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Numerical study of quantum gases in
optical lattices and in synthetic magnetic

fields

Abstract

Theoretical and experimental advances in the past few decades have resulted in the development
of a new research field – quantum simulations with ultracold atoms. The main idea is to create
a clean and precisely controllable quantum system which can then be used to simulate another
system of interest – one that is not as easy to study experimentally. Although there are
several different experimental platforms for quantum simulations, ultracold atoms are often
used because they are especially well suited for this role. Progress in cooling and trapping
techniques has enabled experimentalists to cool down atomic gases to quantum degeneracy and
to easily manipulate them. These systems are well isolated from their environment and do
not contain any impurities or defects. In particular, cold atoms in optical lattices – periodic
potentials made by interference of laser beams – have shown to be an excellent platform for the
study of various condensed matter systems. It is possible to realize different lattice geometries
in the desired number of dimensions. The lattice size, number of atoms, temperature of the
system and even the strength of interactions between atoms can be precisely tuned. Some
of these parameters would be impossible to change in a real condensed matter system. The
set of models which can be realized with ultracold atoms can be further extended by the use
of Floquet engineering. In this approach, the system is exposed to a suitable time-periodic
modulation. The resulting stroboscopic dynamics of this driven system can be related to a
corresponding static model through Floquet theory. In particular, Floquet engineering was
used to realize synthetic magnetic fields in systems of neutral cold atoms.

In this thesis we use numerical simulations and analytical insights to study dynamics of
several relevant systems which have been the focus of recent experiments with ultracold atoms
in optical lattices. One of the fundamental open questions that has gained lot of attention
recently is related to the thermalization of a general isolated quantum system. Such systems
are typically shown to thermalize in experiments, meaning that they lose all memory of their
initial state. However, there are several notable counterexamples. In particular, a new class
of systems which exhibit unusual thermaization has been recently discovered – the systems
with special eigenstates called quantum many-body scars. Another long-standing problem is
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realization of topologically nontrivial models with ultracold atoms. These systems usually
require magnetic fields, whose effects can be mimicked by driving in a cold atom system.
However, interactions between atoms are always present in a realistic system. The interplay of
driving and interactions typically leads to the thermalization and additional considerations are
necessary in order to identify regimes where this process is slow and allows for the preparation
and measurement of an interesting topological state.

Recent experiments on Rydberg atom arrays have found evidence of anomalously slow ther-
malization and persistent density oscillations, which have been interpreted as a many-body
analog of the phenomenon of quantum scars. Periodic dynamics and atypical scarred eigen-
states have been obtained in a model with a “hard” kinetic constraint: the neighboring Rydberg
atoms cannot be simultaneously excited. In the first part of this thesis we propose a realization
of quantum many-body scars in a one-dimensional bosonic lattice model with a “soft” con-
straint in the form of density-assisted hopping. We discuss the relation of this model to the
standard Bose-Hubbard model and possible experimental realizations using ultracold atoms.
We find that this model exhibits similar phenomenology to the Rydberg atom chain, including
weakly entangled eigenstates at high energy densities and the presence of a large number of
exact zero energy states, with distinct algebraic structure.

Realization of strong synthetic magnetic fields in driven optical lattices has enabled imple-
mentation of topological bands in cold-atom setups. A milestone has been reached by a recent
measurement of a finite Chern number based on the dynamics of incoherent bosonic atoms. The
measurements of the quantum Hall effect in semiconductors are related to the Chern-number
measurement in a cold-atom setup; however, the design and complexity of the two types of
measurements are quite different. Motivated by these recent developments, in the second part
of this thesis we investigate the dynamics of weakly interacting incoherent bosons in a two-
dimensional driven optical lattice exposed to an external force, which provides a direct probe
of the Chern number. We consider a realistic driving protocol in the regime of high driving
frequency and focus on the role of weak repulsive interactions. We find that interactions lead to
the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional
heating. Remarkably, we observe that the moderate atomic repulsion facilitates the measure-
ment by flattening the distribution of atoms in the quasimomentum space. Our results also
show that weak interactions can suppress the contribution of some higher-order nontopological
terms in favor of the topological part of the effective model.

Strong interactions and strong synthetic magnetic fields, the main ingredients for the realiza-
tion of fractional quantum Hall states, are already available in experiments on cold atom gases
in periodically driven optical lattices. However, the interplay of the driving and interactions
introduces detrimental heating, and for this reason it is still challenging to reach a fractional
quantum Hall state in cold-atom setup. By performing a numerical study, in the third part of
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this thesis we investigate stability of a bosonic Laughlin state in a small atomic sample exposed
to driving. We identify an optimal regime of microscopic parameters, in particular interaction
strength U and the driving frequency ω, such that the stroboscopic dynamics supports the
basic ν = 1/2 Laughlin state. Moreover, we explore slow ramping of a driving term and show
that the considered protocol allows for the preparation of the Laughlin state on experimentally
realistic time-scales.

Keywords: ultracold gases, quantum simulations, nonequilibrium dynamics, quantum scars,
topological phases of matter, synthetic gauge fields, Floquet systems, exact diagonalization
Research field: Physics
Research subfield: Condensed matter physics
UDC number: 538.9
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Numeričko proučavanje kvantnih gasova u
optičkim rešetkama i u sintetičkim

magnetnim poljima

Sažetak

Teorijski i eksperimentalni napredak u poslednjih nekoliko decenija doveo je do razvoja nove
oblasti istraživanja – kvantnih simulacija sa ultrahladnim atomima. Osnovna ideja je da se
napravi čist i precizno podesiv kvantni sistem koji se zatim može koristiti za simuliranje nekog
drugog sistema od intresa koji nije tako jednostavan za eksperimentalno ispitivanje. Iako pos-
toji nekoliko različitih platformi za kvantne simulacije, ultrahladni atomi se često koriste jer
su izuzetno pogodni za ovu ulogu. Napredak u tehnikama za hla -denje i zarobljavanje atoma
omogućio je eksperimentalnim fizičarima da ohlade atomske gasove do kvantne degeneracije i
lako manipulǐsu njima. Ovi sistemi su dobro izolovani od svog okruženja i ne sadrže nikakve
nečistoće ili defekte. Hladni atomi u optičkim rešetkama, periodičnim potencijalima nastalim
interferencijom laserskih zraka, pokazali su se kao odlična platforma za proučavanje raznovrsnih
sistema kondenzovane materije. Moguće je realizovati različite geometrije rešetke u željenom
broju dimenzija. Veličina rešetke, broj atoma, temperatura sistema, čak i jačina interakcija
izme -du atoma mogu se precizno podešavati. Neke od ovih parametara ne bi bilo moguće
promeniti u sistemu kondenzovane materije. Skup modela koji se mogu realizovati pomoću
ultrahladnih atoma može se dalje proširiti korǐsćenjem Floke inženjeringa. U ovom pristupu,
sistem je izložen pogodnoj vremenski periodičnoj modulaciji. Rezultirajuća stroboskopska di-
namika ovog vo -denog sistema može se povezati sa odgovarajućim statičkim modelom putem
Floke teorije. Floke inženjering je korǐsćen i za realizaciju sintetičkih magnetnih polja u sis-
temima neutralnih hladnih atoma.

U ovoj tezi koristićemo numeričke simulacije i analitičke metode u cilju proučavanja di-
namike nekoliko relevantnih sistema koji su bili u fokusu skorašnjih eksperimenata sa ultrahlad-
nim atomima u optičkim rešetkama. Jedno od osnovnih otvorenih pitanja koje je nedavno
privuklo dosta pažnje povezano je sa termalizacijom izolovanog kvantnog sistema u opštem
slučaju. Takvi sistemi se u eksperimentima tipično termalizuju, što znači da gube svu mem-
oriju o svom početnom stanju. Ipak, postoji nekoliko značajnih kontraprimera. Jedna nova
klasa sistema sa atipičnom termalizacijom je nedavno otkrivena – to su sistemi sa posebnim
svojstvenim stanjima nazvanim kvantni vǐsečestični ožiljci. Još jedan dugogodǐsnji problem
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predstavlja realizacija topološki netrivijalnih modela sa ultrahladnim atomima. Takvi sistemi
obično zahtevaju magnetna polja, čiji efekti mogu da se oponašaju vo -denjem u sistemu hladnih
atoma. Me -dutim, interakcije izme -du atoma su uvek prisutne u realističnim sistemima. Uza-
jamno dejstvo dejstvo vo -denja i interakcija dovodi do termalizacije, pa su dodatna razmatranja
neophodna da bi se identifikovali režimi u kojima je ovaj proces spor i dozvoljava pripremu i
merenje interesantnih topoloških stanja.

Nedavni eksperimenti na nizovima Ridbergovih atoma pronašli su dokaze o anomalno sporoj
termalizaciji i dugotrajnim oscilacijama gustine, što je bilo interpretirano kao vǐsečestični anal-
ogon fenomena kvantnih ožiljaka. Periodična dinamika i atipična svojstvena stanja sa ožiljcima
dobijeni su u modelu sa “jakim” kinetičkim ograničenjem: susedni Ridbergovi atomi ne mogu
da budu istovremeno pobu -deni. U prvom delu ove teze predstavljena je realizacija kvant-
nih vǐsečestičnih ožiljaka u jednodimenzionalnom bozonskom modelu na rešetki sa “slabim”
ograničenjem u formi tunelovanja potpomognutim gustinom. Diskutovana je veza ovog mod-
ela sa standardnim Boze-Habard modelom i mogućnost njegove eksperimentalne realizacije sa
ultrahladnim atomima. Ovaj model ispoljava sličnu fenomenologiju kao i lanac Ridbergovih
atoma, uključujući slabo kvantno uvezana svojstvena stanja na velikim gustinama energije,
kao i prisustvo velikog broja egzaktnih nultih energetskih stanja sa posebnom algebarskom
strukturom.

Realizacija jakih sintetičkih magnetnih polja u vo -denim optičkim rešetkama je omogućila
implementaciju topoloških energetskih zona u sistemima hladnih atoma. Značajno postignuće
predstavlja skorašnje merenje nenultog Černovog broja bazirano na dinamici nekoherentnih be-
zonskih atoma. Merenja kvantnog Holovog efekta u poluprovodnicima povezana su sa merenjem
Černovog broja u eksperimentima sa hladnim atomima, ali se dizajn i kompleksnost ove dve
vrste eksperimenata dosta razlikuju. Motivisani skorašnjim eksperimentima, u drugom delu
ove teze ispitujemo dinamiku slabo interagujućih nekoherentnih bozona u dvodimenzionalnoj
vo -denoj optičkoj rešetki pod dejstvom spoljašnje sile, što omogućava direktno merenje Černovog
broja. Razmaramo realističan protokol vo -denja u režimu visoke frekvencije i fokusiramo se na
ulogu slabih odbojnih interakcija. Pokazujemo da interakcije dovode do redistribucije atoma
na topološke energetske zone kroz konverziju interakcione energije u kineticku energiju u toku
širenja atomskog oblaka, kao i zbog dodatnog zagrevanja. Primećujemo da umereno odbi-
janje izme -du atoma olakšava merenje putem poravnanja distribucije atoma u kvazi-impulsnom
prostoru. Naši rezultati tako -de pokazuju da slabe interakcije mogu da ponǐste doprinos nekih
netopoloških članova vǐseg reda u korist topološkog dela efektivnog modela.

Jake interakcije i jaka sintetička magnetna polja, glavni sastojci za realizaciju frakcionog
kvantnog Holovog efekta, već su dostupni u eksperimentima sa hladnim atomskim gasovima
u periodično vo -denim optičkim rešetkama. Me -dutim, uzajamno dejstvo vo -denja i interakcija
izaziva neželjeno zagrevanje, pa je iz tog razloga ostvarivanje frakcionog kvantnog Holovog
stanja u sistemu hladnih atoma i dalje veliki izazov. Uz pomoć numeričkih simulacija, u trećem
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delu ove teze istražujemo stabilnost bozonskih Laflinovih stanja u malom atomskom uzorku
pod dejstvom periodičnog vo -denja. Pronalazimo optimalan režim mikroskopskih parametara,
jačinu interakcija U i frekvenciju vo -denja ω, takvih da stroboskopska dinamika podržava os-
novno ν = 1/2 Laflinovo stanje. Pored toga, istražujemo postepeno uključivanje člana koji
opisuje vo -denje i pokazujemo da razmatrani protokol dozvoljava pripremu Lafinovog stanja na
eksperimentalno relevantnim vremenskim skalama.

Ključne reči: ultrahladni gasovi, kvantne simulacije, neravnotežna dinamika, kvantni ožiljci,
topološke faze materije, sintetička gejdž polja, Floke sistemi, egzaktna dijagonalizacija
Naučna oblast: Fizika
Uža naučna oblast: Fizika kondenzovanog stanja
UDK broj: 538.9
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2.2 Number of zero-energy states for the Hamiltonian Ĥ2 . . . . . . . . . . . . . . . 37
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Introduction

When atoms are cooled down to sufficiently low temperatures, their quantum statistics starts
to play an important role and the differences between bosons and fermions become apparent. In
the case of bosons, cooling leads to macroscopic occupation of a single quantum state – the Bose-
Einstein condensate (BEC). More than 70 years after its first theoretical prediction in 1924,
BEC was finally experimentally achieved in 1995, when the atoms were cooled down to 170 nK
[1]. This was made possible by advances in laser and evaporative cooling techniques during the
previous decades, as well as magnetic and optical trapping. These techniques were later also
applied to fermionic atoms, molecules, and mixtures of different atomic species, successfully
cooling down these systems to quantum degeneracy. During the last two decades since BEC
was first attained, significant progress has been made in both theoretical and experimental
research on quantum gases. There are many possible applications of ultracold quantum gases.
They can be used for precision measurements, and can also serve as a platform for quantum
computing and quantum simulations.

1.1 Quantum simulations

Quantum simulators were first envisioned by Feynman in 1982 [2, 3]. The idea was to create
a clean and highly controllable quantum system that can be used to simulate another complex
quantum system described by an equivalent Hamiltonian. The need for quantum computing
and quantum simulations has arisen due to computational limits of classical computers. While
it is theoretically possible to find the exact eigenvalues and eigenstates for any finite-dimensional
interacting quantum many-body system, the Hilbert space dimensions of such systems grow
exponentially with the system size, which quickly makes it impossible to store the necessary
data in the memory of even the most advanced modern supercomputers. Exact numerical cal-
culations are therefore limited to the smallest systems consisting only of tens of particles and
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lattice sites, which sometimes makes it very hard to extrapolate the results to the thermody-
namic limit. Feynman’s proposal was to use a computer which operates on quantum-mechanical
laws to solve quantum-mechanical problems. Unlike a classical computer, in this case the num-
ber of necessary computer elements – quantum bits – scales linearly with the size of the system
of interest. Additionally, a quantum computer is probabilistic – there is no unique output for
each input. Instead, such a computer returns several outputs with different probabilities, which
is expected as it is actually performing a quantum measurement.

Quantum simulators are a similar yet distinct concept. Unlike universal quantum computers,
which could in theory be programmed to execute any possible algorithm, but are still years
or even decades away from practical applications [4], quantum simulators are designed for a
specific task and are therefore easier to build. There is already a variety of their experimental
realizations on different platforms, for example using neutral cold atoms [5, 6], trapped ions
[7], superconducting circuits [8], photonic systems [9] or nitrogen-vacancy centers in diamond
[10, 11]. Some of the phenomena simulated in this way are quantum magnetism [12], strange
metal phase of high-temperature superconductors [13, 14], decay of a Higgs particle [15], black-
hole radiation [16] and photosynthesis [17]. Quantum simulations have shown to be useful
in a wide range of different research fields, including condensed-matter physics, high-energy
physics, cosmology and quantum chemistry. They could also be applied to classical problems
which require large computing power. While universal quantum computers are very prone to
computation errors, as each particle needs to be set to a precisely defined quantum state, this
is not the case for quantum simulators where the resulting quantity is typically an average over
the whole system and thus less sensitive to the exact state of an individual particle.

In particular, ultracold atoms in optical lattices provide a perfect platform for quantum sim-
ulations of various condensed-matter phenomena [5, 18]. Here, the optical lattice plays the role
of the crystal lattice in solid-state systems, while the atoms play the role of the electrons. Op-
tical lattice is a spatially periodic potential created by interference of two counter-propagating
laser beams. Schematic representations of two-dimensional and three-dimensional optical lat-
tices are shown in Fig. 1.1. Cold atoms can be trapped inside the lattice by the optical dipole
force. Various optical-lattice geometries can be realized depending on the intensity and relative
angles between interfering laser beams. The strength of interactions between the atoms can be
tuned using Feshbach resonances. The possibility to precisely adjust all microscopic parameters
of the system can be used to create exotic phases of matter that are not observed in nature,
or to experimentally probe quantities that are otherwise not accessible in condensed-matter
systems.

Two seminal condensed-matter models which were realized with ultracold atoms are the
Bose-Hubbard and the Fermi-Hubbard model. The experimental setup is similar in both cases;
a dilute atomic gas, typically consisting of alkali atoms (Li, Na, K, Rb, Cs), is placed inside a
magneto-optical trap, cooled down to low temperatures and exposed to an optical lattice po-
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(a)

(b)

Figure 1.1: Schematic of a two-dimensional (a) and three-dimensional (b) square optical
lattice. Adapted from Ref. [5].

tential. The exact model which is realized, Bose- or Fermi-Hubbard, depends on the bosonic or
fermionic nature of the atomic species which is used. Bosonic atoms are used more often as they
are easier to cool down to quantum degeneracy, given that their ground state is a Bose-Einstein
condensate. Early experiments have studied quantum phase transitions and characterized dif-
ferent phases of matter in these two models. Another topic that was experimentally explored
with these models is their nonequilibrium dynamics. In recent experiments, Bose-Hubbard and
Fermi-Hubbard models serve as a foundation for the realization of other generalized and more
complex models.

1.2 Bose-Hubbard model

Interacting spinless bosons in a periodical potential are described by the Bose-Hubbard Hamil-
tonian [19]. This model has only two parameters; hopping amplitude J which determines the
probability for a particle to tunnel to a neighbouring site, and the strength of interactions U
between two particles on the same site which can be either repulsive (U > 0) or attractive
(U < 0). The Bose-Hubbard Hamiltonian can be written as

ĤBH = −J
∑
〈l,m〉

(
â†l âm + H. c.

)
+ U

2
∑
l

n̂l (n̂l − 1) , (1.1)

where â†l and âl are creation and annihilation operators that create and annihilate a particle
at the lattice site with index l, n̂l = â†l âl is the particle number operator, and the label 〈l,m〉
stands for nearest neighbors. This model was derived using the single-band tight-binding ap-
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proximation [5]. The Hamilatonian shown here is given by a general expression for an arbitrary
number of dimensions. The equation for a specific number of dimensions can be written in
a similar manner, with potentially different hopping amplitudes in different directions. The
Bose-Hubbard Hamiltonian has a global U(1) gauge symmetry and all the symmetries of the
underlying lattice. As the occupancy of a single lattice site is not limited for bosonic particles,
the Hilbert space dimension grows with the system size as

dimH =
(
N + L− 1

N

)
, (1.2)

where N is the number of particles and L is the number of lattice sites.
Although the Bose-Hubbard Hamiltonian [19] was first formulated for solid state systems as

generalization of the (Fermi-)Hubbard model [20], the closest experimental realization of this
model is provided by ultracold bosonic atoms in an optical lattice. The necessary conditions for
the approximation to be valid are that the atoms are cooled down to a low enough temperature,
so that only the lowest energy band is significantly occupied, and that the lattice is deep enough,
thus making the Wannier functions sufficiently localized at each lattice site. As the atoms
interact by short-range Van der Waals forces and there are no long-range Coulomb interactions
between neutral atoms, the onsite interaction term is sufficient to describe the interactions in
this system. Long-range dipolar interactions can be avoided by choosing an atomic species
without a dipolar moment.

The phase diagram of the Bose-Hubbard model consists of the superfluid phase and the
Mott insulator phase, depending on the ratio J/U and the filling factor ν = N/L [19]. In the
superfliuid phase where the hopping term is dominant over the interaction term, the particles are
completely delocalized across all lattice sites. The ground state in this phase is a BEC and can
be described by a single Bloch wavefunction. It is characterized by long-range phase coherence.
This state can be described by the Gross-Pitaevskii equation – a nonlinear Schrödinger-like
equation. In contrast, the interaction term is dominant in the Mott insulator phase and in the
ground state an integer number of particles is localized at each lattice site. This is a strongly-
correlated quantum many-body state. In the limit U → 0, it is a product of local Fock states
at each site. Unlike the superfluid state, the Mott insulator state is incompressible, as particle
number fluctuations are energetically very costly. There is no more phase coherence in the
Mott insulating phase. Instead, there are long-range particle number correlations.

The phase transition between these two phases has been experimentally observed in an
ultracold quantum gas [21]. In this experiment, the ratio J/U was varied by increasing the
lattice potential depth, which resulted in decreased hopping amplitude J and increased onsite
interaction strength U . After setting the desired ratio, the confining potential was turned off
and the atomic cloud was left to expand freely in the optical lattice potential. The phase
coherence between different lattice sites was visible in the resulting interference pattern. The
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absence of interference maxima marked the onset of the Mott insulating phase. A schematic of
the two states and the corresponding interference patterns are given in Fig. 1.2. Experiments
like this one and their excellent agreement with theoretical predictions have confirmed that the
Bose-Hubbard model is indeed realized with cold atoms in optical lattices.

(a) Superfluid (b) Mott insulator

Figure 1.2: Schematic of a superfluid state (a) and a Mott insulator state (b) in an optical
lattice and corresponding interference patterns after expansion. Adapted from Ref. [21].

There are several generalizations of this model which include additional potentials, long-
range density-density or dipolar interactions, next-nearest-neighbour and other hopping terms,
interaction- or density-induced hopping terms, particles with spin, as well as the Bose-Fermi-
Hubbard which describes a mixture of bosonic and fermionic particles. The Bose-Hubbard
Hamiltonian will be the starting model for all the studies in this thesis. We will be interested
in systems with density-dependent hopping terms and systems with additional time-dependent
potentials – the so-called driven systems.

1.3 Nonequilibrium dynamics

While the properties of quantum systems in equilibrium are generally well understood, nonequi-
librium dynamics of such systems is still an active field of research. A system can be taken
out of equilibrium by changing its Hamiltonian, either by a sudden quench or by continuously
ramping one or more parameters. Systems in contact with a thermal reservoir are generally
expected to thermalize, but it is not clear whether a general isolated quantum system should
ever reach thermal equilibrium. Ultracold atoms provide an excellent experimental platform for
the study of quantum many-body physics out of equilibrium, as they are both precisely tunable
and well isolated from their environment [22]. In such experiments, the system is typically first
prepared in the ground state |ψ0〉 of some initial Hamiltonian Ĥ0 and then evolved under a
different Hamiltonian Ĥ, which may or may not be time-dependent.

The main question is through which mechanism and under which conditions isolated quan-
tum systems initially out of equilibrium evolve towards a state in thermal equilibrium. This
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question has been studied in a variety of experiments on quantum gases [23–29]. Complete
thermalization has been observed in some of these experiments [24, 28]. The final thermalized
state is independent of the initial state – all memory is lost during the process of thermaliza-
tion. However, this loss of information is somewhat surprising because of the fact that the
time-evolution operator Û(t) = e−iĤt is unitary and therefore preserves the system in a pure
quantum state. A potential answer is provided by the eigenstate thermalization hypothesis
(ETH) [30–33]. ETH states that thermalization happens already at the eigenstate level and
that this becomes visible in the expectation values of certain observables during time evolution,
due to dephasing between eigenstates which constitute the initial state. In other words, even
though the system stays in a pure quantum state indefinitely, the results of measurements will
appear thermalized after long enough time.

Let the initial state be a superposition of eigenstates of the Hamiltonian Ĥ from an energy
range Emin ≤ E ≤ Emax. If ETH is obeyed for a certain observable Ô, its diagonal matrix
elements in the basis of Ĥ, Oii = 〈i|Ô|i〉, will be approximately a smooth function of energy
Oii(E) over the energy range of interest. ETH then predicts that the expectation value of the
observable Ô after thermalization will be equal to the value predicted by the microcanonical
ensemble over the same energy range. A single eigenstate is sufficient to predict the thermal
expectation value, as all the eigenstates from the energy range in question would lead to the
same prediction. ETH typically holds for few-body observables, both local and nonlocal, which
are the ones usually measured in experiments. Although ETH has not been analytically proven
for a general interacting quantum system, it was shown to be valid in a number of numerical
studies [33]. Analytical proofs exist for several specific cases.

However, there are several types of systems which do not obey ETH. Some of them com-
pletely avoid thermalization. Two well known examples are integrable systems [34] and systems
which exhibit many-body localization [35]. Integrable systems typically have a large num-
ber of conserved quantities which constrain their evolution and prevent them from eventually
thermalizing. Many-body localization (MBL) requires random disorder in the system and is
characterized by the emergence of local integrals of motion. These local integrals of motion
preserve the information about the initial state. MBL was shown to be robust with respect to
perturbations. Signatures of MBL have been observed in multiple experiments [36–39].

An useful diagnostic of thermalization is the bipartite entanglement entropy [40, 41], a
quantity which measures the degree of entanglement between two complementary subsystems
labeled A and B:

SA = −Tr (ρAlnρA) . (1.3)

The entanglement entropy is defined for a certain pure state |ψ〉. In the preceding equation,
ρA = TrB|ψ〉〈ψ| is the reduced density matrix of the subsystem A. In contrast to thermalizing
systems where the entanglement entropy of highly excited eigenstates typically scales as the
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volume of the subsystem A, in the MBL phase it obeys the so-called “area law” – it is propor-
tional to the area of the boundary between the subsystems [35, 41, 42]. Additionally, during the
nonequilibrium dynamics the entanglement entropy grows logarithmically with time, instead of
the usual linear or power-law growth [43–45].

Another type of systems with unusually slow thermalization has emerged in recent years –
quantum many-body scarred systems. It was shown that these systems are neither integrable
nor many-body localized. This phenomenon was first observed experimentally in a quantum
simulator with an array of Rydberg atoms [46]. While the system exhibited the expected
thermalizing behavior for most initial states, preparing it in certain initial states surprisingly
resulted in persistent density oscillations – the system kept returning to its initial state. Theo-
retical explanation for such behavior has followed soon after the experimental results [47, 48].
It was shown that the states with unusual dynamics are superpositions of atypical eigenstates
dubbed “qunatum many-body scars”. These eigenstates have significantly smaller entangle-
ment entropies than the other eigenstates at the same energy scale. Their name was inspired
by the phenomenon of quantum scars in noninteracting systems, where some eigenstates of a
quantum system have enhanced probability density in vicinity of unstable periodic orbits of the
corresponding classical system [49]. In the case of quantum many-body scars, the eigenstates
are concentrated in certain regions of the Hilbert space instead of real space. Such atypical
eigenstates have been subsequently found in a variety of different systems [50–67]. It is however
still not completely clear what are the necessary conditions for their existence. A particular
realization of quantum many-body scars in a one-dimensional model of bosons with correlated
hopping will be the topic of the first part of this thesis.

Systems which slowly thermalize or do not thermalize at all could have several practical
applications. Most importantly, they could be useful for quantum computing, where it is of
crucial importance to preserve the system in a particular quantum state. Another application
would be to extend the available timescales in experiments on exotic quantum phases which
are currently hindered by rapid thermalization.

1.4 Synthetic magnetic fields

Strong magnetic fields are required for many phenomena in condensed matter physics, such
as integer and fractional quantum Hall effects. The Harper-Hofstadter model [68] is a two-
dimensional model which describes a charged particle in a periodic potential and perpendicular
magnetic field. Its Hamiltonian can be written as

ĤHH = −J
∑
l,m

(
e−2iπmαâ†l+1,mâl,m + â†l,m+1âl,m + H. c.

)
, (1.4)
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Figure 1.3: Schematic representation of the Harper-Hofstadter model.

where the parameter α is the magnetic flux through one plaquette in the units of flux quanta
h/q. The effects of magnetic field are encoded in the position-dependent complex hopping
coefficients e−2iπmα. A particle hopping in counterclockwise direction along the smallest closed
loop acquires a phase 2πα, as shown in Fig. 1.3, in analogy to a charged particle in magnetic
field which would acquire the Aharonov-Bohm phase. The energy spectrum of the Harper-
Hofstadter model has an interesting fractal structure, as can be seen in Fig. 1.4. The number
of energy bands depends on α; when α is a rational number the number of bands is equal to
its denominator. For example, there are three energy bands for α = 1/3, see Fig. 1.4(a), as
well as for α = 2/3. The plot of energy versus α shown in Fig. 1.4(b) is called the “Hofstadter
butterfly”.

(a) (b)

Figure 1.4: (a) Energy spectrum for α = 1/3. (b) “Hofstadter butterfly” [68] – energy
spectrum of the Harper-Hofstadter model.

In the seminal TKNN paper [69] it was shown that the quantization of the Hall conductivity
observed in the integer Hall effects can be directly related to the topological index of the
microscopic model (1.4) – the Chern number. The Chern number is defined for a single energy
band and is always an integer. It is also a topological invariant, which means that it is insensitive
to local deformations and disorder, and changes only when the global topological properties of
the system change, i.e. when the band gap closes. The Chern numbers for the three energy
bands of the Harper-Hofstadter model with α = 1/3 are shown in Fig. 1.4(a). Topological
concepts in physics have become an increasingly important field of research in the last few
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decades. In 2015, the deflection of an atomic cloud in an optical lattice with synthetic magnetic
field as a response to external force was used to experimentally measure the Chern number in
a non-electronic system for the first time [70].

The Chern number is closely related to the Berry curvature and Berry phase [71]. It is
defined as the integral of the Berry curvature [72] over the first Brillouin zone divided by 2π,

cn = 1
2π

∫
FBZ

Ωn(k) · dS, (1.5)

where n denotes the band number and the Berry curvature is Ωn(k) = i∇k×〈un(k)|∇k|un(k)〉,
expressed in terms of eigenstates |un(k)〉. The Berry phase is a geometric phase that a particle
acquires when it makes a closed loop in some parameter space and can be thought of as the
analogue of the Aharonov-Bohm phase, while the Berry curvature is then analogous to the
magnetic field.

If one wants to simulate systems with magnetic fields using cold atoms, the problem arises
from the fact that atoms are charge-neutral and therefore do not feel the Lorentz force. These
effects have to be included in some artificial way, by engineering the so-called synthetic magnetic
fields. One of the first ideas was to take advantage of the similarity between the Lorentz force
and the Coriolis force. This was experimentally realized in 2000 using rotating quantum gases
[73], where the appearance of quantized vortices was observed, which is a property of superfluids
and superconductors in magnetic field. However, this experimental realization poses several
difficulties. Maximal rotation velocity achievable in the experiment is technically limited and
it is difficult to realize a stable rotating optical lattice. All of this has made it impossible
to obtain strong synthetic magnetic fields required for quantum Hall effects using rotational
approach. In 2009, after years of efforts, synthetic magnetic potentials for neutral atoms were
implemented by exploiting atomic coupling to a suitable configuration of external lasers [74, 75].
These techniques were further extended to optical lattices, leading to the realization of strong,
synthetic, magnetic fields. As a result, important condensed-matter models – the Harper-
Hofstadter (1.4) and the Haldane model [76] – are nowadays available in cold-atom setups
[77–80]. The key property of these models is their non-trivial topological content.

1.5 Floquet engineering

One way to enrich the set of models which can be realized using cold atoms in optical lattices is
by adding time-periodic perturbations to the system. Such systems are called driven systems.
This can be done either by lattice shaking – periodic modulation of the lattice position, or
through laser-assisted tunneling, which results in a periodic modulation of the lattice potential.
Both methods have been used in present-day cold-atom realizations of important topological
models [77–79], where they were necessary in order to engineer synthetic magnetic fields. A
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schematic representation of the experimental setup [77] which realized the famous Harper-
Hofstadter model [68] given by Eq. (1.4) can be seen in Fig. 1.5. In this thesis we will mostly
consider laser-assisted tunneling. The resulting time-dependent Hamiltonian can in that case
be written as

Ĥ(t) = Ĥ0 + V̂ (t), (1.6)

where Ĥ0 is typically the underlying Bose-Hubbard Hamiltonian ĤBH and V̂ (t) is a time-
periodic modulation of the lattice potential with frequency ω and amplitude κ

V̂ (t) =
∑
i

n̂iVi(t). (1.7)

Here i is the lattice site index and n̂i is the particle number operator for that lattice site.

Figure 1.5: Schematic of the experimental setup which implements the Harper-Hofstadter
model using ultracold atoms in an optical lattice. Synthetic magnetic field is realized through
Floquet engineering. Hopping along the x-axis is first inhibited by a magnetic field gradient B′
which generates an offset ∆ between neighboring sites. The hopping is then restored using two
additional pairs of laser beams with wave vectors k1, k2 and frequencies ω1, ω2. Laser-assisted
tunneling adds a complex phase to the hopping coefficients. The bare hopping amplitude is
denoted by J and the complex hopping amplitude by K. This setup mimics the complex phase
acquired by a charged particle moving in a magnetic field. In this model, a particle hopping
in counterclockwise direction around a single plaquette acquires a phase π/2, which makes it
equivalent to the Harper-Hofstadter model with α = 1/4. Adapted from Ref. [77].

Using Floquet theory [81], a periodically driven system can be related to a time-independent
effective Hamiltonian. A properly chosen periodic modulation can result in an effective Hami-
latonian which corresponds to a relevant condensed-matter system. The mapping is known as
Floquet engineering and its important features in the context of optical lattices are discussed in
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Refs. [82–88]. The basis of this mapping is Floquet’s theorem [89], which is applicable to time-
periodic Hamiltonians, analogously to the more famous Bloch’s theorem for systems periodic in
space. Ultracold quantum gases provide an optimal platform for Floquet engineering, as these
systems are usually isolated from their environment, which inhibits dissipative processes, and
the highly-controllable parameters of the system can be easily periodically modulated.

Analogously to the Bloch wave states in spatially periodic systems, Floquet states can be
written as

|ψn(t)〉 = e−iεnt|un(t)〉, (1.8)

where εn are the quasienergies and |un(t)〉 = |un(t + T )〉 are the time-periodic Floquet modes
which have the same period T = 2π/ω as the Hamiltonian Ĥ(t). As in the rest of this thesis,
here we work in the units where ~ = 1. Quasienergies εn are only defined up to integer multiples
of the driving frequency ω, similarly to the quasimomenta which are only defined inside the
first Brillouin zone. The Floquet states are the eigenstates of the evolution operator over one
driving period Û(T, 0). When a system governed by a time-periodic Hamiltonian is observed
stroboscopically – at times that are integer multiples of the period, it behaves as if it was
governed by some time-independent effective Hamiltonian. The dynamics during one period –
micromotion – is described by another periodic operator, the so-called kick operator that has
the same periodicity as the original time-dependent Hamiltonian. The time-evolution operator
corresponding to the Hamiltonian (1.6) can be represented as

Û(t, t0) = e−iK̂(t)e−i(t−t0)Ĥeff eiK̂(t0), (1.9)

where Ĥeff is the full time-independent effective Hamiltonian that describes slow motion and
K̂(t) is the time-periodic kick-operator that describes micromotion [82, 83].

The effective Hamiltonian corresponding to a certain time-dependent Hamiltonian always
exists, but in the general case it cannot be analytically calculated. However, there are several
approximation schemes that allow computation of the leading terms of the effective Hamiltonian
and the kick-operator. In cases where the driving frequency ω is large enough compared to the
matrix elements of the Hamiltonian, two most often used approximations are the high-frequency
expansion [82, 83, 90] and the Magnus expansion [91–93], which is in terms of the driving period
T = 2π/ω. The advantage of the former method over the latter is that the effective Hamiltonian
does not depend on the initial driving phase. For this reason, we will only use the high-frequency
expansion in this work. A general time-periodic modulating potential can be written in the
form

V̂ (t) =
∞∑
j=1

(
V̂ (j)eijωt + V̂ (−j)e−ijωt

)
. (1.10)

In the high-frequency expansion, the first few terms of the effective Hamilatonian corresponding
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to the time-dependent Hamilatonian (1.6) are then [82]

Ĥeff = Ĥ0 + 1
ω

∞∑
j=1

1
j

[
V̂ (j), V̂ (−j)

]
+ 1

2ω2

∞∑
j=1

1
j2

([[
V̂ (j), Ĥ0

]
, V̂ (−j)

]
+ H.c.

)

+ 1
3ω2

∞∑
j,l=1

1
jl

([
V̂ (j),

[
V̂ (l), V̂ (−j−l)

]]
−
[
V̂ (j),

[
V̂ (−l), V̂ (l−j)

]]
+ H.c.

)
+O

( 1
ω3

)
. (1.11)

This is a general equation that can be applied to a variety of different setups.
Floquet engineering provides a powerful tool for modern cold-atom experiments. However,

the interactions between atoms can never be completely avoided and the combination of in-
teractions and driving leads to unwanted heating. Thermalization to infinite temperature in
the long-time and thermodynamic limit is practically unavoidable in such systems [94, 95].
Nevertheless, it might still be possible to find some parameter regime where thermalization is
slow enough, for example if the system stays in the prethermalized state [96–98] on experimen-
tally relevant timescales. This would allow experimental measurements in driven systems to be
performed before full thermalization occurs.

1.6 This thesis

Throughout this thesis, we will use numerical simulations to study several interesting models
which can be realized using ultracold bosonic atoms in optical lattices. In particular, we will be
interested in systems which exhibit unusual nonergodic dynamics and systems with nontrivial
topological properties. Both of these topics represent very active fields of research which have
rapidly developed in recent years.

In Chapter 2 we will present a realization of quantum many-body scars in a bosonic model
with density-dependent hopping. Since the first experimental observation in a Rydberg atom
quantum simulator [46] and the subsequent theoretical explanation using the PXP model [47,
48], quantum many-body scars have been shown to exist in a variety of different systems [50–
67]. However, most of the previous realizations have relied on the presence of “hard” kinetic
constraints which restrict the available Hilbert space. For example, in the original PXP model
this constraint arises from the fact that two neighbouring atoms cannot be simultaneously
excited into Rydberg states due to an infinite energy penalty. Another question that was raised
in the literature is proximity of quantum-scarred models to integrability, as adding certain
perturbations to the PXP model can make it integrable. The main goal of Chapter 2 will be
to show that quantum many-body scars can exist in manifestly nonintegrable systems with
“soft” constraints only. To this end we will compare several similar models with different
types of constraints. We will also formulate an analytically tractable approximation which
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can explain and qualitatively predict revivals of quantum fidelity in the model which exhibits
quantum many-body scars. An advantage of this model is that it could be easily realized in an
optical lattice under a suitable Floquet scheme, thus providing a new experimental platform
for quantum many-body scars. This would also allow future probes of this phenomenon to go
beyond one-dimensional systems.

The main objective of the second part of this doctoral dissertation will be to study the
interplay of topological features and interactions by investigating the dynamics of bosons in
driven optical lattices. The approximations necessary for the computation of the effective
Hamiltonian in a Floquet engineering scheme are mostly applied to noninteracting systems
in the high-frequency limit, even though interactions usually cannot be realistically neglected
and the interplay of driving and interactions can heat up the system to a featureless, infinite-
temperature regime according to general considerations [94, 95]. One of the main open questions
is whether it is possible to find some parameter regimes where the system is in the so-called
prethermalized state [96–98] on intermediate timescales and can be described by some model
of interest.

In Chapter 3 we will examine the effects of weak on-site interactions in relation to the
recent Chern number measurement [70]. We take into account a realistic driving scheme and
experimental parameters. Although the interactions are generally thought to complicate the
experimental procedure, we will show that weak repulsive interactions can be beneficial for the
measurement in at least two ways. Firstly, the interactions make the probability distribution in
momentum space more homogeneous, which is important because the Chern number captures
the contributions of Berry curvature from the whole Brillouin zone. Secondly and somewhat
surprisingly, the interactions can cancel-out some unwanted higher-order therms which are a
result of the driving protocol but are not related to the topological model of interest.

In Chapter 4 we will study a similar system as in Chapter 3, but now focusing on strong
interactions. We will investigate the possibility of realizing a strongly correlated phase – frac-
tional quantum Hall state – in driven systems on experimentally relevant timescales. Two
main ingredients for the realization of fractional quantum Hall states, strong interactions and
strong synthetic magnetic fields, are already available in present-day cold-atom experiments.
However, even after years of experimental progress and numerous theoretical proposals, these
states have still not been achieved, mainly due to problems related to heating caused by driving
in the strongly interacting regime. Experimental realization of fractional quantum Hall states
in cold-atom setups would be of particular interest due to their anyonic excitations, which
could be of use for topological quantum computing [99]. Here we identify an optimal regime of
microscopical parameters for the preparation of these highly sought-after states.

Finally, we will summarize all the results from this doctoral dissertation in Chapter 5.
Additional derivations and technical details are provided in Appendices A-G.
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Quantum scars of bosons with correlated
hopping

Semiclassical studies of chaotic stadium billiards have revealed the existence of remarkable
non-chaotic eigenfuctions called “quantum scars” [49]. Scarred eigenfunctions display anoma-
lous enhancement in regions of the billiard that are traversed by one of the periodic orbits in
the classical limit when ~→ 0. It was shown that quantum scars lead to striking experimental
signatures in a variety of systems, including microwave cavities [100], quantum dots [101], and
semiconductor quantum wells [102].

A recent experiment on a quantum simulator [46], and subsequent theoretical work [47, 103],
have shown that quantum many-body scars can occur in strongly interacting quantum systems.
The experiment used a one-dimensional Rydberg atom platform in the regime of the Rydberg
blockade [46, 104, 105], where nearest-neighbour excitations of the atoms were energetically
prohibited. The experiment observed persistent many-body revivals of local observables after
a “global quench” [106] from a certain initial state. In contrast, when the experiment was
repeated for other initial configurations, drawn from the same type of “infinite” temperature
ensemble, the system displayed fast equilibration and no revivals. These observations pointed
to a different kind of out-of-equilibrium behavior compared to previous studies of quantum
thermalization in various experimental platforms [23, 28, 36, 38, 107].

In both single-particle and many-body quantum scars, the dynamics from certain initial
states leads to periodic revivals of the wave function. In the former case, this happens when
the particle is prepared in a Gaussian wave packet initialized along a periodic orbit [49], while
in the latter case the revivals can be interpreted as a nearly-free precession of a large emergent
SU(2) spin degree of freedom [108, 109]. Another similarity between single- and many-body
quantum scars is the existence of non-ergodic eigenstates. In the single-particle case, such eigen-
states are easily identified by their non-uniform probability density that sharply concentrates
along classical periodic orbits. In the many-body case, non-ergodic eigenstates are broadly
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Chapter 2 Quantum scars of bosons with correlated hopping

defined as those that violate Eigenstate Thermalization Hypothesis (ETH) [30, 31]. Scarred
eigenstates violate the ETH in a number of ways: for example, they appear at evenly spaced
energies throughout the spectrum [47, 48, 60], they have anomalous expectation values of local
observables compared to other eigenstates at the same energy density, and their entanglement
entropy obeys a sub-volume law scaling [48].

In recent works, the existence of atypical eigenstates has been taken as a more general defini-
tion of quantum many-body scaring. For example, highly-excited eigenstates with low entangle-
ment have previously been analytically constructed in the non-integrable AKLT model [50, 51].
A few of such exact eigenstates are now also available for the Rydberg atom chain model [52].
The collection of models that feature atypical eigenstates is rapidly expanding, including per-
turbations of the Rydberg atom chain [48, 53, 54], theories with confinement [55, 56, 110],
Fermi-Hubbard model beyond one dimension [57, 111], driven systems [58], quantum spin
systems [59, 61], fractional quantum Hall effect in a one-dimensional limit [62], and models
with fracton-like dynamics [63–65]. In a related development, it was proposed that atypical
eigenstates of one Hamiltonian can be “embedded” into the spectrum of another, thermaliz-
ing Hamiltonian [112], causing a violation of a “strong” version of the ETH [33, 41]. This
approach allows to engineer scarred eigenstates in models of topological phases in arbitrary
dimensions [66]. From a dynamical point of view, it has been shown that models with scarred
dynamics can be systematically constructed by embedding periodic on-site unitary dynamics
into a many-body system [67].

A feature shared by many scarred models is the presence of some form of a kinetic con-
straint. In the Rydberg atom chain, the constraint results from strong van der Waals forces,
which project out the neighboring Rydberg excitations [113]. Such Hilbert spaces occur, for
example, in models describing anyon excitations in topological phases of matter [114–118] and
in lattice gauge theories [119–121], including the Rydberg atom system [122, 123]. Recent works
on periodically driven optical lattices have started to explore such physics [124, 125]. On the
other hand, kinetic constraints have been investigated as a possible pathway to many-body
localization without disorder [35]. In classical systems, non-thermalizing behavior without dis-
order is well-known in the context of structural glasses [126–128]. The mechanism of this type
of behavior is the excluded volume interactions that impose kinetic constraints on the dynam-
ics [129, 130]. Similar type of physics has recently been explored in quantum systems where a
“quasi many-body localized” behavior was proposed to occur in the absence of disorder [131–
141].

In this Chapter we investigate the relation between kinetic constraints, slow dynamics and
quantum many-body scars. In contrast to previous work, which focused on models of spins
and fermions that are closely related in one dimension due to the Jordan-Wigner mapping,
here we study one-dimensional models of bosons with density-assisted hoppings, which realize
both “hard” and “soft” kinetic constraints, whilst being non-integrable. In Section 2.1 we
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Chapter 2 Quantum scars of bosons with correlated hopping

introduce the models and discuss properties of their Hamiltonians when viewed as adjacency
matrices of graphs in the Fock space. In Section 2.2 we investigate thermalization properties of
these models by studying their energy level statistics, entanglement entropy of eigenstates, and
dynamics under global quench. Depending on the form of the hopping term, we demonstrate
that the models encompass a rich phenomenology, including regimes of fast thermalization, the
existence of periodic revivals and many-body scars, as well as the Hilbert space fragmentation
that has been found in recent studies of fractonic models [63–65]. Unlike the experimentally
realized Rydberg atom system, we find evidence of many-body scars in a bosonic model without
a hard kinetic constraint, i.e., with a fully connected Hilbert space. In Section 2.3 we identify
initial states that give rise to periodic many-body revivals in the quantum dynamics, and we
introduce a “cluster approximation” that captures the scarred eigenstates that are responsible
for periodic revivals. In Section 2.4 we discuss zero-energy eigenstates of our models and their
algebraic structure. Finally, in Section 2.5 we present our conclusions and discuss possible
experimental realizations of these models using ultracold atoms.

2.1 Models and their Hilbert spaces

A fundamental ingredient of kinetically constrained models is “correlated hopping”: a particle
can hop depending on the state of its neighbors. In this Chapter we consider a system of Np

bosons on a one-dimensional lattice with L sites. We consider models where the total filling
factor, ν = Np/L, is conserved, and we will mainly present results in the dense regime, ν = 1.
We have studied models with ν < 1 and ν > 1, but we found them to be either too constrained
or not constrained enough, and therefore less interesting. We emphasize that the bosons in our
study are not hard-core, i.e., the occupancy of any lattice site can take any value from 0 to Np.

2.1.1 Models

We study three different models, defined by the Hamiltonians:

Ĥ1 = −J
L∑
j=1

(
b̂†j b̂j+1n̂j + n̂j−1b̂

†
j b̂j−1

)
, (2.1)

Ĥ2 = −J
L∑
j=1

(
n̂j b̂
†
j b̂j+1 + b̂†j b̂j−1n̂j−1

)
, (2.2)

Ĥ3 = −J
L∑
j=1

(
n̂j+1b̂

†
j b̂j+1n̂j + n̂j−1b̂

†
j b̂j−1n̂j

)
. (2.3)

All three models contain a free-boson hopping term, b̂†j b̂j+1, which is dressed in various ways
by density operators, n̂j = b̂†j b̂j. We will show that the position of the density operator n̂j com-
pletely changes the behavior of these models, ranging from fast thermalization to the breakup
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Chapter 2 Quantum scars of bosons with correlated hopping

of the Hamiltonian into disconnected, exactly solvable sectors. For example, note that Ĥ1 and
Ĥ2 are related to each other via free boson hopping,

Ĥ2 = Ĥ1 − J
∑
j

(
b̂†j b̂j+1 + b̂†j b̂j−1

)
, (2.4)

which can be easily proven using bosonic commutation relations. We will see below that this
innocuous free-boson hopping leads to surprisingly different dynamical properties of the two
models.

The motivation behind introducing three different models in Eqs. (2.1)-(2.3) can be sum-
marized as follows. Hamiltonian Ĥ1 describes a model where a particle cannot hop to the left if
that site is not already occupied by at least one particle, and cannot hop to the right if it is the
only particle left on its initial site. This introduces constraints to the system. Conversely, there
are no such constraints in the case of Ĥ2. Indeed, the hopping coefficients are only modified in
intensity by the particle-number operator. Hamiltonian Ĥ3 introduces additional constraints
compared to Ĥ1. The number of unoccupied sites and their positions remain constant under
the action of this Hamiltonian. This leads to different connectivity of the Hilbert space in each
of the models, as we explain in the next Section.

We consider periodic boundary conditions (L + 1 ≡ 1) and set ~ = J = 1. With periodic
boundary conditions, all three Hamiltonians Ĥ1, Ĥ2 and Ĥ3 have translation symmetry, thus
their eigenstates can be labelled by momentum quantum number, k, quantized in units of 2π/L.
In addition, Ĥ3 has inversion symmetry. We denote by I = 0 and I = 1 the sectors that are
even and odd under inversion, respectively.

Without restrictions on the boson occupancy, the Hilbert space of Ĥ1, Ĥ2 and Ĥ3 grows
very rapidly. For L = Np = 12, the Hilbert space size of the k = 0 sector is 112720 (the largest
one we will consider for Ĥ1 and Ĥ2). As previously mentioned (see also the next Section), the
Hilbert space of Ĥ3 splits into many disconnected components, thus it is possible to consider
only one connected component at a time and disregard the unoccupied sites whose positions
do not change. This is more relevant when looking at properties such as thermalization, than
fixing the filling factor. However, the boundary conditions are in that case no longer periodic,
and the system does not have translation symmetry. Considering only a system with the size
L/2, filling factor ν = 2, open boundary conditions and minimal number of particles per site
equal to 1 is completely equivalent to considering the largest component of the full system which
has the size L, filling factor ν = 1, periodic boundary conditions and no restrictions on the
occupancies. The Hilbert space size of the symmetric invariant sector of the largest connected
component of L = Np = 22 is 176484 and this is the largest sector that we will consider for Ĥ3.
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2.1.2 Graph structure and bipartite lattice

Since we will be interested in the dynamical properties, it is convenient to first build some
intuition about the structure of the Hamiltonians of the three models in Eqs. (2.1)-(2.3). A
Hamiltonian can be viewed as the adjancency matrix of a graph whose vertices are Fock states
of bosons, |n1, n2, . . . , nL〉. If the Hamiltonian induces a transition between two Fock states,
the corresponding vertices of the graph are connected by a link. The graphs that show how the
configuration space is connected have very different structure for the three Hamiltonians Ĥ1,
Ĥ2 and Ĥ3, as can be observed in Fig. 2.1.
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Figure 2.1: Connectivity of the Hilbert space. Adjacency graph for (a) Ĥ1, (b) Ĥ2, (c) Ĥ3, all
for L = Np = 3. (d), (e) and (f): same as (a), (b) and (c) but for L = Np = 6. To avoid clutter,
we do not label the vertices in (d), (e) and (f). All graphs are weighted, i.e., the line thickness
is proportional to the magnitude of the corresponding hopping coefficient. Several different
clusters of configurations are visible in the case of Ĥ1. The clusters start to form already for
L = 3 (for example, the configurations 012–021–003 in (a)) and become more prominent for
L = 6 (d). In the case of Ĥ2, almost all configurations are well-connected to the rest of the
graph. The graphs for Ĥ3 show that the Hilbert space is highly reducible: its graph splits into
many disconnected components.

The entire graph of Ĥ2 is well-connected and it has the same structure as the graph of
the standard Bose-Hubbard model: the particle-number operators in Ĥ2 do not introduce any
constraints, but only affect the magnitude of the hopping coefficients. In contrast, the Ĥ1

graph shows several clusters of configurations that are weakly connected to the rest of the
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graph. “Weakly connected” means that there is a small number of connections leading outside
the cluster and that their respective hopping coefficients are smaller in magnitude than those
of the surrounding connections within the cluster. A state that is initially located inside a
cluster is therefore more likely to stay inside during an initial stage of the time evolution, which
increases the probability of revivals and slows down the growth of entanglement entropy. We
will provide a more quantitative description and examples that illustrate this in Section 2.3.
Finally, the graph of Ĥ3, due to even stronger constraints, is actually disconnected, which is
an example of Hilbert space fragmentation that was previously shown to cause non-ergodic
behavior in fracton-like models [64, 65]. This predicts that thermalization and dynamics in the
three models will be very different, which we will confirm in the following Section. However, we
note that the number of connections and the topology of the graph is not the only relevant factor
for the dynamics. The magnitude of the hopping coefficients between different configurations
is also important, see Appendix A.

We note that the relation between Ĥ1 and Ĥ3 is reminiscent of the relation between the
quantum East model [142] and the “PXP” model describing the atoms in the Rydberg blockade
regime [47, 48, 113]. Like Ĥ3, the PXP model is doubly constrained and inversion symmetric,
while Ĥ1 and the quantum East model are asymmetric versions of those two models with only
a single constraint. The graph of the quantum East model is similar to that of Ĥ1, in that it
contains bottlenecks which slow down the growth of entanglement entropy [142].

The graph of Ĥ1 is bipartite, i.e. all the basis configurations can be divided into two dis-
joint sets, and the action of the Hamiltonian connects configurations in one set only to the
configurations in the other and vice-versa (the Hamiltonian is off-diagonal). One way to sort
configurations into these two sets is by parity of the quantity

∆a = |neven − nodd + C|
2 , (2.5)

where C = 0 if L is even and C = 1 if L is odd. We define neven and nodd as the total numbers
of particles at even and odd sites, respectively,

neven =
L1∑
l=1

n2l, nodd =
L2∑
l=1

n2l−1, (2.6)

where L1 = L2 = L/2 if L is even, and L1 = (L − 1)/2, L2 = (L + 1)/2 if L is odd. If only
nearest neighbor hoppings are allowed and if no two odd sites are coupled (if the system has
open boundary conditions for any L or periodic boundary conditions for L-even), each hopping
either increases neven by one and decreases nodd by one, or vice-versa. This means that each
hopping can change ∆a only by ±1.

Another way to sort configurations into two sets is by parity of the distance from the
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configuration |111...111〉, which we define as

da = minn{〈111...111|Ĥn
1 |a〉 6= 0}. (2.7)

In this case, the two sets are the configurations with even and with odd distances da. One
hopping can change da only by ±1 or 0. Changes by other values are not possible by definition
if the Hamiltonian is Hermitian (all hoppings are reversible). Both da and ∆a have the same
parity, thus da must always change after one hopping in even system sizes or in systems with
open boundary conditions. As a consequence, da cannot change by 0 if ∆a can only change by
±1.

We have shown above that the Ĥ1 model is bipartite for open boundary conditions irre-
spective of the system size L parity or for periodic boundary conditions when L is even. Now
we prove that this property of Ĥ1 holds true when L is odd and filling factor ν = 1. Due
to the constraints imposed by Ĥ1, a particle cannot hop to an empty site to its left. At the
filling factor ν = 1, all configurations except 111...111 contain at least one empty site. These
configurations can be connected to 111...111 by hoppings only to the right, which is also the
shortest possible path da, defined in Eq. (2.7). The empty sites can be filled only with particles
that come from the site on their left, as hopping from the other side is forbidden. This implies
that at least for one pair of adjacent sites (an empty site and the filled one on its right) there
will be no particles hopping between them on the path to 111...111. We can then redefine the
numbering of sites to start from the filled site in this pair. This is equivalent to setting the
right (filled) site as the first and the left (empty) site as the last site in the chain and imposing
open boundary conditions. In this way, no two odd sites will be coupled and the argument that
the absolute difference between the numbers of particles on even and odd sites can only change
by ±1 will still be valid.

Unlike Ĥ1, Ĥ2 in the same geometry is not bipartite. The reason for this is that there are
no constraints in the case of Ĥ2, so the shortest path to 111...111 can include hoppings both to
the right and to the left, which means that it is not always possible to choose the numbering in
such a way that no two odd sites are coupled. Because of the open boundary conditions, the
Hamiltonian Ĥ3 in its largest connected component is also bipartite for all system sizes.

The graphs of bipartite systems do not contain any loops of odd dimension (triangles, pen-
tagons, heptagons and so on). Moreover, the energy spectra of bipartite systems are symmetric
around zero. Their Hamiltonians anticommute with the operator (−1)∆a . The presence of such
an operator in a bipartite lattice leads to exact zero-energy states in the spectrum [143, 144].
It can be shown that the exponentially growing number of zero modes of Ĥ1 is related to the
difference between the numbers of elements in the two sets of its bipartite graph, as explained
in Section 2.4. Additionally, the algebraic structure of zero-energy eigenstates can be explained
by the structure of the graph – such eigenstates can be constructed as superpositions of config-
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urations from only one of the sets. Similar properties are found for Ĥ2 for even L, as its graph
is also bipartite in that case. The properties of the zero-energy manifold are discussed in more
detail in Section 2.4.

2.2 Dynamics and entanglement properties

We now investigate the phenomenology of the models introduced in Eqs. (2.1)-(2.3). We use
exact diagonalization to obtain the complete set of energy eigenvalues and eigenvectors, from
which we evaluate the level statistics and the distribution of entanglement entropies for the
three models. Furthermore, we probe dynamical properties of the models by studying a global
quench, simulated via Krylov iteration.

2.2.1 Level statistics and entanglement entropy

The energy level statistics is a standard test for thermalization of models that cannot be solved
exactly. A convenient way to probe the level statistics is to examine the probability distribution
P (r) [145] of ratios between consecutive energy gaps sn = En+1 − En,

r = min(sn, sn+1)
max(sn, sn+1) . (2.8)

The advantage of studying P (r), instead of P (sn), is that there is no need to perform the
spectrum unfolding procedure – see Ref. [94]. For standard random matrix theory ensembles,
both P (r) and the mean 〈r〉 are well-known [146]. When computing the same quantities in a
microscopic physical model, it is crucial to resolve all the symmetries of the model.

The probability distribution P (r) of the ratios of two consecutive energy gaps is shown
in Figs. 2.2(a), (b) and (c) for the three Hamiltonians Ĥ1, Ĥ2 and Ĥ3 respectively, and two
momentum or inversion sectors. In all three cases, the energy levels repel, i.e., the distribution
tends to zero as r → 0. For Ĥ2, the distribution is particularly close to the Wigner-Dyson (non-
integrable) line. For Ĥ1, the distribution is also consistent with Wigner-Dyson when we restrict
to the middle 1/3 of the spectrum (and after removing special states with E = 0). We exclude
the edges of the spectrum because they contain degeneracies which are not symmetry-related.
However, such states do not appear to have a major effect on the level statistics distribution,
which is still closer to the Wigner-Dyson than the Poisson distribution even if they are included.
The level statistics of Ĥ3 within the largest connected component of the Hilbert space is shown
in Fig. 2.2(c) and is also consistent with the Wigner-Dyson distribution without restricting the
spectrum. However, we will demonstrate below that the dynamics in some smaller connected
components of Ĥ3 can be exactly solved.

As a complementary diagnostic of thermalization, we next compute the entanglement en-
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Figure 2.2: Level statistics and entanglement. (a), (b) and (c): Probability distribution
of the ratios of two consecutive energy gaps. (a) Ĥ1 (middle third of the spectrum without
E = 0 states, L = Np = 12), (b) Ĥ2 (full spectrum, L = Np = 12) and (c) Ĥ3 (largest
connected component of L = Np = 22). The black dashed line shows the Poisson distribution,
which corresponds to the integrable case, while the red dashed line is the distribution of the
Gaussian orthogonal ensemble, which corresponds to the thermalizing case. (d), (e) and (f):
Entanglement entropies SL/2 of all eigenstates plotted as a function of the eigenstate energy
per particle, E/Np. (d) Ĥ1 (L = Np = 12, LA = 6, k = 0), (e) Ĥ2 (same) and (f) Ĥ3 in the
largest connected component of L = Np = 20, LA = 10, I = 0. The inset shows all connected
components for L = Np = 12, LA = 6, k = 0.

tropy of all eigenstates. We divide the lattice into two sublattices, A and B, of lengths LA and
LB = L− LA. For a given pure state |ψ〉, the entanglement entropy is defined as

SA = −TrA(ρA ln ρA), (2.9)

where ρA = TrB|ψ〉〈ψ| is the reduced density matrix of the subsystem A. The scatter plots,
showing entanglement entropy of all eigenstates |En〉 as a function of their energy En, are
displayed in Figs. 2.2(d), (e) and (f). Here we take into account the translation symmetry of
the system and work in the momentum sector k = 0 for Ĥ1 and Ĥ2, and consider only the
largest connected component and the inversion sector I = 0 for Ĥ3. The results for other
sectors are qualitatively similar.

Entanglement entropy distribution in Figs. 2.2(d) and (e) reveals a striking difference be-
tween the Hamiltonians Ĥ1 and Ĥ2, even though they only differ by a free-boson hopping term,
Eq. (2.4). The model Ĥ1 is constrained, which leads to a large spread of the entropy distri-
bution and many low-entropy eigenstates including in the bulk of the spectrum. From this
perspective, Ĥ1 is reminiscent of PXP model [48, 53]. By contrast, Ĥ2 has no such constraints
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and in this case the entanglement entropy is approximately a smooth function of the eigenstate
energy. The Hamiltonian Ĥ3 is doubly constrained, and this is reflected in its entanglement
distribution, which also shows a large spread and several disconnected bands, reminiscent of an
integrable system like the XY model [147].

2.2.2 Global quenches

The constraints in the models in Eqs. (2.1), (2.2) and (2.3) have significant effects on the
dynamics governed by these Hamiltonians. We probe the dynamics by performing a global
quench on the system. We assume the system is isolated and prepared in one of the Fock
states, |ψ0〉, at time t = 0. We restrict to |ψ0〉 being product states which are not necessarily
translation-invariant, as such states are easier to prepare in experiment. However, our results
remain qualitatively the same if we consider translation-invariant |ψ0〉. After preparing the
system in the state |ψ0〉, which is not an eigenstate of the Hamiltonian, the system is let to
evolve under unitary dynamics,

|ψ(t)〉 = exp
(
− i
~
Ĥt
)
|ψ0〉. (2.10)

where Ĥ is one of the Hamiltonians of interest. From the time-evolved state, we evaluate the
quantum fidelity,

F (t) = |〈ψ0|ψ(t)〉|2, (2.11)

i.e., the probability for the wave function to return to the initial state. In a general many-body
system, fidelity is expected to decay as F (t) ∼ exp(−L(Jt)2). It thus becomes exponentially
suppressed in the system size for any fixed time t∗, i.e., F (t∗) ∼ exp(−cL), where c is a constant.
In scarred models, such as the Rydberg atom chain, fidelity at the first revival peak occurring
at a time T still decays exponentially, but exponentially slower, i.e., F (T ) ∼ exp(−c′L), with
c′ � c. In Ref. [48], for a finite system with L . 32 atoms, the fidelity at the first revival can
be as high as ∼ 70%, and several additional peaks at times nT are also clearly visible.

We first consider the Hamiltonian Ĥ1. Several configurations exhibit periodic revivals of the
fidelity F (t), which can in some cases be higher than 90%. Most of these configurations involve a
very dense cluster of bosons such as |...0N10...〉. In contrast, a completely uniform configuration
|...111...〉 thermalizes very quickly. Here we focus on periodically-reviving configurations with
density being as uniform as possible. One family of such reviving configurations involves n unit
cells made of 3 lattice sites:

|210210 . . . 210〉 ≡ |(210)n〉. (2.12)
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Figure 2.3: Dynamics of quantum fidelity and entanglement entropy for initial configurations
in Eq. (2.12). (a) Time evolution of fidelity F (t) in Eq. (2.11) for system sizes L = 3n. The
evolution is governed by the Hamiltonian Ĥ1, different colors represent different system sizes
L. (b) Fidelity evolution F (t) for the Hamiltonians Ĥ1, Ĥ2 and Ĥ3 and system size L = 15.
(c) Entanglement entropy evolution SLA(t) for the same cases as in (b).

Time evolution of the fidelity for the initial state |(210)n〉 for different system sizes L = 3n is
shown in Fig. 2.3(a). The initial state is assumed to be the product state, e.g., |ψ0〉 = |210〉
for L = 3. The frequency of the revivals in Fig. 2.3 is approximately the same for all system
sizes. We emphasize that similar results are obtained for a translation-symmetric initial state,
e.g., |ψ0〉 = 1√

3 (|210〉+ |021〉+ |102〉). Both cases converge in the large system limit, and the
differences are only significant for L = 3 when the revival frequency of the initial state with
transition symmetry differs from the frequencies of other system sizes.

In Fig. 2.3(b) we compare the fidelity for the initial state in Eq. (2.12) when it is evolved
by all three Hamiltonians in Eqs. (2.1)-(2.3). The initial state is fixed to be |(210)5〉. We
observe that the dynamics with Ĥ3 has very prominent revivals; in fact as we will later show,
these revivals are perfect and their period is approximately twice the revival period for Ĥ1. In
contrast, for Ĥ2 the fidelity quickly drops to zero without any subsequent revivals.

Finally, in Fig. 2.3(c) we plot the time evolution of entanglement entropy. As expected
from the fast decay of the fidelity, the entropy for Ĥ2 rapidly saturates to its maximal value.
Moreover, as expected from the perfect revivals in Ĥ3, the entropy in that case oscillates around
a constant value close to zero. For Ĥ1, we observe a relatively slow growth of entropy, with
oscillations superposed on top of that growth, again similar to PXP model [47]. For the initial
state that is not translation-invariant, it is important how we cut the system, e.g., |...210|210...〉
versus |...2102|10...〉. In the first case, the entanglement entropy remains zero for Ĥ3 because
no particle can hop from one subsystem to the other, while in the second case the entropy
oscillates around a constant value, which is the case in Fig. 2.3(c).

In Fig. 2.4 we show the Ĥ1 evolution of two local observables, density correlations between
two adjacent sites 〈n̂1n̂2(t)〉 and density on the first site 〈n̂1(t)〉, starting from the initial state
|(210)n〉. Unlike fidelity and entanglement entropy, these observables can be easily measured in
experiment. Both observables robustly oscillate with approximately the same frequency as the
fidelity. The heights of the first few revival peaks are approximately converged for the system
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Figure 2.4: Evolution of local observables for the Hamiltonian Ĥ1. (a) Correlations between
adjacent sites 〈n̂1n̂2(t)〉 for different system sizes and the initial state |(210)n〉. (b) Density on
one site 〈n̂1(t)〉.

sizes ranging from L = 6 to L = 15, which suggests that revivals in such local observables
can be observed in the thermodynamic limit. In the following Section, we will show that the
oscillations observed in the dynamics from |(210)n〉 state in Eq. (2.12) and their frequency can
be explained using a tractable model that involves only a small subset of all configurations in the
Hilbert space, thus providing a realization of quantum scars in a correlated bosonic system. Our
starting point will be the model Ĥ3, whose graph explicitly separates into disconnected subsets
which makes the toy model exact, hence we can analytically calculate the revival frequency.
Based on these results, we then introduce an approximation scheme that describes the dynamics
from the same initial state under the Ĥ1 Hamiltonian.

2.3 Quantum scars in Ĥ1 and Ĥ3 models

The quench dynamics of fidelity and entanglement entropy in Fig. 2.3 suggest that Ĥ1 and Ĥ3

models are candidate hosts for many-body scarred eigenstates that can be probed by initializing
the system in product states |(210)n〉. We now analyze the structure of these states using our
approach called “cluster approximation”.

2.3.1 Perfect revivals in the Ĥ3 model

The dynamics of Ĥ3 within the sector containing the state |(210)n〉 can be solved exactly. We
start with a warmup calculation for Ĥ3 acting on L = 3 sites. The connected subspace of 210
contains only two configurations, 120 and 210. The Hamiltonian reduced to this subspace is

Ĥ
′

3 = −
0 2

2 0

 , (2.13)

where the basis vectors are
1

0

 = |210〉,
0

1

 = |120〉. (2.14)
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The eigenvalues of Ĥ ′3 are E1 = −2 and E2 = 2. The initial state |ψ1(t = 0)〉 = |210〉 evolves as

|ψ1(t)〉 = cos(2t)|210〉 − i sin(2t)|120〉, (2.15)

and the state |ψ2(t = 0)〉 = |120〉 evolves as

|ψ2(t)〉 = −i sin(2t)|210〉+ cos(2t)|120〉. (2.16)

Previous results can be straightforwardly generalized to larger systems. Let the length of the
system be L = 3n for simplicity. The connected component of the state |(210)n〉 consists only of
combinations of patterns 210 and 120, which means that triplets of sites evolve independently,
and dynamically the system behaves as a collection of independent two level systems (spins-
1/2). From Eq. (2.15), the initial state |ψn(t = 0)〉 = |(210)n〉 evolves as

|ψL=3n(t)〉 = cosn(2t)|(210)n〉+ (−i)n sinn(2t)|(120)n〉+ ... (2.17)

where “...” denotes contributions of the basis configurations other than |(210)n〉 or |(120)n〉.
The fidelity is

FL=3n(t) = |〈ψn(0)|ψn(t)〉|2= |cos 2t|2n. (2.18)

It follows that the revivals are perfect, with a period T3 = π/2. This result is also valid for the
translation-invariant initial state |(210)n〉T,

|(210)n〉T ≡
1√
3

(|(210)n〉+ |(021)n〉+ |(102)n〉) , (2.19)

as the connected subspaces of 210, 021 and 102 do not overlap and therefore evolve indepen-
dently.

However, an initial state that is both translation symmetric and inversion symmetric has
different dynamics. The inverse of the configuration |(210)n〉 is the configuration |(012)n〉, which
is a translation of the state |(120)n〉 that belongs to the connected subspace of |(210)n〉. The
initial state

|ψinv
n (t = 0)〉 = 1√

2
|(210)n〉T + 1√

2
|(120)n〉T (2.20)

evolves as

|ψinv
n (t)〉 = (cosn 2t+ (−i)n sinn 2t) |ψinv

n (t = 0)〉+ ... (2.21)
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and the fidelity is

F inv
n (t) = |〈ψinv

n (0)|ψinv
n (t)〉|2= |cosn 2t+ (−i)n sinn 2t|2. (2.22)

The frequency of the revivals is now doubled, so the period is T inv
3 = π/4.

2.3.2 Cluster approximations for the Ĥ1 model

In contrast to the free dynamics in Ĥ3, the Ĥ1 model exhibits decaying revivals and does
not admit an exact description. In order to approximate the quench dynamics and scarred
eigenstates in Ĥ1, we project the Hamiltonian to smaller subspaces of the full Hilbert space.
These subspaces contain clusters of states which are poorly connected to the rest of the Hilbert
space and thereby cause dynamical bottlenecks. The clusters can be progressively expanded to
yield an increasingly accurate description of the dynamics from a given initial state.

Here we introduce a scheme for approximating the dynamics from initial states (210)n in
the Ĥ1 model. As can be observed in Fig. 2.3, the revival periods are approximately the
same for different system sizes. We first focus on the non-trivial case L = 6. Fig. 2.5 shows
part of the graph that contains the initial state, |210210〉. Configurations labelled inside the
ellipses denote representatives of an orbit of translation symmetry, i.e., the configurations are
translation-invariant such as the one in Eq. (2.19).

Figure 2.5: Minimal and extended clusters. Hamiltonian Ĥ1 and system size L = Np = 6.
Configurations labelled inside the ellipses are representatives of an orbit of translation sym-
metry. The minimal cluster is defined by the blue configurations, while green configurations
represent the additional components of the extended cluster. Grey arrows connect to configu-
rations outside the extended cluster. The numbers bellow the graph show the distance da from
the configuration 111111 evaluated using Eq. (2.7).

The minimal subcluster of the graph is highlighted in blue color in Fig. 2.5. This cluster
is indeed weakly connected to the rest of the configuration space, as it has only 3 connections
that lead outside this cluster (dashed lines) and their hopping coefficients are slightly lower in
magnitude than those inside the cluster, meaning that the probability is higher to stay inside
the cluster than to leave. The hopping coefficients leading outside are not significantly smaller
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than the coefficients staying inside, but in combination with the relatively small number of con-
nections this has significant effects on the dynamics. This effect is even more pronounced when
the difference in magnitudes is further increased by squaring the particle number operators, as
shown in Appendix A.

The minimal cluster from Fig. 2.5 contains all the states given by tensor products of 210,
120 and 300 configurations. The set of configurations belonging to this cluster could have been
chosen differently, but this particular choice has at least two advantages. Firstly, inside this
cluster, the evolution of the configuration |210210〉 can be thought of as two subsystems 210
evolving separately. The evolution of all such configurations at different system sizes can be
reduced to the evolution of L = 3 subsystems 210, similar to the case of Ĥ3 in the connected
subspace of (210)n. Secondly, this definition allows easy generalization to different system
sizes L = 3n with initial states (210)n. The dimension of the reduced Hilbert space grows
with the system size as dimHc = 3n. We would like to emphasize that the cluster was not
chosen arbitrarily. The calculations of the probability density distribution starting from the
initial configuration |210210〉 and evolving with Ĥ1 have shown that the probability density
stays high in this region of the Hilbert space as long as the revivals in fidelity are visible. The
configurations important for the dynamics were then identified by analyzing the structure of
the graph around the initial configuration.

As an example, consider system size L = 3. The reduced Hilbert space of the cluster Hc is
spanned by the (non-translation-invariant) configurations


1
0
0

 = |300〉,


0
1
0

 = |210〉,


0
0
1

 = |120〉. (2.23)

The Hamiltonian reduced to this subspace is

Ĥc
1 = −


0 2

√
3 0

2
√

3 0 2
0 2 0

 , (2.24)

and its eigenvalues are E1 = −4, E2 = 4, E3 = 0. The initial configuration |210〉 evolves
according to

|ψc
1(t)〉 = − i2 sin(4t)

(√
3|300〉+ |120〉

)
+ cos(4t)|210〉. (2.25)

By generalizing this result to larger systems, it is easy to prove that the time-evolved state
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within the cluster is given by

|ψc
n(t)〉 = cosn(4t)|(210)n〉+ . . . , (2.26)

where the dots denote other configurations, and the fidelity is

F c
n(t) = |〈ψc

n(0)|ψc
n(t)〉|2= |cos(4t)|2n. (2.27)

As in the case of Ĥ3, this result is also valid for the translation-invariant initial state. We see
that the period of revivals is T1 = π/4, which is the same as for Ĥ3 with a translation and
inversion symmetric initial state.

The minimal clusters can be expanded by adding several neighboring configurations. For
similar reasons as in the case of minimal clusters, the extended clusters are defined as sets of
all states which can be obtained using tensor products of the configurations 210, 120, 300 and
111. In the case of L = 6, the enlarged cluster can be observed in Fig. 2.5. It contains the
minimal cluster studied previously, but it also includes additional configurations shown in green
ellipses. Again, the approximation could be improved by including more configurations, but
this particular choice is well suited for analytical treatment (see Appendix B) and, as shown
above, it gives a good prediction for the first revival peak height.
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Figure 2.6: Comparison of the full dynamics against the minimal cluster (1) and extended
cluster (2) approximation schemes. We consider the system size L = 15 with the initial state
|(210)5〉. (a) Time evolution of the fidelity. The frequency of revivals is approximately the same
in both cases, but the results for the extended cluster show better agreement with the results
for the full Hilbert space. (b) Time evolution of the entanglement entropy.

The result of the cluster approximation is compared against the exact result for system size
L = 15 in Fig. 2.6. The frequency of the fidelity revival, shown by the blue line in Fig. 2.6(a),
is accurately reproduced in this approximation, however the approximation does not capture
the reduction in the magnitude of F (t). Similarly, the dynamics of entanglement entropy, blue
line in Fig. 2.6(b), is only captured at very short times. In particular, we observe that the
maximum entanglement within the cluster remains bounded even at long times t ∼ 10, while
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the exact entropy continues to increase and reaches values that are several times larger.
To obtain a more accurate approximation, we can expand the minimal cluster with several

neighboring configurations on the graph. We define the extended cluster as a set of all states
which can be obtained using tensor products of the configurations 210, 120, 300 and 111.
The enlarged cluster clearly contains the minimal cluster studied above, but it also includes
additional configurations, resulting in a much better prediction for the first revival peak height,
while still allowing for analytical treatment. The dimension of the extended cluster grows
as dimHc̃ = 4L/3, and is thus exponentially larger than the minimal cluster approximation.
Nevertheless, the extended cluster dimension is still exponentially smaller compared to the
full Hilbert space, and within this approximation it is possible to numerically simulate the
dynamics of larger systems, L . 30 – see Fig. 2.7(a). The revivals are no longer perfect, while
their frequency is independent of the system size and closer to the frequency of revivals for the
full Hilbert space compared to to the minimal cluster approximation in Fig. 2.6. The overlap
between the eigenstates of the Hamiltonian Ĥ1 reduced to both the minimal and extended
cluster and the state |(210)8〉 is given in Fig. 2.7(b). The eigenstates that correspond to the
minimal cluster approximately survive in the extended cluster, where they form a band with
the highest overlap.
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Figure 2.7: Cluster approximations. (a) Fidelity F (t), for the Hamiltonian Ĥ1 and initial
states |(210)n〉, in the extended cluster approximation for various system sizes. (b) Eigenstate
overlap with the initial state |(210)8〉 plotted on a log scale, for both cluster approximations.
In the case of degenerate eigenstates the sum of their overlaps is shown.

For the initial product state (210)n, it is possible to analytically obtain the fidelity within
the improved approximation for arbitrary system size. Similar to the previous methods, it can
be shown (see Appendix B)

F c̃
L=3n(t) = 4n|b2 cos(αt) + d2 cos(βt)|2n, (2.28)

where α =
√

9 +
√

57 ≈ 4.06815, β =
√

9−
√

57 ≈ 1.20423, b ≈ 0.694113 and d ≈ 0.134933.
Eq. (2.28) is in excellent agreement with the numerical results in Fig. 2.7(a). It was also found
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to be a very good approximation for the translation-invariant initial state when L ≥ 9 (data
not shown).
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Figure 2.8: First peak height. (a) Logarithm (base 10) of the first revival peak divided by
the system size, log(F (T ))/L, seems to saturate at a finite value in the thermodynamic limit.
(b) Comparison of the logarithm of the first revival peak height for the full dynamics and the
improved cluster approximation. The approximation serves as a lower bound.

Fig. 2.8(a) shows that the logarithm of the fidelity per site, log(F (T ))/L, at the first peak,
saturates at a finite value for large L. In the improved cluster approximation, the first peak
height decays as e−0.04L, as shown in Appendix B. For a completely random state, the fidelity
would be F ∼ 1/dimH. In the case ν = 1 and large L, the Hilbert space dimension grows with
the system size as

dimH =
(

2L− 1
L

)
≈
(

2L
L

)
≈ 4L√

πL
. (2.29)

This back-of-the-envelope estimate suggests the fidelity of a random state is F ∼ e−1.39L,
which decays considerably faster than the first peak height in Fig. 2.8. The improved cluster
approximation correctly reproduces the short-time dynamics, including the first revival peak,
and sets a lower bound for the first peak height – see Figs. 2.6 and 2.8(b).

The evolution of the entanglement entropy for the extended cluster approximation is shown
in Fig. 2.6(b). Inside the cluster, entropy remains approximately constant with periodic os-
cillations that have the same frequency as the wave function revivals. Any further growth of
the entanglement entropy can be attributed to the spreading of the wave-function outside the
cluster. To illustrate the “leakage” of the wave function outside the cluster, in Fig. 2.9 we
compute the time evolution of the overlap with a cluster, i.e., the probability to remain inside
a cluster at time t,

OCluster =
∑

a∈Cluster
|〈a|ψ(t)〉|2. (2.30)

We consider several initial configurations that lie inside or outside the cluster. The configura-
tions initially inside the cluster mostly stay there, and the configuration |(210)4〉 that has the
highest revivals also has the highest overlap. Similarly, configurations initially outside the clus-
ter continue to have negligible overlaps. The overlap starting from the configuration |(210)4〉
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approximately predicts the revival peak heights for the full dynamics.
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Figure 2.9: Evolution of the probability to remain inside the minimal cluster. OCluster, as
defined in Eq. (2.30). Initial configurations are indicated in the legend. Solid lines: configura-
tions initially inside the cluster. Dashed lines: configurations initially outside the cluster (all
except |(111)4〉 are randomly chosen). Similar results are obtained for the extended cluster (not
shown). System size L = 12.

We now summarize the relation between Ĥ3 and Ĥ1 from the point of view of the cluster
approximation. For the initial state |(210)n〉, the two models yield similar dynamics, compare
Eqs. (2.18) and Eq. (2.28). The only difference is that the revival frequency is doubled in the
latter case, which can be easily explained by the symmetry of the initial state and that of the
Hamiltonian. Hamiltonian Ĥ3 is inversion-symmetric. If the initial state is also chosen to be
inversion-symmetric, the frequency of the revivals doubles. The period is then T inv

3 = π/4,
which is equal to the period of revivals T1 of Ĥ1 in the cluster approximation. This was proven
analytically in Section 2.3.1, see Eq. (2.22). For comparison, the revival period for the full
Hilbert space is approximately 0.77, which is slightly less than π/4 ≈ 0.79. The Hamiltonian
Ĥ1 is not inversion-symmetric, so the frequency does not double for an inversion-symmetric
initial state, but the revivals are lower in that case. This shows that it is important for the
symmetry of the initial state to match the symmetry of the Hamiltonian.

Finally, the eigenstates of Ĥ1, projected to the subspace of the minimal cluster approxima-
tion, form several degenerate bands whose eigenenergies are equally spaced in integer multiples
of 4. Interestingly, some of these eigenstates approximately survive in the full Ĥ1 model, and
they are precisely the eigenstates that have the highest overlap with the configurations |(210)n〉,
see Fig. 2.10(a). In small system sizes, such as L = 6, the surviving eigenstates are also the
lowest entropy eigenstates in the middle of the spectrum, which is reminiscent of quantum scars
in the PXP model [48]. In larger systems, e.g., L = 12, the surviving eigenstates are slightly
lower in entropy than their neighbors, but are far from being the lowest entropy eigenstates, as
can be seen in Fig. 2.10. The lowest entropy eigenstates have high overlaps with other config-
urations, such as |(3100)3〉, as shown in Figs. 2.10(b) and 2.10(c). In the case of |(210)n〉, the
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Figure 2.10: Non-ergodic eigenstates. (a) Overlap of the configuration |(210)4〉 with all the
eigenstates of Ĥ1, Ĥc

1 and Ĥ c̃
1 versus the eigenstate energy for sector k = 0 and system size

L = Np = 12. (b) Same for |(3100)3〉. (c) Entanglement entropy, eigenstates which have the
highest overlap with some product states are marked in different colors.

eigenstates surviving in the full system belong to every other band of eigenstates in the cluster
approximation and the number of the surviving eigenstates is n + 1. For even system sizes
this counting includes a zero-energy eigenstate. In Section 2.3.3 we discuss in more details the
generalization of the cluster approximations to the states of the form |(N10...0)n〉, which were
also found to have robust revivals and high overlaps with some low-entropy eigenstates.

2.3.3 Generalization to other clusters

Building on the previous observation that some of the low-entropy eigenstates have large weight
on |(3100)3〉 product state, we have investigated periodic revivals from such a larger class of
initial states. We find that robust revivals are associated with initial product states of the form

|((N − 1)1 0...0︸ ︷︷ ︸
N−2

)n〉, (2.31)

where N is the length of the unit cell (L = Nn). For example, some of these configurations
are |(3100)n〉, |(41000)n〉 and |(510000)n〉. Combinations of those patterns such as |310041000〉
also exhibit similar properties, but we will restrict ourselves to the simpler former cases.

We can construct a generalization of the cluster approximation for configurations of the
form in Eq. (2.31). As in the case of |(210)n〉, the dynamics inside one unit cell explains the
dynamics of the full system. The generalized clusters can be chosen in such a way that their
Hilbert spaces are spanned by N configurations

|i〉 = |((N + 1− i)(i− 1) 0...0︸ ︷︷ ︸
N−2

)n〉, (2.32)

where i takes values 1, 2, . . . N . If we consider only one unit cell (n = 1), the graph that
connects these configurations has a linear structure without any loops, i.e., each configuration
|i〉 is solely connected to the configurations |i± 1〉, except the two configurations at the edges,
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|1〉 and |N〉, which are only connected to |2〉 and |N − 1〉, respectively.

The projection of the Hamiltonian Ĥ1 to this cluster, which we denote by Ĥc
1, has a very

simple structure: it has the form of a tight-binding chain with the only nonzero matrix elements
on the upper and lower diagonals:

Hc
1;i,i+1 = Hc

1;i+1,i = (N − i)
√
i(N + 1− i). (2.33)

The dynamics within a single unit cell under Ĥc
1 corresponds to density fluctuations between the

first and the second site. Following the same procedure as previously, we can now diagonalize Ĥc
1

and compute the fidelity time series for the initial configuration |(N−1)10...0〉. This result can
be directly generalized to configurations of the form |((N−1)10...0)n〉. The derivation is valid for
both translation-invariant and non-translation-invariant initial configurations, as the cluster in
Eq. (2.32) is disconnected from its translated copies. We stress that this disconnection, namely
the absence of a hopping term between |1(N − 1)0...0〉 and |0N0...0〉, is a consequence of the
constraints imposed by Ĥ1 and it would not hold for Ĥ2. In this way, we have calculated the time
evolution of the fidelity starting from the configurations |(3100)n〉 (for n = 1, 2, 3, 4), |(41000)n〉
(n = 1, 2, 3) and |(510000)n〉 (n = 1, 2), and compared it with the exact numerical results for
the full Ĥ1. The cluster approximation captures both the revival frequency and the height
of the first peak. Similar to the |(210)n〉 case, the approximation can be improved by adding
further configurations to the clusters. Moreover, if we want to consider translation-invariant
initial states, we can follow the same recipe for |(210)n〉 by summing translated patterns with
the required phase factors given in terms of momenta in multiples of 2π/N . We have checked
that revivals appear in these momentum sectors, with roughly the same frequency.

We note that the configurations with larger units cells thermalize more quickly on shorter
timescales, but slower at long times. Initially, the states starting from configurations with
smaller N have lower entanglement entropies than those with larger N . The Hilbert spaces of
large N unit cells are larger, so the entanglement entropy starting from these configurations
rapidly grows to the maximal value for that unit cell. However, the only way for the wave-
function to spread through the entire Hilbert space is that a unit cell reaches a state close
to 111...111, so that particles can hop to the other unit cells. This is less likely for large N ,
and therefore such configurations need long times to fully thermalize. As a result, smaller N
entanglement entropies grow faster and after long enough time they overtake those for larger
N . For example, in the case of L = 12 and translation-invariant initial states, (210)4 overtakes
(3100)3 and (510000)2 around t ∼ 2, and (3100)3 overtakes (510000)2 around t ∼ 80, as shown
in Fig. 2.11.

Finally, we note that non-thermal behavior reminiscent of the one studied here was previ-
ously observed in an unconstrained Bose-Hubbard model, for example in the context of “arrested
expansion” [148, 149] and quenches from superfluid to Mott insulator phase [150, 151]. In these
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Figure 2.11: Time evolution of entanglement entropy for three different translation-invariant
initial states which exhibit slow thermalization. (a) Short timescale. (b) Long timescale.
System size L = 12. Configurations with larger unit cells (such as |(510000)2〉), thermalize
more quickly than those with smaller unit cells (such as |(210)4〉) on shorter timescales, but
slower at longer times.

cases, the main ingredient is the strong on-site interaction, which causes the energy spectrum
to split into several bands. Due to the large energy differences between bands, the dynamics of
an initial state from a particular band is at first limited only to the eigenstates that belong to
the same band. Additionally, these energy bands are approximately equally spaced, which can
lead to revivals in fidelity if several bands are populated. In contrast, our models do not feature
on-site interaction, and the mechanism which slows down the spread of the wave function is cor-
related hopping, which suppresses connections between certain configurations and modifies the
hopping amplitudes between others, thus creating bottlenecks that separate different clusters
of states.

2.4 Zero modes

An interesting feature of Ĥ1 model is the large number of zero-energy states in the middle of
its spectrum. The number of these zero modes, found by brute force diagonalization, is listed
in Table 2.1 for different system sizes and momentum sectors. Similar property is found for Ĥ2

– see Table 2.2, with the notable difference that there are no zero modes when the number of
sites L is odd.

The origin of the zero modes is the underlying bipartite structure of the Hamiltonian [143,
144]. As explained in Section 2.1.2, all the basis configurations of the Ĥ1 model can be separated
into two disjoint classes, and the action of the Hamiltonian Ĥ1 only connects configurations
in one class to the configurations in the other class, while Ĥ1 does not connect configurations
within the same class. For example, a graph that shows how the configurations for L = Np = 4
are connected is displayed in Fig. 2.12. Here we will refer to the two classes as the “green”
(even) and the “red” (odd) configurations. Each basis configuration can be uniquely assigned a
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Table 2.1: The number of zero-energy states for the Hamiltonian Ĥ1 and different system
sizes. The number of states is resolved per momentum sectors, denoted by their momentum
indices i that parametrize the momenta ki = 2π

L
i.
kiL
2π

L = Np 0 1 2 3 4 5 6 7 8 9 10 total
2 0 1 1
3 0 1 1 2
4 2 0 1 0 3
5 2 1 1 1 1 6
6 2 3 0 4 0 3 12
7 2 3 3 3 3 3 3 20
8 10 0 8 0 9 0 8 0 35
9 8 8 8 7 8 8 7 8 8 70
10 4 25 2 25 2 26 2 25 2 25 138
11 22 23 23 23 23 23 23 23 23 23 23 252

Table 2.2: The number of zero-energy states for the Hamiltonian Ĥ2 and different system
sizes. The columns are the same as in Table 2.1.

kiL
2π

L = Np 0 1 2 3 4 5 6 7 8 9 10 total
2 0 1 1
3 0 0 0 0
4 2 0 1 0 3
5 0 0 0 0 0 0
6 0 3 0 4 0 3 10
7 0 0 0 0 0 0 0 0
8 10 0 8 0 9 0 8 0 35
9 0 0 0 0 0 0 0 0 0 0
10 0 25 0 26 0 26 0 26 0 25 128
11 0 0 0 0 0 0 0 0 0 0 0 0

green or a red label according to the parity of its distance da from the configuration |111...111〉,
Eq. (2.7). If this number is even, the configuration is green, and if it is odd, the configuration
is red.

This separation into two classes is a consequence of the constraints present in the Hamilto-
nian Ĥ1. Hamiltonians without such constraints, for example Ĥ2 or the standard Bose-Hubbard
model, do not exhibit this bipartite structure for odd system sizes, see Section 2.1.2. for more
details. In these cases, it is not possible to uniquely determine whether a particular configura-
tion is green or red. The lack of bipartite structure is the reason for the absence of zero-energy
eigenstates of Ĥ2 in odd dimensions, which was observed in Table 2.2. However, the configu-
ration space of Ĥ2 is still bipartite in even dimensions, allowing for the existence of some zero
modes in those cases.

Low-entropy zero-energy states can be constructed as superpositions of either only green or
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Chapter 2 Quantum scars of bosons with correlated hopping

Figure 2.12: Bipartite graph for Ĥ1 and L = Np = 4. The two classes of configurations are
shown in green (even) and red (odd) ellipses. The configurations are written in the translation-
invariant basis. The arrows represent the action of the Hamiltonian Ĥ1 and the numbers above
the arrows are the magnitudes of the corresponding hopping coefficients. The numbers bellow
the graph show the distance da from the configuration 1111, as defined in Eq. (2.7).

only red configurations. For example, in the case of L = Np = 4, the simplest and therefore the
lowest-entropy zero mode can be constructed using only two green product states (encircled by
a dashed line in Fig. 2.12)

|ψ0〉 = 1√
3
|1111〉 −

√
2
3 |2020〉T, (2.34)

where | . . .〉T was defined in Eq. (2.19). There is another zero mode in this case, and it can be
formed by adding more green configurations to the superposition. The number of zero-energy
eigenstates is related to the difference between the numbers of green and red configurations [143],
as we will now explain.

As the Hamiltonian Ĥ1 only connects green configurations to red configurations and red to
green, we can rewrite it in the following way:

Ĥ1 =
∑
i,j

cij|Ri〉〈Gj|+
∑
i,j

c†ij|Gj〉〈Ri|, (2.35)

where |Ri〉 are the red product states and |Gj〉 are green. Its square, Ĥ2
1 , connects green

configurations to green and red to red, and it is therefore block diagonal. The blocks are ĈĈ†

and Ĉ†Ĉ, where Ĉ is a matrix with the elements cij. The dimensions of Ĉ are r × g, where r
is the number of red configurations and g of green. Ĉ and Ĉ† can be factorized using singular
value decomposition. From this structure we can see that the energy spectrum is symmetric
around zero and that the minimal number of zero-energy states is |g − r|. The zero-energy
eigenvectors can also be obtained as the ground states of Ĥ2

1 . Similar analysis and counting of
the zero modes in PXP model was performed in Ref. [47, 152].

Table 2.3 shows the difference between the numbers of red and green states g−r for different
system sizes and the number of zero-energy states N0 in those systems. The number of zero-
energy states, found by exact diagonalization, in all cases satisfies the anticipated inequality
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Table 2.3: The difference between the number of green and red configurations g − r and the
number of zero-energy states N0 (determined by exact diagonalization) for different system
sizes. Overall, the derived bound for the number of zero modes is found to be very tight
in finite systems where it can be independently confirmed by explicit diagonalization (“NA”
denotes cases where this was not possible).

all sectors k = 0
L = Np g − r N0 g − r N0

2 −1 1 0 0
3 −2 2 0 0
4 3 3 2 2
5 6 6 2 2
6 −10 12 0 2
7 −20 20 −2 2
8 35 35 10 10
9 70 70 8 8
10 −126 138 0 4
11 −252 252 −22 22
12 462 NA 80 80
13 924 NA 72 NA
14 −1716 NA 0 NA
15 −3432 NA −228 NA
16 6435 NA 810 NA

N0 ≥ |g − r|. In fact, the bound is almost always saturated, N0 = |g − r|, except when
L = Np = 4n + 2, n ∈ Z. Interestingly, the minimal number of zero modes |g − r| for
L = Np = 4n is equal to the Hilbert space dimension for L = Np = 2n (both total and for
k = 0 sector only). This leads to the conclusion that the number of zero-energy states grows
exponentially with the system size. It can also be noticed that the total difference g − r for
L = Np = 2n+ 1 is always twice the difference for L = Np = 2n.

2.5 Conclusions

In this Chapter, we have introduced three models of bosons with “soft” kinetic constraints, i.e.,
density-dependent hopping. We have demonstrated that some of these models exhibit similar
phenomenology to other realizations of quantum many-body scars, for example the Rydberg
atom system [46]. We have studied quantum dynamics of these systems by performing global
quenches from tensor-product initial states. We have shown that both the connectivity of the
Hilbert space and the relative magnitude of the hopping coefficients have dramatic effects on
the dynamics. For certain initial configurations, the constraints can lead to slow thermalization
and revivals in the quantum fidelity. The revival frequency can be predicted by considering
an exponentially reduced subset of the Hilbert space. For a family of initial configurations of
the form |(210)n〉, we have derived analytical expressions for the evolution of quantum fidelity
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within this approximation, which accurately capture the revival frequency obtained from exact
numerical data. One notable difference between scarred dynamics in the present bosonic models
and the PXP model is that the revivals exist in the absence of a hard kinetic constraint, i.e.,
in the fully connected Hilbert space. Our cluster approximation also explains the structure of
some low-entropy eigenstates in the middle of the many-body spectrum. In addition, we have
calculated the evolution of two local observables which are experimentally measurable, density
correlations between two neighboring sites and density on a single site, and both of them show
robust oscillations over a range of system sizes. We have also shown that the introduced models
contain additional special properties, like the exponentially large zero-energy degeneracy which
is related to the bipartite structure of the model.

We now comment on the possible experimental realizations of the models we studied. The
implementation of a correlated hopping term (n̂kb̂†i b̂j) in optical lattices has attracted lot of
attention due to a possible onset of quantum phases related to high-Tc superconductivity [153].
An early theoretical proposal exploits asymmetric interactions between the two atomic states
in the presence of a state-dependent optical lattice [153]. As a result, the obtained effective
model corresponds to the inversion-symmetric form of Ĥ1. In addition, the same term has
been found to feature as a higher-order correction of the standard Bose-Hubbard model [154–
157]. Although in this case the term typically represents a modification of the regular hopping
term of the order of several percent, its contribution was directly measured [158, 159]. More
recently, the set of quantum models accessible in cold-atom experiments has been enriched
through the technique of Floquet engineering [86]. As a notable example, a suitable driving
scheme can renormalize or fully suppress the bare tunneling rate [160]. On top of that, by
modulating local interactions an effective model with the density-dependent tunneling term
has been engineered [161]. For the models considered in this Chapter the most promising is
a more recent driving scheme exploiting a double modulation of a local potential and on-site
interactions [162]. Related sophisticated driving schemes have already enabled a realization of
dynamical gauge fields [124, 125, 163] where both the amplitude and the phase of the effective
tunneling are density-dependent. Although these experimental proposals explain how to realize
some of the correlated hopping terms present in our models using ultracold atoms in optical
lattices, finding a scheme that exactly realizes our models requires further study. We emphasize
that other models which would exhibit non-ergodic dynamics and scarred eigenstates as a result
of the same mechanism that was explained in this work could be built, for example a linear
combination of Ĥ1 and Ĥ2.

During the completion of this work, we became aware of Ref. [164] which identified non-
thermal eigenstates and slow dynamics in the quantum East model. Moreover, a recent
study [165] proposed a Floquet scheme for a bosonic model with density-assisted hopping,
finding signatures of quantum many-body scars.
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Dynamics of weakly interacting bosons in
optical lattices with flux

As already discussed in Section 1.4, a big challenge in the field of ultracold atoms was
realization of synthetic magnetic fields, due to the fact that charge-neutral atoms do not feel
the Lorentz force. Magnetic field is a key ingredient in various condensed-matter models with
nontrivial topological content, such as the the Harper-Hofstadter [68] and the Haldane model
[76]. In recent years, the implementation of artificial gauge potentials for neutral atoms [74, 75]
has finally enabled the realization of these important models using ultracold atoms in optical
lattices [77–80].

Cold-atom realizations of topological models exploit periodic driving, either through laser-
assisted tunneling [77, 78] or by lattice shaking [79]. Using Floquet theory [81, 89], a periodically
driven system can be related to the time-independent effective Hamiltonian that describes a
condensed-matter system of interest. The mapping is known as Floquet engineering and its
important features in the context of optical lattices are discussed in Section 1.5 and Refs. [82–
88, 166]. Because of important differences of cold-atom setups and their condensed-matter
counterparts, new quench protocols for probing topological features were proposed [167–171].
Following up on these studies, a novel experimental protocol was developed which allowed for
the first-ever measurement of the Chern number (1.5) in a nonelectronic system by investigating
the anomalous deflection of an atomic cloud as a response to external force [70]. The Chern
number is a topological invariant which was directly related to the quantization of the Hall
conductivity in the integer Hall effect [69].

While Floquet engineering is a highly flexible and powerful technique, it poses several con-
cerns. One of the main open questions is related to the interplay of driving and interactions
which causes heating and can quickly lead the system to a featureless, infinite-temperature
regime [94, 96]. In particular, it is shown that an initial Bose-Einstein condensate in a period-
ically driven optical lattice may become unstable due to two-body collisions [172] or through
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the mechanism of parametric resonance [96, 173–179]. The preparation protocol, stability and
a lifetime of strongly correlated phases, expected in the regime of strong interactions under
driving is a highly debated topic at the moment [96, 180, 181].

In order to further explore the role of weak atomic interactions in probing topological
features, here we consider the dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we consider includes all basic
ingredients for the Chern-number measurement [70, 168] – the Chern number of the topological
band can be extracted from the center-of-mass motion of atomic cloud in the direction transverse
to the applied force. We assume an ideal initial state where the lowest topological band of the
effective model is almost uniformly populated. The optimal loading sequence necessary to
reach this state is considered in Refs. [182, 183]. Following the recent experimental study
[70], we assume that atoms are suddenly released from the trap and exposed to a uniform
force. We perform numerical simulations for the full time-dependent Hamiltonian and take
into account the effects of weak repulsive interactions between atoms within the mean-field
approximation. We make a comparison between the dynamics governed by the effective and
time-dependent Hamiltonian and delineate the contribution of interactions to the center-of-
mass response and to the overall cloud expansion dynamics. Our results show that interactions
lead to the undesirable atomic transitions between topological bands [184], but we also find
that a weak atomic repulsion can facilitate the Chern-number measurements in several ways.

This Chapter is organized as follows. In Section 3.1 we describe the model and introduce a
method that we apply for the description of incoherent bosons. In Section 3.2 we address the
dynamics of noninteracting incoherent bosons, and then in Section 3.3 we address the regime
of weak repulsive interactions. Finally, we summarize our results in Section 3.4. Appendixes C
to F provide further details.

3.1 Model and method

In this section, we first present the driven model introduced in Ref. [70], and then derive the
corresponding effective model and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use to treat the dynamics of weakly
interacting incoherent bosons.
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3.1.1 Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can be described by the Bose-Hubbard
Hamiltonian

ĤBH = −Jx
∑
l,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
− Jy

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)

+ U

2
∑
l,m

n̂l,m (n̂l,m − 1) , (3.1)

where â†l,m and âl,m are creation and annihilation operators that create and annihilate a particle
at the lattice site (l,m) = laex + maey (a is the lattice constant), n̂l,m = â†l,mâl,m is the
number operator, Jx and Jy are the hopping amplitudes along ex and ey, and U is the on-
site interaction. In the derivation of the model (3.1) we use the single-band tight-binding
approximation [5]. Although the experimental setup [70] is actually three dimensional, with
an additional confinement in the third direction, our study is simplified to a two-dimensional
lattice.

In order to engineer artificial gauge field in the experiment [70], hopping along ex was at
first inhibited by an additional staggered potential

Ŵ = ∆
2
∑
l,m

(−1)ln̂l,m, (3.2)

and then restored using resonant laser light. For more details, see Fig. 1.5 in Chapter 1. The
experimental setup can be described by a time-dependent Hamiltonian

H̃(t) = ĤBH + V̂ (t) + Ŵ , (3.3)

where V̂ (t) is a time-dependent modulation

V̂ (t) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2 −
π

4

)
cos

(
ωt− mπ

2 + φ0

)

+ cos
(
lπ

2 + π

4

)
cos

(
−ωt− mπ

2 + π

2 + φ0

) ]
, (3.4)

κ is the driving amplitude, and ω = ∆ is the resonant driving frequency. We set the relative
phase φ0 between the optical-lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, see Eq. (1.9), the time-evolution operator corresponding to the Hamil-
tonian (3.3) can be represented as

Û(t, t0) = e−iŴ te−iK̂(t)e−i(t−t0)Ĥeff eiK̂(t0)eiŴ t0 , (3.5)
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Figure 3.1: Schematic representation of the model. The unit cells are shaded. (a) Effective
Hamiltonian without correction, Ĥeff,0 (3.6). Vertical links correspond to real hopping ampli-
tudes (along ey direction), while the horizontal links to the right of lattice sites labeled A, B,
C, and D correspond to complex hopping amplitudes with phases 3π

4 , π
4 , −π

4 , and −3π
4 , respec-

tively (when hopping from left to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (3.7).
Red lines represent positive next-nearest-neighbor hopping amplitudes (connecting uppercase
letters), while the blue lines represent negative next-nearest-neighbor hopping amplitudes (con-
necting lowercase letters). Nearest-neighbor hopping amplitudes are the same as in (a).

where Ĥeff is the full time-independent effective Hamiltonian that describes slow motion and
K̂(t) is the time-periodic kick operator that describes micromotion [82, 83].

For the moment, in this subsection we first consider the noninteracting model U = 0. We
also assume that the driving frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving Eq. (3.1) is still valid. In the
leading order of the high-frequency expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′x
∑
l,m

[
ei
(

(m−l−1)π/2−π/4
)
â†l+1,mâl,m + H.c.

]
− J ′y

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
, (3.6)

where the renormalized hopping amplitudes are J ′x = Jxκ√
2ω = Jy and J ′y = Jy

(
1 − 1

2
κ2

ω2

)
. A

schematic representation of this model is presented in Fig. 3.1(a). The unit cell is shaded and
the full lattice is spanned by the vectors R1 = (4, 0) and R2 = (1, 1). Particle hopping around
a plaquette in the counterclockwise direction acquires a complex phase −π

2 and the model is
equivalent to the Harper-Hofstadter Hamiltonian [68] for the case α = 1/4 [68]. The explicit
form of the kick operator K̂(t) from Eq. (3.3) is given in Appendix C.

Following Refs. [82, 83], we find that additional corrections of the order J2
x/ω contribute to

the system’s dynamics and we introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
. (3.7)

The derivation of Hamiltonian (3.7) is given in Appendix C and its schematic representation
is given in Fig. 3.1(b). The J2

x/ω correction introduces next-nearest-neighbor hopping along x
direction with opposite signs for lattice sites with either even or odd x-coordinate l. This term
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does not change the total complex phase per plaquette, but the unit cell is now doubled and
thus the first Brillouin zone is halved. A similar term was engineered on purpose in order to
implement the Haldane model [79].

In the next subsection we investigate properties of energy bands of both effective Hamil-
tonians, Ĥeff,0 and Ĥeff,1. We use the units where ~ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size 100× 100 sites, hopping amplitudes
J ′x = Jy = 1 ≡ J , and the driving amplitude κ = 0.58 ω. This value of the driving amplitude
was chosen to be the same as in the experiment [70]. In order to set the renormalized hopping
amplitude along ex to J ′x = 1, the initial hopping amplitude has to be Jx =

√
2ω/κ = 2.44, and

the correction term is therefore proportional to J2
x/ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

3.1.2 Band structure

Momentum-space representations of the effective Hamiltonians Ĥeff,0 and Ĥeff,1, denoted by
Ĥeff,0(k) and Ĥeff,1(k), respectively, are derived in Appendix C. Band structures for the effec-
tive Hamiltonian Ĥeff,0 without the J2

x/ω correction, Eq. (C.20), as well as for the effective
Hamiltonian Ĥeff,1 including the correction term, Eq. (C.21), are shown in Fig. 3.2 for the two
values of driving frequencies ω = 20 and ω = 10.

Figure 3.2: Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (C.20), which is
without the J2

x/ω correction term. (b) Ĥeff,1(k) Eq. (C.21), which includes the correction term.
Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamiltonian (1.4) for the flux α = 1/4.
It has four energy bands, where the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 3.2(a). The topological content of these bands is characterized
by the topological index called the Chern number (1.5). The Chern numbers of the three well-
separated bands are c1 = 1, c2 = −2, and c3 = 1.

Because the correction from Eq. (3.7) includes next-nearest-neighbor hopping terms, the
elementary cell in real space is doubled [see Fig. 3.1(b)] and, as a consequence, the first Brillouin
zone for the Hamiltonian Ĥeff,1 is reduced by a factor of 2 compared to Ĥeff,0. There are now
eight lattice sites in the unit cell and eight energy bands, but the number of gaps depends on the
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driving frequency. The new bands touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is high enough, the correction is small
and the gaps between the three bands remain open; see Fig. 3.2(b). The original band structure
of Ĥeff,0 is recovered in the limit ω →∞. The Berry curvature and the Chern number can be
calculated using the efficient method presented in Ref. [185]. Our calculations confirm that the
Chern numbers of Ĥeff,1 are equal to those of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as
the gaps between the energy bands are open. The gaps close when the driving frequency is too
low, see Fig. 3.2(c), and the Chern numbers of the subbands can no longer be properly defined.

3.1.3 Dynamics of incoherent bosons

We need to take into account a contribution of weak, repulsive interactions. Full numerical
simulations of an interacting many-body problem are computationally demanding, so we need
a reasonable, numerically tractable approximation. To this end we will use the classical field
method [186], which belongs to a broader class of truncated Wigner approaches [187]. This
method is similar to the approach used to treat incoherent light in instantaneous media [188,
189], known in optics as the modal theory.

The underlying idea of the method is to represent the initial state as an incoherent mixture
of coherent states |ψ〉, âl,m|ψ〉 = ψl,m|ψ〉 [186]. This is explained in more detail in Appendix D.
In our study, we sample initial configurations of these coherent states with

|ψ(t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (3.8)

where φk ∈ [0, 2π) are random phases and the states |k〉 correspond closely to the lowest-band
eigenstates of Ĥeff. Each of Nsamples initial states is time evolved and physical variables can be
extracted by averaging over an ensemble of different initial conditions.

The time evolution of each of these coherent states is governed by

i
dψl,m(t)
dt

=
∑
ij

Hlm,ij(t)ψi,j(t)− F mψl,m(t) + U |ψl,m(t)|2ψl,m(t), (3.9)

where Hlm,ij(t) = 〈l,m|Ĥ(t)|i, j〉 are matrix elements of Ĥ(t) from Eq. (3.3), F is the external
force, and interactions U contribute with the last, nonlinear term. Formally, Eq. (3.9) takes
the form of the Gross-Pitaevskii equation [1, 190, 191]. The performances and limitations of
the method are discussed and reviewed in Ref. [192].

For comparison, we also consider the related time evolution governed by the effective Hamil-
tonian

i
dψl,m(t)
dt

=
∑
ij

heff
lm,ijψi,j(t)− F mψl,m(t) + U |ψl,m(t)|2ψl,m(t), (3.10)

46



Chapter 3 Dynamics of weakly interacting bosons in optical lattices with flux

where heff
lm,ij = 〈l,m|ĥeff|i, j〉, with ĥeff being either Ĥeff,0 from Eq. (3.6), or Ĥeff,1 from Eq. (3.7).

Equation (3.10) should be considered only as a tentative description of the system: the mapping
between Ĥ(t) and Ĥeff is strictly valid only in the noninteracting regime and the interaction
term may introduce complex, nonlocal, higher-order corrections [94]. However, we expect their
contribution to be small in the limit U → 0, and for time scales which are not too long
[97, 98, 193, 194].

In the following we use Nm = 300 modes and accommodate Np = 300 particles per mode,
so in total in the simulations we have N = NmNp = 90, 000 bosons. Typical densities in real
space are up to 100 particles per site and we choose the values of U in the range U ∈ [0, 0.05].
Other parameters: J ′x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F = 0.25J/a. The correction
terms are non-negligible in this frequency range. In practice, we first numerically diagonalize
the Hamiltonian (D.2) from Appendix D and set our parameters in such a way that the lowest
Nm modes have high overlap with the lowest band of the effective model. In the next step,
we sample initial configurations (3.8). For each of Nsamples = 1, 000 sets of initial conditions
we then time evolve Eq. (3.9) and extract quantities of interest by averaging over resulting
trajectories. This value of Nsamples is chosen to be high enough, so that the fluctuations are
weak. We present and discuss results of our numerical simulations in the following sections.

3.2 Noninteracting case

We start by addressing the dynamics of noninteracting bosons. In this case we set U = 0
in Eq. (3.9) and numerically solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and compare the two approximations,
Eqs. (3.6) and (3.7), for the effective Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results obtained by considering the full
time evolution governed by Ĥ(t). For clarity, the four different time evolutions that we consider
in this section are summarized in Table 3.1. We calculate the center-of-mass position x(t) and
plot the results in Fig. 3.3. In this way we also find the regime of microscopic parameters where
the Chern-number measurement can be optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian (3.6) and select the occupied
modes |k〉 of the initial state (D.1) as eigenstates of the model from Eq. (3.8) for ĥeff = Ĥeff,0.
As explained in the previous section, at the initial moment t0 = 0, the confinement is turned
off and the force F = −Fey is turned on. As a consequence of the applied external force
and the nonzero Chern number of the lowest band of the model (3.6), the particles exhibit an
anomalous velocity in the direction perpendicular to the force [71]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for the center-of-mass position in the
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Table 3.1: Four different cases: the same effective Hamiltonian is always used for the initial
state and band definitions, either with or without the correction. The evolution is governed
either by the time-dependent Hamiltonian or by the same effective Hamiltonian as the one that
was used for the initial state and calculation of band populations.

case initial state band populations evolution
1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ(t)
3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ(t)

ex direction is [70]

x(t) = x(t0) + c1
2Fa2

π~
t, (3.11)

where c1 = 1 is the Chern number (1.5) of the lowest band. However, even in the ideal case, due
to the sudden quench of the linear potential, a fraction of particles is transferred to the higher
bands. To take this effect into account, the authors of Ref. [70] introduced a filling factor γ(t)

γ(t) = η1(t)− η2(t) + η3(t), (3.12)

where ηi(t) are populations of different bands of Hamiltionian (3.6) from Eq. (D.4) in Appendix
D and the plus and minus signs in Eq. (3.12) are defined according to the Chern numbers c1 = 1,
c2 = −2, and c3 = 1. The final theoretical prediction is then [70]

x(t) = x(t0) + c1
2Fa2

π~

∫ t

0
γ(t′)dt′. (3.13)

In Fig. 3.3(a) we consider the anomalous drift for a high value of the driving frequency
ω = 20, where we expect the expansion in 1/ω to be reliable. We find an excellent agreement
between the prediction (3.13) (dotted black line) and numerical calculation based on Ĥeff,0

(solid green line). However, some deviations between the full numerical results (dashed purple
line) and the results of the approximation scheme (solid green line) are clearly visible. These
deviations are even more pronounced for ω = 10, Fig. 3.3(b).

Now we turn to the effective model (3.7). In this case we select the modes of the initial state
as eigenstates of Eq. (3.8) for ĥeff = Ĥeff,1. Moreover, we also consider band populations (D.4)
of the same model. In the case when ω = 20, Fig. 3.3(c), the anomalous drift obtained using the
effective Hamiltonian (3.7) (solid green line) closely follows the theoretical prediction (3.13).
Moreover, from the same figure we can see that the effective Hamiltonian Ĥeff,1 reproduces
the behavior of the time-dependent Hamiltonian very well. All three curves almost overlap for
intermediate times (5−40 ms); see Fig. 3.3(c). We attribute the long-time (> 45 ms) deviations
to the finite-size effects introduced by the next-nearest-neighbor hopping terms, which cause
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Figure 3.3: Anomalous drift x(t). Dashed purple lines: numerical simulations using the
time-dependent Hamiltonian Ĥ(t) (cases 2 and 4 from Table 3.1). Solid green lines: effective
Hamiltonians Ĥeff,1 (c) and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (3.13) from γeff,1(t) or γeff,0(t). (a) Initial states and band populations
obtained using the effective Hamiltonian Ĥeff,0 without the correction (cases 3 and 4). Driving
frequency ω = 20. (b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J2

x/ω correction (cases 1 and 2).
Driving frequency ω = 20. (d) ω = 10.

the atomic cloud to reach the edge of the lattice faster. This effect is explained in more detail
in Section 3.3.2.

For a lower driving frequency ω = 10, the effective and the time-dependent Hamiltonians do
not agree so well anymore; see Fig. 3.3(d). The finite-size effects can be observed even earlier in
this case (around 25 ms). This happens because the next-nearest-hopping terms are inversely
proportional to the driving frequency. It is interesting to note that the prediction (3.13) is close
to numerical data for short times even in this case when the gaps of the effective model are
closed, see Fig. 3.2(c), and the Chern number of the lowest band is not well defined. In fact, it
is surprising that the anomalous drift even exists in this case, as all subbands are now merged
into a single band. We attribute this effect to our choice of the initial state. When the gaps are
closed, it is hard to set the parameters in such a way that the lowest band is completely filled.
The top of this band usually remains empty, and the particles thus do not “see” that the gap
is closed.

Time evolution of the filling factor γ(t) is plotted in Fig. 3.4 for four different cases from
Table 3.1 – evolution using the effective Hamiltonian without correction Ĥeff,0 [γeff,0(t), case 3,
dashed green line in Fig. 3.4(a)], the effective Hamiltonian with correction Ĥeff,1 [γeff,1(t), case 1,
dashed green line in Fig. 3.4(b)], or the time-dependent Hamiltonian Ĥ(t) [γ(t), cases 2 and 4,
solid purple lines]. At the initial moment γ(t0 = 0) < 1, because the initial state was multiplied
by the operator e−iK̂(0). This introduces a shift between γ(t) and γeff,1(t). Apart from the shift,
these two curves behave similarly, unlike the γeff,0(t) curve that exhibits completely different
behavior. Because of this, we use only γeff,1(t) to estimate the value of the prediction (3.13).

We find that the values of γeff,1(t) for ω = 20 are high: ≥ 0.95; see Fig. 3.4. For this
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Figure 3.4: Time evolution of the filling factor γ(t) for driving frequency ω = 20. Solid purple
lines: evolution governed by the time-dependent Hamiltonian Ĥ(t) (cases 2 and 4 from Table
3.1). Dashed green lines: evolution governed by the effective Hamiltonian Ĥeff,1 or Ĥeff,0 (cases 1
and 3). Dotted black lines: green lines shifted in order to compare them with purple lines. Shift
is chosen so that the two lines approximately overlap. (a) Initial states and band populations
obtained using the effective Hamiltonian Ĥeff,0, which is without the J2

x/ω correction term
(cases 3 and 4). (b) Hamiltonian Ĥeff,1 which is with the correction term (cases 1 and 2).

reason, up to 50 ms the center-of-mass position x(t) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t) exhibits quadratic behavior on
short time scales in all cases from Fig. 3.3. In Appendix E, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

3.3 Interacting case

We now investigate the effects of weak repulsive interactions. We work in the high-frequency
regime and set ω = 20. As shown in Section 3.1.2, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-Hofstadter Hamiltonian with
flux α = 1/4. Moreover, the same approximative form of the full effective model accurately
reproduces the behavior of the time-dependent Hamiltonian up to 50 ms and thus provides
a good starting point for the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and then we inspect the expansion
dynamics more closely in terms of atomic density distributions in real and momentum space.

3.3.1 Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we use the classical field method presented
in Section 3.1.3 and propagate Eq. (3.9) in time. We assume that at t0 = 0 atoms are uniformly
distributed over the lowest band of Ĥeff,1. For this reason, the initial state is the same as the
one that we use in the noninteracting regime. In this way, the dynamics is initiated by an
effective triple quench: at t0 = 0 the confining potential is turned off, atoms are exposed to the
force F = −Fey, and also the interactions between particles are introduced. The total number
of particles is set to N = 90, 000, which amounts to approximately 100 particles per lattice site
in the central region of the atomic cloud. We consider only weak repulsion U ≤ 0.05.
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Figure 3.5: Effects of interactions. (a) Anomalous drift x(t) for several different values of the
interaction coefficient U . U is given in units where J = 1. Thick lines: numerical simulations
using the time-dependent Hamiltonian Ĥ(t). Thin lines: theoretical prediction (3.13) from
γeff,1(t). (b) Corresponding γeff,1(t) = η1(t)− η2(t) + η3(t), obtained from simulations using the
effective Hamiltonian Ĥeff,1.

The anomalous drift x(t) obtained using the full time-dependent Hamiltonian is shown in
Fig. 3.5(a) for several different values of the interaction strength U . In comparison to the
noninteracting regime, we find that the weak repulsive interactions inhibit the response of the
center of mass to the external force. In particular, at t = 50 ms the drift is reduced by about
15% for U = 0.005 and it is further lowered by an increase in U . Finally, at U = 0.05, the
anomalous drift is barely discernible. Interestingly, for weak U ∈ (0.001, 0.01) we find that the
drift x(t) in the range of t ∈ (10, 50) ms looks “more linear” as a function of time in comparison
to the noninteracting result.

We now analyze the anomalous drift in terms of the filling factor γ(t) and compare the
results of Eq. (3.9) with the description based on Eq. (3.10). By solving Eq. (3.10) we obtain
the filling factor γeff,1(t) following Eq. (D.4) and present our results in Fig. 3.5(b). Whenever
the results of Eq. (3.9) reasonably agree with the results obtained from Eq. (3.10), we are close
to a steady-state regime with only small fluctuations in the total energy, as Eq. (3.10) preserves
the total energy of the system. In this regime, during the expansion dynamics the interaction
energy is converted into the kinetic energy and atoms are transferred to higher bands of the
effective model. Consequently, the filling factor γeff,1(t) is reduced. Typically, we find three
different stages in the decrease of γeff,1(t).

In an early stage, t ≤ t1 = 5 ms, a fast redistribution of particles over the bands of the
effective model sets in due to the sudden quench of U . The factor γeff,1(t) decays quadratically
as a function of time down to γeff,1(t1) ≈ 0.75 for U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05.
In this process the interaction energy of the system is quickly lowered as described in Appendix
F. At later times t > 5 ms, we observe a linear decay of the filling factor γeff,1(t) as a function
of time, that finally turns into an exponential decay at even later times (t > 10 ms). Similar
regimes are observed in other dynamical systems. For example, a decay rate of an initial state
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suddenly coupled to a bath of additional degrees of freedom exhibits these three stages [195].
The initial quadratic decay is often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even longer time scales, when the
repopulation of the initial state is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the Wigner-Weisskopf theory [195].

We now investigate this last regime in more detail. For the population of the lowest band
η1(t), an exponential decay function f(t) = a+be−ct provides high quality fits for t ∈ (10, 50) ms;
see Fig. 3.6(a) for an example. Similarly, the populations of two higher bands can also be fitted
to exponential functions. The obtained exponential decay coefficients c for the lowest band
population are plotted as a function of the interaction strength U in Fig. 3.6(b). The resulting
dependence is approximately quadratic: c(U) = α0 + α1 U + α2 U

2. For small values of U ,
the exponents c(U) obtained for the dynamics governed by Ĥ(t) and Ĥeff, 1 agree very well
and exhibit linear behavior. At stronger interaction strengths U ≥ 0.03, the approximation of
Eq. (3.10) becomes less accurate as it omits the quadratic contribution in c(U) found in the
full time evolution. In addition, the values of the exponents c are affected by the force strength
F and driving frequency ω.

As we now understand some basic features of γeff,1(t), we make an explicit comparison
between the numerical results for the anomalous drift and the expectation (3.13). The dashed
lines in Fig. 3.5(a) correspond to the theoretical prediction (3.13) calculated from γeff,1(t). For
the intermediate interaction strengths U ≤ 0.01, we find a very good agreement between the
two. From this we conclude that the interaction-induced transitions of atoms to higher bands
are the main cause of the reduced anomalous drift x(t) as a function of U . When the interactions
become strong enough (U ∼ 0.02), the numerical results start to deviate from the theoretical
prediction (3.13) with γeff,1(t). In this regime, Eq. (3.10) does not provide a reliable description
of the dynamics, as higher-order corrections need to be taken into account.

Figure 3.6: (a) Evolution of the band populations ηi(t). Dashed lines: numerical results
obtained using the time-dependent Hamiltonian Ĥ(t). Solid black lines: exponential fit using
f(t) = a+ be−ct. The coefficient a was fixed to a1 = 0.25, a2 = 0.50 and a3 = 0.25 for the first,
second and third band respectively. (b) Dependence of the exponential decay coefficients for
the lowest band population η1(t) on the interaction strength. U is given in units where J = 1.
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Figure 3.7: Real-space density distribution, noninteracting case U = 0. (a) Initial state. (b)
After 50 ms (75 driving periods), evolution using the time-dependent Hamiltonian Ĥ(t). (c)
Evolution using effective Hamiltonian without correction Ĥeff,0. (d) Evolution using effective
Hamiltonian with correction Ĥeff,1.

3.3.2 Real and momentum-space dynamics

So far we have considered the averaged response of the whole atomic cloud. We now inspect
the expansion dynamics in a spatially resolved manner. The real-space probability densities at
the initial moment and after 50 ms (75 driving periods) are shown in Figs. 3.7 and 3.8, and the
corresponding momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in the center of the lattice. By setting
r0 = 20 in the confining potential of Eq. (D.2) and populating the lowest-lying states, we fix the
cloud radius to r = 20, Fig. 3.7(a). The cloud density is of the order of 100 atoms per lattice
site and a weak density modulation is visible along x direction. After the confining potential is
turned off, and the external force in the −ey direction is turned on, the cloud starts to expand
and move in the +ex direction. As shown in the previous subsection, the band populations and
therefore the anomalous drift are significantly altered by the interaction strength, and this is
also the case with the expansion dynamics; see Figs. 3.7 and 3.8.

In the noninteracting case, Fig. 3.7(b), the atomic cloud nearly separates into two parts
moving in opposite directions along x axes (while the center of mass still moves in the +ex
direction). By comparing Fig. 3.7(c) and Fig. 3.7(d), we conclude that this effect stems from
the next-nearest-neighbor hopping along x present in the effective Hamiltonian (3.7), as it does
not happen in the effective model without the correction term (3.6). This type of separation
was already observed in Ref. [168], where the next-nearest-neighbor hopping terms were also
present.

When the interactions between particles are included, this separation is not so prominent
[Fig. 3.8(a), U = 0.01], and it almost completely disappears when the interactions are strong
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Figure 3.8: Real-space density distribution after 50 ms (75 driving periods), interacting case.
U is given in units where J = 1. (a) Evolution using the time-dependent Hamiltonian Ĥ(t),
U = 0.01. (b) Same with U = 0.05. (c) Evolution using the effective Hamiltonian Ĥeff,1,
U = 0.01. (d) Same with U = 0.05.

enough [Fig. 3.8(b), U = 0.05]. This is also the case when the evolution is governed by the
effective Hamiltonian Ĥeff,1; see Figs. 3.8(c) and 3.8(d). Atomic cloud widths dx =

√
〈x2〉 − 〈x〉2

during the expansion are plotted in Fig. 3.9. We observe a slow expansion of the cloud in y

direction, Fig. 3.9(b), and much faster expansion along x direction, Fig. 3.9(a), which comes
about as a consequence of the cloud separation. On top of this, we observe that the interactions
enhance expansion along y. Surprisingly, the opposite is true for the dynamics along x. This
counterintuitive effect is often labeled as self-trapping and its basic realization is known for the
double-well potential [196, 197]. In brief, strong repulsive interactions can preserve the density
imbalance between the two wells, as the system can not release an excess of the interaction
energy. In our case, the situation is slightly more involved as the cloud splitting is inherent
(induced by the corrections of the ideal effective Hamiltonian). Apart from this, due to the
driving the total energy is not conserved. However, our numerical results indicate that the
interaction energy is slowly released in the second expansion stage, Fig. F.1. Effectively, in this

Figure 3.9: Atomic cloud width for different interaction strengths, evolution using the time-
dependent Hamiltonian Ĥ(t). U is given in units where J = 1. (a) dx =

√
〈x2〉 − 〈x〉2. (b)

dy =
√
〈y2〉 − 〈y〉2.
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Figure 3.10: (a) Comparison of anomalous drifts obtained from evolution using the time-
dependent Hamiltonian Ĥ(t) (solid purple line), effective Hamiltonian without correction Ĥeff,0

(dashed green line) and effective Hamiltonian with correction Ĥeff,1 (dotted black line). Inter-
mediate interaction strength U = 0.01. U is given in units where J = 1. (b) Time evolution of
the inverse participation ratio in momentum space for several different values of U . Evolution
is performed using the time-dependent Hamiltonian Ĥ(t). When the interactions are strong
enough, IPR approaches the maximal possible value (10, 000 in this case), which is equal to
the total number of states and corresponds to the completely delocalized state. U is given
in units where J = 1. (c) Chern number of the lowest band obtained for different interaction
strengths as the ratio of the theoretical prediction for the anomalous drift and numerical results:
c1(t) =

(
2Fa2

π~
∫ t

0 γeff,1(t′)dt′
)
/ (x(t)− x(t0)).

way the interactions cancel out the contribution of the next-nearest-neighbor hopping and favor
the measurement of the properties of the model (3.6). In Fig. 3.10(a) we show that deviations
between different approximations based on Ĥ(t), Ĥeff, 1, and Ĥeff, 0 in the anomalous drift x(t)
nearly vanish at U = 0.01.

Another desirable effect might be that the interactions make the momentum-space proba-
bility density more homogeneous, see Appendix F, so that the real-space probability density
becomes more localized. We can quantify momentum-space homogeneity using the inverse par-
ticipation ratio R(t) = 1∑

i
P 2
i (t) , where Pi(t) = |ψi(t)|2 is the probability that the state ψi is

occupied at time t. Minimal value of the inverse participation ratio (IPR) is 1 and it corre-
sponds to a completely localized state, while the maximal value is equal to the total number
of states (in our case 10, 000) and corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasimomentum k. As stated before, the
first Brillouin zone of the lowest band has to be as homogeneously populated as possible in
order to properly measure the lowest band Chern number. From Fig. 3.10(b), we see that IPR
increases in time when the interaction coefficient U is large enough, so we can conclude that
the interactions are actually beneficial for measuring the Chern number, as they can “smooth-
out” the momentum-space probability density. In Fig. 3.10(c) we give estimates for the Chern
number that can be extracted from our numerical data for different values of U . We find the
best estimate c1 ∼ 0.99 for the intermediate interaction strength U ∼ 0.01.
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3.3.3 Staggered detuning

Here we briefly consider the effects of staggered detuning that was introduced in the experimen-
tal study [70] during the loading and band mapping sequences. This detuning can be described
by an additional term

δ

2
∑
l,m

[
(−1)l + (−1)m

]
n̂l,m (3.14)

in the Hamiltonians Ĥ(t) and Ĥeff,1. We will ignore the higher-order [at most O
(

1
ω2

)
] correc-

tions that this term introduces to the effective Hamiltonian. Staggered detuning does not break
the symmetry of the effective Hamiltonian Ĥeff,1, but if δ is large enough, it can cause a topo-
logical phase transition and make all bands topologically trivial. By numerically calculating
the Berry curvature and Chern numbers c′i, we find that this transition occurs at δc ≈ 1.38 J ;
see Fig. 3.11. This value is lower than the one for the ordinary Harper-Hofstadter Hamiltonian
for α = 1/4, which is δc = 2 J [70], due to the different hopping amplitudes J ′x and J ′y, and due
to the additional J2

x/ω correction that we consider.

We now investigate how this topological transition can be probed through the dynamical
protocol used in the experiment. We again numerically calculate the anomalous drift and
the evolution of the filling factor, but now with staggered detuning (3.14) included in the
Hamiltonian Ĥinitial (D.2) used to obtain the initial state, in the equations of motion (3.9) and
(3.10), and in the definitions of the band populations ηi(t) (D.4). Using these results, we repeat
the procedure for the extraction of the lowest band Chern number from numerical data that was
carried out in the previous section. The Chern number obtained by comparing the anomalous
drift to the prediction calculated from the filling factor is then averaged over the time interval
t ∈ (20, 40) ms. This interval was chosen in order to avoid the initial quadratic regime and the
finite-size effects at later times. The resulting lowest band Chern numbers for several different
values of detuning δ in both the noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig 3.11.

We can see that the calculated value of the Chern number decreases from c1 = 1 to c1 = 0
with increasing detuning δ. The obtained value of the Chern number is lower than 1 even before
the phase transition occurs. This is due to our choice of the initial state, which is not perfectly
homogeneous in momentum space. Close to the phase transition, both the energy bands and
the Berry curvature have pronounced peaks at the same regions of the first Brillouin zone, and
these regions are initially less populated. Because of this, the Berry curvature at these regions
contributes less to the anomalous drift, which lowers the measured Chern number. This effect
is somewhat reduced by the interactions, as they smooth out the momentum-space probability
density, and might also cancel out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard model [198]. The obtained results
are in line with experimental measurements [70].
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Figure 3.11: Lowest band Chern numbers extracted from numerical data for several different
values of detuning δ. Purple circles: noninteracting case, U = 0. Green triangles: U = 0.01.
Blue squares: Theoretical values of the lowest band Chern number c′1. A topological phase
transition is visible at δc ≈ 1.38. The lines between points are only a guide to the eye.

3.4 Conclusions

Motivated by the recent experimental results reporting the Chern numbers of topological bands
in cold-atom setups, we studied numerically bosonic transport in a driven optical lattice. The
considered driving scheme and the range of microscopic parameters were chosen to be close to
those in a recent experimental study [70]. The driving frequency was set to be high enough in
order to avoid strong energy absorption for the relevant time scales. Additionally, the system
was restricted to a two-dimensional lattice, even though the actual experimental setup had
continuous transverse degrees of freedom. This restriction stabilizes the system [172, 174, 184]
and leads to lower heating rates than those in the experiment. It corresponds to the case of
strongly confined third dimension.

We investigated bosonic dynamics for the full time-dependent Hamiltonian, the effective
Floquet Hamiltonian, and included the effects of weak repulsive interactions between atoms
using the mean-field approximation. In the noninteracting case, we found that the effective
Hamiltonian and its band structure depend on the frequency of the drive ω through an ad-
ditional J2

x/ω correction term. The initial state was set as a mixture of incoherent bosons
homogeneously populating the lowest band, but a possible direction of future research could
be to simulate the full loading sequence of an initial Bose-Einstein condensate and to try to
obtain the incoherent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak interactions. For a weak atomic re-
pulsion, atomic transitions to higher effective bands obtained in our simulations mainly occur
due to a release of the initial interaction energy during the atomic-cloud expansion. Although
the effect is undesirable, it can be properly taken into account in the extraction of the Chern
number. At larger interaction strengths, the transitions are more pronounced as the system
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absorbs energy from the drive. In this regime the good agreement between the full and ef-
fective description is lost and the measurement should become more complicated. In addition
to causing redistribution of atoms over bands, our results show that weak interactions can
also be beneficial in measuring the Chern number. Their desirable effect comes about due to
smoothening the atomic distribution over the topological band and due to canceling out the
contribution of some less relevant terms to the bosonic dynamics.
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Bosonic fractional quantum Hall states in
driven optical lattices

Since early experiments with quantum gases, there has been a strong interest in the real-
ization of fractional quantum Hall (FQH) states in these setups [199–213]. Despite numerous
experimental achievements and a variety of theoretical proposals, FQH physics has still not been
reached in cold-atom experiments. At first glance, both key requirements for the emergence of
FQH states - atomic interactions and strong synthetic magnetic fields - are now experimentally
available. However, there are several specific details in the implementation of strong synthetic
magnetic fields for cold atoms that make the realization of FQH states still challenging.

The most advanced recent realizations of artificial gauge potentials exploit periodically
driven optical lattices [70, 75, 77–80, 86, 87, 173, 214]. However, general arguments and nu-
merical studies [94, 95, 215] suggest that the interplay of interactions and driving in a ther-
modynamically large system introduces heating, leading to a featureless infinite-temperature
state in the long-time limit. Although this general result might sound discouraging, the heating
process can be very slow in some driven systems for specific regime of microscopic parameters.
There, the system can be described by a physically interesting “prethermal” Floquet state on
experimentally relevant time-scales [96–98, 193, 194, 216, 217]. Moreover, the onset of ther-
malization in a finite-size interacting system may exhibit unexpected features, not found in the
thermodynamic limit [218, 219]. Heating rates and resulting instabilities have been recently
investigated both theoretically and experimentally for the driven Bose-Hubbard model in the
weakly interacting regime [96, 174, 178, 179]. Moreover, experimental studies of the driven
Fermi-Hubbard model in a honeycomb lattice have established a timescale of the order of 100
tunneling times for the regime where the effective-model description applies [124, 220].

In this Chapter, we consider small systems of several interacting bosonic atoms in a pe-
riodically driven optical lattice featuring synthetic magnetic flux. The focus of our study is
on finding optimal microscopic parameters that would allow to prepare and probe the basic
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bosonic Laughlin state in this setup. To this end, we employ exact numerical simulations of
the driven Bose-Hubbard model [169] for small system sizes.

From one point of view, it is expected that a small driven system exhibits low heating rates
for a driving frequency set above a finite bandwidth of an effective model [94]. However, driving
a system with such a high frequency may lead to undesirable effects, such as coupling of the
lowest band to higher bands of the underlying optical lattice, thus making the initial description
based on the lowest-band Hubbard model inapplicable. These effects have been addressed in a
recent study [88] where an optimal intermediate frequency window for Floquet engineering has
been established.

In our study, we go a step further in the search for the optimal regime that might allow for
the bosonic Laughlin states under driving. In particular, for a realistic, intermediate value of a
driving frequency, the interaction term complicates the effective model by introducing several
higher-order terms. Their effect on the topological states has been addressed only recently
[221, 222] and it has been found that typically these terms work against the topological state.
For this reason, the stability of the Laughlin state at intermediate driving frequency requires a
separate study, that we perform here. Moreover, we numerically investigate an experimentally
relevant preparation protocol for the Laughlin state in a driven system [183]. For a reference,
we note that a simpler but closely related question concerning the static (undriven systems)
has gained lot of attention [181, 202, 203, 211].

This Chapter is organized as follows: in Section 4.1 we introduce the model under study
and briefly review key features of the particle-entanglement spectra that we will exploit in the
identification of the Laughlin-like state. Then, in Section 4.2.1 we investigate general heating
effects of interacting bosons exposed to the driving. By extending this approach, in Section 4.2.2
we construct the stroboscopic time-evolution operator and inspect its eigenstates in order to
identify possible FQH states. Finally, in Section 4.3 we address the possibility of accessing
these states in an experiment through a slow ramp of the driving term.

4.1 Model and method

In this section we first introduce the driven model and explain the basis of Floquet engineering.
Then we summarize several key features of the particle-entanglement spectra that we use to
characterize the bosonic Laughlin states.

4.1.1 Driven model

Properties of bosonic atoms in a deep optical lattice can be realistically described within the
framework of the Bose-Hubbard model given by Eq. (1.1) [5]. We consider a basic driving
scheme [169] that introduces a uniform, synthetic magnetic flux into a square optical lattice
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Figure 4.1: Lattice geometry used throughout this Chapter. The parallelogram gives the
exemplary lattice size (Lx, Ly) = (4, 8). The color scale is defined by mod (m + n, 4), in
accordance with the driving term from Eq. (4.1). The vectors R1 = 4 ex,R2 = −ex + ey are
used to implement periodic boundary conditions. The small rectangle gives the magnetic unit
cell for the effective model in Eq. (4.2).

here spanned by the two vectors ex and ey. The corresponding Hamiltonian is given by the
driven Bose-Hubbard model

Ĥ(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy

∑
m,n

(
eiωtâ†m,n+1âm,n + H. c.

)
+ κ

2
∑
m,n

sin (ω t− (m+ n− 1/2)φ) n̂m,n + U

2
∑
m,n

n̂m,n(n̂m,n − 1), (4.1)

where operators âm,n (â†m,n) annihilate (create) a boson at lattice position (m,n), and local
density operators are n̂m,n = â†m,nâm,n. Jx and Jy are tunneling amplitudes and U is the on-site
local repulsive interaction. We use the units where ~ = 1 and the lattice constant a = 1. The
driving scheme is defined by the driving frequency ω, the driving amplitude κ and by a phase
φ. In the following we set φ = π/2 and κ/ω = 0.5. These values were recently used in an
experimental realization of the Harper-Hofstadter model [70]. The derivation of this model is
briefly reviewed in Appendix G. We assume periodic boundary conditions implemented using
the vectors R1 = 4 ex,R2 = −ex + ey, as presented in Fig. 4.1. This choice is compatible with
the driving term and it allows us to exploit translational symmetry by working in the fixed
quasimomentum basis.

Formally, by using the Floquet theory [81–83], it can be shown that the full time-evolution
operator corresponding to this model is given by Eq. (1.9). The full-time evolution operator
is periodic as well and consequently the (quasi)eigenenergies of the time-independent effective
Hamiltonian Ĥeff are defined up to modulo ω. Eq. (1.9) gives formal mapping of a periodically
driven system to an effective model that captures the stroboscopic time evolution of the model.
However, according to general analytical arguments and numerical insights, the corresponding
effective model of a driven interacting many-body system in the thermodynamic limit exhibits
nonphysical features [94, 95]. In particular, the system thermalizes and in the long-time limit
its steady state is a featureless, infinite-temperature state, independent of the initial state.
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Here we consider small samples of several bosonic atoms. Due to a finite spectrum band-
width, we expect the high-frequency expansion to be relevant for a finite range of the driving
frequency. Within these assumptions, the leading-order (in 1/ω) effective Hamiltonian is

Ĥeff = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− J ′y

∑
m,n

(
ei(m+n)φâ†m,n+1âm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n (n̂m,n − 1) . (4.2)

The Hamiltonian (4.2) features complex hopping phases ei(m+n)φ that result in a uniform syn-
thetic magnetic flux φ per lattice plaquette. Due to the driving, the renormalized hopping
amplitude along the y direction turns into

J ′y ≡
κ

2ω sin(φ/2) Jy. (4.3)

For the values φ = 2πα, where the flux density α is set to α = 1/4, and κ/ω = 0.5, the tunneling
amplitude along y direction in the effective model is J ′y ≈ Jy × 0.1768.

In a certain regime of microscopic parameters, the ground state of the model defined in
Eq. (4.2) is given by the lattice version of the Laughlin state [203, 205, 223–225]. The Laughlin
state is stabilized for the filling factor ν = Np/Nφ = 1/2, where Nφ = αLx × Ly is the total
number of fluxes (Nφ being an integer) and Np is the number of bosons, and for a strong-
enough repulsion U . Another important requirement for the Laughlin state is to avoid the
strong hopping anisotropy and to keep Jx ≈ J ′y, so we set Jx = 0.2Jy. We consider system sizes
Np = 4, 5, 6 and the respective lattices sizes (Lx, Ly) = (4, 8), (4, 10), and (4, 12), see Fig. 4.1,
where we expect the ground state to correspond to the ν = 1/2 Laughlin state. The Hilbert
space sizes for kx = ky = 0 are dimH = 6564, 108604, and 1913364 respectively. For this
choice of microscopic parameters, the model ground state of Eq. (4.2) is approximately twofold
degenerate. The two ground-states are found in the sectors kx = 0, ky = 0 and kx = 0, ky = π.
We denote them by |ψ0,0

LGH〉 and |ψ0,π
LGH〉.

As we are mainly interested in the driven regime, not only the ground state, but the full
spectrum of the model from Eq. (4.2) plays a role. A rough argument is that the system does
not absorb energy provided that the driving frequency ω is set above the bandwidth of the
effective model. Several spectra of the model from Eq. (4.2) for kx = 0, ky = 0 are presented
in Fig. 4.2(a). It can be seen that the ground-state energy is weakly affected by the value of
U ≥ Jx, while the top part of the spectrum with few states is found at UNp(Np − 1)/2. For
higher values of U the spectrum splits into bands where the lowest band corresponds to the
hard-core bosons and higher bands include double and higher occupancies.
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Figure 4.2: (a) The energy spectrum En of the model from Eq. (4.2) in the kx = 0, ky = 0
sector for Np = 4 and different values of interaction U/Jx = 1, 10, 40 and U/Jx = ∞ (hard-
core bosons). The top part of the spectrum is at ≈ (U/Jx)Np (Np − 1) /2. (Not shown for
U/Jx = 40.) For a high ratio U/Jx the spectrum splits into bands. The lowest band corresponds
to hard-core bosons. (b) The low-lying part of the particle-entanglement spectrum − ln ξn of the
ground-state incoherent superposition, Eq. (4.5), in the region A momentum sectors kAy = 0 and
kAy = π/6, and for Np = 6, U/Jx = 2.5. (c) The particle-entanglement gap ∆ of the incoherent
superposition Eq. (4.5) as a function of interaction strength U for Np = 4, 5, 6.

4.1.2 Particle-entanglement spectra

There are several ways to characterize the ground states of the model from Eq. (4.2) as the
Laughlin states. Usually, the starting point in this direction is the identification of the twofold
degeneracy expected in the implemented torus geometry for ν = 1/2. Another relevant quantity
is the overlap of the numerically obtained state with the Laughlin analytical wave function in the
torus geometry [205, 225]. More direct evidence can be obtained through the calculation of the
relevant topological index (Chern number) or the quantized Hall conductance. An additional
convincing approach, that we pursue here, is based on the analysis of the entanglement spectra
of the relevant states.

In the following we will use the particle-entanglement spectrum (PES) [225, 226] to dis-
tinguish possible topologically nontrivial states. In order to obtain this type of entanglement
spectrum, we partition Np particles into two sets of NA and NB = Np − NA particles. For a
given mixed state ρ, we construct a reduced density matrix ρA = trBρ by performing a partial
trace over NB particles. The resulting PES is given by − ln ξn, where ξn are eigenvalues of ρA.
The related particle-entanglement entropy is given by [227, 228]

SA = −tr (ρA ln ρA) . (4.4)

By partitioning particles, we keep the geometry of the system unchanged. For this reason, we
will inspect the PES for the different momentum sectors kAy of the remaining NA particles. An
example of a PES is presented in Fig. 4.2(b). As proposed in Refs. [225, 226], we have considered
the incoherent superposition of the almost twofold degenerate ground state of Eq. (4.2) as the
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density matrix
ρGS = 1

2
(
|ψ0,0

LGH〉〈ψ
0,0
LGH|+ |ψ

0,π
LGH〉〈ψ

0,π
LGH|

)
. (4.5)

For simplicity, we only present the PES for the two momenta kAy = 0 and kAy = π/6. We observe
a clear particle-entanglement gap ∆. In addition, the counting of low-lying modes below this
gap (ten modes for kAy = 0 and nine modes for kAy = π/6, at NA = 3, Np = 6) corresponds to
the Laughlin state [225, 226]. In this way the PES encodes topological features of the state
ρ in the form of well defined number of excitations per momentum sector kAy [225, 226]. This
type of analysis is useful as it can identify topological features even without model states, as
done for the case of fractional Chern insulators [229, 230].

In the following we will consider specific particle partitions NA = 2, Np = 4; NA = 2, Np = 5;
and NA = 3, Np = 6. For these cases the counting of excitations NL(kAy ) per momentum sector
kAy is well established and given in Table 4.1. In Fig. 4.2(c) we show the particle-entanglement
gap of the mixtures, Eq. (4.5), obtained at different values of U . Numerical results for the
obtained PES indicate that a reasonably large gap is found starting at U ∼ 0.5Jx and the
characteristic features of the Laughlin state persist with a further increase in U . We note that
at lower values of the flux density, α < 1/4, the Laughlin state can be found at even lower
values of the repulsion U [205, 225].

Table 4.1: Counting of modes NL
(
kAy
)

in the PES of the Laughlin state for several system
sizes and particle partitions. The last column lists the NL(kAy ) values for each momentum sector
kAy = 2πi/Ly, i = 0, . . . , Ly − 1.

Np (Lx, Ly) NA PES: NL(kAy )
4 (4, 8) 2 3, 2, 3, 2, 3, 2, 3, 2
5 (4, 10) 2 4, 3, 4, 3, 4, 3, 4, 3, 4, 3
6 (4, 12) 3 10, 9, 9, 10, 9, 9, 10, 9, 9, 10, 9, 9

By analyzing the effective model from Eq. (4.1), we have obtained a guidance for the regime
of microscopic parameters and for the geometry of the small system that can give rise to
Laughlin states. In the next sections our aim is to go beyond the effective model from Eq. (4.2)
and to identify topological states supported by the full driven dynamics as captured by the
model given in Eq. (4.1).

4.2 Driven dynamics

In this section we discuss the full driven dynamics as captured by the model given in Eq. (4.1).
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4.2.1 Heating

First we address the onset of heating following the standard procedure discussed in Refs. [217,
231]. The initial state of the system is prepared using the ground state of the effective model

|ψ(t = 0)〉 = e−iK̂(t=0)|ψ0,0
LGH〉 (4.6)

and we monitor the stroboscopic time-evolution t = N T , T ≡ 2π/ω governed by the full driven
model defined in Eq. (4.1). In our numerical simulations, we approximate the micromotion
operator K̂(t = 0) using the leading-order high-frequency expansion; see Eq. (G.12). The
quantity of interest is the expectation value of the effective Hamiltonian: (4.2)

〈Ĥeff(t = NT )〉K = 〈ψ(t)|e−iK̂(t=0)Ĥeffe
iK̂(t=0)|ψ(t)〉. (4.7)

We expect this quantity to reasonably correspond to the ground-state energy of the effective
model E0 in the regime of very high frequency. On the other hand, for a “low” driving frequency
we expect the system to quickly reach the infinite-temperature β → 0 regime defined by

lim
β→0
〈Ĥeff〉 = 1

dimHtr
(
Ĥeff

)
. (4.8)

For this reason we monitor the normalized total energy

Q(t = NT ) = 〈Ĥeff(t = NT )〉K − E0

limβ→0〈Ĥeff〉 − E0
(4.9)

and we present it in Fig. 4.3(a), for U/Jx = 10. In agreement with the known results [231], we
find that the thermalization is quick for both a “high” driving frequency ω/Jx ≥ 20 and for a
“low” driving frequency ω/Jx ≤ 10. For the intermediate values of ω, the heating process is
slow [231] and the total energy exhibits a slow exponential growth captured by Q(t = NT ) ≈
1 − b exp(−c t), t � 1. An example of this behavior is given for ω/Jx = 15 in Fig. 4.3(a).
The heating process can also be monitored through the particle-entanglement entropy SA as a
function of time. In Fig. 4.3(b) for Np = 5 and low driving frequency we find that this quantity
quickly saturates to its maximal value. Indeed, for a thermal state at infinite temperature, SA
is given by

Smax
A ≈ ln

(
Lx Ly +NA − 1

NA

)
, (4.10)

marked by the horizontal, dot-dashed line in Fig. 4.3(b). Except for the highest frequency
considered (ω/Jx = 50), we find that, in the process of heating, the particle-entanglement gap
of the initial state quickly closes (not shown in the plots).

Here we briefly discuss finite-size effects by comparing numerical results for the normalized
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Figure 4.3: (a) The normalized total energy Q(t = NT ) from Eq. (4.9), and the (b) particle-
entanglement entropy SA(t = NT ), Eq. (4.4), during the time evolution governed by Eq. (4.1)
for several driving frequencies ω/Jx = 50, 20, 15, 10. Parameters: Np = 5, U/Jx = 10.
Note that the asymptotic value of SA for ω/Jx = 10 and ω/Jx = 15 matches the one
given in Eq. (4.10), as presented by the horizontal, dot-dashed line. (c) The long-time limit
limN→∞Q(NT ) for Np = 4 and the on-site interactions U/Jx = 1, 10 and U/Jx =∞ (hard-core
bosons). The lines are only guides to the eye.

total energy for Np = 4, Np = 5, and Np = 6. In line with the known results [94–96], the
“high-frequency” regime with low heating rates moves toward higher ω as the system size
increases. However, we find that the estimates obtained in this section (ω/Jx ≥ 20 for the
high- and ω/Jx ≤ 10 for the low-frequency regime, for U/Jx = 10) apply to all the three sizes
Np = 4, 5, 6, at least for the time-scales that we consider. A comprehensive study of the leading
finite-size effects in driven systems can be found in Refs. [94, 217, 231].

4.2.2 The stroboscopic time-evolution operator

In order to better understand the limitations of the effective model, here we time evolve all
relevant basis states for a single driving period T = 2π/ω and construct the stroboscopic
time-evolution operator

ÛF ≡ Û(t0 + T, t0 = 0) (4.11)

such that Û(NT+t0) = ÛN
F . In the next step, for a system size Np = 4, (Lx, Ly) = (4, 8) we fully

diagonalize this operator and inspect its eigenstates |n〉. Following the described procedure, we
obtain the long-time limit

lim
N→∞

〈Ĥeff(NT )〉K =
∑
n

|〈n|ψ(t = 0)〉|2〈n|Ĥeff|n〉K (4.12)

where we define
〈n|Ĥeff|n〉K = 〈n|e−iK̂(t=0)Ĥeffe

iK̂(t=0)|n〉. (4.13)

Results for Q(t = NT ) from Eq. (4.9) obtained in this way are summarized in Fig. 4.3(c),
where we make a comparison between the long-time energies for the case of hard-core bosons
(U →∞) and soft-core bosons (finite values of U). The obtained results indicate that heating
rates of hard-core bosons are closer to the case of U/Jx = 1 in comparison to U/Jx = 10,
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Figure 4.4: Properties of the eigenstates |n〉 of the stroboscopic time-evolution operator ÛF ,
Eq. (4.11), in the kx = 0, ky = 0 sector for Np = 4. Expectation values 〈n|Ĥeff|n〉K defined in
Eq. (4.13) for (a) U/Jx = 1, ω/Jx = 10, 20 and (b) U/Jx = 10, ω/Jx = 10, 15, 20, 50. The black
solid lines mark eigenenergies of Ĥeff, Eq. (4.2). Note that in (b) we do not include few states
from the top of the spectrum of Ĥeff, Eq. (4.2), for clarity. (c) The particle-entanglement gap
∆ of the incoherent superposition ρF , Eq. (4.14), for U/Jx = 1 and U/Jx = 10, Np = 4. The
lines are only guides to the eye.

which is expected from the bandwidths shown in Fig. 4.2(a). Overall we observe that the
“high-frequency regime” is wider for lower ratios U/Jx.

In Fig. 4.4, we make a comparison between the exact driven model captured by ÛF and
Ĥeff. In Figs. 4.4(a) and 4.4(b) we inspect the distribution of expectation values 〈n|Ĥeff|n〉K . By
comparing these values to the eigenenergies of the effective model, Eq. (4.2), we get an insight
into the pertinence of the effective description [94, 95]. In particular, for an interacting system
in the thermodynamic limit, the distribution is flat and the effective description is useless. We
state again that we consider only small atomic samples. For this reason, it is expected that for
high values of ω the full stroboscopic description nicely matches to the effective model values.
Such an example is given in Fig. 4.4(a) for U/Jx = 1 and ω/Jx = 20. As the value of ω gets
lower the distribution becomes flatter, as can be seen in Fig. 4.4(b) for U/Jx = 10 by comparing
results for ω/Jx = 50 and ω/Jx = 10.

The intermediate regime of frequencies, e. g., ω/Jx = 20 for U/Jx = 10, is of the main
experimental relevance [88]. We now investigate whether the driven stroboscopic dynamics
supports some Laughlin-like states, by calculating the PES of the mixture

ρF = 1
2
(
|n0(0, 0)〉〈n0(0, 0)|+ |n0(0, π)〉〈n0(0, π)|

)
(4.14)

where |n0(kx, ky)〉 is the state from the kx, ky sector with the lowest expectation value 〈n|Ĥeff|n〉K .
The results are presented in Fig. 4.4(c). We find that the states with a well defined gap and
the Laughlin-like PES can be found down to ω/Jx ≥ 10 for U/Jx = 1, and down to ω/Jx ≥ 20
for U/Jx = 10. Having established existence of these states for small samples of Np = 4 parti-
cles, in the next section we discuss dynamical protocol which can be exploited to prepare these
states.
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4.3 Slow ramp

The question about an optimal adiabatic protocol that can be used to prepare the Laughlin
state in a cold-atom setup has gained lot of attention [181, 202, 203, 211]. The situation becomes
even more complex once the full driving process is taken into account. A general wisdom is
that, by starting from a topologically trivial state, the topological index of a thermodynamically
large system cannot be changed adiabatically. We consider a small atomic sample and follow
the proposal of Ref. [211]. Our main contribution is that we extend this protocol to the case
of the driven, interacting Bose-Hubbard model.

4.3.1 Model

Following results of Ref. [211], we consider a slow ramp of the tunneling amplitude along y

direction, Jy(t), as well as a slow ramp of the driving amplitude κ(t). Namely, we start from a
series of decoupled wires along the x direction and start coupling them. More precisely, initial
states are selected as the ground states of Ĥini:

Ĥini = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1). (4.15)

For the filling factors that we consider, the ground states of the Ĥini are simple noninteracting
states with the ground state energy E0,ini = −2JxNp. Out of the several degenerate ground
states, we select those where atoms occupy every second wire. There are two such states and
we label them as |ψ+〉 (even wires occupied) and |ψ−〉 (odd wires occupied). These states have
finite projections only onto the sectors kx = 0, ky = 0 and kx = 0, ky = π of the driven model
from Eq. (4.1). Therefore we may expect the two initial states |ψ±(t = 0)〉 to be transformed
into the two Laughlin states during the ramp.

Having prepared the initial state, we slowly restore the tunneling amplitude along the y
direction, Jy(t), and slowly ramp up the driving amplitude κ(t). The time-evolution is governed
by

Ĥsr(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy(t)

∑
m,n

(
eiωtâ†m,n+1âm,n + H. c.

)
+ κ(t)

2
∑
m,n

sin (ωt− (m+ n− 1/2)φ) n̂m,n + U

2
∑
m,n

n̂m,n(n̂m,n − 1), (4.16)

where Jy(t) = Jy tanh(η t), κ(t) = κ tanh(η t), η being the ramping rate. In the long-time limit,
we recover the original Hamiltonian from Eq. (4.1). During the ensuing time evolution we
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Figure 4.5: (a) The expectation value E(t) defined in Eq. (4.18) and (b) the particle-
entanglement gap ∆(t) of ρ(t), Eq. (4.17), during the time evolution governed by Eq. (4.16) for
several driving frequencies ω/Jx = 25, 20, 15, 10. Parameters: Np = 5, U/Jx = 10, η/Jx = 0.05.
(c) The overlap tr (ρ(t)ρF ) of the time evolved state with the target eigenstates of ÛF for
ω/Jx = 25, 20. Parameters: Np = 4, U/Jx = 10, η/Jx = 0.05.

construct the mixture

ρ(t) = 1
2
(
|ψ+(t)〉〈ψ+(t)|+ |ψ−(t)〉〈ψ−(t)|

)
. (4.17)

We monitor stroboscopically the energy expectation value

E(t) = tr
(
ρ(t)Ĥeff

)
(4.18)

and the PES of ρ(t).

4.3.2 Results

In Fig. 4.5(a) we present the energy expectation value from Eq. (4.18) for U/Jx = 10 and
several driving frequencies ω/Jx = 25, 20, 15, 10. Our numerical results indicate that ramps
with the rates up to η/Jx ∼ 0.1 work reasonably well. Slower ramps give better results, but are
less practical [211]. By construction, the initial state is a noninteracting state with particles
delocalized along the x direction and therefore the initial energy is E(t = 0) = −2Np Jx.
During the ramp with the rate η/Jx = 0.05, for the regime of high driving frequencies, down
to approximately ω/Jx = 20, we find that the energy initially decreases and reaches an almost
constant value at around tJx ∼ 20. On the other hand, for ω/Jx = 15, the system slowly heats
up during the ramping process, and for ω/Jx = 10 the system quickly reaches the infinite-
temperature state.

One of our main results is summarized in Fig. 4.5(b), where we plot the particle-entanglement
gap of ρ(t), from Eq. (4.17), as a function of time. In the high-frequency regime ω/Jx ≥ 20,
starting around tJx ∼ 20 we find a persistent particle-entanglement gap, marking the onset of
a topologically nontrivial state. It is even more interesting that, even for ω/Jx ∼ 15, the state
seems to exhibit a finite gap on intermediate time-scales. This is not the case for ω/Jx ≤ 10,
where the gap quickly vanishes. In Fig. 4.5(c), we present the value of the overlap tr (ρ(t)ρF ),
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Figure 4.6: The low-lying part of the particle-entanglement spectra − ln ξn of ρ(t), Eq. (4.17),
during the time evolution governed by Eq. (4.16) in the (a) kAy = 0 and (b) kAy = π/6 momentum
sectors. The low-lying part of the PES in the sectors (c) kAy = 0 and (d) kAy = π/6, at two
instances of time t = 0 and t/T = 100. Parameters: Np = 6, U/Jx = 5, ω/Jx = 15, η/Jx = 0.05.

of the time-evolved mixed state with the relevant state from Eq. (4.14) for Np = 4. Clearly, the
slow ramp of the type given in Eq. (4.16) allows for the preparation of the relevant eigenstates
of ÛF with high fidelity (better than 1%).

In Figs. 4.6(a) and 4.6(b) we show the time evolution of the PES in the two momentum
sectors kAy = 0 and kAy = π/6 for Np = 6, U/Jx = 5, and η/Jx = 0.05. The PES of the
initial state is easy to understand. As the Ly/2 wires are occupied by single atoms, the reduced
density matrix is proportional to the identity matrix with the proportionality factor yielding
− ln ξn = ln

(
2
(
Ly/2
NA

))
≈ 3.69. During the ramp we find that additional modes in PES are

gaining weight and moving down in the spectrum. Finally, the state ρ(t) reached around
t ≈ 50T exhibits a well defined gap and the correct counting of the low-lying modes: there are
ten low-lying modes for kAy = 0 and nine low-lying modes for kAy = π/6; see Figs. 4.6(c) and
4.6(d) and also Table 4.1.

In Fig. 4.7 we discuss a satisfactory range of ramping rates η for a given interaction strength
U and a given driving frequency ω that we fix at ω/Jx = 15. The obtained numerical results
suggest that at weaker interaction strengths U/Jx ≤ 2, slower ramping rates are needed. One
way to explain this behavior is by using the effective model and arguing that the gap protecting
the Laughlin state is smaller at weaker U . On the other hand, for stronger interaction strengths
U/Jx ≥ 8 the particle-entanglement gap closes at later stages as the heating process becomes
dominant. Finally, in the intermediate range U/Jx ∼ 5, faster ramps with η/Jx = 0.1 lead to
the sought-after state ρ(t) from Eq. (4.17), with persistent features in the PES up to t = 500T .
These results indicate that, when optimizing the ramping protocol in an actual experiment,
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Figure 4.7: The particle-entanglement gap ∆(t) as a function of time during the time evolution
governed by Eq. (4.16), for several interaction strengths (a) U/Jx = 1.25 (b) U/Jx = 5 and
(c) U/Jx = 10, and several ramping rates η/Jx = 0.025, 0.05, 0.1. Other parameters: Np =
5, ω/Jx = 15.

there will be a tradeoff between the unfavorable heating and a faster ramping into the desired
state, as both of these processes are promoted by interactions.

4.4 Conclusions

The technique of Floquet engineering has been successfully exploited for the implementation of
synthetic magnetic fields in driven optical lattices. Following up on these achievements and on a
long-standing pursuit for the FQH states in cold-atom setups, in this Chapter we have addressed
possible realization of the bosonic Laughlin state in a small atomic sample in a periodically
driven optical lattice. While a thermodynamically large interacting system generally heats up
into an infinite-temperature state under driving, the heating process can be controlled to some
extent in a few-particle system.

We have assumed a realistic driving protocol and finite on-site interactions, and we have
identified the FQH state based on analysis of its particle-entanglement spectra. Results of our
numerical simulations show that the stroboscopic dynamics of Np = 4, 5, 6 particles supports
the topological ν = 1/2 Laughlin state down to ω/Jx = 20 for U/Jx = 10, and down to
ω/Jx = 15 for U/Jx = 1, for the driving amplitude κ/ω = 0.5. These results are in reasonable
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agreement with the recent estimates of the optimal heating times [88] that take into account
the contribution of the higher bands of the underlying optical lattice. In addition, we have
investigated slow ramping of the driving term and found that it allows for the preparation of
the Laughlin state on experimentally realistic time-scales of the order of 20 ~/Jx, where ~/Jx
is the tunneling time. Interestingly, we find that some topological features persist during an
intermediate stage even in the regime where the system exhibits a slow transition into the
infinite-temperature state (e. g., ω/Jx = 15 for U/Jx = 10).

In the future, we plan to address the preparation scheme for the relevant correlated states in
a driven honeycomb lattice, which exhibits lower heating rates in comparison to a cubic lattice
according to the recent experiments [124, 220]. Another highly relevant question, that we have
not tackled and that we postpone to future investigation, concerns suitable experimental probes
of topological features. The recent progress in the field has led to the development of several
detection protocols specially suited for the cold-atom systems [167, 168, 232–235]. For the type
of systems considered in this Chapter, the most promising are results of the recent study [235]
showing that fractional excitations can be probed even in small systems of several bosons.
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Conclusions

The study of ultracold quantum gases is an important topic in modern physics. The pos-
sibility of using ultracold atoms to build versatile quantum simulators is especially promising.
These are highly-controllable macroscopic many-particle systems that obey the laws of quan-
tum mechanics and can be used to simulate and study other complex quantum systems, such
as those relevant for condensed-matter physics.

Quantum many-body scars have recently been introduced as new paradigm of weak ergod-
icity breaking in interacting quantum systems. This phenomenon has been first observed in
the form of persistent oscillations in the quench dynamics probed in experiments on a Rydberg
atom quantum simulator [46]. As a weak form of ergodicity breaking, many-body scars are
believed to constitute a new universality class of systems that are distinct from other types
of strong ergodicity breaking, such as in integrable models and many-body localized systems.
Currently, major efforts are under way to understand the origins of quantum many-body scars.
Similar properties have been found in other physical systems, including lattice gauge theories
and topological phases of matter.

In Chapter 2 we proposed a realization of quantum many-body scars in a one-dimensional
bosonic lattice with kinetically-constrained hopping. This model could be experimentally re-
alized in ultracold atoms under a suitable Floquet engineering scheme. An important open
question in this field was the necessity of hard kinetic constraints for the realization of scars.
The standard “PXP” model of Rydberg atoms exhibits hard kinetic constraints, while some
theoretical works on certain spin models suggested that constraints may not be necessary. Our
bosonic models with density-dependent hopping provided a way to tunably control the kinetic
constraints and study both limits on an equal footing. Using this approach we demonstrated
that scars can occur in the absence of hard kinetic constraints. Another open problem was the
relation between scars and integrability, following the observation that certain perturbations
can enhance scarring while at the same time making the system non-ergodic. From this point
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Chapter 5 Conclusions

of view, our bosonic models are important because they demonstrate the presence of scars in
a robustly non-integrable regime. Finally, our work points to an experimental platform that
could realize quantum many-body scars and potentially allow new probes of this complex phe-
nomenon. To this day there is only a single experiment on a system of Rydberg atoms, in
contrast to the wealth of theoretical results. Given the large body of work on bosonic ultracold
atoms and the variety of available experimental probes, such systems are the prime candidates
for further experimental progress on many-body scars.

The effects of both strong local and long-range interactions have been studied in recent cold-
atom experiments, as they can lead to rich phase diagrams. In order to observe topological
phases of matter, the effects of magnetic field were also included in some recent experiments.
Using periodic driving, synthetic magnetic fields have been experimentally realized in cold-
atom systems, which has enabled the realization of seminal condensed-matter models such as
the Harper-Hofstedter and Haldane model in cold-atom setups. However the interplay of driving
and interactions introduces heating that may preclude the study of relevant topological states.
A possibility of finding optimized parameter regimes with slow heating rates is still open and it
was the main research topic in the second part of this thesis. These results could contribute to
implementing new, even more advanced simulations, which could reveal new quantum phases.

The recent Chern-number measurement [70] was a milestone marking a realization of a
topological band in a cold-atom setup. Motivated by the this experiment, in Chapter 3 we
investigated the response of incoherent bosons to an external force in driven optical lattices
featuring topological bands. The focus of this study was on the role of weak atomic interac-
tions. Using numerical simulations based on a classical-field method, we found that interactions
contribute to atomic transitions between different bands, thus complicating the experimental
procedure in line with expectations. However, it was also shown that the weak atomic repulsion
makes the Chern-number measurement easier in several ways. As this experimental approach
is expected to become a routine tool in the near future, a first step in the preparation of more
interesting topological phases, the so-far obtained results on the effects of weak interactions are
of relevance for the future experiments.

Nowadays, cold-atom setups provide access to both strong synthetic magnetic fields and
strong interactions. These ingredients are in principle enough to realize fractional Hall states
and address their excitations. The complexity arises when using the driving protocol in the
strongly interacting regime, due to heating. A solution for this problem would be to find
some optimal parameter regime where the system stays in the prethermalized state for long
enough time. At the moment, the possibility of finding fractional quantum Hall states in cold-
atom setups is still open and the questions about how to prepare and manipulate these states
using cold atoms prompt further theoretical studies. Our work on the stability and lifetime
of bosonic fractional quantum Hall states presented in Chapter 4 should provide guidelines in
this direction. In our study we took into account important experimental features, such as
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a realistic driving scheme and finite on-site interactions. We used the particle-entanglement
spectra in order to confirm that the state prepared in our driven model for a high enough
driving frequency is indeed a bosonic Laughlin state. By performing numerical simulations, we
identified an optimal regime of microscopic parameters for the preparation of these interesting
strongly correlated states.

There are many possibilities to further extend the research presented in this thesis. Potential
directions of future research are discussed at the ends of Chapters 2-4. It would be particularly
exciting to explore whether it is possible to realize quantum many-body scars in topologically-
nontrivial driven systems, as this would be a way to slow down the thermalization and increase
the lifetimes of interesting topological states.
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Relative magnitude of the hopping
coefficients

Constraints are not the only factor that slows down the dynamics and leads to weakly-
entangled eigenstates in spectrum of the Hamiltonian Ĥ1 (2.1) from Chapter 2. The relative
magnitude of the hopping coefficients between different configurations mapped to each other
under the action of the Hamiltonian also has important effects. In order to show this, we
introduce two additional Hamiltonians

Ĥ1a = −J
∑
j

(
b̂†j b̂j+1n̂

2
j + n̂2

j−1b̂
†
j b̂j−1

)
, (A.1)

Ĥ1b = −J
∑
j

(
b̂†j b̂j+1(1− δnj ,0) + (1− δnj−1,0)b̂†j b̂j−1

)
. (A.2)

These two Hamiltonians have the same constraints as the Hamiltonian Ĥ1 and therefore the
same graphs as in Fig. 2.1. However, the particle number operators n̂j are squared in Ĥ1a and
replaced with delta functions (1− δnj ,0) in Ĥ1b. This makes the minimal and extended clusters
even less connected to the rest of the configurations in the case of Ĥ1a and more connected in
the case of Ĥ1b.

As anticipated, the revivals become more prominent for Ĥ1a, with fidelity peaks reaching
more than 95%, while the peaks almost disappear for Ĥ1b, as illustrated in Fig. A.1(a). In
addition, the entanglement entropy quickly saturates in the case Ĥ1b, while the growth is
significantly suppressed in the case of Ĥ1a, as can be observed in Fig. A.1(b). The distribution
of entanglement entropy across all eigenstates is also affected by the change of coefficients (not
shown). Ĥ1a has a spectrum with many low-entropy eigenstates, while the spectrum of Ĥ1b

is almost thermal and resembles that of Ĥ2. The probability distribution of consecutive gaps
in the energy spectrum of Ĥ1a is close to the Poisson distribution, which implies that Ĥ1a is
almost integrable. On the other hand, the distribution for Ĥ1b is Wigner-Dyson, like in Ĥ1.
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Derivation of fidelity in the extended
cluster approximation

Here we derive Eq. (2.28) from Chapter 2. For system size L = 3, the Hilbert space of the
extended cluster is spanned by only four configurations:



1
0
0
0

 = |300〉,



0
1
0
0

 = |210〉,



0
0
1
0

 = |120〉,



0
0
0
1

 = |111〉. (B.1)

The Hamiltonian reduced to this subspace is

Ĥ c̃
1 = −



0 2
√

3 0 0
2
√

3 0 2 0
0 2 0

√
2

0 0
√

2 0

 . (B.2)

Its eigenvalues are

E1 = −α, E2 = α, E3 = −β, E4 = β, (B.3)

and its eigenvectors

|1〉 =



a

b

c

d

 , |2〉 =



−a
b

−c
d

 , |3〉 =



−c
−d
a

b

 , |4〉 =



c

−d
−a
b

 , (B.4)
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where α =
√

9 +
√

57 ≈ 4.06815, β =
√

9−
√

57 ≈ 1.20423, a ≈ 0.591050, b ≈ 0.694113,
c ≈ 0.388150 and d ≈ 0.134933. There are no simple analytical expressions for the coefficients
a, b, c and d.

The configuration |210〉 evolves as

|ψc̃
1(t)〉 = −2i (ab sinαt+ cd sin βt) |300〉

+2
(
b2 cosαt+ d2 cos βt

)
|210〉

−2i (bc sinαt− ad sin βt) |120〉

+2bd ( cosαt− cos βt) |111〉, (B.5)

which can also be generalized to larger systems

|Ψc̃
n(t)〉 = |(210)n(t)〉 = 2n

(
b2 cosαt+ d2 cos βt

)n
|(210)n〉+ ... (B.6)

Finally, the fidelity evolves as

F c̃
n(t) = |〈Ψc̃

n(0)|Ψc̃
n(t)〉|2= 4n|b2 cosαt+ d2 cos βt|2n. (B.7)

The period of revivals is approximately T ≈ π/α ≈ 0.772241, and the first peak height expo-
nentially decreases as

F c̃
L=3n(T ) = 4n|d2 cos πβ

α
− b2|2n≈ 0.887017n ≈ e−0.119891n ≈ e−0.039964L. (B.8)

Eqs. (B.6) and (B.7) are exact for non-translation-invariant initial states, but just an approx-
imation for the translation symmetric case. This is due to the fact that different translations
of 300, 210 and 120 no longer evolve independently in that case, as they are connected to
each other through the configuration 111. However, this approximation becomes better with
increasing the system size, as the configuration (111)n becomes further away from the initial
state (210)n and the probability that this configuration will be reached decreases.
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The effective model from Chapter 3

In this Appendix we derive the effective Hamiltonian Ĥeff,1 (3.7) which corresponds to the
time-dependent Hamiltonian (3.3) from Chapter 3. We also show the explicit form of its
momentum-space representation Ĥeff,1(k).

C.1 Real space

After a unitary transformation into the rotating frame ψ̃ = e−iŴ tψ, where ψ̃ and ψ are the
old and the new wave functions, and Ŵ is the staggered potential, the new time-dependent
Hamiltonian that describes the experimental setup is given by [70]

Ĥ(t) = Jy
∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
+ V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2
∑
l,m

n̂l,m (n̂l,m − 1) , (C.1)

where
V̂ (+1) = κ/2

∑
l,m

n̂l,mg(l,m)− Jx
∑
lodd,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
(C.2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg
∗(l,m)− Jx

∑
leven,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
(C.3)

g(l,m) = cos(lπ/2− π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (C.4)

The kick operator is given by

K̂(t) = 1
iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

)
+O

( 1
ω2

)
, (C.5)
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and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1
ω

[
V̂ (+1), V̂ (−1)

]
︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1
2ω2

([[
V̂ (+1), Ĥ0

]
, V̂ (−1)

]
+
[[
V̂ (−1), Ĥ0

]
, V̂ (+1)

])
︸ ︷︷ ︸

Ĥ
(2)
eff

+O
( 1
ω3

)
. (C.6)

If we assume that the driving frequency is high and interactions are weak, the interaction
term and almost all O

(
1
ω2

)
terms can be neglected. After substituting Eqs. (C.1), (C.2) and

(C.3) into Eq. (C.6) we obtain:

Ĥ
(0)
eff =− Jy

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
(C.7)

Ĥ
(1)
eff = 1

ω

[
κ

2
∑
l,m

â†l,mâl,m g(l,m)− Jx
∑
lodd,m

(
â†l+1,mâl,m + â†l−1,mâl,m

)
,

κ

2
∑
l,m

â†l,mâl,m g∗(l,m)− Jx
∑

leven,m

(
â†l+1,mâl,m + â†l−1,mâl,m

) ]
(C.8)

= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 =− Jxκ

2ω
∑

lodd,m,l′,m′
g∗(l′,m′)

[
â†l+1,mâl,m + â†l−1,mâl,m, â

†
l′,m′ âl′,m′

]

=− Jxκ

2ω
∑
lodd,m

[(
g∗(l,m)− g∗(l + 1,m)

)
â†l+1,mâl,m +

(
g∗(l,m)− g∗(l − 1,m)

)
â†l−1,mâl,m

]
(C.9)

Ĥ2 =− Jxκ

2ω
∑

leven,m,l′,m′
g(l′,m′)

[
â†l′,m′ âl′,m′ , â

†
l+1,mâl,m + â†l−1,mâl,m

]

=Jxκ2ω
∑

leven,m

[(
g(l,m)− g(l + 1,m)

)
â†l+1,mâl,m +

(
g(l,m)− g(l − 1,m)

)
â†l−1,mâl,m

]
(C.10)

Ĥ3 =J
2
x

ω

∑
lodd,m,l′even,m

′

[
â†l+1,mâl,m + â†l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â†l′−1,m′ âl′,m′

]

=J
2
x

ω

∑
lodd,m

(
2â†l+1,mâl+1,m + â†l+3,mâl+1,m + â†l−1,mâl+1,m − 2â†l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m

)

=J
2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
(C.11)
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Ĥ4 = κ2

4ω
∑

l,m,l′,m′
g(l,m)g∗(l′,m′)

[
â†l,mâl,m, â

†
l′,m′ âl′,m′

]
= 0. (C.12)

Using trigonometric identities and

g(l,m)− g(l ± 1,m) =±
√

2
(

sin((2l ± 1− 1)π/4)ei(π/4−mπ/2)

+ sin((2l ± 1 + 1)π/4)ei(mπ/2−3π/4)
)
, (C.13)

we can rewrite the sum of terms (C.9) and (C.10) in a more convenient form

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(
ei
(

(m−l)π/2−π/4
)
â†l,mâl−1,m + e−i

(
(m−l−1)π/2−π/4

)
â†l,mâl+1,m

)
. (C.14)

The only O
(

1
ω2

)
(Ĥ(2)

eff ) term that cannot be neglected in the parameter range that we use is
[70]

Jy
2
κ2

ω2

∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
. (C.15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(
ei
(

(m−l−1)π/2−π/4
)
â†l+1,mâl,m + e−i

(
(m−l)π/2−π/4

)
â†l−1,mâl,m

)

− Jy
(

1− 1
2
κ2

ω2

)∑
l,m

(
â†l,m+1âl,m + â†l,m−1âl,m

)
(C.16)

+ J2
x

ω

∑
l,m

(−1)l
(

2â†l,mâl,m + â†l+2,mâl,m + â†l−2,mâl,m

)
(C.17)

with the renormalized nearest-neighbor hopping amplitudes

J ′x = Jxκ√
2ω

= Jy (C.18)

and
J ′y = Jy

(
1− 1

2
κ2

ω2

)
, (C.19)

and a next-nearest-neighbor along ex hopping term proportional to J2
x

ω
in (C.17).

C.2 Momentum space

If we choose the unit cell as in Fig. 3.1(a) (lattice sites A = (1, 0), B = (2, 0), C = (3, 0) and
D = (4, 0)), the momentum-space representation of the effective Hamiltonian without correction
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Ĥeff,0 (3.6) is given by a 4× 4 matrix

Ĥeff,0(k) =


0 J′xe−i

3π
4 −J′ye−ikR2 0 J′xe−i

3π
4 −ikR1−J′yeik(R2−R1)

J′xei
3π
4 −J′yeikR2 0 J′xe−i

π
4 −J′ye−ikR2 0

0 J′xei
π
4 −J′yeikR2 0 J′xei

π
4 −J′ye−ikR2

J′xei
3π
4 +ikR1−J′yeik(R1−R2) 0 J′xe−i

π
4 −J′yeikR2 0

, (C.20)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1), and k is in the first
Brillouin zone, which is given by the reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π(0, 1).
When the J2

x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (3.7), the unit cell is

doubled, see Fig. 3.1(b), and the first Brillouin zone is therefore halved. If we now choose the
lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1), b = (3, 1), C = (4, 1) and
d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian
will be an 8× 8 matrix

Ĥeff,1(k)=



−
2J2
x
ω

J′xe−i
3π
4 −

J2
x
ω

(1+eikR1 ) J′xe−i(
3π
4 −kR1) 0 −J′yeikR2 0 −J′yeikR1

J′xei
3π
4 2J2

x
ω

J′xe−i
π
4 J2

x
ω

(1+eikR1 ) −J′y 0 −J′yeikR2 0

−
J2
x
ω

(1+e−ikR1 ) J′xei
π
4 −

2J2
x
ω

J′xei
π
4 0 −J′y 0 −J′yeikR2

J′xei(
3π
4 −kR1) J2

x
ω

(1+e−ikR1 ) J′xe−i
π
4 2J2

x
ω

−J′ye−ik(R1−R2) 0 −J′y 0

0 0 0 −J′yeik(R1−R2) 2J2
x
ω

J′xe−i
3π
4 J2

x
ω

(1+eikR1 ) J′xe−i(
3π
4 −kR1)

−J′ye−ikR2 0 −J′y 0 J′xei
3π
4 −

2J2
x
ω

J′xe−i
π
4 −

J2
x
ω

(1+eikR1 )

0 −J′ye−ikR2 0 −J′y
J2
x
ω

(1+e−ikR1 ) J′xei
π
4 2J2

x
ω

J′xei
π
4

−J′ye−ikR1 0 −J′ye−ikR2 0 J′xei(
3π
4 −kR1) −

J2
x
ω

(1+e−ikR1 ) J′xe−i
π
4 −

2J2
x
ω


,

(C.21)

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The reciprocal lattice vectors are then
b1 = π

2 (1,−1) and b2 = π(0, 1).
The energy bands of Ĥeff,1(k) are shown in Figs. 3.2 and C.1.
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Figure C.1: Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands
1 and 2 form the lowest band with Chern number c1 = 1, subbands 3, 4, 5, and 6 form the
middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.
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Description of incoherent bosons

Here we explain in more details the method which we use to treat weakly interacting bosons
in Chapter 3. In a typical condensed-matter system constituent particles are electrons. Due to
their fermionic statistics, at low enough temperatures, and with Fermi energy above the lowest
band, that band of the topological model is uniformly occupied, and consequently the transverse
Hall conductivity can be expressed in terms of the Chern number (1.5) [69]. In contrast, weakly
interacting bosons in equilibrium form a Bose-Einstein condensate in the band minima and only
probe the local Berry curvature [167].

Yet in the experiment [70] the Chern number was successfully measured using bosonic atoms
of 87Rb. This was possible because in the process of ramping up the drive (3.4), the initial
Bose-Einstein condensate was transferred into an incoherent bosonic mixture. Conveniently,
it turned out that the bosonic distribution over the states of the lowest band of the effective
Floquet Hamiltonian was nearly uniform. Motivated by the experimental procedure, we model
the initial bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1
|k,Np〉〈k,Np| (D.1)

where the states |k〉 = a†k|0〉 approximately correspond to the lowest-band eigenstates of Ĥeff

and each of these Nm states is occupied by Np atoms |k,Np〉 = N (a†k)Np |0〉.

A procedure for selecting the states |k〉 is described in Refs. [70, 168]. In order to probe the
Chern number of the lowest band, the states |k〉 should correspond closely to the lowest-band
eigenstates of Ĥeff. At the same time, in the experiment in the initial moment the atomic cloud
is spatially localized. According to Refs. [70, 168] the optimal approach is to consider a steep
confining potential and to use the low-lying eigenstates of

Ĥinitial = ĥeff +
(
r

r0

)ζ
, (D.2)
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where in our calculations ĥeff is either Ĥeff,0 from Eq. (3.6) or Ĥeff,1 from Eq. (3.7) and the
parameters of the confining potential are set to r0 = 20, ζ = 20.

The dynamics of the initial state (D.1) is induced by a double quench: at t0 = 0 the atomic
cloud is released from the confining potential and exposed to a uniform force of intensity F

along the y direction. During the whole procedure the driving providing the laser-assisted
tunneling, defined in Eq. (3.4), is running.

The main observables of interest are the center-of-mass position along x direction

x(t) =
〈∑
l,m

l|ψl,m(t)|2
〉
, (D.3)

and the population of the ith band of the effective model

ηi(t) =
〈 ∑
|k〉∈i-th band

∣∣∣∣∑
l,m

αk∗lmψlm(t)
∣∣∣∣2〉, (D.4)

where the states |k〉 = ∑
l,m α

k
lm|l,m〉 correspond to the eigenstates of the effective model. Here,

angle brackets 〈 〉 denote averaging over Nsamples sets of initial conditions.
In the case of non-interacting particles, these and other quantities can be numerically ac-

cessed by solving the single-particle time-dependent Schrödinger equation for Nm different
initial states |k〉. This is equivalent to sampling the initial state according to Eq. (3.8).

In the end, we give two technical remarks. First, all our calculations are done in the
rotating frame; see Eq. (C.1) in Appendix C. The staggered potential (3.2) is removed in this
way. Second, in the case when the evolution is governed by the time-dependent Hamiltonian
(3.9), the initial state is multiplied by the operator e−iK̂(0) in order to properly compare these
results to the ones obtained from the evolution governed by the effective Hamiltonian (3.10);
see Eq. (3.5).
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Initial quadratic regime

In this Appendix we explain the initial quadratic behavior exhibited by several observables
in Chapter 3. For simplicity, we will consider only the case without the confining potential
and with very weak force F = 0.01. The initial state is a Bose-Einstein condensate in one of
the eigenstates of the effective Hamiltonian. The results are later averaged over all first band
eigenstates.

Figure E.1: Population in higher bands, comparison of numerical results (solid line) with the
Fermi’s golden rule in the first and second approximation (dashed lines). Band populations are
calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then averaged
over (approximately) all states in the first band. (a) Initial state and evolution from the effective
Hamiltonian with correction Ĥeff,1, Eq. (3.7). (b) Without the correction, Ĥeff,0, Eq. (3.6).

Fermi’s golden rule predicts that the probability for transition from an initial state ψi to a
final state ψf , induced by a perturbation ∆Ĥ, is proportional to the square of matrix elements
|〈ψi|∆Ĥ|ψf〉|2. In this case, the perturbation is ∆Ĥ = F ŷ. If we assume that the probability
of a particle being in the initial state is always Pi(t) = |ψi(t)|2≈ 1, Fermi’s golden rule predicts
[236]

PFGR1
i→f (t) = 1

~2 |〈ψi|∆Ĥ|ψf〉|
2t2. (E.1)
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If we now also consider transitions from the other states to the initial state, but keep the
assumption that the populations in other states are small Pj 6=i(t) = |ψj 6=i(t)|2� 1, the time-
dependent perturbation theory then predicts [236]

PFGR2
i→f (t) = |〈i|∆Ĥ|f〉|2

1− 2e− Γ
2~ t cos

(
Ef−Ei

~ t
)

+ e−Γ
~ t

(Ef − Ei)2 + Γ2

4
, (E.2)

where Γ = 2π
~ |〈i|∆Ĥ|f〉|

2 and Ei (Ef ) is the energy of the initial (final) state.
We plot the numerical results and both theoretical predictions from Fermi’s golden rule

in Fig. E.1. Here we can see that all three curves agree well for short times, the second
approximation longer remains close to the numerical results, and that the initial quadratic
regime is reproduced by theory. This is the so-called quantum Zeno regime [195].
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Effects of interactions

Here we provide further details about the effects of interactions on the dynamics of weakly
interacting incoherent bosons described in Chapter 3. In particular, we consider the evolution of
the kinetic and interaction energy, as well as the probability density distribution in momentum
space.

F.1 Energy

Time evolution of kinetic and interaction energy per particle for different interaction strengths
is plotted in Fig. F.1. Here we define the kinetic energy per particle as the expectation value
of the time-dependent Hamiltonian (C.1) divided by the total number of particles

Ekin(t) = 1
N

〈 ∑
l,m,i,j

ψ∗l,m(t)Hlm,ij(t)ψi,j(t)
〉
, (F.1)

while the interaction energy per particle is

Eint(t) = 1
N

U

2

〈∑
l,m

|ψl,m(t)|2
(
|ψl,m(t)|2 − 1

)〉
. (F.2)

Both energies grow with increasing interaction coefficient U .
When the interactions are strong enough and after long enough time, the atoms become

equally distributed between the eigenstates of the Hamiltonian Ĥ(t). As the energy spectrum
of Ĥ(t) is symmetric around zero, the expectation value of Ĥ(t) (kinetic energy) should be zero
when all bands are equally populated. We can see this in Fig. F.1(a), where the kinetic energy
approaches zero at t ≈ 50 ms for the case U = 0.05.

The interaction energy at first rapidly decreases, as the cloud rapidly expands after turning
off the confinement potential V̂conf , and after that continues to slowly decrease as the cloud
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Figure F.1: (a) Kinetic energy per particle (expectation value of the time-dependent Hamil-
tonian Ekin(t) = 1

N

〈∑
l,m,i,j ψ

∗
l,m(t)Hlm,ij(t)ψi,j(t)

〉
divided by the total number of particles

N) for several different interaction strengths. (b) Interaction energy per particle Eint(t) =
1
N
U
2

〈∑
l,m|ψl,m(t)|2 (|ψl,m(t)|2 − 1)

〉
. U is given in units where J = 1.

slowly expands; see Fig. F.1(b).
These considerations also provide a possibility to discuss the applicability of the approxi-

mative method introduced in Section 3.3. As we work in the regime of high frequency ω = 20,
we find that for weak interaction, at short enough times of propagation, the energy is approxi-
mately conserved. At stronger values of U ≥ 0.01 we observe a slow increase in the total energy
on the considered time scales. In both cases we do not find the onset of parametric instabilities
[174]. If present, these instabilities are signaled by an order of magnitude increase in energy on
a short time scale, that we do not find.

In addition, the two-body interaction can deplete the occupancies of initial coherent modes
[172, 184] and limit the validity of our approach. In principle, these types of processes can
be addressed by including quantum fluctuations along the lines of the full truncated Wigner
approach [187]. Yet, we set our parameters in such a way that these additional contributions
are small.

F.2 Momentum-space density distribution

The momentum-space probability densities at the initial moment and after 75 driving periods
(50 ms) are shown in Fig. F.2. The interactions deplete the lowest band, but also smooth out
the density distribution.
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Figure F.2: Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U
is given in units where J = 1. Left: evolution using the time-dependent Hamiltonian Ĥeff,1.
Right: evolution using the time-dependent Hamiltonian Ĥ(t). (a), (b) Initial state. (c), (d)
Final state after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g),
(h) U = 0.05.
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The effective model from Chapter 4

In this appendix we review the derivation of the model given in Eq. (4.1) from Chapter 4.
The system is described by

Ĥlab(t) = ĤBH + Ĥdrive(t) + ω V̂ , (G.1)

where we start with the Bose-Hubbard model

ĤBH =− Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
− Jy

∑
m,n

(
â†m,n+1âm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1), (G.2)

and we introduce an offset ωV̂ :
V̂ =

∑
m,n

n n̂m,n. (G.3)

This shifted Bose-Hubbard model is exposed to a suitable resonant driving scheme:

Ĥdrive(t) = κ

2
∑
m,n

sin
(
ωt− φm,n + φ

2

)
n̂m,n, φm,n = (m+ n)φ. (G.4)

We assume periodic boundary conditions compatible with the driving term (G.4) in the labo-
ratory frame. To this purpose we use vectors R1 = 4 ex and R2 = −ex + ey as presented in
Fig. 4.1. For simplicity, we work in the rotating frame

|ψrot(t)〉 = eiωtV̂ |ψlab(t)〉 (G.5)

and derive the Schrödinger equation

i
d|ψrot(t)〉

dt
= Ĥrot(t)|ψrot(t)〉, (G.6)
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where
Ĥrot(t) =

(
eiωtV̂ Ĥlab(t)e−iωtV̂ − ωV̂

)
. (G.7)

Now we calculate Ĥrot(t) explicitly. The only nontrivial action of this rotation on Ĥlab comes
from the nearest-neighbor hopping along y direction. Indeed, we have

eiωtV̂ â†m,nâm,n′e
−iωtV̂ = eiωt(n−n

′)â†m,nâm,n′ . (G.8)

In total we obtain

Ĥrot(t) = −Jx
∑
m,n

(
â†m+1,nâm,n + H. c.

)
+ U

2
∑
m,n

n̂m,n(n̂m,n − 1)

+ eiωtĤ1 + e−iωtĤ−1 + e−iωt(Ly−1)ĤLy−1 + eiωt(Ly−1)Ĥ−Ly+1, (G.9)

with

Ĥ1 = −Jy
OBC∑
m,n

(
â†m,n+1âm,n −

i

4κe
i(−φm,n+φ

2 )n̂m,n

)
, Ĥ−1 = Ĥ†1, (G.10)

Ĥ−Ly+1 = −Jy
∑
m

â†m,0âm−Ly ,Ly−1, ĤLy−1 = Ĥ†−Ly+1. (G.11)

In the terms Ĥ−Ly+1 and ĤLy−1 we take into account periodic boundary conditions along the
direction parallel to R2 as imposed in the laboratory frame. In order to limit the complexity of
the numerical calculation, we keep translational invariance and impose the periodic boundary
conditions in both directions in the rotating frame. This implies that we will neglect “phasors”
e−iωt(Ly−1) and eiωt(Ly−1). Under these assumptions, we can recast Eq. (G.9) into the time-
dependent Hamiltonian given in Eq. (4.1). In practice, this would require engineering additional
non-trivial terms in the laboratory frame.

The leading order of the kick operator is given by

K̂(t = 0) ≈ − κ

2ω
∑
m,n

cos(φm,n − φ/2)n̂m,n. (G.12)
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205301 (2016).

[162] H. Zhao, J. Knolle, and F. Mintert, Phys. Rev. A 100, 053610 (2019).

[163] L. Barbiero, C. Schweizer, M. Aidelsburger, E. Demler, N. Goldman, and F. Grusdt, Sci.
Adv. 5, eaav7444 (2019).

[164] N. Pancotti, G. Giudice, J. I. Cirac, J. P. Garrahan, and M. C. Bañuls, Physical Review
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[206] B. Juliá-Dı́az, D. Dagnino, K. J. Günter, T. Grass, N. Barberán, M. Lewenstein, and
J. Dalibard, Phys. Rev. A 84, 053605 (2011).
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5. V. Dmitrašinović, M. Šuvakov, and A. Hudomal, “Gravitational waves from periodic
three-body systems”, Phys. Rev. Lett. 113, 101102 (2014).

Three of these papers (1-3) are directly related to the research presented in this thesis. The
other two papers (4-5) are the result of the research conducted during her MSc studies. Ana
Hudomal has also presented her research through one talk and several poster presentations at
international schools, workshops and conferences.

109

https://doi.org/10.1038/s42005-020-0364-9
https://doi.org/10.1103/PhysRevA.100.053624
https://doi.org/10.1103/PhysRevA.98.053625
https://doi.org/10.1088/1751-8121/aaca41
https://doi.org/10.1103/PhysRevLett.113.101102


Изјава о ауторству

Име и презиме аутора – Ана Худомал

Број индекса – 2015/8006

Изјављујем

да је докторска дисертација под насловом 

Numerical  study  of  quantum gases  in  optical  lattices  and  in  synthetic  magnetic  fields
(Нумеричко  проучавање  квантних  гасова  у  оптичким  решеткама  и  у  синтетичким
магнетним пољима)

 резултат сопственог истраживачког рада;

 да дисертација  у  целини ни  у  деловима није  била  предложена за  стицање друге
дипломе према студијским програмима других високошколских установа;

 да су резултати коректно наведени и 

 да нисам кршио/ла ауторска права и користио/ла интелектуалну својину других лица. 

                                                                                                  Потпис аутора

У Београду, 27. 08. 2020. год.

            ___________________



Изјава o истоветности штампане и електронске верзије
докторског рада

Име и презиме аутора – Ана Худомал

Број индекса – 2015/8006

Студијски програм – Физика

Наслов  рада  –  Numerical  study  of  quantum  gases  in  optical  lattices  and  in  synthetic
magnetic  fields (Нумеричко проучавање квантних гасова у  оптичким решеткама и  у
синтетичким магнетним пољима)

Ментор – др Ивана Васић

Изјављујем да је штампана верзија мог докторског рада истоветна електронској верзији коју
сам  предао/ла ради  похрањивања  у  Дигиталном  репозиторијуму  Универзитета  у
Београду. 

Дозвољавам да се објаве моји лични подаци везани за добијање академског назива доктора
наука, као што су име и презиме, година и место рођења и датум одбране рада. 

Ови  лични  подаци  могу  се  објавити  на  мрежним  страницама  дигиталне  библиотеке,  у
електронском каталогу и у публикацијама Универзитета у Београду.

                              Потпис аутора 

У Београду, 27. 08. 2020. год.

   _____________________



Изјава о коришћењу

Овлашћујем Универзитетску библиотеку „Светозар Марковић“ да у Дигитални репозиторијум
Универзитета у Београду унесе моју докторску дисертацију под насловом:

Numerical  study  of  quantum gases  in optical  lattices  and  in  synthetic  magnetic  fields
(Нумеричко  проучавање  квантних  гасова  у  оптичким  решеткама  и  у  синтетичким
магнетним пољима)

која је моје ауторско дело. 

Дисертацију са свим прилозима предао/ла сам у електронском формату погодном за трајно
архивирање. 

Моју  докторску  дисертацију  похрањену  у  Дигиталном  репозиторијуму  Универзитета  у
Београду  и  доступну  у  отвореном  приступу  могу  да  користе  сви  који  поштују  одредбе
садржане у одабраном типу лиценце Креативне заједнице (Creative Commons) за коју сам се
одлучио/ла.

1. Ауторство (CC BY)

2. Ауторство – некомерцијално (CC BY-NC)

3. Ауторство – некомерцијално – без прерада (CC BY-NC-ND)

4. Ауторство – некомерцијално – делити под истим условима (CC BY-NC-SA)

5. Ауторство –  без прерада (CC BY-ND)

6. Ауторство –  делити под истим условима (CC BY-SA)

(Молимо да заокружите само једну од шест понуђених лиценци.
 Кратак опис лиценци је саставни део ове изјаве).

                                                                                                       Потпис аутора

У Београду, 27. 08. 2020. год.

____________________



1.  Ауторство. Дозвољавате  умножавање,  дистрибуцију  и  јавно  саопштавање  дела,  и
прераде,  ако  се  наведе  име  аутора  на  начин  одређен  од  стране  аутора  или  даваоца
лиценце, чак и у комерцијалне сврхе. Ово је најслободнија од свих лиценци.

2.  Ауторство  –  некомерцијално.  Дозвољавате  умножавање,  дистрибуцију  и  јавно
саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране аутора
или даваоца лиценце. Ова лиценца не дозвољава комерцијалну употребу дела.

3. Ауторство – некомерцијално – без прерада. Дозвољавате умножавање, дистрибуцију и
јавно саопштавање дела, без промена, преобликовања или употребе дела у свом делу, ако
се  наведе  име  аутора  на  начин  одређен  од  стране  аутора  или  даваоца  лиценце.  Ова
лиценца не дозвољава комерцијалну употребу дела. У односу на све остале лиценце, овом
лиценцом се ограничава највећи обим права коришћења дела. 

 4.  Ауторство  –  некомерцијално –  делити  под  истим  условима.  Дозвољавате
умножавање, дистрибуцију и јавно саопштавање дела, и прераде, ако се наведе име аутора
на начин одређен од стране аутора или даваоца лиценце и ако се прерада дистрибуира под
истом или сличном лиценцом. Ова лиценца не дозвољава комерцијалну употребу дела и
прерада.

5. Ауторство – без прерада. Дозвољавате умножавање, дистрибуцију и јавно саопштавање
дела, без промена, преобликовања или употребе дела у свом делу, ако се наведе име аутора
на  начин  одређен  од  стране  аутора  или  даваоца  лиценце.  Ова  лиценца  дозвољава
комерцијалну употребу дела.

6.  Ауторство –  делити под истим условима. Дозвољавате умножавање, дистрибуцију и
јавно саопштавање дела, и прераде, ако се наведе име аутора на начин одређен од стране
аутора  или  даваоца  лиценце  и  ако  се  прерада  дистрибуира  под  истом  или  сличном
лиценцом.  Ова  лиценца  дозвољава  комерцијалну  употребу  дела  и  прерада.  Слична  је
софтверским лиценцама, односно лиценцама отвореног кода.


	Изјава о ауторству
	Изјава o истоветности штампане и електронске верзије докторског рада
	Изјава о коришћењу

