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Mathematical analysis and computer modeling are revealing to us that the shapes and
processes we encounter in nature—the way that plants grow, the way that mountains
erode or rivers flow, the way that snowflakes or islands achieve their shapes, the
way that light plays on a surface, the way the milk folds and spins into your coffee
as you stir it, the way that laughter sweeps through a crowd of people—all these
things in their seemingly magical complexity can be described by the interaction of
mathematical processes that are, if anything, even more magical in their simplicity.

Douglas Adams






YHUBEP3UTET Y HOBOM CALY OBPA3AIL - 5a
MPUPOJHO-MATEMATUYKHU ®AKYJIITET

K/bYUYHA JIOKYMEHTALIMJCKA HHOOPMAIIAJA'

Bpcra pana:

JlokTopcka auceprarmja

Wwme u npezume
ayropa.

Maja Jonmuh

Menrop (Tutysna, ume,
pe3nMe, 3Baibe,
MHCTHUTYIIH]ja)

Hp Cama Komuk, pegoBau mpodecop
[TpupomHO-MaTeMaTHIKH (aKynTeT
VYuusepsuteT y HoBom Cany

Hacnos pana:

Henuaeapuu npoGiiemu ynpaBibama ca 1 6e3 GpakoHuX U3BOa

Jesuk myOnmkanuje
(mmacmo):

Enrnecku (enriecku andader)

Du3nIKu onrc pana:

VYHeru 0poj:

Crpannma 122
IlornaBma 5
Pedepenmn 65
Tabema 0
Cmuka 1
I'padukona 0
IMpumora 0

Hay4na o6mnact:

Maremaruka

Vxa Hay4qHa 00NacT

(Hay4YHa TUCUUIUINHA):

Judepenunjanse jennaunne

Kibyune peun /
npeaMeTHa
OZIpeHHIA!

KonrponabuiiHocT, GpyHKIHM]ja ynpaBibakba, ONCePBAOMIHOCT, aJ]jYHTOBaHH
cucreM, KamyToB (hpakumoHu U3B0OJ, MaTpHIe IIpenacka cTama, PukcHa
TaykKa

Pesume Ha jesuky
pana:

The main subject of research of this thesis are nonlinear control problems with
the Caputo fractional derivative of order a between 0 and 1, which in the case
a=1 reduces to the classical first order derivative. We consider the question of
global controllability. More precisely, we examine which conditions need to

! AyTOp IOKTOpCKE IucepTanije moTucao je u npuioxuo cieaehe Obpacue:

56 — UsjaBa 0 ayTopcTBY;

5B — M3jaBa O MCTOBETHOCTH LITAMIIaHE U €IEKTPOHCKE BEP3Hj€ U O JIMYHHUM I10J[aliMa;
5t — U3jaBa o xopumihemy.
Osge I3jaBe ce gyBajy Ha (aKkyATeTy Yy IITAMIIAHOM U €JIEKTPOHCKOM OOJIMKY W HE KOPHUYE CE ca TE30M.



be satisfied so that, for any given initial and final data, one can find a control
function for which the solution of the system reaches the desired state at the
end of the given interval. In order to do so, we derive several auxiliary results
regarding fractional differential equations and linear time-varying fractional
control problems.

We define the Riemann-Liouville and the Caputo state-transition matrices,
which are essential part of the solutions of linear fractional systems, and
derive estimates of those matrices. Further, we consider linear time-varying
fractional control problems, introduce the controllability Gramian matrix,
prove the equivalence between controllability and regularity of the Gramian,
introduce the associated adjoint problem and prove the equivalence between
controllability of the control problem and observability of the associated
adjoint problem. Moreover, we apply the Hilbert uniqueness method and
techniques from the calculus of variations to obtain the optimal control
function in the weighted L2-space.

Then, using properties of the solution of the linearized control problem and
the Leray-Schauder fixed point theorem, we derive controllability result for
one class of nonlinear control problems with unbounded dynamics. We
consider the cases with fractional and with the integer-order derivative, since
in the non-integer case the construction of the solution requires to take into
account the memory embedded in the fractional derivative.
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Rezime rada

U ovoj doktorskoj disertaciji bavimo se linearnim i nelinearnim problemima upra-
vljanja opisanim sistemima obic¢nih diferencijalnih jednacina, u kojima figurise Ka-
putov izvod reda « € (0, 1], koji se u slu¢aju o = 1 svodi na klasi¢an izvod prvog
reda. Bavimo se pitanjem globalne kontrolabilnosti sistema, odnosno ispitujemo pod
kojim uslovima, za proizvoljno pocetno i krajnje stanje, postoji funkcija upravljanja
takva da reSenje sistema u zadatom vremenskom intervalu dostigne Zeljeno krajnje
stanje.

Najpre ispitujemo osobine matrica prelaska stanja koje su fundamentalne matrice
reSenja sistema i izvodimo ogranicenja tih matrica. Zatim se bavimo osobinama
reSenja odredenog tipa nelinearnog sistema sa Kaputovim izvodom. Novi rezultati
do kojih dolazimo publikovani su u radu [35].

Nakon toga, koristeéi rezultate iz klasi¢ne teorije linearnog upravljanja, razvijamo
teoriju upravljanja za opsti oblik linearnih sistema sa Kuputovim izvodima. Uvodimo
Gramovu matricu kontrolabilnosti i izvodimo nekoliko potrebnih i dovoljnih uslova za
globalnu kontrolabilnost sistema. Dalje, dolazimo do optimalne funkcije upravljanja
u tezinskim L? prostorima, koji se prirodno nameéu zbog singulariteta koji se javlja u
reSenjima adjungovanih sistema sa Riman-Ljuvilovim frakcionim izvodima. Dobijeni
rezultati objavljeni su u radu [33].

Na kraju, dobijene rezultate primenjujemo na problem nelinearnog upravljanja
i koristeci linearizaciju sistema i Lere-Sauderovu teoremu fiksne tacke dolazimo do
dovoljnih uslova za kontrolabilnost jedne klase nelinearnih sistema. Rezultati koje
predstavljamo bazirani su na radu [34].
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Apstrakt

Glavni predmet istrazivanja ove teze su nelinearni problemi upravljanja sledeceg
oblika

6 Diy(t) = —Af(y(t)y(t) + Bu(t), te(0,T), y(0) =y, ()

gde je y : [0,T] — R? funkcija stanja sistema, u : [0,7] — RY funkcija upra-
vljanja, f : R — (0,00) neprekidna funkcija, A € R%¥? realna simetri¢na pozi-
tivno semidefinitna matrica, B € R¥" realna matrica i {D¢ Kaputov izvod reda
a € (0,1], koji se u slucaju a = 1 svodi na klasi¢an izvod prvog reda. Bavimo se
problemom kontrolabilnosti sistema (%), odnosno pokazujemo da ako A i B zado-
voljavaju Kalmanov uslov ranga i funkcija f ispunjava odredene uslove regularnosti,
onda za proizvoljna pocetna i krajnja stanja yy i yr, mozemo nac¢i funkciju upra-
vljanja u takvu da reSenje sistema (x) dostiZe Zeljeno stanje u krajnjem trenutku,
tj. y(T') = yr. Da bismo to ostvarili, neophodno je da izvedemo nekoliko pomo¢nih
rezultata vezanih za frakcione diferencijalne jednacine kao i za linearne frakcione
probleme upravljanja sa nekonstantim koeficijentima.

Prvo, definiSemo Riman-Ljuvilove i Kaputove matrice prelaska stanja koje se
javljaju kao esencijalni delovi resenja linearnih frakcionih sistema i izvodimo ocene
tih matrica. Dalje, posmatramo nelinearni frakcioni sistem jednacina

6 Diy(t) = —Af(y(t)y(t), t€(0,T), y(0)=yo,

i pokazujemo postojanje, jedinstvenost i uniformnu ograni¢enost njegovog resenja,
Sto ¢e biti od velikog znacaja za konstrukciju reSenja nelinearnog problema upra-
vljanja.

Drugo, rezultate iz linearne teorije upravljanja sa celobrojnim izvodima uopSta-
vamo na frakcioni sluc¢aj. Preciznije, posmatramo linearne frakcione probleme upra-
vljanja sa nekonstantim koeficijentima, za njih definiSemo Gramovu matricu kontro-
labilnosti, pokazujemo ekvivalenciju izmedu kontrolabilnosti i regularnosti Gramove
matrice, uvodimo pridruzeni adjungovani problem i pokazujemo ekvivalenciju izmedu
kontrolabilnosti problema upravljanja i opservabilnosti adjungovanog problema. Dalje,
koriste¢i Hilbertov metod jedinstvenosti i tehnike varijacionog racuna, dolazimo do
optimalne funkcije upravljanja u tezinskom L? prostoru. TeZinski L? prostor se



prirodno namece jer, u frakcionom slu¢aju, kada je a € (0, %], resenje adjungovanog
sistema ne pripada klasi¢nom prostoru L?2.

Zatim, koriste¢i osobine reSenja linearnizovanog problema upravljanja i Lere-
Sauderovu teoremu fiksne tacke, pokazujemo kontrolabilnost sistema (x). Slucajeve
a =11« € (0,1) analiziramo zasebno, jer, u slu¢aju kada red izvoda nije celo-
brojan, konstrukcija resenja zahteva uzimanje u obzir memorije koja je sadrzana u
frakcionom izvodu.



Abstract

The main subject of research of this thesis are nonlinear control problems of the
following type

6D7y(t) = —Af(y()y(t) + Bu(t), te(0,7), y(0) =y, ()

where y : [0,T] — R? is the state of the system, u : [0,7] — RY is the control
function, f : R? — (0,00) is a continuous function, A € R?¥*? is a real symmetric
positive semidefinite matrix, B € R is a real matrix and § D¢ denotes the Caputo
fractional derivative of order a € (0, 1], which in the case @ = 1 reduces to the
classical first order derivative. We consider the question of global controllability of
(%), more precisely, we prove that if A and B satisfy the Kalman rank condition and
function f meats certain regularity conditions, then for any given initial and final
data gy and yr, we can find a control function u such that the solution of the system
(x) reaches the desired state at the end of the interval, i.e., y(T') = yr. In order to
do so, we derive several auxiliary results regarding fractional differential equations
and linear time-varying fractional control problems.

Firstly, we define the Riemann-Liouville and the Caputo state-transition matri-
ces, which are essential part of the solutions of linear fractional systems, and derive
estimates of those matrices. Further, we consider nonlinear fractional system

§Dfy(t) = —Af(y)y(t), te(0,T), y(0) =1,

and prove existence, uniqueness and uniform boundedness of its solution, which will
be substantial for the construction of the solution of our nonlinear control problem.

Secondly, we generalize results from the integer-order linear control theory to the
fractional setting. More precisely, we consider linear time-varying fractional control
problems, introduce the controllability Gramian matrix, prove the equivalence bet-
ween controllability and regularity of the Gramian, introduce the associated adjoint
problem and prove the equivalence between controllability of the control problem
and observability of the associated adjoint problem. Moreover, we apply the Hilbert
uniqueness method and techniques from the calculus of variations to obtain the
optimal control function in the weighted L2-space. The weighted L?-spaces arise



naturally in the fractional setting, since when o € (0, 3], the solution of the fractional
adjoint problem does not belong to the classical L2-space.

Then, using properties of the solution of the linearized control problem and the
Leray-Schauder fixed point theorem, we prove controllability of the system (x). We
consider the cases « = 1 and « € (0, 1) separately, since in the non-integer case the
construction of the solution requires to take into account the memory embedded in
the fractional derivative.



Preface

From the ancient cultures of Mesopotamia to the modern age, one of the key in-
gredients of the development of human civilization was the need for understanding
and controlling natural processes and phenomena. In order to adapt and make
everyday life increasingly comfortable, we (the humanity) managed to understand
and describe many physical laws and use them to our advantage. Furthermore, we
have constructed machines to help us overcome our boundaries, and do the hard (or
just the boring) work for us. Behind a huge number of machines and technology
based systems lies a control problem that represents the interconnection of two main
functions—the state function and the control function. To “solve” the control prob-
lem means to “control” the state of the system, i.e., to make it reach a desired state
or perform a desired task.

The development of modern control theory started in 1960s, and it was oriented
into two directions—Ilinear and nonlinear control. Initially, the problems with or-
dinary differential equations were studied, and then the research extended to the
systems involving partial differential equations. Recently, the systems with deriva-
tives of noninteger order found their application in control theory. Namely, due
to the memory property, they allow a greater degree of accuracy in modeling the
behavior of materials and processes with hereditary effects |3, 4, 37].

In this thesis we are focused on finite-dimensional control problems, with integer
and noninteger derivatives. The main subject of research are quasilinear control
problems with unbounded and dispersive dynamics, which have been studied in [19,
34]. As it often occurs, in order to deal with nonlinearities, firstly, one needs to
understand and examine the linear counterpart of the system. Classical linear control
theory was thoroughly studied and there is plenty of literature addressing linear
control problems with integer-order derivatives [1, 14, 23, 38, 60, 63, 64]. On the
other hand, when it comes to linear fractional control theory, most of the focus has
been on the time-invariant systems (see e.g. [8, 6, 12, 52, 55]). One of the reasons
for that was the lack of a detailed analysis of the theory of fractional differential
equations. Over the last two decades many contributions were made in that field
(see e.g. [13, 18, 24, 25, 45, 48, 53]), also contributing to the research in fractional-
order control. Since there was no general theory addressing linear fractional control



problems, we tried to generalize most of the classical results from linear control
theory to the fractional setting, cf. [33]. The Section 3.2 of this thesis covers the
results obtained in [33], which are, beside being a contribution to the linear control
theory, also significant for the construction of the solution of the linearized control
problem in Section 4.2. Furthermore, when dealing with fractional derivatives which
are nonlocal operators, the construction of the piecewise solution is not so simple as
in the integer-derivative case, since one needs to take into account the accumulated
memory. That is why the properties of the solution of the nonlinear system from
[35] will also play an important role in the analysis of our nonlinear control problem.

The thesis is organized as follows:

In Chapter 1, we establish the basis for later work by introducing notation, re-
calling definitions and properties of several classes of function spaces, presenting the
main results of the Schauder fixed point theory and by giving a short introduction
to the basics of control theory. Furthermore, we give a brief historical overview of
the breakthroughs in control theory.

Chapter 2 is devoted to the theory of fractional calculus. We recall definitions of
fractional operators and then focus on the systems of fractional differential equations.
First, we give classical results regarding the existence and uniqueness of the solution.
Next, we take a closer look at the linear systems of fractional differential equations,
specifically at their fundamental solution matrices. We conclude this chapter with
the result related to the solution of a nonlinear fractional system, obtained in |35].

Chapter 3 deals with linear control theory and it is divided into two main sections.
In Section 3.1, we present classical results from the integer-order linear control theory.
Then, in Section 3.2, we present the general theory of linear time-varying fractional
control problems, developed in [33].

In Chapter 4, nonlinear control problems are studied. Section 4.1 deals with the
system studied in [19]. We use the same main idea as in [19], which is to consider
a linearized system and apply the Leray-Schauder fixed point theorem to obtain
a solution of the nonlinear problem, although we provide a different approach to
construction of the solution of linearized problem. Section 4.2 contains novel results
from [34], where a quasilinear fractional control problem is studied. Using the Leray-
Schauder fixed point theorem, properties of linear control systems from Section 3.2,
and the properties of the solutions of fractional differential equations from Chapter
2, we prove controllability of our nonlinear system.

Chapter 5 contains the summary of the obtained results and a short discussion
of the possible future work and application of the presented ideas.
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Chapter 1

Introduction

Firstly, we introduce notation that will be used throughout the thesis, recall defini-
tions of several classes of function spaces and present main results of the Schauder
fixed point theory. Secondly, we give an introduction to control theory, with basic
notions and properties of control problems. Then, we give a brief historical review
of the development of control theory as a branch of applied mathematics.

1.1 Preliminaries

We begin with notations in vector spaces R?, d € N. We denote by

d B
e | - | the Euclidean norm, i.e., |z| = (Z xi) , for any z = (21,...,24) € R%
k=1
d
e |- |; the I'-norm, i.e., |z|; = > |zx|, for any z = (x1,...,24) € RY
k=1
¢ || the maximum norm, i.e., || = max{|z1|,...,|z4|}, for v = (21,...,24) €
R%;
d
e (-,-) the inner product, i.e., (z,y) := > zxyx, for any = = (x1,...,24),y =
k=1

(yla'-'>yd) S RY.

We recall the definition of the adjoint operator.

Consider a linear operator A : H; — Hy between Hilbert spaces H; and Hs, with
inner products (-, )y, and (-, ) g,, respectively. The adjoint operator of A is a linear
operator A* : Hy — H; such that

<Ax7y>H2 - <x7A*y>H17 for every r € th € H2-



2 Chapter 1. Introduction

Specifically, when A is a real m x d matrix and H; = R?, H, = R™ are Euclidian
spaces, then A* = AT, where (-)T denotes the transpose operation.

1.1.1 Function spaces

Let —oo <a<b<oo,deN, ke NU{0}.
We begin by recalling definition of the LP-spaces, i.e., spaces of p-integrable func-
tions. For 1 < p < oo,

b
LP([a, b]; RY) = {f [a,b] — R /]f(t)\pdt < oo}7

and it is equipped with the norm

b
1
191 = [ 110P at)’
For p = oo, we have the space of measurable, almost everywhere bounded functions:

L ([a,b]; RY) := {f Sa, b = RY | fllee < oo},
where
| flloo :=1inf{C > 0:|f(t)] < C, for almost every ¢ € [a, b]}.
We recall that for p = 2, L?([a, b]; R?) is a Hilbert space with the inner product

b

(fr9)r2 = /(f(t),g(t)>dt.

a

Further, for the analysis of fractional control problems we shall need the weighted
L2-spaces. For w € (—1,1), we define the space:

L2 ([a,b]; RY) := {f a,b) = R (b—1)2f(t) € LQ([a,b];Rd)} (1.1)

equipped with the norm

b
7l = /b—t RO
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We have that L2 ([a,b]; R?) is a Hilbert space with inner product

b

()i = [6= (0. g(0) .

a

Specifically, when w = 0, L2([a,b];RY) = L?([a,b]; RY). Of a special interest to us
will be the cases w = o — 1 and w = 1 — «, with @ € (0,1) being the order of
the fractional derivative figuring in the control system. In this case, we have the
following inclusions:

L¥([a, bl RY) € Lg_y([a,b;RY) € L*([a, b; RY) € LT_,([a, bl RY) € L'([a,b; RY).

Notice that if f € L2_,([a,b];R?) and g € L?__([a,b];RY), then (f, )2 is well-
defined:

b b
g = / / (b= )T £(1), (b — 1) T g(1)) dt

a

= (=) f(1),(b—1) 2" g(1)) 2.

Now we move to the notion of continuity. By C([a, b]; RY), we denote the space
of continuous functions f : [a,b] — RY, and by C*([a,b]; R?) the space of k times
continuously differentiable functions f : [a,b] — RY, equipped with norms:

[Flloe = max [£(t)] - and [ fllex = Z\If(m\loo— m&X|f '(t)].

We say that the set X C C([a,b];RY) is equicontinuous if for every ¢ > 0, there
exists d > 0 (which depends only on ¢) such that

(Vf € X)(Vs,t € [a,b])(Is —t] <0 = |f(s) = f()] <e).
Here, we recall the Arzela-Ascoli theorem, which will be used in the thesis.

1.1.1 Theorem (Arzela-Ascoli) If a sequence {f,} in C([a,b];R?) is bounded and
equicontinuous, then it has a uniformly convergent subsequence.

When dealing with fractional derivatives of order o € (0, 1), and regularity of
solutions of fractional differential equations, several more classes of functions arise
naturally. Firstly, the class of weighted continuous functions: for v € [0, 1], we
denote by C.([a, b]; R?) the space of functions f : (a,b] — R? such that the function
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f,(t) = (t — a)? f(t) belongs to the space C([a,b];R?). Naturally, C,([a,b]; R?) is
endowed with the norm

I, = sl = ma |t = a7 0)]

For v = 0, Co([a, b]; R?) = C([a, b]; R?).
Secondly, the class of Holder continuous functions.

1.1.2 Definition A function f : [a,b] — R? is Hilder continuous of order o € (0,1]
if there exists a positive constant C,, such that for every s,t € [a,b] it holds that

[f(s) = f()] < Cals — 1| (1.2)

By H%([a,b]; RY) we denote the space of Hélder continuous functions of order a on
[a, b].

For a = 1, H'([a, b]; R?) is the space of Lipschitz continuous functions on [a,b]. The
case a > 1 is not of an interest since it reduces to constant functions only, and for
any 0 < a < 8 < 1 we have the following strict inclusions:

C'([a, bl RY) € H'([a,0;R?) € H?([a, b; RY) € H*([a,b];R?) C C([a, b]; RY).

The space H*([a, b]; RY) is a Banach space (see [62]), when equipped with the norm:

| llre = max | F(@ +  sup 1f(s) = F(O)

)
t€la, s,t€a,b],s#t ‘3 - t’a

where the second term coincides with the infimum of all possible constants C, for
which (1.2) holds.
Next, we recall the notion of absolute continuity.

1.1.3 Definition A function f : [a,b] — R? is absolutely continuous on an interval
[a, b] if for every e > 0 there exists § > 0 such that for any n € N and any family of
disjoint intervals [ay, by] C [a,b], k = 1,2, ...,n, it holds

n

Z(bm_am)<5 = Z|f(bm)_f<am)| <é&.

m=1

The space of absolutely continuous functions on |a,b] is denoted by AC([a,b]; R?).
By AC*([a,b];RY) we denote the space of functions f : [a,b] — RY which have
continuous derivatives up to order k — 1 on [a,b] and f*~1 € AC([a,b]; R?).

Throughout the thesis, the notation f(t) = O(g(t)), t — a, means that there

exist € > 0 and M > 0 such that ‘%‘ < M, when |t —a| < e.
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1.1.2 Schauder fixed point theory

In the theory of nonlinear equations, a classical method for the proof of existence of
a solution is based on a fixed point theorem approach. There are many variants of
fixed point theorems, depending on the type of the mapping being considered. For
example a well-known Banach fixed point theorem is a standard tool in theory of
ordinary differential equations. In this thesis, we will use the Leray-Schauder fixed
point theorem, also known as the Schaefer fixed point theorem, to prove the existence
of a solution for nonlinear control problems. Compared to the Banach theorem, it
gives only the existence of the fixed point, not uniqueness, but also requires relaxed
conditions. First, it was proved by Schauder in 1930, for Banach spaces, and later
Tychonoff proved its generalization to locally convex spaces. Here, we recall only
the statements of the theorems, and for the proofs we refer to [17, Th. B.17.] and
[56, Ch. 10 & 11].

Since the Schauder fixed point theory relies on convex and compact properties of
sets and maps, we recall definitions of these notions.

1.1.4 Definition Let X and Y be vector spaces. The set K C X is convex if for
every x1,x2 € K and X € [0, 1],

Az + (1 — /\)IQ € K.
The function f: X — Y is convex if for every x1,z5 € K and X\ € [0,1] it holds
FOz 4+ (1= Nzg) < Af(21) + (1= A) f(22).

1.1.5 Definition Let X and Y be topological vector spaces.
The set K C X is compact if every open cover of K has a finite subcover, i.e.,
for every collection {U;}icr of open subsets of X such that K C |J U;, there exists a
i€l

The set K C X is relatively compact if its closure K is a compact set.
The map f : X — Y is compact if for every bounded set B C X, f(B) is a
relatively compact set in Y.

For metric spaces, we have that the compactness (of a set) is equivalent to the
sequential compactness.

1.1.6 Proposition Let X be a metric space. The set K C X is compact if and only
if every sequence from K has a convergent subsequence, whose limit is also in K.

Now we move to the Schauder fixed point theorem, which addresses the mappings
defined on Banach spaces.
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1.1.7 Theorem (Schauder) Let X be a Banach space and T : X — X a continuous
map. If the image of T is included in a compact subset of X, then T has a fixed
point.

Tychonoft’s generalization to locally convex spaces is given in the sequel.

1.1.8 Theorem (Schauder-Tychonoff) Let X be a locally conver space, let K C X
be nonempty and convez, and let Ko C K be a compact set. If T : K — Kq 1s a
continuous map, then there exists ©* € Ky such that T (z*) = x*.

The Leray-Schauder variant of the theorem, which is more suitable for applica-
tions, states as follows.

1.1.9 Theorem (Leray-Schauder/Schaefer) Let X be a Banach space, T : X — X
a continuous and compact map, and assume that the set

{r e X : =T (x), for some X € [0,1]}

is bounded. Then T has a fixed point x* € X.

1.2 Basics of control theory

We begin with mathematical description of a control problem. Consider a system

governed by the equation
D(y) =0, (1.3)

where y € Y is the state of the system, Y is a vector space and D is an operator on
Y. The operator D represents the nature of the system, it describes a process or a
phenomenon that is analyzed. Usually, D is determined by some physical laws that
govern the system, i.e., by the laws that the state of the system needs to obey.

For example, Newton’s law of cooling describes a heat transfer between a body
and its surrounding. More precisely, it states that the rate of the heat loss from a
body is directly proportional to the difference in temperature between the body and
its surroundings. Simplified formulation is given by the following linear differential
equation

C;—T =r(Ton, — T(1)), (1.4)
t
where T'(t) is the temperature of the body at the moment ¢, T,,, is the temperature
of the environment and r is the coefficient of heat transfer. For a given initial
temperature 7(0) = Ty > T,,, and a time interval [0,¢;], we can determine the
temperature at the moment ¢;. By solving differential equation (1.4), we get

T(t1> - Tenv - (Tenv - TO)e_Ttl-
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Now, assume that the temperature of the environment is not constant, and that we
are able to modify it. Naturally, changes in the temperature T.,, = T, (t), will
cause changes in the outcome T'(¢1), and by allowing these changes, we transform an
ODE into a control problem. Let us rewrite the equation (1.4) in the following way

" +7T(t) = 1rTen(t), te€[0,t1], T(0)=Tp, (1.5)

and consider the following question:

For fized initial and final temperatures Ty, T1, can we find the function To,, (1),
t € [0,t1], such that the temperature of the body will go from initial state T(0) = T
to final state T'(ty) = 11 during the time interval [0,t]?

This is a question of controllability, one of the key notions in control theory,
which, plainly speaking, can be formulated in this way:

Are we able to interfere in such a way that the outcome of the system will be
exactly what we want it to be?

The term on the right hand side of the equation (1.5) represents our involve-
ment in the system, and in general case, this involvement is introduced by a control
function. For our general system (1.3), the associated control problem is given by

where, beside the natural dynamics of the system (described by the operator D), we
have a term h(u). Here u is a control function and h describes how the control acts
on the system. Usually, the control u is chosen from an admissible set of controls
U, which is determined according to a specific problem. For example, U can be
L?-space, L>®-space, space of continuous functions or some subset of those spaces.

In order to give a precise definition of controllability, let us focus on more specific
type of control problems, which will be analyzed in this thesis.

Consider a system

SDYy(t) = f(ty,u), te(ab), yla)=y, (1.6)

where y : [a,0] — R% u:[a,b] = RY, N < d, f:]a,b] x R? x RY — R? and ¢D¢
stands for the left Caputo derivative of order o € (0,1] (for a = 1, D} = 4.
The admissible set of controls U we choose to be either the space L2 _,([a, b]; RY)

(when o = 1 it reduces to L*([a, b]; RY)) or L>=([a, b]; RY).

1.2.1 Definition The system (1.6) is said to be controllable if for any given initial
and final data y., y, € RY, there exists a control function uw € U such that the solution
of the system (1.6) satisfies y(b) = yp.
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Controllability defined in this way is also called global controllability or complete
controllability, since we do not impose any conditions on the choice of initial and
final states y,, ¥, nor on the length of the interval [a, b]. Contrary to global, we have
local controllability, which is related to a specific state 7/, and where instead of letting
Yo,y € RY, we consider y, and g, from a neighbourhood of 7. Furthermore, there
are many other definitions of controllability. For example, in null-controllability the
goal is to steer the solution to the state y, = 0. In approximate controllability one
does not need to derive the solution exactly to the final state y,, but to a certain
neighborhood of y;,. Further, when the function f from (1.6) depends also on some
parameters, then we have averaged controllability, where the goal is to control the
expected or averaged value of the system.

As we can see, depending on the type of the problem being considered, we have
different criteria for controllability, but in all these problems, the control function
can be chosen freely from the specified set ¢. It often occurs that we have more
than one control which steers the solution to a desired state. Thus, the question
arises: “Which one is “the best” choice?”, and it leads us to another important aspect
of control theory—optimization. The branch of control theory which deals with
problems where the goal is to find an optimal control function, and consequently
an optimal solution of the system, is called Optimal control theory. It relies on
mathematical techniques from optimization theory and variational calculus. When
addressing such problems, firstly, one needs to define the criterion by which the
optimal control is chosen. For example, one can consider a problem of finding control
with minimal L?norm (energy optimization), control which steers the solution to a
desired state in minimal time (time-optimal control), control which minimizes the
cost or maximizes the payoff, etc. In Chapter 3, we will analyze in more details these
types of problems for linear systems with both integer and non-integer derivatives.

So far, we mentioned two important concepts in control theory—controllability
and optimality. Now we move to the notion of observability, which addresses the
problem of recovering the information about the state variables from the knowledge
of observations (measurements). Hence, it takes into account the constraints imposed
by restrictions on measured variables (often we are not able to measure all the state
variables), and deals with an inverse problem. Although it can be considered as a
problem for itself, it is often associated with a problem of controllability, since there
is a certain duality between these two notions. Roughly speaking, controllability
indicates whether the output of the system (state function y(t)) can be controlled
by acting on the inputs (control function), while observability indicates whether the
internal behaviour of the system can be observed (detected, reconstructed) from its
outputs. Specifically, in the case of linear systems, this concept of duality manifests
in a form of equivalence between controllability of control problem and observability
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of its adjoint problem. For illustration, let us consider linear time-invariant system
= Az, x(0) =z (1.7)

where A € R™? 7 : [0,7] — R? and zy € RY. Suppose that we can measure an

N-dimensional output
2(t) = Bx(t), (1.8)

where B € RV*4 N < d. Of a special interest is the situation where N < d, and z
is interpreted as a low-dimensional observation of a high-dimensional dynamics .
In this setting, the observability question is: Can we reconstruct x(t) from the
observations z(t)?
If yes, we say that the system is observable. Specifically, from [20] we have the
following definition.

1.2.2 Definition The pair (1.7), (1.8) is called observable if knowing the measure-
ments z(-) on any time interval [0,t], we are able to compute xy.

As we shall see in Chapter 3, there are other definitions of observability (via observ-
ability inequality), which will be more suitable for our analysis.

The following proposition (see [20, Th. 2.7]), indicates how observability and con-
trollability of linear time-invariant systems are connected, through mutually adjoint
operators.

1.2.3 Proposition The system

1s observable if and only if the system
y'(t) = Aly(t) + Bu(t)
18 controllable.

We conclude this section by mentioning one important classification of control
systems. Depending on whether the choice of the input is influenced by the output,
we have the open-loop and the closed-loop systems. In the open-loop systems the
selection of the input (or control) is based on the a priori knowledge about the
systems and the desired goal, i.e., the input is precomputed and it is not influenced
by the output of the system. On the other hand, in closed-loop systems the output
effects the choice of the input. More precisely, the information from the output is
“fed back” to the input, and the control is calculated according to a certain feedback
law. These feedback laws are suitable for modeling of the real systems in which
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random perturbations and fluctuations can occur (which can not be determined a
priori). In this case, the feedback law is there to correct possible perturbations and
to stabilize the output.

For more details on the above mentioned notions, as well as on the many other
concepts and ideas from control theory we refer to [63, 64| (for an outline of math-
ematical control theory, the main concepts regarding linear systems, nonlinear sys-
tems, optimal control and infinite dimensional systems are covered), |1, 14, 23, 38, 60|
(for the control theory of linear systems), [22, 30, 31, 47| (for the classical topics in
optimal control) and |17, 32] (topics in nonlinear control).

1.3 A brief history of control theory

Control theory is an interdisciplinary field of research which includes several areas
of mathematics and engineering. It deals with the analysis and design of control
systems—a process or a phenomenon described by a set of equations. The mathe-
matical control theory focuses on the development of a mathematical model of the
system, analysis of the solution, stability, etc., while the control engineering deals
with the design and practical implementation of the results.

Although the modern control theory developed in the 20th century, the appli-
cations of control systems can be found even in the ancient time. The control of
the irrigation systems in Mesopotamia, the systems of regulating valves in Roman
aqueducts, the water clocks in ancient Greece are one of the earliest known examples.

A significant improvement in the design of control systems came during the 17th
century. The work by Christiaan Huygens and his contemporary Robert Hook on
the oscillations of the pendulum resulted in a new device for a precise measurement
of time—the pendulum clock. Furthermore, their analysis of circular motion and
centrifugal force found an application in the construction of windmills. The flyballs
that were used to regulate the velocity of windmills worked in the following way:
Two balls were attached to an axis that rotates with velocity proportional to the
velocity of the windmill. When the angular velocity increases, the centrifugal force
causes the balls to rise and this upward movement affects the positions of the mill’s
sails.

These flyball governors were adapted by James Watt in 1769 to the governors
in steam engines. They were connected to several valves that regulate the pressure
of the steam, and in that way keep the velocity of the engine close to a constant.
At first, these control mechanisms were based on observations and empirical knowl-
edge, without the rigor mathematical background. Around 1840, the mathematician
and astronomer George Airy was the first to work on the mathematical analysis of
the governors, while the complete mathematical description of their properties was
published by a physicist James Clerk Maxwell in 1868. Furthermore, many 19th cen-
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Figure 1.1: Flyball governor in a steam engine (taken from [26])

tury mathematicians (Euler, Laplace, Fourier) contributed to theoretical research in
control systems by developing methods for mathematical modeling of natural phe-
nomena.

The first three decades of the 20th century brought some fundamental devel-
opments in control theory. Harry Nyquist and Hendrik Wade Bode, together with
collaborators from the Bell Telephone Laboratories, developed the theory of feed-
back amplifiers, which were used in telephone systems. Even today, the ampli-
fiers are the foundations of frequency design. Another widely used concept is the
proportional-integral-derivative controller (PID controller), which was introduced by
a mathematician Nicolas Minorsky and applied to automatic controllers for steering
ships. Around that time, development of analog computers formed the basis for the
application of controllers in the chemical and petroleum industries.

Then, during the Second World War, developed techniques were used in the de-
sign of anti-aircraft batteries, the control mechanisms of plane tracking and ballistic
missiles.

In 1948, mathematician Norbert Wiener published a book “Cybernetics: or Con-
trol and Communication in the Animals and the Machines”, where he presented
an interconnection between constructed control systems (machines) and naturally-
designed control systems (which are present in living organisms, such as, the system
that regulates body temperature or blood sugar level, or how our eyes perceive the
world around us and how we react (the interconnection of muscles, nerves, visual in-
formation and our actions form a complex control system)). Wiener was also known
for introducing randomness and noise in mathematical models and control systems.

Around 1950s, the methods and ideas developed so far were referred to as a part
of classical control theory, while great improvements in the analysis of more complex
control systems opened the door to modern control theory. In the classical control
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theory mostly the systems described by linear time-invariant ODEs were analyzed.
Using the Laplace or the Fourier transform, they were transformed into the frequency
domain where the analysis was easier to perform. Those were the systems with Single
Input Single Output (SISO systems). The need for more accurate models required
the tools for the analysis of systems which are of higher order, time-variant, linear
and (often) nonlinear, as well as for the systems with Multiple Input Multiple Output
(MIMO systems). In 1960s, the above mentioned problems were addressed and that
was the beginning of modern control theory. The foundations of modern control
theory were made by Rudolf Kalman in linear control and Richard Bellman and
Lev Pontryagin in nonlinear control. Kalman introduced the filtering techniques
and developed an algebraic approach for the analysis of linear systems. Bellman
introduced an optimization method today well-known as the dynamic programming,
while the Pontryagin’s maximum principle provided a powerful tool for finding an
optimal control.

From 1970s, with enormous development of new technologies and their appli-
cations in many areas of science, medicine and industry, control systems became a
part of our everyday life. We single out some examples: regulation and control of the
electrical power grid, control of communication systems (telephones, mobile phones,
internet), transportation (cars, aircraft), space systems (rockets, satellites), home-
used devices (bathroom tanks, systems of heating, ventilation and air conditioning),
etc.

Today, the control theory is a part of many research areas, and a great number
of control systems are used to model and explain processes in engineering, physics,
medicine, biology, economy, social studies, etc. Furthermore, with the development
of computer science, data science and artificial intelligence, new fields for the appli-
cation of the control theory arise.



Chapter 2

Fractional Calculus

The origin of Fractional calculus, or, more precisely, integrals and derivatives of non-
integer order, goes back to the 17th century and correspondence between Leibniz
and L’ Hospital regarding derivation of order % Later, this idea intrigued many
mathematicians (Euler, Lagrange, Laplace, Riemann and many more), and during
the 18th and 19th century the theory of fractional calculus developed as a generaliza-
tion of integer-order derivatives and integrals. Firstly, it was considered as “a rather
esoteric mathematical theory without applications” [51], which in the 20th century
was proved to be wrong. With its applications in many areas of engineering and
industry (viscoelasticity, acoustics, optics, chemical and statistical physics, robotics,
control theory, electrical and mechanical engineering, etc.), fractional calculus be-
came a significant domain of research.

Since, in this thesis, we study control problems with both integer and non-integer
derivatives, we shall recall some basic notions of fractional calculus. The chapter is
organized in the following way. In the first section we present definitions and prop-
erties of fractional operators. Then we define the Mittag-Leffler functions, which are
essential part of fractional calculus since they often appear as solutions of fractional
differential equations. In the third section we analyze systems of fractional differ-
ential equations. The original results, published in [35], are stated in Proposition
2.3.19, Proposition 2.3.20 and Subsection 2.3.3.

2.1 Fractional operators

In fractional calculus there are several different approaches for defining the integra-
tion and differentiation operators. In this thesis we use the Riemann-Liouville and
the Caputo approach.

Let —oo < a < b < o0, and consider a function f : [a,b] — R. First we give
definition of fractional integral.
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2.1.1 Definition The left and right Riemann-Liouville fractional integrals of order
a > 0 are defined by

2 f(1) = %a) / (t— ) f(r) dr

a

and
b

[t

t

1
(o)

where I' denotes the Euler gamma function.

tIl?f@) =

In the next Theorem, which is a special case of [62, Th. 3.6], we have the bound-
edness property of operator ,If".

2.1.2 Theorem If o > 0, then the fractional integration operator I is bounded
from L>=([a, b]; RY) into H*([a, b]; RY).

Since in our control problems we consider systems with fractional derivatives of
order between 0 and 1, in this section we focus on fractional differentiation operators
of order a € (0,1). For more details on fractional operators and their applications
we refer to |2, 18, 45, 46, 54, 57, 62].

2.1.3 Definition The left and right Riemann-Liouville fractional derivatives of
order o € (0,1), are given by

d

11—« d / T
D210 = O 00) = 1 o

a

and
b

S R

t

2.1.4 Definition The left and right Caputo fractional derivatives of order o € (0,1),

are given by
t

«DEFD) =l (70) = (1 1_ a) / (tfi@;'))a dr

a

and

D) = i (- 110) = rr | L
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Let us introduce several classes of functions, which will be needed for the analysis
of the solutions to differential equations involving the Riemann-Liouville and the
Caputo fractional derivative. We denote by:

o AC%([a,b]; RY) the set of functions f € L'([a, b]; RY) for which the left Riemann-
Liouville derivative of order «, ,D§ f(¢), is defined on (a,b);

o ACY([a,b]; RY) the set of functions f € L([a, b]; RY) for which the right Riemann-
Liouville derivative of order «, ;D f(t), is defined on (a, b);

o “AC%([a,b]; R?) the set of continuous functions f € C([a,b]; R?) for which the
left Caputo derivative of order o, YD f(t), is defined on (a, b);

e °C%([a,b];R?) the set of continuous functions f € C([a,b]; R?) for which the
left Caputo derivative of order o, D¢ f(t), is continuous on [a, b].

Let us mention that an equivalent way to define the Caputo fractional derivative
is via the Riemann-Liouville derivative. More precisely, starting with

SDYf(t) = DPLf(t) = fla)] and  {DRf(t) = Dy[f(t) = ()],

and using Definition 2.1.3 together with integration by parts, one can obtain expres-
sions given in Definition 2.1.4 (cf. [45, Th. 2.1]).

For a € (0, 1), we recall the relations between fractional integral and differential
operators. From [45, Lemma 2.5 & Lemma 2.22] we have the following.

2.1.5 Lemma
(i) If f € L'(a,b]; R?) and 1}~ f(t) € AC([a,b];RY), then the equality
L2 (DFF)) = F(2) - %
holds almost everywhere on [a, b].
(ii) If f € C([a,b]; RY), then it holds
J(EDEF) = 1) - f(a) (2.1)

aI%_af(t) ‘tza

In fractional domain, integration by parts formula has several variants. For frac-
tional integrals, from |62, Th. 3.5 & Cor.|, we have the following result.

2.1.6 Proposition Let f € L*([a,b];R), g € LY([a,b];R). The relation
b b

/ g()12 F (1) dt = / 2 g(t) (1) dt (2.2)

a a

holdsfor%—l—%ﬁl—i—a,le,qu, wz’thp;«él,q#lmthecase%jL%:l—i—oz.
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Using the above property, we derive fractional integration by parts, which relates
the left Caputo and the right Riemann-Louville fractional derivatives.

2.1.7 Proposition Let a € (0,1), g € AC?([a,b];R?) and f € “AC%([a,b]; RY),
such that f' € L*°([a,b]; R?). Then

b b

JEeso. g e = 509+ [r0.Dg) (23

a a

Proof. From the definition of the Caputo derivative and (2.2) (here with ¢ = 1,
p = 00), we obtain

b

JEero.g@ae= [ o) gw) = [(0.0 g w)d

a

b

Then, by applying integration by parts for integer-order derivatives, we get

b b

[0z, g0nde = (10 a0l — [ 5 (8 20t0))

a a

which together with the definition of the right Riemann-Liouville derivative, con-
cludes the proof. O

For different variants of fractional integration by parts formulas, involving both the
Caputo and the Riemann-Liouville derivatives, we refer to [44].

2.2 The Mittag-Lefller functions

The special functions, such as the Gamma, the Beta function, the Mittag-Leffler
functions and the Wright function, are essential part of fractional calculus. They
appear in definitions of fractional operators and in the solutions of fractional dif-
ferential equations. In this section, we recall basic definitions and properties of the
Mittag-Leffler functions. A detailed analysis of these classes of functions can be
found in [27].

2.2.1 Definition For a € C, Re{a} > 0, the one-parameter Mittag-Leffler function
E,(z) is defined by the series

Eo(z) = kz:% ek il °°© C. (2.4)
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For a € C, Re{a} > 0, and 5 € C, the two-parameter Mittag-Leffler function
E.p(z) is defined by the series

Eos(z) =Y ——— zeC. 2.5
=Y i (25)

The one-parameter Mittag-Leffler function is in fact a special case of the two-
parameter Mittag-Leffler function with § =1, i.e., E,1(2) = Eu(2).

For Re{a} > 0, 8 € C, series (2.4) and (2.5) converge in the whole complex
plane. Furthermore, E,(z) and E, g(z) are entire functions of the complex variable
z.

Next, we recall the complete monotonicity property of the Mittag-Leffler func-
tions with real negative argument.

2.2.2 Definition A function f : [0,00) — R is called completely monotonic if for
every n € N, f(z) exists on (0,00) and satisfies

(=1)"f"(2) 20, =€ (0,00).
Clearly, a completely monotonic function is a non-increasing function on [0, 00).

2.2.3 Proposition For 0 < a < 1 and > «, Mittag-Leffler functions E,(—x)
and E, g(—x) are completely monotonic for x > 0.

2.3 Systems of fractional differential equations

2.3.1 Existence and uniqueness of solutions

We start with the classical results regarding existence and uniqueness of the solution
for the system of fractional differential equations (FDEs). Among a broad list of
literature devoted to this type of problems, we refer to [18], [29], Chapter 3 in [45],
Chapter 8 in [62], and references therein.

First, we consider the Cauchy problem with the Caputo fractional derivative in
general form:

CDfy(t) = F(t,y(t), te€[ab], (2.6)

where « € (0,1], v : [a,b] — R? and F : [a,b] x RY — R<,
Next theorem gives sufficient conditions for the existence of a unique solution to
(2.6) and it is a special case of [45, Th. 3.25].
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2.3.1 Theorem Let G be an open set in RY, y, € G, and let F : [a,b] x G — R? be
a function such that:

(i) for everyy € G, F(-,y) € C([a,b]; R?);

(ii) F is Lipschitz continuous with respect to the second variable, i.e., there ecists
a positive constant A, such that for every t € [a,b], y1,y2 € G,

[F'(t, 1) — F(ty2)| < Alyr — yal.
Then, there exists a unique solution to the Cauchy problem (2.6) in °C<([a, b]; R?).

2.3.2 Remark If, in the above theorem, only continuity of F : [a,b] x G — R? is
assumed, then (only) the existence of the solution is obtained.

The main idea of the proof of Theorem 2.3.1 is based on the reduction of problem
(2.6) to the Volterra integral equation

1 [ F(s.y()
y(t) = ya + o) a/ (f sy ds, a<t<hb, (2.7)

and application of the Banach fixed point theorem. From [45, Th. 3.24] we have the
following equivalence.

2.3.3 Theorem Let 0 < o < 1, let G be an open set in RY, y, € G, and let
F :la,b] x G — R? be a function such that for every y € G, F(-,y) € C([a,b]; R?).
Let r = |, where |« is the greatest integer less than or equal to o , and y €
C"([a,b); RY). Then, y satisfies (2.6) if and only if it satisfies the Volterra integral
equation (2.7).

2.3.4 Remark Theorems 2.3.1 and 2.3.3 have an analog result involving the Riemann-
Liouville fractional derivative, see [45, Th. 3.10, 3.11].

Conditions (i) and (7i) on F in Theorem 2.3.1 are sufficient for the solution y
to be in the space °C*([a,b]; R?). In addition, if we want a higher regularity of the
solution, we need to impose stronger regularity conditions on F. In Section 6.4 in
[18], one can find a detailed analysis of the smoothness of the solution. Here we give
the result from [18, Th. 6.28], which follows from a more general theory of Fredholm
integral equations studied in [15].

2.3.5 Theorem Assume the conditions of Theorem 2.5.1 hold. Moreover, let F €
C*(la,b] x R4 RY). Then the unique solution of (2.6) satisfies y € C([a,b];RY) N
C'((a,b]; R?) and y/'(t) = O((t — a)*™'), as t — a.
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2.3.2 Linear systems of FDEs

Now we are interested in properties of solutions to linear fractional differential sys-
tems. More precisely, we are going to consider linear time-varying initial value prob-
lems with the Riemann-Liouville and Caputo derivatives of order a € (0, 1), given
by:

Di(t) = A(t)z(t) +g(t), t € [a,b],

2.8
aItliax@)’t:a = Lq, ( )

and

2 Dia(t) = A(t)z(t) + g(t), t € [a,0],

o) — o (2.9)

where A : [a,b] — R?*? is a matrix function, g : [a,b] — R? is a vector function,
z : [a,b] — R is state function and x, € R? is given initial state.
We introduce the notation

Q={(r,t) € [a,b] x [a,b] : 7 <t} and Qo= {(7,t) € [a,b] X [a,b] : T < t},

and by I we denote the identity matrix.

As we shall see, essential part of the analysis of solutions to (2.8) and (2.9) are
fundamental solution matrices associated to the matrix function A. In control theory,
they are often referred to as the state-transition matrices.

2.3.6 Definition (i) The left Riemann-Liouville state-transition matriz is the ma-
triz function ® : Qy — R such that for every fived T € [a,b), ®(7,") : (1,b] —
R4 satisfies the initial value problem

DEP(7,t) = A(t)D(1,t), te (1],

2.10
L0(1, 1) ey = L (2.10)

(ii) The left Caputo state-transition matriz is the matriz function ¥ : Q — RI*4
such that for every fived T € |a,b), ¥(r,-) : [1,b] = R¥*? is a solution to the matriz
wmitial value problem

CDPW(T,t) = A()V(r,t), € [T, (2.11)

From |13, Section 4| we have the following results.

2.3.7 Theorem Suppose A € L*=([a,b]; R™?) and g € L>=([a,b];RY), and let T €
[a,b).
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(i) Initial value problem (2.10) admits a unique solution ®(r,-) on the interval
(7,b]. Moreover, ®(7,-) € AC([r,b]; R¥*4) and satisfies integral equation

®(T, ¢) :@;(—2)&1]1—1-/%14(5)@(7, s)ds, te(rb. (212

T

1) Initial value problem (2.11) admits a unique solution W(7,-) on the interva
I [ val bl d [ v h [
[7,0]. Moreover, U(1,-) € CAC%([1,b]; R¥?) and satisfies integral equation

t
(t _ S)a—l
U(r,t) =1+ TA(S)\I/(T, s)ds, te|rb)]. (2.13)
o

T

(iii) There exists a unique solution x € AC([a, b]; RY) to the Cauchy problem (2.8)
on (a,b], and it is given by the Duhamel formula

z(t) = ®(a,t)x, + /(I)(T, tyg(r)dr, te€ (a,b. (2.14)

a

(iv) There exists a unique solution v € ¢AC?([a, b]; RY) to the Cauchy problem (2.9)
on la,b], and it is given by the Duhamel formula

x(t) = V(a,t)x, + /@(7, tyg(r)dr, t€a,bl. (2.15)

a

2.3.8 Remark From [45, Th. 7.5 & Th. 7.6] we have that if A € C([a,b]; R¥?)
and g € C1_o([a,b];R?), then initial value problems (2.8) and (2.9) have unique
continuous solutions on (a,b]. Furthermore, the solution to (2.8) satisfies

e =

The properties of ® and W, given in Theorem 2.3.7, were obtained by reduction
of the initial value problems (2.10) and (2.11) to the equivalent integral equations
(2.12) and (2.13), respectively. On the other hand, in [53], the state-transition
matrices were introduced by the method of successive approximations.

Let 7 € [a,b) be fixed, and t € (7,b]. By starting with the initial condition and
then successively multiplying it by A and performing integration of order «, one
obtains a generalized Peano-Baker series:

PRO(7,t) =Y IPA(t), te (1], (2.16)
k=0
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t— a-l —1)oa
where [ I°A(t) = %H and for k > 1, [I"*A(t) = TI?(A(t)TIEk Dea (1)),

If the series (2.16) converges uniformly on (7,b], then it coincides with the left
Riemann-Liouville state-transition matrix associated to A (cf. [53, Lemma 3.]), i.e
it solves the initial value problem (2.10). Since 7 € [a, b) was arbitrary, we have

d(1,t) = "Pd(1,t), a<7T<t<b,
providing that (2.16) converges uniformly on (7,b], for every 7 € [a, ).

Similarly, for the problem with the Caputo derivative one can define

PB (1 Z TR A(), ter bl (2.17)

where +J°%A(t) = T and ,JF*A(t) = I2(A(1), IV A(1)), for k > 1. Then from
[53, Lemma 5.], it follows that if the series (2.17) converges uniformly on [, b], then
it coincides with the solution to (2.11). Assuming that the above statement holds for
every (fixed) 7 € [a,b), we get that the left Caputo state-transition matrix associated
to A can be represented in a form of Peano-Baker series, i.e.,

U(r,t) ="BU(r,t), a<7t<t<b
We point out two important cases for our analysis:

e If A(t) = Ais a constant matrix, then the associated state-transition matrices
reduce to the Mittag-Leffler functions:

o k(t . CL k’a
D(a,t) = (t — a)* " Eon(Alt — a)®) = (t —a)*~ 12 e (2.18)
and
B B o )ka
U(a,t) = Eo(A(t — a)® Z ak 1

k=0

o If A(t) = Af(t), where A is a constant matrix and f : [a,b] — R is a continuous
scalar function, then

PBg(q Z AF koo (f (2.19)

and
PB (g Z Ak Jhoo(f (2.20)
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From [35, Prop. 1| we have the following convergence property.

2.3.9 Property If A is a constant matriz and f : [a,b] — R is a continuous
function, then the series (2.19) converges uniformly on (a,b].

Proof. Since f is continuous on [a, b], there exists M > 0 such that M = m[aif} |f(©)]-
t€la,

By induction with respect to k& € N we obtain:

| A*|| sup
te(a,b]

alfoa(f(t))‘ < JAM] sup LI (F()]) < AN sup oT3°(M)

te(a,b te(a,b]

< ([ AlM).
Since S JF(||A|M) = (b— a)* 1B, o( M| Al|(b — a)®), it follows that PB®(a,t) is
k=0
uniformly convergent on (a,b] and ®(a,t) = FBd(a,t), t € (a,b]. O
Following the lines of the proof of Property 2.3.9, we obtain:

2.3.10 Property If f : [a,b] — R is a continuous function, then the series (2.20)
converges uniformly on |a, b].

Duality of ¢

The Riemann-Liouville state-transition matrix ® has a duality property. More pre-
cisely, it can be considered as a solution to the initial value problem with the left
Riemann-Liouville derivative, as well as a solution to the dual initial value problem
with the right Riemann-Liouville derivative. In order to give these properties in more
details, we introduce the following notation:

e By 4®' we denote the left Riemann-Liouville state-transition matrix associated
to matrix A from Definition 2.3.6 (i), meaning that, for every fixed 7 € [a, b),
A®Y(T, ) 1 (1,b] — R4 solves

DEURN (T ) = A(t) 2@ (7, t), te(r,b], L1 t)=r =1, (2.21)

where 7 is fixed starting-point and ,D{ denotes the left Riemann-Liouville
derivative with respect to the variable ¢;

e By @7, we denote the right Riemann-Liouville state-transition matrix associ-
ated to matrix A, i.e., 7 : Qy — R is such that, for every fixed t € (a, b],
7 (-, 1) : [a, t) — R4 solves

DO (1,t) = (1, )A(T), 7€ [at), L (r, )= =1 (2.22)

where ¢ is fixed end-point and .Df represents the right Riemann-Liouville
derivative with respect to the variable 7;
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e By 4®" we denote the matrix function 4®" : Qo — R%< such that, for every
fixed t € (a,b], 4®"(7,-) : (7,b] — R¥? solves

DA (1,t) = A(T)a®" (1,1), 7€ [at), %4 (1, t)],= =1, (2.23)

where ¢ is fixed end-point and .Df represents the right Riemann-Liouville
derivative with respect to the variable 7.

Using the same arguments as in the proof of [13, Th. 7|, one can derive the
following duality property.

2.3.11 Proposition Let A € L>([a, b]; R%*9).

(i) It holds that
A0 =7

More precisely, the left Riemann-Liouville state-transition matriz ® from Def-
inition 2.3.6 (i) solves both (2.21) and (2.22).

(i1) If matriz function A is such that A(s)A(t) = A(t)A(s), for every s,t € [a,b],
then it holds

4D =07 = 40

Let us notice that analog properties can be derived in terms of Peano-Baker series
representation of state-transition matrices. Denote by ©'Z ,®!(7,t) Peano-Baker series
given by (2.16), and for every fixed ¢ € (a, b, define

PREY (7,) = 3 ICA(r), T € [a1),
k=0

t— a—1 “1oa
%H and [ TPAA(r) = TI;"((J’;X“ b A(T))A(T)), for

k > 1, with Iy being the right fractional integral with respect to variable 7.

where TI::ZOOA(T) =
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Then, for every £ € N, by changing the order of integration, we obtain

o L[ A Al
7'1115c A(t) - F(a>k+17—/(t—31>1a/(51—32)1a

T

Sk—

) Sgp—1
. a—1
/ : A(sg_1) _ / A(sg) (s, — ) dsy dsy_1 - - - dso dsy

Sk—2 — Sg—1)'” (Sk—1 — sp)1—@

~ T(a)H! // / / (51 —t;;l)a : dsl) (52 ji(j:;la dsy -

T Sk
A(Skfl) A(Sk)
. dsj_ d
(Sp_1 — sp)—@ Sk—1 (sp — 7)1 Sk
= A,

Hence, we get
PB @l (1,t) = "BO" (1,1).

Furthermore, if, for every fixed t € (a, b], we define

PB @7 (7 Z A A(T), T € [a,t),

t— r,(k—1)oc

where 4, 17" A(r) = %1 and 4, 1% A(7) = I (A(T) (A,Tlt*’f b A(T))),
!

for k > 1, with I being the right fractional integral with respect to the variable 7.

Then, if matrix A is such that for every s,t € [a,b], A(s)A(t) = A(t)A(s), we have

that, for every k£ € N, it holds

koo _ 1 t A(s1) / A(s2) .
TIt A(t) - P(Oz)k'HT/(t—Sl)l_a/(Sl—Sg)l_a

Sk—1

‘ / A(sk)(sk — 7-)0‘_1 dsy, -+~ dsy ds;

(Sk—1 — s)17@

T

L Al [ Al
a F(Oé)k“/(Sk—T)l_“/(Sk—l—Sk)l_“

T Sk

) / At — s

(81 _ 82)1704

1 dsg_1 dsy,

S2

= IR A(r).
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Hence, if A(t) and A(s) commute, we obtain
PEAD!(r, 1) = PP,407 (1, 1).

Now, we want to emphasize one property which follows from derived duality of
matrix ® and which will be substantial for the analysis of adjoint control problem
and notion of observability. By transposing system (2.22) and using Proposition
2.3.11 (i), we obtain the following.

2.3.12 Corollary It holds that
T
<A<I>l> S

Furthermore, if ® is the left Riemann-Liouville state-transition matrix from Defini-
tion 2.3.6 (i), then, for every fived t € (a,b], function ®(-,t)T : [a,t) — R4 is the
unique solution to the initial value problem

Dye(r 1)t = A(n)'e(r,t)", T € at),

2.24
AL0o(r ) e = 1L (2.24)

One-dimensional linear FDEs

Let us note that the results presented above still hold in the case of one-dimensional
FDEs, i.e., when d = 1. In this case, we will use notation ¢ and v for the one-
dimensional matrices ® and W.

2.3.13 Examples Let us recall the form of the solutions of linear fractional initial
value problems with constant coefficients. Let k € R.

1. Solution to ¢D¢x(t) = kx(t), t € (a,b), x(a)=x,, is given by
x(t) = Eu(k(t —a)®)x,.
If k=0, then z(t) = x,.
2. Solution to D¢z (t) = kx(t), t € (a,b), o *2(t)|=qa = 74, is given by
z(t) = (t —a)* ' Eya(k(t — a)®)z,.

(t—a)!
I'«)

3. Solution to D¢z (t) = kx(t), t € (a,b), I, “x(t)|i=p = x4, is given by
z(t) = (b—1)* ' Eya(k(b—1)%)zs.

(b—t)t
N .

If k=0, then z(t) = z,

If k=0, then z(t) = xy
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In each example, the solution is unique.

Next lemma is a result from |21, Th. 1.4, Th. 1.5. & Th. 1.6.] which states that
the sign of the solution of a linear fractional differential equation is determined by
the sign of the initial condition.

2.3.14 Lemma Let o € (0,1) and k € C([a,b]; R).
(i) If x is a solution of the initial value problem
o Dia(t) = k(t)z(t), x(a) =, >0,
then x(t) > 0.
(ii) If x is a solution of the initial value problem
D) = k(®)x(t), oI} “@(t)]ima = 24 > 0,
then x(t) > 0.
(7ii) If x is a solution of the initial value problem
Dfx(t) = k(t)zt), I *2(t)]= =z > 0,
then z(t) > 0.

There are several comparison results regarding solutions of fractional differential
equations. For a general type of equation, we refer to [50], and for linear equations
the results can be found in [16, 24].

2.3.15 Lemma Let a € (0,1) and ay,a € C([a,b];R) such that a1(t) < as(t),
t € [a,bl.

(i) If z; : [a,b] = R, i = 1,2, is a solution of the initial value problem
eDfai(t) = ai(t)zi(t),  wi(a) = wa,
then |z1(t)| < |z2(t)].
(i1) If z; : [a,b] = R, i = 1,2, is a solution of the initial value problem
Diwi(t) = a;(t)zi(t), oy Ti()]i=a = Ta,

then |z1(t)| < |z2(t)].
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(iii) If x; : [a,b] = R, i = 1,2, is a solution of the initial value problem
Dpzi(t) = ai(t)zi(t), L7 "wi(t)]i=b = o,
then |z1(t)| < |za(t)].

Proof. We give the proof for (i), and (i) and (ii7) follow analogously. We analyze
different cases, depending on the sign of the initial condition.

(1) If 2, = 0, then z(t) = x2(t) = 0, for every t € [a, b].

(2) Suppose that z, > 0. Then Lemma 2.3.14 () implies that both z; and z; are
positive functions. Define £(t) := xo(t) — 21(¢). We have that £(0) = 0 and

aDfe(t) = {Dfwa(t) — ¢ Dfan(t) = as(t)za(t) — ar () (t)
= ax(t)e(t) + (az(t) — ax(t))z1(2).

According to Theorem 2.3.7 (iv), € f (7, t)(as(T)—ay1(7))z1(7) dT, where ¢(T,t)

satisfies
DYO(r,t) = ax(r)d(. 1), LT t)|rme = 1.
Hence, from Lemma 2.3.14 (iii) we have that ¢(7,t) > 0, 7 € [a,t], which together
with as(7) —ay(7) > 0 and z1(7) > 0 implies that £(¢) > 0. Therefore, xo(t) > z1(t).
(3) If z, < 0, then from Lemma 2.3.14 (i) we have that x; and x5 are negative
functions. By defining €(t) := x2(t) — 21(¢), and proceeding as in (2), we obtain
t

= [o(1,t)(ax(7) — a1(7))z1(7) d7, where ¢(7,t) > 0, az(7) — a1(7) > 0 and

0
x1(7) < 0. Therefore, (t) < 0 and 5(t) < x4(t) < 0.
Now, (1), (2) and (3) imply |1(1)] < [a(1) 0

Lower and upper bounds for ¥ and ¢

In order to better understand the behaviour of the solution of the system of FDEs,
we need to analyze closely the state-transition matrices ® and W.

Due to the nature of the Riemann-Liouville derivative, the function ®(r,¢) has
singularities along the line 7 = t (see for example (2.18)). That is the reason why
we need to be careful when examining its regularity. In [25] the author considered a
modification of &, given by

F(r,t) =t — 1) °®(r,t), (7,t) € Q,
and
I

F(r,7) = lim(t — 7)'7*®(7, 1) Ta)

e T T(a)

and derived the following properties.

TItl_O“I)(T, Oisr = T € [a,b].
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2.3.16 Proposition There exist Mp > 0 and Hr > 0 such that

(i) ||F(7,t)|| < Mg, for every (7,t) € Q;

(i) |F(71,t1) = F (72, t2)|| < Hp(|71— 72|+ [t —t2|?), for every (11, t1), (12, t2) € Q.
In particular, the function (1,t) — F(7,t) is continuous on §).

From the proofs of [25, Prop. 4.1. & Prop. 4.2.], we can explicitly derive the
values of constants My and Hp:

e(b—a)k

Mp = d Hp=H;MsMpE,((b—a)*MaMjy),
F T()(1 — k=2 MaM,) an F TMaMrE,(( a)*MaM;)

where M4 = sup ||A(t)||, M; =1+ Sincg—jﬂ), H; = F?ﬁ:l), and k is a positive number
tela,b] )

MaM;

such that < 1.

Let us mention that in [13, Lemma 5], similar estimates were established for
matrix ®.

2.3.17 Proposition There exists © > 0 such that
@i (r, )] < (t—T7)*7"6,
for almost every a < 1 <t <b and for every i,5 € {1,...,d}.

As one can infer from the proof of |13, Lemma 5], the author proved the existence
of the upper bound ©, without its precise calculation.

In [35] sharper estimates for & and ¥ were obtained, for some special classes of
systems (2.10) and (2.11). In the sequel, we present the results from [35, Prop. 1 &
Rem. 3| in more details.

2.3.18 Remark (Diagonalization) If A is a real symmetric matrix it can be di-
agonalized, i.e., there exists a diagonal matrix

D =diag(\,...,\g), MNeER) i=1,...,d,
and an orthogonal matrix U such that
A=UDU'=UDU".

Elements on the main diagonal of D are the eigenvalues of A, and if A is positive
semidefinite matrix, then \; > 0, ¢ = 1,...,d. Throughout the thesis, we will often
use this property to diagonalize symmetric systems.
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2.3.19 Proposition Let A be a real symmetric matriz with eigenvalues Ay, ..., \g,
g € C([a,b;R), and let Mpax = 1n<1§1<>§|)\2-| and M > 0 be such that |g(t)] < M,
t € [a,bl. o

(i) If U(a,t) is a solution of the initial value problem
DN (0, 1) = Ag()U(a ), 1€ (ab), Wlaa)=1 (225
then

Ea(_)\maxM(b - a)a) < ||\Il(a’7 t)” < Eoz()‘maxM(b - a)a)’ te [CL, b] (226)

(ii) Lett € (a,b]. If ®(7,t) is a solution of the initial value problem
DO(1,t) = Ag(T)®(7,t), 7€ (a,t), L ®(1,t)|,= =1, (2.27)
then

Epo(=Amax M (t—7)%) < ||(t=7)""2®(1,1)|| < EaoDmaxM (t—7)%), 7 € (a,t).
(2.28)

Proof. (i) From diagonalization A = UDU?", it follows that the solution of (2.25)
can be written as ¥(a,t) = UP(a,t)U", where P(a,t) is a solution of

“DYP(a,t) = Dg(t)P(a,t), P(a,a) =1

Since D and I are diagonal, P(a,t) = diag(pi(a,t),...,pi(a,t)) with p;(a,t) satisfy-
ing

aCD?pi(a7 t) = Azg(t)pz(au t)? pi(au CL) = 17 L= 17 ) d.
Using —AmaxM < \ig(t) < Apax M, Lemma 2.3.15 (i), and Example 2.3.13 1., we
obtain Ey(—AmaxM (t — a)®) < |pi(a,t)| < Eq(AmaxM (t — a)®), for every i =1, ..., d.
Furthermore, Lemma 2.3.14 (i) and complete monotonicity of E,(—z) provide the
following estimates

Ea(_)‘maxM(b - a)a) < pi(av t) < Eoz()‘maxM(b - a)a)' (2‘29)
Hence, E, (=AM (b —a)*) < ||P(a,t)|| < Es(AmaxM (b — a)*) and
19 (@, Ol < TP, )T < Ea(AmaxM (b — a)®). (2.30)

Next, we consider inverse matrix of ¥(a, t). It is given by ¥(a,t)™! = UP(a,t)"'UT,

1 1
where P(a,t)™! = diag(pl(a D vl t)) Now, (2.29) implies

1
EOL(AmaxM(b - a)a)

1
Ea(_AmaxM(b - a)a)

< |[P(a,t)™"] <
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and
1

Ua, ) | < |[U|P(a,t) U] < -
W (a, )| < Ul P(a,t)” ]|l ”—Ea(—xmaxM(b—a)a)

By using 1 < [|¥(a, t)[[[¥(a, )7, we get
1 (a, )l = ¥ (a, )7 = Ea(=AnaxM (b = a)®),

which together with (2.30) gives (2.26).

(i) The proof of this part follows the same lines as the previous one. Starting
with the diagonalization, we express the solution of (2.27) by ®(7,t) = UQ(7,t)U™,
where Q(7,t) = diag(qi(7,t),...,qa(7,t)) and ¢;(7,t) satisfy

Dqi(,t) = Nig(T)qi(1,t), T € (a,t), TI%’aqi(T, e =1, i=1,....d.

Using that —Apax M < Xig(t) < Apax M, Lemma 2.3.15 (7i7), Example 2.3.13 3. and
complete monotonicity of E, ,(—x), we conclude that for every i = 1,...,d it holds

Eoo—AmaxM(t —7)%) < (t = 7)"7%qi(7,t) < BpoDmaxM(t — 7)%), 7€ (a,t),
(2.31)
which further implies (2.28). O

When we impose stronger conditions on the definiteness of the matrix of the
system, we are able to derive stronger bounds.

2.3.20 Proposition Let A be a real, symmetric and positive semidefinite matriz
with eigenvalues Ay, ..., g, g € C([a,b];[0,00)), and let X = max Xi and M >0 be

such that g(t) < M, t € [a, b].
(i) If Y(a,t) is a solution of the initial value problem
“DMV(a,t) = —Ag(t)¥(a,t), t€ (a,b), Y(a,a)=1, (2.32)
then  Eo (=AM —a)®) < ||V(a,t)|]| <1, tE€a,b].
(ii) Lett € (a,b]. If ®(7,t) is a solution of the initial value problem
DYD(7,t) = —Ag(T)®(7,t), 7€ (a,t), 1®(r, )= =1, (2.33)
then  Eoo( =AMt —7)*) < ||t —7)'""®(r,t)]| <1, 7€ (a,t).

Proof. (i) Again, by diagonalizing the system, we express the solution of (2.32) in
the form U(a,t) = UR(a,t)UT, where R(a,t) satisfies

°DYR(a,t) = —Dg(t)R(a,t), R(a,a)=1.
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Furthermore, R(a,t) = diag(ri(a,t),...,rq(a,t)) with r;(a,t) satisfying
“DYri(a,t) = =Nig(t)ri(a,t), ri(a,a) =1, i=1,...4d.
Since now —AM < —X\;¢(t) < 0, we obtain
E (=AM (b—a)*) <ria,t) <1, (2.34)

and E,(—AM(b—a)®) < ||R(a,t)|| < 1. Therefore, using the same arguments as in
the proof of Proposition 2.3.19 (i), we conclude

Ea(~AM(b— a)*) < [¥(a, D] < 1.

(77) Can be proved analogously. O

2.3.3 A nonlinear system

Based on the previous results, we are able to prove existence of a solution to a
nonlinear system of FDEs, which is substantial for the control problem that we are
going to consider.

First, we give an auxiliary result form [35, Lemma 4].

2.3.21 Lemma Let v, € R? and X C C([a,b]; R?) be such that
(1) for every x € X, x(a) = x,;

(i1) there exists a constant C' > 0 such that for every z € X, Sl[lp} Doz (t)] < C.
tela,b

Then X is bounded in H*([a,b];RY) and equicontinuous equicontinuous subset of

C([a, ] RY).
Proof. From (2.1) and assumption (4), it follows that for every z € X,
2(t) — 24 = 10 (ngx(t)), t € [a,b]. (2.35)

Further, the assumption (44) implies that the set {YD%z(t) : z € X} is bounded in
L>([a, b]; RY). Then, from Theorem 2.1.2 and (2.35) it follows that {z —z, : x € X}
is bounded in H*([a, b]; R?). Since z, is a constant vector, we have that X is also
bounded in H*([a,b]; R?). Hence, there exists a constant K, > 0 (not depending on
x) such that for every x € X, ||z||go« < K, implying that for every z € X and for
every ty,ts € [a,b] it holds that

[2(t1) — 2(t2)| < Kalts — t2|". (2.36)
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Let € > 0. By taking § = (%) * and using (2.36) we obtain

(Vo € X)(Vt,ts € [a,0) ([t — ta] < 6 = |2(t1) — x(ta)| < &),  (2.37)

implying that X is an equicontinuous subset of C([a, b]; R?). O

Now we present the main result from [35].

2.3.22 Theorem Let A € M be a symmetric, positive semidefinite matriz, and
f:RY—[0,00) a continuous function. Then, the Cauchy problem

dD2(t) = = Af(=(t) 2(t), t € [a,b],

) = 2 (2.38)

f(2)z is continu-

has a solution z € C([a,b]);RY). Moreover, if f is such that F(z) =
Z(t) = O((t—a)*™),

ously differentiable on RY, then z € C([a, b]; RY)NCY((a, b]; RY),
as t — a, and the solution is unique.

Proof. We use the Leray-Schauder fixed point theorem. Let us consider the mapping
T : C([a,b); RY) — C([a,b];R?), T (v) = z, where z is a solution to
“Doz(t) = — Af(v(t)) 2(t), t€ a,b],

@)= 2 (2.39)

From (2.15) it follows that z(t) = ¥(a,t)z, and Proposition 2.3.19 (7) implies

()] < |zal, t € [a,b]. (2.40)

We shall show that the mapping 7 admits a fixed point. According to the Leray-
Schauder fixed point theorem, we need to prove that

(i) the mapping 7 is continuous and compact;
(ii) the set of the solutions of z = AT (z), A € [0, 1], is bounded.

Since the solutions of the Cauchy problem (2.39) depend continuously on the coef-
ficients —Af(v), we have that 7 is continuous. For the compactuness, it suffices to
show that 7 maps bounded sets into relatively compact sets. Let V' C C([a, b]; R?)
be a bounded set such that, for every v € V, |[v[|¢(japre) < K, i, tem[(ezug] lu(t)] < K.

Then (2.40) implies that 7 (V') is uniformly bounded by |z,|. Furthermore, continu-
ity of f : R? — [0,00) implies that there exists M > 0 such that M = max f(y),
yELK
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where Bx = {y € R?: |y| < K}. Then for every v € V we have m[a)bﬁ |f(v(t))] < M.
tcla,

Hence, if z € T (V) then for the fractional derivative D%z it holds
e DPz| < | = AllLf (@)l 2()] < | AIIM |2,

i.e., it is uniformly bounded by ||A||M|z,|, and by Lemma 2.3.21 we have that 7 (V)
is equicontinuous set in C([a, b]; R?). Therefore, T(V) is uniformly bounded and
equicontinuous, and by the Arzela-Ascolli theorem, T (V') is relatively compact. From
(2.40) we see that (ii) is satisfied as well. Thus, according to the Leray-Schauder
fixed point theorem, 7 has a fixed point, i.e., problem (2.38) has a solution z €
C([a, b]; RY).

Moreover, if we have that F(z) = f(z)z is continuously differentiable on R¢, then
according to Theorem 2.3.5, the solution is unique, z € C([a, b]; RY) N C*((a, b]; RY)
and 2/(t) = O((t —a)* '), as t — a. O

2.3.23 Remark From the proof of Theorem 2.3.22; it follows that the solution z
satisfies |2(t)] < |zq|, t € [a, b].

2.3.24 Remark In our nonlinear system we considered the Caputo fractional deriva-
tive, in order to avoid singularity at the origin, which arises in the case of the
Riemann-Liouville derivative. If we want to consider the Riemann-Liouville version
of (2.38) given by:

Diz(t) =—Af(2(t)) 2(t), t € [a,b),

oly "2 (t)lt=a = 24,

then we need to look for the solution in the weighted space C)_,([a,b];RY). In
that case, the function f(v(t)), with v € Cy_,([a,b]; R?), will not necessarily be
continuous on [a, b], because of the nonlinearity of f. That will lead to a problem
with the definition of the mapping 7 : v — z.

Another reason for using the Caputo derivative is the nature of the initial con-
dition. In the Caputo-type problems, the initial condition is given by the initial
value of the solution, while, in the case of the Riemann-Liouville derivative, the
initial condition is given by I} *z(t)|,—a, and it does not have a natural physical
interpretation.
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Chapter 3

Linear Control

This chapter is devoted to the control theory of linear systems. A systematic and
detailed analysis of linear control started in the 1960s with Rudolf Kalman and his
papers [40, 41, 42|, where necessary and sufficient conditions for controllability were
established. Then followed a great expansion of the linear control in both theoretical
and applied domain. Today there is a vast number of literature in this field. For a
review of classical results, we refer to the following books [1, 14, 23, 38, 60, 63, 64].

In the case of linear control problems with fractional derivatives, most of the
known results are related to the systems with constant coefficients. First result,
regarding controllability and observability of linear time-invariant systems, was pub-
lished in [52]. Later, several authors considered similar problems (see, for example,
[6, 12]). Over the last 30 years, research in fractional order systems is of a great
interest since for some processes they provide a more accurate models than the one
with integer order derivatives. For an overview of the results in linear fractional
control and their applications in engineering and industry, we refer to the books
[37, 55].

This chapter contains two sections, which are organized in the following way:

In Section 3.1 we recall some of the classical results for linear control systems with
integer order derivatives. In addition, we provide a proof for the equivalent condition
for controllability in the case when the matrix of the system is of the form A(t) =
Ag(t), where A is a constant matrix and ¢ is a scalar function.

Section 3.2 is devoted to the systems with non-integer derivatives. Using methods
from control theory of linear systems with integer-order derivative, and adapting
them to the fractional setting, we derive and prove new results in linear fractional
control. The majority of this section is based on the original results published in [33],
so we cite this paper as the source of the results and proofs unless stated otherwise.
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3.1 Control theory for linear systems of ODEs

The results that will be presented in this section are based on the Chapter 1 of the
book [17] and Section 2 of [65].

We start with a linear control problem
y'(t) = A()y(t) + B(t)u(t), € [a,b] (3.1)
y<a) = Ya,

where A : [a,b] — R¥? and B : [a,b] — R are continuous matrix functions, i.e.,
A € C([a,b]; R¥™>?) and B € C([a, b]; R>N).

We recall some classical results from the theory of linear systems of ODEs. First,
we define the state-transition matrix (principal solution matrix) related to the system

y = A(t)y
as the matrix function II : [a, b] X [a,b] — R¥? (7,t) ~ TI(7,t), such that for any
fixed 7 € [a,b), matrix II(7,t) is a solution to the Cauchy problem

d

a““’” AMIL(T,t), telrb,

I(r,7) =L

(3.2)

3.1.1 Theorem Let A € C([a,b];R¥™>?), B € C([a,b]; R*N), u € L([a,b]; RY) and
Y, € R

(i) The state-transition matriz I1(7,t) is a unique solution to (3.2). Furthermore,
I € CY([a, b]*; R™Y) and it satisfies the following properties:

(1) 1I(t,t) =1, for everyt € [a,b];
(2) T(r, s)l(s,t) =II(7,t), for every T,s,t € [a,b].
(3) TI(7,t) is nonsingular and I1(7,t)~' = TI(¢,T), for every 7,t € [a, b].

(ii) For any fized t € (a,b], matriz TI(7,t) is a unique solution to the Cauchy

problem
T, 0) =~ (DA, 7€ o]
gr YT T YA, TR (3.3)
(¢, t) = L
(15i) The unique solution of the initial value problem
4 =A)y(t), telab,
/() =AW, 1€ ol o

y(@) = Yo
is given by y(t) = (a, t)ya, and y € C*([a, b]; RY).



3.1. Control theory for linear systems of ODEs 37

(iv) The unique solution of (3.1) is given by
t

y(t) = (a, t)y, +/H(T, t)B(T)u(r)dr (3.5)

and y € C([a,b]; RY).
If A(t) is such that A(t)A(s) = A(s)A(t), for every s,t € [a,b], we can express 11
in terms of a matrix exponential function:

A(s)ds
(7, 1) :ef )

3.1.1 Controllability

In order to derive equivalent conditions for controllability, we need to introduce the
controllability Gramian.

3.1.2 Definition The controllability Gramian of the control system (3.5) is the
symmeltric d X d matrix
b
W(a,b) / TI(t, ) B(#) B TI(t, b)" dt. (3.6)
Let us notice that controllability Gramian is a positive semidefinite matrix, since
b b
W (a,b) = / VTt b) B() B()"TI(t, b) " dt — / 2T, ) B(E) 2 dt > 0,

for any € RY. Therefore, the Gramian is nonsingular if and only if it is a positive
definite matrix.

3.1.3 Theorem The linear control system (3.1) is controllable if and only if its
controllability Gramian is invertible. Furthermore, the control function which steers
the solution from the state y, to y, during the time interval [a,b] is given by

a(t) = B(t) TI(t,b) "W (a, b)~ (o — T1(a, b)ya), (3.7)

and it is the control with minimal L?-norm, i.e., if u € L*([a,b];RY) is a control
function such that the solution of (3.1) satisfies y(b) =y, then

/b ja(t)” dt < /b Ju(t)|? dt,

with equality if and only if u coincides with @ almost everywhere on |a, b].
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Proof. Let y,,y, € RY If controllability Gramian W (a,b) of system (3.1) is in-
vertible, then control function (3.7) is well defined and by (3.5), the solution of the
Cauchy problem

y(t) = A)y(t) + Bt)u(t), 1€ [a,b]

y<a) = Ya
satisfies

yb) = H(a,b)ya—i—/H(t,b)B(t)ﬂ(t)dt

— M0+ [ EDBOBOMIED) W (@) oy~ Ta ) di
= H(CL7 b)ya + W(aa b)W(aa b)_1<yb - H(CL, b)ya)
= Y.
Hence, the system (3.1) is controllable. To prove other implication, assume that the

system (3.1) is controllable and that W (a,b) is not invertible. Then there exists
w e R\ {0} such that w™W(a,b)w = 0. Therefore

/ W TI(E, D) B(1) 2 di = / WTI(E, ) B(E) B(E)MTI(E, b)Tw dt = 0,

which implies
wrTI(¢,b)B(t) = 0, almost everywhere on [a, b). (3.8)

On the other hand, the controllability assumption implies that for initial state y, = 0
and final state y, = w there exists a control function ug such that the solution of the
system (3.1) satisfies y(b) = w. Hence, (3.5) and (3.8) imply
b
whw = wly(b) = /wTH(t, b) B(t)up(t) dt =0,

which leads to a contradiction with w # 0.
To prove L?-optimality of @, let u € L?([a, b]; RY) be a control function such that
the solution of (3.1) satisfies y(b) = yp, and define v := v — w. Then (3.5) implies

b b b

/ T(t, b) B(t)o(t) dt = / T1(t, b) B(t)u(t) dt — / (¢, b) B(t)a(t) dt
— (g~ II(a, Bly) — (30 — T1(a, b))

= 0.

a
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Having in mind (3.7), we conclude

b b
/ @(t),v(t))dt = / (B(t)MTL(t, b) "W (a, b) " (yp — T1(a, b)ya), v(t)) dt

= (W(a,b) " (g — (@, b)ya), / (b B(t)o(t) db)

Then, using

/b|u(t)|2dt:/b|ﬂ(t)|2dt+/b|v(t)|2dt+2/b<a(t),v(t)>dt,
/\u ()2 dt — /|u ()2 dt — /|u ()2 dt.

which concludes the proof. O

we obtain

The result from Theorem 3.1.3 tells us that in order to prove (or disprove) con-
trollability of the system, we need to compute the matrix W (a, b) and its inverse (if
possible). These computations, in many cases, might be very difficult to perform.
So, naturally, the question arises: Is there any simpler way to check whether the
system is controllable or not? And the answer is: Yes, for some special class of the
system.

Firstly, for the systems with constant coefficients we have a simple algebraic
criterion, today widely known as the Kalman rank condition, given in the following
theorem.

3.1.4 Theorem Linear time-invariant system
y'(t) = Ay(t) + Bu(t), t € [a,b], (3.9)
18 controllable if and only if for matrices A and B it holds
rank|B|AB|A?B|---|A"™'B] = d. (3.10)
Proof. For system (3.9) we have

[(r,t) = ¢4, (7,1) € [a, b2,
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and
b

W (a,b) = / eb-DABRBTO-0AT gt (3.11)

a

First we show that the Kalman rank is a sufficient condition for controllability.
Assume that system (3.9) is not controllable. Then, Theorem (3.1.3) implies that
the Gramian W (a, b) is singular, specifically that there exists w € R?\ {0} such that

b
/ jwTe® 1B 12 dt = w™W (a, b)w = 0.

Therefore, function & : [a,b] — RY given by
k(t) == wlet4B, (3.12)

satisfies
k(t)=0, te€]a,b. (3.13)

Differentiating k i—times and using (3.13), we obtain
ED(0) = (~1)'wA'B=0, i=0,...,d.
Hence, for some wT # 0 we have
wr[B|AB|---|A'B] = [w'Blw"AB| - - - |w" A" B] = 0,
which contradicts (3.10).

In order to prove that the Kalman rank is necessary condition for controllability,
it suffices to show that if (3.10) does not hold then the Gramian (3.11) is singular.
Let w € R4\ {0} be such that

wTA'B =0, foreveryi=0,...,d. (3.14)

If Py(z) = 2% — aga®™t -+ — apw — o is the characteristic polynomial of the matrix
A, then the Cayley-Hamilton theorem implies P4(A) =0, i.e.,

A = q AT — A — oyl (3.15)
Now, by induction, from (3.14) and (3.15) it follows

wTA'B =0, for everyic N.
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Therefore, function (3.12) satisfies £ (b) = (—=1)'wT A’B = 0, for every i € N, and

since k is analytic on [a, b], we get k = 0 on [a, b]. Hence, wT W (a,b)w = fb |k(t)|> dt =

0, which further implies W (a, b)w = 0, for w # 0, i.e., W(a,b) is singulaar. O
Now we focus on the following type of linear systems:

y'(t) =Ag(t)y(t) + Bu(t), t € [a,b] (3.16)

y(a) = Ya,

where A and B are constant matrices and g : [a,b] — R is a continuous function such
that g(t) # 0, for almost every t € [a,b]. Let us note that state-transition matrix of

this system is I1(7,t) = e Jr9()ds The following proposition is a modification of the
result from |19, Prop. 2.3].

3.1.5 Proposition System (3.16) is controllable if and only if A and B satisfy the
Kalman rank condition (3.10).

Proof. (=) Suppose that the system is controllable and that
rank[ B|AB|A*B|---|A“'B] < d.
Then there exists a column vector ¢ € R?\ {0} such that
¢qB=0, gAB=0, ... gA“'B=0. (3.17)

Furthermore, controllability implies that for y, = 0 there exists a control function wu
such that the solution of the system satisfies y(b) = 0. Then, from (3.5) we have

b
0=y(b) = ya—l-/HTbBuo )dr.

Therefore,

b

—(a,b)y, = /H(T, b) Buo(7) dr = /ZAk

a

)ds) =T ue(r)dr.  (3.18)

From the Cayley-Hamilton theorem, it follows that for every m > d, A™ = Z am A",

for some constants a,,; € R. Then, by induction, from (3.17) we conclude that for
every k € N, ¢gA*B = 0, and by multiplying (3. 18) by ¢, we obtain
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Since I1(a,b) is regular matrix and vy, is arbitrary, it follows that ¢ = 0—a contra-
diction.

(<) Suppose that rank[B|AB|A%B|---|A91B] = d and that the system (3.16) is
not controllable. From Theorem 3.1.3 it follows that Gramian W (a,b) is singular.
Therefore, there exists w € R?\ {0} such that

b
/ |wTTI(t,b)B|? dt = w W (a, b)w = 0.

Hence,
p(t) ;= w'l(t,b)B =0, for almost every t € [a, b]. (3.19)

Since II(-, b) € C([a,b]; R?) and I1(b,b) = I, from (3.19) we conclude w™B = 0.
Differentiating (3.19) and using Theorem 3.1.1 (i7), we get

p'(t) = —g(t)w"I(t,b)AB = 0, for almost every t € [a, b].
Using g # 0, almost everywhere, we conclude
wrTI(t,b)AB = 0, for almost every t € [a, b], (3.20)

which, as in the previous case, implies that w"AB = 0. By consecutively differ-
entiating (3.20), using ¢ # 0 and properties of II(¢,b), we obtain wT A*B = 0, for
k=0,1,...,d— 1. Since w # 0, this contradicts the Kalman rank condition. O

3.1.2 Hilbert uniqueness method and observability

The relation (3.7) gives us a straightforward computation of the L?-optimal con-
trol function and it is based on the controllability approach. There are, however,
other methods for obtaining the same results. In the sequel, we shall present the
Hilbert uniqueness method (HUM) based on the properties of Hilbert spaces, and
the variational method, where the problem of finding the L2-optimal control function
is reduced to the minimization problem of a suitably chosen functional. As we shall
see, they are very closely related, and both rely on the duality between controllability
and observability. Furthermore, both methods are an adaptation of techniques used
for infinite-dimensional control problems to the finite-dimensional case.

First, we define the adjoint system of (3.1) by the following backward Cauchy
problem:

Z(t)=—A{t)"z(t), tE€ [a,b] (3.21)
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From (3.3) we have that the solution of the adjoint problem is given by
2(t) = TI(t, b) " 2. (3.22)
We have the following property, which justifies the choice of the adjoint system.
3.1.6 Proposition Let u € L?([a,b;RY) and 2z, € RL. Let y : [a,b] — R? be a

solution to the Cauchy problem (3.1), and let z : [a,b] — R? be a solution to the
adjoint problem (3.21). Then

(y(0), 2) = (Ya, 2(a)) = /<U(t), B(t)"=(t)) dt. (3.23)

W) 3) = (o 2la)) = [ G0 2(0) e
ab d d
= [ (S 0.2(0) + (y(0). 7 (1) dt

which proves the claim. O

3.1.7 Remark From observability point of view, introduced in Section 1.2, the
result from Proposition 3.1.6 can be interpreted in this way:

Knowing y(b) = v, control function u and observations BTz on [a, b], we can deduce
the initial state of the system y(a) = y,.

Denote by R the set of all reachable states, i.e., the set of all 1, € R? such that
there exists u € L*([a,b];RY) for which the solution of (3.1) satisfies y(b) = .
Further, define the mapping £ : R? — R?, such that

Lz, — y(b), (3.24)
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where y : [a,b] — R? is the solution of the Cauchy problem

y(t) = A)y(t) + B(t)u'(t),  y(a) = ya,

with
u*(t) == B(t)"2(t)

and z(t) is the solution of the adjoint problem (3.21).
Now we present the result obtained by the HUM, stated in [17, Th. 1.25.].

3.1.8 Theorem The image of the mapping L given by (3.24) coincides with the set
of reachable states, i.e.,

R = L(RY).

Moreover, if y, = L(z3) and if uy € L?*([a, b]; RY) is a control which steers the solution
of (3.1) from y, to y, during the time interval [a,b], then

b b
/|u*(t)]2dt§ /\ul(t)|2dt, (3.25)

with equality if and only if ui(t) = u*(t), for almost every t € [a, b].

Proof. The definition of £ directly implies £(R?) C R. To prove the converse, let
y1 € R and denote by u; the control function which steers the solution of the system
(3.1) from y, to y; during time interval [a, b].

Let U C L*([a,b]; RY) be the set of all maps given by t — B(t)T2(t), t € [a,b],
where 2 is the solution of the adjoint problem and z, € R. Using z(t) = I1(t, b) 2,
we conclude that U is a finite-dimensional vector subspace of L*([a, b]; RN ) (the
dimension of U is less than or equal to d). Hence U is closed. If u} is the orthogonal
projection of u; on U, then the following holds

b b

/wg) u(t)) dit = /@ﬂmu@ym wel. (3.26)

Denote by y* the solution of the Cauchy problem

W (1) = A () + BOwi), v'(a) = o (3.27)
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Then Proposition 3.1.6 and (3.26) imply

(y"(0), 2) — (a, 2(a)) = /<U’{(t),B(t)TZ(t)>dt

with z, € R? arbitrary. Therefore
y*(b) = v (3.28)
From the definition of U and u} € U, it follows that there exists z; € R? such that
wl(t) = B(t)T2*(t), (3.29)
where z* is the solution of the adjoint problem

dz* T KON ok
(1) = —AW W), #0) = 2,

Now, using (3.27), (3.28) and (3.29), we obtain
y =y (b) = L(z).

It remains to prove L2-optimality of the control u*. Assume u; € L*([a,b]; RY) is
a control which steers the system (3.1) from y, to y, during the time interval [a, b,
where y, = L£(2,) and 2, € R%. Then, using Proposition 3.1.6, as in the previous part
of the proof, and having in mind that u* € U, we get

b b

/(u*(t),u(t))dt _ /<u1<t),u(t)>dt, wel,

a a

which implies that u* coincides with the orthogonal projection of u; on U. Thus,
u; — u* and u* are orthogonal in L?([a,b]; RY), and

lunllZe = [1(ur = u) +u[lLe = [lun — wlfZ2 + [[u][Z2-

Therefore, (3.25) holds. 0

Now we move to the notion of observability and its relation with controllability.
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3.1.9 Definition The adjoint system (3.21) is observable if there exists a constant
C > 0 such that for every z, € RY the solution of the system satisfies

|2|* < C/|B (t)|? dt. (3.30)

The inequality (3.30) is called an observability inequality. It reflects the ability of
the adjoint system to be observed through measurements BT z. More precisely, (3.30)
assures that the N-dimensional observations BTz provide sufficient information for
the reconstruction of all components of the adjoint system. On the other hand, from
controllability point of view, this means that the N-dimensional control u, through
matrix B, can efficiently act on all the components of the state of the system. This
illustrates the duality between controllability and observability properties, whose
equivalence will be proved in the sequel. In order to do that, we need an equivalent
condition for observability, in literature known as the unique continuation property,
which is given in the next proposition.

3.1.10 Proposition System (3.21) is observable if and only if its solution satisfies
B(t)*z(t) =0, for almost everyt € [a,b] = 2z, =0. (3.31)

Proof. If system (3.21) is observable, then (3.30) directly implies (3.31). To prove
the converse, define the mapping || - ||s : RY — [0, 00) which every z, € R? maps to

1/2
ol = / B0 dr)

where z is the unique solution of the adjoint problem (3.21). One can easily see that
| - ||s is a seminorm (using properties of the L?-norm). Furthermore, by (3.31) we
have that if ||z||s = 0, then 2z, = 0. Hence, || -||s is a norm on R?. Now the existence
of the constant C follows from the equivalence of all the norms on R O

Now we are able to prove the equivalence between controllability and observabil-
ity.

3.1.11 Theorem System (3.1) is controllable if and only if the adjoint system (3.21)
s observable.

Proof. (<) Assume that (3.1) is not controllable. Then, according to Theorem
3.1.3, Gramian W (a,b) is singular. Hence, there exists w € R?\ {0} such that
wTW (a, b)w = 0, which further implies

B(t)'I(t, b)Tw = 0, for almost every t € [a, b].
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If Z is the solution of the adjoint problem satisfying Z(b) = w, then
B(t)Tz(t) = B(t)"II(t,b)"w = 0, almost everywhere on [a, b],

and Z, # 0. Thus Proposition 3.1.10 implies that (3.21) is not observable.

(=) Suppose that (3.1) is controllable and (3.21) is not observable. Then, by
Definition 3.1.9, for every C' > 0 there exists 2,(C') € R? such that (3.30) does not
hold. Let {Cy} be a sequence of positive numbers such that klggo 2+ =0 and z,(Cy),

Ck
k € N, satisty

b
12(C) 2 > Oy / IB() 2 ()2 dt, (3.32)

where zj is the solution of the adjoint system with z(b) = 2,(Cy). Without loss of

generality, we can assume |2,(C})| = 1, so that 2,(C}) has a convergent subsequence,

which we do not relabel. Let z, = klim 2(C%). Then [Z] = 1 and solution Z of
—00

the adjoint system satisfying the condition Z(b) = Z, coincides with the limit of the
solutions z. From (3.32), we have that for every k

b
1
0< [IB@ AP dt < olaCol
Ck
and letting £ — oo, we obtain
B(t)'z(t) =0, for almost every t € [a, b]. (3.33)

Since, by assumption, system (3.1) is controllable, we have that for y, = 0 and
for any 1, € R there exists a control function u which steers the solution y from
y(a) =0 to y(b) = yp. Then, by Proposition 3.1.6 and (3.33) we have

b

(Y, Zb) = /(u(t), B(t)Tz(t)) dt = 0.

a
Since y;, was arbitrary, it follows that Z, = 0, which contradicts |Z,| = 1. O

Variational approach for obtaining the L2-optimal control function is based on
the minimization of the functional J : R? — R, given by

I) = 5 [ IBOTOF dt = (o) + (o (), (3.31)

where z is the solution of the adjoint problem (3.21).
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3.1.12 Theorem If the system (3.1) is controllable (or equivalently (3.21) is obseruv-
able), then the functional J has a minimum, and the control function which steers
the solution from y, to y, during the time interval [a,b], is given by

a(t) = B(t)" 4(t) (3.35)

where Z is the solution of the adjoint problem with final state z2(b) = 2, being the
minimum point of J. Furthermore, for any control function u € L?([a,b]; RY) such
that the solution of the control problem (3.1) satisfies y(b) = yp, it holds

/blﬂ(t)lzdté /b|U(t)|2dt,

with equality if and only if & and u coincide almost everywhere on [a,b].

Proof. By definition, the functional .J is strictly convex and continuous on R¢.
Thus, in order to prove that it has a minimum, it suffices to show that J is coercive,
i.e., that

lim J(z) = 0. (3.36)

|00

From observability, it follows that there exists C' > 0 such that for every 2, and
associated solution of (3.21) we have (3.30). Thus, by the definition of J and the
Cauchy-Schwartz inequality, we get

2
Z
Iy = B )+ ()
5 |zl
Yol (56> z)| + [ (Ya, 2(a))]
A
> B )+ e (@),

which implies (3.36). Therefore, J has a unique minimum point in R¢, which we
denote by Z,. Thus, the first variation of J(Z;) is equal to zero, i.e.,

J(ZA’b + th) — J(?:’b)

_ d
pm . =0, forevery z, € R".

(1), B(t)"2(t)) dt — (ys, 2) + (yar 2(a)) =0,

Q\q-

—

oy

—~

~

S—
=

IS
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which coincides with (3.23), for u(t) = B(t)"2(t). Therefore, the control @ given by

steers the solution to a desired state y;,. The second statement follows from Theorem
3.1.8. 0

3.1.13 Remark Comparing the results from Theorem 3.1.3, Theorem 3.1.8 and
Theorem 3.1.12 we conclude that @ = u* = 4 almost everywhere on [a,b]. Further-
more, by calculating the first variation of the functional J, one could find that the
point 2, where J reaches its minimum is given by

Zp = W(a7 b)_l(yb - H(a7 b)ya)°

Hence, from (3.22) and relations (3.7) and (3.35), it follows that the functions u and
4 coincide on [a, b].

3.1.3 Bang-bang controls

In the methods presented so far, the optimization of control function was considered
from energy-minimization approach, which corresponds to the L2-setting. On the
other hand, the optimization in the L*>-setting, where the goal is to find a control
with minimal L*°-norm, provides a control of a simpler form. The L*-optimal control
functions are called bang-bang controls since they turn out to be piecewise constant
functions, and consist of switching from one constant state to another (often 0 and
1, on/off). This makes them more convenient for applications, since they are easier
to implement than, for example, smooth controls which have fine changes in shape
and magnitude.

The bang-bang controls can also be obtained via minimization problem, with
certain modifications of a functional to be minimized.

For fixed initial and final data vy,, v, € R, define a functional Jy, : R — R, such
that for z, € R¢

J() / B hdt) — w2+ oo o(a)), (330

where z is the solution of the adjoint system (3.21), with final state z(b) = z,.
Compared to the definition of J, where the square of the L?-norm of BTz takes
part, here we have the square of the L'-norm. Accordingly, we are going to modify
observability inequality, which will provide coercivity of continuous convex functional
Job-
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We say that the adjoint system (3.21) is observable if there exists C' > 0 such
that for every z, € R?

12| <c /|B |1dt> . (3.38)

Note that observability defined via inequality (3.38) is also equivalent to the unique
continuation property given in Proposition 3.1.10.

Hence, if the system (3.1) is controllable, i.e., (3.21) is observable, then Jy, has
a minimum. Let Z, be the point where Jy, reaches its minimum. Then, for every
2, € R? we have

. Jon(Z6 + hzy) — Jon(Z)

lim . = 0. (3.39)

To calculate the first variation of .Jy,, we use the following relation:

b b b
}115% /yF + 1@y dt - (/ IF], dt)z] — 2/ IF]; dt/(sign (F),G)dt, (3.40)
which holds if {t € [a,b] : Fi(t) = 0, for some i = 1,..., N} is the set of the zero
Lebesgue measure, F, G : [a,b] — R, In (3.40) and in the sequel, the sign function
of a vector is calculated componentwise.

Let Z be the solution of (3.21) with final state Z(b) = Z, being the minimizer of Jy,
F(t) = B(t)T2(t) and G(t) = B(t)Tz(t). Note that if matrices A, B are continuous,
then F' = Bz is also a continuous function and each component F; changes sign on
[a, b] finitely many times. Hence, we can apply (3.40) in (3.39), and obtain that for
every z, € R?

/|B (@) dt/(sigﬂ (B(t)"2(t)), B(t)"2(t)) dt — (Yo, ) + (Ya, 2a) = 0.

The above equation is equivalent to

/ / B 5(1)], di sign (B()2(6)), B 2(6)) dt = (yp. 26) — (v 7a),

which coincides with (3.23) for

b

u(t) = u(t) = / Bt ()], dt sign (B()2(1). (3.41)

a
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Hence, from Proposition 3.1.6, we have that wy, is a desired control function, i.e., the
one which steers the solution of (3.1) from y, to y, during the time interval [a, b].

It remains to show that wy is a control with minimal L*°-norm. Assume that
v € L>([a,b];RY) is a control which also steers the solution of (3.1) from y, to ys.
Again, using Proposition 3.1.6 for z, = Z;,, we get that uy, and v satisfy

b

b
/ (unlt), BOYVE()) dt = (g ) — (i Za) / 5() dt.

a

Therefore,

b b

sl = ([ UB@ =0 de) = / (), B()V2(1) d

b

= [, B0 0) < ol / B 2(0)]1 dt = [[0]ol s -

a
After dividing by ||t s, We get
[usnloo < [0]]co-

Since v € L*°([a, b]; RY) was arbitrary, we get that among all control functions the
bang-bang control (3.41) has minimal L*°-norm.
Note that each component wyj, 7 = 1,...,N, of the vector-valued function
b

up, takes only two values + [ |B(t)"Z(t)|; dt, depending on the sign of the j—th

component of B(t)TZ(t).

3.2 Control theory for linear systems of FDEs

In this section we consider a fractional analog of problem (3.1) with the Caputo
fractional derivative of order a € (0,1):

Dy(t) =A)y(t) + B(tyu(t), t € [a,0]

¥(a) = i, (342)

where A € L*°([a, b]; R¥?) and B € L>([a, b]; R™*N) are given matrix functions.
From Theorem 2.3.7 (iv) we have that the solution of (3.42) is given by

y(t) = V(a,t)y, + /t O (7,t)B(T)u(T) dr. (3.43)
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3.2.1 Controllability

Let us start by introducing the controllability Gramian matrix.

3.2.1 Definition The controllability Gramian of the control system (3.42) is the
symmetric d X d matriz

Wa(a,b) = /(b —t)17®(t,b)B(t)B(t) " ®(t,b)" dt. (3.44)

a

3.2.2 Remark When comparing (3.44) with the definition (3.6), one can notice the
extra term (b — t)'~. This addition is necessary in order to assure the convergence
of the integral (3.44) since, due to the nature of the Riemann-Liouville fractional
derivative, the function ®(-,b) : [a,b) — R?*? has a singularity at the endpoint
t=0b.

For illustration, let us consider a simple example of one-dimensional linear time-
invariant control problem

CDiy(t) = ary(t) + buu(t),  yla) = ya,

where a1,b; € Rt and y,u : [a,b] — R. In this case, the matrix ®(¢,b) reduces to
o(t,b) = (b— t)* 'E,q(ar(b —t)*). Hence, if we define the Gramian in the same
way as in (3.6), we have

b

b
W(a,b) = / o(t,b)*? dt = b3 / (b—t)**VE2 (ai(b—t)*)dt

a

Since a; > 0 and t € [a, b], we have E, ,(a1(b—t)*) > 1. Therefore

W(a,b) > b2 / (b— 120 g, (3.45)

a

Since the integral on the right-hand side of (3.45) is divergent for a < 1, we do not
have a well defined Gramian for o € (0, %] Hence, some adjustments need to be
made. A natural one is the addition of the term (b — ¢)'™%, since it is a minimal
modification which assures convergence of the integral and reduces to the integer-

order case for o = 1.
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To show the convergence of (3.44), we use Proposition 2.3.16, and obtain that
for some Mpr > 0

b

Wala, 0| < /(b—t)“_lll(b—t)l_“fb(t,b)IIIIB(t)B(t)THII(b—t)l_“fb(tb)Tlldt

a

b
o Mz||B||*(b — a)®
T

IN

(0%
a

where [| B[ = sup [[B(#)]]

t€la,b]

3.2.3 Remark Let us notice that in the fractional case we also have

" Wy(a,b)x = /(b —t)' 2T ® (¢, b) B(t) B(t)T®(t, b)) w dt

a

b
_ / (b~ t)!=|2@(t,b) B dt > 0,

a

for any x € R Hence, the regularity of the Gramian is also equivalent to its positive
definiteness.

3.2.4 Remark In the sequel, we shall use the definition of the Gramian given by
(3.44), since it is well-defined for every a € (0, 1) and it reduces to (3.6), for a = 1.
However, we want to emphasize that for a € (%, 1), one can define the Gramian
without the extra term (b — ¢)'7, i.e., for « =@ € (3, 1), definition

b
Wxl(a,b) = / ®(t,0)B(t)B(t) ®(t,b)T dt

is also valid.

The first result is the equivalence between controllability and invertibility of the
Gramian.

3.2.5 Theorem System (3.42) is controllable if and only if the controllability Gramian
matriz Wy (a,b) is nonsingular.
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Proof. (<) If W,(a,b) is nonsingular, then the control function

u(t) = (b— )" *Bt)T®(t,b) " Wa(a,b) [y, — V(a, b)ya) (3.46)
is well defined and it steers the solution of the system to a desired value ;. Indeed,
inserting u = @ in (3.43) we obtain

y(b) = U(a,bye + / B(t, b) B(t)a(t) dt

a

= \I/(&, b)ya
b
+/ (b— 1)@ (t,b) B(t)B(t) " ®(t,b) Wala,b) [y — U(a, b)ya) dt
= U(a,b)ya + Wala, b)Wa(a,b) ys — U(a,b)ya)
= Y-

(=) Suppose that the system is controllable and that W, (a,b) is singular. Then
there exists a column vector w € R?\ {0} such that wTW,(a, b)w = 0, which yields

/ W (b — £)-D(t, b) B BE)TD(t, b) w dt = 0. (3.47)

If
p(t) = w'd(t,b)B(t)

then (3.47) implies that ¢(¢) = 0, almost everywhere on [a,b]. Since the system is
controllable, there exists a control u such that the solution of the system satisfies
y(b) = w, when y(a) = 0. Then we have

w = y(b) = / O(t,b) B(t)u(t) dt,

and
b

|w|]? = wrw = /qu)(t,b)B(t)u(t) dt = /¢(t)u(t) dt = 0.

a

This leads to a contradiction with w # 0. O

If the system is controllable, the control function given by (3.46) is an optimal
control in the weighted space defined by (1.1).
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3.2.6 Proposition If u € L2 _,([a,b]; RY) is a control function such that the solu-
tion of (3.42) satisfies y(b) = y, then

b

b
/ (b— 0 fu(t)[? dt < / (b— 1) u(t) P dt.

a

with equality if and only if u and T coincide almost everywhere on [a,b].

Proof. Let v := v —u. Since u and u both steer the solution from y, to 1y, from
(3.43) we have

b b b

/ O(t,b)B(t)v(t)dt = / O(t,b)B(t)u(t) dt — / O(t, b)B(t)a(t) dt

= (g — ¥(a,0)ya) = (o — ¥(a,b)ya) = 0.
This together with (3.46) implies

b b
@) | = /(b—t)o‘_1<ﬂ(t),v(t))dt:/(B(t)Tq)(t,b)Twa,v(t))dt
ab ’ b
= /(wa,CI)(t, b)B(t)v(t)) dt = (wa,/tb(t,b)B(t)v(t) dt) =0,

where w, = W,(a,b) " (y, — ¥(a,b)y,). On the other hand

JullZs, = I+ ol , = ik, + ol +2@ 00 .
Therefore,
b b b
Jo-otuwra= oo moPdes [6- o oPa,
which concludes the proof. O

3.2.7 Remark Having in mind Remark 3.2.4, and taking W, = W4, fora =a €
(3,1), the control function from the proof of Theorem 3.2.5 reduces to

(t) = B(t) ®(t,b) " Wala,b) " [yo — (a, b)yal,

gl

and it is an optimal control in the space L?([a,b]; RY).
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The next proposition states that for linear time-invariant systems with fractional
derivatives, as well as in the case with integer derivatives, the Kalman rank is a
necessary and sufficient condition for controllability. Using the sketch of the proof
given in [52, Th. 3], we obtain the following.

3.2.8 Proposition Linear time-invariant system

“Dry(t) = Ay(t) + Bu(t), t € [a,b]

y(a) = Ya, (348)

1s controllable if and only if matrices A and B satisfy
rank[B|AB|A%B|---|A"'B] = d.

Proof. First, recall that for the system (3.48), the associated state-transition ma-
trices are given by the Mittag-Leffler functions:

U(a,t) = E,(A(t —a)®) and ®(7,t) = (t — 7)* "B, o (At — 1)%). (3.49)

Furthermore, the controllability Gramian reduces to

W (a,b) — / (b— 1)1 By o (A(b — £)*) BB Ean(AT (b — £)%) dt. (3.50)

a

From Theorem 3.2.5, we have that it suffices to prove that the Kalman rank condition
is satisfied if and only if the Gramian (3.50) has inverse. We use the same arguments
as in the integer-derivative case.

(<) Suppose that (3.50) is singular matrix. Then, there exists w € R?\ {0} such

that
b

/(b — 1) N Eyo(A(b — t)*)B]* dt = w" W (a, b)w = 0. (3.51)
Denote by ¢ : [a,b] — RY the function given by ¢(t)

(3.51), and the fact that ¢ is continuous, imply ¢(t)
the change of variables z = (b — ¢)®. Then

= w'E, o(A(b —t)*)B. Now
0, t € [a,b]. Let us introduce

d(2) = wTE,q(A2)B = Z % =0, z€][0,(b—a)]. (3.52)

Taking derivative of (3.52) i—times, ¢ € {0,1,...,d — 1}, we obtain

wr'A'B=0, i=0,...,d—1. (3.53)
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Hence, the Kalman rank condition is not satisfied.

(=) We show that if the Kalman rank is not satisfied, then (3.50) is singular.
Let w € R?\ {0} be such that (3.53) holds. This, together with the Cayley-Hamilton
theorem implies

wrA'B =0, forevery i€ N. (3.54)

Therefore, the function ¢(t) = wTE, . (A(b — t)*)B = Z T‘??’% satisfies

o(t) =0, te€la,bl.

Hence wrW,(a,b)w = fab(b — ) Yo(t)|*dt = 0, which implies singularity of the

Gramian. O

We conclude this section with the analysis of the following system:
Diy(t) =Ag(t)y(t) + Bu(t), t€ [a,0]

(3.55)

y(a') = Ya,

where A € R¥? is a symmetric real matrix, B € R is a real matrix and g :
[a,b] — R is a continuous function and g(t) # 0, for almost every ¢ € [a, b].
First, we prove a fractional analog of Proposition 3.1.5.

3.2.9 Proposition System (3.55) is controllable if and only if the Kalman rank
condition is satisfied, i.e., rank[B|AB|A?B|---|A4"1B] = d.

Proof. (=) Suppose that the system is controllable and that A and B do not satisfy
the Kalman rank condition. Then, we can find a vector ¢ € R?\ {0} such that

gB=0,gAB=0,...,¢gA" B =0. (3.56)
Using the Cayley-Hamilton theorem and (3.56) we conclude that
qA*B =0, for every k € N. (3.57)

From controllability, it follows that for y, = 0 there exists a control function ug such
that the solution of the system satisfies y(b) = 0. Then, from the representation of
the solution (3.43), we have

b
0= y(b) = W(a, by, + / B (r, b) Buo () dr.
Therefore,

—VU(a,b)y, = /CID(T, b) Buo(T) dr = /ZA’“B(TIEOO‘Q(T))UO(T) dr. (3.58)
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Then, by multiplying (3.58) by ¢ and using (3.57), we obtain
—q¥(a,b)y, = 0. (3.59)

From the proof of Proposition 2.3.19 (i) we have that WU(a,b) is a regular matrix and
since y, was arbitrary, (3.59) implies ¢ = 0—a contradiction.
(<) Suppose that rank[B|AB|A%B|---|A%'B] = d and that the system (3.55) is
not controllable. Then Theorem 3.2.5 implies that W, (a, b) is singular. Hence, there
exists w € R?\ {0} such that wTW,(a,b)w = 0, which will lead to
wr®(t,0)B =0, for almost every t € [a, b]. (3.60)
Applying I, to (3.60), and using %irrgtlé’o‘cb(t, b) = I, *®(t,b)|,=p = I, we obtain
H

wT B = 0. Moreover, from ;D¢®(t,b) = Ag(t)®(t,b) and (3.60) it follows that

wr Ag(t)®(t,b)B =0, for almost every t € [a, b).
Since g(t) is continuous and g # 0 almost everywhere, we obtain w™ A®(¢,b)B = 0,
for almost every t € [a,b]. Again, using ;I; *®(t,b)|,=p = I, we get wTAB = 0,

By taking derivatives ;Df* of (3.60) subsequently k-times, and then consecutively
using g # 0, almost everywhere on [a, b], we get wT A*®(¢,b) B = 0, which together
with (I, *®(t,b)|—, = I implies that wT A*B = 0, for every k = 0,1,2,...,d—1. This
contradicts the Kalman rank condition. O

3.2.10 Remark (Diagonalization of Gramian matrix) Let us notice that using
Remark 2.3.18, and introducing notation B = UTB and z(t) = U'y(t), we can
reduce (3.55) to an equivalent system:

“Dex(t) = Dg(t)x(t) + Bu(t), t€ [a,b]
z(a) = Uly,.

Moreover, from the proof of Proposition 2.3.19 (i7), we have that ®(7,t) = UQ(7,t)UT
and Q(7,t) = ®p(7,t), with ®p(7,t) being the solution to

Dedp(1,t) = Dg(T)®p(7,t), 7€ (a,t), L *®p(r,t)— =1L

Hence, the controllability Gramians of (3.55) and (3.61), denoted by W, a(a,b) and
Wa.p(a,b), respectively, satisfy

(3.61)

Wa.a(a,b) = / (b—t)'®(t,b) BBT®(t,b)" dt

a

b
= / (b—t)'USH(t,b)U' BB U (t,b)TUT dt

a

= UWap(a,b)UT.
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3.2.2 Adjoint system and observability

In this section we consider the adjoint problem of (3.42) and the notion of observ-
ability. For fractional linear systems with constant coefficients, observability was
introduced in [52], where it was shown to be equivalent to the positive definiteness of
the observability Gramian matrix. Here we are going to take different approach and
introduce observability via the observability inequality. Furthermore, we are going
to adapt the results from Section 3.1.2 to the fractional setting.

We define the adjoint system of (3.42) by the following backward problem:

Dez(t) = At) 2(t), t € (a,b)

3.62
tI;_QZ(t”t:b = Zp. ( )

Having in mind Corollary 2.3.12, it follows that the solution of (3.62) is given by
z(t) = ®(t,b)T 2. Moreover, z satisfies the following properties:

e 2 € ACY([a,b]; RY) and

: - 1 -
lim (b 1)'~2(1) = gy (s =

(a)’
In particular, z € L'([a, b]; R?).
e 2 L2 (la,b);RY). Using Proposition 2.3.16 we get

b

/(b _ )Pt = /(b (b — ) 0Dt b) 2 dt

M;yz,,|2/(b— 1ot df =

a

ME|z|*(b — a)®
«

IN

e For o € (3,1), z € L*([a,b];R?). Again, Proposition 2.3.16 implies

b b
/|z(t)|2dt = /(b—t)2(a—1)|(b—t)l—“cb(t,b)Tz,,th
p M2 2 b 2a—1
S L
a_

a

In the next lemma, we present an auxiliary result.
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3.2.11 Lemma If w(t) is the solution of the Cauchy problem
o Diw(t) = A(t)w(t), w(a) = w,,
and z(t) the solution of the adjoint problem (3.62), then
(w(b), 2) — (Was 2a) = 0, (3.63)

where z, = tI})—O‘z(t)h:a.

Proof. For w(t) and z(t) we have that for every t € [a, b]

(e Dfw(t), (1)) = (A(t)w(t), 2(8)) = (w(t), A(t) =(t)) = (w(t), Dy =(t)).

Hence / (CDew(t), 2(t) dt — / (w(t), \DE=(1) dt, and (3.63) follows from (2.3). O

The next proposition explains why the definition of the adjoint problem given by
(3.62) is the natural one.

3.2.12 Proposition Let u € L2 ,([a,b]; RY), or u € L*°([a, b]; RY).

(i) If y : [a,b] — R? is the solution of the system (3.42), and z : |a,b] — R? is the
solution of (3.62), with z, € RY arbitrary, then

[t B 20) dt = (0(8). ) = s ), (.64

where z, = tI;’O‘z(t)]t:a.

(ii) Let yq,yp € R If u is such that for every z, € R? it holds

b

/ (u(t), BH) (1)) dt = (45, %) — (v 7a). (3.65)

a

where z(t) is solution of (3.62) and z, = 1, *2(t)|i=a, then the solution of
(3.42) satisfies y(b) = y».
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Proof. (i) Since y satisfies (3.42), we have

[ Bay e = [Bou.s0)

a

- / ©Dey(t), =(1)) dt — / (A(L)y(t), =(1)) dt
= [0yt~ [twie). A=) dr

Applying fractional integration by parts, given in Proposition 2.3, we obtain

b b
Jecoeater.0)de = [Gwte).psto) de+ (yie). k=)
Hence
[ B a0y it = [ (o) Dfa() = AW =) de (5(0).5) (s ), (3:6)

for z, = (1, 7“2(t)|t=a. Since, by assumption, z is a solution of the adjoint problem,
(3.66) reduces to (3.64).

(77) From (3.43), it follows that the value of the solution y(¢) at the end point is
given by

y(b) = U(a, b)ya + / O(t,b)B(t)u(t) dt.

Hence, using z(t) = ®(¢,b)" 2, we obtain

b b

/ (), B 2() dt — / (B D) B)u(t), 2) di = (y(b) — T(a, b)ya, 2).

a a

Furthermore, Lemma 3.2.11 implies (V(a, b)ya, 25) = (Ya, za), and we have

/ (ult), B () dt = (y(b), 2) — (Yr 20)-
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Thus, if (3.65) holds for every 2, € RY, then
(yp, z) = (y(b), z), for every z, € RY,

implying y(b) = yp. O

Hilbert uniqueness method for linear fractional control

Let R, be the set of all reachable states for problem (3.42), i.e., R, is a set of all
yp € R? such that there exists a control function u € L2 _([a, b]; RY) for which the
solution of (3.42) satisfies y(b) = .

Define the mapping £, : R? — R such that £, : 2, — y(b), where y : [a,b] — R?
is the solution of the Cauchy problem

aDy(t) = A()y(t) + B(Hu'(t),  y(a) = ya, (3.67)

with control function

w*(t) == (b— )" *B(t)T2(¢), (3.68)
and z(t) being the solution of the adjoint problem (3.62).

3.2.13 Theorem The mapping L, and the set of reachable states are related by
Ra = Lo(RY). (3.69)

Moreover, if y, = La(2) and if uy € L2 ([a,b]; RY) is a control which steers the
solution of (3.42) from y, to y, during the time interval |a,b], then

b b

/ (b— 1) (]2 dt < / (b— 1) us (1) dt,

a a

with equality if and only if u*(t) = uy(t), for almost every t € |a, b].

Proof. The inclusion £,(RY) C R,, follows from the definition of £,. For the other
direction, assume that y; € R, and let u; be the control which steers the solution
of (3.42) from y, to y; during the time interval [a, b].

Define the set U of all the maps u € L2 _,([a, b]; RY) given by

w:t (b—t)""*Bt) 2(t), t€a,b],

where z(t) is the solution of (3.62) for some z, € RY. Since z(t) = ®(t,b) 2, we
have

U={u:[a,b) = RY : u(t)=(b—-t)""Bt)T®(t,b)T 2, 2 R},
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which implies that U is of finite dimension. Hence, U/ is a closed subspace of
L% | ([a,b];RY). Denote by u} the orthogonal projection of u; on U. Then, for
every u € U it holds

b b

/(b — ) i (), u(t)) dt = /(b — ) Ny (t), u(t)) dt. (3.70)

a a

Let y* : [a,b] — R? be the solution of the Cauchy problem
SDIy(t) = At)y™(t) + B(t)ui(t), y'(a) = ya (3.71)
Then, from Proposition 3.2.12 (i) and (3.70), it follows that for every z, € R?
b

(0 28) — (or 2a) = / (il (), B() = (8)) dt

_ / (s (#), BT (1)) dt

= <y172b> - <ya7za>'
Hence (y*(b), ) = (y1, z), for every z, € R, implying that

y*(b) = y1. (3.72)
Therefore, uj also steers the solution from y, to y;, and since uj € U, there exists
zi € R such that ui(t) = (b—t)!*Bt)T®(¢,b)T2; = (b —t)'*B(t)T2*(t). Then,
by the definition of L, (3.71) and (3.72) we have
La(z) =y (b) = w1,

which concludes the proof of (3.69).

Finally, let y, = L,(z) and let u* be given by (3.67) and (3.68). Assume that
u; € L2_,([a,b]; RY) is a control function which steers the system (3.42) from y, to
yp during the time interval [a, b]. Again, using Proposition 3.2.12 (i), we obtain

b

/(b — ) N (t), u(t)) dt = /(b — ) Nuy (), u(t)) dt, for every u € U.

a
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Since, by definition, u* € U, it follows that u* is the orthogonal projection of u; on
U, which implies

b b b

/(b ey () dt = /(b e ()2 dt + /(b — Oy () — (1),
and we have proved the second statement. O

3.2.14 Remark Since for 3 < o < 1 the solution z of the adjoint problem (3.62)
belongs to L?([a,b];R?), in that case, the HUM can be applied in the L%-setting
(without weighted L?-spaces), to obtain the L?-optimal control function of the form

u*(t) = B(t)" 2(t).

Variational approach to linear fractional control
We start by introducing the notion of observability.

3.2.15 Definition System (3.62) is observable if there exists C' > 0 such that for
every z, € RY, solution of (3.62) satisfies

b
|z|* < C/(b — )BT 2(t)|* dt. (3.73)

3.2.16 Proposition Observability inequality (3.73) is equivalent to the following
unique continuation property

B(t)*z(t) =0, for almost every t € [a,b] = 2, =0. (3.74)

Proof. The implication (3.73) = (3.74) follows directly. To prove (3.74) = (3.73),
we define a mapping || - ||, : R? — [0, 00) such that for 2, € RY,

b

el i= ([ 0= 01 a0 ar)

a

with 2 being the solution of the adjoint system (3.62). Since B € L>([a, b]; R?) and
z e L3 ([a,b];RY) we have that |- ||, is well defined. Using z(t) = ®(¢,b)" 2, we get
that for every u € R, ||uzp||- = |il||2p]|-- Furthermore, the Minkowski inequality for
L?([a, b]; RY) provides the triangle inequality for || - ||,.. Hence, |- ||, is a seminorm on
R? and the assumption (3.74) implies that it is a norm. From the equivalence of all
norms on R? it follows that there exists a constant C' > 0 such that (3.73) holds. O

The next step is to show that controllability and observability conditions are
equivalent.
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3.2.17 Theorem System (3.42) is controllable if and only if the adjoint system
(3.62) is observable.

Proof. (<) Suppose (3.62) is observable and (3.42) is not controllable. Then the
controllability Gramian W,(a,b) is singular and there exists w € R?\ {0} such that
B(t)T®(t,b)"w = 0, for almost every t € [a, b].

Let Z = ®(t,b)Tw be the solution to the adjoint system with final condition
2, = w. Then we have B(t)Tz(t) = 0, for almost every t € [a,b] and z, = w # 0—a
contradiction with the observability.

(=) Suppose that (3.42) is controllable and that for every C' > 0 there exists
2z, € R? such that (3.73) does not hold. Then we can define a sequence of numbers
Cik — 0, k — 00, and vectors zy, such that, without loss of generality, |zx,| = 1 and

b
zwl? > Ce / (b— )| B (0P dt, k€N,

Since zx, is bounded sequence it has a convergent subsequence, which we do not
relabel. Then for z, := klim zkp We have |z,| = 1, and the solution z(t) of the adjoint
— 00

system with final condition z, can be obtained as a limit of the solutions z(t).
b

Now for solutions zj we have 0 < [(b—1)'"*|B(t)" 2 (t)]* dt < g-|21s|*. Letting

k — oo, we conclude that B(t)Tz(t) = 0, almost everywhere on |[a, b].
Controllability assumption and (3.64) imply that for y, = 0 and for every 1, € R?
there exists a control u such that

b

(Yb, 26) = /(U(t),B(t)Tz(t))dt.

a

Since B(t)T2(t) = 0 almost everywhere, it follows that (v, z;) = 0, for every .
Therefore, z, = 0, leading to a contradiction with |z| = 1. O

In the sequel we shall consider observability as a minimization problem. More
precisely, we shall show that observability inequality implies the coercivity of the
suitable quadratic functional, and that by minimizing the functional we obtain the
L?_,-optimal control.

For fixed initial and final states vy,, vy, € R?, we define the functional J : R* — R
by

b

Ie) =5 [0= 0 BOOP &~ ) + o) (T

a

where 2(t) is the solution of (3.62), and z, = (I, *2(t)|i=a-
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3.2.18 Theorem If system (3.42) is controllable (or equivalently (3.62) is observ-
able), then the functional J has a minimum and the control function which steers
the solution of (3.42) to the state y(b) =y, is given by

a(t) = (b—t)'*B(t)"4(t), (3.76)

where 2(t) is the solution of the adjoint problem with final state 1, “2(t)|imp = %
being the minimum point of J. Furthermore, the control given by (3.76) is a control
with minimum L2 -norm, i.e., if u € L2 ,([a,b];RY) is a control such that the
solution of the system (3.42) satisfies y(b) = ys, then

b b

/ (b— 1y a(t) [ dt < / (b— 1) u(t) P dt.

a a

with equality if and only if u and U coincide almost everywhere on [a,b].

Proof. Since J is continuous and convex, it suffices to show that it is coercive, i.e.,
that lim J(z,) = co. From (3.73) it follows that

|Z;)|—>OO
b
|2|* < C/(b — )Y B()T2(t) | dt.
Hence,
2 2
T 2 Btz 4 ) 2 B 2]+ 2,
and, applying the Cauchy-Schwartz inequality,
71) = 2 ) + 1m0
-_ 20 Y

Here the right hand side tends to +0o when |z,| — oo, implying that

lim J(z) = 0.
|2 |00

Let 2, be the point where J reaches its minimum. Then for every 2z, € R? it holds

lim J(Zt’b + hzb) — J(ﬁb>
h—0 h

= 0. (3.77)

Denote by 2(t) and z(t) solutions of the adjoint problem (3.62) with final conditions
7%= = 2 and (I} %2|i=p = 2, respectively. Since 2(t) = ®(t,b)T2, and 2(t) =
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®(t,b)T 2z, it follows that the solution z;, of equation (3.62) that satisfies condition
%2 |i=p = 2 + hzy is given by z;,(t) = 2(t) + hz(t). Hence, using (3.75) we have

b

1
Tt ha) = 5 [ (b= 01BN G+ ha) P dt — (ot )+ (ons Za+ h)

a
b

_ 1/<BT(b— 15 (3(0) 4+ he (1)), B (b — )5 (3() + ha (1)) dt

2

a

- <yb7 2b> - h<yb7 Zb) + <ya7 2a> + h<ya7 le>

b b
1 —a h? —o
= §/|BT(b—t)12 é(t)Ith++?/]BT(b—t)l2z(t)]th
b

1—

+ h/(BT(b—t) 2 5(t), BT (b — 1)'3° 2(¢) dt

a

- <yb7 2b> - h<yb7 Zb) + <ya7 £a> + h<ya7 Za>

. h? 1-a
= J(zb)+3/yBT(b—t) 2 2(1)|* dt — h{ys, 2) + P (Ya, Za)

a

1—

4 h/(BT(b—t) = 5(0), B (b — 1)5 (1)) dt.

Therefore

J(éb + th) — J(,%b)
h

b
h —a
= 5 [IBT =0 0P bt = ) + ()
b

(B 0= 00, B 0 - 5 20 e

a

Letting h — 0 and using (3.77) we obtain

b
/ (B&) (b — )7 2(t), B) (b — ) 2" 2(t)) dt + (Ya, 2a) — (Yo, 25) = 0. (3.78)

a

Since 2z, € R? was arbitrary, we have that the function a(t) = (b —t)!=*B(#)T2(¢)
satisfies (3.65), for every z,. Hence, Proposition 3.2.12 (i7) implies that the control
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steers the solution to y(b) = y,. The proof of L2 _,-optimality of @ follows the same
lines as the proof of the second statement from Theorem 3.2.13 O

3.2.19 Remark Comparing the results from Proposition 3.2.6, Theorem 3.2.13 and
Theorem 3.2.18, we conclude that

u(t) = u*(t) = a(t), for almost every t € [a,b].

Furthermore, from (3.78), we have that for every z, € R?

/(b — ) (B(6) @ (t,b)" 2, B(t) (t,b) " 2) dt + (Ya, 20) — (Yo, ) = 0.

Using the property (ya, zo) = (¥(a, b)ya, 25), from Lemma 3.2.11, we obtain

</(b — )1 7D (¢, b) B(t) B(t) @ (t,b)"dt 2, ) + (¥(a, b)ya, 2) — (Y, 2) = 0.

a

By noticing that the integral in the above equation is the controllability Gramian
matrix (3.44), we get

(Wola,b)2 + V(a,b)ys — s, ) = 0, for every z, € R

Hence W, (a, b)z,+ ¥ (a, b)y, —y» = 0, and we obtain the value of the minimum point
of J(2):
2y = Wala,b) Hyy — ¥(a, b)y,). (3.79)

Therefore, the optimal control @ from Theorem 3.2.18 reduces precisely to the control
u given by (3.46).

Theorem 3.2.18 provides several estimates of the control function .

3.2.20 Proposition The control function u given by (3.76) satisfies

(i) llallgz_, < VCyy — U(a,b)ya|, where C' is the observability constant from Def-
wnition 3.2.19.

(i) |||l < Mp||B||so|2s|, where Mg is the constant from Proposition 2.3.16.

Proof. (i) Theorem 3.2.18 and Proposition 3.2.12 imply

Jilfss, = [0= 0" BOTSOR &t = )~ a2a). (350)

a
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Furthermore, from Lemma 3.2.11 and (3.73) it follows
lall72 = (g — W(a, b)ya 26) < Iy — U(a,b)yall2e] < lyp — ¥(a,0)yalVOllilll 2.
After dividing by ||a[[,z_, we obtain the desired estimate.
(i) Follows directly from 2(t) = ®(¢,b)T 2, and Proposition 2.3.16. O
Let us illustrate the obtained results with one example.
3.2.21 Example Consider a control problem governed by the following system:
6 Dy (t) = tya(t),
6 Dfya(t) = uft).

Assume that we have initial state yo = (1, 1) and that for given time interval ¢ € [0, T]]
we need to find control function u : [0,7] — R which will steer the solution to
y(T) = (0,0). In (3.81) matrices A and B are the following

(3.81)

an=1g o] so=[7]

and the associated state-transition matrices are given by

U(0,t) = [ (1) @ ] and  ®(7,t) = [ ¢1(g’t) 2387 2 } ,
where ¢1(7,t) = t-n and ¢o(7,t) = a (t—71)** Mt + 7).

I(a) F'2a+1)
Now, the controllability Gramian is equal to

_ [  Alea Go(t, T)? ¢1(t, T)o(t,T)
Wa(0.1) = / (=) [¢1<t,T>¢2<t,T> b(t,T)? ]‘”

0
ClT3a+2 612T2a+1
012T2a+1 CQTa )

with constants

« 2
T 3M(2a+ 1) <1+ Satl (3a+1)(3a+2)>’
_ a+1
2 = T@rl2a+2)
1
Cy =

T(@)(a+1)
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It can be shown that for a € (0, 1),
Dy = det(W,(0,T)) = T*2(cicy — c25) > 0

hence, system (3.81) is controllable. Using representation of the L2 _,-optimal control
function (3.46), we obtain

u(t) =a (T —)*(t+T) + ag,

where
aT® CQTaJrl
- - Ta+1 o o —)
“ T Datl) (C” 2" T(a+2)
T2a+1 ClZTa+1
S i TO&“)‘
“2 = D.I() (c” Tat2)

3.2.22 Remark Note that for a special case of problem (3.55), given by

CDiy(t) = —Ag(t)y(t) + Bu(t), t € a,b],
y(a) = Ya,

where A € R¥™? is a symmetric positive semidefinite matrix and g : [a,b] — [0, 0)
is a continuous function, we have stronger estimates for matrices & and ¥. More
precisely, from Proposition 2.3.20 it follows that

(e, )] <1 and |[(t—7)"@(r, )] <1,

which will give us the following bounds for the solution of the adjoint problem and
the control function constructed as in the Theorem 3.2.18:

(b—1)'"2(t)] < [z and |a(t)] < ||Blll|2l, ¢ € [a,0].

3.2.23 Remark Here also we want to emphasize that in the case % < a < 1, the
extra term (b — ¢)'~® can be omitted from (3.73), (3.75) and (3.76). In that case,
the results from Theorem 3.2.17 and Theorem 3.2.18 remain valid, and we are able
to obtain the L?-optimal control function (t) = B(t)T2(t).

3.2.24 Remark Let us mention that the results presented in Section 3.1.3 can also
be applied for the system (3.42). Since the solution of the adjoint system (3.62) is
in the space L!([a,b];R?), we can replace observability inequality (3.30) by (3.38),
define the functional Jy, as in (3.37) and proceed in the same way as in the integer-
derivative case, to obtain the bang-bang control (3.41).
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Nonlinear Control

Nonlinear control theory is a research area of a great interest since many processes
modeled by dynamical systems have nonlinear nature. When dealing with nonlin-
earities, one does not have a general method for finding a solution or for proving its
existence, and in the most cases, is not able to find an analytical representation of
the solution or control function. That is one of the reasons why nonlinear control
problems are very challenging and require various mathematical skills.

This chapter is devoted to the analysis of nonlinear control problems given by

6 Diy(t) = — Af(y(t)y(t) + Bu(t), te[0,T]

y(0) =wo, y(T)=yr, (4.1)

where D¢ denotes the Caputo fractional derivative of order a € (0, 1], which for
a = 1 reduces to the classical first order derivative. We assume that, for system
(4.1), the following conditions hold

al) f:R%— (0,00) is a continuous function;

)
a2) A € R4 ig a real symmetric positive semidefinite matrix;
a3) B € RV is a real matrix;

)

(
(
(
(a4) A and B satisfy the Kalman rank condition: rank[B|AB|A%B|---|A%"'B] = d.

The motivation for the research of model (4.1) comes from a porous media equa-
tion, as well as from the models of population dynamics that describe the interactions
between the species which tend to avoid crowding. The PDE models of such inter-
actions were studied in [11, 59]. In [11] the space-time distribution of the species
was considered, and here we have a simpler case where we are interested in a global
density of species (it depends only on time). An example of an ODE model of this
type of system can be found in [19]. Non-positive definiteness of the matrix —A
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represents the dispersion tendency, while the function f determines the intensity of
dispersion (large f(y) implies faster dispersion). The matrix B limits our possibility
to influence the population densities, while u represents controlled “birth” or “death”
rate. We stress that a fundamental issue here is how to choose a source term (usu-
ally called the control) in modeling equations which would govern the system from
the given initial density to the prescribed final density. Finally, we note that the
fractional derivative models memory effect, which in this case could be influence of
the accumulated species.

The results presented in Section 4.1 are based on the ideas developed in [19],
while here slightly different methods are used, which are more suitable for systems
with fractional derivatives. The Section 4.2 contains original results from [34].

4.1 Controllability of a nonlinear system of ODEs

The year 1960 is considered to be the beginning of a “new era” or “modern era”
of control theory. That year the first IFAC (International Federation of Automatic
Control) Congress was held in Moscow. Furthermore, many crucial methods and
results in control theory were developed during the 1960s. Particularly, nonlinear
control became an important subject of research. The analysis of nonlinear control
problems started with works on stability: R. Kalman and J. Bertram reintroduced
the Lyapunov methods on stability into control theory context [39], E. Lorenz es-
tablished the basis of modern chaos theory, V. Popov presented new techniques for
absolute stability [58], etc. At the same time, from the aspect of optimal control, two
historical contributions were made by mathematicians L. Pontryagin (Pontryagin’s
maximum principle) and R. Bellman (dynamic programming, the Hamilton-Jacobi-
Bellman equation).

Over the last 60 years nonlinear control problems have been extensively studied
and there is a great amount of literature addressing these problems. Here we single
out some of the results, relevant to our problems.

For nonlinear control systems, the question of controllability has two distinct
aspects—Ilocal and global controllability. Local controllabilty is related to a fixed
state, more precisely, to an equilibrium point.

Consider an autonomous system

v = f(y,u), (4.2)

with y : [0,T] — R w : [0,7] — RY and f: R? x RY — RY. The point (y., u) is
called an equilibrium point of f if f(y., u.) = 0. Analyzing linearized system around

(Ye, ue) o o
Yy = 8_y<yea Ue)y + %(yevue)%
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and conditions for its controllability, one can obtain small-time local controllability
of (4.2) at (ye, u.). For more details see [17, Sec. 3.1.].

On the other hand, the question of global controllability is more complex and
there are no general criteria (necessary and sufficient conditions for controllability)
that can be applied for any nonlinear system. There are, however, many results for
some special classes of nonlinear systems. Here we mention two main approaches in
nonlinear control.

o Geometric approach. Using theory of Lie algebras, Lie groups and Lie brackets,
one can derive necessary and sufficient conditions for global controllability of
control systems given by

y' = folw) + Zuz‘fi(y),

where f; € C®(Q;RY), i = 0,...,N, and Q is a connected, nonempty open
subset of RY, see [36] and [17, Sec. 3.2. & 3.3.].

e Fized point approach. In the survey [5], the authors gave an overview of the
results related to applications of fixed point theorems to controllability of non-
linear systems. For an overview of more recent results we refer to [17, Sec.
3.5.], where, using fixed point theorem approach, the author proved global
controllability for the system

y' = A(t,y)y + B(t,y)u+ folt,y),

under assumptions: A € L°°((0,7) x RGR¥>4) B € L>((0,T) x R RV*4)
and f € L®((0,T) x R R?) (cf. [17, Th. 3.40.]). Furthermore, an interesting
result based on degree theory and homogeneity is given in [17, Th. 3.46.|, where
the author proved global controllability of the system

y = Ay + F(y) + Bu,
under a certain homogeneity condition of nonlinear term F' € C*(R¢; R?),

In this section we consider nonlinear control problem (4.1) with a = 1, i.e.,

y'(t)=—Af(y)y +Bu, te][0,T]

y(0) = o, y(T)=yr (43)

and assume that conditions (al)—(a4) are satisfied. Under these conditions, we shall
prove global controllability of nonlinear system (4.3) with unbounded dynamics (f
does not need to be uniformly bounded). Global controllability of this type of systems
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(in both deterministic and stochastic case) was studied in [19]. Here, we give a
different version of the proof. The main idea is the same—to consider linearization
of (4.3) given by

y(t)=—Af(v)y+ Bu, te[0,T]

¥(0) = 10, (4.4

where v € C([0,T]; R?), and prove the existence of a fixed point y = v, using the
Schauder fixed point theorem. The difference is in the construction of the solution
of a linearized problem.

To begin with, we introduce notation and derive a few auxiliary results. For every
v e C([0,T);RY), define constants

T
M, = max |f(v(t))|, K, :=max{1,M,}, and T,:=T — T (4.5)

te[ovT] v

4.1.1 Lemma Let f € C(R%(0,00)) and let {v,} be a sequence in C([0,T];R?)
which converges uniformly on [0,T)] to a function v € C([0,T];R?). Then {f ov,}
converges uniformly on [0,T] to fowv. Furthermore, M, , K,, and T, converge to
M,, K, and T,, respectively.

Proof. Since {v,} is a convergent sequence, it follows that it is bounded too, and
there exists K > 0 such that

max |[v(t)] < K and max |v,(t)| < K, for every n € N.
te[0,T) t€[0,T]

Let Bx = {x € R?: |x| < K}. Since f is continuous on R? and By is a compact
set, we have that f is uniformly continuous on Bg. For a given € > 0, let 6 > 0 be
such that

(Va,y € Bi)(|z —y| <0 = [f(x) = f(y)] <e).
By choosing ng such that for n > ny, n%é%%c] lun(t) — v(t)] < 9, we get
tel0,
n > ng = max |f(v,(t)) — f(v(t))] <e.
te[0,7

Since € was arbitrary, it follows that f o v, converges uniformly to f o v on [0,T].
Hence, M, = ||fouv,|lc = ||fov|lc = M,, n — oo, which further implies K, — K,
and T, — T, n — oo. O

Now, for every v, we construct the solution of (4.4) in a form

yi(t), 0<t<T, 0, 0<t<T,
w(t), T,<t<T us(t), T, <t<T
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where y;(t) is a restriction on [0, T,] of the solution to initial value problem

y(t)=—Af(v)y, tel0,T]

4.7
y(0) =vo, 47)
and ys(t) is a solution of the control problem
() =— A Bu, te (T, T
J(t)=~ Af()y+ Bu, 1€ (T, T] ",

y(Tv) :yl(Tv)7 y(T) =Y,

obtained with control function u(t) = us(t) given by (3.7), i.e., control with minimal
L*-norm. From Proposition 3.1.5 and assumptions (al)-(ad), it follows that the
system (4.8) is controllable for every v € C([0,T]; R?).

Denote by II, the state-transition matrix of the system (4.7). We have

t

—A [ f(v(s))ds
Mrt)=e 7Y% 0y e,
and solution y; is given by
yi(t) = IL,(0,t)yo, t €[0,T]. (4.9)

Further, denote by W, the controllability Gramian associated to control problem
(4.8), i.e.,
T
W, = W(T), T) = / ,(t, T) BB L (¢, T)" dt. (4.10)
T,

v

Then
u2(t) = BTHU(ta T>TWU_1(yT - Hv(Tva T)yl (Tv))7

and solution g, is given by

t

yQ(t) = Hv(Tmt)%(Ty) + /HU(T7 t)BUQ(T) dr.

Ty
By noticing that y,(7,) = I1,(0,T,)yo and IL,(7,,¢)I1,(0,7,) = IL,(0,¢), for any
t € [T, T], we can express uy and y, as given below:
us(t) = BT (¢, T)" W, (yr — 11,(0, T)yo), (4.11)
t

yo(t) = I1,(0, t)yo + /HU(T, t)Busg(T) dr. (4.12)

Ty
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Furthermore, from (4.6), (4.9) and (4.12), we have that

y(t) =1TL,(0, t)yo + yp(t), € [0, 7], (4.13)

where
0<t<T,

‘
f o(T,t)Bug(T)dr, T,<t<T’
T,

4.1.2 Lemma Let v € C([0,T]; Rd There exist constants X > 0, ¢, > 0 and
C, > 0, not depending on v such that

(i) e XMT <L (7, t)|| <1, for every 0 <7 <t <T;

(ii) W < 22

— Cw )

(i17) |ua(t)| < K,C., for everyt € [T,,T].

Proof. (i) Since A is symmetric and positive semidefinite, from Remark 2.3.18 we
have A = UDUT, where D = diag()\1,...,\g), A > 0, and U is an orthogonal
matrix. Hence,

I, (7,t) = UD,(1,t)U",
where

D,(7,t) = diag| e

t
( =1 [ f(v(s))ds
T yees€

t
=Aa [ f(v(s)) dS)

Using 0 < f(v(s)) < M,, for every s € [0,7], and taking A = max Ai, we get that
for every i = 1,...,d it holds o

t
=i [ f(v(s)) ds
e MET <o 7y <1,
which in turn implies desired estimate for I1,(7,t).
(74) Since W, is nonsingular, we can determine the norm of its inverse in the
1
form ||[W, || = =, where s = min |[W,z| and S9! = {x € R?: |z| = 1}. For any
s z€S
x € S9! we have

W,x| > |:cTan;\:‘ / 2 11,(t, T)BB 1L, (t,T)  x dt

Ty
T T T
—A [ f(v(s))ds
- /|xTHv(t,T)B]2dt:/|mTe { B dt.
Ty Ty
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Introducing change of variables 7 = K, (T —t) and £ = K,(T — s), and denoting
~ _A [ LT/ g
0

I,(r,T) =€ ! , the above inequality reduces to

T
1 -
|Wox| > ?/MTHU(T,T)BFCZT. (4.14)
! 0

From the proof of part (i), we have I1,(7,T) = UD,(r,T)U", where D,(r,T) =
_)\ifT f(”(T;{§/Kv)) df

diag(71(7), ... () and i(r) = @ i=1..d
From the definition of K, and assumption (al), it follows

0< f(;’((')) <1, on [0,7],

(2

and we have uniform boundedness (with respect to both v and 7) of p;(7):

0<e<p(r)<1, 1€][0,T)

Therefore, there exists a constant ¢,, > 0 (independent of v), such that

T
/ L, (7, T)BP dr > cu,

0

and (4.14) implies

Cw
in [Wyx| > —.
L Werl 2 3
Hence, [|[W, ]| < &=

(t3i) Let b = max{|b;;| :i=1,...,d, j=1,...,N}. From (i) and (ii), we have
that control function given by (4.11) satisfies

K,
[ua()] < 0——(lyr| + lyo]) = KoCu, ¢ € [T, T,

w

with O, = Ylyrl+lvl ]

Cw

Now, we are able to prove controllability of our nonlinear problem.

4.1.3 Theorem Assume that (al)—(a4) hold. Then, for any T > 0 and yo, yr € RY,
there exists u € L*([0, T];RY) such that the solution of (4.3) satisfies y(T) = yr.
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Proof. Define the mapping 7 : C([0,T];R?) — C([0,T];RY) which every v €
C([0,T];R?) maps to the solution y(t) of linear control problem (4.4), given by
(4.13) and constructed as described above.

T is continuous. Assume that {v,} is a sequence in C([0,T];R?) which con-
verges uniformly to a function v € C([0, T]; R?). Then {v,} is bounded in C([0, T]; R%),
and continuity of f implies the existence of a constant K > 1 such that

max |f(v(t))] < K and trer%g% |f(vn(t))] < K, mneN. (4.15)

te[0,T)

Let y = T (v) and y, = T (v,,), n € N. Let us show that y, converges uniformly to y
on [0,7]. From (4.13) we have

< — . .
e lyn(t) — (1) e 1L, (0, t)yo — 110(07t)yo|-+-;gﬁ;§]lypﬂ1(t) yp(t)]. (4.16)

From continuous dependence of the solution of initial value problem (4.7), with
respect to the coefficients v,, we get that the first term on the right hand side of
(4.16) tends to 0, when n — co. More precisely, for any £, > 0, there exists n; € N
such that for n > n; it holds

max |11, (0,t)yo — I1,(0, t)yo| < &1. (4.17)
t€[0,T

Now we consider second term in (4.16). Since T, — T, n — oo, for every 6 > 0,
we can find ng € N such that T,,, € (T, — 9, T, +6), for n > ng. Then, for n > ng we
have

0, te0,T, - ]

R, (1), te(T,—6,T,+0)
Ypn () —1p(t) , t

f IL,, (7, t)BuZn(T) dr — f II,(7,t)Bug(r) dr, te€ [T, +6,T]

Ton, T,

where, if T, < T,, the function R, (t) is given by

0, T,—6<t<T,
t
f an (7—7 t)Bu2,n(T) dT» Tvn <t <T,
Rn(t) - T"Un

¢ ¢
f I, (7,t) Bug, (1) dT — f I, (7, t)Buy(r)dr, T,<t<T,+46

,Tﬂn TU
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and similarly, if T, < T, _,

(0, T,-0<t<T,
¢
f HU(T’ t)BUQ,(T> dT? Tv <t S Tvn
Rn(t) =T
¢ ¢
f I, (7,t) Bug,, (1) dT — f II,(7,t)Bug(r)dr, T, <t<T,+9§
T, 7,
\

t t
In both cases, for integrals [ IL, (7,¢)Bug,(7)dr and [ IL,(7,¢)Bus(7)dr, from
Tvn Ty
Lemma 4.1.2 and (4.15) we get

t t
| [ 0B dr] < [ IOl () dr
Tvn Tvn

< |[B[|C.K(t = T,,)

< ||B||C.K0
Thus, on [T, — 6, T, + 6] we have
g max Ypn () — yp(t)| = g max | R (t)] < 2| B Cu K. (4.18)
Fort e [T, + 6,7
t t
Yon(t) — () = / M, (v, ) Bugn(7) dr — / (7, £) Bus () dr
T, T,
Ty+9 Ty+0
= / I, (7,t) Bug,, (1) dT — / I1,(7,t) Buy(7) dr
T’un T’U

t

+ / <an (T, t)BuZn(T) — IL, (T, t)Bu2(7)> dr.
Ty+6

Hence, using uniform boundedness of II,, and us,, we get

hlt) = 3p(0)] S 2UBICLKS + [ [0 () Buas () = Il ) Bus(r)| dr. (419)

Tv+90
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Now, from continuous dependence on coefficients, we have that IL, (7,t) converges
uniformly to II,(7,¢) on [0,7] x [0,7]. Moreover, from definition of the Gramian
W, (4.10), and Lemma 4.1.1, it follows W, — W,, n — co.

Let us denote by sy, and W, the extensions of uy, and wug, on [0,7]. More
precisely, s, and Uy are given by (4.11), with ¢ € [0,7]. Then II,, (7, t) Bus(7)
converges uniformly to IT,(7, t) Buy(7) on [0, T]?. Hence, for every 5 > 0 there exists
ns € N such that for n > ns it holds

max

i [T, (7. 1) Bt (7) = TL(r t)Bﬂg(T)‘ < &,
07 2

Therefore, for n > max{ng, n2} we have

max |1, (7,t) Bug,(7) — I, (T, t)BUQ(T)‘ < &9.

[Ty+6,T)2

and (4.19) implies

_ < ’ . 4.20
0 [(t) = (8)] < 2| BCLS + T, (420)

Summarizing all the results, (4.16), (4.17), (4.18) and (4.20), we obtain that for
any € > 0, by taking e, 5 and § sufficiently small, there exists n* = max{ng, ny,no}
such that

>nt = n() —y(t)] < e,
n>n tg%%\y() y(t)] <e

which concludes the proof of continuity for 7.
Now we move to the compactness. First, let us derive estimates of the solutions.
From Lemma 4.1.2, we get

91 ()] = [T, (0, ol < |yol, ¢ €0, T2), (4.21)

and for t € [T, T] we have

t

|m@\:|mwwm+/m@w&MMﬂ

Ty

t
< !yo|+/HHv(T7t)|HBu(T)\dTS |yo| + bCLK,(T = T,)
Ty
Yol + bC,T
= C,.

Hence, for every ¢ € [0, 7] it holds
ly(t)| < C,. (4.22)
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T is compact. Let V be a bounded set in C ([0, T]; R?). Since f is continuous,
there exists K > 1 such that, for every v € V, r%a% |f(v(t))] < K, further implying
te|0,

K, < K. We need to prove that Y := T (V) is relatively compact set. To that end,
let {y,} be a sequence in Y. For every n € N, denote by v,, the function from V' such
that 7 (v,) = y,. From (4.22) we have that {y,} is uniformly bounded. Furthermore,
from (4.7) and (4.21), it follows

Y1 (O] < NJAIKyol, ¢ € [0, T,]. (4.23)
Similarly, from (4.8), (4.22) and Lemma 4.1.2 (4i7), we get
Y2 (O] < IAIKC, + [ BI|CLE, < ([AICy + IBIIC)EK,  te(T,T).  (4.24)

Therefore, the derivatives y/ (¢) are also uniformly bounded, implying that {y,} is
equicontinuous sequence. Hence, the Arzela-Ascoli theorem implies that {y,} has a
convergent subsequence, which concludes the proof of compactness.

Uniform boundedness of the solution (4.22) also implies that the set

{ve 00, T];RY) : v =wT (v), we [0,1]}

is bounded.

Therefore, T satisfies conditions of the Leray-Schauder fixed point theorem, and
we have the existence of the fixed point y* = v*, which is the desired solution of
nonlinear control problem (4.3). O

Let us note that analog results can be obtained for more general class of nonlinear
control problems, given by

y'(t) == Alt,y)y + B(t,y)u, te]0,T]
y(0) = yo, y(T) = yr, (4.25)

if they satisfy the following conditions:

(A1) A:[0,7] x R — R4 ig a symmetric, positive semidefinite and continuous
matrix function;

(A2) B :[0,T] x RY — R™¥ is an essentially bounded matrix function, i.e., B €
L=([0,T] x R ROV);

(A3) for every v € C([0,T];R%), T} € (0,T) and y; € R%, controllability Gramian of
a linearized problem

y'(t)= — A(t,v)y + B(t,v)u, te[T,T)|
y(I) =y, y(T) =yr,
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is a regular matrix, i.e.,
T
W(TLT) = [ T T)B( o) Bt o) T, 7)" de
T

has an inverse.

4.1.4 Remark Let us mention that the construction of the solution of linearized
problem (4.4) can also be performed in the following way:

choose K, = max{2, M,} and let T} = Klv and T2 =T — Klv;

find the control u; , which will steer the solution of (4.4) from y, to y(T)}) = 0,
during the time interval [0, T)}];

let y =u=0on [T},T;

v TV

find the control us, which will steer the solution of (4.4) from 0 to y(T") = yr,
during the time interval [T, T).

*

Then, proceeding as in Theorem 4.1.3, we can obtain a fixed point, y* = v*, and

desired control function and solution will be in the form:

ures (), 0<t<Ty n(t), 0<t<T,
u(t) =<0, TL<t<TZ%, y(t)=x0, Ty <t<T2.
U2 v+ (t)7 TUQ* <t<T y2<t)7 TU2* <t<T

4.2 Controllability of a nonlinear system of FDEs

The analysis of nonlinear control problems with fractional derivatives started rel-
atively recently, and, in the beginning, it was motivated by specific application-
oriented problems. Over the last 20 years there have been an increase in the research
of fractional nonlinear control problems, from both application and theoretical as-
pect. Several authors considered problems governed by fractional semi-linear systems
of the form

SDy(t) = Ay + Bu+ f(t,y,u), y(0)=yo, t€0,T], (4.26)

and, in the sequel, we single out some of the most relevant results related to the
question of controllability.

e In [9], the authors proved global controllability of (4.26), under assumptions

t
that f:[0,7] x R? x RY — R? is continuous and  lim G 750] = 0.
a)=o  |(y, w)]
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e In [61], the question of the existence of a mild solution and approximate con-
trollability was considered. Further, under assumptions: f(t,y,u) = f(t,y) is
continuous on [0, 7] x R? and uniformly bounded, the results on approximate
controllability of (4.26) were obtained.

e In [28|, the authors proved global controllability of (4.26), with nonlinear term
f(t,y,u) = f(t,y) satisfying growth condition | f(¢,y)| < d(t)+n|y|, and mono-
tonicity condition (f(t,z) — f(t,y),z —y) <O.

Furthermore, in 7], the authors considered fractional nonlinear control problems
with the Caputo derivative of order 1 < a0 < 2.

Alongside the question of controllability, the question of optimization for nonlin-
ear fractional systems was analyzed, as well. In the papers [10, 43] one can find an
overview of the results in fractional optimal control, in which the fractional analog
of the Pontryagin maximum principle is stated and applied.

In this section our goal is to prove controllability of nonlinear control problem
(4.1), with the Caputo fractional derivative of order o € (0, 1):

§Dy(t) = — Af(y)y + Bu, t€0,T]
y(0) =y, y(T)=yr. (4.27)

Mainly, the idea is to use the same procedure as in the integer-derivative case, i.e., to
consider linearized problem and prove the existence of a fixed point. As we shall see,
for the systems with fractional derivatives, the construction of the piecewise solution
is more complex (than in the integer-derivative case) since, it requires to take into
consideration the memory imposed by the fractional derivative.

Assume that the matrices A and B satisfy assumptions (a2)—(a4), and for the
function f suppose that the following modification of (al) holds

(al) f:R? — (0,00) is a continuous function and F : R? — R, given by F(y) =
f(y)y, is continuously differentiable on R

First, let us denote by z the solution of the nonlinear initial value problem
SDOz(t) = —Af(2)z, t€0,T], =2(0)=uyp. (4.28)
From Theorem 2.3.22 we have: z € C([0,T]; R%) N C((0,T]; RY),
12(8)] < Jyol (4.29)
and there exists K, > 0 such that for every t € (0, 7] it holds

[t (1) < K. (4.30)
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Next, for every v € C([0, T]; R?) we define constants
l T
M, = max [[(o(1)]. K, = (max{l, Mv}> and T,:=T— 7= (43)

Note that we have K, such that

max |f(v(t))] < K. (4.32)

te[0,T] -

Now, we construct the solution y in the following way: first, we let the system (4.27)
to be “uncontrolled”; i.e., let u = 0, up to the time T;, € (0,7), and then consider
linearized control problem
6Dfy(t) = — Af(v)y + Bu, telT,,T]
y(T) = 2(10),  y(T) = yr,

and find its solution on [T, T]. More precisely, for every v € C([0,T]; R?) we define
functions

0, 0<t<T, 0, 0<t<T,
y(t) = (), - and  u(t) = : (4.34)
wa(t), T,<t<T us(t), T,<t<T

(4.33)

where z is a restriction on [0,7,] of the solution of (4.28), and y, and uy satisfy
linear control problem (4.33). Let us notice that, although in (4.33) we look for the
solution on the interval [T, T], the derivative D&y takes into account the values of
y from the starting point ¢ = 0. More precisely, having in mind (4.34), we have that
for t € (T, T

N S A O NP S O L[ )
o Diy(t) = T(1—a) 0/ =~ T a) 0/ (t—s)adS+F(1—a)T/ s
By introducing notation
B 1 i 2'(s)
hv(t)_r(l_a)o/<t_s)ads, te (T, T), (4.35)
we get
" 6Dy (t) = hy(t) + £, Dfya(t), (4.36)

and transform equation (4.33) into

£D7y(t) = — Af(v(t)y(t) + Bu(t) = ho(t), te€ (T,,T],

y(T,) = 2(T,), y(T)=yr. (4.37)
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Then, we divide (4.37) into two problems and find solution y, in the form y» = y,+ye,
where y,, solves

TD7Yp(t) = — Af(u(t)yp(t) — ho(t), t € (T, T,

uo(T) = 0, (4.38)
and y. and uy are solutions to
G DRt) = — AF((O)ylt) + Buslt), € (1,7, w39)
Ye(To) = 2(T0) = Yeo,  Ye(T) = yr — Yp(T) = ye,r-
Notice that from (4.29) we have
[Yeol < |yol- (4.40)

Denote by ¥, and ®, the state-transition matrices associated with system (4.39).
According to (2.15), the solution of (4.38) is given by

t

Yp(t) = —/<I>v(7', t)hy(T)dT. (4.41)

Ty
Using (4.30), we get that the function h, given by (4.35) satisfies:

Ty

2( 1 F st (s)]
(B = I'(l—«) / t—s F(l—a) sl= a(t—s)ads
KZ a KZ / a—1 —
S F(l——a)o/s (t-S) dSSmO/S (t—S) dS.

S . . .
Introducing the change of variables £ = S in the above integral, we obtain

1

[eta- g -

0

K.

mB(a, l—a)=KJTI(a). (4.42)

1) €

Now, (4.41), (4.42) and Proposition 2.3.20 (ii) imply

(0 < [ (=7l (r)ldr < K.Dla / )" dr < KoD(0) . (4.43)
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Hence, for the final state y.r figuring in (4.39), we have

K.D(a)T®
yer| < lyr| + % =: Or (4.44)

For the solution y., we use properties from Section 3.2, and define y. as the
solution corresponding to the L2 ,-optimal control uy given by (3.46), i.e.,

us(t) = (T = 1) "B 0, (6, T) W, Hyr — W (T, T)2(T,),  (4.45)

where W, , is the controllability Gramian associated with control problem (4.39):
T
Waw = WanolT,, T) = /(T — )@, (t, T) BB ®,(t, T)" dt.
Ty

Further, the solution y. is given by

t

Ye(t) = Uo(Ty, £)yepo + / ®, (7, ) Buy(7) dr. (4.46)

Ty

Let us prove some auxiliary results related to Gramian and state-transition ma-
trices of linearized problem.

4.2.1 Lemma Let v € C([0,T]);R?). There exist constants X > 0, ¢, > 0 and
C. > 0, not depending on v such that:

(i) 19o(To, )| < 1, for every t € [T, T1;

(11) Eoo(=AM,(t —71)%) < ||Pu(7,t)|| < 1, for every T, <7 <t <T;

KOl
(iii) [Woull < —;
’ c

w

(iv) the control function given by (4.45) satisfies |us(t)| < C, K2, for every t €
[T,,T).

Proof. Let A = max{\,...,\s}. Properties (i) and (ii) follow from Proposition
2.3.20.

(111) Since we know that W, is nonsingular, we can define |[W, || = %, where
§ = min |Wa.z|. Using Remark 3.2.10, we get that for every z € S¢1
xeSi—

Wz > |2 Wz = |27 UW,, pU' x|,
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Since U is orthogonal matrix, we have {xTU : z € S4°1} = S9-1. Therefore,

min |[W,,z| > min \xTWam’Dx]

reSd—1 reSd—1
T
~ min / (T — )1=027Q, (. T)BBTQ, (+, T) "z dt
resd-1
E T’U
T
~ i / (T — )= Q, (¢, T) B dt,
reSd-1
T,

where Q,(t,T) = diag(qi(t), ..., qa(t)) (cf. proof of Proposition 2.3.19 and Remark
3.2.10), with element ¢;(¢) being the solution of

DFa(t) = =Xif (v®)ai(t), t€ [T, T], Iy *a(t)l=r = 1.
Using comparison principle, as in the proof of Proposition 2.3.19, we derive
Epo(=NM,(T —)*) < (T —t)'""q;(t) <1, te[L,T).

Furthermore, from (4.31), we have

[e7

T
M(T = )* < M(T = T,)* = M7 < T

v

Hence, e, := Eq o —AT?*) < Eq o=\ M, (T —t)*), and we obtain uniform bounded-
ness (with respect to both v and t) of ¢;(¢):

0<eq < (T—1)"t) <1. (4.47)
Now, we have
T
. . a—11,.T 1-a (2
xgé'ldrll ‘Wa,vx’ > xg;ldrll /(T - t) |$ (T - t) Qv(taT)B’ dta
TU

and from (4.47), it follows that there exists a constant ¢; > 0, ¢; = ¢(U, e, B)
(independent on v), such that

T T
~ T
i T —t)* a2 (T — )" Q. (t, T)B|* dt > /T—t“‘ldtzcl .
min, [0 =0T 0 QU TIBR ez e [ (7 op = O
T, Ty

Furthermore, the constant ¢; is strictly greater than 0 since the assumptions (al)’,
(a2)—(a4) imply positive definiteness of both W, , and W, , p (cf. Proposition 3.2.9
and Remark 3.2.3).
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o @ .
Denoting by ¢, = Clg , we obtain
) c
min |[W,z| > —.
reSd—1 K«

v

Hence, ||[W, ]| < 2.

w

(1v) From (4.45), (i) — (i) and (4.29) we get
us () < (IBHINT =)' =@ (. T) Wl (lyr| + 19 (T5, T)[(T2)])
1B (lyr| + lyol)

Cuw

<
= C.Ky,
with C, = 1E-1vrltvl). .

Cw

Now, we move to controllability of our nonlinear problem.

4.2.2 Theorem Assume that (a1)’ and (a2)-(a4) hold. Then, for any T > 0 and
Yo, yr € RY, there existsu € L2 _ ([0, T]; RY) such that the solution of (4.27) satisfies

y(T) = Yr.

Proof. Define the mapping 7, : C([0,T];R?) — C([0,T];R?) which every v €
C([0,T); R?) maps to the solution y given by (4.34), and constructed as described
above.

First, let us prove that the solutions y are uniformly bounded, independently on

From (4.46), Lemma 4.2.1 and (4.40) we have that for every t € [T, T

t

e = 90T t)yeo + / &, (r, 1) Bu(r) dr|

Ty
t

< lwol+ / (t — 1)t = 7)1 B, (7, ||| Bu(r)| dr

Ty
t

< ool + IBICLE [ (= rptar

Ty

T—-1T,)“
< Jyol + | BlC Ko T

ol IBICES (T
= 1% o K,

g IBICT
0 o .
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Furthermore, using (4.43), we get

Bl|C, T K,I'(a)T*
2] < )]+ Ip(0)] < foo] + LDNCT"  HOTE )
Since on [0, T,] we have |y(t)| = |z(t)| < |yo| < Cy, we conclude that
ly( < Cy, te[0,T]. (4.48)

Now we are able to show that 7, satisfies conditions of the Leray-Schauder fixed
point theorem.

7. is compact. Let V be a bounded set in C([0, T]; RY). Since f is continuous,
there exists K > 1 such that, for every v € V,

max |f(v(t))] < K* and max f(z) < K“. (4.49)

te[0,7] l21<yo
Then, (4.31) implies K, < K. For the compactness of T, it suffices to prove that
Y :=T,(V) is relatively compact set. To that end, let {y,} be a sequence in Y. For
every n € N, denote by v, the function from V' such that 7,(v,) = y,,. From (4.48)
we have that {y,} is uniformly bounded. Furthermore, for every n, the solution y,, is
equal to z on [0,T,], i.e., y, satisfies (4.28) on [0, 7,]. Hence, from (4.49) and (4.29)
we obtain

6 DFya(t)] = | = Af(2)2] < | AIK[yol, ¢ € [0, T,). (4.50)
On the interval (T, T we have that y,(t) satisfies

thayn(t) = _Af(vn)yn + Bu2,n-
Then, using (4.49), (4.48) and Lemma 4.2.1 (iv), we get

6D yn(t)] < [AIKCy + | BIC.KY < (AIC, + | BIIC)K® =: Ca,  t € (T, T).
(4.51)
Therefore, (4.50) and (4.51) imply that the sequence of derivatives {D%y,(t), n €
N, is bounded on (0,7), independently on v. Note here that D%y, (t) may not
be continuous at T,. Nonetheless, sup |$D%y,(t)| < C,, for every n € N, and
te(0,T)
conditions of Lemma 2.3.21 are satisfied. Hence, {y,} is uniformly bounded and
equicontinuous sequence in C'([0, T]; R?), and by the Arzela-Ascoli theorem it follows
that {y,} has a convergent subsequence. This concludes the proof of compactness.
7. is continuous. Assume that {v,} is a sequence in C([0,T];R?) which
converges uniformly to a function v € C([0,T];R%). Then {v,} is bounded in
C([0,T];R?), and compactness of T, implies that the sequence y, = T.(v,) has
a convergent subsequence y,, . Let y = kh_g)lo Yn,- Now, from the construction of

the solutions y,,, , assumption that v, — ¥ uniformly on [0,7], and Lemma 4.1.1, it
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follows that y coincides with the solution 7, obtained for v = v. Hence, y,, converges
to y = Ta ().

Furthermore, uniform boundedness of the solutions (4.48) implies that the set

{ve C([0,T);RY : v =wTa(v), we [0,1]}

is bounded.
Thus, by the Leray-Schauder theorem, it follows that 7, has a fixed point y* = v*,
which is a desired solution of nonlinear control problem (4.27). 0

4.2.3 Remark Let us mention that the construction given in Remark 4.1.4 can not
be applied in the fractional setting. Namely, in the fractional case, when the system
is driven to zero and there is no action on the system (the control is equal to 0), the
state of the system does not rest. This occurs due to the memory embedded in the
fractional derivative. For example, consider a linear time-invariant system

SDYy(t) = Ay(t) + Bu(t), t>0, (4.52)

and suppose that u is the control which steers the solution of the system from initial
state y(0) = yo to the final state y(7T') = 0, " > 0. Now, if we let y(t) = u(t) = 0,
t > T, the equation (4.52) is no longer satisfied, since the derivative at ¢ > T depends
on all the accumulated values of y from [0,¢]. That is why we can not simply insert
a zero-interval in the solution, as it is possible in the integer derivative case. This
property of the fractional in time systems, that they can not achieve null-equilibrium
controllability, was studied in [49].



Chapter 5

Conclusion

The main contributions of this thesis are divided into three parts. The first part
concerns theory of fractional differential equations (FDEs), or, more precisely, sys-
tems of FDEs. In Section 2.3 an overview of the recently obtained results regarding
the existence, uniqueness and analytical representation of the solution to the sys-
tem of FDEs was presented, with a special attention paid to the properties of the
state-transition matrices.

The second contribution is related to the theory developed in [33], where linear
fractional time-varying control problems with the Caputo derivative were examined
and the classical linear control theory was adapted and applied to the fractional
setting. Specifically, the equivalent conditions for controllability were established,
and the methods for finding an optimal control in the weighted L? space (systems
of order a € (0, 3]), or classical L? space (systems of order a € (3, 1)) were derived.
These results are given in Section 3.2. Since the linear time-varying control problems
with fractional derivatives have been studied marginally, the obtained results present
one approach to general analysis of this class of systems.

The third part concerns nonlinear control problems (4.3) and (4.27), for which, in
Chapter 4, the sufficient conditions for controllability were stated. The main results,
given in Theorem 4.1.3 and Theorem 4.2.2, are based on the linearization of the
problem and application of the Leray-Schauder fixed point theorem. Furthermore,
in order to obtain uniform boundedness of the solution of the associated linearized
problem, a novel method was used, which consists of the compression of the interval in
which the control acts on the state of the system. In future, it would be interesting to
consider application of this idea to different types of control problems with dissipative
dynamics.
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Osaj Obpaszay uunu cacmasHu 0eo OO0KMoOpcKe oucepmayuje, O0OHOCHO
OOKMOPCKO2 YMEeMHUUKO2 npojekma Koju ce opanu Ha Ynusepzumemy y Hogom
Caoy. Ilonywen Obpazay ykopuuumu uza mexcma OOKmMoOpcKe oucepmayuje,
O0OHOCHO OOKMOPCKO2 YMEMHUYKO2 NPOjeKmd.

[Inan TpeTmaHna nojaraka

Ha3zuB npojexra/ucrpakuBama

Henuneapuu npo0ieMu ynpasisama ca U 06e3 GpakiuoHUX U3BOJA

Ha3uB MHCTHUTYLHje/MHCTUTYIHja Yy OKBHPY KOjHX Ce CIIPOBOIH HCTPAKMBAHH€

[IpupoaHo-mMaTeMaTiuku Gakynret, YauBep3uret y Hosom Cany

Ha3uB nporpamMa y 0OKBHpPY KOI ce peajin3yje HCTPAKUBaH-€

1. Onuc nmogaraka

1.1 Bpcra cTynuje

YV 060j cmyouju nucy npuxynmanu nooayu.

2. [Ipukymbame nogaTaka

3. TpermaHn noxaTtaka u mpareha qokymeHTanmja

4. be30eIHOCT MOAATAKA M 3aIITHUTA MOBEP/LUBUX HHPOpPMaLHMja

5. locTynmHoOCT mogaTaKa
6. Yiiore u 0AroBOPHOCT

Harmonanuau oprtai 0TBOpeHe Hayke — Open.ac.rs
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