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parameters has been adapted to the new data statistics, core transform and 
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structure of seismic data. Even though the new codec after implementation of 
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maintains a generic HEVC structure, and it is developed under the general 

HEVC framework. There is no similar work in the field of the seismic data 

compression that uses the HEVC as a base codec setting. Thus, a specific 

codec design has been tailored which, when compared to the JPEG-XR and 

commercial wavelet-based codec, significantly improves the peak-signal-to-

noise-ratio (PSNR) vs. compression ratio performance for 32 b/p seismic data. 

Depending on a proposed configurations, PSNR gain goes from 3.39 dB up to 

9.48 dB. Also, relying on the specific characteristics of seismic data, an 

optimized encoder is proposed in this work. It reduces encoding time by 

67.17% for All-I configuration on trace image dataset, and 67.39% for All-I, 

97.96% for P2-configuration and 98.64% for B-configuration on 3D  

wavefield dataset, with negligible coding performance losses. 

As a side contribution of this work, HEVC is analyzed within all of its 

functional units, so that the presented work itself can serve as a specific 

overview of methods incorporated into the standard. 
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Rezime

Imajući u vidu da obnovljivi izvori sve teže uspevaju da zadovolje trenutnu po-
tražnju na rastućem globalom tržištu energenata, očekuje se da će i u narednim
godinama nafta i gas ostati značajni izvori energije. Da bi se pronašla nova
nalazišta nafte i gasa koja bi zadovoljila rastuće globalne energetske potrebe,
neprekidno se ulažu značajni napori i sredstva kako bi se pronašli načini za
povećanje efikasnosti seizmičkih istraživanja. Generalno se smatra da su u
početnoj fazi istraživanja i proizvodnje novih naftnih i gasnih polja slike podzem-
nih površina visoke rezolucije i visokog kvaliteta od velike važnosti. Efikasno
upravljanje i prenos velikih skupova podataka nastalih tokom seizmičkih istraži-
vanja, prva su karika u lancu obrade i tumačenja seizmičkih podataka. Kao deo
lanca obrade, efikasno upravljanje i isporuka velikih skupova podataka, koje
industrija uglavnom proizvodi tokom seizmičkih istraživanja, postaje izuzetno
važno kako bi se olakšala njihova dalja obrada i tumačenje. U tom pogledu,
navedeno se u velikoj meri oslanja na efektivnu šemu kompresije, koja je neo-
phodna da bi se omogućio brži prenos i pristup podacima, kao i njhovo efikasno
skladištenje.

Motivisani superiornim performansama standarda visokoefikasnog video ko-
dovanja, eng. High Efficiency Video Coding (HEVC) standard, i podstaknuti
brzim rastom u količini podataka generisanih tokom seizmičkih istraživanja,
ovaj rad istražuje ekstenziju HEVC kodeka za kompresiju seizmičkih podataka
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velike amplitudske rezolucije od 32 bita po pikselu (b/p). Predloženo je da
se seizmički isečci posmatraju u formi koja odgovara video signalu, čime se
dobija na efikasnosti kodovanja upotrebom HEVC inter režima (prediktivno
kodovanje pokretnih slika), pored mogućih prednosti HEVC intra režima zas-
novanog na kodovanju individualnih (mirnih) slika. U tom cilju, ovaj rad mod-
ifikuje gotovo sve komponente originalnog HEVC kodeka kako bi se podržalo
kodovanje seizmičkih podataka velike amplitudske rezolucije: Lagranžev multi-
plikator koji se koristi za optimizaciju parametara kodiranja prilagod̄en je novoj
statistici podataka, transformacija i kvantizacija su ponovo implementirane da
bi se omogućila njihova upotreba kod povećanog opsega bitske dubine, i izmen-
jen je adaptivni binarni aritmetički koder koji je korišćen za efikasno entropijsko
kodiranje. Pored toga, testiran je optimizovan odabir veličine blokova, smanjeni
broj intra modova i fleksibila procene vektora pomeraja sa ciljem prilagod̄a-
vanja kodeka strukturi seizmičkih podataka. Iako novi kodek premašuje stan-
dardizovani HEVC nakon primene predloženih modifikacija, on i dalje održava
generičku HEVC strukturu i razvijen je u okviru njegove opšte šeme. Kada je u
pitanju oblast kompresije seizmičkih podataka, do sada nije sprovedeno istraži-
vanje koje koristi HEVC kao osnovnu postavku kodeka. Na taj način je kreiran
specifičan dizajn kodeka koji u pored̄enju sa JPEG-XR standardom i komercijal-
nim kodekom zasnovanim na vejvletima (eng. wavelet-based codec) značajno
poboljšava performanse u pogledu vršnog odnosa signal-šum (eng. peak-signal-
to-noise ratio (PSNR)) i stepena kompresije za seizmičke podatke od 32 b/p. U
zavisnosti od predloženih konfiguracija, PSNR poboljšanje kreće se od 3.39 dB
do 9.48 dB. Takod̄e, oslanjajući se na specifične karakteristike seizmičkih po-
dataka, u ovom radu je predložen optimizovani enkoder. Vreme kodovanja
smanjeno je za 67.17% kod All-I konfiguracije na trace skupu podataka 67.39%
kod All-I, 97.96% kod P2-konfiguracije i 98.64% kod B-konfiguracije na 3D
wavefield skupu podataka, sve sa neznatnim gubicima u performansama kodo-
vanja.

Kao sporedni doprinos ovog rada, analizirane su sve funkcionalne celine
(moduli) HEVC standarda, tako da predstavljeni rad može poslužiti kao speci-
fičan pregled metoda koje su uključene u standard.

Ključne reči - Kompresija seizmičkih podataka velike amplitudske rezolucije,
3D volumetrijski seizmički podaci, HEVC.
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Abstract

Renewable sources cannot meet energy demand of a growing global market.
Therefore, it is expected that oil & gas will remain a substantial sources of en-
ergy in a coming years. To find a new oil & gas deposits that would satisfy grow-
ing global energy demands, significant efforts are constantly involved in finding
ways to increase efficiency of a seismic surveys. It is commonly considered that,
in an initial phase of exploration and production of a new fields, high-resolution
and high-quality images of the subsurface are of the great importance. As one
part in the seismic data processing chain, efficient managing and delivering of a
large data sets, that are vastly produced by the industry during seismic surveys,
becomes extremely important in order to facilitate further seismic data process-
ing and interpretation. In this respect, efficiency to a large extent relies on the
efficiency of the compression scheme, which is often required to enable faster
transfer and access to data, as well as efficient data storage.

Motivated by the superior performance of High Efficiency Video Coding
(HEVC), and driven by the rapid growth in data volume produced by seismic
surveys, this work explore a 32 bits per pixel (b/p) extension of the HEVC
codec for compression of seismic data. It is proposed to reassemble seismic
slices in a format that corresponds to video signal and benefit from the coding
gain achieved by HEVC inter mode, besides the possible advantages of the (still
image) HEVC intra mode. To this end, this work modify almost all components
of the original HEVC codec to cater for high bit-depth coding of seismic data:
Lagrange multiplier used in optimization of the coding parameters has been
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adapted to the new data statistics, core transform and quantization have been
reimplemented to handle the increased bit-depth range, and modified adaptive
binary arithmetic coder has been employed for efficient entropy coding. In ad-
dition, optimized block selection, reduced intra prediction modes, and flexible
motion estimation are tested to adapt to the structure of seismic data. Even
though the new codec after implementation of the proposed modifications goes
beyond the standardized HEVC, it still maintains a generic HEVC structure, and
it is developed under the general HEVC framework. There is no similar work
in the field of the seismic data compression that uses the HEVC as a base codec
setting. Thus, a specific codec design has been tailored which, when compared
to the JPEG-XR and commercial wavelet-based codec, significantly improves
the peak-signal-to-noise-ratio (PSNR) vs. compression ratio performance for 32
b/p seismic data. Depending on a proposed configuration, PSNR gain goes from
3.39 dB up to 9.48 dB. Also, relying on the specific characteristics of seismic
data, an optimized encoder is proposed in this work. It reduces encoding time
by 67.17% for All-I configuration on trace image dataset, and 67.39% for All-I,
97.96% for P2-configuration and 98.64% for B-configuration on 3D wavefield
dataset, with negligible coding performance losses.

As a side contribution of this work, HEVC is analyzed within all of its func-
tional units, so that the presented work itself can serve as a specific overview of
methods incorporated into the standard.

Index Terms - High bit-depth seismic data compression, 3D volumetric seismic
data, HEVC.



xix

Acknowledgements
All the presented work in this thesis is carried out under the supervision of Prof.
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Chapter 1

Introduction and Motivation

In the age of the fourth industrial revolution and the apparent increase in hu-
man population [3], there is a global need for additional energy in order to sup-
port sustainable economic and social development. With continued population
growth, the expectation is that by the middle of the century global energy de-
mand will constantly rise compared with now-days. Of course, it is difficult to
recognize the exact needs, especially given the many local and global factors that
are often intersected by economic and political influences. In that sense, there
is always interest in analyzing the geo-political, social, economic, and tech-
nological aspects that drive energy sector [4, 5, 6, 7, 8]. Due to many possible
outcomes and the great uncertainty of what might happen in the future, variety
of scenarios emerged, taking into account the various variables and dependen-
cies between them. The previously referenced reports present many interesting
analyses and different scenarios, which represent different foreseeable pathways
for energy transition.

Renewable energy, even with its rapid rise and energy efficiency awareness,
cannot meet demand, and conventional fossil fuels are needful. It is obvious,
from today’s point of view, that switching to carbon-free sources on a scale
comparable to the oil & gas industry would not be easy and quick. For example,
today’s share of oil & gas in global primary energy consumption is 57.3% ac-
cording to [9]. In addition, it is difficult to find any substitutes, given the current
technologies, for the energy-rich hydrocarbon fuels in some industrial sectors,
such as in chemical industry, iron, and steel industry where high temperatures
are required, or in long-distance heavy-duty road transportation or seaborne
freight. Fossil fuels will remain a certain factor of the global energy system,
also because of its long-term reliability, cost-effective production, convenient
storage and transportation capabilities. Regardless of the many factors that may
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influence the direction in which the world will develop, each report [4,5,6,7,8],
and the scenarios presented therein, predict that oil & gas will remain part of the
future drive of the society and economy to a greater or lesser extent.

However, what we know for sure is that, to align with Paris Agreement (more
can be found at [10, 11, 12]), and in order to meet the climate goals presented
in it, the energy sector will definitely be changed. Gas, as the cleanest fossil
fuel, will play a vital role in reducing carbon-dioxide and other pollutants. It
will become an extremely important source of energy, whose growing demand is
mainly driven by industrial and power generation use. Gas is expected to replace
solid fuels in the power sector, which is currently heavily dependent on much
dirtier coal. Coal as one of the dominant fuels for heavy industry and electricity
production today uses 27% of the total energy sources [6, 9]. In order to reduce
carbon-dioxide emission heavily produce by the coal, in some sectors it can be
replaced by the much cleaner gas. In the developing countries many people still
use solid fuels, e.g., firewood, for domestic purpose which can also be replaced
by gas. Consequently, natural gas accounted for the largest increment in energy
consumption in recent few years, and it will continue to grow. For example, in
2019, the share of gas in primary energy rose to a record high of 24.2%, with a
tendency to surpass coal in a total share (which is falling at its lowest level of
production since 2003) [9].

Even with the large breakthrough of renewable energy sources in electric-
ity generation, electrification is not totally aimed towards green sources (only
10.4% of electricity production today comes from renewables according to [9]).
According to [7], in 2040, fossil-based generation remains the dominant source
of electricity, albeit at a lower share compared to today, since gas penetration
accelerates in the power sector. Wind and solar are deployed rapidly thanks
to the falling costs of renewable electricity generation. Hence, as technology
advances, renewable energy overtakes fossil fuels such as oil, gas and coal as
the primary source of electricity in the late 2050s [13]. In addition, even that
electricity mix increasingly shifts towards renewable sources, regionally there is
significant variation in share of global electricity generation by fuel. For exam-
ple, due to the geographical location of the renewables resource base, which is
often a long way from centers of energy demand, in some regions higher pen-
etrations of renewable are challenging to accomplish [4]. In that light, many
emerging economies, such as China and India, continue to pay more attention to
the stability of the power sector, and stick to, and invest in, conventional sources,
such as gas. As already mentioned, gas is the most reliable way to suppress
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coal (Asia’s dominant fuel in electricity generation) in the most economical and
fastest way, and without greater exposure to highly alarming environmental risks
caused by carbon-dioxide emission. According to [7], by 2040 renewable power
rise to 33-43% depending on a scenario. The rest of the needs is mostly met by
coal, oil, and gas.

Car electrification, development of on-demand mobility services, smarter in-
tegration of public transport systems, or ride sharing, are evolving, which brings
down use of oil for passenger vehicles. Although the global car fleet is more
than doubling, to reach two billion by 2040, oil consumption in public transport
is declining [5]. In part, this also comes from rapid gains in energy efficiency,
e.g., efficiency of cars with internal combustion engine (ICE), but also from fuel
switching - from hydrocarbon fuels to electricity. One uncertainty, however,
comes with the current popularity of sport utility vehicles (SUVs), which are
more difficult to electrify fully, and conventional SUVs consume more fuel than
medium-sized cars [6]. If the popularity of SUVs continues to grow in line with
recent trends, this could add not so small burden on oil needs. But even as the
share of electric vehicles in the global car fleet grows rapidly, some scenarios,
for example [7], predict that in 2040 ICE technology will retain almost half of
the global market share in passenger cars and light commercial vehicles, e.g.
city buses. However, by 2050, it is impossible to buy a new passenger vehicle
powered by an ICE anywhere in the world according to [5]. Although the fuel
combination for passenger vehicles is rapidly switching to electricity (where
liquid fuels are almost halved from now until 2050, and where electricity is ex-
pected to dominate by 2070), oil & gas are still deeply present in the transport
sector. Other forms of transport, however, are sufficient to maintain the still
high demand for oil, mostly due to current lack of low-carbon substitutes for
aviation, shipping/marine, or heavy-duty trucks. Thus, overall energy demand
in transport continues to grow [7], and globally transport sector continues to be
dominated by oil [7, 8], whose projected use is around 85% by 2040 [8]. Oil re-
mains the dominant source of energy because of the rising demand for transport,
mainly long-distance [7].

It is clear that the increase in energy demand will affect every sector of social
and economic life, from industry, transport, buildings, and electricity generation.
Nevertheless, demand for oil & gas will continue to grow steadily over the next
few decades (especially gas is growing strongly). According to all that has been
said, it is not feasible to expect that fossil fuels will be set to margins or totally
thrown from use, at least not in recent years to come. The range of scenarios
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presented in [4, 5, 6, 7, 8] predict that in primary energy consumption oil & gas
(without coal) will be nearly at 50% (today’s level is at 57%). In total, fossil
fuels continue to meet more than two-thirds of primary energy demand across
many scenarios, e.g., see [7]. In one of the most optimistic scenario towards low-
carbon energy presented by Shell [5], it is estimated that by 2050 nearly 45% of
primary energy demand will still come from fossil fuels. Other reports foreseen
similar or even higher share, for example see [7] or [8]. At the end, please note
that even the share in the overall energy system falls (due to rapid penetration
of renewable sources in some sectors), net production of oil and gas certainly
will be higher by the mid of the century than today. Therefore, oil & gas will
remain a substantial source of energy for decades to come in order to meet the
rapid growth.

In addition, it is estimated that current reserves are sufficient for the next
fifty years (given today’s production and consumption) [9]. The estimate in-
cludes only oil & gas reserves that can be recovered in the future from known
reservoirs under existing economic and operating conditions. However, there
are still undiscovered sources of oil & gas waiting to be found, which is more
than enough to power society and economic growth in a long run. Driven by
the obvious need for additional fuel, it is up to oil & gas industry to produce
advanced techniques to find and capture those complex, jet undiscovered, reser-
voirs, which often requires constant investments in the research and develop-
ment of advanced technologies. To illustrate, these investments are expected to
reach trillions of dollars [8]. Therefore, investment in new production will con-
tinue to be crucial to meeting society’s ongoing oil & gas needs. Based on the
projection in [8], although the exact outlook is uncertain, it looks like the world
will consume significant amounts of oil & gas for decades, requiring substantial
investments.

In order to adopt novel techniques, today’s research in geoscience is tech-
nically complex and involve many complicated coupled processes, and it often
requires cross-disciplinary knowledge. However, it is natural to expect that re-
search and development of novel methods used in the acquisition and processing
of seismic data will continue to attract the attention of the scientific community.
In the past, the industry could only utilize a portion of the data recorded in
3D seismic surveys due to the high complexity and huge volumes. However,
with constant improvements in compression techniques, and apparent increase
in available computational resources, today industry is able to perform compli-
cated tasks in order to extract as much information as possible from the obtained
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data. Even so, further development of compression techniques within this area
is expected, and highly appreciated. The research potential is huge, as evidenced
by recent publications in this very niche field, e.g., see next Chapter 2.

To find a reservoirs they have not been able to see and reach, companies
are developing more sophisticated geophysical methods. New seismic imaging,
machine learning, and visualization methods have been adopted to enable the
discovery of as yet undiscovered resources and to enable the provision of high-
quality images of the subsurface that are necessary for geoscience and petroleum
engineering experts to make the right production decisions. Therefore, the main
purpose of seismic data is to provide detailed knowledge of subsurface parame-
ters in order to localize a given target and in order to increase productivity. For
example, sharper seismic images mean that oil companies can drill new devel-
opment wells in deep reservoirs with greater reliability and accuracy.

With recent advances in oil & gas exploration, sophisticated high-density
imaging methods have been used to create high-definition images of subsurface
geology, allowing more accurate mapping of geological structures. As new tech-
nologies emerge, the size of the seismic data sets also becomes larger, such as
3D seismic data, deep subsurface seismic survey, and high resolution seismic
imaging. Therefore, the industry creates vast amounts of data (both 2D traces
and 3D wavefields). Some seismic images can have as many as 16 million pixels
in one dimension, and most of them are high bit-depth images with 32 b/p reso-
lution to cover a wide dynamic seismic range. For example, the amount of data
processed in just one seismic survey usually exceeds the order of several tens
of terabytes of raw data per day. It is important that seismic data compression
technology is able to reduce a terabyte-sized dataset to a manageable volumes,
in order to further facilitate rapid processing and interpretation.

In addition, in the oil & gas industry, the development and deployment of
new technologies to improve productivity and reduce costs are becoming in-
creasingly important. In seismic data processing, cost and productivity are
highly related to the data volumes and data transfer speed between a computer
system and storage disks, which relies on an efficient coding scheme. More
precisely, a typical performance issue in modern computer systems is usually
related with an input/output (I/O) bottleneck, which occurs in the data trans-
fer rate between the storage disks (main memory) and the node memory due
to the mechanical nature of storage disks, transfer bus speed limits, and mem-
ory bandwidths. In high processing computing, many hardware optimizations
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and memory access scheduling have been introduced to provide high-speed in-
terprocess communication links. The goal is to eliminate as much as possible
disk I/O (which is inherently slow, since it is a mechanical process) and to op-
timize read/write processes. In addition, available size of on-chip data memory
(fast, but expensive module) is significantly lower than the size of a datasets,
requiring a lot of transferring operations between the on-chip memory and the
node memory through the limited bus interface. Also, it is commonly know
that, bandwidth from the disk to the end-user did not advance as did the com-
putational speeds, e.g. computing power of central processing unit, making the
read/write, i.e. input/output, of data more and more of a bottleneck. This is
especially evident when it comes to large data sets, such as seismic data. I/O
data flow in such a system can be tremendous, where the disk access speed is
much slower than processing speed of the central processing units. Even with
the use of fast memory modules that have emerged in a recent years as afford-
able solutions, e.g., solid state drives - faster alternatives to standard hard disk
drives, the computational throughput of central processing units is still much
higher than that of data access and data transfer speeds. Therefore, in such set-
ting, the direct raw data access time greatly outweighs the time when data to be
processed is coupled with an efficient compression/decompression algorithm. A
strategy to harness the computational power of a modern multithreaded system,
and to reduce data workloads through the utilization of an efficient compres-
sion scheme, can lead to a significant improvement in disk access time, e.g., to
accelerate I/O processes. Thus, to reduce the impact of the I/O bottleneck, com-
pression is typically deployed to overcome the I/O limitations, e.g., to reduce
the data transfer rate within nodes in a computer system, sacrificing additional
processing time to perform data decompression, but on overall reducing the to-
tal data manipulation time when compared to raw data access. In that way, we
can overcome the limitations of disk and memory bandwidth, which occurs due
to intensive I/O transfer operations that could consume above 80-90% of the to-
tal processing time [14, 15], and thus improve the performance of I/O intensive
workloads in seismic data applications. Of course, in such case, an efficient and
fast decoder is of great importance.

Clearly, as the data burden is expected to become even greater in the fu-
ture with plans of new seismic surveys, there is an apparent need for an effi-
cient coding technique that will meet high quality and high compression ratio
requirements for diverse seismic data applications. As a matter of fact, the ben-
efit of using an efficient compression scheme within seismic surveys is twofold:
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1) significant reduction of overall storage size required for seismic data, while
targeting the highest possible reconstruction quality, and 2) significant cost and
time savings across the workflow where seismic data is generated, transferred,
saved, copied and used. Thus, improving the compression scheme also leads to
better image quality, which in turn leads to better interpretation and precise lo-
calization of undiscovered resources. Based on the above, in short, compression
is often required to enable and facilitate the deployment of new technologies,
to reduce required storage, power consumption, data access time, and process-
ing time (for example in computer-aided subsurface detection using machine
learning techniques). In addition, a turnaround time, from acquisition to pro-
cessing and interpretation of acquired data, is also crucial in order to increase
productivity and to provide cost savings. In the background, this is related to
the implementation of an efficient compression scheme within the seismic data
processing workflow. In such case, a new efficient compression scheme aims to
enable timely evaluation and timely decision-making possible, and is expected
to significantly reduce cycle time in exploration phase of a field by reducing
the required data transfer time, e.g., via a limited satellite link. For example,
seismic data transmission by satellite from vessel to an onshore data processing
center rely on a good and effective coding scheme. Efficiency is important to
facilitate rapid processing and interpretation in real-time while the vessel is still
on prospect in the event questionable or interesting areas need reshooting. As
compression scheme is efficient, it enables faster transmission via satellite with-
out compromising the integrity or quality of the data. In terms of data access
speed, it can enhance interactive application performance, allowing petroleum
experts to focus their time on delivering insights and results.

One option for the industry is to license commercial compression software
libraries for their compression needs in seismic processing. However, as seis-
mic processing technology advances, the requirement for computing hardware
and compression from new applications often change. Without ownership of the
source code, the compression library cannot be customized unless paying more
in addition to the licensing fee to meet the requirements arising from new seis-
mic processing applications. Therefore, a more viable and flexible solution is to
develop seismic data compression library by adapting state-of-the-art image or
video compression standards’ test model codes to meet one’s compression re-
quirements arising from emerging new technologies and their applications. This
work contributes to the goal of finding such an efficient compression solution by
proposing a novel scheme for seismic data compression under the framework of
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HEVC [16]. Driven by the need of compression of seismic data and by the high
compression efficiency of HEVC, this work studies the application of a 32 b/p
extension of the HEVC codec. The decision to give preference to HEVC in this
study comes from the fact that 3D seismic data can have highly correlated indi-
vidual slices, resembling video signal, which makes them particularly suitable
for HEVC inter mode application [17], besides the possible advantages of the
(still image) HEVC intra mode application [18]. Such approach, to treat 3D seis-
mic data as a sequence of frames in order to obtain higher compression gains by
utilizing motion-compensated predictive codec, is opposed to still image coding
approaches that are frequently used and advised to be utilized by other compet-
ing lossy compression techniques in related literature. However, it is important
to note that, by using the intra coding mode, the resulting codec also can handle
still image compression of 2D trace images, along with aforementioned 3D seis-
mic data compression. In addition, HEVC is currently the latest widely accepted
industry standard for video coding. It is designed to support high reconstruction
quality with low bandwidth requirements, where complex features have been
added to achieve better performance - but still it uses highly parallel design ap-
proach and it follows hardware friendly implementation [19, 20, 21, 22].

Moreover, the standardized version of HEVC accepts input data up to 16 b/p
[23], and it is mainly developed to maintain a high compression ratio for the
most common consumer video applications. Since seismic data use up to 32
b/p, the HEVC cannot be directly applied. It is also very important not to thresh-
old seismic data prior to compression since some sensitive information may be
lost, and this is the main reason why the use of standardized 16 b/p version of
HEVC is not directly applicable. Thus, in this work almost all core compo-
nents of the original codec are modified to propose a novel coding scheme for
high bit-depth seismic data compression under the HEVC framework. HEVC
uses a hybrid block-based approach, where the input image is divided into the
non-overlapping square blocks, that may be additionally divided into the smaller
blocks of variable sizes [24]. Furthermore, it utilizes intra and inter-predictive
coding [17,18], two-dimensional (2D) discrete cosine transform (DCT) and uni-
form quantization, [25] and context adaptive entropy coding in order to achieve
efficient compression gains [26]. While the block division and block structure,
as well as the prediction part of the proposed codec mainly remain the same,
other parts were subjected to major changes in order to cater the targeted 32 b/p
input. Standardized HEVC’s transform has been replaced with the new lifting-
based transform of flexible block sizes ranging from 4 × 4 to 32 × 32 pixels.
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Quantization has been replaced with a uniform quantization scheme with an in-
creased quantization parameter range. At the end, a modified context adaptive
binary arithmetic coder (CABAC) with additionally improved throughput has
been utilized for efficient entropy coding. Also, a new model for the Lagrange
multiplier has been used in the Rate-Distortion (RD) optimization loop in or-
der to accommodate the extended bit-depth range and to empower the extended
quantization parameter range (as necessitated by 32 bit-depth).

After the proposed modifications are introduced, the standardized HEVC
solution has been compromised. Nevertheless, this does not affect the function-
ality of the new codec. The goal was not to stay within the limits of HEVC, since
within the HEVC design it was not possible to implement a version that would
support 32 b/p extension, and at the same time does not violate the standard-
ized codec. Even though the new codec, after implementation of the proposed
modifications, goes beyond the standardized HEVC, it still maintains a generic
HEVC structure, and it is developed under the general HEVC framework. Leav-
ing behind the standardized version of HEVC allows to experiment with a wide
range of new approaches and modifications of the original HEVC in order to
propose specific codec design that improves coding gain over the existing so-
lution by adapting it to the specific seismic data attributes. Also, by adapting
the proposed codec to specific seismic data attributes, an optimized encoder is
proposed that significantly reduces encoding time with negligible compression
performance losses.

Each of the aforementioned coding steps will be described in the following,
with a more detailed analysis of the modified or newly implemented parts. Ob-
tained results using the proposed codec (in both inter and intra coding mode)
significantly outperform the performance of codecs that are widely used in in-
dustry for seismic data, such as JPEG eXtended Range (JPEG-XR) [2], or li-
censed commercial wavelet-based codec [1]. Also, the subjective quality of the
proposed codec, which was evaluated by Shell’s geologists, confirmed highly
satisfactory results.

Lastly, note that without the proposed changes to the original codec, direct
application of HEVC in its standardized form is not possible. Due to its specific
design adapted to standard consumer video applications, where certain losses
are tolerable, some of the original components render a huge error when applied
to extended bit-depth data (even without quantization). In this regard, the afore-
mentioned modifications have been introduced to replace these critical codec
parts. The proposed codec provides a suitable basis for further development that
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could improve the coding gain by proposing new coding features, or optimizing
existing ones in addition. Accordingly, the proposed codec is built from HEVC,
whose components have been modified for a targeted 32 b/p input, in order to
make it practically useful in the first place. To the best of author’s knowledge,
there is no similar work in the field of seismic data compression that uses the
HEVC as a base codec setting. Also, known to author, there is no codec on the
market for 32 b/p seismic data that exploits redundancy in all three dimensions
for improved performance. Therefore, this work represents an initial effort to
provide valuable insights of using one well established coding scheme, such as
that given with HEVC, for the purpose of seismic data compression.

The rest of this work is organized as follows. A review of related literature,
with an emphasis on lossy techniques as the dominant approach to seismic data
coding, is given in Chapter 2. The general design of the HEVC is briefly given
in Chapter 3. More detailed analyses of the coding methods that are used within
HEVC, and the proposed solutions resulting from this work, are introduced in
Chapter 4. This chapter represents the main contributions of this thesis. The
experimental setup is highlighted in Chapter 5. In the same Chapter 5, the un-
derlying data that has been used as a test set in this research has been briefly
described, along with a description of the code configuration setup and perfor-
mance metrics. In Chapter 6 the analyses of the obtained results are given. This
chapter summarizes the final achievement of the proposed codec. The work is
concluded in Chapter 7.
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Chapter 2

Seismic Data Compression: An
Overview

This chapter gives detailed overview of the existing coding schemes which ap-
pear in the related literature. Recent advances and exciting progresses in the
field of seismic data compression are given below. The goal is to put at one
place different approaches that have been published recently at one place, and
hence help researchers to have better overview on the current progress in the
field. In that sense, this chapter may serve as a tutorial or specialized survey.
The focus is on lossy compression as it is the dominant compression method in
seismic data flow.

Lossless compression is able to provide flawless reproduction of the origi-
nally sampled data, but unfortunately true lossless reproduction is mostly inef-
ficient for a compact representation. Often there is interest in expanding such
approaches to lossy compression, by which utilization higher compression gains
are possible, however for the price of the inevitable and irreversible loss of in-
formation. In those cases, the utility of lossy compression scheme is mostly
affected by the underlying data type and planed application, and it is also very
dependent upon the system characteristics itself. Since seismic exploration com-
monly produce tens of terabytes of data (sometimes it could go up to the order
of petabytes), the need for efficient lossy compression of high bit-depth data,
which will significantly reduce data rates beyond the capabilities of lossless
technology, is apparent. Thus, within a given (seismic data) scope, lossy com-
pression techniques are preferable since data rates would put extreme burdens
on recording capacity and communication link. Therefore, instead to yield per-
fect reconstructions, in certain circumstances it is much more optimal to make
a compromise between loss of information and desired compression ratio, but



12 Chapter 2. Seismic Data Compression: An Overview

at the same time to allow reproductions that are satisfactory for a targeted ap-
plications. In that sense, many research has been done in order to find adequate
lossy compression solution within the seismic data workflow that would be able
to satisfy rigid requirements for a variety of seismic data applications. In fact,
oil & gas industry has always been struggled to reduce collected data volumes
from seismic surveys, and compression of seismic images has long been a sub-
ject of study when it comes to efficient storage and transmission [27].

Compression performance of traditional transform based methods is mainly
affected by the transform’s ability to decorrelate acquired data. In most cases,
after decorrelation has been applied, in order to represent data in the most com-
pact way, the usual subsequent steps that follow transform are adaptation of
a properly designed quantizer, e.g., uniform, weighted, or frequency-adjusted,
and efficient entropy coding, e.g., arithmetic, Huffman, or run-length coding.
Several approaches using those principles have been compared in [1] and [28].
The key idea behind these traditional compression methods is to extract and re-
tain only a small number of low-frequency coefficients and encode these while
discarding the remaining ones.

Among many transforms, wavelet based approaches have played a dominant
role in performing decorrelation of seismic data [29, 30, 31], recently appear-
ing in its efficient form which use lifting based implementation [32, 33]. The
popularity of the wavelet based coding scheme could be found in its efficient
data representation in the transformed domain which easily allows compressed
image manipulation, e.g., by utilizing straightforward quality control scheme
or progressive image decompression. One such effective coding scheme, based
on set partitioning in hierarchical trees (SPIHT) [34], was recently adopted to
seismic data in [35], and also partially adopted by methods in [1]. Hereof,
embedded coding structure of SPIHT has found application in many seismic
compression schemes that possess hierarchical (multiresolution) decomposition
structure, e.g., as with methods in [1] among others.

However, traditional wavelet-based approaches may not be well suited to the
highly oscillatory nature of seismic data according to [1]. To alleviate this prob-
lem, and to get closer to higher compression ratios than those achieved with
multiresolution decomposition using traditional wavelet basis, one can utilize
wavelet packets or adaptive local cosines as proposed in [1,36,37] or in [38], re-
spectively. Since collection of wavelet packets is overcomplete (there are many
more basis functions than the dimension of the input space) one can construct
a basis that is fitted for a target image (or for a class of images such as seismic
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images) in order to gain the benefit of such a data-driven approach. Similarly,
method in [38] is based on the approach of finding ways to optimally segment
an image in terms of local cosine bases. Both aforementioned approaches de-
pends to a large extent on the proper design of the cost function, which has the
crucial role in the selection on an optimal coding decisions, e.g. how to select,
among a large collection of bases, the basis which is best adapted to encode a
given image. Gilded by similar modality to the references mentioned above,
new methods were also presented in [1]. Also, hybrid of wavelet with either
wavelet packet or local cosine are presented in [39]. Hybrid approach applies a
wavelet transform in the horizontal direction and the local cosines in the vertical
direction to better catch characteristic of seismic images, and to better retain all
seismic events in reconstructed data. Principally similar, but methodologically
different approach has been presented in [40], where cascade of compressions
is applied successively to the image itself and to the residuals that resulted from
the previous compressions. At each step a different transform, or basis, at dif-
ferent bit-rate, is applied (e.g. wavelet basis at first step and local cosine basis
at second step).

Besides aforementioned approaches, other related literature considered co-
sine basis as a prolific decorrelation approach for seismic data, that proved to
be suitable transform for oscillatory patterns [41]. Although sparsification of a
data in such case is highly satisfactory, the lack of an efficient coding scheme,
such as those used with wavelets, has put these approaches slightly aside. In
part, this disadvantage has been overcome by method in [42], which is based
on generalization of local cosine basis named generalized lapped orthogonal
transforms (GenLOT) [43], by the fact that the proposed transformed coefficient
can be reorganized to fit the dyadic wavelet-like structure. Thus, the quality
control feature and progressive coding can be easily implemented using em-
bedded coding scheme, similarly as in [39]. In addition, GenLOT reported
improved performance over the existing coding approaches at that time. Fur-
thermore, work in [44] use generalized unequal length lapped orthogonal trans-
forms (GULLOT) [45] for seismic data compression in order to reduce ringing
artefacts that may occur with GenLOT, by which they achieve improved perfor-
mance on less smooth signals such as seismic shot gathers. It was achieved by
reducing the length of the high-pass filters, while keeping the same length for
the low-pass filters. Conceptually similar work based on sub-band decomposi-
tion using different filter-banks, and other related transform-based approaches,
can also be found in [46, 47, 48].
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As datasets get larger, and their efficient managing more heavier, compres-
sion of seismic data has continued to draw attention since the seismic surveys
began. As a consequence, novel approaches that increasingly take into account
the nature of the seismic data (e.g. seismic image geometry) and high demands
of new forms of seismic analysis (in order to preserve all significant seismic
phenomena and structural information in the reconstructed images), and that
are able to sparsely represent seismic data at the same time, have been widely
studied in related literature. Among many, we point to covariance based decor-
relation method such as principal component analysis (which is also known as
Karhunen-Loève transform) [49,50], generalized Radon transform [51], or work
in [52] based on regularized nonstationary autoregression, or locally adaptive
wavelets [53], and a broad family of wavelet-like functions named x-lets, such
as bandlets [54], seislets [55, 56], brushlets [57], dreamlets [58], etc. Curvelets,
[59,60,61], due to their redundant representation in transformed domain (up to 7
times more coefficients than pixels) have not been used widely in seismic image
compression (although redundant information may be beneficial in some other
fields such as denoising or amplitude recovery). However, second generation
curvelets, or so called symmetric curvelets [62,63], have overcome this problem
and have found its application in seismic image compression. The same stands
for contourlets [64,65], that possess up to 33% redundancy which is undesirable
for compression. Thus, a critically sampled directional multiresolution image
representation (CRISP-contourlets) has been proposed to overcome redundant
expansion, and to be more applicable to the compression tasks [66]. Such a
wide range of new class of bases result in various new signal decomposition
(and compression) designs, although they have been based on similar principles
of sparse representation and coding of seismic data. As a matter of fact, what
distinguishes one approach from another is how discriminating it is, and how
signal coding in sparse domain affects seismic signal’s geophysical characteris-
tics. The more it takes into account the characteristics of the particular signal it
is compressing, the more efficient sparse representation could be. Thus, previ-
ously mentioned seismic data oriented decorrelators have tendency to suppress
traditional transforms due to their efficient (and sparse) representation of seismic
events in transformed domain.

Dictionary learning is becoming an attractive method for still image com-
pression [67, 68], which is a significant change in approach compared to pre-
viously mentioned conventional decorrelation techniques. Its promising results
gives further motivation to apply it to the seismic data [69,70,71,72,73,74,75].
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In such approaches, sparse representation is obtained by learned (data-driven)
dictionaries, which shows improved compression results, and where perfor-
mance depends on how well dictionary can represent the data. Dictionaries
are firstly learned on-line or off-line from a (usually but not necessarily larger)
set of images with similar characteristics, and hence compression gain could be
improved compared of that of the predefined over-complete dictionaries given
with a clear mathematical formulations, such as those aforementioned generic
dictionaries (e.g. wavelet, cosine basis, curvlets, etc.). Even though, after spar-
sity has been achieved with a trained dictionary, those methods do not differ in
essence, meaning that proper quantization of transformed coefficients followed
by the entropy coding should be applied, e.g., by using arithmetic coding [71]
or [73]. Also, it is to emphasize that besides sparsity of the transformed data,
rate-constrained criterion should be included in the learning process, since not
all sparse representations are well compressible in terms of entropy coding (op-
timize bit-rate and sparsity jointly, instead to only optimize sparsity of seismic
signal representation), see works in [72, 73, 74]. However, as reported in [68],
these methods are still inferior to the HEVC which is baseline method of our
study, and further development of dictionary learning based methods is expected
in the future.

As stated in [76], conventional surveys have been designed to acquire data
with uniform temporal and spatial sampling that honored Nyquist requirements.
With a recent proliferation and remarkable progress in compressed sensing (CS)
theory [77,78,79], we can liberate of this theoretical limitation, go below Nyquist
sampling rate, and take a turn towards a new way of acquiring a signal with less
measurements and reduced computational cost. Following new paradigm, say-
ing that sparse signal (sparse with respect to some apriory known transform do-
main) can be fully described by small number of compressed sampling measure-
ments, compression can be obtained during the acquisition process itself. In that
way, a turn has been made from standard signal acquisition (where ever-growing
dense sampling requirement can become prohibitively expensive) to signal re-
covery by using under-sampled data. However, even CS principles guarantee
that signal can be fully recovered from its non-uniform (and random) sparse
measurements (incomplete data) under certain conditions, it does not say exactly
how. Therefore, research based on CS theory has attracted a lot of attention,
where sparsity (and compressibility) has been promoted by using the properly
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designed basis, e.g. curvelets as in [80] or dreamlet as in [81], and where an ef-
ficient large-scale optimization techniques have been developed in order to effi-
ciently recover signal from its incomplete or sparse measurements, e.g., [80,82]
or other developments in solver technology such as [83,84,85]. Also, the benefit
of applying CS principles in seismic explorations has been recently advocated
in [76], and the references therein. Nowdays, in seismic imaging, CS concepts
have been extensively studied in order to address challenges exposed in mod-
ern seismic surveys, not only to reduce data volumes, but also to improve image
quality and reduce operational costs [80,86,87,88,89,90,91,92,93,94]. Notwith-
standing, the authors of two separate studies, [94] and more recently [95], have
concluded that the opportunities of CS in seismic exploration is still to be en-
hanced, which is mainly related to its practical realization in the field, but with
an emphasis on great initial potential (see also [91]).

Deep neural network aided compression methods have been emerged re-
cently as deep learning gained on popularity [96, 97, 98, 99, 100, 101, 102]. For
example, one can utilize deep auto-encoders [96, 97, 98], or generative adver-
sarial network in conjunction with compressed sampling theory as proposed
in [99, 100], or it can be used to construct prediction signal after which differ-
ence of the original and predicted signal (residuals with lower dynamic range)
are quantized and entropy coded like in in [101] and similarly as in [102] that
utilize recurrent neural network. However, these approaches still need to mature
in order to be widely accepted by the industry as a compression scheme choices.

In addition, some recent advances that demonstrated significant improve-
ments in compression gain have been presented in [69], whereby the various
schemes are mainly adapted to address different challenges arising in wireless
seismic acquisition systems [103], which is also addressed in [104]. Also, an-
other alternative techniques are reported, e.g., [105] that uses specific seismic
data modeling, or [106] based on functional (vector) quantizaton.

Lastly, a compression technology that has been in use for many years by the
industry is the licensed commercial wavelet based scheme proposed in [1]. It
allows easy quality and rate control, and its computational simplicity and com-
pression performance efficiency outperforms many other seismic compression
schemes available at the market. Its compression performance is competitive
with that of JPEG-2000 [107], which is also wavelet based codec and which
uses similar lifting-based implementation as proposed in [33]. Another recent
standard image coding scheme JPEG-XR [2], whose aim is low-complexity
compression of high dynamic range images, has been utilized by the industry
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to compress 1-D and 2-D seismic data [108]. Although JPEG-XR cannot com-
press all 32 bits of an input image (up to 24 b/p lossless and up to 32 b/p lossy),
low complexity makes it a good candidate for commercial use, since it is friendly
to heavy workloads and hardware with low configuration. However, it is only
limited to still image compression. JP3D, an extension of the JPEG-2000, has
been proposed to add support for 3D volumetric datasets [109]. However, it has
not been considered as a compression scheme for seismic data applications so
far.

One option for the industry is to license commercial compression software
libraries for their compression needs in seismic processing. However, as the
seismic processing technology advances, the requirement for the computing
hardware and compression from new applications often change. Without the
ownership of the source code, the compression library cannot be customized
unless paying more in addition to the licensing fee to meet the requirements aris-
ing from new seismic processing applications. Thus a more viable and flexible
solution is to develop seismic data compression library by adapting the state-of-
the-art image or video compression standards’ test model codes to meet one’s
compression requirements stemming from emerging new technologies and their
applications. Following the same idea, this work emerged. Thus, this work
reports application of one well known compression scheme, such as HEVC,
to compression of high bit-depth seismic data by using both intra (still image)
and inter (predictive) coding. HEVC is hybrid codec, meaning that it utilizes
both prediction scheme to reduce dynamic range of the input signal, and trans-
form to sparsely and compactly represent residual data obtained after predic-
tion, followed by the uniform quantization and arithmetic coding. An additional
comprehensive feature set has been developed as a part of the standard for the
purpose of representing the final bit-stream as compactly as possible.

As we can see, there are many approaches (sometimes fundamentally differ-
ent) to seismic data compression in the related literature. In common to all of
them is however the fact that they strive to enable more efficient management
and storage of this type of data. Some of them are already integrated in the seis-
mic processing workflows, and some of them form a basis for future exploration
in the domain of seismic data compression that have tendency to be integrated
in the future seismic data processing and interpretation systems. Anyhow, due
to rapid changes in the hardware capabilities and compression techniques itself,
it is crucial to provide constant improvements and extensive research in this do-
main, in order to meet the ever-growing needs of the industry for efficient data
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handling. Thus, seismic data compression is active research topic today, and
we can expect many new attempts to improve current techniques in the coming
years in order to push the boundaries of today’s approaches.



19

Chapter 3

High Efficiency Video Coding in a
Nutshell

Demand for the high quality and high resolution videos is growing rapidly. At
the same time, this triggers a great demand for continuous improvement of cod-
ing algorithms in order to deliver the same content to consumers using fewer
resources and lower data consumption. Content providers such as Netflix, Ama-
zon, and others create a huge amount of data volumes, where most of the data
has been streamed over the network, thus consuming the majority of the internet
bandwidth. This was recently confirmed in a white paper by the Cisco Visual
Networking Index [110]. The forecast estimates 4-fold increase in the IP video
traffic by 2020, where video will account of 82% of all IP traffic globally. For
example, live video will increase 15 times from 2017 to 2022, consumer video-
on-demand will almost double in the same time period, internet gaming traffic
will increase 9 times, and internet video surveillance will increase 7 times. An
efficient coding scheme is also needed to deal with the massive data transmis-
sion demands resulting from 5G and ultra-high-bandwidth-low-latency stream-
ing. Therefore, the need to constantly develop new coding algorithms to support
existing and/or future infrastructure is obvious, necessary, and unavoidable. The
HEVC, also known as H.265, is the latest and most advanced video standard at
the time being, jointly developed by Video Coding Experts Group (VCEG) and
Moving Picture Experts Group (MPEG), gathered around one group - Joint Col-
laborative Team on Video Coding (JCT-VC) [16]. It utilizes video compression
features needed to meet the immediate and rapidly growing needs of the market.

The first version of the HEVC standard was released in early 2013, primar-
ily focusing on typical consumer videos. It was later followed by the second,
third, and fourth versions, which became available in 2014, 2015, and 2016,
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respectively. They provided some additional functionality regarding range ex-
tension (16-bit support, various chroma sub-sampling formats, etc.), scalabil-
ity extension profiles, multi-view extension profiles, 3D video formats, screen
content coding mode, and they applied other new features and enhancements
[23, 111, 112, 113, 114]. In general, the overall goal of HEVC was to achieve
significant bit-rate reductions compared to existing codecs on the market across
the wide range of use-case scenarios. In that sense, HEVC represented a major
leap forward in video compression technology as it achieves higher compres-
sion ratios than its predecessors, while maintaining the same video quality, e.g.,
compared to H.264/AVC [115]. In fact, it can be said that HEVC has emerged
from H.264/AVC, following the same general coding approach as H.264/AVC.
Also, it can be said that HEVC is an extension of the concepts introduced in
H.264/AVC. It was reported in [116] that HEVC intra coding (still image com-
pression) reduced the average bit rate by 17% compared to H.264/AVC, 23%
compared to JPEG-2000, 30% compared to JPEG-XR, and 44% compared to
classic JPEG. Taking into account predictive coding, e.g., motion-estimation
(ME) driven inter prediction, the compression gain goes up to 50% compared
with its predecessor (H.264/AVC). It also supports much higher video resolu-
tions, including Ultra-high-definition (UHD) 4K and 8K. Also, note that the
HEVC codec accepts 8-16 b/p input data.

Although initially HEVC was designed to support the high demand for the
typical consumer video streaming and storage, later versions provided the abil-
ity to use HEVC in many other applications. Some applications that require
intensive compression, and can fit within a typical scope of HEVC use-cases,
are screen content coding (e.g., remote desktop applications, remote gaming,
wireless displays), medical image coding (e.g., ultrasound, radiography, medi-
cal X-rays), remote sensing image coding (e.g., multispectral, hyperspectral, or
synthetic aperture radar (SAR) data compression), light field image coding, light
detection and ranging (LiDAR) data coding, etc. [114, 117, 118, 119, 120, 121,
122,123,124,125,126,127,128,129,130,131,132,133]. Also, for example, ini-
tial work where HEVC is used as a base for seismic image compression is given
in [134,135,136]. These three publications essentially represent the works from
which this thesis emerged.

HEVC uses hybrid block-based approach, where the input image is divided
into the non-overlapping square blocks, and which are further recursively di-
vided into the variable size blocks that forms the quadtree structure [24]. Fur-
thermore, it utilizes intra and inter prediction [17,18], 2D transform and uniform
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quantization [25], and context adaptive entropy coding (context adaptive binary
arithmetic coding) in order to achieve efficient compression gains [26]. In gen-
eral, block-based video coders with a hybrid architecture use a combination
of multiple approaches which have previously been shown to be the most com-
monly used and most reliable methods for decorrelation. Hence the name hybrid
coder. The general and most commonly used approach is the one that combines
prediction, e.g., differential pulse code modulation, and transform coding, all in
order to remove redundancy as much as possible from the input data. Input sam-
ples are spatially or temporally decorrelated by generating a difference between
the input signal and the prediction signal obtained from the previously coded
samples. Transformation of the resulting difference signal (residual signal) into
a more suitable form, for more efficient compression, additionally decorrelate
the data by projecting the residual samples onto orthogonal base vectors. In ad-
dition to redundant data removed in this way, the quantization of the transformed
coefficients eliminates less significant signal information. Finally, entropy cod-
ing based on conditional symbol probabilities, which are given in a specific
context, is used as an encoding scheme to further remove coding redundancy. In
this way, total data used to represent the input image is significantly reduced.

Figure 3.1 shows a general diagram of HEVC’s hybrid block-based encoder
and decoder1. The input frame is divided into blocks b. In HEVC, block b is
represented with the largest block called Coding Tree Unit (CTU). It is possi-
ble to recursively divide each CTU into the smaller Coding Units (CU), that in
its structure can incorporate one or more Prediction Units (PU) and Transform
Units (TU). More about block structure in HEVC will be said in the next Chap-
ter, and at this point more detailed overview of the HEVC’s block structure is
omitted. The residual signal r is obtained as the difference between the input
b and the prediction signal p (intra or inter predicted). Transformation of the
block r into more suitable representation for compression, and quantization of
transformed coefficients (TR+Q module), determine the values of q (quantized
levels), according to which block samples will be presented in the output bit-
stream after entropy coding. It should be noted that HEVC supports discrete
cosine and sine transform, where in its standardized form HEVC applies inte-
ger approximations of those two well known decorrelation approaches. Since
the encoder includes all modules that are also included in the decoder (shaded

1Image is slightly modified image from Mathias Whien’s book - High Efficiency Video Cod-
ing: Coding Tools and Specification
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FIGURE 3.1: A typical block-based hybrid video coder scheme.

by the gray part in Figure 3.1), an accurate reconstructed image is available on
both sides (if we assume error-free channel between encoder and decoder). This
means that the decoder is capable of calculating the same prediction signal p as
it was calculated at the encoder. Also, since the scheme in the Fig. 3.1 represents
the general lossy coding scheme (although HEVC supports lossless mode), the
reconstructed blocks b′ and the reconstructed residual signal r′ are not identical
to b and r. The reconstructed block b′ is obtained by transferring the r′ + p
(after inverse transform and dequantization iTR+iQ was performed to obtain r′)
through a loop filter, which serves to correct the compression distortions. In
addition, coder retains reconstructed data in a buffer in which reference frames
are stored to be available for further predictive coding (inter prediction).

Many of the high-level concepts mentioned above are complex when we
look down into their implementation. They include many advanced algorithms
and specially designed solutions, all with the aim of improving compression
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gain. Of course, these algorithms are also well balanced in terms of computa-
tional complexity to allow practical applications of the standards. Also, many
different levels of details in the design of these concepts are included in the
related literature, as well as in this work. Some of these details, which are
closely related to this work, and which are relevant for understanding the pro-
posed changes and modifications (to cater 32 b/p extension), will be presented
shortly in the next Chapter. An overview of the basic concepts will be given
below, and details will be slightly introduced. After the details are introduced
and the proposed changes are described, they will be supported with the ex-
perimental results and comparison with other methods. However, it should be
clear that due to the high complexity of the standard, some specific details have
been omitted from the analysis. In any case, appropriate references are given for
further reading.
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Chapter 4

Methods and Proposed Solutions

In this work, in order to meet the ever-growing requirements arising from new
high-density seismic surveys, as a starting point, the standardized and ubiqui-
tous, industry accepted HEVC solution is used. This work has been guided by
the idea that a more viable and flexible approach for industry is to develop a seis-
mic data compression library by adapting state-of-the-art image or video com-
pression standards’ test model codes to meet one’s compression requirements
stemming from emerging new seismic technologies and their applications. It is
proposed to reassemble the seismic slices in a format that corresponds to the
video signal and benefit from the coding gain achieved by HEVC inter mode, as
opposed to the still image coding approach that is frequently used and advised
to be utilized by other competing lossy compression techniques in the related
literature. Inspired by HEVC’s high performance, a new codec for 32 b/p data
compression under the framework of HEVC is proposed in this chapter. The
general coding design and modifications that are introduced in the new codec,
in order to accommodate the extended bit-depth range, are given in the following
subsections, including the motivation that leads to selected design. This chapter
also points to the parts that are believed to have space for further development
and improvement.

At this point, it is worth mentioning that the high-level syntax has remained
almost unchanged. The emphasize is on video coding techniques (only core
algorithms of the Video Coding Layer are adopted and modified in order to
meet seismic data compression requirements), although some overhead in high-
level syntax can be removed. However, that overhead and the bits it produces
into the final bit-stream, are negligible compared to the total number of bits. As
it is going to be shown, some of the HEVC’s features are never utilized it this
work. For example, one such feature is transform skip, among several others.
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Therefore, the syntax elements related to that feature have no specific purpose
but still are located in the final bit-stream. However, as already pointed out, these
elements belong in a small percentage to the final bit-stream, and their impact on
overall performance is totally negligible. As mentioned in the introductory part
of this thesis, however, the proposed codec after all is not HEVC compatible.
Therefore, it is indeed possible to further tighten the bit-stream syntax in order
to save additional bits. However, emphasis of this work was on algorithmic
changes and improvements, and not on standard’s syntax redefinition.

In this work, we look at the standard from the encoder side, even the standard
itself defines the syntax of the bit-stream. This means that the standard specifies
only how to decode the content without specifying how to encode it. Thus, the
standard defines decoder side, and encoder side has left to the implementer as
long as the bit-stream is standard compatible. The limitation on the bit-stream
syntax has one advantage – it gives freedom to optimize the implementation
of the codec in a manner suitable for specific application, taking into account
required encoder complexity and available resources vs. desired compression
gain and reconstructed video quality. Therefore, the given analysis is observed
from the encoder side, however in this study a conforming decoder has also
been developed in order to obtain the reconstructed data after compression. Just
to note that this approach where coding algorithms are analyzed on the encoder
side is not uncommon. Even if the standard defines a decoder side, a decoder
without an equivalent encoder cannot be operative, so these two sides are always
closely related.

In addition, it should be noted that this work examines the lossy coding
scheme and the use of lossy techniques for seismic data compression. Seismic
data applications can tolerate some loss of information, and therefore lossless
techniques will not be covered by this work. Even though HEVC supports loss-
less compression, this type of coding will not be considered.

Before going into more details, it is to note that some codec’s components
such as those given in Chapter 4.1 and Chapter 4.2 mainly remain unchanged
and less modified than other parts. However, those components are greatly uti-
lized during encoder complexity optimization which is presented in Chapter 5
and Chapter 6. In that sense, for clarity purpose, they are also described in more
detail.
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4.1 Block Structure
HEVC uses a block-based hybrid approach, where the input image is divided
into non-overlapping square blocks that are further recursively divided into vari-
able size blocks to form a quadtree structure [24]. The quadtree concept is not
new, and it has been considered in academic work in the past [137, 138, 139].
However, with the HEVC’s call for proposal, it was used for the first time in the
practical implementation of video coding algorithms [140, 141].

At a high level, HEVC divides the image into a grid of the non-overlapping
Coding Tree Units (CTU). CTU usually consists of three coding blocks, namely
the luma (Y) block and two chroma (Cb and Cr) blocks, and associated syn-
tax elements. Each block is called a CTB (Coding Tree Block). In such way
we have: CTU = CTBY + CTBCb + CTBCr + Syntax_Elements. Luma
CTB has the same size as the CTU, while the size of the chroma blocks de-
pends on the subsampling scheme (usually 2× smaller by each dimension for
the most common format 4:2:0). Since in this work focus is on seismic data
that are represented in the form of monochromatic images (consisting only of
luma channel), we are going to consider only the luma block CTBY, and in the
sequel we will ignore the chroma components/blocks. This is equivalent to a
4:0:0 chroma subsampling format, where there is only luma component. This
format is a part of the range extension version of HEVC, and it is supported
in HEVC reference software. In such way, we can reformulate notation as:
CTU = CTBY + Syntax_Elements. Thus, the units in HEVC are associated
with local regions of the image, e.g., in our case luma samples, plus additional
syntax elements, together. Contrary, a block refers only to pixel samples with-
out syntax elements. For example, for seismic images that have only one image
component (luma component), the block will only be associated with a luma
component consisting of a 2-D array of image samples (pixels), and the unit
will be equivalent to a block plus additional syntax elements. In other words, a
block, along with associated syntax, form the units. Thus, in order to simplify
notation, instead of units, in this work we always refer to blocks, since they are
directly associated with the image information (pixels) on which calculations are
performed. At this point, it was important to clarify notation to avoid possible
confusion, as the related literature uses both, units and blocks, without proper
explanation.

Furthermore, one of the main contributions of HEVC is the expansion of the
block size, e.g., from 16 × 16 pixels in H.264/AVC [115], up to 64 × 64 pixels
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in HEVC. On the other hand, small details are still important, and sometimes
it is useful to perform coding at a lower granularity, for example, using smaller
blocks of 4 × 4 pixels. When the block covers part of the image with a flat tex-
ture, a homogeneous region, the use of a larger block size can be beneficial since
it can achieve higher compression gains. This could be particularly appreciated
in high resolution images, such as seismic images. For a region of complex tex-
ture, smaller blocks may have more accurate prediction, but they require more
side signaling bits. In this case, the variable block size provides ability to the
encoder to adapt to the image characteristics, and consequently to improve the
coding gain. Therefore, the improved and highly flexible quadtree structure is
used to get the optimal block partitioning.

To support such an improved and highly flexible quadtree structure, HEVC
additionally introduces different block types. These are Coding Blocks (CB),
Prediction Blocks (PB), and Transform Blocks (TB) [24]. As already men-
tioned, at a high level, HEVC divides the input image into the grid of non-
overlapping Coding Tree Blocks (CTB). The CTB can be of size of 64 × 64,
32 × 32, or 16 × 16 pixels. The size of the CTB must be defined before encod-
ing starts. Once selected, the CTB size remains the same, and it is signaled as a
side information within an additional HEVC syntax element. The size is chosen
based on the planned application type and available resources, and it is usually
a matter of compromise between complexity and desired performance.

Furthermore, the CTB can be recursively divided into multiple coding blocks
(CBs), see Fig. 4.1 and Fig. 4.2. Each CB becomes a decision point for the type
of prediction, where two types of prediction are defined in the HEVC – intra
and inter prediction. Supported CB sizes start from the same size as CTB to
as small as 8 × 8. One possible quadtree partitioning is given in Fig. 4.1 and
in Fig. 4.2, where both figures are equivalent and represent the same splitting
decisions that are illustrated in a different way. Starting from the size of the
CTB, which is equivalent to depth = 0, the encoder can recursively divide each
block into 4 smaller square CBs with half the horizontal and vertical size of the
parent block by descending further down on multilevel depth hierarchy. The
split can be continued for each newly derived CB until the maximum possible
depth, or equivalently the smallest CB size, is reached. Partitioning is content
dependent and it aims to capture the characteristics of the image region covered
by the CTB, while relying on RD optimization (more about RD optimization
can be found in Sec. 4.6). The resulting tree is called coding quadtree, and for
example, in Fig. 4.2 it is shown in solid line. The leaf nodes represented as dots
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FIGURE 4.1: An example of a variable block size used in HEVC. The illustration
shows how 64 × 64 CTB can be divided into CBs using a quadtree structure (left side),
and how each CB can additionally include PBs and TBs in its structure (right side).

are the final decision points for the CB size.
To carry out various prediction parameters, a prediction block (PB) has been

introduced. Although an intra or inter prediction type decision has been per-
formed at the CB level, more precise prediction parameters are carried out within
the prediction blocks. In the standard, the PB partitioning is related to the proper
selection of the partition mode. As it can be seen from the Table 4.1, the par-
tition mode is associated with whether prediction mode is identified as intra or
inter within the CB. Square, rectangular, and asymmetric rectangular partition
modes (PB shapes) are supported in HEVC. Hence, a CB may consist of either
one PB with the same edge as the CB, two rectangular PBs, or four square PBs,
and the size of the PB cannot be less than 4 × 4 pixels. Thus, each CB may
include one or more PBs in its structure. Starting from the CB as the root point,
the PB can be the same size as the CB, or it can be divided further, consid-
ering limitation on a PB size as defined in standard with respect to its parent
CB. In this sense, the CB partitioning on PBs is restricted, and may consist
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coding quadtree CB leaf nodes
residual quadtree TB leaf nodes            CTB                                                  depth = 0;  size:64x64

                depth = 1;  size:32x32

                                          depth = 2;  size:16x16

            depth = 3;  size:8x8

                                depth = 4;  size:4x4

Legend:

FIGURE 4.2: Another illustration of a hierarchical multilevel depth structure. The solid
lines represent the coding quadtree, and dashed lines represent the residual quadtree.

of either one PB with the same edge size as the CB, two rectangular PBs, or
four square PBs, see Table 4.1 for illustration. Also, PB size cannot be smaller
than 4 × 4. One example of PB partitioning is given in Fig. 4.1. In intra
mode, the size of the PB relative to the parent CB can be the same as the CB,
which is given with the PART_2N×2N partition mode, except when the CB is
the smallest allowed size (8 × 8 pixels). In that case, the CB may contain 4
smaller square PBs of size 4 × 4 that can have their own intra prediction mode,
which is equivalent to the PART_N×N partition mode. In inter prediction mode,
eight partition modes are defined (see Table 4.1), including non-square modes
(PART_2N×N and PART_N×2N), and asymmetric non-square partition modes
(PART_2N×nU, PART_2N×nD, PART_nL×2N, and PART_nR×2N). In case
when the CB consists of two or more smaller PBs, each of them may have its
own specific prediction parameters. However, a combination of intra and inter
prediction is not possible in a single CB. It is important to note that the partition
mode defines the shape and size of the PB based on the size of the parent CB.
Once selected, the partition mode is final, meaning that the PB can be only split
once, and it does not allow further hierarchical depth division. Note that N in the
Table 4.1 takes values from {32, 16, 8, 4}. Also, the use of asymmetric modes is
optional, and it can be disabled by using additional syntax within the bit-stream.
This part will be examined in the proposed optimized encoder for seismic data
compression.
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TABLE 4.1: Prediction Block (PB) partition in HEVC’s intra and inter prediction.

Prediction Mode Partition Mode
Intra Prediction PART_2N×2N PART_N×N
Inter Prediction PART_2N×2N PART_N×N

PART_2N×N PART_N×2N
PART_2N×nU PART_2N×nD
PART_nL×2N PART_nR×2N

PART_2N×2N PART_N×N PART_2N×N PART_N×2N

PART_2N×nU PART_2N×nD PART_nL×2N PART_nR×2N

In order to better utilize the transform in HEVC, a transform block (TB)
has been used, since the CB may be too large to be represented as a structure
for transform, as it may contain both a detailed parts (high frequencies) and a
flat parts (low frequencies). The root node of a TB partition is a leaf node of
a coding quadtree. Hence, TB is still dependent on CB, but starting from CB
level as a root, it can be recursively divided into 4 smaller square blocks. For
example, look at the right-bottom of the Fig. 4.1. Thus, TB has its own quadtree
partitioning, where allowed TB sizes go from 4× 4 to 32× 32, supporting only
a square transform, and where TB size does not have to match PB size. The
resulting tree is called residual quadtree. In the Fig. 4.2 it is given by a dashed
line, and the leaf nodes represented as squares are the final decisions on the TB
size. Therefore, each CB has been further partitioned into the associated PBs
and residual quadtree of TBs. However, more about prediction and transform
will be said in the following sections.

In the Fig. 4.1 and Fig. 4.2, a CTB that has 4 levels of hierarchical depth
division has been illustrated. The root node represents the CTB, and the leaf
nodes illustrate the final CB and TB partitions. Furthermore, each CB leaf node
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is the starting point for the PB partitioning and the TB residual quadtree. The
root of the CTB in the given example corresponds to depth = 0, and has the
size of 64 × 64. At depth = 1, the CB size is half of the CTB size (e.g., CB
number 14). At depth = 2, CB size is one quarter of the CTB size (e.g., CB
number 5 or number 20 among others), and at depth = 3, the CB size is 8 × 8
which is the lowest size defined by the standard for CBs (e.g., CB number 1 or
25 among others). The maximum hierarchical depth level relative to the root
CTB is a configurable parameter and it is defined prior to encoding and signaled
as the side information. Depending on the application, different combinations
of maximum CTU size and maximum quadtree depth can be specified, e.g.,
64× 64 and depth 3, or 32× 32 and depth 1. A similar approach can be applied
to the residual quadtree hierarchical depth level relative to its parent CB. The
relative depth of the residual quadtree, starting from the leaf node of the coding
quadtree, is also a configurable parameter. Note that the maximum total depth
for TB partitions is depth = 4, which is equivalent to 4x4 size, the minimum
size allowed for the transform in HEVC. Also note that CBs within the nested
quadtree are processed in the raster scan order, that can be seen in Fig. 4.1.

It is important to note that in this research the complete block structure and
associated syntax of the HEVC standard has been kept. The motivation lies in
the assumption that a given block structure is well suited for seismic images
as it is for natural video, as they both can have large uniform regions that can
be compressed by using larger block sizes, and yet contain regions with lots of
detail that can be compressed by using smaller block sizes (which in turn main-
tains the ability to retain important seismic features). Since block partitioning
is not directly associated with the extended bit-depth range, or to the fact that
seismic data is used instead of natural video, there is no need to modify this
part. However, we have underwent additional experiments that aimed to show
performance when some block size restrictions are introduced, e.g., see Chapter
6. These experiments are related with a limited maximum block size below the
standardized maximum of 64 × 64 pixels, or related with a increased minimum
block size of 4 × 4 pixels. Since those block sizes are chosen to be the default
values in the standard to get the best performance for the widest possible range
of applications, the question is whether these default values are also the best
solution when compressing seismic data. For example, it would be useful to see
if we can choose to limit the minimum CB size to 8 × 8 instead to 4 × 4 pixels.
Also, for example, we can experiment with a limited hierarchical depth division



4.2. Intra and Inter Prediction 33

of the residual quadtree, or to use limited partition modes, e.g., exclude asym-
metric partition modes from consideration. In addition, it is possible to reduce
the available transform sizes. In this way, the usefulness of a standardized block
partitioning scheme can be tested, or on the other side, if experiments show
negligible changes in performance, we can choose to adjust the encoder accord-
ing to these findings and to unburden the encoder of unnecessary calculations.
These experiments are analyzed in detail in Chapter 6. As a subject of further
research, block partitioning can be considered in the context of reducing algo-
rithmic complexity, similarly as it was applied for natural video [142,143,144].
The underlying idea is that the collocated blocks at the same position in con-
secutive seismic slices are highly correlated and most likely have a very similar
content, structurally and statistically, mainly due to the low motion characteris-
tics of seismic data. Thus, some optimization scheme that will speed-up block
partitioning based on previous decisions can be utilized in this part of the codec.
However, advanced complexity reduction is not the part of this work.

4.2 Intra and Inter Prediction
Intra and inter predictions are two types of predictions that are used in HEVC
[17,18,145]. Block based predictors are used, where in intra prediction the focus
is on the reduction of spatial redundancy, and in inter prediction on the reduction
of temporal redundancy. The underlying concept is not new and it is inherited
from the previous standard (H.264/AVC). However, several improvements have
been proposed in HEVC.

4.2.1 Intra Prediction [18]
Intra prediction of HEVC relies on spatial redundancy that is inherited in the
data. Pixels in the same area of the image that are close to each other are usually
highly correlated. In intra coding mode, only information from the surrounding
CBs can be used to form a prediction signal. Therefore, by using intra predic-
tion, each seismic image can be compressed without referencing to other images
in the sequence. This is equivalent to the still-image compression approaches.
This kind of spatial redundancy reduction is also referred as intra-slice predic-
tion.
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Only spatially adjacent samples that are located on the upper and left sides
of the PB have been exploited to calculate the intra predicted signal. We refer to
those surrounding samples as the reference samples Ri,j, see Fig. 4.3a. Note that
a total 4N + 1 reference samples can be used for PB of size N, and in any intra
mode (see below about different intra prediction modes), only these samples are
available when calculating the prediction block. Thus, each prediction mode
uses the same set of reference samples. In certain cases, e.g., at image bound-
aries, some reference samples are not available, and they must be compensated
in some way. Missing samples are created by repeating previously available
samples by using the reference sample substitution algorithm that is defined in
the standard. If, however, the reference samples cannot be reproduced in any
way (when they cannot be reconstructed by repeating previously available sam-
ples), the nominal average value for a given bit-depth is used, e.g., 231 for 32
b/p seismic data. When constrained intra prediction is enabled, reference sam-
ples belonging to neighboring inter-predicted PBs are omitted (to avoid possible
error propagation in case of missing frames/seismic slices).

Also, when residual quadtree partitioning leads to situations where one CB
is split into multiple TBs, intra prediction is applied for each TB separately,
instead of applying intra prediction once at the PB level. However, for each TB
it is applied using the same intra prediction mode over all TBs. This enables
the possibility to always exploit the nearest neighboring reference samples from
an already reconstructed TB (because the correlation between pixels is higher
when they are spatially closer). As for the size of the PB relative to its parent
CB, in intra coding, the PB may be the same size as the CB, except when the CB
is the minimum allowed size. In the latter case, the CB may contain 4 smaller
square PBs that have their own specific intra prediction mode, independent of
each other, see for example Sec. 4.1 and Table 4.1.

In addition, HEVC provides 35 different intra prediction modes, see Fig.
4.3b. In order to more accurately model different textural structures, it utilizes
33 angular modes, along with DC and planar mode for more precise modeling
of smooth regions. Angular predictions are computed with 1/32 sample accu-
racy, and the predicted value Px,y is the weighted function of two neighboring
reference samples, e.g., Ri,0 and Ri+1,0, which are determined to be located at
the direction of the given angular mode. Bi-linear interpolation has been used,
where the predicted value Px,y can be considered as a linear combination of the
two closest reference samples, e.g., by choosing two samples in the selected
prediction direction after projecting the mode direction to the reference sample
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locations with 1/32 sample accuracy. Thus, the prediction is given as

Px,y = ((32− f ) ∗ Ri,0 + f ∗ Ri+1,0 + 16)� 5 (4.1)

where� is bit-shift operation. In this case, the predicted value is the weighting
function of two neighboring reference samples which are accessed using the
index i, and weighted by the fractional displacement factor f . Also, i and f are
based on the angular parameter d which can have a value from -32 to +32, and
which is mode dependent. The indices i and f are given with

i = ((y + 1) ∗ d)� 5
f = ((y + 1) ∗ d)&31

(4.2)

where & is bit-wise "and" operation. It is important to note that the given equa-
tions (4.1) and (4.2) apply to vertical modes, while for horizontal modes (e.g.,
those with indexes 2-18, see Fig. 4.3b) the same equations may apply, with the
addition of swapping the coordinates x and y.

For smooth regions, DC and planar mode may be a better choice than di-
rectional modes. In the case where the DC mode is selected, the average value
of the available reference samples is used to predict the entire block. In some
cases, the boundary samples can be treated in a slightly different way (e.g., pre-
dicted values of the first row and column – on Fig. 4.3b represented by the
values at P0,0, P0,j, and Pi,0 locations). In this case, the predicted DC values at
the previously mentioned locations are post-processed by using two- and three-
tap smoothing filters. Similar boundary smoothing operations can be applied to
the horizontal and vertical modes [146]. In contrast, planar mode is designed to
predict smooth gradient surfaces with gradual changes, by averaging two linear
predictors, horizontal and vertical [147]. Planar mode is essentially defined as
the weighted average value of only four reference samples, e.g., to predict Px,y
it uses R0,N+1, R0,y, Rx,0, and RN+1,0 as reference samples. It is given with

Px,y =
y + 1
2N

∗ R0,N+1 +
N − 1− x

2N
∗ R0,y+

N − 1− y
2N

∗ Rx,0 +
x + 1
2N

∗ RN+1,0

(4.3)

As an advanced feature, HEVC proposes to use a reference sample smoothing,
which is reported to reduce artifacts in reconstructed images, based on a tree-tap
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FIGURE 4.3: Intra prediction. (A) Reference samples Ri,j used to form intra prediction
signal Pi,j, and (B) Intra modes available in HEVC.

smoothing filter. This feature showed negligible performance on seismic data
compression.

Also, HEVC allows efficient intra mode coding that increases the coding
efficiency by signaling intra mode with minimal overhead. This technique is
known as Most Probable Mode coding (MPM), which increases the symbol cod-
ing efficiency [148]. It uses intra mode decisions of the previous, surrounding
blocks, and instead of transmitting the mode number itself, it transmits only the
index from MPM list if the current chosen mode is in it. Intra mode signaling,
MPM derivation, reference sample manipulation, intra prediction mode design,
and mode derivation remains the same as in HEVC [18].

As we can see, for example, by looking at equations (4.1), (4.2), and (4.3),
the intra prediction derivation is universal, and it is not limited to the dynamic
range of input values. As long as we take care that the software implemen-
tation with its internal variables satisfies a wide range of dynamic values that
can occur when using high-bit depth data, intra prediction in a given form per-
fectly matches seismic data. The given formulas and the standardized way of
calculating the predicted samples can be used directly without any modifica-
tions. Therefore, in order to benefit from a standardized way of removing the
spatial correlation, it was not necessary to introduce any modifications to the
intra prediction calculations. Of course, besides already mentioned adaptations
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of the reference software to support larger internal buffers/variables, which is
not only related to this specific part of the codec, but follows the entire codec
implementation (reference code) in each of its parts.

To avoid full RD optimization calculations, HEVC’s reference software (HM)
[149] applies a fast algorithm for intra mode selection [150]. In the first stage, it
calculates the N the best intra prediction mode candidates using the sum of ab-
solute Hadamard transform coefficients as the distortion measure DHad, which
is a simplified version of the brute force approach. For the rate Rmode, it uses
the number of bits necessary to code only a specific, at the time considered, pre-
diction mode. The Lagrange cost is then calculated as J = DHad + λRmode.
More about Lagrange cost and RD optimization can be found in Sec. 4.6. Af-
ter that, in the simplified J encoder, HEVC considers N the best intra predic-
tion modes for full RD optimization, where N is [9 9 4 4 5] for the block size
[4×4 8×8 16×16 32×32 64×64], respectively. However, the optimal num-
bers for N candidates are provided based on experimental observations by using
natural video. In addition, these simplifications negatively affect performance,
which has been shown to be negligible for natural video. For seismic images the
main focus is the high quality of reconstructed data, but with at the same time
the highest possible compression gain. Since the implications of the simplified
J encoder have not been analyzed yet for seismic data, the effect of the proposed
simplified RD optimization is explored in this work during development of the
seismic codec. Further investigation is conducted during development and the
results are summarized in Chapter 6. It would be the most confident path to uti-
lize all modes in full RD optimization, and gradually reduce its number as long
as there is no significant negative effect on performance. However, this would
place a significant computational burden on the experiments, since full RD op-
timization is very demanding in terms of computing resources. Thus, at first,
we can also start with a limited number of modes for full RD optimization, and
than gradually increase and decrease this number until some meaningful effect
on performance is observed (see Chapter 6). In that way, after conducting ex-
periments on optimal N candidates, we were able to pick the suitable number of
modes for full RD optimization that does not influence the overall performance
on seismic data.

In addition, the intra coding complexity still remains high and further com-
putational savings are possible. It is assumed that 33 angular modes are more
than enough since seismic data do not possess as many textural structures as
natural images do. This motivates this work to focus on reducing the number of
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angular modes for optimized encoding without significant performance losses.
In order to experiment with a reduced number of intra modes, one simple op-
tion is to adopt the 9 intra prediction modes of H.264/AVC, which is essentially
a uniformly decimated version of the 35 modes in HEVC. Hence, by using a
uniformly decimated version of the 35 modes in HEVC, e.g., by taking every
second or every third angular mode, the solution to unburden the encoder of un-
necessary mode calculations can be reached. Another option is to utilize its the
most frequent subset, as it is analyzed in Chapter 6. The assumption is that a
better way is to choose a subset of modes that is better adapted to the structure
of seismic data. After collecting statistics of mode selection of a large set of
trace and 2D wavefield images, we can choose to use a (sub)optimal subset of
modes for seismic data compression. This is analyzed in detail in Chapter 6 of
this work.

However, similar to previous notes on complexity reduction, advanced com-
plexity reduction was not examined in this work. An efficient and adaptive intra
mode selection is planed to be the part of future research directions. An attempt
can be made to reduce the number of modes based on previous statistics or struc-
tural information in the data such as edges, and to create a subset of intra modes
for particular PB, e.g., as it is done in [151, 152, 153].

4.2.2 Inter Prediction [17]
Successive frames, or equivalently seismic slices, usually share structurally and
statistically highly correlated regions. In that sense, some parts of the image may
be repeated in time with little or no changes. This is particularly true for seismic
data, where consecutive slices share structurally and statistically highly corre-
lated regions. Therefore, in order to improve compression performance over
still-image (intra coding) approaches, in this work 3D seismic data is treated as
a sequence of frames, and predictive coding such as HEVC based inter predic-
tion is applied. This kind of temporal redundancy reduction is also referred as
inter-slice prediction.

However, compared with natural video, one of the characteristics of seismic
data is low-motion activity. This means that when two consecutive frames, or
as we refer to it seismic slices, are compared, there is high overlapping of the
image regions with its close neighborhood in the previous slice. Hence, some of
the previous findings that are used during the development of the standard, but
which are based on natural video, must be reconsidered in this work.
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To eliminate temporal redundancy between slices (commonly referred as
inter-frame correlation), the encoder incorporates a prediction mechanism that
is based on motion estimation (ME). It is based on block matching, and it con-
sists of finding a displaced block within a reference frame, where the displace-
ment is defined by a motion vector (MV). At the same time, while searching
for a displaced block, an appropriate distortion measure is minimized to find the
most similar match. The displaced block is searched in a reference image iden-
tified by the reference image index, which is part of the encoder configuration
setting. More about different reference image management configurations in the
proposed seismic codec can be found in Chapter 5.

In addition, in inter mode each PB is associated with one (uni-directional
prediction) or two (bi-directional prediction) motion vectors, depending on the
frame type (P or B frames). In the latter case, average values or weighted pre-
diction of predicted signals are used. Bi-directional prediction has a significant
influence on compression performance when natural video has been used. How-
ever, the effectiveness of such an approach for low-motion seismic data has not
yet analyzed, as well as whether it is worth the additional complexity (additional
calculations are required to compress B frames compared to P frames). This is
also experimentally covered in this work. Also, the use of multiple reference
frames/slices has been analyzed.

The motion compensated prediction process begins with the advance mo-
tion vector prediction (AMVP) scheme [24, 154], where the encoder has to
choose a motion vector predictor among multiple predictor candidates [155].
Based on the standardized competition scheme, the AMVP forms a list of can-
didates, see Fig. 4.4, which competes for the motion vector predictor [155].
Only the first two available spatial candidates are chosen among the adjacent
blocks, A0, A1, B0, B1 and B2, where the candidates are processed in the given
order. In case of unavailability of spatial candidates, one temporally collocated
neighbour can be selected, C0 or C1. Thus, spatial candidates, temporally col-
located candidate, or in addition zero-MV candidate, can be added to the list of
competitors. If the final number of candidates in the list is less than two, zero
motion vector may be added to the competition list so that at least two candidates
compete for the motion vector predictor. Only two competitors from the list are
further passed to the RD optimization module, and based on the minimum cost,
one MV candidate is selected as a predictor for a particular PB. Later, this pre-
dictor is used as a starting point in ME. Although temporal candidates may be
useful to improve performance, they require a significant amount of memory to
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FIGURE 4.4: Motion vector predictor candidates.

store motion-related data for each PB from all reference frames. However, the
encoder can control the use of the temporal predictor by using a flag within the
configuration parameter set. Thus, the usefulness of the temporal predictor on
the seismic data compression performance can be tested. If the results show
negligible performance changes, it is better not to use temporal predictor, and
by doing so we can slightly relax memory requirements.

Thereafter, the ME continues by applying integer-sample precision motion
search. In the initial setup presented in this work, the full search is performed
in a predefined search window range, meaning that each integer point displace-
ment within the window has been checked in the RD sense. One point, which
has proved to be the best in terms of coding price, is selected for further search.
Fractional-sample ME is performed afterwards within the neighborhood of the
selected integer point. Eight surrounding points are first evaluated using half-
sample precision, followed by eight quarter-sample search to fine tune previ-
ously selected point. Quarter-sample precision additionally increases the com-
plexity but at the same time it improves the performance [156]. Finally, efficient
coding of the prediction information is utilized, where the difference between
the MV predictor and the actual MV, and index of the AMVP candidate, are
encoded into the bit-stream. It is important to note that fractional sample esti-
mation uses seven-tap and eight-tap interpolation, which additionally increases
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computational complexity [17]. In this work, we present the potential effective-
ness of the half- and quarter-sample prediction when applied to seismic data.
Although fractional sample precision can improve coding performance for nat-
ural video, interpolation introduce additional calculations. More importantly,
in order to finely tune the MV, RD optimization must be performed for each
half-sample and quarter-sample precision point. Thus, in this work, it is also an-
alyzed how fractional MV estimation influence the performance of the proposed
codec, in terms of coding performance as well as in terms of computational com-
plexity.

Also, taking into account the low-motion characteristics of seismic data, this
work attempts to limit the search window range while maintaining the same
coding performance. The search range is narrowed to a neighborhood of 64 pix-
els, thus checking 64 integer displacements in each direction. In addition, results
are provided for a reduced search range that goes down to 1-pixel neighborhood.
Also, instead of performing RD optimization on each integer point within the
window, test zone search (TZSearch) can be used [157]. It combines diamond
search, raster search, and star refinement methods to speed-up encoder with
negligible performance losses by omitting some integer-precision points in RD
optimization. To additionally experiment with the number of integer-precision
searches, raster search and star refinement within TZSearch are disabled. Since
TZSearch can lead to suboptimal MV, its impact on the proposed custom codec
performance is explored. The results of the examination and analysis of the ex-
periments are given somewhat later in this thesis. It should be noted that in this
work TZSearch is not used in the initial setup. Later-on, it was tested to see how
it affects potential computation speed-up and compression performance. Also,
a more detailed flow-chart of TZSearch algorithm can be found in [157].

A similar MV prediction scheme as AMVP is also used in MERGE and
SKIP mode (a special case of MERGE mode when no residual data is present
in the bit-stream). See [158] for more details on MERGE and SKIP mode in
HEVC. Based on the set of the possible candidates, the encoder may select
inter-coded PBs that share the same prediction information, and therefore does
not have to explicitly transmit any motion related information. The merge index
is used at the decoder side, along with the same competition scheme to effi-
ciently reconstruct MV. The same candidates are used as in AMVP, except that
a maximum of five candidates are selected for full RD optimization. The number
of competitors in MERGE mode is controlled by a configurable parameter, and
it is varied between 1 and 5 to show its influence on the codec’s performance. It
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is important to note that by using MERGE mode, the encoder is able to form a
merged region that shares the same prediction information. In that way, by us-
ing block merging approach, the encoder’s limitation that structurally the same
regions of the image cannot be represented jointly if the region is divided into
two (or more) CBs, is relaxed. In that sense, we can theoretically form a block
of any shape, and that block is consistent in terms of image content.

As for the constraints for partition types, in inter prediction, the CB may
consist of 1 PB of the same size, or 2 rectangular smaller PBs, or 4 square PBs,
see Tab. 4.1. The division into 4 PBs is allowed only when the size of the
CB is equal to the minimum allowable, the same as for intra prediction. When
there are 2 PBs, an asymmetric PB partitioning can be enabled, and there are a
total of six different type of non-square partitions. Asymmetric partitioning is
only allowed when the size of CB edge is 16 or larger. In addition, to test the
impact of asymmetric block partitioning on coding performance, the codec’s
performance is investigated when SIZE_2NxnU, SIZE_2NxnD, SIZE_nLx2N,
SIZE_nRx2N modes are disabled.

To summarize, in this work, by taking into account the low-motion charac-
teristics of seismic data, certain research has been conducted to limit the search
window range to the lowest possible while maintaining approximately the same
coding performance. In addition, instead of performing RD optimization on
each integer point within the search window, tests are performed to see how
the TZSearch affects the performance of seismic data compression. Also, this
work examines the potential effectiveness of the half- and quarter-sample ME
precision when applied to seismic data. A tests are also conducted when only
zero-motion prediction is adopted in inter prediction. We refer to it as 1-1 pre-
diction. A different number of AMVP candidates and MERGE candidates are
also being tested.

4.3 Core Transform
Transform coding of the residual signal has been used to further make the most
out of the spatial dependencies and to further improve compression gain. The
basic purpose of the mathematical transform is to take the input signal, in our
case block of residual samples resulting from intra or inter prediction, and rep-
resent it (transform it) from one type of representation to another, in a way more
suitable for compression. It is used to translate the signal from spatial domain,
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into another numerical quantitative form that we refer to as frequency domain
or spectral domain. It can be shown that any finite set of the data can be ex-
pressed as sum of a weighted basis functions, for example see [159]. Hence, by
manipulating the data, decorrelating transform separates the information based
on its principal components (frequencies), and concentrates the data in a few
significant transformed coefficients. Thus, data can be represented in the fre-
quency domain using less information than in the spatial domain, with no or
little harm on the reconstructed data quality. However, how many coefficients
can be neglected during quantization process (that usally follows transform step,
see Sec. 4.4) is a matter of compromise between the quality of the reconstructed
samples and the compression ratio. Less coefficients are kept, the higher com-
pression ratio will be, but the distortion of the reconstructed signal will be also
higher.

In HEVC, transform block partitioning, which is given with residual quadtree
hierarchical block division (see Sec. 4.1), has been utilized in order to carry out
transform process of the residual signal. To obtain transformed coefficients,
for each residual block, two-dimensional (2D) transform with the same size as
the TB has been used. Possible transform block sizes are ranging from 4 × 4 to
32× 32 pixels, and only square transform has been adapted in HEVC. Although
Discrete Sine Transform (DST) is supported by the standard, only the Discrete
Cosine Transform (DCT) [25, 159, 160] has been examined in our research. In
total there are eight types of DCT (DCT-I to DCT-VIII), where in HEVC variant
DCT-II and its inverse variant DCT-III are implemented.

Computationally vise, 2D DCT transform can be implemented by a column-
row decomposition, using two separate 1D transforms, each one in horizontal
and vertical direction. At the first stage, one dimensional N-point transform
has been applied on each column of the input TB block (of size N × N). Next,
N-point transform has been computed for the each row of the intermediate re-
sult from the previous stage, generating final 2D transformed coefficients of size
N × N. Therefore, 2D transform is equivalent to a one-dimensional transform
performed along a single dimension followed by a one-dimensional transform
in the other dimension. The approach when using two separable 1D transforms
is more computationally effective than implementation of a direct 2D trans-
form. The resulting transformed coefficients (coeff ) are later-on subjected to the
quantization and entropy coding. Mathematically, the simplest form of trans-
formed coefficients calculation is in a matrix multiplication form, and it can be
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expressed as

COEFF = (X · B) · XT, (4.4)

where COEFF is resulting transformed block composed of the transformed co-
efficients (coeff ), B is a residual block after prediction, and X is DCT transform
matrix. Inverse transform is simply represented as

B = (XT · COEFF) · X. (4.5)

Additionally, the DCT used in HEVC is an integer approximation of the or-
thonormal (original floating-point) DCT. Transform matrix coefficients are de-
rived by approximating scaled DCT basis functions. The scaling factor used in
HEVC is 26+ M

2 compared to an orthonormal DCT, where M = log2(N), and
N is TB size. Also, to preserve the norm compared with orthonormal DCT and
to keep dynamic range within 15 bits without sign bit (as defined by standard),
additional scaling has been defined. A total scaling at the forward pass of the
standardized DCT is 2(15−B−M), and total scaling at the inverse transform is
2−(15−B−M). This scaling is forwarded to the HEVC’s quantizer (see the fol-
lowing section), to simplify and reduce the calculations by jointly observing the
transform scaled factors with the quantization scaling. A given maximum trans-
form range limitation has been considered as a reasonable trade-off between
accuracy and implementation cost for standard video. For more details about
standardized DCT see [25].

Contrary to the orthogonal basis vectors, standardized HEVC’s integer trans-
form introduces losses, even when observed without the intermediate scaling,
and quantization and dequantization steps. For example, a scaled version of the
original floating-point precision 4x4 DCT matrix is

X =


64.0000 64.0000 64.0000 64.0000
83.6200 34.6366 −34.6366 −83.6200
64.0000 −64.0000 −64.0000 64.0000
34.6366 −83.6200 83.6200 −34.6366


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with X · XT = XT · X = 16384I4×4, and the corresponding DCT in HEVC is

X̃ =


64 64 64 64
83 36 −36 −83
64 −64 −64 64
36 −83 83 −36


with

X̃ · X̃T =


16384 0 0 0

0 16370 0 0
0 0 16384 0
0 0 0 16370


and

X̃T · X̃ =


16377 0 0 7

0 16377 7 0
0 7 16377 0
7 0 0 16377

 .

Thus, standardized transform given with X̃ is not unitary, and it does not support
perfect reconstruction either. The same applies for the transform matrices of size
8× 8, 16× 16, and 32× 32. Since the HEVC mostly focus on the applications
that support high compression ratios, the loss introduced by the non-unitary
transform does not degrade overall compression-quality performance. However,
this property shall play an important role in the design of our custom codec.
Although X̃ can be used for standard video data, the approximate error will be
magnified several orders of magnitude for 32 b/p data, rendering it useless even
without quantization. Also, HEVC adapts a better approximation of the DCT
for 16 b/p data, with a scaling factor of 214+ M

2 for forward transform (inverse
transform kept the same scaling as before), and the maximum transform range
that is limited to 22 bits (without sign bit). However, the precision is still not
good enough for 32 b/p data. Even it uses more precisely designed coefficients
for higher bit depth extensions, with more bits required to represent transform
matrix coefficients, based on experimental results with seismic data we can show
that even extended precision introduce huge and unacceptable error. Thus, the
core transform has to be carefully designed for 32 bit-depth data.

Furthermore, all DCT transform matrix coefficients can be stored in a sin-
gle matrix of the length 32 (32 × 32 matrix). Any other lower-order transform
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matrix may be derived from 32-point matrix by using its sub-sampled version.
It is illustrated in Table 4.2. For example, 8-point matrix (matrix of the size
8 × 8) may be derived by using first 8 matrix coefficients and every 4th column
of the 32-point matrix, as it can be seen in Table 4.2. At last, preserving the
symmetry and anti-symmetry of the original floating-point DCT transform ma-
trix coefficients, fast algorithms may be applied to reduce the number of arith-
metic operations. Although it does not support full factorization, DCT defined in
HEVC may be computed by partial butterfly approach – combination of matrix
multiplication and butterfly structures by using a N/2-point DCT and a matrix-
vector product of N/2× N/2 matrix with an N/2-point vector, see [25, 160]
for more details. An integer approximation of the HEVC’s DCT transform ma-
trix has been given in Tab. 4.2. It represent 32-point DCT, the highest possible
transform size defined in HEVC. A smaller transform sizes are embedded within
the 32-point transform matrix, and they are painted using different colors. Pink
shaded parts form a 16-point DCT, yellow shaded coefficients are part of 8-
point DCT, and blue colored coefficients represent 4-point DCT. Note, in total
there are 29 different transform coefficients, and they can be represented using
8 bits [161]. This fact is an important factor in hardware implementation, when
those coefficients are stored in a memory with a limited capacity, e.g., cache
memory. Those coefficients are contained in the first row of the 32-point matrix.
In addition, 16-point matrix use only 15 unique DCT coefficients, 8-point use 7,
and 4-point DCT contains only 3 unique matrix coefficients. Also, we can see
that DCT uses real computations since all DCT coefficients are real numbers
(integers), and it is signal independent, which makes a DCT as good candidate
for implementation in a compression algorithms. Performance in terms of the
energy compaction is close to what can be accomplished by using more efficient
decorrelators, e.g. transforms that are based on the underlying signal statistics
such as KLT [159]. In general, standardized DCT preserves closeness to the
original floating-point DCT. Almost equal norm of all basis vectors has been
achieved, hence no additional scaling matrices are required, and the same quan-
tization and dequantization scheme can be used for all transform sizes.

As we can conclude from the above, DCT in HEVC is very carefully de-
signed taking into account to achieve good compression results, but also the
complexity of the implementation of the transform for practical purposes was
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TABLE 4.2: Integer approximation of the HEVC’s 32-point DCT. Smaller sizes of
16-point, 8-point, and 4-point DCT are embedded in the 32-point transform matrix. For
better visibility, they are painted with different colors.

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
90 90 88 85 82 78 73 67 61 54 46 38 31 22 13 4 −4−13−22−31−38−46−54−61−67−73−78−82−85 88−90−90
90 87 80 70 57 43 25 9 −9−25−43−57−70−80−87−90−90−87−80−70−57−43−25 −9 9 25 43 57 70 80 87 90
90 82 67 46 22 −4−31−54−73−85−90−88−78−61−38−13 13 38 61 78 88 90 85 73 54 31 4−22−46−67−82−90
89 75 50 18−18−50−75−89−89−75−50−18 18 50 75 89 89 75 50 18−18−50−75−89−89−75−50−18 18 50 75 89
88 67 31−13−54−82−90−78−46 −4 38 73 90 85 61 22−22−61−85−90−73−38 4 46 78 90 82 54 13−31−67−88
87 57 9−43−80−90−70−25 25 70 90 80 43 −9−57−87−87−57 −9 43 80 90 70 25−25−70−90−80−43 9 57 87
85 46−13−67−90−73−22 38 82 88 54 −4−61−90−78−31 31 78 90 61 4−54−88−82−38 22 73 90 67 13−46−85
83 36−36−83−83−36 36 83 83 36−36−83−83−36 36 83 83 36−36−83−83−36 36 83 83 36−36−83−83−36 36 83
82 22−54−90−61 13 78 85 31−46−90−67 4 73 88 38−38−88−73 −4 67 90 46−31−85−78−13 61 90 54−22−82
80 9−70−87−25 57 90 43−43−90−57 25 87 70 −9−80−80 −9 70 87 25−57−90−43 43 90 57−25−87−70 9 80
78 −4−82−73 13 85 67−22−88−61 31 90 54−38−90−46 46 90 38−54−90−31 61 88 22−67−85−13 73 82 4−78
75 18−89−50 50 89 18−75−75 18 89 50−50−89−18 75 75−18−89−50 50 89 18−75−75 18 89 50−50−89−18 75
73−31−90−22 78 67−38−90−13 82 61−46−88 −4 85 54−54−85 4 88 46−61−82 13 90 38−67−78 22 90 31−73
70−43−87 9 90 25−80−57 57 80−25−90 −9 87 43−70−70 43 87 −9−90−25 80 57−57−80 25 90 9−87−43 70
67−54−78 38 85−22−90 4 90 13−88−31 82 46−73−61 61 73−46−82 31 88−13−90 −4 90 22 85−38 78 54−67
64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64 64
61−73−46 82 31−88−13 90 −4−90 22 85−38−78 54 67−67−54 78 38−85−22 90 4−90 13 88−31−82 46 73−61
57−80−25 90 −9−87 43 70−70−43 87 9−90 25 80−57−57 80 25−90 9 87−43−70 70 43−87 −9 90−25−80 57
54−85 −4 88−46−61 82 13−90 38 67−78−22 90−31−73 73 31−90 22 78−67−38 90−13−82 61 46−88 4 85−54
50−89 18 75−75−18 89−50−50 89−18−75 75 18−89 50 50−89 18 75−75−18 89−50−50 89−18−75 75 18−89 50
46−90 38 54−90 31 61−88 22 67−85 13 73−82 4 78−78 −4 82−73−13 85−67−22 88−61−31 90−54−38 90−46
43−90 57 25−87 70 9−80 80 −9−70 87−25−57 90−43−43 90−57−25 87−70 −9 80−80 9 70−87 25 57−90 43
38−88 73 −4−67 90−46−31 85−78 13 61−90 54 22−82 82−22−54 90−61−13 78−85 31 46−90 67 4−73 88−38
36−83 83−36−36 83−83 36 36−83 83−36−36 83−83 36 36−83 83−36−36 83−83 36 36−83 83−36−36 83−83 36
31−78 90−61 4 54−88 82−38−22 73−90 67−13−46 85−85 46 13−67 90−73 22 38−82 88−54 −4 61−90 78−31
25−70 90−80 43 9−57 87−87 57 −9−43 80−90 70−25−25 70−90 80−43 −9 57−87 87−57 9 43−80 90−70 25
22−61 85−90 73−38 −4 46−78 90−82 54−13−31 67−88 88 67 31 13−54 82−90 78−46 4 38−73 90−85 61−22
18−50 75−89 89−75 50−18−18 50−75 89−89 75−50 18 18−50 75−89 89−75 50−18−18 50−75 89−89 75−50 18
13−38 61−78 88−90 85−73 54−31 4 22−46 67−82 90−90 82−67 46−22 −4 31−54 73−85 90−88 78−61 38−13

9−25 43−57 70−80 87−90 90−87 80−70 57−43 25 −9 −9 25−43 57−70 80−87 90−90 87−80 70−57 43−25 9
4−13 22−31 38−46 54−61 67−73 78−82 85−88 90−90 90−90 88−85 82−78 73−67 61−54 46−38 31−22 13 −4

taken into account. However, it is designed for a completely different applica-
tion and a different purpose from the one that this work is dealing with. There-
fore, it cannot be directly applied in this work. Starting from exploring the pos-
sibilities of integer-based approximated versions of the original floating-point
DCT, a completely different solution for the core transform has emerged in this
work.

Nevertheless, since many different implementations of the DCT have been
shown to be practically effective in terms of the implementation cost and com-
putational performance, we choose to keep using the DCT and re-implement it
in order to empower extended bit-depth. In addition, work in [1] showed that
adaptive local cosine transform with different sizes performs very well on seis-
mic data.
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4.3.1 Original Floating-Point DCT
The original floating-point DCT has been considered as a straightforward so-
lution to the previous problem when using integer approximation of DCT. The
definition of a one-dimensional original floating-point DCT for a discrete signal
f (n), n = 0, 1, ..., N − 1 is given by

F(i) = c(i)

√
2
N

N−1

∑
n=0

f (n) ∗ cos
[
(2n + 1)iπ

2N

]
i = 0, 1, ..., N − 1, (4.6)

and the inverse transform is defined as

f (n) =

√
2
N

N−1

∑
i=0

c(i)F(i) ∗ cos
[
(2n + 1)iπ

2N

]
n = 0, 1, ..., N − 1, (4.7)

where c(i) = 1/
√

2 for i = 0, c(i) = 1 for i = 1, 2, ..., N − 1. The vector
F represents transformed coefficients, while f could be any discrete signal but
in our case it is represented as the residual signal. F has the same dimension as
input vector f , but in the new domain – frequency domain. As we said before, in
practice 2D DCT is implemented using column-row decomposition, where each
time 1D DCT has been performed. For example, F(i) on the given location i
is a result of the 1D forward transform within one line (column or row) of the
residual block (data block after prediction).

It is important to note that the cosine terms given with (4.6) and (4.7), to-
gether with scaling factors c(i) and

√
2/N, can be pre-computed and stored as

a DCT matrix for further use (since both the forward and inverse transforms use
the same scale factor, which makes the DCT orthogonal). Indeed, starting from
the expression above, we can derive the original floating-point transform matrix
x (see below). It can be shown that x can lead to the HEVC’s standardized DCT
matrix X̃.
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The transform matrix x is given with

x(i, j) = c(i) ∗
√

2
N
∗ cos

[
(2j + 1)iπ

2N

]
i = 0, 1, ..., N − 1; j = 0, 1, ..., N − 1, (4.8)

where c(i) = 1/
√

2 for i = 0, c(i) = 1 for i = 1, 2, ..., N − 1. For example,
the original floating-point DCT transform matrix of size N = 4 is

x =


0.5000 0.5000 0.5000 0.5000
0.6532 0.2705 −0.2705 −0.6532
0.5000 0.5000 0.5000 0.5000
0.2705 −0.6532 0.6532 −0.2705

 .

In the same manner, using (4.8), we can calculate original floating-point DCT
matrix for any other transform size N. In that way, matrix X, which was shown
earlier in the text, is the scaled version of the x, and X̃ is its integer approxima-
tion. It is important to note that in our codec the transform matrix coefficients
are stored in a double format, where a coefficients are rounded to 8 decimal
places after decimal point. Also note that the forward and inverse DCT matrix
are transposes of one another.

However, floating-point multiplications are computationally very intense in
both software and hardware, and hence not suitable for practical usage. This
particular approach is extremely inefficient due to a double nested for-loop, and
floating-point multiplication. For example, one pass (1D transform) requires N2

floating point multiplications and N(N − 1) additions. The number of opera-
tion doubles for 2D transform. For that reason, even though the best energy
compaction can be achieved when compared to other more practical solutions,
floating-point DCT has been used mainly for comparison purpose in order to
show the performance in terms of achievable coding gain and computational
speed, e.g., to estimate binDCT’s performance.

4.3.2 BinDCT
By utilizing the symmetry (and anti-symmetry) properties of the basis vectors,
the number of arithmetic operations can be significantly reduced. For example,
it could be achieved by using Chen’s factorization of the DCT matrices [162],
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which consists of alternating cosine/sine butterfly matrices (also known as plane
rotations) with a binary butterfly matrices (also known as ±1 butterfly). An il-
lustration of cosine/sine butterfly and binary butterfly is given on Fig. 4.5. The
approach to decompose a DCT matrix in a way as given in [162] is known as
even-odd decomposition, where even part is a transform of lower order, e.g.
N/2 × N/2, and odd part is factorized into the series of matrices of different dis-
tinct types. A total 4 distinct types exist in Chen’s approach and 2 ∗ log2N − 3
matrices of those different types are used to decompose odd part of a N-point
transform. Thus, by using even-odd decomposition of the original floating-point
DCT matrices, a recursive form of implementation has been utilized, where
lower order transform matrices are part of a larger transform. It can be shown
that extension to the next higher order transform only requires adding one set
of binary butterfly to accommodate a new input samples, and new set of alter-
nating cosine/sine butterfly matrices with a binary butterfly matrices at the odd
part of the scheme. In general, Chen’s algorithm may be used for any value of
N = 2n, where n ≥ 2, in contrast to some other methods that are more effi-
cient in terms of number or computational steps, but cannot be generalized to
the arbitrary transform sizes. It turns out to be very important property due to
the HEVC’s variable block size. That is the main reason why we have decided
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FIGURE 4.5: An example of butterfly structure. (A) General butterfly, (B) cosine/sine
butterfly, and (C) binary butterfly
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to use the Chen’s approach for a fast DCT implementation. For more detailed
and systematic way of how to decompose a DCT matrix of an arbitrary size,
readers are referred to the original paper [162]. The complete DCT flow graph
after factorization for N = 4, N = 8, N = 16, and N = 32 is given in Fig. 2
in the original paper. Lastly, a given matrix decomposition approach requires
(3N/2)(log2N− 1) + 2 additions, and Nlog2N− 3N/2 + 4 multiplications.

Regardless, even though the number of the computations may be signifi-
cantly reduced when compared to a direct matrix multiplication approach, both
aforementioned approaches still use floating-point multiplications, no matter if
decomposition is done or not. In order to propose more practical solution com-
pared to DCT with floating point multiplications, we have examined a lifting-
based scheme called the binDCT [163]. We extend the idea of [163] and imple-
ment binDCT of sizes 4× 4, 8× 8, 16× 16, and 32× 32, with the lifting steps
derived by using already mentioned Chen’s factorization. Chen’s relationships
with the binDCT scheme comes from the point that each (non-binary) butter-
fly step after Chen’s decomposition can be additionally decomposed into three
lifting steps as [

cosα −sinα
sinα cosα

]
=

[
1 p
0 1

] [
1 0
u 1

] [
1 b
0 1

]
,

where p = b = (cosα− 1)/sinα, and u = sinα. In addition, each butterfly step
is a biorthogonal transform (to invert a forward transform, we have to subtract
out what was added at the forward transform.), and its inverse can be represented
with a similar lifting structure, i.e.,[

cosα −sinα
sinα cosα

]−1

=

[
1 −p
0 1

] [
1 0
−u 1

] [
1 −b
0 1

]
.

However, lifting coefficients are still floating points. Further approximation of
p, u, and b lifting coefficients is applied in order to permit fast multiplierless
approximations. Thus, binDCT is implemented by using lifting steps with only
binary shifts and additions, and floating-point lifting coefficients approximated
by dyadic values in k/2m form. Even with coefficients approximation with its
dyadic values, binDCT is lossless as long as forward and inverse transform use
the same shifting procedure. It still stands that to invert a forward transform,
we have to subtract out what was added at the forward transform. It also maps
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integers to integers in every step of the transform with perfect reconstruction.
In order to enable different complexity vs. coding performance trade-off,

we have examined dyadic approximations with different accuracy. Depending
on how we choose k/2m for different lifting coefficients, we obtain different
performances. Better approximation give us binDCT coefficients closer to the
floating-point lifting coefficients, but requires more shifts and additions. How-
ever, due to large possible choices of approximations, it is important to deter-
mine dyadic lifting values prior to implementation in order to avoid encoder-
decoder mismatch. After extensive experiments, in order to limit complexity,
and at the same time to closely approximate floating-point values, we choose
2m = 32 as the highest allowed divisor in our setup (thus the highest shift is
m = 5). Note that after Chen’s factorization, in total, 38 unique floating-point
lifting coefficients have to be calculated, distributed among 10 lifting stages (for
the largest 32-point binDCT). However, taking into account previous constraint
(2m = 32) some of unique floating-point coefficients can be fitted with the same
dyadic value, leading us to only 18 unique lifting coefficient approximations,
which also relax memory requirements. It will be shown that selected design
closely approximate original floating-point DCT, with significantly lower com-
putational complexity (see Sec. 6). Thus, binDCT is also able to closely approx-
imate the original DCT while providing perfect (lossless) reconstruction (with-
out quantization). For more details on a selected dyadic values, see the proposed
binDCT implementation at [164]. The given implementation emerged as a part
of this work. It provides c++ code that is compliant to HEVC’s reference code.
It also provides code generator written in Python. It means that for different
coefficient approximations, which are given as an input parameter in the textual
file, it generated c++ code using those coefficients. In that way we were able to
easily test different configurations (different coefficient approximations), and to
pick the one that is the best in terms of compromise between coding gain and
computational complexity. It will be shown that configuration C2 given in [164]
is the most appropriate choice given the required computational power and given
the resulting compression performance.

In this way we have implemented the fast lossless version of DCT transform
that can be used in a seismic image compression, which turns out to provide
good energy compaction, and which is optimal in terms of simplicity. It can
be shown that performance in terms of coding gain is very close to what can be
achieved by original floating-point DCT, however with significantly less compu-
tational effort, which also can be controlled by using a different configuration,
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and memory requirements may be limited by choosing the appropriate number
of unique lifting coefficients.

4.4 Quantization
The coefficients obtained after the transform are subjected to a quantization pro-
cess in order to further reduce the dynamic range and to get quantized level. The
quantizer is used to discard transformed coefficients with relatively small ampli-
tudes without introducing visual distortions into the reconstructed data. In some
cases, when higher compression ratios are needed, the quantizer can discard a
significant number of transformed coefficients, but at the cost of deteriorating
the quality of the reconstructed data. The more coefficients we truncate within
the quantization process, we can achieve higher compression ratios, but the qual-
ity of the reconstructed data will be lower. A scalar quantizer has been used in
HEVC, where each input symbol is treated separately in producing the output.
Each quantization interval has the same length, so uniform quantization is used.
The advantage of using such a quantizer is its low computational complexity.

HEVC initially supports the quantization parameter Qp in the range from
0 to 51. For high bit-depth data, the given Qp range is too narrow. Thus, an
additional offset is introduced to allow bit-depths greater than 8 b/p, leading to

Q′ = Qp + 6(B− 8), (4.9)

where B is the bit-depth, Qp is the input parameter, and Q′ is the new internal
quantization parameter used by the encoder/decoder. Taking into account the
offset, the Qp value can be a negative number, allowing a lower compression
ratio for extended bit-depths. For example, it can be useful in many applications,
such as remote sensing [117, 118]. However, it is important that the internal Q′

is not less than 0. This leads to a new range of input Qp values, which in the case
of 16 b/p input data (maximum bit-depth supported by the standard) goes from
-48, while the value of 51 remains the upper limit for input Qp. Using (4.9) we
can easily find upper limit for internal Q′ which is defined for 16 b/p, and it is
equal to 99 (when Qp = 51). To summarize, for B = 16 the initial Qp range can
go from -48 to 51, and the corresponding internal Q′ from 0 to 99. For B = 8
we can see that Q′ = Qp and ranges from 0 to 51, as defined in the standard.
In the proposed seismic encoder, it could be straightforward to extend the range
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of the quantization parameter by simply setting B = 32 in (4.9). In such a case,
Qp is in the range from -144 to 51, and consequently the internal quantization
parameter Q′ goes from 0 to 195. However, there are other problems with the
use of the HEVC’s quantizer in the proposed codec for seismic data, which will
be analyzed after clarifying the standardized implementation in a little more
detail.

In HEVC, Q′ is not directly used for quantization, rather it is mapped to
Qstep [25, 160]. Qstep is the actual uniform quantization step size, which is
directly utilized in the quantization (and dequantization), and it is given with

Qstep(Q′) = 2(
Q′−4

6 ). (4.10)

The quantizer given in (4.10) can be also expressed as

Qstep(Q′) = GQ′%6 << round(
Q′

6
), (4.11)

and thereafter its integer approximation is used by shifting and rounding the
values in G = [2−4/6 2−3/6 2−2/6 2−1/6 20/6 21/6] to certain level to avoid
direct division/multiplication at the quantizer/dequantizer. The operator ‘�’
represents bitshift, and ‘%’ is modulo operator. Thus, it can be implemented
with integer multipliers and shift operations only, where the multipliers depend
only on the value of QP (or equivalently Q’) and the shifts depend only on the
transform size. More details on integer implementation can be found in [25], and
some of its the most important aspects will be given bellow. The dequantization
process and scaling factors are defined in HEVC (since standard defines decoder
side), although recommendation for quantization has been integrated within the
HEVC reference software.

Therefore, the quantizer is indirectly defined in HM and its integer approxi-
mation is given with

fQ′%6 ≈
214

GQ′%6

= [26214, 23302, 20560, 18396, 16384, 14564]
(4.12)

level = ((coeff ∗ fQ′%6 + offset1)� Q′

6
)� shift1, (4.13)
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where coeff is the input to the quantizer (transformed coefficient), f is a scaled
version of G (see (4.12)), the offset has been implied to secure rounding (offset1 =

1 � (shift1 +
Qp
6 − 1)), and shift1 has been introduced to preserve the norm

of the original DCT. The output of the quantizer (level) is the quantized value
of the transformed coefficient. shift1 has been obtained in such a way that the
up-scaling introduced by forward transform and quantization jointly (in order to
have an integer representation) has to be annulled and the norm of the original
DCT has to be preserved. It leads to 2−shi f t1 ∗ f4 ∗ 2(15−B−M) = 1, where f4
represents the quantizer when Qp = 4 (or equivalently Qstep = 1, hence no
division). The total scaling from HEVC’s forward transform (total scaling of
the coefficients before quantization) is equal to (15− B−M), where B is the
bit-depth and M is log2 of the transform size N. Taking all into account we can
get shift1 = (29−M− B).

The dequantizer is defined in the standard. For the quantized level, dequan-
tization is defined with

gQ′%6 = round(26 ∗ GQ′%6) = [40, 45, 51, 57, 64, 72] (4.14)

coeff = ((level ∗ (gQ′%6 �
Q′

6
)) + offset2)� shift2. (4.15)

Similarly as in the quantizer, offset2 is used for rounding (offset2 = shift2− 1),
g is a scaled version of G (see (4.14)), and shift2 has been calculated in a simi-
lar way as shift1 where the total scaling when multiplied together should result
in product of 1. In order to preserve the norm, and cancel the scaling from in-
verse integer transform and dequantization, shift2 should be equal to M− 9 + B
(given from 2−shi f t2 ∗ g4 ∗ 2−(15−B−M) = 1). It is important to point out that
the factor Q′

6 in both (4.13) and (4.15) represents an integer division. At the
end, also note that the size of the quantization/dequantization matrices is equal
to 6, one entry for each value of GQ′%6. This way of definition of the quan-
tizer/dequantizer is efficient in terms of memory requirements as well.

It is obvious that the quantization process is well suited for HEVC when
jointly observed with an integer approximation of standardized DCT. However,
when incorporated in the proposed codec with adjusted DCT (see Sec. 4.3), the
original HEVC’s integer approach cannot be anymore exploited, and it should
be changed accordingly. Thus, in this work the following has been examined.
Instead of using an integer approximation of HEVC’s quantizer/dequantizer, one
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solution could be to directly utilize Qstep given with (4.10) (or equivalently with
(4.11)). In this case, quantization is nothing more than division of the transform
coefficient (coeff ) with Qstep on the encoder side, and dequantization is equiva-
lent to multiplication of the decoded level by Qstep at the decoder side, followed
by shifts to preserve the norm of transformed coefficients. Therefore, starting
from (4.13), direct quantization after omitting the HEVC’s integer approxima-
tion after redeployment can be written as

level =
coeff ∗

214
GQ′%6

2
Q′
6

+ 2shi f t1+ Q′
6 −1

2
Q′
6

2shi f t1

= coeff ∗
214

GQ′%6

2
Q′
6 ∗ 2shi f t1

+
2shi f t1+Q′

6 −1

2
Q′
6 ∗ 2shi f t1

= coeff ∗ 1

GQ′%6 ∗ 2
Q′
6

∗ 214

2shi f t1 + 0.5

=
coeff

Qstep(Q′)
∗ 214−shi f t1 + 0.5

=
coeff

Qstep(Q′)
∗ 214−(29−M−B) + 0.5

=
coeff

Qstep(Q′)
∗ 2−(15−M−B) + 0.5.

(4.16)

Hence, quantization is simply a division by the quantization step size that is
a function of Q′. Downscaling by 2−(15−M−B) is exactly the same as the to-
tal upscale factor that has been introduced in the forward transform (necessary
to preserve the norm of the original floating-point DCT and at the same time
to have integer representation). Clearly, transform and quantization in HEVC
should be observed jointly due to the scaling factors that are transferred be-
tween the two modules. Offset has been implied to secure rounding. Similarly,
after redeployment of (4.15), for dequantization we can get

coeff = level ∗Qstep(Q′) ∗ 2(15−M−B) + 0.5, (4.17)

which is equivalent to multiplication with Qstep, followed by scaling that is
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transferred from the inverse transform and adding an offset to secure rounding.
It is important to note that the scaling factor of the standardized HEVC’s in-
teger transform has been incorporated in the quantizer/dequantizer, in order to
preserve the norm of the transformed coefficients and to correctly reconstruct
the quantized levels. The reason for the joint observation of transformation and
quantization (or inverse transformation and dequantization) is justified in the
simplified implementation if the scaling is shifted to quantization/dequantization,
in which case it can be jointly observed with quantizer/dequantizer shifting fac-
tors (when integer approximation of quantizer/dequantizer is used).

Obviously, to extend the Qp range of the HEVC’s quantizer is straightfor-
ward, after which the quantizer in (4.10) is wide enough to facilitate the ex-
tended bit-depth range, e.g., maximum Qstep ∼ 232. It is clear that in HEVC
transform and quantization should be observed jointly due to the scaling fac-
tors that are transferred between the two modules. Since the HEVC’s integer
transform is replaced, we cannot utilize the quantization given with Eq. 4.13
and Eq. 4.15 directly. Thus, one solution is to use the wrapped out formulas
given in (4.16) and in (4.17), however without any scaling factors, and in such
a way to use direct division/multiplication with the quantization step size given
with (4.10) (or equivalently with (4.11)). While this is the most logical solution,
keep in mind that the quantizer in that way uses a floating-point multiplica-
tion/division, which can be expensive and time consuming in both hardware and
software.

In order to propose the more efficient solution, the HEVC’s quantizer is
completely omitted. Thus, we can make the most out of the uniform scalar
quantizer proposed in [2]. The following quantizer mapping is adapted, in which
quantization parameter Qp is mapped to the scaling factors according to

Qstep =


1 Qp = 0,
2 ∗Qp Qp < 16,
man ∗ 2exp QP ≥ 16,

(4.18)

where man = 16 + (Qp%16) and exp = round(Qp/16). In our codec, Qp
ranges from 0 to 400 (MAX_QP = 400) with Qp = 0 leading to lossless com-
pression (assuming DCT transforms with perfect reconstruction). Also, limiting
the maximum Qp to 400 is enough to facilitate the high-dynamic range, since
the maximum quantization step size is approximately 229, which is effectively
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more than enough for any practical purpose. Note that the new quantizer has a
harmonic scale because Qstep increases linearly with respect to Qp initially, but
later grows exponentially to allow high compression ratios for high bit-depth
data. This leads to fast implementation by bit-shifts (together with a few multi-
plications due to limited number of "mantissas"). Additionally, when compared
with the quantizer mapping in (4.10) that uses 195 different values to approach
the maximum quantization step (∼ 232), the proposed quantizer mapping uses a
much finer scale to approach even the lower upper limit for the quantization step
(∼ 229). Thus, it leads to the quantizer step spacing that is sufficient enough
to offer a wide range of different qualities and rates. Also note, that the uni-
form quantization is a well-established and proven approach to coding seismic
data [1].

4.5 Entropy Coding
To further reduce statistical dependencies and efficiently compress data, HEVC
utilizes Context Adaptive Binary Arithmetic Coder (CABAC) as the main en-
tropy coding mechanism [26, 165, 166]. It has been proposed in H264/AVC,
and with some modifications, mainly to improve throughput, it has been used in
HEVC. The CABAC scheme is itself a lossless compression technique, however
only if it is isolated from other loss-making modules of HEVC, e.g., transform
and quantization. It consists of three stages: syntax element binarization, con-
text modeling or bypass mode, and binary arithmetic coding.

Binarization is used to rewrite integer syntax elements, e.g., quantized levels,
into binary codewords, where each element of a binary code word (also called
a bin string) is called a bin. Thus, HEVC uses a more efficient alphabet, in
this case binary, by assigning codewords using different binarization schemes.
The binarization part of CABAC has high impact on the final bit-rate, therefore
several binarization approaches are adopted for different syntax elements. The
binarization approaches used in HEVC are fixed length, unary, truncated unary,
Golomb-Rice code, and k-th order Exponential-Golomb code. In addition, to
code some syntax elements HEVC uses concatenation of those schemes. Note,
when syntax element is already in a binary form, with a value of 0 or 1, the
binarization step is omitted.

In order to form the final bit-stream and to approach the information the-
oretic minimum bit-rate, binary code is further compressed by the arithmetic
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coder (AC) [167,168]. More precisely, the moduo coder (M-coder), a fast table-
driven approximation of AC, is utilized in HEVC [169]. Reduction to the binary
alphabet allows to utilize the fast and multiplication free versions of (AC). It is
easier to use the binary form of the AC, given that it uses a simpler form of inter-
val subdivision since only two symbols can appear (0 or 1). Another important
aspect of using binary codes is that it enables encoding on the sub-element level
by utilizing the binary arithmetic coder and context modeling on a bin level,
which in addition enables reduction of inter-symbol redundancy. In addition,
AC can operate in two modes – context adaptive mode (regular mode) or bypass
mode. In the regular mode, different probability models (context models) have
been assigned. Probability estimation is adaptive, which means that underlying
probability distribution is based on image statistics and probability distribution
is not considered static. Hence, rather than to use fixed probabilities for bin
coding, an adaptive probability estimation has been used based on the correla-
tion between bins, which is essentially referred as adaptive context modeling.
Different probability models have been used given already coded bins in the
neighborhood of the currently observed bin. Context modeling ensures that the
probability distributions over the bins are not the same at each step, and they
are updated after each bin has been encoded, which models the statistics of the
underlying data. After each bin has been encoded, the probability models are
updated. Therefore, conditional probabilities for coding bins are estimated, and
later-on used in AC. Thus, the binary AC engine compress the bins with the
given context models (estimated probabilities) to the final bit-stream.

In HEVC, context models have been initialized with a given pre-defined
probability distribution prior to coding. The initialization is Qp dependant, and
it is designed based on an extensive offline analysis of data statistics after quan-
tization. Note that, the most commonly used data source in these analyzes was
natural video. However, in this work, the context initialization is configured
such that the same initialization has been used for any Qp. The initialization of
context models as HEVC’s initialization when Qp = 0 has been used in this
work, since it most closely matches the data statistics that is expected to appear
in a given use-case scenario (the larger absolute levels of quantized coefficients
are most likely to appear in 32 b/p extension). A similar approach has been used
in the original HEVC design for 16 b/p extension, where all negative Qp values
are clipped to 0 prior to context initialization. Clearly, initialization of the con-
text models might be sub-optimal for seismic data statistics. Therefore, there
is space for further research on a more efficient probability distribution for the
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context model initialization for different Qp values.
Also, the regular mode in CABAC is highly sequential, given the nature of

context modeling and the dependencies within it. Contrary to the regular mode,
the bypass mode is used in order to speed up encoding process and to improve
throughput. No specific probability model is assigned for bypass-encoded bins,
and it is assumed that the probability for both bin values (0 or 1) is equal. In
such a case, arithmetic coding can be implemented only with shifts (due to sim-
ple range division), and bypassed bins may be grouped together in order to be
processed in a single cycle since no data dependency exists.

Since the CABAC (including M-coder) has been designed and optimized
with the aim to provide efficient coding, and at the same time to provide a low
computational cost and increased throughput, and with a reduced data depen-
dencies in order to enable better parallelization, in this study it was chosen to
make the most out of the HEVC’s coding mechanism. Compared to H264/AVC,
many improvements have been proposed in CABAC. For example, compared to
the 298 context models in H264/AVC, HEVC utilizes only 154 context models.
The reduced number of contexts significantly improved throughput and reduced
complexity, which in addition has been shown to have a high influence of the
practical implementation of the codec. At the same time, with profound context
design, coding performance has not been degraded. Thus, during the design of
the entropy coding part of HEVC, a lot of effort was put in to reduce the total
number of contexts, to reduce the number of context coded bins that are shifted
to be used in bypass coding mode, to reduce the number of bins on average and
in worst case scenario (by using the variety of binarization approaches that were
mentioned earlier), and to reduce dependencies in context selection. Hence, it
has been designed to achieve a good trade-off between coding efficiency and
coding complexity. In addition, it is obvious that the simplifications proposed
with the M-coder reduce the coding precision and negatively affect the perfor-
mance of the probability estimation. However, the use of a standardized HEVC’s
M-coder significantly reduces the coding complexity given the extensive use of
multiplication operations during the encoding process in the original form of the
AC. Hence, the reduction to the binary alphabet and the use of M-coder is jus-
tified in this regard, especially considering the cost of multiplication operations
and the number of their use during encoding and decoding. Since multiplica-
tions are totally omitted in the M-coder by using a pre-computed table for range
division, a compromise made in terms of slightly poorer coding performance is
more than welcome because otherwise practical implementation would be much
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more complicated and use of AC in practical applications would not be feasible.
Therefore, the use of a given entropy coder has a justification in the efficient
implementation, and this work has kept this part of the HEVC as it is.

Despite being very effective, some parts of the CABAC still have to be
adapted. Since the increased bit-depth range changes no other syntax elements
than the quantized levels, this work choose to exploit the most out of the HEVC’s
coding engine, and to keep the most parts related with syntax modeling, bina-
rization, and syntax element coding. At the same time, the encoding of quan-
tized levels involves several key elements that are completely inherited from
the original HEVC, such as multi-level significance map coding, last significant
level coding, sign coding, etc. Those parts are briefly discussed in the following
in order to have general impression on how HEVC implements coding of each
block after transform and quantization are performed. However, more details
can be found in [26, 170, 171] and in the references provided in the following
text.

4.5.1 Golomb-Rice and Exponential-Golomb code
Before going into more detailed explanation of the binarization and coding
scheme of absolute quantized levels, the codes that are used to represent ab-
solute quantized levels in binary format are briefly explained. The codes used in
HEVC for this purpose are Golomb-Rice (GR) and Exponential-Golomb (EGk)
code [172,173,174,175,176]. In addition, binarization consists of the concatena-
tion of the two binarization approaches. Readers familiar with these binarization
approaches can skip reading this section. Also, fixed code, unary, and truncated
unary codes are included for more detailed explanation. To illustrate a construc-
tion of those codes, an example is given in Table 4.3 for a maximum absolute
level of Lmax = 15.

• Fixed-length code (FL). Each symbol is mapped to the binary string (bi-
nary representation) of length dlog2(LMax + 1)e, where LMax is the high-
est absolute level for a given dynamic range.

• Unary code (U). The symbol of a value L is mapped to a series of L + 1
binary values of which the first L elements are equal to 1, while the last
element has a value of 0 and it is known as terminating bit.
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• Truncated Unary code (TU). The TU code truncates out the least signifi-
cant bit if L is equal to the maximum allowed value, L = LMax. In HEVC,
LMax is predefined for each syntax element that uses TU codes. In the case
when L < LMax the code is the same as unary code, else if L = LMax the
code consists of series of L elements that are equal to 1, where terminating
bit 0 is left out.

• Golomb-Rice (GR) codes represent a symbol as a two part, where the first
part is quotient (prefix) and the second part is reminder (suffix). Hence,
symbol L can be represented as a L = q ∗ m + p = bL/mc ∗ m + p,
where q is quotient, p is reminder, m = 2r and r is Rice parameter. Also,
in HEVC, Rice parameter r is not fixed. It uses adaptive process of Rice
parameter initialization, and later-on it can be adapted based on the statis-
tics of underlying data. In addition, q is coded as truncated unary code
with q + 1 bits, and p is represented by the fixed length code of the length
r. When r = 0, this scheme is equivalent to unary code.

• Eksponential-Golomb codes of k-th order (EGk) code is the derivation of
the GR code. In EGk code, the code word size increases exponentially.
For each bit in the prefix part, the number of the codes in the suffix part
doubles. However, it still consists of two parts – prefix q and suffix p
(similar to the quotient and reminder in GR codes). Every code word
consists from an unary code to represent the prefix part, followed by fixed
length code for suffix part. Prefix value to be coded is given with p(L) =
blog2(L ∗ 2−k + 1)c, and it is coded using l(p) = p(L) + 1 bits with
unary code. A suffix value to be coded is s(L) = L + 2k(1− 2p(L)), and
it is coded as fixed length representation of a length l(s) = p(L) + k,
where k is the order of the Exponential-Golomb code. A fixed length part
can be observed as a binary representation using the l(s) least significant
bits. Note that, in HEVC specifically, k is equivalent to the r + 1, where r
is previously mentioned Rice parameter.

The following two schemes are specifically designed for HEVC, and they are a
simple derivation of GR and EGk codes. It is based on the fact that, in image
compression, finite length codes have been used due to the limited bit-depth
range. Thus, in HEVC, the possible codeword lengths can be bounded by the
dynamic range given by the bit depth of the input data.
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• Truncated-Rice (TR) code is derivation of the GR code. In TR code prefix
part can be truncated based on its length. Since the scheme limits the
length of the prefix part of the GR codes, it can be truncated in order to
remove the redundancy in the binary representation. In HEVC only, the
maximum value that can be coded with the truncated Golomb-Rice code is
given with LMax = 4 ∗ 2r, where r is the Rice parameter. This correspond
to the maximum length of the prefix bins that is set to 4 in HEVC. If the
prefix value is less than bLMax/2rc, it is coded as before using unary
codes. Otherwise, one bin can be truncated, with all bins being equal to 1.
Suffix is only presented when the value L is smaller than LMax, and when
r is greater than 0. Also, when prefix is truncated (e.g. equal to 1111),
the remaining level LRem = L− LMax is coded using EGk codes, and no
suffix part of the TR code is presented.

• The prefix bins of Limited Exponential-Golomb (LEGk) code are limited
based on the maximum dynamic range. In the worst case scenario, when
Qstep is equal to 1, the range of quantized levels is−2(B+6) to 2(B+6)− 1,
inclusive, where B is the bit-depth (e.g., for 16 b/p video the dynamic
range is −2(22) to 2(22) − 1). In the case of 16 b/p, GR+EGk may pro-
duce the code words of more than 40 bins (47 when r is 0, and k = r + 1).
Hence, to limit code length to the 32 bins, which is desirable for hardware
and software implementation, the next modification has been used in the
original HEVC. First, maximum transform dynamic range (dynamic range
after the DCT) is given with maxTrRange = max(15, B + 6). Then, the
prefix length is limited in the way that maxPre f ixExtensionLength =
28 − maxTrRange, and it is coded using truncated unary code. When
maximum prefix length has been reached, suffix is modified to accommo-
date the rest of the possible codes, maximizing its size. In that way suffix
length is given with exactly maxTrRange bins, and it is coded as fixed
length representation.

4.5.2 Processing and Coding
A coding of the CB is conducted only if non-zero elements exists after quanti-
zation. Otherwise, a flag that indicates a non-significant CB is signaled into the
bit-stream. Also, the encoding process of the quantized levels involves several



64 Chapter 4. Methods and Proposed Solutions

TABLE 4.3: An example of the binarization approaches for LMax = 15.
Shaded part for GR and EGk code represent prefix, and the rest represents suffix part
of the code. Fixed Length (FL), Unary (U), and Truncated Unary (TU) codes are also
included.

L FL U TU GR r=1 GR r=2 EGk k=0 EGk k=1

0 0000 0 0 0 0 0 00 0 0 0
1 0001 10 10 0 1 0 01 10 0 0 1
2 0010 110 110 10 0 0 10 10 1 10 00
3 0011 1110 1110 10 1 0 11 110 00 10 01
4 0100 11110 11110 110 0 10 00 110 01 10 10
5 0101 111110 111110 110 1 10 01 110 10 10 11
6 0110 1111110 1111110 1110 0 10 10 110 11 110 000
7 0111 11111110 11111110 1110 1 10 11 1110 000 110 001
8 1000 111111110 111111110 11110 0 110 00 1110 001 110 010
...

...
...

...
...

...
...

...
14 1110 111111...1︸ ︷︷ ︸

14

0 111111...1︸ ︷︷ ︸
14

0 11111110 0 1110 10 1110 111 1110 0000

15 1111 1111111...1︸ ︷︷ ︸
15

0 1111111...1︸ ︷︷ ︸
15

11111110 1 1110 11 11110 0000 1110 0001

key elements: 1) multi-level significance map coding, 2) scanning order of TBs
within CB and scanning order of the quanitzed levels within the TB, 3) last sig-
nificant quantized coefficient level coding, 4) quantized level sign coding, and
5) absolute quantized level coding.

The coding process starts by specifying weather the entire area of a par-
ticular CB consist of zero coefficients, or there exists at least one significant
(non-zero) coefficient. If CB must be coded, which means that there is at least
one significant quantized level, a similar inquiry should be applied for each TB
in a given transform quadtree. If the TB is not significant, the coding process
moves forward to the next TB in the quadtree. Otherwise, the procedure that
will be described in the following text has to be deployed. To better understand
coding process of a single TB, the Fig. 4.6 is included. It illustrates the general
process on how HEVC encodes a single TB and all syntax elements associated
with it, so that quantized levels are encoded in the most efficient way. The figure
will be referenced through the following text on several occasions.

The process continues by encoding the coordinates/position of the last sig-
nificant quantized level. In the Fig. 4.6 it is given with the coefficient on the
fourth scan position (note reverse scan order). By this, some parts of the area
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SCAN POSITION 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

QUANTIZED LEVEL 0 0 0 0 2 1 0 -7 0 1 2 0 -8 -4 7 9

significant_coeff_flag - 1 0 1 0 1 1 0 1 1 1 1

coeff_sign_flag 0 0 - 1 - 0 0 - 1 1 0 0

gr1 1 0 - 1 - 0 1 - 1 1 1 -

gr2 0 - - - - - - - - - - -

remLevel 0 0 - 5 - 0 0 - 6 2 5 8

915 -413 210 06

714 011 -77 03

-812 08 24 01

19 15 02 00

Last significant coefficient:
horizontal position x=2
vertical position y=2

Coefficient level and
scan position (superscript)

Reverse diagonal scan order Not codded flags Flags and levels that can be
inferred at the decoder side

4 x 4 TB

00

FIGURE 4.6: Coding of the quantized levels and associated syntax elements

within the TB, e.g., trailing zero coefficients at higher frequencies, have been
skipped from the coding process. For example, in Fig. 4.6, these coefficients
are associated with scan positions from 0 to 3, as they are positioned before
the last significant coefficient in the scan order. In addition, for TB larger than
4 × 4, the subdivision has to be done into the smaller non-overlapping 4 × 4
processing units, called Sub-Blocks (SB). Note that 4 × 4 TB consists of only
one SB. The encoding process is further completely transmitted to the SB level.
The scanning order of the SBs is diagonal, but starts from the bottom-right and
goes to the top-left SB. Hence, the reverse diagonal scan has been used [177].
For 4 × 4 and 8 × 8 intra prediction TBs, two additional scan mods may apply
– vertical (column by column) and horizontal (row by row) scan, which depends
on the selected intra prediction mode (also known as mode dependent coefficient
scan) [178]. Again, it uses a reverse scan pattern, starting from the bottom-right
to the top-left. The coefficient scan pattern within the SB (a total of 16 coeffi-
cients) has the same pattern as the SBs scan in TB. In this way, a vectorized form
of the coefficients within one SB has been formed, explicitly defining the pro-
cessing order of the coefficients within the block. It can be seen on the left part
of the Fig. 4.6. After that, the significance flag has to be transmitted for each SB,
indicating another level of significance – now weather SB has been covered by
the non-zero quantized levels [179]. Finally, after the scanning process is done,
and if all of the different levels of significance indicate that particular block –
CB, TB and SB – have non-zero elements, each quantized level within each SB
has to be encoded. Note once again that coding process of the TB starts with the
SB that contains the last significant coefficient, and the SBs that are placed be-
fore a particular block in the reverse scanning order are skipped, see Fig. 4.6. A
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more detailed overview of the coding techniques can be found in [26, 170,171].
Note that this part has not undergone any changes since it is well modeled and
no part of it has been negatively affected so far as the bit-depth range has been
expanded.

In addition, it is important to understand the process of coding quantized
levels, since it has undertaken several changes in the proposed codec due to the
increased bit-depth range. The goal was to increase bypass coding bins in order
to improve throughput, however without influencing performance of the codec,
and also to use binarization schemes that will be adjusted to the new input data.

4.5.3 Coding of the Absolute Quantized Level
The coding of quantized coefficient levels starts with the coding of the signifi-
cance map. It is composed of trailing flags for each individual coefficient within
the SB, referred as significant coefficient flags sigf, assigning 1 for the non-zero
coefficients and 0 for the coefficients with a level equal to zero, see Fig. 4.6.
It is another level of significance coding in HEVC, and the last one, which
corresponds to the significance of the individual coefficients within SB [179].
Thereafter, the sign for each significant coefficient is coded into the bit-stream.

To code the absolute quantized level, HEVC utilizes additional syntax ele-
ments such as

• coeff_abs_level_greater1_flag (gr1) indicates whether the absolute coef-
ficient amplitude is larger than one.

• coeff_abs_level_greater2_flag (gr2) indicates whether the absolute coef-
ficient amplitude is larger than two.

• coeff_abs_level_remaining (remLevel) indicates remaining absolute quan-
tized level.

The aforementioned syntax elements have to be encoded into the bit-stream only
for non-zero coefficients, which are indicated by the significance map. Again,
Fig. 4.6 illustrates the use of the given syntax elements.

The given coding scheme in HEVC has been designed with the assumption
that many quantized levels are zero or near zero. Also, the gr1 and gr2 flags are
coded in regular mode. Because of that, HEVC uses a mechanism to increase
throughput by limiting the number of occurrence of those two flags within the
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one SB, smaller non-overlapping 4 × 4 processing units within TB, to 8 for gr1
and to 1 for gr2 [180]. In a case when the maximum number of the occurrence
of the particular flags has been reached, it is assumed that the flag is set to 0,
however without directly coding it into the bit-stream, see Fig. 4.6. In that way
throughput is improved with negligible impact on performance. However, the
CABAC in HEVC is still highly sequential. Many data dependencies come from
the context modeling part, and the context update loop makes a bottleneck for
CABAC. To improve the throughput, a reasonable number of bins that can be
processed in one cycle has to be selected. This was achieved by pushing more
bins to be coded in bypass mode, or limiting regularly coded bins as described
in the previous example/approach. For example, a maximum of 16 sigf bins and
up to additional 9 bins are coded in regular mode per each SB, making a total
25 regularly coded bins, e.g., 16 for sigf, 8 for gr1, and 1 for gr2.

Contrary to the standard HEVC’s applications that naturally target higher
compression ratios, in a given seismic data use-case scenario the focus is on
achieving high quality of reconstructed signal in order to later-on analyze seis-
mic data with more confidence. This can be only achieved with low and moder-
ate compression ratios. That indicates that many of absolute levels after quanti-
zation still have high values when 32 b/p data has been used, since quantization
will not cut the amplitudes to a significant extent so that most fall to a value
close to zero (or to zero). As previously noted, the coding scheme in HEVC
has been designed with the assumption that the quantized levels are zero or near
zero. Thus, the HEVC’s coding scheme which is described above is able to im-
prove coding performance for a wide range of standard applications. However,
it is feasible to assume that the standardized approach does not provide benefits
when coding seismic data as it is case with natural video. Therefore, due to
the high bit-depth expansion, low-level coefficients are less likely to occur, even
at high frequencies (in the case of seismic data many of the coefficients after
quantization still have high values of the absolute levels), and hence there is no
benefit of using the original scheme. At the same time, if the coding scheme as
in the original HEVC is still exploited, the complexity is increased if the context
coded syntax elements like gr1 and gr2 are used, without any significant gain
in coding performance. Instead, in this work it is further decided not to code
the gr1 and gr2 flags. It is proposed to completely cut-off those regularly coded
bins in order to additionally improve the throughput by pushing more bins to be
coded in bypass mode. The proposed approach reduces the number of context
models, which in addition lowers the memory requirements, and it reduces the



68 Chapter 4. Methods and Proposed Solutions

number of bins coded in the regular mode, which in turn reduces complexity.
At the same time, coding performance has not been affected by the proposed
simplification.

4.5.4 Binarization of Remaining Absolute Level
In the standard, the remaining absolute level is defined as remLevel = level −
(sig f + gr1 + gr2), where sigf represents a syntax element that indicates sig-
nificance of the individual levels, e.g., whether it is zero or non-zero. However,
all significant levels are coded as remLevel = level − 1, without exception,
given the proposed changes with gr1 and gr2 syntax elements. Due to the large
number of bins that are required to code quantized levels, all bins derived from
remLevel are coded in bypass mode to improve throughput (bins coded in regu-
lar mode are processed sequentially, as one bin can affect others due to context
modeling, as opposed to bypass bins that can be grouped and process in one
cycle). Note, in the codec proposed in this work, remLevel is always present
in the bit-stream, as opposed to standardized coefficient level coding in HEVC
when, in some situations, the level can be inferred at the decoder side based on
previously decoded flags. Hence, there is no need to be transmitted explicitly
to the bit-stream every time. Such situation may be observed for example when
level = 1, where sig f = 1 but gr1 = 0 and gr2 = 0. In this case, the codec
can introduce some savings by omitting the encoding remLevel = 0 into the
bit-stream every time. For example, in Fig. 4.6 this situation occur for quan-
tized levels at scan position 5 and 9. Similarly, a quantized level at position 4
can be inferred at the decoder side without coding it into the bit-stream by only
observing previously coded flags. Also, note that the coefficient at position 10
in the Fig. 4.6 cannot be inferred on the decoder side, even if remLevel = 0.
However, due to the proposed changes in the coding of the gr1 and gr2 flags,
which have been omitted in the proposed codec to improve throughput, the re-
sulting codec cannot infer any level at the decoder side by just observing sig f .
However, due to the targeted compression ratios (low and moderate compres-
sion ratios are targeted in seismic compression applications), where low levels
around zero are less likely to occur, this change did not have any effect on the
performance of the proposed codec, except that it has improved throughput (by
not considering regularly coded gr1 and gr2 flags).

To perform binarization of remLevel, HEVC originally uses the adaptive
process of the Rice parameter initialization to control the binarization, and the
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combined Golomb-Rice (GR) and k-th order Exponential-Golomb (EGk) bina-
rization scheme [170, 171]. GR codes are used for smaller values of remLevel,
and the switching to EGk is done when the unary part (prefix) of the GR code
reaches 4. Since the maximum value of the prefix part is known in advance, one
bit can be truncated. In the standard, this is referred as Truncated Rice (TR)
code. Then, the suffix is coded by using EGk codes, where k = r + 1, and r is
the Rice parameter. In this way, HEVC encodes quantized levels using variable
code lengths that consist of unary coded prefix and fixed length suffix (whose
size depends on the prefix value and the Rice parameter [173]). More detailed
explanation of binarization schemes is given in the previous section.

By using a given codes, codeword construction is not straightforward, and it
depends on a tunable parameter r. For each SB, r is initialized with rinit = 0,
and updated as follows

rnext =

{
min(rmax, rcurrent + 1), remLevel > 3 ∗ 2rcurrent

rcurrent, otherwise,
(4.19)

with the cap at rmax = 4 [181, 182, 183]. Thus, depending on the previously
coded remLevel, r is either increased or kept constant, and it cannot be de-
creased inside the same SB. Due to extended range of absolute levels, afore-
mentioned cap was omitted in order to better adapt binarization scheme to higher
dynamic range. Also, for each SB, initialization has been changed in a way that
r at the beginning of the SB is not necessarily set to 0. Rather it is given with

rinit = round(
c
4
)

cnext =


c + 1, remLevel ≥ 3 ∗ 2round(c/4)

c− 1, 2 ∗ remLevel < 2round(c/4) ∧ c > 0
c, otherwise,

(4.20)

where c is set to 0 at the beginning of the CTB and updated accordingly once
for each SB. After the first level within SB is coded, the parameter c may be
updated in order to be used in the next SB. Note that, in the extended bit-depth
range, Rice parameter at the beginning of the SB is not necessary set to 0. How-
ever, it is updated in the same way as before, which is given with (4.19), with
an additional modification that removes the maximum value limitation entirely.
Also, the process of update is backward-adaptive, and exact derivation of the
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coding parameter is supported at the decoder side. Thus, the proposed adaptive
binarization scheme more efficiently adapts to the statistics of absolute quan-
tized levels in the extended bit-depth range scenario. The given approach has
adapted the Rice parameter faster than before to the real image statistics.

Also, the EGk codes with limited prefix length have been used for a larger
amplitudes. At the time when GR code reaches 4 bins for the prefix part, switch-
ing to the EGk code has to be performed, in which case remLevel = level− 4 ∗
2r − 1 has to be coded, and the resulting codeword is concatenated to the previ-
ously coded bins that emerged after GR binarization. By using the EGk binariza-
tion scheme, code length for remLevel has been kept within 32 bins. It has been
achieved by limiting prefix bins based on the maximum dynamic range (after the
DCT), which in HEVC is given with maxTrRange = max(15, B + 6). Then,
the prefix length is limited in the way that maxPre f ixExtensionLength =
28− maxTrRange. When the maximum prefix length is reached, it is coded
using truncated unary codes, and suffix is modified to accommodate the rest of
the possible codes, maximizing its size. In that way, the suffix length is given
with exactly maxTrRange bins, and it is coded as fixed length representation.
Obviously the given scheme is not applicable in the proposed codec since it can-
not accommodate extended dynamic range after DCT. However, straightforward
adjustment can make this approach practically feasible to empower the use of 32
b/p data. First, maxTrRange = 37 since DCT proposed here in this work keeps
the norm of the original DCT. Then maximum prefix length has been modified
as maxPre f ixExtensionLength = 47−maxTrRange, limiting prefix size to
10 bins. During the experiments, the selected prefix length has provided the best
trade-off between performance and complexity.

By applying the simple modifications, this work was able to adopt CABAC
to the extended bit-depth data statistics, reducing the complexity without com-
promising performance. It can be shown that even with straightforward mod-
ifications of CABAC the proposed codec performs better than other industry
standards (see Chapter 6). Thus, the foundation of a conceivable entropy cod-
ing scheme has been established in this work for 32 b/p data. The part that is
related to the enhancement of the current scheme is left for future research, e.g.,
to improve the performance a new binarization scheme and context initialization
that would be specifically tailored for seismic data could be examined in future
codec’s evolution.
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4.6 Rate-Distortion Optimization – A New Model
for the Lagrange Multiplier

To decide on an optimal coding parameter set, for example, coding quadtree,
prediction mode, motion vector and many others, encoder decisions are based on
RD optimization that uses the method of Lagrangian multipliers [184,185,186].
In such case, the encoder tends to choose an optimal set of coding parameters
{Para}opt, where the goal is to minimize the distortion D with the given rate
budget Rc. The expression is given with

{Para}opt = arg min
Para
{D}, subject to R ≤ Rc, (4.21)

where {Para} is the set of all possible combination of coding parameters de-
fined by standard. In the RD optimization process, the previous constrained opti-
mization problem can be transformed to an unconstrained optimization problem
using Lagrangian multiplier method [186]. Hence, the next optimization prob-
lem where the encoder tends to minimize cost J over the set of coding parameters
is given by

{Para}opt = arg min
Para
{J} = arg min

Para
{D + λ ∗ R}, (4.22)

where J = D + λ ∗ R, D is distortion measure, R is rate, and λ is the Lagrange
multiplier which is applied to get the minimum RD cost.

In order to represent the distortion D, HEVC defines the distortion measure
as

D = ∑
i∈B
|si − s∗i |j, (4.23)

where j = 1 for the sum of absolute differences (SAD) and j = 2 for the sum of
squared differences (SSD). The sum is calculated between the original and re-
constructed image samples si and s∗i over a particular image block B. The SSD
is used in all coding decisions, except for motion vector decision where SAD
is used. On the other side, the rate R represents the number of bits required to
signal all encoding parameters of a given block, including quantized coefficient
levels and all associated side syntax elements. Also, due to different distortion
measures, λ for motion estimation and λ used in other coding parameter deci-
sions is not the same. However, a simple connection is established in HEVC,
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where λmotion =
√

λ.
Therefore, minimizing the given cost J, the encoder tends to select the most

optimal quadtree structure, intra prediction modes, motion vectors, etc. The
optimization problem given with (4.22) is used by the encoder to check every
possible combination of coding parameters, and to find the best possible encod-
ing result in order to achieve the highest possible compression. An exhaustive
RD optimization process has been applied, which in brute-force manner (also
referred as full RD) has to perform forward-pass (encoding) in order to get the
rate R, and back-pass (decoding) to finally get the distortion D. It later com-
pares all possible outcomes in terms of bit-rate and image quality degradation in
order to make final decisions. For example, selecting coding parameters mean
that one parameter set is better than the previous one whenever it occurs that
the distortion increase is outweighed by the bit-rate savings multiplied by the
Lagrange factor λ, e.g, ∆D > λ ∗ ∆R. To clarify the previous statement con-
sider the following example when we want to choose between two set of en-
coding parameters Para_1 and Para_2. Simply comparing the cost J of one
parameter set, and the cost J obtained using another parameter set, the encoder
can decide which parameters to use. Hence, Parameter_2 should be used over
Parameter_1 whenever it occurs

J(Para_1) > J(Para_2),
DPara_1 + λ ∗ RPara_1 > DPara_2 + λ ∗ RPara_2,
DPara_1 − DPara_2 > λ ∗ RPara_2 − λ ∗ RPara_1,
∆D > λ ∗ ∆R,

(4.24)

otherwise choose Parameter_1. A given analysis can be applied for any encoder
decision.

In addition, keep in mind that parameter optimization has to be performed
on each block of an image. Accordingly, the cost of an image is approximated
as the sum of the costs, given with (4.22), of the independent blocks B

{Jtotal} = ∑
B

arg min
Para
{J}. (4.25)

Similarly, using the principle of separable minimization and using a similar anal-
ysis as with (4.24), we can check if one CB should be divided into sub-CBs.
Comparing the cost J of one CB at the depth d, with the sum of the costs for 4
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sub-CBs at the depth d + 1 we can make a split decision.
Also, RD optimization is not defined by the standard, but many of the fore-

seen mechanisms implicitly rely on it and significantly lose their efficiency if
it is omitted. However, it is left to the implementer to choose the best way to
select a set of the encoding parameters, which in essence will be dependent on
the application and available computational resources.

As can already be concluded, the Lagrange multiplier directly controls the
RD trade-off. For example, small values of λ correspond to high bit-rates and
low distortion, while large values correspond to lower bit-rates and higher dis-
tortion. Therefore, the Lagrange multiplier plays a crucial role in operational
encoder control. However, all three parameters of the cost function J are sub-
ject to optimization and a compromise has to be made. More importance can be
given to D optimization or to R optimization by adjusting λ in the cost function
J. In this regard, Qp is the only effective parameter used to control bit-stream,
and below we will see that λ depends directly on the predetermined value of
Qp (λ is function of Qp). Steaming from the above, it is important to have pre-
cise encoder control in order to optimally allocate the desired resources, and the
Lagrange multiplier plays a crucial role in that process.

In HEVC, λ is calculated based on the RD model that is provided for natural
images, and it is given by

λ(Qp) = 0.57 ∗ 2
Qp−12

3 . (4.26)

With the proposed extended Qp range given in the Sec. 4.4, for certain higher
values of Qp, λ is also high which gives more importance to rate minimization
without worrying much about distortion loss. As a result, the encoder tends to
choose a parameter set that will reduce the rate as much as possible. In HEVC,
the most rate conservative mode is the SKIP mode. By using the SKIP mode, the
encoder can choose to force the residual block to be all zero, since it is worth on
saving the number of the bits required to represent a given block, compared to
the losses that are introduced in that way by truncating non-zero values, however
with smaller overall cost. Since λ can be high, it will enforce the rate minimiza-
tion and hence choose the SKIP mode much more often than it is desirable. As
a result of the choice of SKIP without making compromise in the RD sense, a
huge drop in performance is detected for Qp values larger than 51, see Fig. 4.7a.
The figure shows performance for the three consecutive frames of the same se-
quence (I frame and P frames that may be coded using SKIP mode), using the λ
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as it is defined in HEVC’s reference software. Naturally, P frames should have
better performance than I frames since better prediction may be achieved, which
in this case is not observed due to λ non-optimality. From now on λ given in
(4.26) is referred as λold.

In order to achieve good coding performance using the proposed new codec,
a critical consideration with the regard to the optimal coding parameter selection
is determination of the proper Lagrange multiplier λ. It is crucial to have an
appropriate λ for a high range of Qp, in order to perform effective parameter
allocation for the desired wide range of compression ratios and reconstructed
image qualities. Thus, we propose to redefine HEVC’s Lagrange multiplier
in order to empower the use of extended bit-depth and quantization parameter
range in the proposed new codec (as necessitated by 32 bit-depth extension).

A simple but effective heuristic approach was used in this work. Theoret-
ically, λ can take values from 0 (highest rate, lowest distortion) to ∞ (lowest
rate, highest distortion). However, in order to maintain the practical meaning
of Lagrange optimization, suitable values for λmin and λmax, that will balance
D and R, were found for those boundary points. Also, λmin corresponds to
Qp = 0 and λmax corresponds to Qp = MAX_QP. They are manually
tuned to λmin = 0.0356 and λmax = 1.702 ∗ 1018. Also, by using the pre-
viously proposed extended Qp and quantizer mapping function, a decision was
made to limit MAX_QP to the value of 400. Thus, in this way, the search
range can be reduced to λ ∈ (λmin, λmax) for any other Qp in between 0 and
MAX_QP. Since λ is a monotonically increasing function of Qp, it stands that
λ(Qp − 1) ≤ λ(Qp) ≤ λ(Qp + 1), and thus the search range can be addition-
ally reduced. In this way we have been able to make it feasible to implement
targets, with acceptable complexity and acceptable precision, that leads to a so-
lution for any other values of λ. By using an extensive heuristic search, in this
way we were able to find the exact value of the new λ for each of the newly
extended Qp. In addition, using this approach requires to store obtained λ for
each Qp in the look-up table.

To reach a solution that will not require look-up table, and thus relaxing
memory requirements, newly obtained λ value can be compared with previous
ones given by (4.26). It is proposed to compensate the large values of λold when
Qp > 51 and hence provide better compromise between D and R. We refer λ
after we apply compensation as λnew, and we can assume that it is still in the

form of k ∗ 2
Qp−a

b (the same form as λold). After observing newly proposed λ
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FIGURE 4.7: (A) Example of performance drop after Qp > 51 using λold for the first
three seismic slices of the same seismic sequence. (B) λold compared with redefined
λnew.

values that are stored in look-up table, it is decided to select the following values
k = 2.1, a = −49, and b = 8. It leads to new recalculated λ that is given by

λnew(Qp) = 2.1 ∗ 2
Qp+49

8 . (4.27)

Fig. 4.7b shows the comparison between the λold and the λnew. It reveals a
gap indicating that λold is very high compared with λnew (the gap is increasing
with Qp) hence resulting in a low performance. However, as will be shown soon,
the use of λnew has improved the coding performance. More importantly, by
redefining λnew in the proposed new codec, precise coding parameter allocation
is practically feasible.

4.7 Additional Coding Features
HEVC utilize several other (non-mandatory) coding features, for which it was
decided to be completely excluded from the proposed codec. The reason be-
hind is that they are either insufficient for a given use-case or they introduce
additional complexity at the cost of insignificant coding gain. Thus, without go-
ing into a deeper discussion about their implementation, they were completely
removed during the research phase of this thesis. Excluded features are: In-
tra PCM, Transform Skip, Residual Rotation, Implicit and Explicit Residual
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DPCM, Intra Reference Smoothing, Strong Intra Smoothing, In-loop Filtering,
Adaptive Qp Selection, and RD Optimized Quantization. The only feature uti-
lized by the proposed codec is Sign Data Hiding (SDH) [170], which is based
on an approach in which the sign for the first non-zero coefficient in each SB
does not have to be transmitted, but it can be inferred based on the parity of
the sum of the absolute coefficient levels within SB. Since sign bits can take up
a substantial proportion of compressed bit-stream according to [170], based on
detailed experiments, this work choose to adapt SDH and keep it as an essen-
tial feature in the proposed codec. It is a consequence of the low computational
complexity and improved overall coding gain. It is to note, the SDH is lossy
technique since it changes the quantized level of the coefficients. Regardless,
this technique is optional, and it can be enabled or disabled by setting a flag
in the encoder configuration, e.g., when full lossless reproduction is required.
In the following, only the SDH algorithm is described in detail, and the other
methods are mentioned very briefly with references given for further reading.

• Sign Data Hiding (SDH) [170, 187, 188] is based on the approach where
sign for the first non-zero coefficient in each SB does not have to be trans-
mitted, but it can be inferred based on the parity of the sum of the absolute
quantized coefficient levels within the SB (SDH is applied after quantiza-
tion on a quantized levels). Hence, there is no need to always code the sign
to the bit-stream explicitly, and it can be inferred at the decoder side. First,
the sign will be coded in the normal way if the number of non-zero coef-
ficients between the first and the last non-zero coefficient within a SB is
below predefined threshold. In HEVC, the threshold is set to 4 non-zero
coefficients between the last non-zero and the first non-zero coefficient
within the SB [189]. If the number of non-zero coefficients is lower than
the predefined threshold, the sign is codded in the normal way, otherwise
it is encoded using the SDH approach. A predefined convention is used, in
such way that the even sum corresponds to the positive sign "+", and the
odd sum corresponds to the negative sign "-" of the coefficient level. If the
parity of the sum of the quantized coefficient levels and the sign matches,
the sign is inferred. If the parity does not match the sign, the level of
the one coefficient within the current SB should be adopted accordingly.
Hence, we can change one of the quantized coefficient levels by adding or
removing 1, including the last and the first non-zero coefficient. However,
in certain circumstances this change cannot be made on the first and the
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last non-zero coefficient, e.g., if it becomes zero, since it can cause a mis-
match between the encoder and the decoder (on the decoder side, the sign
derived from the parity of the sum can be assigned to another coefficient,
or it can lead to the number of non-zero coefficients being less than the
predefined threshold). How to choose a coefficient whose value will be
adjusted/changed, such that the parity of the sum corresponds to the sign,
is left to the implementation. Two approaches have been applied in the
HEVC reference software. The one we adopted for our codec is referred
as RDOQ-off method in [188], which tries to find the coefficient whose
change will have the least effect on RD performance. In other words, the
choice is based on the minimal RD penalty that the level adjustment can
produce. The difference between the original transform coefficient coeff
and its reconstruction (dequantized value) has been calculated. The dif-
ference is referred as deltaU. If deltaU is higher than 0, that means we
should add 1 to the quantized level. Otherwise, if deltaU is less than 0,
we will decrease the quantized level by 1, in order to match the parity. The
coefficient with the highest absolute value of deltaU has been selected to
be adapted. In that way, one quantized level has been adapted, so that the
parity matches the sign, and the sign can be inferred. Note, since the SDH
has been performed on the SB level, for larger TU sizes multiple sign bits
can be embedded. Also keep in mind that this technique will change the
quantized level of the coefficients, and hence cannot be used for lossless
compression.

SDH is lossy technique since it changes the quantized level of the coef-
ficients. However, the loss it introduce in the final RD performance is
moderate even for the application like seismic image compression (that
requires high quality reconstruction), but on the other side its compres-
sion potential is large. Regardless, this technique is optional, and we can
choose to enable or disable it by setting the flag at the encoder configura-
tion, e.g., when full lossless reproduction is required.

Since sign can represent a substantial proportion of a compressed bit-
stream according to [170], based on detailed experiments this work choose
to adopt SDH and keep it as default option in the proposed codec, as con-
sequence of the low computational cost and negligible distortion intro-
duced for the price of the improved overall coding gain. Therefore, SDH
has been shown to have a high impact on the final bit-rate.
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• In-loop filters, such as Deblocking Filter [190] and Sample Adaptive Off-
set [191], are disabled in the proposed codec. Considering the applica-
tion’s scope, which usually requires high-quality image reconstruction, it
is less likely that there is a significant amount of compression artifacts in
the reconstructed data. Also, in-loop filtering has been designed to im-
prove the visual quality of images, which does not necessary mean that it
will carry a positive impact on a specific (possibly machine driven) analy-
sis of seismic data. Also, in the related literature, there is a limited analysis
on how artifacts that are introduced by using block based lossy codecs (by
utilizing block structure, 2D transform, and quantization) further influ-
ence seismic interpretation and analysis. Thus, the implications of using
(or not using) additional data filtering to correct compression artifacts (in-
troduced by the lossy codec), within the scope of a specific application,
may be the subject of additional work.

• Intra PCM is mode in which prediction, transform, quantization, and
entropy coding are bypassed [192], which is why this mode is often re-
ferred as "copy-paste" mode (data samples are directly encoded into the
bitstream).

• Transform Skip mode only omits transform from being applied to the
residual data [193]. Residuals have been directly quantized and thereafter
entropy coded. It was mainly adopted to improve the coding efficiency
for specific video contents such as computer-generated graphics [194]. It
has been designed to be used mainly in screen content coding extension of
HEVC, where it provides significant coding gains, with at the same time
less visible ringing and blurring artifacts and sharper edges [195]. How-
ever, it shows only marginal or no improvement for other classes (types of
data).

• Residual Rotation applies the rotation of transform skipped TBs through
180 degrees prior to entropy coding [196]. It is noted that for intra pre-
dicted blocks that use the transform skip mode, the residue at the lower
right part of the block may be relatively large, due to the distance be-
tween the reference samples (see Fig. 4.3a) and the predicted pixels [197].
This makes entropy coding, which is primarily designed for regular (trans-
formed and quantized) blocks, inefficient when applied to transform skip
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blocks [194], in which situation residual rotation may improve coding
gain.

• Implicit Residual DPCM and Explicit Residual DPCM, where DPCM
stands for differential pulse code modulation, are used to exploit the re-
maining correlation that could still exist in the residual signal, by using
additional pixel wise prediction [198,199]. Sill, standard block based pre-
diction is applied first, followed by pixel-by-pixel prediction. It exploits
the immediately neighboring residual sample in order to predict the cur-
rent one, which in addition reduce dynamic range prior to entropy coding.
It is to note that DPCM is used only for transform skipped blocks.

• With Intra Reference Smoothing [200], the reference samples used for
the intra prediction are filtered using 3-tap smoothing filter. Smoothing
operations are adaptive, and they are based on the mode directionality
and block size. While in a previous case only the first adjacent samples
have been used, within Strong Intra Smoothing [201], an additional refer-
ence samples and bi-linear interpolation have been used for even stronger
smoothing.
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Chapter 5

Experimental Setup

5.1 Data Set
The used data set consists of seismic data taken from publicly available sources,
such as those listed at https://wiki.seg.org/index.php/Open_data.
This research uses a set of typical seismic data of different content and different
resolutions. It is composed of 20 real-field 2D trace images, and 10 synthetic
3D wavefields each having 30 slices. For example, the Fig. 5.1a shows one rep-
resentative 2D trace image from the used data set. The 808x3000 trace image
(with 808 traces, 3000 samples per trace) correspond to the Alaska 2D survey,
line 31-81 data. Raw image files are obtained by removing the SGY headers.
Also, the seismic data from modern 3D surveys are typically represented with
32-bit floats. However, without losing on generality, data can be up-sampled to
32 bit integer values for more efficient compression (floats are harder to com-
press than integers). Since the codec proposed in this work uses integer arith-
metic, a module is created in this work that selects scaling factor and converts the
input floating-point image into 32-bit integers. Thus, the resulting integer image
can be compressed using the HEVC based codec for better overall performance
(since existing floating-point compression algorithms tend to compress floating-
point data worse than those that rely on integer logic). On the other hand, scaling
seismic data prior to compression does not affect the information content in the
data, and without any fear of losses of information (other than those introduced
by compression) the data can be scaled back to the original range at the decoder
side with the same scaling factor that is used at the encoder.

Note that complete 2D trace data set consists of marine and land seismic
survey data, downloaded from the aforementioned publicly available seismic
exploration archives. No blank data regions (blank/empty slices) are presented

https://wiki.seg.org/index.php/Open_data
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in the data used in this work. The 3D wavefield data set is composed of samples
of the forward waveform propagation process generated by using synthetic ve-
locity models and wave-equation methods (to simulate wave propagation trough
defined subsurface models). In this way, by using numerical modeling, we are
also allowed to record wavefields, also called snapshots. Each snapshot is repre-
sented by a 3D array, resembling video signal, e.g., characterized by two spatial
and one temporal dimensions. For the purpose of illustration, two representative
frames (which are also referred as time slices) from the 3D compression data
set are presented in Fig. 5.1b and Fig. 5.1c. Note, the terms frame and slice are
used with the same meaning in this work, thus establishing a connection with
natural video.

In addition, the Fig. 5.2 shows two additional samples from the data set.
These two samples comprise two consecutive frames of the same 3D wave-
field sequence. Note the small structural differences between consecutive slices,
which results in low-motion seismic data. If observed more closely, there are
only minor differences between these two slices. However, they are structurally
almost identical. This property will be analyzed in the next chapter of this work.

Also, the used data set is divided into two parts, namely development set
and test set, in order to prevent over-fitting during the codec development, and
in order to provide a fair comparison with other codecs. The development data
set was used only during the proposed codec design. The test set was used to
compare the proposed codec with other methods, and hence was not used at any
stage that can be considered as a development stage during the codec design.

5.2 Experimental Setup
Experiments have been conducted on Linux workstation powered by two Xeon
processors at 2.1GHz without hyper-treading, running 16 processes in parallel,
and using 8.3.0 gcc compiler. The proposed codec has been implemented on top
of the HM15.0+RExt-8.1 version of HEVC’s reference software [149].

5.2.1 Code Setup
An anchored version of the codec was established to define the starting point for
building the experiments. It defines a minimum set of coding tools that form
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FIGURE 5.1: Sample input images. (A) Trace data corresponding to Alaska 2D land
line 31-81 data; (B) 576x560 sample image which is part of a synthetic 3D wavefield;
(C) The 2nd 576x560 synthetic slice.

the basis for further performance measurements of proposed modifications and
approaches in the selection of coding parameters. In short, the proposed anchor
version includes HEVC’s variable block size and asymmetric motion partitions,
as defined in Section 4.1, without further limiting block sizes below that already
defined in standard. At first, only 8 intra modes are utilized directly in full RD
optimization (in order to reduce unnecessary loads). Full motion vector search
within a 64 × 64 window has been used (every integer point displacement has
been searched), and half and quarter pixel accuracy have been utilized as well.
Search range for bi-prediction ME has been applied in a neighborhood of 4, as
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FIGURE 5.2: Two consecutive wavefield samples to illustrate low-motion seismic data.
(A) 589x236 slice, which is 10th slice of the synthetic snapshot taken from the used data
set. (B) 11th slice of the same snapshot.

it is default in the original HEVC setup. TZSearch is not used in anchor version.
The number of AMVP candidates has not been changed, and temporally collo-
cated predictor has been utilized. The same stands for the number of SKIP and
MERGE predictor candidates. Quantization is given with (4.18). The anchor
codec uses floating-point DCT, and slightly modified CABAC as explained in
Section 4.5 that applies relaxed Rice parameter adaptation and changes in gr1
and gr2 flags (as this change does not have impact on the overall performance).



5.2. Experimental Setup 85

Also, the new λ function in (4.27) is exploited as an essential modification. SDH
is the only additional coding tool used in the anchor version.

5.2.2 Objective Evaluation Criteria
Codec performance was evaluated using standard RD-curves, e.g., by measuring
PSNR vs. compression ratio performance. Considering that PSNR-based qual-
ity metric is used during the development of HEVC, this work also applied the
PSNR based metric during research. The maximum compression ratio shown in
the graphs in the analysis of the results is 1:50, which is sufficient for targeted
seismic data applications, even that a higher compression ratios are supported
by the codec. In addition, the average difference between the two RD-curves,
has been given in terms of Bjøntegaard delta PSNR measure (BD-PSNR), simi-
larly as in [202,203]. However, compared to the standard BD-PSNR calculation,
in this work the BD-PSNR performance corresponds to the average PSNR dif-
ference in decibels (dB) for the same compression ratio (CR) points, as it is
illustrated in Fig. 5.3. In addition, RD-curves (reference and tested) are fitted
by using third degree polynomial (cubic) interpolation. In the assessment used
in this work, the average BD-PSNR is calculated between CR of 5:1 up to 45:1
(see shaded area in Fig. 5.3). Average performance is not measured outside this
range for three reasons: 1) one assumptions is that lower compression ratios can
be achieved with lossless techniques, acquiring perfect reconstruction, hence
producing better performance than the presented lossy technique, 2) higher CR
introduce notable losses in data, and would not be of particular interest for the
targeted application, and 3) by limiting range of CR points used in BD-PSNR
calculations, the use of extrapolations of the RD-curves outside the end points is
avoided. Besides the average BD-PSNR characterization of the objective perfor-
mance, for illustrative purpose, RD-curves are also plotted, with an additional
enlarged part around CR 10:1 as it currently represents a typical compression
ratio for seismic data applications.

At some points, the relative time of execution of encoding will be of great
importance to approximate the complexity of one configuration relative to the
other. It is given with ∆T =

Ttested−Tre f erence
Tre f erence

∗ 100%, where Tre f erence is the
encoding time using reference version, and Ttested is the encoding time using
configuration whose complexity we want to compare with the reference config-
uration/method. Negative values reflect a time reduction in the execution of the
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FIGURE 5.3: Illustration of objective performance evaluation by using the average
difference in PSNR between two RD-curves.

tested approach. The same approach to roughly evaluate the complexity perfor-
mance has been used during the development of HEVC.

By the proposed quantitative assessment, BD-PSNR change of at least 0.2
dB, and computational complexity change of at least 5%, have been considered
as significant.

5.2.3 Coding Configurations
During the experiments several coding structures were examined. Five coding
configurations have been applied for the final testing. They were chosen to max-
imize performance under the constraints of the application (memory, processing
time, low motion nature of seismic data, etc.). Long-term memory motion com-
pensation and a larger number of reference images, sometimes as much as 50
frames according to [204], could be beneficial for standard video, e.g., when ob-
ject is occluded in one frame but visible in others [205]. However, with seismic
data, many scenarios that are valid for standard video would never apply. Even
HEVC allows the use of up to 16 reference frames, the question is whether this
would ever be useful in seismic data applications. Thus, there is a valid reason to
adopt reference image management in order to relax memory requirements and
simplify the encoding process (for more details on reference image manage-
ment in HEVC see [205,206,207,208]). Contrary to what is usually advised for
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standard video, this work used a simple, yet effective strategy given the assump-
tion that the correlation between seismic slices is stronger when their distance
is smaller (from image order point of view). This assumption is based on the
low-motion nature of seismic data. The nearest reconstructed images have been
used as reference images, which we refer to as short-term memory referencing,
and in some cases I frames are occasionally inserted into the bit-stream. Multi-
reference image is still supported by the configurations, however it is tried to
minimize their number in order to relax the size of the buffer. Therefore, cod-
ing configurations are given with, but not limited to, the following setup (see
Fig. 5.4 for illustration)

• All-I: All seismic slices are encoded independently by using only intra
prediction. This is equivalent to baseline still image coding approaches.

• P1-configuration: In addition, P frames are allowed to be used. All seis-
mic slices within the group of pictures (GOP) use the I frame (the first
frame in the GOP) and the first preceding P slice as a reference. The GOP
size is set to 8, and the period of I frames is set to 8 as well. Hence, each
GOP will start with an I frame. At most the two slices, that are used as
a reference slices during predictive coding, are kept in the buffer at the
same time.

• P2-configuration: The previous configuration is also compared with a
configuration that uses only one previous P frame as a reference, with-
out referencing to the beginning of the GOP, and without any additional
periods of I frames. In such case, only one reference frame is used for pre-
diction, and only one frame is stored within the buffer during the entire
encoding process.

• P3-configuration: To test performance when using a different number of
previous adjacent slices as a reference, instead to use only the previous
slice, two and three preceding slices are used for referencing, which de-
pends on a current slice position within the bit-stream. Even slices are
selected to use two and odd slices to use three preceding reference frames.
Only the first frame is I frame, and the rest of the sequence uses P frames,
and GOP size is set to 8.

• B-configuration: In this configuration, some slices may have reference
slices in both directions, hence it uses B frames as well. Such a reference
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FIGURE 5.4: Cyclic GOP structure for different types of coding configurations.

structure can provide more efficient coding gain, however at the cost of
increased complexity due to more demanding MV search. A maximum
of three reference slices are stored in the buffer to support a given coding
structure, and the GOP size is set to 4. Frames must be organized into the
3 temporal layers (compared to other configurations where all slices are
the part of the same temporal layer). It can be used to provide fast access
to data by reducing the sampling rate of the sequence.

Note that, the encoding order is the same as the decoding order, which is
referred as a low-delay configuration, except for B-prediction where a different
encoding order and output order occurs, but with as little delay as possible.
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Chapter 6

Results and Performance Analyses

Several experiments are conducted in this work in order to evaluate perfor-
mance of the proposed codec. The parameter configurations that are specifically
adapted to the seismic data are also tested in this chapter.

6.1 Test 1 – Coding Configurations
The performance comparison between five different coding configurations given
in Chapter 5 is shown. It is investigated how to adapt reference picture manage-
ment in order to establish compromise between encoding efficiency and encod-
ing complexity. From Fig. 6.1 and Table 6.1, it can be seen that B-configuration
shows the best performance, followed by the P-configurations, and afterwards
by image-based (All-I) configuration. Such performance is expected since many
works for compressing natural videos have proved this. However, valuable in-
sights arise when complexity is included in the analysis. Also, P1-configuration
brings slightly lower performance than P3 due to the inserted I frames that are
naturally harder to compress. The encoder complexity reduction of P2 coding
configuration compared to other configurations comes from the fewer reference
pictures, which entails a less demanding MV search. By observing presented re-
sults, Fig. 6.1 and Table 6.1, it can be seen that different P configurations show
almost identical average coding performance. At the same time, the encoding
complexity changes dramatically depending on the chosen configuration. It can
be concluded that the increased number of reference slices does not improve
coding gain for low-motion 3D seismic data, which is different from what is es-
tablished for natural video [204]. Thus, using only one previous reference slice,
as given with P2-configuration, is more than enough to maintain the best coding
performance with the lowest computational complexity and the lowest memory
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TABLE 6.1: Average BD-PSNR and complexity performance of different coding con-
figurations, relative to the proposed B-configuration.

Configuration P1 P2 P3 All-I
BD-PSNR [dB] -2.57 -2.32 -2.31 -6.24

∆T [%] -2.89 -39.40 30.35 -98.20
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FIGURE 6.1: Average RD-curves for different coding configurations analyzed in
Test 1.

requirements (in terms of the buffer size). For example, 39.4% less encoding
time than B-configuration is required for P2, compared to only 2.89% less com-
plexity when P1-configuration is used, and 30.35% increase in complexity for
the most demanding P3-configuration. Note that All-I is the least demanding
configuration, however with the price paid in lower performance. It requires
98.2% less processing time than that of B-configuration on average. Regarding
to the above results, this work chose to keep the All-I, P2-configuration, and B-
configuration in the following tests to support different performance-complexity
trade-off and different use-cases (e.g., image based coding over predictive cod-
ing).
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6.2 Test 2 – binDCT
Performance comparison between the original floating-point DCT and the pro-
posed binDCT is summarized in the following. As expected, obtained results
showed that binDCT gives slightly lower performance than the original floating-
point DCT. Figure 6.2a and Figure 6.2b summarize average performance com-
parison of binDCT, for trace data and 3D wavefield data, respectively. For 3D
wavefield sequences, average BD-PSNR loss of binDCT is 0.33 dB. Trace im-
ages showed lower coding gain drop, where observed BD-PSNR is 0.17 dB.
At the same time the computational complexity savings are 21.3% on average,
as compared to the original DCT with floating-point multiplications. Since the
binDCT time savings are highly desirable and coding gain is still at high level, in
this work it is decided to stick to binDCT in the sequel as a necessary change to-
wards the practical solution. Also, as evaluated by industry experts, the binDCT
time savings are highly desirable while coding gain is still at high level.

6.3 Test 3 – Block Size
From Table 6.2 it can be seen that, when the maximum allowed CB size has
been reduced from 64 × 64 to 32 × 32 pixels, the negligible influence on per-
formance has been observed, for both 3D wavefied and trace image data. In
addition, when the maximum CB size has been reduced to 16 × 16, the coding
efficiency drop (BD-PSNR) becomes significant. Note that the minimum CB
size is not changed at this moment, as well as PB and TB standardized partition-
ing. Also, sensitivity of the proposed codec on the limited minimum CB size is
investigated, while the maximum CB size has been kept at 64 × 64. When min-
imum CB size is increased to 16 × 16, the performance remains approximately
the same, see Table 6.2. Increasing minimum CB size further to 32 × 32 brings
a notable drop in performance that is no longer negligible.

Thereafter, asymmetric prediction block partitioning has been disabled in
order to measure its contribution to the overall coding gain. In such case, the
average coding efficiency is slightly affected by the imposed limitation. On
top of that, remaining rectangular partition modes have been removed from the
available codec’s block structure, which show negligible coding efficiency drop.
Bottom part of Table 6.2 summarize the coding performance of such PB parti-
tioning limitations. We can see that significant computational time savings can
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FIGURE 6.2: Average RD-curves for Test 2. (A) floating-point vs. binDCT average
performance for trace image dataset; (B) floating-point vs. binDCT average perfor-
mance for 3D wavefield dataset;



6.4. Test 4 – Intra Modes 93

be achieved when all rectangular partition modes (including asymmetric) are
disabled, with very low coding gain drop. Note that All-I configuration, and 2D
(still image based) coding have not been affected by this experiment.

Furthermore, results show that restricting the maximum TB size to 16 × 16
lead to a significant coding efficiency loss. Also, performance when minimum
TB size is set to 8 × 8 while keeping maximum transform size at 32 × 32 is
evaluated, which also requires to set minimum CB to 16 × 16. Given that the
standard requires that minimum CB size must be strictly greater than minimum
TB size, here it is required to set minimum CB to 16× 16, which in the previous
experiment has been shown to have no influence on coding performance. Note
that limited minimum TB size resulted in decreased coding efficiency, Table 6.2.
However, also note that trace images are more affected by the test limitation
compared to 3D wavefields. Given the previous results, we can conclude that
the codec is highly sensitive to TB partitioning constraints, and that variable
transform size contributes greatly to improving the performance of the codec.

Guided by the previous experiments, it is decided to adapt block partitioning,
and to optimize encoder by continuing with the following coding choices: 1)
maximum CB size is set to 32 × 32 instead to 64 × 64; 2) minimum CB size
is set to 16 × 16 instead of 8 × 8; 3) only square PB partition modes have
been used; 4) minimum and maximum TB size has been kept unchanged, as
well as relative residual quadtree depth which is set to 3 (as default in HM).
Thereafter, the accumulated coding efficiency loss vs. total encoder speed-up
after adjusting the block partitioning is analyzed. Results are illustrated on Fig.
6.3a and Fig. 6.3b for trace and wavefield data, respectively. It is observed
that the proposed adaptations lead to substantially large speed-up gain, which
on average goes to 85.22% for P and B configurations, and 26.62% for All-I
configuration (when compared to the previous binDCT test). At the same time,
almost the same coding performance has been observed, with 0.15 dB drop in
PSNR for 3D predictive coding and only 0.05 dB drop for All-I configuration. It
is important to note that the further experiments and performance comparisons
are provided on top of aforementioned configuration choices.

6.4 Test 4 – Intra Modes
After compressed bit-streams are analyzed, it can be observed that modes 0, 1,
10 and 26 (planar, DC, horizontal and vertical) are chosen more often, followed



94 Chapter 6. Results and Performance Analyses

TABLE 6.2: Average BD-PSNR and complexity performance for different block parti-
tioning choices.

Maximum CB size restrictions performance relative to 64x64 CB
32x32 16x16

BD-PSNR ∆T [%] BD-PSNR ∆T [%]
Trace -0.03 -14.33 -0.88 -37.56

Wavefield -0.02 -23.33 -1.32 -50.47
Minimum CB size restrictions performance relative to 8x8 CB

16x16 32x32
BD-PSNR ∆T [%] BD-PSNR ∆T [%]

Trace -0.09 -11.21 -0.28 -22.14
Wavefield -0.05 -21.8 -0.35 -39.34

Prediction block partitioning limitations
asymmetric PB off all rectangular PB off

BD-PSNR ∆T [%] BD-PSNR ∆T [%]
Wavefield -0.03 -47.32 -0.09 -80.15

TB size restrictions performance
maximum TB 16x16 minimum TB 8x8
BD-PSNR ∆T [%] BD-PSNR ∆T [%]

Trace -0.92 -8.70 -1.23 -35.49
Wavefield -1.24 -3.22 -0.12 -30.25

by those around the vertical and horizontal directions. The same pattern of mode
distribution for different Qp values was observed. In such way, it is decided to
use the following 23 intra modes in total {0, 1, 2, 4, 6, 8, 9, 10, 11, 12, 14, 16,
18, 20, 22, 24, 25, 26, 27, 28, 30, 32, 34}, which combines modes 0, 1, 10, and
26, than those close to the vertical and horizontal directions, and every second
mode in between. Additionally, for a benchmark purpose, test are conducted
when only the following 12 intra modes have been used {0, 1, 6, 8, 10, 12, 14,
22, 24, 26, 28, 30}. PSNR vs. compression ratio performance evaluation, Table
6.3 and Figures 6.4a and 6.4b, indicate that the average PSNR loss is almost neg-
ligible when 23 subsampled modes have been used, and distinctly higher PSNR
drop has been observed by using only 12 subsampled modes. We comment that
the modest speedup (∆T) is the result of already optimized intra coding loop
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FIGURE 6.3: Average RD-curves for Test 3. (A) final performance after Test 3 for
trace dataset; (B) final performance after Test 3 for 3D wavefield dataset.

that uses a simplified HEVC encoder (see Chapter 4). Even when the number
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of total modes is significantly reduced, the same number of modes is always
utilized in much more demanding brute force (full RD) optimization approach.
Despite that, it is decided to keep 23 modes in follow-up experiments since neg-
ligible performance loss has been detected in such way. It is worthwhile to point
out that uniformly decimated version of the 35 modes is tested by taking ev-
ery second and every third angular mode, however results showed lower coding
performance when compared to the proposed subsampling scheme.

Next, it is investigated how to configure the optimal N candidates for full
RD optimization in the simplified HEVC encoder. It is to note, in the anchor
version 8 intra modes are used in full RD optimization loop. In this test, N is
varied between the following set of values N ∈ {16, 12, 8, 4, 3, 2, 1}. Perfor-
mance is summarized in Table 6.3, and Fig. 6.5a and Fig. 6.5b. Experiment
reveals that increased number of candidates (12 or 16) does not lead to changes
in compression performance, however computing resources have increased sig-
nificantly, see Table 6.3. It also can be seen that, the use of only 4 modes for
full RD optimization provides optimal trade-off between computational savings
when compared to the utilization of 8 modes, with at the same time negligible
compression performance change. Reducing in addition N to 3, 2, or 1 shows
significant performance loss that is no longer negligible. Thus, it is proposed
to use N = 4 as an optimal number of intra modes for full RD optimization
(together with 23 intra modes in total) which does not degrade compression
performance. By doing so, computational requirements have been relaxed sig-
nificantly.

6.5 Test 5 – Motion Estimation
ME is computationally the most time consuming part of the codec. However, by
taking into account the low-motion activity of seismic data, the encoder can be
unburden of unnecessary calculations. Table 6.4 reports the performance during
several stages of adjusting the motion estimation process to the seismic data.

It is started with the default motion search range within the 64-pixel neigh-
borhood in anchor version, and in addition, the search range is reduced to only
1-pixel neighborhood. Also, the search range for bi-prediction ME refinement
has been set to 1. Thus, integer-precision MV search has been reduced signifi-
cantly without compromising compression performance.
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FIGURE 6.4: Average RD-curves for Test 4. (A) All 35 intra modes vs. reduce number
of intra modes for trace dataset; (B) All 35 intra modes vs. reduce number of intra
modes for 3D wavefield dataset.
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FIGURE 6.5: Another average RD-curves for Test 4. (A) Reduced modes for full RDO
for trace dataset; (B) Reduced modes for full RDO for 3D wavefield dataset.

In order to additionally reduce the number of integer-precision points, the
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TABLE 6.3: Average BD-PSNR and complexity performance for intra mode modifica-
tions.

Reduced number of intra modes compared to 35 modes utilization
23 modes 12 modes

BD-PSNR ∆T [%] BD-PSNR ∆T [%]
Trace -0.01 -2.87 -0.09 -6.33

Wavefield -0.07 -3.09 -0.18 -6.82
Optimal N candidates for full RD compared to N=8

N=16 N=12
BD-PSNR ∆T [%] BD-PSNR ∆T [%]

Trace 0.01 87.37 0.003 43.54
Wavefield 0.006 86.26 0.005 42.86

N=4 N=3
BD-PSNR ∆T [%] BD-PSNR ∆T [%]

Trace -0.02 -41.74 -0.39 -51.64
Wavefield -0.01 -41.54 -0.24 -51.41

N=2 N=1
BD-PSNR ∆T [%] BD-PSNR ∆T [%]

Trace -0.43 -60.68 -0.88 -67.89
Wavefield -0.26 -60.57 -0.54 -68.10

modified TZSearch is investigated. Since search range is already reduced to 1,
TZSearch use only diamond search without proceeding to raster search in a sec-
ond stage. However, in the refinement stage, which is derived if the distance
obtained from the previous stage is not zero, additional points may be checked
in the RD sense. Since in the star refinement the number of additional points is
not known in advance (search is repeated until the best distance equals zero), it is
decided to prevent the use of this fine tuning step. That led us to only 4 integer-
precision points that have to be checked within RD optimization. In addition,
TZSearch employs additional motion vector prediction (different than the one
given with AMVP). It uses left, upper, upper right, median, and zero predictors.
However, after conducting several experiments, it is decided to allow only the
use of median predictor and zero-MV predictor to compete for MV prediction.
Temporal predictor and other spatial predictors are not used in the proposed
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setup. Performance of modified search range and TZSearch is presented in Ta-
ble 6.4 and Fig. 6.6a. Proposed modification lead to almost identical overall
coding performance, introducing significant complexity reduction. Even modi-
fied TZSearch may lead to the suboptimal MV estimation, it is able to maintain
high coding gain with negligible performance changes.

Thereafter, in this work, quarter-precision and afterwards half-precision MV
estimation is disabled in order to quantify its contribution to the overall cod-
ing gain. According to the experiments, it is found out that low-motion seis-
mic data highly benefit of such fine MV tuning. Notable BD-PSNR drop has
been observed when quarter-precision estimation is disabled. When half-sample
precision is removed from the consideration (on top of the excluded quarter-
precision), the loss in performance became much more evident. Bear in mind
that higher losses are noticed for P-configuration since B-configuration could
compensate lack of fractional motion estimation precision by using averaged
motion predictions from both directions. Also, if fractional MV estimation is
completely excluded, computing resources are slightly lower, which in compar-
ison to the performance losses that are quite pronounced does not bring equally
proportional computational saving. Even that interpolations used to obtain frac-
tional samples introduce additional complexity, and additional points have to be
checked in the RD sense, such a small time reduction is result of the simplified
search process which use Hadamard measure for fractional ME. Thus, this work
still fully exploits fractional ME, since the ability of the encoder to track motion
vectors by going below integer pixel precision proves to be beneficial in order
to maintain high performance for low-motion seismic data.

Since temporal predictor within AMVP scheme requires considerable stor-
age capacity for motion related data of the collocated slice, in this work it is
decided not to use it in the proposed setup. Also, its impact on the improved
codec’s performance is negligible. Lastly, the number of competitors in MERGE
mode is adjusted according to the tests, where the number of merge candidates
is between 1 and 5. After conducting results of the tests, the number of merge
candidates is set to 2, which represents the best trade-off between coding per-
formance and encoding complexity.

Also, for a benchmark purpose, and in order to show the importance of us-
ing even minimal (truncated) ME, performance when there is no-motion esti-
mation is evaluated. Option to skip all motions is provided in order to use only
one-to-one prediction. Prediction in inter coded PB is obtained as a difference
between current PB and the corresponding block at the exactly same position in
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TABLE 6.4: Performance comparison of the proposed modifications within motion
estimation loop.

Search range = 1 Modified TZSearch
BD-PSNR [dB] -0.01 -0.01

∆T [%] -84.03 -85.21
Quarter-precision off Half-precision off

BD-PSNR [dB] -0.29 -1.28
∆T [%] -4.32 -6.77

TMP off Merge candidates = 2
BD-PSNR [dB] -0.15 -0.04

∆T [%] -0.16 -23.32

the reference slice. Therefore, residual signal can be computed on the slice level
subtracting the whole slice with its reference slice (e.g., one time subtraction
of a complete slice in pre-processing stage). Clearly, the one-to-one prediction
performance is degraded (compared with truncated ME), and PSNR loss of 3.5
dB compared to P-configuration and 5 dB compared to B-configuration is evalu-
ated when no motion compensation is used. Therefore, the use of even minimal
(truncated) ME has been shown to be substantial for performance improvement.

6.6 Summary of Test 1 to Test 5
The given results reveal some useful findings that helped to propose the opti-
mized encoder according to the application scope. Results also imply that the
optimized encoder may find better trade-off between the coding efficiency and
computational complexity. The performance difference due to the proposed ad-
justments is plotted in Fig. 6.7. When linked together, the proposed optimized
codec reduces complexity by the 67.17% for All-I configuration on trace im-
age dataset, and 67.39% for All-I, 97.96% for predictive P-configuration, and
98.63% for B-configuration on 3D wavefield dataset. At the same time, BD-
PSNR loss is 0.27 dB on trace data, and 0.49, 0.65, and 0.64 dB on 3D wavefield
dataset for All-I, P- and B-configuration, respectively. The coding performance
is given relative to the initial non-optimized (anchor) codec, see Fig. 6.7. Lastly,
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FIGURE 6.6: Average RD-curves for Test 5. (A) Search range set to 1-pixel neigh-
borhood and modified TZSearch performance; (B) Performance comparison when frac-
tional ME is disabled.
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we note that decoder computational performance is approximately the same for
all configurations on both datasets. On average it is 16.6% less than that of the
anchor decoder implementation. This final set of tools and methods reflect the
application needs as envisioned by the industry (in terms of performance and
complexity).

6.7 Comparative Results With Other Methods
Fig. 6.8 plots the PSNR vs. compression ratio performance of the proposed
codec with JPEG-XR. In addition, Fig. 6.9 plots performance comparison of the
wavelet-based codec for one trace image (Alaska 31-81 line), and one 3D wave-
field sequence. Unfortunately, during this work we have passed Shell’s contract
period for the project and hence do not have a license to run the wavelet-based
codec to generate results for the entire dataset. However, based on the available
results, it can be seen that wavelet-based codec performs similarly as JPEG-
XR over the wide range of compression ratios, see Fig. 6.9. Thus, average
performance comparable to the one obtained with JPEG-XR could be expected
over the complete dataset for the second codec as well. Therefore, compared
to a JPEG-XR, which performs on par with licensed commercial wavelet-based
codec, the proposed new codec significantly improves the PSNR vs. compres-
sion ratio performance.

For JPEG-XR (similar improvement in PSNR is expected for the second
codec) average BD-PSNR gain is 5.86 dB for the trace dataset (All-I configu-
ration). For the 3D wavefield dataset, performance improvement is 3.39 dB for
All-I, 7.15 dB for P2, and 9.48 dB gain in PSNR is observed for B configuration,
on average. A particularly pronounced improvement in PSNR when compared
to other codecs can be observed for inter based predictive configurations (P2 and
B).

The overall performance of the new proposed 32 b/p codec shows that the
modified HEVC framework is suitable for seismic data compression since it
improves coding gain by a large margin when compared to the benchmarked
solutions. The executable version of the proposed codec is also given to the
geologists to evaluate the impact of lossy compression, e.g., uniform quantiza-
tion noise, on interpretation of seismic images. Since the proposed new codec is
performing much better than the one reported in [1] that the geologists currently
use, they rate codec’s performance as highly satisfactory.
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FIGURE 6.7: Average performance comparison between the anchor and the optimized
codec after Test 5 using: (A) trace image dataset, and (B) 3D wavefield dataset.
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FIGURE 6.8: Average PSNR vs. compression ratio performance of the proposed codec.
JPEG-XR [2] is included for comparison. Figure (A) corresponds to trace dataset, and
(B) to 3D wavefield dataset.
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FIGURE 6.9: The licensed commercial codec based on [1] vs. JPEG-XR [2]. (A) trace
image, and (B) 3D wavefield sequence.
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Chapter 7

Conclusion

The apparent need for research in the field of the seismic data compression is
obvious and is constantly increasing. Thus, this work presented the design of
a new, custom tailored, codec for high bit-depth data under the framework of
HEVC, and reported very good results using it for the compression of 32 b/p
seismic data. Almost all parts of the original HEVC have been modified. The
proposed results show that the codec already performs significantly better than
existing solutions used in the industry, and codec’s subject performance is rated
by Shell’s geologists as highly satisfactory. This work also accomplished to
find better tradeoffs between the coding efficiency and computational complex-
ity, resulting in the proposed optimized encoder. In addition, the presented work
broke down the new method into its structural parts as much as possible and gave
a detailed analysis of potential bottlenecks and pointed out the parts that could
be improved in order to evolve the proposed codec. Therefore, this work repre-
sents an initial effort to provide valuable insights of using one well established
coding approach, such as HEVC, for the purpose of seismic data compression.
New possible features, that will be specifically tailored for seismic data, should
be explored in the future. Also, enhancements and additional modifications of
existing features, in order to advance the proposed codec, should be the focus
of future research to lead to even greater compression gains. At the same time,
besides working on the codec’s enhancement, future emphasis could be on GPU
acceleration and further reduction of the codec’s computational complexity (to
make the codec run in real time). In that sense, the plan is to provide detailed
speed-up numbers and complexity comparisons with other methods (since the
HM code is not optimized to a commercial application level). Without code op-
timizations (HM reference software optimizations), a fair comparison with other
methods in terms of run-time complexity is not straight-forward.
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As a side contribution of this paper, HEVC is analyzed within all its func-
tional units, so that the presented work itself can serve as a specific overview of
the methods incorporated into the standard.

Although a significant part of the effort around this work was related to the
development of an efficient compression scheme for high bit-depth seismic data,
a different type of issues that are worth considering in the future are encountered.
These issues are not technical in nature and mainly relate to: 1) Data availability
and data documentation. Seismic data are not common data in the compression
community. Some well-documented and diverse data set specifically tailored
for the purpose of seismic data compression research could be very useful for
reducing learning curve and encouraging further scientific research. A one well
established off-the-shelf data set can be very useful for researchers that does
not necessarily have a geoscience background; 2) A unique benchmark proce-
dure to compare results among different methods and groups, without need to
run source codes; and 3) Availability of other source codes for more detailed
comparison of the proposed codec with other methods. In this study, we were
limited to the codecs that Shell provided to us in order to compare our method.
If these issues are addressed in the future, the author believes that the bene-
fits to the research community and industry could be significant, and that this
could encourage further interest within research communities for compression
of seismic data.
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[135] M. Radosavljević, Z. Xiong, L. Lu, and D. Vukobratović, “High bit-depth
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