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Mathematical analysis and computer modeling are revealing to us that the shapes and
processes we encounter in nature�the way that plants grow, the way that mountains
erode or rivers �ow, the way that snow�akes or islands achieve their shapes, the
way that light plays on a surface, the way the milk folds and spins into your co�ee
as you stir it, the way that laughter sweeps through a crowd of people�all these
things in their seemingly magical complexity can be described by the interaction of
mathematical processes that are, if anything, even more magical in their simplicity.

Douglas Adams
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Rezime rada

U ovoj doktorskoj disertaciji bavimo se linearnim i nelinearnim problemima upra-
vljanja opisanim sistemima obi£nih diferencijalnih jedna£ina, u kojima �guri²e Ka-
putov izvod reda α ∈ (0, 1], koji se u slu£aju α = 1 svodi na klasi£an izvod prvog
reda. Bavimo se pitanjem globalne kontrolabilnosti sistema, odnosno ispitujemo pod
kojim uslovima, za proizvoljno po£etno i krajnje stanje, postoji funkcija upravljanja
takva da re²enje sistema u zadatom vremenskom intervalu dostigne ºeljeno krajnje
stanje.

Najpre ispitujemo osobine matrica prelaska stanja koje su fundamentalne matrice
re²enja sistema i izvodimo ograni£enja tih matrica. Zatim se bavimo osobinama
re²enja odre�enog tipa nelinearnog sistema sa Kaputovim izvodom. Novi rezultati
do kojih dolazimo publikovani su u radu [35].

Nakon toga, koriste¢i rezultate iz klasi£ne teorije linearnog upravljanja, razvijamo
teoriju upravljanja za op²ti oblik linearnih sistema sa Kuputovim izvodima. Uvodimo
Gramovu matricu kontrolabilnosti i izvodimo nekoliko potrebnih i dovoljnih uslova za
globalnu kontrolabilnost sistema. Dalje, dolazimo do optimalne funkcije upravljanja
u teºinskim L2 prostorima, koji se prirodno name¢u zbog singulariteta koji se javlja u
re²enjima adjungovanih sistema sa Riman-Ljuvilovim frakcionim izvodima. Dobijeni
rezultati objavljeni su u radu [33].

Na kraju, dobijene rezultate primenjujemo na problem nelinearnog upravljanja
i koriste¢i linearizaciju sistema i Lere-�auderovu teoremu �ksne ta£ke dolazimo do
dovoljnih uslova za kontrolabilnost jedne klase nelinearnih sistema. Rezultati koje
predstavljamo bazirani su na radu [34].
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Apstrakt

Glavni predmet istraºivanja ove teze su nelinearni problemi upravljanja slede¢eg
oblika

C
0 Dα

t y(t) = −Af(y(t))y(t) +Bu(t), t ∈ (0, T ), y(0) = y0, (∗)

gde je y : [0, T ] → Rd funkcija stanja sistema, u : [0, T ] → RN funkcija upra-
vljanja, f : Rd → (0,∞) neprekidna funkcija, A ∈ Rd×d realna simetri£na pozi-
tivno semide�nitna matrica, B ∈ Rd×N realna matrica i C0 Dα

t Kaputov izvod reda
α ∈ (0, 1], koji se u slu£aju α = 1 svodi na klasi£an izvod prvog reda. Bavimo se
problemom kontrolabilnosti sistema (∗), odnosno pokazujemo da ako A i B zado-
voljavaju Kalmanov uslov ranga i funkcija f ispunjava odre�ene uslove regularnosti,
onda za proizvoljna po£etna i krajnja stanja y0 i yT , moºemo na¢i funkciju upra-
vljanja u takvu da re²enje sistema (∗) dostiºe ºeljeno stanje u krajnjem trenutku,
tj. y(T ) = yT . Da bismo to ostvarili, neophodno je da izvedemo nekoliko pomo¢nih
rezultata vezanih za frakcione diferencijalne jedna£ine kao i za linearne frakcione
probleme upravljanja sa nekonstantim koe�cijentima.

Prvo, de�ni²emo Riman-Ljuvilove i Kaputove matrice prelaska stanja koje se
javljaju kao esencijalni delovi re²enja linearnih frakcionih sistema i izvodimo ocene
tih matrica. Dalje, posmatramo nelinearni frakcioni sistem jedna£ina

C
0 Dα

t y(t) = −Af(y(t))y(t), t ∈ (0, T ), y(0) = y0,

i pokazujemo postojanje, jedinstvenost i uniformnu ograni£enost njegovog re²enja,
²to ¢e biti od velikog zna£aja za konstrukciju re²enja nelinearnog problema upra-
vljanja.

Drugo, rezultate iz linearne teorije upravljanja sa celobrojnim izvodima uop²ta-
vamo na frakcioni slu£aj. Preciznije, posmatramo linearne frakcione probleme upra-
vljanja sa nekonstantim koe�cijentima, za njih de�ni²emo Gramovu matricu kontro-
labilnosti, pokazujemo ekvivalenciju izme�u kontrolabilnosti i regularnosti Gramove
matrice, uvodimo pridruºeni adjungovani problem i pokazujemo ekvivalenciju izme�u
kontrolabilnosti problema upravljanja i opservabilnosti adjungovanog problema. Dalje,
koriste¢i Hilbertov metod jedinstvenosti i tehnike varijacionog ra£una, dolazimo do
optimalne funkcije upravljanja u teºinskom L2 prostoru. Teºinski L2 prostor se



prirodno name¢e jer, u frakcionom slu£aju, kada je α ∈ (0, 1
2
], re²enje adjungovanog

sistema ne pripada klasi£nom prostoru L2.
Zatim, koriste¢i osobine re²enja linearnizovanog problema upravljanja i Lere-

�auderovu teoremu �ksne ta£ke, pokazujemo kontrolabilnost sistema (∗). Slu£ajeve
α = 1 i α ∈ (0, 1) analiziramo zasebno, jer, u slu£aju kada red izvoda nije celo-
brojan, konstrukcija re²enja zahteva uzimanje u obzir memorije koja je sadrºana u
frakcionom izvodu.



Abstract

The main subject of research of this thesis are nonlinear control problems of the
following type

C
0 Dα

t y(t) = −Af(y(t))y(t) +Bu(t), t ∈ (0, T ), y(0) = y0, (∗)

where y : [0, T ] → Rd is the state of the system, u : [0, T ] → RN is the control
function, f : Rd → (0,∞) is a continuous function, A ∈ Rd×d is a real symmetric
positive semide�nite matrix, B ∈ Rd×N is a real matrix and C

0 Dα
t denotes the Caputo

fractional derivative of order α ∈ (0, 1], which in the case α = 1 reduces to the
classical �rst order derivative. We consider the question of global controllability of
(∗), more precisely, we prove that if A and B satisfy the Kalman rank condition and
function f meats certain regularity conditions, then for any given initial and �nal
data y0 and yT , we can �nd a control function u such that the solution of the system
(∗) reaches the desired state at the end of the interval, i.e., y(T ) = yT . In order to
do so, we derive several auxiliary results regarding fractional di�erential equations
and linear time-varying fractional control problems.

Firstly, we de�ne the Riemann-Liouville and the Caputo state-transition matri-
ces, which are essential part of the solutions of linear fractional systems, and derive
estimates of those matrices. Further, we consider nonlinear fractional system

C
0 Dα

t y(t) = −Af(y(t))y(t), t ∈ (0, T ), y(0) = y0,

and prove existence, uniqueness and uniform boundedness of its solution, which will
be substantial for the construction of the solution of our nonlinear control problem.

Secondly, we generalize results from the integer-order linear control theory to the
fractional setting. More precisely, we consider linear time-varying fractional control
problems, introduce the controllability Gramian matrix, prove the equivalence bet-
ween controllability and regularity of the Gramian, introduce the associated adjoint
problem and prove the equivalence between controllability of the control problem
and observability of the associated adjoint problem. Moreover, we apply the Hilbert
uniqueness method and techniques from the calculus of variations to obtain the
optimal control function in the weighted L2-space. The weighted L2-spaces arise



naturally in the fractional setting, since when α ∈ (0, 1
2
], the solution of the fractional

adjoint problem does not belong to the classical L2-space.
Then, using properties of the solution of the linearized control problem and the

Leray-Schauder �xed point theorem, we prove controllability of the system (∗). We
consider the cases α = 1 and α ∈ (0, 1) separately, since in the non-integer case the
construction of the solution requires to take into account the memory embedded in
the fractional derivative.



Preface

From the ancient cultures of Mesopotamia to the modern age, one of the key in-
gredients of the development of human civilization was the need for understanding
and controlling natural processes and phenomena. In order to adapt and make
everyday life increasingly comfortable, we (the humanity) managed to understand
and describe many physical laws and use them to our advantage. Furthermore, we
have constructed machines to help us overcome our boundaries, and do the hard (or
just the boring) work for us. Behind a huge number of machines and technology
based systems lies a control problem that represents the interconnection of two main
functions�the state function and the control function. To �solve� the control prob-
lem means to �control� the state of the system, i.e., to make it reach a desired state
or perform a desired task.

The development of modern control theory started in 1960s, and it was oriented
into two directions�linear and nonlinear control. Initially, the problems with or-
dinary di�erential equations were studied, and then the research extended to the
systems involving partial di�erential equations. Recently, the systems with deriva-
tives of noninteger order found their application in control theory. Namely, due
to the memory property, they allow a greater degree of accuracy in modeling the
behavior of materials and processes with hereditary e�ects [3, 4, 37].

In this thesis we are focused on �nite-dimensional control problems, with integer
and noninteger derivatives. The main subject of research are quasilinear control
problems with unbounded and dispersive dynamics, which have been studied in [19,
34]. As it often occurs, in order to deal with nonlinearities, �rstly, one needs to
understand and examine the linear counterpart of the system. Classical linear control
theory was thoroughly studied and there is plenty of literature addressing linear
control problems with integer-order derivatives [1, 14, 23, 38, 60, 63, 64]. On the
other hand, when it comes to linear fractional control theory, most of the focus has
been on the time-invariant systems (see e.g. [8, 6, 12, 52, 55]). One of the reasons
for that was the lack of a detailed analysis of the theory of fractional di�erential
equations. Over the last two decades many contributions were made in that �eld
(see e.g. [13, 18, 24, 25, 45, 48, 53]), also contributing to the research in fractional-
order control. Since there was no general theory addressing linear fractional control



problems, we tried to generalize most of the classical results from linear control
theory to the fractional setting, cf. [33]. The Section 3.2 of this thesis covers the
results obtained in [33], which are, beside being a contribution to the linear control
theory, also signi�cant for the construction of the solution of the linearized control
problem in Section 4.2. Furthermore, when dealing with fractional derivatives which
are nonlocal operators, the construction of the piecewise solution is not so simple as
in the integer-derivative case, since one needs to take into account the accumulated
memory. That is why the properties of the solution of the nonlinear system from
[35] will also play an important role in the analysis of our nonlinear control problem.

The thesis is organized as follows:
In Chapter 1, we establish the basis for later work by introducing notation, re-

calling de�nitions and properties of several classes of function spaces, presenting the
main results of the Schauder �xed point theory and by giving a short introduction
to the basics of control theory. Furthermore, we give a brief historical overview of
the breakthroughs in control theory.

Chapter 2 is devoted to the theory of fractional calculus. We recall de�nitions of
fractional operators and then focus on the systems of fractional di�erential equations.
First, we give classical results regarding the existence and uniqueness of the solution.
Next, we take a closer look at the linear systems of fractional di�erential equations,
speci�cally at their fundamental solution matrices. We conclude this chapter with
the result related to the solution of a nonlinear fractional system, obtained in [35].

Chapter 3 deals with linear control theory and it is divided into two main sections.
In Section 3.1, we present classical results from the integer-order linear control theory.
Then, in Section 3.2, we present the general theory of linear time-varying fractional
control problems, developed in [33].

In Chapter 4, nonlinear control problems are studied. Section 4.1 deals with the
system studied in [19]. We use the same main idea as in [19], which is to consider
a linearized system and apply the Leray-Schauder �xed point theorem to obtain
a solution of the nonlinear problem, although we provide a di�erent approach to
construction of the solution of linearized problem. Section 4.2 contains novel results
from [34], where a quasilinear fractional control problem is studied. Using the Leray-
Schauder �xed point theorem, properties of linear control systems from Section 3.2,
and the properties of the solutions of fractional di�erential equations from Chapter
2, we prove controllability of our nonlinear system.

Chapter 5 contains the summary of the obtained results and a short discussion
of the possible future work and application of the presented ideas.
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Chapter 1

Introduction

Firstly, we introduce notation that will be used throughout the thesis, recall de�ni-
tions of several classes of function spaces and present main results of the Schauder
�xed point theory. Secondly, we give an introduction to control theory, with basic
notions and properties of control problems. Then, we give a brief historical review
of the development of control theory as a branch of applied mathematics.

1.1 Preliminaries

We begin with notations in vector spaces Rd, d ∈ N. We denote by

� | · | the Euclidean norm, i.e., |x| =
(

d∑
k=1

x2
k

) 1
2

, for any x = (x1, . . . , xd) ∈ Rd;

� | · |1 the l1-norm, i.e., |x|1 =
d∑

k=1

|xk|, for any x = (x1, . . . , xd) ∈ Rd;

� |·|∞ the maximum norm, i.e., |x|∞ = max{|x1|, . . . , |xd|}, for x = (x1, . . . , xd) ∈
Rd;

� 〈·, ·〉 the inner product, i.e., 〈x, y〉 :=
d∑

k=1

xkyk, for any x = (x1, . . . , xd), y =

(y1, . . . , yd) ∈ Rd.

We recall the de�nition of the adjoint operator.
Consider a linear operator A : H1 → H2 between Hilbert spaces H1 and H2, with

inner products 〈·, ·〉H1 and 〈·, ·〉H2 , respectively. The adjoint operator of A is a linear
operator A∗ : H2 → H1 such that

〈Ax, y〉H2 = 〈x,A∗y〉H1 , for every x ∈ H1, y ∈ H2.
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Speci�cally, when A is a real m × d matrix and H1 = Rd, H2 = Rm are Euclidian
spaces, then A∗ = AT, where (·)T denotes the transpose operation.

1.1.1 Function spaces

Let −∞ < a < b <∞, d ∈ N, k ∈ N ∪ {0}.
We begin by recalling de�nition of the Lp-spaces, i.e., spaces of p-integrable func-

tions. For 1 ≤ p <∞,

Lp([a, b];Rd) :=

{
f : [a, b]→ Rd :

b∫
a

|f(t)|p dt <∞

}
,

and it is equipped with the norm

‖f‖p :=
( b∫
a

|f(t)|p dt
) 1
p
.

For p =∞, we have the space of measurable, almost everywhere bounded functions:

L∞([a, b];Rd) :=

{
f : [a, b]→ Rd : ‖f‖∞ <∞

}
,

where
‖f‖∞ := inf{C ≥ 0 : |f(t)| ≤ C, for almost every t ∈ [a, b]}.

We recall that for p = 2, L2([a, b];Rd) is a Hilbert space with the inner product

〈f, g〉L2 :=

b∫
a

〈f(t), g(t)〉 dt.

Further, for the analysis of fractional control problems we shall need the weighted
L2-spaces. For ω ∈ (−1, 1), we de�ne the space:

L2
ω([a, b];Rd) :=

{
f : [a, b)→ Rd : (b− t)

ω
2 f(t) ∈ L2([a, b];Rd)

}
(1.1)

equipped with the norm

‖f‖L2
ω

=
( b∫
a

(b− t)ω|f(t)|2 dt
) 1

2
.
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We have that L2
ω([a, b];Rd) is a Hilbert space with inner product

〈f, g〉L2
ω

:=

b∫
a

(b− t)ω〈f(t), g(t)〉 dt.

Speci�cally, when ω = 0, L2
0([a, b];Rd) = L2([a, b];Rd). Of a special interest to us

will be the cases ω = α − 1 and ω = 1 − α, with α ∈ (0, 1) being the order of
the fractional derivative �guring in the control system. In this case, we have the
following inclusions:

L∞([a, b];Rd) ⊂ L2
α−1([a, b];Rd) ⊂ L2([a, b];Rd) ⊂ L2

1−α([a, b];Rd) ⊂ L1([a, b];Rd).

Notice that if f ∈ L2
α−1([a, b];Rd) and g ∈ L2

1−α([a, b];Rd), then 〈f, g〉L2 is well-
de�ned:

〈f, g〉L2 =

b∫
a

〈f(t), g(t)〉 dt =

b∫
a

〈(b− t)
α−1
2 f(t), (b− t)

1−α
2 g(t)〉 dt

= 〈(b− t)
α−1
2 f(t), (b− t)

1−α
2 g(t)〉L2 .

Now we move to the notion of continuity. By C([a, b];Rd), we denote the space
of continuous functions f : [a, b] → Rd, and by Ck([a, b];Rd) the space of k times
continuously di�erentiable functions f : [a, b]→ Rd, equipped with norms:

‖f‖∞ = max
t∈[a,b]

|f(t)| and ‖f‖Ck =
k∑

m=0

‖f (m)‖∞ =
k∑

m=0

max
t∈[a,b]

|f (m)(t)|.

We say that the set X ⊂ C([a, b];Rd) is equicontinuous if for every ε > 0, there
exists δ > 0 (which depends only on ε) such that

(∀f ∈ X)(∀s, t ∈ [a, b])(|s− t| < δ ⇒ |f(s)− f(t)| < ε).

Here, we recall the Arzelà-Ascoli theorem, which will be used in the thesis.

1.1.1 Theorem (Arzelà-Ascoli) If a sequence {fn} in C([a, b];Rd) is bounded and
equicontinuous, then it has a uniformly convergent subsequence.

When dealing with fractional derivatives of order α ∈ (0, 1), and regularity of
solutions of fractional di�erential equations, several more classes of functions arise
naturally. Firstly, the class of weighted continuous functions: for γ ∈ [0, 1], we
denote by Cγ([a, b];Rd) the space of functions f : (a, b]→ Rd such that the function
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fγ(t) = (t − a)γf(t) belongs to the space C([a, b];Rd). Naturally, Cγ([a, b];Rd) is
endowed with the norm

‖f‖Cγ = ‖fγ‖∞ = max
t∈[a,b]

|(t− a)γf(t)|.

For γ = 0, C0([a, b];Rd) = C([a, b];Rd).
Secondly, the class of Hölder continuous functions.

1.1.2 De�nition A function f : [a, b]→ Rd is Hölder continuous of order α ∈ (0, 1]
if there exists a positive constant Cα such that for every s, t ∈ [a, b] it holds that

|f(s)− f(t)| ≤ Cα|s− t|α. (1.2)

By Hα([a, b];Rd) we denote the space of Hölder continuous functions of order α on
[a, b].

For α = 1, H1([a, b];Rd) is the space of Lipschitz continuous functions on [a, b]. The
case α > 1 is not of an interest since it reduces to constant functions only, and for
any 0 < α < β < 1 we have the following strict inclusions:

C1([a, b];Rd) ⊂ H1([a, b];Rd) ⊂ Hβ([a, b];Rd) ⊂ Hα([a, b];Rd) ⊂ C([a, b];Rd).

The space Hα([a, b];Rd) is a Banach space (see [62]), when equipped with the norm:

‖f‖Hα = max
t∈[a,b]

|f(t)|+ sup
s,t∈[a,b],s 6=t

|f(s)− f(t)|
|s− t|α

,

where the second term coincides with the in�mum of all possible constants Cα for
which (1.2) holds.

Next, we recall the notion of absolute continuity.

1.1.3 De�nition A function f : [a, b]→ Rd is absolutely continuous on an interval
[a, b] if for every ε > 0 there exists δ > 0 such that for any n ∈ N and any family of
disjoint intervals [ak, bk] ⊂ [a, b], k = 1, 2, ..., n, it holds

n∑
m=1

(bm − am) < δ ⇒
n∑

m=1

|f(bm)− f(am)| < ε.

The space of absolutely continuous functions on [a, b] is denoted by AC([a, b];Rd).
By ACk([a, b];Rd) we denote the space of functions f : [a, b] → Rd which have
continuous derivatives up to order k − 1 on [a, b] and f (k−1) ∈ AC([a, b];Rd).

Throughout the thesis, the notation f(t) = O(g(t)), t → a, means that there
exist ε > 0 and M > 0 such that

∣∣∣f(t)
g(t)

∣∣∣ ≤M , when |t− a| < ε.
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1.1.2 Schauder �xed point theory

In the theory of nonlinear equations, a classical method for the proof of existence of
a solution is based on a �xed point theorem approach. There are many variants of
�xed point theorems, depending on the type of the mapping being considered. For
example a well-known Banach �xed point theorem is a standard tool in theory of
ordinary di�erential equations. In this thesis, we will use the Leray-Schauder �xed
point theorem, also known as the Schaefer �xed point theorem, to prove the existence
of a solution for nonlinear control problems. Compared to the Banach theorem, it
gives only the existence of the �xed point, not uniqueness, but also requires relaxed
conditions. First, it was proved by Schauder in 1930, for Banach spaces, and later
Tychono� proved its generalization to locally convex spaces. Here, we recall only
the statements of the theorems, and for the proofs we refer to [17, Th. B.17.] and
[56, Ch. 10 & 11].

Since the Schauder �xed point theory relies on convex and compact properties of
sets and maps, we recall de�nitions of these notions.

1.1.4 De�nition Let X and Y be vector spaces. The set K ⊂ X is convex if for
every x1, x2 ∈ K and λ ∈ [0, 1],

λx1 + (1− λ)x2 ∈ K.

The function f : X → Y is convex if for every x1, x2 ∈ K and λ ∈ [0, 1] it holds

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).

1.1.5 De�nition Let X and Y be topological vector spaces.
The set K ⊂ X is compact if every open cover of K has a �nite subcover, i.e.,

for every collection {Ui}i∈I of open subsets of X such that K ⊂
⋃
i∈I
Ui, there exists a

�nite subcollection {Uik}k=1,...,n such that K ⊂
n⋃
k=1

Uik .

The set K ⊂ X is relatively compact if its closure K is a compact set.
The map f : X → Y is compact if for every bounded set B ⊂ X, f(B) is a

relatively compact set in Y .

For metric spaces, we have that the compactness (of a set) is equivalent to the
sequential compactness.

1.1.6 Proposition Let X be a metric space. The set K ⊂ X is compact if and only
if every sequence from K has a convergent subsequence, whose limit is also in K.

Now we move to the Schauder �xed point theorem, which addresses the mappings
de�ned on Banach spaces.
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1.1.7 Theorem (Schauder) Let X be a Banach space and T : X → X a continuous
map. If the image of T is included in a compact subset of X, then T has a �xed
point.

Tychono�'s generalization to locally convex spaces is given in the sequel.

1.1.8 Theorem (Schauder-Tychono�) Let X be a locally convex space, let K ⊂ X
be nonempty and convex, and let K0 ⊂ K be a compact set. If T : K → K0 is a
continuous map, then there exists x∗ ∈ K0 such that T (x∗) = x∗.

The Leray-Schauder variant of the theorem, which is more suitable for applica-
tions, states as follows.

1.1.9 Theorem (Leray-Schauder/Schaefer) Let X be a Banach space, T : X → X
a continuous and compact map, and assume that the set

{x ∈ X : x = λT (x), for some λ ∈ [0, 1]}

is bounded. Then T has a �xed point x∗ ∈ X.

1.2 Basics of control theory

We begin with mathematical description of a control problem. Consider a system
governed by the equation

D(y) = 0, (1.3)

where y ∈ Y is the state of the system, Y is a vector space and D is an operator on
Y . The operator D represents the nature of the system, it describes a process or a
phenomenon that is analyzed. Usually, D is determined by some physical laws that
govern the system, i.e., by the laws that the state of the system needs to obey.

For example, Newton's law of cooling describes a heat transfer between a body
and its surrounding. More precisely, it states that the rate of the heat loss from a
body is directly proportional to the di�erence in temperature between the body and
its surroundings. Simpli�ed formulation is given by the following linear di�erential
equation

dT

dt
= r(Tenv − T (t)), (1.4)

where T (t) is the temperature of the body at the moment t, Tenv is the temperature
of the environment and r is the coe�cient of heat transfer. For a given initial
temperature T (0) = T0 > Tenv and a time interval [0, t1], we can determine the
temperature at the moment t1. By solving di�erential equation (1.4), we get

T (t1) = Tenv − (Tenv − T0)e−rt1 .
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Now, assume that the temperature of the environment is not constant, and that we
are able to modify it. Naturally, changes in the temperature Tenv = Tenv(t), will
cause changes in the outcome T (t1), and by allowing these changes, we transform an
ODE into a control problem. Let us rewrite the equation (1.4) in the following way

dT

dt
+ rT (t) = rTenv(t), t ∈ [0, t1], T (0) = T0, (1.5)

and consider the following question:
For �xed initial and �nal temperatures T0, T1, can we �nd the function Tenv(t),

t ∈ [0, t1], such that the temperature of the body will go from initial state T (0) = T0

to �nal state T (t1) = T1 during the time interval [0, t1]?

This is a question of controllability, one of the key notions in control theory,
which, plainly speaking, can be formulated in this way:

Are we able to interfere in such a way that the outcome of the system will be
exactly what we want it to be?

The term on the right hand side of the equation (1.5) represents our involve-
ment in the system, and in general case, this involvement is introduced by a control
function. For our general system (1.3), the associated control problem is given by

D(y) = h(u),

where, beside the natural dynamics of the system (described by the operator D), we
have a term h(u). Here u is a control function and h describes how the control acts
on the system. Usually, the control u is chosen from an admissible set of controls
U , which is determined according to a speci�c problem. For example, U can be
L2-space, L∞-space, space of continuous functions or some subset of those spaces.

In order to give a precise de�nition of controllability, let us focus on more speci�c
type of control problems, which will be analyzed in this thesis.

Consider a system

C
a Dα

t y(t) = f(t, y, u), t ∈ (a, b), y(a) = ya, (1.6)

where y : [a, b] → Rd, u : [a, b] → RN , N < d, f : [a, b] × Rd × RN → Rd and C
a Dα

t

stands for the left Caputo derivative of order α ∈ (0, 1] (for α = 1, Ca D1
t = d

dt
).

The admissible set of controls U we choose to be either the space L2
α−1([a, b];RN)

(when α = 1 it reduces to L2([a, b];RN)) or L∞([a, b];RN).

1.2.1 De�nition The system (1.6) is said to be controllable if for any given initial
and �nal data ya, yb ∈ Rd, there exists a control function u ∈ U such that the solution
of the system (1.6) satis�es y(b) = yb.
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Controllability de�ned in this way is also called global controllability or complete
controllability, since we do not impose any conditions on the choice of initial and
�nal states ya, yb nor on the length of the interval [a, b]. Contrary to global, we have
local controllability, which is related to a speci�c state y, and where instead of letting
ya, yb ∈ Rd, we consider ya and yb from a neighbourhood of y. Furthermore, there
are many other de�nitions of controllability. For example, in null-controllability the
goal is to steer the solution to the state yb = 0. In approximate controllability one
does not need to derive the solution exactly to the �nal state yb, but to a certain
neighborhood of yb. Further, when the function f from (1.6) depends also on some
parameters, then we have averaged controllability, where the goal is to control the
expected or averaged value of the system.

As we can see, depending on the type of the problem being considered, we have
di�erent criteria for controllability, but in all these problems, the control function
can be chosen freely from the speci�ed set U . It often occurs that we have more
than one control which steers the solution to a desired state. Thus, the question
arises: �Which one is �the best� choice?�, and it leads us to another important aspect
of control theory�optimization. The branch of control theory which deals with
problems where the goal is to �nd an optimal control function, and consequently
an optimal solution of the system, is called Optimal control theory. It relies on
mathematical techniques from optimization theory and variational calculus. When
addressing such problems, �rstly, one needs to de�ne the criterion by which the
optimal control is chosen. For example, one can consider a problem of �nding control
with minimal L2-norm (energy optimization), control which steers the solution to a
desired state in minimal time (time-optimal control), control which minimizes the
cost or maximizes the payo�, etc. In Chapter 3, we will analyze in more details these
types of problems for linear systems with both integer and non-integer derivatives.

So far, we mentioned two important concepts in control theory�controllability
and optimality. Now we move to the notion of observability, which addresses the
problem of recovering the information about the state variables from the knowledge
of observations (measurements). Hence, it takes into account the constraints imposed
by restrictions on measured variables (often we are not able to measure all the state
variables), and deals with an inverse problem. Although it can be considered as a
problem for itself, it is often associated with a problem of controllability, since there
is a certain duality between these two notions. Roughly speaking, controllability
indicates whether the output of the system (state function y(t)) can be controlled
by acting on the inputs (control function), while observability indicates whether the
internal behaviour of the system can be observed (detected, reconstructed) from its
outputs. Speci�cally, in the case of linear systems, this concept of duality manifests
in a form of equivalence between controllability of control problem and observability
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of its adjoint problem. For illustration, let us consider linear time-invariant system

x′ = Ax, x(0) = x0 (1.7)

where A ∈ Rd×d, x : [0, T ] → Rd and x0 ∈ Rd. Suppose that we can measure an
N -dimensional output

z(t) = Bx(t), (1.8)

where B ∈ RN×d, N < d. Of a special interest is the situation where N � d, and z
is interpreted as a low-dimensional observation of a high-dimensional dynamics x.

In this setting, the observability question is: Can we reconstruct x(t) from the
observations z(t)?

If yes, we say that the system is observable. Speci�cally, from [20] we have the
following de�nition.

1.2.2 De�nition The pair (1.7), (1.8) is called observable if knowing the measure-
ments z(·) on any time interval [0, t], we are able to compute x0.

As we shall see in Chapter 3, there are other de�nitions of observability (via observ-
ability inequality), which will be more suitable for our analysis.

The following proposition (see [20, Th. 2.7]), indicates how observability and con-
trollability of linear time-invariant systems are connected, through mutually adjoint
operators.

1.2.3 Proposition The system

x′(t) = Ax(t)

z(t) = Bx(t)

is observable if and only if the system

y′(t) = ATy(t) +BTu(t)

is controllable.

We conclude this section by mentioning one important classi�cation of control
systems. Depending on whether the choice of the input is in�uenced by the output,
we have the open-loop and the closed-loop systems. In the open-loop systems the
selection of the input (or control) is based on the a priori knowledge about the
systems and the desired goal, i.e., the input is precomputed and it is not in�uenced
by the output of the system. On the other hand, in closed-loop systems the output
e�ects the choice of the input. More precisely, the information from the output is
�fed back� to the input, and the control is calculated according to a certain feedback
law. These feedback laws are suitable for modeling of the real systems in which
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random perturbations and �uctuations can occur (which can not be determined a
priori). In this case, the feedback law is there to correct possible perturbations and
to stabilize the output.

For more details on the above mentioned notions, as well as on the many other
concepts and ideas from control theory we refer to [63, 64] (for an outline of math-
ematical control theory, the main concepts regarding linear systems, nonlinear sys-
tems, optimal control and in�nite dimensional systems are covered), [1, 14, 23, 38, 60]
(for the control theory of linear systems), [22, 30, 31, 47] (for the classical topics in
optimal control) and [17, 32] (topics in nonlinear control).

1.3 A brief history of control theory

Control theory is an interdisciplinary �eld of research which includes several areas
of mathematics and engineering. It deals with the analysis and design of control
systems�a process or a phenomenon described by a set of equations. The mathe-
matical control theory focuses on the development of a mathematical model of the
system, analysis of the solution, stability, etc., while the control engineering deals
with the design and practical implementation of the results.

Although the modern control theory developed in the 20th century, the appli-
cations of control systems can be found even in the ancient time. The control of
the irrigation systems in Mesopotamia, the systems of regulating valves in Roman
aqueducts, the water clocks in ancient Greece are one of the earliest known examples.

A signi�cant improvement in the design of control systems came during the 17th
century. The work by Christiaan Huygens and his contemporary Robert Hook on
the oscillations of the pendulum resulted in a new device for a precise measurement
of time�the pendulum clock. Furthermore, their analysis of circular motion and
centrifugal force found an application in the construction of windmills. The �yballs
that were used to regulate the velocity of windmills worked in the following way:
Two balls were attached to an axis that rotates with velocity proportional to the
velocity of the windmill. When the angular velocity increases, the centrifugal force
causes the balls to rise and this upward movement a�ects the positions of the mill's
sails.

These �yball governors were adapted by James Watt in 1769 to the governors
in steam engines. They were connected to several valves that regulate the pressure
of the steam, and in that way keep the velocity of the engine close to a constant.
At �rst, these control mechanisms were based on observations and empirical knowl-
edge, without the rigor mathematical background. Around 1840, the mathematician
and astronomer George Airy was the �rst to work on the mathematical analysis of
the governors, while the complete mathematical description of their properties was
published by a physicist James Clerk Maxwell in 1868. Furthermore, many 19th cen-
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Figure 1.1: Flyball governor in a steam engine (taken from [26])

tury mathematicians (Euler, Laplace, Fourier) contributed to theoretical research in
control systems by developing methods for mathematical modeling of natural phe-
nomena.

The �rst three decades of the 20th century brought some fundamental devel-
opments in control theory. Harry Nyquist and Hendrik Wade Bode, together with
collaborators from the Bell Telephone Laboratories, developed the theory of feed-
back ampli�ers, which were used in telephone systems. Even today, the ampli-
�ers are the foundations of frequency design. Another widely used concept is the
proportional-integral-derivative controller (PID controller), which was introduced by
a mathematician Nicolas Minorsky and applied to automatic controllers for steering
ships. Around that time, development of analog computers formed the basis for the
application of controllers in the chemical and petroleum industries.

Then, during the Second World War, developed techniques were used in the de-
sign of anti-aircraft batteries, the control mechanisms of plane tracking and ballistic
missiles.

In 1948, mathematician Norbert Wiener published a book �Cybernetics: or Con-
trol and Communication in the Animals and the Machines�, where he presented
an interconnection between constructed control systems (machines) and naturally-
designed control systems (which are present in living organisms, such as, the system
that regulates body temperature or blood sugar level, or how our eyes perceive the
world around us and how we react (the interconnection of muscles, nerves, visual in-
formation and our actions form a complex control system)). Wiener was also known
for introducing randomness and noise in mathematical models and control systems.

Around 1950s, the methods and ideas developed so far were referred to as a part
of classical control theory, while great improvements in the analysis of more complex
control systems opened the door to modern control theory. In the classical control
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theory mostly the systems described by linear time-invariant ODEs were analyzed.
Using the Laplace or the Fourier transform, they were transformed into the frequency
domain where the analysis was easier to perform. Those were the systems with Single
Input Single Output (SISO systems). The need for more accurate models required
the tools for the analysis of systems which are of higher order, time-variant, linear
and (often) nonlinear, as well as for the systems with Multiple Input Multiple Output
(MIMO systems). In 1960s, the above mentioned problems were addressed and that
was the beginning of modern control theory. The foundations of modern control
theory were made by Rudolf Kalman in linear control and Richard Bellman and
Lev Pontryagin in nonlinear control. Kalman introduced the �ltering techniques
and developed an algebraic approach for the analysis of linear systems. Bellman
introduced an optimization method today well-known as the dynamic programming,
while the Pontryagin's maximum principle provided a powerful tool for �nding an
optimal control.

From 1970s, with enormous development of new technologies and their appli-
cations in many areas of science, medicine and industry, control systems became a
part of our everyday life. We single out some examples: regulation and control of the
electrical power grid, control of communication systems (telephones, mobile phones,
internet), transportation (cars, aircraft), space systems (rockets, satellites), home-
used devices (bathroom tanks, systems of heating, ventilation and air conditioning),
etc.

Today, the control theory is a part of many research areas, and a great number
of control systems are used to model and explain processes in engineering, physics,
medicine, biology, economy, social studies, etc. Furthermore, with the development
of computer science, data science and arti�cial intelligence, new �elds for the appli-
cation of the control theory arise.



Chapter 2

Fractional Calculus

The origin of Fractional calculus, or, more precisely, integrals and derivatives of non-
integer order, goes back to the 17th century and correspondence between Leibniz
and L' Hospital regarding derivation of order 1

2
. Later, this idea intrigued many

mathematicians (Euler, Lagrange, Laplace, Riemann and many more), and during
the 18th and 19th century the theory of fractional calculus developed as a generaliza-
tion of integer-order derivatives and integrals. Firstly, it was considered as �a rather
esoteric mathematical theory without applications� [51], which in the 20th century
was proved to be wrong. With its applications in many areas of engineering and
industry (viscoelasticity, acoustics, optics, chemical and statistical physics, robotics,
control theory, electrical and mechanical engineering, etc.), fractional calculus be-
came a signi�cant domain of research.

Since, in this thesis, we study control problems with both integer and non-integer
derivatives, we shall recall some basic notions of fractional calculus. The chapter is
organized in the following way. In the �rst section we present de�nitions and prop-
erties of fractional operators. Then we de�ne the Mittag-Le�er functions, which are
essential part of fractional calculus since they often appear as solutions of fractional
di�erential equations. In the third section we analyze systems of fractional di�er-
ential equations. The original results, published in [35], are stated in Proposition
2.3.19, Proposition 2.3.20 and Subsection 2.3.3.

2.1 Fractional operators

In fractional calculus there are several di�erent approaches for de�ning the integra-
tion and di�erentiation operators. In this thesis we use the Riemann-Liouville and
the Caputo approach.

Let −∞ < a < b < ∞, and consider a function f : [a, b] → R. First we give
de�nition of fractional integral.
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2.1.1 De�nition The left and right Riemann-Liouville fractional integrals of order
α > 0 are de�ned by

aI
α
t f(t) =

1

Γ(α)

t∫
a

(t− τ)α−1f(τ) dτ

and

tI
α
b f(t) =

1

Γ(α)

b∫
t

(τ − t)α−1f(τ) dτ,

where Γ denotes the Euler gamma function.

In the next Theorem, which is a special case of [62, Th. 3.6], we have the bound-
edness property of operator aIαt .

2.1.2 Theorem If α > 0, then the fractional integration operator aI
α
t is bounded

from L∞([a, b];Rd) into Hα([a, b];Rd).

Since in our control problems we consider systems with fractional derivatives of
order between 0 and 1, in this section we focus on fractional di�erentiation operators
of order α ∈ (0, 1). For more details on fractional operators and their applications
we refer to [2, 18, 45, 46, 54, 57, 62].

2.1.3 De�nition The left and right Riemann-Liouville fractional derivatives of
order α ∈ (0, 1), are given by

aD
α
t f(t) =

d

dt

(
aI

1−α
t f(t)

)
=

1

Γ(1− α)

d

dt

t∫
a

f(τ)

(t− τ)α
dτ

and

tD
α
b f(t) = − d

dt

(
tI

1−α
b f(t)

)
=

−1

Γ(1− α)

d

dt

b∫
t

f(τ)

(τ − t)α
dτ.

2.1.4 De�nition The left and right Caputo fractional derivatives of order α ∈ (0, 1),
are given by

C
a Dα

t f(t) = aI
1−α
t

(
f ′(t)

)
=

1

Γ(1− α)

t∫
a

f ′(τ)

(t− τ)α
dτ

and

C
t Dα

b f(t) = tI
1−α
b

(
− f ′(t)

)
=

−1

Γ(1− α)

b∫
t

f ′(τ)

(τ − t)α
dτ.
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Let us introduce several classes of functions, which will be needed for the analysis
of the solutions to di�erential equations involving the Riemann-Liouville and the
Caputo fractional derivative. We denote by:

� ACα
a ([a, b];Rd) the set of functions f ∈ L1([a, b];Rd) for which the left Riemann-

Liouville derivative of order α, aDα
t f(t), is de�ned on (a, b);

� ACα
b ([a, b];Rd) the set of functions f ∈ L1([a, b];Rd) for which the right Riemann-

Liouville derivative of order α, tDα
b f(t), is de�ned on (a, b);

�
cACα

a ([a, b];Rd) the set of continuous functions f ∈ C([a, b];Rd) for which the
left Caputo derivative of order α, Ca Dα

t f(t), is de�ned on (a, b);

�
cCα

a ([a, b];Rd) the set of continuous functions f ∈ C([a, b];Rd) for which the
left Caputo derivative of order α, Ca Dα

t f(t), is continuous on [a, b].

Let us mention that an equivalent way to de�ne the Caputo fractional derivative
is via the Riemann-Liouville derivative. More precisely, starting with

C
a Dα

t f(t) = aD
α
t [f(t)− f(a)] and C

t Dα
b f(t) = tD

α
b [f(t)− f(b)],

and using De�nition 2.1.3 together with integration by parts, one can obtain expres-
sions given in De�nition 2.1.4 (cf. [45, Th. 2.1]).

For α ∈ (0, 1), we recall the relations between fractional integral and di�erential
operators. From [45, Lemma 2.5 & Lemma 2.22] we have the following.

2.1.5 Lemma

(i) If f ∈ L1([a, b];Rd) and aI
1−α
t f(t) ∈ AC([a, b];Rd), then the equality

aI
α
t

(
aD

α
t f(t)

)
= f(t)− (t− a)α−1

Γ(α)
aI

1−α
t f(t)|t=a

holds almost everywhere on [a, b].

(ii) If f ∈ C([a, b];Rd), then it holds

aI
α
t

(
C
a Dα

t f(t)
)

= f(t)− f(a). (2.1)

In fractional domain, integration by parts formula has several variants. For frac-
tional integrals, from [62, Th. 3.5 & Cor.], we have the following result.

2.1.6 Proposition Let f ∈ Lp([a, b];R), g ∈ Lq([a, b];R). The relation

b∫
a

g(t)aI
α
t f(t) dt =

b∫
a

tI
α
b g(t)f(t) dt (2.2)

holds for 1
p

+ 1
q
≤ 1 + α, p ≥ 1, q ≥ 1, with p 6= 1, q 6= 1 in the case 1

p
+ 1

q
= 1 + α.
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Using the above property, we derive fractional integration by parts, which relates
the left Caputo and the right Riemann-Louville fractional derivatives.

2.1.7 Proposition Let α ∈ (0, 1), g ∈ ACα
b ([a, b];Rd) and f ∈ cACα

a ([a, b];Rd),
such that f ′ ∈ L∞([a, b];Rd). Then

b∫
a

〈Ca Dα
t f(t), g(t)〉 dt = 〈f(t), tI

1−α
b g(t)〉|ba +

b∫
a

〈f(t), tD
α
b g(t)〉 dt. (2.3)

Proof. From the de�nition of the Caputo derivative and (2.2) (here with q = 1,
p =∞), we obtain

b∫
a

〈Ca Dα
t f(t), g(t)〉 dt =

b∫
a

〈aI1−α
t (f ′(t)) , g(t)〉 dt =

b∫
a

〈f ′(t), tI1−α
b g(t)〉 dt.

Then, by applying integration by parts for integer-order derivatives, we get

b∫
a

〈Ca Dα
t f(t), g(t)〉 dt = 〈f(t), tI

1−α
b g(t)〉|ba −

b∫
a

〈f(t),
d

dt

(
tI

1−α
b g(t)

)
〉 dt,

which together with the de�nition of the right Riemann-Liouville derivative, con-
cludes the proof. 2

For di�erent variants of fractional integration by parts formulas, involving both the
Caputo and the Riemann-Liouville derivatives, we refer to [44].

2.2 The Mittag-Le�er functions

The special functions, such as the Gamma, the Beta function, the Mittag-Le�er
functions and the Wright function, are essential part of fractional calculus. They
appear in de�nitions of fractional operators and in the solutions of fractional dif-
ferential equations. In this section, we recall basic de�nitions and properties of the
Mittag-Le�er functions. A detailed analysis of these classes of functions can be
found in [27].

2.2.1 De�nition For α ∈ C, Re{α} > 0, the one-parameter Mittag-Le�er function
Eα(z) is de�ned by the series

Eα(z) =
∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C. (2.4)
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For α ∈ C, Re{α} > 0, and β ∈ C, the two-parameter Mittag-Le�er function
Eα,β(z) is de�ned by the series

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C. (2.5)

The one-parameter Mittag-Le�er function is in fact a special case of the two-
parameter Mittag-Le�er function with β = 1, i.e., Eα,1(z) = Eα(z).

For Re{α} > 0, β ∈ C, series (2.4) and (2.5) converge in the whole complex
plane. Furthermore, Eα(z) and Eα,β(z) are entire functions of the complex variable
z.

Next, we recall the complete monotonicity property of the Mittag-Le�er func-
tions with real negative argument.

2.2.2 De�nition A function f : [0,∞) → R is called completely monotonic if for
every n ∈ N, f (n)(x) exists on (0,∞) and satis�es

(−1)nf (n)(x) ≥ 0, x ∈ (0,∞).

Clearly, a completely monotonic function is a non-increasing function on [0,∞).

2.2.3 Proposition For 0 ≤ α ≤ 1 and β ≥ α, Mittag-Le�er functions Eα(−x)
and Eα,β(−x) are completely monotonic for x ≥ 0.

2.3 Systems of fractional di�erential equations

2.3.1 Existence and uniqueness of solutions

We start with the classical results regarding existence and uniqueness of the solution
for the system of fractional di�erential equations (FDEs). Among a broad list of
literature devoted to this type of problems, we refer to [18], [29], Chapter 3 in [45],
Chapter 8 in [62], and references therein.

First, we consider the Cauchy problem with the Caputo fractional derivative in
general form:

C
a Dα

t y(t) = F (t, y(t)), t ∈ [a, b],

y(a) = ya,
(2.6)

where α ∈ (0, 1], y : [a, b]→ Rd and F : [a, b]× Rd → Rd.
Next theorem gives su�cient conditions for the existence of a unique solution to

(2.6) and it is a special case of [45, Th. 3.25].
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2.3.1 Theorem Let G be an open set in Rd, ya ∈ G, and let F : [a, b]×G→ Rd be
a function such that:

(i) for every y ∈ G, F (·, y) ∈ C([a, b];Rd);

(ii) F is Lipschitz continuous with respect to the second variable, i.e., there exists
a positive constant A, such that for every t ∈ [a, b], y1, y2 ∈ G,

|F (t, y1)− F (t, y2)| ≤ A|y1 − y2|.

Then, there exists a unique solution to the Cauchy problem (2.6) in cCα
a ([a, b];Rd).

2.3.2 Remark If, in the above theorem, only continuity of F : [a, b] × G → Rd is
assumed, then (only) the existence of the solution is obtained.

The main idea of the proof of Theorem 2.3.1 is based on the reduction of problem
(2.6) to the Volterra integral equation

y(t) = ya +
1

Γ(α)

t∫
a

F (s, y(s))

(t− s)1−α ds, a ≤ t ≤ b, (2.7)

and application of the Banach �xed point theorem. From [45, Th. 3.24] we have the
following equivalence.

2.3.3 Theorem Let 0 < α ≤ 1, let G be an open set in Rd, ya ∈ G, and let
F : [a, b] × G → Rd be a function such that for every y ∈ G, F (·, y) ∈ C([a, b];Rd).
Let r = bαc, where bαc is the greatest integer less than or equal to α , and y ∈
Cr([a, b];Rd). Then, y satis�es (2.6) if and only if it satis�es the Volterra integral
equation (2.7).

2.3.4 Remark Theorems 2.3.1 and 2.3.3 have an analog result involving the Riemann-
Liouville fractional derivative, see [45, Th. 3.10, 3.11].

Conditions (i) and (ii) on F in Theorem 2.3.1 are su�cient for the solution y
to be in the space cCα([a, b];Rd). In addition, if we want a higher regularity of the
solution, we need to impose stronger regularity conditions on F . In Section 6.4 in
[18], one can �nd a detailed analysis of the smoothness of the solution. Here we give
the result from [18, Th. 6.28], which follows from a more general theory of Fredholm
integral equations studied in [15].

2.3.5 Theorem Assume the conditions of Theorem 2.3.1 hold. Moreover, let F ∈
C1([a, b] × Rd;Rd). Then the unique solution of (2.6) satis�es y ∈ C([a, b];Rd) ∩
C1((a, b];Rd) and y′(t) = O((t− a)α−1), as t→ a.
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2.3.2 Linear systems of FDEs

Now we are interested in properties of solutions to linear fractional di�erential sys-
tems. More precisely, we are going to consider linear time-varying initial value prob-
lems with the Riemann-Liouville and Caputo derivatives of order α ∈ (0, 1), given
by:

aD
α
t x(t) = A(t)x(t) + g(t), t ∈ [a, b],

aI
1−α
t x(t)|t=a = xa,

(2.8)

and
C
a Dα

t x(t) = A(t)x(t) + g(t), t ∈ [a, b],

x(a) = xa,
(2.9)

where A : [a, b] → Rd×d is a matrix function, g : [a, b] → Rd is a vector function,
x : [a, b]→ Rd is state function and xa ∈ Rd is given initial state.

We introduce the notation

Ω = {(τ, t) ∈ [a, b]× [a, b] : τ ≤ t} and Ω0 = {(τ, t) ∈ [a, b]× [a, b] : τ < t},

and by I we denote the identity matrix.
As we shall see, essential part of the analysis of solutions to (2.8) and (2.9) are

fundamental solution matrices associated to the matrix function A. In control theory,
they are often referred to as the state-transition matrices.

2.3.6 De�nition (i) The left Riemann-Liouville state-transition matrix is the ma-
trix function Φ : Ω0 → Rd×d, such that for every �xed τ ∈ [a, b), Φ(τ, ·) : (τ, b] →
Rd×d satis�es the initial value problem

τD
α
t Φ(τ, t) = A(t)Φ(τ, t), t ∈ (τ, b],

τ I
1−α
t Φ(τ, t)|t=τ = I.

(2.10)

(ii) The left Caputo state-transition matrix is the matrix function Ψ : Ω → Rd×d,
such that for every �xed τ ∈ [a, b), Ψ(τ, ·) : [τ, b]→ Rd×d is a solution to the matrix
initial value problem

C
τ Dα

t Ψ(τ, t) = A(t)Ψ(τ, t), t ∈ [τ, b],

Ψ(τ, τ) = I.
(2.11)

From [13, Section 4] we have the following results.

2.3.7 Theorem Suppose A ∈ L∞([a, b];Rd×d) and g ∈ L∞([a, b];Rd), and let τ ∈
[a, b).
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(i) Initial value problem (2.10) admits a unique solution Φ(τ, ·) on the interval
(τ, b]. Moreover, Φ(τ, ·) ∈ ACα

τ ([τ, b];Rd×d) and satis�es integral equation

Φ(τ, t) =
(t− τ)α−1

Γ(α)
I +

t∫
τ

(t− s)α−1

Γ(α)
A(s)Φ(τ, s) ds, t ∈ (τ, b]. (2.12)

(ii) Initial value problem (2.11) admits a unique solution Ψ(τ, ·) on the interval
[τ, b]. Moreover, Ψ(τ, ·) ∈ cACα

τ ([τ, b];Rd×d) and satis�es integral equation

Ψ(τ, t) = I +

t∫
τ

(t− s)α−1

Γ(α)
A(s)Ψ(τ, s) ds, t ∈ [τ, b]. (2.13)

(iii) There exists a unique solution x ∈ ACα
a ([a, b];Rd) to the Cauchy problem (2.8)

on (a, b], and it is given by the Duhamel formula

x(t) = Φ(a, t)xa +

t∫
a

Φ(τ, t)g(τ) dτ, t ∈ (a, b]. (2.14)

(iv) There exists a unique solution x ∈ cACα
a ([a, b];Rd) to the Cauchy problem (2.9)

on [a, b], and it is given by the Duhamel formula

x(t) = Ψ(a, t)xa +

t∫
a

Φ(τ, t)g(τ) dτ, t ∈ [a, b]. (2.15)

2.3.8 Remark From [45, Th. 7.5 & Th. 7.6] we have that if A ∈ C([a, b];Rd×d)
and g ∈ C1−α([a, b];Rd), then initial value problems (2.8) and (2.9) have unique
continuous solutions on (a, b]. Furthermore, the solution to (2.8) satis�es

lim
t→a+

(t− a)1−αx(t) =
xa

Γ(α)
.

The properties of Φ and Ψ, given in Theorem 2.3.7, were obtained by reduction
of the initial value problems (2.10) and (2.11) to the equivalent integral equations
(2.12) and (2.13), respectively. On the other hand, in [53], the state-transition
matrices were introduced by the method of successive approximations.

Let τ ∈ [a, b) be �xed, and t ∈ (τ, b]. By starting with the initial condition and
then successively multiplying it by A and performing integration of order α, one
obtains a generalized Peano-Baker series:

PBΦ(τ, t) :=
∞∑
k=0

τ I
k◦α
t A(t), t ∈ (τ, b], (2.16)
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where τ I
0◦α
t A(t) =

(t− τ)α−1

Γ(α)
I and for k ≥ 1, τ Ik◦αt A(t) = τ I

α
t (A(t)τ I

(k−1)◦α
t A(t)).

If the series (2.16) converges uniformly on (τ, b], then it coincides with the left
Riemann-Liouville state-transition matrix associated to A (cf. [53, Lemma 3.]), i.e.,
it solves the initial value problem (2.10). Since τ ∈ [a, b) was arbitrary, we have

Φ(τ, t) = PBΦ(τ, t), a ≤ τ < t ≤ b,

providing that (2.16) converges uniformly on (τ, b], for every τ ∈ [a, b).
Similarly, for the problem with the Caputo derivative one can de�ne

PBΨ(τ, t) :=
∞∑
k=0

τJ
k◦α
t A(t), t ∈ [τ, b], (2.17)

where τJ
0◦α
t A(t) = I and τJ

k◦α
t A(t) = τ I

α
t (A(t)τJ

(k−1)◦α
t A(t)), for k ≥ 1. Then from

[53, Lemma 5.], it follows that if the series (2.17) converges uniformly on [τ, b], then
it coincides with the solution to (2.11). Assuming that the above statement holds for
every (�xed) τ ∈ [a, b), we get that the left Caputo state-transition matrix associated
to A can be represented in a form of Peano-Baker series, i.e.,

Ψ(τ, t) = PBΨ(τ, t), a ≤ τ ≤ t ≤ b.

We point out two important cases for our analysis:

� If A(t) = A is a constant matrix, then the associated state-transition matrices
reduce to the Mittag-Le�er functions:

Φ(a, t) = (t− a)α−1Eα,α(A(t− a)α) = (t− a)α−1

∞∑
k=0

Ak(t− a)kα

Γ(α(k + 1))
(2.18)

and

Ψ(a, t) = Eα(A(t− a)α) =
∞∑
k=0

Ak(t− a)kα

Γ(αk + 1)
.

� If A(t) = Af(t), where A is a constant matrix and f : [a, b]→ R is a continuous
scalar function, then

PBΦ(a, t) =
∞∑
k=0

AkaI
k◦α
t (f(t)), (2.19)

and
PBΨ(a, t) =

∞∑
k=0

AkaJ
k◦α
t (f(t)). (2.20)
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From [35, Prop. 1 ] we have the following convergence property.

2.3.9 Property If A is a constant matrix and f : [a, b] → R is a continuous
function, then the series (2.19) converges uniformly on (a, b].

Proof. Since f is continuous on [a, b], there existsM > 0 such thatM = max
t∈[a,b]

|f(t)|.

By induction with respect to k ∈ N we obtain:

‖Ak‖ sup
t∈(a,b]

∣∣∣aIk◦αt (f(t))
∣∣∣ ≤ ‖Ak‖ sup

t∈(a,b]
aI
k◦α
t (|f(t)|) ≤ ‖A‖k sup

t∈(a,b]
aI
k◦α
t (M)

≤ aI
k◦α
b (‖A‖M).

Since
∞∑
k=0

aI
k◦α
b (‖A‖M) = (b− a)α−1Eα,α(M‖A‖(b− a)α), it follows that PBΦ(a, t) is

uniformly convergent on (a, b] and Φ(a, t) = PBΦ(a, t), t ∈ (a, b]. 2

Following the lines of the proof of Property 2.3.9, we obtain:

2.3.10 Property If f : [a, b] → R is a continuous function, then the series (2.20)
converges uniformly on [a, b].

Duality of Φ

The Riemann-Liouville state-transition matrix Φ has a duality property. More pre-
cisely, it can be considered as a solution to the initial value problem with the left
Riemann-Liouville derivative, as well as a solution to the dual initial value problem
with the right Riemann-Liouville derivative. In order to give these properties in more
details, we introduce the following notation:

� By AΦl we denote the left Riemann-Liouville state-transition matrix associated
to matrix A from De�nition 2.3.6 (i), meaning that, for every �xed τ ∈ [a, b),
AΦl(τ, ·) : (τ, b]→ Rd×d solves

τD
α
t AΦl(τ, t) = A(t)AΦl(τ, t), t ∈ (τ, b], τ I

1−α
t AΦl(τ, t)|t=τ = I, (2.21)

where τ is �xed starting-point and τD
α
t denotes the left Riemann-Liouville

derivative with respect to the variable t;

� By Φr
A we denote the right Riemann-Liouville state-transition matrix associ-

ated to matrix A, i.e., Φr
A : Ω0 → Rd×d is such that, for every �xed t ∈ (a, b],

Φr
A(·, t) : [a, t)→ Rd×d solves

τD
α
t Φr

A(τ, t) = Φr
A(τ, t)A(τ), τ ∈ [a, t), τ I

1−α
t Φr

A(τ, t)|τ=t = I, (2.22)

where t is �xed end-point and τD
α
t represents the right Riemann-Liouville

derivative with respect to the variable τ ;
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� By AΦr we denote the matrix function AΦr : Ω0 → Rd×d such that, for every
�xed t ∈ (a, b], AΦr(τ, ·) : (τ, b]→ Rd×d solves

τD
α
t AΦr(τ, t) = A(τ)AΦr(τ, t), τ ∈ [a, t), τ I

1−α
t AΦr(τ, t)|τ=t = I, (2.23)

where t is �xed end-point and τD
α
t represents the right Riemann-Liouville

derivative with respect to the variable τ .

Using the same arguments as in the proof of [13, Th. 7], one can derive the
following duality property.

2.3.11 Proposition Let A ∈ L∞([a, b];Rd×d).

(i) It holds that

AΦl = Φr
A.

More precisely, the left Riemann-Liouville state-transition matrix Φ from Def-
inition 2.3.6 (i) solves both (2.21) and (2.22).

(ii) If matrix function A is such that A(s)A(t) = A(t)A(s), for every s, t ∈ [a, b],
then it holds

AΦl = Φr
A = AΦr.

Let us notice that analog properties can be derived in terms of Peano-Baker series
representation of state-transition matrices. Denote by PB

AΦl(τ, t) Peano-Baker series
given by (2.16), and for every �xed t ∈ (a, b], de�ne

PBΦr
A(τ, t) :=

∞∑
k=0

τ I
r,k◦α
t,A A(τ), τ ∈ [a, t),

where τ I
r,k◦0
t,A A(τ) =

(t− τ)α−1

Γ(α)
I and τ I

r,k◦α
t,A A(τ) = τ I

α
t

((
τ I
r,(k−1)◦α
t,A A(τ)

)
A(τ)

)
, for

k ≥ 1, with τ I
α
t being the right fractional integral with respect to variable τ .
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Then, for every k ∈ N, by changing the order of integration, we obtain

τ I
k◦α
t A(t) =

1

Γ(α)k+1

t∫
τ

A(s1)

(t− s1)1−α

s1∫
τ

A(s2)

(s1 − s2)1−α · · ·

· · ·
sk−2∫
τ

A(sk−1)

(sk−2 − sk−1)1−α

sk−1∫
τ

A(sk)(sk − τ)α−1

(sk−1 − sk)1−α dsk dsk−1 · · · ds2 ds1

=
1

Γ(α)k+1

t∫
τ

t∫
sk

· · ·
t∫

s3

( t∫
s2

A(s1)(t− s1)α−1

(s1 − s2)1−α ds1

) A(s2)

(s2 − s3)1−α ds2 · · ·

· · · A(sk−1)

(sk−1 − sk)1−α dsk−1
A(sk)

(sk − τ)1−α dsk

= τ I
r,k◦α
t,A A(τ).

Hence, we get
PB

AΦl(τ, t) = PBΦr
A(τ, t).

Furthermore, if, for every �xed t ∈ (a, b], we de�ne

PB
AΦr(τ, t) :=

∞∑
k=0

A,τ I
r,k◦α
t A(τ), τ ∈ [a, t),

where A,τ I
r,k◦0
t A(τ) =

(t− τ)α−1

Γ(α)
I and A,τ I

r,k◦α
t A(τ) = τ I

α
t

(
A(τ)

(
A,τ I

r,(k−1)◦α
t A(τ)

))
,

for k ≥ 1, with τ I
α
t being the right fractional integral with respect to the variable τ .

Then, if matrix A is such that for every s, t ∈ [a, b], A(s)A(t) = A(t)A(s), we have
that, for every k ∈ N, it holds

τ I
k◦α
t A(t) =

1

Γ(α)k+1

t∫
τ

A(s1)

(t− s1)1−α

s1∫
τ

A(s2)

(s1 − s2)1−α · · ·

· · ·
sk−1∫
τ

A(sk)(sk − τ)α−1

(sk−1 − sk)1−α dsk · · · ds2 ds1

=
1

Γ(α)k+1

t∫
τ

A(sk)

(sk − τ)1−α

t∫
sk

A(sk−1)

(sk−1 − sk)1−α · · ·

· · ·
t∫

s2

A(s1)(t− s1)α−1

(s1 − s2)1−α ds1 · · · dsk−1 dsk

= A,τ I
r,k◦α
t A(τ).



2.3. Systems of fractional di�erential equations 25

Hence, if A(t) and A(s) commute, we obtain
PB

AΦl(τ, t) = PB
AΦr(τ, t).

Now, we want to emphasize one property which follows from derived duality of
matrix Φ and which will be substantial for the analysis of adjoint control problem
and notion of observability. By transposing system (2.22) and using Proposition
2.3.11 (i), we obtain the following.

2.3.12 Corollary It holds that (
AΦl
)T

= ATΦr.

Furthermore, if Φ is the left Riemann-Liouville state-transition matrix from De�ni-
tion 2.3.6 (i), then, for every �xed t ∈ (a, b], function Φ(·, t)T : [a, t) → Rd×d is the
unique solution to the initial value problem

τD
α
t Φ(τ, t)T = A(τ)TΦ(τ, t)T, τ ∈ [a, t),

τ I
1−α
t Φ(τ, t)T|τ=t = I.

(2.24)

One-dimensional linear FDEs

Let us note that the results presented above still hold in the case of one-dimensional
FDEs, i.e., when d = 1. In this case, we will use notation φ and ψ for the one-
dimensional matrices Φ and Ψ.

2.3.13 Examples Let us recall the form of the solutions of linear fractional initial
value problems with constant coe�cients. Let k ∈ R.

1. Solution to C
a Dα

t x(t) = kx(t), t ∈ (a, b), x(a) = xa, is given by

x(t) = Eα(k(t− a)α)xa.

If k = 0, then x(t) = xa.

2. Solution to aD
α
t x(t) = kx(t), t ∈ (a, b), aI

1−α
t x(t)|t=a = xa, is given by

x(t) = (t− a)α−1Eα,α(k(t− a)α)xa.

If k = 0, then x(t) = xa
(t− a)α−1

Γ(α)
.

3. Solution to tD
α
b x(t) = kx(t), t ∈ (a, b), tI

1−α
b x(t)|t=b = xb, is given by

x(t) = (b− t)α−1Eα,α(k(b− t)α)xb.

If k = 0, then x(t) = xb
(b− t)α−1

Γ(α)
.
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In each example, the solution is unique.

Next lemma is a result from [21, Th. 1.4, Th. 1.5. & Th. 1.6.] which states that
the sign of the solution of a linear fractional di�erential equation is determined by
the sign of the initial condition.

2.3.14 Lemma Let α ∈ (0, 1) and k ∈ C([a, b];R).

(i) If x is a solution of the initial value problem

C
a Dα

t x(t) = k(t)x(t), x(a) = xa > 0,

then x(t) > 0.

(ii) If x is a solution of the initial value problem

aD
α
t x(t) = k(t)x(t), aI

1−α
t x(t)|t=a = xa > 0,

then x(t) > 0.

(iii) If x is a solution of the initial value problem

tD
α
b x(t) = k(t)x(t), tI

1−α
b x(t)|t=b = xb > 0,

then x(t) > 0.

There are several comparison results regarding solutions of fractional di�erential
equations. For a general type of equation, we refer to [50], and for linear equations
the results can be found in [16, 24].

2.3.15 Lemma Let α ∈ (0, 1) and a1, a2 ∈ C([a, b];R) such that a1(t) ≤ a2(t),
t ∈ [a, b].

(i) If xi : [a, b]→ R, i = 1, 2, is a solution of the initial value problem

C
a Dα

t xi(t) = ai(t)xi(t), xi(a) = xa,

then |x1(t)| ≤ |x2(t)|.

(ii) If xi : [a, b]→ R, i = 1, 2, is a solution of the initial value problem

aD
α
t xi(t) = ai(t)xi(t), aI

1−α
t xi(t)|t=a = xa,

then |x1(t)| ≤ |x2(t)|.
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(iii) If xi : [a, b]→ R, i = 1, 2, is a solution of the initial value problem

tD
α
b xi(t) = ai(t)xi(t), tI

1−α
b xi(t)|t=b = xb,

then |x1(t)| ≤ |x2(t)|.

Proof. We give the proof for (i), and (ii) and (iii) follow analogously. We analyze
di�erent cases, depending on the sign of the initial condition.

(1) If xa = 0, then x1(t) = x2(t) = 0, for every t ∈ [a, b].
(2) Suppose that xa > 0. Then Lemma 2.3.14 (i) implies that both x1 and x2 are

positive functions. De�ne ε(t) := x2(t)− x1(t). We have that ε(0) = 0 and
C
a Dα

t ε(t) = C
a Dα

t x2(t)− C
a Dα

t x1(t) = a2(t)x2(t)− a1(t)x1(t)

= a2(t)ε(t) + (a2(t)− a1(t))x1(t).

According to Theorem 2.3.7 (iv), ε(t) =
t∫

0

φ(τ, t)(a2(τ)−a1(τ))x1(τ) dτ , where φ(τ, t)

satis�es
τD

α
t φ(τ, t) = a2(τ)φ(τ, t), τ I

1−α
t φ(τ, t)|τ=t = 1.

Hence, from Lemma 2.3.14 (iii) we have that φ(τ, t) > 0, τ ∈ [a, t], which together
with a2(τ)−a1(τ) ≥ 0 and x1(τ) > 0 implies that ε(t) ≥ 0. Therefore, x2(t) ≥ x1(t).

(3) If xa < 0, then from Lemma 2.3.14 (i) we have that x1 and x2 are negative
functions. By de�ning ε(t) := x2(t) − x1(t), and proceeding as in (2), we obtain

ε(t) =
t∫

0

φ(τ, t)(a2(τ) − a1(τ))x1(τ) dτ , where φ(τ, t) > 0, a2(τ) − a1(τ) ≥ 0 and

x1(τ) < 0. Therefore, ε(t) ≤ 0 and x2(t) ≤ x1(t) < 0.
Now, (1), (2) and (3) imply |x1(t)| ≤ |x2(t)|. 2

Lower and upper bounds for Ψ and Φ

In order to better understand the behaviour of the solution of the system of FDEs,
we need to analyze closely the state-transition matrices Φ and Ψ.

Due to the nature of the Riemann-Liouville derivative, the function Φ(τ, t) has
singularities along the line τ = t (see for example (2.18)). That is the reason why
we need to be careful when examining its regularity. In [25] the author considered a
modi�cation of Φ, given by

F (τ, t) = (t− τ)1−αΦ(τ, t), (τ, t) ∈ Ω0,

and

F (τ, τ) = lim
t→τ

(t− τ)1−αΦ(τ, t) =
1

Γ(α)
τ I

1−α
t Φ(τ, t)|t→τ =

I
Γ(α)

, τ ∈ [a, b].

and derived the following properties.
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2.3.16 Proposition There exist MF > 0 and HF > 0 such that

(i) ‖F (τ, t)‖ ≤MF , for every (τ, t) ∈ Ω;

(ii) ‖F (τ1, t1)−F (τ2, t2)‖ ≤ HF (|τ1−τ2|α+|t1−t2|α), for every (τ1, t1), (τ2, t2) ∈ Ω.

In particular, the function (τ, t) 7→ F (τ, t) is continuous on Ω.

From the proofs of [25, Prop. 4.1. & Prop. 4.2.], we can explicitly derive the
values of constants MF and HF :

MF =
e(b−a)k

Γ(α)(1− k−αMAMJ)
and HF = HJMAMFEα((b− a)αMAMJ),

where MA = sup
t∈[a,b]

‖A(t)‖, MJ = 1 + sin(απ)
απ

, HJ = 2MJ

Γ(α+1)
, and k is a positive number

such that
MAMJ

kα
< 1.

Let us mention that in [13, Lemma 5], similar estimates were established for
matrix Φ.

2.3.17 Proposition There exists Θ ≥ 0 such that

|Φi,j(τ, t)| ≤ (t− τ)α−1Θ,

for almost every a ≤ τ < t ≤ b and for every i, j ∈ {1, . . . , d}.

As one can infer from the proof of [13, Lemma 5], the author proved the existence
of the upper bound Θ, without its precise calculation.

In [35] sharper estimates for Φ and Ψ were obtained, for some special classes of
systems (2.10) and (2.11). In the sequel, we present the results from [35, Prop. 1 &
Rem. 3] in more details.

2.3.18 Remark (Diagonalization) If A is a real symmetric matrix it can be di-
agonalized, i.e., there exists a diagonal matrix

D = diag(λ1, . . . , λd), λi ∈ R, i = 1, . . . , d,

and an orthogonal matrix U such that

A = UDU−1 = UDUT.

Elements on the main diagonal of D are the eigenvalues of A, and if A is positive
semide�nite matrix, then λi ≥ 0, i = 1, . . . , d. Throughout the thesis, we will often
use this property to diagonalize symmetric systems.
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2.3.19 Proposition Let A be a real symmetric matrix with eigenvalues λ1, . . . , λd,
g ∈ C([a, b];R), and let λmax = max

1≤i≤d
|λi| and M ≥ 0 be such that |g(t)| ≤ M ,

t ∈ [a, b].

(i) If Ψ(a, t) is a solution of the initial value problem

C
a Dα

t Ψ(a, t) = Ag(t)Ψ(a, t), t ∈ (a, b), Ψ(a, a) = I, (2.25)

then

Eα(−λmaxM(b− a)α) ≤ ‖Ψ(a, t)‖ ≤ Eα(λmaxM(b− a)α), t ∈ [a, b]. (2.26)

(ii) Let t ∈ (a, b]. If Φ(τ, t) is a solution of the initial value problem

τD
α
t Φ(τ, t) = Ag(τ)Φ(τ, t), τ ∈ (a, t), τ I

1−α
t Φ(τ, t)|τ=t = I, (2.27)

then

Eα,α(−λmaxM(t−τ)α) ≤ ‖(t−τ)1−αΦ(τ, t)‖ ≤ Eα,α(λmaxM(t−τ)α), τ ∈ (a, t).
(2.28)

Proof. (i) From diagonalization A = UDUT, it follows that the solution of (2.25)
can be written as Ψ(a, t) = UP (a, t)UT, where P (a, t) is a solution of

C
a Dα

t P (a, t) = Dg(t)P (a, t), P (a, a) = I.

Since D and I are diagonal, P (a, t) = diag(p1(a, t), . . . , pd(a, t)) with pi(a, t) satisfy-
ing

C
a Dα

t pi(a, t) = λig(t)pi(a, t), pi(a, a) = 1, i = 1, ..., d.

Using −λmaxM ≤ λig(t) ≤ λmaxM , Lemma 2.3.15 (i), and Example 2.3.13 1., we
obtain Eα(−λmaxM(t− a)α) ≤ |pi(a, t)| ≤ Eα(λmaxM(t− a)α), for every i = 1, ..., d.
Furthermore, Lemma 2.3.14 (i) and complete monotonicity of Eα(−x) provide the
following estimates

Eα(−λmaxM(b− a)α) ≤ pi(a, t) ≤ Eα(λmaxM(b− a)α). (2.29)

Hence, Eα(−λM(b− a)α) ≤ ‖P (a, t)‖ ≤ Eα(λmaxM(b− a)α) and

‖Ψ(a, t)‖ ≤ ‖U‖‖P (a, t)‖‖UT‖ ≤ Eα(λmaxM(b− a)α). (2.30)

Next, we consider inverse matrix of Ψ(a, t). It is given by Ψ(a, t)−1 = UP (a, t)−1UT,

where P (a, t)−1 = diag
( 1

p1(a, t)
, . . . ,

1

pd(a, t)

)
. Now, (2.29) implies

1

Eα(λmaxM(b− a)α)
≤ ‖P (a, t)−1‖ ≤ 1

Eα(−λmaxM(b− a)α)



30 Chapter 2. Fractional Calculus

and
‖Ψ(a, t)−1‖ ≤ ‖U‖‖P (a, t)−1‖‖UT‖ ≤ 1

Eα(−λmaxM(b− a)α)
.

By using 1 ≤ ‖Ψ(a, t)‖‖Ψ(a, t)−1‖, we get

‖Ψ(a, t)‖ ≥ ‖Ψ(a, t)−1‖−1 ≥ Eα(−λmaxM(b− a)α),

which together with (2.30) gives (2.26).
(ii) The proof of this part follows the same lines as the previous one. Starting

with the diagonalization, we express the solution of (2.27) by Φ(τ, t) = UQ(τ, t)UT,
where Q(τ, t) = diag(q1(τ, t), . . . , qd(τ, t)) and qi(τ, t) satisfy

τD
α
t qi(τ, t) = λig(τ)qi(τ, t), τ ∈ (a, t), τ I

1−α
t qi(τ, t)|τ=t = 1, i = 1, ..., d.

Using that −λmaxM ≤ λig(t) ≤ λmaxM , Lemma 2.3.15 (iii), Example 2.3.13 3. and
complete monotonicity of Eα,α(−x), we conclude that for every i = 1, ..., d it holds

Eα,α(−λmaxM(t− τ)α) ≤ (t− τ)1−αqi(τ, t) ≤ Eα,α(λmaxM(t− τ)α), τ ∈ (a, t),
(2.31)

which further implies (2.28). 2

When we impose stronger conditions on the de�niteness of the matrix of the
system, we are able to derive stronger bounds.

2.3.20 Proposition Let A be a real, symmetric and positive semide�nite matrix
with eigenvalues λ1, . . . , λd, g ∈ C([a, b]; [0,∞)), and let λ = max

1≤i≤d
λi and M ≥ 0 be

such that g(t) ≤M , t ∈ [a, b].

(i) If Ψ(a, t) is a solution of the initial value problem

C
a Dα

t Ψ(a, t) = −Ag(t)Ψ(a, t), t ∈ (a, b), Ψ(a, a) = I, (2.32)

then Eα(−λM(b− a)α) ≤ ‖Ψ(a, t)‖ ≤ 1, t ∈ [a, b].

(ii) Let t ∈ (a, b]. If Φ(τ, t) is a solution of the initial value problem

τD
α
t Φ(τ, t) = −Ag(τ)Φ(τ, t), τ ∈ (a, t), τ I

1−α
t Φ(τ, t)|τ=t = I, (2.33)

then Eα,α(−λM(t− τ)α) ≤ ‖(t− τ)1−αΦ(τ, t)‖ ≤ 1, τ ∈ (a, t).

Proof. (i) Again, by diagonalizing the system, we express the solution of (2.32) in
the form Ψ(a, t) = UR(a, t)UT, where R(a, t) satis�es

C
a Dα

t R(a, t) = −Dg(t)R(a, t), R(a, a) = I.
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Furthermore, R(a, t) = diag(r1(a, t), . . . , rd(a, t)) with ri(a, t) satisfying

C
a Dα

t ri(a, t) = −λig(t)ri(a, t), ri(a, a) = 1, i = 1, ..., d.

Since now −λM ≤ −λig(t) ≤ 0, we obtain

Eα(−λM(b− a)α) ≤ ri(a, t) ≤ 1, (2.34)

and Eα(−λM(b− a)α) ≤ ‖R(a, t)‖ ≤ 1. Therefore, using the same arguments as in
the proof of Proposition 2.3.19 (i), we conclude

Eα(−λM(b− a)α) ≤ ‖Ψ(a, t)‖ ≤ 1.

(ii) Can be proved analogously. 2

2.3.3 A nonlinear system

Based on the previous results, we are able to prove existence of a solution to a
nonlinear system of FDEs, which is substantial for the control problem that we are
going to consider.

First, we give an auxiliary result form [35, Lemma 4].

2.3.21 Lemma Let xa ∈ Rd and X ⊂ C([a, b];Rd) be such that

(i) for every x ∈ X, x(a) = xa;

(ii) there exists a constant C > 0 such that for every x ∈ X, sup
t∈[a,b]

|Ca Dα
t x(t)| ≤ C.

Then X is bounded in Hα([a, b];Rd) and equicontinuous equicontinuous subset of
C([a, b];Rd).

Proof. From (2.1) and assumption (i), it follows that for every x ∈ X,

x(t)− xa = aI
α
t

(
C
a Dα

t x(t)
)
, t ∈ [a, b]. (2.35)

Further, the assumption (ii) implies that the set {Ca Dα
t x(t) : x ∈ X} is bounded in

L∞([a, b];Rd). Then, from Theorem 2.1.2 and (2.35) it follows that {x−xa : x ∈ X}
is bounded in Hα([a, b];Rd). Since xa is a constant vector, we have that X is also
bounded in Hα([a, b];Rd). Hence, there exists a constant Kα > 0 (not depending on
x) such that for every x ∈ X, ‖x‖Hα ≤ Kα, implying that for every x ∈ X and for
every t1, t2 ∈ [a, b] it holds that

|x(t1)− x(t2)| ≤ Kα|t1 − t2|α. (2.36)
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Let ε > 0. By taking δ =
( ε

Kα

) 1
α
and using (2.36) we obtain

(∀x ∈ X)(∀t1, t2 ∈ [a, b])(|t1 − t2| < δ ⇒ |x(t1)− x(t2)| < ε), (2.37)

implying that X is an equicontinuous subset of C([a, b];Rd). 2

Now we present the main result from [35].

2.3.22 Theorem Let A ∈ Md×d be a symmetric, positive semide�nite matrix, and
f : Rd → [0,∞) a continuous function. Then, the Cauchy problem

C
a Dα

t z(t) =− Af(z(t)) z(t), t ∈ [a, b],

z(a) = za,
(2.38)

has a solution z ∈ C([a, b];Rd). Moreover, if f is such that F (z) = f(z)z is continu-
ously di�erentiable on Rd, then z ∈ C([a, b];Rd)∩C1((a, b];Rd), z′(t) = O((t−a)α−1),
as t→ a, and the solution is unique.

Proof. We use the Leray-Schauder �xed point theorem. Let us consider the mapping
T : C([a, b];Rd)→ C([a, b];Rd), T (v) = z, where z is a solution to

C
a Dα

t z(t) =− Af(v(t)) z(t), t ∈ [a, b],

z(a) = za.
(2.39)

From (2.15) it follows that z(t) = Ψ(a, t)za and Proposition 2.3.19 (i) implies

|z(t)| ≤ |za|, t ∈ [a, b]. (2.40)

We shall show that the mapping T admits a �xed point. According to the Leray-
Schauder �xed point theorem, we need to prove that

(i) the mapping T is continuous and compact;

(ii) the set of the solutions of z = λT (z), λ ∈ [0, 1], is bounded.

Since the solutions of the Cauchy problem (2.39) depend continuously on the coef-
�cients −Af(v), we have that T is continuous. For the compactness, it su�ces to
show that T maps bounded sets into relatively compact sets. Let V ⊂ C([a, b];Rd)
be a bounded set such that, for every v ∈ V , ‖v‖C([a,b];Rd) ≤ K, i.e., max

t∈[a,b]
|v(t)| ≤ K.

Then (2.40) implies that T (V ) is uniformly bounded by |za|. Furthermore, continu-
ity of f : Rd → [0,∞) implies that there exists M > 0 such that M = max

y∈BK
f(y),
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where BK = {y ∈ Rd : |y| ≤ K}. Then for every v ∈ V we have max
t∈[a,b]

|f(v(t))| ≤M .

Hence, if z ∈ T (V ) then for the fractional derivative C
a Dα

t z it holds

|Ca Dα
t z| ≤ ‖ − A‖ |f(v(t))| |z(t)| ≤ ‖A‖M |za|,

i.e., it is uniformly bounded by ‖A‖M |za|, and by Lemma 2.3.21 we have that T (V )
is equicontinuous set in C([a, b];Rd). Therefore, T (V ) is uniformly bounded and
equicontinuous, and by the Arzela-Ascolli theorem, T (V ) is relatively compact. From
(2.40) we see that (ii) is satis�ed as well. Thus, according to the Leray-Schauder
�xed point theorem, T has a �xed point, i.e., problem (2.38) has a solution z ∈
C([a, b];Rd).

Moreover, if we have that F (z) = f(z)z is continuously di�erentiable on Rd, then
according to Theorem 2.3.5, the solution is unique, z ∈ C([a, b];Rd) ∩ C1((a, b];Rd)
and z′(t) = O((t− a)α−1), as t→ a. 2

2.3.23 Remark From the proof of Theorem 2.3.22, it follows that the solution z
satis�es |z(t)| ≤ |za|, t ∈ [a, b].

2.3.24 Remark In our nonlinear system we considered the Caputo fractional deriva-
tive, in order to avoid singularity at the origin, which arises in the case of the
Riemann-Liouville derivative. If we want to consider the Riemann-Liouville version
of (2.38) given by:

aD
α
t z(t) =− Af(z(t)) z(t), t ∈ [a, b],

aI
1−α
t z(t)|t=a = za,

then we need to look for the solution in the weighted space C1−α([a, b];Rd). In
that case, the function f(v(t)), with v ∈ C1−α([a, b];Rd), will not necessarily be
continuous on [a, b], because of the nonlinearity of f . That will lead to a problem
with the de�nition of the mapping T : v 7→ z.

Another reason for using the Caputo derivative is the nature of the initial con-
dition. In the Caputo-type problems, the initial condition is given by the initial
value of the solution, while, in the case of the Riemann-Liouville derivative, the
initial condition is given by aI

1−α
t z(t)|t=a, and it does not have a natural physical

interpretation.
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Chapter 3

Linear Control

This chapter is devoted to the control theory of linear systems. A systematic and
detailed analysis of linear control started in the 1960s with Rudolf Kalman and his
papers [40, 41, 42], where necessary and su�cient conditions for controllability were
established. Then followed a great expansion of the linear control in both theoretical
and applied domain. Today there is a vast number of literature in this �eld. For a
review of classical results, we refer to the following books [1, 14, 23, 38, 60, 63, 64].

In the case of linear control problems with fractional derivatives, most of the
known results are related to the systems with constant coe�cients. First result,
regarding controllability and observability of linear time-invariant systems, was pub-
lished in [52]. Later, several authors considered similar problems (see, for example,
[6, 12]). Over the last 30 years, research in fractional order systems is of a great
interest since for some processes they provide a more accurate models than the one
with integer order derivatives. For an overview of the results in linear fractional
control and their applications in engineering and industry, we refer to the books
[37, 55].

This chapter contains two sections, which are organized in the following way:
In Section 3.1 we recall some of the classical results for linear control systems with
integer order derivatives. In addition, we provide a proof for the equivalent condition
for controllability in the case when the matrix of the system is of the form A(t) =
Ag(t), where A is a constant matrix and g is a scalar function.
Section 3.2 is devoted to the systems with non-integer derivatives. Using methods
from control theory of linear systems with integer-order derivative, and adapting
them to the fractional setting, we derive and prove new results in linear fractional
control. The majority of this section is based on the original results published in [33],
so we cite this paper as the source of the results and proofs unless stated otherwise.
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3.1 Control theory for linear systems of ODEs

The results that will be presented in this section are based on the Chapter 1 of the
book [17] and Section 2 of [65].

We start with a linear control problem

y′(t) = A(t)y(t) +B(t)u(t), t ∈ [a, b]

y(a) = ya,
(3.1)

where A : [a, b]→ Rd×d and B : [a, b]→ Rd×N are continuous matrix functions, i.e.,
A ∈ C([a, b];Rd×d) and B ∈ C([a, b];Rd×N).

We recall some classical results from the theory of linear systems of ODEs. First,
we de�ne the state-transition matrix (principal solution matrix) related to the system

y′ = A(t)y

as the matrix function Π : [a, b] × [a, b] → Rd×d, (τ, t) 7→ Π(τ, t), such that for any
�xed τ ∈ [a, b), matrix Π(τ, t) is a solution to the Cauchy problem

d

dt
Π(τ, t) =A(t)Π(τ, t), t ∈ [τ, b],

Π(τ, τ) = I.
(3.2)

3.1.1 Theorem Let A ∈ C([a, b];Rd×d), B ∈ C([a, b];Rd×N), u ∈ L1([a, b];RN) and
ya ∈ Rd.

(i) The state-transition matrix Π(τ, t) is a unique solution to (3.2). Furthermore,
Π ∈ C1([a, b]2;Rd×d) and it satis�es the following properties:

(1) Π(t, t) = I, for every t ∈ [a, b];

(2) Π(τ, s)Π(s, t) = Π(τ, t), for every τ, s, t ∈ [a, b].

(3) Π(τ, t) is nonsingular and Π(τ, t)−1 = Π(t, τ), for every τ, t ∈ [a, b].

(ii) For any �xed t ∈ (a, b], matrix Π(τ, t) is a unique solution to the Cauchy
problem

d

dτ
Π(τ, t) =− Π(τ, t)A(τ), τ ∈ [a, t],

Π(t, t) = I.
(3.3)

(iii) The unique solution of the initial value problem

y′(t) =A(t)y(t), t ∈ [a, b],

y(a) = ya
(3.4)

is given by y(t) = Π(a, t)ya, and y ∈ C1([a, b];Rd).
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(iv) The unique solution of (3.1) is given by

y(t) = Π(a, t)ya +

t∫
a

Π(τ, t)B(τ)u(τ)dτ (3.5)

and y ∈ C([a, b];Rd).

If A(t) is such that A(t)A(s) = A(s)A(t), for every s, t ∈ [a, b], we can express Π
in terms of a matrix exponential function:

Π(τ, t) = e

t∫
τ
A(s)ds

.

3.1.1 Controllability

In order to derive equivalent conditions for controllability, we need to introduce the
controllability Gramian.

3.1.2 De�nition The controllability Gramian of the control system (3.5) is the
symmetric d× d matrix

W (a, b) =

b∫
a

Π(t, b)B(t)B(t)TΠ(t, b)T dt. (3.6)

Let us notice that controllability Gramian is a positive semide�nite matrix, since

xTW (a, b)x =

b∫
a

xTΠ(t, b)B(t)B(t)TΠ(t, b)Tx dt =

b∫
a

|xTΠ(t, b)B(t)|2 dt ≥ 0,

for any x ∈ Rd. Therefore, the Gramian is nonsingular if and only if it is a positive
de�nite matrix.

3.1.3 Theorem The linear control system (3.1) is controllable if and only if its
controllability Gramian is invertible. Furthermore, the control function which steers
the solution from the state ya to yb during the time interval [a, b] is given by

u(t) = B(t)TΠ(t, b)TW (a, b)−1(yb − Π(a, b)ya), (3.7)

and it is the control with minimal L2-norm, i.e., if u ∈ L2([a, b];RN) is a control
function such that the solution of (3.1) satis�es y(b) = yb, then

b∫
a

|u(t)|2 dt ≤
b∫

a

|u(t)|2 dt,

with equality if and only if u coincides with u almost everywhere on [a, b].
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Proof. Let ya, yb ∈ Rd. If controllability Gramian W (a, b) of system (3.1) is in-
vertible, then control function (3.7) is well de�ned and by (3.5), the solution of the
Cauchy problem

y′(t) = A(t)y(t) +B(t)u(t), t ∈ [a, b]

y(a) = ya,

satis�es

y(b) = Π(a, b)ya +

b∫
a

Π(t, b)B(t)u(t) dt

= Π(a, b)ya +

b∫
a

Π(t, b)B(t)B(t)TΠ(t, b)TW (a, b)−1(yb − Π(a, b)ya) dt

= Π(a, b)ya +W (a, b)W (a, b)−1(yb − Π(a, b)ya)

= yb.

Hence, the system (3.1) is controllable. To prove other implication, assume that the
system (3.1) is controllable and that W (a, b) is not invertible. Then there exists
w ∈ Rd \ {0} such that wTW (a, b)w = 0. Therefore

b∫
a

|wTΠ(t, b)B(t)|2 dt =

b∫
a

wTΠ(t, b)B(t)B(t)TΠ(t, b)Tw dt = 0,

which implies

wTΠ(t, b)B(t) = 0, almost everywhere on [a, b]. (3.8)

On the other hand, the controllability assumption implies that for initial state ya = 0
and �nal state yb = w there exists a control function u0 such that the solution of the
system (3.1) satis�es y(b) = w. Hence, (3.5) and (3.8) imply

wTw = wTy(b) =

b∫
a

wTΠ(t, b)B(t)u0(t) dt = 0,

which leads to a contradiction with w 6= 0.
To prove L2-optimality of u, let u ∈ L2([a, b];RN) be a control function such that

the solution of (3.1) satis�es y(b) = yb, and de�ne v := u− u. Then (3.5) implies
b∫

a

Π(t, b)B(t)v(t) dt =

b∫
a

Π(t, b)B(t)u(t) dt−
b∫

a

Π(t, b)B(t)u(t) dt

= (yb − Π(a, b)ya)− (yb − Π(a, b)ya)

= 0.
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Having in mind (3.7), we conclude

b∫
a

〈u(t), v(t)〉 dt =

b∫
a

〈B(t)TΠ(t, b)TW (a, b)−1(yb − Π(a, b)ya), v(t)〉 dt

= 〈W (a, b)−1(yb − Π(a, b)ya),

b∫
a

Π(t, b)B(t)v(t) dt〉

= 0

Then, using

b∫
a

|u(t)|2 dt =

b∫
a

|u(t)|2 dt+

b∫
a

|v(t)|2 dt+ 2

b∫
a

〈u(t), v(t)〉 dt,

we obtain
b∫

a

|u(t)|2 dt =

b∫
a

|u(t)|2 dt−
b∫

a

|u(t)− u(t)|2 dt,

which concludes the proof. 2

The result from Theorem 3.1.3 tells us that in order to prove (or disprove) con-
trollability of the system, we need to compute the matrix W (a, b) and its inverse (if
possible). These computations, in many cases, might be very di�cult to perform.
So, naturally, the question arises: Is there any simpler way to check whether the
system is controllable or not? And the answer is: Yes, for some special class of the
system.

Firstly, for the systems with constant coe�cients we have a simple algebraic
criterion, today widely known as the Kalman rank condition, given in the following
theorem.

3.1.4 Theorem Linear time-invariant system

y′(t) = Ay(t) +Bu(t), t ∈ [a, b], (3.9)

is controllable if and only if for matrices A and B it holds

rank[B|AB|A2B| · · · |Ad−1B] = d. (3.10)

Proof. For system (3.9) we have

Π(τ, t) = e(t−τ)A, (τ, t) ∈ [a, b]2,
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and

W (a, b) =

b∫
a

e(b−t)ABBTe(b−t)AT

dt. (3.11)

First we show that the Kalman rank is a su�cient condition for controllability.
Assume that system (3.9) is not controllable. Then, Theorem (3.1.3) implies that
the Gramian W (a, b) is singular, speci�cally that there exists w ∈ Rd \{0} such that

b∫
a

|wTe(b−t)AB|2 dt = wTW (a, b)w = 0.

Therefore, function k : [a, b]→ RN given by

k(t) := wTe(b−t)AB, (3.12)

satis�es
k(t) = 0, t ∈ [a, b]. (3.13)

Di�erentiating k i−times and using (3.13), we obtain

k(i)(b) = (−1)iwTAiB = 0, i = 0, . . . , d.

Hence, for some wT 6= 0 we have

wT[B|AB| · · · |Ad−1B] = [wTB|wTAB| · · · |wTAd−1B] = 0,

which contradicts (3.10).
In order to prove that the Kalman rank is necessary condition for controllability,

it su�ces to show that if (3.10) does not hold then the Gramian (3.11) is singular.
Let w ∈ Rd \ {0} be such that

wTAiB = 0, for every i = 0, . . . , d. (3.14)

If PA(x) = xd − αdxd−1 · · · − α2x− α1 is the characteristic polynomial of the matrix
A, then the Cayley-Hamilton theorem implies PA(A) = 0, i.e.,

Ad = αdA
d−1 · · · − α2A− α1I. (3.15)

Now, by induction, from (3.14) and (3.15) it follows

wTAiB = 0, for every i ∈ N.



3.1. Control theory for linear systems of ODEs 41

Therefore, function (3.12) satis�es k(i)(b) = (−1)iwTAiB = 0, for every i ∈ N, and

since k is analytic on [a, b], we get k = 0 on [a, b]. Hence, wTW (a, b)w =
b∫
a

|k(t)|2 dt =

0, which further implies W (a, b)w = 0, for w 6= 0, i.e., W (a, b) is singular. 2

Now we focus on the following type of linear systems:

y′(t) =Ag(t)y(t) +Bu(t), t ∈ [a, b]

y(a) = ya,
(3.16)

where A and B are constant matrices and g : [a, b]→ R is a continuous function such
that g(t) 6= 0, for almost every t ∈ [a, b]. Let us note that state-transition matrix of
this system is Π(τ, t) = eA

∫ t
τ g(s) ds. The following proposition is a modi�cation of the

result from [19, Prop. 2.3].

3.1.5 Proposition System (3.16) is controllable if and only if A and B satisfy the
Kalman rank condition (3.10).

Proof. (⇒) Suppose that the system is controllable and that

rank[B|AB|A2B| · · · |Ad−1B] < d.

Then there exists a column vector q ∈ Rd \ {0} such that

qB = 0, qAB = 0, . . . qAd−1B = 0. (3.17)

Furthermore, controllability implies that for yb = 0 there exists a control function u0

such that the solution of the system satis�es y(b) = 0. Then, from (3.5) we have

0 = y(b) = Π(a, b)ya +

b∫
a

Π(τ, b)Bu0(τ)dτ.

Therefore,

− Π(a, b)ya =

b∫
a

Π(τ, b)Bu0(τ) dτ =

b∫
a

∞∑
k=0

AkB
(
∫ b
τ
g(s) ds)k

k!
u0(τ) dτ. (3.18)

From the Cayley-Hamilton theorem, it follows that for everym ≥ d, Am =
d−1∑
i=0

am,iA
i,

for some constants am,i ∈ R. Then, by induction, from (3.17) we conclude that for
every k ∈ N, qAkB = 0, and by multiplying (3.18) by q, we obtain

−qΠ(a, b)ya =

b∫
a

∞∑
k=0

qAkB
(
∫ b
τ
g(s) ds)k

k!
u0(τ) dτ = 0.
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Since Π(a, b) is regular matrix and ya is arbitrary, it follows that q = 0�a contra-
diction.
(⇐) Suppose that rank[B|AB|A2B| · · · |Ad−1B] = d and that the system (3.16) is
not controllable. From Theorem 3.1.3 it follows that Gramian W (a, b) is singular.
Therefore, there exists w ∈ Rd \ {0} such that

b∫
a

|wTΠ(t, b)B|2 dt = wTW (a, b)w = 0.

Hence,
p(t) := wTΠ(t, b)B = 0, for almost every t ∈ [a, b]. (3.19)

Since Π(·, b) ∈ C([a, b];Rd) and Π(b, b) = I, from (3.19) we conclude wTB = 0.
Di�erentiating (3.19) and using Theorem 3.1.1 (ii), we get

p′(t) = −g(t)wTΠ(t, b)AB = 0, for almost every t ∈ [a, b].

Using g 6= 0, almost everywhere, we conclude

wTΠ(t, b)AB = 0, for almost every t ∈ [a, b], (3.20)

which, as in the previous case, implies that wTAB = 0. By consecutively di�er-
entiating (3.20), using g 6= 0 and properties of Π(t, b), we obtain wTAkB = 0, for
k = 0, 1, . . . , d− 1. Since w 6= 0, this contradicts the Kalman rank condition. 2

3.1.2 Hilbert uniqueness method and observability

The relation (3.7) gives us a straightforward computation of the L2-optimal con-
trol function and it is based on the controllability approach. There are, however,
other methods for obtaining the same results. In the sequel, we shall present the
Hilbert uniqueness method (HUM) based on the properties of Hilbert spaces, and
the variational method, where the problem of �nding the L2-optimal control function
is reduced to the minimization problem of a suitably chosen functional. As we shall
see, they are very closely related, and both rely on the duality between controllability
and observability. Furthermore, both methods are an adaptation of techniques used
for in�nite-dimensional control problems to the �nite-dimensional case.

First, we de�ne the adjoint system of (3.1) by the following backward Cauchy
problem:

z′(t) =− A(t)Tz(t), t ∈ [a, b]

z(b) = zb.
(3.21)
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From (3.3) we have that the solution of the adjoint problem is given by

z(t) = Π(t, b)Tzb. (3.22)

We have the following property, which justi�es the choice of the adjoint system.

3.1.6 Proposition Let u ∈ L2([a, b];RN) and zb ∈ Rd. Let y : [a, b] → Rd be a
solution to the Cauchy problem (3.1), and let z : [a, b] → Rd be a solution to the
adjoint problem (3.21). Then

〈y(b), zb〉 − 〈ya, z(a)〉 =

b∫
a

〈u(t), B(t)Tz(t)〉 dt. (3.23)

Proof. Straightforward computations yield

〈y(b), zb〉 − 〈ya, z(a)〉 =

b∫
a

d

dt
〈y(t), z(t)〉 dt

=

b∫
a

〈dy
dt

(t), z(t)〉+ 〈y(t),
dz

dt
(t)〉 dt

=

b∫
a

〈A(t)y(t) +B(t)u(t), z(t)〉+ 〈y(t),−A(t)Tz(t)〉 dt

=

b∫
a

〈u(t), B(t)Tz(t)〉 dt,

which proves the claim. 2

3.1.7 Remark From observability point of view, introduced in Section 1.2, the
result from Proposition 3.1.6 can be interpreted in this way:
Knowing y(b) = yb, control function u and observations BTz on [a, b], we can deduce
the initial state of the system y(a) = ya.

Denote by R the set of all reachable states, i.e., the set of all yb ∈ Rd such that
there exists u ∈ L2([a, b];RN) for which the solution of (3.1) satis�es y(b) = yb.
Further, de�ne the mapping L : Rd → Rd, such that

L : zb 7→ y(b), (3.24)
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where y : [a, b]→ Rd is the solution of the Cauchy problem

y′(t) = A(t)y(t) +B(t)u∗(t), y(a) = ya,

with

u∗(t) := B(t)Tz(t)

and z(t) is the solution of the adjoint problem (3.21).
Now we present the result obtained by the HUM, stated in [17, Th. 1.25.].

3.1.8 Theorem The image of the mapping L given by (3.24) coincides with the set
of reachable states, i.e.,

R = L(Rd).

Moreover, if yb = L(zb) and if u1 ∈ L2([a, b];RN) is a control which steers the solution
of (3.1) from ya to yb during the time interval [a, b], then

b∫
a

|u∗(t)|2 dt ≤
b∫

a

|u1(t)|2 dt, (3.25)

with equality if and only if u1(t) = u∗(t), for almost every t ∈ [a, b].

Proof. The de�nition of L directly implies L(Rd) ⊆ R. To prove the converse, let
y1 ∈ R and denote by u1 the control function which steers the solution of the system
(3.1) from ya to y1 during time interval [a, b].

Let U ⊂ L2([a, b];RN) be the set of all maps given by t 7→ B(t)Tz(t), t ∈ [a, b],
where z is the solution of the adjoint problem and zb ∈ Rd. Using z(t) = Π(t, b)Tzb,
we conclude that U is a �nite-dimensional vector subspace of L2([a, b];RN) (the
dimension of U is less than or equal to d). Hence U is closed. If u∗1 is the orthogonal
projection of u1 on U , then the following holds

b∫
a

〈u∗1(t), u(t)〉 dt =

b∫
a

〈u1(t), u(t)〉 dt, u ∈ U . (3.26)

Denote by y∗ the solution of the Cauchy problem

dy∗

dt
(t) = A(t)y∗(t) +B(t)u∗1(t), y∗(a) = ya. (3.27)
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Then Proposition 3.1.6 and (3.26) imply

〈y∗(b), zb〉 − 〈ya, z(a)〉 =

b∫
a

〈u∗1(t), B(t)Tz(t)〉 dt

=

b∫
a

〈u1(t), B(t)Tz(t)〉 dt

= 〈y1, zb〉 − 〈ya, z(a)〉,

with zb ∈ Rd arbitrary. Therefore

y∗(b) = y1. (3.28)

From the de�nition of U and u∗1 ∈ U , it follows that there exists z∗b ∈ Rd such that

u∗1(t) = B(t)Tz∗(t), (3.29)

where z∗ is the solution of the adjoint problem

dz∗

dt
(t) = −A(t)Tz∗(t), z∗(b) = z∗b .

Now, using (3.27), (3.28) and (3.29), we obtain

y1 = y∗(b) = L(z∗b ).

It remains to prove L2-optimality of the control u∗. Assume u1 ∈ L2([a, b];RN) is
a control which steers the system (3.1) from ya to yb during the time interval [a, b],
where yb = L(zb) and zb ∈ Rd. Then, using Proposition 3.1.6, as in the previous part
of the proof, and having in mind that u∗ ∈ U , we get

b∫
a

〈u∗(t), u(t)〉 dt =

b∫
a

〈u1(t), u(t)〉 dt, u ∈ U ,

which implies that u∗ coincides with the orthogonal projection of u1 on U . Thus,
u1 − u∗ and u∗ are orthogonal in L2([a, b];RN), and

‖u1‖2
L2 = ‖(u1 − u∗) + u∗‖2

L2 = ‖u1 − u∗‖2
L2 + ‖u∗‖2

L2 .

Therefore, (3.25) holds. 2

Now we move to the notion of observability and its relation with controllability.
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3.1.9 De�nition The adjoint system (3.21) is observable if there exists a constant
C > 0 such that for every zb ∈ Rd the solution of the system satis�es

|zb|2 ≤ C

b∫
a

|B(t)Tz(t)|2 dt. (3.30)

The inequality (3.30) is called an observability inequality. It re�ects the ability of
the adjoint system to be observed through measurements BTz. More precisely, (3.30)
assures that the N -dimensional observations BTz provide su�cient information for
the reconstruction of all components of the adjoint system. On the other hand, from
controllability point of view, this means that the N -dimensional control u, through
matrix B, can e�ciently act on all the components of the state of the system. This
illustrates the duality between controllability and observability properties, whose
equivalence will be proved in the sequel. In order to do that, we need an equivalent
condition for observability, in literature known as the unique continuation property,
which is given in the next proposition.

3.1.10 Proposition System (3.21) is observable if and only if its solution satis�es

B(t)Tz(t) = 0, for almost every t ∈ [a, b] ⇒ zb = 0. (3.31)

Proof. If system (3.21) is observable, then (3.30) directly implies (3.31). To prove
the converse, de�ne the mapping ‖ · ‖s : Rd → [0,∞) which every zb ∈ Rd maps to

‖zb‖s :=
( b∫
a

|B(t)Tz(t)|2 dt
)1/2

,

where z is the unique solution of the adjoint problem (3.21). One can easily see that
‖ · ‖s is a seminorm (using properties of the L2-norm). Furthermore, by (3.31) we
have that if ‖zb‖s = 0, then zb = 0. Hence, ‖ · ‖s is a norm on Rd. Now the existence
of the constant C follows from the equivalence of all the norms on Rd. 2

Now we are able to prove the equivalence between controllability and observabil-
ity.

3.1.11 Theorem System (3.1) is controllable if and only if the adjoint system (3.21)
is observable.

Proof. (⇐) Assume that (3.1) is not controllable. Then, according to Theorem
3.1.3, Gramian W (a, b) is singular. Hence, there exists w ∈ Rd \ {0} such that
wTW (a, b)w = 0, which further implies

B(t)TΠ(t, b)Tw = 0, for almost every t ∈ [a, b].
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If z̃ is the solution of the adjoint problem satisfying z̃(b) = w, then

B(t)Tz̃(t) = B(t)TΠ(t, b)Tw = 0, almost everywhere on [a, b],

and z̃b 6= 0. Thus Proposition 3.1.10 implies that (3.21) is not observable.
(⇒) Suppose that (3.1) is controllable and (3.21) is not observable. Then, by

De�nition 3.1.9, for every C > 0 there exists zb(C) ∈ Rd such that (3.30) does not
hold. Let {Ck} be a sequence of positive numbers such that lim

k→∞
1
Ck

= 0 and zb(Ck),

k ∈ N, satisfy

|zb(Ck)|2 > Ck

b∫
a

|B(t)Tzk(t)|2 dt, (3.32)

where zk is the solution of the adjoint system with zk(b) = zb(Ck). Without loss of
generality, we can assume |zb(Ck)| = 1, so that zb(Ck) has a convergent subsequence,
which we do not relabel. Let zb = lim

k→∞
zb(Ck). Then |zb| = 1 and solution z of

the adjoint system satisfying the condition z(b) = zb coincides with the limit of the
solutions zk. From (3.32), we have that for every k

0 ≤
b∫

a

|B(t)Tzk(t)|2 dt <
1

Ck
|zb(Ck)|2,

and letting k →∞, we obtain

B(t)Tz(t) = 0, for almost every t ∈ [a, b]. (3.33)

Since, by assumption, system (3.1) is controllable, we have that for ya = 0 and
for any yb ∈ Rd there exists a control function u which steers the solution y from
y(a) = 0 to y(b) = yb. Then, by Proposition 3.1.6 and (3.33) we have

〈yb, zb〉 =

b∫
a

〈u(t), B(t)Tz(t)〉 dt = 0.

Since yb was arbitrary, it follows that zb = 0, which contradicts |zb| = 1. 2

Variational approach for obtaining the L2-optimal control function is based on
the minimization of the functional J : Rd → R, given by

J(zb) =
1

2

b∫
a

|B(t)Tz(t)|2 dt− 〈yb, zb〉+ 〈ya, z(a)〉, (3.34)

where z is the solution of the adjoint problem (3.21).
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3.1.12 Theorem If the system (3.1) is controllable (or equivalently (3.21) is observ-
able), then the functional J has a minimum, and the control function which steers
the solution from ya to yb during the time interval [a, b], is given by

û(t) = B(t)Tẑ(t) (3.35)

where ẑ is the solution of the adjoint problem with �nal state ẑ(b) = ẑb being the
minimum point of J . Furthermore, for any control function u ∈ L2([a, b];RN) such
that the solution of the control problem (3.1) satis�es y(b) = yb, it holds

b∫
a

|û(t)|2 dt ≤
b∫

a

|u(t)|2 dt,

with equality if and only if û and u coincide almost everywhere on [a, b].

Proof. By de�nition, the functional J is strictly convex and continuous on Rd.
Thus, in order to prove that it has a minimum, it su�ces to show that J is coercive,
i.e., that

lim
|zb|→∞

J(zb) =∞. (3.36)

From observability, it follows that there exists C > 0 such that for every zb and
associated solution of (3.21) we have (3.30). Thus, by the de�nition of J and the
Cauchy-Schwartz inequality, we get

J(zb) ≥
|zb|2

2C
− 〈yb, zb〉+ 〈ya, z(a)〉

≥ |zb|2

2C
− |〈yb, zb〉|+ |〈ya, z(a)〉|

≥ |zb|2

2C
− |yb||zb|+ |〈ya, z(a)〉|,

which implies (3.36). Therefore, J has a unique minimum point in Rd, which we
denote by ẑb. Thus, the �rst variation of J(ẑb) is equal to zero, i.e.,

δJ(ẑb, zb) = lim
h→0

J(ẑb + hzb)− J(ẑb)

h
= 0, for every zb ∈ Rd.

By calculating the limit above, we get that for every zb ∈ Rd

b∫
a

〈B(t)Tẑ(t), B(t)Tz(t)〉 dt− 〈yb, zb〉+ 〈ya, z(a)〉 = 0,



3.1. Control theory for linear systems of ODEs 49

which coincides with (3.23), for u(t) = B(t)Tẑ(t). Therefore, the control û given by

û(t) = B(t)Tẑ(t)

steers the solution to a desired state yb. The second statement follows from Theorem
3.1.8. 2

3.1.13 Remark Comparing the results from Theorem 3.1.3, Theorem 3.1.8 and
Theorem 3.1.12 we conclude that u = u∗ = û almost everywhere on [a, b]. Further-
more, by calculating the �rst variation of the functional J , one could �nd that the
point ẑb where J reaches its minimum is given by

ẑb = W (a, b)−1(yb − Π(a, b)ya).

Hence, from (3.22) and relations (3.7) and (3.35), it follows that the functions u and
û coincide on [a, b].

3.1.3 Bang-bang controls

In the methods presented so far, the optimization of control function was considered
from energy-minimization approach, which corresponds to the L2-setting. On the
other hand, the optimization in the L∞-setting, where the goal is to �nd a control
with minimal L∞-norm, provides a control of a simpler form. The L∞-optimal control
functions are called bang-bang controls since they turn out to be piecewise constant
functions, and consist of switching from one constant state to another (often 0 and
1, on/o�). This makes them more convenient for applications, since they are easier
to implement than, for example, smooth controls which have �ne changes in shape
and magnitude.

The bang-bang controls can also be obtained via minimization problem, with
certain modi�cations of a functional to be minimized.

For �xed initial and �nal data ya, yb ∈ Rd, de�ne a functional Jbb : Rd → R, such
that for zb ∈ Rd

Jbb(zb) =
1

2

( b∫
a

|B(t)Tz(t)|1 dt
)2

− 〈yb, zb〉+ 〈ya, z(a)〉, (3.37)

where z is the solution of the adjoint system (3.21), with �nal state z(b) = zb.
Compared to the de�nition of J , where the square of the L2-norm of BTz takes
part, here we have the square of the L1-norm. Accordingly, we are going to modify
observability inequality, which will provide coercivity of continuous convex functional
Jbb.
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We say that the adjoint system (3.21) is observable if there exists C > 0 such
that for every zb ∈ Rd

|zb|2 ≤ C
( b∫
a

|B(t)Tz(t)|1 dt
)2

. (3.38)

Note that observability de�ned via inequality (3.38) is also equivalent to the unique
continuation property given in Proposition 3.1.10.

Hence, if the system (3.1) is controllable, i.e., (3.21) is observable, then Jbb has
a minimum. Let z̃b be the point where Jbb reaches its minimum. Then, for every
zb ∈ Rd we have

lim
h→0

Jbb(z̃b + hzb)− Jbb(z̃b)
h

= 0. (3.39)

To calculate the �rst variation of Jbb, we use the following relation:

lim
h→0

1

h

[( b∫
a

|F + hG|1 dt
)2

−
( b∫
a

|F |1 dt
)2]

= 2

b∫
a

|F |1 dt
b∫

a

〈sign (F ), G〉 dt, (3.40)

which holds if {t ∈ [a, b] : Fi(t) = 0, for some i = 1, . . . , N} is the set of the zero
Lebesgue measure, F,G : [a, b]→ RN . In (3.40) and in the sequel, the sign function
of a vector is calculated componentwise.

Let z̃ be the solution of (3.21) with �nal state z̃(b) = z̃b being the minimizer of Jbb,
F (t) = B(t)Tz̃(t) and G(t) = B(t)Tz(t). Note that if matrices A,B are continuous,
then F = BTz is also a continuous function and each component Fi changes sign on
[a, b] �nitely many times. Hence, we can apply (3.40) in (3.39), and obtain that for
every zb ∈ Rd

b∫
a

|B(t)Tz̃(t)|1 dt
b∫

a

〈sign (B(t)Tz̃(t)), B(t)Tz(t)〉 dt− 〈yb, zb〉+ 〈ya, za〉 = 0.

The above equation is equivalent to

b∫
a

〈
b∫

a

|B(t)Tz̃(t)|1 dt sign (B(t)Tz̃(t)), B(t)Tz(t)〉 dt = 〈yb, zb〉 − 〈ya, za〉,

which coincides with (3.23) for

u(t) = ubb(t) =

b∫
a

|B(t)Tz̃(t)|1 dt sign (B(t)Tz̃(t)). (3.41)
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Hence, from Proposition 3.1.6, we have that ubb is a desired control function, i.e., the
one which steers the solution of (3.1) from ya to yb during the time interval [a, b].

It remains to show that ubb is a control with minimal L∞-norm. Assume that
v ∈ L∞([a, b];RN) is a control which also steers the solution of (3.1) from ya to yb.
Again, using Proposition 3.1.6 for zb = z̃b, we get that ubb and v satisfy

b∫
a

〈ubb(t), B(t)Tz̃(t)〉 dt = 〈yb, z̃b〉 − 〈ya, z̃a〉 =

b∫
a

〈v(t), B(t)Tz̃(t)〉 dt.

Therefore,

‖ubb‖2
∞ =

( b∫
a

(|B(t)Tz̃(t)|1 dt
)2

=

b∫
a

〈ubb(t), B(t)Tz̃(t)〉 dt

=

b∫
a

〈v(t), B(t)Tz̃(t)〉 dt ≤ ‖v‖∞

b∫
a

|B(t)Tz̃(t)|1 dt = ‖v‖∞‖ubb‖∞.

After dividing by ‖ubb‖∞, we get

‖ubb‖∞ ≤ ‖v‖∞.

Since v ∈ L∞([a, b];RN) was arbitrary, we get that among all control functions the
bang-bang control (3.41) has minimal L∞-norm.

Note that each component ubb,j, j = 1, . . . , N , of the vector-valued function

ubb, takes only two values ±
b∫
a

|B(t)Tz̃(t)|1 dt, depending on the sign of the j−th

component of B(t)Tz̃(t).

3.2 Control theory for linear systems of FDEs

In this section we consider a fractional analog of problem (3.1) with the Caputo
fractional derivative of order α ∈ (0, 1):

C
a Dα

t y(t) =A(t)y(t) +B(t)u(t), t ∈ [a, b]

y(a) = ya,
(3.42)

where A ∈ L∞([a, b];Rd×d) and B ∈ L∞([a, b];Rd×N) are given matrix functions.
From Theorem 2.3.7 (iv) we have that the solution of (3.42) is given by

y(t) = Ψ(a, t)ya +

∫ t

a

Φ(τ, t)B(τ)u(τ) dτ. (3.43)
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3.2.1 Controllability

Let us start by introducing the controllability Gramian matrix.

3.2.1 De�nition The controllability Gramian of the control system (3.42) is the
symmetric d× d matrix

Wα(a, b) =

b∫
a

(b− t)1−αΦ(t, b)B(t)B(t)TΦ(t, b)T dt. (3.44)

3.2.2 Remark When comparing (3.44) with the de�nition (3.6), one can notice the
extra term (b− t)1−α. This addition is necessary in order to assure the convergence
of the integral (3.44) since, due to the nature of the Riemann-Liouville fractional
derivative, the function Φ(·, b) : [a, b) → Rd×d has a singularity at the endpoint
t = b.

For illustration, let us consider a simple example of one-dimensional linear time-
invariant control problem

C
a Dα

t y(t) = a1y(t) + b1u(t), y(a) = ya,

where a1, b1 ∈ R+ and y, u : [a, b] → R. In this case, the matrix Φ(t, b) reduces to
φ(t, b) = (b − t)α−1Eα,α(a1(b − t)α). Hence, if we de�ne the Gramian in the same
way as in (3.6), we have

W (a, b) =

b∫
a

φ(t, b)2b2
1 dt = b2

1

b∫
a

(b− t)2(α−1)E2
α,α(a1(b− t)α) dt

Since a1 > 0 and t ∈ [a, b], we have Eα,α(a1(b− t)α) ≥ 1. Therefore

W (a, b) ≥ b2

b∫
a

(b− t)2(α−1) dt. (3.45)

Since the integral on the right-hand side of (3.45) is divergent for α ≤ 1
2
, we do not

have a well de�ned Gramian for α ∈ (0, 1
2
]. Hence, some adjustments need to be

made. A natural one is the addition of the term (b − t)1−α, since it is a minimal
modi�cation which assures convergence of the integral and reduces to the integer-
order case for α = 1.
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To show the convergence of (3.44), we use Proposition 2.3.16, and obtain that
for some MF > 0

‖Wα(a, b)‖ ≤
b∫

a

(b− t)α−1‖(b− t)1−αΦ(t, b)‖‖B(t)B(t)T‖‖(b− t)1−αΦ(t, b)T‖ dt

≤ M2
F‖B‖2

b∫
a

(b− t)α−1dt =
M2

F‖B‖2(b− a)α

α
,

where ‖B‖ = sup
t∈[a,b]

‖B(t)‖.

3.2.3 Remark Let us notice that in the fractional case we also have

xTWα(a, b)x =

b∫
a

(b− t)1−αxTΦ(t, b)B(t)B(t)TΦ(t, b)Tx dt

=

b∫
a

(b− t)1−α|xTΦ(t, b)B(t)|2 dt ≥ 0,

for any x ∈ Rd. Hence, the regularity of the Gramian is also equivalent to its positive
de�niteness.

3.2.4 Remark In the sequel, we shall use the de�nition of the Gramian given by
(3.44), since it is well-de�ned for every α ∈ (0, 1) and it reduces to (3.6), for α = 1.
However, we want to emphasize that for α ∈ (1

2
, 1), one can de�ne the Gramian

without the extra term (b− t)1−α, i.e., for α = α ∈ (1
2
, 1), de�nition

Wα(a, b) =

b∫
a

Φ(t, b)B(t)B(t)TΦ(t, b)T dt

is also valid.

The �rst result is the equivalence between controllability and invertibility of the
Gramian.

3.2.5 Theorem System (3.42) is controllable if and only if the controllability Gramian
matrix Wα(a, b) is nonsingular.
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Proof. (⇐) If Wα(a, b) is nonsingular, then the control function

u(t) = (b− t)1−αB(t)TΦ(t, b)TWα(a, b)−1[yb −Ψ(a, b)ya] (3.46)

is well de�ned and it steers the solution of the system to a desired value yb. Indeed,
inserting u = u in (3.43) we obtain

y(b) = Ψ(a, b)ya +

b∫
a

Φ(t, b)B(t)u(t) dt

= Ψ(a, b)ya

+

∫ b

a

(b− t)1−αΦ(t, b)B(t)B(t)TΦ(t, b)TWα(a, b)−1[yb −Ψ(a, b)ya] dt

= Ψ(a, b)ya +Wα(a, b)Wα(a, b)−1[yb −Ψ(a, b)ya]

= yb.

(⇒) Suppose that the system is controllable and that Wα(a, b) is singular. Then
there exists a column vector w ∈ Rd \ {0} such that wTWα(a, b)w = 0, which yields

b∫
a

wT(b− t)1−αΦ(t, b)B(t)B(t)TΦ(t, b)Tw dt = 0. (3.47)

If
φ(t) = wTΦ(t, b)B(t)

then (3.47) implies that φ(t) = 0, almost everywhere on [a, b]. Since the system is
controllable, there exists a control u such that the solution of the system satis�es
y(b) = w, when y(a) = 0. Then we have

w = y(b) =

b∫
a

Φ(t, b)B(t)u(t) dt,

and

‖w‖2 = wTw =

b∫
a

wTΦ(t, b)B(t)u(t) dt =

b∫
a

φ(t)u(t) dt = 0.

This leads to a contradiction with w 6= 0. 2

If the system is controllable, the control function given by (3.46) is an optimal
control in the weighted space de�ned by (1.1).
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3.2.6 Proposition If u ∈ L2
α−1([a, b];RN) is a control function such that the solu-

tion of (3.42) satis�es y(b) = yb, then

b∫
a

(b− t)α−1|u(t)|2 dt ≤
b∫

a

(b− t)α−1|u(t)|2 dt,

with equality if and only if u and u coincide almost everywhere on [a, b].

Proof. Let v := u − u. Since u and u both steer the solution from ya to yb, from
(3.43) we have

b∫
a

Φ(t, b)B(t)v(t) dt =

b∫
a

Φ(t, b)B(t)u(t) dt−
b∫

a

Φ(t, b)B(t)u(t) dt

= (yb −Ψ(a, b)ya)− (yb −Ψ(a, b)ya) = 0.

This together with (3.46) implies

〈u, v〉L2
α−1

=

b∫
a

(b− t)α−1〈u(t), v(t)〉 dt =

b∫
a

〈B(t)TΦ(t, b)Twα, v(t)〉 dt

=

b∫
a

〈wα,Φ(t, b)B(t)v(t)〉 dt = 〈wα,
b∫

a

Φ(t, b)B(t)v(t) dt〉 = 0,

where wα = Wα(a, b)−1(yb −Ψ(a, b)ya). On the other hand

‖u‖2
L2
α−1

= ‖u+ v‖2
L2
α−1

= ‖u‖2
L2
α−1

+ ‖v‖2
L2
α−1

+ 2〈u, v〉L2
α−1
.

Therefore,

b∫
a

(b− t)α−1|u(t)|2 dt =

b∫
a

(b− t)α−1|u(t)|2 dt+

b∫
a

(b− t)α−1|v(t)|2 dt,

which concludes the proof. 2

3.2.7 Remark Having in mind Remark 3.2.4, and taking Wα = Wα, for α = α ∈
(1

2
, 1), the control function from the proof of Theorem 3.2.5 reduces to

u(t) = B(t)TΦ(t, b)TWα(a, b)−1[yb −Ψ(a, b)ya],

and it is an optimal control in the space L2([a, b];RN).
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The next proposition states that for linear time-invariant systems with fractional
derivatives, as well as in the case with integer derivatives, the Kalman rank is a
necessary and su�cient condition for controllability. Using the sketch of the proof
given in [52, Th. 3], we obtain the following.

3.2.8 Proposition Linear time-invariant system

C
a Dα

t y(t) = Ay(t) +Bu(t), t ∈ [a, b]

y(a) = ya,
(3.48)

is controllable if and only if matrices A and B satisfy

rank[B|AB|A2B| · · · |Ad−1B] = d.

Proof. First, recall that for the system (3.48), the associated state-transition ma-
trices are given by the Mittag-Le�er functions:

Ψ(a, t) = Eα(A(t− a)α) and Φ(τ, t) = (t− τ)α−1Eα,α(A(t− τ)α). (3.49)

Furthermore, the controllability Gramian reduces to

Wα(a, b) =

b∫
a

(b− t)α−1Eα,α(A(b− t)α)BBTEα,α(AT(b− t)α) dt. (3.50)

From Theorem 3.2.5, we have that it su�ces to prove that the Kalman rank condition
is satis�ed if and only if the Gramian (3.50) has inverse. We use the same arguments
as in the integer-derivative case.

(⇐) Suppose that (3.50) is singular matrix. Then, there exists w ∈ Rd \{0} such
that

b∫
a

(b− t)α−1|wTEα,α(A(b− t)α)B|2 dt = wTWα(a, b)w = 0. (3.51)

Denote by φ : [a, b] → RN the function given by φ(t) = wTEα,α(A(b − t)α)B. Now
(3.51), and the fact that φ is continuous, imply φ(t) = 0, t ∈ [a, b]. Let us introduce
the change of variables z = (b− t)α. Then

φ̃(z) = wTEα,α(Az)B =
∞∑
k=0

wTAkBzk

Γ(αk + α)
= 0, z ∈ [0, (b− a)α]. (3.52)

Taking derivative of (3.52) i−times, i ∈ {0, 1, . . . , d− 1}, we obtain

wTAiB = 0, i = 0, . . . , d− 1. (3.53)
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Hence, the Kalman rank condition is not satis�ed.
(⇒) We show that if the Kalman rank is not satis�ed, then (3.50) is singular.

Let w ∈ Rd \{0} be such that (3.53) holds. This, together with the Cayley-Hamilton
theorem implies

wTAiB = 0, for every i ∈ N. (3.54)

Therefore, the function φ(t) = wTEα,α(A(b− t)α)B =
∞∑
k=0

wTAkB(b−t)αk
Γ(αk+α)

satis�es

φ(t) = 0, t ∈ [a, b].

Hence wTWα(a, b)w =
∫ b
a
(b − t)α−1|φ(t)|2 dt = 0, which implies singularity of the

Gramian. 2

We conclude this section with the analysis of the following system:
C
a Dα

t y(t) =Ag(t)y(t) +Bu(t), t ∈ [a, b]

y(a) = ya,
(3.55)

where A ∈ Rd×d is a symmetric real matrix, B ∈ Rd×N is a real matrix and g :
[a, b]→ R is a continuous function and g(t) 6= 0, for almost every t ∈ [a, b].

First, we prove a fractional analog of Proposition 3.1.5.

3.2.9 Proposition System (3.55) is controllable if and only if the Kalman rank
condition is satis�ed, i.e., rank[B|AB|A2B| · · · |Ad−1B] = d.

Proof. (⇒) Suppose that the system is controllable and that A and B do not satisfy
the Kalman rank condition. Then, we can �nd a vector q ∈ Rd \ {0} such that

qB = 0, qAB = 0, . . . , qAd−1B = 0. (3.56)

Using the Cayley-Hamilton theorem and (3.56) we conclude that

qAkB = 0, for every k ∈ N. (3.57)

From controllability, it follows that for yb = 0 there exists a control function u0 such
that the solution of the system satis�es y(b) = 0. Then, from the representation of
the solution (3.43), we have

0 = y(b) = Ψ(a, b)ya +

b∫
a

Φ(τ, b)Bu0(τ)dτ.

Therefore,

−Ψ(a, b)ya =

b∫
a

Φ(τ, b)Bu0(τ) dτ =

b∫
a

∞∑
k=0

AkB(τ I
k◦α
b g(τ))u0(τ) dτ. (3.58)
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Then, by multiplying (3.58) by q and using (3.57), we obtain

− qΨ(a, b)ya = 0. (3.59)

From the proof of Proposition 2.3.19 (i) we have that Ψ(a, b) is a regular matrix and
since ya was arbitrary, (3.59) implies q = 0�a contradiction.
(⇐) Suppose that rank[B|AB|A2B| · · · |Ad−1B] = d and that the system (3.55) is
not controllable. Then Theorem 3.2.5 implies that Wα(a, b) is singular. Hence, there
exists w ∈ Rd \ {0} such that wTWα(a, b)w = 0, which will lead to

wTΦ(t, b)B = 0, for almost every t ∈ [a, b]. (3.60)

Applying tI
1−α
b to (3.60), and using lim

t→b
tI

1−α
b Φ(t, b) = tI

1−α
b Φ(t, b)|t=b = I, we obtain

wTB = 0. Moreover, from tD
α
b Φ(t, b) = Ag(t)Φ(t, b) and (3.60) it follows that

wTAg(t)Φ(t, b)B = 0, for almost every t ∈ [a, b].

Since g(t) is continuous and g 6= 0 almost everywhere, we obtain wTAΦ(t, b)B = 0,
for almost every t ∈ [a, b]. Again, using tI

1−α
b Φ(t, b)|t=b = I, we get wTAB = 0.

By taking derivatives tDα
b of (3.60) subsequently k-times, and then consecutively

using g 6= 0, almost everywhere on [a, b], we get wTAkΦ(t, b)B = 0, which together
with tI

1−α
b Φ(t, b)|t=b = I implies that wTAkB = 0, for every k = 0, 1, 2, ..., d−1. This

contradicts the Kalman rank condition. 2

3.2.10 Remark (Diagonalization of Gramian matrix) Let us notice that using
Remark 2.3.18, and introducing notation B̃ = UTB and x(t) = UTy(t), we can
reduce (3.55) to an equivalent system:

C
a Dα

t x(t) = Dg(t)x(t) + B̃u(t), t ∈ [a, b]

x(a) = UTya.
(3.61)

Moreover, from the proof of Proposition 2.3.19 (ii), we have that Φ(τ, t) = UQ(τ, t)UT

and Q(τ, t) = ΦD(τ, t), with ΦD(τ, t) being the solution to

τD
α
t ΦD(τ, t) = Dg(τ)ΦD(τ, t), τ ∈ (a, t), τ I

1−α
t ΦD(τ, t)|τ=t = I.

Hence, the controllability Gramians of (3.55) and (3.61), denoted by Wα,A(a, b) and
Wα,D(a, b), respectively, satisfy

Wα,A(a, b) =

b∫
a

(b− t)1−αΦ(t, b)BBTΦ(t, b)T dt

=

b∫
a

(b− t)1−αUΦD(t, b)UTBBTUΦD(t, b)TUT dt

= UWα,D(a, b)UT.
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3.2.2 Adjoint system and observability

In this section we consider the adjoint problem of (3.42) and the notion of observ-
ability. For fractional linear systems with constant coe�cients, observability was
introduced in [52], where it was shown to be equivalent to the positive de�niteness of
the observability Gramian matrix. Here we are going to take di�erent approach and
introduce observability via the observability inequality. Furthermore, we are going
to adapt the results from Section 3.1.2 to the fractional setting.

We de�ne the adjoint system of (3.42) by the following backward problem:

tD
α
b z(t) = A(t)Tz(t), t ∈ (a, b)

tI
1−α
b z(t)|t=b = zb.

(3.62)

Having in mind Corollary 2.3.12, it follows that the solution of (3.62) is given by
z(t) = Φ(t, b)Tzb. Moreover, z satis�es the following properties:

� z ∈ ACα
b ([a, b];Rd) and

lim
t→b

(b− t)1−αz(t) =
1

Γ(α)
tI

1−α
b z(t)|t=b =

zb
Γ(α)

.

In particular, z ∈ L1([a, b];Rd).

� z ∈ L2
1−α([a, b];Rd). Using Proposition 2.3.16 we get

b∫
a

(b− t)1−α|z(t)|2 dt =

b∫
a

(b− t)α−1|(b− t)1−αΦ(t, b)Tzb|2 dt

≤ M2
F |zb|2

b∫
a

(b− t)α−1 dt =
M2

F |zb|2(b− a)α

α
<∞.

� For α ∈ (1
2
, 1), z ∈ L2([a, b];Rd). Again, Proposition 2.3.16 implies

b∫
a

|z(t)|2 dt =

b∫
a

(b− t)2(α−1)|(b− t)1−αΦ(t, b)Tzb|2 dt

≤ M2
F |zb|2

b∫
a

(b− t)2(α−1) dt =
M2

F |zb|2(b− a)2α−1

2α− 1
<∞.

In the next lemma, we present an auxiliary result.
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3.2.11 Lemma If w(t) is the solution of the Cauchy problem

C
a Dα

t w(t) = A(t)w(t), w(a) = wa,

and z(t) the solution of the adjoint problem (3.62), then

〈w(b), zb〉 − 〈wa, za〉 = 0, (3.63)

where za = tI
1−α
b z(t)|t=a.

Proof. For w(t) and z(t) we have that for every t ∈ [a, b]

〈Ca Dα
t w(t), z(t)〉 = 〈A(t)w(t), z(t)〉 = 〈w(t), A(t)Tz(t)〉 = 〈w(t), tD

α
b z(t)〉.

Hence

b∫
a

〈Ca Dα
t w(t), z(t)〉 dt =

b∫
a

〈w(t), tD
α
b z(t)〉 dt, and (3.63) follows from (2.3). 2

The next proposition explains why the de�nition of the adjoint problem given by
(3.62) is the natural one.

3.2.12 Proposition Let u ∈ L2
α−1([a, b];RN), or u ∈ L∞([a, b];RN).

(i) If y : [a, b]→ Rd is the solution of the system (3.42), and z : [a, b]→ Rd is the
solution of (3.62), with zb ∈ Rd arbitrary, then

b∫
a

〈u(t), B(t)Tz(t)〉 dt = 〈y(b), zb〉 − 〈ya, za〉, (3.64)

where za = tI
1−α
b z(t)|t=a.

(ii) Let ya, yb ∈ Rd. If u is such that for every zb ∈ Rd it holds

b∫
a

〈u(t), B(t)Tz(t)〉 dt = 〈yb, zb〉 − 〈ya, za〉, (3.65)

where z(t) is solution of (3.62) and za = tI
1−α
b z(t)|t=a, then the solution of

(3.42) satis�es y(b) = yb.
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Proof. (i) Since y satis�es (3.42), we have

b∫
a

〈u(t), B(t)Tz(t)〉 dt =

b∫
a

〈B(t)u(t), z(t)〉 dt

=

b∫
a

〈Ca Dα
t y(t), z(t)〉 dt−

b∫
a

〈A(t)y(t), z(t)〉 dt

=

b∫
a

〈Ca Dα
t y(t), z(t)〉 dt−

b∫
a

〈y(t), A(t)Tz(t)〉 dt.

Applying fractional integration by parts, given in Proposition 2.3, we obtain

b∫
a

〈Ca Dα
t y(t), z(t)〉 dt =

b∫
a

〈y(t), tD
α
b z(t)〉 dt+ 〈y(t), tI

1−α
b z(t)〉

∣∣∣t=b
t=a
.

Hence

b∫
a

〈u(t), B(t)Tz(t)〉 dt =

b∫
a

〈y(t), tD
α
b z(t)−A(t)Tz(t)〉 dt+〈y(b), zb〉−〈ya, za〉, (3.66)

for za = tI
1−α
b z(t)|t=a. Since, by assumption, z is a solution of the adjoint problem,

(3.66) reduces to (3.64).
(ii) From (3.43), it follows that the value of the solution y(t) at the end point is

given by

y(b) = Ψ(a, b)ya +

b∫
a

Φ(t, b)B(t)u(t) dt.

Hence, using z(t) = Φ(t, b)Tzb, we obtain

b∫
a

〈u(t), B(t)Tz(t)〉 dt =

b∫
a

〈Φ(t, b)B(t)u(t), zb〉 dt = 〈y(b)−Ψ(a, b)ya, zb〉.

Furthermore, Lemma 3.2.11 implies 〈Ψ(a, b)ya, zb〉 = 〈ya, za〉, and we have

b∫
a

〈u(t), B(t)Tz(t)〉 dt = 〈y(b), zb〉 − 〈ya, za〉.
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Thus, if (3.65) holds for every zb ∈ Rd, then

〈yb, zb〉 = 〈y(b), zb〉, for every zb ∈ Rd,

implying y(b) = yb. 2

Hilbert uniqueness method for linear fractional control

Let Rα be the set of all reachable states for problem (3.42), i.e., Rα is a set of all
yb ∈ Rd such that there exists a control function u ∈ L2

α−1([a, b];RN) for which the
solution of (3.42) satis�es y(b) = yb.

De�ne the mapping Lα : Rd → Rd such that Lα : zb 7→ y(b), where y : [a, b]→ Rd

is the solution of the Cauchy problem

C
a Dα

t y(t) = A(t)y(t) +B(t)u∗(t), y(a) = ya, (3.67)

with control function
u∗(t) := (b− t)1−αB(t)Tz(t), (3.68)

and z(t) being the solution of the adjoint problem (3.62).

3.2.13 Theorem The mapping Lα and the set of reachable states are related by

Rα = Lα(Rd). (3.69)

Moreover, if yb = Lα(zb) and if u1 ∈ L2
α−1([a, b];RN) is a control which steers the

solution of (3.42) from ya to yb during the time interval [a, b], then

b∫
a

(b− t)α−1|u∗(t)|2 dt ≤
b∫

a

(b− t)α−1|u1(t)|2 dt,

with equality if and only if u∗(t) = u1(t), for almost every t ∈ [a, b].

Proof. The inclusion Lα(Rd) ⊆ Rα follows from the de�nition of Lα. For the other
direction, assume that y1 ∈ Rα, and let u1 be the control which steers the solution
of (3.42) from ya to y1 during the time interval [a, b].

De�ne the set U of all the maps u ∈ L2
α−1([a, b];RN) given by

u : t 7→ (b− t)1−αB(t)Tz(t), t ∈ [a, b],

where z(t) is the solution of (3.62) for some zb ∈ Rd. Since z(t) = Φ(t, b)Tzb, we
have

U = {u : [a, b]→ RN : u(t) = (b− t)1−αB(t)TΦ(t, b)Tzb, zb ∈ Rd},
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which implies that U is of �nite dimension. Hence, U is a closed subspace of
L2
α−1([a, b];RN). Denote by u∗1 the orthogonal projection of u1 on U . Then, for

every u ∈ U it holds
b∫

a

(b− t)α−1〈u∗1(t), u(t)〉 dt =

b∫
a

(b− t)α−1〈u1(t), u(t)〉 dt. (3.70)

Let y∗ : [a, b]→ Rd be the solution of the Cauchy problem
C
a Dα

t y
∗(t) = A(t)y∗(t) +B(t)u∗1(t), y∗(a) = ya. (3.71)

Then, from Proposition 3.2.12 (i) and (3.70), it follows that for every zb ∈ Rd

〈y∗(b), zb〉 − 〈ya, za〉 =

b∫
a

〈u∗1(t), B(t)Tz(t)〉 dt

=

b∫
a

(b− t)α−1〈u∗1(t), (b− t)1−αB(t)Tz(t)〉 dt

=

b∫
a

(b− t)α−1〈u1(t), (b− t)1−αB(t)Tz(t)〉 dt

=

b∫
a

〈u1(t), B(t)Tz(t)〉 dt

= 〈y1, zb〉 − 〈ya, za〉.

Hence 〈y∗(b), zb〉 = 〈y1, zb〉, for every zb ∈ Rd, implying that

y∗(b) = y1. (3.72)

Therefore, u∗1 also steers the solution from ya to y1, and since u∗1 ∈ U , there exists
z∗b ∈ Rd such that u∗1(t) = (b − t)1−αB(t)TΦ(t, b)Tz∗b = (b − t)1−αB(t)Tz∗(t). Then,
by the de�nition of Lα, (3.71) and (3.72) we have

Lα(z∗b ) = y∗(b) = y1,

which concludes the proof of (3.69).
Finally, let yb = Lα(zb) and let u∗ be given by (3.67) and (3.68). Assume that

u1 ∈ L2
α−1([a, b];RN) is a control function which steers the system (3.42) from ya to

yb during the time interval [a, b]. Again, using Proposition 3.2.12 (i), we obtain
b∫

a

(b− t)α−1〈u∗(t), u(t)〉 dt =

b∫
a

(b− t)α−1〈u1(t), u(t)〉 dt, for every u ∈ U .
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Since, by de�nition, u∗ ∈ U , it follows that u∗ is the orthogonal projection of u1 on
U , which implies

b∫
a

(b− t)α−1|u1(t)|2 dt =

b∫
a

(b− t)α−1|u∗(t)|2 dt+

b∫
a

(b− t)α−1|u1(t)− u∗(t)|2 dt,

and we have proved the second statement. 2

3.2.14 Remark Since for 1
2
< α < 1 the solution z of the adjoint problem (3.62)

belongs to L2([a, b];Rd), in that case, the HUM can be applied in the L2-setting
(without weighted L2-spaces), to obtain the L2-optimal control function of the form

u∗(t) = B(t)Tz(t).

Variational approach to linear fractional control

We start by introducing the notion of observability.

3.2.15 De�nition System (3.62) is observable if there exists C > 0 such that for
every zb ∈ Rd, solution of (3.62) satis�es

|zb|2 ≤ C

b∫
a

(b− t)1−α|B(t)Tz(t)|2 dt. (3.73)

3.2.16 Proposition Observability inequality (3.73) is equivalent to the following
unique continuation property

B(t)Tz(t) = 0, for almost every t ∈ [a, b] ⇒ zb = 0. (3.74)

Proof. The implication (3.73) ⇒ (3.74) follows directly. To prove (3.74) ⇒ (3.73),
we de�ne a mapping ‖ · ‖r : Rd → [0,∞) such that for zb ∈ Rd,

‖zb‖r :=
( b∫
a

(b− t)1−α|B(t)Tz(t)|2 dt
)1/2

,

with z being the solution of the adjoint system (3.62). Since B ∈ L∞([a, b];Rd) and
z ∈ L2

1−α([a, b];Rd) we have that ‖ · ‖r is well de�ned. Using z(t) = Φ(t, b)Tzb, we get
that for every µ ∈ R, ‖µzb‖r = |µ|‖zb‖r. Furthermore, the Minkowski inequality for
L2([a, b];Rd) provides the triangle inequality for ‖ · ‖r. Hence, ‖ · ‖r is a seminorm on
Rd, and the assumption (3.74) implies that it is a norm. From the equivalence of all
norms on Rd it follows that there exists a constant C > 0 such that (3.73) holds. 2

The next step is to show that controllability and observability conditions are
equivalent.
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3.2.17 Theorem System (3.42) is controllable if and only if the adjoint system
(3.62) is observable.

Proof. (⇐) Suppose (3.62) is observable and (3.42) is not controllable. Then the
controllability Gramian Wα(a, b) is singular and there exists w ∈ Rd \ {0} such that
B(t)TΦ(t, b)Tw = 0, for almost every t ∈ [a, b].

Let z̃ = Φ(t, b)Tw be the solution to the adjoint system with �nal condition
zb = w. Then we have B(t)Tz̃(t) = 0, for almost every t ∈ [a, b] and zb = w 6= 0�a
contradiction with the observability.

(⇒) Suppose that (3.42) is controllable and that for every C > 0 there exists
zb ∈ Rd such that (3.73) does not hold. Then we can de�ne a sequence of numbers
1
Ck
→ 0, k →∞, and vectors zkb such that, without loss of generality, |zkb| = 1 and

|zkb|2 > Ck

b∫
a

(b− t)1−α|B(t)Tzk(t)|2 dt, k ∈ N.

Since zkb is bounded sequence it has a convergent subsequence, which we do not
relabel. Then for zb := lim

k→∞
zkb we have |zb| = 1, and the solution z(t) of the adjoint

system with �nal condition zb can be obtained as a limit of the solutions zk(t).

Now for solutions zk we have 0 ≤
b∫
a

(b− t)1−α|B(t)Tzk(t)|2 dt < 1
Ck
|zkb|2. Letting

k →∞, we conclude that B(t)Tz(t) = 0, almost everywhere on [a, b].
Controllability assumption and (3.64) imply that for ya = 0 and for every yb ∈ Rd

there exists a control u such that

〈yb, zb〉 =

b∫
a

〈u(t), B(t)Tz(t)〉 dt.

Since B(t)Tz(t) = 0 almost everywhere, it follows that 〈yb, zb〉 = 0, for every yb.
Therefore, zb = 0, leading to a contradiction with |zb| = 1. 2

In the sequel we shall consider observability as a minimization problem. More
precisely, we shall show that observability inequality implies the coercivity of the
suitable quadratic functional, and that by minimizing the functional we obtain the
L2
α−1-optimal control.
For �xed initial and �nal states ya, yb ∈ Rd, we de�ne the functional J : Rd → R

by

J(zb) =
1

2

b∫
a

(b− t)1−α|B(t)Tz(t)|2 dt− 〈yb, zb〉+ 〈ya, za〉, (3.75)

where z(t) is the solution of (3.62), and za = tI
1−α
b z(t)|t=a.
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3.2.18 Theorem If system (3.42) is controllable (or equivalently (3.62) is observ-
able), then the functional J has a minimum and the control function which steers
the solution of (3.42) to the state y(b) = yb is given by

û(t) = (b− t)1−αB(t)Tẑ(t), (3.76)

where ẑ(t) is the solution of the adjoint problem with �nal state tI
1−α
b ẑ(t)|t=b = ẑb

being the minimum point of J . Furthermore, the control given by (3.76) is a control
with minimum L2

α−1-norm, i.e., if u ∈ L2
α−1([a, b];RN) is a control such that the

solution of the system (3.42) satis�es y(b) = yb, then

b∫
a

(b− t)α−1|û(t)|2 dt ≤
b∫

a

(b− t)α−1|u(t)|2 dt,

with equality if and only if u and û coincide almost everywhere on [a, b].

Proof. Since J is continuous and convex, it su�ces to show that it is coercive, i.e.,
that lim

|zb|→∞
J(zb) =∞. From (3.73) it follows that

|zb|2 ≤ C

b∫
a

(b− t)1−α|B(t)Tz(t)|2 dt.

Hence,

J(zb) ≥
|zb|2

2C
− 〈yb, zb〉+ 〈ya, za〉 ≥

|zb|2

2C
− |〈yb, zb〉|+ |〈ya, za〉|,

and, applying the Cauchy-Schwartz inequality,

J(zb) ≥
|zb|2

2C
− |yb||zb|+ |〈ya, za〉|.

Here the right hand side tends to +∞ when |zb| → ∞, implying that

lim
|zb|→∞

J(zb) =∞.

Let ẑb be the point where J reaches its minimum. Then for every zb ∈ Rd it holds

lim
h→0

J(ẑb + hzb)− J(ẑb)

h
= 0. (3.77)

Denote by ẑ(t) and z(t) solutions of the adjoint problem (3.62) with �nal conditions
tI

1−α
b ẑ|t=b = ẑb and tI

1−α
b z|t=b = zb, respectively. Since ẑ(t) = Φ(t, b)Tẑb and z(t) =
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Φ(t, b)Tzb, it follows that the solution zh of equation (3.62) that satis�es condition
tI

1−α
b zh|t=b = ẑb + hzb is given by zh(t) = ẑ(t) + hz(t). Hence, using (3.75) we have

J(ẑb + hzb) =
1

2

b∫
a

(b− t)1−α|BT(ẑ(t) + hz(t))|2 dt− 〈yb, ẑb + hzb〉+ 〈ya, ẑa + hza〉

=
1

2

b∫
a

〈BT(b− t)
1−α
2 (ẑ(t) + hz(t)), BT(b− t)

1−α
2 (ẑ(t) + hz(t))〉 dt

− 〈yb, ẑb〉 − h〈yb, zb〉+ 〈ya, ẑa〉+ h〈ya, za〉

=
1

2

b∫
a

|BT(b− t)
1−α
2 ẑ(t)|2 dt+ +

h2

2

b∫
a

|BT(b− t)
1−α
2 z(t)|2 dt

+ h

b∫
a

〈BT(b− t)
1−α
2 ẑ(t), BT(b− t)

1−α
2 z(t)〉 dt

− 〈yb, ẑb〉 − h〈yb, zb〉+ 〈ya, ẑa〉+ h〈ya, za〉

= J(ẑb) +
h2

2

b∫
a

|BT(b− t)
1−α
2 z(t)|2 dt− h〈yb, zb〉+ h〈ya, za〉

+ h

b∫
a

〈BT(b− t)
1−α
2 ẑ(t), BT(b− t)

1−α
2 z(t)〉 dt.

Therefore

J(ẑb + hzb)− J(ẑb)

h
=

h

2

b∫
a

|BT(b− t)
1−α
2 z(t)|2 dt− 〈yb, zb〉+ 〈ya, za〉

+

b∫
a

〈BT(b− t)
1−α
2 ẑ(t), BT(b− t)

1−α
2 z(t)〉 dt.

Letting h→ 0 and using (3.77) we obtain

b∫
a

〈B(t)T(b− t)
1−α
2 ẑ(t), B(t)T(b− t)

1−α
2 z(t)〉 dt+ 〈ya, za〉 − 〈yb, zb〉 = 0. (3.78)

Since zb ∈ Rd was arbitrary, we have that the function û(t) = (b − t)1−αB(t)Tẑ(t)
satis�es (3.65), for every zb. Hence, Proposition 3.2.12 (ii) implies that the control û
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steers the solution to y(b) = yb. The proof of L2
α−1-optimality of û follows the same

lines as the proof of the second statement from Theorem 3.2.13 2

3.2.19 Remark Comparing the results from Proposition 3.2.6, Theorem 3.2.13 and
Theorem 3.2.18, we conclude that

u(t) = u∗(t) = û(t), for almost every t ∈ [a, b].

Furthermore, from (3.78), we have that for every zb ∈ Rd

b∫
a

(b− t)1−α〈B(t)TΦ(t, b)Tẑb, B(t)TΦ(t, b)Tzb〉 dt+ 〈ya, za〉 − 〈yb, zb〉 = 0.

Using the property 〈ya, za〉 = 〈Ψ(a, b)ya, zb〉, from Lemma 3.2.11, we obtain

〈
b∫

a

(b− t)1−αΦ(t, b)B(t)B(t)TΦ(t, b)Tdt ẑb, zb〉+ 〈Ψ(a, b)ya, zb〉 − 〈yb, zb〉 = 0.

By noticing that the integral in the above equation is the controllability Gramian
matrix (3.44), we get

〈Wα(a, b)ẑb + Ψ(a, b)ya − yb, zb〉 = 0, for every zb ∈ Rd.

HenceWα(a, b)ẑb+Ψ(a, b)ya−yb = 0, and we obtain the value of the minimum point
of J(zb):

ẑb = Wα(a, b)−1(yb −Ψ(a, b)ya). (3.79)

Therefore, the optimal control û from Theorem 3.2.18 reduces precisely to the control
u given by (3.46).

Theorem 3.2.18 provides several estimates of the control function û.

3.2.20 Proposition The control function û given by (3.76) satis�es

(i) ‖û‖L2
α−1
≤
√
C|yb−Ψ(a, b)ya|, where C is the observability constant from Def-

inition 3.2.15.

(ii) ‖û‖∞ ≤MF‖B‖∞|ẑb|, where MF is the constant from Proposition 2.3.16.

Proof. (i) Theorem 3.2.18 and Proposition 3.2.12 imply

‖û‖2
L2
α−1

=

b∫
a

(b− t)1−α|B(t)Tẑ(t)|2 dt = 〈yb, ẑb〉 − 〈ya, ẑa〉. (3.80)
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Furthermore, from Lemma 3.2.11 and (3.73) it follows

‖û‖2
L2
α−1

= 〈yb −Ψ(a, b)ya, ẑb〉 ≤ |yb −Ψ(a, b)ya||ẑb| ≤ |yb −Ψ(a, b)ya|
√
C‖û‖L2

α−1
.

After dividing by ‖û‖L2
α−1

, we obtain the desired estimate.
(ii) Follows directly from ẑ(t) = Φ(t, b)Tẑb and Proposition 2.3.16. 2

Let us illustrate the obtained results with one example.

3.2.21 Example Consider a control problem governed by the following system:

C
0 Dα

t y1(t) = ty2(t),
C
0 Dα

t y2(t) = u(t).
(3.81)

Assume that we have initial state y0 = (1, 1) and that for given time interval t ∈ [0, T ]
we need to �nd control function u : [0, T ] → R which will steer the solution to
y(T ) = (0, 0). In (3.81) matrices A and B are the following

A(t) =

[
0 t
0 0

]
, B(t) =

[
0
1

]
,

and the associated state-transition matrices are given by

Ψ(0, t) =

[
1 tα+1

Γ(2+α)

0 1

]
and Φ(τ, t) =

[
φ1(τ, t) φ2(τ, t)

0 φ1(τ, t)

]
,

where φ1(τ, t) =
(t− τ)α−1

Γ(α)
and φ2(τ, t) =

α

Γ(2α + 1)
(t− τ)2α−1(t+ τ).

Now, the controllability Gramian is equal to

Wα(0, T ) =

T∫
0

(T − t)1−α
[

φ2(t, T )2 φ1(t, T )φ2(t, T )
φ1(t, T )φ2(t, T ) φ1(t, T )2

]
dt

=

[
c1T

3α+2 c12T
2α+1

c12T
2α+1 c2T

α

]
,

with constants

c1 =
α

3Γ(2α + 1)2

(
1 +

2

3α + 1
+

2

(3α + 1)(3α + 2)

)
,

c12 =
α + 1

Γ(α)Γ(2α + 2)
,

c2 =
1

Γ(α)Γ(α + 1)
.
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It can be shown that for α ∈ (0, 1),

Dα = det(Wα(0, T )) = T 4α+2(c1c2 − c2
12) > 0

hence, system (3.81) is controllable. Using representation of the L2
α−1-optimal control

function (3.46), we obtain

u(t) = a1(T − t)α(t+ T ) + a2,

where

a1 =
αTα

DαΓ(2α + 1)

(
c12T

α+1 − c2 −
c2T

α+1

Γ(α + 2)

)
a2 =

T 2α+1

DαΓ(α)

(
c12 +

c12T
α+1

Γ(α + 2)
− c1T

α+1
)
.

3.2.22 Remark Note that for a special case of problem (3.55), given by

C
a Dα

t y(t) = −Ag(t)y(t) +Bu(t), t ∈ [a, b],

y(a) = ya,

where A ∈ Rd×d is a symmetric positive semide�nite matrix and g : [a, b] → [0,∞)
is a continuous function, we have stronger estimates for matrices Φ and Ψ. More
precisely, from Proposition 2.3.20 it follows that

‖Ψ(a, t)‖ ≤ 1 and ‖(t− τ)1−αΦ(τ, t)‖ ≤ 1,

which will give us the following bounds for the solution of the adjoint problem and
the control function constructed as in the Theorem 3.2.18:

|(b− t)1−αz(t)| ≤ |zb| and |û(t)| ≤ ‖B‖∞|ẑb|, t ∈ [a, b].

3.2.23 Remark Here also we want to emphasize that in the case 1
2
< α < 1, the

extra term (b − t)1−α can be omitted from (3.73), (3.75) and (3.76). In that case,
the results from Theorem 3.2.17 and Theorem 3.2.18 remain valid, and we are able
to obtain the L2-optimal control function û(t) = B(t)Tẑ(t).

3.2.24 Remark Let us mention that the results presented in Section 3.1.3 can also
be applied for the system (3.42). Since the solution of the adjoint system (3.62) is
in the space L1([a, b];Rd), we can replace observability inequality (3.30) by (3.38),
de�ne the functional Jbb as in (3.37) and proceed in the same way as in the integer-
derivative case, to obtain the bang-bang control (3.41).



Chapter 4

Nonlinear Control

Nonlinear control theory is a research area of a great interest since many processes
modeled by dynamical systems have nonlinear nature. When dealing with nonlin-
earities, one does not have a general method for �nding a solution or for proving its
existence, and in the most cases, is not able to �nd an analytical representation of
the solution or control function. That is one of the reasons why nonlinear control
problems are very challenging and require various mathematical skills.

This chapter is devoted to the analysis of nonlinear control problems given by

C
0 Dα

t y(t) =− Af(y(t))y(t) +Bu(t), t ∈ [0, T ]

y(0) = y0, y(T ) = yT ,
(4.1)

where C
0 Dα

t denotes the Caputo fractional derivative of order α ∈ (0, 1], which for
α = 1 reduces to the classical �rst order derivative. We assume that, for system
(4.1), the following conditions hold

(a1) f : Rd → (0,∞) is a continuous function;

(a2) A ∈ Rd×d is a real symmetric positive semide�nite matrix;

(a3) B ∈ Rd×N is a real matrix;

(a4) A and B satisfy the Kalman rank condition: rank[B|AB|A2B| · · · |Ad−1B] = d.

The motivation for the research of model (4.1) comes from a porous media equa-
tion, as well as from the models of population dynamics that describe the interactions
between the species which tend to avoid crowding. The PDE models of such inter-
actions were studied in [11, 59]. In [11] the space-time distribution of the species
was considered, and here we have a simpler case where we are interested in a global
density of species (it depends only on time). An example of an ODE model of this
type of system can be found in [19]. Non-positive de�niteness of the matrix −A
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represents the dispersion tendency, while the function f determines the intensity of
dispersion (large f(y) implies faster dispersion). The matrix B limits our possibility
to in�uence the population densities, while u represents controlled �birth� or �death�
rate. We stress that a fundamental issue here is how to choose a source term (usu-
ally called the control) in modeling equations which would govern the system from
the given initial density to the prescribed �nal density. Finally, we note that the
fractional derivative models memory e�ect, which in this case could be in�uence of
the accumulated species.

The results presented in Section 4.1 are based on the ideas developed in [19],
while here slightly di�erent methods are used, which are more suitable for systems
with fractional derivatives. The Section 4.2 contains original results from [34].

4.1 Controllability of a nonlinear system of ODEs

The year 1960 is considered to be the beginning of a �new era� or �modern era�
of control theory. That year the �rst IFAC (International Federation of Automatic
Control) Congress was held in Moscow. Furthermore, many crucial methods and
results in control theory were developed during the 1960s. Particularly, nonlinear
control became an important subject of research. The analysis of nonlinear control
problems started with works on stability: R. Kalman and J. Bertram reintroduced
the Lyapunov methods on stability into control theory context [39], E. Lorenz es-
tablished the basis of modern chaos theory, V. Popov presented new techniques for
absolute stability [58], etc. At the same time, from the aspect of optimal control, two
historical contributions were made by mathematicians L. Pontryagin (Pontryagin's
maximum principle) and R. Bellman (dynamic programming, the Hamilton-Jacobi-
Bellman equation).

Over the last 60 years nonlinear control problems have been extensively studied
and there is a great amount of literature addressing these problems. Here we single
out some of the results, relevant to our problems.

For nonlinear control systems, the question of controllability has two distinct
aspects�local and global controllability. Local controllabilty is related to a �xed
state, more precisely, to an equilibrium point.

Consider an autonomous system

y′ = f(y, u), (4.2)

with y : [0, T ] → Rd, u : [0, T ] → RN and f : Rd × RN → Rd. The point (ye, ue) is
called an equilibrium point of f if f(ye, ue) = 0. Analyzing linearized system around
(ye, ue)

y′ =
∂f

∂y
(ye, ue)y +

∂f

∂u
(ye, ue)u,
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and conditions for its controllability, one can obtain small-time local controllability
of (4.2) at (ye, ue). For more details see [17, Sec. 3.1.].

On the other hand, the question of global controllability is more complex and
there are no general criteria (necessary and su�cient conditions for controllability)
that can be applied for any nonlinear system. There are, however, many results for
some special classes of nonlinear systems. Here we mention two main approaches in
nonlinear control.

� Geometric approach. Using theory of Lie algebras, Lie groups and Lie brackets,
one can derive necessary and su�cient conditions for global controllability of
control systems given by

y′ = f0(x) +
N∑
i=1

uifi(y),

where fi ∈ C∞(Ω;Rd), i = 0, . . . , N , and Ω is a connected, nonempty open
subset of Rd, see [36] and [17, Sec. 3.2. & 3.3.].

� Fixed point approach. In the survey [5], the authors gave an overview of the
results related to applications of �xed point theorems to controllability of non-
linear systems. For an overview of more recent results we refer to [17, Sec.
3.5.], where, using �xed point theorem approach, the author proved global
controllability for the system

y′ = A(t, y)y +B(t, y)u+ f0(t, y),

under assumptions: A ∈ L∞((0, T ) × Rd;Rd×d), B ∈ L∞((0, T ) × Rd;RN×d)
and f ∈ L∞((0, T )× Rd;Rd) (cf. [17, Th. 3.40.]). Furthermore, an interesting
result based on degree theory and homogeneity is given in [17, Th. 3.46.], where
the author proved global controllability of the system

y′ = Ay + F (y) +Bu,

under a certain homogeneity condition of nonlinear term F ∈ C1(Rd;Rd).

In this section we consider nonlinear control problem (4.1) with α = 1, i.e.,

y′(t) =− Af(y)y +Bu, t ∈ [0, T ]

y(0) = y0, y(T ) = yT
(4.3)

and assume that conditions (a1)�(a4) are satis�ed. Under these conditions, we shall
prove global controllability of nonlinear system (4.3) with unbounded dynamics (f
does not need to be uniformly bounded). Global controllability of this type of systems
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(in both deterministic and stochastic case) was studied in [19]. Here, we give a
di�erent version of the proof. The main idea is the same�to consider linearization
of (4.3) given by

y′(t) =− Af(v)y +Bu, t ∈ [0, T ]

y(0) = y0,
(4.4)

where v ∈ C([0, T ];Rd), and prove the existence of a �xed point y = v, using the
Schauder �xed point theorem. The di�erence is in the construction of the solution
of a linearized problem.

To begin with, we introduce notation and derive a few auxiliary results. For every
v ∈ C([0, T ];Rd), de�ne constants

Mv := max
t∈[0,T ]

|f(v(t))|, Kv := max{1,Mv}, and Tv := T − T

Kv

. (4.5)

4.1.1 Lemma Let f ∈ C(Rd; (0,∞)) and let {vn} be a sequence in C([0, T ];Rd)
which converges uniformly on [0, T ] to a function v ∈ C([0, T ];Rd). Then {f ◦ vn}
converges uniformly on [0, T ] to f ◦ v. Furthermore, Mvn, Kvn and Tvn converge to
Mv, Kv and Tv, respectively.

Proof. Since {vn} is a convergent sequence, it follows that it is bounded too, and
there exists K > 0 such that

max
t∈[0,T ]

|v(t)| ≤ K and max
t∈[0,T ]

|vn(t)| ≤ K, for every n ∈ N.

Let BK = {x ∈ Rd : |x| ≤ K}. Since f is continuous on Rd and BK is a compact
set, we have that f is uniformly continuous on BK . For a given ε > 0, let δ > 0 be
such that

(∀x, y ∈ BK)(|x− y| < δ ⇒ |f(x)− f(y)| < ε).

By choosing n0 such that for n > n0, max
t∈[0,T ]

|vn(t)− v(t)| < δ, we get

n > n0 ⇒ max
t∈[0,T ]

|f(vn(t))− f(v(t))| < ε.

Since ε was arbitrary, it follows that f ◦ vn converges uniformly to f ◦ v on [0, T ].
Hence, Mvn = ‖f ◦vn‖C → ‖f ◦v‖C = Mv, n→∞, which further implies Kvn → Kv

and Tvn → Tv, n→∞. 2

Now, for every v, we construct the solution of (4.4) in a form

y(t) =

{
y1(t), 0 ≤ t ≤ Tv

y2(t), Tv < t ≤ T
, u(t) =

{
0, 0 ≤ t ≤ Tv

u2(t), Tv < t ≤ T
, (4.6)
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where y1(t) is a restriction on [0, Tv] of the solution to initial value problem

y′(t) =− Af(v)y, t ∈ [0, T ]

y(0) =y0,
(4.7)

and y2(t) is a solution of the control problem

y′(t) =− Af(v)y +Bu, t ∈ (Tv, T ]

y(Tv) =y1(Tv), y(T ) = yT ,
(4.8)

obtained with control function u(t) = u2(t) given by (3.7), i.e., control with minimal
L2-norm. From Proposition 3.1.5 and assumptions (a1)�(a4), it follows that the
system (4.8) is controllable for every v ∈ C([0, T ];Rd).

Denote by Πv the state-transition matrix of the system (4.7). We have

Πv(τ, t) = e
−A

t∫
τ
f(v(s)) ds

, (τ, t) ∈ [0, T ]2,

and solution y1 is given by

y1(t) = Πv(0, t)y0, t ∈ [0, T ]. (4.9)

Further, denote by Wv the controllability Gramian associated to control problem
(4.8), i.e.,

Wv = W (Tv, T ) =

T∫
Tv

Πv(t, T )BBTΠv(t, T )T dt. (4.10)

Then
u2(t) = BTΠv(t, T )TW−1

v (yT − Πv(Tv, T )y1(Tv)),

and solution y2 is given by

y2(t) = Πv(Tv, t)y1(Tv) +

t∫
Tv

Πv(τ, t)Bu2(τ) dτ.

By noticing that y1(Tv) = Πv(0, Tv)y0 and Πv(Tv, t)Πv(0, Tv) = Πv(0, t), for any
t ∈ [Tv, T ], we can express u2 and y2 as given below:

u2(t) = BTΠv(t, T )TW−1
v (yT − Πv(0, T )y0), (4.11)

y2(t) = Πv(0, t)y0 +

t∫
Tv

Πv(τ, t)Bu2(τ) dτ. (4.12)
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Furthermore, from (4.6), (4.9) and (4.12), we have that

y(t) = Πv(0, t)y0 + yp(t), t ∈ [0, T ], (4.13)

where

yp(t) =


0, 0 ≤ t ≤ Tv
t∫
Tv

Πv(τ, t)Bu2(τ) dτ, Tv < t ≤ T
.

4.1.2 Lemma Let v ∈ C([0, T ];Rd). There exist constants λ ≥ 0, cw > 0 and
Cu > 0, not depending on v such that

(i) e−λMvT ≤ ‖Πv(τ, t)‖ ≤ 1, for every 0 ≤ τ ≤ t ≤ T ;

(ii) ‖W−1
v ‖ ≤ Kv

cw
;

(iii) |u2(t)| ≤ KvCu, for every t ∈ [Tv, T ].

Proof. (i) Since A is symmetric and positive semide�nite, from Remark 2.3.18 we
have A = UDUT, where D = diag(λ1, . . . , λd), λi ≥ 0, and U is an orthogonal
matrix. Hence,

Πv(τ, t) = UDv(τ, t)U
T,

where

Dv(τ, t) = diag
(
e
−λ1

t∫
τ
f(v(s)) ds

, . . . , e
−λd

t∫
τ
f(v(s)) ds)

.

Using 0 < f(v(s)) ≤ Mv, for every s ∈ [0, T ], and taking λ = max
1≤i≤d

λi, we get that

for every i = 1, . . . , d it holds

e−λMvT ≤ e
−λi

t∫
τ
f(v(s)) ds

≤ 1,

which in turn implies desired estimate for Πv(τ, t).
(ii) Since Wv is nonsingular, we can determine the norm of its inverse in the

form ‖W−1
v ‖ =

1

s
, where s = min

x∈Sd−1
|Wvx| and Sd−1 = {x ∈ Rd : |x| = 1}. For any

x ∈ Sd−1 we have

|Wvx| ≥ |xTWvx| =
∣∣∣ T∫
Tv

xTΠv(t, T )BBTΠv(t, T )Tx dt
∣∣∣

=

T∫
Tv

|xTΠv(t, T )B|2 dt =

T∫
Tv

|xTe
−A

T∫
t
f(v(s)) ds

B|2 dt.
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Introducing change of variables τ = Kv(T − t) and ξ = Kv(T − s), and denoting

Π̃v(τ, T ) = e
−A

τ∫
0

f(v(T−ξ/Kv))
Kv

dξ
, the above inequality reduces to

|Wvx| ≥
1

Kv

T∫
0

|xTΠ̃v(τ, T )B|2 dτ. (4.14)

From the proof of part (i), we have Π̃v(τ, T ) = UD̃v(τ, T )UT, where D̃v(τ, T ) =

diag(p̃1(τ), . . . , p̃d(τ)) and p̃i(τ) = e
−λi

τ∫
0

f(v(T−ξ/Kv))
Kv

dξ
, i = 1, . . . , d.

From the de�nition of Kv and assumption (a1), it follows

0 <
f(v(·))
Kv

≤ 1, on [0, T ],

and we have uniform boundedness (with respect to both v and τ) of p̃i(τ):

0 < e−λT ≤ p̃i(τ) ≤ 1, τ ∈ [0, T ].

Therefore, there exists a constant cw > 0 (independent of v), such that

T∫
0

|xTΠ̃v(τ, T )B|2 dτ ≥ cw,

and (4.14) implies

min
x∈Sd−1

|Wvx| ≥
cw
Kv

.

Hence, ‖W−1
v ‖ ≤ Kv

cw
.

(iii) Let b = max{|bij| : i = 1, . . . , d, j = 1, . . . , N}. From (i) and (ii), we have
that control function given by (4.11) satis�es

|u2(t)| ≤ b
Kv

cw
(|yT |+ |y0|) = KvCu, t ∈ [Tv, T ],

with Cu = b(|yT |+|y0|)
cw

. 2

Now, we are able to prove controllability of our nonlinear problem.

4.1.3 Theorem Assume that (a1)�(a4) hold. Then, for any T > 0 and y0, yT ∈ Rd,
there exists u ∈ L2([0, T ];RN) such that the solution of (4.3) satis�es y(T ) = yT .
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Proof. De�ne the mapping T : C([0, T ];Rd) → C([0, T ];Rd) which every v ∈
C([0, T ];Rd) maps to the solution y(t) of linear control problem (4.4), given by
(4.13) and constructed as described above.
T is continuous. Assume that {vn} is a sequence in C([0, T ];Rd) which con-

verges uniformly to a function v ∈ C([0, T ];Rd). Then {vn} is bounded in C([0, T ];Rd),
and continuity of f implies the existence of a constant K > 1 such that

max
t∈[0,T ]

|f(v(t))| ≤ K and max
t∈[0,T ]

|f(vn(t))| ≤ K, n ∈ N. (4.15)

Let y = T (v) and yn = T (vn), n ∈ N. Let us show that yn converges uniformly to y
on [0, T ]. From (4.13) we have

max
t∈[0,T ]

|yn(t)− y(t)| ≤ max
t∈[0,T ]

|Πvn(0, t)y0 − Πv(0, t)y0|+ max
t∈[0,T ]

|yp,n(t)− yp(t)|. (4.16)

From continuous dependence of the solution of initial value problem (4.7), with
respect to the coe�cients vn, we get that the �rst term on the right hand side of
(4.16) tends to 0, when n→∞. More precisely, for any ε1 > 0, there exists n1 ∈ N
such that for n ≥ n1 it holds

max
t∈[0,T ]

|Πvn(0, t)y0 − Πv(0, t)y0| < ε1. (4.17)

Now we consider second term in (4.16). Since Tvn → Tv, n→∞, for every δ > 0,
we can �nd n0 ∈ N such that Tvn ∈ (Tv − δ, Tv + δ), for n ≥ n0. Then, for n ≥ n0 we
have

yp,n(t)−yp(t) =


0, t ∈ [0, Tv − δ]
Rn(t), t ∈ (Tv − δ, Tv + δ)

t∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ −
t∫
Tv

Πv(τ, t)Bu2(τ) dτ, t ∈ [Tv + δ, T ]

where, if Tvn ≤ Tv, the function Rn(t) is given by

Rn(t) =



0, Tv − δ < t ≤ Tvn
t∫

Tvn

Πvn(τ, t)Bu2,n(τ) dτ, Tvn < t ≤ Tv

t∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ −
t∫
Tv

Πv(τ, t)Bu2(τ) dτ, Tv < t ≤ Tv + δ
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and similarly, if Tv < Tvn ,

Rn(t) =



0, Tv − δ < t ≤ Tv
t∫
Tv

Πv(τ, t)Bu2,(τ) dτ, Tv < t ≤ Tvn

t∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ −
t∫
Tv

Πv(τ, t)Bu2(τ) dτ, Tvn < t ≤ Tv + δ

.

In both cases, for integrals
t∫

Tvn

Πvn(τ, t)Bu2,n(τ) dτ and
t∫
Tv

Πv(τ, t)Bu2(τ) dτ , from

Lemma 4.1.2 and (4.15) we get

∣∣∣ t∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ
∣∣∣ ≤ t∫

Tvn

‖Πvn(τ, t)‖‖B‖|u2,n(τ)| dτ

≤ ‖B‖CuK(t− Tvn)

< ‖B‖CuKδ

Thus, on [Tv − δ, Tv + δ] we have

max
[Tv−δ,Tv+δ]

|yp,n(t)− yp(t)| = max
[Tv−δ,Tv+δ]

|Rn(t)| < 2‖B‖CuKδ. (4.18)

For t ∈ [Tv + δ, T ]

yp,n(t)− yp(t) =

t∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ −
t∫

Tv

Πv(τ, t)Bu2(τ) dτ

=

Tv+δ∫
Tvn

Πvn(τ, t)Bu2,n(τ) dτ −
Tv+δ∫
Tv

Πv(τ, t)Bu2(τ) dτ

+

t∫
Tv+δ

(
Πvn(τ, t)Bu2,n(τ)− Πv(τ, t)Bu2(τ)

)
dτ.

Hence, using uniform boundedness of Πvn and u2,n we get

|yp,n(t)− yp(t)| ≤ 2‖B‖CuKδ +

t∫
Tv+δ

∣∣∣Πvn(τ, t)Bu2,n(τ)−Πv(τ, t)Bu2(τ)
∣∣∣ dτ. (4.19)
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Now, from continuous dependence on coe�cients, we have that Πvn(τ, t) converges
uniformly to Πv(τ, t) on [0, T ] × [0, T ]. Moreover, from de�nition of the Gramian
Wvn , (4.10), and Lemma 4.1.1, it follows Wvn → Wv, n→∞.

Let us denote by u2,n and u2 the extensions of u2,n and u2, on [0, T ]. More
precisely, u2,n and u2 are given by (4.11), with t ∈ [0, T ]. Then Πvn(τ, t)Bu2,n(τ)
converges uniformly to Πv(τ, t)Bu2(τ) on [0, T ]2. Hence, for every ε2 > 0 there exists
n2 ∈ N such that for n ≥ n2 it holds

max
[0,T ]2

∣∣∣Πvn(τ, t)Bu2,n(τ)− Πv(τ, t)Bu2(τ)
∣∣∣ < ε2.

Therefore, for n ≥ max{n0, n2} we have

max
[Tv+δ,T ]2

∣∣∣Πvn(τ, t)Bu2,n(τ)− Πv(τ, t)Bu2(τ)
∣∣∣ < ε2.

and (4.19) implies

max
t∈[Tv+δ,T ]

|yp,n(t)− yp(t)| ≤ 2‖B‖CuKδ + Tε2. (4.20)

Summarizing all the results, (4.16), (4.17), (4.18) and (4.20), we obtain that for
any ε > 0, by taking ε1, ε2 and δ su�ciently small, there exists n∗ = max{n0, n1, n2}
such that

n ≥ n∗ ⇒ max
t∈[0,T ]

|yn(t)− y(t)| < ε,

which concludes the proof of continuity for T .
Now we move to the compactness. First, let us derive estimates of the solutions.
From Lemma 4.1.2, we get

|y1(t)| = |Πv(0, t)y0| ≤ |y0|, t ∈ [0, Tv), (4.21)

and for t ∈ [Tv, T ] we have

|y2(t)| = |Πv(0, t)y0 +

t∫
Tv

Πv(τ, t)Bu(τ) dτ |

≤ |y0|+
t∫

Tv

‖Πv(τ, t)‖|Bu(τ)| dτ ≤ |y0|+ bCuKv(T − Tv)

= |y0|+ bCuT

=: Cy.

Hence, for every t ∈ [0, T ] it holds

|y(t)| ≤ Cy. (4.22)
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T is compact. Let V be a bounded set in C([0, T ];Rd). Since f is continuous,
there exists K > 1 such that, for every v ∈ V , max

t∈[0,T ]
|f(v(t))| ≤ K, further implying

Kv ≤ K. We need to prove that Y := T (V ) is relatively compact set. To that end,
let {yn} be a sequence in Y . For every n ∈ N, denote by vn the function from V such
that T (vn) = yn. From (4.22) we have that {yn} is uniformly bounded. Furthermore,
from (4.7) and (4.21), it follows

|y′n,1(t)| ≤ ‖A‖K|y0|, t ∈ [0, Tv]. (4.23)

Similarly, from (4.8), (4.22) and Lemma 4.1.2 (iii), we get

|y′n,2(t)| ≤ ‖A‖KCy + ‖B‖CuKv ≤ (‖A‖Cy + ‖B‖Cu)K, t ∈ (Tv, T ). (4.24)

Therefore, the derivatives y′n(t) are also uniformly bounded, implying that {yn} is
equicontinuous sequence. Hence, the Arzela-Ascoli theorem implies that {yn} has a
convergent subsequence, which concludes the proof of compactness.

Uniform boundedness of the solution (4.22) also implies that the set

{v ∈ C([0, T ];Rd) : v = ωT (v), ω ∈ [0, 1]}

is bounded.
Therefore, T satis�es conditions of the Leray-Schauder �xed point theorem, and

we have the existence of the �xed point y∗ = v∗, which is the desired solution of
nonlinear control problem (4.3). 2

Let us note that analog results can be obtained for more general class of nonlinear
control problems, given by

y′(t) =− A(t, y)y +B(t, y)u, t ∈ [0, T ]

y(0) = y0, y(T ) = yT ,
(4.25)

if they satisfy the following conditions:

(A1) A : [0, T ] × Rd → Rd×d is a symmetric, positive semide�nite and continuous
matrix function;

(A2) B : [0, T ] × Rd → Rd×N is an essentially bounded matrix function, i.e., B ∈
L∞([0, T ]× Rd;Rd×N);

(A3) for every v ∈ C([0, T ];Rd), T1 ∈ (0, T ) and y1 ∈ Rd, controllability Gramian of
a linearized problem

y′(t) = − A(t, v)y +B(t, v)u, t ∈ [T1, T ]

y(T1) = y1, y(T ) = yT ,
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is a regular matrix, i.e.,

W (T1, T ) =

T∫
T1

Πv(t, T )B(t, v)B(t, v)TΠv(t, T )T dt

has an inverse.

4.1.4 Remark Let us mention that the construction of the solution of linearized
problem (4.4) can also be performed in the following way:

� choose Kv = max{2,Mv} and let T 1
v = T

Kv
and T 2

v = T − T
Kv
;

� �nd the control u1,v which will steer the solution of (4.4) from y0 to y(T 1
v ) = 0,

during the time interval [0, T 1
v ];

� let y = u = 0 on [T 1
v , T

2
v ];

� �nd the control u2,v which will steer the solution of (4.4) from 0 to y(T ) = yT ,
during the time interval [T 2

v , T ].

Then, proceeding as in Theorem 4.1.3, we can obtain a �xed point, y∗ = v∗, and
desired control function and solution will be in the form:

u(t) =


u1,v∗(t), 0 ≤ t ≤ T 1

v∗

0, T 1
v∗ < t ≤ T 2

v∗

u2,v∗(t), T 2
v∗ ≤ t ≤ T

, y(t) =


y1(t), 0 ≤ t ≤ T 1

v∗

0, T 1
v∗ < t ≤ T 2

v∗

y2(t), T 2
v∗ ≤ t ≤ T

.

4.2 Controllability of a nonlinear system of FDEs

The analysis of nonlinear control problems with fractional derivatives started rel-
atively recently, and, in the beginning, it was motivated by speci�c application-
oriented problems. Over the last 20 years there have been an increase in the research
of fractional nonlinear control problems, from both application and theoretical as-
pect. Several authors considered problems governed by fractional semi-linear systems
of the form

C
0 Dα

t y(t) = Ay +Bu+ f(t, y, u), y(0) = y0, t ∈ [0, T ], (4.26)

and, in the sequel, we single out some of the most relevant results related to the
question of controllability.

� In [9], the authors proved global controllability of (4.26), under assumptions

that f : [0, T ]× Rd × RN → Rd is continuous and lim
|(y,u)|→0

|f(t, y, u)|
|(y, u)|

= 0.
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� In [61], the question of the existence of a mild solution and approximate con-
trollability was considered. Further, under assumptions: f(t, y, u) = f(t, y) is
continuous on [0, T ]× Rd and uniformly bounded, the results on approximate
controllability of (4.26) were obtained.

� In [28], the authors proved global controllability of (4.26), with nonlinear term
f(t, y, u) = f(t, y) satisfying growth condition |f(t, y)| ≤ d(t)+η|y|, and mono-
tonicity condition 〈f(t, x)− f(t, y), x− y〉 ≤ 0.

Furthermore, in [7], the authors considered fractional nonlinear control problems
with the Caputo derivative of order 1 < α < 2.

Alongside the question of controllability, the question of optimization for nonlin-
ear fractional systems was analyzed, as well. In the papers [10, 43] one can �nd an
overview of the results in fractional optimal control, in which the fractional analog
of the Pontryagin maximum principle is stated and applied.

In this section our goal is to prove controllability of nonlinear control problem
(4.1), with the Caputo fractional derivative of order α ∈ (0, 1):

C
0 Dα

t y(t) = − Af(y)y +Bu, t ∈ [0, T ]

y(0) = y0, y(T ) = yT .
(4.27)

Mainly, the idea is to use the same procedure as in the integer-derivative case, i.e., to
consider linearized problem and prove the existence of a �xed point. As we shall see,
for the systems with fractional derivatives, the construction of the piecewise solution
is more complex (than in the integer-derivative case) since, it requires to take into
consideration the memory imposed by the fractional derivative.

Assume that the matrices A and B satisfy assumptions (a2)�(a4), and for the
function f suppose that the following modi�cation of (a1) holds

(a1)' f : Rd → (0,∞) is a continuous function and F : Rd → Rd, given by F (y) =
f(y)y, is continuously di�erentiable on Rd.

First, let us denote by z the solution of the nonlinear initial value problem

C
0 Dα

t z(t) = −Af(z)z, t ∈ [0, T ], z(0) = y0. (4.28)

From Theorem 2.3.22 we have: z ∈ C([0, T ];Rd) ∩ C1((0, T ];Rd),

|z(t)| ≤ |y0| (4.29)

and there exists Kz > 0 such that for every t ∈ (0, T ] it holds

|t1−αz′(t)| ≤ Kz. (4.30)
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Next, for every v ∈ C([0, T ];Rd) we de�ne constants

Mv := max
t∈[0,T ]

|f(v(t))|, Kv :=
(

max{1,Mv}
) 1
α

and Tv := T − T

Kv

. (4.31)

Note that we have Kv such that

max
t∈[0,T ]

|f(v(t))| ≤ Kα
v . (4.32)

Now, we construct the solution y in the following way: �rst, we let the system (4.27)
to be �uncontrolled�, i.e., let u = 0, up to the time Tv ∈ (0, T ), and then consider
linearized control problem

C
0 Dα

t y(t) = − Af(v)y +Bu, t ∈ [Tv, T ]

y(Tv) = z(Tv), y(T ) = yT ,
(4.33)

and �nd its solution on [Tv, T ]. More precisely, for every v ∈ C([0, T ];Rd) we de�ne
functions

y(t) =

{
z(t), 0 ≤ t ≤ Tv

y2(t), Tv < t ≤ T
and u(t) =

{
0, 0 ≤ t ≤ Tv

u2(t), Tv < t ≤ T
, (4.34)

where z is a restriction on [0, Tv] of the solution of (4.28), and y2 and u2 satisfy
linear control problem (4.33). Let us notice that, although in (4.33) we look for the
solution on the interval [Tv, T ], the derivative C

0 Dα
t y takes into account the values of

y from the starting point t = 0. More precisely, having in mind (4.34), we have that
for t ∈ (Tv, T ]

C
0 Dα

t y(t) =
1

Γ(1− α)

t∫
0

y′(s)

(t− s)α
ds =

1

Γ(1− α)

Tv∫
0

z′(s)

(t− s)α
ds+

1

Γ(1− α)

t∫
Tv

y′2(s)

(t− s)α
ds.

By introducing notation

hv(t) =
1

Γ(1− α)

Tv∫
0

z′(s)

(t− s)α
ds, t ∈ (Tv, T ], (4.35)

we get
C
0 Dα

t y(t) = hv(t) + C
TvD

α
t y2(t), (4.36)

and transform equation (4.33) into

C
TvD

α
t y(t) = − Af(v(t))y(t) +Bu(t)− hv(t), t ∈ (Tv, T ],

y(Tv) = z(Tv), y(T ) = yT .
(4.37)
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Then, we divide (4.37) into two problems and �nd solution y2 in the form y2 = yp+yc,
where yp solves

C
TvD

α
t yp(t) = − Af(v(t))yp(t)− hv(t), t ∈ (Tv, T ],

yp(Tv) = 0,
(4.38)

and yc and u2 are solutions to

C
TvD

α
t yc(t) = − Af(v(t))yc(t) +Bu2(t), t ∈ (Tv, T ],

yc(Tv) = z(Tv) = yc,0, yc(T ) = yT − yp(T ) = yc,T .
(4.39)

Notice that from (4.29) we have

|yc,0| ≤ |y0|. (4.40)

Denote by Ψv and Φv the state-transition matrices associated with system (4.39).
According to (2.15), the solution of (4.38) is given by

yp(t) = −
t∫

Tv

Φv(τ, t)hv(τ)dτ. (4.41)

Using (4.30), we get that the function hv given by (4.35) satis�es:

|hv(t)| =
∣∣∣ 1

Γ(1− α)

Tv∫
0

z′(s)

(t− s)α
ds
∣∣∣ ≤ 1

Γ(1− α)

Tv∫
0

|s1−αz′(s)|
s1−α(t− s)α

ds

≤ Kz

Γ(1− α)

Tv∫
0

sα−1(t− s)−αds ≤ Kz

Γ(1− α)

t∫
0

sα−1(t− s)−αds.

Introducing the change of variables ξ =
s

t
in the above integral, we obtain

|hv(t)| ≤
Kz

Γ(1− α)

1∫
0

ξα−1(1− ξ)−αdξ =
Kz

Γ(1− α)
B(α, 1− α) = KzΓ(α). (4.42)

Now, (4.41), (4.42) and Proposition 2.3.20 (ii) imply

|yp(t)| ≤
t∫

Tv

(t− τ)α−1|hv(τ)|dτ ≤ KzΓ(α)

t∫
Tv

(t− τ)α−1dτ ≤ KzΓ(α)
Tα

α
. (4.43)
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Hence, for the �nal state yc,T �guring in (4.39), we have

|yc,T | ≤ |yT |+
KzΓ(α)Tα

α
=: CT (4.44)

For the solution yc, we use properties from Section 3.2, and de�ne yc as the
solution corresponding to the L2

α−1-optimal control u2 given by (3.46), i.e.,

u2(t) = (T − t)1−αBTΦv(t, T )TW−1
α,v(yT −Ψv(Tv, T )z(Tv)), (4.45)

where Wα,v is the controllability Gramian associated with control problem (4.39):

Wα,v = Wα,v(Tv, T ) =

T∫
Tv

(T − t)1−αΦv(t, T )BBTΦv(t, T )T dt.

Further, the solution yc is given by

yc(t) = Ψv(Tv, t)yc,0 +

t∫
Tv

Φv(τ, t)Bu2(τ) dτ. (4.46)

Let us prove some auxiliary results related to Gramian and state-transition ma-
trices of linearized problem.

4.2.1 Lemma Let v ∈ C([0, T ];Rd). There exist constants λ ≥ 0, cw > 0 and
Cu > 0, not depending on v such that:

(i) ‖Ψv(Tv, t)‖ ≤ 1, for every t ∈ [Tv, T ];

(ii) Eα,α(−λMv(t− τ)α) ≤ ‖Φv(τ, t)‖ ≤ 1, for every Tv ≤ τ ≤ t ≤ T ;

(iii) ‖W−1
α,v‖ ≤

Kα
v

cw
;

(iv) the control function given by (4.45) satis�es |u2(t)| ≤ CuK
α
v , for every t ∈

[Tv, T ].

Proof. Let λ = max{λ1, . . . , λd}. Properties (i) and (ii) follow from Proposition
2.3.20.

(iii) Since we know that Wα,v is nonsingular, we can de�ne ‖W−1
α,v‖ = 1

s
, where

s = min
x∈Sd−1

|Wα,vx|. Using Remark 3.2.10, we get that for every x ∈ Sd−1

|Wα,vx| ≥ |xTWα,vx| = |xTUWα,v,DU
Tx|.
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Since U is orthogonal matrix, we have {xTU : x ∈ Sd−1} = Sd−1. Therefore,

min
x∈Sd−1

|Wα,vx| ≥ min
x∈Sd−1

|xTWα,v,Dx|

= min
x∈Sd−1

∣∣∣ T∫
Tv

(T − t)1−αxTQv(t, T )B̃B̃TQv(t, T )Tx dt
∣∣∣

= min
x∈Sd−1

T∫
Tv

(T − t)1−α|xTQv(t, T )B̃|2 dt,

where Qv(t, T ) = diag(q1(t), . . . , qd(t)) (cf. proof of Proposition 2.3.19 and Remark
3.2.10), with element qi(t) being the solution of

tD
α
T qi(t) = −λif(v(t))qi(t), t ∈ [Tv, T ], tI

1−α
T qi(t)|t=T = 1.

Using comparison principle, as in the proof of Proposition 2.3.19, we derive

Eα,α(−λiMv(T − t)α) ≤ (T − t)1−αqi(t) ≤ 1, t ∈ [Tv, T ].

Furthermore, from (4.31), we have

Mv(T − t)α ≤Mv(T − Tv)α = Mv
Tα

Kα
v

≤ Tα.

Hence, eα := Eα,α(−λTα) ≤ Eα,α(−λiMv(T − t)α), and we obtain uniform bounded-
ness (with respect to both v and t) of qi(t):

0 < eα ≤ (T − t)1−αqi(t) ≤ 1. (4.47)

Now, we have

min
x∈Sd−1

|Wα,vx| ≥ min
x∈Sd−1

T∫
Tv

(T − t)α−1|xT(T − t)1−αQv(t, T )B̃|2 dt,

and from (4.47), it follows that there exists a constant c1 ≥ 0, c1 = c(U, eα, B)
(independent on v), such that

min
x∈Sd−1

T∫
Tv

(T − t)α−1|xT(T − t)1−αQv(t, T )B̃|2 dt ≥ c1

T∫
Tv

(T − t)α−1 dt =
c1T

α

αKα
v

.

Furthermore, the constant c1 is strictly greater than 0 since the assumptions (a1)',
(a2)�(a4) imply positive de�niteness of both Wα,v and Wα,v,D (cf. Proposition 3.2.9
and Remark 3.2.3).
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Denoting by cw = c1Tα

α
, we obtain

min
x∈Sd−1

|Wvx| ≥
cw
Kα
v

.

Hence, ‖W−1
v ‖ ≤

Kα
v

cw
.

(iv) From (4.45), (i)− (iii) and (4.29) we get

|u2(t)| ≤ ‖BT‖‖(T − t)1−αΦv(t, T )T‖‖W−1
α,v‖(|yT |+ ‖Ψv(Tv, T )‖|z(Tv)|)

≤ ‖BT‖Kα
v (|yT |+ |y0|)
cw

= CuK
α
v ,

with Cu = ‖BT‖(|yT |+|y0|)
cw

. 2

Now, we move to controllability of our nonlinear problem.

4.2.2 Theorem Assume that (a1)' and (a2)�(a4) hold. Then, for any T > 0 and
y0, yT ∈ Rd, there exists u ∈ L2

α−1([0, T ];RN) such that the solution of (4.27) satis�es
y(T ) = yT .

Proof. De�ne the mapping Tα : C([0, T ];Rd) → C([0, T ];Rd) which every v ∈
C([0, T ];Rd) maps to the solution y given by (4.34), and constructed as described
above.

First, let us prove that the solutions y are uniformly bounded, independently on
v.

From (4.46), Lemma 4.2.1 and (4.40) we have that for every t ∈ [Tv, T ]

|yc(t)| = |Ψv(Tv, t)yc,0 +

t∫
Tv

Φv(τ, t)Bu(τ) dτ |

≤ |y0|+
t∫

Tv

(t− τ)α−1‖(t− τ)1−αΦv(τ, t)‖|Bu(τ)| dτ

≤ |y0|+ ‖B‖CuKα
v

t∫
Tv

(t− τ)α−1 dτ

≤ |y0|+ ‖B‖CuKα
v

(T − Tv)α

α

= |y0|+
‖B‖CuKα

v

α

(
T

Kv

)α
= |y0|+

‖B‖CuTα

α
.
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Furthermore, using (4.43), we get

|y2(t)| ≤ |yc(t)|+ |yp(t)| ≤ |y0|+
‖B‖CuTα

α
+
KzΓ(α)Tα

α
=: Cy.

Since on [0, Tv] we have |y(t)| = |z(t)| ≤ |y0| < Cy, we conclude that

|y(t)| ≤ Cy, t ∈ [0, T ]. (4.48)

Now we are able to show that Tα satis�es conditions of the Leray-Schauder �xed
point theorem.
Tα is compact. Let V be a bounded set in C([0, T ];Rd). Since f is continuous,

there exists K > 1 such that, for every v ∈ V ,

max
t∈[0,T ]

|f(v(t))| ≤ Kα and max
|z|≤y0

f(z) ≤ Kα. (4.49)

Then, (4.31) implies Kv ≤ K. For the compactness of Tα, it su�ces to prove that
Y := Tα(V ) is relatively compact set. To that end, let {yn} be a sequence in Y . For
every n ∈ N, denote by vn the function from V such that Tα(vn) = yn. From (4.48)
we have that {yn} is uniformly bounded. Furthermore, for every n, the solution yn is
equal to z on [0, Tv], i.e., yn satis�es (4.28) on [0, Tv]. Hence, from (4.49) and (4.29)
we obtain

|C0 Dα
t yn(t)| = | − Af(z)z| ≤ ‖A‖Kα|y0|, t ∈ [0, Tv]. (4.50)

On the interval (Tv, T ] we have that yn(t) satis�es

C
0 Dα

t yn(t) = −Af(vn)yn +Bu2,n.

Then, using (4.49), (4.48) and Lemma 4.2.1 (iv), we get

|C0 Dα
t yn(t)| ≤ ‖A‖KαCy + ‖B‖CuKα

v ≤ (‖A‖Cy + ‖B‖Cu)Kα =: Cα, t ∈ (Tv, T ].
(4.51)

Therefore, (4.50) and (4.51) imply that the sequence of derivatives C
0 Dα

t yn(t), n ∈
N, is bounded on (0, T ), independently on v. Note here that C

0 Dα
t yn(t) may not

be continuous at Tv. Nonetheless, sup
t∈(0,T )

|C0 Dα
t yn(t)| ≤ Cα, for every n ∈ N, and

conditions of Lemma 2.3.21 are satis�ed. Hence, {yn} is uniformly bounded and
equicontinuous sequence in C([0, T ];Rd), and by the Arzela-Ascoli theorem it follows
that {yn} has a convergent subsequence. This concludes the proof of compactness.
Tα is continuous. Assume that {vn} is a sequence in C([0, T ];Rd) which

converges uniformly to a function v ∈ C([0, T ];Rd). Then {vn} is bounded in
C([0, T ];Rd), and compactness of Tα implies that the sequence yn = Tα(vn) has
a convergent subsequence ynk . Let y = lim

k→∞
ynk . Now, from the construction of

the solutions ynk , assumption that vn → v uniformly on [0, T ], and Lemma 4.1.1, it
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follows that y coincides with the solution y, obtained for v = v. Hence, yn converges
to y = Tα(v).

Furthermore, uniform boundedness of the solutions (4.48) implies that the set

{v ∈ C([0, T ];Rd) : v = ωTα(v), ω ∈ [0, 1]}

is bounded.
Thus, by the Leray-Schauder theorem, it follows that Tα has a �xed point y∗ = v∗,

which is a desired solution of nonlinear control problem (4.27). 2

4.2.3 Remark Let us mention that the construction given in Remark 4.1.4 can not
be applied in the fractional setting. Namely, in the fractional case, when the system
is driven to zero and there is no action on the system (the control is equal to 0), the
state of the system does not rest. This occurs due to the memory embedded in the
fractional derivative. For example, consider a linear time-invariant system

C
0 Dα

t y(t) = Ay(t) +Bu(t), t ≥ 0, (4.52)

and suppose that u is the control which steers the solution of the system from initial
state y(0) = y0 to the �nal state y(T ) = 0, T > 0. Now, if we let y(t) = u(t) = 0,
t > T , the equation (4.52) is no longer satis�ed, since the derivative at t > T depends
on all the accumulated values of y from [0, t]. That is why we can not simply insert
a zero-interval in the solution, as it is possible in the integer derivative case. This
property of the fractional in time systems, that they can not achieve null-equilibrium
controllability, was studied in [49].



Chapter 5

Conclusion

The main contributions of this thesis are divided into three parts. The �rst part
concerns theory of fractional di�erential equations (FDEs), or, more precisely, sys-
tems of FDEs. In Section 2.3 an overview of the recently obtained results regarding
the existence, uniqueness and analytical representation of the solution to the sys-
tem of FDEs was presented, with a special attention paid to the properties of the
state-transition matrices.

The second contribution is related to the theory developed in [33], where linear
fractional time-varying control problems with the Caputo derivative were examined
and the classical linear control theory was adapted and applied to the fractional
setting. Speci�cally, the equivalent conditions for controllability were established,
and the methods for �nding an optimal control in the weighted L2 space (systems
of order α ∈ (0, 1

2
]), or classical L2 space (systems of order α ∈ (1

2
, 1)) were derived.

These results are given in Section 3.2. Since the linear time-varying control problems
with fractional derivatives have been studied marginally, the obtained results present
one approach to general analysis of this class of systems.

The third part concerns nonlinear control problems (4.3) and (4.27), for which, in
Chapter 4, the su�cient conditions for controllability were stated. The main results,
given in Theorem 4.1.3 and Theorem 4.2.2, are based on the linearization of the
problem and application of the Leray-Schauder �xed point theorem. Furthermore,
in order to obtain uniform boundedness of the solution of the associated linearized
problem, a novel method was used, which consists of the compression of the interval in
which the control acts on the state of the system. In future, it would be interesting to
consider application of this idea to di�erent types of control problems with dissipative
dynamics.
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