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Abstract

The subject of this thesis belongs the area of quality control, which represents the

practical usage of statistics in following and improving the production process. In

1930 Walter Shewhart started studying quality control, based on control charts, and

using statistical principles. Later on, after World War II, Edward Deming took this

discipline to Japan, where it flourished. The design and the performance of control

charts are the most important problems in this area. The purpose of studying the

characteristics of control charts in this thesis is to compare the existing and the

suggested control charts.

The thesis is divided into four chapters. The first chapter is introductory and con-

tains motivation and basic definitions related to this subject. In this study it is

always assumed that the data are normally distributed, and that the in-control pro-

cess data are stationary and uncorrelated.

Shewhart control charts and the corresponding limits are constructed in order to

meet the given specifications for the quality characteristic that we investigate. Qual-

ity control that is applied to a production process always has costs related to the

control. The important parameters connected to the cost of quality control are:

width of control limits k, the sample size n and the interval between the samples h.

In Chapter 2 a new loss function is given, which is connected to the production pro-

cess and to X−bar quality control chart. Using Matlab program for optimization,

values of k̂, n̂ and ĥ are found, which minimize the loss function for given costs. For

given values of cost, a non-linear regression model is built using a package Sigma plot

and the obtained values are compared to those obtained by numerical optimization.

In Chapter 3, the time series model Yi = λXi + (1 − λ)Yi−1 is investigated, where

0 < λ ≤ 1 is a constant, Xi are N(µ,σ2) distributed. Exponentially Weighted Mov-

ing Average (EWMA) control charts for this model are presented, and type I and

type II errors are calculated in the case when i is large. For different sample sizes,

the new comparison between the optimal design of the X-bar and EWMA control

charts for Normally distributed quality characteristic is given, comparing the corre-

sponding cost-loss functions, power functions and average run lengths.
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The process of calibration is one of the methods in statistical process control, in-

troduced for improving the quality of the products and for reducing the production

costs. In Chapter 4, two new models of non-symmetrical loss function are intro-

duced. Here, the loss function is connected to one product under control (not to

the whole sample). Using our program, written in statistical software R, the value

which minimizes the expected loss for Shewhart X̄ control chart is found. This

value is used as the new central target value of the quality characteristic, that is,

the production process is calibrated with this new value.

The thesis ends with Conclusions, where the results of the thesis are summarized,

and with some open problems to be investigated.
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Apstrakt

Tema ove doktorske disertacije pripada oblasti kontrole kvaliteta, koja predstavlja

praktic̀no korǐsćenje statistike prilikom praćenja i pobolǰsavanja proizvodnog procesa.

1930. godine Volter Šuhart je počeo da proučava kontrolu kvaliteta, baziranu na

kontrolnim karticama, koristeći statističke principe. Kasnije, posle Drugog svetskog

rata, Edvard Deming odneo je ovu disciplinu u Japan, gde je ona doživela proc-

vat. Konstrukcija i osobine kontrolnih karti su najvažnija pitanja u ovoj oblasti.

Cilj izučavanja osobina kontrolnih karti u ovoj tezi je da se uporede postojeće i

predložene kontrolne karte.

Teza je podeljena na četiri glave. Prva glava je uvodna i sadrži motivaciju i osnovne

definicije koje se odnose na ovu temu. U ovoj tezi uvek se pretpostavlja da su podaci

normalno raspodeljeni i da su podaci, kada je proces pod kontrolom, stacionarni i

nekorelirani.

Šuhartove kontrolne karte i odgovarajuće granice konstruǐsu se tako da odgovaraju

zadatim specifikacijama za karakteristiku kvaliteta koju ispitujemo. Kontrola kvaliteta

koja se primenjuje na proces proizvodnje uvek ima troškove koji su povezani sa kon-

trolom. Važni parametri koji su povezani troskovima kontrole kvaliteta su: širina

kontrolnih granica k, obim uzorka n i interval izmedu uzoraka h. U Glavi 2 data je

nova funkcija gubitka, koja je povezana sa proizvodnim procesom i sa kontrolnom

karticom. Koristeći program Matlab za optimizaciju, nadene su vrednosti k̂, n̂ i

ĥ, koje minimizuju funkciju gubitaka pri zadatim troškovima. Za date vrednosti

troškova, napravljen je i nelinearan regresioni model korǐsćenjem paketa Sigma plot

i dobijene vrednosti su uporedene sa onima dobijenim numeričkom optimizacijom.

U Glavi 3 izučavan je model vremenskih serija Yi = λXi+(1−λ)Yi−1, gde je 0 < λ ≤ 1

konstanta, a Xi imaju N(µ,σ2) raspodelu. Kontrolne karte za vremenske serije

sa pokretnim sredinama i eksponencijalnim težinama (EWMA) za ovaj model su

predložene i izračunate su greške I i II vrste u slučaju kada je i veliko. Za različite

obime uzorka, dato je novo poredenje izmedju optimalnog dizajna za EWMA kon-

trolne karte, kod kojih karakteristika kvaliteta ima Normalnu raspodelu, i uporedene

su odgovarajuće funkcije troška-gubitka, funkcije moći i srednje dužine ciklusa.



Proces kalibracije je jedan od metoda u statističkoj kontroli kvaliteta, koji se uvodi

da bi se pobolǰsao kvalitet proizvoda i da bi se smanjili troškovi proizvodnje. U Glavi

4 predložena su dva nova modela nesimetrične funkcije gubitka. Ovde se funkcija

gubitka odnosi na jedan proizvod koji se kontrolǐse (a ne na ceo uzorak). Koristeći

naš program napisan za statistički softver R, nadena je za oba slučaja vrednost koja

minimizuje očekivanje funkcije gubitka kod Šuhartove kontrolne karte. Ta vrednost

se onda koristi kao nova centralna ciljna vrednost karakteristike kvaliteta, tj. proces

se kalibrira sa ovom novom vrednošću.

Teza se završava sa Zaključkom, u kome su sumirani rezultati iz teze i u kome su

izloženi neki otvoreni problemi koji će se izučavati.
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Chapter 1

Introduction

1.1 Quality characteristics

Quality has become the most important criteria for making a distinction between

products and services. Consumers use quality nowadays as the most relevant pa-

rameter for choosing which products and services they need. In order to improve

competitiveness on the market, companies highlight quality in business strategies

and in this way they also secure growth and success.

Quality characteristic represents the key feature of the product that can be mea-

sured. It is a random variable that can be continuous (length, diameter, weight,

thickness of a product etc.) or discrete (the number of errors or mistakes made

in completing a loan application, the number of medical errors made in a hospi-

tal etc). The desired value of quality characteristic is called the nominal or target

value, which is usually bounded by interval of values called specification limits. It

is assumed that specification limits will be sufficiently close to the target value so

as to not impact the function or performance of the product if the value of quality

characteristic is in that range. The largest allowable value for a quality characteris-

tic is called the upper specification limit (USL), and the smallest allowable value for

a quality characteristic is called the lower specification limit (LSL). Some quality

characteristics have specification limits on only one side of the target. A product is

called nonconforming if the value of quality characteristic lies outside the interval

of specification limits [LSL, USL].

1.2 Causes of Quality Variation

Some variability of products always exists, because there are no two products that

are exactly the same. For example, the weight of each chocolate bar ”Milka” is not

exactly 100 gr, some will weight more, others less.

There are two general causes of variability:
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� Chance (or common cause): Variability happens randomly and it isn’t possible

to control it or to remove it.

� Assignable causes (or special causes): This variability in the observed quality

characteristic usually arises from three sources: improperly adjusted or con-

trolled machines, operator errors or defective raw material. Variability caused

by assignable causes can be identified and we can control it. After doing some

research and investigation we can find the cause and eliminate it.

Production process that operates with only chance causes of variability is said to be

in statistical control (or in-control state). A process that operates with the presence

of assignable causes is said to be an out-of-control process. When a process shifts

to the out-of-control state, larger proportion of nonconforming products will be

produced.

Quality improvement is used to decrease the variability in processes and products.

Statistics and engineering are useful for improving the quality. Moreover, there are

techniques, including statistical and analytical tools which are helpful in the analysis

of quality problems and for the improvement of the performance of processes. These

techniques belongs to time series analysis and depend on the type of the input and

output data. For detailed discussions of time series modeling see for example [44],

[11]. Important techniques which are used to improve the quality (statistical and

engineering quality and important modeling of time series) are to be discussed in

what follows.

1.3 Quality control

Quality control is a set of techniques used to secure a required level of quality in

a product or service. Statistical quality control (SQC) uses statistical methods

to determine when product quality deviates from the specifications. The primary

goal of statistical quality control is to maintain and improve the production process

through techniques (see [27]) such as

� Inspection Inspection is used to examine and test the quality of the product

and classify it into a conforming or a nonconforming product using statistical

sampling.

� Statistical Process Control Statistical process control (SPC) is a primary

tool for monitoring and improving quality. The following figure (1.1), (see

[35]) shows the steps of the statistical process control procedure
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Figure 1.1: Statistical process control procedure.

SPC is one of the greatest technological developments of the twentieth century

because it is built on firm basic statistical principles, it is user-friendly, has important

influence on quality improvement, and can be implemented on any process.

The statistical control process it usually accompanied by Engineering Quality Con-

trol. Engineering Quality Control is made up of operations, management, and en-

gineering actions, which any company uses in order to make sure that the quality

of a product meets the necessary target goals and that the variability is kept at the

minimum. Engineering process control (EPC) attempts to compensate the causes

of deviations by using process adjustment which is usually computed and applied

automatically. This type of control is sometimes called Automatic process control

(APC). If the process is out of control, the engineer process control (EPC) looks

for an assignable cause by following the out-of-control action plan (OCAP), which

is associated with statistical process control (SPC) by using the control chart. The

following figure (1.2),(see [35]) shows the out-of-control action plan.
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Figure 1.2: Engineering process control.

The product specifications are usually the result of the process design, and the

specification limits are usually set by the design engineer. Once we have the spec-

ifications, we can assess the quality characteristics. The specifications tell us what

kind of quality we want for the components of the product. It should be emphasized

that there is no connection between the control limits of the control chart and the

specification limits of the process. The process should be both in control and should

meet specification limits. As it was explained previously statistical process control

and engineering process control have the same objective and that is to ensure that

the final result of the process is closest to its target. But this is achieved in dif-

ferent ways, by using different techniques. The different approaches of SPC and

EPC are not in competition, but they just have their own points of view on how a

manufacturing process works (for example see [44], [11], [49]):

1. SPC highlights process monitoring and detecting faults. This is in contrast

with process adjustment when the process is in the statistically in-control

state. In this situation changing the process can increase the process variance

when we need to decrease it.

2. EPC pushes forward many process adjustment strategies in order to keep the

4



process on the way to its target.

Reasons for using the process control are the following ones:

� We use process control in order to lower the production costs, to reduce the

losses and avoid unnecessary actions (see [27]).

� Process control keeps within boundaries the production errors and deviation,

as well as the reasons for causing them.

� It is very beneficial to reveal the errors at an early stage of the production.

1.4 Quality control chart

Control charts are tools used to determine whether a manufacturing or business

process is in a state of statistical control. Walter Shewhart invented control charts

for statistical process control eighty years ago. He suggested a general model for

control charts and they are now called Shewhart charts or process-behavior charts.

The quality control charts have been used a lot, because they help reduce the cost

and they improve the quality of the products. They use statistical methods to con-

trol and monitor the production process, find the deviations and find the ways how

to fix them. The typical control chart is a graphical display of the measured quality

characteristic. We present now a general model of the control chart.

General model for control chart

Every control chart has three lines: central line which represents target value of

quality characteristic and two control limits called upper control limit (UCL) and

lower control limit (LCL). These control limits help us find whether the data indi-

cates a state of statistical control or not, (see [44], [27]).

Let M be a sample statistic which is a measure of quality. Suppose that M has

a normal distribution with mean µM and the standard deviation σM . The mean of

M is equal to the target value µM = µ0, when the process is in control. Then the

central line is CL = µM , the upper control limit is UCL = µM + σM , and the lower

control limit is LSL = µM − σM . Shewhart control chart is shown in Figure (1.3).

The quantity kσM represents the distance of the control limits from the central line.

Parameters of the control chart are the following: the sample size n and the control

limit width k. It should be noticed that Shewhart’s control charts actually represent

tests corresponding to hypothesis testing. Null hypothesis H0(µM = µ0) corresponds

5



Figure 1.3: Shewhart control chart

to the situation when the production process is in control, while the alternative hy-

pothesis H1(µM ≠ µ0) corresponds to the situation when the production process is

out of control.

For each sample i, i = 1,2, ..m we calculate the value of sample statistic M and

we denote it by Mi. If the point Mi is within limits UCL and LCL, then the process

is in-control state and this leads to the acceptance of the hypothesis (H0 ∶ µM = µ0).
But if the point Mi is out of the interval (UCL, LCL), this means that the process

is out of control, and we reject the hypothesis (H0 ∶ µM ≠ µ0). The result is an

acceptance of the alternative hypothesis and it becomes necessary to discover the

causes that led to this out-of-control state, and to correct them.

Control charts are classified into two general types: if the quality characteristic can

be measured (quantified), then we use the variable control charts. If the quality

characteristic can not be measured (it is not quantitative), then we use attribute

control charts.

Variable control charts

The X-bar chart is used for monitoring the process mean. On this chart, we plot the

6



sample mean. For monitoring the process variability, we use S-chart and R-chart.

If we have a sample (x1, x2, ..., xn) of the size n, then on S-chart we represent the

sample standard deviation,

S =

√
∑ni=1(Xi − X̄)2

n − 1
.

On R-chart, we represent the sample range, R =Xmax −Xmin. R-chart is used when

the sample size is small (n < 10).

When we want to detect smaller process shifts we usually use the time-weighted

charts (CUSUM, EWMA and MA). On the cumulative sum chart (CUSUM)the

target level deviations are accumulated. The CUSUM will not increase if there are

just the chance causes. If the cumulative sum increases too much, this tells us that

the process level changed because of the assignable causes. Therefore, a decision

limit is assigned to the cumulative sums, which are similar to the control limits.

MA chart is based on a simple, unweighted moving average and may be of interest

for some purposes. The exponentially weighted moving average (EWMA) control

chart is very efficient in detecting small shifts in the mean of a process. We will

explain this further in Chapter 3.

Attribute control charts

The most frequently used attribute charts are: np-chart, c-chart, u-chart and p-

chart. We use np-chart to plot the number of defectives (per batch, per day, per

machine). The control limits in this chart are calculated from binominal distribu-

tion. On the c-chart, the number of defects (per batch, per day, per machine, per

100 feet of pipe, etc.) is plotted. It is presumed that the quality defects are not

frequent and the control limits are computed using Poisson distribution. Defects per

unit chart (u-chart) is used to plot the rate of defects. We divide the number of de-

fects by the number of inspected units (the n; e.g., feet of pipe, number of batches).

The differences between u-chart and c-chart is that u-chart does not need a constant

number of units, and we can use it, for example, when the batches (samples) are not

of the same size. We use proportion defective chart (p-chart) in order to plot the

fraction of defectives (per any unit of measure, per day, per machine, etc.) just like

in the u-chart. The control limits are based on binominal distribution of proportions.

Control chart for Individual Values

Sometimes, the sample size used for process monitoring is n = 1, e.g. the sample

consists of an individual unit. There are many situations in which control chart for
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individual values is appropriate. For example when production rate is low, (mean-

ing data become available slowly) it is inconvenient to allow sample size of n > 1 to

accumulate before analysis.

1.5 Phase I and Phase II of Control Chart Appli-

cation

When we use standard control chart, then there are two phases: Phase I and Phase

II of applications. They have two different objectives which can be used in many ap-

plications of control charting, and it is useful to know the difference between them.

(see [44] [23]).

Phase I: A set of data is collected and analyzed all at the same time in a ret-

rospective analysis. Trial control limits are constructed so that we can determine if

the process has been in control during the period of data collection, and to check if

we can determine reliable control limits for monitoring future production. Usually

we do this first when we apply control limits to any process. The primary function of

control charts in this phase is to assist operating personnel with putting the process

into a statistical control state.

Phase II: This phase can start when we have a ”clean” set of process data which

are gathered under stable conditions. In Phase II, the control chart is used to moni-

tor the process. The control chart compares the sample statistic for each successive

sample, as it is drawn from the process, to the control limits.

For example, in Phase I, we are comparing a collection of m points to a set of

control limits computed from these points. Typically m = 20 or 25 subgroups are

used in phase. Typically in a Phase I it is assumed that the process is initially out

of control, so the goal of the analyst is to bring the process into a state of statistical

control. Control limits are calculated based on the m subgroups and the data plot-

ted on the control charts. Points outside the control limits are investigated in search

of potential assignable causes. If some assignable causes are found, engineering and

operating personnel work on eliminating them. Then those points are excluded and

a new set of revised control limits are calculated. Next step is to collect new data

and compare them to these revised limits. Under the SPC framework, Phase I meth-

ods are compared by assessing the probability of the process being out of control,

i.e. unstable. In Phase II, the most important thing is to detect quickly the process

trends or shifts.

8



The shifts are usually measured by parameters of the run-length distribution, where

the run length is the number of samples taken before an out-of-control signal is

given. The average run-length (ARL) is frequently used for comparison of compet-

ing control chart methods in Phase II. It is usually assumed that there are trends

or sustained step shifts in the parameters of the model which was estimated from

Phase I. Under the SPC framework, we mainly want to control the false-alarm rate

in Phase I and the in-control ARL in Phase II, and to use methods which are proved

to be effective in detecting specified trends or shifts in the distribution of the quality

variable over time.

1.6 Time series analysis

In order to understand better the types of variability exhibited by the process, we

introduce some definitions and properties of time series.

A time series is a sequence of observations measured through time. We can make

these measurements continuously through time or take them at a discrete set of

time points. Conventionally, these two types of series are called continuous and

discrete time series, although the measured variable may be discrete or continuous

in both cases. Many sets of data appear as time series: a monthly sequence of the

quantity of goods which are shipped from a factory, a weekly series of the number

of the road accidents, hourly observations made on the yield of a chemical process,

etc. There are many examples of time series in: economics, business, engineering,

natural sciences (geophysics, meteorology, etc.), as well as in the social sciences.

For a continuous time series, the observed variable is typically a continuous variable

recorded continuously, such as a measure of brain activity recorded from an EEG

machine. The analysis of such a series starts by sampling (or digitizing) the series

at equal intervals of time, in order to obtain a discrete time series. By using this

process we lose little or no information as long as the sampling interval is small

enough. The models of time series show the relation between the series {Zt, t ∈ T},

which is to be modeled, and a white noise generating series {at}. The elements

at, at−1, at−2, ... may be regarded as a series of shocks, which govern the system. It

consists of a sequence of uncorrelated random variables with mean zero and constant

variance, that is

E(at) = 0,

D(at) = σ2
a.

9



Since the random variables {at} are uncorrelated, it follows that their autocovariance

function is

E(atas) =
⎧⎪⎪⎨⎪⎪⎩

σ2
a, k = s

0, k ≠ s,
(1.1)

where {at, t ∈ T} is called white noise. We use the notation at ⊥ (0, σ2
a) in order to

write down all three characteristics of at as time series.

Time series could be stationary or non stationary and we give the definition of

stationarity (see [10], [36]). Time series {Zt, t ∈ T} is said to be weakly stationary if

1. The expectation of Zt is constant over the time i.e.

E(Zt) = constant, t ∈ T.

2. The variance of Zt has to be finite, and it is enough that:

E(Z2
t ) < ∞,

3. The autocovariance function is a function of the difference of arguments, i.e.

E[(Zt −E(Zt))(Zs −E(Zs))] = B(t − s).

Time series is strict stationary if its probability distribution does not change when

shifted in time.

Process behavior

One of the important consideration in control chart usage is the type of variability

exhibited by the process. Figure 1.4. represents data from three different processes

(see [44]): (a) Stationary and uncorrelated (white noise). (b) Stationary and auto-

correlated. (c) Nonstationary.

Figures 1.4.a and 1.4.b illustrate the stationary behavior. By this we mean that the

process data vary around a fixed mean in a stable or predictable manner. This is

the type of behavior that is produced by an in-control process. The data in Figure

1.4.a are uncorrelated-this type of data represents white noise.

Figure 1.4.b illustrates stationary but autocorrelated process data. Successive obser-

vations in these data are dependent - a value above the mean tends to be followed by
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Figure 1.4: Data from three different processes

another value above the mean, whereas a value below the mean is usually followed

by another such value. This produces a data series that has a tendency to move in

moderately long ”runs” on both sides of the mean.

Figure 1.4.c illustrates nonstationary variation. This type of process data occurs

frequently in the chemical and process industries. Note that the process is very

unstable in that it drifts or ”wanders about” without any sense of a stable or fixed

mean. In many industrial settings, this type of behavior is stabilized by using engi-

neering process control.

Shewhart control charts are the most effective when the in-control process data

look like those given in Figure 1.4.a. In the study of the control charts we always

assume that the in-control process data are stationary and uncorrelated.

1.7 Design of control charts

In order to use a control chart it is necessary to determine the value of its parame-

ters. For example X-bar control chart has three parameters : sample size n, sample

frequency h and control limits width k. EWMA chart has two parameters: control

limits width L and λ. The design of the control chart is defined by the selection

of these parameters. We use statistical design and economic design and economic

statistical design as criteria for the design of control charts (see [27], [34], [1]).

Originally, only the first criteria (statistical criteria) have been used to design con-

trol charts. Based on the effects on the statistical properties of the charts, statistical

design decides about the parameters. For example we can have pre-selected values

of the probabilities of errors, because the control charts are usually designed to min-

imize the errors. There are two types of errors in the control chart:

Type I error is the situation when a false alarm occurs: although the process is
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in-control. the out-of-control state is proclaimed (a point falls outside the control

limits and this occurs only because of the natural causes). This makes us look for

an assignable cause, when none exists and adds extra cost to the process. The prob-

ability of type I error is denoted by α.

Type II error is the opposite situation when the process seems to be in control,

although it is out of control. This happens because of the shift in the process mean

(a point falls inside the control limits, although some assignable causes are present

in the process). If this is the case we do not take any corrective action, while the

process is really out of control. That is why the use of control chart to detect process

shift is not good enough. Therefore, we need to measure the efficiency of the control

chart and for this purpose we will also use the probability of type II error, usually

denoted by β, the average run length (ARL), (the average number of samples which

we take before the shift is detected) and the average time to signal ATS (the average

time necessary until a signal is obtained).

There are also some economic consequences when we use and design the control

chart and this is second criteria. These economic consequences are, for example,

the cost of sampling and checking out-of-control signals, and the cost of eliminat-

ing assignable cause and cost of non-conforming units which the consumer will get.

Therefore, it is strongly advisable to take into account these consequences when we

design a control chart, since the above mentioned qualities affect parameters selec-

tion. We need to establish a mathematical model which relates the chart parameter

to their economic consequence, and then to select the values of the parameters which

optimize a specific objective function. This approach is criticized because it does

not take into consideration the statistical properties of the chart.

The third criteria for designing control charts are economic-statistical design of

the control chart. In order to satisfy specific statistical economic properties of the

design, this approach puts statistical constraints on economic models.

In an economic model, we aim to find the optimal control charts parameters to

minimize the process cost by using the economic design of the control charts. This

approach does not include the statistical properties, so the combined economic-

statistical design should be used as a better approach (see [64]).

The design of control charts was investigated a lot by many authors because it offers

material for learning about the performance of control charts. For example, Duncan

[26] first suggested an economic model for the optimum economic design of X-bar
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control chart. His research dealt with a completely economic model of a Shewhart

type control chart, and it included formal optimization methodology in establishing

the control chart parameters. Duncan’s finding inspired a lot of further research in

this area. Lorenzen and Vance [40] used Duncan’s original model and turned it into

general model which can be applied directly to most types of control charts. Woodall

[68] criticized the economic approach for, among other reasons, its possibility of pro-

viding a plan that generates an excessive number of false alarms (i.e., looking for

assignable causes when none exists). Goel, Jain and Wu [31] came to a practical

solution and specified the values of parameters (n, k, h). Serel and Moskowitz [56]

proposed an economic model to EWMA (exponentially weighted moving average)

control charts which is based on economic or both economic and statistical criteria.

Hamoda [34] discussed the optimal economic design for x̄ − 3σ chart with warning

limits. Alarfi [1] discussed the optimal economic design for x̄−kσ chart with warning

limits. Elfaghihe [27] discussed the optimal economic model of x̄-kσ chart without

warning limits. When we compare the economic and the economic-statistical mod-

els, the results showed better statistical performances of the economic-statistical

design with non important rise in cost.

The method of economic-statistical design of control charts was developed by Saniga

[52]. He proposed economic-statistical model which combines properties of economic

and statistical design: it is a method for economic design of control charts that have

bounds on type I and type II error probabilities and the average time to signal (ATS)

of an expected shift. Economic-statistical design considers economic factors while

achieving desirable statistical properties and, therefore, represents the improvement

of economic or statistical design.
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Chapter 2

Shewhart-type control chart for

the mean

In this chapter we construct the X-bar control chart which is designed in order

to achieve minimal quality control costs. We create models which can be used for

determining the parameters (n, k, h) for different values of variables that rely on the

objective function by:

1. Determination of objective function (function of loss by unit of the product)

that connects the production process and its characteristics with the X-bar

chart, its attributes and the economical consequences of its usage.

2. Defining the values of parameters (n, k, h) which create the objective function

as small as possible for different values of incomes.

3. Use of the results obtained in previous step in order to create mathemati-

cal methods which will be used to determine the values of the parameters

depending on the values of reliable economical variables.

2.1 Construction of the X-bar control chart

The X-bar chart is the most popular control chart. It is used to monitor the average

of the process characteristic we are interested in, and we obtain it from the above

mentioned principles. The sample statistic is X̄ (the sample mean) and the control

chart consists of:

1. Measurements of a quality characteristic in samples which are taken from the

process at different times.

2. The mean x̄ of this characteristic is calculated by using all the samples (e.g.,

the mean of the means). A central line (CL) of X-bar control chart represents

the value of the mean of the quality characteristic. If X is normally distributed
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quality characteristic with known mean µ0 (target value) when the process is

in-control, and known variance σ2, then CL = µx̄ = µ0 and σ2
x̄ =

σ2

n
.

3. Upper and lower control limits (UCL,LCL), which indicate the threshold at

which the process output is considered to be statistically ’unlikely’, are typi-

cally drawn at k standard deviations away from the central line. As a result

we have

UCL = µ0 + k
σ√
n
, LCL = µ0 − k

σ√
n
.

This chart is called k-sigma X-bar chart. When k = 2, the probability that a given

sample lies within the control limits is 95.44%. When k = 3, the probability is

99.74%. The X-bar chart has three parameters (n, k, h) where n is sample size, k

is the width of control limits, h is the sample interval (sampling frequency).

Suppose that a quality characteristic is normally distributed with mean µ and stan-

dard deviation σ. There are many statistical tests to check out the normality of

distribution - χ2 -test and Kolmogorov-Smirnov, to mention only the two mostly

used. In practice for the Normal distribution of a quality characteristic, we usually

will not know µ and σ. Therefore, they must be estimated from preliminary samples

or subgroups taken when the process is thought to be in control. These estimates

should usually be based on at least 20 to 25 samples. Suppose that m samples are

available, each containing n observations of the quality characteristic. Typically, n

will be small, often either 4, 5, or 6. These small sample sizes usually result from

the fact that the sampling and inspection costs, associated with variables measure-

ments, are usually relatively large.

Let x̄1, x̄2, ..., x̄m be the average of each sample. Then the best estimator of m,

the process average, is the overall average

¯̄x = x̄1 + x̄2 + ... + x̄m
m

. (2.1)

Thus, ¯̄x would be used as the center line on the chart.

To construct the control limits, we need an estimate of the standard deviation σ. We

may estimate σ from either the standard deviations or the ranges of the m samples.

We will explain both methods, following [44].
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Range method

If x1, x2, ..., xn is a sample of size n, then the range of the sample is the difference

between the largest and the smallest observations, that is

R = xmax − xmin.

Let R1,R2, ...,Rm be the ranges of m samples. The average range is

R̄ = R1 +R2 + ... +Rm

m
.

An unbiased estimator of the standard deviation σ of the Normal distribution is

σ̂ = R̄

d2

, (2.2)

where d2 is a function of the sample size n defined by

d2 = d2(n) = E(Z(n) −Z(1)), (2.3)

with Z(n) and Z(1) the largest term and the smallest term, respectively, in a random

N(0,1) sample Z1, . . . , Zn.

We may now give the formulas for constructing the control limits on the X-bar

chart. They are as follows (where σ̂ is as above):

UCL = ¯̄x + k√
n
σ̂

CL = ¯̄x

LCL = ¯̄x − k√
n
σ̂. (2.4)

Standard deviations method

Suppose that m preliminary samples are available (xi1, xi2, ..., xin, i = 1, ...m) each

of the size n, and let Si be the standard deviation of the ith sample. That is

Sj =
√
∑ni=1(xij − x̄i)2

n − 1
.

Let S1, S2, ..., Sn be sample deviations of m samples. The average of standard devi-

ations is

S̄ = S1 + S2 + ... + Sm
m

,
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where Si is the standard deviation of the ith subgroup and m is the number of

subgroups. The standard deviation is then estimated from the following equation:

σ̂ = S̄

c4

, (2.5)

where c4 is a function of the sample size n defined by

c4 = c4(n) = ( 2

n − 1
)

1
n Γ(n2 )

Γ[n−1
2 ]

. (2.6)

We define the control limits of the corresponding X-bar control chart as in (2.4),

but now σ̂ = S̄
c4

:

UCL = ¯̄x + k√
n
σ̂

CL = ¯̄x

LCL = ¯̄x − k√
n
σ̂. (2.7)

Phase I Application of X-bar control chart

In phase I control chart usage, we usually treat the control limits obtained from

(2.4) and (2.7) as trial control limits, when preliminary samples are used to con-

struct X-bar control chart. They let us determine if the process was in control

during the selection of m initial samples. In order to determine whether the process

was in control when the preliminary samples were collected, we need to plot the

mean values from each sample on the chart and analyze the results.

If all points are inside the control limits, we infer that the process was in con-

trol in the past, and we can conclude that the trial control limits are appropriate

for controlling the present or future production. It is good to have 20 to 25 samples

or subgroups of size n (typically n is between 3 and 5) to compute the trial control

limits. It is possible to work with less data but then the control limits are less reliable.

Let us now suppose the values of X-bar plot are out of control when we com-

pare them to the trial control limits. It is obvious that if want the control limits for

present or future production to mean something, then they have to be based on data

from an in control process. If this is not the case, then we have to revise the trial

control limits. Therefore, we examine each of the out-of-control points, in order to

find an assignable cause. If we find an assignable cause, then we discard the point

and recalculate the trial control limits with only the remaining points. Then these
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remaining points are reexamined for control. This process continues until all points

are in control and when this happens we adopt the trial control limits for current use.

Sometimes we cannot find an assignable cause for a point that is out-of-control.

Then we have two options. One is to eliminate the point, pretending that the

assignable cause had been found. The other option is to keep the point (or points)

assuming the trial control limits are appropriate for current control. If the point

really represents an out-of-control condition, the resulting control limits will be too

wide. However, if it is just one or two points of the kind, then it will not do any

significant damage to the control chart. If future samples still indicate in-control

state, then it is probably safe to drop the unexplained points. Sometimes, when the

initial sample values are plotted against the trial control limits, many points will be

out-of-control.

Clearly, if we arbitrarily drop the out-of-control points, we will not have a satisfying

situation, because this approach could ignore a lot of useful information. However,

it is not always possible to have success in searching for an assignable cause for each

out-of-control point.

As an example of phase I application of the X-bar chart, we use the data of diameter

measurements (mm) for automobile engine piston rings (given in Table 2.1, taken

from [45]). In the Table 2.1, 25 samples of diameter measurements (mm) for auto-

mobile engine piston rings are given, where each sample or subgroup consists of five

piston rings. As the variance is unknown, we estimated it with mean sample range.

First, we calculate the sample mean and sample range for each of the 25 samples. We

get ¯̄x = 74.00118 ,σ̂ = 0.009171,where we used sample range to estimate σ̂ (see (2.2)).

Then, the upper control limit, central line and lower control limit of X-bar control

chart are equal, respectively

UCL = ¯̄x + k√
n
σ̂ = 74.00118 + 3√

5
(0.009171) = 74.0135

CL = ¯̄x = 74.00118

LCL = ¯̄x − k√
n
σ̂ = 74.00118 − 3√

5
(0.009171) = 73.9889.

The X-bar control chart is shown in the Figure (2.1).
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Sample

Number,i Observations x̄i R̄i

1 74.030 74.002 74.019 73.992 74.008 74.010 0.038

2 73.995 73.992 74.001 74.011 74.004 74.001 0.019

3 73.988 74.024 74.021 74.005 74.002 74.008 0.036

4 74.002 73.996 73.993 74.015 74.009 74.003 0.022

5 73.992 74.007 74.015 73.989 74.014 74.003 0.026

6 74.009 73.994 73.997 73.985 73.993 73.996 0.024

7 73.995 74.006 73.994 74.000 74.005 74.000 0.012

8 73.985 74.003 73.993 74.015 73.988 73.997 0.030

9 74.008 73.995 74.009 74.005 74.004 74.004 0.014

10 73.998 74.000 73.990 74.007 73.995 73.9987 0.017

11 73.994 73.998 73.994 73.995 73.990 73.994 0.008

12 74.004 74.000 74.007 74.000 73.996 74.001 0.011

13 73.983 74.002 73.998 73.997 74.012 73.998 0.029

14 74.006 73.967 73.994 74.000 73.984 73.990 0.039

15 74.012 74.014 73.998 73.999 74.007 74.006 0.016

16 74.000 73.984 74.005 73.998 73.996 73.997 0.021

17 73.994 74.012 73.986 74.005 74.007 74.001 0.026

18 74.006 74.010 74.018 74.003 74.000 74.007 0.018

19 73.984 74.002 74.003 74.005 73.997 73.998 0.021

20 74.000 74.010 74.013 74.020 74.003 74.0097 0.020

21 73.982 74.001 74.015 74.005 73.996 74.000 0.033

22 74.004 73.999 73.990 74.006 74.009 74.002 0.019

23 74.010 73.989 73.990 74.009 74.014 74.0027 0.025

24 74.015 74.008 73.993 74.000 74.010 74.005 0.022

25 73.982 73.984 73.995 74.017 74.013 73.998 0.035

∑ = 1850.029 ∑ = 0.581

¯̄x = 74.00118 R̄ = 0.02324

Table 2.1: The data of diameter in phase I
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Figure 2.1: X-bar control chart in phase I

As we can see on Figure 2.1, no indication of an out-of-control condition is ob-

served (all sample points fall between the control limits). Therefore, we conclude

that the process is in control, and adopt the trial control limits for use in phase II.

Phase II Application of the X-bar chart

When we establish a set of reliable control limits, we use the control chart for

monitoring future production. This is the phase II of control chart usage. We use

additional samples (given in Table 2.2 taken from [44]) for the piston ring process,

taken after the initial control charts were established. The X-bar control chart

for monitoring process mean is shown in Figure (2.2). We can see that there is

indications that the process is out-of-control state (some sample points after the

11th sample are out of control limits).

2.2 Production process

The design of control charts has some statistical and economic consequences, which

must be taken into account during the determination of the control chart parame-

ters. The economical design of charts demands formulation of the objective function,

which connects economic consequences with parameters from the charts. To deter-

mine the objective function (loss function), first we need to make certain assumptions

about the behavior of the production process (see [27]).

A production cycle is defined as the interval of time from the start (in the in-control
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Figure 2.2: X-bar control chart in phase II

state) to the detection and correction of the assignable cause. The cycle consists of

four periods:

1. In-control period

2. Out-of-control period

3. The time taken for sampling and interpreting the results

4. The time taken to find the assignable cause (see [5]).

We need to make some assumptions about the process behavior in order to be able

to formulate a model for the design of a control chart. These assumptions are given

below and they are standard in most models. Process behavior, statistical properties

of the chart, control procedure, and economic factors are discussed in the frame of

these assumptions. The characteristics and relations for the investigated process are

as follows:

I Production has mean of υ items per hour.

II The sample size is n and the sampling interval is h.

III The quality characteristic of interest X has Normal distribution with mean µ

and variance σ2.

IV The production is thought to consist of a series of cycles. Each cycle starts

in state I i.e. under control (or in-control state), with mean µ0 (target level),

and ends in state II (out-of-control state) with µ ≠ µ0. After we detected and

corrected the assignable cause, the process returns to the state I again and a
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Sample

Number,i Observations x̄i

26 74.012 74.015 74.030 73.986 74.000 74.009

27 73.995 74.010 73.990 74.015 74.001 74.002

28 73.987 73.999 73.985 74.000 73.990 73.992

29 74.008 74.010 74.003 73.991 74.006 74.007

30 74.003 74.000 74.001 73.986 73.997 73.997

31 73.994 74.003 74.015 74.020 74.004 74.007

32 74.008 74.002 74.018 73.995 74.005 74.006

33 74.001 74.004 73.990 73.996 73.998 73.998

34 74.015 74.000 74.016 74.025 74.000 74.011

35 74.030 74.005 74.000 74.016 74.012 74.013

36 74.001 73.990 73.995 74.010 74.024 74.004

37 74.015 74.020 74.024 74.005 74.019 74.017

38 74.035 74.010 74.012 74.015 74.026 74.020

39 74.017 74.013 74.036 74.025 74.026 74.0237

40 74.010 74.005 74.029 74.000 74.020 74.013

Table 2.2: The data of diameter in phase II

new cycle starts and so on. If the assignable cause occurs, it shifts the process

to the state II with mean µ1 = µ0−δσ with probability P (µ = µ1) or µ2 = µ0+δσ
with probability P (µ = µ2). Here δ is a known shift in process mean.

V Time T (duration of in-control state) is thought to be a random variable that

has an exponential distribution with parameter λ. Thus the average duration

of the state which is under control in the cycle is E(T ) = 1
λ .

VI The states of the process can be recognized by charting only.

Characteristics of the chart

There are two set of characteristics of the chart, statistical and economic (see [27],

[35]) .

Statistical characteristic of the chart We draw samples of size n at the interval

of h hours. The sample point X̄j that falls outside the control limits [LCL,UCL] is

taken as an indication of the out-of-control state. In case we detect an out-of-control

state, then we begin to search for its causes and we need to take suitable steps in

order to bring the process back into state I.
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The types of errors

There are two types of errors that can happen:

Type-I error (The false alarm): This type of error happens when the chart

signals that the process is in state II and actually it is not. The probability of type

I error of X̄ control chart is given by (see [27]):

α = P (X̄j ∉ [LCL,UCL]∣µ = µo)

= 1 − P (X̄j ∈ [LCL,UCL]∣µ = µo)

= 1 − P ((µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
)

= 1 − P [−k ≤ Zj ≤ k]

= 1 − [Φ(k) −Φ(−k)] = 2Φ(−k). (2.8)

Type-II error (not detecting the real deviations): This error happens when the

chart signals that the process is in state I, while it is in state II. The probability of

type II error of X̄ control chart is given by (see [27]):

β = P (X̄j ∈ [LCL,UCL]∣µ ≠ µo) (2.9)

= P (µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
∣µ ≠ µo)

= P (µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
∣µ ∈ {µ1, µ2})

= P (µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
∣µ = µ1)P (µ = µ1)

+P (0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
∣µ = µ2)P (µ = µ2).

Put B1 = P (µ0 − kσ√
n
≤ X̄j ≤ µ0 + kσ√

n
∣µ = µ1)P (µ = µ1)

= P (µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
)P (µ = µ1).

We have µ1 = µ0 − δσ so B1 becomes:

B1 = P (−k + δ
√
n ≤ Zj ≤ k + δ

√
n)P (µ = µ1)

= [Φ(k + δ
√
n) −Φ(−k + δ

√
n)]P (µ = µ1)
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Since Φ(−k + δ
√
n) = 1 −Φ(k − δ

√
n) and Φ(k + δ

√
n) = 1 −Φ(−k − δ

√
n)

then

B1 = [Φ(k − δ
√
n) −Φ(−k − δ

√
n)]P (µ = µ1).

Put B2 = P (µ0 − kσ√
n
≤ X̄j ≤ µ0 + kσ√

n
∣µ = µ2)P (µ = µ2)

= P (µ0 −
kσ√
n
≤ X̄j ≤ µ0 +

kσ√
n
)P (µ = µ2).

We have µ2 = µ0 + δσ and P (µ = µ2) = 1 − P (µ = µ1). Then

B2 = P [−k − δ
√
n ≤ Z ≤ k − δ

√
n][1 − P (µ = µ1]

= [Φ(k − δ
√
n) −Φ(−k − δ

√
n)][1 − P (µ = µ1)].

Because β = B1 +B2, we finally obtain:

β = Φ(k − δ
√
n) −Φ(−k − δ

√
n). (2.10)

It follows that the power is:

1 − β = 1 − [Φ(k − δ
√
n) −Φ(−k − δ

√
n)]

= Φ(−k + δ
√
n) +Φ(−k − δ

√
n). (2.11)

The average run length (ARL)

The average run length (ARL) is another characteristic of the chart which shows the

average number of the samples which are taken before the moment we get the first

out-of-control signal. Let M be a random variable which represents the number

of samples necessary to obtain an out-of-control signal. Then M has geometric

distribution with parameter P (X̄ ∉ [UCL,LCL]∣µ) and the average run is

ARL = E[M ∣µ] =
∞

∑
m=1

mP (X̄ ∉ [UCL,LCL]∣µ)P (X̄ ∈ [LCL,UCL]∣µ)m−1

= 1

P (X̄ ∉ [LCL,UCL]∣µ)
.

There are two types of ARL:

ARL1: In order to obtain the first false alarm, we need to draw an average number

of samples and this is ARL1 - the average run length when the process is in control:

ARL1 = E(M ∣µ = µo) =
∞

∑
m=1

mα(1 − α)m−1 = 1

α
, (2.12)
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where α is the type-I error.

ARL2: The average run length when the process is out-of-control represents the

average number of samples drawn for detecting the shifts:

ARL2 = E(M ∣µ ≠ µo) =
∞

∑
m=1

mβm−1(1 − β) = 1

1 − β,
(2.13)

where β is the type-II error.

The expected number of samples

To determine the expected loss per hour, we first need to determine the expected

number of samples for in-control and for out-of-control states and the expected num-

ber of false alarms. Below are the definitions of the random variables we use and

the related quantities.

Expected number of samples drawn in the state I.

Let SI be a random variable which represents the number of samples drawn in state I

{SI = i}, means that the transition to state II happens in the interval [(ih, (i+1)h)]:

{SI = i} = {(ih < T ≤ (i + 1)h)}.

Probability mass function of Si is

P (SI = i) = P ((ih < T ≤ (i + 1)h)) = ∫
(i+1)h

ih
λe−λtdt

= (1 − e−λh)(e−λh)i, i = 0,1, . . . .

This is the probability mass function for geometric distribution with parameter

(1 − e−λh). Therefore, the expected value of the number of samples drawn in the

state I is:

µSI = E(SI) =
e−λh

1 − e−λh
= 1

eλh − 1
. (2.14)

Expected number of samples drawn in the state II

Let SII be a random variable which represents the number of samples drawn in

state II. {SII = j} means that the shift in state II is detected at jth sample. The

probability mass function for the variable SII is:

P (SII = j) = (1 − β)βj−1, j = 1,2,3, ...
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This is the probability mass function for geometric distribution with the parameter

(1 − β). Then the expected value of SII is

µsII = E(SII) =
1

1 − β
. (2.15)

The expected number of samples in cycle

If we suppose that S is a random variable which represents the number of samples

in cycle, then S = SI +SII . Let µs be the expected number of samples in cycle. Then

µs = µsI + µsII . (2.16)

The expected number of the false alarms

False alarms occur only from sampling in state I. Let F be a random variable that

represents the number of false alarms in the cycle. In each sample in state I, the

probability of false alarm is α. Therefore {F ∣SI} is a random variable that has

Binomial distribution with parameters (SI , α) and mean

E(F ∣SI) = αSI .

The expected number of false alarms in the cycle is:

µF = E(F ) = E(E(F ∣SI)) = E(αSI) = αE(SI)

= α

eλh − 1
. (2.17)

Economic characteristics of the chart

The most important goal of improving the quality of production is to get the great-

est income. When the production process is in in-control state, it is more profitable

than when the process is out-of-control. Therefore, the process must be put under

control by doing appropriate procedures when there is any warning. Two types of

procedures exist and they are executed during the production process, and each of

them has economic consequences see [27], [35].
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Inspection and sampling procedure

This procedure is done in order to detect a shift. The periodic sampling and testing,

as well as the investigation of false alarm are performed. The economic consequence

of this procedure is described by the cost and it is as follows.

The cost of inspection and sampling:

It is presumed that c∗1 is the fixed cost per sample, and c∗2 is a variable cost per unit

sampled. Then the sampling and inspection costs for sample size n are c∗1 + c∗2n.

The expected number of samples in a cycle is denoted µs. The expected cycle cost

of sampling and inspection is:

Cs = (c∗1 + c∗2n)µs.

The cost of false alarms

It is presumed that c∗3 is the cost of a false alarm, which includes the cost for

suspension of production during the examination. Then the expected cost of false

alarms in the cycle is:

CF = c∗3µF ,

where µF is expected number of false alarms.

The renewal procedures

These procedures are responsible for the transition from state II to state I. When

the cause of the deviation is corrected, the process returns into the controlled stage

again and this is related to the following consequences:

Cost of correction

It is presumed that c∗4 is equivalent to the cost for correcting the whole cycle, which

includes the cost of suspension of the production process, while the process of cor-

rection is in progress.

Revenues from correction

It is presumed that g1 is the profit of a produced unit when the process is in control,
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g2 is the profit of the produced unit in the out-of-control state. So, g1 − g2 is the

revenue of the transition from a state that is out of control to the state that is in

control by the unit. Hourly penalty cost associated with production in the out-of-

control state is C4 = g1 − g2. The rate of production is υ unit of hours, and the

average length of the period when the process is in control is the 1
λ hour. Then the

expected benefit from the transition into state I is

(g1 − g2)
υ

λ
.

Assuming that b∗ is the expected net benefit per renewal, then

b∗ = (g1 − g2)
υ

λ
−C∗

4 . (2.18)

And the average number of units produced in the cycle is N = µshυ by the unit.

2.3 Loss Function

The loss function is L(n, k, h) constructed by combining some characteristics of the

production process: If we suppose that P is the expected profit per cycle then

P = b∗ −Cs −CF , (2.19)

and we define the loss as follows

L = −P = Cs +CF − b∗. (2.20)

Then, the expected loss per unit produced, expressed as a function of the chart

parameters n, k, h is given by:

L(n, k.h) = L

N

L(n, k, h) = c∗3
hυ

[c
∗
1

c∗3
+ c

∗
2

c∗3
n −

b∗
c∗3
− µF
µs

]. (2.21)

To simplify the optimization procedure for the function (2.21) we define the flowing

relative quantities: the relative fixed cost per sample is C1 =
c∗1
c∗3
≥ 0, the relative cost

per unit sampled is C2 =
c∗2
c∗3
≥ 0, and the relative benefit renewal is b = b∗

c∗3
≥ 0.

Then the loss function can be written as

L(n, k, h) = c∗3
hυ

[C1 +C2n −
b − µF
µS

]. (2.22)
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Since µS = 1
(eλh−1)

+ARL2 and µF = 1
(ehλ−1)ARL1

,

then

L(n, k, h) = c∗3
hυ

[C1 +C2n −
b(ehλ − 1) − 1

ARL1

1 +ARL2(ehλ − 1)
]. (2.23)

The equation 2.23 is the required loss function which has to be minimized in order

to determine the parameters (n, k, h).

The values (n∗, k∗, h∗) are the optimum design for the X-bar chart iff

L(n∗, k∗, h∗) ≤ L(n, k, h) ∀(n, k, h).

In order to reduce the number of parameters of the objective function and also to

simplify the optimization procedure, we multiply it by υ
λc∗3

. Put s = δn, x = λh and

c = C2

δ2 . Then the standardized loss function is given by:

Ls(s, k, x) =
1

x
[C1 +Cs2 −

b(ex − 1) − 1
ARL1

1 +ARL2(ex − 1)
]. (2.24)

Is is obvious that the loss function L(n, k, h) attains its minimum at (n∗, k∗, h∗) iff

the the standardized loss function Ls(s, k, x) attains its minimum at s∗, k∗, x∗. So

the values (n∗, k∗, h∗) are the optimum design for the X-bar chart iff

L(s∗, k∗, x∗) ≤ Ls(s, k, x) ∀(s, k, x).

Numerical minimization

The minimizing problem of the loss function is solved by using MATLAB Optimiza-

tion: Toolbox for minimization of nonlinear function with constraints for c1 = 0, c

in the interval [0.0001, 1], and b in the interval [10, 860]. A sample of the output of

this program (s∗, k∗, x∗) given in Table (2.3).

Modeling

A non-linear regression models are built by using the a package (Sigma plot) on the

results obtained from the standardized loss function (s∗, k∗, x∗). They are dependent

variables while (c1, c, b) are independent variables. In this case when C ≥ 0.067 and

[0.105 − c]b ≤ 0.12638 we obtain (s∗ = k∗ = x∗ = 0) the following models:

� Model s∗

ŝ∗ =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1.2980b2−1.3342ln(b2)− 115090.6604c2

ln(b2) −40756.0351c2b2+0.0091cln(b)

b2+ 1323037.3265c4

b2
−22616.3265c2b2−790.8770cb2−1.7369ln(b2)

− 6.5210b
ln(b) +3.4296+0.0091ln(b)−17.3746

0
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� Model k∗

k̂∗ =
⎧⎪⎪⎨⎪⎪⎩

1.8569b+2.1325cc−0.0177ln(b)+8.4195cb
b(70486cc−58.84825+1.4296c) − 8.6777

ln(b)

0

� Model x∗

x̂∗ =
⎧⎪⎪⎨⎪⎪⎩

0.0001c+25.2567bc2−61.3759c3b+264477ln(b)−0.0366ln(b)−1699cb+0.1659
ln(b)+1.2856c2b2−0.0190cb2+24.9502cb)

77996.3927
b4

+0.0217ln(b)

0

In all cases we obtain that R2 = 0.9999 and P-value were for all parameters and

coefficients less than the 0.0001.

b c s∗ k∗ x∗ Ls

10 0.0401 2.3197 1.5193 0.2441 -7.1111

60 0.0606 2.1796 1.3918 0.1047 -51.3540

110 0.0591 2.2194 1.4248 0.0758 -98.1887

160 0.0701 2.1127 1.3423 0.0654 -144.6392

210 0.0321 2.6057 1.2742 0.0589 -196.6382

260 0.0801 2.0335 1.2784 0.0527 -239.7041

310 .01910 2.8967 1.9686 0.0313 -296.5662

360 0.0371 2.5303 1.6744 0.0360 -341.4782

410 0.0301 2.6526 1.7719 0.0316 -391.6524

460 0.0291 2.6730 1.7881 0.0295 -440.7895

510 0.0471 2.3925 1.5637 0.0324 -485.9551

560 0.0291 2.6751 1.7895 0.0267 -538.7770

610 0.0491 2.3694 1.5450 0.0299 -583.2849

660 0.0551 2.2985 1.4885 0.0297 -631.0765

710 0.0471 2.3963 1.6664 0.0274 -681.5591

760 0.0711 2.1350 1.3583 0.0296 -726.1856

810 0.0651 2.1936 1.4056 0.0280 -776.0662

860 0.0621 2.2253 1.4306 0.0268 -825.5621

Table 2.3: Sample of output (s∗, k∗, x∗) and loss function for given values of b, c

The Table 2.4 contains the estimated values (ŝ∗, k̂∗, x̂∗) obtained by using the pre-

vious models for some values (c, b).

Note that, by comparing the results in the (Table 2.3) with those in the (Table 2.4) it

is obvious that there are no significant differences between actual values (s∗, k∗, x∗)
and estimated values (ŝ∗, k̂∗, x̂∗). However, some differences have been found, which
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b c ŝ k̂ x̂ Ls

10 0.0401 2.3190 1.5294 0.2415 -7.1111

60 0.0601 2.1867 1.3988 0.1047 -51.3539

110 0.0591 2.2164 1.4262 0.0761 -98.1886

160 0.0701 2.1128 1.3372 0.0658 -144.8491

210 0.0321 2.6021 1.7316 0.0448 -196.6374

260 0.0801 2.0325 1.2706 0.0527 -239.7035

310 0.0191 2.8966 1.9599 0.0305 -296.5597

360 0.0371 2.5267 1.6724 0.0359 -341.4781

410 0.0301 2.6494 1.0661 0.0314 -391.6520

460 0.0291 2.6703 1.7815 0.0294 -440.7891

510 0.0471 2.3907 1.5691 0.0324 -485.9547

560 0.0291 2.6730 1.7830 0.0268 -538.7767

610 0.0491 2.3686 1.5511 0.0299 -583.2845

660 0.0551 2.2994 1.4947 0.0296 -631.0763

710 0.0471 2.3962 1.5726 0.0274 -681.5587

760 0.0711 2.1389 1.3586 0.0295 -726.1854

810 0.0651 2.2918 1.4879 0.0268 -777.7131

860 0.0621 2.2291 1.4351 0.0268 -825.5619

Table 2.4: Estimated the optimal values (s∗, k∗, x∗)

have a slight impact on the standardized loss function.

Algorithms

The next algorithm is used to obtain the approximate optimal sampling interval

h∗, the approximate optimal control limits k∗, as well as the approximate optimal

sample size n∗. The following values are given:

1. The mean of in-control period 1
λ

2. The cost parameters:

� b∗ benefit per renewal

� c∗1 fixed cost per sample (in this study c∗1 = 0 )

� c∗2 cost per unit sampled

� c∗3 cost per erroneous inspection

3. Shift parameter δ
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b c ĥ∗ h∗

λ = 0.05 λ = 0.5 λ = 3 λ = 0.05 λ = 0.5 λ = 3

10 0.0411 4.924 0.1641 0.0821 4.874 0.1625 0.0812

60 0.0391 1.840 0.0613 0.0307 1.846 0.0615 0.0376

110 0.0711 1.596 0.0532 0.0266 1.606 0.0535 0.02677

160 0.0501 1.192 0.0397 0.0199 1.194 0.0398 0.0199

210 0.0351 0.932 0.0311 0.0155 0.924 0.0308 0.0154

260 0.0461 0.906 0.0302 0.0151 0.908 0.0303 0.0151

310 0.0241 0.676 0.0225 0.0113 0.666 0.0222 0.011

360 0.0401 0.736 0.0245 0.0123 0.738 0.0246 0.0123

410 0.0441 0.710 0.0237 0.0118 0.710 0.237 0.0118

460 0.0391 0.606 0.0215 0.0108 0.646 0.0215 0.0108

510 0.0321 0.576 0.0192 0.0996 0.578 0.0193 0.096

560 0.0601 0.662 0.0221 0.0110 0.658 0.0219 0.011

610 0.0311 0.522 0.0174 0.0087 0.526 0.0175 0.088

660 0.0101 0. 342 0.0114 0.0057 0.304 0.0113 0.0057

710 0.0471 0.550 0.0183 0.0092 0.550 0.0183 0.0092

760 0.0611 0.568 0.0189 0.0095 0.568 0.0189 0.0095

810 0.0391 0.484 0.0161 0.0081 0.488 0.0163 0.0081

860 0.0511 0.508 0.0169 0.0085 0.508 0.0169 0.0085

Table 2.5: Approximate values of optimal parameters

4. Relative economical consequences b = b∗
c∗3

and c = c∗2
c∗3δ

will be used as known.

a) ĥ∗ Algorithm

To determine the approximate optimal sample interval x̂∗ determine the following:

� Determine the optimal values of x̂∗ from x∗ model at the specified values of

the relative economic consequence using 1-4 above.

� The optimal value (ĥ∗ the approximate samples interval) is obtained through

the relationship ĥ∗ = x̂∗
λ .

The result of applying this algorithm for selected values b, c and λ is given in the

table (2.5).

b) k̂∗ Algorithm
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b c k̂∗ x∗

10 0.0391 1.6187 1.6212

110 0.0711 1.3252 1.3186

160 0.0501 1.5177 1.5220

210 0.0351 1.6942 1.6925

260 0.0461 1.5665 1.5708

310 0.0241 1.8684 1.8592

360 0.0401 1.6377 1.6395

410 0.0441 1.5935 1.5975

460 0.0391 1.6521 1.6524

510 0.0321 1.7444 1.7403

560 0.0071 2.3626 2.3830

610 0.0311 1.7601 1.7553

660 0.0101 2.2300 2.2398

710 0.0471 1.5663 1.5626

760 0.0611 1.4374 1.4423

810 0.0391 1.6565 1.6586

860 0.0511 1.5282 1.5354

Table 2.6: The estimated optimal values of control limits k̂∗

The optimal values of control limits k̂∗ are obtained directly from x∗ model at the

values of b and c specified using 1-4 above.

The Table (2.6) presents the result of applying k̂∗ algorithm for selected value of b

and c.

c) n̂∗ Algorithm

To determine the approximate optimal sample size n̂∗, first the optimal value of ŝ∗

is obtained from s∗ model at the values of b and c specified using 1-4 above. Then

the approximate optimal sample size n̂∗ is given by:

n̂∗ = [(ŝ
∗)2

δ2
].

The result of applying this algorithm for selected values of b, c and δ is presented in

the Table (2.7).
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b c n̂∗ n∗

δ = 0.5 δ = 1.5 δ = 2 δ = 0.5 δ = 1.5 δ = 2

10 0.0411 21 2 1 21 2 1

6 0.0391 24 3 2 24 3 2

110 0.0711 17 2 1 18 2 1

160 0.0501 22 2 1 22 2 1

210 0.0351 26 3 2 26 3 2

260 0.0461 23 3 1 23 3 1

310 0.0241 31 3 2 31 3 2

360 0.0401 25 3 2 25 3 2

410 0.0441 24 3 1 24 3 1

460 0.0391 25 3 2 25 3 2

510 0.0321 27 3 2 27 3 2

560 0.0601 20 2 1 20 2 1

610 0.0311 28 3 2 28 3 2

660 0.0101 41 5 3 42 5 3

710 0.0471 23 3 1 23 3 1

760 0.0611 20 2 1 20 2 1

810 0.0391 25 3 3 25 3 2

860 0.0511 22 2 1 22 2 1

Table 2.7: Approximate optimal values of control limits

As can be seen, there are different effect on economical consequences for the optimal

design of X-bar chart:

� Increasing the per unit (relative) sampling cost (the relative c2) c∗2 leads to the

decrease of the optimum sample size n̂∗ and optimum control limits k̂∗, but it

leads to the increase of the optimum interval between samples ĥ∗.

� Increasing the benefit per renewal (the relative b) b∗ leads to the increase of

both the optimum sample size n̂∗ and the optimum control limits k̂∗, but

decreases the optimum interval between samples ĥ∗.

� Increasing the intensity parameter λ decreases the optimum interval between

samples n̂∗.

� Increasing of δ decreases the optimum sample size n̂∗ .
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Chapter 3

EWMA-type control charts for

the mean

The idea to design the implementation of an the exponential weighted moving aver-

age chart is based on the idea of time series moving average model. In this chapter

we explain how to construct EWMA chart for monitoring the process mean and

we discuss the basic assumptions about the process and method of design of X-bar

and EWMA control charts which we use when the quality characteristic has Normal

distribution. A model of construction of the chart, together with conclusions, and

also sensitivity analysis are discussed.

3.1 Construction of EWMA control chart

Exponentially Weighted Moving Average (EWMA) control chart is one of the con-

trol charts that can be used for detecting shifts in the process. Roberts was the first

to use it in 1959. It consists of three horizontal lines, central line or mean (CL),

upper control limit (UCL) and lower control limit (LCL).

The Shewhart control chart applies statistical test to the process using only the

immediate data, while the EWMA chart uses the previous data with weights. The

EWMA chart can detect small shifts in the process mean. When λ is near unity or

when λ = 1, then EWMA chart is simillar to, or it is equal to the X-bar chart. Mont-

gomery [44] contributed to this subject and specified the Exponentially Weighted

Moving-Average as:

Yi = λXi + (1 − λ)Yi−1. (3.1)

Here 0 < λ ≤ 1 is constant, Xi are observations, and the starting value of the process

is Y0 = µ0.

It can happen sometimes that the mean of preliminary data is used as starting value

of the EWMA control chart, Y0 = X̄. EWMA Yi is then the weighted average of all

previous sample means.
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We may substitute Yi−1 on the right hand side of equation 3.1. Then

Yi = λXi + (1 − λ)[λXi−1 + (1 − λ)Yi−2]

= λXi + λ(1 − λ)Xi−1 + (1 − λ)2Yi−2.

Continuing to substitute recursively Yi−j, j = 1,2,3, .., i − 1 we obtain

Yi = λ
i−1

∑
j=0

(1 − λ)jXj−1 + (1 − λ)iY0.

If the observations Xi are independent random variables with mean µ0 and variance

σ2, then the mean and the variance of Yi for EWMA control chart are given by:

EYi = µ0,

σ2
Yi
= σ2( λ

2 − λ
)[1 − (1 − λ)2i]. (3.2)

In this way, it is possible to construct the EWMA control chart by plotting the Yi

versus the sample number i (or time). Upper Control Limit (UCL), Control Limit

(CL) and Lower Control Limit (LCL) for the EWMA control chart are stated below:

UCL = µ0 +Lσ
√

λ

2 − λ
[1 − (1 − λ)2i] (3.3)

CL = µ0

LCL = µ0 −Lσ
√

λ

2 − λ
[1 − (1 − λ)2i], (3.4)

where L is the width of the control limits, usually equal 2 or 3, as in the design of

Shewhart control chart limits.

In case the sample means fall within the control limits, we can say that the process

is in control regarding the mean of process, and we can say that the process is out-

of-control if the sample means are out of the control limits.

The term [1 − (1 − λ)2i] approaches unity, when i gets larger. After the EWMA

control chart’s was used for several time periods, the control limits will get closer to

steady-state values.

UCL = µ0 +Lσ
√

λ

2 − λ
(3.5)

CL = µ0
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LCL = µ0 −Lσ
√

λ

2 − λ
. (3.6)

In a starting period, it is good to use the exact control limits, because this will

improve the detection of value that is far from the process target.

EWMA control chart for the mean

We just need to substitute Xi with X̄i and σ with
σ

n
in the previous equations if

the sample size of subgroups is n, n > 1. So that

Yi = λX̄i + (1 − λ)Yi−1. (3.7)

Then the starting value is the overall average, Y0 = ¯̄X, and the variance of Yi for

EWMA control chart is given by:

σ2
Yi
= σ

2

n
( λ

2 − λ
)[1 − (1 − λ)2i]. (3.8)

Our assumption is that the quality characteristic is normally N(µ0, σ2) distributed,

where µ0 and σ are unknown. Then it is necessary to estimate them from a sample

or a subgroup. In this case the limits of EWMA will be

UCL = ¯̄X +Lσ̂
n

√
λ

2 − λ
[1 − (1 − λ)2i] (3.9)

CL = µ0 = ¯̄X

LCL = ¯̄X −Lσ̂
n

√
λ

2 − λ
[1 − (1 − λ)2i]. (3.10)

Since

lim
i→∞

σ2

n
( λ

2 − λ
)[1 − (1 − λ)2i] = σ

2

n
( λ

2 − λ
),

then control limits after several time periods will get closer to steady-state value

values:

UCL = ¯̄X +Lσ̂
n

√
λ

2 − λ
(3.11)

CL = µ0 = ¯̄X

LCL = ¯̄X −Lσ̂
n

√
λ

2 − λ
. (3.12)
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Phase I and phase II of EWMA chart

We use the same data for application of phase I and phase II of EWMA control

chart as in the previous chapter. We assume that the EWMA control chart has

λ = 0.20 and L = 3. We have Y0 = ¯̄X = 74.00118 and σ̂ = 0.00917. Then the first two

values of EWMA control chart are:

Y1 = λX̄1 + (1 − λ)Y0

= 0.2(74.010) + 0.8(74.00118) = 74.00298

and

Y2 = λX̄2 + (1 − λ)Y1

= 0.2(74.001) + 0.8(74.00298) = 74.00250

The other values of the EWMA statistic, for both cases are computed similarly and

summarized in the Table 3.1.

The control limits for period i = 1 are found from the formulas

UCL = ¯̄X +L σ̂√
n

√
λ

2 − λ
[1 − (1 − λ)2i]

UCL = 74.00118 + 3
0.00917√

5

√
0.2

2 − 0.2
[1 − (1 − 0.2)2(1)] = 74.00668

and

LCL = ¯̄X −L σ̂√
n

√
λ

2 − λ
[1 − (1 − λ)2i]

LCL = 74.0018 − 3
0.00917√

5

√
0.2

2 − 0.2
[1 − (1 − 0.2)2(1)] = 73.99567.

For period i = 2, the limits are

UCL = 74.00118 + 3
0.00917√

5

√
0.2

2 − 0.2
[1 − (1 − 0.2)2(2)] = 74.00822

LCL = 74.00118 − 3
0.00917√

5

√
0.2

2 − 0.2
[1 − (1 − 0.2)2(2)] = 73.99413.

The control limits vary with i = 1,2, ... until they stabilize at the steady-state value

given by 3.9 and 3.10:

UCL = ¯̄X +L σ̂
√
n

√
λ

2 − λ

= 74.00118 + 3
0.00917√

5

√
0.2

2 − 0.2
= 74.01034
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and

LCL = ¯̄X −L σ̂
√
n

√
λ

2 − λ

= 74.00118 − 3
0.00917√

5

√
0.2

2 − 0.2
= 73.99201.

The corresponding control limits are summarized in the table 3.1.

The EWMA control charts are shown in the Figures 3.1 and 3.2, for the phase

I and phase II, respectively. From the first chart, we can conclude that process

is in-control and retain estimates we got from preliminary samples. The second

EWMA chart, constructed for additional samples, gives indications that the process

is out-of-control.

Figure 3.1: The EWMA control chart in phase I
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Figure 3.2: The EWMA control chart in phase II

Shewhart control charts are very effective in phase I, because they are easily con-

structed and interpreted, and because they are effective in detecting both large,

sustained shifts in the process parameters and outliers and measurement errors.

The types of assignable causes that usually occur in phase I result in fairly large

process shifts, which represents exactly the situation in which the Shewhart control

chart is most effective. In phase II, it is usually assumed that the process is rea-

sonably stable. Frequently, the assignable causes that occur in phase II only cause

smaller process shifts, because (it is hoped) most of the sources of greater variability

have been systematically removed during phase I. Now we want to highlight process

monitoring, not bringing the process into control. The EWMA control chart is much

more likely to be effective in phase II, when smaller shifts occur.

3.2 Basic assumptions and parameters for the de-

sign of control charts

n: Sample size

h: Sampling interval

k: Width of control limits.

σ: Standard deviation of observations.

µ0: In-control process mean.

µ1: Out-control process mean.

δ: Shifts in process mean in standard deviation units when assignable cause occurs

(δ = ∣µ1−µ0∣σ ).
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λ: It is assumed that in-control time follows the exponential distribution with mean
1
λ .

τ : Expected time of occurrence of the assignable cause, given it occurs between the

j − th and (j + 1) − st samples is

τ = 1 − (1 + λh)e−λh
λ(1 − e−λh)

.

α: Probability of type I error.

β: Probability of type II error.

ATS: Average time to signal an expected shift, ATS = h
1−β .

g: The time required to take a sample and interpret the results.

D: The time required to find an assignable cause following an out-of-control signal.

c∗1: Fixed cost per sample. c∗2: Variable cost per unit sampled.

Cs: Cost for searching and repairing the assignable cause.

CF : Cost of investigating a false alarm.

g1: Profit per hour earned by the process operating in-control.

g2: Profit per hour earned by the process operating out-of-control (g1 > g2).

C4: Hourly penalty cost associated with production in the out-of-control state.

µF : Expected number of false alarms, µF = α e−hλ
1−e−hλ .

E(T ): Expected length of a production cycle. The production cycle time T is defined

as the interval of time from the start of production (the process is assumed to start

in the in-control state), following an adjustment to the detection and elimination of

the assignable cause.

E(C): Expected cost per cycle. Total cost C consists of the costs of testing and

sampling, the costs associated with investigating an out-of-control signal and with

the repair or correction of any assignable causes found, and the costs associated with

the production of nonconforming items.

µS: Expected number of samples taken within a cycle, µS = E(T )
h .

Remark: we derived the errors of type I and II of X-bar chart on the previous

chapter, but for EWMA chart we suppose that [1− [1−λ]2i] = 1 when i is large. So

the probability of type error is:

� Type-I error (The false alarm). This type of error happens when the chart

signals that the process is in state II and actually it is not. Then:
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α = P (Yi ∉ [LCL,UCL]∣µ = µo)

= 1 − P (Yi ∈ [LCL,UCL]∣µ = µo)

= 1 −
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 −

kσ√
n

√
λ

2 − λ
⎞
⎠

= 1 − P [−k ≤ Zj ≤ k]

= 1 − [Φ(k) −Φ(−k)] = 2Φ(−k). (3.13)

� The probabilities of type II error of EWMA control chart given by:

β = P (Yi ∈ [LCL,UCL]∣µ ≠ µo) (3.14)

= P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ ≠ µo

⎞
⎠

= P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ ∈ {µ1, µ2}

⎞
⎠

= P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ = µ1

⎞
⎠
P (µ = µ1)

+P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ = µ2

⎞
⎠
P (µ = µ2).

Put

B1 = P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ = µ1

⎞
⎠
P (µ = µ1).

We have µ1 = µ0 − δσ so B1 becomes:

B1 = P (−k + δ
√
n
√

2−λ
λ ≤ Zi ≤ k + δ

√
n
√

2−λ
λ )P (µ = µ1)

=
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
k + δ

√
n

√
2 − λ
λ

⎞
⎠
−Φ

⎛
⎝
−k + δ

√
n

√
2 − λ
λ

⎞
⎠

⎤⎥⎥⎥⎥⎦
P (µ = µ1).

Since

Φ(−k + δ
√
n
√

2−λ
λ ) = 1 −Φ(k − δ

√
n
√

2−λ
λ ) and

Φ(k + δ
√
n
√

2−λ
λ ) = 1 −Φ(−k − δ

√
n
√

2−λ
λ ), then
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B1 =
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
k − δ

√
n

√
2 − λ
λ

⎞
⎠
−Φ

⎛
⎝
−k − δ

√
n

√
2 − λ
λ

⎞
⎠

⎤⎥⎥⎥⎥⎦
P (µ = µ1).

Put

B2 = P
⎛
⎝
µ0 −

kσ√
n

√
λ

2 − λ
≤ Yi ≤ µ0 +

kσ√
n

√
λ

2 − λ
∣µ = µ2

⎞
⎠
P (µ = µ2).

We have µ2 = µ0 + δσ and P (µ = µ2) = 1 − P (µ = µ1). Then

B2 = P
⎡⎢⎢⎢⎢⎣
−k − δ

√
n

√
2 − λ
λ

≤ Zi ≤ k − δ
√
n

√
2 − λ
λ

⎤⎥⎥⎥⎥⎦
[1 − P (µ = µ1]

=
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
k − δ

√
n

√
2 − λ
λ

⎞
⎠
−Φ

⎛
⎝
−k − δ

√
n

√
2 − λ
λ

⎞
⎠

⎤⎥⎥⎥⎥⎦
[1 − P (µ = µ1)].

Because β = B1 +B2, we finally obtain:

β = Φ
⎛
⎝
k − δ

√
n

√
2 − λ
λ

⎞
⎠
−Φ

⎛
⎝
−k − δ

√
n

√
2 − λ
λ

⎞
⎠
. (3.15)

It follows that the power of determining the real (existing) deviation is:

1 − β = 1 −
⎡⎢⎢⎢⎢⎣
Φ

⎛
⎝
k − δ

√
n

√
2 − λ
λ

⎞
⎠
−Φ

⎛
⎝
−k − δ

√
n

√
2 − λ
λ

⎞
⎠

⎤⎥⎥⎥⎥⎦

= Φ
⎛
⎝
−k + δ

√
n

√
2 − λ
λ

⎞
⎠
+Φ

⎛
⎝
−k − δ

√
n

√
2 − λ
λ

⎞
⎠
. (3.16)

The expected cycle time

Each production cycle begins with the process in the in-control state and continues

until process monitoring via control charts results in an out-of-control signal. Fol-

lowing an adjustment in which the process is returned to the in-control state, a new

cycle begins. As it is shown in Figure 1.3 (see [63]), a cycle is partitioned into five

sub-intervals of time, Ia,Ib,Ic,Id, and Ie.

� Ia: The time from the start of the cycle, until the assignable cause occurs .

� Ib: The time until the next sample is taken from the end of Ia.

� Ic: The time until the chart gives an out-of-control signal from the end of Ib.

� Id: The time to analyze the sample and the chart from the end of Ic
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Figure 3.3: Cycle Process

� Ie: The time to discover the assignable cause and repair the process from the

end of Id.

Three time points are marked on Figure 3.3: the point 1 represents the last sample

before the occurrence of the assignable cause; the point 2 represents the first sample

taken after the assignable cause and the point 3 is the moment when lack of control

is detected. Process remains in-control state during time interval Ia and it is in the

out-control state during intervals Ib, Ic, Id and Ie. For each part the expected time

is calculated as follows:

E(Ia) =
1

λ

E(Ib) = h − τ

E(Ic) = ATS − h

E(Id) = gn

E(Ie) =D.

Finally by combining all these expected values we get E(T ), which is the expected

length of a production cycle. The production cycle time T is defined as the interval

of time from the start of production (the process is assumed to start in the in-control

state), following an adjustment for detection and elimination of the assignable cause:

E(T ) = E(Ia) +E(Ib) +E(Ic) +E(Id) +E(Ie)

= 1

λ
− τ + gn + h/(1 − β) +D.

Then the expected cost per cycle is

E(C) = g1

λ
+ g2(−τ + gn +

h

1 − β
+D) − c∗4 −CF − (c∗1 + c∗2n)µs.
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Loss function

The efficiency of the design of the control chart is presented by the expected loss

per hour (loss function), defined as

E(L) = g1 +
E(c)
E(T )

.

Then

E(L) = c
∗
1 + c∗2n
h

+
C4(−τ + gn + h

1−β +D) − c∗4 −CF )
( 1
λ − τ + gn +

h
1−β +D)

. (3.17)

Method of design

The design of a control chart is defined as a design in which the expected loss

cost function E(L) is minimized, subject to a constrained minimum value of power

and maximum value of the Type I error probability, and ATS of an expected shift.

We wish to find sample size, control-limit width, and sampling frequency to

minimize E(L) (3.18)

subject to

α ≤ α0, p ≥ p0, ATS ≤ ATS0,

where p = 1 − β, α0, p0 and ATS0 are, respectively, the power, the desired bound of

the Type I error probability, the power and ATS of an expected shift (see [53]).

3.3 Numerical example

This example was presented by Montgomery [45]. There is a manufacturer who

produces a nonreturnable glass bottles which are used for packaging a carbonated

soft drink beverage. The thickness of the bottle walls is considered to be an impor-

tant quality characteristic. If the wall isn’t thick enough, then the internal pressure

during filling may cause the bottle to burst. The manufacturer has for some time

applied X̄ control charts to monitor the process. These control charts were designed

in accordance with statistical criteria. But, because the manufacturer wishes to cut

the costs, he wants to design an economically optimum X̄ control chart for the pro-

cess. After analyzing the salaries of quality control technicians and the costs of the

test equipment, the estimate cost of taking a sample is $1, whereas the variable cost

is approximately $0.01 per bottle. On average, 1 minute (0.0167h) is necessary to

measure and record the thickness of the bottle’s wall. The process can be subjected
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to a couple of types of assignable causes. But when the process goes out-of-control,

the magnitude of the shift is equal to about two standard deviations.

Process shift happens randomly with a frequency of approximately one every 20h.

Therefore, the exponential distribution with the parameter λ = 0.05 is a realistic

model of the run length. One hour is usually necessary to investigate an out-of-

control signal. To investigate an action signal which ends with the elimination of

the assignable cause costs $25. The investigation of a false alarm costs $50.

It is estimated by the manufacturer that when we operate in the out-of-control

state for one hour the penalty cost is $100. It was necessary to design a model

for the X̄ control chart and EWMA chart. (see [26],[45]). Therefore the costs are,

C∗
1 = 1,C∗

2 = 0.1, C∗
4 = 25 ,C∗

3 = 50, δ = 2 g = 0.0167, λ = 0.05, C4 = 100, D = 1.

Let X be the measurable characteristic. Constrained minimization of expected loss

function was done using genetic algorithm ga from R package GA (see [55]).

We selected the following values for bounds on type I error probability, power and

ATS an expected shift: α0 = 0.05; p0 = 0.9; ATS0 = 2h. We consider that the quality

characteristics of X-bar and EWMA control charts have normal distribution. By

solving equations α = α(k) = 0.05 and p = p(k) = 0.9 using Brent’s root-finding

method (see [12]), we got values k1 and k2. By the constraints 3.18 we got interval

of values [k1; k2] for parameter k and [0; 2p(k1)] for parameter h. By constrained

optimization of expected loss function, we found the optimal values of parameters

k and h . Results of the minimization of expected loss function is given in Tables

1-4, for different values of the shift, λ and sample sizes from 3 to 10.

By looking at the results in Tables 3.2-3.5, we can make following conclusions:

1. The value of k in X-bar chart is less than the value of k in EWMA chart for

larger shifts.

2. The value of h in X-bar chart is bigger than the value of h in EWMA chart.

3. At the same value of the shift δ we can see the value of ATS in X-bar chart is

bigger than the value of ATS in EWMA chart.

4. Increasing the magnitude of the shift δ increases the power of X-bar chart.

Also, we can see that the power of X-bar chart is smaller than the power of

EWMA chart.

5. For both charts increasing the sample size n increases the power of the chart

at same value of the shift δ.
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6. At the same value of the shift δ, we can see that the expected value of the

loss function in X-bar chart is less than the expected value of loss function

of EWMA chart. Increasing the magnitude of the shift δ decreases the loss

function in X-bar chart and increasing the magnitude of the shift δ increases

the loss function of EWMA chart.

7. At the same value of the shift δ, we can see that increasing the sample size n

decreases the loss function of X-bar chart and increases the loss function of

EWMA chart.

3.4 Control Chart Performance

There are two commonly used methods for comparing control chart performance.

The first method is to determine the charts operating characteristic (OC) curve.

The second is to determine the average run length (ARL). Those methods are re-

lated with sensitivity analysis of the chart.

This research focuses on increasing the sensitivity of X-bar chart and EWMA chart

in order to detect small shifts. The sensitivity of the charts is measured by their

power 1 − β and the average run length (ARL). The power of the chart represents

the probability of a shift in the process level, and it is described in the process level

and given in the form of an operating characteristic (OC) curve.

The OC Curve: The OC Curve indicates the probability of an observation falling

within the control limits according to the state of the process. For example, for the

X̄ and EWMA charts, we can see the probability of staying within the limits β for

particular values of the process mean, as it is presented in the equations(2.11) and

(3.16), respectively. The curve is generated by calculating β for different values of µ.

The next five tables have the same value of probability of power X-chart and EWMA

chart with different values of the sample size n and shift δ and λ and L = k = 3 (the

usual three-sigma limits). The OC curves are also presented in the following figures.

The figure 3.4 (later used several times for comparison) shows the powers of X-bar

chart with different values of sample size n and k = 3. It is compared with figures

(3.5),(3.7), (3.9), (3.11) and (3.13) which show the EWMA chart with different val-

ues of sample size n for the given values λ and L = 3.
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Figure 3.4: The power of X̄ chart

Figure 3.5: The power of EWMA chart with λ = 0.05
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Figure 3.6: The power of X̄ chart

Figure 3.7: The power of EWMA chart with λ = 0.1
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Figure 3.8: The power of X̄ chart

Figure 3.9: The power of EWMA chart with λ = 0.2
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Figure 3.10: The power of X̄ chart

Figure 3.11: The power of EWMA chart with λ = 0.25
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Figure 3.12: The power of X̄ chart

Figure 3.13: The power of EWMA chart with λ = 0.4
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By looking at the results in the tables and figures, we can make following conclusions.

� The increase power of charts to detect the deviation increases with the large

sample size n. Therefore, detecting of the small variations is done by the use

of large sized samples.

� The power of EWMA chart increases with the decrease of the value of λ.

The Average Run Length: The average run length (ARL) is the average number

of points plotted on the chart until an out-of-control condition is signaled. It is the

expected value of the run length distribution. It is connected to the OC curve as it

can be seen from equation (2.12) and (2.13). The ARL is used more often in control

chart literature than OC curve values, since it’s concept easier to comprehend. The

tables below show the ARL values for both charts with different values of λ and δ

and k = L = 3. We have found that in this case the sample size did not affect ARL1,

but decreasing the sample size leads to increasing ARL2 for both charts and chang-

ing the shift size produces a change in ARL2; decreasing the λ leads to increasing

ARL2 for EWMA chart.

shift in mean X-bar EWMA

δ λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.25 λ = 0.4

0 370.37 370.37 370.37 370.37 370.37 370.37

0.25 184.16 60.68 31.39 22.48 7.52 2.61

0.5 60.68 9.76 4.18 2.91 1.28 1.01

0.75 22.48 2.91 1.49 1.23 1 1

1 9.76 1.47 1.06 1.01 1 1

1.5 2.91 1.01 1 1 1 1

2 1.1 1 1 1 1 1

2.5 1.1 1 1 1 1 1

3 1.01 1 1 1 1 1

4 1 1 1 1 1 1

Table 3.11: ARL of X-bar and EWMA charts with n = 3
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shift in mean X-bar EWMA

δ λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.25 λ = 0.4

0 370.37 370.37 370.37 370.37 370.37 370.37

0.25 133.16 33.4 15.59 10.76 3.49 1.45

0.5 33.4 4.5 2.07 1.57 1.03 1

0.75 10.76 1.57 1.08 1.02 1 1

1 4.5 1.08 1 1 1 1

1.5 1.57 1 1 1 1 1

2 1.10 1 1 1 1 1

2.5 1.08 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

Table 3.12: ARL of X-bar and EWMA charts with n = 5

shift in mean X-bar EWMA

δ λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.25 λ = 0.4

0 370.37 370.37 370.37 370.37 370.37 370.37

0.25 73.26 12.82 5.5 3.77 1.49 1.03

0.5 12.82 1.77 1.13 1.04 1 1

0.75 3.77 1.04 1 1 1 1

1 1.77 1 1 1 1 1

1.5 1.04 1 1 1 1 1

2 1 1 1 1 1 1

2.5 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

Table 3.13: ARL of X-bar and EWMA charts with n = 10
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shift in mean X-bar EWMA

δ λ = 1 λ = 0.05 λ = 0.1 λ = 0.2 λ = 0.25 λ = 0.4

0 370.37 370.37 370.37 370.37 370.37 370.37

0.25 47.33 6.96 3.02 2.16 1.13 1

0.5 6.96 1.24 1.01 1 1 1

0.75 2.16 1 1 1 1 1

1 1.24 1 1 1 1 1

1.5 1 1 1 1 1 1

2 1 1 1 1 1 1

2.5 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

Table 3.14: ARL of X-bar and EWMA charts with n = 15
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Chapter 4

Optimal Process Calibration for

Non-symmetric Loss Functions

The process calibration is one of the methods in statistical process control for im-

proving the quality of the products. We mention again basic notions of statistical

process control and present loss functions that can be used in this area. This chap-

ter is concerned with the problem of process calibration for some non-symmetric

loss functions. We suggest an optimal calibration policy which can be implemented

using our programs written in statistical software R.

In this chapter we consider the problem of the process calibration, i.e. how to

set-up a manufacturing process in order to meet specification limits, by which we

mean how to minimize the expected loss. In Section 4.1, we introduced traditional

method of calibration, which corresponds to the symmetric loss function. However,

quite often the lower and the upper specification limits cannot be treated in the same

way. For example, it may happen that although one of the specification limits can be

exceeded, we obtain a nonconforming product that could be reworked (improved or

corrected) which requires some costs. Three models of non-symmetric loss functions

and their implementation in statistical software R are considered, respectively, in

Sections 4.2 and 4.3. The R code is given at the end of the chapter.

4.1 Symmetric loss function

Let X denote a quality characteristic of the product. We assume that X is normally

distributed with mean µ and standard deviation σ, i.e. X ∼ N(µ,σ2). We suppose

that the standard deviation σ is known.

The usual practice is to set-up the mean at the middle distance between the speci-

fication limits, i.e. µ0 =
LSL +USL

2
and this is legitimate only if the loss does not

depend on which specification limit - the lower or upper - is exceeded. In that case
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the loss function L(x) is symmetrical,

L(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

w, x < LSL
0, LSL ≤ x ≤ USL
w, x > USL

where w > 0 (see Figure 4.1).

Figure 4.1: Symmetric loss function

This is a very simple method of process calibration. However, very often the as-

sumption of the symmetrical loss function is not fulfilled in practice. Let us consider

the following examples.

Example 4.1.1 The quality characteristic under study is the inner diameter of a

hole. Undersized holes can be reworked at extra costs. But the reduction of the

over-sized hole would be either impossible or would require much higher costs.

Example 4.1.2 The quality characteristic under study is the outside diameter of

the milled item. Over-sized items can be re-grounded at additional costs. But the

undersized item could be sold only for scrap.

Example 4.1.3 The quality characteristic under study is the blood glucose level

in diabetes patients. If measured value of blood sugar is too low or too high, i.e.

below or above allowed limits, then the blood sugar can be stabilized with some

extra costs (injection of insulin, food, tablets, etc.). These costs does not have to

be the same for too low and too high level of blood sugar.
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These examples show that in situations described above, instead of the symmetrical

loss function, a non-symmetric loss function should be used.

4.2 Non-symmetric loss function

To find the optimal calibration policy for situations as described in the examples

given above we will consider three models of loss functions. First model was pro-

posed by Grzegorzewski and Mrowka [33] and other two models are suggested by

us.

First model

The first model of the loss function is given by the formula

L(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w, x < LSL
0, LSL ≤ x ≤ USL

z
x −USL

ULR −USL
, USL < x ≤ ULR

z, x > ULR

where w > z and upper limit for rework ULR > USL (see Fig.4.2).

Figure 4.2: The first model of the loss function

This model could be used in cases when over-sized product items can be reworked

with some extra costs (Example 2).
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In all models we suppose that the loss function is connected to the quality char-

acteristic X, where X has Normal distribution N(µ,σ2) and the corresponding

density is denoted by f(x). The expected loss function is equal to

EL(X) = EL = wP (X < LSL) + zP (X > ULR) + z∫
ULR

USL

x −USL
ULR −USL

f(x)dx.

After some transformations we get

EL = wΦ(LSL − µ
σ

) + z + z ( µ −USL
ULR −US

− 1)Φ(ULR − µ
σ

) +

+ z
µ −USL

ULR −USL
Φ(USL − µ

σ
) −

− σ
z

ULR −USL
(φ(ULR − µ

σ
) − φ(USL − µ

σ
)) ,

where Φ and φ are, respectively, distribution function and density function of stan-

dard Normal distribution N(0,1). We consider the expected loss as a function of

a process mean µ, EL = EL(µ) and we are searching for such µ in which minimal

expected loss occurs. Thus we need

dEL(µ)
dµ

=

= z

ULR −USL
[Φ(ULR − µ

σ
) −Φ(USL − µ

σ
)] − w

σ
φ(LSL − µ

σ
) = 0.

This equation depends on µ and also LSL, USL, ULR, w, z, σ. To simplify it, we

introduce use new parameters:

a = ULR −USL
σ

,

b = USL −LSL
σ

,

K = w

z
.

The preceding equation reduces to

1

a
[Φ(a +∆) −Φ(∆)] −Kφ(−b +∆) = 0. (4.1)

The optimal calibration is given by

µ = USL −∆σ, (4.2)

where ∆ is the correction factor, and it is the solution of the equation 4.1.
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For cases when oversized items are reworked with some extra costs (Example 4.1.2),

we could consider loss function of this kind.

The following two models could be appropriate in the cases when there is a possi-

bility of rework for both undersized and oversized items (Example 4.1.3).

Second model

Loss function is given by the formula

L(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4w, x < LLR
3w, LLR ≤ x < LSL
0, LSL ≤ x < USL
w, USL ≤ x ≤ ULR
2w, x > ULR

,

where w > 0 (see Fig.4.3).

Figure 4.3: The second model of the loss function

In this situation the expected loss is equal to

EL(X) = EL = wP (X < LLR)+3wP (X ≤ LSL)−wP (X ≤ ULR)−wP (X ≤ USL)+2w.

After some transformations we get

EL = wΦ(LLR − µ
σ

) + 3wΦ(LSL − µ
σ

) −wΦ(ULR − µ
σ

) −wΦ(USL − µ
σ

) + 2w.
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To find the minimal expected loss we need to find µ for which dEL(µ)
dµ is equal to

zero. we have

dEL(µ)
dµ

= w
σ

[φ(LLR − µ
σ

) + 3φ(LSL − µ
σ

) − φ(ULR − µ
σ

) − φ(USL − µ
σ

)] = 0.

After dividing this equation with −wσ and using the notation

a = ULR −USL
σ

= LSL −LLR
σ

,

b and ∆ as before, we get

φ(−a − b −∆) + 3φ(−b +∆) − φ(a +∆) − φ(∆) = 0. (4.3)

Third model

This model is given by the formula

L(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2, x < LLR

w1
x −LLR

LSL −LLR
−w2

x −LSL
LSL −LLR

, LLR ≤ x < LSL

0, LSL ≤ x ≤ USL

z
x −USL

ULR −USL
, USL < x ≤ ULR

z, x > ULR

where w2 > w1 > z (see Fig.4.4).

In this situation the expected loss is equal to

EL(X) = EL = [w2 +
w2 −w1

aσ
µ +w1

LLR

aσ
−w2

LSL

aσ
]Φ(LLR − µ

σ
) +

+ [w1 −w2

aσ
µ −w1

LLR

aσ
+ +w2

LSL

aσ
]Φ(LSL − µ

σ
) +

+ [− z

aσ
µ + zUSL

aσ
]Φ(USL − µ

σ
) +

+ [ z
aσ
µ − zUSL

aσ
− z]Φ(ULR − µ

σ
) +

+ w1 −w2

a
φ(LLR − µ

σ
) + w2 −w1

a
φ(LSL − µ

σ
) +

+ z

a
φ(USL − µ

σ
) − z

a
φ(ULR − µ

σ
) + z.

We assumed that

a = ULR −USL
σ

= LSL −LLR
σ

.
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Figure 4.4: The third model of the loss function

To find the minimal expected loss we need to find µ which minimizes EL(µ) as

function of µ.

Thus

dEL(µ)
dµ

= w2 −w1

aσ
Φ(LLR − µ

σ
) − w2 −w1

aσ
Φ(LSL − µ

σ
) +

+ z

aσ
[Φ(ULR − µ

σ
) −Φ(USL − µ

σ
)] − w1

σ
φ(LSL − µ

σ
) +

+ z

σ
[φ(USL − µ

σ
) − φ(ULR − µ

σ
)] = 0.

Using also the notation b = USL−LSL
σ , K1 =

w1

z
and K2 =

w2

z
, we get

K2 −K1

a
[Φ(−a − b +∆) −Φ(−b +∆)] + Φ(a +∆) −Φ(∆)

a
−

− K1φ(−b +∆) + φ(∆) − φ(a +∆) = 0. (4.4)

4.3 Implementation in R

To calibrate optimally the process mean, we need to calculate the correction factor

∆. For three considered models, ∆ is calculated as a solution of equations (4.1),(4.3)

and (4.4), respectively. These equations depend on various parameters: equation

(4.1) depends on tree parameters a, b and K; equation (4.3) on two parameters a

and b, and the equation (4.4) depends on four parameters a, b, K1 and K2. We

solve these equations numerically, using Brent’s root- finding method (see [12]) im-

72



plemented in R function uniroot.

Correction factor for these three models of non-symmetric loss functions can be

found calling our R function corr.factor. The code is presented bellow:

corr.factor(delta,a,b,K,K1,K2,par)

by specifying the values of parameters (by choosing non-zero values for parameters

a, b and/or K, K1 and K2). Parameter par represents upper limit for correction

function necessary for Brent’s method to work properly (by default the value of

parameter par = 3).

Code of R-function:

model1<-function(delta,a,b,K){

1/a*(pnorm(a+delta)-pnorm(delta))-K*dnorm(-b+delta)}

model2<-function(delta,a,b){

dnorm(-a-b+delta)+3*dnorm(-b+delta)-dnorm(a+delta)-dnorm(delta) }

model3<-function(delta,a,b,K1,K2){

(K2-K1)/a*(pnorm(-a-b+delta)-pnorm(-b+delta))+1/a*(pnorm(a+delta)-

pnorm(delta))-K1*dnorm(-b+delta)+dnorm(delta)-dnorm(a+delta) }

corr.factor<-function(delta,a=3/0.1,b=3,K=0,K1=0,K2=0,par=3) {

if(K==0&&K1==0&K2==0)

{model.2<-function(delta){model2(delta,a,b)}

solution<-uniroot(model2,lower=0,upper=par)$root

}

else if(K1>0&&K2>0)

{model.3<-function(delta){model3(delta,a,b,K1,K2)}

solution<-uniroot(model3,lower=0,upper=par)$root

}

else if(K>0)

{model.1<-function(delta){model1(delta,a,b,K)}
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solution<-uniroot(model1,lower=0,upper=par)$root

}

solution }

Now, we can find correction factors for considered non-symmetric loss functions for

given values of parameters.

First model. Parameters of the first model of non-symmetric loss function a, b and

K have the following values: a = 12, b = 6 and K = 2. By calling the function

corr.function(a=12,b=6,K=2)

we get ∆ = 2.308.

Second model. Parameters of the second model of non-symmetric loss function a,

b have the following values: a = 12, b = 6. By calling the function

corr.function(a=12,b=6)

we get ∆ = 2.817.

Third model. Parameters of the third model of non-symmetric loss function a, b

and K1 and K2 have the following values: a = 12, b = 6, K1 = 2, K2 = 3. By calling

the function

corr.function(a=12,b=6,K1=2,K2=3)

we get ∆ = 2.887.
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Conclusions

The design and the performance of control charts are the most important problems

in Quality Control. In this thesis we studied and compared various characteristics

of control charts, together with related costs. We proposed a loss function, which

is connected to the production process and to X−bar quality control chart. Using

Matlab program for optimization, we found values of k, n and h, minimizing the

loss function for given costs. These values are compared with those obtained from

a non-linear regression model, built using a package Sigma plot, for given values of

cost. Production process can be modeled by Yi = λXi + (1 − λ)Yi−1, where 0 < λ ≤ 1

is a constant, Xi are N(µ,σ2) distributed. Exponentially Weighted Moving Aver-

age (EWMA) charts for this model are presented, and type I and type II errors

are calculated in the case when i is large. For different sample sizes, the new com-

parison between the optimal design of the X-bar and EWMA control charts for

Normally distributed quality characteristic is given, comparing the corresponding

cost-loss functions, power functions and average run lengths. The process of cali-

bration is one of the methods in statistical process control, introduced for improving

the quality of the products and for reducing the production costs. Two new models

of non-symmetrical loss function are introduced, and the value which minimizes the

expected loss is found for both cases. The production process is calibrated with this

new value.

One direction for further investigation in the area of Quality Control is the case

when the quality characteristic does not have symmetrical distribution. The other

direction is to study calibration for non-symmetric loss functions, which are not

piecewise constant, or piecewise linear, but have some parts with polynomial, or

exponential growth.
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autora na način odredjen od strane autora ili davaoca licence.

Ova licenca ne dozvoljava komercijalnu upotrebu dela.

3. Autorstvo - nekomercijalno - bez prerade. Dozvoljavate umno-
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