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Abstract

In numerous optimization problems originating from real-world
and scientific applications, we often face nonsmoothness. A large num-
ber of problems belong to this class, from models of natural phenom-
ena that exhibit sudden changes, shape optimization, to hinge loss
functions in machine learning and deep neural networks. In practice,
solving a nonsmooth convex problem tends to be more challenging,
usually more difficult and costly than a smooth one.

The aim of this thesis is the formulation and theoretical analysis
of Newton-type algorithms for solving nonsmooth convex stochastic
optimization problems. The optimization problems with the objective
function given in the form of a mathematical expectation without
differentiability assumption of the function are considered.

The Sample Average Approximation (SAA) is used to estimate
the objective function. As the accuracy of the SAA objective func-
tions and its derivatives is naturally proportional to the computational
costs – higher precision implies larger costs in general, it is important
to design an efficient balance between accuracy and costs. Therefore,
the main focus of this thesis is the development of adaptive sample
size control algorithms in a nonsmooth environment, with particular
attention given to the control of the accuracy and selection of search
directions. Several options are investigated for the search direction,
while the accuracy control involves cheaper objective function approx-
imations (with looser accuracy) during the initial stages of the process
to save computational effort. This approach aims to conserve compu-
tational resources, reserving the deployment of high-accuracy objec-
tive function approximations for the final stages of the optimization
process. A detailed description of the proposed methods is presented
in Chapter 5 and 6. Also, the theoretical properties of the numeri-
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cal procedures are analyzed, i.e., their convergence is proved, and the
complexity of the developed methods is studied. In addition to the
theoretical framework, the successful practical implementation of the
given algorithms is presented. It is shown that the proposed methods
are more efficient in practical application compared to the existing
methods from the literature.

Chapter 1 of this thesis serves as a foundation for the subsequent
chapters by providing the necessary background information. Chapter
2 covers the fundamentals of nonlinear optimization, with a particular
emphasis on line search techniques. In Chapter 3, the focus shifts to
the nonsmooth framework. This chapter serves the purpose of review-
ing the existing knowledge and established results in the field. The
remaining sections of the thesis, starting from Chapter 4, where the
framework for the subject of this thesis (the minimization of the ex-
pected value function) is introduced, onwards, represent the original
contribution made by the author.
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Apstrakt

U brojnim problemima optimizacije koji potiču iz stvarnih i naučnih
primena, često se suočavamo sa nediferencijabilnošću. U ovu klasu
spada veliki broj problema, od modela prirodnih fenomena koji po-
kazuju nagle promene, optimizacije oblika, do funkcije cilja u mašin-
skom učenju i dubokim neuronskim mrežama. U praksi, rešavanje
semi-glatkih konveksnih problema obično je izazovnije i zahteva veće
računske troškove u odnosu na glatke probleme.

Cilj ove teze je formulacija i teorijska analiza metoda Njutnovog
tipa za rešavanje semi-glatkih konveksnih stohastičkih problema op-
timizacije. Razmatrani su problemi optimizacije sa funkcijom cilja
datom u obliku matematičkog očekivanja bez pretpostavke o diferen-
cijabilnosti funkcije.

Kako je vrlo teško, pa nekad čak i nemoguće odrediti analitički ob-
lik matematičkog očekivanja, funkcija cilja se aproksimira uzoračkim
očekivanjem. Imajući u vidu da je tačnost aproksimacije funkcije
cilja i njenih izvoda proporcionalna računskim troškovima – veća pre-
ciznost podrazumeva veće troškove u opštem slučaju, važno je diza-
jnirati efikasan balans između tačnosti i troškova. Stoga, glavni fokus
ove teze je razvoj algoritama baziranih na određivanju optimalne di-
namike uvećanja uzorka u semi-glatkom okruženju, sa posebnom pažn-
jom na kontroli tačnosti i odabiru pravaca pretrage. Po pitanju od-
abira pravca, razmotreno je nekoliko opcija, dok kontrola tačnosti
uključuje jeftinije aproksimacije funkcije cilja (sa manjom preciznošću)
tokom početnih faza procesa da bi se uštedeli računski napori. Ovaj
pristup ima za cilj očuvanje računskih resursa, rezervišući primenu
aproksimacija funkcije cilja visoke tačnosti za završne faze procesa
optimizacije. Detaljan opis predloženih metoda predstavljen je u po-
glavljima 5 i 6, gde su analizirane i teorijske osobine numeričkih pos-
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tupaka, tj. dokazana je njihova konvergencija i prikazana složenost
razvijenih metoda. Pored teorijskog okvira, potvrđena je uspešna
praktična implementacija datih algoritama. Pokazano je da su pred-
ložene metode efikasnije u praktičnoj primeni u odnosu na postojeće
metode iz literature.

Poglavlje 1 ove teze služi kao osnova za praćenje narednih poglavlja
pružajući pregled osnovnih pojmova. Poglavlje 2 se odnosi na nelin-
earnu optimizaciju, pri čemu je poseban akcenat stavljen na tehnike
linijskog pretraživanja. U poglavlju 3 fokus se pomera na semi-glatke
probleme optimizacije i metode za njihovo rešavanje i služi kao pregled
postojećih rezultata iz ove oblasti. Preostali delovi teze, počevši od
poglavlja 4, gde se uvodi problem izučavanja ove teze (minimizacija
funkcije date u obliku očekivane vrednosti), pa nadalje, predstavljaju
originalni doprinos autora.
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Introduction

The optimization of complex systems under uncertainty is a chal-
lenging problem that arises in various fields, ranging from engineering
and finance to machine learning and operations research. In many
real-world scenarios, the presence of stochastic elements and the semi-
smoothness of objective functions introduce complications in the op-
timization process. Therefore, specialized techniques are required to
handle those complications that arisen due to the uncertainty and
semi-smoothness.

This thesis aims to investigate and propose modifications of Newton-
type methods specifically tailored for solving semi-smooth stochastic
optimization problems given in the form of mathematical expectation.
More precisely, for solving an SAA (Sample Average Approximation)
reformulation of the original stochastic problems. Newton-type meth-
ods are widely recognized for their efficiency and rapid convergence
properties in smooth optimization settings. However, their direct ap-
plication to semi-smooth and stochastic problems is not possible, so
Newton-type methods need to be modified significantly. The primary
motivation behind this research is to enhance the existing optimization
algorithms and develop novel techniques that can effectively handle the
characteristics of semi-smoothness and stochasticity. By incorporating
suitable modifications and adaptations, we aim to improve Newton-
type methods’ convergence behavior, robustness, and computational
efficiency in the context of semi-smooth stochastic optimization. To
achieve this, the thesis will delve into a comprehensive review of the ex-
isting literature on semi-smooth optimization, stochastic optimization,
and Newton-type methods. The fundamental concepts, mathematical
foundations, and theoretical fundamentals of these areas are explored
establishing a solid framework for the subsequent research. Further-
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more, we will analyze the challenges posed by semi-smooth stochastic
optimization problems and identify the limitations of existing algo-
rithms when applied to such scenarios. This analysis will serve as the
basis for proposing innovative modifications to Newton-type methods
to effectively address these challenges and improve their performance.

As the accuracy of the SAA approximate objective functions and
its derivatives is naturally proportional to the computational costs –
higher precision implies larger costs in general, it is important to de-
sign an efficient balance between accuracy and costs. Therefore, the
main focus will be on the development of adaptive sample size control
algorithms for solving semi-smooth stochastic optimization problems,
with particular attention given to the control of the accuracy and se-
lection of search directions. Several options will be investigated for the
search direction, while the accuracy control will involve cheaper objec-
tive function approximations (with looser accuracy) during the initial
stages of the process to save computational effort. This approach
aims to conserve computational resources, reserving the deployment
of high-accuracy objective function approximations for the final stages
of the optimization process.

Outline of thesis
The remaining part of the thesis is structured as follows:

Chapter 1 contains notation and a brief overview of definitions
and theorems essential for better comprehension and follow-up of the
subsequent analysis of original results.

In Chapter 2 the relevant concepts of smooth nonlinear opti-
mization are summarized. The emphasis is on line search methods,
and various strategies for choosing the search direction and step size
are discussed.

Chapter 3 comprises an overview of the basic aspects of semi-
smooth optimization methods.

In Chapter 4 the framework for the main subject of this thesis,
the minimization of the expected value function, is introduced. The
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chapter begins by introducing the semi-smooth optimization problem
and subsequently presents the essential assumptions required for the
algorithms employed in solving the problem at hand.

The last two chapters are the centerpieces and constitute the origi-
nal contribution of this thesis. They present novel algorithms including
their convergence analysis and practical implementation.

In Chapter 5 the stochastic spectral projected gradient method is
adapted to the nonsmooth framework. The spectral step is employed
in order to find a suitable direction that improves the performance
of the first-order method. This coefficient approximates the average
eigenvalue of the Hessian matrix providing at least some rough second-
order information which is crucial for fast convergence. Moreover, an
adaptive strategy that dynamically determines when to switch to the
next level of accuracy is presented.

• N. Krejić, N. Krklec Jerinkić, T. Ostojić, Spectral pro-
jected subgradient method for nonsmooth convex optimization
problems, Numerical Algorithms (2022), pp. 1-19. [56]

• N. Krklec Jerinkić, T. Ostojić, AN-SPS: Adaptive Sample
Size Nonmonotone Line Search Spectral Projected Subgradient
Method for Convex Constrained Optimization Problems, arXiv
preprint arXiv:2208.10616, (2022). [62]

Chapter 6 is based on the Inexact Restoration framework, which
was originally developed for constrained optimization problems and
has already proven to be a powerful tool for problems with inexact ob-
jective functions. The main idea of this method is to consider feasibil-
ity and optimality separately and to balance them by a merit function
such that eventually one gets a feasible optimal point. The problems
with inexact objective functions can be easily transformed into con-
strained problems with approximate objective functions of different
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levels of accuracy and a simple constraint that measures the level of
accuracy. On the other hand, the famous BFGS methods from smooth
optimization appear very efficient in semi-smooth settings, and recent
theoretical developments have shown that they can also be an effec-
tive general-purpose tool for semi-smooth optimization. Therefore,
the possibilities of combining an approximate objective function with
a quasi-Newton method are investigated.

• N. Krejić, N. Krklec Jerinkić, T. Ostojić, An inex-
act restoration-nonsmooth algorithm with variable accuracy for
stochastic nonsmooth convex optimization problems in machine
learning and stochastic linear complementarity problems, Jour-
nal of Computational and Applied Mathematics (2023), 423,
114943. [55]
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Chapter 1

Overview of the Background
Material

This chapter is devoted to a brief overview of the relevant definitions,
basic notation, and theoretical results to facilitate further reading of
the thesis. First, we set the notation used in the thesis.

Notation

N − the set of positive integers;

R − the set of real numbers;

R+ − the set of nonnegative real numbers;

Rn − the space of n-dimensional vectors with real components;

Rn×m − the space of real-valued matrices with n rows and m
columns;
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x ∈ Rn − column vector, x = (x1, x2, . . . , xn)
T , where

x1, x2, . . . , xn represent its components;

x ≥ 0 − a vector whose components are nonnegative, i.e., xi ≥ 0
for every component xi; The space of such vectors is denoted
with Rn

+;

x = 0 − a vector whose components are equal to zero, i.e.,
xi = 0, i = 1, . . . , n;

A ∈ Rn×m − a matrix with n rows, m columns and entries
Ai,j ∈ R (Ai,j - the element in the ith row and jth column of the
matrix A);

A = 0 − every component of the matrix A is zero, i.e., Ai,j = 0,
i, j = 1, 2, . . . , n;

AT ∈ Rm×n − the transpose of matrix A ∈ Rn×m;

|A| − the determinant of the matrix A;

A−1 − the inverse matrix of the matrix A;

ιmin, ιmax − the smallest and the largest eigenvalue in the abso-
lute value of matrix A, respectively;

eig(A) = {ιi}i=1,...,n − the set of eigenvalues of matrix A, where
ι1 ≥ . . . ≥ ιn;

I − the identity matrix;

∥x∥ − the Euclidean norm ∥x∥2, i.e., ∥x∥2 =
∑n

i=1 x
2
i ;

xTy − the scalar product of vectors x and y, i.e., xTy =∑n
i=1 xiyi;
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{xk} := {xk}k∈N − the sequence x1, x2, . . .;

int(X) − a interior of a set X;

cl(X) − a closure of an open set X;

conv(X) − a convex hull of a set X;

O(x) − a neighborhood of a point x, i.e., any open subset of Rn

that contains x ∈ Rn;

B(x, r) − an open ball with center x ∈ Rn and radius r > 0,
B(x, r) := {y ∈ Rn : ∥x− y∥ < r};

C (D) − the set of functions which are continuous on D ⊆ Rn;

C1 (D) − the set of functions that have continuous first deriva-
tives on D (continuously-differentiable or smooth functions);

Ck (D) − the set of functions that have k continuous derivatives
on D, k ≥ 1;

∇f(x) ∈ Rn − the gradient of a function f : Rn → R at point
x ∈ Rn;

∇2f(x) ∈ Rn×n − the Hessian of a function f : Rn → R at point
x ∈ Rn;

∂f(x) ⊆ Rn − a subdifferential of a function f : Rn → R at
point x ∈ Rn;

A − the set of all possible outcomes, A = {A1, A2, . . . , An};

P (A) − the partitive set of A;

Ā − the complementary set of the set A, Ā = A \ A;

∅ − the empty set.
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1.1 Linear Algebra and Functional Analy-
sis

Definition 1.1.1 The set X is open if X = int X. The set X is
closed if X = cl X.

Definition 1.1.2 The set X is bounded if there exists a positive con-
stant M such that for every x ∈ X there holds ∥x∥ ≤ M.

Definition 1.1.3 The set X ⊆ Rn is a compact set if it is closed and
bounded.

Definition 1.1.4 The matrix A ∈ Rn×n is symmetric if A = AT .

Definition 1.1.5 The matrix A ∈ Rn×n is positive semidefinite if for
every x ∈ Rn we have that xTAx ≥ 0. The matrix A ∈ Rn×n is
positive definite if for every x ∈ Rn, x ̸= 0 the inequality is strict, that
is xTAx > 0.

If the matrix A is symmetric positive definite, then the inverse matrix
of A, A−1, is also positive definite.
For m,M ∈ R the notation mI ⪯ A ⪯ MI is used to indicate the fact
that for every ι ∈ eig(A) it holds m ≤ ι ≤ M .

Inequality

||x+ y|| ≤ ||x||+ ||y|| for every x, y ∈ Rn

is called triangular inequality, while the following represented reversed
triangular inequality, holds for every norm and every x, y :

||x− y|| ≥
∣∣∣||x|| − ||y||

∣∣∣.
The Cauchy–Schwarz inequality states that for all vectors x, y ∈ Rn

the following inequality holds

|xTy| ≤ ||x||||y||.
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Definition 1.1.6 The sequence {xk}k∈N ⊂ Rn is

i) bounded if there exists M ∈ R such that ||xk|| ≤ M for every
k ∈ N;

ii) Cauchy if for every ε > 0 there exists k̄ ∈ N such that ||xs−xl|| ≤
ε for every s, l ≥ k̄;

iii) convergent if there exists x∗ such that limk→∞ xk = x∗. That is,
if for every ε > 0 there exists k̄ ∈ N such that ||xk − x∗|| ≤ ε for
every k ≥ k̄.

Lemma 1.1.1 For a sequence {xk}k∈N ⊂ Rn we have that

i) {xk} is convergent if and only if it is a Cauchy sequence;

ii) if {xk} converges to x∗ ∈ R then all its subsequences also con-
verge to x∗.

Definition 1.1.7 For a sequence {xk}k∈N ⊂ Rn and a point x̃ ∈ R,
we say that x̃ is an accumulation point of {xk} if for every open subset
X ⊆ Rn such that x̃ ∈ X, we have that xk ∈ X for infinitely many
values of k ∈ N.

Definition 1.1.8 For a sequence {xk}k∈N ⊂ Rn and a point x̃ ∈ R,
we say that x̃ is a strictly strong accumulation point if there exists a
subsequence K ⊆ N and a constant b ∈ N such that limki∈K xki = x̃
and ki+1 − ki ≤ b for any two consecutive elements ki, ki+1 ∈ K.

Lemma 1.1.2 For a sequence {xk}k∈N ⊂ Rn we have that if {xk} is
bounded then it has at least one accumulation point. Moreover, if x̃
is an accumulation point of {xk}, then there exists a subsequence of
{xk} that converges to x̃.
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Definition 1.1.9 Suppose that the sequence {xk}k∈N converges to x∗.
The convergence is Q-linear if there is a constant ρ ∈ (0, 1) such that
for all k sufficiently large

∥xk+1 − x∗∥ ≤ ρ∥xk − x∗∥.

The convergence is Q-superlinear if

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0.

The convergence is Q-quadratic if there exists a positive constant M
such that for all k sufficiently large

∥xk+1 − x∗∥ ≤ M∥xk − x∗∥2.

The convergence is R-linear if for all k sufficiently large

∥xk − x∗∥ ≤ ak,

where {ak}k∈N is a sequence which converges to zero Q-linearly.

In this thesis, we will generally consider nonsmooth real-valued
functions, more precisely the functions that are not necessarily differ-
entiable. But first, let us give a basic definition in the case of smooth
function.

Definition 1.1.10 The function f : Rn → R is continuously differen-
tiable if for every i = 1, . . . , n the partial derivative ∂xi

f exists and it
is continuous everywhere in Rn. Analogously, the function f is twice
continuously differentiable, if ∂xi

∂xj
f exists and it is continuous ev-

erywhere in Rn for i, j = 1, . . . , n.
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For a twice continuously-differentiable function f : Rn → R, we can
define gradient ∇f(x) ∈ Rn and Hessian ∇2f(x) ∈ Rn×n of function
f in the following way

∇f(x) =

(
∂f(x)

∂x1

, . . . ,
∂f(x)

∂xn

)T

and (
∇2f(x)

)
i,j

=
∂2f(x)

∂xi∂xj

, i, j = 1, ..., n.
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1.2 Convex Analysis
As many optimization problems arising in various applications require
the minimization of an objective cost function that is convex but not
differentiable, the main concern of this thesis is nonsmooth convex
optimization methods. The development of nonsmooth optimization
methods has begun with the analysis of convex functions. It has been
shown that convex optimization algorithms are efficient for computing
reliable solutions in a broad range of applications, as one of the most
important features of convex functions is that every local minimizer is
also a global minimizer of that function. In the following, we provide
the basic concepts of convex analysis, where one can distinguish two
types of convexity. The first one is the convexity of a function and the
other one convexity of a set. This section mostly relies on [22].

Definition 1.2.1 The set C ⊆ Rn is convex if for all real numbers
λ ∈ [0, 1] it holds

x, y ∈ C ⇒ λx+ (1− λ)y ∈ C.

Definition 1.2.2 The convex combination of vectors x1, x2, . . . , xn is
given by

k∑
i=1

λixi,

where λ1, λ2, . . . , λn are nonnegative real numbers such that
∑k

i=1 λi =
1.

Definition 1.2.3 The convex hull of a set C ⊆ Rn is

conv(C) = {x ∈ Rn|x =
k∑

i=1

λixi,
k∑

i=1

λi = 1, xi ∈ C,

λi ≥ 0, i = 1, . . . , k, k > 0}.
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Definition 1.2.4 Function f : D → R, D ⊆ Rn is convex on a
convex set D if for every x, y ∈ D and every λ ∈ [0, 1]

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

Definition 1.2.5 Function f : D → R, D ⊆ Rn is strictly convex on
a convex set D if for every x, y ∈ D and every λ ∈ (0, 1)

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y).

Definition 1.2.6 Function f : D → R, D ⊆ Rn is strongly convex
with parameter µ > 0 on a convex set D if for any x, y ∈ D and any
λ ∈ [0, 1] there holds

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)− µ
1

2
λ(1− λ)||x− y||2.

In addition, if the function f is differentiable, then we can state
another characterization of convex and strongly convex functions.

Theorem 1.2.1 Assume that f : D → R, D ⊆ Rn and f ∈ C1 (D).
Then the function f is convex if and only if for every x, y ∈ D

f(x) ≥ f(y) +∇f(y)T (x− y).

Furthermore, the function is µ−strongly convex if and only if there
exists a positive constant µ such that for every x, y ∈ D

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
||y − x||2.

Theorem 1.2.2 Assume that f is twice continuously differentiable on
a convex and open set D. Then it holds that f is convex on D if and
only if the Hessian of the function f is positive semidefinite on D, i.e.,
∇2f(x) ⪰ 0 for all x ∈ D.
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Definition 1.2.7 Let C ⊂ Rn be a closed convex set. The orthogonal
projection map, denoted by PC : Rn → C, is defined as follows

PC(y) := argmin{||y − z|| : z ∈ C}.

The next proposition presents important non-expansive properties of
the projection.

Proposition 1.2.1 Let C ⊂ Rn be a closed convex set, x, y ∈ Rn and
z ∈ C. Then, we have

i) ||PC(y)− z||2 ≤ ||y − z||2;

ii) ||PC(x)− PC(y)||2 ≤ ||x− y||2.

Lipschitz Continuous Functions

Lipschitz continuous functions play a significant role in convex and
nonsmooth analysis and therefore we give the following definition.

Definition 1.2.8 A function f : D → R, D ⊆ Rn is called locally
Lipschitz continuous over D if for all x0 ∈ D there exists ε > 0 and a
Lipschitz constant L(x0) ∈ R+ such that

||f(x0)− f(x)|| ≤ L(x0)||x0 − x||,

for all x ∈ D ∩B(x0, ε).
If there exists L ∈ R+ such that for every x, y ∈ D

||f(x)− f(y)|| ≤ L||x− y|| (1.1)

holds, than we call f globally Lipschitz continuous on D.
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In other words, we say that a function f : D → R is locally Lips-
chitz if every point in D has a neighborhood on which f is Lipschitz
continuous. It can be shown that every convex function is locally Lip-
schitz continuous. Furthermore, Rademacher’s theorem states that
Lipschitz continuous function f is differentiable almost everywhere,
i.e., the set of points where f is not differentiable is of measure zero.
In particular, every neighborhood of x contains a point y for which
∇f(y) exists. If the function is continuously differentiable then it is
locally Lipschitz continuous. We state theorems for the sake of com-
pleteness.

Proposition 1.2.2 Any convex function f : D → R, D ⊆ Rn is
locally Lipschitz continuous.

Theorem 1.2.3 (Rademacher) Let D be an open subset of Rn, f :
D → Rm a L-Lipschitz function, i.e., (1.1) holds, and µ̃ the Lebesgue
measure. Then f is differentiable almost everywhere. That is, there is
a set E ⊂ D with µ̃(D \ E) = 0 such that for every x ∈ E there is a
linear function Lx : Rn → Rm with

lim
y→x

f(x)− f(y)− Lx(y − x)

∥y − x∥
= 0.

Lemma 1.2.1 Assume that the function f is given by f(x) =∑N
i=1 fi(x), with fi : Rn → R. If for every i = 1, . . . , N the func-

tion fi is Li−Lipschitz continuous with Li ≥ 0, then f is Lipschitz
continuous with constant L =

∑N
i=1 Li.

Lemma 1.2.2 If f : Rn → R is twice continuously differentiable func-
tion, the following properties hold

i) the Hessian matrix ∇2f(x) is symmetric;

ii) if ∇f is L-Lipschitz continuous, then for every x ∈ Rn we have
that ιmax (∇2f(x)) ≤ L;

iii) f is µ-strongly convex if and only if ιmin (∇2f(x)) ≥ µ.
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1.3 Probability Theory
In this section, we will give an overview of some definitions and results
from probability theory [32, 86]. Recall that we deal only with real-
valued random variables.

A probability space is a triple (A,F, P ), where A is a set of out-
comes, F is a set of events, and P is a function that assigns proba-
bilities to events. We say that the event happens almost surely (a.s.)
if it happens with probability 1. Next, the definition of independent
events is stated.

Definition 1.3.1 The sequence of events A1, A2, . . . from F is inde-
pendent if for every finite sequence of indices k1 < . . . < ks the follow-
ing equality holds

P (Ak1 ∩ . . . ∩ Aks) = P (Ak1) · · ·P (Aks).

In order to define random variables, first we need to define Borel’s
σ-field.

Definition 1.3.2 Borel’s σ-field B in topological space (R, τ) is the
smallest σ-field that contains τ .

Next, we provide the definition of the random variable.

Definition 1.3.3 Mapping X : A → R is a random variable on the
space (A,F, P ) if

X−1(S) ∈ F for every S ∈ B.

Definition 1.3.4 The cumulative distribution function for the ran-
dom variable X, FX : R → [0, 1], is defined by

FX(x) = P{X ≤ x}.
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One can distinguish two types of random variables - discrete and
continuous.

Definition 1.3.5 The random variable X is discrete if there exists a
countable set S such that P (X ∈ S) = 1.

Definition 1.3.6 The random variable X is continuous if there exists
a nonnegative function φX such that for every S ∈ B

P (X ∈ S) =

∫
S

φX(x)dx.

The function φX(·) is called the probability density function.

Definition 1.3.7 Random variables X1, X2, . . . are independent if the
events X−1

1 (S1), X
−1
2 (S2), . . . are independent for all Si ∈ B, i =

1, 2 . . ..

Now, the numerical characteristics of random variables, more pre-
cisely the definition of mathematical expectation and variance, will be
introduced.

Definition 1.3.8 If X is a discrete random variable, then the math-
ematical expectation E [X] exists if and only if

∞∑
k=1

|xk|P (X = xk) < ∞,

where x1, x2, . . . are the values that X may take and it is given by

E [X] =
∞∑
k=1

xkP (X = xk).
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If X is absolutely continuous, the mathematical expectation exists
if ∫ ∞

−∞
|x|φX(x)dx < ∞

and it is defined by

E [X] =

∫ ∞

−∞
xφX(x)dx.

In the following, some characteristics of the mathematical expec-
tation are stated and their significance is pointed out.

Theorem 1.3.1 Let X1, X2, . . . , Xn be random variables that poses
the mathematical expectations and c ∈ R. Then the following holds

i) |E [Xk] | ≤ E [|Xk|];

ii) E [c] = c;

iii) E [cXk] = cE [Xk];

iv) E [X1 + . . .+Xn] = E [X1] + . . .+ E [Xn];

v) If Xk ≥ 0 almost surely, then E [Xk] ≥ 0;

vi) If X1, X2, . . . , Xn are independent, then

E

[
n∏

k=1

Xk

]
=

n∏
k=1

E [Xk] ;

vii) If X = (X1, X2, . . . , Xn) is a random vector, then

E [X] = (E [X1] , . . . , E [Xn]) .
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Definition 1.3.9 The function f : Rn → Rm is a Borel’s function if
for every S from Borel’s σ-field B(Rm) the inverse f−1(S) belongs to
Borel’s σ-field B(Rn).

Theorem 1.3.2 Let f : R → R be a Borel’s function. Then, if X is
discrete the mathematical expectation of f(X) is

E [f(X)] =
∞∑
k=1

f(xk)P (X = xk)

and if X is continuous

E [f(X)] =

∫ ∞

−∞
f(x)φX(x)dx.

Definition 1.3.10 The random variable X is P-integrable if E [X] is
well defined and finite.

Now, we will define the variance, which represents a measure of
spread for the distribution of a random variable that determines the
degree to which the values of a random variable differ from the ex-
pected value. It is denoted with D [X] or V ar2 [X]. But, first, we
need to define the moments and the central moments.

Definition 1.3.11 Let X be a random variable and k ∈ N. Then the
moment of order k of X is given by E

[
Xk

]
, while the central moment

of order k is
E
[
(X − E [X])k

]
.

Definition 1.3.12 The variance of a random variable X is the
second-order central moment of that random variable, i.e.,

D [X] = E
[
(X − E [X])2

]
.



1.3 Probability Theory 39

The following formula, which can easily be obtained from the previous
definition, is often used for the calculation of variance

D [X] = E
[
X2

]
− E2 [X] .

Theorem 1.3.3 Let X1, X2, . . . , Xn be random variables with the
variances D [X1] , D [X2] , . . . , D [Xn] and c ∈ R. Then the following
holds

i) D [Xk] ≥ 0;

ii) D [Xk] = 0 if and only if Xk is a constant almost surely;

iii) D [cXk] = c2D [Xk];

iv) D [Xk + c] = D [Xk];

v) If X1, X2, . . . , Xn are independent, then

D

[
n∑

k=1

Xk

]
=

n∑
k=1

D [Xk] ;

vi) If X = (X1, X2, . . . , Xn) is a random vector, then

D [X] = (D [X1] , . . . , D [Xn]) .

As the behavior of sequences of random variables is one of the
most important parts of probability theory, we define four basic types
of convergence concerning random variables and discuss how they are
related.
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Definition 1.3.13 A sequence of random variables X1, X2, . . . con-
verges in probability towards random variable X if for every ε > 0

lim
k→∞

P (|Xk −X| ≥ ε) = 0.

The basic idea behind this type of convergence is that the probability
of an "unusual" outcome becomes smaller and smaller as the sequence
progresses.

Definition 1.3.14 A sequence of random variables X1, X2, . . . con-
verges almost surely (a.s.) towards random variable X if

P ( lim
k→∞

Xk = X) = 1.

This is the type of stochastic convergence that is most similar to point-
wise convergence.

Definition 1.3.15 A sequence of random variables X1, X2, . . . con-
verges in mean square towards random variable X if the following
conditions hold

i) E [X2
k ] < ∞ for every k ∈ N;

ii) limk→∞E [(Xk −X)2] = 0.

Definition 1.3.16 A sequence of random variables X1, X2, . . . con-
verges in distribution towards random variable X if, for every x ∈
R ∪ {−∞,∞} such that FX(x) is continuous, the following holds

lim
k→∞

FXk
(x) = FX(x).

The relationships between the mentioned convergences are formulated
in the following theorems.
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Theorem 1.3.4 If a sequence of random variables X1, X2, . . . con-
verges in mean square towards random variable X, then it converges
in probability.

Theorem 1.3.5 If a sequence of random variables X1, X2, . . . con-
verges almost surely towards random variable X, then it converges in
probability.

Theorem 1.3.6 If a sequence of random variables X1, X2, . . . con-
verges in probability towards random variable X, then it converges in
distribution. Moreover, if a sequence of random variables converges
to a constant, then convergence in distribution implies convergence in
probability.

Convergence in distribution is the weakest form of mentioned conver-
gence since it is implied by all other types of convergence.

Finally, at the end of this section, we state two fundamental laws
that deal with limiting behavior of the sequence of independent ran-
dom variables throughout the Weak Law of Large Numbers and Strong
Law of Large Numbers. Convergence in probability is stated in the
first law, while the other one considers almost sure convergence.

Let Sn be the sum of n random variables, i.e.,

Sn = X1 +X2 + . . .+Xn.

Theorem 1.3.7 (Weak Law of Large Numbers) Let X1, X2, . . . be in-
dependent random variables. If there exists a constant C such that
D [Xi] ≤ C for every i ∈ N, then

lim
n→∞

Sn

n
=

1

n

n∑
i=1

E [Xi] in probability.
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Theorem 1.3.8 (Strong Law of Large Numbers) Let X1, X2, . . . be
independent random variables. If the random variables X1, X2, . . .
have the same distribution and the finite mathematical expectation
E [Xk] = a, then

lim
n→∞

Sn

n
= a a.s.



Chapter 2

Nonlinear Optimization

In this chapter, a short summary of smooth nonlinear optimization is
given. The fundamentals of deterministic optimization are presented -
optimization problem and optimality conditions are introduced, and a
general framework of line search method as core globalization strategy
is presented. Due to the nature of considered nonsmooth problems in
this thesis, where the search direction is not necessarily descent, the
special class within the line search framework, the nonmonotone line
search method, is presented at the end of this chapter. This chapter
mostly relies on [61, 82].

2.1 Problem Statement and Optimality
Conditions

The problem that we consider is given by

min
x∈Ω

f(x), (2.1)

where function f : Rn → R is continuously differentiable function and
set Ω ⊆ Rn is called the feasible set and it can be represented in the
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form

Ω = {x ∈ Rn| gi(x) ≤ 0, i = 1, . . . , s, hi(x) = 0, i = 1, . . . ,m},

where g1, . . . , gs, h1, . . . , hm are real-valued functions that represent
inequality and equality constraints.

It is assumed that f(x) is nonlinear and bounded from below on
Ω. In that case, the optimal value f ∗ := infx∈Ω f(x) is finite and our
goal is to find x∗ ∈ X∗ with X∗ defined as

X∗ := {x ∈ Ω|f(x) = f ∗}.

Now, we state the important result that gives the conditions for
the existence of x∗.

Theorem 2.1.1 (Weierstrass) If Ω ⊆ Rn is non-empty and compact
and f : Ω → R is continuous, then there exists a global minimizer of
the considered optimization problem.

In the rest of this chapter, we will focus on the special case of problem
(2.1) - the unconstrained optimization problem. That is, we assume
that Ω = Rn and therefore we want to find an optimal solution x∗

such that
f(x∗) = min

x∈Rn
f(x). (2.2)

Let us formally give the definition of the optimal point.

Definition 2.1.1 (Global minimizer) The point x∗ ∈ Rn is a global
minimizer of f : Rn → R if f(x∗) ≤ f(x) for all x ∈ Rn. If this
inequality is strict, then x∗ is a strict global minimizer.

In general, it is very hard to recognize a global minimizer. Thus, local
minimizers are considered as an alternative.
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Definition 2.1.2 (Local minimizer) The point x∗ ∈ Rn is a local min-
imizer of f : Rn → R if there is an open neighborhood O of x∗ such
that f(x∗) ≤ f(x) for all x ∈ O. If this inequality is strict, then x∗ is
a strict local minimizer.

Now, we are stating necessary and sufficient conditions for a solu-
tion of problem (2.2).

Theorem 2.1.1 (First-order necessary conditions) If x∗ is a local
minimizer and f(x) is continuously differentiable in an open neigh-
bourhood O of x∗, then ∇f(x∗) = 0.

The points which satisfy the first-order necessary conditions are called
stationary points. It is important to note that ∇f(x∗) = 0 does not
necessarily mean that x∗ is a local minimizer. From the previous theo-
rem, we can only claim that any local minimizer must be a stationary
point. As the first derivatives do not provide enough information to
detect whether the point is a minimizer, the second derivatives are
needed.

Theorem 2.1.2 (Second-order necessary conditions) If x∗ is a lo-
cal minimizer of f(x) and ∇2f(x) exists and is continuous in an
open neighborhood O of x∗, then ∇f(x∗) = 0 and ∇2f(x∗) is posi-
tive semidefinite matrix.

Finally, let us state the second-order sufficient conditions, which
make guarantees that x∗ is a local minimizer.

Theorem 2.1.3 (Second-order sufficient conditions) Suppose that
∇2f(x) is continuous in an open neighbourhood O of x∗, ∇f(x∗) = 0
and ∇2f(x∗) is positive definite. Then, x∗ is a strict local minimizer
of f .
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We say that the unconstrained optimization problem is convex if
the objective function is convex. In the following, we state the impor-
tant fact regarding convex problems.

Theorem 2.1.2 Suppose that function f is convex on a convex set S.
Then, every local minimizer of the function f is also a global mini-
mizer.

The vast majority of optimization problems are difficult to solve
directly. Thus, numerical algorithms for optimization are used to find
an approximation of the optimal solution (2.2). These algorithms are
called iterative methods, because they start from some initial point
x0 ∈ Rn and according to a certain iterative rule form a sequence
{xk}k∈N recursively, where the elements of this sequence represent es-
timates of the optimal solution and are called iterations. The goal
of numerical algorithms is to construct a sequence of iterates {xk}k∈N
that converges to a solution x∗ of the considered problem.

Let sk be the step from the current iteration xk to a new iteration
xk+1, i.e.,

xk+1 = xk + sk.

Regarding the choice of sk, there are two fundamental strategies that
guarantee convergence towards a local minimum: the line search and
the trust region, where these two approaches differ in the way they
calculate sk, more precisely in the order in which they choose the
direction and magnitude of that direction.

In the line search method, we first choose a search direction pk
from the current point xk and then compute the step size αk such that
sk = αkpk. Opposite to line search methods, at an arbitrary iteration,
trust region methods determine the step size bound first (i.e., the
trust region radius), and then solve a sub-problem to find a suitable
direction.
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In the thesis, we consider only line search methods, so in the fol-
lowing section basic notations and review of significant results are
presented. More about trust region methods can be found in [23, 82].

2.2 Line Search Methods
Let us formally state the rule which gives us the following iteration in
the line search method

xk+1 = xk + αkpk, (2.3)

where αk > 0 is called the step size and pk is the search direction.
The main idea of this method is to obtain a new iteration xk+1 with a
lower function value. More precisely, after choosing a direction pk we
should determine the optimal scaling of pk such that

f(xk + αkpk) < f(xk).

Therefore, we want to solve the following problem exactly or approx-
imately

αk = argmin
α>0

f(xk + αpk). (2.4)

So, the question is how to choose the search direction pk and how to
solve the problem (2.4) in order to get a suitable step size αk. The
model algorithm of the line search method, Algorithm 1, is stated in
the following.

As the different choices of pk and αk seriously affect the efficiency
of the iterative method, the most frequently used search directions, as
well as a few strategies for the choice of the step size αk will be out-
lined in further sections. Notice that Step S1 of Algorithm 1 is written
in the most general form without imposing any condition on the de-
crease of the objective function, so that monotone and nonmonotone
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Algorithm 1: LS (Line Search)

S0 Initialization. Specify an initial point x0 ∈ Rn.
Set k = 0.

S1 Search direction. Choose the search direction pk.

S2 Step size. Find αk > 0 as a (approximate) solution of (2.4).

S3 Update. Set xk+1 = xk + αkpk.

S4 If some termination criterion is satisfied, then stop.
Else k = k + 1 and go to S1.

line search strategies can fit into that framework. More precisely, in
Step S1, the necessary condition which search direction should sat-
isfy is not specified. In Section 2.2.1 we will present what kind of a
search direction pk is desirable in the case of the monotone line search
method, while in Section 2.3 the nonmonotone line search method
will be analyzed. Also, in Section 2.2.2 we will present some practical
strategies for choosing a suitable step size αk for a given direction pk
such that adequate reduction in function value is achieved.

2.2.1 Search Directions

Most line search methods require pk to be a descent direction in order
to get improvement. Thus, we give a formal definition.

Definition 2.2.1 For a given point xk ∈ Rn a direction pk ∈ Rn is
called a descent direction, if there exists α such that

f(x+ αp) < f(x), ∀α ∈ (0, α).
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If the function f is continuously-differentiable it can be shown that
pk is a descent direction from point xk if the following condition is
satisfied

∇f(xk)
Tpk < 0. (2.5)

This property guarantees that the function f can be reduced along this
direction pk, is a direct consequence of the first-order Taylor expansion
of continuously differentiable function f around xk

f(xk + αpk) = f(xk) + αpTk∇f(xk) +O(α2).

It is obvious that as long as the step size α is chosen to be small enough
it is ensured that

f(xk + αpk) < f(xk),

which is the primary goal in optimization methods - to obtain a point
that is better than the current one at every iteration.

Now, for continuously differentiable function f we can state a char-
acterization of the descent search directions which are frequently used.

Newton-type Methods

The method that uses the search direction of the form

pk = −B−1
k ∇f(xk),

with a symmetric and nonsingular matrix Bk is called a Newton-type
method for optimization. The following result holds.

Lemma 2.2.1 (Descent direction): If matrix Bk is positive definite,
i.e., Bk ≻ 0, then pk = −B−1

k ∇f(xk) is a descent direction.

Notice that previous lemma holds because for the direction pk =
−B−1

k ∇f(xk) we have

∇f(xk)
Tpk = −∇f(xk)

TB−1
k ∇f(xk) < 0,
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i.e., the condition (2.5) is satisfied.
Gradient Descent direction is the simplest and it is obtained by

choosing Bk = I, i.e., the descent direction is defined as pk =
−∇f(xk). This method is also called the Steepest Descent method
because along this direction the objective function decreases most
rapidly. If we assume that step size is fixed at each iteration, the
following result holds.

Theorem 2.2.1 Assume that f : Rn → R is a continuously dif-
ferentiable convex function and that ∇f is L−Lipschitz continuous.
Let {xk} be the sequence generated by (2.3) with search direction
pk = −∇f(xk) and step size αk = α for every k. If α ≤ 1/L, then xk

converges linearly to a solution of the problem (2.2).

The Gradient Descent algorithm with fixed step size is very appli-
cable and widely used due to its simplicity and low cost since it only
requires first-order derivatives and no additional computation for the
choice of the step size. However, the main drawback of this method is
the convergence rate which is at most linear. Accordingly, it might be
very slow and it may require many iterations to find a solution with
good accuracy.

Let us assume that the function is twice continuously differen-
tiable. Then, we can obtain more sophisticated choices of the descent
direction pk. The objective function f ∈ C2(Rn) can be approximated
around the current iteration xk using the second-order Taylor expan-
sion such that

f(xk + p) ≈ f(xk) + pT∇f(xk) +
1

2
pT∇2f(xk)p. (2.6)

If we denote the right-hand side of (2.6) with mk(p), then the goal is
to compute the direction p at iteration k by minimizing the quadratic
function mk. If it is assumed that ∇2f(xk) ≻ 0, then the function mk
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has the unique minimizer

pk = −
(
∇2f(xk)

)−1∇f(xk).

In other words, for Bk = ∇2f(xk) we get another important method
- Newton’s method. This method can be seen as the opposite of the
Gradient Descent method, as it is expensive and fast. It achieves lo-
cal quadratic convergence under suitable regularity assumptions on
the function f (see Theorem 2.2.2). However, it can be too compu-
tationally expensive since it requires the computation of the second
derivatives at every iteration. Now, we state the main convergence
result.

Theorem 2.2.2 Assume that f : Rn → R is twice continuously-
differentiable and that the Hessian ∇2f(x) is Lipschitz continuous in
a neighbourhood of a solution x∗ at which the sufficient optimality con-
ditions are satisfied. Consider the sequence of iterates generated by the
pure Newton’s algorithm1, {xk}. Then

i) if the starting point x0 is sufficiently close to x∗, the sequence of
iterates {xk} converges to x∗;

ii) if the method converges, the rate of convergence of {xk} is
quadratic;

iii) if the method converges, the sequence of gradient norms
||∇f(xk)|| converges to zero quadratically.

As mentioned before, in order to be sure that pk is a descent direc-
tion, the condition of Lemma 2.2.1 should be satisfied. More precisely,

1The term "pure" refers that no notion of a step size α is involved, i.e., in (2.3)
we have α = 1.
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the matrix ∇2f(xk) has to be positive definite at each iteration. It
is important to point out that every iteration of Newton’s method
requires the computation of the Hessian in order to solve the linear
system of equations, which might be expensive itself. The method
could also become unstable even if ∇2f(xk) ≻ 0 in the case of ill-
conditioned ∇2f(xk) at some iteration.

To avoid the shortcomings of Gradient Descent and Newton’s
method, algorithms that imitate Newton’s idea have been proposed.
In these methods, referred to as Quasi-Newton (QN) methods, the
Hessian matrix is replaced by a matrix Bk ∈ Rn×n, such that

Bk ≈ ∇2f(xk)

is a good approximation of the true Hessian and has lower evaluation
and linear algebra costs since the approximation is based only on the
first-order information. The rate of convergence in QN methods is no
more than superlinear, thus the convergence is slower with respect to
the Newton method, but on the other hand, the cost is significantly
smaller. The idea behind the QN methods is that two successive it-
erations xk and xk+1 together with the gradients ∇fk := ∇f(xk) and
∇fk+1 := ∇f(xk+1) contain curvature (i.e., Hessian) information.

Several strategies for computation of the matrix Bk have been pro-
posed in the literature based on the conditions that Bk+1 should sat-
isfy. The main condition is known as the secant equation

Bk+1sk = yk, (2.7)

where the difference between two iterations and the discrepancy be-
tween the gradients in two neighboring iterations is given by

sk = xk+1 − xk and yk = ∇fk+1 −∇fk.

However, a unique solution for Bk+1 is not provided from the con-
dition (2.7). Thus, the additional requirements on Bk+1 are imposed,
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such as symmetry and a restriction that the difference between suc-
cessive approximation Bk to Bk+1 has a low rank. That is, Bk+1 is a
solution of the following problem

min ||B −Bk||∗ (2.8)

s.t. BT = B,Bsk = yk.

Different updating formulas for Bk+1 are obtained by solving problem
(2.8) depending on the matrix norm || · ||∗.

One of mostly used updating formulas of this type is proposed by
Davidon, Fletcher, and Powell. It is obtained by using the weighted
Frobenius norm and it is defined by

Bk+1 = (I − yks
T
k

yTk sk
)Bk(I −

yks
T
k

yTk sk
) +

yky
T
k

yTk sk
.

Another one is the BFGS formula, proposed by Broyden, Fletcher,
Goldfarb, and Shanno

Hk+1 = (I − sky
T
k

yTk sk
)Hk(I −

yks
T
k

yTk sk
) +

sks
T
k

yTk sk
,

where Hk+1 represents the inverse Hessian approximation, i.e., Hk =
B−1

k (Hk+1yk = sk). The initial approximation H0 is chosen by the
user and it is often defined as H0 = γI, γ > 0. We note that the
BFGS formula preserves positive definiteness, more precisely, if Hk is
positive definite and yTk sk > 0 then Hk+1 is positive definite as well.

Spectral gradient methods

At the end of this section, we introduce a slightly modified version of
the QN search direction used later in Chapter 5 - Spectral Gradient
(SG) method. This method is well-known for its efficiency and simplic-
ity and has been widely used and developed as a solver of optimization
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problems [9, 37, 54, 95]. It was originally proposed by Barzilai and
Borwein [5], so it is often referred to as the BB method. The step
length selection strategy in the SG method is crucial for faster con-
vergence compared to classical gradient methods, as it incorporates
second-order information related to the spectrum of the Hessian ma-
trix. More precisely, it relies on a simple approximation of the second-
order derivative (Hessian), which takes the form of an identity matrix
multiplied by the so-called spectral coefficient. Roughly speaking, this
coefficient approximates the average eigenvalue of the Hessian matrix
and provides at least some kind of second-order information, which is
crucial for fast convergence. Although the theoretical results are not
as strong as for Newton-like methods that rely on true second-order
derivatives or better approximations of the Hessian matrix, spectral
gradient methods are cheap, easy to implement, and they provide very
good numerical results, making them popular in practice.

The spectral coefficient is constructed to best fit the secant equa-
tion (2.7), where one of the key ingredients is the difference between
the two consecutive gradient values yk. Thus, we want to find a diag-
onal matrix of the special form

Dk = λkI, λk ∈ R
that best fits the secant equation

Hk+1yk = sk,

where matrix Dk represents an approximation of the inverse Hessian
(∇2f(xk))

−1. Therefore, the search direction is parallel to the direction
of the negative gradient, i.e., we have

pk = −λkI∇f(xk) = −λk∇f(xk).

The spectral coefficient λk is defined by a secant condition, imposing
either λk = λ̃−1

k with

λ̃k = argmin
λ∈R

||yk−1 − λsk−1||2 (2.9)
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or
λk = argmin

λ∈R
||λyk−1 − sk−1||2. (2.10)

The following coefficients are obtained from (2.9) and (2.10), re-
spectively:

λBB1
k =

sTk−1sk−1

sTk−1yk−1

(2.11)

and

λBB2
k =

yTk−1sk−1

yTk−1yk−1

. (2.12)

In addition to these two rules for calculating λk, in the literature,
several spectral gradient methods have been proposed which general-
ize the BB methods. In Chapter 5 we will consider Adaptive Barzi-
lai–Borwein (ABB) [104] and its modification ABBmin [34], which are
based on adaptive criteria used to switch between λBB1

k and λBB2
k . The

step lengths are defined by the following rules:

λABB
k :=

{
λBB2
k ,

λBB2
k

λBB1
k

< τ,

λBB1
k , otherwise,

(2.13)

and

λABBmin
k :=

{
min{λBB2

j : j = max{1, k −ma}, ..., k},
λBB2
k

λBB1
k

< τ,

λBB1
k , otherwise,

(2.14)
where ma is a nonnegative integer and τ ∈ (0, 1).

The case when the curvature condition sTk−1yk−1 > 0 does not hold
leads to the fact that λk can be negative, so the search direction is
not the descent one. This drawback can be overcome by using the
safeguard [96]

λ̄k = min{λmax,max{λk, λmin}},
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where 0 < λmin << 1 << λmax < ∞. Thus, setting pk = −λ̄k∇f(xk)
it is ensured that the direction is descent and numerical stability can
be controlled.

2.2.2 Step Size

In line search methods, after the search direction pk is chosen at the
k-th iteration, the next task is to find a step size αk along the search
direction.

The exact step size is the one that represents the exact solution
of the problem (2.4). However, except in certain very special cases,
the exact step size is difficult or even impossible to find in practi-
cal computation. Therefore, the inexact line search rules considering
the value of the function and its derivatives along the direction pk
are constructed such that the global convergence of such methods is
ensured. The idea behind these methods is to find an approximate
solution of (2.4) which decreases the value of the objective function.
More precisely, the goal is to find αk such that

f(xk + αkpk) < f(xk).

The methods where the above condition is satisfied are called mono-
tone line search methods, while in nonmonotone line search methods,
this cannot be guaranteed.

Since we want to ensure the decrease of the function, the step sizes
should be small enough to get sufficient decrease and on the other
hand, long enough to make progress. The sufficient decrease condition
- often called the Armijo condition - is imposed in order to ensure the
convergence

f(xk + αkpk) ≤ f(xk) + ηαk(∇f(xk))
Tpk, (2.15)

where η ∈ (0, 1) and it is usually set to η = 10−4. Furthermore, the
second imposed condition - curvature condition - prevents the step size
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from becoming too small. It is stated as follows

(∇f(xk + αkpk))
Tpk ≥ c (∇f(xk))

T pk, (2.16)

where c is some constant that satisfies 0 < η < c < 1. The conditions
(2.15) and (2.16) together are called the Wolfe conditions.

The condition (2.16) can be written as Φ′(αk) ≥ Φ′(0), where
Φ(α) = f(xk +αpk). As there is no guarantee that the step length αk

which satisfies the Wolfe conditions is the local minimum of function
Φ, the curvature condition (2.16) could be modified in such a way to
force αk to lie in at least a broad neighborhood of a local minimizer or
stationary point of Φ. This can be done by imposing the strong Wolfe
conditions, which consist of the Armijo condition and

|(∇f(xk + αkpk))
Tpk| ≤ |c (∇f(xk))

T pk|,

instead of (2.16).
Now, with suitable assumptions over the function f it can be shown

there exist step sizes that satisfy the (strong) Wolfe conditions.

Lemma 2.2.2 Suppose that the function f : Rn → R is continuously
differentiable and let pk be a descent direction for the function f at
point xk. Also, suppose that f is bounded from below on {xk+αpk|α >
0}. Then if 0 < η < c < 1, there exist intervals of step lengths
satisfying the (strong) Wolfe conditions.

Notice that both versions of the second Wolfe condition are far too
costly to compute since multiple evaluations of the derivative of f at
each iteration are required. Because of that, this condition is usually
not checked directly and instead, a backtracking strategy is usually
employed. Algorithm 2 describes the backtracking strategy in more
detail. The main idea is to consider a decreasing sequence of possible
values of the step sizes {αj}, where αj+1 := βαj and 0 < β < 1, until
the suitable step size is found such that condition (2.15) is satisfied.
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Algorithm 2: Backtracking.

S0 Initialize 0 < α0, β ∈ (0, 1), η > 0, xk, pk.
Set j = 0.

S1 While αj > 0 and f(x+ αjpk) > f(xk) + ηαj∇f(xk)
Tpk

do

set αj+1 = βαj.

End

S2 Return αj.

2.3 Nonmonotone Strategy

At the end of this chapter, we will consider various nonmonotone tech-
niques. In monotone line search methods, as we have already men-
tioned, αk is chosen so that f(xk+1) < f(xk), while in nonmonotone
line search methods, some growth in the function value is allowed, i.e.,
a strict decrease of function value is not required in each iteration. In
that manner, the set of admissible search directions is significantly en-
larged and unnecessarily small steps at the beginning of the iterative
procedure are prevented. It has been shown that nonmonotone line
search methods especially outperform the monotone ones in the case
where the iterative sequence {xk} is trapped near a narrow curved
valley so that very short steps or zigzags occur [39, 40]. The non-
monotone methods could also be a better option for the stochastic
optimization problems allowing in general larger step sizes, which are
highly desirable when for example the Quasi-Newton or Newton meth-
ods are employed. Moreover, it is pointed out that the nonmonotone
line search could improve the likelihood of finding a global optimal
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solution and the rate of convergence [29].
Nonmonotone line search strategies are a well-developed class of

methods for classical optimization, where the dominant three non-
monotone rules are originally presented by Grippo et al. [39], Zhang
and Hager [103] and Li and Fukushima [69].

The first one was proposed for unconstrained optimization prob-
lems, where Newton’s method was considered [39]. Unlike (2.15), this
line search rule is given as follows

f(xk + αkpk) ≤ max
i∈[max{1,k−c},k]

f(xi) + ηαk(∇f(xk))
Tpk, (2.17)

where c ≥ 1, and η ∈ (0, 1), while pk has to be the descent direction.
Then, instead of using the maximum of previous function values,

in the second approach it is suggested that a convex combination of
previously computed function values should be used [103] such that
for a descent direction pk a step size αk satisfies the condition

f(xk + αkpk) ≤ Dk + ηαk(∇f(xk))
Tpk, (2.18)

where Dk is defined with D0 = f(x0) and

Dk+1 =
ηkqk
qk+1

Dk +
1

qk+1

f(xk+1),

where q0 = 1 and
qk+1 = ηkqk + 1

with ηk ∈ [ηmin, ηmax] and 0 ≤ ηmin ≤ ηmax ≤ 1.
Notice that the level of monotonicity is determined with parameter

ηk in the following way. If ηk = 1 for every k, then the algorithm treats
all previous function values equally, i.e.,

Dk =
1

k + 1

k∑
i=0

f(xi),
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while for ηk = 0 we have the standard Armijo rule. In [103] it is
emphasized that the best numerical results are obtained for the value
of ηk close to 1 when the iteration xk is far from the solution and
closer to 0 when we achieve neighborhood of the minimizer. The
numerical results for ηk = 0.85 are reported and it is shown that one
can provide satisfactory performance. Moreover, it has been proved
that Dk ≥ f(xk) so the line search rule is well defined.

Finally, the requirement that search direction pk has to be descent,
as in the above-stated nonmonotone line search rules (2.17) and (2.18),
can be relaxed. In [69] a new line search rule for arbitrary search
direction pk is proposed for solving the system of nonlinear equations
F (x) = 0, F : Rn → Rn. 2The rule can be expressed as

||F (xk + αkpk)|| ≤ ||F (xk)|| − σ1||αkpk||2 + εk||F (xk)||,

where σ1 > 0 and the following property of the parameter sequence
{εk}n∈N is assumed

εk > 0,
∑
k

εk = ε < ∞.

This nonmonotone rule is successfully applied in many papers for de-
terministic and stochastic problems.

2Notice that for f(x) = ||F (x)|| or f(x) = ||F (x)||2, the problems min f(x) and
F (x) = 0 are equivalent.



Chapter 3

Nonsmooth Optimization
Methods

Nonsmooth optimization problems appear as important mathemati-
cal models today, starting with models of natural phenomena that
exhibit sudden changes, shape optimization, to hinge loss functions
in machine learning and deep neural networks. In practice, solving
a nonsmooth convex problem tends to be more challenging usually
more difficult and costly than a smooth one. Several approaches for
nonsmooth problems involving high-dimensional data are available in
the literature, starting with subgradient methods, cutting-plane, and
bundle methods, gradient sampling, etc. Due to the general nature of
the nonsmooth property, which requires employing subgradient direc-
tions and various convergence analysis concepts, the number of open
problems is still very large. The purpose of this chapter is to give a
brief overview of the optimization methods that can be used to solve
nonsmooth optimization problems.
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3.1 Subgradient Methods
The subgradient method was first introduced in the mid-sixties by
N. Z. Shor, [93], and since then it has been extensively studied, [13,
31, 50, 85, 88]. The main advantage of this method is its simplicity
and ease of implementation for a wide range of problems where the
subdifferential of the nondifferentiable convex objective function can
be easily computed. The basic idea is very similar to one that is
used in the gradient descent algorithm for differentiable functions, but
with some notable exceptions. First, the subgradient method can be
applied directly to nondifferentiable functions. The next difference
is in the step size strategy. While in the gradient method, the step
sizes are usually chosen via an exact or approximate line search, in
the subgradient method they are in most cases fixed in advance. And
finally, unlike the gradient method, the subgradient method is not
a descent method, i.e., the function value can increase at the new
iteration.

3.1.1 Subgradient and Optimality Condition

Let us start with recalling some definitions that will be used through-
out this thesis. The required concepts, such as subgradient and opti-
mality conditions, were introduced by T.R. Rockafellar [88].

Definition 3.1.1 A vector g ∈ Rn is a subgradient of f : D → R,
D ⊆ Rn, at x ∈ D if for all z ∈ D,

f(z) ≥ f(x) + gT (z − x).

If f is convex and differentiable, then its gradient at x is a subgradient.

Definition 3.1.2 The set of subgradients of f at the point x is called
the subdifferential of f at x and it is denoted by

∂f(x) =
{
g ∈ Rn|(∀z ∈ Rn)f(z) ≥ f(x) + gT (z − x)

}
.
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A function f is called subdifferentiable at x if there exists at least one
subgradient at x. A function f is called subdifferentiable on D if it is
subdifferentiable at all x ∈ D.

Definition 3.1.3 The ε-subdifferential of function f at point x is de-
fined as

∂εf(x) := conv (∂f(B(x, ε))) .

Notice that the subdifferential ∂f(x) is always closed and convex set,
even if f is not convex, due to the fact that it is the intersection of an
infinite set of halfspaces

∂f(x) = ∩z∈D{g|f(z) ≥ f(x) + gT (z − x)}.

In addition, if f is continuous at x, then the subdifferential ∂f(x) is
bounded.

Proposition 3.1.1 Let f : Rn → R be a convex function. Then, for
all x ∈ Rn the set ∂f(x) is a nonempty, convex, compact subset of
Rn. In addition, f is L-Lipschitz function on S ⊂ Rn if and only if
||g|| ≤ L for all g ∈ ∂f(x) and x ∈ S.

Lemma 3.1.1 Suppose f(x) =
∑N

i=1 fi(x), where f1, . . . , fN are con-
vex functions. Then we have

∂f(x) =
N∑
i=1

∂fi(x).

This property can be extended to infinite-sums, integrals, and expec-
tations (provided they exist).

A point x∗ is a minimizer of a function f : D → R, D ⊆ Rn, if and
only if f is subdifferentiable at x∗ and

0 ∈ ∂f(x∗),
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i.e., g = 0 is a subgradient of f at x∗. This follows directly from the fact
that f(x) ≥ f(x∗) for all x ∈ D. And clearly if f is subdifferentiable
at x∗ with 0 ∈ ∂f(x∗), then

f(x) ≥ f(x∗) + 0T (x− x∗) = f(x∗) for all x.

Notice that 0 ∈ ∂f(x∗) reduces to ∇f(x∗) = 0 if convex function f is
differentiable at x∗.

3.1.2 The Method

The idea behind the subgradient method is to generalize the classical
gradient method to nonsmooth functions f : Rn → R, such that start-
ing from an initial point x0, at each step k we choose gk ∈ ∂f(xk) and
set

xk+1 = xk − αkgk.

However, generalizing the gradient method is not straightforward, as
the subgradient gk ∈ ∂f(xk) does not have to be uniquely defined,
even for convex f , and the choice of the vector −gk as search direction
does not guarantee descent in f . Thus, this method may take steps
that increase the value of function f .

Subgradient Descent

Let us start by showing how we can compute the direction of the
steepest descent of a convex nonsmooth function. It is known that
in the case when x is not a minimizer of f , the subdifferential ∂f(x)
always contains a vector g such that −g is a descent direction for f
[100]. Let us denote by gmin the vector that has the smallest norm of all
the vectors in ∂f(x). Then the vector −gmin represents the direction
of steepest descent for f at x. The vector gmin exists because ∂f(x) is
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nonempty and compact, and it can be expressed in the following way

gmin := argmin
g∈∂f(x)

||g||. (3.1)

Proposition 3.1.2 [100] For a convex function f : D → R, D ⊆ Rn,
and x ∈ D that is not a minimizer of f , the vector −gmin defined in
(3.1) is a descent direction at x.

Thus, we get a natural algorithm for minimizing convex, nons-
mooth functions computing the minimum norm element of the subdif-
ferential, and searching along the negative of this direction. However,
computing the minimum norm element might be prohibitively expen-
sive.

In the following, we will show that an algorithm that simply follows
arbitrary subgradients can converge, under appropriate selections of
steplengths. However, the convergence of these methods is quite slow,
both in theory and practice.

Step Sizes

The classical subgradient method employs a predefined sequence of
step sizes, which is a very different selection strategy with respect to
the standard gradient method. Many different types of step size rules
are used, where standard choices include a constant step size and also
sequences that converge to zero sublinearly. Let us list only the basic
possibilities for {αk}.

1) Constant step size

a) αk = α is a positive constant, independent of k.

b) αk =
γ

||gk||
, where γ > 0. This means that the length of

each step is constant, i.e., ||xk+1 − xk|| = γ.
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2) Square summable but not summable
The step sizes satisfy

αk ≥ 0,
∞∑
k=1

α2
k < ∞,

∞∑
k=1

αk = ∞.

3) Nonsummable diminishing

a) The step sizes satisfy

αk ≥ 0, lim
k→∞

αk = 0,
∞∑
k=1

αk = ∞.

Step sizes that satisfy this condition are called diminishing
step size rules.

b) The step sizes are chosen as

αk =
γk

||gk||
,

where

γk ≥ 0, lim
k→∞

γk = 0,
∞∑
k=1

γk = ∞.

Diminishing step size rules guarantee convergence to the optimal
value of f as the number of iterations k goes to infinity, while for con-
stant step sizes method yields a suboptimal function value with the
approximation error. Now, we give convergence results and conver-
gence rate estimates for the method using the above-defined stepsize
rules.
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Convergence Analysis

For the convergence analysis of the subgradient method, it is assumed
that ||g|| ≤ L, L > 0, for all g ∈ ∂f(x) and all x. Notice that this
assumption implies that f must be Lipschitz with constant L. Also,
denote by x∗ a minimizer of f and define the distance between an
initial point and the minimizer by R, i.e., R := ||x1−x∗||. In addition,
as we have already pointed out that this method may take steps that
increase the value of f , we need to keep track of the best point so far,
i.e., the one with the smallest function value, so we define

f best
k = min{f(x1), . . . , f(xk)}. (3.2)

While in the standard gradient descent method the convergence
proof is based on the function value decreasing at each step, in the
subgradient method the key quantity is represented by the Euclidean
distance to the optimal set. So, we have

||xk+1 − x∗||22 = ||xk − αkgk − x∗||2
= ||xk − x∗||2 − 2αkg

T
k (xk − x∗) + α2

k||gk||2
≤ ||xk − x∗||2 − 2αk (f(xk)− f ∗) + α2

k||gk||2,
where f ∗ = f(x∗). Moreover, applying the inequality above recursively,
as well as definition (3.2) and the stated assumptions, one can show
that

f best
k − f ∗ ≤ R2 +

∑k
i=1 α

2
i ||gi||2

2
∑k

i=1 αi

,

i.e.,

f best
k − f ∗ ≤ R2 + L2

∑k
i=1 α

2
i

2
∑k

i=1 αi

. (3.3)

Finally, from inequality (3.3) the convergence results for different
step size rules can be obtained.
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1) Constant step size

a) For αk = α we have

fk
best − f ∗ ≤ R2 + L2α2k

2αk
,

so
lim
k→∞

f best
k ≤ f ∗ +

L2α

2
,

i.e., f best
k converges to L2α

2
-vicinity of the optimal value.

b) For αk =
γ

||gk||
, γ > 0, we have

lim
k→∞

f best
k ≤ f ∗ +

Lγ

2
,

i.e., f best
k converges to Lγ

2
-vicinity of the optimal value.

2) Square summable but not summable
For the step sizes which satisfy

αk ≥ 0,
∞∑
k=1

α2
k < ∞,

∞∑
k=1

αk = ∞, (3.4)

we have

f
(k)
best − f ∗ ≤ R2 + L2

∑k
i=1 α

2
i

2
∑k

i=1 αi

,

so it holds
lim
k→∞

f best
k = f ∗.
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3) Nonsummable diminishing

a) If the step sizes satisfy

αk ≥ 0, lim
k→∞

αk = 0,
∞∑
k=1

αk = ∞,

then
lim
k→∞

f best
k = f ∗.

b) If the step sizes are chosen as αk =
γk

||gk||
, where

γk ≥ 0, lim
k→∞

γk = 0,
∞∑
k=1

γk = ∞,

then
lim
k→∞

f best
k = f ∗.

3.2 Cutting-Plane Methods
Another nonsmooth optimization method is the so-called cutting-
plane method. This method was introduced by J.E. Kelley, [48]. While
the simplicity of the subgradient algorithm comes at the price of ignor-
ing past information, the idea of this method is to use this information
obtained by an oracle in order to build a model of the function f itself.

The following optimization problem is considered

min
x∈Ω

f(x),

where Ω ⊆ Rn is a nonempty, closed and convex set, and f : Rn → R
is a convex function. The cutting-plane method relays on the approx-
imation of the objective function from below. More precisely, it is
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based on the following observation: from convexity, we know that

f(x) ≥ f(y) + gT (x− y), ∀x, y,

so we can approximate the objective function from below by a piece-
wise affine function

f̄k(x) = max
j=0,...,k

(f(xj) + gTj (x− xj)), (3.5)

where xk represents the current iteration, xj, j = 0, . . . , k − 1, are the
auxiliary points, it is assumed that for each of them, a subgradient
gj ∈ ∂f(xj) is available, and f(xj) + gTj (x − xj) corresponds to a
cutting-plane. Then, for all x ∈ Ω it holds

f(x) ≥ f̄k(x) = max
j=0,...,k

(f(xj) + gTj (x− xj)).

In order to get a new iteration, we can replace f by its approximation
f̄k and solve the following problem

min
x∈Ω

max
j=0,...,k

(f(xj) + gTj (x− xj))− f(xk). (3.6)

Furthermore, due to the subtraction of the function value f(xk)
from the objective function, one is allowed to reformulate this non-
differentiable optimization problem (3.6) into a linear problem with
constraints

min
v∈R, xk+p∈Ω

v

s.t. v ≥ −aj + gTj p,∀j = 0, . . . , k,

where p = x− xk and the linearization error is given by aj := f(xk)−
f(xj)− gTj (xk −xj). Starting with x0 ∈ Ω, the update is the following

xk+1 = xk + p.
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Notice that, obtaining a more precise model such that holds f̄k(x) ≤
f̄k+1(x), can be achieved by adding the corresponding cutting plane
to the approximation f̄k(x) given by (3.5). Furthermore, it is worth
noting that in addition to obtaining an estimate xk+1 of the optimal
point x∗, we get a lower bound fk+1(xk+1) on the optimal value f(x∗)
as well. It is reasonable to terminate the process when ak+1 ≤ ε, i.e.,
f(xk+1)− fk+1(xk+1) ≤ ε, which guarantees that f(xk+1) ≤ f(x∗)+ ε.
So, the advantage of the cutting-plane method compared to the sub-
gradient method is that the model (3.5) provides a stopping criterion
(based on the linearization error), which did not exist for the subgra-
dient method.

However, the cutting-plane method may converge slowly in prac-
tice as subsequent solutions can be very distant, exhibiting a zig-zag
behavior. Therefore, many cutting planes do not actually contribute
to the approximation of f around the optimum x∗. To overcome this
shortage, bundle methods were developed in order to reduce this be-
havior by adding a stabilization term to (3.5) [50].

3.3 Bundle Methods

Another important class of nonsmooth optimization methods, which
can be seen as a stabilization of the cutting-plane method, are bun-
dle methods. They attempt to combine the practical advantages of
the cutting-plane method with the theoretical strengths of a prox-
imal point method. The main difference refers to adding an extra
point called the center, x̄k, to the bundle of information. The same
piecewise-linear model for the function (3.5) is used, but without solv-
ing a linear problem at each iteration. Instead, the next iteration
is computed by the Moreau-Yosida regularization for f̄k at x̄k in the
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following way

xk+1 = argmin
x∈Ω

f̄k(x) +
µk

2
||x− x̄k||2. (3.7)

The quadratic term in the relation (3.7) serves the purpose of stabiliz-
ing the cutting-plane method. More precisely, it makes the next itera-
tion closer to the current center xk by avoiding drastic movements as
in the case of cutting planes. The parameter µk controls the trade-off
between minimizing f̄ and staying close to a point x̄k which is known
to be good. These methods offer an advantage over classical subgra-
dient methods as they use more information about the local behavior
of the function. This is achieved by approximating the subdifferential
of the objective function using a bundle of subgradients from previous
iterations. Thus, instead of using only one arbitrary subgradient at
each point, the idea is to make an approximation of the whole subdi-
fferential of the objective function. Moreover, it is possible to define
a stopping criterion, which is an additional advantage compared to
subgradient methods. However, the drawback of these methods is the
requirement of solving at least one quadratic programming subprob-
lem in each iteration, which can be time-consuming, especially for
large-scale problems.

A comprehensive review of the history and development of bundle
methods can be found in [97]. A great number of bundle methods in
combination with Newton-type methods [73] and Trust Region meth-
ods [1] have been developed. The modifications of bundle methods
have been used for nonconvex problems [80], constrained problems
[89], and multi-criteria problems [79]. Proximal bundle methods (see
for example [42, 64, 75]) are based on the bundle methodology and
have the ability to provide exact solutions even if most of the time
the available information is inaccurate, unlike their forerunner vari-
ants. The proximal bundle method takes ideas from the subgradient
method and the proximal method [47, 83]. The first one can be seen
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as an extension of gradient methods in smooth optimization and the
second one is a variant of the proximal point method, which minimizes
the original function plus a quadratic part.

3.4 Gradient Sampling Methods

One of the key characteristics of gradient sampling (GS) methods,
which represents some of the latest approaches in nonsmooth opti-
mization, is that no subgradient information is required. Thus, this is
simple descent method for solving nonsmooth, nonconvex optimization
problems with a solid theoretical foundation and it has been employed
in a wide variety of applications. The underlying motivation of this
method is that some nonsmooth objective functions f : Rn → R (for
example locally Lipschitz continuous functions) are differentiable al-
most everywhere. So, f is differentiable at a randomly generated point
x ∈ Rn with probability one. In other words, an algorithm can ob-
tain, as in the case when f is a smooth function, the objective function
value f(x) and the gradient ∇f(x), instead of requiring an oracle to
compute a subgradient.

The original method was first introduced by J.V. Burke, A.S.
Lewis, and M.L. Overton in [18]. They considered a locally Lipschitz
function f : Rn → R, which is continuously differentiable on an open
dense subset D ⊂ Rn, and has bounded level sets. At each iteration,
the gradients of f at the current iteration xk and at m ≥ n+1 points
from the B(xk, ε) are computed in order to find an optimal descent
direction - pk. The next step is the computation of a step size - αk.
Thus, employing the Armijo line search one can calculate the step size
and obtain the next iteration candidate, xk+1 = xk + αkpk, such that
the condition of the sufficient descent holds. In the case xk+1 /∈ D, a
new, slightly perturbed point from D is chosen such that the Armijo
condition is preserved.
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One can distinguish two convergence results regarding the ε ra-
dius. In the first one, for the constant radius ε, it can be shown with
probability 1 that the GS algorithm generates a sequence with an ac-
cumulation point, which is ε-stationary (i.e., 0 ∈ ∂εf(x)). In another
case, where ε is dynamically reducing, if the algorithm converges to
a point, the limit of the sequence is a stationary point for f with
probability 1. Another important reference on this topic is [51], where
the stronger convergence results of the gradient sampling method can
be found. It has been shown that every accumulation point gener-
ated by the GS algorithm is ε-stationary, almost always. While in the
case where ε is dynamically reduced, every accumulation point of an
arbitrary subsequence is stationary, without the assumption that the
whole sequence converges.

In conclusion, the GS method offers a valuable approach to op-
timization problems characterized by nonsmooth and nonconvex ob-
jective functions, where traditional gradient-based methods may face
challenges. By incorporating gradient information and random sam-
pling, the method enables efficient exploration of the search space and
can yield an improved approximate solution. However, it is essential
to consider some limitations of the method. These include poten-
tial slower convergence rates, sensitivity to sampling strategies, the
need for careful selection of sample sizes, dependence on initialization,
limited theoretical guarantees, and the requirement for tuning param-
eters. Despite these drawbacks, the GS method remains a promising
tool for a wide range of optimization applications. Thus, there ex-
ists a considerable body of literature related to the GS method. For
example, an approach for nonconvex, nonsmooth constrained prob-
lems is considered in [24], while in [25] an adaptive gradient sampling
approach which reduces significantly the number of required gradi-
ent evaluations is proposed. Moreover, in [26] the adaptive gradient
sampling idea is combined with quasi-Newton methods.
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3.5 BFGS Method
The famous BFGS method for minimization of smooth convex func-
tions has been popular for decades due to its superior practical per-
formance [82]. Despite the fact that the BFGS direction generated
at a nonsmooth point is not necessarily a descent direction, recent
theoretical developments have revealed that it can also be an effective
general-purpose tool for nonsmooth optimization [41, 65, 66, 67, 102].

Now, we give an overview of results from [102] that will be used in
the algorithms introduced later in Chapters 5 and 6.

Let f : Rn → R be a nonsmooth convex function and recall that

∂f(x) = {g ∈ Rn : f(y) ≥ f(x) + gT (y − x), y ∈ Rn}

is the subdifferential of f at a point x ∈ Rn, where the vectors
g ∈ ∂f(x) represent subgradients. Clearly, if f is a differentiable
convex function then ∂f(x) = ∇f(x). Moreover, recall that a function
f attains its global minimum at x∗ ∈ Rn if and only if 0 ∈ ∂f(x∗).

The BFGS algorithm defined in [102] relays on the descent direc-
tion property defined for nonsmooth functions as follows. The direc-
tion p is a descent direction for f at x ∈ Rn if

gTp < 0 for all g ∈ ∂f(x),

or equivalently, if
sup

g∈∂f(x)
gTp < 0.

However, generating such a direction is not an easy task in general.
Let us now briefly recall the algorithm for finding the descent di-

rection presented in [102, Algorithm 2, p. 1155]. The pseudo-quadratic
model of f at x ∈ Rn is given by

Q(p) = f(x) + Y (p),
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where
Y (p) =

1

2
pTB−1p+ sup

g∈∂f(x)
gTp,

and B ∈ Rn×n is a nonsingular matrix. The linear part in the above
model is supg∈∂f(x) g

Tp and it is assumed that an oracle for computing
the supremum is available.

The iterative procedure, represented through Algorithm 3, guar-
antees to find a quasi-Newton descent direction p, assuming an
oracle that supplies supg∈∂f(x) g

Tp for a given direction. The input
parameters are a subgradient g̃0 ∈ ∂f(x), a direction-finding tolerance
ϵ ≥ 0, iteration bound imax ∈ N, matrix B from the quadratic model
and an oracle to calculate arg supg∈∂f(x) g

Tp for any given x and p.

The initial subgradient g̃0 ∈ ∂f(x) in Algorithm 3 is chosen arbi-
trarily and it is assumed that g̃i+1 = arg supg∈∂f(x) g

Tpi is provided by
an oracle. The following Lemma ensures that if the point x is not opti-
mal, then there exists a direction-finding tolerance ϵ ≥ 0 for Algorithm
3 such that the returned search direction p is descent direction.

Lemma 3.5.1 [102, Lemma 3, p. 1187] Let B ∈ Rn×n be a symmet-
ric positive definite matrix with all eigenvalues larger than m > 0. If
the point x is not stationary and if the number of iterations imax in
Algorithm 3 is unbounded, then there exists a tolerance ϵ ≥ 0 such that
the descent direction

p = −Bg, g ∈ ∂f(x)

returned by Algorithm 3 satisfies

sup
g∈∂f(x)

gTp < 0.

The descent direction p generated through Algorithm 3 satisfies
the inequality below under the conditions stated in Lemma 3.5.1 [102,
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Algorithm 3: p =descentDirection(g̃0 ∈ ∂f(x), ϵ , imax, B)

S0 Initialize i = 0, g0 = g̃0, p0 = −Bg̃0.

S1 Calculate the next subgradient g̃1 = arg sup
g∈∂f(x)

gTp0.

S2 Compute ϵ0 := pT0 g̃1 − pT0 g0.

S3 While
(
g̃Ti+1pi > 0 or ϵ0 > ϵ

)
and ϵi > 0 and i < imax

do

µ∗ := min

[
1,

(gi − g̃i+1)
TBgi

(gi − g̃i+1)TB(gi − g̃i+1)

]
gi+1 = (1− µ∗)gi + µ∗g̃i+1

pi+1 = (1− µ∗)pi − µ∗Bg̃i+1

g̃i+2 = arg sup
g∈∂f(x)

gTpi+1

ϵi+1 = min
j≤i+1

[
pTj g̃j+1 −

1

2

(
pTj gj + pTi+1gi+1

)]
i := i+ 1

End

S4 Compute p = argminj≤i Y (pj).

S5 If supg∈∂f(x) g
Tp < 0 then return p,

else return failure.
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Corollary 4, p. 1188],

sup
g∈f(x)

gTp ≤ −1

2
gTBg ≤ −m

2
||g||2 < 0. (3.8)

Furthermore, the following also holds.

Theorem 3.5.1 [102] Let p be a descent direction at an iteration x.
If φ(α) := f(x + αp) is bounded from below, then there exists α′ > 0
such that the subgradient Armijo condition

f(x+ αp) ≤ f(x) + c1α sup
g∈∂f(x)

gTp,

holds for all α ∈ [0, α′], where 0 < c1 < 1.



Chapter 4

Minimization of Expected
Value Function

In many optimization problems, the objective function cannot be com-
puted exactly due to some kind of random noise. A typical example
would be the minimization of a function stated in the form of mathe-
matical expectation given that the exact analytical expression for the
expectation is rarely available and, even if it is available, it is not com-
putable exactly. Thus one has to approximate the objective function
with some sample-based approximation.

The importance of the stochastic optimization problem arising
from various scientific fields generated a large amount of literature
in recent years. A number of important problems can be stated in
this form - starting from data analytics with huge data sets which
require working with subsamples or machine learning problems with
online data sets that continually increase and change [20], to simu-
lations of natural and industrial processes with a number of random
parameters [19, 76, 78, 98].

Within this chapter, we are going to set the framework for the main
subject of this thesis - the minimization of the expected value function,
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where we will actually consider the stochastic optimization problems
with underlying randomness rather than the stochastic problems with
intentionally imposed noise. In order to do that, first in Section 4.1
we will present in detail the optimization problem and then provide
some necessary assumptions for algorithms used to solve the problem
under consideration, which will be described later in Chapters 5 and
6. In Section 4.2 we then focus on the approximation of the original
problem using Sample Average Approximation (SAA) and the quality
of the approximate solution thus obtained.

4.1 Problem Description

Let us begin by introducing the following constrained optimization
problem

min
x∈Ω

f(x) = E [F (x, ξ)] , (4.1)

where Ω ⊂ Rn is a convex, closed set, F : Rn ×Rm → R is continuous
and convex function with respect to x, bounded from below, ξ : A →
Rm is random vector and (A,F, P ) is a probability space. Notice that
F is locally Lipschitz as a consequence of convexity [4] but possibly
nonsmooth. Thus, the main issues that arise in iterative methods for
solving (4.1) are the approximation of the objective function and the
choice of search directions. The step size is a challenging issue in
stochastic analysis as well and it was a subject of research in many
papers, [31, 36, 43, 49, 84, 90]. Line search methods, which are an
important tool in deterministic optimization, are not easily extended
to the stochastic case due to the mutual dependence of step size and
search direction, which are both random variables in the stochastic
framework. An important study on this topic is given in [84] where the
approximations of the objective function and its gradient are assumed
to be good enough with a fixed high probability. Under these settings,
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the complexity analysis in terms of the expected number of iterations
to reach a near-optimal solution is provided. In [27] a second-order
direction is considered but an additional sampling is used in Armijo-
like condition to overcome the bias issue.

Assumptions

Now, we will introduce the standard assumptions on the objective
function, which summarize the problem properties.

Assumption A 1 Assume that functions fi(x) = F (x, ξi), i =
1, 2, . . . , are continuous, convex, and bounded from below with a con-
stant C.

Assumption A 2 Assume that the function F is dominated by a P-
integrable function on any compact subset of Rn.

The previous Assumption A2 is satisfied if there exists
a nonnegative function F̄ (ξ) such that E

[
F̄ (ξ)

]
< ∞ and

P
(
|F (x, ξ)| ≤ F̄ (ξ)

)
=1 for every x ∈ Ω. Notice that this condition

holds if the function F is bounded with some finite constant F̄ , i.e., if
|F (x, ξ)| ≤ F̄ for every x ∈ Ω and almost every ξ.

4.2 Sample Average Approximation
Due to the difficulty in computing the mathematical expectation in
general, the most common approach is to approximate the original
objective function f(x) by applying the SAA function. SAA method
is an approach for solving stochastic optimization problems, where the
expected objective function of the stochastic problem is approximated
by a sample average estimate derived from a random sample. This
random sample can be viewed as historical data of N observations of
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ξ, or it can be generated by Monte Carlo sampling techniques. More
precisely, for a given independent and identically distributed (i.i.d.)
sample vectors ξi, i ∈ N, the SAA approximate objective function is
defined as

fN(x) =
1

N

∑
i∈N

fi(x), (4.2)

where fi(x) = F (x, ξi) and N = |N| determines the size of a sample
used for approximation. The sample vectors ξi, i ∈ N are assumed
to be i.i.d. and the sample size N determines the accuracy of the
approximation (4.2), [92]. Naturally, larger N implies higher accuracy
of the approximate function fN, but makes any optimization algorithm
more costly as the cost of computing fN, as well as search directions,
increases with N. Even if the original problem is already in the SAA
form, i.e., if we are dealing with finite-sum problems, the costs of
employing the full sample at each iteration can be large, and thus
variable sample size (VSS) strategies are often applied. There is a
vast literature dealing with VSS methods for SAA approximations,
[6, 7, 44, 54, 52, 63], which range from simple heuristics to complex
schemes, all of them with the idea of using cheaper, lower accuracy
approximations of the objective function whenever possible, in order
to save the computational effort. In the following two chapters, we
will be concerned with the directions for choosing sample size N such
that the solution of the SAA problem provides a good approximation
of the original problem solution.

The second issue one needs to address is the choice of search direc-
tions. In the case of smooth problems we can choose between relatively
slow but cheap first-order methods or more elaborate and more costly
second-order methods, depending on a particular problem structure,
needed accuracy, etc. In the case of nonsmooth problems, as we have
already mentioned in the previous chapter, the gradient is generally
replaced by a subgradient or more elaborate schemes like gradient
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sampling, [25, 51], bundle methods, [73], proximal methods, [64], and
so on. A number of recent papers deal with second-order search direc-
tions [2, 3, 46].

An important special case of a constrained optimization problem
(4.1) that we will consider is when Ω = Rn. Then, this is actually an
unconstrained optimization problem with the objective function in the
form of mathematical expectation. Let us formally state this problem
that we will consider in Chapter 6

min
x

f(x) = E [F (x, ξ)] . (4.3)

where F : Rn × Rm → R is continuous and convex function with
respect to x, bounded from below, ξ : Ω → Rm is random vector and
(A,F, P ) is probability space, as we have stated before. Convexity
implies that F is locally Lipschitz, [4] and no additional smoothness
assumption is imposed.

Also, we will be interested in the problem of finite-sum, as a special
case of problem (4.2), which can be expressed in the following form

min
x∈Ω

fN(x) =
1

N

N∑
i=1

fi(x), (4.4)

where the functions fi(x) = F (x, ξi) are again continuous, convex and
possibly nonsmooth.

4.2.1 SAA error

SAA is a powerful tool for solving optimization problems given in
the form (4.1) and (4.3), as it can provide a good approximation of
the expected value of the function without calculating it exactly. On
the other hand, a solution of the SAA problem (4.2) serves only as
an approximate solution of the original problem, thus the main con-
cern is the quality measure of SAA solutions. More precisely, we are
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interested in the quality of the solution of the SAA problem (4.2)
and the needed conditions for achieving the convergence to the opti-
mal solution of the original problem. It has been shown that under
mild conditions an optimal solution and the optimal value of the SAA
problem converge exponentially fast to their true counterparts as the
sample size N increases. Comprehensive material about the statistical
properties of the SAA estimators can be found in [92].

For well-defined and finite function f(x) = E [F (x, ξ)] and random
variables ξi, i = 1, 2, . . . with the same distribution as ξ the function
fN(x) =

1
N

∑
i∈N F (x, ξi) is also a random variable since it depends on

a random sample, where the sample used to approximate the objective
function is denoted by N, while N denotes its cardinality. Moreover,
if the sample is i.i.d., then by the (strong) Law of Large Numbers the
almost sure convergence of fN(x) is obtained. More precisely, for every
x it holds

lim
N→∞

fN(x) = f(x) a.s. (4.5)

This result represents the consistency of the SAA estimator, which is
important because it gives a certain assurance that the error of the
estimation approaches zero in the limit a.s. as the sample size grows
to infinity. On the other hand, fN is unbiased estimator of f(x) due
to

E [fN(x)] =
1

N

∑
i∈N

E [F (x, ξi)] =
1

N

∑
i∈N

E [F (x, ξ)] = f(x).

Also, the variance can be expressed in the following way

D [fN(x)] =
1

N2

∑
i∈N

D [F (x, ξi)] =
1

N2

∑
i∈N

D [F (x, ξ)] =
1

N
D [F (x, ξ)] .

The next theorem provides a stronger result than (4.5) - the uni-
form convergence (Uniform Law of Large Numbers - ULLN).
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Theorem 4.2.1 [92] Suppose that S is nonempty, compact subset of
Rn and that for any x ∈ S the function F (·, ξ) is continuous at x for al-
most every ξ. Furthermore, suppose that the sample ξ1, . . . , ξN is i.i.d.
and that the function F (x, ξ), x ∈ S, is dominated by an integrable
function. Then f(x) = E [F (x, ξ)] is finite valued and continuous on
S and

lim
N→∞

fN(x) = f(x) a.s. uniformly on S,

i.e.,
lim

N→∞
sup
x∈S

|fN(x)− f(x)| = 0 a.s. (4.6)

For the problems (4.1) and (4.3) notice that Assumption A1 implies
that f is a convex and continuous function as well as fN for any given
N. Moreover, if the conditions of the previous theorem are satisfied,
we have that fN a.s. converges uniformly to f on any compact subset
S ⊆ Rn. Also, notice that supx∈S |fN(x) − f(x)| = 0 holds trivially
if the sample is finite and the full sample is eventually achieved and
retained.

Two approaches are distinguished depending on the sample size.
In the first one, we have a finite sample size and it is assumed to be
determined before the process of optimization starts. The second one
deals with unbounded sample size. In both cases, the main issue is
how to change the sample size Nk during the optimization process,
i.e., across the iterations. In order to define the rule for updating the
sample size, we introduce the SAA error measure h(Nk), i.e., a proxy
for |f(xk)− fNk

(xk)|, as follows.
In the finite-sum case with the full sample size Nmax < ∞ we define

h(Nk) =
Nmax −Nk

Nmax

, (4.7)

while in general (unbounded sample size) case we define

h(Nk) =
1

Nk

. (4.8)
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Notice that in both cases we have that function h : N → [0, 1] is
monotonically decreasing and strictly positive if the full sample is
not attained. Moreover, in the finite-sum case we have h(Nk) = 0
if and only if Nk = Nmax, while in unbounded sample case we have
limNk→∞ h(Nk) = 0. Other choices are eligible as well, but we will keep
these for simplicity.

In addition to the sample size, it is important to point out that
there is also a difference in how the new sample is chosen, in terms
of whether it contains the previous one or represents a different re-
alization of the sample. In the case where we are dealing with a
priory realized sample, the cumulative sample means that at each it-
eration a new sample is appended to the previous one. On the other
hand, in the VSS methods one can use different sample realizations
in each iteration, i.e., the samples in two consecutive iterations are
independent-noncumulative.

Recall that consistency of fN, i.e., almost sure convergence of fN(x)
towards f(x), is achieved if the sample is i.i.d. and the considered
functions are well defined and finite. In [44] it is shown that the
condition on the identically distributed sample can be relaxed if the
sample size increases at a certain rate. More precisely, the sequence
of sample sizes {Nk} should increase such that one of the following
properties is satisfied:

∞∑
k=1

αNk < ∞ for all α ∈ (0, 1) (4.9)

or
∞∑
k=1

1

Nk

< ∞.

The considered condition (4.9) holds for Nk ≥ k for example. However,
too fast an increase in the sample size can result in an inefficient
algorithm. Therefore, the consistency estimator, more precisely, the
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upper bound of the error |fNk
(x) − f(x)|, plays an important role in

VSS methods.
For the case of cumulative i.i.d samples, one possible bound derived

in [44] is

|fNk
(x)− f(x)| ≤ C

√
ln(lnNk)

Nk

, (4.10)

where C = C(x) is positive parameter related to the variance of func-
tion F (x, ξ). On the other hand, in the case of a noncumulative sample,
then if the sample size increases fast enough, i.e.,

Nk ≥ akb for a > 0, b > 2,

it follows
|fNk

(x)− f(x)| ≤ C
lnNk

Nk

for k large enough, where C = C(x) is again a positive parameter
related to the variance of function F (x, ξ).



Chapter 5

Nonsmooth Methods with
Variable Sample Size for
Constrained Optimization
Problems

Within this chapter, we consider constrained optimization problems
with a nonsmooth objective function in the form of a mathematical
expectation, previously defined as (4.1). The framework that uses
SAA to approximate the objective function, which is either unavail-
able or too costly to compute, is proposed and this part of the thesis
represents the original contribution [56, 62]. The proposed algorithms
combine a SAA subgradient with the spectral coefficient in order to
find a suitable direction that improves the performance of the first-
order method, as shown by numerical results in Sections 5.1.3 and
5.2.3. The step sizes are chosen from the predefined interval and the
almost sure convergence of the methods is proved under the standard
assumptions in a stochastic environment.

Two approaches are distinguished within this chapter depending
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on the variable sample size strategy. Although finding a good way
of varying the sample size during the optimization process may affect
the algorithm a lot, a suitable sample size strategy will not be the
main concern in Section 5.1, where the first Algorithm SPS (Spec-
tral Projected Subgradient) is proposed [56]. In order to prove a.s.
convergence it will be assumed only that the sample size tends to in-
finity. The problem of determining the optimal VSS strategy in this
framework is considered in Algorithm AN-SPS (Adaptive Sample Size
Nonmonotone Line Search Spectral Projected Subgradient) proposed
in Section 5.2 [62].

We propose a framework for solving nonsmooth constrained op-
timization problem (4.1) assuming that the feasible set Ω is easy to
project on (for example a box or a ball in Rn). This allows us to apply
a method of the Spectral Projected Gradient (SPG) type.

5.1 Spectral Projected Subgradient
Method

Spectral Projected Gradient (SPG) is a well-developed method with
an abundance of literature covering theory and applications. For
example, SPG method for finite-sum problems has been studied in
[9, 95]. In [95] SPG is used in combination with the stochastic gradi-
ent method and convergence is proved under the assumption that the
full gradient is computed in every m iterations. In [9], the subsampled
spectral gradient methods are analyzed and the effects of the choice
of spectral coefficient are investigated. In [37] the SPG direction is
employed within Inexact Restoration framework to address nonlinear
optimization problems with nonconvex constraints. The SPG methods
for problems with continuously differentiable objective function given
in the form of mathematical expectation have been analyzed in [54].
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The method proposed in this part of the thesis is a subgradient
method, but it differs in several ways from the methods available in
the literature. We propose a way to plug VSS-SPG ideas into the non-
smooth framework. Since the objective function may be nonsmooth,
we have to use subgradients instead of gradients. Thus, in Section
5.1.1 we refer to the core algorithm as SPS - Spectral Projected Sub-
gradient method. The spectral coefficient is calculated by employ-
ing consecutive subgradients of possibly different SAA functions and
the safeguard which provides positive, bounded spectral coefficients
is used. We prove a.s. convergence under the standard assumptions
for the stochastic environment in Section 5.1.2. Moreover, in order
to improve the performance of the algorithm, we also propose a line
search variant of SPS named LS-SPS. The line search is defined in
such a way that LS-SPS falls into the SPS framework and thus the
same convergence results hold. In spite of the fact that the descent
property of the search direction is desirable, it is not necessary in each
iteration to ensure the convergence result. The proposed line search
is well-defined and the a.s. convergence is achieved even if the search
direction is not a descent one for the SAA function.

Although the proposed algorithms are constructed to cope with
unbounded sample sizes, they can also be applied to finite-sum prob-
lems and we devote part of the consideration to this important special
class as well.

In Section 5.1.1, the stochastic SPG method is adapted to the
nonsmooth framework. The a.s. convergence of the proposed SPS
method is proved under the standard assumptions in Section 5.1.2
and the SPS is further upgraded by introducing a specific line search
technique resulting in LS-SPS in Section 5.1.2. In Section 5.1.3, nu-
merical results on machine learning problems show the efficiency of
the proposed method, especially LS-SPS.
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5.1.1 The Algorithm

Now we describe the subsampled spectral projected subgradient frame-
work algorithm for nonsmooth problems - SPS. For any given z ∈ Rn,
we denote by PΩ(z) the orthogonal projection of z onto Ω. Recall that
Nk denotes the sample used to approximate the objective function and
Nk denotes its cardinality.

Algorithm 4: SPS (Spectral Projected Subgradient
Method for Nonsmooth Optimization)

S0 Initialization. Given N0 ∈ N, x0 ∈ Ω, 0 < C1 < 1 < C2 < ∞,
0 < ζ ≤ ζ < ∞, ζ0 ∈

[
ζ, ζ

]
.

Set k = 0.

S1 Direction. Choose ḡk ∈ ∂fNk
(xk) and set pk = −ζkḡk.

S2 Step size.
If k = 0, set α0 = 1.
Else, choose αk ∈ [C1/k, C2/k].

S3 Main update. Set xk+1 = PΩ(xk + αkpk) and sk = xk+1 − xk.

S4 Sample size update. Chose Nk+1 ∈ N.

S5 Spectral coefficient update.
Calculate yk = gNk

(xk+1)− ḡk, where gNk
(xk+1) ∈ ∂fNk

(xk+1).
Set ζk+1 = min{ζ,max{ζ, sTk sk

sTk yk
}}.

S6 Set k := k + 1 and go to S1.

Let us now comment on the Algorithm 4. In Step S1 we calculate
the direction by choosing a subgradient of the SAA function fNk

and
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taking the opposite direction multiplied by the spectral coefficient.
Notice that the safeguard in Step S5 ensures that the negative subgra-
dient direction is retained. However, this direction does not have to
be descent for the function fNk

since we take an arbitrary subgradient.
Within Step S2 we choose the step size αk from the given interval.

The constants C1 and C2 can be arbitrary small and large, respectively,
allowing a wide range of feasible step sizes. This choice was motivated
by the common assumption on the step size sequence (see (3.4)):

αk ≥ 0,
∞∑
k=1

α2
k < ∞,

∞∑
k=1

αk = ∞. (5.1)

Notice that the choice in Step S2 ensures that the sequence of step
sizes of SPS algorithm satisfies (5.1). After finding the direction and
the step size, we project the point xk + αkpk onto the feasible set Ω
and thus we retain feasibility in all the iterations of the algorithm.

In Step S4, we choose the sample size to be used in the subsequent
iteration. To prove the convergence result, we assume that Nk tends
to infinity or achieves and retains the maximal sample size in the case
of finite-sums. Thus, the simplest way to ensure this is to increase
the sample size at each iteration. However, we formulate this step as
generally as possible to emphasize that other choices are feasible as
well, including some adaptive strategies.

In Step S5 yk is calculated as a difference of two subgradients of the
same approximate function fNk

, but different approaches are feasible
as well. For instance, one can use subgradients of different functions
yk = gNk+1

(xk+1) − gNk
(xk). This can reduce the costs, especially if

the sample is not cumulative, but also brings additional noise into the
spectral coefficient since the subgradients are calculated for two dif-
ferent functions in general. However, if we have a finite-sum problem
and the full sample is reached, the cost of calculating the subgradi-
ent may be reduced to one subgradient per iteration since one can
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obviously take ḡk+1 = gNk
(xk+1). In general, another choice could

be yk = gNk+1
(xk+1) − gNk+1

(xk). This reduces the influence of noise
and usually provides a better approximation of the spectral coefficient
of the true objective function, but it requires additional evaluations.
Although the choice of yk was addressed in the literature (see [9] for
example), in general, it remains an open question that requires thor-
ough analysis before drawing the final conclusions. It is important to
point out that the choice of yk does not affect the convergence analy-
sis and the theoretical results obtained in the next section, but it may
affect the algorithm’s performance significantly.

5.1.2 Convergence Analysis

In this subsection, we analyze conditions needed for a.s. convergence
of the SPS algorithm. Recall that samples are assumed to be i.i.d.
In the convergence theorems, it will be assumed that the standard
assumptions for the stochastic environment, Assumptions A1 and A2
stated in the previous chapter within Section 4.1, are satisfied. More
precisely, it will be assumed that fi(x) = F (x, ξi), i = 1, 2, . . . , are
continuous, convex, and bounded from below with a constant C, and
the function F is dominated by a P-integrable function on any compact
subset of Rn.

The main result, a.s. convergence of Algorithm SPS, is stated in
the following theorem. We assume also that the feasible set is compact,
although this assumption may be relaxed as we will show in the sequel.
Moreover, recall that the convexity implies that the functions fi are
locally Lipschitz continuous, and thus for every x and i there exists
Li(x) such that for all g ∈ ∂fi(x) there holds ∥g∥ ≤ Li(x). However,
since there can be infinitely many functions fi in general we assume
that the chosen subgradients are uniformly bounded.

Let X∗ and f ∗ be the set of solutions and the optimal value of



94
Nonsmooth Methods with Variable Sample Size for

Constrained Optimization Problems

problem (4.1), respectively. Define the SAA errors sequence as

ek = max
x∈Ω

|fNk
(x)− f(x)|.

The convergence result is as follows.

Theorem 5.1.1 Suppose that Assumptions A1 and A2 hold and {xk}
is a sequence generated by Algorithm SPS where Nk → ∞. Assume
also that Ω is compact and convex and there exists L such that ||ḡk|| ≤
L for all k. Then

lim inf
k→∞

f(xk) = f ∗ a.s. (5.2)

Moreover, if
∑∞

k=0 ek/k < ∞, then

lim
k→∞

xk = x∗ a.s. (5.3)

for some x∗ ∈ X∗.

Proof.
Denote by W the set of all possible sample paths of SPS algorithm.

Suppose that (5.2) does not hold, i.e., lim infk→∞ f(xk) = f ∗ does not
happen with probability 1. In that case there exists a subset of sample
paths W̃ ⊆ W such that P (W̃) > 0 and for every w ∈ W̃ there holds

lim inf
k→∞

f(xk(w)) > f ∗,

i.e., there exists ε(w) > 0 small enough such that

f(xk(w))− f ∗ ≥ 2ε(w)

for all k. Since f is continuous on the feasible set Ω, there exists
ỹ(w) ∈ Ω such that f(ỹ(w)) = f ∗ + ε(w). This further implies

f(xk(w))− f(ỹ(w)) = f(xk(w))− f ∗ − ε(w) ≥ 2ε(w)− ε(w) = ε(w).
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Let us take an arbitrary w ∈ W̃. Denote zk+1(w) := xk(w) +
αk(w)pk(w). Notice that non-expansivity of orthogonal projection and
the fact that ỹ ∈ Ω together imply

||xk+1(w)− ỹ(w)|| = ||PΩ(zk+1(w))− PΩ(ỹ(w))|| ≤ ||zk+1(w)− ỹ(w)||.
(5.4)

Furthermore, using the fact that ḡk is subgradient of the convex func-
tion fNk

, ḡk ∈ ∂fNk
(xk), we have

fNk
(xk)− fNk

(ỹ) ≤ gTk (xk − ỹ)

and dropping w in order to facilitate the reading we obtain

||zk+1 − ỹ||2 = ||xk + αkpk − ỹ||2 = ||xk − αkζkgk − ỹ||2

= ||xk − ỹ||2 − 2αkζkg
T
k (xk − ỹ) + α2

kζ
2
k ||gk||2

≤ ||xk − ỹ||2 + 2αkζk(fNk
(ỹ)− fNk

(xk)) + α2
kζ

2
k ||gk||2

≤ ||xk − ỹ||2 + 2αkζk(f(ỹ)− f(xk) + 2ek) + α2
kζ

2
k ||gk||2

≤ ||xk − ỹ||2 − 2αkζk(f(xk)− f(ỹ)) + 4ekαkζ + α2
kζ

2
L2

≤ ||xk − ỹ||2 − 2αkζε+ 4ekαkζ + α2
kζ

2
L2

= ||xk − ỹ||2 − αk

(
2ζε− 4ekζ − αkζ

2
L2

)
. (5.5)

By ULLN we have limk→∞ ek = 0 a.s., or more precisely,
limk→∞ ek(w) = 0 for almost every w ∈ W. Since P (W̃) > 0, there
must exist a sample path w̃ ∈ W̃ such that

lim
k→∞

ek(w̃) = 0.

This further implies the existence of k̃(w̃) ∈ N such that for all k ≥
k̃(w̃) we have

αk(w̃)ζ
2
L2 + 4ek(w̃)ζ ≤ ε(w̃)ζ (5.6)
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because Step S2 of SPS algorithm implies that limk→∞ αk = 0 for any
sample path. Furthermore, since (5.5) holds for all w ∈ W̃ and thus
for w̃ as well, from (5.4)-(5.6) we obtain

||xk+1(w̃)− ỹ(w̃)||2 ≤ ||xk(w̃)− ỹ(w̃)||2

− αk(w̃)
(
2ζε(w̃)− 4ek(w̃)ζ − αk(w̃)ζ

2
L2

)
= ||xk(w̃)− ỹ(w̃)||2

+ αk(w̃)
(
4ek(w̃)ζ + αk(w̃)ζ

2
L2 − 2ζε(w̃)

)
≤ ||xk(w̃)− ỹ(w̃)||2 + αk(w̃)

(
ζε(w̃)− 2ζε(w̃)

)
= ||xk(w̃)− ỹ(w̃)||2 − αk(w̃)ζε(w̃)

and

||xk+s(w̃)− ỹ(w̃)||2 ≤ ||xk(w̃)− ỹ(w̃)||2 − ε(w̃)ζ
s−1∑
j=0

αj(w̃).

Letting s → ∞ yields a contradiction since

∞∑
k=0

αk ≥
∞∑
k=0

C1/k = ∞

for any sample path and we conclude that (5.2) holds.
Now, let us prove (5.3), i.e., limk→∞ xk = x∗ a.s., under the ad-

ditional assumption
∑∞

k=0 ek/k < ∞. Notice that this assumption
implies that

∑∞
k=0 αkek < ∞ since αk ≤ C2/k. Since (5.2) holds, we

know that
lim inf
k→∞

f(xk(w)) = f ∗, (5.7)
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for almost every w ∈ W. In other words, there exists W ⊆ W such that
P (W) = 1 and (5.7) holds for all w ∈ W. Let us consider arbitrary
w ∈ W. We will show that

lim
k→∞

xk(w) = x∗(w) ∈ X∗

which will imply the result (5.3). Once again let us drop w to facilitate
the notation.

Let K1 ⊆ N be a subsequence of iterations such that

lim
k∈K1

f(xk) = f ∗.

Since {xk}k∈K1
⊆ {xk}k∈N and {xk}k∈N is bounded because of feasi-

bility and the compactness of the feasible set Ω, there follows that
{xk}k∈K1

is also bounded and there exist K2 ⊆ K1 and x̃ such that

lim
k∈K2

xk = x̃. (5.8)

Then, we have

f ∗ = lim
k∈K1

f(xk) = lim
k∈K2

f(xk) = f( lim
k∈K2

xk) = f(x̃).

Therefore, f(x̃) = f ∗ and we have x̃ ∈ X∗.
Now, we show that the whole sequence of iterates converges. Let

{xk}k∈K2
:= {xki}i∈N.

Following the steps of (5.5) and using the fact that f(xk) ≥ f(x̃) for
all k, we obtain that the following holds for any s ∈ N
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||xki+s − x̃||2 ≤ ||xki − x̃||2 + 4ζ
s−1∑
j=0

eki+jαki+j + ζ
2
L2

s−1∑
j=0

α2
ki+j

≤ ||xki − x̃||2 + 4ζ
∞∑
j=0

eki+jαki+j + ζ
2
L2

∞∑
j=0

α2
ki+j

= ||xki − x̃||2 + 4ζ
∞∑

j=ki

ejαj + ζ
2
L2

∞∑
j=ki

α2
j =: ai.

Thus, for any s,m ∈ N there holds

||xki+s − xki+m||2 ≤ 2||xki+s − x̃||2 + 2||xki+m − x̃||2 ≤ 4ai.

Since
∑∞

j=ki
ejαj and

∑∞
j=ki

α2
j are residuals of the convergent sums

and (5.8) holds, we have
lim
i→∞

ai = 0.

Therefore, for every ε > 0 there exists ki ∈ N such that for all t, l ≥ ki
there holds ||xt − xl|| ≤ ε, i.e., the sequence {xk}k∈N is a Cauchy
sequence and thus convergent. This, together with (5.8), implies

lim
k→∞

xk = x̃. ■

Let us comment on ek first. We obtain (5.2) provided that the
sample size tends to infinity in an arbitrary manner. The stronger
result (5.3) is achieved under the assumption of fast enough increase
of the sample size, i.e., if it holds

∑∞
k=0 ek/k < ∞. Having in mind the

interval for step size αk, we conclude that the assumption
∑∞

k=0 ek/k <
∞ is satisfied if ek ≤ C3k

−ν holds for all k large enough and arbitrary
C3 > 0, where ν > 0 can be arbitrary small. While in general, this can
be hard to guarantee, for some classes of functions F (e.g., function
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plus noise with finite variance, F = f + ξ, Var(ξ) < ∞), the error
bound for cumulative samples (4.10) stated in Section 4.2.1 yields
ek ≤ C

√
ln lnNk

Nk
, for all k large enough and some positive constant C

directly dependent on the noise variance. In that case, it can be shown
that the simple choice of Nk = k provides the sufficient growth needed
for (5.3).

In the case of finite-sum problem (4.4), we do not need Assump-
tion A2 since (4.6) is trivially satisfied if the full sample size is even-
tually achieved and retained. Thus, ek = 0 for all k large enough and∑∞

k=0 ek/k < ∞ trivially holds. Moreover, the compactness of the
feasible set and convexity of f imply the Lipschitz continuity of each
fi on Ω, and thus the subgradients ḡk are uniformly bounded. Fur-
thermore, we also know that the functions fi are uniformly bounded
from below on Ω. Although the sample paths may differ, the conver-
gence result is deterministic since the original objective function fN is
eventually used. We summarize the result in the following corollary
of the previous theorem.

Corollary 5.1.1 Suppose that Assumption A1 holds and {xk} is a
sequence generated by Algorithm SPS applied to (4.4). Suppose that
Nk = N for all k large enough and Ω is compact and convex. Then

lim
k→∞

xk = x∗ ∈ X∗.

Since the compactness of Ω excludes the important class of con-
strained problems, such as x ≥ 0, which appear as subproblems in
many cases, it is important to comment on the alternatives. The
assumption of bounded Ω may be replaced with the assumption of
bounded iterate sequence generated by Algorithm SPS. We state the
result for completeness.
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Theorem 5.1.2 Suppose that Assumptions A1 and A2 hold and
{xk} ⊆ Ω̄, where Ω̄ ⊆ Ω is bounded and Nk → ∞. Assume that
Ω is closed and convex and there exists L such that ||ḡk|| ≤ L for all
k. Then

lim inf
k→∞

f(xk) = f ∗a.s.

Moreover, if
∑∞

k=0 ek,Ω̄/k < ∞ we have

lim
k→∞

xk = x∗ ∈ X∗ a.s.,

where ek,Ω̄ := maxx∈Ω̄ |fNk
(x)− f(x)|.

Let us now see under which conditions we obtain the boundedness
of iterations. But first, define the SAA error sequence as

ēk = |fNk
(xk)− f(xk)|+ |fNk

(x∗)− f(x∗)|, (5.9)

where x∗ ∈ X∗ is an arbitrary solution point. We have the following
result.

Proposition 5.1.1 Suppose that Assumptions A1 and A2 hold and
{xk} is a sequence generated by Algorithm SPS where Nk → ∞. As-
sume that Ω is closed and convex and there exists L such that ||ḡk|| ≤ L
for all k. Then if

∑∞
k=0 ēk/k ≤ C4 < ∞, there exists a compact set

Ω̄ ⊆ Ω such that {xk} ⊆ Ω̄.

Proof. Let x∗ be an arbitrary solution of the problem (4.1). Then,
by following similar steps as in (5.5) and using the non-expansivity of
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the projection (5.4), we obtain the following for an arbitrary k,

||xk+1 − x∗||2 ≤ ||zk+1 − x∗||2 = ||xk − αkζkgk − x∗||2

= ||xk − x∗||2 − 2αkζkg
T
k (xk − x∗) + α2

kζ
2
k ||gk||2

≤ ||xk − x∗||2 + 2αkζk(fNk
(x∗)− fNk

(xk)) + α2
kζ

2
k ||gk||2

≤ ||xk − x∗||2 + 2αkζk(f(x
∗)− f(xk) + ēk) + α2

kζ
2
k ||gk||2

≤ ||xk − x∗||2 + 2ēkζC2/k + α2
kζ

2
L2

≤ ||x0 − x∗||2 + 2C2ζ
∞∑
k=0

ēk
k

+ ζ
2
L2

∞∑
k=0

C2
2

k2
.

Thus, there exists a constant C5 such that ||xk − x∗|| ≤ C5 for all k,
which completes the proof. ■

We summarize the convergence result for the unbounded feasible
set in the following theorem.

Theorem 5.1.3 Suppose that Assumptions A1 and A2 hold, the fea-
sible set Ω is convex and closed and {xk} is a sequence generated
by Algorithm SPS where Nk tends to infinity fast enough to provide∑∞

k=0 ēk/k ≤ C4 < ∞ with ēk given by (5.9). Then

lim inf
k→∞

f(xk) = f ∗a.s.

Moreover, if
∑∞

k=0 ek/k < ∞ then

lim
k→∞

xk = x∗a.s.

for some x∗ ∈ X∗, where ek = maxx∈Ω̄ |fNk
(x) − f(x)| and Ω̄ is a

compact set containing {xk}.

Improving the Efficiency - Line Search SPS

Notice that SPS algorithm works with an arbitrary subgradient direc-
tion related to the current SAA function. However, in some applica-
tions such as Hinge Loss binary classification, it is possible to provide
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a descent direction with respect to the SAA function by applying the
procedure proposed in [102] or gradient subsampling technique [17] for
instance. On the other hand, it is well known that applying line search
may improve the performance of the algorithm significantly, even in
a stochastic environment. Thus, in order to make the SPS algorithm
more efficient, we propose a line search technique adapted to the non-
smooth VSS framework such that the SPS convergence analysis still
holds.

The proposed line search does not require a descent search direction
in order to be well defined, nor the convergence analysis depends on
the descent property. So, the following sufficient decrease property is
desirable, but not necessary in order to prove the convergence of the
Line Search SPS (LS-SPS) algorithm presented in the sequel,

sup
g∈∂fNk

(xk)

gTpk ≤ −m

2
∥pk∥2 for some m > 0. (5.10)

In general case, it is not an easy task to find a direction pk that satisfies
the previous condition, but in some important cases, it can be done
(see Algorithm 3).

The LS Procedure

Since we employ the spectral subgradient method, we use nonmono-
tone Armijo-type line search condition

fNk
(xk + αkpk) ≤ Fk − ηαk||pk||2, (5.11)

where pk is the search direction as in Step S1 of Algorithm 4 and

Fk = max
i∈[max{1,k−c},k]

fNi
(xi).

The candidates for αk that we consider are:

αk and
αk + 1/k

2
,
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where αk = min{1, C2/k}, 1 < C2 < ∞. The reasoning behind this is
the following. The choice of αk = 1/k is a typical choice that is suitable
for obtaining a.s. convergence, so we put C1 = 1. The line search is
employed to estimate if the larger value of αk may be used. Since the
backtracking techniques usually start with 1, we take the minimum
of 1 and C2/k as the initial choice. Although C2/k must be included
to ensure the theoretical requirements of Step S2, one can take C2

arbitrary large such that αk = 1 even for the large values of k. Thus,
practically, 1 would be the initial choice in all practical applications.
We set the middle of the interval [1/k, αk] as the second possible choice
for step size in line search. Although other strategies are feasible as
well, we reduce to these two guesses to avoid the computational costs
of unsuccessful line search attempts. Thus, if αk = αk satisfies (5.11),
we take this as a step size. If not, we check (5.11) with the medium
value αk = (αk + 1/k)/2. If the condition is satisfied, we retain this
choice, otherwise, we set αk = 1/k.

Remark. LS-SPS algorithm falls into the framework of SPS algo-
rithm as αk satisfies the condition (5.11). Thus, the whole convergence
analysis presented for the SPS algorithm also holds for LS-SPS.

5.1.3 Numerical Results

We performed numerical experiments on the set of binary classifica-
tion problems listed in Table 5.1. The problems are modeled by the
L2-regularized Hinge Loss. More precisely, we consider the follow-
ing optimization problem for learning with a Support Vector Machine
introduced in [91]

min
x∈Ω

f(x) := 10||x||2 + 1

N

N∑
i=1

max{0, 1− zix
Twi}, (5.12)

Ω := {x ∈ Rn : ||x||2 ≤ 0.1},
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Algorithm 5: LS-SPS (Line Search Spectral Projected
Subgradient Method for Nonsmooth Optimization)

S0 Initialization. Given N0 ∈ N, x0 ∈ Ω, 1 < C2 < ∞,
0 < ζ ≤ ζ < ∞, ζ0 ∈

[
ζ, ζ

]
, η ∈ (0, 1), c ∈ N.

Set k = 0.

S1 Direction. Choose ḡk ∈ ∂fNk
(xk) satisfying (5.10) if possible

and set pk = −ζkḡk.

S2 Step size.
If k = 0, set α0 = 1.
Else,

choose αk ∈ {αk, (αk + 1/k)/2} such that

fNk
(xk + αkpk) ≤ Fk − ηαk||pk||2,

holds if possible.

Otherwise set αk =
1
k
.

S3 Main update. Set xk+1 = PΩ(xk + αkpk) and sk = xk+1 − xk.

S4 Sample size update. Chose Nk+1 ∈ N.

S5 Spectral coefficient update.
Calculate yk = gNk

(xk+1)− ḡk, where gNk
(xk+1) ∈ ∂fNk

(xk+1).
Set ζk+1 = min{ζ,max{ζ, sTk sk

sTk yk
}}.

S6 Set k := k + 1 and go to S1.
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where wi ∈ Rn are the input features and zi ∈ {1,−1} are the corre-
sponding labels. Thus, we have a convex problem with the compact
feasible set easy to project on. Moreover, for this kind of problems, it
is possible to calculate the descent direction and we use the procedure
proposed in Section 3.5, Algorithm 3, as a subroutine that provides the
descent property (5.10). We employ this subroutine in all the tested
algorithms to ensure a fair comparison.

Data set N n

1 SPLICE [105] 3175 60
2 MUSHROOMS [70] 8124 112
3 ADULT9 [105] 32561 123
4 MNIST(binary) [106] 70000 784

Table 5.1: Properties of the datasets used in the experiments.

Our numerical study has several goals. It is designed to investigate:

i) whether the variable sample size approach remains beneficial in
the nonsmooth environment with a bounded full sample;

ii) whether introducing the line search pays off;

iii) whether the spectral coefficient improves the efficiency of the
projected subgradient method.

We set the experiments as follows. The main criterion for compar-
ison of the methods will be the computational cost modeled by FEV
(number of function evaluations). More precisely, FEV m

k represents
the number of scalar products needed for method m to calculate xk

(starting from x0). We also track the value of the true objective func-
tion across the iterations to observe the progress of the considered
method.
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To answer question i), we compare the VSS methods to their full
sample counterparts. The extension −F (e.g., SPS-F) will indicate
that the full sample is used at every iteration, i.e., Nk = N for all k.
On the other hand, we assume the following sample size increase for
the VSS methods

Nk+1 = ⌈min{1.1Nk, N}⌉

with N0 = 0.1N . Obviously, there are many other choices that can
be more efficient, but we choose this simple increase to be tested in
the initial phase of the method evaluation. To address question ii)
we compare LS-SPS algorithm to SPS algorithm with the standard
choice of the step size αk = 1/k. Finally, to address iii), we compare
the proposed methods to the first-order subgradient method denoted
by LS-PS (Line Search Projected Subgradient), which can be viewed
as a special case of LS-SPS with ζ = ζ = 1. We also test the VSS and
the full sample alternatives of the projected subgradient method: LS-
PS and LS-PS-F, respectively. The results of the subgradient method
with the choice of αk = 1/k were poor and thus they are not reported
here.

The relevant parameters are as follows. The initial points are
chosen randomly x0 ∈ Ω and we use the same initial point for all
the tested methods within one run. The step size parameters are
C1 = 10−2, C2 = 102 and the line search is performed with η = 10−4

and c = 5. For the proposed spectral methods, the safeguard param-
eters are ζ = 10−4 and ζ = 104.

We perform 5 independent runs for each of the data sets which
yields 20 runs of each method in total. A demonstrative run is pre-
sented in Figure 5.1 where the objective function f(xk) is plotted
against the FEVk. It reveals that LS-SPS methods outperform other
methods reaching a tighter vicinity of the solution. Even if we use
the spectral coefficient, the predetermined step size was not enough to
bring the sequence to the same vicinity as obtained by the LS coun-
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terparts. On the other hand, observing the LS-PS method which uses
line search but without a spectral coefficient, we can see that the line
search itself (without second-order information) was not enough to
push the subgradient method towards the solution. Finally, notice
that the computational cost is reduced significantly by employing the
VSS scheme in LS-SPS method.

Figure 5.1: MNIST data set

In order to compare the tested methods taking into account all the
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runs and data sets, we employ the metric based on the ideas of the
performance profile [30] adapted to the stochastic environment in [63].
Roughly speaking, we estimate the probability of winning for each of
the tested methods. For the considered run, the method m wins if it
reaches the vicinity τ of the solution with the smallest costs. Since the
theoretical stopping criterion is non-existing, we stop the methods if
the maximal number of scalar products is achieved. At each iteration
k we measure the distance from the solution by observing the relative
error of method m with respect to the optimal value, i.e.,

rmk :=
f(xm

k )− f ∗

f ∗ .

The optimal value f ∗ on each data set is computed using SPS-F algo-
rithm such that f ∗ ≈ fN(x1000). For each method m and each run l
we register the first iteration k(m, l) at which we have rmk(m,l) ≤ τ and
read the corresponding FEV m

k(m,l). Then, the method m earns a point
in run l if

FEV m
k(m,l) = min

j
FEV j

k(j,l).

Finally, we estimate the probability of winning, denoted by π by

π =
t

T
,

where t is the number of earned points and T is the total number of
runs. Notice that in the described situation we can have more winners,
in other words, more methods can share first place if they reach the
goal with the same costs.

The results are presented in Figure 5.2 for different relative errors
τ ∈ [0.01, 3.5]. They reveal that the VSS methods clearly outperform
their full sample counterparts and that LS-SPS method turns out to
be the best possible choice according to the conducted experiments.
The algorithms LS-PS and SPS reach 1 for very large values of the
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relative error τ which is not relevant, so we do not show this part of
the graph.

Figure 5.3 represents a classical performance profile (PP) graph
for fixed relative error τ = 1. The FEV is kept as the criterion for
the classical PP as well. On the y-axes we plot the probability that
the method is close enough to the best one, where "close enough"
is determined by the value on x-axes denoted by q. More precisely,
retaining the same notation as above, the method m earns a PP(q)
point in run l if FEV m

k(m,l) ≤ qminj FEV j
k(j,l) and the plotted values

correspond to

πPP (q) =
tPP (q)

T
,

where tPP (q) is the number of earned PP(q) points for the considered
method. Again, from this figure, it is clear that LS-SPS is the most
robust, i.e., it has the highest probability of being the optimal solver.

Additional Comparison

Now we show additional numerical results in order to compare the pro-
posed algorithm with the proximal bundle method (PBM). It is known
that PBM gives the best result under a fixed number of iterations. The
reason behind this is the fact that the number of constraints in the
quadratic program solved by PBM may grow linearly with the number
of iterations [47]. Accordingly, PBM may become significantly slower
when the number of iterations becomes larger. For that reason, we
compare the fixed number of iterations of LS-SPS-F with PBM that
use full sample size in all iterations, and after that LS-SPS with VSS
PBM (where the sample is changed in the same way as in LS-SPS
through iterations).

In order to ensure a fair comparison, we choose several different
combinations of initial parameters for PBM. Table 5.2 summarizes the
properties of the observed methods, where γ is the proximity control
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Figure 5.2: Empirical probabilities of winning (π) for different relative
errors (τ).

parameter, m is the descent coefficient, ϵ is the tolerance parameter
and ω is the decay coefficient. Detailed information about these pa-
rameters and implementations in Matlab of PBM is available at [107].

Figure 5.4 shows the results for Full and VSS versions of LS-SPS
and PBM algorithms on MNIST data set, while the results on the
other three data sets are similar. The objective function f(xk) is
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Figure 5.3: Performance profile for level of accuracy τ = 1

plotted against the iteration k and the y-axes are in logarithmic scale.
The results show that the proposed algorithms (LS-SPS-F and LS-
SPS) outperform the observed PBM counterparts.
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PBM 1 2 3 4 5

γ 1 1 1 1 1
m 0.01 0.1 0.01 0.01 0.01
ϵ 0.1 0.1 0.01 0.1 0.1
ω 0.5 0.5 0.5 0.9 0.1

Table 5.2: The initial parameters for proximal bundle method.

5.2 Adaptive Sample Size Nonmonotone
Line Search Spectral Projected Sub-
gradient Method

In order to solve problem (4.1), where the function f is continuous
and bounded from below on Ω, we are going to present now AN-SPS
- Adaptive sample size Nonmonotone line search Spectral Projected
Subgradient method. It assumes subgradient directions, not necessar-
ily descent, which may be combined with spectral coefficients. Both
subgradients and spectral coefficients are calculated by employing SAA
functions that vary across the iterations in general. In this setup, as it
is mentioned in the previous section, it is needed to have a safeguard
for the spectral coefficients to make sure that the resulting coefficients
are positive and bounded. We also allow different nonmonotone line
search rules described in Chapter 2, although the method is suitable
for the monotone rule as well. The step size follows the idea of the
SPS framework - line search over predefined intervals.

One of the key points lies in the adaptive sample size strategy.
Roughly speaking, the main idea is to balance two types of errors -
the one that measures how far is the iteration from the current SAA
function’s constrained optimum and the one that estimates the SAA
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Figure 5.4: LS-SPS-F against Full PBM (left) and LS-SPS against
VSS PBM (right). MNIST data set.

error. More precisely, we present an adaptive strategy that deter-
mines when to switch to the next level of accuracy and prove that this
strategy pushes the sample size to infinity (or to the full sample size
in a finite-sum case). In the SPS framework, the convergence result
was proved under the assumption of the sample size increase at each
iteration, while in AN-SPS this is a consequence of the algorithm’s
construction rather than the assumption.

We believe that one more important advantage with respect to
SPS is the proposed scaling of the subgradient direction. The scaling
strategy is not new in general [18], but it is a novelty within the SPS
framework. One of the most important consequences of this modifi-
cation is that the convergence result is proved without boundedness
assumptions - we do not impose any assumption on uniformly bounded
subgradients, feasible set, nor the iterations. Instead, we prove that
AN-SPS generates the bounded sequence of iterates under a mild sam-
ple size growth condition. However, since feasible set Ω does not have
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to be compact in general and thus the boundedness is not enough
for claiming the solution exists, the Assumption 1 is modified and re-
placed with Assumption A3 in the sequel. More precisely, we assume
that there exists a solution of minx∈Ω fN(x) for any given N instead of
just assuming that the relevant functions are bounded from below.

The main result - almost sure convergence of the whole sequence
of iterates - is proved under rather standard conditions for stochastic
analysis. Moreover, in the finite-sum problem case, the convergence
is deterministic, and it is proved under a significantly reduced set of
assumptions with respect to the general case (4.1). Furthermore, we
proved that the worst-case complexity can achieve the order of ε−1.
Although the worst-case complexity result stated in Theorem 5.2.4 is
comparable to the complexity of standard subgradient methods with a
predefined step size sequence and its stochastic variant (both of order
ε−2, see [14, 81] for instance), we believe that the advantage of the
proposed method lies in its ability to accept larger steps and employ
spectral coefficients combined with a nonmonotone line search, which
can significantly speed up the method. Furthermore, the proposed
method provides a wide framework for improving computational cost
complexity since it allows different sampling strategies to be employed.

Numerical tests on Hinge loss problems and common data sets
for machine learning show the advantages of the proposed adaptive
VSS strategy. We also present the results of a study that investigates
how different spectral coefficients combine with different nonmonotone
rules.

Our contributions are the following. This part of the thesis may
be seen as a continuation of the work presented in Section 5.1 and
further development of algorithm LS-SPS. In this light, the main con-
tributions are the following. In Section 5.2.1 an adaptive sample size
strategy is proposed and in Section 5.2.2 we prove that this strategy
pushes the sample size to infinity (or to the maximal sample size for
finite-sum case). We show that the scaling can relax the boundedness
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assumptions on subgradients, iterations, and feasible set. For finite-
sum problems, we provide the worst-case complexity analysis of the
proposed method. The LS-SPS is generalized in the sense that we al-
low different nonmonotone line search rules. Although important for
the practical behavior of the algorithm, this change does not affect the
convergence analysis and it is investigated mainly through numerical
experiments presented in Section 5.2.3. Considering the spectral coeffi-
cient, we investigate different strategies for its formulation (previously
defined rules within Section 2.2.1 - BB1, BB2, ABB, and ABBmin) in
a stochastic framework. Moreover, different combinations of spectral
coefficient and nonmonotone rules defined in Section 2.3 are evaluated
within numerical experiments conducted on machine learning Hinge
loss problems.

5.2.1 The Algorithm

In this section, we state the proposed AN-SPS framework algorithm.
Recall that the sample used to approximate the objective function via
(4.2) at iteration k is denoted by Nk, while Nk denotes its cardinal-
ity. We use the SAA error measure h(Nk) defined in Chapter 4 with
(4.8), h(Nk) = 1/(Nk), for unbounded sample size case and with (4.7),
h(Nk) = (Nmax −Nk)/(Nmax), for the case where the full sample size
is Nmax. Other choices are eligible as well, but we keep these ones for
simplicity. Furthermore, we define as in Algorithm 5 the upper bound
of predefined interval for the line search by

ᾱk = min{1, C2/k},

where C2 > 0 can be arbitrarily large.
First, notice that the initialization and Step S3 ensure the feasibil-

ity of the iterations. In Step S1, we choose an arbitrary subgradient of
the current approximation function fNk

at point xk. Further, scaling
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Algorithm 6: AN-SPS (Adaptive Sample Size
Nonmonotone Line Search Spectral Projected Subgradient
Method)

S0 Initialization. Given N0,m ∈ N, x0 ∈ Ω, 1 < C2 < ∞,
0 < ζ ≤ ζ < ∞, ζ0 ∈

[
ζ, ζ

]
.

Set k = 0 and F0 = fN0(x0).

S1 Search direction. Choose ḡk ∈ ∂fNk
(xk).

Set qk = max{1, ∥ḡk∥}, vk = ḡk/qk and pk = −ζkvk.

S2 Step size.

If k = 0, set α0 = 1.
Else, choose m points {α̃1

k, ..., α̃
m
k } such that

1

k
< α̃1

k < α̃2
k < . . . < α̃m

k = ᾱk.

If the condition

fNk
(xk + α̃j

kpk) ≤ Fk − ηα̃j
k||pk||

2 (5.13)

is satisfied for some j ∈ {m,m− 1, . . . , 1}, set αk = α̃j
k

with the largest possible j.
Else, set αk =

1
k
.

S3 Main update. Set zk+1 = xk + αkpk, xk+1 = PΩ(zk+1),
sk = xk+1 − xk and θk = ∥sk∥.

S4 Spectral coefficient update. Choose ζk+1 ∈ [ζ, ζ̄].

S5 Sample size update.
If θk < h(Nk), choose Nk+1 > Nk and a new sample Nk+1.
Else, Nk+1 = Nk.

S6 Nonmonotone line search update. Determine Fk+1 such that

fNk+1
(xk+1) ≤ Fk+1 < ∞.

S7 Iteration update. Set k := k + 1 and go to S1.



5.2 Adaptive Sample Size Nonmonotone Line Search Spectral
Projected Subgradient Method 117

with qk implies that ∥vk∥ ≤ 1. Moreover, the boundedness of the spec-
tral coefficient ζk yields uniformly bounded search directions pk. This
is very important from the theoretical point of view since it helps us
to overcome the boundedness assumptions mentioned at the beginning
of this chapter.

For the step size selection, we practically use a backtracking-type
procedure over the predefined interval ( 1

k
, ᾱk], which represents the

generalization of Step S2 of Algorithm 5. Notice that C2 can be arbi-
trarily large so that in practice ᾱk is equal to 1 in most of the iterations.
However, the upper bound C2/k is needed to ensure theoretical con-
vergence results. The lower bound, 1/k, is known as a good choice
from the theoretical point of view, and often a bad choice in practice.
Thus, roughly speaking, the line search checks if larger, but still theo-
retically sound steps are eligible. Since the Armijo-like condition (5.13)
is checked in at most m points, the procedure is well defined since if
none of these candidate points satisfies condition (5.13), the step size is
set to 1/k. This allows us to use nondescent directions and practically
arbitrary nonmonotone (or monotone) rule determined by the choice
of Fk (see Section 2.3). For instance, Fk can be set to fNk

(xk) + 0.5k,
but various other choices are possible as well. The choice of nonmono-
tone rule does not affect the theoretical convergence of the algorithm,
but it can be very important in practice. Parameter m influences the
per-iteration cost of the algorithm since it upper bounds the number
of the function fNk

evaluations within one line search procedure, i.e.,
within one iteration. Having in mind that the function fNk

is just an
estimate of the objective function in general, we suggest that m should
be relatively small in order to avoid an unnecessarily precise line search
and high computational costs. On the other hand, having m too small
may yield smaller step sizes since 1/k is more likely to be accepted
in general. Numerical results presented in Section 5.2.3 are obtained
by taking m = 2 in all conducted experiments. However, tuning this
parameter or even making it adaptive may be an interesting topic to
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investigate.
We will test the performance of some choices for the spectral coef-

ficients, where from a theoretical point of view the only requirement is
the safeguard stated in the Step S4 of the algorithm - ζk must remain
within positive, bounded interval [ζ, ζ̄].

Finally, the adaptive sample size strategy is determined within
Step S5. The overall step length θk may be considered as a measure
of stationarity related to the current objective function approximation
fNk

. In particular, we will show that, if the sample size is fixed, θk
tends to zero and the sequence of iterates is approaching a minimizer
of the current SAA function (see the proof of Theorem 5.2.1 in the
sequel). When θk is relatively small (smaller than the measure of SAA
error h(Nk)), we decide that the two errors are in balance and that we
should improve the level of accuracy by enlarging the sample. Notice
that Step S5 allows a completely different sample Nk+1 in general
with respect to Nk in the case where the sample size is increased.
However, if the sample size is unchanged, the sample is unchanged,
i.e., Nk+1 = Nk, which allows non-cumulative samples to fit within
the proposed framework as well.

AN-SPS algorithm detects the iteration within which the sample
size needs to be increased, but it allows full freedom in the choice of
the subsequent sample size as long as it is larger than the current one.
After some preliminary tests, we end up with the following selection:
when the sample size is increased, it is done as

Nk+1 = ⌈max{(1 + θk)Nk, rNk}⌉, (5.14)

with r = 1.1. Although some other choices such as direct balancing
of θk and h(Nk+1) seemed more intuitive, they were all outperformed
by the choice (5.14). Disregarding the safeguard part where, in case
of θk = 0, the sample size is increased by 10%, the relation becomes

1 +
Nk+1 −Nk

Nk

≈ 1 + θk.
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Thus, the relative increase of the sample size is balanced with the sta-
tionarity measure. Furthermore, since we know that in these iterations
θk < h(Nk), we obtain that the relative increase is bounded above by
h(Nk). Apparently, this helps the algorithm to overcome the problems
caused by the non-beneficiary fast growth of the sample size.

5.2.2 Convergence Analysis

This subsection is devoted to the convergence analysis of the proposed
AN-SPS method. One of the most important results lies in Theorem
5.2.1, where we prove that h(Nk) tends to zero. More precisely, in
the unbounded sample, this points to the sample size tending to in-
finity, while in the case of finite-sum, it means that the full sample
is eventually reached. After that, it is shown that we can relax the
common assumption of uniformly bounded subgradients stated in the
convergence analysis in Section 5.1.2. Normalized subgradients have
been used in the literature, but they represent a novelty with respect
to the SPS framework. Therefore, we need to show that this type of
scaling does not deteriorate the relevant convergence results.

We state the boundedness of iterations within Proposition 5.2.1.
Although the convergence result stated in Theorem 5.2.2 mainly fol-
lows from the analysis of SPS (see Theorem 5.1.1 in Section 5.1.2), we
provide the proof since it is based on different reasoning. Therefore, we
show that AN-SPS retains almost sure convergence under relaxed as-
sumptions with respect to LS-SPS, while, on the other hand, it brings
more freedom to the choice of nonmonotone line search and the spec-
tral coefficient. Finally, we formalize the conditions needed for the
convergence in the finite-sum case within Theorem 5.2.3 and provide
the worst-case complexity analysis.

We start the analysis by stating the conditions on the function
under the expectation in problem (4.1).
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Assumption A 3 Function f̃(·, ξ) is continuous and convex on Ω for
any given ξ and there exists a solution x∗

N of problem minx∈Ω fN(x) for
any given N.

The previous assumption also implies that all the sample functions
fNk

are also convex and continuous on Ω. Recall that in Assumption
A2 we assumed that the function F is dominated by a P-integrable
function on any compact subset of Rn. We state the first main result
below. The SAA error measure defined in Chapter 4 is denoted with
h(Nk).

Theorem 5.2.1 Suppose that Assumption A3 holds and that Ω is
closed and convex. Then the sequence {Nk}k∈N generated by AN-SPS
satisfies

lim
k→∞

h(Nk) = 0. (5.15)

Proof. First, we show that retaining the same sample pushes θk to
zero. Assume that Nk = N for all k ≥ k̃ and some N < ∞, k̃ ∈ N.
According to Step S5 of AN-SPS algorithm, this means that Nk =
Nk̃ := N for all k ≥ k̃. Let us show that this implies boundedness of
{xk}k∈N. Notice that for all k the step size and the search direction
are bounded, more precisely, αk ≤ ᾱk ≤ 1 and

∥pk∥ = ∥ζkvk∥ ≤ ζ̄∥vk∥ ≤ ζ̄ .

Thus, the k̃ initial iterations must be bounded, i.e., there must exist
Ck̃ such that ∥xk∥ ≤ Ck̃ for all k = 0, 1, ..., k̃. Now, let us observe the
remaining sequence of iterates, i.e., {xk̃+j}j∈N. Let x∗

N be an arbitrary
solution of the problem minx∈Ω fN(x). Notice that the convexity of fN
and the fact that ḡk ∈ ∂fN(xk) for all k ≥ k̃ and x ∈ Rn imply

−gTk (xk − x) ≤ fN(x)− fN(xk).
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Then, by using the non-expansivity of the projection operator and the
fact that x∗

N ∈ Ω, for all k ≥ k̃ we obtain

||xk+1 − x∗
N||2 = ||PΩ(zk+1)− PΩ(x

∗
N)||2

≤ ||zk+1 − x∗
N||2 = ||xk − αkζkvk − x∗

N||2

= ||xk − x∗
N||2 − 2αkζk

1

qk
gTk (xk − x∗

N) + α2
kζ

2
k ||vk||2

≤ ||xk − x∗
N||2 + 2αk

ζk
qk
(fNk

(x∗
N)− fNk

(xk)) + α2
kζ̄

2

≤ ||xk − x∗
N||2 + α2

kζ̄
2. (5.16)

In the last inequality, we use the fact that Nk = N for all k ≥ k̃. Thus,

fNk
(x∗

N)− fNk
(xk) = fN(x

∗
N)− fN(xk) ≤ 0

and since αkζk/qk > 0 we obtain the result. Furthermore, by using
the induction argument, we obtain that for every p ∈ N there holds

||xk̃+p − x∗
N||2 ≤ ||xk̃ − x∗

N||2 + ζ̄2
p−1∑
j=0

α2
k̃+j

≤ ||xk̃ − x∗
N||2 + ζ̄2

∞∑
j=0

α2
j

≤ ||xk̃ − x∗
N||2 + ζ̄2C2

2

∞∑
j=0

1

k2
:= C̄k̃ < ∞.

Thus, we conclude that the sequence of iterates must be bounded,
i.e., there exists a compact set Ω̄ ⊆ Ω such that {xk}k∈N ⊆ Ω̄. Since
the function fN is convex due to Assumption A3, there follows that
fN is locally Lipschitz continuous. Moreover, it is (globally) Lipschitz
continuous on the compact set Ω̄. Let us denote the corresponding
Lipschitz constant by LΩ̄. Then, we know that ∥g∥ ≤ LΩ̄ holds for
any g ∈ ∂fN(x) and any x ∈ Ω̄.

Now, we prove that

lim inf
k→∞

fN(xk) = f ∗
N, (5.17)



122
Nonsmooth Methods with Variable Sample Size for

Constrained Optimization Problems

where f ∗
N = minx∈Ω fN(x). Suppose the contrary, i.e., there exists

εN > 0 such that for all k ≥ k̃ there holds fN(xk) − f ∗
N ≥ 2εN. Re-

call that Assumption A3 implies that f ∗
N is finite and that fN is con-

tinuous. Therefore, there exists a sequence {yNj }j∈N ∈ Ω such that
limj→∞ fN(y

N
j ) = f ∗

N. Moreover, there exists a point ỹN ∈ Ω such that

fN(ỹN) < f ∗
N + εN.

Therefore, we conclude that for all k ≥ k̃ there holds

fN(xk) ≥ f ∗
N + 2εN = f ∗

N + εN + εN > fN(ỹN) + εN,

and thus for all k ≥ k̃ we have

−gTk (xk − ỹN) ≤ fN(ỹN)− fN(xk) ≤ −εN.

Following the same steps as in (5.16) and using the previous in-
equality, we conclude that for all k ≥ k̃ there holds

||xk+1 − ỹN||2 ≤ ||zk+1 − ỹN||2

≤ ||xk − ỹN||2 − 2αkζk
1

qk
gTk (xk − ỹN) + α2

kζ
2
k ||vk||2

≤ ||xk − ỹN||2 − 2αk
ζk
qk
εN + α2

kζ̄
2

≤ ||xk − ỹN||2 − 2αk
1

qk
ζεN + α2

kζ̄
2.

Now, using the fact that

qk = max{1, ∥ḡk∥} ≤ max{1, LΩ̄} := q, (5.18)

we conclude that for all k ≥ k̃ there holds

||xk+1 − ỹN||2 ≤ ||xk − ỹN||2 − 2αk
1

q
ζεN + α2

kζ̄
2

= ||xk − ỹN||2 − αk(
2

q
ζεN − αkζ̄

2).
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Since αk ≤ C2/k, there holds limk→∞ αk = 0 and thus there must exist
k̄ ≥ k̃ such that αkζ̄

2 ≤ 1
q
ζεN := εN.

Therefore, we have

||xk+1 − ỹN||2 ≤ ||xk − ỹN||2 − αkεN.

Moreover, for any p ∈ N there holds

||xk̄+p − ỹN||2 ≤ ||xk̄ − ỹN||2 − εN

p−1∑
j=0

αk̄+j

and letting p → ∞ we obtain the contradiction since
∞∑
k=0

αk ≥
∞∑
k=0

1/k = ∞.

Thus, we conclude that (5.17) must hold. Therefore there exists K1 ⊆
N such that

lim
k∈K1

fN(xk) = f ∗
N

and since the iterations are bounded, there exists K2 ⊆ K1 and a
solution x̃∗

N of the problem minx∈Ω fN(x) such that

lim
k∈K2

xk = x̃∗
N. (5.19)

Now, we show that the whole sequence of iterates converges. Let

{xk}k∈K2
:= {xki}i∈N.

Following the steps of (5.16) we obtain that the following holds for
any s ∈ N

||xki+s−x̃∗
N||2 ≤ ||xki−x̃∗

N||2+ζ̄2
s−1∑
j=0

α2
ki+j ≤ ||xki−x̃∗

N||2+ζ̄2
∞∑

j=ki

α2
j =: bi.
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Thus, for any s,m ∈ N there holds

||xki+s − xki+m||2 ≤ 2||xki+s − x̃∗
N||2 + 2||xki+m − x̃∗

N||2 ≤ 4bi.

Since
∑∞

j=ki
α2
j is a residual of convergent sum and (5.19) holds, we

have
lim
i→∞

bi = 0.

Therefore, for every ε > 0 there exists ki ∈ N such that for all t, l ≥ ki
there holds ||xt − xl|| ≤ ε, i.e., the sequence {xk}k∈N is a Cauchy
sequence and thus convergent. This, together with (5.19), implies

lim
k→∞

xk = x̃∗
N,

and the Step S3 of AN-SPS algorithm implies

lim
k→∞

θk = lim
k→∞

∥sk∥ = lim
k→∞

∥xk+1 − xk∥ = 0.

This completes the first part of the proof, i.e., we have just proved
that if the sample is kept fixed, the sequence {θk}k∈N tends to zero.

Finally, we prove the main result (5.15), i.e., limk→∞ h(Nk) = 0.
Assume the contrary. Since the sequence {h(Nk)}k∈N is nonincreasing,
this means that we can assume there exists h̄ > 0 such that

h(Nk) ≥ h̄ for all k ∈ N.

This further implies that there exist N < N∞ and k̄ ∈ N such that

Nk = N for all k ≥ k̄,

where N∞ = ∞ in unbounded sample case and N∞ coincides with the
full sample size in bounded sample (finite-sum) case. Thus, according
to S5 of AN-SPS algorithm, there holds that

θk ≥ h(Nk) = h(N) ≥ h̄ > 0
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for all k ≥ k̄, since we would have an increase of the sample size
N otherwise. On the other hand, we have just proved that if the
sample size is fixed, then limk→∞ θk = 0, which is in contradiction
with θk ≥ h̄ > 0. Thus, we conclude that

lim
k→∞

h(Nk) = 0,

which completes the proof. ■
Next, we analyze the conditions that provide a sequence of bounded

iterates generated by AN-SPS algorithm. Recall that the SAA error
sequence ēk is defined as before (5.9),

ēk = |fNk
(xk)− f(xk)|+ |fNk

(x∗)− f(x∗)|.

The proof of the following proposition is similar to the proof of Propo-
sition 5.1.1 in Section 5.1.2, but the conditions are relaxed since we
have Nk → ∞ as a consequence of the Theorem 5.2.1. Moreover, scal-
ing of the subgradients relaxes the assumption of uniformly bounded
ḡk sequence. Although the modifications are mainly technical, we pro-
vide proof for the sake of completeness. Condition (5.20) in the sequel
states the sample size growth under which we achieve bounded itera-
tions. For instance, in the cumulative sample case, Nk = k is sufficient
to ensure this condition (see Section 4.2.1). Although we believe that
the condition

∑∞
k=0 ēk/k ≤ C4 < ∞ is not too strong, it is still an

assumption and not the consequence of the algorithm, so this issue
remains as an open question for the future work.

Proposition 5.2.1 Suppose that Ω is closed and convex, Assumption
A3 holds and {xk}k∈N is a sequence generated by Algorithm AN-SPS.
Then if

∞∑
k=0

ēk/k ≤ C4 < ∞, (5.20)

there exists a compact set Ω̄ ⊆ Ω such that {xk} ⊆ Ω̄.
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Proof. Let x∗ be an arbitrary solution of the problem (4.1). Fol-
lowing the steps of (5.16) and the definition (5.9) we obtain for all
k = 0, 1, ..

||xk+1 − x∗||2 = ||PΩ(zk+1)− PΩ(x
∗)||2

≤ ||xk − x∗||2 + 2αk
ζk
qk
(fNk

(x∗)− fNk
(xk)) + α2

kζ̄
2

≤ ||xk − x∗||2 + 2αk
ζk
qk
(f(x∗)− f(xk) + ēk) + α2

kζ̄
2

≤ ||xk − x∗||2 + 2αk
ζk
qk
(f(x∗)− f(xk)) + 2αk

ζk
qk
ēk + α2

kζ̄
2

≤ ||xk − x∗||2 + 2αkζ̄ ēk + α2
kζ̄

2,

where we use the fact that xk is feasible and thus f(x∗) − f(xk) ≤ 0
and that qk ≥ 1. Further, by the induction argument and the fact
that αk ≤ C2/k we obtain

||xk − x∗||2 ≤ ||x0 − x∗||2 + 2C2ζ
∞∑
k=0

ēk
k

+ ζ
2

∞∑
k=0

C2
2

k2
≤ C5 < ∞.

This completes the proof. ■
As it can be seen from the proof, Ω̄ stated in the previous propo-

sition depends only on x0 and given constants, so it can be (theoret-
ically) determined independently of the sample path. However, since
we consider unbounded sample in general, we need the following as-
sumption.

Assumption A 4 For every x ∈ Ω there exists a constant Lx such
that F (x, ξ) is locally Lipschitz-Lx continuous for any ξ.

This assumption implies that each SAA function is locally Lipschitz
continuous with a constant that depends only on a point x and not
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on a random vector ξ. In the bounded sample case this is obviously
satisfied under Assumption A3, while in general, it holds for a certain
class of functions - when ξ is separable from x for instance. Next,
we prove the almost sure convergence of the AN-SPS algorithm under
the stated assumptions. Notice that (5.20) does not necessarily imply
limk→∞ ēk = 0. Thus, we need Assumption A2, which is a common
assumption in stochastic analysis, in order to ensure a.s. convergence
of the sequence {ēk}k∈N. Under the stated assumptions, ULLN implies
(4.6), i.e., limN→∞ supx∈S |fN(x) − f(x)| = 0 a.s. for any compact
subset S ⊆ Rn. This will further imply the a.s. convergence of the
sequence ēk. Notice that limk→∞ ēk = 0 is satisfied in the bounded
sample case, as well as (5.20) since AN-SPS achieves the full sample
eventually. In that case, the Assumptions A2 and A4 are not needed
for the convergence result.

Remark: The following theorem states a.s. convergence of the
proposed method. Although it follows the same steps, the proof differs
from the proof of Theorem 5.1.1 in several places. Under the stated
assumptions we prove that the sample size tends to infinity and that
the iterations remain within a compact set. After that, the proof
follows the steps of the proof in Theorem 5.1.1 completely, except for
the scaling of the subgradient in Step S1 of the AN-SPS algorithm.
This alters the inequalities, but Assumption A4 implies that qk can
be uniformly bounded from above and below, as it will be shown in
the first part of the proof of the following theorem, thus the main flow
remains the same. We state the proof for completeness.

Theorem 5.2.2 Suppose that Assumptions A2-A4 and (5.20) hold
and that Ω is closed and convex. Then the sequence {xk}k∈N generated
by AN-SPS converges to a solution of problem (4.1) almost surely.

Proof. First, notice that Theorem 5.2.1 implies that

lim
k→∞

Nk = ∞
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in ubounded sample case. Moreover, Proposition 5.2.1 implies that
{xk} ⊆ Ω̄. Furthermore, Assumption A4 implies that for any N we
have locally Lipschitz-Lx continuous function fN(x). Thus, there exists
a constant L such that fN is Lipschitz-L continuous on Ω̄ for any N.
This further implies that ∥ḡk∥ ≤ L for each k and

1 ≤ qk ≤ max{1, L} := q̄. (5.21)

Denote by W the set of all possible sample paths of the AN-SPS
algorithm. First we prove that

lim inf
k→∞

f(xk) = f ∗ a.s. (5.22)

where f ∗ = infx∈Ω f(x). Suppose that lim infk→∞ f(xk) = f ∗ does not
happen with probability 1. In that case there exists a subset of sample
paths W̃ ⊆ W such that P (W̃) > 0 and for every w ∈ W̃ there holds

lim inf
k→∞

f(xk(w)) > f ∗,

i.e., there exists ε(w) > 0 small enough such that

f(xk(w))− f ∗ ≥ 2ε(w)

for all k. Since f is assumed to be continuous and bounded from below
on Ω, f ∗ is finite and we conclude that there exists a point ỹ(w) ∈ Ω
such that f(ỹ(w)) < f ∗ + ε(w). This further implies

f(xk(w))− f(ỹ(w)) > f(xk(w))− f ∗ − ε(w) ≥ 2ε(w)− ε(w) = ε(w).

Let us take an arbitrary w ∈ W̃. Denote

zk+1(w) := xk(w) + αk(w)pk(w).
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Notice that non-expansivity of orthogonal projection and the fact that
ỹ ∈ Ω together imply

||xk+1(w)− ỹ(w)|| = ||PΩ(zk+1(w))− PΩ(ỹ(w))|| ≤ ||zk+1(w)− ỹ(w)||.
(5.23)

Furthermore, using (5.21) and the fact that ḡk is subgradient of convex
function fNk

, ḡk ∈ ∂fNk
(xk), we have

fNk
(xk)− fNk

(ỹ) ≤ gTk (xk − ỹ)

and dropping w in order to facilitate the reading we obtain

||zk+1 − ỹ||2 = ||xk + αkpk − ỹ||2 = ||xk − αkζkvk − ỹ||2

= ||xk − ỹ||2 − 2αkζk
gTk
qk

(xk − ỹ) + α2
kζ

2
k ||vk||2

≤ ||xk − ỹ||2 + 2αk
ζk
qk
(fNk

(ỹ)− fNk
(xk)) + α2

kζ
2
k

≤ ||xk − ỹ||2 + 2αk
ζk
qk
(f(ỹ)− f(xk) + e+k ) + α2

kζ
2
k

≤ ||xk − ỹ||2 − 2αk
ζk
qk
(f(xk)− f(ỹ)) + 2e+k αkζ + α2

kζ
2

≤ ||xk − ỹ||2 − 2αk

ζ

q̄
ε+ 2e+k αkζ + α2

kζ
2

= ||xk − ỹ||2 − αk

(
2
ζ

q̄
ε− 2e+k ζ − αkζ

2
)
, (5.24)

where e+k = |fNk
(ỹ)− f(ỹ)|+maxx∈Ω̄ |fNk

(x)− f(x)|.
Since, {xk} ⊆ Ω̄, ULLN under the stated assumptions implies

lim
k→∞

e+k (w) = 0
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for almost every w ∈ W. Since P (W̃) > 0, there must exist a sample
path w̃ ∈ W̃ such that

lim
k→∞

e+k (w̃) = 0.

This further implies the existence of k̃(w̃) ∈ N such that for all k ≥
k̃(w̃) we have

αk(w̃)ζ
2
+ 4e+k (w̃)ζ ≤ ε(w̃)

ζ

q̄
(5.25)

because Step S2 of AN-SPS algorithm implies that limk→∞ αk = 0 for
any sample path. Furthermore, since (5.24) holds for all w ∈ W̃ and
thus for w̃ as well, from (5.23)-(5.25) we obtain

||xk+1(w̃)− ỹ(w̃)||2 ≤ ||zk+1(w̃)− ỹ(w̃)||2

≤ ||xk(w̃)− ỹ(w̃)||2 − αk(w̃)ε(w̃)
ζ

q̄

and

||xk+s(w̃)− ỹ(w̃)||2 ≤ ||xk(w̃)− ỹ(w̃)||2 − ε(w̃)
ζ

q̄

s−1∑
j=0

αj(w̃).

Letting s → ∞ yields a contradiction since
∑∞

k=0 αk ≥
∑∞

k=0 1/k = ∞
for any sample path and we conclude that (5.22) holds.

Now, let us prove that

lim
k→∞

xk = x∗ a.s. (5.26)

Notice that (5.20) implies that
∑∞

k=0 αkēk ≤
∑∞

k=0
C2

k
ēk ≤ C2C4 < ∞

since αk ≤ C2/k. Since (5.22) holds, we know that

lim inf
k→∞

f(xk(w)) = f ∗, (5.27)
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for almost every w ∈ W. In other words, there exists W ⊆ W such that
P (W) = 1 and (5.27) holds for all w ∈ W. Let us consider arbitrary
w ∈ W. We will show that limk→∞ xk(w) = x∗(w) ∈ X∗ which will
imply the result (5.26). Once again let us drop w to facilitate the
notation. Let K1 ⊆ N be a subsequence of iterations such that

lim
k∈K1

f(xk) = f ∗.

Since {xk}k∈K1
⊆ {xk}k∈N and {xk}k∈N is bounded, there exist K2 ⊆

K1 and x̃ such that
lim
k∈K2

xk = x̃. (5.28)

Then, we have

f ∗ = lim
k∈K1

f(xk) = lim
k∈K2

f(xk) = f( lim
k∈K2

xk) = f(x̃).

Therefore, f(x̃) = f ∗ and we have x̃ ∈ X∗.
Now, we show that the whole sequence of iterates converges. Let

{xk}k∈K2
:= {xki}i∈N. Following the steps of (5.24) and using the fact

that f(xk) ≥ f(x̃) for all k, we obtain that the following holds for any
s ∈ N

||xki+s − x̃||2 ≤ ||xki − x̃||2 + 2ζ
s−1∑
j=0

ēki+jαki+j + ζ
2

s−1∑
j=0

α2
ki+j(5.29)

≤ ||xki − x̃||2 + 2ζ
∞∑
j=0

ēki+jαki+j + ζ
2

∞∑
j=0

α2
ki+j

= ||xki − x̃||2 + 2ζ
∞∑

j=ki

ējαj + ζ
2

∞∑
j=ki

α2
j =: ai.

Moreover, for any s,m ∈ N there holds

||xki+s − xki+m||2 ≤ 2||xki+s − x̃||2 + 2||xki+m − x̃||2 ≤ 4ai.
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Due to the fact that
∑∞

j=ki
ējαj and

∑∞
j=ki

α2
j are the residuals of

convergent sums, and that (5.28) holds, we conclude that

lim
i→∞

ai = 0.

Thus, we have just proved that {xk}k∈N is a Cauchy sequence and thus
convergent, which together with (5.28) implies that

lim
k→∞

xk = x̃. ■

Finally, we state the result for finite-sum problem (4.4) as an im-
portant class of (4.1). As we mentioned before, Assumption A2 is
redundant in this case as well as (5.20) since ēk = 0 for all k large
enough. Moreover, Assumption A4 is also satisfied due to the fact
that there are only finitely many functions fi. In the end, notice that
under Assumption A3, the full sample is eventually achieved and the
proof of Theorem 5.2.1 also reveals that the convergence is determin-
istic. We summarise this in the next theorem.

Theorem 5.2.3 Suppose that Assumption A3 holds and that Ω is
closed and convex. Then the sequence {xk}k∈N generated by AN-SPS
converges to a solution of problem (4.4).

We also provide the worst-case complexity analysis for the relevant
finite-sum problem (4.4).

Theorem 5.2.4 Suppose that the assumptions of Theorem 5.2.3 hold
and that the sample size increases as in (5.14). Then, ε-vicinity of an
optimal value f ∗ of problem (4.4) is reached after at most

k̂ = 2k̄ +

(
q(c̄1 + ||xk̄ − x∗||2)

ζ

) 1
1−δ

ε
1

δ−1
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iterations, where

k̄ := (⌈C2ζ̄N⌉+ 1)
log(N/N0)

log(r)
, c̄1 :=

∞∑
k=0

C2
2 ζ̄

2

k2
,

provided that αk ≥ k−δ, δ ∈ [0, 1) for all k ∈ {k̄, k̄ + 1, ..., k̂}.

Proof. Let us denote by N1 < N2 < ... < Nd all the sample sizes
that are used during the optimization process. Then, we have that
N1 = N0, where N0 is the initial sample size, and Nd = N since we
have proved that the full sample is reached eventually. Furthermore,
according to (5.14), we know that Nd ≥ rd−1N0 and thus we conclude
that

d− 1 ≤ log(N/N0)

log(r)
.

Furthermore, notice that for any k ∈ N there holds

θk = ∥xk+1−xk∥ = ∥PΩ(zk+1)−PΩ(xk)∥ ≤ ∥zk+1−xk∥ = ∥αkpk∥ ≤ C2

k
ζ̄.

Suppose that we are at iteration k with a sample size Nk = N j, with
j < d. Then, according to Step S5 of Algorithm 6, the sample size N j

is changed after at most

⌈ C2ζ̄

h(N j)
⌉+ 1

iterations. Moreover, since N j ≤ N − 1 for all j = 1, ..., d − 1, there
holds

h(N j) ≥ h(N − 1) =
N − (N − 1)

N
=

1

N

for all j = 1, ..., d− 1 and thus the number of iterations with the same
sample size smaller than N is uniformly bounded by ⌈C2ζ̄N⌉ + 1.
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Thus, we conclude that after at most

k̄ := (⌈C2ζ̄N⌉+ 1)
log(N/N0)

log(r)

iterations the full sample size is reached.
Now, let us observe the iterations k ≥ k̄. Theorem 5.2.3 implies

that limk→∞ fN(xk) = f ∗ and thus there exists a finite iteration k such
that fN(xk) < f ∗+ε. Let us denote by ĵ the smallest j ∈ N0 such that
fN(xk̄+ĵ) < f(x∗) + ε, where x∗ is a solution of problem (4.4). Using
the same arguments as in (5.16), we obtain

||xk̄+ĵ − x∗||2 ≤ ||xk̄ − x∗||2 −
ĵ−1∑
j=0

2αk̄+jζk̄+j

1

qk̄+j

(fN(xk̄+j)− f(x∗))

+

ĵ−1∑
j=0

α2
k̄+jζ

2
k̄+j. (5.30)

Notice that
ĵ−1∑
j=0

α2
k̄+jζ

2
k̄+j ≤

∞∑
k=0

C2
2 ζ̄

2

k2
:= c̄1 < ∞. (5.31)

Moreover, using (5.18), (5.31), ζk ≥ ζ for all k, and

αk̄+j ≥
1

(k̄ + j)δ
≥ 1

(k̄ + ĵ)δ
, fN(xk̄+j)− f(x∗) ≥ ε, j = 0, ..., ĵ− 1,

from (5.30) we obtain

0 ≤ ||xk̄ − x∗||2 −
2ĵζε

q(k̄ + ĵ)δ
+ c̄1.
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Finally, let us observe two cases: 1) ĵ ≤ k̄, and 2) ĵ > k̄. In the first
case, the upper bound on ĵ is obvious. In the second case, we have

0 ≤ ||xk̄ − x∗||2 −
2ĵζε

qĵδ2δ
+ c̄1 ≤ ||xk̄ − x∗||2 −

ĵ1−δζε

q
+ c̄1,

and thus

ĵ ≤
(
q(c̄1 + ||xk̄ − x∗||2)

ζ

) 1
1−δ

ε
1

δ−1 =: c̄2.

Combining both cases we conclude that

ĵ ≤ max{c̄2, k̄} ≤ c̄2 + k̄

and thus k̂ ≤ k̄ + c̄2 + k̄ = 2k̄ + c̄2, which completes the proof. ■

5.2.3 Numerical Results

Within this section, we test the performance of the AN-SPS algorithm
on the well-known binary classification data sets listed in Table 5.1.
The problem (5.12) that we consider is a constrained finite-sum prob-
lem with L2-regularized hinge loss local cost functions.

AN-SPS algorithm is implemented with the following parameters:
C2 = 100, η = 10−4,m = 2, N0 = ⌈0.1N⌉. The initial point x0 is
chosen randomly from Ω. We use Algorithm 3 with Bk = I to find a
descent direction −gk which is further scaled as in Step S1 of AN-SPS
algorithm, i.e., pk = −ζkgk/qk. The sample size is updated according
to Step S5 of AN-SPS and (5.14). Recall that the sample size is
increased only if θk < h(Nk).

We use cumulative samples, i.e., Nk ⊆ Nk+1 and thus, following
the conclusions in [9], we calculate the spectral coefficients based on
sk = xk+1 − xk and the subgradient difference yk = g̃k − ḡk, where
g̃k ∈ ∂fNk

(xk+1). This choice requires additional costs with respect to
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the choice of g̃k = ḡk+1, but it diminishes the influence of the noise
since the difference is calculated on the same approximate function.
Furthermore, we test four different choices for the spectral coefficient,
BB1, BB2, ABB, and ABBmin, introduced in Section 2.2.1. Recall
that

• Barzilai-Borwein 1 (BB1)

λBB1
k =

sTk sk
sTk yk

,

• Barzilai-Borwein 2 (BB2)

λBB2
k =

yTk sk
yTk yk

,

• Adaptive Barzilai-Borwein (ABB)

λk :=

{
λBB2
k ,

λBB2
k

λBB1
k

< 0.8,

λBB1
k , otherwise,

• Adaptive Barzilai-Borwein - minimum (ABBmin)

λk :=

{
min{λBB2

j : j = max{1, k − 5}, . . . , k}, λBB2
k

λBB1
k

< 0.8,

λBB1
k , otherwise.

For all the considered choices we take a safeguard

ζk = min{ζ,max{ζ, λk}}, ζ = 10−4, ζ = 104.

Since the fixed step size such as αk = 1/k was already addressed in
Section 5.1.3, where the results show that it was clearly outperformed
by the line search LS-SPS method, we focus our attention on adaptive
step size rules. The value of α̃1

k is chosen to be α̃1
k = 1/k+ᾱk

2
, i.e., it is

the middle point of the interval
[
1
k
, ᾱk

]
. Regarding the nonmonotone

rule, we also test four choices (see Section 2.3):
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• Maximum (MAX), for c = 5: Fk = maxi∈[max{1,k−5},k] fNi
(xi),

• Convex combination (CCA), for ηk = 0.85:

Fk = max{fNk
(xk), Dk}, Dk+1 =

ηkqk
qk+1

Dk +
1

qk+1

fNk+1
(xk+1),

D0 = fN0(x0), qk+1 = ηkqk + 1, q0 = 1,

• Monotone rule (MON): Fk = fNk
(xk),

• Additional term (ADA): Fk = fNk
(xk) +

1
2k
.

In order to find the best combination of the strategies proposed
above, we track the objective function value and plot it against FEV -
the number of scalar products, which serves as a measure of computa-
tional cost. All the plots are in the log scale. In the first phase of the
experiments, we test AN-SPS with different combinations of spectral
coefficients and nonmonotone rules, on four different data sets. The
results reveal the benefits of the ADA rule in almost all cases, as it
can be seen on representative graphs on MNIST data set (Figure 5.5).
In particular, as expected, more "nonmonotonicity" usually yielded
better results when combined with the spectral directions.

Furthermore, in order to see the benefits of the proposed adaptive
sample size strategy, we compare AN-SPS with:

a) heuristic (HEUR) where the sample size is increased at each
iteration by

Nk+1 = ⌈min{1.1Nk, N}⌉;

b) fixed sample strategy (FULL), where Nk = N at each iteration.

A typical behavior of the sequence {Nk} for AN-SPS and HEUR is
presented in Figure 5.6 on SPLICE data set for BB2 and ADA rule.
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Figure 5.5: AN-SPS algorithm with different nonmonotone rules and
spectral coefficients. Objective function value against the computa-
tional cost (FEV). MNIST data set.
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Figure 5.6: AN-SPS sample size versus HEUR sample size sequence.
SPLICE data set (BB2 and ADA rule).

We do the same tests for the HEUR and FULL to find the best-
performing combinations of BB and line search rules. Finally, we
compare the best-performing algorithms of each sample size strategy.
The results for all the considered data sets are presented in Figure 5.7
and they show clear advantages of the adaptive sample size strategy
in terms of computational costs.
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Figure 5.7: Comparison of the best-performing combinations of spec-
tral coefficients and nonmonotone rules of AN-SPS, HEUR, and FULL
sample size strategies.



Chapter 6

Nonsmooth Method with
Variable Accuracy for
Unconstrained Optimization
Problems

In this chapter, we consider unconstrained optimization problems in
the form (4.3),

min
x

f(x) = E [F (x, ξ)] ,

with nonsmooth and convex objective function in the form of mathe-
matical expectation. The proposed Inexact Restoration - Nonsmooth
(IR-NS) algorithm [55], which was developed and implemented within
the scope of this thesis, is presented in detail in this chapter. This in-
cludes a description of the algorithm, the convergence analysis and an
overview of numerical results. The objective function is approximated
with a sample average function by using different sample sizes in each
iteration. The sample size is chosen in an adaptive manner based on
Inexact Restoration. The method uses line search and assumes descent
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directions with respect to the current approximate function. We prove
the almost sure convergence under the standard assumptions. Numer-
ical results for two types of problems, machine learning hinge loss and
stochastic linear complementarity problems, show the efficiency of the
proposed scheme.

6.1 Inexact Restoration Nonsmooth Algo-
rithm with Variable Accuracy

The presented method is based on an adaptive variable accuracy and
descent directions with respect to the current approximate functions.
The sample size is governed by Inexact Restoration (IR) framework
introduced by Martinez and Pilota [77] and consists of two phases: the
restoration and the optimality phase. The main idea of IR is to treat
the phases, restoration and optimality, in a modular way and then
to use a merit function, which combines feasibility and optimality
and enforces progress towards a feasible optimal point. As IR is a
constrained optimization tool, the problem (4.3) is reformulated into
a constrained problem as follows

min fN(x), s.t. fN(x) = f(x), (6.1)

where f and fN are defined in (4.3) and (4.2), respectively.
Notice that (6.1) is equivalent to an unconstrained optimization

problem given in form (4.3) if the constraint is satisfied. However if
we consider methods that are not strictly feasible, i.e., not all iter-
ations satisfy the constraint, then we can treat N as an additional
variable in the constraint. That is precisely what we will do in the
IR approach - in each iteration k of the method we will determine a
suitable Nk = |Nk|. There are numerous studies that have confirmed
the benefits of using the IR approach in the varying accuracy approx-
imations framework, [8, 60]. The key advantage of this approach is
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the fact that feasibility and optimality are kept in balance through
merit function. Therefore, the accuracy of the approximate objective
function depends on the progress toward optimality in each iteration.
So, the accuracy is adaptive, endogenous to the algorithm and there
is no need for additional parameters or heuristics in the sample size
determination. Furthermore, the sequence of sample sizes is very often
nonmonotone, increasing the accuracy (and the computational cost)
whenever we approach the solution to ensure good quality of the ap-
proximate solution, and decreasing the accuracy (and the costs) when
the current iteration is far away from the solution. The approach
has been used for variable accuracy approximations for the first time
in [60] for the problem of finite-sum minimization coupled with line
search descent direction method, based on results from [33]. It is ex-
tended to trust region framework and constrained problems, [8, 10, 77].
An approach for solving problems with variable accuracy in both the
objective function and constraints is analyzed in [16].

The approach presented here differs in several aspects. First of
all, we consider the approximate objective of the form (4.2), fN(x) =
1
N

∑
i∈N fi(x), and prove that the algorithm introduced here yields

N → ∞. In other words we approach the objective function almost
surely under some standard conditions. This property of the algorithm
is a direct consequence of IR strategy. Furthermore, the conditional
expectation of the relevant SAA estimator is equal to the objective
function under our settings (for details see the final paragraph of Sec-
tion 6.2. and the proof of Lemma 6.1.4), and the step size is not
directly involved. Another important difference lies in the fact that
the objective function and its approximations are not differentiable,
and thus the step size analysis is more complicated even in the strongly
convex case.

Our contributions are the following. We define IR-NS algorithm for
nonsmooth optimization with variable accuracy and prove almost sure
convergence of the algorithm under the set of standard assumptions.
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By using Inexact Restoration for sample size selection we generalize
the results from [102]. More precisely, since IR-NS pushes the SAA
error to zero, in the case of finite-sum problems where the objective
function is given by (4.2) with the finite full sample size N , the true
objective function is reached eventually and the convergence results
from [102] hold. IR-NS algorithm also covers a wider class of prob-
lems than finite-sums, including infinite-sums. The experiments we
perform confirm the intuitive reasoning that working with variable,
adaptive sample size is more effective than working with predefined
or full sample size as in [102]. To emphasize this fact we present ex-
periments with the same search direction as in [102] - the nonsmooth
BFGS descent direction obtained by using Algorithm 3, and demon-
strate the advantages of variable sample size approach proposed in
IR-NS. In general, an arbitrary descent direction in the sense of As-
sumption A5 stated below is applicable. From a theoretical point of
view, the complexity of order ε−2 is proved, which also applies to the
method from [102]. The obtained complexity is in line with the re-
sults from [15] where the complexity of IR is analyzed. The result in
[15] is obtained for smooth constrained problems and is of the form
ε−1
feas + ε−2

opt, with εfeas being the constant for feasibility and εopt co-
incides with the ε that we consider here. Notice that the problems
considered in [15] are smooth and deterministic. The complexity re-
sults obtained in [10] are not comparable to the complexity results
for IR-NS as the methods analyzed in [10] are specialized for smooth
problems and problems with regularization. It is important to notice
that the choice of sample size we propose here introduces a stochastic
iterative sequence which might seem as an unnecessary complication
if one is dealing with finite-sum problems. However, we will show
that the complexity remains the same and asymptotically we get a.s.
convergence, so the stochastic nature does not alter the expected the-
oretical results. On the other hand, the intrinsic nature of the sample
size variation, based on the progress of the iterative process, yields sig-
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nificant computational cost savings as demonstrated in the numerical
results.

6.1.1 The Algorithm

First, let us recall the Assumption A1, which summarizes the proper-
ties of the problem (4.3), where it is assumed that fi(x) = F (x, ξi),
i = 1, 2, . . . , are continuous, convex and bounded from below with a
constant C for all ξi. Following the standard line search method, we
assume that a descent direction can be provided for any given function
fN such that condition (3.8) holds.

Assumption A 5 For any given N , x and B such that mI ⪯ B(x) ⪯
MI, for some positive and bounded constants m ≤ M we can compute
a direction pN ∈ Rn such that

pN(x) = −B(x)ḡN(x) and sup
g∈∂fN(x)

gTpN(x) ≤ −m

2
∥ḡN(x)∥2,

where ḡN(x) ∈ ∂fN(x).

Let us briefly discuss the plausibility of the above assumption. One
possibility to generate such direction is using Algorithm 3 presented
in Section 3.5, where B is the BFGS matrix. If an oracle for calculat-
ing supg∈∂fN(x) g

TpN(x) is available, then we can take the subgradient
descent direction. Another approach would be to use gradient subsam-
pling techniques [17]. For directions that satisfy Assumption A5 the
following result, as a direct corollary of the Theorem 3.5.1 listed in the
Section 3.5, holds. We provide the proof for the sake of completeness.

Lemma 6.1.1 Let Assumptions A1 and A5 hold. Then there exist
τN(x) > 0 and γ ∈ (0, 1) such that the subgradient Armijo condition

fN(x+ αpN(x)) ≤ fN(x)− γα∥pN(x)∥2.

holds for all α ∈ [0, τN(x)].
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Proof. Let us fix an arbitrary N and an arbitrary x ∈ Rn. If
ḡN(x) = 0 the statement is obviously true. In the case ḡN(x) ̸= 0 we
can define δ(α) := fN(x+ αpN(x)), where pN(x) is a descent direction
satisfying Assumption A5. For such pN(x) there holds

δ′(0) = sup
g∈∂fN (x)

gTpN(x) < 0.

Consider
l(α) := fN(x) + αη sup

g∈∂fN(x)

gTpN(x),

for some η ∈ (0, 1). Given that supg∈∂fN(x) g
TpN(x) < 0, fN is bounded

from below and convex by Assumption A1, there exists an unique
intersection of the functions δ and l on the interval α ∈ (0,∞). Let
us denote this intersection by τN(x). Then, for all α ∈ [0, τN(x)] there
holds

fN(x+ αpN(x)) ≤ fN(x) + αη sup
g∈∂fN(x)

gTpN(x).

Furthermore, Assumption A5 implies

fN(x+ αpN(x)) ≤ fN(x)− αη
m

2
∥ḡN(x)∥2 ≤ fN(x)− αη

m

2M2
∥pN(x)∥2

and the statement holds for γ = ηm/(2M2). ■
The problem we are solving is defined by (6.1). Clearly the feasi-

bility condition fN(x) = f(x) cannot be enforced in the general case
of expected value as in that case, we should have N → ∞. Further-
more, neither the deviation from feasible condition |f(x)− fN(x)| can
be computed. Thus we introduce an approximate infeasibility mea-
sure defined as a function h(N) for arbitrary integer N. Assume that
h : N → R+ ∪ {0} is monotonically decreasing function such that
limN→∞ h(N) = 0. In other words, h(N) is a proxy for |f(x)− fN(x)|
as we have seen earlier. Recall that if we are solving a finite-sum
problem, i.e., if f(x) = fNmax(x) for a fixed Nmax then for arbitrary
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N ≤ Nmax we can use (4.7), h(N) = (Nmax − N)/Nmax. For the case
of unbounded N one possible simple choice is (4.8), h(N) = 1/N. The
merit function for IR is defined in the usual way

Φ(x,N, ϑ) := ϑfN(x) + (1− ϑ)h(N),

where ϑ ∈ (0, 1) is the penalty parameter used to give different weights
to the objective function and the measure of infeasibility and N is an
integer that defines the level of accuracy in the approximate function
fN.

At each iteration k we have the accuracy parameter as an integer
Nk, the solution estimate xk, the penalty parameter ϑk and the ap-
proximate objective function fNk

. The presented algorithm is denoted
as Algorithm 7.

Let us briefly discuss the key points of IR-NS algorithm. In Step
S1 the feasibility is improved, i.e., a new sample size candidate Ñk+1 is
chosen. Additionally, the value fÑk+1

(xk) might increase with respect
to fNk

(xk) by at most βh(Nk). Thus, optimality can deteriorate with
respect to the previous iteration but the deterioration is controlled by
the function h, i.e., it depends on the accuracy of the objective func-
tion. So, for smaller Nk - which means a looser approximation of the
true objective function, the deterioration of optimality can be rela-
tively large, as we assume that we are still far away from the solution.
Parameter β can be arbitrarily large, but finite. In some applications
(ex. finite-sums) one can prove that such β exists under standard con-
ditions. However, in general, since we do not impose differentiability
of the objective function nor any other special property, the following
assumption is needed.

Assumption A 6 Suppose that there exists β such that (6.2) holds
for each k.

The penalty parameter is updated in such a way that it ensures a
decrease of the merit function as stated in Lemma 6.1.2. Moreover,
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Algorithm 7: IR-NS (Inexact Restoration - NonSmooth)

S0 Initialization. Given x0 ∈ Rn, N0 ∈ N, ϑ0, r ∈ (0, 1), β, γ, γ > 0.
Set k = 0.

S1 Restoration phase. Find Ñk+1 ≥ Nk such that

h(Ñk+1) ≤ rh(Nk),

fÑk+1
(xk)− fNk

(xk) ≤ βh(Nk). (6.2)

S2 Updating the penalty parameter.
If

Φ(xk, Ñk+1, ϑk)− Φ(xk, Nk, ϑk) ≤
1− r

2

(
h(Ñk+1)− h(Nk)

)
(6.3)

set ϑk+1 = ϑk.
Else

ϑk+1 :=
(1 + r)(h(Nk)− h(Ñk+1))

2
[
fÑk+1

(xk)− fNk
(xk) + h(Nk)− h(Ñk+1)

] . (6.4)

S3 Optimization Phase. Choose Nk+1 ≤ Ñk+1, pNk+1
∈ Rn and

αk ∈ (0, 1] such that

fNk+1
(xk+αkpNk+1

(xk))−fÑk+1
(xk) ≤ −γαk||pNk+1

(xk)||2, (6.5)

h(Nk+1) ≤ h(Ñk+1) + γ̄α2
k||pNk+1

(xk)||2, (6.6)

Φ(xk + αkpNk+1
(xk), Nk+1, ϑk+1)− Φ(xk, Nk, ϑk+1)

≤ 1− r

2

(
h(Ñk+1)− h(Nk)

)
. (6.7)

S4 Set pk = pNk+1
(xk), xk+1 = xk + αkpk, k := k + 1 and go to S1.
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it can also be shown that the sequence of ϑk is non-increasing and
bounded away from zero which prevents the optimality part to vanish
from the merit function. The proof of Lemma 6.1.2 is fundamentally
the same as in [60, Lemma 2.1], but we provide it for the sake of
completeness.

Lemma 6.1.2 [60] Let Assumptions A1, A5 and A6 hold. Then
the sequence {ϑk} generated by Algorithm IR-NS is positive and non-
increasing, the inequality

Φ(xk, Ñk+1, ϑk+1)− Φ(xk, Nk, ϑk+1) ≤
1− r

2

(
h(Ñk+1)− h(Nk)

)
holds and there exists ϑ∗ > 0 such that limk→∞ ϑk = ϑ∗.

Proof. First, let us show that the sequence {ϑk} is non-increasing.
If (6.3) holds, from Step S2 we have ϑk+1 = ϑk.
Otherwise, since (6.3) does not hold , it follows

Φ(xk, Ñk+1, ϑk)− Φ(xk, Nk, ϑk) >
1− r

2

(
h(Ñk+1)− h(Nk)

)
,

i.e.,

ϑk

(
fÑk+1

(xk)− fNk
(xk)

)
+ (1− ϑk+1)

(
h(Ñk+1)− h(Nk)

)
>

1− r

2

(
h(Ñk+1)− h(Nk)

)
.

Furthermore,

ϑk

(
fÑk+1

(xk)− fNk
(xk)− h(Ñk+1) + h(Nk)

)
>

1− r

2

(
h(Ñk+1)− h(Nk)

)
− h(Ñk+1) + h(Nk).
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Therefore, we have

ϑk >
1 + r

2

h(Nk)− h(Ñk+1)

fÑk+1
(xk)− fNk

(xk) + h(Nk)− h(Ñk+1)
:= ϑk+1,

and it follows that {ϑk} is a non-increasing sequence.
Now, we want to show that ϑk+1 given by (6.4) is bounded away

from zero. It holds

Φ(xk, Ñk+1, ϑk+1)− Φ(xk, Nk, ϑk+1)

= ϑk+1

[
fÑk+1

(xk)− fNk
(xk) + h(Nk)− h(Ñk+1)

]
+ h(Ñk+1)− h(Nk)

=
(1 + r)(h(Nk)− h(Ñk+1))

2
+ h(Ñk+1)− h(Nk)

=
h(Ñk+1)− h(Nk)− r(h(Ñk+1)− h(Nk))

2

=
1− r

2

(
h(Ñk+1)− h(Nk)

)
.

Moreover,

1

ϑk+1

=
2

1 + r

fÑk+1
(xk)− fNk

(xk) + h(Nk)− h(Ñk+1)

h(Nk)− h(Ñk+1)

=
2

1 + r

(fÑk+1
(xk)− fNk

(xk)

h(Nk)− h(Ñk+1)
+ 1

)
≤ 2

1 + r

( βh(Nk)

h(Nk)− rh(Nk)
+ 1

)
=

2

1 + r

( β

1− r
+ 1

)
:=

1

ϑ̃
,

Therefore,
ϑk+1 ≥ ϑ̃ > 0.
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Since {ϑk} is a non-increasing sequence bounded from below, it follows
that there exists ϑ∗ such that

lim
k→∞

ϑk = ϑ∗, ϑ∗ ≥ ϑ̃. ■

In Step S3 we chose the sample size to be used in the subsequent
iteration. Notice that one possible choice is Nk+1 = Ñk+1 since (6.5)-
(6.6) are satisfied due to Lemma 6.1.1 and, as we will prove in Lemma
6.1.3, there exists αk which satisfies inequality (6.7) in that case as
well. On the other hand, in order to decrease the overall costs, we
try to decrease the sample size if it still provides the decrease in the
merit function (6.7). The resulting sample size Nk+1 can be larger,
equal, or smaller than Nk. Our numerical study shows that allowing
the decrease of sample size is beneficial in terms of overall function
evaluations. In practical implementations, we estimate the sample
size lower bound N trial

k+1 derived from (6.7) and let

Nk+1 ∈ {N trial
k+1 , ⌈(N trial

k+1 + Ñk+1)/2⌉, Ñk+1}.

We use the backtracking technique for finding αk, but at each back-
tracking step we try all three candidate values for Nk+1. This is just
one possible approach and the optimal strategy remains an open ques-
tion, probably problem-dependent.

Lemma 6.1.3 Let Assumptions A1, A5 and A6 hold. Then, there
exists γ > 0 such that Step S3 of Algorithm IR-NS is well-defined.

Proof. The algorithm is well defined if there exists a choice of
Nk+1 ≤ Ñk+1 and a descent direction pk such that (6.5) - (6.7) hold
for some αk > 0 and a suitable γ > 0 for each k. Let us take Nk+1 =
Ñk+1 and retain the same sample so that fNk+1

= fÑk+1
. In that case

Lemma 6.1.1 implies the existence of τk := τNk+1
(xk) > 0 such that

the inequality (6.5) holds for all α ∈ [0, τk]. Since (6.6) is trivially



152
Nonsmooth Method with Variable Accuracy for

Unconstrained Optimization Problems

satisfied for this choice of Nk+1, it remains to prove the existence of
αk ∈ [0, τk] such that (6.7) holds. By (6.5), (6.6) and Lemma 6.1.2,
for all α ∈ [0, τk],

Φ(xk + αpk, Nk+1, ϑk+1)− Φ(xk, Nk, ϑk+1)

= Φ(xk + αpk, Nk+1, ϑk+1)− Φ(xk, Ñk+1, ϑk+1)

+ Φ(xk, Ñk+1, ϑk+1)− Φ(xk, Nk, ϑk+1)

≤ Φ(xk + αpk, Nk+1, ϑk+1)− Φ(xk, Ñk+1, ϑk+1)

+
1− r

2

(
h(Ñk+1)− h(Nk)

)
= ϑk+1

(
fNk+1

(xk + αpk)− fÑk+1
(xk)

)
+

1− r

2

(
h(Ñk+1)− h(Nk)

)
≤ −ϑk+1γα||pk||2 +

1− r

2

(
h(Ñk+1)− h(Nk)

)
≤ 1− r

2

(
h(Ñk+1)− h(Nk)

)
.

Therefore, (6.7) holds for all α ∈ [0, τk]. ■

Notice that in the above Lemma, we proved only that the algo-
rithm is well defined, i.e., we can always take Nk+1 = Ñk+1 and the
(k + 1)th iteration is well defined. However, other possibilities for
Nk+1 exist and we discuss some of them in Section 5.2.3. Since the
sample size sequence is not monotonically increasing in general, it is
not obvious that Nk tends to infinity. Nevertheless, using essentially
the same proof as in [60, Theorem 2.1], we conclude that the infea-
sibility measure tends to zero yielding the result of limk→∞Nk = ∞.
Specially, for the finite-sum problem we conclude that the full sample
is reached after a finite number of iterations. The proof of Theorem
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2.1 in [60] contains an important relation stated below
∞∑
k=0

h(Nk) ≤ C6 < ∞, (6.8)

where C6 > 0 is a constant, that we will use in further convergence
analysis presented in the next section.

Let us now provide more insights regarding the stochastic concept
of the proposed algorithm. IR-NS yields a stochastic sequence of it-
erates xk. The stochastic nature comes from the sequence of random
variables Nk that determine the samples to be used for the SAA func-
tions. Assume that we are at iteration k and xk is known. Denote
by Fk the σ-algebra generated by x0, ..., xk, i.e., by random variables
that determine fÑj

, j = 1, ..., k and fNj
, j = 0, ..., k. Since the samples

are assumed to be i.i.d., we have conditionally unbiased estimators.
More precisely, at the beginning of Step S1 of the algorithm a new
sample size Ñk+1 is chosen and a random sample is generated to ob-
tain fÑk+1

. Thus, since xk is Fk-measurable (i.e., known at that point
of the algorithmic procedure), there holds

E
[
fÑk+1

(xk)|Fk

]
= f(xk), (6.9)

where E [·|Fk] denotes the conditional expectation with respect to Fk

[35]. Also E
[
fNk+1

(xk)|Fk

]
= f(xk). However, E

[
fNk+1

(xk+1)|Fk

]
is

not equal to f(xk+1) in general because xk+1 is dependent on Nk+1.
More precisely, the second round of stochastic influence within itera-
tion k comes at Step S3 where we choose Nk+1 which may yield to-
tally different sample for fNk+1

with respect to fÑk+1
in general (each

trial sample size may yield different sample). Moreover, the direc-
tion pNk+1

(xk+1) and the step size αk directly depend on the generated
samples and thus we lose the martingale property. This is a common
situation in stochastic line search (see [14] for instance). In Step S4, we
set the next iteration and return to Step S1, repeating the procedure.
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6.1.2 Convergence Analysis

The convergence analysis is performed under the set of standard as-
sumptions for stochastic problems. We analyze conditions needed for
a.s. convergence of IR-NS and provide complexity result at the end of
this section.

Assumption A 7 The objective function f has bounded level sets.

This assumption holds if the objective function is strongly convex for
example, and we have the following result.

Lemma 6.1.4 Let Assumptions A1 and A5-A7 hold. Suppose that
there exists a constant C0 such that F (x0, ξ) ≤ C0 for any ξ. Then
f(xk) ≤ C2 holds for all k, i.e., {xk}k∈N ⊆ D, where

D = {x ∈ Rn | f(x) ≤ C7}

and C7 = C0 + 2βC6.

Proof. The set D is compact by Assumption A7. Using inequalities
(6.2)-(6.5), for all k we obtain

fNk+1
(xk+1) ≤ fÑk+1

(xk)− γαk||pNk+1
(xk)||2 ≤ fNk

(xk) + βh(Nk).

Furthermore, using the induction argument and (6.8) we get

fNk+1
(xk+1) ≤ fN0(x0) + β

k∑
j=0

h(Nj) ≤ fN0(x0) + βC6,

for all k = 0, 1, .... Obviously, the assumption of uniformly bounded
F at the initial point x0 implies that fN0(x0) ≤ C0 and we obtain

fNk
(xk) ≤ C0 + βC6, (6.10)
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for all k = 1, 2, .... Finally, by (6.9) and inequalities (6.2) and (6.10)
we get

f(xk) = E
[
fÑk+1

(xk)|Fk

]
≤ E [fNk

(xk) + βh(Nk)|Fk] ≤ C0+2βC6 := C7,

which completes the proof. ■
Recall that in Assumption A2 we assume that the function F is

dominated by a P-integrable function on any compact subset of Rn.
Let now the function F be dominated by an integrable function on a
bounded open set D̃0 such that D ⊂ D̃0. Define

ẽk := max
x,y∈D̃

{|f(x)− fNk+1
(x)|+ |f(y)− fÑk+1

(y)|}, (6.11)

where D̃ is a compact enlargement of D, i.e., D̃ is the closure of an
open set D̃0 ⊃ D. Therefore, both D and D̃ are compact sets and
D ⊊ D̃.

Notice that ULLN and the fact h(Nk) → 0 imply that ẽk → 0 a.s.
if Nk → ∞. Let us analyze the convergence depending on properties
of the step size sequence {αk} and the error sequence {ẽk}.

Theorem 6.1.1 Let Assumptions A1-A2 and A5-A7 hold and {xk}
be a sequence generated by Algorithm IR-NS. If αk ≥ α > 0 for all
k ∈ N then there exists an accumulation point x∗ of {xk} which is a
solution of problem (4.3) a.s.

Proof. Denote ḡk = ḡNk
(xk). Then Assumption A5 and (6.5) imply

fNk+1
(xk+1) ≤ fÑk+1

(xk)− γαk||pk||2 ≤ fÑk+1
(xk)− ηαk||gk||2,

where η = γm2. Furthermore,

f(xk+1) ≤ fÑk+1
(xk)− ηαk||gk||2 + f(xk+1)− fNk+1

(xk+1)

≤ f(xk)− ηαk||gk||2 + |f(xk+1)− fNk+1
(xk+1)|

+ |fÑk+1
(xk)− f(xk)|.
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From the definition of ẽk (6.11), we obtain

f(xk+1) ≤ f(xk)− ηᾱ||gk||2 + ẽk. (6.12)

We will show that lim infk→∞ ||gk||2 = 0. Assume the contrary, i.e.,
that ||gk||2 ≥ ϱ > 0 for some ϱ > 0 and all k. Then

ηα||gk||2 ≥ ηαϱ > 0.

Since ẽk → 0 a.s., there exists k such that for all k ≥ k there holds
ẽk ≤ 1

2
ηα||gk||2 a.s. and thus (6.12) implies

f(xk+1) ≤ f(xk)− ηα/2 a.s.

Equivalently, for all s ∈ N we have

f(xk+s) ≤ f(xk)−
s

2
ηαϱ a.s. (6.13)

Letting s → ∞ yields a contradiction with the Assumption A1 which
implies that f is bounded from below. Therefore, we conclude that
there there exists K ⊆ N such that

lim
k∈K

gk = 0 a.s.

Since {xk} ⊂ D and D is compact there follows that there exist K1 ⊆
K and x∗ ∈ D such that

x∗ = lim
k∈K1

xk.

Now, using the fact that gk ∈ ∂fNk+1
(xk), for all x ∈ Rn we have

fNk+1
(x) ≥ fNk+1

(xk) + gTk (x− xk).
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Thus, for arbitrary x ∈ D̃ we have

f(x) ≥ fNk+1
(xk) + gTk (x− xk) + f(x)− fNk+1

(x)

= f(xk) + gTk (x− xk)−
(
fNk+1

(x)− f(x) + f(xk)− fNk+1
(xk)

)
≥ f(xk) + gTk (x− xk)−

(
|f(x)− fNk+1

(x)|+ |f(xk)− fNk+1
(xk)|

)
.

Therefore,
f(x) ≥ f(xk)− ||gk||||x− xk|| − 2ẽk.

Taking the limit over K1 and using the fact that ||x−xk|| is bounded,
we obtain that for every x ∈ D̃ there holds

f(x) ≥ f(x∗), a.s. (6.14)

Recall that x∗ ∈ D and D̃ is a compact enlargement of D so x∗ cannot
be on the boundary of D̃, so there exists ϵ > 0 such that B(x∗, ϵ) ⊂ D̃.
Thus, x∗ is a local minimizer of f a.s. Since f is assumed to be convex,
we conclude that x∗ ∈ X∗ a.s. ■

It can be also proved that every strictly strong accumulation point
[101] is a solution a.s. Recall Definition 1.1.8, we say that a point
x∗ is a strictly strong accumulation point of the sequence {xk}k∈N if
there exists a subsequence K ⊆ N and a constant b ∈ N such that
limki∈K xki = x∗ and ki+1 − ki ≤ b for any two consecutive elements
ki, ki+1 ∈ K. According to the available literature, [92, 99], and up to
the best of our knowledge, a stronger statement in a.s. sense is not
possible without some additional assumptions on the rate of increase
of Nk.

Theorem 6.1.2 Assume that the conditions of Theorem 6.1.1 hold.
Then every strictly strong accumulation point of the sequence {xk} is
a solution of problem (4.3) a.s.

Proof.
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Let x∗ be an arbitrary strictly strong accumulation point of the
sequence {xk}, i.e., x∗ = limi→∞ xki and si := ki+1 − ki ≤ b for every
i ∈ N. Since (6.12) holds for each k ∈ N, we obtain

f(xki+1
) ≤ f(xki)−ηα

si−1∑
j=0

||gki+j||2+
si−1∑
j=0

tki+j ≤ f(xki)−ηα||gki ||
2+ωi,

where ωi =
∑b−1

j=0 tki+j. Notice that ωi → 0, i → ∞ a.s. We want to
show that

lim inf
i→∞

||gki ||
2 = 0 a.s. (6.15)

Assume the contrary, i.e., for all i ∈ N there holds ||gki ||
2 ≥ ϱ > 0 for

some ϱ > 0. Then,
ηα||gki ||

2 ≥ ηαϱ > 0

for all i ∈ N. Therefore, there exists i such that for all i ≥ i there
holds ωi ≤ 1

2
ηαϱ a.s. and thus

f(xki+1
) ≤ f(xki)−

1

2
ηαϱ a.s.

Letting i → ∞ in the last inequality we obtain

f(x∗) ≤ f(x∗)− 1

2
ηαϱ < f(x∗),

which is a contradiction. So, (6.15) holds and repeating the steps
(6.13)-(6.14) from the proof of Theorem 6.1.1, we obtain the result,
i.e., x∗ ∈ X∗ a.s. ■

Next, we show that the convergence result as in Theorem 6.1.1 can
be obtained under weaker assumptions on the step size sequence, but
assuming that the increase of sample size Nk is eventually fast enough,
i.e.,

∑∞
k=0 ẽk < ∞. For instance, if the sample is cumulative, the log

bound given by (4.10) in Section 4.2.1 holds and
∑∞

k=0 ẽk < ∞ is true
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if Nk ≥ ek. Therefore, one can switch to exponential growth after a
certain number of iterations of the IR-NS algorithm, taking advantage
of cheap iterations in the early stages and theoretically proved conver-
gence for the fast increase of sample size sequence in the later stages
of the algorithm. The switching point is an interesting problem but
beyond this thesis’s scope.

Theorem 6.1.3 Let Assumptions A1-A2 and A5-A7 hold and {xk}
be a sequence generated by Algorithm IR-NS. If

∑∞
k=0 αk = ∞ and∑∞

k=0 ẽk < ∞ then there exists an accumulation point x∗ of {xk} which
is a solution of problem (4.3).

Proof. Following the steps of the proof of Theorem 6.1.1 we obtain

f(xk+1) ≤ f(xk)− ηαk||gk||2 + ẽk

for every k and thus

f(xk+1) ≤ f(x0)− η
k∑

i=0

αi||gi||2 +
k∑

i=0

ti.

The function f is bounded from below and
∑∞

k=0 ẽk < ∞, so we con-
clude

∞∑
k=0

αk||gk||2 < ∞. (6.16)

Furthermore, the assumption
∑∞

k=0 αk = ∞ implies the existence of a
subset K1 such that limk∈K1 gk = 0. Indeed, if we assume the contrary,
i.e., that there exists ε > 0 such that ∥gk∥ ≥ ε > 0 for k large enough,
then we obtain

∞∑
k=0

αk||gk||2 ≥
∞∑
k=0

αkε
2 = ε2

∞∑
k=0

αk = ∞,
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which is in contradiction with (6.16). Since the whole sequence
{xk}k∈N is bounded due to Lemma 6.1.4, there exist K2 ⊆ K1 and
x∗ ∈ D such that

lim
k∈K2

xk = x∗.

Now, repeating the proof of Theorem 6.1.1 - the part after (6.13), we
conclude that x∗ ∈ X∗. ■

The following result is based on considerations in [7] and [38] and
essentially yields worst-case complexity analysis with respect to the
expected objective function value.

Theorem 6.1.4 Let Assumptions A1-A2 and A5-A7 hold, ε > 0 and
{xk} be a sequence generated by Algorithm IR-NS. Furthermore, as-
sume that αk ≥ α > 0 for all k ∈ N and

∑∞
k=0 ẽk ≤ t < ∞. Then,

after at most

k =
⌈R2(t+ f(x0)− f ∗)

ηα
ε−2

⌉
iterations, we have

E [f(xk)− f ∗] ≤ ε,

where R is the diameter of D.

Proof. First, notice that (6.16) holds and since αk ≥ α we obtain

lim
k→∞

||gk||2 = 0.

Take arbitrary ε > 0 and define ε1 = ε/R. Since gk tends to zero,
there exists k such that ||gk|| ≤ ε1. Let k be the first such iteration.
Then for k = 0, 1, . . . , k− 1 we have ||gk|| > ε1. Moreover, from (6.12)
we get

ẽk + f(xk)− f(xk+1) ≥ ηαε21

for k = 0, 1, . . . , k−1 and by summing up both sides of this inequality
and using

∑∞
k=0 ẽk ≤ t < ∞ we obtain

ηαε21k ≤ t+ f(x0)− f(xk) ≤ t+ f(x0)− f ∗,
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i.e.,

k ≤ t+ f(x0)− f ∗

ε21ηα
= ε−2R

2(t+ f(x0)− f ∗)

ηα
.

Since fNk+1
is convex and gk ∈ ∂fNk+1

(xk) there holds

fNk+1
(x∗) ≥ fNk+1

(xk) + gT
k
(x∗ − xk),

i.e.,

fNk+1
(xk)− fNk+1

(x∗) ≤ gT
k
(xk − x∗) ≤ ||gk||||x∗ − xk|| ≤ ε1R = ε.

Denote by Fk̄ the σ-algebra generated by x0, . . . , xk̄. Since the sample
is assumed to be i.i.d. and the approximate functions are computed
as sample average, we obtain

E [(f(xk)− f(x∗)] = E
[
E
[
fNk+1

(xk)− fNk+1
(x∗)|Fk̄

]]
≤ ε. ■

Let us conclude this section by considering the finite-sum case
which falls into the IR-NS framework. Recall that h(Nk) → 0.
So, in the case of finite-sum we have Nk = Nmax for all k ≥ k0
where k0 is random but finite. Moreover, ẽk becomes zero eventu-
ally, so the summability of ẽk holds. Furthermore, (6.12) reveals that
f(xk+1) ≤ f(xk) for all k ≥ k0 and thus the iterations remain in the
level set L = {x|f(x) ≤ f(xk0)}. If the level set is compact then the
Assumption A7 is obviously satisfied. Finally, notice that Assumption
A2 is needed only to ensure that ẽk tends to zero a.s. which is ob-
viously true in the finite-sum case. Also, notice that in the strongly
convex finite-sum case, there exists C such that all fi functions are
bounded from below by C. Therefore the following result holds.

Corollary 6.1.1 Let Assumptions A5 and A6 hold and assume∑
k αk = ∞. If f = fNmax and fi, i = 1, ..., Nmax are continuous and

strongly convex, then there exists an accumulation point x∗ of {xk}
which is a solution of problem (4.3). Moreover, if αk ≥ α > 0 for all
k ∈ N, then the worst-case complexity is of order O(ε−2).
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6.1.3 Numerical Results

In this subsection, we test IR-NS variable sample size scheme on two
classes of nonsmooth convex problems:

a) Finite-Sums (FS), i.e., bounded sample size with real-world data,

b) Expected Residual Minimization (ERM) reformulation of
Stochastic Linear Complementarity Problems (SLCP) with un-
bounded sample size and simulated data.

The first class belongs to the machine learning framework and consid-
ers L2-regularized binary hinge loss functions for binary classification
as in the previous chapter. The considered data sets are given in Table
6.1 and the unconstrained optimization problem is of the form

min
x∈Rn

f(x) :=
λ

2
||x||2 + 1

Nmax

Nmax∑
i=1

max(0, 1− zix
Twi),

where λ = 10−5 is a regularization constant, wi ∈ Rn are the input
features, zi ∈ {±1} the corresponding labels, Nmax is the size of the
relevant data set (testing or training).

Data set N n Ntrain Ntest MaxFEV

1 SPLICE [105] 3175 60 2540 635 106

2 MUSHROOMS [70] 8124 112 6500 1624 106

3 ADULT9 [105] 32561 123 26049 6512 107

4 MNIST(binary) [106] 70000 784 60000 10000 107

Table 6.1: Properties of the data sets used in the experiments.

SLCP consists of finding a vector x ∈ Rn such that

x ≥ 0,M(ξ)x+ q(ξ) ≥ 0, xT (M(ξ)x+ q(ξ)) = 0, ξ ∈ Ω,



6.1 Inexact Restoration Nonsmooth Algorithm with Variable
Accuracy 163

where Ω is the underlying sample space, M(ξ) ∈ Rn,n is a random
matrix and q(ξ) ∈ Rn is a random vector. ERM reformulation (see
[57] for example) is defined as follows

min f(x) = E
[
||F̃ (x, ξ)||2

]
, s. t. x ≥ 0,

where F̃ (x, ξ) : Rn × Ω → Rn, F̃ (x, ξ) = ϕ(x,M(ξ)x + q(ξ)) and
ϕ : R2 → R is the NCP function defined as ϕ(a, b) = min{a, b}.

The SAA approximate objective function (4.2) is defined as

fNk
(x) =

1

Nk

Nk∑
j=1

fj(x)

with fj(x) = ∥F̃ (x, ξj)∥2 =
∑n

l=1 (min{xl, [M(ξj)x]l + [q(ξj)]l})2 .
Since numerical results for deterministic (full sample) problem pro-

vided in [102] reveal the advantages of BFGS-type methods in nons-
mooth optimization, we chose to use the method proposed therein for
finding a descent direction satisfying Assumption A5. The functions
in consecutive iterations differ in general, and yk needed for BFGS
update is the difference of subgradients of different SAA functions,
a safeguard is needed to ensure that the resulting matrices are uni-
formly positive definite. Thus we start with the identity matrix and
skip the BFGS update if yk(xk+1 − xk) < 10−4∥yk∥2. Both types of
tested problems, FS and ERM allow us to calculate supg∈∂fN(x) p

Tg
which is crucial for finding the descent BFGS direction. We denote
the proposed algorithm by IRBFGS to emphasize the fact that the
BFGS directions are used.

The parameters of IRBGFS algorithm are ϑ0 = 0.9, r = 0.95, γ =
1 and γ = 10−4. We use the function h(Nk) = N−Nk

N
for FS and

h(Nk) =
1
Nk

for ERM problem. Thus, we have

Ñk+1 = min{N, ⌈N − r(N −Nk)⌉}
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for bounded and
Ñk+1 =

⌈Nk

r

⌉
for unbounded sample case. N0 = ⌈0.1N⌉ for FS, while for ERM
problems we take N0 = 1000. Step S3 is performed as already stated:
we estimate the sample size lower bound N trial

k+1 derived from (6.7) and
let

Nk+1 ∈ {N trial
k+1 , ⌈(N trial

k+1 + Ñk+1)/2⌉, Ñk+1}.

The backtracking technique for finding αk = 0.5j is used, but at each
backtracking step, we try all three candidate values for Nk+1. We use
cumulative samples, although other approaches are feasible as well.
The value N trial

k+1 is calculated as follows:

a) for FS

Ntrial
k+1 := Nk +

1− r

2
·
Ñk+1 −Nk

1− ϑk+1
− ϑ̂k+1

(
γα||pk−1||2 − f

Ñk+1
(xk) + fNk

(xk)
)
,

where ϑ̂k+1 = N · ϑk+1

1−ϑk+1
;

b) for ERM

Ntrial
k+1 :=

1− ϑk+1

1−r
2

· Nk−Ñk+1

Ñk+1Nk
+

1−ϑk+1

Nk
+ ϑk+1

(
γα||pk−1||2 − f

Ñk+1
(xk) + fNk

(xk)
) .

The motivation for these choices comes from condition (6.7) from
Step S3. The merit function at the new point should be decreased for
at least 1−r

2
(h(Ñk+1) − h(Nk)). Therefore, approximating ||pk|| with

||pk−1|| and using (6.5) and (6.6) from Step S3, we obtain the lower
bound N trial

k+1 for Nk+1. If this value falls below N0, we simply take
N trial

k+1 = N0.
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Our numerical study has two goals:

i) to investigate if the variable sample size approach is beneficial
in terms of overall optimization costs;

ii) to investigate if the potential decrease of the sample size coming
from S3 is beneficial.

This is why we compare the proposed IRBFGS method to:

a) FBFGS which takes the full sample (when applicable) at each
iteration, i.e., in FS problems Nk = Nmax for each k;

b) HBFGS which takes Nk+1 = Ñk+1 for each k.

The criterion for comparison is the number of scalar products denoted
by FEV. We report the average values of 10 independent runs. The
algorithms are stopped when the maximum number of scalar products,
MaxFEV is reached. In the FS case, we track the value of the (full
sample) objective function, while in the ERM case, we track the Eu-
clidean difference between xk and the solution x∗ since the objective
function is not computable while the solution is known in advance.

Figure 6.1 shows the results on FS problems with uniform random
x0. Since training and testing errors behave similarly, we report only
the testing error. The y-axes are in logarithmic scale. The plots
demonstrate the computational savings obtained by IRBFGS in almost
all cases. In fact, both subsampled methods, IRBFGS and HBFGS
use smaller FEV to obtain solutions of the same quality as the full
BFGS - FBFGS. Comparing IRBFGS and HBFGS, one can see that
IRBFGS is more efficient, and an occasional decrease of Nk in Step S3
is beneficial in terms of computational effort measured by FEV. The
typical behavior of the sample size sequence is plotted in Figure 6.3
(left).
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Figure 6.1: FS Problem. Testing loss versus function evaluations.
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Figure 6.2: ERM Problem. The error ∥xk − x∗∥ versus function eval-
uations

Figure 6.3: IRBFGS sample size versus HBFGS sample size sequence:
FS Problem - SPLICE data set (left) and ERM Problem (right).



168
Nonsmooth Method with Variable Accuracy for

Unconstrained Optimization Problems

ERM problems are formed as in [21, 68, 57] where the first-order
methods were tested. Here we proceed with the nonsmooth BFGS
direction. We report the results for the problem with n = 100 and
volatility measure σ = 10. MaxFEV is set to 105 and the average
ending sample size is 4714 for IRBFGS and 3110 for HBFGS. The
results and typical behavior of the sample size sequence are presented
in Figures 6.2 and 6.3 (right), respectively. As we can see, IRBFGS
algorithm significantly outperforms the heuristic scheme HBFGS.



Chapter 7

Conclusions

Through extensive research and analysis, several key findings and con-
tributions have been made, which have implications for both theory
and practice. The research conducted in this thesis has deepened our
understanding of numerical methods and optimization techniques in
the context of nonsmooth problems. The developed algorithms (Algo-
rithm 4, 5, 6, 7) have demonstrated their effectiveness in handling non-
smooth objective functions given in the form of mathematical expec-
tation, providing valuable insights into the behavior and convergence
properties of these methods. As an exact evaluation of the expected
value is either impossible or prohibitively expensive, subsampling is
employed to bypass this difficulty. For both types of problems, con-
strained and unconstrained, in each iteration, all proposed procedures
use a SAA function instead of the mathematical expectation function,
and employ the advantages of the variable sample size method based
on adaptive updating of the sample size. Two iterative procedures
(SPS and AN-SPS) are proposed for solving a constrained optimiza-
tion problem, while for an unconstrained case, the proposed algorithm
is referred to as IR-NS. In the following, we provide a concise summary
of the original contributions made in this thesis:
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I Spectral Projected Subgradient method

i) The stochastic spectral projected gradient method is
adapted to the nonsmooth framework;

ii) The a.s. convergence of the proposed SPS method is proved
under the standard assumptions;

iii) The SPS is further upgraded by introducing a specific line
search technique resulting in LS-SPS;

iv) Numerical results on machine learning problems show the
efficiency of the proposed method, especially LS-SPS.

II Adaptive sample size nonmonotone line search spectral projected
subgradient method

i) An adaptive sample size strategy is proposed and we prove
that this strategy pushes the sample size to infinity (or to
the maximal sample size for finite-sum case);

ii) We show that the scaling can relax the boundedness as-
sumptions on subgradients, iterations, and feasible set;

iii) For finite-sum problems, we provide the worst-case com-
plexity analysis of the proposed method;

iv) The LS-SPS is generalized in a sense that we allow differ-
ent nonmonotone line search rules. Although important for
practical behavior of the algorithm, this change does not ef-
fect the convergence analysis and it is investigated mainly
through numerical experiments;

v) Considering the spectral coefficient, we investigate different
strategies for its formulation in a stochastic framework. Dif-
ferent combinations of spectral coefficients and nonmono-
tone rules are evaluated within numerical experiments con-
ducted on machine learning Hinge loss problems.
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III Inexact restoration nonsmooth method with variable accuracy

i) The general algorithm is defined within Inexact Restoration
approach, using a suitable approximate function computed
as the sample average approximation in each iteration;

ii) The sample size is determined adaptively, taking into ac-
count the progress toward the stationary point and thus
balancing the computational cost and accuracy in endoge-
nous way without heuristic elements;

iii) It is proved, using the standard IR methodology, that the
sample size tends to infinity or attains the fixed maximal
value;

iv) The theoretical analysis reveals a.s. convergence towards
stationary points under the set of standard assumptions;

v) The numerical experiments are based on the BFGS direc-
tion adapted to the nonsmooth environment [102]. The or-
acle for computing the direction is taken from literature for
the hinge loss problems and Expected Residual Minimiza-
tion of Stochastic Linear Complementarity Problem. The
obtained numerical results are in line with the theoretical
considerations and confirm the efficiency of the algorithm.
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