable function of
class (Mp) (resp. of class {Mp}) if for each compact subset K ⊂⊂ U and
each h > 0, there exists C > 0 (resp. for each compact subset K ⊂⊂ U there
exists h > 0 and C > 0) such that

sup
x∈K
|∂αφ(x)| ≤ Ch|α|M|α|, α ∈ Nd. (1.2.1)

For a fixed compact set K ⊂ Rd and h > 0, φ ∈ E{Mp},h(K) if φ ∈ C∞(K)
and if (1.2.1) holds for some C > 0. If φ ∈ C∞(Rd) and all the derivatives

vanishes on the boundary of K, then φ ∈ D{Mp},h
K . These spaces are Banach

spaces under the norm

‖φ‖E{Mp},h(K) = sup
α∈Nd,x∈K

|∂αφ(x)|
h|α|M|α|

.

Locally convex spaces (in the sequel l.c.s.) of ultradifferentiable functions
of class {Mp} and of class (Mp) are respectively given by

E{Mp}(K) = lim−→
h→∞
E{Mp},h(K) =

⋃
h→∞

E{Mp},h(K)

E{Mp}(U) = lim←−
K⊂⊂U

E{Mp}(K) =
⋂

K⊂⊂U

E{Mp}(K),
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E (Mp)(K) = lim←−
h→0

E{Mp},h(K) =
⋂
h→0

E{Mp},h(K)

E (Mp)(U) = lim←−
K⊂⊂U

E (Mp)(K) =
⋂

K⊂⊂U

E (Mp)(K),

and their strong duals are respectively called the space of ultradistributions
of Roumieu type of class Mp and the space of ultradistributions of Beurling
type of class Mp.

Spaces of ultradifferentiable functions of class {Mp} (resp. of class (Mp))
with support in K is given by

D{Mp}
K = lim−→

h→∞
D{Mp},h(K) =

⋃
h→∞

D{Mp},h
K

D{Mp}(U) = lim←−
K⊂⊂U

D{Mp}
K =

⋂
K⊂⊂U

D{Mp}
K ,

D(Mp)
K = lim←−

h→0

D{Mp},h
K =

⋂
h→0

D{Mp},h
K

D(Mp)(U) = lim←−
K⊂⊂U

D(Mp)
K =

⋂
K⊂⊂U

D(Mp)
K ,

and its strong dual is the space of compactly supported ultradistributions of
Roumieu type of class Mp (resp. of Beurling type of class Mp).

In what follows, E∗(U) and D∗(U) stand for E{Mp}(U) or E (Mp)(U), and
for D{Mp}(U) or D(Mp)(U), respectively.

Remark 1.2.1. If Mp is the Gevrey sequence, Mp = p!t, t > 1, then E{p!t}(U)
is the Gevrey class of ultradifferentiable functions which we denote by Et(U).
Note that p!t, t > 1, satisfies (M.0) − (M.3)′, while for 0 < t ≤ 1 sequence
Mp = p!t fails to satisfy (M.3)′. For t = 1, the corresponding spaces consists
of analytic function on U , while for 0 < t < 1 spaces E{p!t}(U) consists
of entire functions. In particular, it is well known that D{p!t}(U) = {0}
when 0 < t ≤ 1. (see Theorem 1.3.8. in [16]). With D′t(U) and E ′t(U),
t > 1 we will denote spaces of Gevrey ultradistributions and its subspace of
ultradistributions with compact support.

Recall, ( [20], [21]), operators of the form P (x,D) =
∞∑
|α|=0

aα(x)Dα are

called ultradifferentiable operators of the class *, if aα ∈ E∗(U) and for the
case ∗ = {Mp} (resp. ∗ = (Mp)) for every K ⊂⊂ U , there exists h > 0 such
that for any L > 0 there exists A > 0 so that (resp. for every K ⊂⊂ U there
exists constant L > 0 such that for every h > 0 there exists A > 0 so that)
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sup
x∈K
|Dβaα(x)| ≤ Ah|β|M|β|

L|α|

M|α|
, α, β ∈ Nd.

Following Theorem captures the basic properties of the ultradifferentiable
classes.

Theorem 1.2.1. ( [20]) Let Mp, p ∈ N, satisfy properties (M.0)−(M.2), and
φ, ψ ∈ E∗(U) where U is open in Rd. Then pointwise product φψ ∈ E∗(U),
and E∗(U) is closed under finite order derivation.

Further, if P (x,D) =
∞∑
|α|=0

aα(x)Dα is ultradifferentiable operator of the

class *, the the mapping

P (x,D) : E∗(U)→ E∗(U),

is continuous with respect to the topology of E∗(U).
Moreover, E∗(U) are nuclear.

To conclude this section, we recall that associated function to the sequence
Mp, p ∈ N, M0 = 1, is given by

TMp(r) = sup
p∈N

=
rp

Mp

.

For more details and properties of TMp(r) we refer to [20], see also Remark
2.1.4.

Remark 1.2.2. In the following chapters we will also use several spaces whose
definition is equivalent to the definition of Komatsu’s classes, with different
conditions on the sequences. In fact, in [16] author introduce classes CL(U)
in the following way: φ ∈ CL(U) if and only if for every compact set K ⊂⊂ U
there exists constant CK such that

sup
x∈K
|Dαφ(x)| ≤ CK(CKLα)|α|, α ∈ Nd, (1.2.2)

where Lp, p ∈ N, is the increasing sequence of positive numbers satisfying
conditions

L0 = 1, p ≤ Lp, Lp+1 ≤ CLp, C > 0, p ∈ N. (1.2.3)

In particular, CL(U) are of Roumieu type of class Mp := Lpp, p ∈ N.
Moreover, the definition of Carleman classes CM(U) (see [38], [19]) is

given by: φ ∈ CM(U), where Mp, p ∈ N, satisfies property (M.1), if for
every compact set K ⊂⊂ U
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sup
p∈N

(sup
x∈K
|f(x)|/Mp)

1/p <∞.

Similarly, CM(U) are of Roumieu type of class Mp, p ∈ N.

1.3 Approximate solutions to PDE’s

In this section we analyze the solutions of certain partial differential equa-
tions. We recall some of the basic notions from the theory of PDE’s.

Let P (x,D) =
∑
|α|≤m

aα(x)Dα, aα ∈ C∞(U), be the differential operator of

order m on U , and let Pm(x, ξ) =
∑
|α|=m

aα(x)ξα, (x, ξ) ∈ U ×Rd\{0} denotes

its principal symbol.

Set Γ̃ in U × Rd\{0} is conical if (x, ξ) ∈ Γ̃ implies (x, tξ) ∈ Γ̃ for
every t > 0. Moreover, the function ϕ(x, ξ) defined on Γ̃ is said to be
homogeneous of order k ∈ Z if it satisfies ϕ(x, tξ) = tkϕ(x, ξ) for every
t > 0. We immediately note that principal symbol Pm is homogeneous of
order m.

Recall ( [34]), the characteristic variety of operator P (x,D) at point x ∈ U
is given by

Charx(P ) = {(x, ξ) ∈ U ×Rd\{0} |Pm(x, ξ) = 0},

Characteristic set of operator P (x,D) on the open set U and is given by

Char(P ) =
⋃
x∈U

Charx(P )

By the homogeneity of the principal symbol it follows that Char(P ) is
closed conical subset of U ×Rd\{0}.

Let (x0, ξ0) 6∈ Char(P ). Since Pm ∈ C∞(U × Rd\{0}), Pm(x0, ξ0) 6= 0
implies the existence of the conical neighborhood Γ̃ of (x0, ξ0) such that
Pm(x, ξ) 6= 0, (x, ξ) ∈ Γ̃. Moreover, by the homogeneity of the principal
symbol we obtain

Pm(x,
ξ

|ξ|
) =

1

|ξ|m
|Pm(x, ξ)| ≥ C, (x, ξ) ∈ Γ̃. (1.3.1)

For x ∈ K ⊂⊂ π1(Γ̃), where π1 denotes the standard projection, we obtain
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the fundamental inequality

C1|ξ|m ≤ Pm(x, ξ) ≤ C2|ξ|m, C1, C2 > 0, (x, ξ) ∈ Γ̃ ∩ (K ×Rd\{0}),
(1.3.2)

where second inequality is trivial.
Note that for u, f ∈ D′(U), P (x,D)u = f , v ∈ C∞0 (U), partial integra-

tion implies that 〈u, P Tv〉 = 〈f, v〉, where P Tv =
∑
|α|≤m

(−1)|α|Dα(aαv), is

transpose operator for P . It is clear that if Pm(x, ξ) is principal symbol of P
then Pm(x,−ξ) is principal symbol of P T .

Following theorem gives the asymptotical connection between principal
symbol and the operator.

Theorem 1.3.1. ( [34]) Let P (x,D) be the differential operator with smooth
coefficients of order m on U . If φ(x) is smooth real valued function on an
open set U ⊆ Rd, then asymptotically holds

e−itφ(x)P (x,D)(eitφ(x)) ∼ tmPm(x,∇xφ), t→∞ (1.3.3)

for every x ∈ U , where ∇x denotes gradient of the function.

Remark 1.3.1. For the future references, we discuss formula (1.3.3) in more
detail. Let ξ ∈ Rd\{0} be arbitrary but fixed. For (x, ξ) ∈ U ×Rd\{0} set
ϕ(x, ξ) = x · ξ. Clearly, ∇xϕ = ξ. Since the principal symbol Pm and the
chosen function ϕ are homogeneous of order m and 1, respectively, Theorem
1.3.1 implies

lim
|ξ|→∞

e−ix·ξP (x,D)(eix·ξ)

Pm(x, ξ)
= 1, (1.3.4)

for every x ∈ U .
Moreover, if we choose χ ∈ C∞0 (U), suppχ ⊆ K, then simple calculation

gives

e−ix·ξP (x,D)(eix·ξχ(x)) = e−ix·ξ
∑
|α|≤m

aα(x)Dα(eix·ξχ(x))

= e−ix·ξ
∑
|α|≤m

aα(x)
∑
β≤α

(
α

β

)
Dα−β(eix·ξ)Dβχ(x)

= e−ix·ξP (x,D)(eix·ξ)χ(x)

+
∑
|α|≤m

aα(x)
∑

β≤α,|β|≥1

(
α

β

)
ξα−βDβχ(x), (1.3.5)
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for x ∈ K and ξ ∈ Rd\{0}. Since aα, |α| ≤ m are smooth functions we
obtain

∣∣∣ ∑
|α|≤m

aα(x)
∑

β≤α,|β|≥1

(
α

β

)
ξα−βDβχ(x)

∣∣∣ ≤ 2m sup
x∈K

sup
α∈Nd

|Dαχ(x)||ξ|m−1,

(1.3.6)
(1.3.2), (1.3.4) and (1.3.5) implies

lim
|ξ|→∞

e−ix·ξP (x,D)(eix·ξχ(x))

Pm(x, ξ)
= χ(x) (1.3.7)

uniformly for x ∈ K. In that sense, if we observe the equation of the form

P (x,D)v(x, ξ) = χ(x)e−ix·ξ x ∈ K, ξ ∈ Rd\{0},

the approximative solution (for large ξ) is given by v(x, ξ) =
eix·ξχ(x)

Pm(ξ)
.

1.4 Localization of distributions and wave front

sets

In this section we recall some of the known wave fronts sets and their basic
properties. We begin with standard wave front set, WF (u). The regularity
proposed by the complement of WF (u) is related to C∞(U) classes. Recall
that Γ is conical if for every ξ ∈ Γ, tξ ∈ Γ for every t > 0.

Definition 1.4.1. Let u ∈ D′(U) and (x0, ξ0) ∈ Rd × Rd\{0}. Then
(x0, ξ0) 6∈ WF (u) if and only if there exists an open neighborhood Ω of x0,
a conic neighborhood Γ of ξ0 and a smooth compactly supported function φ
equal to 1 on Ω and

|φ̂u(ξ)| ≤ CN
|ξ|N

, N ∈ N, ξ ∈ Γ, CN > 0.

It can be shown ( [42], [12]) that the Definition 1.4.1 does not depend on
choice of cutoff function φ. In that sense, the WF(u) is equivalently defined
in the following way:

(x0, ξ0) 6∈ WF (u) if and only if there exists an open neighborhood Ω of
x0, a conic neighborhood Γ of ξ0 and a compactly supported distribution
v ∈ E ′(U) such that v = u on Ω and

|v̂(ξ)| ≤ CN
|ξ|)N

, N ∈ N, ξ ∈ Γ, CN > 0.
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Next we recall the definition of wave front sets with respect to CL (cf. [16]).
Let Lp, p ∈ N be the increasing sequence of positive numbers satisfying
(1.2.3). Then WFL is defined in the following way

Definition 1.4.2. Let u ∈ D′(U) and (x0, ξ0) ∈ Rd × Rd\{0}. Then
(x0, ξ0) 6∈ WFL(u) if and only if there exists an open neighborhood Ω of
x0, a conic neighborhood Γ of ξ0 and a bounded sequence {uN}N∈N in E ′(U)
such that uN = u on Ω and

|ûN(ξ)| ≤ CN+1LNN
|ξ|N

, N ∈ N, ξ ∈ Γ, C > 0.

For the choice Lp = p, p ∈ N, we obtain analytic wave front set WFA(u)
while for Lp = pt, t > 1, Gevrey wave front set WFt(u). The regularity
of their complement is related to classes of analytic functions, E{p!}(U) and
Gevrey classes Et, t > 1. Therefore, following inclusion is immediate

WF(u) ⊆WFt(u) ⊆WFA(u), u ∈ D′(U).

Note that in the Definition 1.4.2 we demand the existence of sequence
of compactly supported distributions satisfying the desired decay estimates
on Fourier side. This is due to the specific choice of cutoff functions. In
particular, in [16] author used bounded sequence {χN}N∈N in C∞0 (K), such
that χN = 1 on open set Ω ⊂ K for every N ∈ N and satisfies estimates of
the following form

|Dα+βχN | ≤ C
|α|+1
β L

|α|
N , |α| ≤ N,N ∈ N, β ∈ Nd,

Since we cannot construct compactly supported analytic functions (D{p!} =
{0}), this type of sequences turns out to be best possible choice to analyze
microlocal analyticity. In particular, function χN , N ∈ N satisfies analytic
estimates up to order N .

In our approach we will impose additional admissibility conditions to
the sequences {χN}N∈N by introducing two parameters τ > 0 and σ > 1,
for which the estimates for derivatives are small up to certain order (see
Chapter3, Definition 3.2.1).

Let us introduce the notion of singular support of distribution.

Definition 1.4.3. Let u ∈ D′(U). Then x0 6∈ singsupp(u) (x0 6∈ singsuppL(u))
if and only if there exists open neighborhood Ω of x0 such that u ∈ C∞(Ω)
(u ∈ CL(Ω)).

Remark 1.4.1. For Lp = p!t, t > 1, the corresponding singular support is
denoted by singsuppt(u).
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Following theorem relates the regularity of classes of smooth functions
and regularity proposed by the complement of the wave front sets.

Theorem 1.4.1. ( [16]) Let WF(u), and WFL(u), u ∈ D′(U), be the stan-
dard and CL wave front sets, respectively. Then

π1(WF(u)) = singsupp(u),

and

π1(WFL(u)) = singsuppL(u),

where π1(x, ξ) = x denotes the standard projection on Rd ×Rd\{0}.

Moreover, one of the main properties of wave front sets is microlocal
hypoellipticity stated in the following theorem.

Theorem 1.4.2. ( [16]) Let WF(u), and WFA(u), u ∈ D′(U), be the stan-
dard and analytic wave front sets, and P∞(x,D), PA(x,D) be the partial
differential operators of order m with smooth and analytic coefficients on U ,
respectively. Then

WF(P∞u) ⊆WF(u) ⊆WF(P∞u) ∪ CharP∞(x,D),

and

WFA(PAu) ⊆WFA(u) ⊆WFA(PAu) ∪ CharPA(x,D),

where Char denotes characteristic set of an operator.

Since the Gevrey classes are non-quasianalytic, by using compactly sup-
ported functions in Dt(U), t > 1, the definition of Gevrey wave front sets can
be extended to the spaces of Gevrey ultradistributions. Although, this goes
beyond the scope of this thesis, for the completeness we recall the definitions
and main results presented in [35].

Recall, D′t(U) and E ′t(U), t > 1, denotes the spaces of Gevrey ultradistri-
butions and Gevrey ultradistributions with compact support, respectively.

Definition 1.4.4. Let u ∈ D′t(U) and (x0, ξ0) ∈ Rd × Rd\{0}. Then
(x0, ξ0) 6∈ WFt(u) if and only if there exists an open neighborhood Ω of
x0, a conic neighborhood Γ of ξ0 and v ∈ E ′t(U) such that v = u on Ω and

|v̂(ξ)| ≤ CN+1NN

|ξ|N/t
, N ∈ N, ξ ∈ Γ, C > 0.
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Remark 1.4.2. Note that if we interchange N with tN , t > 1, in (1.4.4) we
obtain

|ûN(ξ)| ≤ CtN+1(tN)(tN)

|ξ|N
≤ C

′N+1N !t

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}, t > 1,

(1.4.1)
for some C ′ > 0, where for the second inequality follows by Stirling’s formula.
This procedure we will call enumeration and it will be the essential tool in
the proof of the results in Chapter 3 and Chapter 4.

We finish this section with following Theorem that generalizes properties
of Gevrey wave front set in the context of Gevrey ultradistributions. For
the proof of microlocal hypoellipticity author uses arguments of the theory
of pseudo-differential operators, rather than standard, used for WFA in [16].

Theorem 1.4.3. ( [35]) Let WFt(u), u ∈ D′t(U), be the Gevrey wave front
set. Then

π1(WFt(u)) = singsuppt(u).

Moreover, if PA(x,D) is partial differential operator of order m with analytic
coefficients, then

WFt(PAu) ⊆WFt(u) ⊆WFt(PAu) ∪ CharPA(x,D). (1.4.2)



Chapter 2

Classes of ultradifferentiable
functions

In this section we introduce subclasses of smooth function whose definition
propose a new type of local regularity. They are different from any of Ko-
matsu’s spaces (see Chapter 1, Section 1.2), and therefore we need to adapt
standard arguments developed in [20] to our case.

In the first section we establish the basic properties of the sequences
M τ,σ

p = pτp
σ
, p ∈ N, τ > 0, σ > 1, and since they control the derivatives of

functions, we are able to prove some standard results in our case. Although
it turns out that our sequence does not satisfy Komatsu’s condition (M.2)′,
we are able to prove that our classes are algebras and that they are closed
under the finite order derivation. Moreover, they are nuclear.

Our classes contains union of Gevrey classes ∪t>1Et, and therefore thay are
non-quasianalytic. Moreover, we are able to construct a compactly supported
function in our classes, which does not belong to ∪t>1Dt. The main result of
this Chapter concerns the construction of certain (ultra)differentiable oper-
ators, and construction of classes that are classes that are closed under their
action. In particular, we construct classes of ultradifferentiable functions.

We also prove the inverse-closedness property. The proof is based on
standard argument based on Faá di Bruno formula (see [38], [37]). However,
it turns out that in our case we do not need additional properties of sequences
M τ,σ

p other than logarithmic convexity. We use this property to construct a
function on our classes that does not belong to ∪t>1Et. In the final section we
give the definition of dual spaces, although the singularities of these spaces
will be analyzed in the following chapter using the methods of microlocal
analysis.

Some results from this Chapter are published in [29].

23
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2.1 Properties of sequences M τ,σ
p

The following two lemmas captures the basic properties of M τ,σ
p = pτp

σ
,

p ∈ N, τ > 0, σ > 1, which we will use in the next sections.

Lemma 2.1.1. Let τ > 0, σ > 1 and M τ,σ
p = pτp

σ
, p ∈ Z+, M τ,σ

0 = 1. Then
there exist A,B,C > 0 such that

M τ,σ
p ≤ ACpσbpσc!τ/σ and bpσc!τ/σ ≤ BM τ,σ

p . (2.1.1)

Proof. By pσ ≤ bpσc+ 1 and pσ ≤ 2bpσc, p ∈ Z+, we have

pτp
σ ≤ pτ(bpσc+1) ≤ pτ

(
2bpσc

)τbpσc/σ
≤ eτp

σ

2τbp
σc/σbpσcτbp

σc/σ,

and the left hand side inequality in (2.1.2) follows from the Stirling formula.
The right hand side inequality in (2.1.2) follows directly from the Stirling

formula:

bpσc!τ/σ ≤
(
e−bp

σc
√

2πbpσcbpσcbpσc
)τ/σ

≤ Bbpσcτbpσc/σ ≤ Bpτp
σ

,

for some B > 0.

Remark 2.1.1. Moreover we note that if τ > 0, σ > 1, M τ,σ
p = pτp

σ
and

M̃ τ,σ
p = bpσc!τ/σ, p ∈ N, Then

M̃ τ,σ
p ∼ (2π)τ/(2σ)pτ/2e−(τ/σ)pσM τ,σ

p , p→∞, (2.1.2)

This is obtain as consequence of Stirling’s formula and the fact that bpσc ∼
pσ as p → ∞, which follows easily by noting that pσ = bpσc + εp, where
0 ≤ εp < 1, p ∈ N.

Lemma 2.1.2. Let there be given τ > 0 and σ > 1. Then there exists a
positive increasing sequence Cq ≥ 1, q ∈ N, and a constant C > 1 so that
M τ,σ

p satisfies:

(M.1) (M τ,σ
p )2 ≤M τ,σ

p−1M
τ,σ
p+1, p ∈ Z+

˜(M.2)′ M τ,σ
p+q ≤ Cpσ

q M
τ,σ
p , p, q ∈ N,

(̃M.2) M τ,σ
p+q ≤ Cpσ+qσM τ2σ−1,σ

p M τ2σ−1,σ
q , p, q ∈ N.

Proof. For the proof, we put τ = 1 without loss of generality.
Note that for p = 1, (M.1) is satisfied. Further note that the second

derivative of the function f(t) = tσ ln t, t > 0, is positive for t > e
1−2σ
σ(σ−1) and
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we can conclude that sequence lnMp is convex for p− 1 ∈ Z+. This implies
(M.1).

Note that if p = 0 (or q = 0) conditions ˜(M.2)′ and (̃M.2) are trivially
satisfied. In the sequel we assume that p, q ∈ Z+.

For ˜(M.2)′ write σ = n + δ where n ∈ Z+ and 0 < δ ≤ 1 with n =
bσc, 0 < δ < 1, when σ 6∈ Z+, and n = σ − 1, δ = 1, when σ ∈ Z+. Then by
binomial formula we have,

(p+ q)σ ≤ (p+ q)n(pδ + qδ) = pσ +
n∑
k=1

(
n

k

)
pσ−kqk

+
n∑
k=0

(
n

k

)
pn−kqk+δ ≤ pσ + 2n(pσ−1qn + pnqσ)

≤ pσ + 2n+1qσpσ−δ ,

where for the last inequality we have used that n = σ − δ and 0 < δ ≤ 1. In
particular,

(p+ q)σ ln(p+ q) ≤ pσ ln(p+ q) + 2n+1qσpσ−δ ln(p+ q) . (2.1.3)

We estimate the first summand on the righthand side of (2.1.3) as

pσ ln(p+ q) = pσ
(

ln p+ ln
(

1 +
q

p

))
≤ pσ ln p+ pσ−1q

≤ pσ ln p+ qpσ . (2.1.4)

For the second summand of (2.1.3) we note that since ln p ≤ Apδ, 0 < δ ≤ 1,
we have p ≤ Cpδ , for some C > 1. Thus we obtain,

2n+1qσpσ−δ ln(p+ q) = 2n+1qσpσ−δ
(

ln p+ ln
(

1 +
q

p

))
≤ 2n+1qσpσ lnC + 2n+1qσpσ ln(1 + q) . (2.1.5)

Applying the estimates (2.1.4) and (2.1.5) in (2.1.3) and taking the exponen-

tials, ˜(M.2)′ follows.

For the proof of (̃M.2) we use well know inequality (p+q)σ ≤ 2σ−1(pσ+qσ)
to conclude

(p+ q)(p+q)σ ≤ (p+ q)2σ−1pσ(p+ q)2σ−1qσ . (2.1.6)
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First term on the righthand side of (2.1.6) we estimate as follows

2σ−1pσ ln(p+ q) = 2σ−1pσ
(

ln p+ ln
(

1 +
q

p

))
≤ 2σ−1pσ ln p

+ 2σ−1qpσ−1 ≤ 2σ−1pσ ln p+ 2σ−1(p+ q)σ .

Taking the exponentials we obtain (p+ q)2σ−1pσ ≤ p2σ−1pσe2σ−1(p+q)σ . Second
term in (2.1.6) we estimate in the similar way.

Remark 2.1.2. Note that for fixed τ and σ condition (M.1) is standard Ko-

matsu’s conditions (and hence the notation). From the proof of ˜(M.2)′ it
is clear that M τ,σ

p does not satisfies condition (M.2)′. Natural extension of
(M.2) would be

M τ,σ
p+q ≤ Cpσ+qσM τ,σ

p M τ,σ
q , C > 0, p, q ∈ N. (2.1.7)

Our sequence fails to satisfy (2.1.7). To see that, suppose the opposite.
Without loss of generality we may assume that τ = 1. Then, if we put
p = q 6= 0 in (2.1.7) we obtain

p(2p)σ ≤ (C1p)
2pσ , p ∈ Z+ , (2.1.8)

where C1 = C

22σ−1 . Taking the logarithm, (2.1.8) implies 2σ−1 ln p ≤ lnC1p
which is satisfied only for finitely many p ∈ Z+.

Remark 2.1.3. We would like to point out that (̃M.2) does not imply ˜(M.2)′,

for fixed τ > 0 and σ > 1. To see that assume that M τ,σ
p satisfies (̃M.2).

Then we write 2σ−1 = 1 + ε, for some ε > 0 and note that

M τ,σ
p+q ≤ Cpσ+qσM2σ−1τ,σ

p M2σ−1τ,σ
q = Cpσ+qσM2σ−1τ,σ

q M ετ,σ
p M τ,σ

p

for every p, q ∈ Z+ and some C > 1. Thus, in order to ˜(M.2)′ be fulfilled, we
note that for fixed q ∈ Z+ and some constants C ′, C ′′ > 0 it must hold

Cpσ+qσM2σ−1τ,σ
q M ετ,σ

p ≤ C ′p
σ

,

and hence it follows that M ετ,σ
p ≤ C ′′p

σ
which is not true for p sufficiently

large.
However, we adopt the Komatsu’s notation since the corresponding prop-

erties of the sequence M τ,σ
p would imply the desired properties of the spaces

from Chapter 2, similarly as in [20].

We will also use following technical lemma in our computations.
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Lemma 2.1.3. For τ > 0 and σ > 1 it holds

T̃τ,σ(h) := sup
r>0

hr
σ

rτrσ
= e

τ
σe
h
σ
τ , h > 0. (2.1.9)

Proof. Set f(r) = hr
σ

rτrσ
, r > 0. Clearly, f reaches it’s supremum and, by the

methods explained in [13], it is sufficient to find the maxr>0 ln f(r). By the
standard differential calculus, note that (ln f(r))′ = rσ−1(σ lnh−τσ ln r−τ),

r > 0, and hence the only stationary point of ln f(r) is r0 := h
1
τ e−σ. Thus,

maxr>0 ln f(r) = f(r0) = h
σ
τ
τ
eσ

. This implies that maxr>0 f(r) = e
τ
σe
h
σ
τ .

Remark 2.1.4. In the theory of ultradifferentiable functions, for a given se-
quence Mp, p ∈ N, the function T given by T (h) = supp>0

hpM0

Mp
, h > 0, is

called the associated function of the sequence Mp, p ∈ N (in [20] the function
supp>0 ln hpM0

Mp
is considered instead of T (h)). It plays an important role in

the study of the spaces of ultradifferentiable functions and their dual spaces.
Notice that T̃τ,σ given by (2.1.9) is not the associated function of the se-
quence M τ,σ

p . It is known that the associated function Tτ (h) of the sequence

p!τ , τ > 0, satisfies the estimate of the form C1e
τ
e
h

1
τ ≤ Tτ (h) ≤ C2e

τ
e
h

1
τ , for

some C1, C2 > 0, and for every h > 0, cf. [13, Chapter IV.2]. This implies
that

C ′(Tτ (h
σ))1/σ ≤ T̃τ,σ(h) ≤ C ′′(Tτ (h

σ))1/σ

for some C ′, C ′′ > 0, h > 0 and for any given τ > 0, σ > 1.

2.2 Test spaces

Let us introduce our basic spaces. Fix K ⊂⊂ U and h > 0. Smooth function
φ on U belongs to Banach space Eτ,σ,h(K) if there exists A > 0 such that

|∂αφ(x)| ≤ Ah|α|
σ |α|τ |α|σ , α ∈ Nd. (2.2.1)

Norm is given by

||φ||Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σ |α|τ |α|σ

, (2.2.2)

and we immediately obtain following embeddings

Eτ1,σ1,h1(K) ↪→ Eτ2,σ2,h2(K) , 0 < h1 ≤ h2, 0 < τ1 ≤ τ2, 1 < σ1 ≤ σ2 .
(2.2.3)
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Remark 2.2.1. When σ = 1, we have Eτ,1,h(K) = E{p!τ},h(K). For more
information about classes E{p!τ},h(K) see [20].

Let DKτ,σ,h be the set of functions in Eτ,σ,h(K) with the supports in K.
Then, in the topological sense, we set

E{τ,σ}(U) = lim←−
K⊂⊂U

lim−→
h→∞
Eτ,σ,h(K), (2.2.4)

E(τ,σ)(U) = lim←−
K⊂⊂U

lim←−
h→0

Eτ,σ,h(K), (2.2.5)

DK{τ,σ} = lim−→
h→∞
DKτ,σ,h , (2.2.6)

DK(τ,σ) = lim←−
h→0

DKτ,σ,h (2.2.7)

D{τ,σ}(U) = lim−→
K⊂⊂U

DK{τ,σ}, (2.2.8)

D(τ,σ)(U) = lim−→
K⊂⊂U

DK(τ,σ). (2.2.9)

These spaces are l.c.s., and their topology will be discussed in the next sec-
tion. We will use the notation Eτ,σ(U) for E{τ,σ}(U) or E(τ,σ)(U) and Dτ,σ(U)
for D{τ,σ}(U) or D(τ,σ)(U) (resp. DKτ,σ(U) for DK{τ,σ}(U) or DK(τ,σ)(U)).

Remark 2.2.2. From Lemma 2.1.1 it follows that the norms (2.2.2) and

‖φ‖∼Eτ,σ,h(K) = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
h|α|σb|α|σc!τ/σ

<∞, h > 0. (2.2.10)

also can be used in the definition of Eτ,σ(K). Moreover, for σ = 1 classes
given with (2.2.4) (resp. (2.2.8)) and (2.2.5) (resp. (2.2.9)) coincides with
Komatsu’s classes E{p!τ}(U) (D{p!τ}(U)) and E (p!τ )(U) (D(p!τ )(U)), τ > 0.

Remark 2.2.3. Let us show that in the definition of the classes Eτ,σ(U)

‖∂αφ‖∞,K := sup
x∈K
|∂αφ(x)|

that appears in (2.2.2) can be replaced by

‖∂αφ‖Lp(K) :=

∫
K

|∂αφ(x)| dx, p ≥ 1.

Let K ⊂⊂ U be arbitrary but fixed. Note that for every h > 0
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sup
α∈Nd

‖∂αφ‖Lp(K)

h|α|σ |α|τ |α|σ
≤ C1||φ||Eτ,σ,h(K), (2.2.11)

for some C1 > 0 which depends only on K. This follows directly from the

simple inequality ‖∂αφ‖Lp(K) ≤ |K|1/p‖∂αφ‖∞,K , where |K| :=
∫
K

dx.

For the converse inequality we prove that for every h > 0 there exists
positive constants ch and C2 such that

||φ||Eτ,σ,chh(K) ≤ C2 sup
α∈Nd

‖∂αφ‖Lp(K)

h|α|σ |α|τ |α|σ
, (2.2.12)

We use the Sobolev embedding theorem (see [42]). For any α ∈ Nd choose
β ∈ Nd such that |β| = |α| + d/p + 1 for p > 1 or |β| = |α| + d for p = 1.
Then the Sobolev theorem implies that

‖∂αφ‖∞,K ≤ C‖∂βφ‖Lp(K), C > 0, p ≥ 1.

Moreover, for α ∈ Nd

‖∂αφ(x)‖∞,K
(chh)|α|σ |α|τ |α|σ

≤
‖∂βφ(x)‖Lp(K)

h|β|σ |β|τ |β|σ
h|β|

σ |β|τ |β|σ

(chh)|α|σ |α|τ |α|σ

≤ C
‖∂βφ(x)‖Lp(K)

h|β|σ |β|τ |β|σ
h|β|

σ
C
′|α|σ

(chh)|α|σ
, (2.2.13)

where for the second inequality we have use the ˜(M.2)′ property of the se-
quence M τ,σ

p . Now if we choose ch = max{C ′, C ′h2σ−1}, noting that and take
supremum with respect to α ∈ Nd, noting that β depends on α, (2.2.13)
implies (2.2.12) by observing simple inequalities

h|β|
σ ≤ Chh

2σ−1|α|σ , h ≥ 1, h|β|
σ ≤ C ′hh

|α|σ , 0 < h < 1,

for suitable constants Ch, C
′
h > 0.

Remark 2.2.4. By standard arguments (see [20]), spaces in (2.2.4) and (2.2.5)
can be represented as inductive (resp. projective) limits of countable family of
spaces as follows: Let {Ki}i∈N be the sequence of compact sets with smooth
boundary such that Ki ⊂ Ki+1, i ∈ N and ∪i∈NKi = U . Then, for j ∈ N,

E{τ,σ}(U) = lim←−
i→∞

lim−→
j→∞
Eτ,σ,j(Ki), D{τ,σ}(U) = lim−→

i→∞
lim−→
j→∞
DKiτ,σ,j,
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E(τ,σ)(U) = lim←−
i→∞

lim←−
j→∞
Eτ,σ,1/j(Ki), D(τ,σ)(U) = lim−→

i→∞
lim←−
j→∞
DKiτ,σ,1/j.

Following proposition describes the basic relations between our classes.

Proposition 2.2.1. Let σ1 ≥ 1. Then for every σ2 > σ1 and τ > 0

lim−→
τ→∞
Eτ,σ1(U) ↪→ lim←−

τ→0+

Eτ,σ2(U). (2.2.14)

Moreover, if 0 < τ1 < τ2, then for every σ > 1 it holds

E{τ1,σ}(U) ↪→ E(τ2,σ)(U) ↪→ E{τ2,σ}(U). (2.2.15)

In particular, for σ > 1

lim−→
τ→∞
E{τ,σ}(U) = lim−→

τ→∞
E(τ,σ)(U). (2.2.16)

lim←−
τ→0+

E{τ,σ}(U) = lim←−
τ→0+

E(τ,σ)(U). (2.2.17)

Proof. Since in (2.2.16) and (2.2.17) we observe unions and intersections of
E{τ,σ}(U) (resp. E(τ,σ)(U)) with respect to τ , the equalities follow immediately
from (2.2.15).

To prove (2.2.14), take arbitrary h > 0, τ > 0 and ε > 0 and set σ2 =
σ1 + ε. Let φ ∈ Eτ0,σ1,h(K) for some τ0 > 0 and K ⊂⊂ U .

We begin by noting that

||φ||Eτ,σ2,h(K) ≤ sup
α∈Nd

h|α|
σ1 |α|τ0|α|σ1

h|α|
σ2 |α|τ |α|σ2

||φ||Eτ0,σ1,h(K). (2.2.18)

Further observe that there exists Aε > 0 such that τ0p
σ1 ln p ≤ Aετ0p

σ1+ε =
Aετ0p

σ2 , and thus pτ0p
σ1 ≤ eAετ0p

σ2 (note that Aε blows up as ε→ 0+). Now,
for C := eAετ0 and ch := max{1/h, 1}, we obtain

sup
α∈Nd

h|α|
σ1 |α|τ0|α|σ1

h|α|
σ2 |α|τ |α|σ2

≤ sup
α∈Nd

(C ch)
|α|σ2

|α|τ |α|σ2
≤ T̃τ,σ2(Cch) = e

τ
eσ2

(C ch)
σ2
τ
, (2.2.19)

where T̃τ,σ is function from Lemma 2.1.3. Now (2.2.14) follows from (2.2.18)
and (2.2.19).

Note that second embedding in (2.2.15) is trivial. For the proof of the
first embedding, let φ ∈ Eτ1,σ,k(K) for some k > 0. We note that

||φ||Eτ2,σ,h(K) ≤ sup
α∈Nd

k|α|
σ |α|τ1|α|σ

h|α|σ |α|τ2|α|σ
||φ||Eτ1,σ,k(K), h, k > 0 .
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Moreover,

sup
α∈Nd

k|α|
σ |α|τ1|α|σ

h|α|σ |α|τ2|α|σ
≤ T̃τ2−τ1,σ(k/h) = e

τ2−τ1
eσ

(k/h)
σ

τ2−τ1 ,

wherefrom for any given h > 0 we obtain

||φ||Eτ2,σ,h(K) ≤ C||φ||Eτ1,σ,k(K),

for some C > 0. This proves the proposition.

In the topological sense, let us introduce the following notation

E0+,σ(U) := lim←−
τ→0+

Eτ,σ(U), (2.2.20)

E∞,σ(U) := lim−→
τ→∞
Eτ,σ(U), (2.2.21)

Eτ,1+(U) := lim←−
σ→1+

Eτ,σ(U), (2.2.22)

Eτ,∞(U) := lim−→
σ→∞

Eτ,σ(U), (2.2.23)

E0+,1+(U) := lim←−
σ→1+

E0+,σ(U), (2.2.24)

E∞+,1+(U) := lim←−
σ→1+

E∞,σ(U), (2.2.25)

E0+,∞(U) := lim−→
σ→∞

E0+,σ(U), (2.2.26)

E∞,∞(U) := lim−→
σ→∞

E∞,σ(U), (2.2.27)

As immediate consequence of Proposition 2.2.1 we obtain the following
corollary.

Corollary 2.2.1. We have the following strict embeddings

lim−→
t→∞
Et(U) ↪→ E0+,1+(U) ↪→ E∞,1+(U) ↪→ E0+,∞(U) ↪→ E∞,∞(U). (2.2.28)

where Et(U), t > 1, denotes the Gevrey class of Roumieu or Beurling type.
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Proof. The embedding lim−→
t→∞
Et(U) ↪→ E0+,1+(U) in (2.2.28) follows directly

from Proposition 2.2.1 when σ2 > σ1 = 1. Note that embedding E0+,1+(U) ↪→
E∞,1+(U) is trivial. Further note that u ∈ E∞,1+(U) implies that for every
σ > 1 and some τ0 > 0 u ∈ Eτ0,σ(U). Fix σ1 > 1, and let σ2 > σ1 > 1. Then
following embeddings holds

Eτ0,σ1(U) ↪→ E0+,σ2(U) ↪→ E0+,∞(U),

where first embedding follows from (2.2.14). Since the embedding E0+,∞(U) ↪→
E∞,∞(U) is trivial, the assertion follows.

Note that classes Eτ,σ, for every τ > 0, σ > 1 are larger then Gevrey
classes but their inductive limits with respect to τ and σ are continuously
injected in C∞(U). In particular, they are non-quasianalytic. The precise
result is given in the next section.

2.3 Compactly supported test functions

In this section we construct a compactly supported function in D{τ,σ}(U),
U is an open set in Rd, following the ideas presented in [16], Sections 1.3
and 1.4. Clearly, compactly supported Gevrey functions are in D{τ,σ}(U).
The purpose of this section is to construct a compactly supported function
in D{τ,σ}(U) which is not in Dt(U), for any t > 1.

We note that it is enough to show the statement for some neighborhood
of origin. See Theorems 1.3.5. and 1.4.2. in [16] for details.

Let us start with the following lemma.

Lemma 2.3.1. Let τ > 0, σ > 1. The sequence M τ,σ
p = pτp

σ
, p ∈ N satisfies

Komatsu’s condition (M.3)′. In particular,

∞∑
p=1

M τ,σ
p−1

M τ,σ
p

<∞. (2.3.1)

Proof. From 2 ≤ (1 + 1
p
)p ≤ e and pσ ln(1 + 1

p
) = pσ−1 ln(1 + 1

p
)p, it follows

that

τ ln 2 pσ−1 ≤ τpσ ln
(

1 +
1

p

)
≤ τpσ−1, p ∈ Z+. (2.3.2)

This implies

2τp
σ−1 ≤

(
1 +

1

p

)τpσ
≤ eτp

σ−1

, p ∈ Z+. (2.3.3)
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Since pσ ≥ (p− 1)σ−1p = (p− 1)σ + (p− 1)σ−1, p ∈ Z+, the left hand side of
(2.3.3) we gives,

∞∑
p=1

(p− 1)τ(p−1)σ

pτpσ
≤

∞∑
p=1

(p− 1)τ(p−1)σ

pτ((p−1)σ+(p−1)σ−1)

=
∞∑
p=1

(
(1− 1

p
)τ(p−1)σ

)
1

pτ(p−1)σ−1 (2.3.4)

≤
∞∑
p=1

1

(2p)τ(p−1)σ−1 <∞,

which proves the lemma.

We immediately obtain the following corollary.

Corollary 2.3.1. Let there be given τ > 0 and σ > 1. Then there exists
a compactly supported function φ ∈ E{τ,σ}(U) such that 0 ≤ φ ≤ 1 and∫
Rd φ dx = 1.

Proof. By the Denjoy-Carleman theorem (see Theorem 1.3.8. in [16]), condi-
tions (M.1) and (M.3)′ implies the existence of compactly supported function

in Komatsu’s space E{pτp
σ}(U), for the appropriate set U . Since the constant

h in (2.2.1) is taken to the power |α|σ, α ∈ Nd, classes E{τ,σ}(U) are larger

then E{pτp
σ}(U), and therefore classes D{τ,σ}(U) are nontrivial. However, our

goal is to construct a function in D{τ,σ}(U) which is not in Dt(U), for any
t > 1. We apply methods explained in Theorem 1.3.5 in [16], and to make
the conclusion clear, we repeat some of the steps for our case.

We start with one dimensional case. Let χ be the characteristic function
of interval (0, 1), and for c > 0 let Hc(x) = 1

c
χ(x

c
). Clearly

∫
R
Hcdx = 1 and

we recall that

(Hc ∗ f)′(x) =
1

c

(∫ x

x−c
f(t)dt

)′
=
f(x)− f(x− c)

c
, (2.3.5)

for any continuous function f on R.
Further we set

ap :=
1

(2(p+ 1))τpσ−1 , p ∈ N,
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and note that (2.3.4) imply

M τ,σ
p

M τ,σ
p+1

≤ 2−τp
σ−1 1

(p+ 1)τpσ−1 = ap, p ∈ N . (2.3.6)

Put

um(x) = Ha0 ∗Ha1 · · · ∗Ham , m ∈ N.

Then, by [16, Theorem 1.3.5] it follows that the sequence {um}m∈N has a

uniform limit u ∈ C∞(R) supported in [0, a] where a =
∞∑
p=0

ap < ∞, and∫
R
u dx = 1.

Next we estimate the derivatives u
(p)
m , p ≤ m − 1. After applying p

iterations of (2.3.5) and by using (2.3.6) we obtain

|u(p)
m (x)| =

p−1∏
k=0

|Hap ∗ · · · ∗Ham(x)−Hap ∗ · · · ∗Ham(x− ak)|
ak

≤ 2p
p−1∏
k=0

1

ak
sup
x∈R
|Hap ∗Hap+1 · · · ∗Ham(x)|

≤ 2p
( p−1∏
k=0

1

ak

)
sup
x∈R
|Hap(x)|

( m∏
k=p+1

∫
R

Hak(x)dx
)

= 2p
p∏

k=0

1

ak
≤ 2p

p∏
k=0

M τ,σ
k+1

M τ,σ
k

= 2p
M τ,σ

p+1

M τ,σ
0

= 2p(p+ 1)τ(p+1)σ ≤ Cpσpτp
σ

, (2.3.7)

where we used ˜(M.2)′ for the last inequality.
From the uniform convergence it follows that the derivatives of u also

satisfy (2.3.7), so that u ∈ D[0,a]
{τ,σ}.

Next, we extend this to higher dimensions by putting ψ(x) = u(x+ a/2)
and φ(x) =

∏d
k=1 ψ(xk) for x = (x1, x2, . . . , xd). Since the sequence M τ,σ

p

fulfills the (M.1) property, we obtain

|∂αφ(x)| =
d∏

k=1

|∂αkψ(xk)| ≤
d∏

k=1

Cαk
σ

αk
ταk

σ ≤ C |α|
σ |α|τ |α|σ ,

α = (α1, α2, . . . , αd),

wherefrom φ ∈ DK{τ,σ} with K = [−a/2, a/2]d.
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Although K does not have a smooth boundary, by [16, Lemma 1.4.3] one
can find appropriate open set U and conclude that φ ∈ D{τ,σ}(U).

At the same time φ 6∈ Dt(U), for any t > 1. In order to use the same

construction and obtain a function in
⋃
t>1

Dt(U) one should choose sequences

{ãp}p∈N of the form ãp :=
p!t

(p+ 1)!t
=

1

(p+ 1)t
, for some t > 1, p ∈ N (see

Theorem 1.3.5. in [16]).

Then the corresponding function ũ belongs to
⋃
t>1

D{p!
t}

[0,ã] , u(x) 6= 0, x ∈

(0, ã), where ã =
∞∑
k=0

ãk. The key observation is that we would use (M.2)′

property of the sequence p!t, t > 1, instead of (̃M.2)
′

in (2.3.7).

Let us explain that a < ã, that is for every σ, t > 1 and τ > 0 there exists
p0 ∈ N such that ãp > ap for every p > p0. In fact, we need to show simple
inequality

(2(p+ 1))τp
σ−1

> (p+ 1)t, p > p0 . (2.3.8)

Taking the logarithm we note that

τpσ−1(ln 2 + ln(p+ 1)) > τpσ−1 ln(p+ 1) > t ln(p+ 1),

for p > d(t/τ)1/(σ−1)e := p0, and (2.3.8) follows. If we set τ = t > 1, then
inequality (2.3.8) holds for any p ∈ N and hence we conclude that a < ã.
In particular, u 6= ũ for two reasons: u vanishes outside [0, a] while ũ 6= 0
on (a, ã), and the estimates on derivatives of u and ũ are different (see the
calculation in (2.3.7)).

We refer to [16, Lemma 1.3.6] for a discussion about the precision of the
presented construction.

Remark 2.3.1. Since the construction presented in Lemma 2.3.1 and Corol-
lary 2.3.1 holds for every τ > 0 and σ > 1, by (2.2.15), it follows that φ from
Corollary 2.3.1 also belongs to D(τ,σ)(U) for some choice of τ > 0 and σ > 1.

Remark 2.3.2. Let us show that the classes Dτ,σ(Rd) are closed under trans-
lation and dilatation. In fact, without loss of generality we may assume that

φ ∈ DKr0τ,σ,C where Kr0 = Br(0) is closed ball of radius r centered at origin.

The conclusion that Tx0φ(x) := φ(x − x0) ∈ φ ∈ DKrx0τ,σ,C , x0 ∈ Rd, is

straightforward. For λ ∈ Rd\{0} set Dλφ(x) := φ(λx). To prove that

Dλφ(x) ∈ D
K r0

λ

τ,σ,λ̃C
, for λ̃ = max{1, λ} observe
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sup
x∈K r0

λ

|∂αDλφ(x)| = sup
x∈K r0

λ

|λ|α|φ(λx)| = sup
y∈Kr0

|λ|α|φ(y)| ≤ A(λ̃C)|α|
σ |α|τ |α|σ ,

for α ∈ Nd, and the conclusion follows. In particular, if φ from Corollary
2.3.1 is constructed on Br(0), r > 0 then the function φ̃(x) := φ(x−x0

λ
) ∈

E{τ,σ}(Bλr(x0)).

2.4 Topological properties

Although our sequence does not satisfy Komatsu’s condition (M.2)′, in this
section we show that the spaces in (2.2.4)-(2.2.9) are nuclear. We are fol-
lowing the ideas in the proof of [20, Theorem 2.6 ], and consider only the
Roumieu case and the Beurling case follows by the similar arguments (see
Remark 2.4.1).

Let us show that for every h > 0 there exists k > h such that identity
mapping X → Y is quasi-nuclear, where X = Eτ,σ,h(K) and Y = Eτ,σ,k(K)
(resp. X = DKτ,σ,h and Y = DKτ,σ,k). This means that seminorms on Eτ,σ(K) :=

lim−→
h→∞
Eτ,σ,h(K) (resp. DKτ,σ := lim−→

h→∞
DKτ,σ,h) are prenuclear, cf. [39, page 177].

By [39, Theorem IV 10.2] this implies that Eτ,σ(K) (resp. DKτ,σ) is a nuclear
space.

The classes under consideration can be represented as projective and in-
ductive limits of countable family of spaces, cf. Remark 2.2.4. The nuclearity
of Eτ,σ(U) and Dτ,σ(U) then follows from [39, Theorem III 7.4].

Theorem 2.4.1. Let there be given τ > 0 and σ > 1, and let K be compact
in Rd. Then the spaces Eτ,σ(K), DKτ,σ are nuclear.

Proof. We follow the idea presented in [20]. Let φ ∈ Eτ,σ,h(K) and let uα,j,
α ∈ Nd, j ∈ Zd, be the sequence linear functionals on Eτ,σ,h(K) given by

〈φ, uα,j〉 =
〈∂αφ, vj〉Cd+1(K)

k|α|σ |α|τ |α|σ
, (2.4.1)

where vj ∈ (Cd+1(K))′ is defined by the following procedure:
Choose l > 0 such that K is contained in the interior of L = [−l, l]d and

let Cd+1
L (πL) be the space of all d + 1 time differentiable functions on πL

with supported in L. Let B ∈ L(Cd+1(K), Cd+1
L (πL)) be the (Whitney’s)

extension operator such that Bf |K = f and let tj ∈ (Cd+1
L (πL))′ be given by

〈f, tj〉 :=

∫
πL

f(y)e−iyj/l dy, j ∈ Zd.
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From [20, Lemma 2.3] it follows that the identity operator from Cd+1(K) to
C(K), given by

f(x) =
1

(2πl)d

∑
j∈Zd

e−ixj/l〈Bf, tj〉Cd+1
L (πL), x ∈ K,

is quasi-nuclear. In particular, if we put vj = tj ◦B, j ∈ Zd, it follows that

∞∑
j∈Zd
||vj||(Cd+1(K))′ <∞, and ||f ||C(K) ≤

∞∑
j∈Zd
|〈f, vj〉Cd+1(K)| . (2.4.2)

By (2.2.2), (2.4.1) and the righthand side of (2.4.2) we obtain

‖φ‖Y = sup
α∈Nd

sup
x∈K

|∂αφ(x)|
k|α|σ |α|τ |α|σ

≤
∑
α∈Nd

∑
j∈Zd
|〈φ, uα,j〉| .

It remains to show that
∑
α,j

||uα,j||X′ <∞.

Note that for |α| ≥ 1, α ∈ Nd and h ≥ 1, by ˜(M.2)′ we obtain

|〈φ, uα,j〉| ≤ sup
|β|≤d+1

h|α+β|σ |α + β|τ |α+β|σ

k|α|σ |α|τ |α|σ
||φ||X ||vj||(Cd+1(K))′

= sup
|β|≤d+1

h(1+
|β|
|α| )

σ |α|σ |α + β|τ |α+β|σ

k|α|σ |α|τ |α|σ
||φ||X ||vj||(Cd+1(K))′

≤
(h(d+2)σ

k

)|α|σ
C
|α|σ
d ||φ||X ||vj||(Cd+1(K))′ , (2.4.3)

for some Cd > 1 which includes constant from ˜(M.2)′.

For 0 < h < 1, note that h|α+β|σ ≤ h|α|
σ

and thus by ˜(M.2)′ it follows
that

sup
|β|≤d+1

h|α+β|σ |α + β|τ |α+β|σ

k|α|σ |α|τ |α|σ
≤
(h
k

)|α|σ
C
|α|σ
d . (2.4.4)

Now we choose k > 0 such that k > max{2Cdh, 2Cdh(d+2)σ}, so the estimates
(2.4.3), and (2.4.4) imply∑

α∈Nd

∑
j∈Zd
||uα,j||X′ <

∑
α∈Nd

∑
j∈Zd

(1

2

)|α|σ
||vj||(Cd+1(K))′ <∞.

We conclude that for every h > 0 there exists k > h such that the identity
mapping Eτ,σ,h(K) → Eτ,σ,k(K) (resp. DKτ,σ,h → DKτ,σ,k) is quasi-nuclear, and
the theorem is proved.
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Remark 2.4.1. Note that from the proof of Theorem 2.4.1 it is clear that
form every given k > 0 there exists h < k such that the identity mapping
Eτ,σ,h(K) → Eτ,σ,k(K) (resp. DKτ,σ,h → DKτ,σ,k) is quasi-nuclear. This implies

the nuclearity of the spaces lim←−
h→0+

Eτ,σ,h(K) (resp. lim←−
h→0+

DKτ,σ,h), and hence the

results for the Beurling case follows directly.

2.5 Algebra property

Since M τ,σ
p = pτp

σ
, τ > 0, σ > 1, satisfies properties (M.1) and ˜(M.2)′, the

following proposition implies the algebra property as well as stability under
finite order derivation.

Proposition 2.5.1. Let U be open in Rd, τ > 0 and σ > 1. Then spaces
Eτ,σ(U) are closed under the pointwise multiplication of functions. Moreover,
they are closed under the finite order differentiation.

Proof. Let K ⊂⊂ Rd and for h > 0 set ch = min{h, h2σ−1}. Then for
φ, ψ ∈ Eτ,σ,ch(K), by Leibniz formula we obtain

||φψ||Eτ,σ,2h(K) ≤ sup
α∈Nd

∑
β≤α

(
α

β

)
c
|α−β|σ
h c

|β|σ
h |α− β|τ |α−β|

σ |β|τ |β|σ

(2h)|α|σ |α|τ |α|σ

· ||φ||Eτ,σ,ch (K)||ψ||Eτ,σ,ch (K). (2.5.1)

Further note that for h ≥ 1, ch = h and for β ≤ α it holds |α− β|σ + |β|σ ≤
|α|σ. Then (M.1) property of the sequence M τ,σ

p implies

∑
β≤α

(
α

β

)
c
|α−β|σ
h c

|β|σ
h |α− β|τ |α−β|

σ |β|τ |β|σ

(2h)|α|σ |α|τ |α|σ
≤ 2|α|h|α|

σ

(2h)|α|σ
≤ 1, α ∈ Nd.

For 0 < h < 1, ch = h2σ−1
, and for β ≤ α, (1/h)|α|

σ ≤ (1/h)2σ−1|α−β|σ(1/h)2σ−1|β|σ .
Combining this with (M.1) we obtain

∑
β≤α

(
α

β

)
c
|α−β|σ
h c

|β|σ
h |α− β|τ |α−β|

σ |β|τ |β|σ

(2h)|α|σ |α|τ |α|σ
≤ 2|α|

2|α|σ
≤ 1, α ∈ Nd.

For the proof of closedness under differentiation fix β ∈ Nd, and for h > 0

set c′h = max{h, h2σ−1}. Then for x ∈ K, (̃M.2)
′

property of the sequence
M τ,σ

p implies
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|(∂α+βφ(x))| ≤ ||φ||Eτ,σ,h(K)h
|α+β|σ |α + β|τ |α+β|σ (2.5.2)

≤ ||φ||Eτ,σ,h(K)C
′|β|σ
h (C|β|c

′
h)
|α|σ |α|τ |α|σ , (2.5.3)

where C ′h = max{1, h2σ−1} and C|β| is constant that appears in (̃M.2)
′

(see
Lemma 2.1.2 for q = |β|). This implies that for every h > 0 there exists
Ch,β > 0 such that ||∂βφ||Eτ,σ,C|β|c′h (K) ≤ Ch,β||φ||Eτ,σ,h(K). Hence, the state-

ment follows.

Remark 2.5.1. Let P =
∑
|α|≤m

aα(x)∂α be the partial differential operator of

order m with aα ∈ Eτ,σ(U). Then, by the proof of Proposition 2.5.1, it
follows that P : Eτ,σ(U)→ Eτ,σ(U) is continuous linear map with respect to
topology of spaces Eτ,σ(U) (see (2.2.4) and (2.2.5)). Moreover, if one of the
function in the proof of Proposition 2.5.1 is chosen from DKτ,σ, then clearly
φψ vanishes outside of K, and hence φψ ∈ DKτ,σ. In particular, if aα ∈ DKτ,σ,
|α| ≤ m, then P : Eτ,σ(U)→ DKτ,σ is continuous linear operator.

2.6 Ultradifferentiable property

In this section we study the continuity properties of certain ultradifferentiable
operators P (x, ∂) acting on Eτ,σ(U). Recall, if the defining sequence Mp

fulfills the condition (M.2)′ then the corresponding test function space is
closed under the action of ultradifferentiable operators. Since the sequence
M τ,σ

p does not satisfy (2.1.7) the space Eτ,σ(U) can not be closed under the
action of P (x, ∂). However, if we consider

E∞,σ(U) := lim−→
τ→∞
E(τ,σ)(U) = lim−→

τ→∞
E{τ,σ}(U),

then the following results hold true.

Theorem 2.6.1. Let U be open in Rd, τ > 0 and σ > 1. If P (∂) =
∞∑
|α|=0

aα∂
α

is a constant coefficient differential operator of infinite order such that for
some L > 0 and A > 0 (resp. every L > 0 there exists A > 0) such that

|aα| ≤ A
L|α|

σ

|α|τ2σ−1|α|σ , (2.6.1)

then E∞,σ(U) is closed under action of P (∂). In particular,
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P (∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U) , (2.6.2)

is continuous linear mapping, where Eτ,σ(U) denotes E{τ,σ}(U) ( resp. E{τ,σ}(U)).

Proof. Take φ ∈ Eτ,σ,h(K) for h > 0 arbitrary but fixed. Then, for x ∈ K,

using (̃M.2) we obtain

|∂β(aα∂
αφ(x))| ≤ A||φ||Eτ,σ,h(K)

L|α|
σ

|α|τ2σ−1|α|σ h
|α+β|σ(|α + β|)τ |α+β|σ

≤ A||φ||Eτ,σ,h(K)
L|α|

σ

|α|τ2σ−1|α|σ h
|α+β|σC |α|

σ

C |β|
σ |α|τ2σ−1|α|σ |β|τ2σ−1|β|σ

≤ A||φ||Eτ,σ,h(K)(LCch)
|α|σ(Cch)

|β|σ |β|τ2σ−1|β|σ , (2.6.3)

where for the last inequality we have used that for σ > 1

|α|σ + |β|σ ≤ |α + β|σ ≤ 2σ−1(|α|σ + |β|σ)

with ch = max{h, h2σ−1} and C > 1 is the constant that appears in (̃M.2)
(see Lemma 2.1.2).

Note that ch = h when 0 < h ≤ 1 and ch = h2σ−1
when h > 1. Hence, for

the case E(∞,σ)(U) (resp. E{∞,σ}(U)) we can choose h > 0 (resp. L > 0) such
that

LCch < 1/2. (2.6.4)

Since the series
∞∑
|α|=0

(1/2)|α|
σ

is convergent, taking the sum with respect

to α and the supremum with respect to β and x ∈ K from (2.6.3) it follows
that

||P (∂)φ||Eτ2σ−1,σ,Cch
(K) ≤ C ′||φ||Eτ,σ,h(K), (2.6.5)

for some C ′ > 0 and the Theorem is proved.

Since M τ,σ
p = pτp

σ
, τ > 0, σ > 1 satisfies (M.1) we can prove the more

general statement than one in theorem 2.6.1. Let us introduce the following
definition.

Definition 2.6.1. A differential operator of infinite order

P (x, ∂) =
∞∑
|α|=0

aα(x)∂α (2.6.6)
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is said to be an ultradifferential operator of class (τ, σ) (resp. {τ, σ}) on an
open set U ⊆ Rd if coefficients aα(x) belongs to E(τ,σ)(U) (resp. E{τ,σ}(U) )
and satisfies the following condition: for every K ⊂⊂ U there exists constant
L > 0 such that for any h > 0 there exists A > 0 (resp. for every K ⊂⊂ U
there exists h > 0 such that for any L > 0 there exists A > 0) such that,

sup
x∈K
|∂βaα(x)| ≤ Ah|β|

σ

|β|τ |β|
σ L|α|

σ

|α|τ2σ−1|α|σ , α, β ∈ Nd. (2.6.7)

We say that P (x, ∂) is of the class τ, σ if it is of the class (τ, σ) or {τ, σ}.

Remark 2.6.1. We note that (τ, 1) (resp. {τ, 1}) are Komatsu’s ultradiffer-
entiable operators of class (p!τ ) (resp. {p!τ}).

Theorem 2.6.2. Let τ > 0, σ > 1, and P (x, ∂) be a differential operator of
class (τ, σ) ( resp. {τ, σ}). Then E∞,σ(U) is closed under action of P (x, ∂).
In particular,

P (x, ∂) : Eτ,σ(U) −→ Eτ2σ−1,σ(U) , (2.6.8)

is continuous linear mapping, where Eτ,σ(U) denotes E{τ,σ}(U) ( resp. E{τ,σ}(U)).

Proof. Let aα, φ ∈ Eτ,σ,h(K), α ∈ Nd, for h > 0 arbitrary but fixed. Then,
by (2.6.7), for x ∈ K we obtain

|∂β(aα(x)∂αφ(x))| ≤
∑
γ≤β

(
β

γ

)
|∂β−γaα(x)||∂α+γφ(x)|

≤ A||φ||Eτ,σ,h(K)

∑
γ≤β

(
β

γ

)
h|β−γ|

σ

(|β − γ|)τ |β−γ|
σ

· L|α|
σ

|α|τ2σ−1|α|σ h
|α+γ|σ(|α + γ|)τ |α+γ|σ

≤ A||φ||Eτ,σ,h(K)
L|α|

σ

|α|τ2σ−1|α|σ (|α + β|)τ |α+β|σ

·
∑
γ≤β

(
β

γ

)
h|β−γ|

σ+|α+γ|σ

≤ A||φ||Eτ,σ,h(K)(CL)|α|
σ

C |β|
σ |β|τ2σ−1|β|σCh,β, (2.6.9)

where we have used (M.1)′, (̃M.2) properties of the sequence M τ,σ
p and Ch,β =∑

γ≤β

(
β

γ

)
h|β−γ|

σ+|α+γ|σ .
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To estimate Ch,β, note that for γ ≤ β,

|β − γ|σ + |α + γ|σ ≥ 1

2σ−1
(|α|σ + |β|σ),

and hence
Ch,β ≤ 2|β|h

1
2σ−1 |α|σh

1
2σ−1 |β|σ , 0 < h < 1.

For h ≥ 1 and γ ≤ β we note that

|β − γ|σ + |α + γ|σ ≤ |α + β|σ ≤ 2σ−1(|α|σ + |β|σ).

This implies that

Ch,β ≤ 2|β|h2σ−1|α|h2σ−1|β|, h ≥ 1.

Now if we put ch = max{h
1

2σ−1 , h2σ−1}, from (2.6.9) it follows that

|∂β(aα(x)∂αφ(x))| ≤ B||φ||Eτ,σ,h(K)(chCL)|α|
σ

(2chC)|β|
σ |β|τ2σ−1|β|σ . (2.6.10)

Since ch = h
1

2σ−1 , 0 < h ≤ 1 and ch = h2σ−1
for h > 1, we can choose

h > 0 (resp. L > 0) such that LCch < 1/2. Taking the sum with respect to
α ∈ Nd and supremums with respect to β ∈ Nd and x ∈ K, by (2.6.10) it
follows

||P (x, ∂)φ||Eτ2σ−1,σ,2Cch
(K) ≤ C ′||φ||Eτ,σ,h(K)

for some C ′ > 0 and this completes the proof.

2.7 Inverse closedness property of classes E{τ,σ}
In this section we prove the ivnverse-closedness property of our classes E{τ,σ}(U).
We use this result to construct a function that does not belong to any of the
Gevrey classes Eτ , τ > 1, but it is in our class E{τ,σ} for some τ > 0 and
σ > 1.

We say that a l.c.s. of smooth functions on U , A ⊆ C∞(U), is algebra if
pointwise multiplication of functions is continuous operation from A×A to
A. Moreover we assume the A is unital, i.e., it contains neutral element (in
particular, it contains function φ(x) = 1, x ∈ U). We recall the definition of
inverse-closedness property of algebra A.

Definition 2.7.1. Algebra A is inverse-closed in C∞(U) if for any ϕ ∈ A
for which ϕ(x) 6= 0 on U follows that

1

ϕ
∈ A.
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Remark 2.7.1. Note that Proposition 2.5.1 implies that our classes E{τ,σ}(U),
τ > 0, σ > 1, are algebras. It is consequence of the property (M.1) of the
defining sequence M τ,σ

p = pτp
σ
. It is well known (see [21], [20]), that spaces

E{p!τ}, τ > 0 are also algebras of smooth functions.

In the sequel we introduce the notion of almost increasing sequences.

Definition 2.7.2. A sequence Mp, p ∈ N, of positive numbers is almost
increasing if for some C > 0, Mp < CMq when p < q.

Following result that concerns almost increasing sequences will be used
in the following Chapters.

Lemma 2.7.1. [19] Let Mp, p ∈ N, be the sequence of positive numbers that

satisfies property (M.1). Then the sequence
(
Mp

pp

)1/p

is almost increasing if

and only if there exists C > 0 such that for all j ∈ N and all ki ∈ N it holds

j∏
i=1

Mki

ki!
≤ CkMk

k!
,

where k =

j∑
i=1

ki.

Remark 2.7.2. Observe that
(M τ,σ

p

pp

)1/p

= pτp
σ−1−1, where M τ,σ

p = pτp
σ
, τ >

0, σ > 1. Hence we conclude that
(Mp

pp

)1/p

is almost increasing, since

pτp
σ−1−1 < qτq

σ−1−1, q > p > d(1/τ)1/(σ−1)e.
Moreover, by Lemma 2.7.1 it follows

j∏
i=1

k
τkσi
i ≤ Ck k1! · · · kj!

k!
kτk

σ

, (2.7.1)

for k =

j∑
i=1

ki.

We recall ( [38]) following result concerning inverse-closedness of C arleman
classes, whose definition coincides with Komatsu’s definition of E{Mp}(U)
(classes of ultradifferentiable functions of Roumieu type) (see [20]).

Theorem 2.7.1. Let E{Mp}(U) be Komatsu’s class of smooth functions for
which defining sequence Mp, p ∈ N, satisfies property (M.1). Then the
following conditions are equivalent:
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a) lim
p→∞

M1/p
p =∞ and

(
Mp

pp

)1/p

is almost increasing.

b) Algebra E{Mp}(U) is inverse-closed in C∞(U).

Remark 2.7.3. We immediately note that Gevrey classes, including classes of
analytic functions on U , E{p!τ}(U), τ ≥ 1, (Mp = p!τ ) are inverse-closed in
C∞(U). Also note that Theorem 2.7.1 does not hold for E{p!τ}(U), 0 < τ < 1,
which consists of entire functions, since defining sequence fails to satisfy 3.
condition.

However, since our classes are larger then Komatsu’s classes E{pτp
σ}(U)

it turns out that we do not need to impose any additional conditions to
sequence M τ,σ

p .
In the proof of the main result in this section, we will use the generalized

version of Faá di Bruno formula presented in [22] so we fix the notation. A
multiindex α ∈ Nd is said to be decomposed into parts p1, . . . , ps ∈ Nd with
multiplicities m1, . . . ,ms ∈ N, respectively, if it holds

α = m1p1 +m2p2 + · · ·+msps, (2.7.2)

where mi ∈ {0, 1, . . . , |α|}, |pi| ∈ {1, . . . , |α|} for i ∈ {1, . . . , s}. Note that
s ≤ |α| and the total multiplicity m, given by m = m1+· · ·+ms, also satisfies
m ≤ |α|.

Moreover if pi = (pi1 , . . . , pid), i ∈ {1, . . . , s}, we order the parts in the
following way: pi << pj when i < j if and only that there exists k ∈
{1, . . . , d} such that pi1 = pj1 , . . . , pik−1

= pjk−1
and pik < pjk .

The list (s, p,m) is called the decomposition of α and the set of all de-
compositions of the form (2.7.2) is denoted by π.

For smooth functions f : U → C and g : V → U , where U, V are open in
R and Rd, respectively, the generalized Faa di Bruno formula is given by

∂α(f(g)) = α!
∑

(s,p,m)∈π

f (m)(g)
s∏

k=1

1

mk!

( 1

pk!
∂pkg

)mk
. (2.7.3)

We illustrate the notation with the following example.

Example 2.7.1. Let d = 2 and consider the partial differential operator
∂3

∂x1∂x2
2

In particular, α = (1, 2). Then the simple calculation gives

∂3

∂x1∂x2
2

f(g) = f ′(g)
∂3g

∂x1∂x2
2

+ f ′′(g)
( ∂g
∂x1

∂2g

∂x2
2

+ 2
∂g

∂x2

∂2g

∂x1∂x2

)
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+f ′′′(g)
∂g

∂x1

( ∂g
∂x2

)2

. (2.7.4)

Observe that there are four summands in (2.7.4). They correspond to the
following elements of π in (2.7.3) when α = (1, 2) (respectively):

(1, 2) = 1 · (1, 2), (m = 1)

(1, 2) = 1 · (0, 2) + 1 · (0, 1), (m = 2)

(1, 2) = 1 · (0, 1) + 1 · (1, 1), (m = 2)

(1, 2) = 2 · (0, 1) + 1 · (1, 0), (m = 3).

In particular, we read 1 · (0, 1) + 1 · (1, 1) as
( ∂g
∂x2

)1( ∂2g

∂x1∂x2

)1

, and the

corresponding coefficient is equal to

1!2!
1

1!1!

( 1

0!1!

)1( 1

1!1!

)1

= 2,

and this is in agreement with (2.7.4).
For the complete proof of (2.7.3) and more examples we refer to [22].

Remark 2.7.4. Observe that card π ≤ (1 + |α|)d+2. In particular, each mi,
1 ≤ i ≤ s, may take values form 0 to |α| which gives |α| + 1 possibilities.
Moreover, if pi = (pi1 , . . . , pid), 1 ≤ i ≤ s, for each pik , 1 ≤ k ≤ d, we also
have|α|+1 possibilities which is in total (|α|+1)d. Since s ≤ |α| we conclude
that

cardπ ≤ |α|(|α|+ 1)d+1 ≤ (1 + |α|)d+2.

Now we can prove the following theorem.

Theorem 2.7.2. Let U ⊆ Rd be open. Classes E{τ,σ}(U), τ > 0, σ > 1, are
inverse-closed in C∞(U).

Proof. For the proof we use the generalized Faá di Bruno formula given by
(2.7.3). Let K ⊂⊂ U be arbitrary but fixed. Further let φ ∈ E{τ,σ}(U), and
moreover φ(x) 6= 0 for x ∈ U . Since K is chosen arbitrary, it is sufficient to
prove that

sup
x∈K
|∂α
( 1

φ(x)

)
| ≤ A′h

′|α|σ |α|τ |α|σ , α ∈ Nd (2.7.5)

for some A′, h′ > 0.

In (2.7.3) set f(x) =
1

x
, x 6= 0. Since f (m)(x) =

(−1)mm!

xm+1
, m ∈ N,

observe that for x ∈ K
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∂α
( 1

φ(x)

)
= α!

∑
(s,p,m)∈π

(−1)mm!

(φ(x))m+1

s∏
k=1

1

mk!

( 1

pk!
∂pkφ(x)

)mk
, (2.7.6)

and therefore

|∂α
( 1

φ(x)

)
| ≤ |α|!

∑
(s,p,m)∈π

m!

m1! . . .ms!|(φ(x))|m+1

s∏
k=1

( 1

pk!
|∂pkφ(x)|

)mk
(2.7.7)

Since |φ(x)| ≥ C for x ∈ K and m =
∑s

k=1 mk ≤ |α| observe that

m!

m1! . . .ms!|(φ(x))|m+1
≤ Cm+1 ≤ C |α|

σ+1, (2.7.8)

for suitable constant C > 0.
Moreover, for φ ∈ E{τ,σ}(U) it follows that

|∂pkφ(x)| ≤ Ah|pk|
σ |pk|τ |pk|

σ

, 1 ≤ k ≤ s, (2.7.9)

and since αj =
∑s

k=1mkpkj we obtain

s∑
k=1

mk|pk| =
d∑
j=1

s∑
k=1

mkpkj =
d∑
j=1

αj = |α|. (2.7.10)

Now by (2.7.9) and (2.7.10) we have

s∏
k=1

( 1

pk!
|∂pkφ(x)|

)mk
≤

s∏
k=1

(
Ah|pk|

σ |pk|τ |pk|
σ
)mk

≤ Am
s∏

k=1

(
h|α|

σ−1|α|τ |α|σ−1
)mk|pk|

= A|α|
(
h|α|

σ−1|α|τ |α|σ−1
)∑s

k=1mk|pk|

= (Ah)|α|
σ |α|τ |α|σ . (2.7.11)

Finally, using (2.7.12), (2.7.8) and (2.7.11) we obtain

|∂α
( 1

φ(x)

)
| ≤ |α|!

∑
(s,p,m)∈π

m!

m1! . . .ms!|(φ(x))|m+1

s∏
k=1

( 1

pk!
|∂pkφ(x)|

)mk
≤ Ah|α|

σ+1|α|τ |α|σα!(|α|+ 1)d+2

≤ A′h
′|α|σ+1|α|τ |α|σ ,
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for suitable A′ > 0 and h′ > 0, where we have used the bound for number
of terms in (2.7.3) (see Remark 2.7.4), and the last inequality follows from
α!(|α| + 1)d+2 ≤ |α|d+|α|+1 ≤ C

′′|α|σ for some C ′′ > 0. This completes the
proof.

Example 2.7.2. To end this section we use inverse-closedness arguments to
construct a function φ ∈ E{τ,σ}(U), τ > 0, σ > 1 that does not belong to⋃
τ>1

Eτ (U), on some open set U , where Eτ , τ > 1 are Gevrey classes.

In Section 2.3 we have constructed a compactly supported function ψ ∈
D[−a/2,a/2]
{τ,σ} where

a =
∞∑
p=0

ap, ap = 2−τp
σ−1 1

(p+ 1)τpσ−1 ,

whose all derivatives vanishes at the end points and ψ(x) 6= 0, x ∈ (−a/2, a/2).
We also concluded that

ψ 6∈
⋃
τ>1

D{p!
τ}

[−a/2,a/2], (2.7.12)

where D{p!
τ}

[−a/2,a/2], τ > 1 is space of Gevrey functions with support [−a/2, a/2]

(see the proof of Corollary 2.3.1).

Let φ(x) =
1

ψ(x)
, x ∈ (−a/2, a/2). Then by the calculation done in the

proof Theorem 2.7.2 (for d = 1) we conclude that for everyK ⊂⊂ (−a/2, a/2)
it holds

sup
x∈K
|φ(k)(x)| ≤ Ahk

σ

kτk
σ

, k ∈ N. (2.7.13)

for some A, h > 0. In, particular φ ∈ E{τ,σ}(−a/2, a/2). To conclude that

φ 6∈
⋃
τ>1

Eτ (−a/2, a/2) we suppose the opposite, φ ∈ Eτ (−a/2, a/2), for some

τ > 0. Since Gevrey classes are inverse-closed in C∞ (see Theorem 2.7.1) it
follows that ψ ∈ Eτ (−a/2, a/2), and since all the derivatives of ψ vanishes at

±a/2, it follows that ψ ∈ D{p!
τ}

[−a/2,a/2]. This is in contradiction with (2.7.12).
Note that ψ is compactly supported, while φ 6∈ Dτ,σ, so that we obtained

an example of element from E{τ,σ}\D{τ,σ}, which is not in
⋃
τ>0

Eτ .

To pass to higher dimensions, using the (M.1) property of sequence M τ,σ
p ,

p ∈ N, we conclude that f(x) =
d∏

k=1

φ(xk), x = (x1, x2, . . . , xd), belongs to

E{τ,σ}(U) for U = (−a/2, a/2)d. To avoid the fact that the boundary of U is
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not smooth, by [16, Lemma 1.4.3] it is possible to find appropriate open set
with smooth boundary.

2.8 Dual spaces

To complete this Chapter, we define the dual spaces for Dτ,σ(U) and Eτ,σ(U).

Definition 2.8.1. The space of ultradistributions of type τ, σ, D′τ,σ(U), τ >
0, σ > 1 is the set of of all linear functionals u on Dτ,σ(U) satisfying the
following estimates: in the case (τ, s) (resp. {τ, σ}) for every K ⊂⊂ U there
exists constants A, h > 0 (resp. for every h > 0 there exists A > 0) such that

|〈u, φ〉| ≤ A sup
α∈Nd

h|α|
σ

(|α|τ |α|σ)−1 sup
x∈K
|Dαφ(x)|, φ ∈ DKτ,σ. (2.8.1)

E ′τ,σ(U) is subspace of D′τ,σ(U) of ultardistributions of type τ, σ with compact
support.

Remark 2.8.1. From the Proposition 2.2.1 we immediately obtain following
embeddings

D′(U) ↪→ D′τ,σ(U) ↪→ D′t(U),

and
E ′(U) ↪→ E ′τ,σ(U) ↪→ E ′t(U),

for every τ > 0 and t, σ > 1 where D′t(U) is space of Gevrey ultradistributions
and E ′t(U) is space of Gevrey ultradistribution with compact support.



Chapter 3

Wave front sets related to Eτ,σ

In the previous Chapter we have established new type of local regularity and
proved the basic properties of the related classes. The goal of this Chapter
is to define a new type of wave front sets and to show that local regularity
of their complement is regularity proposed by Eτ,σ, τ > 0, σ > 1.

Following the ideas presented in [16] we introduce the notion of singular
supports related to our classes and prove that they are equal to the standard
projection of introduced wave front sets. This is done by careful analysis of
sequences of cut-off test functions which lead to specific admissibility condi-
tion. The elements of such sequences have small estimates on derivatives up
to the finite order, and it turns out that they are convenient for our analysis.

One of the main ingredients of the following proofs is the procedure which
we call enumeration (see also proof of the Lemma 3.1.1). We say that two
conditions of the form (3.2.1) are equivalent if one is obtained from another
after replacing N with positive, increasing sequence aN such that aN →∞,
N → ∞. This procedure we call enumeration, and write N → aN and uN
instead of uaN .

Note that this procedure involves a change of variables (with respect to
N ∈ N) which ”speeds up” or ”slows down” the decay estimates of single
members of the corresponding sequences, while retaining the asymptotic be-
havior when N → ∞. In other words, although the estimates of the terms
of a sequence before and after enumeration are different for each N ∈ N, its
asymptotic behavior remains the same.

We also prove the microlocal propery of finite order partial differential
operators (PDO’s in short) with the coefficients in classes E{τ,σ}. In last
section, we define intersections and unions of our wave front sets, which leads
us to the definition of wave front set with microlocal hypoellipticity property.

Main results of this Chapter are published in [43].

49
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3.1 Different types of local regularity

As a part of motivation for our work, we start with the following lemma which
describes decay properties on the Fourier transform side. Basic ingredient
of the proof is procedure that we call enumeration which will be frequently
used in the forthcoming proofs.

Lemma 3.1.1. Let U be the open set in Rd, Ω ⊆ K ⊂⊂ U and u ∈ C∞0 (U).
Further, let {uN}N∈N, be the sequence of compactly supported smooth func-
tions such that, suppuN ⊆ K, uN = u on Ω, and which satisfies one of the
following regularity conditions:

|ûN(ξ)| ≤ A
hN

tbN tc!
|ξ|bNtc , N ∈ N, ξ ∈ Rd\{0}, t > 0 (3.1.1)

|ûN(ξ)| ≤ A
hNN !t

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}, t > 1 (3.1.2)

|ûN(ξ)| ≤ A
hNN !t

|ξ|bNtc , N ∈ N, ξ ∈ Rd\{0}, 0 < t < 1. (3.1.3)

for some (different) constants A, h > 0. Then

(3.1.1)⇒ (3.1.2)⇒ (3.1.3) .

Proof. Note that after enumeration N → N1/t (3.1.1) is equivalent to

|ûN(ξ)| ≤ A
hNN !

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}. (3.1.4)

and hence, putting uN instead of uN1/t condition (3.1.1) is equivalent to the
condition related to local analyticity (see [16]). Now from (3.1.4) is clear that
(3.1.1)⇒ (3.1.2).

If we apply the same enumeration as for (3.1.1) to the condition (3.1.3)
note that we obtain

|ûN(ξ)| ≤ A
hN

1/tbN1/tc!t

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}, (3.1.5)

that is, after enumeration and letting t = 1/σ, by Proposition 2.2.1 and
Remark 2.2.2, (3.1.3) is equivalent to

|ûN(ξ)| ≤ A
hN

σ
NNσ

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}. (3.1.6)
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If (3.1.5) we put uN instead of uNσ (σ = 1/t), by the simple inequality
N !t ≤ CNNσ

, t, σ > 1, N ∈ N it follows that (3.1.2)⇒ (3.1.3). This proves
the lemma.

Remark 3.1.1. Moreover, for τ > 0 and σ > 1, we introduce new regularity
condition

|ûN(ξ)| ≤ A
hNN !1/σ

|ξ|b(N/τ)1/σc
, N ∈ N, ξ ∈ Rd\{0}. (3.1.7)

By the similar arguments as in Lemma 3.1.1, we note that by applying Stir-
ling’s formula and enumeration N → τNσ, (3.1.7) is equivalent to

|ûN(ξ)| ≤ A
hN

σ
N τNσ

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}, (3.1.8)

and hence the simple inequality of the form N !t ≤ CN τNσ
, τ > 0, t, σ > 1,

N ∈ N implies that (3.1.1) ⇒ (3.1.2) ⇒ (3.1.7). Note that for σ = 1/t,
(3.1.7)⇔ (3.1.3) when τ = 1, while (3.1.7)⇒ (3.1.3) when τ ∈ (0, 1).

3.2 New type of local regularity of distribu-

tions

In this section, by using (3.1.7), we define a new type of wave front set of
an distribution. We will use the technique from the proof of [16, Proposition
8.4.2], developed for the analytic wave front set, and construct a (bounded)
sequence of cutoff functions in a similar way.

Let τ > 0, σ > 1, Ω ⊆ K ⊂⊂ U ⊆ Rd, where Ω and U are open in Rd,
and the closure of Ω is contained in K. We use standard notation D′(U)
for Schwartz distributions and E ′(U) for their subspace of distributions with
compact support.

Let u ∈ D′(U). Following the idea presented in [16], we analyze the
nature of regularity related to the condition

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Rd\{0}. (3.2.1)

where {uN}N∈N is bounded sequence in E ′(U) such that uN = u in Ω and
A, h are some positive constants.

An essential part of the upcoming definition of the wave front set concerns
the sequences of the following form.
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Definition 3.2.1. Let τ > 0, σ > 1, and Ω ⊆ K ⊂⊂ U such that the closure
of Ω is contained in K. A sequence {χN}N∈N of functions in C∞0 (K) is said
to be τ, σ-admissible with respect to K if

a) χN = 1 in a neighborhood of Ω, for every N ∈ N,

b) there exists a positive sequence Aβ such that

sup
x∈K
|Dα+βχN(x)| ≤ A

|α|+1
β bN1/σc|α|, |α| ≤ b(N/τ)1/σc, (3.2.2)

for every N ∈ N and β ∈ Nd.

Remark 3.2.1. A similar approach based on the sequence of functions {ϕN}N∈N
”analytic up to the order N” is used to extended results on Schwartz dis-
tributions from [16] to Gevrey type ultradistributions, cf. [35, Proposition
1.4.10, Corollary 1.4.11]. When τ > 0, σ > 1 and β = 0 in (3.2.2) we obtain

sup
x∈K
|∂αχN(x)| ≤ A|α|+1 bN1/σc|α|

|α| 1σ |α|
|α|

1
σ
|α|

≤ A|α|+1 sup
r>0

N r/σ

rr/σ
|α|

1
σ
|α| = A|α|+1e

1
eσ
N |α|

1
σ
|α|, |α| ≤ b(N/τ)1/σc,

and χN is therefore ”quasi-analytic up to the order b(N/τ)1/σc”. Note that
”the order of quasi-analyticity” of χN tends to infinity as τ → 0+ for fixed
N ∈ N and σ > 1.

Following Lemma is direct consequence of [16, Theorem 1.3.5 and Theo-
rem 1.4.2].

Lemma 3.2.1. Let there be given r > 0, τ > 0, σ > 1 and x0 ∈ Rd. There
exists τ, σ-admissible sequence {χN}N∈N with respect to B2r(x0) such that
χN = 1 on Br(x0), for every N ∈ N.

Proof. Fix r > 0. Following the notation of the quoted Theorems, we set

dk =
r

4b(N/τ)1/σc
, k ≤ b(N/τ)1/σc, N ∈ N. Note that

b(N/τ)1/σc∑
k=1

dk =
r

4
<
r

2
,

for every N ∈ N.
Since the infimum of distances between points inB5r/4(x0) and Rd\B7r/4(x0)

is r/2, Theorem 1.4.2 from [16] implies that for every N ∈ N there exists a
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smooth function χ̃N such that supp χ̃N ⊆ B7r/4(x0), χ̃N = 1 on B5r/4(x0),
and

sup
x∈K
|Dαχ̃N(x)| ≤ A|α|

|α|∏
k=1

dk = A|α|b(N/τ)1/σc|α| ≤ C |α|bN1/σc|α|, (3.2.3)

for |α| ≤ b(N/τ)1/σc, N ∈ N, where the constant C > 0 depends on τ and
σ.

Next we choose a non-negative function θ ∈ C∞0 (Br/4(x0)),
∫
θ(x)dx = 1

and note that χN = θ ∗ χ̃N clearly satisfies (3.2.2) for every N ∈ N, if we let
β derivatives act on θ and α derivatives act on χ̃N . Hence {χN}N∈N is a τ, σ-
admissible sequence with respect to B2r(x0) and the lemma is proved.

Remark 3.2.2. We would like to emphasize some of the properties of τ, σ-
admissible sequences. Note that if we put α = 0 in (3.2.2), we obtain that
the sequence {χN}N∈N is bounded in C∞(U). Moreover, by applying the
Fourier transform, by standard calculations it follows

|χ̂N(ξ)| ≤ A
|α|+1
β bN1/σc|α|〈ξ〉−|α|−|β|, |α| ≤ b(N/τ)1/σc, (3.2.4)

for every N ∈ N, ξ ∈ Rd, where 〈ξ〉 = (1+|ξ|2)1/2. Moreover, since {χN}N∈N
is bounded in C∞(U), for u ∈ D′(U), {χNu}N∈N is bounded in E ′(U).

Let {uN}N∈N be bounded sequence in E ′(U). Recall that Paley-Wiener
type theorems, and the fact that e−ix·ξ ∈ C∞(Rd

x), for every ξ ∈ Rd, implies
that

|ûN(ξ)| = |〈uN , e−i·ξ〉| ≤ C〈ξ〉M , (3.2.5)

for some C > 0 independent of N , where M is order of distribution u.

We first show how the condition (3.2.1) can be related to the regularity
of elements from E{τ,σ}(U).

Proposition 3.2.1. Let u ∈ D′(U), τ > 0, σ > 1, Ω ⊆ U with the closure
contained in U and let {uN}N∈N be a bounded sequence in E ′(U), uN = u on
Ω and such that (3.2.1) holds. Then u ∈ E{τ,σ}(Ω).

Proof. After the enumeration N → Nσ and by Lemma 2.1.1, condition
(3.2.1) is equivalent to

|ûN(ξ)| ≤ A
kN

σ
N τNσ

|ξ|N
, N ∈ N, ξ ∈ Rd\{0}. (3.2.6)

for some A, k > 0.
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By the Fourier inversion formula and the fact that uN = u in Ω we obtain

(h|α|
σ |α|τ |α|σ)−1|Dαu(x)|

= (h|α|
σ |α|τ |α|σ)−1

∣∣∣( ∫
|ξ|≤1

+

∫
|ξ|>1

)
ξαûN(ξ)e2πixξdξ

∣∣∣
≤ I1 + I2, N ∈ N, α ∈ Nd, x ∈ Ω, (3.2.7)

where h > 0 will be chosen later on. Using (3.2.5) we estimate I1 by

I1 = (h|α|
σ |α|τ |α|σ)−1

∣∣∣ ∫
|ξ|≤1

ξαûN(ξ)e2πixξdξ
∣∣∣

≤ C(h|α|
σ |α|τ |α|σ)−1

∫
|ξ|≤1

〈ξ〉Mdξ. (3.2.8)

If h ≥ 1 we conclude that I1 ≤ C1 where C1 does not depend on α. To
estimate I2, note that by (3.2.6) we have

I2 = (h|α|
σ |α|τ |α|σ)−1

∣∣∣ ∫
|ξ|>1

ξαûN(ξ)e2πixξdξ
∣∣∣

≤ A(h|α|
σ |α|τ |α|σ)−1kN

σ

N τNσ

∫
|ξ|>1

|ξ||α|−Ndξ ≤ C(k2σ−1

/h)|α|
σ

,

where for the last inequality we chose N = |α|+d+1, and use ˜(M.2)′ property
of M τ,σ

p , p ∈ N. Now, for h > k2σ−1
we conclude that I2 ≤ C2, and C2 does

not depend on α. Hence, if we take h > max{1, k2σ−1}, we conclude that
u ∈ E{τ,σ}(Ω), and the statement is proved.

Therefore the condition (3.2.1) implies local regularity related to the
classes E{τ,σ}(U) from Chapter 2. For the opposite direction, if u ∈ E{τ,σ}(Ω)
we need to observe τ̃ , σ-admissible sequences, where τ̃ = τσ/(σ−1). The precise
statement is the following.

Proposition 3.2.2. Let Ω ⊆ K ⊂⊂ U , Ω ⊂ K, u ∈ D′(U), and let {χN}N∈N
be the τ̃ , σ-admissible sequence with respect to K, where τ̃ = τσ/(σ−1), τ > 0,
σ > 1 . If u ∈ E{τ,σ}(Ω), then {χNu}N∈N is bounded in E ′(U), χNu = u on
Ω, and

|χ̂Nu(ξ)| ≤ A
hNN !τ̃

−1/σ/σ

|ξ|b(N/τ̃)1/σc
, N ∈ N, ξ ∈ Rd\{0}. (3.2.9)

That is, after enumeration N → τ̃N , {χNu}N∈N satisfies (3.2.1). for some
A, h > 0.



New type of local regularity of distributions 55

Proof. Put uN = χNu, N ∈ N. By the Remark 3.2.2, {uN}N∈N is bounded
in E ′(U). Note also that uN = u on Ω and suppuN ⊆ K.

Since u ∈ E{τ,σ}(Ω), from (3.2.2) for |α| ≤ b(N/τ̃)1/σc, x ∈ Ω, and for
some k > 1 we obtain

|DαuN(x)| ≤
∑
β≤α

(
α

β

)
|Dα−βχN(x)||Dβu(x)|

≤ ||u||Eτ,σ,k(Ω)

∑
β≤α

(
α

β

)
A|α−β|+1bN1/σc|α−β|k|β|σ |β|τ |β|σ

≤ A||u||Eτ,σ,k(Ω)(2A)b(N/τ̃)1/σcbN1/σcb(N/τ̃)1/σckN/τ̃bN1/σc
τN
τ̃

≤ A||u||Eτ,σ,k(Ω)B
NN

1
σ

( 1
τ

)1/(σ−1)N1/σ

N
1
σ

( 1
τ

)1/(σ−1)N (3.2.10)

for some B > 0, where for the last inequality we have used that τ̃ = τσ/(σ−1).
Next we note that there exists c > 0, such that

N1/σ lnN ≤ cN1/σN1−1/σ = cN,

wherefrom N
1
σ

( 1
τ

)1/(σ−1)N1/σ ≤ CN for some C > 1 (which depends on τ and
σ). Hence (3.2.10) can be estimated by

|DαuN(x)| ≤ A||u||Eτ,σ,k(Ω)h
NN

1
σ

( 1
τ

)1/(σ−1)N , (3.2.11)

for some h > 0. Applying the Fourier transform to (3.2.11) for |α| =
b(N/τ̃)1/σc we obtain

|ûN(ξ)| ≤ A||u||Eτ,σ,k(Ω)
hNN

1
σ

( 1
τ

)1/(σ−1)N

|ξ|b(N/τ̃)1/σc
, N ∈ N, ξ ∈ Rd\{0}. (3.2.12)

Finally, after the enumeration N → τ̃N , we note that (3.2.12) and Stirling’s
formula imply (3.2.9), and the proposition is proved.

Remark 3.2.3. When σ = 1 and τ 6= 1 the proof of Proposition 3.2.2 does
not hold. In particular, when 0 < τ < 1 the order of quasi-analyticity of χN
given by bN1/σ/τ

1
σ−1 c tends to infinity when σ → 1+ for fixed N ∈ N, while

for τ > 1 it tends to zero. (see Remark 3.2.1). This suggests that in the study
of the ”critical” behavior when σ → 1+ the dependence of the parameter τ
on σ becomes inevitable. For τ = σ = 1 Proposition 3.2.2 coincides with
necessity part of [16, Proposition 8.4.2.].

Now we define the wave front set in D′(U) with respect to the condition
(3.2.1). Propositions 3.2.1 and 3.2.2 imply that the decay estimates from
the condition (3.2.1) are related to the regularity defined by E{τ,σ}(U) from
Chapter 1.
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Definition 3.2.2. Let τ > 0 and σ > 1, D′(U), t > 1, and (x0, ξ0) ∈
U × Rd\{0}. Then (x0, ξ0) 6∈ WF{τ,σ}(u) (resp. WF(τ,σ)(u)) if there exists
open conic neighborhood Ω×Γ of (x0, ξ0) and a bounded sequence {uN}N∈N
in E ′(U) such that uN = u on Ω and (3.2.1) holds for some constants A, h > 0
(resp. for every h > 0 there exists A > 0).

Remark 3.2.4. It follows immediately from the definition that WF{τ,σ}(u),
u ∈ D′(U), is closed subset of U ×Rd\{0}. Note that for τ > 0 and σ > 1

WF{τ,σ}(u) ⊆WF{1,1}(u) = WFA(u).

Moreover, when 0 < τ < 1 and σ = 1 we have WFA(u) ⊆ WF{τ,1}(u).
However, since Proposition 3.2.2 does not hold when 0 < τ < 1 and σ = 1
(see Remark 3.2.3), we are not able to prove the usual relation between
WF{τ,1}(u) and the singular support of u, see Theorem 3.3.1. This suggests
that the singularities related to WF{τ,1} should be studied by a different
approach (see [32]).

Remark 3.2.5. We would like to point out that our wave front sets WF{τ,σ}
are not equal to WFL, studied in [16], for any choice of τ > 0, σ > 1 and
the sequence Lp, p ∈ N. Recall that Hörmander started the construction
presented in Section 8.4. in [16] by imposing two conditions on the sequence
Lp: (1) Lp ≥ p and (2) Lp+1 ≤ CLp, for some C > 0 which does not depend

on p. We also note that Lp = M
1/p
p , p ∈ N , where Mp are sequences used by

Komatsu in [20], for the definition of classes of ultradifferentiable functions.
It would be sufficient to prove that sequence Lτ,σp := (M τ,σ

p )1/p does not
satisfy Hörmander’s condition (2), for any τ > 0 and σ > 1. Since Lτ,σp =

pτp
σ−1

, it is clear that is satisfies (1) for every τ > 0 and σ > 1. Assume that
σ > 2. By the computations presented in Lemma 2.3.1 it follows that

(p+ 1)τ(p+1)σ−1

pτpσ−1 ≥ (2p)τp
σ−2

, p ∈ N,

which clearly implies we cannot choose C > 0 such that (M τ,σ
p )1/p satisfy

condition (2) for σ > 2.
For the case 1 < σ < 2, we note that precise estimate gives

(p+ 1)τ(p+1)σ−1 ≤ (p+ 1)τp
σ−1

(p+ 1)τ = pτp
σ−1

(1 +
1

p
)τp

σ−1

(p+ 1)τ ,

and if we assume that (2) holds for some large C > 0, the calculation above

would imply that (1 +
1

p
)τp

σ−1

(p + 1)τ ≤ C and this is true only for finitely

many p ∈ N.
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3.3 Singular support related to the classes

Eτ,σ
In this section define the notion of singular support related to Eτ,σ, τ > 0,
σ > 1 and prove that it is equal to the standard projection of WFτ,σ. The
following inequality, which holds for some C > 0, will be frequently used in
the sequel:

bN1/σcb(N/τ)1/σc ≤ N1/σ(1/τ)1/σN ≤ CNN !τ
−1/σ/σ (3.3.1)

(the second inequality follows from Stirling’s formula).
We start with the following Lemma.

Lemma 3.3.1. Let u ∈ D′(U), τ > 0, σ > 1 and set τ = τσ/(σ−1). Let
K ⊂⊂ U , F be a closed cone, and {χN}N∈N be a τ̃ , σ-admissible sequence
with respect to K. Then {χNu}N∈N is a bounded sequence in E ′(U), and if
WF{τ,σ}(u) ∩ (K × F ) = ∅, then for some A, h > 0 we have

|χ̂Nu(ξ)| ≤ A
hNN !τ̃

−1/σ/σ

|ξ|b(N/τ̃)1/σc
, N ∈ N , ξ ∈ F . (3.3.2)

Proof. Let (x0, ξ0) ∈ K × F , and set r0 := rx0,ξ0 > 0. Furthermore, let

{χN}N∈N be the τ̃ , σ-admissible sequence with respect to Br0(x0), Br0(x0) ⊆
Ω ⊆ K. Boundedness of {χNu}N∈N follows by Remark 3.2.2.

Since (x0, ξ0) 6∈WF{τ,σ}(u) we choose uN , Ω and Γ as in Definition 3.2.2
so that

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Γ, (3.3.3)

for some A, h > 0. The condition (3.3.3) is equivalent to

|ûN(ξ)| ≤ A
hNN !τ̃

−1/σ/σ

|ξ|b(N/τ̃)1/σc
, N ∈ N, ξ ∈ Γ, (3.3.4)

after applying Stirling’s formula and the enumeration N → N/τ̃ .
Let Γ0 be an open conical neighborhood of ξ0 with the closure contained

in Γ and choose ε > 0 such that ξ− η ∈ Γ when ξ ∈ Γ0 and |η| < ε|ξ|. Then,
since χNu = χNuN , we write

χ̂Nu(ξ) =
(∫
|η|<ε|ξ|

+

∫
|η|≥ε|ξ|

)
χ̂N(η)ûN(ξ−η) dη = I1+I2 , ξ ∈ Γ0, N ∈ N .
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To estimate I1, note that for |η| < ε|ξ| we have

|ξ − η| ≥ |ξ| − |η| > (1− ε)|ξ|.

Thus, by using (3.2.4) for α = 0 and |β| = d+ 1 and (3.3.4), we obtain

|I1| =
∣∣∣ ∫
|η|<ε|ξ|

χ̂N(η)ûN(ξ − η) dη
∣∣∣

≤
∫
|η|<ε|ξ|

|χ̂N(η)|A hNN !τ̃
−1/σ/σ

|ξ − η|b(N/τ̃)1/σc
dη

≤ A
hNN !τ̃

−1/σ/σ

((1− ε)|ξ|)b(N/τ̃)1/σc

∫
Rd

〈η〉−d−1dη

≤ A1
hN1 N !τ̃

−1/σ/σ

|ξ|b(N/τ̃)1/σc
, ξ ∈ Γ0, N ∈ N. (3.3.5)

To estimate I2, note that for |η| ≥ ε|ξ| we have

|ξ − η| ≤ |ξ|+ |η| ≤ (1 + 1/ε)|η|,

and thus, using (3.2.4) for |α| = b(N/τ̃)1/σc, together with (3.2.5) and (4.1.2),
for every β ∈ Nd and some M > 0 we obtain

|I2| =
∣∣∣ ∫
|η|≥ε|ξ|

χ̂N(η)ûN(ξ − η) dη
∣∣∣

≤
A
b(N/τ̃)1/σc+1
β bN1/σcb(N/τ̃)1/σc

(ε|ξ|)b(N/τ̃)1/σc

∫
|η|≥ε|ξ|

〈η〉−|β|C〈ξ − η〉M dη

≤
AN+1
β bN1/σcb(N/τ̃)1/σc

(ε|ξ|)b(N/τ̃)1/σc

∫
Rd

〈η〉−|β|〈(1 + 1/ε)η〉M , dη

≤ A′N+1N !τ̃
−1/σ/σ

|ξ|b(N/τ̃)1/σc
ξ ∈ Γ0,

for some A′ > 0, where for the last inequality we have chosen |β| = M+d+1.
Thus, the statement follows for (x, ξ) ∈ Br0(x0)× Γ0.
In order to extend the result to K × F we use the same idea as in the

proof of [16, Lemma 8.4.4]. Since the intersection of F with the unit sphere
is a compact set, there exists a finite number of balls Brx0,ξj

(x0), and cones
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Γj that covers F , j ≤ n, n ∈ Z+, and note that (3.3.2) remains valid if

{χN}N∈N is chosen so that suppχN ⊆ Brx0
:=

n⋂
j=1

Brx0,ξj
(x0), ξj ∈ Γj.

Moreover, since K is compact set, it is covered by a finite number of balls
Brxk

, k ≤ n, n ∈ Z+. By [20, Lemma 5.1.] there exist non-negative functions

χk ∈ C∞0 (Brxk/2
), k ≤ n, such that

n∑
k=1

χk = 1 on a neighborhood of K.

Next, for every N ∈ N we choose a non-negative function φN ∈ C∞0 (Brxk/2
)

such that
∫
φN(x) = 1 and

sup
x∈K
|DαφN(x)| ≤ C |α|bN1/σc|α|,

for |α| ≤ b(N/τ̃)1/σc, where the constant C > 0 depends on τ and σ, cf.

[16, Theorem 1.4.2.]. Now, for χN,k = φN ∗ χk, we have
n∑
k=1

χN,k = 1 in a

neighborhood of K, and each χN,k, 1 ≤ k ≤ n, satisfies (3.2.2).
To conclude the proof we note that if {χN}N∈N is a τ̃ , σ-admissible se-

quence with respect to K, then χNχN,k also satisfies estimate of type (3.2.2),
for 1 ≤ k ≤ n. This follows by simple application of Leibniz rule. Thus,

(3.3.2) holds if we replace χN by χNχN,k. Since
n∑
k=1

χNχN,k = χN , the result

follows.

Now we can define singular support of distributions with respect to classes
E{τ,σ}.
Definition 3.3.1. Let τ > 0 and σ > 1, u ∈ D′(U) and x0 ∈ U . Then
x0 6∈ singsupp{τ,σ}(u) if and only if there exists neighborhood Ω of x0 such
that u ∈ E{τ,σ}(Ω).

Following theorem is consequence of Propositions 3.2.1, 3.2.2, and Lemma
3.3.1.

Theorem 3.3.1. Let τ > 0 and σ > 1, u ∈ D′(U). Let π1 : U×Rd\{0} → U
be the standard projection given with π1(x, ξ) = x. Then

singsupp{τ,σ}(u) = π1(WF{τ,σ}(u)) . (3.3.6)

Proof. Choose x0 6∈ π1(WF{τ,σ}(u)). Then we can choose compact neighbor-
hood K of x0 such that WF{τ,σ}(u) ∩ (K ×Rd\{0}) = ∅. By Lemma 3.3.1,
there exists a bounded sequence {uN}N∈N in E ′(U) such that uN = u on
some open set Ω, and

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Rd\{0}. (3.3.7)
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holds for some A, h > 0. Then Proposition 3.2.1 implies that u ∈ E{τ,σ}(Ω),
that is, x0 6∈ singsupp{τ,σ}(u).

Conversely, if x0 6∈ singsupp{τ,σ}(u), then there exist neighborhood Ω of
x0 such that u ∈ E{τ,σ}(Ω). Then by the Proposition 3.2.2, there exists a
bounded sequence {uN}N∈N in E ′(U) such that uN = u on Ω and (3.3.7)
holds. This completes the proof.

To conclude this section we make a short comment about WF(τ,σ)(u),
u ∈ D′(U). Recall that for 0 < τ < ρ and σ > 1 it holds

E{τ,σ}(U) ↪→ E(ρ,σ)(U) ↪→ E{ρ,σ}(U). (3.3.8)

(see Proposition 2.2.15). By what we have proved so far, the regularity
related to the complement of WF{τ,σ} is regularity of the classes E{τ,σ}. Thus,
combining result of the Proposition 2.2.15 with the results of this section we
obtain the following Corollary.

Corollary 3.3.1. Let u ∈ D′(U), t > 1. Then for 0 < τ < ρ and σ > 1 it
holds

WF(u) ⊆WF{ρ,σ}(u) ⊆WF(ρ,σ)(u) ⊆WF{τ,σ}(u) ⊆
⋂
t>1

WFt(u) ⊆WFA(u) ,

where WFt and WFA are Gevrey and analytic wave front sets, respectively.

3.4 Microlocal property of PDO’s with re-

spect to WF{τ,σ}

In this section we prove the microlocal property of finite order PDO’s with
coefficients in E{τ,σ}(U) with respect to WF{τ,σ}(u), u ∈ D′(U). In particular,
following theorem holds.

Theorem 3.4.1. Let

P (x,D) =
∑
|α|≤m

aα(x)Dα

be a differential operator of order m on U with aα ∈ E{τ,σ}(U), |α| ≤ m, and
let u ∈ D′(U), τ > 0, σ > 1. Then

WF{τ,σ}(P (x,D)u) ⊆WF{τ,σ}(u),

The statement directly follows from the next lemma.
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Lemma 3.4.1. Let u ∈ D′(U), τ > 0, σ > 1. Then

WF{τ,σ}(∂ju) ⊆WF{τ,σ}(u), 1 ≤ j ≤ d.

If, in addition φ ∈ E{τ,σ}(U), then

WF{τ,σ}(φu) ⊆WF{τ,σ}(u). (3.4.1)

Proof. To prove the first part of the Lemma, fix 1 ≤ j ≤ d. If (x0, ξ0) 6∈
WFτ,σ(u), then by the definition there exists a conical neighborhood Ω × Γ
of (x0, ξ0), and a bounded sequence {uN} in u ∈ E ′(U) such that uN = u on
Ω such that after the enumeration N → Nσ we obtain

|ûN(ξ)| ≤ A
hN

σ
N τNσ

|ξ|N
, N ∈ N, ξ ∈ Γ, (3.4.2)

for some A, h > 0 (resp. for every h > 0 there exists A > 0.)
For x0 ∈ Ω, we note that

|∂̂juN+1(ξ)| ≤ A|ξ| h
N(N + 1)τ(N+1)σ

|ξ|N+1
≤ A1

hN1 N
τNσ

|ξ|N
, N ∈ N, ξ ∈ Γ,

(3.4.3)

where for the second inequality we used the (̃M.2)
′

property of M τ,σ
p ,

For the second part, set τ̃ = τ
σ
σ−1 and fix (x0, ξ0) 6∈ WF{τ,σ}(u). Then by

the definition, there exists open conic neighborhood Ω × Γ of (x0, ξ0) and a
bounded sequence {uN}N∈N in E ′(U) such that uN = u on Ω and

|ûN(ξ)| ≤ A
hNN !τ/σ

|ξ|bN1/σc
, N ∈ N, ξ ∈ Γ. (3.4.4)

Choose a compact neighborhood Kx0 ⊂⊂ Ω of x0, and let {χN}N∈N be τ̃ , σ-
admissible sequence with respect Kx0 . Set χ̃N = φχN , N ∈ N, and note that

χ̃Nu = χ̃NuN . Since M τ,σ
p = pτp

σ
satisfies ˜(M.2)′ (see Lemma 2.1.2) for some

positive increasing sequence Cq, q ∈ N, and h > 1 we obtain

|Dα+βχ̃N(x)| ≤
∑
δ≤α

∑
γ≤β

(
α

δ

)(
β

γ

)
|Dα−δ+β−γχ̃N(x)||Dγ+δφ(x)|

≤
∑
δ≤α

∑
γ≤β

(
α

δ

)(
β

γ

)
A
|α−δ|+1
β bN1/σc|α−δ|h|γ+δ|σ+1|γ + δ|τ |γ+δ|σ

≤ (2h′)|β|
σ+1
∑
δ≤α

(
α

δ

)
A
|α−δ|+1
β bN1/σc|α−δ|(Cβh′)|δ|

σ |δ|τ |δ|σ ,

(3.4.5)
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for x ∈ Kx0 , |α| ≤ b(N/τ̃)1/σc, β ∈ Nd, where h′ = h2σ−1
. Now it is clear

that by putting |α| = 0 in (3.4.5) we obtain,

|Dβχ̃N(x)| ≤ C ′β, x ∈ Kx0 ,

and hence by applying Fourier transform it follows

|̂̃χN(ξ)| ≤ C ′β〈ξ〉−|β|, β ∈ Nd, ξ ∈ Γ,

for suitable C ′β > 0. In particular, since E{τ,σ}(U) ↪→ C∞(U) it follows that
χ̃N = φχN , N ∈ N, is bounded in C∞(U) and hence χ̃Nu, N ∈ N, is
bounded in E ′(U).

Moreover, note that by the same type of estimates as in (3.2.10) for
|α| = b(N/τ̃)1/σc and β ∈ Nd, by (3.4.5) we obtain that

|Dα+βχ̃N(x)| ≤ C
′′N+1
β N

1
σ

( 1
τ̃

)1/σN , β ∈ Nd, x ∈ Kx0

and hence after applying Fourier transform it follows

|̂̃χN(ξ)| ≤ C
′′N+1
β N

1
σ

( 1
τ̃

)1/σN〈ξ〉−|α|−|β|, β ∈ Nd, ξ ∈ Γ, (3.4.6)

for some constants C ′′β > 0.
Now using (3.4.4) and (3.4.6) and arguing in the same way as in the proof

of Lemma 3.3.1, one can find open cone Γ0 ⊆ Γ such that

|̂̃χNu(ξ)| ≤ A
hNN

τ̃−1/σ

σ
N

|ξ|b(N/τ̃)1/σc
, N ∈ N, ξ ∈ Γ0,

for suitable A, h > 0. After enumeration N → τ̃N the statement follows.

3.5 Intersections and unions of WFτ,σ

In this section we consider the intersections and unions of the wave front sets
WFτ,σ, τ > 0, σ > 1. It turns out that, from the microlocal point of view,
the regularity related to the complement of these unions and intersections
coincides with the regularity proposed by the classes (2.2.24)-(2.2.27) from
Chapter 2.

In particular, for u ∈ D′(U), we consider

WF0+,1+(u) =
⋂
σ>1

⋂
τ>0

WFτ,σ(u), (3.5.1)

WF∞,1+(u) =
⋂
σ>1

⋃
τ>0

WFτ,σ(u), (3.5.2)
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WF0+,∞(u) =
⋃
σ>1

⋂
τ>0

WFτ,σ(u), (3.5.3)

WF∞,∞(u) =
⋃
σ>1

⋃
τ>0

WFτ,σ(u). (3.5.4)

where we recall that WFτ,σ(u) denotes WF{τ,σ}(u) or WF(τ,σ)(u) for τ ∈
[0,∞] and σ ∈ [1,∞].

Remark 3.5.1. Recall (cf. Corollary 3.3.1),

WF{ρ,σ}(u) ⊆ WF(ρ,σ)(u) ⊆ WF{τ,σ}(u) , u ∈ D′(U). (3.5.5)

Moreover, we conclude that
⋂
τ>0

WF{τ,σ}(u) =
⋂
τ>0

WF(τ,σ)(u) and
⋃
τ>0

WF{τ,σ}(u) =⋃
τ>0

WF(τ,σ)(u), and hence in (3.5.1)-(3.5.4) it is sufficient to observe the in-

tersections and unions of WF{τ,σ}(u).

We start with the following technical result.

Lemma 3.5.1. Let u ∈ D′(U), and σ2 > σ1 ≥ 1. Then⋃
τ>0

WFτ,σ2(u) ⊆
⋂
τ>0

WFτ,σ1(u) .

Proof. Let (x0, ξ0) 6∈
⋂
τ>0 WF{τ,σ1}(u). Then there exists τ0 > 0 such that

(x0, ξ0) 6∈ WF{τ0,σ1}(u). Hence there exists open conic neighborhood Ω × Γ
of (x0, ξ0) and a bounded sequence {uN}N∈N in E ′(U) such that uN = u on
Ω such that, after enumeration N → Nσ1 (see also Lemma 2.1.2),

|ûN(ξ)| ≤ A
hN

σ1N τ0Nσ1

|ξ|N
, N ∈ N, ξ ∈ Γ, (3.5.6)

for some constants A, h > 0.
We need to prove that for every τ > 0, (x0, ξ0) 6∈ WF{τ,σ2}(u). This

follows easily from (3.5.6), noting that (see the proof of the [29, Proposition
2.1.]) for every τ > 0 and h > 0 there exists A1 > 0 such that

hN
σ1N τ0Nσ1 ≤ A1h

Nσ2N τNσ2 , N ∈ N,

and the Lemma is proved.

As an immediate consequence of the Lemma 3.5.1 we obtain the following
Corollary.
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Corollary 3.5.1. For u ∈ D′(U), it holds

WF(u) ⊆WF0+,1+(u) ⊆WF∞,1+(u)

⊆WF0+,∞(u) ⊆WF∞,∞(u) ⊆
⋂
τ>1

WFτ (u) , (3.5.7)

where WF and WFτ are standard and Gevrey wave front sets, respectively.

Proof. Note that the last inclusion follow directly from Lemma 3.5.1 for σ2 >
σ1 = 1 by taking the unions and intersections with respect to τ > 1. The only
nontrivial inclusion left is the third one. Assume that (x0, ξ0) 6∈WF0+,∞(u),

that is, for every σ > 1 (x0, ξ0) 6∈
⋂
τ>0

WFτ,σ(u). Fix some σ = σ1 > 1

and let σ2 > σ1. By Lemma 3.5.1 it follows that (x0, ξ0) 6∈
⋃
τ>0 WFτ,σ2(u).

Hence it follows that that there exists σ > 1 such that for every τ > 0
(x0, ξ0) 6∈WFτ,σ(u) and therefore (x0, ξ0) 6∈WF∞,1+(u).

Let us extend the definition of singular support (see Chapter3) related to
classes E{τ,σ}(U), τ ∈ (0,∞) and σ ∈ (1,∞) to the borderline cases.

Definition 3.5.1. Let τ ∈ [0,∞] and σ ∈ [1,∞], u ∈ D′(U) and x0 ∈ U .
Then x0 6∈ singsupp{τ,σ}(u) if and only if there exists neighborhood Ω of x0

such that u ∈ E{τ,σ}(Ω).

Let π1 : U × Rd\{0} → U denotes the standard projection given by
π1(x, ξ) = x. From Propositions 3.2.1, 3.2.2, and Lemma 3.3.1 it follows
that for a given u ∈ D′(U), τ > 0 and σ > 1, we have singsupp{τ,σ}(u) =
π1(WF{τ,σ}(u)).

For the borderline cases τ ∈ {0,∞} and σ ∈ {1,∞} we have the following.

Theorem 3.5.1. Let π1 : U ×Rd\{0} → U be the standard projection given
with π1(x, ξ) = x. Then

π1(WF∞,∞(u)) = singsupp0+,0+(u) , (3.5.8)

π1(WF0+,0+(u)) = singsupp∞,∞(u) , (3.5.9)

π1(WF∞,1+(u)) = singsupp0+,∞(u) , (3.5.10)

π1(WF0+,∞(u)) = singsupp∞,1+(u). (3.5.11)

Proof. Recall that classes E∞,1+ have the ultradifferentiable property, that
is, for every σ > 1 classes E∞,σ are closed under the action of ultradifferen-
tiable operators of the class τ, σ (see Definition 2.6.1 and Theorem 2.6.2 from
Chapter 2).
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We prove here only π1(WF0+,∞(u)) = singsupp∞,1+(u) and leave the other
equalities to the reader.

Assume that x0 6∈ π1(WF0+,∞(u)), so that there is a compact neighbor-
hood K ⊂⊂ U of x0 such that

K ×Rd\{0} ⊆ (WF0+,∞(u))c =
⋂
σ>1

⋃
τ>0

(WF{τ,σ}(u))c, (3.5.12)

where (WF{τ,σ}(u))c denotes the complement of the set WF{τ,σ}(u) in U ×
Rd\{0}. Therefore, if (x, ξ) ∈ K ×Rd\{0} then for every σ > 1 there exist
τ0 > 0 such that (x, ξ) 6∈WF{τ0,σ}(u).

Let σ > 1 be arbitrary but fixed, and set τ̃0 = τ
σ/(σ−1)
0 . From Lemma

3.3.1, it follows that there is a τ̃0, σ-admissible sequence {χN}N∈N such that
uN = χNu, N ∈ N is a bounded sequence in E ′(U), uN = u on some Ω ⊆ K,
and

|χ̂Nu(ξ)| ≤ A
hNN !τ̃

−1/σ
0 /σ

|ξ|b(N/τ̃0)1/σc
, N ∈ N , ξ ∈ Rd\{0} ,

which after enumeration N → τ̃0N becomes

|χ̂Nu(ξ)| ≤ A
hNN !τ0/σ

|ξ|bN1/σc
, N ∈ N , ξ ∈ Rd\{0} . (3.5.13)

By Proposition 3.2.1 it follows that u ∈ E{τ0,σ}(U), and since σ can be chosen
arbitrary, we conclude that u ∈ E∞,1+(U) (see Proposition 2.2.1). Therefore
singsupp∞,1+(u) ⊂ π1(WF0+,∞(u)).

For the opposite inclusion, assume that x0 6∈ singsupp∞,1+(u). Then
u ∈ E∞,1+(Ω), for some Ω which is a neighborhood of x0. In particular, for
every σ > 1 there exists τ0 > 0 such that u ∈ Eτ0,σ(Ω). Fix σ > 1 and

put τ̃ = τ
σ/(σ−1)
0 . Now we use a τ̃0, σ-admissible sequence {χN}N∈N and

Proposition 3.2.2 implies (3.5.13). It follows that (x0, ξ) ∈ (WF{τ0,σ}(u))c

for every σ > 1 and for some τ0 > 0. Hence, by the equality in (3.5.12)
it follows that (x0, ξ) 6∈ WF0+,∞(u) for every ξ ∈ Rd\{0} and therefore
x0 6∈ π1(WF0+,∞(u)), wherefrom π1(WF0+,∞(u)) ⊂ singsupp∞,1+(u), which
finishes the proof.





Chapter 4

Microlocal analysis of solutions
to the PDE’s

In this Chapter we analyze propagation of singularities of solutions to linear
PDE’s within our framework. Following the ideas presented in Theorem
8.6.1. in [16] for WFA we use τ, σ- admissible sequences in our construction.
In the first section we consider constant coefficients PDO’s. In that case
Hörmanders operators Rj commutes, and by that we are able to modify the
standard construction and to be more rigorous in the calculation. However, it
is not possible to prove the microlocal hypoellipticity of PDO’s with respect
to WFτ,σ, and by considering WF0+,∞ we obtain the desired result.

We also prove the more general result when PDO’s are with coefficients
in E{τ,σ}. In this case the proof is non-trivially different since it involves some
of the techniques used in Chapter 2, Section 2.7.

Main results of this Chapter are published in [30]. See also [31].

4.1 Microlocal hypoellipticity of constant co-

efficients PDO’s

In the sequel we prove the following result.

Theorem 4.1.1. Let τ > 0, σ > 1. Let u ∈ D′(U) and P (D) the constant
coefficient differential operator of order m. Then if P (D)u = f in D′(U), it
holds

WF{2σ−1τ,σ}(f) ⊆WF{2σ−1τ,σ}(u) ⊆WF{τ,σ}(f) ∪ Char(P ) (4.1.1)

Proof. The first embedding in (4.2.49) follows form Corollary 3.4.1. We will
prove the second embedding for the operators with constant coefficients, and

67
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note that the proof is more technical for the non-constant coefficient since we
can not use commutation relations of some operators in that case. However,
the idea of the proof is the same, so this more general case will be discussed
later.

Therefore it remains to prove that

WF{2σ−1τ,σ}(u) ⊆WF{τ,σ}(P (D)u) ∪ Char(P (D)).

The following inequality, which holds for τ > 0, σ > 1 and for some
C > 0, will be frequently used:

bN1/σcb(N/τ)1/σc ≤ NNτ−1/σ/σ ≤ CNN !τ
−1/σ/σ. (4.1.2)

Assume that (x0, ξ0) 6∈WF{τ,σ}(P (D)u)∪Char(P (D)). Then there exists
a compact set K containing x0 and a closed cone Γ containing ξ0 such that
Pm(x, ξ) 6= 0 when (x, ξ) ∈ K × Γ and (K × Γ) ∩WF{τ,σ}(P (D)u) = ∅.

Let τ̃ = τ
σ
σ−1 and let {χN}N∈N, be a τ̃ , σ-admissible sequence with respect

to K.
Put uN = χ2σNu, N ∈ N, so that

ûN(ξ) =

∫
u(x)χ2σN(x)e−ixξdx, ξ ∈ Rd, N ∈ N.

The easy part of the proof is the estimate of |ûN(ξ)|, N ∈ N, for ”small”
values of ξ ∈ Γ, that is when |ξ| ≤ bN1/σc. In fact, since {uN}N∈N is bounded
in E ′(U), Paley-Wiener theorems (see [21]), and the fact that e−ix·ξ ∈ C∞(Rd

x),
for every ξ ∈ Rd, implies that |ûN(ξ)| = |〈uN , e−i·ξ〉| ≤ C〈ξ〉M , for some
C,M > 0 independent of N . Hence, from (4.1.2) we have

|ξ|b(N/τ̃)1/σc|ûN(ξ)| ≤ bN1/σcb(N/τ̃)1/σc|ûN(ξ)| ≤ ACNN
τ̃−1/σ

σ
N ,

where A,C > 0 do not depend on N . After enumeration N → τ̃N we obtain

|ûN(ξ)| ≤ A
CNN

τ̃1−1/σ

σ
N

|ξ|bN1/σc
≤ A

hNN !
τ
σ

|ξ|bN1/σc
,

which estimates |ûN(ξ)| when ξ ∈ Γ, |ξ| ≤ bN1/σc, N ∈ N.
It remains to estimate |ûN(ξ)|, when ξ ∈ Γ, |ξ| > bN1/σc and for N ∈ N

large enough (so that N →∞ implies |ξ| → ∞).
As in the proof of [16, Theorem 8.6.1], in Subsection 4.1.1 we use the

technique of approximate solution (see also [34, Theorem 1, Section 1.6]) to
obtain

χ2σN(x)e−ix·ξ = P T (D)

(
e−ix·ξ

Pm(ξ)
wN(x, ξ)

)
+ eN(x, ξ)e−ixξ (4.1.3)
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x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, that is, the following representation holds:

ûN(ξ) =

∫
u(x)eN(x, ξ)e−ixξdx+

∫
u(x)P T (D)

(
e−ix·ξwN(x, ξ)

Pm(ξ)

)
dx

=

∫
u(x)eN(x, ξ)e−ixξdx+

∫
P (D)u(x)

(
e−ix·ξwN(x, ξ)

Pm(ξ)

)
dx, (4.1.4)

where

wN(x, ξ) =

b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)
(Ra1

1 R
a2
2 . . . Ram

m χ2σN)(x, ξ), (4.1.5)

eN(x, ξ) =
m∑
k=1

b(N
τ̃

)
1
σ c−m+k∑

S=b(N
τ̃

)
1
σ c−m+1

(
|a|

a1, ..., am

)
(Ra1

1 ...R
am
m χ2σN)(x, ξ), (4.1.6)

x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, and we put S = a1 + 2a2 + · · ·+mam.
The derivation of (4.1.4) and the calculation of wN(x, ξ) and eN(x, ξ) is

done in Subsections 4.1.1 and 4.1.2, so we continue with the estimation of
the first term in (4.1.4).

Estimated number of terms in eN(x, ξ) given in Subsection 4.1.1, and the
estimates of Dβ(Ra1

1 ...R
am
m χ2σN) given by (4.1.30) (Subsection 4.1.3) imply

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
∑
|α|≤M

|Dα
x (eN(x, ξ)e−ixξ)|

≤ A
∑
|α|≤M

∑
β≤α

(
α

β

)
|Dα−β

x e−ixξ||Dβ
xeN(x, ξ)|

≤ A|ξ|M |ξ|−b2
1−σ
σ (N/τ̃)1/σc−MCNN !

τ̃−1/σ

σ

= A
CNN !

τ̃−1/σ

σ

|ξ|b2
1−σ
σ (N/τ̃)1/σc

, x ∈ K, ξ ∈ Γ, (4.1.7)

for suitable constants A,C > 0 and |ξ| large enough. After enumeration
N → τ̃2σ−1N , (4.1.7) is equivalent to

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
CNN !

τ2σ−1

σ

|ξ|bN1/σc
, x ∈ K, ξ ∈ Γ,

which estimates the first term on the righthand side of (4.1.4). In fact,
we will use a slightly weaker estimate which is obtained from (4.1.7) after
enumeration

N → N + dτ̃2σ−1(M + d+ 1)σe. (4.1.8)
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It remains to estimate the second term on the righthand side of (4.1.4) for
|ξ| > bN1/σc. This is the hardest part of the proof. By the Lemma 3.3.1 there
exists a bounded sequence {fN}N∈N in E ′(U) such that fN = f = P (D)u in
a neighborhood of K and there exists a cone V such that Γ ⊂ V and

|F(fN)(η)| ≤ A
hNN !

τ̃−1/σ

σ

|η|b(N/τ̃)1/σc
, η ∈ V. (4.1.9)

Since {χ2σN(x)}N∈N is bounded in C∞0 (U), by the Paley-Wiener theorem
(see also Remark 3.2.2) it follows that for every M̃ > 0 there exists C > 0

which does not depend on N so that |χ̂2σN(η)| ≤ C〈η〉−M̃ , N ∈ N. From
suppχN ⊆ K, N ∈ N, it follows that

π1(suppwN(x, ξ)) ⊆ K, N ∈ N,

and since fN = f in a neighborhood of K, we have wNf = wNfN ′ in D′(U),
where we put N ′ = N − d2σ−1τ̃(M + d + 1)σe. Therefore (and since F(g1 ·
g2)(ξ) = (F(g1) ∗ F(g2))(ξ)))

〈f(·)e−iξ·, wN(·, ξ)/Pm(ξ)〉 =
1

Pm(ξ)
Fx→ξ(fN ′(x)wN(x, ξ))(ξ)

=
1

Pm(ξ)

∫
Rd

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η) dη = I1 + I2,

where

I1 =
1

Pm(ξ)

∫
|η|<ε|ξ|

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η, ξ) dη, (4.1.10)

I2 =
1

Pm(ξ)

∫
|η|≥ε|ξ|

F(fN ′)(ξ − η)Fx→η(wN(x, ξ))(η, ξ) dη, (4.1.11)

and 0 < ε < 1 is chosen so that ξ − η ∈ V when ξ ∈ Γ, ξ > bN1/σc, and
|η| < ε|ξ|.

Since |η| < ε|ξ| implies |ξ − η| ≥ (1− ε)|ξ|, by using the computation of
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Fx→η(wN)(η, ξ) from Subsection 4.1.4, we estimate I1 as follows:

|I1| ≤
1

|Pm(ξ)|

∫
|η|<ε|ξ|

|F(fN ′)(ξ − η)||Fx→η(wN)(η, ξ)| dη

≤
∫
|η|<ε|ξ|

A
hN
′
N ′!τ/σ

|ξ − η|bN ′1/σc
|Fx→η(wN)(η, ξ)| dη

≤ A
hN
′
N ′!τ/σ

((1− ε)|ξ|)bN ′1/σc

∫
|η|<ε|ξ|

|Fx→η(wN)(η, ξ)| dη

≤ A1
hN
′

1 N ′!τ/σ

|ξ|bN ′1/σc
Cb(N/τ)1/σc

∫
Rd

|χ̂2σN(η)| dη

≤ A2
hN
′

2 N ′!τ/σ

|ξ|bN ′1/σc
, ξ ∈ Γ, |ξ| > bN1/σc. (4.1.12)

We used the Paley-Wiener theorem for {χ̂2σN} and trivial inequality
|Pm(ξ)| ≥ 1 when |ξ| > bN1/σc.

It remains to estimate I2. Note that |η| ≥ ε|ξ| implies |ξ−η| ≤ (1+1/ε)|η|,
and by Paley-Wiener type estimates we have |F(fN ′)(η)| ≤ C〈η〉M , where
C > 0 does not depend on N ′. Therefore

|I2| ≤
1

|Pm(ξ)|

∫
|η|≥ε|ξ|

|FfN ′(ξ − η)||Fx→η(wN)(η, ξ)| dη

≤ A

∫
|η|≥ε|ξ|

〈ξ − η〉M〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+d+1 |Fx→η(wN)(η, ξ)|

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+d+1

dη

≤ CN+1
supη∈Rd〈η〉b2

1−σ
σ (N ′/τ̃)1/σc+M+d+1

|ξ|b2
1−σ
σ (N ′/τ̃)1/σc

|Fx→η(wN(x, ξ))(η, ξ)|,

when ξ ∈ Γ, |ξ| > bN1/σc.
To finish the proof, we show that if ξ ∈ Γ, |ξ| > bN1/σc then there exists

h > 0 such that

sup
η∈Rd

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+M+d+1|Fx→η(wN)(η, ξ)| ≤ hN+1N

τ̃−1/σ

σ
N . (4.1.13)

Since N ′ = N − d2σ−1τ̃(M + d+ 1)σe, it follows that

(N/τ̃)1/σ =
(N ′ + d2σ−1τ̃(M + d+ 1)σe

τ

)1/σ

≥ 2
1−σ
σ (N ′/τ̃)1/σ +M + d+ 1.

(4.1.14)
If S ≤ b(N/τ̃)1/σc −m, |β| = b(N/τ̃)1/σc then

S + |β| < 2b(N/τ̃)1/σc ≤ b2(N/τ̃)1/σc, (4.1.15)
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From (4.1.15), when x ∈ K and ξ ∈ Γ, |ξ| > bN1/σc it follows that

|DβwN(x, ξ)| ≤
b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)
sup
x∈K
|(DβRa1

1 R
a2
2 . . . Ram

m χ2σN)(x, ξ)|

≤
b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)
|ξ|−SCS+|β|+1bN1/σcS+|β|

≤ bN1/σc|β|
b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)
CS+|β|+1 ≤ C ′b(N/τ̃)1/σc+1bN1/σc|β|.

Since π1(suppwN(x, ξ)) ⊆ K and |β| = b(N/τ̃)1/σc, we obtain

|η|b(N/τ̃)1/σc|Fx→η(wN)(η, ξ)| ≤ C ′b(N/τ̃)1/σc+1bN1/σcb(N/τ̃)1/σc ≤ C ′′N+1N
τ̃−1/σ

σ
N ,

(4.1.16)
where we used the first part of (4.1.2). Now (4.1.14) and (4.1.16) gives

sup
η∈Rd

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+M+d+1|Fx→η(wN)(η, ξ)|

≤ sup
η∈Rd

〈η〉b(N/τ̃)1/σc|Fx→η(wN)(η, ξ)| ≤ C ′′N+1N
τ̃−1/σ

σ
N , (4.1.17)

and (4.1.13) follows. Therefore

|I2| ≤ A
hNN

τ̃−1/σ

σ
N

|ξ|b2
1−σ
σ (N ′/τ̃)1/σc

, (4.1.18)

for suitable constants A, h > 0. After enumeration given by (4.1.8), and

using (M.2)′ property of the sequence N
τ̃−1/σ

σ
N , we conclude that (4.1.18) is

equivalent to

|I2| ≤ A
hNN !

τ̃−1/σ

σ

|ξ|b2
1−σ
σ (N/τ̃)1/σc

, (4.1.19)

for some A, h > 0. After enumeration N → τ̃2σ−1N we finally obtain

|ûN(ξ)| ≤ A
hNN !

τ2σ−1

σ

|ξ|bN1/σc
,

for some A, h > 0, and the proof is finished.
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4.1.1 Derivation of the representation of ûN(ξ)

Formally, we are searching for v(x, ξ) so that

ûN(ξ) =

∫
u(x)χ2σN(x)e−ixξdx =

∫
u(x)P T (D)v(x, ξ)dx,

ξ ∈ Γ, |ξ| > bN1/σc, where P T (D) =
∑
|α|≤m

(−1)|α|aαD
α is the transpose

operator of P (D), and v(x, ξ) is the solution of the equation

P T (D)v(x, ξ) = χ2σN(x)e−ixξ, x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc. (4.1.20)

Note that
e−ixξχ2σN

Pm(ξ)
solves equation (4.1.20) approximately for large ξ. Led

by the calculation done in Chapter 1, Section 1.3, we choose v(x, ξ) of the

form v(x, ξ) =
e−ixξw(x, ξ)

Pm(ξ)
, for some w(·, ξ) ∈ C∞(K), where x ∈ K, ξ ∈ Γ,

|ξ| > bN1/σc.
Then (4.1.20) becomes

(I −R(ξ))w(x, ξ) = χ2σN(x) x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, (4.1.21)

where R(ξ) =
∑m

j=1 Rj(ξ), Rj(ξ) = pj(ξ)
∑
|α|≤j

aαD
α, and pj(ξ) are homoge-

neous functions of order −j. In fact, formal calculation gives

eixξP T (D)(
w(x, ξ)e−ixξ

Pm(ξ)
)

= eixξ
1

Pm(ξ)

∑
|α|≤m

∑
β≤α

(
α

β

)
(−1)|α|aαD

α−β(e−ixξ)Dβw(x, ξ)

=
∑
|α|≤m

∑
β≤α

(
α

β

)
(−1)|α|aα

((−ξ)α−β

Pm(ξ)

)
Dβw(x, ξ),

for x ∈ K and ξ ∈ Γ, |ξ| > bN1/σc. Since
(−ξ)α−β

Pm(ξ)
is homogeneous of order

|α| − |β| −m with respect to ξ, it follows that (4.1.20) would imply (4.1.21).
Now, successive applications of the operator R in (4.1.21) give

Rk−1(ξ)w(x, ξ)−Rk(ξ)w(x, ξ) = Rk−1(ξ)χ2σN(x), x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc,
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for every k ∈ {1, . . . , N}, so that after summing up those N equalities we
obtain

w(x, ξ)−RN(ξ)w(x, ξ) =
N−1∑
k=0

Rk(ξ)χ2σN(x),

which gives formal approximate solution

w(x, ξ) =
∞∑
k=0

Rkχ2σN(x, ξ)

=
∞∑
|a|=0

(
|a|

a1, a2, . . . , am

)
Ra1

1 R
a2
2 . . . Ram

m χ2σN(x, ξ). (4.1.22)

The operators Rak
k (ξ), 1 ≤ k ≤ m, are of order less then or equal to kak and

homogeneous of order −kak with respect to ξ. Since P (D) have constant
coefficients, the operators Rj commute, and we used the generalized Newton
formula, cf. [35].

We proceed with the following approximation procedure. We consider
partial sums

wN(x, ξ) =

b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)
(Ra1

1 R
a2
2 . . . Ram

m χ2σN)(x, ξ),

ξ ∈ Γ, |ξ| > bN1/σc, and N ∈ N is large enough, so that (4.1.21) takes the
form (4.1.3) and the error term eN is given by:

eN(x, ξ) =
m∑
k=1

b(N
τ̃

)
1
σ c−m+k∑

S=b(N
τ̃

)
1
σ c−m+1

(
|a|

a1, ..., am

)
(Ra1

1 ...R
am
m χ2σN)(x, ξ).

The precise calculation which leads to (4.1.3) is given in Subsection 4.1.2.

Note that the number of terms in (4.1.6) is bounded by 4 ·2b(Nτ̃ )
1
σ c, since from(

n
k

)
≤ 2n, k ≤ n, n ∈ N, we obtain(

|a|
a1, a2, . . . am

)
≤ 2|a|2|a|−a1 . . . 2|a|−a1−···−am−2 ≤ 2a1+2a2+···+mam ,

and therefore

m∑
k=1

b(N
τ̃

)
1
σ c−m+k∑

S=b(N
τ̃

)
1
σ c−m+1

(
|a|

a1, . . . , am

)
≤

m∑
k=1

b(N
τ̃

)
1
σ c−m+k∑

S=b(N
τ̃

)
1
σ c−m+1

2a1+2a2···+mam
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≤ 2b(
N
τ̃

)
1
σ c−m+1

m∑
k=1

2k ≤ 4 · 2b(
N
τ̃

)
1
σ c, (4.1.23)

where we put S = a1 + 2a2 + · · ·+mam.

4.1.2 The calculation of the error term

For multinomial coefficients(
|a|

a1, a2, . . . am

)
:=

(
|a|
a1

)(
|a| − a1

a2

)
. . .

(
|a| − a1 − · · · − am−2

am−1

)
=

|a|!
a1!a2! . . . am!

, |a| = a1 + a2 + · · ·+ am, ak ∈ N, k ≤ m, (4.1.24)

a generalization of Pascal’s triangle equality for the binomial formula gives(
|a|

a1, ..., am

)
=

m∑
k=1

(
|a| − 1

a1, ..., ak − 1, ...am

)
, |a| ≥ 1, (4.1.25)

wherefrom for |a| ≥ 1, and putting S = a1 + 2a2 + · · ·+mam we obtain

(bN
τ

)
1
σ c−m∑

S=0

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN

=

b(N
τ

)
1
σ c−m∑

S=0

( m∑
k=1

(
|a| − 1

a1, ..., ak − 1, ...am

))
Ra1

1 ...R
am
m χ2σN

=
m∑
k=1

b(N
τ

)
1
σ c−m−k∑
S=0

(
|a|

a1, ..., ak, ...am

)
Ra1

1 ...R
ak+1
k ...Ram

m χ2σN

=
m∑
k=1

Rk

( b(Nτ )
1
σ c−m−k∑
S=0

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN

)
, (4.1.26)

where for the second equality we interchange the summation and substitute
ak with ak + 1.
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Hence, for |a| ≥ 0 we have

(I −R)wN =

(bN
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN

−
m∑
k=1

Rk

( b(Nτ̃ )
1
σ c−m−k∑
S=0

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN

+

b(N
τ̃

)
1
σ c−m∑

S=b(N
τ̃

)
1
σ c−m−k+1

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN

)

= χ2σN −
m∑
k=1

b(N
τ̃

)
1
σ c−m∑

S=b(N
τ̃

)
1
σ c−m−k+1

(
|a|

a1, ..., am

)
Ra1

1 ...R
ak+1
k ...Ram

m χ2σN

= χ2σN −
m∑
k=1

b(N
τ̃

)
1
σ c−m+k∑

S=b(N
τ̃

)
1
σ c−m+1

(
|a|

a1, ..., am

)
Ra1

1 ...R
am
m χ2σN , (4.1.27)

where for the second equality we used (4.1.26) and for the last one we sub-
stitute ak with ak − 1.

Therefore, if we set

eN(x, ξ) =
m∑
k=1

b(N
τ

)
1
σ c−m+k∑

S=b(N
τ

)
1
σ c−m+1

(
|a|

a1, ..., am

)
(Ra1

1 ...R
am
m χ2σN)(x, ξ),

then the computation of this subsection gives the equality (4.1.3), which in
turn implies the fundamental representation (4.1.4).

4.1.3 Estimates for Dβ(Ra1
1 ...R

am
m χ2σN)

Note that for N large enough we have

(b(N/τ̃)1/σc+M)σ ≤ 2σ−1(N/τ̃ +Mσ) < 2σN/τ̃

so that for |β| ≤M the following estimate holds:

S + |β| ≤ b(N/τ̃)1/σc+M = b(N/τ̃)1/σ +Mc < b2(N/τ̃)1/σc .
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Thus, for x ∈ K, ξ ∈ Γ, and S ≥ b(N/τ̃)1/σc−m, by using (4.1.2) we obtain

|Dβ(Ra1
1 ...R

am
m χ2σN)(x, ξ)| ≤ |ξ|−SAS+|β|+1bN1/σcS+|β|

≤ |ξ|m−b(N/τ̃)1/σcAb(N/τ̃)1/σc+M+1bN1/σcb(N/τ̃)1/σc+M

≤ |ξ|m−b(N/τ̃)1/σcCN+1N
τ̃−1/σ

σ
N , (4.1.28)

for some C > 0, which is, after enumeration N → N + 2σ−1τ̃(m + M)σ

bounded by

|ξ|m−b((N+2σ−1τ̃(m+M)σ)/τ̃)1/σcAN+2σ−1τ̃(m+M)σ+1

× (N + 2σ−1τ̃(m+M)σ)
τ̃−1/σ

σ
(N+2σ−1τ̃(m+M)σ),

for some A > 0. Moreover,(N + 2σ−1τ̃(m+M)σ

τ̃

)1/σ

≥ 2
1−σ
σ ((N/τ̃)1/σ + 2

σ−1
σ (m+M))

= 2
1−σ
σ (N/τ̃)1/σ +m+M . (4.1.29)

Finally, (4.1.29), (M.2)′ property of N
τ̃−1/σ

σ
N and Stirling’s formula give the

estimate

|DβRa1
1 ...R

am
m χ2σN(x)| ≤ |ξ|−b2

1−σ
σ (N/τ̃)1/σc−MCN+1N !

τ̃−1/σ

σ (4.1.30)

for some C > 0.

4.1.4 The computation of Fx→η(wN)(η, ξ)

From

(Ra1
1 ...R

am
m χ2σN)(x, ξ) =

m∏
j=1

p
aj
j (ξ)

∑
|α|≤S

cαD
αχ2σN(x)

for suitable constants cα, it follows that

Fx→η(Ra1
1 ...R

am
m χ2σN)(η, ξ) =

m∏
j=1

p
aj
j (ξ)

∑
|α|≤S

c′′αη
αχ̂2σN(η),

so that

Fx→η(wN)(η, ξ)

=

b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)( m∏
j=1

p
aj
j (ξ)

) ∑
|α|≤S

c′′αη
αχ̂2σN(η).
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Note that the number of terms in Fx→η(wN)(η, ξ) is bounded by C2b(N/τ)1/σc

for some C > 0 which does not depend on N .
When |η| ≤ ε|ξ|, ξ ∈ Γ, |ξ| > bN1/σc, and N sufficiently large we have

|Fx→η(wN)(η, ξ)| ≤
b(N
τ̃

)
1
σ c−m∑

S=0

(
|a|

a1, a2 . . . am

)( m∏
j=1

(|pj(ξ)||εξ|j)aj
) ∑
|α|≤S

c′′α|χ̂2σN(η)|

≤ ACb(N/τ)1/σc|χ̂2σN(η)|,

for some A,C > 0, and we used

m∏
j=1

(|pj(ξ)||εξ|j)aj ≤ AεS ≤ A, ξ ∈ Γ, |ξ| > bN1/σc,

which follows from ε < 1 and the fact that
∏m

j=1(|pj(ξ)||ξ|j)aj is homogeneous
of order zero.

4.2 Microlocal hypoellipticity of non-constant

coefficients PDO’s

In the finial section we extend the result of the Theorem 4.1.1 to the case of
the partial differential operators with non-constant coefficients. In particular,
we prove the following result.

Theorem 4.2.1. Let u ∈ D′(U) and P (x,D) =
∑
|α|≤m

aα(x)Dα be partial

differential operator of order m with the coefficients aα(x) ∈ E{τ,σ}(U). Then
if P (x,D)u = f in D′(U), it holds

WF{22σ−1τ,σ}(f) ⊆WF{22σ−1τ,σ}(u) ⊆WF{τ,σ}(f) ∪ Char(P (x,D)). (4.2.1)

Proof. The first embedding in (4.2.1) is given by Theorem 3.4.1, so it remains
to prove that

WF{22σ−1τ,σ}(u) ⊆WF{τ,σ}(f) ∪ Char(P (x,D)).

Assume that (x0, ξ0) 6∈ WF{τ,σ}(P (x,D)u) ∪ Char(P (x,D)). Then there
exists a compact set K containing x0 and a closed cone Γ containing ξ0 such
that Pm(x, ξ) 6= 0 when (x, ξ) ∈ K × Γ and

(K × Γ) ∩
(

WF{τ,σ}(P (x,D)u) ∪ Char(P (x,D))
)

= ∅.
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Since K is fixed, the distributions involved in the proof are of finite order.
Let τ̃ = τ

σ
σ−1 and let {χN}N∈N, be a τ̃ , σ-admissible sequence with respect

to K.
Put uN = χ2σNu, N ∈ N, so that

ûN(ξ) =

∫
u(x)χ2σN(x)e−ixξdx, ξ ∈ Rd, N ∈ N.

The estimate of |ûN(ξ)| when |ξ| ≤ bN1/σc is the easiest part of the proof.
In fact, the estimate (3.2.5) together with

bN1/σcb(N/τ)1/σc ≤ NNτ−1/σ/σ ≤ CNN !τ
−1/σ/σ.

gives

|ξ|b(N/τ̃)1/σc|ûN(ξ)| ≤ bN1/σcb(N/τ̃)1/σc|ûN(ξ)| ≤ ACNN
τ̃−1/σ

σ
N ,

where A,C > 0 do not depend on N . After enumeration N → τ̃N we obtain

|ûN(ξ)| ≤ A
CNN

τ̃1−1/σ

σ
N

|ξ|bN1/σc
≤ A

hNN !
τ
σ

|ξ|bN1/σc
,

which estimates |ûN(ξ)| when ξ ∈ Γ, |ξ| ≤ bN1/σc, N ∈ N.
It remains to estimate |ûN(ξ)| when ξ ∈ Γ, |ξ| > bN1/σc and for N ∈ N

large enough. As in the proof of [16, Theorem 8.6.1], we search for appropriate
functions wN(x, ξ) and eN(x, ξ), x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, so that

χ2σN(x) = eix·ξP T (x,D)

(
e−ix·ξ

Pm(x, ξ)
wN(x, ξ)

)
+ eN(x, ξ), (4.2.2)

x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc.
The identity (4.2.2) implies that

ûN(ξ) =

∫
u(x)eN(x, ξ)e−ixξdx+

∫
u(x)P T (x,D)

(
e−ix·ξwN(x, ξ)

Pm(x, ξ)

)
dx

=

∫
u(x)eN(x, ξ)e−ixξdx+

∫
P (x,D)u(x)

(
e−ix·ξwN(x, ξ)

Pm(x, ξ)

)
dx, (4.2.3)

x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc.
Put

K1 = {k ∈ N | 0 ≤ mk ≤ b(N
τ̃

)
1
σ c −m}, (4.2.4)
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and

K2 = {k ∈ N | b(N
τ̃

)
1
σ c −m < mk ≤ b(N

τ̃
)

1
σ c}. (4.2.5)

We refer to Subsection 4.2.1 for calculations which lead to

wN(x, ξ) =
∑
k∈K1

Rk ==
∑
k∈K1

b(N
τ̃

)
1
σ c−m∑

Sk=0

(Rj1Rj2 . . . Rjkχ2σN)(x, ξ), (4.2.6)

eN(x, ξ) =
∑
k∈K2

Rk =
∑
k∈K2

b(N
τ̃

)
1
σ c∑

Sk=b(N
τ̃

)
1
σ c−m+1

(Rj1Rj2 . . . Rjkχ2σN)(x, ξ), (4.2.7)

x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, Sk = j1+j2+· · ·+jk, ji ∈ {1, . . . ,m}, 1 ≤ i ≤ k.
Moreover

Rj(x, ξ) =
∑
|α|≤j

cα,j(x, ξ)D
α,

for suitable functions cα,j(x, ξ) which are homogeneous of order −j and

|Dβcα,j(x, ξ)| ≤ |ξ|−jAh|β|
σ |β|τ |β|σ , β ∈ Nd, x ∈ K, ξ ∈ Γ (4.2.8)

for some A, h > 0 and |α| ≤ j. Again, we refer to Subsection 4.2.1 for details
concerning the representation (4.2.3) and proceed with estimating terms on
the right hand side of (4.2.3).

The number of summands in wN(x, ξ) and eN(x, ξ) is bounded by A ·
Cb(N/τ̃)1/σc for some constants A,C > 0, which is the same number as in the
case of operators with constant coefficients (when operators Rj commute),
see Remark 4.2.1.

Since the operators Rj, 1 ≤ j ≤ m do not commute, in the sequel we use
different arguments than in [29]. If M denotes the order of distribution u,
then the estimates of Dβ(Rj1 ...Rjkχ2σN) from Subsection 4.2.3 (cf. (4.2.48))
imply

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
∑
|α|≤M

|Dα
x (eN(x, ξ)e−ixξ)| (4.2.9)

≤ A|ξ|M |ξ|−b2
1−σ
σ (N/τ̃)1/σc−MCNN !

τ̃−1/σ

σ = A
CNN !

τ̃−1/σ

σ

|ξ|b2
1−σ
σ (N/τ̃)1/σc

,

x ∈ K, ξ ∈ Γ, for suitable constants A,C > 0 and |ξ| large enough. After
enumeration N → τ̃2σ−1N we conclude that (4.2.9) is equivalent to

|〈u(x), eN(x, ξ)e−ix·ξ〉| ≤ A
CNN !

τ2σ−1

σ

|ξ|bN1/σc
, x ∈ K, ξ ∈ Γ,
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which is the estimate for the first term on the righthand side of (4.2.3).
To estimate the second term on the righthand side of (4.2.3) for |ξ| >

bN1/σc, we choose {fN}N∈N in E ′(U) (see Lemma 3.3.1) such that fN = f =
P (x,D)u in a neighborhood of K and there exists a cone V such that Γ ⊂ V
and

|F(fN)(η)| ≤ A
hNN !

τ̃−1/σ

σ

|η|b(N/τ̃)1/σc
, η ∈ V. (4.2.10)

Note that wNf = wNfN ′ in D′(U), where we put

N ′ = N − d2σ−1τ̃(M + d+ 1)σe,

and M denotes the order of distribution f . Therefore

〈f(·)e−iξ·, wN(·, ξ)/Pm(·, ξ)〉 = Fx→ξ(fN ′(x)
wN(x, ξ)

Pm(x, ξ)
)(ξ)

=

∫
Rd

F(fN ′)(ξ − η)Fx→η(
wN(x, ξ)

Pm(x, ξ)
)(η, ξ) dη = I1 + I2,

where

I1 =

∫
|η|<ε|ξ|

F(fN ′)(ξ − η)Fx→η(
wN(x, ξ)

Pm(x, ξ)
)(η, ξ) dη, (4.2.11)

I2 =

∫
|η|≥ε|ξ|

F(fN ′)(ξ − η)Fx→η(
wN(x, ξ)

Pm(x, ξ)
)(η, ξ) dη, (4.2.12)

and 0 < ε < 1 is chosen so that ξ − η ∈ V when ξ ∈ Γ, ξ > bN1/σc, and
|η| < ε|ξ|.

Let j1, . . . , jk ∈ {1, . . . ,m} be fixed. Since χ2σN(·), N ∈ N, is bounded in
C∞0 (K), note that Rj1Rj2 . . . Rjkχ2σN(·, ξ), N ∈ N, is also bounded in C∞0 (K)
for every ξ ∈ Γ. Moreover, since the coefficients of Pm(·, ξ) are in C∞(U) and

Pm(x, ξ) 6= 0 when x ∈ K and ξ ∈ Γ, it follows that
Rj1Rj2 . . . Rjkχ2σN(·, ξ)

Pm(·, ξ)
,

N ∈ N, is bounded in C∞0 (K) when ξ ∈ Γ, and moreover it is homogeneous
of order −m−Sk. Hence, by Paley-Wiener type estimates it follows that for
every M̃ > 0 there exists C > 0, independent of N ∈ N, such that

|Fx→η
(Rj1Rj2 . . . Rjkχ2σN(x, ξ)

Pm(x, ξ)

)
(η, ξ)| ≤ C|ξ|−m−Sk〈η〉−M̃

≤ C〈η〉−M̃ , η ∈ Rd,

when ξ ∈ Γ and |ξ| > bN1/σc ≥ 1.
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When M̃ = d+ 1 this estimate, together with (4.2.6), implies that there
exists C > 0 such that

∣∣∣Fx→η(wN(x, ξ)

Pm(x, ξ)

)∣∣∣ ≤ ∑
k∈K1

b(N
τ̃

)
1
σ c−m∑

Sk=0

∣∣∣Fx→η(Rj1Rj2 . . . Rjkχ2σN(x, ξ)

Pm(x, ξ)

)
(η, ξ)

∣∣∣
≤ Cb(N/τ̃)1/σc+1〈η〉−d−1. (4.2.13)

Since |η| < ε|ξ| implies |ξ− η| ≥ (1− ε)|ξ|, by using (4.2.13), we estimate
I1 as follows:

|I1| ≤
∫
|η|<ε|ξ|

|F(fN ′)(ξ − η)||Fx→η(
wN(x, ξ)

Pm(x, ξ)
(η, ξ)| dη

≤
∫
|η|<ε|ξ|

A
hN
′
N ′!τ/σ

|ξ − η|bN ′1/σc
|Fx→η(

wN(x, ξ)

Pm(x, ξ)
(η, ξ)| dη

≤ A
hN
′
N ′!τ/σ

((1− ε)|ξ|)bN ′1/σc

∫
Rd

Cb(N/τ̃)1/σc+1〈η〉−d−1 dη

≤ A2
hN
′

2 N ′!τ/σ

|ξ|bN ′1/σc
, ξ ∈ Γ, |ξ| > bN1/σc. (4.2.14)

It remains to estimate I2. Note that |η| ≥ ε|ξ| implies |ξ − η| ≤ (1 +
1/ε)|η|. Moreover, since f is distribution of order M by Paley-Wiener type
estimates we have |F(fN ′)(η)| ≤ C〈η〉M , where C > 0 does not depend on
N ′. Therefore

|I2| ≤
∫
|η|≥ε|ξ|

|FfN ′(ξ − η)||Fx→η(
wN(x, ξ)

Pm(x, ξ)
)(η, ξ)| dη

≤
∫
|η|≥ε|ξ|

〈ξ − η〉M〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+d+1

|Fx→η(wN (x,ξ)
Pm(x,ξ)

)(η, ξ)|

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+d+1

dη

≤ CN+1
supη∈Rd〈η〉b2

1−σ
σ (N ′/τ̃)1/σc+M+d+1|Fx→η(wN (x,ξ)

Pm(x,ξ)
)(η, ξ)|

|ξ|b2
1−σ
σ (N ′/τ̃)1/σc

,

when ξ ∈ Γ, |ξ| > bN1/σc.
To finish the proof, we show that if ξ ∈ Γ, |ξ| > bN1/σc then there exists

h > 0 such that

sup
η∈Rd

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+M+d+1|Fx→η(

wN(x, ξ)

Pm(x, ξ)
)(η, ξ)| ≤ hN+1N

2στ̃−1/σ

σ
N .

(4.2.15)
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Arguing in the similar way as in the proof of [30, Theorem 1.1], it is
sufficient to prove

sup
x∈K
|DβwN(x, ξ)

Pm(x, ξ)
| ≤ CN+1N

2στ̃−1/σ

σ
N , β ≤ b(N/τ̃)1/σc (4.2.16)

for some C > 0, when ξ ∈ Γ, |ξ| > bN1/σc. Recall (see Subsection 4.2.1),

sup
x∈K

∣∣∣Dγ 1

Pm(x, ξ)

∣∣∣ ≤ |ξ|−mC |γ|σ+1|γ|τ |γ|σ , γ ∈ Nd, ξ ∈ Γ,

for some C > 0. Moreover, from (4.2.48) (see Subsection 4.2.3) it follows
that

sup
x∈K
|DγwN(x, ξ)| ≤ C

′N+1
∑
k∈K1

b(N
τ̃

)
1
σ c−m∑

Sk=0

|ξ|−Sk

∑
ak≤Sk+|γ|

(
Sk + |γ|

ak

)
CSk+|γ|−ak(Sk + |γ| − ak)τ(Sk+|γ|−ak)σbN1/σcak ,

(4.2.17)

for some C ′ > 0, when ξ ∈ Γ.
Hence, for x ∈ K and ξ ∈ Γ, |ξ| > bN1/σc we obtain

|DβwN(x, ξ)

Pm(x, ξ)
| ≤

∑
k∈K1

∑
γ≤β

(
β

γ

)
|Dβ−γ 1

Pm(x, ξ)
||DγwN(x, ξ)|

≤ C
′N+1

∑
k∈K1

∑
γ≤β

b(N
τ̃

)
1
σ c−m∑

Sk=0

∑
ak≤Sk+|γ|

(
β

γ

)(
Sk + |β|

ak

)
C |β−γ|

σ+1|β − γ|τ |β−γ|σCSk+|γ|−ak(Sk + |γ| − ak)τ(Sk+|γ|−ak)σbN1/σcak−Sk−m

≤ C
′′N+1

∑
k∈K1

bN1/σc|β|−m
∑
γ≤β

b(N
τ̃

)
1
σ c−m∑

Sk=0

∑
ak≤Sk+|γ|(

β

γ

)(
Sk + |β|

ak

)
(Sk + |β| − ak)τ(Sk+|β|−ak)σ , (4.2.18)

for β ≤ b(N/τ̃)1/σc, where we used (M.1) property of the sequence M τ,σ
p =

pτp
σ
.
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Further observe that

(Sk + |β| − ak)τ(Sk+|β|−ak)σ ≤ (b2(N/τ̃)1/σc)τ(b2(N/τ̃)1/σc)σ

≤ C
′NN

2στ̃−1/σ

σ
N , (4.2.19)

and
bN1/σc|β|−m ≤ bN1/σcb(N/τ̃)1/σc ≤ C

′′N , (4.2.20)

for some C ′, C ′′ > 0. Using the estimate for number of terms in wN , by
(4.2.18), (4.2.19) and (4.2.20), the estimate (4.2.16) follows.

Now by the similar arguments as in the proof of [30, Theorem 1.1], we
conclude that

sup
η∈Rd

〈η〉b2
1−σ
σ (N ′/τ̃)1/σc+M+d+1|Fx→η(

wN(x, ξ)

Pm(x, ξ)
)(η, ξ)|

≤ sup
η∈Rd

〈η〉b(N/τ̃)1/σc|Fx→η(
wN(x, ξ)

Pm(x, ξ)
)(η, ξ)| ≤ C ′′N+1N

2στ̃−1/σ

σ
N , (4.2.21)

where we used (4.1.2) and

π1(supp
wN(x, ξ)

Pm(x, ξ)
) ⊆ K.

Hence (4.2.15) follows.
Therefore

|I2| ≤ A
hNN

2στ̃−1/σ

σ
N

|ξ|b2
1−σ
σ (N ′/τ̃)1/σc

, (4.2.22)

for suitable constants A, h > 0. After enumeration

N → N + dτ̃2σ−1(M + d+ 1)σe, (4.2.23)

(so that N ′ → N) and using (M.2)′ property of the sequence N
2στ̃−1/σ

σ
N , we

conclude that (4.2.22) is equivalent to

|I2| ≤ A
hNN !

2στ̃−1/σ

σ

|ξ|b2
1−σ
σ (N/τ̃)1/σc

, (4.2.24)

for some A, h > 0. After enumeration N → τ̃2σ−1N we finally obtain

|ûN(ξ)| ≤ A
hNN !

τ22σ−1

σ

|ξ|bN1/σc
,

for some A, h > 0, and the proof is finished.
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Remark 4.2.1. We would like to point out that the number of terms in sums
(4.2.6) and (4.2.7) is bounded by same expression as for the case when oper-
ators Rj commute. In particular, note that in that case by using Newton’s
generalized formula we obtain

eN(x, ξ) =
∑
k∈K2

Rk =
∑
k∈K2

∑
a1+···+am=k

(
|a|

a1, . . . , am

)
Ra1

1 . . . Ram
m

=
∑

b(N
τ̃

)
1
σ c−m<m(a1+···+am)≤b(N

τ̃
)
1
σ c

(
|a|

a1, . . . , am

)
Ra1

1 . . . Ram
m . (4.2.25)

Since m > 1, it follows that a1 + 2a2 + . . .mam ≤ m(a1 + a2 + . . . am). Hence
we conclude that

∑
b(N
τ̃

)
1
σ c−m<m(a1+···+am)≤b(N

τ̃
)
1
σ c

(
|a|

a1, . . . , am

)
≤

∑
m(a1+···+am)≤b(N

τ̃
)
1
σ c

(
|a|

a1, . . . , am

)

≤
∑

a1+···+mam≤b(Nτ̃ )
1
σ c

(
|a|

a1, . . . , am

)

≤ ACb(
N
τ̃

)
1
σ c,

for some A,C > 0 where the last inequality follows by (4.1.23).

4.2.1 Representing ûN(ξ) by approximate solution

If

ûN(ξ) =

∫
u(x)χ2σN(x)e−ixξdx =

∫
u(x)P T (x,D)v(x, ξ)dx,

ξ ∈ Γ, |ξ| > bN1/σc, where P T (x,D) =
∑
|α|≤m

bα(x)Dα is the transpose oper-

ator of P (x,D) and bα(x) ∈ E{τ,σ}(U) (since E{τ,σ}(U) is closed under finite
order differentiation), then v(x, ξ) is the solution of the equation

eixξP T (x,D)v(x, ξ) = χ2σN(x), x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc. (4.2.26)
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Similarly as in [16] and [29] we assume that v(x, ξ) =
e−ixξw(x, ξ)

Pm(x, ξ)
, for some

w(·, ξ) ∈ C∞(K), so that we may rewrite the left hand side of (4.2.26) as

eixξP T (x,D)(
w(x)e−ixξ

Pm(x, ξ)
) = eixξ

∑
|α|≤m

∑
β≤α

(
α

β

)
bα(x)Dα−β(e−ixξ)Dβ

( w(x)

Pm(x, ξ)

)
=

∑
|α|≤m

∑
β≤α

∑
γ≤β

(
α

β

)(
β

γ

)
bα(x)(−ξ)α−β

Dγ
( 1

Pm(x, ξ)

)
Dβ−γw(x), (4.2.27)

for (x, ξ) ∈ K × Γ, the conical neighborhood of (x0, ξ0) such that K × Γ ∩
(WF{2σ−1τ,σ}(f) ∪ Char(P )) = ∅.

Next we use the powerful technique of approximate solution (cf. [16,34])
to rewrite (4.2.27) in the following convenient form:∑
|α|≤m

∑
β≤α

∑
γ≤β

(
α

β

)(
β

γ

)
bα(x)(−ξ)α−βDγ

( 1

Pm(x, ξ)

)
Dβ−γ = I −R(x, ξ),

(4.2.28)
where

R(x, ξ) =
m∑
j=1

Rj(x, ξ), Rj(x, ξ) =
∑
|α|≤j

cα,j(x, ξ)D
α, (4.2.29)

for suitable functions cα,j(x, ξ) which are homogeneous of order −j and

|Dβcα,j(x, ξ)| ≤ |ξ|−jAh|β|
σ |β|τ |β|σ , β ∈ Nd, x ∈ K, ξ ∈ Γ (4.2.30)

for some A, h > 0 and |α| ≤ j, cf. [29].
This representation, together with (4.2.26) and (4.2.27), gives

(I −R(x, ξ))w(x, ξ) = χ2σN(x) x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc, (4.2.31)

which can be solved as follows.
Successive applications of the operator R to both sides of (4.2.31) gives

Rk−1(x, ξ)w(x, ξ)−Rk(x, ξ)w(x, ξ) = Rk−1(x, ξ)χ2σN(x),

x ∈ K, ξ ∈ Γ, |ξ| > bN1/σc for every k ∈ {1, . . . , N}, so that after summing
up those N equalities we obtain

w(x, ξ)−RN(x, ξ)w(x, ξ) =
N−1∑
k=0

Rk(x, ξ)χ2σN(x),
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which gives formal approximate solution

w(x, ξ) =
∞∑
k=0

Rkχ2σN(x, ξ) (4.2.32)

If we consider the partial sums of the form

wN(x, ξ) =
∑
k∈K1

b(N
τ̃

)
1
σ c−m∑

Sk=0

(Rj1Rj2 . . . Rjkχ2σN)(x, ξ), (4.2.33)

where K1 is given by (4.2.4), we obtain

(I −R)wN(x, ξ) = χ2σN(x)− eN(x, ξ), N ∈ N, x ∈ K, ξ ∈ Γ. (4.2.34)

It remains to calculate the error term eN(x, ξ), which is done in Subsection
4.2.2.

We finish this subsection by showing (4.2.28) implies the estimate (4.2.30).
An essential argument in this part of the proof is the inverse-closedness prop-
erty presented in Theorem 2.7.2.

Recall,

Dα
( 1

Pm(x, ξ)

)
= α!

∑
(s,p,j)∈π

(−1)jj!

(Pm(x, ξ))j+1

s∏
k=1

1

jk!

( 1

pk!
DpkPm(x, ξ)

)jk
,

(4.2.35)

for α ∈ Nd, where sum is taken over all decompositions (s, p, j) of the
form

α = j1p1 + j2p2 + · · ·+ jsps, (4.2.36)

with j =
s∑
i=1

ji ∈ {0, 1, . . . , |α|}, pi ∈ Nd, |pi| ∈ {1, . . . , |α|} for i ∈

{1, . . . , s}, s ≤ |α|. (see Section 2.7)

Since the coefficients of Pm(x, ξ) are in E{τ,σ}(U) it follows that

sup
x∈K
|DpkPm(x, ξ)| ≤ Ah|pk|

σ |pk|τ |pk|
σ |ξ|m, (4.2.37)

for some A, h > 0. Moreover, from (K × Γ) ∩ Char(P ) = ∅ it follows that

sup
x∈K
|Pm(x, ξ)| ≥ C ′|ξ|m. (4.2.38)
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Hence, by using (4.2.35), (4.2.37) and (4.2.38) we obtain

|Dα
( 1

Pm(x, ξ)

)
| ≤ |α|!

∑
(s,p,j)∈π

j!

j1! . . . js!|Pm(x, ξ)|j+1

s∏
k=1

( 1

pk!
|DpkPm(x, ξ)|

)jk
≤ |α|!

∑
(s,p,j)∈π

|ξ|mjj!
|ξ|m(j+1)j1! . . . js!|Pm(x, ξ)|j+1

·
s∏

k=1

( 1

pk!
Ah|pk|

σ |pk|τ |pk|
σ
)jk

≤ |ξ|−mA′h′|α|σ+1|α|τ |α|σ ,

for some A,A′, h, h′ > 0, where the last inequality follows by calculation
from the proof of Theorem 2.7.2.

In particular, we have proved that
1

Pm(x, ξ)
∈ E{τ,σ,h}(K) for some h > 0

and for every ξ ∈ Γ. From the algebra property of extended Gevrey classes

it follows that bα(x)∂γ
1

Pm(x, ξ)
∈ E{τ,σ,h′}(K) for some h′ > 0, where |γ| ≤

|α| ≤ m and bα(x) are the coefficients of P T (x,D).

4.2.2 The calculation of the error term

Here we show that (4.2.33) and (4.2.34) imply

eN(x, ξ) =
∑
k∈K2

b(N
τ̃

)
1
σ c∑

Sk=b(N
τ̃

)
1
σ c−m+1

(Rj1Rj2 . . . Rjkχ2σN)(x, ξ), (4.2.39)

for N ∈ N,x ∈ K, ξ ∈ Γ, where Sk = j1 + j2 + · · · + jk, ji ∈ {1, . . . ,m},
1 ≤ i ≤ k, and K2 is given by (4.2.5).

Notice that the order of operator Rk, k ∈ N, is mk. Hence we compute∑
k∈K1

Rk −
∑
k∈K2

Rk+1

=
∑
k∈K2

Rk −
∑

{k∈N |m≤mk≤b(N
τ̃

)
1
σ c}

Rk

= I −
∑
k∈K2

Rk (4.2.40)
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where K1 is given by (4.2.4) and in the last equality we used

K1 ∩ {k ∈ N |m ≤ mk ≤ b(N
τ̃

)
1
σ c}

= {k ∈ N |m ≤ mk ≤ b(N
τ̃

)
1
σ c −m}.

Moreover, since the operators Rj, 1 ≤ j ≤ m, do not commute we can write

∑
k∈K1

Rk =
∑
k∈K1

b(N
τ̃

)
1
σ c−m∑

Sk=0

Rj1Rj2 . . . Rjk ,

and ∑
k∈K2

Rk =
∑
k∈K2

b(N
τ̃

)
1
σ c∑

Sk=b(N
τ̃

)
1
σ c−m

Rj1Rj2 . . . Rjk

where Sk = j1 + j2 + · · ·+ jk, ji ∈ {1, . . . ,m}, 1 ≤ i ≤ k.
In particular, we conclude that if wN and eN are given by (4.2.6) and

(4.2.7), (4.2.40) implies

(I −R)wN(x, ξ) = χ2σN(x)− eN(x, ξ), N ∈ N, x ∈ K, ξ ∈ Γ.

4.2.3 Estimates for Dβ(Rj1...Rjkχ2σN)

Put

Sk = j1 + · · ·+ jk, b(N/τ̃)1/σc −m ≤ Sk ≤ b(N/τ̃)1/σc,

for k ∈ N such that mk ≤ b(N/τ̃)1/σc (see Subsection 4.2.2), and let |β| ≤M
where M is order of distribution u.

In the sequel we follow the idea presented in [16, Lemmas 8.6.2 and 8.6.3].

Recall, Rj(x, ξ) =
∑
|α|≤j

cα,j(x, ξ)D
α, and note that successive applications of

the Leibniz rule implies that Dβ(Rj1 ...Rjkχ2σN) can be written as a sum of
terms of the form

(Dγ0cαj1 ,j1(x, ξ))(D
γ1cαj2 ,j2(x, ξ)) . . . (D

γk−1cαjk ,jk(x, ξ))(D
γkχ2σN).

Put ai = |γi| so that
a0 + · · ·+ ak = Sk + |β|, (4.2.41)

a0 ≤ |β|, (4.2.42)
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and

ai ≤
i∑
t=1

jt + |β|, 1 ≤ i ≤ k. (4.2.43)

From (4.2.30) it follows that

|Dγi−1cαji ,ji(x, ξ)| ≤ |ξ|
−jiAha

σ
i−1a

τaσi−1

i−1 , γi−1 ∈ Nd, x ∈ K, ξ ∈ Γ, (4.2.44)

for some A, h > 0 and |αji | ≤ ji, i = 1, . . . , k. Moreover,

|Dγkχ2σN | ≤ Cak+1bN1/σcak , x ∈ K,

since ak ≤ Sk + |β| < b2(N/τ̃)1/σc.
Observe that the number of multiindices γ0, . . . , γk with the property

(4.2.41) is

(
Sk + |β|
a0, . . . , ak

)
. In the sequel we write

∑
when the sum is taken

over all multiindices γ0, . . . , γk which satisfies (4.2.41)-(4.2.43).
Hence, for x ∈ K and ξ ∈ Γ, |ξ| > bN1/σc we estimate

|DβRj1 ...Rjkχ2σN(x, ξ)| ≤∑(
Sk + |β|
a0, . . . , ak

)( k∏
i=1

|Dγi−1cαji ,ji(x, ξ)|
)
· |Dγkχ2σN |

≤ |ξ|−Sk
∑(

Sk + |β|
a0, . . . , ak

)( k∏
i=1

Aha
σ
i−1a

τaσi−1

i−1

)
·
(
Cak+1bN1/σcak

)
≤ |ξ|m−b(N/τ̃)1/σcA

1
m
b(N/τ̃)1/σchb2(N/τ̃)1/σcσCb2(N/τ̃)1/σc+1

∑(
Sk + |β|
a0, . . . , ak

)( k∏
i=1

a
τaσi−1

i−1

)
· bN1/σcak

≤ |ξ|m−b(N/τ̃)1/σch
′N+1

∑(
Sk + |β|
a0, . . . , ak

)( k∏
i=1

a
τaσi−1

i−1

)
· bN1/σcak ,

for some h′ > 0. By the almost increasing property of M τ,σ
p = pτp

σ
it follows

that

k∏
i=1

a
τaσi−1

i−1 ≤ Ca0+···+ak−1
a0! · · · ak−1!

(a0 + · · ·+ ak−1)!
(a0 + · · ·+ ak−1)τ(a0+···+ak−1)σ

= CSk+|β|−ak a0! · · · ak−1!

(Sk + |β| − ak)!
(Sk + |β| − ak)τ(Sk+|β|−ak)σ ,
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wherefrom

∑(
Sk + |β|
a0, . . . , ak

)( k∏
i=1

a
τaσi−1

i−1

)
· bN1/σcak ≤

∑ a0! · · · ak−1!

(Sk + |β| − ak)!

· CSk+|β|−ak (Sk + |β|)!
a0! . . . ak−1!ak!

(Sk + |β| − ak)τ(Sk+|β|−ak)σ · bN1/σcak

=
∑

ak≤Sk+|β|

(
Sk + |β|

ak

)
CSk+|β|−ak(Sk + |β| − ak)τ(Sk+|β|−ak)σbN1/σcak .

(4.2.45)

Further, for N large enough we have

(b(N/τ̃)1/σc+M)σ ≤ 2σ−1(N/τ̃ +Mσ) < 2σN/τ̃

so that for |β| ≤M the following estimate holds:

Sk + |β| ≤ b(N/τ̃)1/σc+M < b2(N/τ̃)1/σc.

This, together with
]

(M.2)′ property of M τ,σ
p = pτp

σ
gives

(Sk + |β| − ak)τ(Sk+|β|−ak)σ ≤ (b(N/τ̃)1/σc+M)τ(b(N/τ̃)1/σc+M)σ

≤ C
′b(N/τ̃)1/σcσb(N/τ̃)1/σcτb(N/τ̃)1/σcσ

≤ C
′′NN

τ̃−1/σ

σ
N . (4.2.46)

Moreover since
bN1/σcak ≤ bN1/σcb2(N/τ̃)1/σc ≤ CN , (4.2.47)

for sufficiently large C > 0, by (4.2.46) and (4.2.47) we obtain∑
ak≤Sk+|β|

(
Sk + |β|

ak

)
CSk+|β|−ak(Sk + |β| − ak)τ(Sk+|β|−ak)σbN1/σcak

≤ hN+1N
τ̃−1/σ

σ
N ,

for some h > 0, which implies that for x ∈ K, ξ ∈ Γ

|DβRj1 ...Rjkχ2σN(x, ξ)| ≤ |ξ|m−b(N/τ̃)1/σchN+1N
τ̃−1/σ

σ
N .

Choosing the appropriate enumerations and similar estimates as in [29, Sub-
section 4.3] we conclude that

|DβRj1 ...Rjkχ2σN(x, ξ)| ≤ |ξ|−b2
1−σ
σ (N/τ̃)1/σc−MhN+1N !

τ̃−1/σ

σ (4.2.48)

for some h > 0, which gives the desired estimate.



Remark 4.2.2. Note that Lemma 2.7.1 is used twice in the proof of Theorem
4.2.1. That lead us to the conclusion that the Theorem does not hold for
wave fronts sets WF{τ,1}, when 0 < τ < 1, if we choose partial differential
operators with quasi-analytic coefficients. In particular, Mp = p!τ , 0 < τ < 1
fails to satisfy Komatsu’s condition (M.4)′′ since Stirling’s formula implies
that (Mp

pp

)1/p

∼ Cpτ−1, p→∞,

for some C > 0. Hence the representation (4.2.29), with cα,j, |α| ≤ j,
1 ≤ j ≤ m satisfying the desired estimate of the form (4.2.30), is not possible.

Moreover, for our analysis we have chosen τ̃ , σ− admissible sequences
where τ̃ = τσ/(σ−1), and hence we obtain ”critical behaviour” for the case
0 < τ < 1 and σ = 1. (see Remark 3.2.1, Chapter 3).

This leads us to the lead us to the wave front set, WF0+,∞, with the
pseudo-local property. In particular, following Corollary is an immediate
consequence of the Remark 3.5.1 and Theorem 4.2.1.

Theorem 4.2.2. Let u ∈ D′(U) and P (x,D) the differential operator of
order m with coefficients in E∞,1+(U). Then if P (x,D)u = f in D′(U), it
holds

WF0+,∞(f) ⊆WF0+,∞(u) ⊆WF0+,∞(f) ∪ Char(P (x,D)). (4.2.49)

Proof. Let σ > 1 be arbitrary but fixed, P (x,D) =
∑
|α|≤m

aα(x)Dα partial

deifferential operator such that aα ∈ E∞,σ(U), |α| ≤ m. In particular, aα ∈
E{τα,σ}(U) for some τα. Set τ = max

|α|≤m
τα to conclude that aα ∈ E{τ,σ}(U) for

all |α| ≤ m. Now the statement follows directly from Theorem 4.2.1.

92



Bibliography

[1] M. Cappiello, R. Schulz, Microlocal analysis of quasianalytic Gelfand-
Shilov type ultradistributions, preprint versoin arXiv:1309.4236v1
[math.AP], accepted for publication in Complex Variables and Elliptic
Equations.

[2] E. Carypis, P. Wahlberg, Propagation of exponential phase space sin-
gularities for Schrdinger equations with quadratic Hamiltonians, Jour-
nal of Fourier Analysis and Applications, Online First, 2016. DOI:
10.1007/s00041-016-9478-6.

[3] H. Chen, L. Rodino,General theory of PDE and Gevrey classes in Gen-
eral theory of partial differential equations and microlocal analysis.Pitman
Res. Notes Math. Ser., Longman, Harlow, 349 (1996), 6–81.

[4] E. Cordero, F. Nicola, L. Rodino, Schrödinger equations with rough
Hamiltonians Discrete Contin. Dyn. Syst. 35 (10) (2015), 4805-4821.

[5] E. Cordero, F. Nicola, L. Rodino, Propagation of the Gabor wave front set
for Schrodinger equations with non-smooth potentials, Rev. Math. Phys.
27 (1) (2015), 33 pages

[6] S. Coriasco, K. Johansson, J. Toft, Local Wave-front Sets of Banach and
Frchet types, and Pseudo-differential Operators, Monatsh. Math. 169 (3-
4) (2013), 285-316.

[7] S. Coriasco, K. Johansson, J. Toft, Global Wave-front Sets of Banach,
Frchet and Modulation Space Types, and Pseudo-differential Operators,
J. Differential Equations 254 (8) (2013), 3228-3258.

[8] H. G. Feichtinger, Modulation spaces on locally compact abelian groups,
Technical Report, University Vienna, 1983. and also in Wavelets and
Their Applications, 99–140, Allied Publishers, 2003.
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DP

Datum odbrane:
DO
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der finite order derivation. Moreover, we construct infinite order operators
which leads us to the definition of class with ultradifferentiable property. We
also prove that our classes are inverse-closed, and this result is the essential
part in the proof of our main result presented in the final Chapter. Moreover,
using the techniques of microlocal analysis, we introduce and investigate the
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corresponding wave front sets, and the prove the results related to singular
support of a distribution. Our main results shows how the singularities of
solutions to partial differential equations (PDE’s in short) propagate in the
framework of our regularity.
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