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Abstract

A class of abstract stochastic variational inequalities of the second kind described

by uncertain parameters is considered within the framework of infinitesimal and

large displacement elastoplasticity theory. Particularly the focus is set on the rate-

independent evolutionary problem with general hardening whose material character-

istics are assumed to have positively-definite distributions. By exhibiting the struc-

ture of the evolutionary equations in a convex setting the mathematical formulation

is carried over to the computationally more suitable mixed variational description for

which the existence and uniqueness of the solution is studied. Time discretised as

usual with backward Euler, the inequality is reduced to a minimisation problem for

a convex functional on discrete tensor product subspaces whose unique minimiser

is obtained via a stochastic closest point projection algorithm based on “white noise

analysis”. To this end a description in the language of non-dissipative and dissipative

operators is used, both employing the stochastic Galerkin method in its fully intrusive

or non-intrusive variant. The former method represents the direct, purely algebraic

way of computing the response in each iteration of Newton-like methods. As the

solution is given in a form of polynomial chaos expansion, i.e. an explicit functional

relationship between the independent random variables, the subsequent evaluations

of its functionals (the mean, variance, or probabilities of exceedence) are shown to

be very cheap, but with limited accuracy. Due to this reason, the intrusive method

is contrasted to the less efficient but more accurate non-intrusive variant which eval-

uates the residuum in each iteration via high-dimensional integration rules based on

random or deterministic sampling - Monte Carlo and related techniques. In addi-

tion to these, the problem is also solved with the help of the stochastic collocation

method via sparse grid techniques. Finally, the methods are validated on a series

of test examples in plain strain conditions whose reference solution is computed via

direct integration methods.
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Rezime

U okviru teorije malih i velikih plastičnih deformacija razmatrana je klasa apstrak-

tnih stohastičkih varijacionih nejednakosti opisanih slučajnim promenljivim. Pose-

ban fokus je stavljen na asocijativni evolucioni problem sa generalnim ojačanjem

čije materijalne karakteristike imaju distribuciju odredenu zakonom maksimalne en-

tropije. Proučavajući strukturu evolucionih jednačina uz pomoć konveksne teorije

analizirani su uslovi za postojanje i jedinstvenost rešenja uz dodatnu matematičku

reformulaciju problema u numerički prikladan mešoviti varijacioni opis. Dobijena

nejednakost se nakon implicitne diskretizacije svodi na minimizaciju konveksnog

funkcionala definisanog u tenzorskom prostoru. Rešenje tako postavljenog prob-

lema se može dobiti novouvedenom stohastičkom metodom projekcije najbliže tačke

uz pomoć teorije analize belog šuma. Pomenuta metoda se sastoji od dva koraka:

elastičnog i plastičnog, čiji su algoritmi bazirani na stohastičkoj Galerkinovoj metodi.

Uz pomoć funkcionalne analize Galerkinov metod je formulisan na dva načina: di-

rektan (intruzivan) i posredan (neintruzivan). Intruzivni metod predstavlja direktan,

algebarski način dobijanja rešenja u svakoj iteraciji Njutnove metode. Zahvaljujući

polinomnoj formi rešenja sve predstojeće evaluacije njegovih funkcionala, kao što

su srednja vrednost, varijansa itd. postaju računski jako efikasne, ali ograničene

tačnosti. U cilju unapredenja tačnosti Galekinova methoda je implementirana i u

svojoj manje efikasnoj, neintruzivnoj varijanti, koja računa rezidual u svakoj Njut-

novoj iteraciji numeričkom (determinističkom ili stohastičkom) integracijom. Obe

varijante Galerkinovih metoda su uporedene sa metodom stohastičke kolokacije za-

snovane na pravilu “sparse grid”-a. Konačno, sve predstavljene metode su verifiko-

vane na seriji test primera u ravanskom stanju deformacije i za referentno rešenje

dobijeno uz pomoć direktne integracije.
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Zusammenfassung

Im Rahmen der Elastoplastizitätstheorie infinitesimaler und starker Verschiebun-

gen wird eine Klasse von abstrakten, stochastischen Variationsungleichungen be-

trachtet, welche durch unsichere Parameter beschrieben werden. Im Speziellen

wird das raten-unabhängige Evolutionsproblem mit allgemeiner Verfestigung

betrachtet, dessen Materialeigenschaften-Verteilung als durch die Maximum-

Entropie Methode gegeben angenommen wird. Durch die Darstellung der Struk-

tur der Evolutionsgleichungen in einem konvexen Rahmen wird die Existenz

und Eindeutigkeit der Lösung betrachtet und die mathematische Formulierung

in eine berechnungstechnisch besser passende gemischt-variationale Beschreibung

überführt. Innerhalb eines Euler-rückwarts Zeitschrittes reduziert sich die Un-

gleichung auf ein Minimierungsproblem für ein konvexes Energiefunktional auf

diskreten Tensorproduktunterräumen, dessen eindeutige Lösung mithilfe eines

stochastischen nächstgelegenen-Punkt-Projektionsalgorithmus basierend auf der

“white noise” Analyse bestimmt wird. Hierzu wird eine Beschreibung basierend

auf nicht-dissipativen und dissipativen Operatoren benutzt und die sogenannte intru-

sive stochastische Galerkinmethode in den Berechnungsprozess eingeführt. Diese

Methode stellt einen direkten algebraischen Weg zur Berechnung der Lösung in

jeder Iteration von Newton-ähnlichen Verfahren dar. Da die Lösung in der Form

einer polynomiellen Chaos-Entwicklung gegeben ist, also einer expliziten Beschrei-

bung des funktionalen Zusammenhangs der unabhängigen Zufallsvariablen, sind die

nachfolgenden Auswertungen von Funktionalen dieser Lösung (Mittelwert, Varianz,

Überschreitungswahrscheinlichkeit) berechnungstechnisch sehr günstig. Zusätzlich

wird die Methode mit der nicht-intrusiven Variante verglichen, einem pseudo-

Galerkin Verfahren, welches das Residuum in jeder Iteration mit Methoden zur

hochdimensionalen Integration basierend auf zufälligen oder deterministischen Ab-

tastverfahren auswertet. Abschließend wird die Methode mit einer Reihe von Test-

beispielen mit einfachen Spannungsbedingungen validiert, deren Referenzlösungen

über direkte Integrationsverfahren berechnet werden.
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Chapter 1

Introduction

In order to enhance the quality and reliability of industrial design an important goal

of engineering sciences is to understand and analyze the non-reversible behaviour of

a structure under the influence of external excitations. Therefore, in last few decades

a significant development of elastoplasticity theory has been made in terms of its

mathematical formulation and numerical computation. With time the theory has

grown into two separate branches: the classical and the finite strain theory. The

classical theory is used to describe the irreversible phenomena based on the small

strain assumption [215, 89, 224, 41, 160]. The theory consists of the complete study

of the existence, uniqueness, and stability of the solution together with the various

computational approaches for its numerical computation [92]. Even though exist-

ing algorithms are fully securing the desired accuracy, the practical application of

infinitesimal models is limited to few real situations due to the small strain assump-

tion. Consequently, the classical approach has been altered to a more complex and

yet not completely understood finite strain theory. In contrast to the infinitesimal,

the finite strain theory [101, 24, 54, 161, 40] deals with several issues such as the

existence of the non-unique stress and strain measures, the problem of finding the

physically acceptable decomposition of the total deformation into elastic and plas-

tic parts, as well as non-objective material time derivatives of the spatial variables.

In order to overcome these issues several different specifications of the rate equa-

tions have been considered over time and studied in many papers and books, such

as [10, 24, 69, 159, 101, 161, 128]. Accordingly, the finite strain theory is consid-

ered to be controversial even though the computational analysis offers the numerical

algorithms capable to solve the highly complex problems.

Regardless of their great practical application in every day life, the classical and finite

strain models still cannot describe many phenomena. Properly calibrated elastoplas-

tic models are successfully used to capture the most important aspects of material
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Chapter 1 Introduction

behaviour arising in problems such as metal forming, the design of steel, etc. How-

ever, these models cope with the inability to describe materials undergoing significant

changes in the micro-structure, such as soil, rock, concrete, powder, and bone tissue.

In addition, the deterministic analysis fails to accurately predict the system response

under poorly known excitations, for example seismic phenomena, wind, snow, etc.

Nevertheless, up to the present time their study has been done in a quite determin-

istic way by “averaging” the existing experimental data and neglecting the influence

of the obviously present uncertainty on the system response.

In order to improve the quality of the prediction this paper substitutes the determin-

istic approach with a more realistic stochastic counterpart which takes all present

uncertainties into consideration.

1.1 Related work

The first attempt to describe elastoplastic equations in stochastic manner was pub-

lished by Anders and Hori [8]. They considered the three-dimensional isotropic soft-

ening of a non-homogeneous elasoplastic body in small deformation conditions and

for a quasi-static state described by random material properties. Assuming the elas-

tic modulus to be the only uncertain variable, authors proposed a stochastic finite

element method based on the Karhunen-Loève expansion along with the polynomial

chaos expansion combined with the bounding body theory [167, 211]. The method

searches for the joint distribution functions of variables of consideration by approx-

imating the yield function via the perturbation expansion. However, the number of

terms taken in the expansion in [8] is considerably small, mostly limited on one or

two terms. This is a great disadvantage as it affects the accuracy of the method and

may only handle random variables with embarrassingly small variances. In addition,

another disadvantage may be subscribed to the complexity of numerical approxima-

tion, which does not allow more than one random parameter (in this particular case

the Young modulus) to be considered.

Besides the bounding body media approach, another probabilistic finite element

method for elastoplastic materials in 3-D case has been proposed. Namely, Ning,

Wilson and Jiashou [170] developed a direct partial differential approach, which re-

lies on the incremental theory of plasticity and the modified initial stress method

introduced by Zhuo [170]. The method incorporates advantages of variational and

constant stiffness approaches, and at the same time enables simultaneous itera-

tive computations of the gradients and mean values of displacement and stresses.

20



1.1 Related work

Briefly, Ning and co-workers observed a random 3-D problem described by the

Mohr-Coulomb yield criterion with uncertain elastic modulus, Poisson ratio, and

strength parameters including the coefficient of internal friction and cohesive force.

In order to describe the probabilistic elastoplastic behaviour, they rewrote the equi-

librium equation in a set of sub-incremental and iterative equations. Following this,

authors achieved the forward and back substitution of the global stiffness matrix

within each iteration by adjoint vector methods. Although the probabilistic differen-

tiation method has been derived for the case of more than one random parameter, the

disadvantages still exist as all uncertain inputs are considered to be random variables,

not random fields. In latter case the method efficiency can be jeporised due to pres-

ence of large number of random variables. In addition, the method cannot be used

for input with large variances due to poor accuracy of the Taylor expansion used in

calculation of reliablity index.

Even though the previously mentioned methods try to illuminate the elastoplastic

behaviour, they fail to deliver full or enough accurate prediction of the structural be-

haviour under the influence of uncertainty. For a more realistic description, Jeremić

and co-workers [208, 209, 105] derived the Fokker-Planck (FP) equations for the

probability density function (PDF) of the random state variable, i.e. stress. The

Fokker-Planck equation can be derived by taking linear/nonlinear constitutive equa-

tions and describing the variation of the state variable in time by the Kubo stochastic

Liouville [120] equation. In this way one obtains the evolutionary probability density

of the state variable which further may be translated to the linear and deterministic

FP differential equation. According to [208, 209, 105] the PDF method does not

suffer from the closure problem associated with the regular perturbation approach,

neither does it require repetitive use of the computationally expensive Monte Carlo

method [133, 32]. However, the method is, mathematically speaking, very complex

and up to now can be used only for one-dimensional problems.

The quantification of uncertainty in finite deformation problems using the spectral

stochastic finite element method (SSFEM) [78, 150] first appeared in the work of

Acharjee and Zabras [3, 5, 4]. They considered the influence of the uncertainty in

the initial configuration and the heterogeneity of the material on the deformation of a

specimen via a spectral stochastic approach similar to the one presented in this work.

In order to overcome difficulties arising from the employment of polynomial chaos

algebra, they developed the collocation strategy with the help of a rigorous contin-

uum sensitivity method (CSM). Though this method provides an attractive alternative

to intrusive techniques, it does suffer from the curse of dimensionality. Furthermore,

in its present form the method is not suitable for problems involving high dimensional

uncertainties.
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Another version of spectral approach can be found in [11]. The method considers

the stochastic boundary value problems whose mathematical formulation involves

inequality constraints. However, the paper lacks the important study of the exis-

tence and uniqueness of the solution as well as the full derivation of the problem.

In a numerical way the problem is solved using the sparse grid approach where the

stochastic convex domain of admissible stresses is described in a set of collocating

points. In addition, the only uncertainty considered in the numerical examples is the

one describing the hardening of material.

In order to provide more realistic description of elastoplastic models, as well as more

efficient algorithms than previously mentioned, this thesis promotes the original idea

of a functional approximation of random variables/fields used to describe the material

characteristics of elastoplastic systems.

1.2 Purpose of the study

In reality one possess only incomplete knowledge on the material characteristics and

external excitations imposed on a system. Therefore, the main purpose of this disser-

tation is to develop an understanding and provide the quantification of the uncertainty

arising in problems described by irreversible phenomena. Following this the two pri-

mary aims of this study are:

1. to investigate the presence of uncertainty in elastoplastic systems on both the

material and structural level, and to ascertain the proper mathematical formu-

lation accurately representing random media, and

2. to develop the most suitable numerical algorithms for the integration of random

evolutionary equations.

Once the model is constructed and the numerical algorithms are developed, the sensi-

tivity analysis can be done to determine the behaviour of heterogeneous materials.

1.3 Scope and focus of research

The aim of the present study is to develop a mathematical formulation and numerical

approximation of small deformation [215, 92] and large displacement elastoplastic
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behaviour [101] in a stochastic setting, going from linear elasticity via perfect plastic-

ity to plasticity with linear hardening. By exhibiting the structure of the evolutionary

equations in a convex setting [92, 65, 188], the study is carried over to the variational

inequality formulation for the stochastic problem. This will hopefully show the math-

ematical similarity between the deterministic and the new formulation, and thus help

to explain the abstract variational inequality and its stochastic interpretation.

In engineering practice there are many phenomena which may be described by a

deterministic variational inequality of a particular order, such as the obstacle and

contact problem. Due to the necessity to solve these problems a powerful mathemat-

ical tool has been developed, see e.g. [112, 81, 62, 92]. However, many of known

phenomena are of an uncertain nature, and thus an attempt is made to extend the

theory to a more general case described by a stochastic variational inequality (SVI)

[88, 87, 86]. The main goal of this thesis is to extend the mentioned class of ran-

dom variational inequalities (RVI) described by a random monotone operator on a

random subset of a Hilbert space [88, 87, 86] to a mixed SVI for the elastoplastic

problem, and to provide the study of the uniqueness and the existence of the solution

for such posed problem. Another goal is to offer the appropriate numerical tool for

solving the mixed SVI by transforming the variational inequality to the equivalent

convex minimisation problem. This goal will be achieved with the help of a novel

approach - a stochastic closest point projection algorithm based on “white noise anal-

ysis” [194, 155, 193, 195].

For the sake of simplicity, the associative irreversible behaviour described by the

Prandtl-Reuss flow rule and the von Mises function with linear elastic and mixed

hardening is taken as a study example. The perfectly plastic material behaviour is

not considered mathematically as it cannot be described within Sobolev spaces (see

[148, 147]) regarding their ability to form shear narrow bands of very high displace-

ment gradients. Once the model is adopted, the material parameters describing the

constitutive relation and the evolution path are assumed to be uncertain and further

modeled by a random variable, random field, or stochastic process [6, 46, 59], de-

pending on their properties. Such posed problem is then numerically treated using

stochastic Galerkin method, similar to the one in the classical finite element methods

[151, 107, 108, 150, 73, 67, 155, 193, 194].

In order to separate the random part of the problem from the deterministic (spa-

tial) one, the input random fields are approximated by the Karhunen-Loève ex-

pansion [78, 107, 110, 150], followed by polynomial chaos expansion à la Wiener

[150, 238, 246] in each FEM integration point. Such an approach further allows an

explicit functional relationship between the independent random variables and the

solution, making the subsequent evaluations of functionals (the mean, covariance, or
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probabilities of exceedence) very cheap [107]. In general two possible versions of

stochastic Galerkin method are introduced: the non-intrusive, which uses the classi-

cal finite element method in a black-box fashion, and the intrusive, which requires

the full knowledge of the model. Besides the Galerkin projection, several other ver-

sions of general non-intrusive methods such as stochastic collocation [17, 144, 172]

are also discussed.

The intrusive Galerkin method directly computes a solution via linear and nonlin-

ear operations of polynomial chaos algebra [56, 140, 150]. The method takes the

ansatz of the response solution in a form of polynomial chaos expansion, which fur-

ther allows the theory of functional analysis to be employed. As it does not rely

on sampling, the method is shown to be very robust and efficient. However, the

same procedure may be applied in another way by calculating the residuum via high-

dimensional integration methods. These are known as non-intrusive Galerkin tech-

niques [150, 11], as they are based on random sampling—Monte Carlo and related

techniques—or deterministic sampling such as collocation methods.

By highlighting the dependence of the random solution on the uncertain parame-

ters, the influence of individual uncertain characteristics on the structure response

is investigated by testing several numerical problems in plain strain or plane stress

conditions.

1.4 Significance of the study

As it is becoming increasingly difficult to ignore the presence of uncertainty in the

description of materials, the main significance of this paper is to improve the exist-

ing mathematical models of elastoplastic phenomena by including the uncertanties

into the problem. In recent years there has been an increasing interest in stochastic

linear problems (see e.g. [107, 157, 244]), taking the form of linear elastic equations,

while only few studies are considering more complex nonlinear phenomena. To al-

low further generalisation, this thesis offers a study of an elasto-plastic system, or,

mathematically speaking, a variational inequality described by a random constitutive

tensor. Such a model can be used as the surrogate for the description of rocks or

soils, concrete, and many biological materials such as bone tissue. In these situa-

tions the stochastic models are more informative than the deterministic ones. They

produce the full distribution of possible outcomes, give the confidence levels that a

certain outcome will happen, provide correlations between the events, and so on. In

this manner the description of real situations, such as the development of a tumor in
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bone tissue, the breaking risk of a concrete dam, the confidence of materials in civil

structures under the influence of known or uncertain excitations (seismic phenomena,

wind, and snow), can be provided.

In addition to reasons previously mentioned, the stochastic elastoplastic formula-

tion may also become very important in the process of the identification of material

properties such as yield stress, hardening, etc. Namely, once a set of noisy and in-

complete measurement data is provided one may alter (update) the a priori assumed

probability model to a more realistic one with the help of Bayesian probabilistic

models [122, 180, 192, 191]. The process of updating requires the computation of

the system response when the input parameters are uncertain, which is the topic of

this work. For example a constitutive tensor can be identified by measuring the de-

formation of a specimen under an applied force. On the other side, theoretically a

constitutive tensor can be modelled with the help of the maximum entropy approach

[222, 52] as one possess certain information about material characteristics a priori.

Such model further can be updated (see [192, 191]) using the measurement and the

stochastic elastoplastic formulation as presented in this work.

1.5 Expected results

One of the main objectives of this study is to propose several solution strategies for

the propagation of uncertainties in an elastoplastic model. Uncertainty propagation

with the help of direct integration techniques such as Monte Carlo methods requires a

huge computational effort. To overcome this issue, the thesis investigates and devel-

ops more efficient methods for the computation of the unique solution of the stochas-

tic convex optimisation problem. These methods employ the stochastic Galerkin

projection in its fully intrusive or non-intrusive variant. The intrusive methods are

essentially algebraic and require only one program-run, which makes them very effi-

cient computationally. However, the algebraic operations require certain truncations

which further may cause poor accuracy if the order of corresponding polynomials

is not sufficiently high. Additionaly, the increase of the polynomial order is not an

easy task since the memory requirements and the dimensions of the problem fastly

grow. In order to overcome these problems a non-intrusive variant of the stochastic

Galerkin method is pursued. The method integrates the residual with the help of one

of several possible numerical techniques such as random sampling, full or sparse grid

quadrature. The advantage of non-intrusive methods is the possibility to use FEM in

a black-box manner. Such an approach delivers better accuracy in smaller stochastic

dimensions at the expense of computational cost. Similar is valid for the stochastic
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collocation method with the only difference that one does not need any improved

communication with the deterministic software such as the call of the residual or

stiffness functions.

1.6 Thesis outline

The thesis is organised as follows: Chapter 2 gives an overview on the mathematical

theory of deterministic plasticity with the focus on the description of infinitesimal

behaviour. Most of this chapter is a presentation of the existing work published in

[195]. To give a better mathematical understanding the abstract mixed variational

formulation of the infinitesimal problem is introduced and further extended to the

large displacement case.

Chapter 3 offers the mathematical description of the stochastic elastoplastic be-

haviour described by uncertain parameters. The chapter starts with the description of

uncertainties appearing in the elastoplastic problem and their modelling with the help

of a fully or reduced parametric approach. Such modelled parameters are then intro-

duced into the generalised formulation of the irreversible behaviour previously de-

scribed in Chapter 2. Once the description of basic constitutive relations is provided,

the abstract and mixed stochastic variational formulations of the problem are intro-

duced. For computational purposes the problem is reduced to the minimization of

the quadratic convex functional for which the numerical algorithms are proposed.

Chapter 4 outlines the process of the discretisation of the considered problem. As

the input properties and the structure response are time, spatially and stochastically

dependent, this chapter offers possible numerical strategies for the approximation of

time intervals, geometrical domain, and probability space. In this light Chapter 4 is

a preparation for Chapter 5, which further considers various numerical approaches

used to solve the discretised problem. The main focus of Chapter 5 is set on the di-

rect stochastic Galerkin method and its non-intrusive alternative as novel procedures,

while the numerical methods already existing in literature are only shortly reviewed.

Following this, the stochastic variant of the closest point projection algorithm [215]

is introduced and analysed.

In order to enrich and clarify the structure of Chapter 5, Chapter 6 provides more

details about functional approximations and polynomial chaos algebra. The chapter

contributes the basic polynomial chaos operations of linear and nonlinear type for

both scalar and tensor valued random variables together with the various numerical
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approaches for their computation.

Furthermore, Chapter 7 outlines the structure of the library PLASTON (PLAstic-

ity - STOchastic aNalysis), and provides a concise description of main routines and

library modules by offering the most important user information. After this, some ap-

plications of numerical methods are presented in Chapter 8 on several test examples

in plain strain conditions.
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Chapter 2

Deterministic theory of plasticity

Everything, including that which

happens in our brains, depends on

these and only on these: A set of

fixed, deterministic laws. A purely

random set of accidents.

M. Minsky

In order to introduce the mathematical formulation of the stochastic elastoplastic be-

haviour a short overview of its origin, i.e. the deterministic theory, is presented. The

description is based on the general loading behaviour and fundamental notions such

as continuity and smoothness conditions, decomposition of the deformation into elas-

tic and plastic parts, the associated flow rule, the loading criterion, and the isotropy.

According to these the chapter studies the associative plasticity models described

by a rate-independent response with the plastic flow occurring instantaneously upon

activation, and enforcing the stresses to stay in the elastic domain bounded by an

yield surface [92, 101, 115, 215]. The presence of viscosity and its influence on the

plastic flow rate have been neglected since the viscoplastic solids exhibit permanent

deformations but continue to undergo a creep flow as a function of time under the

influence of the applied load, for more detail see [55, 93, 160, 215, 135, 234, 42].

2.1 General formulation

Let the material body G smoothly move through the Euclidean space R
3 in the time

interval T = [0, T ] ⊂ R+ such that in each moment it occupies a certain spatial
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Chapter 2 Deterministic theory of plasticity

domain. The body represents a three-dimensional manifold with piecewise smooth

Lipschitz continuous boundary Γ = ∂G, on which are imposed boundary conditions

in Dirichlet and Neumann form on ΓD ⊆ ∂G and ΓN ⊂ ∂G respectively, such that

ΓD ∩ΓN = ∅ and ∂G = Γ̄N ∪ Γ̄D. The body is imagined as being an assemblage of

material particlesX moving in time to the new position x = ϕ(X, t) : G0×T → R
3,

where the twice piecewise continuously differentiable function ϕ(X, ·) describes the

path of the material point X ∈ G in R
3. For any fixed time t the mapping ϕ(·, t)

represents the new configuration Gt, i.e. deformation [215, 30, 115, 24]. According

to this two possible configurations are explored—the initial (material) G0 (at t0 = 0)

and the current (spatial) Gt (at arbitrary time t).

The body motion obeys several conservation laws [249, 229], i.e. the conservation of

mass, linear and angular momentum, and the first and second law of thermodynam-

ics. Under the assumption of quasi-static deformations, the linear momentum takes

the form of the equilibrium equations given here in spatial description (with respect

to the current configuration):

− div σ = f a.e. in Gt × T , (2.1)

where σ ∈ Sym(Rd) denotes the stress tensor and f ∈ R
d describes volume forces.

The continuity of forces on ΓN implies:

σ · n = σN a.e. in ΓN × T , (2.2)

where n ∈ R
d is the exterior unit normal at x ∈ ΓN , and σN ∈ R

d is a prescribed

surface tension. In addition, one may constrain the displacement u ∈ R
d on ΓD

as:

u = u0 a.e. in ΓD × T , (2.3)

where u0 is the prescribed boundary displacement, here for the sake of simplicity

assumed to be u0 = 0 (i.e. homogenous Dirichlet boundary conditions).

The spatial description in the form as previously given can be physically interpreted

due to the presence of Cauchy stresses σ. However, its practical implementation is

limited since the coordinates x are not generally known before the problem is solved

(e.g. finite strain case). Thus, very often Eqs. (2.1) to (2.3) are rewritten with respect

to the initial configuration X (material formulation) as shown in [215, 101, 55].

The thermodynamic laws describe the state of the system in a local form with respect

to the deformation gradient F = ∇ϕ ∈ GL+(d), the local entropy s ∈ R and a

set of additional internal variables η ∈ Q belonging to the vector space or possibly

manifold. Note that the deformation gradient F (x) belongs to the general linear
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2.1 General formulation

group (i.e. the smooth (differentiable) manifold locally similar to a linear space1)

F (x) ∈ GL+(d) = {F = ∇ϕ(x) ∈ R
d×d | det F > 0}, (2.4)

and only exists under the smoothness assumption on the mapping ϕ : G0 → Gt for

all x ∈ G. With respect to this, the thermodynamic state can be described in terms of

the Helmholtz free energy [249]

ψ(F , T,η) = inf
s
(U(F , s,η)− sT ), (2.5)

and the evolution law:

η̇ = η̇(F ,η) (2.6)

which takes into account historical effects due to the evolution of internal variables

with time. The Helmholtz free energy in Eq. (2.5) is obtained via the Legendre trans-

formation of the internal energy U and represents the function of the deformation

gradient F , the internal variables η, and the temperature T . However, in this work

one is only interested in isothermal conditions for which the temperature dependence

is excluded.

When the irreversible process occurs, the system energy dissipates over time accord-

ing to the reduced local Clausius-Duhem inequality [92, 90]:

(
∂ψ

∂F
− P

)
: Ḟ +

∂ψ

∂η
: η̇ ≤ 0, (2.7)

where Ḟ is arbitrarily chosen such that the relations for the first Piola-Kirchhoff

stress P = ∂ψ/∂F and the conjugate force χ = −∂ψ/∂η hold. In this notation the

inequality Eq. (2.7) obtains the following form:

χ : η̇ ≥ 0 (2.8)

further used to closely describe the associative, rate-independent, and isothermal ir-

reversible processes in small and finite strain case. Namely, those two cases are

different with respect to the measure of displacement u = x − X and strain (mea-

sure of deformation). In small strain case one has ‖∇Mu‖ → ‖∇Mu ≈ ∇Su :=
u⊗∇S‖ << 1, i.e. the overlapping of the current Gt and initial G0 configurations as

a direct consequence. Here, ∇M denotes the derivative with respect to the material

coordinates, and ∇S with respect to spatial ones. On the other side, in finite strain

case the statement ∇Mu ≈ ∇Su does not hold, and thus the description of the body

is not unique [101, 24, 30, 55].

1This means that manifold can be described by a collection of charts, which lie within a linear space.
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2.2 Small deformation plasticity

When the displacements are small compared to the initial size of body, one may

neglect the difference between the initial and current configuration. This further

means that the strain is uniquely defined as a symmetric part of the displacement

gradient:

ε = ∇Su :=
1

2

[
∇u+∇uT

]
a.e. in G, (2.9)

and belongs to a space of symmetric tensors Sym (Rd) = {ǫ ∈ R
d×d : ǫ = ǫT }.

The use of linearised strain as a measure of deformation is justified by the invari-

ability condition under the rigid body displacements Ur := {u : G → R | u =
a + bx, c ∈ R

d, b ∈ R
d×d : b = −bT } such that ε(u) = 0 iff u ∈ Ur.

Besides, the strain tensor is constrained by six so-called compatibility conditions

[57, 169] and describes the change in volume via the sum of diagonal elements,

as well as the change of the angles via off-diagonal elements (shear strains). Fol-

lowing this, from Eq. (2.5)–Eq. (2.8) one may deduce the Helmholtz free energy

ψ = ψ(ε,η), evolution law η̇ = η̇(ε,η), stress σ = ∂ψ/∂ε̇, and conjugate forces

χ = −∂ψ/∂η as functions of the total strain ε and the vector of internal variables η.

These quantities describe the standard media [89, 91] for which the internal variables

quantify the hardening/softening of material (i.e. the increase/decrease of its elastic

limit σy). To these one may add the decoupling of the strain into elastic and plastic

response via the additive decomposition:

ε = εe(σ) + εp(η), (2.10)

where the elastic strain εe defines the measure of the deformation when the distorted

body returns to its original shape and size after the force is removed, and the plastic

strain εp describes the irreversible behaviour, i.e. plays a role of an internal variable

— the “memory” of the material.

In order to simplify the notation one may collect the set of “plastic-like” variables to

a generalized plastic strain Ep := (εp,η) and its conjugate stresses to a generalised

stress Σ = (σ,χ). In this notation, following Eq. (2.10), one may rewrite the total

Helmholtz energy as a sum

ψ = ψe(εe) + ψirr(Ep) (2.11)

of reversible ψe =
1
2 〈εe, Aεe〉 and irreversible ψirr = 1

2 〈Ep, HEp〉 energy, both for

simplicity taken as the quadratic functions of corresponding strains. Here, A and H
denote the elastic and hardening operators, respectively, and 〈·, ·〉 the corresponding
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duality pairing. Similar to these the dissipation inequality in Eq. (2.8) transforms

to:

〈Σ, Ėp〉 := σ : ε̇p + 〈χ, η̇〉 ≥ 0, (2.12)

where the second term 〈χ, η̇〉 represents the dissipation due to the evolution of the

internal variable η.

Table 2.1: Plasticity described at material point

Model Variable Law valid a.e.

General Additive decomposition ε = εe + εp
hardening ψ = ψe + ψirr

plasticity Generalised strain Ep := (εp,η)
Generalised stress Σ = (σ,χ)
Reversible energy ψe =

1
2 〈εe, Aεe〉

Irreversible energy ψirr = 1
2 〈Ep, HEp〉

Hooke’s law σ = Aεe
Hardening law χ = Hη

Elasticity Strain ε = εe, εp = 0,η = 0
Energy ψ = ψe, ψirr = 0

Perfect Strain ε = εe + εp, η = 0
plasticity Energy ψ = 1

2 〈ε− εp, A(ε− εp)〉
Mixed Conjugate force χ = (ς, ζ)
hardening Internal variable η = (εp, ν)
plasticity Kinematic law ς = −Hkin : εp

Isotropic law ζ = −Hisoν
Hardening law χ = H : η,H

H = diag[Hkin, Hiso]

Depending on the properties of the general internal variable Ep one may separate

elastic from plastic material behaviour. If Ep = 0 the behaviour is purely elastic

(reversible), further described by a quadratic function ψe := ψ(εe), i.e. the Hooke’s

constitutive relation σ = Aεe = A : εe. Here, A ∈ L(Sym(Rd)) denotes the fourth

order symmetric, bounded, measurable, and pointwise-stable constitutive tensor; and

A corresponding linear operator. For an isotropic homogenous material A takes the

form of linear function A = K1 ⊗ 1 + 2G[I − 1
31 ⊗ 1] in terms of two material

parameters2, the bulk K and shear G moduli.

2I represents the fourth-order and 1 the second-order symmetric identity tensor

33



Chapter 2 Deterministic theory of plasticity

In case the internal variables Ep are present the material behaviour is plastic. In this

work the focus is set only on two “simple” possible cases of such behaviour: perfect

and mixed hardening plasticity (see Table 2.1). The perfect material undergoes irre-

versible changes of shape or size of the body without any further increase of stresses

and loads, while the hardening material experiences the change of the domain of ad-

missible stresses by its size (isotropic hardening) or position (kinematic hardening).

For more details the reader is referred to [215, 92, 101, 55].

2.2.1 Associative plastic flow rule

The evolution of the plastic strain according to the associative flow rule is described

by elastic domain K—a closed convex set containing the origin (Σ = 0 ∈ K)—

which the stress cannot leave. In this sense, the dissipation in Eq. (2.12) becomes

maximal [136] and for 0 ∈ K the law is clearly satisfied.

Table 2.2: Plastic flow rule formulations

Dual

Normal cone NK(Σ) = {Ξ ∈ E | 〈Ξ,T −Σ〉 ≤ 0} ⊆ E
Indicator of K ΨK(Σ) = 0, if Σ ∈ K, otherwise ΨK(Σ) = ∞
Flow rule Ėp ∈ NK(Σ) = ∂ΨK(Σ) ⇔ 〈Ėp,Σ − T 〉 ≤ 0

Primal

Conjugate dual Ψ∗
K(Ξ) = {T ∈ Y | sup (〈Ξ,T 〉 − ΨK(T ))}

Dissipation j(Ėp) = Ψ∗
K(Ėp) = {T ∈ K | sup 〈Ėp,T 〉}

Convex domain K K = ∂Ψ∗
K(0) = ∂j(0)

Barrier cone of K K∞ := {Ξ | 〈Ξ,T 〉 <∞ ∀T ∈ K}
Flow rule Σ ∈ ∂Ψ∗

K(Ėp)

Yield function

Gauge function gK(Σ) = inf {λ > 0 | ∀Ξ : 〈Ξ,Σ〉 ≤ λΨ∗
K(Ξ) }

Yield function φK(Σ) := gK(Σ)− 1,
Convex domain K = {Σ | φK(Σ) ≤ 0}
Flow rule ∃λ ≥ 0 : Ėp ∈ λ∂φK(Σ) ∧ λφK(Σ) = 0

With the help of the definition of the elastic domain the flow rule can be described

in two equivalent forms: dual and primal. The first is given in terms of indicator

function ΨK(Σ) of K, whose sub-differential represents the normal cone NK(Σ)
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at point Σ on K, see Table 2.2 and [92, 195, 168]. On the other side, the primal

law introduces the convex and lower semi-continuous support function Ψ∗
K(Ξ) of K,

obtained by the Legendre-Fenchel transform of the indicator function. This function

is identified with the dissipation j(Ėp), i.e. a non-negative (as 0 ∈ K), convex, lower-

semicontinuous, and positively homogenous (∀λ > 0 : j(λΞ) = λj(Ξ)) function

satisfying j(0) = 0. The effective domain of j is the so-called barrier cone K∞ of

K, a closed convex cone. For such support functions one has K = ∂Ψ∗
K(0) = ∂j(0),

Σ ∈ ∂j(Ėp) ⇔ Σ ∈ ∂j(0) (as for any positively homogenous convex function),

and 〈Ξ,Σ〉 = j(Ξ). Following this, the primal formulation of the flow law (see

Table 2.2) is equivalent to the dual form by stating that ∂j∗ = ∂ΨK is a cone. For a

detailed derivation please see the technical report by Rosić et al. [195].

As for the characterization of the elastic domain, the most common one is still miss-

ing, namely in terms of a yield function. For that the notion of a Minkowski [187]

or gauge functional gK(Σ) of a convex set K is needed. The functional defines the

“canonical” yield function φK(Σ) which further gives the definition of the flow rule

as in Table 2.2. In case of a smooth function φK(Σ) the sub-differential ∂φK(Σ)
is replaced by gradient ∇φK(Σ), and the flow rule obtains the form of the familiar

relation of classical elastoplasticity: ∃λ ≥ 0 : Ėp = λ∇φK(Σ) ∧ λφK(Σ) =
0, K = {Σ | φK(Σ) ≤ 0}. Note that over the years a large number of yield func-

tions (criteria) have been developed mostly for materials used in engineering. For

this the reader is referred to [55, 45, 236, 158] for further details.

2.2.2 Time discretisation of the flow rule

Let us divide the time interval [0, T ] into steps ∆tn = tn − tn−1 with time points

denoted by tn, n = 0, 1, · · · . The goal is to approximate the state of the material

such that the relations in Table 2.2 are satisfied at the end of the time increment given

the state of the material at tn−1. The state is described by values of the total strain

En := (εn, 0), its increment ∆En, and the plastic strain Ep,n (which then defines

the stress Σn = A : (En − Ep,n)). To simplify the notation for all quantities to

follow an index “n” is used to denote the quantity at time tn.

In order to approximate the rate Ėp one may use the difference quotient ∆Ep,n =
(Ep,n −Ep,n−1)/∆tn, which in an Euler backward fashion has to be in the normal

cone NK(Σn) at the end of the increment tn (see Table 2.2). This is a special case

of Moreau’s sweeping process [162]:

1

∆tn
(∆Ep,n) ∈ NK(Σn) = ∂ΨK(Σn). (2.13)
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As NK is a cone it also holds that ∆Ep,n ∈ NK(Σn)—one utilises the rate in-

dependence here—and hence the previous equation may be rewritten as a discrete

normality rule:

〈∆Ep,n,T −Σn〉 ≤ 0, ∀T ∈ K. (2.14)

2.2.3 The closest point return algorithm

Both because this is the prototype for the actual computation and as this procedure is

used in the abstract proofs, the well-known return mapping algorithm [215, 101, 195,

168] is described here starting with the dual rule in Table 2.2. As ∆Ep,n = Ep,n −
Ep,n−1 = En−Ee,n−En−1+Ee,n−1 = ∆En+Ee,n−1−Ee,n = A−1(Σtrial−
Σn) with Σtrial := A(∆En + Ee,n−1), one obtains from 〈Ėp,Σ − T 〉 ≤ 0 the

variational inequality

〈△Epn,T −Σn〉 ≤ 0, ∀T ∈ K (2.15)

and the equivalent minimisation functional

〈Σn, A
−1(T −Σn)〉 ≥ 〈A−1Σtrial,T −Σn〉, ∀T ∈ K (2.16)

as a special case of a general variational inequality described in Section 2.3. This

further leads to a constrained minimisation problem

Σn = arg min
Σ∈K

Φ(Σ)

= arg min
Σ∈K

{1
2
〈A−1(Σtrial −Σ),Σtrial −Σ〉} (2.17)

in its familiar “closest-point-return” form. This means that Σn is the projection

of Σtrial onto the closed convex set K in the metric given by A−1, i.e. the norm

〈Σ : A−1 : Σ〉1/2. Observe that Σtrial is the stress which would result if the

increments were purely elastic.

2.3 Minimisation principle

After the preceding well-known description at a material point, the present and next

section will cover some abstract results regarding the theory outlined in the previous
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2.3 Minimisation principle

sections. As already discussed, the elastoplastic problem in each time step converts to

the standard convex optimization problem described by a quadratic convex objective

function Φ. In addition, if the minimisation is performed over a convex region then

the existence and uniqueness of the globally optimal minimum directly follow [195,

224, 239].

Let Φ(z) be a strictly convex, continuous, Gâteaux differentiable, and coercive func-

tional on a Hilbert space Z , i.e. Φ(z) → ∞ as ‖z‖ → ∞. In particular one may

look at a continuous (or bounded a(z1, z2) ≤ c‖z1‖‖z2‖), symmetric and Z-elliptic

(a(z, z) ≥ c‖z‖2) bilinear form a : Z × Z → R and an element y ∈ Z∗. These are

used to define the functional:

Φ(z) =
1

2
a(z, z)− 〈y, z〉. (2.18)

As a and y are continuous and Gâteaux-differentiable, and as a is Z-elliptic, Φ has all

the properties stated above. To handle the dissipation one has to allow for a second

convex functional j on Z , which may not be Gâteaux differentiable everywhere. This

functional is supposed to be the support functional of a closed convex set K ⊂ Z∗

containing the origin. One then has (see [92, 195]):

Proposition 2.3.1. With the notation and assumptions just described the problem to

minimise

min
z∈Z

(Φ(z) + j(z)) (2.19)

has a unique solution:

w = argmin
z∈Z

(Φ(z) + j(z)), (2.20)

characterised by 0 ∈ ∂(Φ(w) + j(w)), i.e.

− δΦ(w) ∈ ∂j(w), (2.21)

where δΦ(w) = a(w, ·) − y is the Gâteaux derivative of Φ. The last relation may

also be written as:

∀z ∈ Z : a(w, z − w) + j(z)− j(w) ≥ 〈y, z − w〉, (2.22)

i.e. an elliptic variational inequality of the second kind.

Proof. See [81].
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For brevity’s sake let us denote w∗ = −δΦ(w). Then Eq. (2.21) becomes

w∗ ∈ ∂j(w), (2.23)

which is equivalent to

w ∈ ∂j∗(w∗) = ∂ΨK(w
∗), (2.24)

or

〈w, z∗ − w∗〉 ≤ 0, ∀z∗ ∈ K. (2.25)

Following this one may write:

Theorem 2.3.2. With the notation and assumptions as before, the problem:

min
z∈Z

(Φ(z) + j(z)) (2.26)

has a unique solution w ∈ Z ,

w = argmin
z∈Z

(Φ(z) + j(z)) (2.27)

characterised by

∃w∗ ∈ K, ∀z ∈ Z : a(w, z) + 〈w∗, z〉 = 〈y, z〉 (2.28)

and

∀z∗ ∈ K : 〈w, z∗ − w∗〉 ≤ 0. (2.29)

Proof. Follows from Proposition 2.3.1 and Eq. (2.23)-Eq. (2.25).

The bilinear form a defines a linear, continuous, self-adjoint, and coercive (〈Az, z〉 ≥
c2‖z‖2) operator A : Z → Z∗ via

∀v, z ∈ Z : a(z, v) = 〈Az, v〉. (2.30)

Due to the properties just stated, A has an inverse A−1 : Z∗ → Z with the same

attributes. This allows us to define a bilinear, continuous, symmetric, and coercive

form a∗ on Z∗:

a∗(z∗1 , z
∗
2) = 〈z∗1 , A−1z∗2〉, (2.31)
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2.3 Minimisation principle

or, in other words, if u ∈ Z solves:

∀z ∈ Z : a(u, z) = 〈z∗2 , z〉, (2.32)

then

a∗(z∗1 , z
∗
2) = 〈z∗1 , u〉. (2.33)

If the bilinear form a can be identified in our application with the Helmholtz free

energy, then a∗ is the complementary energy.

We need the following result, now for variational inequalities of the first kind:

Proposition 2.3.3. Let V be a Hilbert space, ϕ : Z → R a strictly convex Gâteaux-

differentiable, coercive functional, and K ⊂ V a non-empty, closed, convex set con-

taining the origin. Then the minimisation problem:

min
v∈K

ϕ(v) (2.34)

has a unique solution u ∈ V ,

u = argmin
v∈K

ϕ(v), (2.35)

characterised by

∀v ∈ K : 〈δϕ(u), v − u〉 ≥ 0, (2.36)

where δϕ is the Gâteaux-derivative of ϕ.

Proof. See [81].

Let V = Z∗, and ϕ(z∗) = 1
2a

∗(y − z∗, y − z∗) with Gâteaux derivative:

δϕ(z∗) = a∗(z∗, ·)− a∗(y, ·) = a∗(z∗ − y, ·). (2.37)

From Eq. (2.28) in Theorem 2.3.2 one may see that w solves :

∀z ∈ Z : a(w, z) = 〈y − w∗, z〉, (2.38)

and hence with Eq. (2.32)

ϕ(w∗) =
1

2
a∗(y − w∗, y − w∗) =

1

2
〈y − w∗, w〉, (2.39)
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and

δϕ(w∗) = a∗(w∗ − y, ·) = −w (2.40)

Eq. (2.36) reads

∀z∗ ∈ K : −〈w, z∗ − w∗〉 ≥ 0. (2.41)

These results can be collected in:

Theorem 2.3.4. With the notation and assumptions as before, the problem in Theo-

rem 2.3.2 is equivalent to:

w∗ = argmin
z∗∈K

1

2
a∗(y − z∗, y − z∗) (2.42)

(w∗ is in K the closest point to y in the a∗ metric), characterised by:

∃w ∈ Z, ∀z ∈ Z : a(w, z) = 〈y − w∗, z〉 (2.43)

and

∀z∗ ∈ K : 〈w, z∗ − w∗〉 ≤ 0. (2.44)

Proof. Follows from Proposition 2.3.3 and Eq. (2.37)-Eq. (2.41).

Hence, computing w∗ as the closest point in Eq. (2.42), the pair (w,w∗) satisfies

Theorem 2.3.2.

2.3.1 Functional spaces

The boundary value problem described by the equilibrium equation given in Sec-

tion 2.1 will be recast in a weak form, also known as a variational formulation. This

requires the definition of the functional spaces [92, 195] that are relevant to the prob-

lem considered in this work, namely plasticity with linear kinematic and isotropic

hardening. The solution spaces are assumed to be the elements of the space of ad-

missible functions. However, in a perfect plasticity case further described spaces are

not applicable any more. In such a situation one introduces the space of functions

of bounded deformation, as proposed in [147, 63]. For reasons of simplicity those

spaces are not considered in this work.
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2.3 Minimisation principle

Let V be a Hilbert space—with its dual V∗—to which corresponds the space of the

Bochner-Lebesgue p-integrable functions:

Lp(T ,V) = {v : T → V | ‖v‖Lp
=

(∫ T

0

‖v(t)‖pV dt

) 1
p

<∞, 1 ≤ p <∞}

(2.45)

with the usual extension to ‖v‖L∞
= ess sup

t∈T
‖v(t)‖V for p = ∞. Going a step

further one introduces the Sobolev space:

Hm(T ,V) = {v ∈ L2(G) : Dαv ∈ L2(G), α ≤ m} (2.46)

and for u, v ∈ L2(G) defines the duality pairing as:

〈u, v〉L2(G) =

∫

G
u(x)v(x) dx, (2.47)

such that for u, v ∈ Hm(G)

〈u, v〉Hm(G) =
∑

|α|≤m

〈Dαu,Dαv〉 (2.48)

holds. In the previous notation α = (α1, ..., αd), |α| = α1 + ... + αd, and the

derivatives Dαv = ∂α1 ...∂αdv are taken in a weak sense.

With the help of these definitions one may describe the space of admissible displace-

ments as a Hilbert space U of one times differentiable functions including specified

boundary conditions, see Table 2.3. This space is mapped to a strain space E via in-

jective linear operator ∇S ∈ L(U , E) with the closed range, which for some constant

Cd > 0 and all u ∈ U satisfies the following inequality ‖∇Su‖E ≥ Cd‖u‖U . By

additive decomposition the space of plastic strain Ep becomes the subspace of E , i.e.

the space of functions with zero trace. Similarly, the space of the internal variables

Q is defined [195].

Besides previously described spaces, one may introduce the space of their functionals

— dual spaces (also called stress or spaces of dynamic variables), see Table 2.3 and

[92, 123]. To this set belongs the space of stresses R = E∗ determined by constitutive

law σ = A∇Su, which further gives f = ∇∗
Sσ ∈ F = U∗. Thus, the space of

forces F is determined by operator ∇∗
S ∈ L(E∗,U∗) dual to ∇S . Similar is valid for

the space of the conjugate thermodynamic forces C. In order to simplify the notation,

the definitions of the generalised strain space P and generalised stress space Y are
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Chapter 2 Deterministic theory of plasticity

given as shown in Table 2.3. For a later formulation one may also introduce the so-

called primal w := (u,Ep) ∈ Z and dual w∗ := (f ,Σ) ∈ Z∗ variable given in

corresponding “strain” Z and “stress” space Z∗.

Table 2.3: The defintion of spaces for kinematic and dynamic variables together with

the corresponding inner products

Variable Space

Displacement u U := {u ∈ H1(G)| u = 0 on ΓD}
Force f F := U∗

〈f ,u〉F×U :=
∫
G f · u dx+

∫
ΓN

g · u ds

Strain ε E := {ε | ε ∈ L2(G, Sym (Rd)}
Plastic strain εp Ep := {εp ∈ E : tr εp = 0 a.e. in G}
Stress σ R := E∗ = {σ: σ ∈ L2(G, Sym(Rd)}

〈σ, ε〉R×E :=
∫
G σ : ε dx

Internal variables η Q := {η | η = (εp, ν) ∈ L2(G, Sym(Rd × R)}
Conjugate force χ C := {χ | χ = (ς, ζ) ∈ L2(G, Sym(Rd)× R}

〈χ,η〉C×Q :=
∫
G ς : εp dx+

∫
G ζ · ν dx

Gen. pl. def. Ep P = Ep ×Q
Gen. stress Σ Σ ∈ Y := R× C

〈Σ,Ep〉Y×P := 〈σ, εp〉R×E + 〈χ,η〉C×Q

Primal w := (u,Ep) Z := U × P
Dual w∗ := (f ,Σ) Z∗ := F × Y

〈w∗,w〉W∗×W := 〈f ,u〉F×U + 〈Σ,Ep〉Y×P

2.3.2 Variational formulation

As the variational form taken by elastoplastic problems includes variational in-

equalities and hence the corresponding minimization problems, this section collects

some general results on this topic, mostly coming from the works of Stampacchia

[131, 112], Glowinski [81], Duvaut and Lions [62], etc. In these papers one may find

the description of the variational inequalities arising in problems such as stationary

elasticity, perfect plasticity, and the contact problem.
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2.3 Minimisation principle

Linear elasticity

Following the definitions for functional spaces in Section 2.3.1, one is able to intro-

duce the linear functional:

l(v) :=

∫

G
f(x, t) · v(x) dx+

∫

ΓN

g(x) · v(x) ds, (2.49)

together with the operator A : E → R:

〈Aε, ǫ〉R×E =

∫

G
[A : ε(x)] : ǫ(x) dx, ∀ǫ ∈ E (2.50)

such that the linear Hooke’s law takes the form 〈Aε, ǫ〉 = 〈σ, ǫ〉, ∀ǫ ∈ E , i.e.

σ = Aε := A : ε. By virtue of previous assumptions, the bilinear form

a(u,v) =

∫

G
Aε(u) : ε(v) dx, (2.51)

introduces an inner product ‖u‖A = a(u,u)1/2 in the space U , called the energy

inner product [92, 202]. The energy norm is equivalent to the standard norm ‖u‖1
of the space H1(G), i.e. C1‖u‖1 ≤ ‖u‖A ≤ C2‖u‖1 (C1 and C2 are constants).

Note that in the following text the usual Euclidean norm in L2(G) is denoted as

‖u‖ = (u,u)1/2.

In this notation the weak form of equilibrium Eq. (2.1) can be further stated as fol-

lows:

Problem 2.3.5. Primal formulation of Elasticity problem PE. For a given loading

f ∈ F find the solution u ∈ U such that

a(v,u) := 〈Aε(u), ε(v)〉 = ℓ(v), ∀v ∈ U , (2.52)

i.e.

Au = ℓ in U∗, (2.53)

is satisfied.

In terms of the Lax Milgram theorem [124] the conditions of boundness and U -

ellipticity of the bilinear form a directly imply the well-possedness of the problem in

the sense of Hadamard, and therefore Problem 2.3.5 admits the unique solution. For
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more details see [92].

The primal formulation in Problem 2.3.5 is not the only possible description of elastic

behaviour. If one adopts the displacement u ∈ U and stress σ ∈ R as variables

of consideration, the description in Problem 2.3.5 changes to the so-called mixed

formulation, where the solution space is not any more the space U alone, but the

Cartesian product of spaces U and R. According to this, the mixed formulation

requires the introduction of a new—dual— operator A∗ := A−1 and the energy

norm ‖σ‖2A∗ = 〈A∗σ,σ〉 := 〈σ,σ〉A∗ via the continuous, symmetric, and coercive

bilinear form:

a∗(σ, τ ) = 〈A∗σ, τ 〉 =
∫

G
A−1σ : τ dx. (2.54)

If a is identified in our application with the Helmholtz free energy ψe, then a∗ is

identified with the complementary energy ψ∗
e via the Legendre-Frenchel transforma-

tion:

ψ∗
e(σ) = sup

ε∈E
{〈σ, ε〉R×E − ψe(ε)} =

1

2

∫

G
σ : (A−1 : σ) dx =

1

2
a∗(σ,σ).

(2.55)

In addition to a∗ the mixed description requires the definition of the continuous bi-

linear form b as follows:

b(τ ,v) := 〈Bτ ,v〉 = 〈B∗v, τ 〉 =
∫

G
ε(v) : τ dx, (2.56)

further leading to:

Problem 2.3.6. Mixed formulation of Elasticity problem ME. For a given loading

f ∈ F and the space of admissible stresses R find the solution u ∈ U such that

a∗(σ, τ )− b(τ ,u) = 0, ∀τ ∈ R
b(σ,v) = ℓ(v) ∀v ∈ U (2.57)

hold. In terms of operators previous equations become

A∗σ −B∗u = 0

Bσ = ℓ. (2.58)

The uniqueness of the solution can be proven in a similar manner as for the case of

the primal problem, for more information see [92, 202].
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From the optimisation point of view the primal and mixed problems may be reformu-

lated to a minimisation of the certain cost functional Φ(v), assuming that the bilinear

form a is symmetric. In other words, the primal Problem 2.3.5 transforms to the

minimisation of:

Φ(v) =
1

2
a(v,v)− 〈ℓ,v〉, (2.59)

a strictly convex, continuous, Gâteaux differentiable, and coercive functional on a

Hilbert space U , i.e. Φ(v) → ∞ as ‖v‖ → ∞. As a and ℓ are continuous and

Gâteaux-differentiable, and as a is U -elliptic, Φ has all desired properties and thus

the primal formulation in Problem 2.3.5 may be rewritten as a convex unconstrained

minimisation problem

w = argmin
v∈U

(Φ(v)). (2.60)

The minimum satisfies δ(Φ(w)) = 0, where δΦ(w) = a(w, ·) − ℓ denotes the

Gâteaux derivative of Φ.

Similarly, the dual minimisation Problem 2.3.6 (see [229] chapter I) reads:

σ = argmin
σ∈S

(Φ∗(σ)) = argmin
σ∈S

[
1

2
a∗(σ,σ)−

∫

ΓD

σ(x)n(x)u0(x) dΓ], (2.61)

where the statically admissible set S = {σ ∈ Rd : σ · n = tN} requires the

definition of the Hilbert space Rd = {σ ∈ R : −divσ = f} with the norm

(σ, τ )Rd
= (σ, τ )R + (div σ, div τ )L2

.

Elastoplasticity

After integrating both the flow rule in its primal form (see Table 2.2) and the equi-

librium Eq. (2.1) previously multiplied by test function v− u̇ over the computational

domain G, one may arrive to the primal formulation of the elastoplastic behaviour,

i.e. a variational inequality of the second kind [92, 240, 229, 97]:

a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t)) ≥ 〈f, z − ẇ(t)〉, ∀z ∈ K. (2.62)

Here, j denotes the dissipation functional, 〈f, z − ẇ(t)〉 the linear continuous func-

tional, and a(z, w) = 〈Az,w〉 the bilinear form with A : Z → Z∗ being a linear,

continuous, self-adjoint, and coercive (i.e. 〈Az, z〉 ≥ c2‖z‖2) operator. The inequal-

ity is posed on a convex non-empty domain K to which the test functions z belong.

To allow for the dissipation functional, one may pose the problem on a primal space

Z := U × P (a space of primal solution w, see Table 2.3), and thus generalise for-
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mulation to the abstract one:

Theorem 2.3.7. Problem ABS-P. Given a function f ∈ H1(T ,Z∗) with f(0) = 0,

there exists a unique function w ∈ H1(T ,Z∗) with w(0) = 0 and ẇ(t) ∈ K∞,

which solves the following problem a.e. in t ∈ T :

∀z ∈ Z : a(w(t), z − ẇ(t)) + j(z)− j(ẇ(t)) ≥ 〈f(t), z − ẇ(t)〉. (2.63)

If in addition f1, f2 ∈ H1(T ,Z∗) with f1(0) = f2(0) are two different loadings,

and w1, w2 ∈ H1(T ,Z∗) are the corresponding solutions, then

‖w1 − w2‖L∞
≤ c‖ḟ1 − ḟ2‖L1 . (2.64)

Proof. The existence, stability and uniqueness of the solution w ∈ H1(T ,Z∗) with

w(0) = 0 and ẇ(t) ∈ K∞ are studied in [92] for a given f ∈ H1(T ,Z∗) with

f(0) = 0.

The primal problem is not uniformly concave/convex, therefore generalized Newton

methods (radial return) often exhibit bad global convergence properties. In order to

overcome this difficulty one reformulates Theorem 2.3.7 by introducing the function

w∗ ∈ H1(T ,Z∗) coming from the definition of the sub-differential:

∂j(ẇ) := {w∗ ∈ Z∗ : j(z) ≥ j(ẇ(t)) + 〈w∗(t), z − ẇ(t)〉, ∀z ∈ Z}. (2.65)

This together with the positive homogeneity of j allows to write j(ẇ) = 〈w∗, ẇ〉 and

j(z) ≥ 〈w∗, z〉, which substituted to Eq. (2.62) gives an equality

a(w(t), z) + 〈w∗(t), z) = 〈f, z〉, ∀z ∈ Z (2.66)

followed by an inequality:

w∗ ∈ ∂j(ẇ), a.e. t ∈ T . (2.67)

Going back to convex analysis [65] one has that w∗(t) ∈ ∂j(ẇ(t)), and thus ẇ(t) ∈
∂j∗(w∗)(t) for all t ∈ T . With this in mind one may rewrite Eq. (2.67) to:

∀z∗ ∈ K : 〈ẇ(t), z∗ − w∗(t)〉 ≤ 0 ∀t ∈ T , (2.68)

and subsequently pose a mixed formulation of the abstract plasticity problem, which

will be used further:
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Theorem 2.3.8. Problem ABS-M. With the notation and assumptions above there

are unique functions, w ∈ H1(T ,Z∗) and w∗ ∈ H1(T ,Z∗) with w(0) = 0 and

w∗(0) = 0, which solve the following problem a.e. t ∈ T :

∀z ∈ Z : a(w(t), z) + 〈w∗(t), z〉 = 〈f(t), z〉 (2.69)

and

∀z∗ ∈ K : 〈ẇ(t), z∗ − w∗(t)〉 ≤ 0. (2.70)

If, in addition, f1, f2 ∈ H1(T ,Z) with f1(0) = f2(0) = 0 are two different load-

ings, and w1, w2 ∈ H1(T ,Z) and w∗
1 , w

∗
2 ∈ H1(T ,Z∗) are the corresponding

solutions, then

‖w1 − w2‖L∞
≤ c‖ḟ1 − ḟ2‖L1

(2.71)

and

‖w∗
1 − w∗

2‖L∞
≤ c∗(‖ḟ1 − ḟ2‖L1

+ ‖f1 − f2‖L∞
) ≤ c∗∗‖ḟ1 − ḟ2‖L1

. (2.72)

Proof. The existence and uniqueness may be proven in a similar manner as for the

primal abstract problem, for further details see [195].

2.4 Large deformation elastoplasticity

The theory of infinitesimal plasticity is very simple and clear, however not very ap-

plicable in practice. In real situations such as metal forming the assumption of lin-

ear deformation is not appropriate due to existence of non-negligible local rotations.

This further results in non-unique stress and strain measures, as well as non-objective

material time derivatives of the spatial variables.

In early works the finite deformation theory was based on the assumption of hy-

poelasticity, i.e. the additive decomposition of the rate of deformation into elastic

and plastic parts, where the elastic part is described by the hypoelastic rate equation

[15]. However, experiments have shown that the hypoelastic formulation is not so

adequate due to the inconsistency with elastic response in some specific situations

observed in [53, 54]. This constatation has been proven in the work of Simo and

Pister [218] for the Jaumann, Green-Naghdi and Truesdell formulations. Therefore,

the hypoelastic formulation is replaced by the hyperelastic one [217] which decom-

poses the deformation gradient in a multiplicative way. Such an approach is found to

be mathematically more complex than the first mentioned. To reduce the complex-
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ity scientists investigated different numerical approaches to the problem [184]. This

tendency is recently replaced by a theory of the evolution processes given in terms of

the second law of thermodynamics with respect to the current configuration [216] or

the intermediate one [130].

Due to the previously mentioned reasons, the theory of finite deformation plasticity

is very much controversial and still study of research, see [1, 69, 159]. Hence, in this

work only the large displacement analysis is considered.

2.4.1 Description of kinematics

In contrast to infinitesimal, the finite deformation theory is not uniquely described

as the current and initial configuration are not overlapping. In other words, the dis-

placement field is not infinitesimal, and one may distinguish the initial G0 from the

current (deformed) configuration GT . Accordingly, there are at least two possible

descriptions of the material behaviour depending on the choice of the reference con-

figuration. The description with respect to the initial configuration is called material

or Lagrangian, while the spatial (Euler) description is the one given with respect to

the current configuration.

In order to relate the mentioned configurations, one introduces the deformation gra-

dient, see Section 2.1, which splitts by a multiplicative decomposition [143]

F = F eF p (2.73)

to the plastic F p and elastic F e gradients, locally defining an intermediate config-

uration. In the following discussion the material will be assumed to be plastically

isochoric for which F p belongs to a special linear group:

F p ∈ SL(d) = {F p | det F p = 1}, (2.74)

such that the hydrostatic pressure can be evaluated directly from the determinant of

F e [30]. In a more general case, when the isochoric condition is not assumed, the

deformation gradient belongs to a general linear group, i.e. F p ∈ GL+(d).

Even though the deformation tensor relates the initial with the current configuration,

this quantity has no physical meaning. The physical description of the deformation,

i.e. the change in time with stretching and the change of angle between two elemental

vectors of the body, is only possible in terms of right C = F TF = CeCp and left
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2.4 Large deformation elastoplasticity

b = FF T = bebp Cauchy Green deformation tensors [30, 101]. Once these tensors

are introduced, the further mathematical description of the elastoplastic behaviour

can be given in terms of the Green-Lagrangian finite strain tensor E = 1
2 (C − I)

or the Eulerian-Almansi finite strain tensor 3 e = ϕ∗(E) = F−TEF−1. Besides

these, other deformation measures [10] can be equivalently used for the material

description.

Table 2.4: Stress measures

Stress Relation Stress Relation

I Piola-Kirchhoff P = JσF−1 Cauchy σ = J−1τ

(Non-sym.) = τF−T (Sym.) = J−1PF T

= FS = J−1FSF T

II Piola-Kirchhoff S = JF−1σF−T Kirchhoff τ = Jσ
(Sym.) = F−1τF−T (Sym.) = PF T

= F−1P = FSF T

Similarly to strain, the definition of stress also depends on the chosen reference con-

figuration, see Table 2.4. Namely, one may differ a second Piola-Kirchhoff stress

S which relates forces and areas in the initial configuration from the first Piola-

Kirchhoff stress P representing the force in the current configuration exerted per

unit area in the initial configuration. Note that the stresses expressed with respect

to the current configuration, such as the Cauchy σ and Kirchhoff τ stresses, are the

only ones having the real physical meaning.

The stresses are conjugated to the strain tensors [30, 101] by the energy law:

1

2
S : Ċ = P : Ḟ = τ : d, (2.75)

from which follows the connection between the second Piola-Kirchhoff stress S and

the right Cauchy Green tensor C, the first Piola-Kirchhoff stress P and the change

of the deformation Ḟ , as well as the Kirchhoff stress τ and the rate of deformation

d = ϕ∗(Ė) = F−T ĖF−1, i.e. d = (l + lT )/2 where symmetry is kept in l =
Ḟ F−1 known as a velocity gradient.

3obtained by a push forward operation ϕ∗ applied on the Green-Lagrangian tensor
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Chapter 2 Deterministic theory of plasticity

2.4.2 Evolution equations

The irreversible and work-dissipating elastoplastic processes are usually described

with the help of the energy function and evolution equations for internal variables. In

contrast to the small strain theory the local equations are not necessarily formulated

in objective rate forms [142, 24, 101] due to the existence of non-negligible rota-

tions. In order to avoid incorrect results, the choice of rates as well as the evolution

equations has to be made such that the objectivity and the second law of thermody-

namics are fulfilled. Another problem of large strain plasticity is a violation of the

classical convexity properties due to the assumption of finite strains and their mul-

tiplicative split. Therefore, one has to introduce more general notions of poly- and

quasi-convexity in the description of the considered energy potential [40, 161].

The goal of the multiplicative decomposition of the deformation gradient is to make

the separation of the elastic F e from the plastic deformation gradient F p such that

the elastic properties depend only on F e. This further means that the free energy can

be expressed as:

ψ = ψ(F e,η), (2.76)

where η ∈ R
m denotes the vector of internal variables which records changes in F p

and may influence the elastic properties. Moreover, the energy satisfies the material

objectivity requirements: ψ(QF e,η) = ψ(F e,η) ∀Q ∈ SO(d) ⇔ ψ(F e,η) =
ψ(F eTF e,η); and defines the first Piola-Kirchhoff P stress and conjugate force χ

[101, 40] as:

P =
∂ψ

∂F
, χ = − ∂ψ

∂Ξp
, (2.77)

respectively. Here, Ξp = (Π := F p−1,η) represents the generalised plastic strain

closely determining the components of the conjugate force χ := (ς, ζ) such that

ς = −∂ψ/∂Π and ζ = −∂ψ/∂η. Variable ς denotes the so-called back-stress,

here used in an invariant form4 ς̃ = ΠT ς with Π being a linear operator from the

cotangent bundle of the intermediate configuration into itself [101].

Collecting the conjugate forces into the generalised stress: Σ := (ς̃, ζ) one may

introduce the convex non-empty set of admissible stresses K (contains 0) whose

indicator function ΨK(Σ) = 0 when Σ ∈ K, otherwise ΨK(Σ) = ∞. This allows

us to carry the same mathematical description of the flow rule as in Section 2.2.1

4Invariance under all plastic deformations
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2.4 Large deformation elastoplasticity

[40]. Namely, by introducing the sub-differential

∂ΨK(ς, ζ) = {Ξ̃p ∈ R
d×d × R

m : ΨK(ς̃ + T , ζ + τ) ≥
ΨK(ς̃, ζ) + Π̃ : T + η̃ · τ, ∀(T , τ) ∈ R

(d×d) × R
m} (2.78)

one may distinguish the primal rule:

˙̃
Ξp := (F pΠ̇, η̇) ∈ ∂ΨK(ς̃, ζ), (2.79)

from its dual:

(ς̃, ζ) ∈ ∂Ψ∗
K(Π̃,η), (2.80)

where Ψ∗
K denotes the conjugate dual of ΨK, i.e. support function of K (see Sec-

tion 2.2.1):

Ψ∗
K(Π̃,η) = sup {ς̃ : Π̃ + ζ · η}. (2.81)

Function Ψ∗
K is a homogenous function of degree 1 (i.e. Ψ∗

K(α(Π̃,η)) = αΨ∗
K(Π̃,η),

for all α > 0) often identified with the dissipation rate, see Section 2.2.1.

Another formulation of the flow rule can be given in terms of the yield function φK
describing the convex domain5 K = {Σ ∈ R

d×d × R
m : φK(Σ) ≤ 0}. In a special

case when φK is smooth enough this formulation results in the very well known

Kuhn-Tucker condition: Ξ̇p = λ∂ΣφK(Σ), λ ≥ 0, φK ≤ 0, λφK = 0, where λ
represents the plastic multiplier.

The theory as given in this section relates to the case of general material behaviour

described by a free convex energy function, see Eq. (2.76). However, one may spe-

cialize it to the case of linear elasticity, perfect plasticity, and mixed linear hardening

plasticity as shown in Table 2.5. This model describes the isotropic elastic response

in terms of the Saint-Venant Kirchhoff hyperleastic energy ψe given in a quadratic

form. The direct consequence of this assumption is the linear relation A between

the second Piola-Kirchhoff stress S and Green-Lagrange strain E, which allows the

model to inherit the favourable properties regarding the poly-convexity conditions.

This further means that the strain energy remains the convex function with respect

to any of the intrinsic deformation measures, such as the deformation gradient, its

co-factor, and the determinant J . Note that the constitutive relationship in Table 2.5

is written with respect to the material description. However, its reformulation to

the spatial representation can be easily done by applying the Lie derivative on the

Kirchhoff stress as shown in [101].

5Note that φ(Σ) does not depend on the first Piola-Kirchhoff stress
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Chapter 2 Deterministic theory of plasticity

Table 2.5: Large deformation plasticity

Theory Variable law

Linear Energy ψe =
1
2E : AE

elasticity Constitutive law S = AE

Perfect Internal variable Gp := Cp−1 = (F pTF p)−1

plasticity Energy ψ = ψ(C,Gp)
Yield function φK = φK(S,C)

Plastic dissipation Dp := −S 1
2C

∂Gp

∂t G−1
p > 0

Evolution equation Ġp = −2λ̇C−1∂SφKGp

Mixed Kinematic law Ξ = const ·Gp

hardening Yield function φK(C,S, ς, ζ) = 0

plasticity Plastic dissipation Dp := −S · 1
2C

∂Gp

∂t G−1
p

−ς 12C ∂Ξ
∂t Ξ

−1 + ζ ∂ν
∂t > 0,

Flow rule Ġp = −2λ̇C−1∂SφKGp

Ξ̇ = −2λ̇C−1∂ςφKΞ
ν̇ = λ̇C−1∂ζφK

With respect to the previous assumptions the perfect plastic behaviour is described

by elastic strain energy, which can be expressed as a function in terms of one argu-

ment, i.e. the deformation gradient F e, or two arguments: the right Cauchy-Green

tensor C and the internal variable C−1
p , see Table 2.5. Once the energy is declared,

one may determine the system dissipation properties from the second law of thermo-

dynamics: (
S − 2

∂Ψ

∂C

)
1

2

∂C

∂t
− 2

∂Ψ

∂Gp

1

2

∂Gp

∂t
≥ 0. (2.82)

The law specifies the dissipation functional Dp and the evolution equations, see Ta-

ble 2.5, obtained via the maximum dissipation principle [128, 101, 136]. Note that

this description uses the invariant form of the yield function φK with the second

Piola-Kirchhoff stress S and the right Cauchy Green deformation tensor C as argu-

ments.

By further generalisation of the model, one arrives to the mixed hardening case (or

generalised Prager-Ziegler rule) described by a scalar variable ν, the isotropic hard-

ening, and a tensor variable Ξ , the kinematic hardening. According to [101] one

may assume that Ξ is proportional to Cp,−1, which means that they share the same

principal directions (eigenvectors). Following this, the second principle of thermo-
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2.4 Large deformation elastoplasticity

dynamics reads:

(
S − 2

∂Ψ

∂C

)
1

2

∂C

∂t
− 2

∂Ψ

∂Gp

1

2

∂Gp

∂t
− 2

∂Ψ

∂Ξ

1

2

∂Ξ

∂t
− ∂Ψ

∂ν

1

2

∂ν

∂t
≥ 0 (2.83)

and further reduces to Dp, see Table 2.5. Similar to before, the evolution equations

follow from the principle of maximal dissipation and under the smoothness assump-

tion have the form given in Table 2.5 [101].

2.4.3 Variational formulation

The weak form of equilibrium equations in spatial description can be formally writ-

ten in the same manner as in the case of small displacements, see Section 2.3.2. The

reasons for this are the infinitesimal virtual displacements and the boundary condi-

tions imposed on the deformed configuration. However, the spatial description of

the equilibrium equations is not very suitable since the deformed configuration and

corresponding coordinates are only known once the problem has been solved. Addi-

tionaly, the coordinates do not stay fixed, and the configuration keeps evolving. To

avoid this issue, the equilibrium conditions are usually expressed with respect to the

initial configuration fixed for a deformable body, i.e.

am(w, τ ) = −〈Υ (w), τ 〉G0 = ℓm(w), ∀w ∈ U , (2.84)

where U = {u : B → R
3 | u0(X) = 0 ∀X ∈ ΓD} [215]. Here, all terms are

determined via the spatial-material transformation of variables of consideration (see

[101]). In this regard, the right hand side of Eq. (2.84) becomes:

ℓm(w) = 〈w,F b〉G0
+

∫

ΓN

w · T dΓ, (2.85)

where Υ := ε(w(ϕ(X)) = 0.5(w ⊗ ∇S + ∇S ⊗ w) = 0.5(∇MwF−1 +
F−T∇Mw) denotes the Gâteaux derivative of the Green-Lagrange deformation E

[101].

Note that Eq. (2.84) is expressed in terms of the second Piola-Kirchhoff tensor related

to the Kirchhoff tensor τ via S = F−1τF−T . However, the weak formulation

can be recasted in terms of other stress measures, for more information please see

[101, 215].
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Chapter 2 Deterministic theory of plasticity

2.5 Summary

This chapter briefly summarizes the theory behind small and large deformation

elastoplasticity simultaneously constructing the solid mathematical background nec-

essary for better understanding of the following chapters. Special attention is given

to the convex analysis and the theory of variational inequalities resulting in an ab-

stract formulation of the elastoplastic problem in both the primal and mixed form.

Additionally, the chapter offers reformulation of the mixed problem to the minimi-

sation of a convex functional in a form as used in practical numerical algorithms. In

finite case this is only valid under certain assumptions of poly- or quasi- convexity of

the energy potential.
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Chapter 3

Plasticity described by uncertain
parameters

As far as the laws of mathematics

refer to reality, they are not certain,

and as far as they are certain, they

do not refer to reality.

A. Einstein

Uncertainties in inelastic systems arise from a variety of sources including the ge-

ometry of the problem, material properties, boundary conditions, initial conditions,

or excitations imposed on the system. As a result, depending on the source of the

randomness, the system behaviour has an uncertain character. In the deterministic

sense the parameters describing elastic (reversible)/inelastic (irreversible) behaviour

are determined by indentation techniques and then considered as constants in the

classical model [215]. However, in case of materials such as soil and bone this

approach does not properly describe the output due to the existence of significant

changes on the micro-structural level. In order to give a more reliable description of

heterogeneous materials, this chapter introduces the material parameters as random

fields and processes via the maximum entropy principle [222], and further reformu-

lates the classical plasticity theory in a stochastic variational setting. Particularly the

chapter focuses on the infinitesimal problem of generalised standard media [89, 91]

described by a von Mises yield function, i.e. the stochastic variational inequality of a

second kind.
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Chapter 3 Plasticity described by uncertain parameters

3.1 Related work

Stochastic elastoplasticity is a relatively new research area which aims to quantify

the influence of uncertainty appearing in material properties, geometry and possible

external loadings on the elastoplastic system response. In the literature, so far, there

are not many publications on this topic. Most of them consider linear problems

described by elliptic partial differential equations, see e.g. [107, 244, 245, 220, 156].

On the other side, the nonlinear problems have been considered only recently in the

last few years [174, 140, 109].

To the author’s knowledge there are two main streams in modelling stochastic in-

finitesimal elastoplastic behaviour: the approximate plasticity theory by Anders and

Hori [9, 8], and the moment equations method by Jermić and Sett [105, 209]. The pi-

oneering work of Andres and Hori [9, 8] studies the fault formation rate-independent

problem described by Young’s modulus as uncertain parameter. The model is de-

veloped with the help of the bounding media analysis and the modulus taken in a

form of a homogenous Gaussian random field. Such posed problem is then resolved

by the numerical method that uses the perturbation expansion around the stochastic

mean. However, the perturbation is characterized by an inability to accurately ap-

proximate the problems described by moderate or large variances in input material

properties. Besides this, the method faces the so-called “closure” problem in which

the higher order moments cannot be computed without prior knowledge of the lower

order moments.

In order to find a more accurate representation, Jeremić et al. [105] and Sett et al.

[209] recently developed new formulations for the general 1-D elastoplastic consti-

tutive rate equation with random material properties and random strain rate. The ap-

proach is of the moment equations type, and directly provides the second order exact

expression for the evolution of the probability density functions of the stress variable

via the generic Eulerian–Lagrangian form of the Fokker–Planck–Kolmogorov equa-

tion (FPKE), see Kavvas [106]. In this way the closure problem is resolved on the

expense of the complexity of the algorithm and slight overestimation of the response

variance.

In contrast to the infinitesimal, the finite deformation theory is not yet completely

understood in the deterministic sense. Namely, the convexity of the total potential

energy functional is broken and thus the symmetry between the potential energy

principle and complementary energy is lost [161, 40]. These problems lead to the

complicated phenomena followed by high degrees of nonlinearity, which are very
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difficult to handle especially in a stochastic setting. Therefore the stochastic descrip-

tion of the large deformation plasticity seems not to be an easy task; and the only

work pursued so far in this direction can be found in [3, 4, 5]. These papers consider

the simple plasticity problem described by a power plastic flow law with uncertain

isotropic resistance or the fiber orientation of the hyperelastic material.

Even though previously mentioned studies provide some sort of stochastic elasto-

plastic models, most of them are affected by improper parametrisation. The models

do not take into account the uncertainty of the material properties describing the con-

stitutive equations. Even if they do, the principle of maximum distribution [222] is

not followed. This may result in the non-convexity of the energy functionals due

to the negative values of the system properties. Moreover, the models are based on

weak approximations of the response surface causing the over- or under-estimation

of the variance.

In order to resolve the previously mentioned problems the formulation given in this

work starts with the classical description of the deterministic elastoplasticity (see

Chapter 2) and extends it to the stochastic one with the help of the convex analysis

and variational inequality theory. In this way, the total reformulation of the prob-

lem is avoided, and the abstract similarity between the deterministic and stochastic

approaches is shown.

3.2 Motivation

Elastoplasticity has found an important place in the field of computational mechanics

due to its large practical application. However, presently the variety of models that

exist (e.g. [215, 101, 55]) relies on the assumption of the complete knowledge of

the system, i.e. one assumes that the material characteristics, as well as the external

loadings applied on the structure are entirely known. The question posed in this

work is if one can really trust purely deterministic models as it has been done until

now. Namely, uncertainty is widely present, starting from the mathematical model

which cannot perfectly match the data up to poorly known external loadings. The

uncertainty arises on both structural and parametric levels including the geometrical

uncertainty, uncertainty in initial and boundary conditions, etc.

Due to the previously mentioned reasons, this thesis investigates the impact of the

model parametric uncertainty on the system response, as well as the accuracy of

the mathematical model describing the true physics. In order to achieve this, the
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uncertainties in:

• history of loading f(t, x, ω),

• constitutive tensor A(x, ω), i.e. the corresponding material properties such as

the bulk K(x, ω) and shear G(x, ω) moduli,

• and the domain of admissible stresses K(ω) determined by random yield stress

σy(x, ω), isotropic Hiso(x, ω) and kinematic Hkin(x, ω) hardening

are assumed. Moreover, the mentioned properties are modelled as random

fields/processes according to the principle of maximal distribution [222]. Note that

such description of parameters further can be improved by collecting the measure-

ment data and solving an inverse problem in a Bayesian fashion [192, 180, 191, 154,

196, 122].

3.3 Modelling uncertainty

Let (Ω,F ,P) be the probability space with the total mass equal to unity, where Ω
denotes the space of elementary events, F ⊂ 2Ω a σ-algebra of subsets of Ω, and

P a probability measure [14, 28, 176]. In this space one may introduce the set of

uncertain material parameters as described in the previous Section 3.2, and further

model them as random fields and/or stochastic processes [6, 59] in two distinguish-

able ways: the fully-parametric and reduced-parametric approach. With the help of

expert knowledge the first approach makes assumptions on the distributions of un-

certain parameters and further includes them as such into the model. In general prior

information on uncertain parameters is given in terms of second order statistics (the

mean and the variance) and/or additional properties such as the definition of sup-

port, positive-definiteness, etc. In contrast to this, the reduced-parametric method

focuses more on the analysis of parameters as part of some relation than individually

on each of them. However, similarly to the full approach the method requires certain

expert knowledge. The only difference is that this knowledge is not applied on each

parameter individually but more on a part of specific group.
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3.3 Modelling uncertainty

3.3.1 Random variable and maximum entropy principle

In (Ω,F ,P) the random variable (RV) κ(ω) is formally defined as a Borel measur-

able function with values in some vector space V , i.e. as a mapping:

κ : (Ω,F) → (V,B(R)) (3.1)

shortly written as κ : Ω → V . In many problems the space Ω is not concretely acces-

sible so that the usual idea of a function (formula) looses much of its meaning. The

representation of RVs, therefore, often differs from what is used for “normal” vari-

ables. Namely, the RV is described in terms of a single function

Fκ := P(ω : κ(ω) ≤ x) = P(κ ≤ x), (3.2)

called a probability distribution function [6, 59]. The function Fκ is non-decreasing,

non-negative, goes to unity as x → ∞, approaches zero when x → −∞ and takes

values in [0,1]. Furthermore, if Fκ is absolutely continuous its derivative— a non-

negative real-valued Borel measurable function f := dFκ/ dx (f > 0) on R—

describes the density of the probability at each point in the sample space. This func-

tion is known as the probability density function (PDF) and may be used for the

description of κ instead of Fκ.

Following previous definitions the unknown parameter κ can be modelled as a ran-

dom variable κ(ω). This actually means that one has to assign to κ(ω) some proba-

bility distribution Fκ. However, that is not an easy task. The decision depends on the

properties the quantity may have as well as on possible information about its second

order characteristics collected by experiments. Once this information is available,

the decision can be made with the help of the principle of the maximum entropy

distribution [220], otherwise ad-hoc assumptions have to be introduced.

The principle of the maximum entropy distribution [182, 52, 104, 127, 220, 222]

can be used to determine the unknown distribution of the material property if some

data in a form of expected values or other statistical functionals are available. If

nothing is known about the distribution except that it belongs to a certain class, then

the distribution with the largest entropy has to be chosen.

The distribution can be found by solving the optimization problem

fκ(x) = arg max
f∈Cf

W (f) (3.3)
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Chapter 3 Plasticity described by uncertain parameters

of maximizing the entropy

W (f) =

∫ +∞

−∞
f(x)log(f(x))dx (3.4)

determined by a probability density function f(x) of the RV κ [210]. Here, Cf
denotes the admissible set of all PDFs satisfying following constraints (i.e. available

information):

• the mean value constraint

E(g(κ)) =

∫

Ω

g(κ(x, ω))P(dω) = µ, (3.5)

where g : κ 7→ g(κ) is known function of κ1,

• and the support function constraint

supp f(x) = χ, (3.6)

where χ may be bounded or not bounded.

The solution of the optimisation problem in Eq. (3.3) can be found by numerous

methods proposed in the literature: the interior-reflective Newton method [51], Pow-

ell’s dogleg method [44], etc. For more information the reader is addressed to

[220, 222].

The random variables and their functions describe the properties independent of

material position. For this reason, they cannot be used for modelling the hetero-

geneous properties such as bulk and shear moduli, or for the time dependent pro-

cesses such as the external loading. To overcome this issue, one has to generalise

the notion of the random variable to a random field (RF) [6, 59] by taking the

vector space V in Eq. (3.1) as a space of continuous functions C(G,R) on the ge-

ometrical domain G. Note that if the domain G is interpreted as a time interval

T = [−T, T ] then the random field has a meaning of stochastic process. Loosely

speaking, the random field may be seen as an indexed family of random variables

{κ(x, ω), (x ∈ G ⊂ R
d, ω ∈ Ω)}, or as a measurable mapping

κ : G × Ω → V (3.7)

on a common probability space (Ω,B,P). This allows a RF to be considered as a

1As a function of RV κ, g(κ) also represents the RV.
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3.3 Modelling uncertainty

function of both elementary events ω ∈ Ω and x ∈ R
d [198], or as a set of all finite

dimensional distribution functions [59]:

Fκ(k1, .., kn;x1, ..., xn) = P(κ(x1) ≤ k1, .., κ(xn) ≤ kn), (3.8)

where {x1, x2, ..., xn} ∈ G and {k1, ..., kn} ∈ R.

In practice, however, the information in Eq. (3.8) is often not accessible. In the

best case scenario only the second order statistics, such as the mean value κ̄(x) (see

Eq. (3.5)) and the covariance covκ(x1, x2), are known. The mean κ̄(x) is usually

obtained by averaging the experimantal data, while the covariance is computed ac-

cording to:

covκ(x1, x2) := E(κ̃x1
⊗ κ̃x2

), (3.9)

where κ̃(x) = κ(x) − κ̄(x) ( E(κ̃(x)) = 0) denotes the fluctuation of the field.

According to the maximum entropy principle [222], the available information can

assist in selecting the distribution of the field in a similar manner as for RV. Basically,

there are several rules for choosing the distribution function:

• the distribution is normal if nothing is known about κ besides its mean and

standard deviation,

• the uniform distribution on the interval [a, b] is the maximum entropy distribu-

tion among all continuous distributions supported in the interval [a, b],

• and the exponential distribution is the maximum entropy distribution among

all continuous distributions supported in [0,∞) (positive-definite).

3.3.2 Fully-parametric approach

The parametric method approaches the problem of quantifying the uncertainty in the

system by modelling each of the parameters one is uncertain about in a form of a

random field/process, as further described. Let us take the constitutive tensor A as a

corresponding example. By the parametric approach the distributions of maximally

21 independent parameters (random fields) are chosen according to the maximum

entropy principle. This corresponds to a full material anisotropy. However, in a more

simple situation such as isotropy, the number of parameters reduces on the expense

of mutual dependency. The dependence complicates the problem of choosing dis-

tributions as the random fields have to fulfill certain restrictions on the probability

distributions coming from the global properties of the constitutive tensor.

61



Chapter 3 Plasticity described by uncertain parameters

In general, for a quantity κ(ω) one may adopt one of two possible types of ran-

dom fields (random variables): Gaussian or non-Gaussian. Gaussian random fields

[2, 6, 25, 102] appear very natural regarding the properties of Gaussian random

variables—independence and simple specification of their finite distributions via the

second order information (the mean value and covariance). If covariance is not

known one may adopt its theoretical substitute, see [2]. However, Gaussian random

fields are not suitable for practical application as for example they are not positive-

definite. Therefore, more general non-Gaussian random fields [83, 82] are intro-

duced. They represent the nonlinear transformation φ of a standard Gaussian random

field θ(x, ω) with zero mean and unit variance [175]:

κ(x, ω) = φ(x, θ(x, ω)) = F−1
κ ◦ erf(θ(x, ω)), (3.10)

where Fκ denotes a non-Gaussian and erf a Gaussian distribution function. Its mean

value

E(κ(x, ω)) =

∫

G
φ(x, ω)Pθ(dw), (3.11)

and covariance

covκ(x, y) =

∫

G

∫

G
φ(x,w1)φ(x,w2)dFθ(x),θ(y)(w1, w2)− µκ(x)µκ(y) (3.12)

are given with respect to the second order statistics of Gaussian RF. In Eq. (3.11)

Pθ(dw) denotes a standard Gaussian measure and Fθ(x),θ(y) in Eq. (3.12) represents

the joint probability density of two random variables θ(x) and θ(y).

Regarding the covariance, one may model the random field κ(x, ω) as homogenous

or heterogeneous. Homogeneous random field is a field with constant mean and

covariance cov(x, y) = c(x − y) as a function of the distance alone [46], or, more

rigorously, the field all of which probability distributions in Eq. (3.8) remain the

same under the translations. However, the latter definition is rarely employed in

practice. Furthermore, the random field can be modelled as isotropic if the covariance

function depends on the distance alone, or, more generally speaking, the probability

distribution function is invariant under orthogonal transformations [46, 2].

Following the previous discussion, the elastoplastic behaviour in this work is mod-

elled by taking all material properties (i.e. yield stress, hardening parameters, bulk

and shear moduli) in a form of lognormal random fields. Such decision is made due

to the positive-definite property of corresponding constitutive and hardening tensors.

In this manner the convexity of the considered problem is ensured.
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3.3 Modelling uncertainty

The lognormal random fields are restricted to a positive cone in a vector space; how-

ever, their logarithms θ(x, ω) = ln κ(x, ω) are not and may have any value. As-

suming θ(x, ω) to have finite variance one may choose a Gaussian distribution for a

maximum entropy of ln κ(x, ω). With respect to this a generic field of some random

elastoplastic parameter is adopted in the form of the modified lognormal distribu-

tion

κ(x, ω) = κ0(x) + κ1(x)exp(µ+ σθ(x, ω)). (3.13)

Here, κ0 and κ1 are given functions of coordinates, µ, σ are the mean value and

standard deviation of the base Gaussian field, and θ(x, ω) is the normally distributed

random field with zero mean and unit variance.

3.3.3 Reduced-parametric approach

In the previous sections the so-called fully-parametric approach was considered.

However, such modelling cannot represent the “model uncertainties” via nonlinear

mapping κ 7→ A(κ). The reason is that the modelled matrix A := A(κ) belongs to

a small subspace of all matrices satisfying the required properties (e.g. the subset of

positive definite and symmetric matrices Rn×n
+ ) [221, 85, 220, 84]. In addition, the

fully–parametric approaches require the large amount of information, i.e. the type

of the probability distributions and at least second order statistics for each uncertain

parameter. This makes the modelling process more complicated because the identifi-

cation of possibly large number of parameters from the small amount of experimental

data is practically not feasible. Hence, the total number of system parameters has to

be reduced. One way of doing this is to take for a parameter the random matrix (ten-

sor) A obtained from the optimisation problem in Eq. (3.3) under the constraints of

some already given a priori (available) information. In this way the anisotropic het-

erogeneous media [221, 220, 85, 84] can be modelled with the help of the minimal

number of parameters such as the mean and the parameters prescribing the fluctua-

tions of the tensor, i.e. correlation lengths and coefficient of dispersion.

Modelling of constitutive tensors

Instead of modelling material parameters such as the bulk and shear moduli, one

may try to model the constitutive tensor A, hardening tensor H , or Hill’s tensor (in

yield criterion) with the help of the mathematical theory of random matrices in high-

dimension and information theory [210]. For simplicity reasons in the further text
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Chapter 3 Plasticity described by uncertain parameters

only the elastic constitutive tensor A is considered. However, a similar procedure

can be performed for other tensors as well.

The expert knowledge one posseses about the tensor A is as such: the tensor is sym-

metric, positive-definite second order random field with the mean value E(A) = Ā

and finite second order moment. Similar is valid for its inverse. This a priori informa-

tion follows from the basic requirements of the well-possedness of the elastoplastic

problem; and is just naturally imposed constraint used to model A with the help of

the maximum entropy approach, see Section 3.3.1 and [221, 220]. Thus, let the con-

stitutive tensor A(x) be a matrix-valued heterogeneous random field with values in

a set Rn×n
+ . In addition, let the mean value of A(x) be a matrix Ā—belonging to a

set of real squared symmetric positive-definite matrices which may take into account

possible material symmetries such as isotropic, orthogonal, transversal, etc.— and

let the fluctuation part of the field Ã := A − Ā be purely anisotropic 2. Then, the

random tensor A admits the decomposition

A(x, ω) = UT
A(x)T (x, ω)UA(x) (3.14)

advocated in [221, 220, 85, 84]. Here, T (x, ω) represents the source of uncertainty

and UA(x) the Cholesky factor of the mean matrix Ā(x). This means that the fluc-

tuations of the random field are fully controlled by T (x, ω), while the mean is deter-

mined by UA(x). Note that in this formulation the mean matrix is not random but

deterministic and depends only on the spatial coordinate x—the heterogeneous field.

Otherwise, if the matrix Ā is irrelevant of the spatial coordinates then the field A is

homogenous. In a more general case, when the field A admits possible anisotropic

fluctuations around the mean (not just locally), the matrix UA becomes random and

has a more general form than upper triangular. However, this kind of model goes be-

yond the scope of this work. For more information please see [221, 220, 85, 84].

The stochastic germ T (x, ω) of the random matrix A cannot be arbitrarily chosen.

This matrix belongs to ℑ, an ensemble of square real symmetric positive-definite

random matrices with finite second order moment (i.e. E(T (x, ω)) = I , I is the unity

matrix), and the probability distribution constructed with the help of the maximum

entropy principle [222] (see Section 3.3.1). In other words, the field T (x, ω) is given

by a nonlinear transformation (see [221])

T (x, ω) = φ(Γ(x, ω)), (3.15)

where the set Γ(x, ω) = {θij(x, ω), 1 ≤ i ≤ j ≤ n} consists of n independent

Gaussian random fields θij with zero mean and unit variance. To this set one may as-

2Even for isotropic mean media the modelled heterogeneous random field A is locally anisotropic.
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3.3 Modelling uncertainty

sociate the set of autocorrelation functions {rij(x), s.t. rij(0) = 1, 1 ≤ i ≤ j ≤ n}
parametrised by correlation lengths {lmc }dm=1 [179], one for each dimension of the

Euclidean space. For simplicity reasons the correlation lengths for different θij are

often taken to be identical. According to this, the random field T (x, ω) fundamen-

tally differs from the random matrices defined in an usual mathematical sense [221].

Namely, the field T (x, ω) admits the Cholesky decomposition:

T (x, ω) = UT (x, ω)U(x, ω) (3.16)

resulting in the random upper triangular real square matrix U(x, ω) with the ele-

ments:

U ij =





δT√
n+1

θij if i < j

δT√
n+1

√
cFF

−1
ϕ (erf(θij)) if i = j.

(3.17)

Here, δT := (E{‖T (x, ω)−E{T (x, ω)}‖2)/‖E{T (x, ω)}‖2 denotes the coefficient

of the dispersion, erf standard cumulative distribution and F−1
ϕ the reciprocal cu-

mulative distribution function, i.e. a non-linear isoprobabilistic transformation that

maps a Gaussian field θij into a positive-distributed field (Gamma, lognormal etc.).

The normalisation of such transformation is done by introducing the normalisation

constant cF . This constant equals 2 when Fϕ represents the Gamma distribution

FΓ(αj ,1) with parameter

αj = 0.5[(n+ 1)/δ2T + 1− j] (3.18)

[221]. Similarly,

cF = e−1/2[(n+ 1)/δ2T + 1− j] (3.19)

when Fϕ denotes a lognormal cumulative distribution.

Following the previous definitions of the random tensor T and the matrix

UA, one may show that the heterogeneous and non-normalised random field

A (see Eq. (3.14)) is the positive-definite and invertible matrix with bound

E(‖A−1(x)‖2) ≤ c < ∞ for all fixed x ∈ G. In addition, the tensor A admits

the finite fluctuation [221]:

δA(x) =

[
E{‖A(x)− Ā(x)‖2}

‖Ā(x)‖2
]1/2

=
δT√
n+ 1

[
1 +

(tr(Ā))2

tr(Ā)2

]1/2
, (3.20)

described by the coefficient of dispersion δT and the mean model. In this manner

the tensor A meets all the requirements for the description of the elastoplastic mate-

rial.
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Chapter 3 Plasticity described by uncertain parameters

3.4 Stochastic plasticity – general formulation

Let (Ω,B,P) be a probability space with Ω the set of elementary events ω, P the

probability measure, and B an σ-algebra on the set Ω. The uncertain parameters

introduced in Section 3.2 belong to this space, and are here generally denoted by

κ(x, ω). The body represents the three-dimensional manifold with piecewise smooth

Lipschitz continuous boundary Γ = ∂G on which are imposed boundary conditions

in Dirichlet and Neumann form on ΓD ⊆ ∂G and ΓN ⊂ ∂G respectively, such that

ΓD ∩ ΓN = ∅ and ∂G = Γ̄N ∪ Γ̄D. The body is imagined to be an assemblage

of material particles moving in the time interval T = [0, T ] ⊂ R+ assumed to pass

simultaneously [215, 30, 115, 24]. Under the influence of the external loads the

body G deforms, moves and changes its configuration. The motion is described by a

sequence of mappings between the initial G0 and the current configuration Gt(ω):

x(ω) = ϕ(X, t, ω) : G0 × T × Ω → R
3 (3.21)

such that the continuous function ϕ(X, ·, ω) for fixed ω ∈ Ω is twice-differentiable

and describes the path of the particle X . Similarly for fixed X and ω the function

ϕ(X, ·, ω) describes the new configuration Gt(ω), and for fixed pair (X, t) it is mea-

surable with respect to B. From this follows that the randomness in x(ω) at some

arbitrary time t ∈ T determines the uncertain geometry of Gt. In order to describe

the motion the reference configuration can be chosen arbitrary, i.e any smooth image

of the body including those configurations never occupied. However, to simplify the

analysis the reference configuration is chosen to be time and ω-independent. As-

suming that the initial geometry is known these requirements satisfies only the initial

configuration, and thus the body motion is further described with respect to G0 (ma-

terial description).

The body motion in Eq. (3.21) has a similar form as in the deterministic case (see

Section 2.1). The only difference is ω as the “extra” parameter. This means that the

six conservation laws [249, 229] in the stochastic description have the same form as

in a classical formulation. However, the laws have to be satisfied not only almost

everywhere in G—as in Section 2.1—but also P-almost surely. Besides this, the rest

of the description is the same. Namely, the local thermodynamical state is identified

with the set (F (ω), s(ω),η(ω)), where F (ω) is the random local deformation gradi-

ent, s(ω) the random local entropy, and η(ω) the vector of random internal variables.

In order to properly define these terms the weak differentiation operator ∇ is intro-

duced. The operator maps a single tensor product ϕ1(x)ϕ2(ω) to (∇ϕ1(x), ϕ2(ω)).
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3.5 Small deformation plasticity

Following this, the deformation gradient becomes:

F (x, ω) = ∇ϕ(x, ω) := [∇ϕ1(x)]ϕ2(ω), (3.22)

where the split to ϕ1(x) and ϕ2(ω) is described later in Chapter 4 Section 4.4.

Once more, as in Section 2.1, the focus of the study is on the isothermal process

described by a free random Helmholtz energy ψ(F (ω),η(ω)), the evolution law

η̇(ω) = η̇(F (ω),η(ω)) and the dissipation inequality:

χ(ω) : η̇(ω) ≥ 0 ∀ω ∈ Ω. (3.23)

These laws are then combined with the principle of the conservation of the momen-

tum, i.e. the equilibrium equation (see Section 2.1):

div σ(x, ω) + f(x, t, ω) = 0, ∀x ∈ Gt, ∀t ∈ T , ∀ω ∈ Ω (3.24)

v(x, ω) = v0(x, ω) = 0, on ∂ΓD, ∀ω ∈ Ω, (3.25)

t̂(x, ω) = t̂0(x, ω), on ∂ΓN , ∀ω ∈ Ω, (3.26)

where the stress σ, the force f and non-zero Neumann conditions are defined as

random fields over the probability space Ω. In further analysis the initial conditions

are taken to be homogeneous for reasons of simplicity. Note that this assumption

does not globally affect the formulation.

3.5 Small deformation plasticity

Assuming the mapping between the space of displacements and strains to be linear

one arrives to the small deformation theory determined by an additive decomposi-

tion of strain into elastic and plastic parts P-almost surely. Formally, the problem is

seen as a special case of general principles given in Section 3.4, where the displace-

ments are assumed to be sufficiently small compared to the original dimensions of

the body.

3.5.1 Functional spaces

In contrast to the deterministic description fully defined by functional spaces de-

scribed in Section 2.3.1, the stochastic formulation requires the introduction of the
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Chapter 3 Plasticity described by uncertain parameters

spaces of random variables with finite variance. Only with the help of these one may

further define the spaces of the variables of consideration.

Spaces of RVs

The material properties describing the time evolution equations of elastoplastic ma-

terial are considered to be random variables with respect to spatial position and time.

Their description starts with the introduction of the linear space Lp(Ω,F ,P) of all

random variables κ which belong to (Ω,F ,P) and have finite Lp-norm [176, 102],

i.e.

Lp(Ω,F ,P) := Lp(Ω) = {‖κ‖p = (

∫

Ω

|κ(ω)|p dP(ω))1/p <∞} (3.27)

with the usual extension to ‖κ‖∞ = ess sup{|κ(ω)| : ω ∈ Ω} for p = ∞. Note

that Lp norm with 1 ≤ p ≤ ∞ has all the required properties of a norm, in contrast

to the case when 0 < p < 1 and the triangle inequality fails. For p = 0 the corre-

sponding space L0(Ω,F ,P) describes a space of all RVs equipped with the topology

of convergence in probability, while the norm ‖κ‖1 = E(κ) < ∞ describes the Ba-

nach space L1(Ω,F ,P) of the integrable random variables. This space is important

because the random variable κ has the mean only if it belongs to space L1(Ω,F ,P).
In further text one assumes RVs to be of the square integrable type, i.e. they span the

vector space L2(Ω,F ,P) described by an inner product:

〈κ1(ω)|κ2(ω)〉 = E(κ1(ω)κ2(ω)). (3.28)

Note that the inner product in Eq. (3.28) is equal to zero only if κ(ω) is equal to zero

P-almost surely. According to the Riesz–Fischer theorem [176, 102] such assump-

tion completes the L2(Ω,F ,P) space to a Hilbert space with the norm:

‖κ‖2 := ‖κ‖L2
=
√

〈κ1(ω)|κ2(ω)〉, (3.29)

equal to the covariance 〈κ1, κ2〉 = cov(κ1, κ2) of two zero-mean RVs κ1 and κ2.

In addition, one may show that the L2-space is dense in L1, i.e. ‖κ‖1 ≤ ‖κ‖2.

Moreover, by generalisation with the help of Lyapunov’s inequality, one may show

that the space Lq is dense in Lp for 0 ≤ p ≤ q ≤ ∞ such that:

‖κ‖p ≤ ‖κ‖q, Lq ⊆ Lp, 1/p+ 1/q = 1 (3.30)

holds.
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3.5 Small deformation plasticity

However, in this thesis the author is mostly interested in spaces of Gaussian random

variables θ as a basis of other kinds of RVs. Assuming that θ are standard one may

define the inner product according to Eq. (3.28) as 〈θ1|θ2〉 = E(θ1θ2). This product

completes the closed subspace of L2(Ω,B,P) of centered Gaussian random variables

[102] to a Hilbert Gaussian space Θ. The normally distributed random variables θ :=
{θ1(ω), ..., θk(ω), ...} in Θ are orthonormal, i.e. uncorrelated, and hence they form

a complete orthonormal system (CONS) for Θ. Moreover, Gaussian RVs possess

moments of all orders, meaning that the product of Gaussian RVs belonging to Θ is

again in L2(Ω). Due to these favourable properties the Gaussian RVs are used as a

stochastic CONS in the following discussion.

Definition of tensor product spaces

When working with uncertain variables such as displacement and stress, one has to

formally introduce the linear space V = L2(Ω,B,P;V) with V being the determin-

istic Hilbert space of variable of consideration, see Section 2.3.1. The space is built

such that for v ∈ V and ω ∈ Ω one has

v(·, ω) ∈ V, (3.31)

and for x ∈ G:

v(x, ·) ∈ L2(Ω,B,P). (3.32)

In other words, the variables live in a space obtained as a tensor product of the corre-

sponding deterministic space V and the stochastic space (S). The choice of (S), and

hence the stochastic regularity of the solution, depend on the stochastic regularity of

the right hand side and parameters [107]. For the sake of simplicity, (S) is taken to

be L2(Ω) such that

V ≃ V ⊗ (S) (3.33)

is the Hilbert space induced by the inner product:

〈〈u|v〉〉 = E(〈u|v〉V), (3.34)

and duality pairing:

〈〈u, v〉〉 = E(〈u, v〉V). (3.35)

Here, E(·) =
∫
Ω
(·)P( dω) is the mathematical expectation with respect to the proba-

bility measure P.

Following previous definitions, one may construct Table 3.1 by substituting the de-
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Chapter 3 Plasticity described by uncertain parameters

terministic generic space V in V with the proper space of definition as described in

Table 3.1: The definition of the stochastic spaces for kinematic and dynamic variables

together with the corresponding inner products

Variable Space Duality pairing

u U := U ⊗ (S)
f F := U∗ ⊗ (S) 〈〈f ,u〉〉F×U := E (〈f ,u〉F×U )

ε E := E ⊗ (S)
σ R = R⊗ (S) 〈〈σ, ε〉〉R×E := E (〈ε,σ〉R×E)

η Q = Q⊗ (S)
χ C = C ⊗ (S) 〈〈χ,η〉〉C×Q := E(〈χ,η〉C×Q)

Ep P := P ⊗ (S)
Σ Y := Y ⊗ (S) 〈〈Σ,Ep〉〉Y ×P := E (〈Σ,Ep〉Y×P)

w Z = U × P

w∗ Z ∗ = F × Y 〈〈w∗,w〉〉Z ∗×Z := E (〈w∗,w〉Z∗×Z)

Chapter 2 Section 2.3.1 for each variable of consideration. Here, U represents the

space of displacements, F of forces, E of deformations, R of Cauchy stresses, Q of

internal variables, and C of conjugate forces. In general, these spaces may be written

in a short form as a space P of the generalised plastic deformation Ep := (εp,η)
and the space Y of the generalised stress Σ := (σ,χ). Furthermore, separating the

primal w := (u,Ep) from the dual variable w∗ := (f ,Σ), one may distinguish the

primal space Z = U ×P from its dual Z ∗ = F ×Y . This notation allows the de-

scription of the uncertain elastoplastic behaviour to be given in the similar framework

as in Section 2.2, with the only difference that constitutive and evolution laws must

hold almost surely ∀ω ∈ Ω. Another difference is that the presence of the uncertainty

requires some simple extensions such as the definition of the linear mapping

∇S : U → E (3.36)

between the displacement U and the deformation E spaces. Namely, the differen-

tiation is done in a weak sense such that for a single tensor product u1(x)u2(ω) ∈
U := U ⊗ (S) one has:

∇S : u1(x)u2(ω) → (∇Su1(x))u2(ω). (3.37)
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3.5 Small deformation plasticity

By linearity and continuity this can be extended to a linear bounded operator:

∇S = (∇S ⊗ I) : U ⊗ (S) → E ⊗ (S), (3.38)

used in the following description.

3.5.2 Material point description

The formulation in one material point is a straightforward generalisation of the for-

mulation given in Section 2.2, as summed in Table 3.2. Similar to the deterministic

Table 3.2: Stochastic plasticity described at material point

Model Variable Law valid a.s.

Elasticity Deformation εx(ω) = εex(ω)
Energy ψex(εex(ω)) =

1
2E(〈εex, Axεex〉x)

Hooke’s law σx(ω) = −∇εψex(ω) = Ax(ω) : εex(ω)

Perfect Deformation εx(ω) = εex(ω) + εpx(ω)
plasticity Energy ψx(ω) = ψex(ω) + ψirrx(ω)

Hooke’s law σx(ω) = −∇εψx(ω) = Ax(ω) : εex(ω)
Flow rule E(〈ε̇px, τ − σ〉x) ≤ 0, ∀τx(ω) ∈ Kx(ω)
Elastic domain Kx(ω)

General Deformation Epx(ω) := (εpx(ω),ηx(ω))
hardening εx(ω) = εex(ω) + εpx(ω)
plasticity Energy ψx(ω) = ψex(ω) + ψirrx(ω)

ψirr(ω) =
1
2E(〈Epx,HxEpx〉x)

Hooke’s law Σx(ω) := (σx(ω),χx(ω)) = −∇εψx(ω)

Flow rule E(〈Ėp,T −Σ〉x) ≤ 0

Mixed Hardening H(ω) = diag[Hkin(ω), Hiso(ω)]
hardening Conj. stress χ(ω) = (ς(ω), ζ(ω))
plasticity Conj. strain η(ω) = (εp(ω), ν(ω))

Hard. law χ(ω) = H(ω) : η(ω)
Back stress ς(ω) = Hkin(ω) : εp(ω)
Isotropic stress ζ(ω) = Hiso(ω)ν(ω)

formulation one may distinguish three different cases of material behaviour: linear
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Chapter 3 Plasticity described by uncertain parameters

elasticity, perfect plasticity, and general hardening plasticity (further on specialised

to a linear case). Throughout this work the focus is set on the general and linear

hardening models whose special cases represent elasticity and perfect plasticity. The

linear elasticity (reversible behaviour) in a material point x is specified by the random

total deformation εx(ω) equal to the elastic deformation εex(ω) P-almost surely. As

a consequence, the Helmholtz free energy ψx(ω) only consists of the elastic part

ψex(εex(ω)) defined as a mathematical expectation of 〈ε, Aε〉 in a material point

x. Taking the partial derivative of the energy in a weak sense one obtains Hooke’s

law for σx(ω) (see Table 3.2) valid almost surely on Ω. In this definition the double

dot product is interpreted in a weak sense. The same law is also valid in a perfect

plasticity case. The only difference is that the random total deformation is additively

decomposed almost surely to the random plastic εp(ω) and elastic εe(ω) part, and en-

ergy to its reversible ψex(ω) and irreversible ψirrx(ω) part. The stochastic evolution

of a plastic deformation Ėp (or ε̇px) is described by a flow rule valid almost surely

on the elastic domain Kx(ω). This variable consists of a random plastic deformation

εpx(ω) and the vector of the random internal variables ηx(ω). The internal variables

are energy conjugated to the random stress σx(ω) and conjugate force χx(ω), which

are gathered in a generalised random stress Σx = (σx(ω),χx(ω)) described by a

random constitutive Ax tensor and random hardening Hx. Taking the hardening

to be linear, i.e. determined by the random isotropic Hiso(ω) and kinematic modu-

lus Hkin(ω), one may reduce the previous model to the mixed hardening case, see

Table 3.2.

3.5.3 Associative plastic flow rule

Let be given the convex closed and nonempty subset K of R containing the origin

0 P-almost surely. The indicator function of this set ΨK(Σ) is equal to 0 in P-

almost sure sense if the stress belongs to a set, otherwise takes the value at infinity.

Furthermore, one may define a normal cone NK(Σ) to K in a point Σ such that

the stochastic flow rule in dual form can be written as given in Table 3.3, similarly

to the dual rule in Table 2.2. Analogously, the primal flow rule is determined by a

support function Ψ∗
K

with the convex domain K as sub-differential. In practical

computation the convex set K is expressed via the yield function φK , which under

the smoothness assumption gives the classical formulation of the flow rule similar to

the one in Table 2.2. Therefore, following the correspondence between Table 2.2 and

Table 3.3, one may introduce the convex closed set

F × Y ⊃ K = {(f ,σ,χ) | (σ,χ) ∈ K̃ } (3.39)
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3.5 Small deformation plasticity

Table 3.3: Flow rule formulations

Primal

Support function Ψ∗
K
(Ξ) = sup {〈〈Ξ,T 〉〉 − ϕ(T ) | T ∈ Y }

Dissipation j(Ėp) = Ψ∗
K
(Ėp) = { sup 〈〈Ėp,T 〉〉 | T ∈ K }

Flow rule Σ(ω) ∈ ∂Ψ∗
K
(Ėp)

Dual

Cone NK(Σ) = {Ξ ∈ E | 〈〈Ξ,T −Σ〉〉 ≤ 0} ⊆ E
Indicator ΨK (Σ(ω)) = 0, if Σ ∈ K, else ΨK (Σ(ω)) = ∞
Flow rule NK (Σ(ω)) = ∂ΨK (Σ(ω)) ⇔ 〈〈Ėp,Σ − T 〉〉 ≤ 0

Yield function

Yield function φK (Σ(ω)) := gK (Σ(ω))− 1,
Gauge gK (Σ) = inf {λ > 0 | ∀Ξ : 〈〈Ξ,Σ〉〉 ≤ λΨ∗

K
(Ξ) }

Convex domain K = {Σ ∈ R : φ(ω,Σ(ω)) ≤ 0 P a.s.}
Flow rule ∃λ ≥ 0 : Ėp(ω) ∈ λ(ω)∂φK (Σ(ω))

∧ λφK(Σ(ω)) = 0

with the barrier cone K ∞ = {0} × K̃ ∞, where

Y ⊃ K̃ = {(σ,χ) ∈ R × C | φK (x, ω,σx,χ) ≤ 0, ∀x a.e. in G, ∀ω a.s. in Ω}
(3.40)

and K̃ ∞ ⊆ P . Once K is defined, we are ready to extend the mathematical theory

given in Chapter 2 to the more general case including the uncertainties of material

parameters or the right hand side.

3.5.4 Variational formulation

As described in the previous chapter, the variational formulation of elastoplastic be-

haviour is part of the theory of variational inequalities. This theory was initiated

by Kinderlehrer et al. in [112], Duvaut et al. in [62] and Glowinski in [81], who

considered free boundary value problems in partial differential equations that can

be modeled and analyzed as elliptic variational inequalities. However, these stud-

ies were oriented on the deterministic problems and not on the stochastic problems.

Only very recently few studies tried to combine the monotone operator theory and

convex analysis with the measure theory in order to prove the existence results for the

stochastic elliptic variational inequalities. Namely, Gwinner in his papers [88, 87, 86]
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proves the existence of the solution for the special class of nonlinear elliptic stochas-

tic boundary value problems with unilateral Signorini boundary conditions. Under

reasonable assumptions he shows that the solution lies in an appropriate Bochner -

Lebesgue space of measurable functions. Furthermore, Ghosh et al. [80] investigate

a class of stochastic second order nonlinear variational inequalities with bilateral

constraints on the example of the stochastic game with the stopping times, while

Forster et al. in [68] studies stochastic elliptic variational inequalities of the second

kind described by a bilinear form with stochastic coefficients with the example of the

obstacle problem and the Richardson equation.

Existing results in previously mentioned studies are further extended with the help

of the theory of the deterministic variational inequalities to the description of the

stochastic elastoplastic problem given by Eq. (3.24). The variational description

is formulated on the Hilbert tensor product space Z := Z ⊗ (S) isomorphic to

L2(Ω,P;Z), i.e. the space of Z-valued RVs with finite variance. In this way the

stochastic problem can have the same theoretical properties as the underlying de-

terministic one, which is highly desirable for any further numerical approximation.

Moreover, the theory represents the abstract extension of Section 2.3.2, and thus can

follow the same pattern as before.

Let (Ω,B,P) be a probability space and (U , 〈·, ·〉) a separable Hilbert space in which

one considers for fixed ω the linear functional ℓ(ω)(v) ∈ L(U ,R) = U∗. This

function for each fixed v ∈ V represents the Borel measurable function on Ω [88, 87,

86]. In other words, the stochastic representative ℓ ∈ L(U ,R) = U ∗ of the linear

functional in Eq. (2.49) becomes:

ℓ(v) := 〈〈ℓ(ω), v〉〉 = E(ℓ(ω)) =

∫

Ω

ℓ(ω)(v)P( dω), (3.41)

where for fixed ω the functional ℓ(ω)(v) has the same form as in the deterministic

case (see Eq. (2.49)). In a similar manner one may define the stochastic bilinear

form

a : Z × Z 7→ R : a(z, w) := 〈〈Az,w〉〉, (3.42)

where 〈〈·, ·〉〉 is the duality pairing between (Z ⊗ (S))∗ = Z∗ ⊗ (S)∗ and Z ⊗ (S).
The bilinear form is associated with a linear, continuous, self-adjoint and coercive

operator A : Z 7→ Z ∗. In addition, it is continuous for each ω in Ω, as well as

measurable in B. By a similar procedure one may define the dissipation rate:

j(ẇ) =

∫

Ω

j(ω)(ẇ)P(dω). (3.43)
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3.5 Small deformation plasticity

Let us remark that—loosely speaking—the stochastic weak form is just the expected

value of its deterministic counterpart formulated on the tensor product space, whose

solution is an element of this space. Note that the same notation is used as in the

deterministic formulation in the hope that the meaning is already clear from the con-

tent.

Following previous definitions one may interpret stochastic linear and bilinear map-

pings as the parameter ω-dependent deterministic forms. This further leads to a

stochastic description of the elastoplastic problem analogue to the one presented in

Problem 2.3.7:

Problem 3.5.1. Problem SP-P: given a function f̃ ∈ H1(T ,F ) with f̃(0) = 0, set

f = [f̃ , 0] ∈ H1(T ,F × Y ). Then, there exists a unique function w = (u,Ep) ∈
H1(T ,Z ) with w(0) = 0 and ẇ(t) ∈ K ∞ which solves a.s. in Ω, a.e. in T :

a(w(t), z − ẇ(t)) + j(z)− j(ẇ) ≥ 〈〈f, z − ẇ(t)〉〉 (3.44)

for all z = (v, (µ, υ)) ∈ Z . If in addition f̃1, f̃2 ∈ H1(T ,F ) are two different

loadings, and w1, w2 ∈ H1(T ,Z ) are the corresponding solutions then:

‖w1 − w2‖L∞(T ,Z ) ≤ c‖ḟ1 − ḟ2‖L1(T ,F) (3.45)

determines the stability of the solution.

The existence and uniqueness of the solution are summarized in the following theo-

rem, obtained by slightly rewriting Theorem 7.3. in [92]:

Theorem 3.5.2. Let Z be a Hilbert space; K ⊂ Z a nonempty, closed, convex

cone; a : Z × Z 7→ R a bilinear form that is symmetric, bounded and Z -elliptic;

ℓ ∈ H1(T ;Z ∗) with ℓ(0) = 0 P-almost sure, and j : K 7→ R non-negative, con-

vex, positively homogeneous and Lipschitz continuous. Then there exists the unique

solution w of Problem 3.5.1 satisfying w ∈ H1(T ,Z ).

Proof. The proof of the existence is derived from the time discretisation of the prob-

lem and the construction of the linear interpolant of the discrete solution. The in-

terpolant approaches the abstract solution w for the limit case of the time step ap-

proaching zero. For a detailed derivation please see [92]. The proof of the unique-

ness follows from the assumption of two different solutions w1 and w2, and z = ẇ2
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and z = ẇ1 respectively, such that:

a(w1, ẇ2 − ẇ1) + j(ẇ1)− j(ẇ2) ≤ 〈〈ℓ, ẇ2 − ẇ1〉〉 (3.46)

and

− a(w1, ẇ2 − ẇ1) + j(ẇ2)− j(ẇ1) ≤ −〈〈ℓ, ẇ2 − ẇ1〉〉 (3.47)

are satisfied. After summation one obtains:

a(w2 − w1, w2 − w1) ≤ 0 P− a.s. (3.48)

which due to the Z -ellipticity of a leads to w1 = w2 P-almost surely.

The mixed formulation of the stochastic plasticity problem with combined general

hardening as an analogue to Problem 2.3.8 reads:

Theorem 3.5.3. Problem SM-P: there are functions w = (u,η) ∈ H1(T ,Z ) with

w(0) = 0 and w∗ ∈ H1(T ,Z ∗), w∗(0) = 0 and ẇ ∈ K ∞ such that a.s. in Ω, a.e.

in T :

a(w(t), z) + 〈〈ẇ(t), z〉〉 = 〈〈f, z〉〉 (3.49)

for all z = (v, (µ, υ)) ∈ Z and

∀z∗ ∈ K ⊂ Z∗ : 〈〈ẇ, z∗ − w∗〉〉 ≤ 0. (3.50)

If in addition f̃1, f̃2 ∈ H1(T ,F ) are two different loadings, and w1, w2 ∈
H1(T ,Z ) and w∗

1 , w
∗
2 ∈ H1(T ,Z ∗) the corresponding solutions, then:

‖w1 − w2‖L∞(T ,Z ) ≤ c‖ḟ1 − ḟ2‖L1(T ,F) (3.51)

and

‖w∗
1 − w∗

2‖L∞(T ,Z ∗) ≤ c∗‖ḟ1 − ḟ2‖L1(T ,F). (3.52)

The existence and uniqueness of the solution are determined by similar assumptions

as made in the abstract primal problem:

Theorem 3.5.4. Under same assumptions as given in Theorem 3.5.2 the solution w∗

of Problem 3.5.3 exists and it is unique.

Proof. Follows from the proof of Theorem 3.5.2.
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3.6 Large deformation plasticity

In case that the Z -elliptic bilinear form is given as

a(w1, w2) =

∫

Ω

∫

G
(ε(u1)− ε1p : A(ε(u2)− ε2p) dx P(dω)

+

∫

Ω

∫

G
Hisoν

1ν2 dx P(dω)

+

∫

Ω

∫

G
Hkinε

1
p : ε2p dx P(dω), (3.53)

the general hardening reduces to the case of the linear mixed hardening. As a special

case, the linear mixed hardening admits the same theory as already presented, and

thus is not repeated here.

3.6 Large deformation plasticity

The reasons for introducing uncertainty in the large deformation model are essen-

tially the same as in case of small deformation plasticity. Hence, the assumptions

given in Section 3.3 are further taken to be valid. The theory follows Section 3.4 and

the deterministic formulation in Section 2.4.

Table 3.4: Stress and strain formulations

Name Law

Gen. plas. deform. Ξp(ω) = (Π(ω),η(ω)), Π(ω) := F p−1(ω)
Energy ψ(ω) = ψ(F e(ω),η(ω)),
I Piola-Kirchhoff P (ω) = ∂ψ/∂F ,
Conjugate force χ(ω) := (ς(ω), ζ(ω)) = −∂ψ/∂Ξp,

ς(ω) = −∂ψ/∂Π and ζ(ω) = −∂ψ/∂η.
Generalised stress Σ(ω) := (ς̃(ω), ζ(ω)), ς̃(ω) = ΠT (ω)ς(ω)

Let X be a material particle and ϕ(X, t, ω) the mapping between the initial and the

current configuration in the time interval T as introduced in Eq. (3.21). The function

is assumed to be smooth enough such that the deformation gradient F exists and has

a form as given in Eq. (3.22) with the differentiation operator understood in a weak

sense. Once the deformation gradient is known, one may split it by multiplicative
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Chapter 3 Plasticity described by uncertain parameters

decomposition to the random plastic F p and elastic F e part P- almost surely:

F (ω) = F e(ω)F p(ω), P− a.s. (3.54)

This further allows the definitions of the strain as well as the stress measures in a

similar manner as given in Section 2.4.1, see Table 3.4. The only difference is that

now they represent random variables (fields).

Assuming the material objectivity in P-almost sure sense, the system is described

by random free energy ψ(F e,η) with random elastic gradient F e(ω) and internal

variables η(ω) as arguments. These further determine the random generalised stress

Σ(ω) and conjugate forces χ(ω), see Table 3.4. The plastic state is specified by

a random plastic deformation gradient F p(ω) and possibly by a vector-valued ran-

dom internal variable η(ω). These quanitities describe the random general plastic

deformation Ξp(ω) = (Π(ω),η(ω)), where Π := F p−1. The evolution of the

plastic deformation is driven by a plastic flow rule, also known as normality rule,

which similarly to a small deformation plasticity rule may be written in primal and

dual forms. The law essentially has the same form as in Section 2.4.1 (only valid

P-almost surely). Hence, the final results are merely just recollected in Table 3.5.

Namely, with the help of the yield function one may introduce the closed non-empty

convex domain:

K = {(f , Σ) | Σ ∈ K̃ } (3.55)

with the barrier cone K ∞ = {0} × K̃ ∞, where

K̃ = {Σ | φK (x, ω,Σ) ≤ 0, a.e. in G, a.s. in Ω}. (3.56)

From Eq. (2.78) follow the indicator function of the set K :

ΨK(Σ) =

{
0 Σ ∈ K a.s.

∞, otherwise,
(3.57)

and its sub-differential:

∂ΨK(ς, ζ) = {Ξ̃p ∈ L2(Ω,R
d×d × R

m) : ΨK(ς̃ + T , ζ + τ) ≥
ΨK(ς̃, ζ) + 〈〈Π̃,T 〉〉+ 〈〈η̃, τ〉〉, ∀(T , τ) ∈ L2(Ω,R

(d×d) × R
m)}, (3.58)

which further leads to the primal formulation of the flow rule in Table 3.5. The dual

of the indicator function is known as the dissipation

Ψ∗
K(Π̃,η) = sup {〈〈ς̃, Π̃〉〉+ 〈〈ζ,η〉〉} (3.59)
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3.6 Large deformation plasticity

featuring the dual formulation of the flow rule in Table 3.5.

Table 3.5: Normality rule

Primal
˙̃
Ξp ∈ ∂Ψ(ς̃, ζ), ˙̃Ξp := (F pΠ̇, η̇) a.s.

Dual (ς̃, ζ) ∈ ∂Ψ∗
K(Π̃,η) a.s.

Yield function Ξ̇p = λ∂Σφ(Σ), λ ≥ 0, φ ≤ 0, λφ = 0 a.s.

Following previous statements, one may conclude that the geometrical nonlinear

plasticity is very similar to the small deformation plasticity. These similarities are

further used in the numerical computation of desired functionals.

3.6.1 Constitutive description

The elastic behaviour is assumed to be described by a linear Saint Venant law which

takes into consideration the quadratic energy function ψe = 1
2 〈〈E,AE〉〉, where

E(ω) = 1
2 (F

T (ω)F (ω) − I). As a consequence, the model has the same stress-

strain relationship as in the small deformation case, i.e. 〈〈Ξ,AE〉〉 = 〈〈Ξ,S〉〉, ∀Ξ ∈
E . Here, S denotes the random second Piola-Kirchhoff stress tensor, i.e. the deriva-

tive of energy ψe with respect to the Green-Lagrange strain tensor. For the source

of randomness is taken the elastic constitutive tensor A, assumed to have the same

properties as in a case of small deformations. With such an assumption the stochastic

model of large displacement plasticity inherits the poly-convexity conditions and can

be considered in a similar manner as the infinitesimal one. Thus, in order to avoid

any repeating the results are only collected in Table 3.6.

3.6.2 Variational formulation

Let (Ω,B,P) be a probability space in which the linear functional (see Eq. (3.41))

ℓ(v) =

∫

Ω

∫

Gt

v · f dx P(dω) +

∫

Ω

∫

ΓN

v · σ̂ dΓ P(dω) (3.60)

is defined with respect to the current configuration, where σ̂ represents the initial

stress. The functional ℓ is continuous and measurable with respect to B. Similarly,
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Chapter 3 Plasticity described by uncertain parameters

Table 3.6: Stochastic large deformation plasticity

Theory Variable law a.s.

Linear Energy ψe(ω) =
1
2 〈〈E(ω), A(ω)E(ω)〉〉

elasticity Constitutive law S(ω) = A(ω)E(ω)

Perfect Internal variable Gp(ω) = Cp−1(ω)
plasticity Energy ψ(ω) = ψ(C(ω),Gp(ω))

Yield function φK(ω) = φK(S(ω),C(ω))

Plastic dissipation Dp := −S · 1
2C

∂Gp

∂t G−1
p > 0

Evolution equation Ġp = −2λ̇C−1∂SφKGp

Mixed Kinematic law Ξ(ω) = const ·Gp(ω)
hardening Yield function φK(ω)(C,S, ς, ζ) = 0

plasticity Plastic dissipation Dp := −S · 1
2C

∂Gp

∂t G−1
p

−ς 12C ∂Ξ
∂t Ξ

−1 + ζ ∂ν
∂t > 0

Flow rule Ġp = −2λ̇C−1∂SφKGp

Ξ̇ = −2λ̇C−1∂ςφKΞ
ν̇ = λ̇C−1∂ζφK

let us define the bilinear form corresponding to Eq. (3.42) as:

as(u,v) := 〈〈Aε(u), ε(v)〉〉Gt
:=

∫

Ω

∫

Gt

Aε(u) · ε(v) dxP(dω), (3.61)

where the strain measure ε(v) := ∇Sv is of the linear type due to the definition of

the virtual test functions v. Here, ∇S is the symmetric differential operator given by

Eq. (3.37) such that the bilinear form as admits the same properties as in the small de-

formation case, see Section 3.5.4. Namely, operatorA is linear, continuous, coercive,

and symmetric. Following this, the variational equilibrium equation becomes:

as(u,v) = −ℓ(v). (3.62)

However, as previously mentioned, the current configuration is not suitable to be

taken for the reference due to the unknown coordinates x. Instead, for the reference

one chooses the initial— time and ω-independent—configuration. Following the

same procedure as in Section 2.4.3 one may rewrite as to:

am(w,S) = 〈〈Υ (w),S〉〉G0 :=

∫

Ω

∫

Gt

Υ (w) · S dX P(dω), (3.63)
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where Υ = 1
2 (F

T∇Mw+∇MwTF ) P-almost surely. In this description the second

Piola-Kirchhoff stress is used, so that the linear functional obtains the form:

ℓm(w) = 〈〈w,F b〉〉G0
+

∫

Ω

∫

ΓN

w · T dΓ P(dω), (3.64)

where F b is the volume force and T the initial stress in material description. Thus,

the final form of equilibrium Eq. (3.62) reads:

am(w,S) = −ℓm(w). (3.65)

3.7 Conclusion

The present chapter develops the stochastic model of an irreversible behaviour de-

scribed by uncertain material parameters and right hand side. Formally speaking the

model is an extension of the classical deterministic theory carried out with the help of

mathematical tools such as convex analysis and variational inequality theory. Start-

ing from the global description of the stochastic irreversible behaviour in Section 3.4,

both the small (Section 3.5) and the finite deformation (Section 3.6) descriptions are

fully derrived and presented. The latter case considers the large displacement the-

ory as a natural generalisation of the infinitesimal one. For simplicity reasons, the

infinitesimal theory is initially described in one material point (Section 3.5.2) and

then extended to the whole domain by introducing tensorial spaces in Section 3.5.1.

In this setting the existence and uniqueness of the solution for linear elliptic partial

differential equations and second order stochastic variational inequalities (see Sec-

tion 3.5.4) are shown. In addition, the transformation of variational inequality to the

stochastic convex optimisation problem is provided. The convexity is guaranteed by

choosing the positive definite distribution for material properties via the maximum

entropy principle (see Section 3.3).

Particulary this chapter studies linear elasticity, perfect plasticity, and general harden-

ing plasticity with emphasis on mixed linear hardening. These problems are written

in two equivalent forms: the abstract primal and mixed formulation, from which the

latter one is employed in computational algorithms, see Chapter 5.
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Chapter 4

Discretisation

An approximate answer to the right

problem is worth a good deal more

than an exact answer to an

approximate problem.

J. Tukey

The elastoplastic model presented in Chapter 3 requires the introduction of the ten-

sorial product space V ⊗ (S) in which both V and (S) are the infinite dimensional

sub-spaces. In addition, the models are time-dependent as the evolutionary laws for

the plastic-like variables are introduced. In such a setting the practical computation

is not possible, and hence the suitable discretisation has to be introduced. There-

fore, this chapter considers the mid-point algorithms for the time discretisation of

the evolutionary equations, as well as the spatial discretisation of the problem via

finite element methods. These lead to the system of equations with stochastic co-

efficients, the discretisation of which is considered in Chapter 5. To this end, the

tractable representation of the random field in the countable number of the mutually

independent random variables is introduced, as well as the stochastic version of the

closest point projection algorithm formulated by a straightforward extension of the

very well known radial return map algorithm [215, 92].

4.1 Related work

Elastoplasticity theory is a very broad research subject. There are many papers and

publications which deal with the discretisation problems in time and spatial domain.
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This section only briefly reviews some of the existing methods and computational

approaches to this problem. For more detailed information the reader is addressed to

[215, 92].

For the first time the implicit Euler time integration algorithm has been applied in

the work of Wilkins [241] for the problem of the elastoplastic evolutionary equa-

tion. He considered the first order differential equation and constructed the algo-

rithm which is the precursor of today’s classical closest point projection algorithms.

Later on, the implicit Euler has been extended to the general mid-point algorithms

[177, 178, 215, 92], for which the corresponding stability analysis is studied in

[214, 215, 92]. In contrast to the mentioned one-time step methods, Artioli et al.

[12] have studied the double-step methods as their natural extension in the case of

linear hardening plasticity. In addition, they proposed an exponential type of algo-

rithm which appears to outperform the single and double step integration algorithms

on the expense of efficiency [13]. However, these are not the only time integration

schemes. Basically, for the time discretisation one may use any kind of general inte-

gration methods designed for ordinary differential equations such as, for example, the

Runge-Kutta method [43, 35] or the BDF2 method [64]. The stability of the BDF2

method together with the practical application in J2 plasticity has been studied in

[181]. However, these methods are not often used in practice due to the complicated

algorithmic scheme which is not so suitable for the numerical implementation.

In computational applications the spatial discretisation of the mentioned problems is

mostly done with the help of finite element methods [21, 250] as the most appropriate

for experimental verification. However, these methods are not the most suitable for

the consideration of the error estimates or the accurate approximations of the stress

tensor. For this reason, the spatial discretisation techniques are still the subject of

research, especially in an adaptive manner [39]. Typical examples are: the finite

difference method [43], the boundary finite element method [50, 31], the least square

approach [29, 223, 206] and the wavelet based methods [166].

In addition to time and space discretisations, one also requires the discretisation of

the random fields describing the elastoplastic differential equations. The random

field discretisation [82, 235] can be performed in several ways depending on its rep-

resentation. The most often used are series expansion methods reviewed in [153].

For example, the interpolation method interpolates the random field via the finite el-

ement shape functions in nodal positions [134], while the approximation of the field

in the mid-point of the element is studied in [121]. Another possibility is to spatially

average the random field over some sub-domain as in [235]. However, the most often

used are the spectral representations described in [78, 107, 145], which are consid-

ered later in this work. The detailed discussion about their numerical computation
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can be found in [108, 227, 190, 153], as well as in [7].

4.2 Time discretisation

The time discretisation of elastoplastic evolutionary equations presented in Chapter 3

is done with the help of the generalised family of mid-point methods. The mid-

point methods are described by the parameter ϑ taking the values in the bounded

interval [1/2, 1] due to the stability properties of the algorithm. However, these are

not the only possible time discretisation methods, but the most often used in practice.

Instead, one may use any other kind of implicit Runge-Kutta methods, e.g. [35,

64].

4.2.1 Abstract problem

Let the time interval [0, T ] be divided into Lt equal time increments such that

tn = n∆t, n = 1, . . . Lt, where ∆t := T/Lt is the time step-size. Further-

more let the time approximation of some quantity q in time tn be denoted as qn,

its backward difference as ∆qn := qn − qn−1, and the backward divided differ-

ence as δqn := ∆qn/Lt. Using this notation the evolutionary variational inequality

in Eq. (3.44) can be approximated by the following algorithm as a special case of

Moreau’s sweeping process [162, 92]:

Problem 4.2.1. Problem ABS-Prim-Time: find w̌ := {wn}Lt

n=0 ∈ Zh with w0 = 0
such that for all 0 ≤ n ≤ Lt and all z ∈ Z holds:

a(wn−1+ϑ, z − δwn) + j(z)− j(δwn) (4.1)

≥ ℓn−1+ϑ(z − δwn), P− a.s.

By replacing δwn ≈ ∆wn previous equation transforms to

ϑa(∆wn, z −∆wn) + j(z)− j(∆wn)

≥ ℓn−1+ϑ(z −∆wn)− a(wn−1, z −∆wn) (4.2)

required to hold P-a.s. for all z ∈ Z . Furthermore, the solution wn is unique and
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admits the stability condition:

max
0≤n≤Lt

‖w1
n − w2

n‖Z ≤ c‖ℓ1 − ℓ2‖L∞(T ;Z ∗). (4.3)

Uniqueness and existence of the solution in Problem 4.2.1 follow from the proof

presented in Section 3.5.4 and [92]. Note that in Problem 4.2.1 the term wn−1+ϑ

is used as a shortcut for the term ϑwn + (1 − ϑ)wn−1, ℓn−1+ϑ for ℓ(tn−1+ϑ) and

tn−1+ϑ for (n− 1 + ϑ)∆t = ϑtn + (1− ϑ)tn−1.

Setting ϑ = 1 for the implicit Euler discretisation and yn := ℓ(tn)− a(wn−1, ·), one

may see that Problem 4.2.1 can be easily transformed to a time-discrete version of

Theorem 3.5.3:

Theorem 4.2.2. Problem ABS-Mix-time: find solution ∆wn ∈ K ∞ ⊂ Z such

that exists w∗
n ∈ K in all tn satisfying

∀z ∈ Zh : a(∆wn, z) + 〈〈w∗
n, z〉〉 = 〈〈yn, z〉〉 P− a.s. (4.4)

and

∀z∗ ∈ K : 〈〈∆wn, z
∗ − w∗

n〉〉 ≤ 0 P− a.s. (4.5)

The approximate solutions {wn}, {w∗
n} converge as ∆t → 0 to the solutions w(t)

and w∗(t) of the problem ABS-M in Theorem 3.5.3.

Proof. Everything except the convergence of w∗
n is already shown. This follows

along analogous arguments as proof of the uniqueness in Problem 4.2.1 (see [92]).

For computational purposes the minimisation Problem 2.3.4 has much greater impor-

tance than the abstract formulation given in Problem 3.5.3. Due to this the following

problem is further studied:

Theorem 4.2.3. Problem ABS-D: for all tn find w∗
n by minimisation:

w∗
n = argmin

z∗∈K

1

2
a∗(yn − z∗, yn − z∗), (4.6)
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where yn = ℓ(tn) − a(wn−1, ·) and wn is the closest point in K to yn in the a∗-

metric. Computing ∆wn ∈ Z by

∀z ∈ Z : a(∆wn, z) = 〈〈yn − w∗
n, z〉〉 P− a.s. (4.7)

one has that ∆wn ∈ K ∞ and

∀z∗ ∈ K : 〈∆wn, z
∗ − w∗

n〉 ≤ 0 P− a.s. (4.8)

Proof. One can make similar assumptions to Proposition 2.3.3 and Eq. (2.37)-

Eq. (2.41) from which then follows the proof of theorem.

However, the time discretisation introduces a certain numerical error into the model.

Under the standard regularity conditions and fixed ω the error is of the following

type:

max
n

‖un − wn‖a ≤ c∆t (4.9)

for ϑ 6= 1/2 and

max
n

‖un − wn‖a ≤ c∆t2 (4.10)

for ϑ = 1/2, where ‖ · ‖a is a norm with respect to the bilinear form a [92]. Here,

wn represents the solution of Problem 4.2.1 and un the solution of the original Prob-

lem 3.5.1 in time tn.

4.2.2 General hardening plasticity

Theorem 4.2.3 is the abstract formulation of the elastoplastic behaviour. However,

let us rewrite it for the case of the general hardening plasticity. For this one may

use the backward Euler time discretisation and the same identification of Z ,Z ∗ and

variables as in Section 3.5.4. Then, following Theorem 4.2.3 one may define the

bilinear form

ag(w, z) = ap(εp(u), εp(v)) + ah(η,̺)

= 〈〈ε(u)− εp(u), A(ε(v)− εp(v))〉〉+ 〈〈η, H̺〉〉 (4.11)

and its dual

ag∗(Σ1,Σ2) = ap∗(σ2,σ2) + 〈〈χ1,H
−1 : χ2〉〉, (4.12)
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where ap∗(σ, τ ) = σ : A−1 : τ . The inverse tensors A−1 and H−1 are part of the

definition of the constitutive laws and are positive-definite, symmetric and bounded

(see Section 3.5.2). Following this, one may introduce the analogue of the Theo-

rem 4.2.3 as:

Corollary 4.2.4. General hardening. Set Sn = A : Epn, yn = Sn −
ag(Ep,n−1, ·)) and compute ∆Epn ∈ K ∞, Epn = Ep,n−1+∆Epn and Σn ∈ K

as the unique solution of

∀M : ag(∆Epn,M) + 〈〈Σn,M〉〉 = 〈〈yn,M〉〉, P− a.s. (4.13)

∀T ∈ K : 〈〈∆Epn,T −Σn〉〉 ≤ 0, P− a.s.. (4.14)

Proof. Existence, uniqueness, and stability of the solution follow from Prob-

lem 4.2.1.

In order to pose the corresponding minimisation problem one may recall the deriva-

tion given in Section 2.2.3 and propose the closest point projection algorithm:

Corollary 4.2.5. Set Σtrial = yn = Sn − ag(Ep,n−1, ·). Compute the unique

minimizer of:

Σn = argmin
Σ∈K

1

2
ag∗(Σtrial −Σ,Σtrial −Σ) (4.15)

and ∆Epn as the unique solution of

∀M : ag(∆Epn,M) = 〈yn −Σn,M〉. (4.16)

Then, ∆Epn and Σn solve the problem in Corollary 4.2.4 and ∆Epn ∈ K ∞ satis-

fies

∀T ∈ K : 〈〈∆Epn,T −Σ〉〉 ≤ 0. (4.17)

Proof. Existence and uniqueness of the solution follow from Corollary 4.2.4.

Furthermore, the general hardening plasticity can be specialized to the linear hard-

ening and perfect plasticity case by assuming appropriate constitutive relations as
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described in Chapter 3. For more information on these formulations the interested

reader is addressed to [195].

Let us remark that Theorem 4.2.3 and Corollary 4.2.5 can lead to a completely dual

formulation [92]. However, the computations are usually performed according to

the mixed formulation in Corollary 4.2.4 on a global level, whereas upon discretisa-

tion at each Gauss-point the local computation is usually done according to the dual

formulation.

4.2.3 Closest point projection

This section considers the problem of the minimisation of the functional represent-

ing the evolutionary path of the plastic strain for the case of general hardening (see

Corollary 4.2.5). More special cases such as perfect plasticity and linear hardening

can be easily derived by taking into account appropriate restrictions (see [191]).

The minimisation as given in Corollary 4.2.5 belongs to the class of the optimization

problems with inequality constraints [137, 163] of the following form:

minimise Φn(ω) :=
1

2
〈〈Σtrial

n −Σn, A
−1(Σtrial

n −Σn)〉〉,
subject to Σn ∈ R : φn(Σn) ≤ 0, (4.18)

where Φn is the convex functional in time n and φn(σ) is the convex mapping from

R to K called the yield function. In deterministic theory [215, 137, 55] the op-

timization problem in Eq. (4.18) is generally solved by the so-called closest point

projection or radial return map algorithm1. The algorithm consists of two steps: re-

versible (non-dissipative) and irreversible (dissipative), often called elastic predictor

and plastic corrector. The non-dissipative step defines the trial state, while actual

projection happens in the corrector step if certain conditions are fulfilled. More pre-

cisely, if the stress lies outside of the elastic domain. In such a case the dissipative

step searches for the closest distance in the energy norm of a trial state to a convex

set of elastic domain, and then projects the stress back to the yield surface.

Let us assume that the quantities: the total strain En−1 = (εn−1,0), the plastic

strain Ep,n−1 = (εp,n−1,ηn−1), and the displacement increment ∆un−1 are given

at time tn−1 (beginning of the step). Then, one may compute the stress Σn−1 via

1 the second name is more appropriate for perfect plastic behaviour
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constitutive relationships (see Section 3.5.2). The goal is to update those fields in

time tn assuming that the time ∆tn and load ∆fn increments are known.

Non-dissipative step

In the proceeding numerical computation one first deals with the geometrical non-

linearities and solves the equilibrium equation Eq. (4.16) for the increment of the

displacements. This is the global phase of the algorithm in which the configuration

is updated. In second phase the configuration is fixed and the quantities are updated

such that the stress admissibility condition is satisfied. Therefore, one first solves the

equilibrium Eq. (4.16) rewritten in a form of residual:

Q(∆Ep,n,M) := ag(∆Ep,n,M)− 〈〈yn −Σn,M〉〉 = 0 (4.19)

which further represents a nonlinear equation with respect to the displacement in-

crement. Namely, the plastic strain Ep,n(ω) and the consistency parameter λn(ω)
2 are nonlinear functions in terms of En(ω). As Ep,n(ω) is regarded as a given

fixed history variable, the only remaining independent variable is un, i.e. ∆un(ω)
as un−1(ω) represents the convergent solution from the previous step. This means

that the operator Q(ω) is nonlinear in ∆un(ω), and hence the system in Eq. (4.19)

has to be solved iteratively [21, 250]. However, this is only possible after spatial and

stochastic discretisation have been performed.

By solving the equilibrium Eq. (4.19) one obtains the increment of the dis-

placement ∆un, and hence the increment of the elastic deformation ∆Een :=
(∇S(∆un(ω)),0) by freezing the plastic flow ∆Epn = 0. As the increment of

the total strain is purely elastic, one may employ Hooke’s constitutive law to com-

pute the increment of the forecasted (trial) Cauchy stress, i.e. Σtrial
n (xg, ω) =

Σn−1 + C(xg, ω) : ∆Een(xg, ω), where the generalised constitutive modulus

C(xg, ω) = diag[A(xg, ω),H(xg, ω)] consists of A(xg, ω) = K(xg, ω)1 ⊗ 1 +
2G(xg, ω)

(
I − 1

31⊗ 1
)

and H(xg, ω) = diag [Hkin(xg, ω), Hiso(xg, ω)]. Note

that the double-dot tensor multiplication : is applied on the random quantities, and

thus admits slightly different properties than the usual double-dot multiplication (see

Chapter 5 and Chapter 6).

Once the trial stress has been computed, one may check its admissibility with respect

to the yield condition φ(Σtrial
n (xg, ω)) ≤ 0 at time tn. If φ(Σtrial

n (xg, ω)) ≤ 0 P-

almost surely the step is non-dissipative and (·)n = (·)n−1. Otherwise, the stress is

2this parameter will be introduced later
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4.2 Time discretisation

non-admissible and one has to perform the dissipative step as further described. Note

that in the following discussion the term xg is not used for simplicity of notation.

Dissipative step

The solution of the minimisation problem is determined by a Kuhn-Tucker theorem

[137]:

Theorem 4.2.6. Let Φn(ω) be a Gâteaux differentiable functional on R and φn a

Gâteaux differentiable mapping from R into K . Assume that Gâteaux differentials

are linear in their increments. Suppose Σn minimises Φn subject to φn(Σ) ≤ 0 a.s.

and that Σn is a regular point of the inequality φn(Σn) ≤ 0 a.s. Then there is a

Lagrange multiplier λ ∈ R∗, λ ≥ 0 such that the Lagrangian:

Ln(ω) = Φn(ω) + 〈〈φn, λ〉〉 (4.20)

is stationary at Σn almost surely; furthermore 〈〈φn, λ〉〉 = 0 a.s.

Proof. The proof of previous theorem can be found in [137].

According to this, the solution of Eq. (4.18) is obtained from the optimality condi-

tion:

∂ΣLn = 0 and ∂λLn = 0 a.s. (4.21)

in which the second equation may be rewritten in a Kuhn-Tucker form:

λ ≥ 0 and λφn(Σn) = 0 a.s. (4.22)

If Φn and φn are convex— the positive cone K is closed and has non-empty

interior—and if the regularity condition is satisfied the saddle point condition is suf-

ficient requirement for the existence and optimality of the solution [137]:

Theorem 4.2.7. Assume that there exists λs ∈ R∗, λs ≥ 0, and an Σs ∈ R such

that the Lagrangian L(Σ, λ) = Φ(Σ) + 〈〈φ(Σ), λ〉〉 has saddle point at (Σs, λs)
i.e.

L(Σs, λ) ≤ L(Σs, λs) ≤ L(Σ, λs), (4.23)
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for all Σ ∈ R, λ ≥ 0. Then Σs solves Eq. (4.18).

Proof. The saddle-point condition with respect to λ [137] gives:

〈〈φ(Σs), λ〉〉 ≤ 〈〈φ(Σs), λs〉〉 (4.24)

for all λ ≥ 0 a.s. Thus, one may take some λg ≥ 0 a.s. and pose

〈〈φ(Σs), λg + λs〉〉 ≤ 〈〈φ(Σs), λs〉〉, (4.25)

from which it follows:

〈〈φ(Σs), λg〉〉 ≤ 0. (4.26)

Due to the convexity assumption one has that φ(Σs) ≤ 0 with respect to which the

saddle-point condition implies

〈〈φ(Σs), λs〉〉 = 0, a.s. (4.27)

Assuming that Σg ∈ R and φ(Σg) ≤ 0, the saddle-point condition transforms to:

Φ(Σs) = Φ(Σs) + 〈〈φ(Σs), λs〉〉 ≤ Φ(Σg) + 〈〈φ(Σg), λs〉〉 ≤ Φ(Σg). (4.28)

This further implies that λs minimises Φ(Σ) subject to φ(Σ) ≤ 0.

Following the previous theorem one may rewrite the standard optimality conditions

Eq. (4.21) at one material point xg to:

rs(ω) := A−1(Σtrial
n −Σn) + λn∂Σφ(Σn) = 0 a.s.

φs(ω) := φ(Σn) = 0 a.s. (4.29)

After simple mathematical derivation with the help of the constitutive relations given

in Section 3.5.2, the first relation in Eq. (4.29) transforms to

∆Ep,n(ω)− λn∂Σφ(Σn(ω)) = 0 a.s. (4.30)

This is exactly the expression used in the classical formulation of elastoplasticity

theory.

Note that the system in Eq. (4.29) is in general nonlinear. Its linearisation can be

performed with the help of the local Newton method, for example. However, due

to the dependence on the ω-parameter this can be done only after the stochastic dis-

cretisation.
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4.2.4 Large deformation analysis

The time integration of the J2 flow theory in finite strains is basically the same as in

the infinitesimal plasticity case. The problem reduces to a general form of the convex

optimization problem in a similar pattern as given in Eq. (4.18). Its unique minimizer

can be computed with the help of the closest point projection algorithms similar to

those already presented in Section 4.2.3. The only difference lies in the stress and

strain measures, i.e. the hyperelastic relationships, here only briefly summarized. For

the complete mathematical derivation the reader is referred to [215, 101, 21].

The J2 flow theory in finite deformations represents the natural extension of the small

deformation plasticity. Namely, the theory is based on the assumption of the convex

stored hyperelastic energy function for which the corresponding numerical algorithm

becomes the classical radial return map. Moreover, in absence of the plastic flow the

algorithm reduces to the finite elasticity case [215, 212, 217, 213].

Let us assume that the energy ψ(C,Cp,η) is convex and admits the volumet-

ric/deviatoric decomposition such that [215]:

ψ = ψv(J
e) + ψd(b̄

e
) + ψh(η)

= K(
1

2
((Je)2 − 1)− lnJe) +

1

2
G(tr(b̄

e
)− 3) + ψh(η) (4.31)

holds, where b̄
e
= (Je)−2/3be, Je = det (Ce), and ψh(η) is the stored internal

plastic energy. To this complies the constitutive law (see Eq. (2.77)) given in terms

of the Kirchhoff stress tensor:

τ = 2F e ∂ψ

∂Ce (F
e)T = Jep1+ s, (4.32)

where p = K
2 ((J

e)2 − 1)/Je denotes the pressure and s the deviatoric stress. For

a complete formulation, one requires the defintion of a set of admissible stresses via

the invariant form of the yield criterion, e.g.

φ(τ ,χ) = ‖dev (τ − ς)‖J2
−
√

2

3
[σy + ζ] (4.33)

in a von-Mises sense. To these is added the associative plastic flow rule in material

description:

˙̄Cp−1 = −2

3
λtr(be)F−1nF−T , η̇ = −λ∂χφ(τ ,χ), (4.34)
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or in spatial one [215, 101]:

Lvb
e = −2

3
λtr(be)n (4.35)

Lvq̄ = λ
2

3
Hkintr(be)n, (4.36)

q̇ = −2

3
Hisoλ. (4.37)

Here, n = s/‖s‖ is the normal, s = dev(τ − ς) is deviatoric stress, Lv denotes

the Lie derivative of a function [101], q̄ is the back-stress, and q is the isotropic

hardening. Note that the flow relations are similar to those in infinitesimal plasticity,

and thus can be numerically integrated in a similar manner as before.

Following the previous notation, let at time tn−1 be given {ϕn−1, b̄
e
n−1,ηn}, F n−1

(see Eq. (3.22)) and corresponding stresses τn−1 and χn−1. Then, one may compute

the increment of the displacement by solving the equilibrium equation:

am(w,Sn) = −ℓmn (w) (4.38)

which can be rewritten in a form of a nonlinear residual dependent only on ∆un:

Q(∆un) := am(w,Sn)− ℓmn (w) = 0. (4.39)

By solving previous equation for the increment of displacement ∆un, one may up-

date the deformation path according to:

ϕn = ϕn−1 +∆un(ϕn(X)), (4.40)

and hence the deformation gradient from F n−1 to F n = [1 +∇s∆un]F n−1. Once

these quantities are known, given loading increment ∆fn one may update the kine-

matic and dynamic quantities from time tn−1 to time tn.

Basically, the update algorithm has the same predictor-corrector form as the one

given in Section 4.2.3. The predictor assumes the step to be purely elastic, and then

updates the state according to the yield criterion—the corrector step. Notice that in

comparison to algorithm for small deformation case the only difference lies in the

choice of stress and strain measures. The algorithm starts by freezing the plastic flow

so that the intermediate configuration does not change and:

[Cp−1
n ]trial := C

p−1
n−1, ηtrial

n = ηn−1 (4.41)

94



4.3 Spatial discretisation

hold. Introducing the operators of push-forward and pull-back, i.e. the relative defor-

mation gradients

fn = F nF
−1
n−1

and

f̄n = (Jn/Jn−1)
−1/3fn

Eq. (4.41) transforms to:

b̄
trial
e,n = f̄nb̄

e
n−1f̄

T
n (4.42)

given in spatial description. In this formulation the trial stress can be computed

according to:

τ trial
n = pnJn1+ strialn ,where

strialn = Gdev b̄
trial
e,n , and (4.43)

pn = ψ′
v(Jn).

Once the trial stress is evaluated, one may check the yield condition and, if neces-

sary, proceed with the dissipative step. The dissipative step solves the Lagrangian

in Eq. (4.20) for the multiplier ∆λ and updates the strain-like variables in material

description according to:

C̄
p−1
n − C̄

p−1
n−1 = −2

3
∆λ[Cp−1

n : Cn]F
−1
n nnF

−T
n , (4.44)

ηn − ηn−1 = −∆λ∂χφn, (4.45)

or in spatial description as given in [215, 101].

Note that the formulation considered here is only semi-discretised, because the finite

element discretisation of Eq. (4.38) is not performed yet and ω-dependence is widely

present.

4.3 Spatial discretisation

The solution of the elastoplastic problem belongs to the tensor product space V =
V⊗ (S), where V denotes the appropriate deterministic space (see Section 2.3.1) and

(S) the stochastic space (see Section 3.5.1). The tensor representation allows the dis-

cretisation of each of the components separately. This section briefly reviews the fi-

nite element (FEM) discretisation [22] of the sub-space V , i.e. the semi-discretisation
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Vh := Vh⊗(S) of the tensor space V representing strains, stresses, or displacements.

In the next chapter the discretisation of (S) will be considered, and hence the full dis-

cretisation of the problem.

The FEM discretisation of displacement U and plastic strain E (or stress R) spaces is

done with the help of piecewise affine and piecewise constant functions, respectively.

Besides FEM, one may use any other available discretisation technique such as the

finite difference approach [126], the least square method [223, 206], etc.

Let the domain G be discretised via partition Th in a finite element way such that:

G ≈ Gh =
⋃

Ge∈Th

Ge (4.46)

represents the union of the closed subsets Ge with a non-empty interior and Lipschitz

closed boundary. Then, by taking the finite number Ln of shape functions Nj(x) as

ansatz [49], i.e.

Uh := span {Nj(x)}Ln

j=1 ∈ U , (4.47)

one may discretise the displacement as

u(x, ω) ≈ uh(x, ω) =

Ln∑

i=1

ui(ω)Ni(x) := N(x)u(ω), (4.48)

where N = [N1(x), N2(x), . . . NLn
(x)] denotes the vector of shape functions and

u(ω) = [u1(ω), . . . uLn
(ω)]T represents corresponding coefficients, i.e. random

variables in (S). As functions in Uh := Uh ⊗ (S) are continuous, ε is well de-

fined as an operator:

ε(uh)(y) = ∇S(N(y)u(ω)) (4.49)

in each FEM integration point y. This further determines the discretised space Eh.

By taking the piecewise constant functions the space of general plastic deformation

Ep and stress R are approximated as:

εph =

Le∑

i=1

εpiVi, σh =

Le∑

i=1

σiVi, (4.50)

where Vi denotes the i-th indicator function over element j. The function takes the

value 1 when i = j, otherwise Vi = 0. Similar is valid for internal variables ηh,

internal forces χh and corresponding spaces Qh and Ch. In other words, the stress
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space R is discretised by:

Rh = {σh ∈ R : σGe
= const ∀Ge ∈ Th} ⊂ R. (4.51)

Following previous definitions one may define the discretised spaces Ph := Eph×Qh

and Yh := Rh × Ch, of the general plastic strain Eph and the general stress Σh,

resepectively (see Section 3.5.1). In addition, let Z := Z ⊗ (S) be a tensor product

space between Hilbert space Z and the space (S) of variables with finite variance

(see Section 3.5.1). Its convex, closed, non-empty subset (cone) is denoted by K ∞.

Let us assume that the same assumptions are valid as they are given in Theorem 3.5.2;

then one may perform the finite element approximations Zh = Zh⊗(S) of the space

Z (see Section 4.3) and K ∞
h = Zh ∩ K ∞ of the convex subset K ∞ ⊂ Z .

With the help of previously made assumptions one may formulate the discretised

version of Problem 4.2.1 on a subspace Zh as:

Problem 4.3.1. Abstract problem ABS-Prim-FEM. Find whn : T → Zh with

wh0 = 0 and ∆whn ∈ K ∞
h such that for all t ∈ T and all zh ∈ Zh the second

order inequality:

a(∆wh,n, zh −∆wh,n) + j(zh)− j(∆wh,n) (4.52)

≥ ℓh,n(zh −∆wh,n)− a(wh,n−1, zh −∆wh,n)

is valid P-almost surely.

The previous analysis is given with respect to the finite element approximation of

considered spaces. However, the major difficulty in solving the primal Problem 4.3.1

is the non-differential term of the dissipation functional j, which may be solved by

regularisation (j is approximated as a sum of differentiable terms), or by discretisa-

tion of the inequality via a set of integration points to a set of uncoupled inequities,

i.e.

j(z) ≈ jh(zh). (4.53)

This further modifies the inequality in Eq. (4.52) by including jh [92].

Existence and uniqueness of the solution are given under the same conditions as

before, see Theorem 3.5.2. If one assumes that the functional j(·) is proper on Zh,

then the discrete counterpart of the abstract problem has unique solution [81, 92]
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which for fixed ω satisfies the Céa’s type of inequality [49]

max
n

‖un − wh,n‖a ≤ c∆t+ c


n

L∑

j=1

inf
zj∈K

‖ẇj−1+θ − zj‖Z



1/2

. (4.54)

Here, ∆t is the time step and ‖ · ‖a is norm with respect to the bilinear form a,

wh,n denotes the discretised solution of Problem 4.3.1 and un the solution of orig-

inal Problem 3.5.1 in time tn. However, the error estimate as given in Eq. (4.54) is

not complete as the problem is only semi-discretised and the general error estimate

requires the discretisation of the stochastic space (S) as shown in Section 4.4.

Similarly to primal, one may discretise Problem 4.2.2 given in a mixed form by

taking the subspaces Zh ⊂ Z and Z ∗
h ⊂ Z ∗, where Kh = Zh ∩K . The discreti-

sation can be formulated in a variational:

Problem 4.3.2. Problem ABS-Mix-FEM: find ∆wh,n ∈ K ∞
h ⊂ Zh and ∃w∗

h,n ∈
Kh such that for all tn

∀z ∈ Zh : a(∆wh,n, z) + 〈〈w∗
h,n, z〉〉 = 〈〈yh,n, z〉〉 P− a.s. (4.55)

and

∀z∗h ∈ Kh : 〈〈∆wh,n, z
∗ − w∗

h,n〉〉 ≤ 0 P− a.s. (4.56)

or in a minimisation form as:

Corollary 4.3.3. Problem ABS-D: find w∗
h,n such that for all tn holds:

w∗
h,n = argmin

z∗
h
∈Kh

1

2
a∗(yh,n − z∗h, yh,n − z∗h) (4.57)

with yh,n = ℓ(tn) − a(wh,n−1, ·) and wh,n being the closest point in Kh to yh,n in

the a∗-metric. Computing ∆wh,n ∈ Zh by

∀z ∈ Zh : a(∆wh,n, z) = 〈〈yh,n − w∗
h,n, zh〉〉 P− a.s. (4.58)

one has that ∆wh,n ∈ K ∞
h satisfies

∀z∗h ∈ Kh : 〈∆wh,n, z
∗ − w∗

h,n〉 ≤ 0 P− a.s. (4.59)
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Specializing Corollary 4.3.3 to the general hardening case one obtains:

Corollary 4.3.4. Set Σtrial = yhn = Shn − ag(Ep,h,n−1, ·). Compute the unique

minimizer of:

Σhn = argmin
Σh∈Kh

1

2
ag∗(Σtrial

h −Σh,Σ
trial
h −Σh) =: argmin

Σh∈Kh

Φh (4.60)

and ∆Ep,hn as unique solution of

Q(∆Ep,hn,M) := ag(∆Ep,hn,M)− 〈〈yhn −Σhn,M〉〉 = 0. (4.61)

Then, ∆Ep,hn and Σhn solve the problem in Problem 4.3.2 and ∆Ep,hn ∈ K ∞
h

satisfies

∀T ∈ Kh : 〈〈∆Ep,hn,T −Σh〉〉 ≤ 0. (4.62)

Proof. Existence and uniqueness of the solution can be found in [195].

Note that the discretised problems presented in this section are, however, only semi-

dicretised since all formulations are ω-dependent. Due to this they can be only nu-

merically treated when the discretisation of the stochastic space (S) is performed.

4.4 Stochastic discretisation

The discretisation of the stochastic space (S) of RVs with finite variance is done such

that only a finite number of random variables is used in the problem description. The

best way to satisfy this condition is to approximate random fields by series expansion

methods, where the number of random variables tend to be small, but large enough to

satisfy the accuracy and computational requirements for a certain type of problem. In

a case of the weak sense stationary and homogeneous processes (random fields) the

expansion is of the Fourier type [199], a special case of Karhunen-Loève expansion3

[78, 76, 145, 107]. The expansion approximates random fields or stochastic processes

as a sum of products of functions defined on the time or spatial domain and functions

of random variables. Due to this property the KLE is often called the tensor product

representation.

3valid in a general case of non-stationary and non-homogeneous processes or random fields
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4.4.1 The Karhunen-Loève expansion

For its favourable properties a Karhunen-Loève expansion (KLE) (also known as a

proper orthogonal decomposition) is chosen for the discretisation of the random field.

The principal idea behind the KLE is that given an ensemble of data one can find a

basis of a given dimension that spans the data optimally in L2 sense. It was invented

independently by Karhunen (1947), Loève (1948), and Kac and Siegert (1947) and

widely described in many books and papers [33, 47, 75, 77, 78, 99, 197, 201, 227,

152]. Therefore, here only short description. For more information the reader is

referred to [78, 108, 107].

Let be given the random field κ(x, ω) and its admissible covariance function

covκ(x1, x2) := E(κ̃x1 ⊗ κ̃x2), where κ̃x1 and κ̃x2 represent the fluctuations of

the random field (see Eq. (3.9) and the text following). The admissibility condi-

tion [26, 203] requires that the covariance is symmetric and positive-definite, i.e.∑n
k=1

∑n
j=1 ckcovκ(xk, xj)cj ≥ 0 for all xk, xj ∈ R and ck, cj ∈ C. With this in

mind the random field κ(x, ω) admits the expansion:

κ(x, ω) =
∞∑

k=0

√
λkξk(ω)κk(x) (4.63)

in which the split into the spatial κk(x) and stochastic ξk(ω) part has occurred. Tak-

ing λ0 = 1, ξ0(ω) = 1 and κ0(x) = κ̄(x) the previous formulation transforms

to:

κ(x, ω) = κ̄(x) +

∞∑

k=1

√
λkξk(ω)κk(x), (4.64)

where κ̄(x) is the mean value of the random field, ξk(ω) are the uncorrelated zero

mean and unit variance random variables (E(ξmξn) = δmn), and (λi, κi) is the pair

of eigenvalues and eigenfunctions of the covariance kernel covκ, respectively.

For computational purposes the series in Eq. (4.64) is truncated to a finite number of

terms M :

κ̂(x, ω) = κ̄(x) +

M∑

k=1

√
λkξk(ω)κk(x), (4.65)

such that the approximation is the best one achieved in L2(G×Ω) ∼= L2(G)⊗L2(Ω)
norm. In other words, the truncated expansion in Eq. (4.65) converges to κ(x, ω) in
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variance uniformly, i.e. in L∞(G)⊗ L2(Ω):

supE((κ(x)− κ̂(x))2) = sup
x∈G

∞∑

k=M+1

λkκk(x)
2 → 0, as M → ∞. (4.66)

The KLE computation is performed by solving the spatially FEM-discretised eigen-

value problem [107]:

Wκk = λkMκk (4.67)

with κk being the eigenfunctions, λk the corresponding eigenvalues, W = MCM

a symmetric positive semi-definite matrix, and M a Gram matrix with elements

M ij =
∫
G Ni(x1)Nj(x2)dx1dx2. Regarding properties of matrix W , the solution

of Eq. (4.67) can be obtained with the help of a Krylov subspace method [200, 95]

with a sparse matrix approximation. This method comes very naturally as it does

not require an assembled form of the dense matrices W and M . On the other side,

Krylov subspace methods are very suitable for the implementation as one may use

open libraries such as LAPACK or ARPACK [125]. However, for the problem of

huge dimensions one may use sparse hierarchical matrix techniques [110] as more

suitable tools. They represent an efficient and fast discretisation of the random fields

due to their log-linear computational cost of the matrix-vector products and log-linear

storage requirement.

Finally, having the solution of the eigenproblem one may rewrite the Karhunen-

Loéve expansion in Eq. (4.65) in a discretised form as:

κ(x, ω) ≈ κ̄(x) +
M∑

k=1

√
λkκkN(x)ξk(ω), (4.68)

where the first term κ̄(x) represents the mean value of the given random field in the

finite element basis.

Note that the Karhunen-Loève expansion in Eq. (4.65) is straightforward in a case of

the Gaussian random field (see Section 3.3.2) due to mutual independence of the un-

correlated random variables ξk(ω), which represent a linear combination of Gaussian

random variables. On the other side, in a case of the non-Gaussian random field (i.e.

the nonlinear transformation of Gaussian, see Section 3.3.2) the random variables

ξk(ω) are uncorrelated and generally unknown. However, they can be computed via

the following integration [78]:

ξk(ω) =
1√
λk

∫

G
(κ(x, ω)− κ̄(x))κk(x)dx. (4.69)
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Chapter 4 Discretisation

a) lc = 1 b) lc = 0.5

c) lc = 0.25 d) lc = 0.1

Figure 4.1: Comparison of numerical and analytical covariance functions

exp(−r/lc) for different values of correlation lengts lc and different number M of

KLE terms.
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Example 4.4.1. Let us take the zero mean first order process described by the non-

smooth correlation function exp(−r/lc) with the correlation length lc taking the val-

ues in interval [1 ÷ 0.1] as shown in Fig. 4.1. The goal is to compare the analytical

with the numerically computed covariance. As one may notice in Fig. 4.1, the sim-

ulation result agrees better with the analytical result if the ratio of the length of

the process (in this case the unit measure) and the correlation length is smaller. A

smaller ratio implies a highly correlated process. Such a process requires a smaller

number of random variables to be taken into the expansion. Also, note that the non-

smooth correlation function at zero lag leads to less good approximation result for

that point.

Example 4.4.2. The fluctuation of the random field depends on the chosen value of

the correlation lengths. This dependence is shown in Fig. 4.2, where the correla-

tion length lc of the centered Gaussian random field is varied. The Gaussian field

is numerically simulated by 500 KLE terms (full approximation) and two types of

covariance functions: the smooth and non-smooth correlation functions of the ex-

ponential type. The results show that the smooth correaltion function produces the

smooth realisations of the Gaussian random field (see Fig. 4.2, a)-c)), as expected.

The function is smooth for r = 0 in contrast to the square root function which is not

differentiable in r = 0 (hence corresponding realisations are not smooth). One may

also note that with decrease of the correlation lengths the fluctuation of the random

field realisations increases. Going from a)-c) and from d)-f) in Fig. 4.2 one may

notice that fluctuations become larger due to the smaller value of the correlation

length.

Example 4.4.3. Let us take the random field as used in the numerical results in

Chapter 8, and investigate the values of the KLE modes of the base Gaussian random

field with respect to the mean value and the standard deviation, see Fig. 4.3. In

addition, let us distinguish two cases: the non-smooth and the smooth corresponding

correlation function. As shown in Fig. 4.3, the first KLE mode is the smoothest and

takes the largest value. Going from the left to the right, the number of terms in the

KLE grows, and thus the amplitude of the 20-est mode decreases, while fluctuations

grow. Similar is valid for the realisations of the random field. Namely, the small

number of the KLE terms does not accurately represent the considered random field,

see Fig. 4.4. The approximation delivers different variance than the random field

possess. On the other side, taking the large number of terms is not always necessary

as sometimes the eigenvalues may decay quite fast enough.
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a) cov = exp(−r2/12) d) cov = exp(−r/1)

b) cov = exp(−r2/0.252) e) cov = exp(−r/0.25)

c) cov = exp(−r2/0.1252) f) cov = exp(−r/0.125)

Figure 4.2: Comparison of realisations for Gaussian cov = exp(−r2/l2c) and square-

root cov = exp(−r/lc) covariance functions for different values of correlation

lengths lc
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4.4 Stochastic discretisation

a) M = 1 b) M = 20 c) M = 50

d) M = 1 e) M = 20 f) M = 50

Figure 4.3: The shape of M -th KLE mode for smooth (a-c) and non-smooth (d-f)

correlation function

a) M=1 b) M=20 c) M=50

Figure 4.4: Realisations of lognormal random field with the number of terms M kept

in KLE
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4.4.2 The KLE/PC expansion

Since the probability density functions of uncorrelated random variables in the

Karhunen-Loève expansion are unknown they are evaluated by integration, see

Eq. (4.69). However, one may use the functional approximation instead. The ba-

sic idea is to represent the RV as a function of some other—more simple—type of

random variables as explained in detail in Chapter 6. In other words, one may ap-

proximate the RV ξk(ω) by a convergent polynomial chaos expansion (PCE):

ξk(ω) =
∑

α∈J
ξ
(α)
k Hα(θ(ω)), (4.70)

where ξ
(α)
k are the coefficients and Hα(θ(ω)) the Hermite polynomials with uncor-

related and independent Gaussian RVs θ(ω) as arguments. Once the approximation

of ξk(ω) is computed, one may substitute it back to Eq. (4.63) such that:

κ(x, ω) =
M∑

k=0

∑

α∈J

√
λkξ

(α)
k Hα(θ(ω))κk(x) (4.71)

holds. The series in Eq. (4.71)—further called the KLE/PC expansion—is a common

way used to approximate the non-Gaussian random fields [152, 151, 107], see the

numerical procedures described in Chapter 5.

For computational purposes one may neglect the terms in the PCE representing the

small value of the product such as λk(ξ
(α)
k )2α! as they contribute to the small change

in variance. Following this, the truncated form of Eq. (4.71) becomes:

κ(x, ω) ≈
M∑

k=0

∑

α∈JM,p

√
λkξ

(α)
k Hα(θ(ω))κk(x), (4.72)

where JM,p is the multi-index set determined by M RVs and the polynomial order

p. The error of this type of truncation is given in terms of the following estimator:

‖κ(x, ω)− κ(x, ω)M‖L2(Ω)⊗L2(G) =
∞∑

k>M

∑

α∈J�JM

λk(ξ
(α)
k )2α!. (4.73)

Note that in the most general case both expansions converge in L2(Ω). Due to this

the positive definiteness of the random field realistions for some fixed ω̃ may be

violated since polynomials are not bounded. That may cause numerical instability as
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Hadamard’s requirements of the well-posedness are not satisfied. To avoid this kind

of problem the expansion in Eq. (4.73) for fixed ω̃ has to be done by a point-wise

transformation of the Gaussian random field [152, 149, 151].

4.5 Summary

The material models introduced in Chapter 3 are time, ω- and spatially dependent,

and thus one has to discretise them. Time integration is studied with respect to the

general mid-point integration schemes from which the simplest variant is chosen,

i.e. the implicit Euler method. In regard to this, the time-discrete version of the ab-

stract problem is analysed in Section 4.2.1, while the general hardening plasticity in

Section 4.2.2. For computational purposes the time-discretization algorithm is con-

sidered in Section 4.2.3 in a form of the closest point projection for small deformation

plasticity. This is further extended in Section 4.2.4 to the J2 finite deformation plas-

ticity. Besides the time discretisation, this chapter offers the brief overview of the

spatial discretisation of the problem in Section 4.3. However, the time and spatial

discretisations are not enough to numerically threat the problem. The reason for this

are the input material characteristics described as uncertain. Therefore, their stochas-

tic discretisation is studied in Section 4.4 in a usual computational manner with the

help of the combination of the Karhunen-Loève and polynomial chaos expansions.

This kind of discretisation allows the description of quantities in a form of poly-

nomial chaos expansion in each local FEM integration point. Such representation

is then suitable for the implementation of intrusive Galerkin methods as described

further in Chapter 5.
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Numerical approaches

There are always two choices. Two

paths to take. One is easy. And its

only reward is that it’s easy.

Unknown

The semi-discretised equations in Chapter 4 are ω-dependent, and thus cannot be

numerically treated before the stochastic discretisation has been preformed. There-

fore, one of the primary goals of this chapter is to discretise the stochastic space (S)
and to propose several solution strategies. According to the type of the RV repre-

sentation they use, the strategies are classified into: the direct integration (RV rep-

resented by sample), the direct Galerkin method (RV given by polynomial approxi-

mation), and the pseudo-Galerkin and collocation methods (RV represented by com-

bination of polynomial approximation and samples). These methods are extended

form of the corresponding counterparts used for solving linear stochastic problems,

e.g. [107, 145, 244, 140, 157, 191].

A novelty in this work is the construction of the purely algebraic method for solving

the stochastic variational inequality of the second kind. The method relies on the ap-

propriate weak approximation of the convex elastic domain, which further allows the

stochastic closest point projection (SCPP) method to be a purely deterministic pro-

cedure. The idea is to project the problem in a Galerkin manner—similar to the one

in the classical finite element approach—onto the polynomial basis of the discretised

space. The projection is done in a purely algebraic manner without any sampling.

This is achieved with the help of the polynomial chaos algebra (see Chapter 6) and

the construction of the probability estimates for the RV inequalities. Such introduced

method is fully straightforward and intrusive, i.e. it is efficient and requires reformu-
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lation of the finite element code.

Another way of solving the stochastic variational inequality in terms of projection is

based on the approximation of the convex domain on the finite set of the integration

points such that the density of the approximated stochastic space in (S) is fulfilled.

In this manner one avoids possibly not enough sharp estimates used to functionally

approximate the random inequalities in an intrusive approach. The points used in

the approximation are part of the random or deterministic integration rules. As the

integration is not full, this kind of approach leads to much cheaper estimates than the

direct integration approach, also studied in this work.

The chapter is organized as follows: Section 5.1 briefly reviews the existing solution

strategies with the special emphasis on the direct integration techniques, which are

described in Section 5.3. The largest part of this chapter (Section 5.4.1 and Sec-

tion 5.4.2) deals with the stochastic Galerkin and its pseudo-version. The study fo-

cuses on the small deformation plasticity case as the finite J2 theory represents its

natural extension. Finally, some of the adaptive techniques are advocated in Sec-

tion 5.6.

5.1 Related work

In the last decade the numerical methods for solving stochastic partial differential

equations (SPDE) corresponding to the description of linear elastic behaviour have

developed quickly and on many fronts. To reduce the cost of direct integration

techniques, Ghanem and Spanos [78] and later Matthies and Keese [145, 107] pro-

posed to use the Karhunen-Loève expansion in combination with white noise anal-

ysis for the random field discretisation. This has inspired many scientists to fol-

low the same path and construct various numerical approaches for solving the large

stochastic parametrised linear systems of equations in intrusive (algebraic), or non-

intrusive (numerical) way. For example, the intrusive approach has been studied in

[140, 145, 73, 76, 17, 247], the setting of the non-intrusive Galerkin approach in

[61, 109, 244, 16, 144, 5] and the interpolation in [114, 139].

In contrast to linear SPDEs, the nonlinear ones are still considered as a relatively

young research area, especially in the field of elastoplasticity. Initially, Acharjee and

Zabaras [4, 3] proposed the intrusive numerical algorithm for solving the large de-

formation stochastic hyperelastic problem. They studied the influence of the uncer-

tain initial configuration, as well as the uncertain material parameters on the stress
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response with the help of the polynomial chaos expansion. However, the method

does not provide the intrusive solution strategy for the stochastic inequalities arising

in the definition of the elastoplastic behaviour. Namely, the approximation of the

convex elastic domain is done with the help of perturbation-like techniques or col-

location. A similar study was recently provided by Arnst and Ghanem [11] for the

contact and elastoplastic problem in a small deformation regime. Besides these, other

kinds of approaches have been also investigated as already discussed in Chapter 1.

For example, Anders and Hori [9] treated uncertainties with the help of the pertur-

bation technique in combination with the Karhunen-Loève expansion of the global

stiffness matrix. The method is characterised by an inability to accurately approxi-

mate the random fields described by moderate and large variances. A complex, but

mathematically speaking “deterministic” version of the numerical method for solving

one-dimensional stochastic elastoplastic problems can be found in [209, 105]. The

approach is of the moment equations type and it is based on the Eulerian-Lagrangian

form of the Fokker-Planck equations.

5.2 Representation of a random variable

Selection and assessment of the numerical methods for the uncertainty propagation

through the elastoplastic model strongly depends on the random variable representa-

tion, which may take the form of:

• sampling

• distribution

• moments

• or the functional approximation [180].

The benefits and detriments of those techniques vary greatly depending on the par-

ticular application and available computational resources. For those who prefer a

simple black-box FEM fashioned technique the best variant is the sampling method,

i.e. the direct integration (see Section 5.3). Its purpose is to evaluate the RV at some

—randomly or deterministically—chosen points ωs ∈ Ω, and then to statistically

process the data. However, in terms of practical (industrial) utilisation the method is

not very comfortable to use due to its computational inefficiency.
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Representing the random variables in terms of distribution or moments, one refor-

mulates the elastoplastic model into a not necessarily simpler but equivalent conser-

vation (e.g. Fokker-Planck) equations for probability (see [105, 209, 208]) or more

complicated evolutionary integro-differential equations. These methods require huge

computational effort and until now have been only used yet for some small test ex-

amples, not real applications.

In recent years an alternative representation has gained increasing momentum. The

idea is to describe an RV κ as a function of other — known — RVs of some simple

type. A typical example is given by polynomials of normalised Gaussian RVs. This

is Wiener’s polynomial chaos expansion (PCE) [238, 102], also called more recently

“white noise analysis” [98, 96]. In some way this representation allows the idea of

using the algebra of RVs as primitive objects, and hence aquires a distinctly func-

tional analytic flavour [207]. In this chapter such approach is fully derived with the

help of the knowledge presented in Chapter 6.

5.3 Direct integration methods

The goal of stochastic analysis is to calculate the response statistics, i.e. some func-

tionals of the solution such as the mean value and variance of the displacement, the

probability exceedence of the von Mises stress, etc. For a fixed x ∈ G these statis-

tics may be written as the mathematical expectation of a functional of the solution

Ψ(x, ω, u(x, ω)) [151] :

Ψu(x) := E(Ψ(x, ω, u(x, ω))) =

∫

Ω

Ψ(x, ω, u(x, ω))P(dω) (5.1)

in infinite dimensional space. However, in practical computation the integral in

Eq. (5.1) is finite dimensional since the random fields u(x, ω) and Ψ(x, ω, u(x, ω))
are only approximated by a finite set θ = {θi}Mi=1 of independent RVs (see Sec-

tion 4.4 and Chapter 6). The RV independence allows the integral in Eq. (5.1) to be

transformed to

Ψu(x) =

∫

Ω1

. . .

∫

ΩM

Ψ(x, ω,N(x)u(ω)) dP1(ω1) · · · dPM (ωM ) (5.2)

according to Fubini’s lemma, where the triple (Ω(M),B(M),PM )— with Ω(M) =
Ω1× . . .×ΩM ⊂ R

M and Ωj = range (θj) = θj(Ω)—defines the probability space.

Here, Pi(ωi) denotes the probability distribution of θi and ω = (ω1, . . . , ωM ) ∈
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Ω(M).

The integral in Eq. (5.2) in general cannot be evaluated exactly, but rather numerically

via the finite sum:

Ψu(x) ≈ ΨN =
N∑

j=1

wjΨ(x,θ(j),u(θ(j))) (5.3)

in a set of points {θ(j)}Nj=1 described by weight functions {wj}Nj=1. This corre-

sponds to the integration by the quadrature rule (the set of the deterministic points

and corresponding weights) [94, 233, 70, 34, 114] or to the Monte Carlo method and

its quasi-variants—the points are selected according to the underlying probability

measure [204, 100, 72, 36, 32, 133, 132].

Algorithm 1: Schematic representation of direct integration algorithm

Direct Integration method

1: generate the sequence {θj |j=1,2,...,N} ⊂ ΘM

2: for j = 1 → N do

3: evaluate input RFs κ = {K,G, σy, . . .} at θ(j):

4: - base Gaussian field in KLE

5: γ(x,θ(j)) =
∑M

k=1

√
λkγk(x)θ

(k)

6: - apply transformation

7: κ(x,θ(j)) = κ0 + κ1exp(γ(x,θ(j)))
8: run FEM code with property κ(x,θ(j)) to obtain:

9: η(x,θ(j)) ∈ {u(x,θ(j)),σ(x,θ(j)), ǫ(x,θ(j)), . . .}
10: end for

11: compute integral

12: ΨN =
∑N

j=1 Ψ(x, η(θ(j)))wj

The numerical integration as given in Eq. (5.3) has a very nice property. Namely,

one may independently compute the integrand in each integration point by the finite

element method procedure (or some other deterministic solver), see Algorithm 1, and

then sum the corresponding results. As there is no interaction between the particular

solutions, all terms in the sum may be computed in the same time with the help

of parallelization techniques. This leads to an enormous reduction of the overall

computation time. In addition, the method is stable and does not depend on the type
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Table 5.1: Various integration rules and their convergence in terms of number of

samples. MC is Monte Carlo, qMC quasi-Monte Carlo, FTPQ- full tensor product

quadrature and SGSQ sparse grid Smolyak quadrature rule

Method Sequence Convergence

MC random according to p.d.f. O(N−1/2)
qMC low discrepancy sequence O(‖ΨN‖BV (logN)mN−1)
FTPQ deterministic O(N−p/M )

SGSQ deterministic O(N−r(logN)l
(d−1)(r+1)

)

of the problem being solved, i.e. whether the functional is of linear or nonlinear type.

However, the integration is of the high-dimensional nature, and hence one requires

a large amount of the integration points in order to achieve the desried convergence

and accuracy of the solution. Due to this, the direct integration methods are often

marked as impractical.

In the literature one may find various types of integration rules, which differ from

each other by the way the integration points are chosen. The simplest and the most

often used is the Monte Carlo (MC) method [205, 204, 36, 133] whose set of points

{θ(j)}Nj=1 is built according to the probability distribution function (p.d.f.). Once

the solution is evaluated in a deterministic fashion, one may extract the final statis-

tics using Eq. (5.3) for which wj = 1/N, ∀j. According to the central limit the-

orem and the law of large numbers the method converges towards Gaussian law

εN = lim
N→∞

ΨN − Ψu ≈ σ2
ΨN

−1/2θ, where θ is the standard Gaussian random

variable with zero mean and unit variance, and σΨ = ‖ΨN‖2L2
/N is a standard de-

viation of the functional Ψ [151]. In other words, the method converges under the

weak regularity conditions1 with probability one. In addition, the smoothness of the

integrand is taken only through the variance, such that the small variance and low

accuracy requirements characterise the most suitable conditions for this method. On

the other side, the slow convergence rate is the biggest disadvantage of the method.

Namely, the error reduces by one order of magnitude for the number of the evalua-

tions increased by two orders, which makes the MC method fairly impractical.

The variance reduction techniques (e.g. antithetic variates, stratified sampling, im-

portance sampling, control variates, etc.) try to improve the MC convergence rate

1Even when one does not know that the integrand is smooth and differentiable, the Monte Carlo method
still performs very well
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by manipulating the variance. The improvement is achieved by choosing the

so-called low discrepancy (or quasi-random) instead of purely random sequence

[36, 107, 133, 132] of numbers. By definition a low discrepancy sequence has a

small measure of deviation (discrepancy) DN ≤ c(logN)kN−1 of a given distribu-

tion from an ideal one, where c and k are the constants independent ofN but possibly

dependent on dimension M . Its asymptotic behaviour is described by the Koksma-

Hlawka inequality [36], i.e. ε ≤ σ2
ΨDN where ε and σ2

Ψ represent the error and the

total variation of the integrand, respectively. According to this, the variance reduc-

tion implies faster convergence rate than the standard MC method, i.e. the rate is

O(‖ΨN‖BV (logN)MN−1), where ‖ΨN‖BV denotes the bounded variation norm.

However, in contrast to the MC sampling the convergence is problem dependent.

Besides random and pseudo-random sequences, one may use deterministic quadra-

tures to integrate the functional in Eq. (5.3) [94, 233, 70, 34, 114]. As the number

of the quadrature points strongly depends on the problem dimension, their (possibly

ad-hoc) selection is often non-trivial especially in high-dimensional spaces. Namely,

there are numerous ways to choose sampling points: full tensor quadrature, sparse

grid Smolyak [114], cubature grid, etc. Each of them selects the points to achieve

better convergence rates than MC or quasi-MC methods. However, both selection of

points as well as convergence are strongly problem dependent.

The full tensor product quadrature grid—obtained as the simple product of the

1-D integration rules—numbers NM points associated with the convergence rate

O(N−p/M ) [107]. The error exponentially decreases with the dimension M for

the fixed polynomial order p, and results in O(N−1) (the best scenario) for M = p
(highly smoothed integrand). However, due to the exponential law (NM ) the number

of points grows quickly with the dimension M , and thus the rule becomes imprac-

tical for large families of high dimensional problems. In order to reduce the num-

ber of points the Smolyak’s algorithm combines the component rules into a single

quadrature rule—sparse grid—such that the new abscissas are the set of the com-

ponent abscissas; and the new weights are the component weights multiplied by the

sparse grid coefficient [94, 233, 70, 34, 114, 109, 186, 219, 20]. The grids are often

nested and hence reuse many of the points. Even though the number of points is

the same in nested and non-nested case, the constants are much larger in the non-

nested case for the same number of abscissas of univariate quadrature formulas.

This means that the nested Smolyak approximation requires less function evalua-

tions than the corresponding non-nested formula [172, 71]. Compared to previously

introduced methods the sparse grid requires the fewest number of samples for the

same accuracy. The method is associated with the logarithmic convergence law, i.e.

O(N−r(logN)l
(d−1)(r+1)

), where r represents the number of the bounded mixed par-
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tial derivatives that the integrand can have.

Finally, the direct integration method, see Alogortihm 1, uses the KLE approximation

of the random field for the evaluation of the current sample point. In such a case the

random field realisation is not always smooth. This can break the regularity of the

solution as assumed in the error estimates in Chapter 4. In addition, the random field

in such a setting can violate the positive-definiteness property. This can be avoided

by taking a large number of terms in the KLE [151].

5.4 Stochastic Galerkin method

The stochastic discretisation of the elastoplastic problem can be described by any fi-

nite dimensional subspace (S)J ⊂ (S). Thus, the challenge is to find the most suit-

able (S)J such that the high dimensional problem can be efficiently and accurately

solved. According to literature the most promising way of doing this is a discreti-

sation by stochastic finite elements, e.g. [78, 145, 151, 227, 107, 113]. Namely, by

the initial proposal of Ghanem and Spanos [78] and later Matthies and Keese [145]

the most suitable choice for the subspace (S)J := L2(Ω,Σ(θ),P) is the span of the

multivariate orthogonal basis Hα(θ(ω)), i.e. (S)J := span {Hα(θ(ω))}α∈J ⊂ (S),
where Hα(θ(ω)) denotes the multivariate Hermite polynomial in the mutually in-

dependent Gaussian RVs θ(ω) (see Chapter 6), and J represents the set of multi-

indices given in Eq. (6.11). As stated in [102, 98, 96], the Cameron-Martin theorem

[37] guarantees that the algebra of Gaussian variables is dense in L2(Ω). Still, the

Gaussian variables and Hermite polynomials are not the only possible choice. In-

stead, one may use any other type of variables and polynomials declared in Askey

scheme. For more information the reader is addressed to [248, 247, 246, 66, 243].

Once the spatial discretization has been done by the Galerkin projection, one strives

to use the same procedure in the stochastic space as well [74, 150, 103, 17, 248, 140].

This can be achieved by using the Wiener’s polynomial chaos expansion [74, 145,

152] for the solution ansatz:

u(θ) =
∑

α∈J
u(α)Hα(θ(ω)), (5.4)

εp(θ) =
∑

α∈J
ε(α)p Hα(θ(ω)), (5.5)

σ(θ) =
∑

α∈J
σ(α)Hα(θ(ω)), (5.6)
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where u(α) := [u
(α)
1 , . . . , u

(α)
Ln

]T , ε
(α)
p , and σ(α) denote the nodal vector of coeffi-

cients of polynomial chaos expansion gathered in a block-vector u = [...,u(α), ...],
ep and s, respectively. Inserting Eqs. (5.4)–(5.6) back to the semi-discretised form in

Eqs. (4.48)–(4.50), the full discretisation of the solution becomes

û :=

Ln∑

j=0

∑

α∈JZ

u
(α)
j N j(x)Hα(θ(ω)), (5.7)

ε̂p :=

Le∑

j=0

∑

α∈JZ

ε
(α)
j V j(x)Hα(θ(ω)), (5.8)

σ̂ :=

Le∑

j=0

∑

α∈JZ

σ
(α)
j V j(x)Hα(θ(ω)). (5.9)

Here, the index set JZ is taken as a finite subset of J , the set of all finite non-negative

integer sequences, i.e. multi-indices, see Eq. (6.11). Although the set JZ is finite with

cardinality |JZ | = Z and J is countable, there is no natural order on it; and hence

one does not impose one at this point. In addition, note that for simplicity of notation

the same index set is used for all kinds of variables though one may assume that each

of them is approximated by different polynomial orders.

Once the solution is discretised, the minimum of the convex cost functional in each

time step n has to be found, whether one considers the small or large displacement

elastoplasticity. To achieve this, one has first to resolve the nonlinear equilibrium

equation for unknown displacement, see Eq. (4.61) for infinitesimal, or Eq. (4.38)

for finite deformation case. In other words, one has to update the body configuration

by solving the nonlinear residual equation:

Q(ω)

( ∑

α∈JZ

∆u(α)
n Hα(θ(ω))

)
= 0 (5.10)

for the increment ∆un. The computation is performed by projecting the system in

Eq. (5.10) in a Galerkin manner similar to the classical FEM

∀β ∈ JZ : Q(β) := E

(
Q(ω)

[( ∑

α∈JZ

∆u(α)
n Hα(θ)

)]
Hβ(θ)

)
= 0 (5.11)

such that the error in the approximate solution is orthogonal to the space spanned

117



Chapter 5 Numerical approaches

by Hβ(θ). Due to the orthogonality of Hermite polynomials, Eq. (5.11) reduces

to Z coupled problems Q(β) = 0, each of size of the “deterministic” problem.

Furthermore, by gathering the left hand side of the equation in the block vector

Q = (...,Q(β), ...)T , Eq. (5.11) transforms to:

Q(∆un) = [. . . ,E(Hα(·)Q(·)[
∑

α

∆u(β)
n Hβ ]), . . .] = 0. (5.12)

Let us assume that Q is Lipschitz continuous and differentiable except on a set of

a measure 0. Then, in time step n and iteration (k) of the Newton-like method one

may define an element K ∈ ∂Q (indices are omitted for a simplicity of notation)

with components:

(K)α,β = (DuQ)α,β = Duβ
(Qα)

=
1

α!
Duβ

(E(QHα))

=

∫

Gh

∇NT (x)(Aep)α,β(x)∇N(x)dx. (5.13)

Note that the stochastic and deterministic (see [21]) stiffness matrices have similar

form with the only exception that the material properties (Aep)α,β(x) are given in a

form of the mathematical expectation:

(Aep)α,β := E

(
Hα(θ)Hβ(θ)Aep(

∑

γ

NT (x)u(γ)Hγ(θ), θ)

)
. (5.14)

Following this, the nonlinear system in Eq. (5.11) reduces to the symmetric and pos-

itive definite linear system of equations:

K(k−1)
n δu(k)

n = −Q(u(k−1)
n ) =: Q(k−1)

n , ∀δu(k)
n ∈ Uh ⊗ (S)J (5.15)

which further can be solved by Krylov sub-space methods described in Section 5.4.1.

Once the system is solved, the displacement increment can be udated to:

∆u(k)
n = ∆u(k−1)

n + δu(k)
n , k = 1, . . . ,m (5.16)

i.e.

u(k)
n = u(k−1)

n + δu(k)
n , and un = un−1 +∆u(m)

n . (5.17)

Note that in Eq. (5.15) one does not need to evaluate the Jacobian K
(k−1)
n in each

iteration. Instead, by taking y(k) := Q
(k)
n −Q

(k−1)
n , the displacement correction can
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be computed via:

p(k) := ∆u(k)
n −∆u(k−1)

n = (K(k)
n )−1y(k), (5.18)

where the inverse matrix (K
(k)
n )−1 is obtained as a rank-two update of the previous

inverse (K
(k−1)
n )−1. In other words,

K(k)
n

−1
= (I+ q(k)v(k)T )K(k−1)

n

−1
(I+ v(k)q(k)T ), (5.19)

where I is an identity matrix and vectors v and q are defined as:

v(k) =

(
p(k)Ty(k)

p(k)TK
(k)
n

−1
p(k)

)1/2

K(k)
n

−1
p(k)−y(k), q(k) =

p(k)

p(k)Ty(k)
. (5.20)

This method is called BFGS [146, 138, 21] and belongs to a class of quasi-Newton

methods. The initial value of matrix K
(0)
n is computed by taking the so-called mean

stiffness matrix, which corresponds to the mean values of the random material pa-

rameters. As its estimation is rather simple, the matrix K
(0)
n is often seen as a pre-

conditioner [107] for solving linear system of equations (see Section 5.4.1).

Previous discussions are drawing the principle behind the stochastic Galerkin method

in a very general form. However, in order to perform actual computation one has

to find the way to compute the residual in Eq. (5.11) and the stiffness matrix in

Eq. (5.13), both given in a form of high-dimensional integrals over probability space.

Basically, one may distinguish two approaches to this problem:

• intrusive Galerkin and

• non-intrusive Galerkin.

The intrusive method [244, 140] approximates the displacement via the polynomial

chaos expansion (PCE) in the finite stochastic subspace, and further uses the poly-

nomial chaos algebra (see Chapter 6) to compute the stress, the plastic strain, etc.

locally in each FEM integration point (see Algorithm 2). The statistics are then eas-

ily evaluated in an algebraic way. Even though such an approach is numerically

stable and feasible, its implementation is very demanding and requires very efficient

procedures. Another possibility is to sample the residual in each iteration of the

Newton-like methods by generating the set of samples for ω ( i.e. θ)—the so-called

non-intrusive Galerkin approach (see Section 5.4.2).
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Algorithm 2: Stochastic Newton method via PCE algebra

Newton method

1: for each time step n = 1 → Lt do

2: - set the initial values for k = 0
3: u

(0)
n = un−1

4: - set k = k + 1 and compute

5: Q
(k−1)
n = f int(u

(k−1)
n )− fext

6: for each FEM Gauss point i = 1 → Ly do

7: - evaluate consistent tangent matrix

8: Aep(yi) (see Algorithm 4)

9: - compute PCE terms of element stiffness

10: K(α)(yi) =
∑

α(∇N(yi))
T : A

(α)
ep (yi) : ∇N(yi)Hα(θ)

11: end for

12: Set the mean based preconditioner

13: P = I ⊗ K̄

14: for i = 1 → MAXITER do

15: - solve by PCG (or GMRES) iterations

16: δu
(i+1),(k)
n = δu

(i),(k)
n +P−1(Q

(k−1)
n −K

(k−1)
n δu

(i),(k)
n )

17: end for

18: - update displacement

19: u
(k)
n = u

(k−1)
n + δu(k)

20: for each FEM Gauss point j = 1 → Ly do

21: -update strain

22: ε̂
(k)
n (yj) := ∇N(yj)û

(k)
n

23: - constitutive integration

24: σ̂
(k)
n (yj) = σ̂(η̂n−1, ε̂

(k)
n ), η̂

(k)
n = η̂

(k)
n (η̂n−1, ε̂

(k)
n ),

25: - internal force

26: f int
(e) :=

∑
e̟i∇N(yj))

T
i σ̂

(k)
n (y)

27: end for

28: - assemble f int and compute residual

29: Q = f int(u
(k)
n )− fext

30: - check convergence

31: if ‖Q‖/‖fext‖ ≤ ǫtol then

32: (·)n = (·)(k)n

33: EXIT

34: else

35: go to 4

36: end if

37: end for
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5.4.1 Instrusive Galerkin method

In order to solve the stochastic minimisation problem given in Theorem 4.3.3 one has

to evaluate the high–dimensional integrals. According to previous sections this can

be done by approximate computation of integrals using the random or deterministic

sequences of numbers. However, such an approach can cause a possible computa-

tional overload due to slow convergence rates. To overcome this problem, one may

evaluate the integral in an algebraic way in case that the integrand φ : Ω → R

is smooth enough. One such possibility would be to project φ onto a multivariate

Hermite polynomial Hα (see Chapter 6) of unit norm [107], and then to define the

mathematical expectation E(φ(ω)Hα(ω)) in a following form:

E(φ(ω)Hα(ω)) =
√
α!E(Dαφ(ω)), (5.21)

where Dαφ(ω) is the partial derivative of φ(ω) corresponding to the multi-index α.

Such an approach directly allows the evaluation of the elastoplastic solution in a

purely deterministic (algebraic) way—known as the intrusive Galerkin method. This

novel procedure does not require sampling at any stage of the computation. Instead,

the method employs the polynomial chaos algebra coming from the polynomial chaos

approximation of the input random fields Eq. (4.65) and the solution ansatz [140].

Approximation of a convex set

With the help of the Euler implicit difference scheme described in Section 4.2 one

may pose the following optimisation problem:

Σh = arg min
T h∈Kh

Φhn(T h), (5.22)

where Kh represents the convex elastic domain of admissible generalised stresses

Σh described by a yield function φh as

Kh = {Σh ∈ Yh ⊗ (S) : φ(Σh) ≤ 0 a.s.}. (5.23)

Computationally, the process of solving Eq. (5.22) reduces to the iterative method

of solving stochastic convex optimisation problem, which aims at finding the closest

distance in the energy norm of a trial state to a convex set of elastic domain, known

as a closest point projection. From Eq. (5.22) and Section 4.2.3 one may deduce

the typical operator split of the closest point projection algorithm into two steps: the

reversible (non-dissipative) and irreversible (dissipative), also called elastic predictor
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and plastic corrector step.

a) Direct integration p50 (328 ppts) b) Markov p50 (663 ppts)

c) Chebyshev p50 (388 ppts) d) Mean (294 ppts)

Figure 5.1: Comparison of plastic zones obtained by different yield criteria decisions.

Number of points that plastify is denoted by ppts.

Having that in each FEM-integration point the variables of consideration are essen-

tially the RVs belonging to (S), one may use the methods presented in Chapter 6

for their discretisation. Such an approach yields to the representation of the convex

domain Kh in terms of the finite PC approximation of the yield function φ̂, i.e.

Kh,J = {Σh ∈ Yh ⊗ (S)J | φ̂ :=
∑

α∈JZ

φ(α)Hα(θ) ≤ 0}. (5.24)

This formulation is not “computationally simple” per se, because the decision cri-
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terion is given in terms of the coefficients of the polynomial chaos expansion of φ.

In order to satisfy the condition φ̂ ≤ 0 almost surely, one cannot simply convert

Eq. (5.24) to the constraints on the coefficients φ(α). For example, by taking all co-

efficients to be greater than zero φ(α) > 0 the positive definiteness of the random

variable φ is not assured. Thus, the criterion in Eq. (5.24) has to be reformulated

to anoter one, which uses the weaker version K ⋆
J of the set Kh,J . The choice of

K ⋆
J depends on the general requirements of the system response on accuracy and

computational cost.

The inequality in Eq. (5.24) can be relaxed such that the constraint is satisfied only

for some finite number of points Ξ := {θj}, j = 1, ..., Np, instead almost sure.

Similar idea appeared in [11], where the domain K ⋆
J is defined as a set of the “de-

terministic” constraints:

K
⋆
J = {Σj

h ∈ Yh ⊗ (S)J | φ̂(θj) ≤ 0} j = 1, ..., Np. (5.25)

The number Np is finite and corresponds to the full or sparse quadrature grid as

described in Section 5.3. Note that this number may drastically grow with the di-

mension Z, not only for the full but also for sparse quadrature. This may on the other

hand increase the overall computation time as the integration of the stress has to be

performed over the set Ξ.

In order to avoid sampling as given in Eq. (5.24) we formulate another approximation

K ⋆
J for KJ . The simplest and most natural choice would be

K
⋆
J = {Σ ∈ Yh ⊗ (S)J | φ(0) ≤ 0}, (5.26)

i.e. K ⋆
J taken as the mean of KJ . This corresponds to the case when the mean of

φ is far from zero, and higher order moments of φ are relatively small compared to

the mean value. Actually, they need to be such that the probability of φ to be zero or

positive is equal to zero. As expected, this criterion can be used only when the von

Mises σVM and yield σy stresses have non-overlapping probability density functions

(e.g. initial elastic behaviour and strong plastyfing). However, in the critical region

(also called transition zone) when two stresses are similar to each other (i.e. their

probability densities are overlapping) one cannot use the mean based criteria to make

the decision. If does, then the estimated plastifying zone is only mean accurate.

The mean convergence is not the scenario one would like to have, and hence another

definition of Eq. (5.26) has to be provided. For this, let us consider the von Mises

yield criterion in a form of φ = σVM −σy , where both von Mises σVM and yield σy
stresses are positive definite random variables. Then, the inequality φ ≤ 0 reduces
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to the comparison σVM ≤ σy of two random variables σVM and σy in almost sure

sense, i.e.

σ̂VM ≤ σ̂y (5.27)

in PCE terms. Assuming that the PC approximation of the RV σy admits the same

properties as the original2, both sides of Eq. (5.27) are divided by σy > 0 such that

Eq. (5.27) transforms to inequality

ϕ :=
σ̂VM

σ̂y
≤ 1. (5.28)

This formulation is more convenient as one may employ the Markov inequality [129]

to determine the upper bound on probability that RV ϕ satisfies Eq. (5.28):

Proposition 5.4.1. Given the positive definite random variable ϕ one has

Pr (ϕ ≥ 1) ≤ E(ϕ). (5.29)

The Markov upper bound for cumulative distribution of random variables relates the

probabilities to the expectation. The estimate provides useful but not tight bound on

the probability of stress being outside of the convex elastic domain. Hence, the esti-

mate cannot be considered as more sharp than the mean estimate given in Eq. (5.26).

However, for further improvement, one may take into account the higher order mo-

ments of φ and paraphrase a one-sided Chebyshev inequality [129] (also known as

Canolli’s inequality):

Proposition 5.4.2. Let ϕ be a random variable with mean E(ϕ) and variance var ϕ,

then for all a > 0 one has:

Pr [ϕ̃ := ϕ− E(ϕ) ≥ a] ≥ var ϕ

var ϕ+ a2
. (5.30)

2one may hope that the number of terms in PCE is large enough to keep the property of positive definite-
ness

124



5.4 Stochastic Galerkin method

a) The plastic state is more probable than the elastic state

b) Plastic and elastic states are almost equally probable

c) Fully elastic state

Figure 5.2: Probability distribution functions of von Mises stress σVM , yield stress

σy , corresponding yield function φ, and description of state
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Proof. Let us choose any b > −a such that:

Pr [ϕ ≥ E(ϕ) + a] = Pr [ϕ ≥ a]

= Pr

[
ϕ+ b

a+ b
≥ 1

]

≤ Pr

[
γ :=

(
ϕ+ b

a+ b

)2

≥ 1

]
(5.31)

holds. Applying the Markov estimate [129] on the last inequality, one may obtain the

set of bounds parametrised by b:

Pr [ϕ ≥ a] ≤ E

[(
ϕ+ b

a+ b

)2
]
=

var ϕ+ b2

(a+ b)2
. (5.32)

Note that from all possible bounds given in Eq. (5.32) one is particularly interested

in the smallest possible b = var ϕ/a satisfying

b = argmin
v

var ϕ+ v2

(a+ v)2
. (5.33)

According to this, the stress stays in elastic area if the higher order moments of σy
are bigger than the same for σVM , even though the von Mises stress has greater mean

than the yield stress, see Fig. 5.2. The bound in Eq. (5.4.2) may be further improved

with respect to the higher order moments of ϕ̃:

Pr [E(ϕ̃n) ≥ a] ≥ E((ϕ̃+ b)n)

(a+ b)n
, (5.34)

where n represents the even order of the moment and b is the optimisation parameter

which minimises the bound (see Eq. (5.33)).

Following the previous defintions, one is able to construct the new set K ⋆
J in terms

of the probability occurrence pr :

K
⋆
J = {Σ ∈ Yh ⊗ (S)J | Pr (φ̂ ≤ 0) ≥ pr}, (5.35)

where the probability estimate Pr (φ̂ ≤ 0) follows from the Proposition 5.4.1 or

Proposition 5.4.2. Here, pr is the probability defining the occurrence of the elastic

behaviour (the stress belongs to the convex set KJ ). The choice of pr depends on
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the particular situation. For example, in some integration points it may happen that

φ has 50% probability to be in the elastic and 50% to be in the plastic zone. This

relates to the transition zone for which the proper choice has to be made.

Note that the set K ⋆
J in Eq. (5.35) does not require the previously introduced esti-

mates. Another possibility would be to compute the probability of exceedance by a

very cheap direct integration (see Section 5.3).

Closest point projection

The evolution equations described in Section 3.5.3 are further discretised by implicit

Euler scheme, see Section 4.2. Their integration over time is done in a strain-driven

manner by assuming that the stress and internal variables are updated from their

values known at time tn−1 for a given strain increment in time (see Section 4.2.3).

Following this, one may distinguish two steps in closest point projection algorithm

as further described.

Elastic Predictor

Let be given the time interval of interest T = [0, T ] such that the

generalised total En−1(ω) := (εn−1(ω),0) and plastic Ep,n−1(ω) :=
(εp,n−1(ω), (εp,n−1(ω), νn−1(ω))) strains are known at time tn−1. They repre-

sent the vector of random variables, each approximated by the polynomial chaos

expansion (PCE) with Hermite transforms H (En−1) = (E
(α)
n−1)α∈J =: (En−1) ∈

R
a×J and H (Ep,n−1) := (Ep,n−1) ∈ R

a×J , respectively. In order to perform

the numerical computations these PCEs are truncated to a finite number of terms

Z corresponding to the multi-index set JZ := JM,p described by M random vari-

ables and polynomial order p. Thus, the variables are replaced by approximations

Ên−1 and Êp,n−1, whereˆdenotes the projection on the finite subspace generated by

{Hα | α ∈ JZ}. For simplicity, one may use the same finite subspace for En−1(ω)
and plastic strain Ep,n−1(ω).

Besides the total and plastic strain, at time tn−1 are known the elastic strain Ee(ω) =

E(ω) − Ep(ω), i.e. Êe, and the generalized stress Σn−1(ω), i.e. Σ̂n−1. The main

goal is to update these fields from tn−1 to tn in a manner consistent with the consti-

tutive equations previously described.
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Given previously mentioned quantities one may first compute the increment of the

displacement ∆un(ω) (i.e. its approximation ∆ûn) by solving Eq. (5.15), and then

the increment of the elastic strain as:

∆Ên = (∇S(∆ûn),0) = (∇S(∆u(α)
n )α∈JZ

,0). (5.36)

The last relation assumes the state of the plastic flow ∆Êpn = (0, ..., 0) to be

frozen, i.e. the total strain increment is purely elastic with the corresponding stress

∆σ̂n = Ŝ2(Â,∆Ên). Here, Ŝ2 denotes the dot product between random matrix

Â and vector ∆Ên, (see Section 6.4). Following this, the generalised trial stress is

defined as:

Σ̂trial
n = Σ̂n−1 + Ŝ2(Ĉ,∆Ên), (5.37)

where Ĉ denotes the PCE representation of the general constitutive matrix C(ω) :=
diag [A(ω),H(ω)] consisting from the Hooke’s tensor A(ω) and the hardening

H(ω) = diag[Hkin(ω), Hiso(ω)]. Its Hermite transform reads

H (C) = diag [H (A),H (H)] = (C)α∈J . (5.38)

Once Σ̂trial
n is known, its admissibility (i.e. whether it belongs to K ⋆

J or not) can be

further investigated with respect to the yield condition φ(ω) projected to φ̂. In this

work the von Mises material is considered, i.e. the yield criterion in a form of:

φ̂ = ‖dev σ̂ − ζ̂‖J2
+

√
2

3
[σ̂y + ς̂], (5.39)

where ŝ := dev σ̂ = σ̂ − 1
3

∑
i σ̂iiI denotes the deviatoric part of the stress, while

ζ̂ = −Ŝ2(Ĥkin, ε̂p) and ς̂ = Ĥiso •̂ ν̂ represent the back stress and isotropic conju-

gate force (corresponding to the equivalent plastic strain ν̂), respectively. The norm

‖ · ‖J2
in Eq. (5.39) is of the J2 type

‖σ‖J2 =
√
ŝij •̂ ŝji =

√
τ̂ =: σ̂VM , (5.40)

in which one first computes the product τ̂ := ŝij •̂ ŝji and then the root σ̂VM :=√
τ̂ , as discussed in Section 6.3.2. According to this the approximation of the yield

function reads:

φ̂ = σ̂VM −
√

2

3
[σ̂y + ς̂], (5.41)

and thus the yield criterion can be inspected. If the stress Σ̂n belongs to the elastic

domain the minimization given in Eq. (5.22) is trivial since the step is purely elastic

and Σ̂n = Σ̂trial. Otherwise, the value is corrected by projecting the stress back to
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the elastic domain K ⋆
J — plastic corrector.

Algorithm 3: Spectral Stochastic Closest Point Projection (SSCPP)

I Non-dissipative predictor

Initialize j = 0, ǫ1, ǫ2, Ê
(0)

p,n = Êp,n−1, λ̂
(0)
n = 0

1. Evaluate strain

∆Ê
(j)

p,n = Ê
(j)

p,n − Êp,n−1, ∆Ê
(j)

e,n = ∆Ên −∆Ê
(j)

p,n

2. Evaluate stress

Σ̂
(j)

n := Σ̂n−1 + Ŝ2(Ĉ
(j)

n ,∆Ê
(j)

e,n)

II Dissipative corrector

3. Compute yield function φ̂
(j)
n = φ̂(Σ̂

(j)

n )

4. Compute residual: r̂(j)sn = Êp,n−1 − Ê
(j)

p,n + λ̂
(j)
n •̂ ∂φ̂(j)n

5. Check the yield conidition and residual:

if ‖φ̂(j)

n ‖L2(Ω) < ǫ1 and ‖r̂(j)sn ‖L2(Ω) < ǫ2 then

the step is elastic; exit

else

6. Compute constitutive tensor Ĉ
(j)

n

7. Compute consistent tangent moduli Â
(j)

ep,n (see Eq. (5.47))

8. Solve linear system

A
(j)
ep,n∆Υ

(j)
n = −r

(j)
ypl,n ⇒ ∆λ̂

(j)
n ,∆Ê

(j)

p,n

9. Update variables

Ê
(j+1)

p,n = Ê
(j)

p,n−1 + ∆Ê
(j)

p,n−1

λ̂
(j+1)
n = λ̂

(j)
n +∆λ̂

(j)
n

end

10. Set j = j + 1 and go to 1

Plastic Corrector

Let us project the Lagrangian L(ω) from Eq. (4.20) onto the Hermitian basis in
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a Galerkin manner such that the minimisation problem in one integration point in

Eq. (5.22) reads:

L̂n = Φ̂n + λ̂n •̂ φ̂n(Σ̂n). (5.42)

Applying the standard optimality conditions the solution has to satisfy

0 ∈ ∂ΣL̂n = ∂ΣΦ̂n + λ̂n •̂ ∂Σφ̂n, (5.43)

i.e.

r̂sn := Â
−1

(Σ̂trial − Σ̂n) + λ̂n∂Σφ̂(Σ̂n) = 0 a.s.

φ̂n := φ̂(Σ̂n) = 0 a.s. (5.44)

Collecting the right hand side to r̂ypl := (r̂sn, φ̂n)
T and unknowns to Υ̂n :=

(λ̂n, Êp,n)
T , the linearisation of Eq. (5.44) in a Newton manner leads to the fol-

lowing block-system:

DΥ rypl,n[∆Υn] = −rypl,n, (5.45)

where DΥrypl,n represents the corresponding derivative, i.e. the Jacobian Aep (the

consistent tangent moduli). In other words, by linearising the previous equation the

following system of equations is obtained:

Aep∆Υn = −rypl,n, Aep =
∑

α

A(α)
ep ⊗∆(α), (5.46)

where ∆(α) = E(HβHαHγ) (see Chapter 6). Here, the PCE of the consistent tan-

gent moduli [215] reads:

Âep =

[
Ξ̂1 λ̂n •̂ ∂2σ̂χ̂φ̂n

λ̂n •̂ ∂2χ̂σ̂φ̂n) Ξ̂2

]−1

, (5.47)

where Ξ̂1 = ξ̊÷̂ Ân + λ̂n •̂ ∂2σ̂σ̂φ̂n and Ξ̂2 = ξ̊÷̂ Ĥn + λ̂n •̂ ∂2χ̂χ̂φ̂n.

After solving the system in Eq. (5.46) one obtains the plastic multiplier λ̂ and the

increment of the plastic strain ∆Êp,n necessary for the update of the corresponding

values from time tn−1 to time tn as shown in Algorithm 3.

Stiffness matrix

In order to solve the linear system of equations in Eq. (5.12) one has to compute the

Jacobian, i.e. the stiffness matrix. In case of infinitesimal deformations the Jacobian
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5.4 Stochastic Galerkin method

consists only of one term K(α)(x) :=
∫
Gh

∇N(x)A
(α)
ep (x)(∇N(x))T dx, while in

the finite deformation case it splits to two terms, linear KL and geometrical KNL

stiffness matrices. Here, Aep represents the tangent elastoplastic tensor, see [215].

The linear stiffness is computed in a similar way as K, while the nonlinear part

depends on the polynomial approximation of the second Piola-Kirchhoff stress:

[KNL]
(α)
ij =

∫

Gh

Ni,I(x)S
(α)
IJ (x)Nj,J dx, (5.48)

where index i, I denotes the partial derivative over coordinates and S
(α)
IJ is the stress

obtained in each FEM point via PCE algebra.

Algorithm 4: Consistent moduli computed via PCE algebra

Stochastic consistent tangent moduli in integration point yj

Known: κ = {K,G,Hiso, Hkin}, Σ := (σ,χ)
1. Express inputs in PCE format in Gauss point yj

κ̂ =
∑

α[
∑

j κj(yj)ξ
(α)
j ]Hα(θ(ω)) =

∑
α κ

(α)(yj)Hα(θ)
2. Evaluate deviatoric stress

ŝ := dev σ̂ = σ̂ − 1
3 tr σ̂1 = σ̂ − 1

3 (σ̂11 + σ̂22 + σ̂33)1
3. Compute J2 norm by Newton method

b̂ = ‖ŝ‖J2
=
√

3
2 ŝij •̂ ŝji

4. Compute parameter ϑ
q̂2 = (2Ĝ •̂ ∆λ̂) ÷̂ b̂⇒ ϑ = ξ̊ − q̂2

5. Solve linear system for parameter ρ
ρ̂ •̂ (ξ̊ + (Ĥiso + Ĥkin) ÷̂ (3Ĝ)) = ϑ̂− ξ̊

6. Find normal n̂i = ŝi ÷̂ b̂
7. PCE multiplication:

q3 = 2Ĝ •̂ ϑ̂, q4 = 2Ĝ •̂ ρ̂
8. Compute moduli

Aep = K̂1⊗ 1+ q̂3[I − 1
31⊗ 1]− q̂4n̂⊗ n̂

From previous definitions one may conclude that the stiffness matrix for the nonlin-

ear problem is not as easy to compute as in linear problems. Namely, one looses

the property of the linear dependence between Jacobian and input material parame-

ters. This additionally complicates the problem since the KL/PCE of K cannot be

computed using the black-box based deterministic software, but its stochastic coun-
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terpart. In order to show this, the model of infinitesimal plasticity is chosen as a

numerical example.

The essential motivation behind the intrusive Galerkin method is to employ the PCE

methods for the estimation of the tangent elastoplastic moduli Aep. By PCE approx-

imation of all RVs describing elastoplastic behaviour, one may use the favourable

properties of PCE algebra (see Chapter 6) and compute the constitutive tensor in an

integration point for the von Mises J2 plasticity according to Algorithm 4. Here, the

operations •̂ , ÷̂ denote the PCE multiplication and division, see Chapter 6, and the

term dev(·) represents the deviator of the quantity. Note that Algorithm 4 formally

has the same structure as the corresponding deterministic procedure in [215].

In order to evaluate the stiffness matrix in Eq. (5.13) one has to compute the Hermite

transform H(A) = (A(α))α∈J (see Chapter 6) of the parametric matrix A(x). The

simplest way of doing this is to use the algebraic expression coming from the defi-

nition of the constitutive tensor and transform it (in each FEM integration point) via

the polynomial chaos algebra to :

H(A) = H(K)1⊗ 1+ 2H(G)[I − 1

3
1⊗ 1]. (5.49)

Here, H(K) and H(G) denote the Hermite transforms of random fields of bulk K
and shear G moduli, respectively. They are computed by finite KL/PCE approxima-

tions in integration point xξ:

K̂(xξ,θ) =
∑

α∈JMk,pk




Mk∑

j

Kj(xξ)ζ
(α)
j


Hα(θ) =

∑

α∈JMk,pk

K(α)(xξ)Hα(θ),

(5.50)

and

Ĝ(xξ,θ) =
∑

α∈JMg,pg




Mg∑

j

Gj(xξ)ς
(α)
j


Hα(θ) =

∑

α∈JMg,pg

G(α)(xξ)Hα(θ).

(5.51)

Following Eq. (5.50) and Eq. (5.51) one may note that K is described in terms of

two independent sets of RVs ζ(α) and ς(α) i.e. inM =Mk+Mg RVs. Thus, its final

approximation admits p = max(pk, pg) order in which the multi-index α may take

the value in JP obtained by gathering two multi-index sets JMk,pk
and JMg,pg

. For

simplicity reasons, one may assume that the solution set JZ is identical to JP
3.

3This assumption is not necessary. However, even in a more general case the analysis is formally the
same.
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5.4 Stochastic Galerkin method

Once the “material property” A
(α)
ep has been estimated (Algorithm 4), the term K(α)

is computed as a “usual” finite element stiffness matrix by calling the black-box

deterministic code with A
(α)
ep as input parameter. This results in the final form of the

equilibrium Eq. (5.15):

Kδu =

[ ∑

α∈JZ

K(α) ⊗∆(α)

]
δu = Q, (5.52)

where the elements of the tensor ∆(α) are given by ∆
(α)
βγ := E(HγHαHβ). Simi-

larly, u = [...,u(α), ...] ∈ R
Ln ⊗R

Z and Q ∈ R
Ln ⊗R

Z are the block vectors of the

nodal polynomial coefficients of the solution and the right hand-side, respectively.

The concrete representation of Eq. (5.52) in terms of matrices and column vectors

may be obtained by interpreting the symbol ⊗ everywhere as a Kronecker product

[157, 192]. Namely, by exploiting the isomorphy between R
Ln ⊗ R

Z and R
Ln×Z

the term (K(α) ⊗∆(α)) acts as K(α)δu(∆(α))T .

The operator K in Eq. (5.52) inherits the properties of the corresponding determin-

istic operator in terms of symmetry and positive definiteness [145, 152, 192]. The

symmetry may be verified directly from Eq. (5.52), while the positive definiteness

follows from the Galerkin projection and the uniform convergence of the solution in

Eq. (5.52) on the finite dimensional space R(Ln×Ln)⊗R
(Z×Z) (see [150, 145, 107]).

Due to the uniform convergence alluded to above the sum can be extended far enough

such that the operators K in Eq. (5.52) are uniformly positive definite with respect to

the discretisation parameters [145, 152]. This is in some way analogous to the use of

the numerical integration in the usual FEM [225, 49, 250].

Solving linear systems of equations

Following the previous sections the fully discrete forward problem in each iteration

becomes a linear, symmetric, and positive definite system of equations of sizeLn×Z,

formally written as:

Kv = Q. (5.53)

Here, K and Q represent the stiffness matrix and the residual at some time step n
and Newton iteration (k), respectively; and v denotes the unknown variable. Ac-

cording to the discussion given in Chapter 3 the system is well-posed in the sense of

Hadamard and admits the unique solution, which, however, may be difficult to find

in an efficient computational manner for high-dimensional systems. Note that the

knowledge on the system matrix K in this case may help to design the most suitable
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numerical iterative procedure. For high-dimensional systems the application of the

direct method (such as the sparse Gauss elimination [101]) is robust but computa-

tionally very expensive and thus impractical. Due to this the various approaches for

solving Eq. (5.53) are developed. Most of them investigate the non-zero structure of

K as well as its local matrices K before any computation is started. Namely, the

matrix K has the block-sparse structure by virtue of the properties of the polynomial

chaos approximations and the structure of ∆, while the local matrices have the iden-

tical sparse form coming from the finite element discretisation. Besides sparsity, the

participating matrices also admit the symmetry which may advocate the use of the

preconditioned MINRES [231, 67, 232] or CG [76, 183, 107] procedures for solving

Eq. (5.53). MINRES is applied in a case when the stiffness matrix is described as

symmetric, and CG when it is symmetric and positive definite. The preconditioning

is suggested due to the large conditional numbers of the stiffness matrix and faster

convergence. According to [231] one may distinguish two types of preconditioners:

the mean based and Kronecker tensor product preconditioners. The choice strongly

depends on the existing fluctuations. For small and moderate values the mean based

preconditioner P = I⊗K0 is recommended. Otherwise, one may employ the Kro-

necker type of preconditoner P = L ⊗V, where L and V are found by solving the

optimization problem ‖K − L ⊗ V‖F in Frobenous norm [231]. Note that the use

of the Kronecker preconditioner may lead to longer computational time than the use

of the mean based due to the additional computational time necessary to solve the

optimization problem. However, in both cases the computation cost does not include

the assembling of the global stiffness matrix K. Instead in each iteration:

v(i+1) = v(i) +P−1(Q−Kv(i)) (5.54)

one computes the corresponding matrix-vector products w
(β),(i)
α := K(α)v(β),(i) of

“local” stiffness matrices K(α) with v(β) such that v(i+1) = v(i) + d(i), where

d(γ),(i) = K−1
0

(
Q(γ) −∑α,β w

(β),(i)
α ∆

(α)
β,γ

)
[157, 107].

Besides the Krylov sub-space methods, any other type of numerical methods for

solving large systems of equations (for review see [48]) can be used. For example,

some of choices are: the multi-gird approach suggested by Le Maı̂tre [140], the

incomplete block-diagonal preconditioner based on the domain decomposition FETI-

PD solver [79], the hierarchical approach [183], and so forth. Furthermore, one may

combine the standard iterative methods with low-rank tensor decompositions as in

[118, 111, 157, 19], or one may use the non-overlapping domain Schur complement

based geometric decomposition with two-level scalable preconditioners [226].
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5.4 Stochastic Galerkin method

Convergence

The solution of the stochastic elastoplastic problem belongs to the tensor product

space U := U ⊗ (S) numerically approximated by the separate discretisation of

each of the subspaces U and (S), respectively. The approximation in this setting is

important as one may construct the suitable error estimates of the additive type. Ac-

cordingly, the total resulting error in the numerical solution of elastoplastic problem

summarises the time-, spatial- and stochastic discretisation errors. The time and spa-

tial estimates are already discussed in Eq. (4.9) and Eq. (4.54), while the stochastic

error estimate is given by Céa’s lemma [49] for the Hermite approximation in Gaus-

sian random variables. Finally, what one expects is that the closure ∪M,p(S)JM,p
is

dense in (S) [151] such that the solution uh,M,p converges according to:

‖u− uh,M,p‖Uh,J
≤ C inf

v∈Uh,J

‖u− v‖Uh,J
. (5.55)

Note that in contrast to the finite element theory the regularity of the stochastic so-

lution is not yet known. One may only specify the convergence rates as described

further in Section 6.2.2.

5.4.2 Non-intrusive Galerkin method

The analytic evaluation of the problem in Section 5.4.1 is efficient in a case of small

and moderate stochastic dimensions. However, the method is built upon the polyno-

mial chaos algebra whose accuracy strongly depends on the number of terms used in

the PCE. Thus, the method is intrusive and requires the knowledge of the full model

and corresponding finite element code. However, when the deterministic code is not

open sourced or the implementation of the intrusive method is expensive, one may

substitute the direct approach with a more practically oriented technique called the

non-intrusive Galerkin method [61, 109, 244, 16, 144, 245, 5].

Similar to the fully intrusive case, the solution ansatz is taken as the Hermite polyno-

mial chaos expansion in Gaussian random variables (see Eq. (5.4)-Eq. (5.6)), and the

residual is projected in Galerkin manner onto the finite dimensional subspace (S)J
according to:

Q(u) = [. . . ,E(Hα(·)Q(·)[
∑

α

uβHβ ]), . . .] = 0, (5.56)
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where Q(u) = (...,Q(α)(u)T , ...)T is the block-version of the residual. Eq. (5.56)

has the same form as in the fully intrusive case, see Eq. (5.11). However, the pro-

cess of evaluating the integral E(Hα(·)Q(·)[∑α uβHβ ]) is significantly different.

Instead of its analytical integration with the help of the complicated functional ex-

pressions in Section 5.4.1, the integral is computed numerically with the help of the

direct integration techniques [152, 107] (see Section 5.3):

∫

Ω

HαQ(ω)[
∑

β

u(β)Hβ ] dP(ω) ≈
Np∑

z=1

wzHα(θz)Q(θz)[
∑

β

u(β)Hβ(θz)],

(5.57)

where

Ξ = {θz, 1 ≤ z ≤ Np}, θ = {θ1, ..., θM} (5.58)

represents the set of the integration points and w := {wz}Np

z=1 corresponding

weights. Note that the evaluation of the integral requires Np evaluations of the resid-

ual, Q(θz), z = 1, ..., Np, each corresponding to the numerical integration over the

spatial domain G ⊂ R
d done in a classical FEM way. This could be seen as an ad-

vantage compared to the intrusive Galerkin method, because the FEM code is used in

a black-box fashion. On the other side, the number of calls of the deterministic soft-

ware increases drastically with the stochastic dimension which may lead to expensive

or almost impractical procedures.

Closest point projection

The goal of the closest point projection is to minimise the stress

Σh = arg min
T h∈K

⋆
J

Φhn(T h) (5.59)

over the discretised set K ⋆
J , the weak formulation of the convex set KJ . As dis-

cussed in Section 5.4.1, the weak construction is necessary in order to perform the

actual computation. Moreover, in order to avoid the algebraic constraints given in

Eq. (5.24), here the set

K
⋆
J = {Σh ∈ Yh ⊗ (S)J : φ(Σh(θz)) ≤ 0, ∀θz ∈ Ξ}. (5.60)

is introduced as a set of constraints on a finite number of the integration points Ξ .
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Algorithm 5: Non-Intrusive Stochastic Closest Point Projection

I Non-dissipative predictor

1: Initialize j = 0, ǫ1, ǫ2, Ê
(0)

p,n = Êp,n−1, λ̂
(0)
n = 0

2: for Sample point θ(i), i = 1, ..., Np do

3: - Evaluate strain

4: ∆E
(j)
p,n(θ(i)) = Ê

(j)

p,n(θ
(i))− Êp,n−1(θ

(i)) ;

5: ∆E
(j)
e,n(θ(i)) = ∆Ên(θ

(i))−∆E
(j)
p,n(θ(i));

6: - Evaluate stress

7: ∆Σ
(j)
n (θ(i)) := C

(j)
n (θ(i)) : ∆E

(j)
e,n(θ(i)) ;

8: Σ
(j)
n (θ(i)) := Σ

(j)
n−1(θ

(i)) + ∆Σ
(j)
n (θ(i));

9:

10: II Dissipative corrector

11:

12: - Compute yield function

13: φ
(j)
n (θ(i)) = φ(Σ

(j)
n (θ(i))) ;

14: - Compute residual

15: R
(j)
n (θ(i)) = −∆E

(j)
p,n(θ(i)) + λ̂

(j)
n (θ(i))∂φ

(j)
n (θ(i));

16: - Check the yield conidition and residual:

17: - if φ
(j)
n (θ(i)) < ǫ1 and ‖R(j)

n (θ(i))‖ < ǫ2 then;

18: the step is elastic EXIT ;

19: - end

20: - Compute moduli C
(j)
n (θ(i)) and A

(j)
ep,n(θ(i)) ;

21: - Solve for ∆Υ
(j)
n := [∆E

(j)
p,n(θ(i)),∆λ

(j)
n (θ(i))]

22: A
(j)
ep,n(θ(i))∆Υ

(j)
n (θ(i)) = −R

(j)
ypl,n(θ

(i));
23: - Update the variables

24: E
(j+1)
p,n (θ(i)) = E

(j)
p,n(θ(i)) + ∆E

(j)
p,n(θ(i));

25: λ
(j+1)
n (θ(i)) = λ

(j)
n (θ(i)) + ∆λ

(j)
n (θ(i));

26: end for

27: - Project to Ê
(j+1)

p,n and λ̂
(j+1)
n

28: (E
(j+1)
p,n )(β)β! =

∑Np

i wiE
(j+1)
p,n (θ(i))Hβ(θ

(i));

29: (λ
(j+1)
n )(β)β! =

∑Np

i wiλ
(j+1)
n (θ(i))Hβ(θ

(i));
30: set j = j + 1 and goto line 2.
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Such construction allows the decoupling of the problem in Eq. (5.59) intoNp smaller

problems, which may be solved independently. Note that each of them corresponds

to the normal deterministic optimization problem as presented in [215], for which the

closest point projection consists of two steps called the predictor and the corrector

step, respectively. Therefore, Algorithm 5 has a very similar structure to the one

given in Section 5.4.1. Moreover, from the programming point of view Algorithm 5

has a less complex structure than Algorithm 3. Namely, the most of computation is

done in the existing FEM part of the code.

Briefly, the procedure in Algorithm 5 consists of point evaluations of the trial stress

and the yield function in time n in a black-box manner. For each stochastic integra-

tion point the von Mises stress is investigated with respect to the yield criteria. This

may lead to two possible states of the trial stress Σtrial(θz): inside of the convex

domain K ⋆
J (θz) when the step is elastic, or outside of the set when a correction

has to be introduced. The correction is obtained by solving the Lagrangian problem

decoupled into Np smaller problems 4:

L(θz) = Φ(θz) + λ(θz)φ(θz), θz ∈ Ξ, (5.61)

for which the optimality conditions read ∂ΣL(θz) = 0. The corresponding system

of equations is then point-wise solved for each λ(θz) by deterministic solver. In

this way the update of the variables from the state n − 1 to state n is numerically

performed (see Algorithm 5).

5.5 Stochastic collocation

The stochastic collocation approach can be broadly classified into: interpolation and

regression techniques. The basic idea of interpolation is to find the polynomial u(θ)
such that

u(θz) = uz (5.62)

for a set of points Ξ = {θz}Lz=1. In other words, each RV u(ω) =
[u1(ω), . . . , uLN

(ω)]T that belongs to the space of RVs with finite variance L2(Ω)
can be approximated by a polynomial function (PCE)

û(θ) =
∑

α∈JZ

u(α)Ψα(θ) (5.63)

4Np is the number of samples
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in a finite dimensional subspace (S)J spanned by the multi-dimensional interpolat-

ing polynomials {Ψα}α∈JZ
of high degree [244, 16]. Once the approximation is

prescribed, one may compute PCE coefficients from a given data set {uz}Lz=1 by

solving

û(θz) = uz, (5.64)

i.e. the linear system of equations

Vu = v (5.65)

where

V := [Ψα,z] =




Ψ1(θ1) Ψ2(θ1) · · · ΨZ(θ1)
Ψ1(θ2) Ψ2(θ2) · · · ΨZ(θ2)

...
...

. . .
...

Ψ1(θL) Ψ2(θL) · · · ΨZ(θL)


 ∈ R

L×Z (5.66)

is the Vandermode-like matrix of coefficients, and

u := [u1, . . . ,uZ ]
T , (5.67)

v := [u1, ...,uL]
T (5.68)

are the unknown PCE coefficients and sample values, respectively. The system in

Eq. (5.65) further can be solved by some of existing methods for solving linear sys-

tem of equations.

On the other side, the regression approach searches for the function that minimises

some cost, usually the mean square error. In this particular case, the goal of regres-

sion is to find the multivariate polynomial expansion which fits the data by minimis-

ing the following error in each FEM point [242]:

min
û∈(S)J

ǫ = min
û∈(S)J

∫

Ω

[u(ω)− û(ω)]
2
P(dω), (5.69)

where û(ω) denotes the polynomial approximation of the solution. As the distance

squared is minimised, this computes the orthogonal projection in the corresponding

inner product. The function û approximates the solution by a finite number of uncor-

related and independent RVs θ := {θj}Mj=1, and hence the integration in Eq. (5.69)

may be evaluated numerically (see Section 5.3):

min
û∈(S)J

ǫ̂ = min
û∈(S)J

L∑

z=1

[
u(θz)−

∑

α

u(α)Ψα(θz)

]2
w(θz). (5.70)
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Further on, the solution of Eq. (5.70) can be found from the optimality condition:

u := (u(α))α∈J ∈ ∂
u(α) ǫ̂ = 0, (5.71)

which in component form becomes:

∑

β

∑

α

L∑

z=1

u(α)Ψα(θz)Ψβ(θz)wz =
∑

β

L∑

z=1

uzΨβ(θz)wz, (5.72)

where wz := w(θz) denote the integration weights and uz := u(θz) the sample

points. In matrix notation the previous equation reduces to:

Ju := HTWHu

= HTWv, (5.73)

where J is the Gram matrix, u and v have same meaning as before, and

H := [Ψα(θz)] ∈ R
L×Z , (5.74)

W := diag [wk] ∈ R
L×L. (5.75)

In previous equations the data set u is computed by solving the deterministic resid-

ual equation at each independent grid point θz . This means that the collocation

approach already decouples the system into L smaller independent systems of equa-

tions before the linear system is solved. These solutions are obtained by available

deterministic solvers, while the solution of the linear system is computed using the

Krylov preconditioned techniques or any other type of methods for large systems of

linear equations.

The displacement u is not the only solution one wants to have information about,

but also about stress, elastic and plastic strain, etc. The process of their computing is

greatly similar to Eq. (5.73). Formally one may write:

Jσb = HTWHσ̂b

= HTWτ b, (5.76)

where σb is the unknown block-vector of PCE coefficients of the stress, τ b :=
[σz]

T ∈ R
L is the vector consisting of the FEM integrated stresses σz in each col-

location point θz , and H is of the same meaning as in Eq. (5.73). The stress σz is

obtained by solving the corresponding deterministic minimisation problem Eq. (5.59)

in each θz , which corresponds to the closest point projection algorithm as described
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in Section 5.4.2. Similar is valid for the plastic or elastic strain.

Finally, the greatest difference between the non-intrusive Galerkin and the interpo-

lation approach lies in the way of computing the corresponding polynomial chaos

coefficients. In the latter case one uses interpolation to fit the polynomial chaos

expansion to the data set obtained by sampling, while the non-intrusive Galerkin

projects the residual error onto the subspace spanned by orthogonal Hermite poly-

nomials and computes the corresponding expectation by sampling. The linearised

system is then further solved in a classic “intrusive way”.

5.5.1 Convergence

The full tensor product convergence results are studied in ([16]), while the sparse

tensor product convergence results for the isotropic and anisotropic Smolyak method

can be found in [172] and [171], respectively. According to this, an isotropic full

tensor product interpolation with Clenshaw-Curtis abscissas converges with rate

C(σ,M)exp (−σp), where σ describes the analyticity of a solution, M denotes

the number of RVs, and p the polynomial order. Another expression for the same

convergence rate can be given in terms of the number of collocation points L, i.e.

C(σ,M)L−σ/M [172]. Obviously the rate increases with L, and thus the full ten-

sor grid interpolation is rarely used in practice. Practically more suitable Smo-

layk interpolation has a much better performance advocated by convergence rate

O(σ/log (2M)) for Clenshaw-Curtis and O(σ/logM) for Gaussian abscissas.

5.6 Adaptivity

The stochastic Galerkin and non-intrusive Galerkin methods face the problem of re-

solving a huge amount of equations for which the computational cost grows with

the number of deterministic as well as stochastic dimensions. In order to afford the

computation in real time one has to study the sparsity structure of the solution with

respect to which possible reduction techniques shall be designed. As the solution be-

longs to the space Z ⊗ (S) obtained as a tensorial product of the deterministic Z and

stochastic (S) spaces, one may try to cut down the computational cost by reducing

or reformulating the basis in both of mentioned spaces. In this way one may search

for the optimal subspace Zo ⊂ Z ⊗ (S) with the help of the prior or posterior error

estimates.
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The system in Eq. (5.52) immediately reduces if one succeeds to find the most suit-

able basis for the discretisation of the deterministic space Z . In such a situation the

computational effort for both, the Galerkin based methods and sampling techniques,

reduces. Furthermore, by choosing the appropriate stochastic basis with respect to

the probability distribution of the base RV the system in Eq. (5.52) admits sparse

form. Both mentioned alternatives are exploited in stochastic multi-element or multi-

wavelet techniques [141]. Another possibility would be to compute the solution of

the problem on the coarse mesh, to decompose it in a KLE manner, and further to

apply it on the fine mesh [60].

In recent years several approaches for the reduction of the stochastic space have ap-

peared. Most of them exploit the structure of the solution using the a priori estimates

or indicators, while others try to find the optimal subspace already during the process

of solving—on the run. For example, one may show that the solution of the stochastic

linear elliptic PDE admits sparse form after some appropriate conditions have been

fulfilled [230]. Moreover, the mentioned non-zero structure can be discovered by

studying the so-called zero-dimensional stochastic problem [27], which corresponds

to the Galerkin solution of the PDE for one stochastic degree of freedom. Another

approach is to use the variational low-rank approach with the successive rank-one

update based on the minimum energy principle [119]. In this case the reduction of

the basis is done with respect to the a posteriori error indicator given in terms of the

suitable residual norm. By adding new terms of PCE one may immediately quantify

its influence on the solution. The residual type of the estimate is also fundamental

for the method published in [164, 165]. The basic idea behind the method lies in the

singular value decomposition of the solution which further transforms the large linear

system Eq. (5.52) into a much smaller nonlinear one. Moreover, one may compress

the solution in a low-rank tensor product format [156, 157] and keep it as such dur-

ing the computation, thereby not only reducing the amount of data to be handled but

also the computational cost. Such representation can be found adaptively during the

solution process by alternating iteration and compression with the help of the trun-

cated singular value decomposition (SVD). A similar approach, though not exactly

adaptive, is to use the alternating least-squares algorithm (ALS) for the separated

representation of the solution with the low rank [61]. In this way all d-dimensional

algebraic operations transform to much cheaper one dimensional operations.

Besides the reduction of Eq. (5.52), one may try to reduce the initialy nonlin-

ear system by optimizing it with respect to the equations, and not to the solution

[174, 173]—the generalised spectral decomposition approach. This method relies on

solving the eigen-like problems by one of two basic ad-hoc algorithms: the basic

power type or the improved power type method.
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5.7 Conclusion

The present work develops numerical techniques for the solution of the problem of

infinitesimal and finite J2 elastoplasticity described by uncertain parameters. Start-

ing with the approximation techniques such as the Karhunen Loève and polynomial

chaos expansions the intrusive and non-intrusive numerical methods are proposed.

Their efficiency strongly depends on the approximation properties of the ansatz

spaces and the stochastic regularity of the response.

In order to compute the functional of the solution, three different numerical tech-

niques are proposed: the first based on the direct integration, the second employing

the properties of the Galerkin projection, and the third done in a full collocation man-

ner. With respect to the use of the deterministic solver all mentioned approaches are

classified into intrusive and non-intrusive methods. The former do not use the de-

terministic solver (FEM code) in a “black box” manner. Instead, the deterministic

solver is adopted to work with new kinds of variables. On the other side, the non-

intrusive approaches, such as direct integration and collocation, allow the use of the

FEM code as delivered by companies. This is an important advantage. However,

with respect to the computation time those methods are not very favourable.

To handle the discretised stochastic evolution law, a stochastic closest point projec-

tion algorithm is introduced. The method minimises the energy functional in a purely

algebraic manner via polynomial chaos algebra. In such a setting the algorithm effi-

ciency as well as accuracy are highly affected by the choice of the ansatz spaces, as

well as the approximation of the input material uncertainties. For later comparison

purposes, the projection algorithm is also constructed in a sampling (non-intrusive)

setting. Its difference to the direct intrusive procedure lies in the approximation of

the convex domain and the way of computing the residual. Namely, the direct ap-

proach computes the integrals over the probability space in purely algebraic way; and

functionally approximates the random inequalities via Markov, Chebyshev or other

kinds of probability estimates. In contrast to this, the samling non-intrusive approach

weakly decouples the variational inequality on a set of integration points with the

help of pseudo-Galerkin projection or the least square estimate.

Finally, as PCE oriented approaches both the stochastic Galerkin and collocation

method greatly depend on the regularity of the solution, and their convergence rates

strongly relate to the number of random variables and polynomial order.
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Chapter 6

Polynomial chaos algebra

One person’s constant is another

person’s variable.

S. Gerhart

In order to simplify the analysis of a complex random problem one may try to express

the uncertain solution in some system of idealised elementary random variables—the

technique called the “white noise analysis”—as already discussed in Chapter 5. The

basis is usually chosen with respect to the probability distribution of the involved

random quantities, for example the Hermite polynomial basis is used for the approx-

imation of the lognormally distributed random fields, see Chapter 5. According to

this, the chapter studies the idea of the polynomial chaos expansion and correspond-

ing algebra in detail. This will hopefully give a more detailed description of the

numerical methods presented in Section 5.4.1.

The chapter is organized as follows: in Section 6.1 and Section 6.2 are given short

definitions of the white noise and the polynomial chaos expansion together with its

numerical computation. Furthermore, the elemental and nonlinear operations on ran-

dom variables, as well as their numerical computations are studied in Section 6.3.

This is then generalised to the algebra of the matrix-valued random variables used in

the package PLASTON (see Chapter 7). For most of operations small numerical ex-

amples are provided. They may further help to understand the study of the accuracy

and computation cost of the numerical algorithms presented in Chapter 8.
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6.1 White noise analysis

A random field may be interpreted in two ways: as a mapping ω → κ(·, ω), ω ∈ Ω,

known as the distribution-valued random field, or the function x → κ(x, ·), x ∈ R
d

in the suitable space of the stochastic distributions. If the random variables construct-

ing the field are of the square integrable type then this space is known as a Schwartz

space S, otherwise, in a more general case, Hida and Kondratiev space [96, 98].

This further means that the random field definition given in Section 3 is not general

enough. Hence, its application in some specific cases such as the white noise problem

is not possible at all. Therefore, a more general definition has to be introduced.

Let S(Rd) be a Schwartz space of all infinitely differentiable real functions f(x), x ∈
R

d on a d-dimensional Euclidean space R
d [58] decreasing at infinity, together with

all their derivatives, more rapidly than any negative power |x|−k
, k = {1, 2, ...}.

This space is a Fréchet space under the family of seminorms:

‖f‖k,α = sup {(1 + |x|k)|∂αf(x)|}, (6.1)

where k represents integer [98] and α := (α1, α2, ..αn) the multi-index set

of non-negative integers such that |α| = α1 + α2 + ... + αd and ∂αf =
∂|α|f/∂xα1

1 ∂xα2
2 ...∂xαd

d with an obvious modification when some αi = 0, i =
{1, ..., d}. In this topology S(Rd) is a locally convex nuclear space. The dual space

of S(Rd) is the space S′(Rd) of all real linear continuous functionals on S(Rd)
equipped with a weak topology. The elements of the space S′(Rd) are said to be the

real tempered generalised functions (distributions), which, taken for the realisations

of the random variables, are called the generalised random field.

With previous definitions of the Schwartz space one may identify the probability

space with the triple (S′(Rd),B,Pγ), where B represents the family of the Borel

subsets of S′(Rd) and Pγ the white noise (or the normalized Gaussian) measure

specified by a Bochner-Minlos theorem. The theorem states the existence of a unique

probability measure Pγ on B(S′(Rd)) with the following property [58]:

E[ei(.,φ)] =

∫

S′

ei<ω,φ> dPγ(ω) = e−
1
2‖φ‖

2

(6.2)

for all φ ∈ S(Rd), where ‖φ‖2 = ‖φ‖2L2(Rd). Here, < ω, φ >= ω(φ) represents

the action of ω ∈ S′(Rd) on φ ∈ S(Rd). Following this, for any ϕ ∈ S(Rd)
the random variable 〈·, ϕ〉 : L2(R

d) 7→ S′(Rd) is normally distributed with the

zero mean and the variance equal to ‖ϕ‖2. According to these definitions, the
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triplet (S′(Rd),B(S′(Rd)),Pγ) becomes the one-dimensional white noise probabil-

ity space corresponding to the one dimensional white noise:

w : S(Rd)× S′(Rd) → R. (6.3)

Similarly, the triplet (S′,B,Pγ) becomes the multidimensional space with S :=∏m
i=1 S(R

d), S′ :=
∏m

i=1 S
′(Rd),B :=

∏m
i=1 B(S′(Rd)) and P

m
γ = Pγ × Pγ ×

...× Pγ to which corresponds the multi-dimensional case of the white noise

w : S × S′ → R
m. (6.4)

6.2 Decomposition by homogeneous chaos

Following the previous section, the space L2(S
′(Rd),B,Pγ)) =: L2(Ω,B,P) can be

directly decomposed to a so-called homogeneous chaos (Wiener’s polynomial chaos,

the Wiener chaos, or the Wiener Ito Chaos) introduced by Wiener [238] and proved

by Segal [207]. Note that the word “chaos” has nothing to do with the modern term

“chaos” in mathematics where it characterizes the unpredictable behaviour of dynam-

ical systems. Formally, the polynomial chaos can be seen as a functional approxima-

tion of a given random variable [149, 151]. Its definition starts with the Hilbert space

Θ (see Chapter 3) and the family of the multivariate polynomials X(θ1, θ2, .., θm)
up to order p:

Pp := {X(θ1, θ2, .., θm), X is a polynomial of degree p,m <∞}, (6.5)

where θ1, θ2, .., θm are orthonormal RVs belonging to Θ. Following this, a homoge-

neous chaos of order p represents a vector space Hp given as:

Hp := P̄p ⊖ P̄p−1, p ∈ N, (6.6)

with P̄p being the closure of the linear space Pp in L2(Ω,B,P). In addition, the

vector space Hp generates the polynomial chaos H≤p =
⋃p

i=0 Hp such that L2 can

be orthogonally decomposed [96] to

L2(Ω,B(Θ),P) :=

∞⊕

p=0

Hp, (6.7)

where the space of polynomials P(Θ) = ∪∞
o Pp(Θ) is dense in Lp(Ω,B(Θ),P)

[102]. As the RVs {θi}∞i=1 are problem specified, the orthogonal polynomials in
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Table 6.1: The Wiener-Askey Chaos table

Type RV ξ(ω) Basis X(ξ) Support

Continuous Gaussian Hermite {−∞,∞}
Gamma Laguerre [0,∞}
Beta Jacobi [a, b]
Uniform Legendre [a, b]

Discrete Poisson Charlier {0, 1, 2, ...}
Binomial Krawtchouk {0, 1, ..., N}
Negative Binomial Meixner {0, 1, 2, ..}
Hypergeometric Hahn {0, 1, ..., N}

Eq. (6.5) are chosen in such a way that their weight function in the orthogonality

relation has the same form as the probability distribution function of the underlying

random variables. In case of Gaussian random varaibles that means that the poly-

nomials are Hermitain as the weighting function of m-dimensional Hermite poly-

nomial is the same as the probability density function of the m-dimensional Gaus-

sian random variable. Following this, each function κ in the Gaussian Hilbert space

L2(Ω,B(Θ),P) obtains a unique representation:

κ(ω) =
∑

α∈J
καHα(ω), (6.8)

where the multivariate polynomials Hα(ω) are given via the product of the corre-

sponding univariate Hermite polynomials hαj
(θj) [150]:

Hα(θ) :=
∏

j∈N

hαj
(θj), (6.9)

and the orthogonality relation:

E(HαHβ) = α!δαβ , with ‖Hα‖2L2
= α!. (6.10)

Here, α := (αi)i∈J and similarly β denote the multi-indices, i.e. the sequence of

non-negative integers with only finitely many non-zero elements:

α = (α1, ..., αj , ...) ∈ J := N
(N)
0 (6.11)
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for which |α| :=∑∞
j=1 αj and α! :=

∏∞
j=1 αj !. The length of the multi-index is the

largest j ∈ N for which α > 0. Even though in this work the basis is chosen to be

Hermitian, see Eq. (6.8), other possible choices do exist and hence the polynomial

expansion may be generalised to:

κ(ω) =
∑

J
κ(α)Xα(ξ(ω)), (6.12)

whereXα denotes the generalised basis and ξ(ω) corresponding RVs [248, 244]. For

example, the density result similar to Gaussian random variables may be achieved by

Possion random variables and the corresponding orthogonal Charlier polynomials.

The choice of the suitable CONS depends mostly on the type of the problem one is

solving as shown in Table 6.1.

According to Cameron and Martin [37] and later Xiu [248, 244], an expansion as

given in Eq. (6.8) or Eq. (6.12) converges in the L2 sense for any arbitrary stochastic

process with the finite second moment. This requirement means that the L2 norm of

Eq. (6.8)

‖κ‖2L2
=
∑

α∈J
κ2αα!, κ2α = 〈κα|κα〉, (6.13)

satisfies the growth condition
∑

α α!κ
2
α < ∞ [98]. Note that this condition may be

posed in a slightly different way. However, in such a case one requires the definition

of more generalised stochastic test function spaces and the spaces of the stochastic

distributions called Kondratiev spaces. For more information please see [98].

6.2.1 Estimation of PCE coefficients

The number of terms (also known as the cardinality of the index set JZ ) of the p-th

order Hermite polynomial expansion in M Gaussian RVs is determined by

Z :=

(
M + p
M

)
=

(M + p)!

M !p!
(6.14)

and grows rapidly with the polynomial degree, see Fig. 6.1. Note that if PCE terms

are not chosen in an addaptive manner as presented in Section 5.6, the polynomial

chaos approximation may become computationally hard for largeM . Since this issue

has been already addresed before (see Section 5.6), the following text will consider

only the estimation of PCE coefficients without any further introduction of adaptive

techniques.
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Figure 6.1: The number of terms of PCE as a function of the number of random

variables and polynomial degree

For a given orthonormal basis θ := {θi}∞i=1 of Θ and the function κ ∈
L2(Ω,Σ(θ),P) of Gaussian RV θ, the expansion in Eq. (6.8) can be evaluated with

the help of the Galerkin projection:

∀α ∈ J : κ(α) = E(κ(·)Hα(·))/〈Hα|Hα〉 =
1

α!
E(κ(·)Hα(·)) (6.15)

i.e. the high-dimensional integration. The integral in Eq. (6.15) can be estimated

Table 6.2: The approximation of lognormal RV ξ with the order of polynomial

Order Error PCV

1 19.1% [3.7434 2.9947]
2 4.70% [3.7434 2.9947 1.1979]
3 0.89% [3.7434 2.9947 1.1979 0.3194]
4 0.12% [3.7434 2.9947 1.1979 0.3194 0.0639]
5 0% [3.7434 2.9947 1.1979 0.3194 0.0639 0.0102]

in both numerical and analytical ways. The analytical computation is only possible
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when the function κ(θ) is smooth enough, i.e. if all partial derivatives of κ belong to

L2. In such a case the coefficients κ(α) follow from the differentiation rule:

Figure 6.2: Convergence of the PCE of lognormal RV obtained by Gauss-Hermite

quadrature for different values of the standard deviation σ of base Gaussian RV

κ(α) = (α!)−1
E(D(α)κ), (6.16)

where D(α) is the partial derivative with respect to the multi-index [107]. For exam-

ple, the coefficients of the lognormal random variable κ = exp(µ + σθ) are given

as:

κ(α) =
1

α!
σα

E(eµ+σθ) =
1

α!
σαeµθ+

1
2σ

2
θ . (6.17)

On the other side, the numerical integration can be performed in a way as described

in Section 5.3. This is usually done when the function is not smooth enough or the

partial derivatives are too complicated.

Example 6.2.1. The accuracy of the polynomial chaos approximation of the lognor-
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mal random variable ξ = exp(1 + 0.8θ) analyticaly expanded in PCE of order 1 up

to 5 is estimated with respect to the true value, see Eq. (6.16). According to Table 6.2

the relative root mean square error (RRMSE)

ǫrms =

√∑
α∈JM

[(κ
(α)
IR − κ

(α)
AN ]2α!

√∑
α∈JZ

[(κ
(α)
AN ]2α!

(6.18)

decreases with the number of terms in PCE. In Eq. (6.18) the index IR denotes the

PCE of the current order and AN the true value of the variable. Note that this er-

ror measure considers only p+ 1 lowest order modes [56], and hence evaluates the

accuracy of the PCE within the space covered by basis functions up to order p. Be-

sides the analytical method, one may compute the coefficients of PCE numerically by

Gauss-Hermite (GH) quadrature rule. Fig. 6.2 shows that GH for PCE of order 5 has

monotonic convergence and requires very few functional evaluations. However, the

number of necessary evaluations (i.e. sample points) strongly depends on the input

variance and grows with its increase.

6.2.2 PCE convergence

In contrast to deterministic the stochastic regularity is not yet completely investi-

gated. The rates of the optimal approximation are known [23, 38] although in norms

of stochastic distribution spaces [96] weaker than L2(Ω) norm. The error estimate

is provided by Benth and Gjerde [23] and further improved by Cao et al. [38]. The

latter error estimate prognoses the error:

‖ξ − ξ̂‖S(ρ,−q,V) ≤ ‖ξ‖S(ρ,−q+d,V)

√
C1(d)M1−d + C2(d)2−dp, (6.19)

valid for the generalised random variable ξ ∈ (S)(ρ,−q+d,V) with q > 0, d > 1.

Here, S(ρ,−q,V) is the stochastic analogue of the spatial Sobolev space as described

in [96], and the termsC1(d) andC2(d) are functions ofw = 1/(1−d) and s = d−1,

respectively, such that C1(d) = exp(2w)dw and C2(d) = exp((s2s)−1)(2−s−1w).
From previous expression one may conclude that the convergence is exponential in p
and algebraic in M . This means that the error reduces with the increase of both the

maximum stochastic dimension M and the polynomial degree p.
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6.3 Polynomial chaos algebra

The representation of the random variable in a form of polynomial chaos expansion

allows us to use the algebra of RVs as primitive objects in stochastic calculations, see

Chapter 5 for example. Note that some of existing publications (e.g. [56, 140]) are

already discussing this topic, but only in its basic form. In order to provide a deeper

understanding of the problem this work offers the detailed study of the linear and

nonlinear PCE algebra. In this regard the section uses unified notation ξ ∈ L2(Ω,R)
for a scalar-valued RV and

ξ̂(θ) =
∑

α∈JZ

ξ(α)Hα(θ) (6.20)

for its corresponding projection onto the Hermitian basis (i.e. approximation), also

called the polynomial chaos variable (PCV).

6.3.1 Elementary operations on scalar valued RVs

The algebra of RVs represents a collection of operations such as addition, subtraction,

multiplication and division with the same priority as in the algebra of real numbers.

Elementary operations play a crucial role in defining more complex operations such

as inverse, square root, etc. However, in contrast to real numbers, RV arithmetics is

not an easy task. The difficulties are reflected in the choice of suitable algorithms

and their convergence in terms of existing polynomial chaos approximations.

Addition: Let be given two RVs ξ1 and ξ2 in L2(Ω,R) with the corresponding Her-

mite transform:

H (ξi) = (ξ
(α)
i )α∈J =: (ξi), i = 1, 2 (6.21)

and finite projections ξ̂1 and ξ̂2 belonging to the subspace spanned by the Hermite

polynomials P := span{Hα, α ∈ JZ}. Here, H (ξi) denotes the Hermite transform,

i.e. a linear (unitary) transformation compatible with addition and scalar multiplica-

tion:

H (ξ1 ± ξ2) = H (ξ1)± H (ξ2), H (cξ1) = cH (ξ1) (6.22)

for any RVs ξ1 and ξ2 in L2(Ω,R) and a scalar c [150, 151, 192].

Following preceding definitions, one may define addition as operation of adding two

sequences of coefficients, i.e. polynomial approximations ξ̂1 and ξ̂2. The operation
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is commutative, associative and characterised by a neutral (identity) element ξ̌. The

neutral element is a constant function ξ̌ : ω 7→ 0 (described by a Hermite transform

(0, 0, ...0)) such that when added to any arbitrarly chosen RV ξ̂1, the RV ξ̂1 does not

change. In other words, H (ξ̌ + ξ1) = H (ξ1) for all ξ1 ∈ L2(Ω,R).

Multiplication. The product of two RVs lies in a bigger subspace than the terms en-

tering the multiplication. This further means that the PCE cardinality of the product

increases with every new multiplication. However, this issue can be resolved with the

help of Cameron-Martin theorem [37] and properties of the polynomial chaos repre-

sentation. Namely, the dimension of the product of two random variables ξ1 (i.e. ξ̂1)

and ξ2 (i.e. ξ̂2) can be reduced by a Galerkin projection onto the Hermite basis [56],

i.e.

ξ
(γ)
3 =

1

γ!
E(ξ3Hγ) = E(ξ1 · ξ2Hγ) =

∑

α∈J

∑

β∈J
ξ
(α)
1 ξ

(β)
2 cγαβ , (6.23)

where cγαβ = E(HαHβHγ)/γ! [150] represents the element of the three dimensional

tensor. More formally, the operation of multiplication represents the Hermite trans-

form:

H (ξ3) =
(
(ξ1)Q

γ
2(ξ2)

T )
)
γ∈J , Qγ

2 := (cγαβ), (6.24)

where each coefficient is a bilinear form in the coefficient sequences of the factors.

The collection of the bilinear forms Q2 = (Qγ
2)γ∈J is a bilinear mapping that maps

the coefficient sequences of ξ1 and ξ2 into the coefficient sequence of the product

H (ξ3) =: Q2((ξ1), (ξ2)) = Q2 (H (ξ1),H (ξ2)) . (6.25)

For computational purposes one truncates the Hermite transform by replacing the

random variables by their finite representations denoted by ,̂ which, for simplicity

reasons, are here assumed to belong to the same subspace P . However, as previously

discussed, the product Q2((ξ̂1), (ξ̂2)) does not necessarily lie in the same subspace as

the terms entering the product. This may cause the growth of the problem dimension

on the expense of the actual computation [56], e.g. successive multiplication. To

overcome this issue, the product Q2((ξ̂1), (ξ̂2)) is simply projected onto the subspace

P in a Galerkin manner such that:

ξ̂3 = Q̂2(ξ̂1, ξ̂2) =: ξ̂1 •̂ ξ̂2. (6.26)

Note that in other sections of this thesis the symbol Q̂2 is shortly denoted by •̂ .

Due to the symmetry of the tensor (Qγ
2) the multiplication is the commutative and

associative operation, characterised by a neutral element ξ̊—the constant function

ω 7→ 1—with the Hermite transform H (ξ̊) = (1, 0, 0, ..., 0), such that ξ = ξ · ξ̊.
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Considering multiplication one may notice that the total accuracy consist of two dif-

ferent truncation errors. The first one occurs in the truncation of the input approxima-

tions and the second in the final Galerkin projection. However, it may be shown that

those truncation errors are negligible if the order of the polynomial chaos expansion

is chosen sufficiently high to describe properly the result of the multiplication (e.g.

see the following example).

Example 6.3.1. The square χ of the skewed random variable represented by the

polynomial chaos coefficients [1 0.7 0.1 0.02] is computed by the Galerkin projection

χ̂ := Q̂2(ξ̂, ξ̂) onto the Hermite basis of different orders. As expected, the product

accuracy improves with the increase of the polynomial order, see Table 6.3. This

further means that the product cannot be in general simply projected onto the basis

of one of input RVs. The reason is the skewness of the input which cannot be properly

described by the small order PCE. In this specific case, the 4th order approximation

can be used for the actual computation since the RRMSE:

ǫ =

√
(χ

(α)
p − χ

(α)
6 )2α!

√
(χα

6 )
2α!

(6.27)

is smaller than 2%. Here, χ
(α)
p denotes the coefficients of the p-order PCE approxi-

mation of the random variable χ and χ
(α)
6 the analytic result obtained for the poly-

nomials of the sixth order (the true value).

Table 6.3: The square of RV ξ and its accuracy with the order of polynomial approx-

imation of result

Order Error PCV

1 43.73% [1.4900 1.4000 0 0 0 0]
2 17.78% [1.5100 1.6800 0.7300 0 0 0 0]
3 5.03% [1.5124 1.7040 0.8212 0.2040 0 0 0]
4 1.062% [1.5124 1.7040 0.8212 0.2040 0.0416 0 0]
5 0.21% [1.5124 1.7040 0.8212 0.2040 0.0416 0.0040 0]
6 0% [1.5124 1.7040 0.8212 0.2040 0.0416 0.0040 0.0004]

Remark: the lognormal random variable is the exponential transformation of the

Gaussian RV, and thus is a group under multiplication since the Gaussian RVs form

a vector space. This means that after multiplication of two lognormal RVs one again

obtains the lognormal RV.
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Table 6.4: The accuracy of RVs division with respect to the order of polynomial

approximation of result

Order Error PCV

1 16.83% [1.2240 1.0000 0 0 0]
2 2.68% [1.2465 0.8873 0.2705 0]
3 0.19% [1.2447 0.8964 0.2486 0.0335]
4 0% [1.2448 0.8960 0.2496 0.0320 0.0016]

Division. In contrast to multiplication the division of two RVs cannot be done in a

completely straightforward way by the direct projection of the formula ξ = ξ3/ξ1
onto the polynomial chaos basis [56]. Instead, one reformulates the problem to ξ1 ·
ξ = ξ3, i.e. the system of equations with the unknown ξ. Taking the results of

Eq. (6.25) the system becomes:

H (ξ3) =: Q2(ξ1), (ξ)) = Q2 (H (ξ1),H (ξ)) (6.28)

or in a matrix notation:

Cξ = ξ3, (6.29)

where C = [...,
∑

β∈J ξ
(β)
1 c

(γ)
αβ , ...]

T
γ∈J , ξ = (..., ξ(α), ...)T and ξ3 = (..., ξ

(γ)
3 , ...)T .

Projecting the system in the Galerkin manner to ξ̂1 •̂ ξ̂ = ξ̂3, Eq. (6.29) becomes:

Ĉξ̂ = ξ̂3 (6.30)

with the corresponding vectors and matrices described by the index set JZ . This

system may be solved by Krylov subspace methods, such as the preconditioned con-

jugate gradient method, SOR, GMRES, etc. In order to simplify the notation the

division of two PCVs is denoted as:

ξ̂ = ξ̂3 ÷̂ ξ̂1, (6.31)

where the symbol ÷̂ indicates the linear system of Eq. (6.30) which has to be

solved.

Example 6.3.2. Let us take the RV described by the PCE coefficients

[1.4240 1.2448 0.4480 0.0832 0.0080 0.0003] and divide it by the Gaussian RV

[1 0.2]. As the first variable is of the fifth order and the second of order one, one

expects that the result has order 4. This is proven in Table 6.4 where the convergence

of the division with respect to the polynomial order is shown. The error is computed
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Table 6.5: Error [%] of n-th division of non-Gaussian RV by Gaussian RV θ. The

non-Gaussian RV has: a) small, b) high coefficient of variation.

a) θ = (1, 0.1) Division/ Order 1 2 3 4

1st 5.08 0.36 0.01 0.00

2nd 3.86 0.24 0.01 0.00

3rd 2.97 0.23 0.01 0.00

4th 2.65 0.31 0.01 0.00

b) θ = (1, 0.3) Division/Order 1 2 3 4

1st 31.88 8.99 1.40 0.00

2nd 49.02 22.71 6.70 0.00

3rd 85.81 66.55 33.58 0.00

4th 157.95 192.69 156.41 0.00

according to Eq. (6.27), i.e. the relative root mean square error with respect to the

given analytical result.

Example 6.3.3. Let us divide the RV ξ with H (ξ) = [1.1015 0.5302 0.1030
0.0101 0.0005] by the Gaussian RV [1 0.1] (case a) in Table 6.5) and the RV χ with

H (χ) = [2.0215 2.3464 1.1430 0.2943 0.0405 0.0024] by the Gaussian RV [1 0.3]
(case b) in Table 6.5). These two cases represent the “good” and “bad” scenario

with respect to the value of the coefficient of variation (i.e. the ratio of the standard

deviation to the mean) of numerator 1. In the first case the coefficient is 0.27, while in

the second 4.29. The goal is to investigate the RMSE behaviour of the result with re-

spect to the order of its polynomial chaos approximation. According to Table 6.5 the

approximation error: a) reduces, b) grows with every new division. The reason for

this lies in the piece of information each of the PCE terms of numerator carry over

to the division. Namely, if the coefficient of variation is small (as for ξ) the higher

order terms do not carry much information, and the truncated division is close to

the truth. However, this initial error is then reduced through the successive division

since it gets divided by Gaussian RV. On the other side, if the variance of the RV is

not so small and the higher order terms are not negligible, as in case of χ, the low

order truncations will produce large error. This error transforms the initial problem

to another one, and one does not divide χ, but some other RV by Gaussian. This phe-

nomenon becomes worse with every new successive division. However, if the proper

order is used (4th in this case) one obtains the correct result and the error does not

alter any more.

1Note that the Gaussian RVs are already accurately approximated by the first order PCE
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Table 6.6: Error [%] of n-th power of Gaussian RV θ with the order of PCE

θ = (1, 0.1) Power/ Order 1 2 3 4

2nd 0.82 0 0 0

3rd 2.42 0.07 0 0

4th 4.74 0.29 0.06 0

5th 7.72 0.69 0.03 5.8e-4

θ = (1, 0.5) Power/Order 1 2 3 4

2nd 10 0 0 0

3rd 25 2.78 0 0

4th 41.30 8.69 0.72 0

5th 56.45 17.38 2.69 0.18

θ = (1, 2) Power/Order 1 2 3 4

2nd 30.77 0 0 0

3rd 57.14 12.7 0 0

4th 76.52 27.83 4.64 0

5th 88.11 46.21 11.75 1.57

Power function. This function is a generalisation of the product of RV with itself.

Going one step further from the product given in Eq. (6.25), one may define the

product of three RVs with finite variance as χ := ξ1 · ξ2 · ξ3 (the cube χ := ξ · ξ · ξ
is a special case):

χ(δ) =
∑

α∈J

∑

β∈J

∑

γ∈J
ξ
(α)
1 ξ

(β)
2 ξ

(γ)
3

1

δ!
E(HαHβHγHδ). (6.32)

However, such representation is not comfortable for practical computation due to the

definition of the forth order tensor E(HαHβHγHδ). To avoid its computation, one

may employ the associativity of the product and sequentially calculate the power:

H (χ) := Q3((ξ1), (ξ2), (ξ3)) := Q2(Q2((ξ1), (ξ2)), (ξ3)). (6.33)

After the Galerkin projection on the subspace P , Eq. (6.36) becomes:

χ̂ := Q̂3((ξ̂1), (ξ̂2), (ξ̂3)) (6.34)

i.e.

χ̂ = ξ̂1 •̂ (ξ̂2 •̂ ξ̂3) = ξ̂1 •̂ η̂, (6.35)
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Table 6.7: Error [%] of n-th power of non-Gaussian RV with the order p of PCE

n/p 1 2 3 4 5 6 7 8

2 43.73 17.78 5.03 1.06 0.21 0 0 0

3 73.47 44.65 20.68 8.45 2.84 0.76 0.11 0.03

4 90.23 70.22 44.67 25.25 12.38 5.16 1.80 0.46

5 97.08 86.87 67.68 47.35 29.20 15.64 7.03 2.29

where η̂ follows from Eq. (6.25) [150]. This definition requires the computation of

the third order tensor c
(γ)
αβ , which may be precomputed and stored in the memory for

any further multiplication.

Similarly to this procedure, one may compute the product of n variables as:

H (χ) := Qn((ξ1), (ξ2), . . . , (ξn)) := Qn−1(Q2((ξ1), (ξ2)), . . . , (ξn)). (6.36)

Each Qn is again composed of a sequence of k-linear forms {Qγ
n}γ∈J . The sequence

defines each coefficient of the Hermite transform of the n-fold product [150].

Example 6.3.4. In this example one investigates the RRMSE of the n-th power of

some arbitrary chosen RV projected on the subspace spanned by the Hermite poly-

nomials of different orders. For simplicity, let us take the Gaussian RV with the mean

µ = 1 and different values of the standard deviations σ = {0.1, 0.5, 2}, respectively.

In such a case one may observe the drastic change of the RRMSE with the polynomial

order. Namely, if one takes a small standard deviation, e.g. σ = 0.1, the error of the

5th power for the 2nd order approximation is just 0.69%, while for σ = 2 this error

becomes ca. 46%. This behaviour is shown in Table 6.6 for different degrees of the

power function. The analytical (true) value is obtained by the PCE of the 5th order

(as the input variable has order 1).

Similarly, one may compute the power of the non-Gaussian RV with the PCE

H (ξ) = [1 0.7 0.2 0.08] (see Table 6.7). Namely, the second power is already well

approximated by the PCE of the order 4, while 3rd power requires the PCE of the

order 5. As the exponent increases, one has to use more terms in PCE to keep the

accuracy. For example, the projection onto the same basis as the term entering the

power delivers much higher error for the 5th power than for the 3rd power.

Negative n-th power of RV. The inverse of the RV ξ, denoted by χ, could be seen

as a division between the neutral element
o

ξ and ξ, i.e. χ̂ =
ˆ̊
ξ ÷̂ ξ̂, see Eq. (6.31).
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Similarly, one may define the second negative power as η̂ := ξ̂−2 =
ˆ̊
ξ ÷̂ χ̂, as

well as the further ones by sequential dividing by χ̂. Another way would be to first

compute the power ξ̂2 and then to divide η̂ =
ˆ̊
ξ ÷̂ ξ̂2.

6.3.2 Nonlinear functions of RVs

The nonlinear functions of RVs are much more difficult to compute compared to

basic operations. The reason is that one is not able to apply the Galerkin projection

on the “formula” directly, but only on its linearised form. The process of linearisation

can be done with the help of the stochastic version of the Newton-like methods, which

is the subject of this section.

Square root. In order to find the square root of a RV ξ one has to solve the nonlinear

equation:

f(χ) = H (ξ)−Q2((χ), (χ)) = 0, (6.37)

where the function f(χ) is differentiable with respect to χ. Regarding the smoothnes

condition one may define the Jacobian J = 2χ and compute the solution in Newton

iterative manner. In such a case the linearised version of Eq. (6.37) becomes

H (r(k)) = Q2(J
(k),∆χ(k)), (6.38)

where r(k) := f(χ(k)) − f(χ(k−1)) is the residual in iteration k. Once the lineari-

sation is performed, the system in Eq. (6.38) is projected onto the finite polynomial

basis such that

r̂(k) = Q̂2(Ĵ
(k),∆χ̂(k)) (6.39)

holds. This system is now easy to solve and the solution has a form of

χ̂(k) =
1

2
(χ̂(k−1) +̂ κ̂(k−1)) =

1

2

(
χ̂(k−1) +̂ (ξ̂ ÷̂ χ̂(k−1))

)
, (6.40)

where κ(k−1) := ξ
χ(k−1) . The iterations repeat as long as the fraction of the proba-

bilistic norms is such that:

‖J (k)∆χ(k) + r(k)‖L2(Ω)

‖r(k)‖L2(Ω)

> ǫ, (6.41)

with ǫ being the specified tolerance. Note that the approximation of RV κ(k−1) is ob-

tained by division κ̂(k−1) = ξ̂ ÷̂ χ̂(k−1) which requires another Galerkin projection
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Figure 6.3: The square root of Gaussian RV (µ = 1, σ = 0.2) obtained by Newton

method for different initial points: NM1 starts with RV (0.8, 0), NM2 with RV (1, 0)
and NM3 with (1, 0.1). The last one is the closest to the solution.

and possibly another iterative process.

The Newton method converges quadratically if the initial point χ(0) is close enough

to the solution (see Fig. 6.3). However, if the initial value is not taken properly, the

method diverges. To satisfy this condition, the initial point of the PCV square root

has to be taken in the form of PCV close enough to the PCV of root. This choice

greatly depends on the variance of RV ξ. For the small and moderate values one may

assume that the initial point is PCV with the mean value equal to the square root of

µξ (the mean value of ξ) and higher order terms equal to zero. However, if the input

variance is large enough this assumption is not good and one has to precompute the

initial point by some sampling technique (see Fig. 6.5). In such situation, of course, it

is recommended to use a small number of sampling points, much less than necessary

for the integration method to converge.

The Newton method as given in Eq. (6.40) is relatively inefficient since in each itera-
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tion one has to compute κ as a solution of a linear system of equations of dimension

Z × Z. This may harm the efficiency of the algorithm. In order to avoid this issue

one may try to find the reciprocal square root of ξ, i.e. ξ̊/
√
ξ; and then to compute

the root
√
ξ by simple multiplication ξ · ξ̊/√ξ.

a) b)

Figure 6.4: a) The square root of RV with coefficients χ = [1.5124 1.7040 0.8212

0.2040 0.0416 0.0040 0.0004] obtained by non-preconditioned (NP) and precondi-

tioned (P) Newton method b) Convergence of methods

Example 6.3.5. Let us take the RV H (χ) = [1.5124 1.7040 0.8212 0.2040
0.0416 0.0040 0.0004] whose square root represents the RV H (ξ) =
[1 0.7 0.1 0.02]. The example is chosen to show the performance of the Newton

method when the input variance is not so small. To investigate the influence of the

initial point on the convergence of the Newton method, one may consider two differ-

ent scenarios: 1) the initial point is deterministic and 2) the initial point is stochastic.

The first scenario takes for a starting point the mean value
√
1.5124ξ̊ which produces

the result H (ξ̂1) = [1.0230 0.6478 0.1504 − 0.0053 0.0059 0.0001 − 0.0003],
close to the correct solution but not the same. This happens because the initial point

is deterministic, not random. To overcome this issue, the initial point is chosen in an-

other way by preconditioning, i.e. by collocating the solution in a very small number
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of samples. In this way the mean value and the standard deviation of the initial point

become closer to the real solution (see Fig. 6.4 b)). With such initial point the Newton

method delivers the exact solution ξ̂2 = ξ̂ up to the error defined by the convergence

tolerance. This can be observed in Fig. 6.4 a), where one clearly sees the deviation

of the root ξ̂1 from the correct result ξ̂2.

a) b)

Figure 6.5: a) The square root of Gaussian RV (µ = 1, σ = 0.2) obtained by Halley’s

method for different initial points: NM1 starts with RV (µ = 0.8, σ = 0), NM2 with

RV (1, 0), and NM3 with (1, 0.1); b) Comparison of Newton and Halley’s method

Another way to compute the square root of PCV is to use the Halley’s method, the

Householder’s method of order two (see Fig. 6.5). The method consists of the se-

quence of iterations:

χ(k+1) = χ(k) − 2f(χ(k))f ′(χ(k))

2[f ′(χ(k))]
2 − f(χ(k))f ′′(χ(k))

, (6.42)

where f is given in Eq. (6.37). After the Galerkin projection the final system of
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equations has a form:

χ̂(k+1) = [χ̂(k) •̂ (κ̂(k) −̂ ξ̂)] ÷̂ [3
ˆ̊
ξ •̂ (κ̂(k) +̂ ξ̂)], (6.43)

where κ̂ = χ̂(k) •̂ χ̂(k). The method converges cubically (see Fig. 6.5 a)), and in-

volves more operations per iteration than the corresponding Newton method (see

Fig. 6.5 b)). However, the sensitivity on the initial point is similar.

n-th square root. Similar to the square root, one may compute the n-th square

root by solving the nonlinear system H (χ) := Qn((χ), (χ), . . . , (χ)) :=
Qn−1(Q2((χ), (χ)), . . . , (χ)) (see Eq. (6.36)) by the Newton method:

χ(k+1) =
1

n

(
(n− 1)χ(k) +

ξ

(χ(k))n−1

)
. (6.44)

Inverse square root. The inverse square root is described by a nonlinear func-

tion f(η) = 1
η2 − ξ = 0, whose linearised form is given by η(k+1) =

0.5η(k)
(
3− ξ · (η(k))2

)
, where k represents the Newton iteration. Taking notation

κ(k) := (χ(k))2 and ς(k) := ξ · κ(k), and further projecting the linear system in a

Galerkin manner one obtains:

η̂(k+1) =
η̂(k)

2
•̂ (3

ˆ̊
ξ −̂ ς̂(k)). (6.45)

Note that the method requires only the operations of multiplication and summation,

not the division. The initial point is chosen in a similar way as for the direct Newton

method. However, the method is not stable, and thus is even more sensitive on the

choice of the initial point compared to the direct procedure. If the initial value is not

close to the reciprocal square root, the iterations diverge from it rather than converge

to it. To overcome this issue, one may run one iteration of the direct method in order

to precompute the solution, i.e. to find the initial point.

Exponential function. The exponential function is one of the functions which often

appear in computational problems describing nonlinear behaviour of the structure. It

may be characterized in a variety of equivalent ways, of which the most known is the

power series method. Let us find the exponential of some RV ξ with the mean ξ̄ and

the fluctuating part ξ̃:

χ := exp ξ = exp (ξ̄ + ξ̃) = exp ξ̄ exp ξ̃ (6.46)
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As exp ξ̄ is constant, one expands the fluctuating part according to:

exp ξ̃ :=
o

ξ +
n∑

i=1

ξ̃n

n!
(6.47)

where ξ̃n is the power function as previously described (see Eq. (6.36)). With the

help of the Galerkin projection one may compute exp ξ̃ in a finite number of terms

and then multiply it by exp ξ̄. However, the power series method is not the best

approximation for RVs with large input variance—the values can be far from the

mean. For such cases [56] proposes the integral method where the solution is found

via equation ξ =
∫ χ

1
t−1d t. Another possibility is to compute the value with the

help of the Newton approach, similarly to before.

a) b)

Figure 6.6: The convergence of the Taylor method for exp(θ): a) with respect to the

number of terms b) with respect to the polynomial order

Example 6.3.6. The numerical properties of Taylor expansion applied on RV

exp(1 + σθ) are tested on the example of the Gaussian RV θ = N (1, σ), where σ

165



Chapter 6 Polynomial chaos algebra

takes the value in the interval [0.1 2]. The analytic solution, evaluated according to

Eq. (6.16), is compared to the numerical solution in Fig. 6.6. The comparison shows

that the Taylor expansion with 20 terms and PCE operations in the space spanned by

the polynomials of order 7 are enough to get the error of ca. 1e-14 for σ = 0.1 (see

Fig. 6.6a)), or similar for moderate deviations. However, by applying the same pro-

cedure to the RV with the large standard deviation σ = 2, the error is not negligible

any more. This can be reduced with the increase of the polynomial order as shown

in Fig. 6.6b). For example, going from order 7 to order 15 the approximation error

reduces from 1e-2 to 1e-8.

Logarithm. This function is an isomorphism from the group of positive RVs under

multiplication to the group of random variables under addition, i.e. ln(ξ1ξ2) = lnξ1+
ln ξ2. The function is inverse to the exponential, i.e. exp (ln ξ) = ξ and ln (exp ξ) =
ξ, and hence admits similar properties of the Taylor expansion:

ln ξ̂ = ln ξ̂(0) +

n∑

i=1

(−1)n+1 (ξ̂/ξ̂
(0))n

n
. (6.48)

Here, ξ̂(0) denotes the first coefficient in the PCE approximation of ξ.

Table 6.8: The convergence of the logarithm of RV with the order of PCE

Order PCE

1 [0.9996 0.2027 0 0]
2 [1.0000 0.1999 0.0004 0]
3 [1.0000 0.2000 0.0000 0.0000]

Example 6.3.7. Let [2.7732 0.5546 0.0555 0.0037 0.0002] be the PCE coefficients

of the random variable whose logarithm represents the Gaussian RV with the PCE

coefficients [1 0.2]. The accuracy of the numerical solution computed with the help

of the Taylor expansion with 20 terms is investigated in Table 6.8. The expansion is

evaluated via the Galerkin projection onto the Hermite basis of different polynomial

orders. According to the results in Table 6.8, the exact solution is already achieved

with the third order approximation. However, if one reduces the number of terms

in the Taylor expansion, the polynomial order has to grow in order to achieve the

same accuracy. This is valid only for moderate input variances. However, in case of

large input variances the method is not accurate enough and one has to use another

procedure, such as the Newton method.
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Sinus function. The sinus function of the random variable ξ can be approximated

by the Taylor expansion:

sin (ξ) =

∞∑

n=0

(−1)n
ξ2n+1

(2n+ 1)!
, (6.49)

where ξ2n+1 denotes the power function of RV ξ.

Example 6.3.8. Let be given the Gaussian RV with the mean equal to 1 and the

standard deviation belonging to the interval [0.1 2]. To evaluate its sinus, the Taylor

expansion with 20 terms and the PCE of order 1 up to 14 are used, see Fig. 6.7. The

convergence error is computed with respect to the 15th order approximation, taken

as a reference solution. For more proper analysis, the reference is compared to the

solution obtained by the Monte Carlo simulation with 2 · 106 samples. The relative

error in the mean and variance for σ = 0.8 are 4.2e-04 and 1.83e-04, respectively.

Figure 6.7: The convergence of the sinus function of the Gaussian RV

General nonlinear function. In general, nonlinear functions are approximated by

the Taylor expansion around the mean when the variance is small or has moderate
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values. In case of large input variances, one has to use some iterative technique, such

as the Newton-Raphson method as previously described.

6.4 Algebraic operations on vector and matrix

valued RVs

In the previous sections the algebra of RVs belonging to L2(Ω,R) was considered.

However, this can be generalised to a case when RVs belong to L2(Ω,R
N ) or, more

generally, L2(Ω,R
M×N ), as shortly described in this section.

The dot product. Let us take the vector of RVs

r(ω) =
∑

α∈J
r(α)Hα(θ(ω)), r(α) ∈ R

n, (6.50)

represented by the Hermite transform H (r) = (rα) := (r) ∈ R
n×J . Similarly to

this, let us take the vector s ∈ L2(Ω,R
n). Then, the dot product between these two

vectors is the scalar-valued RV b ∈ L2(Ω,R) given by the Hermite transform:

H(b) =

(
n∑

i=1

Q2((ri), (si))

)
=: S1((r), (s)), (6.51)

where S1 represents the linear combination of the bilinear forms Q2((ri), (si)). In

a computational sense, one applies the projection such that b̂ = Ŝ1((r̂), (ŝ)). The

element-wise product may be defined similarly.

Matrix-vector product. The more general case is the product of the matrix-valued

random variables R(ω) and the vector-valued random variables r(ω) via the classical

dot product. Let be given the Hermite transforms of those variables as H (R) =
(R(α)) := (R) ∈ R

m×n×J and H (r) = (r(α)) := (r) ∈ R
n×J , respectively.

Then, the matrix-vector dot product b(ω) = R(ω) · r(ω) has the Hermite transform

H (b) = (b) ∈ R
m×J with the elements (RVs):

H (b) =




n∑

j=1

Q2((Rij), (rj))




i

=: S2((R), (r)),

where the form S2 represents the linear combination of the bilinear forms
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Q2((Rij), (rj)) with the summation done over the second index (index 2 in nota-

tion of S). Notation S1 is used for the summation over the first index, i.e. for the

product r ·R, where r is the vector of the length m. The rest of operations such as

addition, summation, n-th power, etc. one may define with the help of the previous

two operations in a similar manner as in previous sections.

Matrix product. By generalizing the formula in Eq. (6.52) one may define the inner

product Ξ ∈ L2(Ω,R
M×L) of two matrix-valued RVs Φ ∈ L2(Ω,R

M×N ) and

Σ ∈ L2(Ω,R
N×L), respectively :

H (Ξ) =


 ∑

J=1,..,N

Q2((ΦIJ), (ΣJL))




IJ

=: S2(Φ,Σ). (6.52)

In the further text the notation Ξ̂ = Ŝ2(Φ̂, Σ̂) =: Φ̂1◦̂Σ̂ is used to denote the matrix

product due to simplicity reasons.

Hadamards pointwise product. The pointwise product Ξ ∈ L2(Ω,R
M×N ) of Φ

and Σ in L2(Ω,R
M×N ) is given as:

H (Ξ) = (Q2((ΦIJ), (ΣIJ)))IJ (6.53)

which after the projection gives Ξ̂ = [
(
Q̂2((Φ̂IJ), (Σ̂IJ))

)
IJ
] =: Φ̂∗̂Σ̂.

Double dot product. Another product to be defined is the double dot product in its

two variants: the first

H (ξ) =

(
N∑

I=1

N∑

J=1

Q2((ΦIJ), (ΣJI))

)
, ξ ∈ L2(Ω,R) (6.54)

after the projection denoted as:

ξ̂ := Φ̂1 :̂ Σ̂ (6.55)

and the second

H (ξ) =

(
N∑

I=1

N∑

J=1

Q2((ΦIJ), (ΣIJ))

)
, ξ ∈ L2(Ω,R) (6.56)

denoted as:

ξ̂ = Φ̂1 ·̂· Σ̂. (6.57)
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Chapter 6 Polynomial chaos algebra

The product fulfills the same law of contraction as in the matrix algebra of the real

numbers. Namely, the order of the result is reduced to two in case of the double dot

product, and for one in case of the inner (dot) product.

Matrix Determinant. In linear algebra of random variables the scalar valued de-

terminant χ := det Ξ is a value associated with a square matrix valued RV Ξ ∈
L2(Ω,R

N×N ). Its value can be computed by the Leibniz or Laplace formula. How-

ever, if the matrix dimension N is large these methods require many stages of com-

putation and are very inefficient. Thus, another type of approach has to be used.

Namely, for a given matrix-valued RV Ξ one may try to compute its determinant

by factorizing the matrix as a product of matrices whose determinants can be more

easily calculated—the so-called decomposition approach. This idea comes from the

matrix algebra of the real numbers, where one may find the determinant of a positive

definite matrix A ∈ R
N×N by its LDU decomposition:

det(A) = det(L) det(D) det(U) = det(D), (6.58)

where U is the unit upper triangular, D the diagonal, and L the unit lower triangular

matrix with the same memory requirements as in a case of LU decomposition. Matrix

D is diagonal and hence the determinant of A reduces to the product of N diagonal

elements:

det(A) =
N∏

i=1

Dii, (6.59)

which is further easy to compute fast. Let us now suppose that LDU decomposition

Ξ = ΣΛΦ of a matrix-valued random variableΞ ∈ L2(Ω,R
N×N ) exists (i.e. thatΞ

is positive definite), where againΣ is the unit lower, Φ the unit upper and Λ the diag-

onal matrix. After the Galerkin projection the matrix becomes Ξ̂ = Σ̂ ◦̂ Λ̂ ◦̂ Φ̂ such

that the determinant represents a product of scalar valued RVs χ̂ = Q̂N (λ̂1, . . . , λ̂N ),

according to Eq. (6.59). Here, λ̂i are the projections of the diagonal elements of the

matrix valued RV Λ.

Matrix inverse. The inversion is the process of finding the matrix RV Φ :=
Ξ−1 ∈ L2(Ω,R

N×N ) that satisfies ΞΦ = I for a given invertible matrix RV

Ξ ∈ L2(Ω,R
N×N ). If the matrix-valued RV takes the values in R

2×2 or R
3×3

one may compute the matrix of co-factors (adjugate matrix) and calculate the inverse

directly. However, such recursive method is not optimal for large matrices due to

reasons of computational cost. Instead, one usually solves N linear systems of equa-

tions Ξφj = ej , j = 1, .., N , where Φ:,j =: φj is the unknown vector of RVs, and

ej the corresponding j-th unit element, i.e. the vector of zero random variables with

ξ̊ on j-th position. The term Φ:,j represents the jth column of a matrix Φ. Here,
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one should not forget that each element of the column is given by the PCV. After the

Galerkin projection one obtainsN linear systems of equations, which further may be

solved by Krylov subspace methods.

6.5 Conclusion

This chapter studies the functional approximation of random variables in a form of

polynomial chaos expansion, and develops the powerful algebraic tool for uncertainty

quantification of nonlinear materials. Even though elementary operations as defined

in Section 6.3.1 are not so frequently used in practice, their accurate representation

is of primary importance in choosing an approximation technique for the nonlinear

counterparts. Namely, after linearisation and Galerkin projection, the computation

of nonlinear operator is shown to be the simple evaluation of elementary operations

in a Galerkin manner. Such an approach is characterised by a high accuracy in low

order approximation for the functions with moderately fluctuating variables (i.e. the

variance is small or moderate) as arguments. However, if the argument variance

is high, the polynomial approximation can fail, especially in case when the Taylor

expansion is used.
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Chapter 7

Numerical implementation —
PLASTON

The central enemy of reliability is

complexity.

Geer et al.

PLASTON (PLAsticity–STOchastic aNalysis) is a general-purpose MATLAB li-

brary for the numerical simulation of elastoplastic behaviour described by uncertain

parameters. The library supports a wide range of tasks, from finite element calcula-

tions to numerical methods for solving stochastic partial differential equations. The

package contains procedures for simulation of linear and nonlinear problems in small

and large displacement regimes. The functions are written in open source code with

permission to be re-used and modified.

7.1 Overall design

The PLASTON library is a stochastic finite element program for the elastoplastic

analysis. The library is written in MATLAB (version 6.1 release 12.1) and represents

a tool for solving 2-D stochastic partial differential equations specified by uncertain

coefficients, boundary conditions, or the right hand side. The package numerically

solves the partial differential equations with the help of direct integration, stochastic

collocation, and Galerkin methods. In preprocessing step PLASTON is coupled with

FEAP [228] for higher accuracy in meshing. The input data are separated in three

.txt files: input coordinates, input elements, and input boundary. However, the com-

munication with external software is only in the preprocessing phase, the rest of the
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Chapter 7 Numerical implementation — PLASTON

Figure 7.1: The PLASTON module structure

FEM program is done inside of the PLASTON library. There are several reasons for

this. First of all, the significant communication overhead is avoided, and second and

more important the FEM subroutines are redesigned to work with random variables.

Still, an possibility to connect PLASTON with the external software such as PAK

[237] exists.

The key features of the PLASTON code are four modules for the stochastic analysis:

ISGM, NISGM, DISFEM, and NPSFEM, see Fig. 7.1. The rest of the code con-

sists of the solver (SOL), the finite element program FEM, and the statistic toolbox

STAT.

FEM is the finite element program library for solving the elasto-plastic problems.

It consists of two modules: SFEM and LFEM, for small and large displace-

ment analysis, respectively. Each of these modules contains the functions de-

scribing shape functions, integration, the stiffness and mass matrices, internal

forces, elastic and plastic constitutive equations, the closest point projection al-

gorithm, corresponding linear and nonlinear solvers, etc. Most of linear solvers

that library offers are already built-in in MATLAB, while the nonlinear solvers

are developed additionally. One may choose between the Newton-Raphson,

the modified Newton-Raphson (with or without line search) and the BFGS

algorithms. The time discretisation is done by a backward Euler method. Ba-

sically, the FEM modules represent the efficient numerical implementation of
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Figure 7.2: The DISFEM and NPSFEM scheme of communication

models shortly reviewed in Chapter 2. The toolbox is fully vectorised as de-

scribed in Section 7.2.1.

DISFEM is the module for the direct integration of stochastic partial differential

equations. It integrates the solution over the probability space as described in

Section 5.3 with the help of the random or quasi-random sequences, or sparse

Smolayk grid delivered from the QUAD package. Once the type of integra-

tion is chosen, DISFEM imports the KLE of the base Gaussian random field

from RField and hands it in to QUAD, where the expansion is sampled and

nonlinearly transformed in a point-wise fashion. These samples are then for-

warded to FEM as a parametric input. After solving, the deterministic solution

(realisation) is transferred to STAT which computes the desired statistics.

NPSFEM is the module (see Section 3.3) that has similar structure to the DIS-

FEM. The only difference lies in the process of constructing input random

fields. Namely, the normalized non-Gaussian random field is built in RField,

and transformed to the heterogeneous non-Gaussian random field (TenField)

in a set of points obtained from QUAD. Once the samples are initialised, the

module calls the deterministic software FEM and calculates the desired statis-

tics in STAT.

ISGM is the module for the intrusive stochastic Galerkin method, as described in

Section 5.4.1. After spatial discretisation has been performed in FEM, the
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Figure 7.3: Schematic representation of intrusive Galerkin method

modul discretises the random fields in RField by applying the KLE followed

by PCE. The KLE part is built in RField which communicates with FEM mod-

ule. The evaluation of the PCE is done in the PCE Toolbox in an algebraic or

numerical way. The direct algebraic method requires the KLE of the Gaussian

base random field from RField, while the numerical integration calls the proce-

dures from QUAD. Furthermore, the random fields are compressed in a Tensor

Toolbox [116] with the help of the Tucker (or canonical) decomposition. This

toolbox provides an efficient way of computing tensor-matrix, tensor-vector,

and matrix-matrix products, see Section 7.2.1. Such prepared data are then

handed over to StoFEM which preforms stochastic analysis using the PCE al-

gebra (see Section 5.4.1) (PCE Toolbox). However, the connection with the

FEM is not completely abandoned. The ISGM computes the solution with the

help of iterative methods which require the knowledge on the preconditioners

(usually the mean model). These are possibly obtained from the FEM. In ad-

dition, the FEM vectorisation procedures are fully employed during the ISGM

run.

NISGM represents the modul for the non-intrusive integration of the stochastic

elastplastic problem. The module highly communicates with the FEM pack-

age, and offers two solution strategies: the stochastic Galerkin and collocation
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7.1 Overall design

Figure 7.4: Schematic representation of stochastic Galerkin and collocation methods

approaches. In case of stochastic Galerkin, the FEM is used for the evaluation

of the residual realisations (QUAD), as well as for building preconditioners of

nonlinear solver. However, the process of solving stochastic system of equa-

tions is done outside of FEM in SOL sub-module. Interpolation is designed in

a similar way. Namely, one calculates the solution (FEM solve), computes the

PCE basis (PCE Toolbox) with the help of the quadrature (QUAD), and then

solves the linear system (SOL) of equations right before the delivery. Both

procedures are schematically represented in Fig. 7.4 where the Galerkin pro-

jection is denoted by the red full line and the interpolation by the blue dashed

line.

SOL consists of procedures for solving the linear or nonlinear system of equations

in both the deterministic and stochastic case. For the linear system there are

several possibilities such as the Gauss-Seidel method, GMRES with SSOR,

GMRES with ILU, CG, PCG method and so on. In case of nonlinearities the

Newton-Raphson, modified Newton-Raphson and BFGS are offered.
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STAT post-processes the solution. The method of computing the statistics depends

on the form of the data delivered to STAT. If the output is an ensemble of

samples, one computes the statistics in usual way. However, one may also

project the data onto the polynomial chaos basis, and then compress PCE via

the singular value decomposition for future saving. If the data are already in

PCE format the statistics are computed in a straightforward manner.

7.1.1 The PCE toolbox

The polynomial chaos algebra as described in Chapter 6 plays a very important role

in the algorithm structure of ISGM. The algebra is implemented in the PCE Toolbox

module in a form of METHODS, i.e. functions that operate on PCE and its index, and

OPERATIONS executing the mathematical operations on a given PCE, also called

polynomial chaos variable (PCV). The linear and nonlinear operations are of the gen-

eral type and may be applied on the PCV or the MPCV (matrix valued PCV). Each

mathematical operation has its own function which directly computes the resulting

PCV. For example, in case of division one may use dpcet, where the corresponding

system of equations is solved in the direct way, or using PCG iterations via dpcetpcg.

All functions that carry quad in the name are functions which numerically compute

the coefficients using some sampling rule from QUAD. Similarly, all functions which

end on mc are of the Monte Carlo type. A typical example is the function for com-

puting the square root of PCV. Its implementation is done in several forms such as

pcsqrtnew for the Newton method, pcsqrthalley for Halley’s method, pcsqrtinv
for the inverse Newton, pcsqrtinvhalley for the inverse Halley’s method, and fi-

nally functions which compute roots numerically: sqrtmc and sqrtquad.

The second important part of the PCE Toolbox is the part which computes the co-

efficients of the PCE for some specified random field, or random variables in KLE.

The computation can be done in a purely algebraic way: get pce or numerically

pce numerical. Similarly, if one would like to project the ensemble of data on the

PCE basis then the functions mc2pce or quad2pce can be used. The group of func-

tions Set PCE evaluates efficiently the PCE basis in a finite number of points with the

help of the vectorisation techniques described in Section 7.2. Finally, the group of

functions INDEX operates with Hermite polynomials and corresponding indices.
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Figure 7.5: The polynomial chaos algebra toolbox
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7.2 Storage and vectorisation

In order to reduce the memory requierements, the fully dense tensors are stored in

sparse format. The sparsity increases with the polynomial order, see Table 7.1 on the

examples of the global stiffness matrix K and the stochastic tensor ∆. The PLAS-

TON library uses the so-called coordinate storage, i.e. the tensor A ∈ R
N1×N2...×Nn

is uniquely stored as a vector a ∈ R
P and a matrix A ∈ R

P×R. In this manner the

memory requirement reduces to (R + 1)nnz(A) [18, 117]. Similarly, the computa-

tion cost drastically decreases. For example, the cost of the inner product of two ten-

sors reduces from O(nnz(A)nnz(B)) to O(P logP ), where P = nnz(A) + nnz(B).
For tensor-vector multiplication the cost is O(nnz(A), and for tensor-tensor multi-

plication the cost depends on the mode. It can be high O(nnz(A)nnz(B)) or low

O(nnz(A)log nnz(A) + nnz(B) log nnz(B)).

Table 7.1: The number of elements and sparse density ρ of stochastic matrices with

the polynomial order. The deterministic matrix K has size 117649 and density ρ =
0.0720.

p JM,p K ∆

Num ρ Num ρ Num ρ

2 30 0.4 1176490 0.0354 1000 0.0820

3 60 0.5 2352980 0.0248 8000 0.0478

4 115 0.571 4117715 0.0182 42875 0.0356

5 168 0.625 6588344 0.0139 175616 0.0272

6 252 0.6667 9882516 0.0110 592704 0.0229

Compressing the tensors in a Tucker format, the computational cost decreases ac-

cording to [18]. The Tucker tensor requires much less memory than the full tensor,

i.e. the storage of the core plus the storage of the matrices entering the sum vs. the

storage of the full tensor (the number of elements is equal to the product of the tensor

dimensions). In case of the tensor-matrix multiplication the cost is of the matrix-

matrix multiplication; for the tensor-vector multiplication the multiplication of the

matrix with vector and the core with the vector. Similarly, one may find the costs of

the tensor-tensor multiplication, leading to the considerable time savings [18].

In PLASTON those operations are implemented via the Tensor Toolbox package, see

[116].
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7.2.1 Vectorisation of the deterministic solver

Extending the idea of the paper [185] on quadrilateral elements, an effective vec-

torised finite element code is implemented in PLASTON. The algorithm substitutes

all element-wise arithmetic operations carried out element by element by the matrix-

wise vector operations. The efficiency improvement of such implementation may

be seen in Table 7.2. The table compares the computation times of the classical

algorithm with the newly improved (vectorised). Note that the assembling of the

stiffness and mass matrices are the most improved, while the element calculations

are not influenced so much. The reason for this is that the element calculations are

characterized by matrices and vectors of small size (deterministic case).

Table 7.2: Improvement in computation time with vectorisation

Term Vectorised [s] Classical [s] Size Factor

Mass assembling 0.15 36.66 2260 238.80

Stiffness assembling 0.80 293.19 2260 367.10

Element calculations 0.13 5.17 2260 40.48

Mass assembling 0.12 0.15 176 1.22

Stiffness assembling 0.05 0.20 176 3.97

Element calculations 0.11 0.22 176 1.94

The speed-up of the computation run of the deterministic code greatly influences

all PLASTON procedures, especially the non-intrusive methods such as the non-

intrusive Galerkin, the direct integration and collocation. In addition, the vectori-

sation contributes much more to the nonlinear than linear problems. Namely, by

vectorisation the time for the matrix assemble in each integration point and each it-

eration of the Newton method reduces from 290 to 0.8 seconds. This is achieved by

using only the matrix-vector products and avoiding point-wise multiplications. The

vectorisation is basically done such that all the variables are memorised in the tensor

format. The tensor dimensions are specified by the number of the components, in-

tegration points (in FEM), elements, and PCE coefficients. Such formed tensors are

then stored in sparse format such that the Tensor Toolbox [116] or special functions

in vectorisation toolbox can be used.
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7.3 Algorithmic scheme

Fig. 7.6 shows the simple scheme of the PLASTON algorithm. The preprocessing

step reads the input data from the .txt files and builds three data structures: geom,

rhs and elem. The first one stores the nodal information: the coordinates, the total

number of nodes, boundary conditions, the element integration rule, etc. The struc-

ture elem provides the information about elements and boundary conditions such as

the connectivity array, the total number of the elements, etc., while rhs describes the

loading conditions. During this phase the mass matrix is computed and the material

parameters are initialized in corresponding structures. They describe the input ran-

dom fields via the type of the distribution, the second order statistics and polynomial

order. As the material characteristics are in general of the non-Gaussian type, the

function base randomfield() maps them back to the Gaussian base field and outputs

the corresponding characteristics in rfg. In addition, the function base randomfield()

computes the KLE decomposition of both the Gaussian (rfg) and non-Gaussianl ran-

dom field (rfgl). After this, the KLE random variables are expanded to the PCE via

get pce(), which outputs the coefficients of the combined KLE/PCE expansion. The

combined expansion does not correspond to the integration point level, but nodal.

Thus, the suitable transformation is performed. However, if the random fields are

positive definite (lognormal) the interpolation is not done directly. Instead, the fields

are mapped by a lognormal transformation from the cone to the vector space in which

the straightforward interpolation is possible. Finally, the preprocessing step ends by

computing the triple product of the Hermite polynomials triple product(), which is

then stored in the memory for the later use. Note that depending on the type of the

analysis the preprocessing step may be slightly different than presented. Namely,

instead of get pce one may have function set pce which computes the realisation of

KLE or PCE necessary for the methods that use the stochastic integration rules.

After all the input data have been prepared, the function force() computes the right

hand side from the loading conditions memorized in rhs. This means that the time in-

tegration is performed and the loading step in time n evaluated. Once the loading and

the number of the steps are known, the iterative loop over n is activated. This is then

followed by the iterative loop over k coming from the nonlinear solver. Before the

loop is started, all random fields and variables are initialised in function initialise,

which takes for the initial conditions the values from the previous converged time

step. The iterative method calls classical functions such as epl matrix, build tenstiff,

and apply force which compute the tangent modulus, the factorisation of the stochas-

tic stiffness matrix, and the residual, respectively. The linear system of equations is

solved inside of solve linsys, which further handles the solution to update disp for

the configuration update (i.e. the displacement update). As schematic diagram in
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Figure 7.6: The schematic diagram of PLASTON
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Fig. 7.6 is made for the small displacement analysis, the elastoplastic state is eval-

uated by function smallprog, and the internal force by inter force and apply force.

Note that the presented ISGM scheme is similar to those in classical finite element

programs. The difference lies in the pre-processing and post-processing step and the

way of treating the variables (not deterministic any more).

7.4 Summary

This chapter briefly summarises the construction of the MATLAB library PLASTON

with the special focus on the description of the overall design, implementation of the

polynomial chaos algebra operations, and the code vectorisation. Some specific and

the most important parts of the code are already given in previous chapters, for exam-

ple the stochastic Newton method. In order to graphically describe the computational

process the schematic form of the main algorithm is also presented and shortly de-

scribed.
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Chapter 8

Numerical results

The numerical study will start with a relatively simple example describing material

properties in a form of random variables independent of spatial coordinates, i.e. the

homogenous case. Such an example is suitable for further numerical analysis because

the number of the stochastic degrees of freedom one has to deal with is relatively

small. Later on the author will progress to the more difficult case illustrating the

properties of the stochastic Galerkin method applied on a more realistic material

description in a form of random fields, as introduced in Section 8.2.

8.1 Random variable case

In order to do the proper numerical analysis of the stochastic Galerkin method a

simple test example in 2D conditions is chosen, see Fig. 8.1. The plate with a

Figure 8.1: Geometrical setup of the problem
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hole (dimensions L = 56[mm], b = 20[mm], d = 10[mm], and unit thickness)

in plane strain conditions is constrained at one edge and loaded by uniform tension

f = 2t[kN] at the opposite. The material is described by uncertain bulk K[GPa]

Figure 8.2: The RMSE of the input approximation

modulus, shear G[GPa] modulus and yield stress σy[GPa]; all three taken to be log-

normally distributed random variables according to the maximum entropy principle

(homogeneous case). In addition, the yield criterion is chosen to be of the von Mises

type with the linear isotropic hardening Hiso = 2.24[GPa] as a deterministic param-

eter. To be more specific, the random parameters are modelled as:

K = 10 + 15 · exp(1 + σ1θ1),

G = 10 + 5 · exp(1 + σ2θ2), (8.1)

σy = 0.1 + 0.25 · exp(σ3θ3),

where {θi}3i=1 are the standard Gaussian RVs and {σi}3i=1 are the input standard

deviations. The modified lognormal distributions in Eq. (8.1) are the right choice

with respect to the positive-definitness of properties they model, however only if one

presumes that the variables have finite variance, see Section 3.3.
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To start numerical computations the random variables κ ∈ {K,G, σy} are effec-

tively approximated by polynomial chaos expansions (PCEs) whose coefficients are

obtained by simple projection κ(α) = E(κHα(θ(·)). The accuracy of this approxi-

mation strongly depends on the polynomial order, see Chapter 6. The proper choice

has to be made with respect to the input variance of κ, i.e. of σi according to Eq. (8.1).

The dependence can be shown by computing the relative root mean square error:

ǫ = ‖κa − κt‖L2(Ω×G)/‖κt‖L2(Ω×G) (8.2)

versus the polynomial order of κa, where κa and κt represent the PCE approximation

and the true (analytical) value of κ, respectively. The plotted results in Fig. 8.2

discover that the RVs with large input variance, or coefficient of variation ρσ =
std(κ)/E(κ) · 100%, require higher polynomial order than the RVs with small ρσ
for the same accuracy. Due to this the following section studies three different test

scenarios: ρσ = 5%, ρσ = 10%, and ρσ = 20%, each of them representing a

higher level of difficulty. Notice that ρσ = 20% is not so often met in practice as

the uncertainties in engineering problems are not so strong. However, this case is of

great numerical importance, and thus will be considered further.

8.1.1 Reference solution

To compare the methods described in Chapter 5 the result of the Monte Carlo simu-

lation with N = 106 samples is introduced as the reference solution. According to

the law of large numbers, this method displays 1/
√
N convergence. In other words,

regardless of the number of the stochastic dimensions the MC method reduces the

error three times by increasing the number of samples nine times. This is apparent

in Fig. 8.3 where the root mean square error (RMSE) is plotted across the number of

samples. Note that both the stress and the plastic strain RMSE are slowly converging

with the number of samples. The same is valid for the mean value.

In addition to these, Table 8.1 plots the convergence in variance for the stress com-

ponents, and Table 8.2 for the strain components. Apparently very few samples

(≈ 103) are not sufficient to accurately represent the solution as expected. However,

from these data one can see that the error in the strain is smaller than the error in

the stress. This happens as the coefficient of variation of strain ρσ(ε) is smaller than

the coefficient of variation of stress ρσ(σ) (as will be shown later). Graphically the

convergence in variance is shown in Fig. 8.4, where the variance is plotted across the

number of the finite element node. By comparing plots on the left and right hand side
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a) Root mean square error b) Mean error

c) Root mean square error d) Mean error

Figure 8.3: The stress and plastic strain convergence obtained by MC. The test is

performed for ρσ = 5%.
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Table 8.1: Relative error in stress variance with the number of samples used in the

Monte Carlo integration. The results are given for the input uncertainty equal to

ρσ = 5%.

No. samp. σxx σyy σxy σVM

103 6.6e+01 2.9e+02 2.1e+01 1.6e+02

3 · 104 1.4e+00 7.5e+00 1.7e-01 2.8e+00

1.2 · 105 2.9e-01 1.4e+00 1.3e-02 7.1e-01

5.4 · 105 5.2e-02 3.0e-01 5.8e-03 9.0e-02

8 · 105 2.1e-02 5.0e-02 4.0e-03 4.1e-02

9 · 105 3.0e-03 1.0e-02 4.0e-03 4.0e-02

Table 8.2: Relative error in strain variance with the number of samples used in the

Monte Carlo integration. The results are given for the input uncertainty equal to

ρσ = 5%.

No. samp. εxx εyy εxy εp,xx εp,yy εp,xy

3 · 104 1.3e-01 9.7e-01 5.9e-01 6.0e-02 6.0e-02 1e-01

1.2 · 105 7.0e-02 4.5e-01 2.9e-01 2.0e-03 2.0e-03 2.0e-03

5.4 · 105 1.0e-02 8.0e-02 5.0e-02 1.9e-03 1.9e-03 6.0e-03

8 · 105 3.0e-03 1.2e-02 8.0e-03 3.0e-03 3.0e-03 4.0e-03

9 · 105 2.0e-03 1.0e-02 4.0e-03 5.0e-04 5.0e-04 1.3e-03

Figure 8.4: The MC solution compared to the reference solution
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Table 8.3: The uncertainty in the response ρσ in [%] obtained by the direct integration

in plastic (P) and elastic (E) points of domain.

State ρσ σxx σyy σxy εxx εyy εxy εpxx εpyy εpxy

P 5 17.3 1.7 4.0 6.2 3.1 3.9 90.7 90.2 75.5

P 20 42.4 5.9 4.9 30.3 14.8 19.3 137.8 132.5 123

E 5 1.0 0.6 2.9 4.9 3.1 3.6 - - -

E 20 4.9 2.5 2.0 23.6 14.6 17.0 - - -

of Fig. 8.4 one may notice that the variance converges to the reference solution with

the increase of the number of samples used in integration.

Finally, Table 8.3 provides the results of the uncertainty quantification in the structure

response represented by the appropriate coefficient of variation ρσ . The coefficients

are computed in two points in the domain, one with elastic (E) and one with plastic

(P) response. As one may notice, the plastic deformation has the largest uncertainty

ratio ρσ in both cases, i.e. it is the most sensitive on the uncertainties in the input

characteristics. If the input uncertainty increases (ρσ of material properties) the out-

put uncertainty will increase too, not only for the plastic deformation but also for

other quantities. In addition, the elastic response has a much smaller coefficient of

variation than the plastic one, as already expected.

8.1.2 Intrusive Galerkin method

The intrusive Galerkin method as described in Section 5.4.1 is a purely direct “de-

terministic” method and does not require sampling at any stage. Instead, the method

employs the polynomial chaos algebra (see Chapter 6) and delivers the surrogate so-

lution in a form of the polynomial chaos expansion. Due to this the input properties

are approximated in a form of the PCE of order pκ, and the ansatz of the solution is

assumed to be the PCE of order pu. This further means that in each time step and

each iteration one has to solve the linear system of equations of sizeN×Z, whereN
represents the number of the spatial degrees of freedom and Z the cardinality of the

solution PCE determined by the number of input RVs and polynomial order pu. In

order to properly investigate the convergence of the method and sesnitivity of the sys-

tem, the input parameters are assumed to be random separatelly, i.e. each at the time.
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Only through this analysis one may investigate the sensitivity of the output on the

input uncertainty. Later on the study will be done for all three uncertain parameters

as a more realistic scenario.

Let us assume that the bulk modulus K is described by a lognormal distribution

as in Eq. (8.1). In order to investigate its influence on the system response two

values of ρσ(K) = {5%, 20%} are observed, as previously described. According

to Fig. 8.2, the polynomial expansion of order pK = 6 can be safely used for the

approximation of the bulk modulus with ρσ = 5%. On the other side, for the same

accuracy ρσ = 20% requires a higher polynomial order. However, the question

is which polynomial order pu is necessary to achieve the desired accuracy in the

stress-or strain-like variables. In order to answer this question, the root mean square

error is plotted versus the polynomial order pK as well as pu, see Table 8.4. The

“reference” solution is computed with the polynomial order pu = 9. According to

Table 8.4 the relative RMSE decreases with the polynomial order and approaches the

error of circa 10−11 for the polynomial order 6. Interestingly, the error is already

small for a polynomial order pK = pu = 2 in both the stress and plastic strain

case. This could be explained by a very small input variance which can be accurately

approximated with only few polynomial terms. On the other side, the fact that pu = 2
delivers satisfactory results shows that the uncertainty in the bulk modulus is not so

drastically influencing the uncertainty in the response, as will be discussed later in

the text. Note that the solution of order one is not computed as the input in this case

would be normally distributed and not positive-definite any more.

The uncertainty in the shear modulus G gives similar results to those obtained for

K. This is expected as the bulk and shear moduli are constructing the more general

random parameter—constitutive tensor A. Therefore, the table with the calculated

RMSE for uncertain G is not provided. Instead, the influence of the uncertainty in

σy on the system response is investigated. Namely, the yield stress (together with the

material hardening) can have huge impact on the system response since it defines the

starting point of the plastic flow. This is proven in Table 8.5, which discovers that

the same amount of uncertainty (ρσ = 5%) in σy and K produces different results.

Namely, for the same polynomial approximation σy delivers larger RMSE. To be

more specific, the error in stress does not change drastically compared to Table 8.4,

while the error in plastic strain grows. In this situation the polynomial order 2 cannot

be any more successfully used for the computation of the final solution. Instead, one

has to use the double polynomial order to get the same accuracy in the plastic strain

as for K. The reason can be found in the approximation of the convex set which

strongly depends on the yield condition and σy . As in this case both the von Mises

and the yield stress are uncertain, the state of the material point (whether is plastic or

elastic) is greatly influenced by the adopted probability level.
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Table 8.4: The response RMSE (see Eq. (8.2)) for uncertain K with ρσ = 5%. The

error is computed with respect to the solution obtained using polynomial order 9.

The input is approximated by order pK and the response by pu.

pK pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 1.1e-05 1.8e-06 1.0e-05 7.0e-05 1.5e-05 1.3e-05

3 3 2.8e-07 3.9e-08 8.0e-07 7.6e-08 7.8e-08 7.9e-08

4 4 1.3e-09 2.2e-10 3.6e-09 2.0e-10 1.9e-10 1.6e-10

6 6 5.3e-11 8.5e-12 1.9e-11 9.7e-14 2.3e-13 8.2e-13

Table 8.5: The response RMSE (see Eq. (8.2)) for uncertain σy with ρσ = 5%. The

error is computed with respect to the solution obtained using polynomial order 9.

The input is approximated by order pk and the response by pu.

pσy
pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 2.9e-05 8.5e-06 2.3e-05 8.4e-04 1.3e-03 6.1e-02

3 3 1.1e-06 4.4e-07 1.5e-06 1.9e-05 6.3e-05 4.3e-03

4 4 5.1e-08 2.7e-08 1.1e-07 1.1e-07 3.4e-06 2.5e-05

6 6 1.9e-12 6.5e-11 8.6e-11 4.7e-12 1.1e-09 2.4e-09

Table 8.6: The response RMSE (see Eq. (8.2)) for all three uncertain parameters

with ρσ = 5%. The error is computed with respect to the solution obtained using

polynomial order 9. The input is approximated by order pκ and the response by pu.

pκ pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 3.9e-05 9.2e-06 3.8e-05 1.7e-03 1.8e-03 6.9e-02

4 4 1.3e-07 4.2e-08 1.3e-07 1.0e-06 3.7e-06 4.4e-05

6 6 9.3e-10 3.9e-10 3.5e-10 4.5e-11 6.7e-10 2.1e-08
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Table 8.7: The root mean square error (see Eq. (8.2)) for uncertain K with ρσ =
20%. The error is computed with respect to the solution obtained using polynomial

order 9. The input is approximated by order pk and the response by pu.

pK pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 1.6e-03 2.9e-04 3.4e-03 1.8e-02 1.7e-02 2.2e-02

3 3 1.9e-04 3.7e-05 7.8e-04 5.4e-03 6.1e-03 4.9e-03

4 4 7.1e-05 1.2e-05 1.2e-04 1.1e-03 6.0e-04 3.4e-03

6 6 9.8e-06 1.7e-06 6.5e-06 1.4e-06 3.7e-06 8.1e-06

Table 8.8: The root mean square error (see Eq. (8.2)) for uncertain σy with ρσ =
20%. The error is computed with respect to the solution obtained using polynomial

order 9. The input is approximated by order pσy
and the response by pu.

pσy
pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 9.3e-02 2.6e-02 3.6e-02 4.6e-01 5.3e-01 9.6e-01

3 3 9.3e-02 2.6e-02 3.6e-02 4.6e-01 5.3e-01 9.5e-01

4 4 9.3e-02 2.6e-02 3.6e-02 4.6e-01 5.3e-01 9.5e-01

6 6 9.3e-02 2.6e-02 3.6e-02 4.6e-01 5.3e-01 9.5e-01

Table 8.9: The root mean square error (see Eq. (8.2)) for all three uncertain param-

eters with ρσ = 20%. The error is computed with respect to the solution obtained

using polynomial order 9. The input is approximated by order pκ and the response

by pu.

pκ pu σxx σyy σxy εp,xx εp,yy εp,xy

2 2 8.3e-03 2.0e-03 7.8e-03 7.3e-02 8.0e-02 4.7e-01

4 4 4.8e-03 1.2e-03 1.4e-03 3.9e-02 3.4e-02 1.8e-01

6 6 4.7e-03 1.1e-03 1.1e-03 3.8e-02 3.4e-02 1.6e-01
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Surprisingly, the results for RMSE for all three uncertain parameters in Table 8.6

are very much similar to those in Table 8.5. The only difference is that the error

slightly grows in both stress-and strain-like variables due to the increase of the input

uncertainty. This further means that the final response is mostly influenced by σy for

the same level of uncertainty in all three parameters.

Even though the material properties in practice do not exceed the uncertainty per-

centage of 5%, the ratio ρσ = 20% is further considered due to its numerical impor-

tance. Namely, with the increase of the input ratio ρσ the convergence of the intru-

sive Galerkin method (ISGM) slows down in all three case studies, see Table 8.7 to

Table 8.9. For example, if ρσ of the bulk modulus increases four times, the corre-

sponding error increases by multiple two, see Table 8.7. The same applied on ρσ of

σy (Table 8.8), or on ρσ of all three uncertain parameters (Table 8.9), results in even

bigger errors. The reason for this lies in the truncation errors of the PCEs approxi-

mations of the input properties and the ansatz. In other words, the truncation errors

grow with the increase of the input variance if the polynomial orders pκ and pu do

not change. Furthermore, one may investigate the sensitivity of the method on the

input uncertainty. While the sixth polynomial order gives accuracy of circa 10−6 in

the response for the uncertain K (see Table 8.7), the same or even higher polyno-

mial order produces much bigger error in the output for uncertain σy , see Table 8.8.

Adding K and G as uncertain the algorithm becomes more stable, and thus the error

in Table 8.9 reduces. However, in order to get the accurate solution, one has to use

high polynomial order approximations.

The previous analysis reveals that not all uncertain parameters have the same type of

influence on the result. This is also apparent from Table 8.10 and Table 8.11 which

provide the variation coefficient ρσ of the output data. Tables show the results for two

points in the domain: P in the plastic and E in the elastic area. Namely, Table 8.10

discovers that when the uncertainty in the input grows the response ratio ρσ increases.

The largest value belongs to the first stress component σxx and the smallest to the

shear stress. This is expected due to the properties of the external force. One may

notice that the ratio ρσ is much bigger for the plastic than elastic stress response

because the stress is strongly nonlinear in input parameters. However, the change in

the deformation ratio ρσ is not so drastic. Fig. 8.5 depicts a clear trend of the variance

increase of the von Mises stress with the increase of the input uncertainty in both the

elastic and plastic zone.

What is interesting in the data presented in Table 8.11 is that the first and the sec-

ond stress component, as well as the plastic strain, are strongly influenced by the

uncertainty in σy . On the other side, the shear modulus G propagates the most of the

uncertainty in the total strain ε. A similar behaviour is shown in Fig. 8.6, where the
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Table 8.10: The uncertainty in the response obtained by the intrusive Galerkin ap-

proach for the plate with a hole under the extension and assuming the yield stress,

bulk and shear modulus as uncertain according to Eq. (8.1). The order of polynomi-

als used in calculation equals 6. The yield condition in the material point is computed

according to p90 criteria.

IU σxx [%] σyy [%] σxy [%] εxx [%] εyy[%] εxy [%]

plastic

5% 23.17 1.80 4.19 6.13 2.95 3.81

10% 39.18 3.02 2.51 10.21 4.92 6.34

20% 142.34 9.62 9.98 30.34 14.65 18.65

elastic

5% 0.88 0.23 2.91 4.80 2.94 3.44

10% 1.46 0.38 0.05 7.98 4.89 5.72

20% 4.58 1.19 0.20 23.43 14.40 16.78

a) b)

Figure 8.5: Influence of the input uncertainty ρσ on the PDF of the von Mises stress

σVM : a) elastic zone b) plastic zone. All parameters are considered as uncertain.
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Table 8.11: Comparison of the uncertainty in the response obtained by the intrusive

Galerkin approach for the plate with the hole under the extension and assuming

yield stress, bulk and shear modulus separately or all as uncertain according to

Eq. (8.1). The order of polynomials used in the calculation equals 6 and the input

uncertainty equals 5%. The yield condition is computed according to p90 criteria in

each material point.

RV σxx σyy σxy εxx εyy εxy εp,xx εp,yy εp,xy

P

all 23.17 1.80 4.19 6.13 2.95 3.81 125.07 125.26 229.63

K 3.23 0.27 2.90 2.52 1.33 0.17 9.11 10.24 6.21

G 2.31 0.19 2.08 5.25 2.50 3.57 3.11 3.92 1.02

σy 22.86 1.78 2.18 1.89 0.84 1.30 124.75 125.08 226.89

E

all 0.88 0.23 2.91 4.80 2.94 3.44 - - -

K 0.71 0.18 2.36 1.53 0.94 0.02 - - -

G 0.51 0.13 1.69 4.55 2.78 3.43 - - -

a) b)

Figure 8.6: Influence of the input uncertainty on the PDF of the von Mises stress

σVM in: a) elastic zone b) plastic zone
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Table 8.12: The yield point: comparison of different decision criteria for one point

in the domain and input uncertainty 20%.

Rule σxx σyy σxy

Direct p50 39.18 3.02 7.03

Direct p75 17.22 3.89 6.26

Direct p90 12.23 0.25 6.56

Direct p99 12.23 0.25 6.56

Mean 39.18 3.02 7.033

Markov p75 17.22 3.89 6.26

Markov p90 26.65 3.45 7.49

Markov p99 39.18 3.02 7.03

Chebyshev p50 26.65 3.45 7.49

Chebyshev p75 26.65 3.45 7.49

Chebyshev p90 12.23 0.25 6.56

Chebyshev p99 12.23 0.25 6.56

a) b)

Figure 8.7: Influence of the decision criteria on the von Mises stress: a) the direct

integration approach b) the direct integration, Chebyshev and Markov criteria for

p90. All parameters are considered as uncertain with ρσ = 10%
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probability density function (PDF) of the von Mises stress σVM is plotted versus in-

put parameters. In the elastic zone the bulk and shear modulus shape the PDF of the

von Mises stress σVM , while σy does not have any influence. The variance of σVM

given σy exists only due to the truncation errors introduced by the algorithm. On the

other side, in the plastic zone, see Fig. 8.6 b), the yield stress σy has the largest effect

on σVM .

a) b)

Figure 8.8: The residual convergence for different values of input ratio ρσ and a) all

three random parameters b) uncertain bulk modulus

The previous analysis examined the impact of the input uncertainties on the system

response without taking into consideration the type of the variational inequality crite-

ria used to measure the distance between the von Mises stress and the elastic convex

domain. The study in one material point in the domain reveals that not all criteria

produce the same plastic zone, see Table 8.12. Namely, by increasing the probability

level from p50 up to p99 the considered decision criteria reduce the plastic zone to

a certain area. This means that the adopted probability level directly influences the

output uncertainty ρσ . Additionally, ρσ is affected by decision making as different

criteria may not deliver the matching plastic zone for the same probability level. For

example, the Markov limit (p99) and the mean criteria give the same result as the p50
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direct integration limit. However, they overestimate the response variance and give

a larger ρσ than the p99 direct integration result. In contrast to this, the Chebyshev

p99 criterion gives the same result as the direct integration. This is expected as the

Chebyshev criterion takes into account the variance during the decision making, not

only the mean as the Markov rule. Graphically this phenomenon is illustrated in

Fig. 8.7 where the PDF of σVM is plotted against the decision rule.

a) b)

Figure 8.9: The residual convergence as a function of the decision criteria with: a)

p50 level b) p90 level

Previous results do not reveal much the properties of the intrusive stochastic New-

ton method. Therefore, in order to investigate the convergence of the method, the

L2-norm of residual is plotted in Fig. 8.8. The polynomial order of input is taken

to be pκ = 6, while the polynomial order of the solution is pu = 9. Clearly, the

residual requires more iterations to converge with the increase of variance. On the

other side, the fast convergence is observed only when one of the parameters is un-

certain, e.g. K or G. However, in this case one may notice that the stochastic New-

ton method converges quadratically to the value of 10−4 when the convergence rate

slightly changes. The reason for this lies in the frequent use of the Galerkin projec-
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tions in PCE algebra, i.e. the existence of the local truncation errors. Such behaviour

will be explained further in the following sections. Note that the convergence of the

residual is also greatly affected by the decision criteria as shown in Fig. 8.9. For

example, the Markov criterion with the p50 flow limit is diverging, while the mean

criterion (direct) and Chebyshev converge. For the flow limit equal to p90 the direct

integration and Chebyshev criteria converge fast, while the Markov criterion overes-

timates the state by predicting more plastic points than they really exist.

Comparison to the reference solution

The previous section demonstrated the properties of the intrusive Galerkin solution

by comparing it to the “best achieved” intrusive solution of relatively high polyno-

mial order. Even though this kind of analysis is proper, it is not sufficient to judge

the method. Therefore, the ISGM solutions are compared to the reference solution

described in Section 8.1.1.

The comparison of the ISGM algorithm to the direct integration technique is not

an easy process. Namely, these two methods are not estimating the same problem,

though on the first look it may seem so. The difference lies in the approximation

of the convex set, i.e. in the prediction of the plastic state in each integration point.

While the direct integration technique samples the variational inequality and esti-

mates the plastic zone point-wise, the intrusive method uses the surrogate model (see

Section 5.4.1) and predicts the plastic zone with respect to some probability level pq .

Hence, the following comparison has to be analysed carefully.

Table 8.13: The root mean square error of the intrusive Galerkin compared to the

MC method for 106 samples and all three uncertain parameters

Order σxx σyy σxy σVM

2 5.6e-01 0.4947 5.4e-01 5.0e-01

3 5.2e-01 5.0e-01 5.3e-01 5.1e-01

4 5.6e-01 5.0e-01 5.3e-01 5.0e-01

6 1.3e-02 6.6e-03 6.5e-03 8.4e-03

9 1.3e-02 6.6e-03 6.5e-03 8.4e-03

In order to check the convergence of the ISGM algorithm Table 8.13 plots the root

mean square error between the two solutions for all three uncertain parameters with
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Table 8.14: The root mean square error of the intrusive Galerkin compared to the

MC method for 106 samples and all three uncertain parameters

Order εxx εyy εxy εp,xx εp,yy εp,xy

2 6.3e-01 5.4e-01 5.6e-01 6.2e+00 6.0e+00 1.5e+00

3 6.2e-01 5.4e-01 5.5e-01 2.7e+00 2.9e+00 1.5e+00

4 6.1e-01 5.3e-01 5.5e-01 1.0e+00 1.0e+00 1.0e+00

6 6.0e-03 6.0e-03 7.0e-03 4.1e-01 4.2e-02 9.9e-01

9 6.0e-03 6.0e-03 7.0e-03 4.1e-01 4.2e-02 9.9e-01

ρσ = 5%. The data clearly indicate that the polynomial orders higher than 4 have to

be used in order to get 10−2 accuracy in the stress components. However, the same

order is not enough to get the desired accuracy in the plastic strain components as

the error is only reduced to 40% as shown in Table 8.14. This behaviour could be

explained by the different sizes of the plasticity zones the two methods produce in

each iteration of the Newton method. The size of the plastic zone directly influences

the values of the plastic strain and thus the error. The drastic change in accuracy is

revealed in Table 8.15. Namely, one may see that the presence of the uncertainty in

material characteristics such as the bulk modulus is very well quantified by the poly-

nomial order 9. However, the uncertainty in the yield condition is more problematic

since σy produces larger errors than K for the same polynomial approximations.

Table 8.15: The root mean square error of the intrusive Galerkin (polynomial order

9) compared to the MC method for 106 samples and different number of uncertain

parameters

RV σVM εxx εyy εxy εp,xx εp,yy εp,xy

K 5.4e-3 5.5.e-3 5.6e-3 5.5e-3 5.5e-3 5.6 e-3 5.5e-3

σy 6.8e-3 6.3e-3 5.3e-3 7.1e-3 4.1e-01 4.2e-01 9.9e-01

all 1.3e-2 6.0e-3 6.0e-3 7.1e-3 4.1e-02 4.2e-01 9.9e-01

Besides the root mean square error, two more results are at least significant: the mean

value and the variance. As indicated in Fig. 8.10 the mean value of components σxx
and σxy match well the reference mean, while the variance of σxx is underestimated

due to presence of the local truncation errors. On the other side, the strain estimates
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Figure 8.10: The second order statistics (mean and variance) of the intrusive stochas-

tic Galerkin method (ISGM) and the Monte Carlo (MC) method. Comparison is done

for the input uncertainty of 5%
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a) plastic point b) elastic point

Figure 8.11: Comparison of probability density functions of von Mises stress ob-

tained by intrusive stochastic Galerkin method (ISGM) and Monte Carlo (MC) for

points with plastic and elastic state

a) plastic point 1 b) plastic point 2

Figure 8.12: The probability density function comparison of the plastic strain ob-

tained by the intrusive stochastic Galerkin method (ISGM) and Monte Carlo (MC)

for two different points with plastic state
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are coinciding. This can be seen in Fig. 8.11 and Fig. 8.12 where the PDF compar-

isons of the von Mises stress and the plastic strain in one FEM integration point are

presented. In contrast to stress, the plastic deformation is not accurately approxi-

mated in both the elastic and plastic cases. The PDF obtained by the MC solution

in the first plot of Fig. 8.12 is narrower and more skewed than the PDF computed

by the ISGM. This means that the order used in the ISGM is not yet high enough to

accurately approximate the reference PDF.

a) ρσ = 5 % b) ρσ = 20 %

Figure 8.13: The residual convergence of the intrusive stochastic Galerkin method

(ISGM) compared to Monte Carlo (MC) for different values of the input uncertainty

ρσ

Finally, the algorithm is tested with respect to the L2-norm of the residual plotted in

Fig. 8.13 for both uncertainty ratios, ρσ = 5 and ρσ = 20%. While the reference

Newton method converges quadratically, this trend characterizes the ISGM only until

some point, i.e. the accuracy of 10−4 for ρσ = 5% and 10−2 for ρσ = 20%. Then

the convergence rate changes and becomes slower as the higher order terms in the

ISGM residual do not disappear with the increase of the number of the iterations.

This happens due to the existence of the numerical truncation errors in polynomial
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chaos algebra (see Chapter 6), which cannot be reduced if the polynomial order is

not increased.

Table 8.16: The response root mean square error for all three uncertain parameters

with ρσ = 5%. The error is computed with respect to the solution obtained using 106

MC samples. The input is approximated by order pk and response by pu.

pK pu σxx σyy σxy εxx εyy εxy

2 2 0.5636 0.4949 0.5418 0.6313 0.5424 0.5631

mccmp 65 0.9651 0.9534 1.0232 1.0355 0.9481 0.9724

4 4 0.5616 0.5001 0.5331 0.6102 0.5312 0.5511

mccmp 150 0.5356 0.5316 0.5535 0.5564 0.5301 0.5375

6 6 0.0132 0.0066 0.0065 0.0060 0.0060 0.0070

mccmp 520 0.2530 0.2517 0.2526 0.2517 0.2509 0.2514

However, the previous analysis is not completely honest because the MC method

needs a much longer computation time than the ISGM method for the same values of

the input uncertainty. Namely, as one can see in Table 8.1, in order to achieve 10−3

accuracy one has to run circa one million samples (runs of deterministic code). On

the other side, the ISGM method requires only one run. To do the proper comparison

one has to compare the ISGM solution to the MC solution for the same computation

time, as shown in Table 8.16. Here the time factors are not discussed because the

time analysis will be given later in Section 8.3. Namely, for one ISGM run of order 6
one may compute only 520 response samples with the MC method. In average both

methods give similar results, while the higher order moments of the ISGM solution

are closer to the reference. The MC solution obtained from 520 samples overesti-

mates the PCE coefficients for both the stress- and strain-like components. In this

manner, ISGM outperforms MC.

8.1.3 Non-intrusive Galerkin method

Besides the intrusive Galerkin method, the polynomial chaos expansion of the solu-

tion can be also found with the help of the non-intrusive Galerkin (NSGM) approach

as described in Section 5.4.2. This method avoids the employment of the polynomial

chaos algebra and accompanying numerical errors, and uses the numerical integra-

tion for the computation of the Galerkin projection. However, this brings another

type of the error into the story as further investigated. By comparing the relative
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Table 8.17: The streess root mean square error of the non-intrusive Galerkin com-

pared to the MC method for 106 samples and all three uncertain parameters

pu # of points σxx σyy σxy σVM

2 25 1.47e-02 6.2e-03 7.7e-03 6.3e-03

3 69 8.8e-03 5.8e-03 6.1e-03 6.2e-03

4 351 7.6e-03 5.6e-03 5.9e-03 6.1e-03

1233 6.6e-03 5.5e-03 5.7e-03 6.1e-03

7973 5.9e-03 5.5e-03 5.6e-03 6.2e-03

16535 5.8e-03 5.5e-03 5.6e-03 6.2e-03

Table 8.18: The strain root mean square error of the non-intrusive Galerkin com-

pared to the MC method for 106 samples and all three uncertain parameters

pu # points εxx εyy εxy εp,xx εp,yy εp,xy

2 25 7.4e-03 6.2e-03 8.2e-03 4.4e-01 4.5e-01 5.9e-01

3 69 6.0e-03 5.7e-03 6.3e-03 2.3e-01 2.4e-01 5.1e-01

4 351 5.9e-03 5.6e-03 6.1e-03 1.8e-01 1.9e-01 4.3e-01

1233 5.6e-03 5.6e-03 5.8e-03 1.1e-01 1.1e-01 2.6e-01

7973 5.5e-03 5.6e-03 5.6e-03 6.8e-02 7.0e-02 1.4e-01

16535 5.5e-03 5.5e-03 5.6e-03 6.2e-02 6.3e-02 1.2e-01

Table 8.19: The root mean square error of the non-intrusive Galerkin compared to

the MC method for 106 samples and different number of uncertain parameters. The

number of sample points is 681.

RV σVM εxx εyy εxy εp,xx εp,yy εp,xy

K 5.0e-03 5.5e-03 5.6e-03 5.5e-03 5.7e-03 5.8e-03 5.6e-03

σy 4.7e-03 5.3e-03 5.0e-03 5.5e-03 1.9e-01 2.0e-01 4.4e-01

all 7.6e-03 5.6e-03 6.1e-03 1.8e-01 1.8e-01 4.3e-01 4.2e-01
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a) RMSE in stress for ρσ = 5% b) RMSE in strain for ρσ = 5%

c) RMSE in stress for ρσ = 20% d) RMSE in strain for ρσ = 20%

Figure 8.14: The convergence of the non-intrusive Galerkin compared to the MC

method.
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a) point with plastic state b) point with elastic state

Figure 8.15: Comparison of the probability density function of the von Mises stress

obtained by the intrusive stochastic Galerkin method (ISGM), the non-intrusive

stochastic Galerkin method (NSGM), and the Monte Carlo (MC) method in points

with plastic and elastic state

a) point 1 with plastic state b) point 2 with plastic state

Figure 8.16: Comparison of the probability density function of the plastic strain

obtained by the intrusive stochastic Galerkin method (ISGM), the non-intrusive

stochastic Galerkin method (NSGM), and the Monte Carlo (MC) method in two dif-

ferent points in the plastic zone
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Table 8.20: The uncertainty in the response obtained by the direct integration in

plastic (P) and elastic (E) points

State ρσ σxx [%] σyy [%] σxy [%] εxx [%] εyy[%] εxy [%]

P 5% 17.14 1.50 3.99 6.21 2.96 3.74

E 5% 0.87 0.24 0.04 4.80 2.94 3.43

root mean square error of the stress components in Table 8.17—computed with re-

spect to the reference MC solution— one may notice that the error decreases with

the increase in a polynomial order and the number of integration points, as expected.

Similarly, the data indicate that the polynomial order 4 provides better accuracy than

the polynomial order 9 for ISGM, see Table 8.13. However, one has to bear in mind

that this conclusion may change with the increase of the input variance.

Compared to the ISGM results (see Table 8.14), the NSGM error in the strain compo-

nents converges much faster and has better accuracy in both the total and the plastic

components if the number of the sample points is large enough, see Table 8.18 and

Fig. 8.14. The only component that still has error larger than 10% is the shear compo-

nent of the plastic strain. Namely, while the stress components almost immediately

have an error of circa 1% (see Table 8.17), the plastic strain still experiences prob-

lems. If the number of points increases the error drops to circa 6%, see Table 8.18.

This happens due to the presence of uncertainty in all three input parameters and

possible skewness of the plastic strain. On the other side, if the uncertainty of each

parameter is introduced into the algorithm separately, the error decreases as given in

Table 8.19.

The previously described behaviour can also be seen in Fig. 8.14, where the errors

are plotted against the number of samples. As one may notice in Fig. 8.14 c) and d)

the error does not drop as quickly for the input ratio ρσ = 20% as for ρσ = 5% (see

Fig. 8.14 a) and b)). Thus, one requires much more than 104 samples to accurately

represent the solution.

As a comparison to the ISGM the probability density functions of the von Mises

stress and the plastic strain are plotted in two randomly chosen points inside the

domain, one in plastic and one in elastic zone, see Fig. 8.15 and Fig. 8.16. While the

stress PDFs are similar in all three cases, the plastic strain response is much better for

the non-intrusive Galerkin method. The possible reason is that the truncation in PCE

algebra delivers a higher numerical error than the corresponding local integration.
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Finally, the estimation of the response uncertainty in plastic and elastic points of the

domain is illustrated in Table 8.20, and as one may notice it is comparable to those

in Table 8.3.

8.1.4 Stochastic collocation

With the help of the stochastic collocation approach as described in Section 5.4.2 one

may choose the appropriate sparse grid and collocate the solution in a set of sample

points, the number of which has a great influence on the solution accuracy.

Table 8.21: The RMSE error of the stress obtained by stochastic collocation

ρσ # of points σxx σyy σxy σVM

5 69 2.2e-02 6.5e-03 7.9e-03 9.9e-03

165 8.0e-03 2.3e-03 2.6e-03 3.6e-03

351 3.2e-03 9.0e-04 1.1.e-03 1.4e-03

20 69 1.5e-01 5.3e-02 6.0e-02 1.1e-01

165 4.4e-02 1.4e-02 1.6e-02 1.8e-02

351 1.4e-02 4.0e-02 6.1e-03 5.9e-03

Table 8.22: The RMSE error of the strain obtained by stochastic collocation

ρσ # of points εp,xx εp,yy εp,xy

5 69 8.2e-01 8.2e-01 1.6e+00

165 2.5e-01 2.5e-01 3.0e-01

351 6.4e-02 6.6e-02 8.5e-02

20 69 2.1e+00 2.1e+00 2.2e+00

165 4.5e-01 4.7e+00 4.6e-01

351 1.5e-01 1.5e-01 1.9e-01

To analyse this method, Table 8.21 and Table 8.22 plot the convergence of the solu-

tion (stress and plastic strain) with the number of points for different values of the
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input uncertainty ρσ . The reference is computed using 1233 points. As one may no-

tice the error decreases with the increase of the number of points. In contrast to this,

the error grows with the increase of the input uncertainty, as already expected. The

larger the input variance is, the more difficult it is to accurately represent the higer

order moments of the solution. The root mean squared error as defined in Eq. (8.2)

is used as the corresponding error indicator.

However, the real comparison of the solution can be only done with respect to the

reference solution, see Section 8.1.1. As the projection is already compared with

the huge Monte Carlo run, here we choose to compare the collocated solution with

the non-intrusive Galerkin. The data in Table 8.23 represent the RMSE between the

collocation and projection approach for the quadrature rules with the same number

of points. As the error is of order 10−15 for 681 sample points one may conclude

that the collocation gives a pretty similar results as the projection by integration.

Table 8.23: The comparison of the stochastic collocation to the non-intrusive

Galerkin method for 5% and 20% of the input uncertainty

ρσ # points σxx σyy σxy εp,xx εp,yy εp,xy

5 69 2.3e-02 5.6e-03 1.0e-02 4.5e-01 4.5e-01 6.0e-01

681 6.3e-15 6.3e-15 6.5e-15 4.5e-15 4.2e-15 2.9e-15

1233 4.1e-15 4.3e-15 4.5e-15 2.9e-15 2.9e-15 2.9e-15

20 69 1.6e-01 5.9e-02 9.5e-02 2.0e+00 2.0e+00 2.2e+00

681 5.9e-15 6.4e-15 6.1e-15 3.4e-15 3.2e-15 3.1e-15

1233 4.2e-15 4.4e-15 4.4e-15 2.9e-15 3.0e-15 2.6e-15

8.2 Random field case

The main goal of previous sections was to show the advantages and disadvantages

of the numerical methods presented in Chapter 5. However, the material properties

modelled as scalar valued random variables are not proper for the practical utilisation.

Namely, the material characteristics are in essence heterogeneous and change their

values from one point in the domain to the next. Such behaviour, for example, can

be described with the help of the random field theory, which is the subject of this

section.
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8.2.1 Input random fields

Going one step further from the problem considered in Section 8.1 one may model

the material properties as positively distributed random fields:

κ(x, ω) = exp(µ+ σγ(x, ω)), (8.3)

i.e. the exponential transformation of the Gaussian random field γ(x, ω) with zero

mean, unit variance and covariance function:

covγ = exp (−|x− y|/lc) or covγ = exp (−|x− y|2/l2c). (8.4)

Here lc := (lx, ly) represents the vector of the correlation lengths and x and y the

spatial coordinates.

Table 8.24: The relative error in the mean and the variance of the approximated

Gaussian random field with the number of terms used in KLE

Error 10 20 40 50 70 90

Mean 1.8e-03 6.6e-04 1.1e-04 4.6e-05 4.0e-06 1.8e-06

Var 3.6e-01 1.3e-01 2.3e-02 9.4e-03 8.1e-04 3.7e-04

Following the discussion in Section 4.4 the field κ is first approximated by the

Karhunen-Loève and then by the polynomial chaos expansion both resulting in PCE

in FEM integration point. The PCE is described by M Gaussian random variables

and Hermite polynomials of order p:

κ(xgp, θ) =
∑

α∈J
κα(xgp)Hα(θ). (8.5)

The KLE of the lognormal random field can be computed directly using the transfor-

mation of the covariance function from covγ to covκ. In such a case the correspond-

ing PCE can be evaluated by the direct integration. However, a much easier way is

to compute the KLE of the Gaussian random field and then to compute the final PCE

of the lognormal random field [231] via:

κ(α) =
E(κ)√
α!

∞∏

m=1

(
√
λmγm(x))αm . (8.6)
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a) The energy kept by the KLE approximation of the RF

b) One realisation of the lognormal random field

Figure 8.17: The accuracy of the input approximation and the realisation of the ran-

dom field for 100 RVs
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a) 44 elements b) 448 elements c) 700 elements

Figure 8.18: The influence of the mesh refinement on the von Mises stress σvm. Ele-

ments are taken to be the eight-noded quadrilaterals.

Here λm and γm(x) are the eigenvalues and the eigenfunctions of the KLE of the

Gaussian random field.

Following the previous discussion the approximation accuracy of the random field

with the mean value E(κ) = 28000 and ρσ = std κ/E(κ) = 10% can be computed

as shown in Table 8.24. Here the relative mean and the variance errors are plotted

across the number of terms used in the KLE expansion. As one may notice, the

relative errors decrease with the increase of the number of KLE terms. A similar

behaviour can be seen in Fig. 8.17 where the total kept energy is illustrated. The plot

indicates that one has to take into account a large number of RVs in order to properly

model the material. This number depends on the values of the input variance and the

correlation lengths of considered RF. If the input variance increases or the correlation

lengths decrease, the number of the KLE terms (RVs) has to increase. Besides this,

the approximation accuracy strongly depends on the spatial discretisation of the RF,

see Fig. 8.18. Namely, one has to use a higher-order basis and more elements (finer

mesh) to achieve the desired accuracy 1. This, however, immediately influences the

efficiency of algorithms, as will be seen later.

1Connected to this, one may note that the field realisations are not symmetric for the deterministic re-
sponse. The reason lies in the absence of material symmetry.
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8.2.2 Plate with a circular hole

Let us consider the same numerical example, i.e. a plate with a circular hole, as in the

random variable case. The input parameters are taken with the following statistics:

the bulk modulus K (mean 4.6667e+04 MPa, standard deviation 10%), the shear

modulus (mean 28000 MPa, standard deviation 10%), the yield stress σy (mean 243

MPa, standard deviation 10%) and the hardening modulus (mean 2240 MPa, standard

deviation 0%). The total applied load is 3000t[N]. In order to describe the input

parameters the different values of the correlation lengths for the yield stress, bulk

and shear moduli are adopted. For an accurate representation we took the KLE/PCE

with the maximal number of random variables 100 and the order of polynomial 3,

where the spatial discretisazion is done with the help of 700 quadrilateral eight-noded

elements, i.e. 2290 spatial degrees of freedom. With respect to such discretisation

the coupled system in Eq. (5.53) is considered as a system of large dimension, i.e.

404988790 of the total degrees of freedom. However, as the correlation lengths are

relatively large, the number of RVs in the KLE can be reduced to much less than 100.

Fig. 8.19 and Fig. 8.20 illustrates the approximation accuracy of the shear modulus

in the mean value and the standard deviation compared to the reference solution

obtained by 105 Monte Carlo samples.

In order to compare the non-intrusive and intrusive methods the simpler version of

the problem considers only the shear modulus to be uncertain on the relatively coarse

FEM-mesh (i.e. 176 spatial degrees of freedom—eight-noded elements). The modu-

lus is assumed to be lognormal RF with previously described statistics and correlation

lengths lc = [20 20]. This allows us to use only 5 RVs and the polynomial order 3
for modelling 89.06% of the total energy of the field. However, if the correlation

lengths are taken as smaller one has to take more RVs into consideration to maintain

the desired accuracy. In Table 8.25 the stress and strain RFs obtained by the direct

Galerkin (ISGM), stochastic collocation (SCOL) and pure Monte Carlo methods are

compared for the same number M = 5 of RVs used in the KLE approximation and

the polynomial order p = 3. The number of samples used in the Monte Carlo in-

tegration is equal to 3 · 105, while the number of the collocating points is 13073.

According to the plotted RMSE both methods (ISGM and SCOL) deliver approxi-

mately the same result, while the mean error is slightly better for the direct Galerkin

method than the collocation.

Another comparison between the direct Galerkin method and the reference solution

computed with 105 latin-hypercube samples is presented in Table 8.26. Interestingly,

the error is pretty similar for all the stress and strain components and amounts to

circa 5%. This means that RMSE quantifies the sampling error in the MC method
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Figure 8.19: Realisation of the input random field G (shear modulus)

a) ǫµ b) ǫσ

Figure 8.20: Relative errors in the approximation of the random field: ǫµ in the mean

and ǫσ in the standard deviation.

216



8.2 Random field case

and not the Galerkin solution. In other words, the Galerkin solution is more trustful.

This phenomenon already appeared in previous examples, see Section 8.1.

Table 8.25: Comparison of the intrusive (IM) and non-intrusive (NM) methods to the

MC solution with 3 · 105 samples

Error σxx σyy εyy εpxx εpyy εpxy

IM rmse 1.5e-02 1.4e-02 1.4 e-02 1.5 e-02 1.5e-02 1.4e-02

mean 1.3e-04 3.2e-05 1.2e-04 5.9e-04 5.1e-04 5.0e-04

NM rmse 1.5e-02 1.4e-02 1.4e-02 2.1e-02 2.0e-02 2.0e-02

mean 6.9e-04 1.6e-04 3.6e-04 2.9e-03 2.5e-03 2.4e-03

Table 8.26: The RMSE error between the direct Galerkin (10RVs, polynomial order

3) and 105 latin hypercube samples

Error σxx σyy σxy εxx εpxx εpyy εpxy

rmse 5.2e-02 5.3e-02 5.3e-02 5.3e-02 5.3e-02 5.2e-03 5.2e-03

mean 1.3e-04 5.1e-05 3.0e-05 3.0e-05 5.6e-05 6.2e-05 4.0e-05

As the correlation lengths strongly influence the obtained results, the direct Galerkin

solution is compared to the collocation response by plotting the root mean square

error in Table 8.27. Clearly, as the correlation lengths reduce, the error becomes

larger. The reasons are fluctuations of the random field, which cannot be covered by

polynomial order p = 3 and l = 13073 sampling points. This behaviour can also

be seen in Fig. 8.21 where the probability density function of the von Mises stress is

plotted with respect to the correlation lengths in a randomly chosen point inside the

plastic zone.

Now let the RF has a correlation length equal lc = 20 and let us compute the Galerkin

solutions with a different number of RVs as shown in Table 8.28. Clearly, the RMSE

decreases with the number of the input RVs.

However, the previous comparison is done with respect to the small number of RVs.

In order to give the more accurate error analysis, the RMSE results comparing the

collocation solution with the reference solution obtained by 105 latin-hypercube
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Table 8.27: The RMSE between the direct Galerkin and the reference solution as a

function of the correlation lengths

lc σxx σyy σxy εyy εp,xx εp,yy

[20 20] 4.3e-03 9.9e-04 2.4e-03 1.9e-03 1.7e-02 1.4e-02

[10 10] 6.5e-03 1.5e-03 4.3e-03 2.5e-03 2.5e-02 2.2e-02

[5 5] 4.7e-02 1.1e-02 4.1e-02 9.4e-03 1.8e+00 1.7e+00

Figure 8.21: Influence of the correlation lengths on the von Mises stress

Table 8.28: The RMSE between the direct and the non-intrusive Galerkin methods

for M RVs and polynomial order 3

Error M σxx σyy σxy εxx εyy εxy

rmse 10 1.4e-03 5.4e-04 2.7e-04 5.4e-04 6.0e-04 2.3e-04

mean 10 3.1e-04 1.2e-04 6.2e-05 1.2e-04 1.3e-04 4.8e-05

var 10 1.2e-02 2.7e-02 3.9e-03 2.4e-03 3.3e-03 3.5e-03

rmse 5 8.4e-04 3.4e-04 1.7e-04 3.3e-04 3.7e-04 1.4e-04

mean 5 2.6e-04 1.0e-04 5.1e-05 1.0e-04 1.1e-04 3.9e-05

var 5 1.1e-02 5.3e-02 3.5e-04 1.8e-04 2.3e-04 3.3e-04
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Table 8.29: The RMSE between the collocation and the reference solution (MC 105).

The number of used RVs is 100 and order 3

Error σVM εxx εyy εxy εpxx εpyy εpxy
mean 2.8e-04 5.9e-04 4.2e-04 4.2e-04 3.8e-04 3.8e-04 3.6e-04

var 2.7e-02 7.1e-03 6.9e-03 6.9e-03 2.1e-02 2.1e-02 1.5e-02

Figure 8.22: The residual convergence: intrusive (ISGM) and non-intrusive (NSGM)

Galekin method, LH- latin hypercube integration
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a) E(σVM ) b) var (σVM )

c) E(εpyy) d) var (εpyy)

Figure 8.23: Mean and variance of von Mises stress and plastic strain
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Monte Carlo samples are provided in Table 8.29 for inputs approximated by 100
RVs. The number of terms in polynomial chaos expansion used to approximate the

solution is 176 851.

This error estimate is different from the one given in Table 8.26 as the number of the

KLE terms used in the MC integration is equal to 100 and the correlation lengths are

taken to be equal to lc = 5. This means that the collocation method is stable with the

increase of the number of RVs. However, the question is how big error one makes

by assuming only 5 RVs in the input approximation. With this respect the RMSE

between the PCE solution with 5 RVs and the one with 100 RVs is computed. For

example, the error in the first stress component is already around 80%. The reason is

that 5 random variables for lc = 5 keep less than 30% of the total energy, and thus

the solutions of those two problems are completely different.

Similar to the RV example, the comparison of the convergence of the residual in

Fig. 8.22 shows that the non-intrusive method has better convergence than the direct

variant.

a) Prob(σvm < 150) b) Prob(σvm < 200) c) Prob(σvm < 250)

Figure 8.24: Probability exceedance of the von Mises stress

The previous discussion has focused more on the method properties, however, for

the engineering practice are more important the statistics of the output response ( i.e.

the actual value of the mean and the variance of the response, etc. ). Due to this,
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Fig. 8.23 plots the mean and the variance of the von Mises stress, as well as the mean

and the variance of the plastic strain. As indicated and expected, both the mean and

the variance achieve their maximal values exactly in the plasticity zone around the

hole. Their uncertainty is given by a ratio of 20% for the von Mises stress, and of

60% for the plastic strain component.

However, the probability exceedance of maximal stress occurence can be even more

important information for engineers than the second order statistics. Namely, one is

the most interested in zones of materials where the maximal value of the von Mises

stress occurs. Via stochastic analysis one is able not only to give the mathematical

expectation where this happens, but also the probability of such an outcome. For

example, in Fig. 8.24 the regions in which the von Mises stress crosses 150, 200 or

250 [MPa] (possible yield stress) are plotted. This information immediately can help

engineers to decide whether a material in such conditions can be employed or not.

8.2.3 Cook’s membrane

The Cook’s membrane in a finite deformation is clamped on one end and excited

by a shear force F = 2t[kN] in y-direction on the second as shown in Fig. 8.25.

The plate is discretised via the finite element method into 225 quadrilateral eight-

noded elements (regular mesh). The statistics of the input parameters are given as:

the bulk modulus (mean 164.2068 [GPa], standard deviation 10%), shear modulus

(mean 80.1940 [GPa], standard deviation 10%), yield stress (mean 0.2 [Gpa], stan-

dard deviation 10%) and the istotropic hardening (mean 0.129[GPa], standard devi-

ation 0).

For such defined input parameters the membrane deforms according to Fig. 8.26,

where the obvious difference between the response obtained by deterministic (red

line) and stochastic (blue line) simulations can be seen. This means that the presence

of the uncertainty has a great influence on the output response, and thus cannot be

neglected.

The uncertainty in response greatly alters with the variation of the input uncertainty.

For example, if one compares the direct Galerkin solutions for uncertain shear mod-

ulus (see Fig. 8.27) and all three parameters, one may notice that the second order

statistics are bigger in case of uncertain shear modulus G. This can be explained by

the number of RVs used in simulation. When all three fields are uncertain, each of

them is modelled only by 6 RVs. Otherwise, the uncertain shear modulus alone is

modelled with the help of 20 RVs. This shows that the approximation of the input has
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Figure 8.25: The geometrical setup of Cooke’s membrane

Figure 8.26: The comparison of the deformed configurations obtained by pure deter-

ministic (DET) and stochastic approach (STO) with the initial undeformed configu-

ration.
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a) E(σVM ) (uncertain K,G, σy) b) E(σVM ) (uncertain G)

a) std (σVM ) (uncertain K,G, σy) b) std (σVM )(uncertain G)

Figure 8.27: The comparison of second order statistics of the von Mises stress when

K,G and σy are taken as uncertain, or only G.
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a) E(εp) b) std (εp)

c) σVM > 150 d) σVM > 200 e) σVM > 250

Figure 8.28: The plastic strain statistics and the probability exceedance of the von

Mises stress for 100 RV and order 3.

225



Chapter 8 Numerical results

a) E(εp) (lc) b) E(εp) (2lc)

c) var(εp) (lc) d) var(εp) (2lc)

Figure 8.29: The mean and the variance of the response plastic strain with the cor-

relation lengths. lc is taken to be 10. The number of RVs is 100 and order p = 3.
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a) E(u) (lc) b) E(u) (2lc)

c) var(u) (lc) d) var(u) (2lc)

Figure 8.30: The mean and the variance of the response displacement with the cor-

relation lengths. lc is taken to be 10. The number of RVs is 100 and order p = 3
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a great influence on the accuracy of the solution. Although the statistics in Fig. 8.27

are not really comparable, one may still make conclusion about the influence zone of

the uncertainty. Namely, the zone is much wider when the three mentioned param-

eters are random than only one of them—shear modulus. This is already indicated

in Fig. 8.28 a) and b) where the mean and the variance of the plastic strain are plot-

ted. As expected, the plastic zone concentrates in the specific region of the domain

exposed to compression. In a similar manner one may compute the probability ex-

ceedance statistics, see Fig. 8.28 c)–e), and distinguish the zones in which the stress

exceeds some already known value with probability one.

The previous study has been done for the constant values of the correlation lengths.

However, without measurements one cannot be sure how large they can be for the

specific input parameters. As the goal of the identification problem [191] is to find

their accurate levels, here one may only assume some values. According to the data

in Fig. 8.29 for smaller correlation lengths the plasticity zone spreads wider than

for large correlation lengths. This happens due to the existing fluctuations in the

field with smaller correlation lengths. A similar behaviour can be observed in the

displacement field in Fig. 8.30. If the correlation lengths are smaller the input fields

are varying more and the statistics of the output are bigger than for large correlation

lengths.

8.2.4 Reduced parametric approach

The random fields in previous simulation are taken to be lognormally distributed,

and the constitutive tensor isotropic in the mean. However, the constitutive tensor

can be modelled in another way with the help of the reduced parametric approach

(see Chapter 3).

Following the mathematical theory given in Chapter 3 the constitutive tensor A is

constructed with the help of the Gamma distribution and by assuming the isotropic

tensor

Ā =



271.1322 110.7441 0
110.7441 271.1322 0

0 0 80.1940


 (8.7)

for the mean. Furthermore, lc = 20 is adopted for the correlation lengths of the corre-

sponding Gaussian random field γ, whose kernel is the exponential covariance func-

tion. Similarly, the dispersion of the base non-Gaussian random field T is adopted to

be δT = 0.1. Note that A is only isotropic in the mean and not in its fluctuation part,
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as can be seen in Fig. 8.32 and Fig. 8.33. Namely, in each realisation the constitu-

tive tensor owns the components A13,A23 etc. even though the isotropic model does

not.

Figure 8.31: The geometrical set up

The response statistics obtained for such a defined model are given in Figs. 8.34–

8.37. The results clearly show that the plastic zone is much wider compared to the

results of the lognormally distributed random fields given in the previous section.

Apparently the uncertainty in the stress components is not as high as it goes up to

circa ρσ = 5%. However, the uncertainty in the elastoplastic strain is much bigger

and similar to the one obtained by the direct parametric approach.

Another example is made by considering the test with the geometrical domain of the

hook shape constrained on the top (red area) and loaded by the concentrated force

(blue area) f = 130t in the arc area as shown in Fig. 8.31. The mean matrix is

modelled by Young modulus E = 7 · 104 [MPa] and ν = 0.25. The yield stress

is 243 [MPa] and isotropic hardening Hiso = 2000 [MPa]. All other parameters

are the same as in the previous example. As one may see in Figs. 8.38–8.41 the

stress concentration appears to be in the arc area where it is expected. The highest

uncertainty of circa 40% happens in the first stress component, while others have a

much lower ratio of the uncertainty.
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a) A11 b) A12

c) A13 d) A22

Figure 8.32: Realisations of components of the elastic constitutive tensor
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e) A23 f) A33

Figure 8.33: Realisations of components of the elastic constitutive tensor

a) E(σxx) b) E(σyy)

Figure 8.34: The mean values of the stress and plastic strain components
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c) E(σxy) d) E(εpxx)

e) E(εpyy) f) E(εpxy)

Figure 8.35: The mean values of the stress and plastic strain components
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a) std (σxx) b) std (σyy)

c) std (σxy) d) std (εpxx)

Figure 8.36: Standard deviation of the stress and plastic strain components
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e) std (εpyy) f) std (εpxy)

Figure 8.37: Standard deviation of the stress and plastic strain components

a) E(σxx) b) E(σyy)

Figure 8.38: The mean values of the stress and plastic strain components
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c) E(σxy) d) E(εpxx)

e) E(εpyy) f) E(εpxy)

Figure 8.39: The mean values of the stress and plastic strain components
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a) std (σxx) b) std (σyy)

c) std (σxy) d) std (εpxx)

Figure 8.40: Standard deviation of the stress and plastic strain components
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e) std (εpyy) f) std (εpxy)

Figure 8.41: Standard deviation of the stress and plastic strain components

8.3 Complexity and computation cost

In order to decide which method is best applicable in practice one has to provide

the proper analysis of the accuracy and the computation cost. As the accuracy is

already considered, here we try to provide the time and the memory requirements of

the PLASTON package for the various methods presented in this work.

As discussed in Chapter 5, the stochastic Galerkin and collocation method differ in

the way they are solving the final system of equations. The direct Galerkin solves the

coupled system of equations at once by the preconditioned Krylov subspace method,

while the stochastic collocation decouples the system into the finite number of small

deterministic systems. This number depends on the number and the type of the col-

location points being selected for the numerical integration.

The direct integration methods, as purely sampling based procedures, are working

in a similar manner. For comparison Table 8.30 collects the data representing the

number of the total stochastic degrees of freedom for each of the previously men-

tioned methods. They are constructed for 179 deterministic degrees of freedom and
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Table 8.30: The number of stochastic degrees of freedom

M p Z LS LNS LTP

3 3 20 25 19 27

5 56 165 93 243

5 3 56 61 51 125

5 252 781 401 3125

20 3 1771 841 801 8000

5 53130 120321 90601 3200000

the problem described in Section 8.1. Thus, the computation times are compared

for the uncertainties represented by RVs, not RFs. However, a similar conclusion

can be made for the more general case of random fields, as will be discussed later.

The first and the second column in Table 8.30 represent the number of the stochas-

tic degrees of freedom M (i.e. the number of RVs) and the polynomial order of the

Hermite basis, respectively. In the third column is listed the number Z of the PCE

terms used in the Galerkin projection, i.e. this number multiplied with the number

of the deterministic degrees of freedom N gives us the size of the coupled system

which needs to be solved in each iteration. Note that Z grows with the dimension M
and order p exponentially, see Chapter 6. Similarly, in columns LS , LNS , and LTP

are given the number of points used in the non-nested Smolayk, the nested Smolyak,

and full tensor product rule, respectively. This number corresponds to the number

of the decoupled deterministic systems of size N × N which the direct integration

and collocation methods have to solve in each iteration. Note that this number grows

much faster than the number of terms in PCE. This is especially the case for the full

tensor product rule, which delivers a huge amount of the integration points for al-

ready small number of stochastic dimensions. Due to this the full tensor grid is never

used in practice, but mostly the nested Smolayk rule which compared to the previ-

ous two delivers the smallest number of points. Note that the number of the Monte

Carlo samples in Table 8.30 is not listed as it is very well-known that more than 1
000 000 samples are necessary for the accuracy of 1e-3 according to the law of large

numbers.

Even though the ISGM has the smallest dimension according to Table 8.30, that does

not necessary mean that its computation time is also the shortest. The algorithms

based on the stochastic Galerkin have to solve a much bigger system of equations in

each iteration of the Newton-like methods compared to the other presented methods.
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Table 8.31: ISGM overall computation time with the order p: tp total time, tsol time

spent on solving the linear system of equations in [%], tppcet time spent on the mul-

tiplication of the matrix-valued PCEs in [%], tttm time spent on the sparse matrix

multiplications in [%], tdpcet time spent on the division of the matrix valued PCEs in

[%], tsqrt time spent on finding the square root of matrix-valued RVs in [%]

p tp [s] tsol [%] tppcet [%] tttm [%] tdpcet [%] tsqrt [%]

2 55.43 27.04 47.70 20.75 2.78 0.47

4 124.30 28.42 54.20 30.84 1.75 0.32

6 438.88 21.43 68.24 56.11 1.72 0.36

9 4905.443 10.70 84.94 86.30 2.12 0.45

10 10771.275 10.16 85.48 87.79 2.13 0.47

The solving time is around 30% of the overall computation time for small polynomial

orders (see Table 8.31).

Table 8.32: The number of PCE algebra operations with the increase of the polyno-

mial order. Nppcet is the number of products, Nttm the number of the sparse matrix

multiplications, Ndpcet the number of divisions, Nsqrt the number of square root

operations

Order Nppcet [s] Nttm [%] Ndpcet [%] Nsqrt [%]

2 18503 40191 486 130

4 20465 44465 626 141

6 20465 44465 626 141

9 20465 44465 626 141

10 20465 44465 626 141

Besides, the computation time strongly depends on the time neccessary to perform

the PCE algebra calculations. For example, the multiplication can take more than

80% of the overall time. This is due to the tensor multiplications (see time tttm)

which are mostly used in the product procedure. In contrast to this, the division

and the square root are relatively fast as their number of calls is relatively small, see

Table 8.32. The number of the tensor-product calls is twice compared to the number

of the product calls. On the other side, the square root function is the least frequent
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Table 8.33: The number of PCE operations with the number of iterations

PC products PC divisions Tensor Products Iterations

3105 425 8615 5

4968 680 13784 8

6210 850 17230 10

9315 1275 25845 15

15525 2125 43075 25

22977 3145 63751 40

a) Number of elements b) Polynomial order

Figure 8.42: Computation time as a function of: a) number of elements b) polynomial

order
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a) b)

Figure 8.43: Computation time: a) for the same number of iterations b) same accu-

racy

Table 8.34: Overall computation time tp and time spent on solving the system of

equations tsol: ISGM compared to the sparse Smolayk method (SMOL-non-nested,

NSMOL-nested)

ISGM SMOL NSMOL

Z tp tsol L tp tsol L tp tsol
10 26.91 5.58 25 34.63 19.8 19 20.98 11.23

20 44.02 11.92 69 97.92 56.78 39 42.74 22.82

35 69.96 23.83 165 235.36 135.28 93 102.54 53.27

56 117.79 41.81 351 499.86 262.14 165 203.23 86.60

84 225.20 68.81 681 972.05 512.72 237 300.93 122.66
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as it is called just once in each iteration. Similarly, the division is not often used and

the number of calls is circa 3 times smaller than the number of product calls.

Table 8.35: Overall computation time with the number of integration points. ISGM

- intrusive Galerkin, NPRO- integration by projection (sparse grid), NSOL- colloca-

tion by nested Smolyak

Order ISGM L NPRO NSOL

2 26.91 19 20.00 20.98

39 40.02 40.35

93 92.39 93.64

165 165.56 166.11

6 26.91 237 249.03 300.93

381 369.81 449.20

513 507.44 566.34

703 710.43 761.03

The overall time of the ISGM procedure strongly depends on the polynomial order

(see Table 8.32) and the number of the iterations of the nonlinear solver (see Ta-

ble 8.33), or, more precisely, on the number of points in which the stress lies outside

of the admissibility region and for which the closest point projection has to be per-

formed. Namely, the number of the polynomial operations grows with the increase

of the points in plastic state. It is interesting to note that the division as well as other

PCE operations are not so often called during the program run. After multiplication

the division is on the second place with only 425 divisions in 5 iterations. Of course

these numbers depend on the nature of the problem (as previously said) as well as on

the deterministic dimension (the number of nodes). In order to recognize the depen-

dence Fig. 8.42 a) and b) depicts the time neccessary to compute the product of two

PCEs of dimension N × Z with respect to N and Z. The PCE product is the most

frequently called operation, but also the cheapest one. For Z = 120 the PCE product

of 1000 × 120 requires 5.54s. This means that in circa 6 seconds one can multiply

two PCEs describing 1000 elements in one integration point. In contrast to this for

the same PCEs the division and the exponent take circa 50 times more. However, by

luck they are not as often called as multiplication. This may mutually compensate. In

contrast to the linear dependence on the deterministic dimension, the PCE operations

are exponentially dependent on the stochastic dimension, as shown in Fig. 8.42 b)

where the time necessary to multiply, divide, and exponentially transform the matrix

valued PCE is plotted. The multiplication is again the most efficient operation, while
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the division and the exponent are more expensive due to employment of the iterative

methods in their implementation.

Table 8.36: Overall computation time tp and time spent on solving the system of equa-

tions tsol: ISGM compared to the stochastic collocation (SCOL) and non-intrusive

Galerkin (NSGM)

ISGM SCOL NSGM

Z tp tsol L tp tsol tp tsol
10 26.91 5.58 19 20.00 11.06 283.61 11.25

20 44.02 11.92 39 39.93 21.64 319.39 127.89

35 69.96 23.83 93 92.89 51.38 458.42 385.62

56 117.79 41.81 165 170.45 83.27 623.3 510.76

84 225.20 68.81 237 249.03 111.49 881.9 779.93

Another study of the computation time can be done regarding the decision criteria

used to estimate the yield point. As shown in Fig. 8.43 a) the Markov criterion

appears to be much slower than the direct integration or the mean criteria for the

same probability level.

The reason is that the Markov plasticity zone is over-estimated, and thus more itera-

tions are necessary to achieve the same accuracy. The dependence of the computation

time on the achieved accuracy is plotted in Fig. 8.43 b). As expected, the bigger the

input variance is, the more computation time is needed.

The ISGM method has similar computation time as the projection by nested Smolyak

grid, see Table 8.34. However, this comparison is done for a very small system in

both the deterministic and stochastic sense, and hence it cannot be generalised. With

the increase of the number of the stochastic dimensions the number of the integration

points in the stochastic collocation grows, as well as the system size in the ISGM.

Therefore, the computation time increases, as shown in Table 8.35. Similar conclu-

sion can be made for the stochastic collocation method, see Table 8.36. However,

compared to the non-intrusive Galerkin method, ISGM only wins in computation

time but not in accuracy. Due to numerical errors caused by integration, the non-

intrusive Galerkin requires more iterations for solving the linear system of equations

than ISGM, and hence it is slower. To overcome this problem one may increase the

number of the integration points on the cost of overall computation time.
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Table 8.37: Overall computation time in case of material properties modelled as ran-

dom fields: ISGM -intrusive Galerkin, SCOL-stochastic collocation and MC-Monte

Carlo

Random fields computation time

ISGM SCOL MC

≈ 5h ≈ 15h ≈ 53days

Finally, if the material properties are modelled as random fields the total computa-

tion time grows drastically. For example for the problem with 2290 spatial degrees

of freedom, 20 RVs and the polynomial order 3 the total computation time of the

stochastic Galerkin method is around 5 hours. Here one has to take into account the

time for solving the KLE problems for all three uncertain RFs, the time of comput-

ing the mathematical expectation of the triple Hermitian product, and the rest of the

FEM procedures. On the other side, for the collocation with circa 13000 points one

needs approximately 15 hours, while the Monte Carlo solution, if not implemented

in parallel, requires around 53 days for 106 samples.

8.4 Conclusion

In the previous chapter the group of methods proposed in Chapter 5 is tested on

a few numerical examples in plane strain conditions. Even though the considered

problems are not of the three-dimensional type, nothing drastically would change in

the latter case, only the number of degrees of freedom would grow. The presented

study was designed to determine the effect of the input uncertainty on the system

response by considering two groups of methods: those based on the Galerkin pro-

jection of the residual onto polynomial basis and those collocating the elastoplastic

solution on the sparse Smolayk grid. Both methods are contrasted to the reference so-

lution obtained by direct integration with the help of 106 Monte Carlo samples. More

particularly two variants of the stochastic Galerkin method are considered: intrusive

and non-intrusive procedures. Both use the KLE/PCE approximation of the input

random fields and the PCE ansatz for the response solution. The difference lies in

the numerical computation of the stochastic residual: in the first case the solution is

obtained using polynomial chaos algebra, while in second the numerical integration

is purchased.
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In order to investigate the influence of the individual uncertain parameters on the sys-

tem response, the simple example describing the homogenous material properties in

a form of scalar valued RVs is first considered. The analysis suggest that the intrusive

Galerkin method is able to deliver the solution with the desired accuracy only if the

polynomial order of the solution is high enough. Lower polynomial orders can be

used only when the uncertainty entering the system is not too high. However, even

in such cases the method is greatly sensitive on the presence of the uncertainty in the

yield stress. There are several possible explanations for this. In general the algorithm

overestimates or underestimates the plasticity zone due to the weak approximation of

the convex domain and the existence of the local numerical errors which accumulate

with time. Only high polynomial orders can help to overcome this problem. How-

ever, the present results are significant in at least two major respects: the intrusive

Galerkin method compared to the Monte Carlo solution gives more accurate results

for the same computational load, and the computation of the statistics is much eas-

ier than in the sampling case. In addition, the ISGM is robust with respect to the

stochastic dimension M . Namely, even if the random variables are substituted by

the corresponding random fields, the algorithm still behaves in a similar manner. Its

accuracy strongly depends on the polynomial order. However, compared to the ran-

dom variable example the computational time increases. It is interesting to note that

the stress and strain-like solutions are alike to those obtained by the MC solution,

while the approximation of the possible non-smooth elasto-plastic deformation can

be a problem. In contrast to stress and strain, the plastic deformation admits huge

variance, and hence cannot be approximated by small polynomial orders.

In contrast to ISGM, the non-intrusive Galerkin method is not so sensitive to the

presence of uncertainty in the yield stress. At the same time, the method is more ac-

curate at the expense of computational cost. To keep the desired accuracy the method

increases the number of integration points with the increase of stochastic dimension.

Therefore, the method may become impractical in high stochastic dimensions. Be-

sides, the integration error affects the accuracy of the global stiffness matrix, which

further leads to the slower convergence of the Newton-like iterations than in case of

ISGM. This can be overcome by increasing the number of integration points, which

on the other side influences the efficiency of the algorithm.

The intrusive and non-intrusive variant of Galerkin method can be generally con-

sidered as “intrusive” since both require a certain modification in the finite element

code. While the intrusive method is completely invasive, the non-intrusive requires

only slight changes in the code. In this aspect, the stochastic collocation method and

the direct integration techniques are completely non-intrusive with the only differ-

ence that the collocation approach converges faster. When the elastoplastic problem

is described by random variables, this approach is maybe the most efficient as the
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computational load is similar to the ISGM one, and the accuracy is better. However,

the stochastic collocation approach only wins in small dimensions. With the increase

of the stochastic dimension the number of the integration points grows, and hence

the computational cost. This could be a problem if the cost of one deterministic run

is high enough.

Note that the conclusions drawn here are made for results validated with the help of

the Monte Carlo solution for 106 samples, even though this number is possibly not

large enough to be yet considered as the reference solution. Namely, the results in

this study show that the stochastic Galerkin and the collocation method detect the

error in the sampling produced by MC for low-dimensional problems.

From the aspect of computational cost and accuracy it is difficult to say which method

is the best applicable in practice. This strongly depends on the number of stochastic

dimensions and the properties of the posed problem. On the other side, with respect

to the accessibility to the finite element code, the stochastic Galerkin methods are not

recommended as they can be used only in combination with open-source codes.

246



Chapter 9

Conclusion

The present work introduces the idea of parameters describing the irreversible non-

linear behaviour as the incompletely known quantities whose probability distribution

functions can be determined with the help of the maximum entropy principle and

available a priori information. By favour of such modelled constitutive and harden-

ing tensors the classical deterministic approach has been extended to the stochastic

resolution of the inelastic problem described by uncertain parameters or an uncertain

right-hand side. Furthermore, with the help of the convex analysis and the theory

of variational inequalities, the mathematical similarity between the deterministic ab-

stract variational formulation and its stochastic counterpart has been illustrated. In

this regard the thesis provides the complete description of the stochastic variational

structure behind the inelastic phenomena with the focus on the infinitesimal as well

as the finite deformation elastoplasticity. By exhibiting the structure of the stochas-

tic evolutionary equations in a convex setting, the mathematical description of an

abstract primal variational formulation is carried over to the computationally more

suitable mixed variational description for which the existence and uniqueness of the

solution have been shown. With the help of proper convexity assumptions the mixed

problem is transformed to the numerically more comfortable minimisation of the

smooth convex functional on the discrete tensor product space, whose unique miniser

is obtained via the well-posed closest point projection method. To this end, a descrip-

tion in the language of non-dissipative and dissipative operators has been presented

and the relation between the global mixed and the local dual problem clarified.

The time and space discretisation of obtained stochastic evolutionary equations is

performed in a usual manner with the help of the implicit Euler scheme and the fi-

nite element method, while the stochastic dependence is resolved with the help of

the functional approximation of random variables via white noise analysis (stochas-

tic Galerkin and collocation) or by representing random variables in a more classical
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way by sampling (direct integration techniques). The former type of discretisation,

i.e. the idea of random variables as functions in an infinite dimensional space ap-

proximated by elements of finite dimensional spaces, is used to develop a completely

novel procedure— the stochastic closest point projection algorithm. The proposed

algorithm computes the functionals of the solution (given in some form of mathe-

matical expectation) in a purely algebraic manner if certain assumptions regarding

the smoothness of the integrand are made. Particularly, this thesis provides an ex-

tension of stochastic finite element methods and related numerical procedures in the

Galerkin context from the linear to the nonlinear case. These methods can be under-

stood in a sense of model reduction techniques due to the applied Karhunen-Loève

and polynomial chaos expansions, the truncation error of which is minimised by

Galerkin projection. To this end, the coupled nonlinear system of equations is solved

via stochastic Newton-like methods. In each iteration of these methods the correction

of the solution is computed with the help of polynomial chaos algebra operations and

the preconditioned Krylov sub-space methods used to solve the corresponding cou-

pled linear system of equations. The present study separates two ways of computing

the residual in a Galerkin manner: fully intrusive or non-intrusive variant. The for-

mer method represents the direct, purely algebraic way of computing the response

in each iteration of Newton-like methods, while the latter evaluates the residuum in

each iteration via high-dimensional integration rules based on random or determinis-

tic sampling, e.g. Monte Carlo and related techniques. Besides the Galerkin method,

the thesis provides another version of a functional approximation approach, already

known as a stochastic collocation.

This research also aimed to identify the pros and cons of various computational al-

gorithms described in this work. Even though the detailed comparison is provided,

it is still difficult to clarify which method is the most suitable to use. The intrusive

Galerkin method would be the proper choice if the main requirement is the computa-

tional efficiency. However, the method achieves accuracy in the plastic strain solution

only when the polynomial order is sufficiently high. Also, the method cannot be con-

sidered efficient in case when the problem dimension is too high. When efficiency is

not the primary condition, but accuracy, the direct integration techniques by Monte

Carlo are considered as a suitable choice. However, if the integrand has large vari-

ance the Monte Carlo method may show not so good convergence. On the other side,

the stochastic collocation method and the non-intrusive Galerkin may be well suited

when the ISGM procedure cannot be applied. Finally, one may say that the choice

depends on the particular problem and the number of the stochastic dimensions.
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9.1 Outlook

The direct stochastic Galerkin method seems to be a promising way of computing the

response statistics of the solution. However, the method is fully intrusive and requires

the complete modification of the finite element codes. In addition, the convergence

of the method is greatly influenced by local errors in Galerkin projections used in

polynomial chaos algebra. This means that the higher order polynomial basis has

to be used in order to accurately represent the solution. However, such requirement

is difficult to fulfill as the number of terms of polynomial chaos expansion grows

rapidly with the polynomial order, and thus the efficiency of the algorithm is affected.

In order to prevent this the adaptive discretisation of the supported space can help to

reduce the curse of dimensionality. Thus, the next step in any following analysis is to

construct the numerical algorithm in an adaptive fashion similarly to [27, 119, 174,

173].

An assumption of the probability distributions for model uncertainties is not suffi-

cient in order to realistically represent the practical problems. Instead, one has to

quantify the uncertainty in the input with the help of the provided measurement data.

In order to improve the description of the material one may apply the identification

techniques in a probabilistic manner [180, 192, 191] onto the problem considered

in this paper. Some of these issues have already been addressed in [191]. Besides,

further reduction of the number of material parameters describing the problem can

be considered. In this respect one may use the existing theory of non-Gaussian sym-

metric tensor-valued random fields [221, 222] in order to model the fully anisotropic

constitutive tensor.

Another interesting view on the problems presented in this thesis would be to consid-

erate the nonlinear elastic response in combination with the linear or nonlinear mixed

hardening plasticity. In a deterministic sense some of those models are already con-

sidered in [189] where the elastic energy is assumed to be of the hyperelastic type.

249





List of Figures

4.1 The comparison of the numerical and analytical covariance . . . . . 102

4.2 RF realisation with the change of lc . . . . . . . . . . . . . . . . . 104

4.3 The shape ofM -th KLE mode for smooth (a-c) and non-smooth (d-f)

correlation function . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.4 Lognormal RF realisation . . . . . . . . . . . . . . . . . . . . . . . 105

5.1 Comparison of plastic zones obtained by different yield criteria de-

cisions. Number of points that plastify is denoted by ppts. . . . . . . 122

5.2 The state of the variable as a function of σVM PDF . . . . . . . . . 125

6.1 The number of terms of PCE . . . . . . . . . . . . . . . . . . . . . 150

6.2 Convergence of Gauss-Hermite quadrature . . . . . . . . . . . . . . 151

6.3 The square root of Gaussian RV . . . . . . . . . . . . . . . . . . . 161

6.4 The square root of non-Gaussian RV . . . . . . . . . . . . . . . . . 162

6.5 The square root of Gaussian RV by Halley’s method . . . . . . . . . 163

6.6 The convergence of exp(θ) . . . . . . . . . . . . . . . . . . . . . . 165

6.7 The convergence of sin (θ) . . . . . . . . . . . . . . . . . . . . . . 167

251



List of Figures

7.1 The PLASTON module structure . . . . . . . . . . . . . . . . . . . 174

7.2 The DISFEM and NPSFEM scheme of communication . . . . . . . 175

7.3 Schematic representation of SGM and SCOL . . . . . . . . . . . . 176

7.4 Schematic representation of SGM and SCOL . . . . . . . . . . . . 177

7.5 The polynomial chaos algebra toolbox . . . . . . . . . . . . . . . . 179

7.6 The schematic diagram of PLASTON . . . . . . . . . . . . . . . . 183

8.1 Geometrical setup of the problem . . . . . . . . . . . . . . . . . . . 185

8.2 The RMSE of the input approximation . . . . . . . . . . . . . . . . 186

8.3 The convergence of the Monte Carlo method . . . . . . . . . . . . . 188

8.4 The MC solution compared to the reference solution . . . . . . . . 189

8.5 Influence of total input uncertainty ρσ on σVM . . . . . . . . . . . 195

8.6 Influence of the individual input uncertainty ρσ on σVM . . . . . . 196

8.7 Influence of different yield decisions on PDF of σVM . . . . . . . . 197

8.8 The ISGM residual converegence . . . . . . . . . . . . . . . . . . . 198

8.9 The residual convergence for different forms of yield criteria . . . . 199

8.10 The mean and var comparison between ISGM and MC . . . . . . . 202

8.11 The PDF comparison of σVM of ISGM to MC . . . . . . . . . . . . 203

8.12 The PDF comparison of εp of ISGM to MC . . . . . . . . . . . . . 203

8.13 The residual converegence for ISGM and MC . . . . . . . . . . . . 204

8.14 The NSGM response convergence . . . . . . . . . . . . . . . . . . 207

252



List of Figures

8.15 The probability density function comparison of σVM of ISGM and

NSGM to MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.16 Comparison of the probability density function of εp of ISGM and

NSGM to MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

8.17 The accuracy of the RF input approximation . . . . . . . . . . . . . 213

8.18 The influence of the mesh refinement on the response . . . . . . . . 214

8.19 The realisation of G (shear modulus) and approximation error . . . 216

8.20 The realisation of G (shear modulus) and approximation error . . . 216

8.21 The influence of lc on σVM . . . . . . . . . . . . . . . . . . . . . . 218

8.22 The residual convergence . . . . . . . . . . . . . . . . . . . . . . . 219

8.23 The mean and variance of σVM and εp . . . . . . . . . . . . . . . . 220

8.24 Probability exceedance of the von Mises stress . . . . . . . . . . . . 221

8.25 The geometrical setup of Cooke’s membrane . . . . . . . . . . . . 223

8.26 Comparison of deformed configurations . . . . . . . . . . . . . . . 223

8.27 The comparison of statistics for different uncertain parameters . . . 224

8.28 The plastic strain statistics and the probability exceedance of the von

Mises stress for 100 RV and order 3. . . . . . . . . . . . . . . . . . 225

8.29 The comparison of εp statistics for different values of lc . . . . . . . 226

8.30 The comparison of u statistics for different values of lc . . . . . . . 227

8.31 The geometrical set up . . . . . . . . . . . . . . . . . . . . . . . . 229

8.32 Realisations of components of the elastic constitutive tensor . . . . 230

8.33 Realisations of components of the elastic constitutive tensor . . . . 231

253



List of Figures

8.34 The mean response statistics for Cooke problem . . . . . . . . . . . 231

8.35 The mean response statistics for Cooke problem . . . . . . . . . . . 232

8.36 The variance response statistics for Cooke problem . . . . . . . . . 233

8.37 The variance response statistics for Cooke problem . . . . . . . . . 234

8.38 The mean response statistics for hook problem . . . . . . . . . . . . 234

8.39 The mean response statistics for hook problem . . . . . . . . . . . . 235

8.40 The variance response statistics for hook problem . . . . . . . . . . 236

8.41 The variance response statistics for hook problem . . . . . . . . . . 237

8.42 Computation time as a function of: a) number of elements b) poly-

nomial order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

8.43 Overall ISGM computation time . . . . . . . . . . . . . . . . . . . 241

254



List of Tables

2.1 Plasticity described at material point . . . . . . . . . . . . . . . . . 33

2.2 Plastic flow rule formulations . . . . . . . . . . . . . . . . . . . . . 34

2.3 Deterministic spaces of definition . . . . . . . . . . . . . . . . . . 42

2.4 Stress measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Large deformation plasticity . . . . . . . . . . . . . . . . . . . . . 52

3.1 Stochastic spaces of definition . . . . . . . . . . . . . . . . . . . . 70

3.2 Stochastic plasticity described at material point . . . . . . . . . . . 71

3.3 Flow rule formulations . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 Stress and strain formulations . . . . . . . . . . . . . . . . . . . . . 77

3.5 Normality rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.6 Stochastic large deformation plasticity . . . . . . . . . . . . . . . . 80

5.1 Convergence of the direct integration methods . . . . . . . . . . . . 114

6.1 The Wiener-Askey Chaos table . . . . . . . . . . . . . . . . . . . . 148

6.2 The approximation of lognormal RV . . . . . . . . . . . . . . . . . 150

255



List of Tables

6.3 Square of RV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.4 The accuracy of RVs division with respect to the order of polynomial

approximation of result . . . . . . . . . . . . . . . . . . . . . . . . 156

6.5 The error of n-th division of Gaussian RV . . . . . . . . . . . . . . 157

6.6 The error of n-th power of Gaussian RV . . . . . . . . . . . . . . . 158

6.7 The error of n-th power of non-Gaussian RV . . . . . . . . . . . . . 159

6.8 The logarithm of RV . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1 The sparse density of stochastic matrices . . . . . . . . . . . . . . . 180

7.2 The computation times after vectorisation . . . . . . . . . . . . . . 181

8.1 The MC relative error in stress variance . . . . . . . . . . . . . . . 189

8.2 The MC relative error in strain variance . . . . . . . . . . . . . . . 189

8.3 The response ρσ obtained by MC simulation . . . . . . . . . . . . . 190

8.4 The response RMSE for uncertain K with ρσ = 5% . . . . . . . . . 192

8.5 The response RMSE for uncertain σy with ρσ = 5% . . . . . . . . 192

8.6 The response RMSE (see Eq. (8.2)) for uncertain K,G and σy with

ρσ = 5% . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.7 The response RMSE for uncertain K with ρσ = 20% . . . . . . . . 193

8.8 The response RMSE for uncertain σy with ρσ = 20% . . . . . . . . 193

8.9 The response RMSE for uncertain K,G and σy with ρσ = 20% . . 193

8.10 The response ρσ obtained by ISGM . . . . . . . . . . . . . . . . . 195

8.11 The response ρσ for different uncertain parameters . . . . . . . . . 196

256



List of Tables

8.12 The comparison of yield criteria . . . . . . . . . . . . . . . . . . . 197

8.13 The stress RMSE (see Eq. (8.2)) between ISGM and MC . . . . . . 200

8.14 The strain RMSE (see Eq. (8.2)) between ISGM and MC . . . . . . 201

8.15 The response RMSE (see Eq. (8.2)) for different uncertain parameters 201

8.16 The ISGM and MC for the same computation time . . . . . . . . . 205

8.17 The stress RMSE between NSGM and MC . . . . . . . . . . . . . 206

8.18 The strain RMSE between NSGM and MC . . . . . . . . . . . . . 206

8.19 The response RMSE for different uncertain parameters . . . . . . . 206

8.20 The response ρσ obtained by NSGM . . . . . . . . . . . . . . . . . 209

8.21 The stress RMSE obtained by SCOL . . . . . . . . . . . . . . . . . 210

8.22 The strain RMSE obtained by SCOL . . . . . . . . . . . . . . . . . 210

8.23 The response RMSE between SCOL and NSGM . . . . . . . . . . 211

8.24 The relative error with the number of terms in KLE . . . . . . . . . 212

8.25 The RMSE comparison of ISGM and SCOL to MC . . . . . . . . . 217

8.26 The response RMSE between ISGM and LHC . . . . . . . . . . . . 217

8.27 The influence of lc on the RMSE . . . . . . . . . . . . . . . . . . . 218

8.28 The RMSE between ISGM and SCOL . . . . . . . . . . . . . . . . 218

8.29 The RMSE between SCOL and MC . . . . . . . . . . . . . . . . . 219

8.30 The number of stochastic degrees of freedom . . . . . . . . . . . . 238

8.31 The ISGM overall computation time . . . . . . . . . . . . . . . . . 239

8.32 The number of PCE operations with the polynomial order . . . . . . 239

257



List of Tables

8.33 The number of PCE operations with the number of iterations . . . . 240

8.34 The ISGM time compared to the time of the direct projection . . . . 241

8.35 The comparison of ISGM, NPRO and NSOL computation times . . 242

8.36 The comparison of ISGM, SCOL and NSGM computation times . . 243

8.37 The computation time for large dimensions . . . . . . . . . . . . . 244

258



List of Algorithms

1 Schematic representation of direct integration algorithm . . . . . . . 113

2 Stochastic Newton method via PCE algebra . . . . . . . . . . . . . . 120

3 Spectral Stochastic Closest Point Projection (SSCPP) . . . . . . . . . 129

4 Consistent moduli computed via PCE algebra . . . . . . . . . . . . . 131

5 Non-Intrusive Stochastic Closest Point Projection . . . . . . . . . . . 137

259





List of Symbols

Abbrevation

SVI Stochastic variational inequality

RVI Random variational inequality

CSY S coordinate system

a.e. almost everywhere

a.s. almost surely

KLE Karhunen-Loève expansion
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[16] I. Babuška, F. Nobile, and R. Tempone. A stochastic collocation method for

elliptic partial differential equations with random input data. SIAM Journal on

Numerical Analysis, 45(3):1005–1034, 2007. doi:10.1137/100786356.
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[35] J. Büttner and B. Simeon. Runge–Kutta methods in elastoplasticity. Ap-

plied Numerical Mathematics, 41(4):443–458, 2002. doi:10.1016/

S0168-9274(01)00133-7.

[36] R. E. Caflisch. Monte Carlo and Quasi-Monte-Carlo methods. Acta Numerica,

7:1–49, 1998. doi:10.1017/S0962492900002804.

[37] R. H. Cameron and W. T. Martin. Transformations of Wiener integrals under

translations. The Annals of Mathematics, 45(2):386–396, 1944. Available

from: http://www.jstor.org/stable/1969276.

[38] Y. Cao. On convergence rate of Wiener-Ito expansion for generalized random

variables. An International Journal of Probability and Stochastic Processes,

78(3):179–187, 2006. doi:10.1080/17442500600768641.

[39] C. Carstensen. Convergence of adaptive finite element methods in computa-

tional mechanics. Applied Numerical Mathematics, 59(9):2119–2130, 2009.

doi:10.1016/j.apnum.2008.12.006.

[40] C. Carstensen, K. Hackl, and A. Mielke. Non-convex potentials and mi-

crostructures in finite-strain plasticity. Proceedings of the Royal Society A

Mathematical Physical and Engineering Sciences, 458(2018):299–317, 2002.

doi:10.1098/rspa.2001.0864.

[41] C. Carstensen, A. Orlando, and J. Valdman. A convergent adaptive finite

element method for the primal problem of elastoplasticity. International

Journal for Numerical Methods in Engineering, 67(13):1851–1887, 2006.

doi:10.1002/nme.1686.

271

http://dx.doi.org/10.1016/0020-7683(95)00279-0
http://dx.doi.org/10.1016/0167-4730(88)90020-3
http://dx.doi.org/10.1016/0167-4730(88)90020-3
http://dx.doi.org/10.1007/s00607-003-0016-4
http://dx.doi.org/10.1007/s00607-003-0016-4
http://dx.doi.org/10.1016/S0168-9274(01)00133-7
http://dx.doi.org/10.1016/S0168-9274(01)00133-7
http://dx.doi.org/10.1017/S0962492900002804
http://www.jstor.org/stable/1969276
http://dx.doi.org/10.1080/17442500600768641
http://dx.doi.org/10.1016/j.apnum.2008.12.006
http://dx.doi.org/10.1098/rspa.2001.0864
http://dx.doi.org/10.1002/nme.1686


Bibliography

[42] J. Chaboche. Constitutive equations for cyclic plasticity and cyclic visco-

plasticity. International Journal of Plasticity, 5(3):247–302, 1989. doi:

10.1016/0749-6419(89)90015-6.

[43] J. Chakrabarty. Theory of plasticity. McGraw-Hill Book Company, New York,

1987.

[44] H. S. Chen and M. A. Stadtherr. A modification of Powell’s Dogleg method for

solving systems of nonlinear equations. Computers & Chemical Engineering,

5(3):143–150, 1981. doi:10.1016/0098-1354(81)85003-X.

[45] W. F. Chen and A. F. Saleeb. Constitutive equations for engineering materials.

Wiley InterScience, New York, 1982.

[46] G. Christakos. Random field models in earth sciences. Academic Press, New

York, 1992.

[47] D. B. Chung, M. A. Gutierrez, and R. de Borst. The development of

an object-oriented stochastic finite element package for the analysis of

fibre-metal laminates. Computational Methods in Stochastic Mechan-

ics and Reliability Analysis, 194:1427–1446, 2005. Available from:

http://www.imamod.ru/˜serge/arc/conf/ECCOMAS_2004/

ECCOMAS_V1/proceedings/pdf/29.pdf.

[48] D. B. Chung, M. A. Gutiérrez, L. L. Graham-Brady, and F. J. Lingen. Effi-

cient numerical strategies for spectral stochastic finite element models. Inter-

national Journal for Numerical Methods in Engineering, 64(10):1334–1349,

2005. doi:10.1002/nme.1404.

[49] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, Philadel-

phia, 2002.

[50] A. P. Cisilino and M. H. Aliabadi. A boundary element method for three-

dimensional elastoplastic problems. Engineering Computations, 15(8):1011–

1030, 1998. doi:10.1108/02644409810244110.

[51] T. F. Coleman and Y. Li. On the convergence of interior-reflective Newton

methods for nonlinear minimization subject to bounds. Mathematical Pro-

gramming, 67(2):189–224, 1994. doi:10.1007/BF01582221.

[52] K. Conrad. Probability distributions and maximum entropy. Entropy,

6(10):1–20, 2004. Available from: http://www.math.uconn.edu/

˜kconrad/blurbs/analysis/entropypost.pdf.

272

http://dx.doi.org/10.1016/0749-6419(89)90015-6
http://dx.doi.org/10.1016/0749-6419(89)90015-6
http://dx.doi.org/10.1016/0098-1354(81)85003-X
http://www.imamod.ru/~serge/arc/conf/ECCOMAS_2004/ECCOMAS_V1/proceedings/pdf/29.pdf
http://www.imamod.ru/~serge/arc/conf/ECCOMAS_2004/ECCOMAS_V1/proceedings/pdf/29.pdf
http://dx.doi.org/10.1002/nme.1404
http://dx.doi.org/10.1108/02644409810244110
http://dx.doi.org/10.1007/BF01582221
http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf
http://www.math.uconn.edu/~kconrad/blurbs/analysis/entropypost.pdf


Bibliography

[53] Y. Dafalias. Issues on the constitutive formulation at large elastoplastic de-

formations, part 1: Kinematics. Acta Mechanica, 69(1):119–138, 1987.

doi:10.1007/BF01175717.

[54] Y. Dafalias. Issues on the constitutive formulation at large elastoplastic defor-

mations, part 2: Kinetics. Acta Mechanica, 73(1):121–146, 1988. Available

from: http://dx.doi.org/10.1007/BF01177034.
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Mécanique, 14:39–63, 1975.

[92] W. Han and B. Daya Reddy. Plasticity: mathematical theory and numerical

analysis. Springer, New York, 1999.

[93] W. Han and M. Sofonea. Quasistatic contact problems in viscoelasticity and

viscoplasticity. Studies in Advanced Mathematics, American Mathematical

Society, 2001. Available from: http://epub.ub.uni-muenchen.de/

916/1/HeissWinschel2006.pdf.

[94] F. Heiss and V. Winschel. Estimation with numerical integration on sparse

grids. Technical Report 2006-15, Department of Economics, University of

Munich, 2006. Available from: http://epub.ub.uni-muenchen.

de/916/1/HeissWinschel2006.pdf.

[95] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. A survey of software for

sparse eigenvalue problems. Technical report, Universidad Politecnica de Va-

lencia, 2009. Available from: http://www.grycap.upv.es/slepc/.

[96] T. Hida, H. H. Kuo, J. Potthoff, and L. Streit. White noise analysis-an infinite

dimensional calculus. Kluwer, Dordrecht, 1993.

276

http://dx.doi.org/10.1080/07362990008809706
http://dx.doi.org/10.1080/01630560600790819
http://dx.doi.org/10.7153/jmi-03-44
http://dx.doi.org/10.7153/jmi-03-44
http://dx.doi.org/10.1016/S0022-5096(96)00110-X
http://dx.doi.org/10.1016/S0022-5096(96)00110-X
http://dx.doi.org/10.1098/rspa.2007.0086
http://epub.ub.uni-muenchen.de/916/1/HeissWinschel2006.pdf
http://epub.ub.uni-muenchen.de/916/1/HeissWinschel2006.pdf
http://epub.ub.uni-muenchen.de/916/1/HeissWinschel2006.pdf
http://epub.ub.uni-muenchen.de/916/1/HeissWinschel2006.pdf
http://www.grycap.upv.es/slepc/


Bibliography
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Career

• 2010-today Research assistant, Institut für Wissenschaftliches Rechnen, Tech-

nische Universität Braunschweig

Projects

• Solving Multiphysics Problems with the help of Software PAK (SOMUPAK),

DAAD PPP-Serbien, 2012-today

• Quantification of Uncertainty and Updating in the Description of Heat

and Moisture Transport in Heterogeneous Materials (BeWuF), DAAD PPP-

Tschechien, 2011-2012

• Grundlagen des Hochauftriebs künftiger Verkehrsflugzeuge (SFB880), DFG

Project, 2010-today

• Quantification of Uncertainty in the Description of Heat and Moisture Trans-

port in Heterogeneous Materials, DFG Project, 2010-today

Scholarships and Prizes

• Jan.-May 2010 DAAD Scholarship

• 2007-2010 Institut für Wissenschaftliches Rechnen, Technische Universität

Braunschweig Scholarship

• 2005 Student of generation, University Kragujevac

• 2005 The best student in engineering science of Republic of Serbia

• 2005 Mihailo Pupin Scholarship

294



Curriculum Vitae

• 2004-2005 Studenica Scholarship

• 2004-2006 Serbian Republic Foundation for Young Talents Scholarship
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[18] O. Pajonk, B. Rosić, A. Litvinenko and H. G. Matthies. A Deterministic Filter

for non-Gaussian State Estimation. PAMM Proc. Appl. Math. Mech., 11: 703

-704, 2011, doi: 10.1002/pamm.201110341

[19] H. G. Matthies, A. Litvinenko, O. Pajonk, B. Rosić and E. Zander, Parametric
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[35] H. G. Matthies and B. Rosić. Inelastic Media under Uncertainty: Stochastic

Models and Computational Approaches. IUTAM Symposium on Theoretical,

Modelling and Computational Aspects of Inelastic Media, Cape Town, South

Africa, January 2008

[36] B. Rosić and H. G. Matthies. Computational Approaches for Inelastic Media

with Uncertain Parameters. 8th World Congress on Computational Mechanics

WCCM8 and 5th European Congress on Computational Methods in Applied

Sciences and Engineering ECCOMAS 2008, Venice, Italy, July 2008.
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[52] B. Rosić and H. G. Matthies.Stochastic Galerkin method for the Elastoplasticity

Problem with Uncertain Parameters. Trends & Challenges in Computational

Mechanics (TCCM). A Conference in honor of Peter Wriggers’ 60th birthday,

Padua, Italy, September 2011
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The focus of this study is set on the rate-independent evolutionary pro-

blem with general hardening whose material characteristics are assumed to

be uncertain. In this regard, within the framework of infinitesimal and large

displacement elastoplasticity theory, a class of abstract stochastic variational

inequalities of the second kind is considered, both theoretically and numeri-

cally. By exhibiting the structure of the stochastic evolutionary equations in a

convex setting, the mathematical description of an abstract primal variational

formulation is carried over to the computationally more suitable mixed va-

riational description for which the existence and uniqueness of the solution

is studied. Time discretised as usual with backward Euler, the inequality is

reduced to a minimisation problem for a convex functional on discrete ten-

sor product subspaces whose unique minimiser is obtained via a stochastic

closest point projection algorithm based on “white noise analysis”.
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