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Preface

The study of differential equations is a broad field in both theoretical and applied
mathematics, physics, engineering, biology, chemistry and other sciences. Differential
equations play an important role in modeling almost all physical, technical or bio-
logical processes from celestial motion through bridge design to interaction between
neurons. Differential equations such as those used to solve real-life problems do not
necessarily have to be directly solvable. Instead, sometimes it is enough to just know
the properties of the solution such as periodicity, stability oscillatory, asymptotic be-
havior of non-oscillatory solutions and so on. An area that deals with this type of
research is known as qualitative theory of differential equations. On the other hand,
in the last fifty years, the application of difference equations in solving many problems
in statistics, engineering and science in general has experienced expansion. The de-
velopment of high-speed digital computer technology has motivated the application
of difference equations to ordinary and partial differential equations. Apart from this,
difference equations are very useful for analyzing electrical, mechanical, thermal and
other systems, the behavior of electric-wave filters and other filters, insulator strings,
crankshafts of multi-cylinder engines etc.

One of the most studied second-order nonlinear differential equations is
(EF) X'(8) + gt x() =0, A #1.

This equation is known as the Emden-Fowler type equation. When the coefficient
q is negative, the mentioned equation is also called the Thomas-Fermi equation. In
fact, studies of polytropic and isothermal gas spheres in the state of gravitational
equilibrium, the electron distribution in heavy atoms and electrostatic potential in the
spherically and cylindrically symmetric combustion products plasma volume, led to
the appearance of differential equations x”'(t) + t°x(t)* = 0. New problems in nuclear
physics, for example, problems related to nuclear matter in neutron stars, can be solved
using a model based on the solution of the Thomas-Fermi equation. The classic model
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Preface

is given in the form

and with the boundary conditions x(0) = 1, x(c0) = 0. This equation describes a
spherically symmetric charge distribution for a multi-electron atom.
As the generalization of the equation (EF) many authors studied equations

(A) (PO O (®) +aBR®F () =0,
and
(E1) (PR O ®) " + gk () = 0.

Properties such as existence, uniqueness and continuity of the solution, oscillatory and
nonoscillatory behavior of solutions of equation (A) have been studied in monographs
[31,66,[103] as well as in papers [12,13,[17,18,22,30, 58,59, 67,104-107,121}133-135].
Oscillation theory for fourth-order equations of the type (E;) was first developed by
Wu [137]. These results have been further developed and enriched with information
about the asymptotic behavior of nonoscillatory solutions of (E;) in the series of papers
in [57,160,78,:82,186,108,109,138].

Along with the differential equations (A), (E;) discrete counterpart of these equa-
tions

(B) A(p(n)|Ax(n)|* ' Ax(n)) + g(n)lx(n + DF'x(n + 1) = 0,
and
(D) A (p(n)| A?x(n)|* " Ax(n)) + g(n)lx(n + 2)F'x(n + 2) = 0,

has attracted many researchers, see e.g. [14-16,19-21,23,24,[123,1124,/127,/136] for
second-order equations and [3,5, 6,27-29,87,(125|126,(128-131}139] for fourth-order
equations and monographs [1,2].

Along with qualitative study of second-order and fourth-order nonlinear differ-
ence equations, nonlinear one-dimensional and two-dimensional difference systems
were also studied in [4} 55,56, 83}84,094,95|]. In the mid nineties, there was a signif-
icant interest in symmetric systems (see [9,(110-112,/117] and references therein). By
modifying certain parameters, general systems were obtained, often called close-to-
symmetric systems (see [118,119]). Multidimensional extensions of symmetric and
close-to-symmetric systems are cyclic systems of difference equations. Nonlinear
cyclic systems of second—order difference equations

(SE) A(pi(n)|Ax;(n)|“  Axi(n)) + qi(m)lxcia (n+ D)o (n+1) = 0, i =1,N, xn41 = X1,

iv



Preface

can be considered as natural generalization of second-order and fourth-order nonlin-
ear difference equations (B) and (D). However, asymptotic properties of solutions of
this type of difference systems have not been studied so far in the existing literature.

When studying the asymptotic behavior of solutions of nonlinear differential or
difference equations, the solutions are first classified on the basis of their behavior in
infinity, thus dividing the set of solutions into disjoint sets, whereby the necessary and
sufficient conditions under which it is not empty are determined for each of them. This
problem is easily solved for certain sets, however, there are sets for which this cannot
be done and only necessary or only sufficient conditions can be determined. For such a
solution, the problem of determining precise asymptotic formulas is almost impossible
to solve in the general case, i.e., assuming that the coefficients are continuous functions
when it comes to equations (A) or (E;) or that the coefficients are arbitrary sequences
when it comes to their discrete analogues. The recent development of asymptotic
analysis of differential and difference equations indicates that the problem can be
solved by using the theory of regularly varying functions and sequences.

The theory of regularly varying functions originated in 1930. when the conceptofa
regularly varying function was introduced by Karamata in [65]. Further development
was done by Avakumovi¢, Bojani¢, Tomié¢, Mari¢, as well as Bingham, Goldie, Seneta,
de Haan and many others (see monographs [10,42}43,[116]). Avakumovi¢ was the
first to consider the application of this theory in the asymptotic analysis of differential
equations (see [8]]). With the appearance of the papers of Mari¢ and Tomi¢ [89-93] and
Mari¢’s monograph [88]], the increasing application of this theory by other authors
began, providing important contributions to the understanding of the asymptotic
expansion for special classes of nonoscillatory solutions of linear and nonlinear dif-
ferential equations and systems of differential equations. Second-order differential
equation were studied in this framework e.g. in [68-72,80,81,85], for fourth-order dif-
terential equations see e.g. [73,74,79] and for study of systems of differential equation
in this framework see [46-51,54,(100,(101, 113]].

That the class of regularly varying functions in the sense of Karamata is not suitable
for describing the asymptotic behavior of positive solutions of the self-adjoint linear
second-order differential equation (p(t)x’(t))’ + q(t)x(t) = 0, in compare with the linear
second-order differential equation x”(t) + q(t)x(t) = 0, was first observed by Jaro$
and Kusano in [45]. The problem was solved by properly generalizing the class of
regularly varying functions in the sense of Karamata. In fact, the definitions and basic
properties of generalized regularly varying functions are given in [45] and applied in
the asymptotic analysis of the self-adjoint linear second-order differential equation.
This theory is also applied in papers [32,52,76,77,102] considering asymptotic behavior
of intermediate solutions of equations (A)and (E;) under different assumptions for
regularly varying coefficient p. In this Ph.D. thesis, we proceed further in this direction
by applying the theory of generalized regularly varying functions for the asymptotic
analysis of solutions of the fourth-order differential equation (E;) under certain integral
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condition.

On the other hand, the theory of regularly varying sequences, often called Kara-
mata sequences (see [64]), was developed during the seventies by Galambos, Seneta
and Bojani¢ in [11,41]. However, until the appearance of the paper of Matucci and Re-
hak [96], the connection between regularly varying sequences and difference equations
was not considered. In this paper, as well as in the following ones [97,99,114,115],
the theory of regularly varying sequences is further developed and applied in the
asymptotic analysis of linear and half-linear difference equations of the second-order,
giving necessary and sufficient conditions for the existence of regularly varying so-
lutions of these equations. After this, further development of the discrete theory of
regular variation, as well as its application to nonlinear difference equations of type
Emden-Fowler type, can be found in [7]. Another goal of this Ph.D. thesis is to further
develop the theory of regularly varying sequences with application to second-order
difference equations of type (B)as well as to cyclic systems of difference equations
(SE).

Along with the theory of regularly varying functions and sequences, the theory of
rapidly varying functions and sequences has also been introduced by de Haan [43]
in 1970. In the continuous case, there are many results that consider the relationship
between rapidly varying functions and the behavior of linear and nonlinear differential
equations (see [25,26,31,39,40,53,122]). For some properties of rapidly varying
sequences we refer to [34], while rapidly varying solutions of linear and half-linear
second-order difference equations were studied by Rehak and Matucci in [96,98]. Also,
papers of Djurcié, Elez, Koc¢inac and Zizovié (see [33,35-38]) showed the connection
between Karamata theory and the theory of rapidly varying sequences along with
selection principles theory, game theory and Ramsey theory, indicating the wide
application of regularly and rapidly varying sequences.

The dissertation is organized into four chapters, followed by a bibliography and a
biography of the author.

The first chapter is of an introductory character. First, the basic concepts and
theorems that will be used further are presented. Then, the basics of the theory of
regularly varying functions and sequences, are given (sections and [1.3), which
gives a framework within which equations and systems will be considered.

In the second chapter, the Emden-Fowler differential equation of the fourth-order
(E1)is considered. The equation (E;) will be considered under certain integral condi-
tion for the coefficient p, under which it was already considered by Kusano and Tani-
gawa in [82]. Assuming that coefficients are continuous functions, they determined
the necessary and sufficient conditions for the existence of four types of primitive so-
lutions. However, for two types of intermediate solutions, only sufficient conditions
for the existence were given. Assuming that the coefficients of the equation are gener-
alized regularly varying functions, we will not only give the necessary and sufficient
conditions for the intermediate solutions to exist, but we will also determine their

vi
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precise asymptotic formula. Main results presented in sections are original
and published in the paper [132].

In the third chapter, we will study a discrete analogue of the equation (A), that is,
the equation (B) assuming that the coefficient g is negative. The boundary asymptotic
behavior of decreasing solutions plays an important role in the discretization of certain
elliptic problems with free boundaries. This is one of the reasons that indicate the
necessity for a detailed analysis of these solutions. However, for sublinear casei.e. f <
a there are no results in the existing literature for the existence of strongly decreasing
solutions, while for the existence of strongly increasing only sufficient conditions
are known. Therefore, we will limit ourselves to equations whose coefficients are
regularly varying sequences and examine in detail the strongly increasing and strongly
decreasing solutions. Necessary and sufficient conditions for the existence of these
solutions as well as their asymptotic representation formulas, will be established,
which will allow us to present the complete structure of a set of regularly varying
solutions. Results presented in sections B.5|and [3.6|are original and published in the
papers [|62,63].

The fourth chapter is dedicated to the complete analyze of positive solutions of the
cyclic systems of type (SE) for both positive and negative g;. For each of the systems,
the classification of solutions according to behavior at infinite was done first. After
that, the necessary and sufficient conditions for the existence of primitive solutions
were determined. These solutions behave asymptotically as a constant function or as a
constant function multiplied by another suitable function. To examine the intermedi-
ate solutions of the system (SE) when g; are positive and strongly increasing, strongly
decreasing solutions of the system (SE) when g; are negative, we will assume that the
coefficients of those systems are regularly varying sequences. As in the previous chap-
ter, necessary and sufficient conditions for the existence of all possible types of these
solutions, as well as their asymptotic representation formulas, will be established. The
whole chapter is based on the original results, among which results presented in Section
was published in [61].
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Chapter 1

Introduction

The most practical solution is a good theory.
Albert Einstein (1879 - 1955)

Primary purpose of this chapter is to present some basic definitions and theorems
used throughout the thesis. Fixed point theorems and theory of regular variation, as
our main tools, are presented in the following sections.

1.1 Basic notations, definitions and theorems

In the beginning, we first define the asymptotic equivalence relation and the domi-
nance relation that will be used through the thesis.

Definition 1.1.1 Let f(t) and g(t) be two positive functions. The asymptotic equivalence
relation ~ of functions f and g is defined as

f(t) ~g(t), t > 0 im &9 _ 1.

ime f(t)

Definition 1.1.2 Let f(t) and g(t) be two positive functions. The dominance relation <
between functions f and g is defined as

fity<gt), t—-> o0 & lim&—oo

ime f(t)

To better understand one of our main tools -fixed point theorems, we provide the
following basic definitions.



1. Introduction

Definition 1.1.3 A subset S of a normed space X is called convex if, for any x,y € S,
Ax+ (1 —=A)y e Sforall A €[0,1].

Definition 1.1.4 A subset S of a Banach space X is said to be compact if every sequence of
elements of S has a subsequence which converges to an element of S. Set E is relatively compact
(or precompact) if its closure is compact.

Definition 1.1.5 Let X and Y be two metric spaces, and ¥ a family of functions from X to Y.
The family F is equicontinuous at a point xo € X if for every € > 0, there exists 6 > 0 such that
d(f(xo), f(x)) < € forall f € Fand all x such that d(xo, x) < 6. The family is equicontinuous
on X if it is equicontinuous at each point of X. The family F is uniformly equicontinuous if for
every € > 0, there exists 6 > 0 such that d(f(x1), f(x2)) < € forall f € F and all x;,x, € F
such that d(x1,x;) < 0.

Definition 1.1.6 The family ¥ of functions from C([a, b], R) is uniformly bounded on [a, b]
if there exists a positive real number K so that |f(t)] < K for all t € [a,b] and all f € F.

Fixed point techniques will be used to prove the existence of solutions of equations
and systems under consideration. In fact, throughout the thesis next two fixed point
theorems will be used.

Theorem 1.1.1 (KNaSTER-TARSKI FIXED POINT THEOREM) Let X be a partially ordered Banach
space with ordering < . Let M be a subset of X with the following properties: The infimum of
M belongs to M and every nonempty subset of M has a supremum which belongs to M. Let
F : M — M be an increasing mapping, i.e. x > y implies ¥ x > Fy. Then F has a fixed
point in M.

Theorem 1.1.2 (SCHAUDER-TYCHONOFF FIXED POINT THEOREM) Let S be closed, convex,
nonempty subset of a locally convex topological vector space X. Let T be a continuous mapping
from S to itself, such that TS is relatively compact. Then T has a fixed point.

To prove that appropriately constructed operator T from the previous theorem is
continuous, we will apply the following theorem.

Theorem 1.1.3 (LEBESGUE DOMINATED CONVERGENCE THEOREM) Let {f,} be a sequence of
real-valued measurable functions on a measurable set S, such that lim,,_,. f,(x) = f(x), almost
everywhere on S. Also, let g(x) be an integrable on S, such that | f,(x)| < g(x) almost everywhere

on S and for all n. Then
lim f Fu(x)dx = f F(x)dx.
n—oo S S

When it comes to main results for differential equations, we use the preceding
theorem, while in the proofs of main results for difference equations, we use its
discrete analogue.

2



1.1. Basic notations, definitions and theorems

Theorem 1.1.4 Let {a™ (k)} be a double real sequence, a™ (k) > 0 for m,k € IN such that
lim,, 0 2™ (k) = A(k), for every k € IN. Assume that the series Y -, a"™ (k) is totally conver-
gent, that is, there exists a sequence {o(k)} such that a"™ (k) < a(k) with Y i, a(k) < co. Then,
the series Y ;-1 A(k) converges and

lim Y a®™(k) = Z A(k)
R P

To apply the Schauder-Tychonoff fixed point theorem, relatively compactness of
the set TS must be verified and for that purpose the following statement will be used.

Theorem 1.1.5 (ArzeLA-AscoL1 THEOREM) The set S of continuous functions from C([a, b], R)
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].

As before, in the discrete case we need a discrete version of the Arzela-Ascoli
theorem.

Theorem 1.1.6 A bounded, uniformly Cauchy subset Q of I*° is relatively compact.

Our main tools to show the the existence of regularly varying solutions are, besides
fixed point theory and theory of regularly varying functions and sequences, presented
in the following sections, the generalized L'Hospital rule (see [44]) and Stolz-Cesaro
theorem (see [120]).

Theorem 1.1.7 Let f, g € C'[T, ). Let

(1.1.1) tlim g(t)y=00 and g'(t)>0 foralllarget.
Then
’ t "t
lim inf Y, < limin ff( ) < limsup — U9 < limsup U0,

oo /() T e g() T s 8D T oe &)
If we replace (1.1.1)) with the condition

}im ft) = }im gt)=0 and g'(t)<0 foralllarget,
then the same conclusion holds.

We recall two variants of the Stolz-Cesaro theorem.
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Theorem 1.1.8 If f = {f(n)} is a strictly increasing sequence of positive real numbers, such
that lim,,_,, f(n) = oo, then for any sequence g = {g(n)} of positive real numbers one has the
inequalities:

Af(n) i f) _ . Af(n)
R B = PR gty =P g = PP Bt
In particular, if the sequence {A f(n)/Ag(n)} has a limit, then
(1.1.2) m L iy 20D

2 g T R Ag(n

Theorem 1.1.9 Let f = {f(n)}, g = {g(n)} be sequences of positive real numbers, such that
(i) im0 f(n) = lim,, e g(n) =
(ii) the sequence g is strictly monotone;
(iii) the sequence {A f(n)/Ag(n)} has a limit.

Then, a sequence {f(n)/g(n)} is convergent and holds.

1.2 Regularly varying functions

The concept of regular variation was introduced by one of the most frequently cited
Serbian mathematicians, Jovan Karamata (1902-1967), in 1930 (see [65]). The applica-
tion of the theory of regular variation is quite wide, and therefore it can be considered
as a chapter of mathematical analysis. The appearance of a monograph of Mari¢ [88]]
initiated a large number of researchers to apply the theory of regular variation in
the study of differential equations of the second or higher orders and some systems,
functional differential equations, difference and dynamic ones, as well as some partial
differential ones.

We recall that the following definition introduces the set of regularly varying
functions of index p € R.

Definition 1.2.1 A measurable function f : (a,00) — (0,00) for some a > 0 is said to be
regularly varying at infinity of index p € R if

. f(AD
lim
t—o0 f

The totality of all regularly varying functions of the index p is denoted by RV(p). In
the particular case when p = 0, we use the notation SV instead of RV(0) and refer
to members of SV as slowly varying functions. Any function f € RV(p) is written

= AP forall A > 0.

4



1.2. Regularly varying functions

as f(t) = t* g(t) with g € SV, and so the class SV of slowly varying functions is of
fundamental importance in the theory of regular variation. If
- fO
th_}rg el }Lrg g(t) = const > 0

then f is said to be a trivial regularly varying function of index p and it is denoted by
f etr—=RV(p). Otherwise, f(t) is said to be a nontrivial regularly varying function of
index p and it is denoted by f € ntr — RV(p). For a complete exposition of regular
variation theory and its application to various branches of mathematical analysis, we
suggest looking at N.H. Bingham et al. [10] and E. Seneta [116].

We give some examples of regularly varying function. Trivially, function with
positive limits (at infinity), in particular, positive constants are slowly varying. Of
course, the simplest non-trivial example is /(x) = logx. The iterates loglogx, which
will be denoted with log, x, log, x = loglog, _, x are also slowly varying as are powers
of log, x, rational functions with positive coefficients formed from the log, x. Non-
logarithmic examples are given by

N

I(x) = exp {H (logk x)ak}, O<ar<1, k=1,N,

k=1
{ log x }
I(x) = exp .

log, x

and

An example of a slowly varying function which infinity oscillate, i.e. for which
hold
liminfl(x) =0, limsupl(x)= oo

is
I(x) = exp {(log x)% cos (log x)%} .
One of the most important theorem from theory of regular variation in the research

of differential equations is Karamata’s integration theorem which gives information about
the asymptotic behavior of the integral of a regularly varying function.

Theorem 1.2.1 (KARAMATA’S INTEGRATION THEOREM) Let | € SV. Then,

(i) Ifa > -1,
L ()
ja‘sl(s)ds~ PR t — oo,

00 a+1
f s I(s) ds ~ ! 1) t — oo;
t

a+1’

(i) Ifa < -1,
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(iii) If a = -1,
t
L*() = f s(s)ds, L* € SV

and .
Ly (t) :f st(s)ds, L, € SV.
t

In order to properly describe the possible asymptotic behavior of nonoscillatory
solutions of the self-adjoint second-order linear differential equation

(p(Ox' (1) + g()x(t) = 0,

which are essentially affected by the function p, Jaro$ and Kusano introduced in [45]
the class of generalized Karamata functions with the following definition.

Let R(t) be a positive function which is continuously differentiable on (a, o) and
satisfies R’(t) >0, t > a and }Lrg R(t) = oo.

Definition 1.2.2 A measurable function f : (a,00) — (0, 0) for some a > 0 is said to be
regularly varying of index p € R with respect to R if f o R™! is defined for all large t and is
regularly varying function of index p in the sense of Karamata, where R~ denotes the inverse
function of R.

The symbol RVz(p) is used to denote the totality of regularly varying functions of
index p € R with respect to R the symbol SV is often used for RV(0).

It is easy to see that for generalised regularly varying function hold similar prop-
erties. Namely, if f € RVr(p), then f(t) = R(t)" g(t), g € SVr. If

lim J) = lim g(¢) = const > 0
t—o0 R(t)p t—o0

then f is said to be a trivial regularly varying function of index p with respect to R
and it is denoted by f € tr — RVz(p) . Otherwise, f is said to be a nontrivial regularly
varying function of index p with respect to R and it is denoted by f € ntr — RVz(p).
Also, from Definition it follows that f € RVr(p) if and only if it is written in
the form f(t) = g(R(t)), g € RV(p). It is clear that RV (p) = RV(p). We emphasize
that there exists a function which is regularly varying in generalized sense, but is not
regularly varying in the sense of Karamata, so that, roughly speaking, the class of
generalized Karamata functions is larger than that of classical Karamata functions.
Indeed, if we denote

exp,t = exp(exp,_,t), exp,t=t,
then
2 +sin(exp, t) € SV, 2+ sin(exp,t) € SVexp,+-

Let we present here some elementary properties of generalized regularly varying
functions.

6



1.3. Regularly varying sequences

Proposition 1.2.1 (i) If g1 € RVr(01), then g € RVr(a01) for any a € R.
(ii) If i € RVr(0i),1=1,2, then g1 + g € RVr(0), 0 = max(oy, 02).
(iii) If gi € RVr(0:),i=1,2, then g18> € RVr(01 + 02).
(iv) If gi € RVr(0i),i=1,2and go — o0 ast — oo, then g1 o g € RVr(0102).
(v) If1 € SV, then for any € > 0,

lim R()‘I(H) = o0, Lim R()™LE) = 0,

t—o0

Here, also, we present a fundamental result (see [45]), called Generalized Karamata
integration theorem, which will be used throughout the Chapter [2| and play a central
role in establishing main results for solutions of differential equations of fourth-order.

Theorem 1.2.2 (GENERALIZED KARAMATA INTEGRATION THEOREM) Let f € SVi. Then,

(i) Ifa> -1,
t R a+1
[ rorer s as~ 2L, ,
(i) Ifa < -1,
00 R a+1
f R'(s) R(s)* f(s) ds ~ —(to)(f{(t), ;

(iii) Ifor = -1,
r*(t) = f R'(s)R(s)™* f(s) ds, 1* € SVx

and

re(f) = foo R'(s)R(s)™! f(s) ds, 1« € SVk.

1.3 Regularly varying sequences

Let turn our attention now to regularly varying sequences. There are two main
approaches in the basic theory of regularly varying sequences: the approach due
to Karamata [64], based on a definition that can be understood as a direct discrete
counterpart of simple and elegant continuous definition (see Definition[1.2.1), and the
approach due to Galambos and Seneta, based on purely sequential definition.
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Definition 1.3.1 (Karamata [64]) A positive sequence v = {y(k)},k € IN is said to be
regularly varying of index p € R if

i YUAKD

=AP for VA >0,
k—o0 y(k) f

where [u] denotes the integer part of u.

Definition 1.3.2 (GaramBos AND SENETA [41]]) A positive sequence v = {y(k)},k € N
is said to be reqularly varying of index p € R if there exists a positive sequence {a(k)}

satisfying
y(k)

i B ) Aak-1)
im o =& 0<C<e limk—m—=

If p = 0, then y is said to be slowly varying. The totality of regularly varying
sequences of the index p and slowly varying sequences denoted, respectively, by
RV (p) and SV.

Bojani¢ and Seneta have shown in [11]] that Definition [1.3.T]and Definition[1.3.2]are
equivalent.

The concept of normalized regularly varying sequences was introduced by Matucci
and Rehak in [97], where they also offered a modification of Definition i.e. they
proved that the second limit in Definition can be replaced with

. Aa(k)
lim k ak)

Definition 1.3.3 A positive sequence y = {y(k)}, k € N is said to be normalized regularly
varying of index p € R if it satisfies

kAy(k)

lim —— =

koo y(k)

If p = 0, then y is called a normalized slowly varying sequence.

In what follows, NRV(p) and NSV will be used to denote the set of all normalized
regularly varying sequences of the index p and the set of all normalized slowly varying
sequences.

Typical examples are:

{logk} € NSV, (k" logk} € NRV(p), {1+ (~1)/k} € SV\NSV.

In order to present results for a system of difference equations, we need to define
a regularly varying vector x € NR x ... X NR, where NR = {f| f : N — R}.

8



1.3. Regularly varying sequences

Definition 1.3.4 A vector x € NRx...xNR, x = ({x1(n)}, . .., {xn(n)}) is said to be reqularly
varying of index (p1, pa, ..., pn) if Xi = {x1(n)} € RV(p;) for i = 1,N. If all p; are positive
(or negative), then x is called regularly varying vector sequence of positive (or negative) index
(p1, P2, - - -, pn)- The set of all reqularly varying vectors of index (p1, pa, . . ., pn) is denoted by
R(V(p1, P2+, pN)

A various necessary and sufficient conditions for a sequence of positive numbers
to be regularly varying was established (see [11}41,96,97]) and consequently, each
one of them may be used to define regularly varying sequence. The one that is the
most important is the following Representation theorem (see [11, Theorem 3]), while
some other representation formula for regularly varying sequences was established
in [97, Lemma 1].

Theorem 1.3.1 (REPRESENTATION THEOREM) A positive sequence {y(k)}, k € IN is said to be
reqularly varying of index p € R if and only if there exists sequences {c(k)} and {6(k)} such
that

%im c(k) =co € (0,00) and %im o(k) =0,

and
k

y(k) = c(k) k" exp (Z @] :

i=1

In [11] very useful embedding theorem was proved, which gives the possibility of
using the continuous theory in developing a theory of regularly varying sequences.
However, as noticed in [11], such development is not generally close and sometimes
far from simple imitation of arguments for regularly varying functions.

Theorem 1.3.2 (EmBEDDING THEOREM) If v = {y(n)} is reqularly varying sequence of index
p € R, then function Y(t) defined on [0, ) by Y(t) = y([t]) is a reqularly varying function
of index p. Conversely, if Y(t) is a regularly varying function on [0, o0) of index p, then a
sequence {y(k)}, y(k) = Y(k), k € IN is reqularly varying of index p.

Next, we state some important properties of RV sequences useful for the devel-
opment of the asymptotic behavior of solutions of (E) in the subsequent section (for
more properties and proofs see [11,96]).

Theorem 1.3.3 Following properties hold:
(i) y € RV(p) if and only if y(k) = k? I(k), where | = {I(k)} € SV.

(ii) Let x € RV(p1) and y € RV(p2). Then, xy € RV(p1 + p2), x +y € RV(p),
p = max{p1, po} and 1/x € RV(-p1).
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ylk+1)
yky
(iv) If 1 € 8V and I(k) ~ L(k), k — oo, then, L € SV.

(v) If 1 € 8V, then for any € > 0,

(iii) If y € RV(p), then limy_,o 1.

lim k/(k) = oo, Limk™I(k) = 0,

k—o0

ie. if y € RV(p), then
I}im k™y(k) = o0,  foreveryo <p

and
%im k™ty(k) =0, for every u > p.

(vi) y € RV(p) if and only if for every o < p and for every v > p

max(k“’y(k)) ~n"’y(n) and }(r;}f(k‘“y(k)) ~n%y(n) asn — oo,

1<k<n

min(k‘”y(k)) ~n"y(n) and sup(k‘”y(k)) ~n"y(n) asn — oco.

1<k<n kon

(vii) If y € NRV(p), then {n=y(n)} is eventually increasing for each o < p and {n~*y(n)}
is eventually decreasing for each u > p.

In view of the statement (i) of the previous theorem, if for y € RV(p)

lim yh = lim I(k) = const > 0,

k—oo kP k—oco
then y = {y(n)} is said to be a trivial reqularly varying sequence of the index p and is
denoted by y € tr — RV(p). Otherwise, y is said to be a nontrivial regularly varying
sequence of the index p, denoted by y € ntr — RV(p).

The next theorem can be found in [7] for normalized regularly varying sequences,
but it clearly holds for all regularly varying sequences because its proof is based on
the Mean Value Theorem and property (iii) from Theorem which holds for all
RV sequences (not only for NRV).

Theorem 1.3.4 If f = {f(n)} € RV isastrictly decreasing sequence, such that lim,, ., f(n) =
0, then for each y € R

(1.3.1) lim f (n)‘VZ FERP(-AfK) =
k=n

|

10



1.3. Regularly varying sequences

If ¢ = {g(n)} € RV is a strictly increasing sequence such that lim,,_,., g(n) = oo, then

n—1

(1.3.2) lim g(n)" VZ gk Ag(k) =

k=1

The next inequality, which directly follows by Bernoulli’s inequality, will be used
in the proof of next theorem.

Lemma 1.3.1 Forall n € N and a < -1 the following inequality holds

na+1 _ (7’1— 1)a+1 <o (1’1 + 1)a+1 _na+1
Sn s
a+1 a+1

The following theorem can be seen as the discrete analog of the Karamata’s integration
theorem and plays a central role in the proving this thesis’s main results. We prove
some parts (which are missed) in [62]. Also, some parts of this theorem’s proof can be
found in [11]] and [114].

Theorem 1.3.5 Let | = {I(n)} € SV.

, , IR w P U
G) Ifa>-1, then 3%na+ll(n)2kl(k)_l+a,

n_m n"‘“l(n) Z:: ;

() If a<-1, then

lll) If Z l(k) o, then S*(n) Z (T S* S S(V and ]11_1)1010 Slzl(;)l) = 00,
k=n
@ I Y O o, then st = % 5* €SV and lim SIIS;) _
k=1 k=1

Proor. (i) See [11, Theorem 6].

(ii) Assume that ! € 8V and let @ < —1. Choose v > 0 such that « < —v — 1. Then,
by Lemma [1.3.1]

[o¢] [se] (o8]

Y ki) = Y kL < sup(k0) Y ke
k=n k=n k>n k=n
hau a+v+1l _ patv+l 1+a+v
< suplio) L T =supl) (-

11
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implying that

= 1 sup,,(k™1(K))
Z K1) <~ : .

ne+li(n) & a+v n=Il(n)
Then, Theorem[1.3.3}(v) ( for p = 0) yields

(o]

1 ) 1
net1l(n) ;‘k k) < lta+v

Moreover, if we choose o < 0 such that @ < —0 — 1, we get by using Lemma|[1.3.]]

Yty = e 2 ) Y 2 ) ().

l+a+o
k=n k=n k=n

(1.3.3) lim sup

or
1rato inf, (k-1(K)
sty k)
n““l (n) l+a+o n n=ol(n)
Thus, by Theorem [1.3.3}(v) (for p =0)
o] 1
(1.3.4) lim inf — +1l )Zk k) 2~

Finally, from (1.3.3) and (1.3.4), since v > 0 and ¢ < 0 can be chosen arbitrarily close to
zero

: IR o |
i na+lz(n)k;k W=z

(iii) From Theorem for I € SV we have that the function I/([x]), x > 1 is slowly
varying. Also,

el U, D
(1.3.5) S*(n)—;T— f = f ———dx,

for every n € IN. Because the sum Z,‘f’l % is convergent, the integral floo @dx is

convergent too, where L(x) = [([x]) - 75, x > 1. Also, L is slowly varying function,
because L(x) ~ [([x]), x — oo, which follows from fact that x ~ [x], when x — oo.
Now, from Karamata’s integration theorem (Theorem [1.2.1) function Y defined as

Y(x) = fx ” @dt, x > 11is slowly varying, so the restriction y = {y(n)} of function Y on

the set of naturals numbers, where y(n) = fn ~ @dt, n € IN, is slowly varying sequence.
From (1.3.5), S is slowly varying.

12



1.3. Regularly varying sequences

Further, from Karamata’s integration theorem follows that

1 k) 1 * I([t]) . 1 f‘” (D - g
lim — - 2 - . 2V = im — d
e 1) kZ T RIED Jy TR S Sy T

| “ L),
= ;%L(x)ﬁ tdt—oo.

(iv) Similarly as in (iii). O

Remark 1.3.1 Itis easy to see, in view of Theorem (iii) and Theorem (1), that
forl € SV, if a > -1, we have

and since lim,, e Y-

n—1
K1(k) ~

k=1

(n—-1D%Un-1) n*Un)
a+1 a+1

~ Z Ik, — n— oo,
k=1

_11 k¢I(k) = oo, we also get

i K 1(k) ~ Z. Klk), 1 — oo

k=n0 k=1

If lim,, o )y k7(k) = 00, we have

Zn:k_ll(k) ~ ik‘ll(k), n — oo.
k=1

k:no

13






Chapter 2

Fourth order nonlinear differential
equations

2.1 Introduction

In this chapter we are going to study the equation

(1) (PO OF X" ®) +qO®Fx) =0, t=a>0,
where

(i) @ and p are positive constants such that a > f,

(ii) p,q:[a, 00) — (0, 00) are continuous functions and p satisfies

0 41+(1/a)
©) I; —p(t)l/“ dt < oo

In the existing literature (see [57,60,86,[108,(109}137,138]) the existence and asymp-
totic behavior of eventually positive solutions as well as oscillation criteria for the
equation (E;), was discussed depending on the convergence or divergence of the

following integrals
00 00 1/a
t t
A

Through classification of eventually positive solutions, it has been established that
there are classes of so-called primitive solutions satisfying x(t) ~ ¢;(t), t — oo, for
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2. Fourth order nonlinear differential equations

precisely defined functions ¢;(t), i € {1,2,3,4} (commonly in some integral form de-
pending on the coefficient of the equation (E;)). Existence of primitive solutions
has been fully characterized by necessary and sufficient conditions. The other main
objective in these papers was to establish necessary and/or sufficient conditions for
oscillation of all solutions of (E;). However, the existence of so-called intermediate
solutions (satisfying e.g. ¢1(t) < x(t) < ¢a(t), t — o) was not considered in any of
the mentioned papers, until recently in [77}[102]. In fact, the existence and asymptotic
representations of intermediate solutions of (E;), under assumptions I; = oo, I, = oo,
was studied in the framework of regular variation by Kusano, Manojlovi¢, Milosevi¢
in [77] and Milo8evi¢, Manojlovi¢ in [102]. Recently, intermediate solutions of (E;) was
considered under assumptions I; < oo, I, = oo, in [32].

The oscillatory and asymptotic behavior of solutions of (E;) under the condition
(C)was already considered in [78,82]. Kusano and Tanigawa in [82] performed a
complete classification of eventually positive solutions and established necessary and
sufficient conditions for the existence of four types of primitive solutions. Unlike prim-
itive solutions, establishing necessary and sufficient conditions for the existence of the
intermediate solutions seems to be much more difficult task. Thus, only sufficient
conditions for the existence of these solutions was obtained in [82]. Afterwards, sharp
oscillation criteria (establishing necessary and sufficient conditions for oscillation of
all solutions) was obtained by Kusano, Manojlovi¢ and Tanigawa in [78§].

In this chapter, motivated by papers [77,78}82}[102], considering open problem of
obtaining necessary and sufficient conditions for (E;) to possess two types of interme-
diate solutions, our task is to solve this problem and moreover to determine precisely
asymptotic behavior at infinity of these two types of intermediate solutions. Since this
problem is very difficult for the equation (E;) with general continuous coefficients p
and g, we solve the problem in the framework of regular variation, that is, limiting our-
selves to the case where p and g are regularly varying functions and placing attention
on regularly varying solutions. In fact, to make clear the dependence of asymptotic
behavior of intermediate solutions on the condition (C), we use theory of general-
ized regularly varying functions (or generalized Karamata functions). Thereafter, we
show that the problem of getting necessary and sufficient conditions for the existence
of intermediate solutions which are regularly varying in the sense of Karamata, can
be embedded in the framework of generalized regularly varying functions. The ob-
tained results, combined with existing results on the existence of primitive solutions
of (E1) (Theorems(2.2.112.2.4), enable us to finally present the full structure of the set of
regularly varying solutions for the equation (E;) with regularly varying coefficients.

Sections [2.5|are based on the original results published in [132]].
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2.2. Classification of positive solutions

2.2 Classification of positive solutions

Definition 2.2.1 Function x : [T,00) — R, T > a is a solution of (E,)if and only if it is
twice continuously differentiable together with plx”'|*~1x" on [T, o) and satisfies the equation
(Eq) at every point in [T, co).

A solution x of (E;)is said to be nonoscillatory if there exists T > a such that x(t) # 0
for all t > T and oscillatory otherwise. It is clear that, if x is a solution of (E;), then so
does —x, and so in studying nonoscillatory solutions of (E,) it suffices to restrict our
attention to its (eventually) positive solutions. The equation (E,) is called sub-half-linear
if B < a and super-half-linear if p > a.

Kusano and Tanigawa in [82] made a detailed classification of all positive solutions
of the equation (E;) under the condition (C) and established conditions for the existence
of such solutions. It was proved that the following four types of combination of the

signs of x’, x”” and (plx”l‘)“1 x”)’ are possible for an eventually positive solution x of
(E1):

(2.2.1) (PO x"(#) >0, x’(t)>0, x'(t)>0 foralllarget,
(2.2.2) (BB X’ (#) >0, x’(t)>0, x'(t)<0 foralllarget,
(2.2.3) (PO %" () >0, x"(t)<0, x'(t)>0 foralllarget,
(2.2.4) (PO %) <0, x"() <0, x'(t)>0 foralllarget.

In order to describe all positive solutions of (E;), a special role is played by the four
functions

oo o0 1/a
Pr(b) = ft pis;)lf“ ds, @alt) = ft (s—1) (%) " w=1, =t
which are particular solutions of the unperturbed differential equation
(p(H)lx" (B " (1) = 0.
Note that functions ¢; and ¢;, i = 1,2 defined above satisfy the dominance relation
P1(t) < @2(t) < P1(t) < ho(t), t— oo

As a result of further analysis of the four types of solutions mentioned above, Kusano
and Tanigawa in [82] have shown that the following six types are possible for the
asymptotic behavior of positive solutions of (E;):

(P1) x(t) ~ c1p1(t), ast — oo,
(P2) x() ~ capa(t) as t — o,
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2. Fourth order nonlinear differential equations

(P3) x(t) ~cz3ast — oo,
(P4) x(t) ~ cqt ast — oo,

(I1) @1(f) < x(t) < pat) ast — oo,
(12) 1 <x(t)<tast — oo,

wherec; > 0,i = 1,2, 3,4 are constants. Positive solutions of (E;) having the asymptotic
behavior (P1)-(P4) are collectively called primitive positive solutions of the equation
(E1), while the solutions having the asymptotic behavior (I1) and (I2) are referred to
as intermediate solutions of the equation (E;).

The interrelation between the types (2.2.1)-(2.2.4) of the derivatives of solutions
and the types (P1)-(P4), (I1) and (I2) of the asymptotic behavior of solutions is as
follows:

(i) All solutions of a type (2.2.1) have the asymptotic behavior of type (P1);

(ii) A solution of type (2.2.2) has the asymptotic behavior of one of the types (P1),
(P2), (P3) and (I1);

(iii) A solution of type (2.2.3) has the asymptotic behavior of one of the types (P3)
and (P4);

(iv) A solution of type (2.2.4) has the asymptotic behavior of one of the types (P3),
(P4) and (12).

The existence of four types of primitive solutions has been completely characterized
for both sub-half-linear and super-half-linear case of (E;) with continuous coefficients
p and g as the following theorems proved in [82] show.

Theorem 2.2.1 Let p,q € Cla, 00). The equation (E;) has a positive solution x satisfying (P3)
if and only if

) t 1/a
(2.2.5) Jh = f t(}% f (t—s)q(s)ds) dt < co.

Theorem 2.2.2 Let p,q € Cla, o). The equation (E,) has a positive solution x satisfying (P4)
if and only if

1/a

(2.2.6) J» = f (}% f (t —5)sP g(s) ds) dt < co.
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2.2. Classification of positive solutions

Theorem 2.2.3 Let p,q € Cla, o). The equation (E,) has a positive solution x satisfying (P1)
if and only if

(2.2.7) I3 = f tq(t)p:(t)P dt < oo.

Theorem 2.2.4 Let p,q € Cla, o). The equation (E;) has a positive solution x satisfying (P2)
if and only if

Next two theorems, proved in [82], give sufficient conditions for the existence of
intermediate solutions.

Theorem 2.2.5 If (2.2.8) holds and if

Js = f tq()p1 () dt = oo,
then the equation (E1) has a intermediate type positive solution satisfying (I1).

Theorem 2.2.6 If (2.2.6) holds and

00 1 t 1/a
31—\[1 t(Ml(t—s)q(s)ds) dt = oo,

then (E1) has a intermediate type positive solution satisfying (12).

Further, sharp conditions for the oscillation of all solutions of (E;)in both cases
(sub-half-linear and super-half-linear) have been obtained in [78§].

Theorem 2.2.7 Let f <1 < a. All solutions of (E;) are oscillatory if and only if
Jr=00.

Theorem 2.2.8 Let a <1 < f. All solutions of (Ey)are oscillatory if and only if
J3=00.
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2. Fourth order nonlinear differential equations

2.3 Asymptoticbehavior of intermediate generalized reg-
ularly varying solutions

In what follows it is always assumed that functions p and g are generalized regularly
varying of index n and o with respect to R, with R defined with

1

o 141 -
(2.3.1) R(t):( f st) ,

and expressed as
(2.3.2) pt) = R(t)"L,(t), I, € SVr and q(t) = R(t)L,(t), I, € SVr.
From and we have that
(2.3.3) e = R(R(E)7 2L, (8.
Integrating from a to t we have

£2+%

2+ 1
a

(2.3.4) _ f RGRE)2,(5) s, ¢ — oo,

implying that 1 > 1. In what follows, we limit ourselves to the case where n > «
excludes other possibilities because of computational difficulty. Applying the gener-

alized Karamata integration theorem (Theorem [1.2.2) at the right-hand side of (2.3.4)
we obtain

(2.3.5) F~ (Z2L) ™ REL(H)F, - oo
20+ 1 P

From (2.3.3) and (2.3.5) we can express R'(t) as follows

, T] - _20([)(%11 3a+1-n 1
(2.3.6) RI(¢) ~ ( S 1) RO FTL(H) 7, o,
which can be rewritten in the form
a+l
— X \2a+1
(2.3.7) 1~ ( 2’7 - 1)2 "RIBREOD ()P, oo,
04

The next lemma, following directly from the generalized Karamata integration theo-
rem using (2.3.7)), will be frequently used in our later discussions. To that end and to
further simplifying formulation of our main results, we introduce the notation:

—2a%* -1 n-a

(2.3.8) my(e, 1) = Ao+ 1) my(a,m) = a1

20



2.3. Asymptotic behavior of intermediate generalized RV-solutions

It is clear that m;(a, 17) < =1 < 0 < my(a, 1) and

(2.3.9) @) mia,n) = 2ma(a, 1) - g; (ii) % = 2y, ) —

In our main results constants m;(a, 1), i = 1,2, will be abbreviated as m;, i = 1,2,
respectively.

Lemma 2.3.1 Let f(t) = R(t)"L¢(t), Ly € SVr. Then:
(i) If u > —my(a,m),
~ & +ma(a,n) — .
f f(s)ds e R(t)* PLe(H),(H) =T,  t — oo;
(11) If[vl < _mZ(aI T])/

® (e, ) i
s)ds ~ R(t)F™@NL (B4 %7,  t — oo;
ft 1) —(u + ma(a, 1)) ® s )

(iii) If p = —my(a, ), then functions

f f(s)ds = f R(s)™"™@L (s) ds
foo f(s)ds = f‘” R(s)‘mZ(“'”)Lf(s) ds

are slowly varying with respect to R.

To make an in-depth analysis of intermediate solutions of type (I1) and (I12) of
(E;) we need a fair knowledge of the structure of the functions 11, ¢, ;1 and ¢»
regarded as generalized regularly varying functions with respect to R. It is clear that
Y1 € SVrg and from (2.3.5) we see that ¢, € RVr(my(a, n)). Using and applying
Lemma twice, we obtain

P1(t) = fwf“’ R(r)™"L,(r)™"* dr ds

(2.3.10) 2a+1)
My (a 1]) 20+1

(e, n)(ma(a, 1) — maa, m)

which shows that ¢; € RV (m1(a,n)). Further, by (2.3.2) and (2.3.5), in view of
(2.3.9)-(ii), another two applications of Lemma yield

o) ~ w51 [ ROY O 1,0y 5 dras

_ maan)
mZ(a/ 7]) +1

R(t)ml(%n) lp(t)_m, t— 0o,

(2.3.11)
R(t)_l, t — oo,

implying ¢, € RVr(-1).
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2. Fourth order nonlinear differential equations

2.3.1 Intermediate solutions of type (I1)

The first subsection is devoted to the study of the existence and asymptotic behavior
of generalized regularly varying solutions with respect to R of type (I1) with p and g
satisfying (2.3.2)). Expressing such a solution x of (E;) in the form

(2.3.12) x(t) = Rt 1.(t), L € SVg,
since @1(t) < x(t) < @a(t), t — oo, the regularity index p of x must satisfy
mi(a,n) < p < -1

If p = mi(a, 1), then x is a member of RVr(mi(a,n)), while if p = -1, then since
x(t)/pa(t) = ¢ - I(t) — 0, t — oo, where c is a real constant, x is a member of
ntr — RVr(=1). Thus the set of all generalized regularly varying solutions of type
(I1) will be divided into the three disjoint classes

RVr(mi(a,m) or
RVr(p) withp € (mi1(a,n), —1) or ntr—RVe(-1).

Our aim is to establish necessary and sufficient conditions for each of the above
classes to have a member and furthermore to show that the asymptotic behavior of all
members of each class is governed by a unique explicit formula describing the decay
order at infinity accurately.

Let x be a solution of (E;) on [ty, 00) such that ¢1(t) < x(t) < @a(t) as t — oo. Since

(2.3.13)

@314 lm(pOE®)) = imx'() = lmx(@) =0, Lmp"(®)" = e,

integrating (E,) first on [t, o), and then on [f, t] and finally twice on [t, o), we obtain

00 Wacs 1/a
(2.3.15) x(t) = ft ;(S%(EZ+ I f q(u)x(u)ﬁdudr) ds, t>t,

where &, = p(to)x” (to)".

To prove the existence of intermediate solutions of type (I1) it is sufficient to prove
the existence of a positive solution of the integral equation for some constants
to > a and & > 0, which is most commonly achieved by the application of Schauder-
Tychonoff fixed point theorem. Denoting by Gx(t) the right-hand side of (2.3.15), to
tind a fixed point of G it is crucial to choose a closed convex subset X C C[t;, o) on
which G is a self-map. Since our primary goal is not only proving the existence of
generalized RV intermediate solutions, but establishing a precise asymptotic formula
for such solutions, a choice of a subset X must be made appropriately. It will be shown
that such a choice of X is possible by solving the integral asymptotic relation

) S 0O 1/a
(2.3.16) x(t)~j; F%(Lf q(u)x(u)ﬁdudr) ds, t— oo,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

for some b > tj, which can be considered as an approximation (at infinity) of
in the sense that it is satistied by all possible solutions of type (I1) of (E;). Theory
of regular variation will in fact ensure the solvability of in the framework of
generalized Karamata functions.

Main results for the intermediate solutions of type (I1) are listed below and com-
pletely characterize the membership of each of the three classes of solutions given in

(2.3.13).

Theorem 2.3.1 Let p € RVr(1),q € RVr(0). The equation (E1) has intermediate solutions
x € RVr(m) satisfying (11) if and only if

(2.3.17) o=—pmy —2my and f tq(t)p:(t)F dt = oo.

The asymptotic behavior of any such solution x is governed by the unique formula

_g =7
(2.3.18) x(t) ~ Xi(t) = pa(t) (aa—ﬁf sq(s)p1(s) ds) , t— oo,

Theorem 2.3.2 Let p € RVr(1),q € RVr(0). The equation (E1) has intermediate solutions
x € RVr(p) with p € (my, -1) if and only if

(2319) - ﬁml —2my, <o < ‘3 — My,

in which case p is given by

(2.3.20) 0= (”0:’1%5“
and the asymptotic behavior of any such solution x is given by the unique formula
(2.3.21) x(t) ~ Xo(t) = [ 20( (mlr:(tz);a(; qjtil)%(gzp i,; = .t —> oo,

Theorem 2.3.3 Let p € RVr(n), 9 € RVr(0). The equation (E,) has intermediate solutions
x € ntr — RVr(-1) satisfying (11) if and only if

(2.3.22) o=f-my and f g(Hpa(t)F dt < 0.
The asymptotic behavior of any such solution x is given by the unique formula
a=p (7 5 7
(2323)  x)~ XM =) | 46 psfds| , oo,
t

23



2. Fourth order nonlinear differential equations

As preparatory steps toward the proofs of main results, we show that functions

X;,i = 1,2,3 defined by (2.3.18), (2.3.21) and (2.3.23)) are generalized RV-functions
satisfying the asymptotic relation (2.3.16).

Lemma 2.3.2 Suppose that (2.3.17) holds. The function X, given by (2.3.18) satisfies the
asymptotic relation (2.3.16) for any b > a and X; € RVr(m,).

Proof. From (2.3.2), (2.3.5) and (2.3.10), we have

2p(a+1)—a
2a+1

BP0 ~ —2 R, ()T (), oo,
(my(my — my))P

and applying (iii) of Lemma in view of (2.3.17)), we obtain

2B(a+1)—a
t m 2a+1 t ap
2.3.24 sq(s s ds ~ 2 fRs ™M (s)a@ ] (s)ds € SVkg,
(2:3.24) f 11 ds ~ s | RO HEOTTL) X

as t — oo, which together with (2.3.18) gives

2B(a+1)—a (,,+
RN (L SRl N O
~ V4 OO,
' L (mi(my —my))f !
where
¢ o
(2.3.25) ]1(t):fR(s)‘mzlp(s)ml[,(s)ds.

Thus, since J; € SVg, we conclude that X; € RVr(m1(a, 7)) and rewrite the previous

relation, using (2.3.10), as

my(my — my) a

w7
]l(t)) s t — oo,

(2326)  Xu(H)~ R@)" 1,0y T (( a )a_ﬁ

To prove that (2.3.16) is satisfied by X, we first integrate g(t)X;(t)f on [t, ), applying
Lemma and using (2.3.17), we have

B
® a . - a-p a- B
[ sy s~ s (i B R oo,

my(my —my
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

as t — oo. Integrating the above relation on [b, t], for any b > a, we obtain

B
e p o T ny “a- 5)”’5
‘[b j; q(r) X1(r)° drds ~ m, ((ml(ml — mz)) >

t —
x [ ROLOFTLORE ™ ds
b

B
g m N a-p\T [k
=1 ((m1(m1 - mz)) a ) L h(S) ﬁ dh(S)

B ap
__a m a — a
= 7 (( 2 ) ﬁ) Ji(H)aF, t— oo.

my(my — my) a

Applying Lemma and using (2.3.9)-(i), we obtain

ft wfs °° (;% f fm 7@ X(@)f dwdu)l/a drds

B o\&F
~(( 2 )“ i ] TRty (1) T ()7,

my(my — my) a my(my — my)

ast — oo, which due to (2.3.26) proves that X satisfies the desired asymptotic relation
(2.3.16) for any b > a. O

Lemma 2.3.3 Suppose that (2.3.19) holds and let p be defined by (2.3.20). The function

Xy given by (2.3.21)) satisfies the asymptotic relation (2.3.16) for any b > a and belongs to
RVr(p).

Proof. Using (2.3.8), (2.3.9)-(i) and (2.3.20) we obtain
(2.3.27) g+ pp+my=alp+1), G+pﬁ+2m2:a(p—ml):p_2m2+g_

The function X, given by (2.3.21) can be expressed in the form

2(a+1)?

(2.3.28) Xo(t) ~ (Aa?) =F mE P R(p)P (L=1,1)™T, t— e,

where
A= (plp —m))" (m1 —p)(p+1).
Thus, X € RVx(p). Using (2.3.27) and (2.3.28), applying Lemma twice, we find

(a+1)2ap+a+p)
(Ra+1)(a—p)

| g ey s - -—2 R()7™#9+ (1, ()= 1,(0) 7,
t (Aa?)™7 (0 + pp + m)
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2. Fourth order nonlinear differential equations

and

fbtfs"" q(r) Xo () dr ds

2a(a+1)(B+1)
m Qa+D)(a—=p) 20—p (llTﬁ
5 : ) R(t)o+p/3+2mz (lp(t) 2a+1 lq(t)a)
(A02)™ (~(0 + pp + m2))( + pp + 2my)
2a(a+1)(+1)
m2(2a+1)(afﬁ) 5 n 2a—p aleﬁ
_ : R(t)*P- m2+z)(lp(t)mlq(t)a) , t— o0,

(/’\az)maz(p +1)(my — p)

for any b > a. Therefore,

f oo 1/a
(r%j;f q(u)Xz(u)ﬁdudr)

2(a+1)(B+1)
m (a=p)(Ra+1)

N B RGO (1,0
(Aa2)T (@2(my = p)(p + 1)V

1
28-2a+1 ap
Za+1 lq(t)) ,

and the integration of the previous relation over [t, o) twice, with the application of

Lemma gives

ft “fs ) (z%r) fb f ) 9(@) Xo(@)’ dwdu)l/a drds

2(a+1)?

P : 1
~ 2 R (LOZT1,(H), - oo,

i
(102)™ p(p — ma)(a2(my — p)(p + 1)V
This, due to (2.3.28), completes the proof of Lemma m|

Lemma 2.3.4 Suppose that (2.3.22)) holds. Then the function X5 given by (2.3.23) satisfies
the asymptotic relation (2.3.16)) for any b > a and X5 € ntr — RVr(-1).

Proof. Using (2.3.2), (2.3.11)), (2.3.22) and applying (iii) of Lemma we obtain

o0 B
(2.3.29) ft 4(s) @a(s)P ds ~ (m:"j 1) (), t— oo,
where
(2.3.30) Ia(t) = f ) RE) ™l (5)ds,  J5 € SVi.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Thus, expression (2.3.23) is of the form

1
a—p

(2.331) Xs(t) ~ (m;”j 1)m R(t)‘l(a;ﬁ ]3(t)) 5 o,

From (2.3.30) and (2.3.31), using (2.3.14)), we see that X; € ntr — RVr(-1). Next, we
integrate g(t) X5(t)? on [t, ) and using (2.3.22), we obtain

N @ vy e
f e (m;n-lz- 1) (5 ! - f R(s)™14(s) Ja(s)* 7 ds
ﬁ — % (o]
) (m;ﬂ ) aﬁ f Js(6)77 (~dJ5(5))
:(mzn-lz-l) | aaﬁ J3(H)F € SVg, t— oo.

Further, integrating previous relation on [b, t] for any fixed b > a, by Lemma we
have

f © d[lfﬁi - a(XT’B —a_ 1 a
f f 9(H)X5(r) alrds~(mmfr 1) ’(a P ) my TR(E)™1,(8) 5 577, t — oo
b Js

2 04

As a result of the application of Lemma with the help of (2.3.9)-(ii), we obtain

ff w (;% fb f X dr)w ds

a
2a+1

B 1
my \ap [a—B\*F m, o . N
~— R(t)™™71] (H)" @@ [5(£)aF, ¢ )

(m2+1) ( o ) my + 1 () P() ]3() — &0

and

[ L G [ somirass]“ o

B 1
my \ab (@ — B\ T my . 1
~ R(t HF ~ X3(t), t— oo,
(m2+1) (oz) my +1 B () 3(1) *©

which in view of (2.3.31), completes the proof of Lemma m]
Now, we are ready to prove main results.
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2. Fourth order nonlinear differential equations

Proof of the “only if” part of Theorems [2.3.1} 2.3.2) and [2.3.3; Suppose that (E;) has
a type (I1) intermediate solution x € RVr(p) on [ty, o). Clearly, p € [m;,—1]. Using
(2.3.2) and (2.3.12)), we obtain integrating (E;) on [¢, o)

(2.3.32) (PO (B = f g(s)x(s)’ ds = f R 1)L (s) ds.

t

Noting that the last integral is convergent, we conclude that o + fp + m, < 0 and
distinguish two cases:

(1) o+Bp+my=0 and (2) o+pp+my<O0.

Assume that (1) holds. By Lemma (iii) function S; defined with

(2.3.33) Sa(f) = f ) R(s)™"™1y(s)le(s)" ds,

is slowly varying with respect to R, and according to (2.3.14) and (2.3.32) follows that
lim,_,o S5(f) = 0. Integration of (2.3.32) on [fo, t] shows that

a

(2.3.34) PO (1) ~ my PTR(E)™L, ()T S5(F), - oo,

which is rewritten using (2.3.9)-(ii) as

1
X (t) ~ m, 2+ R(t)—Zmz—llP(t)—ﬁSs(t)l/a’ F = oo,

Integrability of x” on [t,o0), and —m, — 1 < 0, allows us to integrate the previous
relation on [t, o0), implying

a
2a+1

—x'(t) ~ ™ R(A)™ () w1 S5(H)Y,  t — oo,
my + 1 P

which we may integrate once more on [t, ), to obtain

)
2.3. t) ~
(2:3.35) Xt~

R(t)7'S3(H)YY, t— oo,

Since S3 tends to zero, this shows that x € ntr — RVr(-1). Thus, p = -1 and from (1)
0= —ﬁ — ms.
Assume next that (2) holds. From (2.3.32)) we find that

a+l
2a+1
1

(PO O ~ —— 2 R ()T (O(0F, - oo,
o+ pp+m;

28



2.3. Asymptotic behavior of intermediate generalized RV-solutions

which by integration on [t,, t] implies

a+l
2a+1

(2.3.36) p(H(xX” ()" ~ —m f R(s)7+2] (5) 751 1, (5)],(s)Pds,

as t — oo. In view of (2.3.14), the integral on right-hand side is divergent, so ¢ + fp +
2my > 0. We distinguish the cases:

(2a) o+pp+2mpy=0 and (2b) o+ pp+2m, > 0.
Assume that (2.a) holds. Denote by

(2.3.37) Su(t) = f R(s) ™21, (5) 7 1, (5) L (s)Pds .

to

Then S; € SV and using (2.3.2) we rewrite (2.3.36) as
(2.3.38) X (t) ~ my TR L (7S, (B, oo

Because of integrability of x” on [t, o] and the fact that —g +my, = my —my <0, via

Lemma we conclude by integration of (2.3.38) on [t, oo] that

I 2
2a+1

a+1
—x'(t) ~ ——2—R(@E)" ™ [,(t) 7D S ()Y, t — oo,
(t) ml_m2() p(t) 1()

which because of integrability of x" on [t, o0) and m; < 0, we may integrate once more
on [t, o) to get

(2.3.39) x(t) ~ R(B)™L,(t) T Sy ()%, t — oo,

)
my(my — my)

The last relation implies that x € RVg(m;). Therefore, p = m; and from (2.a) 0 =
—ﬁm1 — Mmy.
Assume that (2.b) holds. From (2.3.36)), the application of Lemma gives

2(a+1)

m22a+1 +‘Bp+2 )
" a o my t“*ltlxtﬁ,
p(t)(x (t)) (g + ﬁp + mZ)(U + ﬁp + zmz)R(t) lp( )2 ! q( ) ( )
as t — oo, which yields
2(a+1)
m;aa_ﬂ) a+Bp+2my—n

X () ~ R(O)™ = LT 1)1 (1), £ — oo,

(=(0 + Bp + mp)(0 + Pp + 2my))H/e
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2. Fourth order nonlinear differential equations

Integrability of x” on [t,o0] allows us to integrate the previous relation on [t, o),
implying

2(a+1)
aa+1)

—x' ~ 2
(2340) * (t) (_(0 + ﬁp + mz)(a + ﬁp + 2m2))1/a

o0 a+pp+2my—r —2a
- f RE) ™ 7 () 01, () L(s)ds, ¢ — oo,
t

m

+pp+2my—
where w

guish two cases:

+ my < 0, because of the convergence of the last integral. We distin-

o+ pp+2my;—n o+ pp+2my—n
a a

(2.b.1) +m,=0 and (2.b.2) + m, < 0.
The case (2.b.1) is impossible because the left-hand side of (2.3.40) is integrable on

[to, 00), while the right-hand side is not, because it is slowly varying with respect to R.
Assume now that (2.b.2) holds. Then, the application of Lemma (2.3.1)) in (2.3.40)

and integration of resulting relation on [t, o) leads to

(a+1)(a+2)
aa+1)

2

.X'(t) T o+pp+2my—
(2.3.41) (—(0 + Bp + ma)(0 + Pp + 2mp))V/ (FHE2 4 )

0 o+pp+2my— —a
x f RE) ™ & L (s) T (s) () ds, £ — oo,
t

which brings us to the observation of two possible cases:

o+ pp+2my—n

o+ pp+2my—n
04

(2.b.2.1) +2m, =0 and (2.b.2.2) +2m, < 0.

!
In the case (2.b.2.1) the integral on the right-hand side of the relation is
slowly varying with respect to R by Lemma and so x € SVk. This is impossible
because p € [my, —1].
In the case (2.b.2.2) the application of Lemma gives

2(a+1)2

x(t) ~ mé‘m—m((—(a +Bp +my)(o + Bp + 2my))*

(2.3.42) « (a +Bp+2my—1 .\ mz) (a +Bp+2my—n s 2m2))_1

o (04

g+pp+2my—n

XR(H™ TRl T L, o,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

implying that x € RV(p), where p satisfies

+ Bp + 2m, —
(2.3.43) o= TPP - T om,,

The last relation implies that the index of regularity of x is given by (2.3.20).

Suppose that x is a type (I1) solution of (E;) belonging to RV(im1). From the above
observations this is possible only when (2.a) holds, in which case is satisfied.
Thus, p = my and 0 = —my B — 2my. Using x(t) = R(t)™1,(t), can be expressed as

"y

2.3.44 L) ~ KiL () @D S, ()12, ¢  where Kj = ——2
(2.3.44) (£) ~ Kil(t) 51(t) = oo, where K = —mr

and S, is defined by (2.3.37). Then (2.3.44) is transformed into the differential asymp-
totic relation for Si:

(2.3.45) S1(H)7% S(t) ~ KER(H) ™ L,()T 0 L,(t), t — co.
From (2.3.10) and (2.3.39), since lim;_, x(t)/@1(t) = oo, we have lim;_,o S1(t) = oo.

Therefore, integrating (2.3.45) on [t(, t], in view of the notation (2.3.25) and the fact
J1 € 8Vg, we find that the second condition in (2.3.17) is satisfied and

_ =
sao“%(%ﬁkfmt)) , to,

implying with (2.3.44) that

(2.3.46) x(t) ~ R(t)mllp(t)‘«<25+l> (%Ki‘h(t))m, t — oo.

In the proof of Lemma using (2.3.2), (2.3.5) and (2.3.10), we have obtained

an expression (2.3.26) for X; given by (2.3.18). Thus, (2.3.46) in fact proves that
x(t) ~ Xq(t), t = oo, completing the “only if” part of the proof of Theorem

Next, suppose that x is a solution of (E;) belonging to RVr(p), p € (m;,—1). This
is possible only when (2.b.2.2) holds, in which case x satisfies the asymptotic rela-

tion (2.3.42). Therefore, p satisfies (2.3.43) which justifies (2.3.20). An elementary

calculation shows that
m <p<-1= —fm —2my<o<p—my,
which determines the range (2.3.19) for 0. In view of (2.3.27) and (2.3.43)), we conclude

from (2.3.42) that x enjoys the asymptotic behavior x(t) ~ X5(t), t — oo, where X; is
given by (2.3.21). This proves the “only if” part of the Theorem[2.3.2]
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2. Fourth order nonlinear differential equations

Finally, suppose that x is a type (I1) intermediate solution of (E;)belonging to
ntr — RVr(=1). Then, the case (1) is the only possibility for x, which means that o =
B —m, and is satisfied by x, with S; defined by (2.3:33). Using x(t) = R(f)"'L.(f),
can be expressed as

- Va S
(2.3.47) L(t) ~ K3 S5(t)"/%, t = o0, where K3 -
implying the differential asymptotic relation
—E ’ ()
(2.3.48) ~S3(t)7% S(t) ~ KER(H)™1,(t), t— co.

From (2.3.11)) and (2.3.35), since lim;_, x(t)/@2(t) = 0, we have lim;_,., S3(t) = 0, imply-
ing that the left-hand side of (2.3.48) is integrable over [t,, o). This, in view of (2.3.30),
implies the second condition in (2.3.22). Integrating (2.3.48)) on [t, o) with the use of

[2:347), yields
x(f) ~ R(t)” ( i

which due to the expression (2.3.31) gives x(t) ~ Xs(t) as t — oo. This proves the
“only” if part of Theorem2.3.3]

Proof of the part “if” of Theorems|2.3.1}[2.3.2|and|2.3.3} Suppose that (2.3.17) or (2.3.19)
or (2.3.22) holds. From Lemmas and it is known that X;, i = 1,2, 3,

defined by (2.3.18), (2.3.21) and (2.3.23) satisfy the asymptotic relation (2.3.16)) for any
b > a. We perform the simultaneous proof for X;, i = 1,2, 3 so the subscriptsi = 1,2,3
will be deleted in the rest of the proof. Let us denote

(2.3.49) I(t,a,&) = ft ) ps(s;fa (52 f f q(1) X(u) ﬁdudr) ds, t>a

where &, is an arbitrary fixed positive constant. It is clear that

00 S 00 1/a
(2.3.50) I(t,a,&) "“f ps(s;fa (ff q(u) X(u)f dudr) ds, t— oo.

Therefore, by (2.3.16)) there exist T; > Ty > a such that

—KS ];;(t))“ "t o oo,

(2.3.51) I(t, To, &) < 2X(H) for t>T,
and

X
(2.3.52) ¥<I(t Ty &), for t>T.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Let such Ty and T; be fixed and choose positive constants ¢, P such that

(Pl()

(2.3.53) <X <

<P Ty<t<T.

Constants ¢ and P exist because a continuous function is bounded on every compact
set. Further, choose positive constants m and M such that

(2.3.54) m < minfc &%, 255}, M5 > 2.

Define the integral operator

(2.3.55) Ggx(t) = f N ( f f q(u) x(u)f du dr) ds, t>T,,

and let it act on the set

(2.3.56) X = {x € C[Ty, 00) : mX() < x(f) < MX(t), t > To).

Itis clear that X'is a closed, convex subset of the locally convex space C[T), o) equipped
with the topology of uniform convergence on compact subintervals of [Ty, o).

It can be shown that G is a continuous self-map on X and that the set G(X) is
relatively compact in C[T), o).
(i) G(X) c X: Let x € X. Using (2.3.51), (2.3.54) and we obtain

Gx(t) < MPI® f (5)1/“ (Mﬁ fT 0 f (u)X(u)ﬂdudr) ds

1/a
< Mﬁ/af S~ - (52 f q(u) X(u)P du dr) ds
t P(S) N ToJr
< 2MPI® X(H) < MX(t), t>T,.

On the other hand, using (2.3.52)), for t > T4

00 S 00 1/a
Gx(t) > f > 12 (52 +mP f g(w) X(u)f du dr) ds
t P( ) ToJr
_ e [ St 52 e Sandr)
=m Talg Tt q(u) X(u)’ dudr| ds
£ p(s) ToJr

S oo 1/a
> mPle f > _1 (52 + f f g(u) X(w)f du dr) ds
£ ps) a ToJr

()

> mPl* =2 > mX(t),
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2. Fourth order nonlinear differential equations

and using (2.3.53)) for t € [Ty, T1] we have

® s—t

Gx(t) > &' f — 7 = SN i(t) = &M e X(1) = mX(b).
£ p(s)

This shows that Gx € X that is, G maps X into itself.

(ii) G(X) is relatively compact: The inclusion G(X) C X ensures that G(X) is locally
uniformly bounded on [Ty, T], for any T, > T. From (2.3.55), we have

00 S 00 1/a
(Gx) () = —ft p(rlv (52 + ﬁo T q(u) x(u)f du dr) ds, telT,, Ta].

From the inequality

1/a

e [ ( (T : ) :
M I WEIE £2+fTO r qu) X(u)’ dudr| ds < (Gx) (1) <0,

where t € [Ty, T>], holding for all x € X, it follows that G(X) is locally equicontinuous
on [Ty, T>] C [Ty, o). Then, the relative compactness of G(X) follows from the Arzela-
Ascoli lemma.

(iii) G is continuous on X: Let {x,} be a sequence in X converging to x € X uniformly
on any compact subinterval of [T), o). Let T, > T, be any fixed real number. From

(2.3.55) we have

G- G301 < [ IGO0, telTy T

where

f oo 1/a t oo 1/a
(§2+fTO[ q(s) x,(s)° dsdr) —(5z+fTofr q(S)x(S)ﬁde”) :

Using the inequality [x* — y*| < [x — y*, x, y € R* holding for A € (0, 1), we see that if

a > 1, then
t 00 1/a
Gu(t) < (ff q(8)|x.(s)f — x(s)ﬁldsdr) .
ToJr

On the other hand, using the mean value theorem, if @ < 1 we obtain

Gau(t) < %(52 + MP j;ofrw q(s)X(s)ﬁdsalr)T ﬁofw q(8)|x.(s)F — x(s)P|dsdr.

Ga(t) =
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Thus, using that g(t)|x,(£)f —x(t)’| — 0asn — oo ateach pointt € [Ty, co) and g(t)|x,(t)? —
x(H)F| < 2MPq(H)X(t)P for t > To, while q(£)X(t)? is integrable on [Ty, ), the uniform
convergence G,(t) =2 0, n — oo on [Ty, o0) follows by the application of the Lebesgue
dominated convergence theorem. We conclude that Gx,(t) — Gx(t) uniformly on any
compact subinterval of [T, o) as n — oo, which proves the continuity of G.

Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled
and so there exists a fixed point x € X of G, which satisfies the integral equation

x(t)zf! Sp(_)t (£2+ff q(u)x(u)ﬁdudr) ds, t>T,.

Differentiating the above expression four times shows that x is a solution of (E;) on
[Ty, 00), which due to (2.3.56) is an intermediate solution of type (I1). Therefore, the
proof of our main results will be completed with the verification that the intermediate
solution of (E;) constructed above is actually regularly varying function with respect
to R. Consider the function I(t, Ty, &,) for t > T, defined by (2.3.49), and put

. x(t) : x(t)
| =liminf ————, L =limsup ———.
t—oo I(t/ TO/ 52) t—o0 p I(tl TO/ 52)

By Lemmas2.3.2} 2.3.3|and [2.3.4|and (2.3.50), we have X(t) ~ I(t, Ty, &2), t — oo. Since,
x € X, itis clear that 0 < I < L < co. Applying Theorem[I.1.7]four times, we obtain

| 20 | I Gl (&2 + £ [ o) x(uf dudr)) ™ ds
L <limsup ——— = limsu - A 1/a
t—o0 I (t/ TO/ cfz) t—o0 J; (]z% ﬁoﬁ q(u) X(u)ﬁ du d}’) ds

&2+ [ - Ds)x(s) ds) [°g@xsyrds ™

o~ <|lim sup
f (s — t)g(s)X(s)f ds f q(s)X(s)f ds

. ahxty\"* (. oA x® Ve

< (o i) =) -(mw g oo

where we have used X(t) ~ I(t, Ty, &2), t — oo, in the last step. Since f/a < 1, the
inequality L < LF/* implies that L < 1. Similarly, it may be verified that > 1, from
which it follows that L = [ = 1, that is,

x(t)
0 T T, £2)

Therefore it is concluded that if p € RVr(n) and g € RVz(0), then the type-(I1) solution
x under consideration is a member of RVz(p), where

< limsup

t—o0

=1 = x(t) ~ I(t, Ty, &) ~ X(t), t — 0.

p=m; oOr = — (mll 1) or p:-ll
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2. Fourth order nonlinear differential equations

according to whether the pair (1), 0) satisfies (2.3.17), (2.3.19) or (2.3.22), respectively.
Needless to say, any such solution x € RVr(p) enjoys one and the same asymptotic
behavior (2.3.18), (2.3.21) or (2.3.23), respectively. This completes the “if” parts of
Theorems2.3.1} 2.3.2]and [2.3.3]

2.3.2 Intermediate solutions of type (I2)

Let us turn our attention to the study of intermediate solutions of type (I2) of the
equation (E;); that is, those solutions x such that 1 < x(t) < t ast — oco. As in the
preceding subsection the use is made of the expressions and for the
coefficients p, g and solutions x. Since 11 € SVx and ¢, € RVr(ma(a, 1)) (cf.
and (2.3.5)), the regularity index p of x must satisfy 0 < p < my(a,n). If p = 0, then
since x(t) = [,(t) = oo, t — o0, x is a member of ntr — SVg, while if p = my(a, 1), then
x is a member of RVr(ma(a,n)). If 0 < p < my(a, 1), then x belongs to RVz(p) and
clearly satisfies x(f) — oo and x(t)/R(t)"@"? — 0 as t — oo. Therefore, the totality of
type (I12) intermediate solutions of (E;) is divided into the following three classes

ntr = SVr,  RVr(p), p € (0,ma(a, 1)), RVr(may(a,n))

and our purpose is to show that, for each of the above classes, necessary and sufficient
conditions for the membership can be established and that the asymptotic behavior
at infinity of all members of each class is determined precisely by a unique explicit
formula.

Let x be a type (I12) intermediate solution of (E;) defined on [t, o). It is known that

limx’(t) =0,

(2.3.57) , e, e ,
Hm(p(B)l” (O ()" = lim p(\)lx” (I " (£) = lim x(f) = co.

Integrating (E;) twice on [to,t], then on [f;, o0) and finally on [t,,t], we obtain, for
t>ty>a,

t 00 r 1/a
(2.3.58)  x(t) =co + f f ;1/ (cz + c3(r — to) + f (r — u)g(u)x(u)? du) drds,

ty Js p(r) * fo
where ¢y = x(to), c2 = p(to)(—=x"(to))*, and c3 = (p(to)(—x"'(tr))*)’. From (2.3.58)) we easily
see that x satisfies the integral asymptotic relation

t 00 r 1/a
(2.3.59) x(t)~fbf (I%ﬁ(r—u)q(u)x(u)ﬁdu) drds, t— oo,

for some b > a, which will play a central role in constructing generalized RV-

intermediate solutions of type (12).
Theorems below represent main results for intermediate solutions of type (12).
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Theorem 2.3.4 Let p € RVr(1),q € RVr(0). Then (Ey) has intermediate solutions x €
ntr — SVy satisfying (12) if and only if

0o ¢ 1/a
(2.3.60) c=a—my and f t(}% f(t —-5)q(s) ds) dt = oo.

The asymptotic behavior of any such solution x is governed by the unique formula

_ ¢ s 1/a ap
(2.3.61) x(t) ~ Yq1(t) = (aTﬁ f s(% f (s —71)q(r) dr) ds) , t— oo,

Theorem 2.3.5 Let p € RVr(1),q9 € RVr(0). Then (E,) has intermediate solutions x €
RVr(p) with p € (0, my) if and only if

(2.3.62) a—m <o<n—(a+p+2)m

in which case p is given by (2.3.20) and the asymptotic behavior of any such solution x is
governed by the unique formula

1
2 aF
a(a+1)

(a+1)2

my (H=Fg(HR(H) 22w
2.3.63 B~ Yo(t) = || 2 P
( ) xE) ~ ¥2lf) [ ] (p(mz = p))* (p—m1)(p+1)

t — oo.
(04

Theorem 2.3.6 Let p € RVr(1),q € RVr(0). Then (E,) has intermediate solutions x €
RV (my) satisfying (12) if and only if

00 t 1/a
(2.3.64) o=n-(a+p+2)my and f (% f (t —s) s’ q(s) ds) dt < oo.

The asymptotic behavior of any such solution x is governed by the unique formula

_ 00 S 1/a =
(2.3.65) x(t) ~ Ys(t) = t(a " P I (p(ls) f (s — r)rPq(r) dr) ds] f , t— oo.

In order to facilitate the proofs of the main results, we prove the following lemmas.

Lemma 2.3.5 Suppose that (2.3.60) holds. Then the function Y, given by (2.3.61)) satisfies
the asymptotic relation (2.3.59) for any b > a and belongs to SVi.
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2. Fourth order nonlinear differential equations

Proof. First, we give an expression for Y; in terms of R, [, and [,. Applying Lemma
2.3.1] twice, we have

a+1

ffq duds—f f R(u)*"1,(u) du ds ~ ( Ml )R(t)“+m21 (t)mml() F— 0.

Using (2.3.2), (2.3.5) and (2.3.9)-(ii), we have as t — oo

20+2-a?

1 ¢ 1/a mza(ZaJrl)

2.3. — - ~—— 2t R(t)y™ e la
(2.3.66) t(p(t) L (t—=s)q(s) ds) @@+ ) (£)7"21,(t)aeasn [(t)
Integrating the above on [b, ] for any b > a, we show that
(2.3.67) YiH) ~ W (—ﬁ Ql(t))
where

¢ : 22—“z+f+_f :
-1y PTU Rl 1/a _
(2.3.68) Qﬂﬂ=ljﬂ9 BT s Qe SV, W= s,

From (2.3.67), we conclude that Y; € SVk.
To verify the asymptotic relation (2.3.59) for Y;, we integrate q(f)Y:(f)" twice on
[b,t] and use Y; € ntr — SVx to obtain

a+l

t s 2T ,
[ [ aomraras ~ ROy OF O, £
b Jb

(o0 + my)(o + 2my)

, which together with (2.3.67)), by assumption (2.3.60) and (2.3.9)-(ii), yields

1/a
_ B
( 0 f(t 5)q(s)Y1(s) ds)

(2.3.69) [ e \ap

m 2a+1

=
—L—J RO 071,07 (2

i
Ql(t)) ,

ala + myp)

as t — oo. Integration of (2.3.69) on [t, o) gives

0o L r ) ﬁ )1/a
ft (P(F)fb(r wqu)Y(u) du|  dr

2a2+2—1aﬁ L; ‘B
m, “* o — _a_ 1-a B
N [ 2 ] ( ) my TTR(E) "2, (D) T L (1) Qi ()7,

ala + myp) a
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

as t — oo. Previous relation, by integration on [b, t], implies

f f (1r) f r(r_”)q(”)Yl(wﬁdu)w dr ds

~ Wf—ﬁ ;ﬁ)a | f R(s) ™1,(5)TET1,(5) Q1 (5) 7 dls

aﬁ
LNG

£ L (a—B\*
a—ﬁ) ﬁf Q1(s)aﬁ7ﬁ dQi(s) = W{Tﬁ (a_ﬁ) v Qi(t)™F, t— oo,
a b ¢

establishing, in view of (2.3.67), that Y; satisfies the asymptotic relation (2.3.59). O

Lemma 2.3.6 Suppose that (2.3.62) holds and let p be defined by (2.3.20). Then, the function
Y, given by (2.3.63) satisfies the asymptotic relation (2.3.59) for any b > a and belongs to
RVr(p).

Proof. Using (2.3.2) and (2.3.8), since 120@4l) _ ) — @, we can express Y, in the form

2a+1
(2.3.70) Ya(h) ~ WaR(tY (L()=11,0) 7,
where
@ N C*\*F
(2.3.71) C=m", v=(p(my—p) (p—m)p+1), W= (@) :

Therefore, Y, € RVz(p). Next, we prove that Y, satisfies the asymptotic relation
(2.3.59) and to that end, we first integrate g(t)Y»(t)f twice on [b, t] for some b > a, with

the application of Lemma and due to (2.3.9), (2.3.27), we get

ft fs q(r)Yo(r)f drds
~ W f f R(r)‘”pﬁ pyz] (t)“) drds

R (1,0 0

1
-

(o +pp + mz)(a +pp + 2m2)
_ Wg m22a+1R(t)a(p my) (l (t)2a+ll (t)a) —B
a*(p + 1)(p — m)
Wﬁ

2a+1 a(p—2my—1) S a Lﬁ — 0
PRy L R(1)™P- (z (t)7 l(t)) t ,
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2. Fourth order nonlinear differential equations

implying further that

[ [y e o

ZU(H 2 2a+1 Lﬁ
(az(p+1)(p ) ] ff R(r)p2 (r) l(r)) dr ds

(a+1)2

Wg/amzm
(@2(p + 1)(p — my))V(my — p)p

C2 1/a
:wf/“(r“z) R(EY* (I(8)

By (2.3.70) and (2.3.71) proves that Y, satisfies the asymptotic relation (2.3.59).

Lemma 2.3.7 Suppose that (2.3.64) holds. Then the function Y5 given by (2.3.65) satisfies
the asymptotic relation (2.3.59) for any b > a and belongs to RVr(m;). O

Proof. According to (2.3.5) and (2.3.64), the application of the Lemma[2.3.} gives

ffrﬁq(r)drds ~ 2a+1 f f R(r)1™(@*2ma] (s)2a+1l (s)ds

2(a+1)— 2(a+1)—ap
T 2a+l

e an 2a+1
- Tt Do =y RO ORI,

as t — oo. Since by (2.3.9)-(ii) we have that

R(t)? (lp(t) oo lq(t))m

_1
2a1+1 lq(t))a(zx—ﬁ) , F— oo,

(2.3.72) n—(a+1)my =a(m,+1),

from the last relation, we conclude that

00 S 1/a
f (l% jb‘ (s—r)rﬁq(r)dr) ds

(2.3.73) 2(a+1)-ap 1/a
m 2a+1 00 f2as1
2 —m OETEN 1/a
[ ] f R(s) ™21, (s) @ I, (s)"/ds,
t

- a(my + 1)(a + amy + my)
as t — oo. We denote by
374) Q= [ ReHOEEE Qe STy
t
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

and combining (2.3.73) with (2.3.65) and (2.3.5), we obtain the following asymptotic
representation for Y3 in terms of R, [, and [;:

_ ap
23.75) Ya(t) ~ W3 TR(™, (t)w( F Qs(f)) , too,
where
(2.3.76)

B a(my + D(amy + my + )

From (2.3.75) we conclude that Y3 € RV(m,) and compute with the help of Lemma
2(a+1)

2.3.1
t S
f f q(r)Y3(r)f drds
b Jb
B m22a7 R(t)a+m2ﬁ+2m2

“__ﬁ
- (L) Twi

3 (04 maf +2my)(0 + maf + my

L),

as t — oo. Next, using (2.3.64) and (2.3.72) we obtain

00 S 1/a
f (%j;(s—r)q(r)lfg(r)ﬁdr) ds

B L 2(a+1)
a— ‘B prm Wg(ﬂ-ﬁ) m;(hﬂ)
o (a(my + 1)(amy + my + a))V/a

N s T 5
X R(s)™™1,(s)@ D], (s)"*Qs(s)* P ds
t
B B 2(a+1)
a— ‘B Ot_*ﬁ Wék(zx—ﬁ) m;(2a+1
“\Ta (o (my + 1)(amy + my + ))1/?

f 0u(5) (- Q5(5))

_B 2(e+l)

a— ‘3 LYL—ﬁ Wa(a ﬁ) aa+1)
2
= ( a Q3(t)) ’ t — oo,

(a (my + 1)(amy + my + a))/e

Noting that the last expression in the previous relation is slowly varying with respect
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2. Fourth order nonlinear differential equations

to R, the integration of this relation over [b, t] leads to

t 00 L 7 ~ ) )1/a
fb f (r»(r) fb (r = w)q@)Ys)du)  drds
B

(a+2)(a+1)

o — (XL—[; Wa(a_—ﬁ)m aa+1) R t 1y
~ Qs(t) s : ()
a (a(mz + 1)(amy + mp + @))Ve my

lp(t) 2T

o
a

Oé—ﬁ =F a(aL—ﬁ) 1/a m "
= " Qs(b) W W, R(t)™L,(t)=1, t— oo,

In view of (2.3.75) this proves that the desired integral asymptotic relation (2.3.59) is
satisfied by Y3. O

Using previous results we can prove the main results of this subsection.

Proof of the “only if” part of Theorems [2.3.4, 2.3.5/and [2.3.6; Suppose that (E;) has
a type (I2) intermediate solution x € RVx(p), p € [0, m;,], defined on [ty, o). We begin

by integrating (E;) on [to, t]. Using (2.3.2), (2.3.12), we have

(2.3.77) (pt)(=x"(t)*) ~ f q(s)x(s)Pds = f R(s)"*PPL()1(s) ds, t — oo

to to
and conclude by (2.3.57) that o + fp + m, > 0. Thus, we distinguish two cases:
(1) o+pp+my=0 and (2) o+ pp+my>0.
Let the case (1) holds, so that

(2.3.78) H4(t):fR(s)“*ﬁplq(s)lx(s)ﬁds=fR(s)'mzlq(s)lx(s)ﬁds,

fo fo

and Hy € SVr¢. The integration of (2.3.77) on [ty, t] with (2.3.9)-(ii) yields

my—1

—X(t) ~ m, PR ()T H ()

1
= 1y T R() 2T () A Hy(H)Y, t - oo,

Since —m, — 1 < 0, we may integrate previous relation on [t, o) and obtain via Lemma

2.3l that .
2a+1

‘() ~ —2—R(H)™H, )Y, ¢t .

x'(t) m2+1() J(HY, t> 0

The right-hand side in the last relation is integrable on [t, o), because —m; — 1 < —m;,
but on the other hand, in view of (2.3.57), the left-hand side of the last relation is not
integrable on [, o), so we conclude that this case is impossible.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Let the case (2) holds. Then, from (2.3.77) it follows that

a+l
2a+1

OO ~ g RO, ()77, 010

Since ¢ + ffp + 2my > 0, the integration of the previous relation on [¢, t] gives

1/a

2(a+1)
m Jort o+pp+2my—n 1-2a
—"(f) ~ 2 R(t - [ (f)7Ga+n | tl/alx tﬁ/a, ¢ ,

w0 [(U+[3P+mz)(6+ﬁp+2mz)] O BOTILOTLO, e

implying in view of (2.3.57), by integration on [¢, o0),

1/a

2a+1)
m 2a+1
x/(t) ~ 2
(2.3.79) (0 + Bp +ma)(o + Bp + 2my)
X f RE) T (1) L OL6Y)  ds, ¢ oo,
t

Thus, we further consider the following two possible cases:

o+pp+2my—n o+ pp+2my—n

(2.a) +m;=0 and (2.b) " +my < 0.

Suppose that (2.a) holds, and let
(23.80) i) = [ RO LB (6 ds
t

Using (2.3.72) and (2.3.9)-(ii), since we have o + pf + m, = a(m; + 1), the integration of
(2.3.79) on [ty, t] implies

—a242(a+1) 1a

2a+1

[ m2 J |
(2.3.81) x(t) ~ R()™L,() = Ha(t), t— 0.

a(my + D(a(my + 1) + my)

Since H; € SVg, we conclude that x € RV (m,).
Suppose that (2.b) holds. The application of Lemma[2.3.1}in (2.3.79) implies

(a+1)(a+2)

m aa+1)

’ _ 2
(2.3.82) (0 + Bp + my) (0 + p + 2my))V/e (0+ﬁp+azmz—n " m2)
x R(H)“TE R (7D (HYLHPe, - oo.
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2. Fourth order nonlinear differential equations

Integrating (2.3.82) on [t, t], using (2.3.57)), we obtain

(a+1)(a+2)
aa+1)

2

x(t) ~
(2.3.83) (0 + Bp + ma)(0 + Bp + 2my))Ha (_ (% 4 mz))

a+pp+2my—n

t
x [ RO L 6 L s,
fo

Thus, since x(t) — o0 as t — oo, from the previous relation we conclude that two
possibilities may hold:

o+ pp+2my —n

(2.b.1) +2my; =0 or (2.b.2) " + 2my > 0.

o+pp+2m—n
o

In the case (2.b.1), using (2.3.9)-(ii), we obtain ¢ + fp + m, = a. The application of
Lemma 2.3.1]in (2.3.83) leads us to

—a2+2(zx+1) 1/0(
2.3.84 t my Hy(b), t
(2.3.84) x(t) m 1(8), — 0,
where
t
(2.3.85) Hi(t) = f R(s)"”le(s)%lq(s)l/“lx(s)ﬁ/“ds, H, € SVk.
to

Thus, since x(t) — oo as t — oo, x € ntr — SVx.
The application of Lemma[2.3.1}in (2.3.83) in the case (2.b.2) gives

a1
x(t) ~ my? (((o + Bp + my) (0 + Bp + 2my)) M
2my, — 2my, — -1
(2.3.86) o (_ (G +Pp +a my -1, mz)) (0 +Bp +a my -1, 2mz))

a+Bp+2my—n

X R() ™ w2l (a1 VAL (P s, t— oo,
This implies that x € RV (p) where p satisfies

_a+ﬁp+2m2—n 3
(2.3.87) p= > +2m; © p= a—p

o+m, —«

verifying that the regularity index p is given by (2.3.20).
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Now, let x be a type (I12) intermediate solution of (E;) belonging to ntr — SVx. Then,
from the above observations, it is clear that only the case (2.b.1) is admissible, in which

case 0 = a — my, and (2.3.84) is satistied by x. Using x(t) = [,(t), from (2.3.84) we have

(2.3.88) L(t) ~ W Hy(t), t— oo,

where W is given by (2.3.68) and H; is defined by (2.3.85). Then, (2.3.88) is transformed
into the following differential asymptotic relation for Hj,

1-a

(2.3.89) Hi (8¢ H(£) ~ WO R(E ™ L,()755 1)1, ¢ — oo

From (2.3.57)), since lim;_,, x(t) = oo, we have lim;_,, Hl(t)%s = 0. Integrating (2.3.89)
on [y, t], in view of the relation (2.3.66) and the notation (2.3.68), we find

t
a“ ﬁHl(t)“Tf ~ WIQ () ~ Wi f R(s)™™1,(s) 7 I,(s)V/ds, t — oo,
- .

This implies that the second condition in (2.3.60) is satisfied and with (2.3.88) implies

(=80 o)
(2.3.90) x(t) ~ W, " Q| , t— oo,
Note that in Lemma we have obtained the expression (2.3.67) for Y; given by

(2.3.61). Therefore, (2.3.90) in fact proves that x(t) ~ Yi(t), t — oo, completing the
”only if” part of Theorem [2.3.4]

Remark 2.3.1 From the previous observation, we see that Y1 is not only SV but ntr — SVx.

Next, let x be a type (I2) intermediate solution of (E;) belonging to RVz(p) for some
p € (0,my). Clearly, only the case (2.b.2) can hold and hence x satisfies the asymptotic
relation (2.3.86)) and p is given by (2.3.20). An elementary computation shows that

O<p<mp = a-m<o<a+ma-p-1),

showing that the range of ¢ is given by (2.3.62). In view of (2.3.27) and (2.3.87), we
conclude from (2.3.86) that x enjoys the asymptotic behavior x(f) ~ Y,(t), t — oo, where

Y> is given by (2.3.63). This proves the “only if” part of the Theorem [2.3.5

Finally, let x is a type (I2) intermediate solution of (E;) belonging to RVz(m,). Since
only the case (2.a) is possible for x, it satisfies (2.3.81)), where H; is defined by (2.3.80),
implying p = m, and 0 = a + my(a — p — 1). Using x(t) = R(t)™L(t), can be

expressed as
(2.3.91) L(H) ~ WYL (857 H(t), t — oo,
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2. Fourth order nonlinear differential equations

where Wj is defined by (2.3.76), implying the differential asymptotic relation

£ +1-2a
(2.3.92) — Hy(t)% H(t) ~ W R(O)™™1,() 1,51, ¢ — oo,

From (2.3.5) and (2.3.81)), since lim;_ ¢o(t)"'x(t) = 0, where ,(t) = t, we have
that lim;_,. H3(t)anﬁ = (0, implying that the left-hand side od (2.3.92) is integrable over
[t, 00). In view of (2.3.73) and (2.3.74), integration of (2.3.92) implies

a
a-p

Therefore, the second condition in (2.3.64) is satisfied. Combining (2.3.93) with (2.3.91),
using the expression (2.3.75), we find that

(2.3.93)

ap o N T 5
Hy(t)s ~ W; R(s) ™1, (s) @ (s)"/%ds = W Qa(t), t — oo.
t

a_

fﬁQg(n)M ~Ya(t), t— oo,

() ~ WEPR(E)™1,(H) % (a

Thus the “only if” part of the Theorem has been proved.

Proof of the “if” part of Theorem|2.3.4,[2.3.5/and 2.3.6; Suppose that (2.3.60) or (2.3.62)

or (2.3.64) holds. From Lemmas and 2.3.7]it is known that Y;, i = 1,2,3,
defined by (2.3.61), (2.3.63) and (2.3.65) satisfy the asymptotic relation (2.3.59). We

perform the simultaneous proof for Y;, i = 1,2,3 so the subscripts i = 1,2,3 will be
deleted in the rest of the proof. By (2.3.59), there exists T, > a such that

(1 d ) 1/a
fTOfS (% To(r—u)‘J(u)Y(u) du) drds <2Y(t), t> T,.

Let such a T, be fixed. We may assume that Y is increasing on [Ty, o). Since (2.3.59)
holds with b = T\, there exists T; > T, such that

b 1 . )1/a Y
fTofs (p(r) To(r wqu)Yw)P du)|  drds > R t> T

Choose positive constants k and K such that

2™
2™

kK= <=, K'Y >4, 2kY(T;) < KY(Ty).

N~

Considering the integral operator

t 00 7 1/a
Hy(t) = yo + fo (I% : (r — u)q(u) y(u)f du) drds, t>T,,
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2.4. Asymptotic behavior of intermediate RV-solutions

K
where yy is a constant such that kY(T7) < yp < EY(TO), we may verify that H is a

continuous self-map on the set
Y =y € C[To,00) : KY(H) < y(t) < KY(D), t > Tol,

and that H sends Y into a relatively compact subset of C[T, o). Thus, H has a fixed
point vy € Y, which generates a solution of the equation (E;) of the type (I12) satisfying

y(t) v _
0< hmmf YO < lim sup Y(t)

L(t) = f f m(}% f V(r—u)q(u)Y(u)ﬁdu)l/adrds

and using Y(t) ~ L(t) as t — co we obtain

Denoting

y(h) yo _
0< hm 1nf oo S hr?_) ioup I (t)
Then, proceeding exactly as in the proof of the ”if” part of Theorems with
the application of Theorem([I.1.7, we conclude that y(t) ~ L(t) ~ Y(t), t — co. Therefore,
yisa generalized regularly varying solution with respect to R with requested regularity
index and with the asymptotic representation (2.3.61), (2.3.63), (2.3.65) depending on
if g € RV(0) satisfies, respectively, (2.3.60) or (2.3.62) or (2.3.64). Thus, the “if part”
of Theorems[2.3.4} 2.3.5/and [2.3.6 has been proved.

2.4 Asymptotic behavior of intermediate regularly
varying solutions

The final section is concerned with the equation (E;) whose coefficients p and g are
regularly varying functions (in the sense of Karamata). It is natural to expect that such
an equation may possess regularly varying intermediate solutions. Our purpose here
is to show that the problem of getting necessary and sufficient conditions for the exis-
tence of intermediate solutions, which are regularly varying in the sense of Karamata,
can be embedded in the framework of generalized regularly varying functions, so that
the results of the preceding section provide full information about the existence and
the precise asymptotic behavior of intermediate regularly varying solutions of (E;) .

We assume that p and g are regularly varying functions of indices 1 and o, respec-
tively, i.e.,

2.4.1) p(t) = L1, qt) = LB, 1,1, €SV,
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2. Fourth order nonlinear differential equations

and seek regularly varying solutions x of (E;) expressed in the from
(2.4.2) x(t) = tPI(t), I, € SV.

Note first that the condition (C) holds only if we assume that 7 > 1 + 2a. Since R is
defined by (2.3.1), due to (2.4.1), it takes the form

(o'e) —1
Ru):(f‘aﬂ”@@ymwﬂ .
t

~1-2
243) ReSV if n=2a+1 and RERW(E—;—g) if p>2a+1.

It is easy to see that

An important remark is that the possibility n = 2a + 1 should be excluded. If this
equality holds, then R is slowly varying by (2.4.3)), and this fact prevents p from being
a generalized regularly varying function with respect to R. In fact, if p € RVr(77")
for some 71, then there exists f € RV(n*) such that p(t) = f(R(t)), which implies that
p € 8V. But this contradicts the hypothesis that p € RV (1) = RV (2a + 1). Thus, the
case 11 = 2a + 1 is impossible, and so 1 must be restricted to

(2.4.4) n>1+2a,
in which case R satisfies
—2a—1 jp2-
(2.4.5) Ray~ﬂ——;——4*%igafm, £ oo,

Since R is monotone increasing, its inverse function R7}(t) is a regularly varying of
index a/(n—2a—1). Therefore, any regularly varying function of index A is considered
as a generalized regularly varying function with respect to R which regularity index
is aA/(n — 2a — 1), and conversely, any generalized regularly varying function with
respect to R of index A" is regarded as a regularly varying function in the sense of
Karamata of index A = A*(n — 2a — 1)/a. It follows from and that

an ao ap
pER(VR(n—Zx—l)' qGR(VR(n—2a—1)’ xeﬂ(VR(n_za_l).

Put
. _ an ot = ao . ap
17_17—20(—1' T n-2a-1 p_n—Za—l'
Note that (2.4.4) implies 1 > a because @ > 0 and that the two constants given by
(2.3.8)) are reduced to

200 —
m(a, M) = il my(a, ) = 2

n-2a-1 n-2a-1
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2.4. Asymptotic behavior of intermediate RV-solutions

It turns out therefore that any type (I1) intermediate regularly varying solution of
(E1) is a member of one of the next three classes

20 — 1 20—1n 1+2a -1

1+2a—
7€(V( ), ntr—R(V(u),

), RV (p), PG( "

a !
while any type (I2) intermediate regularly varying solution belongs to one of the three

classes

ntr— 8V, RV(p), pe(0,1), RV(L).

Based on the above observations we are able to apply our main results in Section
3, establishing necessary and sufficient conditions for the existence of intermediate
regularly varying solutions of (E;)and determining the asymptotic behavior of all
such solutions explicitly.

First, we state the results on the type (I1) intermediate solutions that can be derived
as corollaries of Theorems [2.3.1} 2.3.2]and 2.3.3]

Theorem 2.4.1 Assume that p € RV (n) and q € RV (o). The equation (E,) possess interme-
diate solutions belonging to RV (2“_”) if and only if

a

o= gn -28-2 and foo tq(t)p:(t)F dt = oo.

Any such solution x enjoys one and the same asymptotic behavior x(t) ~ Xi(t) as t — oo,

where X, is given by (2.3.18)).

Theorem 2.4.2 Assume that p € RV (n) and q € RV (o). The equation (E;) possess interme-
diate reqularly varying solutions of index p with p € (2“_" 1+2a_") if and only if

a 7 a

gn—25—2<0<§(17—1)—2ﬁ—1,

in which case p is given by

D46 _2a—r]+o+2
() p_ 05—‘8

and any such solution x enjoys one and the same asymptotic behavior

, t— oo,

‘) ~ ( £p(t) 7 q(t) =
(p(p-1)" Qa—n) (pa+n-1-2a)
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2. Fourth order nonlinear differential equations

Theorem 2.4.3 Assume that p € RV (n) and q € RV (o). The equation (E,) possess interme-
diate solutions belonging to ntr — RV (“2“_") if and only if

p

o

o=

(n-1)-26-1 and jmwmmwm<m.

Any such solution x enjoys one and the same asymptotic behavior x(t) ~ X3(t) as t — oo,

where X3 is given by (2.3.23).
To prove Theorem [2.4.1|and 2.4.3|we need only to check that

*

o' =-mi(a,N)p —2my(a, ") & 0= gn -2-2,

o' =p-ma,n) & 0= g(ﬂ—l)—Zﬁ—L
and to prove Theorem it suffices to note that
"+ ,1) — 2a+0-n+2
_o mz(an)a{:)p:aon ,
a-p a-p
and to combine the relation (2.4.5) with the equality

*

omy(a, 1) E T [ (e, ) - )" + V(" = mate, )’
= Qo — pa+1-1-2a)(p(p ~ D).

Similarly, we are able to gain a thorough knowledge of type-(I12) intermediate
regularly varying solutions of (E;) from Theorems[2.3.4,2.3.5/and 2.3.6]

Theorem 2.4.4 Assume that p € RV (n) and q € RV (o). The equation (E;) possess interme-
diate nontrivial slowly varying solutions if and only if

00 1 t 1/a
o=n-2a-2 and Lt(ﬁl(t—s)q(s)ds) dt = oo.

The asymptotic behavior of any such solution x is governed by the unique formula x(t) ~ Y1(t),
t — oo, where Y1 is given by (2.3.61).

Theorem 2.4.5 Assume that p € RV (n) and q € RV (o). The equation (E;) possess interme-
diate reqularly varying solutions of index p with p € (0, 1) if and only if

n-2a-2<o<n-a-p-2,

in which case p is given by (2.4.6) and the asymptotic behavior of any such solution x is
governed by the unique formula

‘) ~ ( £p(t) 7 q(t) =
(p(1=p))* (n-2a) (pa+n-1-2a)

t — oo.

4
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2.5. Complete structure of the class of RV-solutions

Theorem 2.4.6 Assume that p(t) € RV(n) and q(t) € RV(0). The equation (E;) possess
intermediate reqularly varying solutions of index 1 if and only if

o0 ; 1/a
o=n-a-f-2 and f(l%f(t—s)sﬁq(s)ds) dt < oo.

The asymptotic behavior of any such solution x is governed by the unique formula x(t) ~ Ys(t),
t — oo, where Y3 is given by (2.3.65).

2.5 Complete structure of the class of regularly varying
solutions

Theorems combined with Theorems enable us to describe in
full details the structure of RV-solutions of the equation (E;) with RV-coefficients.
Let p € RV(n), g € RV(0). Denote with R the set of all regularly varying solutions of
(E1) and define the subsets

R(p) =RNRV(p), tr—R(p)=RnNtr—RV(p), ntr—R(p)=RnNntr—-RV(p).

(i) If0<gn—Zﬁ—Z,orozgn—Zﬁ—Zand[]3<oo,then

20 - 1420 -
R:tr—R(%)Utr—R(%)Utr—R(O)Utr—R(l).

(i) If o = £~ 28— 2and J; = oo, then

20 -1

o

1+2a -7
L EE TS,

(iii) o € (En-28-2,L(-1) - 28 - 1), then

o+2a+2-1 1+2a-n
R=R “—p Utr—RT U tr —R(0) U tr — R(1).

(iv) Ifo = £(n— 1) =28 — 1 and J; < oo, then
1+2a-7n 1+2a-n
R =tr—R(————|Untr = R|———— | Utr =RO) U tr = R(D).
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2. Fourth order nonlinear differential equations

v) Ifo = g(n—l)—ZlB—l and Jy = o0, or g € (g(n—l)—2‘8—1,17—20c—2), or
o=1n-2a-2and J; < oo, then

R =tr—R(0O) U tr — R(®).
(vi) If c =n—-2a -2and J; = oo, then

R = ntr — R(0) U tr — R(1).
(vii) Ifo e (n—2a—-2,n—a — p —2), then

o+2a+2-1

a—p

R:R( )Utr—R(l).

(viii) Ifo=n—-a—-p—-2and J, < oo, then
R =tr—R(1) UR().

(ix) fo=n—-a-p-2and Jr =0, 0roc>n—a—-p—-2,thenR=0.
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Chapter 3

Second order Emden-Fowler type
difference equation

3.1 Introduction

In this chapter we are considering the nonlinear difference equation of the second
order

(E») A(p(m)|Ax(n)** Ax(n)) = g(n)lx(n + DF 'x(n +1), n>1,

in the sublinear casei.e. fora > > 0, p = {p(n)}, q = {g(n)} are positive real sequences
and A is forward difference operator defined as Ax(n) = x(n + 1) — x(n). In the case
0 < a < B equation is referred as superlinear, while if @« = > 0 then equation (E,) is
called half-linear.

The equation (E,) is one of the most frequently studied nonlinear difference equa-
tions in the existing literature. Considering system of two first-order difference equa-
tions which leads to the equation (E,) , Agarwal, Li and Pang in [4] have shown that all
solutions (except trivial) are nonoscillatory. Usually, the equation (E;) is considered
depending on the convergence or divergence of the series

=1

S=Y) ——
e p(n)t/e

7

depending on which we have differently classification of positive solutions according
to their asymptotic behavior in infinity. The classification of solutions and the existence
of nonoscillatory solutions were studied in [4, 14-16} 23} 24, (123|124, (131} |136] and
references therein. These results are summarized in Section Other interesting
contributions can be found also in monographs [1,2]. It well known that the problem of
determining the conditions for the existence of extremal solutions (strongly decreasing
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3. Second order Emden-Fowler type difference equation

and strongly increasing solutions) is in most cases very difficult and mostly, only
necessary or sufficient conditions are known. Namely, in the existing literature there
are almost no results for the existence of strongly decreasing solutions of sublinear
equation (E;), while for the existence of strongly increasing solutions of sublinear
equation (E;) only sufficient conditions are known. On the other hand, asymptotic
formulas are not known for any of the mentioned two types of solutions. Because of
that, assuming that coefficients of the equation (E;) are regularly varying sequences,
in sections 3.3/ and both necessary and sufficient conditions for the existence of
extremal solutions will be presented and their precise asymptotic formulas will be
given. In Section 3.5/the complete structure of a set of regularly varying solutions will
be presented, while in Section the main results will be illustrated with examples.

The obtained results represent a continuation of the application of the discrete
theory of regular variation in the asymptotic analysis of difference equations, initiated
by Matucci and Rehak in [96]. Except in the mentioned paper, theory of regularly
varying sequences has been further developed and applied in the asymptotic analysis
of second-order linear and half-linear difference equations in succeeding papers [97-
100,/114,115] of Matucci and Rehak. However, theory of regularly varying sequences
has not been applied in the asymptotic analysis of nonlinear difference equations
except by Agarwal and Manojlovi¢ in [7].

Presented results are original results published in the papers [62,63]].

3.2 Classification of positive solutions of (E»)

By a solution of (E;) we mean a not trivial real sequence x = {x(n)} satisfying (E,).
A solution x of the equation (E,) is called oscillatory if for every M € IN there exist
m,n € N, M < m < n such that x,,x, <0, otherwise, it is called nonoscillatory. In other
words, a solution x is called nonoscillatory if it is eventually positive or eventually
negative. It is known that every solution of (E;) is nonoscillatory. If x = {x(n)} is
a solution of (3.1.1), then clearly —x = {—x(n)} is also a solution. Thus, in studying
nonoscillatory solutions of (E,) , for the sake of simplicity, we restrict ourselves to
solutions which are eventually positive. Any such solution {x(n)} is eventually strongly
monotone and belongs to one of the two classes listed below (see [14, Lemma 1]):

M* {x solution of (E;)|dng >1 : x(n) >0, Ax(n) >0, forn > np},
M~ = {xsolution of (E;)|x(n) >0, Ax(n) <0, forn >1}.

It is well-known that the differential equation
(3.2.1) (POl ) = g x, >0,

where p, g are continuous positive functions on [4, o), may have a nontrivial solution
x, with the property that there exists T, < oo, such that x(t) = 0 on [Ty, ). Such a
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solution is said to be an extinct singular solution or singular solution of the first kind.
On the contrary, such solutions of the difference equation (E;) do not exist. Also,
singular solutions of the second kind, i.e. solutions that are not extendable to infinity, do
not exist in the discrete case. One more difference between differential and difference
equations is that for the differential equation (3.2.1) classes M* and M~ can be empty
(see for example [66]), while for the d1fference equat10n (E,), this case cannot occur
(see [2, Theorem 5.3.3] and [14]).

For any solution x of (E;) denote by x[! = {x[”(n)} its quasi-difference x!!(n) =
p(n)|Ax(n)|*Ax(n). Thus, the classes M* and M~ can be a-priori divided into the
following subclasses:

ML, = {xeM": 1i}11n x(n) = oo, li};n xM(n) = o0, 1,

M, = {xeM" :limx(n)=co, limal'lin) =1, 0 <I< oo},

IMZ,OO = {xeM" : lirrlnx(n) =k 0<k<oo, lilgnx[”(n) = oo},
My, = {xeM" :limx(n) =k 0<k<co, lirlznx“](n) =1,0<1< oo},
M, = {xeM : lirrznx(n):k, 0<k<oo, lirrlnx[”(n):—l, 0<I<oo},

M, = {xeM :limx(n) =0, lir{nx“](n) =—], 0<I< oo}
M, = {reM :limx(m) =k 0<k<oo, limxl'l(n) =0},
My, = {xeM : lilgnx(n) =0, liin xM(n) = 0}.
A solution x € M, , is said to be strongly increasing and a solution x € M, is said to

be strongly decreasing or strongly decaying. For solutions which tend to some constant

we use My = M oY le 1' M, = 1M+ U 1M+ and for decreasing solutions which tend

to zero we use IM ]M U IM‘ Solutlons in M; and M are called asymptotically
constant solutions, while solutions in M, are called decaymg solutzons
Depending on whether S = oo or S < co some of the above classes may be empty.

(i) If S = oo then
M" =M UM, and M =M, UM, ie Mz=0, M, UM =0.
(ii) If S < oo then
M"=M, UM and M =MjuUM;, ie M =0.

The asymptotic behavior of solutions in M~ depends on series:

p
Ji= Z’J( )(Z p(k+1)1/“]

s S

n=1
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3. Second order Emden-Fowler type difference equation

and the one of solutions in M* depends on series

00 n—1 1 B
£ Z_;‘[p(m Lt )] " ;q(m{; W) |

Concerning the existence of solutions in the classes My, My, M, and M, the

following holds.

0,1/

Theorem 3.2.1 (i) ( [14, Theorem 2 and Theorem 5-(a)]) Equation (E,) has solutions in
M, if and only if I < co.

(ii) ( [16, Theorem 2.2 and Theorem 3.1] and [83, Theorem 9]) Equation (E,) has
solutions in My, if and only if J; < co.

Theorem 3.2.2 (i) ( [15, Proposition 1 and Theorem 2]) Equation (E,) has solutions in
M3, if and only if I, < co.

(ii) ( [15, Theorem 5] and [4, Theorem 2]) Equation (E;) has solutions in M:o,l if and
only if |, < co.

In both Theorems 3.2.1| and [3.2.2| statements (i) are valid for all positive a and S,
while statements (ii) are valid only in the sublinear case.

Theorem 3.2.3 ( [16, Corollary 3.3]) For equation (E;) the following hold:
(@) IfI; = o and J; = oo then M~ = Mg, # 0;
(b) If ) = 0o and ] < co then M =0, My, # 0;
(€) If 1 < coand J; = oo then My # 0, Mg, = 0;
(d) If i < ooand J; < oo then My # 0, Mg, # 0.

In addition, for a < B, we have M, = @ in claims (b) — (d).

Theorem 3.2.4 ( [15, Theorem 7]) For equation (E,) the following hold:
(a) IfI, = coand ], = oo then M* = M7, | # 0;
(b) If I, = o0 and ], < oo then M = 0, M* = ]M:o’l + 0;
(©) If I, < co then My # 0, M7, = 0.

In addition, for a > B, we have MY, ., = 0 in claims (b), (c).
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As we see from Theorem it is an open problem whether it is true that M, #
0 in cases (b) — (d) if a > . The existence of strongly decreasing solutions in the
continuous case, that is for the differential equation (3.2.1), can be proved as in [121]
with the help of fixed point theory by proving that the operator

(Fx)(t) = I (;% f q(r)x(r)ﬁdr)a ds

has a nonzero fixed point. To this end the operator # acts on the set
Q= {x € C[tOI OO] : Z(t) < X(t) < Z(tO)/ t > tO}/

where z is a singular solution of the first kind of (3.2.1). The second approach, due
to [104], is to construct the sequence {x(n)} of asymptotically constant solutions of the
differential equation (3.2.1), having the limit function x, and it gives rise to a positive
strongly decreasing solution of (3.2.1). This approach, however, requires lower bound
for such a sequence of solutions, which is again given by a singular solution of the first
kind of (3.2.1). Clearly, due to the nonexistence of singular solutions in the discrete
case, neither of these two approaches work. Therefore, in Section 3.3 we will give the
necessary and sufficient conditions that the equation (E,) has solutions in class M,
but limiting ourself to the case when the coefficients of the observed equation are
regularly varying sequences. In addition, we will be able to give a precise asymptotic
representation of these solutions.

Regarding the existence of strongly increasing solutions, there are only partial
results given in Theorem Therefore, continuing in this direction, in section
the necessary and sufficient conditions for the existence of a regularly varying solution
of the equation (E,) , whose coefficients are regularly varying sequences, will be given,
and precise asymptotic formulas of strongly increasing solutions will be obtained.

3.3 Strongly decreasing solutions

In what follows we assume that p € RV(7), 4 € RV(0) and use expressions
B31)  pm)=wEm) qn) =nwm), &= (Em), o= lom) SV,
considering strongly decreasing RV —solutions expressed as

(3.3.2) x(n) =nfln), [={ln)eSV.

Moreover, we assume that 1 # a and distinguish two mutually exclusive cases:

333 (i) n<a implyingthat S = oo;
(3:33) (il) n>a implyingthat S < co.
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3. Second order Emden-Fowler type difference equation

Case (i): It is clear that for any strongly decreasing solution of (E,) it holds that

x(n) < ¢, for large n. Thus, we have that the index of regularity p of strongly decreasing
RV -solution x must satisfy p < 0. If p = 0 then I(n) = x(n) — 0, so x is a member of
ntr — SV.

Cask (ii): Using (3.3.1) and Theorem we have

[ee]

! L -
(334) T((n) = Z W — Zk_zé(k)_a . a 7’175(1’1 -1 [84 n
k=n

o n-a n-a pm)te

asn — oo, so that {rt(n)} € RV (0%7) For any strongly decreasing solution x of (E), by
application of Lemma we have that

lim x(m) = lim iﬂ)l = lim (x[l](n))Z =0,
n—oo T((n) n—oo —p(n)_” n—oo

implying that the index of regularity p of strongly decreasing solutions must satisfy
p <=
If n < a, the totality of strongly decreasing RV—solutions will be divided into the

following two classes
ntr —= SV or RV(p) with p <0,

while, if 7 > a, the totality of strongly decreasing RV —solutions of (E,) will be divided
into the following two subclasses:

a-—1

(04

a—1

o .

RV(T) or RV(p) with p <
Our purpose is to show that all solutions in each of these four subclasses of strongly
decreasing RV —solutions of (E;) enjoy one and the same asymptotic behavior as
n — oo, whereby the regularity index of such a solution is uniquely determined by «,
and the regularity indices 7, o of coefficients p, 5. Moreover, necessary and sufficient
conditions for the existence of solutions, belonging to these four subclasses of strongly
decreasing RV -solutions will be established.

3.3.1 Existence of strongly decreasing solutions

Sufficient conditions for the existence of a strongly decreasing solution of the differ-
ential equation (3.2.1)) are given by the following theorem:
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3.3. Strongly decreasing solutions

Theorem 3.3.1 (i) ( [104, Theorem 3.2], [22, Proposition 2-(e)]) Let faoo p(t)‘% dt = oo,

a>0.1If
f (%I q(s)ds)a dt < oo,

then equation (3.2.1) has a strongly decreasing solution.
(ii) ( [121} Theorem 4.3]) Let [ p(t)" dt < co, a > 0.If

[Fool ) <

then equation (3.2.1)) has a strongly decreasing solution.

According to these continuous results, it is expected that in the discrete case, the
existence of strongly decreasing solution is characterized by the assumption I; < oo if
S = oo and by the assumption J; < o0 if S < c0. In fact, we prove

Theorem 3.3.2 Suppose that p € RV(n) and g € RV (0).
(i) Let n < a. If I < co, then M # 0.
(ii)) Let n > a. If [; < oo, then]l\/[ 0 % 0.

First of all, let us notice that if < «, then 0 < -1 is a necessary condition for
I < co. Then, using discrete Karamata theorem, (3.3.1) and (3.3.4), we have

[p(k) Z q(])

On the other hand, if n > a application of discrete Karamata theorem gives

= a \ oo k)
q(k)[Zp )”“] (n a) o “né(kw“’

j=k

1 (kaﬂ_”a)(k))‘% b o oo
(—@+1r \ <) '

Consequently,

(i) for n < a, I < oo if and only if

(3.3.5) o<n-a-1
or

w(k) ,
(3.3.6) oc=n—-a-1 and Zk (5(k)) < 00;
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3. Second order Emden-Fowler type difference equation

(ii) for n > a, J; < oo if and only if

(3.3.7) a<ﬁ—’7—/3 1
or

2 1 w(k)
(3.3.8) o=""-p-1 and Zklg(kﬁ/a

Taking into account the previous consideration, Theorem will be proved by
considering the above four cases.

Theorem 3.3.3 Suppose that p € RV (n) and g € RV (0).
(i) Let n < a. If (3.3.9) holds, then equation (E;) possesses a solution x € M
(ii) Let 1 > a. If (3.3.7) holds, then equation (E;) possesses a solution x € M,

Proor. Suppose either 7 < a and (3.3.5) holds or 7 > a and (3.3.7) holds. Denote

(33.9) X(n) = npn Tt T

(=p)* (a =1 = pa) -

and A = (-p)* (@ — 1 — pa), where p is given by

ot+ta+1l-n
a-B
Clearly, X = {X(n)} € RV(p) and it may be expressed in the form

(3.3.10) p=

(3.3.11) X(n) = A"winf (ﬁz))_ﬁ .

Notlce that (3.3.5) and (3.3.10) 1mply that p < 0, while (3.3.7) and (3.3.10) imply that
p <=1, s0 that by Theorem 3r(v),(vii), X(n) — 0as n — oo and {X(n)} is eventually

decreasmg, in both cases (i) and (11).
Let us first prove that the sequence X satisties the asymptotic relation

[} @

(3.3.12) Y [i% Z}; g(HX( + 1)
=

k=n

~ X(n), n — oo,
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Using (3.3.1), by application of Theorem (iii) and Theorem (ii), we get

Y a0X (e + 1) ~ AT Y ()T w(l
k=n p—

(3313) = A_aﬁTﬁ Z ka(p_l)_'—n_lé(k)_a%w(k)a%ﬁ
k=n
a(p=1)+1 -t o
s h P=IMNE () F w(n)*-P N
—(a(p—1)+n)

Notice that a(p — 1) + 1 < 0 in both cases (i) and (ii). From (3.3.13), applying Theorem
(i), we obtain the desired asymptotic relation for X:

o (1 : SN +
LY X+ 1) AT -1 (@)ﬁ
)3 [p(k) ]Z;, 9DX(+1) ] =P = 0

2
[
x

k=n
~ /\_aﬁTﬁ n_p(@)%ﬁ
all=p)=n) —p\&n)

as n — oo. Thus, there exists ny > 1 such that

X(n+1) < X(n) and

1 ol BEER w VI
EX(ms;[@;quwnﬁ

Let such ng be fixed. We choose constants k € (0,1) and K > 1 such that

1
SE and K'"f>2.

Consider the space Y, of all real sequences x = {x(n)},~, such that {x(n)/X(n)} is

n=npy
bounded. Then, Y,, is a Banach space, endowed with the norm

2=

(3.3.14)
<2X(n), forn=>ny.

2=

(3.3.15) Kl

x(n
|Ix|]| = sup %

Further, Y, is partially ordered, with the usual pointwise ordering <: for x, y € Y,,,
x < ymeans x(n) < y(n) for all n > ny. Define the subset X C Y, by

(3.3.16) X={xeY, :kX(n) <x(n) <KX(n), n>ng}.
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3. Second order Emden-Fowler type difference equation

For any subset B C KX, it is obvious that inf B € X and supB € X. Next, define the
operator ¥ : X — Y,,, by

(3.3.17) (Fx)m) = Z [% Z a()x(j + 1)ﬁ] . 1>,
j=k

k=n

and show that ¥ has a fixed point by using Theorem Namely, the operator #
has the following properties:

(i) Operator ¥ maps X into itself: Let x € X. Using (3.3.14), (3.3.15), (3.3.16) and
B3.17), we get

-

(Fx)(n) < K& Z (ﬁ Z g(HX(j + 1)ﬁJ < 2K§X(n) <KX(n), n=ng.
k=n =k

[o0]

(Fx)(n) > k6 Y

k=n

;%Zq(j)xgn)ﬁ] > ki 2wk X(n), nz .
j=k

This shows that (¥ x), € X, for all n > ny, that is, ¥ (X) C X.
(ii) Operator F is increasing, i.e. for any x,y € X, x < y implies Fx < Fy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € X of 7, satisfying

(3.3.18) x(n) = Z [Iﬁ Z q(j)x(j + 1)ﬁJ . n>mn.
j=k

k=n

It is clear in view of (3.3.16) and the fact that X(n) — 0, n — oo, that x is a positive
solution of (E;) which satisfies x(n) — 0, n — co. Moreover, due to (3.3.11), (3.3.14)

and (3.3.16), we have

(3.3.19) p(n)(—Ax(n))* < KP Z q)X(k +1)f <m Z ko+o8 £ (K),
k=n k=n
where 1
flk) = (a)(k)“)“_‘ﬁ f={fk)}eSV and m= KA~ 77,
o)

Since, 1 < @ and (3.3.5) as well as 1 > a and (3.3.7) imply that 0 + p < —1, from (3.3.19)

we conclude that x!I(n) — 0,7 — oo, thatisx € M;,. O
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Theorem 3.3.4 Suppose that p € RV(n), n < a and g € RV (o). If (3.3.6) holds, then there
exists x € Mg,

Proor. Suppose (3.3.6) holds. Define sequences T = {T'(n)} and G = {G(n)} by

o

a—p

(3.3.20) Gin) = Y K& Fo®?, T) = Z( )Zq(J)] ;
k=n

for n > 1. Since the first condition from (3.3.6) implies 0 < —1, application of Theorem
5gives

(o8]

1 .‘l’
z[@;qm] .

ER) Twk)s, 1 — oo,

k=n

so that

1 a— ,3 “aTﬁ _a_

T(n) ~ - G(n)*F, n— oo
(@—n)7\ @

Clearly, G € ntr - SV and T € ntr — 8V. Applying Theorem [1.3.5}(ii) and using the

first condition from (3.3.6) we get

ap
( - P ) 1w (m)G()*F, 1 — oo,

f}q(k)T(m e —L
k=n (0( - T]) ap

Thus, by Theorem [1.3.4} the previous relation gives

(@—py )— e (w(k))% .
Lt L) Gy
(aﬁ(a =) L5 Em) e®

v s
afla-n)) &

1 o — w7 _a_
~ 1 ( ) G(n)a_ﬁ ~ T(n),
(@—n)7 \ @

[1s
—_——
By
2=
=
'\\\_/_
=
~
+
=
N
M4

(—AG(K) - G()™7

n

as n — oo. Consequently, we conclude that T satisfies the asymptotic relation (3.3.12)).

The rest of the proof is the same as the proof of Theorem[3.3.3lwhere X(n) is replaced
with T(n). Then, a solution x of the equation (E,) satisfying x T(n) < x(n) < KT(n), for
large 1, is obtained by the application of Knaster-Tarski fixed point theorem (Theorem

1.1.1) and belongs to the class M. O
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Theorem 3.3.5 Suppose that p € RV(n), n > aand g € RV (o). If (3.3.8) holds, then there
exists x € Mg,

Proor. Suppose (3.3.8) holds. Using (3.3.1) and the assumption (3.3.8), we have that
i k) i ~== ﬁikﬁ k()
k=1 ! = P p()Y —a o
( ) Z kK tw(k)E(k) n— oo,

Define sequences Y = {Y(n)} and W = {W(n)} by

Win) = i Kla®Eak) s,
(3.3.21) k=n

Y(n):( & )m(“_ﬁ)a__ﬁnp(n)—%wm)ﬁ, n>1.

n-—a a

Note that W € S8V and since np(n) v =nw E(n) a, we see that Y € R‘V( ) Thus,
the application of Theorem [1.3.4]gives

ap B
a a \"Fla=-B\ Py, 8 A
Zq(k)Y(kH)ﬁ ~ 7=z aﬁ Zk 'w(k)E(k) ™ W (k)5
k=n k=n
= B &
a a— a_ a— i
~ 75 —=] Y CAW®R) - Wk
k=n
ap _a
a—p — a—p o
- (5] () e e

which yields with the help of Theorem [I.3.5}(ii)

(o]

T 5 .
LN v a \*Fla=B\"Fxa, 1 . 1 .
Z[@;QU)Y(HW] N(’?—a) ( - ) ;kaé(k) SW(k) TP

k=n

~ ( a )m (0‘ _‘3)“_"3 nT E(m) FW(m) T = Y(n), n — oo,

n—a a

Therefore, Y = {Y(n)} satisties the asymptotic relation (3.3.12). Then, proceeding
exactly as in the proof of Theorem replacing X(n) with Y(n), a solution x satisfying
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k Y(n) < x(n) < KY(n), for large n, is obtained by the application of Theorem and
belongs to a class M. O

Proor or THEOREM
(i) Follows from Theorem [3.3.3] u(l) and Theorem [3.3.4
(ii) Follows from Theorem [3.3.3}(ii) and Theorem[3.3.5 O

3.3.2 Asymptoticrepresentation of strongly decreasing RV-solutions

To simplify the “only if” part of the proof of main results we prove the next two
lemmas.

Lemma 3.3.1 Letp € RV(n), n < aand g € RV(0). Forany x € M N RV (p) with p <0,
only one of the following two statements holds:

(i) p=0and

[S¢]

KlER) T w®)F 1K), n— oo

(3.3.22) x(n) ~ -
(@ —1n)e 4=

Then,itisc=n—-a-1<-1.
(ii) p is given by (3.3.10) and

na+1p(n)—lq(n)
(=p)*(a@ =1 - pa

Lﬁ
)] , N — oo,

(3.3.23) x(n) ~ [

Then,itiso <n—a-1.

Proor. Suppose that (E;) has a solution x € M;, N RV(p) with p < 0, satisfying
x(n) >0, Ax(n) <0 forn >ny+1>2and expressed with (3.3.2). Summing (E,) for
k>n > ny, we get

p)(=Ax(m)* = ) q(ox(k + 1),
k=n
which yields, using (3.3.1) and (3.3.2)

(3.3.24) p(n)(—=Ax(n))* ~ Z q(k)x(k)f = Z KPP o()I(k)f, 1 — oo,
k=n k=n

The fact that x!!(n) = p(n)(—Ax(n))* — 0 as n — oo implies

[S¢]

lim Y KPPk =0,

k=n
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3. Second order Emden-Fowler type difference equation

so it must be 0 + pf < —1. We are first considering the case o + pf = —1. Then,
(3.3.25) p(n)(=Ax(n))* Z Klo@lk)P = Q), n— o,

where Q = {Q(n)} € SV and Q(n) — 0, n — co. Consequently

_Ax(n) ~ ( ((”))) nREm) Q)Y n— .
Since lim,,_,., x(11) = 0, summing previous relation from 7 to co, we get
(3.3.26) x(n) ~ Z ki ( T ) n— oo,
implying that 1 — 1 < 0i.e. 1 > @ whichisa Contradiction so this case is impossible.

Therefore, o + pﬁ < —1. An application of Theorem [I.3.5}(ii) in (3.3.24) gives

g+pp+1-n

w(n)+ E(n)+1(n)s
(~(c+pB+1)s

as n — oo. Because x(11) — 0, n — oo, summing (3.3.27) from 7 to co we get

1 & -
(3.3.27) — Ax(n) = (pn ;‘q(k)x(k+1)ﬁ) -

00 a+pﬁ+1 Ul

- 3 R e !
(0320 ) kZ (0 +pp+ )}

From the last relation we conclude that it must be (o + pf +1 —n)/a < -1, so we
distinguish two possibilities:
o+pp+1-n

(3.3.29) (a) - i a+ Ll

<-1.

If (a) holds, then 0 + p + 1 = nn — a. From (3.3.28), we get that (3.3.22) holds, and
according to Theorem|[1.3.5}(iii), x € SV. Thus, p = 0 and (a) implies thato =n—-a-1.
On the other hand, if (b) holds, from (3.3.28), by Theorem [I.3.5}(ii), we obtain

S )
(3.3.30) x(n) ~ —= () E() 1) n — oo,

(~(o+ pp + D)} (-2 - 1)

Thus it must be

+pp+1-
(3331) p = o p'Ba n + 1/
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implying that the regularity index of x is given by (3.3.10). Combined this with the
assumption p < 0, we get that 0 < n — a — 1. Moreover, using (3.3.10) i.e. (3.3.31)), we

obtain

o (_w41$+1»%_6+p€:1_n_1):«“—n—pm0pyf,
and

(3:3.33) A ) 0* = (1 pr ) <60

Then, from (3.3.30) we obtain that the asymptotic representation of x is given by
(3.3.23). O

Lemma3.3.2 Let p € RV(n), 1 > a and q € RV(0). For any x € My, N RV (p) with
p < = only one of the following two statements holds:

(i) p = =1

and

2=

(3.3.34) x(n)

g <n>‘ﬁ(ik‘lw<k>l(k>ﬁ] Jn— e
k=n

n—-a
a

(ii) p is given by (3.3.10) and (3.3.23) holds. Then, it is o < f3 u -1

Proor. Suppose that (E;) has a solution x € M, N 7Q(V(p) with p < =1 sat1sfy1ng

(n) > 0, Ax(n) < O for n > ny+1 > 2 and expressed with (3.3.2). Usmg 3.3.1) and
we have (3.3.24). As in the proof of previous lemma, the fact that x[”(n)
p(n)(Ax(n))“ — O as n — oo implies that o + pf < —1.

If 0 + pp = —1, then as in the proof of previous lemma we get (3.3.26), where Q(n) is
given in (3.3.25 m Using that > a, application of Theorem (1.3.5)-(ii) in gives
us . Thus, p = =1, implying that 0 = g = — 1.

Next, we are con51der1ng the case 0+ pp < 1. An application of Theorem|[I.3.5}(ii)
n (3.3.24) give us implying, as previously, two possibilities (a) or (b) in (3.3.29).

However, the case (a) is not possible, because 0 + pf < —1 implies
+pp+1-

_o+pp n__n

a a

which is a contradiction with n > a. Thus, only (b) in (3.3.29) can be valid and so

from (3.3.28), as previously, we obtain that p is given by (3.3.10) and x satisfies (3.3.23).
Since, p < =1 from (3.3.10) we conclude that ¢ < & -p- 1 O

Now, we are in a position to prove the main results.

-1.

Then,itisc =

4
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3. Second order Emden-Fowler type difference equation

Theorem 3.3.6 Suppose that p € RV (n) and g € RV (o).

(i) Let n < a. Equation (E,) possesses regularly varying solutions x of index p < 0 if and
only if holds.

(i) Let n > . Equation (Ey) possesses regularly varying solutions x of index p < =1 if
and only if (3.3.7).

In both cases p is given by and the asymptotic behavior of any such solution x is

governed by the unique formula (3.3.23).

Proor. The “only if” part: Suppose that 7 < @ and x € RV (p) with p < 0. According
to Theorem [I.3.3}(v) and (vi), x € M~ and lim, . x(1) = 0. It is easy to prove
(see [14, Lemma 3]) that if S = oo, then for any solution in the class M~, it holds
lim,,,e ¥!(1) = 0. Thus, x € M . Then, it is clear that only the case (11) of Lemma|3.3.1
is admissible for x. Thus, the regularlty index of x is given by (3.3.10) and ¢ satisfies
(3.3.5).

Suppose that 7 > a and x € RV(p) with p < =2, Since p < 0 as previously we
conclude that x € M. Therewith, in view of (3.3.4), by Theorem [.3.3(vi) we get

. x(n) n-a._ o1 L

implying that x € IM . It is clear that only the case (ii) of Lemma 3.3.2)is admissible
for x, implying that the regularity index of x is given by (3.3.10) and that holds.

From Lemmas 3.3.1| and (3.3.2| we obtain that the asymptotic representation of
regularly varying solution x of index p is given by in each of the two cases (i)
and (ii).

The “if” part: We perform the simultaneous proof for both of the cases (i) and (ii).
From Theorem {3.3.3| follows the existence of a solution x € M. It remains to prove
that x satisfying (3.3.16) or (3.3.18) is a regularly varying sequence of index p. From

(3.3.16) we have
x(n) x(n )
0 < liminf —=

R X = X(n)

where X(n) is given by (3.3.9). Application of Lemma using (3.3.12) and (3.3.18),
yields

11m sup

L = timsup 2 x(n) <timoup Axr) o ~ (o T (e + 1)
X#) —e AX) s —(ﬁ Yikon q(k)X(k+1)ﬁ)”“
o (limoue Dien @O+ DAV (L —gOox(n+ 1P
) (““S Py nq<k>><<k+1)ﬂ) ‘(”i‘i?p —q(n)X(n+1)ﬁ)
Bla
< (hmsup ;c{((n-—l;ll))) — Lk
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3.3. Strongly decreasing solutions

Since f < a, from above we conclude that 0 < L < 1. Similarly, we can see that
[ = liminf,_,. x(n)/X(n) satisfies 1 <[ < co. Therefore, we obtain that[ = L = 1, which
means that x(n) ~ X(n), n — oo and ensures that x is a regularly varying solution
of (E,) with requested regularity index and the asymptotic representation given by
(3.3.23). O

Theorem 3.3.7 Suppose that p € RV(n), n < a and g € RV (o). There exists x € M, N
ntr — S8V if and only if (3.3.6) holds. All such solutions of (E) enjoy the precise asymptotic
formula

1139
(3.3.35) x(n) ~ aa Z[p(k)Zq(J)] o o,

n

Proor. The “only if” part Suppose that x € M, N ntr — SV. Then, clearly, only the
statement (i) of Lemma could hold. Therefore p 0 o =1n—a—1and x satisfies

(3.3.22). Then, since o0 < — apphcatlon of Theorem [1.3.5/gives

(33.36) y { ) Z q(;)J

k=n

TEk) Fwk)s, 1 — oo,

where we used that 0 + 1 = a — 1. Denote

(3.3.37) z(n) = Z KLE(R) (k) 1K)
k=n
From Theorem (iii) clearly z = {z(n)} € SV and (3.3.22) becomes
(3.3.38) ) = 1m) ~ — 5 S oo,
(@ —m)=
From (3.3.37) and (3.3.38) we obtain the asymptotic relation
s ' E(n) " sew(n)s
(3.3.39) z(n)"a(=Az(n)) ~ ———, n— .
(@ —mn)

By (3.3.38), we have that z(n) — 0, n — oo and clearly {z(n)} is strictly decreasing.
Summing (3.3.39) from 7 to oo, using Theorem|[1.3.4/and (3.3.36), we obtain

[o¢]

8 1 1 1
2 ~ ——— Y k() w k)
a-p G 17)&ﬂz kZ‘
(3.3.40) N .
- n)iv_; ZJ{P( )Zq(])]
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3. Second order Emden-Fowler type difference equation

Because 1-L50, Z(n)l_a — 0, n — oo, s0 (3.3.40) yields that the second condition in
is satisfied as well as that the asymptotic expression for x is

1 (04 —ﬁ - 1 1 l]ﬁ
x(n) ~ - k&) = w(k)®
(@ — )7 ( a kZ‘

_a
a=p

N a— ,BZ{ i': (])Ja , N — 00,

This completes the “only if” part of the proof of Theorem

The “if” part: From Theorem @we have the existence of a solution x € M. In the
same way as in the proof of Theorem [3.3.6] replacing X(n) with T(n) given by m
and with the application of Lemma([I.1.8we obtain that x(n) ~ T(1), n — oo, implying
that such a solution is slowly Varying and enjoys the precise asymptotic behavior
(3.3.35). O

Theorem 3.3.8 Suppose that p € RV(n), n > a and g € RV (o). There exists x € M, N

ﬂv(%) if and only if (3.3.8)) holds. All such solutions of (E) enjoy the precise asymptotic
behaviour

1

1 o7

(3.3.41) x(n) ~ (a“‘l a-p )M np(n)~ [i Kalop(k)
k=n

, N — 0.

(n-—a)

a-n
a

Proor. The “only if” part: Suppose that x € M, N R(V(

statement (i) of Lemma [3.3.2 could hold. Therefore p==10= E n—p—-1and x
satisfies (3.3.34). From (3.3.2) and (3.3.34) we get

Then clearly only the

(3.3.42) I(n) ~ )5 Qn)E, n— oo,

where Q(n) is given in (3.3.25). From (3.3.25)), we conclude that QO € SV, Q(n) — 0
as n — oo and {€)(n)} is strictly decreasing. We transform (3.3.42) into the asymptotic
relation for Q

B
0t *A0() ~ - (%) ™ w(n)E(n)
(3.3.43) n-a

a Y ¢
= _(77_—a) nPgn)p(n)™=, n — oo.
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3.3. Strongly decreasing solutions

Summing (3.3.43)) from 7 to co and using Theorem we obtain

o

a—p

ﬁ 00
(3.3.44) Qn)F ~ (17 - a) Z Falop(k) s, n— oo,

k=n

Because Q(n)l‘g — 0asn — oo, (3.3.44) yields that the second condition in (3.3.8) is
satisfied. The asymptotic expression (3.3.34)) for x becomes

x(n) ~ ———n'T &) 5Qn)s

i Ja-p =
~(,7fa) np(nrz[“aﬁ ;kﬁmk)p(k)-?] , - .

This completes the “only if” part of the proof of Theorem 3.3.8]

The “if” part: From Theore we obtain the existence of a solution x € Mg,
while application of Lemma as in the proof of Theorem with Y(n) instead
of X(n), where Y(n) is given by (3.3.21)), proves that x(n) ~ Y(n), n — oo, so that such
a solution is in fact a RV—solution of index =, with the precise asymptotic behavior
given by (3.3.41). O

Summarizing the results given in this section, we see that the existence of strongly
decreasing RV —solutions for the equation (E;) with RV coefficients is fully charac-
terized by the assumption I < oo if S = oo and by the assumption | < 00 if § < co0. In
fact, the following corollary holds.

Corollary 3.3.1 Suppose that p € RV (), n # a and q € RV (o).
(i) Let S = oco. Equation (E,) has strongly decreasing RV-solutions if and only if I < co.
(i) Let S < oo. Equation (E,) has strongly decreasing RV-solutions if and only if |, < oco.

Moreover, if S = oo, then | = co so by Theorem ]Ma’ = 0. Otherwise, if S < oo,
denoting the series Q = Y, gx, we have two cases:

(a) If Q = oo, then I; = o0, so by Theorem 3.2.1lwe have M~ = M i.e. M = 0.
(b) If Q < oo, then I < o0, so by Theorem 3.2.1jlwe have M~ = M; U Mj.
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3. Second order Emden-Fowler type difference equation

3.4 Strongly increasing solutions

As in the previous section, we assume that (3.3.1) and (3.3.2) hold, so again, we have
two cases given in (3.3.3).

Casek (i): Using (3.3.1) and Theorem we have

n—1 n—1

H(n):zp T Zk—-g(k

(3.4.1) pa

n Ty

n
0( _ T] p(n)l/a

— 0

so that {I'l(n)} € R‘V( ) For any strongly increasing solution x of equation (E;) we
have that

lim x(1) = 00

o ()

implying that the index of regularity p of strongly increasing solutions must satisfy
p > =L 1If p = =1 then x is a member of RV(~?) and if p > = then x € RV(p) and

clearly satisfies x(n) /nT — cowhenn — co. Therefore, ifn <a, the totality of strongly
increasing RV —solutions of (E;) will be divided into the following two subclasses:

_T].

(34.2) 7€(V( ’7) or RV(p) with p> =

Case (ii): It is clear that for any strongly increasing solution of (E;) it holds that
x(n) > ¢, for large n. Thus, we have that the index of regularity p of strongly increasing
RV -solution x must satisfy p > 0. If p = 0 then [(n) = x(n) — oo so x is a member of
ntr — 8SV. Therefore, the totality of strongly increasing RV —solutions in case > «
will be divided into the following two classes

(3.4.3) ntr—S8V or RV(p) with p > 0.

For equation (E;) with arbitrary coefficients, there are only sufficient conditions
for the existence of strongly increasing solutions (see Theorem [3.2.3). We further wish
to establish the necessary and sufficient conditions for the existence of the solutions
which are regularly varying and belong to one of the subclasses given in 2) and
(3.4.3). Moreover, we will show that these solutions of the correspondmg subclass
have the same asymptotic behavior when n — oo, where the regularity index of these
solutions is uniquely determined by a and  and indices of regularity 1 and o, of the
coefficients p and g.
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3.4. Strongly increasing solutions

3.4.1 Existence and asymptotic representation of strongly increasing
RV -solutions

Before giving some results, let us notice that if n > « then ¢ > -1 is a necessary
condition for I, = co. Then, using discrete Karamata theorem and (3.3.1), we have

k-1 % 1 ka+1—nw(k) %
~ k — oo.
[P(k Zq(]] (o+1)%( &(k) ) '

On the other hand, if 1 < a application of discrete Karamata theorem with the help of
([3.4.1) gives

¥ 1) " (e Y ot 0®
q(k)[z’”(f)”“] [z 17) i) = (75) o e e ko

=1

Consequently

(i) for n < a, J, = oo if and only if

(3.44) o> En -p-1
a

or

B . _ w(k)
(3.4.5) c=—-n-pf-1 and kK ———= =

@ kz &)

(ii) for n > a, I, = oo if and only if
(3.4.6) o>n-a-1
or
w(k) .

(3.4.7) oc=n—-a-1 and Zk (E(k)) = 00;

To simplify the “only if” part of the proof of main results we prove the next two
lemmas.

Lemma3 4.1 Let p € RV(n), n < aand g € RV(0). For any x € M{, ., N RV (p) with
p > = only one of the following two statements holds:
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3. Second order Emden-Fowler type difference equation

Hp=1-2and

n-1
)"( k™ 1w(k)1(k)ﬁ] 1 — oo

k=1

(3.4.8) x(n) ~

Then, itis o = %”—/3—1.
(ii) p is given by (3.3.10) and

n**p(n)~'q(n)
p(pa —a+1)

1
a=p
] as mn — o0,

(3.4.9) x(n) ~ [

Then, ztzsa> -p-1

Proor. Suppose that (E;) has a solution x € M, , N RV(p) with p > =, satisfying
x(n) > 0, Ax(n) > 0 for n > np + 1 > 2 and expressed with (3.3.2). Summing (E,), for
n>ng+1weget

n-1
p(m)(Ax(m)* = p(no)(Ax(10))* + Z qe)x(k + 1)

k=n(]

which yields, using (3.3.1) and (3.3.2), that

n-1 n-1
(3.4.10) p(n)(Ax(n))* ~ Z q()x(k)f = Z KPP a(I(k)P, 1 — oco.
k=ng k=ng

The fact that x"(n) = p(n)(Ax(n))* — oo when n — oo implies
n-1
lim Z KB (k)I(k)P = oo
n—00 P
so it must be 0 + pp > —1. We first consider the case o0 + pp = —1. Then,

n—1
(3.4.11) p(n)(Ax(n))* ~ Zk w(®)I(k) Zk w®)I(k) = H(n),
k=1

ki’l(]

as n — oo, where H = {H(n)} € SV and H(n) — oo, n — co. Consequently

Hm\" 2 1 1
(3.4.12) Ax(n) ~ (M) =n"a&(n)"aH(n)z, n — oo.
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Summing (3.4.12) from ny + 1 to n, using that n < @, with application of Theorem

(i) and Remark [1.3.1, we get (3.4.8). Therefore, p =1— 2. From o + pp = -1 it
follows that o = ﬁ—” -p-1

Next we con31der the case 0 + pp > —1. An application of Theorem [1.3.5}(i) in
(3.4.10) implies

o+pp+1-1

1 n-1 % " -
(3.4.13) Ax(n) = ( IT”) ,;) g(k)x(k + 1)ﬁ) ~

W)+ E(n)+I(n)*
(c+pp+ 1)a ’

asn — o0.Since, 0+ pf > —land n < aimply (6 +pp+1-n)/a > -1, summing (3.4.13)
from ny + 1 to n — 1 with application of Theorem (i) gives

(3.4.14) x(n) ~ = wweEslm=

(0 +pp+1)a (L 4 1)/

Thus, it holds that p = ‘Hpﬁaﬁ + 1 implying that regularity index of x is given with

ot+ta+1l-n
p:a—_ﬁ

which is also given by (3.3.10). Combined this with o + pp > -1, we get o + pp > —1.
Moreover, using (3.3.10) we obtain

o+pf+1-n
a

(“+Pﬁ+1)( )=(p“(pa+n—a))‘l'

and
o+pp+l-n +1

PN
= () Em) ()T = (1 pn) ()" x(n)s.
Then, from (3.4.14) we obtain that the asymptotic representation of x is given by (3.4.9).
O

Lemma 3.4.2 Let p € RV(n), n > a and g € RV (o). For any x € M{, ., N RV (p) with
p = 0 only one of the following two statements holds:

(i) p =0and

n—

1 . 1 1 B
3.4.15 ~———— ) kR T k) l(k)s n — co.
(3:4.15) x(n) (a+pﬁ+1)r1‘x;‘ SR w1 n

Then,itisoc=n—a—1.
(ii) p is given by (3.3.10) and (3.4.9) holds. Then, 0 > n—a — 1.
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3. Second order Emden-Fowler type difference equation

Proor. Suppose that (E;) has a solution x € M, , N RV(p) with p > 0, satisfying
x(n) > 0 and Ax(n) > 0 for n > ny + 1 > 2 and expressed with (3.3.2). Using
and we have (3.4.10). As in the proof of previous lemma, the fact that x!!!(n) =
p(n)(Ax(n))* — co whenn — oo implies that 0 + pp > —1, although the case o + pff = -1
is now impossible. Indeed, from (3.4.12), since lim, . x(11) = co, we obtain

n-1
lim Z n=iE(n) vH(n)s = oo,
n—o00 P
but this is the contradiction with our assumption 1 > a.

Therefore, we have that 0 + p > —1 and obtain (3.4.13) with an application of
Theorem (i) in (3.4.10). Because x(n) — oo, n — oo, we conclude from (3.4.13)
that it must be (o + p + 1 —17)/a > -1, so we distinguish two possibilities:

a+p5+1—17:_1 (b)a+p[3’+1—n>_
! ’ o

1.

()

If (a) holds, summing from ny + 1 to n — 1, we obtain (3.4.15) which shows
that x € SV according to Theorem [I.3.5}(iv). On the other hand, if (b) holds, as in
the proof of Lemma we show that holds and that ¢ > n — a — 1 using that
p>1-1. O

We are now in a position to give necessary and sufficient conditions for the existence
of regularly varying solutions from the class MY, ,, and to give precise asymptotic
representation of all these solutions.

Theorem 3.4.1 Suppose that p € RV (n) and g € RV (o).
(i) Let n < a. Equation (Ey) possesses a regularly varying solution x of index p > =1 if
and only if (3.4.4) holds.

(ii) Let n > a. Equation (E,) possesses a regqularly varying solution x of index p > 0 if and

only if (3.4.6)) holds.
In both cases p is given by (3.3.10) and the asymptotic behavior of any such solution x is

governed by the unique formula (3.4.9).
1

Proor. The ”“only if” part: Suppose that n < a and x € RV(p) with p > =L

According to Theorem (v) and (vi), since p > 0, we conclude that x € M* a‘rxld
lim,, . x(1) = co. How

p - . .
= lim n ) _«a - T im no " [(n)é(n)s = oo

it follows that x € M, .. Then, it is clear that only the case (ii) of Lemma is
admissible for x. Thus the regularity index of x is given by (3.3.10) and o satisfies
(3.4.4).
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Suppose that 7 > a and x € RV(p) with p > 0. As previous, x € M* and
lim,, o x(11) = o0. It is easy to show that it must be lim,,_,, x!*!(11) = co. Then, it is clear
that only case (ii) of Lemma3.4.2]is admissible for x, implying that the regularity index
of x is given by and holds. From Lemmas[3.4.T]and [3.4.2 we obtain that
the asymptotic representation of regularly varying solution x of index p is given by
(3.4.9) in each of two cases (i) and (ii).

The "if” part: Suppose either n < a and (3.4.4) holds or n > @ and (3.4.6) holds. Denote

1
a—p

a+l -1
X(n) = ln p(n)"g(n)
p*(pa —a+n)
and A = p*(pa — a + 1), where p is given by (3.3.10). Clearly, X = {X(n)} € RV(p) and

it may be expressed in the form

n>1

— 4

(3.4.16) X(n) = AT nPEm) TP w(n)*7 .

Notice that (3.4:4) and (3.3.10) imply that p > =, while (3.4.6) and (3.3.10) imply that
p > 0. Therefore, by Theorem lim;, e X(n) = 0.
Let us first prove that sequence X satisfies the asymptotic relation

n-1 k-1 s
(3.4.17) Z (% Z gHXG+ 1P| ~Xmn), n—o oo
= PV =

Using (3.3.1), by application of Theorem (i) and Theorem (iv) we get

n—1 n—1
Y a0XE+1F = AT Y EER) T k)T
k=1 k=1
b S B .
= AT Y ROl g () T oo (k)7
k=1
alp-1)+ —ﬁ? 4
(34.18) Lo ) T

alp-1)+1

From (3.4.18), applying Theorem (i), we obtain the desired asymptotic relation
for X:

n—1 k-1 % n—1
[% DA+ 1>ﬂ] ~ AT (a(p = 1)+ )Y R ER) T
k=2 j=1 k=2

PE(R) S ()
_ A‘ﬁ (@(p—1) +77)_5n &(n) p/>’a)(n) 7

= AT AT P E(n) ()™ = X(n),  n - oo,
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3. Second order Emden-Fowler type difference equation

Thus, there exists 1y > 1 such that

n-1 1 k-1 . . a
(3.4.19) é[@j;ﬂ(;)xmnﬁ <2X(n), n>mnp.

Let such n be fixed. We may assume that X(n) is increasing for n > n, (see Theorem

(vii)). Since from (3.4.17) we have

n—1 k-1 a
Z[ﬁ Y aDXG+ D~ X(m), 1o e,
k=ng j=np-1

there exists n; > ny such that

n—1 1 k-1 X(n)
(3.4.20) kZ [@ jmzo‘ilq(j)xg P 22, iz

Let such 7, be fixed. We choose constants k € (0,1) and K > 1 such that

1 B X(m)
<= K=z >4 K>2 )
<5 > and > KX(no)

2=

(3.4.21) K

Consider the space Y, of all real sequences x = {x(n)},,, such that {ﬁ} is bounded.

x(n
X(n)
Then, Y,, is a Banach space endowed with the norm

x(n)
||x]| = sup X(1)

Further, Y, is partially ordered, with the usual pointwise ordering <: for x,y € Y,
x < y means x(n) < y(n) for all n > ny. Define the subset X C Y, like

(3.4.22) X={xeY, :kX(n) <x(n) <KX(n), n>ngy}.

For any subset B C X, it is obvious that inf B € X and sup B € X. We will define the
operator ¥ : X — Y, by

1

n-1 k-1 @
(3.4.23) (Tx)(n) =xo+ ];; (;% j:nZOil q(j)x(j + 1)ﬁ] , n>np,

where x, > 0 satisfies
K
(3.4.24) kX(n1) < xp < > X(no),
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and show that # has a fixed point by using Theorem Namely, the operator
has the following properties:

(i) Operator ¥ maps X into itself: Let x € X. Using (3.4.19), (3.4.21), (3.4.22), (3.4.23)
and (3.4.24), we get

A

n-1 k-1
(Fn) < x0+K§Z[;%'Z qX(+ 1Y

k=ng j=no-1

K K K
< 5 X(mo) + 2K X(n) < = X(m) + 5 X(m) = KX(n), n>n.

On the other hand, using (3.4.20), (3.4.21), (3.4.22), (3.4.23) and (3.4.24), we have

n—1 k-1 a
(Fr)(n) =kt I; [i% j;lq(j)X(j + 1)/3] > KQX(Z”) >«xX(n), n>=m

and

(Fx)(n) = x0 > «kX(n) >xX(n), ng<n<n.
This shows that (¥ x)(n) € X, for all n > ny, thatis, F(X) c X.
(ii) Operator F is increasing, i.e. for any x, y € X, x < y implies Fx < Fy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € X of 7, satisfying

n—1 k-1 zl'x
(3.4.25) x(n) = xo + ];) (7% j:nzovil q()x(j + 1)5] , n=np.

It is clear in view of (3.4.22) and the fact that X(n) — oo, when n — oo, that x is a
positive solution of (E;) which satisfies x(11) — oo, n — co. Moreover, due to (3.4.16)

and (3.4.22)

n—1
(3.4.26) pO)AX)* = AT Y kP w(k)/E(R))T

k=l’l0—1

Since, 1 < @ and (3.4.4) as well as > a and (3.4.6) imply that 0 + pf > —1, from (3.4.26))

we conclude that x!1(n) — oo, n — oo, thatis x € MY, ..
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3. Second order Emden-Fowler type difference equation

It remains to prove that x satisfying (3.4.22) is a regularly varying sequence of index

p. From (3.4.22) we have

3.4.27 0 < liminf ﬂ < l'm sup ——= < o
X(n) r

Application of Lemma using (3.4.17) and (3.4.25), yields

e 1/a
) (55 Lt q(R)x(k + 1)F)
= l11msu

e 1/a
oo (s L g0 X (k + 1)F)

L = limsup % < limsup ﬁ;((z))

. ZZ:_ll El(k)x(k + 1)’3 Ve . q(n)x(n + 1)‘3 1/a
- (hm o T a(X(k+ 1)ﬁ) < imeur W)
B/
< (limsup ;C(((Trllill))) g

Since f < a, from the above we conclude that

(3.4.28) O<L<1.

Similarly, we can see that [ = lim inf,_,., x(1)/X(n) satisfies
(3.4.29) 1<I<oco.

From (3.4.28) and (3.4.29) we obtain that [ = L = 1, which means that x(n) ~ X(n),
n — oo and ensures that x is a regularly varying solution of (E;) with requested
regularity index and the asymptotic representation given by (3.4.9). O

Theorem 3.4.2 Suppose that p € RV(n)), n < a and q € RV(0). There exists x € M{, ., N
RV (%) if and only if (3.4.5) holds. All such solutions of (E;) have the precise asymptotic
property

g\ =
(3.4.30) x(n) ~ (oz“‘l (:‘_ 175)) - (n)l — [Zk q(p(k)™ ] . 1 — o,

Proor. The “only if” part: Suppose that x € M7, N RV (?) Then, clearly only the
statement (i) of Lemma could hold and (3.4.11)) is satisfied.Therefore, p = ? and

o+ pp =-1implies 0 = gn — B — 1 and x satisfies (3.4.8). From (3.3.2) and (3.4.8) we
get

(3.4.31) I(n) ~ &) *H(n), n — o,
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3.4. Strongly increasing solutions

where H(n)is given by (3.4.11). Using (3.4.11) we transform (3.4.31) into the asymptotic

relation for H:

B
H(n)"f AH(n) ~ (a - n) n - w(m)Em)

(3.4.32)

p
! s
= p Ta
(a — ’?) nPg(n)p(n)"«, n — oo.
Summing (3.4.32) for n > 2 and using Theorem we obtain

o

a-p

p n-1
(3.4.33) H(n)'"% ~ (a - n) Y Kapk)™s, n— oo,

k=1

Because 1 — g >0, H(n)l‘g — 00, 1 — 00, (3.4.33) yields that the second condition in
(3.4.5) is satistied. The asymptotic expression (3.4.8) for x becomes

1
a-p

a1 1 1 “L_ﬁ - = B
x(n) ~ " ﬁ nnTg(n)—zH(n)a - ( o ) n [Ct - p ;kﬁq(k)p(k)—gl , N — oo,

a=n) pmhe

This completes the “only if” part of the proof of Theorem 3.4.2]

The ”if” part: Suppose (3.4.5) holds. Define sequences Y = {Y(n)} and W = {W(n)}
with

= _ _B o ﬁ Ot—ﬁ “L"ﬁ n 1
W(n)=;k 'ok)ék) e, Y(n)=(a_n) ( - ) p(n)l/aw(n)afﬁ, n>2.

Note that W € ntr — 8V and since n/p(n)'/* = n%é(n)‘%, we see that Y € R(V(%).
Thus, the application of Theorem gives

n—-1 af i—
a—p — a—p
qRYk+1P = = 2P Kok Wik + 1)
k=1 a—1 a e~
a—ﬁ, iﬁ n-1
a—B o — a—
~ (2 P AW(K) - W(k + 1)77
= n @ k=1
af a
a—p — a-p N
~ (=2 BN WS, 1o oo,
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3. Second order Emden-Fowler type difference equation

which yields with the help of Theorem (i)

i( : ki ()Y 1)ﬁ]% ( - )“Lﬁ(“_ﬁ)ﬁfk”ak) W)
_ g(HY( + ~ ~a ~a ap
k=2 pk) =1 a=n a k=2

a 1
a P la=B\"T o _1 L _
N(O‘—T]) ( " ) n=&m)y aWm)s? =Y(n), n— oo.
Therefore, Y = {Y(n)} satisfies the asymptotic relation (3.4.17). Then, proceeding
exactly as in the proof of Theorem 3.4.1} replacing X(n) with Y(1), solution x satisfying
Kk Y(n) < x(n) < KY(n), for large n, is obtained by the application of the Knaster Tarski
fixed point theorem (Theorem [1.1.1), while application of Lemma [1.1.8| proves that
x(n) ~ Y(n), n = oo, showing that such solution is in fact RV - solut1on of index = '7
with the precise asymptotic behavior given by (3.4.30). O

Theorem 3.4.3 Suppose that p € RV(n)), n > a and q € RV (0). There exists x € M{, ., N
ntr — SV if and only if (3.4.7) holds. All such solutions of (E1) have the precise asymptotic

property

a—pi( 1 & HF
(3.4.34) xm) ~ | —L )" 0 Yap|| » noe.
k=2 =1

Proor. The ”“only if” part: Suppose that x € MY, ., N ntr — SV. Then, clearly only the
statement (i) of Lemma could hold. Therefore, p = 0,0 = 71— a —1 and x satisfies
(3.4.15). Then, since 0 > —1, application of Theorem gives

n—1 k-1 % n—1
(3.4.35) Z{ Z q(])J KER) r k), n— .
= \P (k) =1 * k=1
Denote z(n) = Y|~} w K (k) s w(k)a l(k) Then becomes
(3436) x(m) = 1) ~ — 2 = oo,
(n —a)x

so that z(n) — oo, n — 0. By Theorem (iv) clearly z = {z(n)} € ntr - SV. From
(3.4.36) we obtain the asymptotic relation:
_l 5
(3.4.37) z(n)‘gAz(n) () a)(n) n — oo,
(- )=
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3.4. Strongly increasing solutions

where we used that 0 + pf + 1 = 1 — a. Summing (3.4.37) for n > 2, using Theorem
[1.3.4]and (3.4.35), we obtain

n-1
o 6—¥ 5Z(Tl)l—§ ~— Z 1£(k)_EC()(k)_
(n— a)a k=1
(3.4.38)
1 n-1 1 k=1 | 2
~ (n— a)ﬁa;; =y [P(k) ;‘1(])] , N — 00

Because 1 — g >0, z(n)l‘g — 00, 1 — 00, 50 (3.4.38) yields that the second condition in
(3.4.7) is satistied as well as that the asymptotic expression for x is

&
1 a—p

x(m) ~ —— | 2=F fklak)%w(kﬁ]ﬁfv . ni[ikf‘q(j)]a n— oo
(W—Of)ﬁ ‘= = \P (k) j=1 /

This completes the “only if” part of the proof of Theorem [3.4.3|
The ”if” part: Suppose (3.4.7) holds. Define sequences T = {T(n)} and G = {G(n)} with

n-1 _ pon-l k=1 =
G(n) = ) kR Fw(b*, T<n>=(“aﬁ Z{p(lk)qu]) , n=3
k=2 k=2 j=1

Because (3.4.7) implies o > —1, application of Theorem [1.3.5gives (3.4.35), so that

1 a— ﬁ “afﬁ _a

T(n) ~ - G(n)*#, n-—o oo
n-a)=\ ¢

Clearly, G € ntr — SV and T € ntr — SV. Applying Theorem [1.3.5}(i) and using the

first condition from (3.4.7) we get

n—1 1 a— ‘8 a—_ﬁﬁ ) ap
qUOT(k + 1) ~ _ 10 w(n)G()+F, 1 — co.
=1 (T] —_ a)uw[i a

As a result of the application of Theorem to the previous relation, we obtain

i
1 a—B\*7 §

—_

KLEW) Fw0) Gl

e
~
2
T|—
=l
>
N

£

_ o n-1
L (e P AG(K) - G(k)™
Mm—a)=7 \ 4 )
-
~ 1 - a—p G(n)** ~T(n), n — oco.
-7\ @
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3. Second order Emden-Fowler type difference equation

Consequently, we conclude that T satisfies the asymptotic relation (3.4.17).

The rest of the proof is the same as the proof of Theorem[3.4.T|where X(1) is replaced
with T(n). Then, solution x of equation (E;) satisfying « T(n) < x(n) < KT(n), for large
n, is obtained by the application of the Knaster-Tarski fixed point theorem (Theorem
[1.1.T), while application of Lemma I.1.8|proves that x(1) ~ T(n), n — oo, showing that
such solution is a nontrivial, slowly varying, and has the precise asymptotic behavior
(3.4.34). O

According to the results given in this section, we can say that the existence of
strongly increasing RV —solutions is fully characterized by the assumption J, = oo if
S = oo and by the assumption I, = o0 if S < co. In fact, the following corollary holds.

Corollary 3.4.1 Suppose that p € RV (1), n # a and q € RV (o).
(i) Let S = oo. Equation (E;) has strongly increasing RV —solutions if and only if |, = co.
(ii) Let S < oco. Equation (E;) has strongly increasing RV —solutions if and only if I, = co.

3.5 Complete structure of the class of RV-solutions

In order to describe a set of regularly varying solutions, we will use the following
symbols:

+ R denote the set of all regularly varying solutions,

+ R~ denote the set of all decreasing regularly varying solutions,

+ R* denote the set of all increasing regularly varying solutions,

*Ry =RNM,.

*Ryo = RNM,.

Using conclusions from Theorem and Corollary we get the next two

corollaries:
Corollary 3.5.1 Suppose that p € RV (1), g € RV (0) and S = co. Then,

o+a+1l-n

R‘:ntr—S(VUR(V(
a—p

Juns;

if and only if ; < co.

Corollary 3.5.2 Suppose that p € RV (1), g € RV (0) and S < co. Then,
(i) Ifo < =1oro =-1and Q < oo, then

ot+ta+1l-n

R‘zR(V( o

) UM, UM;.
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3.5. Complete structure of the class of RV-solutions

(i) Ifa:—landQ:ooor—1<o<%—ﬁ—l,then

_ _ o+ta+1l-n _
R :RO :RV(T)UMOJ.
(ii) Ifcfz%”—ﬁ—land]<oo,then
R =Ry =RV () U,

(iv) Ifo = ﬁa—”—ﬁ—land]:oooro>%—ﬁ—l,then
R =0.
Next two corollaries follows from Theorem and Corollary
Corollary 3.5.3 Suppose that p € RV (1), g € RV (o) and S = oo. Then,

(i) o<%’7—‘8—101’0:%—ﬁ—land}z<oo,then

R* = MY, .

(ii) Ifo = B2~ g~ 1 and J, = co, then

R* :Rﬂ/(“‘”).

(04

(iii) If o > BL — B~ 1, then

. ot+a+1l-n€
R‘( )

Corollary 3.5.4 Suppose that p € RV(1), g € RV (o) and S < oo. Then,
(i) o<n—a-loroc=n—-a-1and I, < oo, then
R = M;.
(ii) Ifo =n—a—-1and I, = oo, then
R* =ntr - SV.

85



3. Second order Emden-Fowler type difference equation

(iii) If 0 > n—a —1, then

. [(ota+1l-7
w5

Previous corollaries enable us to describe in full details the simple and clear struc-
ture of RV—solutions of equation (E;) with RV —coefficients.

Corollary 3.5.5 Let p € RV(1)), g € RV(0) and n < a.
(i) If o <n—a—1then

o+a+1l-n

R:ntr—S(VUR(V(
a—p

) UM UM,

(ii) Ifo=n—a—-1and I; < oo, then
R=ntr =SV UMz UM .

(iii) Ifo =n—a—-landly = co,orn-a—-1<o <2 -g-1,0r0 =8 -p-TandJ, < oo
then
R =M.

(iv) Ifa:%”—ﬁ—landb:oo,then

(0) Ifo > & — g -1, then

R:W:m(“a_ﬂ—ﬂ)_

a-p
Corollary 3.5.6 Let p € RV(n), g € RV (o) and n > a.
(i) Ifo <=1,orc==1and ), ,q(n) < oo then

ot+ta+1l-n@

ﬂ:R(V( o

)UIM(;J UM, UM;.

(i) Ifo = =1 and Y0, q(n) = oo, or =1 < 0 < 21 — B — 1 then

ot+ta+1l-n

RzR(V( o

) UMy, U M.
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3.6. Examples

(iii) Ifo = BL — g — 1 and J; < co then

R = R(V(%) UM;, UM;.

(iv) Ifa:’%’—ﬁ—landh :w,or%—ﬁ—l<o<n—a—1,ora:17—a—1and12<oo
then
R = M;,.

(v) Ifo =n—a—1and I, = co then
R =R" =ntr - SV.

(vi) If 0 > n—a—1 then
+a+1-
R = R+ = RV (u) .
a—p
We emphasize that in previous corollaries tr — SV = My UM, M, ¢ RV (?)
and M, C R"V(%) :
Remark 3.5.1 One important thing that we can conclude from previous corollaries

is that in same cases (see Corollary (iif) — (v) and Corollary (1v) — (vi) )
decreasing RV-solutions do not exist. Why is this important? At the beginning
of this chapter, we have said that classes M and IM~ are nonempty. Therefore,
nonexistence of RV-solutions implies that there are solutions which are not regularly
varying sequences although coefficients are regularly varying sequences. This is also
one more difference between differential and difference equations, because it has been
shown that all solutions of the differential equation are regularly varying under
the assumption that p, g are regularly varying functions (see Matucci, Rehak [100],
Rehak [113], Kusano, Manojlovi¢, Mari¢ [68-70,85]]) in the case p(t) = 1.

3.6 Examples

In the following two examples we illustrate our main results in Section

Example 3.6.1 Consider difference equation

(3.6.1) A(lon_” (Ax(n))3) - Lf(”) xn+17, nx1,
gn log”n

where @(n) is positive real-value sequence such that lim,,_,., ¢(11) = 6 and ) # 3. In this

equation, a =3, = %’ {p(n)} € RV(n) and {g(n)} € RV(c), whereo =n-7.
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3. Second order Emden-Fowler type difference equation

(i) Suppose that n < 3. In this case
o=n-7<n-4=n-a-1,

so in view of Theorem[3.3.6}(i) and Theorem[3.2.1]this equation has strongly decreasing
RV-solutions of index p < 0. There is also a decreasing solution from tr — SV and
a increasing solution from M ,. More precisely, by Theorem [3.3.61(i) the equation
(3.6.1) has a strongly decreasmg solutlon which belongs to RV(-2). That solution has
asymptotic behavior

(3.6.2) x(n) ~ (8(9 — 77)) n2(logn)™:, n— oo.
If
B n’(n+1)>3

B63) ) = oo Ty ((1ogn)9¢(n)—(1og(n+1))9( ) ¢(n+1))
where

8\ 3

|1 1 logn \°

(3.6.4) Y(n) = [ﬁ BCESIE (log(n +1)) )

then 6 = 8(9 — 1)) and considered equation has an exact solution 172 (log n)‘g.

(ii) For n € (3,9) we have thatn>aand o =n-7 < ”7_5 = %—ﬁ—lsoinviewof
Theorem[3.3.6}(ii) the equation has a strongly decreasing solution which belongs
to RV(-2) and satisfies (3.6.2). Also, if ¢(n) is given by then 172 (log n)~% is an
exact solution of the equation (3.6.I). In case when 1 € (3, 6], this equation posses
solutions which are not strongly decreasing and belong to classes M, M; and M,
while for 17 € (6,9), there are solutions in classes M, M.

(iii) Let 7 = 9. Then,0 = 2 = il —B-1,q(n) ~ 6n*(logn)™ and J; < co. By Theorem

the equation (3.6.1) has a solutlon x € RV(1- g) = RV(-2) and any such solution
x has an asymptotic representation

0,/
0,1’

x(n) ~ (56—6)3 (n logn)_z, n— oo,

If
(n + 1)*(log(n + 1))*(log n)°

p(n) = (x(n) = x(n + 1)),

where

(n) = n’ 1 nlogn 2’
A= logny n+Dlogn+1)) |’
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then lim,_,. @(n) = 56 and x(n) = n~?(logn)~? is an exact solution of the equation
b . Asin the previous case, the equation here has also solutions in classes M/, and
(1V) Ifn>9thenoc=n-7> > p —1so J; = co. Therefore, by Corollary
B.3.T}H(ii) equation (3.6.1) does not have decreasing regularly varying solutions, but
have solution which belong to class IM,.
Note that this equation does not have strongly increasing solutions. O

/3_77

Example 3.6.2 Consider a difference equation

n-3
(3.6.5) A (=" logn (Ax(n))?) = gog;f);)ﬁ S+ 1),

where ¢(n) is a positive real-value sequence such that lim,_,., ¢(1n) = 6 and n # 2.
Here, p(n) = n"+/logn, and g(n) = n"2 ¢(n) (logn)™/%, so p € RV(n)) and g € RV(0),

whereo=n-3=n-a-1.
i (”) < 0 n — oo
o Ve k(logk)”/6 ' '

Let n <2 = a. Using that
by Theorem the equation (3.6.5) has a nontrivial slowly varying solution and
any such solution x has an asymptotic representation

oo E

Z(p( ik <j>]

k=n

_ 5 logn )— (log“lP 41 n( log 122 )2
Pl =n (log(n+1) l(logn) H(log(n + 1))} ( n ) log(n+2)/ |

then 6 = 2 — 1 and considered equation has an exact solution x(n) = (logn)™, x €
ntr — SV. In this case, classes M{, | and M, are also nonempty.

If

Notice that in the case 7 > 2 = a, since 0 > B p — 1, using Corollary 3.3.1+-(i7) , we
conclude that R™ = 0. How I; < o0, R = M.
Note that this equations doesn’t have strongly increasing solutions. O

In the next two examples we illustrate our main results in Section

Example 3.6.3 Consider the difference equation

(3.6.6) A(n" logn (Ax(n))?) = 1™ p(n) Ylogn Vx(n+1), n>1,
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3. Second order Emden-Fowler type difference equation

where ¢(n) is a positive real-value sequence such that lim,_,., ¢(n) = 6 and  # 3. In
1
this equation, a = 3, f = 5 {p(n)} € RV(n) and {q(n)} € RV (o), where 0 = n+ 1 and

pn n-9
_a_‘B_l_T'
P

(i) Suppose that n < —3. In this case n < @ and ¢ < e p —1, so in view of

Theorem (i) and Theorem this equation does not have strongly increasing
RV-solutions. However, since ], < oo, the equation (3.6.6) has solutions in M7, ,. Also,
this equation does not have strongly decreasing RV-solutions.

(ii) Letn = =3. Then, 0 = -2 = /’%’? —B—1,q(n) ~ 6n7? {Jlogn and

n __ﬁ n
Y Kalop] =0) 30, no
k=1 k=1

By Theorem there exist a solution x € RV(2) of the equation (3.6.6) and any such
solution x has the asymptotic behavior

n? (56)§ L) (56)§ , .
x(n) ~ — —| ~{=—=] n“(logn)®, n — co.
0~ =z [;k] 25) mlogn)

In the last asymptotic relation we used that };_; + ~ logn, n — co, which follows from

lim [Z % - logn) =7

where vy is Euler - Mascheroni constant (also called Euler’s constant).
If

1

__n* ((ogn+1)%)" 1 (log)°
p(n) = (n+1)* ( logn ] Yol - nn+1) ((log(n + 1))%) ),

I~

3
where (1) = (A(n2 (logn)”’ 30)) , then lim, ., () = 48/5 and x(n) = n?(logn)’’* is
an exact solution of the equation (3.6.6).

(iii) For n € (-3, 3) we have that n < @« and ¢ > ﬁ_’? — B — 1 so by Theorem |3.4.1+(i)
N n 0 y

equation (3.6.6) has RV(2)-solution x satisfying

5 \ n?
(3.6.7) x(n) ~ (8(77 n 3)) {/@, n— oo.
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If in particular

log(n + D\ x(n+1) = x(n)
logn n*1n+1) 7

(3.6.8) pn) = (

where

3
x(n) =n" ((n + 1) (loin)l/6 - nz]
log(n + 1) ’

then 6 = 8(1+3) and the considered equation has an exact solution x(n) = n?(log n)~'/°.
(iv)Ifn>3 =, theno = n+1>n—4=1n-a-1. Therefore, by Theorem 3.4.T}(ii)
the equation has RV(2)-solution x satisfying and if p(n) is given by
then x(n) = n*(logn)~'/® is an exact solution of (3.6.6).
In the summary, if R, denotes the set of all strongly increasing regularly varying
solutions,

0, n € (—o0,-3)
R, =3 ntr=RV(2), n=-3
RV(2), ne€(=3,3)U (3, )

Note that this equation does not have any decreasing RV-solution. O

Example 3.6.4 Consider the difference equation

(3.6.9) A (n” vlogn (Ax(n))3) =n"*p(n) \x(n+1)logn, n>1,

where ¢(n) is a positive real-value sequence such that lim,, .., (1) = 6 and 1 # 3. Here,

a =3,B8=1/2,p(n) =n"4/logn, and q(n) = n"™* \/logn, so p € RV(n) and g € RV(0),
whereoc=n-4=n-a-1.
In the case n < 3 = @, since 0 < ,3_17 — B — 1, implying that ], < oo, using Theorem

3.2.2(ii) and Theorem [3.4.1 “(1) we conclude that there exist solutions in MY, While
the set of all strongly increasing regularly varying solutions R, is empty. Since 11
the set of decreasing RV-solutions is also empty. Let n > 3 = a. Using that

y p(k)Zq(n]

k=2
by Theorem there exists nontrivial slowly varying solution of the equation (3.6.9)
and any such solution x has asymptotic representation

1255\ g
x(n) ~ (m) -(logn)s, n — oco.
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3. Second order Emden-Fowler type difference equation

In fact, due to Theorem (ii), we conclude that R, = ntr — SV.
If

-v(n+1) - (log(n + 1))3 -v(n)|,

L[y (ogn+2)%
Pl =n [( n ) (logn)%(log(n+1))11_o

where X

_[4 logn o
vim =11~ (log(n + 1)) ’

then 6 = 216(n — 3)/125 and the considered equation has an exact solution x(n) =
(logn)®/5, x € ntr — SV.
As in previous case there are no decreasing solutions. O
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Chapter I

Cyclic systems of second-order
difference equations

4.1 Introduction

To further generalize results established in the previous chapter, systems of nonlin-
ear difference equations that will be studied in this chapter are the following cyclic
systems:

(SE+) Api(m)|Axi(m)|* " Axi(n)) + gi(m)lxia (n + 1P xia(n +1) = 0,
and
(SE-) Api(m)|Ax;(n)| 7' Axi(n)) — gi(n)lxia(n + DIF'xiq(n + 1) = 0,

wherei=1,N, xyy = x1, 1 €N, and following conditions hold:
(@) ajand B, i = 1,N are positive constants such that
- ...can > Pifac .. PN
(b) pi = {pi(n)}, q; = {g:(n)} are positive real sequences;

(c) Allp;, i = 1,_N simultaneously satisfy either

1
0 5= L~ -,
HZ::‘ pi(n)!/
or
(10 5 = i ! o
n=1 pi(n)l/ai
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4. Cyclic systems of second-order difference equations

Systems (SE+)and (SE-)are called sublinear if the condition (a) holds. In the
case when opposite inequality holds, we say that the systems are superlinear. If
a1y -...-an = Pifz - ... - Pn, then systems are called half-linear.

Existence of positive solutions and oscillation of discrete nonlinear systems are
widely studied in the literature (see, e.g. [4,55,56,83|84,94,95|110-112] and references
therein). However, in the existing literature, there are no results concerning asymptotic
analysis of solutions of a cyclic system of difference equations of second order. In this
regard, the first task will be to classify solutions based on their behavior at infinity. The
second task is to determine the necessary and sufficient conditions for the existence
of these solutions. Determining precise asymptotic formulas is the third and the most
difficult task. For so-called primitive solutions, asymptotic behavior is already known.
However, for intermediate solutions of systems (SE+), that is, extreme solutions
(strongly increasing and strongly decreasing) of systems (SE—), it is not easy to find
appropriate asymptotic formulas. Therefore, as in the previous chapter, we will limit
ourselves to examination of systems whose coefficients p; = {pi(n)}, ; = {9:(n)} are
regularly varying sequences and focus our attention on the existence and asymptotic
behavior of regularly varying solutions.

The obtained results can be considered as a discrete analogue of the results in a
continuous case (see [50,51}/54]). Also, the obtained results can be applied to systems
of N equations of the first order in the case when N is even.

One-dimensional system is in fact well-known sublinear second order Emden-
Fowler type difference equation

(4.1.1) A(p(n)|Ax(n)|* ' Ax(n)) £ g(n)lx(n + D 'x(n + 1) = 0,

which has been studied a lot in the literature (see e.g. [7,14-16,19-21)23,24,123|124,]131,
136]]). Also, two-dimensional system can be easily reduced to fourth-order nonlinear
difference equations

(4.12) A2 (p(n) |A2x()| " AZx(n)) T q(n)x(n +2)F =0,
and
(4.1.3) A (a() (A k() (A c(n) (Ax()'Y)") +d(m)x (n +2)" = 0.

The oscillatory and asymptotic properties of solutions of the equation have
been investigated by various authors [5}6,87,/125}126,(128-131], while more general
equation has been considered in [3}6,27-29]]. Therefore, our main results can be
seen as an extension of the quoted existence results for solutions of equations (.1.1),
@.1.2), as well as an improvement of the quoted result in the sense of giving
exact asymptotic representation formula of solutions of these second and fourth order
difference equation.

The whole chapter is based on the original results, among which results presented in Section
was published in [61].
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4.2. Preliminaries

4.2 Preliminaries

By a solution of (SE+) (respectively (SE—)) we mean a vector sequence
X = (1,300 = (), R0, o)) € MR xR,

where NR = {flf : N = R}, whose components x; = {x;(n)}, i = 1,_N satisfy (SE+)
(respectively (SE-)) for n € IN. In what following, we will observe sequences for
sufficiently large n, i.e. n > ng, for some ny, € IN. Therefore, we introduced notation
NoR = {f] f : N,, > R}, where N,,, = {n € N | n > n.

We are interested in nonoscillatory positive solutions, i.e. solutions whose all
components are eventually positive. Similar, if all components of solution x are
increasing (decreasing), we say that x is increasing (decreasing) solution. For every
component of any solution x of (SE+)or (SE-), let we denote by A = {xlm(n)} its

quasi-difference x!'(n) = p;(n)|Ax;(n)|* "' Axi(n), i = 1,N.

Since we will consider systems which have regularly varying coefficients, we
assume that p; € RV(A)), g € RV(u;), i = 1, N and represent them with

(4.2.1) pi(n) = n"li(n), qi(n) = nmn), L,m; €SV, i=1,N.

We will search the regularly varying solution x € RV(p1, p, ..., pn) of the observed
systems in the form

(4.2.2) x;(n) =nfi&n), &eSV, i=1,N.

We also assume that all sequences p;, i = 1,N satisfy either (I) or (II). Condition (I),
resp. (II), holds if and only if

(4.2.3) Ai<a; or A;j=a; and Z n‘lli(n)_j_f = 09,
n=1

resp.

(4.24) Ai>ai or Ai=a;and Y nllin) T < .
n=1

Sequences P; = {P;(n)} given by

n—1
(42.5) P(m) =Y pky ", i=TN
k=1
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4. Cyclic systems of second-order difference equations

and 7t; = {m;(n)} given by

(4.2.6) min) = ) pilk %, i=1,N
k=n

play a very important role in a classification of solutions of considered systems, as
well as, in their asymptotic analysis. Therefore, for P; and 7i; we will use the following
asymptotic equivalences which are obtained with the help of Theorem|[I.3.5

In the case when A; < a;,i = 1, N we have

[0 4] a4i=A _1
(4.2.7) Pi(n) ~ l n e li(n) @,
andif A; = a;,i = 1,N then
n—1
(4.2.8) Pi(n) ~ Y Kli(k o
n=1
If the case (II) holds, then for sequence 7;; we have
ai a;—A; _1
(4.2.9) mi(n) ~ T -1t Li(n)
or
(4.2.10) min) ~ Y KUk,
k=n
depending whether A; > a;, i = 1,NorA =a;,i=1N respectively.
Also, to simplify notation we denote Ay = aja; - ...-an, By = fif2 - ...y and use
matrix
1 B b BiBa-B-a
a; a0 T mageecan—
1 2 BB PP
"f &’ R
(4211) M= az t 0[3"..-.(11\]_1 ,
L b
aN-1
1

whose elements will be denoted by M = (M;;), where the lower triangular elements
are omitted for the economy of notation. In fact, the i—th row of (M;;) is obtained by
shifting the vector

(1 é ,Biﬁi+l ﬁiﬁi+] t.. -ﬁi+(N—2)

A RN ’ aN+j=aj/,8N+j=ﬁjlj=1/N_2
a; ity Ay * -« - Kip(N-2)
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4.3. The system (SE+)

(i — 1)—times to the right cyclically, so that the lower triangular elements M;;,i > j,
satisfy the relation

Mi‘M‘i:M/ i>j i=2N.
7 X1y * ... AN

It is easy to see that for the elements of matrix M hold

,81' BN ,Bi . .
(4212) Mi+1,i;i = 14_]\[’ Mi+1,]‘;i = Ml']‘, for ]#1,
where My,1,; =M, j=1,N.
Throughout the text, n > ny means that n is sufficiently large so that 1y need not to
be the same at each occurrence.

4.3 The system (SE+)

4.3.1 Classification of positive solutions

In order to fully describe a set of positive solutions, we first classify positive solutions
according to their behavior at infinity. It can easily be seen that all components of
eventually positive solution x of the system (SE+) satisfy

(4.3.1) ¢; < xi(n) < C;- Py(n), forlargen, i=1,N if (I) holds
or
(4.3.2) kimi(n) < xi(n) < K;, forlargen, i=1,N if (II) holds

where P; and 7; for i = 1,N, are given by (4.2.5) and (4.2.6) respectively, and c;, C;, k;
and K; are positive real constants.
Indeed, if (I) holds, then is easy to see that x;, i = 1, N are eventually increasing, i.e.

(4.3.3) x;(n) >0, Axin)>0, forn>ny, i=1,N.

This implies left inequality in (4.3.1)). Also, xzm, i = 1,N are eventually decreasing, so
there exist positive constants b; such that p;(n)Ax;(n)* < b;, n > npand i = 1,N, which
by summation implies that

n—1

v 1 a%. .
xi(1n) < xi(no) + b; PR < xi(ng) +b;'Pi(n), i=1,N.

[

=

>
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4. Cyclic systems of second-order difference equations

Since for all i = 1,_N, P; are increasing and P;(n) — oo, n — oo, we get the right side
inequality in (4.3.1).

Similarly, if (II) holds, then x;, for i = 1,N are eventually decreasing, i.e.

(4.3.4) xi(n) >0, Ax;n)<0, forn>ny, i=1,N,

so right inequality in (4.3.2) holds. Therefore, lim,,_,. xi(11) = xi(c0) < c0. On the other
hand, since xlm(n) = —pi(n) (~Ax;(n))* < 0 and xlm, i = 1,N are decreasing, it follows
that —p;(n) (~Ax;(n))" < —h;, h; € R*, n > ny, i = 1, N, implying that

xi(n) 2 x,(00) + I mi(n), 12 no.

Using that mt;, i = 1, N are decreasing and tend to zero, we get the left side inequality

in (4.3.2).

In the case (I) for each component x; of solution x only one of next three possibilities
holds:

(S1+) lim,, 0 =const >0, ie. xi(n)~«P;n), n—-oo, x>0,

xi(n)
Pi(n)
xi(n) _

(IM1) limyos i(01) = 00, limyseo 508 =

0,

(AC+) lim,,_,, x;(n) = const >0, ie. xin)~x;, n— oo, x;>0.

In the case (II) for each component x; of solution x only one of next three possibilities
holds:

(AC+) lim, o xi(n) = const >0, ie. x;n)~x; n—oo, x;>0,

(IMZ) limn_m xi(n) = O, hmn_)oo M = 0o,
(1)
(52+) lim,,—e % =const >0, ie. x;(n)~wxmn), n—oo, x;>0.

Note that we consider only solutions whose all components are the same type.
Solutions of the type (S1+),(52+) and (AC+) are called primitive and the existence
of such solutions will be discussed in the next subsection. Solutions of type (IM1)
and (IM2) are called intermediate solutions. The existence, as well as the asymptotic
formulas of these solutions will be studied in details in Subsection [4.3.3]
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4.3. The system (SE+)

4.3.2 Existence of primitive solutions

This section is dedicated to solutions of types (51+), (52+), and (AC+). Problem of
the existence of this types of solutions can be solved without the assumption that
coefficients of the system (SE+) are regularly varying sequences.

Theorem 4.3.1 Let (I) holds. The system (SE+)has a solution x whose each component
satisfies (AC1+) if and only if

(4.3.5) Z (i% Z qi(k)] <o, i=1,N.
n=1 ! k=n

Proor. Let x = (x1,xy,...,xn) be a solution of (SE+) whose each component satisfies
lim,, xi(1) = c;. Then, there exist positive constants k; and ny, such that k; < x;(n),

n > ny. We claim that lim,,_, xzm(n) 0, for all i. Indeed, since x[ li=1,Nare positive

and decreasing, it follows that lim,,_,« xlm(n) = w; > 0. If w; > 0 for arbitrary fixed i,
then there exist my > ny such that xl[l](n) > w;, for n > my. In that case, we obtain that

x(n)>x(m0)+a)l Z (k)l/a, n>mp,

implying that lim,_,, x;(n) = co, which is a contradiction. Thus, lim,_,« xz[”(n) =0and
from (SE+) we have that

Axi(n) = [ ()Zq(k)xl+1(k+1)ﬁ’J , i=1,N.

Summing previous equality from 1, to co we obtain

0o 0 57

ci — xi(ng) = Z (ﬁ Z‘ qi(k) xiva(k + 1)ﬁi] klil [L) 1; )

n=npy n=ny

II
z

which implies that the condition (4.3.5) is satisfied.
Assume now that (4.3.5) holds. Then there exist 19 > 1 such that

(4.3.6) Z (p( )qu( )] <1, i=1N.

n=np

Denote with £, the space of all vectors x = (x1, X2, ..., xn), such that x; = {x;(n)} € Ny R,
i =1,N are bounded, and endowed with the topology of the norm

(4.3.7) Ix|| = max {sup Xi (n)}

n=nop
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4. Cyclic systems of second-order difference equations

Clearly, £,, is a Banach space. Set

(4.3.8) Q1={xe£no% x(n)<c, n>np, i=1,N},

where ¢;, i = 1, N are positive constants such that

Bi

(439) > 2c ;:’_1, i= 1, N, CN+1 = (7.
An example of such choices is

A
(4.3.10) o= 2 LMy TN

where M;; are elements of the matrix M given by (4.2.11).
It is easy to see that €; is bounded, closed and convex subset of £,,. Define the
operators F; : MR — NoR by

1 .

(4.3.11) Fix(n) = c; — Z( ® Z (s)x(s + 1)5') , n>ny, i=1,N,

s=k

and define the mapping ® : O — L, by
(4.3.12) O(x1,x2,...,XN) = (7:1952, Faxs, ..., TNXNH)/

where xy.1 = x1. We will show that © has a fixed point by using Schauder - Tychonoff
tixed point theorem. Namely, the operator ® has the following properties:

(i) © maps C; into itself: Let x € (3;. Then, using (4.3.6), (4.3.8), (¢.3.9) and (4.3.11), we
see that

n=nyp n

c1>7:x1+1(n)>cl—cwl Z(p(n Zq(k)] 2% i=1,N, n2=n,.

oy . , Y (m) _(m) (m)
(i) © is continuous: Let &; > 0,i = 1,N and {x"},en = {( Xy Xy e, Xy )}meN, be a

sequence in (); which converges to x = (x1,xy,...,xy) as m — oo. Since, (), is closed,
x € ;. The rest of the proof does not depend on i, soleti € {1,2,..., N} be arbitrary
tixed. For every n > ny, we have

1 1

(Z ql(s)x(m)(s + 1)ﬁ') (Z 3i(8)xis1(s + l)ﬁ']

[Fx™ (1) — Fixeaa ()] < Z
k=n pz
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4.3. The system (SE+)

By (4.3.5), }.,.,, qi(n) is convergent, implying that Y52, q:(n)x")(n + 1)% is totally
convergent, because g;(1) x( )(n +1)f < cZ .,qi(n), for every n > ny,m € IN. Then, by
a discrete analogue of Lebesgue dominated convergence theorem (Theorem [1.1.4), it
holds for every k > ny

[Z gils)xgy (s + 1)@] [Z 4i(s)Xisa (s + 1>ﬁz]

hm

which shows that
lim sup |T X (n ﬁxi+1(n)| =0
m—00 oo
Therefore, ||®x™ — @x|| — 0 as m — oo, i.e. ® is continuous.
(iii) ©(CYy) is relatively compact: To show this, by Theorem it is sufficient to
show that ©(€2;) is uniformly Cauchy in the topology of £,,,. Forx € QQ; andm > n > ny
we have

1

|Fixiv1(m) — Fixpa(n)| =

mz_i (Lk i gi(s)xis1(s + 1)/3')
s=k

=n

E .om

< 1+1Z(p(k ;‘71( ]

k=

[o0]

Z 4i(s) i (5 + 1)

s=k

According to ( it follows that ©(€);) is uniformly Cauchy. Therefore, all the
hypotheses of Schauder - Tychonoff fixed point theorem are fulfilled implying the
existence of a fixed point x € Q; of ©, which satisfies

o0

xi(n) = ¢; — Z

k=n

(o]

Z S)x1+1(s + 1)&]“‘ .

s=k

It is clear that x is a positive solution of (SE+) whose all components tend to constants.
O

Theorem 4.3.2 Let (I) holds. The system (SE+)has a solution x whose each component
satisfies (S1+) if and only if

) Bi
(4.3.13) Z gi(n) [Z e /] <o, i=1,N.

n=
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4. Cyclic systems of second-order difference equations

Proor. Suppose that x = (x1,x,,...,xy) is a solution of (SE+) whose each component
satisfies (S1+). Then, lim,_, x,(n) = oo and lim,_,« x[l](n) =d;>0,i=1,N. As x[l]
are decreasing and tend to d;, there exists nj such that xl[”(n) >d;,n>ny,i=1,N.By
summation of xlm(n) /pi(n) = (Ax;(n))" from ng ton — 1, we get

11\ % -
xi(n) = xi(ng) + Z (xl(k) ) Z ; (k)l/a, n>ng.
k=ng

Then, from (SE+) we obtain for n > n,

00 ﬁi
M(n) - d; = Z qi(k)xi (k + 1P > dm Z qi(k) [Z k)l/a,+1] i
k=n

Letting n — oo, we get that the condition (4.3.13) holds.
On the other hand, if (4.3.13)) holds, then there exists 1y such that

1,N.

Bi
(4.3.14) Z q:(k) (Z o /alﬂ] <207 P (2% -1), i=1,N.

ki’lg

Denote with X, the space of all vectors x = (x1,x2,...,xn), X; € NowR, i = 1,N, such
that {x;(n)/ P?O (n)},i =1, N are bounded, where

n-1

1o — 1 : —
(4.3.15) P(n) = k; T i 1,N.

The space X,,, endowed with the norm

(4.3.16) l|x|| = {nax {sup xi(nrz }

is a Banach space. Set

(4.3.17) Q, = { X € Xy, |ciP]°(n) < xi(n) < 2¢; P°(n), n>mng, i= 1,N},

where¢;, i = 1,N are positive constants which satisfy (4.3.9). It is easy to see that €, is
bounded, closed and convex subset of X,,,. Define the operators #; : YR — N R by

n—1 o Ve
= Z [ﬁ (C?i + Z gi(s)x(s + 1)51']] , nx=mny, i=1,N,
k=ng L s=k
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4.3. The system (SE+)

and define the mapping © : Q, — L, by (¢.3.12). The mapping defined like this
satisfies all conditions of Schauder-Tychonoff fixed point theorem. Indeed, because
of and (#.3.17), ® maps €, into itself. Using discrete Lebesgue’s dominated
convergence theorem, it can be shown that ® is continuous and that ©(€,) is uniformly
Cauchy. Applying Schauder-Tychonoff fixed point theorem, there exists x € €, such
that x = ©x. Then, it is easy to verify that x is a solution of (SE+) satisfying (S1+). O

Theorem 4.3.3 Let (II) holds. The system (SE+)has a solution x whose each component
satisfies (AC+) if and only if

00 n—1 all
(4.3.18) Y (iﬁ Y qi(k)] <o, i=T1,N.
n=1 \F'! k=1

Proor. Suppose thatx = (x1, X2, ..., xn) is asolution of (SE+) such thatlim,,_,., xi(1) = c;,

i = 1,N. Since all x; are eventually decreasing, there exists ny such that x;(n) > ¢;, n > ny.
Then, fori = 1, N we have

00 k-1 % B2 k-1 ﬂl,
xi(n) —c; > Z [ﬁ Z gi(s)xisa (s + 1)ﬁf] >cl Z (ﬁ Z qi(s)J , h=>np.

k=n s=nyp k=n s$=np

Letting n — oo, we obtain (4.3.18).
Conversely, suppose that (4.3.18) holds. Then, there exists 1y such that

o (4 K % b
Z(MZ%(S)) < i,

k=”0 S=n

1,N.

Denote with £, the space of all vectors x = (x1, Xy, ..., xn), such that x; € NywRR,i=1,N
are bounded. The space £, equipped with the norm (4.3.7) is Banach space. Further,
L, is partially ordered, with the usual pointwise ordering <: for x,y € £,,, x <y
means x;(n) < y;(n) foralln > npand i = 1, N. Define

Q;;z{xeljn() ¢; < xi(n) <2, n=ny, izl,N},
where ¢;, i = 1,N are positive constants satisfying (#3.9).

For any subset B of (3, it is obvious that sup B € ()3 and inf B € (3. Let us further
define operators #; : MR — N IR by

%) k-1 ai
Tatn) =i+ ) (ﬁ Y et + 1)@') , nzm, i=TN,
k=n i

S=ng
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4. Cyclic systems of second-order difference equations

and define the mapping © : Q3 — £, by (4.3.12). The mapping © satisfies the
assumptions of Theorem Indeed, ® maps €; into itself, because if x € (3, then

Fixipin) >2¢;, i=1,N

and

Fixiq1(n) < ¢ + (2ci41) % Z[ (k) Z gi(s )]

S=Np

SCZ'+(2C1'+1)“_1'2_“_1'SCZ'+CZ':2C1', n>ny i=1,N.

Clearly, © is nondecreasing, i.e. for x <y follows that ©x < ®y. By Theorem [I.1.1}
mapping O has a fixed point x € (3, i.e. ©x = x, implying that x is a solution of (SE+).
It is easy to see that every component of the vector x tends to some constant. O

Theorem 4.3.4 Let (II) holds. The system (SE+)has a solution x whose each component
satisfies (S2+) if and only if

0 0o Bi
(4.3.19) Z gi(n) [Z ) /am) <oo, i=1,N.

n=

Proor. Suppose that x = (x1,x2,...,xy) is a solution of (SE+) whose each compo-
nent satisfy lim,,_,. x;(11)/7i(n) = ¢;. Since the proof is the same for all components of
vector x, leti € {1,2,..., N} be arbitrary fixed. Then, there exist positive constants 0;, y;
and ny such that

xi(n) <

(4.3.20) o< = o <

n > ny.

Since x lis decreasing it follows
—pi(n) (=Axi(n))" < —pi(m) (-Axi(m))*™, n>m,
ie.
()7 (—Ax;
(4.321) _ Axi(n) » P = m)
pi(n)*
Summing (4.3.21)) from m to k — 1, we get

k-1
X (m) > x(m) = 36) > pi(m)* (~Axi(m) Y ——.
n=m pi(1)°
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Letting k — oo, we obtain x;(m) > pi(m)“li (=Ax;(m)) r;(m). Then, using the last inequal-
ity and (4.3.20), (SE+) gives

n—-1
D 4ok + P < piln) (~Ax(m)* <

k=f’l0

( xi(m) \"

ni(m)) <y, nxznyg+1.

Letting n — oo, we get that the condition (4.3.19) is satisfied.
Conversely, let (4.3.19) holds. Then, there exist 1y € IN such that

Bi
Z i (TZ) (Z pi 1(71)1/a,+1] <20 2*-1), i=LN.

n=ng k=n

Let W, be the space of all vectors x = (x1,x2,...,xNn), X; € NwR, i = 1,N such that

{xi(n)/mt;(n)}, i = 1,N are bounded. Then, “W,, is a Banach space endowed with the
norm

xi(1)
(4.3.22) |[x]| = {ggﬁ{]sgl}o) |
Set
(hz{xéﬂ%mdmﬁﬂSxﬁ032¢mmx 1> o, i:LN},

where d;, i = 1, N are positive constants such that

An example of such choice is

AN N
_IN_ yN AL .
d=2m-w L=Mi o =T N,

where M;; are elements of the matrix M given by (4.2.11). It is easy to see that € is
bounded, closed and convex subset of ‘W, . Define the operators G; : Ny R — NpR by

Gix(n) = i[ ®

and define the mapping © : Q; — W, as (4.3.12). By means of similar reasoning
used in the proof of Theorem it can be verified that the mapping © satisfies all
conditions of Schauder-Tychonoff fixed point theorem. Therefore, there exists x € (4
such that x = Ox. It is easy to verify that x is a solution of (SE+) satisfying (S2+). O

( d; )051 qu S)X(S + 1)‘81]] , N2y, i= 1/N/
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4. Cyclic systems of second-order difference equations

4.3.3 Asymptotic behavior of intermediate regularly varying solu-
tions
In what follows we assume that coefficients p;,g;, i = 1,N are regularly varying se-

quences expressed by (4.2.1). Intermediate solutions of the system (SE+) are solutions
of a system of equations

n—1 &)
xi(n) = ¢; + Z (;ﬁ Z 3i(8)xis1(s + 1)ﬁ"] , i=1,N,

k=nyg s=k

if (I) holds, and

[o¢]

xi(n) = Z[ © [h + Zqz (s)xiz1(s + 1)5')) , i

if (II) holds, for some constants ny > 1 and ¢;, h; > 0,i = 1, N. It follows therefore that
intermediate solution of (SE+) satisfies the following systems of asymptotic relations

1,N

n-1 a;
(4.3.23) xi(n) ~ Z[ . Z gi(5)xia1 (s + 1)@]  n—>o, i=1N,
or
(4.3.24) xi(n) ~ kZ [p B S;)q,(s)x,ﬂ s+ 1)!%] , n—ooco, i=1,N

in cases (I) or (II), respectively.

In what follows we do not consider cases when A; = a; for one or all i (these cases
lead to p; = 0), because of computational difficulty. Therefore, we have requirements
of positivity or negativity for regularity indices of solutions.

The following theorem gives us necessary and sufficient condition for the existence
of regularly varying solution x of a positive index (p1, p2, ..., pn) of the system of

asymptotic relations (4.3.23).

Theorem 4.3.5 Let p; € RV(A;), q; € RV(w;) and suppose that A; < o, i = 1,N. The system
of asymptotic relations (4.3.23) has a reqularly varying solution x € RV(p1, pa, - .., pn) with

pi€(0,%%),i =T, N if and only if

N
CV—/\'+[J]'+1 ai_Ai BN .
(4.3.25) 0<y M;—~—! < (1——), i=1,N,
]Z=1: ! a; e An
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4.3. The system (SE+)

in which case p; are uniquely determined by

N

AN a]—A]‘+‘u]‘+1

_ if .
AN BN =) CY]

z

(4.3.26) pi = , 1=1,

and the asymptotic behavior of any such solution is governed by the unique formula

My s
N a]+1 1 ij | AN-BNn
n i pin) “igin

(4.3.27) xim) ~|[] pi 1)3. q;(n)"  noo, i=1N

j=1 !
where
(4:328) D] = (a] - /\] - a]p])“_/p], ] = 1,_N

Proor. Let x € RV(p1,p2, ..., pn) with all 0 < p; < == A be a solution of (4.3.23)

whose components are expressed in the form (4.2.2). Then b Theorem [1.3.3] - (v),
follows that x;(n) — oo, n — oo, i = 1,N. From Theorem - (vii) we have that

components of x satisf 1’} Since indices of regularity of xi/Pi, i = 1,N are less
then zero, Theorem - (v) implies that lim,_ x;(1)/P;(n) = lim,_c x[”(n) = 0.

Thus, using (4.2.1] and -, we get

(43.29)  xl(n) = Z Gk + 1 ~ Y KPR, nz g, i= TN,

k=n

The convergence of the above sums implies that u; + fipis1 < -1, = 1,_N If for some i
equality holds, then

(4.3.30) Axi(n) = ( e )qu(k)xm(kﬂ)ﬁf] ~n “zl(n) % (zk m(k)é’m(k)ﬁ']

Summing (4.3.30) from 7, to n — 1 we find that

a=Ai 1 [ e !
o L) [Zk‘lmxk)el(k)ﬁf] , N,
k=n

xi(n) ~ a— A,

implying that p; = = IA
i=1,N. Application of Theorem to (4.3.29) gives fori = 1,N

i + ﬁipi+l < -1 for

1 —Ajtu +[31p1+1

1 « 1% n li(n)~ fm(n) Ein(n )
gi(k)xir1(k + 1)’3’] ~ ,
pi(n) kZ 1 (=(i + Pipi1 + 1))

(4.3.31) Axi(n) = [
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4. Cyclic systems of second-order difference equations

when 1 — 0. Because x;(n) — oo, n — oo, we conclude from (4.3.31) that it must be
(=Ai + ui + Bipis1 +1)/a; > =1,i =1, N. Here, also, the equality should be ruled out. If
the equality holds for some 7, then summing (4.3.31) from n, to n — 1 we have

1
0(1’—/\1'

n-1 1 1 Bi
)Z K Ui(k) % mi(k) 5 Eg ()%, 1 — oo,

k:}’lo

xi(n) ~ (

implying that x; € SV, which is impossible. Therefore, (—A; + u; + Bipiv1 + 1)/a; > -1,
i = 1,N. Summing (4.3.31) from 1 to n — 1 and applying Theorem [1.3.5, we conclude
that

_Ai‘*l‘i*fif’iﬂ*'l_'_ll( )_aL ( )lg ( )%
(4332 xn) ~ PO
(=(i + Bipiss + 1)) (Bt 4 q)

a;

Il
z

From the previous relation, we see that

At i+ Bipi + 11 N

(4.3.33) 0 .

1/ Z.:111\]/ PN+1 :,01;

which is equivalent to a linear cyclic system of equations

Bi ai—Ai+pu+1
(4334:) pi - _pi+1 = ’ 1= 1/N/ pN+1 = Pl-
a; a;
The matrix of system (4.3.34)
1 =B oo 0 0
o 1 -E& 0 0
4335 A=A (ﬁ, P 5_N) _
a1 oy aN
0 0 0 .1 -B=
g0 o001
aN

is a nonsingular because according to condition (a),

(4.3.36) det(A) = 1 - Pifa- P
a1y ... AN
Thus, the matrix A is invertible
AN
4.3.37 Al=—"_M,
(4.3.37) Av - Bx

108



4.3. The system (SE+)

where matrix M is given by (4.2.11)) and the system (4.3.34) has the unique solution

pi, i =1, N given explicitly by (.3.26). From (4.3.26) we can see that all p; satisfy
0 < pi < %4, i =1,N if and only if (.3.25) holds.
Using (]4 2 1) and (4.2.2) we can transform (4.3.32) in the following form

a;+1 1 1 ﬁ_,
ipi(n) figi(n)©ixip(n)®
D; ’

n— oo,

(4.3.38) xi(n) ~
where D;, 1 = 1,_N are given by (4.3.28). Without difficulty, we can obtain explicit

formula (4.3.27) for each x; from the cyclic system of asymptotic relations (4.3.38). The
relation (4.3.27)) can be rewritten in the following form

(4.3.39) xi(n) ~ nf H

=1

5 , i=1N.

Mij1AN-BN BN
L(n) )" ] -
]

implying that the regularity index of x; is exactly p;.
Suppose now that (4.3.25) holds and define p; with (4.3.26), D; with (4.3.28). Denote

AN
a]+1 1 Ml'j AN-BN

ﬁ n i pi(n) fq](n)"
D;j

(4.3.40) Xi(n) = i=1,N and X; = {X;(n)}.

~

j=1
Clearly, X; € RV(p)), i = 1,N and X; satisfy the system of asymptotic relations (4.3.23),
ie.

n—1

(4.3.41) Z e Z Gi(5)Xia1 (s + 1)ﬁf) ~Xi(n), n— oo, i=1,N,

where X1 = Xj. Indeed, Xi(n) can be expressed as

N

(4.3.42) Xi(n) = nP'xi(n),  xi(n) = H

1 M,j AN-BN BN
Li(n)~ “fm]<n) ]

and using Theorem we obtain

- co @ _1 1 Bi
1 1 nPili(n) cim(n)® xie(n)®
z _ z . . Bi ~
(4343) = Pz(k) L qz(S)Xz+l(S + 1) ) D, ’
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4. Cyclic systems of second-order difference equations

as n — oo. Since (4.2.12) holds for the elements of matrix M, relation (4.3.43) can be
transformed as

AN
Bi 1AN-B
Mg | NN

W) Em = Mot ,m(n)a ﬁ(un) ()" J |

D;
j=1
(4.3.44)

AN

Mij13N-Bn
Li(n)” fm]m) ]

N

=\

=1

= Xi(n)/ Z = 1INI XN+1 = XN/

so from (#.3.43), we obtain that X;,i = 1,N satisfy (4.3.41). O

Assuming that (II) holds, we are in a position to find necessary and sufficient
condition that the system of asymptotic relations (4.3.24) possesses a regularly varying
solution x of negative index (p1, pa, - - -, PN)-

Theorem 4.3.6 Letp; € RV(A)), q; € RV (u;) and suppose that A; > a;, i = 1,N. The system
of asymptotic relations (4.3.24)) has a reqularly varying solution x € RV(p1, p2,. .., pn) with

pi € (22,0, i=1,N if and only if

N
= Ai ai—Ai+u;i+1
(4.3.45) i Al(1—B—N)<ZMU’ I

in which case p; are given by (4.3.26)) and the asymptotic behavior of any such solution is
governed by the unique formula (4.3.27) where

(4.3.46) Di=Aj—a;j+a;p)%(-p;), j=1N.

Proor. Let x € RV(p1, pa, ..., pn) with %% < p; < 0,i = 1,N, be a solution of (#.3.24),
whose components are given by - From Theorem [1.3.3) - (vii) we see that all

components of x satisfy (4.3.4). Using (#.2.1) and (4.2.2), we obtain

n—-1 n-1
(4347) —a'm) ~ Y g (e + DF ~ Y KPP Q& (0, 0z n, i= TN,

kzno k:n[)

as n — oo. Since indices of regularity of x;/m;, i = 1,N are greater then zero, it follows,
by Theorem - (v), that lim,,_,«, x;(n) /7;(n) = oo, implying that lim,,_,., x!*(11) = —co.
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4.3. The system (SE+)

Therefore, from (4.3.47) we have that y; + fipi+1 > —1 for all i. If the equality holds for
some i, then noting that

n—1 l n—1
—Axi(n) ~ ( ) Z qi(k)xi1(k + 1)ﬁ’] ~n “’l i(n)” [Z k_lmi(k)5i+1(k)ﬁiJ, n— oo,
Z k= 1o k=1’lg

and summing this from 7 to oo, with the help of Theorem we get

xi(n) ~

i

A n' l(n) i (};;k m(k)ém(k)ﬁl] n— .

_/\i

The previous relation implies that x; € RV (“Z ) whichis 1mp0551ble dueto p; > ==

Therefore, u; + ipi+1 > —1 for all i. Applying Theorem 0 (4.3.47), we get

7

1 A+ +Bipiq +1 _1 1 Bi
] on s L) mi(n)t i ()
1
(ui + Bipis1 +1)%
as n — oo. Since x;(n) — 0, n — oo, we see that (=A; + p; + fipis1 +1)/a; < -1 for

all i. All inequalities should be strict, because if the equality holds for some i, then
summing (4.3.48) from n to co, we get

(4.3.48) — Axi(n) ~ [ Z qi(k)xia (k + 1P

kﬂo

xi(m) ~ (=)™ Zk 0 m B Ea®, o e,

ie. x; € 8V, which is also impossible, due to assumption p; < 0. Therefore, we see
that (=A; + p; + Bipis1 + 1)/a; < =1 for all 7, in which case summing (4.3.48) from 7 to

oo, using Theorem we get

—Ai +.“l+ﬁlpl+1 +1

n li(n)” % mg (n) £l+1(n)“r
(Ui + Bipir1 + 1) [— (%’plﬂﬂ + 1)]
This implies that (4.3.33) holds, which is equivalent to the linear algebraic system

(4.3.34). Proceeding exactly like in the proof of the previous theorem we get that
system (4.3.24) has a regularly varying solution of indices p; € ( Ay O) if and only if

(£.3.45) is fulfilled.
Now assume that (4.3.45) holds. Define p; € (“’%CO) by (4.3.26) and consider

X; € RV (p;) defined by (4.3.40), with D; given by (4.3.46). It can be verified that X;,
i = 1, N satisfy the system of asymptotic relations

xi(n) ~ n—oo, i=1,N.

%) k-1 i
(4.3.49) Z ﬁ Z 0:(8)Xin(s + 1% | ~Xin), n—oo, i=1,N,
k=n i s=n1
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4. Cyclic systems of second-order difference equations

for any n; € IN, where Xy,1 = Xj. In fact, we can use the expression (4.3.42) for X;,
where Dj, j = 1,N are given by (4.3.46). Then, we obtain the asymptotic relation

1§ ) () ()
. ntilin) min)7 Xivi(n)so
4.3. —_— (8)X; 1 pi ~ , 1=1,N,
@350 Y |5 ) Xl + 1) o) i

k=n P ! s=nq

[o¢]

as n — oo, with xni1 = xn. As in proof of the previous theorem, with the help of

(4.2.12), it can be verified that
_1 1 B
li(n) “imi(n)® xip1(n)®
D;

and the desired relation (4.3.49) immediately follows from (4.3.50). This completes the
proof of the theorem. O

= xi(n)

We are now in a position to state and prove our main results on the existence and
the precise asymptotic behavior of regularly varying intermediate solutions of system
(SE+) with regularly varying coefficients p; and g;. Use is made of the notation and

properties of the matrices {.2.11)), (#.3.35) and (4.3.37).

Theorem 4.3.7 Let p; € RV(A,) and q; € RV(u;), i = 1,N. Suppose that A; < a; for all
i =1,N. System (SE+) possesses a solution x € RV(p1,p2, ..., pn) with p; € (0 “Z;A"),

i =1,N, ifand only if @3.25) holds, in which case p; are given by (&3.26) and the asymptotic

behavior of any such solution x is governed by the unique formula (4.3.27)), whereby (4.3.28)
holds.

Theorem 4.3.8 Let p; € RV(A;) and q; € RV (i), i = 1,N. Suppose that A; > a; for all
i=1,N. System (SE+) possesses a solution x € RV(p1,p2, ..., pn) with p; € (“’%",0),

i =1,N, ifand only if (&3.45) holds, in which case p; are given by [@&3.26) and the asymptotic
behavior of any such solution x is governed by the unique formula (4.3.27) and D;, j = 1,N,

are given by (4.3.46).

We remark that the “only if” parts of these theorems follow immediately from the
corresponding parts of Theorem and Theorem because any RV—-solution
x of (SE+)with the indicated property satisfies (IM1) or (IM2) and accordingly the
system of asymptotic relations (4.3.23) and (4.3.24).

ProOF OF THE ”1F” PART OF THEOREM Let X; = {Xi(n)} € RV(p;) denote se-

quences defined by (4.3.40), where D; for j = 1,N are given by (4.3.28). It is known
that

1

n—

1
(4.3.51)
k=1

oo

B L AOXmG+ )|~ X0, noe, i=TN,
! s=k
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4.3. The system (SE+)

implying that there exists 1y > 1 such that

n—1 00 aj
(4.3.52) Z (7% Z gi(8)XimG +1)F | <2Xin), n>ny, i=1,N.
k=ng ! s=k

Without loss of generality, we may assume that each X; is increasing for n > ny, because
it is known that any regularly varying sequence of a positive index is asymptotically
equivalent to an increasing RV sequence of the same index. Since holds for
ny it is possible to choose 11 > ny + 1 so large that

N =
Z

n—1 00 1,
(4.3.53) Z(p 5 qu(s)XZ+1(s+1)ﬁ') >Xin), n>m, i=1,

Let we choose positive constants ¢; and C; so that

Bi Bi
C;>4C"

i1’ i=1,N, cnan=ca, Cnua=0C

(4.3.54) ¢ < ic{il,

An example of such choices is

(4.3.55) C = 4% T M;;

7

1 AN—BN Z] 1 Mij
= (2)

fori = 1,N. Clearly ¢; < 1 < C;. The constants ¢; and C; can be chosen so that
Ci/CZ‘ > 2Xi(n1)/Xi(n0), that is

(4.3.56) 2¢:Xi(m) < CiXi(ng), i=1,N,

because these constants are independent of X; and the choice of ny and n;.
Consider the space Y, of vectors x = (x1,x2,...,xn), X Ny, i = 1,N, such that

{xi(n)/Xi(n)}, i = 1,N are bounded. Then, Y, is a Banach space endowed with the
norm

(4.3.57) Il = max {i‘iﬁ X((Z))}

Further, Y,, is partially ordered, with the usual pointwise ordering <: For x,y € Y,
x <y means x;(n) < y;(n) for all n > ny and i = 1, N. Define the subset X c Y,,, with

(4.3.58) X={xe,

ciXi(n) < xi(n) < CXi(n), n2mp, i=1,N}.
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4. Cyclic systems of second-order difference equations

It is easy to see that for any x € X the norm of x is finite. Also, for any subset B C X, it
is obvious that inf B € X and sup B € X. We will define the operators F; : No0R — NoR

by

1
ai

n-1 )
(4.3.59) Fox(n) = b; + Z (ﬁ Z gi(s)x(s + 1)ﬁf) . n>mny, i=1N,
! s=k

kzno

where b; are positive constants such that

(4360) CiXi(l’ll) < bi < %Cl‘Xi(Tlo), i= 1, N,
and define the mapping @ : X — Y,,, by

(4.3.61) D(x1,x2,...,xN) = (7:1x2, 7:2x3/---/7:NxN+1)/ XN+1 = X1.

We will show that @ has a fixed point by using Theorem [I.1.1, Namely, the operator
® has the following properties:

(i) @ maps X into itself: Let x € X. Then, using (4.3.52)-(4.3.61), we see that

1 % n-1 1 ) 4 a;
Fixip(n) < ECin'(no) +C., (m Z 7i(8) Xis1(s + 1)ﬁ’]
k=ng ! s=k

1 b 1 1
< ECin'(”o) +2C;1 Xi(n) < ECin‘(”) + ECiXi(”) = CiXi(n)
for n > ny and
Fixici(n) = b > c;Xi(n1) > ¢;Xi(n), for ny<n<mny,

Bi
“"1Xl-(n) > cin-(n), n=nj.

B; n—1 (S8} all
b 1 o1
Fixin(n) = ¢, Z (M E qi(8) Xis1 (s + 1)ﬁ’) 2 5Ci+

s=k
This shows that ®x € X, that is, @ is a self-map on X.
(ii) @ is increasing, i.e. for any x,y € X, x <y implies Ox < Dy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € X of ®, which satisfies

n-1 %) éi
1
. — Fone. —h. _ . . Bi
xi(n) = Fixiy1(n) = b; + k:Eno [Pi(k) SE:k gi(s)xis1(s + 1) ] , N >=Hy,
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4.3. The system (SE+)

for every i = 1, N. This shows that x € X is a solution of system (SE+). It is clear, in
view of (4.3.58) and lim,,_,, X;(1n) = oo, that we have lim,,_,, x;(1n) = co. Also,

pilm) (A ()" = Y gilkpxiak + D < Y giR)Xea (ke + 1), i=T,N.
k=n k=n

Letting n — oo in the last relation, we get that xlm(n) — 0, as n — oo. Therefore, x is an
intermediate solution.
It remains to verify that x € RV(p1, p2, ..., pn). We define

n-1 oo a
=Y, 5 Va1 =T,
and put
1= lif,Il) glf %, R; = liril_)s;lp zf:l;
Since ¢;X;(n) < xi(n) < C;Xi(n), n > ny, i = 1,N and
(4.3.62) ui(n) ~ X;(n), n—-oo, i=1,N,

it follows that 0 < 7; < R; < 00, i =1, N. Using Theorem we obtain

Can) - (l T g+ 1))
r; > liminf A lim inf mn
1 (555 Lz 400 X (k + 1))

a . Yo Gi)xi1 (k + 1)P )_
minf

( Yo Gi()xi1 (ke + 1)P )“" _ (li
Zl(:;n qi(k)XHl(k + 1)ﬁ' =00 tho:n qi(k)XHl(k + 1)ﬁ’

1 Bi
. gi(n)xia(n + 1P )“" .. (xi+1(71 +1) )”" &
> |liminf = liminf| ————=| =r"
( n—o0 qi(Tl)X1‘+1(Tl + 1)’31'

= liminf

n—oo

where (4.3.62) has been used in the last step. Thus, r; satisfy the cyclic system of
inequalities

i
(4363) 1 > Tai i= 1, N, N+l = 11.

= i+l

Likewise, by taking the upper limits instead of the lower limits, we are led to the cyclic
inequalities
Bi

(4.3.64) Ri<R%, i=1,N, Ry =R

i+17
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4. Cyclic systems of second-order difference equations

From (4.3.63) and (4.3.64) we easily see that

B1B2--BN B1B2--BN
(4365) T > 1,.;"1&24..aN’ Ri < Riuzlazu.aN,

whence, because of the hypothesis fif,...fn/a1a2...an < 1, we find that ; > 1 and
R; < 1,i = 1,N. It follows therefore that 7, = R; = 1 i.e. lim,_ e xi(n)/u;(n) = 1 for
i = 1,N, which combined with implies that x;(n) ~ u;(n) ~ X;(n) as n — oo.
Therefore, each x; is a regularly varying sequence of index p;. Thus the proof of the
”if” part of Theorem is completed. O

PROOF OF THE "1F” PART OF THEOREM Suppose that (4.3.45) holds. Define p; and
D; by (4.3.26) and (4.3.46), respectively, and consider the regularly varying sequences
Y; = {Y;(n)} of indices p; defined by

_AN

a1 Mij1AN-BN
1) ()™ ] Z.

Yi(n) = n” H =1,N.

j=1 D;

Since Yj, i = 1, N satisfy the asymptotic relations

o0 [o¢]

= a . 1
Yi(n) ~ ;(m;qxs)m(s ' 1)ﬁf] ~ Z[ 5 [h + qus)ml(s ' 1)&]] ,

as n — oo, where h; > 0 are arbitrary fixed real constants for i = 1, N, one can choose
ny > ng+ 1 > 2 so that

1

(4.3.66) kZ (pjk) [h + Z gi(s)Yia (s + 1)51]] < 2Yi(n), n=ny i=1N
and
(4.3.67) Z[ © [h + SZn';ql(s Yiia(s + 1)ﬁzJ] | , n>n;, i=1,N.

Let us choose the positive constants w; and W; which satisfy the cyclic system of
inequalities

1Lk b
(4368) w; < Ea)z.[:’l, W; > 2 Wz':lf i=1,N, WN+1 = W1, WN+1 Wi,
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4.3. The system (SE+)

7t:(k)

1
and w; < h i .min,, < —
Wi 1My <k<ny {Yl(k)

} . An example of such choices is

1
= mi % W._zﬁZ%MU i =1.N
wl_mln Cl/‘)/l i 7 1= 7 1= 7

o . . Tcl(k) _al]- o (1)AN BN Z] 1M1]
Vi = mm{ng}gbl{yi(k)},hi cl} and ¢; = > )

It is easy to see that for such constants w; <1 < W;.
Consider the space Y, of vectors x = (x1,X2,...,XN), Xi € NywR, i = 1,N such that
{xi(n)/Yi(n)},i =1,N are bounded.Then, Y, is a Banach space endowed with the norm

Ixll = max | sup 2
" izieN ok Yi(n)

where

Further, Y, is partially ordered, with the usual pointwise ordering <: For x,y € Y,,,,
x <y means x;(n) < y;(n) for all n > ny and i = 1, N. Define the subset Y c Y, like

(4.3.69) Y={xev,

0 Yi(n) < xi(n) S W,Yi(n), nzng, i=1N}

For any subset B C Y, it is obvious that inf B € ¥ and sup B € Y. We consider the
mapping ¥V : Y — Y, defined by

(4-3-70) \I](xlrle .. ~/xN) = (lez, gzx:s,-u,ngNﬂ), XN+1 = X1,

where G; : MR — NoR and

(4.3.71) Gix(n) = i( ik (h + Z gi(s)x(s + 1)51]] , n=ny, i=1,N.

S=ny

We will show that W has a fixed point by using Theorem([I.1.1, Namely, the operator
W has the following properties:

(i) W maps Y into itself: Let x € Y. Then, using (4.3.66)-(4.3.71)), we see that

w k1 a
Gixiy(n) < Z zk) ( + W, Z qi(s)Yina(s + 1) ]]
k=n 5=ng
o (Wi ( " Dl
=Y | 2 4 Y i)Y s + D
;;mme ;% 1
5 o k1 c
< W Z[ ® [h + Zqz (5)Yiq(s + 1%!]] %W 2Yi(n) = W;Yi(n)
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4. Cyclic systems of second-order difference equations

for n > ng and

1

Gixisi(n) > Z (pié;c)) . h;“_ m;(n) > hf_ viYi(n) > w;Yi(n) for ny<n<mn,
k=n !

00 k-1 a;
Gixiv1(n) > Z [p}k) [hi +af Z qi(s)Yin (s + 1)ﬁi]]

k=n s=np

1

‘ 00 1 h k-1 a;
_ B el DA . . Bi
=W, ; o ® | o + Z qi(s)Yiz1(s + 1) ]J

i+1 5=Mno

p— pi(k)
This shows that Wx € Y, that is, W is a self-map on VY.

S=ngp

1
00 k-1 a;
& 1 _ 1
Z Wy Z hi + E qi(8)Yir1(s + 1)ﬁ’]] > 2w; EYi(n) = w;Yi(n), n=n.

(ii) W is increasing, i.e. for any x,y € Y, x <y implies Wx < Wy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € Y of ¥, which satisfies

. . ;
X(n) = Gera(m) = Y [ﬁ [hi + Y s + 1)ﬁf)] , nzm.

k=n S=ng

This shows that x € Y is a solution of the system (SE+)and it is easy to see that
it is an intermediate solution. In the essentially same way as in the proof of the
previous theorem, we obtain that x is a regularly varying solution of (SE+)of the

index (p1, p2,...,pnN). O

Application. Main results of this section can be applied to the well-known second
order difference equation of Emden-Fowler type to provide new results on the
existence and the asymptotic behavior of its intermediate solutions. As an immediate
consequence of Theorem and Theorem we have the following two results

for the equation (4.1.1).

Theorem 4.3.9 Let {p(n)} € RV(A) and {q(n)} € RV (u). Suppose that A < a. Equation
(4.1.1) possesses a regularly varying solution x of index p € (0, %) if and only if

A—a—1<y<A§—ﬁ—1
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4.4. The system (SE-)

in which case p is given by
_a—-A+p+1
= P

and the asymptotic behavior of any such solution x is governed by the unique formula

(4.3.72) p

(1) ~ ”M”(”)_lq(”)]ﬁ, 7o oo

(@ —A—ap)p”

Theorem 4.3.10 Let {p(n)} € RV(A) and {q(n)} € RV (u). Suppose that A > a. Equation
possesses a regularly varying solution x of index p € (%, O) if and only if

/\é—ﬁ—1<y</\—a—1

in which case p is given by (4.3.72) and the asymptotic behavior of any such solution x is
governed by the unigue formula

npn) Yqn) |7
(A —a+ap)(—p)

4

x(1) ~

A special case of the equation with p(n) = 1,n € IN and with the coefficient
g belonging to the set of normalized RV sequences was considered in [7]. Here,
we obtained necessary and sufficient conditions for the existence of RV solutions
and their precise asymptotic behavior, for the equation (4.1.1) with coefficients p, g
belonging to a larger set of RV sequences. Thus, Theorem and Theorem
greatly improve results in [7].

4.4 The system (SE-)

Let us now turn our attention to the (SE—)system. In the case when N = 1, we get
a second-order difference equation usually called Thomas-Fermy type. Note that the
mentioned equation has been discussed in detail in the previous chapter.

4.4.1 Classification of positive solutions

As we have mentioned earlier, the first task is to classify the positive solutions. In this

regard, assuming that x;, i = 1,N, are eventually positive, from (SE—) we have that

xl

11] = {xlm(n)}, i = 1,N are eventually increasing.
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4. Cyclic systems of second-order difference equations

(a) Let we first consider a case when all x; are eventually increasing, i.e.

(4.4.1) xi(n) >0, Axin)>0, forn>ny, i=1N.

Then, there are two possibilities for x[” :

1 : 1
lim x[ lm)y=¢;>0 or il_rgxl[ In) =

n—>00

If (I) holds, since xl[ I i = 1,N are increasing, then there exist m, such that
pi(n)Ax;(n)* > xl[.”(mo), n > my, implying that

xi(n) = x;(mo) + x; a i=1,N.

S i)t

Lettingn — oo, we get thatlim,,_,, x;(n) = co. Note thatin the case when lim,,_, x Un) =
¢; >0, we get

lim % = cl.l/“" ie. xi(n) ~ cil/“"Pi(n), n—oo,i=1,N.
If (II) holds, then in the case when lim,,_,, xgl](n) = ¢; > 0 we have that there exists

my € IN such that xl[”(n) <c,n>myfori= 1,_N Therefore, it follows that

1 n—1 1
xi(n) < xi(mo) + c;" Z —, i=1N.
k=myq Pz(k) i

From the last inequality, letting n — oo, we get that lim,,_,, xi(11) = k;, for some positive
constants k;,i = 1, N.
(b) Next, consider x;,i = 1, N are eventually decreasing, i.e.

(4.4.2) xi(n) >0, Axin)<0, forn>ny, i=1N.

Then, for x", i =

1, N, one of the following two equalities holds:

lim x[l](n) -1;,l;>0 or lim xm( ) =

n—-oo n—-oo

If (I) holds, then lim, . x!''(n) = 0. Indeed, if limn_,oo M) = -1, > 0, then
—pi(n) (Axi(n))" < 1, n > ng ie. x;(n) < xi(ng) — I/ Y12, pi(k)™/%. As the right-hand
side tends to —co contradicts positivity of x;, we have the desired conclusion.

If (II) holds, the case lim, e (1) = lim,_,c0 21/ (11) = 0 leads to lim,,,c xi(11)/70:(n) =
0 and the case lim,,_,, x;(1) = 0, lim,, xz[”(n) = const. < 0leads to lim,_,. x;(n)/m;(n) =
const. > 0

Therefore, if (I) holds, each component x; of solution x is either increasing and
satisfies:
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4.4. The system (SE-)

(SI) im0 xi(11) = limy e 21 (17) = o0,

(51-) lim, % =const. >0, ie. xin)~«Pi(n), n—- oo, x;>0,

or is decreasing and satisfies:
(SD) limy e X;(17) = lim,e0 x1(n) = 0,
(AC-) lim, e xj(n) = const. >0, ie. xin)~x; n—oo, x;>0.

On the other hand, if (II) holds each component x; of solution x is either increasing
and satisfies

(SI) limy e Xi(n) = limy, e 211 (n) = oo,

(AC-) lim, o xi(n) = const. >0, ie. xi(n)~x;, n—oo, x>0,
or is decreasing and satisfies

(SD) limyy0 x;(17) = lim,,,e0 ' (1) = 0,

(52—) hmn—>oo 7'(1'(7’1

=const. >0, ie. x;n)~xmn), n—oo, x>0,

(AC-) lim, o xj(n) = const. >0, 1ie. x(n)~x;, n—oo, x;>0,

Solutions of type (S1-),(52-) and (AC-) are called primitive solutions, while so-
lutions (SI) and (SD) are said to be extreme. We emphasize that if (I) holds (SI)
is equivalent to lim,_,« xi(n)/Pi(n) = oo, while if (II) holds (SD) is equivalent to
lim,, e x;(n)/7t;(n) = 0.

Necessary and sufficient conditions for the existence of primitive solutions will be
established in the next subsection. On the other hand, existence and precise asymptotic
formulas of extreme solutions are not easy to determine in the general case. Therefore,
in Subsections 4.4.3|and |4.4.4, we will assume that the coefficients of the system are
regularly varying sequences and thus, by finding regularly varying solutions, solve
the problem. Subsection is dedicated to strongly increasing solutions, while the
conditions of the existence and asymptotic behavior of strongly decreasing solutions
will be discussed in Subsection 4.4.4]

4.4.2 Existence of primitive solutions

The asymptotic behavior of primitive solutions, as we already said, is evident from
the classification itself. The following theorems prove similar to those in Subsection
determining the necessary and sufficient conditions for the existence of these
solutions, using Fixed point theory and without the assumption that coefficients are
regularly varying sequences.
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4. Cyclic systems of second-order difference equations

Theorem 4.4.1 Let (I) holds. The system (SE—)has a solution x whose each component
satisfies (S1-) if and only if

n

0 &
1 o
(4.4.3) ;qi(n) (; W] <o, i=

Proor. Let x = (x1,x2,...,xy) be a solution whose each component satisfies (S1-).
Clearly, x satisfies (4.4.1). Then, there exist 1y € IN and m; > 0 such that xgll(n) < m; for

n>mnp, 1 =1,N. Since xl[.” are positive and increasing, we have for n > ny

1,N.

[1] )1/‘*1 n-1
| 1 .
(4.44)  x(n) = xi(ng) + Z 12% > )/ Z T ki =xM(ng), i=1,N.

k= =np k=n0
Using (4.4.4), summing (SE-) from n, to n — 1, we get for n > ny

n—1

m; > xl[.l](n) = xl[.ll(flo) + Z qi(k)xi1 (k + 1)P

anO

B; n-1 k Bi
a 1 )
2 xz[‘ll(n(’) +ki Z qi(k) (Z IW] , 1=1,N.

k=n0

Letting n — oo, follows that (4.4.3) holds.
Conversely, suppose that (4.4.3) holds. Then, there exists ny € IN such that

Bi

n=nyp

Denote with £, the space of all vectors x = (xq,x2,...,XN),X; € NwR, i = 1,_N, such
that {x;(n)/P}°(n)}, i = 1, N are bounded, where P are given by (4.3.15). Then, £, is a
Banach space endowed with the norm (4.3.16)). Set

A1:{X€.£no

%P?O(n) <xi(n) <cP(n), nx=mny i= L_N},

where ¢;, i = 1, N are positive constants which satisfy (4.3.9).
Define operators #; : "R — N by

1 .

n-1 ai
Fix(n) = Y (sz) [ Z g:(s)x(s + 1)° ]] , n>n, i=1LN,
k=ng !
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4.4. The system (SE-)

and define the mapping © : Ay — L, by
(4.4.5) O(x1,x,...,XN) = (7:13(2/ Faxs, ... /¢NXN+1)r XN+1 = X1.

Then, it is a matter of the routine procedure to show that © satisfies all the hy-
pothesis of Schauder-Tychonoff fixed point theorem. Therefore, ® has a fixed element
x in the set A;. It is easy to see that x is a solution of the system (SE—)and that its
components satisfy (51-). O

Theorem 4.4.2 Let (II) holds. The system (SE—)has an eventually increasing solution x
whose each component satisfies (AC-) if and only if

(4.4.6) Z (pl B Zq( )] <o, i=1,N.

n=2

Proor. Let x = (x1,x,,...,xy) be a solution of (SE—)whose each component satisfy
(4.4.1) and lim,,_,, x;(1) = ¢;. Then, there exist ny € N and m; > 0 such that m; < x;(n) <
¢, n>mny i=1N. Summing the equations of (SE-) first from 7y to n — 1, and then
from ny to co, we get fori =1, N

ci — xi(ng) = Z ( 1 5 [ [11(no) + Z gi(s)xir1(s + 1)@]] > mff;l Z [ ® Z qi(s )] ,

k=ny s=ng s=ng

implying that (4.4.6) holds.
Conversely, suppose that (4.4.6) holds. Then, there exists 1y > 1 such that

Z[p(k)zq()] <1, i=1N.

S=np

Denote with £, the space of all vectors x = (x1, xy,...,xn), such that x; € NoR,i=1,N
are bounded. Then, £, is a Banach space endowed with the norm (4.3.7)). Set

AZZ{XELnO

ci .
EZ <xin)<c¢, n=ny, i= 1,N},

where c;, i = 1, N are positive constants which satisfy (4.3.9).
Define operators ¥; : MR — NwR by

e k-1 1/a;
C; 1 . .
Fix(n) = 5 + kZ [M Z gi(s)x(s + 1)!31] , nzm, i=1N,

and define the mapping © : A, — L,, by (4.4.5). By the SchauderTychonoff theorem
O has a fixed element x in the set A,. Further, it is easy to see that x is a solution of the
system (SE-) and that its components satisfy (AC-). O

123



4. Cyclic systems of second-order difference equations

Theorem 4.4.3 Let (I) holds. The system (SE—)has a solution x whose each component
satisfies (AC-) if and only if

(4.4.7) Z(p B qu( )] <o, i=1,N.

n=1

Proor. Let x = (x1,x2,...,xn) be a solution of (SE-) whose each component satisfies
[1](

lim, . x;(n) = c;. As prev1ously shown lim,,_,., x; '(n) = 0,i = 1, N. From classification
it is clear that x is a decreasing solution, so there exist nyp € IN such that x;(n) > ¢,

n > ng, i =1, N. Summing equations of (SE—) twice from n to co, we obtain

xi(n) =c; + i [
k=n

for i = 1,N. Letting n — oo, we get that the condition (&.4.7) is satisfied.
Conversely, suppose that (4.4.7) holds. Then, there ex1sts 1o € IN such that

a; [o¢]

p}k) Z gi(s)xis1(s + 1)&] > th Z (p ® Z q:(s) J , n>ng,
! s=k

k=n

o0 i

Z(p o) Zq,(k)] <2fi —1, i=1,N.

Denote with £, the space of all vectors x = (x1, x, ..., xn), such that x; = {x;(n)} € Ny R,
i =1,N are bounded. Then, £, is a Banach space endowed with the norm (4.3.7). Set

A3={xe£no ¢ <xi(n) <2, n=ny, i=1,N},

where ¢;, i = 1, N are positive constants which satisfy (4.3.9).
Define operators 7; : "R — NwR by

Fixtn) = ci+ ) (ﬁ Y (s + 1)ﬁf) , nzm, i=TN,
k=n L s=k

and the mapping © : A3 — L, by (¢.4.5). Then, the existence of a desired solution of
(SE-)in the set A3 follows from the SchauderTychonoff fixed point theorem applied
to the mapping ©. O

Theorem 4.4.4 Let (II) holds. The system (SE—)has a solution x whose each component
satisfies (S2—) if and only if

o 00 ﬁi
1 .
(448) ; qi(n) [ Z W} <o, 1= 1,N

k=n+1
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4.4. The system (SE-)

Proor. Let x = (x1,x2,...,xn) be a solution whose each component satisfies (52-),
implying that lim,_,« xl[l](n) = const. < 0,1 =1,N. Since x[l], i = 1,N are eventually

i
negative and increasing, there exist 1y € IN and ¢; > 0 such that xlm(n) < ¢; forn > ny,

i= 1,_N Then, for n > ny, we have

(0 i<_xgu(k))1/m (c)imn, i=TN
xi(n) = ) ~———t— > (—c)%m(n), i=1,N.
e pi(k)te

Summing equations of the system (SE—) twice from 7 to co we get for n > n,

xi(n) =

. o 3
Cit Y qis)inls + 1)ﬁf]]
pi(k) Z,; '

1
< | pi(k)

Letting that n — oo in (4.4.9), follows that (4.4.8)) holds.
Conversely, suppose that (4.4.8) holds. Then, there exists 1y € IN such that

[ ) ,Bi
1
. ai=Pi (Hai _ P
qu(n)(zl pm(k)l/am] <2% (% —-1), i=T1,N.

n=ng k=n+

(4.4.9)

|~

Ll’i

Bi =
c; + (—Ci+1)“_i Z qi(s)ni+1(s + 1)5)) , 1= 1,N
s=k

D 1D

\%

>~
1]

Denote with £, the space of all vectors x = (x1,x2,...,xn), Xi € NwIR, i = 1,N, such
that {x;(n)/mi(n)}, i = 1, N are bounded. Then, L, is a Banach space endowed with the

norm (4.3.22)) Set

A4:{ XE.EnO

cmi(n) < xi(n) < 2emi(n), n> o, = 1,N},

where ¢;, i = 1,N are positive constants which satisfy (4.3.9).
Define operators 7; : "R — N by

1
Fix(n) = ; [M

and define the mapping © : Ay — L, by (4.4.5).

Then, by Knaster-Tarski fixed point theorem (Theorem , ® has a fixed element
x in the set A4. It is easy to see that x is a solution of the system (SE—)and that its
components satisfy (52-). O

The following theorem can be proven in the essentially same way as Theorem[4.4.3|

L
c?"+Zqi<s)x<s+1)ﬁf]] , mzm, i=1N,
s=k
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4. Cyclic systems of second-order difference equations

Theorem 4.4.5 Let (II) holds. The system (SE—)has a decreasing solution x whose each
component satisfies (AC—) if and only if

(4.4.10) Y (ﬁ Y qi(k)] <00, i=
! k=n

1,N.

n=1

4.4.3 Asymptotic behavior of strongly increasing regularly varying
solutions

Strongly increasing solutions of (SE—) are solutions of the system

n-1 1 k=1 | lel '
xi(n) = a; + l;f) [M [bi + Z gi(s)xis1(s + 1)51]] , i=1N

S=ny

for some constants 19 > 1 and 4;, b; > 0. Note that components of strongly increasing
solution of (SE-)is required to satisfy Z,‘f’:m) gi(n)xiz1(n + 1) = 0o, i = 1,N. It follows
that strongly increasing solution of (SE-) satisfies the following system of asymptotic
relations

n-1 k-1 %
(4.4.11) xi(n) ~ Z (L [Z Gi(s)xia1 (s + 1)ﬁf]] , n—oo i=1,N.

k=ng pi(n) S$=ng

The previous system of asymptotic relations can be considered as an approximation of
system (SE-). To find strongly increasing solution of the system (SE—), i.e. solution
of (4.4.11), we will restrict our attention on the case when coefficients p; and g; are
regularly varying sequences. Therefore, we use expressions for p; and g;, and
for the components x; of a solution x of (SE—) we use expression (4.2.2).

Because of computational difficulty, we restrict ourselves to consider only solutions
with a positive index of regularity. As we have seen in Section the case (I) is
equivalent to (4.2.3) and the case (II) to {#.2.4). Therefore, if the case (I) is satisfied,
then we will distinguish two cases:

/\1’<(Xl', izl,N or )\,'zai ZZL_N

which imply that P; are given by {.2.7) or (4.2.8), respectively. In the case (II), when
Ai > a;, for sequences m; = {m;(n)} we have that holds.

The following Theorem provides complete information about the existence and
asymptotic behavior of regularly varying solution of a positive index (p1, p2, ..., pn)
for the system of asymptotic relations (4.4.11).
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4.4. The system (SE-)

Theorem 4.4.6 Let p; € RV(Ai), qi € RV(wi), i = 1,N. Suppose that A; < a;, i =
1,N. The system of asymptotic relations @4.11) has a regularly varying solution x €
RV(p1, p2,---, pn) With p; > “”;’_Ai, | =1, N if and only if

N +1 i I+ _/\‘+
(4.4.12) ZM (“J 4 Pl “))>o, i=1,N
=

ik

holds, where any1 = a1, ANy1 = A1, in which case p; are uniquely determined by (4.3.26)
and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)
where

Proor. Let x € RV(p1, 2, ..., pn) with all p; > 44 be a solutlon of (4.4.11). Then, all
x; satisfy (4.4.1) by Theorem[1.3.3)- (vii). Using (4.2.1) and (#.2.2), we obtain

(4.4.14) xﬂm~2hﬂMAMAW~Zywmwm%m®ﬁanJ=LN

k:no k=1’lo

Since indices of regularity of x;/P;, i = 1,N are greater then zero, from Theorem
- (v), we have that lim,,_, x;(1)/P;(n) = oo and lim, . x;(11) = oo, implying that
lim, e x''(11) = co. Therefore, both sums in are divergent, implying that
pi + Bipis1 = —1,i= 1, N. If for some i equality holds, then

n-1 @;

1 A 1 1
(4.4.15) Ax;(n) ~ | — iB)xik+ 1P| ~n"5l(n) % Ki(n)*, n— oo,
(n) mmgf()“ ) (n) T Ki(n)

where

n—1
Ki(n) = Z Km0 (k+ P, K € SV.

k=n0

Since A; < a;, from (4.4.11) and Theorem [1.3.5we find that

aj—A;
() ~ e L) K ) .

This implies that p; = ===, which is a contradiction. Therefore, y; + Bipis1 > —1 for
i = 1,N. Application of Theoremto (4.4.14) gives

A +Hz+ﬁzpl+1 +1

oo umzmm>amm
(#1 + ,31P1+1 + 1)L1

1 v« _
(4.4.16)  Axi(n) ~ v k; gi()xi1 (k + 1)
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4. Cyclic systems of second-order difference equations

as n — oo, which yields

n-1 —A; +y1+,61p1+1 +1 _
(4.4.17) xi(n) ~ (k) i) 51+1(k)

k=nyg ((ul + ,B Pi+1 + 1)

i = 1,_N Since x; — oo, n — oo, from (4.4.17) we conclude that (—A; + y; + Bipic1 +
1)/a; > =1, i = 1,N. All inequalities should be strict because the equality for some i
would imply that 0 < p; + Bipis1 +1 = A; — a; < 0, which is impossible. Therefore,

(=Ai + i + Bipic1 + 1)/a; > =1,i =1, N. Applying Theorem from (4.4.17) we get

Aty +ﬁzpz+1 +1

(4.4.18) xi(n) ~ ) ) £ )" n— oo, i=1,N.

(i + Bipins + 1) (Pt )’

aj

From previous relation we see that p;, i = 1,N, satisfy (4.3.33) i.e. p;, i = 1,N, will be
determined as a solution of the system (4.3.34). Thus, p;, i = 1,N are given explicitly
by (4.3.26). Let we denote d; = p; — “";Z_A", i =1,N. Then, the system (4.3.34) becomes

+1 (i1 — A . —
(4.4.19) d; - 5 g = 2 —+ il ;a : 22T, dyn=d,
1 1 1“1+

Matrix of the system (4.4.19) is given by (4.3.35). Since A is nonsingular according to
(4.3.36), the system (4.4.19) has a unique solution d;,i = 1, N, where

s +1 . "
(4.4.20) d; = ZMij(P‘] /3](0(] 1) — A 1)’ i=1N.

a; Qi

Using that p; > “’Q;IA’ if and only if d; > 0, we conclude that the condition is
satisfied.

Using (4.2.1)) and (4.2.2) we can transform in the form where D;,i =
1,N are given by (4.4.13). It easy to obtain formulas for each x; from the cyclic
system of asymptotic relations (4.3.38), which can be rewritten in the form (4.3.39),
implying that the regularity index of x; is exactly p;.

Suppose now that holds, define p; and D; with and (4.4.13), respec-
tively, and let X;,i = 1, N be sequences defined with (4.3.40). Clearly, X; € RV(p:),
i = 1,N and X; satisfy the system of asymptotic relations

n—1

(4.4.21) Z B Zqz(s)xﬁl(s + 1)51 ~Xin), n—oo, i=1,N, Xnu=Xu,

S=nq
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4.4. The system (SE-)

for arbitrary n; € IN. Indeed, X; can be expressed as (4.3.42) and using Theorem|[1.3.5,
we obtain

1
n—-1 a;

1 1 Bi
Z Z o) L) ) i (0)
(4.4.22) l( ) qi(s)Xis1(s + 1) D, , N — oo,

S=nq

Relation (4.4.22) can be transformed as in (4.3.44), implying that X, i = 1,N satisfy
(4.4.21). O

Theorem 4.4.7 Let p; € RV(Ai), i € RV (i), i = 1,N. Suppose A; = a; and S; = oo,
i = 1,N. The system of asymptotic relations has a reqularly varying solution x €
RV (p1,p2,- ., pn) with p; > 0,i=1,N if and only if

N

+ 1
(4.4.23) Z M= H i=1,N

j=1

in which case p; are uniquely determined by

N

An pi+l

4424 j = — i—, 1=1,
( ) P Ay~ By ;‘ My aj =N

and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)
. aj+\/aj
with D]-:(a]-p]./ ) ,j=1,N.

Proor. Suppose that the system (4.4.11) has a solution x = (x1,%,...,xN) €

RV(p1,p2,---,pn), with p; > 0,i = 1,N. Using and (4.2.2), we obtain (4.4.14).
For all i = 1, N, indices of regularity of x;/P; are p; > 0, due to fact that P; € SV. Thus,
from Theorem [1.3.3]- (v), we have that lim,_ x;(1)/P;(n) = oo and lim,, o xi(1) = o0,
implying that lim,_« x/'!(11) = co. Therefore, both sums in are divergent, so it
must be y; + fipin = 1.1t equality holds for some i, then frorn it follows that

n—1
xn) ~ ) kLK TK®, n— e, i=TN,

k=n0

implying that x; € SV, which is a contradiction. Therefore, u; +8ipis1 > —1fori =1,N.

Application of Theorem to (£.4.14) gives and since x;(n) — oo, n — oo,
it must be (=A; + y; + pipis1 + 1)/a; > —1,i = 1,N. If equality holds for any i, then
pi + Bipis1 = —1, which is impossible. Thus, (=A; + y; + Bipis1 +1)/a; > =1,i = 1,N.
Summing from ny to n — 1 and using Theorem we get (4.4.18). Using
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4. Cyclic systems of second-order difference equations

assumption A; = a;, i = 1, N, from (£4.18) we obtain the following cyclic system by
the unknown p;,

j +1
(4.4.25) pi — %Piﬂ = Hla , 1=1,N, pna=p1.
1

i

Matrix of the system (4.4.25) is given by (4.3.35), and therefore, the system has a unique
solution p;,i = 1,N given by (4.4.24). All p; are positive if and only if (4.4.23)) holds.
Proceeding exactly as in the proof of the previous theorem, we get (4.3.27), where

Vaj .
constants D; are reduced to D; = ( ]pa]H) a],] =1LN. O

The solution of the problem of determining the necessary and sufficient conditions
for the system of asymptotic relations to have a regularly varying solution x
of the positive regularity index (p1, p2, ..., pn) in the case (II) is given by the following
theorem.

Theorem 4.4.8 Let p; € RV (A), i € RV (u;) and suppose that A; > a;, i = 1,N. The system
of asymptotic relations (4.4.11) has a reqularly varying solution x € RV(p1, p2, . .., pn) with
pi >0,i=1,N ifand only if

—Aj+pui+1
(4.4.26) Y My ”] >0

j=1

in which case p; are given by (4.3.26) and the asymptotic behavior of any such solution is
governed by the unique formula (4.3.27) with D;, j = 1, N given by (4.4.13).

Proor. Let x € RV(p1, p2, ..., pn) with all pz- > (0 be a solution of 4.4.11. Clearly, all

components of the solution x satisfies (4.4.1). From Theorem - (v) we have that
(1]

lim,, e x;(11) = 00, i = 1,N. Since X, 0= 1 N are positive and increasing it follows that

@ limxn)=c¢>0 or (b) limal(n)=

Case (a) implies that lim,_, x;(11) = const., that is x; € SV, which is impossible. Thus,
for x[l] i = 1,N we have that (b) holds. As in the previous theorem we can obtain

(4.4.14) and conclude that u; + ipi1 > —1,i = 1, N. If the equality holds for some i,
then summing (4.4.15) from 7, to n — 1 and using Theorem we get

n-1 A
xin) ~ ) K LER) KR, 1 e,
k:ng

Because x;(n) — oo,n — oo, it must be % > —1,1ie. A; < a;, which is impossible.
Therefore, y; + Bipis1 > —1 for all i. Proceedmg exactly as in the proof of Theorem [4.4.6|
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4.4. The system (SE-)

we conclude that p;, i = 1,N are given by [@#3.26). It is obvious that p; > 0 if and only
if is fulfilled. Like in the proof of the previous theorem, we get that the system
has a regularly varying solution satisfying (4.3.27).

Proof of the "if” part of the theorem is the same as of Theorem [4.4.6| O

From the statements of Theorem and Theorem we have the following
result for the existence of regularly varying solution of the system of asymptotic
relations (4.4.11)) with positive index of regularity.

Theorem 4.4.9 Let p; € RV(A;) and q; € RV(u;), i = 1, N. Suppose that for each of A;, a;,
i =1,N, some of the following conditions is satisfied:

either /\1' > ; Or Az‘ = q;, Sz‘ = 09Q.

The system of asymptotic relations (4.4.11) has a regularly varying solution
x € RV(p1,p2,--.,pNn) with p; > 0,1 = 1,N if and only if (4.4.26) holds, in which case
pi are given by (4.3.26) and the asymptotic behavior of any such solution is governed by the

unique formula (4.3.27), with D;, j = 1,N given by (4.4.13).

Focusing on strongly increasing solutions of the system (SE—)with a regularly
varying coefficients p; and g;, we can formulate and prove the following statements.

Theorem 4.4.10 Let p; € RV(A;) and q;i € RV(w;), i = 1,N. Suppose that A; < a; for
alli =1,N. The system (SE—) possesses a solution x € RV (p1, p2, ..., pn) with p; > A

0(1'/

i =1,N, ifand only if &4.12) holds, in which case p; are given by [@&.3.26) and the asymptotic
behavior of any such solution x is governed by the unique formula (4.3.27), with Dj,j = 1,N

given by (4.4.13).

Thﬁm 4.4.11 Let p; € RV(A)) and q; € RV (i), 1 = 1,N. Suppose that for each of A;, aj,
i =1,N, some of the following conditions is satisfied:

either A;>a; or A =a; S = .

The system (SE—) possesses a solution x € RV (p1, p2, ..., pn) with p; > 0,1 = 1,N, if and
only if (4.4.26) holds, in which case p; are given by (4.3.26) and the asymptotic behavior of
any such solution x is governed by the unique formula (4.3.27), with D;,j = 1,N given by

(4.4.13).

We remark that the “only if” parts of these theorems follow immediately from the
corresponding parts of Theorem and Theorem because any solution x of
(SE-) with the indicated property satisfies the system of asymptotic relation (4.4.11).
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4. Cyclic systems of second-order difference equations

PROOF OF THE ”“1F” PART OF THEOREM Suppose (4.4.12) is satisfied. Let we
define the sequences X; = {X;(n)} € RV(p;) by (4.3.40), where D; for j = 1,N are given
by (4.4.13). It is known that

(4.4.27) HZ;{ ® Z qi(8)Xis1(s + 1)51 ~ Xi(n), n—>oo, i=1,N,
implying that there exists np > 1 such that

nl(g 0 ke a '
(4.4.28) k;; (pi B Z; Gi(5)Xia1 (s + 1)&) <2Xin), nx=mn, i=1N.

Without loss of generality, we may assume that each X; is eventually increasing. Since
(4.4.27) holds for ny, it is possible to choose n; > ny + 1 so large that

n-1 @
1 |
(4.4.29) Z (p ” qu(s)x,ﬂ(s + 1)ﬁr) >2Xin), nzm, i=LN.
k=no \I'"V"7 s=ng
Let we choose positive constants ¢; and C; so that
Bi Bi -
(4430) ¢ < Eci{i‘l, Cl‘ > 4Cla_;_1, i= 1, N, CN+1 = Cq, CN+1 = Cl.

An example of such choices is given in (4.3.55). Constants ¢; and C; can be chosen so
that

(4431) ZCZ'Xi(Tll) < CiX,‘(TZo), i= 1,_1\],

because these constants are independent of X; as well as of the choice of ny and n;.
Consider the space Y, of all vectors x = (x1,%,,...,xn), Xi € ™R, i = 1,N, such

that {x;(n)/X;(n)}, i = 1, N are bounded. Then, Y, is a Banach space endowed with the

norm (£.3.57). Further, Y, is partially ordered, with the usual pointwise ordering <:

For x,y € Y,,,, x < y means x;(n) < y;(n) foralln > np and i = 1, N. Define the subset
X cY,, with

(4.4.32) X={xe,

Cin'(TZ) < x,‘(TZ) < CiXi(Tl), n = ny, i= 1,N}

It is easy to see that for any x € X, the norm of x is finite and that for any subset B C X,
inf B € X and sup B € X. Define the operators F; : MR — NwR by

k-1

n-1 ai
(4.4.33) Fox(n) = b; + k; (Iﬁ Z‘ gi(s)x(s + 1)ﬁf) . n>mn, i=1N,
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4.4. The system (SE-)

where b; are positive constants such that

(44:34:) CiX,‘(Tll) < b,‘ < %Cixi(?lo), i= 1, N,
and define the mapping ® : X — Y, by

(4.4.35) D(x1,x2,...,xN) = (ﬂle Faxs, .. -/TNxNH)/ XN+1 = X1.

We will show that @ has a fixed point by using Theorem Namely, the operator
® has the following properties:

(i) @ maps X into itself: Let x € X. Then, using (4.4.28)-(4.4.35), we see that

1 % n—1 1 k-1 v @
Fixip1(n) < ECiXi(nO) +C., . (M Z‘ q:(8) Xisa (s + 1P
=Ny S=np
1 & 1 1
< ECiXi(nO) + ZCZ._:_lXi(?’l) < ECiXi(n) + ECiXi(n) = CiXi(Tl)

for n > ny and

7:1'9(14_1(7’1) > bi > CZ‘XZ‘(Vll) > CiXi(Tl), for ng <n<ny,

Bi

B n-1 k-1 “lz
b 1 1" 1k
7:z'xi+1(n) > Ci+1 Z (M Z qz‘(S)XZ‘.,.l(S + 1)ﬁ’) > —Ci+1Xi(7l) > CiXi(I’Z), nz=ny.

This shows that ®x € X, that is, @ is a self-map on X.

k=ny 5=ng
(ii) @ is increasing, i.e. for any x,y € X, x <y implies ®x < Dy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € X of ®, which satisfies

2=

i

n-1 k-1
1
xi(n) = Fixi1(n) = bi + z;f) [m Z qi(s)xis1 (s + 1)ﬁ"] , N> ny,

S=np

for i = 1,N. This shows that x € X is a solution of system (SE—)and it is easy to see
that it is a strongly increasing solution.
It remains to verify that x € RV(p1, p2, ..., pn). We define

n-1 k-1 “lz
ui(n) = Z [ﬁ Z qi(8) Xiz1(s + 1)ﬁi] , 1=1,N,

k=ng 5=ng
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4. Cyclic systems of second-order difference equations

and put
xi(n) xi(1)
= lim 1nf R; =limsu
n—oo U ( ) n—00 Pl l(?l)
Using (4.4.32) and
(4.4.36) ui(n) ~ X;(n), mn—ooo, i=1,N,

it follows that 0 < ; < R; < o0, i = 1, N. Using Theorem we obtain

1(1’[) e (p,(n) Zk 1o ql(k)xi+1(k + 1)6“)Z
Vz>llm1an ) = lim inf .
B ( (1) Zk 1o ql(k)Xiﬂ(k + 1)ﬁf)ai
; Z‘k ”0 ql(k)xiﬂ(k + 1)ﬁi ai .. Zk no qz(k)xiﬂ(k + 1)ﬁi s
= 11m1 — [ limin
Zk 1o ql(k)Xi+1(k + 1).51 n—00 Zk . qz(k)Xi+1(k N 1)131

Bi
lim inf q(n)xl+l(n * 1)ﬁl " = w : = %
n—00 qz(n)XHl(n + ]_)ﬁz

where has been used in the last step. Thus, r; satisfy the cyclic system of
inequalities (4.3.63). If we take the upper limits instead of the lower limits, we are led
to the cyclic system of inequalities [.3.64).

From (4.3.63) and (4.3.64) we easily see that holds and using the hypothesis
Bip2...pn/anas...ay <1, wefind thatr; >1and R; < 1,i = 1, N. It follows therefore
that r; = R; = 1i.e. lim,_ o xi(n)/uj(n) = 1 for i = 1, N. Combined this with
implies that xj(n) ~ u;(n) ~ Xi(n) as n — oo, which shows that each x; is a regularly
varying sequence of index p;. Thus the proof of the ”if” part of Theorem is
completed. O

The ”if” part of the Theorem can be proved in the essentially same way as
the ”if” part of the previous theorem.

Application. Obtained results can be applied to the well-known second order
difference equation of Thomas-Fermy type which has been studied in Chapter
Bl As a direct consequence of Theorem and Theorem we have Theorem
3.4.1l However, in the previous chapter, due to the calculation difficulty the case
when the regularity index of the coefficient p of the equation (4 is equal to a, has
not been considered. For that reason, as a consequence of Theorem we obtain
a new result for the equation (4.1.1)).
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4.4. The system (SE-)

Theorem 4.4.12 Let p € RV(A) and q € RV (u). Suppose that

-1
A=a and = oo,
;‘ p(n)*
The equation (4.1.1) possesses a reqularly varying solution of index p > 0if and only if u > -1,
in which case p is given by
_u+l
St

and the asymptotic behavior of any such solution x is governed by the unique formula

(4.4.37) p

() ~ ”“”P(n)_lLI(ﬂ)]“_‘ﬁ’ .

apa"']

4.4.4 Asymptotic behavior of strongly decreasing regularly varying
solutions
In this subsection the aim is the same as earlier, to investigate the asymptotic behavior

of solutions of type (SD) and to find conditions under which those solutions exist.
Every strongly decreasing solutions of (SE—)is a solutions of the system

(4.4.38) xi(m) = ) [ﬁ Y ai(ria(i + 1)&] , i=1,N, n>ny,
1 ]=k

k=n

for some ny > 1. To obtain an asymptotic formula of solution x of the system (SE-),
an essential role is played by the following system od asymptotic relations

(4.4.39) xi(n) ~ Z [ﬁ Z g:(j)xisn(j + 1)@] , i=L,N, n— oo,
i =k

k=n

which can observe as an approximation of the system (4.4.38). As in the previous
sections, the use is made of the expression for the coefficients p; and g; and
for the components x; of the solution x of the system (SE—). Also, in the proof
of the main theorems, we use matrix M given by (4.2.11).

As we saw, cases (I) and (II) are equivalent to and (4.2.4), respectively.
Since we consider only solutions with a negative index of regularity (slowly varying
solutions we leave for further research because computational difficulty), cases (I) and
(II) would be observed as follows:
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4. Cyclic systems of second-order difference equations

o If the case (I) is satisfied, i.e. when A; < a;, for the sequences P; = {P;(n)} we have

that (4.2.7) holds.

e In the case (II) we will distinguish two cases:

/\i>0(i, ZZL_N and Ai:ai izl,N

which imply (4.2.9) and (4.2.10), respectively.

Assuming that the condition (I) is satisfied, the following theorem will give the
necessary and sufficient conditions for a system of asymptotic relations to
have a regularly varying solution x of a negative index (p1, p2, ..., pn), as well as its
asymptotic formula.

Theorem 4.4.13 Let p; € RV(A), g0 € RV (i), i = 1,N. Suppose that A; < a;, i =
1,N. The system of asymptotic relations (4.4.39) has a regularly varying solution x €
RV (p1,p2,-- -, pn) with p; <0,i=1,N if and only if

N
-Aj+ui+1
(4.4.40) ZMU ” I~ <0, i=1,N

j=1

holds, in which case p; are uniquely determined by (4.3.26) and the asymptotic behavior of any
such solution is governed by the unique formulas (4.3.27) where

Proor. Let x € RV (p1,pa, ..., pn) with all p; < 0 be a solution of (#.4.39). Then, by
Theorem [I.3.3]- (vii), follows that each x; satisfies and Theorem [1.3.3]- (v) yields
that x;(n) — 0,n — oco. Also, since (I) holds, as shown in a classification of positive
solution in Subsection 1.4.1. we have that xp](n) — 0, as n — oo. Using and

(4.2.2), we obtain

(4442~ ~ Y qOxialk + 1P ~ Y KPP mREa kP, 0z, i=TN.

k=n k=n

As the left-hand side of (4.4.42) tends to zero as n — oo, it must be y; + ipis1 < -1,
i = 1,N. If for some i equality holds, then

a;

' _Ai _1 1
~n li(n) *Hj(n)%, n— oo,

(44.43) - Ax;(n) ~

i

gn) Z gi(k)xi1 (k + 1)F
k=n
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where H;(n) = Y52, k™'m;(k) &1 (k). Summing (4.4.43) from 7 to oo, we obtain
= Ai 1 1
xi() ~ ) K LR THR, 1 co.
k=n

Using that x;(n) — 0,n — oo, we conclude that A; > «a;,i = 1, N. This is a contradiction
with our assumption. Therefore, it follows that y;+;pi+1 < —1 fori = 1, N. Application
of Theorem [1.3.5/to (4.4.42) gives fori=1,N

l A *Pl*ﬁzpz+l+1

n li(n)” a ml(n)”l 51+1(”)“l
(,uz + ,szz+1 + 1)) a'

(4.4.44) - Ax;(n) ~ ( o )Zqz(k)x1+1(k +1)F

as n — oo. Summing (4.4.44) from n to co, we obtain

o ., Zhithi +ﬁ,P1+1 _1
(4.4.45) xi(11) ~ Z k L) midk) ’&“(k)  ho> o,
k=n ( ((u'l + ﬁ Pi+1 + 1))“’

implying that (=A; + y; + ipis1 + 1)/a; < =1,1 = 1,_N All inequalities should be strict
because if the equality holds for some i then implies that p; = 0, which is
contradiction. Therefore, (—A; + u; + Bipic1 +1)/a; < =1,i = 1,N. Applying Theorem
[1.3.5'we conclude that

“Aitpi+Bipip1+1 +1

_1 1 Bi
4446)  xn) ~ B0 Tl Ein () n—oo, i=1N.

— (B ) (s + Bipias + 1)t

From the previous relation, we get the system (4.3.34), whose unique solution is
explicitly given by (4.3.26). It is obvious that p; < 0, i = 1,N if and only if (4.4.40)
holds.

Using (4.2.1) and .2.2), we can transform (4.4.46)) in the form (4.3.38), where D;
are given by (4.4.41). Without difficulty, we can obtain explicit formula (4.3.27) for

each x; from the cyclic system of asymptotic relations (4.3.38). Relation (4.3.38) can be
rewritten as (4.3.39), implying that the regularity index of x; is exactly p;.

Suppose now that holds. Define p; with and sequences X;,i = 1,N,
by (@.3.40), where D;, j = 1,N are given by @4.41). All sequences X; are regularly
varying of index p; and satisfy the system of asymptotic relations (4.4.39), i.e.

1

oo

(4.4.47) Z B Z 0:(5)Xis1(s + | ~Xm), noo, i=LN,

k=n

137



4. Cyclic systems of second-order difference equations

for any n > ny, where Xy,1 = Xj. Indeed, X; can be expressed with (4.3.42). Using
Theorem [1.3.5, we obtain

- 1 « “% nPil;(n zmzn i (n
449 Yoo a1 |~ Lo O,

k=n

With the help of (4.2.12), relation (4.4.48) can be transformed in the same way as in
(4.3.44). Therefore, from (4.4.48) we obtain that X;, i = 1, N satisfy (4.4.47). O

Assuming that the condition (II) is satisfied, the next two theorems gives the
necessary and sufficient conditions for the existence of regularly varying solution of

the system (4.4.39).

Theorem 4.4.14 Let p; € RV(Ai), i € RV (ui). Suppose that A; > o, i = 1,N. The system
of asymptotic relations (4.4.39) has a reqularly varying solution x € RV (p1, pa, ..., pn) with

pi < == z—lszandonlyzf

N
ui+1 o Bilaja —Aja) .
(4.4.49) M,( + <0, i=1,N

=1 Ajlj+1

holds, where an+1 = a1, Ans1 = Ay, in which case p; are uniquely determined with (4.3.26)
and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)

with Dj, j = 1,N given by (4.4.41).

Proor. Let x € RV(p1, pa, ..., pn) with all p; < (& — A;)/a; be a solution of (4.4.39).
Since p;, i =1, 1,N are negative, from Theorem 3[- (v) we have that x;(n) — 0 n — oo.

As indices of regularity of x;/m;, i = 1,N are less then zero, from Theorem - (0)
we have that lim,_,, xi(1)/m;(n) = 0, implying that lim,,_. xl[ In) = 0. Usmg -
and we obtain (4.4.42). The left-hand side of tends to zero as n — oo,
implying that y; + fipi+1 < —1,1 = 1, N. If the equality holds for some 7, then summing
from 7 to co and using Theorem we get

xi(n) ~ Z KL FH BT ~

/\ n“ l(n) zH(n) n— oo,

where Hi(n) = Y32 k™'m;(k)&:1(k)%, i = 1,N. From the previous relation follows that
x; € RV (“l ") contradicting the hypothesis p; < == L Therefore, Ui + Bipiz1 < =1 for
all i. Proceedmg exactly as in the proof of the prev1ous theorem we get that (4.4.44)
holds and conclude that (—A; + y; + Bipis1 +1)/a; < =1 for all i. All inequalities should
be strict, because if the equality holds for some i, then A; —a; = y; + Bipis1 +1 < 0
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which is impossible due to assumption A; > a;, i = 1,N. Thus, holds, which
yields that p;, i = 1, N is a solutions of the system and so given by (4.3.26). To
verify the condition , let we denoted; = pi + Ai/ai—1,i = 1,_N Then, the linear
system of equations (4 is transformed into the system (4.4.19) whose solution is
given by (4.4.20). Thus pi < %2 if and only if d; < 0 if and only if (4.4.49) holds.

The ”if” part of the theorem as well as the explicit formulas for x;, can be obtained
as in the previous theorem. O

Theorem 4.4.15 Let p; € RV(A), qi € RV(ui). Suppose A; = aj and S; < oo, i =
1,N. The system of asymptotic relations @&439) has a regularly varying solution x €
RV (p1,p2,--.,pn) with p; <0,i=1,N if and only if

N
pitl :
(4.4.50) M;*— <0, i=1,N
Z‘ "

in which case p; are uniquely determined by (4.4.24) and the asymptotic behavior of any such
1/a;
solution is governed by the unique formulas (4.3.27) with D; = (a].(_ Pj)”‘/“) i=1,N.

Proor. Suppose that the system has a solution x € RV(p1, p2, ..., pn), pi <0,
i=1N,x = (x,%,...,xy). Note that ; € SV and so indices of regularity of x;/m;
are p; < 0,i =1,N. Therefore by Theorem - (v), we have that llmn_,oo xi(n) =0
and lim,,_, xi(n)/m;(n) = 0 implying that hmn_m xl[l](n) = 0. From (4.4.42), since the

left-hand side tends to zero, we conclude that it must be u; + f;piz1 < —1. If equality
holds for some i then from (4.4.43), it follows that

xim) ~ ) kLR THERE, 1o, i=TN,

ie. x; € 8V, which is a contradiction Therefore, y; + fipis1 < —1 for i = 1,N.

Application of Theorem [1.3.5 to (£.4.42) gives (£.4.44) and since xj(n) — 0, n — oo
it must be (A; + y; + ﬁlpzﬂ +1)/a; < =1,i = 1,N. If equality holds for any i, then

pi+pipi+1 = —1 whichisimpossible. Thus, (A;+u;+fipis1+1)/a; < =1,i = 1,N. Summing
from 7 to co and using Theorem(I.3.5yields (4.4.46). Using assumption A; = a;,
i = 1,N we get the cyclic system {@.4.25). As verified in the proof of Theorem
solution of system is p;,i = 1,N given by @#@4.24). All p; are negative if and
only if holds. Proceeding exactly as in the proof of the previous theorem we
get (4.3.27), where constants D; are reduced to D; = ( /(= )“/*1)] ,j=1,N.The "if”
part is the same as in the previous theorem. O

Note that Theorem and Theorem can be unified into the following
statement.
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4. Cyclic systems of second-order difference equations

Theorem 4.4.16 Let p; € RV(A;) and q; € RV (u;), i = 1,N. Suppose that for each of A;, aj,
i = 1,N, some of the following conditions is satisfied:

either A;<a; or A =a; S <oo.

The system has a reqularly varying solution x € RV(p1, pa, ..., pn) with p; < 0,
i =1,N ifand only if holds, in which case p; are given by and the asymptotic
behavior of any such solution is governed by the unique formula with Dj, j = 1,N
given by (4.4.47).

The main results of the existence and asymptotic behavior of strongly decreasing
solutions of the system (SE—) will be given and shown in the following theorems.

Theorem 4.4.17 Let p; € RV(A;) and q; € RV (u;), i = 1,N. Suppose that for each of A;, aj,
i = 1,N, some of the following conditions is satisfied:

either A;<a; or A =a; S <oo.

The system (SE—) possesses a solution x € RV(p1, p2, ..., pn) with p; < 0,1 = 1,N, if and
only if (4.4.40) holds, in which case p; are given by (4.3.26)) and the asymptotic behavior of
any such solution x is governed by the unique formula (4.3.27) with D;, j = 1,N given by

(4.4.41).

Theorem 4.4.18 Let p; € RV(A;) and q; € RV (i), i = 1,N. Suppose that A; > a; for all
i =1,N. System (SE—) possesses a solution x € RV (p1, pa2, - .., pn) with p; < “’%’, i=1,N,

if and only if @&&49) holds, in which case p; are given by @&3.26) and the asymptotic behavior
of any such solution x is governed by the unique formula (4.3.27) with D;, j = 1,N given by

(4.4.41).

We remark that the “only if” parts of these theorems follow immediately from the

corresponding parts of Theorem |4.4.13|and Theorem (4.4.14| because any solution x of
(SE-) with the indicated property satisfies the asymptotic relation (4.4.39).

PRrROOF OF THE ”1F” PART OF THEOREM Using (4.2.1) let we define the sequences

X; = {Xi(n)} € RV(p;) as in (4.3.40), where D; for j = 1,N are given by (4.4.41). It is
known that

~Xin), m—oo, i=1,N,

Z [ﬁ Z qi(8) Xisa (s + 1)
! s=k

k=n

from which it follows that there exists 1y > 1 such that for n > ny holds

a;

<2X{(n), i=1,N.

(4.4.51) %Xi(n) < Z [ﬁ Z qi(S)Xi+1(S + 1)51‘
k=n ! s=k
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4.4. The system (SE-)

Let we choose positive constants w; and W; so that

Bi Bi
W; > 2W.

i+17

(4452) i= 1,_1\], WN4+1 = W1, WN+1 = W1.

. Zot
Wi < zwi+1’

An example of such choices is

i My
(4.4.53) w; = (%)N IR i TMy
fori=1,N. Clearly w; <1 < W,

Consider the space Y, of all vectors x = (x1,x,...,XN), Xi € NwR, i = 1,N, such
that {x;(n)/Xi(n)},i = 1, N are bounded. Then, Y,, is a Banach space endowed with the
norm (.3.57). Further, Y, is partially ordered, with the usual pointwise ordering <:

For x,y € Y,,,, x < y means x;(n) < y;(n) foralln > np and i = 1, N. Define the subset
X Cc Y, with

(4.4.54) X={xeT,

0 Xi(n) < xi(n) < WXi(n), nxmny, i=1N}.

It is easy to see that for any x € X, the norm of x is finite. Also, for any subset B C X, it
is obvious that inf B € X and sup B € X. We will define the operators F; : MR — NoR

by

-

ai

Z g:(8)x(s + 1)ﬁ’] , n>mny, i=1,N,

(4.4.55) Fix(n) = i[

k=n

i(k)
and define the mapping @ : X — Y,,) by
(4456) CI)(x1, X2,00., XN) = (ﬂxz, 7:2X3, ce /?NxNH)/ XN+1 = X1.

We will show that @ has a fixed point by using Theorem Namely, the operator
® has the following properties:

(i) @ maps X into itself: Let x € X. Then, using (4.4.51)-(4.4.56), we see that

1
ﬁ o0 a; ﬁ_l
Fixin(n) < W 7 Z 4i(9)Xina (s + P | <2W7 Xi(n) < WiXi(n), n > ny,

k=n
1

gi(8)Xip1 (s + 1)51 =5 2 z+1

X(n)>a)X(n) n = np.

.Mg

Fixia(n) > a)l+1 Z 0 4
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4. Cyclic systems of second-order difference equations

This shows that ®x € X, that is, @ is a self-map on X.
(ii) @ is increasing, i.e. for any x,y € X, x <y implies ®x < Dy.

Thus all the hypotheses of Theorem are fulfilled implying the existence of a
fixed point x € X of ®, which satisfies

1
00 00 ai

1
xi(n) = Fixi1(n) = Z o ® Z gi(S)xi(s + DF| , nx=ny, i=1,N.
k=n ! s=k

This shows that x € X is a solution of system (SE—)and it is easy to see that it
is an strongly decreasing solution. That x € RV (p1, p2, ..., pn) can be verified in the
same way as in the proof of Theorem (or Theorem 4.3.7), by the application of
Theorem[1.1.8l O

Theorem {4.4.18|can be proved in the essentially same way.

Application. As mentioned, one-dimensional system is the equation (4.1.1), which
has been studied in the previous chapter. Then Theorems@4.4.17|and 4.4.18|are reduced
to Theorem Moreover, we get here new result in the case when the regularity
index of the coefficient p is equal to a, which has not been considered in the previous
chapter.

Theorem 4.4.19 Let {p(n)} € RV(A) and {g(n)} € RV (u). Suppose that

=a and Z p(n)“

The equation (4.1.1)) possesses a reqularly varying solution of index p < 0 if and only if
u < =1, in which case p is given by (4.4.37) and the asymptotic behavior of any such solution
x is governed by the unique formula

atl, (-1 7
gl

x(n) ~ [ a(—p)eT
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