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Chapter 0

Introduction

The Schwartz space S(Rd), beside playing an important role in different fields of
mathematics, was defined to extend the Fourier transform to the space of tempered
distributions. However, physical considerations related to unrenormalizable and
nonlocalizable field theories made it desirable to extend the Fourier transform
to a larger class of functionals than tempered distributions. The Gelfand-Shilov
spaces Sα(Rd), Sβ(Rd) and Sβα(Rd), α + β ≥ 1 arose (see [4], [12], [13], [15]-
[18], [26]). The spaces Sαα(Rd), α ≥ 1/2 are of the special interest, because as
the Schwartz space S(Rd), they are invariant under the Fourier transform. The
Hermite functions, which are an orthonormal basis for L2(Rd) and eigenfunctions
of the Fourier transform, have a special role for the characterization of not only
the Schwartz space S(Rd) and its dual space but also the Gelfand-Shipov spaces
and their dual spaces i.e. all these spaces have been characterized in terms of the
coefficients of their Fourier-Hermite expansions (see [3], [27], [31]).

In Chapter 2 we will consider the space of rapidly decreasing functions on
(0,∞)d i.e. S(Rd

+) and its dual space S(Rd
+)′, that is, the space of tempered

distributions supported by [0,∞)d. The problem of expanding the elements of
S ′(R+) with respect to the Laguerre orthonormal basis has been treated by M.
Guillemont-Teissier in [19] and A. Duran in [5] (see also [32], [43] and [44]). The
novelty of this thesis is the extension of the results of [19] for the d-dimensional
case. As a consequence of this result, we obtain the Schwartz kernel theorem
(Theorem 2.4.1) which states that there is one-to-one correspondence between
elements from S ′(Rm+n

+ ) in two sets of variables x and y and the continuous linear
mappings of (S(Rn

+))y into (S ′(Rm
+ ))x. Also, as a an outcome we get that S ′(Rd

+)
is a convolution algebra (see Remark 2.4.1).

The results concerning the extension of a smooth function out of some re-
gion and various reformulation of such problems are called extension theorems of
Whitney type. One can see Whitney [41], Seeley [36] and Hörmander [20, The-
orem 2.3.6, p. 48]. In Chapter 2.4 we solve a problem of an extension of a function
from S(Rd

+) onto S(Rd) (Theorem 2.4.2).

Let us considered the analogous transform to the Fourier transform for the
positive real line (0,∞), that is, the Hankel-Clifford transform. In Section 3.2
we define this transform for the d-dimensional case. Next, we show that it is a
continuous mapping from S(Rd

+) into the same space.

1



2

Thus, the following question arises: will there be analogous spaces associated
with the Hankel-Clifford transform in the same way as the Gelfand-Shilov spaces
are with the Fourier transform. In order to give an answer to this question, for
d = 1, A. Duran introduced the G-type spaces i.e. Gα(Rd

+), Gβ(Rd
+) and Gβ

α(Rd
+),

α + β ≥ 2 in [8]. In Chapter 3 we extend the definition of the G-type spaces for
the d-dimensional case. Moreover, we introduce, as an important novelty of this
thesis, the modified fractional power of the partial Hankel-Clifford transform. We
prove that this transformation is a topological isomorphism on Gα

α(Rd
+) (Theorem

3.2.2).
Next, the Laguerre functions, which are an orthonormal basis for L2(Rd

+) and
eigenfunctions of the Hankel-Cliford transform have a similar role, as the Hermite
functions have for the Gelfand-Shilov spaces, in the characterization of the G-
type spaces. In Section 3.3 the characterization of elements from Gα

α(Rd
+), α ≥ 1

through the Fourier-Laguerre coefficients estimate is given. Although, the paper
[9] contains significant results on the characterization of the spaces Gα

α(R+), α ≥ 1,
we noticed subtle gaps which are improved in the d-dimensional case. The main
corrections are related to the analytic function F (w), w ∈ D (Proposition 3.3.3).

In Section 3.4 we describe the topological properties of Gα
α(Rd

+), α ≥ 1. Since
the explanations for the one dimensional case given in [9] is inadequate. This is
essentially improved in the multi-dimensional case (Theorems 3.4.1 and Theorem
3.4.2) by De Wilde’s closed-graph theorem for ultrabornological spaces. Moreover,
in Section 3.5 as a main consequence of the analysed topological structure we prove
the Schwartz’s kernel theorem Gα

α(Rd
+), α ≥ 1 and their dual spaces.

In Section 3.6 we use the expansion of the Laguerre functions into finite sums
of the Hermite functions and vice versa in order to prove that there exists a topolo-
gical isomorphism between Gα

α(Rd
+), α ≥ 1 and the subspaces of the Gelfand-Shilov

spaces Sα/2α/2 (Rd), α ≥ 1 consisting of ”even” functions denoted as Sα/2α/2, even(Rd).

Furthermore, in Section 3.7 we give two structural theorems for (Gα
α(Rd

+))′,
α ≥ 1 (Theorem 3.7.1, Theorem 3.7.2). The first one states that f ∈ (Gα

α(Rd
+))′,

α ≥ 1 if and only if it can be written as

f =

∑
k∈Nd0

ck

(
xD2 +D − x

4
+

1

2

)kF

where F ∈ L2(Rd
+) and the coefficients ck have a suitable growth. (xD2 + D −

x/4 + 1/2)k =
∏d

j=1(xjD
2
j + Dj − xj/4 + 1/2)kj , k ∈ Nd

0. The second one is sim-

ilar to the first one, but instead of using the operator (xD2 + D − x/4 + 1/2)k,
f ∈ (Gα

α(Rd
+))′ is represented as an infinite sum of integrals of L2(Rd

+)-functions
integrated against the test functions that are differentiated and then multiplied
by powers of x suitable number of times.

In Section 4.4, we use the obtained series expansions for Gα
α(Rd), α ≥ 1 and

their dual spaces in order to introduce a new class of pseudo-differential oper-
ators with radial symbols and prove continuity properties of such operators on
the Gelfand- Shilov spaces and their dual spaces. More precisely, we prove the
continuity of the Weyl pseudo-differential operators with radial symbols from the
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spaces G2α
2α(Rd

+) and (G2α
2α(Rd

+))′, α ≥ 1/2. In the first case, we show that the class
of the Weyl pseudo-differential operators with radial symbols is a continuous and
linear mapping from Sαα(Rd) into Sαα(Rd) which can be extended to a continuous
and linear mapping from (Sαα(Rd))′ into Sαα(Rd). In the second case, we show
that the class of the Weyl pseudo-differential operators with radial symbols is a
continuous and linear mapping from Sαα(Rd) into Sαα(Rd) which can be extended
to a continuous and linear mapping from (Sαα(Rd))′ into (Sαα(Rd))′. This second
case is especially important since the symbols are in the dual spaces and the cor-
responding mapping is over the dual spaces of the Gelfand-Shilov spaces. As a
remark (Remark 4.4.1), we have shown that this symbol class is in the bijection

with the space (Sα/2α/2, even(Rd))′, closely related to dual spaces of ”even” Gelfand-
Shilov spaces.

Finally, In Section 4.5, we give the corresponding results related to radial sym-
bols in S(Rd

+) and its dual space and the corresponding continuous linear mappings
related to the Schwartz space S(Rd) and its dual space. With these special cases,
we extend the corresponding results of M. W. Wong [42, Chapter 24].
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Chapter 1

Notation and background

1.1 Euclidean Spaces

Let Rd be the usual Euclidean space given by

Rd = {(x1, ..., xd) : xj’s are real numbers}.

Let x = (x1, ..., xd) and y = (y1, ..., yd) be any two points in Rd. The inner product
x · y of x and y is defined by

x · y =
d∑
j=1

xjyj

and the norm |x| of x is defined by

|x| =
( d∑
j=1

x2
j

) 1
2
.

The symbol Rd
+ stands for (0,∞)d i.e.

Rd
+ = {(x1, ..., xd) : xj’s are real numbers greater than zero}

and Rd
+ for its closure i.e. [0,∞)d. We denote the set of all real numbers by R,

the set of all positive integers by N, the set of all integers by Z, the set of all
non-negative integers ≥ 0 by N0 and the set of all complex numbers by C.

1.2 The Multi-index Notation

We use the standard multi-index notation. We denote by 1 = (1, . . . , 1) ∈ Nd.
Thus, for z ∈ Cd, z1 stands for z1 · . . . ·zd. A d-dimensional multi-index is a d-tuple
α = (α1, ..., αd) of non-negative integers. We call |α| =

∑d
j=1 αj the length of the

multi-index α. For multi-index α ∈ Nd
0 and x ∈ Rd (or x ∈ Rd

+), we denote the
power by

xα = xα1
1 ...x

αd
d

5
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and the partial derivative by

Dα =
∂α1

∂xα1
1

...
∂αd

∂xαdd
.

Furthermore, if x, γ ∈ Rd
+ we also use

xγ = xγ1

1 ...x
γd
d .

In this case, if xj = 0 and γj = 0, we use the convention 00 = 1.

1.3 The Sequence spaces

A complex sequence {an}n∈Nd0 is said to be rapidly decreasing if for every constant
j ≥ 0 the quantity

sup
n∈Nd0

|an|(|n|+ 1)j (1.1)

is finit. The rapidly decreasing sequences form a vector space, which we de-
note by s and on which we put the topology defined by the seminorms (1.1) for
j = 0, 1, 2, .... It is easy to check that s is a Fréchet space. From now on, we
abbreviate a Fréchet space as an (F )-space.

Theorem 1.3.1. ([39, Theorem 51.5]) The Fréchet space s of rapidly decreasing
sequences is nuclear.

From now on, we abbreviate nuclear Fréchet space as an (FN)-space. Clearly, in
the definition of s, we can take the lp-norms, p ≥ 1 instead of the sup-norm. In
this case, a complex sequence {an}n∈Nd0 is said to be rapidly decreasing if for every
constant j ≥ 0 the quantity( ∑

n∈Nd0

(|an|(|n|+ 1)j)p
)1/p

is finite.
A sequence {bn}n∈Nd0 is said to be slowly growing if there is a constant j ≥ 0

such that
sup
n∈Nd0

|bn|(|n|+ 1)−j <∞.

It can easily be verified that the mapping

{bn}n∈Nd0 → ({an}n∈Nd0 →
∑
n∈Nd0

anbn)

is an isomorphism (for the vector space structures) of the space of slowly growing
sequences (which we shall denote by s′) onto the dual of s. The space s′ is equipped
with the strong dual topology of s; s′ is a strong dual of a nuclear Fréchet space
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(abbreviated as a (DFN)-space).
Let α ≥ 1 and a > 1. We define sα,a to be the space of all complex sequences

{an}n∈Nd0 for which

‖{an}n∈Nd0‖sα,a = sup
n∈Nd0

|an|a|n|
1/α

<∞.

With this norm sα,a becomes a Banach space (abbreviated as a (B)-space). For
a > b > 1, sα,a is continuously injected into sα,b. As a locally convex space
(abbreviated as an l.c.s.) we define

sα = lim−→
a→1+

sα,a.

Note that sα, as an inductive limit of sα,a, is indeed a (Hausdorff) l.c.s. since sα,a

is continuously injected into s.

Proposition 1.3.1. For a > b > 1, the canonical inclusion sα,a → sα,b is nuclear.
In particular, sα is a nuclear (DFS)-space (i.e. a (DFN)-space) and its strong
dual (sα)′ is an (FN)-space.

Proof. Since the canonical inclusion sα,a → sα,b is a composition of two inclusions
of the same type it is enough to prove that it is quasinuclear (for the definition of
a quasinuclear mapping see Definition A.1.2 and for the fact that the composition
of two quasinuclear mappings is nuclear see Theorem A.1.1. For each m ∈ Nd

0, we
define em ∈ (sα,a)′ by

〈em, {an}n∈Nd0〉 = amb
|m|1/α .

One easily verifies that

‖em‖(sα,a)′ ≤ (b/a)|m|
1/α

.

Hence, ∑
m∈Nd0

‖em‖(sα,a)′ <∞.

For {an}n∈Nd0 ∈ s
α,a we have

‖{an}n∈Nd0‖sα,b ≤
∑
m∈Nd0

|am|b|m|
1/α

=
∑
m∈Nd0

|〈em, {an}n∈Nd0〉|,

i.e. the canonical inclusion sα,a → sα,b is quasinuclear.

For the moment, denote by s̃α the space of all complex valued sequences
{bn}n∈Nd0 such that for each a > 1,

‖{bn}n∈Nd0‖s̃α,a =
∑
n∈Nd0

|bn|a−|n|
1/α

<∞.

With these seminorms s̃α becomes an (F )-space. Denote by Ξ the mapping

s̃α → (sα)′ , 〈Ξ({bn}n), {an}n〉 =
∑
n

anbn.
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One easily verifies that it is a well defined bijection. Let B ⊆ s̃α be bounded. If
B1 ⊆ sα is bounded, there exists a > 1 such that B1 ⊆ sα,a and it is bounded
there (sα is a (DFN)-space). Now one easily verifies that

sup
{bn}n∈B, {an}n∈B1

|〈Ξ({bn}n), {an}n〉| <∞,

i.e. Ξ maps bounded sets into bounded. Since s̃α and (sα)′ are (F )-spaces, Ξ is
continuous and now the open mapping theorem verifies that Ξ is an isomorphism.
Hence, we proved the following result.

Proposition 1.3.2. The strong dual (sα)′ of sα is an (FN)-space of all complex
valued sequences {bn}n∈Nd0 such that, for each a > 1,

‖{bn}n∈Nd0‖(sα)′,a =
∑
n∈Nd0

|bn|a−|n|
1/α

<∞.

Its topology is generated by the system of seminorms ‖ · ‖(sα)′,a.

1.4 Laguerre functions and L2(Rd
+, x

γdx)

Let γ ∈ Rd
+. We denote by L2(Rd

+, x
γdx) the space of all measurable functions on

Rd
+ for which ∫

Rd+
|f(x)|2xγdx <∞.

Its norm is defined by the square root of the last quantity.
Let γ ≥ 0. The one-dimensional Laguerre polynomials of order γ are defined

by

Lγn(x) =
x−γex

n!

( d
dx

)n
(e−xxγ+n), x ≥ 0, n ∈ N0.

The corresponding Laguerre functions of order γ are given by

Lγn(x) =
( n!

Γ(n+ γ + 1)

) 1
2
Lγn(x)e−

x
2 , x ≥ 0, n ∈ N0.

In the case γ = 0, we write Ln and Ln instead of L0
n and L0

n, respectively.
Now, we list properties we will need in the sequel:

(i) Let γ ∈ Rd
+. The d-dimensional Laguerre functions of order γ are products

of the one-dimensional Laguerre functions of order γ; namely,

Lγn(x) = Lγ1
n1

(x1) . . .Lγdnd(xd), x ∈ Rd
+, n ∈ Nd

0.

(ii) {Lγn}n∈Nd0 is an orthonormal basis for L2(Rd
+, x

γdx).
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(iii) The operator

Eγ =
d

dx

(
x
d

dx

)
− x

4
− γ2

4x
+
γ + 1

2
(1.2)

is called the Laguerre operator. Notice that E is a self-adjoint operator, i.e.

〈Ef, g〉 = 〈f, Eg〉 for f, g ∈ dom(E) = {f ∈ L2(Rd
+); Ef ∈ L2(Rd

+)}.

Now we state an important property of this operator (see [11, (11), p. 188]):

Eγ(x
γ
2Lγn(x)) = −nx

γ
2Lγn(x), x > 0. (1.3)

Hence, the Laguerre functions Ln(x) are the eigenfunctions of the operator
E.
Next, we define the d-dimensional Laguerre operator

Eγ =
d∏
i=1

( d

∂xj

(
xj

∂

∂xj

)
− xj

4
−

γ2
j

4xj
+
γj + 1

2

)
. (1.4)

Now, from (i) and (1.3) follows that x
γ
2Lγn(x) is an eigenfunction of the

Laguerre operator in each variable. Hence,

Eγ(x
γ
2Lγn(x)) = −|n|x

γ
2Lγn(x), x ∈ Rd

+.

In the case γ = 0, we write E instead of Eγ. Notice that the d-dimensional
Laguerre functions Ln(x) are the eigenfunctions of the operator E.

Remark 1.4.1. The d-dimensional Laguerre operator can be also defined by

Eγ =
d∏
i=1

( d

∂xj

(
xj

∂

∂xj

)
− xj

4
−

γ2
j

4xj

)
.

Then

Eγ(x
γ
2Lγn(x)) = −

∣∣∣n+
γ + 1

2

∣∣∣x γ2Lγn(x), x ∈ Rd
+.

(iv) We have the following inequality for the Laguerre polynomials (see [11, (3),
p.205])

e−
x
2 |Ln(x)| ≤ 1, x ≥ 0. (1.5)

(v) We have the following estimate for the derivatives of the Laguerre polyno-
mials of order γ.

Theorem 1.4.1. ([6, Theorem 1])∣∣∣∣xk dpdxp (e−x/2Lγn(x))

∣∣∣∣
≤ 2−min{γ,k}4k(n+ 1) · . . . · (n+ k)

(
n+ max{γ − k, 0}+ p

n

)
,

for all x ≥ 0, n, k, p ∈ N0.
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Note, for γ = 0 in the previous theorem, we obtain∣∣∣∣x(p+k)/2 d
k

dxk
(e−x/2Lγn(x))

∣∣∣∣
≤ 2p+k+5(n+ 1) · . . . · (n+

[p+ k

2

]
+ 2)

(
n+ k

n

)
. (1.6)

Bounds in Theorem 1.4.1 can be improved for certain values of k. Indeed,
taking k = p/2, we obtain

Lemma 1.4.1. ([9, Lemma 2.1.]) If p, n ∈ N, x > 0 and γ > 0 then∣∣∣∣xp/2 dpdxp (e−x/2Lγn(x))

∣∣∣∣
≤ 32(p+ 4)(n+ 1) · . . . · (n+

[p
2

]
+ 3)(n+ 1)

(
n+ γ

n

)
.

In the proof of the previous lemma the following estimate was shown∣∣∣∣x(p+k)/2 d
p

dxp
(e−x/2Lγn(x))

∣∣∣∣
≤ 2 · 4k+2(n+ 1) · . . . · (n+

[p+ k

2

]
+ 2)

(
n+ k

n

)
. (1.7)

In [19], p. 547 the following bound on the Laguerre functions is proved:∣∣∣xk( d
dx

)p
Ln(x)

∣∣∣ ≤ Cp,k(n+ 1)p+k, (1.8)

for all x ≥ 0, n, k, p ∈ N0.

(vi) The Laguerre polynomials satisfy a simple integral equation with a symmet-
ric kernel (see [25, (4.20.3), p. 83]):∫ ∞

0

Jγ(
√
xt)xγ/2Lγn(x)dx = 2(−1)nxγ/2Lγn(x), γ ≥ 0, n ∈ N0, (1.9)

where Jγ is the Bessel function of the first kind.

(vii) We have the following recurrence formula (see [11, (24), p.190])

Lγ−1
n (x) = Lγn(x)− Lγn−1(x). (1.10)

(viii) We can represent the Laguerre polynomials as finite sums (see [11, (41), p.
192])

Lα+β+1
n (x+ y) =

n∑
k=0

Lαk (x)Lβn−k(y). (1.11)

and (see [11, (39), p. 192])

Lαn(t) =
∞∑
n=0

(m!)−1(α− β)mL
β
n−m(t). (1.12)

(ix) The Laplace transform of tγLγn(t) is given by (see [11, p. 191])∫ ∞
0

tγLγn(t)e−stdt =
Γ(n+ 1 + γ)(s− 1)n

n!sγ+n+1
, γ > −1, Re s > 0. (1.13)
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1.5 Hermite functions and L2(Rd)

We denote by L2(Rd) the space of all measurable functions on Rd for which∫
Rd
|f(x)|2dx <∞.

Its norm is defined by the square root of the last quantity.
The one-dimensional Hermite polynomials are given by

Hn(x) = (−1)nex
2 dn

dtn
(e−x

2

), x ∈ R, n ∈ N0.

The Hermite functions are given by

hn(x) = (2nn!
√
π)−1/2e−x

2/2Hn(x), x ∈ R, n ∈ N0.

Now, we list properties we will need in the sequel:

(i) The d-dimensional Hermite functions are product of the one-dimensional
Hermite functions; namely,

hn(x) = hn1(x1) . . . hnd(xd).

(ii) {hn}n∈Nd0 is an orthonormal basis for L2(Rd).

(iii) The operator H = x2 − (d2/dx2) is called the Hermite operator. The one-
dimensional Hermite functions are the eigenfunctions of this operator:(

x2 − d2

dx2

)
hn = (2n+ 1)hn.

In d dimensions, this equation together with (i) shows that hn is an eigen-
function of the Hermite operator in each variable,(

x2
j −

d2

dx2
j

)
hn = (2nj + 1)hn,

as well as of the d-dimensional Hermite operator

(x2 −D2)hn =
d∏
j=1

(
x2
j −

∂2

∂x2
j

)
hn = (2|n|+ 1)hn.

(iv) The Hermite polynomials can be expressed in terms of the Laguerre poly-
nomials (see [11, (2), p. 193])

H2n(x) = (−1)m22mm!L
− 1

2
m (x2), x ∈ R, n ∈ N0 (1.14)

and

H2n+1(x) = (−1)m22m+1m!xL
1
2
m(x2), x ∈ R, n ∈ N0. (1.15)

These expressions show that Hn(x) is an even function or an odd function
of x according as n is even or odd.
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(v) H. Cramér has proved the following bound for the Hermite polynomials (see
[11, (19), p. 208])

e−
1
2
x2|Hn(x)| < k2

n
2 (n!)

1
2 , x ∈ R, n ∈ N0, (1.16)

where the constant k is less than 1.0864435.

1.6 The Function Spaces Sαα(Rd)

Problems of regularity of solutions to partial differential equations (PDEs) play a
central role in the modern theory of PDEs. When a solution of a certain PDE is
smooth but not analytic, we seek to find a space where we can describe its decay
for |x| → ∞ and regularity in Rd. Gelfand and Shilov introduced the space of
type S in order to find solutions of certain parabolic initial-value problems.

We denote the set of all infinitely differential functions on Rd by C∞(Rd).
The Schwartz space S(Rd) is the set of all C∞ function ϕ on Rd such that

sup
x∈Rd
|xmDnϕ(x)| <∞, n,m ∈ Nd

0.

Let α ≥ 1/2. For A > 0, denote by Sα,Aα,A (Rd) a Banach space (abbreviated as

a (B)-space) of all ϕ ∈ C∞(Rd) with the norm

sup
n,m∈Nd0

‖xmDnϕ(x)‖L2(Rd)

(A|n|+|m|n!αm!α)
<∞.

The Gelfand-Shilov spaces Sαα (Rd) are inductive limits of the spaces Sα,Aα,A(Rd) with
respect to A:

Sαα(Rd) = lim−→
A→∞

Sα,Aα,A(Rd).

The space Sαα(Rd) is nontrivial if and only if α ≥ 1/2. When the spaces are
nontrivial we have a dense and continuous inclusion:

Sαα(Rd) ↪→ S(Rd).

The corresponding dual spaces of Sαα(Rd) are the spaces of ultradistributions
of Roumier type:

(Sαα(Rd))′ = lim←−
A→0

(Sα,Aα,A(Rd))′.

One easily verifies that for A1 < A2, the canonical inclusion

Sα,A1

α,A1
(Rd) ↪→ Sα,A2

α,A2
(Rd)

is a compact mapping, i.e. Sαα (Rd) is a strong dual of a Fréchet-Schwartz space
(abbreviated as a (DFS)-space). For the properties of Sαα (Rd), we refer to [26,
Chapter 6]; see also [12], [18].

For each n ∈ Nd
0, hn ∈ S1/2

1/2 (Rd). Moreover, for α ≥ 1/2, Sαα(Rd) is given
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through the Hermite expansions. Let ι : Sαα (Rd) → s2α, ι(f) = {〈f, hn〉}n∈Nd0 . It

is proved that ι is a well defined bijection between Sαα (Rd) and s2α (see [3], [10]).
Moreover, we have the following results for which the proof is similar to the proof
of [24, Theorem 3.4 and Corollary 3.5] and we omit it.

Theorem 1.6.1. Let α ≥ 1/2. The mapping

ι :→ s2α, ι(f) = {〈f, hn〉}n∈Nd0

is a topological isomorphism between Sαα (Rd) and s2α.
For each f ∈ Sαα (Rd),

∑
n∈Nd0
〈f, hn〉hn converges absolutely to f in Sαα (Rd).

Theorem 1.6.2. Let α ≥ 1/2. The mapping

ι̃ : (Sαα (Rd))′ → (s2α)′, ι̃(T ) = {〈T, hn〉}n∈Nd0
is a topological isomorphism.

Moreover, for each T ∈ (Sαα (Rd))′,
∑

n∈Nd0
〈T, hn〉hn converges absolutely to T

in (Sαα (Rd))′.

1.7 The Function Spaces Gβ
α(R+)

In this section, we state the results obtained by A. Duran in [8] and [9]. We
were motivated by these papers. Our goal was to extend the results for the d
dimensional case. Although, it may look trivial, it was booth technical and math-
ematical demanding. Also, we found subtle gaps in the proofs which we corrected.

The Hankel-Clifford transform H0 is defined by

H0(f)(t) =
1

2

∫ ∞
0

f(x)J0(
√
xt)dx,

where J0 denotes the Bessel function of the first kind. The Hankel-Clifford trans-
form is analogous to the Fourier transform for the positive real line (0,∞) and is an
isomorphism from the Schwartz space defined on (0,∞) (denoted by S(R+)) onto
itself (see [43]). In [8] A. Duran introduced the spaces of test functions Gα(R+),
Gβ(R+) and Gβ

α(R+) for α, β ≥ 0 in order to define the Hankel-Clifford transform
on a larger class of functionals than tempered distributions with positive support.

Definition 1.7.1. ([8, Definition 2.1.]) Let α, β ≥ 0 and A,B > 0. The spaces
Gα,A(R+), Gβ,B(R+) and Gβ,B

α,A(R+) are defined as the set of all complex valued
C∞ functions f belongs S(R+) and satisfy:

∀δ > 0 ∀p ∈ N ∃Cδ,p > 0 ∀k ∈ N : ‖t(p+k)/2f (p)(t)‖2 ≤ Cδ,p(A+ δ)kk(α/2)k

∀% > 0 ∀k ∈ N ∃C%,k > 0 ∀p ∈ N : ‖t(p+k)/2f (p)(t)‖2 ≤ C%,k(B + %)pp(β/2)p

∀δ, % > 0 ∃Cδ,% > 0 ∀k, p ∈ N :

‖t(p+k)/2f (p)(t)‖2 ≤ Cδ,%(A+ δ)k(B + %)pk(α/2)kp(β/2)p,
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respectively.
The spaces Gα(R+), Gβ(R+) and Gβ

α(R+) are defined as the union of the spaces
Gα,A(R+) when A > 0, Gβ,B(R+) when B > 0 and Gβ,B

α,A(R+) when A,B > 0,
respectively.

Let f be from S(R+). The modified fractional power of the Hankel-Clifford
transform is defined as

Jz,γ(f)(t) =
1

1− z

∫ ∞
0

(xtz)−γ/2xγIγ

(2
√
xtz

1− z

)
f(x)dx,

where Iγ is the modified Bessel function of the first kind and z ∈ C, |z| = 1,
z 6= 1. When z = −1 we obtain the Hankel-Clifford transform. The following
lemma is the key to prove that the Hankel-Clifford transform is an isomorphism
from the spaces Gα(R+), Gβ(R+) and Gβ

α(R+) onto Gα(R+), Gβ(R+)(R+) and Gα
β ,

respectively.

Lemma 1.7.1. ([8, Lemma 3.2]) Let f be from S(R+), γ > −1, z ∈ C, |z| = 1,
z 6= 1 and p, k > 0. Then∥∥t(p+k+γ)/2f (p)(t)

∥∥
2

= |1− z|−p+k
∥∥t(p+k+γ)/2J (k)

z,γ f(t)
∥∥

2
. (1.17)

The following result about non triviality of the spaces Gα(R+), Gβ(R+) and
Gβ
α(R+) is obtained.

Corollary 1.7.1. ([8, Corollary 3.9.]) For every α, β ≥ 0, the spaces Gα(R+),
Gβ(R+) are nontrivial. The space Gβ

α(R+) reduces to the null-function if and only
if

(i) β = 0 and α ≤ 2

(ii) α = 0 and β ≤ 2

(iii) α 6= 0, β 6= 0 and α + β < 2.

The characterization of the spaces Gα
α(R+) in terms of their Fourier-Laguerre

coefficients is given in [9].

Theorem 1.7.1. ([9, Theorem 3.6.]) Let f ∈ L2(0,∞), α ≥ 1 and

an =

∫ ∞
0

f(t)Ln(t)e−t/2dt.

The following conditions are equivalent

(i) There exist two constants c > 0 and a > 1 such that

|an| ≤ ca−n
1/α

, for n ≥ 0.

(ii) The function f ∈ Gα
α(R+).
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Conversely, given a sequence (an)n satisfying the contdition (i) there exists f ∈
Gα
α(R+) such that an =

∫∞
0
f(t)Ln(t)e−t/2dt for n ∈ N.

Two integral transforms play a fundamental role in the proof of these results.
One of them is the above mentioned Hankel-Clifford transform and the other is
the Fourier-Laplace type operator FD defined in the space Gα

α(R+) by

FD(f)(w) =

∫ ∞
0

f(t)e−
1
2

1+w
1−w tdt, for w ∈ D

where D is the unite disc. In [7], it was shown that FD(f)(w) = (1−w)
∑

n anw
n

(see Proposition 3.2). In order to prove Theorem 1.7.1, firstly a characterization
of the analytic functions on the unite disc was given.

Lemma 1.7.2. ([9, Lemma 3.2.]) Let F ∈ H(D) and α ≥ 0. If we put F (w) =
(1− w)

∑
n anw

n, then the following conditions are equivalent:

(i) There exists constants C,A > 0 such that

|F (p)(w)| ≤ CAppαp, for p ≥ 0 and w ∈ D.

(ii) There exist constants c > 0 i a > 1 such that

|an| ≤ ca−n
1/α

, for n ≥ 0.

Secondly, the following corollary was proved.

Corollary 1.7.2. ([9, Corollary 3.5.]) Let f ∈ Gα
α and α ≥ 1. Then there exists

constants C,A > 0 such that

|(FD(f))(p)(w)| ≤ CAppαp for all p ≥ 0 and w ∈ D.

We finish this section with generalization of the previous theorem for the dual
spaces (Gα

α(R+))′, α ≥ 1.

Corollary 1.7.3. ([9, Corollary 3.8.]) We define the operator Lγ : (Gα
α(R+))′ →

CN by Lγ(u) = (〈u,Lγn〉)n. Then the mapping

Lγ : (Gα
α(R+))′ → {(an)n : ∀a > 1, ‖(an)n‖a = sup

n
{|ana−n

1/α |} <∞}

is an isomorphism between these spaces.
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Chapter 2

The Function Space S(Rd+)

In this chapter we consider the space S(Rd
+) which consists of all f ∈ C∞(Rd

+)

such that all derivatives Dpf , p ∈ Nd
0, extend to continuous functions on Rd

+ and

sup
x∈Rd+

xk|Dpf(x)| <∞ ,∀k, p ∈ Nd
0.

With this system of seminorms S(Rd
+) becomes an (F )-space. We denote by

S ′(Rd
+) its strong dual.

Firstly, we will show that the topology on S(Rd
+) can be given by the L2-norms.

Secondly, we will show that the mapping ι : S(Rd
+) → s, ι(f) = {an(f)}n∈Nd0 ,

where an(f) =
∫
Rd+
f(x)Ln(x)dx, is a topological isomorphisam between S(Rd

+)

and s. In [5] and [19] was proved, for one dimensional case, that ι is a well defined
bijection.

Thirdly, we give a characterization of S ′(Rd
+) in terms of the Fourier-Laguerre

coefficients. As a consequence we obtain that S ′(Rd
+) is topologically isomorphic

to s′. Also we show that S ′(Rd
+) is a convolution algebra.

Finally, the Schwartz kernel theorems for both S(Rd
+) and S ′(Rd

+) will be given.
As a consequence, we will obtain the extension theorem of Whitney type for S(Rd

+).

2.1 Another definition of the space S(Rd
+)

Using the Sobolev embedding theorem (see Theorem C.0.1), we will prove that
the topology of S(Rd

+) can be also defined by the L2-seminorms instead of the su-
premum seminorms. We need to verify that Rd

+ satisfies the strong local Lipschitz
condition (see Definition C.0.1) in order to obtain the assertion. For the moment,
denote C = Rd

+. On the hyperplane x1 + . . . + xd = 0 take d − 1 orthonormal

vectors ξ1, . . . , ξd−1 and let ξd = (−1/
√
d, . . . ,−1/

√
d) (given in the x1, . . . , xd co-

ordinate system). Then, ξ1, . . . , ξd is an orthonormal basis for Rd. Notice that the
boundary of C is exactly the graph, given in the (ξ1, . . . , ξd)-coordinate system
of a continuous piecewise linear function f in ξ1, . . . , ξd−1 such that the domain
of each piece is a polyhedral cone. Thus, this function is Lipschitz continuous
on Rd−1 and C is represented by the inequality ξd < f(ξ1, . . . , ξd−1). This proves
that C = Rd

+ satisfies the strong local Lipschitz condition. Thus, the Sobolev

17
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embedding theorem is applicable on Rd
+, i.e. for all j ∈ N0, the Sobolev space

W j+j0(Rd
+) is continuously injected into Cj(Rd

+), where 2j0 > d ≥ 2(j0 − 1) (here,

Cj(Rd
+) denotes a (B)-space of all functions which have bounded uniformly con-

tinuous derivatives up to order j; the norm is given by sup|k|≤j supx∈Rd+ |D
kϕ(x)|).

This implies that the topology on S(Rd
+) can be given by the family of seminorms

ϕ 7→

 ∑
|k|≤j, |p|≤j

‖xkDpϕ‖2
L2(Rd+)

1/2

, j ∈ N0. (2.1)

2.2 Convergence of the Laguerre series in S(Rd
+)

Theorem 2.2.1. For f ∈ S(Rd
+) let an(f) =

∫
Rd+
f(x)Ln(x)dx. Then

f =
∑
n∈Nd0

an(f)Ln

and the series converges absolutely in S(Rd
+).

Moreover, the mapping

ι : S(Rd
+)→ s, ι(f) = {an(f)}n∈Nd0 ,

is a topological isomorphism.

Proof. Let E be the Laguerre operator. By Remark 1.4.1, for f ∈ S(Rd
+)

an(Ef) = 〈Ef,Ln〉 = 〈f, E(Ln)〉 = an(f)
d∏
i=1

−
(
ni +

1

2

)
.

Moreover,

an(Epf) = an(f)
d∏
i=1

(−1)pi(ni +
1

2
)pi , for any p ∈ Nd.

As Epf ∈ S(Rd
+) ⊂ L2(Rd

+), we have

∑
n∈Nd0

|an(f)|2
d∏
i=1

(
ni +

1

2

)2pi
<∞, for all p ∈ Nd

0,

i.e. {an(f)}n∈Nd0 ∈ s. Clearly f =
∑

n∈Nd0
an(f)Ln as elements of L2(Rd

+). By (1.8),
we find the bound on the d-dimensional Laguerre functions without complicated
calculation:

|xkDpLn(x)| ≤ Cp,k

d∏
i=1

(ni + 1)pi+ki , x ∈ Rd
+, n, p, k ∈ Nd

0.
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Hence, we obtain

∑
n∈Nd0

|xkDp(an(f)Ln(x))| ≤ Cp,k
∑
n∈Nd0

|an(f)|
d∏
i=1

(ni + 1)pi+ki <∞ (2.2)

which yields the absolute convergence of the series in S(Rd
+).

To prove that ι is a topological isomorphism, firstly observe that by the above
computations it is well defined and it is clearly an injection. Let {an}n∈Nd0 ∈ s.

Define f =
∑

n∈Nd0
anLn ∈ L2(Rd

+). Now (2.2) proves that this series converges

in S(Rd
+), hence f ∈ S(Rd

+). Thus ι is bijective. Observe that, (2.2) proves that
ι−1 is continuous. Since S(Rd

+) and s are (F )-spaces, the open mapping theorem
proves that ι is a topological isomorphism (see Apendix A.2).

2.3 Convergence of the Laguerre series in S ′(Rd
+)

Theorem 2.3.1. For T ∈ S ′(Rd
+) let bn(T ) = 〈T,Ln〉. Then

T =
∑
n∈Nd0

bn(T )Ln

and {bn(T )}n∈Nd0 ∈ s
′. The series converges absolutely in S ′(Rd

+).

Conversely, if {bn}n∈Nd0 ∈ s′ then there exists T ∈ S ′(Rd
+) such that T =∑

n∈Nd0
bnLn.

As a consequence, S ′(Rd
+) is topologically isomorphic to s′.

Proof. Let {bn}n∈Nd0 ∈ s
′. There exists k ∈ N such that

∑
n∈Nd0
|bn|2(|n|+ 1)−2k <

∞. For a bounded subset B of S(Rd
+), Theorem 2.2.1 implies that there exists

C > 0 such that ∑
n∈Nd0

|an(f)|2(|n|+ 1)2k ≤ C, ∀f ∈ B,

where we denote {an(f)}n∈Nd0 = ι(f). Observe that for arbitrary q ∈ N we have∑
|n|≤q

sup
f∈B
|〈bnLn, f〉| ≤ sup

f∈B

∑
n∈Nd0

∑
m∈Nd0

|〈bnLn, am(f)Lm〉|

= sup
f∈B

∑
n∈Nd0

|bn||an(f)| ≤ C ′,

i.e. ∑
n∈Nd0

sup
f∈B
|〈bnLn, f〉| <∞.

Hence,
∑

n∈Nd0
bnLn converges absolutely in S ′(Rd

+).

Let T ∈ S ′(Rd
+). Theorem 2.2.1 implies that tι : s′ → S ′(Rd

+) is an isomorphism
(tι denotes the transpose of ι). Now, one easily verifies that

(tι)−1T = {bn}n∈Nd0 ,
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where bn(T ) = 〈T,Ln〉. Observe that for f ∈ S(Rd
+)

〈T, f〉 =
∑
n∈Nd0

an(f)〈T,Ln〉 =
∑
n∈Nd0

an(f)bn(T ) =

〈∑
n∈Nd0

bn(T )Ln, f

〉
,

i.e. T =
∑

n∈Nd0
bn(T )Ln.

Remark 2.3.1. ([5, Remark 3.7 for d=1]) Let us show that S ′(Rd
+) is a convolution

algebra. Given f, g ∈ S ′(Rd
+), we compute the n-th Laguerre coefficient of f ∗ g if

an = 〈f,Ln〉 and bn = 〈g,Ln〉 then

〈f ∗ g,Ln(t)〉 = 〈f(x)⊗ g(y),Ln(x+ y)〉.

In order to simplify the proof, we consider the case d = 2. Using (1.10) and (1.11),
we obtain

〈f ∗ g,Ln(t)〉 = 〈f(x)⊗ g(y),
2∏
i=1

(L1
ni

(xi + yi)− L1
ni−1(xi + yi))〉

= 〈f(x)⊗ g(y),
2∏
i=1

( ni∑
ki=0

Lni−ki(xi)Lki(yi)−
ni−1∑
ki=0

Lni−ki−1(xi)Lki(yi)
)
〉

= 〈f(x)g(y),
∑

k≤(n1,n2)

L(n1,n2)−k(x)Lk(y)−
∑

k≤(n1−1,n2)

L(n1−1,n2)−k(x)Lk(y)

−
∑

k≤(n1,n2−1)

L(n1,n2−1)−k(x)Lk(y) +
∑

k≤(n1−1,n2−1)

L(n1−1,n2−1)−k(x)Lk(y)〉

=
∑

k≤(n1,n2)

a(n1,n2)−kbk −
∑

k≤(n1−1,n2)

a(n1−1,n2)−kbk

−
∑

k≤(n1,n2−1)

a(n1,n2−1)−kbk +
∑

k≤(n1−1,n2−1)

a(n1−1,n2−1)−kbk,

where an or bn equals zero if some component of the subindex n is less than zero.
It is easy to verify that if (an)n∈N2 ∈ s′ and (bn)n∈N2 ∈ s′ then 〈f ∗ g,Ln(t)〉 ∈ s′.

2.4 Kernel theorem for S(Rm
+) and its dual space.

The Extension Theorem of Whitney type

In this section we will prove that spaces S(Rd
+) and S ′(Rd

+) are nuclear. This fact,
together with Theorem 2.2.1 will lead us to the kernel theorem of Schwartz.

For the review of the toplogical tensor product we refer to Appendix A.5.

Proposition 2.4.1. The spaces S(Rd
+) and S ′(Rd

+) are nuclear.

Proof. Since s is nuclear Theorem 2.2.1 implies that S(Rd
+) is also nuclear. From

Proposition A.5.3 follows that S ′(Rd
+) is nuclear as the strong dual of a nuclear

(F )-space.
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Theorem 2.4.1. The following canonical isomorphisms hold:

S(Rm
+ )⊗̂S(Rn

+) ∼= S(Rm+n
+ )

and
S ′(Rm

+ )⊗̂S ′(Rn
+) ∼= S ′(Rm+n

+ ) ∼= L(S(Rn
+),S ′(Rm

+ )). (2.3)

Proof. The second isomorphism follows from the first since S(Rd
+) is a nuclear

(F )-space. Thus it is enough to prove the first isomorphism.
Step 1: From Theorem 2.2.1 follows that S(Rm

+ )⊗S(Rn
+) is dense in S(Rm+n

+ ).
It suffices to show that the latter induces on the former the topology π = ε (the
π and the ε topologies are the same because S(Rd

+) is nuclear). Since the bilinear
mapping (f, g) 7→ f ⊗ g of S(Rm

+ )×S(Rn
+) into S(Rm+n

+ ) is separately continuous
it follows that it is continuous (S(Rm

+ ) and S(Rn
+) are (F )-spaces). The continuity

of this bilinear mapping proves that the inclusion S(Rm
+ )⊗π S(Rn

+)→ S(Rm+n
+ ) is

continuous, hence the topology π is stronger than the induced one from S(Rm+n
+ )

onto S(Rm
+ )⊗ S(Rn

+).
Step 2: Let A′ and B′ be equicontinuous subsets of S ′(Rm

+ ) and S ′(Rn
+), re-

spectively. There exist C > 0 and j, l ∈ N such that such that

sup
T∈A′
|〈T, ϕ〉| ≤ C‖ϕ‖j,l and sup

F∈B′
|〈F, ψ〉| ≤ C‖ψ‖j,l,

where
‖f‖j,l = sup

|k|≤j
|p|≤l

sup
x∈Rd+

|xkDpf(x)| <∞. (2.4)

For all T ∈ A′ and F ∈ B′ we have

|〈Tx ⊗ Fy, χ(x, y)〉| = |〈Fy, 〈Tx, χ(x, y)〉〉| ≤ C sup
|k|≤j
|p|≤l

sup
y∈Rn+

|yk〈Tx, Dp
yχ(x, y)〉|

≤ C2 sup
|k|≤j
|p|≤l

sup
|k′|≤j
|p′|≤l

sup
x∈Rm+
y∈Rn+

|xk′ykDp′

x D
p
yχ(x, y)|

≤ C2‖χ(x, y)‖(k′,k),(p′,p), ∀χ ∈ S(Rm
+ )⊗ S(Rn

+).

It follows that the ε topology on S(Rm
+ )⊗ S(Rn

+) is weaker than the induced one
from S(Rm+n

+ ).

The isomorphism (2.3) calls for some comment. To every kernel K(x, y) ∈
S ′(Rm+n

+ ) we may associate a continuous linear mapping K of S(Rn
+) into S ′(Rm

+ )
in the following manner: if v ∈ S(Rn

+) then

(Kv)(x) =

∫
Rn+
K(x, y)v(y)dy ∈ S ′(Rm

+ ).

Theorem 2.4.1 states that the correspondence K(x, y)↔ K is an isomorphism.
As a consequence of previous theorem we obtain the following important the-

orem.
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Theorem 2.4.2. The restriction mapping f 7→ f|Rd+, S(Rd) → S(Rd
+) is a topo-

logical homomorphism onto.
The space S(Rd

+) is topologically isomorphic to the quotient space S(Rd)/N ,
where N = {f ∈ S(Rd)| supp f ⊆ Rd\Rd

+}. Consequently, S ′(Rd
+) can be identified

with the closed subspace of S ′(Rd) which consists of all tempered distributions with

support in Rd
+.

In order to prove this result, we need the theorem on the tensor product of
linear mappings :

Theorem 2.4.3. ([23, Theorem 7, p.189]) Let A1, A2 be homomorphisms of E1, E2

onto dense subspace of F1 and F2, respectively. Then A1 ⊗π A2 and A1⊗̂πA2 are
homomorphisms of E1 ⊗π E2, E1⊗̂πE2 onto dense subspace of F1 ⊗π F2, F1⊗̂πF2,
respectively.

If E1, E2 are metrizable and A1 and A2 homomorphisms onto F1 and F2, re-
spectively, then A1⊗̂πA2 is a homomorphism onto F1⊗̂πF2.

and the theorem about the duality of Fréchet-Schwartz spaces (abbreviated as an
(FS)-space):

Theorem 2.4.4. ([28, Theorem A.6.5, p.255]) Let E be an (FS)-space and F
be a closed subspace of E. Then E/F is a (FS)-space. Moreover, we have the
following isomorphism of linear topological spaces

(E/F )′ ∼= F⊥,

where F⊥ = {x′ ∈ E ′; 〈x′, y〉 = 0 for any y ∈ F}.

Now, we proceed to the proof of Theorem 2.4.2.

Proof. Obviously, the restriction mapping f 7→ f|Rd+ , S(Rd) → S(Rd
+) is con-

tinuous. We prove its surjectivity by induction on d. For clarity, denote the
d-dimensional restriction by Rd. For d = 1, the surjectivity of R1 is proved in
[5, p. 168]. Assume that Rd is surjective. By the open mapping theorem, Rd

and R1 are topological homomorphisms onto since all the underlying spaces are
(F )-spaces. By the above theorem Rd⊗̂πR1 is continuous mapping from S(Rd+1)
to S(Rd+1

+ ) (S(Rd)⊗̂S(R) ∼= S(Rd+1) by the Schwartz kernel theorem). Clearly
Rd⊗̂πR1 = Rd+1. As S(Rd+1) and S(Rd+1

+ ) are (F )-spaces Theorem 2.4.3 implies
that Rd+1 is also surjective.

The surjectivity of the restriction mapping together with the open mapping
theorem implies that it is homomorphism. Clearly N is closed subspace of S(Rd)
and kerRd = N . Thus Rd induces natural topological isomorphism between
S(Rd)/N and S(Rd

+). Hence
(
S(Rd)/N

)′
b

is topologically isomorphic to S ′(Rd
+)

(the index b stands for the strong dual topology). Since S(Rd) is an (FS)-space,
Theorem 2.4.4 implies that

(
S(Rd)/N

)′
b

is topologically isomorphic to the closed
subspace

N⊥ = {T ∈ S ′(Rd)| 〈T, f〉 = 0, ∀f ∈ N}

of S ′(Rd) which is exactly the subspace of all tempered distributions with support

in Rd
+.
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Remark 2.4.1. The fact that (S(Rd
+))′ is canonically isomorphic to the closed

subspace of (S(Rd))′ which consists of all tempered distributions with support in

Rd
+ allows us to define unambiguously the notion of derivatives of the elements of

(S(Rd
+))′. In fact, for T ∈ (S(Rd

+))′ and n ∈ Nd
0, DnT stands for the Dn-derivative

of T in (S(Rd))′ sense. Since suppDnT ⊆ Rd
+, DnT is a well defined element of

(S(Rd
+))′. Moreover, by S(Rd

+) ∼= S(Rd)/N (see Theorem 2.4.2)

〈DnT, ϕ〉 = (−1)|n|〈T,Dnϕ〉, ∀ϕ ∈ S(Rd
+).

It is important to stress that if T is given by ψ ∈ S(Rd
+) then DnT does not

have to coincide with the classical Dn-derivative of ψ (unless ψ can be extended

to a smooth function on Rd with support in Rd
+). Considering ψ as an element

of (S(Rd
+))′ automatically means extending it by 0 on Rd\Rd

+. Of course, this
extension does not have to be smooth.
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Chapter 3

The Function Spaces G
β
α(Rd+),

α, β ≥ 0

In this chapter we consider the test spaces Gβ
α(Rd

+), α, β ≥ 0 i.e. the G-type
spaces, for the spaces of ultradistributions supported by [0,∞)d.

Firstly, we will extend the Definition 1.7.1 for the d-dimensional case.
Secondly, we will define the fractional powers and the modified fractional

powers of the Hankel-Clifford transform, denoted by Iz,γ and Jz,γ, respectively,
on S(Rd

+). As a novelty of this thesis, we will introduce the modified fractional

power of the partial Hankel-Clifford transform J (d′)
z′,γ′ on S(Rd

+). We will prove that

Iz,γ, Jz,γ and J (d′)
z′,γ′ are topological isomorphisms on S(Rd

+) and that they extend

to isometries from L2(Rd
+, t

γdt) onto itself. We will also see the action of these
transforms on the G-type spaces.

Thirdly, we will show that for α ≥ 1, ι : Gα
α(Rd

+) → sα, ι(f) = {〈f,Ln〉}n∈Nd0
(the definition of sα is given in Section 1.3) is a well defined bijection. In this
way we will extend the results of A. Duran in [9] for the d-dimensional case and
we will do corrections of subtle gaps he made. Furthermore, we will prove that ι
is a topological isomorphisam between Gα

α(Rd
+) and sα. Also, we will provide the

similar results for the dual spaces (Gα
α(Rd

+))′.
Fourthly, we will study the relation between theG-type spaces and the Gelfand-

Shilov spaces. We will establish an existence of a topological isomorphism between
Gα
α(Rd

+) and Sα/2α/2, even(Rd) consisting of all ”even” functions from Sα/2α/2, even(Rd),
where α ≥ 1.

Finally, we give two structural theorems for (Gα
α(Rd

+))′, α ≥ 1.

3.1 Definition of Gβ
α(Rd

+), α, β ≥ 0

We define the basic test spaces following Definition 1.7.1 for d = 1 and we consider
their topological structures.

Unless otherwise stated, α and β are two reals such that α, β ≥ 0.
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Let A > 0. We denote by Gβ,A
α,A(Rd

+) the space of all f ∈ S(Rd
+) for which

sup
p,k∈Nd0

‖t(p+k)/2Dpf(t)‖2

A|p+k|k(α/2)kp(β/2)p
<∞.

With the following seminorms

σA,j(f) = sup
p,k∈Nd0

‖t(p+k)/2Dpf(t)‖L2(Rd+)

A|p+k|k(α/2)kp(β/2)p
+ sup
|p|≤j
|k|≤j

sup
t∈Rd+

|tkDpf(t)|, j ∈ N0,

one easily verifies that it becomes an (F )-space. Clearly, if A1 < A2, Gβ,A1

α,A1
(Rd

+)

is continuously injected into Gβ,A2

α,A2
(Rd

+). We define Gβ
α(Rd

+) as an inductive limit

of the spaces Gβ,A
α,A(Rd

+) with respect to A:

Gβ
α(Rd

+) = lim−→
A→∞

Gβ,A
α,A(Rd

+).

Since all the injections Gβ,A
α,A → S(Rd

+) are continuous, Gβ
α(Rd

+) is indeed a (Haus-

dorff) l.c.s.. Clearly, Gβ
α(Rd

+) is continuously injected into S(Rd
+). As inductive

limit of an (F )-spaces, Gβ
α(Rd

+) is a barrelled and bornological l.c.s..
For A > 0 we define Gα,A(Rd

+) to be the space of all f ∈ S(Rd
+) such that

sup
k∈Nd0

‖t(p+k)/2Dpf(t)‖2

A|k|k(α/2)k
<∞, ∀p ∈ Nd

0

and similarly, Gβ,A(Rd
+) to be the space of all f ∈ S(Rd

+) such that

sup
p∈Nd0

‖t(p+k)/2Dpf(t)‖2

A|p|p(β/2)p
<∞, ∀k ∈ Nd

0.

If we equip Gα,A(Rd
+) with the system of seminorms

σ′A,j(f) = sup
|p|≤j

sup
k∈Nd0

‖t(p+k)/2Dpf(t)‖L2(Rd+)

A|k|k(α/2)k
+ sup
|p|≤j
|k|≤j

sup
t∈Rd+

|tkDpf(t)|, j ∈ N0,

one easily verifies that it becomes an (F )-space. Analogously, by equipping
Gβ,A(Rd

+) with the system of seminorms

σ′′A,j(f) = sup
|k|≤j

sup
p∈Nd0

‖t(p+k)/2Dpf(t)‖L2(Rd+)

A|p|p(β/2)p
+ sup
|p|≤j
|k|≤j

sup
t∈Rd+

|tkDpf(t)|, j ∈ N0,

it is also an (F )-space. We define Gα(Rd
+) and Gβ(Rd

+) as an inductive limit of
the spaces Gα,A(Rd

+) and Gβ,A(Rd
+), respectively, with respect to A:

Gα(Rd
+) = lim−→

A→∞
Gα,A(Rd

+) and Gβ(Rd
+) = lim−→

A→∞
Gβ,A(Rd

+).

Thus, Gα(Rd
+) and Gβ(Rd

+) are barrelled and bornological l.c.s. that are continu-
ously injected into S(Rd

+).
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Remark 3.1.1. We will give an alternative definition (again as an inductive limit)
of Gα

α(Rd
+) which will be needed for the proof of the second structural theorem

(see Subsection 3.7.2).
For A > 0, we denote by G̃α,A

α,A(Rd
+) the space of all f ∈ S(Rd

+) such that

∑
p,k∈Nd0

‖x(p+k)/2Dpf(x)‖2
L2(Rd+)

A2|p+k|kαkpαp
<∞.

By (2.1), the space G̃α,A
α,A(Rd

+) with the seminorms

σ̃A,j(f) =

 ∑
p,k∈Nd0

‖x(p+k)/2Dpf(x)‖2
L2(Rd+)

A2|p+k|kαkpαp
+

∑
|m|≤j, |n|≤j

‖xmDnf(x)‖2
L2(Rd+)

1/2

,

j ∈ N0, becomes an (F )-space. When A1 < A2, G̃α,A1

α,A1
(Rd

+) is continuously injected

into G̃α,A2

α,A2
(Rd

+). Clearly, G̃α,A
α,A(Rd

+) is continuously injected into Gα,A
α,A(Rd

+) and

Gα,A
α,A(Rd

+) is continuously injected into G̃α,2A
α,2A(Rd

+). So, Gα
α(Rd

+) = lim−→
A→∞

G̃α,A
α,A(Rd

+)

as a l.c.s.

For each m ∈ Nd
0, f(t) 7→ tmf(t) is a continuous mapping Gα(Rd

+)→ Gα(Rd
+),

Gβ(Rd
+)→ Gβ(Rd

+) and Gβ
α(Rd

+)→ Gβ
α(Rd

+).
We denote by (Gβ(Rd

+))′, (Gα(Rd
+))′ and (Gβ

α(Rd
+))′ the strong duals of Gβ(Rd

+),
Gα(Rd

+) and Gβ
α(Rd

+), respectively.
One easily verifies that when α, β ≥ 1, Ln ∈ Gβ

α(Rd
+) and hence Gβ

α(Rd
+) is

dense in S(Rd
+). In particular, for α ≥ 1, Gα(Rd

+), Gα(Rd
+) and Gα

α(Rd
+) are dense

in S(Rd
+). Hence, (S(Rd

+))′ is continuously injected into (Gα(Rd
+))′, (Gα(Rd

+))′ and
(Gα

α(Rd
+))′.

Remark 3.1.2. Let α, β > 0. Then the spaces Gβ
α(Rd

+) are non-trivial when α +
β ≥ 2. We refer to Corollary 1.7.1 for d=1. For d-dimensional case it follows
considering the function ϕ(t) = ϕ1(t1) . . . ϕd(td), where ϕj, j = 1, . . . , d, is a non-
zero element of Gβ

α(R+).

3.2 The Hankel-Clifford transform

Let CL∞(Rd
+) be a (B)-space of all continuous functions

f : Rd
+ → C such that sup

x∈Rd+

|f(x)| <∞,

the norm of f ∈ CL∞(Rd
+) is given by the left-hand side.

For γ ≥ 0, we denote by Jγ and Iγ the Bessel function of the first kind and the
modified Bessel function of the first kind, respectively. Denote

T(d) = {z ∈ Cd| |zl| = 1, zl 6= 1, ∀l = 1, . . . , d}.
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For z ∈ T(d) and γ ∈ Rd
+, we define the fractional powers and the modified

fractional powers of the Hankel-Clifford transform of f ∈ S(Rd
+) by

Iz,γf(t) =

(
d∏
l=1

(1− zl)−1e
− 1

2

1+zl
1−zl

tl

)∫
Rd+
f(x)

d∏
l=1

e
− 1

2

1+zl
1−zl

xl(xltlzl)
−γl/2xγll

×Iγl
(

2
√
xltlzl

1− zl

)
dx

Jz,γf(t) =

(
d∏
l=1

(1− zl)−1

)∫
Rd+
f(x)

d∏
l=1

(xltlzl)
−γl/2xγll Iγl

(
2
√
xltlzl

1− zl

)
dx.

Since z ∈ T(d),

zl = eiθl where θl ∈ (−π, π]\{0}, l = 1, . . . , d.

Observe that (1 + zl)/(1− zl) is purely imaginary. Moreover,

2
√
xltlzl

(1− zl)
=

i
√
xltl

sin(θl/2)
and (xltlzl)

− γl
2 = (xltl)

− γl
2 e−

iθlγl
2 .

Hence, for l = 1, . . . , d,

(xltlzl)
−γl/2Iγl

(
2
√
xltlzl

1− zl

)
= e−iθlγl/2(xltl)

−γl/2e(iγlπsgn θl)/2

×Jγl
( √

xltl
| sin(θl/2)|

)
. (3.1)

By the definition of the Bessel function of the first kind, it is clear that for ν ≥ 0,
ξ−ν |Jν(ξ)| is uniformly bounded when ξ ∈ (0, c) for arbitrary but fixed c ≥ 1.
Combining this with the asymptotic expansion of the Bessel function of the first
kind (see [1, 9.2.1, p. 364])

Jν(ξ) =
√

2/(πξ){cos(ξ − 1

2
νπ − 1

4
π) + e|=z|O(|z|−1)}, |z| → ∞, | arg z| < π,

we obtain that there exists C ≥ 1 such that∣∣∣∣∣
d∏
l=1

(xltlzl)
−γl/2Iγl

(
2
√
xltlzl

1− zl

)∣∣∣∣∣ ≤ C, ∀x, t ∈ Rd
+. (3.2)

Moreover, for ν ≥ 0, by the definition of Jν , the function

ξ 7→ ξ−νJν(ξ), R+ → C,

can be extended to a continuous function on R+. Hence, (3.1) and (3.2) imply
that for f ∈ S(Rd

+) the integrals in the definition for Iz,γf and Jz,γf converge
absolutely i.e.

Iz,γf,Jz,γf ∈ CL∞(Rd
+).
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When fj → f in S(Rd
+),

Iz,γfj → Iz,γf and Jz,γfj → Jz,γf in CL∞(Rd
+).

Hence, Iz,γ and Jz,γ are well defined continuous mappings from S(Rd
+) to CL∞(Rd

+).
Our goal is to prove that Iz,γ and Jz,γ are continuous mappings from S(Rd

+) onto
S(Rd

+). Firstly, we prove this for Jz,γ in the case d = 1.

Lemma 3.2.1. For z ∈ T(1) and γ ≥ 0, Jz,γ is a continuous mapping from S(R+)
onto S(R+).

Proof. Clearly S(R+) is continuously injected into L2(R+, t
γdt). Let Eγ be the

Laguerre operator. Then

Eγ(t
γ/2Lγn(t)) = −ntγ/2Lγn(t),

see (1.3). For f ∈ S(R+), we have

Eγ(t
γ/2f(t)) = tγ/2

(
(γ + 1)Df(t) + tD2f(t)− tf(t)

4
+

(γ + 1)

2
f(t)

)
.

Hence, for k ∈ N,

Ek
γ (tγ/2f(t)) = tγ/2gk(t),

for some gk ∈ S(R+). Let

an(f) =

∫ ∞
0

f(t)Lγn(t)tγdt.

Then, by integration by parts, we have∫ ∞
0

g1(t)Lγn(t)tγdt =

∫ ∞
0

Eγ(t
γ/2f(t))Lγn(t)tγ/2dt = −nan(f).

Iterating this, we obtain∫ ∞
0

gk(t)Lγn(t)tγdt = (−n)kan(f).

Since gk ∈ S(R+) ⊆ L2(R+, t
γdt), we conclude {an(f)}n∈N0 ∈ s. Observe that f =∑

n an(f)Lγn in L2(R+, t
γdt). We need the following estimate for the derivatives

of the Laguerre polynomials (see Theorem 1.4.1):

∣∣tkDp(e−t/2Lγn(t))
∣∣ ≤ 2−min{γ,k}4k(n+ 1) · . . . · (n+ k)

(
n+ max{γ − k, 0}+ p

n

)
,

for all t ≥ 0, n, k, p ∈ N0. Denote by [γ] the integral part of γ, we have(
n+ max{γ − k, 0}+ p

n

)
≤
(
n+ [γ] + 1 + p

n

)
≤ (n+ [γ] + p+ 1)[γ]+p+1.
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Hence, there exists Cp,k ≥ 1 which depends on p and k, but not on n, such that∣∣tkDpLγn(t)
∣∣ ≤ Cp,k(n+ 1)k+p+[γ]+1. (3.3)

Since {an(f)}n ∈ s, we have∑
n

|an(f)| sup
t∈R+

|tkDpLγn(t)| <∞,

i.e.
∑

n an(f)Lγn converges absolutely in S(R+). Since Jz,γf : S(R+)→ CL∞(R+)
is continuous,

Jz,γf =
∑
n

an(f)Jz,γLγn

and the series converges absolutely in CL∞(R+). Using (3.1) and (1.9), we obtain

Jz,γLγn(t) = 2(−1)ne−
iγθ
2 e

iγπsgn θ
2 (1− eiθ)−1| sin(θ/2)|−γLγn

(
t/ sin2(θ/2)

)
. (3.4)

The estimate (3.3) together with (3.4) implies that
∑

n an(f)Jz,γLγn converges
absolutely in S(R+). Thus, we obtain that the image of S(R+) under Jz,γ is
contained in S(R+). Since Jz,γ : S(R+) → CL∞(R+) is continuous its graph is
closed in S(R+)×CL∞(R+). As S(R+) is continuously injected into CL∞(R+) and
Jz,γ (S(R+)) ⊆ S(R+), the graph of Jz,γ is closed in S(R+)×S(R+). Since S(R+)
is an (F )-space, the closed graph theorem implies that Jz,γ : S(R+) → S(R+) is
continuous (see Appendix A.3).

Now, by the principle of induction, we show that for z ∈ T(d) and γ ∈ Rd
+,

Jz,γ is a continuous mapping from S(Rd
+) into itself. When f ∈ S(Rd

+), we denote

Jz,γ by J (d)
z,γ in order to avoid confusions. We already considered the case d = 1;

J (1)
z,γ : S(R+)→ S(R+) is continuous. Let J (d)

z,γ be continuous. Let

ν = (γ, γ′) ∈ Rd+1
+ where γ ∈ Rd

+ and γ′ ≥ 0

and let
ζ = (z, z′) ∈ T(d+1) where z ∈ T(d) and z′ ∈ T(1).

The mapping

J (d)
z,γ ⊗ J

(1)
z′,γ′ : S(Rd

+)⊗π S(R+)→ S(Rd
+)⊗π S(R+)

is continuous. Denoting by J̃ζ,ν its continuous extension on the completions,
the Schwartz kernel theorem i.e. Theorem 2.4.1 for S(Rd

+) yields that J̃ζ,ν is a
continuous mapping from S(Rd+1

+ ) into itself. Observe that for each f ∈ S(Rd
+)⊗

S(R+),

J (d+1)
ζ,ν f(t) = J̃ζ,νf(t), ∀t ∈ Rd+1.

Thus J (d+1)
ζ,ν f ∈ S(Rd+1

+ ). If f ∈ S(Rd+1
+ ), there exists a sequence

fj ∈ S(Rd
+)⊗ S(R+), j ∈ N, such that fj → f in S(Rd+1

+ )
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(cf. Theorem 2.4.1; S(Rd+1
+ ) is an (F )-space). Since we proved that J (d+1)

ζ,ν :

S(Rd+1
+ ) → CL∞(Rd+1

+ ) is continuous (see the discussion before Lemma 3.2.1), we
have, for each fixed t ∈ Rd+1

+ ,

J (d+1)
ζ,ν f(t) = lim

j→∞
J (d+1)
ζ,ν fj(t) = lim

j→∞
J̃ζ,νfj(t) = J̃ζ,νf(t).

Hence,

J (d+1)
ζ,ν f ∈ S(Rd+1

+ ) and J (d+1)
ζ,ν f = J̃ζ,νf, ∀f ∈ S(Rd+1

+ ).

We conclude that J (d+1)
ζ,ν : S(Rd+1

+ )→ S(Rd+1
+ ) is continuous.

Next we prove that Jz,γ extends to isometry from L2(Rd
+, t

γdt) onto itself.
Firstly, we prove the following claim:

For γ ∈ Rd
+, let V

(d)
γ ⊆ S(Rd

+) be the space which consists of all finite linear
combinations of the form ∑

k≤n

akLγk, ak ∈ C.

Then, for each γ ∈ Rd
+, V

(d)
γ is dense in S(Rd

+).
The proof follows by the principle of induction on the dimension. For d = 1, it

is already proved in the first part of the proof of Lemma 3.2.1. Assume that the

assertion holds for d ∈ N. Let ν = (γ, γ′) ∈ Rd+1
+ , where γ ∈ Rd

+ and γ′ ≥ 0. The
inductive hypothesis implies that

V (d)
γ ⊗ V (1)

γ′ is dense in S(Rd
+)⊗ε S(R+)

and consequently in S(Rd+1
+ ) by the Schwartz kernel theorem for S(Rd

+), i.e. The-

orem 2.4.1. One easily verifies that V
(d)
γ ⊗V (1)

γ′ ⊆ V
(d+1)
ν and the proof is completed.

By (3.1) and (1.9), we obtain

Jz,γLγn(t) = 2d(−1)|n|cz,γ

(
d∏
l=1

| sin(θl/2)|−γl
)

×Lγn
(

t1
sin2(θ1/2)

, . . . ,
td

sin2(θd/2)

)
, (3.5)

where

cz,γ =
d∏
l=1

e−
iγlθl

2 e
iγlπsgn θl

2 (1− eiθl)−1.

One easily verifies that the set {Jz,γLγn|n ∈ Nd
0} is orthonormal in L2(Rd

+, t
γdt).

Now, we have

‖Jz,γf‖L2(Rd+,tγdt) = ‖f‖L2(Rd+,tγdt) for f ∈ V (d)
γ

(V
(d)
γ is a subspace of S(Rd

+) defined in the assertion above). Since V
(d)
γ is dense

in S(Rd
+), we have

‖Jz,γf‖L2(Rd+,tγdt) = ‖f‖L2(Rd+,tγdt) for all f ∈ S(Rd
+). (3.6)
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Thus Jz,γ extends to an isometry from L2(Rd
+, t

γdt) into itself. Secondly, we prove
the surjectivity of Jz,γ. It follows from (1.9) and (3.5) that

Jz̄,γJz,γLγn = Lγn and Jz,γJz̄,γLγn = Lγn, where z̄ = (z̄1, . . . , z̄d).

Hence, Jz,γ : L2(Rd
+, t

γdt) → L2(Rd
+, t

γdt) is bijective with an inverse Jz̄,γ. In-
cidentally, we can also conclude that Jz,γ : S(Rd

+) → S(Rd
+) is a topological

isomorphism (has an inverse Jz̄,γ).
Let z ∈ T(d) and

Φz(t) =
d∏
l=1

e
− 1

2

1+zl
1−zl

tl .

Since (1 + zl)/(1− zl) is purely imaginary, for all l = 1, . . . , d, |Φz(t)| = 1 and one
easily verifies that the mapping f 7→ Φzf , is a topological isomorphism on S(Rd

+)
and an isometry from L2(Rd

+, t
γdt) onto itself. Since

Iz,γf = ΦzJz,γ(Φzf),

we can conclude that Iz,γ is a topological isomorphism on S(Rd
+) and isometry

from L2(Rd
+, t

γdt) onto itself; clearly, its inverse is Iz̄,γ. In the sequel, we will need
this technical lemma.

Lemma 3.2.2. ([8, Lemma 3.2] for d = 1) Let f ∈ S(Rd
+), γ ∈ Rd

+, z ∈ Cd,
|z| = 1, z 6= 1 and n ∈ Nd

0.

(i) If 0 ≤ k ≤ n then

Jz,γ+nf(t) =
d∏
l=1

(1− zl
zl

)nl−kl
Dn−kJz,γ+kf(t).

(ii) Jz,γf(t) =
∏d

l=1(zl − 1)nlDnJz,γ+nf(t).

(iii)

∥∥t(p+k+γ)/2Dpf(t)
∥∥

2
=

(
d∏
l=1

|1− zl|−pl+kl
)∥∥t(p+k+γ)/2DkJz,γf(t)

∥∥
2
, (3.7)

for p, k ∈ Nd
0.

Proof. We follow the proof of (1.17).
(i) Since

(t−
γ
2 Iγ(
√
t))(m) =

1

2m
t
γ+m

2 Iγ+m(
√
t)

(see [25, p.103]), we obtain

Jz,γ+kf(t) =
( d∏
l=1

( zl
1− zl

)nl−kl)
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×
∫
Rd+
f(x)

d∏
l=1

(xltlzl)
−(γl+nl)/2xγl+nll Iγl+nl

(
2
√
xltlzl

1− zl

)
dx

=
( d∏
l=1

( zl
1− zl

)nl−kl)
Jz,γ+nf(t).

(ii) Since, f = J −1
z,γ Jz,γf(t) = Jz−1,γ(Jz,γf(t)), we obtain

Dnf(t) = DnJz−1,γ(Jz,γf(t)).

Hence, from (i) follows

Dnf(t) =
( d∏
l=1

( 1

zl − 1

)nl)
Jz−1,γ+n(Jz,γf(t)).

Hence, the assertion follows.
(iii) Consider F ∈ S(Rd

+) such that DkF = f and put g = Jz,γF ∈ S(Rd
+).

Then from (i) and (ii) follows

Dnf = Dn+kF = Dn+kJ −1
z,γ g = Dn+kJz−1,γg

=
( d∏
l=1

( 1

zl − 1

)nl+kl)
Jz−1,γ+n+kg

and

g = Jz,γf =
( d∏
l=1

(zl − 1)kl
)
Jz,γ+kD

kF =
( d∏
l=1

(zl − 1)kl
)
Jz,γ+kf

=
( d∏
l=1

((1− zl)(zl − 1)

zl

)kl)
DkJz,γf.

Now, from (3.6), we obtain

∥∥t(p+k+γ)/2Dpf(t)
∥∥

2
=

(
d∏
l=1

|1− zl|−pl−kl
)∥∥t(p+k+γ)/2Jz−1,γ+n+kg(t)

∥∥
2

=

(
d∏
l=1

|1− zl|−pl−kl
)∥∥t(p+k+γ)/2g(t)

∥∥
2

=

(
d∏
l=1

|1− zl|−pl+kl
)∥∥t(p+k+γ)/2DkJz,γf(t)

∥∥
2
.

Next, we summarise the properties of Jz,γ and Iz,γ in the following proposition:



34

Proposition 3.2.1. For γ ∈ Rd
+ and z ∈ T(d) the fractional powers and the

modified fractional powers of the Hankel-Clifford transform Iz,γ and Jz,γ are to-
pological isomorphisms on S(Rd

+) and they extend to isometries from L2(Rd
+, t

γdt)
onto itself with inverses, Iz̄,γ and Jz̄,γ respectively. Moreover, for all p, k ∈ Nd

0

and f ∈ S(Rd
+), (3.7) is valid.

Notice that when z = −1 ∈ T(d) then Hγ = Jz,γ = Iz,γ where Hγ is the
d-dimensional Hankel-Clifford transform, defined by

Hγ(f)(t) = 2−dt−γ/2
∫
Rd+
f(x)xγ/2

d∏
l=1

Jγl(
√
xltl)dx, t ∈ Rd

+.

By (3.5), Lγn, n ∈ Nd
0, are eigenfunctions for Hγ; more precisely

HγLγn = (−1)|n|Lγn.

Since Jz,0 is an isomorphism on S(Rd
+), by (3.7) we have the following result.

Theorem 3.2.1. The modified fractional powers of the Hankel-Clifford transform
Jz,0 are isomorphisms of Gα(Rd

+), Gβ(Rd
+) and Gβ

α(Rd
+) onto Gα(Rd

+), Gβ(Rd
+)

and Gα
β(Rd

+) respectively.

Let

• d′, d′′ ∈ N,

• γ = (γ′, γ′′) ∈ Rd′
+ × Rd′′

+ = Rd
+ (for brevity d = d′ + d′′) and

• z′ = (z1, . . . , zd′) ∈ T(d′).

Denote by J d′

z′,γ′ the modified fractional power of the Hankel-Clifford transform on

Rd′
+ and by Idd

′′
the identity operator S(Rd′′

+ )→ S(Rd′′
+ ). Now, since:

Theorem 3.2.2. ([23, Theorem 5, p. 277]) Let E1, E2, F1, F2 be locally convex,
A1 ∈ L(E1, F1), A2 ∈ L(E2, F2). If A1, A2 are injections, then A1 ⊗ε A2 is an
injection. If E1, E2, F1, F2 are complete, then also A1⊗̂εA2 is an injection.

Note, L(E,F ) is the vector space of all continuous linear mappings of E into
F .

It follows that J d′

z′,γ′⊗̂Idd
′′

is an injection on S(Rd
+). From

Theorem 3.2.3. ([23, Theorem 7, p. 189]) If E1, E2 are metrizable and A1, A2

homomorphisms onto F1 and F2, respectively, then A1⊗̂πA2 is a homomorphism
onto F1⊗̂πF2.

follows that J d′

z′,γ′⊗̂Idd
′′

is a homomorphism on S(Rd
+). Now, since S(Rd

+) is nuclear

(see Theorem 2.4.1), Proposition 3.2.1 imply that J d′

z′,γ′⊗̂Idd
′′

is a topological iso-

morphism on S(Rd
+). We denote by x ∈ Rd

+ x = (x′, x′′), where x′ = (x1, . . . , xd′)
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and x′′ = (xd′+1, . . . , xd). Let f ∈ S(Rd
+). Define the modified fractional power of

the partial Hankel-Clifford transform

J (d′)
z′,γ′f(t) =

(
d′∏
l=1

(1− zl)−1

)∫
Rd′+

f(x′, t′′)
d′∏
l=1

(xltlzl)
−γl/2xγll Iγl

(
2
√
xltlzl

1− zl

)
dx′.

By the same technique already described for the absolute convergence of Jz,γ, one

proves that J (d′)
z′,γ′f ∈ CL∞(Rd

+). When fj → f in S(Rd
+),

J (d′)
z′,γ′fj → J

(d′)
z′,γ′f in CL∞(Rd

+).

Since,

J (d′)
z′,γ′f(t) = J d′

z′,γ′⊗̂Idd
′′
f(t) for f ∈ S(Rd′

+)⊗ S(Rd′′

+ ),

we accomplish the same for all f ∈ S(Rd
+). Hence, the first part of the next

proposition follows.

Proposition 3.2.2. The modified fractional power of the partial Hankel-Clifford

transform J (d′)
z′,γ′ is a topological isomorphism on S(Rd

+).

Moreover, J (d′)
z′,γ′ extends to an isometry from L2(Rd

+, t
γdt) onto itself with an

inverse J (d′)

z̄′,γ′
. For all (p′, p′′), (k′, k′′) ∈ Nd′

0 × Nd′′
0 = Nd

0 and all f ∈ S(Rd
+)∥∥t′(p′+k′+γ′)/2t′′(p′′+k′′)/2Dp

t f(t)
∥∥

2

=

(
d′∏
l=1

|1− zl|−pl+kl
)∥∥∥t′(p′+k′+γ′)/2t′′(p′′+k′′)/2Dk′

t′D
p′′

t′′ J
(d′)
z′,γ′f(t)

∥∥∥
2
.

Proof. The proof that J (d′)
z′,γ′ extends to an isometry from L2(Rd

+, t
γdt) onto itself

with an inverse J (d′)

z̄′,γ′
is the same as for Jz,γ given above. As in the proof of (3.7),

one obtains for f ∈ S(Rd
+)∥∥∥t′(p′+k′+γ′)/2t′′(p′′+k′′)/2Dp′

t′ f(t)
∥∥∥

2

=

(
d′∏
l=1

|1− zl|−pl+kl
)∥∥∥t′(p′+k′+γ′)/2t′′(p′′+k′′)/2Dk′

t′ J
(d′)
z′,γ′f(t)

∥∥∥
2
. (3.8)

Clearly,

Dp′′

t′′ J
(d′)
z′,γ′f = J (d′)

z′,γ′D
p′′

t′′ f, for f ∈ S(Rd′

+)⊗ S(Rd′′

+ ).

Hence, the same holds for f ∈ S(Rd
+) and the equality follows from (3.8).

If Λ′ = {λ′1, . . . , λ′d′} ⊆ {1, . . . , d} and Λ′′ = {λ′′1, . . . , λ′′d′′} = {1, . . . , d}\Λ′ one
can also consider the modified fractional power of the partial Hankel-Clifford trans-
form with respect to xΛ′ = (xλ′1 , . . . , xλ′d′ ) defined by (here xΛ′′ = (xλ′′1 , . . . , xλ′′d′′ )

and abusing the notation we write x = (xΛ′ , xΛ′′))

J (Λ′)
z′,γΛ′

f(t) =

(
d′∏
l=1

(1− zl)−1

)∫
Rd′+

f(xΛ′ , tΛ′′)
d′∏
l=1

(xλ′ltλ′lzl)
−γλ′

l
/2
x
γλ′
l

λ′l
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×Iγλ′
l

(
2
√
xλ′ltλ′lzl

1− zl

)
dxΛ′ .

Corollary 3.2.1. Using the same notations as above, J (Λ′)
z′,γΛ′

is a topological iso-

morphism on S(Rd
+) and it extends to an isometry from L2(Rd

+, t
γdt) onto itself

with an inverse J (Λ′)

z̄′,γΛ′
. For all f ∈ S(Rd

+) and all (pΛ′ , pΛ′′), (kΛ′ , kΛ′′) ∈ Nd
0∥∥∥t(pΛ′+kΛ′+γΛ′ )/2

Λ′ t
(pΛ′′+kΛ′′ )/2
Λ′′ Dp

t f(t)
∥∥∥

2

=

(
d′∏
l=1

|1− zl|
−pλ′

l
+kλ′

l

)∥∥∥t(pΛ′+kΛ′+γΛ′ )/2
Λ′ t

(pΛ′′+kΛ′′ )/2
Λ′′ D

kΛ′
tΛ′
D
pΛ′′
tΛ′′
J (Λ′)
z′,γΛ′

f(t)
∥∥∥

2
. (3.9)

Proof. Let
Θ : Rd → Rd

be the orthogonal transformation given by

Θ(x) = y, where yλ′1 = x1, . . . , yλ′
d′

= xd′ and yλ′′1 = xd′+1, . . . , yλ′′
d′′

= xd′′ .

Observe that Θ maps Rd
+ and Rd

+ bijectively onto themselves. Let Θ̃ be the
mapping

f 7→ f ◦Θ, L2(Rd
+)→ L2(Rd

+).

One easily verifies that for each µ ∈ Rd
+ it is an isometry from L2(Rd

+, t
µdt) onto

L2(Rd
+, t

Θ−1µdt) and a topological isomorphism on S(Rd
+). Its inverse is

Θ̃−1f = f ◦Θ−1.

Let ν ′ = (γλ′1 , . . . , γλ′d′ ) ∈ Rd′
+. The corollary follows from Proposition 3.2.2 and

the fact that
J (Λ′)
z′,γΛ′

f = Θ̃−1J (d′)
z′,ν′Θ̃f.

Remark 3.2.1. Observe that

• if Λ′ = ∅ then J (Λ′)
z′,γΛ′

= Id and

• if Λ′ = {1, . . . , d}, J (Λ′)
z′,γΛ′

is just Jz,γ.

Let z′ = −1 ∈ T(d′) in J (Λ′)
z′,γΛ′

we obtain the partial Hankel-Clifford transform

with respect to xΛ′ = (xλ′1 , . . . , xλ′d′ ) denoted by H(Λ′)
γΛ′ .

As a direct consequence of Corollary 3.2.1 we have the following result.

Corollary 3.2.2. J (Λ′)
z′,0 is a topological isomorphism on Gα

α(Rd
+) with an inverse

J (Λ′)

z̄′,0
. In particular, H(Λ′)

0 is a self-inverse topological isomorphism on Gα
α(Rd

+).
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3.3 Fourier-Laguerre coefficients in Gα
α(Rd

+), α ≥ 1

In this section, we characterise the space Gα
α(Rd

+), α ≥ 1 in terms of the Fourier-
Laguerre coefficients.

Proposition 3.3.1. ([9, Lemma 3.1], for d=1) Let an =
∫
Rd+
f(t)Ln(t)dt, n ∈ Nd

0

and f ∈ L2(Rd
+). If there exist constants c > 0 and a > 1 such that

|an| ≤ ca−|n|
1/α

, n ∈ Nd
0, (3.10)

then f ∈ Gα
α(Rd

+), α ≥ 1.

Proof. As {an}n∈Nd0 ∈ sα ⊆ s, it follows f ∈ S(Rd
+) and the series

∑
n anLn

converges absolutely in S(Rd
+) to f . Since n

1/α
1 + . . . + n

1/α
d ≤ d|n|1/α, denoting

ã = a1/d > 1, we have

a−|n|
1/α ≤

d∏
l=1

ã−n
1/α
l .

Using the estimates (1.6) and (1.7) for p ∈ Nd
0, we have

∥∥tp/2Ln(t)
∥∥

2
≤ 2|p|+5d

d∏
l=1

(nl + 1) . . .
(
nl +

[pl
2

]
+ 2
)
, (3.11)

∥∥tp/2DpLn(t)
∥∥

2
≤ 25d

d∏
l=1

(nl + 1) . . .
(
nl +

[pl
2

]
+ 2
)
. (3.12)

Let Λ = {λ1, . . . , λd′} ⊆ {1, . . . , d}. Since

H(Λ)
0 Ln = (−1)nλ1

+...+nλd′Ln,

(3.11) implies∥∥∥tp/2H(Λ)
0 f(t)

∥∥∥
2
≤
∑
n∈Nd0

|an|
∥∥tp/2Ln(t)

∥∥
2

≤ c2|p|+5d
∑
n∈Nd0

d∏
l=1

ã−n
1/α
l (nl + 1) . . .

(
nl +

[pl
2

]
+ 2
)

≤ c2|p|+5d

d∏
l=1

ã([pl/2]+2)
∑
n∈Nd0

d∏
l=1

ã−(nl+[pl/2]+2)1/α
(
nl +

[pl
2

]
+ 2
)[pl/2]+2

.

Let u > 0, v > 1. Clearly, ρu,v(x) = v−(x+u)1/α
(x + u)u, x ∈ (−u,+∞) attains its

maximum at x = (αu/ ln v)α − u. This implies that there exist C1, A1 > 0 such
that ∥∥∥tp/2H(Λ)

0 f(t)
∥∥∥

2
≤ C1A

|p|
1 p

(α/2)p, for all p ∈ Nd
0, Λ ⊆ {1, . . . , d}. (3.13)
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Similarly, by using (3.12), there exist C2, A2 > 0 such that∥∥∥tp/2DpH(Λ)
0 f(t)

∥∥∥
2
≤ C2A

|p|
2 p

(α/2)p, for all p ∈ Nd
0, Λ ⊆ {1, . . . , d}. (3.14)

Since H(Λ)
0 f ∈ S(Rd

+), by integration by parts one easily verifies that∣∣∣〈t(p+k)/2DpH(Λ)
0 f(t), t(p+k)/2DpH(Λ)

0 f(t)〉L2(Rd+)

∣∣∣
=

∣∣∣〈Dp(tp+kDpH(Λ)
0 f(t)),H(Λ)

0 f(t)〉L2(Rd+)

∣∣∣ .
Hence, for all k, p ∈ Nd

0 such that 2k ≥ p, by (3.13) and (3.14), we obtain∥∥∥t(p+k)/2DpH(Λ)
0 f(t)

∥∥∥2

2

≤
∑
m≤p

(
p

m

)
(p+ k)!

(p+ k −m)!

∣∣∣(tp+k−mD2p−mH(Λ)
0 f(t),H(Λ)

0 f(t)
)∣∣∣

≤ 2|p|+|k|
∑
m≤p

(
p

m

)
m!
∣∣∣(t(2p−m)/2D2p−mH(Λ)

0 f(t), t(2k−m)/2H(Λ)
0 f(t)

)∣∣∣
≤ C ′A′|p|+|k|

∑
m≤p

(
p

m

)
m(α/2)mm(α/2)m(2p−m)(α/2)(2p−m)(2k −m)(α/2)(2k−m)

≤ C ′A′|p|+|k|2|p|(2p)αp(2k)αk,

i.e. there exist C3, A3 > 0 such that for all k, p ∈ Nd
0 such that 2k ≥ p and all

Λ ⊆ {1, . . . , d} ∥∥∥t(p+k)/2DpH(Λ)
0 f(t)

∥∥∥
2
≤ C3A

|p+k|
3 p(α/2)pk(α/2)k. (3.15)

Let now p, k ∈ Nd
0 be arbitrary but fixed. Let

Λ′ = {λ′1, . . . , λ′d′} ⊆ {1, . . . , d} be such that kλ′l <
pλ′l
2
, l = 1, . . . , d′

and

Λ′′ = {λ′′1, . . . , λ′′d′′} = {1, . . . , d}\Λ′ be such that kλ′′l ≥
pλ′′l
2
, l = 1, . . . , d′′.

Then (3.9) and (3.15) imply∥∥t(p+k)/2Dp
t f(t)

∥∥
2
≤ 2|k|

∥∥∥t(p+k)/2D
kΛ′
tΛ′
D
pΛ′′
tΛ′′
H(Λ′)

0 f(t)
∥∥∥

2

≤ C3(2A3)|p+k|p(α/2)pk(α/2)k,

i.e. f ∈ Gα
α(Rd

+).

Our next goal is to prove that f ∈ Gα
α(Rd

+) implies (3.10). We need some
preparations.

Let Π = Π1 × ...× Πd, where

Πl = {zl ∈ C| Im zl < 0}, l = 1, ..., d.

One easily verifies that for each z = x+ iy ∈ Π, the functions
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• t 7→ e−2πizt, Rd
+ → C,

• t 7→ Dxle
−2πi(x+iy)t = −2πitle

−2πi(x+iy)t, Rd
+ → C for l = 1, . . . , d and

• t 7→ Dyle
−2πi(x+iy)t = 2πtle

−2πi(x+iy)t, Rd
+ → C for l = 1, . . . , d

are in Gα
α(Rd

+) (also in S(Rd
+)). For the moment, denote by el, l = 1, . . . , d, the

point in Rd such that all coordinates are 0 except the l-th coordinate which is equal
to 1. By standard arguments, one proves that for the fixed x(0) = (x

(0)
1 , . . . , x

(0)
d ) ∈

Rd and y(0) = (y
(0)
1 , . . . , y

(0)
d ) ∈ Rd with y

(0)
l < 0, l = 1, . . . , d (i.e. z(0) = x(0) +

iy(0) ∈ Π) we have(
e−2πi(x(0)+xlel+iy

(0))t − e−2πi(x(0)+iy(0))t
) 1

xl
→ −2πitle

−2πi(x(0)+iy(0))t,

as xl → 0 in Gα,A
α,A(Rd

+) for some A > 0 and consequently in Gα
α(Rd

+) and S(Rd
+).

Also, (
e−2πi(x(0)+i(y(0)+ylel))t − e−2πi(x(0)+iy(0))t

) 1

yl
→ 2πtle

−2πi(x(0)+iy(0))t,

as yl → 0 in Gα,A
α,A(Rd

+) for some A > 0 and consequently in Gα
α(Rd

+) and S(Rd
+).

Moreover,

−2πitle
−2πi(x+iy)t → −2πitle

−2πi(x(0)+iy(0))t

and

2πtle
−2πi(x+iy)t → 2πtle

−2πi(x(0)+iy(0))t

as (x, y) → (x(0), y(0)) in Gα,A
α,A(Rd

+) for some A > 0. Hence, the same holds in

Gα
α(Rd

+) and S(Rd
+). It follows that for each u ∈ (Gα

α(Rd
+))′ or u ∈ (S(Rd

+))′, the
function

z 7→ FΠu(z) = 〈u(t), e−2πizt〉, Π→ C,
is of the class C1;

DxlFΠu(x+ iy) = 〈u(t), Dxle
−2πi(x+iy)t〉

and
DylFΠu(x+ iy) = 〈u(t), Dyle

−2πi(x+iy)t〉.
Since the Cauchy-Riemann equations hold for FΠu, it is analytic on Π.

Let D = D1 × ...×Dd, where

Dl = {wl ∈ C| |wl| < 1}, l = 1, ..., d.

Observe that the mapping

w 7→ Ω(w) =

(
1 + w1

4πi(1− w1)
, . . . ,

1 + wd
4πi(1− wd)

)
is a biholomorphic mapping from D onto Π with an inverse

z 7→ Ω−1(z) =

(
4πiz1 − 1

4πiz1 + 1
, . . . ,

4πizd − 1

4πizd + 1

)
.

Thus, we have the following result.
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Lemma 3.3.1. For each u ∈ (Gα
α(Rd

+))′ or u ∈ (S(Rd
+))′, the function

FDu(w) = FΠu(Ω(w)) =

〈
u(t),

d∏
l=1

e
− 1

2

1+wl
1−wl

tl

〉
, D→ C,

is analytic on D, i.e. FDu ∈ O(D).

Proposition 3.3.2. ([7, Proposition 1.1], for d=1) Let u ∈ (S(Rd
+))′ and an =

〈u,Ln〉, n ∈ Nd
0. Then,

FD(u)(w) =
d∏
j=1

(1− wj)
∑
n∈Nd0

anw
n, w ∈ D. (3.16)

In particular, if FDu = 0 then u = 0.

Proof. By Theorem 2.3.1, u =
∑

n∈Nd0
anLn and the series converges absolutely in

(S(Rd
+))′. As e−2πizt ∈ S(Rd

+), z ∈ Π, we obtain

FΠ(u)(z) =
∑
n∈Nd0

an

∫
Rd+
Ln(t)e−2πiztdt, z ∈ Π.

Using (1.13), we obtain

FΠ(u)(z) =
∑
n∈Nd0

an

d∏
j=1

(1
2

+ 2πizj − 1)nj

(1
2

+ 2πizj)nj+1
, z ∈ Π.

By the definition of FDu, (3.16) follows.

The next two assertions are already proved in [9], Lemma 3.2 and Corollary
3.5, in the case d=1. However, there are subtle gaps which we improve upon.

Proposition 3.3.3. Let α ≥ 1 and {an}n∈Nd0 be a sequence of complex numbers
such that an → 0 as |n| → ∞. Then

F (w) = (1− w)1
∑
n∈Nd0

anw
n, w ∈ D,

belongs to O(D). The following conditions are equivalent:

(i) There exist constants C,A > 0 such that

|DpF (w)| ≤ CA|p|pαp, p ∈ Nd
0 , w ∈ D. (3.17)

(ii) There exist constants c > 0, a > 1 such that |an| ≤ ca−|n|
1/α
, n ∈ Nd

0.
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Proof. Clearly F ∈ O(D). Let
∑

n∈Nd0
bnw

n be the power series expansion of F at

0. Then, for n ∈ Nd
0 we have

bn =
DnF (0)

n!
=

1

n!

∑
k≤n
k≤1

(
n

k

)
(−1)|k|

( ∑
m≥n−k

m!

(m− n+ k)!
amw

m−n+k

)∣∣∣∣∣
w=0

=
∑
k≤n
k≤1

(−1)|k|an−k. (3.18)

Thus, for n,m ∈ Nd
0,∑
p≤m

bn+1+p =
∑
p≤m

∑
k≤1

(−1)|k|an+p+1−k. (3.19)

Firstly, assume that d ≥ 2. Denote by Qn,m the d-dimensional parallelepiped

Qn,m = {x ∈ Rd|nl ≤ xl ≤ nl +ml + 1, l = 1, . . . , d}.

If q ∈ Nd
0 is such that:

• n+ q is in the interior of Qn,m

Then an+q appears exactly 2d times in the sum on the right hand side of
(3.19) such that 2d−1 times with the ”+” sign and 2d−1 times with ”−” sign.

• n+ q is on the s-dimensional face of Qn,m, 1 ≤ s ≤ d− 1
Then an+q appears exactly 2s times half of which are with the ”+” sign and
the other half with the ”−” sign.

Thus on the right hand side of (3.19) everything cancels except for those terms
which indexes are the vertices of Qn,m and they appear only once. For k ∈ Nd

0

with k ≤ 1 denote by m(k) the multi-index that satisfies

m
(k)
l =

{
0, kl = 0

ml + 1, kl = 1

l = 1, . . . , d; when k varies through the multi-indexes that are ≤ 1, n + m +
1 −m(k) varies through the vertices of Qn,m. Using this notations, by the above
observations, we have∑

p≤m

bn+1+p =
∑
k≤1

(−1)|k|an+m+1−m(k) , ∀n,m ∈ Nd
0. (3.20)

Clearly, for d = 1 (3.19) and (3.20) are equal.
Assume that (i) holds. Since

DpF (w) =
∑
n≥p

n!

(n− p)!
bnw

n−p,
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the hypothesis in (i) and the Cauchy formula yield

n!

(n− p)!
|bn| ≤ CA|p|pαp, for all n, p ∈ Nd

0, n ≥ p.

As n!/(n− p)! ≥ e−|p|np, for n ≥ p, we have

|bn| ≤ C
d∏
j=1

inf
pj≤nj

(eA)pjp
αpj
j

n
pj
j

, n ∈ Nd
0. (3.21)

Of course we can assume A ≥ 1. Then, if pj ≥ nj,

(eA)pjp
αpj
j

n
pj
j

≥
(eA)njn

αnj
j

n
nj
j

,

and so the infimum in (3.21) can be taken varying on pj ≥ 0, j = 1, . . . , d. Thus,
[12, (2) and (3), p. 169-170] imply, with suitable c′ > 0 and a′ > 1,

|bn| ≤ C
d∏
j=1

inf
pj≥0

(eA)pjp
αpj
j

n
pj
j

≤ c′a′−|n|
1/α

, n ∈ Nd
0.

Observe that for p, n ∈ Nd
0 with p ≥ n, we have

|p|1/α ≥ 1

2
(|p− n|1/α + |n|1/α).

Thus, if we put a =
√
a′ > 1 we have

a′−|p|
1/α ≤ a−|p−n|

1/α

a−|n|
1/α

, for all p ≥ n.

The above estimate for |bn| together with (3.20) implies that for all n,m ∈ Nd
0

|an| ≤
∑
p≤m

|bn+1+p|+
∑
k≤1
k 6=1

|an+m+1−m(k)|

≤ c′a−|n|
1/α
∑
p∈Nd0

a−|p|
1/α

+
∑
k≤1
k 6=1

|an+m+1−m(k) |

= ca−|n|
1/α

+
∑
k≤1
k 6=1

|an+m+1−m(k)|.

The last sum has exactly 2d − 1 terms and since k 6= 1,

|n+m+ 1−m(k)| ≥ |n|+ min{ml| l = 1, . . . , d}.

Let n ∈ Nd
0 be arbitrary but fixed. Since the above estimate for |an| holds for

arbitrary m ∈ Nd
0 and since an → 0 as |n| → ∞ (by hypothesis), this implies

|an| ≤ ca−|n|
1/α

.
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Assume now that (ii) holds. Then (3.18) implies the existence of a > 1 and

c > 0 such that |bn| ≤ ca−|n|
1/α

, ∀n ∈ Nd
0. Observe that n

1/α
1 + . . .+n

1/α
d ≤ d|n|1/α.

Hence, by putting a′ = a1/d, we have

a−|n|
1/α ≤

d∏
j=1

a′−n
1/α
j .

Now, for p ∈ Nd
0 and w ∈ D we obtain

|DpF (w)| ≤
∑
n≥p

n!

(n− p)!
|bn| ≤ c

∑
n∈Nd0

d∏
j=1

n
pj
j a
′−n1/α

j .

Since ρ(x) = xpu−x
1/α

, x ≥ 0 (u > 1, p ∈ N0) attains its maximum at x =
(αp/ lnu)α, we proved (3.17).

We will prove in Proposition 3.3.5 that for f ∈ Gα
α(Rd

+), the analytic function
FD(f) satisfies part (i) of the previous proposition. In order to prove this we need
the next result; its proof is analogous to the proof of [9, Theorem 3.3] for the one
dimensional case and we omit it.

Proposition 3.3.4. Let f ∈ Gα(Rd
+), α ≥ 1. Then there exist constants C,A > 0

such that

|DpFD(f)(w)| ≤ CA|p|pαp, p ∈ Nd
0, w ∈ D, Rewl ≤ 0, l = 1, ..., d.

Proposition 3.3.5. Let f ∈ Gα
α(Rd

+), α ≥ 1. Then there exist constants C,A > 0
such that

|DpFD(f)(w)| ≤ CA|p|pαp, p ∈ Nd
0, w ∈ D (3.22)

and limw→1FD(f)(w) = 0.

Proof. As f ∈ S(Rd
+), Proposition 3.3.2 implies that limw→1FD(f)(w) = 0.

We introduce some notation to make the proof simpler. Let

Λ′ = {λ′1, . . . , λ′d′} ⊆ {1, . . . , d} and Λ′′ = {λ′′1, . . . , λ′′d′′} = {1, . . . , d}\Λ′.

For ζ ∈ Cd (or in Rd
+, or in Nd

0), by abusing the notation, we write ζ = (ζΛ′ , ζΛ′′)
where

ζΛ′ = (ζλ′1 , . . . , ζλ′d′ ) and ζΛ′′ = (ζλ′′1 , . . . , ζλ′′d′′ ).

Let Λ̃′ be the biholomorphic mapping from Cd onto itself defined by Λ̃′w = ζ
where

ζλ′l = −wλ′l , l = 1, . . . , d′ and ζλ′′s = wλ′′s , s = 1, . . . , d′′.

Also, denote

D(Λ′) = {ζ ∈ D|Re ζλ′l ≥ 0, l = 1, . . . , d′, and Re ζλ′′s ≤ 0, s = 1, . . . , d′′}

(note that D(∅) consists of all w ∈ D such that the coordinates of w have non-
positive real parts).
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For f ∈ S(Rd
+) let an = 〈f,Ln〉, n ∈ Nd

0. Then, Proposition 3.3.2 implies
FDf(w) = (1− w)1

∑
n∈Nd0

anw
n, w ∈ D. As

〈H(Λ′)
0 f,Ln〉 = (−1)

nλ′1
+...+nλ′

d′ an

we obtain

FD(H(Λ′)
0 f)(w) = (1− w)1

∑
n∈Nd0

(−1)
nλ′1

+...+nλ′
d′ anw

n, w ∈ D.

Now,

FD(H(Λ′)
0 f)(Λ̃′w) =

(
d′∏
l=1

1 + wλ′l
1− wλ′l

)
· (1− w)1

∑
n∈Nd0

anwn, w ∈ D.

Thus

FDf(w) =

(
d′∏
l=1

1− wλ′l
1 + wλ′l

)
FD(H(Λ′)

0 f)(Λ̃′w), w ∈ D, f ∈ S(Rd
+). (3.23)

Let f ∈ Gα
α(Rd

+). Since H(Λ′)
0 f ∈ Gα

α(Rd
+) (cf. Corollary 3.2.2), Proposition 3.3.4

implies the existence of A,C > 0 such that∣∣∣DnFD(H(Λ′)
0 f)(w)

∣∣∣ ≤ CA|n|nαn, ∀n ∈ Nd
0, ∀w ∈ D(∅), ∀Λ′ ⊆ {1, . . . , d}. (3.24)

Observe that for w ∈ D(∅), (3.22) holds by Proposition 3.3.4. To prove (3.22) for
w ∈ D(Λ′) when ∅ 6= Λ′ ⊆ {1, . . . , d}, we need an estimate for the derivatives of
the function

ζ 7→ 1− ζ
1 + ζ

, {ζ ∈ C| |ζ| < 1} → C when Re ζ ≥ 0.

Since (1− ζ)/(1 + ζ) = 2/(1 + ζ)− 1 and |1 + ζ| ≥ 1 when Re ζ ≥ 0, for j ∈ N we
have ∣∣∣∣ djdζj

(
1− ζ
1 + ζ

)∣∣∣∣ =
2j!

|1 + ζ|j+1
≤ 2j!, when |ζ| < 1 and Re ζ ≥ 0. (3.25)

Clearly, (3.25) also holds for j = 0. Now, observe that Λ̃′(D(Λ′)) = D(∅). Hence,
for w ∈ D(Λ′), (3.23), (3.24) and (3.25) imply

|DnFDf(w)| ≤
∑

mΛ′≤nΛ′

(
nΛ′

mΛ′

)
2d
′
mΛ′ !

∣∣∣DnΛ′−mΛ′
wΛ′

DnΛ′′
wΛ′′
FD(H(Λ′)

0 f)(Λ̃′w)
∣∣∣

≤ C1

∑
mΛ′≤nΛ′

(
nΛ′

mΛ′

)
m
αmΛ′
Λ′ A|n|−|mΛ′ |(nΛ′ −mΛ′)

α(nΛ′−mΛ′ )n
αnΛ′′
Λ′′

≤ C1(2A)|n|nαn,

which completes the proof.
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Now, Proposition 3.3.1, Proposition 3.3.5, Proposition 3.3.2 and Proposition
3.3.3 give the main result of this section:

Theorem 3.3.1. ([9, Theorem 3.6], for d=1) Let α ≥ 1. For f ∈ L2(Rd
+) let

an =

∫
Rd+
f(t)Ln(t)dt, n ∈ Nd

0.

The following conditions are equivalent:

(i) There exist c > 0 and a > 1 such that

|an| ≤ ca−|n|
1/α

for n ∈ Nd
0.

(ii) f ∈ Gα
α(Rd

+).

(iii) There exist C,A > 0 such that

|DpFD(f)(w)| ≤ CA|p|pαp for p ∈ Nd
0 and w ∈ D

and limw→1FD(f)(w) = 0.

Conversely, given a sequence {an}n∈Nd0 satisfying condition (i) or given F ∈ O(D)

of the form F (w) = (1 − w)1
∑

n anw
n with an → 0 as |n| → ∞ which satisfies

(3.17), there exists f ∈ Gα
α(Rd

+) such that an =
∫
Rd+
f(t)Ln(t)dt and FD(f)(w) =

F (w) for w ∈ D.

3.4 Topological properties of Gα
α(Rd

+), α ≥ 1

As we shell see, we gain deep insights into the topological structure of Gα
α(Rd

+),
α ≥ 1 by Theorem 3.3.1. Let ι : Gα

α(Rd
+) → sα, ι(f) = {〈f,Ln〉}n∈Nd0 . Theorem

3.3.1 proves that ι is a well defined bijection.

Theorem 3.4.1. Let α ≥ 1. The mapping

ι : Gα
α(Rd

+)→ sα, ι(f) = {〈f,Ln〉}n∈Nd0

is a topological isomorphism between Gα
α(Rd

+) and sα.
In particular, Gα

α(Rd
+) is a (DFN)-space and (Gα

α(Rd
+))′ is an (FN)-space.

For each f ∈ Gα
α(Rd

+),
∑

n∈Nd0
〈f,Ln〉Ln is summable to f in Gα

α(Rd
+).

Proof. If we consider ι as a linear mapping from Gα
α(Rd

+) into s (sα is canonically
injected into s) then ι is continuous since it decomposes as

Gα
α(Rd

+) −→ S(Rd
+)

f 7→{〈f,Ln〉}n−−−−−−−→ s,

where the first mapping is the canonical inclusion. Hence, ι has a closed graph in
Gα
α(Rd

+)×s. Since the range of ι is in sα and sα is continuously injected into s, the
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graph of ι is closed in Gα
α(Rd

+)× sα. Gα
α(Rd

+) is an injective inductive limit of (F )-
spaces. For this reason, Gα

α(Rd
+) is ultrabornological (see Proposition A.8.3; every

(F )-space is ultrabornological). Moreover, sα is a webbed space of De Wilde (see
Proposition A.8.2). Hence, the closed graph theorem of De Wilde (see Theorem
A.8.1) implies that ι : Gα

α(Rd
+)→ sα is continuous.

Also, sα is ultrabornological since it is bornological and complete and Gα
α(Rd

+)
is a webbed space of De Wilde (see Proposition A.8.1; every (F )-space is a webbed
space of De Wilde). The mapping ι−1 : sα → Gα

α(Rd
+), which has a closed graph,

is continuous by the De Wilde closed graph theorem (see Theorem A.8.1).
Now, Proposition 1.3.1 implies that Gα

α(Rd
+) is a (DFN)-space and (Gα

α(Rd
+))′

is an (FN)-space.
Given f ∈ Gα

α(Rd
+), let an = 〈f,Ln〉. For each finite Φ ⊆ Nd

0, denote

fΦ =
∑
n∈Φ

anLn ∈ Gα
α(Rd

+)

(since Ln ∈ Gα
α(Rd

+)). Let a > 1 be such that ι(f) ∈ sα,a. Fix 1 < a′ < a. One
easily verifies that for each ε > 0 there exists finite Φ0 ⊆ Nd

0 such that for each
finite Φ ⊆ Nd

0, satisfying Φ0 ⊆ Φ, we have

‖ι(f)− ι(fΦ)‖sα,a′ ≤ ε.

Since ι is an isomorphism this implies that for each neighbourhood of zero V ⊆
Gα
α(Rd

+) there exists finite Φ0 ⊆ Nd
0 such that for finite Φ ⊇ Φ0 we have f−fΦ ∈ V ,

i.e.
∑

n∈Nd0
anLn is summable to f in Gα

α(Rd
+).

Theorem 3.4.2. Let α ≥ 1. The mapping

ι̃ : (Gα
α(Rd

+))′ → (sα)′, ι̃(T ) = {〈T,Ln〉}n∈Nd0

is a topological isomorphism.
Moreover,

∑
n∈Nd0
〈T,Ln〉Ln is summable to T in (Gα

α(Rd
+))′.

Proof. By Theorem 3.4.1, both the transpose of ι, tι : (sα)′ → (Gα
α(Rd

+))′, and
its inverse (tι)−1 : (Gα

α(Rd
+))′ → (sα)′ are topological isomorphisms. For T ∈

(Gα
α(Rd

+))′, let {bn}n = (tι)−1(T ). Then

〈T,Ln〉 = 〈tι({bn}n),Ln〉 = 〈{bn}n, ι(Ln)〉 = bn.

Thus,

{〈T,Ln〉}n = {bn}n = (tι)−1(T ) ∈ (sα)′.

Hence, ι̃ is in fact a topological isomorphism

(tι)−1 : (Gα
α(Rd

+))′ → (sα)′.

By the similar approach as above, one proves that
∑

n∈Nd0
〈T,Ln〉Ln is sum-

mable to T in (Gα
α(Rd

+))′.
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For T ∈ (Gα
α(Rd

+))′, by Lemma 3.3.1, FDT ∈ O(D). Since
∑

n〈T,Ln〉Ln is
summable to T in (Gα

α(Rd
+))′, by the same method as in the proof of Proposition

3.3.2, one proves the following result.

Proposition 3.4.1. Let T ∈ (Gα
α(Rd

+))′, α ≥ 1 and bn = 〈T,Ln〉, n ∈ Nd
0. Then,

FD(T )(w) =
d∏
j=1

(1− wj)
∑
n∈Nd0

bnw
n, w ∈ D.

In particular, if FDT = 0 then T = 0.

3.5 Kernel theorem for Gα
α(Rd

+) and its dual space

In this section we state the Schwartz kernel theorem for Gα
α(Rd

+), α ≥ 1 and its
dual space. We review the topological tensor product theory in Appendix A.5.

Theorem 3.5.1. Let α ≥ 1. We have the following canonical isomorphism:

Gα
α(Rd1

+ )⊗̂Gα
α(Rd2

+ ) ∼= Gα
α(Rd1+d2

+ )

and

(Gα
α(Rd1

+ ))′⊗̂(Gα
α(Rd2

+ ))′ ∼= (Gα
α(Rd1+d2

+ ))′ ∼= L(Gα
α(Rd2

+ ), (Gα
α(Rd1

+ ))′). (3.26)

Proof. For simplicity, put d = d1 + d2. Let sαd1
, sαd2

and sα be the d1-dimensional,
the d2-dimensional and the d-dimensional variant of the space sα, respectively.

Firstly, we prove that (sαd1
)′⊗̂(sαd2

)′ ∼= (sα)′, where an isomorphism is given by
the extension of the canonical inclusion

(sαd1
)′ ⊗ (sαd2

)′ → (sα)′, {un}n∈Nd10
⊗ {vm}m∈Nd20

7→ {unvm}(n,m)∈Nd0 .

Observe that the mapping

(
{un}n∈Nd10

, {vm}m∈Nd20

)
7→ {unvm}(n,m)∈Nd0 , (sαd1

)′ × (sαd2
)′ → (sα)′

is continuous. Hence, the π topology on (sαd1
)′⊗ (sαd2

)′ is stronger than the induced
one from (sα)′.

Let A and B be the equicontinuous subsets of ((sαd1
)′)′ = sαd1

and ((sαd2
)′)′ = sαd2

,
respectively (sα is reflexive since it is a (DFN)-space). Hence, there exist C > 0
and r > 1 such that

|〈{un}n∈Nd10
, {an}n∈Nd10

〉| ≤ C
∑
n∈Nd10

|un|r−|n|
1/α

for all {an}n∈Nd10
∈ A and for all {un}n∈Nd10

∈ (sαd1
) and

|〈{vm}m∈Nd20
, {bm}m∈Nd20

〉| ≤ C
∑
m∈Nd20

|vm|r−|m|
1/α
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for {bm}m∈Nd20
∈ B and {vm}m∈Nd20

∈ (sαd2
)′. Let

{χ(n,m)}(n,m)∈Nd0 =
l∑

j=1

{u(j)
n }n∈Nd10

⊗ {v(j)
m }m∈Nd20

∈ (sαd1
)′ ⊗ (sαd2

)′.

Then, for {an}n∈Nd10
∈ A and {bm}m∈Nd20

∈ B, we have

∣∣〈{χ(n,m)}(n,m), {an}n ⊗ {bm}m
〉∣∣ =

∣∣∣〈 l∑
j=1

{u(j)
n }n

〈
{v(j)

m }m, {bm}m
〉
, {an}n〉

∣∣∣
=

∣∣∣〈{ l∑
j=1

〈
{v(j)

m }m, {bm}m
〉
u(j)
n

}
n
, {an}n

〉∣∣∣
≤ C

∑
n∈Nd10

∣∣∣ l∑
j=1

〈
{v(j)

m }m, {bm}m
〉
u(j)
n

∣∣∣r−|n|1/α
= C

∑
n∈Nd10

∣∣∣〈{ l∑
j=1

u(j)
n v(j)

m

}
m
, {bm}m

〉∣∣∣r−|n|1/α
≤ C2

∑
(n,m)∈Nd

∣∣∣ l∑
j=1

u(j)
n v(j)

m

∣∣∣r−|n|1/α−|m|1/α ≤ C2‖{χ(n,m)}(n,m)‖(sα)′,r.

We can conclude that the ε topology on (sαd1
)′⊗(sαd2

)′ is weaker than the induced one
from (sα)′. Since (sα)′ is nuclear, these topologies are identical. Clearly, (sαd1)′ ⊗
(sαd2

)′ is dense in (sαd )′. Hence, we proved the desired topological isomorphism.
As all spaces in consideration are (FN)-spaces, by duality we have sαd1

⊗̂sαd2

∼=
sα. Note that the isomorphism is in fact the extension of the canonical inclusion

κ : sαd1
⊗ sαd2

→ sα, κ({an}n ⊗ {bm}m) = {anbm}(n,m).

Now observe that the diagram

sαd1
⊗ sαd2

sα

Gα
α(Rd1

+ )⊗Gα
α(Rd2

+ ) Gα
α(Rd

+)

κ

ι⊗ ι ι

commutes, where the bottom horizontal line is the canonical inclusion f⊗g(x, y) 7→
f(x)g(y). Since κ extends to an isomorphism, by Theorem 3.4.1, it follows that
the canonical inclusion Gα

α(Rd1
+ )⊗Gα

α(Rd2
+ )→ Gα

α(Rd
+) is continuous and it extends

to an isomorphism Gα
α(Rd1

+ )⊗̂Gα
α(Rd2

+ ) ∼= Gα
α(Rd

+). The assertion

(Gα
α(Rd1

+ ))′⊗̂(Gα
α(Rd2

+ ))′ ∼= (Gα
α(Rd

+))′

can be obtained by the duality of an isomorphism Gα
α(Rd1

+ )⊗̂Gα
α(Rd2

+ ) ∼= Gα
α(Rd

+)
since Gα

α(Rd
+) is a (DFN)-space.
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The isomorphism (3.26) calls for some comment:
To every K(x, y) ∈ (Gα

α(Rd1+d2
+ ))′ we may associate a continuous linear map-

ping K of Gα
α(Rd2

+ ) into (Gα
α(Rd1

+ ))′ in the following manner: if v ∈ Gα
α(Rd2

+ ), then

(Kv)(x) =

∫
Rd2+

K(x, y)v(y)dy ∈ (Gα
α(Rd1

+ ))′.

Theorem 3.5.1 states that the correspondence K(x, y)↔ K is an isomorphism.

3.6 Topological isomorphism between Gα
α(Rd

+)

and Sα/2α/2, even(R
d)

We will be particularly interested in the subspace Sαα, even(Rd) of Sαα (Rd) consisting
of all ”even” functions in Sαα (Rd), i.e. of all ψ ∈ Sαα (Rd) such that

ψ(x1, . . . , xj−1,−xj, xj+1, . . . , xd) = ψ(x), (3.27)

for all x = (x1, . . . , xd) ∈ Rd, j = 1, . . . , d.

Proposition 3.6.1. The space Sαα, even(Rd) is a closed subspace of Sαα (Rd). In par-
ticular, it is a (DFS)-space. Moreover, Sαα, even(Rd) consists of those ψ ∈ Sαα (Rd)
which can be represented as ψ =

∑
n∈Nd0

a2nh2n where {a2n}n∈Nd0 ∈ s
2α.

Remark 3.6.1. Before we give the proof of this proposition, we want to explain the
meaning of {a2n}n∈Nd0 ∈ s

2α. It should be understood as the sequence {bk}k∈Nd0 ∈
s2α such that the elements with indexes k = 2n, n ∈ Nd

0, are equal to a2n and all
the rest are equal to 0. In this section, whenever we use this notation, it will have
this exact meaning.

Proof. The fact that Sαα, even(Rd) is a closed subspace of Sαα (Rd) is trivial. It is
a (DFS)-space as a closed subspace of a (DFS)-space. If ψ =

∑
n∈Nd0

anhn ∈
Sαα (Rd), then an =

∫
Rd ψ(x)hn(x)dx and {an}n∈Nd0 ∈ s2α (cf. Proposition 1.6.1).

Since hj(x) is even when j is even and is odd when j is odd, the last assertion in
the proposition follows.

From now on, we fix α ≥ 1. The goal of this section is to give the explicit
topological isomorphism between Gα

α(Rd
+) and Sα/2α/2, even(Rd).

Throughout this section, we denote by v and w the following mappings:

v : Rd → Rd
+, v(x) = (x2

1, . . . , x
2
d),

w : Rd
+ → Rd

+, w(x) = (
√
x1, . . . ,

√
xd).

For γ = (γ1, . . . , γd) ∈ Rd such that −γj 6∈ N, j = 1, . . . , d and m ∈ Nd
0, we use

the abbreviation (
γ

m

)
=

d∏
j=1

(
γj
mj

)
.

Moreover, we introduce the following notation 1/2 = (1/2, . . . , 1/2) ∈ Rd
+ and

3/2 = (3/2, . . . , 3/2) ∈ Rd
+.
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Proposition 3.6.2. Let φ =
∑

n∈Nd0
anln be an element of Gα

α(Rd
+). Then φ ◦ v is

in Sα/2α/2, even(Rd) and

φ ◦ v =
∑
n∈Nd0

b2nh2n,

where {b2n}n∈Nd0 ∈ s
α is given by

b2n =
(−1)|n|πd/4

√
(2n)!

2|n|n!

∑
k∈Nd0

ak+n

(
k − 1/2

k

)
, n ∈ Nd

0. (3.28)

Moreover, the mapping

φ 7→ φ ◦ v, Gα
α(Rd

+)→ Sα/2α/2, even(Rd),

is a continuous injection.

Proof. By (1.12), for n ∈ Nd
0 we have

Ln(x) =
∑
m≤n

(
m− 1/2

m

)
L
−1/2
n−m (x), x ∈ Rd

+.

By (1.14),

L
−1/2
j (t2) =

(−1)j

22jj!
H2j(t), t ∈ R, j ∈ N0.

Thus, for x ∈ Rd, n ∈ Nd
0,

ln(v(x)) = πd/4
∑
m≤n

(
m− 1/2

m

)
(−1)|n−m|

√
(2n− 2m)!

2|n−m|(n−m)!
h2(n−m)(x)

= πd/4
∑
m≤n

(
n−m− 1/2

n−m

)
(−1)|m|

√
(2m)!

2|m|m!
h2m(x). (3.29)

Let ψ(x) = φ(v(x)), x ∈ Rd. Clearly, ψ ∈ C(Rd). Observe that,

ψ(x) = φ(v(x)) =
∑
n∈Nd0

anln(v(x))

= πd/4
∑
n∈Nd0

an
∑
m≤n

(
n−m− 1/2

n−m

)
(−1)|m|

√
(2m)!

2|m|m!
h2m(x).

We will prove that the double series is absolutely convergent in L∞(Rd). By (1.16),
we have |hn(x)| ≤ 1, for all n ∈ Nd

0, x ∈ Rd. For j ∈ N, we have(
j − 1/2

j

)
=

(2j − 1)!!

2jj!
≤ (2j)!!

2jj!
= 1. (3.30)



51

This inequality trivially holds for j = 0 since, in this case, the left hand side is
equal to 1. Hence,∣∣∣∣∣an

(
n−m− 1/2

n−m

)
(−1)|m|

√
(2m)!

2|m|m!
h2m(x)

∣∣∣∣∣ ≤ |an|, x ∈ Rd, n ≥ m.

Since {an}n∈Nd0 is in sα (cf. Theorem 3.3.1), the double series in the equality for

ψ(x) converges absolutely in L∞(Rd). Thus, we can change the order of summation
in order to obtain

ψ(x) = πd/4
∑
m∈Nd0

(−1)|m|
√

(2m)!

2|m|m!
h2m(x)

∑
n≥m

an

(
n−m− 1/2

n−m

)
=

∑
m∈Nd0

b2mh2m(x),

where

b2m =
(−1)|m|πd/4

√
(2m)!

2|m|m!

∑
n∈Nd0

an+m

(
n− 1/2

n

)
, m ∈ Nd

0.

If φ varies in a bounded subset B of Gα
α(Rd

+), then the sequence {an}n∈Nd0 varies in
a bounded subset of sα (cf. Theorem 3.4.1). Since sα is a (DFS)-space there exist

C, a > 1 such that |an| ≤ Ca−|n|
1/α

, ∀n ∈ Nd
0. The Cauchy-Schwarz inequality

yields

|n|1/α + |m|1/α ≤ 2(|n|+ |m|)1/α, ∀n,m ∈ Nd
0. (3.31)

Thus,

a−|n+m|1/α ≤
√
a
−|n|1/α√

a
−|m|1/α

.

Hence, there exist a′, C ′ > 1 such that

|an+m| ≤ C ′a′−|n|
1/α

a′−|m|
1/α

.

Using (3.30), we can estimate b2m as follows

|b2m| ≤ C ′a′−|m|
1/α
∑
n∈Nd0

a′−|n|
1/α ≤ C ′′a′′−|2m|

1/α

, m ∈ Nd
0,

where a′′ = a′1/2
1/α

. Hence, when φ varies in B, the sequence {b2m}m∈Nd0 varies in
a bounded subset of sα. Thus, the mapping

φ 7→ φ ◦ v, Gα
α(Rd

+)→ Sα/2α/2, even(Rd),

is well defined and it maps bounded sets into bounded sets (cf. Proposition 1.6.1
and Proposition 3.6.1). As Gα

α(Rd
+) is bornological, the mapping is continuous.

Clearly, this mapping is injective.
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Proposition 3.6.3. Let ψ =
∑

n∈Nd0
a2nh2n ∈ Sα/2α/2, even(Rd). Then, ψ|Rd+ ◦ w ∈

Gα
α(Rd

+) and

ψ|Rd+ ◦ w =
∑
n∈Nd0

bnln,

where {bn}n∈Nd0 ∈ s
α is given by

bn =
(−1)|n|2|n|

πd/4

∑
k∈Nd0

(
k − 3/2

k

)
(−1)|k|2|k|(k + n)!a2k+2n√

(2k + 2n)!
, n ∈ Nd

0. (3.32)

Moreover, the mapping

ψ 7→ ψ|Rd+ ◦ w, S
α/2
α/2, even(Rd)→ Gα

α(Rd
+),

is a continuous injection.

Proof. We represent h2n through the finite Laguerre series. From (1.14), follows

H2n(x) = (−1)|n|22|n|n!L−1/2
n (v(x)), x ∈ Rd, n ∈ Nd

0.

Thus, by using (1.12), we have

H2n(x) = (−1)|n|22|n|n!
∑
m≤n

(
n−m− 3/2

n−m

)
Lm(v(x)), x ∈ Rd, n ∈ Nd

0,

h2n(w(x)) =
(−1)|n|

πd/4

√
22|n|n!2

(2n)!

∑
m≤n

(
n−m− 3/2

n−m

)
lm(x), (3.33)

x ∈ Rd
+ and n ∈ Nd

0. Let ψ =
∑

n∈Nd0
a2nh2n ∈ Sα/2α/2, even(Rd). Then {a2n}n∈Nd0 ∈ s

α

(cf. Proposition 3.6.1). Hence, there exist C, a > 1 such that

|a2n| ≤ Ca−|2n|
1/α

, ∀n ∈ Nd
0. (3.34)

Let φ(x) = ψ(w(x)), x ∈ Rd
+. Clearly, φ ∈ C(Rd

+). We have

φ(x) =
∑
n∈Nd0

(−1)|n|a2n

πd/4

√
22|n|n!2

(2n)!

∑
m≤n

(
n−m− 3/2

n−m

)
lm(x). (3.35)

By (1.5), |ln(x)| ≤ 1, for all x ∈ Rd
+, n ∈ Nd

0. Similarly as in (3.30), we have∣∣∣∣(n−m− 3/2

n−m

)∣∣∣∣ ≤ 1, for all n ≥ m,n,m ∈ Nd.

Since, (
2j

j

)
∼ 4j√

jπ
, as j →∞,
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for some C1 > 1, we obtain∣∣∣∣∣(−1)|n|

πd/4

√
22|n|n!2

(2n)!

(
n−m− 3/2

n−m

)
lm(x)

∣∣∣∣∣ ≤ C1(|n|+ 1)d/2, (3.36)

where n,m ∈ Nd
0, n ≥ m. By using (3.34), we can conclude that the series on the

right hand side in (3.35) converges absolutely in L∞(Rd
+). Thus, we can change

the order of summation in order to obtain φ(x) =
∑

m∈Nd0
bmlm(x), where

bm =
(−1)|m|2|m|

πd/4

∑
n∈Nd0

(
n− 3/2

n

)
(−1)|n|2|n|(n+m)!a2n+2m√

(2n+ 2m)!
.

To estimate bm we can perform analogous technique as for (3.36). Hence, we
obtain

|bm| ≤ C2

∑
n∈Nd0

(|n+m|+ 1)d/2a−|2n+2m|1/α ≤ C3

∑
n∈Nd0

a′−|n+m|1/α , ∀m ∈ Nd
0,

for some 1 < a′ < a. Now, (3.31) implies that there exist C ′′, a′′ > 1 such that

|bm| ≤ C ′′a′′−|m|
1/α

, ∀m ∈ Nd
0,

i.e. {bm}m∈Nd0 ∈ sα. Thus, φ ∈ Gα
α(Rd

+). If ψ varies in a bounded subset B

of Sα/2α/2, even(Rd), then (3.34) holds with the same C, a > 1 for all the sequences

{a2n}n∈Nd0 generated by ψ ∈ B (since Sα/2α/2, even(Rd) is a subspace of a (DFS)-

space Sα/2α/2 (Rd)). Thus, from the above proof it follows that {bm}m∈Nd0 varies in a

bounded subset of sα, i.e. φ varies in a bounded subset of Gα
α(Rd

+). Hence, the
mapping

ψ 7→ ψRd+ ◦ w, S
α/2
α/2, even(Rd)→ Gα

α(Rd
+),

is well defined and maps bounded sets into bounded sets. As Sα/2α/2, even(Rd) is a

(DFS)-space (cf. Proposition 3.6.1), it is bornological. Hence, the mapping is
continuous. The proof for the injectivity is trivial.

Combining the above two propositions, we obtain the following result.

Theorem 3.6.1. The mapping

φ 7→ φ ◦ v, Gα
α(Rd

+)→ Sα/2α/2, even(Rd)

is a topological isomorphism. If φ =
∑

n∈Nd0
anln, then φ◦v =

∑
n∈Nd0

b2nh2n, where

{b2n}n∈Nd0 ∈ s
α is given by (3.28).

The inverse of this mapping is given by

ψ 7→ ψ|Rd+ ◦ w, S
α/2
α/2, even(Rd)→ Gα

α(Rd
+).

If ψ =
∑

n∈Nd0
a2nh2n, then ψ ◦ w =

∑
n∈Nd0

bnln, where {bn}n∈Nd0 ∈ s
α is given by

(3.32).
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For the moment, we denote by X the subspace of (Sαα (Rd))′ consisting of all
T ∈ (Sαα (Rd))′ such that T =

∑
n∈Nd0

a2nh2n for some {a2n}n∈Nd0 ∈ (s2α)′. Of
course, these are exactly the ”even” tempered ultradistributions, i.e. the elements
of (Sαα (Rd))′ which remain unchanged under the antipode mappings in each co-
ordinate (cf. (3.27)). It is easy to verify that X is closed subspace, hence, it is an
(FS)-space.

Proposition 3.6.4. The strong dual of Sαα, even(Rd) is topologically isomorphic to
X.

Proof. By Proposition 3.6.1, Sαα, even(Rd) is a (DFS)-space which is a closed sub-
space of the (DFS)-space Sαα (Rd), hence, Theorem 2.4.4 implies that the strong
dual (Sαα, even(Rd))′ of Sαα, even(Rd) is topologically isomorphic to the (FS)-space
(Sαα (Rd))′/(Sαα, even(Rd))⊥ where

(Sαα, even(Rd))⊥ = {T ∈ (Sαα (Rd))′| 〈T, ψ〉 = 0, ∀ψ ∈ Sαα, even(Rd)}

is the orthogonal space to Sαα, even(Rd). Denoting by T̂ ∈ (Sαα (Rd))′/(Sαα, even(Rd))⊥

the coset of T ∈ (Sαα (Rd))′, we define the mapping

I : X → (Sαα (Rd))′/(Sαα, even(Rd))⊥,

I(T ) = T̂ . It is easy to verify that I is injective. For T̂ ∈ (Sαα (Rd))′/(Sαα, even(Rd))⊥

let T =
∑

n bnhn. Then T1 =
∑

n b2nh2n ∈ X and T −T1 ∈ (Sαα, even(Rd))⊥. Hence,

I(T1) = T̂ , which proves the surjectivity of I. Moreover, I is continuous since it
decomposes as

X → (Sαα (Rd))′ → (Sαα (Rd))′/(Sαα, even(Rd))⊥,

where the first mapping is the canonical injection and the second is the natural
mapping. Since X and (Sαα (Rd))′/(Sαα, even(Rd))⊥ are (F )-spaces, the open mapping
theorem proves that I is topological isomorphism.

Remark 3.6.2. Until the end of this section, we will identify (Sαα, even(Rd))′ (the
strong dual of Sαα, even(Rd)) with X. It follows directly from the proof that each
T ∈ (Sαα, even(Rd))′ can be represented as

∑
n∈Nd0

b2nh2n, where {b2n}n∈Nd0 ∈ (s2α)′

and for ψ =
∑

n∈Nd0
a2nh2n ∈ Sαα, even(Rd), we have 〈T, ψ〉 =

∑
n∈Nd0

a2nb2n.

If we denote by I the isomorphism

ψ 7→ ψ|Rd+ ◦ w, S
α/2
α/2, even(Rd)→ Gα

α(Rd
+)

and by I−1 its inverse

I−1 : φ 7→ φ ◦ v, Gα
α(Rd

+)→ Sα/2α/2, even(Rd),

then the transpose tI is an isomorphism between (Gα
α(Rd

+))′ and (Sα/2α/2, even(Rd))′.

By Proposition 3.6.4 (and Remark 3.6.2), for T =
∑

n anln ∈ (Gα
α(Rd

+))′ there
exists {b2n}n∈Nd0 ∈ (sα)′ such that

tIT =
∑
n

b2nh2n ∈ (Sαα(Rd))′.
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Then, (3.33) implies

b2n = 〈tIT, h2n〉 =
(−1)|n|2|n|n!

πd/4
√

(2n)!

∑
m≤n

(
n−m− 3/2

n−m

)
am. (3.37)

Similarly, given T =
∑

n a2nh2n ∈ (Sαα, even(Rd))′, t(I−1)T ∈ (Gα
α(Rd

+))′. Hence,

t(I−1)T =
∑
n

bnln,

for some {bn}n∈Nd0 ∈ (sα)′. The equality (3.29) implies

bn = 〈t(I−1)T, ln〉 = πd/4
∑
m≤n

(
n−m− 1/2

n−m

)
(−1)|m|

√
(2m)!

2|m|m!
a2m. (3.38)

Since t(I−1) = (tI)−1, we have proved the following theorem.

Theorem 3.6.2. The transpose tI of the isomorphism

I : ψ 7→ ψ|Rd+ ◦ w, S
α/2
α/2, even(Rd)→ Gα

α(Rd
+),

is a topological isomorphism

tI : (Gα
α(Rd

+)) 7→ (Sα/2α/2, even(Rd))′.

The image of
∑

n anln ∈ (Gα
α(Rd

+))′ under this isomorphism is
∑

n b2nh2n,
where {b2n}n∈Nd0 ∈ (sα)′ is given by (3.37).

The inverse of this isomorphism, (tI)−1 maps
∑

n a2nh2n ∈ (Sα/2α/2, even(Rd))′ to∑
n bnln ∈ (Gα

α(Rd
+))′, where {bn}n∈Nd0 ∈ (sα)′ is given by (3.38).

3.7 Structural theorems for (Gα
α(Rd

+))
′, α ≥ 1

In this section we state two structural theorems for (Gα
α(Rd

+))′, α ≥ 1.

3.7.1 The first structural theorem

For the terminology used in this subsection, we refer to Appendix B.

Remark 3.7.1. We will need the following estimate in the sequel

∞∑
j=0

sj

j!α
≤ eαs

1/α

, s ≥ 0, α ≥ 1. (3.39)

Moreover,

sup
j∈N0

sj

j!α
=

(
sup
j∈N0

sj/α

j!

)α
≥

(
1

2

∞∑
j=0

(s1/α)j

2jj!

)α

= 2−αe(α/2)s1/α , s ≥ 0, α ≥ 1,

i.e. there exists c > 0 such that

sup
j∈N0

sj

j!α
≥ cecs

1/α

, s ≥ 0, α ≥ 1. (3.40)
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Before we state the next result, notice that the operator

Rk =
d∏
j=1

(
xjD

2
xj

+Dxj −
xj
4

+
1

2

)kj
, k ∈ Nd

0. (3.41)

is continuous on S(Rd
+) and on S ′(Rd

+) (recall (1.4) for the definition of R).

Lemma 3.7.1. For each k ∈ Nd
0, Rk acts continuously on Gα

α(Rd
+).

Proof. If φ =
∑

n∈Nd0
anln varies in a bounded subset of Gα

α(Rd
+), then {an}n∈Nd0

varies in a bounded subset of sα. Since
∑

n∈Nd0
anln converges absolutely to φ in

S(Rd
+), we have

Rkφ =
∑
n

anR
kln =

∑
n

an(−1)|k|nkln

and the series converges absolutely in S(Rd
+).

It can be easily proved that {an(−1)|k|nk}n∈Nd0 is in sα and when {an}n∈Nd0 varies

in a bounded subset of sα so does {an(−1)|k|nk}n∈Nd0 . Hence, Rk is well defined as

a mapping from Gα
α(Rd

+) onto itself and it maps bounded sets into bounded sets.
As Gα

α(Rd
+) is bornological, Rk is continuous.

By duality, we can define the transpose tRk of Rk as a continuous operator on
(Gα

α(Rd
+))′. If T =

∑
n∈Nd0

bnln, then one easily verifies that

tRkT =
∑
n

bn(−1)|k|nkln

(since {bn}n∈Nd0 ∈ (sα)′, the sequence {bn(−1)|k|nk}n∈Nd0 also belongs to (sα)′ and

thus the right hand side is a well defined element of (Gα
α(Rd

+))′). We come to the
conclusion that tRk coincides with Rk when T ∈ Gα

α(Rd) ⊆ (Gα
α(Rd

+))′. Hence,
from now on, we will write Rk instead of tRk.

By Remark 3.7.1 and Proposition B.0.1, P (z) =
∑

n cnz
n is an ultrapolynomial

of class {p!α} if and only if for every h > 0 there exists C > 0 such that

|P (z)| ≤ Ceh|z|
1/α

, ∀z ∈ Cd.

Next, for a given ultrapolynomial P (z) =
∑

n cnz
n of class {p!α}, we will show

that the operator
∑

n cnR
n, denoted by P (R), is a well defined and continuous

operator on both Gα
α(Rd

+) and (Gα
α(Rd

+))′. In the proof we will use the fact that
Lb(Gα

α(Rd
+), Gα

α(Rd
+)) and Lb((Gα

α(Rd
+))′, (Gα

α(Rd
+))′) are complete (cf. Corollary

A.4.1; notice that Gα
α(Rd

+) and (Gα
α(Rd

+))′ are bornological and complete spaces).

Lemma 3.7.2. Let
P (z) =

∑
n∈Nd0

cnz
n

be an ultrapolynomial of class {p!α}. Then,∑
n∈Nd0

cnR
n

converges absolutely in both Lb(Gα
α(Rd

+), Gα
α(Rd

+)) and Lb((Gα
α(Rd

+))′, (Gα
α(Rd

+))′).
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Proof. Since Gα
α(Rd

+) is a barrelled and complete space, its topology is given by
the system of seminorms

φ 7→ sup
T∈B′
|〈T, φ〉|,

where B′ ranges over all bounded subsets of (Gα
α(Rd

+))′. Hence, the topology of
Lb(Gα

α(Rd
+), Gα

α(Rd
+)) is given by the system of seminorms

Φ 7→ sup
T∈B′
φ∈B

|〈T,Φ(φ)〉|,

where B and B′ range over all bounded subsets of Gα
α(Rd

+) and (Gα
α(Rd

+))′, respect-
ively. To prove that

∑
n∈Nd0

cnR
n converges absolutely in Lb(Gα

α(Rd
+), Gα

α(Rd
+)), we

have to prove that for each such B and B′,∑
n∈Nd0

|cn| sup
T∈B′
φ∈B

|〈T,Rnφ〉| <∞. (3.42)

Now, fix such B and B′. Let

φ =
∑
n

an,φln, φ ∈ B

and
T =

∑
n

bn,T ln, T ∈ B′.

Thus, {{an,φ}n|φ ∈ B} is bounded in sα and {{bn,T}n|T ∈ B′} is bounded in
(sα)′. There exist a, C > 1 such that

|an,φ| ≤ Ca−|n|
1/α

, for all n ∈ Nd
0, φ ∈ B.

For this a, choose 1 < b ≤ a1/4. Then, there exists C1 > 0 such that

|bn,T | ≤ C1b
|n|1/α , for all n ∈ Nd

0, T ∈ B′.

Moreover, there exist s, C2 > 1 such that

|m||n| ≤ C2s
|n|b|m|

1/α |n|!α, for all n,m ∈ Nd
0.

Hence,

sup
T∈B′
φ∈B

|〈T,Rnφ〉| ≤ sup
T∈B′
φ∈B

∑
m∈Nd0

|am,φ||bm,T ||m||n| ≤ C3s
|n||n|!α, ∀n ∈ Nd

0.

Since P is an ultrapolynomial of class {p!α}, the last inequality implies (3.42).
The topology of Lb((Gα

α(Rd
+))′, (Gα

α(Rd
+))′) is given by the system of seminorms

Φ 7→ sup
T∈B′
φ∈B

|〈Φ(T ), φ〉|,
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where B and B′ range over all bounded subsets of Gα
α(Rd

+) and (Gα
α(Rd

+))′, respect-
ively. To prove that

∑
n∈Nd0

cnR
n converges absolutely in Lb((Gα

α(Rd
+))′, (Gα

α(Rd
+))′)

we need to prove that for each such B and B′∑
n∈Nd0

|cn| sup
T∈B′
φ∈B

|〈RnT, φ〉| <∞.

This can be done by the same technique as above.

Before we prove the main result of this subsection, we state the following three
technical lemmas. The first one is proved in [34].

Lemma 3.7.3. ([34, Lemma 2.4]) Let g : [0,∞)→ [0,∞) be an increasing func-
tion such that satisfies the following estimate: for every h > 0 there exists C > 0
such that g(t) ≤M(ht) + lnC. Then there exists a subordinate function ε(t) such
that g(t) ≤M(ε(t)) + lnC ′, for some constant C ′ > 1.

For the definition of a subordinate function see Appendix B, Definition B.0.1.

Lemma 3.7.4. Let B be a bounded subset of (sα)′. There exists a sequence {rp}p∈N
of positive numbers such that increases monotonically to infinity and C ′ > 1 such
that

|bn| ≤ C ′eNrp (|n|), for all n ∈ Nd
0, {bn}n∈Nd0 ∈ B.

Proof. Since B is a bounded subset of (sα)′, for every h > 0 there exists C > 1
such that

|bn| ≤ CeM(h|n|), for all n ∈ Nd
0, {bn}n ∈ B′

(cf. Remark 3.7.1). Define f : [0,∞)→ [0,∞) as

f(t) = sup
|k|≤t
{bn}n∈B

ln+ |bk|, t ∈ [0,∞).

One easily verifies that f is a nonnegative monotonically increasing function and
for every h > 0 there exists C > 0 such that

f(t) ≤M(ht) + C.

Thus, we can apply Lemma 3.7.3 to obtain the existence of a subordinate function
ε : [0,∞)→ [0,∞) and C1 > 1 such that

f(t) ≤M(ε(t)) + C1, t ∈ [0,∞).

Now, Lemma B.0.1 implies the existence of a sequence Np, p ∈ N0, of positive
numbers which satisfies (M.1) such that

M(ε(t)) ≤ N(t), t ∈ (0,∞)

(N(·) is the associated function of the sequence Np) and

NpMp−1

Np−1Mp

→∞, as p→∞.



59

Define

r′p =
NpMp−1

Np−1Mp

, p ∈ N.

Since r′p →∞, one can find a monotonically increasing sequence of positive num-
bers {rp}p∈N0 which tends to infinity and rp ≤ r′p, p ∈ N. Then,

f(t) ≤ N(t) + C1 = sup
p∈N0

ln
tpN0

Np

+ C1 = sup
p∈N0

ln
tp

Mp

∏p
j=1 r

′
j

+ C1

≤ sup
p∈N0

ln
tp

Mp

∏p
j=1 rj

+ C1 = Nrp(t) + C1.

By the definition of f , this readily implies the conclusion of the lemma.

Let {rp}p∈N be a sequence of positive numbers such that increases monoton-
ically to infinity. For any {rp}p∈N, we can construct a new sequence such that
the zeroth term of the sequence is equal to 0!α = 1 and the p-th term is equal to
p!α
∏p

j=1 rj, p ∈ N. This sequence also satisfies the condition (M.1) (see Appendix
B) and one can define its associated function which we denote by Nrp(·). The
next lemma is proved in [33]; here R stands for a set of all sequences of positive
numbers such that increase monotonically to infinity.

Lemma 3.7.5. ([33, Lemma 2.1], Roumieu case) Let r′ ≥ 1 and (kp) ∈ R. There
exists an ultrapolynomial P (z) of class {Mp} such that P does not vanish on Rd

and satisfies the following estimate:
There exists C > 0 such that for all x ∈ Rd and α ∈ Nd,

|Dα (1/P (x))| ≤ C
α!

r′|α|
e−Nkp (|x|).

As a special case, we see that for any given sequence of positive numbers
{rp}p∈N such that increases monotonically to infinity, one can find an ultrapoly-
nomial P (z) of class {p!α} and C > 0 such that

|P (x)| ≥ CeNrp (|x|) for all x ∈ Rd.

Theorem 3.7.1. Let B′ ⊆ (Gα
α(Rd

+))′ be a bounded set. There exists an ultrapol-
ynomial P (z) of class {p!α} and a bounded set B in L2(Rd

+) such that for each
T ∈ B′ there exists FT ∈ B satisfying

T = P (R)FT ∈ (Gα
α(Rd

+))′.

Conversely, given a bounded set B in L2(Rd
+) and an ultrapolynomial P (z) of

class {p!α},
P (R)F ∈ (Gα

α(Rd
+))′, for each F ∈ B

and the set {P (R)F |F ∈ B′} is bounded in (Gα
α(Rd

+))′.
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Proof. Let T =
∑

n∈Nd0
bn,T ln, T ∈ B′. The set {{bn,T}n∈Nd0 |T ∈ B

′} is bounded

in (sα)′. Lemma 3.7.4 implies that there exists a sequence of positive numbers
{rp}p∈N such that not only increases monotonically to infinite but also

|bn,T | ≤ C ′eNrp (|n|), for all n ∈ Nd
0, T ∈ B′.

We define the sequence {r′p}p∈N by

r′j = min{1, r1}, j = 1, . . . , d+ 1

and
r′j = rj−d−1, j ≥ d+ 2, j ∈ N.

Then, {r′p}p∈N increases monotonically to infinity, r′p ≤ rp, p ∈ N and there exists

C̃1 ≥ 1 such that

(td+1 + 1)eNrp (t) ≤ C̃1e
Nr′p

(2αt)
+ eNrp (t), t ∈ [0,∞).

Hence, if we define kp = r′p/2
α, p ∈ N, the sequence {kp}p∈N increases monotonic-

ally to infinity and there exists C̃2 > 1 such that

(td+1 + 1)eNrp (t) ≤ C̃2e
Nkp (t), t ∈ [0,∞).

By Lemma 3.7.5, we can choose an ultrapolynomial P (z) =
∑

n∈Nd0
cnz

n of class

{p!α} such that
|P (x)| ≥ CeNkp (|x|), for all x ∈ Rd.

Lemma 3.7.2 verifies that P (R) acts continuously on Gα
α(Rd

+) and on (Gα
α(Rd

+))′.
Observe that∑

n∈Nd0

∣∣∣∣ bn,T
P (−n)

∣∣∣∣2 ≤ C1

∑
n∈Nd0

e2Nrp (|n|)e−2Nkp (|n|) ≤ C2, ∀T ∈ B′.

Hence,

FT =
∑
n∈Nd0

bn,T
P (−n)

ln ∈ L2(Rd
+)

and the set {FT |T ∈ B′} is bounded in L2(Rd
+). As L2(Rd

+) ⊆ (Gα
α(Rd

+))′,
P (R)FT ∈ (Gα

α(Rd
+))′. Moreover,

P (R)ln =
∑
m∈Nd0

cmR
mln =

∑
n∈Nd0

cm(−n)mln = P (−n)ln.

Hence,

P (R)FT =
∑
n∈Nd0

bn,T
P (−n)

P (R)ln =
∑
n∈Nd0

bn,T ln = T.

The converse part of the theorem is trivial.
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3.7.2 The second structural theorem

Remark 3.1.1 will enable us to prove the results of this subsection.

Proposition 3.7.1. Let A > 0. For each T ∈ (G̃α,A
α,A(Rd

+))′, there exists j ∈ N0

and FA,p,k ∈ L2(Rd
+), p, k ∈ Nd

0 and F̃A,n,m ∈ L2(Rd
+), n,m ∈ Nd

0 with |n| ≤ j,
|m| ≤ j such that∑

p,k∈Nd0

A2|p+k|pαpkαk‖FA,p,k‖2
L2(Rd+) +

∑
|m|≤j, |n|≤j

‖F̃A,n,m‖2
L2(Rd+) <∞ (3.43)

and for all φ ∈ G̃α,A
α,A(Rd

+)

〈T, φ〉 =
∑
p,k∈Nd0

∫
Rd+
FA,p,k(x)x(p+k)/2Dpφ(x)dx

+
∑

|m|≤j, |n|≤j

∫
Rd+
F̃A,n,m(x)xmDnφ(x)dx. (3.44)

Conversely, given j ∈ N0 and the set of L2(Rd
+)-functions

{FA,p,k| p, k ∈ Nd
0} ∪ {F̃A,n,k|n,m ∈ Nd

0, |n| ≤ j, |m| ≤ j}

such that (3.43) holds, there exists T ∈ (G̃α,A
α,A(Rd

+))′ given by (3.44).

Proof. For j ∈ N0, we define

Uj =
⊔

(p,k)∈N2d
0

Rd
+,p,k

⊔ ⊔
(n,m)∈N2d

0
|n|≤j, |m|≤j

Rd
+,n,m,

where, as standard,
⊔

denotes a disjoint union. The each member of this disjoint
union is an exact copy of Rd

+. We equip Uj with the disjoint union topology. Since
there are countably many copies of Rd

+, Uj is a Hausdorff locally compact space
and an each open set in Uj is σ-compact. We define a Borel measure µj on Uj by

µj(E) =
∑

(p,k)∈N2d
0

A−2|p+k|p−αpk−αk|E ∩ Rd
+,p,k|+

∑
(n,m)∈N2d

0
|n|≤j, |m|≤j

|E ∩ Rd
+,n,m|,

where |E ∩ Rd
+,p,k| and |E ∩ Rd

+,n,m| is the Lebesgue measure of E ∩ Rd
+,p,k and

|E∩Rd
+,n,m|, respectively. Note that E is a Borel set in Uj if and only if E∩Rd

+,p,k

and E ∩Rd
+,n,m are Borel sest in Rd

+,p,k and Rd
+,n,m, respectively, for all p, k, n,m ∈

Nd
0, |m| ≤ j, |n| ≤ j. As readily seen, µj is locally finite, σ-finite and µj(K) <∞

for every compact set K in Uj. By the properties of Uj, µj is regular (both inner

and outer regular). Now, observe that, for each j ∈ N0, G̃α,A
α,A(Rd

+) is continuously
injected into L2(Uj, µj) by the mapping Jj : φ 7→ F, where F is defined by

F|Rd+,p,k = x(p+k)/2Dpφ(x), p, k ∈ Nd
0
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and
F|Rd+,n,m = xmDnφ(x), n,m ∈ Nd

0, m| ≤ j, |n| ≤ j.

In fact,

(σ̃A,j(φ))2 =
∑
p,k∈Nd0

‖x(p+k)/2Dpφ(x)‖2
L2(Rd+)

A2|p+k|kαkpαp
+

∑
|m|≤j, |n|≤j

‖xmDnφ(x)‖2
L2(Rd+)

=

∫
Uj

|F|2dµj = ‖F‖2
L2(Uj ,µj)

. (3.45)

If T ∈ (G̃α,A
α,A(Rd

+)), there exist j ∈ N0 and C > 0 such that |〈T, φ〉| ≤ Cσ̃A,j(φ).

Because of (3.45), T induces a continuous functional on Jj(G̃
α,A
α,A(Rd

+)) when this
space is equipped with the topology induced by L2(Uj, µj). By the Hahn-Banach
theorem, we can extend T to a continuous functional T on the whole L2(Uj, µj)
and hence T ∈ L2(Uj, µj). Denote

FA,p,k = A−2|p+k|p−αpk−αkT|Rd+,p,k , F̃A,n,m = T|Rd+,n,m ,

where p, k, n,m ∈ Nd
0, |m| ≤ j, |n| ≤ j. Then, FA,p,k, F̃A,n,m ∈ L2(Rd

+), for all
p, k, n,m ∈ Nd

0, |m| ≤ j, |n| ≤ j and (3.43) holds since this is exactly ‖T‖2
L2(Uj ,µj)

.

For φ ∈ G̃α,A
α,A(Rd

+), we have

〈T, φ〉 = T(Jj(φ)) =

∫
Uj

Jj(φ)Tdµj

=
∑
p,k∈Nd0

∫
Rd+
FA,p,k(x)x(p+k)/2Dpφ(x)dx+

∑
|m|≤j, |n|≤j

∫
Rd+
F̃A,n,m(x)xmDnφ(x)dx.

The converse part follows trivially.

Theorem 3.7.2. Let T ∈ (Gα
α(Rd

+))′. Then, for each A > 0 there exist j = j(A) ∈
N0 and a set of L2(Rd

+)-functions

{FA,p,k| p, k ∈ Nd
0} ∪ {F̃A,n,m|n,m ∈ Nd

0, |n| ≤ j, |m| ≤ j} (3.46)

such that (3.43) holds and the restriction of T to each G̃α,A
α,A(Rd

+) is given by (3.44).

If for each A > 0, there exist j = j(A) ∈ N0 and a set of L2(Rd
+)-functions

(3.46) such that (3.43) holds, then for each A > 0 there exists TA ∈ (G̃α,A
α,A(Rd

+))′

given by (3.44).
Furthermore, if for each A1 < A2, the restriction of TA2 to G̃α,A1

α,A1
(Rd

+) coincides

with TA1, then there exists T ∈ (Gα
α(Rd

+))′ such that for each A > 0 the restriction

of T to G̃α,A
α,A(Rd

+) is TA, i.e. for φ ∈ G̃α,A
α,A(Rd

+), 〈T, φ〉 is given by (3.44).

Proof. The first part follows directly from Proposition 3.7.1, since the restriction
of T to each G̃α,A

α,A(Rd
+), A > 0, is continuous.

For the second part, observe that the existence of TA ∈ (G̃α,A
α,A(Rd

+))′, for each
A > 0, given by (3.44) is verified by Proposition 3.7.1.
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Furthermore, if TA, A > 0, satisfies that for each A1 < A2 the restriction of
TA2 to G̃α,A1

α,A1
(Rd

+) coincides with TA1 , then one can define a linear functional

T : Gα
α(Rd

+)→ C, 〈T, φ〉 = 〈TA, φ〉, φ ∈ G̃α,A
α,A(Rd

+).

Because of this condition, this is indeed a well defined linear mapping into C. The
continuity of T follows from the fact that each restriction of T to G̃α,A

α,A(Rd
+) is TA,

A > 0, which is continuous as a mapping from G̃α,A
α,A onto C and the fact that

Gα
α(Rd

+) is the inductive limit of G̃α,A
α,A(Rd

+) as A→∞.
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Chapter 4

Weyl pseudo-differential
operators with radial symbols

Concerning pseudo-differential operators, especially the Weyl calculus, we refer to
the standard books [26] and [37].

This chapter is organized as follows.
Firstly, we will provide the motivations for introducing the Weyl pseudo-

differential operator. We will give the formal derivation of formula for the Weyl
pseudo-differential operator with symbol in S(Rd).

Secondly, we will introduce the Wigner transform of functions in S(Rd) as
a tool to study the Weyl pseudo-differential operators with symbols in S ′(R2d).

Thirdly, we will refer to results of M. W. Wong [42] on the Weyl pseudo-
differential operator on L2(R) with radial symbols by which we were motivated.

Finally, we will establish the continuity of the Weyl pseudo-differential operat-
ors with radial symbols, firstly, at the level of the symbol classes Gα

α(Rd
+), α ≥ 1

and S(Rd
+), on the Gelfand-Shilov spaces and the Schwartz space. Then we con-

sider the symbol classes (Gα
α(Rd

+))′, α ≥ 1 and S ′(Rd
+) in order to extend the

results on dual spaces of the Gelfand-Shilov spaces and dual space of the Schwartz
space.

4.1 Problem of quantization

We present the main motivations for pseudo-differential operators from the point
of view of quantum mechanics following [14, Section 14.3]. We refer to the pioneer
work of H. Weyl [40, Chapter IV.14]. We explain the problem of quantization and
we obtain the formula for the Weyl calculus of pseudo-differential operators.

In quantum mechanic, the observable quantities are represented by self-adjoint
operators on a Hilbert space. In the standard model for a one-dimensional system
the position variable q is represented by the multiplication operator Xf(x) =
xf(x), and the momentum variable p is represented bu the differentiation operator
Pf(x) = −if ′(x). We can state the problem as follows: which operator should be
associated to an arbitrary function σ(q, p) on phase space. A quantization rule is
a linear mapping σ → Wσ from functions σ(q, p) on a phase space to operators
on the given Hilbert space that extends the correspondence q → X and p→ P to

65
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general functions on a phase space.
In his approach, Weyl considered the corresponding one-parameter subgroups

of unitary operators eiqXf(x) = eiqxf(x) = Mqf(x) and eixPf(x) = f(x + p).
Then he argued that the complex exponential ei(x·q+ξ·p) should correspond to the
symmetric shift Mq/2T−pMq/2 = e−ipq/2T−pMq. Now, the Fourier inversion formula

f(x) = (2π)−d/2
∫
Rd
eixξf̂(ξ)dξ, where f̂(ξ) is the Fourier transform of a function

f ∈ S, f̂(ξ) = (2π)−d/2
∫
Rd e

−ixξf̂(x)dx gives

σ(x, ξ) = (2π)−d
∫
Rd

∫
Rd
σ̂(q, p)ei(x·q+ξ·p)dpdq

and the linearity of the quantization procedure suggest that Wσ should be the
operator

Wσ = (2π)−d
∫
Rd

∫
Rd
σ̂(q, p)e−iq

p
2T−pMqdpdq.

For us, it is more convenient to represent Wσ as an integral operator. Now,
we give a formal derivation of the Weyl pseudo-differential operator with symbol
σ ∈ S(R2d)

(Wσf)(x) = (2π)−d
∫
Rd

∫
Rd
σ̂(q, p)e−iq

p
2T−pMqf(x)dpdq

= (2π)−2d

∫
Rd

∫
Rd

∫
Rd

∫
Rd
σ(ω, ξ)e−i(pξ+qω)eiqx+iq p

2 f(x+ p)dξdωdpdq

= (2π)−d
∫
Rd

∫
Rd

∫
Rd
e−ipξσ(ω, ξ)δ(x+

p

2
− ω)f(x+ p)dξdωdp

= (2π)−d
∫
Rd

∫
Rd
e−ipξσ(x+

p

2
, ξ)f(x+ p)dpdξ

= (2π)−d
∫
Rd

∫
Rd
ei(x−y)·ξσ

(
x+ y

2
, ξ

)
f(y)dydξ, f ∈ S(Rd). (4.1)

Remark 4.1.1. The Dirac delta function can be loosely thought of as a function
on the real line which is zero everywhere except at the origin, where it is infinite,

δ(x) =

{
+∞, x = 0

0, x 6= 0

which is also constrained to satisfy the identity∫
R
δ(x) = 1.

The delta function is an even distribution in the sense that δ(x) = δ(−x). The

delta function is said to ”sift out” the value at x = T i.e.

∫
R
f(x)δ(x−T ) = f(T ).

The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta

function. Formally, this is expressed as δ(x) =

∫
R
eixξdξ.
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4.2 Weyl pseudo-differential operators with sym-

bols from (Sαα (R2d))′

Let f, g ∈ S(Rd). Then the function W (f, g) defined on R2d by

W (f, g)(x, ξ) = (2π)−d/2
∫
Rd
e−iξ·pf

(
x+

p

2

)
g
(
x− p

2

)
dp, x, ξ ∈ Rd

is called the Wigner transform of f and g. The bilinear mapping (f, g) 7→ W (f, g),
S(Rd)× S(Rd)→ S(R2d) is continuous.

Corollary 4.2.1. ([42, Corollary 3.4.]) W : S(Rn) × SRn) → S(R2n) can be
extended uniquely to a bilinear operator

W : L2(Rn)× L2(Rn)→ L2(R2n)

such that
‖W (f, g)‖L2(R2n) = ‖f‖L2(Rn)‖g‖L2(Rn)

for all f and g from L2(Rn).

Next theorem proves that the Gelfand-Shilov spaces are closed under the
Wigner transform.

Theorem 4.2.1. ([38, Theorem 3.8, p. 179]) Let f, g ∈ Sαα (Rd), α ≥ 1/2. Then
W (f, g) ∈ Sαα (R2d).

Moreover, we have the following proposition.

Proposition 4.2.1. A bilinear mapping

(f, g) 7→ W (f, g), Sαα (Rd)× Sαα (Rd)→ Sαα (R2d),

is continuous.

Proof. Fix g ∈ Sαα (Rd). If we consider a mapping f 7→ W (f, g) as a mapping from
Sαα (Rd) into S(R2d) it is continuous since it decomposes as

Sαα (Rd) −→ S(Rd)
f 7→W (f,g)−−−−−−→ S(R2d),

where the first mapping is the canonical inclusion. Hence, its graph is closed in
Sαα (Rd) × S(R2d). Since its image is in Sαα (R2d), its graph is closed in Sαα (Rd) ×
Sαα (R2d). As Sαα (Rd) is a (DFS)-space it is an ultrabornological and webbed space
of De Wilde (see Proposition A.8.2). Now, the De Wilde closed graph theorem
(see Theorem A.8.1) implies its continuity.

Similarly, for each fixed f ∈ Sαα (Rd), the mapping

g 7→ W (f, g), Sαα (Rd)→ Sαα (R2d)

is continuous.
Thus the bilinear mapping (f, g) 7→ W (f, g), Sαα (Rd) × Sαα (Rd) → Sαα (R2d), is

separately continuous and hence continuous since Sαα (Rd) is barrelled (DF )-space
(see Theorem A.6.3).
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The next theorem defines the notion of the Weyl pseudo-differential operator
with a symbol in S ′(R2d).

Theorem 4.2.2. ([42, Theorem 12.1.]) For all σ ∈ S ′(R2d) and f ∈ S(Rd),
Wσf ∈ S ′(Rd).

Let α ≥ 1/2. The Weyl pseudo-differential operator with a symbol σ ∈
(Sαα (R2d))′ defined by

(Wσf)(g) = (2π)−d/2〈σ,W (f, g)〉 (4.2)

is a continuous and linear mapping from Sαα (Rd) into (Sαα (Rd))′ (see [29, Theorem
2]).

4.3 Weyl pseudo-differential operator with ra-

dial symbols from S ′(R2)

For the Weyl pseudo-differential operator on L2(R) with radial symbols, a sufficient
and necessary condition for boundedness is given in [42]. In order to obtain these
conditions, we need the Wigner transform of Hermite functions on R.

For j, k = 0, 1, 2, ..., we define the function ψj,k on R2 by

ψj,k(x, ξ) = W (hj, hk)(x, ξ), x, ξ ∈ R.

Theorem 4.3.1. ([42, Teorema 24.1.]) For j, k = 0, 1, 2, ... we get for any ζ =
x+ iξ,

(i) ψj+k,j(ζ) = 2(−1)j(2π)−
1
2

(
j!

(j+k)!

) 1
2
(
√

2)k(ζ̄)kLkj (2|ζ|2)e−|ζ|
2
,

(ii) ψj,j+k(ζ) = 2(−1)j(2π)−
1
2

(
j!

(j+k)!

) 1
2
(
√

2)kζkLkj (2|ζ|2)e−|ζ|
2
.

Let σ be tempered function on R2. Suppose that σ is radial i.e.

σ(x, ξ) = σ(r), x, ξ ∈ R,

where r =
√
x2 + ξ2. Now, by Theorem 4.3.1, for j, k = 0, 1, 2, ... i j ≥ k,

ψj,k(ζ) = 2(−1)k(2π)−
1
2

(k!

j!

) 1
2
(
√

2)j−k(ζ̄)j−kLj−kk (2|ζ|2)e−|ζ|
2

(4.3)

for all ζ = x+ iξ u C. Now, for all f, g in S(R), we obtain
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(Wσf)(ḡ) = (2π)−1/2σ(W (f, g))

= (2π)−1/2σ
(
W
(
f,

∞∑
k=0

〈g, hk〉hk
))

= (2π)−1/2σ
( ∞∑
k=0

〈ḡ, hk〉W (f, hk)
)

= (2π)−1/2

∞∑
k=0

〈ḡ, hk〉σ(W (f, hk))

= (2π)−1/2

∞∑
k=0

∞∑
j=0

〈ḡ, hk〉〈f, hj〉σ(ψj,k). (4.4)

Remark 4.3.1. Note that (4.4) is valid in the sense that we sum with respect to j
first and then with respect to k.

Now, for j, k = 0, 1, 2, ... i j ≥ k, we obtain by (4.3),

σ(ψj,k) =

∫ ∞
−∞

∫ ∞
−∞

σ(x, ξ)ψj,k(x, ξ) dx dξ

=

∫ 2π

0

∫ ∞
0

σ(ρ)2(−1)k(2π)−
1
2

(k!

j!

) 1
2
(
√

2)j−k(ρ)j−ke−i(j−k)θ

×Lj−kk (2ρ2)e−ρ
2

ρ dρ dθ

=

∫ 2π

0

e−i(j−k)θ dθ

∫ ∞
0

σ(ρ)
(k!

j!

) 1
2
2

1
2

(j−k)+1(−1)k(2π)−
1
2

×Lj−kk (2ρ2)e−ρ
2

ρj−k+1 dρ.

Hence,
σ(ψj,k) = 0, j 6= k.

So,

(Wσf)(ḡ) = (2π)−1/2

∞∑
k=0

〈ḡ, hk〉〈f, hk〉σ(ψk,k), (4.5)

where

σ(ψk,k) = (2π)
1
2 (−1)k2

∫ ∞
0

σ(ρ)L0
k(2ρ

2)e−ρ
2

ρ dρ, k = 0, 1, 2, ...,

for all f, g in S(R).

Remark 4.3.2. The convergence in (4.5) is valid in the sense that the sequence of
partial sums of the series is convergent.

Theorem 4.3.2. ([42, Theorem 24.5.,p.115]) Let σ be tempered function on R2.
Suppose that σ is radial i.e.

σ(x, ξ) = σ(r), x, ξ ∈ R,
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where r =
√
x2 + ξ2. For k = 0, 1, ... let

ak =

∫ ∞
0

σ(ρ)L0
k(2ρ

2)e−ρ
2

ρ dρ.

Then Wσ is a bounded linear operator from L2(Rd) into L2(Rd) if and only if the
sequence {ak}∞k=0 is bounded.

Our goal is to prove Theorem 4.3.2 on Sαα (Rd), α ≥ 1 and their dual spaces, as
well as on S(Rd) and its dual space. As we shall see, we will obtain the assertions
without assumptions on the sequence {ak}∞k=0 using the results obtained in Chapter
2 and Chapter 3.

4.4 Weyl pseudo-differential operators with ra-

dial symbols from G-type spaces and their

dual spaces

In this section, we prove the continuity of the Weyl pseudo-differential operators
with radial symbols from the spaces Gα

α(Rd
+), α ≥ 1 and their dual spaces on the

Gelfand-Shilov spaces and their dula spaces.
Throughout the rest of this section, we denote by v the mapping R2d → Rd

+,
(x, ξ) 7→ v(x, ξ) = (x2

1 + ξ2
1 , . . . , x

2
d + ξ2

d).

Proposition 4.4.1. Let σ ∈ S(Rd
+). Then σ̃(x, ξ) = σ ◦ v(x, ξ) ∈ S(R2d).

Moreover, the mapping σ 7→ σ̃ = σ ◦ v, S(Rd
+)→ S(R2d), is continuous.

Proof. Fix j ∈ N. For p, q ∈ Nd
0, |p| ≤ j and |q| ≤ j observe that Dp

xD
q
ξ σ̃(x, ξ) is a

finite sum of the form P (x, ξ)Dp′
x D

q′

ξ σ(v(x, ξ)), where P (x, ξ) are polynomials in
(x, ξ) of degree at most |p|+ |q| which do not depend on σ (they only depend on
the derivatives of v) and p′, q′ ∈ Nd

0 are such that p′ ≤ p and q′ ≤ q. Moreover,
observe that the number of such terms that appear in Dp

xD
q
ξ σ̃(x, ξ) depend only

on p and q (and not on σ). For p′′, q′′ ∈ Nd
0 we also have∣∣∣xp′′ξq′′∣∣∣ ≤ |x||p′′||ξ||q′′| ≤ (|x|2 + |ξ|2)(|p′′|+|q′′|)/2.

Thus,

sup
|p′′|≤j
|q′′|≤j

sup
|p|≤j
|q|≤j

sup
(x,ξ)∈R2d

∣∣∣xp′′ξq′′Dp
xD

q
ξ σ̃(x, ξ)

∣∣∣ ≤ C sup
|n|≤2j
|m|≤2j

sup
t∈Rd+

|tmDnσ(t)| .

Hence, σ̃ ∈ S(R2d) and the mapping

σ 7→ σ̃ = σ ◦ v, S(Rd
+)→ S(R2d)

is continuous.
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Let α ≥ 1/2 and σ(ρ) ∈ G2α
2α(Rd

+). Denote by σ0(ρ) = σ(2ρ), ρ ∈ Rd
+. Then

the functions σ̃ and σ̃0 defined by

σ̃(x, ξ) = σ ◦ v(x, ξ), σ̃0(x, ξ) = σ0 ◦ v(x, ξ), (x, ξ) ∈ R2d (4.6)

belong to S(R2d) (see Proposition 4.4.1). Hence, the Weyl pseudo-differential
operator with a symbol σ̃0 is a continuous mapping from Sαα (Rd) onto (Sαα (Rd))′.

Theorem 4.4.1. Let α ≥ 1/2 and σ(ρ) ∈ G2α
2α(Rd

+). Denote by σ0(ρ) = σ(2ρ),
ρ ∈ Rd

+. Let σ̃, σ̃0 ∈ S(R2d) be the functions defined in (4.6). Then

Wσ̃0 : Sαα (Rd)→ Sαα (Rd)

is a continuous mapping and it extends to a continuous mapping

Wσ̃0 : (Sαα (Rd))′ → Sαα (Rd).

If f, g ∈ (Sαα (Rd))′ and

fk = 〈f, hk〉, gk = 〈g, hk〉 and σk = (2π)d/2(−1)|k|2−d
∫
Rd+
σ(ρ)Lk(ρ)dρ,

then
(Wσ̃0f)(g) = (2π)−d/2

∑
k∈Nd0

fkgkσk.

Moreover, if

σ0,j(η)
G2α

2α(Rd+)
−−−−−→ σ0(η) as j →∞

then Wσ̃0,j
→ Wσ̃0 in the strong topology of L((Sαα (Rd))′,Sαα (Rd)).

Proof. First we Wσ̃0 of f, g ∈ Sαα (Rd). Since
∑

n∈Nd0
fnhn and

∑
n∈Nd0

gnhn converge

absolutely to f and g in Sαα (Rd), respectively (cf. Proposition 1.6.1) and the
mapping

(ϕ, ψ) 7→ W (ϕ, ψ), Sαα (Rd)× Sαα (Rd)→ Sαα (R2d),

is continuous (see Proposition 4.2.1), we conclude

W (f, g) =
∑

(m,k)∈N2d
0

fmgkW (hm, hk),

where the sum converges absolutely in Sαα (R2d). As σ̃0 ∈ S(R2d) ⊆ (Sαα (R2d))′, we
have

(Wσ̃0f)(g) = (2π)−d/2
∑

(m,k)∈N2d
0

fmgk〈σ̃0, ψm,k〉, (4.7)

where ψm,k = W (hm, hk). Clearly,

ψm,k =
d∏
r=1

ψmr,kr , where ψmr,kr = W (hmr , hkr).

Using Theorem 4.3.1 and denoting ηr = xr + iξr ∈ C, we have
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(i) If mr ≥ kr

ψmr,kr(xr, ξr) = 2(−1)kr(2π)−1/2

(
kr!

mr!

)1/2

(
√

2)mr−kr(ηr)
mr−kr

×Lmr−krkr
(2|ηr|2)e−|ηr|

2

. (4.8)

(ii) If kr ≥ mr

ψmr,kr(xr, ξr) = 2(−1)mr(2π)−1/2

(
mr!

kr!

)1/2

(
√

2)kr−mrηkr−mrr

×Lkr−mrmr (2|ηr|2)e−|ηr|
2

. (4.9)

In terms of polar coordinates the integral

〈σ̃0, ψm,k〉 =

∫
R2d

σ0(v(x, ξ))ψm,k(x, ξ)dxdξ

is

〈σ̃0, ψm,k〉 = Cm,k

d∏
r=1

∫ π

−π
e−i(mr−kr)θrdθr.

Thus 〈σ̃0, ψm,k〉 = 0 when m 6= k. Moreover,

〈σ̃0, ψk,k〉 = (2π)d/2(−1)|k|2d
∫
Rd+
σ(2ρ2

1, . . . , 2ρ
2
d)Lk(2ρ

2
1, . . . , 2ρ

2
d)e
−|ρ|2ρ1dρ

= (2π)d/2(−1)|k|2−d
∫
Rd+
σ(y)Lk(y)dy = σk.

By (4.7), we obtain

(Wσ̃0f)(g) = (2π)−d/2
∑
k∈Nd0

fkgkσk (4.10)

and the series converges absolutely since {fn}n∈Nd0 , {gn}n∈Nd0 , {σn}n∈Nd0 ∈ s
2α (since

f, g ∈ Sαα (Rd), σ ∈ G2α
2α(Rd

+)).
Let now f, g ∈ (Sαα (Rd))′. Define

(Wσ̃0f)(g) = (2π)−d/2
∑
n∈Nd0

fngnσn.

Observe that the series converges absolutely since {fn}n∈Nd0 , {gn}n∈Nd0 ∈ (s2α)′ and

{σn}n∈Nd0 ∈ s
2α (σ ∈ G2α

2α(Rd
+); cf. Theorem 3.4.1). Thus, if we fix f ∈ (Sαα (Rd))′,

the mapping
g 7→ (Wσ̃0f)(g), (Sαα (Rd))′ → C,

is a well defined linear mapping. To prove that it is continuous let B be a bounded
subset of (Sαα (Rd))′. Thus for each a > 1 there exists C > 0 such that

|gk| ≤ Ca|k|
1/(2α)

, ∀k ∈ Nd
0, ∀g ∈ B.
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Hence,
sup
g∈B
|(Wσ̃0f)(g)| <∞,

i.e. Wσ̃0f maps bounded subsets in (Sαα (Rd))′ into bounded subsets of C. Since
(Sαα (Rd))′ is bornological,

g 7→ (Wσ̃0f)(g) , (Sαα (Rd))′ → C,

is continuous. Hence Wσ̃0f ∈ Sαα (Rd) (Sαα (Rd) is reflexive). Now we conclude that

Wσ̃0f =
∑
n∈Nd0

fnσnhn.

This is exactly Hermite expansion of Wσ̃0f ; {fnσn}n ∈ s2α. Thus, the mapping

f 7→ Wσ̃0f, (Sαα (Rd))′ → Sαα (Rd),

is well defined and linear. Arguing similarly as before, one can prove that when f
varies in a bounded subset B of (Sαα (Rd))′, the set

{{fkσk}k∈Nd0 | f ∈ B} is bounded in s2α.

Thus,
{Wσ̃0f | f ∈ B} is bounded in Sαα (Rd).

As (Sαα (Rd))′ is bornological, the mapping

f 7→ Wσ̃0f, (Sαα (Rd))′ → Sαα (Rd),

is continuous. Observe that Wσ̃0f coincides with the Weyl transform of f when
f ∈ Sαα (Rd) (cf. (4.10)).

If σj → σ as j →∞, in G2α
2α(Rd

+), Theorem 3.4.1 implies that

{σn,j}n∈Nd0
s2α−−→ {σn}n∈Nd , j →∞

and since the latter is a (DFN)-space, the convergence also holds in s2α,a for some
a > 1. Thus, for each fixed f ∈ (Sαα (Rd))′,

{fnσn,j}n
s2α−−→ {fnσn}n.

Hence, ∑
n∈Nd0

fnσn,jhn
Sαα (Rd)−−−−→

∑
n∈Nd0

fnσnhn.

Since we have obtained that Wσ̃0,j
→ Wσ̃0 in the topology of simple convergence in

L((Sαα (Rd))′,Sαα (Rd)), by the Banach-Steinhaus theorem it follows that the conver-
gence holds in the topology of precompact convergence. As (Sαα (Rd))′ is a Montel
space, the convergence also holds in the strong topology of L((Sαα (Rd))′,Sαα (Rd)).
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Let α ≥ 1/2. If σ is a measurable function on Rd
+ such that

σ(ρ)

(1 + ρ)n/2
∈ L2(Rd

+)

for some n ∈ Nd
0 then one easily verifies that σ ∈ (S(Rd

+))′. Since the canonical
inclusion G2α

2α(Rd
+) → S(Rd

+) is continuous and dense, (S(Rd
+))′ is continuously

injected into (G2α
2α(Rd

+))′, hence σ ∈ (G2α
2α(Rd

+))′.

Lemma 4.4.1. Let α ≥ 1/2 and σn, n ∈ Nd
0, be measurable functions on Rd

+ such
that σn(ρ)/(1 + ρ)n/2 ∈ L2(Rd

+), for all n ∈ Nd
0 and∑

n∈Nd0

∥∥σn(ρ)/(1 + ρ)n/2
∥∥
L2(Rd+)

A|n|nαn <∞, for each A > 0.

Then
∑

n∈Nd0
σn converges absolutely in (G2α

2α(Rd
+))′.

Furthemore, σ̃n(x, ξ) = σn(2v(x, ξ)), for all n ∈ Nd
0, is measurable on R2d and

σ̃n(x, ξ)

(1 + 2v(x, ξ))n/2
∈ L2(R2d).

Moreover,
∑

n∈Nd0
σ̃n(x, ξ) converges absolutely in (Sαα (R2d))′.

Proof. Firstly, we will prove that
∑

n∈Nd0
σn converges absolutely in (G2α

2α(Rd
+))′.

Let B be bounded subset of G2α
2α(Rd

+). For each f ∈ B denote by an,f = 〈f,Ln〉.
By Theorem 3.4.1, {{an,f}n∈Nd0 | f ∈ B} is bounded in s2α and hence also bounded

in s2α,a for some a > 1, i.e. there exists C0 > 0 such that

|an,f | ≤ C0a
−|n|1/(2α)

, for all f ∈ B.

For f ∈ B, n ∈ Nd
0, we have

|〈σn, f〉| ≤
∑
k∈Nd0

|ak,f |
∫
Rd+
|σn(ρ)||Lk(ρ)|dρ

≤ C0

∥∥σn(ρ)/(1 + ρ)n/2
∥∥
L2(Rd+)

∑
k∈Nd0

a−|k|
1/(2α)

∑
m≤n

(
n

m

)
‖ρm/2Lk‖L2(Rd+).

As in the first part of the proof of Proposition 3.3.1, by (3.11), there exist C1, A > 1
which depend on a but not on n ∈ Nd

0 such that∑
k∈Nd0

a−|k|
1/(2α)

∑
m≤n

(
n

m

)
‖ρm/2Lk‖L2(Rd+) ≤ C1A

|n|nαn.

Hence, by the assumption on σn, n ∈ Nd
0, we have∑

n∈Nd0

sup
f∈B
|〈σn, f〉| <∞,
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i.e.
∑

n∈Nd0
σ(ρ) converges absolutely in (G2α

2α(Rd
+))′.

Next we will prove that for each n ∈ Nd
0, σ̃n is measurable on R2d. Firstly, we

will show the following:
Let v1 : R2d → Rd

+ be defined by v1(x, ξ) = (2x2
1 + 2ξ2

1 , . . . , 2x
2
d + 2ξ2

d). If

g : Rd
+ → C is measurable then f : R2d → C, f = g ◦ v1, is also measurable.

For brevity in notation we denote by λd and λ2d the Lebesgue measure on
Rd and R2d, respectively. We will prove that if N ⊆ Rd

+ with λd(N) = 0 then
λ2d(v

−1
1 (N)) = 0. Observe that this implies the measurability of f since:

• Every measurable set is the union of a Borel set and a set of measure zero
and

• the preimage of every Borel set under v1 is Borel set (since v1 is continuous).

Let N ⊆ Rd
+, with λd(N) = 0. Denote by N1 = N ∩ Rd

+ and by N2 = N\N1.
Obviously,

λ2d

(
v−1

1 (Rd
+\Rd

+)
)

= 0.

Thus v−1
1 (N2) is measurable and has measure zero.

It remains to prove that λ2d(v
−1
1 (N1)) = 0. Let ε > 0 be arbitrary but fixed.

Since λd(N1) = 0, there exists an open set O ⊆ Rd
+, such that N1 ⊆ O and

λd(O) < ε/πd. There exist countable number of cubes

B(ρ(j), rj) = {ρ ∈ Rd
+| ρ

(j)
l ≤ ρl < ρ

(j)
l + rj, l = 1, . . . , d}, j ∈ N

which are pairwise disjoint and

O =
⋃
j∈N

B(ρ(j), rj)

(see [35, p. 49]). Observe that

ε/πd > λd(O) =
∑
j∈N

λd(B(ρ(j), rj)) =
∑
j∈N

rdj

and

v−1
1 (B(ρ(j), rj)) =

d∏
l=1

{
(xl, ξl)| ρ(j)

l /2 ≤ x2
l + ξ2

l < ρ
(j)
l /2 + rj/2

}
.

Thus λ2d(v
−1
1 (B(ρ(j), rj)) = rdjπ

d/2d. Hence,

λ2d(v
−1
1 (O)) =

∑
j∈N

rdjπ
d/2d < ε.

Since ε > 0 is arbitrary, we conclude that v−1
1 (N1) is measurable and it has measure

zero. Hence, the measurability of σ̃n follows.
Moreover,∥∥σ̃n(x, ξ)/(1 + 2v(x, ξ))n/2

∥∥2

L2(R2d)
= 2−dπd

∥∥σn(ρ)/(1 + ρ)n/2
∥∥2

L2(Rd+)
.
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Clearly, σ̃n ∈ (Sαα (R2d))′ for each n ∈ Nd
0.

To prove that
∑

n∈Nd0
σ̃n converges absolutely in (Sαα (R2d))′, let B be a bounded

subset of Sαα (R2d). As the latter space is the inductive limit of lim−→
A→∞

Sα,Aα,A (R2d) with

compact linking mappings, there exist C,A ≥ 1 such that for all f ∈ B

∥∥xnξmDp
xD

q
ξf(x, ξ)

∥∥
L2(R2d)

≤ CA|n+m+p+q|n!αm!αp!αq!α, ∀n,m, p, q ∈ Nd
0.

Next, for f ∈ B, we have

|〈σ̃n, f〉| ≤
∥∥σ̃n(x, ξ)/(1 + 2v(x, ξ))n/2

∥∥
L2(R2d)

∥∥f(x, ξ)(1 + 2v(x, ξ))n/2
∥∥
L2(R2d)

≤ πd2|n|
∥∥σn(ρ)/(1 + ρ)n/2

∥∥2

L2(Rd+)

∑
m+k+p=n

n!

m!k!p!

∥∥xmξkf(x, ξ)
∥∥
L2(R2d)

≤ Cπd(6A)|n|n!α
∥∥σn(ρ)/(1 + ρ)n/2

∥∥2

L2(Rd+)
.

Hence, by the assumption in the lemma,∑
n∈Nd0

sup
f∈B
|〈σ̃n, f〉| <∞,

i.e.
∑

n∈Nd0
σ̃n absolutely converges in (Sαα (R2d))′.

Let σn and σ̃n, n ∈ Nd
0, be as in the previous lemma and

σ̃(x, ξ) =
∑
n∈Nd0

σ̃n(x, ξ) ∈ (Sαα (Rd))′.

The Weyl pseudo-differential operator Wσ̃ is a continuous mapping from Sαα (Rd)
into (Sαα (Rd))′. In this case, we obtain improvement with the following result.

Theorem 4.4.2. Let α ≥ 1/2. Let σn(ρ) and σ̃n(x, ξ) = σn(2v(x, ξ)), n ∈ Nd
0, be

as in Lemma 4.4.1. Then

Wσ̃ : Sαα (Rd)→ Sαα (Rd),

where
σ̃(x, ξ) =

∑
n∈Nd0

σ̃n(x, ξ) ∈ (Sαα (R2d))′,

is a continuous mapping and it extends to a continuous mapping

Wσ̃ : (Sαα (Rd))′ → (Sαα (Rd))′.

Next, assume that for each j ∈ N, σ
(j)
n ∈ (G2α

2α(Rd
+))′, n ∈ Nd

0, be as in Lemma

4.4.1. Denote by σ(j) =
∑

n∈Nd0
σ

(j)
n ∈ (G2α

2α(Rd
+))′. If

σ(j)(η)
(G2α

2α(Rd+))′

−−−−−−→ σ(η), as j →∞,

with σ as above, then Wσ̃(j) → Wσ̃ in the strong topology of L(Sαα (Rd),Sαα (Rd))
and L((Sαα (Rd))′, (Sαα (Rd))′).
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Proof. Denote by σ =
∑

n∈Nd0
σn ∈ (G2α

2α(Rd
+))′ (cf. Lemma 4.4.1). Let f, g ∈

Sαα (Rd) and denote by

fk = 〈f, hk〉, gk = 〈g, hk〉 and sk = (2π)d/2(−1)|k|2−d〈σ,Lk〉.

Similarly as in the first part of the proof of Theorem 4.4.1, one obtains

(Wσ̃f)(g) = (2π)−d/2
∑

(m,k)∈N2d
0

fmgk〈σ̃, ψm,k〉,

where ψm,k = W (hm, hk) and the sum converges absolutely. Next,

〈σ̃(x, ξ), ψm,k(x, ξ)〉 =
∑
n∈Nd0

∫
R2d

σn(2v(x, ξ))ψm,k(x, ξ)dxdξ.

By the same technique as in the proof of Theorem 4.4.1,∫
R2d

σn(2v(x, ξ))ψm,k(x, ξ)dxdξ = Cn,m,k

d∏
r=1

∫ π

−π
e−i(mr−kr)θrdθr.

Thus 〈σ̃, ψm,k〉 = 0 for m 6= k. Moreover,∫
R2d

σn(2v(x, ξ))ψk,k(x, ξ)dxdξ

= (2π)d/2(−1)|k|2d
∫
Rd+
σn(2ρ2

1 . . . , 2ρ
2
d)Lk(2ρ

2
1, . . . , 2ρ

2
d)e
−|ρ|2ρ1dρ

= (2π)d/2(−1)|k|2−d〈σn,Lk〉.

Thus,
〈σ̃(x, ξ), ψk,k(x, ξ)〉 = (2π)d/2(−1)|k|2−d〈σ,Lk〉 = sk.

Hence, we obtain

(Wσ̃f)(g) = (2π)−d/2
∑
k∈Nd0

fkgksk

and the series converges absolutely since {fk}k∈Nd0 , {gk}k∈Nd0 ∈ s
2α (see Proposition

1.6.1) and {sk}k∈Nd0 ∈ (s2α)′ (see Theorem 3.4.2). Observe that for each n ∈
Nd

0, (Wσ̃f)(hn) = fnsn. Since {sn}n∈Nd0 ∈ (s2α)′ and {fn}n∈Nd0 ∈ s2α, we have

{fnsn}n∈Nd0 ∈ s
2α, i.e. Wσ̃f ∈ Sαα (Rd) (by Proposition 1.6.1). We conclude that

f 7→ Wσ̃f, Sαα (Rd)→ Sαα (Rd),

is a well defined linear mapping. Moreover,

Wσ̃f =
∑
n∈Nd0

fnsnhn.
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To prove the continuity let B be a bounded subset of Sαα (Rd). As {sk}k∈Nd0 ∈ (s2α)′,
the set

{{fnsn}n∈Nd0 | f ∈ B} is bounded in s2α,

thus

{Wσ̃f | f ∈ B} is bounded in Sαα (Rd).

As Sαα (Rd) is bornological,

f 7→ Wσ̃f, Sαα (Rd)→ Sαα (Rd),

is continuous. By similar technique, one proves that

Wσ̃f =
∑
n∈Nd0

fnsnhn ∈ (Sαα (Rd))′, for each f ∈ (Sαα (Rd))′

and the mapping,

f 7→ Wσ̃f, (Sαα (Rd))′ → (Sαα (Rd))′,

is continuous.
Let σ, σ(j) ∈ (G2α

2α(Rd
+))′, j ∈ N, be as assumed in the theorem, with σ(j) →

σ in (G2α
2α(Rd

+))′. In order to prove Wσ̃(j) → Wσ̃ in the strong topology of
L(Sαα (Rd),Sαα (Rd)) (resp. in the strong topology of L((Sαα (Rd))′, (Sαα (Rd))′)) it
is enough to prove that for each f ∈ Sαα (Rd) (resp. for each f ∈ (Sαα (Rd))′),
Wσ̃(j)f → Wσ̃f in Sαα (Rd) (resp. in (Sαα (Rd))′) since in this case the Banach-
Steinhaus theorem implies convergence in the topology of precompact convergence.
As Sαα (Rd) (resp. (Sαα (Rd))′) is Montel the convergence also holds in the strong
topology. Thus for the fixed f ∈ Sαα (Rd) (resp. f ∈ (Sαα (Rd))′). Theorem 3.4.2
implies that

{s(j)
k }k∈Nd0

(s2α)′−−−→ {sk}k∈Nd0 .

Then

{fks(j)
k }k∈Nd0

s2α−−→ {fksk}k∈Nd0 , (resp. in (s2α)′)

i.e.

Wσ̃(j)f
Sαα (Rd)−−−−→ Wσ̃f, (resp. in (Sαα (Rd))′.

Remark 4.4.1. Let σn, n ∈ Nd
0, be measurable functions on Rd

+ such that σn(ρ)/(1+
ρ)n/2 ∈ L2(Rd

+), for all n ∈ Nd
0 and for each A > 0,∑

n∈Nd0

∥∥σn(ρ)/(1 + ρ)n/2
∥∥
L2(Rd+)

A|n|nαn/2 <∞.

Then, by Lemma 4.4.1
∑

n∈Nd0
σn converges absolutely in (Gα

α(Rd
+))′ to some σ.

Moreover, the same result also states that

σ̃n(x, ξ) = σn(2x2
1 + 2ξ2

1 , . . . , 2x
2
d + 2ξ2

d)
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is measurable on R2d and
∑

n σ̃n converges absolutely in (Sα/2α/2 (R2d))′ to some σ̃.
The Weyl pseudodifferential operator with symbol σ̃ is well defined and contin-
ues mapping from Sαα (Rd) into Sαα (Rd), it extends to a continuous mapping from
(Sαα (Rd))′ to (Sαα (Rd))′. It is given by

Wσ̃f =
∑
k

fkσkhk, f =
∑
k

fkhk ∈ (Sαα (Rd))′, σk = (2π)d/2(−1)|k|2−d〈σ, lk〉

and σk = (2π)d/2(−1)|k|2−d〈σ, lk〉 (see Theorem 4.4.2). By Theorem 3.6.2 each σ
given as above originates from a unique even tempered ultradistribution by the
isomorphism (tI)−1 : (Sα/2α/2, even(Rd))′ → (Gα

α(Rd
+))′.

4.5 Weyl pseudo-differential operator with ra-

dial symbols from S(Rd
+) and its dual space

In this section, we prove, by the similar arguments as in Section 4.4, the continuity
of the Weyl pseudo-differential operators with radial symbols from S(Rd

+) and its
dual space on the Schwartz space and its dual space.

Theorem 4.5.1. Let σ(ρ) ∈ S(Rd
+) and denote by σ0(ρ) = σ(2ρ), ρ ∈ Rd

+. Let
σ̃, σ̃0 ∈ S(R2d) be the functions defined in (4.6). Then

Wσ̃0 : (S(Rd))′ → S(Rd)

extends to a continuous mapping. If f, g ∈ (S(Rd))′ and

fk = 〈f, hk〉, gk = 〈g, hk〉 and σk = (2π)d/2(−1)|k|2−d
∫
Rd+
σ(ρ)Lk(ρ)dρ,

then
(Wσ̃0f)(g) = (2π)−d/2

∑
k∈Nd0

fkgkσk.

Moreover, if
σ0,j(η)x→ S(Rd

+)σ0(η) as j →∞

then Wσ̃0,j
→ Wσ̃0 in the strong topology of L((S(Rd))′,S(Rd)).

Proof. First we compute the Weyl transform Wσ̃0 of f ∈ S(Rd). Let g ∈ S(Rd).
Following (4.4) we obtain

(Wσ̃0f)(g) = (2π)−d/2σ̃0(W (f, g))

= (2π)−d/2
∑
k∈Nd0

∑
j∈Nd0

〈g, hk〉〈f, hj〉σ̃0(ψj,k). (4.11)

Using (4.8) and (4.9) and passing to polar coordinate in the integral

σ̃0(ψj,k) =

∫
R2d

σ0(v(x, ξ))ψj,k(x, ξ)dxdξ
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one easily obtains that

σ̃0(ψj,k) = Cj,k

d∏
r=1

∫ 2π

0

e−i(jr−kr)θrdθr.

Thus, σ̃0(ψj,k) = 0 when j 6= k. Moreover, denoting 1 = (1, . . . , 1) ∈ Nd,

σ̃0(ψk,k) = (2π)
d
2 (−1)k2d

∫
Rd+
σ(2ρ2

1, . . . , 2ρ
2
d)Lk(2ρ

2
1, . . . , 2ρ

2
d)e
−|ρ|2ρ1dρ

= (2π)
d
2 (−1)k2−d

∫
Rd+
σ(y)Lk(y)dy = σk

By (4.11), with gk = 〈g, hk〉 and fk = 〈f, hk〉, we obtain

(Wσ̃0f)(g) = (2π)−
d
2

∑
k∈Nd0

gkfkσk. (4.12)

Let now f, g ∈ S ′(Rd). Define

(Wσ̃0f)(g) =
∑
n∈Nd0

fngnσn.

Observe that the series is absolutely convergent since {fn}n∈Nd0 , {gn}n∈Nd0 ∈ s
′ and

{σn}n∈Nd0 ∈ s (σ ∈ S(Rd
+); cf. Theorem 2.2.1). Thus, if we fix f ∈ S ′(Rd), the

mapping
g 7→ (Wσ̃0f)(g), S ′(Rd)→ C

is well defined linear mapping.
To prove that it is continuous let B be a bounded subset of S ′(Rd). As S(Rd)

is barreled B is equicontinuous. Thus, the set {{gk}k∈Nd0 | g ∈ B} is equicontinuous
subset of s′. We conclude that there exist r ∈ N and C > 0 such that

|gk| ≤ C(|k|+ 1)r, ∀k ∈ Nd
0, ∀g ∈ B.

Hence,

sup
g∈B
|(Wσ̃0f)(g)| ≤ C

∑
n∈Nd0

|fn|(|n|+ 1)r|σn| <∞,

i.e. Wσ̃0f maps bounded subsets in S ′(Rd) into bounded subsets of C. Since
S ′(Rd) is bornological,

g 7→ (Wσ̃0f)(g)

is continuous. Hence Wσ̃0f ∈ S(Rd) (S(Rd) is reflexive). Now we can easily
conclude that

Wσ̃0f =
∑
n∈Nd0

fnσnhn.

Thus, the mapping
f 7→ Wσ̃0f, S ′(Rd)→ S(Rd),
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is well defined and linear. Arguing similarly as before, one can prove that when f
varies in a bounded subset B of S ′(Rd) the set

{{fkσk}k∈Nd0 | f ∈ B} is a bounded subset of s.

Thus,
{Wσ̃0f | f ∈ B} is bounded subset of S(Rd).

As S ′(Rd) is bornological, the mapping

f 7→ Wσ̃0f, S ′(Rd)→ S(Rd),

is continuous. Observe that Wσ̃0f coincides with the Weyl transform of f when
f ∈ S(Rd) (cf. (4.12)).

If σj → σ as j →∞, in S(Rd
+), Theorem 2.2.1 implies that

{σn,j}n∈Nd0
s−→ {σn}n∈Nd as j →∞.

Thus for each fixed f ∈ S ′(Rd),∑
n∈Nd0

fnσn,jhn
S(Rd)−−−→

∑
n∈Nd0

fnσnhn,

i.e. Wσ̃0,j
→ Wσ̃0 in the topology of simple convergence in L(S ′(Rd),S(Rd)). Now,

the Banach-Steinhaus theorem implies that the convergence holds in the topology
of precompact convergence. Since S ′(Rd) is Montel, the convergence also holds in
the strong topology of L(S ′(Rd),S(Rd)).

Theorem 4.5.2. Let σ be a measurable function on Rd
+ such that there exists

n ∈ Nd
0 for which

σ(ρ)

(1 + ρ)n
∈ L2(Rd

+).

We have
σ̃(x, ξ) = σ(2v(x, ξ)) ∈ (S(R2d))′.

Then
Wσ̃ : S(Rd)→ S(Rd)

is continuous mapping and it extends to a continuous mapping

(S(Rd))′ → (S(Rd))′.

Let σ(j), j ∈ N, be measurable functions on Rd
+ such that for each j ∈ N there

exists n(j) ∈ Nd
0 for which

σj(ρ)/(1 + ρ)n
(j) ∈ L2(Rd

+).

If σ is a measurable function on Rd
+ with the properties stated above and if

σ(j)(η)
(S(Rd+))′

−−−−−→ σ(η) as j →∞,

then Wσ̃(j) → Wσ̃ in the strong topology of not only L(S(Rd),S(Rd)) but also
L((S(Rd))′, (S(Rd))′).



82

Proof. Let f, g ∈ S(Rd). Denote

fk = 〈f, hk〉, gk = 〈g, hk〉 and σk = (2π)d/2(−1)k2−d〈σ,Lk〉.

Following (4.4), we obtain

(Wσ̃(x,ξ)f)(g) = (2π)−d/2σ̃(W (f, g))

= (2π)−d/2
∑
k∈Nd0

∑
j∈Nd0

〈g, hk〉〈f, hj〉σ̃(ψj,k) (4.13)

where ψj,k = W (hj, hk). Next,

σ̃(ψj,k) = 〈σ̃(x, ξ), ψj,k(x, ξ)〉 =
∑
|s|≤N

2|s|
∫
R2d

v(x, ξ)sσ(2v(x, ξ))ψj,k(x, ξ)dxdξ

By the same technique as in the proof of Theorem 4.5.1 we have

σ̃(ψj,k) =
∑
|s|≤N

Cj,k,s

d∏
r=1

∫ 2π

0

e−i(jr−kr)θrdθr.

Thus σ̃(ψj,k) = 0 for j 6= k. Moreover, denoting 1 = (1, . . . , 1) ∈ Nd,

σ̃(ψk,k) = (2π)d/2(−1)k2d
∫
Rd+

∑
|s|≤N

2|s|(ρs)2σs(2ρ
2
1 . . . , 2ρ

2
d)

×Lk(2ρ2
1, . . . , 2ρ

2
d)e
−|ρ|2ρ1dρ

= (2π)d/2(−1)k2−d〈σ,Lk〉 = σk.

By (4.13), with gk = 〈g, hk〉, fk = 〈f, hk〉 we obtain

(Wσ̃f)(g) = (2π)−d/2
∑
k∈Nd0

gkfkσk.

Since f, g ∈ S(Rd) it follows that {fk}k∈Nd0 ∈ s and {gk}k∈Nd0 ∈ s. As σ ∈ S ′(Rd
+),

applying Theorem 2.3.1 we obtain {σk}k∈Nd0 ∈ s
′. This implies that the series is

absolutely convergent. If B is a bounded subset of S(Rd) than

{{gk}k∈Nd0 | g ∈ B} is bounded subset of s.

Thus,
{(Wσ̃f)(g)| g ∈ B} is bounded subset of C.

Hence, the mapping
g 7→ (Wσ̃f)(g), S(Rd)→ C,

is continuous since S(Rd) is bornological. Thus,

f 7→ Wσ̃f, S(Rd)→ S ′(Rd),
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is a well defined linear mapping. Observe that for each n ∈ Nd
0, (Wσ̃f)(hn) = σnfn.

Since {σn}n∈Nd0 ∈ s
′ and {fn}n∈Nd0 ∈ s, we have {σnfn}n∈Nd0 ∈ s, i.e. Wσ̃f ∈ S(Rd).

We conclude that
f 7→ Wσ̃f, S(Rd)→ S(Rd),

is well defined linear map. Moreover,

Wσ̃f =
∑
n∈Nd0

σnfnhn.

To prove that it is continuous let B be a bounded subset of S(Rd). As {σk}k∈Nd ∈
s′, the set

{{σnfn}n∈Nd0 | f ∈ B} is bounded in s.

Thus,
{Wσ̃f | f ∈ B} is bounded in S(Rd).

As S(Rd) is bornological,

f 7→ Wσ̃f, S(Rd)→ S(Rd),

is continuous. By similar technique, one proves that

Wσ̃f =
∑
n∈Nd0

fnsnhn ∈ S ′(Rd), for each f ∈ S ′(Rd)

and the mapping,
f 7→ Wσ̃f, S ′(Rd)→ S ′(Rd),

is continuous.
Let σ, σ(j) ∈ S ′(Rd

+), j ∈ N, be as in the assumption in the Theorem, with
σ(j) → σ in S ′(Rd

+). In order to prove Wσ̃(j) → Wσ̃ in the strong topology of
L(S(Rd),S(Rd)) (resp. L(S ′(Rd),S ′(Rd))) it is enough to prove that for each f ∈
S(Rd) (resp. f ∈ S ′(Rd)), Wσ̃(j)f → Wσ̃f in S(Rd) (resp. Wσ̃f ∈ S ′(Rd)) since
in this case the Banach-Steinhaus theorem implies convergence in the topology of
precompact convergence. As S(Rd) (resp. S ′(Rd)) is Montel the convergence also
holds in the strong topology. Thus fix f ∈ S(Rd) (resp. f ∈ S ′(Rd)). Theorem
2.3.1 implies that

{σ(j)
k }k∈Nd0

s′−→ {σk}k∈Nd0 .

But then
{σ(j)

k fk}k∈Nd0
s−→ {σkfk}k∈Nd0 , (resp. in s′)

i.e.

Wσ̃(j)f
S(Rd)−−−→ Wσ̃f (resp. in S(Rd)).
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Appendix A

Topics from Functional Analysis

A.1 Nuclear Mappings

Note that in each linear space E there is a one to one relation between seminorms
and central subsubsets (absorbing absolutely convex subset A of a linear space E
is central if x ∈ A whenever αx ∈ A for all α ∈ C with |α| < 1). For each such
set A, the equation

pA(x) = inf{% > 0 : x ∈ %A} for x ∈ E

determines a semi-norm pA for which

A = {x ∈ E : pA(x) ≤ 1}.

Conversely, every semi-norm p can be obtained in this way from the central subset

A = {x ∈ E : p(x) ≤ 1}.

We shall consider nuclear mappings from a normed space E into a normed space
F .

Definition A.1.1. ([30, Definition 3.1.1, p.49]) Let E and F be two arbitrary
normed spaces with closed unit balls U and V . A continuous linear mapping
T : E → F is called nuclear if there are continuous linear forms an ∈ E ′ and
elements yn ∈ F with ∑

n

pU◦(an)pV (yn) <∞

such that T has the form

Tx =
∑
n

〈x, an〉yn for x ∈ E.

For each nuclear mapping T we set

ν(T ) = inf{
∑
n

pU◦(an)pV (yn)},
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where the infimum is taken over all possible representations of T . If F is con-
tinuously injected into a larger normed space G it is possible that the continuous
linear mapping T : E → F is nuclear as a mapping from E into G but not as a
mapping from E into F . The detailed investigation of these matters led to the
concept of a quasinuclear mapping.

Definition A.1.2. ([30, Definition 3.2.3, p.56]) If E and F are two arbitary
normed spaces with closed unit balls U and V , then we designate a continuous
linear mapping T from E into F as quasinuclear if there is a sequence of linear
forms an ∈ E ′ with ∑

n

pU◦(an) <∞

such that
pV (Tx) ≤

∑
n

|〈x, an〉| for x ∈ E.

For each quasinuclear mapping T we set

π0(T ) = inf{
∑
n

pU◦(an)},

where the infimum is taken over all sequences of linear forms an which have the
stated property.

Proposition A.1.1. ([30, Proposition 3.2.7, p.59]) A continuous linear mapping
T from a normed space E into a normed space F is quasinuclear if and only if
there is a normed space G containing F such that T is nuclear as a mapping from
E into G.

For E,F and G three normed spaces we have the following theorem:

Theorem A.1.1. [30, Proposition 3.3.2, p.62]) Let T : E → F and S : F → G
be two quasinuclear mappings. Then the product ST is nuclear and

ν(ST ) ≤ π0(S)π0(T ).

We proceed to define the nuclear space.
Let X̂p be the completion of the normed space E/Ker p (the latter is a normed

space of we put on it the quotient mod Ker p of the seminorm p).

Definition A.1.3. (Nuclear space) A locally convex Hausdorff topological vector
space X is called nuclear if to every continuous seminorm p on X there is another
continuous seminorm on X, q ≥ p, such that the canonical mapping X̂q → X̂p is
nuclear.

A.2 The Open Mapping Theorem

Suppose f maps S into T where S and T are topological spaces. We say that f
is open at a point p ∈ S if f(V ) contains a neighborhood of f(p) whenever V is
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a neighborhood of p. We say that f is open if f(U) is open in T whenever U is
open in S.

It is clear that f is open if and only if f is open at every point in S. Because
of the invariance of vector topologies, it follows that a linear mapping of one to-
pological vector space into another is open if and only if it is open at the origin.

A continuous linear mapping f of S onto T is called a topological homo-
morphism if it is open. Note that if f is also one-to-one f is called a topological
monomorphism. f is then a homeomorphism of S and f(S). If f(S) = T as well,
f is called a topological isomorphism of S and T (see [22, p.91]).

Now we state the open mapping theorem:

Theorem A.2.1. ([35, Theorem 2.11, p.47]) Suppose

(a) X is an (F )-space,

(b) Y is a topological vector space,

(c) Λ : X → Y is continuous and linear and

(d) Λ(X) is of the second category in Y .

Then

(i) Λ(X) = Y ,

(ii) Λ is an open mapping and

(iii) Y is an (F )-space.

Corollary A.2.1. ([35, Corollary 2.12, p.48])

(i) If Λ is a continuous linear mapping of an (F )-space X onto an (F )-space
Y , then Λ is open.

(ii) If Λ satisfies (i) and is one-to-one, then Λ−1 : Y → X is continuous.

A.3 The closed-graph theorem

If X and Y are sets and f maps X into Y , the graph of f is the set of all points
(x, f(x)) in the cartesian product X × Y .

Proposition A.3.1. ([35, Proposition 2.14, p.49]) If X is a topological space and
if Y is a Hausdorff space, and f : X → Y is continuous, then the graph G of f is
closed.

Now we state the closed graph theorem:

Theorem A.3.1. ([35, Theorem 2.15, p.50]) Suppose

(a) X and Y are (F )-spaces,

(b) Λ : X → Y is linear,

(c) G = {(x,Λx) : x ∈ X} is closed in X × Y .

Then Λ is continuous.
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A.4 Topology of bounded convergence

Let E and F be two locally convex topological vector spaces. By L(E,F ) we
denote the collection of all continuous linear mappings from E into F .

We are interested in the family of all bounded sets of E, which leads to the
topology of bounded convergence; equipped with it, L(E,F ) will be denoted by
Lb(E,F ). Also, Lb(E,C) = E ′b, strong dual of E.

Corollary A.4.1. ([39, Corollary 1, p. 344]) Let E be a locally convex Hausdorff
space such that a linear mapping of E into a locally convex space which is bounded
on every bounded set is continuous. Then for all complete locally convex Hausdorff
spaces F , Lb(E,F ) is complete. In particular, E ′b is complete.

A.5 Tensor product

In this chapter we review the topological tensor products. For more details on
this subject we refer to [39].

We begin with the definition of the tensor product of two vector spaces.

Definition A.5.1. (Algebraic tensor product) Let E and F be two vector spaces
over K = {R,C}. We form the set Λ(E×F ) of all formal finite linear combinations∑

(x,y)∈E×F

(x, y)αx,y

of elements of E × F , with coefficients in K. Λ(E × F ) becomes a vector space
over K when we put( ∑

(x,y)∈E×F

(x, y)αx,y

)
β =

∑
(x,y)∈E×F

(x, y)αx,yβ

and ∑
(x,y)∈E×F

(x, y)αx,y +
∑

(x,y)∈E×F

(x, y)βx,y =
∑

(x,y)∈E×F

(x, y)(αx,y + βx,y).

The zero element is obtained when all the coefficients αx,y are put to be equal to
0.

We now form the linear span Λ0 in Λ(E × F ) of all elements of the form( n∑
i=1

xiαi,
m∑
k=1

ykβk

)
−

n∑
i=1

m∑
k=1

(xi, yk)αiβk.

The quotient space Λ/Λ0 is called the tensor product, E ⊗ F of E and F .

A mapping B(x, y) from E × F into a vector space H which is linear in both
variables i.e. is called a bilinear mapping from E×F into H. Thus, for all xi ∈ E
and yk ∈ F ,

B(
∑
i

xiαi,
∑
k

ykβk) =
∑
i

∑
k

B(xi, yk)αiβk.
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If H is the field of coefficients, we speak of bilinear forms or bilinear functionals.
The set of all bilinear mappings from E×F intoH form a vector space B(E×F,H).
We denote the space of all bilinear forms on E × F by B(E × F ).

We can topologize and form the completion of a tensor product E ⊗ F either
by relying directly on the seminorms on E and F or by embedding E⊗F in some
space related to E and F in which a ”natural” topology already exists. The first
approach leads to the so-called projective or π-topology. The second approach
leads to a variety of topologies, the most important is the ε-topology. We proceed
to give the definition of the firs main topology on tensor products.

Definition A.5.2. (Projective tensor product) Let X⊗Y be the algebraic tensor
product of locally convex spaces X and Y . The projective tensor topology or the
π-topology of X ⊗ Y is the strongest topology for which the bilinear mapping

((x, y) 7→ x⊗ y) : X × Y → X ⊗ Y

is continuous. This topological space is denoted by X ⊗π Y and its completion by
X⊗̂πY .

The definition on the ε-topology is based on the relationship between tensor
products and bilinear functionals.

Proposition A.5.1. ([39, Proposition 42.4., p.432]) Let X, Y be locally convex
spaces over C. The algebraic tensor product X ⊗ Y is isomorphic to the space
B(X ′, Y ′) of continuous bilinear functionals X ′ × Y ′ → C, where X ′ and Y ′ are
the dual spaces with weak topologies.

We introduce the notion of equicontinuous sets of functions:

Definition A.5.3. (Equicontinuity in vector space) Let X be a topological space
and V a topological vector space. A familly F of mappings f : X → V is called
equicontinuous at p ∈ X if for every neighborhood W ⊂ V of f(p) there exists a
neighborhood U ⊂ X of p such that f(x) ∈ W whenever f ∈ F and x ∈ U .

Now we state the definition of the second main topology on tensor products.

Definition A.5.4. (Injective tensor product) Let X, Y be locally convex spaces
over C. Let B̃(X ′, Y ′) be the space of those bilinear functionals X ′×Y ′ → C that
are continuous separately in each variable. Endow B̃(X ′, Y ′) with the topology τ
of uniform convergence on the products of an equicontinuous subset of X ′ and an
equicontinuous subset of Y ′. Interpreting X ⊗ Y ⊂ B̃(X ′, Y ′) as in Proposition
A.5.1, let the injective tensor topology or ε-topology be the restriction of τ to
X ⊗ Y . This topological space is denoted by X ⊗ε Y and its completion by
X⊗̂εY .

The introduction of nuclear spaces is justified by the following theorem (for
the definition of the nuclear spaces see Appendix A.1):

Theorem A.5.1. ([39, Theorem 50.1. (f), p.511]) X is nuclear if and only if for
every locally convex Hausdorff topological vector space Y , the canonical mapping
of X⊗̂πY into X⊗̂εY is an isomorphism onto.
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Note that the previous theorem means that

X ⊗π Y = X ⊗ε Y,

where the equality extends to the topologies.

Proposition A.5.2. ([39, Proposition 50.1. (50.9), p.514]) If X and Y are two
nuclear spaces, X⊗̂Y is nuclear.

We close this section with the results about Fréchet spaces.

Proposition A.5.3. ([39, Proposition 50.6., p.523]) A Fréchet space X is nuclear
if and only if its strong dual is nuclear.

Proposition A.5.4. ([39, Proposition 50.7., p.524]) Let E and F be two Fréchet
spaces. If E is nuclear we have the canonical isomorphism

E ′⊗̂F ′ ∼= B(E,F ) ∼= (E⊗̂F )′.

A.6 Barreled and Montel spaces

Among the locally convex topologies on E1 which can be defined in terms of the
dual pair 〈E2, E1〉 there is a finest one, namely the topology of uniform convergence
on all the weakly bounded subsets of E2. This is called the strong topology Ib(E2)
on E1. We now give the characterization of the strong topology.

A subset T of a locally convex space T [I] is called a barrel if T has the following
properties:

(i) T is absorbent (A subset M of E is said to be absorbent if a suitable multiple
ρx, ρ > 0, of each element x of E lies in M);

(ii) T is closed;

(iii) T is absolutely convex.

A locally convex space is said to be barreled if the barrels form a base of I-
neighborhoods of ◦ (see [22, p. 257]). This is equivalent to: the barreled spaces
E[I] are those locally convex spaces whose topology I coincides with the strong
topology Ib(E ′) (see [22, §21, 2.(2), p.257]).

Corollary A.6.1. ([22, §21, 5.(3), p.263]) All (F )-spaces are barreled.

The importance of barreled spaces stems mainly from the following result:

Theorem A.6.1. ([39, Theorem 33.1.,p.347]) Let E be barreled and F a locally
convex space. The following properties of a subset H of the space L(E,F ) of
continuous linear mappings of E into F are equivalent:

(i) H is bounded for the topology of pointwise convergence;

(ii) H is bounded for the topology of bounded convergence;
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(iii) H is equicontinuous.

Now, we define a filter F is a family of subsets in E, submitted to three
conditions:

(F1) The empty set should not belong to the family F .

(F2) The intersection of any two sets, belonging to the family, also belongs to the
family F .

(F3) Any set, which contains the set belonging to F , should also belong to F .

The theorem which follows is often referred to as the Banach-Steinhaus theorem.

Theorem A.6.2. ([39, p. 348]) Let E be a barreled space, F a locally convex
Hausdorff space and F a filter on L(E,F ) which converges pointwise in E to a
linear map u0 of E into F . Suppose that F has either one of the following two
properties:

(i) There is a set H, belonging to F ,which is bounded for the topology of point-
wise convergence.

(ii) F has a countable basis.

The u0 is a continuous linear mapping of E into F and F converges to u0 uniformly
on every compact subset of E.

There is a class of barreled spaces which is of particular interest. A barreled
space E[I] is called a Montel space or (M)-space if every bounded subset of E is
relatively compact (see [22, p. 369]). It follows from the definition that:

Proposition A.6.1. ([22, §27, 2.(1), p.369]) Every M-space is reflexive.

Moreover, the strong and weak topologies on the dual of an (M)-space coincide.

Proposition A.6.2. ([22, §27, 2.(2), p.369]) The strong dual of an M-space is
again an M-space.

Thus, the weak and the strong topologies coincide on the bounded subsets of
an M -space. In particular, we have

Proposition A.6.3. Every weakly convergent sequence in an M-space is also
strongly convergent, to the same limit.

We give the continuity Theorem for bilinear mappings on barreled (DF )-
spaces.

Theorem A.6.3. ([23, §40, 2.(11)]) Let E,F be barreled (DF )-spaces, G locally
convex. Then every B ∈ B(E × F,G) is continuous.
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A.7 Bornological and ultrabornological spaces

A linear functional on a normed space is continuous if it is bounded on the unite
ball. This can also be expressed by saying that every linear functional on a normed
space which is bounden on the bounded sets is continuous.

Expressed in this form,this property need no longer hold for arbitrary locally
convex spaces. If we say that a linear functional u ∈ E∗ is locally bounden when
its values remain bounded on any bounden subset of E, then the problem is to
characterize those locally convex spaces for which every locally bounded linear
functional is continuous. For this we can always suppose that the topology I is
the Mackey topology (i.e. the toplogy E[Ik(E ′)]. That is the topology of uniform
convergence on all absolutely convex weakly compact subsets of E ′ is a locally
convex topology on E which is finer then the original topology (see [22, p. 260])).

In order to give the answer to this question we need the following definition:
A locally convex space E[I] is said to be bornological if every absolute convex set
M which absorbs all the bounded sets of E[I] is a I-neighborhood of ◦ (see [22,
p. 379]).

Now, the problem stated at the beginning of this section is answered by the
following proposition.

Proposition A.7.1. ([22, §28, 1.(3), p.379]) A locally convex space E[I] has the
property that every locally bounded linear functional on E is continuous if and only
if E[Ik(E ′)] is bornological.

The structure of bornological spaces is given by:

Proposition A.7.2. ([22, §28, 2.(2), p.381]) Every bornological space is the loc-
ally convex hull E[I] =

∑
B EB of normed spaces EB. If, further, E[I] is sequen-

tially complete, E[I] is the locally convex hull of B-spaces.

Next, we state the results which generalizes previous proposition.

Theorem A.7.1. ([22, §28, 2.(3), p.381]) A locally convex space E[I] is borno-
logical if and only if every locally bounded map from E[I] into any locally convex
space F [I ′] is continuous.

Criterion for the continuity of linear mappings from bornological spaces can
be expressed in another form which is particular convinient for applications.

Theorem A.7.2. ([22, §28, 3.(4), p.383]) A linear mapping A from a bornological
space into a locally convex space is continuous if and only if it is sequentially
continuous and if and only if A is locally bounded.

The class of bornological space is stable under various operations.

Proposition A.7.3. ([22, §28, 4.(1), p.383]) Every locally convex hull of borno-
logical spaces is bornological.

Proposition A.7.4. ([22, §28, 4.(4), p.384]) The topological product of at most
countably many bornological space is again bornological.
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Since every metrizable locally convex space is bornological, we otain a very
extensive class of bornological spaces by repeating application of Proposition A.7.3
and Proposition A.7.4. For example, all (LF )-spaces i.e. a locally convex spaces
that can be represented as the topological inductive limit of a properly increasing
sequences E1[I1] ⊂ E2[I2] ⊂ · · · of (F )-spaces, belong to this class.

If a vector space E is the linear span of certain linear subspaces Eα, we write
E =

∑
αEα. Of particular interest for us is the case where each Eα is given as a

linear image Aα(Fα) of a vector space Fα. We then write E =
∑

αAα(Fα).
A special case of such a linear span is the direct sum E = ⊕αEα.
If the Fα are locally convex topological vector space Fα[Iα], we can try to

introduce a locally convex topology on the linear span E =
∑

αAα(Fα). By
analogy with the spacial case of the locally convex direct sum, the finest locally
convex topology I for which all the Aα are continuous mappings from Fα into E
suggests itself. This topology I need not however be Hausdorff. But if this is the
case E =

∑
αAα(Fα[Iα]) is called the locally convex hull of the Aα(Fα[Iα]) and I

is called the hull topology on E (see [22, p. 215]).
A locally convex topological vector space E is called ultrabornological if it can

be represented as the locally convex hull E =
∑

αAα(Eα) of (B)-spaces Eα. E
always has a representation of the simpler form E =

∑
α Fα where the Fα are again

(B)-spaces. By Proposition A.7.3 every ultrabornological space is bornological.
Conversely, every sequentially complete bornological space is ultrabornological by
Proposition A.7.2 (see [23, p. 43]).

We have the following theorem

Theorem A.7.3. ([23, §34, 8.(6), p.44]) Every closed linear mapping of an ul-
trabornological space into an LF -space is continuous.

Every continuous linear mapping of an LF -space onto an ultrabornological
space is a homomorphism.

A.8 De Wilde’s theory

Theorem A.7.3 should be true for a much larger class of spaces than the class
of (LF )-spaces. Let E be the class of ultrabornological spaces, a subclass of the
class of barreled spaces, and we are looking for spaces F such that the closed-graph
theorem for mapping from any E into F is true. We give here an exposition of De
Wilde’s approach (see [23, p. 53]).

We start with the fundamental notion of a web in a locally convex space E.
Let W = {Cn1,...,nk} be a class of subsets Cn1,...,nk of E, where k and n1, ..., nk run
through all the natural numbers. W is called the web if it satisfies the relationships

E =
∞⋃

n1=1

Cn1 and Cn1,...,nk−1
=

∞⋃
n1=1

Cn1,...,nk

for k > 1 and all n1, ..., nk−1. If all the sets of a web are closed or absolutely
convex, we say that the web is closed resp. absolutely convex.

A W is a C-web if the following condition is satisfied: for every fixed sequence
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nk, k = 1, 2, ..., there exists a sequence of positive numbers ρk such that for all λk,
0 ≤ λk ≤ ρk and all xk ∈ Cn1,...,nkthe series

∑∞
k=1 λkxk converges in E.

A locally convex topological vector space E[I] in which there exists a C-web
will be said to be a webbed space.

Now, let E and F be locally convex; a linear mapping A of E into F is called
sequentially closed if its graph G(A) is sequentially closed in E×F (A set E ⊆ X
is said to be sequentially closed if for every sequence {xi}∞i=1 of elements of E and
every x ∈ X such that {xi}∞i=1 converges to x in X we have that x ∈ E). In view
of applications it is certainly important to have the closed-graph theorem in the
stronger form that A is continuous if it is only sequentially closed. We obtain De
Wilde’s closed-graph theorem for ultrabornological spaces:

Theorem A.8.1. ([23, §35, 2.(2), p. 57]) A sequentally closed linear mapping of
an ultrabornological space E into a webbed space F is continuous.

The classes of webbed spaces are stable under:

Proposition A.8.1. ([23, §35, 4.(8), p. 63]) The topological inductive limit
E[I] = lim−→

n→∞
En[In] of a sequence webbed spaces En[In] is of the same type.

The question whether the strong dual of a webbed space is again webbed seems
to be open. But there are some results in this direction.

Proposition A.8.2. ([23, §35, 4.(11), p. 64]) The strong dual of a metrizable
space E is strictly webbed.

We conclude this section with some remark on the hereditary property of ul-
trabornological spaces.

Proposition A.8.3. ([23, §35, 7.(7), p. 72]) The locally convex hull E[I] =∑
αAα(Eα[Iα]) of ultrabornological spaces Eα[Iα] ia an ultrabornological spaces.



Appendix B

Komatsu’s approach to
ultradistributions

We follow H. Komatsu (see [21]).
Let {Mp}p∈N0 be a sequence of positive numbers. An infinitely diferentiable

function f on an open set Ω in Rd is called an ultradifferentiable function of class
Mp if on each compact set K in Ω its derivatives are estimated in the form

‖Dαf‖C(K) ≤ Ch|α|M|α|, |α| = 0, 1, . . . .

We call f an ultradifferentiable function of class {Mp} if the above inequality holds
for some h > 0.

We impose the following conditions on Mp

(M.1) (logarithmic convexity)

M2
p ≤Mp−1Mp+1, p ∈ N.

(M.2) (stability under ultradifferential operators) There are constants A and H
such that

Mp ≤ AHp min
0≤q≤p

MqMp−q, p = 0, 1, . . . .

(M.3) (strong non-quasi-analyticity) There is a constant A such that

∞∑
q=p+1

Mq−1

Mq

≤ Ap
Mp

Mp+1

, p = 1, 2, . . . .

Some results remain valid when (M2) and (M3) are replaced by the following
weaker conditions:

(M.2)′ (stability under differential operators) There are constants A and H such
that

Mp+1 ≤ AHpMp, p = 0, 1, . . . .

95
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(M.3)′ (non-quasi-analyticity)

∞∑
p=1

Mp−1

Mp

<∞, p = 1, 2, . . . .

Remark B.0.1. Let the sequence {Mp}p∈N0 be such that satisfies (M.1) and (M.2)′.

Let S
Mp,A
Mp,A

(Rd) be defined by

S
Mp,A
Mp,A

(Rd) = {f ∈ C∞(Rd) : ‖xmDnf(x)‖L∞ ≤ CA|m|+|n|MmMn, ∀m,n ∈ Nd
0},

for some positive constant C, where A = (A1, ..., Ad) > 0.

We define the Gelfand-Shilov space S
Mp

Mp
(Rd) as an inductive limit of the spaces

S
Mp,A
Mp,A

(Rd) with respect to A:

S
Mp

Mp
(Rd) = lim−→

A→∞
S
Mp,A
Mp,A

(Rd).

The corresponding dual space of S
Mp

Mp
(Rd) is the space of ultradistributions of

Roumier type:
(S

Mp

Mp
(Rd))′ = lim←−

A→0

S
Mp,A
Mp,A

(Rd).

Next, notice that the condition (M.1) is equivalent to the assumption that the
sequence

mp =
Mp

Mp−1

, p ∈ N,

increases monotonically. Furthermore, if the sequence mp = Mp/Mp−1, p ∈ N,
tends to infinite, then we define the associated function of Mp as (see [21, (0.14,
p.29)]):

M(t) = sup
p∈N0

ln
tpM0

Mp

, t ∈ (0,∞).

It is a monotonically increasing continuous function which vanishes for sufficiently
small t > 0 and increases more rapidly than ln tp for any p as t→∞.

In this thesis, we considered only the Gevrey sequence

Mp = {p!α}p∈N0 , with α ≥ 1 and p ∈ N0.

Note that the Gevrey sequence satisfies the above conditions. By M(·) we denote
the associated function of {p!α}p∈N0 .

We call an entire function P : Cd → C,

P (z) =
∑
n∈Nd0

cnz
n,

an ultrapolynomial of class {p!α} if for every h > 0 there exists C > 0 such that

|cn| ≤ C
h|n|

|n|!α
.

Next, we state a sufficient and necessary conditions for existence of an ultrapoly-
nomial of class {p!α}.
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Proposition B.0.1. ([21, Proposition 4.5, p.58]) Suppose that Mp satisfies (M.1).
Then the following are equivalent conditions for entire functions:

P (z) =
∑
n∈Nd0

cnz
n :

(i) For every constant h > 0 there exists C > 0 such that

|P (z)| ≤ CeM(h|z|), ∀z ∈ Cd.

(ii) For every constant h > 0 there exists C > 0 such that

|cn| ≤ C
h|n|

|n!|α
.

Definition B.0.1. ([21, Definition 3.11, p.53]) A continuous increasing function
ε(t) on [0,∞) which satisfies

ε(0) = 0 and
ε(t)

t
→ 0, as t→∞

is called a subordinate function.

Lemma B.0.1. ([21, Lemma 3.12], p.54) Suppose that Mp satisfies (M.1) and
that ε(t) is a subordinate function. Then there is a sequence Np of positive numbers
which satisfies (M.1) and the following properties:

N(t) ≥M(ε(t)), 0 < t <∞

and
mp

np
=
MpNp−1

Mp−1Np

→ 0, as p→∞.

In particular, we have Mp ≺ Np so that there is a subordinate function ε′(t) such
that

N(t) = M(ε′(t)).
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Appendix C

Sobolev embedding theorem

Definition C.0.1. ([2, Definition 4.9, p. 83]) Ω satisfies the strong Lipschitz
condition if there exist positive numbers δ and M , a locally finite open cover {Uj}
of bdry Ω (bdry stands for boundary) and for each j a real-valued function fj of
n− 1 variables, such that the following condition hold

(i) For some finite R, every collection of R + 1 of the sets Uj has empty inter-
section.

(ii) For every pair of points x, y ∈ Ωδ such that |x− y| < δ, there exists j such
that

(x, y) ∈ Vj = {x ∈ Uj : dist(x, bdry Uj) > δ}.

(iii) Each function fj satisfies a Lipschitz condition with constant M : that is, if
ξ = (ξ1, . . . , ξn−1) and ρ = (ρ1, . . . , ρn−1) are in Rn−1, then

|f(ξ)− f(ρ)| ≤M |ξ − ρ|.

(iv) For some Cartesian coordinate system (ζj,1, . . . , ζj,n) in Uj, Ω∩Uj is repres-
ented by the inequality

ζj,n < fj(ζj,1, . . . , ζj,n−1).

If Ω is bounded, the rather complicated set of conditions above reduce to the
simple condition that Ω should have a locally Lipschitz boundary, that is, that each
point x on the boundary of Ω should have a neighbourhood Ux whose intersection
with bdry Ω should be the graph of a Lipschitz continuous function.

The Sobolev embedding theorem asserts the existence of embedding of Sobolev
spaces

Wm,p(Ω) = {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for 0 ≤ |α| ≤ m}, m ∈ N, 1 ≤ p ≤ ∞

into Banach spaces of following types:

(i) Cj
B(Ω), the space of function having bounded, continuous derivatives up to

order j on Ω normed by

‖u‖CjB(Ω) = max
0≤|α|≤j

sup
x∈Ω
|Dαu(x)|.
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(ii) Cj(Ω), the closed subspace of Cj
B(Ω) consisting of function having bounded,

uniformly continuous derivatives up to order j on Ω with the same norm as
Cj
B(Ω).

Theorem C.0.1. ([2, Theorem 4.12, p. 85]) Let Ω be a domain in Rn and for
1 ≤ k ≤ n, let Ωk be the intersection of Ω with a plain of dimension k in Rn (if
k = n, then Ωk = Ω). Let j ≥ 0 and m ≥ 1 be integers and let 1 ≤ p ≤ ∞.
Suppose Ω satisfies the strong local Lipschitz condition. Then the target space
Cj
B(Ω) of the embedding

W j+m,p(Ω) ↪→ Cj
B(Ω)

can be replaced with the smaller space Cj(Ω) and the embedding can be further
refined as follows:

If mp > n > (m− 1)p, then

W j+m,p(Ω) ↪→ Cj,λ(Ω) for 0 < λ ≤ m− (n/p),

and if n = (m− 1)p, then

W j+m,p(Ω) ↪→ Cj,λ(Ω) for 0 < λ ≤ 1. (C.1)

Also, if p = 1 then (C.1) holds for λ = 1 as well.
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[39] F. Tréves, Topological Vector Spaces, Distributions and Kernels, Dover Pub-
lications, New York, 1995.

[40] H. Weyl, The Theory of Groups and Quantum Mechanics, Methuen (Lon-
don) 1931, reprint by Dover Publications, New York, 1950.

[41] H. Whitney, Analytic extensions of functions defined in closed sets, Trans-
actions of the American Mathematical Society 36 (1934), 63-89.

[42] M. W. Wong, Weyl Transform, Springer-Verlag, New York, 1998.

[43] A. I. Zayed, Laguerre series as boundary values. SIAM J. Math. Anal. 13
(1982), no. 2, 263-279

[44] A. H. Zemanian, Generalized Integral Transformations, Intersci. , New York,
1968.



104



Short Biography

Smiljana Radojko Jakšić
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S. Jakšic, B. Prangoski, Extension theorem of Whitney type for S(Rd
+) by the

use of the Kernel Theorem, Publ. Inst. Math. Beograd, 99(113)(2016), 59-65.
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