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Abstract, A:

Metamaterials are artificial media composed of subwavelength unit cells,
specifically engineered to exhibit unusual properties in relation to wave
propagation, generally not found in nature. Most research in this area has
been dedicated to electromagnetic metamaterials, In this thesis we present
results in a new multidisciplinary field of metamaterials in acoustics and
realization of non-conventional wave propagation applying novel
metamaterial unit cells. The scientific contribution of this dissertation
comprises three new types of wave propagation modes and their control with
newly designed metamaterial unit cells. In the thesis, a novel class of
compressibility-near-zero (CNZ) acoustic propagation, achieved by using
Helmholtz resonators, is theoretically analyzed and experimentally
demonstrated. A closed analytical formula for the effective compressibility of
the proposed unit cell is presented, and the existence of two frequencies
which may support CNZ propagation is shown. Furthermore, a new unit cell
with effective mass density with Lorentzian type behavior is proposed, a
closed analytical formula for its effective mass density is found, and the
evanescent, left-handed propagation and density-near-zero acoustic wave
propagation are demonstrated. In the end it is demonstrated for the first time
that a surface acoustic wave propagating at the boundary between a fluid
and a hard grooved surface can be efficiently controlled by varying only the
temperature of the fluid, while the geometry of the grooved surface remains
unchanged. This opens up a way for a number of new applications, all easily
tunable by external means. Following theoretical considerations, we
demonstrate temperature-controlled sound trapping and its applications in
acoustic spectral analysis and temperature sensing. We also present a
temperature-controlled gradient refractive index (GRIN) acoustic medium and
apply it to achieve temperature-controlled acoustic focusing.
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PROSIRENI IZVOD NA SRPSKOM JEZIKU

NOVE STRUKTURE METAMATERIJALA ZA NEKONVENCIONALNO PROSTIRANJE
AKUSTICKIH TALASA



Uvod

U ovoj disertaciji prezentovani su rezultati u novom multidisciplinarnom polju metamaterijala u
akustici i realizacija novog nekonvencionalnog prostiranja talasa primenom jedini¢nih Ccelija
metamaterijala. U poslednjih nekoliko godina svedoci smo izuzetno brzog razvoja u oblasti
metamaterijala, vesStackih struktura koje pokazuju osobine kakve se ne mogu na¢i u prirodi.
Metamaterijali se projektuju koris¢enjem jedinicnih Celija ¢ije su dimenzije mnogo manje od talasne
duzine talasa koji se prostire kroz posmatrani medijum. U zavisnosti od geometrije jedini¢ne celije
mogu se posti¢i proizvoljno niske, visoke ili ¢ak negativne vrednosti dielektrine permitivnosti i
magnetne permeabilnosti. Sli¢an razvoj se moze primetiti i kod akustickih stuktura, postoje tzv.

akusticki metamaterijali.

Akusti¢ki metamaterijali

Akusticki metamaterijali su zasnovani na periodicnom ponavljanju jedini¢ne celije koja je mnogo
manja od primenjene talasne duzine, prema sli¢nom principu kao u elektromagnetici. Na taj nacin
mozemo modifikovati efektivne parametre u posmatranoj homogenoj strukturi. Pri prostiranju
akustickih talasa kroz akusticke metamaterijale opazaju se slicni efekti kao kod elektromagnetnih
talasa i metamaterijala. U zavisnosti od jedini¢ne celije akustiCkog metamaterijala, stiSljivost i gustina
metamaterijala mogu se napraviti proizvoljno mali, veliki ili ¢ak negativni. Dve konstante koje
opisuju ponasanje akusti¢kih talasa u sredini su gustina materiajala (p) i stisljivost materijala (f).
Postoji mogucnost pravljenja struktura tako da efektivna vrednost navedenih parametara bude
negativna u nekom odredenom opsegu ucestanosti. Ako je samo jedan od dva parametra, p ili f, manji
od nule, metamaterijal se u datom opsegu ucéestanosti naziva jednostruko negativan metamaterijal. U
ovom slucaju nije moguce prostiranje akustickog talasa u posmatranom opsegu ucestanosti. U slucaju
kada su oba parametara (p i ) manja od nule u nekom opsegu ucestanosti, imamo dvostruko
negativan metamaterijal. U opsegu uCestanosti gde je metamaterijal dvostruko negativan (LH) postoji
mogucnost prostiranja akusti¢kog talasa, konstanta prostiranja u ovom slucaju je realna, ali ima
negativnu vrednost. Negativne vrednosti p mogu se dobiti pomocu niza tankih membrana, a negativne
vrednosti za sti§ljivost (f) dobijaju se pomocu niza Helmholcovih rezonatora ili pomoc¢u niza malih
otvora na cevi kroz koju se prostire akusticki talas. Near-zero metamaterijali ¢ine posebnu klasu. Kod
ove vrste metamateriajala jedan od efektivnih parametara materijala je blizu ili jednak nuli.
Interesantna stvar kod ovih fenomena jeste da fazna brzina talasa u near-zero sredini teZi
beskona¢nosti i zbog toga dobijamo dodatni efekat tuneliranja talasa bez promene faze. Na near-zero
ucestanosti fazna brzina akusti¢kog talasa je beskonacna i zato je faza na pocetku i kraju kanala ista i

ne zavisi ni od duzine ni od oblika kanala.

Analiza akusti¢kih kola

Disertacija obuhvata analizu, CAD (engl. computer-aided design) projektovanje, simulaciju i

optimizaciju novih metamaterijalnih struktura, kao i fabrikaciju i merenje karakteristika fabrikovanih



kola i analizu rezultata merenja. Racunarsko projektovanje akustickih metamaterijala je izvrSeno
pomocu softverskih paketa za multifizicke simulacije Comsol Multiphysics 4.0. COMSOL je program
zasnovan na metodi konacnih elemenata (FEM). Za dodatnu numeri¢ku analizu akustickog kola
napravljen je model baziran na teoriji kola i teoriji vodova. Razvijena je nova metoda za odredivanje
S-matrica dvopristupnog akustickog kola. Metoda je zasnovana na merenju sa cetiri mikrofona.
Pomoc¢u dva mikrofona na jednom, i dodatna dva mikrofona na drugom pristupu, moze se razdvojiti
upadna i reflektovana komponenta ravanskog zvu¢nog talasa. Razvijen merni sistem se sastoji jo§ od
jednog Cetvorokanalnog digitalnog osciloskopa i izvora, a sve je povezanao sa racunarom koji sluzi za
kontrolu procesa i obradu signala. Mikrofoni nisu proizvoljno smesteni u kolo, ve¢ svi imaju

odredeno mesto. Na slici 1. se vidi raspored Ma, Mg, Mc i Mp mikrofona:

— : —> 4tjyd| —>
+ + +€ +
ZO pl : pX ZX, px : p2 ZO
Ma Ms «— | <« «— | <« Me Mo
+yd
pi ) ope e’V py.
L L
Ax Ax d Ax Ax

Slika 1. Model za ekstrakciju akusticke S-matrice

Medusobno rastojanje izmedu dva mikrofona na istoj strani kola je konstantno i iznosi 4x=50 mm, a
rastojanje izmedu kola 1 blizeg mikrofona je takode konstantno: 4x=50 mm. Sa Cetiri mikrofona koji
su vezani sa digitalnim osciloskopom snimamo sva Cetiri signala u istom trenutku. 1z osciloskopa sve
signale snimamo na racunar za dalju obradu. Ovaj postupak ponavljamo za ceo opseg ucestanosti sa
zeljenim koracima u kojima Zelimo ispitivati naSe kolo. Softverska obrada signala sastoji se od
filtriranje visokofrekvencijskog Suma i nezeljenih komponenti signala, odredivanja amplitude i faze
svakog signala, razdvajanja upadne i reflektovane komponente talasa i na kraju odredivanja akusticke
S-matrice. Za karakterizaciju akustickih metamaterijala neophodno je ekstrahovati efektivne
parametre - stiSljivost (Berr) i gutinu (perr) Metamaterijala. Akusticka talasna impedansa z i akusticki
indeks prelamanja n se mogu izra¢unati direktno iz S-matrice, a pomoc¢u njih i efektivni parametri
metamaterijala. Matlab kod za odredivanje akusticke S-matrice i za ekstrakciju parametara su dati u
pilogu (Al, A2).

Near-zero prostiranje talasa: sti§ljivost near-zero metamaterijali

Near-zero metamaterijali su specijalna podklasa metamaterijala sa beskona¢nom faznom brzinom.
Ova vrsta prostiranja u akustici pokazana je za slucaj kada je gustina blizu nule. U disertaciji je
pokazana nova klasa prostiranje akustickih talasa gde je stisljivost blizu nule tzv. CNZ (eng.
compressibility-near-zero) akusticko prostiranje. Ova vrsta prostiranja je postignuta Helmholcovim

rezonatorom. Helmholc resonantor je struktura koja se sastoji iz dva dela, uske cevi i komore, kao $to



je prkazano na Slici 2. Dimenzije rezonatora su manje od talasne duZine i moze Se posmatrati kao

jedini¢na ¢elija sa efektivnom stisljivoscu.
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/

Slika 2. Poprecni presek Helmholc rezonatora vezan sa akustickom cevi

Jedini¢na ¢elija je detaljno analizirana i izveden je izraz za efektivnu stisljivost Halmholcovog
rezonatora. U slucaju prostoperiodi¢ne pobude efektivna stiSljivost Helmholc rezonatora zavisi od

ucesatanosti | moze se zapisati u obliku:

Bett = Bo (1 + 57h " Sh - wz)- (1)

vy e
Iz izraza se moze zakljuciti da je jedinicna celija pogodna za near-zero propagaciju na odredenoj
ucestanosti. U Comsol-u dizajniran je i simuliran Helmholc rezonator ispunjen vazduhom sa
dimenzijama S= 206 mm?, S,= 7 mm?, c= 343.12 m/s (T= 293.15 K), = 7.04 Pa™, I= 32 mm, I,=
28 mm, V= 567 mm°. Rezultati simulacije, akusti¢ki S-parametri i ekstrahovane efektivne stigljivosti

su prikazani na Slici 3. Na Slici 3 prikazan je i Helmholc rezonator sa ekvivlentnim akustickim

elementima.
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Slika 3 Prenosna karakteristika i ekstrahovana stisljivost Helmholc rezonatora (u prilogu je prikazan Helmholc

rezonator sa akustickim komponentama).



Odziv rezonatora je nepropusan u opsegu gde je stiSljivost manja od nule. U ovom delu, struktura se
ponasa kao jednostruko negativan medijum u kojem nije dozvoljena propagacija akustic¢kih talasa. Na
Slici 4 je prikazana ekstrahovana efektivna stisljivost Helmhoc rezonatora uporedena sa efektivnom

stisljivos¢u koja je dobijena analitickim putem.
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Slika 4 Ekstrahovaan efektivna stisljivost Helmholc rezonatora uporedena sa efektivnom stisljivosti dobijene iz

analiticke formula

Ekstrahovana efektivna stiSljivost i efektivna stiSljivost iz analitickog izraza pokazuju dobro
poklapanje. Kao §to je pokazano, jedini¢na celija je nepropousna u delu spektra gde je efektivna
stisljivost negativna, dok je u ostalim delovima spektra propusna. Kako bismo pokazali near-zero
propagaciju potrebno je koristiti host strukturu gde izmedu dva pristupa imamo veliku
neprilagodenost impedansi. U slucaju kada impedanse nisu prilagodene, struktura je nepropusna, a
dok su u slucaju near-zero propagacije pristupi uvek prilagodeni nezavisno od strukture kola. Zato
smo za prikazivanje near-zero propagacije kao host strukturu kostistili niskopropusni filtar. Na Slici 5

je prikazana host struktura optere¢ena Helmholc rezonatorima.

Slika 5. Stisljivost near-zero (CNZ) metamaterjial

Rezultati simulacije su prikazani na Slici 6 uporedo sa odzivom niskoporpushog filtra bez

helmholcovog rezonatora. Iz odziva se moze zakljuciti da se u nepropusnom opsegu niskoporpusnog



filtra pojavljuje jedan uski propusni opseg tacno na ucestanosti na kojoj je efektivna stisljivost

jedinice Celije jednaka nuli.
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Slika 6 Odziv niskopropusnih filtara i CNZ struktura

Kako bismo dokazali da novi propusni opseg stvarno ima near-zero karakteristike ekstrahovana je
faza po duzini strukture. Kod near-zero prostiranja oc¢ekivano je da je fazna razlika izmedu dva kraja
strukture blizu nule, zato §to je fazna brzina beskonacno velika. Distribucija faze po duzinu CNZ
metamaterijala je prikazan na Slici 7 uporedo sa faznom brzinom u obi¢noj akusti¢koj cevi po istoj
duzini.
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Slika 7. Fazna distribucija po duzini strukture na near-zero ucestanosti
U slucaju akusticke cevi iste dimenzije kao CNZ sruktura ukupni fazni pomeraj je 80°, a u slucaju

CNZ stuktura na near-zero ucestanosti redukovan je na 5.7°. Za eksperimentalnu verifikaciju



teorijskih i numerickih rezultata near-zero metamaterijala fabrikovana je struktura sa slike 5.
Fabrikovana struktura je prikazana na Slici 8.

Slika 8 Fabricated CNZ structure

Merenje akustickih S-parametara izvrSeno je na osnovu metode razvijene u toku istraZivanja.

Laboratorijski merni set za odredivanje akustickih S-parametra prikazan je na Slici 9.

CNZ structure

Slika 9 Laboratorijski merni sistem za odrdivanje akustickih S-parametara

Na Slici 10 su prikazana izmerena prenosna funkcija od tri seta merenja u frekventnom opsegu od 600
Hz do 920 Hz.
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Slika 10 Izmerena prenosna karakteristika CNZ strukture

Vi



Izmedu razli¢itih setova merenja postoji dobra saglasnost sa blagim varijacijama rezonantnog vrha.
Ova mala promena je rezultat varijacija spoljnih parametara, kao §to je sobna temperatura. Gubici u
izmerenim vrednostima na near-zero ucestanosti su relativno veliki, $to je posledica efekta uske cevi u
uskom delu Helmholcog rezonatora. Na Slici 11 su prikazani rezultati merenja uporedeni sa
rezultatima simulacije sa svim gubicima. Rezultati simulacija i merenja se poklapaju, §to potvrduje

nasa teorijska predvidanja.

Transmission coefficient (dB)
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Slika 11 Rezultati merenja uporedeni sa rezultatima simulacije
Nova rezonantna jedini¢na ¢elija sa negativnom gustinom

Kod elektromagnetnih metamaterijala postoje strukture koje daju negativnu permitivnost ili
magnetsku permeabilnost po Lorencovom modelu. Ove dve komponente su split-ring rezonator
(SRR) koji daje negativno u i komplementarni split-ring rezonator (CSRR), koji daje negativno ¢. U
akustici dosada je postojao samo jedan element koji daje negativan efektivni parameter po
Lorencovom modelu, a to je Helmholcov rezonator, koji daje negativnu stisljivost, a nije postojala
jedini¢na celija koja proizvodi negativnu gustinu po istom principu. U disertaciji predloZena je nova
jedini¢na celija sa efektivnom masenom gustinom Lorencovog tipa, tzv. aSRR (akusticki split-ring
rezonator). Predlozena jedini¢na celija sa akustickim ekvivalentnim elementima i popre¢ni presek su

prikazani na Slici 12.

Slika 12 Nova jedinicna celija (akusticki split ring resonator- aSRR)

vii



Nova jedini¢na celija sastoji se od membrane koja je postavljena u koaksijalnu cev. Izvedena je

analiticka formula za efektivnu gustinu aSRR u slu¢aju prostoperiodi¢ne pobude, koja glasi:

_a
- A, + 4
8TT
dt? Po (p,_a)zAid)

Na slici 13 su prikazane ekstrahovana efektivna gustina akustickog split ring rezonatora uporedena sa
efektivnom gustinom dobijanom iz analitickog izraza (2). U oba slucaja koriS¢ene su sledece

dimenzije: M =88pug, d =32mm, R =81mm, r=3mm, 7 =5N/m.
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Slika 13 Ekstrahovana efektivha gustina aSRR-a uporedena sa efektivnom gustinom dobijenom iz analiticke
formule

Sa Slike 13 se vidi da efektivna gustina ima Lorencov oblik i da jedini¢na ¢elija ima negativnu

gustinu u uskom opsegu ucestanosti. Prenosna karakteristika strukture je prikazana na Slici 14.
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Slika 14 Prenosna karakteristika aSRR-a

viii



Struktura ima nepropusni karakter, pri ¢emu je nepropusni opseg ta¢no na ucestanosti na kojoj je
efektivna gustina manja od nule. Nova jedini¢na celija (aSRR) moze se koristiti za realizaciju
dvostruko negativnih akustickih metamaterijala. Kombinacijom aSRRa sa jedini¢nom c¢elijom koja
prozvodi negativnu sti§ljivost moze se realizovati u sredini u kojoj se akusticki talas prostire sa
negativnim talasnim brojem. Na Slici 15 prikazan je novi dvostruko negativan metamaterijal sa

aSRRom i otovorima na strani akustickog voda koji daju negativnu efektivnu stisljivost.

Slika 15 Dvostruko negativan metamaterijal realizovan sa aSRR-om

Dimenzije otvora na strani akustickog voda su izabrane tako da struktura ima negativnu efektivnu
stisljivost u istom opsegu ucestanosti u kojem aSRR proizvoidi negativnu gustinu. Dimenzije otvora
su b=5 mm, h= 4895 mm, L=34 mm. Ekstrahovani parametri dvostruko negativnhog

metamaterijala, efektivna stiSljivost, gustina kao i talasni broj u medijumu su prikazani na Slici 16.
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Slika 16 Ekstrahovani efektivni parametri i talasni broj dvostruko negativnog metamaterijala
U frekvencijskom opsegu gde su oba parametara metamaterijala manja od nule, talasni broj
metamaterijala je takode manji od nule, $to je dokaz da je sredina dvostruko negativna. Na Slici 17 je
prikazan odziv strukture koja ima propusni opseg u opsegu ucestanosti u kojem imamo dvostruko

negativan metamaterijal.
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Slika 17 Odziv dvostruko negativnog metamaterijala
Temperaturna kontrola akusti¢kih povrsinskih talasa

Na kraju, po prvi put je pokazano da se povrSinski akusticki talas koji se prostire na granici izmedu
fluida i ¢vrste izbrazdane povrSine moze efikasno kontrolisati samo promenom temperature, dok
geometrija izbrazdane povrsi ostaje nepromenjena. Ovo otvara moguénosti za brojne nove primene,
koje se lako podesavaju eksterno. Prate¢i izloZenu teoriju, demostrirali smo zaustavljanje zvuka
kontrolisano temperaturom i njegovu primenu u akustickoj spektralnoj analizi. Takode, prezentovali
smo akusti¢ki medijum sa temperaturom kontrolisanim gradijentom indeksa prelamanja i njegovu
primenu u temperaturno kontrolisanom akustickom fokusiranju. Tipi¢na izbrazdana povrSina sa
dimenzijama d, a i h, koje predstavljaju period, $irinu i dubinu brazde, redom, prikazana je na Slici
18.
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Slika 18 Cvrst material sa izbrazdenim povrsinom

U slucaju kada je perioda brazde mnogo manja od talasne duzine, medijum se moZe posmatrati kao
efektivna sredina i karakterisati efektivnim parameterima materijala. Temperaturnu zavisnost talasnog

broj na povrsinu u X pravcu mozemo zapisati kao:

1 a2 1
k,(T) =w “RT 1+ (d) tan? | hw “RT 3)



gde je R specifi¢na gasna konstanta, T je apsolutna temperatura, « je adiabadska konstanta i a, d, h su
geometrijski parametri izbrazdane povrsine. Disperziona karakteristika na razli¢itim temperaturama
za slucaj kada su geometrijski parametri proizvoljno izabrani i jednaki a =0.2 mm, d =1 mm, and

h =24 mm je prikazana na Slici 19.
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Slika 19 Disperzioni dijagram povrsinskog talasa na razlicitim temperaturama

Sa grafika se vidi da se temperaturom okoline moZe kontrolisati disperziona kriva, pa tako i
prostiranje. Na manjim ucestanostima sredina nije disperzivna i talasni broj na povrsini se poklapa sa
talasnim brojom u sredini, dok na viSim ucestanostima u zavisnoti od temperature i od geomaterijskih
parameter izbrazdane povrsine talasni broj brzo pocinje da raste i tezi do beskona¢nosti. Kako talasni
broj tezi beskonac¢nosti, talasna duzina i brzina prostiranja teze nuli, i viSe nije dozvoljeno prostiranje
talasa na povrsini. Na Slici 20 je prikazana promena talasnog broja u zavisnosti od temperature kada

je ucestanost prostiranja konstantna.
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Slika 20 Talasni broj u funkciji temperature
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Pri konstantnoj ucestanosti u zavisnosti od temperature talasni broj tezi beskonacnosti. Vrednost
temperatura za koju talasni broj asimtotski dostigne beskonacnost naziva se kriti€na temperatura i

moze izra¢unati pomocu sledeée formule:
. 16h%f?
¢ KR '

gde je f operativna ucestanost, h je dubina kanala, R je specifi¢na gasna konstanta gasa u okolini, a

(4)

je adiabadska konstanta. Ova vrednost je teorijska i moze se posti¢i ako je perioda beskonacno mala,
zato $to smanjenjem talasne duzine efektivna sredina i perioda neée biti manje od talasne duzine. Na
Slici 21 prikazan je intenzitet zvuka u zavisnosti od temperature, u sluc¢aju kada je perioda strukture

promenljiva, a disperzija ista (a/d=konst.).

fm
o o o
~l o] © =

o
o))

a
T

'S
:

Normalized Sound intensity [W,
N

© o ©o o o
w

N
T

%0 265 270 275 280 285 290 295
Temperature [K]

Slika 21 Normalizovan intenzitet zvuka u zavisnosti od temperature sa razlicitim periodima brazde

Vidi se da smanjenjem periode, tacka gde je talas zaustavljen (intenzitet zvuka maksimalan)
konvergira do kriti¢ne temperature. Tacka gde je talas zaustavljen je tacno tamo gde se struktura vise
ne moze posmatrati kao efektivna sredina i to ta¢no gde je talasni broj k, < m/2d. Primenom
linearno promenljive temperature sa razliitim gradijentom po duZzini strukture talas se moze
zaustaviti na razli¢itim mestima po duzini, a tacka zaustavljanja je uvek tamo gde je temperatura

jednaka kriti¢noj temperaturi. To je prikazano na Slici 22.

Xii



1280

1240

Temperature [K]

200

100 200 300 400 500
Length [mm]

Slika 22 Zaustavljanje zvuka na razlicitim mestima pomocu razlicite temperaturne raspodele

Kao sto se vidi iz izraza (4) kriti¢na temperatura zavisi i od radne ucestanosti, pa se u slucaju da talas
nije prostoperiodi¢an, pomocu lineranog gradijenta temperature po duZzinu strukture moze razdvojiti

na svoje prostoperiodi¢ne komponente i koristiti kao analizator spektra, Slika 23.
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Slika 23 Razdvajanje slozenog talas na prostoperiodicne komponente pomocu linerane raspodele temperature

po duzinu strukture

Do sada temperaturne promene smo primenili samo u pravcu prostiranja akustickog povrsinskog
talasa, ali to nije jedina moguénost. Mogu se primeniti razli¢iti temperaturni profili normalno na
pravac prostiranja povrSinskih akustic¢kih talasa. Ovako dobijen medijum je medijum sa gradijentom
indeksa prelamanja (GRIN), kod kojih se indeks prelamanja menja po dimenzijama po
odgovarajuéem profilu. Kontrolisanjem temperature omoguc¢avamo da ovaj GRIN medijum bude

promenljiv, tj. istim dimenzijama stukture dobijamo razli¢ite funkcije sitema. Kori$¢ena su dva
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razliCita profila, profil za savijanje povrSinskih talasa pod definisanim uglom i socivo za fokusiranje

ravanskih talasa u jednu tacku. Za savijanje talasa koris¢en je profil:

-1
nx)=1 +nmLx, Q)
w

gde je w Sirina so€iva, a Ny je maksimalna vrednost indeksa prelamanja u GRIN medijumu. Ugao
savijanja je funkcija Sirine i debljina sociva i maksimalna vrednost indeksa prelamanja moze se

1zraCunati kao:

Mgy = %sin@ +1. (6)
Iz vrednosti indeksa prelamanja moze se izracunati odgovarajuca temperatura. U COMSOL modelu
GRIN medijum je podeljen na 50 malih kanala koji imaju iste dimenzije, a na svim kanalima razli¢ita

je tempreatura. Temperatura zavisi od Zeljene primene. Raspodela temperature i raspodela faze

akustickog pritiska u GRIN medijumu u slucaju savijanja (@=30°) prikazane su na Slici 24.
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Slika 24 Raspodela temperature u GRIN medijumu i raspodela akustickog pritiska na povrsinu

Na Slici 24 je prikazano kako se ravanski talas koji upada u GRIN medijum na izlazu savije pod
odgovaraju¢im uglom @. Koris¢en profil za fokusiranje talasa u jednu tacku je hiperbolik sekant

raspodele indeksa prelamanja koji je dat izrazom

n(x) = ny sech(ax) (7
gde je ng indeks prelamanja u centru soéiva, a o gradijent parametar. 1z vrednosti indeksa prelamanja
moze da se izraCuna odgovaraju¢a temperatura. Na Slici 25 je prikazana raspodela temperature u
slu¢aju kada je indeks prelamanja u centru so¢iva ng= 1.5, a sa strane n,,= 1. Na Slici 25 je prikazana

raspodela temperatura u GRIN medijumu i intenzitet akusti¢kog talasa na povrs$ini.
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Slika 25 Raspodela temperature u GRIN medijumu i intenzitet akustickog talasa na povrsini

Sa slike 25 vidi se da je intenzitet fokusiran u jednu tadku. Zizna daljina u ovom sluéaju je 4F= 360

mm, i moze se proizvoljno promeniti promenom temperature u GRIN medijumu.
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1. Introduction

The concept of metamaterials has opened a new perspective to looking at nature, and from this point
of view one can realize phenomena which were impossible before, such as hyperlenses which break a
diffraction limit or devices acting as cloaks of invisibility. At first metamaterials were used in
electromagnetics and in optics but today the field of application of this concept is much wider. Today
we encounter this term in a range of fields, from electromagnetics to acoustic and mechanics, and
lately even in thermal application. Acoustic metamaterials are artificially created structures that allow
the propagation of acoustic waves characterized with properties that are not found in nature. The
development of acoustic metamaterials has been based on the existing knowledge about
electromagnetic metamaterials and the analogies between acoustic, mechanical and electrical
guantities. This area has great potential for both scientific research and for specific applications. For
example, in recent years researchers have realized nonreciprocal acoustic devices such as acoustic
diodes or acoustic circulators or acoustic cloaking devices which make objects undetectable with
sound — all these devices are based on the metamaterial and effective medium concept. In this thesis
we explore the topic of acoustic metamaterials, their design, analysis and applications of different
types of non-conventional acoustic wave propagation in different artificial media comprised of
metamaterial unit cells.

The thesis consists of nine chapters including the introduction and the concluding chapter, and
can be separated into two sections. In the first section we realize and analyze different types of non-
conventional acoustic wave propagation in 1D metamaterial media. In the second section we describe
the propagation of acoustic surfaces on grooved surfaces and discuss ways to control it.

After the introduction, the second chapter gives a short overview of the theory of acoustic wave
propagation and also gives basic concepts related to electroacoustic analogies and the theory of
acoustic transmission lines.

The third chapter gives an overview of the proposed state-of-the-art metamaterial unit cells,
single negative and double negative acoustic metamaterials and their applications.

The fourth chapter describes developed methods and models during research into the behavior
of metamaterial unit cells in acoustic systems, including a method for the calculation of acoustic
scattering parameters and a method for the extraction of effective material parameters of metamaterial
unit cells. The principles of finite element method modeling of acoustic metamaterials in COMSOL
Multiphysics simulator and a mathematical model based on the transmission line theory are also
described in this chapter.

The fifth chapter describes a novel type of wave propagation, so called near zero propagation,
which is wave propagation without phase change along the structure. In this type of metamaterials the
main design criterion is that one of the two constitutive parameters (in the acoustic case density and

compressibility) has to be equal or close to zero. Here we analyze compressibility near-zero



propagation realized using Helmholtz resonators. Beside the theoretical analysis, we also present
numerical modeling results and an experimental verification of the structure, which is consistent with
the theoretical predictions.

The sixth chapter describes a new resonant type acoustic metamaterial unit cell with negative
density on a certain frequency range. The unit cell is analyzed theoretically and an expression for
frequency dependent effective density is derived. The theoretical analysis is verified through a range
of simulation models. In the end of the chapter possible applications of the new unit cell are given,
such as a double negative single or dual band acoustic bandpass filter design. A new approach to
obtain density near-zero propagation using the novel unit cell is also demonstrated.

Chapter seven, the opening chapter of the second section, gives the theory of acoustic wave
propagation on grooved hard surfaces as well as an overview of the proposed state-of-the-art
structures to control the wavenumber of the surface acoustic waves by changing geometrical
parameters of the grooves. Possible applications, such as sound wave collimation or spatial spectral
analysis, are also presented.

Chapter eight expands the opportunities for surface wave control on grooved surface. The
principle and the concept for surface wave control by changing the parameters of the surrounding
medium and without changing the geometrical parameters are also given. Temperature inequalities in
the host medium affect the surface acoustic wave propagation constant, which means that the surface
can be used as a temperature sensing element, or as a spatial acoustic spectrograph tunable by
modifying only the temperature gradient along the structure, rather than any geometrical change of the
structure. It is shown that by changing only the temperature distribution in the surrounding fluid
medium the direction of the wave propagation can be controlled. It is also shown that using different
temperature distribution profiles, the structure with constant geometrical parameters can be used to
realize tunable applications such as bending acoustic surface waves or their focusing with tunable
focal length.

The ninth chapter gives a general conclusion of the thesis, and is followed by Appendices.

The appendices Al to A6 give Matlab codes related to numerical modeling, the extraction of
effective parameters, calculation of scattering parameters as well as calculation of temperature
distributions in appropriate structures.

The concluding section offers an overview of the literature referenced in the thesis.



2. Acoustic wave propagation

Mechanical waves are oscillations of particles in a continuous medium. They may be transversal,
when the particle oscillation is in the direction perpendicular to the propagation direction, and
longitudinal, when oscillation is performed in the direction of wave propagation [1]. Acoustical waves
(sound waves) are longitudinal mechanical waves. Sound propagation exists in gaseous, liquid and in
solid areas, in vacuum there is no sound propagation because there are no particles [2-5]. Acoustics is
used in numbers of important applications, including electro-acoustic transducers such as
microphones and loudspeakers, surface-acoustic-wave (SAW) devices are used as radio-frequency
(RF) filters [6-7], acoustic-wave modulators diffract optical beams for real-time spectral analysis of
RF signals [8], while mechanical crystal oscillators currently control the timing of most computers
and clocks [9].

2.1 Acoustic wave equation

When a sound wave propagates, the particles of the medium undergo vibrations about their mean
positions. In some regions they may be pushed together, whereas in others they are pulled apart. Once
the wave has passed, the particles return to their original state. Consequently, the variations of both
pressure and velocity occur as functions of time and space. Sound pressure is defined as the difference
between the instantaneous pressure and the atmospheric static pressure. Pressure fluctuations that
create audible noise are extremely small when compared to atmospheric pressure. The velocity of
particle displacement is yet another important quantity characterizing a travelling sound wave.
Pressure waves propagate through air without appreciable heat transfer taking place, i.e. acoustic
processes are adiabatic. The wave equation in an ideal fluid can be derived from hydrodynamics. The
linearized equation for conservation of mass and linearized Euler’s equation (Newton’s second law)

are [1-5]:

dp
B 2.1
poV - v ot (2.1)
v
_ 2.2
Vp = —po 5t (2.2)

where p is acoustic pressure, ¥ is particle velocity, p, is the density of the environment (air) in which
the acoustic wave propagates and p is the density. Newton’s law (2.2) states that the pressure gradient
will induce mass acceleration, while conservation of mass (2.1) states that velocity divergence is
proportional to the negative time derivative of mass density. These two basic equations involve three
variables: p, v and p; we need the acoustic constitutive relation to reduce this set to two variables.
Most acoustic waves involve frequencies sufficiently high that the heating produced by wave
compression has no time to escape by conduction or radiation, and thus this heat energy returns to the
wave during the subsequent expansion without significant loss. Such adiabatic processes involve no

heat transfer across populations of particles. The resulting adiabatic acoustic constitutive relation



states that the fractional change in density equals the fractional change in pressure, divided by the

constant y, called the adiabatic exponent:
% _ Po
dp vP
where Py is the total pressure; that is, the acoustic pressure added to atmospheric pressure. After

(2.3)

combining Egs. (2.1) and (2.3) the mass conservation equation can be written in the form:

, dp
V-v=— % (2.4)
where g is the compressibility of the material, equal to the reciprocal value of the bulk modulus:
1 1
=5~ 5y (2.5)

From Egs. (2.2) and (2.4) the acoustic wave equation can be derived. The acoustic wave equation for
acoustic pressure is:
19?%p

VZ - _ - 2.6
P = 25¢2 (26)
The wave equation for a particle velocity has a same form and is given by:
10%v
25
These are the linear acoustic wave equations. Here:
P, 1
B (2..8)

Po \/ﬁ
is the speed of sound in air. The speed of sound is constant and independent from the frequency in
dispersionless case. Since the entire sound field varies as €', the operator &/t can be replaced by jo
(because the derivative of ' with respect to time is jwe'"), and the operator 6%/ét? can be replaced by
—w®. Eqs (2.2) and (2.4) can thus be written in the form:

Vp = —jwpv (2.9)
V-U=—jwfp (2.10)
By solving this system the Helmholtz equations for p and ¥ are obtained:
Vip+k?*p =0 (2.11)
V25 4 k25 = 0 (2.12)
From the above expressions the wave number for a medium is:
k= w/Bp (2.13)

In a lossy medium the wavenumber has a complex value, where the real part is the attenuation
coefficient and the imaginary part is the propagation constant in the medium. The phase velocity of

the acoustic wave can be calculated as a ratio between the frequency and the wavenumber:



w
=—= |— 2.14
vp = (2.14)

In a non-dispersive medium the acoustic phase velocity is equal to the speed of sound (2.8).
The solutions of the Helmholtz equation provide all solutions of the wave equation. Direction of the
acoustic wave propagation is the same as the direction of particle velocity. The intensity of the
acoustic wave is defined as the product of the sound pressure and the particle velocity:

[=pv (2.15)
2.1.1 Analogy between acoustic and electromagnetic waves

Differential equations (2.2) and (2.4) are roughly analogous to Maxwell’s Egs. (2.16) (Faraday’s law)
and (2.17) (Ampere’s law) [10-11], and can be combined:

. oH (2.16)
E:—— '
v “ o
VUxH=¢— (2.17)
at

With laws that are listed above we can establish the analogy between acoustic and electromagnetic
waves. Unlike electromagnetic waves, where the key fields are vectors transverse to the direction of
propagation, the velocity vector for acoustic waves is in the direction of propagation and the pressure
is a scalar. An analogy between electrical and acoustic quantities can be established when one of the
fields (electric or magnetic) has just one directional component. Special polarizations like TM or TE
propagation modes in waveguides fulfill this condition. Analogies between the corresponding acoustic
and electrical quantities in TE and TM propagation modes are given in Table 2.1 and Table 2.2
respectively.

TABLE 2.1 ANALOGY BETWEEN ACOUSTIC AND ELECTROMAGNETIC QUANTITIES (TE MODE)

Acoustic Electromagnetic Analogy

Acoustic pressure p

Electric field E,

p ok,

Particle velocity vy, vy

Magnetic field Hy, H,

—vy © Hyv), & Hy

Density py, py

Permeability s, 1,

Px © Hy,Py © [y

Compressibility g

Permittivity ¢,

Bee,

TABLE 2.2 ANALOGY BETWEEN ACOUSTIC AND ELECTROMAGNETIC QUANTITIES (TM MODE)

Acoustic

Electromagnetic

Analogy

Acoustic pressure p

Magnetic field H,

p < H,

Particle velocity v, v,

Electric field E,, E,

—vy © Ey vy, o Ey

Density py, py

Permittivity ¢, &

Px € Ey\Py © &

Compressibility g

Permeability x,

B e u,




The first set are the transverse magnetic (TM or p) modes, where only the field components E,,
E, and H, are nonzero, and the second set are the transverse electric (TE or s) modes, with only Hy, H,

and E, being nonzero.
2.2 Acoustic circuit elements

A close analogy can be established between the propagation of sound in pipes and chambers and
electrical circuits, which is a great aid in acoustical problems of many kinds, since all electrical circuit
theorems may be applied [13-15]. When the dimensions of the region in which the sound propagates
are much smaller than the wavelength, the flow is almost incompressible, and a lumped-parameter
model is appropriate. On the other hand, a long pipe is the acoustical analogue of an electrical
transmission line, specified with distributed parameters. The important acoustic variables will be
taken to be the acoustic pressure p, and the volume velocity (volumetric flow) Q. Q is a conserved
guantity, from the conservation of mass combined with the approximate constancy of the density. It
would be more rigorous to use the mass rate of flow, but the volume rate of flow is equivalent in these
problems. The product of p and Q has dimensions (N/m?)(m%/s) = watt, and is a power, just like the
product of voltage V and electrical current 1. For the electro-acoustic analogy, we can take p < 7 and
0O < I, which is a so-called impedance analogy. Another analogy between acoustic and electrical
parameters is a mobility analogy where O < V and p < I. Since the product of the voltage and
current is power, as well as acoustic pressure and volumetric flow, this is consistent. If p and Q are
phasor quantities, the ratio p/Q is analogous to the electrical impedance and it is called the acoustic
impedance Z,. Similarly to electrical impedance, acoustic impedance can be written in a general form

as:

1
Zo=Rg+j (wma 0 ) (2.18)
a

which defines acoustical resistance (R,) with unit [Nsm ], acoustic inductance (acoustic mass, m,)
with unit [kgm ] and acoustic capacitance (C,) with unit [m*s’kg™"]. Let us first consider a system of
passageways and volumes whose maximum dimensions are much smaller than the wavelength.
Lumped parameter results will be approximately valid if this dimension is taken to be less than A/4.

The essential assumption here is that the phase is approximately constant throughout the system.
2.2.1 Acoustic inductance

Let us consider the air in a section of a tube of length L and cross section area S (Fig. 2.1). Since all
guantities are in phase, it moves as a rigid body with displacement & under the action of an unbalanced

force (p;—p2)S=pS, the difference in the pressure on its ends.
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Figure 2.1 Short section of tube (acoustic inductance)

2
Mass of the air in the tube is pSL and the acceleration is % or Z—tf so the second Newton's law can be
written as
dv
Sp = pSL—. 2.19
p=pSL_ (2.19)
Dividing both sides of Eq.(2.19) by S and using volume flow instead of velocity it can be rewritten to:
pLdQ
Y . 2.20
P=5dr (2.20)
From the expressions (2.20) using impedance analogy the acoustic mass is:
pL
me="5 (2.21)

In case of sinusoidal excitation the velocity is v = jwé so p = jw(pL/A)Q. Thus the acoustic
impedance is:

Zm = jomg (2.22)
Acoustical inductance is the consequence of the kinetic energy of the air. This energy is, in fact, on

the average equal to:

1
E =5mgQ? (2.23)

analogous to (1/2)LI° for the electrical quantities.
2.2.2 Acoustic capacitance

In Fig 2.1 a rigid container of volume V filled with air is shown. Air can enter or leave at the rate Q
from an opening in the container, compressing or rarefying the air in the container, without producing
significant velocity. The volume change of the air is A7 (not a change in the size of the volume), so

that the compression is equal to s = —AV/V.
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Figure 2.2 Rigid container filled with air (acoustic capacitance)

In terms of sinusoidal excitation the volumetric flow Q, AV = Q/jw. Using the compressibility of air,

pc?, it can be found that

2
pc
=— 2.24
P= v Q (2.24)
Acoustic impedance from Eq. (2.24) for the air filled container is
1

" jwCq

Zc (2.25)

where C, is the acoustic capacitance, equal to:

|4

a

where c is the speed of sound in a given environment (air), p is the density of the environment (air),
and V is the volume of the container. Again, this is completely analogous with electrical capacitance,
and the energy stored in acoustic capacitance is

1
E = E apz (227)

Both L, and C, correspond to energy storage.

2.2.3 Acoustic resistance

With acoustic resistance R, we can model losses in the acoustic systems, for example viscous
frictions. The layout of the acoustic resistive tube is shown in Fig. 2.3.

Figure 2.3 Short section of tube filled with viscous material



where S is a cross section area of the tube, v the particle velocity in viscous medium, p; and p, are the
pressures between the ends of the resistive tube section and L is the length of the tube. In viscous

flow, the particle velocity is proportional to the pressure gradient,

kS
Q=vS= Tp (228)
where p is the pressure difference (p= p,—p1). Therefore, the acoustic resistance is
L
— 2.29

The parameter K is the permeability, which represents the capacity for flow through porous material.
Since p = R.Q, the power dissipation is P = Q%R,. If the element is a capillary tube, the flow is
viscous if the Reynolds number Re = pvL/y is sufficiently small (less than 2000), where 7 is the
dynamic viscosity of air, which is approximately independent of pressure. Poiseuille's formula for

flow in a capillary is:

_ (= (2.30)
Q= 8nlL P '
where a is the radius of the capillary of length L. This yields the acoustic resistance:
8nL
«=—3 (2.31)

2.2.4 Acoustic transmission line

Based on the analogy given in the previous section, we can draw a unit cell of the lossless acoustic
transmission line, a short section of tube can be modeled with lumped parameters, as shown in Fig.

2.4, long tube is modeled as a cascade of such sections.

Qw Ma Q(z+A2)
——rNM -
p(2) Coa—— p(z+Az)
< AZ »

Figure 2.4 Model of the short section of the acoustic transmission line

The acoustic transmission line is an ordinary tube that is filled with air or some other fluid
material, length of the tube is much longer than the guided wavelength and cannot be modeled with
lumped elements. The acoustic transmission line is a network with distributed parameters, in which
the amplitude and phase of pressure and volumetric flow changes along the acoustic transmission line.
Unit length short section of the acoustic transmission line can be modeled with lumped elements of
acoustic parameters which are given in the previous sections (acoustic mass and acoustic capacity).

Unit-length acoustic mass and unit-length acoustic capacity are defined as:

my = (2.32)
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(2.33)

where p is the density of the material with which the tube is filled, S is the cross-section area of the
acoustic tube, c is the speed of sound in a given environment. Through these parameters unit length
acoustic mass and acoustic capacity of a short section of transmission line can be defined:
mg = myAz (2.34)
C, =CLAz (2.35)
From Fig. 2.4, and if it is assumed that Az — 0, the differential equations for the pressure and flow of

the acoustic transmission line in case of acoustic sinusoidal excitation are:
dp(z) _

2 = —jam,Q(2) (2.36)
dQ(z) o

17 = —]wcap(z) (237)

Egs. (2.36) and (2.37) may be combined and rewritten into wave equations, one for p and one for Q:
d’p(z)
— = 2.38

172 y“p(z) =0 (2.38)
d2

D _ 26020 (2:39)

dz?

where y = joJm,C. is the propagation constant in acoustic transmission line. The solution in

phasor form is:
p(z) =pge ™" +poe™r? (2.40)
Q(z) =Qge "+ Qpe™* (2.41)
where €7 is the wave component which propagates to positive z direction, and the e* is the wave
component which propagates to negative z direction. Hollow cylindrical tube, open at one end and
closed at the other end with impedance Z,_ is shown in Fig. 2.5. If an incident wave travels in the
positive z direction p,, when the wave reaches the point x=L, a reflected wave traveling in the

negative x direction will in general be produced p,;.

A
\ 4

Zno ZaL

—>
z=0

Figure 2.5 Acoustic transmission line closed with acoustic impedance Z
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Pressure and volumetric flow represent a sum of incident and reflected waves. Reflection from
the end of the tube will be zero only in the case when the acoustic impedances are matched: Za = Zao.
Therefore, the input impedance of the transmission line depends on its length. The impedance at the
distance L from the load is:

Zars = Zag gAL iJ:ZAo tan(yL) (2.42)
a0 +JjZyy tan(yL)
where Z,_is load impedance, L is the length, y is the propagation constant in the tube, and Z, is the

characteristic acoustic impedance of the acoustic transmission line, defined as:

Zno = /% (2.43)
a

Based on expressions (2.32) and (2.33), characteristic acoustic impedance can be written as:
pc

Zpo =< 2.44
10 ="5 (2.44)
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3. Acoustic metamaterials

The term metamaterial refers to a medium composed of subwavelength unit cells, specifically
engineered to exhibit unusual properties in relation to wave propagation, generally not found in
nature. Most research in this area has been dedicated to electromagnetic metamaterials, which offer
the possibility of engineering effective permeability and permittivity, resulting in phenomena such as
negative phase velocity, superlensing and cloaking [16-26]. However, in recent years a lot of attention
has also been given to the study of acoustic metamaterials, where specific design is deployed to
control the values of effective compressibility and mass density [27-39]. Similar phenomena like in
electromagnetics can be achieved with acoustic metamaterials too, including acoustic superlensing
[40-46], acoustic cloaking [47-59] negative phase velocity [60-64], nonreciprocal propagation of

acoustic wave [65-67].
3.1 Introduction to acoustic metamaterials

Behavior of acoustic waves in fluid media can be described with two material parameters: density and
compressibility. Using the effective medium theory and different design techniques any value of
effective density or compressibility can be achieved with metamaterials, and wave propagation in a
metamaterial medium can be controlled in an arbitrary way. Depending from the values of the
effective density and effective compressibility of the metamaterials, they can be divided into classes
such as metamaterials with a very large density (VLD), metamaterials with a very large
compressibility (VLC), density near zero metamaterials (DNZ), or compressibility near zero
metamaterials (CNZ). Using the concept of metamaterials, one can also obtain effective media with
negative dynamic mass density or with negative compressibility. Metamaterials with one negative
effective parameter are called single negative metamaterials (SNG). In the case of SNG metamaterials
the wavenumber is purely imaginary, which means that the wave propagation is not possible, and that
just the evanescent (exponential decay) modes can be observed. A special types of metamaterials are
double negative (DNG) metamaterials. These types of metamaterials are characterized by both
effective material parameters being negative, i.e. within a certain frequency range both the effective
mass density and the effective compressibility are below zero. The first theoretical paper about these
kinds of materials was written by Victor Veselago in 1967 [16]. He has shown that in a double
negative electromagnetic medium the wave propagation is possible, but with a negative wavenumber,
implying that the phase and the group velocity are antiparallel. When the phase velocity is negative
the acoustic refractive index also has a negative value. Acoustic refractive index on the boundary of

the air and another medium can be defined as:

c
n=— (3.1)
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where C is the speed of sound in the air and v, is the phase velocity in the second medium. In the
situation when the second material is double negative and its phase velocity v, is below zero, the

refractive index n is also negative, which is why this type of materials also called negative refractive
index materials (NRI). From this it follows that some of the well-known physical principles, such as
the Snell’s law and the Doppler effect, are apparently reversed. Snell’s law describes the refraction on
the boundary of two isotropic media:

sinf; ny

sinf, n, (3-2)

If the medium 2 is double negative, the refractive index is below zero (n,<0) and from Snell’s

law it follows that the angle of refraction is also below zero (6, <0). From theoretical analysis it

follows that by combining different signs of effective density and effective compressibility of the
metamaterials different types of wave propagation can be obtained. When both parameters are
positive the wave propagation is possible and the group and the phase velocity has the same direction.
This is the case of conventional wave propagation with a real positive wavenumber. On the other
hand, when both parameters are negative, the wave propagation is also possible but with a negative
real wave number and with antiparallel phase and group velocity. This case is referred to as double
negative or “left-handed” propagation. When the effective density and compressibility have different
signs, only evanescent mode propagation exists, because the wavenumber is purely imaginary, i.e. it

does not have a real component.
3.2 Resonant type acoustic metamaterials
3.2.1 Metamaterials based on Helmholtz resonator

Helmholtz resonator is a well-known acoustic resonance structure, consisting of a cavity of known
volume with rigid walls connected to the host structure by a neck of known length and cross-sectional
area. A typical Helmholtz resonator is shown in Fig. 3.1. In the equivalent electrical circuit of the
resonator, the compliance of the fluid in the cavity to adiabatic compression and rarefaction can be
modelled as acoustic compliance C, « V/pc?, while the inertia of the plug of fluid oscillating in the
neck can be modelled as inductance L, « pl/S, where V is the volume of the cavity, p is the density

of the fluid, c is the velocity of sound, [ is the effective length of the neck and S its cross-sectional

area. The resonance in the Helmholtz resonator thus occurs at f. = 1/(2m,/L,.C;).
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Figure 3.1 Helmholtz resonator with equivalent circuit. (From [27])

Helmholtz resonator does not use typical standing waves to create a resonance, and the
dimension of each element can be made much smaller than the wavelength. From that it follows that
the Helmholtz resonator can be modeled as a homogenized medium, and described with frequency
dependent effective modulus, which is a reciprocal value of the compressibility and is equal to [27]:
Fw}

> |’ 3.3
w? —w¢+iTw 33

Ejfp(w) = Eg* |1~

where F is a geometrical factor, w, = ¢,/S/IV is a resonant frequency and 7" is the dissipation loss in

the resonating Helmholtz elements. Calculated effective modulus using Eqg. (3.3) is shown in Fig. 3.2.
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Figure 3.2 Calculated effective bulk modulus in the above one-dimensional subwavelength Helmholtz
resonators. (From [27])

This frequency-dependent response is essential to the negative modulus over a range of
frequencies. At frequencies near resonance, the induced displacement in the neck becomes very large,
as is typical in resonance phenomena. The large response represents accumulation of energy over
many cycles, such that a considerable amount of energy is stored in the resonator relative to the
driving field. This stored energy is significant to maintain the sequence of displacement near
resonance even when the excitation field changes the sign. That is, as the frequency of the driving

pressure field is swept through the resonance, the instantaneous displacement of the mass center in the
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unit cell flips from in-phase to out-of-phase with the driving field, and the material shows a negative
response [27]. If a conventional hollow duct with an otherwise allpass frequency response is loaded
with an array of the Helmholtz resonators, a notch in the frequency response at the resonant frequency

can be observed. Such a transmission characteristic is shown in Fig. 3.3.

0.1

Tl

Resonator calc.
O  Resonator exp.
A No resonator

0.01

| L 1 L | L
35 40 45 50
Frequency (kHz)

Figure 3.3 Transmission characteristic of the hollow duct loaded array of Helmholtz resonators. (From [27])

From Fig 3.3 it can be seen that around the resonance the value of bulk modulus is negative, the
propagation does not exist and a stop band emerges. Negative bulk modulus has a similar effect on
acoustic wave propagation as the negative permeability for electromagnetic wave propagation — both

cause the waves to be evanescent in character.
3.2.2 Metamaterials based on sonic crystals

For two-component composite materials, the effective mass density is usually given by the volume-
averaged value. An implicit assumption underlying the validity of the static mass density expression is
that in the presence of wave motion, the two components of the composite move in unison [68]. For a
composite which consist of a many identical local resonators (spring mass systems) embedded in a
matrix material, at the resonant frequency the local resonators’ masses move out of phase with the
matrix displacement and we have a case in which the matrix and the resonators’ masses display
relative motion [68]. If the local resonators occupy a significant volume fraction, then within a
particular frequency range the overall effective mass density can appear to be negative [29-31]. This
is simply illustrated in a one-dimensional (1D) model [32], where cylindrical cavities of length d are
embedded in a bar of rigid material. Within each cavity, a massive sphere is attached to the cavity
wall by two identical springs. Figure 3.4a shows a cross-sectional image of the basic unit for a 3D
locally resonant sonic material [29]. It consists of a metallic sphere of 5 mm in radius coated by a
layer of silicone rubber. Figure 3.4b shows a cube assembled from basic units with epoxy, in a simple

cubic structure with a lattice constant of 1.55 cm [29].
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Figure 3.4 a) Local resonator unit, b) 8x8x8 matrix of unit cells, ¢) Transmission characteristic of the structure,
d) band structure of the crystal. (From [29])

The metallic sphere of the basic unit acts as a heavy mass, with silicone rubber as a weak
spring. Hence there must be a low-frequency resonance. Moreover, the resonance is local in character,
to be distinguished from the structural resonances that are common to any mechanical object. Figures
3.4c and 3.4d shown the transmission characteristics and band structure of the crystal shown in Fig.
3.4b. A transmission dip can be observed at 380 Hz, followed by a transmission maximum at 610 Hz.
This pattern is repeated at 1,340 Hz and 1,580 Hz. The solid line is the calculated transmission, and
the solid circles are the measured data [29]. The calculated and measured data show a good
agreement. In Fig. 3.4d, the calculated band structure is shown. The flat band edges, at 380 Hz and
1,340 Hz, are characteristic of local (anti-)resonances that are very weakly coupled to each other. It is
seen that the structure shown in Fig. 3.4b has a complete bandgap between 380 Hz and 610 Hz. In
contrast to phononic crystals, where the relevant wavelength corresponding to the primary bandgap
frequency must be comparable to the lattice constant, here the wavelength (in epoxy) at 380 Hz is
~300 times the lattice constant [29]. The wavelength is much smaller than the lattice constant and the
composite material can be homogenized and described by the effective density. However, close to the
resonances, the large dispersion of the response function means that the effective wavelength is much
smaller and becomes comparable to the lattice constant, hence the strong scattering. This peculiar
material can break the so-called “mass density law” of sound transmission [29]. It should be noted
that an attenuation gap can be due either to negative elastic constant or to negative dynamic mass

density. In [29], the effect was wrongly attributed to negative elastic constant, but this has been
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corrected in [30-31]. Calculated dynamic mass density Dey for one unit cell of the locally resonant
sonic material is shown in Fig. 3.5. Around 370 and 1,340 Hz, i.e., the transmission dip frequencies,

the dynamic mass density clearly displays a resonance-like behavior [68].
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Figure 3.5 Effective mass density for a sonic crystal. (From [68])

The effective density has a resonant behavior and has a negative value where the transmission dips in
the transmission characteristic. In this frequency region the wave propagation is not possible.

3.3 Acoustic CRLH (composite right/left handed) transmission line

Another approach to design metamaterials is using the transmission line concept. A short section of
conventional (right handed) transmission line can be modeled with series acoustic inductance and
shunt acoustic compliance. The left handed transmission line is an opposite of conventional
transmission line and can be modeled with series compliance and shunt acoustic inductance. A clear
left-handed transmission line does not exist, i.e. there is always a right handed component too. This
type of structure is called composite right/left-handed transmission line (CRLH TL). The equivalent

circuit for a short section of acoustic CRLH transmission line is shown in Fig. 3.6.
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Figure 3.6 Equivalent circuit of short section acoustic CRLH transmission line. (From [63])

Acoustic impedance is defined as the ratio between acoustic pressure and the volumetric flow,

the acoustic admittance is a reciprocal value of acoustic impedance. In that case acoustic impedance (

Z.) and acoustic admittance (Y, ) for an acoustic CRLH transmission line can be defined similarly to

admittance and impedance for an electrical transmission line [24-25]:
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are per unit length values for a series and shunt acoustic inductance and acoustic compliance. If d is
small enough, the system can be described as was done in the case of electromagnetic CRLH
transmission lines [24-25]. In that case the structure can be seen as a homogenous medium. Effective
properties of the medium are specified with impedance and admittance of the small section of acoustic
CRLH. The acoustic wave impedance for an arbitrary fluid medium is defined as:

Na= |5 (37

If a transmission line is considered as a homogenous medium, wave impedance can be seen as
equal to characteristic impedance. In acoustics it has to be divided with the cross section area, because
in the wave equations are related to pressure and particle velocity, while in the acoustic circuit theory

instead of particle velocity, volumetric velocity equal to g = Sv is used. Hence:

_ |Za_ [Pl
ZO—\/Y;—\/;S, (38)

Using the same principle the wavenumber is given as:

k' = ZLY) = w+/pp (3.9)
From Egs. (3.4), (3.5), (3.8), (3.9) effective material parameters can be defined as functions of

inductance and admittance of the transmission line:

Za( ) 1
Pesr =278 = ( MaR = —wz%)S , (3.10)
_Y(w)1 , 1 1
Berr =0 5= (CaR —mz—m;)z- (311)

From Eqgs. (3.10) and (3.11) two resonant frequencies w; i w, can be determined and it can be seen
that the effective density is less than zero below the frequency w;, and the bulk modulus

(compressibility) B is negative below the frequency w.:

Wy = ——=— (3.12)

(3.13)



In the frequency range where both parameters are negative the wavenumber has a real but
negative value, the wave propagation is possible, and the structure is a double negative medium. In a
frequency range where just one of the parameters is less than zero the wavenumber is imaginary and
the wave propagation is not possible except for evanescent modes, i.e. the medium is a single negative
medium. Clearly, in the frequency range where both parameters are larger than zero, the wave

propagation exists and it is right-handed propagation with a positive real wavenumber.
3.3.1 Side holes

To realize the acoustic CRLH transmission line, shunt inductance and series capacitance sections
should be included into in a conventional transmission line. One way to implement shunt inductance
in the system is using a simple tube as a conventional host with drilled side holes [37], as shown in
Fig 3.7.

side hole
C r L

Figure 3.7 Hollow tubes with drilled side holes. (From [37])

In this structure the unit cell is not of resonant type. This structure has a negative
compressibility (reciprocal value of bulk modulus), below the cut-off frequency. Acoustic wave
propagation exists if the operating frequency is larger than cut-off frequency. This shape of effective
compressibility is a Drude-like response, and like in noble metals, it has negative dielectric
permittivity below plasma frequency [17]. Longitudinal mechanical waves (sound) propagate in the
tube which is filled with air, which, fluctuating at the ends of the side holes changes the characteristics
of the wave propagation. Air column above all these side holes have a mass given by M = pl'S where
p=1.21 kgm™ is the mass density of the air, |" is the effective length of the side hole and S is the
cross section area of the hole. The distance between two side holes (d) is much smaller the guided
wavelength and the medium can be seen like a homogeneous medium with effective material
parameters. Using the second Newton's law for the structure and using a harmonic velocity source the
effective compressibility can be derived as [37]:

2
Boss =B (1 - w(;’;fw)) (3.14)
where y is the damping term representing the sum of all the dissipating mechanisms for the

propagating wave and wgy is the cut-off frequency, defined as:
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IS (3.15)
w = .
SH BApsH

where £ is the adiabatic compressibility of the air (7.04-10° Pa™), pg is side hole mass density and
osy IS side hole area density, and psy = nM and ggy = nS where n = 1/d (side holes per unit

length). Phase velocity in the tube is:

" 1 Vg
h = = 3.16
P "P.Beff \/(1 — Wy /w(w + i)/)) (310

Wave number can be calculated from the Eq. (3.16) and can be written as:

w? — w2, /(1 +iy/w)
k(@) = vi =\/ SH (3.17)
ph Vo

From Eq. (3.17) it can be obtained that when the operating frequency above the cut-off frequency the
wavenumber is a purely imaginary number and the propagation does not exist. In the other case, when
the frequency is larger than the cut-off frequency, the wave number is real and in that case the wave
propagation is possible. Calculated transmission function for the lossless and the lossy case, together

with experimental results of the metamaterial from [37], is shown in Fig. 3.8.
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Figure 3.8 Normalized transmission characteristic simulation results in the lossless and lossy case, and
experimental results. (From [37])

Below cut-off frequency there is no transmission, and above it there is. This type of structure is
a metamaterial unit cell with negative effective compressibility. The effective compressibility has a

Drude-like shape, it is negative below the cut-off frequency and positive after it.
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3.3.2 Acoustic metamaterial with negative mass density (p)

For implementation of a series capacitance in the conventional acoustic transmission line a
mechanical element (membrane) has to be used. The unit cell consists of a membrane which is placed
in the tube [39], as shown in Fig. 3.9. The length of the unit cell is much smaller than the wavelength
at the operating frequency. These types of unit cells produce negative effective mass density in a wide

frequency range. The effective density shape follows the Drude model.

-d/2 dr2
p Py

Figure 3.9 Hollow tube loaded with membranes. (From [39])

One-dimensional acoustic wave can be described by a one-dimensional acoustic wave equation,
which includes pressure in tube p and longitudinal displacement g, which depend from time t and
from the position in the one-dimensional tube z. If the j" unit cell consists of the | membrane and a
section of a hollow tube of length d, as in the Fig 3.9, the length of the unit cell is much smaller than
the wavelength and a can be considered that the average longitudinal displacement in air inside the j"
unit cell and displacement of the membrane are both equal to the value g;. In the case when the
excitation is harmonic, from the one-dimensional equation of the dynamic equilibrium the effective

mass density can be derived as [39]:

LA P (3.18)
Pesf =P = 2ag ~ P w? '
where A is the cross section area, d is the period of the unit cells, 7 is the membrane tension and p'is
defined as:
"= (1 + M ) 3.19
p =p ad (3.19)

where M is the mass of the membrane, while @, is the cut-off frequency, which can be calculated as:

8t
= | 3.20
Y= |pad+M (3:20)

Phase velocity of the acoustic wave in the medium can be shown to be equal to:

VUph = ! —/ ! 3.21
ph — peffﬁ_ ﬁp’(l—:—g) ( )
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where £ is the compressibility of the air. From the phase velocity the acoustic wavenumber can be

calculated and it is:
k(w) = _|Bp'(w? — wf) (3.22)

From Eq.(3.22) it can be observed that, when the frequency is below the cut-off frequency, the
wavenumber has an imaginary value, which means that the acoustic wave propagation does not exist
in that frequency range, and that only evanescent modes propagate. Figure 3.10 shows the measured

transfer function of this type of metamaterial from [39].
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Figure 3.10 Normalized transfer function (From [39])

From Fig 3.10 it can be seen that below the cut-off frequency the transmission does not exist,
above . the structure behaves like a conventional tube and transmits the all energy. A conventional
air duct loaded with membranes where the distances between the membranes are much smaller than
the guided wavelength is thus a metamaterial unit cell with negative mass density in a wide frequency

range (Drude-like model).
3.3.3 Realization of the acoustic CRLH transmission line

By composing two structures which were previously described we can realize an acoustic composite
right-left handed transmission line (CRLH) [61]. Figure 3.11 shows the two previously described
structures with negative mass density and compressibility respectively, and the composite double

negative metamaterial.
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Figure 3.11 Acoustic metamaterials a) Metamaterial with negative effective mass density, b) Metamaterial with
negative effective compressibility, ¢) Double-negative metamaterial. (From [61])

Effective mass density for a structure a) is defined with Eq. (3.18). Effective compressibility for
the structure b) is defined with Eq. (3.14). Transfer functions for these two structures which are shown
in the Figs. 3.8 and 3.10 now are together shown in the Fig 3.12a with both cut-off frequencies. Cut-
off frequency for a structure a) is larger than the cut-off frequency for structure b). Composite
structure which is a combination of the structures a) and b) is shown in Fig. 3.11c), and it inherits
properties from both structures a) and b). It means that effective mass density and compressibility for
the structure c¢) are given by Egs. (3.14) and (3.18). For the structure c), effective compressibility is
less than zero if the frequency is less than wsy (from eq. 3.14), and effective mass density is less than
zero if the frequency is less than w. The transmission characteristic of the composite structure is
shown in Fig. 3.12b.
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Figure 3.12 Transmission function, a) Structure a) i b) from Fig. 3.11, b) Structure ¢) from Fig. 3.11 (From

[61])
From Fig. 3.12b it can be seen that the transmission does not exist just between two cut-off
frequencies, where compressibility and density have opposite signs. Phase velocity for a structure c)

/ wSH wé
_ < 3.23
Beffpeff \/7 \/ \]1 w? ( )

while the wavenumber can be derived as:

can be derived as:

k(w) = wpB \]1 _ s J z; (3.24)

From Eq. (3.24) wavenumber for a metamaterial between frequencies 0<w< wgy is real and less
than zero, because effective values of both material parameters (compressibility and mass density) are
less than zero in the same frequency range. In this frequency range metamaterial behaves as a double
negative material and can be characterized by antiparallel phase and group velocities. In frequency
range wsy <w<w. (between the cut-off frequencies), just one of the parameters is less than zero
namely the mass density. In this case wavenumber is imaginary and only evanescent propagation
exists. Above the second cut-off frequency both parameters are positive and the wave propagation is

conventional.
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4. Analysis of acoustic metamaterials

This chapter will describe characterization methods, parameters and simulation models which were
used during the research. Based on electro-acoustic analogy we redefined and used parameters and
techniques which are commonly used in electrical and microwave engineering, such as transmission
line theory, two-port network parameters, circuit parameter transformations, effective medium theory

etc.
4.1 Acoustic scattering parameters and extracting an acoustic S-matrix

Linear time-invariant two-port networks can be characterized by a number of equivalent circuit
parameter sets, such as transfer matrix, impedance matrix, admittance matrix, and scattering matrix
[69]. In this work we opted for the scattering matrix approach, as it is the basis of most methods for
the analysis of electromagnetic metamaterials [70, 71] and it allows us to use the same methods in the
analysis of acoustic metamaterials as well. Let us consider a slab of unknown acoustic medium with
acoustic impedance Z, and transmission coefficient y inserted into a long acoustic duct filled with air,

the acoustic impedance of which is Z,, as shown in Fig. 4.1.

,  — | JE —> | —> Z
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«— |+ «—
+j) l
pi- | Px pee™ P
Ax Ax d Ax Ax

Figure 4.1 Extraction of complex acoustic S-parameters

Under the assumption that the structure allows the propagation of plane waves only, the definition of
acoustic scattering parameters, by analogy with their definition in electromagnetics [69], is the

following:

il P [ o 4.1)

where p;, and p;_ denote the phasors of transmitted and reflected acoustic waves in air at the left
boundary between air and the unknown medium (port 1), and p,. and p,_ denote the phasors of
transmitted and reflected acoustic waves in air at the right boundary between the unknown medium
and air (port 2). The acoustic scattering parameters describe the same physical properties as the
electrical scattering parameters. S;; and S,, are the reflection parameters related to port 1 and port 2
respectively. S,; and S;, describe the transmission between port 1 to port 2 and vice versa.

As we are able to measure only the sum of the transmitted and the reflected wave at a certain
point, the problem of calculating S-parameters amounts to the separation of measured values into their

corresponding transmitted and reflected components. We measure acoustic pressure at 4 points, using
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4 microphones located as shown in Fig. 4.1. For the sake of simplicity, the four distances (Ma to Mg,
Mg to port 1, port 2 to Mc and Mc to Mp) are set to be identical and equal to Ax. The total pressures
measured by the 4 microphones are given by Eq. (4.2):
pa = p1+ejk02Ax + pl_e—jkozAx ,
Pp = P1pelFoAX 4 p,_eTkolx

4.2
Pc = pape TKoAX 4 p,_elkolx “2

pp = p2+e—jk02Ax + pz_ejkozAx ,

where k, = w/c is the wave number in the air. Given this set of 4 equations with 4 unknowns, we can
compute the transmitted and reflected components of pressuresp,,, p.+, p1— and p,_. In a general
case this would have been insufficient to calculate the S-parameters, and it would have been necessary
to perform two sets of measurements, one with the source on the left side and one with the source on
the right side, resulting in a readily soluble system of 12 equations with 12 unknowns (pt,, p%,, pt_,
pi_, pR., pR., pR, pX_ and the 4 S-parameters). However, under the assumption that the slab of
unknown medium constitutes a symmetrical and reciprocal system, one set of measurements is
sufficient, as S;; = S,, and S;, = S,; and the unknown 2 values of the complex S-parameters can be
easily found from the matrix Eq. (4.1). The code for extraction and calculation of the acoustic

scattering matrix was written in Matlab and is given in Appendix Al.
4.2. Extraction of complex effective material parameters

Effective material parameters of the acoustic metamaterials can be extracted from the scattering
matrix using a method similar to the one used in the case of electromagnetic metamaterials, [70, 71].
Acoustic wave impedance Z,r and acoustic refractive index N, are calculated directly from the S-
matrix by adjusting formulas according to electro-acoustical analogies.

The extraction is based on the effective medium theory; the inhomogeneous structure
(metamaterial unit cell) is replaced with equivalent duct with effective material parameters. Reflection
coefficient I" for a wave is given by:

_ Zer—Z'"
Zeff-l-ZTL ’

r (4.3)

The two-port scattering parameters can be determined as a function of the reflection coefficient and
the propagation factor T = e¥*, where L is the length of the structure and y is the complex

propagation constant: [72].

r(1-2
_ 1(1-1?) '
S11 = 1-T272 °

By solving Eq. (4.4) using the Nicolson-Ross-Weir (NRW) approach [73, 74], we can obtain the

expression for I':
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F=xxyJx*-1, (4.5)

where the sign (£) is determined by |T'| < 1 and:
S]?l - 5221 + 1

=—— 4.6
X 25.1 (4.6)
Hence, Z, ;¢ can be obtained from Eq. (4.3):
1+T
Zepp = (2) 2, 4.7)

where ZTL can generally be calculated using Eq. (2.44). The reflection coefficient I' can be calculated
from the scattering parameters using Egs. (4.5) and (4.6). With this method we can extract the
effective impedance of the metamaterial unit cell from the acoustic S matrix.

The complex acoustic refractive index can be written in the following form:

Nepr =N opp + iKepr - (4.8)
where the real part n,f is the acoustic refractive index and the imaginary part k. is extinction
coefficient, which indicates the amount of absorption losses. The value of the imaginary part .z has
to be positive because one part of the acoustic wave is absorbed in the material. In electromagnetics
and in transmission line theory it is well known how the refractive index can be calculated from the
scattering parameters [75]. Using electroacoustic analogy the equation in acoustic case can be written

in the similar form, as:

S21

eNefrkoleff = 221
1-S11Ro01

(4.9

where k, is the wavenumber in the surrounding medium (air), L. is the length of the structure, S;;

and S, are the scattering parameters calculated using the method from the previous section and Ry is
defined as:

_ Zeff—1

=zt (4.10)

01

where Z, ;¢ is the effective wave impedance of the medium calculated from Eq. (4.7). From (4.9) the

refractive index is:
1
Less

Negr =+ {Im[In(e™Nerrkolerr)| + 2mm — iRe[In(e™Nerrkolerr)|} . (4.11)

The real and the imaginary part of the acoustic refractive index are, respectively:

Im[ln(eiNeffkoLeff)] omm

= = n? 2mn 4.12
neff Kolerr Kolerr neff + KoLerr ) ( )
iNgrrkoLg
. —ReIn(e"ef otefr))| (4.13)
e koLery ’

where ngffis the acoustic refractive index corresponding to the principal branch of the complex

logarithmic function and m is an integer [71]. The imaginary part of the refractive index is not
affected by the branching problem. The imaginary part of the acoustic refractive index is also always

positive, implying that the function is analytical (causality). Using the Kramers-Kronig relations we
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can determine the real part of the acoustic refractive index from the imaginary part. The retrieved

acoustic refractive index is calculated by the Kramers-Kronig relations as:

nf&(w') =1 +%gofmmdw . (4.14)

0 w?-w'?
Where g denotes the principal value of the improper integral [76]. Substituting the refractive index
predicted by the Kramers-Kronig relation in Eq. (4.12), the branch number can be expressed as Eqg.

(4.15) where the function Round() rounds the argument towards the nearest integer: [71]

m = Round [(nKK - ngff) M] (4.15)

21

The acoustic refractive index is calculated so that we select the branch that is closest to the value
predicted by the Kramers—Kronig relation. The branch number is substituted in Eq. (4.11), and the
exact value of the acoustic refractive index is calculated. The algorithm then checks the continuity of
the refractive index [71]. The acoustic refractive index and the acoustic wave impedance can be

written as functions of the effective material parameters (mass density and compressibility):

Nerr = \[PerrBess - (4.16)

Pe
Zosp = /B_Z . (4.17)

Effective material parameters, namely the compressibility (Be) and density (pe), are analogous to the
permittivity (eerr) and permeability (uer), respectively, and can be calculated as: [77, 78]

_ Neyy
Berr = Zers " (4.18)
Peff = NefrZery - (4.19)

The Matlab code for the extraction of acoustic circuit parameters is given in the Appendix A2.
4.3 Simulation models of acoustic metamaterials

All structures were designed, modeled and simulated with two different numerical simulation models.
The first one is a finite element method (FEM) simulation model, designed in the COMSOL
Multiphysics simulator, and the second one, based on the transmission line model and the circuit

theory (ABCD matrix, two-port network matrix transformations etc.), was designed in Matlab.
4.3.1 Finite element method (FEM) simulation model in COMSOL Multiphysics

COMSOL Multiphysics is a finite element analysis, solver and simulation software. COMSOL is a
multiphysical simulator consisting of different physical modules which can be used separately or
combined in order to analyze different physical phenomena together [79]. The different modules
cover all topics of physics, from structural mechanics to chemical reactions. In this research we used
the Acoustic module to model acoustic wave propagation in air [80], Structural Mechanics Module to
model mechanical components in membrane type metamaterials [81] and the Heat transfer module to

introduce temperature variation and analyze its effects on surface acoustic wave propagation [82].
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All COMSOL modules are capable of defining models for structures in one, two or three
dimensions as well as one- or two-dimensional axisymmetric structure models, the latter exploiting
the axial symmetry to simplify the calculation process and decrease computational time. In this
research 2D, 2D axisymmetric and 3D modules were used. In the Acoustic module port boundaries
such as ones in Microwave module or in other electromagnetic wave simulators (CST, HFSS etc.) are
not achievable. For that reason microphones (probes) capable of measuring acoustic S-parameters
following the theory described in Section 4.1 had to be made manually. Four boundary probes were
placed into the system. The locations of the microphones and the distance between them were
determined following the instructions from Section 4.1. Probes measured the average acoustic
pressure defined by Eq. (4.20) on a specified surface where P; is the pressure phasor, S; is the area of

the boundary probe, p is the acoustic pressure and the integer i in the subscript denotes the location:
1

Received pressure phasors on a specified location and on a specified frequency are suitable for the
calculation of S-parameters and determination of spectral transmission and reflection characteristics
of the analyzed structures.

Defining materials and their properties is a very important part of model design. In COMSOL
Multyphysics a material library with specifications of properties of materials is available. In the
Acoustic module the most important parameters are the density and the speed of sound in a material.
Of course in a lossy case and temperature dependent simulations other important properties include
viscosity, temperature and the specific gas constant when the medium is modeled as an ideal gas. The
mechanical components (membranes, frames) which could constitute a part of a metamaterial
structure are modeled by a special type of material model, so called linear elastic material model.
Linear elastic material model is characterized with its density, Young’s modulus and Poisson’s
coefficient, which is manually added to the model. Three more boundary conditions were used in
every designed model. The Plane Wave Radiation Boundary was used as an acoustic source in
systems with specified amplitude, phase and frequency. The Sound Hard Boundary, which is the
acoustical counterpart of PEC (perfect electrical conductor) in electromagnetic simulations, was used
to surround the structure, and with this type of wall we modelled closed structures (pipe walls, boxes
etc. In cases when we used this boundary the vibrations in the hollow tubes and pipes were neglected.
Perfectly Matched Layer (PML) boundary was used to model the open sections (open boxes, ends of
tubes etc.). This type of boundary is a perfect absorber and there is no reflection when an acoustic

wave interacts with it.
4.3.2 Transmission line model based on ABCD matrix

Transmission line model is based on concepts described in Chapter 2. Namely, every “acoustically

short” section can be modeled with series impedance and shunt admittance, as shown in Fig. 4.2.
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Figure 4.2 Transmission line model of a short section of an acoustic duct

A conventional transmission line can be modeled with series inductance and resistance (losses)
and with shunt acoustic compliance and conductance. The left-handed transmission line is the
opposite of the conventional one, in that the acoustic compliance is connected in series and the
inductance in shunt. All circuit parameters depend from geometrical parameters and the properties of
the fluid with which the tube is filled.

In all case in this research the fluid medium is air. Air’s viscosity and heat conductivity are
small enough and can be neglected. However, when the diameter of the pipe or the acoustic
waveguide is too small the losses increase. This phenomenon is the so called “narrow pipe” effect,
which was firstly described by Kirchhoff in 1868 [83]. This type of losses can be modeled by simply
using the lossless model and adding losses as described in [84-87]. The series impedance and the
shunt admittance in the lossy case can be described by Eqgs. (4.21-4.22):

Z=j(2&)1-F)7, (4.21)
v=j (L)1 + ¢ - DR, (4.22)

where a is the tube radius, w is the angular frequency, p, is the density of the fluid (air), and c the

sound velocity in the air.F, and F; are defined as:

_2 Ji(w/=))
F= =i, (4.23)
— L]l(rt\/__j) (424)

Fe = e\ Jo(rev/=J)

where J,,, is the Bessel function of the first kind, order m. Parameters r;, and r; are defined as:

r=a /% (4.25)

=1, |— =0dr,, (4.26)

where C, is specific heat capacity at constant pressure, A is heat conductivity, u is the shear viscosity
and o is the square root of the Prandtl number. From series impedance and shunt admittance the

characteristic impedance and the propagation constant can be calculated as:

Zy = % (4.27)
Yy =VZY . (4.28)
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If the length of the transmission line is [, the circuit can be modeled as a two port network and the
transfer matrix (ABCD) is:

(pi) _ ( cosh(yl) Z sinh(yl)) ()1972) (4.29)

v; Zo 'sinh(yl)  cosh(yl)
where v;, v,, p; and p, are the input and output velocities and pressures respectively. All short
sections (comparing with the applied wavelength) which are modeled with their own ABCD matrices
are parts of the acoustical system, and they are connected with other short sections. A benefit of this
approach is that if multiple ABCD matrices are cascaded, the resultant ABCD matrix is the product of
all matrices in the system. We use this property to describe our system and complex devices. In the
case when parts of the structures are not connected in cascade with the system we used matrix
transformations and with circuit transformations we obtained the final ABCD matrix. In next chapters
particular acoustic systems that have been designed will be described and a detailed explanation of

each step used for designing every particular circuit component in the simulations will be given.
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5. Near-zero propagation of acoustic waves: compressibility near-zero metamaterials

Near-zero (NZ) metamaterials present a specific subclass of metamaterials, initially demonstrated in
the electromagnetic domain [88-93]. Their operation relies on the fact that a non-zero frequency exists
at which the wave number is equal to zero. This results in propagation characterized by a constant
phase over physically long distances, and gives rise to interesting phenomena such as energy
tunneling, super coupling and energy squeezing. By analogy with the EM case, an NZ acoustic
metamaterial can be obtained in two ways: by tailoring either its effective mass density or its effective
compressibility (the reciprocal of the bulk modulus) to obtain near-zero values at certain frequencies.
Recently, different NZ acoustic metamaterials have been proposed [39, 94-98], all of them based on
tailoring the effective mass density. In this research a novel class of one-dimensional NZ acoustic
metamaterials, based on tailoring the effective compressibility, is analyzed and experimentally
demonstrated. This is achieved using resonant-type metamaterials based on the Helmholtz resonator,
which has been previously introduced in Chapter 3 as a building block for single-negative acoustic

metamaterials.
5.1 Theory of the near zero propagation

The Helmholtz resonator, used in this research to obtain the resonant behavior of compressibility,
consists of a cavity of known volume with rigid walls connected to the host structure by a neck of
known length and cross-sectional area. Unit cells based on Helmholtz resonators have already been
used as building blocks for acoustic metamaterials, but primarily in the context of single-negative
metamaterials that support only evanescent waves [27, 28, 34]. However, here it will be shown that
Helmholtz resonators can be used to support near-zero propagation of acoustic waves as well, i.e., that
they can be used to build compressibility near zero (CNZ) acoustic metamaterials [99]. In Fig. 5.1 a

cross section of the cylindrical duct loaded by a Helmholtz resonator is shown.
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Figure 5.1 Cross section of the duct loaded with Helmholtz resonator with dimensions

In any section of an acoustic duct the difference between the particle velocities at its ends is

related to the variability of the volume of the gas through the continuity equation. In the case of a
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section of length [ and cross-sectional area S, loaded with a Helmholtz resonator with cross-sectional

area of the neck equal to S, and cavity of volume V},, this relation can be expressed as follows:
v =S21-dt+ 5y, - dé, (5.1)

where V is the volume of the gas in the acoustic duct, v is particle velocity and ¢ is the displacement

of the gas in the neck. Since VV = SI, this can be rewritten as:

av
14

Under the assumption that sound propagatlon is an adiabatic process, for which pV¥* = const. (i.e.

=2t + 21 dE. (5.2)

kp - dV = =V - dp), where k is the heat capacity ratio, the previous Eq. (5.2) yields:
_ldp

- ——dt+ - dE, (5.3)

or, alternatively:

—PBo - dp ——dt+ L dg, (5.4)
where 3, is the compressibility of the gas, which, for adiabatic processes, equals (kp)~1, and is
reciprocal to the bulk modulus B of the gas. The neck of the Helmholtz resonator thus acts as a sink,
which effectively modifies the continuity equation. However, if the proposed structure is considered
to be a unit cell of an acoustic metamaterial, the influence of the Helmholtz resonator, which can be
viewed as the “internal inhomogeneity” of the cell, can be expressed through the effective

compressibility Se¢r as follows:

def av
~Pett - dp = ——dt. (5.5)
Combining the previous two Egs. (5.5) and (5.4) yields:
lg, ac
Betr = Bo + (dt) e (5.6)
Let us now consider the differential equation for the displacement of the gas in the neck of a
Helmholtz resonator (if losses are neglected):
ol &% =+ pe? ”E p, G.7)
where [}, = 1, + 2T s the effective length of the neck, with r;, = /S;, /@ being its radius. The

solution of the Eq. (5.7), if the harmonic expressions p = Pe i@t and & = Ze~®t are introduced, is

the following:
P

iy r—— (5.8)

pczﬁ—plhwz

[1]

Introducing this into the Eq. (5.6) rewritten in the complex form yields the expression for the

effective compressibility of the proposed metamaterial unit cell:

Besr = Bo (1 + 3 ﬁ) (5.9)

Vh
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This expression suggests that it is possible to achieve zero effective compressibility at a certain
frequency. In COMSOL we designed and simulated a simple air filled short section of an acoustic
duct loaded with a Helmholtz resonator with dimensions S= 206 mm?, S,= # mm?, ¢c= 343.12 m/s (T=
293.15 K), o= 7.04 Pa*, I= 32 mm, I,= 28 mm, V,= 567 mm?®. The simulated response of the
proposed structure (with losses) and its effective compressibility, extracted using the approach
described in Chapter 4, reveal a notch in the frequency response due to negative values of effective
compressibility around the resonance of the Helmholtz resonator, Fig. 5.2.
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Figure 5.2 Typical transmission coefficient and effective compressibility of the unit cell (shown in the inset, with
its equivalent electrical circuit).

To verify the results obtained from the simulation, the real part of the effective compressibility
obtained from the Eq. (5.9) is plotted in Fig. 5.3, together with the real part of the effective
compressibility obtained from numerical simulations.
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Figure 5.3 Comparison of the effective compressibility of the Helmholtz resonator obtained from the analytical
expression and from FEM simulations
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A very good agreement is observed, with the only difference due to losses, which are taken into
account in COMSOL and disregarded in the analytical solution. Although it may seem at first that any
metamaterial unit cell will support NZ propagation at a certain frequency, we show that the host
structure needs to be carefully designed and that not one but two frequencies exist capable of
supporting NZ propagation, finally leading to the development of NZ acoustic devices with novel
characteristics. Furthermore, S equals zero at not one but two frequencies in the vicinity of fi,
denoted fy; and fo,, where propagation of CNZ nature might be expected. However, the imaginary part
of S at fo, is very large, and therefore no propagation occurs due to high losses. At fq,, the imaginary
part of S is smaller, but still non-zero, and consequently the insertion loss is lower but still not
negligible. Therefore, by using a simple short section of an acoustic duct as a host, CNZ propagation
cannot be practically achieved either at fy; or at fo,.

Now the conditions needed to achieve CNZ propagation in practice will be analyzed in detail.
Instead of a simple duct, a simple lowpass filter (LPF) of the 3" order is proposed as a host structure,
although it should be noted that this analysis can be applied to other hosts. A host has to have a
stopband region around the resonance and cannot be a single negative medium to avoid the double
negative propagation. The central section of the LPF is loaded with one Helmholtz resonator,
designed so that its resonant frequency falls within the stopband of the LPF. Two LPFs were
analyzed: CLC-LPF, modeled as shown in Fig. 5.4a, and its dual, LCL-LPF, modeled as shown in
Fig. 5.4b.

L/2 L/2 L L
L,
G T C
+ +
@) (b)

Figure 5.4 Equivalent circuit of the Helmholtz resonator-loaded (a) CLC-LPF, and (b) LCL-LPF. To preserve
the symmetry, the inductor of CLC-LPF is modeled with two inductances equal to L/2

In such an environment, Helmholtz resonator is driven by pressure variations in the channel
regardless of whether it is located at the inductive or the capacitive section of the acoustic filter. It
should be noted that the equivalent circuits from Fig. 5.4 are in essence the same as those of a short
section of a Helmholtz resonator loaded simple duct. The only difference is in the actual values of L
and C: whereas in the case of LPF, L and C are significantly larger than L, and C,, in the case of a
simple duct they are very similar. Therefore, to analyze the influence of the type of the host to CNZ
propagation, the influence of decreasing L and C was analyzed. In Fig. 5.5, the responses of both

circuits are compared to the responses of original LPFs.
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Figure 5.5 Comparison of simulated lossless responses of equivalent electrical circuits of acoustic CLC- and
LCL- low-pass filters, and the same low-pass filters loaded with one Helmholtz resonator at their central
sections.

It can be seen that the inclusion of the Helmholtz resonator in both cases results in a new
transmission peak and a new transmission zero in the stopband of LPF. As expected, the transmission
zero always occurs at f.. However, the transmission peak occurs at a frequency higher than f, for
Helmholtz resonator coupled to the capacitive section and lower than f, for Helmholtz resonator
coupled to the inductive section of the filter. To analyze the nature of obtained transmission peaks, the
frequency at which CNZ propagation occurs is derived analytically, for both Helmholtz resonator
loaded CLC-LPF and LCL-LPF.

Provided that the overall length | of the analyzed structures is sufficiently small, they can be
regarded as homogenous, and their effective wave number can be calculated. We note that this
condition holds, although it might seem that in the actual implementation both structures are long with
respect to the guided wavelength. However, as it will be shown, at the CNZ frequency the structures
support CNZ propagation with constant phase over physically long distances, so they are in fact short
with respect to the wavelength and the homogenization process can be applied. The complex

wavenumber k =k"+ jk" can be calculated from the ABCD matrix as kl =arccos(D) . In the case of

the Helmholtz resonator loaded CLC-LPF, D can be obtained as:

1

+jwC
D=1+———F—— (5.10)

Z1(Zp+2Zy)
where Z, = joL/2 and Z, =(1—a)2LrCr)/ja)Cr. Similarly, for the Helmholtz resonator loaded

LCL-LPF, D isequal to:

w3LC C
D=1——(1 zL_ 2LC> 5.11
1wl \- ¢ @hrlr ®.11)

C
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The attenuation constant k’ and the wave number k” obtained from Egs. (5.10) and (5.11) are plotted
in Fig. 5.6.
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Figure 5.6 Attenuation constant k' and wave number k” for the Helmholtz resonator loaded CLC-LPF and
LCL-LPF. The values of circuit elements are chosen as typical for acoustic circuits: L= 2500 H,, C= 0.14 nF,,
L,= 11150 H,, C,= 3.93 pF, (where units H, and F, are “acoustical” henry and “acoustical” farad, defined as

H.= kg/m* and F,= m*/Pa).

It can be seen that k” equals zero at two different frequencies, fo; and fo,, the first one before
and the other one after the stopband. In fact, CNZ propagation will be supported only at the one of
these frequencies where the condition D =1 is fulfilled, i.e. where k’=0. In the case of the
Helmholtz resonator loaded CLC-LPF, this frequency is fo;, which is obtained from Eg. (5.10) by

equating D to 1:

for = -
o= = (1,+0) (5.12)

2C+Cr L+

In the case of the HR-loaded LCL-LPF, this frequency is fg,, obtained similarly from (5.11):

for == |1+, (5.13)

21, /L-Cy
CNZ frequencies fq; and fy, correspond to central frequencies of two transmission peaks in Fig. 5.5. It
can thus be concluded that the frequency at which CNZ propagation actually occurs, fo; or fy,, depends
on whether the host is inductive or capacitive. For a given Helmholtz resonator (i.e. for fixed L, and
C,), the CNZ frequency of the Helmholtz resonator loaded LCL-LPF (5.13) depends only on C. It
should be noted that since fo,>f, for all values of C, the CNZ transmission peak will always occur
above the transmission zero at f,, as was the case in Fig. 5.5. If C is sufficiently large, fo, approaches
f.. However, if C is significantly decreased, fyp, increases quite rapidly, thus shifting the CNZ
frequency out of the range of interest and finally into the range where the second harmonic of LPF is
positioned. For that reason, a simple acoustic duct cannot be practically used as a host in CNZ

structures since its capacitance C is too low. A similar analysis can be performed for Helmholtz
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resonator loaded CLC-LPF. Apart from the host capacitance C, in this case the CNZ frequency
depends also on the host inductance L, Eq. (5.12). For values of L and C typical for an acoustic LPF,
e.g. for L= 2500 H, and C= 0.14 nF,, are fy; will be smaller than f,. This corresponds to a situation in
which CNZ transmission peak occurs below the transmission zero at f;, as was the case in Fig. 5.5.
However, if L or C are decreased, fo; increases and eventually becomes larger than f,. For sufficiently
small L and C, fy; behaves as fo,, i.e. both types of LPFs behave as simple acoustic ducts, not suitable
to be used as CNZ hosts.

5.2 Simulation models and results

A structure used to verify compressibility near-zero propagation was designed and simulated in the
COMSOL multiphysics FEM simulator and transmission line model was designed based on ABCD
matrices as described in the Chapter 4. To increase the visibility of the near-zero effect, we opted for
a CLC-LPF and loaded each of its capacitive sections with one Helmholtz resonator, as shown in Fig.
5.7. Dimensions of Helmholtz resonator are: cavities &8.5x10 mm, cylindrical necks &2 x28 mm,
and of CLC-LPF: C sections @52 %20 mm, L section &10x80 mm. The overall length of such a
CNZ metamaterial is 120 mm i.e. approximately0.31, where A is the sound wavelength in the air at

the CNZ frequency, arbitrarily chosen to be f, =760 Hz. The CNZ metamaterial is inserted in an

acoustic duct, 16 x500 mm on both sides.

Figure 5.7 Compressibility near-zero (CNZ) metamaterial

5.2.1 Simulation model in COMSOL Multiphysics

The first model was designed and simulated in COMSOL Multiphysics FEM simulator. Two
structures were designed, the compressibility near zero metamaterial (Fig. 5.7) and the CLC-LPF with
same dimensions like in the near-zero structure just without Helmholtz resonators. From the layout of
the structure it can be seen (Fig. 5.7) that the system does not contain any mechanical element such as
a membrane and in this case the pressure acoustic model is enough for a complete modeling of the
system. In this model just the inner part of the tubes was defined within the simulator and the walls of
the tubes were modeled with hard wall boundary. Plane wave radiation was used as a sound source
and the open end of the outlet tube was modeled with PML boundary condition. Four boundary

probes were placed in the system as described in Chapter 4, and the obtained pressure values were
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used to calculate the transmission (S»;) and reflection parameters (S;;) according to Egs. (4.1) and
(4.2). Frequency domain solver was used to simulate the metamaterial in the frequency range from
200 Hz to 2 kHz. Simulation was done without losses, the narrow pipe effect was not included,
because in COMSOL 4.0 was not possible to include this type of losses and the viscous losses in the
air itself are negligible. Simulation results (transmission parameters) for compressibility near-zero

metamaterial and the conventional CLC-LPF in the lossless case are shown in Fig. 5.8.
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Figure 5.8 Simulated transmission coefficient of the CLC-LPF and the CNZ metamaterial (lossless)

From the simulation results it can be concluded that the theoretical prediction was right and a
new transmission zero and a new transmission peak appear in the stopband region of the LPF. The
transmission zero is on a lower frequency than the peak, exactly as predicted in the case of Helmholtz
resonator loaded capacitive section. The compressibility near-zero nature of propagation in the narrow

pass-band around f, is further validated by an almost constant value of phase along the axis of the

compressibility near-zero metamaterial, Fig. 5.9. In the case of a conventional acoustic duct of the
same length, a total phase shift of over 80° is accumulated. However, in the case of the
compressibility near-zero metamaterial, this phase shift is reduced to only 5.7°. Although the
compressibility near-zero metamaterial is long in terms of guided wavelengths, it exhibits a relatively
constant phase, implying that an acoustic wave does not propagate but rather tunnels through it with
an effectively infinite phase velocity. As a consequence, incoming waveforms are replicated at the
output port, and the transmission properties of such a medium are uniquely characterized by its ports
only. Moreover, the flat phase distribution in Fig. 5.9 demonstrates that compressibility near-zero
propagation is not only an “effective” phenomenon visible solely at the ports, but rather a
characteristic of the entire medium. For example, if two independent acoustic waves propagate
through compressibility near-zero metamaterial, at any particular moment they interfere in an

identical way at each point. This gives rise to another peculiarity of compressibility near-zero media:
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since there is no phase change in the direction of propagation, unit cells can be of arbitrary length, not
necessarily sub-wavelength. The unit cell of the proposed compressibility near-zero metamaterial
could be identified in various ways, e.g. as a capacitive section loaded with a Helmholtz resonator
followed by an inductive section. By cascading such unit cells, relatively large with respect to the
wavelength, one-dimensional compressibility near-zero acoustic metamaterials of arbitrary length can

be made.
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Figure 5.9 Simulated phase distribution along the axis of the CNZ metamaterial at the CNZ frequency
f, =760 Hz compared to the phase along a conventional duct of the same overall length

5.2.2 Transmission line simulation model for a compressibility near-zero structure

The compressibility near zero metamaterial also was modeled using transmission line theory (Chapter
4). Every section was modeled as a transmission line section with series acoustic impedance and shunt
acoustic admittance and characterized by ABCD matrices. ABCD matrices for all sections were
connected in cascade. The block diagram of a compressibility near-zero metamaterial is shown in Fig.
5.10.

[CABCD] [CABCD] [LABCD] [CABCD] [CABCD]

Figure 5.10 Block diagram of the near-zero metamaterial

The structure consists of seven blocks which are connected in cascade. Cagcp block is the
ABCD matrix for a half-length capacitive duct in the third order low pass filter, because the
Helmholtz resonator is placed in the middle of the capacitive section and to model this, the capacitive
section was split into two sections between which the Helmholtz resonator was placed. Lagcp block is

the ABCD matrix of the inductive section of the third order low pass filter. The Helmholtz resonator
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was modeled with a shunt connected admittance matrix (Y block) and using matrix transformations
it was transformed into the equivalent cascade connected ABCD matrix. After the transformation the
equivalent ABCD matrix for the whole system was calculated in the frequency range from 200 Hz to
2 kHz and transformed to the final acoustic scattering matrix. The inner and outer duct were included
in the system through the acoustic characteristic impedance Z;=2-10° [Pa-m™] in the transformation of
the equivalent ABCD matrix to S matrix [69]. The Matlab code for modeling compressibility near
zero metamaterial is given in Appendix A3. The calculated values of the unit length acoustic series
inductance and the acoustic shunt capacitance for all tube sections in the system are given in Table
5.1.

TABLE 5.1 SERIES INDUCTANCE AND SHUNT CAPACITANCE VALUES

Unit length acoustic series

Unit length acoustic shunt

Elements
inductance [kg/m°] capacitance [m*/Pa]
Inductive section in LPF 1.5915-10* 5.4353-10°
Capacitive section in LPF 588.5908 1.4697-107
Inductive section HR 3.9789-10° 2.1741-10™
Capacitive section HR 2.2028:10° 3.9270-10™%°

Simulation was done without and with losses (narrow pipe effect). In the lossless case in the
Egs. (4.21) and (4.22) values of F, and F; were set to zero. The simulation results with and without

losses are shown in Fig. 5.12.
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Figure 5.11 Simulated transmission coefficient of the compressibility near-zero metamaterial in transmission
line model without and with losses

Transmission line simulation results are the same as the results from the FEM simulation. The
new near-zero transmission peak is created at f,= 760 Hz. When all losses are included in the model,

it results in 15dB attenuation in the transmission peak. Due to narrow necks of the Helmholtz
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resonator, thermo-viscous losses are significant, which explains relatively large insertion losses at f; in

the lossy simulation model.
5.3 Fabrication and measurements

For experimental verification of theoretical and numerical results the compressibility near zero
metamaterial from Fig. 5.7 was fabricated with the same dimensions as shown in previous section.
Based on the method for extraction of acoustic scattering parameters from Chapter 4, laboratory
measurement system for measurement acoustic S-parameters was developed and the CNZ structure
was characterized with developed system and compared with simulation results.

5.3.1 Fabricated CNZ metamaterial

The entire CNZ structure and the feed acoustic ducts are made of steel. The cavity and neck of the
Helmholtz resonators were engraved by mechanical drilling on metallic slabs before being assembled

together with other elements. The fabricated structure is shown in Fig. 5.12.

Figure 5.12 Fabricated CNZ structure

5.3.2 Experimental setup

The measurement of acoustic S-parameters was based on the method described in Chapter 4. Based
on this method a laboratory measurement system for determining the acoustic S-parameters (an
acoustic vector network analyzer) was developed. The laboratory measurement system is shown in
Fig. 5.13.
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Figure 5.13 Laboratory measurement system for measuring acoustic S-parameters

The system consists of five basic elements: the sound source, four calibrated microphones,
coaxial cables, digital oscilloscope and a computer used for signal generation, signal processing and
acquisition. Sinusoidal signal of a certain frequency was generated by the program Audacity 1.3.13,
on the computer with a sound controller of type IDT 92HD87B1, IDT High Definition Audio Codec.
The signal was sent to electroacoustic transducers (speakers) of type FLAT 34 OD02902Y.L, as
shown in Fig. 5.14.

Figure 5.14 Electroacoustic transducer (speaker) of type FLAT 34 OD02902Y.L

The sound was generated in the range of 200-1000 Hz with 20 Hz steps, decreased to 0.25 Hz
in the near-zero range. The measurements were made using four calibrated microphones (EMM-8,
iSEMcon) mounted with their front surfaces aligned flush with the internal duct wall, through small
openings in the wall. Microphone EMM-8, iSEMcon with a small diameter (approx. 8 mm) and with
length 314 mm shown in Fig. 5.15 is an electret condenser microphone and bias voltage (5V) was
needed to supply the built in FET. The microphones were placed at the distances of 50 mm and 100
mm from each side of the CNZ structure, and the measured levels of acoustic pressure in the duct at
these points were used to recover the direct and the reflected acoustic wave and calculate the S-

parameters.
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Figure 5.15 Microphone EMM-8 iSEMcon

Microphones were connected with four-channel digital oscilloscope Tektronix TDS 2024B via
four coaxial cables of the same lengths. For the characterization of the coaxial cables, the impedance
magnitude and the phase of the cables were measured with HP4194A Impedance/Gain Phase
Analyzer in the frequency range from 100 Hz to 1 kHz. Measured impedance characteristic magnitude

|Z] and the phase © for four coaxial cables are shown in Figs. 5.16a and b.
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Figure 5.16 Impedance characteristic of the coaxial cables which were used during the measurements: a)
magnitude b) phase

From measured results it can be seen that the magnitude characteristics for the four cables
overlap almost completely, just a slight difference can be observed. But as regards phase
characteristics it can be seen that the first cable and the fourth overlap almost completely, as well as
the second and the third cable, but between these pairs there is a difference of about 2°. This
difference was significant and as it could distort the measured values, it had to be taken into account.
Based on these measurement results the system was calibrated, and the differences in magnitudes and
phases between the cables were automatically corrected by post-processing. A four-channel digital
oscilloscope Tektronix TDS 2024B (Fig. 5.17) was used to measure the electrical signal from the
microphones. In all channels the entire waveform (2500 samples on each channel) was measured and

saved at the same time.

Figure 5.17 Four channel digital oscilloscope Tektronix TDS 2024B
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From the digital oscilloscope measured sighals were sent to the computer for further
processing. The measured signals from all four channels, at the same frequency, which in this

example is 710 Hz, are shown in Fig. 5.18.
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Figure 5.18 Measured signals from all four channels, at the same frequency (710 Hz)

The same process was repeated for all frequencies of interest, i.e. from 200 Hz to 1000 Hz with
20 Hz steps, decreased to 0.25 Hz in the NZ range (755 Hz-765 Hz). The measured signals were sent

to the computer for signal processing.
5.3.3 Signal processing and data acquisition

Signal processing and data acquisition consist of three parts, noise reduction (filtering), estimation of
the amplitude and phase of the measured signals, and calculating the acoustic S-matrix using Egs.
(4.1) and (4.2). The first part is the filtering of high frequency components of the measured signal
(higher harmonics and noise). A 3dB digital resonator with the resonance frequency coresponding to
the frequency of the excitation signal was implemented as a filtering element [100-101]. The block

diagram of the implemented digital resonator and its transfer function are shown in Figs. 5.19a and b.
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b)

Figure 5.19 Digital 3dB resonator a) block diagram, b) transfer function

The transfer function of the resonator in the complex domain is:
G

H(2) = e amree 1y (5.14)
where:
G=(1-71)J1—-2cos2¢p+7r2. (5.15)
The phase change 4¢ that occurs when the signal passes through the resonator is equal to:
Ap = arg(1—2rcosp e /¥ + r2e7j2¢), (5.16)
where ¢ is the resonance frequency of the resonator normalized by the sampling frequency f:
Q= Zn%’ , (5.17)

The parameter r is defined with respect to the 3 dB bandwidth 4w as follows:
r=1-22, (5.18)
where in this case 4w = 0.02. The output signal Y(z) in the complex domain is:

Y(2) = H2)X(2), (5.19)
where H(z) is the transfer function of the resonator, defined by Eq. (5.14), and X(z) is the input signal
in the complex domain. After the filtering just pure sinusoidal signals remain, at the desired
frequency. In the second part of processing the amplitude and phase of the periodic signal are
determined, thus obtaining the pressure phasor. The measured sinusoidal signal can be written in the
following form:

yu = Ay sin(wot + 0y) , (5.20)
where Ay and O\ have unknown values, amplitude and phase of the measured signal, respectively.

The amplitude of the measured signal is determined as the square root of the signal power:

Ay = /R, [0] = JP (5.21)

which is calculated from the autocorrelation of the measured signal:

Ryy[n] = X¥Zo y[kly[n + kI . (5.22)
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Before determining the unknown phase of the measured signal, it is necessary to define a new
sinusoidal signal with amplitude equal to one and zero initial phase, and with the same frequency like

the unknown signal. The new sinusoidal signal is, therefore, defined as:

g = sin(wyt). (5.23)
Discrete (cyclic) convolution of the newly defined signal and the filtered input signal is given by:
E=(9 ®ym)(M) = Xh=1yu(m) g(n —m). (5.24)

The convolution of two signals reaches an extreme value (peak) when the two signals are in phase
folded, or when the signals are in phase. After processing, the unknown phase of the measured signal
with the included phase shift from the digital resonator (A¢) becomes:

Ny
N
where N is the total number of samples. After determining the amplitude and phase of the measured

Oy = 2T — + Ag (5.25)

signal it is possible to reconstruct the measured signal in the form Eq. (5.20). A comparison of the
measured and reconstructed signals on all four channels at the same frequency is shown in Fig. 5.20.
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Figure 5.20 Measured (magenta) and reconstructed (black) signals
The reconstructed signal can be written in phasor form:
Yu = |Ay e/ (5.26)
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Signals expressed in this form are convenient for use in Egs. (4.1) and (4.2), from which the acoustic
S-parameters for any unknown two port linear time invariant acoustic circuit can be obtained. Matlab
code for a signal processing is given in Appendix A4.

5.4 Measurement results

The fabricated compressibility near-zero metamaterial was measured using the technique described in
the previous section. Fig. 5.21 shows measured transmission coefficients from three sets of
measurements in the frequency range from 600 Hz to 920 Hz.
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Figure 5.21 Measurement results for three sets of measurement

Between the different sets of measurement there is a good agreement with a slight shift of the
resonant peak. This small variation is a result of external parameter variations, such as room
temperature variation. The relatively large measured insertion losses at the near-zero frequency are
the consequence of the significant narrow pipe effect in the necks of the Helmholtz resonators. Figure
5.22 shows the simulation results from FEM and transmission line model with and without losses
compared with the measured results.
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Figure 5.22 Compared simulation and measured results

Measured and the simulation results where all losses are included are in good agreement, which
validates our theoretical predictions.

5.5 Applications of Helmholtz resonator based near-zero metamaterials
5.5.1 Reducing insertion losses and increasing near-zero bandwidth

To demonstrate the versatility of the approach, we varied the number of resonators loading each of the
capacitive sections of the host filter, Fig. 5.23.

Figure 5.23 Multiple Helmholtz resonators

This affects the compressibility near-zero frequency only slightly, but it significantly reduces
the insertion loss and increases the fractional bandwidth due to coupling between resonators. Such
behavior is desirable from the point of view of practical applications and it can be controlled by

conventional filter design methods. In Fig. 5.24 it is shown how the insertion losses decrease if the
number of Helmholtz resonators increases.
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Figure 5.24 Reduced insertion losses and increased bandwidth

5.5.2 Multiband compressibility near-zero propagation

A similar approach can be used to achieve simultaneous compressibility near-zero propagation at
multiple arbitrary frequencies, provided that unit cells with multiple resonant frequencies are used
instead of regular Helmholtz resonators. For example, a double Helmholtz resonator [102], shown in
Fig. 5.25, supports two resonant frequencies, which depend on the individual dimensions of cavities
and necks and thus can be independently engineered.

a)

I o
b)

Figure 5.25 Double Helmholtz resonator a) layout, b) equivalent circuit model
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A double Helmholtz resonator connected to a conventional duct produces a double notch.
Figure 5.26 shows the transmission and reflection characteristic of the conventional duct loaded by a

double Helmholtz resonator.
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Figure 5.26 Reflection and transmission coefficient of the double Helmholtz Resonator

The resonant frequencies where the notches are located can be calculated from the equivalent

circuit model:
foy = L1Cy+LyCy+LyCo—y/(L1Cy+LyC1+LyC0)%—4L1L,C1Cy (5.27)
Tl 2L,L,C,Cy '
fop = L1Cy+LyCy+LyCoty/(L1Cy+LyCi+LyC0)%—4L1L,C1Cy (5.28)
r2 2L,L,C,Cy '

The extracted real and imaginary parts of effective compressibility are shown in Fig. 5.27. At
both resonant frequencies the effective compressibility has a negative value and follows the
Lorentzian-type shape.
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Figure 5.27 Extracted effective compressibility for a double Helmholtz resonator
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By replacing Helmholtz resonators in the system shown in Fig. 5.7 with double Helmholtz
resonators, simultaneous compressibility near-zero propagation at two independent frequencies can be
obtained. Figure 5.28 shows the transmission coefficient of the proposed structure obtained from
COMSOL simulation.
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Figure 5.28 Simultaneous compressibility near-zero propagation at two independent frequencies.

The new unit cell produces two compressibility transmission peaks with transmission zeros on
the left side. Transmission zeros are the results of negative values of the effective compressibility at
the frequencies f,; and fi,.

5.5.3 Compressibility near-zero bandpass filter

Finally, to demonstrate the applicability of the near-zero concept, it will be shown that it is possible to
simultaneously use both near-zero structures as building blocks to achieve a filtering function with a
steep roll-off at both sides of the passband and with a small insertion loss. To illustrate this approach,
a simple compressibility near-zero bandpass filter is designed, shown in Fig. 5.29. A CLC-LPF is

used again as a host structure.

Figure 5.29 High-selectivity acoustic filter based on compressibility near-zero propagation
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The third resonator, coupled to the inductive section of the lowpass filter, works at the first
near-zero frequency fo. The central frequency of the compressibility near-zero passband is
determined by the dimensions of the outer resonators, while the dimensions of the inner resonator are
fine-tuned to position the transmission zero on the right-hand side of the passband. Transmission and
reflection coefficient are shown in Fig. 5.30. The central Helmholtz resonator has a cavity of
?14.22x2.8 mm and a neck of @2x28 mm.
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Figure 5.30 Transmission and reflection coefficients of the compressibility near-zero filter

The insertion loss is thus reduced to 2.3 dB while the fractional bandwidth, mainly determined
by the slope of the effective compressibility function around the zero value, is equal to 1.2 %. Unlike
left-handed structures, near-zero filters do not suffer from inherently large passband insertion losses.
This is due to the fact that the imaginary part of the effective compressibility is relatively small
around the CNZ frequency while it exhibits significantly larger values at frequencies where the real
part of the effective compressibility is negative, i.e. at frequencies where left-handed acoustic devices
operate, which results in large insertion losses.

54



6. Novel negative density resonant metamaterial unit cell and its applications

Negative values of effective mass density have so far been achieved using composites [29, 35-37], or
exploiting the equivalence to the transmission-line-approach to metamaterials [39, 63, 103, 104]. In
the latter case the frequency dependence of the effective density of unit cells exhibits the Drude
behaviour, while no attempt has been made so far to design a unit cell with effective mass density of
the Lorentzian type dispersion model. In electromagnetics the most well-known resonant type
metamaterial unit cells are the split-ring-resonator (SRR) [18] and the complementary split-ring
resonator (CSRR) [105, 106]. The acoustic equivalent of the CSRR, based on the analogy given in
Chapter 2, is the Helmholtz resonator. On the other hand, the acoustic equivalent of the SRR,

resonant type metamaterial unit cell with negative density, was unknown previous to this research.
6.1 Description and theoretical analysis of the novel unit cell

In the electromagnetic (EM) case, the most typical unit cell exhibiting Lorentzian-type permeability is
the split-ring resonator (SRR). With the aim of obtaining a novel Lorentzian-type density acoustic unit
cell, i.e. the acoustic counterpart of such an EM unit cell, we design its physical structure so as to
match its lumped-element equivalent circuit to the one of the SRR-loaded microstrip, given in [107,
108] and shown in Fig. 6.1.

L's
(Y YY)

---TL‘;‘(‘(\_—”_

c. o T

Figure 6.1 Lumped-element equivalent circuit of the SRR-loaded microstrip

Namely, in the EM case the equivalent circuit features a capacitor with both terminals at a
potential other than ground. Such an element does not have a purely acoustic counterpart, but it can be
introduced into the physical system as mechanical compliance. Following that line of reasoning,
which relies on standard electromechanic and electroacoustic analogies, we propose that the
corresponding acoustic unit cell is a thin elastic membrane placed in a short tube coaxial with an
acoustic duct (acoustic split ring resonator — aSRR) [109], shown in Fig. 6.2 together with its

equivalent circuit, which almost exactly matches that of the SRR-loaded microstrip.
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Figure 6.2 Layout and the equivalent electrical circuit of the proposed acoustic metamaterial unit cell

From the equivalent circuit we can see that it includes a series capacitance as was the case with
the membrane type acoustic metamaterial unit cell described in Chapter 3. However, in this case there
is another inductive branch which is connected in parallel with the series capacitance. This inductive
line is very important in the realization of Lorentzian type dispersion, since without such a line the
structure behaves as a high-pass filter, which blocks low frequency waves. It can be seen in other
types of membrane based unit cells that they have a cut-off frequency, a so called “static limit” [110],
and that their effective parameters have a Drude-like shape. The acoustic unit cell is not the exact
counterpart of the electromagnetic unit cell, because in the capacitive branch we have an inductive
section too. We cannot neglect inductances there because they model the mass of the membrane and
the inertia of the air in the inner tube. However, the inductors connected in series with the capacitance

can be absorbed into the outer inductance.
6.1.1 Analysis of the proposed unit cell

Figure 6.3 shows the cross section of the unit cell with its geometrical and physical parameters, where
d is the length of the unit cell, M is the mass of the membrane, p is the density of the air, r and R are
the radii of the inner and the outer tube respectively. It can be shown that the proposed unit cell

indeed exhibits negative effective density at a particular range of frequencies.

Figure 6.3 Cross section of the proposed acoustic metamaterial unit cell
In the external part of the acoustic duct (one that surrounds the tube), with cross section
A, = (R? — r?)m, the total mass of the fluid is:
Mme = poAed, (6.1)

where d is the length of the tube. The external force acting on this mass is:
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F, =A.(p1 — p2)- (6.2)
As d is significantly smaller than the wavelength, the previous expression corresponds to:

d
F,=—-4.20d, (6.3)
and Newton equation yields:
2
poded Gt = Ao d, (6.4)
where g, is the displacement of the fluid particles in the external duct:
d*q. _ dp
- _£ 6.5
Po"aez = Tdz (63)
On the other hand, the total mass in the tube (internal duct) with cross section 4; = r2m is:
m; = pOAid + M, (66)

where M is the mass of the membrane. Since the tube is short in comparison to the wavelength, the
longitudinal displacement of the fluid particles varies linearly with z, and thus the average
displacement of the membrane is equal to the average displacement of fluid particles in the tube. From
the Hooke’s law, under the linearity assumption, which holds when the membrane displacement g; is

small, we can obtain the total force acting on the total mass in the internal duct as:

F; = Ai(p, — p2) — 8mrq;, (6.7)
where T is membrane tension. For the same reasons as above, the Newton equation gives:
d*q; dp
(PoAid + M) W = _Ai Ed — 87TTCIL'. (68)

After division of both sides by A;d we obtain:

(1+ M )dzqi__d_p_@ . (6.9)
po podid

iz = dz Ad™ |
Under the assumption that the displacement is a harmonic function, q; = q;oe™'*¢, the relationship

between the acceleration and displacement can be established as:

1 qui
G =——3—7 (6.10)
leading to:
( ,_ 8mt )dzqi __dp (6.11)
P otad) aer T T dz’
where p’ = p, (1 + pAL_d) Is the average density in the internal duct (that of the fluid loaded with the
membrane).
The continuity equation at the edge of the unit cell yields:
dqe dg; dq
L it 6.12
Ae dt +Al dt (A€+Al) dtl ( )

where the right side denotes the total volume flow through the unit cell (both external and internal
duct), with g denoting effective displacement corresponding to that volume flow. Another diffe-

rentiation in time yields:
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d*q d*q; d’q
eﬁﬁ'x‘liﬁ:(z‘le +Ai)W. (613)

Combining Eq. (6.13) with Egs. (6.5) and (6.11), we obtain:

A

dp
1dp - d%q
Po ( - szid)

In any fluid effective density can be considered as the constant that defines the proportionality

2

between gradient pressure force — Z—Z and the acceleration of the fluid ZTZ' While in regular fluids this
constant is positive, which is the consequence of the fact that the direction of the acceleration and the
force is the same, in metamaterials we can expect negative values of effective density at certain

frequencies. Effective density as defined above can be easily obtained from the previous equation:

dp

Ap + A
pet ¥ g =T 1 (6.15)
dat? po € (p'— 27”) t
w*A;d

It can be noted that for very small values of A4, in relation to A; (very thin external duct), this
expression simplifies to:

8nt
w?Ad’

which is the formula given in [39] for the effective density of a membrane in a (simple) hollow tube.

Pett =P’ — (6.16)

It can be easily shown that the effective density as obtained above exhibits resonant behavior at the

frequency:

f 1 8nt
= o — (6.17)
2n Jaid (p" + 5 po)

and is equal to zero at the frequency:

1 8wt

=— |—, (6.19)
2 |A;dp’

fo

The real part of the effective mass density obtained from Eqg. (6.15) is plotted in Fig. 6.4. The
following parameters of the aSRR have been used: M =88pug, d =32mm, R =8.1mm, r =

3mm, T=5N/m.
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Figure 6.4 Effective density for a proposed unit cell (aSRR)
From figure 6.4 it can be concluded that the real part of mass density has a Lorentz-like shape,

and that it has a negative value in a narrow frequency range. Furthermore, we can see that this type of
unit cell has no cut-off frequency, i.e. the high wavelength waves can also pass.

6.2 Modeling the novel metamaterial unit cell

For the proposed unit cell two models were created. The first one is a FEM simulation model which
was made in COMSOL Multiphysics simulator. The second one is a transmission line model which is
based on electro-acoustical analogy and the circuit theory (ABCD matrix, matrix transformations

etc.).
6.2.1 Finite element model in COMSOL Multiphysics

For modeling the proposed unit cell in COMSOL Multiphysics one special sub-module, the Acoustic-
Structure interaction module, was used. The proposed unit cell is combination of acoustic and
mechanical elements, which is why a simple pressure acoustic module was not sufficient for
modeling. For simplifying the simulation and decreasing the simulation time a 2D axisymmetric

model of the structure was created. The layout of the designed structure is shown in Fig. 6.5.

59



Z=0
Figure 6.5 Layout of the structure in a 2D axisymmetric model

The unit cell was put in the long hollow cylindrical tube filled with air and the four probes were
placed as described in Chapter 4 (the extraction of the acoustic scattering matrix). The walls of the
tube were modeled with hard-wall boundaries, which is the acoustic counterpart of a perfect electrical
wall in electromagnetic simulators. The wall of the inner tube was also modeled with hard boundary
condition. The membrane is a mechanical part of the cell, and it was modeled with linear elastic
material model. Linear elastic material was characterized by its density (pm), Young’s modulus (E)
and Poisson’s coefficient (v). As material properties of the membrane we adopted values given for
DuPont Kapton FPC. The characteristic values of the membrane were E= 2.758 GPa, pn,= 1420
kg/m®, v=0.34 and the thickness of the membrane was set to h= 22 um. The membrane was
connected to the wall and loaded with tension 7 =5 N/m. Plane wave radiation was used as an
acoustic source. The other end of the tube was closed by PML boundary to model the open end.
Thermal and viscous losses have been modelled by the attenuation constant equal to 0.1 dB/m.
Reflection and transmission coefficients in the frequency range from 1 kHz to 1.4 kHz are shown in
Fig. 6.6.
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Figure 6.6 Reflection and transmission coefficients of the aSRR from FEM simulation

The results confirm that if a hollow duct with an otherwise allpass frequency response is loaded
with such a unit cell, a notch in the frequency response at the resonant frequency can be observed.
Namely, around f, the structure behaves as a single-negative medium and does not support
propagating modes.

The real part of the effective mass density obtained from Eq. (6.15) is plotted in Fig. 6.7, and
compared to the same parameter extracted from FEM simulations in COMSOL Multiphysics using
the approach described in Chapter 4.
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Figure 6.7 Comparison of the effective mass density of the proposed unit cell obtained from the analytical
expression and from FEM simulations

A very good agreement between the calculated and extracted effective mass density can be
observed, with a difference in the magnitude due to the fact that the analytical expression refers to the

lossless case.
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6.2.1 Transmission line model

It should be noted that this unit cell is more complicated than the CNZ structure, whose transmission
line model was described in the previous section. In the middle of the unit cell there is a mechanical
element (membrane), which cannot be modeled as a simple acoustic transmission line section. All
other sections were modeled as transmission line sections with series acoustic impedances and shunt
acoustic admittances and characterized by ABCD matrices, while the membrane was modeled as
acoustic impedance. The block diagram representing the model of the novel metamaterial unit cell is
shown in Fig. 6.8.

TL,

TL; Zy TL,

Figure 6.8 Block diagram of the aSRR

The structure consists of four blocks which are connected as shown in Fig. 6.8. Three of these
four blocks can be modeled with acoustic transmission line model (ABCD matrix) following the
method from Chapter 4, while the fourth one is the mechanical element (Zy). The TL, block is the
ABCD matrix for the half-length inner inductive tube in the unit cell (Fig. 6.2), having in mind that
the membrane is placed in the middle of the inner inductive tube section. The TL, block is the ABCD
matrix for the outer inductive section. Calculated values of the unit length acoustic series inductance
and the acoustic shunt capacitance for the inner and outer tube sections are given in Table 6.1.

TABLE 6.1 SERIES INDUCTANCE AND SHUNT CAPACITANCE VALUES

Elements Unif[ length acoustic sseries Unit Ieng_th acoustzic shunt
inductance [kg/m’] capacitance [m“/Pa]
Inner inductive sectionTL, 4.421-10* 1.9567-10
Outer inductive section TL, 7.1051-10° 1.2175-107

The membrane was modeled as a thin plate described by the transverse displacement which
satisfies the flexural wave equation. [63, 111, 112, 113]. The mechanical impedance for a thin plate
from [113] is

I, (k k + ], (k)1 (k
ZM — —jwm 1( mr)]O( mr) ]1( mr) 0( mr) (620)

Il(kmr)lz(kmr) - ]1(kma)12(kmr)
where r is the radius of the membrane, J, and I, are the regular and modified n-th ordered Bessel’s

functions, m is membrane mass, and k,, is the flexural wavenumber, which can be calculated as:
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K2 = o |27 (6.21)

where D is flexural rigidity, given by:

_ Eh3
12(1 —v?)’

where E is the Young’s modulus, v is the Poisson’s coefficient and h is the thickness of the

D (6.22)

membrane. The term p,y, represents surface mass density, defined as p;, = p,,h. From mechanical
impedance the acoustic impedance can be calculated as:

Z
Zym = S_“,j (6.23)

where S is the cross-section area of the membrane. Using the transmission line theory the series
connected acoustic impedance was transformed to a corresponding ABCD matrix and the whole
system was transformed to its equivalent ABCD matrix. After the transformation the equivalent
ABCD matrix for the whole system was calculated in the frequency range from 200Hz to 2 kHz and
transformed to the final acoustic scattering matrix. The inlet and outlet duct were included into the
system through the acoustic characteristic impedance Zo= 2-10° [Pa-m ] in the transformation of the
equivalent ABCD matrix to S matrix. Matlab code for transmission line modeling of the new
metamaterial unit cell is given in Appendix A5. In this simulation model the same dimensions and
parameters were used as in the FEM simulation model. The frequency response (reflection and
transmission coefficients) of the aSRR from the transmission line model when all losses (thermal and

viscous) are included is shown in Fig. 6.9.
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Figure 6.9 Reflection and transmission coefficients of the aSRR from the transmission line model

The response is same as in the case of the FEM simulation model. Figure 6.10 shows a

comparison of transmission coefficients obtained from both simulation models.
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Figure 6.10 Comparison of the transmission coefficient the proposed unit cell obtained from the FEM
simulation and from the transmission line model

The transmission characteristic exhibits a notch in a the narrow frequency range where the
density is less than zero, the medium is single negative and thus propagation is not allowed. Figure
6.11 shows the extracted effective density from both models compared with the analytical expression

for the effective density, given by Eq. (6.15).
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Figure 6.11 Comparison of the effective mass density of the proposed unit cell obtained from the analytical
expression, from FEM and from the transmission line model

A very good agreement between the calculated and extracted effective mass density can be

observed.
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6.3 Applications of the novel unit cell
6.3.1 Bandstop (single negative) acoustic medium

To illustrate the versatility of the proposed unit cell, we first use it to design an evanescent bandstop
acoustic medium. This structure is designed by cascading unit cells loading the host duct, as shown in
Fig. 6.12.

Figure 6.12 Acoustic bandstop medium (for convenience, only two unit cells are shown).

The bandwidth of such a medium can be controlled by conventional filter design methods, i.e.
by varying the number of unit cells used and by tuning their mutual coupling. The medium composed
of four unit cells positioned at distances equal to s =2 mm, analysed in Fig. 6.13, exhibits stopband
attenuation of more than 30 dB and a very steep roll-off. Such properties are quite desirable from the
point of view of practical application in any system with a need for low radiated sound power at a

particular frequency range.
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Figure 6.13 Simulated response of the acoustic bandstop medium

6.3.2 Dual aSRR

A modified version of aSRR is shown in Fig. 6.14. This modified unit cell is capable of operating at
two independent frequencies, which are determined by individual sets of geometrical parameters of

the structure and thus can be separately engineered.
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Figure 6.14 Modified (dual) aSRR

The modified unit cell produces negative effective mass density at the two different
frequencies. The real and the imaginary part of the extracted effective density is shown in Fig. 6.15.
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Figure6.15 Extracted effective density for a dual aSRR

The effective density is negative at two independent frequency ranges and in both cases it
exhibits a Lorentzian shape. The independent resonant frequency control is illustrated in figure 6.16
where the first and the second resonant frequency are independently tuned only by modifying the
diameter of the corresponding duct, namely by changing r;or r,. It should be noted that the
dimensions of the two inner ducts can be independently modified without affecting the rest of the
structure as long as the modifications are relatively small. On the other hand, if the change in either
1 Or 15, is significant, the other of the two parameters (and possibly R as well) would also have to be
modified to account for the changes in the acoustic inductances due to modified widths of air channels

in the system.
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Figure 6.16 Independent control of operating frequencies is obtained by varying the diameters of inner acoustic
ducts: 1y =1y = 3.2mm, 1y, =1y, = 2.8mm, 1y, = 3.3mm,r,, = 2.7 mm.

As three different scenarios are considered here, a), b) and c), there are three combinations of
the mass values, because both M; and M, depend on the radii of the corresponding tubes, which are
different for each of the scenarios. The mass per unit area of both membranes is equal to m' = 3.124 -
1072 kg/m?, from which the masses M; and M, can be easily calculated and in each case (M, =
m'r2m). By using a similar approach to the one presented above, a dual-band bandstop acoustic
medium can be designed by loading the hollow duct with thus modified dual-band unit cells.
Dimensions of the designed dual-band structure are equal to those used in case a above and d, =
6 mm. Two dual-band unit cells were used and positioned at a distance of s = 2 mm. The mass of
both membranes per unit area is 3.124-10% kg/m?. The simulated frequency response of such a

medium composed of two unit cells is shown in Fig. 6.17 and the extracted effective mass density of
the dual-band unit cell is shown in the inset.
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Figure 6.17 Simulated response of the acoustic dual-band bandstop medium and the extracted effective
parameters (inset)
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Even though composed of only two unit cells, the medium exhibits high selectivity, stopband

attenuation of around 20 dB and 10dB-fractional bandwidths of 3% and 2%, respectively.

6.3.3 Double negative acoustic band-pass filter

The new unit cell (aSRR) can be used to design a novel acoustic double negative metamaterial.

Namely, by combining aSRR with another structure capable of providing negative effective

compressibility (negative bulk modulus) in the same frequency range, real but negative values of the

wavenumber can be achieved, resulting in negative phase velocity i.e. in double negative propagation.

In Fig. 6.18 a novel acoustic double negative metamaterial is shown, where side holes on an acoustic

duct are used to realize negative effective compressibility of the Drude type [6.7], together with

aSRRs which provide negative mass density of the Lorentz type.

L

Figure 6.18 Double negative acoustic metamaterial

Dimensions of the designed structure are equal to those used previously and the side hole

dimensions are b =5 mm, h = 48.95 mm, L =34 mm. The extracted effective parameters and the

wavenumber of the double negative metamaterial are shown in Fig. 6.19.
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Figure 6.19 Extracted effective parameters and wavenumber of the double negative metamaterial

In the frequency range where both parameters are negative a new passband occurs, as shown in
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Fig. 6.20. The passband is characterized by negative values of wavenumber k', which proves that the
propagation is indeed double negative.
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Figure 6.20 Reflection and transmission coefficients of the double negative acoustic metamaterial

6.3.4 Density near-zero metamaterial using aSRR

In this section will be shown that the proposed unit cell, with an appropriate choice of host medium,
can be used to achieve near zero (NZ) acoustic wave propagation at the frequency where its effective
density, given by Eq. (15), is equal to zero [114]. The values of the parameters used in both
approaches were: M =0.88mg, d =18mm, R=4mm, r=3mm, t= 5N/m, and the
resulting resonant frequency was f, = 1175 Hz. Fig. 6.21 shows the comparison between the
effective density obtained from Eq. (15) and the same parameter obtained from TL model and FEM
simulation. A good match between the results obtained from analytical expression, the model and the
simulation can be seen.
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Figure 6.21 Effective mass density of the aSRR obtained from the analytical expression, TL model and FEM
simulation
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Effective density as a function of frequency exhibits resonant behaviour, and there are two
frequencies, fy; < f, and f,, > f,., at which its value is equal to zero. aSRR exhibits a notch around
fr, i.e., that the structure behaves as a single-negative metamaterial. For that reason, near-zero
propagation at f,); is characterized by very high attenuation. At f;, attenuation is significantly lower,
but the near-zero character of the propagation at f,, is not obvious because it is not easily
distinguishable from conventional propagation at frequencies immediately above. It can be concluded
that, for the purpose of clearly demonstrating near-zero propagation, an all-pass acoustic duct is not a
convenient host medium. A convenient host should exhibit a stopband at the frequency range of
interest and it should not support double negative (left-handed) wave propagation. In this specific
case, where effective density can have both positive and negative values, this implies that the effective
compressibility S.¢ Should be strictly positive. An example of such a host is a simple acoustic low-
pass filter, either CLC or LCL, provided that the aSRR operates above its cut-off frequency. In order
to demonstrate density near zero (DNZ) wave propagation we opted for a CLC filter as a host and

loaded its inductive section with one aSRR, as shown in Fig. 6.22a (not to scale).

------- Low-pass host
--------- FEM simulation

——TL model

-15¢
-20-

-25f

-301

Transmission [dB]
N
o

-35¢

-
o

o

-40/

10
1000 1200 1400 1600 f
Frequency [Hz]

_5800 400 600 800 1000 1200 1400 1600 1800 2000
Frequency [Hz]

Effective density [kglma]

45,

b)

Figure 6.22 Low-pass acoustic CLC filter (C sections £52x20 mm, L section £10x80 mm) loaded with one
aSRR in the L section (a) Layout (b) Frequency response obtained through TL model and FEM simulation

A TL model was created, analogous to the one described in the previous section, and a
corresponding FEM simulation was also carried out in COMSOL Multiphysics. The resulting

transmission coefficient is shown in Fig. 6.22b, where a very good match between the TL model and

70



FEM simulation can be seen. The dotted green line indicates the frequency response of the host low-
pass filter. The transmission peak in the stopband of the host corresponds to one of the frequencies
where effective density is equal to zero, namely to f,,. The frequency response exhibits a
transmission zero as well, and its frequency corresponds to the notch in the frequency response of the
aSRR itself. It should be noted that in this case the frequency of the transmission peak is higher than
the frequency of the transmission zero. It is also possible to demonstrate DNZ wave propagation by
loading each of the two capacitive sections of the CLC host with an aSRR, as shown in Fig. 6.23a. A
transmission peak and a transmission zero appear in the stopband of the host filter again, their
frequencies corresponding to the zero value of the effective density and to the notch in the frequency
response of the aSRR, respectively. However, in this case, the frequency of the transmission peak

corresponds to f4, and it is lower than the frequency of the transmission zero, as shown in Fig. 6.23b.
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Figure 6.23 Low-pass acoustic CLC filter loaded with two aSRR’s in its capacitive sections (a) Layout (b)
Frequency response

It should be noted that in case the unit cell is placed in a host structure, its effective density
changes because the space between the unit cell and the wall of the host acts like an additional
external duct. This includes an additional parallel inductance in the equivalent circuit, and eventually
results in a shift of the resonant frequency of the aSRR, visible in both Figs. 6.22b and 6.23b. The
shift in the case of the CLC host is more noticeable because the inductance of the additional external

duct is significantly smaller than the inductance of the actual external duct of the aSRR. It can also be
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shown that the situation does not change significantly if both inductive sections of an LCL low-pass
host or just the single inductive section of a CLC low-pass host are loaded with an aSRR. Whether the
transmission peak will be at a higher frequency than the transmission zero or vice versa depends only
on whether the aSRR is located in the inductive or the capacitive section of the host filter.

6.3.4.1 Multiband density near-zero propagation

Previous research suggests that the mechanisms for reducing insertion loss, increasing the fractional
bandwidth or achieving multiband propagation can be easily extended to the case of DNZ propagation
as well. For example, a dual band aSRR, shown in Fig. 6.14, has been shown to be exhibit zero
density at two independently engineered frequencies, and if placed in an otherwise all-pass acoustic
duct, two notches in the frequency response can be observed. Here we show that the same unit cell
can support simultaneous near zero propagation at two frequencies if placed in a convenient host,
such as the L section of the CLC filter used in the previous simulations. To that aim, a FEM
simulation was carried out, with results shown in Fig. 6.24, and it can be seen that two narrow
passbands emerge in the stopband of the host. The dimensions used in the simulation were R =
5mm,r; =3.2mm, 7, =3 mm, d; = 32 mm, d, =4 mm, M; = 1 mgand M, = 0.88 mg, setting
the two near-zero frequencies at f; = 856 Hz and f, = 1566 Hz. At these two frequencies the
effective density is equal to zero, as shown in the inset of Fig. 6.24, which confirms the NZ character

of acoustic wave propagation.
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Figure 6.24 Near-zero wave propagation at two independently chosen frequencies, obtained by loading the
inductive section of a CLC host with a dual-band aSRR

6.3.4.2 Near zero bandpass filtering

The versatility of the acoustic split ring resonator will be illustrated with an example of its use in NZ
bandpass filtering. Namely, it has been shown that in case aSRR is located in the inductive section of
the host filter, the transmission peak is at a higher frequency than the transmission zero, while in case

it is located in the capacitive section of the host filter, the opposite holds. Let us suppose that all three
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sections of a CLC host are loaded with one aSRR each, as shown in Fig. 6.25a, but that the
dimensions of the aSRR’s are slightly different, chosen so as to set their transmission peaks at the

same frequency.
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Figure 6.25 Near-zero bandpass filter (a) Layout (dimensions are the same as in the previous case except for
d, = 18.95 mm for the aSRR in the inductive section of the host, and d, = 17.4 mm for the aSRR in its
capacitive sections) (b) Frequency response (FEM simulation)

The aSRR in the inductive section is expected to introduce a transmission zero at a frequency
immediately below the transmission peak, while the aSRR’s in the capacitive sections are expected to
introduce transmission zeros at a frequency immediately above. The frequency response of the entire
structure will thus correspond to a bandpass filter with very small fractional bandwidth and a steep
roll-off. This expectation has been confirmed by a FEM simulation, whose results are shown in Fig.
6.25b. The bandwidth of the obtained filter is equal to 30 Hz (corresponding to a fractional bandwidth
of 2.4%), while the insertion loss is as low as 0.2 dB. It should be noted that, unlike left-handed

structures, NZ filters do not suffer from inherently high passband insertion losses.
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7. Acoustic surface waves on grooved surfaces

In recent research in the field of materials science there have been attempts to identify the acoustic
analogy of surface electromagnetic waves, particularly surface plasmon polaritons, which occur on
boundaries between highly conductive and dielectric media [115-121]. The principal difficulty in this
general case is the apparent nonexistence of an acoustic analogy of metals. However, in the case of
spoof plasmons [122-130], electromagnetic surface modes observed on highly conducting grooved
surfaces, a corresponding acoustic phenomenon exists and it is an acoustic surface wave propagating
at the boundary between a fluid and a hard grooved surface [131-133]. The understanding of this
analogy has given rise to new research in the field of controlling the behavior of surface acoustic
waves by tailoring the period, the width and the depth of the grooves. It has been shown that by
varying the geometry of the grooves in this way, the wave number of the propagating surface wave
can be made different from its initial value k,, even infinitely large [134-136]. This has led to a
number of applications such as sound trapping, where a gradient change of the surface texture has
been introduced to slow down and finally stop the surface wave at a desired position along the
structure [134-136], collimation of sound [137-139], or acoustic lensing, where it has been used to

tailor the phase pattern of the surface wave [140].

7.1 Introduction

There are many different types of acoustic surface waves depending on the nature of the two media
forming the interface (solid—solid, solid—fluid, fluid—fluid and so on) [141]. Here we will focus on
acoustic surface waves appearing on a fluid—fluid interface. The condition for the existence of an
acoustic surface wave propagating at the interface between two semi-infinite fluids is very similar to
the equation (Eg. 7.1) governing the presence of a surface electromagnetic mode running along the

interface between two dielectric media [137]:

KLkl

where k', and k", are the inverses of the decay lengths of the acoustic surface wave in media | and I,
respectively, and p' and p" are the corresponding mass densities. The mass density plays the same role
as the dielectric constant in the electromagnetic case. It is clear that if the two media have positive
mass densities, there is no acoustic surface wave propagation at the I-Il interface [137]. One
possibility for generating acoustic surface waves is to place a fluid layer of uniform thickness on top
of a semi-infinite fluid. Here, we consider a similar alternative, in which acoustic surface waves are
created by periodically corrugating the interface between a rigid body and a fluid. The simplest way
of doing this is by perforating a one-dimensional (1D) array of grooves. A rectangular-groove grating
is presented in Fig. 7.1, with a surface wave propagating in direction x, parallel to the surface of the

structure, in air.
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Figure 7.1 A typical grooved surface which supports propagation of acoustic surface waves.

The wave is purely evanescent in the direction z perpendicular to the surface. The reflection of
acoustic waves, and the behavior of surface waves, can be described by the same formalism as for the
transverse magnetic (TM) waves. The equations that describe the acoustic field and a TM field if the
structure is perfectly conducting are the same, provided the right equivalent quantities are substituted.
The magnetic field has a single component H, different from zero, and is perpendicular to the
incidence plane xz of Fig. 7.1. The electric field lies in the xz plane [131]. The fluid in region Il of
thickness h can be characterized effectively by a mass density that is different to the one associated
with the fluid in semi-infinite medium 1. In other words, we could say that medium Il is an acoustic
metamaterial. In the case of a grooved perfect rigid body, the dispersion relation (relation between
frequency, @, and wavenumber, k) of these geometry-induced acoustic surface waves is controlled by
the geometrical parameters of the array of grooves and the density of the fluid. When the width of the
grooves, a, is much smaller than the period of the array, d, a good approximation for k(w) is given by
[131, 137]:

k, = k\/1+( ) (tan kyh)? (7.2)

where ko = w/cs, With ¢s being the velocity of sound in medium I. Figure 7.2 shows the dispersion
relation of the acoustic waves in air (blue line) and dispersion relation of the acoustic surface waves
when the fluid medium 1 is air and the geometrical parameters are, d=5 mm, a= 1 mm and h =

24 mm (red line).
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Figure 7.2 Dispersion diagram of the acoustic surface wave on grooved surface

In Fig. 7.2 it can be seen that the wavenumber for lower frequencies of the surface waves is
similar to the wavenumber in the air. At higher frequencies the wavenumber start to increase and at a
certain frequency it goes to infinity. This frequency is like the resonance frequency in the surface
plasmon polariton (SPP) in optics. The acoustic “plasma” frequency f,, where the wavenumber
reaches infinity, depends on the geometrical parameters of the grooved surface and can be calculated
as,

Co
fap = E

where ¢, is the speed of sound in the medium | and h is the depth of the grooves. For frequencies

(7.3)

above f,, the surface wave propagation is not possible.
7.2 Applications

Owing to their strong dispersion nature, acoustic surface waves on grooved surfaces can be used in

many applications such a acoustic wave trapping, extraordinary transmission etc.
7.2.1 Slowing down acoustic surface waves on a grooved surface

Slowing down optical waves with resonating photonic structures introduces controllable optical
delays and allows temporary storages of light such as all-optical memories and switches [135].
Acoustic surface wave propagation along a periodically grooved rigid surface surrounded by air can
be engineered with their propagation properties controlled by geometrical means. These highly
localized acoustic surface waves give rise to strong acoustical field confinement along the grooved
rigid surface, whereas the slowing down of sound can eventually reduce the group velocity to zero

[134]. In [135] a metamaterial was designed, consisting of an array of grooves with constant
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periodicity and graded depths perforated on a rigid plate, as shown in Fig. 7.3, to control the acoustic

propagation.

Medium Il
y
[ x Ow_awglﬁe Effective Medium I: Metamaterial 1'[
Medium Il

Figure 7.3 Metamaterial with graded depths perforated on a rigid plate and the effective medium model of the
composite structure. (From [135])

The acoustic dispersion relation on this graded structure was analyzed by the effective medium
model. The group velocity of the acoustic surface wave can be calculated from the Eq. 7.2 and it is

equal to:
Co
Ug =
Jl + Ko (tan ko h)z + koh (ﬁ) _(tankoh))®+1 (7.4)
kx x /(cot(koh))2+:—2

where ¢, is the sound speed in the air, ko is the wavenumber in the air, h is the depth of the grooves
and k, the surface wave number calculated from the dispersion relation (Eq. 7.2). Graded acoustic
artificial structures can control not only the propagation direction of the wave but also the spatial
distribution of the energy. Figure 7.4 shows the group velocity along the graded metamaterial
normalized with respect to the speed of sound in the air.

Vg/C

100 200 300 400
Distance (mm)

Figure 7.4 Calculated group velocities of acoustic waves (hormalized to the sound speed in air). (From [135])

From Fig. 7.4 it can be seen that the surface acoustic wave slowed down and stopped. Also it
can be noted that different frequencies stop at different locations. With a decrease in group velocity

the wavelength of the surface wave also decreases. In Fig. 7.5 it is shown how the wavelength
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changes depending on the depth of the grooves at a constant frequency (d=5 mm, a= 1 mm, f=3.4

kHz).
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Figure 7.5 Dependence of the wavelength of the acoustic surface wave on the depth of the grooves at a constant
frequency

When the gradual change in the groove depth is linear (with a constant angle ®) the stop

position z can be calculated as [135]
—40f

as the effective wavelength of acoustic wave is progressively decreased. Therefore these unit cells are

z (7.5)

no longer subwavelength in size, which leads to the breakdown of effective medium model, and to a
deviation in predicting where exactly the acoustic wave will be trapped and how its intensity will be
distributed around the stop position [135]. Experimental results for the sound intensity distribution on
the surface from [135] are shown in Fig. 7.6. It can be seen that different frequencies slow down and
stop at different positions. The stop positions depend on the frequency and also from the angle of the

linear change in the depth of the grooves.
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Figure 7.6 Experimental results of acoustic field intensity variation along the metamaterial. (From [135])
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The same phenomena can be realized by linearly changing another geometrical surface
parameter instead of the depth, for example the width of the grooves can also be changed, as shown in
[136]. Furthermore, the shape of the graded surface does not have to be a plate in order to realize
spatial frequency separation, it can be e.g. a cylindrical rod with gradually changing geometrical

parameters [134].
7.2.2 Extraordinary transmission assisted by acoustic surface waves

Discovery of the extraordinary optical transmission through a two-dimensional array of
subwavelength holes in a metallic film has opened a new line of research within optics [118].
Transferring light efficiently from the input to the output side is realized by surface plasmons. This
fundamental knowledge enabled the extension of this surface-plasmon ability to achieve extraordinary
optical transmission and strong collimation of light in a single hole surrounded by a finite periodic
array of indentations. In analogy with the electromagnetic case, the main actors necessary for the
appearance of both enhanced transmission and collimation in acoustics are the acoustic surface waves
[137]. To realize the extraordinary transmission of acoustic surface wave one can use a grooved
surface such as the one shown in Fig 7.1. Figure 7.7 shows the normalized-to-area transmission
spectrum for a normal incident acoustic plane wave propagating in air across the single
subwavelength slit (inset of Fig. 7.7), as well as the transmission spectrum in case the aperture is a slit

of the same size but flanked by periodic grooves [137].
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Figure 7.7 Transmission of sound through a single subwavelength slit (From [137])

A resonant peak appearing at a wavelength close to the period of the array clearly dominates
the spectrum. For sound of that particular wavelength, the transmitted intensity is 70 times larger than

the one impinging directly at the slit opening. This means that a significant portion (30%) of the
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intensity incident on the finite array of grooves is collected by the acoustic surface waves and
funneled through the central slit [137]. Detailed theoretical analyses of the extraordinary transmission

phenomena are given in [138, 139].
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Figure 7.8 (a) Experimental, (b) simulated (c) calculated result of full-range intensity field pattern in the xz
plane at the resonance frequency, showing the collimation effect. (From [139])

At the output side, the grooves act as radiators to effectively couple acoustic surface waves to
radiative waves in free space when the phases are matched. [139] Figure 7.8 shows the experimental
results of the full range intensity field pattern at the resonance frequency, which agrees with

simulations and calculation results, also shown in Fig 7.8.
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8. Temperature-controlled acoustic surface waves

In the previous chapter it was shown how the wave number on the surface can be controlled by
varying geometrical parameters of the grooved surface. However, the main drawback of the proposed
technique for manipulating surface acoustic waves is that the effect depends directly on the geometry
of the grooves, and that it can thus be tuned only through physical modifications of the geometry. In
this chapter it will be demonstrated that a surface acoustic wave propagating at the boundary between
a fluid and a hard grooved surface can be efficiently controlled by varying just the temperature of the
fluid, while the geometry of the grooved surface remains unchanged. This opens up a way for a
number of new applications, all easily tunable by external means. Following the theoretical
considerations, we will demonstrate temperature-controlled sound trapping and its applications in
acoustic spectral analysis and temperature sensing. We will also present a temperature-controlled
gradient refractive index (GRIN) acoustic medium and apply it to achieve temperature-controlled

acoustic focusing and bending acoustic plane wave on a surface for an arbitrary angle.
8.1 Theoretical description

A typical example of a grooved surface used to support surface acoustic waves is shown in Fig. 8.1,

where d, a, and h represent the period, the width and the depth of the grooves, respectively.
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Figure 8.1 A typical grooved surface which supports propagation of acoustic surface waves.

When the period of the grooves is much smaller than the guided wavelength of the propagating
acoustic surface wave, the grooved surface can be considered as an effective medium and
characterized by an effective density tensor. For an acoustic surface wave propagating along the

direction x, the effective dispersion relation of such a medium is [131]

ky = kg j 1+ (%)2 tan?(hk,), (8.1)

where k, denotes the wavenumber in free space, considered here to be dry air and modeled as an ideal
gas. To express the effective dispersion relation as a function of temperature, we first note that the

wavenumber kg in any ideal gas is the following function of temperature:

koM = o 220, (8.2)
Kkp
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where p, is the gas density, k is the adiabatic constant and p is the atmospheric pressure. From the

ideal gas state equation, the gas density can be obtained as a function of temperature:
po(T) =, (8.3)
where R denotes the specific gas constant, and T is the temperature in K. In case of dry air, k = 1.4,

R = 287.05]/kgK and the atmospheric pressure is p = 101325Pa . Finally, the effective

wavenumber is obtained in the temperature dependent form as [142]:

1 a2 1
— e 2 S 8.4
ke (T) = w ’KRT 1+ (d) tan? | hw /KRT (8.4)

and plotted in Fig. 8.2 for a range of temperatures, when the geometrical parameters of the surface are

constants and have been arbitrarily chosen to be a=0.2 mm, d =1 mm, and h = 24 mm. It can be seen
that, for a given temperature, the medium is non-dispersive at low frequencies. However, as frequency
increases, strong dispersion occurs, the effective wavenumber asymptotically approaches infinity and
finally a stop-band appears. It can also be seen that the frequency at which dispersion occurs and the
position of the stop-band depend on the temperature. To validate the analytical solution (8.4), the
results of 2-D full-wave FEM simulations for the case of T =298 K are also shown in Fig. 8.2. The
simulations have been performed in COMSOL Multiphysics 4.4 using pressure acoustic module. The
temperature in the whole system was defined as a constant value T =298 K and the air was modeled
as an ideal gas. It can be seen that a very good agreement exists between the analytical and full-wave
solutions. We note here that (8.1) is strictly valid for an infinitely wide grooved surface. However, it
has been shown that it actually holds as long as the width of the surface is larger than the period of the
grooves d [127, 128]. This is confirmed in Fig. 8.2 where COMSOL simulations of the grooved
surface with finite overall width equal to 10d = 10 mm are also shown, and they agree very well with
the 2-D simulation results. As it was shown in the previous chapter, the wavenumber can be changed
by varying external parameters, and Fig. 8.3 shows the dependence of the wavenumber k, on the
temperature at the operating frequency of 3.4 kHz, when the geometrical parameters are kept constant.
This frequency has been chosen arbitrarily within the range in which prominent dispersion occurs.

Figure 8.3 also shows the phase velocity of the surface wave.
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Figure 8.2 Dispersion relation of acoustic surface waves as a function of temperature. Analytical solutions (8.4)
are shown with solid lines, while the dashed line represents 2-D and 3D full-wave FEM simulations for the case
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Figure 8.3 The temperature dependence of the phase velocity and wavenumber at 3400 Hz.

It can be seen that the wavenumber increases slowly and the phase velocity decreases with
decreasing temperature until the temperature reaches a critical value T, at which the wavenumber
increases extremely, theoretically to infinity. Below T. no propagation can occur. The critical
temperature T, can be obtained from Eq. (8.4) as a function of the operating frequency f and the depth
of the grooves h:

_ 16h*f?
€ kR

For the given operating frequency and geometrical parameters, T, equals 264.9 K. It should be

noted that the discussion above does not hold in the close vicinity of T, where the wavenumber

(8.5)

becomes too large and the effective medium concept is lost since the guided wavelength becomes
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comparable with the period d. The effective media concept can thus be applied as long as the guided
wavelength is larger than approximately 4d, i.e. k,, < m/2d. In the previous chapter it was shown that
with increasing wavenumber the wave slows down and the sound intensity also increases to a
maximal value immediately before the surface wave stops. For that reason the sound intensity was
used to show where the surface wave stops. In COMSOL FEM simulator three grooved surface with
same length (L= 500 mm) were designed, with a different period d, and with a constant ratio a/d = 0.2
to keep the same dispersion characteristic (Eq. 8.4). Linear temperature variation was used along the
structure, with the same linear temperature gradient for all three models. Figure 8.4 shows the

normalized sound intensities for the acoustic surface wave, as well as the calculated critical

temperature.
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Figure 8.4. Normalized sound intensity dependence from temperature on same frequency (3.4 kHz) with
different period d

It can be seen that the wave propagating along structures with different periods and with same
dispersion characteristics stops at different temperatures, and with decreasing the period these
temperatures converge to T.. The temperature at which the wave stops (Ts) are Tg;= 283 K, Ts,~ 268
K, Ts3= 266 K for periods d; =5 mm, d,=1 mm, d;= 0.5 mm respectively. In Fig. 8.3 it can be seen
that the temperatures T, are exactly those at which the wavelength becomes comparable with the
period (d ~ A/4) and the effective medium theory is inadequate. The results presented above indicate
that a good control of the surface acoustic waves can be obtained by varying the temperature alone,
while the grooved surface remains unchanged. This is illustrated in Fig. 8.5 where the acoustic
pressure field distribution over a grooved surface is shown for four different values of the temperature
of the surrounding medium, all within the limits of room temperatures. For the same applied
frequency, the wavelength of the surface acoustic wave varies significantly. Namely, it changes from

40 mm to 14 mm when the temperature is decreased from 303 K to 283 K.
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Figure 8.5 Acoustic pressure distribution when the temperature is constant on the whole surface (d =1 mm, a =
0.2 mm, h = 24 mm), indicating the dependence of wavelength on temperature variation

8.2 Acoustic surface wave trapping and spatial acoustic spectral analysis

If the temperature of the surrounding medium decreases gradually along the propagation direction, the
acoustic surface wave will slow down and stop when the temperature reaches T.. In this way, an
acoustic wave of a given frequency can be trapped at any desired point along the surface, simply by
tuning the temperature of the surrounding medium. This is illustrated in Fig. 8.6 where three arbitrary
cases are shown, each obtained by using a different linear temperature gradient (shown in the inset),
the trapping temperature is also shown in inset (black horizontal line). In each case, the trapping
occurs at the position along the grooved surface where the surrounding temperature reaches Ts.
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Figure 8.6 Acoustic surface wave trapping at arbitrary locations along the grooved medium is obtained by
applying different temperature gradients (f=3.4 kHz).

Alternatively, for a given temperature gradient, surface waves of different frequencies will be
trapped at different points along the surface, as shown in Fig. 8.7. In this way, spatial spectral analysis
of acoustic surface waves can easily be realized.
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Figure 8.7 Spatial acoustic spectral analysis is obtained as acoustic waves of different frequencies are trapped
at different positions along the surface.

8.3 Temperature sensing (Temperature mapping)

Another application of the proposed concept is temperature sensing (i.e. temperature mapping), where
the temperature is estimated from the distribution of acoustic pressure on the grooved surface. To
illustrate this concept, a grooved surface with two arbitrarily positioned radiation heat sources is
shown in Fig. 8.8, together with the corresponding temperature distribution. A multiphysic simulation

model was designed in COMSOL combining Acoustic and Heat transfer modules. The simulation

86



consists of two steps. The first step is in time domain, radiation sources start to radiate from 0 s to a
certain end time, which was arbitrarily set to 60 s. The resulting temperature distribution is shown in
Fig. 8.8. The second step is in frequency domain, with the acoustic plane wave source working at the
defined frequency (3.4 kHz), while the medium has a temperature distribution equal to the one
observed in the first simulation step. The resulting pressure field distribution is shown in Fig. 8.8. It
can be seen that the guided wavelength increases proportionally to the temperature, due to the
decreased wavenumber in warmer regions. Therefore, the temperature can be uniquely estimated from
the guided wavelength, which can easily be determined from phase measurements at two close

locations along the structure.
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Figure 8.8 Temperature distributions in the surround medium (blue). Acoustic pressure field distributions along
the grooved surface (red)

8.4 Temperature-controlled gradient refractive index (GRIN) acoustic medium

In the preceding analysis, temperature gradient has been applied along the propagation direction of
surface waves. However, the temperature gradient can also be applied in a direction transverse to the
propagation direction. In that way, an acoustic gradient refractive index (GRIN) medium can be
obtained [45, 140, 143, 144, 145]. To illustrate this, an acoustic surface host waveguide (medium)
with width w = 500 mm and length L = 850 mm has been designed. In the middle of the structure one
rectangular section with the thickness t =100 mm was cut along the propagation direction into 50
uniform waveguides with individual widths of 10 mm. Since the width of each waveguide is 10 times
larger than the applied period (d = 1 mm), the dispersion relation (8.1) is valid and the effective

medium concept can be applied. The structure is shown in the Fig 8.9.
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Figure 8.9. lllustration of the designed GRIN structure

The structure has been simulated in COMSOL Multiphysics 4.4, with ideal thermal isolation
assumed between its different regions. The temperature in the host waveguide is kept constant and
equal to To= 306 K. The temperatures in individual regions of the structure have been calculated by
combining Eqg. (8.4) and the desired refractive index profile function along the direction transversal to
the propagation. The refractive index between the host waveguide and the GRIN lens can be
calculated as the ratio between the wavenumbers in two different media:
— ki

ko'

where n; is the refractive index between the i-th medium with wavenumber k; and the host medium

(8.6)

n;

with wavenumber ko. During this research we have designed a range of of GRIN media with same
geometrical parameters and with different temperature distribution, different refractive index profiles,
specified profile function for bending acoustic plane waves by different angles [144] and the
hyperbolic secant refractive index profile function for a focusing [45, 140, 145, 146], and thus we

have shown that the proposed structure is indeed suitable for tunable applications.
8.4.1 Bending an acoustic surface plane wave

With linear refractive index profile in the GRIN medium the incident plane wave can be bent by an
arbitrary angle [143]:

1

nx) =1+ Mx (8.7)
w

-

88



where w is the width of the lens and nn. is the maximal value of refractive index in GRIN medium.
The bending angle is a function of the width and the thickness of the lens and the maximal value of

the refractive index and can be calculated as:

© = sin~! [& (M — 1)]. (8.8)

In case when the bending angle is defined the maximal refractive index can be calculated by inverting
Eqg. (8.8) into:

Nmax = %sin(&) + 1. (8.9)

Using the refractive index profile given by Eq. (8.7) and combining Egs. (8.4) and (8.6), the

wavenumber and the temperature in all regions can be calculated. Matlab code for calculating

temperature distribution for a wave bending GRIN medium is given in Appendix A6. In COMSOL

model the GRIN medium consists of 50 uniform regions and a thermal isolation boundary is

positioned between them. The calculated temperature distribution in the GRIN medium for 15°
bending is shown in Fig.8.10.
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Figure 8.10. Temperature T; [K] in the lens along the direction transverse to propagation direction for bending
the acoustic surface wave by ©= 15°

In this situation the maximal value of the refractive index is n,»= 1.78 and the temperature difference
between the two sides of the lens is 32.8 K. The acoustic pressure phase distribution on the surface is
shown in Fig. 8.11.
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Figure 8.11. Acoustic pressure phase distribution on surface (= 15°)

From the pressure distribution it can be seen that the incident plane wave (going upwards) after
the interaction with the GRIN medium is indeed bent by the defined angle ®. To demonstrate the
tunability of the proposed approach, another bending angle was produced with same geometrical
parameters . The calculated temperature distribution in the GRIN medium for a 30° bending is shown
in Fig.8.12.
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Figure 8.12 Temperature T; [K] in lens along the direction transverse to propagation direction for a bending on
angle ©O= 30°
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In this situation the maximal value of the refractive index is nys= 2.5 and the temperature
difference between the two sides of the lens is 41.5 K. The acoustic pressure phase distribution on the

surface is shown in Fig. 8.13.
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Figure 8.13. Acoustic pressure phase distribution on the surface (0= 30°)
From the pressure distribution it can be seen that the incident plane wave (going upwards) is
bent by the defined angle @ after interacting with the GRIN medium.

8.4.2 Focusing an acoustic surface plane wave

The most common refractive index profile in GRIN medium for focusing is the hyperbolic secant
refractive index profile [45, 140, 143, 144, 145], which exhibits no distortions [146]. The hyperbolic

secant refractive index profile is given by:

n(x) = ny sech(ax) (8.10)
where ng is the index of refraction in the center of the lens and « is the gradient parameter, equal to:
2 n
a = —cosh™! (—0> (8.12)
w Ny

where w is the width of the lens and n, is the index of refraction at its edge. For demonstrating
versatility and tunability of the structure three different hyperbolic secant profiles were designed by
changing the temperature distribution in the GRIN medium. Using the refractive index profile Eq.
(8.10) and combining Egs. (8.4) and (8.6), the wavenumber and the temperature in all regions can be
calculated. Matlab code for calculating the temperature distribution for a hyperbolic secant profile
GRIN medium is given in Appendix A6. Input parameters were the refractive indexes at the edge and
in the center of the GRIN medium. In the first case the refractive index was chosen to be np= 1.5 and
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ny=1 at the edges on the medium. The calculated temperature distribution in the GRIN medium for
the first case is shown in Fig. 8.14.
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Figure 8.14 Temperature T; [K] in lens along the direction transverse to propagation direction for focusing with
central refractive index np= 1.5

Temperature distribution has a hyperbolic secant shape and the maximal temperature difference
between the center and the edge of the structure is A7 = 28 K. Acoustic pressure distribution on the

surface is shown in Fig. 13. In the GRIN medium (framed with a black rectangle) the wave starts to
bend and after the medium the wave is focused on one point.
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Figure 8.15. Acoustic pressure distribution on the surface
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To indicate the focal point better, Figures 8.16a and 8.16b show the absolute pressure and the

sound wave intensity distribution on the surface respectively.
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Figure 8.16 Distribution of a) absolute pressure field and b) sound intensity on the surface

From Figs 8.16a and 8.16b it can be clearly seen that the pressure amplitude increases near the

focal point and that the most of sound intensity is focused in one point. This point is in the middle of

the structure and the distance from the lens is 4F= 360 mm, as also marked in Fig.8.16b. The sound

intensity along the wave propagation path (vertical line in the middle) is shown in Fig. 8.17a, and it

can be seen how the sound increases before the focal point and decreases after it.
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Figure 8.17 Normalized sound intensity along the a) y direction in the middle of the structure (x=250 mm) and
b) x direction (y=A4F)

Figure 8.17b shows the sound intensity along the direction transverse to the wave propagation

at a distance equal to focal length (horizontal line across the structure and at a distance AF from the

GRIN lens). It can be seen that the sound intensity is indeed focused in the middle of the structure
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where the focal point is positioned. In the second case a hyperbolic secant profile was calculated with
parameters no= 1.8 and n, = 1. The calculated temperature distribution in the GRIN medium for the

second case is shown in Fig. 8.18.
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Figure 8.18 Temperature T; [K] in the lens along the direction transverse to propagation direction for focusing
with central refractive index ny=1.8

Temperature distribution has a hyperbolic secant shape and the maximal temperature difference
between the center and the edge of the structure is AT= 35 K. Figures 8.19a and Fig. 8.19b show the

absolute pressure and the sound wave intensity distribution on the surface respectively.
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Figure 8.19 Distribution of a) absolute pressure field and b) sound intensity on the surface
In Figs 8.19a and 8.19b the point where the sound intensity is focused can be clearly seen. The
focal point is in the middle of the structure and at the distance from the lens equal to 4F= 270 mm, as

also marked in Fig.8.19b. The sound intensity along the wave propagation path (vertical line in the
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middle) is shown in Fig. 8.17a, and it can again be seen that the sound increases before the focal point

and decreases after it.
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a) b)
Figure 8.20 Normalized sound intensity along the a) y direction in the middle of the structure (x=250 mm) and
b) x direction (y=A4F)

Figure 8.20b shows the sound intensity along the direction transverse to the wave propagation
across the focal point (horizontal line at the distance 4F from the GRIN lens). In both cases presented
here the refractive index on the edge of the structure was equal to 1 but this is not necessary. By
changing the temperature arbitrary profiles can be defined, according to the needs of a particular
application. Since the temperature in all regions can be larger and smaller than the temperature in the
host medium (T,), the refractive index can also be smaller than 1. In the third case a hyperbolic secant
profile with parameters n,= 1.9 and n,= 0.9 was defined. The calculated temperature distribution in

the GRIN medium for this case is shown in Fig.8.21.
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Figure 8.21 Temperature T; [K] in the lens along the direction transverse to propagation direction for focusing
with central refractive index no=1.9
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It can be seen from Fig. 8.21 that temperature near the edges is higher than the temperature in
the host medium, which is the consequence of the requirement that the refractive index should be less
than 1. Temperature distribution has a hyperbolic secant shape and the maximal temperature
difference between the center and the edge of the structure is AT = 48 K. Figures 8.22a and Fig. 8.22b
show the absolute pressure and the sound wave intensity distribution on the surface respectively.
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Figure 8.22 Distribution of a) absolute pressure field and b) sound intensity on the surface
In Figs 8.22a and 8.22b the focus is, again, clearly visible, at the distance from the lens equal to
AF= 160 mm, as indicated in Fig.8.22b. The sound intensity along the wave propagation path (vertical
line in the middle) is shown in Fig. 8.23a, and it can, again, be seen how the sound increases before
the focal point and decreases after it.
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Figure 8.23 Normalized sound intensity along the a) y direction in the middle of the structure (x=250 mm) and
b) x direction (y=A4F)
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Figure 8.23b shows the sound intensity along the direction transverse to the wave propagation
at the distance equal to focal length (horizontal line at the distance AF from the GRIN lens). After the
analysis we can conclude that with temperature the surface acoustic wave propagation can be
controlled. Different temperature distributions can be used depending on the application. The system

can be easily tuned by varying the temperature and obtain a completely new functionality.
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9. Conclusions and future work

The goal of this research was to analyze, design and realize new acoustic artificial media composed of
subwavelength unit cells and demonstrate the possibility of non-conventional wave propagation
through such media.

The scientific contribution of this dissertation consists of new types of acoustic wave
propagation modes, such as near-zero propagation, i.e. acoustic wave propagation with infinite phase
velocity. New resonant type metamaterial unit cell with negative mass density and a consequent new
approach to the realization of left-handed acoustic wave propagation was also demonstrated. In the
end of the thesis it was also shown that surface wave propagation can be easily controlled by varying
the temperature of the surround medium.

All structures were designed, modeled and simulated with two different numerical simulation
models, namely, the finite element method (FEM) simulation model and the simulation based on the
transmission line model and the circuit theory (ABCD matrix, two-port network matrix
transformations etc.). COMSOL Multiphysics FEM simulator was used to design and simulate 2D and
3D structures, while the code which follows the transmission line theory was written in Matlab.

At the beginning of the research a method was developed to analyze the behavior of acoustic
metamaterial unit cells and acoustic two port systems with acoustic scattering parameters. The method
is based on the measurement with four microphones and signal processing in order to recover the
parameters of the acoustic scattering matrix. The method was used to characterize the acoustic two
port systems.

The thesis also presented a novel class of one-dimensional near-zero acoustic metamaterials
based on near-zero values of effective compressibility, realized using resonant-type metamaterials
(Helmholtz resonator). The conditions needed to support compressibility near zero propagation have
been theoretically analyzed in detail and experimentally verified. The fabricated prototype was
characterized using the developed method for extraction of the acoustic scattering parameters for two
port systems. The unique properties of CNZ propagation such as phase change minimization open a
way for the development of various applications, in both audible and ultrasound ranges.

The thesis also demonstrated a new acoustic metamaterial unit cell based on a simple electro-
acoustic analogy with the typical resonant-permeability unit cell from the domain of electromagnetic
metamaterials, which was shown to be an efficient means to provide negative mass density to acoustic
metamaterials. A closed analytical formula for the effective density of the proposed cell has been
developed, confirming that at a range of frequencies the value of this parameter is indeed negative.
The versatility of the proposed approach has been demonstrated through examples including single-
and multi-stopband acoustic media with steep roll-offs, as well as left-handed and density-near-zero

acoustic wave propagation.
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The research presented in the thesis has also shown that the temperature of the surrounding
medium can be used to manipulate surface acoustic waves in a variety of ways, through applications
such as acoustic wave trapping, spatial spectral analysis of wideband acoustic waves, as well as
acoustic wave steering and focusing. Unlike standard techniques for manipulation of surface acoustic
waves, which require careful design of the surface geometry, this approach offers a simple solution,
applicable to surfaces with uniform geometries and easily adaptable to any change in system
specifications, thus allowing wave steering over variable paths or wave focusing with a variable focal
length using temperature-controlled gradient refractive index (GRIN) acoustic lenses. Furthermore,
the same phenomenon can be used in the opposite direction, for sensing the temperature of the fluid
through the behavior of the acoustic wave, which extends the field of its application even further.

The results presented in the thesis constitute only one part of the research which is still not
finished. Unfortunately we did not have a facility to fabricate more complex structures until quite
recently, but now we are able to fabricate and characterize them. Our future work will include the
fabrication and experimental characterization of all newly developed resonant type metamaterial unit
cells. The new unit cells can also can be used as unit cells of tunable acoustic metasurfaces which can
be used as acoustic beam formers. One of the next steps in this research is to fabricate and
characterize this metasurface, combining different technologies as a LTCC and thin film technology.
The research related to acoustic surface waves also continues, by fabrication of all proposed structures
in 3D printing technology and their characterization. Novel applications in domains such as sensing

will also be investigated.
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Appendix A

Al. Matlab code: Extraction of the acoustic S-matrix

clear all;

close all;

clc;

rho_0=1.25; % density
B_0=1.42e5; % bulk modulus
c=sqrt(B_0/rho_0); % speed of sound
x1=0.1; % probe 1 position [m]
x2=0.05; % probe 2 position [m]
x3=0.05; % probe 3 position [m]
x4=0.1; % probe 4 position [m]
%____

Toad CNza

Toad CNzb

f=pa(:,1);

omega=2*pi*f;

kx=omega/c;

for p=1:1ength(Pa(:,1))

Pla=Pa(p,2);

P1lb=Pb(p,2);

P2a=Pa(p,3);

P2b=pPb(p,3);

P3a=Pa(p,4);

P3b=Pb(p,4);

P4a=Pa(p,5);

P4b=Pb(p,5);

k=kx(p);

$11(p,1)=-(Pla*P3b*exp(i*k*x1)*exp(2*i*k*x2) *exp(i*k*x3) -

P1b*P3a*exp (i*k*x1)*exp(2*i*k*x2)*exp(i*k*x3) - P2a*P3b*exp(2*i*k¥*x1)*exp(i*k*x2)*exp(i*k*x3)
+ P2b*P3a*exp(2*i*k*x1)*exp(i*k*x2)*exp(i*k*x3) -

Pla*P4b*exp (i*k*x1)*exp(2*i*k*x2)*exp(i*k*x4) + Plb*P4a*exp(i*k*x1)*exp(2%i*k*x2)*exp(i*k*x4)
+ P2a*P4b*exp(2%i*k*x1)*exp(i*k*x2)*exp(i*k*x4) -

P2b*P4a*exp (2*i*k*x1)*exp (i*k*x2)*exp(i*k*x4))/(Pla*P3b*exp(i*k*x1)*exp(i*k*x3) -

Plb*P3a*exp (i*k*x1)*exp(i*k*x3) - Pla*P4b*exp(i*k*x1)*exp(i*k*x4) +

Plb*P4a*exp (i*k*x1)*exp(i*k*x4) - P2a*P3b*exp(i*k*x2)*exp(i*k*x3) +

P2b*P3a*exp (i*k*x2)*exp(i*k*x3) + P2a*P4b*exp(i*k*x2)*exp(i*k*x4) -

P2b*P4a*exp (i*k*x2)*exp(i*k*x4));

$12(p, 1)=(Pla*P2b*exp (i *k*x1) *exp(i*k*x2) *exp(2*i*k*x3) -
Plb*P2a*exp(i*k*x1)*exp(i*k*x2)*exp(2*i*k*x3) - Pla*P2b*exp(i*k*x1)*exp(i*k*x2)*exp(2*i*k*x4)
+ Plb*P2a*exp (i*k*x1)*exp (i*k*x2)*exp(2*i*k*x4))/(Pla*P3b*exp(i*k*x1)*exp(i*k*x3) -
Plb*P3a*exp(i*k*x1)*exp(i*k*x3) - Pla*P4b*exp(i*k*x1)*exp(i*k*x4) +
Plb*P4a*exp(i*k*x1)*exp(i*k*x4) - P2a*P3b*exp(i*k*x2)*exp(i*k*x3) +
P2b*P3a*exp(i*k*x2)*exp(i*k*x3) + P2a*P4b*exp(i*k*x2)*exp(i*k*x4) -

P2b*P4a*exp (i*k*x2)*exp(i*k*x4));

S21(p,1)=-(P3a*P4b*exp(2*i*k*x1) *exp(i*k*x3) *exp(i*k*x4) -
P3b*P4a*exp(2*i*k*x1)*exp(i*k*x3) *exp(i*k*x4) - P3a*P4b*exp(2*i*k*x2)*exp(i*k*x3)*exp(i*k*x4)
+ P3b*P4a*exp(2*i*k*x2)*exp(i*k*x3)*exp(i*k*x4))/(Pla*P3b*exp(i*k*x1)*exp(i*k*x3) -
Plb*P3a*exp(i*k*x1)*exp(i*k*x3) Pla*P4b*exp (i*k*x1)*exp(i*k*x4) +
Plb*P4a*exp(i*k*x1)*exp(i*k*x4) - P2a*P3b*exp(i*k*x2)*exp(i*k*x3) +
P2b*P3a*exp(i*k*x2)*exp(i*k*x3) + P2a*P4b*exp(i*k*x2)*exp(i*k*x4) -
P2b*P4a*exp(i*k*x2)*exp(i*k*x4));

S22(p,1)=-(Pla*P3b*exp(i*k*x1)*exp(i*k*x3)*exp(2*i*k*x4) -
Plb*P3a*exp(i*k*x1)*exp(i*k*x3)*exp(2*i*k*x4) - Pla*P4b*exp(i*k*x1)*exp(2*i*k*x3)*exp(i*k*x4)
+ Plb*P4a*exp(i*k*x1)*exp(2*i*k*x3)*exp(i*k*x4) -
P2a*P3b*exp(i*k*x2)*exp(i*k*x3)*exp(2*i*k*x4) + P2b*P3a*exp(i*k*x2)*exp(i*k*x3)*exp(2*i*k*x4)
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+ P2a*P4b*exp(i*k*x2)*exp(2*
P2b*P4a*exp (i*k*x2)*exp(2*i*k*x3)*exp(i*k*x4))/(Pla*P3b*exp(i*k*x1)*exp(i*k*x3) -
Plb*P3a*exp(i*k*x1)*exp(i*k*x3) - Pla*P4b*exp(i*k*x1l)*exp(i*k*x4) +

Plb*P4a*exp(i*k*x1)*exp(i*k*x4) - P2a*P3b*exp(i*k*x2)*exp(i*k*x3) +
k
k

1 "k:’:x3):':exp(-i 1':k~.':x4) -

P2b*P3a*exp(i*k*x2)*exp(i*k*x3) + P2a*P4b*exp(i*k*x2)*exp(i*k*x4) -
P2b*P4a*exp (i*k*x2)*exp(i*k*x4));

% mmm——— DisplayResults

figure(l);

plot(f, 20*Togl0(abs(s11)),'r', '1inewidth',2.5);

hold on

plot(f, 20*Togl0(abs(s21)),'b', '1inewidth',2.5);

hold on

xlabel('Frequency [Hz]','fontsize',16);

ylabel('Reflection and transmission coefficeient [dB]', 'fontsize',16);
Tegend ('Reflection','Transmission');

set(gca, 'fontsize',16);

grid off;
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A2. Matlab code: Extraction of effective material parameters

clear all;
close all;
clc;
rho_0=1.25; % density
B_0=1.42e5; % bulk modulus
c=sqrt(B_0/rho_0); % speed of sound
Toad MembranA
Toad MembranB
f=Pa(:,1);
len = 34e-3; % length of the structure
flist =f;
omega=2*pi.*flist;
kO=omega*sqrt(rho_0/B_0);
a=8.1e-3; % duct radius [m]
zfactor=sqrt(rho_0*B_0);
lambda0 = c./flist;

k = (S11.A2 - S21.A2 + 1)./(2.%S11); % S-parameters from extraction S matrix
Gamma = k + sqrt(k.A2-1);

index = find(abs(Gamma)>1);

Gamma(index) = k(index) - sqrt(k(index).A2-1);

Gamma=real (Gamma)-i*abs(imag(Gamma));

zeff = (1+Gamma)./(1l-Gamma)*(zfactor);
xfactor=(((1+511).*(1-S22) + S12.%S21 + (1-S11).*(1+S22)+S12.*S21))/4./S21;

newpfactor = 1/1en.*log(xfactor+sqrt(xfactor+l).*sqrt(xfactor-1));
refractiveindex = newpfactor./(i*omega);

n_eff=refractiveindex;
n_frec=length(flist);
d_eff=len;

16%6260676060676 760667676 %96%676) %96%6766%6, 6%69676%6%6%6

%Step - 6 Apply Kramers-Kronig relations to approximate the real part of
%the refractive index from the imaginary part

%auxiliary variable

imag_n = imag(n_eff);

%stores the real part of N
n_re_KK = zeros(n_frec,1);

%it is supposed that the frequencies are equidistant
delta_omega = omega(2)-omega(l);

%Evaluate the Kramers-Kronig integral with trapeze rule
%Calculate the first element
term_a = imag_n(2)*omega(2)/(omega(2)A2 - omega(1l)A2);
for i = 2:n_frec-1

%trapeze rule for integration

term_b = imag_n(i+1)*omega(i+1)/(omega(i+1)A2 - omega(1l)A2);
n_re_KK(1) = n_re_KK(1l) + term_a + term_b;
term_a = term_b;

end;

n_re_KK(1) = 1.0 + delta_omega/pi*n_re_KK(1);
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%Calculate the Tast element
term_a = imag_n(1l)*omega(l)/(omega(1l)A2-omega(n_frec)A2);
for i = 1l:n_frec-2
%trapeze rule for integration
term_b = imag_n(i+1)*omega(i+1)/(omega(i+1)A2-omega(n_frec)A2);
n_re_KK(n_frec) = n_re_KK(n_frec) + term_a + term_b;
term_a = term_b;
end;
n_re_KK(n_frec) = 1.0 + delta_omega/pi*n_re_KK(n_frec);

%Calculate the middle elements
for i = 2:n_frec-1;
n_re_KK(i) = 0.0;
term_a = imag_n(1)*omega(l)/(omega(1l)A2 - omega(i)A2);
for j = 1:i-2
%trapeze rule for integration

term_b = imag_n(j+1)*omega(j+1)/(omega(j+1)A2 - omega(i)A2);
n_re_KK(i) = n_re_KK(i) + term_a + term_b;
term_a = term_b;

end;
term_a = imag_n(i+1)*omega(i+1l)/(omega(i+1)A2-omega(i)A2);
for j = i+l:n_frec-1

%trapeze rule for integration

term_b = imag_n(j+1)*omega(j+1)/(omega(j+1)A2-omega(i)A2);
n_re_KK(i) = n_re_KK(i) + term_a + term_b;
term_a = term_b;
end;
n_re_KK(i) = 1.0 + delta_omega/pi*n_re_KK(i);
end;
%End apply Kramers-Kronig relations
clear i
clear j
6%62606760606%6 760667676 %96%676) %96%6766%6, 6%69676%6%6%6

% Calculate the branch number m
m_branch =round( (n_re_KK - real(n_eff)).*k0*d_eff/(2.0%pi) );

%store the -2, -1, 0, 1, 2 branches for plotting
n_eff_0 = real(n_eff);

n_eff_1 n_eff_0 + 2.0*pi*1l./(k0O*d_eff);
n_eff_minl = n_eff_0 + 2.0*pi*(-1)./(k0*d_eff);
n_eff_2 = n_eff_0 + 2.0%pi*2./(k0*d_eff);
n_eff_min2 n_eff_0 + 2.0*pi*(-2)./(k0*d_eff);

%calculate the real part of n with the branch
n_eff = n_eff +2.0*pi*m_branch./(kO*d_eff);
%Effective material parameters

ro_eff = n_eff.*zeff;

comp_eff = n_eff./zeff;

%———————- DisplayResults

figure(1);

plot(f, 20*1ogl0(abs(s11)),'r', 'Tinewidth',2.5);
hold on

plot(f, 20*1ogl0(abs(s21)),'b', 'Tinewidth',2.5);
x1abel('Frequency [Hz]', 'fontsize',16);
ylabel('s-parameters [dB]', 'fontsize',16);
legend('s11l', 's21");
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title ('s-parameters');
Tegend('Tocation', 'Best');
Tegend('boxoff');

set(gca, 'fontsize',16)

figure(2);

plot(f, (real(ro_eff)),'r', 'linewidth',2.5);
hold on

plot(f, (imag(ro_eff)),'b','linewidth',2.5);
x1abel('Frequency [Hz]','fontsize',16);
ylabel ('Effective density', 'fontsize',16);
Tegend('Re(\rho) ', "Im(\rho)"');

title ('Density');

Tegend('Tocation', 'Best');

Tegend('boxoff');

set(gca, 'fontsize',16)

figure (3);

plot(f,real(comp_eff),'r", 'Tinewidth',2.5);
hold on

plot(f,imag(comp_eff),'b', 'Tinewidth',2.5);
xlabel('Frequency [Hz]', 'fontsize',16);
ylabel ('Effective compressibility', 'fontsize',16);
Tegend('Re(\beta) ', 'Im(\beta)');

title ('Compressibility');
Tegend('Tocation', 'Best');
Tegend('boxoff');

set(gca, 'fontsize',16)

figure (4);
plot(f, (real(zeff)),'r','Tinewidth',2.5);
hold on

plot(f,imag(zeff),'b"', ' Tinewidth',2.5);
xlabel('Frequency [Hz]', 'fontsize',16);
ylabel('Impedance', 'fontsize',16);
legend('Re(2)", 'Im(2)");

title ('Impedance');

Tegend('Tocation', 'Best');
Tegend('boxoff');

set(gca, 'fontsize',16)

figure (5);
plot(f, real(n_eff),'r', 'Tinewidth',2.5);
hold on

plot(f,imag(n_eff),'b', ' Tinewidth',2.5);
x1abel('Frequency [Hz]', 'fontsize',16);
ylabel('RefractiveIndex', 'fontsize',16);
legend('Re(n) ', 'Im(n)');

title ('RefractiveIndex');
Tegend('Tocation', 'Best');
Tegend('boxoff');

set(gca, 'fontsize',16)

figure (6);
hold on; frec= flist;
set(gcf, 'color','w");
hold on;
plot(frec,n_eff_min2,"':"',"'color',[0 0.7 0], 'Linewidth',2);
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plot(frec,n_eff_minl,"':','color',[0.5 0.5 0.5], 'Linewidth',2);

plot(frec,n_eff_0,':',"'Color',[0.078431372549020 0.168627450980392
0.549019607843137], 'Linewidth',2);

plot(frec,n_eff_1,':',"'color',[0.7 0 0], 'Linewidth',2);

plot(frec,n_eff_2,':',"'color',[1 0.6 0.2], 'Linewidth',2);

plot(frec,real(n_eff),'rv', 'Linewidth',2, '"Marker','v');

grid on;
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A3. Matlab code: Transmission line model for a compressibility near-zero metamaterial

clear all;
close all;
clc;

for el=1:4

if el==1 % L-section

a=5%*10A-3; % radius [m]

1=0.08; % length [m]

end

if el==2 % Helmholtz L-section

a=10A-3; % radius [m]

1=0.028; % length [m]

end

if el1==3 % Helmholtz C-section

a=4.25*%10A-3; % radius [m]

1=0.01; % length [m]

end

if el==4 % C-section (Half Tlength)

a=26%*10A-3; % radius [m]

1=0.01; % length [m]

end
rho0=1.25; % density
B_0=1.42e5; % bulk modulus
c=sqrt(B_0/rho0); % speed of sound
mi=18*10A-6;
sigma=sqrt(0.71559);
ksi=0.2;
for f=200:2000; % Frequency [Hz]
w=2*pi*f;
rv=a*sqrt(rho0*w/mi);
rt=rv¥*sigma;
Fv=(2/(rv¥sqrt(-1)))*((besselj (0, (rv¥sqrt(-1i))))/(besselj(0, (rv*sqrt(-1i)))));
Ft=(2/(rt*sqrt(-1)))*((besselj (0, (rt*sqrt(-1i))))/(besselj (0, (rt*sqrt(-1i)))));
z1=1i*((w*rho0)/(pi*aA2))*(1-Fv)A-1;
z(f-199,1)=z1;
Y1=1li*((w*pi*aA2)/(rho0*cA2))*(1+(ksi-1)*Ft);
Y(f-199,1)=v1;
z0(f-199,1)=sqrt(z1/Y1l);
Gamma(f-199,1)=sqrt(z1*Y1l);
A(f-199,1)=cosh(Gamma(f-199,1)*1);
B(f-199,1)=z0(f-199,1)*sinh(Gamma(f-199,1)*1);
C(f-199,1)=(z0(f-199,1)A-1)*sinh(Gamma(f-199,1)*1);
D(f-199,1)=cosh(Gamma(f-199,1)*1);
end
if el==1;

ABCD_L(1,1,:)=A;

ABCD_L(1,2,:)=B;

ABCD_L(2,1,:)=C;

ABCD_L(2,2,:)=D;
end
if el==2;

ZH1=z*1;

YH1=Y*1;
end
if el==3;

ZHc=Z*1;
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YHc=Y*T;
ZH_sub=ZHc+1. /YHc;
YH_sub=YH1+1./ZH_sub;
ZH=ZH1+1./YH_sub;
YH=1./ZH;

for n=1:1801
ABCD_H(1,1,n)=1;
ABCD_H(1,2,n)=0;
ABCD_H(2,1,n)=YH(n);
ABCD_H(2,2,n)=1;

end

end

if el==4;
ABCD_C(1,1,:)=A;
ABCD_C(1,2,:)=B;
ABCD_C(2,1,:)=C;
ABCD_C(2,2,:)=D;

end

end

for n=1:1801;

ABCD(:,:,n)=ABCD_C(:,:,n)*ABCD_H(:,:,n)*ABCD_C(:,:,n)*ABCD_L(:,:,n)*ABCD_C(:,:,n)*ABCD_H(:,
:,h)*ABCD_C(:,:,n);
end

S_parameters=abcd2s (ABCD,2*10A6) ;
S21(1,:)=S_parameters(2,1,:);
S11(1,:)=S_parameters(1,1,:);
£=200:2000;

%mmm e DisplayResults

figure (1)

plot(f,20*Togl0(abs(s11)),'b', 'Tinewidth',2.5);
hold on

plot(f,20*Togl0(abs(s21)),'r', 'Tinewidth',2.5);
hold on

x1abel('Frequency [Hz]', 'fontsize',16);
ylabel('Reflection and Transmission[dB]', 'fontsize',16);
box on

Tegend('Reflection', 'Transmission');
Tegend('Tocation', 'Best');

Tegend('boxoff');

set(gca, 'fontsize',16);
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A4. Matlab code: Signal processing and data acquisition

clc;
clear all;
close all;
bri=0;
for br2 = 0:119
brl=brl+l;
if br2 < 10
str = sprintf('D:\\Measurement\\Results\\DTEKO00%d.CSV', br2);
strbata = sprintf('data = DTEK000%d', br2);
elseif br2 < 100
str = sprintf('D:\\Measurement\\Results\\DTEKO0%d.CSV', br2);
strbata = sprintf('data = DTEKO0%d', br2);
elseif br2 < 120
str = sprintf('D:\\Measurement\\Results\\DTEKO%d.CSV', br2);
strbata = sprintf('data = DTEKO%d', br2);
end
Joad( str );
eval( strbata );
[f1,k,amp,phi] = AmpPhaseNew(brl,data);
AmpX(f1,k)=amp;
PhiXx(fl,k)=phi;
end

save AmpXP.mat
save PhixP.mat

% % Measured S-parameters

clear all;

Toad freq

rho_0=1.25; % density
B_0=1.42e5; % bulk modulus
c=sqrt(B_0/rho_0); % speed of sound in air
x1=0.1; % probe 1 position [m]
x2=0.05; % probe 2 position [m]
x3=0.05; % probe 3 position [m]
x4=0.1; % probe 4 position [m]
Toad AmpX

Toad PhiX

for p=1:length(Ampx(:,1))
f(p)=freq(p);
omega=2%pi*f;
kx=omega/c;
F1=0;
F2=PhiX(p,2)-Phix(p,1);
F3=PhiX(p,3)-Phix(p,1);
F4=PhiX(p,4)-Phix(p,1);

Pla=AmpX(p, 1) *exp(1i*(F1));
P2a=AmpX(p,2) *exp(1i*(F2));
P3a=AmpX(p,3) *exp(1i*(F3));
Pd4a=AmpX(p,4)*exp(1i*(F4));
k=kx(p);
% In our case the system is symmetrical and reciprocal S11=S22 and S12=S21
Plb=P4a;
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P2b=P3a;
P3b=P2a;
P4b=Pla;

S11(p, D =-(Pla*P3b*exp (1i*k*x1) *exp(2*1i*k*x2)*exp(1li*k*x3) -
Plb*P3a*exp(1i*k*x1)*exp(2*1i*k*x2)*exp(1i*k*x3) -

P2a*P3b*exp(2*1i*k*x1) *exp(li*k*x2)*exp(1li*k*x3) +
P2b*P3a*exp(2*1i*k*x1)*exp(li*k*x2)*exp(li*k*x3) -
Pla*P4b*exp(1i*k*x1)*exp(2*1i*k*x2)*exp(li*k*x4) +
Plb*P4a*exp (1i*k*x1)*exp(2*1i*k*x2)*exp(li*k*x4) +
P2a*P4b*exp (2*1i*k*x1) *exp(li*k*x2)*exp(li*k*x4) -
P2b*P4a*exp (2*1i*k*x1) *exp(li*k*x2)*exp(li*k*x4))/(Pla*P3b*exp(1i*k*x1)*exp(1li*k*x3) -

Plb*P3a*exp(1i*k*x1)*exp(li*k*x3) - Pla*P4b*exp(li*k*x1)*exp(li*k*x4) +
Plb*P4a*exp(1i*k*x1)*exp(li*k*x4) - P2a*P3b*exp(li*k*x2)*exp(li*k*x3) +
P2b*P3a*exp(1li*k*x2)*exp(1li*k*x3) + P2a*P4b*exp(li*k*x2)*exp(li*k*x4) -
P2b*P4a*exp(1i*k*x2)*exp(1li*k*x4));

S21(p,1)=-(P3a*P4b*exp(2*1i*k*x1)*exp (1i*k*x3)*exp(1li*k*x4) -
P3b*P4a*exp(2*1i*k*x1)*exp(1li*k*x3)*exp(li*k*x4) -
P3a*P4b*exp(2*1i*k*x2)*exp(1i*k*x3)*exp(li*k*x4) +
P3b*P4a*exp(2*1i*k*x2)*exp(1i*k*x3)*exp(1li*k*x4))/(Pla*P3b*exp(1li*k*x1)*exp(1li*k*x3) -
Plb*P3a*exp(1li*k*x1)*exp(1li*k*x3) - Pla*P4b*exp(li*k*x1l)*exp(li*k*x4) +
Plb*P4a*exp(1i*k*x1)*exp(1li*k*x4) - P2a*P3b*exp(li*k*x2)*exp(li*k*x3) +
P2b*P3a*exp(1li*k*x2)*exp(1li*k*x3) + P2a*P4b*exp(li*k*x2)*exp(li*k*x4) -
P2b*P4a*exp(1i*k*x2)*exp(1li*k*x4));

end

/S DisplayResults

figure(l);

plot(f, 20*1ogl0(abs(s11)),'r', 'Tinewidth',2.5);

hold on

plot(f, 20*1ogl0(abs(s21)),'b', 'Tinewidth',2.5);

hold on

x1abel('Frequency [Hz]', 'fontsize',16);

ylabel('Reflection and transmission coefficeient [dB]', 'fontsize',16);
Tegend ('Reflection','Transmission');

set(gca, 'fontsize',16);

grid off;

%% Function AmpPhaseNew
function [fl,k,amp,phi] = AmpPhaseNew(brl,data)

Toad freq
deltaomega = 0.1;
k=rem(brl,4); % probe number
if k==0;
k=4;
end
brx=bril-k;
fl=brx/4;
fl=f1+1;
f=freq(fl);

%% Filtering

109



1
]

1 - deltaomega / 2;
t = data(:,1)-data(l,1);
x = data(:,2);
xn = data(:,2);
ang = 2 * pi * f*(t(2)-t(1));
G = (1-r)*sqrt(l - 2 * r * cos (2 * ang) + r*r);
for i=1l:Tength(data(:,1))
x(1)=0; x(2)=0;
if i>2
x()= G * x(i) + 2*r*cos(ang)*x(i-1) - r*r*x(i-2);
end
end

%% Amplitude calculation

fs=1/(t(2)-t(1));

N = length(x);
n = 2:N-1;
x = x(:);

ave = mean(x);

x=x-mean(x) ;

xs = x(n-1)+x(n+1);

C xs'*x(n)/(x(n) "*x(n))/2;

amp = sqrt((x(n)"*x(n)-2*x(n) "*x(n+1)*C + x(n+1)"'*x(n+1))/(1-cA2)/(N-2));
help=sin(2*t*pi*f);

fi=2*pi*(f/fs);

correct=angle(1-2*r*cos(fi)*exp(-Li*fi)+rA2*exp(-1i*2*fi)); % phase change cross 1in digital
resonator

N1 = floor(fs/f);

%% Phase calculation

for prl=1:N1;
partsum = 0;
for pr2=1:N1

if pr2 + 2 * N1 < Tength(x)
partsum = partsum + x(pr2+2*N1)*help(prl+pr2);
else
partsum = partsum + Xx(pr2+N1)*help(prl+pr2);
end
end
res(prl) = partsum;
end

for prl=1:Tlength(res)
if res(prl)==max(res)
nO=pril;
prl=length(res);
end
end

phi=2*pi*n0/N1l+correct;
if phi>pi

phi=phi-2*pi;
end
if phi<-pi
phi=phi+2*pi;
end
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Ab5. Matlab code: Transmission line model for the novel unit cell (aSRR)

clear all;
close all;
clc;
a=1;
1=1;
for e1=0:2
if e1==0 % Membrane
ri=3*10A-3; % radius [m]
poas= 0.34; % Poisson coefficient
Jung= 2.758e9; % Young's modulus [Pa]
rhom=1420; % density
hm=20.7e-6; % thickness [m]
rholm=rhom*hm;
D=(Jung*hmA3) /(12*(1-poasA2));
zsny=sqrt(rholm/D);
end
if el==1 % aSRR inner L section (half length)
a=3*10A-3; % radius [m]
1=0.016+(16*a/(3*pi)); % effective length [m]
end
if el==2 % aSRR outer L section
a=8*10A-3; % outer radius [m]
1=0.032; % length [m]
ri=3*10A-3; % inner radius [m]
cs=0.1%10A-3; % wall thickness
end
rho0=1.25; % density
B_0=1.42e5; % bulk modulus
c=sqrt(B_0/rho0); % speed of sound
mi=18*10A-6;
sigma=sqrt(0.71559);
ksi=0.2;
for f=200:2000; % Frequency [Hz]
w=2*pi*f;
rv=a*sqrt(rho0*w/mi);
rt=rv¥*sigma;
Fv=(2/(rv¥*sqrt(-1)))*((besselj (0, (rv¥sqrt(-1i))))/(besselj(0, (rv*sqrt(-1i)))));
Ft=(2/(rt*sqrt(-1)))*((besselj (0, (rt*sqrt(-1i))))/(besselj (0, (rt*sqrt(-1i)))));
z1=1i*((w*rho0) /(pi*aA2))*(1-Fv)A-1;
z(f-199,1)=z1;
Y1=1li*((w*pi*aA2)/(rho0*cA2))*(1+(ksi-1)*Ft);
Y(f-199,1)=Y1;
if el==
rv=(a-ri)*sqrt(rho0*w/mi);
rt=rv¥*sigma;
Fv=(2/(rv¥*sqrt(-1)))*((besselj(0, (rv¥sqrt(-1i))))/(besselj (0, (rv¥sqrt(-1i)))));
Ft=(2/(rt*sqrt(-1)))*((besselj (0, (rt*sqrt(-1i))))/(besselj (0, (rt*sqrt(-1i)))));
z1=1i*((w*rho0) /(pi*(aA2-(ri+cs)A2)))*(1-Fv)A-1;
z(f-199,1)=z1;
Y1=1li*((w*pi*(aA2-(ri+cs)A2))/(rho0*cA2))*(1+(ksi-1)*Ft);
Y(f-199,1)=Y1;
end
z0(f-199,1)=sqrt(z1/Y1l);
Gamma(f-199,1)=sqrt(z1*Yl);
A(f-199,1)=cosh(Gamma(f-199,1)*1);
B(f-199,1)=2z0(f-199,1)*sinh(Gamma(f-199,1)*1);
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C(f-199,1)=(z0(f-199,DA-1D)*sinh(Gamma(f-199,1)*1);
D(f-199,1)=cosh(Gamma(f-199,1)*1);
end
if el==0

for £=200:2000;

w=2%*pi*f;

km(f-199,1)=sqrt(w*zsny);

pr=km*ri;

S=pi*riA2;

m=rholm*s;

Zm=-
j*w*m* ((besseli(1l,pr).*besselj(0,pr)+besselj(1,pr).*besseli(0,pr))./(besseli(l,pr).*besselj(2
,pr)-besselj(1,pr).*besseli(2,pr)));

end

for n=1:1801

A(n,1)=1;

B(n,1)=zm(n)/(SA2);

c(n,1)=0;

D(n,1)=1;

end

end

if el==0;
ABCDO(1,1,:)=A;
ABCDO(1,2,:)=B;
ABCDO0(2,1,:)=C;
ABCDO0(2,2,:)=D;

end

if el==1;
ABCDLi (1,1, :)=A;
ABCDLi (1,2, :)=B;
ABCDLi (2,1, :)=C;
ABCDLi (2,2, :)=D;
for n=1:1801;
ABCDMX(:,:,n)=ABCDLi(:,:,n)*ABCDO(:,:,n)*ABCDLi(:,:,n);
end
YmO=abcd2y (ABCDMXx) ;

end

if el==2;
ABCDLo(1,1,:)=A;
ABCDL0o(1,2,:)=B;
ABCDL0(2,1,:)=C;
ABCDL0(2,2,:)=D;
YLO=abcd2y (ABCDLO) ;
Ym=YmO+YLO;
ABCD=y2abcd(Ym) ;

end

end

S_parameters=abcd2s (ABCD,2*1eb6) ;
S21(1,:)=S_parameters(2,1,:);
S11(1,:)=S_parameters(1,1,:);
£=200:2000;

%m—mm———— DisplayResults
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figure (1)

plot(f,20*1ogl0(abs(s11)),'b', 'linewidth',2.5);
hold on

plot(f,20*1ogl0(abs(s21)),'r"', 'linewidth',2.5);
hold on

xlabel('Frequency [Hz]','fontsize',16);
ylabel('Reflection and Transmission[dB]', 'fontsize',16);
box on

Tegend('Reflection', 'Transmission');
Tegend('Tocation', 'Best');

Tegend('boxoff');

set(gca, 'fontsize',16);
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A6. Matlab code: Temperature distribution calculation for a wave transformation

clc; % clear screen
clear all; % deletes the workspace
close all; % closes all figures

% Parameters

d=2.5*%1e-3; % period of the grooves

a=0.5*1e-3; % width of the grooves

h=23*1e-3; % depth of the grooves

R=287.058; % Specific gas constant (Air)
T0=273.15; % 0 Celsius in K

P=101325; % Atmospheric pressure

gamma=1.4; % adiabatic constant

T_ref=20; % Referent temperature in Celsius
T_max=50; % Maximum applied temperature in Celsius
freq=3400; % opereting frequency
Tc=(4*freq*h)A2/(gamma*R)-TO; % Critical Temperature
T=Tc:0.01:2*T_max;

w=2*pi*freq;

parameterl=input('0 (Bending) or 1 (Focusing):');

%% Ref. Air Parameter Calculation
rho_ref=p/(R*(T_ref+T10));

c_ref=sqrt((gamma*P) /rho_ref);
k_ref=w*sqrt(rho_ref/(gamma*pP));

%% Ref. Surf. Parameter Calculation

rho_surface_ref=rho_ref*(1+(a/d)A2*(tan(k_ref*h))A2);
c_surface_ref=sqrt((gamma*P) /rho_surface_ref);
k_surface_ref=w*sqrt(rho_surface_ref/(gamma*pP));

if parameterl==0; %Bending
Y2=40*d; % Thicknes of the lens
n=25; % Number of the channels
X0=500%*1e-3; % width of the lens
phi=30; % Bending degree
deltaPsi=0;

const=2;

end

if parameterl==1 %HyperbolicSecant

n_h=1; % Refractive index on the edge of the GRIN medium
Y2=20*d; % Thicknes of the lens

n=25; % number of the channels

X0=250*1e-3; % half width of the lens

n_0=1.2*n_h; % Refractive index in the center of the GRIN medium
alphax=(1/x0)*acosh(n_0/n_h);

end

x_fix=x0/n;

xi=(n-1) *x_Fix+x_fix/2:-x_fix:x_fix/2;

if parameterl==0 % Bending
for i=1:Tength(xi);
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n_max=(X0/Y2)*sind(phi)+1;
nx(i)=1+(n_max-1) /X0*xi(i);
beta2(i)=k_surface_ref*nx(i);
R1(i, :)= round(beta2(i)*ones(1l,length(T)));
end

end

if parameterl== 1 % HyperbolicSecant

for i=1l:1ength(xi);
F(i)=sech(alphax*xi(i));
nx(i)=n_0*F(i);
rHo (i) =(nx(i))A2;

R1(i, :)= round(rHo(i)*ones(1,length(T))*100)/100;

end
end

%% Parameter Calculation (free air)
for i=1:Tength(T)

rho(i)=p/(R*(T(i)+T0));
c(i)=sqrt((gamma*P)/rho(i));
k(i)=w*sqrt(rho(i)/(gamma*P));
end

%% Surface Parameter Calculation

for i=1:1ength(T)
rho_surface(i)=rho(i)*(1+(a/d)A2* (tan(k (i) *h))A2);
rho_surfaceR(i)=round(rho_surface(i)*10)/00;
c_surface(i)=sqrt((gamma*P)/rho_surface(i));
k_surface(i)=w*sqrt(rho_surface(i)/(gamma*P));
k_surfacerR(i)=round(k_surface(i));

end

%% Intersect (Graphical Eq. solving)

for i=1:1length(xi)
[c, ia, ib] = intersect(k_surfacer, R1(i,:));
Tx(i,1)=T(ia)-T_ref;

end

%% DisplayResults

figure (1)
plot(1000*xi,T_ref+Tx, 'or', 'Tinewidth',2.5);
hold on

xTabel('x[mm]"', 'fontsize',12);

ylabel ('T[\circc]', 'fontsize',12);

hold on
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