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Abstract 

The conventional way to design and operate the processes in chemical engineering is to 

determine the optimal steady-state design and to operate as close as possible to that 

steady-state. Nevertheless, many investigations have proven that periodic operations, 

when one or more inputs are periodically modulated, can result with better process 

performances, especially for chemical reactors. 

The origin of improvement of the reactor performance lies in fact that for nonlinear 

systems, the periodic modulation of one or more inputs will cause the outputs to change 

periodically, as well, with the mean value which is, in general, different from their 

steady-state values. 

In this work, we propose and implement the nonlinear frequency response (NFR) 

method for fast and easy evaluation of possible reactor improvements throughout 

periodic modulations. The NFR method is a relatively new method, mathematically 

based on Volterra series, generalized Fourier transform and the concept of higher-order 

frequency response functions (FRFs).  

The change of the reactor performances caused by periodic operations can be evaluated 

from the DC (non-periodic) component of the frequency response of the reactor, if it is a 

weakly nonlinear system. The DC component can be calculated exactly as a sum of an 

indefinite series, with members which are proportional to the asymmetrical even order 

FRFs. Nevertheless, based on the NFR method, the DC component can be estimated 

only from the first, dominant term of this series, which is proportional to the 

asymmetrical second order frequency response function G2(ω,-ω). In that way, for 

analysis of possible improvements of forced periodically operated chemical reactors, it 

is enough to derive and analyze asymmetrical second order FRFs G2(ω,-ω). For this 

reason, the NFR method is essentially approximate. 



 

 

In this work, the nonlinear frequency response method is applied for evaluation of 

possible improvements (increase of the reactant conversion or product yield) through 

periodic modulation of one (single input modulation) and simultaneous modulation of 

two inputs, when a homogeneous, simple, irreversible nth order reaction takes place in 

an isothermal, non-isothermal or adiabatic continuously stirred tank reactor (CSTR). 

The NFR method is tested on several numerical examples and the results are compared 

with the results calculated by numerical integration, which as considered as exact. Good 

agreements between the results of the NFR method and results of numerical integration 

are obtained, except for highly nonlinear systems around the resonant frequency, when 

high forcing amplitudes are used. 

It is concluded that, whether and to which extend is possible to achieve the 

improvements of the reactor performance through periodic operations, can be evaluated 

by the nonlinear frequency response method. The influence of the forcing parameters 

(frequency, amplitudes and phase shift of the input modulations) on the possible 

improvement can also be determined by the nonlinear frequency response method. 

Keywords: Nonlinear frequency response method, Higher order frequency response 

functions, Volterra series, Periodically operated chemical reactors, Single input 

modulation, Two-input modulation, Forcing parameters, Isothermal CSTR, Non-

isothermal CSTR, Adiabatic CSTR 

Scientific area: Chemistry and Chemical Technology 

  



 

 

Naslov doktorske disertacije: 

PERIODIČNE OPERACIJE HEMIJSKIH REAKTORA-EVALUACIJA I 

ANALIZA PRIMENOM METODE NELINEARNOG FREKVENTNOG 

ODZIVA 

Rezime 

Uobičajen način projektovanja procesa u hemijskom inženjerstvu podrazumeva 

određivanje optimalnog stacionog stanja i upravljanje procesom na način koji 

odezbeđuje da se uslovi održavaju što je moguće bliže tom optimalnom stacionarnom 

stanju. Ipak, mnoga istaživanja su pokazala da se performanse procesa, pogotovo 

hemijskih reaktora, mogu poboljšati ukoliko se jedan ili više ulaza periodično menja. 

Poboljšanje performansi hemijskih reaktora pri periodičnom režimu rada je posledica 

nelinearnosti sistema. Kod nelinearnih sistema, kada se periodično menja jedan ili više 

ulaza, izlazi iz sistema se takođe periodično menjaju, a njihova srednja vrednost se, u 

opštem slučaju, razlikuje od stacionarnih vrednosti. 

Methoda nelinearnog frekventnog odziva (NFO) je u ovom radu predložena i 

primenjena za brzo i lako određivanje mogućeg poboljšanja performansi reaktora 

primenom periodičnog režima rada. Metoda NFO je relativno nova metoda i ona je 

matematički bazirana na Voltera redovima, generalizovanoj Furijeovoj transformaciji i 

na konceptu frekventnih prenosnih funkcija (FPF) višeg reda. 

Uticaj periodičnih operacija na performanse reaktora se može odrediti preko DC 

komponente (neperiodičnog člana) frekventnog odziva nelinearnog sistema. DC 

komponenta se može tačno prikazati beskonačnim redom čiji su članovi proporcionalni 

asimetričnim FPF parnih redova. Medjutim, u predloženoj metodi NFO DC 

komponenta se procenjuje samo na osnovu svog dominantnog člana koji je 

proporcionalan asimetričnoj FPF drugog reda G2(ω,-ω), tako da je za analizu mogućeg 

poboljšanja performansi reaktora pri periodičnom režimu rada dovoljno izvesti i 

analizirati samo ovu funkciju. Zbog toga je metoda NFO po svojoj suštini približna. 

U ovom radu, metoda NFO je primenjena za procenu mogućeg poboljšanja (povećenja 

konverzije reaktanta ili prinosa proizvoda) pri periodičnoj promeni jednog ili dva ulaza 



 

 

izotermnih, neizotermnih ili adijabatskih protočnih reaktora sa idealnim mešanjem 

(PRIM) sa homogenom, jednostavnom, nepovratnom reakcijom n-tog reda. 

Methoda nelinearnog frekventnog odziva je primenjena na nekoliko numeričkih 

primera, a dobijeni rezultati su upoređeni sa rezultatima koji su izračunati primenom 

numeričke integracije, koji se smatraju za tačne. Postignuto je dobro slaganje između 

rezultata koji su dobijeni primenom metode NFO i rezultata numeričke integracije, osim 

u slučajevima izrazito nelinearnih sistema u okolini rezonantne frekvencije, kada su 

korišćene jako velike amplitude.  

Zaključeno je da određivanje da li je, i u kojoj meri, moguće postići poboljšanje 

performansi hemijskih reaktora primenom periodičnih operacija moguće primenom 

metode nelinearnog frekventnog odziva. Primenom ove metode se takođe može odrediti 

uticaj parametara periodičnih operacija (frekvencija, amplitude i fazne razlike ulaznih 

promenljivih) na moguće poboljšanje i usvojiti opseg ovih parametara koji treba 

koristiti za uspešne periodične procese. 

 

Ključne reči: Metoda nelinearnog frekventnog odziva, Frekventne prenosne funkcije 

višeg reda, Volterra redovi, Periodične operacije hemijskih reaktora, Periodična 

promena jednog ulaza, Periodična promena dva ulaza, Parametri periodične promene, 

Izotermni PRIM, Neizotermni PRIM, Adijabatski PRIM 

 

Naučna oblast: Hemija i hemijska tehnologija 
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I Introduction 

1.1 Periodic processes  

The periodically operated processes are a class of processes which are, in general, non-

stationary. The periodically operated processes can be divided into two major classes, 

deliberate periodic processes and inherent periodic processes. The deliberate periodic 

processes can operate either under steady-state conditions or under periodic forcing of 

one or more inputs. The deliberate periodic processes are caused by forced periodic 

modulation of one or more inputs and their implementation is justified and imposed 

only if they lead to improvement of the system performance (Petkovska and Seidel-

Morgenstern, 2012). On the other hand, the nature of the inherent periodic processes is 

periodic and they cannot operate under steady-state conditions. Examples of inherent 

periodic processes are all processes which include adsorption, because the sorbent 

should be regenerated or replaced after a certain time. Separation reactors are also 

inherently periodic (Silveston and Hudgins, 2012). 

In this work, the investigation of periodic processes is limited to the deliberate periodic 

processes. 

The conventional way of designing processes in chemical engineering is to determine 

the optimum steady-state. Control systems are then designed in a way to compensate for 

any fluctuation of the inputs and to make that the system operates as close as possible to 

the optimum steady-state. In this way, the controlled system is forced to have a 

relatively constant output which corresponds to the desired optimum steady-state 

conditions (Douglas, 1967). 

Nevertheless, many theoretical and experimental investigations of periodic processes in 

chemical engineering, especially reactors, in the last 50 years, showed that periodic 

operation in some cases can be superior to the optimal steady-state design and that one 

way to achieve process intensification is to operate the process in a periodic way, in 

order to obtain better average performance compared to the optimal steady-state 

operation (Douglas and Rippin 1966; Douglas 1967; Horn and Lin 1967; Bailey and 

Horn 1971; Renken 1972; Bailey 1973; Watanabe et al. 1981; Schadlich et al. 1983; 

Silveston 1987; Sterman 1990a, 1990b, 1991; Silveston 1998). 

Forced periodic operations can be applied to a wide variety of plant units.  
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The source of the possible improvement through forced periodic operation lies in the 

process nonlinearity. Nevertheless, the improvement is obtained only in some cases, 

while in some others the periodic operation can be unfavourable, depending on the 

system nonlinearity. In general, for forced periodically operated nonlinear system, the 

average value of the output is different from the steady-state value and as a result, the 

system performance can be improved or deteriorated (Douglas and Rippin, 1966).  

The magnitude of the difference between the average value of the output of interest and 

its steady-state value depends on the degree of system nonlinearity. This difference is 

small for mild nonlinearities, but for highly nonlinear systems or those which exhibit 

resonance, it might be significant (Douglas, 1967). 

Considering that most chemical processes are nonlinear in nature, the nonlinear 

behaviour offers the opportunity to improve the time-averaged performance, such as 

conversion, selectivity, yield and production rates of chemical processes by unsteady-

state periodic operations (Chen et al., 1994). Both the experiments and the numerical 

simulation studies confirmed that it is often advantageous to exploit the nonlinear 

behaviour of chemical reactors and operate in a dynamic regime by forced periodic 

cycling of one or more inputs (Sterman and Ydstie, 1991). 

There are many ways of operating a system periodically. It is possible to periodically 

modulate one or more input variables with different forcing parameters i.e. frequency, 

wave shape, amplitudes and phase differences. It is this richness of different forcing 

strategies that makes it possible to find at least one mode that will achieve the chosen 

objectives (for reactor systems: increased conversion, improved selectivity, increased 

catalyst activity etc). On the other hand, this very richness presents a challenge how to 

decide which forcing strategy to use and how to find it efficiently (Silveston at al., 

1995). 

The investigations of Parulekar (Parulekar, 2003) have shown that the higher the 

number of inputs subject to periodic forcing, the better the process (reactor) 

performance could be achieved and that an increase in the number of modulated inputs 

would lead to broadening of the regions in the operating parameter space where forced 

periodic operations are superior to the corresponding optimal steady state operations. 

As concluded by Sterman ans Ydstie, multi-input periodic modulation can lead to 

improvement of the steady-state performance even when single-input modulation have a 

negligible or detrimental effect on the system performance i.e. significant improvements 
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can be obtained using multi-input perturbations even when single-input perturbations 

produce little or no effect (Sterman and Ydstie, 1990b). 

Previous investigations showed that the benefit of the interaction between two inputs 

can be realized only if the forcing frequencies for the two inputs are equal as well as the 

fact that difference between synchronized inputs is an important variable. The phase 

difference is the dominant parameter of the influence of the periodic operations and its 

appropriate choice may result in significant modifications in the behaviour of a system 

under forced periodic operation (Parulekar, 2003).  

Periodic operations of chemical reactors attract attention of researches with various 

goals where some of them are, improvement of heterogeneous catalyzed reactors (Barto 

et al., 1994; Matros, 1996), improvement of a continuous fermentation processes (Ruan 

and Chen, 1996; Nguang and Chen, 1998), modulation as a stabilizing factor for 

exothermic CSTRs (Cinar et al., 1987) or even for kinetic study in order to determine 

the reaction order and both parameters in Arrhenius equation (activation energy and pre-

exponential parameter) (Jaree and Nuammaneerat, 2010).  

It is also necessary to point out that periodic operations are more complex and more 

costly to develop and only significant improvements of certain objectives, compared to 

the classical steady-state operations, will justify their application (Markovic et al., 

2008).  

1.1.1. Process improvements through periodic operation – Short literature review 

Theoretical and experimental investigation of possible improvement of forced 

periodically operated reactors in comparison to the optimal steady-state has been a 

research topic of many investigation groups world-wide for over fifty years. 

Many investigators concluded that the periodic operations can be superior than the 

steady-state operation, for homogeneous continuous stirred tank reactors (Renken, 1972; 

Douglas, 1972; Lee and Bailey, 1979; Lee et al., 1980; Farhadpour and Gibilaro, 1981; 

Watanabe et al., 1981; Schadlich et al., 1983; Sterman and Ydstie 1990a, 1990b, 1991; 

Suman 2004; Sidhu, 2007) as well as for heterogeneous catalytic reactors (Thullie et al., 

1986; Barto et al., 1994; Matros, 1994; Silveston et al., 1995; Silveston, 1998; 

Reshetnkov et al., 2003; Silveston and Hudgins, 2004a, 2004b; Zahn et al., 2009; 

Reshetnikov, 2010). 
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In the late sixties of the previous century, Douglas with his co-authors (Douglas and 

Rippin, 1966; Douglas, 1967; Ritter and Douglas, 1970; Douglas, 1972) theoretically 

investigated the periodic operations of chemical reactors, with a focus on isothermal and 

non-isothermal CSTRs, and concluded that, in some cases, the reactor performance was 

improved by unsteady state operations. 

Renken (Renken, 1972) investigated theoretically the influence of forced periodic 

modulation of inlet concentration of the reactant on the reactor performance when 

irreversible consecutive-competing reaction occurred in a CSTR and concluded that 

both yield and selectivity of the intermediate product can be improved in this way. 

Afterwards, Lee and Bailey (Lee at al. 1980; Lee and Bailey, 1980) investigated, both 

theoretically and experimentally, the forced periodically operated CSTR with a 

homogeneous liquid phase consecutive-competitive reaction (saponification of diethyl 

adipate). Both theoretical and experimental investigations showed that significant 

increase of intermediate product yield was obtained by forced cycling of the feed 

composition and insignificant improvement by forced periodic cycling of the 

temperature in the jacket (Lee at al., 1980). Farhadpour and Gibilaro (Farhadpour and 

Gibilaro, 1981) investigated development of the optimal modes of periodic operations 

of CSTRs with a consecutive-competitive reaction. 

A review of theoretical investigations of periodic operation of chemical reactors was 

given by Bailey (Bailey, 1973), in which it was recommended that more experiments 

must be done in order to prove the improvements which were predicted by surprisingly 

plenty theoretical studies. 

Later on, an extensive review of experimental investigations of periodic operations of 

chemical reactors were given in (Silveston, 1987) where it was pointed out that most of 

the investigations of the periodically operated chemical reactors in the decades 1970-

1980 were focused on the periodic modulation of the reactant compositions, usually in a 

square wave form. All experimental studies described in (Silveston, 1987) showed that 

increase in catalytic activity was obtained by periodic operations. Then, updated 

reviews of both theoretical and experimental investigations of periodically operated 

catalytic reactors were given in (Silveston et al., 1995 and Silveston 1998). 

Sterman and Ydstie (Sterman and Ydstie 1990a, 1990b, 1991) theoretically analyzed the 

periodically operated CSTRs with square-wave input modulations, both for single and 

multi-input modulations for parallel, reversible, consecutive and consecutive-
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competitive reactions. They defined the conditions which need to be satisfied in order to 

achieve improvement. 

In (Silveston and Hudgins, 2004a), the use of total pressure modulation of catalytic 

reactions with mass transfer limited rates has been analyzed in detail, in order to 

increase the mass transfer rates and thus enhance the mass transfer in porous catalytic 

particles. The same authors pointed out that the temperature modulation might have 

significant influence on the reactor performance through increase of the reaction rate, 

and therefore significant improvement could be expected as a result of temperature 

modulations (Silveston and Hudgins, 2004b).  

Investigation of forced periodic operations of a cascade of adiabatic fixed-bed reactors 

with catalytic total oxidation showed that higher conversion and better utilization of the 

catalytic beds was obtained with this mode of operation (Zahn et al., 2009). 

A comprehensive up-to-day review of periodic operations of chemical reactors can be 

found in a book edited by Silveston and Hudgins (Silveston and Hudgins, 2012). 

While numerous theoretical and experimental investigations have been carried out to 

demonstrate the ability of performance improvements via forced periodical operations, 

practical industrial applications of periodic operation were rarely found in the past. 

Nevertheless, considering serious increasing requirements of resource and energy 

conservation, it is expected that the economic importance of the periodic operation of 

chemical processes will be much increased. It is therefore highly desirable to investigate 

the dynamic behaviour and the performance of the periodic operation of chemical 

processes (Petkovska and Seidel-Morgenstern, 2012). 

1.1.2. Methods for evaluation of periodic operations – Short literature review 

Evaluating the effects of the forced periodic operation of chemical processes on the 

process performance can be carried out by experimental studies. However, the 

experimental approach is rather time consuming and costly considering that forcing 

parameters and forcing strategy which should be used are completely unknown. It is 

therefore of economic importance to carry out theoretical studies alternatively for 

assessing the effects of periodic operations of chemical processes and then selecting the 

optimal forcing inputs before any experimental study (Chen et al., 1994).  

Previously, three major approaches for theoretical analysis of forced periodic operations 

were suggested. First, it was the Hamilton-Jacobi approach based on the maximum 
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principle or relaxed steady state analysis (Bailey and Horn, 1971; Bailey, 1973), the 

application which is limited on high forcing frequencies. The second approach, the 

frequency-domain approach using the second-variation methods (Watanabe et al., 1981) 

which was suitable for low and intermediate forcing frequencies. The third approach, 

the π-criterion, provided the sufficient condition for performance improvement around 

the optimal steady-state for a broad forcing frequency range (Sterman and Ydstie, 

1990a, 1990b, 1991). 

Nevertheless, the previously suggested theoretical methods for evaluation of possible 

performance enhancement through periodic operations have not been widely applied, 

owing to the complexity of their application and some uncertainty about their reliability. 

Therefore, there is still a need for developing a simple and reliable general method 

which would enable to evaluate quantitatively the possibility of process improvements 

through periodic operations, quickly and in early development stages (Petkovska and 

Morgenstern, 2012). 

A general theoretical method for analysis of forced periodically operated chemical 

reactor, which will give the answers on the following questions: 

 whether the reactor performance can be improved by periodic input modulation 

or not; 

 which conditions needs to be satisfied in order to achieve the improvement, 

(determining the forcing strategy i.e. defining the forcing input(s), forcing 

amplitude(s), forcing frequency and phase difference for two-input modulation 

which should be used in order to achieve satisfactory improvement),  

 what would be the magnitude of the possible enhancements 

will be presented in this work. This method is based on the analysis of the frequency 

response of nonlinear systems and it is named the Nonlinear Frequency Response 

(NFR) method.  

1.2. Frequency response of weakly nonlinear systems and the concept of 

higher order frequency response functions 

Frequency response (FR) is a quasi-stationary response of a stable system to a periodic 

(sinusoidal or co-sinusoidal) input modulation around the steady-state, which is 

achieved when the transient response becomes negligible (theoretically for infinite time) 

(Douglas, 1972). 
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FR of a linear system is a periodic function of the same shape and frequency as the 

input modulation but with different amplitude and a phase shift. The mean value of this 

periodic function is equal to its steady-state value. Frequency response function (FRF) 

of a linear system is defined by the amplitude ratio and the phase difference of the 

output and input in the quasi-stationary state (Douglas, 1972). 

1.2.1. Single input modulation 

For a stable linear system with a single input x(t) and a single output y(t), the dynamic 

response to an arbitrary input x(t) can be defined using a convolution integral: 

𝑦 𝑡 =  𝑔 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏
∞

−∞

 

           (1.1) 

where g(τ) is the so-called impulse-response function of the system, or its kernel 

(Douglas, 1972). 

By applying Fourier transform to the function g(τ), where τ represents time, the 

frequency response function of a linear system is obtained 

𝐺 𝜔 =  𝑔 𝜏 𝑒−𝑗𝜔𝜏 𝑑𝜏
∞

−∞

 

           (1.2) 

The FRF of a linear system is directly related to the amplitude and phase of the quasi-

stationary response to a single harmonic input (Douglas, 1972): 

𝑥(𝑡) = 𝐴𝑐𝑜𝑠 𝜔𝑡 ⇒ 𝑡 → ∞: 𝑦 𝑡 = 𝐴 𝐺(𝜔) cos 𝜔𝑡 + arg 𝐺 𝜔    

           (1.3) 

The quasi-stationary response of a nonlinear system to a periodic (sinusoidal or co-

sinusoidal) input around a steady-state represents the nonlinear frequency response 

(NFR). Frequency response of the nonlinear system is a complex periodic function and 

it cannot be represented by a single frequency response function as it was the case for 

the linear systems (Weiner and Spina, 1980). For weakly nonlinear systems, the 

nonlinear frequency response, in addition to the basic harmonic, which has the same 

frequency as the input modulation, also contains a non-periodic (DC) component and an 

infinite number of higher harmonics (Douglas, 1972; Weiner and Spina, 1980; 

Petkovska and Seidel-Morgenstern 2012). 
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One of the most convenient tools for mathematical analysis of the NFR is the concept of 

higher order frequency response functions (FRFs) (Weiner and Spina, 1980) which is 

based on Volterra series and the generalized Fourier transform (Petkovska and Seidel-

Morgenstern, 2012). We refer to the method based on this concept “the Nonlinear 

Frequency Response (NFR) method.” 

The response of a weakly nonlinear system, for which the system nonlinearity has a 

polynomial form or can be expanded into a Taylor series, can be represented in the form 

of a Volterra series (Volterra, 1959): 

𝑦(𝑡) = 𝑦𝑠 +  𝑦𝑛(𝑡)

∞

𝑛=1

 

           (1.4) 

The subscript s will be used to denote the steady-state values. 

The nth element of the Volterra series is defined as: 

𝑦𝑛 𝑡 =  …
∞

−∞

 𝑔𝑛 𝜏1,… , 𝜏𝑛 𝑥 𝑡 − 𝜏1 … 𝑥 𝑡 − 𝜏𝑛 𝑑𝜏1 …𝑑𝜏𝑛

∞

−∞

 

           (1.5) 

where gn(τ1,…τn) is the nth order Volterra kernel or generalized impulse response 

function of order n (Volterra, 1959). 

The first element of the Volterra series, y1(t) corresponds to the linearized model, while 

y2(t), y3(t),… are the correction functions of the first, second, third…order. The Volterra 

series of infinite length is necessary to represent exactly a weakly nonlinear system, 

nevertheless, for practical applications series of finite lengths can be used (Volterra, 

1959; Petkovska and Seidel-Morgenstern, 2012). 

By applying multidimensional Fourier transform on the function gn(τ1,…,τn), the nth 

order generalized FRF is obtained (Weiner and Spina, 1980): 

𝐺𝑛 𝜔1,… ,𝜔𝑛 =  … 𝑔𝑛 𝜏1,… , 𝜏𝑛 𝑒
𝑗  𝜔1𝜏1+⋯+𝜔𝑛 𝜏𝑛  𝑑𝜏1 …𝑑𝜏𝑛

∞

−∞

∞

−∞

 

           (1.6) 

which is directly related to the nth element of the output in its quasi-steady periodic 

state, presented in the Volterra series form (Eq. 1.5) (Petkovska and Marković, 2006). 
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In this way, the nonlinear model G of a weakly nonlinear system with polynomial 

nonlinearities can be replaced by an infinite sequence of frequency response functions 

(FRFs) of different orders which are directly related to the DC component and different 

harmonics of the response (Weiner and Spina, 1980), as it is presented in Figure 1.1. 

 

 

Figure 1.1 Block diagram of a weakly nonlinear system 

If the input of the nonlinear system is defined as a periodic function of the general form: 

𝑥 𝑡 =  𝐴𝑘𝑒
𝑗𝜔𝑘𝑡

𝑁

𝑘=1

 

           (1.7) 

the nth element of the Volterra series (Eq. 1.5) is (Volterra, 1959) 

𝑦𝑛 𝑡 =   …  𝐴𝑘1
𝐴𝑘2

…𝐴𝑘𝑛𝐺𝑛(𝜔𝑘1
,𝜔𝑘2

,…𝜔𝑘𝑛 )𝑒𝑗  𝜔𝑘1 +𝜔𝑘2 +⋯+𝜔𝑘𝑛  𝑡

𝑁

𝑘𝑛=1

𝑁

𝑘2=1

𝑁

𝑘1=1

 

           (1.8) 

For an input which is defined as a single harmonic periodic function with forcing 

amplitude A and forcing frequency ω: 

𝑥 𝑡 = 𝑥𝑠 + 𝐴𝑐𝑜𝑠 𝜔𝑡 = 𝑥𝑠 +
𝐴

2
𝑒𝑗𝜔𝑡 +

𝐴

2
𝑒−𝑗𝜔𝑡  

           (1.9) 

the first, second and third elements of the Volterra series are: 

𝑦1 𝑡 =
𝐴

2
𝑒𝑗𝜔𝑡 𝐺1 𝜔 +

𝐴

2
𝑒−𝑗𝜔𝑡 𝐺1 −𝜔  

           (1.10) 

𝑦2 𝑡 =  
𝐴

2
 

2

𝑒2𝑗𝜔𝑡 𝐺2 𝜔,𝜔 + 2  
𝐴

2
 

2

𝑒0𝐺2 𝜔,−𝜔 +  
𝐴

2
 

2

𝑒−2𝑗𝜔𝑡 𝐺2 −𝜔,−𝜔  

           (1.11) 

𝐺 ≡ 𝐺1 𝜔 ,𝐺2 𝜔1,𝜔2 ,𝐺3 𝜔1,𝜔2 ,𝜔3 ,… 

x(t) y(t) 
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𝑦3 𝑡 =  
𝐴

2
 

3

𝑒3𝑗𝜔𝑡 𝐺3 𝜔,𝜔,𝜔 + 3  
𝐴

2
 

3

𝑒𝑗𝜔𝑡 𝐺3 𝜔,𝜔,−𝜔 

+ 3  
𝐴

2
 

3

𝑒−𝑗𝜔𝑡 𝐺3 𝜔,−𝜔,−𝜔 +  
𝐴

2
 

3

𝑒−3𝑗𝜔𝑡 𝐺3 −𝜔,−𝜔,−𝜔  

           (1.12) 

Then, the response of the weakly nonlinear system is: 

𝑦 𝑡 = 𝑦𝑠 +
𝐴

2
𝑒𝑗𝜔𝑡 𝐺1 𝜔 +

𝐴

2
𝑒−𝑗𝜔𝑡 𝐺1 −𝜔 +  

𝐴

2
 

2

𝑒2𝑗𝜔𝑡 𝐺2 𝜔,𝜔 

+ 2  
𝐴

2
 

2

𝑒0𝐺2 𝜔,−𝜔 +  
𝐴

2
 

2

𝑒−2𝑗𝜔𝑡 𝐺2 −𝜔,−𝜔 

+  
𝐴

2
 

3

𝑒3𝑗𝜔𝑡 𝐺3 𝜔,𝜔,𝜔 + 3  
𝐴

2
 

3

𝑒𝑗𝜔𝑡 𝐺3 𝜔,𝜔,−𝜔 

+ 3  
𝐴

2
 

3

𝑒−𝑗𝜔𝑡 𝐺3 𝜔,−𝜔,−𝜔 +  
𝐴

2
 

3

𝑒−3𝑗𝜔𝑡 𝐺3 −𝜔,−𝜔,−𝜔 +⋯ 

           (1.13) 

By collecting the terms of the same frequency, it can be easily shown that the response 

of a weakly nonlinear system to a single harmonics input is obtained as a sum of the 

basic harmonic, which has the same frequency as the input, a DC (non-periodic) term 

and an infinite number of higher harmonics (Petkovska and Seidel-Morgenstern, 2012), 

as follows 

𝑦 𝑡 = 𝑦𝑠 + 𝑦𝐷𝐶 + 𝑦𝐼 + 𝑦𝐼𝐼 + 𝑦𝐼𝐼𝐼 +⋯ 

      = 𝑦𝑠 + 𝑦𝐷𝐶 + 𝐵𝐼 cos 𝜔𝑡 + 𝜑𝐼 + 𝐵𝐼𝐼 cos 2𝜔𝑡 + 𝜑𝐼𝐼 + 𝐵𝐼𝐼𝐼 cos 3𝜔𝑡 + 𝜑𝐼𝐼𝐼 +⋯ 

           (1.14) 

where subscript DC denotes the DC component, and I, II, III the first, second and third 

harmonics. BI, BII, BIII are the amplitudes of the corresponding output harmonics and φI, 

φII, φIII are the phase shifts of the corresponding output harmonic in relation to the input 

function.  

The DC component of the output is obtained by collecting the non-periodic terms (the 

terms with e
0
) from the Volterra series and can be expressed as the following infinite 

series (Weiner and Spina, 1980): 

𝑦𝐷𝐶 = 2  
𝐴

2
 

2

𝐺2 𝜔,−𝜔 + 6  
𝐴

2
 

4

𝐺4 𝜔,𝜔,−𝜔,−𝜔 +⋯ 

           (1.15) 
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where G2(ω,-ω) represents the asymmetrical second order frequency response function 

(ASO FRF) and G4(ω,ω,-ω,-ω) the asymmetrical fourth order FRF. 

After collecting the terms of frequency ω (the terms with e
jωt

 and e
-jωt

), the first 

harmonic of output is obtained 

𝑦𝐼 = 𝐵𝐼 cos 𝜔𝑡 + 𝜑𝐼 

=   
𝐴

2
 𝐺1 𝜔 + 3  

𝐴

2
 

3

𝐺3 𝜔,𝜔,−𝜔 +⋯ 𝑒𝑗𝜔𝑡

+   
𝐴

2
 𝐺1 −𝜔 + 3  

𝐴

2
 

3

𝐺3 𝜔,−𝜔,−𝜔 +⋯ 𝑒−𝑗𝜔𝑡  

           (1.16) 

The second harmonic of the output can be obtained by collecting the terms of frequency 

2ω (the terms with e
2jωt

 and e
-2jωt

) 

𝑦𝐼𝐼 = 𝐵𝐼𝐼 cos 2𝜔𝑡 + 𝜑𝐼𝐼 

=   
𝐴

2
 

2

𝐺2 𝜔,𝜔 + 4  
𝐴

2
 

4

𝐺4 𝜔,𝜔,𝜔,−𝜔 +⋯ 𝑒2𝑗𝜔𝑡

+   
𝐴

2
 

2

𝐺2 −𝜔,−𝜔 + 4  
𝐴

2
 

4

𝐺4 𝜔,−𝜔,−𝜔,−𝜔 +⋯ 𝑒−2𝑗𝜔𝑡  

          (1.17) 

After collecting the terms with frequency 3ω (the terms with e
3jωt

 and e
-3jωt

), the third 

harmonic of output is: 

𝑦𝐼𝐼𝐼 = 𝐵𝐼𝐼𝐼 cos 3𝜔𝑡 + 𝜑𝐼𝐼𝐼  

=   
𝐴

2
 

3

𝐺3 𝜔,𝜔,𝜔 + 5  
𝐴

2
 

5

𝐺5 𝜔,𝜔,𝜔,𝜔,−𝜔 +⋯ 𝑒3𝑗𝜔𝑡

+   
𝐴

2
 

3

𝐺3 −𝜔,−𝜔,−𝜔 + 5  
𝐴

2
 

5

𝐺5 𝜔,𝜔,−𝜔,−𝜔,−𝜔 

+⋯ 𝑒−3𝑗𝜔𝑡  

           (1.18) 

etc. 

For weakly nonlinear systems, the contributions of the higher harmonics of the output 

decrease with increasing their order, as well as the contributions of the frequency 
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response functions of higher order. Thus, the dominant term of the DC component is 

defined by the asymmetrical second order FRF G2(ω,-ω), the dominant term of the first 

harmonics by the first order FRF G1(ω), the dominant term of the second harmonics by 

the symmetrical second order FRF G2(ω,ω), the dominant term of the third harmonics 

by the third order FRF G3(ω,ω,ω), and so on, (Petkovska and Seidel-Morgenstern, 

2012). 

The DC component of the output is responsible for the time-average performance of 

periodic process (Marković et al. 2008). As in this work the NFR method is used for 

investigation of the average performance of periodically operated chemical reactors, 

only the DC component and the asymmetrical second order FRF G2(ω,-ω), which 

corresponds to its dominant term, are of interest. 

The DC component of the output, for a weakly nonlinear system, can be approximately 

calculated just from the asymmetrical second order FRF G2(ω,-ω) 

𝑦𝐷𝐶 ≈ 2  
𝐴

2
 

2

𝐺2 𝜔,−𝜔  

           (1.19) 

Therefore, in order to evaluate the performance of periodically operated chemical 

reactors for single input modulation, it would be enough to derive and analyze only the 

ASO FRF G2(ω,-ω). 

1.2.2. Multi-input modulation 

A dynamic model of a weakly nonlinear system with multiple modulated inputs needs 

to be represented by several sets of FRFs. How many series of FRFs is needed for 

describing the system depends on the number of modulated inputs and outputs which 

are of interest. 

For example, a block diagram representing a nonlinear system with two modulated 

inputs (x(t), z(t)) and one output (y(t)) is presented in Figure 1.2. For this case, in order 

to define the complete model, it is necessary to define three sets of FRFs: two of them 

relating the output to each of the inputs and one set of cross-functions relating the 

output to both inputs. This third set contains only functions of the second and higher 

orders (Petkovska and Seidel-Morgenstern, 2012). 
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Figure 1.2 Block diagram of a weakly nonlinear system with two inputs and one output 

The following notations are used in Figure 1.2: 𝐺𝑛 ,𝑥𝑛  and 𝐺𝑛 ,𝑧𝑛  are the nth order FRFs 

corresponding to the individual inputs x(t) and z(t), respectively, while 𝐺𝑛 ,𝑥𝑚 𝑧𝑛−𝑚  is the 

nth order cross-function, with order m regarding input x(t) and n-m, regarding input z(t). 

For a system which is represented in Figure 1.2, the output is a sum of the contributions 

of the inputs x(t) and z(t) separately (via the Gx and Gz functions), and the contribution 

corresponding to the cross-effect of both inputs (via the Gxz functions). Each of these 

contributions can be presented as Volterra series (Petkovska and Marković, 2006): 

𝑦 𝑡 = 𝑦𝑥 𝑡 + 𝑦𝑧 𝑡 + 𝑦𝑥𝑧  𝑡 =  𝑦𝑥 ,𝑛 𝑡 +  𝑦𝑧 ,𝑛 𝑡 +  𝑦𝑥𝑧 ,𝑛(𝑡)

∞

𝑛=1

∞

𝑛=1

∞

𝑛=1

 

           (1.20) 

If the inputs x(t) and z(t) are defined as general periodic functions in the following way: 

𝑥 𝑡 =  𝐴𝑘𝑒
𝑗𝜔𝑘𝑡

𝑁

𝑘=1

 

           (1.21) 

𝑧 𝑡 =  𝐵𝑘𝑒
𝑗𝑢𝑘 𝑡

𝑁

𝑘=1

 

           (1.22) 

The nth elements of the Volterra series corresponding to the single inputs yx,n and yz,n 

can be presented in an analogous way as in Eq. (1.8) and the nth element corresponding 

to the cross effect of both inputs is (Petkovska and Marković, 2006; Petkovska and 

Seidel-Morgenstern, 2013): 
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𝑦𝑥𝑧 ,𝑛 𝑡 =   …  𝐴𝑘1
…

𝑀

𝑘𝑛=1

𝑁

𝑘1=1

𝑛

𝑚=1

𝐴𝑘𝑚𝐵𝑘𝑚+1
…𝐵𝑘𝑛

× 𝐺𝑛 ,𝑥𝑚 𝑧𝑛−𝑚 (𝜔𝑘1
,… ,𝜔𝑘𝑚 ,𝑢𝑘𝑚+1

,… ,𝑢𝑘𝑛 )

× 𝑒𝑗  𝜔𝑘1 +⋯+𝜔𝑘𝑚 +𝑢𝑘𝑚+1 +⋯+𝑢𝑘𝑛  𝑡  

           (1.23) 

If the two inputs, x(t) and z(t), are periodically modulated co-sinusoidally, with different 

frequencies (ω and u), forcing amplitudes AX and AZ, respectively, and with a phase 

difference (φ) between them: 

𝑥 𝑡 = 𝑥𝑠 + 𝐴𝑋cos 𝜔𝑡         (1.24) 

𝑧 𝑡 = 𝑧𝑠 + 𝐴𝑍cos 𝑢𝑡 + 𝜑         (1.25) 

the cross-term of the output is obtained in the following form (Nikolić Paunić and 

Petkovska, 2013): 

𝑦𝑥𝑧  𝑡 =  
𝐴𝑥
2
  
𝐴𝑧
2
  𝑒𝑗𝜑 𝑒𝑗  𝜔+𝑢 𝑡𝐺2,𝑥𝑧  𝜔,𝑢 + 𝑒−𝑗𝜑 𝑒−𝑗 𝜔+𝑢 𝑡𝐺2,𝑥𝑧 −𝜔,−𝑢 

+ 𝑒−𝑗𝜑 𝑒𝑗  𝜔−𝑢 𝑡𝐺2,𝑥𝑧 𝜔,−𝑢 + 𝑒𝑗𝜑 𝑒−𝑗 𝜔−𝑢 𝑡𝐺2,𝑥𝑧 −𝜔,𝑢  

+  
𝐴𝑥
2
 

2

 
𝐴𝑧
2
  𝑒𝑗𝜑 𝑒𝑗  2𝜔+𝑢 𝑡𝐺3,𝑥𝑥𝑧  𝜔,𝜔,𝑢 

+ 𝑒−𝑗𝜑 𝑒−𝑗 2𝜔+𝑢 𝑡𝐺3,𝑥𝑥𝑧  −𝜔,−𝜔,−𝑢 

+ 𝑒−𝑗𝜑 𝑒𝑗  2𝜔−𝑢 𝑡𝐺3,𝑥𝑥𝑧  𝜔,𝜔,−𝑢 + 𝑒𝑗𝜑 𝑒−𝑗 2𝜔−𝑢 𝑡𝐺3,𝑥𝑥𝑧  −𝜔,𝜔,𝑢  

+  
𝐴𝑥
2
  
𝐴𝑧
2
 

2

 𝑒2𝑗𝜑 𝑒𝑗  𝜔+2𝑢 𝑡𝐺2,𝑥𝑧𝑧  𝜔,𝑢,𝑢 

+ 𝑒−2𝑗𝜑 𝑒−𝑗 𝜔+2𝑢 𝑡𝐺3,𝑥𝑧𝑧  −𝜔,−𝑢,−𝑢 

+ 𝑒−2𝑗𝜑 𝑒𝑗  𝜔−2𝑢 𝑡𝐺3,𝑥𝑧𝑧  𝜔,−𝑢,−𝑢 + 𝑒2𝑗𝜑 𝑒−𝑗 𝜔−2𝑢 𝑡𝐺3,𝑥𝑧  −𝜔,𝑢,𝑢  

+⋯ 

           (1.26) 

The DC component of the output, which is responsible for the time-average behaviour is 

also given as a sum of contributions of the modulations of inputs x(t) and z(t) separately 

and the cross-effect of both inputs: 

𝑦𝐷𝐶 = 𝑦𝐷𝐶 ,𝑥 + 𝑦𝐷𝐶 ,𝑧 + 𝑦𝐷𝐶 ,𝑥𝑧         (1.27) 
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The second order approximations of the DC components corresponding to the 

individual inputs x(t) and z(t), are defined in the analogous way as in Eq. (1.19) 

𝑦𝐷𝐶 ,𝑥 ≈ 2  
𝐴𝑥
2
 

2

𝐺2,𝑥𝑥  𝜔,−𝜔  

           (1.28) 

𝑦𝐷𝐶 ,𝑧 ≈ 2  
𝐴𝑧
2
 

2

𝐺2,𝑧𝑧  𝑢,−𝑢  

           (1.29) 

On the other hand, it is obvious from equation (1.26) that the cross-term will contribute 

to the DC component only if one frequency is an integer multiple of the other, because 

only in that case some of the terms in equation (1.26) become time invariant. However, 

the largest contribution of the cross-effect is defined by the second order terms, which 

contribute to the DC component only if the input frequencies are equal (u=). From that 

we can conclude that the interaction of the two modulated inputs gives highest 

contribution to the DC component, and consequently best results regarding process 

improvement, when the two inputs are modulated with equal frequencies. This 

conclusion is in accordance with the results of Parulekar, who systematically analyzed 

the potential improvement of periodic operated systems with multiple input 

modulations, using the generalized π-criterion (Parulekar, 2003). 

For the case of equal input frequencies, the DC component which corresponds to cross-

effect of both inputs is: 

𝑦𝐷𝐶 ,𝑥𝑧 =  
𝐴𝑥
2
  
𝐴𝑧
2
  𝑒−𝑗𝜑 𝐺2,𝑥𝑧 𝜔,−𝜔 + 𝑒𝑗𝜑 𝐺2,𝑥𝑧 −𝜔,𝜔  +⋯ 

           (1.30) 

Taking into account only the second order terms and using the fact that  

𝐺2,𝑥𝑧 −𝜔,𝜔 = 𝑐𝑜𝑛𝑗  𝐺2,𝑥𝑧  𝜔,−𝜔  , equation (1.30) can be rewritten in the following 

way: 

𝑦𝐷𝐶 ,𝑥𝑧 ≈  2  
𝐴𝑥
2
  
𝐴𝑧
2
  cos 𝜑 𝑅𝑒  𝐺2,𝑥𝑧 𝜔,−𝜔  + sin 𝜑 𝐼𝑚 𝐺2,𝑥𝑧(𝜔,−𝜔)   

           (1.31) 

If we introduce the cross ASO term, which is a function of both frequency and phase 

difference between the two inputs:  
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𝐺2,𝑥𝑧
∗ (𝜔,𝜑) =  cos 𝜑 𝑅𝑒  𝐺2,𝑥𝑧 𝜔,−𝜔  + sin(𝜑)𝐼𝑚 𝐺2,𝑥𝑧(𝜔,−𝜔)   

           (1.32) 

the second order approximation of the DC component of the cross-effect can be written 

in the following way: 

𝑦𝐷𝐶 ,𝑥𝑧 ≈ 2  
𝐴𝑥
2
  
𝐴𝑧
2
 𝐺2,𝑥𝑧

∗ (𝜔,𝜑) 

           (1.33) 

It is important to notice that the cross-effect of the modulation of two synchronized 

inputs strongly depends on the phase difference between them. As the matter of fact, the 

cross term can always be made negative, or positive, whatever is desirable, by a proper 

choice of the phase difference φ. Furthermore, it is possible to determine the optimal 

phase difference, for which the first derivative of the cross second order term 𝜕𝐺2,𝑥𝑧
∗ /

𝜕𝜑  is equal to zero, and consequently, the DC cross-term has a minimum:  

𝜑𝑜𝑝𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑔  
𝐼𝑚(𝐺2,𝑥𝑧(𝜔,−𝜔)

𝑅𝑒(𝐺2,𝑥𝑧(𝜔,−𝜔)
 − 𝜋 

           (1.34) 

or a maximum: 

𝜑𝑜𝑝𝑡 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑔  
𝐼𝑚(𝐺2,𝑥𝑧(𝜔,−𝜔)

𝑅𝑒(𝐺2,𝑥𝑧(𝜔,−𝜔)
  

           (1.35) 

This optimal phase difference is in principle a function of the forcing frequency ω. 

Nevertheless, by finding the partial first derivative 𝜕𝐺2,𝑥𝑧
∗ /𝜕𝜔 and equating it to zero, it 

is also possible to find a condition from which the optimal frequency for which 𝐺2,𝑥𝑧
∗  

has a minimum or a maximum, can be calculated: 

𝑅𝑒  𝐺2,𝑥𝑧  𝜔,−𝜔  
𝜕𝑅𝑒  𝐺2,𝑥𝑧  𝜔,−𝜔  

𝜕𝜔
+ 𝐼𝑚 𝐺2,𝑥𝑧(𝜔,−𝜔) 

𝜕𝐼𝑚  𝐺2,𝑥𝑧 𝜔,−𝜔  

𝜕𝜔
= 0 

(1.36) 

Finally, when two inputs are modulated with equal frequencies, the DC component can 

be approximately calculated using the single input and cross ASO FRFs, the forcing 

amplitudes of the input modulations Ax and Az and the phase difference φ, using the 

following expression: 
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𝑦𝐷𝐶 ≈ 2  
𝐴𝑥
2
 

2

𝐺2,𝑥𝑥  𝜔,−𝜔 + 2  
𝐴𝑧
2
 

2

𝐺2,𝑧𝑧  𝜔,−𝜔 + 2  
𝐴𝑥
2
  
𝐴𝑧
2
 𝐺2,𝑥𝑧

∗ (𝜔,𝜑) 

           (1.37) 

In order to determine whether the periodic operation of a system with two modulated 

inputs is superior to the optimal steady-state operation, it is necessary to derive all three 

asymmetrical second order FRFs (G2,xx(ω,-ω), G2,zz(ω,-ω) and G2,xz(ω,-ω)) and to 

calculate the DC component for chosen forcing parameters (frequency, amplitudes and 

phase difference). It is important to notice that the optimal frequency for which 𝐺2,𝑥𝑧
∗  

has a minimum or a maximum (defined by equations (1.34) and (1.35)) can, in 

principle, be different from the optimal frequency which would minimize the total yDC, 

because equations (1.34) and (1.35) correspond only to the contribution of the cross-

effect. 

The procedure for derivation of higher order FRFs is standard and can be found in 

(Petkovska, 2001; Petkovska, 2006; Petkovska and Do, 1998; Petkovska and Marković, 

2006). The derivation process is recurrent, meaning that the first order FRFs have to be 

derived first, than the second order FRFs, etc. For our current application, we limit our 

derivations and analysis to the first order and the asymmetrical second order FRFs.  
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II Nonlinear frequency response for fast estimation of the 

time-average performance of periodically operated chemical 

reactors 

In this Chapter, it will be explained how the NFR method can be used in order to 

estimate the time-average performance of periodically operated chemical reactors, when 

one or more inputs are modulated.  

As illustration, in Figure 2.1, a reactor subjected to a periodical modulation of one or 

more inputs is schematically presented. The difference between steady-state and 

periodic operation of a chemical reactor for a simple reaction mechanism A→νPP is 

presented in this figure, for a case when the mean outlet concentration of the reactant is 

lower than its steady-state value, which, on the other hand, corresponds to the higher 

mean outlet concentration of the product. 

Figure 2.1 Illustration of periodic reactor operation 

cA,s is the outlet concentration of the reactant when the process is performed in a steady-

state operation. If one or more inputs of the nonlinear reactor is modulated periodically 
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around its steady-state value, the mean value of the outlet concentration cA
m
 during 

periodic operation can be different from the steady-state outlet concentration of the 

reactant cA,s, i.e. the difference, Δ𝑐𝐴 = 𝑐𝐴
𝑚 − 𝑐𝐴,𝑠  can be negative, zero, or positive 

depending on the type of nonlinearity. 

The mean outlet concentration of the product (cP
m
), can also be different from its 

steady-state value (cP,s) and the difference of the outlet product concentration subjected 

to the periodic modulation of one or more inputs, is defined in an analogous way 

Δ𝑐𝑃 = 𝑐𝑃
𝑚 − 𝑐𝑃,𝑠. 

The change of the reactor performance subjected to periodic modulation can be 

followed throughout the outlet concentration of the reactant or outlet concentration of 

the product and in this Chapter both approaches will be explained.  

Evaluation of the time-average behavior for cases when the flow-rate is modulated and 

the case when inlet concentration and flow-rate are simultaneously modulated will be 

analyzed separately. We are analyzing forced periodically operated CSTRs with 

constant volume, meaning that, if one of the modulated inputs is flow-rate, the outlet 

flow-rate will also periodically change in the same way as the inlet. Thus, in these cases 

the improvement can’t be measured only by the outlet concentrations of the reactant and 

product and the molar flow-rates of the reactant or product should be considered. The 

method for evaluation of possible improvement when flow-rate is modulated will be 

also given in this Chapter. 

For application of the NFR method, it is convenient to use dimensionless inputs and 

outputs, so further on we will mainly operate with the dimensionless variables which are 

defined as relative deviation from the steady-state values. 

The dimensionless inputs X and Z are defined as the relative deviations from the 

previously established steady-state  

𝑋 =
𝑥 𝑡 − 𝑥𝑠

𝑥𝑠
 

           (2.1) 

𝑍 =
𝑧 𝑡 − 𝑧𝑠

𝑧𝑠
 

           (2.2) 
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The dimensionless time (τ) and dimensionless forcing frequency (ω) are defined as 

follows 

𝜏 =
𝑡

𝜏𝑟𝑒𝑠 ,𝑠
=

𝑡

𝑉/𝐹𝑠
 

           (2.3) 

𝜔 = 𝜔𝑑𝜏𝑟𝑒𝑠 ,𝑠 = 𝜔𝑑
𝑉

𝐹𝑠
 

           (2.4) 

where τres,s=V/Fs is a residence time in the steady-state (t denotes time, V volume of the 

reactor, F flow-rate, ωd dimensional frequency and the subscript s steady-state value). 

The dimensionless outlet concentrations of the reactant and product, as well as the 

dimensionless flow-rate are defined as 

𝐶𝐴 =
𝑐𝐴 𝑡 − 𝑐𝐴,𝑠

𝑐𝐴,𝑠
 

           (2.5) 

𝐶𝑃 =
𝑐𝑃 𝑡 − 𝑐𝑃,𝑠

𝑐𝑃,𝑠
 

           (2.6) 

Φ =
𝐹 𝑡 − 𝐹𝑠

𝐹𝑠
 

           (2.7) 

respectively. 

2.1. Forced periodically operated reactor without flow-rate modulation 

For the case when flow-rate is not one of the modulated inputs, and it is constant, for 

Δ𝑐𝐴 < 0, the periodic operation can be considered as favorable, as it corresponds to 

lower outlet concentration of the reactant and therefore to higher conversion, in 

comparison to the steady-state operation (Marković and al. 2008). 

On the other hand, if Δ𝑐𝑃>0 the periodic operation is considered to be favorable since it 

means that the mean outlet concentration of product (cP
m
) which corresponds to periodic 

operation is higher than it is for the steady-state operation, i.e. the product yield 

increased. 

The decrease or increase of the outlet reactant and product concentrations as a 

consequence of periodic operation, in comparison to the steady-state operation, which 



21 

 

indicates the influence of periodic modulation of one or more inputs on the reactor 

performance, can be easily estimated by the NFR method. The difference Δ𝑐𝐴 is equal to 

the DC component of the outlet concentration of the reactant A (cA,DC) and the 

difference Δ𝑐𝑃 is equal to the DC component of the outlet concentration of the product 

P (cP,DC). Thus, just by estimating the DC components of the outlet concentrations the 

performance of the periodically operated chemical reactor can be estimated. 

2.1.1. DC components of the outlet concentrations 

Single input modulation 

As stated previously, the difference between the time-average response of outlet 

concentration of the reactant for a periodically operated reactor and its steady-state 

value (Δ𝑐𝐴) is equal to the DC component of the outlet concentration of the reactant 

(Petkovska et al., 2010). 

Δ𝑐𝐴 = 𝑐𝐴
𝑚 − 𝑐𝐴,𝑠 ≡ 𝑐𝐴,𝐷𝐶         (2.8) 

On the other hand, if one input, e.g. x, is periodically modulated in a cosine way around 

its steady-state value (xs), with forcing amplitude AX, and forcing frequency ωd 

𝑥 𝑡 = 𝑥𝑠 1 + 𝐴𝑋cos 𝜔𝑑𝑡          (2.9) 

the DC component of the outlet concentration of the reactant (cA,DC) is approximately 

proportional to the asymmetrical second order FRF GA2,XX(ω,-ω) which correlates the 

outlet concentration of the reactant with the modulated input, and has been defined in 

(Eq. (1.19)) (Petkovska et al, 2010) 

𝑐𝐴,𝐷𝐶 ≈ 2  
𝐴𝑋
2
 

2

𝐺𝐴2,𝑋𝑋𝑐𝐴,𝑠 

           (2.10) 

The periodic modulation of input x can be written in dimensionless form, as follows  

𝑋 𝜏 = 𝐴𝑋cos 𝜔𝜏          (2.11) 

Accordingly, the dimensionless DC component of the outlet concentration of the 

reactant (CA,DC) is defined as the relative deviation of the outlet concentration of the 

reactant owning to periodic modulation of the chosen input: 
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𝐶𝐴,𝐷𝐶 =
𝑐𝐴
𝑚 − 𝑐𝐴,𝑠

𝑐𝐴,𝑠
 

           (2.12) 

which on the other hand, according to the NFR method can be approximately calculated 

as 

𝐶𝐴,𝐷𝐶 ≈ 2  
𝐴𝑋
2
 

2

𝐺𝐴2,𝑋𝑋  𝜔,−𝜔  

           (2.13) 

In an analogous way, the dimensionless DC component of the outlet concentration of 

the product (CP,DC) is proportional to the asymmetrical second order FRF GP2,XX(ω,-ω) 

which correlates the dimensionless outlet concentration of product with modulated input 

X(τ). 

𝐶𝑃,𝐷𝐶 ≈ 2  
𝐴𝑋
2
 

2

𝐺𝑃2,𝑋𝑋 𝜔,−𝜔  

           (2.14) 

where the dimensionless DC component CP,DC is defined as: 

𝐶𝑃,𝐷𝐶 =
𝑐𝑃
𝑚 − 𝑐𝑃,𝑠

𝑐𝑃,𝑠
 

           (2.15) 

Therefore, in order to evaluate the possible improvement of the reactor when only one 

input (X(τ)) is periodically modulated, two sets of FRFs can be defined: 

 Set of FRFs which correlate the outlet concentration of the reactant with the 

modulated input X(τ) (GA1,X(ω), GA2,XX(ω,-ω),…); 

 Set of FRFs which correlate the outlet concentration of the product with the 

modulated input X(τ) (GP1,X(ω), GP2,XX(ω,-ω),…). 

Simultaneous modulation of two inputs 

Simultaneous modulation of two inputs, X(τ) and Z(τ), with same forcing frequency ω, 

forcing amplitudes AX and AZ, respectively and a phase difference φ between the inputs: 

𝑋 𝜏 = 𝐴𝑋cos 𝜔𝜏          (2.16) 

𝑍 𝜏 = 𝐴𝑍cos 𝜔𝜏 + 𝜑         (2.17) 

is analyzed. 
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In order to evaluate the possible improvement of the reactor performance with 

simultaneous modulations of the two inputs X(τ) and Z(τ), in addition to the above 

defined sets of FRF for single input modulation of input X(τ) it is necessary to define 

two sets of FRFs which correspond to the modulated input Z(τ): 

 Set of FRFs which correlate the outlet concentration of the reactant with the 

modulated input Z(τ) (GA1,Z(ω), GA2,ZZ(ω,-ω),…); 

 Set of FRFs which correlate the outlet concentration of the product with the 

modulated input Z(τ) (GP1,Z(ω), GP2,ZZ(ω,-ω),…); 

and two sets of cross-asymmetrical second order FRFs: 

 Set of cross FRFs which correlate the outlet concentration of the reactant with 

both modulated inputs X(τ) and Z(τ), (GA2,XZ(ω,-ω), GA2,XZ(-ω,ω),…); 

 Set of cross FRFs which correlate the outlet concentration of the product with 

both modulated inputs X(τ) and Z(τ), (GP2,XZ(ω,-ω), GP2,XZ(-ω,ω),…). 

If two inputs of the chemical reactor are periodically modulated in a cosine way around 

their steady-state values as defined with (Eqs. (2.16) and (2.17)), the dimensionless DC 

component of the outlet concentration of the reactant (CA,DC), based on equation (1.37), 

will be: 

𝐶𝐴,𝐷𝐶 ≈ 2  
𝐴𝑋
2
 

2

𝐺𝐴2,𝑋𝑋  𝜔,−𝜔 + 2  
𝐴𝑍
2
 

2

𝐺𝐴2,𝑍𝑍 𝜔,−𝜔 + 2  
𝐴𝑋
2
  
𝐴𝑍
2
 𝐺𝐴2,𝑋𝑍

∗  𝜑,𝜔  

           (2.18) 

where the cross ASO term G
*
A2,XZ(φ,ω) is a function of phase difference and the cross 

ASO FRF GA2,XZ(ω,-ω) and defined in the following way 

𝐺𝐴2,𝑋𝑍
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒(𝐺𝐴2,𝑋𝑍(𝜔,−𝜔)) + sin 𝜑 𝐼𝑚(𝐺𝐴2,𝑋𝑍(𝜔,−𝜔)) 

           (2.19) 

GA2,XX(ω,-ω) is the ASO FRF which correlates the outlet dimensionless concentration of 

the reactant to the dimensionless modulated input X(τ), GA2,ZZ(ω,-ω) the ASO FRF 

which correlates the outlet concentration of the reactant to the modulated input Z(τ) and 

GA2,XZ(ω,-ω) the cross ASO FRF which correlates the outlet dimensionless 

concentration of the reactant to both dimensionless modulated inputs X(τ) and Z(τ). 

In an analogous way, the dimensionless DC component of outlet concentration of the 

product (CP,DC) is also given with (Eq. (1.37)) 
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𝐶𝑃,𝐷𝐶 ≈ 2  
𝐴𝑋
2
 

2

𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 + 2  
𝐴𝑍
2
 

2

𝐺𝑃2,𝑍𝑍 𝜔,−𝜔 + 2  
𝐴𝑋
2
  
𝐴𝑍
2
 𝐺𝑃2,𝑋𝑍

∗  𝜑,𝜔  

           (2.20) 

where the cross ASO term G
*
P2,XZ(φ,ω) is a function of phase difference and the cross 

ASO FRF GP2,XZ(ω,-ω), as follows: 

𝐺𝑃2,𝑋𝑍
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒(𝐺𝑃2,𝑋𝑍(𝜔,−𝜔)) + sin 𝜑 𝐼𝑚(𝐺𝑃2,𝑋𝑍(𝜔,−𝜔)) 

           (2.21) 

GP2,XX(ω,-ω) is the ASO FRF which correlates the dimensionless outlet concentration of 

the product to the modulated input X(τ), GP2,ZZ(ω,-ω) the ASO FRF which correlates the 

dimensionless outlet concentration of product to the modulated input Z(τ) and GP2,XZ(ω,-

ω) the cross ASO FRF which correlates the dimensionless outlet concentration of the 

product to both modulated dimensionless inputs X(τ) and Z(τ). 

2.1.2. Conversion of the reactant and yield of the product 

The reactor performance subjected to periodic input modulation can be evaluated by the 

conversion of the reactant or the product yield and from their relative changes in 

comparison to the steady-state values. 

The conversion of the reactant in the steady-state 

𝑥𝐴,𝑠 =
𝑐𝐴𝑖 ,𝑠 − 𝑐𝐴,𝑠

𝑐𝐴𝑖 ,𝑠
 

           (2.22) 

and the yield of the product in the steady-state 

𝑌𝑃,𝑠 =
1

𝜈𝑃

𝑐𝑃,𝑠

𝑐𝐴𝑖 ,𝑠
 

           (2.23) 

are equal (xA,s=YP,s). 

The conversion of the reactant and yield of the product for periodically operated 

chemical reactors, for constant flow-rate, can be defined as follows 

𝑥𝐴,𝑝𝑜 =
 𝑐𝐴𝑖 

𝑚 − 𝑐𝐴
𝑚

 𝑐𝐴𝑖 𝑚
=
𝑐𝐴𝑖 ,𝑠 − 𝑐𝐴

𝑚

𝑐𝐴𝑖 ,𝑠
 

           (2.24) 
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𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

𝑐𝑃
𝑚

 𝑐𝐴𝑖 𝑚
=

1

𝜈𝑃

𝑐𝑃
𝑚

𝑐𝐴𝑖 ,𝑠
 

           (2.25) 

In should be noticed that the mean inlet concentration is equal to steady-state inlet 

concentration, i.e.  𝑐𝐴𝑖 
𝑚 = 𝑐𝐴𝑖 ,𝑠. 

The reactant conversion for a periodically operated chemical reactor can be written as a 

function of the dimensionless DC component of the reactant (CA,DC) and the conversion 

of the reactant in the steady-state  

𝑥𝐴,𝑝𝑜 = 𝑥𝐴,𝑠 − 𝐶𝐴,𝐷𝐶(1− 𝑥𝐴,𝑠)       (2.26) 

while the yield of product can be expressed as a function of dimensionless DC 

component of product (CP,DC) and the yield of the product in the steady-state: 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠(1 + 𝐶𝑃,𝐷𝐶)        (2.27) 

The relative changes of the reactant conversion and product yield can be expressed in 

the following way: 

Δ𝑥𝐴 =
𝑥𝐴,𝑝𝑜 − 𝑥𝐴,𝑠

𝑥𝐴,𝑠
= −

1− 𝑥𝐴,𝑠

𝑥𝐴,𝑠
𝐶𝐴,𝐷𝐶  

           (2.28) 

Δ𝑌𝑃 =
𝑌𝑃,𝑝𝑜 − 𝑌𝑃,𝑠

𝑌𝑃,𝑠
= 𝐶𝑃,𝐷𝐶  

           (2.29) 

From these equations (2.26-2.29), it can be concluded that from the dimensionless DC 

components of the outlet concentrations of the reactant (CA,DC) or product (CP,DC), the 

reactant conversion or product yield for periodic operation and their relative changes 

can be easily evaluated. 

2.1.3. Identifying possible process improvements by sign analysis of the ASO FRFs 

Single input modulation 

The improvement of the reactor performance will be achieved if the DC component of 

outlet reactant concentration is negative (CA,DC<0) or the DC component of the product 

outlet concentration is positive (CP,DC>0). 
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Based on this and equations ((2.13) and (2.14)), it can be concluded that for single input 

modulation, the sign of the corresponding ASO FRF will define the sign of the DC 

component of the outlet concentration which is of interest. Thus, in order to analyze the 

influence of the periodic operation on the performance of the reactor, it is enough to 

derive and evaluate only the corresponding ASO FRF, GA2,XX(ω,-ω) or GP2,XX(ω,-ω) 

(Petkovska and Seidel-Morgenstern, 2012). 

It can been concluded, that for GA2,XX(ω,-ω)<0 or GP2,XX(ω,-ω)>0, the periodic operation 

is superior to the steady-state operation for GA2,XX(ω,-ω)=0 or GP2,XX(ω,-ω)=0 the 

periodic operation has no influence on the reactor performance, and for GA2,XX(ω,-ω)>0 

or GP2,XX(ω,-ω)<0 the periodic operation is inferior to the steady-state operation. 

Simultaneous modulation of two-inputs 

For simultaneous modulation of two-inputs, in order to conclude whether improvement 

of the reactor performance will be achieved (CA,DC<0 or CP,DC>0), the situation is more 

complex in comparison to single input modulation.  

In this case, the dimensionless DC components of outlet concentrations depend on the 

ASO FRFs which correlate the outlet concentration with the two separate modulated 

inputs and the cross effect of both modulated inputs (Eqs. (2.18) and (2.20)). 

Nevertheless, it is always possible to achieve that the cross ASO terms G
*

A2,XZ(φ,ω) and 

G
*
P2,XZ(φ,ω) which correspond to the DC components originating from the cross-effect 

of both inputs have desirable signs, by appropriate choice of the phase difference (Eqs. 

(2.19) and (2.21)). 

Considering that it is desirable that the cross ASO terms G
*
A2,XZ(φ,ω) is negative, in 

Table 2.1, the recommended phase differences which ensure the negative sign of this 

cross ASO term is given, depending on the signs of the real and imaginary parts of the 

cross ASO FRF GA2,XZ(ω,-ω). 
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Table 2.1 The range of the phase difference which assures negative sign of the cross 

ASO term G
*
A2,XZ(φ,ω) 

Re(GA2,XZ(ω,-ω)) Im(GA2,XZ(ω,-ω)) Range of φ (rad) 

positive positive -π<φ<-π/2 

positive negative π/2<φ<π 

negative positive -π/2<φ<0 

negative negative 0<φ<π/2 

positive zero π/2<φ<π∨-π<φ<-π/2 

zero positive -π<φ<0 

negative zero -π/2<φ<π/2 

zero negative 0<φ<π 

On the other hand, it is desirable the cross ASO term G
*
P2,XZ(φ,ω) be positive, and the 

recommended phase differences which should be used in order to obtain this goal are 

given in Table 2.2, depending on the signs of the real and imaginary parts of the cross 

ASO FRF GP2,XZ(ω,-ω). 
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Table 2.2 The range of the phase difference which assures positive sign of the cross 

term G
*
P2,XZ(φ,ω) 

Re(GP2,XZ(ω,-ω)) Im(GP2,XZ(ω,-ω)) Range of φ (rad) 

positive positive 0<φ<π/2 

positive negative -π/2<φ<0 

negative positive π/2<φ<π 

negative negative -π<φ<-π/2 

positive zero -π/2<φ<π/2 

zero positive 0<φ<π 

negative zero π/2<φ<π∨-π<φ<-π/2 

zero negative -π<φ<0 

Furthermore, it is possible to obtain the optimal phase difference, which will always 

give the minimal possible value of the cross ASO term G
*
A2,XZ(φ,ω), (from Eq. (1.34)): 

𝜑𝑜𝑝𝑡 ,𝐴 𝜔 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑔  
𝐼𝑚(𝐺𝐴2,𝑋𝑍(𝜔,−𝜔)

𝑅𝑒(𝐺𝐴2,𝑋𝑍(𝜔,−𝜔)
 − 𝜋 

           (2.30) 

or which will always give the maximal possible value of the cross ASO term 

G
*
P2,XZ(φ,ω) 

𝜑𝑜𝑝𝑡 ,𝑃 𝜔 = 𝑎𝑟𝑐𝑡𝑎𝑛𝑔  
𝐼𝑚(𝐺𝑃2,𝑋𝑍(𝜔,−𝜔)

𝑅𝑒(𝐺𝑃2,𝑋𝑍(𝜔,−𝜔)
  

           (2.31) 

Thus, the value of the optimal phase difference φopt,A(ω) will always be in the 

recommended range of the phase difference given in the Table 2.1, and optimal phase 

difference φopt,P(ω) in the recommended range of the phase difference given in the Table 

2.2. 

If the ASO FRFs corresponding to the separate inputs X(τ) and Z(τ), GA2,XX(ω,-ω) and 

GA2,ZZ(ω,-ω), are both negative, as the cross ASO term G
*
A2,XZ(φ,ω) can always be made 



29 

 

negative by appropriate choice of the phase difference, it is obvious that simultaneous 

modulation of both inputs will result with even higher improvement in comparison to 

the separate modulations of these inputs. On the other hand if one or both of these FRFs 

are positive, than only evaluation of the overall DC component of the outlet 

concentration of the reactant given with equation (2.18), can clarify the overall effect of 

the periodic operation on the reactor performance. 

In an analogous way, if the ASO FRFs GP2,XX(ω,-ω) and GP2,ZZ(ω,-ω) are positive, the 

simultaneous modulation of both inputs will lead to even higher improvement, while if 

one or both of these ASO FRF are negative, the overall DC component of the outlet 

concentration of the product (Eq. (2.20)) needs to be evaluated. 

2.2. Forced periodically operated reactor with flow-rate modulation 

For the case when flow-rate is input which is modulated, besides the outlet 

concentrations of the reactant and the product (Figure 2.1) the outlet flow-rate will also 

be a periodical function. Thus, the DC components of the outlet concentrations are not 

enough for evaluation of possible improvement of the reactor. 

In order to estimate the improvement we should compare the mean outlet molar flow-

rate of the reactant ( 𝐹𝑐𝐴 
𝑚 ) owing to periodic operation to the outlet molar flow-rate of 

the reactant in steady-state (𝐹𝑠𝑐𝐴,𝑠) . In the case when flow-rate is periodically 

modulated, the difference which is given with the following expression: 

Δ 𝐹𝑐𝐴 =  𝐹𝑐𝐴 
𝑚 − 𝐹𝑠𝑐𝐴,𝑠        (2.32) 

is an indicator of the possible reactor improvement. If the change of the outlet molar 

flow-rate of the reactant is negative, i.e. Δ 𝐹𝑐𝐴 < 0, the improvement is achieved. 

In an analogous way, the change of the mean outlet molar flow-rate of the product, as a 

result of periodic modulation of the flow-rate, in comparison to the outlet steady-state 

molar flow-rate of the product, can be defined as follows: 

Δ 𝐹𝑐𝑃 =  𝐹𝑐𝑃 
𝑚 − 𝐹𝑠𝑐𝑃,𝑠        (2.33) 

If the change of the outlet molar flow-rate of the product is positive, i.e. Δ 𝐹𝑐𝑃 > 0, 

the periodic modulation of the flow-rate will lead to improvement of the reactor 

performance. 
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Considering all presented above, the outputs of interest in the case when the flow-rate is 

modulated is molar flow-rate of the reactant or the product, which will be marked as NA 

and NP, respectively. 

The dimensionless outlet molar flow-rate of the reactant can be defined as the relative 

deviation from its steady-state value: 

𝑁𝐴 =
𝐹 𝑡 𝑐𝐴(𝑡)− 𝐹𝑠𝑐𝐴,𝑠

𝐹𝑠𝑐𝐴,𝑠
 

           (2.34) 

In a similar way the dimensionless outlet molar flow-rate of the product is defined as: 

𝑁𝑃 =
𝐹 𝑡 𝑐𝑃(𝑡) − 𝐹𝑠𝑐𝑃,𝑠

𝐹𝑠𝑐𝑃,𝑠
 

           (2.35) 

2.2.1. DC components of the outlet molar flow-rates 

The dimensionless DC components of outlet molar flow-rate of the reactant and product 

are defined as follows: 

𝑁𝐴,𝐷𝐶 =
 𝐹𝑐𝐴 

𝑚 − 𝐹𝑠𝑐𝐴,𝑠

𝐹𝑠𝑐𝐴,𝑠
 

           (2.36) 

𝑁𝑃,𝐷𝐶 =
 𝐹𝑐𝑃 

𝑚 − 𝐹𝑠𝑐𝑃,𝑠

𝐹𝑠𝑐𝑃,𝑠
 

           (2.37) 

Based on the NFR method, the dimensionless DC components of outlet molar flow-

rates of the reactant and product can be approximately estimated from the corresponding 

ASO FRFs  

𝑁𝐴,𝐷𝐶 ≈ 2  
𝐴𝐹
2
 

2

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔  

           (2.38) 

𝑁𝑃,𝐷𝐶 ≈ 2  
𝐴𝐹
2
 

2

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔  

           (2.39) 
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where the ASO FRF HA2,FF(ω,-ω) correlates the outlet molar flow-rate of the reactant to 

modulated flow-rate and the ASO FRF HP2,FF(ω,-ω) correlates the outlet molar flow-

rate of the product to the modulated flow-rate. These H ASO FRFs can be determined 

from the G ASO FRFs corresponding to the outlet concentrations, which will be 

explained in the following text. 

2.2.2. Derivation of the H-FRFs from the G-FRFs 

When the flow-rate is the input which is periodically modulated in a cosine way with 

forcing frequency ωd and forcing frequency AF, around previously established steady-

state flow-rate (Fs) 

𝐹 𝑡 = 𝐹𝑠(1 + 𝐴𝐹 cos 𝜔𝑑𝑡 )        (2.40) 

and if the dimensionless flow-rate is defined with Eq (2.7), in the dimensionless form: 

Φ 𝜏 = 𝐴𝐹 cos 𝜔𝜏 =
𝐴𝐹
2
𝑒𝑗𝜔𝜏 +

𝐴𝐹
2
𝑒−𝑗𝜔𝜏  

           (2.41) 

The dimensionless outlet concentrations of the reactant and product expressed in the 

Volterra series forms are, respectively 

𝐶𝐴 𝜏 =
𝐴𝐹
2
𝑒𝑗𝜔𝜏 𝐺𝐴1,𝐹 𝜔 +

𝐴𝐹
2
𝑒−𝑗𝜔𝜏 𝐺𝐴1,𝐹 −𝜔 +⋯+ 2  

𝐴𝐹
2
 

2

𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 +⋯ 

           (2.42) 

𝐶𝑃 𝜏 =
𝐴𝐹
2
𝑒𝑗𝜔 𝜏𝐺𝑃1,𝐹 𝜔 +

𝐴𝐹
2
𝑒−𝑗𝜔𝜏 𝐺𝑃1,𝐹 −𝜔 +⋯+ 2  

𝐴𝐹
2
 

2

𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 +⋯ 

           (2.43) 

where GA1,F(ω) is first order FRF which correlates the outlet concentration of the 

reactant with modulated flow-rate and GA1,F(-ω) is its conjugate, while GP1,F(ω) is first 

order FRF which correlates the outlet concentration of the product with the modulated 

flow-rate and GP1,F(-ω) is its conjugate. 

On the other hand, after introducing the dimensionless flow-rate and outlet reactant 

concentration into the definition of the dimensionless outlet molar flow-rate of the 

reactant NA, it can be presented as a function of the dimensionless flow-rate (Φ) and the 

dimensionless outlet concentration of the reactant (CA): 

𝑁𝐴 = Φ + 𝐶𝐴 +Φ𝐶𝐴         (2.44) 
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and, in an analogous way, the dimensionless outlet molar flow-rate of the product is a 

function of the dimensionless flow-rate (Φ) and the dimensionless outlet concentration 

of the product (CP): 

𝑁𝑃 = Φ + 𝐶𝑃 +Φ𝐶𝑃         (2.45) 

The dimensionless DC components of the outlet molar flow-rates of the reactant and 

product are then: 

𝑁𝐴,𝐷𝐶 = 𝐶𝐴,𝐷𝐶 +  Φ𝐶𝐴         (2.46) 

𝑁𝑃,𝐷𝐶 = 𝐶𝑃,𝐷𝐶 +  Φ𝐶𝑃         (2.47) 

and finally, 

𝑁𝐴,𝐷𝐶 ≈ 2  
𝐴𝐹
2
 

2

 𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 +
1

2
 𝐺𝐴1,𝐹 𝜔 + 𝐺𝐴1,𝐹 −𝜔    

           (2.48) 

𝑁𝑃,𝐷𝐶 ≈ 2  
𝐴𝐹
2
 

2

 𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 +
1

2
 𝐺𝑃1,𝐹 𝜔 + 𝐺𝑃1,𝐹 −𝜔    

           (2.49) 

The ASO FRF HA2,FF(ω,-ω) can be determined from the first order FRF GA1,F(ω) and 

the ASO FRF GA2,FF(ω,-ω) 

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 = 𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 +
1

2
 𝐺𝐴1,𝐹 𝜔 + 𝐺𝐴1,𝐹 −𝜔   

           (2.50) 

In the same way the ASO FRF HP2,FF(ω,-ω) can be obtained from the first order FRF 

GP1,F(ω) and the ASO FRF GP2,FF(ω,-ω). 

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 = 𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 +
1

2
 𝐺𝑃1,𝐹 𝜔 + 𝐺𝑃1,𝐹 −𝜔   

           (2.51) 
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2.2.3. Conversion of the reactant and yield of the product 

The reactant conversion and the product yield, for forced periodically operated reactor 

with flow-rate modulation, can be defined in the following way: 

𝑥𝐴,𝑝𝑜 =
 𝐹𝑐𝐴𝑖 ,𝑠 

𝑚
−  𝐹𝑐𝐴 

𝑚

 𝐹𝑐𝐴𝑖 ,𝑠 
𝑚 =

𝐹𝑠𝑐𝐴𝑖 ,𝑠 −  𝐹𝑐𝐴 
𝑚

𝐹𝑠𝑐𝐴𝑖 ,𝑠
 

           (2.52) 

𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

 𝐹𝑐𝑃 
𝑚

 𝐹𝑐𝐴𝑖 ,𝑠 
𝑚 =

1

𝜈𝑃

 𝐹𝑐𝑃 
𝑚

𝐹𝑠𝑐𝐴𝑖 ,𝑠
 

           (2.53) 

In this case, the reactant conversion can be expressed as a function of dimensionless DC 

component of the molar flow rate of the reactant (NA,DC) and the product yield as a 

function of dimensionless DC component of molar flow-rate of the product (NP,DC) 

𝑥𝐴,𝑝𝑜 = 𝑥𝐴,𝑠 − 𝑁𝐴,𝐷𝐶(1− 𝑥𝐴,𝑠)       (2.54) 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠(1 + 𝑁𝑃,𝐷𝐶)        (2.55) 

The relative changes of the reactant conversion and the product yield caused by forced 

periodic modulation of the flow-rate are: 

Δ𝑥𝐴 =
𝑥𝐴,𝑝𝑜 − 𝑥𝐴,𝑠

𝑥𝐴,𝑠
= −

1− 𝑥𝐴,𝑠

𝑥𝐴,𝑠
𝑁𝐴,𝐷𝐶  

           (2.56) 

Δ𝑌𝑃 =
𝑌𝑃,𝑝𝑜 − 𝑌𝑃,𝑠

𝑌𝑃,𝑠
= 𝑁𝑃,𝐷𝐶  

           (2.57) 

From these equations it can be concluded that, for the case when flow-rate is 

periodically modulated, the reactant conversion or the product yield and their relative 

changes can be evaluated from the dimensionless DC components of the outlet molar 

flow-rate of the reactant (NA,DC) or product (NP,DC). 

2.2.4. Identifying possible process improvements by sign analysis of the ASO FRFs 

For the case when the flow-rate is periodically modulated, the improvement of the 

reactor performance, i.e. the increase of the reactant conversion or the product yield will 

be achieved if the dimensionless DC component of outlet molar flow-rate of the reactant 
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is negative (NA,DC<0) or the dimensionless DC component of outlet molar flow-rate of 

the product is positive (NP,DC>0). 

Thus, the signs of the ASO FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω) will define the signs of 

the dimensionless DC components of outlet molar flow-rates, which indicate if the 

improvement is possible. The improvement will be possible if the ASO FRF HA2,FF(ω,-

ω) is negative or if the ASO FRF HP2,FF(ω,-ω) is positive. 

It is important to point out that, all above expressions and conclusions for single input 

modulation of flow-rate are also valid for the case when flow-rate is simultaneously 

modulated with another input, except with the inlet concentration. The analysis of 

simultaneous modulation of inlet concentration and flow-rate is given in the following 

Section. 

2.3. Forced periodically operated reactors with simultaneous modulation of 

inlet concentration and flow-rate 

For forced periodically operated reactor when inlet concentration and flow-rate are 

periodically modulated, in order to evaluate the possible improvement it is necessary to 

determine the DC components of the outlet molar flow-rates of reactant or product, as 

well as the inlet molar flow-rate of the reactant. 

The outlet molar flow-rates of the reactant and the product are defined in the same way 

as for single modulation of flow-rate (Eqs. (2.44) and (2.45)) and the inlet molar flow-

rate of the reactant is also a periodic function. 

The dimensionless inlet molar flow-rate of the reactant is defined as the relative 

deviation of the inlet molar flow-rate from its steady-state value  

𝑁𝐴,𝑖 =
𝐹 𝑡 𝑐𝐴,𝑖(𝑡) − 𝐹𝑠𝑐𝐴𝑖 ,𝑠

𝐹𝑠𝑐𝐴𝑖 ,𝑠
 

           (2.58) 

The dimensionless inlet molar flow-rate can be expressed as a function of the 

dimensionless flow-rate (Φ) and dimensionless inlet concentration (CAi) 

𝑁𝐴𝑖 = Φ+ 𝐶𝐴𝑖 +Φ𝐶𝐴𝑖         (2.59) 

If the inlet concentration and flow-rate are modulated in a cosine way with forcing 

amplitudes AC and AF with phase difference φ between them, the mean value of the inlet 

molar flow-rate of the reactant is  
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 𝑁𝐴𝑖 
𝑚 = 2  

𝐴𝐶
2
  
𝐴𝐹
2
 cos 𝜑  

           (2.60) 

and it depends on the forcing amplitudes and phase difference between modulated 

inputs (φ). 

2.3.1. DC components of the outlet molar flow-rates 

Based on the NFR method, considering that two-inputs are periodically modulated, the 

dimensionless DC components of outlet molar flow-rate of the reactant and product can 

be written as  

𝑁𝐴,𝐷𝐶 ≈ 2  
𝐴𝐶
2
 

2

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 + 2  
𝐴𝐹
2
 

2

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 + 2  
𝐴𝐶
2
  
𝐴𝐹
2
 𝐻𝐴2,𝐶𝐹

∗  𝜑,𝜔  

           (2.61) 

 

𝑁𝑃,𝐷𝐶 ≈ 2  
𝐴𝐶
2
 

2

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 + 2  
𝐴𝐹
2
 

2

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 

+ 2  
𝐴𝐶
2
  
𝐴𝐹
2
 𝐻𝑃2,𝐶𝐹

∗  𝜑,𝜔  

           (2.62) 

where the H
*
A2,CF(φ,ω) is the cross ASO term which correlates the outlet molar flow-

rate of the reactant with both modulated inputs: 

𝐻𝐴2,𝐶𝐹
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒(𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 ) + sin 𝜑  𝐼𝑚(𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 ) 

           (2.63) 

and H
*
P2,CF(φ,ω) is the cross ASO term which correlates the outlet molar flow-rate of 

the product with both modulated inputs 

𝐻𝑃2,𝐶𝐹
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒(𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 ) + sin 𝜑  𝐼𝑚(𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 ) 

           (2.64) 

2.3.2. Derivation of the H-FRFs from the G-FRFs 

When the inlet concentration and flow-rate are periodically modulated in a cosine way 

with forcing frequency ωd and forcing amplitudes AC and AF respectively, with phase 

difference φ, around previously established steady-state (defined with cAi,s and Fs), as 

follows: 
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𝑐𝐴𝑖 𝑡 = 𝑐𝐴𝑖 ,𝑠(1 + 𝐴𝐶 cos 𝜔𝑑𝑡 )       (2.65) 

𝐹 𝑡 = 𝐹𝑠(1 + 𝐴𝐹 cos 𝜔𝑑𝑡 + 𝜑 )       (2.66) 

the input modulations can be written in the dimensionless form 

𝐶𝐴𝑖 𝜏 = 𝐴𝐶 cos 𝜔𝜏 =
𝐴𝐶
2
𝑒𝑗𝜔𝜏 +

𝐴𝐶
2
𝑒−𝑗𝜔𝜏  

           (2.67) 

Φ 𝜏 = 𝐴𝐹 cos 𝜔𝜏 + 𝜑 =
𝐴𝐹
2
𝑒𝑗  𝜔𝜏+𝜑 +

𝐴𝐹
2
𝑒−𝑗 𝜔𝜏+𝜑  

           (2.68) 

The dimensionless outlet concentrations of the reactant and product expressed in the 

Volterra series form are, respectively 

𝐶𝐴 𝜏 =
𝐴𝐶
2
𝑒𝑗𝜔𝜏 𝐺𝐴1,𝐶 𝜔 +

𝐴𝐶
2
𝑒−𝑗𝜔𝜏 𝐺𝐴1,𝐶 −𝜔 +⋯

+ 2  
𝐴𝐶
2
 

2

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 +. . .
𝐴𝐹
2
𝑒𝑗𝜔𝜏 𝐺𝐴1,𝐹 𝜔 +

𝐴𝐹
2
𝑒−𝑗𝜔𝜏 𝐺𝐴1,𝐹 −𝜔 

+⋯+ 2  
𝐴𝐹
2
 

2

𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 +⋯+
𝐴𝐶
2

𝐴𝐹
2
𝑒−𝑗𝜑 𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 

+
𝐴𝐶
2

𝐴𝐹
2
𝑒𝑗𝜑 𝐺𝐴2,𝐶𝐹 −𝜔,𝜔 +⋯ 

           (2.69) 

𝐶𝑃 𝜏 =
𝐴𝐶
2
𝑒𝑗𝜔𝜏 𝐺𝑃1,𝐶 𝜔 +

𝐴𝐶
2
𝑒−𝑗𝜔𝜏 𝐺𝑃1,𝐶 −𝜔 +⋯

+ 2  
𝐴𝐶
2
 

2

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 +. . .
𝐴𝐹
2
𝑒𝑗𝜔𝜏 𝐺𝑃1,𝐹 𝜔 +

𝐴𝐹
2
𝑒−𝑗𝜔𝜏 𝐺𝑃1,𝐹 −𝜔 

+⋯+ 2  
𝐴𝐹
2
 

2

𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 +⋯+
𝐴𝐶
2

𝐴𝐹
2
𝑒−𝑗𝜑𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 

+
𝐴𝐶
2

𝐴𝐹
2
𝑒𝑗𝜑 𝐺𝑃2,𝐶𝐹 −𝜔,𝜔 +⋯ 

           (2.70) 

From (Eqs.(2.67)-(2.70)) and expression for dimensionless DC component of outlet 

molar flow-rate of the reactant (Eqs. (2.61)), the following expression for evaluating the 

cross ASO FRF HA2,CF(ω,-ω) from the cross ASO FRF GA2,CF(ω,-ω) and the first order 

FRF GA1,C(ω) is derived 

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 = 𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 + 𝐺𝐴1,𝐶(𝜔)     (2.71) 
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In the some way, the cross ASO FRF HP2,CF(ω,-ω) can be derived from the cross ASO 

FRF GP2,CF(ω,-ω) and the first order FRF GP1,C(ω) 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 = 𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 + 𝐺𝑃1,𝐶(𝜔)     (2.72) 

2.3.3. Conversion of the reactant and yield of the product 

The reactant conversion and the product yield for the case when inlet concentration and 

flow-rate in the reactor are simultaneously modulated, are defined as follows 

𝑥𝐴,𝑝𝑜 =
 𝐹𝑐𝐴𝑖 

𝑚 −  𝐹𝑐𝐴 
𝑚

 𝐹𝑐𝐴𝑖 𝑚
 

           (2.73) 

𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

 𝐹𝑐𝑃 
𝑚

 𝐹𝑐𝐴𝑖 𝑚
 

           (2.74) 

After incorporating the dimensionless DC components of the outlet molar flow-rates of 

the reactant and product as well as the expression for the mean inlet molar flow-rate of 

the reactant, the reactant conversion and product yield can be presented in following 

way 

𝑥𝐴,𝑝𝑜 = 1− (1− 𝑥𝐴,𝑠)
 1 + 𝑁𝐴,𝐷𝐶 

 1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 

           (2.75) 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠

 1 + 𝑁𝑃,𝐷𝐶 

 1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 

           (2.76) 

The relative changes of the reactant conversion and the product yield caused by 

simultaneous modulation of inlet concentration and flow-rate are: 

Δ𝑥𝐴 =
𝑥𝐴,𝑝𝑜 − 𝑥𝐴,𝑠

𝑥𝐴,𝑠
= −

1− 𝑥𝐴,𝑠

𝑥𝐴,𝑠

 𝑁𝐴,𝐷𝐶 − 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 

           (2.77) 
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Δ𝑌𝑃 =
𝑌𝑃,𝑝𝑜 − 𝑌𝑃,𝑠

𝑌𝑃,𝑠
=
 𝑁𝑃,𝐷𝐶 − 2  

𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

 

           (2.78) 

2.3.4. Estimating possible improvements 

The estimation of the possible improvement for the case when inlet concentration and 

flow-rate are simultaneously modulated is not possible throughout the sign analysis of 

the individual ASO and the cross ASO FRFs and the outlet DC component of the molar 

flow-rates of the reactant or the product, concerning that the inlet molar flow-rate also 

depends on the forcing parameters (forcing amplitudes and phase difference), (Eq. 

(2.74)): 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠

1

 1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑  

×  1 + 2  
𝐴𝐶
2
 

2

𝐻𝑃2,𝐶𝐶 𝜔,−𝜔 + 2  
𝐴𝐹
2
 

2

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 

+ 2  
𝐴𝐶
2
  
𝐴𝐹
2
  cos 𝜑 𝑅𝑒(𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 ) + sin 𝜑  𝐼𝑚(𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 )   

           (2.79) 

Nevertheless, it is possible to derive the optimal phase difference, for defined forcing 

amplitudes (AC, AF), which should be used in order to maximize the reactant conversion 

or product yield, by deriving the first derivative of product yield and equating it to zero: 

𝜕𝑌𝑃,𝑝𝑜 (𝜔,𝐴𝐶 ,𝐴𝐹)

𝜕𝜑
= 0 

           (2.80) 

which gives: 
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𝜕𝑌𝑃,𝑝𝑜 (𝜔,𝐴𝐶 ,𝐴𝐹)

𝜕𝜑

= 𝑌𝑃,𝑠

2  
𝐴𝐶

2
  

𝐴𝐹

2
 

1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos 𝜑 

 𝐼𝑚 𝐻𝑃2,𝐶𝐹(𝜔,−𝜔) cos 𝜑 

+  1 + 2  
𝐴𝐶

2
 

2

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 + 2  
𝐴𝐹

2
 

2

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 

− 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔   sin 𝜑 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 𝐼𝑚 𝐻𝑃2,𝐶𝐹(𝜔,−𝜔)  = 0 

          (2.81) 

In order to define the solution of the optimal phase difference which maximizes the 

product yield for defined forcing amplitudes analytically, Eq. (2.81) can be reduced to 

following trigonometric equation  

𝑎𝑠𝑖𝑛 𝜑 + 𝑏𝑐𝑜𝑠 𝜑 = 𝑐        (2.82) 

with parameters which are defined as 

𝑎 = 1 + 2  
𝐴𝐶

2
 

2

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 + 2  
𝐴𝐹

2
 

2

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 − 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔   

           (2.83) 

𝑏 = 𝐼𝑚 𝐻𝑃2,𝐶𝐹(𝜔,−𝜔)  

           (2.84) 

𝑐 = −2  
𝐴𝐶
2
  
𝐴𝐹
2
 𝐼𝑚 𝐻𝑃2,𝐶𝐹(𝜔,−𝜔)  

           (2.85) 

The analytical solution for optimal phase difference for defined forcing amplitudes is 

then obtained as: 

𝜑𝑜𝑝𝑡  𝜔,𝐴𝐶 ,𝐴𝐹 = 𝑎𝑟𝑐𝑡𝑎𝑛  2
𝑎 ±  𝑎2 − 𝑐2 + 𝑏2

𝑐 + 𝑏
  

           (2.86) 

This solution can be also determined numerically from equations (2.79) and (2.81). 

On the other hand, in order to evaluate the maximal value of the product yield, it is 

possible to estimate the optimal forcing amplitudes (AC,opt(ω), AF,opt(ω)) and the optimal 
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phase difference (φopt(ω,AC,opt,AF,opt)) corresponding to them by solving numerically the 

equation (2.79) and finding the values of the forcing parameters when the product yield 

is maximized. 

It should be pointed out that optimization of the forcing parameters for simultaneous 

modulation of any two inputs can also be done. In the case when inlet concentration and 

flow-rate are periodically modulated, the optimal phase difference depends on the 

forcing amplitudes, and they have to be optimized together. Nevertheless, for any two 

other simulated inputs, the optimal phase difference is independent of the forcing 

amplitudes, and their optimization can be done separately. 

2.4. Procedure for applying the nonlinear frequency response method for 

estimation of the time average performance of periodic processes 

The procedure for applying the NFR method for estimating the time average 

performance of a periodic process of a chemical reactor is rather standard, and can be 

summarized in next steps: 

1. Postulating the nonlinear mathematical model of the reactor. The model equations are 

the starting point of our analysis. For applying the NFR method, all nonlinear terms in 

the model equations need to be represented in the polynomial form (by expanding into 

the corresponding Taylor series).  

2. Defining the input or inputs that are modulated and the output(s) of interest. 

3. Deriving the needed FRFs. How many and which FRFs need to be derived depends 

on the choice of the output and the modulated input(s). For our application, it is enough 

to derive only the first and the asymmetrical second order FRFs for single input 

modulation and additionally the cross ASO FRFs for simultaneous modulation of two 

inputs. The derivation procedure is standard and it has been described in detail in 

several publications (Marković et al., 2008; Petkovska et al. 2010; Petkovska and 

Seidel-Morgenstern, 2012; Nikolić Paunić and Petkovska, 2013; Nikolić et al., 2014a, 

2014b; Nikolić et al., 2015). 

4. Analysis of the derived asymmetrical second order FRF(s). The sign analysis of the 

ASO FRFs can give a direct answer whether the improvement can be achieved, except 

for the case when inlet concentration and flow-rate are simultaneously modulated. 
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For single input modulation, the sign of the ASO FRF defines the sign of the DC 

component, and, accordingly, gives a direct answer whether the improvement of reactor 

performance is obtainable or not.  

For periodic operations with two modulated inputs, direct conclusion about the sign of 

the DC component and favorability of the periodic operation can be drawn only if both 

ASO FRFs corresponding to the single inputs correspond to favorable periodic 

operations. In that case, it is always possible to choose the phase difference in such a 

way that the cross-effect also contributes to the favorability of the periodic operation. If 

the signs of one or both single ASO FRFs imply unfavorable periodic operations, it is 

not possible to draw a definite conclusion on the favorability of the periodic operation 

when both inputs are modulated simultaneously, only based on their sign. As explained 

previously, in that case it is necessary to calculate the overall DC component, in order to 

get the answer whether the improvement can be obtained.  

5. Defining the forcing parameters which will be used (forcing frequency, forcing 

amplitude(s) and phase difference for simultaneous modulation of two inputs). The 

forcing parameters can be chosen arbitrary or optimized by determining the parameters 

which maximize or minimize the chosen objective function (such as conversion of the 

reactant, yield of the product, etc). 

6. Approximate calculation of the output DC component of interest and then the reactant 

conversion or the product yield for periodic operation. Using the derived ASO FRFs, it 

is possible to approximately calculate the DC component of the chosen output, for 

defined values of frequency, amplitude(s) and phase difference (for the case of two 

modulated inputs), for single input modulation by using the Eq. (1.19) or for 

simultaneous modulation of two inputs by using the Eq. (1.37). The reactant conversion 

can be calculated by using the equations (2.26, 2.54 or 2.75) and product yield from 

equations (2.27, 2.55 or 2.76). 

2.5. Conditions which need to be satisfied for implementation of the 

nonlinear frequency response method 

Implementation of periodic operations has sense only for stable systems, so the NFR 

method can only be applied for such systems. For that reasons, in order to investigate 

forced periodically operated reactors, it is first necessary to determine the domain of 

stability (Petkovska and Seidel-Morgenstern, 2012). 
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The system is stable if finite input changes of the system produce finite changes in the 

output. On the other hand, if finite changes of system input produce unlimited changes 

of the system output, the system is unstable. By analysis of the characteristic equation of 

the system corresponding to the linear model, the domain of the system stability can be 

determined (Douglas, 1972).  

The necessary and sufficient condition that a linear system is stable is that all roots of 

the characteristic equation are negative or have negative real parts. The system is 

unstable if there is at least one root of the characteristic equation which is positive or 

has a positive real part. If one root of the characteristic equation or its real part is equal 

to zero and all the rest are negative or have negative real parts, the system is on the 

stability limit (Douglas, 1972). 

This stability condition is valid only for linear systems, but this analysis can provide 

valuable information for the stability of nonlinear systems, by using the Lyapunov 

theorem as follows: If the analysis of the linearized model of a nonlinear system around 

the operating point which is defined by steady state values, indicates that the system is 

stable, then the nonlinear system is stable around that operating point. If the analysis 

shows that the linearized model of the system is unstable then the nonlinear system is 

also unstable around the operating point. If the analysis shows that the linearized model 

of the system is on the limit of the stability than the conclusions about the stability of 

the nonlinear system cannot be made (Douglas, 1972). 

The first order FRF corresponds to linear model and the domain of stability can be 

determined by the analysis of the characteristic equation which corresponds to the linear 

model. If jω in the first order FRF is replaced with the Laplace complex variable s, the 

transfer function is obtain. The characteristic equation of the system is obtained by 

equating the denominator of the transfer function with zero (Douglas, 1972). In that 

way, the conditions which need to be satisfied in order that the investigated nonlinear 

system is stable can be set. These conditions are also the conditions which need to be 

fulfilled for implementation of the NFR method. 

The NFR method can be applied for weakly nonlinear stable systems (Petkovska and 

Seidel-Morgenstern, 2012). The NFR method is applicable only for a weakly nonlinear 

system, for which the system nonlinearities have polynomial forms or can be expanded 

into a Taylor series, since only for such systems the response can be represented in the 

form of a Volterra series (Volterra, 1959). 
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Additional condition for implementation of the NFR method is that the Volterra series, 

given with equation (1.4), converges. Some investigation of Volterra series convergence 

can be found in (Xiao et al., 2014; Jing and Lang 2015). 

2.6. The advantages of the NFR method 

The previous analytical methods related to identification and estimation of improvement 

of the periodically operated reactors already explained in Section 1.1.3, have not been 

applied widely in practice probably because of the complexity of their application and 

insufficient reliability (Petkovska and Seidel-Morgenstern, 2012). 

The NFR method is a simple and reliable method for evaluation of the possibility of 

improvement of the forced periodically operated reactors which gives a fast answer on 

this question. The NFR method can be used as a starting point for further analysis and 

optimization (Petkovska and Seidel-Morgenstern, 2012). 

The NFR method is supposed to be used as a first step for fast screening of possible 

periodic operations, in order to detect processes which should further be investigated 

experimentally or by numerical integration. It is meant to replace long and tedious 

numerical investigations. The most difficult and time consuming step of the NFR 

method is derivation of the needed FRFs, which needs to be performed only once. After 

that, all computations associated with the NFR method are reduced to simple algebra. 

So, the computational efforts of the NFR method are much less in comparison to the 

classical numerical investigations, which demand numerical integration of coupled sets 

of nonlinear differential equations (Nikolić et al., 2015). 

Furthermore, and what is more important, the NFR method gives a complete overview 

of the investigated periodic operation, with defined ranges of the forcing parameters 

(input frequency, amplitude(s) and phase differences for cases of multiple modulated 

inputs) which should be used in order to obtain a favorable periodic operation. This is 

not possible with the classical numerical method, which gives results only for the 

defined sets of forcing parameters (frequency, amplitude and phase difference) for 

which numerical integrations are performed (Nikolić et al., 2015). 

Nevertheless, considering the fact that the output of the non-linear system, given as a 

Volterra series is, for practical application, approximated by finite length sum, the use 

of the NFR method for estimation of possible process improvement throughout periodic 

operation, is approximate (Petkovska and Seidel-Morgenstern, 2012). 
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2.7. Applications of the nonlinear frequency response method up to now 

2.7.1. Other applications of the nonlinear frequency response method 

The concept of the higher frequency response functions has been used in many fields of 

engineering to investigate and study systems behavior. The NFR method is mostly used 

for evaluating nonlinear frequency response of systems in communication systems in 

Electrical Engineering (Lang and Bilings, 2000; Lang et al., 2007; Rugh 1981). 

Although a powerful tool for treating weakly nonlinear systems, an in spite of the fact 

that most chemical engineering systems are weakly nonlinear, the concept of higher 

order FRFs was not widely used in chemical engineering, until recently. Up to now, 

several applications of this concept have been introduced.  

The NFR method is used for developing new experimental techniques for investigating 

equilibria and kinetics in heterogeneous system, including identification of the kinetic 

mechanism, with applications on adsorption (Petkovska 2006; Petkovska and Seidel-

Morgenstern, 2005; Petkovska and Do, 2000; Petkovska, 2005; Brzić and Petkovska, 

2012; Brzić and Petkovska, 2013; Petkovska 2014; Brzić and Petkovska 2015a, 2015b) 

membrane (Petkovska and Petkovska, 2006; Petkovska et al., 2011) and electrochemical 

reaction systems (Bensmann et al., 2010; Panić et al., 2011; Vidaković-Koch et al., 

2011).  

Also, the NFR method is used for developing a computational method for direct 

calculation of the periodic steady states of inherent periodic processes (Petkovska and 

Marković, 2006). 

2.7.2. Application of the nonlinear frequency response method for evaluation of 

forced periodically operated chemical reactors 

The first applications of the NFR method for evaluation of periodically operated 

reactors were for evaluation of the forced periodically operated isothermal CSTR, 

isothermal plug flow reactor (PFR) and isothermal dispersed flow tubular reactor 

(DFTR) with simple nth order reaction, for single input modulation of inlet 

concentration (Marković et al., 2008) and for evaluation of forced periodically operated 

isothermal CSTR with a simple nth order heterogeneous reaction with inlet 

concentration modulation (Petkovska et al., 2010).  
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In this work, the NFR method is implemented for evaluation of possible improvement 

of the forced periodically operated continuous-stirred tank reactors (CSTRs) in which 

simple, irreversible, homogeneous nth order chemical reaction A →νPP takes place. 

First, the NFR method is used for evaluation of forced periodically operated isothermal 

CSTRs for single input modulation of inlet concentration or flow-rate, as well as for 

simultaneous modulation of these two inputs (Chapter III). Part of the results presented 

in this work has been published in (Nikolić Paunić and Petkovska, 2013). The results 

obtained are tested on two numerical examples and the simulation results are presented. 

Numerical example ISO-1 for isothermal CSTR is taken from the previous publication 

(Marković et al., 2008) and the simulation results are presented for five different 

reaction orders. Numerical example ISO-2 is taken from the literature (Douglas, 1972), 

and it represents the optimized industrial reactor. The results obtained by NFR method 

are compared with the results of numerical integration of mathematical model, and 

agreement between these results is obtained. 

Furthermore, the NFR method is implemented for evaluation of possible improvement 

of forced periodically operated non-isothermal CSTRs for single input modulations and 

simultaneous modulation of two inputs (Chapter IV).  

For the non-isothermal CSTR, the possible inputs which can be periodically modulated 

are: inlet concentration, flow-rate, inlet temperature and temperature of the 

cooling/heating fluid. The derivation and analysis of the FRFs for single input 

modulation of inlet concentration and flow-rate has been published in (Nikolić et al., 

2014a) and for single input modulation of inlet temperature and temperature of the 

cooling/heating fluid in (Nikolić et al., 2014b). The NFR method is also used for the 

analysis of simultaneous modulation of inlet concentration and inlet temperature, which 

is published in (Nikolić et al., 2015) and simultaneous modulation of inlet concentration 

and flow-rate (publication in preparation). 

The results of the NFR method are tested on numerical examples which are taken from 

the literature. Numerical example NONISO-1 (Douglas, 1972) represents the optimized 

industrial reactor and Numerical examples NONISO-2(a) (Marlin, 2000) highly 

nonlinear oscillatory system with resonant behavior (Nikolić et al., 2015), NONISO-

2(b) nonlinear oscillatory system with weak resonant behavior and NONISO-2(c) 

nonlinear non-oscillatory system. The simulation results are presented, as well as the 

comparison with the numerical simulation results. 
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Finally, an adiabatic CSTR is analyzed as a special case of non-isothermal reactor and 

tested on experimental system which will be used for experimental investigation (Max 

Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany), 

for single input modulation of inlet concentration or flow-rate, as well as for 

simultaneous modulation of inlet concentration and flow-rate (Chapter V).  

In Table 2.3, a summary of different cases of the forced periodically operated reactors 

that will be investigated in this work by the NFR method are given, as well as the 

references if the results have already been published. In all investigated cases, a simple 

homogeneous chemical reaction A→νPP takes place in the reactor. 

Table 2.3 Summary of periodic operations analyzed by the NFR method in this work 

Reactor 

type 

Isothermal/ 

Non-isothermal 

Number of 

inputs 
Modulated input(s) Reference 

CSTR Isothermal 

1 Inlet concentration 

Nikolić Paunić and 

Petkovska, 2013 

1 Flow-rate 

2 
Inlet concentration and 

flow-rate 

CSTR Non-isothermal 
1 Inlet concentration Nikolić et al., 

2014a 1 Flow-rate 

CSTR Non-isothermal 

1 Inlet temperature 
Nikolić et al., 

2014a 1 
Temperature of the 

cooling/heating fluid 

CSTR Non-isothermal 2 
Inlet concentration and 

inlet temperature 
Nikolić et al., 2015 

CSTR Non-isothermal 2 
Inlet concentration and 

flow-rate 

Publication in 

preparation 

CSTR 
Adiabatic non-

isothermal 

1 Inlet concentration 

Publication in 

preparation 

1 Flow-rate 

1 Inlet temperature 

2 
Inlet concentration and 

inlet temperature 

2 
Inlet concentration and 

flow-rate 
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III Application of nonlinear frequency response method for 

evaluation of periodically operated isothermal CSTRs 

3.1. Forced periodic operations of isothermal CSTRs 

In this Chapter, the NFR method is applied for evaluation of possible improvement for 

forced periodic operation of isothermal CSTRs with simple, irreversible homogeneous 

nth order chemical reaction.  

For isothermal CSTRs, it is possible to periodically modulate two inputs, inlet 

concentration and flow-rate. These two inputs can be modulated separately (single input 

modulation) or simultaneously (two input modulation). Part of the analysis presented in 

this Chapter has been published in (Nikolić Paunić and Petkovska, 2013). 

3.2. Mathematical model 

The NFR method is used to analyze the performance of a forced periodically operated 

CSTR in which isothermal, liquid homogeneous, irreversible, simple nth order reaction 

A→νPP takes place, for which the reaction rate is defined with the following law: 

𝑟 = 𝑘𝑐𝐴
𝑛           (3.1) 

where cA is the reactant concentration, k the reaction rate constant and n the reaction 

order. 

In our analysis, we assume that the volume of the reactor is constant (V=const) although 

the flow-rate is periodically modulated, meaning that the flow-rate of the feed stream is 

equal with the outlet flow-rate of the reaction stream at any time, i.e., Fi(t)=F(t). In this 

way the residence time changes periodically. 

The mathematical model of this reactor system is given by the material balance of the 

reactant and the product in a form of a two nonlinear first order ODEs: 

𝑉
𝑑𝑐𝐴(𝑡)

𝑑𝑡
= 𝐹 𝑡 𝑐𝐴𝑖(𝑡) − 𝐹 𝑡 𝑐𝐴(𝑡)− 𝑘𝑐𝐴

𝑛(𝑡)𝑉 

           (3.2) 

𝑉
𝑑𝑐𝑃(𝑡)

𝑑𝑡
= −𝐹 𝑡 𝑐𝑃(𝑡) + 𝜈𝑃𝑘𝑐𝐴

𝑛(𝑡)𝑉 

           (3.3) 
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where: t is time, cA the outlet concentration of the reactant, cP the outlet concentration of 

the product, cAi the inlet concentration of the reactant, F the volumetric flow-rate of the 

reaction stream and νP the stoichiometric coefficient of the product P.  

The periodic modulation is performed around a previously established steady-state. The 

initial steady state is obtained by writing equations (3.1) and (3.2) for steady-state 

conditions and can be written in the following form: 

𝑐𝐴𝑖 ,𝑠
𝑐𝐴,𝑠

= 1 + 𝛼 

           (3.4) 

𝑐𝑃,𝑠

𝑐𝐴,𝑠
= 𝜈𝑃𝛼 

           (3.5) 

where an auxiliary dimensionless parameter α has been introduced 

𝛼 = 𝑘𝑐𝐴,𝑠
𝑛−1

𝑉

𝐹𝑠
 

           (3.6) 

Subscript s is used to denote the steady-state values. 

It should be noticed that the auxiliary parameter α corresponds to dimensionless 

Damkohler number which relate the reaction rate to transport phenomena rate occurring 

in the system, which is widely used in reaction engineering (Fogler, 2005). 

For analysis in the frequency domain, it is convenient to transform the model equations 

into dimensionless forms, by introducing dimensionless variables, as explained 

previously, as their relative deviations from their steady-state values. The definitions of 

the dimensionless variables and definition of dimensionless frequency (ω) which will be 

used in the frequency domain for analysis of isothermal CSTR are given in Table 3.1. 

ωd denotes the dimensional frequency. 
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Table 3.1 Definitions of dimensionless variables for isothermal CSTR 

Inlet concentration of the reactant 𝐶𝐴𝑖 =
𝑐𝐴𝑖 − 𝑐𝐴𝑖 ,𝑠
𝑐𝐴𝑖 ,𝑠

 

Outlet concentration of the reactant 𝐶𝐴 =
𝑐𝐴 − 𝑐𝐴,𝑠

𝑐𝐴,𝑠
 

Outlet concentration of the product 𝐶𝑃 =
𝑐𝑃 − 𝑐𝑃,𝑠

𝑐𝑃,𝑠
 

Flow-rate Φ =
𝐹 − 𝐹𝑠
𝐹𝑠

 

Time 𝜏 =
𝑡

𝑉/𝐹𝑠
 

Frequency 𝜔 = 𝜔𝑑
𝑉

𝐹𝑠
 

After replacing the dimensional variables (cA,i, cA, cP, F, t) in the dimensional 

mathematical model of the isothermal CSTR (Eqs. (3.1) and (3.2)) with the 

dimensionless variables (CAi, CA, CP, Φ, τ) and incorporating the auxiliary parameter α 

(Eq. (3.6)), the dimensionless mathematical model of the isothermal CSTR is obtained 

in the following form: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼  Φ+ 1  𝐶𝐴𝑖 + 1 −  Φ+ 1)(𝐶𝐴 + 1 − 𝛼(1 + 𝐶𝐴)𝑛  

           (3.7) 

𝑑𝐶𝑃
𝑑𝜏

= − Φ+ 1)(𝐶𝑃 + 1 + (1 + 𝐶𝐴)𝑛  

           (3.8) 

In order to apply the NFR method, it is necessary that all nonlinearities in the model 

equations are in the polynomial form. Therefore, the nonlinear term (1+CA)
n
 is 

expanded in the Taylor series around the steady-state point (only the first and the second 

order terms are shown): 

(1 + 𝐶𝐴)𝑛 = 1 + 𝑛𝐶𝐴 +
1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯ 

           (3.9) 
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The terms F(t)cAi(t), F(t)cA(t) (in Eq. (3.2)) and F(t)cP(t) (in Eq. (3.3)) are also 

nonlinear, and their expansion in Taylor series is given in Appendix A.1, and previously 

incorporated in (Eq. (3.7) and (3.8)). 

By incorporating the Taylor series expansion of the nonlinear term (1+CA)
n
 in equations 

(3.7) and (3.8), the model equations are transformed into the following form: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼 Φ𝐶𝐴𝑖 +  1 + 𝛼 𝐶𝐴𝑖 + 𝛼Φ−Φ𝐶𝐴 −  1 + 𝑛𝛼 𝐶𝐴 −
1

2
𝑛 𝑛 − 1 𝛼𝐶𝐴

2 +⋯ 

           (3.10) 

𝑑𝐶𝑃
𝑑𝜏

= −Φ+ 𝑛𝐶𝐴 − 𝐶𝑃 −Φ𝐶𝑃 +
1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯ 

           (3.11) 

The resulting dimensionless model equations for the isothermal CSTR with 

simultaneous modulation of the inlet concentration and flow-rate (equations (3.10) and 

(3.11)) can be reduced to the case of single input modulation of inlet concentration or 

flow-rate.  

When only the inlet concentration is periodically modulated, the dimensionless flow-

rate is equal to zero (Φ=0). The resulting dimensionless equations are: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼 𝐶𝐴𝑖 −  1 + 𝑛𝛼 𝐶𝐴 −
1

2
𝑛 𝑛 − 1 𝛼𝐶𝐴

2 +⋯ 

           (3.12) 

𝑑𝐶𝑃
𝑑𝜏

= 𝑛𝐶𝐴 − 𝐶𝑃 +
1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯ 

           (3.13) 

For single input modulation of flow-rate, the dimensionless inlet concentration is 

equated to zero (CAi=0), and the dimensionless mathematical model of the isothermal 

CSTR is reduced to equations: 

𝑑𝐶𝐴
𝑑𝜏

= 𝛼Φ −Φ𝐶𝐴 −  1 + 𝑛𝛼 𝐶𝐴 −
1

2
𝑛 𝑛 − 1 𝛼𝐶𝐴

2 +⋯ 

           (3.14) 

𝑑𝐶𝑃
𝑑𝜏

= −Φ+ 𝑛𝐶𝐴 − 𝐶𝑃 −Φ𝐶𝑃 +
1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯ 

           (3.15) 
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Considering that a representative dimensionless nonlinear model of the isothermal 

CSTR is postulated with these equations for each case of forced periodic operation 

(single or two-input modulation), the stability of the isothermal CSTR is the next step 

which should be considering in the procedure for application of the NFR method, which 

will be done in the following Section. 

3.3. Stability analysis 

The linearized model of isothermal CSTRs is obtained when the nonlinear terms in the 

dimensional model of the isothermal CSTRs (Eqs. (3.2) and (3.3)) are expanded in the 

Taylor series around the steady-state point and approximated with the first order term.  

The linearized dimensionless mathematical model of CSTRs is given with the following 

equations: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼 𝐶𝐴𝑖 + 𝛼Φ −  1 + 𝑛𝛼 𝐶𝐴 

           (3.16) 

𝑑𝐶𝑃
𝑑𝜏

= −Φ+ 𝑛𝐶𝐴 − 𝐶𝑃  

           (3.17) 

After implementing the Laplace transformation on the mathematical model 

corresponding to the linear model, the transfer functions are obtained. The characteristic 

equation of the isothermal CSTR is obtained by equating the denominator of obtained 

transfer function with zero: 

 1 + 𝑠  1 + 𝑛𝛼 + 𝑠 = 0        (3.18) 

The roots of the characteristic equations (poles) are 𝑝1 = −1 and 𝑝2 = −(1 + 𝑛𝛼). 

The stability condition for the isothermal CSTR is that the pole p2 is negative (since the 

pole p1 is always negative). After introducing an auxiliary stability parameter Bps, the 

stability condition for the isothermal CSTR can be written as follows: 

𝐵𝑝𝑠 = 1 + 𝑛𝛼 > 0         (3.19) 

Thus, the isothermal CSTR will be stable if the stability parameter Bps is positive, i.e. if 

n>-1/α. 
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3.4. Definition of the frequency response functions 

The isothermal CSTR, for single input modulation, represents a system with one input 

and two outputs, the outlet concentration of the reactor and the outlet concentration of 

the product. For simultaneous modulation of the two inputs, the isothermal CSTR 

represents a nonlinear system with two inputs and two outputs. 

Therefore, in order to describe the behavior of the isothermal CSTR when only the inlet 

concentration is periodically modulated, two sets of FRFs are defined: 

 Set of FRFs which correlate the outlet concentration of the reactant with the 

modulated inlet concentration (GA1,C(ω), GA2,CC(ω,-ω),…) 

 Set of FRFs which correlate the outlet concentration of the product with the 

modulated inlet concentration (GP1,C(ω), GP2,CC(ω,-ω),…) 

For the case when only the flow-rate is periodically modulated, two sets of FRFs are 

defined: 

 Set of FRFs which correlate the outlet concentration of the reactant with the 

modulated flow-rate (GA1,F(ω), GA2,FF(ω,-ω),…) 

 Set of FRFs which correlate the outlet concentration of the product with the 

modulated flow-rate rate (GP1,F(ω), GP2,FF(ω,-ω),…) 

Nevertheless, the H ASO FRFs which correlate the outlet molar flow-rates of the 

reactant HA2,FF(ω,-ω) and product HP2,FF(ω,-ω) to the modulated flow-rate should be 

derived from the G FRFs (Eqs. (2.48) and (2.49)) as it has been explained in detail in 

the previous Chapter. 

In order to describe the behavior of the isothermal CSTR with simultaneous 

modulations of the inlet concentration and flow-rate, in addition to the above defined 

sets of FRF for single input modulation, it is necessary to define: 

 Set of cross FRFs which correlate the outlet concentration of the reactant with 

the inlet concentration and the flow-rate, which are simultaneous modulated 

(GA2,CF(ω,-ω), GA2,CF(-ω,ω),…)  

 Set of cross FRFs which correlate the outlet concentration of the product with 

the inlet concentration and the flow-rate, which are simultaneous modulated 

(GP2,CF(ω,-ω), GP2,CF(-ω,ω),…). 
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The H cross ASO FRFs which correlate the outlet molar flow-rates of the reactant 

HA2,CF(ω,-ω) and the product HP2,CF(ω,-ω) to both modulated inputs, inlet concentration 

and flow-rate, should be derived from the G-FRFs (Eqs. (2.64) and (2.65)). 

3.5. Derivation procedure of the frequency response functions 

The next step in our analysis is deriving the defined sets of FRFs. The derivation and 

analysis will be limited to the first order and the ASO FRFs for single input modulation 

and, in addition to the cross ASO FRFs for two-input modulation. The basic steps of 

this procedure are: 

1. The dimensionless inlet concentration (CA,i(τ)) or/and flow-rate (Φ(τ)) is/are 

defined in the form of co-sinusoidal function(s); 

2. The dimensionless outlet concentrations of the reactant (CA(τ)) and product 

(CP(τ)) are expressed in the Volterra series form; 

3. The expressions for dimensionless input(s) (CA,i(τ) or/and Φ(τ)) and 

dimensionless outlet concentrations (CA(τ) and CP(τ)), from steps 1 and 2, are 

substituted into the corresponding dimensionless model equations (for 

simultaneous modulation in equations (3.10) and (3.11), for single input 

modulation of inlet concentration in equations (3.12) and (3.13), for single input 

modulation of flow-rate in equations (3.14) and (3.15)); 

4. The method of harmonic probing is applied to the equations obtained in step 3 

meaning that the terms with the same amplitude and frequency are collected and 

equated to zero; 

5. The equations obtained in step 4 are solved. 

The basic steps of the derivation procedure for single input modulation of inlet 

concentration and flow-rate are given in Appendix A.2 and for simultaneous modulation 

of inlet concentration and flow-rate in Appendix A.3. The final expressions of the FRFs 

are given below. The ASO FRFs and the cross ASO FRFs are presented here in their 

final form but in Appendix A.2 and A.3 they are also given as functions of the first 

order FRFs. 

After deriving the G-FRFs, the reactant and product H-ASO FRFs for flow-rate 

modulation are derived and given as well as the cross reactant and product H-ASO 

terms for simultaneous modulation of inlet concentration and flow-rate. 
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Considering that the ASO FRFs G2(ω,-ω) and G2(ω,-ω) are conjugate-complex function 

only ASO FRF G2(ω,-ω) will be given here. In a similar way, only H2(ω,-ω) will be 

given. 

3.6. G frequency response functions 

3.6.1. Inlet concentration modulation 

The first order FRFs GA1,C(ω) and GP1,C(ω) 

𝐺𝐴1,𝐶(𝜔) =
1 + 𝛼

𝐵𝑝𝑠 + 𝑗𝜔
 

           (3.20) 

𝐺𝑃1,𝐶(𝜔) =
𝑛

1 + 𝑗𝜔
×

1 + 𝛼

𝐵𝑝𝑠 + 𝑗𝜔
 

           (3.21) 

The asymmetrical second order FRFs GA2,CC(ω,-ω) and GP2,CC(ω,-ω) 

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = −
𝛼(1 + 𝛼)2

2𝐵𝑝𝑠
×

𝑛(𝑛 − 1)

(𝜔2 + 𝐵𝑝𝑠2 )
 

           (3.22) 

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 =
(1 + 𝛼)2

2𝐵𝑝𝑠
×

𝑛(𝑛 − 1)

(𝜔2 + 𝐵𝑝𝑠2 )
 

           (3.23) 

3.6.2. Flow-rate modulation 

The first order FRFs GA1,F(ω) and GP1,F(ω) 

𝐺𝐴1,𝐹(𝜔) =
𝛼

𝐵𝑝𝑠 + 𝑗𝜔
 

           (3.24) 

𝐺𝑃1,𝐹 𝜔 =
−1

𝐵𝑝𝑠 + 𝑗𝜔
 

           (3.25) 
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The asymmetrical second order FRFs GA2,FF(ω,-ω) and GP2,FF(ω,-ω) 

𝐺𝐴2,𝐹𝐹(𝜔,−𝜔) = −
𝛼

2𝐵𝑝𝑠
×
𝑛 𝑛 − 1 𝛼2 + 2(1 + 𝑛𝛼)

(𝜔2 + 𝐵𝑝𝑠2 )
 

           (3.26) 

𝐺𝑃2,𝐹𝐹(𝜔,−𝜔) =
1

2𝐵𝑝𝑠
×
𝑛 𝑛 − 1 𝛼2 + 2(1 + 𝑛𝛼)

(𝜔2 + 𝐵𝑝𝑠2 )
 

           (3.27) 

3.6.3. Simultaneous modulation of inlet concentration and flow-rate 

The cross asymmetrical frequency response functions GA2,CF(ω,-ω) and GP2,CF(ω,-

ω) 

𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠
×
 𝜔2 + 𝑛𝛼 1 + 𝛼 + 𝑗𝜔 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.28) 

𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 =
𝑛 1 + 𝛼 

𝐵𝑝𝑠

1

 𝜔2 + 1  𝜔2 + 𝐵𝑝𝑠
2  

  𝜔4

+ 𝜔2  1 + 𝑛𝛼 2 +  1 + 𝑛𝛼 + 1 − (𝛼 + 1) − (𝛼 + 1)) 

+ 𝑗𝜔 𝜔2 + (1 + 𝑛𝛼)2 +  1 + 𝑛𝛼 + 1   

           (3.29) 

3.7. The H-asymmetrical second order frequency response functions 

Considering that the H-FRFs need to be defined only in the cases when the flow-rate is 

periodically modulated, the H-FRFs for single input modulation of the flow-rate and for 

simultaneous modulation of the inlet concentration and flow-rate are derived from the 

G-FRFs (Eqs. (2.48), (2.49), (2.69) and (2.70)) and given in this Section. For inlet 

concentration modulation the H-ASO FRFs are equal to the G-ASO FRFs. 

3.7.1. Flow-rate modulation 

The asymmetrical second order FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω) 

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 = −
𝛼

2𝐵𝑝𝑠

 𝑛 𝑛 − 1 𝛼2 − 2𝑛𝛼(1 + 𝑛𝛼) 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.30) 
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𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠

 𝑛 𝑛 − 1 𝛼2 − 2𝑛𝛼(1 + 𝑛𝛼) 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.31) 

3.7.2. Simultaneous modulation of inlet concentration and flow-rate 

The cross asymmetrical second order FRFs HA2,CF(ω,-ω) and HP2,CF(ω,-ω) 

The cross ASO FRF HA2,CF(ω,-ω) 

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠
×
 𝜔2 + 𝑛𝛼 1 + 𝛼 +  1 + 𝑛𝛼 2 − 𝑛𝛼𝑗𝜔 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.32) 

is also given in the following form 

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 = 𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔   

           (3.33) 

where the real and imaginary parts of the cross ASO FRF HA2,CF(ω,-ω) are, respectively 

𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  =
 1 + 𝛼 

𝐵𝑝𝑠
×
𝜔2 + 𝑛𝛼 1 + 𝛼 +  1 + 𝑛𝛼 2

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.34) 

𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  = −
𝑛𝛼 1 + 𝛼 

𝐵𝑝𝑠
×

𝜔

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.35) 

The cross ASO FRF HP2,CF(ω,-ω) 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 =
𝑛 1 + 𝛼 

𝐵𝑝𝑠
×
 𝜔2 +  1 + 𝑛𝛼 2 −  𝛼 + 1 + 𝑗𝜔 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.36) 

can also be written in following form 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 = 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔   

           (3.37) 

where the real and imaginary parts of the cross ASO FRF HP2,CF(ω,-ω) are, respectively 
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𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  =
𝑛 1 + 𝛼 

𝐵𝑝𝑠
×
𝜔2 +  1 + 𝑛𝛼 2 −  𝛼 + 1 

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.38) 

𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  =
𝑛 1 + 𝛼 

𝐵𝑝𝑠
×

𝜔

 𝜔2 + 𝐵𝑝𝑠2  
 

           (3.39) 

The cross ASO terms H
*

A2,CF(φ,ω) and H
*
P2,CF(φ,ω) 

𝐻𝐴2,𝐶𝐹
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  + sin(𝜑)𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔   (3.40) 

𝐻𝑃2,𝐶𝐹
∗  𝜑,𝜔 = cos 𝜑 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  + sin(𝜑)𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔   (3.41) 

3.8. Correlations between the reactant and product asymmetrical frequency 

response functions and terms 

Single input modulation 

The reactant and product ASO FRFs for modulation of the inlet concentration, 

GA2,CC(ω,-ω) and GP2,CC(ω,-ω) (Eqs. (3.22) and (3.23)), are correlated in the following 

way: 

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 = −
1

𝛼
𝐺𝐴2,𝐶𝐶 𝜔,−𝜔  

           (3.42) 

Similarly, the reactant and product H ASO FRFs for modulation of flow-rate, HA2,FF(ω,-

ω) and HP2,FF(ω,-ω) (Eqs. (3.30) and (3.31)) are correlated in an analogous way: 

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 = −
1

𝛼
𝐻𝐴2,𝐹𝐹 𝜔,−𝜔  

           (3.43) 

Thus, for single input modulation, the product ASO FRF (GP2,CC(ω,-ω) and HP2,FF(ω,-

ω)) and the corresponding reactant ASO FRF (GA2,CC(ω,-ω) and HA2,FF(ω,-ω)) are 

proportional and they have opposite signs.  

Therefore, the dimensionless DC components of outlet reactant and product 

concentrations for periodical modulation of the inlet concentration are also proportional 

and have opposite signs 
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𝐶𝑃,𝐷𝐶 = −
1

𝛼
𝐶𝐴,𝐷𝐶  

           (3.44) 

as well as dimensionless DC components of outlet reactant and product molar flow-rates 

for periodical modulation of the flow-rate 

𝑁𝑃,𝐷𝐶 = −
1

𝛼
𝑁𝐴,𝐷𝐶  

           (3.45) 

As a consequence it can be concluded that the conversion of the reactant and yield of 

the product for single input modulation are equal (xA,po=YP,po) as well as their relative 

changes (ΔxA,po=ΔYP,po) owing to periodic operation of inlet concentration (from 

equations (2.24)-(2.27)) or flow-rate (from equations (2.52)-(2.55)). This lead to 

conclusion that, the effect of improvement or deterioration of the reactor performance 

owing to periodic operation can be determined just based on one of these ASO FRFs, 

for the reactant or for the product. 

Simultaneous modulation of inlet concentration and flow-rate 

The correlations between the cross H-ASO FRFs (HA2,CF(ω,-ω) and HP2,CF(ω,-ω)) is 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 = −
1

𝛼
𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 +

1 + 𝛼

𝛼
 

           (3.46) 

and between the cross ASO terms H
*
A2,CF(φ,ω) and H

*
P2,CF(φ,ω) 

𝐻2,𝐶𝐹𝑃
∗  𝜑,𝜔 = −

1

𝛼
𝐻2,𝐶𝐹𝐴
∗  𝜑,𝜔 +

1 + 𝛼

𝛼
cos 𝜑  

           (3.47) 

Therefore, the dimensionless DC components of outlet reactant and product molar flow-

rates are correlated as follows 

𝑁𝑃,𝐷𝐶 = −
1

𝛼
𝑁𝐴,𝐷𝐶 + 2  

𝐴𝐶
2
  
𝐴𝐹
2
 

1 + 𝛼

𝛼
cos 𝜑  

           (3.48) 

It can be easily shown that the reactant conversion and the yield of the product are equal 

(xA,po=YP,po) for this case, as well, based on equation (3.48) and the definitions of the 

reactant conversion and product yield (Eqs. (2.73) and (2.74)). It can be shown that the 

same is valid for their relative changes (ΔxA,po=ΔYP,po). This also leads to a conclusion 
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that in order to evaluate the effect of simultaneous modulation of inlet concentration and 

flow-rate it is enough to analyze just one of the derived sets of the ASO FRFs, for the 

reactant or for the product. 

3.9. Estimating the possible improvement throughout the sign analysis of the 

asymmetrical second order frequency response functions 

For single input modulation it can be concluded whether it is possible to achieve 

improvement by forced periodic modulation in comparison to the optimal steady-state 

operation just from the sign of the corresponding ASO FRF. For the sign analysis, it is 

important to notice that the auxiliary parameter α (Eq. (3.6)) is always positive which 

can be concluded from its definition. Also, for a stable isothermal CSTR the stability 

parameter Bps (Eq. (3.19)) is also always positive. 

As already explained in Chapter II, for simultaneous modulation of inlet concentration 

and flow-rate, the sign analysis of the ASO and cross ASO FRFs will not lead to 

conclusions about the possible improvement, considering that the inlet molar flow-rate 

depends on the forcing amplitudes and phase difference. 

3.9.1. Asymmetrical second order frequency response functions for inlet 

concentration modulation 

From the expressions of the ASO FRFs GA2,CC(ω,-ω) (Eq. (3.22)) and GP2,CC(ω,-ω) (Eq. 

(3.22)) for single input modulation of inlet concentration, it can be concluded that the 

signs of these functions depend only on the reaction order n. The signs of the ASO 

FRFs GA2,CC(ω,-ω) and GP2,CC(ω,-ω) are always opposite (Eq.(3.42)). The results of the 

sign analysis are given in Table 3.2. 

Table 3.2 The summary of the sign analysis results for the ASO FRFs GA2,CC(ω,-ω) and 

GP2,CC(ω,-ω)  

Reaction order, n 

GA2,CC(ω,-ω) 

(negative is desirable) 

GP2,CC(ω,-ω) 

(positive is desirable) 

𝒏 < 0 ∨ 𝑛 > 1 negative positive 

0 < 𝑛 < 1 positive negative 

𝑛 = 0 ∨ 𝑛 = 1 0 0 
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Based on the above presented results of the sign analysis of the ASO FRFs for single 

input modulation of inlet concentration, it is obvious that improvement (increase of the 

reactant conversion as well as increase of the product yield) will be always achieved for 

reaction orders n<0 and n>1, while for n=0 and n=1 periodic operation has no effect on 

the improvement and for 0<n<1, the reactor performance will be deteriorated. 

3.9.2. Asymmetrical second order frequency response functions for flow-rate 

modulation 

The signs of the ASO FRFs HA2,FF(ω,-ω) (Eq. (3.32)) and HP2,FF(ω,-ω) (Eq. (3.36)), 

corresponding to modulation of the flow-rate, depend only on the term in the numerator 

of these FRFs: 

𝑛 𝑛 − 1 𝛼2 − 2𝑛𝛼(1 + 𝑛𝛼)        (3.49) 

This term can be positive or negative and it changes it sign for n=0 and nF which 

depends on the value of the auxiliary parameter α, in the following way: 

𝑛𝐹 = −1−
2

𝛼
 

           (3.50) 

The summary of the sign analysis of the ASO FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω), 

depending on the reaction order, are given in the Table 3.3. 

Table 3.3 The summary of the sign analysis results for the ASO FRFs HA2,FF(ω,-ω) and 

HP2,FF(ω,-ω) 

Reaction order, n 

HA2,FF(ω,-ω) 

(negative is desirable) 

HP2,FF(ω,-ω) 

(positive is desirable) 

n=nF or n=0 zero zero 

n<nF or n>0 positive negative 

nF<n<0 negative positive 

For single input modulation of the flow-rate, the improvement will be achieved when 

the reaction order is in the range nF<n<0, for the reaction orders n=nF and n=0 the 

periodic modulation of flow-rate has no effect on the reactor performance and for 

positive reaction orders, n>0 and for n<nF the periodic modulation of the flow-rate will 

deteriorate the reactor performance throughout the conversion and yield decrease. 
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3.10. Numerical examples for isothermal CSTRs 

The results of the NFR method are tested on two numerical examples of isothermal 

CSTRs, Numerical example ISO-1 and Numerical example ISO-2.  

Numerical example ISO-1 represents an isothermal CSTR which is taken from the 

previous publication (Marković et al., 2008) and it includes analysis of forced 

periodically operated isothermal reactor for different reaction orders. For this Numerical 

example, only the product ASO FRFs for single input modulation (GP2,CC(ω,-ω) and 

HP2,FF(ω,-ω)) will be analyzed, in order to verify the results of the sign analysis of these 

ASO FRFs.  

Numerical example ISO-2 corresponds to an optimized industrial reactor which was 

used as an example in the literature (Douglas, 1972). The analysis is performed for the 

inlet concentration and flow-rate modulations, separately and simultaneously. The 

results obtained by the NFR method are compared with the results of numerical 

integration of the model equations, and good agreements between these results are 

obtained. The results of numerical simulations obtained in MATLAB, will also be given 

in this Section. 

3.10.1. Numerical example ISO-1 

Definition 

Numerical example ISO-1 is defined with the same parameter values which were used 

in (Marković et al., 2008): 

k=0.001 s
-1

 mol
1-n

, cAi,s= 1 mol/m
3
, τres,s=100 s 

for five different reaction orders (n=-2, -1, 0.5, 1, 2). The example which includes 

different reaction orders is used in order to test the results of the sign analysis of the 

ASO FRFs, which mainly depend on the reaction order. 

Simulation results 

In Figure 3.1, the ASO FRFs GP2,CC(ω,-ω) for five different reaction orders are 

presented vs. dimensionless frequency. 
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Figure 3.1 The ASO FRFs GP2,CC(ω,-ω) for different reaction orders, as functions of the 

dimensionless forcing frequency 

As it can be seen from Figure 3.1: 

 The ASO FRFs GP2,CC(ω,-ω) tend to asymptotic values for low-forcing 

frequencies. The low-frequency asymptote is a function of the reaction order and 

parameter α: 

lim
𝜔→0

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 =
𝑛(𝑛 − 1) 1 + 𝛼 2

2 1 + 𝑛𝛼 3
 

           (3.51) 

 High-frequency periodic modulation of the inlet concentration has no effect on 

the reactor performance, as for all reaction orders 

lim
𝜔→∞

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 = 0 

          (3.52) 

 The simulation results are in accordance with the results of the sign analysis for 

the ASO FRF GP2,CC(ω,-ω). For n=-2, -1, 2 (n<0 or n>1) (Table 3.2) GP2,CC(ω,-

ω)>0, meaning that improvement (increased yield of product) will be obtained 

with periodic modulation of the inlet concentration in comparison to the steady-

state. For n=1, GP2,CC(ω,-ω)=0, i.e. the periodic modulation of the inlet 
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concentration has no influence on the reactor performance and for n=0.5 

(0<n<1) GP2,CC(ω,-ω)<0, i.e., the reactor performance will be deteriorated.  

The ASO FRFs HP2,FF(ω,-ω) are graphically presented in Figure 3.2 for different 

reaction orders (n=-2, -1, 0.5, 1, 2), as functions of the dimensionless forcing frequency. 

 

Figure 3.2 The ASO FRFs HP2,FF(ω,-ω) as functions of the dimensionless frequency for 

different reaction orders 

As it can be seen from Figure 3.2: 

 For low-forcing frequencies the ASO FRFs HP2,FF(ω,-ω) tend to asymptotic 

values for all investigated reaction orders. The low-frequency asymptotic value 

of this function can be determined from (Eq.(3.30)), and becomes: 

lim
𝜔→0

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 =
𝑛 𝑛 − 1 𝛼2 − 2𝑛𝛼 1 + 𝑛𝛼 

2 1 + 𝑛𝛼 3
 

          (3.53) 

 In the case of periodic modulation of the flow-rate, the high-frequency 

modulation again has no effect on the reactor performance, as for all reaction 

orders 

lim
𝜔→∞

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 = 0 

          (3.54) 
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 The simulation results are in accordance with the sign analysis results which 

were presented in Table 3.3. From the sign analysis, considering that the 

auxiliary parameter nF is -2.09 (Eq. (3.50)), for the reaction orders n=-2 and -1 

(nF<n<0), the ASO FRF HP2,FF(ω,-ω) is expected to be positive. Furthermore, 

for n=0.5, 1 and 2 (n>0), the ASO FRF HP2,FF(ω,-ω) is expected to be negative. 

These results have been confirmed by the simulation results presented in the 

Figure 3.2. Periodic modulation of the flow-rate will lead to improvement in 

comparison to the steady-state operation for reaction orders n=-2 and -1, while 

for n=0.5, 1 and 2 it leads to deterioration of the reactor performance. 

3.10.2. Numerical example ISO-2 

Definition 

Analysis of the periodically operated isothermal CSTR by the NFR method is also done 

for the Numerical example ISO-2 taken from the literature (Douglas, 1972), for the 

periodic modulation of inlet concentration and flow-rate, separately and simultaneously, 

around the optimal steady-state. This example corresponds to an industrial isothermal 

CSTR with a simple, second-order (n=2), irreversible chemical reaction, with a rate 

constant k=1.248×10
-3

 m
3
/kmol/min. The optimal design has been defined with the 

following values (Douglas, 1972) 

V=28.32 m
3
, Fs=2.832 m

3
/h, cAi,s=16.02 kmol/m

3
.  

The conversion of the reactant and yield of product for the optimal steady-state is 75% 

(cA,s=4.01kmol/m
3
, cP,s=12.01 kmol/m

3
), and the auxiliary parameter α=3.00. 

The rector performance will be followed by analyzing the product ASO FRFs and the 

change of the product yield. For single input modulation, only the product ASO FRFs 

GP2,CC(ω,-ω) and HP2,FF(ω,-ω) will be analyzed, considering that they are proportional 

to the reactant ASO FRFs GA2,CC(ω,-ω) and HA2,FF(ω,-ω), respectively. For 

simultaneous modulation of the inlet concentration and flow-rate the yield of product 

will be evaluated from the product ASO FRFs GP2,CC(ω,-ω) and HP2,FF(ω,-ω) and the 

product cross ASO FRF H
*

P2,CF(ω,-ω). 

Simulation results for single input modulation 

The ASO FRF GP2,CC(ω,-ω) vs. dimensionless forcing frequency is given in Figure 3.3 

and the ASO FRF HP2,FF(ω,-ω) in Figure 3.4. 
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Figure 3.3 The ASO FRF GP2,CC(ω,-ω) as a function of dimensionless forcing frequency 

 

Figure 3.4 The ASO FRF HP2,FF(ω,-ω) as a function of dimensionless forcing frequency 

As expected from the sign analysis (Tables 3.2 and 3.3), the simulation results presented 

in Figures 3.3 and 3.4 confirm that the improvement for the reaction order n=2 (n>0), 

will be obtained for single input modulation of the inlet concentration (GP2,CC(ω,-ω)>0) 

and deterioration for single input modulation of the flow-rate (HP2,FF(ω,-ω)<0). The 

highest improvement for single input modulation of inlet concentration modulation can 

be achieved for low-forcing frequencies, where ASO FRF GP2,CC(ω,-ω) tends to an 

asymptotic value. Nevertheless, the highest value of this ASO FRF is still low (Figure 

3.3). 
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As illustration, in Figure 3.5, the yields of product are graphically presented for single 

input modulation of inlet concentration with forcing amplitude AC=100% and for single 

input of flow-rate with forcing amplitude AF=75%. For comparison, the yield in steady-

state is also given in Figure 3.5. 

 

Figure 3.5 Yield of product for the steady-state operation, for single input modulation of 

inlet concentration with forcing amplitude AC=100% and for single input modulation of 

flow-rate with forcing amplitude AF=75% as functions of dimensionless forcing 

frequency 

Despite the fact that inlet concentration modulation will lead to increase of the product 

yield, even for the highest forcing amplitude (AC=100%), this increase is still low, with 

highest relative increase of 2.33% at low frequencies. 

Simulation results for simultaneous modulation of inlet concentration and flow-

rate 

In order to simulate the case when inlet concentration and flow-rate are simultaneously 

modulated, arbitrary forcing amplitudes are chosen, for the inlet concentration 

AC=100% and for the flow-rate AF=75%. 

The optimal phase difference which maximizes the product yield φopt(ω) as a function 

of the dimensionless forcing frequency for defined forcing amplitudes (AC=100% and 

AF=75%) is graphically presented in Figure 3.6.  
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Figure 3.6 The optimal phase difference φopt(ω) which maximizes the product yield for 

forcing amplitudes AC=100% and AF=75%, vs. dimensionless forcing frequency 

In Figure 3.7, the product yields are graphically presented for: steady-state operated 

reactor, for single input modulation of inlet concentration with forcing amplitude 

AC=100%, for flow-rate modulation with forcing amplitude AF=75% and for 

simultaneous modulation of these two inputs with optimal phase difference φopt(ω), all 

as functions of the dimensionless forcing frequency. 
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Figure 3.7 The product yield for steady-state operation, for periodic modulation of inlet 

concentration (AC=100%), for flow-rate modulation (AF=75%) and for simultaneous 

modulation of these two inputs with optimal phase difference (φopt(ω), AC=100%, 

AF=75%) vs. dimensionless forcing frequency 

The simultaneous modulation of the inlet concentration and flow-rate, for these forcing 

amplitudes and phase difference, for low-forcing frequency is inferior than the single 

input modulation of inlet concentration, i.e. the increase of the product yield is obtained 

but for low-forcing frequency this increase is lower than for single input modulation of 

inlet concentration (Figure 3.7). 

On the other hand, for high-forcing frequencies the situation is completely different. 

Despite the fact that for high-forcing frequency single input modulations have no effect 

on the reactor performance, the simultaneous modulation of the two inputs will cause 

increase of the product yield. This increase is even higher than for the low-frequency 

single input of inlet concentration. 

This phenomena is a result of the fact that the real part of the cross ASO FRF HP2,CF(ω,-

ω) and therefore the cross ASO FRF HP2,CF(ω,-ω) for high-frequency modulation tend 

to following asymptotic value, which is different from zero: 

lim
𝜔→∞

𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  = lim
𝜔→∞

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 =
𝑛 1 + 𝛼 

𝐵𝑝𝑠
 

           (3.55) 
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which leads to a conclusion that the cross ASO FRF H
*

P2,CF(φ,ω) and, therefore, the 

dimensionless outlet molar flow-rate of the product for high-forcing frequencies also 

tend to corresponding asymptotic values, as follows: 

lim
𝜔→∞

𝐻𝑃2,𝐶𝐹
∗ (𝜑,𝜔) =

𝑛 1 + 𝛼 

𝐵𝑝𝑠
cos(𝜑) 

           (3.56) 

lim
𝜔→∞

𝑁𝑃,𝐷𝐶 = 2  
𝐴𝐶
2
  
𝐴𝐹
2
 
𝑛 1 + 𝛼 

𝐵𝑝𝑠
cos(𝜑) 

           (3.57) 

Therefore, the product yield for high-forcing frequencies is given with the following 

expression 

lim
𝜔→∞

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠

1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 
𝑛 1+𝛼 

𝐵𝑝𝑠
cos(𝜑)

1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos(𝜑)

 

           (3.58) 

Thus, the product yield for high-frequencies simultaneous modulation of inlet 

concentration and flow-rate depends on the forcing amplitudes, phase difference 

between modulated inputs and the characteristics of the system (throughout reaction 

order n and auxiliary parameter α). The reactor performance for high-forcing frequency 

modulations of the inlet concentration and flow-rate depends only on the cross effect of 

two modulated inputs.  

For the isothermal CSTR analyzed in Numerical example ISO-2, the optimal forcing 

amplitudes AC,opt(ω) and AF,opt(ω), and the optimal phase difference φopt(ω) are 

numerically determined in Matlab by using standard fminmax function and graphically 

presented in Figure 3.8, as functions of the dimensionless forcing frequency. The 

optimal forcing parameters which correspond to maximal product yield are determined 

from equation (2.77). 
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Figure 3.8 The optimal forcing amplitudes AC,opt(ω), AF,opt(ω), and the optimal phase 

difference φopt(ω) which maximize the product yield for simultaneous modulation of 

inlet concentration and flow-rate, vs. dimensionless forcing frequency 

The optimal forcing amplitude for inlet concentration modulation is AC,opt(ω)=100% in 

the whole frequency range, which is expected concerning that the ASO FRF GP2,CC(ω,-

ω) is positive. On the other hand, for flow-rate modulation, the optimal forcing 

amplitude is small for low-forcing frequencies where the ASO FRF HP2,FF(ω,-ω) is 

negative, while for high forcing frequencies where the ASO FRF HP2,FF(ω,-ω) tends 

zero the optimal forcing amplitudes is AF,opt(ω)=100%. 

Then, the product yield for simultaneous modulation of inlet concentration and flow-

rate with the optimal forcing amplitudes and optimal phase difference is graphically 

presented in Figure 3.9. In the same Figure, the product yields for single input 

modulations with same forcing amplitudes, as well as for steady-state operation, are also 

given. 
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Figure 3.9 The yield of the product for steady-state operation, for periodic modulation 

of inlet concentration (AC,opt(ω)), for flow-rate modulation (AF,opt(ω)) and for 

simultaneous modulation of these two inputs with optimal forcing amplitudes and 

optimal phase difference φopt(ω) corresponding to them, vs. dimensionless forcing 

frequency 

When the optimal forcing amplitudes and phase difference are used, the yield of the 

product for low-forcing frequencies is insignificantly higher than for the single input 

modulation of inlet concentration. For high-forcing frequencies, the increase of yield is 

higher when the optimal forcing parameters are used in comparison to the previous 

investigated case, and again higher than for low-frequency single input modulation of 

inlet concentration. When both optimal forcing amplitudes and optimal phase difference 

are used, the increase of the product yield is higher than for arbitrary chosen forcing 

amplitudes (Figure 3.7). 

Comparison with the results obtained by numerical integration 

In order to prove the effectiveness of the NFR method, the approximate values of the 

product yields, calculated by the NFR method are compared with the results obtained by 

numerical simulations, for periodic modulation of the inlet concentration and flow-rate, 

separately and simultaneously, around the previously established steady-state. The 

numerical integration was performed by using the dimensional mathematical model of 

the isothermal CSTR (Eqs. ((3.2) and (3.3)), for the system defined in Numerical 
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example ISO-2. The model equations were solved by using a standard Matlab function 

ode15s. 

Comparison of the product yields estimated by the NFR method and calculated by 

numerical simulation is shown in Tables 3.4, 3.5 and 3.6. The results obtained for single 

input modulation of the inlet concentration with forcing amplitude AC=100% and for 

single input modulation of the flow-rate with forcing amplitude AF=75%, for 

dimensionless forcing frequencies ω=0.1, 1, and 10 are given in Table 3.4. In Tables 3.5 

and 3.6, the numerical results are compared with results of NFR method for 

simultaneous modulation of inlet concentration and flow-rate. In Table 3.5, the product 

yields are determined for the case when arbitrary forcing amplitudes (AC=100% and 

AF=75%) and optimal phase difference corresponding to them are used φopt(ω) for 

dimensionless forcing frequencies ω=0.1, 1, and 10. In Table 3.6, the results are given 

for the optimal forcing amplitudes AC,opt(ω) and AF,opt(ω) and the optimal phase 

differences φopt(ω) corresponding to them. 

The relative changes of product yield owning to the periodic operation were also 

calculated,  

Δ𝑌𝑃,𝑝𝑜  % =
𝑌𝑃,𝑝𝑜 − 𝑌𝑃,𝑠

𝑌𝑃,𝑠
 100 

           (3.59) 

and they are given in Tables 3.4-3.6, in percentages. 

In order to compare the agreement between the approximate results obtained by the 

NFR method with the results of numerical integration, which are considered to be exact, 

the relative errors for product yields were calculated in the following way: 

𝛿𝑌 % =
𝑌𝑃,𝑝𝑜  𝑁𝐹𝑅𝑀 − 𝑌𝑃,𝑝𝑜  𝑛𝑢𝑚 

𝑌𝑃,𝑝𝑜  𝑛𝑢𝑚 
100 

           (3.60) 

and they are also given in Tables 3.4-3.6. 
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Table 3.4 Yields of the product and their relative changes for single input modulation of 

the inlet concentration and the flow-rate, estimated by numerical simulation and by the 

NFR method, and the relative errors 

Inlet concentration modulation, AC=100% 

ω 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 77.62 76.75 -1.16 +3.49 +2.33 

1 77.33 76.71 -0.80 +3.11 +2.28 

10 75.59 75.57 -0.03 +0.79 +0.76 

Flow-rate modulation, AF=75% 

ω 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 72.89 72.97 +0.11 -2.81 -2.71 

1 72.95 73.01 +0.08 -2.73 -2.65 

10 74.37 74.33 -0.05 -0.84 -0.89 

Table 3.5 Yields of the product and their relative changes for simultaneous modulation 

of the inlet concentration and the flow-rate with optimal phase differences, estimated by 

numerical simulation and by the NFR method, and the relative errors 

Simultaneous modulation of inlet concentration and flow-rate, 

AC=100%, AF=75%, φ=φopt 

ω φopt (rad) 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 0.0600 75.77 75.81 +0.05 +1.03 +1.08 

1 0.5035 75.87 75.98 +0.14 +1.16 +1.31 

10 0.7063 77.84 77.88 +0.05 +3.79 +3.84 

 

  



74 

 

Table 3.6 Yields of the product and their relative changes for simultaneous modulation 

of the inlet concentration and the flow-rate with optimal forcing amplitudes and phase 

differences, estimated by numerical simulation and by the NFR method, and the relative 

errors 

Simultaneous modulation of inlet concentration and flow-rate 

ω AC,opt (%) AF,opt (%) φopt (rad) 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 

100 

13.20 0.1892 77.41 76.81 -0.78 +3.21 +2.41 

1 18.73 0.7038 77.22 76.84 -0.49 +2.96 +2.45 

10 100 0.8394 78.18 78.25 +0.09 +4.24 +4.33 

From the results which are given in Tables 3.4, 3.5 and 3.6, it can be concluded that 

good agreement between the approximate results (product yield and their relative 

change) estimated by the NFR method with the results obtained by numerical 

integration (which are considered to be exact) for periodic modulation of the inlet 

concentration or/and flow-rate is obtained. The relative errors are less than ±1.2%, 

which leads to a conclusion that the NFR method, based on the second order 

approximation, gives excellent prediction of the magnitude of the product yield for the 

periodically operated isothermal CSTR. 

As expected, from the NFR analysis, the improvement (higher yield) can be obtained 

with single input modulation of the inlet concentration and for simultaneous modulation 

of both inputs, which was confirmed with the results of numerical integration given in 

Tables 3.4-3.6. 

3.11. Summary of Chapter III 

In this Chapter, the nonlinear frequency response method was used for evaluation of 

possible improvement of forced periodically operated isothermal CSTR in which 

homogeneous, irreversible simple nth order reaction A→νPP takes place, when inlet 

concentration and flow-rate were modulated separately (single input modulation) or 

simultaneously (two-input modulation).  

The general methodology of the derivation procedure was used for derivation of the 

necessary ASO FRFs which determine the outlet reactant and product DC components, 

and thus the yield of the product or conversion of the reactant:  
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 The asymmetrical frequency response functions which correlate the outlet 

concentration of the reactant and the product with the modulated inlet 

concentration (GA2,CC(ω,-ω) and GP2,CC(ω,-ω)) 

 The asymmetrical frequency response function which correlate the outlet molar 

flow-rates of the reactant and the product to the modulated flow-rate (HA2,FF(ω,-

ω) and HP2,FF(ω,-ω)) 

 The cross asymmetrical frequency response function which correlates the outlet 

molar flow-rates of the reactant and the product to modulated inputs, inlet 

concentration and flow-rate (HA2,CF(ω,-ω) and HP2,CF(ω,-ω)). 

From the expression of the ASO FRFs, it was concluded that the high-frequency single 

input modulation had no influence on the reactor performance and that for the low-

frequency modulation the ASO FRFs tended to asymptotic values. On the contrary, 

simultaneous modulation of inlet concentration and flow-rate had influence on the 

reactor performance in the whole frequency range. 

From the correlations between the reactant and product asymmetrical frequency 

response functions for each case of periodic modulation, it was concluded that the 

analysis of one of them (reactant or product ASO FRFs) was enough, considering that 

both approaches lead to the same conclusions. 

The sign analysis of the ASO FRFs which correspond to the single input modulation of 

the inlet concentration or flow-rate was performed. It was concluded that for single 

input modulation of the inlet concentration the improvement would always be obtained 

for negative reaction orders (n<0) and for reaction orders higher than 1 (n>1), while for 

the reaction orders between 0 and 1 (0<n<1), the reactor performance would be 

deteriorated. For reaction orders n=1 and n=0, the modulation of inlet concentration 

would not influence the reactor performance. On the other hand, for single input 

modulation of the flow-rate, an auxiliary parameter nF exists, which depends on the 

characteristics of reactor system which needs to be evaluated in order to predict the sign 

of the corresponding ASO FRF, and thus the possible improvement. Nevertheless, 

positive reaction orders (n>0) will always lead to deterioration of the reactor 

performance and for n=0, the periodic modulation of flow-rate will not influence the 

reactor performance. If reaction order is negative, than it was shown that the reactor 

performance would be improved for nF<n<0 and deteriorated for n<nF. 
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The results of the NFR method were tested on two numerical examples, Numerical 

example ISO-1 and Numerical example ISO-2. The Numerical example ISO-1 included 

analysis for different reaction orders. The prediction of the sign analysis for single input 

modulations was confirmed with simulations of the ASO FRFs. Therefore, it can be 

decided whether to operate in the periodic regime or not, based only on the sign analysis 

of the corresponding ASO FRF. 

For Numerical example ISO-2, which corresponds to an optimized industrial reactor 

taken from the literature, separate and simultaneous modulation of inlet concentration 

and flow-rate were analyzed by the NFR method, and it was concluded that: 

 Single input modulation of the inlet concentration will lead to increase of the 

product yield, which is highest for low-forcing frequencies, but is still low (for 

maximal forcing amplitude AC=100%, the relative increase of the product yield 

was ΔYP =2.33%; 

 Single input modulation of the flow-rate will cause the product yield decrease; 

 The results of the sign analysis again gave correct predictions of the signs of 

ASO FRFs for single input modulations; 

 The forcing amplitudes and phase difference for simultaneous modulation of the 

two inputs have a decisive role on the reactor performance; 

 For simultaneous modulation of the inlet concentration and flow-rate, when the 

optimal forcing parameters (which maximize the product yield) were used, the 

yield of product could be increased. For low-forcing frequencies this increase 

was insignificantly higher than for single input modulation of the inlet 

concentration, but for high-forcing frequencies modulations, this increase is 

higher; 

 Still, the highest increase of the product yield which can be achieved for this 

industrial reactor system is modest, and the highest increase of ΔYP ≈4.76% can 

be obtained for high-forcing frequency simultaneous modulation of inlet 

concentration and flow-rate, with maximal forcing amplitudes (AC=AF=100%) 

and the corresponding optimal phase difference. 

 The results of the NFR method were compared with the results of numerical 

integration and very good agreement was obtained, both for separate and for 

simultaneous modulations of the inlet concentration and flow-rate. 
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IV Application of nonlinear frequency response method for 

evaluation of periodically operated non-isothermal CSTRs 

4.1. Forced periodic operations of non-isothermal CSTRs 

In this Chapter, the NFR method is applied for evaluation of periodically operated non-

isothermal CSTRs. Besides the two inputs which can be modulated for isothermal 

CSTRs, the concentration of the feed steam and its flow-rate, for the case of a non-

isothermal CSTRs two additional inputs can also be periodically modulated: the 

temperature of the feed stream and the temperature of the cooling/heating fluid (Nikolić 

and Petkovska, 2014a). 

It can be expected to obtain much higher difference between the periodic and optimal 

steady-state operation for a non-isothermal reactors, because the equations used to 

describe the non-isothermal system contain exponential nonlinearity in the reactor 

temperature, so that nonlinear behavior often becomes visible even for small input 

disturbances. In addition, the system equations can have complex conjugate roots and, if 

the damping coefficient of the linearized equations is less than 0.707, the system can 

exhibit resonance. In this case, the reactor tends to amplify the effect of disturbances in 

the neighborhood of the resonant frequency and the larger deviations from the steady-

state conditions will cause the nonlinear phenomena to become more pronounced 

(Douglas, 1972).  

Since the potential for improvement through periodic operation strongly depends on the 

degree of the nonlinearity of the system, it is expected that the non-isothermal CSTR, 

which is highly nonlinear, would offer a lot of potential for process improvement. Also, 

the non-isothermal CSTR is a good test for the NFR method considering that the 

method is valid for weakly nonlinear systems (Nikolić and Petkovska, 2014a). 

Considering that the NFR method is applicable only for stable systems and the fact that 

a non-isothermal CSTR can in principle exhibit unstable behavior (Douglas, 1972), the 

stability analysis is very important. 

In this Chapter, the NFR method is applied for evaluation of periodic operations of non-

isothermal CSTRs in which a simple nth order, irreversible, homogeneous chemical 

reaction takes place for single input modulation of the concentration of the reactant in 

the feed stream, the flow-rate, the temperature of the feed stream and the temperature of 

the cooling/heating fluid. Part of these results has been published in (Nikolić et al., 
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2014a, 2014b). The analysis of forced periodic operation of non-isothermal CSTRs is 

also performed for the case of simultaneous modulation of two inputs, inlet 

concentration and inlet temperature (part of this investigation has been published in 

(Nikolić et al., 2015) as well as inlet concentration and flow-rate (publication in 

preparation).  

In principle, six combinations are possible for simultaneous modulation of two inputs, 

as four inputs can be modulated, but, in this work, we limited our investigation just on 

two combinations for two input modulation, as stated above. 

4.2. Mathematical model 

The non-isothermal CSTR is considered in which a simple, irreversible, liquid 

homogeneous nth order chemical reaction, 𝐴 ⟶ 𝜈𝑃𝑃, takes place, with a rate law 

𝑟 = 𝑘𝑜𝑒
− 
𝐸𝐴
𝑅𝑇 𝑐𝐴

𝑛  

           (4.1) 

where cA is the reactant concentration, T the temperature, ko the pre-exponential factor 

in the Arrenius equation, EA activation energy and R the universal gas constant. 

The mathematical model consists of the material balances of the reactant: 

𝑉
𝑑𝑐𝐴(𝑡)

𝑑𝑡
= 𝐹 𝑡 𝑐𝐴,𝑖(𝑡) − 𝐹(𝑡)𝑐𝐴(𝑡) − 𝑘𝑜𝑒

−
𝐸𝐴
𝑅𝑇 (𝑡)𝑐𝐴

𝑛(𝑡)𝑉 

           (4.2) 

material balance of the product 

𝑉
𝑑𝑐𝑃(𝑡)

𝑑𝑡
= −𝐹 𝑡 𝑐𝑃 𝑡 + 𝜈𝑃𝑘𝑜𝑒

− 
𝐸𝐴
𝑅𝑇 (𝑡)𝑐𝐴

𝑛(𝑡)𝑉 

           (4.3) 

and the energy balance 

𝑉𝜌𝑐𝑝
𝑑𝑇(𝑡)

𝑑𝑡
= 𝐹 𝑡 𝜌𝑐𝑝 𝑇𝑖(𝑡) − 𝐹(𝑡)𝜌𝑐𝑝 𝑇(𝑡) + (−𝛥𝐻𝑅)𝑘𝑜𝑒

−
𝐸𝐴
𝑅𝑇  𝑡 𝑐𝐴

𝑛(𝑡)𝑉

− 𝑈𝐴𝑤 𝑇(𝑡) − 𝑇𝐽 (𝑡)  

           (4.4) 

The notations used for the isothermal CSTR are also used for the non-isothermal CSTR. 

The new notations used in the mathematical model of the non-isothermal CSTR are: 

ΔHR heat of reaction, U the overall heat transfer coefficient, Aw the surface for heat 
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exchange, ρ density and 𝑐𝑝  heat capacity. The subscript i which is used in the balance 

equations denotes the inlet, and the subscript J the heating/cooling fluid in the reactor 

jacket. 

The mathematical model of the non-isothermal CSTR is based on the following 

assumptions: all physical and chemical properties are constant, independent on 

temperature (ρ, 𝑐𝑝 , ΔHR, ko, EA, U), the volume of the reactor is constant, (meaning that 

inlet flow-rate is equal to outlet flow-rate (V=const, Fi(t)=F(t)), and the flow-rate of the 

cooling/heating fluid is sufficiently high to ensure that the inlet temperature in the jacket 

is equal to outlet temperature from the jacket. 

The material and energy balances in the steady-state are reduced to the following 

equations 

𝑐𝐴𝑖,𝑠
𝑐𝐴,𝑠

= 1 + 𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛−1
𝑉

𝐹𝑠
 

           (4.5) 

𝑐𝑃,𝑠 = 𝜈𝑃𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛
𝑉

𝐹𝑠
 

           (4.6) 

𝑇𝑖,𝑠
𝑇𝑠

= 1 −
(−∆𝐻𝑅)𝑘

𝑜
𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛

𝜌𝑐𝑝 𝑇𝑠

𝑉

𝐹𝑠
+
𝑈𝐴𝑤
𝐹𝑠𝜌𝑐𝑝 

−
𝑈𝐴𝑤𝑇𝐽,𝑠

𝐹𝑠𝜌𝑐𝑝 𝑇𝑠
 

          (4.7) 

The following dimensionless auxiliary parameters can be introduced 

𝛼 =  𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛−1 𝑉

𝐹𝑠
, 𝛽 =

∆𝐻𝑅𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴 ,𝑠

𝑛

𝜌𝑐𝑝   𝑇𝑠

𝑉

𝐹𝑠
,  𝛿 =

𝑈𝐴𝑤𝑇𝐽 ,𝑠

𝐹𝑠𝜌𝑐𝑝   𝑇𝑠
,   𝛾 =

𝐸𝐴

𝑅𝑇𝑠
, S𝑡 =

𝑈𝐴𝑤

𝐹𝑠𝜌𝑐𝑝   

           (4.8) 

and incorporated in the steady-state material and energy balances, they lead to: 

𝑐𝐴𝑖,𝑠
𝑐𝐴,𝑠

= 1 + 𝛼 

           (4.9) 

𝑐𝑃,𝑠

𝑐𝐴,𝑠
= 𝜈𝑃𝛼 

           (4.10) 
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𝑇𝑖,𝑠
𝑇𝑠

= 1 + 𝛽 + 𝑆𝑡 − 𝛿 

           (4.11) 

The introduced dimensionless auxiliary parameters (α, β, δ, γ and St) depend on: 

 the kinetic and thermodynamic data of the chemical reaction (n, ko, EA, ΔHR), 

 the physical and thermodynamic parameters of the reactor system (V, ρ, 𝑐𝑝 , U, 

Aw) 

 the steady-state reactant concentration (cA,s), temperature in the reactor (Ts), 

flow-rate (Fs) and the temperature of the cooling/heating fluid (TJ,s). 

Again, the model equations are transformed into dimensionless form for easier analysis 

in the frequency domain. Besides the dimensionless variables defined in the previous 

Chapter, for the isothermal CSTR (Table 3.1) which have been defined as relative 

deviations from their steady-state values, additional dimensionless variables for the non-

isothermal CSTR are given in Table 4.1. 

Table 4.1 Definitions of additional dimensionless variables for non-isothermal CSTR 

Inlet temperature 𝜃𝑖 =
𝑇𝑖 − 𝑇𝑖 ,𝑠
𝑇𝑖 ,𝑠

 

Temperature in the reactor 𝜃 =
𝑇 − 𝑇𝑠
𝑇𝑠

 

Temperature of the heating/cooling fluid 𝜃𝐽 =
𝑇𝐽 − 𝑇𝐽 ,𝑠

𝑇𝐽 ,𝑠
 

The dimensionless variables (Tables 3.1 and 4.1) and the auxiliary parameters (Eq. 

(4.8)) are introduced in the model equations (Eqs. (4.2)-(4.4)) and the following 

dimensionless equations are obtained: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼  Φ+ 1  𝐶𝐴𝑖 + 1 −  Φ+ 1  𝐶𝐴 + 1 − 𝑘𝑜𝑐𝐴,𝑠
𝑛−1

𝑉

𝐹𝑠
𝑒
− 

𝐸𝐴
𝑅𝑇𝑠 𝜃+1 (1 + 𝐶𝐴)𝑛  

           (4.12) 

𝑑𝐶𝑃
𝑑𝜏

= − Φ+ 1  𝐶𝑃 + 1 + 𝑘𝑜
𝑐𝐴,𝑠
𝑛

𝑐𝑃,𝑠

𝑉

𝐹𝑠
𝑒
− 

𝐸𝐴
𝑅𝑇𝑠 𝜃+1 (1 + 𝐶𝐴)𝑛  

           (4.13) 
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𝑑𝜃

𝑑𝜏
=  1 + 𝛽 + 𝑆𝑡 − 𝛿  Φ+ 1  𝜃𝑖 + 1 −  Φ+ 1  𝜃 + 1 − 𝑆𝑡 𝜃 + 1 − 𝛿 𝜃𝐽 + 1 

−
∆𝐻𝑅𝑘𝑜𝑐𝐴,𝑠

𝑛 𝑉

𝜌𝑐𝑝 𝑇𝑠𝐹𝑠
𝑒
− 

𝐸𝐴
𝑅𝑇𝑠(𝜃+1)(1 + 𝐶𝐴)𝑛  

           (4.14) 

Since, for application of the NFR method all nonlinearities should be given in the 

polynomial form, the nonlinear terms in the dimensionless model equations 𝑒
− 

𝐸𝐴
 𝑅𝑇𝑠 𝜃+1  

and (1 + 𝐶𝐴)𝑛  are expanded in the Taylor series form, around the steady-state point. For 

our analysis only the first and second order terms are shown. The Taylor series 

expansions of these nonlinear terms are given in Appendix B1. The terms F(t)cAi(t), 

F(t)cA(t) (in Eq. (4.2)), F(t)cP(t) (in Eq. (4.3)) and 𝐹 𝑡 𝑇𝑖(𝑡), 𝐹 𝑡 𝑇(𝑡) (in Eq. (4.4)) are 

also nonlinear, and their expansion in Taylor series is done in an analogy as for 

isothermal CSTR (given in Appendix A.1). 

The Taylor series expansions of the nonlinear terms are incorporated into equations 

((4.12)-(4.14)), and the following final form of the dimensionless model equations is 

obtained: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼 𝐶𝐴𝑖 +  1 + 𝛼 Φ𝐶𝐴,𝑖 −  1 + 𝑛𝛼 𝐶𝐴 − 𝛼𝛾𝜃 + 𝛼Φ −Φ𝐶𝐴

− 𝛼  𝑛𝛾𝐶𝐴𝜃 +  
𝛾2

2
− 𝛾 𝜃2 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯  

           (4.15) 

𝑑𝐶𝑃
𝑑𝜏

= 𝑛𝐶𝐴 − 𝐶𝑃 + 𝛾𝜃 − Φ −Φ𝐶𝑃 +  𝑛𝛾𝐶𝐴𝜃 +  
𝛾2

2
− 𝛾 𝜃2 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯  

           (4.16) 

𝑑𝜃

𝑑𝜏
=  1 + 𝛽 + 𝑆𝑡 − 𝛿 Φ𝜃𝑖 +  1 + 𝛽 + 𝑆𝑡 − 𝛿 𝜃𝑖 −  1 + 𝑆𝑡 + 𝛽𝛾 𝜃 − 𝑛𝛽𝐶𝐴

+  𝛽 + 𝑆𝑡 − 𝛿 Φ − Φθ+ 𝛿𝜃𝐽

− 𝛽  𝑛𝛾𝐶𝐴𝜃 +  
𝛾2

2
− 𝛾 𝜃2 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯  

           (4.17) 

Equations ((4.15)-(4.17)) represent the dimensionless model equations of the non-

isothermal CSTR for the general case, i.e. simultaneous modulation of all possible 

modulated inputs: inlet concentration (CAi), flow-rate (Φ), inlet temperature (θi) and 
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temperature of the cooling/heating fluid (θJ). These equations can be easily reduced for 

each specific case of the forced periodic modulation of the non-isothermal CSTR. For 

instance, for single input modulation all dimensionless inputs which are not subject of 

the periodic modulation are set to zero. For simultaneous modulation of two-inputs, all 

others dimensionless inputs except modulated ones, should be set to zero and so on. 

4.3. Stability analysis 

As already stated, the NFR method is applicable only for stable systems while the non-

isothermal CSTR can be unstable. Because of that, it is important to analyze the stability 

of the reactor and to determine the domain in which the non-isothermal CSTR is stable 

first. By analyzing the characteristic equation which corresponds to the linearized 

model, the stability and oscillatory domains of the system can be easily determined.  

The characteristic equation of the system can be obtained after applying Laplace 

transform on the linearized mathematical model of the non-isothermal CSTR: 

𝑑𝐶𝐴
𝑑𝜏

=  1 + 𝛼 𝐶𝐴𝑖 −  1 + 𝑛𝛼 𝐶𝐴 − 𝛼𝛾𝜃 + 𝛼Φ 

           (4.18) 

𝑑𝐶𝑃
𝑑𝜏

= 𝑛𝐶𝐴 − 𝐶𝑃 + 𝛾𝜃 − Φ 

           (4.19) 

𝑑𝜃

𝑑𝜏
=  1 + 𝛽 + 𝑆𝑡 − 𝛿 𝜃𝑖 −  1 + 𝑆𝑡 + 𝛽𝛾 𝜃 − 𝑛𝛽𝐶𝐴 +  𝛽 + 𝑆𝑡 − 𝛿 Φ+ 𝛿𝜃𝐽  

           (4.20) 

after equating the denominator of the transfer functions to zero.  

The characteristic equation of the non-isothermal CSTR defined with model equations 

((4.2)-(4.4)) is 

 𝑠 + 1 ×  𝑠2 + 𝑠 2 + 𝛽𝛾 + 𝑆𝑡 + 𝑛𝛼 +  1 + 𝑛𝛼 + 𝛽𝛾 + 𝑛𝛼𝑆𝑡 + 𝑆𝑡  = 0 (4.21) 

The roots of this characteristic equation, i.e. the poles of the non-isothermal CSTR, are: 

𝑝1 = −1          (4.22) 

𝑝2,3 = 𝐴𝑝𝑠 ± 𝐴𝑝𝑠2 − 𝐵𝑝𝑠         (4.23) 

where the following stability parameters Aps and Bps have been introduced 
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𝐴𝑝𝑠 = −
(2 + 𝑛𝛼 + 𝑆𝑡 + 𝛽𝛾)

2
 

           (4.24) 

𝐵𝑝𝑠 =  1 + 𝑛𝛼 + 𝛽𝛾 + 𝑛𝛼𝑆𝑡 + 𝑆𝑡        (4.25) 

As p1=-1 is always negative, the analysis of the roots of characteristic equation shows 

that the non-isothermal CSTR will be stable if p2 and p3 have negative real parts, i.e., if 

the following conditions are met (Nikolić et al., 2014a): 

𝐴𝑝𝑠 < 0  and  𝐵𝑝𝑠 > 0         (4.26) 

Thus, the NFR method and the concept of higher frequency response functions can be 

applied for a forced periodically operated non-isothermal CSTR only if Aps<0 and 

Bps>0, i.e. in the domain of the reactor stability. 

The oscillatory domain can also be determined by analyzing the roots of the 

characteristic equation. If all roots of the characteristic equation are real the system is 

non-oscillatory, otherwise, if the roots of the characteristic equation are conjugate-

complex, the system will be oscillatory (Douglas, 1972). 

Therefore, the system is oscillatory for Aps
2
<Bps, and otherwise, if Aps

2
≥Bps the system is 

non-oscillatory. 

The stability and oscillatory domains for the non-isothermal CSTR, depending on the 

auxiliary parameters Aps and Bps, are graphically presented in Figure 4.1. 

 

Figure 4.1 Areas of stability and oscillatory for a non-isothermal CSTR, depending on 

the stability parameters Aps and Bps 
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If the characteristic equation of the non-isothermal CSTR is given in the standard form 

of a second order system (Douglas, 1972) 

𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 = 0        (4.27) 

the damping coefficient (ξ) and the natural frequency (ωn) can also be determined from 

the auxiliary stability parameters Aps and Bps: 

𝜉 = −
𝐴𝑝𝑠

 𝐵𝑝𝑠
 

           (4.28) 

𝜔𝑛 =  𝐵𝑝𝑠           (4.29) 

It is well known that a stable oscillatory system with damping coefficient less than 

0.707 exhibits resonance, i.e., amplification of the inlet modulation for some input 

frequencies (Douglas, 1972). The frequency at which the amplitude of the outlet is 

maximal is called resonant frequency (Douglas, 1972). 

For the non-isothermal CSTR which exhibits resonant behavior, the resonant frequency 

can also be determined form the auxiliary parameters Aps and Bps from the following 

equation: 

𝜔𝑟 =  𝐵𝑝𝑠 − 2𝐴𝑝𝑠
2
         (4.30) 

4.4. Definition of the frequency response functions 

Single input modulation 

For single input periodic modulations, the non-isothermal CSTR represents a nonlinear 

system with one modulated input and three outputs, since modulation of each input will 

cause change of the reactant concentration, the product concentration and the 

temperature in the reactor. 

Therefore, in order to describe the forced periodically operated non-isothermal CSTR 

for single input modulation, it is necessary to derive three sets of FRFs for modulated 

input. 

For the general case of single input modulation, if the dimensionless input which is 

periodically modulated is defined as X(τ), in order to describe the system it is necessary 

to derive three sets of FRFs which correlate three outputs and the input X(τ) 
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 Set 1: GA1,X(ω), GA2,XX(ω,-ω),… - FRFs which correlate the dimensionless outlet 

concentration of the reactant CA(τ) with the modulated dimensionless input X(τ); 

 Set 2: GP1,X(ω), GP2,XX(ω,-ω),… - FRFs which correlate the dimensionless outlet 

concentration of the product CP(τ) with the modulated dimensionless input X(τ); 

 Set 3: F1,X(ω), F2,XX(ω,-ω),… - FRFs which correlate the dimensionless outlet 

temperature θ(τ) with the modulated dimensionless input X(τ). 

If flow-rate is the input which is modulated, in order to evaluate the possible 

improvement, the reactant H ASO FRF (HA2,FF(ω,-ω)) should be derived from the 

reactant G-FRFs GA1,F(ω) and GA2,FF(ω,-ω) (Eq. (2.44)) and the product H ASO FRF 

(HP2,FF(ω,-ω)) should be derived from the product G-FRFs GP1,F(ω) and GP2,FF(ω,-ω) 

(Eq. (2.45)). 

Simultaneous modulation of two inputs 

When two inputs of the non-isothermal CSTR are simultaneously periodically 

modulated, it represents a nonlinear system with two modulated inputs and three 

outputs: the outlet concentration of the reactant, the outlet concentration of the product 

and the outlet temperature.  

If the dimensionless inputs which are periodically modulated are denoted as X(τ) and 

Z(τ), in order to describe the system, it is necessary to derive nine sets of FRFs: three 

sets of FRFs which correspond to the single input modulation of input X(τ) (listed 

above), three sets of FRFs which correspond to single input modulation of input Z(τ): 

 Set 4: GA1,Z(ω), GA2,ZZ(ω,-ω),…- FRFs which correlate the dimensionless outlet 

concentration of the reactant CA(τ) with the modulated dimensionless input Z(τ); 

 Set 5: GP1,Z(ω), GP2,ZZ(ω,-ω),…- FRFs which correlate the dimensionless outlet 

concentration of the product CP(τ)  with the modulated dimensionless input Z(τ); 

 Set 6: F1,Z(ω), F2,ZZ(ω,-ω),… - FRFs which correlate the dimensionless outlet 

temperature θ(τ) with the modulated dimensionless input Z(τ); 

and three sets of cross FRFs, which correspond to simultaneous modulation of both 

inputs, X(τ) and Z(τ) 

 Set 7: GA2,XZ(ω,-ω), GA2,XZ(-ω,ω),… - The cross FRFs which correlate the 

dimensionless outlet concentration of the reactant CA(τ) with the modulated 

dimensionless inputs X(τ) and Z(τ); 
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 Set 8: GP2,XZ(ω,-ω), GP2,XZ(-ω,ω),… - The cross FRFs which correlate the 

dimensionless outlet concentration of the product CP(τ) with the modulated 

dimensionless inputs X(τ) and Z(τ); 

 Set 9: F2,XZ(ω,-ω), F2,XZ(-ω,ω),… -The cross FRFs which correlate the 

dimensionless outlet temperature θ(τ) with the modulated dimensionless inputs 

X(τ) and Z(τ). 

For the case when the flow-rate and inlet concentration are simultaneously modulated, 

the reactant cross H ASO FRF HA2,CF(ω,-ω) should be derived from the reactant first 

order G-FRF GA1,C(ω) and the reactant cross ASO FRF GA2,CF(ω,-ω) (Eq. (2.69)) and 

the product cross H ASO FRF HP2,CF(ω,-ω) needs to be derived from the product first 

order G FRF GP1,C(ω) and the product cross ASO FRF GP2,CF(ω,-ω) (Eq. (2.70)). 

Since we are interested in the improvement of the reactor performance, i.e. increase of 

reactant conversion or product yield, the outlet temperature is not of interest. 

Nevertheless, if it is necessary to follow the temperature in the reactor from the aspect 

of safety and equipment limitations, the mean outlet temperature can be estimated in an 

analogous way as the outlet concentrations, from the ASO FRFs F2,XX(ω,-ω) or/and 

F2,ZZ(ω,-ω) (and the cross ASO FRF F2,XZ(ω,-ω) for simultaneous modulation of two 

inputs), which correlate the outlet temperature with the modulated input(s). 

The derivation of the F-FRFs will be give, since they need to be derived in the process 

of the derivation of the G-FRFs, but without their further analysis. The final expressions 

for the F FRFs will be given in Appendix B.2, B.3 and B.4. 

4.5. Derivation procedure of the FRFs 

The basic steps of the procedure for derivation of the frequency response functions for 

forced periodically operated non-isothermal CSTRs, similar as for the isothermal 

CSTRs, are: 

1. For single input modulation, the modulated dimensionless input X(τ) (inlet 

concentration CAi(τ), flow-rate Φ(τ), inlet temperature θi(τ) or temperature of the 

heating/cooling fluid θJ(τ)) is defined in the form of a co-sinusoidal function, 

while for simultaneous modulation of two-inputs, the two inputs are defined in 

the form of co-sinusoidal functions with equal frequencies, different amplitudes 

and a phase shift between them, 
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2. The outputs: the dimensionless outlet concentration of the reactant CA(τ), the 

dimensionless outlet concentration of the product CP(τ) and the dimensionless 

outlet temperature θ(τ), are expressed in the Volterra series form, 

3. The expressions for the dimensionless modulated input(s), from step 1 and 

dimensionless outputs, from step 2, are substituted into the corresponding 

dimensionless model equations (Eqs. (4.15)-(4.17)) while all dimensionless 

inputs which are not modulated should be equated to zero, 

4. The method of harmonic probing is applied to the equations obtained in step 3, 

i.e., the terms with the same amplitude and frequency are collected and equated 

to zero, 

5. The equations obtained in step 4 are solved. 

As a result of the derivation procedure the final expressions for the ASO FRFs 

(GA2,XX(ω,-ω), GP2,XX(ω,-ω), GA2,ZZ(ω,-ω), GP2,ZZ(ω,-ω)) and the cross ASO FRFs 

((GA2,XZ(ω,-ω), GA2,XZ(-ω,ω), GP2,XZ(ω,-ω) and GP2,XZ(-ω,ω)) will be obtained. 

Additionally, the H ASO FRFs should be derived for flow-rate modulation (HA2,FF(ω,-

ω), HP2,FF(ω,-ω)) and cross H ASO FRFs for simultaneous modulation of inlet 

concentration and flow-rate (HA2,CF(ω,-ω), HP2,CF(ω,-ω)) from some of the derived G 

FRFs. Considering that the ASO FRFs G2(ω,-ω) is a conjugate complex function of 

G2(-ω,ω), which is also valid for cross ASO FRFs as well as for the H ASO FRFs, only 

one of them will be given (G2(ω,-ω) or H2(ω,-ω)). 

For single input modulation, the final expressions for the first and the ASO FRFs which 

correlate the outlet concentrations of the reactant and the product with each modulated 

input (inlet concentration, flow-rate, inlet temperature and temperature of the 

cooling/heating fluid), the G-functions, are obtained and given below, as well as the H-

functions for flow-rate modulation. The basic steps of the derivation procedure for each 

modulated input are given in Appendix B.2. The ASO FRFs, expressed based on the 

first order FRFs are also given in Appendix B.2.  

Furthermore, the cross ASO FRFs for simultaneous modulation of the inlet 

concentration and inlet temperature, as well as, both the G and the H cross ASO FRFs 

for simultaneous modulation of inlet concentration and flow-rate, are derived and given 

below. The basic steps of the derivation procedure for simultaneous modulation of the 

inlet concentration and inlet temperature are given in Appendix B.3, for simultaneous 
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modulation of the inlet concentration and flow-rate in Appendix B.4. Here, only the 

final expressions are given.  

4.6. The G-frequency response functions 

4.6.1. Inlet concentration modulation 

The first order FRFs GA1,C(ω) and GP1,C(ω) 

𝐺𝐴1,𝐶 𝜔 =
 1 + 𝛼 (1 + 𝑆𝑡 + 𝛽𝛾 + 𝑗𝜔)

𝐵𝑝𝑠 − 𝜔
2 − 2𝐴𝑝𝑠𝜔𝑗

 

           (4.31) 

𝐺𝑃1,𝐶 𝜔 =
𝑛 1 + 𝛼 (1 + 𝑆𝑡 + 𝑗𝜔)

 1 + 𝑗𝜔  𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗 
 

           (4.32) 

The ASO FRFs GA2,CC(ω,-ω) and GP2,CC(ω,-ω) 

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = −
𝛼 1 + 𝛼 2 1 + 𝑆𝑡 

2𝐵𝑝𝑠
×

Λ

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.33) 

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 =
 1 + 𝛼 2 1 + 𝑆𝑡 

2𝐵𝑝𝑠
×

Λ

 𝐵𝑝𝑠 −𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.34) 

In the expressions of the ASO FRFs GA2,CC(ω,-ω) and GP2,CC(ω,-ω), an auxiliary 

parameter (Λ) is introduced 

Λ = Λ1𝜔
2 + Λ2         (4.35) 

where the Λ1 and Λ2 are defined as: 

Λ1 = 𝑛(𝑛 − 1)         (4.36) 

Λ2 = 𝑛2 (1 + 𝑆𝑡)2 − 2𝛽2𝛾 − 𝑛(1 + 𝑆𝑡 + 𝛽𝛾)2     (4.37) 

4.6.2. Flow-rate modulation 

The first order FRFs GA1,F(ω) and GP1,F(ω) 

𝐺𝐴1,𝐹 𝜔 =
𝛼 1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿) + 𝑗𝜔 

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.38) 
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𝐺𝑃1,𝐹 𝜔 = −
 1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿) + 𝑗𝜔 

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.39) 

The ASO FRFs GA2,FF(ω,-ω) and GP2,FF(ω,-ω) 

𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 = −
𝛼

2𝐵𝑝𝑠
×

Ω

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.40) 

𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠
×

Ω

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.41) 

An auxiliary parameter Ω was introduced in the numerators of the final expressions of 

the ASO FRFs GA2,FF(ω,-ω) and GP2,FF(ω,-ω): 

Ω = Ω1𝜔
2 + Ω2         (4.42) 

Ω1 and Ω2 are functions of the reaction order n and all auxiliary parameters, which can 

be presented with the following expressions: 

Ω1 = 𝑛(𝑛 − 1)𝛼2 1 + 𝑆𝑡 + 2𝑛𝛼 1 + 𝑆𝑡  1 + 𝛾(𝛽 + 𝑆𝑡 − 𝛿 )

+  2(1 + 𝑆𝑡 + 𝛽𝛾) + 𝛾 𝛾 − 2 (1 + 𝑆𝑡) 𝛽 + 𝑆𝑡 − 𝛿 2  

           (4.43) 

Ω2 = 𝑛 𝑛 − 1 𝛼2 1 + 𝑆𝑡  1 + 𝑆𝑡 − 𝛾 𝑆𝑡 − 𝛿  
2

+ 𝛾 𝛾 − 2  1 + 𝑆𝑡  𝛽 +  𝑆𝑡 − 𝛿  1 + 𝑛𝛼  
2

+ 2𝑛𝛼𝛾 1 + 𝑆𝑡  𝛽 +  𝑆𝑡 − 𝛿 (1 + 𝑛𝛼)  1 + 𝑆𝑡 − 𝛾 𝑆𝑡 − 𝛿  

+ 2 1 + 𝑆𝑡 + 𝛽𝛾 + 𝑛𝛼 1 + 𝑆𝑡    1 + 𝛽𝛾 + 𝑆𝑡  1 + 𝑆𝑡 − 𝛾 𝑆𝑡 − 𝛿  

− 𝛾(𝛽 +  𝑆𝑡 − 𝛿 (1 + 𝑛𝛼)  

           (4.44) 

4.6.3. Modulation of inlet temperature 

The first order FRFs GA1,T(ω) and GP1,T(ω) 

𝐺𝐴1,𝑇 𝜔 =
−𝛼𝛾 1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.45) 
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𝐺𝑃1,𝑇 𝜔 =
𝛾 1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.46) 

The ASO FRFs GA2,TT(ω,-ω) and GP2,TT(ω,-ω) 

𝐺𝐴2,𝑇𝑇 𝜔,−𝜔 = −
𝛼𝛾(1 + 𝑆𝑡) 1 + 𝛽 + 𝑆𝑡 − 𝛿 2

2𝐵𝑝𝑠
×

Ψ

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.47) 

𝐺𝑃2,𝑇𝑇 𝜔,−𝜔 =
𝛾(1 + 𝑆𝑡) 1 + 𝛽 + 𝑆𝑡 − 𝛿 2

2𝐵𝑝𝑠
×

Ψ

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.48) 

The auxiliary parameter Ψ used, in the numerators of the ASO FRFs GA2,TT(ω,-ω) and 

GP2,TT(ω,-ω) is defined as: 

Ψ = Ψ1𝜔
2 +Ψ2         (4.49) 

where the parameters Ψ1 and Ψ2 are defined as follows: 

Ψ1 =  𝛾 − 2           (4.50) 

Ψ2 = −2𝑛2𝛼2 − 𝛼 4 + 𝛼𝛾 𝑛 +  𝛾 − 2       (4.51) 

4.6.4. Modulation of temperature of the cooling/heating fluid 

The first order FRFs GA1,J(ω) and GP1,J(ω) 

𝐺𝐴1,𝐽  𝜔 =
−𝛼𝛾𝛿

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.52) 

𝐺𝑃1,𝐽  𝜔 =
𝛾𝛿

𝐵𝑝𝑠 − 𝜔2 − 2𝐴𝑝𝑠𝜔𝑗
 

           (4.53) 

The ASO FRFs GA2,JJ(ω,-ω) and GP2,JJ(ω,-ω) 

𝐺𝐴2,𝐽𝐽  𝜔,−𝜔 = −
𝛼𝛾𝛿2(1 + 𝑆𝑡)

2𝐵𝑝𝑠
×

Ψ

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.54) 
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𝐺𝑃2,𝐽𝐽  𝜔,−𝜔 =
𝛾𝛿2(1 + 𝑆𝑡)

2𝐵𝑝𝑠
×

Ψ

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.55) 

The auxiliary parameter which figures in the expressions in the ASO FRFs GA2,JJ(ω,-ω) 

and GP2,JJ(ω,-ω) is the same as in the ASO FRFs GA2,TT(ω,-ω) and GP2,TT(ω,-ω), defined 

with Eqs. ((4.49)-(4.51)). 

4.6.5. Simultaneous modulation of inlet concentration and inlet temperature 

The cross ASO FRFs GA2,CT(ω,-ω) and GP2,CT(ω,-ω) 

The cross ASO FRF GA2,CT(ω,-ω) 

𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 

= −
𝑛𝛼𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠

×
  1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼 + 𝜔2 + 𝑗𝜔(𝛼 − 2𝛽 − 𝑆𝑡) 

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.56) 

can be written in the following form 

𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 = 𝑅𝑒  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔     (4.57) 

where the real and imaginary parts of the cross ASO FRF GA2,CT(ω,-ω) are defined as: 

𝑅𝑒  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  

= −
𝑛𝛼𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠

×
 1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼 + 𝜔2 

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.58) 

𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  = −
𝑛𝛼𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠
×

𝜔(𝛼 − 2𝛽 − 𝑆𝑡)

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.59) 

In analogy, the cross ASO FRF GP2,CT(ω,-ω) 
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𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 

=
𝑛𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠

×
  1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼 + 𝜔2 + 𝑗𝜔(𝛼 − 2𝛽 − 𝑆𝑡) 

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.60) 

can be written in the form 

𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 = 𝑅𝑒  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔     (4.61) 

where the real and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω) are defined as: 

𝑅𝑒  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  

=
𝑛𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠

×
 1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼 + 𝜔2 

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.62) 

𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  =
𝑛𝛾 1 + 𝛼  1 + 𝑆𝑡  1 + 𝛽 + 𝑆𝑡 − 𝛿 

𝐵𝑝𝑠
×

𝜔(𝛼 − 2𝛽 − 𝑆𝑡)

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.63) 

The cross ASO terms G
*

A2,CT(φ,ω) and G
*

P2,CT(φ,ω) 

𝐺𝐴2,𝐶𝑇
∗ (𝜑,𝜔) = cos 𝜑 𝑅𝑒  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  + sin 𝜑 𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔   (4.64) 

𝐺𝑃2,𝐶𝑇
∗ (𝜑,𝜔) = cos 𝜑 𝑅𝑒  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  + sin 𝜑 𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔   (4.65) 

The optimal phase differences 

𝜑𝑜𝑝𝑡 ,𝐴(𝜔) = arctan 
𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  

𝑅𝑒  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  
 − 𝜋 

           (4.66) 

𝜑𝑜𝑝𝑡 ,𝑃(𝜔) = arctan 
𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  

𝑅𝑒  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  
  

           (4.67) 
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4.6.6. Simultaneous modulation of inlet concentration and flow-rate 

The cross ASO FRFs GA2,CF(ω,-ω) and GP2,CF(ω,-ω) 

The cross ASO FRF GA2,CF(ω,-ω), can be written in the following way  

𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠
×

 Π𝑅 + 𝑗𝜔Π𝐼 

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.68) 

where two additional auxiliary parameters have been introduced, ΠR and ΠI. 

The auxiliary parameter ΠR can be written in the polynomial form: 

Π𝑅 = Π𝑅1𝜔
4 + Π𝑅2𝜔

2 + Π𝑅3       (4.69) 

with  

Π𝑅1 = 1 + 𝛽𝛾 + 𝑆𝑡         (4.70) 

Π𝑅2 = 𝑛2𝛼2𝛽𝛾

+ 𝑛𝛼 2 1 + 𝛽𝛾 + 𝑆𝑡 2 + (1 + 𝛽𝛾 + 𝑆𝑡) − 2 1 + 𝑆𝑡 (1 + 𝛽𝛾 + 𝑆𝑡)

+ 𝛽𝛾 + 𝛼 1 + 𝑆𝑡 − 𝛾 𝛽 + 𝑆𝑡 − 𝛿  1 + 𝑆𝑡  + (1 + 𝛽𝛾 + 𝑆𝑡)3 

           (4.71) 

Π𝑅3 = 𝑛2𝛼2𝛽𝛾 1 + 𝑆𝑡  1 + 𝑆𝑡 −  1 + 2(𝑆𝑡 − 𝛿)  

+ 𝑛𝛼   1 + 𝑆𝑡 (1 + 𝛽𝛾 + 𝑆𝑡)2 − 𝛽𝛾(1 + 𝛽𝛾 + 𝑆𝑡)

+ 𝛼 1 + 𝛽𝛾 + 𝑆𝑡   1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿) − 𝛾 𝛽 + 𝑆𝑡 − 𝛿 (1 + 𝑆𝑡)(1

+ 𝑆𝑡 + 2𝛽)  

           (4.72) 

ΠR1, ΠR2 and ΠR3 are functions of the reaction order and parameters α, β, γ, δ and St. 

The auxiliary parameter ΠI can also be given in the polynomial form  

Π𝐼 = Π𝐼1𝜔
2 + Π𝐼2         (4.73) 

where the parameter ΠI1 is a function of auxiliary parameters β, γ and St (and is equal to 

ΠR1)  

Π𝐼1 = 1 + 𝛽𝛾 + 𝑆𝑡         (4.74) 

and ΠI2 is a function of the reaction order and all auxiliary parameters (α, β, γ, δ and St) 
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Π𝐼2 = 𝑛2𝛼2𝛽𝛾

+ 𝑛𝛼  1 + 𝛽𝛾 + 𝑆𝑡 2 + 𝛽𝛾 1 + 𝛽𝛾 + 𝑆𝑡 + 𝛽𝛾

−  1 + 𝑆𝑡  1 + 𝛽𝛾 + 𝑆𝑡 − 𝛾 𝛽 + 𝑆𝑡 − 𝛿  1 + 𝑆𝑡 (𝛼 − 𝑆𝑡 − 2𝛽 )

+  1 + 𝛽𝛾 + 𝑆𝑡 3 

           (4.75) 

The cross ASO FRF GP2,CF(ω,-ω) can be written in the following way: 

𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝛼𝐵𝑝𝑠
×

 Γ𝑅 + 𝑗𝜔Γ𝐼 

 𝜔2 + 1   𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2 
 

           (4.76) 

by introducing the auxiliary functions ΓR and ΓI 

Γ𝑅 = 𝐵𝑝𝑠   𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2 𝜔2 −  𝜔2 + 1 Π𝑅     (4.77) 

Γ𝐼 = 𝐵𝑝𝑠   𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2 −  𝜔2 + 1 Π𝐼      (4.78) 

The auxiliary functions ΓR and ΓI can also be presented in their developed polynomial 

forms which are, owing to their complexity, given in Appendix B5. 

4.7. The H-asymmetrical second order frequency response functions 

4.7.1. Flow-rate modulation 

The ASO FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω) 

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 = −
𝛼

2𝐵𝑝𝑠
×

Ω𝐻

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.79) 

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠
×

Ω𝐻

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.80) 

The auxiliary parameter ΩH, introduced in the numerator of the ASO FRFs HA2,FF(ω,-ω) 

and HP2,FF(ω,-ω) is: 

Ω𝐻 = Ω1𝐻𝜔
2 + Ω2𝐻          (4.81) 

where Ω1H and Ω2H are functions of the auxiliary functions Ω1 and Ω2, respectively and, 

therefore of the reaction order n and all auxiliary parameters (α, β, γ, δ and St): 
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Ω1𝐻 = Ω1 + 2𝐵𝑝𝑠 1 + 𝑆𝑡 − 𝛾 𝑆𝑡 − 𝛿  + 4𝐴𝑝𝑠𝐵𝑝𝑠      (4.82) 

Ω2𝐻 = Ω2 − 2 1 + 𝑆𝑡 − 𝛾 𝑆𝑡 − 𝛿  𝐵𝑝𝑠
2       (4.83) 

4.7.2. Simultaneous modulation of inlet concentration and flow-rate 

The cross ASO FRFs HA2,CF(ω,-ω) and HP2,CF(ω,-ω) 

The cross ASO FRF HA2,CF(ω,-ω) can be written in the following way: 

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 =
1 + 𝛼

𝐵𝑝𝑠
×

 Π𝑅𝐻 + 𝑗ωΠ𝐼𝐻 

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.84) 

with the newly introduced auxiliary functions ΠRH and ΠIH: 

Π𝑅𝐻 = Π𝑅 + 𝐵𝑝𝑠 𝐵𝑝𝑠 − 𝜔
2  1 + 𝑆𝑡 + 𝛽𝛾 − 2𝐴𝑝𝑠𝐵𝑝𝑠𝜔

2    (4.85) 

Π𝐼𝐻 = Π𝐼 + 𝐵𝑝𝑠 𝐵𝑝𝑠 − 𝜔
2 + 2𝐴𝑝𝑠𝐵𝑝𝑠 1 + 𝑆𝑡 + 𝛽𝛾     (4.86) 

Their developed polynomial forms are given in Appendix B6. 

The cross ASO FRF HA2,CF(ω,-ω) can also be given in the following form: 

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 = 𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔     (4.87) 

where its real and imaginary parts are defined as follows 

𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  =
1 + 𝛼

𝐵𝑝𝑠
×

Π𝑅𝐻

 𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2
 

           (4.88) 

𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  =
1 + 𝛼

𝐵𝑝𝑠
×

𝜔Π𝐼𝐻

 𝐵𝑝𝑠 − 𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (4.89) 

The cross ASO FRF HP2,CF(ω,-ω) can be expressed in the following way: 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 =
1 + 𝛼

𝛼𝐵𝑝𝑠
×

Γ𝑅𝐻+𝑗𝜔Γ𝐼𝐻

 𝜔2 + 1   𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2 
 

           (4.90) 

where: 

Γ𝑅𝐻 = Γ𝑅 + 𝑛𝛼𝐵𝑝𝑠   1 + 𝑆𝑡 + 𝛽𝛾  𝐵𝑝𝑠 −𝜔
2 + 2𝐴𝑝𝑠𝜔

2 + 𝜔2 𝐵𝑝𝑠 − 𝜔
2 − 2𝐴𝑝𝑠𝜔

2  

           (4.91) 
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Γ𝐼𝐻 = Γ𝐼 + 𝑛𝛼𝐵𝑝𝑠  𝐵𝑝𝑠 − 𝜔
2 + 2𝐴𝑝𝑠𝜔

2 +  1 + 𝑆𝑡 + 𝛽𝛾  2𝐴𝑝𝑠 −  𝐵𝑝𝑠 − 𝜔
2    

           (4.92) 

(The auxiliary functions ΓRH and ΓIH are also given in their developed polynomial form 

in Appendix B7). 

The cross ASO FRF HP2,CF(ω,-ω) can also be given in the following form: 

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 = 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  + 𝑗𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔     (4.93) 

where its real and imaginary parts are defined as: 

𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  =
1 + 𝛼

𝛼𝐵𝑝𝑠
×

Γ𝑅𝐻

 𝜔2 + 1   𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2 
 

           (4.94) 

𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  =
1 + 𝛼

𝛼𝐵𝑝𝑠
×

𝜔Γ𝐼𝐻

 𝜔2 + 1   𝐵𝑝𝑠 − 𝜔2 
2

+ 4𝐴𝑝𝑠2 𝜔2 
 

           (4.95) 

The cross ASO terms H
*

A2,CF(φ,ω) and H
*
P2,CF(φ,ω) 

𝐻𝐴2,𝐶𝐹
∗ (𝜑,𝜔) = cos 𝜑 𝑅𝑒  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔  + sin 𝜑 𝐼𝑚  𝐻𝐴2,𝐶𝐹 𝜔,−𝜔   (4.96) 

𝐻𝑃2,𝐶𝐹
∗ (𝜑,𝜔) = cos 𝜑 𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  + sin 𝜑 𝐼𝑚  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔   (4.97) 

4.8. Correlations between the reactant and product asymmetrical frequency 

response functions and terms 

Single input modulation 

For single input modulation of the inlet concentration, inlet temperature and temperature 

of the cooling/heating fluid, the reactant G-ASO FRFs and product G-ASO FRFs are 

correlated as follows 

𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 = −
1

𝛼
𝐺𝐴2,𝑋𝑋  𝜔,−𝜔      𝑋 = 𝐶,𝑇, 𝐽 

           (4.98) 

For flow-rate modulation, the reactant H-ASO FRF and product H-ASO FRF are 

correlated in an analogous way  
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𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 = −
1

𝛼
𝐻𝐴2,𝐹𝐹 𝜔,−𝜔  

           (4.99) 

In a similar way as for the isothermal CSTR, for single input modulation of the inlet 

concentration, inlet temperature, and temperature of the cooling/heating fluid of the 

non-isothermal CSTR, the DC components of the outlet reactant concentration (Eq. 

(2.12)) and the DC component of outlet concentration of the product (Eq. (2.13)) are 

always proportional, and have opposite signs.  

𝐶𝑃,𝐷𝐶 = −
1

𝛼
𝐶𝐴,𝐷𝐶  

          (4.100) 

This is also valid for the reactant and product dimensionless DC component of the outlet 

molar flow-rate (Eqs. (2.36) and (2.37)) when the flow-rate is periodically modulated: 

𝑁𝑃,𝐷𝐶 = −
1

𝛼
𝑁𝐴,𝐷𝐶 

          (4.101) 

As a consequence of these correlations, the reactant conversion and product yield are 

equal, as well as their relative changes (𝑥𝐴,𝑝𝑜 = 𝑌𝑃,𝑝𝑜 , Δ𝑥𝐴,𝑝𝑜 = Δ𝑌𝑃,𝑝𝑜 ) (Eqs. (2.24)-

(2.27)) and (2.52)-(2.55)). Consequently, it is enough to focus on analysis of either the 

reactant or product FRFs and DC components, in order to estimate the possible 

improvements of the periodically operated non-isothermal CSTRs. 

Simultaneous modulation of inlet concentration and inlet temperature 

When inlet concentration and inlet temperature are simultaneous periodically 

modulated, the cross ASO FRFs corresponding to the outlet reactant concentration and 

outlet product concentration are proportional and have the opposite signs (similar as for 

the single input modulations).  

𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 = −
1

𝛼
𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  

          (4.102) 

The same is true for their real and imaginary parts 

𝑅𝑒  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  = −
1

𝛼
𝑅𝑒  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔   

          (4.103) 
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𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  = −
1

𝛼
𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔   

          (4.104) 

and the cross ASO terms 

𝐺𝑃2,𝐶𝑇
∗  𝜑,𝜔 = −

1

𝛼
𝐺𝐴2,𝐶𝑇
∗ (𝜑,𝜔) 

          (4.105) 

Considering the correlation between the cross ASO FRFs GA2,CT(ω,-ω) and GP2,CT(ω,-ω) 

(Eq. (4.102)) and their real (Eq. (4.103)) and imaginary parts (Eq. (4.104)), it can be 

concluded that the optimal phase difference which minimizes the outlet concentration of 

the reactant φopt,A(ω) (Eq. (2.28)) and the phase difference which maximizes the outlet 

concentration of the product φopt,P(ω) (Eq. (2.29)) are equal. 

𝜑𝑜𝑝𝑡 ,𝐴 𝜔 = 𝜑𝑜𝑝𝑡 ,𝑃 𝜔 = 𝜑𝑜𝑝𝑡  𝜔       (4.106) 

This optimal phase difference in the same time maximizes the reactant conversion 

reactant and the product yield. 

As a consequence of all the facts explained above, the outlet dimensionless DC 

components of the outlet product (Eq. (2.16)) and reactant (Eq. (2.18)) concentrations, 

for simultaneous modulation of inlet concentration and inlet temperature, are also 

proportional and have opposite signs: 

𝐶𝑃,𝐷𝐶 = −
1

𝛼
𝐶𝐴,𝐷𝐶  

          (4.107) 

Therefore, similarly as for single input modulations, it can be shown that the conversion 

of the reactant and yield of the product are equal (𝑥𝐴,𝑝𝑜 = 𝑌𝑃,𝑝𝑜 ) for this case, as well as, 

their relative changes owing to periodic operation (Δ𝑥𝐴,𝑝𝑜 = Δ𝑌𝑃,𝑝𝑜 ). 

Simultaneous modulation of inlet concentration and flow-rate 

For simultaneous modulation of inlet concentration and flow-rate, the cross ASO FRFs 

HA2,CF(ω,-ω) and HP2,CF(ω,-ω) and the cross ASO terms H
*

A2,CF(ω,φ) and H
*

P2,CF(ω,φ) 

are correlated in same way as for the isothermal CSTR (Eqs. (3.46) and (3.47)): 

𝐻𝑃2,𝐶𝐹(𝜔,−𝜔) = −
1

𝛼
𝐻𝐴2,𝐶𝐹(𝜔,−𝜔) +

1 + 𝛼

𝛼
 

          (4.108) 
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𝐻𝑃2,𝐶𝐹
∗  𝜔,𝜑 = −

1

𝛼
𝐻𝐴2,𝐶𝐹
∗  𝜔,𝜑 + cos 𝜑 

1 + 𝛼

𝛼
 

          (4.109) 

It is important to notice that the correlation between the cross ASO FRFs HA2,CF(ω,-ω) 

and HP2,CF(ω,-ω) (Eq. (4.108)) for simultaneous modulation of inlet concentration and 

flow-rate for the non-isothermal CSTR is reduced to the same correlation as for the 

isothermal CSTR: 

𝑁𝑃,𝐷𝐶 = −
1

𝛼
𝑁𝐴,𝐷𝐶 + 2  

𝐴𝐶
2
  
𝐴𝐹
2
 𝑐𝑜𝑠 𝜑 

1 + 𝛼

𝛼
 

          (4.110) 

Consequently, all conclusions given for the isothermal CSTR with simultaneous 

modulation of the inlet concentration and flow-rate, concerning the equality between the 

reactant conversion and product yield, as well as theirs relative changes, are also valid 

for the non-isothermal CSTR. 

4.9. Estimating the possible improvement throughout the sign analysis of the 

asymmetrical second order frequency response functions 

The ASO FRFs corresponding to the outlet concentration of the reactant GA2,XX(ω,-ω) 

and the ASO FRFs which correspond to the outlet concentration of the product 

GP2,XX(ω,-ω), for single input modulations always have opposite signs. Therefore, the 

sign analysis of the ASO FRFs for single input modulations will be performed only for 

the ASO FRFs GA2,XX(ω,-ω) (the desirable sign is negative), and these results will 

directly be used to predict the sign of GP2,XX(ω,-ω). 

From the definitions of the dimensionless auxiliary parameters (Eq. (4.8)), it can be 

concluded that the auxiliary parameters α, γ, δ and St are always positive, while the 

auxiliary parameter β is positive for endothermic and negative for exothermic reactions. 

The sign of the stability parameters for stable systems are also defined, Aps<0 and Bps>0. 

Considering that the forcing frequency represents a new variable of the forced 

periodically operated reactors which can be varied as desired, the sign of the ASO FRFs 

will be analyzed in respect to the forcing frequency, as for any investigated system, the 

system parameters are known (Nikolić et al., 2014a, 2014b). 

The sign analysis of the real and imaginary parts of the cross ASO FRFs for 

simultaneous modulation of inlet concentration and inlet temperature will also be 
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analyzed in order to determine the range of phase difference which should be used in 

order to ensure the desired signs of the cross ASO terms. 

4.9.1. Asymmetrical second order FRFs for inlet concentration modulation 

The sign analysis of the ASO FRF GA2,CC(ω,-ω) (Eq.(4.33)) can be reduced to the sign 

analysis of the term Λ, since all other terms are positive. The sign of the ASO FRF 

GA2,CC(ω,-ω) depends on the sign of the term Λ in the following way: 

𝑠𝑖𝑔𝑛(𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 ) = −𝑠𝑖𝑔𝑛(Λ)      (4.111) 

The term Λ depends on the characteristics of the reactor system (throughout the reaction 

order n and the auxiliary parameters β, γ and St) and forcing frequency ω, which is a 

parameter of periodic operation. 

In general, the ASO FRF GA2,CC(ω,-ω) can change its sign if the following equation: 

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = 0 ⟺ Λ = 0 ⟺ 

𝑛 𝑛 − 1 𝜔2 + 𝑛2 (1 + 𝑆𝑡)2 − 2𝛽2𝛾 − 𝑛(1 + 𝑆𝑡 + 𝛽𝛾)2 = 0 

          (4.112) 

has a real solution, which is then given with the following expression 

𝜔0,𝐶 =  
 1 + 𝑆𝑡 + 𝛽𝛾 2 − 𝑛( 1 + 𝑆𝑡 2 − 2𝛽2𝛾)

𝑛 − 1
 

          (4.113) 

If Eq. (4.112) has no real solutions, the GA2,CC(ω,-ω) has the same sign in the whole 

frequency range. Eq. (4.112) will have real solutions if the numerator and denominator 

of the rational function under the square root in Eq. (4.113) have the same sign. The 

sign in the denominator depends only on reaction order and changes for n=1. The sign 

of the numerator also depends on the reaction order and changes for: 

𝑛 = 𝑛𝐶 =
 1 + 𝑆𝑡 + 𝛽𝛾 2

 1 + 𝑆𝑡 2 − 2𝛽2𝛾
 

          (4.114) 

which can be calculated from the auxiliary parameters β, γ and St. 

The results of the sign analysis of the ASO FRF GA2,CC(ω,-ω) and GP2,CC(ω,-ω) (which 

has the opposite sign (Eq. (4.98))) are summarized and presented in Table 4.2. 
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Table 4.2 The summary of the sign analysis results for GA2,CC(ω,-ω) and GP2,CC(ω,-ω)  

Condition Frequency range 
GA2,CC(ω,-ω) 

(negative is desirable) 

GP2,CC(ω,-ω) 

(positive is desirable) 

n=0 ∀ω zero zero 

n<nC and n<0 ∀ω negative positive 

n<nC and 0<n<1  ∀ω positive negative 

nC<1 and n=1 ∀ω negative positive 

n<nC and n>1 
ω<ω0,C positive negative 

ω>ω0,C negative positive 

n>nC and n<0 
ω<ω0,C positive negative 

ω>ω0,C negative positive 

n>nC and 0<n<1 
ω<ω0,C negative positive 

ω>ω0,C positive negative 

1

𝑛𝐶
< 1 and n=1 ∀ω positive negative 

n>nC and n>1 ∀ω negative positive 

 

4.9.2. Asymmetrical second order FRFs for flow-rate modulation 

The sign of the ASO FRF HA2,FF(ω,-ω) depends on the characteristics of the reactor 

system (reaction order n and all auxiliary parameters) and the forcing frequency ω. 

The sign of ASO FRF HA2,FF(ω,-ω) depends on the auxiliary function in the numerator 

ΩH in the following way (Eq. (4.79)): 

𝑠𝑖𝑔𝑛(𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 ) = −𝑠𝑖𝑔𝑛(Ω𝐻)     (4.115) 

Therefore, the sign analysis of the ASO FRF HA2,FF(ω,-ω) can be reduced to the sign 

analysis of the function ΩH, defined by equations ((4.81)-(4.83)). 

The frequency for which the function HA2,FF(ω,-ω) can change its sign can be 

determined from the following condition: 

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 = 0   ⟺  Ω𝐻 = 0 ⟺ Ω1𝐻𝜔
2 + Ω2𝐻 = 0   (4.116) 

The solution of Eq. (4.116) is real if the complex functions Ω1H and Ω2H have opposite 

signs 
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𝜔0,𝐹 =  −
Ω2𝐻

Ω1𝐻
 

          (4.117) 

If auxiliary functions Ω1H and Ω2H have the same sign, the ASO FRF HA2,FF(ω,-ω) will 

have the same sign in the whole frequency range.  

The results of the sign analysis of the ASO FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω) are 

summarized in the Table 4.3. As mentioned, these ASO FRFs will always have opposite 

signs (Eqs. (4.99)). 

Table 4.3 The summary of the sign analysis results for HA2,FF(ω,-ω) and HP2,FF(ω,-ω)  

Sign of 

Ω1H 

Sign of 

Ω2H 

Range of forcing 

frequency 

HA2,FF(ω,-ω) 

(negative is 

desirable) 

HP2,FF(ω,-ω) 

(positive is 

desirable) 

positive negative 

ω<ω0,F positive negative 

ω>ω0,F negative positive 

negative positive 

ω<ω0,F negative positive 

ω>ω0,F positive negative 

positive positive ∀𝝎 negative positive 

negative negative ∀𝜔 positive negative 

zero 

negative ∀𝜔 positive negative 

positive ∀𝝎 negative positive 

positive 

zero 

∀𝝎 negative positive 

negative ∀𝜔 positive negative 
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4.9.3. Asymmetrical second order FRFs for inlet temperature modulation 

All terms in the asymmetrical second order FRF GA2,TT(ω,-ω) are positive, except the 

term Ψ  which can be positive or negative. Based on this, the sign of ASO FRF 

GA2,TT(ω,-ω) depends on the sign of the term Ψ in the following way: 

𝑠𝑖𝑔𝑛(𝐺𝐴2,𝑇𝑇 𝜔,−𝜔 ) = −𝑠𝑖𝑔𝑛(Ψ)      (4.118) 

The sign of the term Ψ depends on the reaction order n, auxiliary parameters α and γ, 

which are characteristic of the investigated system, and the forcing frequency ω.  

The ASO FRF for a particular investigated reaction system (with defined values of 

reaction order 𝑛 and auxiliary parameters α and γ), can have the same sign in the whole 

frequency range or it can change the sign, depending on whether the solutions of the 

following equation:  

𝐺𝐴2,𝑇𝑇 𝜔,−𝜔 = 0 ⟺Ψ = (𝛾 − 2)𝜔2 − 2𝛼2𝑛2 − 𝛼 4 + 𝛼𝛾 𝑛 +  𝛾 − 2 = 0  

          (4.119) 

𝜔0,𝑇 =  
2𝛼2𝑛2 + 𝛼 4 + 𝛼𝛾 𝑛 − (𝛾 − 2)

𝛾 − 2
 

          (4.120) 

are real or complex-conjugates. 

The solution for will be real if the numerator and denominator under the square 

root have the same signs and complex if these signs are different. Further, the numerator 

depends on the reaction order, and it will change its sign for  

𝑛𝑇1,𝑇2 =
−(4 + 𝛼𝛾)±  𝛼2𝛾2 + 8𝛼𝛾 + 𝛾

4𝛼
 

          (4.121) 

It should be noticed that nT1 and nT2 are always real. If we choose that the solutions are 

𝑛𝑇1 < 𝑛𝑇2, the final results of the sign analysis of the ASO FRF GA2,TT(ω,-ω) are given 

in Table 4.4. The sign of the ASO FRF GP2,TT(ω,-ω) will be always opposite to the sign 

of GA2,TT(ω,-ω) (Eq. (4.98)).  
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Table 4.4 The summary of the sign analysis results for GA2,TT(ω,-ω) and GA2,JJ(ω,-ω) 

(negative sign is desirable), GP2,TT(ω,-ω) and GP2,JJ(ω,-ω) (positive sign is desirable) 

Reaction 

order, n 

Sign of (γ-

2) 

Forcing 

frequency, ω 

GA2,TT(ω,-ω) and 

GA2,JJ(ω,-ω) 

(negative is 

desirable) 

GP2,TT(ω,-ω) and 

GP2,JJ(ω,-ω) 

(positive is 

desirable) 

n<nT1 or 

n>nT2 

positive 

ω<ω0,T positive negative 

ω>ω0,T negative positive 

negative or 

zero 
∀ω positive 

negative 

nT1<n<nT2 

negative 

ω<ω0,T negative positive 

ω>ω0,T positive negative 

positive or 

zero 
∀ω negative 

positive 

n=nT1 or 

n=nT2 

positive ∀ω negative positive 

negative ∀ω positive negative 

zero ∀ω zero zero 

 

4.9.4. Asymmetrical second order FRFs for modulation of temperature of the 

cooling/heating fluid 

Again, the term  in the numerator is the only one that determines the sign of the ASO 

FRFs GA2,JJ(ω,-ω) and GP2,JJ(ω,-ω), and it can change its sign (all other terms are 

positive). As a result, the sign analysis of the ASO FRF GA2,JJ(ω,-ω), is practically 

identical as in the previous case, for the ASO FRF GA2,TT(ω,-ω). Consequently, the signs 

of the ASO FRFs GA2,JJ(ω,-ω) and GP2,JJ(ω,-ω) are the same as the signs of GA2,TT(ω,-ω) 

and GP2,TT(ω,-ω), respectively, and they can be predicted by using the results given in 

Table 4.4. 
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4.9.5. The cross asymmetrical second order terms for simultaneous modulation of 

inlet concentration and inlet temperature 

The sign of the cross ASO term G
*
A2,CT(φ,ω) depends on the sign of the real and 

imaginary parts of the cross ASO FRF GA2,CT(ω,-ω) and the phase difference between 

the two modulated inputs (Eq. (4.64)). As already explained in Chapter II in detail, in 

this case the cross ASO term can always have the desired sign, by appropriate choice of 

the phase difference. The sign analysis of the real and imaginary parts of the cross ASO 

FRF GA2,CT(ω,-ω) will be done and the recommended phase difference which will 

ensure negative sign of the cross ASO term G
*
A2,CT(φ,ω) will be given. Based on signs 

of the real and imaginary parts of the cross ASO FRF GA2,CT(ω,-ω), the sign of the real 

and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω) are also determined considering 

the previously concluded fact that these FRFs have opposite signs, as given with (Eqs. 

(4.103) and (4.104)). Based on this, and the results given in Tables 2.1 and 2.2, the 

recommended phase difference which will give the negative value of the cross ASO 

term G
*
A2,CT(φ,ω) will, in the same time, ensure the positive sign of the cross ASO term 

G
*
P2,CT(φ,ω).  

Signs of Re(GA2,CT(ω,-ω)) and Re(GP2,CT(ω,-ω)) 

The sign of the real part of the cross ASO FRF GA2,CT(ω,-ω) depends on the reaction 

order n, newly introduced auxiliary parameter in the denominator of the cross ASO FRF 

GA2,CT(ω,-ω): 

ℰ𝑅 = 1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼     (4.122) 

and, in some cases, on the forcing frequency ω. 

The real part of the cross ASO FRF GA2,CT(ω,-ω) changes its sign if εR<0, for a 

frequency  

𝜔0,𝐶𝑇 =  −ℰR         (4.123) 

otherwise if εR≥0, it has the same sign in the whole frequency range. 

The results of the sign analysis of Re(GA2,CT(ω,-ω)), as a function of the reaction order 

n, auxiliary parameter εR and forcing frequency, are summarized in Table 4.5. 

According to equation (4.103), the sign of the real part of the ASO FRF GP2,CT(ω,-ω) is 

always the opposite. 
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Table 4.5 The summary of the sign analysis results for the real parts of GA2,CT(ω,-ω) and 

GP2,CT(ω,-ω) 

Reaction 

order, n 
εR 

Forcing 

frequency, ω 
𝑅𝑒 𝐺𝐴2,𝐶𝑇(𝜔,−𝜔)  𝑅𝑒 𝐺𝑃2,𝐶𝑇(𝜔,−𝜔)  

n=0 any ∀ω zero zero 

n>0 

positive or 

zero 
∀ω negative positive 

negative 

ω<ω0,CT positive negative 

ω=ω0,CT zero zero 

ω>ω0,CT negative positive 

n<0 

positive or 

zero 
∀ω positive negative 

negative 

ω<ω0,CT negative positive 

ω=ω0,CT zero zero 

ω>ω0,CT positive negative 

Signs of Im(GA2,CT(ω,-ω)) and Im(GP2,CT(ω,-ω)) 

The sign of Im(GA2,CT(ω,-ω)) depends on the reaction order n and the term:  

ℰ𝐼 = 𝛼 − 2𝛽 − 𝑆𝑡        (4.124) 

The final results of the sign analysis for the imaginary part of FRF GA2,CT(ω,-ω), as a 

function of the reaction order n and the sign of the term εI, are given in Table 4.6, as 

well as the signs of the imaginary part of cross ASO FRF GP2,CT(ω,-ω) (Eq. (4.104)). 
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Table 4.6 The summary of the sign analysis results for the imaginary parts of GA2,CT(ω,-

ω) and GP2,CT(ω,-ω) 

Reaction order, n εI 𝐼𝑚 𝐺𝐴2,𝐶𝑇(𝜔,−𝜔)  𝐼𝑚 𝐺𝑃2,𝐶𝑇(𝜔,−𝜔)  

n=0 any zero zero 

n>0 

zero zero zero 

positive negative positive 

negative positive negative 

n<0 

zero zero zero 

positive positive negative 

negative negative positive 

After determining the signs of the real and imaginary parts of the cross ASO FRFs 

GA2,CT(ω,-ω) or GP2,CT(ω,-ω), from the general case for two-input modulation (Tables 

2.1 or 2.2), the final conclusions for the recommended phase difference which should be 

used in order to obtain the desirable signs can be made. 

The optimal phase difference, will always be in the recommended range of the phase 

difference, which leads to desirable influence of the cross effect. 

4.10. Numerical example NONISO-1 

In order to illustrate the theoretical results obtained by the NFR method for forced 

periodically operated non-isothermal CSTRs, a numerical example is chosen for 

simulation of the ASO FRFs, cross ASO FRFs and analysis of their signs, as well as for 

comparison of the results obtained by the NFR method with numerical integration. The 

analysis is performed for single input modulations of the inlet concentration, flow-rate, 

inlet temperature, temperature of the cooling/heating fluid, for simultaneous modulation 

of inlet concentration and inlet temperature and for simultaneous modulation of inlet 

concentration and flow-rate. This numerical example will be referred as NONISO-1. 
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4.10.1. Definition of the Numerical example NONISO-1 

The values of the model parameters used for simulations are given in Table 4.7. The 

parameters listed in Table 4.7 correspond to an optimized exothermal reactor with a 

first-order reaction, taken from of a textbook by Douglas (Douglas, 1972). 

Table 4.7 Parameters for the non-isothermal CSTR named as Numerical example 

NONISO-1 

Parameter Value 

Reaction order, n 1 

Stochiometric coefficient, νP 1 

Volume of the reactor, V (m
3
) 1.439 

Pre-exponential factor of the reaction rate constant, ko (1/min) 4.3177 × 10
5
 

Activation energy, EA (kJ/kmol) 50242 

Heat capacity, 𝜌𝑐𝑝      (kJ/(m
3
K)) 4186.8 

Heat of reaction, ΔHR (kJ/kmol) -50242 

Steady-state flow-rate, Fs (m
3
/min) 0.0238 

Steady-state inlet concentration, cAi,s (kmol/m
3
) 5 

Steady-state inlet temperature, Ti,s (K) 300 

Steady-state temperature of the coolant, TJ,s (K) 400 

Overall heat transfer coefficient, U (kJ/(m
2
Kmin)) 101.8 

Surface area for heat exchange, Aw (m
2
) 1.073 

For this numerical example and the steady-state input variables defined in Table 4.7, 

only one steady-state solution exists, defined by the outlet steady-state concentrations 

cA,s=1.50 kmol/m
3
 and cP,s=3.50 kmol/m

3
 and the outlet steady-state temperature 

Ts=372.33 K. The conversion of the reactant and yield of the product are xA,s=YP,s=0.70. 
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The residence time for this non-isothermal CSTR corresponding to this steady-state is 

τres,s=60.46 min. It should be pointed out that this steady-state has been optimized 

(Douglas, 1972). 

The values of the auxilliary parameters defined with Eq. (4.8) are: α=2.33, β=-0.11, 

γ=16.23 δ=1.18 and St=1.10. Furthermore, for the investigated non-isothermal CSTR 

defined as Numerical example NONISO-1, the stability parameters are Aps=-1.80 (Eq. 

(4.24)) and Bps=5.16 (Eq. (4.25)). Considering that the stability conditions are satisfied 

for this steady-state (Eq. (4.26)), i.e., Aps<0, Bps>0, the system is stable. This system is 

oscillatory ( 𝐴𝑝𝑠
2 < 𝐵𝑝𝑠 )  with damping coefficient ξ=0.79 (Eq. (4.28)) and natural 

frequency ωn=2.27 (Eq. (4.29)) and it doesn’t exhibit resonant behavior (ξ>0.707). 

For each case of periodic input modulation, our focus will be on the outlet concentration 

of the product or outlet molar flow-rate of the product. The improvement or 

deterioration of the reactor performance will be followed by the change of the product 

yield. 

4.10.2. Simulation results for single input modulation 

In Figure 4.2, the ASO FRFs GP2,CC(ω,-ω), HP2,FF(ω,-ω), GP2,TT(ω,-ω) and GP2,JJ(ω,-ω) 

corresponding to the single input modulation of inlet concentration, flow-rate, inlet 

temperature and temperature of the cooling fluid, respectively, are graphically presented 

as functions of the dimensionless forcing frequency.  
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Figure 4.2 The ASO FRFs GP2,CC(ω,-ω) and HP2,FF(ω,-ω) (up); the ASO FRFs 

GP2,TT(ω,-ω) and GP2,JJ(ω,-ω) (down), as functions of the dimensionless forcing 

frequency 

From Figure 4.2, it can be concluded that: 

 All ASO FRFs tend to asymptotic values for the low-frequency modulation and 

tend to zero for high-frequency modulation, which is in accordance with their 

expressions given with equations (4.34), (4.80), (4.48) and (4.55). 

 It is expected to achieve improvement of the reactor performance for the inlet 

concentration modulation, which is most significant for the low-frequency 

modulation. The simulation results are in accordance with the results of sign 

analysis from which it is expected that the ASO FRF GP2,CC(ω,-ω) is positive in 

the whole frequency range (Table 4.2 and Eq. (4.114)) as nC=0.018 (nC<1 and 

n=1). 

 Single input modulation of the flow-rate will deteriorate the reactor 

performance, which is also in accordance with the result of the sign analysis. 

From Eqs. ((4.82) and (4.83)), Ω1H= -4.12<0 and Ω2H=-245.19<0, and according 
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to the results presented in Table 4.3, the ASO FRF HP2,FF(ω,-ω) is expected to 

be negative in the whole frequency range, which is confirmed in Figure 4.2. 

 Single input modulation of the inlet temperature or temperature in the jacket will 

cause deterioration of the reactor performance for low-frequency range and only 

in a narrow range of higher forcing frequency (ω>2.57) it could lead to 

improvement. The simulation results from Figure 4.2 are in accordance with the 

results of the sign analysis given in the Table 4.4. From Eqs. ((4.120) and 

(4.121)), nT1=-8.97, nT2=0.0003, ω0,T=2.57, and the value of the auxiliary 

parameter γ ((γ-2)=14.23), for ω<ω0,T=2.57, GP2,TT(ω,-ω) and GP2,JJ(ω,-ω) are 

negative while for ω>ω0,T=2.57, these ASO FRFs are positive (where the 

improvement can be expected). 

As illustration, for arbitrary chosen forcing amplitudes: 100% for the inlet 

concentration, 50% for the flow-rate and 10% for the inlet temperature and temperature 

in the jacket, the product yields for all cases of single input modulation, as functions of 

the dimensionless forcing frequency, are given in Figure 4.3. The product yield for 

steady-state (YP,s=0.70) is also given in Figure 4.3. 

 

Figure 4.3 Yield of the product for the steady-state operation, for periodic operation 

with modulation of the inlet concentration (AC=100%), flow-rate (AF=50%), inlet 

temperature and temperature in the jacket (AT=AJ=10%), as functions of the 

dimensionless forcing frequency 
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The highest increase of yield of the product will be obtained for low-frequency inlet 

concentration modulation when the relative increase is approximately 16.58%. The 

increase of the product yield for the inlet temperature modulation or temperature of the 

cooling fluid for the higher forcing frequencies (ω>ω0,T=2.57) is practically 

insignificant. 

Comparison with the results obtained by numerical integration 

The approximate product yields owing to single input modulation of the inlet 

concentration, flow-rate, inlet temperature and temperature of the cooling fluid, 

calculated by the NFR method, are compared with the results of numerical simulation 

for Numerical example NONISO-1. 

In Table 4.8, the results obtained by the NFR method and numerical integration of the 

model equations are given for forcing frequencies ω=0.1, 1 and 10, forcing amplitudes 

for the inlet concentration AC=100%, for the flow-rate AF=50% and for the inlet 

temperature and the temperature of the cooling/heating fluid AT=AJ=10%. The relative 

change of the yield and the relative errors (Eq.(3.59 )) are also given in Table 4.8. 
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Table 4.8 The product yield for single input modulations of the inlet concentration, the 

flow-rate, the inlet temperature or the temperature of the cooling fluid, estimated by 

numerical simulation and by the NFR method, and the relative errors 

Inlet concentration modulation, AC=100% 

ω 
YP,po(%) 

δY (%) 
ΔYP,po(%) 

num NFRM num NFRM 

0.1 79.92 81.61 +2.11 +14.17 +16.58 

1 78.38 80.23 +2.36 +11.97 +14.61 

10 70.03 70.03 0 +0.04 +0.04 

Flow-rate modulation, AF=50% 

ω 
YP,po(%) 

δY (%) 
ΔYP,po(%) 

num NFRM num NFRM 

0.1 62.21 62.18 -0.05 -10.54 -11.17 

1 63.57 63.00 -0.90 -9.18 -10.00 

10 69.95 69.95 0 -0.07 -0.07 

Inlet temperature modulation, AT=10% 

ω 
YP,po (%) 

δY (%) 
ΔYP,po(%) 

num NFRM num NFRM 

0.1 67.52 67.35 -0.25 -3.54 -3.79 

1 68.28 68.01 -0.40 -2.46 -2.84 

10 70.10 70.10 0 +0.14 +0.14 

Modulation of the cooling fluid, AJ=10% 

ω 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 65.18 64.33 -1.30 -6.88 -8.10 

1 66.82 65.76 -1.59 -4.54 -6.06 

10 70.21 70.21 0 +0.29 +0.30 

The results of the numerical simulations confirmed all above presented conclusions 

based on the NFR method and the sign analysis of the ASO FRFs. The values of the 

relative errors show very good agreement between the results of the NFR method and 

numerical integration, despite the fact that non-isothermal CSTR is a system of 

significant nonlinearity.  
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In order to explore the influence of the input amplitude on yield increase and the error 

of the NFR method for single input modulation of inlet concentration the same results 

are given in Table 4.9 as in Table 4.8, but with lower forcing amplitude, for AC=75%. 

As it can be seen from these results, the relative errors significantly decreased with the 

decrease of the forcing amplitude. The yield increase is also considerably lower. 

Table 4.9 Yields of product for single input modulation of inlet concentration with 

forcing amplitude AC=75% estimated by numerical simulation and by the NFR method 

and the relative errors 

Inlet concentration modulation, AC=75% 

ω 
YP,po(%) 

δY (%) 
ΔYP,po(%) 

num NFRM num NFRM 

0.1 75.93 76.53 +0.79 +8.47 +9.33 

1 75.07 75.75 +0.90 +7.24 +8.21 

10 70.02 70.02 0 +0.03 +0.03 

4.10.2. Simulation results for simultaneous modulation of inlet concentration and 

inlet temperature 

Furthermore, the data defined for Numerical example NONISO-1 were used for 

simulations of simultaneous modulation of the inlet concentration and inlet temperature. 

For this case, the real and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω), (Eqs. 

(4.62) and (4.63)), are graphically presented in Figure 4.4. 
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Figure 4.4 The real and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω) as functions 

of the dimensionless forcing frequency 

The simulation results are in accordance with the results of the sign analysis (Table 4.5 

and 4.6): both the real and the imaginary part of the cross ASO FRF GP2,CT(ω,-ω) are 

positive in the whole frequency range (n=1, εR=1.96>0, (Eq. (4.122)), εI=1.46>0 (Eq. 

(4.124))). The recommended phase difference which should be used in order to ensure 

the positive sign of the cross ASO term G
*
P2,CT(φ,ω) is between 0 and π/2 (Table 2.2). 

The optimal phase difference φopt(ω) (Eq. (4.67)) is graphically presented in Figure 4.5, 

and as it can be seen, is in the recommended range. 

For low-frequency modulations, the real part of the cross ASO FRF GP2,CT(ω,-ω) tends 

to an asymptotic value and for high-frequency modulations this function tends zero (Eq. 

(4.62)). On the other hand, the imaginary part of the cross ASO FRF GP2,CT(ω,-ω) tends 

to zero both for low-forcing frequencies and for high-forcing frequencies (Eq. (4.63)). 

Thus, in the case of simultaneous modulation of the inlet concentration and inlet 

temperature, the cross ASO FRF GP2,CT(ω,-ω) tends to zero for high forcing frequencies 

(Eq. (4.60)), as well as the cross ASO term G
*

P2,CT(φ,ω) (Eq. (4.65)). Therefore, in this 

case, the high-forcing frequency modulation has no effect on the reactor performance, 

similarly as for the single input modulations. 
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Figure 4.5 The optimal phase difference for simultaneous modulation of the inlet 

concentration and inlet temperature φopt(ω) as a function of the dimensionless forcing 

frequency 

The ASO FRFs GP2,CC(ω,-ω) and GP2,TT(ω,-ω), which correspond to the single input 

modulation of the inlet concentration and inlet temperature, together with the cross ASO 

term G
*
P2,CT(φopt,ω) for these two inputs, vs. forcing frequency, are presented in Figure 

4.6. 
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Figure 4.6 The ASO FRFs GP2,CC(ω,-ω), GP2,TT(ω,-ω) and the cross ASO term 

G
*
P2,CT(φopt,ω) as functions of the dimensionless forcing frequency 

As expected, the cross ASO term G
*
P2,CT(φopt,ω), when the optimal phase difference is 

used, is positive in the whole frequency range, as is the ASO FRF GP2,CC(ω,-ω) which 

corresponds to the inlet concentration modulation. Nevertheless, since the ASO FRF 

GP2,TT(ω,-ω) which corresponds to inlet temperature modulation is negative for ω<2.57, 

the overall effect of simultaneous modulation of these two inputs on the reactor 

improvement can be estimated only by evaluation of the overall dimensionless DC 

component of the outlet product concentration or by evaluation of the product yield. 

Finally, in Figure 4.7, the yield of the product, obtained for simultaneous modulation of 

the inlet concentration and temperature, with optimal phase difference φopt(ω), and 

forcing amplitudes AC=100% and AT=10%, is graphically presented. For comparison, in 

Figure 4.7, the product yields which correspond to the single input modulations of these 

two inputs with the same forcing amplitudes, as well as for the steady-state operation, 

are also given. 
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Figure 4.7 Yield of the product for the steady-state operation, for single and 

simultaneous modulation of the inlet concentration and inlet temperature, with forcing 

amplitudes AC=100%, AT=10% and optimal phase difference, as functions of the 

dimensionless forcing frequency 

Despite the fact that inlet temperature modulation will lead to decrease of the product 

yield for ω<2.57, simultaneous modulation of the inlet concentration and inlet 

temperature with appropriate choice of the phase difference and the chosen forcing 

amplitudes, AC=100% and AT=10%, will lead to increase of the product yield, which is 

higher than for single input modulation of the inlet concentration. 

It should be pointed out, that for simultaneous modulation of the inlet concentration and 

temperature the forcing amplitudes can also be optimized in order to maximize the 

product yield. Nevertheless, in our analysis we are using arbitrary chosen amplitudes 

which have physically reasonable values. 

Comparison with the results obtained by numerical integration 

The approximate product yields calculated by the NFR method are compared with the 

results of numerical simulation for the Numerical example NONISO-1, for 

simultaneous modulation of the inlet concentration and inlet temperature.  

The comparison is performed for optimal phase differences, for dimensionless forcing 

frequencies ω=0.1, 1 and 10, forcing amplitudes AC=100% and AT=10% (Table 4.10). 
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The relative changes of the yield owing to simultaneous modulation of the inlet 

concentration and inlet temperature and the relative errors (Eq. (3.60)) are also given in 

Table 4.10.  

Table 4.10 Yields of the product for simultaneous modulation of the inlet concentration 

and inlet temperature with forcing amplitudes AC=100% and AT=10% with optimal 

phase differences, estimated by numerical simulation and by the NFR method, and the 

relative errors 

Simultaneous modulation of inlet concentration and inlet temperature, 

AC=100%, AT=10%, φopt 

ω φopt (rad) 
YP,po (%) δY (%) ΔYP,po (%) 

num NFRM num NFRM 

0.1 0.0740 82.28 83.57 +1.57 +17.54 +19.38 

1 0.4586 81.57 85.02 +4.23 +16.53 +21.45 

10 0.1425 70.75 70.75 0 +1.07 +1.07 

The results of numerical simulation for simultaneous modulation of the inlet 

concentration and inlet temperature confirmed the conclusions made by the NFR 

method.  

Again, the same results are given in Table 4.11, for lower forcing amplitude of the inlet 

concentration modulation (AC=75%), in order to compare the relative errors and the 

product yield increase. 

Table 4.11 Yields of the product for simultaneous modulation of the inlet concentration 

and inlet temperature with forcing amplitudes AC=75% and AT=10%, with optimal phase 

differences, estimated by numerical simulation and by the NFR method, and the relative 

error 

Simultaneous modulation of inlet concentration and inlet temperature, 

AC=75%, AT=10%, φopt(ω) 

ω φopt (rad) 
YP,po (%) δY (%) ΔYP,po (%) 

num NFRM num NFRM 

0.1 0.0740 77.41 77.34 -0.09 +10.59 +10.48 

1 0.4586 77.45 78.85 +1.81 +10.65 +12.64 

10 0.1425 70.58 70.58 0 +0.83 +0.83 
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The values of the relative errors show good agreement between the results of NFR 

method and numerical integration. The relative errors are lower for lower forcing 

amplitude of the inlet concentration (Tables 4.10 and 4.11). Lower amplitude also 

results in lower increase of the product yield. 

4.10.3. Simulation results for simultaneous modulation of inlet concentration and 

flow-rate 

The case of periodically operated non-isothermal CSTR when inlet concentration and 

flow-rate are simultaneously modulated is also tested for the Numerical example 

NONISO-1. 

The simulation results will be first given for arbitrary chosen forcing amplitudes of inlet 

concentration and flow-rate, when the optimal phase difference which will maximize 

the product yield is used. Afterwards, the optimal forcing amplitudes and phase 

difference which maximize the product yield will be determined numerically as 

functions of the forcing frequency. Then, the simulation results will be given for these 

optimal forcing parameters. 

The optimal phase difference which maximizes the yield of the product φopt(ω) (Eq. 

(2.84)) for forcing amplitudes AC=100% and AF=50%, is given in Figure 4.8, as a 

function of the dimensionless forcing frequency.  
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Figure 4.8 The optimal phase difference φopt(ω) for simultaneous modulation of the inlet 

concentration and flow-rate with forcing amplitudes AC=100% and AF=50%, as a 

function of the dimensionless forcing frequency 

Furthermore, the yield of the product for simultaneous modulation of the inlet 

concentration and flow-rate with forcing amplitudes AC=100% and AF=50% and the 

corresponding optimal phase difference φopt(ω) is graphically presented in Figure 4.9, as 

a function of dimensionless forcing frequency. In the same Figure, the yields of the 

product corresponding to single input modulations of these two inputs, with the same 

forcing amplitudes, as well as for the steady-state operation, are given. 
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Figure 4.9 Yield of the product for the steady-state operation, for single and 

simultaneous modulation of the inlet concentration and flow-rate with forcing 

amplitudes AC=100% and AF=50%, and the optimal phase difference φopt(ω), vs. 

dimensionless forcing frequency 

The simulation results in this case showed that simultaneous modulation of the inlet 

concentration and flow-rate is inferior then the single input modulation of the inlet 

concentration for low-forcing frequencies. Nevertheless, for high-forcing frequencies, 

contrary to all previous investigated cases of periodic operations, the simultaneous 

modulation of the inlet concentration and flow-rate improves the reactor performance. 

This can also be confirmed from equation (4.94), as it was shown that the real part of 

the cross ASO FRF HP2,CF(ω,-ω) and the cross ASO FRF HP2,CF(ω,-ω) tend to 

following asymptotic value, for high frequency modulation 

lim
𝜔→∞

𝑅𝑒  𝐻𝑃2,𝐶𝐹 𝜔,−𝜔  = lim
𝜔→∞

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 =
𝑛 1 + 𝛼  1 + 𝑆𝑡 

𝐵𝑝𝑠
 

          (4.125) 

From equation (4.97), the cross ASO FRF H
*

P2,CF(φ,ω) for high-forcing frequencies will 

also tend to an asymptotic value: 

lim
𝜔→∞

𝐻𝑃2,𝐶𝐹
∗ (𝜑,𝜔) =

𝑛 1 + 𝛼  1 + 𝑆𝑡 

𝐵𝑝𝑠
cos(𝜑) 

          (4.126) 
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as well as the outlet dimensionless molar flow-rate of the product 

lim
𝜔→∞

𝑁𝑃,𝐷𝐶 = 2  
𝐴𝐶
2
  
𝐴𝐹
2
 
𝑛 1 + 𝛼  1 + 𝑆𝑡 

𝐵𝑝𝑠
cos(𝜑) 

          (4.127) 

From the above presented, the product yield for high-forcing frequencies is given with 

the following expression 

lim
𝜔→∞

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠

1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 
𝑛 1+𝛼  1+𝑆𝑡 

𝐵𝑝𝑠
cos(𝜑)

1 + 2  
𝐴𝐶

2
  

𝐴𝐹

2
 cos(𝜑)

 

          (4.128) 

It can be seen that in this case the product yield will depend on the forcing amplitudes, 

phase difference between the modulated inputs and the characteristics of the system 

(through the reaction order n and auxiliary parameters α, β, γ and St). Also, for high-

forcing frequencies, the reactor performance depends only on the cross effect of the 

simulated inputs. Only in the case of simultaneous modulation of inlet concentration 

and flow-rate the high forcing frequency will have an influence on the reactor 

improvement.  

Furthermore, for simultaneous modulation of the inlet concentration and flow-rate, the 

optimal forcing parameters, i.e. the forcing amplitudes and the phase difference which 

should be used in order to maximize the product yield are graphically presented in 

Figure 4.10. The optimal forcing amplitudes and phase difference were obtained 

numerically from equation (2.77) in Matlab (by using standard fminmax function). 
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Figure 4.10 The optimal forcing amplitudes (up) and the optimal phase difference 

(down) as functions of the dimensionless forcing frequency 

For low-forcing frequencies, the optimized forcing parameters indicated that the single 

input modulation of inlet concentration is recommended, considering that the optimal 

forcing amplitude for the inlet concentration is 1 and for the flow-rate 0. For high-

forcing frequencies, simultaneous modulation of these two inputs is recommended, 

considering the fact that both optimal forcing amplitudes are 1 (Figure 4.10). 

Then, the yield of the product for simultaneous modulation of the inlet concentration 

and flow-rate with optimal forcing amplitudes AC,opt(ω), AF,opt(ω) and optimal phase 

difference φopt(ω) is graphically presented in Figure 4.11, as a function of the 

dimensionless forcing frequency, together with the yields corresponding to single input 

modulations of the inlet concentration and flow-rate, with the same forcing amplitudes. 

The yield of the product for steady-state operation is also graphically presented in 

Figure 4.11. 
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Figure 4.11 Yield of the product for the steady-state operation, for single and 

simultaneous modulation of the inlet concentration and flow-rate with optimal forcing 

amplitudes AC,opt(ω), AF,opt(ω) and optimal phase difference φopt(ω), vs. dimensionless 

forcing frequency 

Comparison with the results obtained by numerical integration 

In Table 4.12, the results of the NFR method are compared with the results of numerical 

integration for simultaneous modulation of inlet concentration and flow rate with 

arbitrary chosen forcing amplitudes AC=100% and AF=50% and with the corresponding 

optimal phase difference φopt(ω) (Eq. (2.84)). 

In Table 4.13, the same results are given, but for the optimal forcing amplitudes 

AC,opt(ω), AF,opt(ω) and the corresponding optimal phase difference φopt(ω) which were 

numerically obtained in such a way to maximize the product yield. 

The results presented in Tables 4.12 and 4.13 are given for dimensionless forcing 

frequencies 0.1, 1 and 10. The product yields together with their relative changes owing 

to periodic operation are given. The relative errors of the NFR method, in comparison 

with the numerical solutions are also given in these Tables. 
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Table 4.12 Product yields of product for simultaneous modulation of the inlet 

concentration and flow-rate with forcing amplitudes AC=100% and AF=50% with the 

corresponding optimal phase differences, estimated by numerical simulation and by the 

NFR method, and the relative errors of the NFR method 

Simultaneous modulation of inlet concentration and flow-rate, 

AC=100%, AF=50%, φopt(ω) 

ω φopt (rad) 
YP,po (%) δY (%) ΔYP,po (%) 

num NFRM num NFRM 

0.1 -0.2361 77.09 75.92 -1.52 +10.13 +8.46 

1 -1.3066 76.26 76.23 -0.04 +8.94 +8.90 

10 0.4867 75.08 74.37 -0.95 +7.26 +6.24 

Table 4.13 Product yields for simultaneous modulation of the inlet concentration and 

flow-rate with optimal forcing amplitudes and optimal phase differences, estimated by 

numerical simulation and by the NFR method and the relative errors of the NFR method 

Simultaneous modulation of inlet concentration and flow-rate 

ω AC(%) AF (%) φopt (rad) 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 

100 

2.05 0 79.92 81.63 +2.14 +14.17 +16.61 

1 0 0 78.38 80.23 +2.36 +11.97 +14.61 

10 100 0.6151 79.13 77.35 -2.25 +13.04 +10.5 

As it can be seen from the results given in Tables 4.12 and 4.13, all conclusions and the 

results obtained by the NFR method are confirmed with the numerical simulation 

results. The NFR method gives very good predictions, considering low values of the 

relative errors which are given in Tables 4.12 and 4.13. 

As illustration, the simulated outlet concentration of the product, flow-rate and outlet 

molar flow-rate of the product from the non-isothermal CSTR defined in this example, 

obtained by numerical integration of the model equations, for simultaneous co-

sinusoidal modulation of the inlet concentration and flow-rate, for optimal forcing 

amplitudes AC,opt=100%, AF,opt=100%, for forcing frequency ω=10 and optimal phase 

difference φ=φopt=0.6151, is given in Figure 4.13. The simulated outlet is given with the 

start-up period. But first, in Figure 4.12, the modulation of the inlet concentration of the 

reactant, flow-rate and the inlet molar flow-rate of the reactant are presented for the 
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defined forcing parameters. In both Figures, the corresponding mean or/and steady-state 

values are given. 

 

Figure 4.12 The modulated inlet concentration of the reactant (top), and flow-rate 

(middle), for simultaneous modulation of these two inputs with dimensionless forcing 

frequency ω=10, optimal forcing amplitudes AC=AF=100%, and optimal phase 

difference φopt=0.6151, and the inlet molar flow-rate of the reactant (bottom) 
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Figure 4.13 The outlet product concentration (top), flow-rate (middle) and the outlet 

molar flow-rate of the product (bottom) for dimensionless forcing frequency ω=10, 

optimal forcing amplitudes AC=AF=100%, and optimal phase difference φopt=0.6151 

4.11. Analysis of influence of the system nonlinearity on the results obtained 

by the NFR method 

Considering that the NFR method can be applied only for weakly nonlinear stable 

systems (Petkovska and Seidel-Morgenstern, 2012) for which the Volterra series is 

convergent, and the fact that non-isothermal CSTR is in principle a system which is 

highly nonlinear, in this Section, the NFR method based on the second order 

approximation will be tested on the systems with different degree of nonlinearity.  

Simulation of the ASO FRFs and the cross ASO FRFs and the analysis, whether, and to 

which extent, it would be possible to increase the product yield in a non-isothermal 

reactor owing to periodic modulation of the inlet concentration and inlet temperature, 

separately or simultaneously, is performed considering three numerical examples: one 

which corresponds to an oscillatory stabile system with strong resonant behavior 

(Numerical example NONISO-2(a)), one which corresponds to an oscillatory stable 
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system with weak resonant behavior (Numerical example NONISO-2(b)) and one which 

corresponds to a non-oscillatory stable system (Numerical example NONISO-2(c)). 

4.11.1. Numerical examples NONISO-2(a), NONISO-2(b), NONISO-2(c) 

The model parameters corresponding to these numerical examples are given in Table 

4.14. All parameters have the same values for all three numerical examples, except the 

heat of reaction. The parameters for Numerical example NONISO-2(a) correspond to a 

numerical example used in a textbook by Marlin (Marlin, 2000). 

Table 4.14 Model parameters for the numerical examples 

Parameter Value 

Reaction order, n 1 

Volume of the reactor, V (m
3
) 1 

Pre-exponential factor of the reaction rate constant, ko, (1/min) 1 ∗ 1010  

Activation energy, EA (kJ/kmol) 69256 

Heat of reaction, ΔHR (kJ/kmol) 

Numerical example 

NONISO-2(a) 

-543920 

Numerical example 

NONISO-2(b) 

-271960 

Numerical example 

NONISO-2(c) 

-54392 

Heat capacity, 𝜌𝑐𝑝      (kJ/K/ m
3
) 4.184 × 103 

Steady-state flow-rate, Fs(m
3
/min) 1 

Steady-state inlet concentration, cAi,s (kmol/ m
3
) 2 

Steady-state inlet temperature, Ti,s (K) 323 

Steady-state temperature of the coolant, TJ,s (K) 365 

Overall heat transfer coefficient multiplied by the heat transfer 

area, UAw (kJ/K/min) 

27337 

Furthermore, the steady state point defined with the outlet concentration of the reactant 

(cA,s) and product (cP,s), product yield (YP,s) and the outlet temperature (Ts), as well as 

the stability parameters (Aps, Bps) (Eqs. (4.24) and (4.25)), the damping coefficient (ξ) 

(Eq. (4.28)), the resonant frequency (ωr) (if existing) (Eq. (4.30)) and the eigenvalues, 

are given in Table 4.15, for all three numerical examples. 
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Table 4.15 The steady-state concentrations, yield and temperature, the stability 

parameters, damping coefficient, resonant frequency and the eigenvalues for the 

numerical examples 

Numerical 

example 

NONISO 

Steady-state point 

Aps Bps ξ ωr 
The 

eigenvalues 
cA,s 

(kmol/m
3
) 

cP,s 

(kmol/m
3
) 

YP,s 

(%) 

Ts 

(K) 

2(a) 0.3466 1.6534 82.67 388.1 
-

0.71 
31.59 0.126 5.53 -0.71±5.58i 

2(b) 0.7356 1.2644 63.22 370.5 
-

2.63 
15.50 0.669 1.28 -2.63±2.93i 

2(c) 1.016 0.9842 49.20 361.3 
-

4.34 
14.02 1.160 / -2.14, -6.54 

The Numerical example NONISO-2(a) is identical to the one used for investigation of 

single inputs modulations in (Nikolić et al. 2014a, 2014b). The reactor is oscillatory 

stable (Aps<0 and Bps>0, Aps
2
<Bps), with a low damping coefficient ξ=0.126 (Nikolić et 

al. 2014a). The non-isothermal CSTR defined as Numerical example NONISO-2(a) is 

highly nonlinear as a consequence of an extremely high heat of reaction (ΔHR=-543920 

kJ/kmol). Also, concerning that the damping coefficient is quite low, the system is 

highly oscillatory with pronounced resonant behavior. 

For the Numerical example NONISO-2(b) the heat of reaction is 2 times lower than for 

the system defined as Numerical example NONISO-2(a). The non-isothermal CSTR 

defined in this way is oscillatory stable with weak resonant behavior with a damping 

coefficient ξ=0.669. The increase of the damping coefficient for Numerical example 

NONISO-2(b) in comparison to the Numerical example NONISO-2(a), means that the 

system is less oscillatory. 

Finally, the Numerical example NONISO-2(c) corresponds to a non-isothermal CSTR 

with heat of the reaction which is 10 times lower than the heat of the reaction for 

Numerical example NONISO-2(a) (ΔHR=-54392 kJ/kmol). The system is stable and 

non-oscillatory with damping coefficient ξ=1.160. The non-isothermal CSTR defined in 

this way does not exhibit resonant behavior. 

The maximal allowed forcing amplitudes of the inlet concentration and inlet 

temperature are assumed to be the same for all numerical examples, AC,max=100%, 

AT,max=15%. The forcing amplitudes are not limited from the aspect of the system 

stability, but are from the aspect of what could be practically realized. E.g. the maximal 
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amplitude of the inlet temperature corresponds to absolute maximal change in the inlet 

temperature of ΔTi,max=48.5 K (Nikolić et al. 2014a, 2014b).  

The analysis of the periodic operations for these numerical examples is done through 

simulation and analysis of the product ASO FRFs and product cross ASO FRFs. 

4.11.2 Simulation results modulation of the inlet concentration and temperature, 

separately and simultaneously 

In this Section, the simulation results of the product concentration ASO FRFs 

corresponding to the single input modulation of inlet concentration and temperature, as 

well as the cross ASO FRFs of product concentration and the yields of product are 

presented for each numerical example. 

In Figure 4.14 the graphical representation of the ASO FRFs GP2,CC(ω,-ω) for each 

numerical example is given vs. dimensionless forcing frequency. 

 

Figure 4.14 The ASO FRFs GP2,CC(ω,-ω) vs. dimensionless forcing frequency, for 

Numerical examples NONISO 2(a), 2(b) and 2(c) 

For each numerical example, the ASO FRFs GP2,CC(ω,-ω) are positive in the whole 

frequency range, meaning that the inlet concentration modulation will lead to increase 

of the product yield in comparison to the steady-state operation. For low-frequencies 

these ASO FRFs tend to asymptotic values, and for high-forcing frequencies they all 

tend to zero.  
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This behavior is in accordance with the sign analysis given in Table 4.2. For reaction 

order n=1 and the values of parameters nC which are for Numerical examples NONISO-

2(a), 2(b) and 2(c), nc=0.43, 0.12 and 0.80, respectively, the positive sign of the 

GP2,CC(ω,-ω) is obtained.  

It is interesting to notice, that the ASO FRF GP2,CC(ω,-ω) for the highly nonlinear 

system, Numerical example NONISO-2(a), has an extensive maximum around the 

corresponding resonant frequency (ωr=5.53). 

In Figure 4.15, the ASO FRFs GP2,TT(ω,-ω) for each numerical example is graphically 

presented vs. dimensionless forcing frequency. 

 

Figure 4.15 The ASO FRFs GP2,TT(ω,-ω) vs. dimensionless forcing frequency for 

Numerical examples NONISO 2(a), 2(b) and 2(c) 

From the results of the sign analysis of the ASO FRF GP2,TT(ω,-ω) which were given in 

Table 4.4 and the parameters (Eqs. (4.120) and (4.121)), given in Table 4.16, 

considering that the reaction order is n=1, it can be predicted that the ASO FRFs 

GP2,TT(ω,-ω) for all numerical examples will change the sign from negative to positive, 

for corresponding forcing frequencies ω0,T (also given in Table 4.16). 

  



133 

 

Table 4.16 The parameters necessary for the sign analysis of the ASO FRF GP2,TT(ω,-ω) 

Numerical 

example NONISO- 

nT1 nT2 γ-2 ω0,T 

2(a) -11.15 0.001 19.46 5.24 

2(b) -12.42 0.01 20.48 1.69 

2(c) -13.63 0.03 21.0 0.55 

The results of the sign analysis are again confirmed with the simulation results which 

are given in Figure 4.15. The results of the sign analysis and the simulation results 

indicate that for each numerical example, the increase of product yield is possible for 

the forcing frequencies which are higher than corresponding value of forcing frequency 

ω0,T. 

Again, it is interesting to notice the existence of an extensive maximum for Numerical 

example NONISO-2(a), for the forcing frequency which is near the resonant one 

(ωr=5.53). Also, for Numerical example NONISO-2(b), a maximum exists for the 

forcing frequency which is near to corresponding resonant frequency (ωr=1.28), but not 

as extensive as for Numerical example NONISO-2(a). 

A graphical representation of the real and imaginary parts of the cross ASO FRFs 

GP2,CT(ω,-ω) as functions of the dimensionless forcing frequency is given in Figure 

4.16, for all three numerical examples. 
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Figure 4.16 The real and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω), as 

functions of the dimensionless frequency, for Numerical examples NONISO-2(a), 

NONISO-2(b) and NONISO-2(c) 

For Numerical example NONISO-2(a), the real and imaginary parts of GP2,CT(ω,-ω) 

both have extensive extremes near the resonant frequency (ωr=5.53). For Numerical 

example NONISO-2(b), the real and imaginary parts of GP2,CT(ω,-ω) again have 

extremes near the resonant frequency (ωr=1.28), but not as extensive as for Numerical 

example NONISO-2(a). For the non-oscillatory stable non-isothermal CSTR, i.e. 

Numerical example NONISO-2(c), the real part of the cross ASO FRF GP2,CT(ω,-ω) has 

no extreme values and the imaginary part of this function has a minimum. 

The results of the sign analysis, in accordance with Table 4.5 and Table 4.6, as well as 

the values of the auxiliary parameters εR (Eq. (4.122)), ω0,CT (Eq. (4.123)) and εI 

(Eq.(4.124)) necessary for the sign analysis, are summarized in Table 4.17, with respect 

that the chemical reaction is first order (n=1). The results of the sign analysis of the real 

and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω) are confirmed with the 

simulation results, presented in Figure 4.16. 
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Table 4.17 The results of the sign analysis of the real and imaginary parts of GP2,CT(ω,-

ω), for the three numerical examples 

Numerical 

example 

NONISO- 

εR ω0,CT 

Forcing 

frequency, 

ω 

Re(GP2,CT(ω,

-ω)) 
εI 

Im(GP2,CT(ω,-

ω)) 

Recommended 

range of φ 

2(a) -19.63 4.43 

ω<4.43 negative 

-

0.65 
negative 

−𝜋 < 𝜑 < −
𝜋

2
 

ω=4.43 zero −𝜋 < 𝜑 < 0 

ω>4.43 positive −
𝜋

2
< 𝜑 < 0 

2(b) 10.70 / ∀ω positive 
-

4.37 
negative −

𝜋

2
< 𝜑 < 0 

2(c) 13.90 / ∀ω positive 
-

5.50 
negative −

𝜋

2
< 𝜑 < 0 

The phase differences which should be used in order to achieve the positive value of the 

cross term G
*
P2,CT(φ,ω), with respect to the signs of the real and imaginary parts of the 

cross ASO FRF GP2,CT(ω,-ω), according to Table 2.2, are also given in Table 4.17. 

The optimal phase differences φopt(ω) (defined by Eq. (4.67)), for all three numerical 

examples, are graphically presented in Figure 4.17. The optimal phase differences are in 

the recommended ranges which are given in Table 4.17. 

 

Figure 4.17 The optimal phase differences as functions of the dimensionless forcing 

frequency, for Numerical examples NONISO-2(a), NONISO-2(b) and NONISO-2(c) 
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The cross ASO terms corresponding to the optimal phase differences G
*
P2,CT(φopt,ω), are 

graphically presented in Figure 4.18, for Numerical examples NONISO-2(a), NONISO-

2(b) and NONISO-2(c), respectively.  

 

Figure 4.18 The cross ASO terms corresponding to the optimal phase differences, 

(G
*
P2,CT(φopt,ω)) as functions of the dimensionless forcing frequency, for Numerical 

examples NONISO-2(a), NONISO-2(b) and NONISO-2(c)  

From Figures 4.14, 4.15 and 4.18 we can conclude the following: 

 For Numerical example NONISO-2(a), similarly to the ASO FRFs which 

correspond to the single input modulations, the cross ASO term G
*
P2,CT(φopt,ω) 

has an extensive maximum close to the resonant frequency ωr=5.53, where the 

highest improvement is expected.  

 For Numerical example NONISO-2(b), the cross ASO term (G
*
P2,CT(φopt,ω)) has 

a maximum in the vicinity of the resonant frequency ωr=1.28, but not as 

extensive as for Numerical example NONISO-2(b).  

 For the non-oscillatory non-isothermal CSTR defined as Numerical example 

NONISO-2(c), the cross ASO term G
*
P2,CT(φopt,ω) has no extremes. 

 For all three numerical examples, the ASO FRFs GP2,CC(ω,-ω) are positive in the 

whole frequency range (Nikolić et al. 2014a), while GP2,TT(ω,-ω) changes its 

sign from negative to positive. GP2,TT(ω,-ω) is negative for ω<ω0,T and positive 

for ω>ω0,T  (Nikolić et al. 2014b). The forcing frequency for which these ASO 
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FRFs change its signs is ω0,T=5.24 for Numerical example NONISO-2(a), 

ω0,T=1.69 for Numerical example NONISO-2(b) and ω0,T=0.55 for Numerical 

example NONISO-2(c). 

 The cross ASO terms for the optimal phase G
*
P2,CT(φopt,ω) are, as expected, 

positive in the whole frequency range for all three numerical examples (Figure 

4.19). 

 For forcing frequencies ω>ω0,T both product ASO FRFs corresponding to the 

single input modulations GP2,CC(ω,-ω) and GP2,TT(ω,-ω) are positive, which 

guaranties that in this frequency range simultaneous modulation of these two 

inputs will results with yield increase. 

 For ω<ω0,T, since the ASO FRFs GP2,TT(ω,-ω) are negative, it is necessary to 

evaluate the overall DC components of the outlet product concentration or the 

corresponding yield of the product in order to reveal whether improvement is 

possible in this frequency range. 

The yield of the product for Numerical example NONISO-2(a), obtained when the inlet 

concentration and inlet temperature are modulated, separately or simultaneously 

modulated with the optimal phase difference, for forcing amplitudes AC=50%, AT=10%, 

as functions of the dimensionless forcing frequency, are graphically presented in Figure 

4.19. The yield of product in steady-state is also given in Figure 4.19 for comparison. 

The same results are given for the Numerical example NONISO-2(b) in Figure 4.20, 

and for Numerical example NONISO-2(c), in Figure 4.21. 
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Figure 4.19 The product yield for steady-state operation, for periodic modulation of the 

inlet concentration with forcing amplitude AC=50%, for periodic modulation of the inlet 

temperature with forcing amplitude AT=10% and for simultaneous modulation of these 

two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for 

Numerical example NONISO-2(a) 
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Figure 4.20 The product yield for steady-state operation, for periodic modulation of the 

inlet concentration with forcing amplitude AC=50%, for periodic modulation of the inlet 

temperature with forcing amplitude AT=10% and for simultaneous modulation of these 

two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for 

Numerical example NONISO-2(b) 
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Figure 4.21 The product yield for steady-state operation, for periodic modulation of the 

inlet concentration with forcing amplitude AC=50%, for periodic modulation of the inlet 

temperature with forcing amplitude AT=10% and for simultaneous modulation of these 

two inputs with the optimal phase difference, vs. dimensionless forcing frequency, for 

Numerical example NONISO-2(c) 

From Figures 4.19-4.21 it can be concluded that: 

 For all three numerical examples, it is possible to achieve higher increase of 

conversion when both inputs are periodically modulated with optimal phase 

difference, in comparison to the single input modulations (with same forcing 

amplitudes). 

 Even for forcing frequencies for which it is not possible to achieve higher yield 

of product by modulation of the inlet temperature (ω<ω0,T, GP2,TT(ω,-ω)<0), if 

inlet concentration and inlet temperature are simultaneously modulated with 

forcing amplitudes AC=50%, AT=10% and the optimal phase difference, it is 

possible to achieve increase of the product yield. This increase of the product 

yield is higher in comparison to the single input modulation of inlet 

concentration. 

 The increase of the product yield for two-input modulation around the resonant 

frequency for Numerical example NONISO-2(b) is significantly lower that it is 
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for Numerical example NONISO-2(a), around its resonant frequency. 

Nevertheless, the difference between the product yield increase for Numerical 

examples NONISO-2(a) and NONISO-2(b) at low-frequencies are much less 

significant than around the resonant frequency. The increase of the product yield 

for Numerical example NONISO-2(c) (non-oscillatory CSTR) is lower than for 

Numerical examples NONISO-2(a) and NONISO-2(b). This means that higher 

improvement can be expected for the highly nonlinear systems, which is in 

accordance with the previous investigations (Ritter and Douglas, 1970). 

 For Numerical example NONISO-2(a), for inlet concentration modulation or 

simultaneous modulation of inlet concentration and inlet temperature, the 

product yields have maximums around the resonant frequency (ωr=5.53). For 

the case of simultaneous modulation of these two-inputs for the forcing 

frequency which is near to the resonant one, the product yield, based on the NFR 

method, is predicted to be higher than 1, which is physically impossible.  

 For Numerical example NONISO-2(b), the product yield has a maximum for 

simultaneous modulation of inlet concentration and inlet temperature for forcing 

frequencies which are near to the resonant one (ωr=1.28). 

 For Numerical example NONISO-2(b), the product yield for simultaneous 

modulation of inlet concentration doesn’t have any extremes. 

4.11.3. Comparison with results obtained by numerical integration 

The product yields predicted by application of the NFR method are compared with the 

results obtained by numerical integration of the model equations, for the periodic 

modulation of the inlet concentration and inlet temperature, separately and 

simultaneously (with the optimal phase difference). The model equations were 

numerically solved in their original, dimensional form (Nikolić et al, 2014a) by using a 

standard Matlab function ode15s. The inputs were modulated in a co-sinusoidal way 

around the previously established steady-state. 

The results of numerical integration and of the NFR method are compared for 

Numerical examples: 

 NONISO-2(a) for 2 different combinations of forcing amplitudes, AC=50% and 

25% for inlet concentration (corresponding to absolute changes of inlet 

concentration of 1 kmol/m
3
 and 0.5 kmol/m

3
 respectively) and AT=10% and 5% 

for inlet temperature (corresponding to absolute changes of inlet temperature of 



142 

 

32.3 K and 16.2 K respectively) and for 12 different forcing frequencies, 

including the resonant one. 

 NONISO-2(b) for forcing amplitudes AC=50% and AT=10% for 8 different 

forcing frequencies including the resonant one; 

 NONISO-2(c) for forcing amplitudes AC=50% and AT=10% for 3 different 

forcing frequencies 

In order to compare the agreement between the results obtained by the NFR method and 

by numerical integration, the relative errors were calculated. The yield of the product 

obtained by numerical simulation is considered to be exact. 

The results of numerical integration and the corresponding results of the NFR method 

for Numerical example NONISO-2(a) are given in Tables 4.18 and 4.19, for Numerical 

example NONISO-2(b) in Table 4.20 and for Numerical example NONISO-2(c) in 

Table 4.21. In Tables 4.18-4.21, the yields of the product and the relative errors δY (Eq. 

(3.59)) are given in percentages. The steady-state yields were 82.67 %, 63.22 % and 

49.20 %, respectively (Table 4.15). 

Table 4.18 The product yield for separate and simultaneous modulation of the inlet 

concentration and temperature with forcing amplitudes AC=50% and AT=10%, estimated 

by numerical simulation and by the NFR method, and the relative errors, for Numerical 

example NONISO-2(a) 

ω 

Inlet concentration 

modulation, AC=50% 

Inlet temperature 

modulation, AT=10% 

Simultaneous modulation 

AC=50%, AT=10% 

YP 
δY 

YP 
δY φopt 

YP 
δY 

num NFRM num NFRM num NFRM 

0.1 84.05 83.69 -0.43 82.27 82.28 +0.01 -3.14 84.32 84.29 -0.04 

1 84.15 83.75 -0.48 82.27 82.27 0 -3.11 84.37 84.36 -0.01 

2 84.24 83.99 -0.30 82.24 82.24 0 -3.06 84.32 84.59 +0.32 

3 84.25 84.59 +0.40 82.21 82.17 -0.05 -2.96 83.83 85.13 +1.55 

4 84.16 86.35 +2.60 82.08 82.08 0 -2.52 83.31 86.58 +3.92 

5 84.51 93.47 +10.60 82.15 82.30 0.18 -0.55 84.42 96.51 +14.32 

5.53 84.58 98.86 +16.88 82.42 83.39 +1.18 -0.32 84.83 109 +28.49 

6 84.53 93.69 +10.84 82.77 84.01 +1.50 -0.24 85.06 104.35 +22.68 

7 84.12 85.19 +1.27 83.22 83.44 +0.26 -0.16 85.25 89.72 +5.24 

8 83.46 83.53 +0.08 83.08 83.11 +0.04 -0.12 85.04 85.90 +1.01 

9 83.05 83.06 +0.01 82.96 82.97 +0.01 -0.10 84.40 84.56 +0.19 

10 82.88 82.88 0 82.88 82.88 0 -0.08 83.89 83.93 +0.05 
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Table 4.19 The product yield for separate and simultaneous modulation of the inlet 

concentration and temperature with forcing amplitudes AC=25% and AT=5%, estimated 

by numerical simulation and by the NFR method, and the relative errors, for Numerical 

example NONISO-2(a) 

ω 

Inlet concentration 

modulation, AC=25% 

Inlet temperature 

modulation, AT=5% 

Simultaneous modulation 

AC=25%, AT=5% 

YP 
δY 

YP 
δY φopt 

YP 
δY 

num NFRM num NFRM num NFRM 

0.1 82.95 82.93 -0.02 82.57 82.57 0 -3.14 83.08 83.08 0 

1 82.98 82.94 -0.05 82.57 82.57 0 -3.11 83.10 83.09 -0.01 

2 83.05 83.00 -0.06 82.56 82.56 0 -3.06 83.15 83.15 0 

3 83.05 83.15 +0.12 82.55 82.55 0 -2.96 83.11 83.29 +0.22 

4 83.17 83.59 +0.50 82.52 82.52 0 -2.52 83.12 83.65 +0.64 

5 83.52 85.37 +2.21 82.55 82.58 +0.04 -0.55 83.24 86.13 +3.47 

5.53 83.65 86.72 +3.67 82.68 82.85 +0.20 -0.32 83.59 89.25 +6.77 

6 83.65 85.43 +2.13 82.83 83.01 +0.22 -0.24 83.82 88.09 +5.09 

7 83.22 83.30 +0.10 82.85 82.86 +0.01 -0.16 83.91 84.43 +0.62 

8 82.88 82.89 +0.01 82.78 82.78 0 -0.12 83.43 83.48 +0.06 

9 82.77 82.77 0 82.74 82.75 +0.01 -0.10 83.13 83.14 +0.01 

10 82.72 82.72 0 82.72 82.72 0 -0.08 82.98 82.99 +0.01 

Table 4.20 The product yield for separate and simultaneous modulation of the inlet 

concentration and temperature with forcing amplitudes AC=50% and AT=10%, estimated 

by numerical simulation and by the NFR method, and the relative errors, for Numerical 

example NONISO-2(b) 

ω 

Inlet concentration 

modulation, AC=50% 

Inlet temperature 

modulation, AT=10% 

Simultaneous modulation 

AC=50%, AT=10% 

YP 
δY 

YP 
δY φopt 

YP 
δY 

num NFRM num NFRM num NFRM 

0.1 65.97 66.06 +0.14 62.91 62.09 -1.30 -0.04 67.28 67.57 +0.43 

1 65.98 66.09 +0.17 63.02 63.01 -0.02 -0.36 67.55 68.03 +0.71 

1.28 65.99 66.09 +0.15 63.09 63.08 -0.02 -0.43 67.69 68.29 +0.89 

2 66.05 66.03 -0.03 63.34 63.34 0 -0.54 68.22 69.04 +1.20 

3 65.66 65.56 -0.15 63.74 63.79 +0.08 -0.59 68.98 69.45 +0.68 

4 64.80 64.76 -0.06 63.98 64.02 +0.06 -0.58 68.36 68.50 +0.20 

5 64.10 64.09 -0.02 63.96 63.98 +0.03 -0.55 66.99 67.04 +0.07 

10 63.29 63.29 0 63.48 63.48 0 -0.38 64.04 64.04 0 
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Table 4.21 The product yield for separate and simultaneous modulation of the inlet 

concentration and temperature with forcing amplitudes AC=50% and AT=10%, estimated 

by numerical simulation and by the NFR method, and the relative errors, for Numerical 

example NONISO-2(c) 

ω 

Inlet concentration 

modulation, AC=50% 

Inlet temperature 

modulation, AT=10% 

Simultaneous modulation 

AC=50%, AT=10% 

YP 
δY 

YP 
δY φopt 

YP 
δY 

num NFRM num NFRM num NFRM 

0.1 49.58 49.59 +0.02 49.17 49.17 0 -0.04 51.43 51.45 +0.04 

1 49.51 49.51 0 49.28 49.28 0 -0.35 51.31 51.33 +0.04 

10 49.21 49.21 0 49.38 49.38 0 -0.45 49.61 49.61 0 

From the results given in Tables 4.18-4.21, it can be concluded that: 

 For Numerical example NONISO-2(a), good prediction by the NFR method is 

obtained only for frequencies which are not near to the resonant frequency. For 

higher forcing amplitudes (AC=50%, AT=10%) the relative errors around the 

resonant frequency are significant for single input modulation of inlet 

concentration and for simultaneous modulation of two defined inputs. For lower 

forcing amplitudes (AC=25%, AT=5%) the relative errors are also highest for the 

forcing frequencies which are near to the resonant one for inlet concentration or 

simultaneous two-input modulation. Nevertheless, the relative errors for forcing 

amplitudes (AC=25%, AT=5%) are significantly lower than for forcing 

amplitudes (AC=50%, AT=10%) and it can be concluded that the predictions of 

the NFR method for Numerical example NONISO-2(a) for forcing amplitudes 

(AC=25%, AT=5%) are good.  

 For Numerical example NONISO-2(b), excellent agreement between the 

approximate (NFR method) and exact (numerical) solutions are obtained in the 

whole frequency range, in spite the fact that the forcing amplitudes are high. The 

relative errors are higher for forcing frequencies around the resonant one but 

even in this case the maximal relative error is 1.20%.  

 For Numerical example NONISO-2(c), excellent agreement between the 

approximate (NFR method) and exact (numerical) solutions are obtained in the 

whole frequency range. The relative errors are insignificant.  

 The NFR method based on the second order approximation gives better 

prediction for the oscillatory stable non-isothermal CSTR with weak resonant 



145 

 

behavior (Numerical example NONISO-2(b)) in comparison to the oscillatory 

stable non-isothermal CSTR with strong resonant behavior (Numerical example 

NONISO-2(a)), which is highly nonlinear. The disagreements which were 

observed for the non-isothermal CSTRs which exhibit resonant behavior 

(Numerical examples NONISO-2(a) and NONISO-2(b)) disappeared for the 

non-oscillatory non-isothermal CSTR (Numerical example NONISO-2(c)). 

4.11.4. Explanation of the largest disagreement observed around the resonant 

frequency (Numerical example NONISO-2(a)) 

The explanation of the disagreement between the results of numerical simulations and 

the NFR method, for forcing frequencies near the resonant frequency for the Numerical 

example NONISO-2(a), lies in the fact that the system nonlinearity becomes more 

pronounced around the resonant frequency (Ritter and Douglas, 1970), and the second 

order approximation, used in our NFR method (Eq. (1.37)), is not good enough. In the 

case of more pronounced nonlinearity, a considerable amount of higher harmonics is 

expected in the system output. In order to investigate the influence of higher order 

nonlinearities, harmonic analysis of the outlet concentration of the product, obtained by 

numerical simulation is performed, by Fourier analysis (Nikolić et al., 2014a). 

For illustration, the amplitude spectrum of the outlet product concentration, for the case 

of simultaneous modulation of inlet concentration and inlet temperature, with a forcing 

frequency equal the resonant frequency (ω=5.53) and with forcing amplitudes AC=50% 

and AT=10%, is graphically presented in Figure 4.22. In this case, the relative error 

between the product yield estimated by the NFR method and calculated by numerical 

integration was high (δY=28.49%, Table 4.18). For comparison, the amplitude spectrum 

obtained with the same forcing frequency, but with lower forcing amplitudes, AC=25% 

and AT=5%, is also presented in Figure 4.23, for which the relative error was δY=6.77% 

(Table 4.19).  
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Figure 4.22 Amplitude spectrum of the outlet concentration of the product when the 

inlet concentration and inlet temperature are periodically modulated in a co-sinusoidal 

way, with forcing amplitudes AC=50% and AT=10%, and for resonant frequency 

(ω=5.53) 

 

Figure 4.23 Amplitude spectrum of the outlet concentration of the product when the 

inlet concentration and inlet temperature are periodically modulated in the co-sinusoidal 

way, with forcing amplitudes AC=25% and AT=5% and for resonant frequency (ω=5.53) 

From Figure 4.22, it is evident that for the resonant frequency and high forcing 

amplitudes, the output exhibits a considerable amount of higher harmonics with large 
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gains, which means that the nonlinearities of the orders higher than two should not be 

neglected. In the DC component which is of our interest, these higher nonlinearities are 

defined by the forth, sixth, etc., ASO FRFs (G4(ω,ω,-ω,-ω), G6(ω,ω,ω,-ω,-ω,-ω),…) 

(Eq. (1.15)), which were neglected in our approximation of the DC component (Eq. 

(1.19)). As a consequence, the disagreement between the NFR method and numerical 

integration is significant. Therefore, in order to evaluate the average output 

concentration for high amplitudes of highly nonlinear system near the resonant 

frequency more accurately, for the system which exhibits resonance, it would be 

necessary to derive the higher order FRFs and take them into account (Nikolić et al., 

2014a). 

For the resonant frequency and lower forcing amplitudes (AC=25% and AT=5%) the 

output still exhibits a considerable amount of higher harmonics, but with lower gains in 

comparison to previous case (Figure 4.23), which results in lower relative error between 

the results of the NFR method and numerical integration. 

In Figure 4.24, the amplitude spectrum of the outlet product concentration for 

simultaneous modulation of inlet concentration and inlet temperature with high forcing 

amplitudes (AC=50% and AT=10%) but with forcing frequency which is not near to the 

resonant one (ω=10) is graphically presented. In this case, the relative error between the 

results of the NFR method and numerical simulation was 0.05% (Table 4.18). As it can 

be seen, the higher order harmonics are negligible and in this case, Eq. (1.37), which 

takes into account only the contribution of second order FRFs in the DC component, 

gives an excellent estimate of the product yield change. 
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Figure 4.24 Amplitude spectrum of the outlet concentration of the product when the 

inlet concentration and inlet temperature are periodically modulated in a co-sinusoidal 

way, with forcing amplitudes AC=50% and AT=10% and dimensionless forcing 

frequency ω=10 

As a physical explanation, we can say that, in principle, there are two major sources of 

nonlinearity in the non-isothermal CSTR: the reaction term, which is a nonlinear 

function of concentration and temperature, and the coupling between the heat and 

material balances. In the Numerical example NONISO-2(a), the reaction order is n=1, 

but, owing to the values of heat of reaction and energy activation (Table 4.14), the 

temperature dependence of the reaction rate constant and the coupling effect are very 

strong, resulting with high degree of nonlinearity which can be observed in Figure 4.22. 

The nonlinearity is more pronounced around the resonant frequency, where the coupling 

effect is strongest, which explained the results presented in Figures 4.22-4.24 (Nikolić et 

al., 2014b). 

Harmonic analysis of the numerical results obtained for single input modulation of inlet 

concentration modulation for which the relative errors are also significant give very 

similar results and the same conclusions can be drawn. 
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4.12. Summary of Chapter IV 

In this Chapter, the nonlinear frequency response method was used for evaluation of 

possible improvements of forced periodically operated non-isothermal CSTRs with 

homogeneous, irreversible, simple nth order reaction A→νPP.  

Single input modulations were analyzed, when inlet concentration, flow-rate, inlet 

temperature and temperature of the cooling/heating fluid were modulated. Simultaneous 

modulation of inlet concentration and inlet temperature and simultaneous modulation of 

inlet concentration and flow-rate were also investigated.  

The asymmetrical second order frequency response functions which correlate the 

corresponding outlet concentration or molar flow-rate of the reactant and product for 

each case of single input modulation were derived and analyzed. Then, the cross 

asymmetrical second order frequency response functions for simultaneous modulation 

of two inputs were derived and analyzed.  

It was concluded that the high-frequency single input modulations had no influence on 

the reactor performance and that for the low-frequency modulation the ASO FRFs 

corresponding to single input modulation, tended to asymptotic values. For the 

simultaneous modulation of inlet concentration and inlet temperature the same 

conclusions were drawn. Nevertheless, simultaneous modulation of inlet concentration 

and flow-rate has influence on the reactor performance in the whole frequency range, 

including the high-frequency modulations. It was concluded that analysis of only the 

reactant or only product ASO FRFs was enough. Also, it was concluded that the phase 

difference between the two modulated inputs had an important and decisive influence 

on the reactor performance. These results are analogous to the ones obtained for 

isothermal CSTRs (Chapter III). 

The sign analysis of the ASO FRFs which correspond to single input modulations of 

each input, as well as for simultaneous modulation of inlet concentration and inlet 

temperature, was performed. The summary of the sign analysis of the ASO FRFs were 

given, in regard to the reactor parameters and the forcing frequency. 

The results of the NFR method were tested on several numerical examples, Numerical 

example NONISO-1 and Numerical example NONISO-2(a), 2(b) and 2(c).  

The Numerical example NONISO-1 corresponded to an optimized exothermal reactor 

with first-order reaction taken from the literature (Douglas, 1972). The NFR method 

predicted that single input modulation of the inlet concentration would lead to increase 
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of the product yield, while the flow-rate modulation would lead to its decrease. The inlet 

temperature modulation and modulation of the cooling fluid would lead to insignificant 

improvement and only in a narrow range of higher forcing frequencies. All conclusions 

were made by evaluation of the corresponding ASO FRF. The results of the NFR 

method were compared with numerical integration results and good agreement between 

them was obtained. The results of the sign analysis have correctly predicted the signs of 

the ASO FRFs and therefore the possible improvements. 

In the second numerical example, NONISO-2, the NFR method was tested on three 

non-isothermal CSTRs: one oscillatory stable with strong resonant behavior (NONISO-

2(a)), one oscillatory stable with weak resonant behavior (NONISO-2(b)) and one non-

oscillatory stable (NONISO-2(c)). The analysis was performed for modulation of inlet 

concentration and inlet temperature, separately and simultaneously. In summary, we 

could say that the NFR method based on the second order approximation gave 

satisfactory results for over-damped and under-damped reactors with high and moderate 

damping coefficients, even for high input amplitudes, while it failed for low damping 

coefficients. The next step in our research would be to define exact criteria for the range 

of dumping coefficients for which the method gives reasonable approximations. This 

issue is directly related to defining the limiting level of non-linearity and the acceptable 

range of input amplitudes for using the second order approximation of NFR method and 

finding in which cases it would be necessary to introduce the forth, and possibly higher 

order FRFs, in order to expand that range. These issues need to be analyzed together 

with analysis of convergence of the Volterra series (Nikolić et al., 2015). 
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V Application of nonlinear frequency response method for 

evaluation of periodically operated adiabatic non-isothermal 

CSTRs 

5.1. Forced periodic operations of adiabatic non-isothermal CSTRs 

The adiabatic CSTR is a special case of the non-isothermal CSTR, for which the reactor 

is operating in adiabatic condition, meaning that there is no heat transfer between the 

reactor and the environment (Fogler, 2005). Therefore, the NFR analysis of the 

adiabatic CSTR can be derived directly from the already derived FRFs of the non-

isothermal CSTR, by setting all the terms and auxiliary parameters which are related to 

the heat exchange with the cooling/heating medium, i.e., the auxiliary parameters St and 

δ to zero (St=0, δ=0). 

For the adiabatic non-isothermal CSTR (in further text named only adiabatic CSTR), in 

comparison to the general non-isothermal CSTR with heat exchange with the 

cooling/heating fluid, the inputs which can be periodically modulated are the same (inlet 

concentration, flow-rate, inlet temperature), except the temperature of the 

cooling/heating fluid. 

5.2. Mathematical model 

The definitions of the dimensionless variables are the same as they are for the 

isothermal and general non-isothermal CSTRs (Tables 3.1 and 4.1), except the 

dimensionless variable for the temperature of the heating/cooling fluid θJ which can be 

equated to zero in the dimensionless model equation of energy balance of the non-

isothermal CSTR, equation (4.17). The dimensionless mass balance equations for 

reactant and product are the same as for the general non-isothermal CSTR (given with 

Eqs. (4.15) and (4.16)) and the dimensionless energy balance is reduced to the following 

equation: 

𝑑𝜃

𝑑𝜏
=  1 + 𝛽 Φ𝜃𝑖 +  1 + 𝛽 𝜃𝑖 −  1 + 𝛽𝛾 𝜃 − 𝑛𝛽𝐶𝐴 + 𝛽Φ−Φ𝜃

− 𝛽  𝑛𝛾𝐶𝐴𝜃 +  
𝛾2

2
− 𝛾 𝜃2 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2  

           (5.1) 
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For the adiabatic CSTR, it is possible to modulate the inlet concentration (CAi), flow-

rate (Φ) and inlet temperature (θi), separately and simultaneously, two-by-two. Here the 

analysis of forced periodically operated adiabatic CSTR by NFR method is done for 

single input modulation of inlet concentration, flow-rate and inlet temperature, for 

simultaneous modulation of inlet concentration and inlet temperature and for 

simultaneous modulation of inlet concentration and flow-rate. 

5.3. Stability analysis 

The stability parameters for the adiabatic CSTR can be deducted from the stability 

parameters of the general non-isothermal CSTR, by setting St=0, to the following 

expressions: 

𝐴𝑝𝑠 = −
(2 + 𝑛𝛼 + 𝛽𝛾)

2
 

           (5.2) 

𝐵𝑝𝑠 = 1 + 𝑛𝛼 + 𝛽𝛾         (5.3) 

Furthermore, it can be concluded that the adiabatic CSTR will be stable always when 

the stability parameter Bps is positive (Bps>0), considering the fact that stability 

parameters for the adiabatic CSTR, Aps and Bps are correlated, as follows: 

𝐴𝑝𝑠 = −
(1 + 𝐵𝑝𝑠)

2
 

           (5.4) 

It can also be concluded that the adiabatic CSTR will be oscillatory for the case when 

the stability parameter is between 0 and 1 (0<Bps<1). Otherwise, for Bps>1, the reactor 

will be non-oscillatory. 

The natural frequency (ωn) is given with the same expression as for the general non-

isothermal CSTR (Eq. 4.29) and the damping coefficient (ξ), for adiabatic CSTR 

becomes: 

𝜉 =
1

2

 1 + 𝐵𝑝𝑠 

 𝐵𝑝𝑠
 

           (5.5) 



153 

 

5.4. Definition of the frequency response functions 

The definitions of the FRFs are the same as for the general non-isothermal CSTR, 

except the FRFs which correlate the output with the modulation of the temperature of 

the cooling/heating fluid, which does not exist. 

The frequency response functions for periodically operated adiabatic non-isothermal 

CSTR can be derived by implementing the derivation procedure of the NFR method as 

for isothermal and non-isothermal CSTR. Nevertheless, it is easier to use already 

derived expressions for non-isothermal CSTR by equating the above mentioned 

auxiliary parameters (St and δ) to zero in each expression of frequency response 

functions and to get the ASO FRFs for adiabatic CSTR.  

In the following Section, the final expressions for the reactant and product G FRFs for 

single input modulation of inlet concentration, flow-rate and inlet temperature, as well 

as reactant and product cross G ASO FRFs for simultaneous modulation of inlet 

concentration and inlet temperature and for simultaneous modulation of inlet 

concentration and flow-rate will be given for adiabatic CSTR. The reactant and product 

H ASO FRFs will be given for flow-rate modulation as well as reactant and product 

cross H ASO FRFs for simultaneous modulation of inlet concentration and flow-rate. 

5.5. The G-frequency response functions 

5.5.1. Inlet concentration modulation 

The first order FRFs GA1,C(ω) and GP1,C(ω) 

𝐺𝐴1,𝐶 𝜔 =
 1 + 𝛼 (1 + 𝛽𝛾 + 𝑗𝜔)

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.6) 

𝐺𝑃1,𝐶 𝜔 =
𝑛 1 + 𝛼 

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.7) 

The ASO FRFs GA2,CC(ω,-ω) and GP2,CC(ω,-ω) 

𝐺𝐴2,𝐶𝐶(𝜔,−𝜔) = −
𝛼 1 + 𝛼 2

2𝐵𝑝𝑠
×

Λ

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.8) 
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𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 =
 1 + 𝛼 2

2𝐵𝑝𝑠
×

Λ

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.9) 

where the same auxiliary parameter Λ (Eq. (4.35)) is used as for the general non-

isothermal CSTR, with the same definition of Λ1 (Eq. (4.36)), while Λ2 reduces to: 

Λ2 = 𝑛2 1− 2𝛽2𝛾 − 𝑛(1 + 𝛽𝛾)2       (5.10) 

5.5.2. Flow-rate modulation 

The first order FRFs GA1,F(ω) and GP1,F(ω) 

𝐺1,𝐹𝐴 𝜔 =
𝛼(1 + 𝑗𝜔)

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.11) 

𝐺1,𝐹𝑃 𝜔 = −
(1 + 𝑗𝜔)

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.12) 

The ASO FRFs GA2,FF(ω,-ω) and GP2,FF(ω,-ω) 

𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 = −
𝛼

2𝐵𝑝𝑠
×

Ω1

(𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.13) 

𝐺𝑃2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠
×

Ω1

(𝜔2 + 𝐵𝑝𝑠
2 )

 

           (5.14) 

The expression for the ASO FRF GA2,FF(ω,-ω) is significantly reduced in comparison to 

the same function for the general non-isothermal CSTR, considering that for adiabatic 

CSTR the auxiliary parameters Ω1 (Eq. (4.43)) and Ω2 (Eq. (4.44)) are reduced to the 

same expression: 

Ω1 = Ω2 = 𝑛 𝑛 − 1 𝛼2 + 2𝑛𝛼 1 + 𝛽𝛾 + 2 1 + 𝛽𝛾 + 𝛽2𝛾(𝛾 − 2)  (5.15) 

Thus, the auxiliary function Ω (Eq. (4.42)) is reduced to  

Ω = Ω1(𝜔2 + 1)         (5.16) 
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5.5.3. Modulation of inlet temperature 

The first order FRFs GA1,T(ω) and GP1,T(ω) 

𝐺𝐴1,𝑇 𝜔 =
−𝛼𝛾 1 + 𝛽 

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.17) 

𝐺𝑃1,𝑇 𝜔 =
𝛾(1 + 𝛽)

𝐵𝑝𝑠 − 𝜔2 + 𝑗𝜔 1 + 𝐵𝑝𝑠 
 

           (5.18) 

The asymmetrical second order FRFs GA2,TT(ω,-ω) and GP2,TT(ω,-ω) 

𝐺𝐴2,𝑇𝑇 𝜔,−𝜔 = −
𝛼𝛾 1 + 𝛽 2

2𝐵𝑝𝑠
×

Ψ

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.19) 

𝐺𝑃2,𝑇𝑇 𝜔,−𝜔 =
𝛾 1 + 𝛽 2

2𝐵𝑝𝑠
×

Ψ

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.20) 

where the auxiliary parameter Ψ is the same as for the general non-isothermal CSTR 

(Eq.(4.49)), as well as Ψ1 (Eq. (4.50)) and Ψ2 (Eq. (4.51)). 

5.5.4. Simultaneous modulation of inlet concentration and inlet temperature 

The cross ASO FRFs GA2,CT(ω,-ω) and GP2,CT(ω,-ω) 

The real part of the FRF GA2,CT(ω,-ω) is reduced to 

𝑅𝑒 𝐺𝐴2,𝐶𝑇(𝜔,−𝜔) = −
𝑛𝛼𝛾 1 + 𝛼  1 + 𝛽 

𝐵𝑝𝑠
×
 𝜔2 + 1 + 𝛼 1 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼  

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.21) 

and the imaginary part to 

𝐼𝑚  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔  = −
𝑛𝛼𝛾 1 + 𝛼  1 + 𝛽 

𝐵𝑝𝑠
×

𝜔(𝛼 − 2𝛽)

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.22) 

In a similar way, the real and imaginary parts of the cross ASO FRF GP2,CT(ω,-ω) are 

given with: 
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𝑅𝑒 𝐺𝑃2,𝐶𝑇(𝜔,−𝜔) =
𝑛𝛾 1 + 𝛼  1 + 𝛽 

𝐵𝑝𝑠
×
 𝜔2 + 1 + 𝛼 1 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼  

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.23) 

𝐼𝑚  𝐺𝑃2,𝐶𝑇 𝜔,−𝜔  =
𝑛𝛾 1 + 𝛼  1 + 𝛽 

𝐵𝑝𝑠
×

𝜔(𝛼 − 2𝛽)

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.24) 

The cross ASO terms G
*

A2,CT(φ,ω) and G
*

P2,CT(φ,ω) are given with equations (4.64) and 

(4.65). The optimal phase differences for simultaneous modulation of inlet 

concentration and inlet temperature are given with equations (4.66) and (4.67). 

5.5.5. Simultaneous modulation of inlet concentration and flow-rate 

The cross ASO FRFs GA2,CF(ω,-ω) and GP2,CF(ω,-ω) 

The cross ASO FRF GA2,CF(ω,-ω) is given with 

𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠

 Π𝑅 + 𝑗𝜔Π𝐼 

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.25) 

where the auxiliary function ΠR is defined in the same way as for the general non-

isothermal CSTR, with (Eq. (4.69)), while the auxiliary parameters ΠR1, ΠR2 and ΠR3 are 

reduced to the following: 

Π𝑅1 = 1 + 𝛽𝛾          (5.26) 

Π𝑅2 = 𝑛2𝛼2𝛽𝛾 + 𝑛𝛼 2 1 + 𝛽𝛾 2 −  1 + 𝛽𝛾 + 𝛼 + (1 + 𝛽𝛾)3   (5.27) 

Π𝑅3 = 𝑛𝛼 1 + 𝛼 + 𝛽𝛾(𝛼 − 2𝛽)        (5.28) 

The auxiliary function ΠI is defined in the same way as for the general non-isothermal 

CSTR (Eq.(4.73)), but the auxiliary parameters ΠI1 and ΠI2 are reduced to: 

Π𝐼1 = 1 + 𝛽𝛾          (5.29) 

Π𝐼2 = 𝑛2𝛼2𝛽𝛾 + 𝑛𝛼 2(1 + 𝛽𝛾)2 −  1 + 𝛽𝛾 − 1 − 𝛽𝛾(𝛼 − 2𝛽) +  1 + 𝛽𝛾 3 

           (5.30) 

The cross ASO FRF GP2,CF(ω,-ω) is given with 

𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝛼𝐵𝑝𝑠

 Γ𝑅 + 𝑗𝜔Γ𝐼 

 𝜔2 + 1 (𝜔2 + 𝐵𝑝𝑠2 )
 

           (5.31) 
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where the auxiliary function ΓR  (Eq. (4.77)) for the adiabatic CSTR can be given in a 

polynomial form: 

Γ𝑅 = Γ𝑅1𝜔
4 + Γ𝑅2𝜔

2 + Γ𝑅3        (5.32) 

The auxiliary parameters ΓR1, ΓR2 and ΓR3 are, respectively 

Γ𝑅1 = 𝑛𝛼          (5.33) 

Γ𝑅2 = 𝑛𝛼(𝐵𝑝𝑠
2 + 𝐵𝑝𝑠 + 1 −  𝛼 + 1 )       (5.34) 

Γ𝑅3 = −𝑛𝛼 1 + 𝛼 + 𝛽𝛾 𝛼 − 2𝛽         (5.35) 

The auxiliary function ΓI (Eq. (4.78)) for the adiabatic CSTR is also given in a 

polynomial form: 

Γ𝐼 = Γ𝐼1𝜔
2 + Γ𝐼2         (5.36) 

where the auxiliary parameters ΓI1 andΓI2 are, respectively 

Γ𝐼1 = 𝑛𝛼          (5.37) 

Γ𝐼2 = 𝑛𝛼  𝐵𝑝𝑠
2 + 𝐵𝑝𝑠 + 1 + 𝛽𝛾 𝛼 − 2𝛽        (5.38) 

5.6. The H-asymmetrical second order frequency response functions 

5.6.1. Flow-rate modulation 

The ASO FRFs HA2,FF(ω,-ω) and HP2,FF(ω,-ω) 

𝐻𝐴2,𝐹𝐹 𝜔,−𝜔 = −
𝛼

2𝐵𝑝𝑠
×

Ω𝐻

 𝜔2 + 𝐵𝑝𝑠2  
 

           (5.39) 

𝐻𝑃2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠
×

Ω𝐻

 𝜔2 + 𝐵𝑝𝑠2  
 

           (5.40) 

The auxiliary parameter ΩH in the numerator of the ASO FRFs HA2,FF(ω,-ω) and 

HP2,FF(ω,-ω) of the adiabatic CSTR is reduced to 

Ω𝐻 = −𝑛2𝛼2 − 𝑛𝛼 𝛼 + 2 1 + 𝛽𝛾  + 2 1 + 𝛽𝛾 − 2 1 + 𝛽𝛾 2 + 𝛽2𝛾 𝛾 − 2  

           (5.41) 
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and, contrary to general case of non-isothermal CSTR (Eq. (4.81)), this auxiliary 

parameters is not a function of forcing frequency. 

5.6.2. Simultaneous modulation of inlet concentration and flow-rate 

The cross ASO FRFs HA2,CF(ω,-ω) and HP2,CF(ω,-ω) 

For the adiabatic CSTR, the cross ASO FRF HA2,CF(ω,-ω) is given as  

𝐻𝐴2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠
×

 Π𝑅𝐻 + 𝑗𝜔Π𝐼𝐻 

 𝜔2 + 1  𝜔2 + 𝐵𝑝𝑠
2  

 

           (5.42) 

where the auxiliary functions ΠRH and ΠIH, for the adiabatic CSTR become, 

respectively: 

Π𝑅𝐻 =  𝜔2 + 1   1 + 𝛽𝛾  𝜔2 + 𝐵𝑝𝑠
2  + 𝑛𝛼(𝛼 + 1) + 𝑛𝛼𝛽𝛾 𝛼 − 2𝛽   (5.43) 

Π𝐼𝐻 = −𝑛𝛼 𝜔2 + 1 + 𝛽𝛾 𝛼 − 2𝛽         (5.44) 

The cross ASO FRF HP2,CF(ω,-ω) for the adiabatic CSTR is given as  

𝐻𝑃2,𝐶𝐹 𝜔,−𝜔 =
 1 + 𝛼 

𝐵𝑝𝑠
×

 Γ𝑅𝐻 + 𝑗𝜔Γ𝐼𝐻 

 𝜔2 + 1  𝜔2 + 𝐵𝑝𝑠2  
 

           (5.45) 

with the auxiliary functions ΓRH and ΓIH which are given with following expressions 

Γ𝑅𝐻 = 𝑛   𝜔2 + 1  𝜔2 + 𝐵𝑝𝑠
2 − (𝛼 + 1) − 𝛽𝛾 𝛼 − 2𝛽      (5.46) 

Γ𝐼𝐻 = 𝑛 𝜔2 + 1 + 𝛽𝛾(𝛼 − 2𝛽)        (5.47) 

The cross ASO terms H
*
A2,CF(φ,ω) and H

*
P2,CF(φ,ω) for the adiabatic CSTR are given 

with the same equations as for the general case (equations (4.96) and (4.97)). The 

optimal phase difference for the adiabatic CSTR, when inlet concentration and flow-rate 

are periodically modulated, with arbitrary chosen forcing amplitudes, AC and AF, is 

given with equation (2.84). 
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5.7. Correlations between the reactant and product asymmetrical frequency 

response functions and terms  

All equations and conclusions presented in Section 4.8 for the general non-isothermal 

CSTR are completely the same and valid for the adiabatic CSTR, both for single input 

modulation and for simultaneous modulation of two-inputs.  

5.8. Estimating the possible improvements throughout the sign analysis of 

the asymmetrical second order frequency response functions 

5.8.1. Asymmetrical second order FRFs for inlet concentration modulation 

For the adiabatic CSTR, the results of the sign analysis of the ASO FRFs GA2,CC(ω,-ω) 

and GP2,CC(ω,-ω) are the same as they are for the general non-isothermal CSTR, given 

in Table 4.2 with differently defined ω0,C  

𝜔0,𝐶 =  
 1 + 𝛽𝛾 2 − 𝑛 1− 2𝛽2𝛾 

𝑛 − 1
 

           (5.48) 

and nC  

𝑛𝐶 =
 1 + 𝛽𝛾 2

1 − 2𝛽2𝛾
 

           (5.49) 

5.8.2. Asymmetrical second order FRFs for flow-rate modulation 

For the adiabatic CSTR, the sign analysis of the ASO FRF is simpler than it is the case 

of the general non-isothermal CSTR. The signs of the ASO FRFs HA2,FF(ω,-ω) and 

HP2,FF(ω,-ω) does not depend on the forcing frequency, but they depend only on the 

sign of the auxiliary parameter ΩH (Eq. (5.41)) in the following way: 

𝑠𝑖𝑔𝑛  𝐻𝐴2,𝐹𝐹 𝜔,−𝜔  = −𝑠𝑖𝑔𝑛(Ω𝐻)      (5.50) 

The ASO FRF HA2,FF(ω,-ω) will have the opposite sign than the auxiliary parameter ΩH, 

therefore just by determination of its sign, the sign of the ASO FRF HA2,FF(ω,-ω) will be 

also determined. On the other hand, the ASO FRF HP2,FF(ω,-ω) will have the same sign 

as the auxiliary parameter ΩH. 
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5.8.3. Asymmetrical second order FRFs for inlet temperature modulation 

The results of the sign analysis of the ASO FRFs GA2,TT(ω,-ω) and GP2,TT(ω,-ω) for the 

adiabatic CSTR are completely the same as for the general non-isothermal CSTR, given 

in Table 4.4. The auxiliary parameters which are necessary to determine the signs of 

these ASO FRFs ω0,T , nT1 and nT2 are defined in the same way as in Chapter IV 

(equations (4.120) and (4.121)). 

5.8.4. The cross asymmetrical second order terms for simultaneous modulation of 

inlet concentration and inlet temperature 

The auxiliary parameters εR (Eq. (4.122)) and εI (Eq. (4.124)), necessary for the sign 

analysis of the real and imaginary parts of the cross ASO FRFs GA2,CT(ω,-ω) and 

GP2,CT(ω,-ω), for the adiabatic CSTR are defined with the following equations: 

휀𝑅 = 1 + 𝛼 1 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼        (5.51) 

휀𝐼 = 𝛼 − 2𝛽          (5.52) 

All other conclusions of the sign analysis of the ASO cross FRFs GA2,CT(ω,-ω) and 

GP2,CT(ω,-ω) are the same as for the general non-isothermal CSTR, given in Tables 4.5 

and 4.6 and, for the recommended phase difference, in Tables 2.1 and 2.2. 

5.9. Numerical example ADIAB-1: Laboratory scale adiabatic CSTR for 

hydrolysis of acetic acid anhydride to acetic acid 

5.9.1. Definition of Numerical example ADIAB-1 

As an example for testing the NFR method on the adiabatic CSTR, is a laboratory 

reactor of volume V=0.384 dm
3
, in which hydrolysis of acetic acid anhydride to acetic 

acid takes place (Numerical example ADIAB-1). The overall hydrolysis reaction of 

acetic acid anhydride ((CH3CO)2O) to acetic acid (CH3COOH) can be represented as 

(CH3CO)2O + H2O → 2 CH3COOH 

and it is a pseudo-first order reaction in excess of water. The hydrolysis of acetic 

anhydride is a moderately to highly exothermic, fast reaction (Hirota et al., 2010). 

The kinetic parameters of acetic acid production, i.e. activation energy (EA), the pre-

exponential factor in the Arrenius equation (k0) and reaction order (n) were 

experimentally determined in Max-Plank Institute for Dynamics of Complex Technical 

Systems (Magdeburg, Germany) and given in Table 5.1. The experimental data agree 
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quite well with the data in the literature (Kralj, 2007).The heat of the reaction and heat 

capacity, are also given in Table 5.1. 

Table 5.1 The parameters for the hydrolysis reaction of acetic acid anhydride 

Parameter Value 

Reaction order, n 1 

Pre-exponential factor of the reaction rate constant, k0 (1/s) 139390 

Activation energy, EA (kJ/mol) 44.350 

Heat of reaction, ΔHR (kJ/mol) -55.500 

Heat capacity, 𝜌𝑐𝑝      (kJ/(Kdm
3
)) 4.186 

Before investigating the periodic behavior of the reactor, through simulations of the 

ASO FRFs, an optimization procedure was performed in order to choose the optimal 

steady-state around which the reactor would be modulated. The inlet concentration of 

the acetic acid anhydride and the residence time for a laboratory CSTR in which the 

room temperature was assumed (Ti=295.15 K), were optimized. 

The optimization was done in order to optimize two objective functions: the Space-

Time-Yield (STY) which is defined as follows 

𝑆𝑇𝑌𝑠  
𝑚𝑜𝑙

𝑠𝑑𝑚3
 =

𝑐𝑃,𝑠

𝜏𝑟𝑒𝑠 ,𝑠
 

           (5.53) 

and the product yield (or the reactant conversion) (Eqs. (2.20) and (2.21)). 

The details about the optimization procedure are given in Appendix C1, and here, in 

Table 5.1 the solution which was adopted, is defined with the optimized values of inlet 

concentration (cAi,s) and the residence time (τres,s) for the inlet temperature (Ti,s=295.15 

K), is given. The Multi-objective optimization using Genetic Algorithm was done in 

Matlab. 

Furthermore, for the adopted optimal steady-state, there is one steady-state solution 

defined with the concentration of the reactant in the reactor (cA,s), concentration of the 

product in the reactor (cP,s) and the temperature in the reactor (Ts) (Table 5.2). The 
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values of the objective functions (STYs and YP,s) are also given, as well as the stability 

parameter (Bps) and the damping coefficient (ξ). 

Table 5.2 The steady-state concentrations, temperature and objective functions, the 

stability parameter and the damping coefficient for the optimal steady-state  

cAi,s 

(mol/ 

dm
3
) 

Ti,s 

(K) 

τres,s 

(s) 

cA,s 

(mol/ 

dm
3
) 

cP,s 

(mol/ 

dm
3
) 

Ts 

(K) 

STYs 

(mol/s/ 

dm
3
) 

YP,s 

(%) Bps ξ 

3.640 295.15 218.96 0.8662 5.5477 331.93 0.0253 76.20 2.42 1.099 

The adiabatic CSTR in which the hydrolysis of acetic acid anhydride takes place, for the 

optimal steady-state is stable (Bps=2.42>0) and non-oscillatory, with the damping 

coefficient ξ=1.099. The values of the auxiliary parameter for the chosen optimal 

steady-state are: α=3.2024, β= - 0.1108 and γ=16.07. 

Considering that the residence time for the optimal steady-state is τres,s=218.95 s and the 

fact that the reactor with of volume V=0.384 dm
3
 is examined, the steady-state flow rate 

will be Fs=0.1052 dm
3
/min. 

Also, the analysis of the periodically operated laboratory adiabatic CSTR, in which the 

hydrolysis of the acetic anhydride takes place, by the NFR method, showed that the 

ASO FRF GP2,TT(ω,-ω) for modulation of the inlet temperature has very high negative 

values in the investigated range of inlet concentration and flow-rate (Appendix C2, 

Figures C1-C2) indicating highly unfavorable periodic operation. Therefore, the 

modulation of inlet temperature will not be considered and the temperature of the inlet 

temperature will be assumed to be constant, and modulations of only the inlet anhydride 

concentration and flow-rate, separately and simultaneously is considered. 

5.9.2. Simulation results for single input modulations 

The graphical representation of the product (acetic acid) ASO FRF GP2,CC(ω,-ω) which 

correspond to single input modulation of the inlet concentration of acetic acid 

anhydride, vs. dimensionless forcing frequency is given in Figure 5.1. 
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Figure 5.1 The ASO FRF GP2,CC(ω,-ω) as a function of the dimensionless forcing 

frequency 

The ASO FRF GP2,CC(ω,-ω) is negative in the whole frequency range (Figure 5.1) 

which indicates that the inlet concentration modulation will lead to deterioration of the 

reactor performance. The simulation results are in accordance with the sign analysis 

results, since they lead to a conclusion that the ASO FRF GP2,CC(ω,-ω) is negative in 

whole frequency range (Table 4.2, (1/nC<1 and n=1), nC=1.006 (Eq. (5.49)). Despite the 

fact that this ASO FRF is negative, its value is quite low, and it can be approximated 

and accepted that the inlet concentration modulation has no effect on the reactor 

performance. 

The ASO FRF HP2,FF(ω,-ω) which correlates the outlet molar flow-rate of the product 

with modulation of the flow-rate is graphically presented in Figure 5.2, as a function of 

the dimensionless forcing frequency. 
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Figure 5.2 The ASO FRF HP2,FF(ω,-ω) as a function of the dimensionless forcing 

frequency 

From the sign analysis of the ASO FRF HP2,FF(ω,-ω), it is expected this function to be 

negative in the whole frequency range, since ΩH=-15.52<0 (Eq. (5.41)). This is 

confirmed with the simulation results (Figure 5.2). Therefore, the modulation of the 

flow-rate will lead to deterioration of the reactor performance. 

Thus, the NFR method and simulation results for single input modulations of inlet 

concentration and flow-rate for the examined system showed that the improvement of 

the reactor performance can not be obtained by single input modulation. 

5.9.3. Simulation results for simultaneous modulation of inlet concentration and 

flow-rate 

Despite the fact that the single input modulations of the inlet concentration and flow-

rate will lead to deterioration of the reactor performance, simultaneous modulation of 

these two inputs with appropriate choice of the forcing parameters might have a positive 

effect on the reactor performance. This analysis will be presented here. 

For forcing amplitudes of the inlet concentration and flow-rate, AC=AF=75%, the 

optimal phase difference (Eq. (2.84)) which should be used in order to maximize the 

product yield is given in Figure 5.3. 
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Figure 5.3 The optimal phase difference φopt(ω) for forcing amplitudes AC=AF=75%, as 

a function of the dimensionless forcing frequency 

The product yields obtained for single and simultaneous modulations of the inlet 

concentration and flow-rate, with AC=AF=75% and optimal phase difference presented 

in Figure 5.3, are shown in Figure 5.4. 
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Figure 5.4 The product yields for steady-state operation, for single input modulation of 

the inlet concentration of acetic anhydride, flow-rate and for simultaneous modulation 

of inlet concentration and flow-rate, with AC=AF =75% and the optimal phase difference 

φopt(ω), as functions of the dimensionless forcing frequency 

As expected, based on the results presented in Figure 5.1 and 5.2, the inlet concentration 

modulation has practically no influence on the reactor performance and the flow-rate 

modulation will lead to deterioration of reactor performance. Nevertheless, the 

simultaneous modulation of these two inputs, with forcing amplitudes AC=AF=75% and 

the corresponding optimal phase difference φopt(ω) will lead to significant increase of 

the product yield for low and high forcing frequencies. 

Further, the optimal forcing parameters for simultaneous modulation of inlet 

concentration and flow-rate which maximize the product yield are determined 

numerically from (Eq. (2.77)) as functions of forcing frequency. They are graphically 

presented in Figure 5.5. 
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Figure 5.5 The optimal forcing amplitudes AC,opt(ω), AF,opt(ω) and the optimal phase 

difference φopt(ω), which maximize the product yield for simultaneous modulation of 

the inlet concentration and flow-rate, vs. dimensionless forcing frequency 

The product yield for simulatenous modulation of the inlet concentration and flow-rate 

with these optimal forcing parameters is graphically presented in Figure 5.6. The 

product yields for single input modulations with the same forcing amplitudes, as well as 

for steady-state operation are also given in Figure 5.6. 
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Figure 5.6 The product yields for steady-state operation, for periodic modulation of the 

inlet concentration with AC,opt(ω), flow-rate modulation with AF,opt(ω) and simultaneous 

modulation of these two inputs with optimal forcing amplitudes and optimal phase 

difference φopt(ω) vs. dimensionless forcing frequency 

In this case, the increase of product yield is higher than for the previous case shown in 

Figure 5.4, in whole frequency range. Both low and high-forcing frequency modulations 

lead to significant increase of the product yield. 

The performance of the adiabatic CSTR, when inlet concentration and flow-rate are 

periodically modulated around previously established steady-state, can be significantly 

improved from the aspect of product yield increase in comparison to the optimal steady-

state, despite the facts that single input modulation of the inlet concentration practically 

has no influence and single input modulation of the flow-rate will cause the product 

yield decrease. 

5.9.3. Comparison with the results obtained by numerical integration 

The approximate results obtained by the NFR method, are compared with the results of 

numerical integration for simultaneous modulation of the inlet concentration and flow-

rate, in a co-sinusoidal way, around the previously established optimal steady-state. 

The results of numerical simulations and the NFR method for simultaneous modulation 

of the inlet concentration and flow-rate with equal forcing amplitudes AC=AF=75% and 

with the corresponding optimal phase difference φopt(ω) are given in Table 5.3, for 
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dimensionless forcing frequencies ω=0.1, 1 and 10. The same results are given for 

numerically determined optimal forcing parameters (amplitudes and phase difference) 

for the same frequencies (ω=0.1, 1 and 10), in Table 5.4. 

The relative errors for the product yield (δY) are also given in these Tables, in order to 

compare the results of numerical integration which are considered to be exact, with the 

estimates from the NFR method. 

Table 5.3 The product yields and the relative yield changes, for simultaneous 

modulation of the inlet concentration and flow-rate with AC=AF=75% and the 

corresponding optimal phase difference, determined by numerical simulation and by the 

NFR method, and the relative errors 

Simultaneous modulation of inlet concentration and flow-rate, 

AC=75%, AF=75%, 

ω φopt 
YP,po(%) 

δY(%) 
ΔYP (%) 

num NFRM num NFRM 

0.1 -0.1321 85.67 85.57 -0.12 +12.43 +12.28 

1 -0.7822 79.79 79.99 +0.25 +4.70 +4.96 

10 0.2809 85.48 87.23 +2.05 +12.16 +14.46 

Table 5.4 The product yields and relative yield changes, for simultaneous modulation of 

the inlet concentration and flow-rate with optimal forcing parameters (amplitudes and 

phase differences), determined by numerical simulation and by the NFR method, and 

the relative errors 

Simultaneous modulation of inlet concentration and flow-rate 

ω AC,opt(%) AF,opt (%) φopt (rad) 
YP,po(%) 

δY(%) 
ΔYP (%) 

num NFRM num NFRM 

0.1 

100 

95.45 -0.1437 88.87 95.03 +6.93 +16.62 +24.71 

1 66.44 -0.9883 81.02 84.01 +3.69 +6.33 +10.23 

10 100 0.3323 88.57 93.04 +5.05 +16.22 +22.08 

From the values of the relative errors reported in Table 5.4 for forcing amplitudes 

AC=AF=75%,, it can be concluded that the NFR method gives very good predictions of 

the behavior of the adiabatic CSTR in which hydrolysis of acetic acid anhydride takes 

place, when the inlet concentration and flow-rate are simultaneously modulated in a co-
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sinusoidal way. Thus, the previous conclusions made by NFR method for the forced 

periodically operated adiabatic CSTR are confirmed. 

Nevertheless, for the case when both forcing amplitudes are very high, as given in Table 

5.4 for forcing frequencies ω=0.1 and 10, the relative errors increased, as expected for a 

very high forcing amplitudes. 

5.10 Summary of Chapter V 

In this Chapter, the nonlinear frequency response method was used for evaluation of 

possible improvements of forced periodically operated adiabatic non-isothermal CSTRs 

with liquid homogeneous, irreversible, simple nth order reaction A→νPP.  

Considering that the adiabatic non-isothermal CSTR represents a special case of the 

general non-isothermal CSTR for, which there is no heat exchange between the reactor 

and the environment (Fogler, 2005), the inputs which can be modulated in this case are: 

the inlet concentration, flow-rate and inlet temperature. Thus, periodic operations with 

single input modulations of these three input were analyzed, as well as, periodic 

operations with simultaneous modulation of inlet concentration and inlet temperature 

and simultaneous modulation of inlet concentration and flow-rate.  

The asymmetrical second order frequency response functions and the cross 

asymmetrical frequency response functions were obtained by reducing the 

corresponding functions for the general non-isothermal CSTR, by setting all the terms 

and auxiliary parameters which were related to the heat exchange with the 

cooling/heating medium to zero.  

The same conclusions, considering the low and high frequency modulation for 

investigated single or two-input modulations, were drawn as for the isothermal (Chapter 

III) and general non-isothermal CSTRs (Chapter IV). The sign analysis of the ASO 

FRFs and cross ASO FRFs was also performed and the summary of the sign analysis of 

the ASO FRFs was given. 

The results of the NFR method were applied here for the analysis of a laboratory scale 

adiabatic CSTR for hydrolysis of acetic acid anhydride to acetic acid (Numerical 

example ADIAB-1). The analysis was performed for single and simultaneous 

modulation of the inlet concentration of acetic acid anhydride and flow-rate. An 

optimization procedure was performed and the optimal steady-state was adopted. 

Periodic operations around that optimal steady state were analyzed. The NFR method 
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predicted that single input modulations of the inlet concentration and flow-rate would 

lead to decrease of the product yield. Nevertheless, it was shown that simultaneous 

modulation of these two inputs, with appropriate choice of the forcing parameters, 

would lead to significant increase of the product yield. Again, good agreement between 

the results of the NFR method and the results of numerical integration was obtained.  
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VI Conclusions 

In this work, a nonlinear frequency response (NFR) method, based on the second-order 

approximation, was used for evaluation of influence of forced periodic modulations of 

one or two inputs on the performance of chemical reactors. 

The nonlinear frequency response method was used for evaluation of possible 

improvements of forced periodically operated continuous stirred tank reactors with 

liquid homogeneous, irreversible, simple nth order reaction A→νPP, for isothermal, 

non-isothermal and adiabatic conditions. For the isothermal CSTRs, the analysis was 

performed for single input modulations of the inlet concentration and flow-rate and for 

simultaneous modulation of these two inputs. For the non-isothermal CSTRs, single 

input modulations of the inlet concentration, flow-rate, inlet temperature and 

temperature of the cooling/heating fluid were considered, as well as simultaneous 

modulations of the inlet concentration and inlet temperature and simultaneous 

modulation of the inlet concentration and flow-rate. The adiabatic CSTRs where 

analyzed for single input modulations of the inlet concentration of the reactant, flow-

rate and inlet temperature, as well as for simultaneous modulations of the inlet 

concentration and inlet temperature and simultaneous modulations of the inlet 

concentration and flow-rate. All investigated cases were summarized in Table 2.3. 

The proposed method uses only the asymmetrical second order FRFs, for approximate 

evaluation of the investigated process. In all investigated cases, a general methodology 

of the derivation procedure was used for derivation of the necessary asymmetrical 

second order frequency response functions and cross asymmetrical frequency response 

functions, defining the outlet reactant and product average concentrations, and thus the 

product yield and the reactant conversion corresponding to the forced periodically 

operated reactors. 

The derived asymmetrical second order frequency response functions and the cross 

asymmetrical frequency response functions were analyzed, which included their sign 

analysis. 

The results of the NFR method were tested on several numerical examples: two for the 

isothermal CSTR (ISO-1 and ISO-2), two for the general non-isothermal CSTR 

(NONISO-1, and NONISO-2(a) to (c)), and one for the adiabatic non-isothermal CSTR 

(ADIAB-1). 
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The main conclusions of this investigation can be summarized as follows: 

 The average performance of forced periodically operated chemical reactors can 

be evaluated from the DC (non-periodic term) component of the output of 

interest, which, on the other hand, can be approximately estimated from and the 

corresponding asymmetrical second order FRF(s). In order to determine the 

influence of the forced periodic operation on the reactor performance for single 

input modulation, it is enough to derive and analyze only the corresponding 

asymmetrical second order frequency response function. For evaluation of the 

reactor performance when two inputs are simultaneously modulated, in addition 

to the asymmetrical second order FRFs corresponding to each input, the cross 

asymmetrical second order FRF needs to be derived and analyzed; 

 Analysis of either the reactant or the product asymmetrical frequency response 

functions should be performed, considering the fact that both lead to the same 

result, regarding the change of the reactant conversion or product yield obtained 

in the periodic mode of operation. 

 For single input modulations, except for the flow-rate modulation, the DC 

components of the outlet concentrations (reactant or product), estimated from the 

corresponding asymmetrical second order frequency response functions, can be 

used to evaluate the possible improvements. For single input modulation of the 

flow-rate and for simultaneous modulation of the flow-rate with and another 

input, except the inlet concentration, the DC components of the outlet molar 

flow-rates (reactant or product) are used in order to determine the possibility of 

the reactor performance improvements. 

 For simultaneous modulation of the inlet concentration and flow-rate, in order to 

evaluate the possible improvements, besides the DC components of the molar 

flow-rates (reactant or product), it is necessary to determine the inlet molar flow-

rate of the reactant which is not constant and to evaluate the reactant conversion 

or the product yield corresponding to the periodic operation. The inlet molar 

flow-rate of the reactant depends directly on the forcing parameters (forcing 

amplitudes and the phase difference the between modulated inputs); 
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 For single input modulations, the sign of the outlet DC component of interest 

can be determined directly from the sign of the corresponding asymmetrical 

second order frequency response function, thus giving the answer whether the 

reactor performance improvements are possible or not,  

 For simultaneous modulation of the inlet concentration and temperature, the sign 

analysis of the real and imaginary parts of the cross asymmetrical second order 

frequency response will give the recommended phase difference range which 

should be used in order to obtain the desirable cross effect (positive or negative). 

If the ASO FRFs corresponding to the single input modulations have desirable 

signs (negative for the reactant and positive for the product), by appropriate 

chose of the phase difference the periodic modulation will lead to even higher 

improvement. If one or both single input ASO FRFs have undesirable signs, the 

overall DC component of the outlet concentration should be evaluated in order 

to determine the overall effect on the reactor performance. Also, the forcing 

amplitudes and the phase difference which optimize the desirable objective 

function (reactant conversion or product yield) can be determined and used.  

 For simultaneous modulation of the inlet concentration and flow-rate, it is not 

possible to draw a decisive conclusion regarding the reactor performance 

improvements just on the sign analysis of the ASO FRFs. In this case, the 

optimal phase difference which optimizes the chosen objective function 

(reactant conversion or product yield) for defined forcing amplitudes can be 

determined, or the forcing amplitudes can be optimized together with optimal 

phase difference.  

 High-frequency single input modulations have no influence on the reactor 

performance, while for the low-frequency modulations the ASO FRFs tend to 

asymptotic values and the periodic operation, in general, will influence the 

reactor performance. This is also valid for simultaneous modulation of inlet 

concentration and inlet temperature; 

 Simultaneous modulation of inlet concentration and flow-rate has influence on 

the reactor performance in the whole frequency range,  

 The forcing amplitudes and phase difference for simultaneous modulation of two 

inputs have a decisive role on the reactor performance; 
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 The results of the NFR method based on the second order approximation 

compared with the results of numerical integration, gave a very good 

agreements. The only exception is a reactor with strong resonance for forcing 

frequencies which are close to the resonant one when high forcing amplitudes 

are used. Thus, the NFR method based on the second order approximation gave 

satisfactory results for over-damped and under-damped reactors with high and 

moderate damping coefficients, even for high input amplitudes, while it failed 

for low damping coefficients (Nikolić et al., 2015). 

 In summary, we could say that the NFR method based on the second order 

approximation gave satisfactory results for over-damped and under-damped 

reactors with high and moderate damping coefficients, even for high input 

amplitudes, while it failed for low damping coefficients. The next step in our 

research would be to define exact criteria for the range of dumping coefficients 

for which the method gives reasonable approximations. This issue is directly 

related to defining the limiting level of non-linearity and the acceptable range of 

input amplitudes for using the second order approximation of NFR method and 

finding in which cases it would be necessary to introduce the forth, and possibly 

higher order FRFs, in order to expand that range. These issues need to be 

analyzed together with analysis of convergence of the Volterra series (Nikolić et 

al., 2015). One of the following steps in our research would also be the 

experimental verification of the theoretical results. 

 

  



176 

 

List of symbols 

Latin symbols 

A input amplitude 

Aps stability parameter 

Aw surface area for heat exchange 

B output amplitude  

Bps stability parameter 

cA [mol/m
3
] reactant concentration 

CA dimensionless reactant concentration 

cP [mol/m
3
] product concentration 

𝑐𝑃    [J/kg/K] heat capacity 

CP dimensionless product concentration 

EA [J/mol] activation energy 

F [m
3
/s] volumetric flow-rate 

GAn,X n-th order frequency response function which correlate the outlet reactant 

concentration with modulated input X 

GPn,X n-th order frequency response function which correlate the outlet product 

concentration with modulated input X 

GAn,XZ n-th order frequency response function which correlate the outlet reactant 

concentration with modulated inputs X and Z 

GPn,XZ n-th order frequency response function which correlate the outlet product 

concentration with modulated inputs X and Z 

G
*

An,XZ  the cross term which correlate the outlet reactant concentration with modulated 

inputs X and Z 

G
*

Pn,XZ  the cross term which correlate the outlet product concentration with modulated 

inputs X and Z 

HAn,X n-th order frequency response function which correlate the outlet molar flow-

rate of the reactant with modulated input X 

HPn,X n-th order frequency response function which correlate the outlet molar flow-

rate of the product with modulated input X 

HAn,XZ n-th order frequency response function which correlate the outlet molar flow-

rate of the reactant with modulated inputs X and Z 

HPn,XZ n-th order frequency response function which correlate the outlet molar flow-

rate of the product with modulated inputs X and Z 
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H
*

An,XZ  the cross term which correlate the outlet molar flow-rate of the reactant with 

modulated inputs X and Z 

H
*

Pn,XZ  the cross term which correlate the outlet molar flow-rate of the product with 

modulated inputs X and Z 

k reaction rate constant 

ko [(mol/m
3
)
1-n

/s] pre-exponential factor in Arrenius equation 

n reaction order 

NA dimensionless molar flow-rate of the reactant 

nA [mol/s]  molar flow-rate of the reactant 

NP dimensionless molar flow-rate of the product 

nP [mol/s] molar flow-rate of the product 

p1, p2, p3 poles (roots of the characteristic equation) 

R [J/mol/K] universal gas constant 

s Laplace complex varible 

St Stanton number 

STY [mol/s/m
3
] Space-Time-Yield 

t [s] time 

T [K] temperature 

U [J/m
2
/K/s] overall heat transfer coefficient 

u, v frequency, general 

V [m
3
] volume of the reactor 

x input 

xA conversion of the reactant 

X dimensionless input 

y output 

Y dimensionless output 

YP yield of product 

z input 

Z dimensionless input 

Greek symbols  

ΓR, ΓR1, ΓR2, ΓR3 auxiliary functions in real part of the cross ASO 

FRF GP2,CF(ω,-ω) 

ΓHR, ΓHR1, ΓHR2, ΓHR3 ΓHR4 auxiliary functions in real part of the cross ASO 

FRF HP2,CF(ω,-ω) 
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ΓI, ΓI1, ΓI2 auxiliary functions in imaginary part of the cross ASO FRF 

GP2,CF(ω,-ω) 

ΓHI, ΓHI1, ΓHI2, ΓHI3 auxiliary functions in imaginary part of the cross ASO FRF 

HP2,CF(ω,-ω) 

Λ, Λ1, Λ2 auxiliary functions in expressions of the ASO FRFs GA2,CC(ω,-ω) 

and GP2,CC(ω,-ω) 

ΠR, ΠR1, ΠR2, ΠR3 auxiliary functions in real part of the cross ASO FRF      

GA2,CF(ω,-ω) 

ΠHR, ΠHR1, ΠHR2, ΠHR3 auxiliary functions in real part of the cross ASO FRF 

HA2,CF(ω,-ω) 

ΠI, ΠI1, ΠI2 auxiliary functions in imaginary part of the cross ASO 

FRF GA2,CF(ω,-ω) 

ΠHI, ΠHI1, ΠHI2 auxiliary functions in imaginary part of the cross ASO 

FRF HA2,CF(ω,-ω) 

Φ dimensionless volumetric flow-rate 

Ψ, Ψ1, Ψ2 auxiliary functions in expressions of the ASO FRFs GA2,TT(ω,-ω), 

GP2,TT(ω,-ω), GA2,JJ(ω,-ω) and GP2,JJ(ω,-ω) 

Ω, Ω1, Ω2 auxiliary functions in expressions of the ASO FRFs GA2,FF(ω,-ω) 

and GP2,FF(ω,-ω) 

ΩH, Ω1H, Ω2H auxiliary functions in expressions of the ASO FRFs HA2,FF(ω,-ω) 

and HP2,FF(ω,-ω) 

α auxiliary parameter 

β auxiliary parameter 

γ auxiliary parameter 

δ auxiliary parameter 

δY relative error for product yield 

θ dimensionless temperature 

νP stoichiometric coefficient of the product P 

ξ damping coefficient 

ρ [m
3
/kg] density 

τ dimensionless time 

τres [s] residence time 

φ [rad] phase difference between two modulated inputs 

ω dimensionless forcing frequency 

ωd [rad/s] dimensional forcing frequency 



179 

 

ωn [rad/s] natural frequency 

ωr [rad/s] resonant frequency 

ΔHR [kJ/mol] heat of reaction 

Subscripts 

A reactant 

C, CC corresponding to modulation of the inlet concentration 

CF corresponding to modulation of the inlet concentration and flow-rate 

CT corresponding to modulation of the inlet concentration and inlet temperature 

DC non-periodic term 

F, FF corresponding to modulation of flow-rate 

i inlet 

J heating/cooling fluid (jacket) 

J, JJ corresponding to modulation of the temperature in the jacket 

n nth order 

opt corresponding to optimal forcing variable 

P product 

po periodic operation 

s steady-state 

T, TT corresponding to modulation of the inlet temperature 

x, xx, X, XX corresponding to input x 

z, zz, Z, ZZ corresponding to input z 

xz, XZ corresponding to inputs x and z 

I first harmonic 

II second harmonic 

III third harmonic 

Superscripts 

m mean 

Abbreviations 

ADIAB adiabatic 

ASO asymmetrical second order 

CSTR continuous stirred tank reactor 

FR frequency response 

FRF frequency response functions 
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ISO isothermal 

NONISO non-isothermal 

NFR nonlinear frequency response 

num numerical 
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Appendix 

A Basic steps of the derivation procedure of the G-frequency response 

function for the isothermal CSTR 

A.1. Taylor series expansions of the nonlinear terms in Eqs. ((3.2) and (3.3)) 

𝐹 𝑡 𝑐 𝑡 = 𝐹𝑠𝑐𝑠 + 𝑐𝑠 𝐹 − 𝐹𝑠 + 𝐹𝑠 𝑐 − 𝑐𝑠 +  𝐹 − 𝐹𝑠  𝑐 − 𝑐𝑠 +⋯  (A1.1) 

𝑐 = 𝑐𝐴𝑖 , 𝑐𝐴  or 𝑐𝑃 

A.2. Derivation of the first order and asymmetrical second order frequency 

response functions for single input modulation of inlet concentration and flow-rate 

Step 1: Defining the dimensionless input X(τ) (X=CAi or Φ) in the form of a co-sinusoidal 

function 

𝑋 𝜏 = 𝐴𝑋𝑐𝑜𝑠 𝜔𝜏 =
𝐴𝑋

2
𝑒𝑗𝜔𝜏 +

𝐴𝑋

2
𝑒−𝑗𝜔𝜏      (A2.1) 

Step 2: Representing the dimensionless outlet concentrations of the reactant and product in the 

form of Volterra series 

𝐶𝐴 𝜏 =  
𝐴𝑋

2
 𝐺𝐴1,𝑋 𝜔 𝑒

𝑗𝜔𝜏 +  
𝐴𝑋

2
 𝐺𝐴1,𝑋 −𝜔 𝑒

−𝑗𝜔𝜏 +⋯+ 2  
𝐴𝑋

2
 

2
𝐺𝐴2,𝑋𝑋 𝜔,−𝜔 𝑒0 +⋯

          (A2.2) 

𝐶𝑃 𝜏 =  
𝐴𝑋

2
 𝐺𝑃1,𝑋 𝜔 𝑒

𝑗𝜔𝜏 +  
𝐴𝑋

2
 𝐺𝑃1,𝑋 −𝜔 𝑒

−𝑗𝜔𝜏 +⋯+ 2  
𝐴𝑋

2
 

2
𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 𝑒0 +⋯

          (A2.3) 

Step 3: Substituting the expressions for the dimensionless modulated input X(τ) (Eq. (A2.1)) and 

dimensionless outlet concentrations defined with equations (A2.2 and A2.3) into the appropriate 

dimensionless model equations, (for inlet concentration modulation in equations (3.12) and 

(3.12) and for flow-rate modulation in model equations (3.14) and 3.15)). 

Step 4: Applying the method of harmonic probing. The terms with (AX/2)e
jωτ

 corresponding to 

the first order functions and with (AX/2)
2
e

0 
corresponding to the asymmetrical second order 

function are collected and equated with zero. The resulting equations are presented below: 

 For inlet concentration modulation 

The equations for the first order frequency response functions 

 1 + 𝑛𝛼 + 𝑗𝜔 𝐺𝐴1,𝐶 𝜔 = 1 + 𝛼      (A2.4) 

−𝑛𝐺𝐴1,𝐶 𝜔 + (1 + 𝑗𝜔)𝐺𝑃1,𝐶 𝜔 = 0      (A2.5) 

The equations for the asymmetrical second order frequency response functions 

2(1 + 𝑛𝛼)𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = −𝑛 𝑛 − 1 𝛼𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐶(−𝜔)   (A2.6) 

−2𝑛𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 + 2𝐺𝑃2,𝐶𝐶 𝜔 = 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐶(−𝜔)  (A2.7) 
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 For flow-rate modulation 

The equations for the first order frequency response functions 

(1 + 𝑛𝛼 + 𝑗𝜔)𝐺𝐴1,𝐹 𝜔 = 𝛼       (A2.8) 

−𝑛𝐺𝐴1,𝐹 𝜔 +  1 + 𝑗𝜔 𝐺𝑃1,𝐹 𝜔 = −1      (A2.9) 

The equations for the asymmetrical second order frequency response functions 

2(1 + 𝑛𝛼)𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 = − 𝐺𝐴1,𝐹 −𝜔 + 𝐺𝐴1,𝐹 𝜔  − 𝑛 𝑛 − 1 𝛼𝐺𝐴1,𝐹 𝜔 𝐺𝐴1,𝐹(−𝜔) 

          (A2.10) 

−2𝑛𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 + 2𝐺𝑃2,𝐹𝐹 𝜔 

= − 𝐺𝑃1,𝐹 −𝜔 + 𝐺𝑃1,𝐹 𝜔  + 𝑛 𝑛 − 1 𝐺𝐴1,𝐹 𝜔 𝐺𝐴1,𝐹(−𝜔) 

          (A2.11) 

Step 5: Solving equations obtained in Step 4. As a result, the expressions for the first order FRFs 

GA1,C(ω) (Eq. (3.20)), GP1,C(ω) (Eq. (3.21)) and the asymmetrical second order FRFs GA2,CC(ω,-

ω) (Eq. (3.22)), GP2,CC(ω,-ω) (Eq. (3.23)) for single input modulation of the inlet concentration 

as well as the first order FRFs GA1,F(ω) (Eq. (3.24)), GP1,F(ω) (Eq. (3.25)) and the asymmetrical 

second order FRFs GA2,FF(ω,-ω) (Eq. (3.26)), GP2,FF(ω,-ω) (Eq. (3.27)) for single input 

modulation of the flow-rate. Here the ASO FRFs are given as functions of the first order FRFs, 

and in the main text their final expressions are given. 

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = −
𝑛𝛼 (𝑛−1)

2𝐵𝑝𝑠
× 𝐺𝐴1,𝐶(𝜔)𝐺𝐴1,𝐶(−𝜔)    (A2.12) 

𝐺𝑃2,𝐶𝐶 𝜔,−𝜔 =
𝑛(𝑛−1)

2𝐵𝑝𝑠
× 𝐺𝐴1,𝐶(𝜔)𝐺𝐴1,𝐶(−𝜔)     (A2.13) 

𝐺𝐴2,𝐹𝐹(𝜔,−𝜔) = −
1

2𝐵𝑝𝑠
×  𝐺𝐴1,𝐹 𝜔 + 𝐺𝐴1,𝐹 −𝜔 + 𝑛𝛼 𝑛 − 1 𝐺𝐴1,𝐹 𝜔 𝐺𝐴1,𝐹(−𝜔)  

          (A2.14) 

𝐺𝑃2,𝐹𝐹(𝜔,−𝜔) =
1

2𝐵𝑝𝑠
×

1

𝛼
 𝐺𝐴1,𝐹 𝜔 + 𝐺𝐴1,𝐹 −𝜔 + 𝑛𝛼 𝑛 − 1 𝐺𝐴1,𝐹 𝜔 𝐺𝐴1,𝐹(−𝜔)  

          (A2.15) 

A.3. Derivation of cross asymmetrical second order frequency response functions for 

simultaneous modulation of inlet concentration and flow-rate 

Step 1: Defining the dimensionless inputs CAi(τ) and Φ(τ) in the form of co-sinusoidal functions 

𝐶𝐴𝑖 𝜏 = 𝐴𝐶𝑐𝑜𝑠 𝑢𝜏 =
𝐴𝐶

2
𝑒𝑗𝑢𝜏 +

𝐴𝐶

2
𝑒−𝑗𝑢𝜏      (A3.1) 

Φ 𝜏 = 𝐴𝐹𝑐𝑜𝑠 𝑣𝜏 =
𝐴𝐹

2
𝑒𝑗𝑣𝜏 +

𝐴𝐹

2
𝑒−𝑗𝑣𝜏      (A3.2) 

Step 2: Representing the dimensionless outlet concentrations of the reactant and product in the 

form of Volterra series 
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𝐶𝐴 𝜏 =
𝐴𝐶
2
𝐺1,𝐶𝐴 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺1,𝐶𝐴 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺2,𝐶𝐶𝐴 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝐹
2
𝐺1,𝐹𝐴 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝐹
2
𝐺1,𝐹𝐴 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝐹
2
 

2

𝐺2,𝐹𝐹𝐴 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝐹
2
𝐺2,𝐶𝐹𝐴 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (A3.3) 

𝐶𝑃 𝜏 =
𝐴𝐶
2
𝐺1,𝐶𝑃 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺1,𝐶𝑃 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺2,𝐶𝐶𝑃 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝐹
2
𝐺1,𝐹𝑃 𝑣 𝑒

𝑗𝜔𝜏 +
𝐴𝐹
2
𝐺1,𝐹𝑃 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝐹
2
 

2

𝐺2,𝐹𝐹𝑃 𝑣,−𝑣 𝑒0

+⋯+
𝐴𝐶
2

𝐴𝐹
2
𝐺2,𝐶𝐹𝑃 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (A3.4) 

Step 3: Substituting the expressions for the dimensionless inputs (Eqs. (A3.1) and (A3.2)) and 

dimensionless outlet concentrations defined with equations (A3.3) and (A3.4) into the 

appropriate dimensionless model equations (Eqs. (3.10) and (3.11)). 

Step 4: Applying the method of harmonic probing. The terms with 
𝐴𝐶

2

𝐴𝐹

2
𝑒𝑗 (𝑢+𝑣)𝜏  corresponding 

to the cross asymmetrical second order FRFs are collected and equated with zero. The resulting 

equations are presented below: 

𝑗 𝑢 + 𝑣 𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 =

 1 + 𝛼 − 𝐺𝐴1,𝐶 𝑢 −  1 + 𝑛𝛼 𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 − 𝑛 𝑛 − 1 𝛼𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝐹(𝑣)  

          (A3.5) 

𝑗 𝑢 + 𝑣 𝐺𝑃2,𝐶𝐹 𝑢, 𝑣 =

−𝐺𝑃1,𝐶 𝑢 + 𝑛𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 − 𝐺𝑃2,𝐶𝐹 𝑢, 𝑣 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝐹(𝑣)   

          (A3.6) 

Step 5: Solving the equations obtained in Step 4 (Eqs. (A3.5) and (A3.6)) leads to the general 

expressions for the cross ASO FRFs 

𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 =
1

 1+𝑛𝛼+𝑗 (𝑢+𝑣) 
  1 + 𝛼 − 𝐺𝐴1,𝐶 𝑢 − 𝑛 𝑛 − 1 𝛼𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝐹(𝑣)   

          (A3.7) 

𝐺𝑃2,𝐶𝐹 𝑢, 𝑣 =
1

 1+𝑗 (𝑢+𝑣) 
 𝑛𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 − 𝐺𝑃1,𝐶 𝑢 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝐹(𝑣)  

           (A3.8) 

For equal input forcing frequencies (𝑢 = 𝜔 and 𝑣 = −𝜔) the following relations between the 

cross ASO FRFs and the first order FRFs are obtained: 

𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 =
1

 1 + 𝑛𝛼 
  1 + 𝛼 − 𝐺𝐴1,𝐶 𝜔 − 𝑛 𝑛 − 1 𝛼𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹(−𝜔)  

          (A3.9) 
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𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 =
1

1 + 𝑛𝛼
 𝑛 1 + 𝛼 − 𝑛𝐺𝐴1,𝐶 𝜔 −  1 + 𝑛𝛼 𝐺𝑃1,𝐶 𝜔 

− 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹 −𝜔   

(A3.10) 

It should be noticed that the cross ASO FRFs GA2,CF(ω,-ω) and GA2,CF(-ω,ω) are complex-

conjugates as well as GP2,CF(ω,-ω) and GP2,CF(-ω,ω). The final expressions for the cross ASO 

FRFs GA2,CF(ω,-ω) and GP2,CF(ω,-ω), after incorporating the expressions for the first order FRFs 

into equations (A3.9) and (A3.10) are given in the main body of this work, by the Eqs. ((3.28) 

and (3.29)). 

B. Taylor expansions of the nonlinear terms, derivation procedure of 

asymmetrical frequency response function and some auxiliary functions and 

parameters for non-isothermal CSTR 

B.1.Taylor series expansions of the nonlinear terms in the dimensionless balance 

equations (4.12-4.14) 

𝑒
−

𝐸𝐴
𝑅𝑇𝑠(𝜃+1) = 𝑒

−
𝐸𝐴
𝑅𝑇𝑠 + 𝜃

𝐸𝐴

𝑅𝑇𝑠
𝑒
−
𝐸𝐴
𝑅𝑇𝑠 + 𝜃2  −

𝐸𝐴

𝑅𝑇𝑠
 𝑒

−
𝐸𝐴
𝑅𝑇𝑠 +

𝜃2

2
 −

𝐸𝐴

𝑅𝑇𝑠
 

2
𝑒
−
𝐸𝐴
𝑅𝑇𝑠 +⋯  

          (B1.1) 

𝑒
−

𝐸𝐴
𝑅𝑇𝑠(𝜃+1) = 𝑒−𝛾(1 + 𝜃𝛾 +  

𝛾2

2
− 𝛾 𝜃2 +⋯ )      

          (B1.2) 

 1 + 𝐶𝐴 
𝑛 = 1 + 𝑛𝐶𝐴 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯      

          (B1.3) 

(1 + 𝐶𝐴)𝑛𝑒
−

𝐸𝐴
𝑅𝑇𝑠(𝜃+1) = 𝑒−𝛾(1 + 𝛾𝜃 + 𝑛𝐶𝐴 + 𝑛𝛾𝐶𝐴𝜃 +  

𝛾2

2
− 𝛾 𝜃2 +

1

2
𝑛 𝑛 − 1 𝐶𝐴

2 +⋯ )

          (B1.4) 

B.2. Derivation of the first order and asymmetrical second order frequency 

response functions for single input modulation of inlet concentration, flow-rate, 

inlet temperature and temperature of the cooling/heating fluid 

Step 1: Defining the dimensionless input modulation,  

𝑋 𝜏 = 𝐴𝑋𝑐𝑜𝑠 𝜔𝜏 =
𝐴𝑋

2
𝑒𝑗𝜔𝜏 +

𝐴𝑋

2
𝑒−𝑗𝜔𝜏      (B2.1) 

where for inlet concentration modulation X=CAi, for flow-rate modulation X=Φ , for inlet 

temperature modulation X=Ti and for temperature of the cooling/heating fluid X=TJ. The 

corresponding forcing amplitudes are: AC, AF, AT and AJ, respectively. 

Step 2: Representing the outlet concentrations of the reactant and product, as well as outlet 

temperature, in the form of Volterra series: 



191 

 

𝐶𝐴 𝜏 =  
𝐴𝑋

2
 𝐺𝐴1,𝑋 𝜔 𝑒

𝑗𝜔𝜏 +  
𝐴𝑋

2
 𝐺𝐴1,𝑋 −𝜔 𝑒

−𝑗𝜔𝜏 +⋯+ 2  
𝐴𝑋

2
 

2
𝐺𝐴2,𝑋𝑋 𝜔,−𝜔 𝑒0 +⋯

          (B2.2) 

𝐶𝑃 𝜏 =  
𝐴𝑋

2
 𝐺𝑃1,𝑋 𝜔 𝑒

𝑗𝜔𝜏 +  
𝐴𝑋

2
 𝐺𝑃1,𝑋 −𝜔 𝑒

−𝑗𝜔𝜏 +⋯+ 2  
𝐴𝑋

2
 

2
𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 𝑒0 +⋯

          (B2.3) 

𝜃 𝜏 =  
𝐴𝑋

2
 𝐹1,𝑋 𝜔 𝑒

𝑗𝜔𝜏 +  
𝐴𝑋

2
 𝐹1,𝑋 −𝜔 𝑒

−𝑗𝜔𝜏 +⋯+ 2  
𝐴𝑋

2
 

2
𝐹2,𝑋𝑋 𝜔,−𝜔 𝑒0 +⋯ 

          (B2.4) 

Step 3: Substituting the expressions for the modulated input, outlet concentrations of the 

reactant and product and outlet temperature, defined with Eqs. (B2.2-B2.4), into the appropriate 

model equations (4.15-4.17) (all inputs which are not modulated are set to zero). 

Step 4: Collecting the terms with  
𝐴𝑋

2
 𝑒𝑗𝜔𝜏 , corresponding to the first order functions, and with 

 
𝐴𝑋

2
 

2
𝑒0, corresponding to the ASO FRF, and equating them to zero. The resulting equations, 

which are given in the general form, are for the first order frequency response functions 

GA1,X(ω), GP1,X(ω) and F1,X(ω) 

 1 + 𝑛𝛼 + 𝑗𝜔 𝐺𝐴1,𝑋 𝜔 +  0 𝐺𝑃1,𝑋 𝜔 +  𝛼𝛾 𝐹1,𝑋 𝜔 = 𝑘𝑋1 

 −𝑛 𝐺𝐴1,𝑋 𝜔 +  1 + 𝑗𝜔 𝐺𝑃1,𝑋 𝜔 +  −𝛾 𝐹1,𝑋 𝜔 = 𝑘𝑋2   (B2.5) 

 𝑛𝛽 𝐺𝐴1,𝑋 𝜔 +  0 𝐺𝑃1,𝑋 𝜔 +  1 + 𝑆𝑡 + 𝛽𝛾 + 𝑗𝜔 𝐹1,𝑋 𝜔 = 𝑘𝑋3 

where 

for X=C: 𝑘𝐶1 = 1 + 𝛼, 𝑘𝐶2 = 𝑘𝐶3 = 0     (B2.6) 

for X=F: 𝑘𝐹1 = 𝛼, 𝑘𝐹2 = −1, 𝑘𝐹3 = 𝛽 + 𝑆𝑡 − 𝛿    (B2.7) 

for X=T: 𝑘𝑇1 = 𝑘𝑇2 = 0, 𝑘𝑇3 = 1 + 𝛽 + 𝑆𝑡 − 𝛿    (B2.8) 

for X=J: 𝑘𝐽1 = 𝑘𝐽2 = 0, 𝑘𝐽3 = 𝛿      (B2.9) 

For the asymmetrical second order frequency response functions: GA2,XX(ω), GP2,XX(ω) and 

F1,XX(ω), the resulting equations are: 

 2 1 + 𝑛𝛼  𝐺𝐴2,𝑋𝑋 𝜔,−𝜔 +  0 𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 +  2𝛼𝛾 𝐹2,𝑋𝑋 𝜔,−𝜔 = 𝑙𝑋1 

 −2𝑛 𝐺𝐴2,𝑋𝑋 𝜔,−𝜔 +  2 𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 +  −2𝛾 𝐹2,𝑋𝑋 𝜔,−𝜔 = 𝑙𝑋2 (B2.10) 

 2𝑛𝛽 𝐺𝐴2,𝑋𝑋 𝜔,−𝜔 +  0 𝐺𝑃2,𝑋𝑋 𝜔,−𝜔 +  2(1 + 𝑆𝑡 + 𝛽𝛾) 𝐹2,𝑋𝑋 𝜔,−𝜔 = 𝑙𝑋3 

where for X=C, T or J: 

𝑙𝑋1 = −𝛼𝑃𝑋 ; 𝑙𝑋2 = 𝑃𝑋 ;  𝑙𝑋3 = −𝛽𝑃𝑋      (B2.11) 

and for X=F: 

𝑙𝐹1 = −𝐺1,𝐹𝐴 𝜔 − 𝐺1,𝐹𝐴 −𝜔 − 𝛼𝑃𝐹      (B2.12) 
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𝑙𝐹2 = −𝐺1,𝐹𝑃 𝜔 − 𝐺1,𝐹𝑃 −𝜔 +𝑃𝐹      (B2.13) 

𝑙𝐹3 = −𝐹1,𝐹 𝜔 − 𝐹1,𝐹 −𝜔 − 𝛽𝑃𝐹       (B2.14) 

where: 

𝑃𝑋 = 𝑛 𝑛 − 1 𝐺1,𝑋𝐴 𝜔 𝐺1,𝑋𝐴 −𝜔 + 𝛾 𝛾 − 2 𝐹1,𝑋 𝜔 𝐹1,𝑋 −𝜔 

+ 𝑛𝛾  𝐺1,𝑋𝐴 𝜔 𝐹1,𝑋 −𝜔 + 𝐺1,𝑋𝐴 −𝜔 𝐹1,𝑋 𝜔   

          (B2.15) 

Step 5: After solving the system of equations for the first order FRFs (Eq. (B2.5)) the final 

expressions for the first order G FRFs are given in the main part of this work, and here the 

F1,X(ω) are given 

𝐹1,𝐶 𝜔 =
−𝑛𝛽  1+𝛼 

𝐵𝑝𝑠−𝜔
2−2𝑗𝜔 𝐴𝑝𝑠

       (B2.16) 

𝐹1,𝐹 𝜔 =
(𝛽+𝑆𝑡−𝛿+𝑛𝛼  𝑆𝑡−𝛿 )+𝑗𝜔 (𝛽+𝑆𝑡−𝛿)

𝐵𝑝𝑠−𝜔
2−2𝑗𝜔 𝐴𝑝𝑠

     (B2.17) 

𝐹1,𝑇 𝜔 =
 1+𝛽+𝑆𝑡−𝛿 (1+𝑛𝛼+𝑗𝜔 )

𝐵𝑝𝑠−𝜔
2−2𝑗𝜔 𝐴𝑝𝑠

       (B2.18) 

𝐹1,𝐽 𝜔 =
𝛿(1+𝑛𝛼+𝑗𝜔 )

𝐵𝑝𝑠−𝜔
2−2𝑗𝜔 𝐴𝑝𝑠

       (B2.19) 

The system of equation for the ASO FRFs (Eq. (B2.10)) is solved and the final expressions for 

the G-ASO FRFs are obtained and given in the main part of this work. 

Here, the G-ASO FRFs given as a function of the first order FRF.  

𝐺𝐴2,𝐶𝐶 𝜔,−𝜔 = −
1

2

𝛼 1 + 𝑆𝑡 

𝐵𝑝𝑠
 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝐶 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐶 −𝜔 𝐹1,𝐶 𝜔 

+ 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝐶 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐶(−𝜔)  

          (B2.20) 

𝐺𝐴2,𝐹𝐹 𝜔,−𝜔 = −
1

2𝐵𝑝𝑠
  1 + 𝛽𝛾 + 𝑆𝑡  𝐺𝐴1,𝐹 𝜔 + 𝐺𝐴1,𝐹 −𝜔  

− 𝛼𝛾  𝐹1,𝐹 𝜔 + 𝐹1,𝐹 −𝜔  

+ 𝛼 1 + 𝑆𝑡  𝑛𝛾𝐺𝐴1,𝐹 𝜔 𝐹1,𝐹 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐹 −𝜔 𝐹1,𝐹 𝜔 

+ 𝛾 𝛾 − 2 𝐹1,𝐹 𝜔 𝐹1,𝐹 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐹 𝜔 𝐺𝐴1,𝐹(−𝜔)   

           (B2.21) 

𝐺𝐴2,𝑇𝑇 𝜔,−𝜔 = −
𝛼(1 + 𝑆𝑡)

2𝐵𝑝𝑠
 𝛾 𝛾 − 2 𝐹1,𝑇 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 𝜔 𝐹1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝑇 𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝑇 𝜔 𝐺𝐴1,𝑇 −𝜔   

          (B2.22) 
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𝐺𝐴2,𝐽𝐽  𝜔,−𝜔 = −
𝛼(1 + 𝑆𝑡)

2𝐵𝑝𝑠
 𝛾 𝛾 − 2 𝐹1,𝐽 𝜔 𝐹1,𝐽 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐽 𝜔 𝐹1,𝐽 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐽 −𝜔 𝐹1,𝐽 𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐽 𝜔 𝐺𝐴1,𝐽 −𝜔   

          (B2.23) 

The final expressions for the ASO F FRFs which correspond the outlet temperature with 

modulated input, are: 

𝐹2,𝐶𝐶 𝜔,−𝜔 = −
𝛽 1 + 𝛼 2

2𝐵𝑝𝑠
×

Λ

 𝐵𝑝𝑠 −𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

          (B2.24) 

𝐹2,𝐹𝐹 𝜔,−𝜔 =
1

2𝐵𝑝𝑠

1

 𝐵𝑝𝑠 −𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2)
× 

 2 1 + 𝑛𝛼 ((𝛽 + 𝑆𝑡 − 𝛿 + 𝑛𝛼(𝑆𝑡 − 𝛿)  −𝜔2 + 1 + 𝛽𝛾 + 𝑆𝑡 + 𝑛𝛼 + 𝑛𝛼𝑆𝑡 

+ 2 1 + 𝑛𝛼  𝜔2 𝛽 + 𝑆𝑡 − 𝛿  2 + 𝑛𝛼 + 𝑆𝑡 + 𝛽𝛾  

− 2𝑛𝛼𝛽 1 + 𝑆𝑡 − 𝛾𝑆𝑡 + 𝛾𝛿  −𝜔2 + 1 + 𝛽𝛾 + 𝑆𝑡 + 𝑛𝛼 + 𝑛𝛼𝑆𝑡 

− 2𝑛𝛼𝛽𝜔2 2 + 𝑆𝑡 + 𝛾𝛽 + 𝑛𝛼 

+ 𝛽𝛾 𝛾 − 2   𝛽 + 𝑆𝑡 − 𝛿 + 𝑛𝛼 𝑆𝑡 − 𝛿  
2

+ 𝜔2 𝛽 + 𝑆𝑡 − 𝛿 2 

+ 𝑛 𝑛 − 1 𝛼2𝛽  1 + 𝑆𝑡 − 𝛾𝑆𝑡 + 𝛾𝛿 2 + 𝜔2 

+ 2𝑛𝛼𝛽𝛾( 1 + 𝑆𝑡 − 𝛾𝑆𝑡 + 𝛾𝛿  𝛽 + 𝑆𝑡 − 𝛿 + 𝑛𝛼 𝑆𝑡 − 𝛿  

+ 𝜔2 𝛽 + 𝑆𝑡 − 𝛿 )) 

         (B2.25) 

𝐹2,𝑇𝑇 𝜔,−𝜔 = −
𝛽𝛾 1 + 𝛽 + 𝑆𝑡 − 𝛿 2

2𝐵𝑝𝑠
×

Ψ

 𝐵𝑝𝑠 −𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

          (B2.26) 

𝐹2,𝐽𝐽  𝜔,−𝜔 = −
𝛽𝛾𝛿2

2𝐵𝑝𝑠

Ψ

 𝐵𝑝𝑠 −𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

          (B2.27) 

B.3. Derivation of cross asymmetrical second order frequency response functions 

for simultaneous modulation of inlet concentration and inlet temperature 

Step 1: Defining the dimensionless input modulation, 

𝐶𝐴𝑖 𝜏 = 𝐴𝐶𝑐𝑜𝑠 𝑢𝜏 =
𝐴𝐶

2
𝑒𝑗𝑢𝜏 +

𝐴𝐶

2
𝑒−𝑗𝑢𝜏      (B3.1) 

𝜃𝑖 𝜏 = 𝐴𝑇𝑐𝑜𝑠 𝑣𝜏 =
𝐴𝑇

2
𝑒𝑗𝑣𝜏 +

𝐴𝑇

2
𝑒−𝑗𝑣𝜏      (B3.2) 

Step 2: Representing the outlet concentrations of the reactant and product as well as outlet 

temperature in the form of Volterra series: 
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𝐶𝐴 𝜏 =
𝐴𝐶
2
𝐺𝐴1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺𝐴1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺𝐴2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝑇
2
𝐺𝐴1,𝑇 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝑇
2
𝐺𝐴1,𝑇 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝑇
2
 

2

𝐺𝐴2,𝑇𝑇 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝑇
2
𝐺𝐴2,𝐶𝑇 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B3.3) 

𝐶𝑃 𝜏 =
𝐴𝐶
2
𝐺𝑃1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺𝑃1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺𝑃2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝑇
2
𝐺𝑃1,𝑇 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝑇
2
𝐺𝑃1,𝑇 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝑇
2
 

2

𝐺𝑃2,𝑇𝑇 𝑣,−𝑣 𝑒0

+⋯+
𝐴𝐶
2

𝐴𝑇
2
𝐺𝑃2,𝐶𝑇 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B3.4) 

𝜃 𝜏 =
𝐴𝐶
2
𝐹1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐹1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐹2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝑇
2
𝐹1,𝑇 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝑇
2
𝐹1,𝑇 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝑇
2
 

2

𝐹2,𝑇𝑇 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝑇
2
𝐹2,𝐶𝑇 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B3.5) 

Step 3: Substituting the expressions for the modulated inputs, outlet concentrations of the 

reactant and product and outlet temperature, defined with Eqs. (B3.3-B3.5), into the appropriate 

model equations (4.15-4.17) after equated inputs which are not modulated to zero. 

Step 4: Collecting the terms with 
𝐴𝐶

2

𝐴𝑇

2
𝑒𝑗 (𝑢+𝑣)𝜏 , corresponding to the cross ASO FRFs, and 

equating them to zero. The resulting equations are: 

𝑗 𝑢 + 𝑣 𝐺𝐴2,𝐶𝑇 𝑢, 𝑣 

= − 1 + 𝑛𝛼 𝐺𝐴2,𝐶𝑇 𝑢, 𝑣 − 𝛼𝛾𝐹2,𝐶𝑇 𝑢, 𝑣 

− 𝛼 𝛾 𝛾 − 2 𝐹1,𝐶 𝑢 𝐹1,𝑇 𝑣 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝑇 𝑣 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝑢 𝐹1,𝑇 𝑣 + 𝑛𝛾𝐺𝐴1,𝑇 𝑣 𝐹1,𝐶(𝑢)  

          (B3.6) 

𝑗 𝑢 + 𝑣 𝐺𝑃2,𝐶𝑇𝑃 𝑢, 𝑣 

= 𝑛𝐺𝐴2,𝐶𝑇 𝑢, 𝑣 − 𝐺𝑃2,𝐶𝑇 𝑢, 𝑣 + 𝛾𝐹2,𝐶𝑇 𝑢, 𝑣 

+  𝛾 𝛾 − 2 𝐹1,𝐶 𝑢 𝐹1,𝑇 𝑣 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝑇 𝑣 + 𝑛𝛾𝐺𝐴1,𝐶 𝑢 𝐹1,𝑇 𝑣 

+ 𝑛𝛾𝐺𝐴1,𝑇 𝑣 𝐹1,𝐶(𝑢)  

          (B3.7) 

𝑗 𝑢 + 𝑣 𝐹2,𝐶𝐹 𝑢, 𝑣 

= − 1 + 𝑆𝑡 + 𝛽𝛾 𝐹2,𝐶𝑇 𝑢, 𝑣 − 𝑛𝛽𝐺𝐴2,𝐶𝑇 𝑢, 𝑣 

− 𝛽 𝛾 𝛾 − 2 𝐹1,𝐶 𝑢 𝐹1,𝑇 𝑣 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑢 𝐺𝐴1,𝑇 𝑣 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝑢 𝐹1,𝑇 𝑣 + 𝑛𝛾𝐺𝐴1,𝑇 𝑣 𝐹1,𝐶(𝑢)  

          (B3.8) 
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After introducing the 𝑢 = 𝜔 and 𝑣 = −𝜔 

0 = − 1 + 𝑛𝛼 𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 − 𝛼𝛾𝐹2,𝐶𝑇 𝜔,−𝜔 

− 𝛼 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.9) 

0 = 𝑛𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 − 𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 + 𝛾𝐹2,𝐶𝑇 𝜔,−𝜔 

+  𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.10) 

0 = − 1 + 𝑆𝑡 + 𝛽𝛾 𝐹2,𝐶𝑇 𝜔,−𝜔 − 𝑛𝛽𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 

− 𝛽 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.11) 

The system of equation can be written as follows: 

  1 + 𝑛𝛼  𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 +  0 𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 +  𝛼𝛾 𝐹2,𝐶𝑇 𝜔,−𝜔 = 𝑙𝐶𝑇1 

 −𝑛 𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 +  1 𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 +  −𝛾 𝐹2,𝐶𝑇 𝜔,−𝜔 = 𝑙𝐶𝑇2  (B3.12) 

 𝑛𝛽 𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 +  0 𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 +  (1 + 𝑆𝑡 + 𝛽𝛾) 𝐹2,𝐶𝑇 𝜔,−𝜔 = 𝑙𝐶𝑇3 

Where the auxiliary parameters are introduced: 

𝑃𝐶𝑇 = 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺1,𝐶𝐴 𝜔 𝐺1,𝑇𝐴 −𝜔 + 𝑛𝛾𝐺1,𝐶𝐴 𝜔 𝐹1,𝑇 −𝜔 +

𝑛𝛾𝐺1,𝑇𝐴 −𝜔 𝐹1,𝐶(𝜔)        (B3.13) 

𝑙𝐶𝑇1 = −𝛼𝑃𝐶𝑇 , 𝑙𝐶𝑇2 = 𝑃𝐶𝑇 , 𝑙𝐶𝑇3 = −𝛽𝑃𝐶𝑇      (B3.14) 

Step 5: After solving system of equations (B3.12) the final expressions for the cross ASO FRFs 

GA2,CT(ω,-ω) and GP2,CT(ω,-ω) are given in the main part of this work and here only the final of 

the cross ASO FRF F2,CT(ω,-ω) is given: 

𝐹2,𝐶𝑇 𝜔,−𝜔 =
𝑛𝛽𝛾 1 + 𝛼 (1 + 𝛽 + 𝑆𝑡 − 𝛿)

𝐵𝑝𝑠
× 

 1 + 𝑆𝑡 + 𝛼 1 + 𝑆𝑡 + 𝛽𝛾 + 2𝛽 1 + 𝑛𝛼 + 𝜔2 + 𝑗𝜔(𝛼 − 2𝛽 − 𝑆𝑡)

 𝐵𝑝𝑠 −𝜔
2 

2
+ 4𝐴𝑝𝑠

2 𝜔2
 

          (B3.15) 

The ASO FRFs are here given as a function of the first order FRF, as follows: 

𝐺𝐴2,𝐶𝑇 𝜔,−𝜔 =
−𝛼(1 + 𝑆𝑡)

𝐵𝑝𝑠
 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.16) 
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𝐺𝑃2,𝐶𝑇 𝜔,−𝜔 =
(1 + 𝑆𝑡)

𝐵𝑝𝑠
 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.17) 

𝐹2,𝐶𝑇 𝜔,−𝜔 =
−𝛽

𝐵𝑝𝑠
 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝑇 −𝜔 

+ 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝑇 −𝜔 + 𝑛𝛾𝐺𝐴1,𝑇 −𝜔 𝐹1,𝐶(𝜔)  

          (B3.18) 

B.4. Derivation of cross asymmetrical second order frequency response functions 

for simultaneous modulation of inlet concentration and flow-rate 

Step 1: Defining the dimensionless input modulation, 

𝐶𝐴𝑖 𝜏 = 𝐴𝐶𝑐𝑜𝑠 𝑢𝜏 =
𝐴𝐶

2
𝑒𝑗𝑢𝜏 +

𝐴𝐶

2
𝑒−𝑗𝑢𝜏      (B4.1) 

Φ 𝜏 = 𝐴𝐹𝑐𝑜𝑠 𝑣𝜏 =
𝐴𝐹

2
𝑒𝑗𝑣𝜏 +

𝐴𝐹

2
𝑒−𝑗𝑣𝜏      (B4.2) 

Step 2: Representing the outlet concentrations of the reactant and product as well as outlet 

temperature in the form of Volterra series: 

𝐶𝐴 𝜏 =
𝐴𝐶
2
𝐺𝐴1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺𝐴1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺𝐴2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝐹
2
𝐺𝐴1,𝐹 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝐹
2
𝐺𝐴1,𝐹 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝐹
2
 

2

𝐺𝐴2,𝐹𝐹 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝐹
2
𝐺𝐴2,𝐶𝐹 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B4.3) 

𝐶𝑃 𝜏 =
𝐴𝐶
2
𝐺𝑃1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐺𝑃1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐺𝑃2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝐹
2
𝐺𝑃1,𝐹 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝐹
2
𝐺𝑃1,𝐹 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝐹
2
 

2

𝐺𝑃2,𝐹𝐹 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝐹
2
𝐺𝑃2,𝐶𝐹 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B4.4) 

𝜃 𝜏 =
𝐴𝐶
2
𝐹1,𝐶 𝑢 𝑒

𝑗𝑢𝜏 +
𝐴𝐶
2
𝐹1,𝐶 −𝑢 𝑒

−𝑗𝑢𝜏 +⋯+ 2  
𝐴𝐶
2
 

2

𝐹2,𝐶𝐶 𝑢,−𝑢 𝑒0 +⋯

+
𝐴𝑇
2
𝐹1,𝑇 𝑣 𝑒

𝑗𝑣𝜏 +
𝐴𝐹
2
𝐹1,𝐹 −𝑣 𝑒

−𝑗𝑣𝜏 +⋯+ 2  
𝐴𝐹
2
 

2

𝐹2,𝐹𝐹 𝑣,−𝑣 𝑒0 +⋯

+
𝐴𝐶
2

𝐴𝐹
2
𝐹2,𝐶𝐹 𝑢, 𝑣 𝑒𝑗  𝑣+𝑢 𝜏 +⋯ 

          (B4.5) 

Step 3: Substituting the expressions for the modulated inputs, outlet concentrations of the 

reactant and product and outlet temperature, defined with Eqs. (B4.1-B4.5), into the appropriate 

model equations (4.15-4.17) after equated inputs which are not modulated to zero. 



197 

 

Step 4: Collecting the terms with 
𝐴𝐶

2

𝐴𝐹

2
𝑒𝑗 (𝑢+𝑣)𝜏 , corresponding to the cross ASO FRFs, and 

equating them to zero. The resulting equations are: 

 1 + 𝑛𝛼 + 𝑗 𝑣 + 𝑢  𝐺𝐴2,𝐶𝐹 𝑣,𝑢 +  0 𝐺𝑃2,𝐶𝐹 𝑣,𝑢 +  𝛼𝛾 𝐹2,𝐶𝐹 𝑣,𝑢 

=  1 + 𝛼 − 𝐺1,𝐶𝐴 𝑣 

− 𝛼 𝑛𝛾𝐺𝐴1,𝐶 𝑣 𝐹1,𝐹 𝑢 + 𝑛𝛾𝐺𝐴1,𝐹 𝑢 𝐹1,𝐶(𝑣) + 𝛾 𝛾 − 2 𝐹1,𝐶 𝑣 𝐹1,𝐹 𝑢 

+ 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑣 𝐺𝐴1,𝐹(𝑢)  

          (B4.6) 

 −𝑛 𝐺𝐴2,𝐶𝐹 𝑣,𝑢 +  1 + 𝑗(𝑣 + 𝑢) 𝐺𝑃2,𝐶𝐹 𝑣,𝑢 +  −𝛾 𝐹2,𝐶𝐹 𝑣,𝑢 

= −𝐺𝑃1,𝐶 𝑣 

+  𝑛𝛾𝐺𝐴1,𝐶 𝑣 𝐹1,𝐹 𝑢 + 𝑛𝛾𝐺𝐴1,𝐹 𝑢 𝐹1,𝐶(𝑣) + 𝛾 𝛾 − 2 𝐹1,𝐶 𝑣 𝐹1,𝐹 𝑢 

+ 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑣 𝐺𝐴1,𝐹(𝑢)  

          (B4.7) 

 𝑛𝛽 𝐺𝐴2,𝐶𝐹 𝑣,𝑢 +  0 𝐺𝑃2,𝐶𝐹 𝑣,𝑢 +  1 + 𝛽𝛾 + 𝑆𝑡 + 𝑗(𝑣 + 𝑢) 𝐹2,𝐶𝐹 𝑣,𝑢 

= −𝐹1,𝐶 𝑣 

− 𝛽 𝑛𝛾𝐺𝐴1,𝐶 𝑣 𝐹1,𝐹 𝑢 + 𝑛𝛾𝐺𝐴1,𝐹 𝑢 𝐹1,𝐶(𝑣) + 𝛾 𝛾 − 2 𝐹1,𝐶 𝑣 𝐹1,𝐹 𝑢 

+ 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝑣 𝐺𝐴1,𝐹(𝑢)  

          (B4.8) 

After introducing the 𝑢 = 𝜔  and 𝑣 = −𝜔  an after introducing the auxiliary parameters 

(Eqs.(B4.10)-(B4.13)) the system of equations can be written as following: 

 1 + 𝑛𝛼 𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 +  0 𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 +  𝛼𝛾 𝐹2,𝐶𝐹 𝜔,−𝜔 = 𝑙𝐶𝐹1 

 −𝑛 𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 +  1 𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 +  −𝛾 𝐹2,𝐶𝐹 𝜔,−𝜔 = 𝑙𝐶𝐹2  (B4.9) 

 𝑛𝛽 𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 +  0 𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 +  1 + 𝛽𝛾 + 𝑆𝑡 𝐹2,𝐶𝐹 𝜔,−𝜔 = 𝑙𝐶𝐹3 

with 

𝑃𝐶𝐹 = 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐹 −𝜔 𝐹1,𝐶(𝜔) + 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝐹 −𝜔 +

𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹(−𝜔)       (B4.10) 

𝑙𝐶𝐹1 = 1 + 𝛼 − 𝐺𝐴1,𝐶 𝜔 − 𝛼𝑃𝐶𝐹       (B4.11) 

𝑙𝐶𝐹2 = −𝐺𝑃1,𝐶 𝜔 + 𝑃𝐶𝐹        (B4.12) 

𝑙𝐶𝐹3 = −𝐹1,𝐶 𝜔 − 𝛽𝑃𝐶𝐹        (B4.13) 

Step 5: After solving system of equations the final expressions for the cross ASO FRFs 

GA2,CF(ω,-ω) and GP2,CF(ω,-ω) are given in the main part of this work. The cross ASO FRFs are 

here given as a function of the first order FRFs: 

𝐺𝐴2,𝐶𝐹 𝜔,−𝜔 =
1

𝐵𝑝𝑠
( 1 + 𝛽𝛾 + 𝑆𝑡  1 + 𝛼 −  1 + 𝛽𝛾 + 𝑆𝑡 𝐺𝐴1,𝐶 𝜔 + 𝛼𝛾𝐹1,𝐶 𝜔 

− 𝛼 1 + 𝑆𝑡  𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐹 −𝜔 𝐹1,𝐶(𝜔)

+ 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹(−𝜔) ) 

          (B4.14) 
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𝐺𝑃2,𝐶𝐹 𝜔,−𝜔 =
1

𝐵𝑝𝑠
 𝑛 1 + 𝛼  1 + 𝑆𝑡 − 𝑛 1 + 𝑆𝑡 𝐺𝐴1,𝐶 𝜔 − 𝐵𝑝𝑠𝐺𝑃1,𝐶 𝜔 − 𝛾𝐹1,𝐶 𝜔 

+ (1

+ 𝑆𝑡) 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐹 −𝜔 𝐹1,𝐶(𝜔)

+ 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹(−𝜔)   

          (B4.15) 

𝐹2,𝐶𝐹 𝜔,−𝜔 =
1

𝐵𝑝𝑠
 −𝑛𝛽 1 + 𝛼 + 𝑛𝛽𝐺𝐴1,𝐶 𝜔 −  1 + 𝑛𝛼 𝐹1,𝐶 𝜔 

+ 𝛽 𝑛𝛾𝐺𝐴1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛𝛾𝐺𝐴1,𝐹 −𝜔 𝐹1,𝐶(𝜔)

+ 𝛾 𝛾 − 2 𝐹1,𝐶 𝜔 𝐹1,𝐹 −𝜔 + 𝑛 𝑛 − 1 𝐺𝐴1,𝐶 𝜔 𝐺𝐴1,𝐹(−𝜔)   

          (B4.16) 

B.5 The auxiliary functions ΓR and ΓI which figure in the cross asymmetrical 

frequency response function GP2,CF(ω,-ω) in polynomial forms  

The auxiliary functions ΓR and ΓI can be given in polynomial form of forcing frequency 

Γ𝑅 = Γ𝑅1𝜔
6 + Γ𝑅2𝜔

4 + Γ𝑅3𝜔
2 + Γ𝑅4      (B5.1) 

Γ𝐼 = Γ𝐼1𝜔
4 + Γ𝐼2𝜔

2 + Γ𝐼3       (B5.2) 

where the auxiliary parameters ΓR1, ΓR2, ΓR3 and ΓR4 are defined as functions of the stability 

parameters Aps and Bps and auxiliary parameters ΠR1, ΠR2 and ΠR3, respectively in following 

way: 

Γ𝑅1 = 𝐵𝑝𝑠 −Π𝑅1        (B5.3) 

Γ𝑅2 = 𝐵𝑝𝑠 4𝐴𝑝𝑠
2 − 2𝐵𝑝𝑠 − Π𝑅1 − Π𝑅2      (B5.4) 

Γ𝑅3 = 𝐵𝑝𝑠
3 −Π𝑅2 − Π𝑅3        (B5.5) 

Γ𝑅4 = −Π𝑅3         (B5.6) 

and the auxiliary parameters ΓI1, ΓI2 and ΓI3 which are defined as function of the auxiliary 

parameters ΠI1 and ΠI2 and stability parameters Aps and Bps, as follows: 

Γ𝐼1 = 𝐵𝑝𝑠 − Π𝐼1         (B5.7) 

Γ𝐼2 = 𝐵𝑝𝑠 4𝐴𝑝𝑠
2 − 2𝐵𝑝𝑠 − Π𝐼1 − Π𝐼2      (B5.8) 

Γ𝐼3 = 𝐵𝑝𝑠
3 − Π𝐼2         (B5.9) 

B.6 The auxiliary functions ΠHR and ΠHI which figure in the cross asymmetrical 

frequency response function HA2,CF(ω,-ω) in polynomial forms 

The auxiliary functions ΠHR and ΠHI can be given in polynomial form of forcing frequency as: 

Π𝐻𝑅 = Π𝐻𝑅1𝜔
4 + Π𝐻𝑅2𝜔

2 + Π𝐻𝑅3      (B6.1) 

Π𝐻𝐼 = Π𝐻𝐼1𝜔
2 + Π𝐻𝐼2        (B6.2) 

The auxiliary parameters ΠHR1, ΠHR2 and ΠHR3 are defined as functions of the stability 

parameters Aps and Bps and auxiliary parameters ΠR2 and ΠR3, in following way: 

Π𝐻𝑅1 = Π𝑅1 = 1 + 𝛽𝛾 + 𝑆𝑡       (B6.3) 

Π𝐻𝑅2 = Π𝑅2 −  1 + 𝛽𝛾 + 𝑆𝑡 𝐵𝑝𝑠 − 2𝐴𝑝𝑠𝐵𝑝𝑠      (B6.4) 
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Π𝐻𝑅3 = Π𝑅3 +  1 + 𝛽𝛾 + 𝑆𝑡 𝐵𝑝𝑠
2       (B6.5) 

The auxiliary parameters ΠHI1 and ΠHI2 are defined as function of the auxiliary parameters ΠI1 

and ΠI2 and stability parameters Aps and Bps, as follows: 

Π𝐻𝐼1 = Π𝐼1 − 𝐵𝑝𝑠         (B6.6) 

Π𝐻𝐼2 = Π𝐼2 + 𝐵𝑝𝑠
2 + 2(1 + 𝛽𝛾 + 𝑆𝑡)𝐴𝑝𝑠𝐵𝑝𝑠      (B6.7) 

B.7. The auxiliary functions ΓHR and ΓHI which figure in the cross asymmetrical 

frequency response function HP2,CF(ω,-ω) in polynomial forms 

The auxiliary functions ΓHR and ΓHI can be given in polynomial form of forcing frequency as: 

Γ𝐻𝑅 = Γ𝐻𝑅1𝜔
6 + Γ𝐻𝑅2𝜔

4 + Γ𝐻𝑅3𝜔
2 + Γ𝐻𝑅4     (B7.1) 

Γ𝐻𝐼 = Γ𝐻𝐼1𝜔
4 + Γ𝐻𝐼2𝜔

2 + Γ𝐻𝐼3       (B7.2) 

The auxiliary parameters ΓHR1, ΓHR2, ΓHR3, and ΓHR4, are defined as functions of the 

stability parameters Aps and Bps and auxiliary parameters ΓR1, ΓR2 and ΓR3, respectively 

in following way: 

Γ𝐻𝑅1 = Γ𝑅1         (B7.3) 

Γ𝐻𝑅2 = Γ𝑅2 − 𝑛𝛼        (B7.4) 

Γ𝐻𝑅3 = Γ𝑅3 + 𝑛𝛼(𝐵𝑝𝑠 − 2𝐴𝑝𝑠 ) + 𝑛𝛼 1 + 𝑆𝑡  2𝐴𝑝𝑠 − 1    (B7.5) 

Γ𝐻𝑅4 = 𝑛𝛼(1 + 𝑆𝑡)𝐵𝑝𝑠         (B7.6) 

and the auxiliary parameters ΓHI1, ΓHI2 and ΓHI3 which are defined as function of the auxiliary 

parameters ΓI1, ΓI2 and ΓI3  and stability parameters Aps and Bps, as follows: 

Γ𝐻𝐼1 = Γ𝐼1         (B7.7) 

Γ𝐻𝐼2 = Γ𝐼2 + 𝑛𝛼𝐵𝑝𝑠 2𝐴𝑝𝑠 − 1 + 𝑛𝛼 1 + 𝑆𝑡 𝐵𝑝𝑠     (B7.8) 

Γ𝐻𝐼3 = Γ𝐼3 + 𝑛𝛼𝐵𝑝𝑠
2 − 𝑛𝛼𝐵𝑝𝑠  1 + 𝑆𝑡 (𝐵𝑝𝑠 − 2𝐴𝑝𝑠 )    (B7.9) 

C. Optimization procedure and asymmetrical frequency response function 

GP2,TT(ω,-ω) for adiabatic CSTR 

C.1. Optimization procedure of the laboratory adiabatic CSTR for hydrolysis of 

acetic acid anhydride to acetic acid 

Two objective functions were defined and the optimal steady-state is obtained in Matlab, by the 

Multi-objective Genetic Algorithm. 

The lower and upper boundary (lb, ub) values for the residence time are set to be, for lower 

lb(τres)=100 s and for upper ub(τres)=1000 s, considering the volume of the laboratory reactor 

and the flow-rates of the pumps for water and anhydride of acetic acid. 

Two constraints are considered in the optimization procedure: 

1. Constraint 1 

−∆𝐻𝑟

𝜌𝑐𝑐𝑝
𝑐𝐴,𝑖,𝑠 + 𝑇𝑖 ,𝑠 − 𝑇𝑚𝑎𝑥 ≤ 0   (Tmax=353.15 K)  (C1.1) 

Constraint 1 can be reduced to 𝑐𝐴𝑖 ,𝑠 ≤ 4.375 𝑚𝑜𝑙/𝑙 
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2. Constraint 2 

10 𝑛 𝐴,𝑜 − 𝑛 𝑊,𝑜 ≤ 0        (C1.2) 

10 𝑐𝐴,𝑖 ∗ 𝐹𝑡𝑜𝑡 − 𝑐𝑤 ,𝑖 ∗ 𝐹𝑡𝑜𝑡 ≤ 0 

The constraint 2 can be reduced to 𝑐𝐴𝑖 ,𝑠 ≤ 3.642 𝑚𝑜𝑙/𝑙. Therefore, the upper boundary value 

for the inlet concentration is set to be, ub(cAi,s)=3.642 mol/l. 

The Multi-objective Genetic Algorithm gives the list of recommended solutions depending on 

the values of two defined objective functions, where the following solution is chosen, for 

optimal steady-state inlet concentration cAi,s=3.640mol/l and for optimal residence time τres 

=218.95 s. 

C.2. The asymmetrical second order frequency response function GP2,TT(ω,-ω) 

 

Figure C1 The ASO FRF GP2,TT(ω,-ω) as a function of the inlet temperature and residence time 

for constant inlet concentration cAi,s=3.640 mol/l and dimensionless forcing frequency ω=0.1 
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Figure C2 The ASO FRF GP2,TT(ω,-ω) as a function of the inlet temperature and inlet 

concentration of the reactant, for constant residence time τres,s=218.95 s and dimensionless 

forcing frequency ω=0.1  
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