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Preface

The study of differential equations is a broad field in both theoretical and applied
mathematics, physics, engineering, biology, chemistry and other sciences. Differential
equations play an important role in modeling almost all physical, technical or bio-
logical processes from celestial motion through bridge design to interaction between
neurons. Differential equations such as those used to solve real-life problems do not
necessarily have to be directly solvable. Instead, sometimes it is enough to just know
the properties of the solution such as periodicity, stability oscillatory, asymptotic be-
havior of non-oscillatory solutions and so on. An area that deals with this type of
research is known as qualitative theory of differential equations. On the other hand,
in the last fifty years, the application of difference equations in solving many problems
in statistics, engineering and science in general has experienced expansion. The de-
velopment of high-speed digital computer technology has motivated the application
of difference equations to ordinary and partial differential equations. Apart from this,
difference equations are very useful for analyzing electrical, mechanical, thermal and
other systems, the behavior of electric-wave filters and other filters, insulator strings,
crankshafts of multi-cylinder engines etc.

One of the most studied second-order nonlinear differential equations is

(EF) x′′(t) + q(t)|x(t)|λ−1x(t) = 0, λ , 1.

This equation is known as the Emden-Fowler type equation. When the coefficient
q is negative, the mentioned equation is also called the Thomas-Fermi equation. In
fact, studies of polytropic and isothermal gas spheres in the state of gravitational
equilibrium, the electron distribution in heavy atoms and electrostatic potential in the
spherically and cylindrically symmetric combustion products plasma volume, led to
the appearance of differential equations x′′(t) ± tδx(t)λ = 0. New problems in nuclear
physics, for example, problems related to nuclear matter in neutron stars, can be solved
using a model based on the solution of the Thomas-Fermi equation. The classic model

iii
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is given in the form

x′′(t) =

√
x3(t)

t
and with the boundary conditions x(0) = 1, x(∞) = 0. This equation describes a
spherically symmetric charge distribution for a multi-electron atom.

As the generalization of the equation (EF) many authors studied equations

(A)
(
p(t)|x′(t)|α−1x′(t)

)′
+ q(t)|x(t)|β−1x(t) = 0,

and

(E1)
(
p(t)|x′′(t)|α−1x′′(t)

)′′
+ q(t)|x(t)|β−1x(t) = 0.

Properties such as existence, uniqueness and continuity of the solution, oscillatory and
nonoscillatory behavior of solutions of equation (A) have been studied in monographs
[31, 66, 103] as well as in papers [12, 13, 17, 18, 22, 30, 58, 59, 67, 104–107, 121, 133–135].
Oscillation theory for fourth-order equations of the type (E1) was first developed by
Wu [137]. These results have been further developed and enriched with information
about the asymptotic behavior of nonoscillatory solutions of (E1) in the series of papers
in [57, 60, 78, 82, 86, 108, 109, 138].

Along with the differential equations (A) , (E1) discrete counterpart of these equa-
tions

(B) ∆(p(n)|∆x(n)|α−1∆x(n)) + q(n)|x(n + 1)|β−1x(n + 1) = 0,

and

(D) ∆2(p(n)|∆2x(n)|α−1∆x(n)) + q(n)|x(n + 2)|β−1x(n + 2) = 0,

has attracted many researchers, see e.g. [14–16, 19–21, 23, 24, 123, 124, 127, 136] for
second-order equations and [3, 5, 6, 27–29, 87, 125, 126, 128–131, 139] for fourth-order
equations and monographs [1, 2].

Along with qualitative study of second-order and fourth-order nonlinear differ-
ence equations, nonlinear one-dimensional and two-dimensional difference systems
were also studied in [4, 55, 56, 83, 84, 94, 95]. In the mid nineties, there was a signif-
icant interest in symmetric systems (see [9, 110–112, 117] and references therein). By
modifying certain parameters, general systems were obtained, often called close-to-
symmetric systems (see [118, 119]). Multidimensional extensions of symmetric and
close-to-symmetric systems are cyclic systems of difference equations. Nonlinear
cyclic systems of second–order difference equations

(SE) ∆(pi(n)|∆xi(n)|αi−1∆xi(n))+qi(n)|xi+1(n+1)|βi−1xi+1(n+1) = 0, i = 1,N, xN+1 = x1,

iv
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can be considered as natural generalization of second-order and fourth-order nonlin-
ear difference equations (B) and (D). However, asymptotic properties of solutions of
this type of difference systems have not been studied so far in the existing literature.

When studying the asymptotic behavior of solutions of nonlinear differential or
difference equations, the solutions are first classified on the basis of their behavior in
infinity, thus dividing the set of solutions into disjoint sets, whereby the necessary and
sufficient conditions under which it is not empty are determined for each of them. This
problem is easily solved for certain sets, however, there are sets for which this cannot
be done and only necessary or only sufficient conditions can be determined. For such a
solution, the problem of determining precise asymptotic formulas is almost impossible
to solve in the general case, i.e., assuming that the coefficients are continuous functions
when it comes to equations (A) or (E1) or that the coefficients are arbitrary sequences
when it comes to their discrete analogues. The recent development of asymptotic
analysis of differential and difference equations indicates that the problem can be
solved by using the theory of regularly varying functions and sequences.

The theory of regularly varying functions originated in 1930. when the concept of a
regularly varying function was introduced by Karamata in [65]. Further development
was done by Avakumović, Bojanić, Tomić, Marić, as well as Bingham, Goldie, Seneta,
de Haan and many others (see monographs [10, 42, 43, 116]). Avakumović was the
first to consider the application of this theory in the asymptotic analysis of differential
equations (see [8]). With the appearance of the papers of Marić and Tomić [89–93] and
Marić’s monograph [88], the increasing application of this theory by other authors
began, providing important contributions to the understanding of the asymptotic
expansion for special classes of nonoscillatory solutions of linear and nonlinear dif-
ferential equations and systems of differential equations. Second-order differential
equation were studied in this framework e.g. in [68–72,80,81,85], for fourth-order dif-
ferential equations see e.g. [73,74,79] and for study of systems of differential equation
in this framework see [46–51, 54, 100, 101, 113].

That the class of regularly varying functions in the sense of Karamata is not suitable
for describing the asymptotic behavior of positive solutions of the self-adjoint linear
second-order differential equation (p(t)x′(t))′ + q(t)x(t) = 0, in compare with the linear
second-order differential equation x′′(t) + q(t)x(t) = 0, was first observed by Jaroš
and Kusano in [45]. The problem was solved by properly generalizing the class of
regularly varying functions in the sense of Karamata. In fact, the definitions and basic
properties of generalized regularly varying functions are given in [45] and applied in
the asymptotic analysis of the self-adjoint linear second-order differential equation.
This theory is also applied in papers [32,52,76,77,102] considering asymptotic behavior
of intermediate solutions of equations (A) and (E1) under different assumptions for
regularly varying coefficient p. In this Ph.D. thesis, we proceed further in this direction
by applying the theory of generalized regularly varying functions for the asymptotic
analysis of solutions of the fourth-order differential equation (E1) under certain integral

v
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condition.
On the other hand, the theory of regularly varying sequences, often called Kara-

mata sequences (see [64]), was developed during the seventies by Galambos, Seneta
and Bojanić in [11,41]. However, until the appearance of the paper of Matucci and Re-
hak [96], the connection between regularly varying sequences and difference equations
was not considered. In this paper, as well as in the following ones [97, 99, 114, 115],
the theory of regularly varying sequences is further developed and applied in the
asymptotic analysis of linear and half-linear difference equations of the second-order,
giving necessary and sufficient conditions for the existence of regularly varying so-
lutions of these equations. After this, further development of the discrete theory of
regular variation, as well as its application to nonlinear difference equations of type
Emden-Fowler type, can be found in [7]. Another goal of this Ph.D. thesis is to further
develop the theory of regularly varying sequences with application to second-order
difference equations of type (B) as well as to cyclic systems of difference equations
(SE) .

Along with the theory of regularly varying functions and sequences, the theory of
rapidly varying functions and sequences has also been introduced by de Haan [43]
in 1970. In the continuous case, there are many results that consider the relationship
between rapidly varying functions and the behavior of linear and nonlinear differential
equations (see [25, 26, 31, 39, 40, 53, 122]). For some properties of rapidly varying
sequences we refer to [34], while rapidly varying solutions of linear and half-linear
second-order difference equations were studied by Rehak and Matucci in [96,98]. Also,
papers of Djurčić, Elez, Kočinac and Žižović (see [33, 35–38]) showed the connection
between Karamata theory and the theory of rapidly varying sequences along with
selection principles theory, game theory and Ramsey theory, indicating the wide
application of regularly and rapidly varying sequences.

The dissertation is organized into four chapters, followed by a bibliography and a
biography of the author.

The first chapter is of an introductory character. First, the basic concepts and
theorems that will be used further are presented. Then, the basics of the theory of
regularly varying functions and sequences, are given (sections 1.2 and 1.3), which
gives a framework within which equations and systems will be considered.

In the second chapter, the Emden-Fowler differential equation of the fourth-order
(E1) is considered. The equation (E1) will be considered under certain integral condi-
tion for the coefficient p, under which it was already considered by Kusano and Tani-
gawa in [82]. Assuming that coefficients are continuous functions, they determined
the necessary and sufficient conditions for the existence of four types of primitive so-
lutions. However, for two types of intermediate solutions, only sufficient conditions
for the existence were given. Assuming that the coefficients of the equation are gener-
alized regularly varying functions, we will not only give the necessary and sufficient
conditions for the intermediate solutions to exist, but we will also determine their

vi



Preface

precise asymptotic formula. Main results presented in sections 2.3, 2.4, 2.5 are original
and published in the paper [132].

In the third chapter, we will study a discrete analogue of the equation (A) , that is,
the equation (B) assuming that the coefficient q is negative. The boundary asymptotic
behavior of decreasing solutions plays an important role in the discretization of certain
elliptic problems with free boundaries. This is one of the reasons that indicate the
necessity for a detailed analysis of these solutions. However, for sublinear case i.e. β <
α there are no results in the existing literature for the existence of strongly decreasing
solutions, while for the existence of strongly increasing only sufficient conditions
are known. Therefore, we will limit ourselves to equations whose coefficients are
regularly varying sequences and examine in detail the strongly increasing and strongly
decreasing solutions. Necessary and sufficient conditions for the existence of these
solutions as well as their asymptotic representation formulas, will be established,
which will allow us to present the complete structure of a set of regularly varying
solutions. Results presented in sections 3.3, 3.4, 3.5 and 3.6 are original and published in the
papers [62, 63].

The fourth chapter is dedicated to the complete analyze of positive solutions of the
cyclic systems of type (SE) for both positive and negative qi. For each of the systems,
the classification of solutions according to behavior at infinite was done first. After
that, the necessary and sufficient conditions for the existence of primitive solutions
were determined. These solutions behave asymptotically as a constant function or as a
constant function multiplied by another suitable function. To examine the intermedi-
ate solutions of the system (SE) when qi are positive and strongly increasing, strongly
decreasing solutions of the system (SE) when qi are negative, we will assume that the
coefficients of those systems are regularly varying sequences. As in the previous chap-
ter, necessary and sufficient conditions for the existence of all possible types of these
solutions, as well as their asymptotic representation formulas, will be established. The
whole chapter is based on the original results, among which results presented in Section 4.3
was published in [61].
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Chapter 1
Introduction

The most practical solution is a good theory.
Albert Einstein (1879 - 1955)

Primary purpose of this chapter is to present some basic definitions and theorems
used throughout the thesis. Fixed point theorems and theory of regular variation, as
our main tools, are presented in the following sections.

1.1 Basic notations, definitions and theorems

In the beginning, we first define the asymptotic equivalence relation and the domi-
nance relation that will be used through the thesis.

Definition 1.1.1 Let f (t) and g(t) be two positive functions. The asymptotic equivalence
relation ∼ of functions f and g is defined as

f (t) ∼ g(t), t→∞ ⇔ lim
t→∞

g(t)
f (t)

= 1.

Definition 1.1.2 Let f (t) and g(t) be two positive functions. The dominance relation ≺
between functions f and g is defined as

f (t) ≺ g(t), t→∞ ⇔ lim
t→∞

g(t)
f (t)

= ∞.

To better understand one of our main tools -fixed point theorems, we provide the
following basic definitions.

1



1. Introduction

Definition 1.1.3 A subset S of a normed space X is called convex if, for any x, y ∈ S,
λx + (1 − λ)y ∈ S for all λ ∈ [0, 1].

Definition 1.1.4 A subset S of a Banach space X is said to be compact if every sequence of
elements of S has a subsequence which converges to an element of S. Set E is relatively compact
(or precompact) if its closure is compact.

Definition 1.1.5 Let X and Y be two metric spaces, and F a family of functions from X to Y.
The family F is equicontinuous at a point x0 ∈ X if for every ε > 0, there exists δ > 0 such that
d( f (x0), f (x)) < ε for all f ∈ F and all x such that d(x0, x) < δ. The family is equicontinuous
on X if it is equicontinuous at each point of X. The family F is uniformly equicontinuous if for
every ε > 0, there exists δ > 0 such that d( f (x1), f (x2)) < ε for all f ∈ F and all x1, x2 ∈ F

such that d(x1, x2) < δ.

Definition 1.1.6 The family F of functions from C([a, b],R) is uniformly bounded on [a, b]
if there exists a positive real number K so that | f (t)| ≤ K for all t ∈ [a, b] and all f ∈ F .

Fixed point techniques will be used to prove the existence of solutions of equations
and systems under consideration. In fact, throughout the thesis next two fixed point
theorems will be used.

Theorem 1.1.1 (Knaster-Tarski fixed point theorem) Let X be a partially ordered Banach
space with ordering ≤ . Let M be a subset of X with the following properties: The infimum of
M belongs to M and every nonempty subset of M has a supremum which belongs to M. Let
F : M → M be an increasing mapping, i.e. x ≥ y implies F x ≥ F y. Then F has a fixed
point in M.

Theorem 1.1.2 (Schauder-Tychonoff fixed point theorem) Let S be closed, convex,
nonempty subset of a locally convex topological vector space X. Let T be a continuous mapping
from S to itself, such that TS is relatively compact. Then T has a fixed point.

To prove that appropriately constructed operator T from the previous theorem is
continuous, we will apply the following theorem.

Theorem 1.1.3 (Lebesgue dominated convergence theorem) Let { fn} be a sequence of
real-valued measurable functions on a measurable set S, such that limn→∞ fn(x) = f (x), almost
everywhere on S.Also, let g(x) be an integrable on S, such that | fn(x)| ≤ g(x) almost everywhere
on S and for all n. Then

lim
n→∞

∫
S

fn(x)dx =

∫
S

f (x)dx.

When it comes to main results for differential equations, we use the preceding
theorem, while in the proofs of main results for difference equations, we use its
discrete analogue.
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1.1. Basic notations, definitions and theorems

Theorem 1.1.4 Let {a(m)(k)} be a double real sequence, a(m)(k) ≥ 0 for m, k ∈ N such that
limm→∞ a(m)(k) = A(k), for every k ∈N. Assume that the series

∑
∞

k=1 a(m)(k) is totally conver-
gent, that is, there exists a sequence {α(k)} such that a(m)(k) ≤ α(k) with

∑
∞

k=1 α(k) < ∞. Then,
the series

∑
∞

k=1 A(k) converges and

lim
m→∞

∞∑
k=1

a(m)(k) =

∞∑
k=1

A(k).

To apply the Schauder-Tychonoff fixed point theorem, relatively compactness of
the set TS must be verified and for that purpose the following statement will be used.

Theorem 1.1.5 (Arzela-Ascoli theorem) The set S of continuous functions fromC([a, b],R)
is relatively compact if and only if it is uniformly bounded and equicontinuous on [a, b].

As before, in the discrete case we need a discrete version of the Arzela-Ascoli
theorem.

Theorem 1.1.6 A bounded, uniformly Cauchy subset Ω of l∞ is relatively compact.

Our main tools to show the the existence of regularly varying solutions are, besides
fixed point theory and theory of regularly varying functions and sequences, presented
in the following sections, the generalized L’Hospital rule (see [44]) and Stolz-Cesaro
theorem (see [120]).

Theorem 1.1.7 Let f , g ∈ C1[T,∞). Let

(1.1.1) lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t.

Then

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f (t)
g(t)
≤ lim sup

t→∞

f (t)
g(t)
≤ lim sup

t→∞

f ′(t)
g′(t)

.

If we replace (1.1.1) with the condition

lim
t→∞

f (t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t,

then the same conclusion holds.

We recall two variants of the Stolz-Cesaro theorem.
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1. Introduction

Theorem 1.1.8 If f = { f (n)} is a strictly increasing sequence of positive real numbers, such
that limn→∞ f (n) = ∞, then for any sequence g = {g(n)} of positive real numbers one has the
inequalities:

lim inf
n→∞

∆ f (n)
∆g(n)

≤ lim inf
n→∞

f (n)
g(n)

≤ lim sup
n→∞

f (n)
g(n)

≤ lim sup
n→∞

∆ f (n)
∆g(n)

.

In particular, if the sequence {∆ f (n)/∆g(n)} has a limit, then

(1.1.2) lim
n→∞

f (n)
g(n)

= lim
n→∞

∆ f (n)
∆g(n)

.

Theorem 1.1.9 Let f = { f (n)}, g = {g(n)} be sequences of positive real numbers, such that
(i) limn→∞ f (n) = limn→∞ g(n) = 0;
(ii) the sequence g is strictly monotone;
(iii) the sequence {∆ f (n)/∆g(n)} has a limit.

Then, a sequence { f (n)/g(n)} is convergent and (1.1.2) holds.

1.2 Regularly varying functions

The concept of regular variation was introduced by one of the most frequently cited
Serbian mathematicians, Jovan Karamata (1902-1967), in 1930 (see [65]). The applica-
tion of the theory of regular variation is quite wide, and therefore it can be considered
as a chapter of mathematical analysis. The appearance of a monograph of Marić [88]
initiated a large number of researchers to apply the theory of regular variation in
the study of differential equations of the second or higher orders and some systems,
functional differential equations, difference and dynamic ones, as well as some partial
differential ones.

We recall that the following definition introduces the set of regularly varying
functions of index ρ ∈ R.

Definition 1.2.1 A measurable function f : (a,∞) → (0,∞) for some a > 0 is said to be
regularly varying at infinity of index ρ ∈ R if

lim
t→∞

f (λt)
f (t)

= λρ for all λ > 0.

The totality of all regularly varying functions of the index ρ is denoted by RV(ρ) . In
the particular case when ρ = 0, we use the notation SV instead of RV(0) and refer
to members of SV as slowly varying functions. Any function f ∈ RV(ρ) is written

4



1.2. Regularly varying functions

as f (t) = tρ g(t) with g ∈ SV , and so the class SV of slowly varying functions is of
fundamental importance in the theory of regular variation. If

lim
t→∞

f (t)
tρ

= lim
t→∞

g(t) = const > 0

then f is said to be a trivial regularly varying function of index ρ and it is denoted by
f ∈ tr − RV(ρ) . Otherwise, f (t) is said to be a nontrivial regularly varying function of
index ρ and it is denoted by f ∈ ntr − RV(ρ) . For a complete exposition of regular
variation theory and its application to various branches of mathematical analysis, we
suggest looking at N.H. Bingham et al. [10] and E. Seneta [116].

We give some examples of regularly varying function. Trivially, function with
positive limits (at infinity), in particular, positive constants are slowly varying. Of
course, the simplest non-trivial example is l(x) = log x. The iterates log log x, which
will be denoted with log2 x, logk x = log logk−1 x are also slowly varying as are powers
of logk x, rational functions with positive coefficients formed from the logk x. Non-
logarithmic examples are given by

l(x) = exp

 N∏
k=1

(
logk x

)αk

 , 0 < αk < 1, k = 1,N,

and

l(x) = exp
{

log x
log2 x

}
.

An example of a slowly varying function which infinity oscillate, i.e. for which
hold

lim inf
x→∞

l(x) = 0, lim sup
x→∞

l(x) = ∞

is
l(x) = exp

{
(log x)

1
5 cos

(
log x

) 1
5

}
.

One of the most important theorem from theory of regular variation in the research
of differential equations is Karamata’s integration theorem which gives information about
the asymptotic behavior of the integral of a regularly varying function.

Theorem 1.2.1 (Karamata’s integration theorem) Let l ∈ SV. Then,

(i) If α > −1, ∫ t

a
sαl(s) ds ∼

tα+1 l(t)
α + 1

, t→∞;

(ii) If α < −1, ∫
∞

t
sα l(s) ds ∼ −

tα+1 l(t)
α + 1

, t→∞;

5



1. Introduction

(iii) If α = −1,

L?(t) =

∫ t

a
s−1 l(s) ds, L? ∈ SV

and

L?(t) =

∫
∞

t
s−1 l(s) ds, L? ∈ SV.

In order to properly describe the possible asymptotic behavior of nonoscillatory
solutions of the self-adjoint second-order linear differential equation

(p(t)x′(t))′ + q(t)x(t) = 0,

which are essentially affected by the function p, Jaroš and Kusano introduced in [45]
the class of generalized Karamata functions with the following definition.

Let R(t) be a positive function which is continuously differentiable on (a,∞) and
satisfies R′(t) > 0, t > a and lim

t→∞
R(t) = ∞.

Definition 1.2.2 A measurable function f : (a,∞) → (0,∞) for some a > 0 is said to be
regularly varying of index ρ ∈ R with respect to R if f ◦ R−1 is defined for all large t and is
regularly varying function of index ρ in the sense of Karamata, where R−1 denotes the inverse
function of R.

The symbol RVR(ρ) is used to denote the totality of regularly varying functions of
index ρ ∈ R with respect to R the symbol SVR is often used for RVR(0).

It is easy to see that for generalised regularly varying function hold similar prop-
erties. Namely, if f ∈ RVR(ρ), then f (t) = R(t)ρ g(t), g ∈ SVR. If

lim
t→∞

f (t)
R(t)ρ

= lim
t→∞

g(t) = const > 0

then f is said to be a trivial regularly varying function of index ρ with respect to R
and it is denoted by f ∈ tr − RVR(ρ) . Otherwise, f is said to be a nontrivial regularly
varying function of index ρ with respect to R and it is denoted by f ∈ ntr − RVR(ρ) .
Also, from Definition 1.2.2 it follows that f ∈ RVR(ρ) if and only if it is written in
the form f (t) = g(R(t)), g ∈ RV(ρ). It is clear that RV(ρ) = RVt(ρ). We emphasize
that there exists a function which is regularly varying in generalized sense, but is not
regularly varying in the sense of Karamata, so that, roughly speaking, the class of
generalized Karamata functions is larger than that of classical Karamata functions.
Indeed, if we denote

expn t = exp(expn−1 t), exp0 t = t,

then
2 + sin(exp2 t) < SV, 2 + sin(exp2 t) ∈ SVexp5 t.

Let we present here some elementary properties of generalized regularly varying
functions.
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1.3. Regularly varying sequences

Proposition 1.2.1 (i) If g1 ∈ RVR(σ1), then gα1 ∈ RVR(ασ1) for any α ∈ R.

(ii) If gi ∈ RVR(σi), i = 1, 2, then g1 + g2 ∈ RVR(σ), σ = max(σ1, σ2).

(iii) If gi ∈ RVR(σi), i = 1, 2, then g1g2 ∈ RVR(σ1 + σ2).

(iv) If gi ∈ RVR(σi), i = 1, 2 and g2 →∞ as t→∞, then g1 ◦ g2 ∈ RVR(σ1σ2).

(v) If l ∈ SVR, then for any ε > 0,

lim
t→∞

R(t)εl(t) = ∞, lim
t→∞

R(t)−εl(t) = 0.

Here, also, we present a fundamental result (see [45]), called Generalized Karamata
integration theorem, which will be used throughout the Chapter 2 and play a central
role in establishing main results for solutions of differential equations of fourth-order.

Theorem 1.2.2 (Generalized Karamata integration theorem) Let f ∈ SVR. Then,

(i) If α > −1, ∫ t

a
R′(s)R(s)α f (s) ds ∼

R(t)α+1 f (t)
α + 1

, t→∞;

(ii) If α < −1, ∫
∞

t
R′(s) R(s)α f (s) ds ∼ −

R(t)α+1 f (t)
α + 1

, t→∞;

(iii) If α = −1,

r?(t) =

∫ t

a
R′(s) R(s)−1 f (s) ds, r? ∈ SVR

and

r?(t) =

∫
∞

t
R′(s) R(s)−1 f (s) ds, r? ∈ SVR.

1.3 Regularly varying sequences

Let turn our attention now to regularly varying sequences. There are two main
approaches in the basic theory of regularly varying sequences: the approach due
to Karamata [64], based on a definition that can be understood as a direct discrete
counterpart of simple and elegant continuous definition (see Definition 1.2.1), and the
approach due to Galambos and Seneta, based on purely sequential definition.
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1. Introduction

Definition 1.3.1 (Karamata [64]) A positive sequence y = {y(k)}, k ∈ N is said to be
regularly varying of index ρ ∈ R if

lim
k→∞

y([λ k])
y(k)

= λρ for ∀λ > 0,

where [u] denotes the integer part of u.

Definition 1.3.2 (Galambos and Seneta [41]) A positive sequence y = {y(k)}, k ∈ N
is said to be regularly varying of index ρ ∈ R if there exists a positive sequence {α(k)}
satisfying

lim
k→∞

y(k)
α(k)

= C, 0 < C < ∞ lim
k→∞

k
∆α(k − 1)
α(k)

= ρ .

If ρ = 0, then y is said to be slowly varying. The totality of regularly varying
sequences of the index ρ and slowly varying sequences denoted, respectively, by
RV(ρ) and SV.

Bojanić and Seneta have shown in [11] that Definition 1.3.1 and Definition 1.3.2 are
equivalent.

The concept of normalized regularly varying sequences was introduced by Matucci
and Rehak in [97], where they also offered a modification of Definition 1.3.2, i.e. they
proved that the second limit in Definition 1.3.2 can be replaced with

lim
k→∞

k
∆α(k)
α(k)

= ρ .

Definition 1.3.3 A positive sequence y = {y(k)}, k ∈N is said to be normalized regularly
varying of index ρ ∈ R if it satisfies

lim
k→∞

k∆y(k)
y(k)

= ρ.

If ρ = 0, then y is called a normalized slowly varying sequence.

In what follows,NRV(ρ) andNSVwill be used to denote the set of all normalized
regularly varying sequences of the index ρ and the set of all normalized slowly varying
sequences.

Typical examples are:

{log k} ∈ NSV, {kρ log k} ∈ NRV(ρ), {1 + (−1)k/k} ∈ SV \ NSV .

In order to present results for a system of difference equations, we need to define
a regularly varying vector x ∈ NR × . . . × NR, where NR = { f | f :N→ R}.
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1.3. Regularly varying sequences

Definition 1.3.4 A vector x ∈ NR×. . .×NR, x = ({x1(n)}, . . . , {xN(n)}) is said to be regularly
varying of index (ρ1, ρ2, . . . , ρN) if xi = {x1(n)} ∈ RV(ρi) for i = 1,N. If all ρi are positive
(or negative), then x is called regularly varying vector sequence of positive (or negative) index
(ρ1, ρ2, . . . , ρN). The set of all regularly varying vectors of index (ρ1, ρ2, . . . , ρN) is denoted by
RV(ρ1, ρ2, . . . , ρN).

A various necessary and sufficient conditions for a sequence of positive numbers
to be regularly varying was established (see [11, 41, 96, 97]) and consequently, each
one of them may be used to define regularly varying sequence. The one that is the
most important is the following Representation theorem (see [11, Theorem 3]), while
some other representation formula for regularly varying sequences was established
in [97, Lemma 1].

Theorem 1.3.1 (Representation theorem) A positive sequence {y(k)}, k ∈ N is said to be
regularly varying of index ρ ∈ R if and only if there exists sequences {c(k)} and {δ(k)} such
that

lim
k→∞

c(k) = c0 ∈ (0,∞) and lim
k→∞

δ(k) = 0,

and

y(k) = c(k) kρ exp

 k∑
i=1

δ(i)
i

 .
In [11] very useful embedding theorem was proved, which gives the possibility of

using the continuous theory in developing a theory of regularly varying sequences.
However, as noticed in [11], such development is not generally close and sometimes
far from simple imitation of arguments for regularly varying functions.

Theorem 1.3.2 (Embedding Theorem) If y = {y(n)} is regularly varying sequence of index
ρ ∈ R, then function Y(t) defined on [0,∞) by Y(t) = y([t]) is a regularly varying function
of index ρ. Conversely, if Y(t) is a regularly varying function on [0,∞) of index ρ, then a
sequence {y(k)}, y(k) = Y(k), k ∈N is regularly varying of index ρ.

Next, we state some important properties of RV sequences useful for the devel-
opment of the asymptotic behavior of solutions of (E) in the subsequent section (for
more properties and proofs see [11, 96]).

Theorem 1.3.3 Following properties hold:

(i) y ∈ RV(ρ) if and only if y(k) = kρ l(k), where l = {l(k)} ∈ SV.

(ii) Let x ∈ RV(ρ1) and y ∈ RV(ρ2). Then, xy ∈ RV(ρ1 + ρ2), x + y ∈ RV(ρ),
ρ = max{ρ1, ρ2} and 1/x ∈ RV(−ρ1).
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(iii) If y ∈ RV(ρ), then limk→∞
y(k + 1)

y(k)
= 1.

(iv) If l ∈ SV and l(k) ∼ L(k), k→∞, then, L ∈ SV.

(v) If l ∈ SV, then for any ε > 0,

lim
k→∞

kεl(k) = ∞, lim
k→∞

k−εl(k) = 0,

i.e. if y ∈ RV(ρ), then

lim
k→∞

k−σy(k) = ∞, for every σ < ρ

and
lim
k→∞

k−µy(k) = 0, for every µ > ρ .

(vi) y ∈ RV(ρ) if and only if for every σ < ρ and for every ν > ρ

max
1≤k≤n

(
k−σy(k)

)
∼ n−σy(n) and inf

k≥n

(
k−σy(k)

)
∼ n−σy(n) as n→∞ ,

min
1≤k≤n

(
k−νy(k)

)
∼ n−νy(n) and sup

k≥n

(
k−νy(k)

)
∼ n−νy(n) as n→∞ .

(vii) If y ∈ NRV(ρ), then {n−σy(n)} is eventually increasing for each σ < ρ and {n−µy(n)}
is eventually decreasing for each µ > ρ.

In view of the statement (i) of the previous theorem, if for y ∈ RV(ρ)

lim
k→∞

y(k)
kρ

= lim
k→∞

l(k) = const > 0,

then y = {y(n)} is said to be a trivial regularly varying sequence of the index ρ and is
denoted by y ∈ tr − RV(ρ). Otherwise, y is said to be a nontrivial regularly varying
sequence of the index ρ, denoted by y ∈ ntr − RV(ρ).

The next theorem can be found in [7] for normalized regularly varying sequences,
but it clearly holds for all regularly varying sequences because its proof is based on
the Mean Value Theorem and property (iii) from Theorem 1.3.3, which holds for all
RV sequences (not only forNRV).

Theorem 1.3.4 If f = { f (n)} ∈ RV is a strictly decreasing sequence, such that limn→∞ f (n) =
0, then for each γ ∈ R

(1.3.1) lim
n→∞

f (n)−γ
∞∑

k=n

f (k)γ−1
(
−∆ f (k)

)
=

1
γ
.
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1.3. Regularly varying sequences

If g = {g(n)} ∈ RV is a strictly increasing sequence such that limn→∞ g(n) = ∞, then

(1.3.2) lim
n→∞

g(n)−γ
n−1∑
k=1

g(k)γ−1∆g(k) =
1
γ
.

The next inequality, which directly follows by Bernoulli’s inequality, will be used
in the proof of next theorem.

Lemma 1.3.1 For all n ∈N and α < −1 the following inequality holds

nα+1
− (n − 1)α+1

α + 1
≤ nα ≤

(n + 1)α+1
− nα+1

α + 1
.

The following theorem can be seen as the discrete analog of the Karamata’s integration
theorem and plays a central role in the proving this thesis’s main results. We prove
some parts (which are missed) in [62]. Also, some parts of this theorem’s proof can be
found in [11] and [114].

Theorem 1.3.5 Let l = {l(n)} ∈ SV.

(i) If α > −1, then lim
n→∞

1
nα+1l(n)

n∑
k=1

kαl(k) =
1

1 + α
;

(ii) If α < −1, then lim
n→∞

1
nα+1l(n)

∞∑
k=n

kαl(k) = −
1

1 + α
;

(iii) If
∞∑

k=1

l(k)
k
< ∞, then S?(n) =

∞∑
k=n

l(k)
k
, S? ∈ SV and lim

n→∞

S?(n)
l(n)

= ∞;

(iv) If
∞∑

k=1

l(k)
k

= ∞, then S?(n) =

n∑
k=1

l(k)
k
, S? ∈ SV and lim

n→∞

S?(n)
l(n)

= ∞ .

Proof. (i) See [11, Theorem 6].

(ii) Assume that l ∈ SV and let α < −1. Choose ν > 0 such that α < −ν − 1. Then,
by Lemma 1.3.1

∞∑
k=n

kαl(k) =

∞∑
k=n

kα+νk−νlk ≤ sup
k≥n

(
k−νl(k)

) ∞∑
k=n

kα+ν

≤ sup
k≥n

(
k−νl(k)

) ∞∑
k=n

(k + 1)α+ν+1
− kα+ν+1

α + ν + 1
= sup

k≥n

(
k−νl(k)

) (
−

n1+α+ν

1 + α + ν

)
11



1. Introduction

implying that

1
nα+1l(n)

∞∑
k=n

kαl(k) ≤ −
1

1 + α + ν
·

supk≥n

(
k−νl(k)

)
n−νl(n)

.

Then, Theorem 1.3.3-(v) ( for ρ = 0 ) yields

(1.3.3) lim sup
n→∞

1
nα+1l(n)

∞∑
k=n

kαl(k) ≤ −
1

1 + α + ν
.

Moreover, if we choose σ < 0 such that α < −σ − 1, we get by using Lemma 1.3.1

∞∑
k=n

kαl(k) =

∞∑
k=n

kα+σk−σl(k) ≥ inf
k≥n

(
k−σl(k)

) ∞∑
k=n

kα+σ
≥ inf

k≥n

(
k−σl(k)

) (
−

(n − 1)1+α+σ

1 + α + σ

)
,

or
1

nα+1l(n)

∞∑
k=n

kαl(k) ≥ −
1

1 + α + σ
·

(
1 −

1
n

)1+α+σ infk≥n

(
k−σl(k)

)
n−σl(n)

.

Thus, by Theorem 1.3.3-(v) ( for ρ = 0 )

(1.3.4) lim inf
n→∞

1
nα+1l(n)

∞∑
k=n

kαl(k) ≥ −
1

1 + α + σ
.

Finally, from (1.3.3) and (1.3.4), since ν > 0 and σ < 0 can be chosen arbitrarily close to
zero

lim
n→∞

1
nα+1l(n)

∞∑
k=n

kαl(k) = −
1

1 + α
.

(iii) From Theorem 1.3.2, for l ∈ SVwe have that the function l([x]), x ≥ 1 is slowly
varying. Also,

(1.3.5) S?(n) =

∞∑
k=n

l(k)
k

=

∫
∞

n

l([x])
[x]

dx =

∫
∞

n

l([x]) · x
[x]

x
dx,

for every n ∈ N. Because the sum
∑
∞

k=1
l(k)
k is convergent, the integral

∫
∞

1
L(x)

x dx is
convergent too, where L(x) = l([x]) · x

[x] , x ≥ 1. Also, L is slowly varying function,
because L(x) ∼ l([x]), x → ∞, which follows from fact that x ∼ [x], when x → ∞.
Now, from Karamata’s integration theorem (Theorem 1.2.1) function Y defined as
Y(x) =

∫
∞

x
L(t)

t dt, x ≥ 1 is slowly varying, so the restriction y = {y(n)} of function Y on
the set of naturals numbers, where y(n) =

∫
∞

n
L(t)

t dt, n ∈N, is slowly varying sequence.
From (1.3.5), S? is slowly varying.

12



1.3. Regularly varying sequences

Further, from Karamata’s integration theorem follows that

lim
n→∞

1
l(n)
·

∞∑
k=n

l(k)
k

= lim
x→∞

1
l([x])

·

∫
∞

[x]

l([t])
[t]

dt = lim
x→∞

1
l([x]) · x

[x]

·

∫
∞

[x]

l([t]) · t
[t]

t
dt

= lim
x→∞

1
L(x)

·

∫
∞

x

L(t)
t

dt = ∞.

(iv) Similarly as in (iii). �

Remark 1.3.1 It is easy to see, in view of Theorem 1.3.3-(iii) and Theorem 1.3.5-(i), that
for l ∈ SV, if α > −1, we have

n−1∑
k=1

kαl(k) ∼
(n − 1)α+1l(n − 1)

α + 1
∼

nα+1l(n)
α + 1

∼

n∑
k=1

kαl(k), n→∞,

and since limn→∞
∑n−1

k=1 kαl(k) = ∞, we also get

n∑
k=n0

kαl(k) ∼
n∑

k=1

kαl(k), n→∞.

If limn→∞
∑n

k=1 k−1l(k) = ∞, we have

n∑
k=n0

k−1l(k) ∼
n∑

k=1

k−1l(k), n→∞.
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Chapter 2
Fourth order nonlinear differential
equations

2.1 Introduction

In this chapter we are going to study the equation

(E1)
(
p(t)|x′′(t)|α−1x′′(t)

)′′
+ q(t)|x(t)|β−1x(t) = 0, t ≥ a > 0,

where

(i) α and β are positive constants such that α > β,

(ii) p, q : [a,∞)→ (0,∞) are continuous functions and p satisfies

(C)
∫
∞

a

t1+(1/α)

p(t)1/α dt < ∞.

In the existing literature (see [57,60,86,108,109,137,138]) the existence and asymp-
totic behavior of eventually positive solutions as well as oscillation criteria for the
equation (E1) , was discussed depending on the convergence or divergence of the
following integrals

I1 =

∫
∞

a

t
p(t)1/α dt, I2 =

∫
∞

a

(
t

p(t)

)1/α

dt .

Through classification of eventually positive solutions, it has been established that
there are classes of so-called primitive solutions satisfying x(t) ∼ φi(t), t → ∞, for

15



2. Fourth order nonlinear differential equations

precisely defined functions φi(t), i ∈ {1, 2, 3, 4} (commonly in some integral form de-
pending on the coefficient of the equation (E1) ). Existence of primitive solutions
has been fully characterized by necessary and sufficient conditions. The other main
objective in these papers was to establish necessary and/or sufficient conditions for
oscillation of all solutions of (E1) . However, the existence of so-called intermediate
solutions (satisfying e.g. φ1(t) ≺ x(t) ≺ φ2(t), t → ∞) was not considered in any of
the mentioned papers, until recently in [77,102]. In fact, the existence and asymptotic
representations of intermediate solutions of (E1) , under assumptions I1 = ∞, I2 = ∞,
was studied in the framework of regular variation by Kusano, Manojlović, Milošević
in [77] and Milošević, Manojlović in [102]. Recently, intermediate solutions of (E1) was
considered under assumptions I1 < ∞, I2 = ∞, in [32].

The oscillatory and asymptotic behavior of solutions of (E1) under the condition
(C) was already considered in [78, 82]. Kusano and Tanigawa in [82] performed a
complete classification of eventually positive solutions and established necessary and
sufficient conditions for the existence of four types of primitive solutions. Unlike prim-
itive solutions, establishing necessary and sufficient conditions for the existence of the
intermediate solutions seems to be much more difficult task. Thus, only sufficient
conditions for the existence of these solutions was obtained in [82]. Afterwards, sharp
oscillation criteria (establishing necessary and sufficient conditions for oscillation of
all solutions) was obtained by Kusano, Manojlović and Tanigawa in [78].

In this chapter, motivated by papers [77, 78, 82, 102], considering open problem of
obtaining necessary and sufficient conditions for (E1) to possess two types of interme-
diate solutions, our task is to solve this problem and moreover to determine precisely
asymptotic behavior at infinity of these two types of intermediate solutions. Since this
problem is very difficult for the equation (E1) with general continuous coefficients p
and q, we solve the problem in the framework of regular variation, that is, limiting our-
selves to the case where p and q are regularly varying functions and placing attention
on regularly varying solutions. In fact, to make clear the dependence of asymptotic
behavior of intermediate solutions on the condition (C) , we use theory of general-
ized regularly varying functions (or generalized Karamata functions). Thereafter, we
show that the problem of getting necessary and sufficient conditions for the existence
of intermediate solutions which are regularly varying in the sense of Karamata, can
be embedded in the framework of generalized regularly varying functions. The ob-
tained results, combined with existing results on the existence of primitive solutions
of (E1) (Theorems 2.2.1-2.2.4), enable us to finally present the full structure of the set of
regularly varying solutions for the equation (E1) with regularly varying coefficients.

Sections 2.3, 2.4, 2.5 are based on the original results published in [132].
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2.2. Classification of positive solutions

2.2 Classification of positive solutions

Definition 2.2.1 Function x : [T,∞) → R,T ≥ a is a solution of (E1) if and only if it is
twice continuously differentiable together with p|x′′|α−1x′′ on [T,∞) and satisfies the equation
(E1) at every point in [T,∞).

A solution x of (E1) is said to be nonoscillatory if there exists T ≥ a such that x(t) , 0
for all t ≥ T and oscillatory otherwise. It is clear that, if x is a solution of (E1) , then so
does −x, and so in studying nonoscillatory solutions of (E1) it suffices to restrict our
attention to its (eventually) positive solutions. The equation (E1) is called sub-half-linear
if β < α and super-half-linear if β > α.

Kusano and Tanigawa in [82] made a detailed classification of all positive solutions
of the equation (E1) under the condition (C) and established conditions for the existence
of such solutions. It was proved that the following four types of combination of the
signs of x′, x′′ and

(
p|x′′|α−1 x′′

)′
are possible for an eventually positive solution x of

(E1) :

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) > 0, x′(t) > 0 for all large t,(2.2.1)

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) > 0, x′(t) < 0 for all large t,(2.2.2)

(p(t)|x′′(t)|α−1x′′(t))′ > 0, x′′(t) < 0, x′(t) > 0 for all large t,(2.2.3)

(p(t)|x′′(t)|α−1x′′(t))′ < 0, x′′(t) < 0, x′(t) > 0 for all large t.(2.2.4)

In order to describe all positive solutions of (E1) , a special role is played by the four
functions

ϕ1(t) =

∫
∞

t

s − t
p(s)1/α ds, ϕ2(t) =

∫
∞

t
(s − t)

(
s

p(s)

)1/α

ds, ψ1(t) = 1, ψ2(t) = t,

which are particular solutions of the unperturbed differential equation

(p(t)|x′′(t)|α−1x′′(t))′′ = 0.

Note that functions ϕi and ψi, i = 1, 2 defined above satisfy the dominance relation

ϕ1(t) ≺ ϕ2(t) ≺ ψ1(t) ≺ ψ2(t), t→∞.

As a result of further analysis of the four types of solutions mentioned above, Kusano
and Tanigawa in [82] have shown that the following six types are possible for the
asymptotic behavior of positive solutions of (E1) :

(P1) x(t) ∼ c1ϕ1(t), as t→∞,

(P2) x(t) ∼ c2ϕ2(t) as t→∞,
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2. Fourth order nonlinear differential equations

(P3) x(t) ∼ c3 as t→∞,

(P4) x(t) ∼ c4t as t→∞,

(I1) ϕ1(t) ≺ x(t) ≺ ϕ2(t) as t→∞,

(I2) 1 ≺ x(t) ≺ t as t→∞,

where ci > 0, i = 1, 2, 3, 4 are constants. Positive solutions of (E1) having the asymptotic
behavior (P1)–(P4) are collectively called primitive positive solutions of the equation
(E1) , while the solutions having the asymptotic behavior (I1) and (I2) are referred to
as intermediate solutions of the equation (E1) .

The interrelation between the types (2.2.1)-(2.2.4) of the derivatives of solutions
and the types (P1)–(P4), (I1) and (I2) of the asymptotic behavior of solutions is as
follows:

(i) All solutions of a type (2.2.1) have the asymptotic behavior of type (P1);

(ii) A solution of type (2.2.2) has the asymptotic behavior of one of the types (P1),
(P2), (P3) and (I1);

(iii) A solution of type (2.2.3) has the asymptotic behavior of one of the types (P3)
and (P4);

(iv) A solution of type (2.2.4) has the asymptotic behavior of one of the types (P3),
(P4) and (I2).

The existence of four types of primitive solutions has been completely characterized
for both sub-half-linear and super-half-linear case of (E1) with continuous coefficients
p and q as the following theorems proved in [82] show.

Theorem 2.2.1 Let p, q ∈ C[a,∞). The equation (E1) has a positive solution x satisfying (P3)
if and only if

(2.2.5) J1 =

∫
∞

a
t
(

1
p(t)

∫ t

a
(t − s)q(s) ds

)1/α

dt < ∞.

Theorem 2.2.2 Let p, q ∈ C[a,∞). The equation (E1) has a positive solution x satisfying (P4)
if and only if

(2.2.6) J2 =

∫
∞

a

(
1

p(t)

∫ t

a
(t − s)sβ q(s) ds

)1/α

dt < ∞.
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2.2. Classification of positive solutions

Theorem 2.2.3 Let p, q ∈ C[a,∞). The equation (E1) has a positive solution x satisfying (P1)
if and only if

(2.2.7) J3 =

∫
∞

a
tq(t)ϕ1(t)β dt < ∞.

Theorem 2.2.4 Let p, q ∈ C[a,∞). The equation (E1) has a positive solution x satisfying (P2)
if and only if

(2.2.8) J4 =

∫
∞

a
q(t)ϕ2(t)β dt < ∞.

Next two theorems, proved in [82], give sufficient conditions for the existence of
intermediate solutions.

Theorem 2.2.5 If (2.2.8) holds and if

J3 =

∫
∞

a
tq(t)ϕ1(t)β dt = ∞,

then the equation (E1) has a intermediate type positive solution satisfying (I1).

Theorem 2.2.6 If (2.2.6) holds and

J1 =

∫
∞

a
t
(

1
p(t)

∫ t

a
(t − s)q(s) ds

)1/α

dt = ∞,

then (E1) has a intermediate type positive solution satisfying (I2).

Further, sharp conditions for the oscillation of all solutions of (E1) in both cases
(sub-half-linear and super-half-linear) have been obtained in [78].

Theorem 2.2.7 Let β < 1 ≤ α. All solutions of (E1) are oscillatory if and only if

J2 = ∞ .

Theorem 2.2.8 Let α ≤ 1 < β. All solutions of (E1) are oscillatory if and only if

J3 = ∞ .
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2. Fourth order nonlinear differential equations

2.3 Asymptotic behavior of intermediate generalized reg-
ularly varying solutions

In what follows it is always assumed that functions p and q are generalized regularly
varying of index η and σ with respect to R, with R defined with

(2.3.1) R(t) =

(∫
∞

t

s1+ 1
α

p(s)1/α ds
)−1

,

and expressed as

(2.3.2) p(t) = R(t)ηlp(t), lp ∈ SVR and q(t) = R(t)σlq(t), lq ∈ SVR .

From (2.3.1) and (2.3.2) we have that

(2.3.3) t1+ 1
α = R′(t)R(t)

η
α−2lp(t)1/α.

Integrating (2.3.3) from a to t we have

(2.3.4)
t2+ 1

α

2 + 1
α

=

∫ t

a
R′(s)R(s)

η
α−2lp(s)1/αds, t→∞,

implying that η
α ≥ 1. In what follows, we limit ourselves to the case where η > α

excludes other possibilities because of computational difficulty. Applying the gener-
alized Karamata integration theorem (Theorem 1.2.2) at the right-hand side of (2.3.4)
we obtain

(2.3.5) t ∼
( η − α
2α + 1

)− α
2α+1

R(t)
η−α
2α+1 lp(t)

1
2α+1 , t→∞.

From (2.3.3) and (2.3.5) we can express R′(t) as follows

(2.3.6) R′(t) ∼
( η − α
2α + 1

)− α+1
2α+1

R(t)
3α+1−η

2α+1 lp(t)−
1

2α+1 , t→∞ ,

which can be rewritten in the form

(2.3.7) 1 ∼
( η − α
2α + 1

) α+1
2α+1

R′(t)R(t)m2(α,η)−1lp(t)
1

2α+1 , t→∞.

The next lemma, following directly from the generalized Karamata integration theo-
rem using (2.3.7), will be frequently used in our later discussions. To that end and to
further simplifying formulation of our main results, we introduce the notation:

(2.3.8) m1(α, η) =
−2α2

− η

α(2α + 1)
, m2(α, η) =

η − α

2α + 1
.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

It is clear that m1(α, η) < −1 < 0 < m2(α, η) and

(2.3.9) (i) m1(α, η) = 2m2(α, η) −
η

α
; (ii)

m2(α, η) − η
α

= −2m2(α, η) − 1 .

In our main results constants mi(α, η), i = 1, 2, will be abbreviated as mi, i = 1, 2,
respectively.

Lemma 2.3.1 Let f (t) = R(t)µL f (t), L f ∈ SVR. Then:

(i) If µ > −m2(α, η),∫ t

a
f (s) ds ∼

m2(α, η)
α+1

2α+1

µ + m2(α, η)
R(t)µ+m2(α,η)L f (t)lp(t)

1
2α+1 , t→∞;

(ii) If µ < −m2(α, η),∫
∞

t
f (s) ds ∼

m2(α, η)
α+1
2α+1

−(µ + m2(α, η))
R(t)µ+m2(α,η)L f (t)lp(t)

1
2α+1 , t→∞;

(iii) If µ = −m2(α, η), then functions∫ t

a
f (s) ds =

∫ t

a
R(s)−m2(α,η)L f (s) ds,∫

∞

t
f (s) ds =

∫
∞

t
R(s)−m2(α,η)L f (s) ds

are slowly varying with respect to R.

To make an in-depth analysis of intermediate solutions of type (I1) and (I2) of
(E1) we need a fair knowledge of the structure of the functions ψ1, ψ2, ϕ1 and ϕ2

regarded as generalized regularly varying functions with respect to R. It is clear that
ψ1 ∈ SVR and from (2.3.5) we see that ψ2 ∈ RVR(m2(α, η)). Using (2.3.2) and applying
Lemma 2.3.1 twice, we obtain

(2.3.10)

ϕ1(t) =

∫
∞

t

∫
∞

s
R(r)−η/αlp(r)−1/α dr ds

∼
m2(α, η)

2(α+1)
2α+1

m1(α, η)(m1(α, η) −m2(α, η))
R(t)m1(α,η) lp(t)−

1
α(2α+1) , t→∞,

which shows that ϕ1 ∈ RVR
(
m1(α, η)

)
. Further, by (2.3.2) and (2.3.5), in view of

(2.3.9)-(ii), another two applications of Lemma 2.3.1 yield

(2.3.11)
ϕ2(t) ∼ m2(α, η)−

1
2α+1

∫
∞

t

∫
∞

s
R(r)−2m2(α,η)−1 lp(r)−

2
2α+1 dr ds

∼
m2(α, η)

m2(α, η) + 1
R(t)−1, t→∞,

implying ϕ2 ∈ RVR(−1).
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2.3.1 Intermediate solutions of type (I1)

The first subsection is devoted to the study of the existence and asymptotic behavior
of generalized regularly varying solutions with respect to R of type (I1) with p and q
satisfying (2.3.2). Expressing such a solution x of (E1) in the form

(2.3.12) x(t) = R(t)ρ lx(t), lx ∈ SVR,

since ϕ1(t) ≺ x(t) ≺ ϕ2(t), t→∞, the regularity index ρ of x must satisfy

m1(α, η) ≤ ρ ≤ −1.

If ρ = m1(α, η), then x is a member of RVR(m1(α, η)), while if ρ = −1, then since
x(t)/ϕ2(t) = c · lx(t) → 0, t → ∞, where c is a real constant, x is a member of
ntr − RVR(−1). Thus the set of all generalized regularly varying solutions of type
(I1) will be divided into the three disjoint classes

(2.3.13)
RVR(m1(α, η)) or

RVR(ρ) with ρ ∈
(
m1(α, η) , −1

)
or ntr − RVR (−1) .

Our aim is to establish necessary and sufficient conditions for each of the above
classes to have a member and furthermore to show that the asymptotic behavior of all
members of each class is governed by a unique explicit formula describing the decay
order at infinity accurately.

Let x be a solution of (E1) on [t0,∞) such that ϕ1(t) ≺ x(t) ≺ ϕ2(t) as t→∞. Since

(2.3.14) lim
t→∞

(
p(t)(x′′(t))α

)′
= lim

t→∞
x′(t) = lim

t→∞
x(t) = 0, lim

t→∞
p(t)(x′′(t))α = ∞,

integrating (E1) first on [t,∞), and then on [t0, t] and finally twice on [t,∞), we obtain

(2.3.15) x(t) =

∫
∞

t

s − t
p(s)1/α

(
ξ2 +

∫ s

t0

∫
∞

r
q(u)x(u)β du dr

)1/α

ds, t ≥ t0,

where ξ2 = p(t0)x′′(t0)α.
To prove the existence of intermediate solutions of type (I1) it is sufficient to prove

the existence of a positive solution of the integral equation (2.3.15) for some constants
t0 ≥ a and ξ2 > 0, which is most commonly achieved by the application of Schauder-
Tychonoff fixed point theorem. Denoting by Gx(t) the right-hand side of (2.3.15), to
find a fixed point of G it is crucial to choose a closed convex subset X ⊂ C[t0,∞) on
which G is a self-map. Since our primary goal is not only proving the existence of
generalizedRV intermediate solutions, but establishing a precise asymptotic formula
for such solutions, a choice of a subsetXmust be made appropriately. It will be shown
that such a choice of X is possible by solving the integral asymptotic relation

(2.3.16) x(t) ∼
∫
∞

t

s − t
p(s)1/α

(∫ s

b

∫
∞

r
q(u)x(u)β du dr

)1/α

ds, t→∞,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

for some b ≥ t0, which can be considered as an approximation (at infinity) of (2.3.15)
in the sense that it is satisfied by all possible solutions of type (I1) of (E1) . Theory
of regular variation will in fact ensure the solvability of (2.3.16) in the framework of
generalized Karamata functions.

Main results for the intermediate solutions of type (I1) are listed below and com-
pletely characterize the membership of each of the three classes of solutions given in
(2.3.13).

Theorem 2.3.1 Let p ∈ RVR(η), q ∈ RVR(σ). The equation (E1) has intermediate solutions
x ∈ RVR(m1) satisfying (I1) if and only if

(2.3.17) σ = −βm1 − 2m2 and
∫
∞

a
tq(t)ϕ1(t)β dt = ∞.

The asymptotic behavior of any such solution x is governed by the unique formula

(2.3.18) x(t) ∼ X1(t) = ϕ1(t)
(
α − β

α

∫ t

a
sq(s)ϕ1(s)β ds

) 1
α−β

, t→∞.

Theorem 2.3.2 Let p ∈ RVR(η), q ∈ RVR(σ). The equation (E1) has intermediate solutions
x ∈ RVR(ρ) with ρ ∈ (m1,−1) if and only if

(2.3.19) − βm1 − 2m2 < σ < β −m2,

in which case ρ is given by

(2.3.20) ρ =
σ + m2 − α
α − β

and the asymptotic behavior of any such solution x is given by the unique formula

(2.3.21) x(t) ∼ X2(t) =


m

(α+1)2
2α+1

2

α


2

p(t)
1

2α+1 q(t)R(t)−2 α(α+1)
2α+1

(m1 − ρ)(ρ + 1)(ρ(ρ −m2))α


1
α−β

, t→∞.

Theorem 2.3.3 Let p ∈ RVR(η), q ∈ RVR(σ). The equation (E1) has intermediate solutions
x ∈ ntr − RVR(−1) satisfying (I1) if and only if

(2.3.22) σ = β −m2 and
∫
∞

a
q(t)ϕ2(t)β dt < ∞.

The asymptotic behavior of any such solution x is given by the unique formula

(2.3.23) x(t) ∼ X3(t) = ϕ2(t)
(
α − β

α

∫
∞

t
q(s) ϕ2(s)β ds

) 1
α−β

, t→∞.
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2. Fourth order nonlinear differential equations

As preparatory steps toward the proofs of main results, we show that functions
Xi, i = 1, 2, 3 defined by (2.3.18), (2.3.21) and (2.3.23) are generalized RV-functions
satisfying the asymptotic relation (2.3.16).

Lemma 2.3.2 Suppose that (2.3.17) holds. The function X1 given by (2.3.18) satisfies the
asymptotic relation (2.3.16) for any b ≥ a and X1 ∈ RVR(m1).

Proof. From (2.3.2), (2.3.5) and (2.3.10), we have

tq(t)ϕ1(t)β ∼
m

2β(α+1)−α
2α+1

2

(m1(m1 −m2))β
R(t)σ+βm1+m2lp(t)

α−β
α(2α+1) lq(t), t→∞ ,

and applying (iii) of Lemma 2.3.1, in view of (2.3.17), we obtain

(2.3.24)
∫ t

a
sq(s)ϕ1(s)β ds ∼

m
2β(α+1)−α

2α+1
2

(m1(m1 −m2))β

∫ t

a
R(s)−m2lp(s)

α−β
α(2α+1) lq(s) ds ∈ SVR,

as t→∞, which together with (2.3.18) gives

X1(t) ∼ ϕ1(t)

 m
2β(α+1)−α

2α+1
2

(m1(m1 −m2))β
α − β

α
J1(t)


1
α−β

, t→∞,

where

(2.3.25) J1(t) =

∫ t

a
R(s)−m2lp(s)

α−β
α(2α+1) lq(s) ds.

Thus, since J1 ∈ SVR, we conclude that X1 ∈ RVR(m1(α, η)) and rewrite the previous
relation, using (2.3.10), as

(2.3.26) X1(t) ∼ R(t)m1lp(t)−
1

α(2α+1)

((
m2

m1(m1 −m2)

)α α − β
α

J1(t)
) 1
α−β

, t→∞.

To prove that (2.3.16) is satisfied by X1, we first integrate q(t)X1(t)β on [t,∞), applying
Lemma 2.3.1 and using (2.3.17), we have

∫
∞

t
q(s) X1(s)β ds ∼ m−

α
2α+1

2

((
m2

m1(m1 −m2)

)α α − β
α

) β
α−β

R(t)−m2lp(t)
α−β

α(2α+1) lq(t)J1(t)
β
α−β ,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

as t→∞. Integrating the above relation on [b, t], for any b ≥ a, we obtain∫ t

b

∫
∞

s
q(r) X1(r)β dr ds ∼ m−

α
2α+1

2

((
m2

m1(m1 −m2)

)α α − β
α

) β
α−β

×

∫ t

b
R(s)−m2lp(s)

α−β
α(2α+1) lq(s)J1(s)

β
α−β ds

= m−
α

2α+1
2

((
m2

m1(m1 −m2)

)α α − β
α

) β
α−β

∫ t

b
J1(s)

β
α−β dJ1(s)

= m−
α

2α+1
2

( m2

m1(m1 −m2)

)β α − β
α


α
α−β

J1(t)
α
α−β , t→∞.

Applying Lemma 2.3.1 and using (2.3.9)-(i), we obtain∫
∞

t

∫
∞

s

(
1

p(r)

∫ r

a

∫
∞

u
q(ω)X1(ω)β dωdu

)1/α

dr ds

∼

( m2

m1(m1 −m2)

)β α − β
α


1
α−β m2

m1(m1 −m2)
R(t)m1lp(t)−

1
α(2α+1) J1(t)

1
α−β ,

as t→∞, which due to (2.3.26) proves that X1 satisfies the desired asymptotic relation
(2.3.16) for any b ≥ a. �

Lemma 2.3.3 Suppose that (2.3.19) holds and let ρ be defined by (2.3.20). The function
X2 given by (2.3.21) satisfies the asymptotic relation (2.3.16) for any b ≥ a and belongs to
RVR(ρ).

Proof. Using (2.3.8), (2.3.9)-(i) and (2.3.20) we obtain

(2.3.27) σ + ρβ + m2 = α(ρ + 1), σ + ρβ + 2m2 = α(ρ −m1) = ρ − 2m2 +
η

α
.

The function X2 given by (2.3.21) can be expressed in the form

(2.3.28) X2(t) ∼ (λα2)−
1
α−β m

2(α+1)2

(2α+1)(α−β)

2 R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α−β
, t→∞,

where
λ =

(
ρ(ρ −m2)

)α (m1 − ρ
) (
ρ + 1

)
.

Thus, X2 ∈ RVR(ρ). Using (2.3.27) and (2.3.28), applying Lemma 2.3.1 twice, we find

∫
∞

t
q(s) X2(s)β ds ∼ −

m
(α+1)(2αβ+α+β)

(2α+1)(α−β)

2

(λα2)
β
α−β (σ + ρβ + m2)

R(t)σ+ρβ+m2
(
lp(t)

1
2α+1 lq(t)

) α
α−β
,
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2. Fourth order nonlinear differential equations

and ∫ t

b

∫
∞

s
q(r) X2(r)β dr ds

∼
m

2α(α+1)(β+1)
(2α+1)(α−β)

2(
λα2

) β
α−β (−(σ + ρβ + m2))(σ + ρβ + 2m2)

R(t)σ+ρβ+2m2
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
m

2α(α+1)(β+1)
(2α+1)(α−β)

2(
λα2

) β
α−β
α2(ρ + 1)(m1 − ρ)

R(t)α(ρ−2m2+
η
α )
(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β
, t→∞ ,

for any b ≥ a. Therefore,(
1

p(t)

∫ t

b

∫
∞

r
q(u) X2(u)β du dr

)1/α

∼
m

2(α+1)(β+1)
(α−β)(2α+1)

2

(λα2)
β

α(α−β) (α2(m1 − ρ)(ρ + 1))1/α
R(t)ρ−2m2

(
lp(t)

2β−2α+1
2α+1 lq(t)

) 1
α−β

,

and the integration of the previous relation over [t,∞) twice, with the application of
Lemma 2.3.1, gives∫

∞

t

∫
∞

s

(
1

p(r)

∫ r

b

∫
∞

u
q(ω) X2(ω)β dωdu

)1/α

dr ds

∼
m

2(α+1)2

(α−β)(2α+1)

2(
λα2

) β
α−β
ρ(ρ −m2)(α2(m1 − ρ)(ρ + 1))1/α

R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α−β
, t→∞.

This, due to (2.3.28), completes the proof of Lemma 2.3.3. �

Lemma 2.3.4 Suppose that (2.3.22) holds. Then the function X3 given by (2.3.23) satisfies
the asymptotic relation (2.3.16) for any b ≥ a and X3 ∈ ntr − RVR(−1).

Proof. Using (2.3.2), (2.3.11), (2.3.22) and applying (iii) of Lemma 2.3.1, we obtain

(2.3.29)
∫
∞

t
q(s) ϕ2(s)β ds ∼

( m2

m2 + 1

)β
J3(t), t→∞,

where

(2.3.30) J3(t) =

∫
∞

t
R(s)−m2lq(s) ds, J3 ∈ SVR.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Thus, expression (2.3.23) is of the form

(2.3.31) X3(t) ∼
( m2

m2 + 1

) α
α−β

R(t)−1

(
α − β

α
J3(t)

) 1
α−β

, t→∞.

From (2.3.30) and (2.3.31), using (2.3.14), we see that X3 ∈ ntr − RVR(−1). Next, we
integrate q(t) X3(t)β on [t,∞) and using (2.3.22), we obtain

∫
∞

t
q(s) X3(s)β ds ∼

( m2

m2 + 1

) αβ
α−β

(
α − β

α

) β
α−β

∫
∞

t
R(s)−m2lq(s) J3(s)

β
α−βds

=
( m2

m2 + 1

) αβ
α−β

(
α − β

α

) β
α−β

∫
∞

t
J3(s)

β
α−β (−dJ3(s))

=
( m2

m2 + 1

) αβ
α−β

(
α − β

α

) α
α−β

J3(t)
α
α−β ∈ SVR, t→∞.

Further, integrating previous relation on [b, t] for any fixed b ≥ a, by Lemma 2.3.1, we
have∫ t

b

∫
∞

s
q(r)X3(r)β dr ds ∼

( m2

m2 + 1

) αβ
α−β

(
α − β

α

) α
α−β

m−
α

2α+1
2 R(t)m2lp(t)

1
2α+1 J3(t)

α
α−β , t→∞.

As a result of the application of Lemma 2.3.1, with the help of (2.3.9)-(ii), we obtain∫
∞

t

(
1

p(s)

∫ s

b

∫
∞

r
q(u)X3(u)β du dr

)1/α

ds

∼

( m2

m2 + 1

) β
α−β

(
α − β

α

) 1
α−β m

α
2α+1
2

m2 + 1
R(t)−m2−1lp(t)−

α
α(2α+1) J3(t)

1
α−β , t→∞,

and ∫
∞

t

∫
∞

s

(
1

p(r)

∫ r

b

∫
∞

u
q(ω)X3(ω)β dωdu

)1/α

dr ds

∼

( m2

m2 + 1

) β
α−β

(
α − β

α

) 1
α−β m2

m2 + 1
R(t)−1J3(t)

1
α−β ∼ X3(t), t→∞,

which in view of (2.3.31), completes the proof of Lemma 2.3.4. �

Now, we are ready to prove main results.

27



2. Fourth order nonlinear differential equations

Proof of the “only if” part of Theorems 2.3.1, 2.3.2 and 2.3.3: Suppose that (E1) has
a type (I1) intermediate solution x ∈ RVR(ρ) on [t0,∞). Clearly, ρ ∈ [m1,−1]. Using
(2.3.2) and (2.3.12), we obtain integrating (E1) on [t,∞)

(2.3.32)
(
p(t)(x′′(t))α

)′
=

∫
∞

t
q(s)x(s)β ds =

∫
∞

t
R(s)σ+βρlq(s)lx(s)β ds.

Noting that the last integral is convergent, we conclude that σ + βρ + m2 ≤ 0 and
distinguish two cases:

(1) σ + βρ + m2 = 0 and (2) σ + βρ + m2 < 0.

Assume that (1) holds. By Lemma 2.3.1-(iii) function S3 defined with

(2.3.33) S3(t) =

∫
∞

t
R(s)−m2lq(s)lx(s)β ds,

is slowly varying with respect to R, and according to (2.3.14) and (2.3.32) follows that
limt→∞ S3(t) = 0. Integration of (2.3.32) on [t0, t] shows that

(2.3.34) p(t)(x′′(t))α ∼ m−
α

2α+1
2 R(t)m2lp(t)

1
2α+1 S3(t), t→∞,

which is rewritten using (2.3.9)-(ii) as

x′′(t) ∼ m−
1

2α+1
2 R(t)−2m2−1lp(t)−

2
2α+1 S3(t)1/α, t→∞.

Integrability of x′′ on [t,∞), and −m2 − 1 < 0, allows us to integrate the previous
relation on [t,∞), implying

−x′(t) ∼
m

α
2α+1
2

m2 + 1
R(t)−m2−1lp(t)−

1
2α+1 S3(t)1/α, t→∞,

which we may integrate once more on [t,∞), to obtain

(2.3.35) x(t) ∼
m2

m2 + 1
R(t)−1S3(t)1/α, t→∞.

Since S3 tends to zero, this shows that x ∈ ntr − RVR(−1). Thus, ρ = −1 and from (1)
σ = −β −m2.

Assume next that (2) holds. From (2.3.32) we find that

(
p(t)(x′′(t))α

)′
∼ −

m
α+1
2α+1
2

σ + βρ + m2
R(t)σ+βρ+m2lp(t)

1
2α+1 lq(t)lx(t)β, t→∞,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

which by integration on [t0, t] implies

(2.3.36) p(t)(x′′(t))α ∼ −
m

α+1
2α+1
2

σ + βρ + m2

∫ t

t0

R(s)σ+βρ+m2lp(s)
1

2α+1 lq(s)lx(s)βds,

as t→ ∞. In view of (2.3.14), the integral on right-hand side is divergent, so σ + βρ +
2m2 ≥ 0. We distinguish the cases:

(2.a) σ + βρ + 2m2 = 0 and (2.b) σ + βρ + 2m2 > 0.

Assume that (2.a) holds. Denote by

(2.3.37) S1(t) =

∫ t

t0

R(s)−m2lp(s)
1

2α+1 lq(s)lx(s)βds .

Then S1 ∈ SVR and using (2.3.2) we rewrite (2.3.36) as

(2.3.38) x′′(t) ∼ m−
1

2α+1
2 R(t)−η/αlp(t)−1/αS1(t)1/α, t→∞.

Because of integrability of x′′ on [t,∞] and the fact that − ηα + m2 = m1 − m2 < 0, via
Lemma 2.3.1, we conclude by integration of (2.3.38) on [t,∞] that

−x′(t) ∼ −
m

α
2α+1
2

m1 −m2
R(t)m1−m2 lp(t)−

α+1
α(2α+1) S1(t)1/α, t→∞,

which because of integrability of x′ on [t,∞) and m1 < 0, we may integrate once more
on [t,∞) to get

(2.3.39) x(t) ∼
m2

m1(m1 −m2)
R(t)m1lp(t)−

1
α(2α+1) S1(t)1/α, t→∞.

The last relation implies that x ∈ RVR(m1). Therefore, ρ = m1 and from (2.a) σ =
−βm1 −m2.

Assume that (2.b) holds. From (2.3.36), the application of Lemma 2.3.1 gives

p(t)(x′′(t))α ∼ −
m

2(α+1)
2α+1

2

(σ + βρ + m2)(σ + βρ + 2m2)
R(t)σ+βρ+2m2lp(t)

2
2α+1 lq(t)lx(t)β,

as t→∞, which yields

x′′(t) ∼
m

2(α+1)
α(2α+1)

2

(−(σ + βρ + m2)(σ + βρ + 2m2))1/α R(t)
σ+βρ+2m2−η

α lp(t)
1−2α
α(2α+1) lq(t)1/αlx(t)β/α, t→∞.
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2. Fourth order nonlinear differential equations

Integrability of x′′ on [t,∞] allows us to integrate the previous relation on [t,∞),
implying

(2.3.40)
−x′(t) ∼

m
2(α+1)
α(2α+1)

2

(−(σ + βρ + m2)(σ + βρ + 2m2))1/α

×

∫
∞

t
R(s)

σ+βρ+2m2−η
α lp(s)

1−2α
α(2α+1) lq(s)1/αlx(s)β/αds, t→∞,

where σ+βρ+2m2−η
α + m2 ≤ 0, because of the convergence of the last integral. We distin-

guish two cases:

(2.b.1)
σ + βρ + 2m2 − η

α
+ m2 = 0 and (2.b.2)

σ + βρ + 2m2 − η

α
+ m2 < 0.

The case (2.b.1) is impossible because the left-hand side of (2.3.40) is integrable on
[t0,∞), while the right-hand side is not, because it is slowly varying with respect to R.

Assume now that (2.b.2) holds. Then, the application of Lemma (2.3.1) in (2.3.40)
and integration of resulting relation on [t,∞) leads to

(2.3.41)
x(t) ∼ −

m
(α+1)(α+2)
α(2α+1)

2

(−(σ + βρ + m2)(σ + βρ + 2m2))1/α(σ+βρ+2m2−η
α + m2)

×

∫
∞

t
R(s)

σ+βρ+2m2−η
α +m2lp(s)

1−α
α(2α+1) lq(s)1/αlx(s)β/αds, t→∞,

which brings us to the observation of two possible cases:

(2.b.2.1)
σ + βρ + 2m2 − η

α
+ 2m2 = 0 and (2.b.2.2)

σ + βρ + 2m2 − η

α
+ 2m2 < 0.

In the case (2.b.2.1) the integral on the right-hand side of the relation (2.3.41) is
slowly varying with respect to R by Lemma 2.3.1 and so x ∈ SVR. This is impossible
because ρ ∈ [m1,−1].

In the case (2.b.2.2) the application of Lemma 2.3.1 gives

(2.3.42)

x(t) ∼ m
2(α+1)2

α(2α+1)

2

((
−(σ + βρ + m2)(σ + βρ + 2m2)

)1/α

×

(
σ + βρ + 2m2 − η

α
+ m2

) (
σ + βρ + 2m2 − η

α
+ 2m2

))−1

× R(t)
σ+βρ+2m2−η

α +2m2lp(t)
1

α(2α+1) lq(t)1/αlx(t)β/α, t→∞,
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

implying that x ∈ RVR(ρ), where ρ satisfies

(2.3.43) ρ =
σ + βρ + 2m2 − η

α
+ 2m2.

The last relation implies that the index of regularity of x is given by (2.3.20).
Suppose that x is a type (I1) solution of (E1) belonging toRVR(m1). From the above

observations this is possible only when (2.a) holds, in which case (2.3.39) is satisfied.
Thus, ρ = m1 and σ = −m1β− 2m2. Using x(t) = R(t)m1lx(t), (2.3.39) can be expressed as

(2.3.44) lx(t) ∼ K1lp(t)−
1

α(2α+1) S1(t)1/α, t→∞, where K1 =
m2

m1(m1 −m2)
,

and S1 is defined by (2.3.37). Then (2.3.44) is transformed into the differential asymp-
totic relation for S1:

(2.3.45) S1(t)−
β
α S′1(t) ∼ Kβ

1R(t)−m2lp(t)
α−β

α(2α+1) lq(t), t→∞.

From (2.3.10) and (2.3.39), since limt→∞ x(t)/ϕ1(t) = ∞, we have limt→∞ S1(t) = ∞.
Therefore, integrating (2.3.45) on [t0, t], in view of the notation (2.3.25) and the fact
J1 ∈ SVR, we find that the second condition in (2.3.17) is satisfied and

S1(t)1/α
∼

(
α − β

α
Kβ

1 J1(t)
) 1
α−β

, t→∞,

implying with (2.3.44) that

(2.3.46) x(t) ∼ R(t)m1lp(t)−
1

α(2α+1)

(
α − β

α
Kα

1 J1(t)
) 1
α−β

, t→∞.

In the proof of Lemma 2.3.2, using (2.3.2), (2.3.5) and (2.3.10), we have obtained
an expression (2.3.26) for X1 given by (2.3.18). Thus, (2.3.46) in fact proves that
x(t) ∼ X1(t), t→∞, completing the “only if” part of the proof of Theorem 2.3.1.

Next, suppose that x is a solution of (E1) belonging to RVR(ρ), ρ ∈ (m1,−1). This
is possible only when (2.b.2.2) holds, in which case x satisfies the asymptotic rela-
tion (2.3.42). Therefore, ρ satisfies (2.3.43) which justifies (2.3.20). An elementary
calculation shows that

m1 < ρ < −1 =⇒ −βm1 − 2m2 < σ < β −m2,

which determines the range (2.3.19) for σ. In view of (2.3.27) and (2.3.43), we conclude
from (2.3.42) that x enjoys the asymptotic behavior x(t) ∼ X2(t), t → ∞, where X2 is
given by (2.3.21). This proves the ”only if” part of the Theorem 2.3.2.
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Finally, suppose that x is a type (I1) intermediate solution of (E1) belonging to
ntr − RVR(−1). Then, the case (1) is the only possibility for x, which means that σ =
β−m2 and (2.3.35) is satisfied by x, with S3 defined by (2.3.33). Using x(t) = R(t)−1lx(t),
(2.3.35) can be expressed as

(2.3.47) lx(t) ∼ K3 S3(t)1/α, t→∞, where K3 =
m2

m2 + 1
,

implying the differential asymptotic relation

−S3(t)−
β
α S′3(t) ∼ Kβ

3R(t)−m2lq(t), t→∞.(2.3.48)

From (2.3.11) and (2.3.35), since limt→∞ x(t)/ϕ2(t) = 0, we have limt→∞ S3(t) = 0, imply-
ing that the left-hand side of (2.3.48) is integrable over [t0,∞). This, in view of (2.3.30),
implies the second condition in (2.3.22). Integrating (2.3.48) on [t,∞) with the use of
(2.3.47), yields

x(t) ∼ R(t)−1
(α − β
α

Kα
3 J3(t)

) 1
α−β
, t→∞,

which due to the expression (2.3.31) gives x(t) ∼ X3(t) as t → ∞. This proves the
“only” if part of Theorem 2.3.3.

Proof of the part “if” of Theorems 2.3.1, 2.3.2 and 2.3.3: Suppose that (2.3.17) or (2.3.19)
or (2.3.22) holds. From Lemmas 2.3.2, 2.3.3 and 2.3.4 it is known that Xi, i = 1, 2, 3,
defined by (2.3.18), (2.3.21) and (2.3.23) satisfy the asymptotic relation (2.3.16) for any
b ≥ a. We perform the simultaneous proof for Xi, i = 1, 2, 3 so the subscripts i = 1, 2, 3
will be deleted in the rest of the proof. Let us denote

(2.3.49) I(t, a, ξ2) =

∫
∞

t

s − t
p(s)1/α

(
ξ2 +

∫ s

a

∫
∞

r
q(u) X(u)β du dr

)1/α

ds, t ≥ a

where ξ2 is an arbitrary fixed positive constant. It is clear that

(2.3.50) I(t, a, ξ2) ∼
∫
∞

t

s − t
p(s)1/α

(∫ s

a

∫
∞

r
q(u) X(u)β du dr

)1/α

ds, t→∞.

Therefore, by (2.3.16) there exist T1 ≥ T0 ≥ a such that

(2.3.51) I(t,T0, ξ2) ≤ 2X(t) for t ≥ T0

and

(2.3.52)
X(t)

2
≤ I(t,T0, ξ2), for t ≥ T1.
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Let such T0 and T1 be fixed and choose positive constants c,P such that

(2.3.53) c ≤
ϕ1(t)
X(t)

≤ P, T0 ≤ t ≤ T1.

Constants c and P exist because a continuous function is bounded on every compact
set. Further, choose positive constants m and M such that

(2.3.54) m ≤ min{c ξ2
1/α, 2

α
β−α }, M1− βα ≥ 2.

Define the integral operator

(2.3.55) Gx(t) =

∫
∞

t

s − t
p(s)1/α

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) x(u)β du dr

)1/α

ds, t ≥ T0,

and let it act on the set

(2.3.56) X = {x ∈ C[T0,∞) : mX(t) ≤ x(t) ≤M X(t), t ≥ T0}.

It is clear thatX is a closed, convex subset of the locally convex space C[T0,∞) equipped
with the topology of uniform convergence on compact subintervals of [T0,∞).

It can be shown that G is a continuous self-map on X and that the set G(X) is
relatively compact in C[T0,∞).
(i) G(X) ⊂ X: Let x ∈ X. Using (2.3.51), (2.3.54) and (2.3.56) we obtain

Gx(t) ≤Mβ/α

∫
∞

t

s − t
p(s)1/α

(
ξ2

Mβ
+

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds

≤Mβ/α

∫
∞

t

s − t
p(s)1/α

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds

≤ 2Mβ/α X(t) ≤MX(t), t ≥ T0.

On the other hand, using (2.3.52), for t ≥ T1

Gx(t) ≥
∫
∞

t

s − t
p(s)1/α

(
ξ2 + mβ

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds

= mβ/α

∫
∞

t

s − t
p(s)1/α

(
ξ2

mβ
+

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds

≥ mβ/α

∫
∞

t

s − t
p(s)1/α

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds

≥ mβ/α X(t)
2
≥ mX(t),
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and using (2.3.53) for t ∈ [T0,T1] we have

Gx(t) ≥ ξ2
1/α

∫
∞

t

s − t
p(s)1/α = ξ2

1/α ϕ1(t) ≥ ξ2
1/α c X(t) ≥ mX(t).

This shows that Gx ∈ X; that is, Gmaps X into itself.
(ii) G(X) is relatively compact: The inclusion G(X) ⊂ X ensures that G(X) is locally
uniformly bounded on [T0,T2], for any T2 > T0. From (2.3.55), we have

(Gx)′ (t) = −

∫
∞

t

1

p(r)1/α

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) x(u)β du dr

)1/α

ds, t ∈ [T0,T2].

From the inequality

−Mβ/α

∫
∞

t

1

p(r)1/α

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α

ds ≤ (Gx)′ (t) ≤ 0,

where t ∈ [T0,T2], holding for all x ∈ X, it follows that G(X) is locally equicontinuous
on [T0,T2] ⊂ [T0,∞). Then, the relative compactness of G(X) follows from the Arzela-
Ascoli lemma.
(iii) G is continuous on X: Let {xn} be a sequence in X converging to x ∈ X uniformly
on any compact subinterval of [T0,∞). Let T2 > T0 be any fixed real number. From
(2.3.55) we have

|Gxn(t) − Gx(t)| ≤
∫
∞

t

s − t
p(s)1/αGn(s) ds, t ∈ [T0,T2],

where

Gn(t) =

∣∣∣∣∣∣∣
(
ξ2 +

∫ t

T0

∫
∞

r
q(s) xn(s)β dsdr

)1/α

−

(
ξ2 +

∫ t

T0

∫
∞

r
q(s) x(s)β dsdr

)1/α
∣∣∣∣∣∣∣ .

Using the inequality |xλ − yλ| ≤ |x − y|λ, x, y ∈ R+ holding for λ ∈ (0, 1), we see that if
α ≥ 1, then

Gn(t) ≤
(∫ t

T0

∫
∞

r
q(s)|xn(s)β − x(s)β|dsdr

)1/α

.

On the other hand, using the mean value theorem, if α < 1 we obtain

Gn(t) ≤
1
α

(
ξ2 + Mβ

∫ t

T0

∫
∞

r
q(s)X(s)βdsdr

) α−1
α

∫ t

T0

∫
∞

r
q(s)|xn(s)β − x(s)β|dsdr.
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2.3. Asymptotic behavior of intermediate generalized RV-solutions

Thus, using that q(t)
∣∣∣xn(t)β−x(t)β| → 0 as n→∞ at each point t ∈ [T0,∞) and q(t)

∣∣∣xn(t)β−
x(t)β| ≤ 2Mβq(t)X(t)β for t ≥ T0, while q(t)X(t)β is integrable on [T0,∞), the uniform
convergence Gn(t) ⇒ 0, n → ∞ on [T0,∞) follows by the application of the Lebesgue
dominated convergence theorem. We conclude that Gxn(t)→ Gx(t) uniformly on any
compact subinterval of [T0,∞) as n→∞, which proves the continuity of G.

Thus, all the hypotheses of the Schauder-Tychonoff fixed point theorem are fulfilled
and so there exists a fixed point x ∈ X of G, which satisfies the integral equation

x(t) =

∫
∞

t

s − t
p(s)

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) x(u)β du dr

)1/α

ds, t ≥ T0.

Differentiating the above expression four times shows that x is a solution of (E1) on
[T0,∞), which due to (2.3.56) is an intermediate solution of type (I1). Therefore, the
proof of our main results will be completed with the verification that the intermediate
solution of (E1) constructed above is actually regularly varying function with respect
to R. Consider the function I(t,T0, ξ2) for t ≥ T0 defined by (2.3.49), and put

l = lim inf
t→∞

x(t)
I(t,T0, ξ2)

, L = lim sup
t→∞

x(t)
I(t,T0, ξ2)

.

By Lemmas 2.3.2, 2.3.3 and 2.3.4 and (2.3.50), we have X(t) ∼ I(t,T0, ξ2), t→∞. Since,
x ∈ X, it is clear that 0 < l ≤ L < ∞. Applying Theorem 1.1.7 four times, we obtain

L ≤ lim sup
t→∞

x′(t)
I′(t,T0, ξ2)

= lim sup
t→∞

∫
∞

t

(
1

p(s)

(
ξ2 +

∫ s

T0

∫
∞

r
q(u) x(u)β du dr

))1/α
ds∫

∞

t

(
1

p(s)

∫ s

T0

∫
∞

r
q(u) X(u)β du dr

)1/α
ds

≤ lim sup
t→∞

ξ2 +
∫
∞

t
(s − t)q(s)x(s)β ds∫

∞

t
(s − t)q(s)X(s)β ds


1/α

≤

lim sup
t→∞

∫
∞

t
q(s)x(s)β ds∫

∞

t
q(s)X(s)β ds


1/α

≤

(
lim sup

t→∞

q(t)x(t)β

q(t)X(t)β

)1/α

=

(
lim sup

t→∞

x(t)
X(t)

)β/α
=

(
lim sup

t→∞

x(t)
I(t,T0, ξ2)

)β/α
= Lβ/α,

where we have used X(t) ∼ I(t,T0, ξ2), t → ∞, in the last step. Since β/α < 1, the
inequality L ≤ Lβ/α implies that L ≤ 1. Similarly, it may be verified that l ≥ 1, from
which it follows that L = l = 1, that is,

lim
t→∞

x(t)
I(t,T0, ξ2)

= 1 =⇒ x(t) ∼ I(t,T0, ξ2) ∼ X(t), t→∞.

Therefore it is concluded that if p ∈ RVR(η) and q ∈ RVR(σ), then the type-(I1) solution
x under consideration is a member of RVR(ρ), where

ρ = m1 or ρ =
σ + m2 − α
α − β

∈ (m1,−1) or ρ = −1,

35



2. Fourth order nonlinear differential equations

according to whether the pair (η, σ) satisfies (2.3.17), (2.3.19) or (2.3.22), respectively.
Needless to say, any such solution x ∈ RVR(ρ) enjoys one and the same asymptotic
behavior (2.3.18), (2.3.21) or (2.3.23), respectively. This completes the “if” parts of
Theorems 2.3.1, 2.3.2 and 2.3.3.

2.3.2 Intermediate solutions of type (I2)

Let us turn our attention to the study of intermediate solutions of type (I2) of the
equation (E1) ; that is, those solutions x such that 1 ≺ x(t) ≺ t as t → ∞. As in the
preceding subsection the use is made of the expressions (2.3.2) and (2.3.12) for the
coefficients p, q and solutions x. Since ψ1 ∈ SVR and ψ2 ∈ RVR(m2(α, η)) (cf. (2.3.7)
and (2.3.5)), the regularity index ρ of x must satisfy 0 ≤ ρ ≤ m2(α, η). If ρ = 0, then
since x(t) = lx(t)→ ∞, t→ ∞, x is a member of ntr − SVR, while if ρ = m2(α, η), then
x is a member of RVR(m2(α, η)). If 0 < ρ < m2(α, η), then x belongs to RVR(ρ) and
clearly satisfies x(t) → ∞ and x(t)/R(t)m2(α,η)

→ 0 as t → ∞. Therefore, the totality of
type (I2) intermediate solutions of (E1) is divided into the following three classes

ntr − SVR, RVR(ρ), ρ ∈ (0,m2(α, η)), RVR(m2(α, η))

and our purpose is to show that, for each of the above classes, necessary and sufficient
conditions for the membership can be established and that the asymptotic behavior
at infinity of all members of each class is determined precisely by a unique explicit
formula.

Let x be a type (I2) intermediate solution of (E1) defined on [t0,∞). It is known that

(2.3.57)
lim
t→∞

x′(t) = 0,

lim
t→∞

(p(t)|x′′(t)|α−1x′′(t))′ = lim
t→∞

p(t)|x′′(t)|α−1x′′(t) = lim
t→∞

x(t) = ∞ .

Integrating (E1) twice on [t0, t], then on [t0,∞) and finally on [t0, t], we obtain, for
t ≥ t0 ≥ a,

(2.3.58) x(t) = c0 +

∫ t

t0

∫
∞

s

1
p(r)1/α

(
c2 + c3(r − t0) +

∫ r

t0

(r − u)q(u)x(u)β du
)1/α

dr ds,

where c0 = x(t0), c2 = p(t0)(−x′′(t0))α, and c3 = (p(t0)(−x′′(t0))α)′. From (2.3.58) we easily
see that x satisfies the integral asymptotic relation

(2.3.59) x(t) ∼
∫ t

b

∫
∞

s

(
1

p(r)

∫ r

b
(r − u)q(u)x(u)β du

)1/α

dr ds, t→∞,

for some b ≥ a, which will play a central role in constructing generalized RV-
intermediate solutions of type (I2).

Theorems below represent main results for intermediate solutions of type (I2).

36



2.3. Asymptotic behavior of intermediate generalized RV-solutions

Theorem 2.3.4 Let p ∈ RVR(η), q ∈ RVR(σ). Then (E1) has intermediate solutions x ∈
ntr − SVR satisfying (I2) if and only if

(2.3.60) σ = α −m2 and
∫
∞

a
t
(

1
p(t)

∫ t

a
(t − s) q(s) ds

)1/α

dt = ∞.

The asymptotic behavior of any such solution x is governed by the unique formula

(2.3.61) x(t) ∼ Y1(t) =

α − βα
∫ t

a
s
(

1
p(s)

∫ s

a
(s − r)q(r) dr

)1/α

ds


α
α−β

, t→∞.

Theorem 2.3.5 Let p ∈ RVR(η), q ∈ RVR(σ). Then (E1) has intermediate solutions x ∈
RVR(ρ) with ρ ∈ (0,m2) if and only if

(2.3.62) α −m2 < σ < η − (α + β + 2)m2

in which case ρ is given by (2.3.20) and the asymptotic behavior of any such solution x is
governed by the unique formula

(2.3.63) x(t) ∼ Y2(t) =


m

(α+1)2
2α+1

2

α


2

p(t)
1

2α+1 q(t)R(t)−2 α(α+1)
2α+1(

ρα(m2 − ρ)
)α (

ρ −m1
) (
ρ + 1

)


1
α−β

, t→∞.

Theorem 2.3.6 Let p ∈ RVR(η), q ∈ RVR(σ). Then (E1) has intermediate solutions x ∈
RVR (m2) satisfying (I2) if and only if

(2.3.64) σ = η − (α + β + 2)m2 and
∫
∞

a

(
1

p(t)

∫ t

a
(t − s) sβ q(s) ds

)1/α

dt < ∞.

The asymptotic behavior of any such solution x is governed by the unique formula

(2.3.65) x(t) ∼ Y3(t) = t

α − βα
∫
∞

t

(
1

p(s)

∫ s

a
(s − r)rβq(r) dr

)1/α

ds


α
α−β

, t→∞.

In order to facilitate the proofs of the main results, we prove the following lemmas.

Lemma 2.3.5 Suppose that (2.3.60) holds. Then the function Y1 given by (2.3.61) satisfies
the asymptotic relation (2.3.59) for any b ≥ a and belongs to SVR.
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Proof. First, we give an expression for Y1 in terms of R, lp and lq. Applying Lemma
2.3.1 twice, we have∫ t

a

∫ s

a
q(u) du ds =

∫ t

a

∫ s

a
R(u)α−m2lq(u) du ds ∼

m2 α+1
2α+1

2

α(α + m2)
R(t)α+m2lp(t)

2
2α+1 lq(t), t→∞.

Using (2.3.2), (2.3.5) and (2.3.9)-(ii), we have as t→∞

(2.3.66) t
(

1
p(t)

∫ t

a
(t − s)q(s) ds

)1/α

∼
m

2α+2−α2
α(2α+1)

2

(α(α + m2))1/αR(t)−m2lp(t)
1−α

α(2α+1) lq(t)1/α.

Integrating the above on [b, t] for any b ≥ a, we show that

(2.3.67) Y1(t) ∼W
1
α−β

1

(
α − β

α
Q1(t)

) α
α−β

where

(2.3.68) Q1(t) =

∫ t

b
R(s)−m2lp(s)

1−α
α(2α+1) lq(s)1/α ds, Q1 ∈ SVR, W1 =

m
2α+2−α2

2α+1
2

α(α + m2)
.

From (2.3.67), we conclude that Y1 ∈ SVR.
To verify the asymptotic relation (2.3.59) for Y1, we integrate q(t)Y1(t)β twice on

[b, t] and use Y1 ∈ ntr − SVR to obtain∫ t

b

∫ s

b
q(r)Y1(r)β dr ds ∼

m2 α+1
2α+1

2

(σ + m2)(σ + 2m2)
R(t)σ+2m2lp(t)

2
2α+1 lq(t)Y1(t)β, t→∞,

, which together with (2.3.67), by assumption (2.3.60) and (2.3.9)-(ii), yields

(2.3.69)

(
1

p(t)

∫ t

b
(t − s)q(s)Y1(s)βds

)1/α

∼

 m
2α+2−αβ

2α+1
2

α(α + m2)


1
α−β

R(t)−2m2lp(t)
1−2α
α(2α+1) lq(t)1/α

(
α − β

α
Q1(t)

) β
α−β

,

as t→∞. Integration of (2.3.69) on [t,∞) gives∫
∞

t

(
1

p(r)

∫ r

b
(r − u)q(u)Y1(u)β du

)1/α

dr

∼

 m
2α+2−αβ

2α+1
2

α(α + m2)


1
α−β (

α − β

α

) β
α−β

m−
α

2α+1
2 R(t)−m2lp(t)

1−α
α(2α+1) lq(t)1/αQ1(t)

β
α−β ,
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as t→∞. Previous relation, by integration on [b, t], implies∫ t

b

∫
∞

s

(
1

p(r)

∫ r

b
(r − u)q(u)Y1(u)β du

)1/α

dr ds

∼W
1
α−β

1

(
α − β

α

) β
α−β

∫ t

b
R(s)−m2lp(s)

1−α
α(2α+1) lq(s)1/αQ1(s)

β
α−β ds

∼W
1
α−β

1

(
α − β

α

) β
α−β

∫ t

b
Q1(s)

β
α−β dQ1(s) = W

1
α−β

1

(
α − β

α

) α
α−β

Q1(t)
α
α−β , t→∞,

establishing, in view of (2.3.67), that Y1 satisfies the asymptotic relation (2.3.59). �

Lemma 2.3.6 Suppose that (2.3.62) holds and let ρ be defined by (2.3.20). Then, the function
Y2 given by (2.3.63) satisfies the asymptotic relation (2.3.59) for any b ≥ a and belongs to
RVR(ρ).

Proof. Using (2.3.2) and (2.3.8), since η−2α(α+1)
2α+1 = m2 − α, we can express Y2 in the form

(2.3.70) Y2(t) ∼W2R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α−β
,

where

(2.3.71) C = m
(α+1)2
2α+1

2 , ν =
(
ρ(m2 − ρ)

)α (ρ −m1)(ρ + 1), W2 =

(
C2

α2ν

) 1
α−β

.

Therefore, Y2 ∈ RVR(ρ). Next, we prove that Y2 satisfies the asymptotic relation
(2.3.59) and to that end, we first integrate q(t)Y2(t)β twice on [b, t] for some b ≥ a, with
the application of Lemma 2.3.1 and due to (2.3.9), (2.3.27), we get∫ t

b

∫ s

b
q(r)Y2(r)β dr ds

∼Wβ
2

∫ t

b

∫ s

b
R(r)σ+ρβ

(
lp(t)

β
2α+1 lq(t)α

) 1
α−β

drds

∼
Wβ

2

(σ + ρβ + m2)(σ + ρβ + 2m2)
m2 α+1

2α+1
2 R(t)σ+ρβ+2m2

(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
Wβ

2

α2(ρ + 1)(ρ −m1)
m2 α+1

2α+1
2 R(t)α(ρ−m1)

(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

=
Wβ

2

α2(ρ + 1)(ρ −m1)
m2 α+1

2α+1
2 R(t)α(ρ−2m2−

η
α )

(
lp(t)

2α−β
2α+1 lq(t)α

) 1
α−β

, t→∞,

39



2. Fourth order nonlinear differential equations

implying further that∫ t

b

∫
∞

s

(
1

p(r)

∫ r

b
(r − u)q(u)Y2(u)β du

)1/α

dr ds

∼

 Wβ
2

α2(ρ + 1)(ρ −m1)
m2 α+1

2α+1
2

1/α ∫ t

b

∫
∞

s
R(r)ρ−2m2

(
lp(r)

2β−2α+1
2α+1 lq(r)

) 1
α−β

dr ds

∼
Wβ/α

2 m
2 (α+1)2

α(2α+1)

2

(α2(ρ + 1)(ρ −m1))1/α(m2 − ρ)ρ
R(t)ρ

(
lp(t)

1
2α+1 lq(t)

) 1
α(α−β)

= Wβ/α
2

(
C2

να2

)1/α

R(t)ρ
(
lp(t)

1
2α+1 lq(t)

) 1
α(α−β) , t→∞.

By (2.3.70) and (2.3.71) proves that Y2 satisfies the asymptotic relation (2.3.59).

Lemma 2.3.7 Suppose that (2.3.64) holds. Then the function Y3 given by (2.3.65) satisfies
the asymptotic relation (2.3.59) for any b ≥ a and belongs to RVR(m2). �

Proof. According to (2.3.5) and (2.3.64), the application of the Lemma 2.3.1, gives∫ t

b

∫ s

b
rβq(r) dr ds ∼ m−

αβ
2α+1

2

∫ t

b

∫ s

b
R(r)η−(α+2)m2lp(s)

β
2α+1 lq(s)ds

∼
m

2(α+1)−αβ
2α+1

2

(η − (α + 1)m2)(η − αm2)
R(t)η−αm2lp(t)

β+2
2α+1 lq(t),

as t→∞. Since by (2.3.9)-(ii) we have that

(2.3.72) η − (α + 1)m2 = α(m2 + 1),

from the last relation, we conclude that

(2.3.73)

∫
∞

t

(
1

p(s)

∫ s

b
(s − r)rβq(r)dr

)1/α

ds

∼

 m
2(α+1)−αβ

2α+1
2

α(m2 + 1)(α + αm2 + m2)


1/α ∫

∞

t
R(s)−m2lp(s)

β−2α+1
α(2α+1) lq(s)1/αds,

as t→∞. We denote by

(2.3.74) Q3(t) =

∫
∞

t
R(s)−m2lp(s)

β−2α+1
α(2α+1) lq(s)1/αds, Q3 ∈ SVR

40



2.3. Asymptotic behavior of intermediate generalized RV-solutions

and combining (2.3.73) with (2.3.65) and (2.3.5), we obtain the following asymptotic
representation for Y3 in terms of R, lp and lq:

(2.3.75) Y3(t) ∼W
1
α−β

3 R(t)m2lp(t)
1

2α+1

(
α − β

α
Q3(t)

) α
α−β

, t→∞,

where

(2.3.76) W3 =
m
−α2+2α+2

2α+1
2

α(m2 + 1)(αm2 + m2 + α)
.

From (2.3.75) we conclude that Y3 ∈ RVR(m2) and compute with the help of Lemma
2.3.1,

∫ t

b

∫ s

b
q(r)Y3(r)β dr ds

∼

(
α − β

α
Q3(t)

) αβ
α−β

W
β
α−β

3

m
2(α+1)
2α+1

2 R(t)σ+m2β+2m2

(σ + m2β + 2m2)(σ + m2β + m2)
lp(t)

β+2
2α+1 lq(t),

as t→∞. Next, using (2.3.64) and (2.3.72) we obtain

∫
∞

t

(
1

p(s)

∫ s

b
(s − r)q(r)Y3(r)β dr

)1/α

ds

∼

(
α − β

α

) β
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)

2

(α(m2 + 1)(αm2 + m2 + α))1/α

×

∫
∞

t
R(s)−m2lp(s)

β−2α+1
α(2α+1) lq(s)1/αQ3(s)

β
α−βds

∼

(
α − β

α

) β
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)

2

(α (m2 + 1)(αm2 + m2 + α))1/α

∫
∞

t
Q3(s)

β
α−βd(−Q3(s))

=

(
α − β

α
Q3(t)

) α
α−β W

β
α(α−β)

3 m
2(α+1)
α(2α+1)

2

(α (m2 + 1)(αm2 + m2 + α))1/α , t→∞.

Noting that the last expression in the previous relation is slowly varying with respect
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to R, the integration of this relation over [b, t] leads to∫ t

b

∫
∞

s

(
1

p(r)

∫ r

b
(r − u)q(u)Y3(u)β du

)1/α

dr ds

∼

(
α − β

α
Q3(t)

) α
α−β W

β
α(α−β)

3 m
(α+2)(α+1)
α(2α+1)

2

(α(m2 + 1)(αm2 + m2 + α))1/α

R(t)m2

m2
lp(t)

1
2α+1

=

(
α − β

α
Q3(t)

) α
α−β

W
β

α(α−β)

3 W1/α
3 R(t)m2lp(t)

1
2α+1 , t→∞.

In view of (2.3.75) this proves that the desired integral asymptotic relation (2.3.59) is
satisfied by Y3. �

Using previous results we can prove the main results of this subsection.

Proof of the “only if” part of Theorems 2.3.4, 2.3.5 and 2.3.6: Suppose that (E1) has
a type (I2) intermediate solution x ∈ RVR(ρ), ρ ∈ [0,m2], defined on [t0,∞). We begin
by integrating (E1) on [t0, t]. Using (2.3.2), (2.3.12), we have

(2.3.77) (p(t)(−x′′(t))α)′ ∼
∫ t

t0

q(s)x(s)βds =

∫ t

t0

R(s)σ+βρlq(s)lx(s)β ds, t→∞

and conclude by (2.3.57) that σ + βρ + m2 ≥ 0. Thus, we distinguish two cases:

(1) σ + βρ + m2 = 0 and (2) σ + βρ + m2 > 0.

Let the case (1) holds, so that

(2.3.78) H4(t) =

∫ t

t0

R(s)σ+βρlq(s)lx(s)β ds =

∫ t

t0

R(s)−m2 lq(s)lx(s)β ds,

and H4 ∈ SVR. The integration of (2.3.77) on [t0, t] with (2.3.9)-(ii) yields

−x′′(t) ∼ m−
1

2α+1
2 R(t)

m2−η
α lp(t)−

2
2α+1 H4(t)

1
α

= m−
1

2α+1
2 R(t)−2m2−1lp(t)−

2
2α+1 H4(t)1/α, t→∞,

Since −m2 − 1 < 0,we may integrate previous relation on [t,∞) and obtain via Lemma
2.3.1 that

x′(t) ∼
m

α
2α+1
2

m2 + 1
R(t)−m2−1H4(t)1/α, t→∞.

The right-hand side in the last relation is integrable on [t,∞), because −m2 − 1 < −m2,
but on the other hand, in view of (2.3.57), the left-hand side of the last relation is not
integrable on [t,∞), so we conclude that this case is impossible.
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Let the case (2) holds. Then, from (2.3.77) it follows that

(p(t)(−x′′(t))α)′ ∼
m

α+1
2α+1
2

σ + βρ + m2
R(t)σ+βρ+m2lp(t)

1
2α+1 lq(t)lx(t)β.

Since σ + βρ + 2m2 > 0, the integration of the previous relation on [t0, t] gives

−x′′(t) ∼

 m
2(α+1)
2α+1

2

(σ + βρ + m2)(σ + βρ + 2m2)


1/α

R(t)
σ+βρ+2m2−η

α lp(t)
1−2α
α(2α+1) lq(t)1/αlx(t)β/α, t→∞,

implying in view of (2.3.57), by integration on [t,∞),

(2.3.79)
x′(t) ∼

 m
2(α+1)
2α+1

2

(σ + βρ + m2)(σ + βρ + 2m2)


1/α

×

∫
∞

t
R(s)

σ+βρ+2m2−η
α

(
lp(s)

1−2α
2α+1 lq(s)lx(s)β

)1/α
ds, t→∞.

Thus, we further consider the following two possible cases:

(2.a)
σ + βρ + 2m2 − η

α
+ m2 = 0 and (2.b)

σ + βρ + 2m2 − η

α
+ m2 < 0.

Suppose that (2.a) holds, and let

(2.3.80) H3(t) =

∫
∞

t
R(s)−m2 lp(s)

1−2α
α(2α+1) lq(s)1/αlx(s)β/α ds.

Using (2.3.72) and (2.3.9)-(ii), since we have σ+ ρβ+ m2 = α(m2 + 1), the integration of
(2.3.79) on [t0, t] implies

(2.3.81) x(t) ∼

 m
−α2+2(α+1)

2α+1
2

α(m2 + 1)(α(m2 + 1) + m2)


1/α

R(t)m2lp(t)
1

2α+1 H3(t), t→∞.

Since H3 ∈ SVR, we conclude that x ∈ RVR(m2).
Suppose that (2.b) holds. The application of Lemma 2.3.1 in (2.3.79) implies

(2.3.82)
x′(t) ∼ −

m
(α+1)(α+2)
α(2α+1)

2

((σ + βρ + m2)(σ + βρ + 2m2))1/α
(
σ+βρ+2m2−η

α + m2

)
× R(t)

σ+βρ+2m2−η
α +m2lp(t)

1−α
α(2α+1) lq(t)1/αlx(t)β/α, t→∞.
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Integrating (2.3.82) on [t0, t], using (2.3.57), we obtain

(2.3.83)
x(t) ∼

m
(α+1)(α+2)
α(2α+1)

2

((σ + βρ + m2)(σ + βρ + 2m2))1/α
(
−

(
σ+βρ+2m2−η

α + m2

))
×

∫ t

t0

R(s)
σ+βρ+2m2−η

α +m2lp(s)
1−α

α(2α+1) lq(s)1/αlx(s)β/αds, t→∞.

Thus, since x(t) → ∞ as t → ∞, from the previous relation we conclude that two
possibilities may hold:

(2.b.1)
σ + βρ + 2m2 − η

α
+ 2m2 = 0 or (2.b.2)

σ + βρ + 2m2 − η

α
+ 2m2 > 0.

In the case (2.b.1), using (2.3.9)-(ii), we obtain σ + βρ + m2 = α. The application of
Lemma 2.3.1 in (2.3.83) leads us to

(2.3.84) x(t) ∼

 m
−α2+2(α+1)

2α+1
2

α(α + m2)


1/α

H1(t), t→∞,

where

(2.3.85) H1(t) =

∫ t

t0

R(s)−m2lp(s)
1−α

α(2α+1) lq(s)1/αlx(s)β/αds, H1 ∈ SVR .

Thus, since x(t)→∞ as t→∞, x ∈ ntr − SVR.
The application of Lemma 2.3.1 in (2.3.83) in the case (2.b.2) gives

(2.3.86)

x(t) ∼ m
2(α+1)2

α(2α+1)

2

(
((σ + βρ + m2)(σ + βρ + 2m2))1/α

×

(
−

(
σ + βρ + 2m2 − η

α
+ m2

)) (
σ + βρ + 2m2 − η

α
+ 2m2

))−1

× R(t)
σ+βρ+2m2−η

α +2m2lp(t)
1

α(2α+1) lq(t)1/αlx(t)β/αds, t→∞.

This implies that x ∈ RV
(
ρ
)

where ρ satisfies

(2.3.87) ρ =
σ + βρ + 2m2 − η

α
+ 2m2 ⇔ ρ =

σ + m2 − α
α − β

,

verifying that the regularity index ρ is given by (2.3.20).
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Now, let x be a type (I2) intermediate solution of (E1) belonging to ntr − SVR. Then,
from the above observations, it is clear that only the case (2.b.1) is admissible, in which
case σ = α −m2, and (2.3.84) is satisfied by x. Using x(t) = lx(t), from (2.3.84) we have

(2.3.88) lx(t) ∼W1/α
1 H1(t), t→∞,

where W1 is given by (2.3.68) and H1 is defined by (2.3.85). Then, (2.3.88) is transformed
into the following differential asymptotic relation for H1,

(2.3.89) H1(t)−
β
α H′1(t) ∼Wβ/α

1 R(t)−m2lp(t)
1−α

α(2α+1) lq(t)1/α, t→∞.

From (2.3.57), since limt→∞ x(t) = ∞, we have limt→∞H1(t)
α−β
α = ∞. Integrating (2.3.89)

on [t0, t], in view of the relation (2.3.66) and the notation (2.3.68), we find

α
α − β

H1(t)
α−β
α ∼Wβ/α

1 Q1(t) ∼Wβ/α
1

∫ t

t0

R(s)−m2lp(s)
1−α

α(2α+1) lq(s)1/αds, t→∞.

This implies that the second condition in (2.3.60) is satisfied and with (2.3.88) implies

(2.3.90) x(t) ∼W
1
α−β

1

(
α − β

α
Q1(t)

) α
α−β

, t→∞.

Note that in Lemma 2.3.5 we have obtained the expression (2.3.67) for Y1 given by
(2.3.61). Therefore, (2.3.90) in fact proves that x(t) ∼ Y1(t), t → ∞, completing the
”only if” part of Theorem 2.3.4.

Remark 2.3.1 From the previous observation, we see that Y1 is not onlySVR but ntr − SVR.

Next, let x be a type (I2) intermediate solution of (E1) belonging toRVR(ρ) for some
ρ ∈ (0,m2). Clearly, only the case (2.b.2) can hold and hence x satisfies the asymptotic
relation (2.3.86) and ρ is given by (2.3.20). An elementary computation shows that

0 < ρ < m2 ⇒ α −m2 < σ < α + m2(α − β − 1),

showing that the range of σ is given by (2.3.62). In view of (2.3.27) and (2.3.87), we
conclude from (2.3.86) that x enjoys the asymptotic behavior x(t) ∼ Y2(t), t→∞, where
Y2 is given by (2.3.63). This proves the “only if” part of the Theorem 2.3.5.

Finally, let x is a type (I2) intermediate solution of (E1) belonging toRVR(m2). Since
only the case (2.a) is possible for x, it satisfies (2.3.81), where H3 is defined by (2.3.80),
implying ρ = m2 and σ = α + m2(α − β − 1). Using x(t) = R(t)m2lx(t), (2.3.81) can be
expressed as

(2.3.91) lx(t) ∼W1/α
3 lp(t)

1
2α+1 H3(t), t→∞,
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where W3 is defined by (2.3.76), implying the differential asymptotic relation

(2.3.92) −H3(t)−
β
α H′3(t) ∼W

β

α2

3 R(t)−m2lp(t)
β+1−2α
α(2α+1) lq(t)1/α, t→∞.

From (2.3.5) and (2.3.81), since limt→∞ψ2(t)−1x(t) = 0, where ψ2(t) = t, we have
that limt→∞H3(t)

α−β
α = 0, implying that the left-hand side od (2.3.92) is integrable over

[t,∞). In view of (2.3.73) and (2.3.74), integration of (2.3.92) implies

(2.3.93)
α

α − β
H3(t)

α−β
α ∼W

β

α2

3

∫
∞

t
R(s)−m2lp(s)

β+1−2α
α(2α+1) lq(s)1/αds = W

β

α2

3 Q3(t), t→∞.

Therefore, the second condition in (2.3.64) is satisfied. Combining (2.3.93) with (2.3.91),
using the expression (2.3.75), we find that

x(t) ∼W
1
α−β

3 R(t)m2lp(t)
1

2α+1

(
α

α − β
Q3(t)

) α
α−β

∼ Y3(t), t→∞.

Thus the “only if” part of the Theorem 2.3.6 has been proved.

Proof of the “if” part of Theorem 2.3.4, 2.3.5 and 2.3.6: Suppose that (2.3.60) or (2.3.62)
or (2.3.64) holds. From Lemmas 2.3.5, 2.3.6 and 2.3.7 it is known that Yi, i = 1, 2, 3,
defined by (2.3.61), (2.3.63) and (2.3.65) satisfy the asymptotic relation (2.3.59). We
perform the simultaneous proof for Yi, i = 1, 2, 3 so the subscripts i = 1, 2, 3 will be
deleted in the rest of the proof. By (2.3.59), there exists T0 > a such that∫ t

T0

∫
∞

s

(
1

p(r)

∫ r

T0

(r − u)q(u)Y(u)β du
)1/α

dr ds ≤ 2Y(t), t ≥ T0.

Let such a T0 be fixed. We may assume that Y is increasing on [T0,∞). Since (2.3.59)
holds with b = T0, there exists T1 > T0 such that∫ t

T0

∫
∞

s

(
1

p(r)

∫ r

T0

(r − u)q(u)Y(u)β du
)1/α

dr ds ≥
Y(t)

2
, t ≥ T1.

Choose positive constants k and K such that

k1− βα ≤
1
2
, K1− βα ≥ 4, 2kY(T1) ≤ KY(T0).

Considering the integral operator

Hy(t) = y0 +

∫ t

T0

∫
∞

s

(
1

p(r)

∫ r

T0

(r − u)q(u) y(u)β du
)1/α

dr ds, t ≥ T0,
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where y0 is a constant such that kY(T1) ≤ y0 ≤
K
2

Y(T0), we may verify that H is a
continuous self-map on the set

Y = {y ∈ C[T0,∞) : kY(t) ≤ y(t) ≤ KY(t), t ≥ T0},

and thatH sends Y into a relatively compact subset of C[T0,∞). Thus,H has a fixed
point y ∈ Y, which generates a solution of the equation (E1) of the type (I2) satisfying

0 < lim inf
t→∞

y(t)
Y(t)

≤ lim sup
t→∞

y(t)
Y(t)

< ∞.

Denoting

L(t) =

∫ t

a

∫
∞

s

( 1
p(r)

∫ r

a
(r − u)q(u)Y(u)β du

)1/α
dr ds

and using Y(t) ∼ L(t) as t→∞we obtain

0 < lim inf
t→∞

y(t)
L(t)
≤ lim sup

t→∞

y(t)
L(t)

< ∞.

Then, proceeding exactly as in the proof of the ”if” part of Theorems 2.3.1–2.3.3, with
the application of Theorem 1.1.7, we conclude that y(t) ∼ L(t) ∼ Y(t), t→∞. Therefore,
y is a generalized regularly varying solution with respect to R with requested regularity
index and with the asymptotic representation (2.3.61), (2.3.63), (2.3.65) depending on
if q ∈ RVR(σ) satisfies, respectively, (2.3.60) or (2.3.62) or (2.3.64). Thus, the “if part”
of Theorems 2.3.4, 2.3.5 and 2.3.6 has been proved.

2.4 Asymptotic behavior of intermediate regularly
varying solutions

The final section is concerned with the equation (E1) whose coefficients p and q are
regularly varying functions (in the sense of Karamata). It is natural to expect that such
an equation may possess regularly varying intermediate solutions. Our purpose here
is to show that the problem of getting necessary and sufficient conditions for the exis-
tence of intermediate solutions, which are regularly varying in the sense of Karamata,
can be embedded in the framework of generalized regularly varying functions, so that
the results of the preceding section provide full information about the existence and
the precise asymptotic behavior of intermediate regularly varying solutions of (E1) .

We assume that p and q are regularly varying functions of indices η and σ, respec-
tively, i.e.,

(2.4.1) p(t) = tηlp(t), q(t) = tσlq(t), lp, lq ∈ SV,
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2. Fourth order nonlinear differential equations

and seek regularly varying solutions x of (E1) expressed in the from

(2.4.2) x(t) = tρlx(t), lx ∈ SV.

Note first that the condition (C) holds only if we assume that η ≥ 1 + 2α. Since R is
defined by (2.3.1), due to (2.4.1), it takes the form

R(t) =

(∫
∞

t
s
α+1−η
α lp(s)−1/αds

)−1

.

It is easy to see that

(2.4.3) R ∈ SV if η = 2α + 1 and R ∈ RV
(
η − 1 − 2α

α

)
if η > 2α + 1.

An important remark is that the possibility η = 2α + 1 should be excluded. If this
equality holds, then R is slowly varying by (2.4.3), and this fact prevents p from being
a generalized regularly varying function with respect to R. In fact, if p ∈ RVR(η∗)
for some η∗, then there exists f ∈ RV(η∗) such that p(t) = f (R(t)), which implies that
p ∈ SV. But this contradicts the hypothesis that p ∈ RV(η) = RV(2α + 1). Thus, the
case η = 2α + 1 is impossible, and so η must be restricted to

(2.4.4) η > 1 + 2α,

in which case R satisfies

(2.4.5) R(t) ∼
η − 2α − 1

α
t
η−2α−1

α lp(t)1/α, t→∞.

Since R is monotone increasing, its inverse function R−1(t) is a regularly varying of
index α/(η−2α−1). Therefore, any regularly varying function of index λ is considered
as a generalized regularly varying function with respect to R which regularity index
is αλ/(η − 2α − 1), and conversely, any generalized regularly varying function with
respect to R of index λ∗ is regarded as a regularly varying function in the sense of
Karamata of index λ = λ∗(η − 2α − 1)/α. It follows from (2.4.1) and (2.4.2) that

p ∈ RVR

(
αη

η − 2α − 1

)
, q ∈ RVR

(
ασ

η − 2α − 1

)
, x ∈ RVR

(
αρ

η − 2α − 1

)
.

Put
η∗ =

αη

η − 2α − 1
, σ∗ =

ασ
η − 2α − 1

, ρ∗ =
αρ

η − 2α − 1
.

Note that (2.4.4) implies η > α because α > 0 and that the two constants given by
(2.3.8) are reduced to

m1(α, η∗) =
2α − η

η − 2α − 1
, m2(α, η∗) =

α
η − 2α − 1

.
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2.4. Asymptotic behavior of intermediate RV-solutions

It turns out therefore that any type (I1) intermediate regularly varying solution of
(E1) is a member of one of the next three classes

RV

(
2α − η
α

)
, RV(ρ), ρ ∈

(
2α − η
α

,
1 + 2α − η

α

)
, ntr − RV

(
1 + 2α − η

α

)
,

while any type (I2) intermediate regularly varying solution belongs to one of the three
classes

ntr − SV, RV(ρ), ρ ∈ (0, 1), RV(1).

Based on the above observations we are able to apply our main results in Section
3, establishing necessary and sufficient conditions for the existence of intermediate
regularly varying solutions of (E1) and determining the asymptotic behavior of all
such solutions explicitly.

First, we state the results on the type (I1) intermediate solutions that can be derived
as corollaries of Theorems 2.3.1, 2.3.2 and 2.3.3.

Theorem 2.4.1 Assume that p ∈ RV(η) and q ∈ RV(σ). The equation (E1) possess interme-
diate solutions belonging to RV

(
2α−η
α

)
if and only if

σ =
β

α
η − 2β − 2 and

∫
∞

a
tq(t)ϕ1(t)β dt = ∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X1(t) as t → ∞,
where X1 is given by (2.3.18).

Theorem 2.4.2 Assume that p ∈ RV(η) and q ∈ RV(σ). The equation (E1) possess interme-
diate regularly varying solutions of index ρ with ρ ∈

(
2α−η
α , 1+2α−η

α

)
if and only if

β

α
η − 2β − 2 < σ <

β

α
(η − 1) − 2β − 1,

in which case ρ is given by

(2.4.6) ρ =
2α − η + σ + 2

α − β

and any such solution x enjoys one and the same asymptotic behavior

x(t) ∼
(

t2 p(t)−1 q(t)(
ρ(ρ − 1)

)α (
2α − η

) (
ρα + η − 1 − 2α

)) 1
α−β

, t→∞.
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Theorem 2.4.3 Assume that p ∈ RV(η) and q ∈ RV(σ). The equation (E1) possess interme-
diate solutions belonging to ntr − RV

(
1+2α−η

α

)
if and only if

σ =
β

α
(η − 1) − 2β − 1 and

∫
∞

a
q(t)ϕ2(t)β dt < ∞.

Any such solution x enjoys one and the same asymptotic behavior x(t) ∼ X3(t) as t → ∞,
where X3 is given by (2.3.23).

To prove Theorem 2.4.1 and 2.4.3 we need only to check that

σ∗ = −m1(α, η∗)β − 2m2(α, η∗) ⇔ σ =
β

α
η − 2β − 2,

σ∗ = β −m2(α, η∗) ⇔ σ =
β

α
(η − 1) − 2β − 1,

and to prove Theorem 2.4.2 it suffices to note that

ρ∗ =
σ∗ + m2(α, η∗) − α

α − β
⇔ ρ =

2α + σ − η + 2
α − β

,

and to combine the relation (2.4.5) with the equality

α2m2(α, η∗)−
2(α+1)2

2α+1

[
(m1(α, η∗) − ρ∗)(ρ∗ + 1)

(
(ρ∗ −m2(α, η∗)ρ∗

)α]
= (2α − η)(ρα + η − 1 − 2α)(ρ(ρ − 1))α.

Similarly, we are able to gain a thorough knowledge of type-(I2) intermediate
regularly varying solutions of (E1) from Theorems 2.3.4, 2.3.5 and 2.3.6.

Theorem 2.4.4 Assume that p ∈ RV(η) and q ∈ RV(σ). The equation (E1) possess interme-
diate nontrivial slowly varying solutions if and only if

σ = η − 2α − 2 and
∫
∞

a
t
(

1
p(t)

∫ t

a
(t − s) q(s) ds

)1/α

dt = ∞.

The asymptotic behavior of any such solution x is governed by the unique formula x(t) ∼ Y1(t),
t→∞, where Y1 is given by (2.3.61).

Theorem 2.4.5 Assume that p ∈ RV(η) and q ∈ RV(σ). The equation (E1) possess interme-
diate regularly varying solutions of index ρ with ρ ∈ (0, 1) if and only if

η − 2α − 2 < σ < η − α − β − 2,

in which case ρ is given by (2.4.6) and the asymptotic behavior of any such solution x is
governed by the unique formula

x(t) ∼
(

t2 p(t)−1 q(t)(
ρ(1 − ρ)

)α (
η − 2α

) (
ρα + η − 1 − 2α

)) 1
α−β

, t→∞.
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2.5. Complete structure of the class of RV-solutions

Theorem 2.4.6 Assume that p(t) ∈ RV(η) and q(t) ∈ RV(σ). The equation (E1) possess
intermediate regularly varying solutions of index 1 if and only if

σ = η − α − β − 2 and
∫
∞

a

(
1

p(t)

∫ t

a
(t − s)sβq(s)ds

)1/α

dt < ∞.

The asymptotic behavior of any such solution x is governed by the unique formula x(t) ∼ Y3(t),
t→∞, where Y3 is given by (2.3.65).

2.5 Complete structure of the class of regularly varying
solutions

Theorems 2.4.1−2.4.6 combined with Theorems 2.2.1−2.2.4 enable us to describe in
full details the structure of RV-solutions of the equation (E1) with RV-coefficients.
Let p ∈ RV(η), q ∈ RV(σ). Denote with R the set of all regularly varying solutions of
(E1) and define the subsets

R(ρ) = R ∩ RV(ρ), tr − R(ρ) = R ∩ tr − RV(ρ), ntr − R(ρ) = R ∩ ntr − RV(ρ).

(i) If σ < β
αη − 2β − 2, or σ =

β
αη − 2β − 2 and J3 < ∞, then

R = tr − R
(

2α − η
α

)
∪ tr − R

(
1 + 2α − η

α

)
∪ tr − R(0) ∪ tr − R(1).

(ii) If σ =
β
αη − 2β − 2 and J3 = ∞, then

R = R

(
2α − η
α

)
∪ tr − R

(
1 + 2α − η

α

)
∪ tr − R(0) ∪ tr − R(1).

(iii) If σ ∈
(
β
αη − 2β − 2, βα (η − 1) − 2β − 1

)
, then

R = R

(
σ + 2α + 2 − η

α − β

)
∪ tr − R

(
1 + 2α − η

α

)
∪ tr − R(0) ∪ tr − R(1).

(iv) If σ =
β
α (η − 1) − 2β − 1 and J4 < ∞, then

R = tr − R
(

1 + 2α − η
α

)
∪ ntr − R

(
1 + 2α − η

α

)
∪ tr − R(0) ∪ tr − R(1).
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2. Fourth order nonlinear differential equations

(v) If σ =
β
α (η − 1) − 2β − 1 and J4 = ∞, or σ ∈

(
β
α (η − 1) − 2β − 1, η − 2α − 2

)
, or

σ = η − 2α − 2 and J1 < ∞, then

R = tr − R(0) ∪ tr − R(1).

(vi) If σ = η − 2α − 2 and J1 = ∞, then

R = ntr − R(0) ∪ tr − R(1).

(vii) If σ ∈
(
η − 2α − 2, η − α − β − 2

)
, then

R = R

(
σ + 2α + 2 − η

α − β

)
∪ tr − R(1).

(viii) If σ = η − α − β − 2 and J2 < ∞, then

R = tr − R(1) ∪ R(1).

(ix) If σ = η − α − β − 2 and J2 = ∞, or σ > η − α − β − 2, then R = ∅.

52



Chapter 3
Second order Emden-Fowler type
difference equation

3.1 Introduction

In this chapter we are considering the nonlinear difference equation of the second
order

(E2) ∆(p(n)|∆x(n)|α−1∆x(n)) = q(n)|x(n + 1)|β−1x(n + 1), n ≥ 1,

in the sublinear case i.e. for α > β > 0, p = {p(n)}, q = {q(n)} are positive real sequences
and ∆ is forward difference operator defined as ∆x(n) = x(n + 1) − x(n). In the case
0 < α < β equation is referred as superlinear, while if α = β > 0 then equation (E2) is
called half-linear.

The equation (E2) is one of the most frequently studied nonlinear difference equa-
tions in the existing literature. Considering system of two first-order difference equa-
tions which leads to the equation (E2) , Agarwal, Li and Pang in [4] have shown that all
solutions (except trivial) are nonoscillatory. Usually, the equation (E2) is considered
depending on the convergence or divergence of the series

S =

∞∑
n=1

1
p(n)1/α ,

depending on which we have differently classification of positive solutions according
to their asymptotic behavior in infinity. The classification of solutions and the existence
of nonoscillatory solutions were studied in [4, 14–16, 23, 24, 123, 124, 131, 136] and
references therein. These results are summarized in Section 3.2. Other interesting
contributions can be found also in monographs [1,2]. It well known that the problem of
determining the conditions for the existence of extremal solutions (strongly decreasing
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3. Second order Emden-Fowler type difference equation

and strongly increasing solutions) is in most cases very difficult and mostly, only
necessary or sufficient conditions are known. Namely, in the existing literature there
are almost no results for the existence of strongly decreasing solutions of sublinear
equation (E2) , while for the existence of strongly increasing solutions of sublinear
equation (E2) only sufficient conditions are known. On the other hand, asymptotic
formulas are not known for any of the mentioned two types of solutions. Because of
that, assuming that coefficients of the equation (E2) are regularly varying sequences,
in sections 3.3 and 3.4, both necessary and sufficient conditions for the existence of
extremal solutions will be presented and their precise asymptotic formulas will be
given. In Section 3.5 the complete structure of a set of regularly varying solutions will
be presented, while in Section 3.6 the main results will be illustrated with examples.

The obtained results represent a continuation of the application of the discrete
theory of regular variation in the asymptotic analysis of difference equations, initiated
by Matucci and Rehak in [96]. Except in the mentioned paper, theory of regularly
varying sequences has been further developed and applied in the asymptotic analysis
of second-order linear and half-linear difference equations in succeeding papers [97–
100, 114, 115] of Matucci and Rehak. However, theory of regularly varying sequences
has not been applied in the asymptotic analysis of nonlinear difference equations
except by Agarwal and Manojlović in [7].

Presented results are original results published in the papers [62, 63].

3.2 Classification of positive solutions of (E2)

By a solution of (E2) we mean a not trivial real sequence x = {x(n)} satisfying (E2) .
A solution x of the equation (E2) is called oscillatory if for every M ∈ N there exist
m,n ∈N,M ≤ m < n such that xmxn < 0, otherwise, it is called nonoscillatory. In other
words, a solution x is called nonoscillatory if it is eventually positive or eventually
negative. It is known that every solution of (E2) is nonoscillatory. If x = {x(n)} is
a solution of (3.1.1), then clearly −x = {−x(n)} is also a solution. Thus, in studying
nonoscillatory solutions of (E2) , for the sake of simplicity, we restrict ourselves to
solutions which are eventually positive. Any such solution {x(n)} is eventually strongly
monotone and belongs to one of the two classes listed below (see [14, Lemma 1]):

M+ = {x solution of (E2) | ∃n0 ≥ 1 : x(n) > 0, ∆x(n) > 0, for n ≥ n0} ,

M− = {x solution of (E2) | x(n) > 0, ∆x(n) < 0, for n ≥ 1} .

It is well-known that the differential equation

(3.2.1)
(
p(t)|x′|α−1 x′

)
= q(t)|x|β−1 x, α, β > 0 ,

where p, q are continuous positive functions on [a,∞), may have a nontrivial solution
x, with the property that there exists Tx < ∞, such that x(t) ≡ 0 on [Tx,∞). Such a
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solution is said to be an extinct singular solution or singular solution of the first kind.
On the contrary, such solutions of the difference equation (E2) do not exist. Also,
singular solutions of the second kind, i.e. solutions that are not extendable to infinity, do
not exist in the discrete case. One more difference between differential and difference
equations is that for the differential equation (3.2.1) classesM+ andM− can be empty
(see for example [66]), while for the difference equation (E2) , this case cannot occur
(see [2, Theorem 5.3.3] and [14]).

For any solution x of (E2) denote by x[1] =
{
x[1](n)

}
its quasi-difference x[1](n) =

p(n)|∆x(n)|α−1∆x(n). Thus, the classes M+ and M− can be a-priori divided into the
following subclasses:

M+
∞,∞ = {x ∈M+ : lim

n
x(n) = ∞, lim

n
x[1](n) = ∞, } ,

M+
∞,l = {x ∈M+ : lim

n
x(n) = ∞, lim

n
x[1](n) = l, 0 < l < ∞} ,

M+
k,∞ = {x ∈M+ : lim

n
x(n) = k, 0 < k < ∞, lim

n
x[1](n) = ∞} ,

M+
k,l = {x ∈M+ : lim

n
x(n) = k, 0 < k < ∞, lim

n
x[1](n) = l, 0 < l < ∞} ,

M−k,l = {x ∈M− : lim
n

x(n) = k, 0 < k < ∞, lim
n

x[1](n) = −l, 0 < l < ∞} ,

M−0,l = {x ∈M− : lim
n

x(n) = 0, lim
n

x[1](n) = −l, 0 < l < ∞}

M−k,0 = {x ∈M− : lim
n

x(n) = k, 0 < k < ∞, lim
n

x[1](n) = 0} ,

M−0,0 = {x ∈M− : lim
n

x(n) = 0, lim
n

x[1](n) = 0} .

A solution x ∈M+
∞,∞ is said to be strongly increasing and a solution x ∈M−0,0 is said to

be strongly decreasing or strongly decaying. For solutions which tend to some constant
we useM−B =M−k,0 ∪M

−

k,l,M
+
B =M+

k,∞ ∪M
+
k,l and for decreasing solutions which tend

to zero we use M−0 = M−0,l ∪M
−

0,0. Solutions in M−B and M+
B are called asymptotically

constant solutions, while solutions inM−0 are called decaying solutions.
Depending on whether S = ∞ or S < ∞ some of the above classes may be empty.

(i) If S = ∞ then

M+ =M+
∞,∞ ∪M

+
∞,l and M− =M−k,0 ∪M

−

0,0, i.e. M+
B = ∅ , M−0,l ∪M

−

k,l = ∅.

(ii) If S < ∞ then

M+ =M+
∞,∞ ∪M

+
B and M− =M−0 ∪M

−

B , i.e. M+
∞,l = ∅.

The asymptotic behavior of solutions inM− depends on series:

I1 =

∞∑
n=1

 1
p(n)

∞∑
k=n

q(k)


1
α

, J1 =

∞∑
n=1

q(n)

 ∞∑
k=n

1
p(k + 1)1/α


β
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and the one of solutions inM+ depends on series

I2 =

∞∑
n=2

 1
p(n)

n−1∑
k=1

q(k)


1
α

, J2 =

∞∑
n=2

q(n)

 n−1∑
k=1

1
p(k + 1)1/α


β

.

Concerning the existence of solutions in the classes M+
B ,M

−

B ,M
+
∞,l and M−0,l, the

following holds.

Theorem 3.2.1 (i) ( [14, Theorem 2 and Theorem 5-(a)]) Equation (E2) has solutions in
M−B if and only if I1 < ∞.

(ii) ( [16, Theorem 2.2 and Theorem 3.1] and [83, Theorem 9]) Equation (E2) has
solutions inM−0,l if and only if J1 < ∞.

Theorem 3.2.2 (i) ( [15, Proposition 1 and Theorem 2]) Equation (E2) has solutions in
M+

B if and only if I2 < ∞.
(ii) ( [15, Theorem 5] and [4, Theorem 2]) Equation (E2) has solutions inM+

∞,l if and
only if J2 < ∞.

In both Theorems 3.2.1 and 3.2.2 statements (i) are valid for all positive α and β,
while statements (ii) are valid only in the sublinear case.

Theorem 3.2.3 ( [16, Corollary 3.3]) For equation (E2) the following hold:

(a) If I1 = ∞ and J1 = ∞ thenM− =M−0,0 , ∅;

(b) If I1 = ∞ and J1 < ∞ thenM−l = ∅,M−0,l , ∅;

(c) If I1 < ∞ and J1 = ∞ thenM−l , ∅,M
−

0,l = ∅;

(d) If I1 < ∞ and J1 < ∞ thenM−l , ∅,M
−

0,l , ∅.

In addition, for α ≤ β, we haveM−0,0 = ∅ in claims (b) − (d).

Theorem 3.2.4 ( [15, Theorem 7]) For equation (E2) the following hold:

(a) If I2 = ∞ and J2 = ∞ thenM+ =M+
∞,∞ , ∅;

(b) If I2 = ∞ and J2 < ∞ thenM+
l = ∅,M+ =M+

∞,l , ∅;

(c) If I2 < ∞ thenM+
l , ∅,M

+
∞,l = ∅.

In addition, for α ≥ β, we haveM+
∞,∞ = ∅ in claims (b), (c).
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3.3. Strongly decreasing solutions

As we see from Theorem 3.2.3, it is an open problem whether it is true thatM−0,0 ,
∅ in cases (b) − (d) if α > β. The existence of strongly decreasing solutions in the
continuous case, that is for the differential equation (3.2.1), can be proved as in [121]
with the help of fixed point theory by proving that the operator

(F x) (t) =

∫
∞

t

(
1

p(s)

∫
∞

s
q(r)x(r)β dr

) 1
α

ds

has a nonzero fixed point. To this end the operator F acts on the set

Ω = {x ∈ C[t0,∞] : z(t) ≤ x(t) ≤ z(t0), t ≥ t0} ,

where z is a singular solution of the first kind of (3.2.1). The second approach, due
to [104], is to construct the sequence {x(n)} of asymptotically constant solutions of the
differential equation (3.2.1), having the limit function x, and it gives rise to a positive
strongly decreasing solution of (3.2.1). This approach, however, requires lower bound
for such a sequence of solutions, which is again given by a singular solution of the first
kind of (3.2.1). Clearly, due to the nonexistence of singular solutions in the discrete
case, neither of these two approaches work. Therefore, in Section 3.3 we will give the
necessary and sufficient conditions that the equation (E2) has solutions in classM−0,0,
but limiting ourself to the case when the coefficients of the observed equation are
regularly varying sequences. In addition, we will be able to give a precise asymptotic
representation of these solutions.

Regarding the existence of strongly increasing solutions, there are only partial
results given in Theorem 3.2.4. Therefore, continuing in this direction, in section 3.4
the necessary and sufficient conditions for the existence of a regularly varying solution
of the equation (E2) , whose coefficients are regularly varying sequences, will be given,
and precise asymptotic formulas of strongly increasing solutions will be obtained.

3.3 Strongly decreasing solutions

In what follows we assume that p ∈ RV(η), q ∈ RV(σ) and use expressions

(3.3.1) p(n) = nηξ(n) q(n) = nσω(n), ξ = {ξ(n)}, ω = {ω(n)} ∈ SV ,

considering strongly decreasing RV−solutions expressed as

(3.3.2) x(n) = nρl(n), l = {l(n)} ∈ SV .

Moreover, we assume that η , α and distinguish two mutually exclusive cases:

(3.3.3)
(i) η < α implying that S = ∞;

(ii) η > α implying that S < ∞.
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3. Second order Emden-Fowler type difference equation

Case (i): It is clear that for any strongly decreasing solution of (E2) it holds that

x(n) ≤ c, for large n. Thus, we have that the index of regularity ρ of strongly decreasing
RV−solution x must satisfy ρ ≤ 0. If ρ = 0 then l(n) = x(n) → 0, so x is a member of
ntr − SV.

Case (ii): Using (3.3.1) and Theorem 1.3.5 we have

(3.3.4) π(n) =

∞∑
k=n

1
p(k)1/α =

∞∑
k=n

k−
η
αξ(k)−

1
α ∼

α
η − α

n
α−η
α ξ(n)−

1
α =

α
η − α

·
n

p(n)1/α ,

as n→∞, so that {π(n)} ∈ RV
(
α−η
α

)
. For any strongly decreasing solution x of (E2) , by

application of Lemma 1.1.9, we have that

lim
n→∞

x(n)
π(n)

= lim
n→∞

∆x(n)

−p(n)−
1
α

= lim
n→∞

(
x[1](n)

) 1
α

= 0 ,

implying that the index of regularity ρ of strongly decreasing solutions must satisfy
ρ ≤ α−η

α .
If η < α, the totality of strongly decreasing RV−solutions will be divided into the

following two classes

ntr − SV or RV(ρ) with ρ < 0,

while, if η > α, the totality of strongly decreasingRV−solutions of (E2) will be divided
into the following two subclasses:

RV

(α − η
α

)
or RV(ρ) with ρ <

α − η

α
.

Our purpose is to show that all solutions in each of these four subclasses of strongly
decreasing RV−solutions of (E2) enjoy one and the same asymptotic behavior as
n→∞,whereby the regularity index of such a solution is uniquely determined by α, β
and the regularity indices η, σ of coefficients p, q. Moreover, necessary and sufficient
conditions for the existence of solutions, belonging to these four subclasses of strongly
decreasing RV−solutions will be established.

3.3.1 Existence of strongly decreasing solutions

Sufficient conditions for the existence of a strongly decreasing solution of the differ-
ential equation (3.2.1) are given by the following theorem:
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Theorem 3.3.1 (i) ( [104, Theorem 3.2], [22, Proposition 2-(e)]) Let
∫
∞

a
p(t)−

1
α dt = ∞,

a ≥ 0. If ∫
∞

a

(
1

p(t)

∫
∞

t
q(s)ds

) 1
α

dt < ∞,

then equation (3.2.1) has a strongly decreasing solution.
(ii) ( [121, Theorem 4.3]) Let

∫
∞

a
p(t)−

1
α dt < ∞, a ≥ 0. If∫

∞

a
q(t)

∫ ∞

t

ds

p(s) 1
α

β dt < ∞,

then equation (3.2.1) has a strongly decreasing solution.

According to these continuous results, it is expected that in the discrete case, the
existence of strongly decreasing solution is characterized by the assumption I1 < ∞ if
S = ∞ and by the assumption J1 < ∞ if S < ∞. In fact, we prove

Theorem 3.3.2 Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. If I1 < ∞, thenM−0,0 , ∅.
(ii) Let η > α. If J1 < ∞, thenM−0,0 , ∅.

First of all, let us notice that if η < α, then σ < −1 is a necessary condition for
I1 < ∞. Then, using discrete Karamata theorem, (3.3.1) and (3.3.4), we have 1

p(k)

∞∑
j=k

q( j)


1
α

∼
1

(−(σ + 1)) 1
α

(
kσ+1−ηω(k)
ξ(k)

) 1
α

, k→∞ .

On the other hand, if η > α application of discrete Karamata theorem gives

q(k)

 ∞∑
j=k

1
p( j)1/α


β

∼

(
α

η − α

)β
kσ+β−

β
α η

ω(k)
ξ(k)β/α

, k→∞.

Consequently,

(i) for η < α, I1 < ∞ if and only if

(3.3.5) σ < η − α − 1

or

(3.3.6) σ = η − α − 1 and
∞∑

k=1

k−1

(
ω(k)
ξ(k)

) 1
α

< ∞ ;
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3. Second order Emden-Fowler type difference equation

(ii) for η > α, J1 < ∞ if and only if

(3.3.7) σ <
βη

α
− β − 1

or

(3.3.8) σ =
βη

α
− β − 1 and

∞∑
k=1

k−1 ω(k)
ξ(k)β/α

< ∞ .

Taking into account the previous consideration, Theorem 3.3.2 will be proved by
considering the above four cases.

Theorem 3.3.3 Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. If (3.3.5) holds, then equation (E2) possesses a solution x ∈M−0,0.
(ii) Let η > α. If (3.3.7) holds, then equation (E2) possesses a solution x ∈M−0,0.

Proof. Suppose either η < α and (3.3.5) holds or η > α and (3.3.7) holds. Denote

(3.3.9) X(n) =
[ nα+1p(n)−1q(n)(
−ρ

)α (α − η − ρα)

] 1
α−β

, n ≥ 1,

and λ =
(
−ρ

)α (α − η − ρα), where ρ is given by

(3.3.10) ρ =
σ + α + 1 − η

α − β
.

Clearly, X = {X(n)} ∈ RV(ρ) and it may be expressed in the form

(3.3.11) X(n) = λ−
1
α−βnρ

(
ω(n)
ξ(n)

) 1
α−β

.

Notice that (3.3.5) and (3.3.10) imply that ρ < 0, while (3.3.7) and (3.3.10) imply that
ρ < α−η

α , so that by Theorem 1.3.3-(v),(vii), X(n)→ 0 as n→∞ and {X(n)} is eventually
decreasing, in both cases (i) and (ii).

Let us first prove that the sequence X satisfies the asymptotic relation

(3.3.12)
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)X( j + 1)β


1
α

∼ X(n), n→∞.
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Using (3.3.1), by application of Theorem 1.3.3-(iii) and Theorem 1.3.5-(ii), we get

(3.3.13)

∞∑
k=n

q(k)X(k + 1)β ∼ λ−
β
α−β

∞∑
k=n

kσ+ρβξ(k)−
β
α−βω(k)

α
α−β

= λ−
β
α−β

∞∑
k=n

kα(ρ−1)+η−1ξ(k)−
β
α−βω(k)

α
α−β

∼ λ−
β
α−β

nα(ρ−1)+ηξ(n)−
β
α−βω(n)

α
α−β

−(α(ρ − 1) + η)
, n→∞.

Notice that α(ρ − 1) + η < 0 in both cases (i) and (ii). From (3.3.13), applying Theorem
1.3.5-(ii), we obtain the desired asymptotic relation for X:

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)X( j + 1)β


1
α

∼

 λ−
β
α−β

α(1 − ρ) − η


1
α ∞∑

k=n

kρ−1

(
ω(k)
ξ(k)

) 1
α−β

∼

 λ−
β
α−β

α(1 − ρ) − η


1
α

nρ

−ρ

(
ω(n)
ξ(n)

) 1
α−β

= λ−
β

α(α−β) · λ−
1
α nρ

(
ω(n)
ξ(n)

) 1
α−β

= X(n),

as n→∞ . Thus, there exists n0 > 1 such that

(3.3.14)

X(n + 1) ≤ X(n) and

1
2

X(n) ≤
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)X( j + 1)β


1
α

≤ 2X(n), for n ≥ n0 .

Let such n0 be fixed. We choose constants κ ∈ (0, 1) and K > 1 such that

(3.3.15) κ1− βα ≤
1
2

and K1− βα ≥ 2 .

Consider the space Υn0 of all real sequences x = {x(n)}∞n=n0
such that {x(n)/X(n)} is

bounded. Then, Υn0 is a Banach space, endowed with the norm

||x|| = sup
n≥n0

x(n)
X(n)

.

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: for x, y ∈ Υn0 ,
x ≤ y means x(n) ≤ y(n) for all n ≥ n0. Define the subset X ⊂ Υn0 by

(3.3.16) X = {x ∈ Υn0 : κX(n) ≤ x(n) ≤ KX(n), n ≥ n0 }.
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3. Second order Emden-Fowler type difference equation

For any subset B ⊂ X, it is obvious that inf B ∈ X and sup B ∈ X. Next, define the
operator F : X → Υn0 by

(3.3.17)
(
F x

)
(n) =

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)x( j + 1)β


1
α

, n ≥ n0,

and show that F has a fixed point by using Theorem 1.1.1. Namely, the operator F
has the following properties:

(i) Operator F maps X into itself: Let x ∈ X. Using (3.3.14), (3.3.15), (3.3.16) and
(3.3.17), we get

(F x)(n) ≤ K
β
α

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)X( j + 1)β


1
α

≤ 2K
β
αX(n) ≤ K X(n), n ≥ n0 .

(F x)(n) ≥ κ
β
α

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)X( j + 1)β


1
α

≥ κ
β
α

X(n)
2
≥ κX(n), n ≥ n0 .

This shows that (F x)n ∈ X, for all n ≥ n0, that is, F (X) ⊂ X.

(ii) Operator F is increasing, i.e. for any x, y ∈ X, x ≤ y implies F x ≤ F y.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ X of F , satisfying

(3.3.18) x(n) =

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)x( j + 1)β


1
α

, n ≥ n0 .

It is clear in view of (3.3.16) and the fact that X(n) → 0, n → ∞, that x is a positive
solution of (E2) which satisfies x(n) → 0, n → ∞. Moreover, due to (3.3.11), (3.3.14)
and (3.3.16), we have

(3.3.19) p(n)(−∆x(n))α ≤ Kβ
∞∑

k=n

q(k)X(k + 1)β ≤ m
∞∑

k=n

kσ+ρβ f (k),

where

f (k) =

(
ω(k)α

ξ(k)β

) 1
α−β

, f = { f (k)} ∈ SV and m = Kβλ−
β
α−β .

Since, η < α and (3.3.5) as well as η > α and (3.3.7) imply that σ+ρβ < −1, from (3.3.19)
we conclude that x[1](n)→ 0, n→∞, that is x ∈M−0,0. �
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Theorem 3.3.4 Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). If (3.3.6) holds, then there
exists x ∈M−0,0.

Proof. Suppose (3.3.6) holds. Define sequences T = {T(n)} and G = {G(n)} by

(3.3.20) G(n) =

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α , T(n) =

α − βα
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)


1
α


α
α−β

,

for n ≥ 1 . Since the first condition from (3.3.6) implies σ < −1, application of Theorem
1.3.5 gives

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)


1
α

∼
1

(α − η) 1
α

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α , n→∞,

so that

T(n) ∼
1

(α − η)
1
α−β

(
α − β

α

) α
α−β

G(n)
α
α−β , n→∞

Clearly, G ∈ ntr − SV and T ∈ ntr − SV. Applying Theorem 1.3.5-(ii) and using the
first condition from (3.3.6) we get

∞∑
k=n

q(k)T(k + 1)β ∼
1

(α − η)
α
α−β

(
α − β

α

) αβ
α−β

nη−αω(n)G(n)
αβ
α−β , n→∞.

Thus, by Theorem 1.3.4, the previous relation gives

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)T( j + 1)β


1
α

∼

(
(α − β)β

αβ(α − η)

) 1
α−β ∞∑

k=n

k−1

(
ω(k)
ξ(k)

) 1
α

G(k)
β
α−β

∼

(
(α − β)β

αβ(α − η)

) 1
α−β ∞∑

k=n

(−∆G(k)) · G(k)
β
α−β

∼
1

(α − η)
1
α−β

(
α − β

α

) α
α−β

G(n)
α
α−β ∼ T(n),

as n→∞. Consequently, we conclude that T satisfies the asymptotic relation (3.3.12).
The rest of the proof is the same as the proof of Theorem 3.3.3 where X(n) is replaced

with T(n). Then, a solution x of the equation (E2) satisfying κT(n) ≤ x(n) ≤ K T(n), for
large n, is obtained by the application of Knaster-Tarski fixed point theorem (Theorem
1.1.1) and belongs to the classM−0,0. �
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3. Second order Emden-Fowler type difference equation

Theorem 3.3.5 Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). If (3.3.8) holds, then there
exists x ∈M−0,0.

Proof. Suppose (3.3.8) holds. Using (3.3.1) and the assumption (3.3.8), we have that

∞∑
k=1

q(k)

 ∞∑
j=k

1
p(k)1/α


β

∼

(
α

η − α

)β ∞∑
k=1

kβq(k)p(k)−
β
α

=

(
α

η − α

)β ∞∑
k=1

k−1ω(k)ξ(k)−
β
α , n→∞ .

Define sequences Y = {Y(n)} and W = {W(n)} by

(3.3.21)

W(n) =

∞∑
k=n

k−1ω(k)ξ(k)−
β
α ,

Y(n) =

(
α

η − α

) α
α−β

(
α − β

α

) 1
α−β

n p(n)−
1
αW(n)

1
α−β , n ≥ 1 .

Note that W ∈ SV and since n p(n)−
1
α = n

α−η
α ξ(n)−

1
α , we see that Y ∈ RV

(
α−η
α

)
. Thus,

the application of Theorem 1.3.4 gives

∞∑
k=n

q(k)Y(k + 1)β ∼
(
α

η − α

) αβ
α−β

(
α − β

α

) β
α−β ∞∑

k=n

k−1ω(k)ξ(k)−
β
αW(k)

β
α−β

∼

(
α

η − α

) αβ
α−β

(
α − β

α

) β
α−β ∞∑

k=n

(−∆W(k)) ·W(k)
β
α−β

∼

(
α

η − α

) αβ
α−β

(
α − β

α

) α
α−β

W(n)
α
α−β , n→∞,

which yields with the help of Theorem 1.3.5-(ii)

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)Y( j + 1)β


1
α

∼

(
α

η − α

) β
α−β

(
α − β

α

) 1
α−β ∞∑

k=n

k−
η
αξ(k)−

1
αW(k)

1
α−β

∼

(
α

η − α

) α
α−β

(
α − β

α

) 1
α−β

n
α−η
α ξ(n)−

1
αW(n)

1
α−β = Y(n), n→∞.

Therefore, Y = {Y(n)} satisfies the asymptotic relation (3.3.12). Then, proceeding
exactly as in the proof of Theorem 3.3.3, replacing X(n) with Y(n), a solution x satisfying
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κY(n) ≤ x(n) ≤ K Y(n), for large n, is obtained by the application of Theorem 1.1.1, and
belongs to a classM−0,0. �

Proof of Theorem 3.3.2:
(i) Follows from Theorem 3.3.3-(i) and Theorem 3.3.4.
(ii) Follows from Theorem 3.3.3-(ii) and Theorem 3.3.5. �

3.3.2 Asymptotic representation of strongly decreasingRV-solutions

To simplify the “only if” part of the proof of main results we prove the next two
lemmas.

Lemma 3.3.1 Let p ∈ RV(η), η < α and q ∈ RV(σ). For any x ∈M−0,0∩RV(ρ) with ρ ≤ 0,
only one of the following two statements holds:
(i) ρ = 0 and

(3.3.22) x(n) ∼
1

(α − η) 1
α

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α l(k)

β
α , n→∞ .

Then, it is σ = η − α − 1 < −1.
(ii) ρ is given by (3.3.10) and

(3.3.23) x(n) ∼
[ nα+1p(n)−1q(n)
(−ρ)α(α − η − ρα)

] 1
α−β

, n→∞.

Then, it is σ < η − α − 1.

Proof. Suppose that (E2) has a solution x ∈ M−0,0 ∩ RV(ρ) with ρ ≤ 0, satisfying
x(n) > 0, ∆x(n) < 0 for n ≥ n0 + 1 ≥ 2 and expressed with (3.3.2). Summing (E2) for
k ≥ n ≥ n0, we get

p(n)(−∆x(n))α =

∞∑
k=n

q(k)x(k + 1)β ,

which yields, using (3.3.1) and (3.3.2)

(3.3.24) p(n)(−∆x(n))α ∼
∞∑

k=n

q(k)x(k)β =

∞∑
k=n

kσ+ρβω(k)l(k)β, n→∞.

The fact that x[1](n) = p(n)(−∆x(n))α → 0 as n→∞ implies

lim
n→∞

∞∑
k=n

kσ+ρβω(k)l(k)β = 0,
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3. Second order Emden-Fowler type difference equation

so it must be σ + ρβ ≤ −1. We are first considering the case σ + ρβ = −1. Then,

(3.3.25) p(n)(−∆x(n))α ∼
∞∑

k=n

k−1ω(k)l(k)β = Ω(n), n→∞,

where Ω = {Ω(n)} ∈ SV and Ω(n)→ 0, n→∞. Consequently

−∆x(n) ∼
(
Ω(n)
p(n)

) 1
α

= n−
η
αξ(n)−

1
αΩ(n)

1
α , n→∞.

Since limn→∞ x(n) = 0, summing previous relation from n to∞, we get

(3.3.26) x(n) ∼
∞∑

k=n

k−
η
α

(
Ω(k)
ξ(k)

) 1
α

, n→∞ ,

implying that 1 − η
α ≤ 0 i.e. η ≥ α which is a contradiction, so this case is impossible.

Therefore, σ + ρβ < −1. An application of Theorem 1.3.5-(ii) in (3.3.24) gives

(3.3.27) − ∆x(n) =

(
1

p(n)

∞∑
k=n

q(k)x(k + 1)β
) 1
α

∼
n
σ+ρβ+1−η

α ω(n)
1
αξ(n)−

1
α l(n)

β
α

(−(σ + ρβ + 1)) 1
α

,

as n→∞. Because x(n)→ 0, n→∞, summing (3.3.27) from n to∞we get

(3.3.28) x(n) ∼
∞∑

k=n

k
σ+ρβ+1−η

α ω(k)
1
αξ(k)−

1
α l(k)

β
α

(−(σ + ρβ + 1)) 1
α

, n→∞.

From the last relation we conclude that it must be (σ + ρβ + 1 − η)/α ≤ −1, so we
distinguish two possibilities:

(3.3.29) (a)
σ + ρβ + 1 − η

α
= −1, (b)

σ + ρβ + 1 − η
α

< −1 .

If (a) holds, then σ + ρβ + 1 = η − α. From (3.3.28), we get that (3.3.22) holds, and
according to Theorem 1.3.5-(iii), x ∈ SV. Thus, ρ = 0 and (a) implies that σ = η−α− 1.
On the other hand, if (b) holds, from (3.3.28), by Theorem 1.3.5-(ii), we obtain

(3.3.30) x(n) ∼
n
σ+ρβ+1−η

α +1ω(n)
1
αξ(n)−

1
α l(n)

β
α

(−(σ + ρβ + 1)) 1
α

(
−
σ+ρβ+1−η

α − 1
) , n→∞.

Thus it must be

(3.3.31) ρ =
σ + ρβ + 1 − η

α
+ 1,
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implying that the regularity index of x is given by (3.3.10). Combined this with the
assumption ρ < 0, we get that σ < η − α − 1. Moreover, using (3.3.10) i.e. (3.3.31), we
obtain

(3.3.32) (−(σ + ρβ + 1))
1
α

(
−
σ + ρβ + 1 − η

α
− 1

)
=

(
(α − η − ρα)(−ρ)α

) 1
α
,

and

(3.3.33) n
σ+ρβ+1−η

α +1ξ(n)−
1
αω(n)

1
α l(n)

β
α =

(
nα+1p(n)−1q(n)

) 1
α x(n)

β
α .

Then, from (3.3.30) we obtain that the asymptotic representation of x is given by
(3.3.23). �

Lemma 3.3.2 Let p ∈ RV(η), η > α and q ∈ RV(σ). For any x ∈ M−0,0 ∩ RV(ρ) with
ρ ≤ α−η

α only one of the following two statements holds:

(i) ρ =
α − η

α
and

(3.3.34) x(n) ∼
α

η − α
n
α−η
α ξ(n)−

1
α

 ∞∑
k=n

k−1ω(k)l(k)β


1
α

, n→∞;

Then, it is σ = β
η − α

α
− 1.

(ii) ρ is given by (3.3.10) and (3.3.23) holds. Then, it is σ < β
η − α

α
− 1.

Proof. Suppose that (E2) has a solution x ∈ M−0,0 ∩ RV(ρ) with ρ ≤ α−η
α , satisfying

x(n) > 0, ∆x(n) < 0 for n ≥ n0 + 1 ≥ 2 and expressed with (3.3.2). Using (3.3.1) and
(3.3.2) we have (3.3.24). As in the proof of previous lemma, the fact that x[1](n) =
p(n)(∆x(n))α → 0 as n→∞ implies that σ + ρβ ≤ −1.

If σ+ρβ = −1, then as in the proof of previous lemma we get (3.3.26), where Ω(n) is
given in (3.3.25). Using that η > α, application of Theorem (1.3.5)-(ii) in (3.3.26) gives
us (3.3.34). Thus, ρ =

α−η
α , implying that σ = β η−α

α − 1.
Next, we are considering the case σ+ρβ < −1. An application of Theorem 1.3.5-(ii)

in (3.3.24) give us (3.3.28) implying, as previously, two possibilities (a) or (b) in (3.3.29).
However, the case (a) is not possible, because σ + ρβ < −1 implies

−1 =
σ + ρβ + 1 − η

α
< −

η

α
,

which is a contradiction with η > α. Thus, only (b) in (3.3.29) can be valid and so
from (3.3.28), as previously, we obtain that ρ is given by (3.3.10) and x satisfies (3.3.23).
Since, ρ < α−η

α from (3.3.10) we conclude that σ < βη
α − β − 1. �

Now, we are in a position to prove the main results.
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3. Second order Emden-Fowler type difference equation

Theorem 3.3.6 Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. Equation (E2) possesses regularly varying solutions x of index ρ < 0 if and

only if (3.3.5) holds.
(ii) Let η > α. Equation (E2) possesses regularly varying solutions x of index ρ < α−η

α if
and only if (3.3.7).

In both cases ρ is given by (3.3.10) and the asymptotic behavior of any such solution x is
governed by the unique formula (3.3.23).

Proof. The “only if” part: Suppose that η < α and x ∈ RV(ρ) with ρ < 0. According
to Theorem 1.3.3-(v) and (vi), x ∈ M− and limn→∞ x(n) = 0. It is easy to prove
(see [14, Lemma 3]) that if S = ∞, then for any solution in the class M−, it holds
limn→∞ x[1](n) = 0. Thus, x ∈M−0,0. Then, it is clear that only the case (ii) of Lemma 3.3.1
is admissible for x. Thus, the regularity index of x is given by (3.3.10) and σ satisfies
(3.3.5).

Suppose that η > α and x ∈ RV(ρ) with ρ < α−η
α . Since ρ < 0 as previously we

conclude that x ∈M−0 . Therewith, in view of (3.3.4), by Theorem 1.3.3-(vi) we get

lim
n→∞

x(n)
π(n)

=
η − α

α
lim
n→∞

n%−
α−η
α l(n)ξ(n)

1
α = 0,

implying that x ∈ M−0,0. It is clear that only the case (ii) of Lemma 3.3.2 is admissible
for x, implying that the regularity index of x is given by (3.3.10) and that (3.3.7) holds.

From Lemmas 3.3.1 and 3.3.2 we obtain that the asymptotic representation of
regularly varying solution x of index ρ is given by (3.3.23) in each of the two cases (i)
and (ii).

The “if” part: We perform the simultaneous proof for both of the cases (i) and (ii).
From Theorem 3.3.3 follows the existence of a solution x ∈ M−0,0. It remains to prove
that x satisfying (3.3.16) or (3.3.18) is a regularly varying sequence of index ρ. From
(3.3.16) we have

0 < lim inf
n→∞

x(n)
X(n)

≤ lim sup
n→∞

x(n)
X(n)

< ∞,

where X(n) is given by (3.3.9). Application of Lemma 1.1.8, using (3.3.12) and (3.3.18),
yields

L = lim sup
n→∞

x(n)
X(n)

≤ lim sup
n→∞

∆x(n)
∆X(n)

= lim sup
n→∞

−

(
1

p(k)

∑
∞

k=n q(k)x(k + 1)β
)1/α

−

(
1

p(k)

∑
∞

k=n q(k)X(k + 1)β
)1/α

≤

(
lim sup

n→∞

∑
∞

k=n q(k)x(k + 1)β∑
∞

k=n q(k)X(k + 1)β

)1/α

≤

(
lim sup

n→∞

−q(n)x(n + 1)β

−q(n)X(n + 1)β

)1/α

≤

(
lim sup

n→∞

x(n + 1)
X(n + 1)

)β/α
= L

β
α .
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Since β < α, from above we conclude that 0 < L ≤ 1 . Similarly, we can see that
l = lim infn→∞ x(n)/X(n) satisfies 1 ≤ l < ∞ . Therefore, we obtain that l = L = 1, which
means that x(n) ∼ X(n), n → ∞ and ensures that x is a regularly varying solution
of (E2) with requested regularity index and the asymptotic representation given by
(3.3.23). �

Theorem 3.3.7 Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). There exists x ∈ M−0,0 ∩
ntr − SV if and only if (3.3.6) holds. All such solutions of (E) enjoy the precise asymptotic
formula

(3.3.35) x(n) ∼

α − βα
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)


1
α


α
α−β

, n→∞.

Proof. The “only if” part: Suppose that x ∈M−0,0 ∩ ntr − SV. Then, clearly, only the
statement (i) of Lemma 3.3.1 could hold. Therefore, ρ = 0, σ = η− α− 1 and x satisfies
(3.3.22). Then, since σ < −1, application of Theorem 1.3.5 gives

(3.3.36)
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)


1
α

∼
1

(α − η) 1
α

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α , n→∞,

where we used that σ + 1 = α − η. Denote

(3.3.37) z(n) =

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α l(k)

β
α .

From Theorem 1.3.5-(iii) clearly z = {z(n)} ∈ SV and (3.3.22) becomes

(3.3.38) x(n) = l(n) ∼
z(n)

(α − η) 1
α

, n→∞.

From (3.3.37) and (3.3.38) we obtain the asymptotic relation

(3.3.39) z(n)−
β
α (−∆z(n)) ∼

n−1ξ(n)−
1
αω(n)

1
α

(α − η)
β

α2

, n→∞.

By (3.3.38), we have that z(n) → 0, n → ∞ and clearly {z(n)} is strictly decreasing.
Summing (3.3.39) from n to∞, using Theorem 1.3.4 and (3.3.36), we obtain

(3.3.40)

α
α − β

z(n)1− βα ∼
1

(α − η)
β

α2

∞∑
k=n

k−1ξ(k)−
1
αω(k)

1
α

∼
1

(α − η)
β−α

α2

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)


1
α

, n→∞.
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3. Second order Emden-Fowler type difference equation

Because 1 − β
α > 0, z(n)1− βα → 0, n→ ∞, so (3.3.40) yields that the second condition in

(3.3.6) is satisfied as well as that the asymptotic expression for x is

x(n) ∼
1

(α − η)
1
α−β

α − βα
∞∑

k=n

k−1ξ(k)−
1
αω(k)

1
α


α
α−β

∼

α − βα
∞∑

k=n

 1
p(k)

∞∑
j=k

q( j)


1
α


α
α−β

, n→∞.

This completes the “only if” part of the proof of Theorem 3.3.7.

The “if” part: From Theorem 3.3.4 we have the existence of a solution x ∈M−0,0. In the
same way as in the proof of Theorem 3.3.6, replacing X(n) with T(n) given by (3.3.20)
and with the application of Lemma 1.1.8 we obtain that x(n) ∼ T(n), n→∞, implying
that such a solution is slowly varying and enjoys the precise asymptotic behavior
(3.3.35). �

Theorem 3.3.8 Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). There exists x ∈ M−0,0 ∩
RV

(
α−η
α

)
if and only if (3.3.8) holds. All such solutions of (E) enjoy the precise asymptotic

behaviour

(3.3.41) x(n) ∼
(
αα−1 α − β

(η − α)α

) 1
α−β

n p(n)−
1
α

 ∞∑
k=n

kβq(k)p(k)−
β
α


1
α−β

, n→∞.

Proof. The “only if” part: Suppose that x ∈ M−0,0 ∩ RV
(
α−η
α

)
. Then, clearly only the

statement (i) of Lemma 3.3.2 could hold. Therefore, ρ =
α−η
α , σ =

β
α η − β − 1 and x

satisfies (3.3.34). From (3.3.2) and (3.3.34) we get

(3.3.42) l(n) ∼
α

η − α
ξ(n)−

1
αΩ(n)

1
α , n→∞,

where Ω(n) is given in (3.3.25). From (3.3.25), we conclude that Ω ∈ SV, Ω(n) → 0
as n→ ∞ and {Ω(n)} is strictly decreasing. We transform (3.3.42) into the asymptotic
relation for Ω

(3.3.43)
Ω(n)−

β
α∆Ω(n) ∼ −

(
α

η − α

)β
n−1ω(n)ξ(n)−

β
α

= −

(
α

η − α

)β
nβq(n)p(n)−

β
α , n→∞.
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Summing (3.3.43) from n to∞ and using Theorem 1.3.4 we obtain

(3.3.44)
α

α − β
Ω(n)1− βα ∼

(
α

η − α

)β ∞∑
k=n

kβq(k)p(k)−
β
α , n→∞.

Because Ω(n)1− βα → 0 as n → ∞, (3.3.44) yields that the second condition in (3.3.8) is
satisfied. The asymptotic expression (3.3.34) for x becomes

x(n) ∼
α

η − α
n
α−η
α ξ(n)−

1
αΩ(n)

1
α

∼

(
α

η − α

) α
α−β

n p(n)−
1
α

[
α − β

α

∞∑
k=n

kβq(k)p(k)−
β
α

] 1
α−β

, n→∞.

This completes the “only if” part of the proof of Theorem 3.3.8.

The “if” part: From Theorem 3.3.5 we obtain the existence of a solution x ∈ M−0,0,
while application of Lemma 1.1.8 as in the proof of Theorem 3.3.6, with Y(n) instead
of X(n), where Y(n) is given by (3.3.21), proves that x(n) ∼ Y(n), n → ∞, so that such
a solution is in fact a RV−solution of index α−η

α , with the precise asymptotic behavior
given by (3.3.41). �
Summarizing the results given in this section, we see that the existence of strongly
decreasing RV−solutions for the equation (E2) with RV coefficients is fully charac-
terized by the assumption I < ∞ if S = ∞ and by the assumption J < ∞ if S < ∞. In
fact, the following corollary holds.

Corollary 3.3.1 Suppose that p ∈ RV(η), η , α and q ∈ RV(σ).

(i) Let S = ∞. Equation (E2) has strongly decreasing RV-solutions if and only if I1 < ∞.

(ii) Let S < ∞. Equation (E2) has strongly decreasing RV-solutions if and only if J1 < ∞.

Moreover, if S = ∞, then J = ∞ so by Theorem 3.2.1M−0,l = ∅. Otherwise, if S < ∞,
denoting the series Q =

∑
∞

k=1 qk, we have two cases:

(a) If Q = ∞, then I1 = ∞, so by Theorem 3.2.1 we have M− =M−0 i.e. M−B = ∅.

(b) If Q < ∞, then I1 < ∞, so by Theorem 3.2.1 we have M− =M−0 ∪M
−

B .
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3. Second order Emden-Fowler type difference equation

3.4 Strongly increasing solutions

As in the previous section, we assume that (3.3.1) and (3.3.2) hold, so again, we have
two cases given in (3.3.3).

Case (i): Using (3.3.1) and Theorem 1.3.5 we have

(3.4.1)
Π(n) =

n−1∑
k=1

1
p(k)1/α =

n−1∑
k=1

k−
η
αξ(k)−

1
α ∼

α
α − η

n
α−η
α ξ(n)−

1
α

=
α

α − η
·

n
p(n)1/α , n→∞,

so that {Π(n)} ∈ RV
(
α−η
α

)
. For any strongly increasing solution x of equation (E1) we

have that

lim
n→∞

x(n)
Π(n)

= ∞ ,

implying that the index of regularity ρ of strongly increasing solutions must satisfy
ρ ≥ α−η

α . If ρ =
α−η
α then x is a member of RV(α−ηα ) and if ρ > α−η

α then x ∈ RV(ρ) and
clearly satisfies x(n)/n

α−η
α →∞when n→∞. Therefore, if η < α, the totality of strongly

increasing RV−solutions of (E1) will be divided into the following two subclasses:

(3.4.2) RV

(α − η
α

)
or RV(ρ) with ρ >

α − η

α
.

Case (ii): It is clear that for any strongly increasing solution of (E1) it holds that
x(n) ≥ c, for large n. Thus, we have that the index of regularity ρ of strongly increasing
RV−solution x must satisfy ρ ≥ 0. If ρ = 0 then l(n) = x(n) → ∞ so x is a member of
ntr − SV. Therefore, the totality of strongly increasing RV−solutions in case η > α
will be divided into the following two classes

(3.4.3) ntr − SV or RV(ρ) with ρ > 0.

For equation (E2) with arbitrary coefficients, there are only sufficient conditions
for the existence of strongly increasing solutions (see Theorem 3.2.3). We further wish
to establish the necessary and sufficient conditions for the existence of the solutions
which are regularly varying and belong to one of the subclasses given in (3.4.2) and
(3.4.3). Moreover, we will show that these solutions of the corresponding subclass
have the same asymptotic behavior when n→∞, where the regularity index of these
solutions is uniquely determined by α and β and indices of regularity η and σ, of the
coefficients p and q.
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3.4. Strongly increasing solutions

3.4.1 Existence and asymptotic representation of strongly increasing
RV−solutions

Before giving some results, let us notice that if η > α then σ > −1 is a necessary
condition for I2 = ∞. Then, using discrete Karamata theorem and (3.3.1), we have 1

p(k)

k−1∑
j=1

q( j)


1
α

∼
1

(σ + 1) 1
α

(
kσ+1−ηω(k)
ξ(k)

) 1
α

, k→∞.

On the other hand, if η < α application of discrete Karamata theorem with the help of
(3.4.1) gives

q(k)

 k−1∑
j=1

1
p( j)1/α


β

∼

(
α

α − η

)β
q(k)

(
k

p(k)1/α

)β
=

(
α

α − η

)β
kσ+β−

β
α η

ω(k)
ξ(k)β/α

, as k→∞.

Consequently

(i) for η < α, J2 = ∞ if and only if

(3.4.4) σ >
β

α
η − β − 1

or

(3.4.5) σ =
β

α
η − β − 1 and

∞∑
k=1

k−1 ω(k)

ξ(k)
β
α

= ∞ ;

(ii) for η > α, I2 = ∞ if and only if

(3.4.6) σ > η − α − 1

or

(3.4.7) σ = η − α − 1 and
∞∑

k=1

k−1

(
ω(k)
ξ(k)

) 1
α

= ∞ ;

To simplify the ”only if” part of the proof of main results we prove the next two
lemmas.

Lemma 3.4.1 Let p ∈ RV(η), η < α and q ∈ RV(σ). For any x ∈ M+
∞,∞ ∩ RV(ρ) with

ρ ≥ α−η
α only one of the following two statements holds:
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3. Second order Emden-Fowler type difference equation

(i) ρ = 1 − η
α and

(3.4.8) x(n) ∼
α

α − η
n
α−η
α ξ(n)−

1
α

 n−1∑
k=1

k−1ω(k)l(k)β


1
α

, n→∞.

Then, it is σ =
βη
α − β − 1.

(ii) ρ is given by (3.3.10) and

(3.4.9) x(n) ∼
[ nα+1p(n)−1q(n)
ρα(ρα − α + η)

] 1
α−β

as n→∞.

Then, it is σ > βη
α − β − 1.

Proof. Suppose that (E1) has a solution x ∈ M+
∞,∞ ∩ RV(ρ) with ρ ≥ α−η

α , satisfying
x(n) > 0, ∆x(n) > 0 for n ≥ n0 + 1 ≥ 2 and expressed with (3.3.2). Summing (E1), for
n ≥ n0 + 1 we get

p(n)(∆x(n))α = p(n0)(∆x(n0))α +

n−1∑
k=n0

q(k)x(k + 1)β

which yields, using (3.3.1) and (3.3.2), that

(3.4.10) p(n)(∆x(n))α ∼
n−1∑
k=n0

q(k)x(k)β =

n−1∑
k=n0

kσ+ρβω(k)l(k)β, n→∞.

The fact that x[1](n) = p(n)(∆x(n))α →∞when n→∞ implies

lim
n→∞

n−1∑
k=n0

kσ+ρβω(k)l(k)β = ∞,

so it must be σ + ρβ ≥ −1. We first consider the case σ + ρβ = −1. Then,

(3.4.11) p(n)(∆x(n))α ∼
n−1∑
k=n0

k−1ω(k)l(k)β ∼
n−1∑
k=1

k−1ω(k)l(k)β = H(n),

as n→∞, where H = {H(n)} ∈ SV and H(n)→∞, n→∞. Consequently

(3.4.12) ∆x(n) ∼
(

H(n)
p(n)

) 1
α

= n−
η
αξ(n)−

1
αH(n)

1
α , n→∞.
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Summing (3.4.12) from n0 + 1 to n, using that η < α, with application of Theorem
1.3.5-(i) and Remark 1.3.1, we get (3.4.8). Therefore, ρ = 1 − η

α . From σ + ρβ = −1 it
follows that σ =

βη
α − β − 1.

Next we consider the case σ + ρβ > −1. An application of Theorem 1.3.5-(i) in
(3.4.10) implies

(3.4.13) ∆x(n) =

(
1

p(n)

n−1∑
k=n0

q(k)x(k + 1)β
) 1
α

∼
n
σ+ρβ+1−η

α ω(n)
1
αξ(n)−

1
α l(n)

β
α

(σ + ρβ + 1) 1
α

,

as n→∞. Since, σ+ρβ > −1 and η < α imply (σ+ρβ+1−η)/α > −1, summing (3.4.13)
from n0 + 1 to n − 1 with application of Theorem 1.3.5-(i) gives

(3.4.14) x(n) ∼
n
σ+ρβ+1−η

α +1ω(n)
1
αξ(n)−

1
α l(n)

β
α

(σ + ρβ + 1) 1
α

(
σ+ρβ+1−η

α + 1
) , n→∞.

Thus, it holds that ρ =
σ+ρβ+1−η

α + 1 implying that regularity index of x is given with

ρ =
σ + α + 1 − η

α − β

which is also given by (3.3.10). Combined this with σ + ρβ > −1, we get σ + ρβ > −1 .
Moreover, using (3.3.10) we obtain

(σ + ρβ + 1)
1
α

(
σ + ρβ + 1 − η

α
+ 1

)
=

(
ρα

(
ρα + η − α

)) 1
α

and
n
σ+ρβ+1−η

α +1ω(n)
1
αξ(n)−

1
α l(n)

β
α =

(
nα+1p(n)−1q(n)

) 1
α x(n)

β
α .

Then, from (3.4.14) we obtain that the asymptotic representation of x is given by (3.4.9).
�

Lemma 3.4.2 Let p ∈ RV(η), η > α and q ∈ RV(σ). For any x ∈ M+
∞,∞ ∩ RV(ρ) with

ρ ≥ 0 only one of the following two statements holds:
(i) ρ = 0 and

(3.4.15) x(n) ∼
1

(σ + ρβ + 1) 1
α

n−1∑
k=1

k−1ξ(k)−
1
αω(k)

1
α l(k)

β
α n→∞.

Then, it is σ = η − α − 1.
(ii) ρ is given by (3.3.10) and (3.4.9) holds. Then, σ > η − α − 1.
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Proof. Suppose that (E1) has a solution x ∈ M+
∞,∞ ∩ RV(ρ) with ρ ≥ 0, satisfying

x(n) > 0 and ∆x(n) > 0 for n ≥ n0 + 1 ≥ 2 and expressed with (3.3.2). Using (3.3.1)
and (3.3.2) we have (3.4.10). As in the proof of previous lemma, the fact that x[1](n) =
p(n)(∆x(n))α →∞when n→∞ implies that σ+ρβ ≥ −1, although the case σ+ρβ = −1
is now impossible. Indeed, from (3.4.12), since limn→∞ x(n) = ∞, we obtain

lim
n→∞

n−1∑
k=n0

n−
η
αξ(n)−

1
αH(n)

1
α = ∞,

but this is the contradiction with our assumption η > α.
Therefore, we have that σ + ρβ > −1 and obtain (3.4.13) with an application of

Theorem 1.3.5-(i) in (3.4.10). Because x(n) → ∞, n → ∞, we conclude from (3.4.13)
that it must be (σ + ρβ + 1 − η)/α ≥ −1, so we distinguish two possibilities:

(a)
σ + ρβ + 1 − η

α
= −1, (b)

σ + ρβ + 1 − η
α

> −1 .

If (a) holds, summing (3.4.13) from n0 + 1 to n − 1, we obtain (3.4.15) which shows
that x ∈ SV according to Theorem 1.3.5-(iv). On the other hand, if (b) holds, as in
the proof of Lemma 3.4.1 we show that (3.4.9) holds and that σ > η − α − 1 using that
ρ > 1 − η

α . �
We are now in a position to give necessary and sufficient conditions for the existence

of regularly varying solutions from the class M+
∞,∞ and to give precise asymptotic

representation of all these solutions.

Theorem 3.4.1 Suppose that p ∈ RV(η) and q ∈ RV(σ).
(i) Let η < α. Equation (E1) possesses a regularly varying solution x of index ρ > α−η

α if
and only if (3.4.4) holds.

(ii) Let η > α. Equation (E1) possesses a regularly varying solution x of index ρ > 0 if and
only if (3.4.6) holds.

In both cases ρ is given by (3.3.10) and the asymptotic behavior of any such solution x is
governed by the unique formula (3.4.9).

Proof. The ”only if” part: Suppose that η < α and x ∈ RV(ρ) with ρ > α−η
α .

According to Theorem 1.3.3-(v) and (vi), since ρ > 0, we conclude that x ∈ M+ and
limn→∞ x(n) = ∞. How

lim
n→∞

x(n)
Π(n)

= lim
n→∞

nρl(n)
α
α−η ·

n
n
η
α ξ(n)

1
α

=
α − η

α
lim
n→∞

nρ−
α−η
α l(n)ξ(n)

1
α = ∞

it follows that x ∈ M+
∞,∞. Then, it is clear that only the case (ii) of Lemma 3.4.1 is

admissible for x. Thus the regularity index of x is given by (3.3.10) and σ satisfies
(3.4.4).
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Suppose that η > α and x ∈ RV(ρ) with ρ > 0. As previous, x ∈ M+ and
limn→∞ x(n) = ∞. It is easy to show that it must be limn→∞ x[1](n) = ∞. Then, it is clear
that only case (ii) of Lemma 3.4.2 is admissible for x, implying that the regularity index
of x is given by (3.3.10) and (3.4.6) holds. From Lemmas 3.4.1 and 3.4.2 we obtain that
the asymptotic representation of regularly varying solution x of index ρ is given by
(3.4.9) in each of two cases (i) and (ii).

The ”if” part: Suppose either η < α and (3.4.4) holds or η > α and (3.4.6) holds. Denote

X(n) =

[
nα+1p(n)−1q(n)
ρα(ρα − α + η)

] 1
α−β

, n ≥ 1,

and λ = ρα(ρα − α + η), where ρ is given by (3.3.10). Clearly, X = {X(n)} ∈ RV(ρ) and
it may be expressed in the form

(3.4.16) X(n) = λ−
1
α−βnρξ(n)−

1
α−βω(n)

1
α−β .

Notice that (3.4.4) and (3.3.10) imply that ρ > α−η
α , while (3.4.6) and (3.3.10) imply that

ρ > 0. Therefore, by Theorem 1.3.3 limn→∞X(n) = ∞.
Let us first prove that sequence X satisfies the asymptotic relation

(3.4.17)
n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)X( j + 1)β


1
α

∼ X(n), n→∞.

Using (3.3.1), by application of Theorem 1.3.5-(i) and Theorem 1.3.3-(iv) we get
n−1∑
k=1

q(k)X(k + 1)β = λ−
β
α−β

n−1∑
k=1

kσ+ρβξ(k)−
β
α−βω(k)

α
α−β

= λ−
β
α−β

n−1∑
k=1

kα(ρ−1)+η−1ξ(k)−
β
α−βω(k)

α
α−β

∼ λ−
β
α−β

nα(ρ−1)+ηξ(n)−
β
α−βω(n)

α
α−β

α(ρ − 1) + η
, n→∞.(3.4.18)

From (3.4.18), applying Theorem 1.3.5-(i), we obtain the desired asymptotic relation
for X:

n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)X( j + 1)β


1
α

∼ λ−
β

α(α−β) (α(ρ − 1) + η)−
1
α

n−1∑
k=2

kρ−1ξ(k)−
1
α−βω(k)

1
α−β

∼ λ−
β

α(α−β) (α(ρ − 1) + η)−
1
α

nρξ(n)−
1
α−βω(n)

1
α−β

ρ

= λ−
β

α(α−β) · λ−
1
α nρξ(n)−

1
α−βω(n)

1
α−β = X(n), n→∞ .
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Thus, there exists n0 > 1 such that

(3.4.19)
n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)X( j + 1)β


1
α

≤ 2X(n), n ≥ n0 .

Let such n0 be fixed. We may assume that X(n) is increasing for n ≥ n0 (see Theorem
1.3.3−(vii)). Since from (3.4.17) we have

n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)X( j + 1)β


1
α

∼ X(n), n→∞,

there exists n1 > n0 such that

(3.4.20)
n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)X( j + 1)β


1
α

≥
X(n)

2
, n ≥ n1.

Let such n1 be fixed. We choose constants κ ∈ (0, 1) and K > 1 such that

(3.4.21) κ1− βα ≤
1
2
, K1− βα ≥ 4 and K ≥ 2κ

X(n1)
X(n0)

.

Consider the space Υn0 of all real sequences x = {x(n)}∞n=n0
such that { x(n)

X(n) } is bounded.
Then, Υn0 is a Banach space endowed with the norm

||x|| = sup
n≥n0

x(n)
X(n)

,

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: for x, y ∈ Υn0 ,
x ≤ y means x(n) ≤ y(n) for all n ≥ n0. Define the subset X ⊂ Υn0 like

(3.4.22) X = {x ∈ Υn0 : κX(n) ≤ x(n) ≤ KX(n), n ≥ n0 }.

For any subset B ⊂ X, it is obvious that inf B ∈ X and sup B ∈ X. We will define the
operator F : X → Υn0 by

(3.4.23)
(
F x

)
(n) = x0 +

n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)x( j + 1)β


1
α

, n ≥ n0,

where x0 > 0 satisfies

(3.4.24) κX(n1) ≤ x0 ≤
K
2

X(n0),
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and show that F has a fixed point by using Theorem 1.1.1. Namely, the operator F
has the following properties:

(i) Operator F maps X into itself: Let x ∈ X. Using (3.4.19), (3.4.21), (3.4.22), (3.4.23)
and (3.4.24), we get

(F x)(n) ≤ x0 + K
β
α

n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)X( j + 1)β


1
α

≤
K
2

X(n0) + 2K
β
αX(n) ≤

K
2

X(n) +
K
2

X(n) = K X(n), n ≥ n0 .

On the other hand, using (3.4.20), (3.4.21), (3.4.22), (3.4.23) and (3.4.24), we have

(F x)(n) ≥ κ
β
α

n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)X( j + 1)β


1
α

≥ κ
β
α

X(n)
2
≥ κX(n), n ≥ n1

and

(F x)(n) ≥ x0 ≥ κX(n1) ≥ κX(n), n0 ≤ n ≤ n1 .

This shows that (F x)(n) ∈ X, for all n ≥ n0, that is, F (X) ⊂ X.

(ii) Operator F is increasing, i.e. for any x, y ∈ X, x ≤ y implies F x ≤ F y.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ X of F , satisfying

(3.4.25) x(n) = x0 +

n−1∑
k=n0

 1
p(k)

k−1∑
j=n0−1

q( j)x( j + 1)β


1
α

, n ≥ n0 .

It is clear in view of (3.4.22) and the fact that X(n) → ∞, when n → ∞, that x is a
positive solution of (E1) which satisfies x(n) → ∞, n → ∞. Moreover, due to (3.4.16)
and (3.4.22)

(3.4.26) p(n)(∆x(n))α ≥ κβλ−
β
α−β

n−1∑
k=n0−1

kσ+ρβ(ω(k)/ξ(k))
1
α−β .

Since, η < α and (3.4.4) as well as η > α and (3.4.6) imply that σ+ρβ > −1, from (3.4.26)
we conclude that x[1](n)→∞, n→∞, that is x ∈M+

∞,∞.
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3. Second order Emden-Fowler type difference equation

It remains to prove that x satisfying (3.4.22) is a regularly varying sequence of index
ρ. From (3.4.22) we have

(3.4.27) 0 < lim inf
n→∞

x(n)
X(n)

≤ lim sup
n→∞

x(n)
X(n)

< ∞ .

Application of Lemma 1.1.8, using (3.4.17) and (3.4.25), yields

L = lim sup
n→∞

x(n)
X(n)

≤ lim sup
n→∞

∆x(n)
∆X(n)

= lim sup
n→∞

(
1

p(k)

∑n−1
k=1 q(k)x(k + 1)β

)1/α

(
1

p(k)

∑n−1
k=1 q(k)X(k + 1)β

)1/α

≤

lim sup
n→∞

∑n−1
k=1 q(k)x(k + 1)β∑n−1
k=1 q(k)X(k + 1)β

1/α

≤

(
lim sup

n→∞

q(n)x(n + 1)β

q(n)X(n + 1)β

)1/α

≤

(
lim sup

n→∞

x(n + 1)
X(n + 1)

)β/α
= L

β
α .

Since β < α, from the above we conclude that

(3.4.28) 0 < L ≤ 1 .

Similarly, we can see that l = lim infn→∞ x(n)/X(n) satisfies

(3.4.29) 1 ≤ l < ∞ .

From (3.4.28) and (3.4.29) we obtain that l = L = 1, which means that x(n) ∼ X(n),
n → ∞ and ensures that x is a regularly varying solution of (E1) with requested
regularity index and the asymptotic representation given by (3.4.9). �

Theorem 3.4.2 Suppose that p ∈ RV(η), η < α and q ∈ RV(σ). There exists x ∈ M+
∞,∞ ∩

RV

(
α−η
α

)
if and only if (3.4.5) holds. All such solutions of (E1) have the precise asymptotic

property

(3.4.30) x(n) ∼
(
αα−1 α − β(

α − η
)α ) 1

α−β n
p(n)1/α

 n−1∑
k=1

kβq(k)p(k)−
β
α


1
α−β

, n→∞.

Proof. The ”only if” part: Suppose that x ∈M+
∞,∞ ∩ RV

(
α−η
α

)
. Then, clearly only the

statement (i) of Lemma 3.4.1 could hold and (3.4.11) is satisfied.Therefore, ρ =
α−η
α and

σ + ρβ = −1 implies σ =
β
α η − β − 1 and x satisfies (3.4.8). From (3.3.2) and (3.4.8) we

get

(3.4.31) l(n) ∼
α

α − η
ξ(n)−

1
αH(n), n→∞,
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3.4. Strongly increasing solutions

where H(n) is given by (3.4.11). Using (3.4.11) we transform (3.4.31) into the asymptotic
relation for H:

(3.4.32)
H(n)−

β
α∆H(n) ∼

(
α

α − η

)β
n−1ω(n)ξ(n)−

β
α

=

(
α

α − η

)β
nβq(n)p(n)−

β
α , n→∞.

Summing (3.4.32) for n ≥ 2 and using Theorem 1.3.4 we obtain

(3.4.33)
α

α − β
H(n)1− βα ∼

(
α

α − η

)β n−1∑
k=1

kβq(k)p(k)−
β
α , n→∞.

Because 1 − β
α > 0, H(n)1− βα → ∞, n → ∞, (3.4.33) yields that the second condition in

(3.4.5) is satisfied. The asymptotic expression (3.4.8) for x becomes

x(n) ∼
α

α − η
n
α−η
α ξ(n)−

1
αH(n)

1
α ∼

(
α

α − η

) α
α−β n

p(n)1/α

[
α − β

α

n−1∑
k=1

kβq(k)p(k)−
β
α

] 1
α−β

, n→∞.

This completes the ”only if” part of the proof of Theorem 3.4.2.

The ”if” part: Suppose (3.4.5) holds. Define sequences Y = {Y(n)} and W = {W(n)}
with

W(n) =

n−1∑
k=1

k−1ω(k)ξ(k)−
β
α , Y(n) =

(
α

α − η

) α
α−β

(
α − β

α

) 1
α−β n

p(n)1/αW(n)
1
α−β , n ≥ 2 .

Note that W ∈ ntr − SV and since n/p(n)1/α = n
α−η
α ξ(n)−

1
α , we see that Y ∈ RV

(
α−η
α

)
.

Thus, the application of Theorem 1.3.4 gives

n−1∑
k=1

q(k)Y(k + 1)β =

(
α

α − η

) αβ
α−β

(
α − β

α

) β
α−β n−1∑

k=1

k−1ω(k)ξ(k)−
β
αW(k + 1)

β
α−β

∼

(
α

α − η

) αβ
α−β

(
α − β

α

) β
α−β n−1∑

k=1

∆W(k) ·W(k + 1)
β
α−β

∼

(
α

α − η

) αβ
α−β

(
α − β

α

) α
α−β

W(n)
α
α−β , n→∞,
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which yields with the help of Theorem 1.3.5-(i)

n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)Y( j + 1)β


1
α

∼

(
α

α − η

) β
α−β

(
α − β

α

) 1
α−β n−1∑

k=2

k−
η
αξ(k)−

1
αW(k)

1
α−β

∼

(
α

α − η

) α
α−β

(
α − β

α

) 1
α−β

n
α−η
α ξ(n)−

1
αW(n)

1
α−β = Y(n), n→∞.

Therefore, Y = {Y(n)} satisfies the asymptotic relation (3.4.17). Then, proceeding
exactly as in the proof of Theorem 3.4.1, replacing X(n) with Y(n), solution x satisfying
κY(n) ≤ x(n) ≤ K Y(n), for large n, is obtained by the application of the Knaster-Tarski
fixed point theorem (Theorem 1.1.1), while application of Lemma 1.1.8 proves that
x(n) ∼ Y(n), n → ∞, showing that such solution is in fact RV−solution of index α−η

α ,
with the precise asymptotic behavior given by (3.4.30). �

Theorem 3.4.3 Suppose that p ∈ RV(η), η > α and q ∈ RV(σ). There exists x ∈ M+
∞,∞ ∩

ntr − SV if and only if (3.4.7) holds. All such solutions of (E1) have the precise asymptotic
property

(3.4.34) x(n) ∼

α − βα
n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α


α
α−β

, n→∞.

Proof. The ”only if” part: Suppose that x ∈M+
∞,∞ ∩ ntr − SV. Then, clearly only the

statement (i) of Lemma 3.4.2 could hold. Therefore, ρ = 0, σ = η− α− 1 and x satisfies
(3.4.15). Then, since σ > −1, application of Theorem 1.3.5 gives

(3.4.35)
n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α

∼
1

(η − α) 1
α

n−1∑
k=1

k−1ξ(k)−
1
αω(k)

1
α , n→∞.

Denote z(n) =
∑n−1

k=n0
k−1ξ(k)−

1
αω(k)

1
α l(k)

β
α . Then (3.4.15) becomes

(3.4.36) x(n) = l(n) ∼
z(n)

(η − α) 1
α

, n→∞,

so that z(n) → ∞, n → ∞. By Theorem 1.3.5-(iv) clearly z = {z(n)} ∈ ntr − SV. From
(3.4.36) we obtain the asymptotic relation:

(3.4.37) z(n)−
β
α∆z(n) ∼

n−1ξ(n)−
1
αω(n)

1
α

(η − α)
β

α2

, n→∞,

82



3.4. Strongly increasing solutions

where we used that σ + ρβ + 1 = η − α. Summing (3.4.37) for n ≥ 2, using Theorem
1.3.4 and (3.4.35), we obtain

(3.4.38)

α
α − β

z(n)1− βα ∼
1

(η − α)
β

α2

n−1∑
k=1

k−1ξ(k)−
1
αω(k)

1
α

∼
1

(η − α)
β−α

α2

n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α

, n→∞.

Because 1 − β
α > 0, z(n)1− βα →∞, n→∞, so (3.4.38) yields that the second condition in

(3.4.7) is satisfied as well as that the asymptotic expression for x is

x(n) ∼
1

(η − α)
1
α−β

α − βα
n−1∑
k=2

k−1ξ(k)−
1
αω(k)

1
α


α
α−β

∼

α − βα
n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α


α
α−β

, n→∞.

This completes the ”only if” part of the proof of Theorem 3.4.3.

The ”if” part: Suppose (3.4.7) holds. Define sequences T = {T(n)} and G = {G(n)}with

G(n) =

n−1∑
k=2

k−1ξ(k)−
1
αω(k)

1
α , T(n) =

(
α − β

α

n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α ) α

α−β

, n ≥ 3 .

Because (3.4.7) implies σ > −1, application of Theorem 1.3.5 gives (3.4.35), so that

T(n) ∼
1

(η − α)
1
α−β

(
α − β

α

) α
α−β

G(n)
α
α−β , n→∞

Clearly, G ∈ ntr − SV and T ∈ ntr − SV. Applying Theorem 1.3.5-(i) and using the
first condition from (3.4.7) we get

n−1∑
k=1

q(k)T(k + 1)β ∼
1

(η − α)
α
α−β

(
α − β

α

) αβ
α−β

nη−αω(n)G(n)
αβ
α−β , n→∞.

As a result of the application of Theorem 1.3.4 to the previous relation, we obtain

n−1∑
k=2

 1
p(k)

k−1∑
j=1

q( j)T( j + 1)β


1
α

∼
1

(η − α)
1
α−β

(
α − β

α

) β
α−β n−1∑

k=2

k−1ξ(k)−
1
αω(k)

1
αG(k)

β
α−β

∼
1

(η − α)
1
α−β

(
α − β

α

) β
α−β n−1∑

k=2

∆G(k) · G(k)
β
α−β

∼
1

(η − α)
1
α−β

(
α − β

α

) α
α−β

G(n)
α
α−β ∼ T(n), n→∞.
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3. Second order Emden-Fowler type difference equation

Consequently, we conclude that T satisfies the asymptotic relation (3.4.17).
The rest of the proof is the same as the proof of Theorem 3.4.1 where X(n) is replaced

with T(n). Then, solution x of equation (E1) satisfying κT(n) ≤ x(n) ≤ K T(n), for large
n, is obtained by the application of the Knaster-Tarski fixed point theorem (Theorem
1.1.1), while application of Lemma 1.1.8 proves that x(n) ∼ T(n), n→∞, showing that
such solution is a nontrivial, slowly varying, and has the precise asymptotic behavior
(3.4.34). �

According to the results given in this section, we can say that the existence of
strongly increasing RV−solutions is fully characterized by the assumption J2 = ∞ if
S = ∞ and by the assumption I2 = ∞ if S < ∞. In fact, the following corollary holds.

Corollary 3.4.1 Suppose that p ∈ RV(η), η , α and q ∈ RV(σ).

(i) Let S = ∞. Equation (E1) has strongly increasing RV−solutions if and only if J2 = ∞.

(ii) Let S < ∞. Equation (E1) has strongly increasing RV−solutions if and only if I2 = ∞.

3.5 Complete structure of the class of RV-solutions

In order to describe a set of regularly varying solutions, we will use the following
symbols:
∗ R denote the set of all regularly varying solutions,
∗ R

− denote the set of all decreasing regularly varying solutions,
∗ R

+ denote the set of all increasing regularly varying solutions,
∗ R

−

0 = R ∩M−0 .

∗ R
−

0,0 = R ∩M−0,0.

Using conclusions from Theorem 3.2.1 and Corollary 3.3.1, we get the next two
corollaries:

Corollary 3.5.1 Suppose that p ∈ RV(η), q ∈ RV(σ) and S = ∞. Then,

R
− = ntr − SV ∪ RV

(
σ + α + 1 − η

α − β

)
∪M−B

if and only if I1 < ∞.

Corollary 3.5.2 Suppose that p ∈ RV(η), q ∈ RV(σ) and S < ∞. Then,

(i) If σ < −1 or σ = −1 and Q < ∞, then

R
− = RV

(
σ + α + 1 − η

α − β

)
∪M−0,l ∪M

−

B .
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3.5. Complete structure of the class of RV-solutions

(ii) If σ = −1 and Q = ∞ or −1 < σ < βη
α − β − 1, then

R
− = R−0 = RV

(
σ + α + 1 − η

α − β

)
∪M−0,l.

(iii) If σ =
βη
α − β − 1 and J < ∞, then

R
− = R−0 = RV

(α − η
α

)
∪M−0,l.

(iv) If σ =
βη
α − β − 1 and J = ∞ or σ > βη

α − β − 1, then

R
− = ∅.

Next two corollaries follows from Theorem 3.2.2 and Corollary 3.4.1.

Corollary 3.5.3 Suppose that p ∈ RV(η), q ∈ RV(σ) and S = ∞. Then,

(i) σ < βη
α − β − 1 orσ =

βη
α − β − 1 and J2 < ∞, then

R
+ =M+

∞,l.

(ii) If σ =
βη
α − β − 1 and J2 = ∞, then

R
+ = RV

(α − η
α

)
.

(iii) If σ > βη
α − β − 1, then

R
+ =

(
σ + α + 1 − η

α − β

)
.

Corollary 3.5.4 Suppose that p ∈ RV(η), q ∈ RV(σ) and S < ∞. Then,

(i) σ < η − α − 1 orσ = η − α − 1 and I2 < ∞, then

R
+ =M+

B .

(ii) If σ = η − α − 1 and I2 = ∞, then

R
+ = ntr − SV.
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3. Second order Emden-Fowler type difference equation

(iii) If σ > η − α − 1, then

R
+ =

(
σ + α + 1 − η

α − β

)
.

Previous corollaries enable us to describe in full details the simple and clear struc-
ture of RV−solutions of equation (E2) with RV−coefficients.

Corollary 3.5.5 Let p ∈ RV(η), q ∈ RV(σ) and η < α.

(i) If σ < η − α − 1 then

R = ntr − SV ∪ RV
(
σ + α + 1 − η

α − β

)
∪M−B ∪M

+
∞,l.

(ii) If σ = η − α − 1 and I1 < ∞, then

R = ntr − SV ∪M−B ∪M
+
∞,l.

(iii) If σ = η−α− 1 and I1 = ∞, or η−α− 1 < σ < βη
α − β− 1, or σ =

βη
α − β− 1 and J2 < ∞

then
R =M+

∞,l.

(iv) If σ =
βη
α − β − 1 and J2 = ∞, then

R = R+ = RV
(α − η
α

)
.

(v) If σ > βη
α − β − 1, then

R = R+ = RV

(
σ + α + 1 − η

α − β

)
.

Corollary 3.5.6 Let p ∈ RV(η), q ∈ RV(σ) and η > α.

(i) If σ < −1, or σ = −1 and
∑
∞

n=1 q(n) < ∞ then

R = RV

(
σ + α + 1 − η

α − β

)
∪M−0,l ∪M

−

B ∪M
+
B .

(ii) If σ = −1 and
∑
∞

n=1 q(n) = ∞, or −1 < σ < βη
α − β − 1 then

R = RV

(
σ + α + 1 − η

α − β

)
∪M−0,l ∪M

+
B .
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(iii) If σ =
βη
α − β − 1 and J1 < ∞ then

R = RV
(α − η
α

)
∪M−0,l ∪M

+
B .

(iv) If σ =
βη
α − β− 1 and J1 = ∞, or βη

α − β− 1 < σ < η−α− 1, or σ = η−α− 1 and I2 < ∞
then

R =M+
B .

(v) If σ = η − α − 1 and I2 = ∞ then

R = R+ = ntr − SV.

(vi) If σ > η − α − 1 then

R = R+ = RV

(
σ + α + 1 − η

α − β

)
.

We emphasize that in previous corollaries tr − SV = M−B ∪M
+
B ,M

−

0,l ⊂ RV
(
α−η
α

)
andM+

∞,l ⊂ RV
(
α−η
α

)
.

Remark 3.5.1 One important thing that we can conclude from previous corollaries
is that in same cases (see Corollary 3.5.5 (iii) − (v) and Corollary 3.5.6 (iv) − (vi) )
decreasing RV-solutions do not exist. Why is this important? At the beginning
of this chapter, we have said that classes M+ and M− are nonempty. Therefore,
nonexistence of RV-solutions implies that there are solutions which are not regularly
varying sequences although coefficients are regularly varying sequences. This is also
one more difference between differential and difference equations, because it has been
shown that all solutions of the differential equation (3.2.1) are regularly varying under
the assumption that p, q are regularly varying functions (see Matucci, Rehak [100],
Rehak [113], Kusano, Manojlović, Marić [68–70, 85]) in the case p(t) ≡ 1.

3.6 Examples

In the following two examples we illustrate our main results in Section 3.3.

Example 3.6.1 Consider difference equation

(3.6.1) ∆

(
nη

log n
(∆x(n))3

)
=

nη−7ϕ(n)

log5 n

√
x(n + 1)3, n ≥ 1,

where ϕ(n) is positive real-value sequence such that limn→∞ ϕ(n) = δ and η , 3. In this

equation, α = 3, β =
3
2
, {p(n)} ∈ RV(η) and {q(n)} ∈ RV(σ), where σ = η − 7.
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3. Second order Emden-Fowler type difference equation

(i) Suppose that η < 3. In this case

σ = η − 7 < η − 4 = η − α − 1,

so in view of Theorem 3.3.6-(i) and Theorem 3.2.1 this equation has strongly decreasing
RV-solutions of index ρ < 0. There is also a decreasing solution from tr − SV and
a increasing solution from M+

∞,l. More precisely, by Theorem 3.3.6-(i) the equation
(3.6.1) has a strongly decreasing solution which belongs to RV(−2). That solution has
asymptotic behavior

(3.6.2) x(n) ∼
(

δ
8(9 − η)

) 2
3

n−2 (log n)−
8
3 , n→∞.

If

(3.6.3) ϕ(n) =
n7(n + 1)3

(log n)4 (log(n + 1))5

(
(log n)9ψ(n) − (log(n + 1))9

(n + 1
n

)η
ψ(n + 1)

)
,

where

(3.6.4) ψ(n) =

 1
n2 −

1
(n + 1)2

(
log n

log(n + 1)

) 8
3


3

then δ = 8(9 − η) and considered equation has an exact solution n−2 (log n)−
8
3 .

(ii) For η ∈ (3, 9) we have that η > α and σ = η − 7 < η−5
2 =

βη
α − β − 1 so in view of

Theorem 3.3.6-(ii) the equation (3.6.1) has a strongly decreasing solution which belongs
to RV(−2) and satisfies (3.6.2). Also, if ϕ(n) is given by (3.6.3) then n−2 (log n)−

8
3 is an

exact solution of the equation (3.6.1). In case when η ∈ (3, 6], this equation posses
solutions which are not strongly decreasing and belong to classesM−0,l,M

−

B andM+
B ,

while for η ∈ (6, 9), there are solutions in classesM−0,l,M
+
B .

(iii) Let η = 9. Then, σ = 2 =
βη

α
− β− 1, q(n) ∼ δn2(log n)−5 and J1 < ∞. By Theorem

3.3.8 the equation (3.6.1) has a solution x ∈ RV(1− η
α ) = RV(−2) and any such solution

x has an asymptotic representation

x(n) ∼
(
δ

56

) 2
3

(n log n)−2, n→∞.

If

ϕ(n) =
(n + 1)3(log(n + 1))3(log n)5

n2 (χ(n) − χ(n + 1)),

where

χ(n) =
n3

(log n)7

1 −
(

n log n
(n + 1) log(n + 1)

)23

,
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3.6. Examples

then limn→∞ ϕ(n) = 56 and x(n) = n−2(log n)−2 is an exact solution of the equation
(3.6.1). As in the previous case, the equation here has also solutions in classesM−0,l and
M+

B .

(iv) If η > 9 then σ = η − 7 > η−5
2 =

βη
α − β − 1 so J1 = ∞. Therefore, by Corollary

3.3.1-(ii) equation (3.6.1) does not have decreasing regularly varying solutions, but
have solution which belong to classM+

B .
Note that this equation does not have strongly increasing solutions. �

Example 3.6.2 Consider a difference equation

(3.6.5) ∆
(
−nη

√
log n (∆x(n))2

)
=

nη−3 ϕ(n)
(log n)19/6

3
√

x(n + 1), n ≥ 1,

where ϕ(n) is a positive real-value sequence such that limn→∞ ϕ(n) = δ and η , 2.
Here, p(n) = nη

√
log n, and q(n) = nη−3 ϕ(n) (log n)−19/6, so p ∈ RV(η) and q ∈ RV(σ),

where σ = η − 3 = η − α − 1.
Let η < 2 = α. Using that

∞∑
k=n

 1
p(k)

∞∑
j=k

q( j)


1
α

∼

∞∑
k=n

√
ϕ(n)
2 − η

1
k (log k)11/6 < ∞, n→∞,

by Theorem 3.3.7, the equation (3.6.5) has a nontrivial slowly varying solution and
any such solution x has an asymptotic representation

x(n) ∼
(
δ

2 − η

) 3
5

· (log n)−1, n→∞.

If

ϕ(n) = n3

(
log n

log(n + 1)

) 19
6
 (log n+1

n )2

(log n) 3
2 (log(n + 1)) 1

2

−

(n + 1
n

)η ( log n+2
n+1

log(n + 2)

)2 ,
then δ = 2 − η and considered equation has an exact solution x(n) = (log n)−1, x ∈
ntr − SV. In this case, classesM+

∞,l andM−B are also nonempty.

Notice that in the case η > 2 = α, since σ > βη
α − β− 1, using Corollary 3.3.1-(ii) , we

conclude that R− = ∅. How I2 < ∞, R =M+
B .

Note that this equations doesn’t have strongly increasing solutions. �

In the next two examples we illustrate our main results in Section 3.4.

Example 3.6.3 Consider the difference equation

(3.6.6) ∆
(
nη

√
log n (∆x(n))3

)
= nη+1ϕ(n) 12

√
log n

√
x(n + 1), n ≥ 1,
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3. Second order Emden-Fowler type difference equation

where ϕ(n) is a positive real-value sequence such that limn→∞ ϕ(n) = δ and η , 3. In

this equation, α = 3, β =
1
2
, {p(n)} ∈ RV(η) and {q(n)} ∈ RV(σ), where σ = η + 1 and

βη

α
− β − 1 =

η − 9
6

.

(i) Suppose that η < −3. In this case η < α and σ <
βη

α
− β − 1, so in view of

Theorem 3.4.1-(i) and Theorem 3.4.2, this equation does not have strongly increasing
RV-solutions. However, since J2 < ∞, the equation (3.6.6) has solutions inM+

∞,l.Also,
this equation does not have strongly decreasing RV-solutions.

(ii) Let η = −3. Then, σ = −2 =
βη

α
− β − 1, q(n) ∼ δn−2 12

√
log n and

n∑
k=1

kβq(k)p
−β
α

k = δ
n∑

k=1

1
k
→∞, n→∞.

By Theorem 3.4.2 there exist a solution x ∈ RV(2) of the equation (3.6.6) and any such
solution x has the asymptotic behavior

x(n) ∼
n2

6
√

log n

(5δ
48

) 2
5

 n∑
k=1

1
k


2
5

∼

(5δ
48

) 2
5

n2(log n)
7

30 , n→∞.

In the last asymptotic relation we used that
∑n

k=1
1
k ∼ log n, n→∞,which follows from

lim
n→∞

 n∑
k=1

1
k
− log n

 = γ,

where γ is Euler - Mascheroni constant (also called Euler’s constant).
If

ϕ(n) =
n2

(n + 1)4

 (log(n + 1))
23
5

log n


1

12

· ψ(n + 1) −
1

n(n + 1)

 (log n)5

(log(n + 1)) 7
5


1
12

· ψ(n),

where ψ(n) =
(
∆
(
n2 (log n

)7/30
))3
, then limn→∞ ϕ(n) = 48/5 and x(n) = n2(log n)7/30 is

an exact solution of the equation (3.6.6).

(iii) For η ∈ (−3, 3) we have that η < α and σ >
βη

α
− β − 1 so by Theorem 3.4.1-(i)

equation (3.6.6) has RV(2)-solution x satisfying

(3.6.7) x(n) ∼
(

δ
8(η + 3)

) 2
5 n2

6
√

log n
, n→∞.
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If in particular

(3.6.8) ϕ(n) =

(
log(n + 1)

log n

)1/12

·
χ(n + 1) − χ(n)

n1+η(n + 1)
,

where

χ(n) = nη
(n + 1)2

(
log n

log(n + 1)

)1/6

− n2

3

,

then δ = 8(η+3) and the considered equation has an exact solution x(n) = n2(log n)−1/6.
(iv) If η > 3 = α, then σ = η+ 1 > η− 4 = η− α− 1. Therefore, by Theorem 3.4.1-(ii)

the equation (3.6.6) hasRV(2)-solution x satisfying (3.6.7) and ifϕ(n) is given by (3.6.8)
then x(n) = n2(log n)−1/6 is an exact solution of (3.6.6).

In the summary, if R+ denotes the set of all strongly increasing regularly varying
solutions,

R+ =


∅, η ∈ (−∞,−3)
ntr − RV(2), η = −3
RV(2), η ∈ (−3, 3) ∪ (3,∞)

Note that this equation does not have any decreasing RV-solution. �

Example 3.6.4 Consider the difference equation

(3.6.9) ∆
(
nη

√
log n (∆x(n))3

)
= nη−4 ϕ(n)

√
x(n + 1) log n, n ≥ 1,

whereϕ(n) is a positive real-value sequence such that limn→∞ ϕ(n) = δ and η , 3.Here,
α = 3, β = 1/2, p(n) = nη

√
log n, and q(n) = nη−4

√
log n, so p ∈ RV(η) and q ∈ RV(σ),

where σ = η − 4 = η − α − 1.

In the case η < 3 = α, since σ <
βη

α
− β − 1, implying that J2 < ∞, using Theorem

3.2.2-(ii) and Theorem 3.4.1-(i), we conclude that there exist solutions inM+
∞,l, while

the set of all strongly increasing regularly varying solutionsR+ is empty. Since I1 = ∞,
the set of decreasing RV-solutions is also empty. Let η > 3 = α. Using that

n∑
k=2

 1
p(k)

k−1∑
j=1

q( j)


1
α

∼
1

3
√
η − 3

n∑
k=2

1
k
→∞, n→∞,

by Theorem 3.4.3 there exists nontrivial slowly varying solution of the equation (3.6.9)
and any such solution x has asymptotic representation

x(n) ∼
(

125δ
216(η − 3)

) 2
5

· (log n)
6
5 , n→∞.
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3. Second order Emden-Fowler type difference equation

In fact, due to Theorem 3.4.1-(ii), we conclude that R+ = ntr − SV.
If

ϕ(n) = n4

(n + 1
n

)η (log(n + 2))
18
5

(log n) 1
2 (log(n + 1)) 1

10

· ν(n + 1) − (log(n + 1))3
· ν(n)

 ,
where

ν(n) =

1 −
(

log n
log(n + 1)

)6/53

,

then δ = 216(η − 3)/125 and the considered equation has an exact solution x(n) =
(log n)6/5, x ∈ ntr − SV.

As in previous case there are no decreasing solutions. �
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Chapter 4
Cyclic systems of second-order
difference equations

4.1 Introduction

To further generalize results established in the previous chapter, systems of nonlin-
ear difference equations that will be studied in this chapter are the following cyclic
systems:

(SE+) ∆(pi(n)|∆xi(n)|αi−1∆xi(n)) + qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1) = 0,

and

(SE−) ∆(pi(n)|∆xi(n)|αi−1∆xi(n)) − qi(n)|xi+1(n + 1)|βi−1xi+1(n + 1) = 0,

where i = 1,N, xN+1 = x1, n ∈N, and following conditions hold:

(a) αi and βi, i = 1,N are positive constants such that

α1α2 · . . . · αN > β1β2 · . . . · βN;

(b) pi = {pi(n)}, qi = {qi(n)} are positive real sequences;

(c) All pi, i = 1,N simultaneously satisfy either

(I) Si =

∞∑
n=1

1
pi(n)1/αi

= ∞,

or

(II) Si =

∞∑
n=1

1
pi(n)1/αi

< ∞.
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4. Cyclic systems of second-order difference equations

Systems (SE+) and (SE−) are called sublinear if the condition (a) holds. In the
case when opposite inequality holds, we say that the systems are superlinear. If
α1α2 · . . . · αN = β1β2 · . . . · βN, then systems are called half-linear.

Existence of positive solutions and oscillation of discrete nonlinear systems are
widely studied in the literature (see, e.g. [4,55,56,83,84,94,95,110–112] and references
therein). However, in the existing literature, there are no results concerning asymptotic
analysis of solutions of a cyclic system of difference equations of second order. In this
regard, the first task will be to classify solutions based on their behavior at infinity. The
second task is to determine the necessary and sufficient conditions for the existence
of these solutions. Determining precise asymptotic formulas is the third and the most
difficult task. For so-called primitive solutions, asymptotic behavior is already known.
However, for intermediate solutions of systems (SE+) , that is, extreme solutions
(strongly increasing and strongly decreasing) of systems (SE−) , it is not easy to find
appropriate asymptotic formulas. Therefore, as in the previous chapter, we will limit
ourselves to examination of systems whose coefficients pi = {pi(n)}, qi = {qi(n)} are
regularly varying sequences and focus our attention on the existence and asymptotic
behavior of regularly varying solutions.

The obtained results can be considered as a discrete analogue of the results in a
continuous case (see [50, 51, 54]). Also, the obtained results can be applied to systems
of N equations of the first order in the case when N is even.

One-dimensional system is in fact well-known sublinear second order Emden-
Fowler type difference equation

(4.1.1) ∆(p(n)|∆x(n)|α−1∆x(n)) ± q(n)|x(n + 1)|β−1x(n + 1) = 0,

which has been studied a lot in the literature (see e.g. [7,14–16,19–21,23,24,123,124,131,
136]). Also, two-dimensional system can be easily reduced to fourth-order nonlinear
difference equations

(4.1.2) ∆2
(
p(n)

∣∣∣∆2x(n)
∣∣∣α−1

∆2x(n)
)

+ q(n)x(n + 2)β = 0,

and

(4.1.3) ∆
(
a(n)

(
∆ b(n)

(
∆ c(n) (∆x(n))γ

)β)α)
+ d(n)x1(n + 2)λ = 0 .

The oscillatory and asymptotic properties of solutions of the equation (4.1.2) have
been investigated by various authors [5, 6, 87, 125, 126, 128–131], while more general
equation (4.1.3) has been considered in [3,6,27–29]. Therefore, our main results can be
seen as an extension of the quoted existence results for solutions of equations (4.1.1),
(4.1.2), (4.1.3) as well as an improvement of the quoted result in the sense of giving
exact asymptotic representation formula of solutions of these second and fourth order
difference equation.

The whole chapter is based on the original results, among which results presented in Section
4.3 was published in [61].
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4.2. Preliminaries

4.2 Preliminaries

By a solution of (SE+) (respectively (SE−) ) we mean a vector sequence

x = (x1, x2, . . . , xN) =
(
{x1(n)}, {x2(n)}, . . . , {xN(n)}

)
∈
NR × . . . × NR,

where NR = { f | f : N → R}, whose components xi = {xi(n)}, i = 1,N satisfy (SE+)
(respectively (SE−) ) for n ∈ N. In what following, we will observe sequences for
sufficiently large n, i.e. n ≥ n0, for some n0 ∈ N. Therefore, we introduced notation
Nn0R = { f | f :Nn0 → R}, whereNn0 = {n ∈N

∣∣∣ n ≥ n0}.
We are interested in nonoscillatory positive solutions, i.e. solutions whose all

components are eventually positive. Similar, if all components of solution x are
increasing (decreasing), we say that x is increasing (decreasing) solution. For every
component of any solution x of (SE+) or (SE−) , let we denote by x[1]

i =
{
x[1]

i (n)
}

its

quasi-difference x[1]
i (n) = pi(n)|∆xi(n)|α−1∆xi(n), i = 1,N.

Since we will consider systems which have regularly varying coefficients, we
assume that pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N and represent them with

(4.2.1) pi(n) = nλili(n), qi(n) = nµimi(n), li,mi ∈ SV, i = 1,N.

We will search the regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) of the observed
systems in the form

(4.2.2) xi(n) = nρiξi(n), ξi ∈ SV, i = 1,N.

We also assume that all sequences pi, i = 1,N satisfy either (I) or (II). Condition (I),
resp. (II), holds if and only if

(4.2.3) λi < αi or λi = αi and
∞∑

n=1

n−1li(n)−
1
αi = ∞,

resp.

(4.2.4) λi > αi or λi = αi and
∞∑

n=1

n−1li(n)−
1
αi < ∞.

Sequences Pi = {Pi(n)} given by

(4.2.5) Pi(n) =

n−1∑
k=1

pi(k)−
1
αi , i = 1,N
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4. Cyclic systems of second-order difference equations

and πi = {πi(n)} given by

(4.2.6) πi(n) =

∞∑
k=n

pi(k)−
1
αi , i = 1,N

play a very important role in a classification of solutions of considered systems, as
well as, in their asymptotic analysis. Therefore, for Pi and πi we will use the following
asymptotic equivalences which are obtained with the help of Theorem 1.3.5.

In the case when λi < αi, i = 1,N we have

(4.2.7) Pi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi ,

and if λi = αi, i = 1,N then

(4.2.8) Pi(n) ∼
n−1∑
n=1

k−1li(k)−
1
αi .

If the case (II) holds, then for sequence πi we have

(4.2.9) πi(n) ∼
αi

λi − αi
n
αi−λi
αi li(n)−

1
αi .

or

(4.2.10) πi(n) ∼
∞∑

k=n

k−1li(k)−
1
αi ,

depending whether λi > αi, i = 1,N or λi = αi, i = 1,N respectively.
Also, to simplify notation we denote AN = α1α2 · . . . · αN, BN = β1β2 · . . . · βN and use

matrix

(4.2.11) M =



1 β1

α1

β1β2

α1α2
. . . . . .

β1β2·...·βN−1

α1α2·...·αN−1

1 β2

α2

β2β3

α2α3
. . .

β2β3·...·βN−1

α2α3·...·αN−1

1 β3

α3
. . .

β3·...·βN−1

α3·...·αN−1
. . . . . .

...

1 βN−1

αN−1

1


,

whose elements will be denoted by M = (Mi j), where the lower triangular elements
are omitted for the economy of notation. In fact, the i−th row of (Mi j) is obtained by
shifting the vector(

1,
βi

αi
,
βiβi+1

αiαi+1
, . . . ,

βiβi+1 · . . . βi+(N−2)

αiαi+1 · . . . αi+(N−2)

)
, αN+ j = α j, βN+ j = β j, j = 1,N − 2
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4.3. The system (SE+)

(i − 1)−times to the right cyclically, so that the lower triangular elements Mi j, i > j,
satisfy the relation

Mi jM ji =
β1β2 · . . . · βN

α1α2 · . . . · αN
, i > j, i = 2,N.

It is easy to see that for the elements of matrix M hold

(4.2.12) Mi+1,i
βi

αi
=

BN

AN
, Mi+1, j

βi

αi
= Mi j, for j , i,

where MN+1, j = M1, j, j = 1,N.
Throughout the text, n ≥ n0 means that n is sufficiently large so that n0 need not to

be the same at each occurrence.

4.3 The system (SE+)

4.3.1 Classification of positive solutions

In order to fully describe a set of positive solutions, we first classify positive solutions
according to their behavior at infinity. It can easily be seen that all components of
eventually positive solution x of the system (SE+) satisfy

(4.3.1) ci ≤ xi(n) ≤ Ci · Pi(n), for large n, i = 1,N if (I) holds

or

(4.3.2) kiπi(n) ≤ xi(n) ≤ Ki, for large n, i = 1,N if (II) holds

where Pi and πi for i = 1,N, are given by (4.2.5) and (4.2.6) respectively, and ci,Ci, ki

and Ki are positive real constants.
Indeed, if (I) holds, then is easy to see that xi, i = 1,N are eventually increasing, i.e.

(4.3.3) xi(n) > 0, ∆xi(n) > 0, for n ≥ n0, i = 1,N.

This implies left inequality in (4.3.1). Also, x[1]
i , i = 1,N are eventually decreasing, so

there exist positive constants bi such that pi(n)∆xi(n)αi ≤ bi, n ≥ n0 and i = 1,N, which
by summation implies that

xi(n) ≤ xi(n0) + b
1
αi
i

n−1∑
k=n0

1
pi(k)1/αi

≤ xi(n0) + b
1
αi
i Pi(n), i = 1,N.
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4. Cyclic systems of second-order difference equations

Since for all i = 1,N, Pi are increasing and Pi(n) → ∞, n → ∞, we get the right side
inequality in (4.3.1).

Similarly, if (II) holds, then xi, for i = 1,N are eventually decreasing, i.e.

(4.3.4) xi(n) > 0, ∆xi(n) < 0, for n ≥ n0, i = 1,N,

so right inequality in (4.3.2) holds. Therefore, limn→∞ xi(n) = xi(∞) < ∞. On the other
hand, since x[1]

i (n) = −pi(n) (−∆xi(n))αi
≤ 0 and x[1]

i , i = 1,N are decreasing, it follows
that −pi(n) (−∆xi(n))αi

≤ −hi, hi ∈ R+, n ≥ n0, i = 1,N, implying that

xi(n) ≥ xi(∞) + h
1
αi
i πi(n), n ≥ n0.

Using that πi, i = 1,N are decreasing and tend to zero, we get the left side inequality
in (4.3.2).

In the case (I) for each component xi of solution x only one of next three possibilities
holds:

(S1+) limn→∞
xi(n)
Pi(n)

= const > 0, i.e. xi(n) ∼ κiPi(n), n→∞, κi > 0,

(IM1) limn→∞ xi(n) = ∞, limn→∞
xi(n)
Pi(n)

= 0,

(AC+) limn→∞ xi(n) = const > 0, i.e. xi(n) ∼ κi, n→∞, κi > 0.

In the case (II) for each component xi of solution x only one of next three possibilities
holds:

(AC+) limn→∞ xi(n) = const > 0, i.e. xi(n) ∼ κi, n→∞, κi > 0,

(IM2) limn→∞ xi(n) = 0, limn→∞
xi(n)
πi(n)

= ∞,

(S2+) limn→∞
xi(n)
πi(n)

= const > 0, i.e. xi(n) ∼ κiπi(n), n→∞, κi > 0 .

Note that we consider only solutions whose all components are the same type.
Solutions of the type (S1+), (S2+) and (AC+) are called primitive and the existence
of such solutions will be discussed in the next subsection. Solutions of type (IM1)
and (IM2) are called intermediate solutions. The existence, as well as the asymptotic
formulas of these solutions will be studied in details in Subsection 4.3.3.
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4.3. The system (SE+)

4.3.2 Existence of primitive solutions

This section is dedicated to solutions of types (S1+), (S2+), and (AC+). Problem of
the existence of this types of solutions can be solved without the assumption that
coefficients of the system (SE+) are regularly varying sequences.

Theorem 4.3.1 Let (I) holds. The system (SE+) has a solution x whose each component
satisfies (AC1+) if and only if

(4.3.5)
∞∑

n=1

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

< ∞, i = 1,N.

Proof. Let x = (x1, x2, . . . , xN) be a solution of (SE+) whose each component satisfies
limn→∞ xi(n) = ci. Then, there exist positive constants ki and n0, such that ki ≤ xi(n),
n ≥ n0.We claim that limn→∞ x[1]

i (n) = 0, for all i. Indeed, since x[1]
i , i = 1,N are positive

and decreasing, it follows that limn→∞ x[1]
i (n) = ωi ≥ 0. If ωi > 0 for arbitrary fixed i,

then there exist m0 ≥ n0 such that x[1]
i (n) ≥ ωi, for n ≥ m0. In that case, we obtain that

xi(n) ≥ xi(m0) + ω
1
αi
i

n−1∑
k=m0

1
pi(k)1/αi

, n ≥ m0 ,

implying that limn→∞ xi(n) = ∞,which is a contradiction. Thus, limn→∞ x[1]
i (n) = 0 and

from (SE+) we have that

∆xi(n) =

 1
pi(n)

∞∑
k=n

qi(k) xi+1(k + 1)βi


1
αi

, i = 1,N.

Summing previous equality from n0 to∞we obtain

ci − xi(n0) =

∞∑
n=n0

 1
pi(n)

∞∑
k=n

qi(k) xi+1(k + 1)βi


1
αi

≥ k
βi
αi
i+1

∞∑
n=n0

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

, i = 1,N

which implies that the condition (4.3.5) is satisfied.
Assume now that (4.3.5) holds. Then, there exist n0 ≥ 1 such that

(4.3.6)
∞∑

n=n0

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

< 1, i = 1,N.

Denote withLn0 the space of all vectors x = (x1, x2, . . . , xN), such that xi = {xi(n)} ∈ Nn0R,

i = 1,N are bounded, and endowed with the topology of the norm

(4.3.7) ||x|| = max
1≤i≤N

{
sup
n≥n0

xi(n)
}
.
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4. Cyclic systems of second-order difference equations

Clearly, Ln0 is a Banach space. Set

(4.3.8) Ω1 =
{

x ∈ Ln0

∣∣∣∣ ci

2
≤ xi(n) ≤ ci, n ≥ n0, i = 1,N

}
,

where ci, i = 1,N are positive constants such that

(4.3.9) ci ≥ 2c
βi
αi
i+1, i = 1,N, cN+1 = c1.

An example of such choices is

(4.3.10) ci = 2
AN

AN−BN

∑N
j=1 Mi j , i = 1,N,

where Mi j are elements of the matrix M given by (4.2.11).
It is easy to see that Ω1 is bounded, closed and convex subset of Ln0 . Define the

operators Fi : Nn0R→ Nn0R by

(4.3.11) Fix(n) = ci −

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,

and define the mapping Θ : Ω1 → Ln0 by

(4.3.12) Θ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
,

where xN+1 = x1.We will show that Θ has a fixed point by using Schauder - Tychonoff
fixed point theorem. Namely, the operator Θ has the following properties:

(i) Θ maps Ω1 into itself: Let x ∈ Ω1. Then, using (4.3.6), (4.3.8), (4.3.9) and (4.3.11), we
see that

ci ≥ Fixi+1(n) ≥ ci − c
βi
αi
i+1

∞∑
n=n0

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

≥
ci

2
, i = 1,N, n ≥ n0.

(ii) Θ is continuous: Let εi > 0, i = 1,N and {x(m)
}m∈N =

{
(x(m)

1 , x(m)
2 , . . . , x(m)

N )
}

m∈N
, be a

sequence in Ω1 which converges to x = (x1, x2, . . . , xN) as m → ∞. Since, Ω1 is closed,
x ∈ Ω1. The rest of the proof does not depend on i, so let i ∈ {1, 2, . . . ,N} be arbitrary
fixed. For every n ≥ n0, we have

∣∣∣Fix
(m)
i+1(n) − Fixi+1(n)

∣∣∣ ≤ ∞∑
k=n

1

pi(k)
1
αi

∣∣∣∣∣∣∣∣
 ∞∑

s=k

qi(s)x(m)
i+1(s + 1)βi


1
αi

−

 ∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

∣∣∣∣∣∣∣∣ .
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4.3. The system (SE+)

By (4.3.5),
∑
∞

n=n0
qi(n) is convergent, implying that

∑
∞

n=n0
qi(n) x(m)

i+1(n + 1)βi is totally
convergent, because qi(n) x(m)

i+1(n + 1)βi ≤ cβi
i+1qi(n), for every n ≥ n0,m ∈ N. Then, by

a discrete analogue of Lebesgue dominated convergence theorem (Theorem 1.1.4), it
holds for every k ≥ n0

lim
m→∞

∣∣∣∣∣∣∣∣
 ∞∑

s=k

qi(s)x(m)
i+1(s + 1)βi


1
αi

−

 ∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

∣∣∣∣∣∣∣∣ = 0,

which shows that
lim
m→∞

sup
n≥n0

∣∣∣Fix
(m)
i+1(n) − Fixi+1(n)

∣∣∣ = 0.

Therefore, ||Θx(m)
−Θx|| → 0 as m→∞, i.e. Θ is continuous.

(iii) Θ(Ω1) is relatively compact: To show this, by Theorem 1.1.6, it is sufficient to
show that Θ(Ω1) is uniformly Cauchy in the topology ofLn0 . For x ∈ Ω1 and m > n ≥ n0

we have

|Fixi+1(m) − Fixi+1(n)| =

∣∣∣∣∣∣∣∣
m−1∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

∣∣∣∣∣∣∣∣
≤

m−1∑
k=n

1

pi(k)
1
αi

∣∣∣∣∣∣∣
∞∑

s=k

qi(s)xi+1(s + 1)βi

∣∣∣∣∣∣∣
1
αi

≤ c
βi
αi
i+1

m−1∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)


1
αi

.

According to (4.3.5) it follows that Θ(Ω1) is uniformly Cauchy. Therefore, all the
hypotheses of Schauder - Tychonoff fixed point theorem are fulfilled implying the
existence of a fixed point x ∈ Ω1 of Θ, which satisfies

xi(n) = ci −

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

.

It is clear that x is a positive solution of (SE+) whose all components tend to constants.
�

Theorem 4.3.2 Let (I) holds. The system (SE+) has a solution x whose each component
satisfies (S1+) if and only if

(4.3.13)
∞∑

n=1

qi(n)

 n∑
k=1

1
pi+1(n)1/αi+1


βi

< ∞, i = 1,N.
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4. Cyclic systems of second-order difference equations

Proof. Suppose that x = (x1, x2, . . . , xN) is a solution of (SE+) whose each component
satisfies (S1+). Then, limn→∞ xi(n) = ∞ and limn→∞ x[1]

i (n) = di > 0, i = 1,N. As x[1]
i

are decreasing and tend to di, there exists n0 such that x[1]
i (n) ≥ di, n ≥ n0, i = 1,N. By

summation of x[1]
i (n)/pi(n) = (∆xi(n))αi from n0 to n − 1, we get

xi(n) = xi(n0) +

n−1∑
k=n0

(
xi(k)[1]

pi(k)

) 1
αi

≥ d
1
αi
i

n−1∑
k=n0

1
pi(k)1/αi

, n ≥ n0 .

Then, from (SE+) we obtain for n ≥ n0

x[1]
i (n) − di =

∞∑
k=n

qi(k)xi+1(k + 1)βi ≥ d
βi
αi+1
i+1

∞∑
k=n

qi(k)

 n−1∑
k=n0

1
pi+1(k)1/αi+1


βi

, i = 1,N .

Letting n→∞, we get that the condition (4.3.13) holds.
On the other hand, if (4.3.13) holds, then there exists n0 such that

(4.3.14)
∞∑

k=n0

qi(k)

 k∑
s=n0

1
pi+1(k)1/αi+1


βi

< 2αi−βi (2αi − 1) , i = 1,N.

Denote with Xn0 the space of all vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N, such

that {xi(n)/Pn0
i (n)}, i = 1,N are bounded, where

(4.3.15) Pn0
i (n) =

n−1∑
k=n0

1
pi(k)1/αi

, i = 1,N .

The space Xn0 endowed with the norm

(4.3.16) ||x|| = max
1≤i≤N

{
sup
n≥n0

xi(n)
Pn0

i (n)

}
is a Banach space. Set

(4.3.17) Ω2 =
{

x ∈ Xn0

∣∣∣∣ ciPn0
i (n) ≤ xi(n) ≤ 2ci Pn0

i (n), n ≥ n0, i = 1,N
}
,

where ci, i = 1,N are positive constants which satisfy (4.3.9). It is easy to see that Ω2 is
bounded, closed and convex subset of Xn0 . Define the operators Fi : Nn0R→ Nn0R by

Fix(n) =

n−1∑
k=n0

 1
pi(k)

cαi
i +

∞∑
s=k

qi(s)x(s + 1)βi




1/αi

, n ≥ n0, i = 1,N,
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and define the mapping Θ : Ω2 → Ln0 by (4.3.12). The mapping defined like this
satisfies all conditions of Schauder-Tychonoff fixed point theorem. Indeed, because
of (4.3.14) and (4.3.17), Θ maps Ω2 into itself. Using discrete Lebesgue’s dominated
convergence theorem, it can be shown that Θ is continuous and that Θ(Ω2) is uniformly
Cauchy. Applying Schauder-Tychonoff fixed point theorem, there exists x ∈ Ω2 such
that x = Θx. Then, it is easy to verify that x is a solution of (SE+) satisfying (S1+). �

Theorem 4.3.3 Let (II) holds. The system (SE+) has a solution x whose each component
satisfies (AC+) if and only if

(4.3.18)
∞∑

n=1

 1
pi(n)

n−1∑
k=1

qi(k)


1
αi

< ∞, i = 1,N.

Proof. Suppose that x = (x1, x2, . . . , xN) is a solution of (SE+) such that limn→∞ xi(n) = ci,

i = 1,N. Since all xi are eventually decreasing, there exists n0 such that xi(n) ≥ ci, n ≥ n0.

Then, for i = 1,N we have

xi(n) − ci ≥

∞∑
k=n

 1
pi(k)

k−1∑
s=n0

qi(s)xi+1(s + 1)βi


1
αi

≥ c
βi
αi
i+1

∞∑
k=n

 1
pi(k)

k−1∑
s=n0

qi(s)


1
αi

, n ≥ n0 .

Letting n→∞, we obtain (4.3.18).
Conversely, suppose that (4.3.18) holds. Then, there exists n0 such that

∞∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)


1
αi

< 21−
βi
αi , i = 1,N.

Denote withLn0 the space of all vectors x = (x1, x2, . . . , xN), such that xi ∈
Nn0R, i = 1,N

are bounded. The space Ln0 equipped with the norm (4.3.7) is Banach space. Further,
Ln0 is partially ordered, with the usual pointwise ordering ≤: for x,y ∈ Ln0 , x ≤ y
means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1,N. Define

Ω3 =
{

x ∈ Ln0

∣∣∣∣ ci ≤ xi(n) ≤ 2ci, n ≥ n0, i = 1,N
}
,

where ci, i = 1,N are positive constants satisfying (4.3.9).
For any subset B of Ω3, it is obvious that sup B ∈ Ω3 and inf B ∈ Ω3. Let us further

define operators Fi : Nn0R→ Nn0R by

Fix(n) = ci +

∞∑
k=n

 1
pi(k)

k−1∑
s=n0

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,
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4. Cyclic systems of second-order difference equations

and define the mapping Θ : Ω3 → Ln0 by (4.3.12). The mapping Θ satisfies the
assumptions of Theorem 1.1.1. Indeed, Θ maps Ω3 into itself, because if x ∈ Ω3, then

Fixi+1(n) ≥ ci, i = 1,N

and

Fixi+1(n) ≤ ci + (2ci+1)
βi
αi

∞∑
k=n

 1
pi(k)

k−1∑
s=n0

qi(s)


1
α i

≤ ci + (2ci+1)
βi
αi 21−

βi
αi ≤ ci + ci = 2ci, n ≥ n0 i = 1,N.

Clearly, Θ is nondecreasing, i.e. for x ≤ y follows that Θx ≤ Θy. By Theorem 1.1.1,
mapping Θ has a fixed point x ∈ Ω3, i.e. Θx = x, implying that x is a solution of (SE+) .
It is easy to see that every component of the vector x tends to some constant. �

Theorem 4.3.4 Let (II) holds. The system (SE+) has a solution x whose each component
satisfies (S2+) if and only if

(4.3.19)
∞∑

n=1

qi(n)

 ∞∑
k=n

1
pi+1(n)1/αi+1


βi

< ∞, i = 1,N.

Proof. Suppose that x = (x1, x2, . . . , xN) is a solution of (SE+) whose each compo-
nent satisfy limn→∞ xi(n)/πi(n) = ci. Since the proof is the same for all components of
vector x, let i ∈ {1, 2, . . . ,N} be arbitrary fixed. Then, there exist positive constants δi, γi

and n0 such that

(4.3.20) δi ≤
xi(n)
πi(n)

≤ γi, n ≥ n0.

Since x[1]
i is decreasing it follows

−pi(n) (−∆xi(n))αi
≤ −pi(m) (−∆xi(m))αi , n ≥ m,

i.e.

(4.3.21) − ∆xi(n) ≥
pi(m)

1
αi (−∆xi(m))

pi(n)
1
αi

, n ≥ m.

Summing (4.3.21) from m to k − 1, we get

xi(m) ≥ xi(m) − xi(k) ≥ pi(m)
1
αi (−∆xi(m))

k−1∑
n=m

1

pi(n)
1
αi

.
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4.3. The system (SE+)

Letting k→∞,we obtain xi(m) ≥ pi(m)
1
αi (−∆xi(m))πi(m). Then, using the last inequal-

ity and (4.3.20), (SE+) gives

n−1∑
k=n0

qi(k)xi+1(k + 1)βi ≤ pi(n) (−∆xi(n))αi
≤

(
xi(m)
πi(m)

)αi

≤ γαi
i , n ≥ n0 + 1 .

Letting n→∞, we get that the condition (4.3.19) is satisfied.
Conversely, let (4.3.19) holds. Then, there exist n0 ∈N such that

∞∑
n=n0

qi(n)

 ∞∑
k=n

1
pi+1(n)1/αi+1


βi

< 2αi−βi (2αi − 1) , i = 1,N.

Let Wn0 be the space of all vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N such that

{xi(n)/πi(n)}, i = 1,N are bounded. Then, Wn0 is a Banach space endowed with the
norm

(4.3.22) ||x|| = max
1≤i≤N

{
sup
n≥n0

xi(n)
πi(n)

}
.

Set
Ω4 =

{
x ∈ Wn0

∣∣∣∣ diπi(n) ≤ xi(n) ≤ 2di πi(n), n ≥ n0, i = 1,N
}
,

where di, i = 1,N are positive constants such that

di ≥ 2d
βi
αi
i+1, i = 1,N, dN+1 = d1.

An example of such choice is

di = 2
AN

AN−BN

∑N
j=1 Mi j , i = 1,N ,

where Mi j are elements of the matrix M given by (4.2.11). It is easy to see that Ω4 is
bounded, closed and convex subset ofWn0 . Define the operators Gi : Nn0R→ Nn0R by

Gix(n) =

∞∑
k=n

 1
pi(k)

(2di)
αi
−

∞∑
s=k

qi(s)x(s + 1)βi




1
α i

, n ≥ n0, i = 1,N,

and define the mapping Θ : Ω1 → Wn0 as (4.3.12). By means of similar reasoning
used in the proof of Theorem 4.3.1, it can be verified that the mapping Θ satisfies all
conditions of Schauder-Tychonoff fixed point theorem. Therefore, there exists x ∈ Ω4

such that x = Θx. It is easy to verify that x is a solution of (SE+) satisfying (S2+). �
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4. Cyclic systems of second-order difference equations

4.3.3 Asymptotic behavior of intermediate regularly varying solu-
tions

In what follows we assume that coefficients pi, qi, i = 1,N are regularly varying se-
quences expressed by (4.2.1). Intermediate solutions of the system (SE+) are solutions
of a system of equations

xi(n) = ci +

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

, i = 1,N,

if (I) holds, and

xi(n) =

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)xi+1(s + 1)βi




1
αi

, i = 1,N

if (II) holds, for some constants n0 ≥ 1 and ci, hi > 0, i = 1,N. It follows therefore that
intermediate solution of (SE+) satisfies the following systems of asymptotic relations

(4.3.23) xi(n) ∼
n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

, n→∞, i = 1,N,

or

(4.3.24) xi(n) ∼
∞∑

k=n

 1
pi(k)

k−1∑
s=n0

qi(s)xi+1(s + 1)βi


1
αi

, n→∞, i = 1,N

in cases (I) or (II), respectively.
In what follows we do not consider cases when λi = αi for one or all i (these cases

lead to ρi = 0), because of computational difficulty. Therefore, we have requirements
of positivity or negativity for regularity indices of solutions.

The following theorem gives us necessary and sufficient condition for the existence
of regularly varying solution x of a positive index (ρ1, ρ2, . . . , ρN) of the system of
asymptotic relations (4.3.23).

Theorem 4.3.5 Let pi ∈ RV(λi), qi ∈ RV(µi) and suppose that λi < αi, i = 1,N. The system
of asymptotic relations (4.3.23) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with
ρi ∈

(
0, αi−λi

αi

)
, i = 1,N if and only if

(4.3.25) 0 <
N∑

j=1

Mi j
α j − λ j + µ j + 1

α j
<
αi − λi

αi

(
1 −

BN

AN

)
, i = 1,N ,
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4.3. The system (SE+)

in which case ρi are uniquely determined by

(4.3.26) ρi =
AN

AN − BN

N∑
j=1

Mi j
α j − λ j + µ j + 1

α j
, i = 1,N

and the asymptotic behavior of any such solution is governed by the unique formula

(4.3.27) xi(n) ∼


N∏

j=1

n
α j+1

α j p j(n)
−

1
α j q j(n)

1
α j

D j


Mi j


AN

AN−BN

, n→∞, i = 1,N.

where

(4.3.28) D j = (α j − λ j − α jρ j)
1
α j ρ j, j = 1,N.

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all 0 < ρi <
αi−λi
αi
, be a solution of (4.3.23)

whose components are expressed in the form (4.2.2). Then, by Theorem 1.3.3 - (v),
follows that xi(n) → ∞, n → ∞, i = 1,N. From Theorem 1.3.3 - (vii) we have that
components of x satisfy (4.3.3). Since indices of regularity of xi/Pi, i = 1,N are less
then zero, Theorem 1.3.3 - (v) implies that limn→∞ xi(n)/Pi(n) = limn→∞ x[1](n) = 0.
Thus, using (4.2.1) and (4.2.2), we get

(4.3.29) x[1]
i (n) =

∞∑
k=n

qi(k)xi+1(k + 1)βi ∼

∞∑
k=n

kµi+βiρi+1mi(k)ξi+1(k)βi , n ≥ n0, i = 1,N.

The convergence of the above sums implies that µi + βiρi+1 ≤ −1, i = 1,N. If for some i
equality holds, then

(4.3.30) ∆xi(n) =

 1
pi(n)

∞∑
k=n

qi(k)xi+1(k + 1)βi


1
αi

∼ n−
λi
αi li(n)−

1
αi

 ∞∑
k=n

k−1mi(k)ξi+1(k)βi


1
αi

.

Summing (4.3.30) from n0 to n − 1 we find that

xi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi

 ∞∑
k=n

k−1mi(k)ξi+1(k)βi


1
αi

, n→∞,

implying that ρi = αi−λi
αi

, which is a contradiction. It follows that µi + βiρi+1 < −1 for

i = 1,N. Application of Theorem 1.3.5 to (4.3.29) gives for i = 1,N

(4.3.31) ∆xi(n) =

 1
pi(n)

∞∑
k=n

qi(k)xi+1(k + 1)βi


1
αi

∼
n
−λi+µi+βiρi+1+1

αi li(n)−
1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

,
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4. Cyclic systems of second-order difference equations

when n → ∞. Because xi(n) → ∞, n → ∞, we conclude from (4.3.31) that it must be
(−λi + µi + βiρi+1 + 1)/αi ≥ −1, i = 1,N. Here, also, the equality should be ruled out. If
the equality holds for some i, then summing (4.3.31) from n0 to n − 1 we have

xi(n) ∼
( 1
αi − λi

) n−1∑
k=n0

k−1li(k)−
1
αi mi(k)

1
αi ξi+1(k)

βi
αi , n→∞,

implying that xi ∈ SV, which is impossible. Therefore, (−λi + µi + βiρi+1 + 1)/αi > −1,
i = 1,N. Summing (4.3.31) from n0 to n − 1 and applying Theorem 1.3.5, we conclude
that

(4.3.32) xi(n) ∼
n
−λi+µi+βiρi+1+1

αi
+1li(n)−

1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

(
−λi+µi+βiρi+1+1

αi
+ 1

) , n→∞, i = 1,N.

From the previous relation, we see that

(4.3.33) ρi =
−λi + µi + βiρi+1 + 1

αi
+ 1, i = 1,N, ρN+1 = ρ1 ,

which is equivalent to a linear cyclic system of equations

(4.3.34) ρi −
βi

αi
ρi+1 =

αi − λi + µi + 1
αi

, i = 1,N, ρN+1 = ρ1.

The matrix of system (4.3.34)

(4.3.35) A = A
(
β1

α1
,
β2

α2
, . . . ,

βN

αN

)
=



1 −
β1

α1
0 . . . 0 0

0 1 −
β2

α2
. . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . 1 −
βN−1

αN−1

−
βN

αN
0 0 . . . 0 1


is a nonsingular because according to condition (a),

(4.3.36) det(A) = 1 −
β1β2 · . . . · βN

α1α2 · . . . · αN
> 0 .

Thus, the matrix A is invertible

(4.3.37) A−1 =
AN

AN − BN
M ,
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where matrix M is given by (4.2.11) and the system (4.3.34) has the unique solution
ρi, i = 1,N given explicitly by (4.3.26). From (4.3.26) we can see that all ρi satisfy
0 < ρi <

αi−λi
αi
, i = 1,N if and only if (4.3.25) holds.

Using (4.2.1) and (4.2.2) we can transform (4.3.32) in the following form

(4.3.38) xi(n) ∼
n
αi+1
αi pi(n)−

1
αi qi(n)

1
αi xi+1(n)

βi
αi

Di
, n→∞,

where Di, i = 1,N are given by (4.3.28). Without difficulty, we can obtain explicit
formula (4.3.27) for each xi from the cyclic system of asymptotic relations (4.3.38). The
relation (4.3.27) can be rewritten in the following form

(4.3.39) xi(n) ∼ nρi


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

, n→∞, i = 1,N.

implying that the regularity index of xi is exactly ρi.
Suppose now that (4.3.25) holds and define ρi with (4.3.26), Di with (4.3.28). Denote

(4.3.40) Xi(n) =


N∏

j=1

n
α j+1

α j p j(n)
−

1
α j q j(n)

1
α j

D j


Mi j


AN

AN−BN

, i = 1,N and Xi = {Xi(n)} .

Clearly, Xi ∈ RV(ρi), i = 1,N and Xi satisfy the system of asymptotic relations (4.3.23),
i.e.

(4.3.41)
n−1∑
k=n1

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,

where XN+1 = X1. Indeed, Xi(n) can be expressed as

(4.3.42) Xi(n) = nρiχi(n), χi(n) =


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

,

and using Theorem 1.3.5, we obtain

(4.3.43)
n−1∑
k=n1

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρili(n)−

1
αi mi(n)

1
αi χi+1(n)

βi
αi

Di
,

109
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as n → ∞. Since (4.2.12) holds for the elements of matrix M, relation (4.3.43) can be
transformed as

(4.3.44)

li(n)−
1
αi mi(n)

1
αi

Di
χi+1(n)

βi
αi =

li(n)−
1
αi mi(n)

1
αi

Di


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi+1, j

βi
αi


AN

AN−BN

=


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

= χi(n), i = 1,N, χN+1 = χN ,

so from (4.3.43), we obtain that Xi, i = 1,N satisfy (4.3.41). �

Assuming that (II) holds, we are in a position to find necessary and sufficient
condition that the system of asymptotic relations (4.3.24) possesses a regularly varying
solution x of negative index (ρ1, ρ2, . . . , ρN).

Theorem 4.3.6 Let pi ∈ RV(λi), qi ∈ RV(µi) and suppose that λi > αi, i = 1,N. The system
of asymptotic relations (4.3.24) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with
ρi ∈

(
αi−λi
αi
, 0

)
, i = 1,N if and only if

(4.3.45)
αi − λi

αi

(
1 −

BN

AN

)
<

N∑
j=1

Mi j
α j − λ j + µ j + 1

α j
< 0

in which case ρi are given by (4.3.26) and the asymptotic behavior of any such solution is
governed by the unique formula (4.3.27) where

(4.3.46) D j = (λ j − α j + α jρ j)
1
α j (−ρ j), j = 1,N.

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with αi−λi
αi

< ρi < 0, i = 1,N, be a solution of (4.3.24),
whose components are given by (4.2.2). From Theorem 1.3.3 - (vii) we see that all
components of x satisfy (4.3.4). Using (4.2.1) and (4.2.2), we obtain

(4.3.47) − x[1]
i (n) ∼

n−1∑
k=n0

qi(k)xi+1(k + 1)βi ∼

n−1∑
k=n0

kµi+βiρi+1mi(k)ξi+1(k)βi , n ≥ n0, i = 1,N,

as n→∞. Since indices of regularity of xi/πi, i = 1,N are greater then zero, it follows,
by Theorem 1.3.3 - (v), that limn→∞ xi(n)/πi(n) = ∞, implying that limn→∞ x[1](n) = −∞.
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Therefore, from (4.3.47) we have that µi + βiρi+1 ≥ −1 for all i. If the equality holds for
some i, then noting that

−∆xi(n) ∼

 1
pi(n)

n−1∑
k=n0

qi(k)xi+1(k + 1)βi


1
αi

∼ n−
λi
αi li(n)−

1
αi

 n−1∑
k=n0

k−1mi(k)ξi+1(k)βi

 , n→∞,

and summing this from n to∞, with the help of Theorem 1.3.5 we get

xi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi

 n−1∑
k=n0

k−1mi(k)ξi+1(k)βi

 , n→∞.

The previous relation implies that xi ∈ RV
(
αi−λi
αi

)
which is impossible, due to ρi >

αi−λi
αi
.

Therefore, µi + βiρi+1 > −1 for all i. Applying Theorem 1.3.5 to (4.3.47), we get

(4.3.48) − ∆xi(n) ∼

 1
pi(n)

n−1∑
k=n0

qi(k)xi+1(k + 1)βi


1
αi

∼
n
−λi+µi+βiρi+1+1

αi li(n)−
1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

,

as n → ∞. Since xi(n) → 0, n → ∞, we see that (−λi + µi + βiρi+1 + 1)/αi ≤ −1 for
all i. All inequalities should be strict, because if the equality holds for some i, then
summing (4.3.48) from n to∞, we get

xi(n) ∼ (λi − αi)
−

1
αi

∞∑
k=n

k−1li(k)−
1
αi mi(k)

1
αi ξi+1(k)

βi
αi , n→∞,

i.e. xi ∈ SV, which is also impossible, due to assumption ρi < 0. Therefore, we see
that (−λi + µi + βiρi+1 + 1)/αi < −1 for all i, in which case summing (4.3.48) from n to
∞, using Theorem 1.3.5, we get

xi(n) ∼
n
−λi+µi+βiρi+1+1

αi
+1li(n)−

1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

[
−

(
−λi+µi+βiρi+1+1

αi
+ 1

)] , n→∞, i = 1,N.

This implies that (4.3.33) holds, which is equivalent to the linear algebraic system
(4.3.34). Proceeding exactly like in the proof of the previous theorem we get that
system (4.3.24) has a regularly varying solution of indices ρi ∈

(
αi−λi
αi
, 0

)
if and only if

(4.3.45) is fulfilled.
Now assume that (4.3.45) holds. Define ρi ∈

(
αi−λi
αi
, 0

)
by (4.3.26) and consider

Xi ∈ RV(ρi) defined by (4.3.40), with D j given by (4.3.46). It can be verified that Xi,
i = 1,N satisfy the system of asymptotic relations

(4.3.49)
∞∑

k=n

 1
pi(k)

k−1∑
s=n1

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,
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for any n1 ∈ N, where XN+1 = X1. In fact, we can use the expression (4.3.42) for Xi,

where D j, j = 1,N are given by (4.3.46). Then, we obtain the asymptotic relation

(4.3.50)
∞∑

k=n

 1
pi(k)

k−1∑
s=n1

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρili(n)

−
1
α j mi(n)

1
α j χi+1(n)

βi
αi

Di
, i = 1,N,

as n → ∞, with χN+1 = χN. As in proof of the previous theorem, with the help of
(4.2.12), it can be verified that

li(n)
−

1
α j mi(n)

1
α j χi+1(n)

βi
αi

Di
= χi(n)

and the desired relation (4.3.49) immediately follows from (4.3.50). This completes the
proof of the theorem. �

We are now in a position to state and prove our main results on the existence and
the precise asymptotic behavior of regularly varying intermediate solutions of system
(SE+) with regularly varying coefficients pi and qi. Use is made of the notation and
properties of the matrices (4.2.11), (4.3.35) and (4.3.37).

Theorem 4.3.7 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that λi < αi for all
i = 1,N. System (SE+) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi ∈

(
0, αi−λi

αi

)
,

i = 1,N, if and only if (4.3.25) holds, in which case ρi are given by (4.3.26) and the asymptotic
behavior of any such solution x is governed by the unique formula (4.3.27), whereby (4.3.28)
holds.

Theorem 4.3.8 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that λi > αi for all
i = 1,N. System (SE+) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi ∈

(
αi−λi
αi
, 0

)
,

i = 1,N, if and only if (4.3.45) holds, in which case ρi are given by (4.3.26) and the asymptotic
behavior of any such solution x is governed by the unique formula (4.3.27) and D j, j = 1,N,
are given by (4.3.46).

We remark that the ”only if” parts of these theorems follow immediately from the
corresponding parts of Theorem 4.3.5 and Theorem 4.3.6 because any RV−solution
x of (SE+) with the indicated property satisfies (IM1) or (IM2) and accordingly the
system of asymptotic relations (4.3.23) and (4.3.24).

Proof of the ”if” part of Theorem 4.3.7: Let Xi = {Xi(n)} ∈ RV(ρi) denote se-
quences defined by (4.3.40), where D j for j = 1,N are given by (4.3.28). It is known
that

(4.3.51)
n−1∑
k=1

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,
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4.3. The system (SE+)

implying that there exists n0 > 1 such that

(4.3.52)
n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≤ 2Xi(n), n ≥ n0, i = 1,N.

Without loss of generality, we may assume that each Xi is increasing for n ≥ n0, because
it is known that any regularly varying sequence of a positive index is asymptotically
equivalent to an increasing RV sequence of the same index. Since (4.3.51) holds for
n0 it is possible to choose n1 > n0 + 1 so large that

(4.3.53)
n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

Xi(n), n ≥ n1, i = 1,N.

Let we choose positive constants ci and Ci so that

(4.3.54) ci ≤
1
2

c
βi
αi
i+1, Ci ≥ 4C

βi
αi
i+1, i = 1,N, cN+1 = c1, CN+1 = C1.

An example of such choices is

(4.3.55) ci =
(1
2

) AN
AN−BN

∑N
j=1 Mi j

, Ci = 4
AN

AN−BN

∑N
j=1 Mi j

for i = 1,N. Clearly ci ≤ 1 ≤ Ci. The constants ci and Ci can be chosen so that
Ci/ci ≥ 2Xi(n1)/Xi(n0), that is

(4.3.56) 2ciXi(n1) ≤ CiXi(n0), i = 1,N,

because these constants are independent of Xi and the choice of n0 and n1.

Consider the space Υn0 of vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N, such that

{xi(n)/Xi(n)}, i = 1,N are bounded. Then, Υn0 is a Banach space endowed with the
norm

(4.3.57) ||x|| = max
1≤i≤N

{
sup
n≥n0

xi(n)
Xi(n)

}
.

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: For x,y ∈ Υn0 ,

x ≤ y means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1,N. Define the subset X ⊂ Υn0 with

(4.3.58) X =
{

x ∈ Υn0

∣∣∣∣ ciXi(n) ≤ xi(n) ≤ CiXi(n), n ≥ n0, i = 1,N
}
.
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It is easy to see that for any x ∈ X the norm of x is finite. Also, for any subset B ⊂ X, it
is obvious that inf B ∈ X and sup B ∈ X.We will define the operators Fi : Nn0R→ Nn0R
by

(4.3.59) Fix(n) = bi +

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,

where bi are positive constants such that

(4.3.60) ciXi(n1) ≤ bi ≤
1
2

CiXi(n0), i = 1,N,

and define the mapping Φ : X → Υn0 by

(4.3.61) Φ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1.

We will show that Φ has a fixed point by using Theorem 1.1.1. Namely, the operator
Φ has the following properties:

(i) Φ maps X into itself: Let x ∈ X. Then, using (4.3.52)-(4.3.61), we see that

Fixi+1(n) ≤
1
2

CiXi(n0) + C
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≤
1
2

CiXi(n0) + 2C
βi
αi
i+1Xi(n) ≤

1
2

CiXi(n) +
1
2

CiXi(n) = CiXi(n)

for n ≥ n0 and

Fixi+1(n) ≥ bi ≥ ciXi(n1) ≥ ciXi(n), for n0 ≤ n ≤ n1,

Fixi+1(n) ≥ c
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

c
βi
αi
i+1Xi(n) ≥ ciXi(n), n ≥ n1.

This shows that Φx ∈ X, that is, Φ is a self-map on X.

(ii) Φ is increasing, i.e. for any x,y ∈ X, x ≤ y implies Φx ≤ Φy.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ X of Φ, which satisfies

xi(n) = Fixi+1(n) = bi +

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
α i

, n ≥ n0,
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for every i = 1,N. This shows that x ∈ X is a solution of system (SE+) . It is clear, in
view of (4.3.58) and limn→∞Xi(n) = ∞, that we have limn→∞ xi(n) = ∞. Also,

pi(n) (∆xi(n))αi =

∞∑
k=n

qi(k)xi+1(k + 1)βi ≤ cβi
i

∞∑
k=n

qi(k)Xi+1(k + 1)βi , i = 1,N.

Letting n→∞ in the last relation, we get that x[1]
i (n)→ 0, as n→∞. Therefore, x is an

intermediate solution.
It remains to verify that x ∈ RV(ρ1, ρ2, . . . , ρN). We define

ui(n) =

n−1∑
k=n0

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

, i = 1,N,

and put

ri = lim inf
n→∞

xi(n)
ui(n)

, Ri = lim sup
n→∞

xi(n)
ui(n)

.

Since ciXi(n) ≤ xi(n) ≤ CiXi(n), n ≥ n0, i = 1,N and

(4.3.62) ui(n) ∼ Xi(n), n→∞, i = 1,N,

it follows that 0 < ri ≤ Ri < ∞, i = 1,N. Using Theorem 1.1.8 we obtain

ri ≥ lim inf
n→∞

∆xi(n)
∆ui(n)

= lim inf
n→∞

(
1

pi(n)

∑
∞

k=n qi(k)xi+1(k + 1)βi
) 1
αi(

1
pi(n)

∑
∞

k=n qi(k)Xi+1(k + 1)βi

) 1
αi

= lim inf
n→∞

( ∑
∞

k=n qi(k)xi+1(k + 1)βi∑
∞

k=n qi(k)Xi+1(k + 1)βi

) 1
αi

=

(
lim inf

n→∞

∑
∞

k=n qi(k)xi+1(k + 1)βi∑
∞

k=n qi(k)Xi+1(k + 1)βi

) 1
αi

≥

(
lim inf

n→∞

qi(n)xi+1(n + 1)βi

qi(n)Xi+1(n + 1)βi

) 1
αi

= lim inf
n→∞

(
xi+1(n + 1)
Xi+1(n + 1)

) βi
αi

= r
βi
αi
i+1,

where (4.3.62) has been used in the last step. Thus, ri satisfy the cyclic system of
inequalities

(4.3.63) ri ≥ r
βi
αi
i+1, i = 1,N, rN+1 = r1.

Likewise, by taking the upper limits instead of the lower limits, we are led to the cyclic
inequalities

(4.3.64) Ri ≤ R
βi
αi
i+1, i = 1,N, RN+1 = R1.
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From (4.3.63) and (4.3.64) we easily see that

(4.3.65) ri ≥ r
β1β2 ...βN
α1α2 ...αN
i , Ri ≤ R

β1β2 ...βN
α1α2 ...αN
i ,

whence, because of the hypothesis β1β2 . . . βN/α1α2 . . . αN < 1, we find that ri ≥ 1 and
Ri ≤ 1, i = 1,N. It follows therefore that ri = Ri = 1 i.e. limn→∞ xi(n)/ui(n) = 1 for
i = 1,N, which combined with (4.3.62) implies that xi(n) ∼ ui(n) ∼ Xi(n) as n → ∞.
Therefore, each xi is a regularly varying sequence of index ρi. Thus the proof of the
”if” part of Theorem 4.3.7. is completed. �

Proof of the ”if” part of Theorem 4.3.8: Suppose that (4.3.45) holds. Define ρi and
D j by (4.3.26) and (4.3.46), respectively, and consider the regularly varying sequences
Yi = {Yi(n)} of indices ρi defined by

Yi(n) = nρi


N∏

j=1

 l j(n)
−

1
α j m j(n)

1
α j

D j


Mi j


AN

AN−BN

, i = 1,N.

Since Yi, i = 1,N satisfy the asymptotic relations

Yi(n) ∼
∞∑

k=n

 1
pi(k)

k−1∑
s=1

qi(s)Yi+1(s + 1)βi


1
αi

∼

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=1

qi(s)Yi+1(s + 1)βi




1
αi

,

as n → ∞, where hi > 0 are arbitrary fixed real constants for i = 1,N, one can choose
n1 > n0 + 1 > 2 so that

(4.3.66)
∞∑

k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

≤ 2Yi(n), n ≥ n0, i = 1,N

and

(4.3.67)
1
2

Yi(n) ≤
∞∑

k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

, n ≥ n1, i = 1,N.

Let us choose the positive constants ωi and Wi which satisfy the cyclic system of
inequalities

(4.3.68) ωi ≤
1
2
ω

βi
αi
i+1, Wi ≥ 2 W

βi
αi
i+1, i = 1,N, ωN+1 = ω1, WN+1 = W1,
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and ωi ≤ h
1
αi
i ·minn0≤k≤n1

{
πi(k)
Yi(k)

}
. An example of such choices is

ωi = min
{
ci, γi h

1
αi
i

}
, Wi = 2

AN
AN−BN

∑N
j=1 Mi j , i = 1,N

where

γi = min
{

min
n0≤k≤n1

{
πi(k)
Yi(k)

}
, h
−

1
αi

i ci

}
and ci =

(1
2

) AN
AN−BN

∑N
j=1 Mi j

.

It is easy to see that for such constants ωi ≤ 1 ≤Wi.

Consider the space Υn0 of vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N such that

{xi(n)/Yi(n)}, i = 1,N are bounded.Then, Υn0 is a Banach space endowed with the norm

||x|| = max
1≤i≤N

{
sup
n≥n0

xi(n)
Yi(n)

}
.

Further, Υn0 is partially ordered, with the usual pointwise ordering ≤: For x,y ∈ Υn0 ,

x ≤ y means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1,N. Define the subsetY ⊂ Υn0 like

(4.3.69) Y =
{

x ∈ Υn0

∣∣∣ ωiYi(n) ≤ xi(n) ≤WiYi(n), n ≥ n0, i = 1,N
}
.

For any subset B ⊂ Y, it is obvious that inf B ∈ Y and sup B ∈ Y. We consider the
mapping Ψ : Y → Υn0 defined by

(4.3.70) Ψ(x1, x2, . . . , xN) =
(
G1x2,G2x3, . . . ,GNxN+1

)
, xN+1 = x1,

where Gi : Nn0R→ Nn0R and

(4.3.71) Gix(n) =

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)x(s + 1)βi




1
αi

, n ≥ n0, i = 1,N.

We will show that Ψ has a fixed point by using Theorem 1.1.1. Namely, the operator
Ψ has the following properties:

(i) Ψ mapsY into itself: Let x ∈ Y. Then, using (4.3.66)-(4.3.71), we see that

Gixi+1(n) ≤
∞∑

k=n

 1
pi(k)

hi + Wβi
i+1

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

=

∞∑
k=n

Wβi
i+1

pi(k)

 hi

Wβi
i+1

+

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

≤W
βi
αi
i+1

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

≤
1
2

Wi 2Yi(n) = WiYi(n)

117



4. Cyclic systems of second-order difference equations

for n ≥ n0 and

Gixi+1(n) ≥
∞∑

k=n

(
hi

pi(k)

) 1
αi

= h
1
αi
i πi(n) ≥ h

1
αi
i γi Yi(n) ≥ ωi Yi(n) for n0 ≤ n ≤ n1,

Gixi+1(n) ≥
∞∑

k=n

 1
pi(k)

hi + ωβi
i+1

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

= ωβi
i+1

∞∑
k=n

 1
pi(k)

 hi

ωβi
i+1

+

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

≥ ω
βi
αi
i+1

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)Yi+1(s + 1)βi




1
αi

≥ 2ωi
1
2

Yi(n) = ωiYi(n), n ≥ n1.

This shows that Ψx ∈ Y, that is, Ψ is a self-map onY.

(ii) Ψ is increasing, i.e. for any x,y ∈ Y, x ≤ y implies Ψx ≤ Ψy.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ Y of Ψ, which satisfies

xi(n) = Gixi+1(n) =

∞∑
k=n

 1
pi(k)

hi +

k−1∑
s=n0

qi(s)xi+1(s + 1)βi




1
αi

, n ≥ n0.

This shows that x ∈ Y is a solution of the system (SE+) and it is easy to see that
it is an intermediate solution. In the essentially same way as in the proof of the
previous theorem, we obtain that x is a regularly varying solution of (SE+) of the
index (ρ1, ρ2, . . . , ρN). �

Application. Main results of this section can be applied to the well-known second
order difference equation of Emden-Fowler type (4.1.1) to provide new results on the
existence and the asymptotic behavior of its intermediate solutions. As an immediate
consequence of Theorem 4.3.7 and Theorem 4.3.8, we have the following two results
for the equation (4.1.1).

Theorem 4.3.9 Let {p(n)} ∈ RV(λ) and {q(n)} ∈ RV(µ). Suppose that λ < α. Equation
(4.1.1) possesses a regularly varying solution x of index ρ ∈

(
0, α−λα

)
if and only if

λ − α − 1 < µ < λ
β

α
− β − 1
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4.4. The system (SE−)

in which case ρ is given by

(4.3.72) ρ =
α − λ + µ + 1

α − β
,

and the asymptotic behavior of any such solution x is governed by the unique formula

x(n) ∼
[

nα+1p(n)−1q(n)
(α − λ − αρ)ρα

] 1
α−β

, n→∞.

Theorem 4.3.10 Let {p(n)} ∈ RV(λ) and {q(n)} ∈ RV(µ). Suppose that λ > α. Equation
(4.1.1) possesses a regularly varying solution x of index ρ ∈

(
α−λ
α , 0

)
if and only if

λ
β

α
− β − 1 < µ < λ − α − 1

in which case ρ is given by (4.3.72) and the asymptotic behavior of any such solution x is
governed by the unique formula

x(n) ∼
[

nα+1p(n)−1q(n)
(λ − α + αρ)(−ρ)α

] 1
α−β

, n→∞.

A special case of the equation (4.1.1) with p(n) = 1,n ∈ N and with the coefficient
q belonging to the set of normalized RV sequences was considered in [7]. Here,
we obtained necessary and sufficient conditions for the existence of RV solutions
and their precise asymptotic behavior, for the equation (4.1.1) with coefficients p, q
belonging to a larger set of RV sequences. Thus, Theorem 4.3.9 and Theorem 4.3.10
greatly improve results in [7].

4.4 The system (SE−)

Let us now turn our attention to the (SE−) system. In the case when N = 1, we get
a second-order difference equation usually called Thomas-Fermy type. Note that the
mentioned equation has been discussed in detail in the previous chapter.

4.4.1 Classification of positive solutions

As we have mentioned earlier, the first task is to classify the positive solutions. In this
regard, assuming that xi, i = 1,N, are eventually positive, from (SE−) we have that
x[1]

i =
{
x[1]

i (n)
}
, i = 1,N are eventually increasing.
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4. Cyclic systems of second-order difference equations

(a) Let we first consider a case when all xi are eventually increasing, i.e.

(4.4.1) xi(n) > 0, ∆xi(n) > 0, for n ≥ n0, i = 1,N.

Then, there are two possibilities for x[1]
i :

lim
n→∞

x[1]
i (n) = ci > 0 or lim

n→∞
x[1]

i (n) = ∞.

If (I) holds, since x[1]
i , i = 1,N are increasing, then there exist m0 such that

pi(n)∆xi(n)αi ≥ x[1]
i (m0),n ≥ m0, implying that

xi(n) ≥ xi(m0) + x[1]
i (m0)

1
αi

n−1∑
k=m0

1

pi(k)
1
αi

, i = 1,N.

Letting n→∞,we get that limn→∞ xi(n) = ∞.Note that in the case when limn→∞ x[1]
i (n) =

ci > 0, we get

lim
n→∞

xi(n)
Pi(n)

= c1/αi
i i.e. xi(n) ∼ c1/αi

i Pi(n), n→∞, i = 1,N.

If (II) holds, then in the case when limn→∞ x[1]
i (n) = ci > 0 we have that there exists

m0 ∈N such that x[1]
i (n) ≤ ci,n ≥ m0 for i = 1,N. Therefore, it follows that

xi(n) ≤ xi(m0) + c
1
αi
i

n−1∑
k=m0

1

pi(k)
1
αi

, i = 1,N.

From the last inequality, letting n→∞,we get that limn→∞ xi(n) = ki, for some positive
constants ki, i = 1,N.

(b) Next, consider xi, i = 1,N are eventually decreasing, i.e.

(4.4.2) xi(n) > 0, ∆xi(n) < 0, for n ≥ n0, i = 1,N.

Then, for x[1]
i , i = 1,N, one of the following two equalities holds:

lim
n→∞

x[1]
i (n) = −li, li > 0 or lim

n→∞
x[1]

i (n) = 0.

If (I) holds, then limn→∞ x[1]
i (n) = 0. Indeed, if limn→∞ x[1]

i (n) = −li, li > 0, then
−pi(n) (−∆xi(n))αi

≤ li, n ≥ n0 i.e. xi(n) ≤ xi(n0) − l1/αi
i

∑n−1
k=n0

pi(k)−1/αi . As the right-hand
side tends to −∞ contradicts positivity of xi, we have the desired conclusion.

If (II) holds, the case limn→∞ xi(n) = limn→∞ x[1]
i (n) = 0 leads to limn→∞ xi(n)/πi(n) =

0 and the case limn→∞ xi(n) = 0, limn→∞ x[1]
i (n) = const. < 0 leads to limn→∞ xi(n)/πi(n) =

const. > 0
Therefore, if (I) holds, each component xi of solution x is either increasing and

satisfies:
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4.4. The system (SE−)

(SI) limn→∞ xi(n) = limn→∞ x[1]
i (n) = ∞,

(S1−) limn→∞
xi(n)
Pi(n)

= const. > 0, i.e. xi(n) ∼ κiPi(n), n→∞, κi > 0,

or is decreasing and satisfies:

(SD) limn→∞ xi(n) = limn→∞ x[1]
i (n) = 0,

(AC−) limn→∞ xi(n) = const. > 0, i.e. xi(n) ∼ κi, n→∞, κi > 0.

On the other hand, if (II) holds each component xi of solution x is either increasing
and satisfies

(SI) limn→∞ xi(n) = limn→∞ x[1]
i (n) = ∞,

(AC−) limn→∞ xi(n) = const. > 0, i.e. xi(n) ∼ κi, n→∞, κi > 0,

or is decreasing and satisfies

(SD) limn→∞ xi(n) = limn→∞ x[1]
i (n) = 0,

(S2−) limn→∞
xi(n)
πi(n)

= const. > 0, i.e. xi(n) ∼ κiπi(n), n→∞, κi > 0,

(AC−) limn→∞ xi(n) = const. > 0, i.e. xi(n) ∼ κi, n→∞, κi > 0,

Solutions of type (S1−), (S2−) and (AC−) are called primitive solutions, while so-
lutions (SI) and (SD) are said to be extreme. We emphasize that if (I) holds (SI)
is equivalent to limn→∞ xi(n)/Pi(n) = ∞, while if (II) holds (SD) is equivalent to
limn→∞ xi(n)/πi(n) = 0.

Necessary and sufficient conditions for the existence of primitive solutions will be
established in the next subsection. On the other hand, existence and precise asymptotic
formulas of extreme solutions are not easy to determine in the general case. Therefore,
in Subsections 4.4.3 and 4.4.4, we will assume that the coefficients of the system are
regularly varying sequences and thus, by finding regularly varying solutions, solve
the problem. Subsection 4.4.3 is dedicated to strongly increasing solutions, while the
conditions of the existence and asymptotic behavior of strongly decreasing solutions
will be discussed in Subsection 4.4.4.

4.4.2 Existence of primitive solutions

The asymptotic behavior of primitive solutions, as we already said, is evident from
the classification itself. The following theorems prove similar to those in Subsection
4.3.2, determining the necessary and sufficient conditions for the existence of these
solutions, using Fixed point theory and without the assumption that coefficients are
regularly varying sequences.
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4. Cyclic systems of second-order difference equations

Theorem 4.4.1 Let (I) holds. The system (SE−) has a solution x whose each component
satisfies (S1−) if and only if

(4.4.3)
∞∑

n=1

qi(n)

 n∑
k=1

1
pi+1(k)1/αi+1


βi

< ∞, i = 1,N.

Proof. Let x = (x1, x2, . . . , xN) be a solution whose each component satisfies (S1−).
Clearly, x satisfies (4.4.1). Then, there exist n0 ∈N and mi > 0 such that x[1]

i (n) ≤ mi for
n ≥ n0, i = 1,N. Since x[1]

i are positive and increasing, we have for n ≥ n0

(4.4.4) xi(n) = xi(n0) +

n−1∑
k=n0

(
x[1]

i (k)
)1/αi

pi(k)1/αi
≥ k1/αi

i

n−1∑
k=n0

1
pi(k)1/αi

, ki = x[1]
i (n0), i = 1,N.

Using (4.4.4), summing (SE−) from n0 to n − 1, we get for n ≥ n0

mi ≥ x[1]
i (n) = x[1]

i (n0) +

n−1∑
k=n0

qi(k)xi+1(k + 1)βi

≥ x[1]
i (n0) + k

βi
αi
i+1

n−1∑
k=n0

qi(k)

 k∑
s=n0

1
pi+1(s)1/αi+1


βi

, i = 1,N.

Letting n→∞, follows that (4.4.3) holds.
Conversely, suppose that (4.4.3) holds. Then, there exists n0 ∈N such that

∞∑
n=n0

qi(n)

 n∑
k=n0

1
pi+1(k)1/αi+1


βi

< 2αi − 1, i = 1,N.

Denote with Ln0 the space of all vectors x = (x1, x2, . . . , xN),xi ∈
Nn0R, i = 1,N, such

that {xi(n)/Pn0
i (n)}, i = 1,N are bounded, where Pn0

i are given by (4.3.15). Then, Ln0 is a
Banach space endowed with the norm (4.3.16). Set

Λ1 =
{

x ∈ Ln0

∣∣∣∣ ci

2
Pn0

i (n) ≤ xi(n) ≤ ciPn0
i (n), n ≥ n0, i = 1,N

}
,

where ci, i = 1,N are positive constants which satisfy (4.3.9).
Define operators Fi : Nn0R→ Nn0R by

Fix(n) =

n−1∑
k=n0

 1
pi(k)

cαi
i −

∞∑
s=k

qi(s)x(s + 1)βi




1
α i

, n ≥ n0, i = 1,N,
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4.4. The system (SE−)

and define the mapping Θ : Λ1 → Ln0 by

(4.4.5) Θ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1.

Then, it is a matter of the routine procedure to show that Θ satisfies all the hy-
pothesis of Schauder-Tychonoff fixed point theorem. Therefore, Θ has a fixed element
x in the set Λ1. It is easy to see that x is a solution of the system (SE−) and that its
components satisfy (S1−). �

Theorem 4.4.2 Let (II) holds. The system (SE−) has an eventually increasing solution x
whose each component satisfies (AC−) if and only if

(4.4.6)
∞∑

n=2

 1
pi(n)

n−1∑
k=1

qi(k)


1
αi

< ∞, i = 1,N.

Proof. Let x = (x1, x2, . . . , xN) be a solution of (SE−) whose each component satisfy
(4.4.1) and limn→∞ xi(n) = ci. Then, there exist n0 ∈N and mi > 0 such that mi ≤ xi(n) ≤
ci, n ≥ n0, i = 1,N. Summing the equations of (SE−) first from n0 to n − 1, and then
from n0 to∞, we get for i = 1,N

ci − xi(n0) =

∞∑
k=n0

 1
pi(k)

x[1]
i (n0) +

k−1∑
s=n0

qi(s)xi+1(s + 1)βi




1
αi

≥ m
βi
αi
i+1

∞∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)


1
αi

,

implying that (4.4.6) holds.
Conversely, suppose that (4.4.6) holds. Then, there exists n0 ≥ 1 such that

∞∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)


1
αi

< 1, i = 1,N.

Denote withLn0 the space of all vectors x = (x1, x2, . . . , xN), such that xi ∈
Nn0R, i = 1,N

are bounded. Then, Ln0 is a Banach space endowed with the norm (4.3.7). Set

Λ2 =
{

x ∈ Ln0

∣∣∣∣ ci

2
≤ xi(n) ≤ ci, n ≥ n0, i = 1,N

}
,

where ci, i = 1,N are positive constants which satisfy (4.3.9).
Define operators Fi : Nn0R→ Nn0R by

Fix(n) =
ci

2
+

∞∑
k=n

 1
pi(k)

k−1∑
s=n0

qi(s)x(s + 1)βi


1/αi

, n ≥ n0, i = 1,N,

and define the mapping Θ : Λ2 → Ln0 by (4.4.5). By the SchauderTychonoff theorem
Θ has a fixed element x in the set Λ2. Further, it is easy to see that x is a solution of the
system (SE−) and that its components satisfy (AC−). �
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4. Cyclic systems of second-order difference equations

Theorem 4.4.3 Let (I) holds. The system (SE−) has a solution x whose each component
satisfies (AC−) if and only if

(4.4.7)
∞∑

n=1

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

< ∞, i = 1,N.

Proof. Let x = (x1, x2, . . . , xN) be a solution of (SE−) whose each component satisfies
limn→∞ xi(n) = ci. As previously shown limn→∞ x[1]

i (n) = 0, i = 1,N. From classification
it is clear that x is a decreasing solution, so there exist n0 ∈ N such that xi(n) ≥ ci,

n ≥ n0, i = 1,N. Summing equations of (SE−) twice from n to∞, we obtain

xi(n) = ci +

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
αi

≥ c
βi
αi
i+1

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)


1
αi

, n ≥ n0 ,

for i = 1,N. Letting n→∞, we get that the condition (4.4.7) is satisfied.
Conversely, suppose that (4.4.7) holds. Then, there exists n0 ∈N such that

∞∑
n=n0

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

< 2
αi
βi − 1, i = 1,N.

Denote withLn0 the space of all vectors x = (x1, x2, . . . , xN), such that xi = {xi(n)} ∈ Nn0R,

i = 1,N are bounded. Then, Ln0 is a Banach space endowed with the norm (4.3.7). Set

Λ3 =
{

x ∈ Ln0

∣∣∣∣ ci ≤ xi(n) ≤ 2ci, n ≥ n0, i = 1,N
}
,

where ci, i = 1,N are positive constants which satisfy (4.3.9).
Define operators Fi : Nn0R→ Nn0R by

Fix(n) = ci +

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,

and the mapping Θ : Λ3 → Ln0 by (4.4.5). Then, the existence of a desired solution of
(SE−) in the set Λ3 follows from the SchauderTychonoff fixed point theorem applied
to the mapping Θ. �

Theorem 4.4.4 Let (II) holds. The system (SE−) has a solution x whose each component
satisfies (S2−) if and only if

(4.4.8)
∞∑

n=1

qi(n)

 ∞∑
k=n+1

1
pi+1(k)1/αi+1


βi

< ∞, i = 1,N.
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Proof. Let x = (x1, x2, . . . , xN) be a solution whose each component satisfies (S2−),
implying that limn→∞ x[1]

i (n) = const. < 0, i = 1,N. Since x[1]
i , i = 1,N are eventually

negative and increasing, there exist n0 ∈ N and ci > 0 such that x[1]
i (n) ≤ ci for n ≥ n0,

i = 1,N. Then, for n ≥ n0, we have

xi(n) =

∞∑
k=n

(
−x[1]

i (k)
)1/αi

pi(k)1/αi
≥ (−ci)

1
αiπi(n), i = 1,N.

Summing equations of the system (SE−) twice from n to∞we get for n ≥ n0,

(4.4.9)

xi(n) =

∞∑
k=n

 1
pi(k)

ci +

∞∑
s=k

qi(s)xi+1(s + 1)βi




1
αi

≥

∞∑
k=n

 1
pi(k)

ci + (−ci+1)
βi
αi

∞∑
s=k

qi(s)πi+1(s + 1)βi




1
αi

, i = 1,N.

Letting that n→∞ in (4.4.9), follows that (4.4.8) holds.
Conversely, suppose that (4.4.8) holds. Then, there exists n0 ∈N such that

∞∑
n=n0

qi(n)

 ∞∑
k=n+1

1
pi+1(k)1/αi+1


βi

< 2αi−βi (2αi − 1) , i = 1,N.

Denote with Ln0 the space of all vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N, such

that {xi(n)/πi(n)}, i = 1,N are bounded. Then,Ln0 is a Banach space endowed with the
norm (4.3.22) Set

Λ4 =
{

x ∈ Ln0

∣∣∣∣ ciπi(n) ≤ xi(n) ≤ 2ciπi(n), n ≥ n0, i = 1,N
}
,

where ci, i = 1,N are positive constants which satisfy (4.3.9).
Define operators Fi : Nn0R→ Nn0R by

Fix(n) =

∞∑
k=n

 1
pi(k)

cαi
i +

∞∑
s=k

qi(s)x(s + 1)βi




1
α i

, n ≥ n0, i = 1,N,

and define the mapping Θ : Λ4 → Ln0 by (4.4.5).
Then, by Knaster-Tarski fixed point theorem (Theorem 1.1.1), Θ has a fixed element

x in the set Λ4. It is easy to see that x is a solution of the system (SE−) and that its
components satisfy (S2−). �

The following theorem can be proven in the essentially same way as Theorem 4.4.3.
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4. Cyclic systems of second-order difference equations

Theorem 4.4.5 Let (II) holds. The system (SE−) has a decreasing solution x whose each
component satisfies (AC−) if and only if

(4.4.10)
∞∑

n=1

 1
pi(n)

∞∑
k=n

qi(k)


1
αi

< ∞, i = 1,N.

4.4.3 Asymptotic behavior of strongly increasing regularly varying
solutions

Strongly increasing solutions of (SE−) are solutions of the system

xi(n) = ai +

n−1∑
k=n0

 1
pi(n)

bi +

k−1∑
s=n0

qi(s)xi+1(s + 1)βi




1
αi

, i = 1,N

for some constants n0 ≥ 1 and ai, bi > 0. Note that components of strongly increasing
solution of (SE−) is required to satisfy

∑
∞

n=n0
qi(n)xi+1(n + 1) = ∞, i = 1,N. It follows

that strongly increasing solution of (SE−) satisfies the following system of asymptotic
relations

(4.4.11) xi(n) ∼
n−1∑
k=n0

 1
pi(n)

 k−1∑
s=n0

qi(s)xi+1(s + 1)βi




1
αi

, n→∞ i = 1,N.

The previous system of asymptotic relations can be considered as an approximation of
system (SE−) . To find strongly increasing solution of the system (SE−) , i.e. solution
of (4.4.11), we will restrict our attention on the case when coefficients pi and qi are
regularly varying sequences. Therefore, we use expressions (4.2.1) for pi and qi, and
for the components xi of a solution x of (SE−) we use expression (4.2.2).

Because of computational difficulty, we restrict ourselves to consider only solutions
with a positive index of regularity. As we have seen in Section 4.2, the case (I) is
equivalent to (4.2.3) and the case (II) to (4.2.4). Therefore, if the case (I) is satisfied,
then we will distinguish two cases:

λi < αi, i = 1,N or λi = αi i = 1,N

which imply that Pi are given by (4.2.7) or (4.2.8), respectively. In the case (II), when
λi > αi, for sequences πi = {πi(n)}we have that (4.2.9) holds.

The following Theorem provides complete information about the existence and
asymptotic behavior of regularly varying solution of a positive index (ρ1, ρ2, . . . , ρN)
for the system of asymptotic relations (4.4.11).
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Theorem 4.4.6 Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N. Suppose that λi < αi, i =

1,N. The system of asymptotic relations (4.4.11) has a regularly varying solution x ∈
RV(ρ1, ρ2, . . . , ρN) with ρi >

αi−λi
αi
, i = 1,N if and only if

(4.4.12)
N∑

j=1

Mi j

(
µ j + 1
α j

+
β j(α j+1 − λ j+1)

α jα j+1

)
> 0, i = 1,N

holds, where αN+1 = α1, λN+1 = λ1, in which case ρi are uniquely determined by (4.3.26)
and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)
where

(4.4.13) D j =
(
λ j − α j + α jρ j

) 1
α j ρ j, j = 1,N.

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi >
αi−λi
αi

be a solution of (4.4.11). Then, all
xi satisfy (4.4.1) by Theorem 1.3.3 - (vii). Using (4.2.1) and (4.2.2), we obtain

(4.4.14) x[1]
i (n) ∼

n−1∑
k=n0

qi(k)xi+1(k + 1)βi ∼

n−1∑
k=n0

kµi+βiρi+1mi(k)ξi+1(k)βi , n ≥ n0, i = 1,N.

Since indices of regularity of xi/Pi, i = 1,N are greater then zero, from Theorem
1.3.3 - (v), we have that limn→∞ xi(n)/Pi(n) = ∞ and limn→∞ xi(n) = ∞, implying that
limn→∞ x[1]

i (n) = ∞. Therefore, both sums in (4.4.14) are divergent, implying that
µi + βiρi+1 ≥ −1, i = 1,N. If for some i equality holds, then

(4.4.15) ∆xi(n) ∼

 1
pi(n)

n−1∑
k=n0

qi(k)xi+1(k + 1)βi


1
αi

∼ n−
λi
αi li(n)−

1
αi Ki(n)

1
αi , n→∞,

where

Ki(n) =

n−1∑
k=n0

k−1mi(k)ξi+1(k + 1)βi , Ki ∈ SV.

Since λi < αi, from (4.4.11) and Theorem 1.3.5 we find that

xi(n) ∼
αi

αi − λi
n
αi−λi
αi li(n)−

1
αi Ki(n)

1
αi ,n→∞.

This implies that ρi = αi−λi
αi
, which is a contradiction. Therefore, µi + βiρi+1 > −1 for

i = 1,N. Application of Theorem 1.3.5 to (4.4.14) gives

(4.4.16) ∆xi(n) ∼

 1
pi(n)

n−1∑
k=n0

qi(k)xi+1(k + 1)βi


1
αi

∼
n
−λi+µi+βiρi+1+1

αi li(n)−
1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

,
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4. Cyclic systems of second-order difference equations

as n→∞, which yields

(4.4.17) xi(n) ∼
n−1∑
k=n0

k
−λi+µi+βiρi+1+1

αi li(k)−
1
αi mi(k)

1
αi ξi+1(k)

βi
αi

(µi + βiρi+1 + 1)
1
αi

,

i = 1,N. Since xi → ∞, n → ∞, from (4.4.17) we conclude that (−λi + µi + βiρi+1 +

1)/αi ≥ −1, i = 1,N. All inequalities should be strict because the equality for some i
would imply that 0 < µi + βiρi+1 + 1 = λi − αi < 0, which is impossible. Therefore,
(−λi + µi + βiρi+1 + 1)/αi > −1, i = 1,N. Applying Theorem 1.3.5, from (4.4.17) we get

(4.4.18) xi(n) ∼
n
−λi+µi+βiρi+1+1

αi
+1li(n)−

1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(µi + βiρi+1 + 1)
1
αi

(
−λi+µi+βiρi+1+1

αi
+ 1

) , n→∞, i = 1,N.

From previous relation we see that ρi, i = 1,N, satisfy (4.3.33) i.e. ρi, i = 1,N, will be
determined as a solution of the system (4.3.34). Thus, ρi, i = 1,N are given explicitly
by (4.3.26). Let we denote di = ρi −

αi−λi
αi
, i = 1,N. Then, the system (4.3.34) becomes

(4.4.19) di −
βi

αi
di+1 =

µi + 1
αi

+
βi(αi+1 − λi+1)

αiαi+1
, i = 1,N, dN+1 = d1.

Matrix of the system (4.4.19) is given by (4.3.35). Since A is nonsingular according to
(4.3.36), the system (4.4.19) has a unique solution di, i = 1,N, where

(4.4.20) di =

N∑
j=1

Mi j

(
µ j + 1
α j

+
β j(α j+1) − λ j+1

α jα j+1

)
, i = 1,N.

Using that ρi >
αi−λi
αi

if and only if di > 0, we conclude that the condition (4.4.12) is
satisfied.

Using (4.2.1) and (4.2.2) we can transform (4.4.18) in the form (4.3.38) where Di, i =

1,N are given by (4.4.13). It easy to obtain formulas (4.3.27) for each xi from the cyclic
system of asymptotic relations (4.3.38), which can be rewritten in the form (4.3.39),
implying that the regularity index of xi is exactly ρi.

Suppose now that (4.4.12) holds, define ρi and Di with (4.3.26) and (4.4.13), respec-
tively, and let Xi, i = 1,N be sequences defined with (4.3.40). Clearly, Xi ∈ RV(ρi),
i = 1,N and Xi satisfy the system of asymptotic relations

(4.4.21)
n−1∑
k=n1

 1
pi(k)

k−1∑
s=n1

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N, XN+1 = X1,
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4.4. The system (SE−)

for arbitrary n1 ∈N. Indeed, Xi can be expressed as (4.3.42) and using Theorem 1.3.5,
we obtain

(4.4.22)
n−1∑
k=n1

 1
pi(k)

k−1∑
s=n1

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρili(n)−

1
αi mi(n)

1
αi χi+1(n)

βi
αi

Di
, n→∞.

Relation (4.4.22) can be transformed as in (4.3.44), implying that Xi, i = 1,N satisfy
(4.4.21). �

Theorem 4.4.7 Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N. Suppose λi = αi and Si = ∞,
i = 1,N. The system of asymptotic relations (4.4.11) has a regularly varying solution x ∈
RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N if and only if

(4.4.23)
N∑

j=1

Mi j
µ j + 1
α j

> 0, i = 1,N

in which case ρi are uniquely determined by

(4.4.24) ρi =
AN

AN − BN

N∑
j=1

Mi j
µ j + 1
α j

, i = 1,N

and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)

with D j =
(
α jρ

α j+1
j

)1/α j
, j = 1,N.

Proof. Suppose that the system (4.4.11) has a solution x = (x1, x2, . . . , xN) ∈
RV(ρ1, ρ2, . . . , ρN), with ρi > 0, i = 1,N. Using (4.2.1) and (4.2.2), we obtain (4.4.14).
For all i = 1,N, indices of regularity of xi/Pi are ρi > 0, due to fact that Pi ∈ SV. Thus,
from Theorem 1.3.3 - (v), we have that limn→∞ xi(n)/Pi(n) = ∞ and limn→∞ xi(n) = ∞,
implying that limn→∞ x[1]

i (n) = ∞. Therefore, both sums in (4.4.14) are divergent, so it
must be µi + βiρi+1 ≥ −1. If equality holds for some i, then from (4.4.15) it follows that

xi(n) ∼
n−1∑
k=n0

k−1li(k)−
1
αi Ki(k)

1
αi , n→∞, i = 1,N,

implying that xi ∈ SV, which is a contradiction. Therefore, µi +βiρi+1 > −1 for i = 1,N.
Application of Theorem 1.3.5 to (4.4.14) gives (4.4.16) and since xi(n) → ∞, n → ∞,
it must be (−λi + µi + βiρi+1 + 1)/αi ≥ −1, i = 1,N. If equality holds for any i, then
µi + βiρi+1 = −1, which is impossible. Thus, (−λi + µi + βiρi+1 + 1)/αi > −1, i = 1,N.
Summing (4.4.16) from n0 to n − 1 and using Theorem 1.3.5, we get (4.4.18). Using
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4. Cyclic systems of second-order difference equations

assumption λi = αi, i = 1,N, from (4.4.18) we obtain the following cyclic system by
the unknown ρi,

(4.4.25) ρi −
βi

αi
ρi+1 =

µi + 1
αi

, i = 1,N, ρN+1 = ρ1.

Matrix of the system (4.4.25) is given by (4.3.35), and therefore, the system has a unique
solution ρi, i = 1,N given by (4.4.24). All ρi are positive if and only if (4.4.23) holds.
Proceeding exactly as in the proof of the previous theorem, we get (4.3.27), where

constants D j are reduced to D j =
(
α jρ

α j+1
j

)1/α j
, j = 1,N. �

The solution of the problem of determining the necessary and sufficient conditions
for the system of asymptotic relations (4.4.11) to have a regularly varying solution x
of the positive regularity index (ρ1, ρ2, . . . , ρN) in the case (II) is given by the following
theorem.

Theorem 4.4.8 Let pi ∈ RV(λi), qi ∈ RV(µi) and suppose that λi > αi, i = 1,N. The system
of asymptotic relations (4.4.11) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with
ρi > 0, i = 1,N if and only if

(4.4.26)
N∑

j=1

Mi j
α j − λ j + µ j + 1

α j
> 0

in which case ρi are given by (4.3.26) and the asymptotic behavior of any such solution is
governed by the unique formula (4.3.27) with D j, j = 1,N given by (4.4.13).

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi > 0 be a solution of (4.4.11). Clearly, all
components of the solution x satisfies (4.4.1). From Theorem 1.3.3 - (v) we have that
limn→∞ xi(n) = ∞, i = 1,N. Since x[1]

i , i = 1,N are positive and increasing it follows that

(a) lim
n→∞

x[1]
i (n) = ci > 0 or (b) lim

n→∞
x[1]

i (n) = ∞.

Case (a) implies that limn→∞ xi(n) = const., that is xi ∈ SV, which is impossible. Thus,
for x[1]

i , i = 1,N we have that (b) holds. As in the previous theorem we can obtain
(4.4.14) and conclude that µi + βiρi+1 ≥ −1, i = 1,N. If the equality holds for some i,
then summing (4.4.15) from n0 to n − 1 and using Theorem 1.3.5 we get

xi(n) ∼
n−1∑
k=n0

k−
λi
αi li(k)−

1
αi Ki(k)

1
αi , n→∞.

Because xi(n) → ∞,n → ∞, it must be −λi
αi
≥ −1, i.e. λi ≤ αi, which is impossible.

Therefore, µi + βiρi+1 > −1 for all i. Proceeding exactly as in the proof of Theorem 4.4.6
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we conclude that ρi, i = 1,N are given by (4.3.26). It is obvious that ρi > 0 if and only
if (4.4.26) is fulfilled. Like in the proof of the previous theorem, we get that the system
(4.4.11) has a regularly varying solution satisfying (4.3.27).

Proof of the ”if” part of the theorem is the same as of Theorem 4.4.6. �

From the statements of Theorem 4.4.7 and Theorem 4.4.8, we have the following
result for the existence of regularly varying solution of the system of asymptotic
relations (4.4.11) with positive index of regularity.

Theorem 4.4.9 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that for each of λi, αi,

i = 1,N, some of the following conditions is satisfied:

either λi > αi or λi = αi, Si = ∞.

The system of asymptotic relations (4.4.11) has a regularly varying solution
x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N if and only if (4.4.26) holds, in which case
ρi are given by (4.3.26) and the asymptotic behavior of any such solution is governed by the
unique formula (4.3.27), with D j, j = 1,N given by (4.4.13).

Focusing on strongly increasing solutions of the system (SE−) with a regularly
varying coefficients pi and qi, we can formulate and prove the following statements.

Theorem 4.4.10 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that λi < αi for
all i = 1,N. The system (SE−) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi >

αi−λi
αi
,

i = 1,N, if and only if (4.4.12) holds, in which case ρi are given by (4.3.26) and the asymptotic
behavior of any such solution x is governed by the unique formula (4.3.27), with D j, j = 1,N
given by (4.4.13).

Theorem 4.4.11 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that for each of λi, αi,

i = 1,N, some of the following conditions is satisfied:

either λi > αi or λi = αi, Si = ∞.

The system (SE−) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi > 0, i = 1,N, if and
only if (4.4.26) holds, in which case ρi are given by (4.3.26) and the asymptotic behavior of
any such solution x is governed by the unique formula (4.3.27), with D j, j = 1,N given by
(4.4.13).

We remark that the ”only if” parts of these theorems follow immediately from the
corresponding parts of Theorem 4.4.6 and Theorem 4.4.8 because any solution x of
(SE−) with the indicated property satisfies the system of asymptotic relation (4.4.11).
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Proof of the ”if” part of Theorem 4.4.10: Suppose (4.4.12) is satisfied. Let we
define the sequences Xi = {Xi(n)} ∈ RV(ρi) by (4.3.40), where D j for j = 1,N are given
by (4.4.13). It is known that

(4.4.27)
n−1∑
k=1

 1
pi(k)

k−1∑
s=1

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,

implying that there exists n0 > 1 such that

(4.4.28)
n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)Xi+1(s + 1)βi


1
αi

≤ 2Xi(n), n ≥ n0, i = 1,N.

Without loss of generality, we may assume that each Xi is eventually increasing. Since
(4.4.27) holds for n0, it is possible to choose n1 > n0 + 1 so large that

(4.4.29)
n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

Xi(n), n ≥ n1, i = 1,N.

Let we choose positive constants ci and Ci so that

(4.4.30) ci ≤
1
2

c
βi
αi
i+1, Ci ≥ 4C

βi
αi
i+1, i = 1,N, cN+1 = c1, CN+1 = C1.

An example of such choices is given in (4.3.55). Constants ci and Ci can be chosen so
that

(4.4.31) 2ciXi(n1) ≤ CiXi(n0), i = 1,N,

because these constants are independent of Xi as well as of the choice of n0 and n1.
Consider the space Υn0 of all vectors x = (x1, x2, . . . , xN), xi ∈

Nn0R, i = 1,N, such
that {xi(n)/Xi(n)}, i = 1,N are bounded. Then, Υn0 is a Banach space endowed with the
norm (4.3.57). Further, Υn0 is partially ordered, with the usual pointwise ordering ≤:
For x,y ∈ Υn0 , x ≤ y means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1,N. Define the subset
X ⊂ Υn0 with

(4.4.32) X =
{

x ∈ Υn0

∣∣∣∣ ciXi(n) ≤ xi(n) ≤ CiXi(n), n ≥ n0, i = 1,N
}
.

It is easy to see that for any x ∈ X, the norm of x is finite and that for any subset B ⊂ X,
inf B ∈ X and sup B ∈ X. Define the operators Fi : Nn0R→ Nn0R by

(4.4.33) Fix(n) = bi +

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,
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where bi are positive constants such that

(4.4.34) ciXi(n1) ≤ bi ≤
1
2

CiXi(n0), i = 1,N,

and define the mapping Φ : X → Υn0 by

(4.4.35) Φ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1.

We will show that Φ has a fixed point by using Theorem 1.1.1. Namely, the operator
Φ has the following properties:

(i) Φ maps X into itself: Let x ∈ X. Then, using (4.4.28)-(4.4.35), we see that

Fixi+1(n) ≤
1
2

CiXi(n0) + C
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)Xi+1(s + 1)βi


1
αi

≤
1
2

CiXi(n0) + 2C
βi
αi
i+1Xi(n) ≤

1
2

CiXi(n) +
1
2

CiXi(n) = CiXi(n)

for n ≥ n0 and

Fixi+1(n) ≥ bi ≥ ciXi(n1) ≥ ciXi(n), for n0 ≤ n ≤ n1,

Fixi+1(n) ≥ c
βi
αi
i+1

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2

c
βi
αi
i+1Xi(n) ≥ ciXi(n), n ≥ n1.

This shows that Φx ∈ X, that is, Φ is a self-map on X.

(ii) Φ is increasing, i.e. for any x,y ∈ X, x ≤ y implies Φx ≤ Φy.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ X of Φ, which satisfies

xi(n) = Fixi+1(n) = bi +

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)xi+1(s + 1)βi


1
α i

, n ≥ n0,

for i = 1,N. This shows that x ∈ X is a solution of system (SE−) and it is easy to see
that it is a strongly increasing solution.

It remains to verify that x ∈ RV(ρ1, ρ2, . . . , ρN). We define

ui(n) =

n−1∑
k=n0

 1
pi(k)

k−1∑
s=n0

qi(s)Xi+1(s + 1)βi


1
αi

, i = 1,N,
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4. Cyclic systems of second-order difference equations

and put

ri = lim inf
n→∞

xi(n)
ui(n)

, Ri = lim sup
n→∞

xi(n)
ui(n)

.

Using (4.4.32) and

(4.4.36) ui(n) ∼ Xi(n), n→∞, i = 1,N,

it follows that 0 < ri ≤ Ri < ∞, i = 1,N. Using Theorem 1.1.8 we obtain

ri ≥ lim inf
n→∞

∆xi(n)
∆ui(n)

= lim inf
n→∞

(
1

pi(n)

∑n−1
k=n0

qi(k)xi+1(k + 1)βi
) 1
αi(

1
pi(n)

∑n−1
k=n0

qi(k)Xi+1(k + 1)βi

) 1
αi

= lim inf
n→∞

 ∑n−1
k=n0

qi(k)xi+1(k + 1)βi∑n−1
k=n0

qi(k)Xi+1(k + 1)βi


1
αi

=

lim inf
n→∞

∑n−1
k=n0

qi(k)xi+1(k + 1)βi∑n−1
k=n0

qi(k)Xi+1(k + 1)βi


1
αi

≥

(
lim inf

n→∞

qi(n)xi+1(n + 1)βi

qi(n)Xi+1(n + 1)βi

) 1
αi

= lim inf
n→∞

(
xi+1(n + 1)
Xi+1(n + 1)

) βi
αi

= r
βi
αi
i+1

where (4.4.36) has been used in the last step. Thus, ri satisfy the cyclic system of
inequalities (4.3.63). If we take the upper limits instead of the lower limits, we are led
to the cyclic system of inequalities (4.3.64).

From (4.3.63) and (4.3.64) we easily see that (4.3.65) holds and using the hypothesis
β1β2 . . . βN/α1α2 . . . αN < 1, we find that ri ≥ 1 and Ri ≤ 1, i = 1,N. It follows therefore
that ri = Ri = 1 i.e. limn→∞ xi(n)/ui(n) = 1 for i = 1,N. Combined this with (4.4.36)
implies that xi(n) ∼ ui(n) ∼ Xi(n) as n → ∞, which shows that each xi is a regularly
varying sequence of index ρi. Thus the proof of the ”if” part of Theorem 4.4.10 is
completed. �

The ”if” part of the Theorem 4.4.11 can be proved in the essentially same way as
the ”if” part of the previous theorem.

Application. Obtained results can be applied to the well-known second order
difference equation of Thomas-Fermy type (4.1.1) which has been studied in Chapter
3. As a direct consequence of Theorem 4.4.10 and Theorem 4.4.11, we have Theorem
3.4.1. However, in the previous chapter, due to the calculation difficulty , the case
when the regularity index of the coefficient p of the equation (4.1.1) is equal to α, has
not been considered. For that reason, as a consequence of Theorem 4.4.11, we obtain
a new result for the equation (4.1.1).
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Theorem 4.4.12 Let p ∈ RV(λ) and q ∈ RV(µ). Suppose that

λ = α and
∞∑

n=1

1
p(n)α

= ∞.

The equation (4.1.1) possesses a regularly varying solution of index ρ > 0 if and only ifµ > −1,
in which case ρ is given by

(4.4.37) ρ =
µ + 1
α − β

,

and the asymptotic behavior of any such solution x is governed by the unique formula

x(n) ∼
[
nα+1p(n)−1q(n)

αρα+1

] 1
α−β

, n→∞.

4.4.4 Asymptotic behavior of strongly decreasing regularly varying
solutions

In this subsection the aim is the same as earlier, to investigate the asymptotic behavior
of solutions of type (SD) and to find conditions under which those solutions exist.
Every strongly decreasing solutions of (SE−) is a solutions of the system

(4.4.38) xi(n) =

∞∑
k=n

 1
pi(k)

∞∑
j=k

qi( j)xi+1( j + 1)βi


1
αi

, i = 1,N, n ≥ n0,

for some n0 ≥ 1. To obtain an asymptotic formula of solution x of the system (SE−) ,
an essential role is played by the following system od asymptotic relations

(4.4.39) xi(n) ∼
∞∑

k=n

 1
pi(k)

∞∑
j=k

qi( j)xi+1( j + 1)βi


1
αi

, i = 1,N, n→∞,

which can observe as an approximation of the system (4.4.38). As in the previous
sections, the use is made of the expression (4.2.1) for the coefficients pi and qi and
(4.2.2) for the components xi of the solution x of the system (SE−) . Also, in the proof
of the main theorems, we use matrix M given by (4.2.11).

As we saw, cases (I) and (II) are equivalent to (4.2.3) and (4.2.4), respectively.
Since we consider only solutions with a negative index of regularity (slowly varying
solutions we leave for further research because computational difficulty), cases (I) and
(II) would be observed as follows:
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4. Cyclic systems of second-order difference equations

• If the case (I) is satisfied, i.e. when λi < αi, for the sequences Pi = {Pi(n)}we have
that (4.2.7) holds.

• In the case (II) we will distinguish two cases:

λi > αi, i = 1,N and λi = αi i = 1,N

which imply (4.2.9) and (4.2.10), respectively.

Assuming that the condition (I) is satisfied, the following theorem will give the
necessary and sufficient conditions for a system of asymptotic relations (4.4.39) to
have a regularly varying solution x of a negative index (ρ1, ρ2, . . . , ρN), as well as its
asymptotic formula.

Theorem 4.4.13 Let pi ∈ RV(λi), qi ∈ RV(µi), i = 1,N. Suppose that λi < αi, i =

1,N. The system of asymptotic relations (4.4.39) has a regularly varying solution x ∈
RV(ρ1, ρ2, . . . , ρN) with ρi < 0, i = 1,N if and only if

(4.4.40)
N∑

j=1

Mi j
α j − λ j + µ j + 1

α j
< 0, i = 1,N

holds, in which case ρi are uniquely determined by (4.3.26) and the asymptotic behavior of any
such solution is governed by the unique formulas (4.3.27) where

(4.4.41) D j =
(
α j − λ j − α jρ j

) 1
α j (−ρ j), j = 1,N.

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi < 0 be a solution of (4.4.39). Then, by
Theorem 1.3.3 - (vii), follows that each xi satisfies (4.4.2) and Theorem 1.3.3 - (v) yields
that xi(n) → 0,n → ∞. Also, since (I) holds, as shown in a classification of positive
solution in Subsection 1.4.1. we have that x[1]

i (n) → 0, as n → ∞. Using (4.2.1) and
(4.2.2), we obtain

(4.4.42) − x[1]
i (n) ∼

∞∑
k=n

qi(k)xi+1(k + 1)βi ∼

∞∑
k=n

kµi+βiρi+1mi(k)ξi+1(k)βi , n ≥ n0, i = 1,N.

As the left-hand side of (4.4.42) tends to zero as n → ∞, it must be µi + βiρi+1 ≤ −1,
i = 1,N. If for some i equality holds, then

(4.4.43) − ∆xi(n) ∼

 1
pi(n)

∞∑
k=n

qi(k)xi+1(k + 1)βi


1
αi

∼ n−
λi
αi li(n)−

1
αi Hi(n)

1
αi , n→∞,
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4.4. The system (SE−)

where Hi(n) =
∑
∞

k=n k−1mi(k)ξi+1(k)βi . Summing (4.4.43) from n to∞, we obtain

xi(n) ∼
∞∑

k=n

k−
λi
αi li(k)−

1
αi Hi(k)

1
αi , n→∞.

Using that xi(n)→ 0,n→∞, we conclude that λi ≥ αi, i = 1,N. This is a contradiction
with our assumption. Therefore, it follows thatµi+βiρi+1 < −1 for i = 1,N.Application
of Theorem 1.3.5 to (4.4.42) gives for i = 1,N

(4.4.44) − ∆xi(n) ∼

 1
pi(n)

∞∑
k=n

qi(k)xi+1(k + 1)βi


1
αi

∼
n
−λi+µi+βiρi+1+1

αi li(n)−
1
αi mi(n)

1
αi ξi+1(n)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

,

as n→∞. Summing (4.4.44) from n to∞, we obtain

(4.4.45) xi(n) ∼
∞∑

k=n

k
−λi+µi+βiρi+1+1

αi li(k)−
1
αi mi(k)

1
αi ξi+1(k)

βi
αi

(−(µi + βiρi+1 + 1))
1
αi

, n→∞ ,

implying that (−λi + µi + βiρi+1 + 1)/αi ≤ −1, i = 1,N. All inequalities should be strict
because if the equality holds for some i then (4.4.45) implies that ρi = 0, which is
contradiction. Therefore, (−λi + µi + βiρi+1 + 1)/αi < −1, i = 1,N. Applying Theorem
1.3.5 we conclude that

(4.4.46) xi(n) ∼
n
−λi+µi+βiρi+1+1

αi
+1li(n)−

1
αi mi(n)

1
αi ξi+1(n)

βi
αi

−

(
−λi+µi+βiρi+1+1

αi
+ 1

) (
−(µi + βiρi+1 + 1)

) 1
αi

, n→∞, i = 1,N.

From the previous relation, we get the system (4.3.34), whose unique solution is
explicitly given by (4.3.26). It is obvious that ρi < 0, i = 1,N if and only if (4.4.40)
holds.

Using (4.2.1) and (4.2.2), we can transform (4.4.46) in the form (4.3.38), where Di

are given by (4.4.41). Without difficulty, we can obtain explicit formula (4.3.27) for
each xi from the cyclic system of asymptotic relations (4.3.38). Relation (4.3.38) can be
rewritten as (4.3.39), implying that the regularity index of xi is exactly ρi.

Suppose now that (4.4.40) holds. Define ρi with (4.3.26) and sequences Xi, i = 1,N,
by (4.3.40), where D j, j = 1,N are given by (4.4.41). All sequences Xi are regularly
varying of index ρi and satisfy the system of asymptotic relations (4.4.39), i.e.

(4.4.47)
∞∑

k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,
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4. Cyclic systems of second-order difference equations

for any n > n0, where XN+1 = X1. Indeed, Xi can be expressed with (4.3.42). Using
Theorem 1.3.5, we obtain

(4.4.48)
∞∑

k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼
nρili(n)−

1
αi mi(n)

1
αi χi+1(n)

βi
αi

Di
, n→∞,

With the help of (4.2.12), relation (4.4.48) can be transformed in the same way as in
(4.3.44). Therefore, from (4.4.48) we obtain that Xi, i = 1,N satisfy (4.4.47). �

Assuming that the condition (II) is satisfied, the next two theorems gives the
necessary and sufficient conditions for the existence of regularly varying solution of
the system (4.4.39).

Theorem 4.4.14 Let pi ∈ RV(λi), qi ∈ RV(µi). Suppose that λi > αi, i = 1,N. The system
of asymptotic relations (4.4.39) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with
ρi <

αi−λi
αi
, i = 1,N if and only if

(4.4.49)
N∑

j=1

Mi j

(
µ j + 1
α j

+
β j(α j+1 − λ j+1)

α jα j+1

)
< 0, i = 1,N

holds, where αN+1 = α1, λN+1 = λ1, in which case ρi are uniquely determined with (4.3.26)
and the asymptotic behavior of any such solution is governed by the unique formulas (4.3.27)
with D j, j = 1,N given by (4.4.41).

Proof. Let x ∈ RV(ρ1, ρ2, . . . , ρN) with all ρi < (αi − λi)/αi be a solution of (4.4.39).
Since ρi, i = 1,N are negative, from Theorem 1.3.3 - (v) we have that xi(n)→ 0, n→∞.
As indices of regularity of xi/πi, i = 1,N are less then zero, from Theorem 1.3.3 - (v)
we have that limn→∞ xi(n)/πi(n) = 0, implying that limn→∞ x[1]

i (n) = 0. Using (4.2.1)
and (4.2.2) we obtain (4.4.42). The left-hand side of (4.4.42) tends to zero as n → ∞,
implying that µi + βiρi+1 ≤ −1, i = 1,N. If the equality holds for some i, then summing
(4.4.43) from n to∞ and using Theorem 1.3.5, we get

xi(n) ∼
∞∑

k=n

k−
λi
αi li(k)−

1
αi Hi(k)

1
αi ∼

αi

λi − αi
n
αi−λi
αi li(n)−

1
αi Hi(n)

1
αi , n→∞,

where Hi(n) =
∑
∞

k=n k−1mi(k)ξi+1(k)βi , i = 1,N. From the previous relation follows that
xi ∈ RV

(
αi−λi
αi

)
, contradicting the hypothesis ρi <

αi−λi
αi
. Therefore, µi + βiρi+1 < −1 for

all i. Proceeding exactly as in the proof of the previous theorem we get that (4.4.44)
holds and conclude that (−λi + µi + βiρi+1 + 1)/αi ≤ −1 for all i. All inequalities should
be strict, because if the equality holds for some i, then λi − αi = µi + βiρi+1 + 1 < 0
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which is impossible due to assumption λi > αi, i = 1,N. Thus, (4.4.46) holds, which
yields that ρi, i = 1,N is a solutions of the system (4.3.34) and so given by (4.3.26). To
verify the condition (4.4.49), let we denote di = ρi + λi/αi − 1, i = 1,N. Then, the linear
system of equations (4.3.34) is transformed into the system (4.4.19) whose solution is
given by (4.4.20). Thus, ρi <

αi−λi
αi

if and only if di < 0 if and only if (4.4.49) holds.
The ”if” part of the theorem, as well as the explicit formulas for xi, can be obtained

as in the previous theorem. �

Theorem 4.4.15 Let pi ∈ RV(λi), qi ∈ RV(µi). Suppose λi = αi and Si < ∞, i =

1,N. The system of asymptotic relations (4.4.39) has a regularly varying solution x ∈
RV(ρ1, ρ2, . . . , ρN) with ρi < 0, i = 1,N if and only if

(4.4.50)
N∑

j=1

Mi j
µ j + 1
α j

< 0, i = 1,N

in which case ρi are uniquely determined by (4.4.24) and the asymptotic behavior of any such

solution is governed by the unique formulas (4.3.27) with D j =
(
α j(−ρ j)α j+1

)1/α j
, j = 1,N.

Proof. Suppose that the system (4.4.39) has a solution x ∈ RV(ρ1, ρ2, . . . , ρN), ρi < 0,
i = 1,N, x = (x1, x2, . . . , xN). Note that πi ∈ SV and so indices of regularity of xi/πi

are ρi < 0, i = 1,N. Therefore, by Theorem 1.3.3 - (v), we have that limn→∞ xi(n) = 0
and limn→∞ xi(n)/πi(n) = 0 implying that limn→∞ x[1]

i (n) = 0. From (4.4.42), since the
left-hand side tends to zero, we conclude that it must be µi + βiρi+1 ≤ −1. If equality
holds for some i then from (4.4.43), it follows that

xi(n) ∼
∞∑

k=n

k−1li(k)−
1
αi Hi(k)

1
αi , n→∞, i = 1,N,

i.e. xi ∈ SV, which is a contradiction. Therefore, µi + βiρi+1 < −1 for i = 1,N.
Application of Theorem 1.3.5 to (4.4.42) gives (4.4.44) and since xi(n) → 0, n → ∞
it must be (λi + µi + βiρi+1 + 1)/αi ≤ −1, i = 1,N. If equality holds for any i, then
µi+βiρi+1 = −1 which is impossible. Thus, (λi+µi+βiρi+1+1)/αi < −1, i = 1,N.Summing
(4.4.44) from n to∞ and using Theorem 1.3.5 yields (4.4.46). Using assumption λi = αi,
i = 1,N we get the cyclic system (4.4.25). As verified in the proof of Theorem 4.4.7
solution of system (4.4.25) is ρi, i = 1,N given by (4.4.24). All ρi are negative if and
only if (4.4.50) holds. Proceeding exactly as in the proof of the previous theorem we

get (4.3.27), where constants D j are reduced to D j =
(
α j/(−ρi)α j+1

)1/α j
, j = 1,N. The ”if”

part is the same as in the previous theorem. �

Note that Theorem 4.4.13 and Theorem 4.4.15 can be unified into the following
statement.

139



4. Cyclic systems of second-order difference equations

Theorem 4.4.16 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that for each of λi, αi,

i = 1,N, some of the following conditions is satisfied:

either λi < αi or λi = αi, Si < ∞.

The system (4.4.39) has a regularly varying solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi < 0,
i = 1,N if and only if (4.4.40) holds, in which case ρi are given by (4.3.26) and the asymptotic
behavior of any such solution is governed by the unique formula (4.3.27) with D j, j = 1,N
given by (4.4.41).

The main results of the existence and asymptotic behavior of strongly decreasing
solutions of the system (SE−) will be given and shown in the following theorems.

Theorem 4.4.17 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that for each of λi, αi,

i = 1,N, some of the following conditions is satisfied:

either λi < αi or λi = αi, Si < ∞.

The system (SE−) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi < 0, i = 1,N, if and
only if (4.4.40) holds, in which case ρi are given by (4.3.26) and the asymptotic behavior of
any such solution x is governed by the unique formula (4.3.27) with D j, j = 1,N given by
(4.4.41).

Theorem 4.4.18 Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1,N. Suppose that λi > αi for all
i = 1,N. System (SE−) possesses a solution x ∈ RV(ρ1, ρ2, . . . , ρN) with ρi <

αi−λi
αi
, i = 1,N,

if and only if (4.4.49) holds, in which case ρi are given by (4.3.26) and the asymptotic behavior
of any such solution x is governed by the unique formula (4.3.27) with D j, j = 1,N given by
(4.4.41).

We remark that the ”only if” parts of these theorems follow immediately from the
corresponding parts of Theorem 4.4.13 and Theorem 4.4.14 because any solution x of
(SE−) with the indicated property satisfies the asymptotic relation (4.4.39).

Proof of the ”if” part of Theorem 4.4.17: Using (4.2.1) let we define the sequences
Xi = {Xi(n)} ∈ RV(ρi) as in (4.3.40), where D j for j = 1,N are given by (4.4.41). It is
known that

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

∼ Xi(n), n→∞, i = 1,N,

from which it follows that there exists n0 > 1 such that for n > n0 holds

(4.4.51)
1
2

Xi(n) ≤
∞∑

k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≤ 2Xi(n), i = 1,N.
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Let we choose positive constants ωi and Wi so that

(4.4.52) ωi ≤
1
2
ω

βi
αi
i+1, Wi ≥ 2W

βi
αi
i+1, i = 1,N, ωN+1 = ω1, WN+1 = W1.

An example of such choices is

(4.4.53) ωi =
(1
2

) AN
AN−BN

∑N
j=1 Mi j

, Wi = 2
AN

AN−BN

∑N
j=1 Mi j

for i = 1,N. Clearly ωi ≤ 1 ≤Wi.

Consider the space Υn0 of all vectors x = (x1, x2, . . . , xN), xi ∈
Nn0R, i = 1,N, such

that {xi(n)/Xi(n)}, i = 1,N are bounded. Then, Υn0 is a Banach space endowed with the
norm (4.3.57). Further, Υn0 is partially ordered, with the usual pointwise ordering ≤:
For x,y ∈ Υn0 , x ≤ y means xi(n) ≤ yi(n) for all n ≥ n0 and i = 1,N. Define the subset
X ⊂ Υn0 with

(4.4.54) X =
{

x ∈ Υn0

∣∣∣∣ωiXi(n) ≤ xi(n) ≤WiXi(n), n ≥ n0, i = 1,N
}
.

It is easy to see that for any x ∈ X, the norm of x is finite. Also, for any subset B ⊂ X, it
is obvious that inf B ∈ X and sup B ∈ X.We will define the operators Fi : Nn0R→ Nn0R
by

(4.4.55) Fix(n) =

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)x(s + 1)βi


1
α i

, n ≥ n0, i = 1,N,

and define the mapping Φ : X → Υn0 by

(4.4.56) Φ(x1, x2, . . . , xN) =
(
F1x2,F2x3, . . . ,FNxN+1

)
, xN+1 = x1.

We will show that Φ has a fixed point by using Theorem 1.1.1. Namely, the operator
Φ has the following properties:

(i) Φ maps X into itself: Let x ∈ X. Then, using (4.4.51)-(4.4.56), we see that

Fixi+1(n) ≤W
βi
αi
i+1

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≤ 2W
βi
αi
i+1Xi(n) ≤WiXi(n), n ≥ n0 ,

Fixi+1(n) ≥ ω
βi
αi
i+1

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)Xi+1(s + 1)βi


1
αi

≥
1
2
ω

βi
αi
i+1Xi(n) ≥ ωiXi(n), n ≥ n0.
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4. Cyclic systems of second-order difference equations

This shows that Φx ∈ X, that is, Φ is a self-map on X.

(ii) Φ is increasing, i.e. for any x,y ∈ X, x ≤ y implies Φx ≤ Φy.

Thus all the hypotheses of Theorem 1.1.1 are fulfilled implying the existence of a
fixed point x ∈ X of Φ, which satisfies

xi(n) = Fixi+1(n) =

∞∑
k=n

 1
pi(k)

∞∑
s=k

qi(s)xi+1(s + 1)βi


1
α i

, n ≥ n0, i = 1,N.

This shows that x ∈ X is a solution of system (SE−) and it is easy to see that it
is an strongly decreasing solution. That x ∈ RV(ρ1, ρ2, . . . , ρN) can be verified in the
same way as in the proof of Theorem 4.4.10 (or Theorem 4.3.7), by the application of
Theorem 1.1.8. �

Theorem 4.4.18 can be proved in the essentially same way.

Application. As mentioned, one-dimensional system is the equation (4.1.1), which
has been studied in the previous chapter. Then Theorems 4.4.17 and 4.4.18 are reduced
to Theorem 3.3.6. Moreover, we get here new result in the case when the regularity
index of the coefficient p is equal to α, which has not been considered in the previous
chapter.

Theorem 4.4.19 Let {p(n)} ∈ RV(λ) and {q(n)} ∈ RV(µ). Suppose that

λ = α and
∞∑

n=1

1
p(n)α

< ∞.

The equation (4.1.1) possesses a regularly varying solution of index ρ < 0 if and only if
µ < −1, in which case ρ is given by (4.4.37) and the asymptotic behavior of any such solution
x is governed by the unique formula

x(n) ∼
[
nα+1p(n)−1q(n)
α(−ρ)α+1

] 1
α−β

, n→∞.
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of second order nonlinear differential equations, Nonlinear Analysis Vol. 64 (2006),
1278–1289

144



Bibliography
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