
UNIVERZITET U BEOGRADU
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Abstract

This thesis has been written under the supervision of my mentor Prof. dr. Julka
Knezević-Miljanović at the University of Belgrade in the academic year 2014-2015.
The aim of this study is to investigate Hyers-Ulam stability of some types of
differential equations, and to study a generalized Hyers-Ulam stability and as
well as a special case of the Hyers-Ulam stability problem, which is called the
superstability. Therefore, when there is a differential equation, we answer the
three main questions:
1- Does this equation have Hyers -Ulam stability?
2- What are the conditions under which the differential equation has stability ?
3- What is a Hyers-Ulam constant of the differential equation?
The thesis is divided into three chapters. Chapter 1 is divided into 3 sections. In
this chapter, we introduce some sufficient conditions under which each solution
of the linear differential equation u′′(t) +

(
1 + ψ(t)

)
u(t) = 0 is bounded. Apart

from this we prove the Hyers-Ulam stability of it and the nonlinear differential
equations of the form u′′(t) + F (t, u(t)) = 0, by using the Gronwall lemma and
we prove the Hyers-Ulam stability of the second-order linear differential equations
with boundary conditions. In addition to that we establish the superstability
of linear differential equations of second-order and higher order with continuous
coefficients and with constant coefficients, respectively. Chapter 2 is divided into
2 sections. In this chapter, by using the Laplace transform method, we prove

that the linear differential equation of the nth-order y(n)(t) +
n−1∑
k=0

αky
(k)(t) = f(t)

has the generalized Hyers-Ulam stability. And we prove also the Hyers-Ulam-
Rassias stability of the second-order linear differential equations with initial and
boundary conditions, as well as linear differential equations of higher order in the
form of y(n)(x) + β(x)y(x) = 0, with initial conditions. Furthermore, we establish
the generalized superstability of differential equations of nth-order with initial
conditions and investigate the generalized superstability of differential equations
of second-order in the form of y′′(x)+p(x)y′(x)+q(x)y(x) = 0. Chapter 3 is divided
into 2 sections. In this chapter, by applying the fixed point alternative method,
we give a necessary and sufficient condition in order that the first order linear
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system of differential equations ż(t) + A(t)z(t) + B(t) = 0 has the Hyers-Ulam-
Rassias stability and find Hyers-Ulam stability constant under those conditions.
In addition to that, we apply this result to a second-order differential equation
ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0. Also, we apply it to differential equations
with constant coefficient in the same sense of proofs. And we give a sufficient
condition in order that the first order nonlinear system of differential equations
has Hyers-Ulam stability and Hyers-Ulam-Rassias stability. In addition, we present
the relation between practical stability and Hyers-Ulam stability and also Hyers-
Ulam-Rassias stability.

Scientific field (naučna oblast): Mathematics (matematika)(34A40, 34A12, 34D10)
Narrow scientific field (uža naučna oblast): Differential Equations (Diferencijalne
jednačine)
UDC:517.937(043.3)
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Introduction

This subject dates back to the talk given by the Polish-American mathematician
Ulam at the University of Wisconsin in 1940 (see [40]). In that talk, Ulam asked
whether an approximate solution of a functional equation must be near an exact
solution of that equation. This asking of Ulam is stated as follows:

Theorem 0.0.1. Let G1 be a group and let G2 be a metric group with a metric

d(., .). Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy).h(x)h(y)) < δ for all x, y ∈ G1, then there is a

homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1 ?

One year later, a partial answer to this question was given by D. H. Hyers [5] for
additive functions defined on Banach spaces:

Theorem 0.0.2. Let f : X1 → X2 be a function between Banach spaces such that

∥f(x+ y) − f(x) − f(y)∥ ≤ δ,

for some δ > 0 and for all x, y ∈ X1. Then the limit

A(x) = limn→∞2−nf(2nx)

exists for each x ∈ X1, and A : X1 → X2 is the unique additive function such that

∥f(x) − A(x)∥ ≤ δ

for every x ∈ X1. Moreover, if f(tx) is continuous in t for each fixed x ∈ X1, then

the function A is linear.

This result is called the Hyers-Ulam Stability of additive Cauchy equation g(x +
y) = g(x)+g(y). After Hyers’s result, many mathematicians have extended Ulam’s
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problem to other functional equations and generalized Hyers’s result in various
directions (see [6, 32, 38, 44]).
Ten years after the publication of Hyerss theorem, D. G. Bourgin extended the
theorem of Hyers and stated it in his paper [4] without proof. Unfortunately, it
seems that this result of Bourgin failed to receive attention from mathematicians
at that time. No one has made use of this result for a long time.
In 1978, Rassias [44] introduced a new functional inequality that we call Cauchy-
Rassias inequality and succeeded in extending the result of Hyers, by weakening
the condition for the Cauchy differences to unbounded map as follows:

Theorem 0.0.3. Let f : X1 → X2 be a function between Banach spaces. If f

satisfies the functional inequality

∥f(x+ y) − f(x) − f(y)∥ ≤ θ(∥x∥p + ∥y∥p)

for some θ ≥ 0, p with 0 ≤ p < 1 and for any x, y ∈ X1, then there exists a unique

additive function A : X1 → X2 such that

∥f(x) − A(x)∥ ≤ 2θ

2 − 2p
∥x∥p

for each x ∈ X1. If, in addition, f(tx) is continuous in t for each fixed x ∈ X1,

then the function A is linear.

The stability phenomenon of this kind is called the Generalized Hyers-Ulam Sta-
bility (or Hyers-Ulam-Rassias stability). A generalization of Ulam’s problem was
recently proposed by replacing functional equations with differential equations:
The differential equation φ(f, y, y′, . . . , y(n)) = 0 has Hyers-Ulam stability if for
given ε > 0 and a function y such that |φ(f, y, y′, . . . , y(n))| ≤ ε, there exists
a solution ya of the differential equation such that |y(t) − ya(t)| ≤ K(ε) and
limε→0K(ε) = 0. If the preceding statement is also true when we replace ε and
K(ε) by φ(t) and Φ(t), where φ, Φ are appropriate functions not depending on y
and ya explicitly, then we say that the corresponding differential equation has the
generalized Hyers-Ulam stability (or Hyers-Ulam-Rassias stability).
Ob loza seems to be the first author who has investigated the Hyers-Ulam stability
of linear differential equations (see [21, 22]). Thereafter, Alsina and Ger published
their paper [3], which handles the Hyers-Ulam stability of the linear differential
equation y′(t) = y(t): If a differentiable function y(t) is a solution of the inequality
|y′(t) − y(t)| ≤ ε for any t ∈ (a,∞), then there exists a constant c such that
|y(t) − cet| ≤ 3ε for all t ∈ (a,∞). Since then, this problem now known as
the problem of Hyers-Ulam stability - has been extensively investigated for the
algebraic, functional, differential, integral, and operator equations.
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Those previous results were extended to the Hyers-Ulam stability of linear differ-
ential equations of first order [33–37, 42, 43].
Rus investigated the Hyers-Ulam stability of differential and integral equations
using the Gronwall lemma and the technique of weakly Picard operators (see [13,
14]). Recently, The results given in [36, 42, 45] have been generalized by Cimpean
and Popa [10] and by Popa and Raşa [8, 9] for the linear differential equations.
In 1979, J.Baker, J. Lawrence and F. Zorzitto[16] proved a new type of stability
of the exponential equation f(x + y) = f(x)f(y). More precisely, they proved
that if a complex-valued mapping f defined on a normed vector space satisfies
the inequality |f(x + y) − f(x)f(y)| ≤ δ for some given δ > 0 and for all x, y,
then either f is bounded or f is exponential. Such a phenomenon is called the
superstability of the exponential equation, which is a special kind of Hyers-Ulam
stability. It seems that the results of P. Gǎvruţa, S. Jung and Y. Li [23] are the
earliest one concerning the superstability of differential equations.
This thesis is about stability of some types of differential equations, where we
introduce this thesis in three chapters.
Chapter one is titled by Hyers-Ulam stability of Differential Equations. This
chapter consists of three sections. In section 1.1, we introduce some sufficient
conditions under which each solution of the linear differential equation (1.1.2) is
bounded. As well as we prove the Hyers-Ulam stability of the linear differential
equations of the form (1.1.2). In section 1.2, we prove the Hyers-Ulam stability
of the nonlinear differential equations of the form (1.2.1) by using the Gronwall
lemma. In section 1.3, we prove the Hyers-Ulam stability of the second-order linear
differential equations with boundary conditions. Furthermore, the superstability
of linear differential equations with constant coefficients.
Chapter two is titled by Generlaized Hyers-Ulam stability of Differential equa-
tions. This chapter consists of two sections. In section 2.1, by using the Laplace
transform method, we prove that the linear differential equation of the nth-order

y(n)(t) +
n−1∑
k=0

αky
(k)(t) = f(t)

has the generalized Hyers-Ulam stability, where αk is a scalar, y and f are n times
continuously differentiable and of exponential order, respectively. In section 2.2,
we establish the generalized superstability of differential equations of nth-order
with initial conditions and investigate the generalized superstability of differen-
tial equations of second-order in the form of y′′(x) + p(x)y′(x) + q(x)y(x) = 0.
In additional, we prove the Hyers-Ulam-Rassias stability of the second-order lin-
ear differential equations with initial and boundary conditions as well as linear
differential equations of higher order in the form of

y(n)(x) + β(x)y(x) = 0,
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with initial conditions

y(a) = y
′
(a) = · · · = y(n−1)(a) = 0,

where n ∈ N+, y ∈ Cn[a, b], β ∈ C0[a, b], −∞ < a < b < +∞.
Chapter three is titled by Hyers-Ulam stability of system of differential equa-
tions. This chapter consists of two sections. In section 3.1, by applying the fixed
point alternative method, we give a necessary and sufficient condition in order that
the first order linear system of differential equations ż(t) + A(t)z(t) + B(t) = 0
has the Hyers-Ulam-Rassias stability and find Hyers-Ulam stability constant un-
der those conditions. In addition to that, we apply this result to a second order
differential equation ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0. Also, we apply it to dif-
ferential equations with constant coefficient in the same sense of proofs. In section
3.2, we give a sufficient condition in order that the first order nonlinear system of
differential equations has Hyers-Ulam stability and Hyers-Ulam-Rassias stability.
In addition, we present the relation between practical stability and Hyers-Ulam
stability and also Hyers-Ulam-Rassias stability.
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Chapter 1

Hyers-Ulam Stability of

Differential Equations

1.1 Hyers-Ulam Stability of Linear Differential

Equations

1.1.1 Boundedness of Solutions of a Second Order Differential Equation

In this subsection, we first introduce and prove a lemma which is a kind of the
Gronwall inequality.

Lemma 1.1.1. [28] Let u, v : [0,∞) → [0,∞) be integrable functions, c > 0 be a

constant, and let t0 ≥ 0 be given. If u satisfies the inequality

u(t) ≤ c+

∫ t

t0

u(τ)v(τ)dτ (1.1.1)

for all t ≥ t0, then

u(t) ≤ c exp

(∫ t

t0

v(τ)dτ

)
for all t ≥ t0.

Proof. It follows from (1.1.1) that

u(t)v(t)

c+
∫ t

t0
u(τ)v(τ)dτ

≤ v(t)
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for all t ≥ t0. Integrating both sides of the last inequality from t0 to t, we obtain

ln

(
c+

∫ t

t0

u(τ)v(τ)dτ

)
− ln c ≤

∫ t

t0

v(τ)dτ

or

c+

∫ t

t0

u(τ)v(τ)dτ ≤ c exp

(∫ t

t0

v(τ)dτ

)
for each t ≥ t0, which together with (1.1.1) implies that

u(t) ≤ c exp

(∫ t

t0

v(τ)dτ

)
for all t ≥ t0. �

In the following theorem, using Lemma 1.1.1, we investigate sufficient conditions
under which every solution of the differential equation

u′′(t) +
(
1 + ψ(t)

)
u(t) = 0 (1.1.2)

is bounded.

Theorem 1.1.2. [28] Let ψ : [0,∞) → R be a differentiable function. Every solu-

tion u : [0,∞) → R of the linear differential equation (1.1.2) is bounded provided

that
∫∞
0

|ψ′(t)|dt <∞ and ψ(t) → 0 as t→ ∞.

Proof. First, we choose t0 large enough so that 1 + ψ(t) ≥ 1/2 for all t ≥ t0.
Multiplying (1.1.2) by u′(t) and integrating it from t0 to t, we obtain

1

2
u′(t)2 +

1

2
u(t)2 +

∫ t

t0

ψ(τ)u(τ)u′(τ)dτ = c1

for all t ≥ t0. Integrating by parts, this yields

1

2
u′(t)2 +

1

2
u(t)2 +

1

2
ψ(t)u(t)2 − 1

2

∫ t

t0

ψ′(τ)u(τ)2dτ = c2 (1.1.3)

for any t ≥ t0. Then it follows from (1.1.3) that

1

4
u(t)2 ≤ 1

2
u′(t)2 +

1

2
· 1

2
u(t)2 ≤ 1

2
u′(t)2 +

1

2

(
1 + ψ(t)

)
u(t)2

= c2 +
1

2

∫ t

t0

ψ′(τ)u(τ)2dτ
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for all t ≥ t0. Thus, it holds that

u(t)2 ≤ 4c2 + 2

∫ t

t0

ψ′(τ)u(τ)2dτ ≤ 4|c2| + 2

∫ t

t0

|ψ′(τ)|u(τ)2dτ (1.1.4)

for any t ≥ t0.
In view of Lemma 1.1.1, (1.1.4) and our hypothesis, there exists a constant M1 > 0
such that

u(t)2 ≤ 4|c2| exp

(∫ t

t0

2|ψ′(τ)|dτ
)
< M2

1

for all t ≥ t0. On the other hand, since u is continuous, there exists a constant
M2 > 0 such that |u(t)| ≤M2 for all 0 ≤ t ≤ t0, which completes the proof. �

Corollary 1.1.3. [28] Let ϕ : [0,∞) → R be a differentiable function satisfying

ϕ(t) → 1 as t → ∞. Every solution u : [0,∞) → R of the linear differential

equation

u′′(t) + ϕ(t)u(t) = 0 (1.1.5)

is bounded provided
∫∞
0

|ϕ′(t)|dt <∞.

1.1.2 Hyers-Ulam Stability of Linear Differential Equations of Second Or-

der

Given constants L > 0 and t0 ≥ 0, let U(L; t0) denote the set of all functions
u : [t0,∞) → R with the following properties:

(i) u is twice continuously differentiable;

(ii) u(t0) = u′(t0) = 0;

(iii)
∫∞
t0

|u′(τ)|dτ ≤ L.

We now prove the Hyers-Ulam stability of the linear differential equation (1.1.2)
by using the Gronwall inequality.

Theorem 1.1.4. [28] Given constants L > 0 and t0 ≥ 0, assume that

ψ : [t0,∞) → R is a differentiable function with C :=
∫∞
t0

|ψ′(τ)|dτ < ∞ and

λ := inft≥t0 ψ(t) > −1. If a function u ∈ U(L; t0) satisfies the inequality∣∣u′′(t) +
(
1 + ψ(t)

)
u(t)

∣∣ ≤ ε (1.1.6)
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for all t ≥ t0 and for some ε ≥ 0, then there exist a solution u0 ∈ U(L; t0) of the

differential equation (1.1.2) and a constant K > 0 such that

|u(t) − u0(t)| ≤ K
√
ε (1.1.7)

for any t ≥ t0, where

K :=

√
2L

1 + λ
exp

(
C

2(1 + λ)

)
.

Proof. We multiply (1.1.6) with |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + u(t)u′(t) + ψ(t)u(t)u′(t) ≤ ε|u′(t)|

for all t ≥ t0. If we integrate each term of the last inequalities from t0 to t, then
it follows from (ii) that

−ε
∫ t

t0

|u′(τ)|dτ ≤ 1

2
u′(t)2 +

1

2
u(t)2 +

∫ t

t0

ψ(τ)u(τ)u′(τ)dτ ≤ ε

∫ t

t0

|u′(τ)|dτ

for any t ≥ t0.
Integrating by parts and using (iii), we have

−εL ≤ 1

2
u′(t)2 +

1

2
u(t)2 +

1

2
ψ(t)u(t)2 − 1

2

∫ t

t0

ψ′(τ)u(τ)2dτ ≤ εL (1.1.8)

for all t ≥ t0.
Since 1 + λ > 0 holds for all t ≥ t0, it follows from (1.1.8) that

1 + λ

2
u(t)2 ≤ 1

2
u′(t)2 +

1 + λ

2
u(t)2 ≤ 1

2
u′(t)2 +

1

2

(
1 + ψ(t)

)
u(t)2

≤ εL+
1

2

∫ t

t0

ψ′(τ)u(τ)2dτ

≤ εL+
1

2

∫ t

t0

|ψ′(τ)|u(τ)2dτ

or

u(t)2 ≤ 2Lε

1 + λ
+

1

1 + λ

∫ t

t0

|ψ′(τ)|u(τ)2dτ

for any t ≥ t0.
Applying Lemma 1.1.1, we obtain

u(t)2 ≤ 2Lε

1 + λ
exp

(
1

1 + λ

∫ t

t0

|ψ′(τ)|dτ
)

≤ 2Lε

1 + λ
exp

(
C

1 + λ

)
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for all t ≥ t0. Hence, it holds that

|u(t)| ≤ exp

(
C

2(1 + λ)

)√
2Lε

1 + λ

for any t ≥ t0. Obviously, u0(t) ≡ 0 satisfies the equation (1.1.2) and the conditions
(i), (ii), and (iii) such that

|u(t) − u0(t)| ≤ K
√
ε

for all t ≥ t0, where K =
√

2L
1+λ

exp
(

C
2(1+λ)

)
. �

If we set ϕ(t) := 1+ψ(t), then the following corollary is an immediate consequence
of Theorem 1.1.4.

Corollary 1.1.5. [28] Given constants L > 0 and t0 ≥ 0, assume that

ϕ : [t0,∞) → R is a differentiable function with C :=
∫∞
t0

|ϕ′(τ)|dτ < ∞ and

λ := inft≥t0 ϕ(t) > 0. If a function u ∈ U(L; t0) satisfies the inequality∣∣u′′(t) + ϕ(t)u(t)
∣∣ ≤ ε

for all t ≥ t0 and for some ε ≥ 0, then there exist a solution u0 ∈ U(L; t0) of the

differential equation (1.1.5) and a constant K > 0 such that

|u(t) − u0(t)| ≤ K
√
ε

for any t ≥ t0, where K := exp
(

C
2λ

)√
2L
λ
.

Example 1.1.1. [28] Let ϕ : [0,∞) → R be a constant function defined by

ϕ(t) := a for all t ≥ 0 and for a constant a > 0. Then, we have

C =
∫∞
0

|ϕ′(τ)|dτ = 0 and λ = inft≥0 ϕ(t) = a. Assume that a twice continuously

differentiable function u : [0,∞) → R satisfies u(0) = u′(0) = 0,
∫∞
0

|u′(τ)|dτ ≤ L,

and ∣∣u′′(t) + ϕ(t)u(t)
∣∣ =

∣∣u′′(t) + au(t)
∣∣ ≤ ε

for all t ≥ 0 and for some ε ≥ 0 and L > 0. According to Corollary 1.1.5, there

exists a solution u0 : [0,∞) → R of the differential equation, y′′(t) + ay(t) = 0,

such that

|u(t) − u0(t)| ≤
√

2L

a
ε
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for any t ≥ 0.

Indeed, if we define a function u : [0,∞) → R by

u(t) :=
α

(t+ 1)2
cos

√
at+

2α√
a(t+ 1)2

sin
√
at− α,

where we set α =
√
a

a+
√
a+2

L, then u satisfies the conditions stated in the first part

of this example, as we see in the following. It follows from the definition of u that

u′(t) =

(
2α

(t+ 1)2
− 2α

(t+ 1)3

)
cos

√
at−

( √
aα

(t+ 1)2
+

4α√
a(t+ 1)3

)
sin

√
at

and hence, we get u(0) = u′(0) = 0. Moreover, we obtain∣∣u′(t)∣∣ ≤ 2 +
√
a

(t+ 1)2
α +

(
4√
a
− 2

)
α

(t+ 1)3

and ∫ ∞

0

∣∣u′(τ)
∣∣dτ =

∫ ∞

0

2 +
√
a

(τ + 1)2
αdτ +

∫ ∞

0

(
4√
a
− 2

)
α

(τ + 1)3
dτ

=
(
2 +

√
a
)
α +

(
2√
a
− 1

)
α

= L.

For any given ε > 0, if we choose the constant α such that 0 < α ≤
√
aε

a
√
a+4a+2

√
a+12

,

then we can easily see that∣∣u′′(t) + au(t)
∣∣

≤
∣∣∣∣(− 8

(t+ 1)3
+

6

(t+ 1)4

)
α cos

√
at

+

(
4
√
a

(t+ 1)3
+

1√
a

12

(t+ 1)4

)
α sin

√
at− aα

∣∣∣∣
≤
(

8

(t+ 1)3
− 6

(t+ 1)4

)
α +

(
4
√
a

(t+ 1)3
+

1√
a

12

(t+ 1)4

)
α + aα

=
a
√
a+ 4a+ 2

√
a+ 12√

a
α

≤ ε

for any t ≥ 0.
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Theorem 1.1.6. [28] Given constants L > 0 and t0 ≥ 0, assume that

ψ : [t0,∞) → (0,∞) is a monotone increasing and differentiable function. If a

function u ∈ U(L; t0) satisfies the inequality (1.1.6) for all t ≥ t0 and for some

ε > 0, then there exists a solution u0 ∈ U(L; t0) of the differential equation (1.1.2)

such that

|u(t) − u0(t)| ≤

√
2Lε

ψ(t0)
(1.1.9)

for any t ≥ t0.

Proof. We multiply (1.1.6) with |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + u(t)u′(t) + ψ(t)u(t)u′(t) ≤ ε|u′(t)|

for all t ≥ t0. If we integrate each term of the last inequalities from t0 to t, then
it follows from (ii) that

−ε
∫ t

t0

|u′(τ)|dτ ≤ 1

2
u′(t)2 +

1

2
u(t)2 +

∫ t

t0

ψ(τ)u(τ)u′(τ)dτ ≤ ε

∫ t

t0

|u′(τ)|dτ

for any t ≥ t0.
Integrating by parts, the last inequalities together with (iii) yield

−εL ≤ 1

2
u′(t)2 +

1

2
u(t)2 +

1

2
ψ(t)u(t)2 − 1

2

∫ t

t0

ψ′(τ)u(τ)2dτ ≤ εL

for all t ≥ t0. Then we have

1

2
ψ(t)u(t)2 ≤ 1

2

∫ t

t0

ψ′(τ)u(τ)2dτ + εL ≤ εL+

∫ t

t0

ψ′(τ)

ψ(τ)
u(τ)2

ψ(τ)

2
dτ

for any t ≥ t0.
Applying Lemma 1.1.1, we obtain

1

2
ψ(t)u(t)2 ≤ εL exp

(∫ t

t0

ψ′(τ)

ψ(τ)
dτ

)
= εL

ψ(t)

ψ(t0)

for all t ≥ t0, since ψ : [t0,∞) → (0,∞) is a monotone increasing function. Hence,
it holds that

|u(t)| ≤

√
2Lε

ψ(t0)

for any t ≥ t0. Obviously, u0(t) ≡ 0 satisfies the equation (1.1.2), u0 ∈ U(L; t0),
as well as the inequality (1.1.9) for all t ≥ t0. �
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Corollary 1.1.7. [28] Given constants L > 0 and t0 ≥ 0, assume that

ϕ : [t0,∞) → (1,∞) is a monotone increasing and differentiable function with

ϕ(t0) = 2. If a function u ∈ U(L; t0) satisfies the inequality∣∣u′′(t) + ϕ(t)u(t)
∣∣ ≤ ε

for all t ≥ t0 and for some ε > 0, then there exists a solution u0 ∈ U(L; t0) of the

differential equation (1.1.5) such that

|u(t) − u0(t)| ≤
√

2Lε

for any t ≥ t0.

If we set ϕ(t) := −ψ(t), then the following corollary is an immediate consequence
of Theorem 1.1.6.

Corollary 1.1.8. [28] Given constants L > 0 and t0 ≥ 0, assume that

ϕ : [t0,∞) → (−∞, 0) is a monotone decreasing and differentiable function with

ϕ(t0) = −1. If a function u ∈ U(L; t0) satisfies the inequality∣∣u′′(t) +
(
1 − ϕ(t)

)
u(t)

∣∣ ≤ ε

for all t ≥ t0 and for some ε > 0, then there exists a solution u0 ∈ U(L; t0) of the

differential equation

u′′(t) +
(
1 − ϕ(t)

)
u(t) = 0

such that

|u(t) − u0(t)| ≤
√

2Lε

for any t ≥ t0.

Example 1.1.2. [28] Let ϕ : [0,∞) → (−∞, 0) be a monotone decreasing function

defined by ϕ(t) := e−t − 2 for all t ≥ 0. Then, we have ϕ(0) = −1. Assume that a

twice continuously differentiable function u : [0,∞) → R satisfies u(0) = u′(0) = 0,∫∞
0

|u′(τ)|dτ ≤ L, and∣∣u′′(t) +
(
1 − ϕ(t)

)
u(t)

∣∣ =
∣∣u′′(t) +

(
3 − e−t

)
u(t)

∣∣ ≤ ε
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for all t ≥ 0 and for some ε > 0 and L > 0. According to Corollary 1.1.8, there

exists a solution u0 : [0,∞) → R of the differential equation,

y′′(t) +
(
3 − e−t

)
y(t) = 0, such that

|u(t) − u0(t)| ≤
√

2Lε

for any t ≥ 0.

Indeed, if we define a function u : [0,∞) → R by

u(t) :=
α

(t+ 1)3
sin t+

1

2

α

(t+ 1)2
cos t− α

2
,

where α is a real number with |α| ≤ 2
43
ε, then u satisfies the conditions stated

in the first part of this example, as we see in the following. It follows from the

definition of u that

u′(t) = − 3α

(t+ 1)4
sin t− 1

2

α

(t+ 1)2
sin t

and hence, we get u(0) = u′(0) = 0. Moreover, we obtain∣∣u′(t)∣∣ ≤ 3|α|
(t+ 1)4

+
1

2

|α|
(t+ 1)2

and ∫ ∞

0

∣∣u′(τ)
∣∣dτ ≤

∫ ∞

0

3|α|
(τ + 1)4

dτ +

∫ ∞

0

1

2

|α|
(τ + 1)2

dτ =: L <∞.

We can see that∣∣u′′(t) +
(
3 − e−t

)
u(t)

∣∣
≤
∣∣∣∣ 12α

(t+ 1)5
sin t− 3α

(t+ 1)4
cos t+

(
4 − e−t

) α

(t+ 1)3
sin t

+
2 − e−t

2

α

(t+ 1)2
cos t− 3 − e−t

2
α

∣∣∣∣
≤ 12|α|

(t+ 1)5
+

3|α|
(t+ 1)4

+
4|α|

(t+ 1)3
+

|α|
(t+ 1)2

+
3

2
|α|

≤ 43

2
|α|

≤ ε

for any t ≥ 0.
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1.2 Hyers-Ulam Stability of Nonlinear Differen-

tial Equations of Second Order

In the following theorems, we investigate the Hyers-Ulam stability of the nonlinear
differential equation

u′′(t) + F (t, u(t)) = 0. (1.2.1)

Theorem 1.2.1. [28] Given constants L > 0 and t0 ≥ 0, assume that F : [t0,∞)×
R → (0,∞) is a function satisfying F ′(t, u(t))/F (t, u(t)) > 0 and F (t, 0) = 1 for

all t ≥ t0 and u ∈ U(L; t0). If a function u : [t0,∞) → [0,∞) satisfies u ∈ U(L; t0)

and the inequality ∣∣u′′(t) + F (t, u(t))
∣∣ ≤ ε (1.2.2)

for all t ≥ t0 and for some ε > 0, then there exists a solution u0 : [t0,∞) → [0,∞)

of the differential equation (1.2.2) such that

|u(t) − u0(t)| ≤ Lε

for any t ≥ t0.

Proof. We multiply (1.2.2) with |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + F (t, u(t))u′(t) ≤ ε|u′(t)|

for all t ≥ t0. If we integrate each term of the last inequalities from t0 to t, then
it follows from (ii) that

−ε
∫ t

t0

|u′(τ)|dτ ≤ 1

2
u′(t)2 +

∫ t

t0

F (τ, u(τ))u′(τ)dτ ≤ ε

∫ t

t0

|u′(τ)|dτ

for any t ≥ t0.
Integrating by parts and using (iii), the last inequalities yield

−εL ≤ 1

2
u′(t)2 + F (t, u(t))u(t) −

∫ t

t0

F ′(τ, u(τ))u(τ)dτ ≤ εL

for all t ≥ t0. Then we have

F (t, u(t))u(t) ≤ εL+

∫ t

t0

F ′(τ, u(τ))u(τ)dτ

≤ εL+

∫ t

t0

F ′(τ, u(τ))

F (τ, u(τ))
F (τ, u(τ))u(τ)dτ



Alqifiary Hyers-Ulam Sability of The Solutions of Differential Equations 11

for any t ≥ t0.
Applying Lemma 1.1.1, we obtain

F (t, u(t))u(t) ≤ εL exp

(∫ t

t0

F ′(τ, u(τ))

F (τ, u(τ))
dτ

)
= εLF (t, u(t))

for all t ≥ t0. Hence, it holds that |u(t)| ≤ Lε for any t ≥ t0. Obviously, u0(t) ≡ 0
satisfies the equation (1.2.1) and u0 ∈ U(L; t0) such that

|u(t) − u0(t)| ≤ Lε

for all t ≥ t0. �

In the following theorem, we investigate the Hyers-Ulam stability of the Emden-
Fowler nonlinear differential equation of second order

u′′(t) + h(t)u(t)α = 0 (1.2.3)

for the case where α is a positive odd integer.

Theorem 1.2.2. [28] Given constants L > 0 and t0 ≥ 0, assume that h : [t0,∞) →
(0,∞) is a differentiable function. Let α be an odd integer larger than 0. If a

function u : [t0,∞) → [0,∞) satisfies u ∈ U(L; t0) and the inequality∣∣u′′(t) + h(t)u(t)α
∣∣ ≤ ε (1.2.4)

for all t ≥ t0 and for some ε > 0, then there exists a solution u0 : [t0,∞) → [0,∞)

of the differential equation (1.2.3) such that

|u(t) − u0(t)| ≤
(
βLε

h(t0)

)1/β

for any t ≥ t0, where β := α + 1.

Proof. We multiply (1.2.4) with |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + h(t)u(t)αu′(t) ≤ ε|u′(t)|

for all t ≥ t0. If we integrate each term of the last inequalities from t0 to t, then
it follows from (ii) that

−ε
∫ t

t0

|u′(τ)|dτ ≤ 1

2
u′(t)2 +

∫ t

t0

h(τ)u(τ)αu′(τ)dτ ≤ ε

∫ t

t0

|u′(τ)|dτ
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for any t ≥ t0.
Integrating by parts and using (iii), the last inequalities yield

−εL ≤ 1

2
u′(t)2 + h(t)

u(t)α+1

α + 1
−
∫ t

t0

h′(τ)
u(τ)α+1

α + 1
dτ ≤ εL

for all t ≥ t0. for all t ≥ t0. Then we have

h(t)
u(t)α+1

α + 1
≤ εL+

∫ t

t0

h′(τ)
u(τ)α+1

α + 1
dτ

≤ εL+

∫ t

t0

h′(τ)

h(τ)
h(τ)

u(τ)α+1

α + 1
dτ

for any t ≥ t0.
Applying Lemma 1.1.1, we obtain

h(t)
u(t)α+1

α + 1
≤ εL exp

(∫ t

t0

h′(τ)

h(τ)
dτ

)
≤ εL

h(t)

h(t0)

for all t ≥ t0, from which we have

u(t)α+1 ≤ (α + 1)Lε

h(t0)

for all t ≥ t0. Hence, it holds that

|u(t)| ≤
(
βLε

h(t0)

)1/β

for any t ≥ t0, where we set β = α+ 1. Obviously, u0(t) ≡ 0 satisfies the equation
(1.2.3) and u0 ∈ U(L; t0). Moreover, we get

|u(t) − u0(t)| ≤
(
βLε

h(t0)

)1/β

for all t ≥ t0. �

Given constants L ≥ 0, M > 0, and t0 ≥ 0, let U(L;M ; t0) denote the set of all
functions u : [t0,∞) → R with the following properties:

(i′) u is twice continuously differentiable;

(ii′) u(t0) = u′(t0) = 0;
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(iii′) |u(t)| ≤ L for all t ≥ t0;

(iv′)
∫∞
t0

|u′(τ)|dτ ≤M for all t ≥ t0.

We now investigate the Hyers-Ulam stability of the differential equation of the
form

u′′(t) + u(t) + h(t)u(t)β = 0, (1.2.5)

where β is a positive odd integer.

Theorem 1.2.3. [28] Given constants L ≥ 0, M > 0 and t0 ≥ 0, assume that

h : [t0,∞) → [0,∞) is a function satisfying C :=
∫∞
t0

|h′(τ)|dτ < ∞. Let β be an

odd integer larger than 0. If a function u ∈ U(L;M ; t0) satisfies the inequality∣∣u′′(t) + u(t) + h(t)u(t)β
∣∣ ≤ ε (1.2.6)

for all t ≥ t0 and for some ε > 0, then there exists a solution u0 : [t0,∞) → R of

the differential equation (1.2.5) such that

|u(t) − u0(t)| ≤
√

2Mε exp

(
CLβ−1

β + 1

)
for any t ≥ t0.

Proof. We multiply (1.2.6) with |u′(t)| to get

−ε|u′(t)| ≤ u′(t)u′′(t) + u(t)u′(t) + h(t)u(t)βu′(t) ≤ ε|u′(t)|

for all t ≥ t0. If we integrate each term of the last inequalities from t0 to t, then
it follows from (ii′) that

−ε
∫ t

t0

|u′(τ)|dτ ≤ 1

2
u′(t)2 +

1

2
u(t)2 +

∫ t

t0

h(τ)u(τ)βu′(τ)dτ ≤ ε

∫ t

t0

|u′(τ)|dτ

for any t ≥ t0.
Integrating by parts and using (ii′) and (iv′), the last inequalities yield

−εM ≤ 1

2
u′(t)2 +

1

2
u(t)2 + h(t)

1

β + 1
u(t)β+1 − 1

β + 1

∫ t

t0

h′(τ)u(τ)β+1dτ ≤ εM
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for all t ≥ t0. Then it follows from (iii′) that

1

2
u(t)2 ≤ εM +

1

β + 1

∫ t

t0

h′(τ)u(τ)β+1dτ

≤ εM +
2

β + 1

∫ t

t0

1

2
u(τ)2h′(τ)u(τ)β−1dτ

≤ εM +
2

β + 1

∫ t

t0

1

2
u(τ)2|h′(τ)||u(τ)|β−1dτ

≤ εM +
2Lβ−1

β + 1

∫ t

t0

1

2
u(τ)2

∣∣h′(τ)
∣∣dτ

for any t ≥ t0.
Applying Lemma 1.1.1, we obtain

1

2
u(t)2 ≤ εM exp

(∫ t

t0

2Lβ−1

β + 1
|h′(τ)|dτ

)
≤ εM exp

(
2CLβ−1

β + 1

)
for all t ≥ t0. Hence, it holds that

|u(t)| ≤
√

2Mε exp

(
CLβ−1

β + 1

)
for any t ≥ t0. Obviously, u0(t) ≡ 0 satisfies the equation (1.2.5) and u0 ∈
U(L;M ; t0). Furthermore, we get

|u(t) − u0(t)| ≤
√

2Mε exp

(
CLβ−1

β + 1

)
for all t ≥ t0. �

1.3 Hyers-Ulam Stability of Differential Equa-

tions with Boundary Conditions

Lemma 1.3.1. [29] Let I = [a, b] be a closed interval with −∞ < a < b < ∞. If

y ∈ C2(I,R) and y(a) = 0 = y(b), then

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|.
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Proof. Let M := max
x∈I

|y(x)|. Since y(a) = 0 = y(b), there exists x0 ∈ (a, b) such

that |y(x0)| = M . By the Taylor’s theorem, we have

y(a) = y(x0) + y′(x0)(a− x0) +
y′′(ξ)

2
(a− x0)

2,

y(b) = y(x0) + y′(x0)(b− x0) +
y′′(η)

2
(b− x0)

2

for some ξ, η ∈ [a, b]. Since y(a) = y(b) = 0 and y′(x0) = 0, we get

|y′′(ξ)| =
2M

(a− x0)2
, |y′′(η)| =

2M

(b− x0)2
.

If x0 ∈
(
a, (a+ b)/2

]
, then we have

2M

(a− x0)2
≥ 2M(

b−a
2

)2 =
8M

(b− a)2
.

If x0 ∈
[
(a+ b)/2, b

)
, then we have

2M

(b− x0)2
≥ 2M(

b−a
2

)2 =
8M

(b− a)2
.

Hence, we obtain

max
x∈I

|y′′(x)| ≥ 8M

(b− a)2
=

8

(b− a)2
max
x∈I

|y(x)|.

Therefore,

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|,

which ends the proof. �

Lemma 1.3.2. [29] Let I = [a, b] be a closed interval with −∞ < a < b < ∞. If

y ∈ C2(I,R) and y(a) = 0 = y′(a), then

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|.

Proof. By the Taylor’s theorem, we have

y(x) = y(a) + y′(a)(x− a) +
y′′(ξ)

2
(x− a)2
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for some ξ ∈ [a, b]. Since y(a) = y′(a) = 0 and (x− a)2 ≤ (b− a)2, we get

|y(x)| ≤ |y′′(ξ)|
2

(b− a)2

for any x ∈ I. Thus, we obtain

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|,

which completes the proof. �
In the following theorems, we prove the Hyers-Ulam stability of the following linear
differential equation

y′′(x) + β(x)y(x) = 0 (1.3.1)

with boundary conditions

y(a) = 0 = y(b) (1.3.2)

or with initial conditions

y(a) = 0 = y′(a) (1.3.3)

where I = [a, b], y ∈ C2(I,R), β ∈ C(I,R), and −∞ < a < b <∞.

Theorem 1.3.3. [29] Given a closed interval I = [a, b], let β ∈ C(I,R) be a

function satisfying max
x∈I

|β(x)| < 8/(b − a)2. If a function y ∈ C2(I,R) satisfies

the inequality

|y′′(x) + β(x)y(x)| ≤ ε, (1.3.4)

for all x ∈ I and for some ε ≥ 0, as well as the boundary conditions in (1.3.2),

then there exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential

equation (1.3.1) with the boundary conditions in (1.3.2) such that

|y(x) − y0(x)| ≤ Kε

for any x ∈ I.
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Proof. By Lemma 1.3.1, we have

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x)|.

Thus, it follows from (1.3.4) that

max
x∈I

|y(x)| ≤ (b− a)2

8
max
x∈I

|y′′(x) + β(x)y(x)| +
(b− a)2

8
max
x∈I

|β(x)|max
x∈I

|y(x)|

≤ (b− a)2

8
ε+

(b− a)2

8
max
x∈I

|β(x)|max
x∈I

|y(x)|.

Let C := (b−a)2

8
and K := C

1−Cmax |β(x)| . Obviously, y0 ≡ 0 is a solution of (1.3.1)

with the boundary conditions in (1.3.2) and

|y(x) − y0(x)| ≤ Kε

for any x ∈ I. �

Theorem 1.3.4. [29] Given a closed interval I = [a, b], let β : I → R be a

function satisfying max
x∈I

|β(x)| < 2/(b − a)2. If a function y ∈ C2(I,R) satisfies

the inequality (1.3.4) for all x ∈ I and for some ε ≥ 0 as well as the initial

conditions in (1.3.3), then there exist a solution y0 ∈ C2(I,R) of the differential

equation (1.3.1) with the initial conditions in (1.3.3) and a constant K > 0 such

that

|y(x) − y0(x)| ≤ Kε

for any x ∈ I.

Proof. On account of Lemma 1.3.2, we have

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x)|.

Thus, it follows from (1.3.4) that

max
x∈I

|y(x)| ≤ (b− a)2

2
max
x∈I

|y′′(x) + β(x)y(x)| +
(b− a)2

2
max
x∈I

|β(x)|max
x∈I

|y(x)|

≤ (b− a)2

2
ε+

(b− a)2

2
max
x∈I

|β(x)|max
x∈I

|y(x)|.



Alqifiary Hyers-Ulam Sability of The Solutions of Differential Equations 18

Let C := (b−a)2

2
and K := C

1−Cmax |β(x)| . Obviously, y0 ≡ 0 is a solution of (1.3.1)

with the initial conditions in (1.3.3) and

|y(x) − y0(x)| ≤ Kε

for all x ∈ I. �

In the following theorems, we investigate the Hyers-Ulam stability of the differen-
tial equation

y′′(x) + p(x)y′(x) + q(x)y(x) = 0 (1.3.5)

with boundary conditions

y(a) = 0 = y(b) (1.3.6)

or with initial conditions

y(a) = 0 = y′(a) (1.3.7)

where y ∈ C2(I,R), p ∈ C1(I,R), q ∈ C(I,R), and I = [a, b] with −∞ < a < b <
∞.
Let us define a function β : I → R by

β(x) := q(x) − 1

2
p′(x) − 1

4
p(x)2

for all x ∈ I.

Theorem 1.3.5. [29] Assume that there exists a constant L ≥ 0 with

−L ≤
∫ x

a

p(τ)dτ ≤ L (1.3.8)

for any x ∈ I and max
x∈I

|β(x)| < 8/(b − a)2. If a function y ∈ C2(I,R) satisfies

the inequality

|y′′(x) + p(x)y′(x) + q(x)y(x)| ≤ ε (1.3.9)

for all x ∈ I and for some ε ≥ 0 as well as the boundary conditions in (1.3.6),

then there exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential

equation (1.3.5) with the boundary conditions in (1.3.6) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.
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Proof. Suppose y ∈ C2(I,R) satisfies the inequality (1.3.9) for all x ∈ I. Let us
define

u(x) := y′′(x) + p(x)y′(x) + q(x)y(x), (1.3.10)

z(x) := y(x) exp

(
1

2

∫ x

a

p(τ)dτ

)
(1.3.11)

for all x ∈ I. By (1.3.10) and (1.3.11), we obtain

z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x) = u(x) exp

(
1

2

∫ x

a

p(τ)dτ

)
for all x ∈ I.
Now, it follows from (1.3.8) and (1.3.9) that∣∣∣∣z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a

p(τ)dτ

)∣∣∣∣ ≤ εeL/2,

that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for any x ∈ I. Moreover, it follows from (1.3.11) that

z(a) = 0 = z(b).

In view of Theorem 1.3.3, there exists a constant K > 0 and a function z0 ∈
C2(I,R) such that

z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x) = 0, (1.3.12)

z0(a) = 0 = z0(b)

and

|z(x) − z0(x)| ≤ KεeL/2 (1.3.13)

for all x ∈ I.
We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
. (1.3.14)
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Then, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− 1

2
p(x)z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
,

(1.3.15)

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− p(x)z′0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
(1.3.16)

− 1

2
p′(x)z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
+

1

4
p(x)2z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
,

it follows from (1.3.12), (1.3.14), (1.3.15), and (1.3.16) that

y′′0(x) + p(x)y′0(x) + q(x)y0(x)

=

(
z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x)

)
exp

(
− 1

2

∫ x

a

p(τ)dτ

)
= 0

for all x ∈ I. Hence, y0 satisfies (1.3.5) and the boundary conditions in (1.3.6).
Finally, it follows from (1.3.8) and (1.3.13) that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a

p(τ)dτ

)
≤KεeL/2 exp

(
− 1

2

∫ x

a

p(τ)dτ

)
≤KeLε

for all x ∈ I. �

Theorem 1.3.6. [29] Assume that there exists a constant L ≥ 0 such that (1.3.8)

holds for all x ∈ I. Assume moreover that max
x∈I

|β(x)| < 2/(b− a)2. If a function

y ∈ C2(I,R) satisfies the inequality (1.3.9) for all x ∈ I and for some ε ≥ 0 as

well as the initial conditions in (1.3.7), then there exist a constant K > 0 and a

solution y0 ∈ C2(I,R) of the differential equation (1.3.5) with the initial conditions

in (1.3.7) such that

|y(x) − y0(x)| ≤ KeLε
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for any x ∈ I.

Proof. Suppose y ∈ C2(I,R) satisfies the inequality (1.3.9) for any x ∈ I. Let
us define u(x) and z(x) as in (1.3.10) and (1.3.11), respectively. By (1.3.10) and
(1.3.11), we obtain

z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x) = u(x) exp

(
1

2

∫ x

a

p(τ)dτ

)
for all x ∈ I.
Now, it follows from (1.3.8) and (1.3.9) that∣∣∣∣z′′(x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a

p(τ)dτ

)∣∣∣∣ ≤ εeL/2,

that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for all x ∈ I. Furthermore, in view of (1.3.11), we have

z(a) = 0 = z′(a).

By Theorem 1.3.4, there exists a constant K > 0 and a function z0 ∈ C2(I,R)
such that

z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x) = 0,

z0(a) = 0 = z′0(a)

and

|z(x) − z0(x)| ≤ KεeL/2

for any x ∈ I.
We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
.

Moreover, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− 1

2
p(x)z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
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and

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− p(x)z′0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− 1

2
p′(x)z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
+

1

4
p(x)2z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
,

we have

y′′0(x) + p(x)y′0(x) + q(x)y0(x)

=

(
z′′0 (x) +

(
q(x) − 1

2
p′(x) − 1

4
p(x)2

)
z0(x)

)
exp

(
− 1

2

∫ x

a

p(τ)dτ

)
= 0

for any x ∈ I. Hence, y0 satisfies (1.3.5) along with the initial conditions in (1.3.7).
Finally, it follows that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)
− z0(x) exp

(
− 1

2

∫ x

a

p(τ)dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a

p(τ)dτ

)
≤KεeL/2 exp

(
− 1

2

∫ x

a

p(τ)dτ

)
≤KeLε

for all x ∈ I. �

In a similar way, we investigate the Hyers-Ulam stability of the differential equation

y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x) = 0 (1.3.17)

with boundary conditions

y(a) = 0 = y(b) (1.3.18)

or with initial conditions

y(a) = 0 = y′(a) (1.3.19)
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where y ∈ C2(I,R), k ∈ C1(I,R\{0}), l ∈ C(I,R), and −∞ < a < b <∞.
Given a closed interval I = [a, b], we set

β(x) :=
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2

for all x ∈ I.

Theorem 1.3.7. [29] Assume that there exists a constant L ≥ 0 with

−L ≤
∫ x

a

k′(τ)

k(τ)
dτ ≤ L (1.3.20)

for any x ∈ I and max
x∈I

|β(x)| < 8/(b − a)2. If a function y ∈ C2(I,R) satisfies

the inequality ∣∣∣∣y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x)

∣∣∣∣ ≤ ε, (1.3.21)

for all x ∈ I and some ε ≥ 0, as well as the boundary conditions in (1.3.18),

then there exist a constant K > 0 and a solution y0 ∈ C2(I,R) of the differential

equation (1.3.17) with the boundary conditions in (1.3.18) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.

Proof. Suppose y ∈ C2(I,R) satisfies (1.3.21) for all x ∈ I. Let us define

u(x) := y′′(x) +
k′(x)

k(x)
y′(x) +

l(x)

k(x)
y(x), (1.3.22)

z(x) := y(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
(1.3.23)

for all x ∈ I. By (1.3.22) and (1.3.23), we obtain

z′′(x) +

(
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z(x) = u(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
.

Further, it follows from (1.3.20) and (1.3.21) that∣∣∣∣z′′(x) +

(
l(x)

k(x)
− 1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z(x)

∣∣∣∣ =

∣∣∣∣u(x) exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)∣∣∣∣
≤ ε exp

(
1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤ εeL/2,
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that is,

|z′′(x) + β(x)z(x)| ≤ εeL/2

for all x ∈ I. Moreover, it follows from (1.3.18) and (1.3.23) that

z(a) = 0 = z(b).

By Theorem 1.3.3, there exists a constant K > 0 and a function z0 ∈ C2(I,R)
such that

z′′0 (x) +

(
l(x)

k(x)
−1

2

d

dx

k′(x)

k(x)
− 1

4

(
k′(x)

k(x)

)2)
z0(x) = 0,

z0(a) = 0 = z0(b)

and

|z(x) − z0(x)| ≤ KεeL/2

for any x ∈ I.
We now set

y0(x) := z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
.

Then, since

y′0(x) = z′0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− 1

2

k′(x)

k(x)
z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
and

y′′0(x) = z′′0 (x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− k′(x)

k(x)
z′0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− 1

2

(
k′(x)

k(x)

)′

z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
+

1

4

(
k′(x)

k(x)

)2

z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
,

we have

y′′0(x) +
k′(x)

k(x)
y′0(x) +

l(x)

k(x)
y0(x)

=

(
z′′0 (x) +

(
l(x)

k(x)
− 1

2

(
k′(x)

k(x)

)′

− 1

4

(
k′(x)

k(x)

)2)
z0(x)

)
exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
= 0.
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Hence, y0 satisfies (1.3.17) along with the boundary conditions in (1.3.18).
Finally, it follows that

|y(x) − y0(x)| =

∣∣∣∣z(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
− z0(x) exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)∣∣∣∣
= |z(x) − z0(x)| exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤KεeL/2 exp

(
− 1

2

∫ x

a

k′(τ)

k(τ)
dτ

)
≤KeLε

for all x ∈ I. �

By a similar method as we applied to the proof of Theorem 1.3.6, we can prove
the following theorem. Hence, we omit the proof.

Theorem 1.3.8. [29] Assume that max
x∈I

|β(x)| < 2/(b − a)2 and there exists a

constant L ≥ 0 for which the inequality (1.3.20) holds for all x ∈ I. If a function

y ∈ C2(I,R) satisfies the inequality (1.3.21) for all x ∈ I and for some ε ≥ 0

as well as the boundary conditions in (1.3.19), then there exist a constant K > 0

and a solution y0 ∈ C2(I,R) of the differential equation (1.3.17) with the boundary

conditions in (1.3.19) such that

|y(x) − y0(x)| ≤ KeLε

for any x ∈ I.

Now, we give the definition of superstability with initial and boundary conditions.

Definition 1.3.9. [18] Assume that for any function y ∈ Cn[a, b], if y satisfies

the differential inequality ∣∣φ(f, y, y′, . . . , y(n))∣∣ ≤ ϵ

for all x ∈ [a, b] and for some ϵ ≥ 0 with initial(or boundary) conditions, then

either y is a solution of the differential equation

φ
(
f, y, y′, . . . , y(n)

)
= 0 (1.3.24)
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or |y(x)| ≤ Kϵ for any x ∈ [a, b], where K is a constant not depending on y ex-

plicitly. Then, we say that Eq.(1.3.24) has superstability with initial(or boundary)

conditions.

In the following theorem, we investigate the stability of differential equation of
higher order in the form of

y(n)(x) + β(x)y(x) = 0 (1.3.25)

with initial conditions

y(a) = y
′
(a) = · · · = y(n−1)(a) = 0, (1.3.26)

where n ∈ N+, y ∈ Cn[a, b], β ∈ C0[a, b], −∞ < a < b < +∞.

Theorem 1.3.10. [18] If max |β(x)| < n!
(b−a)n

. Then (1.3.25) has the superstability

with initial conditions (1.3.26).

Proof. For every ϵ > 0, y ∈ C2[a, b], if
∣∣y(n)(x) + β(x)y(x)

∣∣ ≤ ϵ and y(a) =

y
′
(a) = · · · = y(n−1)(a) = 0. Similarly to the proof of Lemma 1.3.2,

y(x) = y(a) + y′(a)(x− a) + · · · +
y(n−1)(a)

(n− 1)!
(x− a)n−1 +

y(n)(ξ)

n!
(x− a)n.

Thus

|y(x)| =

∣∣∣∣y(n)(ξ)n!
(x− a)n

∣∣∣∣ ≤ max
∣∣y(n)(x)

∣∣(b− a)n

n!

for every x ∈ [a, b]; so, we obtain

max |y(x)| ≤ (b− a)n

n!
[max |y(n)(x) + β(x)y(x)|] +

(b− a)n

n!
max |β(x)y(x)|

≤ (b− a)n

n!
ϵ+

(b− a)n

n!
max |β(x)|max |y(x)|.

Let η = (b−a)n

n!
max |β(x)|, K = (b−a)n

n!(1−η)
. It is easy to see that

|y(x)| ≤ Kϵ.

Hence (1.3.25) has superstability with initial condtions (1.3.26). �

In the following theorems, we investigate the superstability of the differential equa-
tion

y(n)(x) + an−1y
(n−1)(x) + · · · + a1y

′(x) + a0y(x) = 0 (1.3.27)

with initial conditions

y(a) = y
′
(a) = · · · = y(n−1)(a) = 0, (1.3.28)

where y ∈ Cn(I,C), ai ∈ R(i = 0, 1, · · · , n− 1), I = [a, b], −∞ < a < b < +∞.
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Lemma 1.3.11. [19] Assume that y ∈ C1(I,C) and C ∈ {z ∈ C| |z| < 1
b−a

}. If

|y′(x) − Cy(x)| ≤ ε

with y(a) = 0, then there exists a constant K > 0 such that

|y(x)| ≤ Kε.

Proof. Let y(x) = A(x)+i·B(x), where i denotes imaginary unit andA(x), B(x) ∈
C1(I,R). Since y(a) = 0, we have

A(a) = 0 and B(a) = 0;

By Taylor formula, we obtain

max |A(x)| ≤ (b− a) max |A′(x) − CA(x)| + |C| · (b− a) max |A(x)|
≤ (b− a) max |y′(x) − Cy(x)| + |C| · (b− a) max |A(x)|
≤ (b− a)ε+ |C| · (b− a) max |A(x)|

and
max |B(x)| ≤ (b− a)ε+ |C| · (b− a) max |B(x)| .

Since C ∈ {z ∈ C| |z| < 1
b−a

}, there exists a constant K such that

max |y(x)| ≤
√

max |A(x)|2 + max |B(x)|2 ≤ Kε.

�

Theorem 1.3.12. [19] If all the roots of the characteristic equation are in the disc

{z ∈ C||z| < 1
b−a

}, then (1.3.27) has superstability with initial conditions (1.3.28).

Proof. Assume that λ1, λ2, · · · , λn are the roots of the characteristic equation

λn + an−1λ
n−1 + · · · + a1λ+ a0 = 0.

Define g1(x) = y′(x) − λ1y(x) and gi(x) = g′i−1(x) − λigi−1(x)(i = 2, 3, · · · , n− 1),
thus∣∣g′n−1(x) − λngn−1(x)

∣∣ =
∣∣y(n)(x) + an−1y

(n−1)(x) + · · · + a1y
′(x) + a0y(x)

∣∣ ≤ ε,

and gi(a) = 0 for every i = 1, 2, · · · , n− 1.
Since the absolute value of λn < 1

b−a
and gn−1(a) = 0, it follows from Lemma

1.3.11 that there exists a K1 > 0 such that

|gn−1(x)| ≤ K1ε.
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Recall gn−1(x) = g′n−2(x) − λn−1gn−2(x), we have∣∣g′n−2(x) − λn−1gn−2(x)
∣∣ ≤ K1ε.

By an argument similar to the above and by induction, we can show that there
exists a constant K > 0 such that

|y(x)| ≤ Kε.

This completes the proof of our theorem. �



Chapter 2

Generlaized Hyers-Ulam Stability

of Differential Equations

2.1 Generlaized Hyers-Ulam Stability of Linear

Differential Equations

Throughout this section, F will denote either the real field R or the complex field
C. A function f : (0,∞) → F is said to be of exponential order if there are
constants A,B ∈ R such that

|f(t)| ≤ AetB

for all t > 0. For each function f : (0,∞) → F of exponential order, we define the
Laplace transform of f by

F (s) =

∫ ∞

0

f(t)e−stdt.

There exists a unique number −∞ ≤ σ < ∞ such that this integral converges
if ℜ(s) > σ and diverges if ℜ(s) < σ, where ℜ(s) denotes the real part of the
(complex) number s. The number σ is called the abscissa of convergence and
denoted by σf . It is well known that |F (s)| → 0 as ℜ(s) → ∞. Furthermore, f is
analytic on the open right half plane {s ∈ C : ℜ(s) > σ} and we have

d

ds
F (s) = −

∫ ∞

0

te−stf(t)dt (ℜ(s) > σ).

The Laplace transform of f is sometimes denoted by L(f). It is well known that
L is linear and one-to-one.
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Conversely, let f(t) be a continuous function whose Laplace transform F (s) has
the abscissa of convergence σf , then the formula for the inverse Laplace transforms
yields

f(t) =
1

2πi
lim
T→∞

∫ α+iT

α−iT

F (s)estds =
1

2π

∫ ∞

−∞
e(α+iy)tF (α + iy)dy

for any real constant α > σf , where the first integral is taken along the vertical line
ℜ(s) = α and converges as an improper Riemann integral and the second integral
is used as an alternative notation for the first integral (see [1]). Hence, we have

L(f)(s) =

∫ ∞

0

f(t)e−stdt (ℜ(s) > σf )

L−1(F )(t) =
1

2π

∫ ∞

−∞
e(α+iy)tF (α + iy)dy (α > σf ).

The convolution of two integrable functions f, g : (0,∞) → F is defined by

(f ∗ g)(t) :=

∫ t

0

f(t− x)g(x)dx.

Then L(f ∗ g) = L(f)L(g).

Lemma 2.1.1. [12] Let P (s) =
n∑

k=0

αks
k and Q(s) =

m∑
k=0

βks
k, where m,n are

nonnegative integers with m < n and αk, βk are scalars. Then there exists an

infinitely differentiable function g : (0,∞) → F such that

L(g) =
Q(s)

P (s)
(ℜ(s) > σ

P
)

and

g(i)(0) =

{
0 (for i ∈ {0, 1, . . . , n−m− 2}),

βm/αn (for i = n−m− 1)

where σ
P

= max{ℜ(s) : P (s) = 0}.

Lemma 2.1.2. [12] Given an integer n > 1, let f : (0,∞) → F be a continuous

function and let P (s) be a complex polynomial of degree n. Then there exists an n

times continuously differentiable function h : (0,∞) → F such that

L(h) =
L(f)

P (s)
(ℜ(s) > max{σ

P
, σf}),

where σ
P

= max{ℜ(s) : P (s) = 0} and σf is the abscissa of convergence for f . In

particular, it holds that h(i)(0) = 0 for every i ∈ {0, 1, . . . , n− 1}.
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Let F denote either R or C. In the following theorem, using the Laplace trans-
form method, we investigate the generalized Hyers-Ulam stability of the linear
differential equation of first order

y′(t) + αy(t) = f(t). (2.1.1)

Theorem 2.1.3. [30] Let α be a constant in F and let φ : (0,∞) → (0,∞) be

an integrable function. If a continuously differentiable function y : (0,∞) → F
satisfies the inequality

|y′(t) + αy(t) − f(t)| ≤ φ(t) (2.1.2)

for all t > 0, then there exists a solution yα : (0,∞) → F of the differential

equation (2.1.1) such that

|y(t) − yα(t)| ≤ e−ℜ(α)t

∫ t

0

eℜ(α)xφ(x)dx

for any t > 0.

Proof. If we define a function z : (0,∞) → F by z(t) := y′(t) + αy(t) − f(t) for
each t > 0, then

L(y) − y(0) + L(f)

s+ α
=

L(z)

s+ α
. (2.1.3)

If we set yα(t) := y(0)e−αt + (E−α ∗ f)(t), where E−α(t) = e−αt, then yα(0) = y(0)
and

L(yα) =
y(0) + L(f)

s+ α
=
yα(0) + L(f)

s+ α
. (2.1.4)

Hence, we get

L
(
y′α(t) + αyα(t)

)
= sL(yα) − yα(0) + αL(yα) = L(f).

Since L is a one-to-one operator, it holds that

y′α(t) + αyα(t) = f(t).

Thus, yα is a solution of (2.1.1).
Moreover, by (2.1.3) and (2.1.4), we obtain L(y)−L(yα) = L(E−α ∗ z). Therefore,
we have

y(t) − yα(t) = (E−α ∗ z)(t). (2.1.5)

In view of (2.1.2), it holds that

|z(t)| ≤ φ(t) (2.1.6)
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for all t > 0, and it follows from the definition of convolution, (2.1.5), and (2.1.6)
that

|y(t) − yα(t)| = |(E−α ∗ z)(t)|

=

∣∣∣∣∫ t

0

E−α(t− x)z(x)dx

∣∣∣∣
≤
∫ t

0

∣∣e−α(t−x)
∣∣φ(x)dx

≤ e−ℜ(α)t

∫ t

0

eℜ(α)xφ(x)dx

for all t > 0. (We remark that
∫ t

0
eℜ(α)xφ(x)dx exists for each t > 0 provided φ is

an integrable function.) �

Corollary 2.1.4. [30] Let α be a constant in F and let φ : (0,∞) → (0,∞) be an

integrable function such that∫ t

0

eℜ(α)(x−t)φ(x)dx ≤ Kφ(t) (2.1.7)

for all t > 0 and for some positive real constant K. If a continuously differentiable

function y : (0,∞) → F satisfies the inequality (2.1.2) for all t > 0, then there

exists a solution yα : (0,∞) → F of the differential equation (2.1.1) such that

|y(t) − yα(t)| ≤ Kφ(t)

for any t > 0.

In the following remark, we show that there exists an integrable function φ :
(0,∞) → (0,∞) satisfying the condition (2.1.7).

Remark 2.1.5. [30] Let α be a constant in F with ℜ(α) > −1. If we define

φ(t) = Aet for all t > 0 and for some A > 0, then we have∫ t

0

eℜ(α)(x−t)φ(x)dx =

∫ t

0

eℜ(α)(x−t)Aexdx

=
1

1 + ℜ(α)

(
Aet − Ae−ℜ(α)t

)
≤ 1

1 + ℜ(α)
φ(t)

for each t > 0.
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Now, we apply the Laplace transform method to the proof of the generalized
Hyers-Ulam stability of the linear differential equation of second order

y′′(t) + βy′(t) + αy(t) = f(t). (2.1.8)

Theorem 2.1.6. [30] Let α and β be constants in F such that there exist a, b ∈ F
with a + b = −β, ab = α, and a ̸= b. Assume that φ : (0,∞) → (0,∞) is an

integrable function. If a twice continuously differentiable function y : (0,∞) → F
satisfies the inequality

|y′′(t) + βy′(t) + αy(t) − f(t)| ≤ φ(t) (2.1.9)

for all t > 0, then there exists a solution yc : (0,∞) → F of the differential equation

(2.1.8) such that

|y(t) − yc(t)| ≤
eℜ(a)t

|a− b|

∫ t

0

e−ℜ(a)xφ(x)dx+
eℜ(b)t

|a− b|

∫ t

0

e−ℜ(b)xφ(x)dx

for all t > 0.

Proof. If we define a function z : (0,∞) → F by z(t) := y′′(t)+βy′(t)+αy(t)−f(t)
for each t > 0, then we have

L(z) =
(
s2 + βs+ α

)
L(y) − [sy(0) + βy(0) + y′(0)] − L(f). (2.1.10)

In view of (2.1.10), a function y0 : (0,∞) → F is a solution of (2.1.8) if and only if(
s2 + βs+ α

)
L(y0) − sy0(0) − [βy0(0) + y′0(0)] = L(f). (2.1.11)

Now, since s2 + βs+ α = (s− a)(s− b), (2.1.10) implies that

L(y) − sy(0) + [βy(0) + y′(0)] + L(f)

(s− a)(s− b)
=

L(z)

(s− a)(s− b)
. (2.1.12)

If we set

yc(t) := y(0)
aeat − bebt

a− b
+ [βy(0) + y′(0)]Ea,b(t) + (Ea,b ∗ f)(t), (2.1.13)

where Ea,b(t) := eat−ebt

a−b
, then yc(0) = y(0). Moreover, since

y′c(t) = y(0)
a2eat − b2ebt

a− b
+ [βy(0) + y′(0)]

aeat − bebt

a− b
+
d

dt
(Ea,b ∗ f)(t),

(Ea,b ∗ f)(t) =
eat

a− b

∫ t

0

e−axf(x)dx− ebt

a− b

∫ t

0

e−bxf(x)dx,
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we have

y′c(0) = y(0)
a2 − b2

a− b
+ [βy(0) + y′(0)]

a− b

a− b

= (a+ b)y(0) + βy(0) + y′(0)

= y′(0).

It follows from (2.1.13) that

L(yc) =
syc(0) + [βyc(0) + y′c(0)] + L(f)

(s− a)(s− b)
. (2.1.14)

Now, (2.1.11) and (2.1.14) imply that yc is a solution of (2.1.8). Applying (2.1.12)
and (2.1.14) and considering the facts that

yc(0) = y(0), y′c(0) = y′(0), and L(Ea,b ∗ z) = L(z)
(s−a)(s−b)

, we obtain

L(y) − L(yc) = L(Ea,b ∗ z) or equivalently, y(t) − yc(t) = (Ea,b ∗ z)(t).
In view of (2.1.9), it holds that |z(t)| ≤ φ(t), and it follows from the definition of
the convolution that

|y(t) − yc(t)| = |(Ea,b ∗ z)(t)|

≤ eℜ(a)t

|a− b|

∫ t

0

e−ℜ(a)xφ(x)dx+
eℜ(b)t

|a− b|

∫ t

0

e−ℜ(b)xφ(x)dx

for any t > 0. We remark that
∫ t

0
e−ℜ(a)xφ(x)dx and

∫ t

0
e−ℜ(b)xφ(x)dx exist for any

t > 0 provided φ is an integrable function. �

Corollary 2.1.7. [30] Let α and β be constants in F such that there exist a, b ∈ F
with a + b = −β, ab = α, and a ̸= b. Assume that φ : (0,∞) → (0,∞) is an

integrable function for which there exists a positive real constant K with∫ t

0

(
eℜ(a)(t−x) + eℜ(b)(t−x)

)
φ(x)dx ≤ Kφ(t) (2.1.15)

for all t > 0. If a twice continuously differentiable function y : (0,∞) → F satisfies

the inequality (2.1.9) for all t > 0, then there exists a solution yc : (0,∞) → F of

the differential equation (2.1.8) such that

|y(t) − yc(t)| ≤
K

|a− b|
φ(t)

for all t > 0.
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We now show that there exists an integrable function φ : (0,∞) → (0,∞) which
satisfies the condition (2.1.15).

Remark 2.1.8. [30] Let α and β be constants in F such that there exist a, b ∈ F
with a+ b = −β, ab = α, ℜ(a) < 1, ℜ(b) < 1, and a ̸= b. If we define φ(t) = Aet

for all t > 0 and for some A > 0, then we get∫ t

0

(
eℜ(a)(t−x) + eℜ(b)(t−x)

)
φ(x)dx

=

∫ t

0

(
eℜ(a)(t−x) + eℜ(b)(t−x)

)
Aexdx

=
A

1 −ℜ(a)

(
et − eℜ(a)t

)
+

A

1 −ℜ(b)

(
et − eℜ(b)t

)
≤
(

1

1 −ℜ(a)
+

1

1 −ℜ(b)

)
φ(t)

for all t > 0.

Similarly, we apply the Laplace transform method to investigate the generalized
Hyers-Ulam stability of the linear differential equation of nth order

y(n)(t) +
n−1∑
k=0

αky
(k)(t) = f(t) (2.1.16)

Theorem 2.1.9. [30] Let α0, α1, . . . , αn be scalars in F with αn = 1, where n

is an integer larger than 1. Assume that φ : (0,∞) → (0,∞) is an integrable

function of exponential order. If an n times continuously differentiable function

y : (0,∞) → F satisfies the inequality∣∣∣∣∣y(n)(t) +
n−1∑
k=0

αky
(k)(t) − f(t)

∣∣∣∣∣ ≤ φ(t) (2.1.17)

for all t > 0, then there exist real constants M > 0 and σg and a solution yc :

(0,∞) → F of the differential equation (2.1.16) such that

|y(t) − yc(t)| ≤M

∫ t

0

eα(t−x)φ(x)dx

for all t > 0 and α > σg.
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Proof. Applying the integration by parts repeatedly, we derive

L
(
y(k)
)

= skL(y) −
k∑

j=1

sk−jy(j−1)(0)

for any integer k > 0. Using this formula, we can prove that a function y0 :
(0,∞) → F is a solution of (2.1.16) if and only if

L(f) =
n∑

k=0

αks
kL(y0) −

n∑
k=1

αk

k∑
j=1

sk−jy
(j−1)
0 (0)

=
n∑

k=0

αks
kL(y0) −

n∑
j=1

n∑
k=j

αks
k−jy

(j−1)
0 (0)

= Pn,0(s)L(y0) −
n∑

j=1

Pn,j(s)y
(j−1)
0 (0), (2.1.18)

where Pn,j(s) :=
n∑

k=j

αks
k−j for j ∈ {0, 1, . . . , n}.

Let us define a function z : (0,∞) → F by

z(t) := y(n)(t) +
n−1∑
k=0

αky
(k)(t) − f(t) (2.1.19)

for all t > 0. Then, similarly as in (2.1.18), we obtain

L(z) = Pn,0(s)L(y) −
n∑

j=1

Pn,j(s)y
(j−1)(0) − L(f).

Hence, we get

L(y) − 1

Pn,0(s)

(
n∑

j=1

Pn,j(s)y
(j−1)(0) + L(f)

)
=

L(z)

Pn,0(s)
. (2.1.20)

Let σf be the abscissa of convergence for f , let s1, s2, . . . , sn be the roots of the
polynomial Pn,0(s), and let σ

P
= max{ℜ(sk) : k ∈ {1, 2, . . . , n}}. For any s with

ℜ(s) > max{σf , σP }, we set

G(s) :=
1

Pn,0(s)

(
n∑

j=1

Pn,j(s)y
(j−1)(0) + L(f)

)
. (2.1.21)
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By Lemma 2.1.2, there exists an n times continuously differentiable function f0
such that

L(f0) =
L(f)

Pn,0(s)
(2.1.22)

for all s with ℜ(s) > max{σf , σP } and

f
(i)
0 (0) = 0 (2.1.23)

for any i ∈ {0, 1, . . . , n− 1}.
For j ∈ {1, 2, . . . , n}, we note that

Pn,j(s)

Pn,0(s)
=

1

sj
−

j−1∑
k=0

αks
k

sjPn,0(s)
(2.1.24)

for every s with ℜ(s) > max{0, σ
P
}. Applying Lemma 2.1.1 for the case of

Q(s) =
j−1∑
k=0

αks
k and P (s) = sjPn,0(s), we can find an infinitely differentiable

function gj such that

L(gj) =

j−1∑
k=0

αks
k

sjPn,0(s)
(2.1.25)

and g
(k)
j (0) = 0 for k ∈ {0, 1, . . . , n− 1}.

Let

fj(t) :=
tj−1

(j − 1)!
− gj(t) (2.1.26)

for j ∈ {1, 2, . . . , n}. Then we have

f
(i)
j (0) =

{
0 (for i ∈ {0, 1, . . . , j − 2, j, j + 1, . . . , n− 1}),

1 (for i = j − 1).
(2.1.27)

If we define

yc(t) :=
n∑

j=1

y(j−1)(0)fj(t) + f0(t),

then the conditions (2.1.23) and (2.1.27) imply that

y(i)c (0) = y(i)(0) (2.1.28)
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for every i ∈ {0, 1, . . . , n− 1}. Moreover, it follows from (2.1.21) to (2.1.28) that

L(yc) =
n∑

j=1

y(j−1)(0)L(fj) + L(f0)

=
n∑

j=1

y(j−1)(0)

(
1

sj
− L(gj)

)
+

L(f)

Pn,0(s)

=
1

Pn,0(s)

(
n∑

j=1

Pn,j(s)y
(j−1)(0) + L(f)

)
(2.1.29)

for each s with ℜ(s) > max{0, σf , σP }.
Now, (2.1.18) implies that yc is a solution of (2.1.16). Moreover, by (2.1.20) and
(2.1.29), we have

L(y) − L(yc) =
L(z)

Pn,0(s)
. (2.1.30)

Applying Lemma 2.1.1 for the case of Q(s) = 1 and P (s) = Pn,0(s), we find an
infinitely differentiable function g : (0,∞) → F such that

L(g) =
1

Pn,0(s)
(2.1.31)

which implies that

g(t) = L−1

(
1

Pn,0(s)

)
=

1

2π

∫ ∞

−∞
e(α+iy)t 1

Pn,0(α + iy)
dy

for any real constant α > σg.
Moreover, it holds that

|g(t− x)| ≤ 1

2π

∫ ∞

−∞

∣∣e(α+iy)(t−x)
∣∣ 1

|Pn,0(α + iy)|
dy

≤ 1

2π

∫ ∞

−∞
eα(t−x) 1

|Pn,0(α + iy)|
dy

≤ 1

2π
eα(t−x)

∫ ∞

−∞

1

|Pn,0(α + iy)|
dy

≤Meα(t−x) (2.1.32)

for all α > σg, where

M =
1

2π

∫ ∞

−∞

1

|Pn,0(α + iy)|
dy <∞,
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because n is an integer larger than 1. By (2.1.17) and (2.1.19), it also holds that
|z(t)| ≤ φ(t) for all t > 0.
In view of (2.1.30), (2.1.31), and (2.1.32), we get

L(y) − L(yc) = L(g)L(z) = L(g ∗ z).

Consequently, we have y(t) − yc(t) = (g ∗ z)(t) for any t > 0. Hence, it follows
from (2.1.17), (2.1.19), and (2.1.32) that

|y(t) − yc(t)| = |(g ∗ z)(t)| ≤
∫ t

0

|g(t− x)||z(x)|dx ≤M

∫ t

0

eα(t−x)φ(x)dx

for all t > 0 and for any real constant α > σg, which completes the proof. �

Corollary 2.1.10. [30] Let α0, α1, . . . , αn be scalars in F with αn = 1, where n is

an integer larger than 1. Assume that there exist real constants α and K > 0 such

that a function φ : (0,∞) → (0,∞) satisfies∫ t

0

eα(t−x)φ(x)dx ≤ Kφ(t)

for all t > 0. Moreover, assume that the constant σg given in Theorem 2.1.9 is less

than α. If an n times continuously differentiable function y : (0,∞) → F satisfies

the inequality (2.1.17) for all t > 0, then there exist a real constants M > 0 and a

solution yc : (0,∞) → F of the differential equation (2.1.16) such that

|y(t) − yc(t)| ≤ KMφ(t)

for all t > 0.

Remark 2.1.11. [30] Assume that α < 1. If we define φ(t) = Aet for all t > 0

and for some A > 0, then we get∫ t

0

eα(t−x)φ(x)dx =

∫ t

0

eα(t−x)Aexdx =
A

1 − α

(
et − eαt

)
≤ 1

1 − α
φ(t)

for all t > 0.
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2.2 Generlaized Hyers-Ulam Stability of Differ-

ential Equations with boundary Conditions

2.2.1 Generalized Superstability of Differential Equations with Initial Con-

ditions

In this subsection, we investigate the generalized superstability of linear differential
equation of nth-order in the form of

y(n)(x) + β(x)y(x) = 0, (2.2.1)

with initial conditions

y(a) = y
′
(a) = · · · = y(n−1)(a) = 0, (2.2.2)

where n ∈ N+, y ∈ Cn[a, b], β ∈ C0[a, b], −∞ < a < b < +∞.
In addition to that we investigate the generalized superstability of differential
equations of second order in the form of y′′(x) + p(x)y′(x) + q(x)y(x) = 0 and the
superstability of linear differential equations with constant coefficients.

First of all, we give the definition of generalized superstability with initial and
boundary conditions.

Definition 2.2.1. [19],[25] Assume that for any function y ∈ Cn[a, b], if y satisfies

the differential inequality ∣∣φ(f, y, y′, . . . , y(n))∣∣ ≤ φ(x)

for all x ∈ [a, b] and for some function φ : [a, b] → [0,∞) with initial(or boundary)

conditions, then either y is a solution of the differential equation

φ
(
f, y, y′, . . . , y(n)

)
= 0 (2.2.3)

or |y(x)| ≤ Φ(x) for any x ∈ [a, b], where Φ : I → [0,∞) is a function not de-

pending on y explicitly. Then, we say that Eq.(2.2.3) has generalized superstability

with initial(or boundary) conditions.

In this subsection, given the closed interval I = [a, b], we assume that φ : I →
[0,∞) and let M (p(x)) denote maxτ∈[a,x] |p(τ)| for every p ∈ C(I,R).
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Theorem 2.2.2. [19] If |β(x)| < n!/(b− a)n for every x ∈ I, then Eq.(2.2.1) has

generalized superstability with initial conditions (2.2.2).

Proof. Suppose that a function y ∈ Cn(I,R) satisfies the inequality∣∣y(n)(x) + β(x)y(x)
∣∣ ≤ φ(x), (2.2.4)

for all x ∈ I,
By Taylor formula, we have

y(x) = y(a) + y′(a)(x− a) + · · · +
y(n−1)(a)

(n− 1)!
(x− a)n−1 +

y(n)(ξ)

n!
(x− a)n.

Therefore,

|y(x)| =

∣∣∣∣y(n)(ξ)n!
(x− a)n

∣∣∣∣ ≤ M(y(n)(x))
(x− a)n

n!

for every x ∈ [a, b]. Then,

M (y(x)) ≤ M

(
M(y(n)(x))

(x− a)n

n!

)
≤ M

(
M(y(n)(x))

)
M

(
(x− a)n

n!

)
= M(y(n)(x))

(x− a)n

n!

Thus

M(y(x)) ≤ M(y(n)(x))
(x− a)n

n!

≤ (x− a)n

n!
M
(
y(n)(x) + β(x)y(x)

)
+

(x− a)n

n!
M |β(x)|M(y(x))

≤ (x− a)n

n!
M (φ(x)) +

(b− a)n

n!
max |β(x)|M (y(x)) .

Let C1 = 1 − (b−a)n

n!
max |β(x)|. It easy to see that

M (y(x)) ≤ (x− a)n

n!C1

M (φ(x)) .

Moreover, |y(x)| ≤ M (y(x)), which completes the proof of our theorem. �

In the following theorem, we investigate the generalized superstability of the dif-
ferential equation

y
′′
(x) + p(x)y

′
(x) + q(x)y(x) = 0 (2.2.5)
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with initial conditions
y(a) = 0 = y

′
(a), (2.2.6)

where y ∈ C2[a, b], p ∈ C[a, b], q ∈ C0[a, b], −∞ < a < b < +∞.

Theorem 2.2.3. [19] If max{q(x)− 1
2
p
′
(x)− p2(x)

4
} < 2/(b− a)2, then (2.2.5) has

generalized superstability with initial conditions (2.2.6).

Proof. Suppose that y ∈ C2[a, b] satisfies the inequality∣∣∣y′′
(x) + p(x)y

′
(x) + q(x)y(x)

∣∣∣ ≤ φ(x). (2.2.7)

Let
u(x) = y

′′
(x) + p(x)y

′
(x) + q(x)y(x), (2.2.8)

for all x ∈ [a, b], and define z(x) by

y(x) = z(x)exp(−1

2

x∫
a

p(τ)dτ). (2.2.9)

By a substitution (2.2.9) in (2.2.8), we obtain

z
′′
(x) +

(
q(x) − 1

2
p
′
(x) − p2(x)

4

)
z(x) = u(x)exp(

1

2

x∫
a

p(τ)dτ).

Then it follows from inequality (2.2.7) that∣∣∣∣z′′
(x) +

(
q(x) − 1

2
p
′
(x) − p2(x)

4

)
z(x)

∣∣∣∣ = |u(x)| exp(1

2

x∫
a

p(τ)dτ)

≤ φ(x)exp(
1

2

x∫
a

p(τ)dτ)

From (2.2.6) and (2.2.9) we have

z(a) = 0 = z(b). (2.2.10)

It follows from Theorem 2.2.2 that there exists a constant C1 > 0 such that

|z(x)| ≤ (x− a)n

n!C1

M

φ(x)exp(
1

2

x∫
a

p(τ)dτ)

 .
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From (2.2.9) we have

|y(x)| ≤ (x− a)n

n!C1

M

φ(x)exp(
1

2

x∫
a

p(τ)dτ)

 exp(−1

2

x∫
a

p(τ)dτ).

Thus (2.2.5) has generalized superstability with initial conditions (2.2.6). �

2.2.2 Hyers-Ulam-Rassias Stability of Linear Differential Equations with

Boundary Conditions

Lemma 2.2.4. [24] Let y ∈ Cn[a, b] and satisfies the initial conditions

y(a) = y
′
(a) = · · · = y(n−1)(a) = 0, (2.2.11)

then max |y(x)| ≤ (b−a)n

n!
max

∣∣y(n)(x)
∣∣.

Proof. By Taylor formula, we have

y(x) = y(a) + y′(a)(x− a) + · · · +
y(n−1)(a)

(n− 1)!
(x− a)n−1 +

y(n)(ξ)

n!
(x− a)n.

We have (x− a)n ≤ (b− a)n. Therefore,

|y(x)| =

∣∣∣∣y(n)(ξ)n!
(x− a)n

∣∣∣∣ ≤ max
∣∣y(n)(x)

∣∣(b− a)n

n!

for every x ∈ [a, b]. �
In the following theorems, we prove the Hyers-Ulam-Rassias stability of the fol-
lowing linear differential equation

y
′′
(x) + β(x)y(x) = 0 (2.2.12)

with boundary conditions
y(a) = 0 = y(b) (2.2.13)

or with initial conditions
y(a) = 0 = y

′
(a) (2.2.14)

where I = [a, b], y ∈ C2(I,R), β ∈ C(I,R), −∞ < a < b < +∞.

Given the closed interval I and a function β : I → R, define a function f : I → R
by

f(x) = y
′′
(x) + β(x)y(x), (2.2.15)

for all x ∈ I.
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Theorem 2.2.5. [24] Given the closed interval I and a function β : I → R,
assume that φ : I → [0,∞) is a dicreasing (increasing) function and max |β(x)| <
8/(b− a)2. If a function y ∈ C2(I,R) satisfies the inequality∣∣∣y′′

(x) + β(x)y(x)
∣∣∣ ≤ φ(x), (2.2.16)

for all x ∈ I, with boundary conditions (2.2.13) such that the function (2.2.15) is

increasing (decreasing) function then there exist a constant K > 0 and a solution

y0 ∈ C2(I,R) of the differential equation (2.2.12) with boundary conditions (2.2.13)

such that

|y(x) − y0(x)| ≤ Kφ(x) (2.2.17)

for any x ∈ I.

Proof. We have by Lemma 1.3.1 that

max |y(x)| ≤ (b− a)2

8
max

∣∣∣y′′
(x)
∣∣∣ .

Thus

max |y(x)| ≤ (b− a)2

8
max

∣∣∣y′′
(x) + β(x)y(x)

∣∣∣+
(b− a)2

8
max |β(x)|max |y(x)|

≤ (b− a)2

8
φ(x) +

(b− a)2

8
max |β(x)|max |y(x)| .

Let C = (b−a)2

8
, K = C

1−C max|β(x)| . Obviously, y0(x) = 0 is a solution of (2.2.12)

with boundary conditions (2.2.13) and

|y(x) − y0(x)| ≤ K φ(x).

�

Theorem 2.2.6. [24] Given the closed interval I and a function β : I → R,
assume that φ : I → [0,∞) is a decreasing (increasing) function and max |β(x)| <
2/(b − a)2. If a function y ∈ C2(I,R) satisfies the inequality (2.2.16) for all

x ∈ I, with initial conditions (2.2.14) such that the function (2.2.15) is increasing

(decreasing) then there exist a solution y0 ∈ C2(I,R) of the differential equation

(2.2.12) and a constant K > 0 such that

|y(x) − y0(x)| ≤ Kφ(x) (2.2.18)

for any x ∈ I.
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Proof. We have by Lemma 1.3.2 that

max |y(x)| ≤ (b− a)2

2
max

∣∣∣y′′
(x)
∣∣∣ .

Thus

max |y(x)| ≤ (b− a)2

2
max

∣∣∣y′′
(x) + β(x)y(x)

∣∣∣+
(b− a)2

2
max |β(x)|max |y(x)|

≤ (b− a)2

2
φ(x) +

(b− a)2

2
max |β(x)|max |y(x)| .

Let C = (b−a)2

2
, K = C

1−C max|β(x)| . Obviously, y0(x) = 0 is a solution of (2.2.12)

with initial conditions (2.2.14) and |y(x) − y0(x)| ≤ K φ(x). �
In the following theorems investigate the Hyers-Ulam-Rassias stability of linear
differential equation of nth - order

y(n)(x) + β(x)y(x) = 0, (2.2.19)

with initial conditions (2.2.11).

Given the closed interval I = [a, b] and a function β : I → R, define a function
f : I → R by

f(x) = yn(x) + β(x)y(x), (2.2.20)

for all x ∈ I.

Theorem 2.2.7. [24] Given the closed interval I and a function β : I → R,
assume that φ : I → [0,∞) is a decreasing (increasing) function and max |β(x)| <
n!/(b− a)n. If a function y0 ∈ Cn[a, b] satisfies the inequality

|yn(x) + β(x)y(x)| ≤ φ(x), (2.2.21)

for all x ∈ I, with initial conditions (2.2.11) such that the function (2.2.20) is

increasing (decreasing) then there exist a solution y0 ∈ Cn(I,R) of the differential

equation (2.2.19) and a constant K > 0 such that

|y(x) − y0(x)| ≤ Kφ(x) (2.2.22)

for any x ∈ I.
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Proof. We have by Lemma 2.2.4 that

max |y(x)| ≤ (b− a)n

n!
max |yn(x)| .

Thus

max |y(x)| ≤ (b− a)n

n!
max |yn(x) + β(x)y(x)| +

(b− a)n

n!
max |β(x)|max |y(x)|

≤ (b− a)n

n!
φ(x) +

(b− a)n

n!
max |β(x)|max |y(x)| .

Let C1 = (b−a)n

n!
, K = C1

1−C1 max|β(x)| . Obviously, y0(x) = 0 is a solution of (2.2.19)

with initial conditions (2.2.11) and |y(x) − y0(x)| ≤ K φ(x). �



Chapter 3

Hyers-Ulam Stability of System

of Differential Equations

3.1 Hyers-Ulam Stability of Linear System of Dif-

ferential Equations

In this section, by applying the fixed point alternative method, we give a necessary
and sufficient condition in order that the first order linear system of differential
equations ż(t) + A(t)z(t) + B(t) = 0 has the Hyers-Ulam-Rassias stability and
find Hyers-Ulam stability constant under those conditions. In addition to that, we
apply this result to a second order differential equation

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0.

Also, we apply to differential equations with constant coefficient in the same sense
of proofs.

3.1.1 Preliminaries and Auxiliary Results

Definition 3.1.1. ([7],[2],[47]) Let I be any interval, let z : I → Rn, A : I →
Rn×n, B : I → Rn, then

ż(t) + A(t)z(t) +B(t) = 0 (3.1.1)

is Hyers-Ulam-Rassias stable with respect to φ : I → [0,∞), with, ∥z(t)∥ =
n∑

i=1

|zi(t)|, if there exists a real constant K > 0 such that for each solution s ∈
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C1(I,Rn) of inequality

∥ż(t) + A(t)z(t) +B(t)∥ ≤ ψ(t)

there exists a solution z ∈ C1(I,Rn) of equation (3.1.1) with

∥s(t) − z(t)∥ ≤ Kφ(t)

, ∀ t ∈ I.

Definition 3.1.2. For a nonempty set X, a function d : X×X → [0,∞] is called

a generalized metric on X if and only if d satisfies :

(i) d(x, y) = 0 if and only if x = y;

(ii) d(x, y) = d(y, x) for all x,y ∈ X ;

(iii) d(x, z) ≤ d(x, y) + d(y, z) for all x,y,z ∈ X.

Theorem 3.1.3. (The fixed point alternative) [15] Let (X, d) be a generalized

complete metric space. Assume that Λ : X → X is a strictly contractive operator

with Lipschitz constant L < 1. If there exists a nonnegative integer k such that

d(Λk+1x,Λkx) <∞ for some x ∈ X, then the followings are true :

(a) The sequence {Λnx} convergens to a fixed point x∗ of Λ;

(b) x∗ is the unique fixed point of Λ in

X∗ =
{
y ∈ X/d(Λkx, y) <∞

}
;

(c) If y ∈ X∗, then d(y, x∗) ≤ 1
1−L

d(Λy, y).

Lemma 3.1.4. [26] For given real numbers a and b with a < b, let I = [a, b] be a

closed interval and let be

X = {f : I → Rn, is continuous function}, and d : X × X → [0,∞] a function is

defined as follows :

d(f, g) = inf{c ∈ [0,∞]/ ∥f(t) − g(t)∥ ≤ cφ(t)∀ t ∈ I}
where φ(t) : I → (0,∞) is a continuous function, then d is a generalized metric
on X.
Proof. By definition of a function d, then for all f, g ∈ X
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(1) d(f, g) = 0 ↔ f(t) = g(t) for all t ∈ I;

(2) d(f, g) = d(g, f).

To prove that d(f, g) ≤ d(f, h) + d(h, g) for all f, g, h ∈ X.
Assume that d(f, g) > d(f, h) + d(h, g) for some f, h, g ∈ X. Then, by definition
of d, there exists t0 ∈ I with

∥f(t0) − g(t0)∥ > {d(f, h) − d(h, g)}φ(t0)

= d(f, h)φ(t0) − d(h, g)φ(t0)

≥ ∥f(t0) − h(t0)∥ + ∥h(t0) − g(t0)∥

and this is contradiction . �

Lemma 3.1.5. [26] For given real numbers a and b with a < b, let I = [a, b] be a

closed interval and let

X = {f : I → Rn, is continuous function }, consider a generalized metric function

on X, d : X × X → [0,∞] which is defined as follows:

d(f, g) = inf{c ∈ [0,∞]/ ∥f(t) − g(t)∥ ≤ cφ(t) ∀ t ∈ I} (3.1.2)

where φ(t) : I → (0,∞) is a continuous function, then (X, d) is a complete metric
space.
Proof. Let {hn} be a Cauchy sequence in (X, d). Then ∀ε > 0 there exist Nε ∈ N
such that d(hm, hn) ≤ ε ∀ m,n ≥ Nε. That means that with equation (3.1.2)

∀ε > 0 ∃Nε ∈ N : ∀m,n ≥ Nε, ∀t ∈ I ∥hm(t) − hn(t)∥ ≤ εφ(t). (3.1.3)

If t is fixed, equation (3.1.3) implies that {hn(t)} is a cauchy sequence in Rn.
Since Rn is complete, {hn(t)} converge for each t ∈ I. Thus, we can define a
function h : I → Rn by h(t) = lim

n→∞
hn(t).

If we let m→ ∞, it then follows from (3.1.3) that

∀ε > 0 ∃Nε ∈ N : ∀n ≥ Nε,∀t ∈ I ∥h(t) − hn(t)∥ ≤ εφ(t), (3.1.4)

that is, since φ is bounded on I, {hn(t)} converges uniformly to h. Hence, h is
continuous and h ∈ X.
If we consider equation (3.1.2) and (3.1.4), then we may conclude that

∀ε > 0 ∃Nε ∈ N : ∀n ≥ Nε d(h, hn) ≤ ε

that is, the cauchy sequence {hn(t)} converge to h in (X, d). Hence, (X, d) is
complete. �
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3.1.2 Hyers-Ulam Stability of First Order System of Differential Equa-

tions

We will prove the Hyers-Ulam-Rassias stability for the equation (3.1.1) on the
intervals I = [a, b), where −∞ < a < b ≤ ∞.

Theorem 3.1.6. [26] Let A : I → Rn×n and B : I → Rn×n be continuous matrices

functions and let for a positive constant N , such that ∥A(t)∥ ≥ N for all t in I.

Assume that ψ : I → [o,∞) is an integrable function with the property that there

exists P in (0, 1) such that

t∫
a

∥A(t1)∥ψ(t1)dt1 ≤ Pψ(t) (3.1.5)

for all t ∈ I. If a continuously differential function z : I → Rn×n verifies the

relation :

∥ż(t) + A(t)z(t) +B(t)∥ ≤ ψ(t) (3.1.6)

for all t in I. Then there exists a unique solution s : I → Rn×n of the equation

(3.1.1) which verifies the following relation:

∥z(t) − s(t)∥ ≤ P

N −NP
ψ(t) (3.1.7)

for all t ∈ I and s(a) = z(a).
Proof. Let us consider the set

Ω = {h : I → Rn/h is continuous and h(a) = z(a)}

with a function d : Ω × Ω → [0,∞] defined on Ω as

d(h1, h2) = dφ(h1, h2)

= inf{K > 0, ∥h1(t) − h2(t)∥ ≤ Kφ(t), ∀t ∈ I}

By lemma (3.1.4) and Lemma (3.1.5), the (Ω, d) is generalized complete metric
space. We define the operator T : Ω → Ω,

Th(t) = z(a) −
t∫

a

(A(t1)h(t1) + B(t1))dt1, t ∈ I
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for all h ∈ Ω. Indeed Th is a continuously differentable function on I, since A and
B are continuous functions and Th(a) = z(a). Now, let h1, h2 ∈ Ω. Then we have

∥Th1(t) − Th2(t)∥ =

∥∥∥∥∥∥
t∫

a

A(t1)(h1(t1) − h2(t1)dt1)

∥∥∥∥∥∥
≤

t∫
a

∥A(t1)∥ ∥h1(t1) − h2(t1)∥dt1

≤ d(h1, h2)

t∫
a

A(t1)ψ(t1)dt1

≤ Pψ(t)d(h1, h2)∀t ∈ I.

Therefore,
d(Th1(t) − Th2(t)) ≤ Pd(h1, h2) (3.1.8)

Thus, the operator T is a contraction with the constant P .
By integrating the both sides of the relation (3.1.6) on [a, t] we obtain∥∥∥∥∥∥z(t) − z(a) +

t∫
a

(A(t1)z(t1) + B(t1))dt1

∥∥∥∥∥∥ ≤ P

N
ψ(t) for all t ∈ I. (3.1.9)

which means d(z, Tz) ≤ P
N
ψ(t) < ∞. By the fixed point alternative theorem

(3.1.3) there exists an element s = lim
n→∞

T nz and s is a unique fixed point of T in

the set ∆ = {h ∈ Ω/d(T n0z, h) <∞} .
It may be proved that ∆ = {h ∈ Ω/d(z, h) < ∞}. Therefore, the set ∆ is inde-
pendent of n0. To prove that the function s is a solution to the equation (3.1.1),
we derive, with respect to t, the both sides of the following relation:

s(t) = Ts(t) ∀t ∈ I

Thus,
ṡ(t) = −A(t)s(t) −B(t)

for all t ∈ I, which implies that the function s is a solution of the equation (3.1.1)
and verifies the relation s(a) = z(a). Applying the fixed point alternative theorem
again, we obtain d(h, s) ≤ 1

1−P
d(h, Th) for all h ∈ ∆.

Since z ∈ ∆, we have
d(z, S) ≤ 1

1−P
d(z, Tz) ≤ P

N(1−P )
.

Hence, ∥z(t) − s(t)∥ ≤ P
N(1−P )

ψ(t) for all t ∈ I.

This inequality proves the relation (3.1.1) . �
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In the same manner it is possible to proved the following theorem of the Hyers-
Ulam-Rassias stability of the equation (3.1.1) on the interval J = (b, a] , where
−∞ ≤ b < a <∞.

Theorem 3.1.7. [26] Let A : J → Rn×n and B : J → Rn×n be continuous ma-

trices functions and let for a positive constant N , such that ∥A(t)∥ ≥ N for all

t ∈ J .

Assume that ψ : J → [o,∞) is an integrable function with the property that there

exists P ∈ (0, 1)such that

t∫
a

∥A(t1)∥ψ(t1)dt1 ≤ Pψ(t) (3.1.10)

for all t ∈ J . If a continuously differential function z : J → Rn×n verifies the

relation :

∥ż(t) + A(t)z(t) +B(t)∥ ≤ ψ(t) (3.1.11)

for all t ∈ J , then there exists a unique solution s : J → Rn×n of the equation

(3.1.1) which verifies the following relation:

∥z(t) − s(t)∥ ≤ P

N −NP
ψ(t) (3.1.12)

for all t ∈ J and s(a) = z(a).
The Hyers-Ulam-Rassias stability equation (3.1.1) on R will be proved by Theorem
(3.1.6) and Theorem (3.1.7).

Corollary 3.1.8. [26] Let A : R → Rn×n and B : R → Rn×n be continuous ma-

trices functions and let for a positive constant N , such that ∥A(t)∥ ≥ N for all

t ∈ R. Assume that ψ : R → [o,∞) is an integrable function with the property that

there exists P ∈ (0, 1) such that∣∣∣∣∣∣
t∫

0

∥A(t1)∥ψ(t1)dt1

∣∣∣∣∣∣ ≤ Pψ(t) (3.1.13)

for all t ∈ R. If a continuously differential function z : R → Rn×n verifies the

relation :

∥ż(t) + A(t)z(t) +B(t)∥ ≤ ψ(t) (3.1.14)
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for all t ∈ R, then there exists a unique solution s : R → Rn×n of the equation

(3.1.1) which verifies the following relation:

∥z(t) − s(t)∥ ≤ P

N −NP
ψ(t) (3.1.15)

for all t ∈ R and s(0) = z(0).
Proof. By relation (3.1.13) we have

t∫
0

∥A(t1)∥ψ(t1)dt1 ≤ Pψ(t) (3.1.16)

for all t ≥ 0. Applying Theorem (3.1.6), there exists a solution of equation (3.1.1),
s1 : [0,∞) → Rn×n, which verifies relations (3.1.7) and s1(o) = z(o) . From
relation(3.1.13) we also obtain

o∫
t

∥A(t1)∥ψ(t1)dt1 ≤ Pψ(t) (3.1.17)

for all t ≤ 0. Applying Theorem (3.1.7), there exists a solution of equation (3.1.1),
s2 : (−∞, 0] → Rn×n which verifies relation (3.1.12) and s2(o) = z(o). It is easy
to check if the function

s(t) =

{
s1(t), t ≥ 0
s2(t), t < 0

(3.1.18)

is a continuously differentiable function on R, a solution of equation (3.1.1) on R
and it verifies relation (3.1.15). �

Corollary 3.1.9. [26] Let A ̸= 0 be n × n constant matrix and B : R → Rn×n

be n × 1 a continuous matrix function (n × 1 constant matrix ). Assume that

ψ : R → [o,∞) is an integrable function with the property that there exists

P ∈ (0, 1) such that ∣∣∣∣∣∣
t∫

0

ψ(t1)

∣∣∣∣∣∣ ≤ P

∥A∥
ψ(t) (3.1.19)

for all t ∈ R. If a continuously differential function z : R → Rn×n verifies the

relation :

∥ż(t) + Az(t) +B(t)∥ ≤ ψ(t) (∥ż(t) + Az(t) +B∥ ≤ ψ(t)) (3.1.20)
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for all t ∈ R, then there exists a unique solution s : R → Rn×n of the equation

ż(t) + Az(t) +B(t) = 0 (ż(t) + Az(t) +B = 0)

which verifies the following relation:

∥z(t) − s(t)∥ ≤ P

∥A∥(1 − P )
ψ(t) (3.1.21)

for all t ∈ R and s(0) = z(0).
Proof. By Corollary (3.1.8) and let N = ∥A∥ . �

3.1.3 Hyers-Ulam Stability of Second Order Differential Equation

In this section we will prove the Hyers-Ulam-Rassias stability for the following
scallar equation

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t) = 0 (3.1.22)

In the same manner, at first we will prove the Hyers-Ulam-Rassias stability for the
equation (3.1.22) on the intervals I = [a, b) , where −∞ < a < b ≤ ∞.

Theorem 3.1.10. [26] Let f, g, h : I → R be continuous functions and let for a

positive constant 0 < N < 1,

|f(t)| + |g(t)| ≥ N for all t ∈ I. Assume that ψ : I → [o,∞) is an integrable

function with property that there exists P ∈ (0, 1) such that

t∫
a

(1 + |f(t1)| + |g(t1)|)ψ(t1)dt1 ≤ Pψ(t) (3.1.23)

for all t ∈ I. If a function y ∈ C2(I,R) verifies the relation

|ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t)| ≤ ψ(t) (3.1.24)

for all t ∈ I, then there exists a unique solution s1 : I → R of equation (3.1.22),

which verifies the following relation

|y(t) − s1(t)| ≤
P

N(1 − P )
ψ(t) (3.1.25)

for all t ∈ I, and s1(a) = y(a).
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Proof. Let z1(t) = y(t), z2(t) = ż1(t), ż2(t) = −f(t)z2(t) − g(t)z1(t).

Let z(t) =

[
z1(t)
z2(t)

]
, A(t) =

[
0 −1
g(t) f(t)

]
, H(t) =

[
0
h(t)

]
, then equation(3.1.22)

transfer into
ż(t) + A(t)z(t) +H(t) = 0 (3.1.26)

for all t ∈ I. By hypotheses ,since |f(t)| + |g(t)| ≥ N , then
∥A(t)∥ = 1 + |f(t)| + |g(t)| ≥ N and by relation (3.1.23) we obtain
t∫
a

∥A(t)∥ψ(t1)dt1 ≤ Pψ(t).

Now, let a function y satisfy the relation (3.1.24), since

z(t) =

[
z1(t)
z2(t)

]
=

[
y(t)
ẏ(t)

]
and

ż(t) + A(t)z(t) +H(t) =

[
ẏ(t)
ÿ(t)

]
+

[
0 −1
g(t) f(t)

] [
y(t)
ẏ(t)

]
+

[
0
h(t)

]
=

[
ẏ(t) − ẏ(t)

ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t)

]
Therefore,
∥ż(t) + A(t)z(t) +H(t)∥ = |ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t)| ≤ ψ(t). Hence, by

Theorem (3.1.6), there exists solution such s(t) =

[
s1(t)
s2(t)

]
of equation (3.1.26)

and s(a) = z(a) such that ∥z(t) − s(t)∥ ≤ P
N(1−P )

ψ(t) for all t ∈ I.

Therefore, there exists s1(t) satisfying equation (3.1.22) and s1(a) = y(a) such
that
|y(t) − s1(t)| ≤ P

N(1−P )
ψ(t) for all t ∈ I. �

In the same manner and by Theorem (3.1.7) we can prove the Hyers-Ulam-Rassias
stability for the equation (3.1.22) on the interval J = (b, a], where −∞ ≤ b < a <
∞.

Theorem 3.1.11. [26] Let f, g, h : J → R be continuous functions and let for a

positive constant 0 < N < 1,

|f(t)| + |g(t)| ≥ N for all t ∈ J . Assume that ψ : J → [o,∞) is an integrable

function with property that there exists P ∈ (0, 1) such that

a∫
t

(1 + |f(t1)| + |g(t1)|)ψ(t1)dt1 ≤ Pψ(t) (3.1.27)

for all t ∈ J . If a function y ∈ C2(J,R) verifies the relation

|ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t)| ≤ ψ(t) (3.1.28)
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for all t ∈ J . then there exists a unique solution s1 : J → R of equation (3.1.22),

which verifies the following relation

|y(t) − s1(t)| ≤
P

N(1 − P )
ψ(t) (3.1.29)

for all t ∈ J , and s1(a) = y(a).
Now in the same manner Corollary (3.1.8) and by Theorems (3.1.10) and (3.1.11),
we obtain the following Corollary

Corollary 3.1.12. [26] Let f, g, h : R → R be continuous functions and let for

a positive constant 0 < N < 1, |f(t)| + |g(t)| ≥ N for all t ∈ R. Assume that

ψ : R → [o,∞) is an integrable function with property that there exists P ∈ (0, 1)

such that ∣∣∣∣∣∣
t∫

0

(1 + |f(t1)| + |g(t1)|)ψ(t1)dt1

∣∣∣∣∣∣ ≤ Pψ(t) (3.1.30)

for all t in R. If a function y ∈ C2(R,R) verifies the relation

|ÿ(t) + f(t)ẏ(t) + g(t)y(t) + h(t)| ≤ ψ(t) (3.1.31)

for all t ∈ R, then there exists a unique solution s1 : R → R of equation (3.1.22),

which verifies the following relation

|y(t) − s1(t)| ≤
P

N(1 − P )
ψ(t) (3.1.32)

for all t ∈ R, and s1(0) = y(0).

Remark 3.1.13. [26] The results can be applied to all differential equations of
higher order by transferring it to system of first order.

3.2 Hyers-Ulam Stability of Nonlinear System of

Differential Equations

In 1961, the notion of practical stability was discussed in the monograph by Lasalle
and Lefschetz [17]. In which they point out that stability investigations may not as-
sure practical stability and vice versa. For example an aircraft may oscillate around
a mathematically unstable path, yet its performance may be acceptable. Motivated
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by this, Weiss and Infante introduced the concept of finite time stability[20]. There
are many studies about the relation between types of stability, Lyapunov stability
and practical stability (see [17],[31],[2]). With these results in mind, in this sec-
tion, we give a sufficient condition in order that the first order nonlinear system of
differential equations has Hyers-Ulam stability and Hyers-Ulam-Rassias stability.
In addition, we present the relation between practical stability and Hyers-Ulam
stability and also Hyers-Ulam-Rassias stability.

3.2.1 Preliminaries and Auxiliary Results

Let (B, ∥.∥) be a Banach space (real or complex), and let J = [t0, t0 + T ) for some
T > 0, t0 ≥ 0. We consider two systems: a system

ẋ = f(t, x) ,∀t ∈ J, (3.2.1)

where f is defined and continuous on J ×B. The equilibrium state is at the origin
: f(t, 0) = 0, ∀t ∈ J.
A system that depends on parameter ϵ ∈ (0, ϵ0],(ϵ0 ∈ (0,∞)) which is said to be
perturbed system

ẋ = f(t, x) + p(t, x). (3.2.2)

Let P be the set of all perturbations p satisfying ∥p(t, x)∥ = ϵ ≤ ϵ0 for all t ∈ J
and all x, let Q be a closed and bounded set of B containing the origin and let Q0

be a subset of Q .

Definition 3.2.1. Practical stability[17]

Let x∗(t, x0, t0) be the solution of (3.2.2) satisfying x∗(t0, x0, t0) = x0 . If for each

p ∈ P ,i.e. ϵ ∈ (0, ϵ0], x0 in Q0 and each t0 ≥ 0 , x∗(t, x0, t0) in Q for all t ∈ J ,

then the origin is said to be (Q0, Q, ϵ0)-practically stable .

The slutions which start initially in Q0 remain thereafter in Q .

Definition 3.2.2. [39],[41] Let ϵ be a positive real number. We consider the system

(3.2.1) with following differential inequality

∥ẏ(t) − f(t, y(t))∥ ≤ ϵ , ∀t ∈ J. (3.2.3)

The equation (3.2.1) is generalized Hyers-Ulam stability (GHUs) if for each ϵ ∈
(0, ϵ0] and for each solution y(t, t0, x0) ∈ C1(J,B) of (3.2.3) there exists a solution

x ∈ C1(J,B) of (3.2.1) with

|y(t) − x(t)| ≤ K(ϵ),
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where K(ϵ) is an expression of ϵ with lim
ε→0

K(ε) = 0 .

Definition 3.2.3. [7],[44]

We consider the system (3.2.1) with following differential inequality

∥ẏ(t) − f(t, y(t))∥ ≤ φ(t) ∀t ∈ J, (3.2.4)

where φ : J → [0,∞) is a continuous function. The equation (3.2.1) is generalized

Hyers-Ulam-Rassias stability (GHURs) with respect to φ if there exists K > 0

such that for each solution y(t, t0, x0) ∈ C1(J,B) of (3.2.4) there exists a solution

x ∈ C1(J,B) of (3.2.1) with

|y(t) − x(t)| ≤ Kφ(t),∀t ∈ J

Definition 3.2.4. [31] We say that V : J × B → R is a Lyapunov function if

V (t, x) is continuous in (t, x), bounded on bounded subset of B.

3.2.2 Hyers-Ulam Stability of System of Differential Equations

Lemma 3.2.5. [27] Consider the following differential equation

ẋ = f(t, x(t)) , t ∈ J (3.2.5)

with initial condition

x0 = x(t0) ∈ Q0, (3.2.6)

where f is defined and continuous on J ×B, and equilibrium state is at the origin:

f(t, 0) = 0 , ∀t ∈ J. The system (3.2.5),(3.2.6) to be (Q0, Q, ϵ0)-practically stable

it is sufficient that there exists a continuous non increasing on the system (3.2.5)

solutions Lyapunov function V (t, x) such that

{x ∈ B : V (t, x) ≤ 1} ⊆ Q , t ∈ J (3.2.7)

Q0 ⊆ {x ∈ B : V (t0, x) ≤ 1} (3.2.8)

Proof. We will prove by contradiction. Suppose that conditions (3.2.7) ,(3.2.8)
are satisfied but there are τ ∈ J and x0 ∈ Q0 such that the solution x(t) =
x(t, x0, t0) of (3.2.5) leaves the set Q. From (3.2.7) follows inequality
V (τ, x(τ)) > 1which contradicts the condition (3.2.8). Therefore our assumption
is false and the equilibrium of system (3.2.5),(3.2.6) is (Q0, Q, ϵ0)-practically stable
. �
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Theorem 3.2.6. [27] Consider two systems: the system of differential equation

(3.2.5), (3.2.6) and the system (3.2.2) . If equilibrium of (3.2.5) (at the origin) is

(Q0, Q, ϵ0)-practically stable then the system (3.2.5), (3.2.6) is generalized Hyers-

Ulam stability.

Proof. Since Q is closed and bounded set then there exists real number M > 0
such that Q = {x : ∥x∥ ≤M}.
Now, let x∗ = f(t, x0, t0) satisfying (3.2.3) for arbitrary ϵ ∈ (0, ϵ0], then x∗ satisfies
(3.2.2). Since the equilibrium of (3.2.5) is (Q0, Q, ϵ0)-practically stable then x∗ in
Q, that means that ∥x∗∥ ≤ M. Since M > 0 , ϵ > 0 then there exists s > 0 such
that M = sϵ .
Hence, ∥x∗∥ ≤ sϵ for all t ∈ J ,lim

ε→0
K(ε) = lim

ε→0
sε = 0 . Obviously ,w(t) = 0

satisfies the equation (3.2.5) and

∥x∗(t) − w(t)∥ ≤ sϵ , ∀t ∈ J.

Hence, the equation (3.2.5) with initial condition (3.2.6) has generalized Hyers-
Ulam stability. �

Corollary 3.2.7. [27] For the system (3.2.5), (3.2.6) to be generalized Hyers-

Ulam stability it sufficient that there exists a continuous non increasing on the

system (3.2.5) solutions Lyapunov function V (t, x) such that satisfies the condi-

tions (3.2.7) and (3.2.8).

Proof. Suppose that conditions (3.2.7), (3.2.8) are satisfied, then by lemma 3.2.5
the system (3.2.5),(3.2.6) is (Q0, Q, ϵ0)-practically stable. Hence, by theorem 3.2.6
the system has generalized Hyers-Ulam stability. �

Theorem 3.2.8. [27] Consider the following differential equation

ẋ = f(t, x(t)) , t ∈ J (3.2.9)

with initial condition

x0 = x(t0) ∈ Q0, (3.2.10)

where f is defined and continuous on J ×B, and equilibrium state is at the origin

:f(t, 0) = 0 ,∀t ∈ J.

If equilibrium is (Q0, Q, ϵ0)-practically stable and there exists ϵ1 > 0 such that

ϵ1 ≤ φ(t) ≤ ϵ ∀t ∈ J then the system (3.2.9), (3.2.10) is GHURs with respect to φ.
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Proof. Since Q is closed and bounded set then there exists real number M > 0
such that Q = {x : ∥x∥ ≤M}.
Now, let x∗ = f(t, x0, t0) satisfying (3.2.9), since φ(t) ≤ ϵ then x∗ satisfies (3.2.2).
Since the equilibrium of (3.2.9) is (Q0, Q, ϵ0)-practically stable then x∗ in Q, that
mean that ∥x∗∥ ≤ M . Since M > 0, ϵ1 > 0 then there exists K > 0 such that
M = Kϵ1 .
Then, ∥x∗∥ ≤ Kϵ1 for all t ∈ J ,hence ∥x∗∥ ≤ Kφ(t) for all t ∈ J . Obviously,
w(t) = 0 satisfies the equation (3.2.9) and

∥x∗(t) − w(t)∥ ≤ Kφ(t) , ∀t ∈ J.

Hence, the equation (3.2.9) with initial condition (3.2.10) has generalized Hyers-
Ulam-Rassias stability. �

Corollary 3.2.9. [27] For the system (3.2.9), (3.2.10) to be generalized Hyers-

Ulam stability it sufficient that there exsist a continuous nonincreasing on the sys-

tem (3.2.9) solutions Lyapunov function V (t, x) such that satisfies the conditions

(3.2.7) and (3.2.8).

Proof. Suppose that conditions (3.2.7), (3.2.8) are satisfied, then by lemma 3.2.5
the system (3.2.9), (3.2.10) is (Q0, Q, ϵ0)-practically stable. Hence, by theorem
3.2.8 the system has generalized Hyers-Ulam-Rassias stability. �

Theorem 3.2.10. [27] Let (B, ∥.∥) be a Banach space (real or complex), and let

J = [t0, t0 + T ) for some T > 0, t0 ≥ 0. Consider two systems : a system

ẋ = f(t, x) ,∀t ∈ J, (3.2.11)

with initial condition

x(t0) = 0 ∈ Q0, (3.2.12)

for a set Q0, where f is defined, continuous on J × B and satisfies Lipschitz con-

dition. The equilibrium state is at the origin : f(t, 0) = 0,∀t ∈ J.

A system that depends on parameter ϵ ∈ (0, ϵ0], (ϵ0 ∈ (0,∞)) which is said to be

perturbed system

ẋ = f(t, x) + p(t, x). (3.2.13)

Let P be the set of all perturbations p satisfying ∥p(t, x)∥ = ϵ ≤ ϵ0 for all t ∈ J

and all x .
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If the system of differential equation (3.2.11), (3.2.12) has Hyers-Ulam stability

with Hyers-Ulam constant K then the origin is (Q0, Q, ϵ0)-practically stable, where

Q = {x : ∥x∥ ≤ Kϵ0}, contains the origin.

Proof. Let ϵ > 0,ϵ ∈ (0, ϵ0] and let x∗ = f(t, x0, t0), x0 ∈ Q0 be a so-

lution of (3.2.13), i.e.
∥∥∥ .

x∗−f(t, x∗)
∥∥∥ ≤ ϵ. Since the system (3.2.11), (3.2.12)

has Hyers-Ulam stability with constant K > 0 then there exists y a solution

of (3.2.11), (3.2.12) with
∥∥∥x∗ −y∥∥∥ ≤ Kϵ. By uniqueness of solution then y=0.

Hence
∥∥∥x∗∥∥∥ ≤ Kϵ ≤ Kϵ0. Thus the equilibrium of (3.2.11), (3.2.12) is (Q0, Q, ϵ0)-

practically stable. �

Remark 3.2.11. [20] In case Q0 ⊂ Q then we have expansive stability. If Q ⊂ Q0

then we have contractive stability.

Remark 3.2.12. If we have a differential equation of n-order in a Banach space B1

then we reduce it to a differential equation of first order in Banach space B = Bn
1 .
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italni repozitorijum Univerziteta u Beogradu unese moju doktorsku

disertaciju pod naslovom:

”HYERS-ULAM STABILITY OF THE SOLUTIONS OF

DIFFERENTIAL EQUATIONS”

koja je moje autorsko delo.

Disertaciju sa svim prilozima predao sam u elektronskom formatu

pogodnom za trajno arhiviranje.

Moju doktorsku disertaciju pohranjenu u Digitalni repozitorijum Uni-

verziteta u Beogradu mogu da koriste svi koji poštuju odredbe sadržane

u odabranom tipu licence Kreativne zajednice (Creative Commons)

za koju sam se odlučio.
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i javno saopštavanje dela, bez promena, preoblikovanja ili upotrebe

dela u svom delu, ako se navede ime autora na način odredjen od
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