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Abstract

Let S be a locally small category, and fix two (not necessarily distinct) objects i, j
in S. Let Sij and Sji denote the set of all morphisms i→ j and j → i, respectively.
Fix a ∈ Sji and define (Sij , ?a), where x ?a y = xay for x, y ∈ Sij . Then, (Sij , ?a) is
a semigroup, known as a sandwich semigroup, and denoted by Saij . In this thesis, we
conduct a thorough investigation of sandwich semigroups (in locally small categories)
in general, and then apply these results to infer detailed descriptions of sandwich
semigroups in a number of categories.

Firstly, we introduce the notion of a partial semigroup, and establish a framework
for describing a category in "semigroup language". Then, we prove various results de-
scribing Green’s relations and preorders, stability and regularity of Saij . In particular,
we emphasize the relationships between the properties of the sandwich semigroup
and the properties of the category containing it. Also, we highlight the significance
of the properties of the sandwich element a. In this process, we determine a natural
condition on a called sandwich regularity which guarantees that the regular elements
of Saij form a subsemigroup tightly connected to certain non-sandwich semigroups.
We explore these connections in detail and infer major structural results on Reg(Saij)
and the generation mechanisms in it. Finally, we investigate ranks and idempotent
ranks of the regular subsemigroup Reg(Saij) and idempotent-generated subsemig-
roup E(Saij) of Saij . In general, we are able to infer expressions for lower bounds for
these values. However, we show that in the case when Reg(Saij) is MI-dominated (a
property which has to do with the "covering power" of certain local monoids), the
mentioned lower bounds are sharp.

We apply the general theory to sandwich semigroups in various transformation
categories (partial maps P T , injective maps I, totally defined maps T , and matrices
M(F) − corresponding to linear transformations of vector spaces over a field F) and
diagram categories (partition P, planar partition PP, Brauer B, partial Brauer PB,
Motzkin M , and Temperley-Lieb T L categories), one at a time. In each case, we
investigate the partial semigroup itself in terms of Green’s relations and regularity
and then focus on a sandwich semigroup in it. We apply the general results to
thoroughly describe its structural and combinatorial properties. Furthermore, since
in each category that we consider all elements are sandwich-regular, we may apply
the theory concerning the regular subsemigroup in all of these cases. In particular,
Reg(Saij) turns out to be tightly connected to a certain non-sandwich monoid for each
category S we consider, and we are able to describe Reg(Saij) and E(Saij). However,
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we conduct the combinatorial part of the investigation only for the sandwich semig-
roups in transformation categories (P T , I, T , andM(F)) and sandwich semigroups
in the Brauer category B since only these have MI-dominated regular subsemigroups
(and some other properties that make them more amenable to investigation). For
these sandwich semigroups, we enumerate regular Green’s classes and idempotents,
and we calculate the ranks (and idempotent ranks, where appropriate) of Reg(Saij),
E(Saij) and Saij .



Izvod

Neka je S lokalno mala kategorija. Fiksirajmo proizvoljne (ne nužno različite)
objekte i i j iz S. Neka Sij i Sji označavaju skupove svih morfizama i → j i
j → i, redom. Fiksirajmo morfizam a ∈ Sji i definišimo strukturu (Sij , ?a), gde je
x ?a y = xay za sve x, y ∈ Sij . Tada je (Sij , ?a) sendvič polugrupa, koju označavamo
sa Saij . U tezi ćemo sprovesti detaljno ispitivanje sendvič polugrupa (u lokalno
maloj kategoriji) u opštem slučaju, a zatim ćemo primeniti dobijene rezultate u cilju
opisivanja sendvič polugrupa u konkretnim kategorijama.

Najpre uvodimo pojam parcijalne polugrupe i postavljamo osnovu koja nam
omogućava da opišemo kategoriju na "jeziku polugrupa". Zatim slede brojni rezul-
tati koji opisuju Grinove relacije i poretke, kao i stabilnost i regularnost polugrupe
(Sij , ?a). Tu posebno ističemo veze između osobina sendvič polugrupe i parcijalne
polugrupe koja je sadrži. Takođe, posebnu pažnju posvećujemo uticaju sendvič ele-
menta a na osobine sendvič polugrupe (Sij , ?a). Kao najbitniji primer se izdvaja oso-
bina sendvič-regularnosti; naime, dokazujemo da, ako je a sendvič-regularan, onda
regularni elementi iz Saij formiraju podgrupu koja je usko povezana sa određenim
"ne-sendvič" polugrupama. U tezi detaljno ispitujemo te veze i dobijamo važne rezul-
tate o strukturi polugrupe Reg(Sij , ?a) i mehanizmima generisanja u njoj. Za kraj,
ispitujemo rangove i idempotentne rangove regularne potpolugrupe Reg(Sij , ?a) i
idempotentno-generisane potpolugrupe E(Sij , ?a). U opštem slučaju možemo dati
donja ograničenja za ove vrednosti. Međutim, u slučaju kada je regularna polugrupa
Reg(Sij , ?a) MI-dominirana (što znači da je određeni lokalni monoidi pokrivaju), ta
donja ograničenja su dostignuta.

U ostatku teze, primenjujemo opštu teoriju na sendvič polugrupe u brojnim ka-
tegorijama transformacija (parcijalne funkcije P T , injektivne parcijalne funkcije I,
potpuno definisane funkcije T i matrice M(F), koje predstavljaju linearne trans-
formacije vektorskih prostora nad poljem F) i kategorijama dijagrama (particije P,
planarne particije PP, Brauerove B, parcijalne Brauerove PB, Mockinove M , i
Temperli-Lib T L particije). U svakom od ovih slučajeva, prvo istražujemo parci-
jalnu polugrupu iz aspekta Grinovih relacija i regularnosti, a zatim se fokusiramo na
(proizvoljnu) sendvič polugrupu u njoj. Pri tome, primenjujemo opšte rezultate da
bismo detaljno opisali njenu strukturu i kombinatorne osobine. Osim toga, u svim
slučajevima primenjujemo i teoriju vezanu za regularnu potpolugrupu, pošto su svi
elementi u našim kategorijama sendvič-regularni. To znači da je u svakoj kategoriji
S koju razmatramo, Reg(Sij , ?a) usko povezana sa određenim monoidom, i preko
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te veze možemo opisati polugrupe Reg(Sij , ?a) i E(Sij , ?a). Ipak, kombinatorni deo
ispitivanja sprovodimo samo za sendvič polugrupe u kategorijama transformacija
(P T , I, T i M(F)) i sendvič polugrupe u Brauerovoj kategoriji B, pošto samo
one imaju MI-dominirane regularne potpolugrupe (i još neke osobine koje ih čine
pogodnijim za ispitivanje). U ovim sendvič polugrupama računamo broj regularnih
Grinovih klasa i idempotenata, i izračunavamo rangove (i idempotentne rangove,
ako postoje) polugrupa Reg(Sij , ?a), E(Sij , ?a) i Saij .



Preface

In the Serbian education system, a PhD candidate is required to publish at least
one scientific article related to the topic of the thesis in order to be allowed to
defend that thesis. In fact, it is a common practice to publish all the results in
scientific journals first, and then to compile them in a thesis. For this reason, we
present here results that have already been published in [33], [34] and [28]. The
goal was to give a detailed and comprehensive account of the properties of sandwich
semigroups in general (from [33]), and then to present the applications and further
results obtained in [34] and [28]. To supplement this material, we also present the
results from [30], using the theory and techniques developed in [33] (and simplifying
the proofs significantly).

The field of sandwich semigroups, to which this thesis belongs, was born in the
’50s, and it developed into an important area of research, due to the variety of fields
in which sandwich operations arise naturally. Of course, this led to a number of
related articles (see Section 1.1). However, until recently, the results were situation-
specific, and there was no attempt to create a unifying theory which will apply to all
sandwich semigroups, not depending on the category, or on the type of the underlying
hom-set. So, aside from the scientific contribution of the articles [33], [34], and [28],
the thesis contributes to the field in compiling the recent results of general type,
along with numerous results in the domain of the combinatorial theory of semigroups.
Moreover, we conduct a thorough investigation of the sandwich semigroups in four
transformation categories (partial maps P T , injective maps I, "classical" maps T ,
and matricesM(F) over a field F) and six diagram categories (partition P, planar
partition PP, Brauer B, partial Brauer PB, Motzkin M , and Temperley-Lieb T L),
which provides valuable insight and offers illustrative examples to demonstrate the
differences and similarities among the sandwich semigroups of these types.

The thesis is organised as follows. In Chapter 1, we give the historical background
for our topic and provide a short introduction, presenting the notions, notation and
results needed for understanding the rest of the thesis. Then, in Chapter 2, we
present the general theory developed in [30], [33] and [28]. We introduce partial
semigroups and the notions needed to describe their structure (such as Green’s re-
lations, regular elements, etc.). Next, we focus on a fixed sandwich semigroup Saij :
we characterise its Green’s relations and preorders, and then study structural issues
such as regularity, stability, and generation. Then, we introduce the condition of
sandwich-regularity on the sandwich element, and under that assumption investig-
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ate the structure of Saij and Reg(Saij) via the connection to certain non-sandwich
semigroups. In particular, if a is sandwich-regular, there exists b ∈ Sij with a = aba
and b = bab, and we prove that the regular subsemigroup Reg(Saij) is a pullback
product of certain regular subsemigroups of Sii and Sjj , and is also closely related
to a certain regular submonoid of Sbji. This allows us to describe the structure of
Reg(Saij) and the idempotent-generated subsemigroup E(Saij). In Section 2.4, we
introduce the condition of MI-domination, and show its ties to the issues of gener-
ation; namely, we present lower bounds for rank(Reg(Saij)) and rank(E(Saij)), which
turn out to be sharp if Reg(Saij) is MI-dominated. We end the chapter by presenting
some results concerning inverse categories and the rank of a sandwich semigroup.

In Chapter 3, which is based on [33], we apply the results presented in the pre-
vious chapter. Section 3.1 is dedicated to the partial semigroup P T and sandwich
semigroups in it. First, we study Green’s relations, regularity and stability in P T as
well as invertibility and the combinatorial structure of a hom-set P T XY . Then, we
focus on the sandwich semigroup P T aXY . We describe its Green’s relations and pre-
orders, regularity and stability; we show that the regular subsemigroup Reg(P T aXY )
is a kind of "inflation" of P T A, where A is the image of the sandwich element a.
This allows us to describe the combinatorial structure of Reg(P T aXY ), and the ele-
ments of the idempotent-generated subsemigroup E(P T aXY ). Further, we show that
Reg(P T aXY ) is always MI-dominated, so we are able to calculate rank(Reg(Saij)) and
rank(E(P T aXY )). Finally, we obtain formulae for rank(P T aXY ) depending on the
properties of a. In Sections 3.2 and 3.3, the same program is also carried out for the
sandwich semigroups in partial semigroups T and I, respectively.

In Chapter 4, we present the results of [30], but we prove them as applications
of the theory from Chapter 2. Following the program established in the previous
chapter, we investigate the partial semigroup M(F) of all matrices over a field F,
the sandwich semigroup MA

mn(F), its regular subsemigroup Reg(MA
mn(F)) (prov-

ing that it is an inflation ofMrank(A)(F)) and idempotent-generated subsemigroup
E(MA

mn(F)). We are able to prove that Reg(MA
mn(F)) is always MI-dominated, and

so we obtain the formulae for the ranks of all these semigroups.
Finally, Chapter 5 is dedicated to diagram categories. Again, we follow the

same program of investigation for the partial semigroups P, PP, B, PB, M , and
T L, as far as we are able to. In particular, we describe structural and combinat-
orial properties: Green’s relations and preorders, regularity, stability, mid-identities
and idempotent-generated subsemigroups. However, it turns out that the sandwich
semigroups in B differ substantially from the sandwich semigroups in the other dia-
gram categories we study. For instance, in B we always have MI-domination in the
regular subsemigroup, while in the others we do not. Hence, in Bαmn we are able
to conduct a more thorough investigation: we include results on isomorphism clas-
sification, the combinatorial structure of the regular subsemigroup, enumeration of
idempotents, and the ranks of Reg(Bαmn), E(Bαmn) and Bαmn.

Novi Sad, September 2nd, 2020.

Ivana Ðurđev
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Chapter 1

Introduction

Here, we give some historical background on sandwich semigroups. For more inform-
ation and additional references, the reader is advised to consult the introductions
to the articles [28–30, 33, 34], which were the primary sources for the first section.
In the second part of the chapter, we introduce the theory and notation needed for
understanding the content of the thesis.

1.1 The story of sandwich semigroups

The idea of sandwich semigroups is based on the notion of a sandwich operation.
This type of operation arises naturally in the theory of semigroups. Indeed, it is
essential in the structural theory of finite semigroups, and its first appearance can
be traced back to this particular field. Namely, any finite semigroup can be de-
composed (see [58], section 3.1) in a certain way into principal factors, which are
always semigroups of one of the two following types: completely 0-simple semig-
roups or zero-semigroups. As shown by Rees [106] in 1940, any completely 0-simple
semigroup is isomorphic to a Rees matrix semigroupM0(Λ, I, P ;G), in which mul-
tiplication of nonzero elements depends on a sandwich matrix P . More precisely
(but without going into too much detail),

(i, g1, λ)(j, g2, κ) = (i, g1 · pλj · g2, κ),

where pλj is the (λ, j)-element of the matrix P . The term "sandwich operation"
clearly stems from the fact that g1 and g2 are not simply multiplied, but are combined
into a "sandwich" with pλj . In fact, the same term is used in all cases where we
introduce a new type of binary multiplication, based on some "simpler" (binary)
one, in the following manner: insert an element between the factors and multiply
all three of them via the "base" multiplication rule.

Naturally, sandwich semigroups are semigroups whose multiplication is a sand-
wich operation. The first time such a semigroup was considered (at least indirectly)
was in a 1955 article [100], by Munn. Probably motivated by Rees’ work, he invest-
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igated rings of m× n matrices, with matrix addition and sandwich multiplication

X ◦ Y = XPY,

where the sandwich matrix P had a form prescribed by Rees’ theorem. This article
became extremely influential in the theory of semigroup representations (see for
example [3, 21, 22, 51, 61, 75, 94, 104, 112, 113] and monographs [103, 107, 114]), so
these rings became known as Munn rings.

In the same year, in [11], Brown considered such rings as well (he named these
structures generalised matrix algebras), but since he was motivated by a connection
with classical groups (see [10,12,128]), he did not restrict the form of the sandwich
element. This paper also had a profound impact on the development of representa-
tion theory, which can be seen in [35,47,50,73,74,80,121,129,130].

Finally, five years after that, sandwich semigroups were mentioned on their own
merits for the first time. Namely, Lyapin, in his monograph [82], introduced a few
interesting semigroup constructions, and among them the following type of sandwich
semigroups: for any two non-empty sets V,W let T VW denote the set of all mappings
from V to W ; if we fix V , W and an arbitrary function θ ∈ T WV , then T θV W =
(T VW , ?θ), where

f ?θ g = f ◦ θ ◦ g, for all f, g ∈ T VW ,

is a sandwich semigroup of functions. Note that, if V and W are vector spaces
over the same field and we restrict our attention to the set of linear transformations
V → W (denoted LVW ) and fix a linear transformation θ ∈ LWV , we arrive at
a sandwich semigroup of linear transformations (or equivalently linear sandwich
semigroup) LθV W = (LVW , ?θ�LVW ). This semigroup is isomorphic to a sandwich
semigroup of matrices (see chapter 4) and therefore also isomorphic to the underlying
multiplicative semigroup of the corresponding generalised matrix algebra.

Magill was the first to actually investigate any type of sandwich semigroups;
in [84], which appeared in 1967, he studied T θV W . This paper was followed by
two more articles on the same topic which he wrote with Subbiah, [86, 87], and an
article [116] from Sullivan on sandwich semigroups of partial functions.

The 80’s brought some fresh ideas in the field, when Hickey published [53] and
[54], where he introduced and investigated a new type of sandwich semigroups − a
variant of a semigroup: for a semigroup S and any element a ∈ S, the semigroup
Sa = (S, ?a), where

b ?a c = bac, for all b, c ∈ S,

is the variant of semigroup S corresponding to the element a.
Thus, two main directions in the studies of sandwich semigroups were formed:
1. investigation of sandwich semigroups within a fixed category (e.g. sandwich

semigroups of matrices, sandwich semigroups of functions) and

2. investigation of variants of semigroups.
Both of these topics have induced considerable interest, which can be seen in more
recent articles, in particular. There have been papers on sandwich semigroups
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of functions: [15, 96, 118, 126], on linear sandwich semigroups: [20, 66, 71, 97], on
sandwich semigroups of binary relations: [16–18, 120] and on variants of semig-
roups: [72,123–125]. Moreover, in the monograph [45], a whole chapter was devoted
to variants of various kinds of transformation semigroups. However, all these texts
deal primarily with structural properties such as Green’s relations, (von Neumann)
regularity, ideals, classification up to isomorphism, and so on. In [29], Dolinka and
East have undertaken a different task: they have investigated variants of a finite full
transformation semigroup from the perspective of combinatorial semigroup theory.
This project required further development of the general theory of variants. Inspired
by this study, in 2016 they wrote another paper, [30], studying the same problems for
sandwich semigroups of matrices (i.e. linear sandwich semigroups), for which they
proved a number of general results concerning sandwich semigroups. In particular,
they have introduced the notions of a partial semigroup and a sandwich semigroup
in a locally small category, which incorporates all the different forms of sandwich
semigroups previously mentioned. The results of this paper motivated the authors
to study sandwich semigroups of (totally defined, partial and injective) transforma-
tions from the same point of view, in cooperation with other authors (among them is
the author of this thesis). This, in turn, prompted further investigation of sandwich
semigroups in general (that is, in locally small categories), and the whole project
resulted in papers [33] and [34]. In the first one, we give an in-depth investigation
of sandwich semigroups in locally small categories and their combinatorial proper-
ties. These results are applied to the sandwich semigroups of transformations in the
second one, and additional theory and calculations concerning this special case are
provided, as well. The same idea has driven the creation of [28], in which we study
sandwich semigroups of diagrams.

In this thesis, we hope to compile the results of [33], [30], [34], and [28], by giving
a comprehensive base from the first paper, subsequently applying it and further
developing the results for the sandwich semigroups of transformations, matrices,
and diagrams, respectively.

These studies (and this thesis) might prove extremely beneficial not only for
semigroup theory in general but also in any field in which semigroup operations
arise naturally:

• representation theory [50,100],

• classical groups [11],

• category theory [99],

• automata theory [16,17],

• topology [85,87],

• computational algebra [37], and more.
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1.2 Basics

Here, we give a short base for understanding the content.

Remark 1.2.1. It is important to point out that we work in the universe of the
standard ZFC theory (see Chapters 1,5 and 6 of [62]).

A groupoid is an ordered pair (G, ·) consisting of a non-empty set G, and a binary
operation · on G (in other words, a G × G → G function). If the exact operation
is either known or implied or not essential for our discussion, we usually make an
omission and denote that groupoid by G. To further shorten the notation, we may
even leave out the sign of the operator in expressions; for instance, a · b will be
denoted ab.

A semigroup is a groupoid G, which has the associative property:

(a · b) · c = a · (b · c), for all a, b, c ∈ G. (1.1)

If an element e of a groupoid G satisfies

• a · e = a for each a ∈ G, it is a right-identity of the groupoid G;

• e · a = a for each a ∈ G it is a left-identity of the groupoid G;

• a · e = e · a = a for each a ∈ G, it is a (two-sided) identity of the groupoid G.

A monoid is a semigroup possessing a two-sided identity. It can be easily shown
that such an identity is unique, if it exists.

Let S be a semigroup with a left-identity el. If a · b = el holds in S, we say that
a is a left-inverse of b (i.e. b is left-invertible). In the case that er is a right-identity
of S and a · b = er, we say that b is a right-inverse of a (i.e. a is right-invertible).
Moreover, if monoid M satisfies the following:

for each a ∈ M there exists b ∈ M , which is both a left- and a right-
inverse for a,

then M is a group. If it exists, the element b can be shown to be unique for a fixed
a; we call it the inverse of a and denote it a−1 (in this case, we say a is invertible).
It is important to mention that there is a different notion of an inverse element for
semigroups, and we will use that one exclusively from a certain point on; but, for
now, by inverse we mean a group inverse.

If a group G has the commutative property:

a · b = b · a, for all a, b ∈ G,

it is an Abelian group. An important example of a group is the symmetric group on
a set X, SX , whose elements are precisely all the permutations of the set X, and
the operation is composition. More about symmetric groups will be said later.
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For any listed type of structure, groupoid/semigroup/monoid/group, we define
the term of the substructure of the corresponding type: subgroupoid/ subsemig-
roup/submonoid/subgroup, whose elements constitute a subset of some bigger struc-
ture S and form a groupoid/semigroup/monoid/group, under the operation of S.
Such a substructure is trivial if it contains either all the elements of S or only the
identity (of course, this is possible only in the case of monoids and groups).

A more complex structure, field, is a 3-tuple (F,+, ·) consisting of a set F and
two operations on it, such that (F,+) is an Abelian group with identity e, (F \{e}, ·)
is also an Abelian group and the second operation is distributive over the first:

(a+ b) · c = a · c+ b · c, for all a, b, c ∈ G and
a · (b+ c) = a · b+ a · c, for all a, b, c ∈ G.

Having covered some of the basic algebraic structures, now we turn to notions
and notation concerning relations and functions. Given arbitrary sets X and Y ,
their direct product is the set

X × Y = {(x, y) : x ∈ X, y ∈ Y }.

A binary relation on a non-empty set X is any subset of the direct product X ×X.
As the elements of such a relation σ are ordered pairs, we often simplify the notation
and write xσy instead of (x, y) ∈ σ. A binary relation σ on X is

reflexive if xσx for all x ∈ X;

symmetric if xσy implies yσx for all x, y ∈ X;

antisymmetric if xσy and yσx together imply x = y for all x, y ∈ X;

transitive if xσy and yσz together imply xσz for all x, y, z ∈ X.

If a binary relation is reflexive, antisymmetric, and transitive, it is a partial order.
If σ is a partial order on X and any two elements x, y ∈ X are in a relation (i.e.
we have xσy or yσx), then σ is a total order, and X is a chain (in other words,
a totally ordered set). If a binary relation is reflexive, symmetric, and transitive
it is an equivalence (relation). For any x ∈ X, an equivalence σ on X defines the
equivalence class of x

[x]σ = {y ∈ X : xσy}.

The union of all equivalence classes of σ is the partition of the set X corresponding
to the equivalence σ. An equivalence σ where, for all x, y ∈ X the relation (x, y) ∈ σ
implies that (cx, cy) ∈ σ for all c ∈ X, is called a left-congruence. A right-congruence
is defined symmetrically. Finally, an equivalence is a congruence if it is both a left-
and a right-congruence.

Since relations are essentially sets, we may check if two relations are comparable
(i.e. one of them includes the other), and we may obtain their intersection, as well
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as their union. Furthermore, we may compose them: for binary relations σ, τ on X,

σ ◦ τ = {(x, y) ∈ X ×X : there exists z ∈ X such that (x, z) ∈ σ and (z, y) ∈ τ}.

Finally, note that the full relation X ×X and the diagonal relation ∆X = {(x, x) :
x ∈ X} are the biggest and the smallest (in terms of inclusion) equivalences on a
set X, respectively.

Next, we introduce some terms related to functions. For a function f , the map
of an element x of its domain, dom f , is denoted xf . If f maps G to H (which is
denoted f : G → H) with X ⊆ G and Y ⊆ H, then Xf = {xf : x ∈ X} is the
direct image of X under f and Y f−1 = {x ∈ G : xf ∈ Y } is the inverse image of
Y under f . A partial function f , mapping G to H, is a function whose domain is a
subset of the set G. Elements of G \ dom f are characterised as elements without a
map.

The kernel of a function f , denoted ker f , is (clearly) an equivalence relation on
its domain, defined as follows:

(x, y) ∈ ker f ⇔ xf = yf.

The set consisting of all the equivalence classes of this relation is the partition of
the domain which corresponds to ker f . The number of these classes equals the
cardinality of the image of f (im f), and we call it the rank of the function f and
denote it Rank f . We will use the following notation

f =
Ç
Fi
fi

å
i∈I

,

where {Fi : i ∈ I} is the partition corresponding to ker f , and, for fixed i ∈ I, each
member of Fi maps to fi (in case where Fi is a singleton, we often omit the brackets).
To shorten the notation, we use f =

Ä
Fi
fi

ä
if the index set is implied. If we want to

describe a partial function, we either add a column, having the set dom f = G\dom f
on top and a dash (−) below it (describing the non-mapping part), or we emphasise
both the defining sets (f : G→ H) and the domain (dom f ⊆ G).

If (G, ?) and (H, ·) are groupoids and if f is a function mapping G to H which
satisfies

(x ? y)f = xf · yf for all x, y ∈ G,

then f is a homomorphism. Furthermore, if G and H are monoids and the identity of
G maps into the identity of H, f is a monoid homomorphism. Homomorphic images
inherit most of the structural properties from the domain: for example, an identity
of the domain maps to an identity of the image (note that this need not be the
identity of the codomain) and invertible elements of the domain map to invertible
elements of the image; an associative (commutative) structure has an associative
(commutative) image, etc. This means that a homomorphic image of a structure of
any mentioned type is a structure of the same type.

Next, we list some important types of homomorphisms:
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monomorphism: for each element of H there exists at most one element of G
mapping into it (this property is called injectivity);

epimorphism: for each element ofH there exists at least one element of Gmapping
into it (this property is called surjectivity);

endomorphism: the domain and codomain are the same set; the set of all endo-
morphisms of a groupoid G is denoted EndG;

isomorphism: a homomorphism that is both surjective and injective; a groupoid
G is isomorphic to a groupoid H if there exists an isomorphism mapping G to
H (we denote this relation G ∼= H);

Remark 1.2.2. For any two sets of the same cardinality, it is easily proved
that the corresponding symmetric groups are isomorphic. Hence, for a fixed
cardinality n we always consider the symmetric group Sn of all permutations
of the set {1, 2, . . . , n}.

automorphism: an endomorphism, which is an isomorphism as well; the set of all
automorphisms of a groupoid G is denoted AutG.

Let f : G→ H be a homomorphism of groupoids/semigroups/monoids /groups. Its
kernel is a congruence, since (x, y) ∈ ker f implies both (cx, cy) ∈ ker f and (xc, yc) ∈
ker f , for any element c ∈ G. This means that we can define a quotient (factor)
groupoid/semigroup/monoid/group, G/ ker f , whose elements are the equivalence
classes of ker f , and the operation is defined by [a]ker f [b]ker f = [ab]ker f (where
[x]ker f denotes the ker f -class of the element x). If f is an epimorphism, it is easy
to show that G/ ker f ∼= H.

Finally, we will introduce some notions from category theory. For a comprehens-
ive introduction to this field, see [83]. A category consists of nodes (objects) and
their connections, called morphisms. These connections have a binary nature but
are not symmetric, therefore can be shown in the form of arrows. The origin node
and the ending node of an arrow x are called the domain (x δ) and the range (xρ)
of x, respectively. The composition operation is defined in the usual way, meaning
that two arrows can be composed if and only if the domain of the second one is the
range of the first. The "concatenation" of two such arrows always results with an
existing arrow, sharing its domain and range nodes with the first and the second
arrow, respectively. This composition is associative, as well, in the sense of (1.1).
Furthermore, each node is both the starting point and the ending point of at least
one morphism.

Members of a special type of categories, locally small categories, obey some
further rules. If described in the so-called Ehresmann-style "arrows only" fashion
(see [41]), besides previously mentioned conditions, they also satisfy the following:
for any two nodes i and j (not necessarily distinct), the class of all morphisms from
i to j has to be a set (often called hom-set, or morphism set). When the starting
and the ending node coincide, such a hom-set is an endomorphism semigroup. In
this thesis, we deal with locally small categories, unless stated otherwise.
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Remark 1.2.3. The term epimorphism has a slightly different meaning in category
theory. Namely, it denotes a morphism f : A→ B such that f◦g1 = f◦g2 ⇒ g1 = g2,
for all objects C and all morphisms g1, g2 : B → C. Of course, if we work in the
category of maps where the objects are sets, this corresponds exactly to the surjective
functions. However, in general, it has a broader meaning. To avoid confusion, from
now on, we use the term surmorphism to denote a surjective homomorphism.

1.3 Semigroups
In this section, we give the rudiments of semigroup theory but focus on those topics
which will be used in this thesis. For most of the notions, notation and results we
do not reference a particular source since they became a part of semigroup theory
"folklore". For the same reason, we do not provide examples. However, we refer an
interested reader to consult sources containing a detailed introduction to the subject,
say [58] and [22].

Since monoids are more convenient for work than "plain" semigroups, sometimes
we add an identity artificially: for a semigroup (S, ·), we introduce

S1 =
®
S, if S has an identity;
S ∪ {1}, otherwise.

and define s · 1 = 1 · s = 1 for each s ∈ S, and 1 · 1 = 1. Thus, S1, together with
the modified version of operation ·, forms a monoid.

If (S, ·) is a semigroup, X,Y ⊆ S its subsets, and a ∈ S any element, we use the
following notation:

XY = {x · y : x ∈ X, y ∈ Y }, aX = {a · x : x ∈ X}, Xa = {x · a : x ∈ X}.

Furthermore, a subset ∅ 6= I ⊆ S is a

• right ideal of S if IS ⊆ I;

• left ideal of S if SI ⊆ I;

• (two-sided) ideal of S if IS ∪ SI ⊆ I.

The most important ideals of a semigroup are its principal ideals: for a fixed element
a ∈ S,

• aS1 is the principal right ideal of S corresponding to the element a;

• S1a is the principal left ideal of S corresponding to the element a;

• S1aS1 is the principal (two-sided) ideal of S corresponding to the element a.

Clearly, the names are fitting, since it is easily proved that these are the smallest
right, left and two-sided ideal containing a, respectively. These ideals determine the



Subsection 1.3.0 9

structure of the semigroup S, through the famed Green’s relations and preorders.
Namely, the three preorders are defined on S as follows:

a ≤R b ⇔ aS1 ⊆ bS1 (⇔ there exists c ∈ S1 such that a = bc),
a ≤L b ⇔ S1a ⊆ S1b (⇔ there exists c ∈ S1 such that a = cb),
a ≤J b ⇔ S1aS1 ⊆ S1bS1 (⇔ there exist c, d ∈ S1 such that a = cbd).

It is clear that reflexivity and transitivity hold, because our preorders are defined
using inclusion. Now, the corresponding relations, R, L and J are introduced
in a natural manner, while H and D are combinations of R and L : for any two
elements a, b ∈ S,

aR b⇔ aS1 = bS1,

aL b⇔ S1a = S1b,

aJ b⇔ S1aS1 = S1bS1,

aH b⇔ aL b and aR b,

aD b⇔ there exists c ∈ S such that aR c and cL b.

Remark 1.3.1. If x = xyz (x = zyx), we will often conclude xR xy (xL yx) with
no further explanation, because xy ≤R x (yx ≤L y) is clear.

The first three are clearly equivalence relations, by virtue of equality being one,
and the fourth is, in fact, R ∩L , therefore an equivalence relation as well. Only
the fifth one remains. Obviously, D = R ◦L , by the definition of the composition
of relations (◦) and it is reflexive since R and L are. Moreover, we will show that
the following lemma implies the symmetric and transitive properties.

Lemma 1.3.2. R ◦L = L ◦R

Proof. We will prove only ⊆, as a dual argument will give the other inclusion.
Suppose there exists an element c ∈ S such that aR c and cL b. These relations
imply the existence of elements d, e, f, g ∈ S1 such that a = cd, c = ae, c = fb and
b = gc. Note that, for the element x = bd we have

x = bd = gcd = ga and a = cd = fbd = fx,

so aL x. Furthermore,

x = bd and b = gc = gae = gcde = bde = xe

prove xR b, hence aL xR b, i.e. (a, b) ∈ L ◦R.

Having proved this, we may conclude (using the associative property of the
composition of relations and the reflexivity of R and L ):

D−1 = {(a, b) : bD a} = L ◦R = R ◦L = D , and
D ◦D = R ◦L ◦R ◦L = R ◦R ◦L ◦L = R ◦L = D
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Hence, D is also an equivalence relation.
We can easily determine the inclusion relations among R, L , J , D and J .

Obviously, H ⊆ R ⊆ J and H ⊆ L ⊆ J . Furthermore, since R and L are
reflexive, we have R ⊆ D and L ⊆ D . It is also easy to show that D is the
smallest equivalence relation containing both R and L (because D = (R ◦L )∞ =⋃∞
i=1(R ◦L )i), thus D ⊆J . Figure 1.1 shows the described relations.

J

D

L R

H

Figure 1.1: The Hasse diagram of Green’s relations.

Remark 1.3.3. In fact, the relation D is often defined as R ∨L , the smallest
equivalence containing R ∪L . Of course, the two definitions are equivalent, by
virtue of Lemma 1.3.2.

Also, note that we may define a partial order ≤J on the set of all J -classes of
a semigroup S, through the relation ≤J : for J -classes J1 and J2,

J1 ≤J J2 ⇔ (∃a ∈ J1)(∃b ∈ J2)(a ≤J b).

Clearly, the relation is well defined, since for arbitrary elements c ∈ J1 and d ∈ J2,
we have

S1cS1 = S1aS1 ⊆ S1bS1 = S1dS1.

Moreover, it is easy to see that, for any a ∈ S,

S1aS1 =
⋃

b≤J a

S1bS1 = {b ∈ S : b ≤J a},

which implies that S1aS1 is the union of the J -class containing a, and all the J -
classes ≤J -below it. In the special case, when S contains only one J -class, we say
it is a simple semigroup.

The H -, L -, R-, D- and J - classes containing a chosen element a ∈ S are
usually denoted Ha, La, Ra, Da and Ja, respectively.

The H -, R- and L -classes in a fixed D-class can be presented in a convenient
way, using the so-called egg-box diagrams. Here, the rows represent the R-classes,
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and the columns are the L -classes, so the boxes represent the H -classes. These
boxes are always non-empty: for any row r and column c we may pick elements
a ∈ r and b ∈ c and, since aD b, there exists an element y such that aR yL b. This
situation is depicted in the following figure.

a y

x b

Figure 1.2: A layout of an egg-box diagram.

The next lemma provides some more information regarding the R-, L -, and
H -classes in a fixed D-class.

Lemma 1.3.4 (Green’s Lemma). Let a, b be any elements of a semigroup S.

(i) Suppose aR b and the elements s, t ∈ S1 are such that a = bs and b = at. Then
the maps ρt : La → Lb : x→ xt and ρs : Lb → La : x→ xs are mutually inverse
bijections. These maps restrict to mutually inverse bijections ρt�Ha : Ha → Hb

and ρs�Hb : Hb → Ha.

(ii) Suppose aL b and the elements s, t ∈ S1 are such that a = sb and b = ta.
Then the maps λt : Ra → Rb : x → tx and λs : Rb → Ra : x → sx are
mutually inverse bijections. These maps restrict to mutually inverse bijections
λt�Ha : Ha → Hb and λt�Hb : Hb → Ha.

(iii) If aD b, then |Ra | = |Rb |, |La | = |Lb | and |Ha | = |Hb | (where |T | denotes
the cardinality of the set T ).

Proof. We will prove only the first part, as (ii) follows by duality, and (iii) is a direct
consequence of the previous two. First, note that the maps are well-defined, since
for any element c ∈ La (Lb) the definition of L implies ctL at = b (csL bs = a),
so ct ∈ Lb (cs ∈ La). Furthermore, for such a c there exists y ∈ S1 such that c = ya,
hence

cρtρs = cts = yats = ybs = ya = c,

i.e. ρtρs = idLa . Clearly, ρsρt = idLb is proved similarly. Also note that, if we
denote d = cρt = ct, then ds = c and ct = d, so cR d = cρt. This means that
ρt (and ρs, similarly) preserves the R-class, thus for any x ∈ Ha (Hb) we have
xρt ∈ Ra ∩Lb = Hb (xρs ∈ Rb ∩La = Ha).

In order to investigate further the properties of H -classes, we introduce a new
type of elements − idempotents − and examine their properties. An element e is an
idempotent of a semigroup (S, ·) if e·e = e. The set of all idempotents of S is denoted
E(S). A subsemigroup of a semigroup is full if it contains all its idempotents. Note
that an idempotent has to be a left-identity of its R-class, since, for a ∈ Re there
exists s ∈ S1 such that a = es and we have ea = ees = es = a. Similarly, it has to be
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a right-identity of its L -class, and therefore an identity of its H -class. Moreover,
the following holds:

Lemma 1.3.5. If G is a subgroup of a semigroup S, then G ⊆ He, where e is the
identity of G. Indeed, He is the maximal subgroup of S with identity e.

Proof. If G is a subgroup with identity e, and a any of its elements, then we have
ae = ea = a and a−1a = aa−1 = e, so eR aL e, i.e. a ∈ He. For the other
statement, we have to prove that He is a group for any e ∈ E(S). Clearly, e acts as
an identity. The restriction ·�He is an operation, since for any a, b ∈ He (from bR e
and aL e) we have abR ae = aR e and abL eb = bL e, so abH e. Finally, we
need to find an inverse for an arbitrary element a ∈ He. Obviously, aH e implies
the existence of elements s, t ∈ S1 such that at = e and sa = e. Let us examine
elements x = ete and y = ese:

ax = aete = ate = ee = e, ya = esea = esa = ee = e,

x = ete = eete = ex = (ya)x = y(ax) = ye = esee = ese = y.

From these, we conclude that x is an element with required properties, such that
x ∈ He.

In the special case, when S is a monoid with identity e, the class He is called the
group of units of S.

Since idempotents play a vital role in a semigroup, we use a special term for a
semigroup in which each element can generate one. A semigroup S is periodic if each
of its elements has a power that is an idempotent. In other words, for each x ∈ S
there exists n ∈ N such that (xn)2 = xn (recall that, according to our definition, the
set of natural numbers N = {1, 2, . . .} does not include zero). For instance, all finite
semigroups are periodic. To elaborate, for any x ∈ S, the subsemigroup {xn : n ≥ 1}
has to be finite, thus there exists the minimal exponent m and the minimal integer i
such that xm = xm+i. It is easy to prove that {xm, xm+1, . . . , xm+i−1} is a subgroup
of S, which obviously has an identity.

We introduce another class of semigroups containing the class of finite semig-
roups. Not surprisingly, its defining property is a significant argument when proving
results in finite semigroup theory. A semigroup S is stable if for all x, a ∈ S,

xJ xa⇒ xR xa and xJ ax⇒ xL ax. (1.2)

Stability will be a crucial property in our investigations of sandwich semigroups, and
the structures containing them − partial semigroups. Let us prove that all finite
semigroups are stable. Let S be a finite semigroup and let x, a ∈ S be elements such
that xJ xa. Then, x = bxac for some b, c ∈ S1, so x = bnx(ac)n for all n ≥ 1. Since
S is finite, it has to be periodic, so there exists m ∈ N such that (ac)2m = (ac)m.
Therefore, we have

x = bmx(ac)m = bmx(ac)2m = (bmx(ac)m)(ac)m = x(ac)m = xac(ac)m−1,
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i.e. xR xa. A similar argument shows the second implication. Furthermore, in a
stable semigroup J = D holds true (see Lemma 2.2.19).

An additional important matter for the description of a semigroup is its likeness
to a group, i.e. the level of "invertibility" of its elements. Namely, an element a of
a semigroup S is (von Neumann) regular if there exists an element b ∈ S such that
aba = a. In that case, b is a pre-inverse of a, and a is a post-inverse of b. The
element b is a (semigroup) inverse of the element a, if it is both a pre-inverse and
a post-inverse of a. It is easy to prove that aba = a implies that a has a semigroup
inverse bab, so every regular element has at least one inverse.

Remark 1.3.6. From now on, by an inverse element, we mean a semigroup (i.e.
von Neumann) inverse, unless stated otherwise.

The sets of all pre-inverses, post-inverses and inverses of an element a are denoted
Pre(a), Post(a) and V(a), and the set of all regular elements of S is denoted Reg(S).
If Reg(S) = S, then S is a (von Neumann) regular semigroup. Furthermore, if every
element of S has a unique inverse, semigroup S is an inverse semigroup. If, on the
other hand, there exists a mapping S → S : a 7→ a∗ such that

(a∗)∗ = a, (ab)∗ = b∗a∗, for all a, b ∈ S,

then S is a ∗-semigroup (or a semigroup with involution). If in this semigroup also
holds

aa∗a = a, for all a ∈ S,

it is a regular ∗-semigroup. In such a semigroup, elements of the form aa∗ are called
projections and may be characterised as the elements a for which a2 = a = a∗.

Remark 1.3.7. Each inverse semigroup is a regular ∗-semigroup. Indeed, if the
unique inverse of x ∈ S is denoted by x−1, and we define x∗ = x−1, then for any
x, y ∈ S we have x∗∗ = x (since x∗∗x∗x∗∗ = x∗ and x∗x∗∗x∗ = x∗), xx∗x = x, and
(xy)∗ = y∗x∗ because

(y−1x−1)xy(y−1x−1) = (y−1x−1) and xy(y−1x−1)xy = xy.

However, not every regular ∗-semigroup is inverse: as in [102], consider any square
rectangular band (see page 14 for the definition of a rectangular band; here, "square"
means that |I| = |J |).

In a regular semigroup S we may introduce the natural partial order �:

x � y if and only if x = ey = yf for some idempotents e, f ∈ E(S).

From this, for any idempotents e, f ∈ E(S) we may conclude e � f ⇔ e = fef ⇔
e = ef = fe (the proof is elementary, but requires a bit of semigroup acrobatics).
This partial order may be defined on E(S) for any semigroup S, regardless of its
regularity. Minimal idempotents with respect to this relation are called primitive
idempotents.
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Remark 1.3.8. Regular elements and regular (sub)semigroups have received much
attention in the development of semigroup theory, and there are many important
results concerning them. We will mention only three of those, which are needed for
subsequent proofs:

• If x is a regular element in S, then every element of Dx is regular. (If xyx = x
and xR z with x = zt and z = xs for some t, s ∈ S1, then z = xs = xyxs =
xyz = ztyz and z is regular. In case when xL z, the proof is dual.)

• In a regular D-class, each L -class (and dually each R-class) contains an
idempotent (since x = xyx implies xL yx with yxyx = yx and xR xy with
xyxy = xy).

• If x, y are elements of the same D-class of S, then Lx ∩Ry contains an idem-
potent if and only if xy ∈ Rx ∩Ly. (The forwards implication follows from
the fact that, for such an idempotent e, we have ey = y, so Green’s Lemma
implies that the map Hx → Rx ∩Ly : w 7→ wy is a bijection. For the reverse,
we may suppose xyz = x for some z ∈ S1, so from Green’s Lemma we infer
that the maps Hy = Lxy ∩Ry → Lx ∩Ry : w → wz and Lx ∩Ry → Lxy ∩Ry =
Hy : w → wy are mutually inverse bijections; thus, yz is an idempotent from
Lx ∩Ry.)

As a closing for this section, we introduce several important types of semigroups.
A left-zero semigroup consists solely of left zeroes; in other words, for any two
elements a, b we have ab = a. A left-group is (isomorphic to) a direct product of
a left-zero semigroup and a group. The degree of a left-group is the size of the
associated left-zero semigroup. We define accordingly a right-zero semigroup, a
right-group and its degree. The following lemma (Lemma 2.6 in [28]) and its dual
describe a case in which a left-group or a right-group arises naturally. These results
follow from the Rees Theorem (Theorem 3.2.3 in [58]), but we provide a direct proof
for convenience.

Lemma 1.3.9. If a regular D-class of a semigroup is an L -class, then it is a
left-group.

Proof. Suppose D is a regular D-class, as well as an L -class of a semigroup S. First,
we prove that D is a subsemigroup. Let x, y ∈ D. Then, Remark 1.3.8 implies yR e
for some e ∈ E(D), and xL e because D is an L -class, so we have e ∈ Ry ∩Lx.
Thus, Remark 1.3.8 implies xy ∈ Ly ∩Rx ⊆ D. Furthermore, since each R-class
contains an idempotent and each of them is a right-identity of D (again, by Remark
1.3.8), we conclude that D is a union of groups and E(D) is a left-zero semigroup.
Let e ∈ E(D) be arbitrary, and He its associated group in D. It is easily seen now
that E(D)×He → D : (f, g) 7→ fg is an isomorphism.

Now, let I and J be non-empty sets, and let (T, ·) be defined by T = I × J and
(a, b) · (c, d) = (a, d). Then T is a rectangular band. If |I| = i and |J | = j, we say
that T is a i × j rectangular band. Associativity is easily checked; note also that
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T is the direct product of the left-zero semigroup I and the right-zero semigroup
J . Thus, each element is an idempotent and the R-classes are the sets {x} × J
for x ∈ I, while the L -classes are the sets I × {y} for y ∈ J . Therefore, an i × j
rectangular band has i R-classes and j L -classes. In the next lemma, we state a
useful equivalent condition for a semigroup to be a rectangular band, which will be
of use throughout the thesis.

Lemma 1.3.10. A semigroup T is a rectangular band if and only if aba = a for all
a, b ∈ T .

Proof. The direct implication is obvious. For the reverse, suppose that in the semig-
roup T we have aba = a for all a, b ∈ T . We need to show that the semigroup T has
the required form. Choose an arbitrary element z ∈ T and denote the sets Tz and
zT with I and J , respectively. If we choose arbitrary elements x, y ∈ I, there exist
a, b ∈ T such that x = az and y = bz, so

xy = (az)(bz) = a(zbz) = az = x.

Similarly, for arbitrary elements x, y ∈ J we have xy = y. Therefore, for (a, b), (c, d) ∈
I × J holds (a, b) · (c, d) = (a, d). Let us define a map ϕ : T → I × J : x 7→ (xz, zx).
It suffices to show is that ϕ is an isomorphism. It is a homomorphism, since for all
x, y ∈ T , we have

xϕ · yϕ = (xz, zx)(yz, zy) = (xzyz, zxzy) = (xz, zy)
= (xyxzyz, zxzyxy) = (xyz, zxy) = (xy)ϕ.

It is injective because xϕ = (xz, zx) = (yz, zy) = yϕ implies x = (xz)x =
y(zx) = yzy = y, and surjective since for qz ∈ I and zw ∈ J we have (qz, zw) =
(qwqzwz, zqzwqw) = (qwz, zqw) = (qw)ϕ.

In this thesis, we will encounter a somewhat more complex structure, a rectangu-
lar group over a group G, which is (isomorphic to) a direct product of a rectangular
band and a group G. If the rectangular band in question has dimensions i × j, we
are dealing with a i × j rectangular group over G. In the next section, we give a
result concerning its rank, which will be the base for some of our calculations later.
Here, we prove a lemma (Proposition 1.6 from [4]) providing an equivalent condition
for a semigroup to be a rectangular group.

Lemma 1.3.11. A semigroup S is a rectangular group if and only if it is regular
and E(S) is a rectangular band.

Proof. The direct implication is easy to prove. Let us prove the reverse. Let S be
such a semigroup, and suppose without loss of generality that E(S) = (I × J, ·) for
some nonempty sets I and J . Choose an arbitrary idempotent e = (l, k) and let He

denote the corresponding H -class. We claim that S is isomorphic to the rectangular
group (I × J) × He, moreover, that φ : (I × J) × He → S : (i, j, g) 7→ (i, j)g(i, j) is
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an isomorphism. Since for any two elements (i1, j1, g), (i2, j2, h) ∈ (I × J) × He we
have

(i1, j1, g)φ(i2, j2, h)φ = (i1, j1)g(i1, j1)(i2, j2)h(i2, j2)
= (i1, j1)ege(i1, j1)(i2, j2)ehe(i2, j2)
= (i1, j1)eghe(i2, j2) = (i1, j2)eghe(i1, j2)
= (i1, j2)gh(i1, j2) = (i1, j2, gh)φ
= ((i1, j1, g)(i2, j2, h))φ,

so the map is homomorphic. To prove injectivity, suppose that

(i1, j1)g(i1, j1) = (i2, j2)h(i2, j2); (1.3)

then we have
e(i1, j1)ege(i1, j1)e = e(i2, j2)ehe(i2, j2)e

so g = h. Thus, multiplying (1.3) by g−1e on the left gives e(i1, j1) = e(i2, j2), while
multiplying by eg−1 on the right gives (i1, j1)e = (i2, j2)e, so j1 = j2 and i1 = i2.
The only property left to prove is surjectivity. As S is regular, all its D-classes
are regular, each R-class contains an idempotent, and each L -class contains an
idempotent (by Remark 1.3.8). Since E(S) is a rectangular band, Green’s relations
of E(S) hold in S as well, so it consists of a single D-class and there are no non-group
H -classes (because such a class would belong to a "new" R- or L -class). Thus, for
an arbitrary z ∈ S there exists and idempotent (i, j) ∈ Hz, and we have eze ∈ He

with (i, j, eze)φ = z.

The last lemma (Lemma 2.4 in [28]) we present in this section shares some
similarities with Lemma 1.3.9. Firstly, it can be proved as a consequence of the
Rees Theorem (Theorem 3.2.3 in [58]). Secondly, it characterises a regular D-class
of a stable (in particular, finite) semigroup under certain assumptions. In fact,
since a left-group L is a |L| × 1 rectangular group and a left-zero semigroup K is a
|K| × 1 rectangular band, Lemma 1.3.9 follows from Lemma 1.3.12 if the semigroup
in question is stable.

Lemma 1.3.12. Let D be a regular D-class of a stable semigroup S. If E(D) is a
subsemigroup of S, then E(D) is a rectangular band, and D is a rectangular group.

Proof. By Lemma 1.3.11, it suffices to prove that E(D) is a rectangular band and
that D is a subsemigroup. For the first one, we use Lemma 1.3.10. Suppose x, y are
arbitrary elements of the semigroup E(D); then, xy ∈ E(D) and xyD x, so stability
implies xyR y, i.e. xyz = x for some z ∈ S1. Hence, xyx = xyxyz = (xy)2z =
xyz = x.

Now we prove that D is a subsemigroup. Let x, y ∈ D be arbitrary. Firstly,
S is stable, so D = J (by Lemma 2.2.19). Secondly, D is regular, so there exist
a ∈ V(x) and b ∈ V(y), and we have axJ x (since xax = x and a · x = ax) and
ybJ y. Therefore, ax, yb ∈ E(S) ∩D = E(D) and xy = xaxyby ≤J axyb ≤J xy.
Thus, xyJ axyb, which means that xyD axyb. As axyb ∈ E(D) (since E(D) is a
rectangular band), we may conclude xy ∈ Daxyb = D.
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Remark 1.3.13. When comparing Lemmas 1.3.9 and 1.3.12, one might wonder if
the assumption of stability is necessary in the second one. However, it is easily
seen that the bicyclic monoid (see [58, page 32]) is a single regular D-class whose
idempotents form a subsemigroup, but it is not a rectangular group (for instance,
each H -class is a singleton, but not all elements are idempotents).

1.4 Elements of combinatorial semigroup theory
Here, we give a short overview of those concepts, notation and results specific to
combinatorial semigroup theory, which we need for our investigation.

One of the key notions in this field is that of set generation. A subset Y of a
semigroup S generates the set T ⊆ S if

{a1a2 · · · an : n ≥ 1, a1, . . . , an ∈ Y } = T.

To shorten that, we write 〈Y 〉 = T . If 〈Y 〉 = S, we say that Y is a generating set of
the semigroup S. The rank of a semigroup S is the minimal size of a generating set
for it:

rank(S) = min{|Y | : Y ⊆ S, 〈Y 〉 = S}.

Remark 1.4.1. It should be easy to distinguish between this and the previously
defined notion of rank (Rank), since this one concerns sets, and that one maps.

Sometimes, we are interested in using only generating elements of a special type.
For example, we often pose a question whether a semigroup can be generated solely
by its idempotents; if so, we say it is idempotent-generated, and we may define its
idempotent rank:

idrank(S) = min{|Y | : Y ⊆ E(S), 〈Y 〉 = S}.

Even if a semigroup cannot be generated by its idempotents, we may be interested
in all its elements that can be. These form the idempotent-generated subsemigroup
of S, which is denoted E(S).

Other times, we face the task of generating a semigroup with some of the elements
already provided. The relative rank of a semigroup S with respect to a subset A ⊆ S
measures the minimal number of additional elements needed:

rank(S : A) = min{|B| : B ⊆ S, 〈A ∪B〉 = S}.

If S is idempotent-generated, we may also define the relative idempotent rank of S
with respect to a subset A ⊆ E(S):

idrank(S : A) = min{|B| : B ⊆ E(S), 〈A ∪B〉 = S}.
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We will also be interested in the "covering power" of an idempotent. Namely,
for an idempotent e of a semigroup S, the set eSe is the local monoid of S with
respect to the idempotent e. At certain points in this thesis, it will be important to
us how much of a chosen semigroup can be covered by local monoids corresponding
to idempotents of a special type.

As promised in the previous section, we give a result of Ruškuc [110], which
concerns the rank of a rectangular group. In his article, he dealt with (more general)
completely 0-simple semigroups, so we provide a short proof in the special case of
rectangular groups, as in [33](Proposition 4.11).

Proposition 1.4.2. Let T be an r × l rectangular group over G. Then

(i) rank(T ) = max(r, l, rank(G)),

(ii) any generating set for T contains elements from every R-class, and from every
L -class of T ,

(iii) if rank(T ) = r, then there is a minimum-size generating set for T that is a
cross-section of the R-classes of T ,

(iv) if rank(T ) = l, then there is a minimum-size generating set for T that is a
cross-section of the L -classes of T .

Here, a cross-section of an equivalence relation is a set containing exactly one
member of each class.

Proof. Suppose that T = I × G × J , where (i, g, j)(k, h,m) = (i, gh,m), |I| = r,
|J | = l, and let π1, π2, π3 be projections (not to be confused with projections in
regular ∗-semigroups)

π1 : T → I : (i, x, j) 7→ i, π2 : T → G : (i, x, j) 7→ x,

π3 : T → J : (i, x, j) 7→ j.

(ii) It is easy to conclude that the leftmost and the rightmost element of any
product determine the first and the last coordinate (respectively) of the resulting
element. Thus, the R- and L -class of an element are determined by the first and last
coordinate, respectively. Therefore, to generate an arbitrary element (i, g, j) ∈ X
we will necessarily need an element from the same R-class, and an element from the
same L -class.

(i) First, we prove rank(T ) ≤ max(r, l, rank(G)). Let us fix a set X ⊆ T such
that:

(1) |X| = max(r, l, rank(G)),

(2) | im(π2�X)| = rank(G) and 〈im(π2�X)〉 = G,

(3) restrictions π1�X and π3�X are surjective mappings; moreover, if |X| = r then
π1�X is a bijection, and if |X| = l then π3�X is a bijection.
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(Such a set clearly exists.) We will prove that the set X is a generating set for T . Let
(i, g, j) ∈ T be an arbitrary element. By (3), there exist (ix, gx, jx), (iy, gy, jy) ∈ T
such that ix = i and jy = j; furthermore, by (2), there exist (i1, g1, j1), . . . , (in, gn, jn) ∈
X such that g−1

x gg−1
y = g1 · · · gn. Hence,

(ix, gx, jx)(i1, g1, j1) · · · (in, gn, jn)(iy, gy, jy) = (i, g, j).

Let us prove now that rank(T ) ≥ max(r, l, rank(G)). From (ii) follows rank(T ) ≥
max(r, l). Let Ω be a generating set for T . Suppose the opposite, that |Ω| < rank(G).
Then | im(π2�Ω)| < rank(G), so 〈im(π2�Ω)〉 6= G and therefore 〈Ω〉 6= T , because we
cannot generate all the elements of G. We have come to a contradiction, thus
|Ω| ≥ rank(G).

(iii) and (iv) follow from (3), because we choose X so that π1�X , or π3�X re-
spectively, is a bijection.

There is one more notion we need to introduce in this section. Namely, a trans-
formation of a set X is a mapping X → X. This term corresponds to the term
of a permutation in group theory. The semigroup consisting of all the transforma-
tions of X under the composition of functions is the full transformation semigroup
over X, TX . Any subsemigroup of TX is a transformation semigroup over X. A
partial transformation over X is a partial function X → X. The set of all partial
transformations over X is denoted PT X . Moreover, the set of all injective partial
transformations overX forms a subsemigroup of PT X , which is called the symmetric
inverse semigroup over X and is denoted IX .

In this thesis, our program of investigation is based on the one followed in [29]
and [30]. That one was, in fact, inspired by a series of articles by one of the most
influential mathematicians in combinatorial semigroup theory, John M. Howie. This
series was commenced in his 1966 article [55], where he proved that the semigroup
SingX , consisting of all singular (non-invertible) transformations over a finite set
X, is idempotent-generated. In the following years, he continued this research (in
single-author papers, and in cooperation with others): he calculated the rank and
idempotent rank of SingX [48,57], classified its idempotent generating sets of minimal
size [57], calculated the rank and idempotent rank of its ideals [60], investigated the
gravity function of its elements (the length of the shortest product of idempotents
of defect 1 giving the chosen element) [59] and expanded these results to other
kinds of transformation semigroups [5,6,48,49,56]. These articles made an immense
impact in the field and laid the ground for new studies and development of important
directions in the research of transformation semigroups, endomorphism semigroups,
diagram semigroups, and more.



Chapter 2

Sandwich semigroups

In this chapter, we aim to study sandwich semigroups in general. In order to do
that, we define an additional type of structure - a partial semigroup (also known as
semicategory, semigroupoid or precategory), which can be regarded as the "natural
habitat" of sandwich semigroups. Studying it, we get the base for understanding
the structure of sandwich semigroups contained within. After that, we delve into an
investigation of a sandwich semigroup itself, examining Green’s relations and their
classes, benefits of stability, regularity, and invertibility, and the properties of its
subsemigroup consisting of all regular elements (which exists under the assumption
of sandwich-regularity), including its rank (for this, we study MI-domination). We
also devote a section to the changes in general theory in the case when the researched
category is inverse, and finally, we introduce some results on the rank of a sandwich
semigroup. The major part of this chapter is based on [33], so we cite this paper as
the source of the results and proofs unless stated otherwise.

First and foremost, we define a sandwich semigroup in general, so that the ex-
amples mentioned in the Section 1.1 fit into the definition.

Definition 2.0.1. Let S and I be a locally small category and its class of objects,
respectively. Let i, j ∈ I be two fixed objects (nodes) and let a be a fixed morphism
j → i. The semigroup Saij = (Sij , ?a), whose set of elements Sij consists of all
morphisms i→ j, with the operation ?a on it, defined with

x ?a y = xay, for all x, y ∈ Sij ,

is the sandwich semigroup of Sij with respect to a.

Remark 2.0.2. It is easy to see that, by choosing a specific category (transform-
ations, diagrams, etc.), we choose the type of elements of the sandwich semigroup,
and by fixing i = j, we choose our sandwich semigroup to be the variant Sa of the
semigroup (Sii, ◦), (in which the operation is simply the concatenation of arrows).

Note that, in this setting, I may be a proper class, and all the morphisms among
its elements may form a proper class as well. However, it is important that Sij
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be a set, in order for Saij to be a semigroup. This is the justification for working
specifically with locally small categories.

2.1 Partial semigroups

In order to understand the structure of sandwich semigroups, we introduce and
study partial semigroups, in the same manner as in [30]. However, we add some new
content from [28], in order to broaden the scope and depth of our investigation in
the following sections. Thus, these two papers are the references for the results of
this section, the most important ones being Green’s Lemma for partial semigroups
(Lemma 2.1.8) and its special version for the set Sij = {z ∈ S : z δ = i, z ρ = j}
(Lemma 2.1.9).

Definition 2.1.1. A partial semigroup is a 5-tuple (S, ·, I, δ,ρ) consisting of a class
S, a partial binary map (x, y) 7→ x · y (defined on some subset of S × S), a class
of "coordinates" I, and functions δ,ρ : S → I, which determine the left and right
coordinates of elements of S, respectively; these five have to satisfy the following
four conditions: for all x, y, z ∈ S,

(i) x · y is defined if and only if xρ = y δ
(two elements can be multiplied if and only if their "meeting coordinates"
coincide);

(ii) if x · y is defined, then (x · y) δ = x δ and (x · y) ρ = y ρ
(if two elements can be multiplied, the product keeps the "non-meeting co-
ordinates" of the factors);

(iii) if x · y and y · z are defined, then x · (y · z) = (x · y) · z
(we have associativity, provided that the products included are defined);

(iv) for any i, j ∈ I, the class Sij = {x ∈ S : x δ = i, xρ = j} is a set
(when we choose and fix two coordinates as left and right, the elements that
have those coordinates form a set).

Moreover, a partial semigroup (S, ·, I, δ,ρ) is monoidal if it also satisfies the follow-
ing:

(v) there exists a function I → S : i 7→ ei such that, for all x ∈ S, x · exρ = x =
ex δ · x
(for each coordinate there exists an identity element).

Remark 2.1.2. If S is a proper class, δ and ρ are not functions, strictly speaking,
because their domain is not a set. However, we use the same familiar term, since
the main quality, mapping each element from the domain to exactly one element of
the codomain, stays the same.
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Note that, if we interpret I as a class of nodes and S as the class of morphisms
among them, the conditions (i-v) ensure that we are in fact dealing with a locally
small category. Conversely, a locally small category can, in an obvious way, be
interpreted as a monoidal partial semigroup. Therefore, we can use these terms
interchangeably.

This synonymity leads us to the alternative definition of a sandwich semigroup
(which is a generalisation of the previous one, since we do not demand partial semig-
roups to be monoidal):

Definition 2.1.3. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I two fixed co-
ordinates and let a ∈ Sji be an arbitrarily chosen, fixed element. Semigroup
Saij = (Sij , ?a), where

x ?a y = xay, for all x, y ∈ Sij ,

is called the sandwich semigroup of Sij with respect to a (which is called the sandwich
element).

Since matching coordinates enable multiplication in all cases, and the definition
of partial semigroups guarantees associativity, the term is well-defined. From now
on, by a sandwich semigroup, we mean a structure of the type described
in Definition 2.1.3.

To improve the readability of the thesis, we use the expressions hom-set and
endomorphism semigroup, even in the case that S is not monoidal (i.e. not a locally
small category).

Now, our plan is to investigate partial semigroups first, in order to get the "big
picture", and then to "zoom in" on sandwich semigroups.

As usual, we shorten the notation (S, ·, I, δ,ρ) to S if the rest of the information
is either unimportant for the discussion or clear from the context. From now on,
the object of our interest is an arbitrary partial semigroup (S, ·, I, δ,ρ), until stated
otherwise.

Intuitively, a partial semigroup feels like a loose semigroup: some elements can-
not be multiplied because they are not "connected", but whenever multiplication is
possible, we have associativity. That feeling is further strengthened when one real-
ises that any semigroup is a partial semigroup, with |I| = 1. Moreover, in a partial
semigroup (S, ·, I, δ,ρ), for every i ∈ I, the set Sii (we usually denote it Si) is a
semigroup with respect to ·�Si×Si , since all the elements have coinciding coordin-
ates. Because of these similarities, we will use definitions and techniques similar to
the ones we used for semigroups. For instance, an element x of a partial semigroup
S is regular if there exists y ∈ S such that x · y · x = x, in which case y ∈ Pre(x)
(y is a pre-inverse of x) and x ∈ Post(y) (x is a post-inverse of y). The class of all
regular elements in S is denoted Reg(S) and S itself is regular if Reg(S) = S. If the
partial semigroup in question is monoidal, it is natural to say that the corresponding
category is regular. Note, however, that the term regular category has a different
meaning in category theory. Here we always mean (von Neumann) regular.
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Furthermore, if an element x ∈ S is regular with x = xyx for some y ∈ S, then
the element z = yxy is an inverse of x, i.e. it satisfies x = xzx and z = zxz (all the
products obviously exist). The set of all inverses of x is denoted V(x). If each of its
elements has a unique inverse, the partial semigroup itself is inverse.

Additionally, a partial ∗-semigroup is a 6-tuple (S, I, δ,ρ, ·,∗ ) such that the struc-
ture (S, I, δ,ρ, ·) is a partial semigroup and ∗ : S → S : x 7→ x∗ is a mapping such
that for all x, y ∈ S,

(a) (x∗) δ = xρ, (x∗) ρ = x δ, and (x∗)∗ = x;

(b) if x · y is defined, then (x · y)∗ = y∗x∗.

Finally, a regular partial ∗-semigroup is a partial ∗-semigroup such that xx∗x = x
for all x ∈ S. As in the case of regular ∗-semigroups, the elements of the form
xx∗ are called projections (and may be characterised as the elements x for which
x2 = x = x∗) and each inverse partial semigroup is a regular partial ∗-semigroup.

Continuing in this fashion, we define a map mimicking the natural embedding of
a semigroup S into the corresponding monoid S1. Namely, for our partial semigroup
(S, ·, I, δ,ρ) we create a monoidal partial semigroup S(1): for each coordinate i ∈ I,
we add an element ei to Sii acting as an identity (in cases in which it can be multi-
plied), if such an element does not already exist. The embedding S → S(1) : x 7→ x
is the natural embedding of S into the corresponding monoidal partial semigroup.

Next, we introduce some examples of partial semigroups. The first one is trivial,
and the other two describe types of partial semigroups that will be considered in the
following chapters of the thesis.

Example 2.1.4. Let {Si : i ∈ I} be any family of pairwise disjoint semigroups (i.e.
for all i, j ∈ I holds Si ∩ Sj = ∅), and put S = ⋃

i∈I Si. For any x ∈ S there exists
exactly one i ∈ I such that x ∈ Si, so we define x δ = xρ = i. Thus, for any two
elements x, y ∈ S, the multiplication x · y is defined only in the case that x and y
belong to the same set Si, and its result is the same as in semigroup Si. It is clear
that (S, ·, I, δ,ρ) is a partial semigroup, and it is monoidal (regular) if and only if
Si is a monoid (regular semigroup) for each i ∈ I. Moreover, there exists a mapping
∗ : S → S such that (S, ·, I, δ,ρ,∗ ) is a (regular) partial ∗-semigroup if and only if
Si is a (regular) ∗-semigroup for each i ∈ I.

Example 2.1.5. Let F be a field and letM denote the set of all finite-dimensional,
non-empty matrices over F. We use the usual matrix multiplication ·, and introduce
functions δ,ρ :M→ N describing the number of columns and the number of rows
of a matrix, respectively. Then (M, ·,N, δ,ρ) is a monoidal and regular partial
semigroup, which we will discuss in detail in Chapter 4. Further, if we define ∗ :
M → M : Ai,j 7→ Aj,i, to be the operation of transposition (turning rows into
columns and vice versa), then (M, ·,N, δ,ρ,∗ ) is a partial ∗-semigroup, but not a
regular partial ∗-semigroup (for instance, for the square matrix A = [ 1 1

0 0 ] we have
AA∗A 6= A, since 1 + 1 6= 1 in any field). In fact, even thoughM is regular, there
does not exist an operation ∗ : M → M such that (M, ·,N, δ,ρ,∗ ) is a regular
partial ∗-semigroup. For a detailed discussion, see Lemma 4.1.6.
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Example 2.1.6. Let Set denote the class of all sets, and for all A,B ∈ Set let

TAB = {f : f is a function A→ B}.

Now, define the class T = {(A, f,B) : A,B ∈ Set, f ∈ TAB}, and maps δ : T →
Set : (A, f,B) → A and ρ : T → Set : (A, f,B)→ B. We are now in position to
introduce the partial semigroup (T , ◦,Set, δ,ρ). As discussed in Chapter 3, this
partial semigroup is both regular and monoidal. However, no unary operation ∗ on
T satisfies the requirements for (T , ◦,Set, δ,ρ,∗ ) to be a partial ∗-semigroup (see
Proposition 3.0.3).

From the definition of a sandwich semigroup, we see a hint of duality, because
the pair δ and ρ clearly refer to the left side and right side (coordinates) of an
element. As it turns out, any partial semigroup (S, ·, I, δ,ρ) indeed has a dual
partial semigroup (S, •, I,ρ, δ), in which the operation is defined in the following
way:

x • y =
®
y · x, y ρ = x δ;
undefined, otherwise.

Furthermore, if (S, ·, I, δ,ρ,∗ ) is a partial (regular) ∗-semigroup, it is easy to see that
(S, •, I,ρ, δ,∗ ) is a partial (regular) ∗-semigroup since the map ∗ : S → S determines
an isomorphism from (S, ·, I, δ,ρ,∗ ) to (S, •, I,ρ, δ,∗ ), and vice versa. This duality
helps us to keep the proofs shorter and neater.

Before continuing to examine partial semigroups, in order to describe their in-
ternal structure, we will prepare proper notation and definitions, similar to the ones
used for semigroups. Namely, for all x, y ∈ S, let

x ≤R y ⇔ there exists s ∈ S(1) such that x = ys,

x ≤L y ⇔ there exists s ∈ S(1) such that x = sy,
x ≤H y ⇔ x ≤L y and x ≤R y,

x ≤J y ⇔ there exist s, t ∈ S(1) such that x = syt.

Further, for all K ∈ {L ,R,H ,J } we define the relation K = ≤K ∩≥K . Note
that xR y (xL y) implies x δ = y δ (xρ = y ρ), hence xH y implies both x δ = y δ
and xρ = y ρ. Also, it is easy to prove that R is a left-congruence (in other words,
aR b implies saR sb for any s ∈ S with sρ = a δ), and L is a right-congruence (i.e.
aL b implies asL bs for any s ∈ S with s δ = aρ). In the case of regular partial
∗-semigroups we may provide elegant characterisations for R and L (and thus for
H , as well) from [28]:

Lemma 2.1.7. If S is a regular partial ∗-semigroup with x, y ∈ S, then

(i) x ≤R y ⇔ xx∗ = yy∗xx∗,

(ii) xR y ⇔ xx∗ = yy∗,

(iii) x ≤L y ⇔ x∗x = x∗xy∗y,

(iv) xL y ⇔ x∗x = y∗y,

Proof. We prove only (i) and (ii), as the other two follow by duality.
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(i) Let x ≤R y, i.e. x = ys for some s ∈ S. Then,

xx∗ = (ys)x∗ = yy∗ysx∗ = yy∗xx∗.

To prove the converse, suppose xx∗ = yy∗xx∗. Then we have x = (xx∗)x =
yy∗xx∗x ≤R y.

(ii) Since R = ≤R ∩ ≥R , by (i), we need to prove that

xx∗ = yy∗ ⇔ xx∗ = yy∗xx∗ ∧ yy∗ = xx∗yy∗.

The direct implication is clear, and for the reverse note that xx∗ = (x∗)∗x∗ =
(xx∗)∗ = (yy∗xx∗)∗ = xx∗yy∗ = yy∗.

Furthermore, we introduce the fifth relation D = R ◦L . As is the case with
semigroups, it can be proved that D is the smallest equivalence relation containing
both R and L , and that R ◦L = L ◦R. (The proof is analogous to the proof of
Lemma 1.3, since all of the necessary products exist, due to elements being in the
same R- or L -class.) Enhancing the notation, for each K ∈ {L ,R,H ,J ,D}
and each x ∈ S, we define

[x]K = {y ∈ S : xK y}.

Since partial semigroups contain sandwich semigroups, and the latter are the
real objects of our interest, we have to find a way to avoid confusion between
the properties of a partial semigroup and the properties of sandwich semigroups
it contains. Firstly, we denote Green’s relations in a sandwich semigroup Saij with
L a,Ra,H a,J a and Da. Secondly, for each K ∈ {L ,R,H ,J ,D}, each K ∈
{L,R,H, J,D} and each x ∈ Sij we define

Ka
x = {y ∈ Sij : xK a y} and Kx = [x]K ∩ Sij = {y ∈ Sij : xK y}.

Thus, [x]K is the K -class of element x in S, Kx is the K -class of element x in the
hom-set Sij , and Ka

x is the K a-class of element x in the sandwich semigroup Saij .
Lastly, we need the restriction of the ≤J relation to the set Sij × Sij . To simplify
matters, we denote it with ≤J as well, but emphasise that it is defined on Sij .

Having done the necessary preparation, we may examine Green’s relations of
partial semigroups, as in [30]. The next lemma has the same formulation and proof
(keeping in mind the information about coordinates that we gain from elements
being in the same R- or L -class) as its semigroup counterpart, Lemma 1.3.4.

Lemma 2.1.8 (Green’s lemma for partial semigroups). Let x, y be any elements of
a partial semigroup (S, ·, I, δ,ρ).

(i) Suppose xR y and the elements s, t ∈ S(1) are such that x = ys and y = xt.
Then the maps [x]L → [y]L : w → wt and [y]L → [x]L : w → ws are mutually
inverse bijections. These maps restrict to mutually inverse bijections [x]H →
[y]H and [y]H → [x]H .
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(ii) Suppose xL y and the elements s, t ∈ S(1) are such that x = sy and y = tx.
Then the maps [x]R → [y]R : w → tw and [y]R → [x]R : w → sw are mutually
inverse bijections. These maps restrict to mutually inverse bijections [x]H →
[y]H and [y]H → [x]H .

(iii) If I is a set and xD y, then |[x]R | = |[y]R |, |[x]L | = |[y]L | and |[x]H | = |[y]H |.

We can give even more information, if we focus on a single set Sij :

Lemma 2.1.9. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I and let x, y be any
elements of the set Sij = {z ∈ S : z δ = i, z ρ = j}.

(i) Suppose xR y and the elements s, t ∈ S(1) are such that x = ys and y = xt.
Then the maps Lx → Ly : w → wt and Ly → Lx : w → ws are mutually inverse
bijections. These maps restrict to mutually inverse bijections Hx → Hy and
Hy → Hx.

(ii) Suppose xL y and the elements s, t ∈ S(1) are such that x = sy and y = tx.
Then the maps Rx → Ry : w → tw and Ry → Rx : w → sw are mutually
inverse bijections. These maps restrict to mutually inverse bijections Hx → Hy

and Hy → Hx.

(iii) If xD y, then |Rx | = |Ry |, |Lx | = |Ly | and |Hx | = |Hy |.

Proof. We prove (i), and (ii) will follow by duality. Let xR y and suppose the
elements s, t ∈ S(1) are such that x = ys and y = xt. Lemma 2.1.8(i) guarantees
that the maps [x]L → [y]L : w → wt and [y]L → [x]L : w → ws are mutually
inverse bijections. If we prove that these functions map Lx to Ly and Ly to Lx,
respectively, Lemma 2.1.8(i) will imply (i) (the second part follows from the fact
that [x]H = Hx and [y]H = Hy). In fact, we need to prove only one of these
statements, because the proof for the other one is analogous. Suppose w ∈ Lx;
thus, w ∈ Sij and there exists q ∈ S(1) such that qx = w. The element w maps to
wt = qxt = qy, so (wt) ρ = (qy) ρ = y ρ = j and (wt) δ = w δ = i, hence wt ∈ Sij .
Since Lemma 2.1.8(i) implies wt ∈ [y]L , we have wt ∈ Ly.

(iii) Suppose xD y. Then there exists z ∈ S such that xR zL y. Therefore
z δ = x δ = i and z ρ = y ρ = j, so z ∈ Rx ∩Ly. Now (i) and (ii) together imply
the statement.

We have gained the insight we needed into partial semigroups, so we move on to
our main topic, sandwich semigroups.

2.2 Sandwich semigroups
In this section, we focus on a sandwich semigroup Saij in a fixed partial semigroup
(S, ·, I, δ,ρ). As in [30], we prove the theorem on Green’s relations of a sandwich
semigroup, and then we focus on the results from [33] and [28]. Namely, we in-
vestigate maximal J -classes in a sandwich semigroup, its stability and some prop-
erties of its regular elements. Furthermore, we examine Saij in the case that a is
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(right-)invertible, and study the characteristics of partial subsemigroups (i.e. the
appropriate substructure) in partial semigroups.

Naturally, properties of a sandwich semigroup have a lot to do with the partial
semigroup containing it, but maybe even more with the chosen sandwich element.
Namely, this element determines the so-called P-sets, defined with

Pa1 = {x ∈ Sij : xaR x}, Pa2 = {x ∈ Sij : axL x},
Pa3 = {x ∈ Sij : axaJ x}, Pa = Pa1 ∩Pa2,

which (as we are about to show in the first subsection) shape the Green’s relations
of a sandwich semigroup.

Before we continue, we give alternative definitions for the above defined P-sets,
which will be of help later on. For the first one, note that x ∈ Pa1 means that x = xas
for some s ∈ S(1), which implies x = xas = (xas)as = xa(sas); since sas ∈ S (not
just S(1)), we have sas ∈ Sij and x ∈ xaSij . As xaSij ⊆ xaS(1), we have proved the
first of the following equalities (the rest are shown similarly):

Pa1 = {x ∈ Sij : x ∈ xaSij}, Pa2 = {x ∈ Sij : x ∈ Sijax},
Pa3 = {x ∈ Sij : x ∈ SijaxaSij}.

In the case that S is a regular partial ∗-semigroup, we may provide even simpler
characterisations for Pa1 and Pa2, from [28]:

Lemma 2.2.1. Let (S, ·, I, δ,ρ,∗ ) be a regular partial ∗-semigroup with i, j ∈ I and
a ∈ Sji. Then

(i) Pa1 = {x ∈ Sij : x∗x ∈ Post(aa∗)} = {x ∈ Sij : aa∗ ∈ Pre(x∗x)},

(ii) Pa2 = {x ∈ Sij : xx∗ ∈ Post(a∗a)} = {x ∈ Sij : a∗a ∈ Pre(xx∗)},

Proof. We will show (i), and (ii) will follow by duality. The second equality is
clear, since u ∈ Pre(v) ⇔ v ∈ Post(u) for any u, v ∈ S. To prove the first one,
we consider the two inclusions. Suppose x ∈ Pa1, i.e. xR xa; Lemma 2.1.7(ii) then
implies xx∗ = (xa)(xa)∗ = xaa∗x∗, so x∗x = x∗(xx∗)x = x∗xaa∗x∗x, which proves
that x∗x ∈ Post(aa∗). For the reverse containment note that from x∗x = x∗xaa∗x∗x
follows

x = xx∗x = xx∗xaa∗x∗x = xaa∗x∗x ≤R xa.

2.2.1 Green’s relations of sandwich semigroups

In the next proposition, we prove a few important properties of P-sets. The first
part was proven in [30] and the other two in [29]. The whole proposition serves as
a prelude to the crucial theorem following it.

Proposition 2.2.2. Let (S, ·, I, δ,ρ) be a partial semigroup, with i, j ∈ I and a ∈
Sji. If y ∈ Sij is an arbitrary element, then

(i) Reg(Saij) ⊆ Pa ⊆ Pa3,
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(ii) y ∈ Pa1 if and only if Ly ⊆ Pa1,

(iii) y ∈ Pa2 if and only if Ry ⊆ Pa2.

Proof. (i) If x ∈ Reg(Saij), there exists z ∈ Sij such that x = x ?a z ?a x = xazax, so

x = xa · zax and xa = x · a imply xR xa,

x = xaz · ax and ax = a · x imply xL ax,

hence x ∈ Pa.
If we assume x ∈ Pa, then xR xa and xL ax, thus there exist u, v ∈ Sij such

that x = xau and x = vax. Therefore x = v ·axa ·u; this, together with axa = a ·x ·a
gives aJ axa, i.e. x ∈ Pa3.

(ii) We will prove only the direct implication, since the other one is trivial.
Suppose z ∈ Ly is arbitrary. Then there exists s ∈ S(1) so that z = sy, and from
y ∈ Pa1 we have yR ya. Since R is a left-congruence, z = syR sya = za and
therefore z ∈ Pa1.

(iii) Dual to (ii).

Finally, we are able to prove the theorem from [30] describing Green’s relations
in a sandwich semigroup.

Theorem 2.2.3. Let (S, ·, I, δ,ρ) be a partial semigroup with i, j ∈ I and a ∈ Sji.
If x ∈ Sij, then

(i) Ra
x =
®

Rx ∩Pa1, if x ∈ Pa1
{x}, if x ∈ Sij \ Pa1,

(ii) Lax =
®

Lx ∩Pa2, if x ∈ Pa2
{x}, if x ∈ Sij \ Pa2,

(iii) Ha
x =
®

Hx, if x ∈ Pa
{x}, if x ∈ Sij \ Pa,

(iv) Da
x =





Dx ∩Pa, if x ∈ Pa
Lax, if x ∈ Pa2 \Pa1
Ra
x, if x ∈ Pa1 \Pa2
{x}, if x ∈ Sij \ (Pa1 ∪Pa2),

(v) Jax =
®

Jx ∩Pa3, if x ∈ Pa3
Da
x, if x ∈ Sij \ Pa3.

If x ∈ Sij \ Pa, then Ha
x = {x} is a non-group H a-class in Saij.

Remark 2.2.4. Since the classes Ra
x and Lax are described in the same theorem, the

expression for Da
x in Theorem 2.2.3 may be simplified in the following way:

Da
x =





Dx ∩Pa, if x ∈ Pa
Lax, if x ∈ Sij \ Pa1
Ra
x, if x ∈ Sij \ Pa2
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However, to avoid confusion, we use the former because its determining classes do
not intersect.

Proof. (i) Let y ∈ Ra
x \{x}. This implies the existence of z, q ∈ Sij such that

x = y ?a z = yaz and y = x ?a q = xaq. Note that x = xaqaz, so xR xa, i.e. x ∈ Pa1.
Therefore, in every case in which there exists an element y ∈ Ra

x \{x}, we have
x ∈ Pa1. We conclude that Ra

x is a singleton {x} if x ∈ Sij \ Pa1. Furthermore, from
x = y ?a z = yaz and y = x ?a q = xaq we may also deduce xR y and y = yazaq,
so yR ya and therefore y ∈ Rx ∩Pa1. So, Ra

x ⊆ Rx ∩Pa1 in the case that x ∈ Pa1. We
need to prove the reverse inclusion. Suppose x ∈ Pa1 and let y ∈ Rx ∩Pa1. Then, there
exist z, q ∈ S(1) and t, s ∈ Sij such that y = xz, x = yq, y = yat and x = xas. Thus
y = xz = xasz = x ?a sz and x = yq = yatq = y ?a tq, where (sz) δ = s δ = aρ = i,
(sz) ρ = z ρ = y ρ = j and (tq) δ = t δ = aρ = i, (tq) ρ = q ρ = xρ = j, so
sz, tq ∈ Sij and y ∈ Ra

x immediately follows.
(ii) is dual to (i).
(iii) Since Pa = Pa1 ∩Pa2, from (i) and (ii) one may immediately deduce

Ha
x = Ra

x ∩Lax =
®

Hx ∩Pa, if x ∈ Pa
{x}, if x ∈ Sij \ Pa.

Hence, we just need to prove that Hx ⊆ Pa if x ∈ Pa. But by Proposition 2.2.2(ii)
and (iii), from x ∈ Pa1 ∩Pa2 we have Lx ⊆ Pa1 and Rx ⊆ Pa2. Thus, Hx = Lx ∩Rx ⊆
Pa1 ∩Pa2 = Pa.

(iv) It is easy to see that

Da
x =

⋃

y∈Rax

Lay =
⋃

y∈Lax

Ra
y . (2.1)

In the case x 6∈ Pa1, (i) implies Ra
x = {x} so Da

x = Lax. Similarly, if x 6∈ Pa2, then
Lax = {x} and Da

x = Ra
x. If both of these conditions hold (i.e. x 6∈ Pa1 ∪Pa2), (i)

and (ii) together imply Da
x = {x}. Now, suppose x ∈ Pa1 ∩Pa2. Since Rx ⊆ Pa2 (by

Proposition 2.2.2(iii)), from (2.1), (i) and (ii), we deduce

Da
x =

⋃

y∈Rx ∩Pa1

Ä
Ly ∩Pa2

ä
= Pa2 ∩

⋃

y∈Rx ∩Pa1

Ly . (2.2)

From Proposition 2.2.2(ii) we know that

Ly ∩Pa1 =
®

Ly, y ∈ Pa1;
∅, y ∈ Sij \ Pa1.

(2.3)

In the case y ∈ Pa1 the equality is obvious, and for the other, assume that z ∈ Ly ∩Pa1,
and then Ly = Lz ⊆ Pa1 contradicts y 6∈ Pa1. Thus, we deduce ⋃y∈Rx ∩Pa1 Ly =⋃
y∈Rx ∩Pa1 (Ly ∩Pa1) because y ∈ Pa1. Also from (2.3), we infer ⋃y∈Rx ∩Pa1 (Ly ∩Pa1) =⋃
y∈Rx(Ly ∩Pa1), as Ly ∩Pa1 equals ∅ if y ∈ Rx \Pa1. So, continuing the line (2.2), we
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have

Da
x = Pa2 ∩

⋃

y∈Rx
(Ly ∩Pa1) = Pa2 ∩Pa1 ∩

⋃

y∈Rx
Ly = Pa ∩

⋃

y∈Rx
Ly = Pa ∩Dx .

(v) Similarly as in the first three cases, suppose y ∈ Jax \{x}. The definition of
the relation J a implies that x ≤J a y and y ≤J a x, so exactly one of (a-c) holds
and exactly one of (d-f) holds:

(a) x = yaz, for some z ∈ Sij ,

(b) x = nay, for some n ∈ Sij ,

(c) x = nayaz, for some z, n ∈ Sij ,

(d) y = xav, for some v ∈ Sij ,

(e) y = wax, for some w ∈ Sij ,

(f) y = waxav, for some v, w ∈ Sij .

Now, since x 6= y, we can make some useful conclusions in the following combin-
ations of cases:

a,d: xRa y, so (i) gives x, y ∈ Pa1, b,e: xL a y, so (ii) gives x, y ∈ Pa2.

In any other combination of cases, one may prove xJ axa and yJ aya, so we
have x, y ∈ Pa3. Thus, Jax not being a singleton implies x ∈ Pa1 ∪Pa2 ∪Pa3. In other
words, if x ∈ Sij \ (Pa1 ∪Pa2 ∪Pa3) then Jax = {x} = Da

x (the last equality follows from
(iv)).

We need to examine three more cases:

x ∈ Pa
1 \Pa

3 Note that Da
x ⊆ Jax, since Da ⊆ J a. We prove the reverse inclusion.

Suppose y ∈ Jax and y 6= x (because y = x clearly implies y ∈ Da
x). As above,

we know that one of (a-c) and one of (d-f) holds, and that the combination
(a),(d) implies y ∈ Ra

x ⊆ Da
x. We have also proved that the combination

(b),(e) implies x, y ∈ Pa2 and any other combination gives x, y ∈ Pa3. However,
from x ∈ Pa1 \Pa3 we deduce x 6∈ Pa2, since Proposition 2.2.2(i) guarantees
Pa = Pa1 ∩Pa2 ⊆ Pa3. Therefore, we have drawn contradicting conclusions in
any combination, except for (a),(d), so that is the only case possible.

x ∈ Pa
2 \Pa

3 Dual to the previous one.

x ∈ Pa
3 We need to show that Jax = Jx ∩Pa3. Suppose y ∈ Jx ∩Pa3. This means that
there exist z, q, s, t ∈ S(1) and w, r, u, v ∈ S such that

y = zxq, x = syt, y = wayar, x = uaxav.

Hence, y = zxq = zuaxavq = zu ?a x ?a vq and x = syt = swayart =
sw ?a y ?a rt, which implies zu, vq, sw, rt ∈ Sij , and therefore y ∈ Jax.
Let us show the reverse inclusion. Suppose y ∈ Jax. Obviously, y ∈ Jx. If
y = x, we evidently have y ∈ Pa3, so we focus on the case y 6= x. From the
above discussion, we know that one of (a-c) and one of (d-f) holds, that the
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combinations (a),(d) and (b),(e) imply x, y ∈ Pa1 and x, y ∈ Pa2, respectively,
and that any other combination implies x, y ∈ Pa3. Therefore, we need to
discuss only the cases when (a),(d) or (b),(e) hold. In fact, we may focus solely
on the case (a),(d), because the other one is symmetrical. So, let z, v ∈ Sij be
elements such that x = yaz and y = xav. Since x ∈ Pa3, there exist t, s ∈ S
such that x = taxas. We may conclude that y = xav = taxasav = tayazasav,
so y ∈ Pa3.

For the final statement about H a-classes, we prove the contrapositive. Suppose
that Ha

x is a group with identity e. Then x = x ?a e = e ?a x = xae = eax. Thus
xR xa and xL ax, so x ∈ Pa.

⊆ Pa
1 6⊆ Pa

1

⊆ Pa
2

6⊆ Pa
2

⊆ Pa
1 6⊆ Pa

1

⊆ Pa
2

6⊆ Pa
2

Figure 2.1: A schematic diagram from [29], giving a visual presentation of the way
a D-class of Sij breaks up into Da-classes in Saij . The reader should note that
the elements belonging to Pa1 and Pa2 preserve their R- and L -classes, respectively.
The group H -classes are shaded, to illustrate that this property is not necessarily
preserved.

Remark 2.2.5. The meaning of Theorem 2.2.3 is easier to discern using visual
aids, so we provide the reader with Figure 2.1 showing the splitting of a D-class of
a hom-set Sij into multiple Da-classes in Saij . Furthermore, figures 3.4–3.8, 4.4–4.7
and 5.10–5.12 display the egg-box diagrams of various sandwich semigroups.

Having achieved this goal, let us linger on the same topic a little bit more,
exploring the special case arising if the sandwich element has a left- and right-
identity. This requirement is not terribly restrictive. As a matter of fact, all the
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partial semigroups that we study in this thesis are monoidal, so all their elements
have a left- and right-identity.

The rest of the results in this subsection were proved in [28].

Lemma 2.2.6. Suppose a ∈ Sji has a left- and right-identity in S. If x, y ∈ Sij,
then

(i) x ≤Ra y ⇔ x = y or x ≤R ya,

(ii) x ≤L a y ⇔ x = y or x ≤L ay,

(iii) x ≤J a y ⇔ x = y or x ≤R ya or x ≤L ay or x ≤J aya.

Proof. Consider the following equalities:

(a) x = y,

(b) x = say for some s ∈ Sij ,

(c) x = yam for some m ∈ Sij ,

(d) x = sayam for some s,m ∈ Sij .

By the definition of Green’s preorders in Saij , we have

x ≤L a y ⇔ (a) ∨ (b), x ≤Ra y ⇔ (a) ∨ (c), and x ≤J a y ⇔ (a) ∨ (b) ∨ (c) ∨ (d).

Since (b)⇒ x ≤L ay, (c)⇒ x ≤R ya and (d)⇒ x ≤J aya, the direct implications
in (i)−(iii) hold. For the converse ones, suppose e, g ∈ S are left- and right-identities
of a (i.e. ea = ag = a); then,

x ≤L ay ⇔ x = say = s(ea)y = (se)ay, for some s ∈ S(1),

x ≤R ya⇔ x = yam = y(ag)m = ya(gm), for some m ∈ S(1),

x ≤J aya⇔ x = sayam = s(ea)y(ag)m = (se)aya(gm), for some s ∈ S(1),

where se or/and gm belong to Sij , in each case. Therefore, x ≤L ay ⇒ (b),
x ≤R ya⇒ (c) and x ≤J aya⇒ (d).

In the next proposition, we show simplifications that occur in Lemma 2.2.6(iii)
when one of the elements concerned belongs to one of the P-sets.

Proposition 2.2.7. Suppose a ∈ Sji has a left- and right-identity in S and let
x, y ∈ Sij.

(i) If x ∈ Pa1, then x ≤J a y ⇔ x ≤J aya or x ≤R ya.

(ii) If x ∈ Pa2, then x ≤J a y ⇔ x ≤J aya or x ≤L ay.

(iii) If x ∈ Pa3, then x ≤J a y ⇔ x ≤J aya.

(iv) If y ∈ Pa1, then x ≤J a y ⇔ x ≤J ay or x ≤R y.

(v) If y ∈ Pa2, then x ≤J a y ⇔ x ≤J ya or x ≤L y.
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(vi) If y ∈ Pa3, then x ≤J a y ⇔ x ≤J y.

Proof. In the proof of Lemma 2.2.6 we have concluded that, under the assumption
of a having a left- and right-identity, we have x ≤J a y ⇔ (a) ∨ (b) ∨ (c) ∨ (d) and

(b)⇔ x ≤L ay, (c)⇔ x ≤R ya and (d)⇔ x ≤J aya.

Therefore, for the first three statements, we need to prove only the direct implica-
tions.

(i) By definition, x ∈ Pa1 means that x = xav for some v ∈ Sij , so (a) implies
x = xav = yav and we have (c). Furthermore, (b) gives x = xav = sayav, so we
have (d) in this case. Therefore, we have x ≤J a y ⇔ (c) ∨ (d). Part (ii) follows by
duality.

(iii) From x ∈ Pa3 we have x = uaxav for some u, v ∈ Sij , so by substituting
uaxav for x in each case, we conclude that (a), (b) and (c) all imply (d).

Now, suppose that e, g ∈ S are a left- and right- identity of a, i.e. that a = ea =
ag.

(iv) Let y ∈ Pa1; then, y = yav for some v ∈ Sij . Thus, in case when we have
(b), x = say = sayav, so (d) holds, as well. Now, evidently (a) and (c) both imply
x ≤R y and (d) implies x ≤J ay. For the converse, suppose that x ≤J ay or
x ≤R y. In the first case, x = sayt for some s, t ∈ S(1), so

x = sayt = sayavt = (se)aya(gt),

with se, gt ∈ Sij . Hence, (d) is true. In the second case, for some t ∈ S(1) holds
x = yt, therefore x = yt = yavt with vt ∈ Sij , so (c) is true.

(v) is dual to (iv).
(vi) The direct implication is clear, as x ≤J y follows from each (a)−(d). For

the converse, note that from y ∈ Pa3 we have y = uayav for some u, v ∈ Sij and
x ≤J y gives x = syt for some s, t ∈ S(1); so x = syt = suayavt with su, vt ∈ Sij ,
implying (d).

Remark 2.2.8. Note that, since Pa ⊆ Pa3 (by Proposition 2.2.2), statements (iii)
and (vi) of Proposition 2.2.7 hold for Pa, too.

Analysing the previous proposition, one may wonder whether we can make sim-
ilar statements about the relations Ra and L a. It turns out that some combinations
(e.g. x ∈ Pa2 and x ≤Ra y) do not provide any simplifications to Lemma 2.2.6. In
fact, only four of them do.

Proposition 2.2.9. Suppose a ∈ Sji has a left- and right-identity in S and let
x, y ∈ Sij.

(i) If x ∈ Pa1, then x ≤Ra y ⇔ x ≤R ya.

(ii) If y ∈ Pa1, then x ≤Ra y ⇔ x ≤R y.

(iii) If x ∈ Pa2, then x ≤L a y ⇔ x ≤L ay.
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(iv) If y ∈ Pa2, then x ≤L a y ⇔ x ≤L y.

Proof. We prove only (i) and (ii), because the other two are their dual statements.
From the proof of Lemma 2.2.6, we have x ≤Ra y ⇔ (a)∨ (c). We may immediately
conclude (by the same lemma) that the reverse implication in (i) is true. The other
one is also clear, since x ∈ Pa1 implies x = xav for some v ∈ Sij , and then (a) and
(c) both give x ≤R ya. Now, we prove (ii); the direct implication being obvious, we
focus on the reverse. Since y ∈ Pa1, for some v ∈ Sij we have y = yav. If x ≤R y,
i.e. x = yu for some u ∈ S(1), then x = yavu for vu ∈ Sij . Thus, x ≤Ra y.

Note that, since Pa = Pa1 ∩Pa2, all the statements of Proposition 2.2.9 hold for
Pa, as well. Furthermore, in the previous three results, the assumption of a having
identities is not necessary for the direct implications.

2.2.2 Maximal J a-classes

The previous subsection was dedicated to the description of Green’s relations, their
classes, and the relations ≤L a , ≤Ra and ≤J a . In this section, we focus on the last
one. More precisely, we deal with maximal J a-classes of a sandwich semigroup with
respect to this partial order. First, we divide these classes into two disjoint sets −
trivial and nontrivial maximal J a-classes. Then, we investigate which semigroups
contain nontrivial maximal J a-classes. We close the subsection with a series of
examples offering more insight into the notions introduced. The results and examples
presented in this subsection are from [28].

Lemma 2.2.10. If x ∈ Sij is such that x 6≤J a in S, then {x} is a maximal
J a-class in Saij; additionally, {x} is a nonregular Da-class.

Proof. Suppose x ∈ Sij with x 6≤J a in S. For the first statement, it suffices to
prove that, for any y ∈ Sij , the relation x ≤J a y implies x = y. Since x ≤J a y
holds if and only if one of (a)−(d) from the proof of Lemma 2.2.6 hold, and the
statements (b)−(d) all imply that x ≤J a in S, the implication holds. Thus, {x}
is indeed a maximal J a-class in Saij . Clearly, {x} ⊆ Da

x ⊆ Jax = {x}, so {x} is a
Da-class, as well. Furthermore, x is not an idempotent, as x = x ?a x = xax would
give x ≤J a in S.

Maximal J a-classes of this type in Saij will be called trivial. Any other J a-class
of Saij will be called nontrivial. These notions turn out to be vital in Chapter 5,
where we deal with sandwich semigroups of partitions.

Naturally, our first question is: how many of these can a sandwich semigroup
have? As we are about to prove, if a is regular, the number of nontrivial maximal
J a-classes in Saij is either zero or one, while the number of trivial maximal J a-
classes is not bounded.

Example 2.2.11. Fix an arbitrary nonempty set X and consider the sandwich
semigroup of partial mappings P T aX with a = ∅ ∈ P T X . By Proposition 3.1.2,
elements of P T X \{a} cannot be J -below a in P T , so each of them forms a trivial
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maximal J a-class, by Lemma 2.2.10. Evidently, the greater the size of X is, the
greater is the number of trivial maximal J a-classes of P T aX .

Lemma 2.2.12. Suppose a ∈ Sji is regular.

(i) There is at most one nontrivial maximal J a-class in Saij.

(ii) If a nontrivial maximal J a-class exists, then it contains Pre(a).

(iii) If a nontrivial maximal J a-class exists, and if it is a Da-class, then it is
regular.

Proof. We prove only (ii) and (iii), since (i) follows directly from (ii).
(ii) Let J be a nontrivial maximal J a-class in Saij . By definition, there exists

x ∈ J such that x ≤J a in S. In other words, there exist u, v ∈ S(1) such that
x = uav. Suppose b ∈ Pre(a), i.e. aba = a. Then b ∈ Sij (as a ∈ Sji), so

x = uav = uabav = u(aba)b(aba)v = (uab) ?a b ?a (bav),

where clearly uab, bav ∈ Sij . Thus, x ≤J a b. Since J = Jax is a maximal J a-class,
we have Jab = J .

(iii) Suppose J from above is a Da-class, as well. Let d ∈ V(a) ⊆ Pre(a) (V(a)
is nonempty, since a is regular); then, d = dad = d ?a d and (ii) gives d ∈ J , so J
contains an idempotent.

However, (i) does not hold in general. For instance, take the semigroup S =
({a, b, 0}, ·), where

· a b 0
a b 0 0
b 0 0 0
0 0 0 0

Then, S is a partial semigroup with a singleton set of nodes; moreover, we have 0 ≤J

b ≤J a. Also, it is easily seen that the element a is not regular, and that the variant
Sa = (S, ?a) satisfies x ?a y = 0 for all x, y ∈ S. Thus, the sets {a}, {b}, and {0}
are the J a-classes of the variant Sa, the first two evidently being maximal. These
classes obviously cannot be trivial (in the sense of Lemma 2.2.10), so the sandwich
semigroup (S, ?a) has two nontrivial maximal J a-classes.

Nonetheless, all the partial semigroups examined in Chapters 3−5 are regular, so
we focus on the case when a is regular. Having proved that there can be at most one
nontrivial maximal J a-class in Saij , we want to identify the sandwich semigroups
which contain such a class.

Proposition 2.2.13. Suppose a ∈ Sji is regular. Then the following are equivalent:

(i) Saij has a nontrivial maximal J a-class,

(ii) for all x ∈ Sij, a ≤J axa⇒ x ≤J a,
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(iii) for all x ∈ Sij, aJ axa⇒ xJ a.

Proof. Let a ∈ Sij be regular and fix some b ∈ V(a). Then, a = aba, so ab and ba
are left- and right- identities for a, respectively. We also have b ∈ Pa3 (b = b(aba)b)
and bJ a. Furthermore, from Lemma 2.2.12(ii) we may conclude: if there exists a
nontrivial maximal J a-class in Saij , it is unique and it is the class J = Jab .

(i)⇒ (ii) We prove the contrapositive statement. Suppose that x ∈ Sij satisfies
a ≤J axa, but x 6≤J a. By Lemma 2.2.10, {x} is a (trivial) maximal J a-class in
Saij , and x is nonregular. On the other hand, a ≤J axa and bJ a together imply
b ≤J axa. Since b ∈ Pa3, Proposition 2.2.7(iii) gives b ≤J a x. Now,

J = Jab 6= Jax = {x},

because b is regular and x is not. Thus, J < Jax, so J is not a maximal J a-class.
(ii) ⇒ (iii) Suppose that (ii) holds, and let x ∈ Sij be such that aJ axa; in

particular, we have a ≤J axa, so (ii) gives x ≤J a. Since a ≤J axa ≤J x, we
have aJ x.

(iii)⇒ (i) Suppose that the statement (iii) is true. It suffices to show that J is
a maximal J a-class. Let x ∈ Sij be such that b ≤J a x, i.e.

Jab = J ≤J a Jax . (2.4)

From Proposition 2.2.7(iii) follows b ≤J axa. Together with bJ a, this implies
a ≤J axa (so aJ axa); thus, by (iii) we have xJ a. In particular, x ≤J a, so
aJ b gives x ≤J b. Since b ∈ Pa3, by Proposition 2.2.7(vi) we have x ≤J a b, so
(2.4) implies Jax = J = Jab .

Additionally, we state a sufficient condition for a sandwich semigroup not to have
nontrivial maximal J a-classes; it arises directly from the equivalent condition (iii)
of the previous proposition.

Corollary 2.2.14. If a ∈ Sji is regular and has a pre-inverse that is not J -related
to a (in S), then Saij has only trivial maximal J a-classes.

Proof. Suppose b ∈ Pre(a) is such that a and b are not J -related in S. Since
a = aba, we have aJ aba, so the statement (iii) from Proposition 2.2.13 does not
hold, which means that Saij has no nontrivial maximal J a-classes.

We can do even better, under additional assumptions. Recall the definition of
a stable semigroup (1.2). Similarly, we say a partial semigroup S is stable, if the
implications (1.2) hold for all x, a ∈ S. We have:

Lemma 2.2.15. If S is stable, and a ∈ Sji and x ∈ Sij, then

(i) aJ axa⇔ aH axa,

(ii) if aJ x, then x = xax⇔ a = axa.
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Proof. (i) Since H ⊆J , we prove only the forwards implication. Suppose aJ axa;
then, by stability we have aR axa (since aJ a(xa)) and aL axa (since aJ (ax)a),
so aH axa.

(ii) Suppose aJ x. Clearly, it suffices to prove only the direct implication. If
x = xax, we have

ax ≤J aJ x = xax ≤J ax,

so axJ a. By stability, we have axR a, so axs = a for some s ∈ S. Then,
a = axs = a(xax)s = ax(axs) = axa.

Remark 2.2.16. The first part of the previous lemma (in the case where S is
a semigroup) is Exercise A.2.2.1 in [108]. Furthermore, stability is necessary in
both statements: for instance, let S be a monoid with identity 1 and a nonidentity
idempotent e with eJ 1 (the bicyclic monoid is such a monoid); then e = e1e and
(1, 1e1) = (1, e) ∈J \H .

Now, we may prove

Proposition 2.2.17. If S is stable and H -trivial (i.e. H = {(x, x) : x ∈ S}), and
if a ∈ Sji is regular, then the following are equivalent:

(i) Saij has a nontrivial maximal J a-class,

(ii) every pre-inverse of a is J -related to a in S,

(iii) Pre(a) = V(a).

Proof. (i) ⇔ (ii) Since S is stable and H -trivial, by Lemma 2.2.15(i) we have
aJ axa ⇔ a = axa, so statement (iii) from Proposition 2.2.13 (under these as-
sumptions) amounts to: for all x ∈ Sij , a = axa implies xJ a. This is clearly the
same as (ii).

(ii) ⇒ (iii) Suppose that (ii) is true. It suffices to prove Pre(a) ⊆ V(a). If
b ∈ Pre(a), then a = aba and bJ a in S, so Lemma 2.2.15(ii) gives b = bab.

(iii) ⇒ (ii) The very definition of the set V(a) implies that its elements are
J -related to a, so the proof is complete.

Remark 2.2.18. Proposition 2.2.17 does not hold if S is not H -trivial (for instance,
see Figure 5.12 and the comment below it in Subsection 5.3.6).

2.2.3 Stability and regularity

As hinted in its title, this subsection can be divided up into two parts: in the first
one, we examine the effects of stability in a sandwich semigroup, and in the second,
we give results concerning regular elements of a sandwich semigroup. The first part
contains a number of results, the most important being Proposition 2.2.23, which
states the impact of different kinds of stability on the relations among P-sets. In
contrast, the second part consists of only three results, Proposition 2.2.29 being cru-
cial because it gives some essential properties of P-sets and the full characterisation
of the regular elements in a sandwich semigroup.



38 Chapter 2. Sandwich semigroups

First of all, we introduce the terms of stability in a more meticulous way than
previously.

An element a of a partial semigroup S is

• R-stable if xaJ x⇒ xaR x for all x ∈ S,

• L -stable if axJ x⇒ axL x for all x ∈ S,

• stable, if it is both R-stable and L -stable.

Furthermore, S itself is stable (R-stable, L -stable) if each of its elements is stable
(R-stable, L -stable, respectively). These definitions are inspired by the definition
of stability for semigroups from [108] and [39] (see (1.2)). In the same book, the
authors give a useful result concerning stable semigroups, which can be trivially
adapted to partial semigroups:

Lemma 2.2.19. Let S be a stable (partial) semigroup. Then the following are
equivalent for all x, y ∈ S:

(i) xJ y;

(ii) there exists z ∈ S such that xL zR y;

(iii) there exists w ∈ S such that xR wL y;

(iv) xD y.

Proof. Clearly, (ii)⇒ (iv), (iii)⇒ (iv) and (iv)⇒ (i). Let us prove (i)⇒ (ii) and
(i) ⇒ (iii). Suppose xJ y. This implies the existence of elements q, s, u, v ∈ S(1)

such that qxs = y and uyv = x. It follows that uqxsv = x, so qxJ x, xsJ x
and by stability we have qxL x, xsR x. Since L is a right-congruence, and R is a
left-congruence, it follows that xR xsL qxs and xL qxR qxs = y.

One of the benefits of stability in a partial semigroup is the fact (proved in
[30]) that it is inherited by the sandwich semigroups contained in the said partial
semigroup.

Lemma 2.2.20. Let (S, ·, I, δ,ρ) be a stable partial semigroup. Then Saij is stable
for all i, j ∈ I and a ∈ Sji.

This statement is a direct corollary of Lemma 2.2.27(v), so we omit the proof.
Naturally, stability also has its effects on the partial semigroup itself:

Lemma 2.2.21. Let S be a stable (partial) semigroup and let u, v ∈ S.

(i) If u ≤L v ≤J u, then uL v. (ii) If u ≤R v ≤J u, then uR v.

Proof. We prove only (i), as (ii) is dual. Since u ≤L v ≤J u, we have uJ v.
Furthermore, u ≤L v means that u = xv for some x ∈ S(1). Thus, vJ u = xv from
which follows vL xv = u by stability.
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Remark 2.2.22. In addition, in the case of partial semigroups, we may conclude
that, if the elements u and v belong to the same hom-set Sij , then it suffices to
assume that each element of Sij is stable (rather than assuming that the whole
partial semigroup is stable).

Our main question is: how does stability affect the structural properties of sand-
wich semigroups? The following series of results (from [33]) answers that question
in detail.

Proposition 2.2.23. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I and a ∈ Sji.
Then

(i) a is R-stable ⇒ Pa3 ⊆ Pa1,

(ii) a is L -stable ⇒ Pa3 ⊆ Pa2,

(iii) a is stable ⇒ Pa3 = Pa.

Proof. We prove only the first part, as the second follows by duality, and the third
follows from the previous two, since in 2.2.2(i) we proved Pa ⊆ Pa3.

Suppose a is R-stable, i.e. for all x ∈ S holds xaJ x⇒ xaR x. Recall, x ∈ Pa3
means that uaxav = x for some u, v ∈ S(1), which implies xaJ x. Now, from
R-stability we have xaR x, so x ∈ Pa1.

Remark 2.2.24. Note that R-stability (L -stability) in the implication (i) ((ii),
respectively), in the previous proposition may be replaced with local R-stability on
Sij (local L -stability on Sij):

xaJ x⇒ xaR x for all x ∈ Sij

(axJ x ⇒ axL x for all x ∈ Sij). The implication will still hold because, in the
proof, x ∈ Pa3 implies x δ = aρ = i and xρ = a δ = j. An analogous modification
may be carried out in the part (iii), where, instead of stability, we may require only
local stability on Sij , which means both local R-stability and local L -stability Sij .

Proposition 2.2.25. Let (S, ·, I, δ,ρ) be a partial semigroup, fix i, j ∈ I and a ∈ Sji.
If a is stable and J = D , then J a = Da.

Proof. Suppose that a is stable and that J = D in S. In the case that x ∈ Sij \Pa3,
Theorem 2.2.3(v) implies Jax = Da

x. On the other hand, if x ∈ Pa3, we have

Jax = Jx ∩Pa3 = Dx ∩Pa3 = Dx ∩Pa,

the second equality following from J = D , and the third from Proposition 2.2.23(iii).
Since x ∈ Pa3 = Pa, the set Dx ∩Pa is exactly Da

x (by Theorem 2.2.3(v)).

Since Lemma 2.2.19 guarantees J = D in a stable partial semigroup, the pre-
vious proposition gives:
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Corollary 2.2.26. If Saij is a sandwich semigroup in a stable partial semigroup S,
then J a = Da.

Having shown the benefits of stability, we take the next logical step by investig-
ating in which circumstances it occurs. In order to do that, we have to make a few
introductory notes.

Observe that, for a partial semigroup (S, ·, I, δ,ρ) and for fixed coordinates i, j ∈
I and a sandwich element a ∈ Sji, we have: Sija is a subsemigroup of Si, aSij is a
subsemigroup of Sj , and aSija is a subset of Sji. We use these sets in the following
lemma (which is a combination of two results from [33]), but their true relevance to
the sandwich semigroup Saij will not be apparent until the subsection 2.3.1.

Lemma 2.2.27. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I and a ∈ Sji.

(i) If aSij is periodic, then a is R-stable.

(ii) If Sija is periodic, then a is L -stable.

(iii) If each element of aSija is R-stable in S, then Saij is R-stable.

(iv) If each element of aSija is L -stable in S, then Saij is L -stable.

(v) If each element of aSija is stable in S, then Saij is stable.

Proof. We prove (i), and part (ii) follows by a dual argument. The goal is to show
that xaJ x ⇒ xaR x, for each x ∈ S. So, suppose x ∈ S and xaJ x. Since
x · a = xa, we have xa ≤R x. To prove x ≤R xa, note that xaJ x implies that one
of the following holds:

(a) x = xa,

(b) x = xav, for some v ∈ S,

(c) x = uxa, for some u ∈ S,

(d) x = uxav, for some u, v ∈ S.

Clearly, (a) and (b) both imply x ≤R xa. Case (c) reduces to (d), since x =
uxa = uu(xa)a. So, only the case (d) remains to be considered. We deduce x =
uxav = uuxavav = unx(av)n, for each n ≥ 1. Since v ∈ Sij (because v δ = aρ and
v ρ = xρ) and aSij is periodic, there exists m ≥ 1 such that (av)m is an idempotent
and therefore

x = umx(av)m = (umx(av)m)(av)m = x(av)m,

so x ≤R xa.
Since (iv) follows from (iii) by duality and (v) clearly follows from (iii) and (iv),

the only statement that we prove, in addition to (i), is (iii). Suppose that each
element of aSija is R-stable and let us prove that, for each x ∈ Saij the following
holds: x ?a yJ a x ⇒ x ?a yRa x. The proof follows the same outline as the proof
of (i). Obviously, xay ≤Ra x. From x ?a yJ a x, we know that exactly one of the
following equalities holds:
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(a) x = xay,

(b) x = xayav, for some v ∈ Sij ,

(c) x = uaxay, for some u ∈ Sij ,

(d) x = uaxayav, for some u, v ∈ Sij .

If any of (a) or (b) is true, then x ?a yRa x; (c) again reduces to (d), by the
virtue of x = uaxay = uaua(xay)ay. If (d) is the case, then xJ xaya, so xR xaya
(because aya ∈ aSija is stable in S); thus, there exists z ∈ S such that x = xayaz.
We may deduce z δ = aρ = i and z ρ = xρ = j, so z ∈ Sij and xRa xay.

Next, we aim to study regularity in sandwich semigroups. More specifically, the
first result (Proposition 2.10 in [30]) states the connection between regularity of a
partial semigroup and regularity of sandwich semigroups contained in it.

Lemma 2.2.28. Let (S, ·, I, δ,ρ) be a partial semigroup with i, j ∈ I, a ∈ Sji, and
aSija ⊆ Reg(S). Then Reg(Saij) is a subsemigroup of Saij.

Proof. We need to prove that any ?a-product of elements of the set Reg(Saij) belongs
to Reg(Saij). Suppose x, y ∈ Reg(Saij), and xazax = x, yaway = y, for some
z, w ∈ Sij . Since the elements of aSija are all regular, azaxayawa is a regular
element, so there exists q ∈ S so that (azaxayawa)q(azaxayawa) = azaxayawa.
Thus

(xay)a(waqaz)a(xay) = ((xazax)ay)awaqaza(xa(yaway))
= x(azaxayawa)q(azaxayawa)y
= x(azaxayawa)y = (xazax)a(yaway) = xay,

and x ?a y = xay ∈ Reg(Saij).

The following proposition (proved in [33]) will be used in a number of occasions;
however, its significance primarily lies in paving the way for investigating Reg(Saij) in
the Section 2.3. For the proof, note that an empty set is considered a subsemigroup,
and a left and right ideal of any semigroup.

Proposition 2.2.29. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I and a ∈ Sji.
Then

(i) Pa1 is a left ideal of Saij,

(ii) Pa2 is a right ideal of Saij,

(iii) Pa is a subsemigroup of Saij,

(iv) Reg(Saij) = Pa ∩Reg(S),

(v) Reg(Saij) = Pa ⇔ Pa ⊆ Reg(S).

Proof. (i) We need to prove SijaPa1 ⊆ Pa1. Suppose x ∈ Pa1 and y ∈ Sij . Then
xaR x, so yaxaR yax (because R is a left-congruence) and yax ∈ Pa1.

(ii) is dual to (i). Part (iii) follows from (i) and (ii), since any left/right/ two-
sided ideal of a semigroup is clearly a subsemigroup, and an intersection of two
subsemigroups is always a subsemigroup. Note that Pa is non-empty precisely when
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both Pa1 and Pa2 are non-empty (if x ∈ Pa1 and y ∈ Pa2, then xy ∈ Pa, by (i) and
(ii)).

(iv) First, note that we have ⊆, since from Proposition 2.2.2(i) it follows that
Reg(Saij) ⊆ Pa, and Reg(Saij) ⊆ Reg(S) is obviously true. To prove the reverse
inclusion, suppose x ∈ Pa ∩Reg(S) and x = xay = zax = xwx, for some y, z, w ∈ S.
Then, x = xwx = (xay)w(zax) = x ?a ywz ?a x, where (ywz) δ = y δ = aρ = i
and (ywz) ρ = z ρ = a δ = j. This proves x ∈ Reg(Saij). Finally, (v) is a direct
consequence of (iv).

Finally, we introduce a result of [28], which adds a new "layer" to Lemma 2.2.28
in the special case of regular partial ∗-semigroups.

Lemma 2.2.30. If (S, ·, I, δ,ρ,∗ ) is a regular partial ∗-semigroup, and if a ∈ Si is
a projection, then Reg(Sai ) is a regular ∗-semigroup with involution inherited from
S.

Proof. Clearly, Lemma 2.2.28 implies that Reg(Sai ) is a subsemigroup of Sai , while
Proposition 2.2.29(v) gives Reg(Sai ) = Pa. We need to prove

x∗∗ = x, (x ?a y)∗ = y∗ ?a x
∗, x = x ?a x

∗ ?a x for all x, y ∈ Pa .

The first equality is obvious; for the second, note that (x?a y)∗ = (xay)∗ = y∗a∗x∗ =
y∗ax∗ = y∗ ?a x

∗, since a is a projection. Let us prove the third one. If x ∈ Pa ⊆
Pa1, from Lemma 2.2.1(i) we have x∗x = x∗xaa∗x∗x = x∗xax∗x, the last equality
following from the fact that a is a projection. Therefore,

xx∗ = x(x∗x)x∗ = x(x∗xax∗x)x∗ = (xx∗x)a(x∗xx∗) = xax∗,

and dually, x ∈ Pa2 so xx∗ = xx∗axx∗ and x∗x = x∗ax. We may conclude x?ax∗?ax =
(xax∗)ax = x(x∗ax) = xx∗x = x. Also, note that Reg(Sai ) is closed for ∗ since for
all x ∈ Si we have x∗ = x∗ ?a x ?a x

∗.

Remark 2.2.31. In a special case when S is an inverse partial semigroup, Reg(Sai )
is an inverse semigroup, since it is closed for inverting. Moreover, Reg(Saij) is an
inverse semigroup, regardless of a being a projection or not (see Proposition 2.5.2)!
The same, however, does not necessarily hold when S is a regular ∗-semigroup.
For instance, consider the egg-box diagram of Reg(Bσ2

64) in Figure 5.13 and the
corresponding description. The reader may verify that any D-class contains unequal
numbers of R- and L -classes, so Reg(Bσ2

64) is not even a ∗-semigroup (as the rule
(xy)∗ = y∗x∗ implies an equal number of R- and L -classes in each D-class).

Remark 2.2.32. In the case where S is a semigroup (i.e. |I| = 1) Lemma 2.2.30
applies to its variant corresponding to a projection: If S is a regular ∗-semigroup,
and if a ∈ S is a projection, then Reg(Sa) is a regular ∗-semigroup with involution
inherited from S.
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2.2.4 Right-invertibility

In this subsection, we investigate the properties of Saij in the case when a is right-
invertible in Sij . This means that there exists an element b ∈ Sij such that x = xab
for any x ∈ Sij (i.e. ab is a right-identity for the set Sij). Note that, in this case, a
is not necessarily right-invertible in S. Let RI(a) denote the set of all right-inverses
of a in Sij . Clearly, all the notions and results in this subsection here have a "left"
counterpart. However, we do not state these since they are easy to infer.

This subsection is relevant for sandwich semigroups in all the categories we in-
vestigate (see Lemma 3.0.2 and Propositions 4.1.7 and 5.1.7). All the results and
examples presented in this section were proved in [28], except for Lemma 2.2.38,
which was proved in [33].

Lemma 2.2.33.

(i) If a ∈ Sji is right-invertible, then V(a) = Pre(a) ⊆ RI(a) ⊆ Post(a).

(ii) If a ∈ Sji is right-invertible and regular, then V(a) = Pre(a) = RI(a) ⊆
Post(a).

Proof. (i) Since V(a) = Pre(a) ∩ Post(a), it suffices to prove Pre(a) ⊆ RI(a) ⊆
Post(a). Suppose x ∈ Pre(a) (i.e. axa = a) and fix some b ∈ RI(a). Now, we have
y = yab for any y ∈ Sij . In particular, x = xab, and ax = a(xab) = (axa)b = ab, so
x ∈ RI(a). Thus, x = x(ax) and x ∈ Post(a).

(ii) Having shown (i), we need to prove only RI(a) ⊆ Pre(a). If x ∈ RI(a), then
yax = y for any y ∈ Sij . Since a ∈ Sji is regular, we have a = aza for some x ∈ Sij ,
so

a = aza = a(zax)a = (aza)xa = axa,

which means that x ∈ Pre(a).

Remark 2.2.34. Right-invertibility of an element a ∈ Sji in the hom-set Sij does
not imply its regularity. For example, take two distinct setsX,Y 6= ∅, let I = {X,Y }
and define

S = SX,X ∪ SX,Y ∪ SY,Y ∪ SY,X ,

where SY,X = PTY X , SY,Y = PTY,Y , SX,X = {∅X,X}, and SX,Y = {∅X,Y } (PTA,B

denotes the set of all partial maps A→ B, and ∅AB denotes the empty map A→ B.)
Choose a map a ∈ SY,X \ {∅Y,X}; then ∅X,Y a∅Y,Y = ∅X,Y , so a is right-invertible in
SX,Y = {∅X,Y }. However, ∅X,Y is the sole element in SX,Y and does not belong to
Pre(a), so a is not regular.

However, if a ∈ Sji is right-invertible and our object of interest is the sandwich
semigroup Saij itself, we may assume without loss of generality that a is regular.
Namely, if we pick any b ∈ RI(a) and let c = aba ∈ Sji, then xcy = xabay = xay
for any x, y ∈ Sij , so Saij ≡ Scij ; furthermore, c is right-invertible (cb = abab = ab, so
b ∈ RI(c)) and regular (cbc = abababa = aba = c).

The following Proposition may be regarded as a supplement to Subsection 2.2.2,
since it explores maximal J a-classes in a special case when a is right-invertible.
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Proposition 2.2.35. Suppose a ∈ Sji is right-invertible.

(i) The sandwich semigroup Saij has a maximum J a-class, and this contains
RI(a).

(ii) If Saij is stable, then the maximum J a-class of Saij is in fact an L a-class, and
is a left-group with set of idempotents RI(a).

Proof. (i) Let b ∈ RI(a). Since for any x ∈ Sij holds x = xab, we have x ≤L a b so
x ≤J a b. This proves the statement.

(ii) As above, let b ∈ RI(a). From (i) we know that Jab is the maximum J a-class.
First, we prove Lab = Jab . The direct containment being clear, we show the reverse
one. Let xJ a b. From the proof of (i), we have x ≤L a b, so x ≤L a b ≤J a x. Since
Saij is stable, we may apply Lemma 2.2.21(i) in this semigroup. Therefore xL a b.

We have proved that Jab is an L a-class, so it has to be a Da-class, as well. Since
b = bab ∈ Jab , it is regular, so it follows by Lemma 1.3.9 that it is a left-group.

The only thing left to prove is the equality RI(a) = Ea(Jab ) (for any U ⊆ Sij ,
Ea(U) denotes the set of all idempotents in U with respect to the sandwich multi-
plication ?a). Since x ∈ RI(a) implies x = xax and x ∈ Jab , we proved the direct
inclusion. For the reverse one, let x ∈ Ea(Jab ). Then we have x = xax and xL a b,
so b = uax for some u ∈ Sij . Thus, for any z ∈ Sij

zax = zabax = zauaxax = zauax = zab = z,

so x ∈ RI(a).

Remark 2.2.36. We provide an example showing that stability is necessary in (ii).
If X is an infinite set and if a ∈ P T X is a full, injective and non-surjective mapping,
then a is right-invertible in P T X because it is full and injective (by Lemma 3.0.2).
Let b ∈ RI(a); now, Proposition 2.2.35(i) implies that Jab is the maximum J a-class
in P T aX . However, a is not stable since it is not surjective (by Proposition 3.1.7(iii)),
so there exists a map f ∈ Pa3 \Pa (by Lemma 3.1.12(iii)) with Rank f = Rank b.
Thus, Theorem 3.1.10 implies

Jab = Jb ∩Pa3 = Db ∩Pa3 6= Db ∩Pa = Da
b .

Therefore, Jab is not even a Da-class, let alone an L a-class.

It turns out that similar statements (as in Proposition 2.2.35) can be made for
the J -classes of Sij , in the case when there exists a right-invertible element a ∈ Sji.

Proposition 2.2.37. Suppose a ∈ Sji is right-invertible.

(i) The hom-set Sji has a maximum J -class, and this contains RI(a).

(ii) If each element of Sij is stable in S, then the maximum J -class of Sij is in
fact an L -class.
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Proof. By analysing the proof of Proposition 2.2.35, one can verify that (i) and (ii)
can be proved in precisely the same way (in fact, for (ii) we need only the first
paragraph of the proof for 2.2.35(ii)). Note that, instead of Lemma 2.2.21, we apply
its altered version from Remark 2.2.22.

Finally, we provide an appropriate closing for this stage of investigation, by
showing the key consequences of right-invertibility of a for the structure of the
sandwich semigroup Saij .

Lemma 2.2.38. Let (S, ·, I, δ,ρ) be a partial semigroup, i, j ∈ I and a ∈ Sji. If a
is right-invertible in Sij, then Pa1 = Sij, Pa = Pa2 and Ra = R on Saij.

Proof. Let a be right-invertible and b ∈ RI(a). Then xab = x for all x ∈ Sij , so
xR xa and therefore x ∈ Pa1 for all x ∈ Sij . Now, Pa = Pa2 follows from the definition
of Pa, and Ra = R on Saij from Theorem 2.2.3(i).

Remark 2.2.39. Figures 3.7 and 3.8 show egg-box diagrams for sandwich semig-
roups with a left-invertible and a right-invertible sandwich element, respectively.

2.2.5 Partial subsemigroups

In this subsection, we introduce the term partial subsemigroup. Predictably, it de-
notes a substructure of a partial semigroup that is also a partial semigroup. In
other words, if (S, ·, I, δ,ρ) is a partial semigroup and T ⊆ S is a class such that
(T, ·�T×T , I, δ �T ,ρ �T ) is a partial semigroup, then T is a partial subsemigroup of
S. To avoid confusion, we denote Green’s relations of T by K T , and Green’s rela-
tions of S by K S , for K ∈ {R,L ,H ,D ,J }. In the case of sandwich semigroups
(with sandwich element a) inside T and S, Green’s relations are denoted by K a(T )
and K a(S), respectively, and the corresponding classes containing a chosen element
x ∈ T are Ka

x(T ) and Ka
x(S), respectively. Similarly, the notation for P-sets in S and

T is modified so that it contains information about the partial semigroup considered:
for a ∈ Sji we write

Pa1(S) = {x ∈ Sij : xaRS x} Pa1(T ) = {x ∈ Tij : xaRT x}.

We rename the rest of the P-sets analogously.
As is the case with their semigroup counterparts (subsemigroups), partial sub-

semigroups inherit some properties from partial semigroups containing them. In
the following series of propositions (from [33]), we provide some insight into these
connections. We deal with Green’s relations of partial subsemigroups and their
sandwich semigroups, as well as stability. Interestingly enough, these connections
do not exist in general but can be proved if we add some regularity assumptions.

Proposition 2.2.40. Let T be a partial subsemigroup of S, and let x, y ∈ T and
K ∈ {R,L ,H }.

(i) If y ∈ Reg(T ), then x ≤K S y ⇔ x ≤K T y.
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(ii) If x, y ∈ Reg(T ), then xK S y ⇔ xK T y.

Proof. Note that, for each K ∈ {R,L ,H }, the implication (⇐) trivially holds in
the equivalence of (i), as well as in the equivalence of (ii).

To prove (i), suppose first that x ≤RS y and y ∈ Reg(T ). Then, x = yz and
y = yqy for some z ∈ S and q ∈ T , which (together) imply x = yz = yqyz = yqx,
where q, x ∈ T , so qx ∈ T and x ≤RT y. A dual argument proves the statement for
K = L , and the one for K = H follows from the previous two. Part (ii) follows
directly from (i).

Remark 2.2.41. Obviously, the statements also apply if T is a subsemigroup of a
semigroup S, as any semigroup is a partial semigroup, as well.

Proposition 2.2.42. Let a be an element of a regular (partial) subsemigroup T of
a (partial) semigroup S. Then the following hold:

(i) if a is R-stable in S, then it is R-stable in T ;

(ii) if a is L -stable in S, then it is L -stable in T ;

(iii) if a is stable in S, then it is stable in T .

Proof. Again, we prove only (i), as (ii) is dual, and (iii) follows directly from (i)
and (ii). Suppose a is R-stable in S, i.e. xaJ S x ⇒ xaRS x for all x ∈ S. We
need to prove R-stability in T . If we assume xaJ T x for x ∈ T with xρ = a δ, it
follows that xaJ S x and, by stability of S, xaRS x. Since x, a ∈ T = Reg(T ), we
have xa ∈ T = Reg(T ), thus Proposition 2.2.40(ii) implies xaRT x.

Now, we describe P -sets and Green’s relations of a sandwich semigroup in a
partial subsemigroup T of a partial semigroup S. Note that the sets Tija and aTij
(counterparts of Sija and aSij) make an appearance both in Proposition 2.2.43
and in Proposition 2.2.45, once more proving the significance of the investigation
conducted in Section 2.3 below.

Proposition 2.2.43. Let a be an element of Tji in a partial semigroup (T, ·, I, δ,ρ)
with i, j ∈ I, and let T be a partial subsemigroup of S. Then

(i) Pa1(T ) ⊆ Pa1(S) ∩ T , with equality if Tij ∪ Tija ⊆ Reg(T ),

(ii) Pa2(T ) ⊆ Pa2(S) ∩ T , with equality if Tij ∪ aTij ⊆ Reg(T ),

(iii) Pa(T ) ⊆ Pa(S) ∩ T , with equality if Tij ∪ Tija ∪ aTij ⊆ Reg(T ),

(iv) Pa3(T ) ⊆ Pa3(S) ∩ T , with equality if a is stable in S and Tij ∪ Tija ∪ aTij ⊆
Reg(T ).

Proof. (i) Clearly, Pa1(T ) ⊆ Pa1(S)∩T because Pa1(T ) ⊆ T ⊆ S and RT ⊆ RS . Now,
suppose that Tij ∪Tija ⊆ Reg(T ) and x ∈ Pa1(S)∩T . This implies x ∈ T ∩Sij = Tij
and xaRS x, so Proposition 2.2.40(ii) guarantees xaRT x, because xa ∈ Tija and
x ∈ Tij are regular in T . Hence, x ∈ Pa1(T ).
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(ii) is proved by a dual argument, and (iii) is a direct consequence of (i) and
(ii).

(iv) The inclusion is proved analogously as the corresponding part of (i). For
the second part of the statement, suppose a is stable and Tij ∪Tija∪aTij ⊆ Reg(T ).
Stability of a in S, by Proposition 2.2.23(iii), implies Pa3(S) = Pa(S). If we prove
Pa3(T ) = Pa(T ), the result will follow from the statement (iii). In order to prove
Pa3(T ) = Pa(T ), recall Remark 2.2.24, following the Proposition 2.2.23. It suffices to
prove that, from stability in S follows local stability in T . The proof is analogous to
the proof for Proposition 2.2.42, the only difference being that, instead of regularity
of T , we use the fact that x ∈ Tij ⊆ Reg(T ), xa ∈ Tija ⊆ Reg(T ) and (for the local
L -stability) ax ∈ aTij ⊆ Reg(T ).

The next result offers a different set of conditions which imply equalities men-
tioned in the previous proposition.
Lemma 2.2.44. Let a be an element of Tji in a partial semigroup (T, ·, I, δ,ρ) with
i, j ∈ I and let T be a partial subsemigroup of S.
(i) If RT = RS ∩ (T × T ), then Pa1(T ) = Pa1(S) ∩ T .

(ii) If L T = L S ∩ (T × T ), then Pa2(T ) = Pa2(S) ∩ T .

(iii) If RT = RS ∩ (T × T ), L T = L S ∩ (T × T ), then Pa(T ) = Pa(S) ∩ T .

(iv) If J T = J S ∩ (T × T ), then Pa3(T ) = Pa3(S) ∩ T .
Proof. Part (i) is easily proved, since Proposition 2.2.43(i) gives Pa1(T ) ⊆ Pa1(S)∩T ,
and for any x ∈ Tij we have xa, x ∈ T so the implication xaRS x⇒ xaRT x is true.
Part (ii) is dual, (iii) is a direct consequence of (i) and (ii), and part (iv) is proved
analogously as (i), since axa, x ∈ T .

In addition to the previously introduced notation, we include the following: for
a ∈ Tji ⊆ Sji and x ∈ Tij we write

Kx(T ) = {y ∈ Tij : xK T y} and Kx(S) = {y ∈ Sij : xK S y},

for all K ∈ {R,L,H,D, J}. Using this, we may describe the correlation between
Green’s relations of a partial semigroup and Green’s relations of its partial sub-
semigroup.
Proposition 2.2.45. Let a be an element of Tji in a partial semigroup (T, ·, I, δ,ρ)
with i, j ∈ I and let T be a partial subsemigroup of S. Then
(i) Ra(T ) ⊆ Ra(S) ∩ (T × T ), with equality if Tij ∪ Tija ⊆ Reg(T ),

(ii) L a(T ) ⊆ L a(S) ∩ (T × T ), with equality if Tij ∪ aTij ⊆ Reg(T ),

(iii) H a(T ) ⊆H a(S) ∩ (T × T ), with equality if Tij ∪ Tija ∪ aTij ⊆ Reg(T ),
Proof. Let us prove (i). Clearly, the first part is true, since Ra(T ) ⊆ Ra(S). Sup-
pose Tij ∪Tija ⊆ Reg(T ). Then, Proposition 2.2.43(i) gives Pa1(T ) = Pa1(S)∩T . Let
us describe the R-classes Ra

x(S) and Ra
x(T ) of an arbitrary element x ∈ T :
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• if x ∈ (Sij \ Pa1(S)) ∩ T = Tij \ Pa1(T ), then Theorem 2.2.3(i) gives Ra
x(S) =

{x} = Ra
x(T );

• if x ∈ Pa1(S) ∩ T = Pa1(T ), then Proposition 2.2.40(ii) and the fact that
Rx(T ) ⊆ Tij ⊆ Reg(T ) together imply xRS y ⇔ xRT y for y ∈ Tij . In other
words, Rx(T ) = Rx(S) ∩ T . Hence, Theorem 2.2.3(i) gives

Ra
x(T ) = Rx(T ) ∩ Pa1(T ) = (Rx(S) ∩ T ) ∩ (Pa1(S) ∩ T )

= (Rx(S) ∩ Pa1(S)) ∩ T = Ra
x(S) ∩ T.

Part (ii) is dual, and (iii) is a direct consequence of (i) and (ii).

Example 2.2.46. In Chapter 3, we examine the partial semigroup P T and its
partial subsemigroups T and I, so the reader may see Sections 3.2 and 3.3 for the
direct applications of these results.

2.3 Sandwich regularity and the structure of Reg(Sa
ij)

Let us fix a partial semigroup (S, ·, I, δ,ρ) with i, j ∈ I and an element a ∈ Sji. In
this entire section we study the sandwich semigroup Saij , and the set consisting of
its regular elements, Reg(Saij). As in the "plot" of [33], we start off by examining
the connections among the semigroups Saij , (Sija, ·), (aSij , ·) and (aSija, ?b) (under
the assumption of regularity of a, with b ∈ V (a)). In a natural step forward,
we restrict our attention to the four sets consisting of their regular elements. We
introduce a condition ensuring that these sets define subsemigroups of the original
semigroups. Having studied these subsemigroups and their links, we gain enough
insight to investigate Reg(Saij) (which coincides with Pa under the said condition)
in terms of Green’s relations and the structure of its D-classes. Indeed, we give a
fascinating result (see Theorem 2.3.12 and Remark 2.3.13) explicitly describing this
structure through the semigroup Reg(aSija, ?b). We close off the section by using
this result to study some problems of generation.

2.3.1 Commutative diagrams

We have already mentioned the sets Sija, aSij and aSija in the context of condi-
tions providing stability in a sandwich semigroup. At the time, the only additional
information we needed were the facts that Sija is a subsemigroup of Si, aSij is a
subsemigroup of Sj and aSija is a subset of Sji. Here, we will discover a lot more.

First, suppose a is regular. Then the set of its inverses V(a) is non-empty, and
we may choose and fix an element b ∈ V(a). Since aba = a and b = bab, we have
b ∈ Sij and

Sija = Sijaba = (Sija)ba ⊆ Siba = (Sib)a ⊆ Sija,

so Sija = Siba is the principal left ideal of Si corresponding to the element ba. By
a dual argument, aSij is the principal right ideal of Sj corresponding to ab.
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Additionally, aSija turns out to be a subsemigroup of (Sji, ?b), because for all
x, y ∈ Sij :

axa ?b aya = axabaya = axaya ∈ aSija.

Moreover, (aSija, ?b) is a monoid with identity aba = a, since axa ?b a = axa =
a?b axa for all x ∈ Sij . In fact, the operation ?b�aSija turns out to be independent of
the choice of b ∈ V(a)! In other words, if we choose an element c ∈ V(a), operations
?b and ?c coincide on aSija, since aba = a = aca. To emphasise this independence,
we will use a new sign ~ for the operation ?b�aSija.

All of the above mentioned semigroups are connected and these links may be
visually presented as in the following diagram:

(Sij , ?a)

(aSij , ·)

(aSija,~)

(Sija, ·)

Ψ1 : x 7→ xa Ψ2 : x 7→ ax

Φ1 : y 7→ ay Φ2 : y 7→ ya

Figure 2.2: A diagram depicting the connections between Saij and (aSija,~).

This diagram obviously commutes. We may also conclude that, for all q, w ∈ Sij ,
all ta, sa ∈ Sija and all az, ap ∈ aSij , holds:

qΨ1 · wΨ1 = qawa = (qaw)Ψ1 = (q ?a w)Ψ1,

qΨ2 · wΨ2 = aqaw = (qaw)Ψ2 = (q ?a w)Ψ2,

(ta)Φ1 ~ (sa)Φ1 = atabasa = atasa = (tasa)Φ1 = (ta · sa)Φ1,

(az)Φ2 ~ (ap)Φ2 = azabapa = azapa = (azap)Φ2 = (az · ap)Φ2.

Therefore, all the maps in the diagram are homomorphisms. Moreover, they are
surmorphisms, because of the forms of their codomains. In order for them to be
isomorphisms, we need injectivity.

It is easily seen that Ψ1 is injective if and only if the following holds

xa = ya⇒ x = y, for all x, y ∈ Sij . (2.5)

By symmetry, Ψ2 is injective if and only if

ax = ay ⇒ x = y, for all x, y ∈ Sij . (2.6)
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Assuming that the union of these two conditions holds, we can even prove that
Φ = Ψ1Φ1 = Ψ2Φ2 is an isomorphism. Indeed, it is a composition of surmorphisms,
therefore a surmorphism itself, and we have injectivity because for all x, y ∈ Sij

axa = aya⇒ b(axa) = b(aya)⇒ bax = bay

⇒ a(bax) = a(bay)⇒ ax = ay ⇒ x = y,

the second and the last implication following from (2.5) and (2.6), respectively, be-
cause bax, bay, x, y ∈ Sij . Thus, if (2.5) and (2.6) both hold, then all the semigroups
in the diagram (2.2) are isomorphic.

Remark 2.3.1. Clearly, the duo (2.5) and (2.6) not only implies injectivity of Φ,
but is also implied by it. The justification is simple: if Φ = Ψ1 ◦Φ1 = Ψ2 ◦Φ2 is an
isomorphism, then Ψ1 (and similarly Ψ2) has to be injective, because xΨ1 = yΨ1
implies xΦ = yΦ.

However, even if none of the conditions (2.5) and (2.6) hold, we can prove that
the monoids (aSija, ?b) and (bSjib, ?a) are isomorphic. Namely, the maps aSija →
bSjib : x 7→ bxb and bSijb→ aSjia : x 7→ axa are mutually inverse isomorphisms:

a(b(awa)b)a = awa, b(a(bqb)a)b = bqb, for all w ∈ Sij , and all q ∈ Sji.

Expanding the diagram downwards, we are able to show that

(aSija,~)→ (baSija, ·) : x 7→ bx and (aSija,~)→ (aSijab, ·) : x 7→ xb

are isomorphisms (since baxa = baya ⇒ abaxa = abaya and axab = ayab ⇒
axaba = ayaba for any x, y ∈ Sij). Moreover, since Sija = Siba (as was shown at the
beginning of this section), it follows that (aSija,~) is isomorphic to (baSiba, ·), the
local monoid of the semigroup Si with respect to the idempotent ba ∈ Si (clearly,
(bab)a = ba). By symmetry, (aSija,~) is also isomorphic to the local monoid
(abSjab, ·) of Sj with respect to the idempotent ab ∈ Sj .

The purpose of this lengthy discussion and the connection to Pa will be revealed
when we reexamine the diagram on Figure 2.2, restricting our attention to the set
Reg(Saij) ⊆ Sij . Of course, this set might not be a subsemigroup of Saij , so we
introduce a condition (see [33]) ensuring that it is (and much more): we choose a
sandwich-regular sandwich element a ∈ Sji, which means that {a}∪aSija ⊆ Reg(S).
As in [33], we prove

Proposition 2.3.2. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S and let b ∈ V(a). Then

(i) Reg(Saij) = Pa is a regular subsemigroup of Saij,

(ii) Reg(Sija, ·) = Pa a = Pa2 a is a regular subsemigroup of (Sija, ·),
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(iii) Reg(aSij , ·) = aPa = aPa1 is a regular subsemigroup of (aSij , ·),

(iv) aSija = Reg(aSija,~) = aPa a = aPa1 a = aPa2 a is a regular subsemigroup of
Sbji.

Proof. (i) From Proposition 2.2.29(iii), we know that Pa is a subsemigroup of Saij ,
and Proposition 2.2.2(i) gives Reg(Saij) ⊆ Pa. Thus, it suffices to prove the reverse
inclusion. Suppose x ∈ Pa and x = xay = zax for z, y ∈ Sij . Since a is sandwich-
regular, axa ∈ aSija is regular in S, so there exists t ∈ Sij such that axa = axataxa.
We may deduce

x = xay = zaxay = z(axataxa)y = (zax)ata(xay) = xatax = x ?a t ?a x,

so x ∈ Reg(Saij).
(ii) From the definition of Pa, we have Pa a ⊆ Pa2 a. Conversely, if x ∈ Pa2 and

yax = x for some y ∈ Sij , then xa = x(aba) = (xab)a, so xabR xa (= xaba) and
xab = (yax)ab = y(axab), so xabL axab. Thus xab ∈ Pa and xa = xaba ∈ Pa a.
We have proved Pa a = Pa2 a.

From (i) we deduce that Pa a = Reg(Saij)a is a subsemigroup of Si (because
Pa aPa a ⊆ Pa a). Also, Reg(Saij)a ⊆ Reg(Sija, ·), because any x ∈ Reg(Saij) with
x = xayax (where y ∈ Sij) satisfies xa = xayaxa, so xa ∈ Reg(Sija, ·). If we
show Reg(Sija, ·) ⊆ Pa2 a, the statement will be proved in whole. Suppose ya ∈
Reg(Sija, ·), with qa ∈ Sija such that yaqaya = ya. But then yaqay = (ya)qay =
(yaqaya)qay = yaq(ayaqay) ≤L ayaqay, so yaqayL ayaqay and ya = (yaqay)a ∈
Pa2 a. A dual argument proves (iii).

(iv) From (ii) and (iii) we have aPa a = aPa2 a and aPa a = aPa1 a, respectively.
Also, (i) implies that aPa a = aReg(Saij)a is a subsemigroup of Sbji, since aPa a ?b
aPa a = aPa aPa a ⊆ aPa a. Furthermore, we have aPa a ⊆ Reg(aSija,~) ⊆ aSija,
since for any z ∈ Pa, (i) gives z ∈ Reg(Saij), so z = zayaz for some y ∈ Sij , which
implies

aza = azayaza = az(aba)y(aba)za = aza~ aya~ aza,

hence aza ∈ Reg(aSija,~) ⊆ aSija. We still need to prove aSija ⊆ aPa a. Let x ∈
Sij be arbitrary. Then axa = (aba)x(aba) = a(baxab)a, with baxab = baxabab ≤R

baxaba and baxab = babaxab ≤L abaxab, so baxab ∈ Pa and axa = abaxaba ∈
aPa a.

Note that all the elements of a regular partial semigroup are sandwich-regular.
Conveniently, this will be the case in all the partial semigroups we consider. Thus,
from now on, we suppose that the chosen sandwich element a is sandwich-regular
unless stated otherwise.

The discussion and results presented in this subsection so far add up to the
following commutative diagram (of semigroup surmorphisms):
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Reg(Sij , ?a)

Reg(aSij , ·)

(aSija,~)

Reg(Sija, ·)

ψ1 : x 7→ xa ψ2 : x 7→ ax

φ1 : y 7→ ay φ2 : y 7→ ya

Figure 2.3: A diagram depicting the connections between Reg(Saij) and aSija.

To simplify notation, we write

Pa = Reg(Sij , ?a), T1 = Reg(Sija, ·) = Pa a,
W = (aSija,~) = aPa a, T2 = Reg(aSij , ·) = aPa .

As our investigation below will reveal, the semigroups Pa andW have very much
in common. This will be shown using their connections via T1 and T2. Thus, we
will refer the reader to Diagram 2.3 quite often.

2.3.2 Green’s relations on Pa and W

Our next objective is to describe the connection between Pa and W . In order to do
that, we need to examine Green’s relations in both of these semigroups, as in [33].

Let us denote Green’s relations of Pa = Reg(Saij) with K Pa , for all K ∈
{R,L ,H ,D ,J }, and the corresponding class containing x ∈ Pa with KPa

x . The
following lemma is, in cases where K = L ,R,H , a special case of a more general
Proposition 2.4.2. in [58].

Lemma 2.3.3. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S. If K Pa is any of Green’s relations on Reg(Saij) = Pa other than J Pa, then
K Pa = K a ∩ (Pa×Pa). Moreover, for all x ∈ Pa holds KPa

x = Ka
x.

Proof. The equality K Pa = K a ∩ (Pa×Pa) for K ∈ {R,L ,H } follows from
Remark 2.2.41. Let K = D . Clearly, DPa ⊆ Da ∩ (Pa×Pa). Suppose that
(x, y) ∈ Da ∩ (Pa×Pa) and xL a zRa y for some z ∈ Sij . Since x is a regular
element in Saij , Remark 1.3.8 implies Lax ⊆ Reg(Saij) = Pa. Thus z ∈ Pa and
xL Pa zRPa y, so xDPa y.

For the second part, note that, since x ∈ Pa = Reg(Saij), Remark 1.3.8 implies
Ka
x ⊆ Reg(Saij) = Pa, for all K ∈ {L,R,H,D}. This means that we have KPa

x = Ka
x

in all these cases.
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The previous lemma prompts us to simplify the notation, since the Green’s
relations and their classes in Pa coincide with the ones in Saij . We will therefore
use K a instead of K Pa for all K ∈ {L ,R,H ,D}, and for any x ∈ Pa the
corresponding class will be denoted Ka

x. Of course, we are keeping the notation
J Pa and JPa

x . However, there is a special case in which we do not need to consider
J Pa separately.

Lemma 2.3.4. Let a ∈ Sji be a sandwich-regular element of a partial semigroup S.
If J = D , then in Saij we have J Pa

x = DPa
x .

Proof. From Theorem 2.2.3, Proposition 2.2.2(i) and Lemma 2.3.3, for each x ∈ Pa
we have

JPa
x ⊆ Jax ∩Pa = Jx ∩Pa3 ∩Pa = Jx ∩Pa = Dx ∩Pa = Da

x = DPa
x ⊆ JPa

x .

Thus, JPa
x = DPa

x .

Next, we turn to Green’s relations of W . To avoid confusion, we will denote
them by K ~ for K ∈ {L ,R,H ,D ,J }, and the corresponding class containing
x ∈ W will be denoted by K~x . The next Lemma will give us a clearer picture on
the way Green’s relations of W relate to Green’s relations of Sbji.

Lemma 2.3.5. Let a ∈ Sji be a sandwich-regular element of a partial semigroup S
and let b ∈ V(a). If x ∈W , then H~x = Hb

x.

Proof. Clearly, H~x ⊆ Hb
x. Suppose y ∈ Hb

x. If y = x, then y ∈ H~x . In case y 6= x,
there exist s, t ∈ Sji such that y = sbx and y = xbt. Since x ∈ W and W is a
monoid with identity a, we have

y = sbx = s ?b x = s ?b (x ?b a) = (s ?b x) ?b a = y ?b a and
y = xbt = x ?b t = (a ?b x) ?b t = a ?b (x ?b t) = a ?b y.

Therefore, y = a ?b y = a ?b y ?b a = a(byb)a ∈ aSija = W , so x, y ∈ W = Reg(W ).
Thus, Remark 2.2.41(ii) implies xH ~ y.

2.3.3 Pullback products and an embedding

Finally, we are in a position to show a new aspect of the connection between Pa
and W , as in [33]. In order to do that, we need a short introduction to define the
necessary terms.

First, we introduce the notion of a subdirect product of semigroups. The fol-
lowing definition is a specialised version of the general definition (which concerns
subdirect product of algebras) used in Universal algebra (see Definition 8.1. in [14]).

Definition 2.3.6. Let {Ai : i ∈ I} be a family of semigroups with direct product∏
i∈I Ai. For each j ∈ I, let πj : ∏i∈I Ai → Aj be the j-th projection (xπj gives

the j-th component of x). A subsemigroup A of ∏i∈I Ai is a subdirect product of
semigroups Ai : i ∈ I if, for each j ∈ I, the restriction πi�A is surjective.
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The next term we define is closely related to that of subdirect products. In fact,
its definition is a "recipe" to create a special kind of subdirect product of semigroups.

Definition 2.3.7. The pullback product of semigroups Ai : i ∈ I with respect to a
semigroup T and surmorphisms fi : Ai → T (one surmorphism for each i ∈ I) is the
semigroup

{a ∈
∏

i∈I
Ai : aπjfj = aπkfk for all j, k ∈ I}.

Clearly, any pullback product A of semigroups Ai : i ∈ I is a subsemigroup of∏
i∈I Ai (because projections πi : i ∈ I and maps fi : i ∈ I are all homomorphisms)

and a subdirect product of semigroups Ai : i ∈ I. (The second assertion is true
because, for a fixed k ∈ I and a fixed x ∈ Ak, the element xfk of T corresponds
to at least one element of A, as the set (xfk)f−1

i is non-empty for each i ∈ I and
contains the possible coordinates for each i ∈ I.)

Having introduced the necessary concepts, we continue to study Pa and W . Let
us consider the map

Ψ = (Ψ1,Ψ2) : (Sij , ?a)→ (Sija, ·)× (aSij , ·) : x 7→ (xa, ax).

We may prove now that the set im(Ψ) is a subdirect product of (Sija, ·) and (aSij , ·).
Firstly, as im(Ψ) is an image of a homomorphism, it is a subsemigroup of (Sija, ·)×
(aSij , ·). Moreover, for any element of Sija (aSij), there evidently exists an element
from Sij mapping to it via Ψ1 (Ψ2).

Obviously, Ψ might not be injective, nor surjective. If, however, the implication

xa = ya and ax = ay ⇒ x = y

holds for all x, y ∈ Sij , then Ψ is an embedding.
Following the same "tactics" as in the case of the maps from diagram 2.2, we

define functions
φ : ψ1φ1 = ψ2φ2 = Pa →W : x 7→ axa

and
ψ = (ψ1, ψ2) : Pa → T1 × T2 : x 7→ (xa, ax)

for the maps φ1, φ2, ψ1 and ψ2 from diagram 2.3. Being "specialised versions" of
maps Ψ and Φ, the maps ψ and φ inherit some of their properties. In particular, φ
is a surmorphism (just as Φ is), because it is a composition of surmorphisms, and
im(ψ) is a subdirect product of T1 and T2. We may give an even stronger result:

Theorem 2.3.8. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S. Then

(i) ψ is injective,

(ii) im(ψ) = {(s, t) ∈ T1 × T2 : as = ta} = {(s, t) ∈ T1 × T2 : sφ1 = tφ2}.

In particular, Pa is a pullback product of T1 and T2 with respect to W and surmorph-
isms ψ1 and ψ2.
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Proof. To prove (i), suppose that x, y ∈ Pa are elements such that xψ = yψ. This
implies (xa, ax) = (ya, ay), so xa = ya and ax = ay. Since x, y ∈ Pa ⊆ Pa1, there
exist s, t ∈ Sij such that x = xas and y = yat. Thus, from xa = ya we have
x = yas and y = xat, i.e. xRa y. Dually, x ∈ Pa2 and ax = ay together imply
xL a y. Lemma 1.3.4(i), applied to the semigroup Pa, guarantees that the maps
Lax → Lay : w 7→ wat and Lay → Lax : w 7→ was are mutually inverse bijections, hence
we have w = watas for all w ∈ Lax. Since xL a y, we have x = xatas and y = yatas,
so x = xatas = yatas = y, because xa = ya.

We show only the first equality in (ii) (the second one being obvious) by showing
both inclusions. First, suppose that (x, y) ∈ im(ψ). This implies that there exists
q ∈ Pa such that (x, y) = qψ = (qa, aq), so ax = aqa = ya. Thus, (x, y) ∈ {(s, t) ∈
T1 × T2 : as = ta}. Conversely, if we suppose (x, y) ∈ {(s, t) ∈ T1 × T2 : as = ta},
there exist z, q ∈ Pa with x = za and y = aq, and we have aza = ax = ya = aqa.
Since z ∈ Pa = Reg(Saij), there exists p ∈ Sij such that z = zapaz. Similarly,
ax = aza ∈W = Reg(W ), so there exists v ∈ Pa such that aza~ ava~ aza = aza.
In other words, azavaza = aza, so axvax = ax. Therefore

x = za = zapaza = zapax = zapaxvax = zapazavax = zavax = xvax.

By a symmetric argument, there exists r ∈ Sij such that q = qaraq. Similarly as
above, azavaza = aza implies aqavaqa = aqa (because aza = aqa), so yavya = ya
and

y = aq = aqaraq = yaraq = yavyaraq = yavaqaraq = yavaq = yavy.

Finally, from ax = ya follows

(x, y) = (xvax, yavy) = (xvya, axvy) = ((xvy)Ψ1, (xvy)Ψ2),

and since from Proposition 2.3.2(i) we have

xvy ∈ Reg(Sija, ·) Pa Reg(aSij , ·) = Pa aPa aPa ⊆ Pa,

we may conclude that (x, y) = ((xvy)ψ1, (xvy)ψ2).

2.3.4 The internal structure of the Da-classes of Pa

Continuing the task of describing the connection between Pa and W , we focus on
the way their internal structures (meaning Green’s relations and their classes) are
related via the map φ : Pa → W : x 7→ axa. Therefore, we will often use this
particular function, and it will be useful to shorten the notation. For all x ∈ Pa, we
write x = xφ = axa ∈W , and if X ⊆ Pa, then we write X = {x : x ∈ X}.

Also, for all K ∈ {R,L ,H ,D ,J } and all x, y ∈ Pa, we define x‘K ay if xK ~ y

in W . Clearly, ‘K a is an equivalence relation for each K ∈ {R,L ,H ,D ,J },
since it is the φ-preimage of an equivalence relation. For an element x ∈ Pa, its‘K a-class in Pa is denoted by ”Ka

x. Obviously, ”Ka
x is the inverse image of the class
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K~x with respect to the homomorphism φ, so it has to preserve the classes of the
original Green’s relation. Let us elaborate on this: two elements that are in the
same K a-class of Pa map into the same K ~-class in W , since homomorphisms
preserve Green’s relations; therefore, an inverse image of the class K~x is a union of
K a-classes in Pa.

In general, the idempotents of a sandwich semigroup are not idempotents in the
partial semigroup containing it, so we introduce special notation: for X ⊆ Pa and
Y ⊆W , we write

Ea(X) = {x ∈ X : x = xax}, and Eb(Y ) = {y ∈ Y : y = yby}.

(Note that, as x = xax implies xaR xL ax, Pa contains all the idempotents of Saij ,
even if a is not sandwich-regular.) Furthermore, for x ∈ Pa, the set of all its inverses
(with respect to ?a) from Pa is denoted

Va(x) = {y ∈ Pa : x = x ?a y ?a x and y = y ?a x ?a y}.

Equipped with these new terms and notation, we may prove the following lemma
from [33]:

Lemma 2.3.9. If a ∈ Sji is a sandwich-regular element of a partial semigroup S,
then in Pa = Reg(Saij) we have

(i) Ra ⊆ R̂a ⊆ Da,

(ii) L a ⊆‘L a ⊆ Da,

(iii) H a ⊆‘H a ⊆ Da,

(iv) D̂a = Da ⊆ ‘J a = J Pa.

Proof. First, we prove (i). The discussion above shows Ra ⊆ R̂a. To prove the
inclusion R̂a ⊆ Da, suppose (x, y) ∈ R̂a. Since x, y ∈ Pa = Reg(Saij), by Remark
1.3.8 and Lemma 2.3.3, in the semigroup Pa there exist idempotents e, f such that
xRa e and yRa f . We will find an element w ∈ Pa such that eRawL a f , and it
will follow that xDa eDawDa f Da y, since L a ⊆ Da and Ra ⊆ Da. Let us choose
w = eaf . Clearly, w ≤L a f and w ≤Ra e. To prove the inverse relations, we turn
our attention to the situation in W . From xRa e and yRa f follows x R̂a e and
y R̂a f , respectively, so e R̂a x R̂a y R̂a f , and therefore eR~ f in W . Since
e, f ∈ Ea(Pa), we have e, f ∈ Eb(W ) (because aea ~ aea = aeaea = aea, and a
similar calculation holds for f). Being idempotents, both of them are left-identities
for their R~-class, so e~ f = f and f ~ e = e, i.e. aeafa = afa and afaea = aea.
Now, we may deduce

e = eae = eaeae = eafaeae ≤Ra eaf,

f = faf = fafaf = faeafaf = faeaf ≤L a eaf,

and finally eRa eaf L a f .
(ii) follows by a dual argument, and (iii) follows from (i) and (ii), because for
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all x ∈ Pa we have”Ha
x = (H~x )φ−1 = (R~x ∩L~x )φ−1 = (R~x )φ−1 ∩ (L~x )φ−1 = ”Ra

x ∩ L̂ax,

which implies ‘H a = R̂a ∩‘L a.
We need to show (iv). The inclusions Da ⊆ D̂a and J Pa ⊆‘J a are easy to

prove. Furthermore, D̂a ⊆‘J a, since for all x ∈ Pa holds”Da
x = (D~x )φ−1 ⊆ (J~x )φ−1 = Ĵax.

Hence, it suffices to show D̂a ⊆ Da and ‘J a ⊆ J Pa . The first inclusion follows
from (i) and (ii), used in the following reasoning:

x D̂a y ⇔ xD~ y ⇔ (∃z ∈ Pa) (x R~ z L ~ y)

⇔ (∃z ∈ Pa) (x R̂a z ‘L a y)⇔ x R̂a ◦‘L a y

⇒ xDa ◦Da y ⇒ xDa y.

.

For the second, suppose x ‘J a y, i.e. xJ ~ y (so by definition, x ≤J ~ y and
y ≤J ~ x). This means that there exist u, v, p, q ∈ Pa such that u ~ x ~ p = y and
v ~ y ~ q = x, so auaxapa = aya and avayaqa = axa. If we choose z ∈ Va(x) and
r ∈ Va(y) (which exist, since x, y ∈ Reg(Saij)), then

x = xazax = xazaxazax = xazavayaqazax = xazav ?a y ?a qazax ≤J Pa y

y = yaray = yarayaray = yarauaxaparay = yarau ?a x ?a paray ≤J Pa x,

so xJ Pa y.

Note that, in the proof for ‘J a ⊆J Pa , we have proved the implication x ≤J ~

y ⇒ x ≤J Pa y. The reverse implication obviously holds, so we have
Corollary 2.3.10. If a ∈ Sji is a sandwich-regular element of a partial semigroup
S and if x, y ∈ Pa, then JPa

x ≤J Pa JPa
y ⇔ J~x ≤J ~ J~y .

In order to prove the main theorem of this section, we need to make a crucial
step by proving the next lemma (from [33]), which turns out to be vital in the next
section, as well.
Lemma 2.3.11. If a ∈ Sji is a sandwich-regular element of a partial semigroup S,
we have

Ea(Pa) = Ea(Saij) = (Eb(W ))φ−1.

Proof. The first equality is clear. For the second, note that we have Ea(Pa) ⊆
(Eb(W ))φ−1 because aba = a. For the reverse inclusion, we suppose x ∈ (Eb(W ))φ−1

(which implies axa = axa~ axa = axaxa) and choose y ∈ Va(x), so that

x = xayax = xay(axa)yax = (xayax)a(xayax) = xax = x ?a x.
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Finally, we may prove a result from [33], which is the most important theorem
in the whole section.

Theorem 2.3.12. Suppose a ∈ Sji is a sandwich-regular element of a partial semig-
roup S. Let x ∈ Pa and put r = |”Ha

x/Ra | and l = |”Ha
x/L a |. Then

(i) the restriction of the map φ : Pa → W to the set Ha
x, φ�Hax : Ha

x → H~x , is a
bijection,

(ii) Ha
x is a group if and only if H~x is a group, in which case these groups are

isomorphic,

(iii) if Ha
x is a group, then ”Ha

x is an r × l rectangular group over H~x ,

(iv) if Ha
x is a group, then Ea(”Ha

x) is an r × l rectangular band.

Proof. First, note that the definition of ”Ha
x and Lemma 2.3.9(iii) together imply

that φ maps the class Ha
x to the class H~x . In addition, recall that φ�Ĥax : ”Ha

x → H~x
is a surmorphism.

Our first step is to prove the equivalence in (ii). The direct implication clearly
holds, since φ is a homomorphism and it maps the idempotent (identity) of Ha

x to
an idempotent element in H~x . To prove the reverse implication, suppose that H~x is
a group, and let e be its idempotent and y be the group inverse of x. Lemma 2.3.11
guarantees that (e)φ−1 ⊆ Ea(Pa). If we fix the element w = xayaeayax, we have

w =a(xayaeayax)a = ax(aba)y(aba)e(aba)y(aba)xa =
=x~ y ~ e~ y ~ x = e~ e~ e = e,

so w ∈ Pa is an idempotent. We will show that wH a x, and then Lemma 1.3.5
will imply that Ha

x is a group. It suffices to show wRa x, as wL a x follows by a
symmetric argument. Since w = xayaeayax, clearly w ≤Ra x; if v ∈ Va(x), then

x = xavax = xavaxavax = xav · x · vax = xav · e~ x · vax
= xav · w ~ x · vax = xav · (axayaeayaxa)b(axa) · vax
= (xavax)(ayaeayaxaba)(xavax)
= (xayaeayax)ax = wax,

so x ≤Ra w. Thus, xRaw.
Now, we need to prove that, in the case that Ha

x and H~x are groups, they are
isomorphic. Clearly, the map φ�Hax : Ha

x → H~x is a group homomorphism, and w is
a unique idempotent in Ha

x (by Lemma 1.3.5), hence Lemma 2.3.11 implies

{u ∈ Ha
x : uφ = e} = {w},

so {w} is the group kernel of φ�Ha
x
. Since w is the identity of the group Ha

x and
φ�Ha

x
is a homomorphism, for any c, d ∈ Ha

x (with group inverses c−1 and d−1,
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respectively), the equality cφ = dφ implies

w = (cφ)−1 ~ dφ = c−1φ~ dφ = (c−1d)φ

(where (cφ)−1 is the group inverse of cφ in H~x ), so c−1d = w and therefore c = d.
We have thus proved that the map φ�Hax : Ha

x → H~x is injective. It remains to show
that it is surjective. Let y ∈ H~x . Then there exists z ∈ Pa with z = y. Since w is
the identity of H~x , the element u = wazaw satisfies

u = aua = awazawa = w ~ z ~ w = z = y.

Furthermore, if v ∈ Pa is an element such that v is the group inverse of z in H~x ,
then

w = wawaw = w · w · w = w · z ~ v · w = w · z ~ w ~ v · w =
= wazawavaw = uavaw ≤Ra u

so wRa u. A dual argument shows that wL a u, so u ∈ Ha
w = Ha

x and u = y.
Therefore, φ�Hax is an isomorphism.

Next, we prove (i). Of course, in the proof for (ii), we have proved (i) in the
case when Ha

x is a group. However, even if that is not the case, Remark 1.3.8
guarantees that there exists e ∈ Ea(Pa) such that xRa e, for which φ�Hae : Ha

e → H~e
is an isomorphism (by (ii)). The relation xRa e implies the existence of elements
u, v ∈ Pa such that x ?a u = e and e ?a v = x, and Green’s Lemma (1.3.4)(i) for
semigroups Ha

x and H~x implies that the maps

θ1 : Ha
x → Ha

e : w 7→ w ?a u, θ3 : Ha
x → Ha

e : w 7→ w ~ u,

θ2 : Ha
e → Ha

x : w 7→ w ?a v, θ4 : Ha
e → Ha

x : w 7→ w ~ v

are bijections, with θ2 = θ−1
1 and θ4 = θ−1

3 . Now we may conclude that for all q ∈ Ha
x

we have

q
θ17−→ qau

φ7−→ aqaua
θ47−→ aqauabava = aqauava = a(qθ1θ2)a = aqa = qφ,

so φ�Hax = θ1 ◦ φ�Hae ◦ θ4 is a composition of three bijections, therefore a bijection
itself.

Finally, we prove (iii) and (iv). Suppose that Ha
x is a group. Without loss of

generality, we may assume that x is an idempotent. Recall from the end of the
Section 1.3, that a rectangular group is a semigroup isomorphic to a direct product
of a group and a rectangular band. We need to prove that ”Ha

x is a rectangular group
and Ea(”Ha

x) is a rectangular band. By Lemma 1.3.11, it suffices to prove that:

(a) ”Ha
x is a semigroup;

(b) Ea(”Ha
x) is a rectangular band;

(c) ”Ha
x is regular.
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To prove (a), suppose that s, t ∈ ”Ha
x and let us inspect s ?a t. Since s, t ∈ H~x ,

s ?a t = asata = asabata = s~ t,

and H~x is a group, the element s ?a t belongs to H~x , so s ?a t ∈ ”Ha
x. For (b), recall

that by Lemma 1.3.10, it is enough to prove y ?a z ?a y = y for all y, z ∈ Ea(”Ha
x).

Suppose y, z ∈ Ea(”Ha
x). Since homomorphism maps idempotents to idempotents, all

the elements of Ea(”Ha
x) map to the identity x, so y ~ z ~ y = x = y and

y = yayay = y · y · y = y · y ~ z ~ y · y = y · ayazaya · y = yazay = y ?a z ?a y.

Finally, (c) is clear since ”Ha
x is an union of groups.

Let us pause for a moment and analyse our findings. From the results presented
in this subsection (in particular, from the previous theorem and its proof), we may
conclude the following:

Remark 2.3.13. The structure of Pa = Reg(Saij) in terms of Green’s relations, is a
kind of "inflation" of the corresponding structure ofW = Reg(aSija,~) = (aSija,~).
In particular,

• a ‘J a-class Ĵax in Pa is precisely the J Pa-class JPa
x , and it corresponds to the

J ~-class J~x in W ; moreover, the partially ordered sets (Pa /J Pa ,≤J Pa )
and (W/J ~,≤J ~) are order-isomorphic;

• a D̂a-class ”Da
x in Pa is precisely the Da-class Da

x, and it corresponds to the
D~-class D~x in W ; this correspondence is one-one and onto, meaning that
each D~-class corresponds to exactly one D̂a-class;

• each ‘K a-class (where K ∈ {R,L ,H }) in Pa is a union of K a-classes;

• the structure of a single D~-class D~x in terms of relations R~, L ~ and H ~,
is the same as the structure of D̂a

x in terms of relations R̂a, ‘L a and ‘H a,
respectively, in the sense that each K ~-class K~x corresponds to a single ‘K a-
class, ”Ka

x;

• an ‘H a-class ”Ha
x is a union of H a-classes, and these are either all non-groups

(if H~x = Hb
x is a non-group H ~-class of W ) or else all groups (if H~x = Hb

x is
a group); in the latter case, ”Ha

x is a rectangular group.

The last three observations are illustrated in the Figure 2.4, in the form of egg-box
diagrams of a single Da-class of Pa and its corresponding D~-class ofW . The group
H a- and H ~-classes are shaded gray, and solid lines in the left egg-box denote the
boundaries between R̂a-classes and between‘L a-classes.
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Figure 2.4: Pa is an "inflation" of W .

2.3.5 Generation and idempotent-generation

Having described the connection between Pa and W in detail, we want to use the
acquired knowledge to study the problems of generation in Pa, assuming that we
have the necessary information on generation in W . We give two results (both
from [33]). The first one is technical and rather tiresome. But once we prove it, the
second one, Theorem 2.3.15, follows quite smoothly.

For this, we need specific notation. Suppose X ⊆ Sij in a sandwich semigroup
Saij . Then 〈X〉a denotes the ?a-subsemigroup of Saij generated by X.

Lemma 2.3.14. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S. If X ⊆ Pa, then (〈X〉b)φ−1 ⊆ 〈X ∪ Ea(Pa)〉a.

Proof. Suppose X ⊆ Pa and let x ∈ (〈X〉b)φ−1. This means that there exist
x1, . . . , xn ∈ X such that xφ = x = x1 ~ · · · ~ xn. We want to prove that x
can be generated in Pa by elements from X ∪ Ea(Pa). It suffices to show that

x = p ?a x1 ?a · · · ?a xn ?a v (2.7)

for some p, v ∈ Ea(Pa).
First, we pick the elements p and v, and then we prove that they satisfy (2.7).

Put y = x1 ?a · · · ?a xn. Note that y = x1 ~ · · · ~ xn = x, so y ∈ ”Ha
x. Thus, from

Lemma 2.3.9(iii) follows y ∈ Da
x. Since Pa is a regular semigroup, Da

x is a regular Da-
class, so Remark 1.3.8 guarantees the existence of idempotents u, v ∈ Ea(Pa) such
that uRa y and vL a x. We have picked the idempotent v, and p will be chosen
using the properties of u. Since xDa yRa u, we have xDa u, which means that the
set Ra

x ∩Lau is non-empty; in fact, it is an H a-class in Da
x, say Ha

p. We may conclude
p‘L a u (from pL a u and Lemma 2.3.9(ii)) and p R̂a u (because pRa x‘H a yRa u

and ‘H a⊆R̂a). Hence, p ∈ ”Ha
u, which contains the group Ha

u (u is an idempotent,
so the corresponding H a-class is a group), so Theorem 2.3.12(ii) & (iii) imply that
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u is a rectangular group, therefore Ha

p is a group, too. Because of this, we may
assume without loss of generality that we have chosen p to be an idempotent. For
these idempotents v and p we will prove (2.7).

Before we do that, we need to locate the element p?ax1?a · · ·?axn?av = p?ay?av,
in terms of the H a-class containing it. Since yDa v, by a dual argument to the one
above, we may show that Lay ∩Ra

v = Ha
q for some idempotent q ∈ Ea(Pa). Recall

that any idempotent in a semigroup is a right-identity of its L -class, and a left-
identity of its R-class; hence, from pL a u and qRa v we know that idempotents u
and q satisfy p = p ?a u and v = q ?a v, respectively. Thus, Green’s Lemma 1.3.4(i),
applied to Pa, implies that:

• the maps

θ1 : Ra
u → Ra

p : z 7→ p ?a z and θ2 : Laq → Lav : z 7→ z ?a v

are bijections and

• (z, zθ1) ∈ L a for all z ∈ Ra
u and (w,wθ2) ∈ Ra for all w ∈ Laq .

Therefore, from y ∈ Ra
u it follows that p ?a y = yθ1 ∈ Lay ∩Ra

p = Laq ∩Ra
x, and by a

similar reasoning, from p ?a y ∈ Laq follows

p ?a y ?a v = (p ?a y)θ2 ∈ Lav ∩Ra
p?ay = Lax ∩Ra

x = Ha
x

Finally, we are ready to prove (2.7). Since homomorphisms map idempotents to
idempotents, and elements p, u ∈ Ea(Pa) are in the same ‘H a-class, we have p = u

(because u is the unique idempotent of H~u = (”Ha
u)φ). Similarly, q = v. Again,

by the left-identity and right-identity properties of idempotents, from yRa u and
yL a q, we have y = u ?a y = y ?a q. This implies y = u ~ y = y ~ q, which in in
turn implies

p ?a y ?a v = p~ y ~ v = u~ y ~ q = y = x.

Hence (p?ay?av)φ = xφ. Since p?ay?av ∈ Ha
x and φ is injective on Ha

x (by Theorem
2.3.12), it follows that x = p ?a y ?a v.

The previous lemma will help us discern which elements of the semigroup Pa are
idempotent-generated. Since Pa is a subsemigroup of Saij , these elements are exactly
the idempotent-generated elements of Saij , too. We introduce the following notation:

Ea(Saij) = 〈Ea(Saij)〉a ( = ) Ea(Pa) = 〈Ea(Pa)〉a,

while the idempotent-generated subsemigroup of W is Eb(W ) = 〈Eb(W )〉b.

Theorem 2.3.15. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S. We have Ea(Saij) = Ea(Pa) = (Eb(W ))φ−1.

Proof. The idempotent-generated elements of the semigroup Pa map to idempotent-
generated elements of W , since homomorphisms map idempotents to idempotents.
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Therefore, Ea(Pa) ⊆ (Eb(W ))φ−1. For the reverse inclusion, recall from Lemma
2.3.11 that (Ea(Pa))φ = Eb(W ). If we put X = Ea(Pa) in Lemma 2.3.14, the
inclusion follows directly.

2.4 MI-domination and ranks

Our next goal is to investigate the rank (and idempotent rank, where applicable)
of Pa and Ea(Saij) (again, under the assumption that the sandwich element a is
sandwich-regular). The results of the previous section will be of vital importance
here.

For this investigation, we need a theoretical introduction on regularity pre-
serving elements, mid-identities, RP-domination, and MI-domination, which will be
provided in the first subsection. In a natural step forward, Subsection 2.4.2 studies
mid-identities and regularity preserving elements in sandwich semigroups. Finally,
in the last subsection, we present three results which create a base for Theorem
2.4.16 and Theorem 2.4.17, in which we calculate the rank of Pa and both the rank
and idempotent rank of Ea(Saij), respectively. The chapter is based on the results
from [33], with some added material, which is appropriately emphasised.

2.4.1 MI-domination

Here, we introduce the notions of regularity-preserving elements [53] and mid-
identities [131], along with the concepts of RP-domination and MI-domination. We
show that MI-domination is a natural extension of RP-domination, and we prove
that, in case it holds, it enables us to calculate the said ranks. As we are about to
see in the following chapters, we have MI-domination in the regular subsemigroups
of sandwich semigroups in P T , T , I andM (Chapters 3 and 4), while in Chapter
5 we encounter some natural examples where it does not hold, as well as one key
category in which it holds.

Definition 2.4.1. Let T be a regular semigroup and let u ∈ T . Then, u is

• regularity-preserving if the variant semigroup T u = (T, ?u) is regular;

• mid-identity if xuy = xy for all x, y ∈ T .

We write RP(T ) and MI(T ) for the set of all regularity-preserving elements in T ,
and the set of all mid-identities of T , respectively.

Clearly, for an element u ∈ MI(T ), the operation ?u on T simplifies in the
following manner: x ?u y = xuy = xy. Therefore, (T, ?u) is, in fact, the original
regular semigroup T , so u ∈ RP(T ). We have just proved MI(T ) ⊆ RP(T ). We may
also show that MI(T ) is a rectangular band for all regular semigroups T . Recall the
equivalent condition from Lemma 1.3.10. Suppose that T is a regular semigroup,
fix arbitrary elements x, y ∈ MI(T ) and an element v ∈ V(x). Then xyx = x2 =
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x(xvx) = (xxv)x = xvx = x, the fourth equality following from the fact that x ∈
MI(T ). Therefore, MI(T ) is a rectangular band, and in particular, MI(T ) ⊆ E(T ).

Next, we want to introduce the two notions of "domination". The term RP-
domination was first used in [8], and it inspired the introduction of the term of
MI-domination, in [33]. Recall the natural partial order � on a regular semigroup,
from Section 1.3.

Definition 2.4.2. The regular semigroup T is

• RP-dominated if every element of T is �-below an element of RP(T );

• MI-dominated if every idempotent of T is �-below an element of MI(T ).

Note the difference between the two definitions. In the first one, we require every
element to be below an element of RP(T ), while in the second, only idempotents need
to be below an element of MI(T ). The cause of this is the nature of mid-identities;
namely, any element �-below a mid-identity has to be an idempotent (if v � u with
v = eu = uf for some e, f ∈ E(T ) and u ∈ MI(T ), then v2 = eueu = eu = v).

Next, we introduce a criterion for a semigroup to be MI-dominated, which will
turn out to be significant later on. Let Max�(T ) denote the set of all �-maximal
idempotents of a semigroup T . It is easy to observe that MI(T ) ⊆ Max�(T ) (if we
suppose u � v for some u ∈ MI(T ) and v ∈ E(T ), then u = vuv = vv = v). This
means that a semigroup T is MI-dominated if and only if MI(T ) = Max�(T ).

We will prove that the two notions of domination are in direct relation, meaning
that one implies the other. In order to do that, we give the following result, which is
a combination of Lemma 2.5(1), Theorem 1.2 from [8], and Corollary 4.8 from [53].
We provide the proof for convenience.

Lemma 2.4.3. Let T be a regular semigroup.

(i) If x ∈ T and e, f ∈ E(T ) are such that e � x and xH f , then e � f .

(ii) If T has a mid-identity, then RP(T ) is a rectangular group consisting of those
elements of T that are H -related to a mid-identity.

Proof. (i) Since f is an idempotent, Hf is a group H -class, so xH f implies xf =
fx = x. Further, e � x means that e = xk = lx for some k, l ∈ E(T ). Thus,
ef = lxf = lx = e and fe = fxk = xk = e, so e � f .

(ii) Recall from previous discussion that MI(T ) is a rectangular band and MI(T ) ⊆
RP(T ). First, we will show that

RP(T ) =
⋃

e∈MI(T )
He . (2.8)

To prove (⊇), suppose x ∈ MI(T ) and yH x. Since x is an idempotent, its H -class
is a group, so there exists an element z ∈ Hx such that yz = zy = x. We want to
prove that y ∈ RP(T ), i.e. that T y = (T, ?y) is a regular semigroup. Let q ∈ T be
an arbitrary element. Since T is regular and x ∈ MI(T ), there exists an element
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w ∈ T for which q = qwq = qxwxq. Thus, q = q(yz)w(zy)q = q ?y zwz ?y q and q is
regular in T y.

Next, we show (⊆). Suppose x ∈ MI(T ) and let y ∈ RP(T ) be arbitrary. Since
T y is regular, there exists an element z ∈ T such that x = x ?y z ?y x = xyzyx. We
claim that yzy is a mid-identity, and a member of the H -class Hy. The first part is
easily proved, since for all s, t ∈ T

s ?yzy t = syzyt = s(xyzyx)t = sxt = st.

For the second part, note that from regularity of T follows y = yqy, for some q ∈ T .
Thus, we have

y = yqy = yq(yzy)y = (yqy)zy2 = (yzy)y and
y = yqy = y(yzy)qy = y2z(yqy) = y(yzy)

because yzy ∈ MI(T ). Clearly, yH yzy.
Having proved (2.8), the next task is to show that RP(T ) is a subsemigroup of

T . Let u, v ∈ RP(T ) be arbitrary, and let y, x ∈ MI(T ) be such that uH x and
vH y. We claim that uv ∈ RP(T ). Since Hx and Hy are groups, there exist group
inverses u−1 ∈ Hx and v−1 ∈ Hy. Now, we have

(xy)(uv) = (xyu)v = (xu)v = uv,

(uv)(v−1u−1y) = u(vv−1)u−1y = uyu−1y = uu−1y = xy,

(uv)(xy) = u(vxy) = u(vy) = uv,

(xv−1u−1)(uv) = xv−1(u−1u)v = xv−1xv = xv−1v = xy,

so uvH xy. Hence, from xy ∈ MI(T ) (this holds because MI is a rectangular band)
and (2.8) follows uv ∈ RP(T ).

Finally, we prove that RP(T ) is a rectangular group. Since it is a semigroup,
and MI(T ) is a rectangular band, by Lemma 1.3.11, it suffices to show that RP(T )
is regular. This is easily proved because from (2.8) it follows that RP(T ) is a union
of groups.

Now, we are in position to prove the relation among MI- and RP-domination
in a regular semigroup, as in [33]. In more detail, we show that, if MI-domination
is possible in a semigroup (i.e. it contains at least one mid-identity), then RP-
domination implies MI-domination.

Proposition 2.4.4. Let T be a regular semigroup with a mid-identity. If T is RP-
dominated, then T is MI-dominated, as well.

Proof. Suppose T is a regular, RP-dominated semigroup with a mid-identity. Let
e ∈ E(T ) be arbitrary. Since T is RP-dominated, there exists x ∈ RP(T ) such that
e � x. By Lemma 2.4.3(ii), RP(T ) consists of elements that are H -related to a
mididentity, so there exists u ∈ MI(T ) ⊆ E(T ) such that xH u. Lemma 2.4.3(i)
now implies e � u. Therefore, every idempotent is �-below a mid-identity.
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However, the converse does not hold. For instance, the semigroup S = ({a, b, c}, ·),
where

· a b c

a a b c

b b b c

c c c b

(i.e. S = C1, where C = {b, c} is the group of order 2) is regular with a mid-identity
a, and is a counterexample. Namely, since MI(S) = {a} and E(S) = {a, b} with
b � a (because b = aba), S is MI-dominated; on the other hand, RP(S) = {a} and
c 6� a, so S is not RP-dominated.

As Proposition 2.4.4 does not offer an equivalent condition for MI-domination,
we provide one in the next result (from [33]).

Proposition 2.4.5. Let T be a regular semigroup with a mid-identity. If we write
R = RP(T ) and M = MI(T ), then

(i) for all e ∈M , the map T → eTe : x 7→ exe is a surmorphism;

(ii) for e, f ∈ M , the map eTe→ fTf : x 7→ fxf is an isomorphism with inverse
fTf → eTe : x 7→ exe;

(iii) the set ⋃e∈M eTe = MTM = RTR is a subsemigroup of T ;

(iv) T is MI-dominated if and only if

T =
⋃

e∈M
eTe.

Proof. (i) Let e ∈ M . Clearly, the proposed map is surjective. Since (exe)(eye) =
exeye = exye for all x, y ∈ T , the map is a homomorphism, as well.

(ii) Let e, f ∈ M . The proposed maps are homomorphisms, as restrictions
of homomorphisms of the form presented in (i). Furthermore, for all x ∈ T ,
e(f(exe)f)e = efexefe = exe and f(e(fxf)e)f = fefxfef = fxf , so we have
mutually inverse isomorphisms.

(iii) Note that RTRRTR ⊆ RTR, so RTR is a subsemigroup of T . Moreover,
clearly ⋃e∈M eTe ⊆ MTM and MTM ⊆ RTR (because M ⊆ R), so it suffices to
prove RTR ⊆ ⋃

e∈M eTe. Suppose x, z ∈ R and y ∈ T and consider the element
xyz. Lemma 2.4.3(ii) guarantees that xH u and zH v for some u, v ∈ M , thus
x = ux and z = zv. Since M is a subsemigroup of E(T ), we have uv ∈M , so

xyz = (ux)y(zv) = (uvx)y(zuv) = uv(xyz)uv ∈
⋃

e∈M
eTe,

the second equality following from the characteristics of mid-identities u and v.
(iv) For the direct implication, suppose T is MI-dominated. Clearly, T ⊇⋃

e∈M eTe, so we need to prove the reverse inclusion. Let x ∈ T . Since T is regular,
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by Remark 1.3.8 there exist elements e, f ∈ E(T ) such that xR e and xL f , so
ex = x = xf and therefore x = ex = exf . MI-domination in T implies that the
idempotents e and f are �-below some mid-identities u and v, respectively. We may
conclude that e = ue and f = fv, so

x = exf = (ue)x(fv) = u(exf)v ∈MTM =
⋃

e∈M
eTe,

using (iii) in the last step.
For the reverse implication, suppose T = ⋃

e∈M eTe and let u ∈ E(T ). Since
u ∈ T , we have u = eve for some e ∈M and v ∈ T . Hence eue = e(eve)e = eve = u,
so u � e.

Therefore, a regular semigroup with at least one mid-identity is MI-dominated
if and only if it is covered (in a topological sense) by local monoids corresponding
to mid-identities.

In Proposition 2.4.4, we have seen that RP-domination implies MI-domination.
Our next task is to state sufficient conditions for the converse. In order to describe
these conditions, we introduce the term of factorisable semigroups [19,122].

Definition 2.4.6. Semigroup S is factorisable if S = GE for some subgroup G of
S and some set of idempotents E ⊆ E(S).

First, we study the "domination problems" in a monoid, as in [33].

Lemma 2.4.7. A monoid T is

(i) MI-dominated,

(ii) RP-dominated if and only if it is factorisable.

Proof. (i) Suppose T is a monoid with identity e. We claim that MI(T ) = {e}.
Clearly, e ∈ MI(T ), and for any u ∈ MI(T ), we have u = eue = ee = e. Furthermore,
the monoid T is MI-dominated, since v = eve for all v ∈ E(T ).

(ii) By Lemma 2.4.3(ii), from MI(T ) = {e} it follows that RP(T ) is the group
H -class He. Thus, T is RP-dominated if and only if for all x ∈ T there exists y ∈ He

such that x � y.
We will modify our equivalent condition further, until we achieve the wanted

form. By definition,

x � y ⇔ (∃f, h ∈ E(T ))(x = fy and x = yh).

We prove that, in our case, only one of the equalities suffices. Suppose that, for a
fixed element x ∈ T we have x = yf for some f ∈ E(T ) and y ∈ He. Since y ∈ He, we
have e = sy for some s ∈ He. Moreover, e being the identity implies x = xe = xsy
and

(xs)(xs) = (yfs)(yfs) = yf(sy)fs = yfefs = yffs = yfs = xs.

Thus, xs ∈ E(T ) and x = (xs)y, so x � y.



68 Chapter 2. Sandwich semigroups

Therefore, T is RP-dominated if and only if T = He E(T ). By a symmetric
argument it follows that T is RP-dominated if and only if T = E(T ) He.

Now, we are ready to give the necessary and sufficient condition for RP-domination,
in the case where we have MI-domination. This is a result from [33].

Proposition 2.4.8. Let T be an MI-dominated regular semigroup. Then T is RP-
dominated if and only if the local monoid eTe is RP-dominated (equivalently, fac-
torisable) for each mid-identity e ∈ MI(T ).

Proof. First, we prove the direct implication. Suppose T is a regular semigroup,
both MI- and RP-dominated. Choose an arbitrary e ∈ MI(T ) and consider the
local monoid eTe with identity eee = e. Let us prove its regularity. Fix an element
exe ∈ eTe. By the regularity of T , there exists y ∈ T such that xyx = x. Thus

(exe)(eye)(exe) = exeyexe = exyxe = exe.

Therefore, eTe is regular, and we may study the "domination problems" in it. Let
us prove it is RP-dominated. Choose and fix an arbitrary exe ∈ eTe. Since T is
RP-dominated, x � y for some y ∈ RP(T ). In other words, there exist s, t ∈ E(T )
such that x = ys = ty, which implies

exe = eyse = (eye)(ese), (ese)(ese) = esse = ese,

exe = etye = (ete)(eye), (ete)(ete) = ette = ete.

Hence, exe � eye in eTe. Since y ∈ RP(T ), the variant (T, ?y) of T is regular,
so the variant (eTe, ?eye) of eTe also has to be regular. Let us elaborate. Clearly,
e ∈ MI(T ) implies ?y = ?eye on T . Therefore, every element ewe ∈ eTe has an
inverse eqe in (eTe, ?eye), where q is an inverse of w in (T, ?y). Putting all these
facts together, we may conclude that exe � eye with eye ∈ RP(eTe), so eTe is
RP-dominated.

To prove the reverse implication, suppose that T is an MI-dominated regular
semigroup, such that eTe is an RP-dominated local monoid for all e ∈ MI(T ).
We need to show that T itself is RP-dominated. Fix an arbitrary element x ∈ T .
The semigroup T is MI-dominated, so it is covered by local monoids corresponding
to mid-identities, by Proposition 2.4.5(iv). Thus, x ∈ eTe for some e ∈ MI(T ).
Since eTe is RP-dominated, there exists y ∈ RP(eTe) such that x � y. Having
in mind that eTe is a monoid, from the proof of Lemma 2.4.7 we conclude that
RP(eTe) = He in eTe, so yH e in eTe, and hence in T as well. From Lemma
2.4.3(ii) it follows that y ∈ RP(T ) (because e ∈ MI(T )). Therefore, x � y ∈ RP(T ),
and T is RP-dominated.

2.4.2 Mid-identities and regularity-preserving elements in Pa

In this subsection, we use the results of the previous (preparatory) one, to study
further the regular subsemigroup Pa. The information we gain enables us to infer
crucial theorems in the next section.
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Recall that we have fixed a partial semigroup S, two coordinates i, j ∈ I, a
sandwich-regular element a ∈ Sji, and one of its semigroup inverses b ∈ V(a);
we want to investigate the regular subsemigroup Reg(Saij) = Pa of the sandwich
semigroup Saij . In this process, we will often make use of the monoidW = (aSija,~)
(with identity aba = a) and the mapping φ : Pa → aSija : x 7→ axa = x.

The following result (from [33]) is, in fact, the key result of this subsection and
it describes the mid-identities and regular-preserving elements of Pa.
Proposition 2.4.9. If a ∈ Sji is sandwich-regular, then

(i) MI(Pa) = Ea(”Ha
b ) = V(a) ⊆ Max�(Pa),

(ii) RP(Pa) = ”Ha
b .

Proof. (i) When we were introducing the term of MI-domination above, we noted
that we have MI(T ) ⊆ Max�(T ) in all regular semigroups. Thus, we need to prove
only the equalities. We will show that MI(Pa) ⊆ V(a) ⊆ Ea(”Ha

b ) ⊆ MI(Pa).
Let u ∈ MI(Pa). Since all mid-identities are idempotents, we have u = u ?a u =

uau. Furthermore, the defining property of mid-identities guarantees

a = ababa = a(b ?a b)a = a(b ?a u ?a b)a = (aba)u(aba) = aua,

so u ∈ V(a).
If u ∈ V(a), then uau = u and aua = a. Hence, u ∈ Ea(Pa), and for all x ∈ Pa

u~ x = auabaxa = auaxa = axa = x, and
x~ u = axabaua = axaua = axa = x.

These equalities together imply that u is the identity of W , so u = b and u ∈ ”Ha
b .

Therefore, u ∈ Ea(”Ha
b ).

Suppose u ∈ Ea(”Ha
b ). Thus, u is the unique idempotent of H~b , so aua = b = a.

From this, we have: for all x, y ∈ Pa,

x ?a u ?a y = x(aua)y = xay = x ?a y.

Therefore, u ∈ MI(Pa).
(ii) Since Pa is regular and b ∈ MI(Pa), Lemma 2.4.3(ii) implies

RP(Pa) =
⋃

e∈MI(Pa)
Ha
e .

From (i) we have MI(Pa) = Ea(”Ha
b ), so RP(Pa) = ”Ha

b , as each H a-class in ”Ha
b

contains an idempotent.

The next Proposition is a result from [28]. In it, we suppose a ∈ Sji is regular,
fix an inverse b ∈ V(a) and examine the class Jab of Saij . Even if we do not include
the assumption of sandwich-regularity of a, by Theorem 2.2.3(v) we know that
V(a) ⊆ Jab , since V(a) ⊆ Pa ⊆ Pa3 and V(a) ⊆ Ja. Moreover, we have the following:
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Proposition 2.4.10. Suppose S is stable, and a ∈ Sji is regular. Fix some b ∈ V(a).
Then

(i) Jab = Da
b ,

(ii) Ea(Jab ) = V(a) is a rectangular band under ?a,

(iii) Jab is a rectangular group under ?a,

(iv) if S is regular, then Jab = RP(Pa) and Ea(Jab ) = MI(Pa).

Proof. (i) follows directly from Corollary 2.2.26.
(ii) and (iii). Note that, except in (iv), we do not have sandwich-regularity, so

we have to be careful which of the previous results we use in our argument. First,
we prove Ea(Jab ) = V(a). If x ∈ Ea(Jab ), then x = xax and xJ a b. Thus, xJ b,
so aJ b gives xJ a. From Lemma 2.2.15(ii) now follows axa = a, so x ∈ V(a).
For the reverse containment, let x ∈ V(a) so that xax = x and axa = a. Then
x ∈ Ea(Saij), and we have x = xax = xabax and b = bab = baxab, which means that
xJ a b. Hence, x ∈ Ea(Jab ).

Since Jab = Da
b contains b ∈ V(a), it is a regular D-class. Furthermore, for x, y ∈

V(a) we have xay ∈ V(a) (as (xay)a(xay) = xaxay = xay and a(xay)a = aya = a),
so V(a) = Ea(Jab ) is a subsemigroup of Jab . Therefore, the statement follows from
Lemma 1.3.12.

(iv) If S is regular, then the set {a}∪aSija is also regular in S, i.e. a is sandwich-
regular. Thus, Proposition 2.4.9(i) gives MI(Pa) = V(a) (= Ea(Jab ), by (ii)). Clearly,
it suffices to prove RP(Pa) = Jab . Since Pa = Reg(Saij) and b ∈ V(a) = MI(Pa),
Lemma 2.4.3(ii) gives

RP(Pa) =
⋃

x∈MI(Pa)
Ha
x =

⋃

x∈E(Dab )
Ha
x = Da

b = Jab ,

the penultimate equality following from (iii).

The final result of this subsection, Proposition 2.4.11 (from [33]), enables us to
describe what it means for Pa to be MI-dominated.

Recall the term of a local monoid of a semigroup from Section 1.4. For an
idempotent e ∈ MI(Pa) = V(a), we writeWe for the local monoid of Pa with respect
to e. The first part of Proposition 2.4.5 guarantees that such a local monoid is a
homomorphic image of Pa. The second part of the same proposition implies that
the local monoids of Pa are isomorphic to each other. The following result proves
that they are in fact all isomorphic to the monoid W .

Proposition 2.4.11. Let a ∈ Sji be a sandwich-regular element of a partial semig-
roup S. For any e ∈ V(a), the restriction of φ to the local monoid We is an iso-
morphism φ�We

: We →W .

Proof. Since e ∈ V(a), we have eae = a and aea = a, so the mapW →We : x 7→ exe
and the restriction φ�We

: We →W are mutually inverse maps.
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Therefore, we may conclude that, if Pa = Reg(Saij) is MI-dominated, then it is a
union of local monoids corresponding to its mid-identities (by Proposition 2.4.5(iv)),
all of which are isomorphic copies of W = (aSija,~) (by the previous proposition).

2.4.3 Rank and idempotent rank

This subsection contains the most significant results of the current section, because
here we obtain the formulae for the rank of Pa and the rank and idempotent rank
of Ea(Saij). The first two results are preparatory. They are followed by a major one,
Proposition 2.4.14, which gives a lower bound for the rank of a subsemigroup of Pa
(that satisfies certain conditions). In addition, we show that this bound is met if Pa
is MI-dominated. Then, we apply this result to prove Theorem 2.4.16 and Theorem
2.4.17. All results of this subsection were originally proved in [33].

If M is a monoid, we write GM for the group of units of M .

Lemma 2.4.12. Let M be an idempotent-generated monoid. Then

(i) GM = {idM},

(ii) M \GM is an ideal of M ,

(iii) rank(M) = 1 + rank(M : GM ),

(iv) idrank(M) = 1 + idrank(M : GM ).

Proof. (i) Since idM ∈ GM by the definition of GM , we need to prove it is the
only element in GM . Suppose g ∈ GM . M is idempotent-generated, so there
exists a minimal integer k, such that some k idempotents can generate g. Fix any
e1, . . . , ek ∈ E(M) with g = e1 · · · ek. From e1 ∈ E(M), we have

e1g = e1e1 · · · ek = e1 · · · ek = g.

Further, since g belongs to a group, it has a group inverse g−1, so

e1 = e1 idM = e1gg
−1 = gg−1 = idM .

Thus, k = 1 implies g = e1 = idM , and k ≥ 2 implies g = e1 · · · ek = idM e2 · · · ek =
e2 · · · ek, contradicting the minimality of k.

(ii) It suffices to prove that (M \ GM )GM = GM (M \ GM ) = M \ GM and
GM ∩ (M \ GM )(M \ GM ) = ∅. The former clearly holds, since from (i) we have
GM = {idM}. For the latter, suppose the opposite, that idM = xy for some x, y ∈
M \ GM . Since M is idempotent-generated, there exists a minimal integer k and
idempotents e1, . . . , ek ∈ E(M) such that x = e1 · · · ek. But then x = e1x, so
e1 = e1 idM = e1xy = xy = idM . As in the previous part, we may conclude that
k = 1 and x = e1 = idM , which contradicts the assumption x ∈M \GM .

(iii) and (iv) By (ii), M \GM is an ideal, so any product involving its elements
cannot generate elements of GM . Therefore, any generating set forM contains idM ,
as it is the only element of GM (by (i)).

It is important to note that, in the following lemma, we suppose every idempotent
of Pa is �-below a maximal one (which rules out sandwich semigroups where Pa has
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infinite increasing chains of idempotents). In particular, this condition holds if Pa
is MI-dominated.

Lemma 2.4.13. Let a ∈ Sji be a sandwich-regular element of a partial semigroup
S. Suppose every idempotent of Pa is �-below a maximal one. If X ⊆ Pa is a set
such that Eb(W ) ⊆ 〈X〉b and Max�(Pa) ⊆ 〈X〉a, then (〈X〉b)φ−1 = 〈X〉a.

Proof. Since X ⊆ Xφ−1, we have 〈X〉a ⊆ (〈X〉b)φ−1. For the reverse inclusion,
note that Lemma 2.3.14 gives (〈X〉b)φ−1 ⊆ 〈X ∪ Ea(Pa)〉a, so it suffices to prove
Ea(Pa) ⊆ 〈X〉a. Let e ∈ Ea(Pa); we show that e can be generated by elements of X.
Since every idempotent is �-below a maximal one, e � f , for some f ∈ Max�(Pa).
In other words, e = f?ae?af = faeaf . Since e ∈ Eb(W ) and Eb(W ) ⊆ 〈X〉b, we have
e = x1 ~ x2 ~ · · · ~ xk for some x1, x2, . . . , xk ∈ X. Hence, aea = ax1ax2a · · · axka
and

e = faeaf = fax1ax2a · · · axkaf = f ?a x1 ?a x2 ?a · · · ?a xk ?a f.

Now, we may conclude e ∈ 〈X〉a, because f ∈ Max�(Pa) ⊆ 〈X〉a.

Next, we give the crucial result we announced earlier. Recall that the subsemig-
roup of a semigroup is S is full if it contains all its idempotents. Also, note that in
a rectangular group S = I ×G× J , we have E(S) = {(i, e, j) : i ∈ I, j ∈ J}, where
e is the identity of G. Thus, it is easily seen that any full subsemigroup of S is of
the form I ×K × J , for some submonoid K of the group G.

Proposition 2.4.14. Let a ∈ Sji be a sandwich-regular element of a partial semig-
roup S. In Pa, put r = |”Ha

b/Ra | and l = |”Ha
b/L a |. Let M be a full submonoid of

W , such that M \GM is an ideal of M and GM = M ∩GW . Then, N = Mφ−1 is
a full subsemigroup of Pa, and we have

rank(N) ≥ rank(M : GM ) + max(r, l, rank(GM )) (2.9)

with equality if Pa is MI-dominated.

Proof. Since N is the reverse image of a submonoid of W under the homomorphism
φ, it is clearly a subsemigroup of Pa. Furthermore, it is a full subsemigroup, because
Lemma 2.3.11 implies Ea(Pa) = (Eb(W ))φ−1 ⊆ (M)φ−1. Thus, N ∩”Ha

b is a full
subsemigroup of ”Ha

b , i.e. a full subsemigroup of an r × l rectangular group over
Ha
b
∼= H~a = GW (by Theorem 2.3.12(iii)). Therefore, N ∩”Ha

b is isomorphic to a
direct product of the r × l rectangular band and a submonoid K = N ∩ Ha

b of the
group Ha

b
∼= GW . We may conclude

Kφ = (N ∩Ha
b )φ = (N)φ ∩ (Ha

b )φ = M ∩H~a = M ∩GW = GM ,

the second equality following from the statement

xφ = yφ ⇒ (x ∈ N ⇔ y ∈ N), for all x, y ∈ Pa,
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which is true because N = Mφ−1. By Theorem 2.3.12(ii), the map φ�Hab is injective,
which implies φ�K is injective as well, soK ∼= GM . Therefore, N∩”Ha

b is a |”Ha
b/Ra |×

|”Ha
b/L a | (= r × l) rectangular group over GM . From Proposition 1.4.2, we have

rank(N ∩”Ha
b ) = max(r, l, rank(GM )).

To prove the bound (2.9), suppose that X is a generating set for N , with |X| =
rank(N), and put Y = X∩”Ha

b and Z = X \”Ha
b . Let u ∈ N ∩”Ha

b . We show that u has
to be generated solely by elements from Y . Consider an expression u = x1?a · · ·?axk,
where x1, . . . , xk ∈ X. We have u = x1 ~ · · ·~ xk, and

u ∈ (N ∩”Ha
b )φ = (N ∩Ha

b )φ = GM ,

so x1, . . . , xk ∈ GM , since M \GM is an ideal of M . Thus, x1, . . . xk ∈ (GM )φ−1 =”Ha
b , and we may conclude x1, . . . xk ∈ Y . Hence, we have proved N ∩”Ha

b = 〈Y 〉a, so
we infer that

|Y | ≥ rank(N ∩”Ha
b ) = max(r, l, rank(GM )). (2.10)

Furthermore, since φ is a homomorphism, we have

M = Nφ = (〈X〉a)φ = 〈X〉b = 〈Y ∪ Z〉b = 〈〈Y 〉b ∪ Z〉b = 〈GM ∪ Z〉b,

the last equality following from the previous discussion. Hence,

|Z| ≥ |Z| ≥ rank(M : GM ). (2.11)

From equations (2.10) and (2.11) directly follows (2.9), since |X| = |Y |+ |Z|.

Let us show the last statement is true. Suppose that Pa is MI-dominated. Since
we have proved the lower bound (2.9), it suffices to find a generating set of the
stated size. Let Y ⊆ Pa be a generating set for N ∩”Ha

b with |Y | = rank(N ∩”Ha
b ) =

max(r, l, rank(GM )); in addition, let Z ⊆ Pa be such that M = 〈GM ∪ Z〉b and
|Z| = rank(M : GM ). The set X = Y ∪ Z is clearly of desired size, so it suffices to
show N = 〈X〉a. Firstly, note that

M = 〈GM ∪ Z〉b = 〈(N ∩Ha
b )φ ∪ Z〉b = 〈(N ∩”Ha

b )φ ∪ Z〉b
= 〈(〈Y 〉a)φ ∪ Z〉b = 〈〈Y 〉b ∪ Z〉b = 〈Y ∪ Z〉b = 〈X〉b,

which implies Eb(W ) ⊆ M = 〈X〉b, because M is full. Secondly, having in mind
that Pa is MI-dominated (which means that MI(Pa) = Max�(Pa)), from Proposition
2.4.9(i) and the fact that N ∩”Ha

b is a full subsemigroup of ”Ha
b , we have

Max�(Pa) = MI(Pa) = V(a) = Ea(”Ha
b ) ⊆ N ∩”Ha

b = 〈Y 〉a ⊆ 〈X〉a.

Again, since Pa is MI-dominated, every idempotent from Ea(Pa) is �-below an
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element of MI(Pa) = Max�(Pa), so Lemma 2.4.13 implies

N = Mφ−1 = (〈X〉b)φ−1 = 〈X〉a.

Remark 2.4.15. In the statement of Proposition 2.4.14 (and in Theorem 2.4.16,
and Theorem 2.4.17, as well), the condition "Pa is MI-dominated" is equivalent to
"N is MI-dominated".

Proof. First, we prove the following claim:

If U is a full subsemigroup of a regular semigroup T with a mid-identity,
then MI(U) = MI(T ).

Clearly, if u ∈ MI(T ), then u ∈ E(T ) ⊆ U , so u ∈ MI(U). Thus, we proved
MI(T ) ⊆ MI(U). To prove the reverse inclusion, suppose that u ∈ MI(U). Let
e ∈ MI(T ) be arbitrary. Then e ∈ E(T ) ⊆ U , so e = ee = eue. Thus, for all x, y ∈ T
we have xy = xey = xeuey = xuy, so u ∈ MI(T ).

Since N is a full subsemigroup of Pa (as shown at the beginning of the previous
proof), we have Ea(N) = Ea(Pa) and the claim gives MI(N) = MI(Pa). These facts
imply the stated equivalence.

Finally, we use Proposition 2.4.14 to obtain formulae for the ranks of Pa and its
idempotent-generated subsemigroup Ea(Pa) = Ea(Saij).

Theorem 2.4.16. Suppose a ∈ Sji is a sandwich-regular element of a partial semig-
roup S. Let r = |”Ha

b/Ra | and l = |”Ha
b/L a |, and suppose W \ GW is an ideal of

W . Then
rank(Pa) ≥ rank(W : GW ) + max(r, l, rank(GW )),

with equality if Pa is MI-dominated.

Proof. Put M = W ; it is clearly a full submonoid of W , we have GW = W ∩ GW
and W \GW is an ideal of W , by assumption. Since Wφ−1 = Pa, the result follows
directly from Proposition 2.4.14.

Theorem 2.4.17. Suppose a ∈ Sji is a sandwich-regular element of a partial semig-
roup S. Let r = |”Ha

b/Ra | and l = |”Ha
b/L a |. Then

rank(Ea(Pa)) ≥ rank(Eb(W )) + max(r, l)− 1

and
idrank(Ea(Pa)) ≥ idrank(Eb(W )) + max(r, l)− 1,

with equality in both if Pa is MI-dominated.

Proof. Put M = Eb(W ). Obviously, M is a full subsemigroup of W . Since it
is an idempotent-generated monoid with identity a, Lemma 2.4.12(i) gives GM =
{idM} = {a} (and thus we have GM = M ∩ GW ). The second part of the same
lemma guarantees that M \ GM is an ideal of M . Therefore, the conditions of
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Proposition 2.4.14 are satisfied, and we have a lower bound for the rank of N =
Mφ−1 = (Eb(W ))φ−1 = Ea(Pa) (the last equality follows from Theorem 2.3.15):

rank(Ea(Pa)) ≥ rank(Eb(W ) : {a}) + max(r, l, rank({a})),

with equality in the MI-dominated case. From Lemma 2.4.12(iii), we have rank(Eb(W ) :
{a}) = rank(Eb(W )) − 1, and clearly rank({a}) = 1, so we may transform the pre-
vious inequality to

rank(Ea(Pa)) ≥ rank(Eb(W ))− 1 + max(r, l).

Next, we show the statement concerning the idempotent rank. Firstly, note that
Ea(Pa) is an idempotent-generated semigroup, therefore it has an idempotent rank.
Thus, we analyse an arbitrary generating set consisting of idempotents, as in the
proof of Proposition 2.4.14. Put M = Eb(W ), and let N = Ea(Pa) = 〈X〉a, where
X ⊆ Ea(Pa). Since GM = {a} and N is a full subsemigroup of Pa, as in the proof
of Proposition 2.4.14, we have N ∩”Ha

b = GMφ
−1 = aφ−1 = V(a) = Ea(”Ha

b ) (the last
two following by Proposition 2.4.9(i)). Put Y = X ∩ V(a) and Z = X \ V(a). The
same argument as in the proof of Proposition 2.4.14 gives:

(i) V(a) = 〈Y 〉a, thus |Y | ≥ rank(V(a)) = max(r, l) (the last equality follows from
Proposition 1.4.2);

(ii) M = 〈GM ∪Z〉b = 〈{a}∪Z〉b, and since X contains only idempotents, we have

|Z| ≥ |Z| ≥ idrank(M : GM ) = idrank(M)− 1,

the last equality following from Lemma 2.4.12(iv);

(iii) if Pa is MI-dominated, and we pick Y1, Z1 ⊆ Ea(Pa) such that V(a) = 〈Y1〉a
and 〈{a} ∪ Z1〉 = M , with |Y1| = max(r, l) and |Z1| = idrank(M : GM ), then
N = 〈Y1 ∪ Z1〉a.

Thus, from (i) and (ii) we have idrank(N) ≥ idrank(Eb(W )) − 1 + max(r, l), and
(iii) proves that MI-domination in Pa implies equality.

Remark 2.4.18. If Pa is MI-dominated, then from Theorem 2.4.17 we have

rank(Eb(W )) = idrank(Eb(W ))⇒ rank(Ea(Pa)) = idrank(Ea(Pa)).

Under the same assumption, the reverse implication holds if r, l < ℵ0.

2.5 Inverse monoids
In this section, we study simplifications that occur if we are operating within an
inverse category or, more generally, if the sandwich element of our sandwich semig-
roup is uniquely sandwich-regular. This will be the case with the category of partial
injections (see Section 3.3).
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First, we introduce the key terms of this section. Recall the term of an inverse
semigroup from Section 1.3. Naturally, an inverse monoid is an inverse semigroup
with an identity. A corresponding term in category theory is the term of an inverse
category, as defined in [67]. We shall use a slightly different, yet equivalent definition
(see Section 2.3.2 of [23]):

Definition 2.5.1. A category X is an inverse category if for every morphism f :
A→ B there exists a unique morphism g : B → A such that fgf = f and gfg = g.

Indeed, a one-object inverse category is precisely an inverse monoid.
Recall that the results of Sections 2.3 and 2.4 are obtained under the assumption

of sandwich-regularity of the sandwich element a ∈ Sji. Here, we introduce some
properties stronger than sandwich-regularity. An element a ∈ Sji is uniquely regular
if V(x) = {y ∈ S : x = xyx, y = yxy} is a singleton. Furthermore, a ∈ Sji is
uniquely sandwich-regular if every element of {a} ∪ aSija is uniquely regular in the
partial semigroup S. Obviously, unique sandwich-regularity of a implies its unique
regularity, and also implies its sandwich-regularity. Note that in an inverse category,
every element is uniquely sandwich-regular.

Now, suppose that a ∈ Sji is a uniquely sandwich-regular element and consider
the results of Sections 2.3 and 2.4 (as in Section 3 of [33]).

Proposition 2.5.2. Suppose a ∈ Sji is uniquely sandwich-regular and that V(a) =
{b}. Then all maps in the diagram 2.3 are isomorphisms (thus the map φ : Pa →W
is an isomorphism), and all semigroups are inverse monoids.

Proof. Our first step is to show that Pa = Reg(Saij) is a monoid with identity b. Let
x ∈ Pa and fix any y ∈ Va(x). Since x = xayax and y = yaxay, we have

xab = xayaxab = xabayaxab and aya = ayaxabaya,

bax = baxayax = baxayabax and aya = ayabaxaya,

so x, xab, bax ∈ V(aya). From the unique sandwich-regularity of a it follows that
every element of {a}∪aSjia is uniquely regular; in particular, aya ∈ aSija is uniquely
regular, so x = xab = bax. Thus, x = x ?a b = b ?a x.

In Subsection 2.3.1 we have shown that the maps φ1, φ2, ψ1 and ψ2 are sur-
morphisms, so we need to prove all of them are injective. It suffices to show that
φ = ψ1φ1 = ψ2φ2 is injective (because ψ1 and ψ2 are surmorphisms). Suppose that
x, y ∈ Pa are such that xφ = yφ, i.e. axa = aya. Having in mind that b is the
identity of Pa, we may conclude

x = b ?a x ?a b = baxab = bayab = b ?a y ?a b = y.

Finally, we show that Pa is an inverse semigroup, and consequently an inverse
monoid. Let u ∈ Pa and let x, y ∈ Va(u). From uaxau = u = uayau we have
auaxaua = aua = auayaua; together with x = xauax and y = yauay these imply
x, y ∈ V(aua). Hence x = y, as aua ∈ aSija is uniquely regular. Therefore, Pa is
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an inverse monoid, as required. Since the rest of the semigroups are its isomorphic
images, they are inverse monoids, as well.

Remark 2.5.3. Proposition 2.5.2 has a series of corollaries, in the form of significant
simplifications of the results of Sections 2.3 and 2.4. We give a short summary of
the most important ones:

• the map ψ = (ψ1, ψ2) from Theorem 2.3.8 is trivially injective;

• since φ as an isomorphism, the ‘K a-relations of Section 2.3 are identical to the
K a-relations, so the rectangular groups in Theorem 2.3.12 are just groups;

• for the same reason, Theorem 2.3.15 is completely trivial;

• Proposition 2.4.9 says that MI(Pa) = {b} and RP(Pa) = Ha
b consist only of

the identity and the units, respectively, which is true in any monoid;

• clearly, Pa is MI-dominated, so Theorem 2.4.16 reduces to
"rank(Pa) = rank(W : GW ) + rank(GW ) if W \GW is an ideal of W ";

• for the same reason, Theorem 2.4.17 reduces to
"rank(Ea(Pa)) = rank(Eb(W )) and idrank(Ea(Pa)) = idrank(Eb(W ))".

2.6 The rank of a sandwich semigroup
We devote the final section to the results concerning the rank of Saij . Unfortunately,
they are quite limited, even under assumptions such as sandwich-regularity of the
sandwich element. This comes as no surprise since the structure of the sandwich
semigroup Saij may, in general, be much more complex than the structure of its
regular subsemigroup Pa, for instance. So, instead of exact values, we give some
rough lower bounds.

Let us fix a partial semigroup (S, ·, I, δ,ρ) and a sandwich element a ∈ Sji for
some i, j ∈ I. Note that we make no further assumptions.

In Section 1.3, for a semigroup S, we describe the partial order ≤J on the set
of its J -classes, S/J . Here, we claim the following: if X is a generating set for a
semigroup S and J any maximal J -class of S, then X ∩J contains a generating set
for J . Namely, if y ∈ J and y = x1 · · ·xk for some k ∈ N and some x1, . . . , xk ∈ X,
then y ≤J xi for all 1 ≤ i ≤ k. Since J is a maximal J -class, we have yJ xi for
all 1 ≤ i ≤ k, so J is generated exclusively by elements of X ∩J (more generally, we
may conclude that S \ J is an ideal of the semigroup S), and the claim is proved.
In the case of sandwich semigroups, this means that any generating set of Saij must
include a generating set for each maximal J a-class J , which consists of the elements
of J .

On page 25, we defined Green’s classes of a hom-set Sij by Kx = {y ∈ Sij :
xK y} for each K ∈ {R,L ,H ,J ,D}. Also, we introduced the restriction of the
relation ≤J on the set Sij/J . In the following two results (from [33]), we study
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how much of a maximal J -class is necessary for generating the sandwich semigroup
Saij .

Lemma 2.6.1. Suppose 〈X〉a = T ⊆ Saij and that J ⊆ T is a maximal J -class in
Sij. Then

(i) X ∩ J 6= ∅,

(ii) if every element of aSij is R-stable, then X has non-trivial intersection with
each R-class of J ,

(iii) if every element of Sija is L -stable, then X has non-trivial intersection with
each L -class of J .

Proof. First, we prove (i). Suppose x ∈ J , and x = x1 ?a · · ·?axk where x1, . . . , xk ∈
X. This implies x ≤J xi, for all i. Thus xJ xi for all i, as Jx = J is a maximal
J -class in Sij . In particular, each xi belongs to X ∩ J .

It suffices to prove (ii), as (iii) is dual. Suppose that every element of aSij is
R-stable. Choose an arbitrary x ∈ T ⊆ Sij and suppose x = x1 ?a · · · ?a xk. We
claim that x1 R x in Sij . If k = 1, then x = x1, so the relation obviously holds. If
k ≥ 2, put z = x2 ?a · · · ?a xk, so that x = x1 ?a z = x1az. From the proof of (i), we
have x1 J x = x1az, so R-stability of az ∈ aSij implies x1 R x1az = x in Sij .

The next result is a direct corollary of the previous lemma.

Corollary 2.6.2. Let (S, ·, I, δ,ρ) be a partial semigroup with i, j ∈ I and a ∈ Sji.
Suppose every element of aSij is R-stable and every element of Sija is L -stable.
Write {Jk : k ∈ K} for the set of maximal J -classes of Sij. Then

rank(Saij) ≥
∑

k∈K
max(|Jk/R |, |Jk/L |).

In some cases, but not all, the above lower bound is the exact value of rank(Saij)
(see Theorems 3.1.51 and 3.1.57).

Before moving on, we provide a modified version of Proposition 3.26 from [28],
which will be of help for our calculations in the following chapters. Recall the results
of Subsection 2.2.4, in particular Propositions 2.2.37 and 2.2.35. We have proved the
following: if each element of Sij ∪ aSija is stable in S and a ∈ Sji is right-invertible
with b ∈ RI(a), then Jb = Lb is the maximum J -class of the hom-set Sij , while
Jab = Lab is the maximum J a-class of Saij (because the fact that the elements of
aSija are stable implies stability in Saij , by Lemma 2.2.27(v)). Furthermore, Jab is a
left-group over Ha

b = Hb (the last equality following from Theorem 2.2.3(iii), since b
is regular). If we choose X to be a cross-section of the H -classes in Jb, then there
clearly exist X1 ⊆ X such that Jab = ⋃

x∈X1 Hx = ⋃
x∈X1 Ha

x. As for the elements
of X2 = X \X1, they always belong to singleton H a-classes, while their H -classes
are non-singletons, in general. In this setting, we may prove the following:
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Proposition 2.6.3. Suppose S is a partial semigroup and a ∈ Sji is right-invertible.
Further, suppose that each element of Sij ∪ aSija is stable, and that each element of
aSij is R-stable. Keep the above notation and write T = 〈Jb〉a.

(i) We have T = 〈Jab ∪X2〉a.

(ii) rank(T ) = |X2|+ max(|X1|, rank(Ha
b )).

(iii) If rank(Ha
b ) ≤ | Jab /H a |, then rank(T ) = | Jb /H |.

Proof. (i) We have Jab ∪X2 ⊆ Jb, so we may immediately conclude that 〈Jab ∪X2〉a ⊆
T . Thus, it suffices to show Jb ⊆ 〈Jab ∪X2〉a. Let y ∈ Jb. Then, there exists x ∈ X
such that y ∈ Hx. Thus, we have yR x and so y = xv for some v ∈ S(1). Since b is
a right-inverse of a in Sij , we have

y = xv = (xab)v = x ?a bv.

As x ∈ X ⊆ Jab ∪X2, it suffices to prove bv ∈ Jab . From bJ y = xabv ≤J bv ≤J b
we may conclude that all these elements are J -related, so bvJ b. Moreover, since
Jb = Lb (see the discussion above), we have bvL b. Now, note that bv = (bab)v =
b · a(bv), so bvL a(bv) and therefore bv ∈ Pa2. Hence, bv ∈ Lb ∩Pa2, and since
Lb ∩Pa2 = Lab (by Theorem 2.2.3(ii)) and Lab = Jab (by the discussion preceding this
proposition), it follows that bv ∈ Jab .

(ii) Since Jab is a left-group over Ha
b (by the discussion above), it is in fact a

| Jab /Ra | × 1 rectangular group over Ha
b . Then, Proposition 1.4.2(i) gives

rank(Jab ) = max(| Jab /Ra |, 1, rank(Ha
b )) = max(| Jab /Ra |, rank(Ha

b ))
= max(| Jab /H a |, rank(Ha

b )) = max(|X1|, rank(Ha
b )),

(2.12)

the penultimate equality following from Lab = Jab . Let Ω be a generating set for Jab
of size rank(Jab ). Applying (i), we have

〈Ω ∪X2〉a = 〈〈Ω〉a ∪X2〉a = 〈Jab ∪X2〉a = T,

therefore

rank(T ) ≤ |Ω ∪X2| = |Ω| ∪ |X2| = max(|X1|, rank(Ha
b )) + |X2|.

It remains to show the reverse inequality. Firstly, recall that Jab ⊆ Jb is a maximal
J a-class of Saij . Thus, by the discussion at the beginning of this section, Sij \ Jab
is an ideal of Saij and so T \ Jab is an ideal of T (because T is a subsemigroup of
Sij containing Jab ). Thus, any generating set of T contains a generating set for Jab ,
consisting of elements of Jab , so rank(T ) ≥ rank(Jab ). Furthermore, since each element
of aSij is R-stable and Jb ⊆ T , Lemma 2.6.1(ii) implies that any generating set for
T has non-trivial intersection with each R-class of J . Thus, a generating set for T
contains a cross-section of non-regular R-classes of Jb = Lb (which is clearly of size
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|(Jb \ Jab )/H | = |X2|) and we have

rank(T ) ≥ rank(Jab ) + |X2| = max(|X1|, rank(Ha
b )) + |X2|.

(iii) If rank(Ha
b ) ≤ | Jab /H a |, from (2.12) we have rank(Jab ) = | Jab /H a | = |X1|,

and from the proof of part (ii) we conclude that

rank(T ) = rank(Jab ) + |X2| = |X1|+ |X2| = |X| = | Jb /H |.

In the dual situation, if each element of Sij ∪ aSija is stable in S and a ∈ Sji
is left-invertible with a left-inverse b, then Jb = Rb is the maximum J -class of
the hom-set Sij , while Jab = Ra

b is the maximum J a-class of Saij ; furthermore, Jab
is a right-group over Ha

b = Hb. Again, we choose X to be a cross-section of the
H -classes in Jb, we fix X1 ⊆ X so that Jab = ⋃

x∈X1 Hx = ⋃
x∈X1 Ha

x and we write
X2 = X \X1. Now, we state the obvious dual of Proposition 2.6.3, which follows by
a dual argument.

Proposition 2.6.4. Suppose S is a partial semigroup and a ∈ Sji is left-invertible.
Further, suppose that each element of Sij ∪ aSija is stable, and that each element of
Sija is L -stable. Keep the above notation and write T = 〈Jb〉a.

(i) We have T = 〈Jab ∪X2〉a.

(ii) rank(T ) = |X2|+ max(|X1|, rank(Ha
b )).

(iii) If rank(Ha
b ) ≤ | Jab /H a |, then rank(T ) = | Jb /H |.



Chapter 3

Sandwich semigroups of
transformations

In this chapter, we apply the results of Chapter 2 to obtain results on sandwich
semigroups in three particular categories of functions: partial functions, "plain"
functions (with a full domain) and injective partial functions. We extend those
results, where possible, by investigating further. The results of this chapter were
published in [34], so we cite this article unless stated otherwise.

First, we examine the partial semigroup P T , and then we investigate compre-
hensively the sandwich semigroups contained in it. In more detail, after we examine
regularity, stability, and Green’s relations in P T , we focus on a sandwich semigroup
P T aXY :

• we describe its P-sets, Green’s relations, the structure of its J a-classes and
the order ≤J a ;

• we examine its regular subsemigroup and its connections to the semigroups
presented in the Diagrams 2.2 and 2.3; we also give neat alternative descrip-
tions for these semigroups;

• we study the structure of Reg(P T aXY ) via its connection toW = P T A (where
A = im a), by describing its Green’s relations and the inflation of W (see
Remark 2.3.13); furthermore, we prove that Reg(P T aXY ) is MI-dominated, so
Theorem 2.4.16 enables us to calculate the rank of Reg(P T aXY );

• we characterise its idempotents, enumerate them and calculate the rank of the
idempotent-generated subsemigroup Ea(P T aXY );

• finally, we calculate its rank.

Subsequently, we perform the same analysis for T and a sandwich semigroup of
the form T aXY , as well as for I and a sandwich semigroup of the form IaXY .
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We need to introduce some notions and notation specific for the topic of this
chapter. Let Set denote the class of all sets. For A,B ∈ Set, we define

TAB = {f : f is a function A→ B},
PTAB = {f : f is a function C → B, for some C ⊆ A},

IAB = {f : f is an injective function C → B, for some C ⊆ A}.

We say that f ∈ PTAB is full if dom f = A (i.e. if f ∈ TAB). Similarly as
in the previous chapter, for any A ∈ Set, we write PTA = PTAA, TA = TAA

and IA = IAA. Note that these are the partial transformation semigroup over A,
the full transformation semigroup over A and the symmetric inverse semigroup over
A, respectively. Occasionally, we will refer to PTαβ or PTα, where α and β are
cardinals. In these cases, we simply regard cardinals as sets (the same goes for Tαβ

and Iαβ).
Clearly, IAB ⊆ PTAB for any A,B ∈ Set. Furthermore, the empty map ∅

belongs to both sets, so IAB ∩ ICD 6= ∅ and PTAB ∩PTCD 6= ∅ for any A,B,C,D ∈
Set. However, the same does not hold for TAB ∩TCD. Since the domains need to
be full, TAB ∩TCD 6= ∅ if and only if A = C = ∅ or A = C 6= ∅ with B ∩D 6= ∅.

Let Set+ = Set \{∅} and define

P T = {(A, f,B) : A,B ∈ Set, f ∈ PTAB},
T = {(A, f,B) : A,B ∈ Set+, f ∈ TAB},
I = {(A, f,B) : A,B ∈ Set, f ∈ IAB}.

We may define a partial binary operation on P T :

(A, f,B) · (C, g,D) =
®

(A, f ◦ g,D), if B = C;
undefined, otherwise.

Note that T and I are subclasses of P T , both closed under the defined multiplica-
tion.

The choice of Set+ instead of Set for T arises from the fact that TA∅ = ∅ if and
only if A 6= ∅. Therefore, the only full-domain maps we disregard are the functions
of the form ∅ → A, for A ∈ Set. This is only a matter of convenience; the results
would essentially remain the same with the inclusion of these maps (since a map of
such type can, by composition, produce only a map of the same type).

Next, we define

δ : P T → Set : (A, f,B) 7→ A and ρ : P T → Set : (A, f,B) 7→ B.

Note that, for any two elements (A, f,B) and (C, g,D) from P T , the product
(A, f,B)(C, g,D) exists if and only if (A, f,B) ρ = (C, g,D) δ, and in that case
we have

((A, f,B) · (C, g,D)) δ = A and ((A, f,B) · (C, g,D)) ρ = D.
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Also, whenever a product is defined, we have associativity, because the composition
of maps is associative. Finally, for any A,B ∈ Set, the class P T AB = {(A, f,B) :
f ∈ PTAB} is a set. Therefore, (P T , ·,Set, δ,ρ) is a partial semigroup.

Furthermore, we may conclude (by a similar argument as in the previous para-
graph) that (T , ·�T ,Set+, δ �T ,ρ �T ) and (I, ·�I ,Set, δ �I ,ρ �I) are both partial
semigroups. In fact, they are partial subsemigroups of (P T , ·,Set, δ,ρ).

We abbreviate the notation for (P T , ·,Set, δ,ρ), (T , ·�T ,Set+, δ �T ,ρ �T ) and
(I, ·�I ,Set, δ �I ,ρ �I) to P T , T and I, respectively. Since for any X ∈ Set+ all
three of them contain the identity map idX : X → X : x 7→ x, and (∅, id∅, ∅) ∈ I ⊆
P T , these partial semigroups are monoidal, i.e. locally small categories. Moreover,
we have

Proposition 3.0.1. The partial semigroups P T , T and I are all von-Neumann
regular.

Proof. First, we show the von-Neumann regularity of P T . Let (A, f,B) be an
arbitrary element of P T . If f is the empty map (f = ∅), we have fgf = f for
(B, g,A) ∈ P T , with g being an empty map. Hence (A, f,B) is regular. Suppose
f =

Ä
Fi
fi

ä
i∈I . For each i ∈ I fix an element ai ∈ Fi and define g =

Ä
{fi}
ai

ä
i∈I with

g : B → A. Obviously

(A, f,B) · (B, g,A) · (A, f,B) = (A, f,B), (3.1)

i.e. (A, f,B) is regular.
Note that g ∈ IBA, so we have proved the regularity of I, as well. As for T , the

equality (3.1) holds (and g ∈ TBA), if we define g so that fi 7→ ai and the elements
of the set B \ im(f) map to any element of A.

Therefore, T and I are regular partial subsemigroups of P T . Thus, once we
investigate P T , we may use the results of Subsection 2.2.5 to obtain information
on T and I, as well. Moreover, the regularity of these three partial semigroups
implies the sandwich-regularity of their elements. Thus, we may apply the theory
of Sections 2.3 and 2.4 to attain results on sandwich semigroups in P T , T and I.

Before focusing on P T , we investigate two additional topics in order to make
our study easier down the line. Firstly, having in mind the results of Subsections
2.2.1 and 2.2.4, we pose the following questions for P T , T and I:

• In which cases an element has a left-identity? In which cases an element has
a right-identity?

• In which cases an element a ∈ Sji is left- or right-invertible in Sij?

Clearly, since all three of them are monoidal, the answer to the first two questions
in all three cases is: Always. Furthermore,

Lemma 3.0.2. If Z is any of partial semigroups P T ,T and I, then

(i) a ∈ ZXY is right-invertible in ZY X if and only if it is full and injective;
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(ii) a ∈ ZXY is left-invertible in ZY X if and only if it is surjective.

Proof. (i) Suppose a ∈ ZXY is full and injective and let b ∈ V(a). Then, we may
write a =

Ä
{ui}
vi

ä
i∈I , where {ui : i ∈ I} = X. Since aba = a, we clearly have

(vi)b = ui, so ab = iddom a = idX . Thus, for any x ∈ Z with xρ = X we have
xab = x idX = x, which means that a is right-invertible in Z.

Conversely, if a ∈ ZXY is right-invertible in Z, there exists some b ∈ ZY X such
that xab = x for all x ∈ Z with x δ = X. In particular, for x = idX we have
idX ab = ab = idX . Thus, X = dom(ab) ⊆ dom a and ker(a) ⊆ ker(ab) = {(x, x) :
x ∈ X}. From these two we may conclude that a is both full and injective.

(ii) is shown in a similar manner, since ba = idim(a) for b ∈ V(a) and im(ca) ⊆
im(c) for any c ∈ Z.

Secondly, we are interested in whether any of the partial semigroups P T , T and
I can be expanded to a partial ∗-semigroup. The first statement of the following
result was proved in [34] as Lemma 4.1.

Proposition 3.0.3. The partial semigroup I can be expanded to a partial ∗-semigroup,
which is an inverse partial semigroup. However, neither P T nor T can be expanded
to a partial ∗-semigroup.

Proof. First, let us prove that each element (A, f,B) ∈ I has a unique inverse. If
f = ∅, then (A, ∅, B) trivially has a single inverse (B, ∅, A). So, suppose f =

Ä
hi
fi

ä
i∈I

,
and g ∈ V(f) in I. Since (hi)fgf = fi for all i ∈ I, we have (fi)g = hi for all i ∈ I.
Suppose there exists a ∈ dom g \ {fi : i ∈ I}. Then (a)g 6∈ {hi : i ∈ I} (because
g is injective), so (a)gfg is not defined, which contradicts g being an inverse of f .
Thus, g =

Ä
fi
hi

ä
i∈I

and (B, g,A) is the unique inverse for (A, f,B) in I. For clarity,
we denote g by f−1.

Now, we define ∗ : I → I : (A, f,B) 7→ (B, f−1, A). Clearly, the 6-tuple
(I, ·�I ,Set, δ �I ,ρ �I ,∗ ) is an inverse partial semigroup, so a partial ∗-semigroup,
as well.

Finally, we prove the last statement. We consider only the category P T , since
the proof for T is similar. Suppose that there exists an operation ∗ : P T →
P T , which expands P T to a partial ∗-semigroup. By the definition of a partial
∗-semigroup, for any f = (A, f ′, B) ∈ P T we have

(f∗) δ = B, (f∗) ρ = A, and f∗∗ = f.

These three together imply that ∗ defines a bijection PTAB → PTBA for all A,B ∈
Set. But if A = {1} and B = {1, 2}, then |PTAB | = 3 while |PTBA | = 4, so no
such bijection exists. Therefore, such an operation ∗ cannot be defined.

3.1 The category PT
Having introduced the necessary notation and general results, we are ready to dis-
cuss partial functions, the partial semigroup P T and the sandwich semigroups it
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contains. For the sake of brevity, in this section, the term map (function) denotes a
partial function.

In dealing with functions, the kernel relation is of vital importance to us. For
this reason, we need to expand our vocabulary on the "relational front". Let X and
Y be sets such that X ⊆ Y , and let σ be an equivalence relation on Y . Then:

• σ ∩ (X ×X) is an equivalence relation on X called the the restriction of σ to
X and denoted σ�X ;

• if each σ-class contains at least one element of X, we say that X saturates σ;

• if each σ-class contains at most one element of X, we say that σ separates X.

If X both saturates σ and is separated by σ, then X is clearly a cross-section of σ.
In the following lemma, we use these terms to describe the properties of the

composition of two partial functions.

Lemma 3.1.1. Let A,B,C ∈ Set, f ∈ PTAB and g ∈ PTBC . Then

(i) dom(fg) ⊆ dom f , with equality if and only if im f ⊆ dom g,

(ii) im(fg) ⊆ im g, with equality if and only if im f saturates ker g,

(iii) ker(fg) ⊇ (ker f)�dom(fg), with equality if and only if ker g separates im f ,

(iv) rank[(fg) ≤ min(Rank f,Rank g).

Proof. Parts (i) and (ii) follow directly from the definition of composition. Further-
more, (ii) implies | im(fg)| ≤ | im g|, i.e. Rank(fg) ≤ Rank g. In addition,

Rank(fg) = | im(fg)| = |(im f)g| ≤ | im f | = Rank f,

so (iv) holds, as well. Only (iii) remains to be proved. Clearly, for any two elements
x, y ∈ dom(fg) the equality xf = yf implies (x)fg = (y)fg. Moreover, the reverse
containment holds if and only if ker g does not "connect" any pair of elements from
im f (i.e. if and only if it separates elements of im f).

Having proved this basic lemma and introduced the notation needed, we get to
investigating the partial semigroup P T .

Proposition 3.1.2. Let (A, f,B), (C, g,D) ∈ P T . Then

(i) (A, f,B) ≤R (C, g,D)⇔
A = C, dom f ⊆ dom g and ker f ⊇ (ker g)�dom f ,

(ii) (A, f,B) ≤L (C, g,D)⇔ B = D and im f ⊆ im g,

(iii) (A, f,B) ≤J (C, g,D)⇔ Rank f ≤ Rank g,

(iv) (A, f,B) R(C, g,D)⇔ A = C, dom f = dom g and ker f = ker g,



86 Chapter 3. Sandwich semigroups of transformations

(v) (A, f,B) L (C, g,D)⇔ B = D and im f = im g,

(vi) (A, f,B) J (C, g,D)⇔ (A, f,B) D(C, g,D)⇔ Rank f = Rank g.

Proof. (i) Suppose (A, f,B) ≤R (C, g,D). In other words,

(A, f,B) = (C, g,D)(E, h, J) (3.2)

for some (E, h, J) ∈ P T . Thus C = A, J = B, D = E, and f = gh, which implies
dom f ⊆ dom g (by Lemma 3.1.1(i)) and ker f ⊇ (ker g)�dom f (by Lemma 3.1.1(iii)).

Conversely, we suppose A = C, dom f ⊆ dom g, and ker f ⊇ (ker g)�dom f , and
pick (D,h,B) ∈ P T where h ∈ PTDB is defined as follows:

dom h = (dom f)g = {xg : x ∈ dom f} and (xg)h = xf for x ∈ dom f.

Clearly, dom f ⊆ dom g guarantees that the domain is well defined, and ker f ⊇
(ker g)�dom f guarantees the same for h. Let E = D and J = B. Now, (3.2) is easy
to show.

(ii) Obviously, (A, f,B) ≤L (C, g,D) means that

(A, f,B) = (E, h, J)(C, g,D) (3.3)

for some (E, h, J) ∈ P T , which implies D = B and f = hg, so im f ⊆ im g.
To prove the reverse implication, suppose B = D and im f ⊆ im g, and write

f =
Ä
Fi
fi

ä
i∈I . Next, for each i ∈ I choose an element gi ∈ (fi)g−1 (such an element

exists, since im f ⊆ im g) and let h ∈ PTAC be defined with h =
Ä
Fi
gi

ä
i∈I . Again,

for E = A and J = C, one may easily check (3.3).
(iii) If we suppose (A, f,B) ≤J (C, g,D), we have

(A, f,B) = (E, h, J)(C, g,D)(K, q, L) (3.4)

for some (E, h, J), (K, q, L) ∈ P T , which implies f = hgq, so Rank f ≤ Rank g by
Lemma 3.1.1(iv).

Conversely, suppose Rank f ≤ Rank g and write f =
Ä
Fi
fi

ä
i∈I and g =

Ä
Gt
gt

ä
t∈T .

Since |I| ≤ |T |, we may assume I ⊆ T without loss of generality. Now, for each
i ∈ I ⊆ T choose and fix an ei ∈ Gi. Let us define h ∈ PTAC and q ∈ PTDB with
h =

(
Fi
ei

)
i∈I and q =

Ä gi
fi

ä
i∈I . If we let E = A, J = C, K = D, and L = B, the

equality (3.4) is easily shown.
(iv) follows directly from (i), noting that ker f = (ker f)�dom f .
(v) follows directly from (ii).
(vi) Obviously, (iii) implies (A, f,B) J (C, g,D) ⇔ Rank f = Rank g. Since

D ⊆J (see Chapter 2), it suffices to show that

Rank f = Rank g ⇒ (A, f,B) D(C, g,D).

Suppose Rank f = Rank g and let f =
Ä
Fi
fi

ä
i∈I and g =

Ä
Gi
gi

ä
i∈I . If we define
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h ∈ PTAD with h =
Ä
Fi
gi

ä
i∈I , then (iv) and (v) imply

(A, f,B) R(A, h,D) L (C, g,D),

so (A, f,B) D(C, g,D).

For any cardinal µ let Dµ denote the J = D-class of P T containing all partial
maps of rank µ.

Now, we turn our attention to the sets of form

P T AB = {(A, f,B) : f ∈ PTAB}, for A,B ∈ Set .

These are the underlying sets for our sandwich semigroups, so the interest in their
properties is justified. First, we investigate the structure of P T AB arising from
Green’s relations of P T , restricted to P T AB. As in Chapter 2, these intersections
will be called Green’s relations of P T AB (each K -class of P T AB corresponding
to the K -class of P T containing it), and we denote the restriction of the relation
≤J on P T AB also by ≤J . From the previous result we may draw the following
conclusion:

Corollary 3.1.3. Let A,B ∈ Set. The J = D-classes of P T AB are the sets

DAB
µ = Dµ ∩P T AB = {(A, f,B) : f ∈ PTAB, Rank f = µ},

for each cardinal 0 ≤ µ ≤ min(|A|, |B|). These J -classes form a chain in P T AB:
DAB
µ ≤J DAB

ν ⇔ µ ≤ ν.

Our next task is to describe DAB
µ in terms of the number and the sizes of the

Green’s classes it contains. In order to do this, we introduce some additional nota-
tion. For background on basic cardinal arithmetic, the reader is referred to Chapter
5 in [62].

For n, k ∈ N0, the Stirling number of the second kind S(n, k) is the number of
ways of partitioning a set of n elements into k non-empty sets (blocks). It can be
calculated via the recurrence relation

S(n, k) = S(n− 1, k − 1) + k S(n− 1, k), for k > 0, n > 0,
S(0, 0) = 1, S(n, 0) = S(0, n) = 0, for n > 0,

as well as via the formula

S(n, k) = 1
k!

k∑

i=0
(−1)i

Ç
k

i

å
(k − i)n.

Let κ, µ be cardinals with µ ≤ κ. In the following, we identify a κ- or µ-element
set with the corresponding cardinal. Then

κ! denotes the size of the symmetric group over a set of size κ. When κ is finite,
this is the ordinary factorial; otherwise, it equals 2κ, by [26].



88 Chapter 3. Sandwich semigroups of transformations

(κ
µ

)
denotes the number of µ-element subsets of a κ-element set. If κ is finite, this
is obviously the ordinary binomial coefficient. Otherwise, it equals κµ. Let us
explain the latter. First, suppose µ < κ. Choosing the elements one by one,
we arrive at κµ = κ possibilities, since removing µ elements from a κ-element
set leaves another κ elements in it. Thus, κ is an upper bound because we
have counted each combination µ! times. It is also a lower bound, since there
are κ ways to choose a singleton subset of κ, and the number of µ-element
subsets cannot be smaller than that. Now, suppose µ = κ. Note that there
are 2κ subsets of κ. The discussion of the previous case implies that there are
in total κ subsets of cardinalities smaller than κ (the empty set, and κ sets of
size ν, for each ν < κ). Thus, there must be 2κ(= κµ) of those of size κ.

S(κ, µ) denotes the number of ways to partition a κ-element set into µ blocks. Let
κ be finite; by definition, S(κ, µ) is the Stirling number of the second kind.
Otherwise, S(κ, 1) = 1 and S(κ, µ) = 2κ for µ ≥ 2. Let us elaborate on the
latter. Recall that κ has 2κ subsets, all of which (except ∅) can be members
of our partition. To get an upper bound for S(κ, µ), we choose µ times from
the set of all those subsets (not setting any conditions), arriving at (2κ)µ = 2κ
possibilities. We claim that this is a lower bound, as well. Note that we may
count the number of µ-block partitions by choosing the set A1 containing the
element 1 first (by partitioning κ into 2 subsets), and then partitioning κ \A1
into µ − 1 sets. Since κ can be partitioned into two blocks in 2κ ways (each
of 2κ subsets determines a partition, in which case each partition is counted
twice), it can be partitioned into µ subsets in at least as many ways.

In the case when κ < µ, we define
(κ
µ

)
= S(κ, µ) = 0.

These terms help us describe the structure of DAB
µ :

Corollary 3.1.4. Let A,B ∈ Set, write α = |A| and β = |B| and fix some cardinal
0 ≤ µ ≤ min(α, β). Then

(i) |DAB
µ /R | = S(α+ 1, µ+ 1),

(ii) |DAB
µ /L | =

(β
µ

)
,

(iii) |DAB
µ /H | =

(β
µ

)
S(α+ 1, µ+ 1),

(iv) each H -class in DAB
µ has size µ!,

(v) |DAB
µ | = µ!

(β
µ

)
S(α+ 1, µ+ 1).

Proof. (i) Proposition 3.1.2(iv) implies that the R-class of an element of P T AB is
determined by its kernel and domain. Thus, the number of R-classes in DAB

µ is the
number of valid (i.e. possible) domain-kernel pairs in A, where the kernel has exactly
µ classes. Hence, we need the number of partitions of the set A into µ + 1 blocks,
one (special) block being the non-mapping part of A (which might be empty), and
the rest defining the kernel. We calculate this by adding a special element (∞, for
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example) to the set A, which will determine the non-mapping block by belonging to
it. Therefore, the number of such choices is S(α+ 1, µ+ 1).

(ii) By 3.1.2(v), the L -class of an element of P T AB is determined by its image.
The possible number of images of rank µ in B is

(|B|
µ

)
.

(iii) follows directly from (i) and (ii).
(iv) In a fixed H -class H of Dµ

AB, both the kernel and the image of its elements
are fixed. Hence, the number of maps in H equals the number of ways to connect
the µ classes of the kernel with the µ elements of the image, which is µ!.

(v) is a direct consequence of (iii) and (iv).

Remark 3.1.5. We may calculate the size of P T AB in two ways. Firstly, each of
the α elements of A can either map into an element of B, or be outside of the domain.
Secondly, we may sum the sizes of DAB

µ for each possible rank 0 ≤ µ ≤ min(α, β).
Therefore, we have

| P T AB | = (β + 1)α =
min(α,β)∑

µ=0
µ!
Ç
β

µ

å
S(α+ 1, µ+ 1).

Before we dive into the examination of sandwich semigroups in P T , we need
to explore stability of its elements. Using parts (i) and (ii) of Lemma 2.2.27, we
may prove an element is stable, provided that we had already proved that certain
semigroups are periodic. Thus, we define a suitable type of semigroups and prove
them to be periodic. For X ∈ Set, the set of all finite-rank elements of PTX is
denoted

PTfr
X = {f ∈ PTX : Rank f < ℵ0}.

Lemma 3.1.1(iv) implies that PTfr
X is a subsemigroup of P T X . Moreover,

Lemma 3.1.6. PTfr
X is a periodic semigroup for every X ∈ Set.

Proof. Let X ∈ Set and f ∈ PTfr
X . By the definition of periodic semigroups, we

need to show that f has a power which is an idempotent. Consider the sequence
Rank f,Rank f2, Rank f3, . . . It is non-increasing, by Lemma 3.1.1(iv). Moreover,
since Rank f is finite, it is a non-increasing sequence of integers. Therefore, it must
eventually become constant. Let k be an integer such that Rank fk = Rank fk+m for
all m ≥ 0, and let f =

Ä
Fi
fi

ä
i∈I . Since im f t ⊆ im f t+1 for all t ≥ 1, we may conclude

that, for any m ≥ 0 we have fk+m =
Ä
Fi
fiπ

ä
i∈I for some permutation π of the set

im f . As there exist a finite number of these permutations, the set {fk+m : m ≥ 0}
is also finite. In fact, when paired with composition, it is the underlying set of a
finite semigroup. Such a semigroup has an idempotent, as we proved in Section
1.3.

Now, we have the base for the following result, in which we state equivalent
conditions for an element of P T to be R-stable, L -stable or stable.

Proposition 3.1.7. If (A, f,B) ∈ P T , then
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(i) (A, f,B) is R-stable ⇔ [Rank f < ℵ0 or f is full and injective],

(ii) (A, f,B) is L -stable ⇔ [Rank f < ℵ0 or f is surjective],

(iii) (A, f,B) is stable ⇔ [Rank f < ℵ0 or f is full and bijective].

Proof. First, suppose Rank f < ℵ0. By Lemma 2.2.27(i) and (ii), stability of f
follows if we prove that the elements of the sets (A, f,B)P T BA and P T BA(A, f,B)
are all periodic. Since f is a map of finite rank, Lemma 3.1.1(iv) implies

(A, f,B)P T BA ⊆ {(A, g,A) : g ∈ PTfr
A)},

P T BA(A, f,B) ⊆ {(B, g,B) : g ∈ PTfr
B)}.

Seeing that PTfr
A and PTfr

B are both periodic (by Lemma 3.1.6), we may conclude
that all elements of (A, f,B)P T BA and P T BA(A, f,B) are periodic. Thus, we
showed that (A, f,B) is stable, as required.

Next, suppose that f is full and injective. To prove that (A, f,B) is R-stable,
we need to show

(C, g,D)(A, f,B) J (C, g,D)⇒ (C, g,D)(A, f,B) R(C, g,D) (3.5)

for all (C, g,D) ∈ P T . The implication trivially holds if the product is undefined.
Thus, suppose D = A and note that, since f is full and injective, parts (i) and
(iii) of Lemma 3.1.1 imply dom(gf) = dom g and ker(gf) = (ker g)�dom(gf) =
(ker g)�dom g = ker g, respectively. Therefore, by Proposition 3.1.2(iv), we have

(C, g,D)(A, f,B) R(C, g,D)

whenever the product (C, g,D)(A, f,B) is defined. Hence, the implication (3.5) is
true in all cases.

Similarly, if we suppose that f is surjective, Lemma 3.1.1(ii) implies im(fg) =
im g. Hence,

(A, f,B)(C, g,D) L (C, g,D),

whenever the product (A, f,B)(C, g,D) is defined, implying L -stability of (A, f,B).
Clearly, if we assume that f is full and bijective, it is both R- and L -stable, by

the previous two arguments. Thus, we have established the reverse implications in
all three statements of the proposition. We need to show the direct implications, as
well. In both (i) and (ii), we prove the contrapositive. Once we prove these two,
part (iii) immediately follows.

To show (i), suppose that f is a map of infinite rank, either non-full or non-
injective. Write f =

Ä
Fi
fi

ä
i∈I , and choose an element gi ∈ Fi for each i ∈ I. If f is

non-full, fix some a ∈ A \ dom f and define g = ( gi agi a )i∈I ∈ PTA. It is easy to see
that dom(gf) 6= dom g, but Rank(gf) = Rank g − 1 = Rank g. Then Proposition
3.1.2(vi) and (iv) imply that (A, g,A) · (A, f,B) and (A, g,A) are J -related, but
not R-related. Hence, (A, f,B) is not R-stable. In the case where f is non-injective,
choose some Fi with |Fi| ≥ 2, and fix a ∈ Fi such that a 6= gi. For the map g =
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gj a
gj a

ä
j∈I ∈ PTA, we have ker(gf) 6= ker g and Rank(gf) = Rank g − 1 = Rank g.

Thus, (A, g,A) · (A, f,B) and (A, g,A) are J -related, but not R-related, just as in
the previous case.

Finally, we show (ii). Let f be a non-surjective map with infinite rank. Keep the
notation f =

Ä
Fi
fi

ä
i∈I . Pick an element a ∈ B \ im f , and let g =

Ä
fi a
fi a

ä
i∈I
∈ PTB.

Then im(fg) 6= im g, but Rank(fg) = Rank g, which means that (A, f,B) · (B, g,B)
and (B, g,B) are J -related, but not L -related (by Proposition 3.1.2(vi) and (v)).
Thus, (A, f,B) is not L -stable.

3.1.1 Green’s relations, regularity and stability in P T aXY
Having acquired the necessary knowledge on P T , we are ready to investigate sand-
wich semigroups of partial functions. This subsection is dedicated to the description
of Green’s relations, regularity and stability in such a sandwich semigroup. These
are the three most important factors, which determine the structure of the sandwich
semigroup. For the rest of the section, we fix some X,Y ∈ Set and a partial map
a ∈ PTY X , with the purpose of investigating P T aXY . We will frequently refer to
characteristics of a, so we write

a =
(
Ai
ai

)
i∈I , B = dom a, σ = ker a, A = im a, α = Rank a.

β = |X \ im a|, λi = |Ai| for i ∈ I, ΛJ =
∏

j∈J
λj for J ⊆ I.

Also, we will often need an inverse element of a, so we fix bi ∈ Ai for each i ∈ I, and
define b =

( ai
bi

)
i∈I ∈ PTXY (so that a = aba and b = bab).

Furthermore, in order to simplify the notation, we identify the partial function
f ∈ PTCD with the corresponding element (C, f,D) of P T . This makes one of the
PTCD and P T CD redundant, so we use P T CD in both cases.

From Theorem 2.2.3 we see that, in order to describe Green’s relations in P T aXY ,
we need to describe its P-sets first.

Proposition 3.1.8. We have

(i) Pa1 = {f ∈ P T XY : dom(fa) = dom f, ker(fa) = ker f}
= {f ∈ P T XY : im f ⊆ dom a, ker a separates im f},

(ii) Pa2 = {f ∈ P T XY : im(af) = im f}
= {f ∈ P T XY : im a saturates ker f},

(iii) Pa = {f ∈ P T XY : dom(fa) = dom f,

ker(fa) = ker f, im(af) = im f}
= {f ∈ P T XY : im f ⊆ dom a,

ker a separates im f, im a saturates ker f},

(iv) Pa3 = {f ∈ P T XY : Rank(afa) = Rank f}.
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Proof. Note that the first line in all four statements follows from the definition of
P-sets and Proposition 3.1.2, and the second line (if exists) follows from Lemma
3.1.1.

Remark 3.1.9. In cases where a has some special properties, these conditions
simplify significantly. In particular, if a is full, im f ⊆ dom a is trivially true; if a is
injective, ker a always separates im f ; finally, if a is surjective, im a clearly saturates
ker f .

Note that, in the case when a is a full bijection, we clearly have Pa1 = Pa2 = Pa =
P T XY , and moreover P T aXY ∼= P T X ∼= P T Y (as the maps P T aXY → P T X : x 7→
xa and P T aXY → P T Y : x 7→ ax are clearly isomorphisms).

Having described Green’s relations of P T (Proposition 3.1.2) and P-sets in
P T aXY (the previous proposition), we may use Theorem 2.2.3 to describe Green’s
relations in P T aXY . This result originally appeared in [96] (as Theorems 2.6, 2.7
and 2.8), although in a different form.

Theorem 3.1.10. If f ∈ P T XY , then in P T aXY we have

(i) Ra
f =

®
Rf ∩Pa1, f ∈ Pa1;
{f}, f 6∈ Pa1.

(ii) Laf =
®

Lf ∩Pa2, f ∈ Pa2;
{f}, f 6∈ Pa2.

(iii) Ha
f =

®
Hf , f ∈ Pa;
{f}, f 6∈ Pa.

(iv) Da
f =





Df ∩Pa, f ∈ Pa;
Laf , f ∈ Pa2 \Pa1;
Ra
f , f ∈ Pa1 \Pa2;
{f}, f 6∈ (Pa1 ∪Pa2).

(v) Jaf =
®

Jf ∩Pa3 (= Df ∩Pa3), f ∈ Pa3;
Da
f , f 6∈ Pa3.

Further, if f 6∈ Pa, then Ha
f = {f} is a non-group H a-class in P T aXY .

Remark 3.1.11. The reader may inspect Figures 3.4−3.8 for some examples of
sandwich semigroups of the form P T aXY , presented in the form of egg-box diagrams.
Since all of the sandwich semigroups in our examples are finite, in each of them we
have J a = Da, so the diagrams give a clear picture of the ≤J -structure and the
R-, L - and H -classes (for details, see the introduction to Subsection 3.1.6).

Our next topic will be the structure of J a-classes in P T aXY . In particular, we
will investigate in which cases they coincide with Da-classes, the partial order ≤J a ,
and the maximal J a-classes with respect to this order. In order to conduct this
investigation, we need to examine Pa3 and its connections to the other P-sets.
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Lemma 3.1.12. Suppose µ is a cardinal with ℵ0 ≤ µ ≤ α = Rank a.

(i) If a is not R-stable, then there exists f ∈ Pa3 \Pa1 with Rank f = µ.

(ii) If a is not L -stable, then there exists f ∈ Pa3 \Pa2 with Rank f = µ.

(iii) If a is not stable, then there exists f ∈ Pa3 \Pa with Rank f = µ.

Proof. We prove (i) and (ii) by constructing such maps. Then (iii) follows directly,
since Pa3 \Pa ⊇ Pa3 \Paq , for q = 1, 2. Note also that, as α = |I| = Rank a is infinite,
there exists a set J ( I such that |J | = µ. Hence, there also exists an index k ∈ I \J .

(i) Suppose a is not R-stable. Since a 6∈ P T fr
Y X , Proposition 3.1.7(i) implies that

a is either non-full, or non-injective. In the first case, choose some y ∈ Y \ dom a
and let f =

Ä ak aj
y bj

ä
j∈J ∈ P T XY . Clearly, Rank(afa) = Rank f − 1 = Rank f .

However, ak ∈ dom f \dom(fa), so Proposition 3.1.8 implies f ∈ Pa3 \Pa1. Similarly,
in the case that f is non-injective, there exists i ∈ I with |Ai| ≥ 2, and we may
assume i ∈ J without loss of generality. Thus, we may pick y ∈ Ai \ {bi} and define
f =

Ä ak aj
y bj

ä
j∈J ∈ P T XY . Again, Rank(afa) = Rank f − 1 = Rank f , but this time

ker f 6= ker(fa). These two together imply f ∈ Pa3 \Pa1.
(ii) Suppose a is not L -stable. As in (i), from Proposition 3.1.7(ii) it follows

that a is non-surjective. Hence, there exists some y ∈ X \ im a, and we may define
f =

Ä y aj
bk bj

ä
j∈J ∈ PTXY . We have Rank(afa) = Rank f − 1 = Rank f and bk ∈

im f \ im(af), so Proposition 3.1.8 gives f ∈ Pa3 \Pa2.

Using the previous lemma, we are able to prove:

Proposition 3.1.13. In P T aXY we have J a = Da ⇔ a is stable.

Proof. The reverse implication follows immediately from Proposition 2.2.25 and Pro-
position 3.1.2(vi). We show the direct one by proving the contrapositive. Suppose
a is not stable. We will show J a 6= Da. More precisely, we are going to prove that
Jab 6= Da

b . Since b is an inverse of a, we have b ∈ Pa ⊆ Pa3, so Theorem 3.1.10(iv) and
(v) imply

Da
b = Db ∩Pa = Jb ∩Pa and Jab = Jb ∩Pa3 .

Now, Lemma 3.1.12(iii) guarantees the existence of a map f ∈ Pa3 \Pa with Rank f =
Rank b = Rank a. Therefore f ∈ Jb, by Proposition 3.1.2(vi), so f ∈ Jab \Da

b .

Exploiting Lemma 3.1.12 further, we use it as the base for proving equivalent
conditions for the sandwich element of P T aXY to be R- or L -stable. The following
proposition is a strengthened version of Proposition 2.2.23, tailored to P T aXY . The
first statement in an old result (it is implied by Theorem 5.3 in [86]).

Proposition 3.1.14. We have Reg(P T aXY ) = Pa. Moreover,

(i) a is R-stable ⇔ Pa3 ⊆ Pa1,

(ii) a is L -stable ⇔ Pa3 ⊆ Pa2,
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(iii) a is stable ⇔ Pa3 = Pa.

Proof. Since P T is a regular partial semigroup, Proposition 2.2.29(iv) implies the
first statement. Furthermore, the direct implications in (i)− (iii) follow from Pro-
position 2.2.23. We prove the converse for (i) and (ii), hence (iii) follows as a direct
consequence (because Pa = Pa1 ∩Pa2, and Pa ⊆ Pa3 by 2.2.2). In fact, it suffices to
prove (i), as the proof for (ii) is dual.

(i) We show this by proving the contrapositive. Suppose a is not R-stable.
By Proposition 3.1.7(i), Rank a ≥ ℵ0, so Lemma 3.1.12(i) implies the existence of
f ∈ Pa3 \Pa1.

Now, we focus on the relation ≤J a , as promised. To simplify notation, we use
the symbol ≤ instead. There is no chance of confusion, as it is the only relation we
defined on the J -classes of a semigroup.

Recall that any element of P T has a left- and a right-identity in P T (page
83). Thus, directly from Lemma 2.2.6(iii) and Proposition 3.1.2, we conclude the
following:

Proposition 3.1.15. Let f, g ∈ P T XY . Then Jaf ≤ Jag in P T aXY if and only if one
of the following holds:

(i) f = g,

(ii) Rank f ≤ Rank(aga),

(iii) im f ⊆ im(ag),

(iv) dom f ⊆ dom(ga) and ker f ⊇ (ker(ga))�dom f .

Additionally, from Propositions 2.2.7 and 3.1.2 we immediately obtain

Proposition 3.1.16. Let f, g ∈ P T XY .

(i) If f ∈ Pa1, then

Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or
[[dom f ⊆ dom(ga) and ker f ⊇ (ker(ga))�dom f ]].

(ii) If f ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or im f ⊆ im(ag)].

(iii) If f ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank(aga).

(iv) If g ∈ Pa1, then

Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ag) or
[dom f ⊆ dom g and ker f ⊇ (ker g)�dom f ]].

(v) If g ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ga) or im f ⊆ im g].
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(vi) If g ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank g.

Remark 3.1.17. From Proposition 2.2.2(i) we have Pa ⊆ Pa3, so the parts (iii) and
(vi) apply to elements of Pa, as well.

Recall from Section 1.3 that a D-class (of a semigroup) is either regular in its
entirety, or none of its elements are regular. Using the previous results, we are able
to identify and describe all the regular Da-classes in P T aXY .

Proposition 3.1.18. The regular Da-classes of P T aXY are precisely the sets

Da
µ = {f ∈ Pa : Rank f = µ}, for each cardinal 0 ≤ µ ≤ α = Rank a.

Further, if f ∈ Pa, then Da
f = Jaf if and only if Rank f < ℵ0 or a is stable.

Proof. First, we prove that all the regular Da-classes are of the given form. Let
f ∈ Pa. Since Pa ⊆ Pa3, Theorem 3.1.10 and Proposition 3.1.2(vi) give Da

f =
Df ∩Pa = Jf ∩Pa = Da

µ, for µ = Rank f . Note that Rank f = Rank(afa) ≤ Rank a
(because f ∈ Pa).

Next, for any cardinal 0 ≤ µ ≤ α = Rank a, we prove that Da
µ is non-empty (by

presenting a regular element of rank µ). Namely, for any set J ⊆ I with |J | = µ,
the map fJ =

Ä aj
bj

ä
j∈J belongs to Pa and has Rank fJ = |J | = µ, so fJ ∈ Da

µ.
Finally, we prove the last statement. For the direct implication, we show the

contrapositive. Suppose that we have f ∈ Pa with Rank f ≥ ℵ0 and suppose
that a is not stable. Then, by Lemma 3.1.12(iii), there exists g ∈ Pa3 \Pa with
Rank g = Rank f . Hence, g ∈ Jaf (by Theorem 3.1.10(v) and Proposition 2.2.2(i)).
However, g 6∈ Pa, so g 6∈ Jf ∩Pa = Da

f , which gives Da
f 6= Jaf .

To prove the reverse implication, suppose that f ∈ Pa and either a is stable or
Rank f < ℵ0. In the first case, Propositions 3.1.2(vi) and 2.2.25 guarantee Jaf = Da

f .
In the second case, it suffices to show Jaf ⊆ Da

f . Since f ∈ Pa ⊆ Pa3, parts (iv) and
(v) of Theorem 3.1.10 give Jaf = Df ∩Pa3 and Da

f = Df ∩Pa. Let g ∈ Df ∩Pa3. By
Proposition 3.1.8(iv) we have Rank(aga) = Rank g, which, together with

Rank(aga) ≤
®

Rank(ag)
Rank(ga)

´
≤ Rank g,

gives Rank(ag) = Rank(ga) = Rank g = Rank f . Having in mind that im(ag) ⊆
im g, and | im g| = Rank g = Rank(ag) = | im(ag)| is finite, we may conclude that
im(ag) = im g. Thus, by Proposition 3.1.8(ii), g ∈ Pa2. Moreover, the equality
rank(ga) = rank g implies ker(ga) = ker g and dom(ga) = dom g (because rank g <
ℵ0), so Proposition 3.1.8(i) gives g ∈ Pa1. Therefore, g ∈ Jf ∩Pa1 ∩Pa2 = Df ∩Pa =
Da
f , by Proposition 3.1.2(vi).

Expanding further on the results on the relation ≤J gathered above, we can
identify and characterise all the maximal J a-classes in P T aXY . Due to this charac-
terisation, we may easily deduce whether these classes are trivial (in terms of Lemma
2.2.10). We find that the form, type and number of these classes depend heavily on



96 Chapter 3. Sandwich semigroups of transformations

the rank of the sandwich element a. More precisely, they depend on the answer to
the following question: Is α = min(|X|, |Y |)?

For convenience, we write ξ = min(|X|, |Y |).

Proposition 3.1.19.

(i) If α < ξ, then the maximal J a-classes of P T aXY are precisely the singleton
sets {f}, for f ∈ P T XY with Rank f > α. Hence, all the maximal J a-classes
of P T aXY are trivial in this case.

(ii) If α = ξ, then we have a single maximum J a-class in P T aXY , which is

Jab = {f ∈ Pa3 : Rank f = α}.

This maximal J a-class is clearly nontrivial.

Proof. (i) Suppose that α < ξ. Firstly, note that the singleton sets of the specified
form are indeed maximal J a-classes. Namely, for any f ∈ P T XY with Rank f > α,
by Proposition 3.1.2(iii) we have f 6≤J a, so Lemma 2.2.10 implies that {f} is a
maximal J a-class. Thus, it suffices to prove that any maximal J a-class has the
given form. Suppose there exists g ∈ PXY with Rank g ≤ α such that Jag is a maximal
J a-class. Write g =

Ä
Gj
gj

ä
j∈J with |J | = Rank g ≤ α. Pick h1 =

(
Gj
bj

)
j∈J
∈ P T XY

and h2 =
Ä
aj
gj

ä
j∈J ∈ P T XY . Since |J | ≤ α < min(X,Y ), there exists a map h′2

with Rank h′2 > α, extending h2. We have g = h1 ?a h
′
2, so g ≤J a h′2, i.e. Jag ≤ Jah′2 .

However, Rank h′2 > α ≥ Rank g implies Jah′2 6= Jag , so Jag is not a maximal J a-class,
which contradicts our assumption.

(ii) Suppose α = ξ. From Proposition 2.2.2(i) we have b ∈ Pa ⊆ Pa3, so Theorem
3.1.10(v) implies

Jab = Jb ∩Pa3 = {f ∈ Pa3 : Rank f = α}.

Furthermore, for any g ∈ P T XY we have Rank g ≤ ξ = α = Rank b. Therefore,
Proposition 3.1.16(vi) implies Jaf ≤ Jag .

Remark 3.1.20. For a visual presentation, we refer the reader to the egg-box
diagrams in Figures 3.4−3.8 and Figure 3.10. The Figures 3.4−3.6 represent the
case when α < ξ, and the Figures 3.7, 3.8 and 3.10 showcase some representatives
of the case α = ξ.

3.1.2 A structure theorem for Reg(P T aXY ) and connections to (non-
sandwich) semigroups of partial transformations

In this subsection, we examine the connections of P T aXY and Reg(P T aXY ) to
(aP T XY a,~). The idea is to apply the theory from Subsections 2.3.1 and 2.3.3 to
the sandwich semigroup P T aXY . First, we closely examine the semigroups from Dia-
grams 2.2 and 2.3 and give characterisations for them in the case of Saij = P T aXY .
Furthermore, we describe the simplifications that can be made to the general theory



Subsection 3.1.2 97

in cases when a is full, injective or surjective. We close the subsection by describing
Reg(P T aXY ) as a pull-back product, using the results of Subsection 2.3.3.

We keep the previously introduced notation. In addition, recall that, in Subsec-
tion 2.3.1, we have dealt with the regular monoid (aSija,~), where aSija ⊆ Sji and
~ denotes the restriction of the map ?b to the set aSija, which does not depend on
the choice of the inverse b.

Note that all elements of P T are sandwich-regular since the whole partial semig-
roup is regular. Therefore, Diagrams 2.2 and 2.3, adjusted to the case of P T aXY ,
are the following:

(P T XY , ?a)

(aP T XY , ·)

(aP T XY a,~)

(P T XY a, ·)

Ψ1 : f 7→ fa Ψ2 : f 7→ af

Φ1 : g 7→ ag Φ2 : g 7→ ga

Reg(P T XY a, ·)

(aP T XY a,~)

Reg(P T XY , ?a)

Reg(aP T XY , ·)

ψ1 : f 7→ fa ψ2 : f 7→ af

φ1 : g 7→ ag φ2 : g 7→ ga

Figure 3.1: Diagrams illustrating the connections between P T aXY and
(aP T XY a,~) (left) and between Reg(P T aXY ) and (aP T XY a,~) (right).

We will examine the left diagram first, keeping in mind the results of Subsection
2.3.1. On the top, we have the semigroup P T aXY , and in the bottom, the regu-
lar monoid (aP T XY a,~), which is a subsemigroup of P T bY X . Recall from the
discussion on page 50 that (aSija,~) → (baSija, ·) : x 7→ bx is an isomorphism,
Sija = Siba, and aSij = abSj . Hence, the map

η : (aP T XY a,~)→ (baP T XY a, ·) : x 7→ bx

is an isomorphism, and (baP T XY a, ·) = (baP T X ba, ·) is the local monoid of P T X
with respect to the idempotent ba = ( aiai )i∈I ∈ P T X . Moreover, since dom(ba) =
im(ba) = A, we have baP T X ba ≡ P T A (because f = bafba for any f ∈ {(X, g,X) :
dom(g), im(g) ⊆ A}). Thus, (aP T XY a,~) is isomorphic to P T A, the semigroup
of all partial transformations A→ A.

Now, we examine the sets in the middle. From im a = A we have im(fa) ⊆ A
for any f ∈ P T XY . In fact, if we introduce the following notation

P T (X,A) = {f ∈ P T X : im f ⊆ A}

(for the set of all partial transformations on X with image restricted by A), then

P T XY a = P T X ba = P T (X,A).

The first equality is a conclusion drawn earlier (Sija = Siba), and the second holds
because fba = f for all f ∈ P T (X,A). It is easily seen that P T (X,A) is a
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subsemigroup of P T X ; indeed, it is a principal left ideal. By investigating the
sandwich semigroup P T aXY , we will obtain some information on P T (X,A), as well.
This type of semigroups has been investigated before, in [44]. There, the authors
describe Green’s relations, classify regular elements and calculate the rank of the
semigroup in the case that X is finite.

Only the semigroup (aP T XY , ·) is left to be examined. Note that ker(af) ⊇
ker(a) = σ for all f ∈ P T XY . Similarly as in the previous case, we define

P T (Y, σ) = {f ∈ P T Y : every ker f -class is a union of σ-classes}

(the set of all partial transformations on Y with kernel restricted by σ) and infer

aP T XY = abP T Y = P T (Y, σ)

(because abf = f for all f ∈ P T (Y, σ)). Also, P T (Y, σ) is a subsemigroup of P T Y ,
more precisely, its principal right ideal. As we are about to see, in special cases,
our results on P T aXY offer some information on P T (Y, σ), as well. To the author’s
knowledge, [34] is the first article to investigate such semigroups.

Finally, recall from the discussion in Subsection 2.3.1 that all the maps on Figure
3.1 are surmorphisms. The previous analysis yields a new commutative diagram,
which is an "improved" version of the left diagram on Figure 3.1, with an addition
of the isomorphism η:

PT aXY

PT (Y, σ)

(aPT XY a, ?b)

PT (X,A)

PT A

Ψ1 : f 7→ fa Ψ2 : f 7→ af

Φ1 : g 7→ ag Φ2 : g 7→ ga

η : h 7→ bh

Figure 3.2: Diagram illustrating the connections between P T aXY and
(aP T XY a,~).

Next, we examine the right-hand side diagram in Figure 3.1. For that reason,
we restrict our attention to the regular elements of P T aXY . The following lemma
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gives characterisations of the regular elements in P T (X,A) and P T (Y, σ), hence
describing the semigroups in the middle of the diagram.

Let θ be an equivalence relation. Then u(θ) and πθ denote the underlying set of θ
(i.e. the set on which θ is defined) and its partition corresponding to θ, respectively.

Lemma 3.1.21. We have

(i) Reg(P T (X,A)) = {f ∈ P T (X,A) : ker f is saturated by A},

(ii) Reg(P T (Y, σ)) = {f ∈ P T (Y, σ) : im f ⊆ u(σ),
im f is separated by σ}.

Remark 3.1.22. Part (i) of the this lemma was proved in [44] (Theorem 1.2),
but instead of "ker f is saturated by A", the authors used an equivalent condition:
"Xf = Af", where Zf = {zf : z ∈ Z ∩ dom f} for any Z ⊆ X.

Proof. Note that we are dealing here with non-sandwich semigroups.
(i) We show the equality by proving that both inclusions hold. Suppose first

that f ∈ P T (X,A) is such that ker f is saturated by A and write f =
(
Fj
fj

)
j∈J

.
Our assumption guarantees the existence of an element cj ∈ Fj ∩ A for each j ∈ J .
Then the map g =

Ä
fj
cj

ä
j∈J ∈ P T (X,A) satisfies im g ⊆ A and fgf = f .

For the reverse inclusion, we prove the contrapositive. Suppose f =
(
Fj
fj

)
j∈J
∈

P T (X,A) is such that A does not saturate ker f . Then there exists l ∈ J with
Fl ∩ A = ∅, which implies fl 6∈ im(fgf) for any g ∈ P T (X,A). Thus, we have
f 6= fgf for any g ∈ P T (X,A), i.e. f is not regular.

(ii) The proof is similar to the previous one. Suppose that f ∈ P T (Y, σ) is
such that im f ⊆ u(σ) and σ separates im f . We will prove f is regular. Write
f =

(
Fj
fj

)
j∈J

and πσ = {Ai : i ∈ I}. The two assumptions together imply that, for
each j ∈ J , there exists exactly one lj ∈ I such that fj ∈ Alj . Fix some wj ∈ Fj for
each j ∈ J , and define g =

(
Alj
wj

)
j∈J
∈ P T Y . Clearly, g ∈ P T (Y, σ) and fgf = f .

Let f =
(
Fj
fj

)
j∈J
∈ P T (Y, σ). Again, we prove the contrapositive: if either

im f 6⊆ u(σ) or im f is not separated by σ, then f is not regular. In the case that
im f 6⊆ u(σ), there exists fl ∈ im f\u(σ), so (fl)g is undefined for each g ∈ P T (Y, σ).
Thus, Fl ⊆ dom f \ dom(fgf) for any g ∈ P T (Y, σ). In the second case, there exist
distinct l, k ∈ J such that (fl, fk) ∈ σ. The definition of P T (Y, σ) implies that, for
any g ∈ P T (Y, σ), fl and fk either both belong to Y \ dom g, or both belong to
dom g, in which case (x, y) ∈ ker g. Therefore, either Fl ∪ Fk ∈ dom f \ dom(fgf)
or the elements of Fl and Fk belong to the same class in ker(fgf), but not in ker f .
Hence, in both cases we have f 6= fgf , for any g ∈ P T (Y, σ).

Thus, the second diagram on Figure 3.1 becomes
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Reg(PT (X,A))

(aPT XY a, ?b)

Reg(PT aXY )

Reg(PT (Y, σ))

PT A

ψ1 : f 7→ fa ψ2 : f 7→ af

φ1 : g 7→ ag φ2 : g 7→ ga

η : h 7→ bh

Figure 3.3: Diagram describing the connections between P a = Reg(P T aXY ) and
(aP T XY a,~).

In the discussion below, we investigate the maps and semigroups in Diagrams 3.2
and 3.3 in cases when the sandwich element a has some special properties. Recall
that B = dom a.

• If a is full and injective, we have Reg(P T (Y, σ)) = P T (Y, σ) = P T Y , since
σ = {(y, y) : y ∈ Y }. Moreover, from the discussion in Subsection 2.3.1
it follows that Ψ1 and ψ1 are isomorphisms, because ab = idY implies that
a is right-invertible (so the implication (2.5) is true). Therefore, P T aXY ∼=
P T (X,A), in this case. Figure 3.7 shows an egg-box diagram of a sandwich
semigroup of such type (namely, it shows P T (X,A), where X = {1, 2, 3, 4}
and A = {1, 2, 3}).

• If a is surjective, then Reg(P T (X,A)) = P T (X,A) = P T X , because A =
im a = X. Furthermore, a is left-invertible (since ba = idX), so Ψ2 and ψ2 are
isomorphisms, which implies P T aXY ∼= P T (Y, σ). The structure of a sandwich
semigroup of such type is depicted on the first egg-box diagram in Figure 3.8
(it shows P T (Y, σ), where Y = {1, 2, 3, 4, 5} and πσ = {{1}, {2}, {3, 4}}).

– If a is both surjective and injective (but not necessarily full), then σ =
{(y, y) : y ∈ dom a}, so in addition to the benefits of surjectivity, we have

P T (Y, σ) = {f ∈ P T Y : dom f ⊆ B} ∼= P T aXY and
Reg(P T (Y, σ)) = {f ∈ P T (Y, σ) : im f ⊆ B} ≡ P T B .

Let us elaborate the second line. Obviously, the subsemigroup R =
{f ∈ P T Y : dom f, im f ⊆ B} ≡ P T B is regular, and any function
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g ∈ P T (Y, σ) \ R has elements mapping outside of B, so these ele-
ments cannot be in the domain of ghg, for any h ∈ P T (Y, σ). Thus,
R = Reg(P T (Y, σ)). To the author’s knowledge, [34] is the first article
to investigate such semigroups.

– If a is full, injective, and surjective, all of the above holds, so

P T aXY ∼= P T (X,A) = P T X = P T A, and
P T aXY ∼= P T (Y, σ) = P T Y

In addition, all the maps in the Diagrams 3.2 and 3.3 are isomorphisms,
rendering further investigation in this case unnecessary (since the prob-
lems we consider for sandwich semigroups have been solved for semig-
roups P T X). Therefore, in our study, we omit the case when a is a full
bijection.

The rightmost egg-box diagram in Figure 3.8 shows the structure of a sandwich
semigroup with a surjective, injective and non-full sandwich element, while the
diagrams on Figure 3.10 illustrate the case when the sandwich element is full,
injective and surjective.

We close the subsection by describing a different aspect of the connections among
semigroups on Diagram 3.3, inspired and implied by Theorem 2.3.8.

Theorem 3.1.23. The map

ψ : Reg(P T aXY )→ Reg(P T (X,A))× Reg(P T (Y, σ)) : f 7→ (fa, af).

is injective, and

im(ψ) = {(g, h) ∈ Reg(P T (X,A))× Reg(P T (Y, σ)) : ag = ha}.

In particular, the semigroup Reg(P T aXY ) is a pullback product of Reg(P T (X,A))
and Reg(P T (Y, σ)) with respect to P T A.

3.1.3 The regular subsemigroup Pa = Reg(P T aXY )
Our next object of interest is the semigroup Reg(P T aXY ) itself. As we remarked
earlier, all the elements of P T are sandwich regular, so Proposition 2.3.2(i) im-
plies Pa = Reg(P T aXY ), and Proposition 3.1.8(iii) provides a characterisation of its
elements.

Inspired by Subsection 2.3.4, we want to investigate further and describe Green’s
relations and their classes, as well as their connection to Green’s relations in W ∼=
P T A (in other words, the inflation described in Theorem 2.3.12 and Remark 2.3.13).
Furthermore, we provide additional results, specific to P T , which include inform-
ation about the sizes of Green’s classes and their number, so we may calculate the
size of Pa and determine equivalent conditions for it to be finite, countable or un-
countable. Moreover, we prove that Reg(P T aXY ) is always MI-dominated. Hence,
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we may use the theory of MI-domination in order to calculate its rank. Throughout
the subsection, we make remarks on the simplifications occurring in the cases where
a is full, injective or surjective.

We keep the notation introduced earlier. Recall that, in Lemma 2.3.3, we have
proved that for all x ∈ Pa and any K = {R,L,H,D} we have KPa

x = Ka
x. Moreover,

since J = D in P T (by Proposition 3.1.2(vi)), from Lemma 2.3.4 it follows that
J Pa = DPa .

Therefore, for each K ∈ {R,L ,H ,D}, we continue to write K a for the corres-
ponding Green’s relation of Pa, and Ka

f for its class containing an element f ∈ Pa.
Now, having in mind Lemmas 2.3.3 and 2.3.4, we have enough information to de-
scribe Green’s relations in Pa. The parts (i)-(iv) of the following proposition were
first proved in Theorem 5.7 in [86].

Proposition 3.1.24. Let f ∈ Pa = Reg(P T aXY ). Then

(i) Ra
f = Rf ∩Pa = {g ∈ Pa : dom g = dom f, ker g = ker f},

(ii) Laf = Lf ∩Pa = {g ∈ Pa : im g = im f},

(iii) Ha
f = Hf ∩Pa

= {g ∈ Pa : dom g = dom f, ker g = ker f, im g = im f},

(iv) Da
f = Df ∩Pa = {g ∈ Pa : Rank g = Rank f}.

The J Pa = Da-classes of Pa are the sets

Da
µ = {g ∈ Pa : Rank g = µ} for each cardinal 0 ≤ µ ≤ α = rank a,

and these form a chain under the ordering ≤J on the J Pa-classes:

Da
µ ≤ Da

ν ⇔ µ ≤ ν.

Proof. From Remark 1.3.8 we may conclude that for any K ∈ {R,L,H,D} and any
f ∈ Pa we have Ka

f ⊆ Pa (equivalently, Ka
f = Ka

f ∩Pa). Thus, since Pa ⊆ Paq for all
q ∈ {1, 2, 3}, from Theorem 3.1.10 we have the first equality in (i)-(iv). The second
follows directly from Proposition 3.1.2. Finally, Propositions 3.1.18 and 3.1.16(vi)
imply the last statement.

Therefore, we have a minimum and a maximum J Pa = Da-class in Pa:

Da
0 = {∅} and Da

α = {f ∈ Pa : Rank f = α}.

In the case that α = ξ = max(X,Y ), the latter is also the maximum J a-class of
P T aXY , by Proposition 3.1.19. On the Figure 3.9, we show the structure of the
regular subsemigroups of several sandwich semigroups. The reader may check the
egg-box diagrams of the original sandwich semigroups on Figures 3.4−3.8 to locate
the maximal J a-classes.
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Recall the map φ : Pa →W : f 7→ afa from Subsection 2.3.4. Instead of W , we
want to deal with the (isomorphic) semigroup P T A, so we replace φ with

ϕ = φη : P a → P T A : f 7→ bafa.

For simplicity, we slightly abuse the notation used for φ, and write f = fϕ = bafa
for all f ∈ Pa. Using the map ϕ, we define new relations on Pa: for all K ∈
{R,L ,H ,D}, and all f, g ∈ Pa,

f ‘K a g ⇔ f K g in P T A .

Clearly, these correspond to the ‘K a-classes defined in Section 2.3.4. We write ”Ka
f

for the ‘K a-class of an element f ∈ Pa.
Next, we will find a suitable representation for the image f of an element f =(

Fj
fj

)
j∈J
∈ Pa. Recall that a =

(
Ai
ai

)
i∈I . Firstly, since f ∈ Pa, we have rank f ≤

rank a, and we may suppose J ⊆ I. Secondly, from Proposition 3.1.8(iii) we know
that im f ⊆ dom a, ker a separates im f and im a = A saturates ker f . Because of
the first two properties, we may assume without loss of generality that fj ∈ Aj for
each j ∈ J . The third property guarantees Fj ∩ A 6= ∅ for all j ∈ J , so we write
Fj∩A = {ai : i ∈ Ij} where ∅ 6= Ij ⊆ I. Clearly, the sets Ij are pairwise disjoint sets,
but their union is not necessarily the whole set I. Therefore, dom f ⊆ dom b = A
and

aif = (ai)bafa = (ai)fa =
®

(fj)a, i ∈ Ij ;
undefined, otherwise.

=
®
aj , i ∈ Ij ;
undefined, otherwise.

More succinctly, f =
Ä
Fj∩A
aj

ä
j∈J . We will use this notation from now on, unless

stated otherwise. The discussion above implies dom f = dom f∩A, im f = (im f)a =
{aj : j ∈ J}, and f = (fa)�A.

The previous analysis serves as preparation for Theorem 3.1.26, which details
the "inflation connection" between Pa and P T A from Theorem 2.3.12. In the proof
Theorem 3.1.26 (as well as in the following text) we will need some properties of
the semigroup P T A, which we present in the following Lemma. These results have
become a part of semigroup theory "folklore", so we omit the proofs. For a detailed
account, see [45].

Lemma 3.1.25. Let f ∈ P T A with Rank f = µ. In P T A, we have

(i) Rf = {g ∈ P T A : dom g = dom f, ker g = ker f};

(ii) Lf = {g ∈ P T A : im g = im f};

(iii) Hf = {g ∈ P T A : dom g = dom f, ker g = ker f, im g = im f};

(iv) |Hf | = µ!; furthermore, if Hf contains an idempotent, then Hf
∼= Sµ;
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(v) Df = Jf = {g ∈ P T A : Rank g = Rank f = µ} = Dµ.

(vi) If α = |A| is finite, then Dα = HidA
∼= SA and P T A \Dα is an ideal of the

semigroup P T A.

Finally, we may prove

Theorem 3.1.26. Let f =
(
Fj
fj

)
j∈J
∈ Pa with Rank f = µ. Then

(i) ”Ra
f is the union of (µ+ 1)β Ra-classes of Pa;

(ii) ”Laf is the union of ΛJ L a-classes of Pa;

(iii) ”Ha
f is the union of (µ+ 1)βΛJ H a-classes of Pa, each of which has size µ!;

(iv) if Hf is a non-group H -class of P T A, then each H a-class of Pa contained in”Ha
f is a non-group;

(v) if Hf is a group H -class of P T A, then each H a-class of Pa contained in ”Ha
f

is a group isomorphic to Sµ; further, ”Ha
f is a (µ+ 1)β × ΛJ rectangular group

over Sµ, and its idempotents Ea(”Ha
f ) form a (µ+ 1)β × ΛJ rectangular band;

(vi) ”Da
f = Da

f = Da
µ = {g ∈ Pa : Rank g = µ} is the union of:

(a) (µ+ 1)β S(α+ 1, µ+ 1) Ra-classes of Pa,
(b) ∑

K⊆I
|K|=µ

ΛK L a-classes of Pa,

(c) (µ+ 1)β S(α+ 1, µ+ 1) ∑
K⊆I
|K|=µ

ΛK H a-classes of Pa.

Proof. (i) Recall that f R̂a g means that f R g in P T A, i.e. dom f = dom g and
ker f = ker g. Therefore, by fixing the domain dom f and kernel ker f in P T A, we
completely determine the R-class R = Rf in P T A. We need to know how many
Ra-classes map into R via ϕ. In other words, we need the number of domain-kernel
combinations (D,K) such that elements having both domain D and kernel K map
into R. For an element g ∈ Pa mapping into R, we have Rank g = Rank f = µ, so
we write g =

Ä
Gj
gj

ä
j∈J . We may conclude that

• dom g = dom f , so D ∩ A = dom f ∩ A; note that the elements outside A are
not restricted in terms of belonging to the domain D;

• ker g = ker f , therefore {Gj ∩ A : j ∈ J} = {Fj ∩ A : j ∈ J}; here too, the
elements outside A are not restricted in terms of belonging to a specific class
of the kernel.
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Therefore, the properties of elements inside A are completely determined, while all
β = |X \ im a| of them outside can be either in one of the µ classes of K, or outside
the domain. Thus, we have (µ+ 1)β pairs of form (D,K). Note that this is also the
number of Ra-classes in any R̂a-class of ”Da

f .
(ii) By definition, f ‘L a g if and only if gL f , i.e. im g = im f . Hence, by

the discussion preceding this theorem, im g = {aj : j ∈ J}. Since g = (ga)�A,
the previous conclusion implies that, for each j ∈ J , the set Aj contains at least
one element of im g. Furthermore, since g ∈ Pa, by Proposition 3.1.8(iii) we have
im g ⊆ dom a and ker a separates im g. Therefore, im g is a cross-section of the
partition {Aj : j ∈ J}. As |Aj | = λj for each j ∈ J , the number of such cross-
sections is ΛJ = ∏

j∈J λj .
(iii) Recall from Subsection 2.3.4 that ”Ha

f = ”Ra
f ∩”Laf . This equality, together

with (i) and (ii), implies the statement about the number of H a-classes in ”Ha
f .

By Theorem 2.3.12(i), all these classes have size |Hf | (in P T A), which is µ!, since
Rank f = |J | = µ.

(iv) and (v). The elements of the H -class Hf are completely determined by
their domain, kernel and image, dom f , ker f and im f , respectively. Further, in a
fixed Da-class D we know that: if we want to define a map g ∈ D in a specific way,

• the choice of im g affects neither dom g nor ker g, and

• neither the choice of dom g, nor the choice of ker g affect im g.

Therefore, from the proofs of (i) and (ii) it follows that r = |”Ha
f/Ra | = (µ+1)β and

l = |”Ha
f/L a | = ΛJ . Furthermore, if Hf is a group, it is isomorphic to Sµ. Thus,

Theorem 2.3.12 implies (iv) and (v).
(vi) Recall from Lemma 2.3.9 that D̂a= Da in Pa. Thus, the description of ”Da

f

follows from Proposition 3.1.24. We will prove (a) by considering the number of R̂a-
classes in ”Da

f , and multiplying this value by the number of Ra-classes in a R̂a-class
(which is calculated in (i)). Clearly, |”Da

f/ R̂a | equals |Df /R | in P T A, which is
S(α+ 1, µ+ 1), by Lemma 3.1.4(i). Hence, (a) follows. To prove (b), note that the
proof of (ii) implies that an‘L a-class in ”Da

f is characterised by its corresponding set
of indexes J ⊆ I of cardinality µ (which determines im f). Therefore, (ii) implies
(b). Finally, (c) follows directly from (a) and (b).

Remark 3.1.27. The egg-box diagrams on Figures 3.9 and 3.10 illustrate the pre-
vious theorem.

Remark 3.1.28. The previous theorem may be simplified substantially in the cases
where a has some special property:

• If a is injective, each class of ker a is a singleton, so λi = 1 for all i ∈ I. Thus,
ΛJ = 1 for all J ⊆ I, which means that ‘L a= L a, and ”Ha

f from Theorem
3.1.26(v) is a (µ+ 1)β × 1 rectangular group over Sµ. In particular, all of this
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holds when P T aXY ∼= P T (X,A). Figure 3.6 shows an egg-box diagram of
such a sandwich semigroup.

• If a is surjective (i.e. when P T aXY ∼= P T (Y, σ)), we have β = |X \ im a| = 0.
Hence, (µ + 1)β = 1, which means that R̂a= Ra and ”Ha

f from Theorem
3.1.26(v) is a 1×ΛJ rectangular group over Sµ. An example of such a sandwich
semigroup may be seen in Figure 3.8 (the leftmost egg-box diagram).

• If a is a bijection (not necessarily full), then ‘H a= H a and in Theorem
3.1.26(v) we have ”Ha

f
∼= Sµ. An example of such a sandwich semigroup may

be seen in Figure 3.8 (the rightmost egg-box diagram).

From parts (vi)(c) and (iii) of Theorem 3.1.26 and Proposition 3.1.24 directly
follows

Corollary 3.1.29. For any 0 ≤ µ ≤ α we have

|Da
µ | = µ!(µ+ 1)β S(α+ 1, µ+ 1)

∑

K⊆I
|K|=µ

ΛK .

Consequently,

|Pa | =
α∑

µ=0
|Da

µ | =
α∑

µ=0
µ!(µ+ 1)β S(α+ 1, µ+ 1)

∑

K⊆I
|K|=µ

ΛK .

It turns out that the formula for |Pa | can be simplified in the case that rank a =
α ≥ 1 and either |X| ≥ ℵ0, or λi ≥ ℵ0 for some i ∈ I. In the next Proposition we
elaborate these simplifications, and we prove equivalent conditions for |Pa | to be
finite, countable or uncountable.

Proposition 3.1.30.

(i) If α ≥ 1 and |X| ≥ ℵ0 then

|Pa | = 2|X|ΛI = max(2|X|,ΛI).

(ii) If α ≥ 1 and |X| < ℵ0 and λi ≥ ℵ0 for some i ∈ I, then

|Pa | = ΛI = max
i∈I

λi.

(iii) |Pa | < ℵ0 ⇔ α = 0 or [|X| < ℵ0 and λi < ℵ0 for all i ∈ I].

(iv) |Pa | = ℵ0 ⇔ α ≥ 1 and |X| < ℵ0 and maxi∈I λi = ℵ0.

(v) |Pa | > ℵ0 ⇔ α ≥ 1 and [|X| ≥ ℵ0 or λi > ℵ0 for some i ∈ I].
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Proof. (i) Recall that α = |I| = rank a ≤ ξ = min{|X|, |Y |} and β = |X \ im a| ≤
|X|. Suppose α ≥ 1 and |X| ≥ ℵ0. The second assumption clearly implies 2|X|ΛI =
max(2|X|,ΛI). We show the equality |Pa | = 2|X|ΛI by proving both |Pa | ≤ 2|X|ΛI
and |Pa | ≥ 2|X|ΛI . For the first one, let 0 ≤ µ ≤ α, and note that

• µ! ≤ α! ≤ 2|X| (the last inequality evidently holds for α < ℵ0, and otherwise
follows from α! = 2α),

• (µ+ 1)β ≤ (|X|+ 1)|X| = |X||X| = 2|X|,

• S(α+ 1, µ+ 1) ≤ (2α+1)µ+1 = 2(α+1)(µ+1) ≤ 2|X| (which is clear if α < ℵ0, and
otherwise follows from (α+ 1)(µ+ 1) = α),

• ∑
K⊆I
|K|=µ

ΛK ≤
∑
K⊆I

ΛK ≤
∑
K⊆I

ΛI = 2|I|ΛI ≤ 2|X|ΛI .

Thus, Corollary 3.1.29 implies |Da
µ | ≤ 2|X|ΛI for each 0 ≤ µ ≤ α, so

|Pa | =
α∑

µ=0
|Da

µ | ≤ (α+ 1)2|X|ΛI ≤ (|X|+ 1)2|X|ΛI = 2|X|ΛI .

Let us prove now the second inequality. We have

|Pa | ≥ |Da
α | = α!(α+ 1)β S(α+ 1, α+ 1)

∑

K⊆I
|K|=α

ΛK ≥ α!2βΛI .

Note that, if α < ℵ0, then β = |X \ im a| = |X|, so α!2βΛI = 2|X|ΛI . Otherwise,

α!2βΛI = 2α2βΛI = 2α+βΛI = 2|X|ΛI .

(ii) Suppose α ≥ 1, |X| < ℵ0, and λi ≥ ℵ0 for some i ∈ I. The second
assumption implies |I| = α, β < ℵ0. Thus, for any 0 ≤ µ ≤ α, the value of the
expression µ!(µ+ 1)β S(α+ 1, µ+ 1) is finite, and

∑

K⊆I
|K|=µ

ΛK ≤
∑

K⊆I
ΛI = 2αΛI = ΛI =

∏

i∈I
λi = max

i∈I
λi.

Therefore, |Da
µ | ≤ ΛI , and |Pa | ≤

∑α
µ=0 ΛI = (α+ 1)ΛI = ΛI , by Corollary 3.1.29.

The reverse inequality is easily seen, since

|Pa | ≥ |Da
α | ≥

∑

K⊆I
|K|=α

ΛK ≥ ΛI .

(iii) First, suppose that |Pa | < ℵ0. If α = 0, the implication holds. Otherwise,
(i) implies |X| < ℵ0 (because |Pa | would be infinite otherwise), and then (ii) implies
λi < ℵ0 for all i ∈ I (for the same reason). Let us prove the reverse implication using
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Corollary 3.1.29. Note that, if α = 0, we have |Pa | = |Da
0 | = 1, whereas if α ≥ 1,

|X| < ℵ0, and λi < ℵ0 for all i ∈ I, then Da
µ is finite for any 0 ≤ µ ≤ α(≤ |X| < ℵ0),

so |Pa | < ℵ0.
(iv) Suppose |Pa | = ℵ0. Then (iii) implies α ≥ 1, so (i) implies |X| < ℵ0

(otherwise we have |P a| ≥ 2|X| > ℵ0). Finally, from (ii) we have λi ≥ ℵ0 for some
i ∈ I (as the opposite implies the finiteness of |Pa |), hence (ii) gives ℵ0 = |Pa | =
maxi∈I λi. The reverse implication follows directly from (ii).

(v) For the direct implication, suppose |Pa | > ℵ0. Then, (iii) implies α ≥ 1.
If |X| ≥ ℵ0, the implication holds; otherwise, from (iii) we have λi ≥ ℵ0 for some
i ∈ I (because |Pa | is infinite), and from (iv) we have maxi∈I λi > ℵ0 (since |Pa |
is uncountable). To prove the the reverse implication, note that

• by (i), α ≥ 1 and |X| ≥ ℵ0 imply |Pa | = 2|X|ΛI ≥ 2|X| > ℵ0, and

• in the case that |X| < ℵ0, by (ii), the assumptions α ≥ 1 and λi > ℵ0 for some
i ∈ I give |Pa | = maxi∈I λi > ℵ0.

Remark 3.1.31. Let us examine the value of the parameter ΛI = ∏
i∈I λi in differ-

ent cases. It depends on the sizes of the sets in ker a. We have

− ΛI = 1 if and only if a is injective;

− if λi ≥ ℵ0 for some i ∈ I, and |I| = α < ℵ0, then ΛI = maxi∈I λi, as in part
(ii);

− if |I| = α ≥ ℵ0, we may suppose without loss of generality that the sequence
〈λi : i ∈ I〉 is nondecreasing and then Lemma 5.9 in [62] gives

ΛI = (sup
i∈I

λi)α.

After investigating the cardinality of Pa, a logical follow-up is the calculation of
the rank of Pa. In order to apply Theorem 2.4.16, we need to show that Pa is MI-
dominated. Since P T is regular, and Pa is a regular semigroup with (at least one)
mid-identity b, we may apply the theory from Subsection 2.4.1. For completeness,
we also identify the cases when Pa is RP-dominated. For that, we need the following
result from [122] (Theorems 3.1 and 3.2).

Lemma 3.1.32. Each of the monoids P T A, T A and IA is factorisable if and only
if A is finite.

Proof. We prove the claim only for P T A, as the proofs for T A and IA are similar.
Suppose A is finite. We claim that P T A = SA ·E(P T A). Let f =

Ä
Fi
fi

ä
i∈I ∈ P T A

and for each i ∈ I choose ai ∈ Fi. Next, choose a permutation g ∈ SA such that
(ai)g = fi for all i ∈ I. Then, let h ∈ P T A with dom h = dom f be defined by
(x)h = fi, if (x)g−1 ∈ Fi for some i ∈ I. It is easily seen that h is an idempotent,
and that f = gh ∈ SA ·E(P T A).
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Conversely, suppose that A is not finite and suppose P T A = G · E(P T A) for
some subgroup G of P T A. Then, since SA ⊆ G · E(P T A), we have

HidA = SA ⊆ G ⊆ HidA

(as idA is the only surjective idempotent in P T A, and HidA is the maximal subgroup
containing it), so G = SA. Now, choose some a ∈ A. We have |A| = |A \ {a}|, so
there exists a bijection f : A→ A\{a}, which can be regarded as a map from P T A.
Suppose that f = gh for some g ∈ SA and some idempotent h ∈ E(P T A). Then,
we have A \ {a} ⊆ im(h), so h�A\{a} = idA\{a}. Hence g(x) = f(x) for all x ∈ A.
Since a ∈ A \ im(f) = A \ im(g), g cannot be a permutation of A. Therefore, P T A
is not factorisable.

Proposition 3.1.33.

(i) The semigroup Pa = Reg(P T aXY ) is MI-dominated.

(ii) The semigroup Pa = Reg(P T aXY ) is RP-dominated if and only if Rank a < ℵ0.

Proof. (i) By Proposition 2.4.9(ii), we have RP(Pa) = ”Ha
b , so parts (iii) and (iv) of

Proposition 2.4.5 imply that Pa is MI-dominated if and only if

Pa = ”Ha
b ?a Pa ?a ”Ha

b .

Since ”Ha
b ⊆ Pa, we clearly have ”Ha

b ?a Pa ?a”Ha
b ⊆ Pa. For the reverse inclusion,

suppose f =
(
Fj
fj

)
j∈J
∈ Pa with J ⊆ I. Since f ∈ Pa, Proposition 3.1.8(iii) implies

that im f ⊆ dom a, ker a separates im f and im a saturates ker f . Therefore, we
may assume without loss of generality that fj ∈ Aj for all j ∈ J . We also have
Fj ∩ A = {ak : k ∈ Ij} 6= ∅, where the sets Ij ⊆ I are pairwise disjoint. For each
j ∈ J , there exists some partition {Fj,k : k ∈ Ij} of the set Fj such that ak ∈ Fj,k
for each k ∈ Ij . Thus, if we put L = I \⋃j∈J Ij , and if we let

g =
Ä
Fj,k al
bk bl

ä
j∈J, k∈Ij , l∈L

and h =
Ä aj am
fj bm

ä
j∈J, m∈I\J ,

then we have f = gafah. In addition, the discussion preceding Lemma 3.1.25 implies
g = h = idA, so g = h ∈ Hb in P T A and thus g, h ∈”Ha

b .
(ii) Proposition 2.4.8 and part (i) imply that Pa is RP-dominated if and only

if the local monoid e ?a Pa ?ae is factorisable for each e ∈ MI(Pa). By Proposition
2.4.9(i), we have MI(Pa) = V(a), so Proposition 2.4.11 implies e ?a Pa ?ae ∼= W for
each e ∈ MI(Pa). Since W ∼= P T A, the semigroup Pa is RP-dominated if and only
if P T A is factorisable, which occurs if and only if A is finite, by Lemma 3.1.32.

Finally, we may prove one of the key results of this section:

Theorem 3.1.34.

(i) If |Pa | ≥ ℵ0, then rank(Pa) = |Pa |.
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(ii) If |Pa | < ℵ0, then

rank(Pa) =





1, if α = 0;
1 + max(2β,ΛI), if α = 1;
2 + max(3β,ΛI), if α = 2;
2 + max((α+ 1)β,ΛI , 2), if α ≥ 3.

Proof. Firstly, note that µ elements can generate at most µn n-element products for
any n ∈ N. Thus, if |Pa | > ℵ0, a generating set cannot have less than |Pa | elements,
because ℵ0-many cardinals smaller than |Pa | cannot add up to |Pa |. Secondly, if
α = 0, then a is the empty function, so Pa = {b} and rank(Pa) = |Pa | = 1.

Now, we examine the rest of the cases. Suppose α ≥ 1 and |Pa | ≤ ℵ0. By
Proposition 3.1.30(iii) and (iv), we have either |X| < ℵ0 and λi < ℵ0 for all i ∈ I,
or |X| < ℵ0 and maxi∈I λi = ℵ0. Therefore, in both cases |A| = α ≤ |X| < ℵ0, so
W ∼= P T A ∼= P T α is finite, and hence W \ GW ∼= P T α \ Sα is an ideal of W , by
Lemma 3.1.25(vi). Now, Theorem 2.4.16 gives

rank(Pa) = rank(W : GW ) + max(|”Ha
b/R |, |”Ha

b/L |, rank(GW )),

because Pa is MI-dominated (as proved in Proposition 3.1.33(i)). By Theorem
3.1.26(i) and (ii), we have |”Ha

b/R | = (α + 1)β and |”Ha
b/L | = ΛI . In addition,

W ∼= P T A, so GW ∼= Sα. Thus,

rank(Pa) = rank(P T α : Sα) + max((α+ 1)β,ΛI , rank(Sα)). (3.6)

In the case that |Pa | = ℵ0, we have maxi∈I λi = ℵ0, so ΛI = ℵ0, and hence
|Pa | = ℵ0.

Finally, part (ii) follows directly from(3.6), having in mind that

rank(Sα) =
®

1, if α ≤ 2;
2, if 3 ≤ α < ℵ0; and rank(P T α : Sα) =

®
1, if α = 1;
2, if 2 ≤ α < ℵ0.

The first equality is a well-known result, and the second an easily proved one: to
generate P T α, we need at least one element from T α \ Sα and at least one element
from P T α \ T α, because (P T α \ T α) ∪ Sα and T α are subsemigroups of P T α; it
turns out that any pair from the set (Dα−1(T α), Dα−1(P T α) \ T α) will do.

Remark 3.1.35. If |Pα | < ℵ0 and if a is injective or surjective, we may simplify the
above formula. Note that, by 3.1.30(iii), the first assumption implies α ≤ |X| < ℵ0.

• If a is injective, then ΛI = 1 and β = |X \ im a| = |X| − α. Thus, in this case
we have

rank(Pa) =





1, if α = 0;
1 + 2|X|−1, if α = 1;
2 + 3|X|−2, if α = 2;
2 + max((α+ 1)|X|−α, 2), if α ≥ 3.
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If a is additionally full and non-surjective (recall that we omit the case where
a is a full bijection), then P T aXY = P T (X,A), and we have α < |X|, so
2 ≤ (α+ 1)|X|−α (for α ≥ 0). Therefore, for any set A ( X,

rank(Reg(P T (X,A))) =





1, if A = ∅;
1 + 2|X|−1, if |A| = 1;
2 + (|A|+ 1)|X|−|A|, if |A| ≥ 2.

• If a is surjective, then P T aXY ∼= P T (Y, σ), and we have A = X, so β = 0.
Recall that πσ and u(σ) denote the partition and the underlying set corres-
ponding to the equivalence relation σ, respectively. Then, for any equivalence
relation σ with u(σ) ⊆ Y , we have

rank(Reg(P T (Y, σ))) =





1, if πσ = ∅;
1 + ΛI , if |πσ| = 1;
2 + ΛI , if |πσ| = 2;
2 + max(ΛI , 2), if |πσ| ≥ 3.

• If a is a non-full bijection, we have the benefits of both injectivity and sur-
jectivity, so rank(Pa) = rank(P T A).

3.1.4 Idempotents and idempotent-generation

Following the path paved in Chapter 2, now we investigate the idempotents and
the idempotent-generated subsemigroup of P T aXY . In particular, we characterise
the idempotents and calculate their number; further, we describe the idempotent-
generated subsemigroup in terms of its connection with P T A via ϕ and infer the
formula for its rank. In addition, we provide a neat description for it in the case
where α < ℵ0. As usual, each result is also given in a simplified form corresponding
to the cases when a is full, injective, or surjective.

Since all idempotents are obviously regular elements, we are in fact investigating
the idempotents and the idempotent-generated subsemigroup of Pa. To ensure easier
understanding, we introduce the corresponding notation: let

Ea(P T aXY ) = {f ∈ P T XY : f = f ?a f} (= Ea(Pa)), and
EaXY = Ea(P T aXY ) = 〈Ea(P T aXY )〉a (= Ea(Pa)).

denote the set of idempotents of P T aXY and the idempotent-generated subsemigroup
of P T aXY , respectively.

We start with the properties of Ea(P T aXY ).

Proposition 3.1.36.

(i) Ea(P T aXY ) = {f ∈ P T XY : (af)�im f = idim f}.

(ii) If |Pa | ≥ ℵ0, then |Ea(P T aXY )| = |Pa |.
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(iii) If |Pa | < ℵ0, then

|Ea(P T aXY )| =
α∑

µ=0
(µ+ 1)|X|−µ

∑

J⊆I
|J |=µ

ΛJ .

Proof. (i) Since the defining property of an idempotent f ∈ Pa is the equality
faf = f , which is equivalent to (af)�im f = idim f , the characterisation follows.

(ii) Let |Pa | ≥ ℵ0. Obviously, it suffices to prove |Ea(P T aXY )| ≥ |Pa |. By
Proposition 3.1.30(iv) and (v), we have α ≥ 1 and exactly one of the following
statements is true:

− |X| < ℵ0 and maxi∈I λi ≥ ℵ0,

− |X| ≥ ℵ0.

In the first case, we will use Ea(P T aXY ) ⊇ Ea(”Ha
b ). Recall that the latter is an

(α+1)β×ΛI rectangular band, by Theorem 3.1.26(v). Hence, Proposition 3.1.30(ii)
gives

|Ea(P T aXY )| ≥ |Ea(”Ha
b )| ≥ ΛI = max

i∈I
λi = |Pa |.

In the second case, Proposition 3.1.30(i) yields |Pa | = max(2|X|,ΛI). If |Pa | = ΛI ,
the proof is same as in the previous case, save the use of Proposition 3.1.30(ii).
Otherwise, we need to prove |Ea(P T aXY )| ≥ 2|X|. Fix an i ∈ I. The set X \ ai has
2|X| subsets, since |X| > ℵ0. For each C ⊆ X \ ai, we define

Ä
C∪{ai}
bi

ä
∈ P T XY ,

which is evidently a ?a-idempotent, unique among the others defined in this manner,
due to its domain. Thus, we have enumerated 2|X| different idempotents.

(iii) Suppose |Pa | < ℵ0. By Proposition 3.1.30(iii), we have either α = 0, or
|X| < ℵ0 and λi < ℵ0 for all i ∈ I. If α = 0, then Pa = E(Pa) = {b}, so the statement
is true in that case. Suppose α ≥ 1 and let f =

(
Fj
fj

)
j∈J

be any idempotent. Since
f ∈ Pa, by Proposition 3.1.8(iii), the following hold: im f ⊆ dom a, ker a separates
im f and im a saturates ker f . Thus, we may assume without loss of generality that
fj ∈ Aj for all j ∈ J . Then, from the condition (af)�im f = idim f in (i), we have
aj ∈ Fj for all j ∈ J . So, in order to fix an idempotent f , we need to fix the set
J ⊆ I, the element fj ∈ Aj for each j ∈ J , and the sets dom f \ im a and ker f . Note
that 0 ≤ |J | ≤ α, and if |J | = µ, the choice of the pair (J, imf ) can be made in

∑

J⊆I
|J |=µ

ΛJ

ways. This leaves |X| − µ elements in X \ {aj : j ∈ J} to be placed either in one of
the µ classes of ker f , or outside dom f . Therefore, there are

∑

J⊆I
|J |=µ

ΛJ · (µ+ 1)|X|−µ
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idempotents of rank µ. As the possible values for the rank span from 0 to α, this
concludes the proof.

Remark 3.1.37. Suppose |Pa | < ℵ0. As before, we discuss the simplifications that
can be made in special cases.

• If a is injective, ΛJ = 1 for all J ⊆ I, so

∑

J⊆I
|J |=µ

ΛJ =
∑

J⊆I
|J |=µ

1 =
Ç
|I|
µ

å
=
Ç
α

µ

å
.

Therefore |Ea(P T aXY )| = ∑α
µ=0(µ + 1)|X|−µ

(α
µ

)
. In the case that a is both

injective and full, we have P T aXY ∼= P T (X,A), so

|E(P T (X,A))| =
|A|∑

µ=0
(µ+ 1)|X|−µ

Ç
|A|
µ

å
.

• If a is surjective, then X = A so |X| = α = |πσ|. Since P T aXY ∼= P T (Y, σ) in
this case, we have

|E(P T (Y, σ))| =
|πσ |∑

µ=0
(µ+ 1)|πσ |−µ

∑

J⊆I
|J |=µ

ΛJ .

• If a is a (non-full) bijection, we have both ΛJ = 1 for all J ⊆ I and X = A, so
in this case

|Ea(P T aXY )| =
α∑

µ=0
(µ+ 1)α−µ

Ç
α

µ

å
.

This equals the number of idempotents in P T α (obtained in Corollary 2.7.5
in [45]), since Pa ∼= P T α.

In the following, we need some additional information on the semigroup W ∼=
P T A. In order to present the needed results, we enhance our notation. Let E(P T A)
and E(P T A) denote the set of idempotents and the idempotent-generated subsemig-
roup of P T A, respectively. Further, for a map f ∈ P T A, we introduce

sh f = |{x ∈ dom f : xf 6= x}|, def f = |A \ im f |,

coll f =
∑

x∈im f

(|xf−1| − 1), codef f = |A \ dom f |,

named the shift, collapse, defect and codefect of f , respectively.
Having introduced these, we may state the required results. Since the proofs

are lengthy and do not contribute to our understanding of sandwich semigroups, we
skip them and only give references for them. For part (i), see [43] and [46]. Part
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(ii) follows from Theorem III in [55], using the same approach for examination of
P T A, as was used for T A.

Proposition 3.1.38.

(i) If |A| < ℵ0, then E(P T A) = {idA} ∪ (P T A \SA), and

rank(E(P T A)) = idrank(E(P T A)) =
Ç
α+ 1

2

å
+ 1.

(ii) If |A| ≥ ℵ0, then

E(P T A) = {idA} ∪ {f ∈ P T A \ SA : sh f + codef f < ℵ0}
∪ {f ∈ P T A : sh f + codef f = coll f + codef f

= def f ≥ ℵ0}

and rank(E(P T A)) = idrank(E(P T A)) = | P T A | = 2|A|.

Using these properties of P T A, we may calculate the rank and the idempotent
rank of Ea(P T aXY ), applying Theorem 2.4.17 and the fact that Pa is MI-dominated
(Proposition 3.1.33(i)).

Theorem 3.1.39.

(i) EaXY = Ea(P T aXY ) = (E(P T A))ϕ−1,

(ii) rank(EaXY ) = idrank(EaXY ) =




|EaXY | = |Pa |, |Pa | ≥ ℵ0;
(α+1

2
)

+ max((α+ 1)β,ΛI), |Pa | < ℵ0.

Proof. (i) follows directly from Lemma 2.3.11, since

(Eb(W ))φ−1 = (E(P T A))ϕ−1.

(ii) In P T aXY , the set Ea(P T aXY ) = Ea(Pa) is a subset of the subsemigroup Pa,
so we have Ea(P T aXY ) = Ea(Pa). Thus,

|Ea(P T aXY )| ≤ |Ea(P T aXY )| ≤ |Pa |.

In the case that |Pa | ≥ ℵ0, Proposition 3.1.36(ii) gives |Ea(P T aXY )| = |Pa |, hence
|Ea(P T aXY )| = |Pa |.

Let us complete the proof in the case where |Pa | > ℵ0. Since |EaXY | = |Pa | is
an uncountable set, it cannot be generated by a set od smaller size.

Next, suppose |Pa | ≤ ℵ0. Parts (iii) and (iv) of Proposition 3.1.30 give α = 0
or |X| < ℵ0. In either case, α < ℵ0. Having in mind that W ∼= P T A and the fact
that Pa is MI-dominated, Theorem 2.4.17, Proposition 3.1.38(i), and parts (i) and
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(ii) of Theorem 3.1.26 together give

rank(EaXY ) = idrank(EaXY ) = rank(P T A) + max((α+ 1)β,ΛI)− 1

=
Ç
α+ 1

2

å
+ max((α+ 1)β,ΛI).

(3.7)

If |Pa | < ℵ0, the proof is complete. Further, in the case where |Pa | = ℵ0, Proposi-
tion 3.1.30(iv) gives maxi∈I λi = ℵ0, so (3.7) implies

rank(EaXY ) = idrank(EaXY ) = ΛI = max
i∈I

λi = ℵ0 = |Pa |.

Remark 3.1.40. Using the facts stated in the previous remarks, we give the sim-
plified version of the formula from part (ii) in special cases:

• if a is full and injective, we have ΛI = 1 (and β = |X \ im a| = |X| − |A| in
the case where |X| < ℵ0), so the following holds for P T aXY ∼= P T (X,A):

rank(E(P T (X,A))) = idrank(E(P T (X,A)))

=




|E(P T (X,A))| = |Pa |, |Pa | ≥ ℵ0;
(|A|+1

2
)

+ (|A|+ 1)|X|−|A|, |Pa | < ℵ0.

• if a is surjective, then α = |A| = |X| = |πσ| and β = |X \ im a| = 0; thus, for
P T aXY ∼= P T (Y, σ) we have

rank(E(P T (Y, σ))) = idrank(E(P T (Y, σ)))

=




|E(P T (Y, σ))| = |Pa |, |Pa | ≥ ℵ0;
(|πσ |+1

2
)

+ ΛI , |Pa | < ℵ0.

In Theorem 3.1.39(i), we gave a description of EaXY via the map ϕ. If α < ℵ0, we
can offer an elegant alternative description. In order to prove this result, we need
the following lemma.

Recall that Da
α is the regular class of P T aXY containing all the regular elements

of rank α (see Proposition 3.1.18).

Lemma 3.1.41. If α < ℵ0, then Jab = Da
α = ”Ha

b . In the case that α = ξ =
max(|X|, |Y |) as well, Jab is the maximum J a-class of P T aXY .

Proof. Since α < ℵ0, the semigroup W ∼= P T A ∼= P T α is finite and hence stable
(see Section 1.3). Thus, Proposition 2.4.10(i) gives Jab = Da

b = Da
α. Moreover,

Propositions 2.4.9(ii) and 2.4.10(iv) together imply Jab = ”Ha
b , as P T is regular. The

last statement follows from Proposition 3.1.19(ii).

Theorem 3.1.42. If α = rank a < ℵ0, then

EaXY = Ea(P T aXY ) = Ea(Da
α) ∪ (Pa \Da

α).
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Proof. Suppose α = rank a < ℵ0. By Theorem 3.1.39(i), Proposition 3.1.38(i), and
Theorem 3.1.26(v), we have

EaXY = (E(P T A))ϕ−1 = (idA)ϕ−1 ∪ (P T A \ SA)ϕ−1

= (idA)ϕ−1 ∪ (P T A)ϕ−1 \ (SA)ϕ−1

= Ea(”Ha
b ) ∪ (Pa \”Ha

b )

(the last two equalities following from the fact that ϕ is a homomorphism). Thus,
the result follows directly from Lemma 3.1.41.

Remark 3.1.43. As always, we analyse the result in the special cases. Suppose
α = rank a < ℵ0.
• If a is injective and full, then P T aXY ∼= P T (X,A). In P T (X,A), we have

E(Dα) = {f ∈ P T (X,A) : ff = f, rank f = α}
= {f ∈ P T (X,A) : f�A = idA}.

Therefore, Lemma 3.1.21 implies

E(P T (X,A)) = {f ∈ P T (X,A) : f�A = idA}
∪ {f ∈ P T (X,A) : ker f is saturated by A, rank f < |A|}.

• If a is surjective, then P T aXY ∼= P T (Y, σ). In P T (Y, σ), we have

E(Dα) = {f ∈ P T (Y, σ) : ff = f, rank f = α}
= {f ∈ P T (Y, σ) : ker f = σ, (S)f ∈ S for each S ∈ πσ}.

Therefore, Lemma 3.1.21 implies

E(P T (Y, σ)) = {f ∈ P T (Y, σ) : ker f = σ, (S)f ∈ S for each S ∈ πσ}
∪ {f ∈ P T (Y, σ) : im f ⊆ u(σ), im f is separated by σ,

rank f < |πσ|}.

3.1.5 The rank of a sandwich semigroup P T aXY
In this section, we complete the investigation of P T aXY by calculating its rank. It
turns out that, in the finite case, we have entirely different formulae depending on
the answers to the following questions: Is a full? Is a injective? Is a surjective? The
results presented in this section were obtained in [34].

We start with the simpler cases. First, note that, when defining an element
of P T XY , each of the |X| elements in X can either be mapped to one of the
|Y | elements in Y or be placed outside the domain. Hence, we have | P T aXY | =
(|Y |+ 1)|X|. Using this, we may deduce the rank in the following cases.
• Suppose X = ∅ or Y = ∅. Then, P T aXY = {∅}, and therefore rank(P T aXY ) =
| P T aXY | = 1.
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• Suppose X,Y 6= ∅ and α = 0. Since a = ∅, we have fag = ∅ for all f, g ∈
P T aXY . Therefore,

rank(P T aXY ) = | P T aXY \{∅}| = | P T aXY | − 1 = (|Y |+ 1)|X| − 1

• Suppose X,Y 6= ∅ and suppose |X| ≥ ℵ0 or |Y| > ℵ0. Obviously, this holds
if and only if P T aXY > ℵ0; in such case rank(P T aXY ) = | P T aXY |.

• Suppose X,Y 6= ∅, |X| < ℵ0, |Y| ≤ ℵ0, α ≥ 1, and suppose a is a full
bijection. Since a being a full bijection implies P T aXY ∼= P T A = P T X and
we assumed |X| < ℵ0, by Theorem 3.1.5 in [45], we have

rank(P T aXY ) = rank(P T |X|) =
®
|X|+ 1, |X| ≤ 2;
4, |X| > 2. (3.8)

Hence, for the remainder of this subsection, we assume that X,Y 6= ∅,
|X| < ℵ0, |Y| ≤ ℵ0, α ≥ 1 and that a is either non-full or non-injective or
non-surjective.

To simplify navigating through results concerning different cases, we give the
following table:

a full? a injective? a surjective Reference Egg-box diagram
N N N Figure 3.4
Y N N Theorem 3.1.48 Figure 3.5
N Y N Figure 3.6
Y Y N Theorem 3.1.51 Figure 3.7
N N Y Figure 3.8
Y N Y Theorem 3.1.57 Figure 3.8
N Y Y Figure 3.8
Y Y Y see (3.8) Figure 3.10

Note that the assumption |X| < ℵ0 implies α ≤ ξ = min(|X|, |Y |) < ℵ0, so a
is stable, by Proposition 3.1.7(iii). Thus, Propositions 2.2.25 and 3.1.2(vi) imply
that J a = Da in P T aXY . This information will be vital for the discussion of
generation of the maximal J -classes. As for the rest of the elements, we will be
able to generate them by multiplying elements having higher ranks. For this reason,
in this subsection we deal with the J = D-classes of P T XY . Recall the notation

Dµ = Dµ(P T XY ) = {f ∈ P T XY : Rank f = µ} for each µ ∈ {0, 1, . . . , ξ},

which gives P T XY = D0 ∪D1 ∪ · · · ∪Dξ.
We may also adapt the previously introduced notation to the assumptions made

above. Since α < ℵ0, we may assume

a =
(
A1 ... Aα
a1 ... aα

)
and b =

( a1 ... aα
b1 ... bα

)
.
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Having done that, we present the lemma describing why the concept of "down-
wards generating" works.

Lemma 3.1.44.

(i) If µ ≤ α− 2, then Dµ ⊆ Dµ+1 ?a Dµ+1.

(ii) If a is not surjective, then Dα−1 ⊆ Dα ?a Dα.

Proof. Since both parts may be proved using the same approach, we handle them
together. Suppose µ ≤ α − 1 and let f =

Ä
F1 ... Fµ
f1 ... fµ

ä
∈ Dµ. From µ < α ≤

|X|, we conclude that the assumptions of both parts ((i): µ ≤ α + 2 and (ii): a
is non-surjective) guarantee the existence of an element z ∈ X \ {a1, . . . , aµ+1}.
Furthermore, one of the following must hold:

(a) f is non-full, in which case we fix some x ∈ X \ dom f , or

(b) f is non-injective, in which case there exists at least one non-singleton class in
ker f ; hence, we may assume without loss of generality that |Fµ| ≥ 2 and fix
some partition {F ′µ, F ′′µ+1} of Fµ.

Furthermore, since µ < α ≤ |Y |, we may fix an element y ∈ Y \ im f . Now, we
define maps

g =





(
F1 ... Fµ x
b1 ... bµ bµ+1

)
in case (a);

(
F1 ... Fµ−1 F ′µ F ′′µ
b1 ... bµ−1 bµ bµ+1

)
in case (b);

and

h =





Ä a1 ... aµ z
f1 ... fµ y

ä
in case (a);Ä a1 ... aµ aµ+1 z

f1 ... fµ fµ y

ä
in case (b);

Clearly, both in (a) and in (b) we have f = gah = g ?a h ∈ Dµ+1 ?a Dµ+1.

Using the above concept, we can generate the whole semigroup, using only the
elements of ranks α and α− 1. Moreover, if a is non-surjective, the elements of Dα

suffice.

Corollary 3.1.45.

(i) In P T aXY holds D0 ∪D1 ∪ · · · ∪Dα = 〈Dα ∪Dα−1〉a.

(ii) If a is non-surjective, we have D0 ∪D1 ∪ · · · ∪Dα = 〈Dα〉a.

Proof. Note that Lemma 3.1.1(iv) implies the reverse containment both in (i) and
in (ii). Lemma 3.1.44(i) implies D0 ∪D1 ∪ . . . ∪ Dα−2 ⊆ 〈Dα−1〉a. Thus, part (i)
follows immediately, and the second part follows from Lemma 3.1.44(ii).
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This is where our path forks. Depending on the properties of the sandwich
element a, we use different strategies for generating P T aXY . Results 3.1.46 - 3.1.48
deal with the case where α < ξ = min(|X|, |Y |), and results 3.1.50 - 3.1.57 concern
the remaining case, where α = ξ.

Suppose α < ξ. Firstly, we give a lemma describing a type of elements in Dα

that can be generated using the elements of Dα+1.

Lemma 3.1.46. Suppose α < ξ and let f ∈ Dα. If a and f are both non-injective
or both non-full, then f ∈ Dα+1 ?a Dα+1.

Proof. Suppose f =
Ä
F1 ... Fα
f1 ... fα

ä
. Since Rank f = α = Rank a < ξ, there exist some

x ∈ X \ im a and y ∈ Y \ im f . If a and f are both non-injective, there exist
both a non-singleton ker a-class and a non-singleton ker f -class. We may suppose
without loss of generality that Aα and Fα are such classes (the same index does not
jeopardise generality, since it is just a matter of convenient enumeration). Therefore,
there exist an element z ∈ Aα \ {bα}, and some partition {F ′α, F ′′α} of Fα. If we
define g =

(
F1 ... Fα−1 F ′α F ′′α
b1 ... bα−1 bα z

)
and h =

Ä
a1 ... aα x
f1 ... fα y

ä
, it is easily seen that f = gah ∈

Dα+1 ?a Dα+1
In the alternative case, when a and f are both non-full, we may choose some

u ∈ X \ dom f and v ∈ Y \ dom a. Similarly as in the first case, for the map g =Ä
F1 ... Fα−1 Fα u
b1 ... bα−1 bα v

ä
and the map h defined above, we have f = gah ∈ Dα+1 ?a Dα+1.

The following lemma gives us an inkling of the way in which the whole set Dα

will eventually be generated.

Lemma 3.1.47. Suppose α < ξ and f = g ?a h, where g, h ∈ P T XY and f ∈ Dα.

(i) If a is injective and f full, then f R g.

(ii) If a is full and f injective, then f R g.

Proof. First, we draw some conclusions from the assumptions of the lemma. By
Lemma 3.1.1(i) and (iii), from f = g ?a h, we have

(a) dom f ⊆ dom g, and (b) ker f ⊇ (ker g)�dom f .

Moreover, since f = g ?a h ∈ Dα, we have

α = Rank a = Rank f = Rank(gah) ≤ Rank(ah) ≤ Rank a,

so Rank(ah) = Rank a = α < ℵ0. Thus, dom(ah) = dom a and ker(ah) = ker a.
Then, from Lemma 3.1.1(i) and (iii), follows

(c) im a ⊆ dom h, and (d) kerh separates im a.
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(i) Suppose a is injective and f is a full map. The second assumption and (a)
together imply dom f = dom g = X. In order to prove f R g, it suffices to prove
ker f = ker g (see Proposition 3.1.2(iv)). We have

(x, y) ∈ ker f ⇔ xf = yf ⇔ (x)gah = (y)gah
⇔ (x)ga = (y)ga⇔ xg = yg ⇔ (x, y) ∈ ker g,

the third and fourth equivalence following from (d) and the assumption of injectivity
of a, respectively.

(ii) Suppose a is full and f is injective. We have already proved dom f ⊆ dom g
(see (a)), and now we prove the reverse containment, having in mind that a is full
and that we have (c):

x ∈ dom g ⇒ xg ∈ Y = dom a⇒ (x)ga ∈ im a ⊆ dom h

⇒ x ∈ dom(gah) = dom f.

Thus, we have dom f = dom g, so (b) implies ker f ⊇ ker g. Moreover, we may
conclude ker f = ker g, since f is injective.

Having proved these technical results, we are ready to prove the theorem stating
the rank of P T aXY in the case where rank(a) = α < ξ = min(|X|, |Y |) (i.e. when a
is non-surjective, and either non-injective, or non-full, or both).

Theorem 3.1.48. Suppose |X| < ℵ0, |Y | ≤ ℵ0, and that 1 ≤ α < ξ (hence, a is
non-surjective). We have

rank(P T aXY ) =
ξ∑

µ=α+1
µ!
Ç
|Y |
µ

å
S(|X|+ 1, µ+ 1)

+





0, if a is non-injective and non-full;

S(|X|, α), if a is injective and non-full;
(|X|
α

)
, if a is full and non-injective.

Proof. By the discussion in Section 2.6, any generating set of P T aXY must include
elements from every maximal J a-class. Under the assumptions of the theorem,
Proposition 3.1.19(i) guarantees that the maximal J a-classes are exactly all the
singletons {f}, such that Rank f > α (hence, the possible value ranges from α + 1
to min(|X|, |Y |) = ξ). Therefore, any generating set contains all such elements, so

rank(P T aXY ) ≥ |{f ∈ P T XY : Rank f > α}|

=
ξ∑

µ=α+1
µ!
Ç
|Y |
µ

å
S(|X|+ 1, µ+ 1)

(we summed the number of such elements in each D = J -class of P T XY , which
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was calculated in Corollary 3.1.4(v)). Now, let M denote the set {f ∈ P T XY :
Rank f > α}. We may conclude that

rank(P T aXY ) = |M |+ rank(P T aXY : M)

=
ξ∑

µ=α+1
µ!
Ç
|Y |
µ

å
S(|X|+ 1, µ+ 1) + rank(P T aXY : M).

The value of rank(P T aXY : M) is calculated for each case separately. Note that
it suffices to generate the class Dα, since Corollary 3.1.45(ii) implies that this set
generates all the D = J -classes below it.

Case 1: a is non-injective and non-full. Fix an arbitrary element f ∈ Dα. Since
α < |X|, f is either non-injective or non-full. Thus, f and a are either both
non-injective or both non-full, so Lemma 3.1.46 gives f ∈ 〈Dα+1〉a and the
previous discussion implies rank(P T aXY : M) = 0.

Case 2: a is injective and non-full. Suppose Ω ⊆ P T XY is a set such that 〈M ∪
Ω〉a = P T aXY and |Ω| = rank(P T aXY : M). Since Dα ⊆ 〈M ∪ Ω〉a, we claim
that, for each full transformation f ∈ Dα, there exists an element g ∈ Ω such
that gR f . Consider an expression f = g1 ?a · · ·?a gk, with g1, . . . , gk ∈M ∪Ω.
If k = 1, we clearly have f R g1. If k > 1, the same is implied by Lemma
3.1.47(i). Since in both cases we have Rank g1 = Rank f = α (which follows
from R ⊆J and Proposition 3.1.2(vi)), we may infer that g1 6∈M . Therefore,
rank(P T aXY : M) is grater than or equal to the number of R-classes in Dα

containing full transformations. By Proposition 3.1.2(iv), these classes are
determined only by their kernel, i.e. their partition of X into α subsets. Thus,
the number of such classes is S(|X|, α) and

rank(P T aXY : M) ≥ S(|X|, α).

Now, we show the reverse inequality by providing a generating set of the stated
size. Let E be the set of all equivalence relations with α classes over the set
X. For each ε ∈ E , fix an fε ∈ Dα with ker fε = ε and im fε = {b1, . . . , bα}.
We define Ω = {fε : ε ∈ E }. By the discussion preceding the cases, it suffices
to show

Dα ⊆ 〈M ∪ Ω〉a.

Recall that a is not full. Fix an arbitrary element g ∈ Dα. If g is non-full, too,
then Lemma 3.1.46 gives g ∈ 〈M〉a. If g is full, let g =

Ä
G1 ... Gα
g1 ... gα

ä
. Note that

ker g ∈ E , so fker g =
Ä
G1 ... Gα
b1π ... bαπ

ä
for some permutation π of the set {1, . . . , α}.

Since Rank g = Rank a = α < min(|X|, |Y |), there exist some x ∈ X \ im a
and y ∈ Y \ im g. Then, for the map h = ( a1π ... aαπ x

g1 ... gα y ) evidently holds h ∈M
and fker g ?a h = g. Thus, g ∈ 〈M ∪ Ω〉a.

Case 3: a is non-injective and full. Again, we let Ω ⊆ P T XY be a set such that
M ∪ Ω generates P T aXY and |Ω| = rank(P T aXY : M). This time, we claim
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that for each injective partial transformation f ∈ Dα, there exists an element
g ∈ Ω such that gR f . The proof is virtually identical to the one for the
previous case, the only difference being the use of part (ii) of Lemma 3.1.47,
instead of part (i). By Proposition 3.1.2(iv), an R-class containing injective
maps is determined solely by the domain of its elements. Thus, Dα contains(|X|
α

)
such classes and

rank(P T aXY : M) ≥
Ç
|X|
α

å
.

The reverse inequality is shown in a similar manner as in the previous case.
We define the set of possible domains, Q = {D ⊆ X : |D| = α}, and for each
D ∈ Q, we choose an injective map fD ∈ Dα with dom fD = D and im fD =
{b1, . . . bα}. Now, we prove that the union of the sets Ω = {fD : D ∈ Q} andM
generates Dα. Let g ∈ Dα. If g is non-injective, Lemma 3.1.46 gives g ∈ 〈M〉a.
Otherwise, we may write g = ( g1 ... gα

q1 ... qα ), so we have fdom g =
Ä
g1 ... gα
b1π ... bαπ

ä
for

some permutation π. Again, there exist some x ∈ X \ im a and y ∈ Y \ im g, so
we may define h = ( a1π ... aαπ x

q1 ... qα y ) ∈M and we clearly have g = fdom g ?a h.

Remark 3.1.49. In particular, in the case where 1 ≤ α < |X| < |Y | = ℵ0, we have(|Y |
µ

)
= ℵ0 for all α+ 1 ≤ µ ≤ ξ (and all the other factors are finite), so

rank(P T aXY ) = ℵ0 = | P T aXY |.

Next, we examine the case in which α = ξ. We keep the assumptions |X| < ℵ0
and |Y | ≤ ℵ0, so α < ℵ0. Since we omit the case where a is a full bijection (i.e.
where α = |X| = |Y |), we have two possible cases:

• either α = |Y | < |X| < ℵ0, so a is full, injective and non-surjective, and
P T aXY ∼= P T (Y, σ),

• or α = |X| < |Y | ≤ ℵ0, so a is surjective and either non-full or non-injective,
and P T aXY ∼= P T (X,A).

The results concerning the rank of P T aXY in the second case were originally proved
in Theorem 2.4 of [44].

We start by providing some additional information on the semigroup P T aXY in
the cases which we investigate.

Lemma 3.1.50.

(i) If α = |Y | < ℵ0, then Pa1 = P T aXY , Pa2 = Pa, and Ra = R on P T aXY .

(ii) If α = |X| < ℵ0, then Pa2 = P T aXY , Pa1 = Pa, and L a = L on P T aXY .

Proof. As we remarked before, a is full and injective in the case that α = |Y | < ℵ0.
Hence, it is right-invertible, by Lemma 3.0.2(i). Similarly, if α = |X| < ℵ0, a is
surjective and then 3.0.2(i) implies left-invertibility. Now, the result follows directly
from Lemma 2.2.38.
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Recall Lemma 3.1.1(iv), which implies that any product containing an element
with a non-maximum rank results in a map of a non-maximum rank. So, any
generating set of P T aXY has to contain a generating set for Dα consisting purely of
elements from Dα. Furthermore, Corollary 3.1.45(i) implies that, if we generate Dα

and Dα−1, we may generate the whole P T XY ! In particular, if a is non-surjective,
part (ii) of the same corollary states that the elements of Dα suffice. This information
will be used in the process of calculating the rank of P T aXY in the case where
α = |Y | < |X|.

Theorem 3.1.51. Suppose 1 ≤ α = Rank a = |Y | < |X| < ℵ0. Then

rank(P T aXY ) = S(|X|+ 1, α+ 1).

Proof. Since α = |Y | < |X| < ℵ0, a is full, injective and non-surjective, and we have
Rank f ≤ |Y | = α for each f ∈ P T XY . Thus, Dα generates P T aXY , by Corollary
3.1.45(ii). Furthermore, from Lemma 3.0.2(i) it follows that a is right-invertible,
and from Proposition 3.1.7(iii) we have that

P T XY ∪ aP T XY a ∪ aP T XY

is stable because each of its elements has a finite rank (by Lemma 3.1.1(iv)). There-
fore, we may apply Proposition 2.6.3, where T = 〈Jb〉a = 〈Db〉a = 〈Dα〉a = P T XY .
We want to prove that rank(Ha

b ) ≤ | Jab /H a |, in order to apply part (iii). Pro-
positions 2.4.10(i), (iv) and 2.4.9(ii) give Jab = Da

b = ”Ha
b , while Theorem 3.1.26(v)

implies that Jab = Da
α = ”Ha

b is an (α + 1)β × ΛI = (α + 1)β × 1 (a is injective, so
ΛI = 1) rectangular group over Ha

b
∼= Sα. Hence, from β = |X \ im a| ≥ 1 and from

the fact that rank(Sα) ≤ 2, we have

| Jab /H a | = | Jab /Ra | = (α+ 1)β ≥ 2 ≥ rank(Sα) = rank(Ha
b ).

Therefore, Propositions 3.1.2(vi) and 2.6.3(iii) give

rank(P T aXY ) = | Jb /H | = |Dα /H | = |Dα /R | = S(|X|+ 1, α+ 1),

the last two equalities following from Lemma 2.2.37(ii) and Corollary 3.1.4(i), re-
spectively.

Remark 3.1.52. As we mentioned before, in the case that α < ℵ0, we have α = |Y |
if and only if a is full and injective, if and only if P T aXY ∼= P T (X,A). Hence,

rank(P T (X,A)) = S(|X|+ 1, |A|+ 1) if 1 ≤ |A| < |X| < ℵ0.

Finally, we turn our attention to the only case left, when 1 ≤ α = |X| < |Y | ≤ ℵ0.
This condition implies that a is surjective, and either non-injective or non-full or
both. It turns out that these conditions heavily influence the generation of Dα and
Dα−1, so we need to investigate each case separately. Firstly, in each case we describe
a type of elements of Dα−1, which can be generated by the elements of Dα.
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Lemma 3.1.53. Suppose 1 ≤ α = |X| < |Y | ≤ ℵ0.

(i) If a is non-injective, and f ∈ Dα−1 is full, then f ∈ Dα ?a Dα.

(ii) If a is non-full, and f ∈ Dα−1 is injective, then f ∈ Dα ?a Dα.

(iii) If a is non-injective and non-full, then P T aXY = 〈Dα〉a.

Proof. (i) Suppose a is non-injective and let f =
Ä
F1 ··· Fα−1
f1 ... fα−1

ä
∈ Dα−1 be a full

map. Since f is full and |X| = α < ℵ0, we may assume without loss of
generality that

|F1| = 2 and |F2| = · · · = |Fα−1| = 1.

Thus, suppose F1 = {u, v}. Further, a being non-injective implies |Ai| = 2
for some i ∈ {1, . . . , α}, so we may assume (without loss of generality, as well)
that |A1| ≥ 2. If we fix some x ∈ A1 \ {b1}, and some y ∈ Y \ im f (which
exists because |Y | > |X| = α) and define maps g =

Ä
u v F2 ··· Fα−1
x b1 b2 ··· fα−1

ä
and

h =
Ä a1 a2 ··· aα−1 aα
f1 f2 ··· fα−1 y

ä
, then we have g ?a h = f , so f ∈ Dα ?a Dα.

(ii) Suppose a is non-full and let f =
Ä
f1 ··· fα−1
g1 ··· gα−1

ä
∈ Dα−1 be an injective map.

Since |dom f | = α − 1 < α = |X|, there exists some x ∈ X \ dom f . Also,
Rank f < α = | dom a| < |Y | guarantees the existence of some y ∈ Y \ dom a

and some z ∈ Y \ im f . Thus, for g =
Ä
f1 ··· fα−1 x
b1 ··· bα−1 y

ä
and h =

( a1 a2 ··· aα−1 aα
g1 g2 ··· gα−1 z

)

we have g ?a h = f , which proves f ∈ Dα ?a Dα.

(iii) Suppose a is both non-injective and non-full. Choose an arbitrary f ∈ Dα−1.
Since Rank f = |X| − 1, f is either full, or injective. In both cases we have
f ∈ Dα ?a Dα, by (i) and (ii), respectively. Hence Dα−1 ⊆ 〈Dα〉a. Now,
Corollary 3.1.45(ii) implies the statement.

Secondly, we add a lemma proving that, if a is injective or full, then Dα can
generate only partial maps of the same type.

Lemma 3.1.54. Suppose 1 ≤ α = |X| < |Y | ≤ ℵ0.

(i) If a is injective, then every element of 〈Dα〉a is injective.

(ii) If a is full, then every element of 〈Dα〉a is full.

Proof. Note that, in both cases, each element f ∈ Dα is a full injection, since
|dom f | = |X| < ℵ0. Therefore, if a is injective, each element in 〈Dα〉a is an
injection, as a product of injective partial maps. Similarly, if a is full, each element
of 〈Dα〉a is full.

Finally, in the following two lemmas we prove that the rest of the elements can
be generated by enhancing the generating set by a single element from Dα−1.

Lemma 3.1.55. Suppose 1 ≤ α = |X| < |Y | ≤ ℵ0.
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(i) If f ∈ Dα−1 is injective, then f ∈ Dα ?a g ?a Dα, where

g =
Ä a1 ··· aα−1
b1 ··· bα−1

ä
.

(ii) If f ∈ Dα−1 is full, then f ∈ Dα ?a g ?a Dα, where

g =
(
a1 ··· aα−2 {aα−1,aα}
b1 ··· bα−2 bα−1

)
.

Proof. (i) Let f =
Ä
f1 ··· fα−1
g1 ··· gα−1

ä
∈ Dα−1 be an injective map. Since | dom f | < |X|

and Rank f < |Y |, there exist some x ∈ X \ dom f and y ∈ Y \ im f . Thus, it is
easy to see that, for

h1 =
Ä
f1 ··· fα−1 x
b1 ··· bα−1 bα

ä
and h2 =

( a1 ··· aα−1 aα
g1 ··· gα−1 y

)
,

we have f = h1agah2 ∈ Dα ?a g ?a Dα.
(ii) Let f ∈ Dα−1 be a full map. As |dom f | = |X| = | ker f |+1, the equivalence

relation ker f has exactly one two-element class and α− 1 singleton classes. There-
fore, without loss of generality we may write f =

Ä
f1 ··· fα−2 {fα−1,x}
g1 ··· gα−2 gα−1

ä
. Moreover,

since |Y | > Rank f , there exists some y ∈ Y \ im f , so we may define maps h1 and h2
in the same manner as above. Here, too, we have f = h1agah2 ∈ Dα ?a g ?a Dα.

Lemma 3.1.56. Suppose 1 ≤ α = |X| < |Y | ≤ ℵ0.

(i) If a is full, then P T aXY = 〈Dα ∪{g}〉a, where

g =
Ä a1 ··· aα−1
b1 ··· bα−1

ä
.

(ii) If a is injective, then P T aXY = 〈Dα ∪{g}〉a, where

g =
(
a1 ··· aα−2 {aα−1,aα}
b1 ··· bα−2 bα−1

)
.

Proof. Clearly, in both cases it suffices to prove Dα−1 ⊆ 〈Dα ∪{g}〉a, since Dα−1 ∪Dα

generates P T aXY , by Corollary 3.1.45(i).
(i) Let a be full. Since α < |Y |, it is non-injective, as well. Fix an arbitrary

f ∈ Dα−1. If f is full, f ∈ 〈Dα〉a by Lemma 3.1.53(i). If f is non-full, it has
to be injective because Rank f = α − 1 = |X| − 1. Hence, Lemma 3.1.55(i) gives
f ∈ 〈Dα ∪{g}〉a.

(ii) is proved similarly, because a is injective, thus non-full, so we use Lemmas
3.1.53(ii) and 3.1.55(ii) to prove that both injective and non-injective elements of
Dα−1 are generated by the set Dα ∪{g}.

Now, we have everything we need in order to calculate the rank of P T aXY in the
remaining case.
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Theorem 3.1.57. Suppose 1 ≤ α = Rank a = |X| < |Y | ≤ ℵ0. Then

rank(P T aXY ) =
Ç
|Y |
α

å
+





0, if a is neither full nor injective,

1, if a is full or [a is injective and α ≤ 2],

2, if a is injective and α ≥ 3.

Proof. Since α = |X| < |Y | ≤ ℵ0, a is surjective, and we have Rank f < α for all
f ∈ P T XY . Thus, Corollary 3.1.45(i) implies that 〈Dα−1 ∪Dα〉 = P T XY . From
Proposition 3.1.2(vi), we know that

Jb = Db = Dα

is the maximal J -class in P T aXY . Furthermore, Lemma 3.1.1(iv) implies that a
product resulting in an element of rank α cannot contain an element of a smaller
rank. In other words, any generating set of P T aXY contains a generating set of
〈Dα〉a. Therefore, if we denote T = 〈Dα〉a, we have

rank(P T XY ) = rank(〈Dα−1 ∪Dα〉a) = rank(T ) + rank(P T aXY : T ). (3.9)

Now, Lemma 3.1.53(iii) gives rank(P T aXY : T ) = 0, in the case when a is non-
injective and non-full. Further, by Lemma 3.1.55, we have rank(P T aXY : T ) ≥ 1
if a is either injective or full. Thus, from Lemma 3.1.56 we may conclude that
rank(P T aXY : T ) = 1 in both of these cases.

We still need to calculate rank(T ). Note that a is left-invertible by Lemma
3.0.2(ii), and P T XY ∪ aP T XY a ∪ P T XY a is stable by Proposition 3.1.7(iii) (as
it contains only finite-ranked maps). Hence, Proposition 2.6.4 applies. Here, note
that (keeping the notation introduced in Section 2.6) by Corollary 3.1.4(ii) we have

|X2|+ |X1| = | Jb /H | = |Db /H | = |Dα /H | = |Dα /L | =
Ç
|Y |
α

å
, (3.10)

the penultimate equality following from the dual of Proposition 2.2.37(ii). Further,
since P T is regular (by Proposition 3.0.1), Propositions 2.4.10(i), (iv) and 2.4.9(ii)
give Jab = Da

b = ”Ha
b , while Theorem 3.1.26(v) implies that Jab = Da

α = ”Ha
b is an

(α+ 1)β × ΛI = 1× ΛI (as β = |X \ im a| = 0) rectangular group over Ha
b
∼= Sα. In

addition, recall that

rank(Sα) =
®

1, α = 1, 2;
2, α ≥ 3.

In order to use part (iii) of Proposition 2.6.4, we will identify the cases where
rank(Ha

b ) ≤ | Jab /H a |. Clearly, if ΛI ≥ 2 or α ≤ 2, we have

| Jab /H a | = | Jab /L a | = ΛI ≥ rank(Sα) = rank(Ha
b ).

This occurs only in the case when a is non-injective or α ≤ 2. Under these assump-
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tions, (3.10) and Proposition 2.6.4(iii) give rank(T ) = | Jb /H | =
(|Y |
α

)
.

In the remaining case, where a is injective and α ≥ 3, we have |X1| = | Jab /H a | =
1 = rank(Sα)− 1, so in this case Proposition 2.6.4(ii) and (3.10) give

rank(T ) = |X2|+ rank(Sα) = |X2|+ |X1|+ 1 =
Ç
|Y |
α

å
+ 1.

Therefore, the statement follows from (3.9).

Remark 3.1.58. In particular, if 1 ≤ α = |X| < |Y | = ℵ0, then
(|Y |
α

)
= |Y |α = ℵ0,

so rank(P T aXY ) = ℵ0 = | P T aXY |.

Remark 3.1.59. As we remarked a number of times, in the case that α = |X| < ℵ0,
a is surjective, so P T aXY ∼= P T (Y, σ). Therefore, we have proved in the previous
theorem the following: if |Y | ≤ ℵ0 and |πσ| < ℵ0, then

rank(P T (Y, σ)) =
Ç
|Y |
|πσ|

å
+





0, if u(σ) 6= Y and σ 6= ∆u(σ),

1, if u(σ) = Y or [σ = ∆u(σ) and |πσ| ≤ 2],

2, if σ = ∆u(σ) and |πσ| ≥ 3,

where ∆u(σ) = {(y, y) : y ∈ u(σ)} is the diagonal relation on u(σ).

3.1.6 Egg-box diagrams

This subsection is dedicated to the visual presentation of the structural results of
the current section, via egg-box diagrams of different sandwich semigroups and their
regular subsemigroups. The figures shown here were initially used in [34], and had
been produced with the Semigroups package in GAP [98]. The author thanks Dr
Attila Egri-Nagy and Dr James Mitchell for writing the code for creating them.

In the diagrams, we use the usual conventions for egg-box diagrams of D-classes
described in Section 1.3, with the addition of colouring the group H -classes grey.
Since all the sets in our examples are finite, Proposition 3.1.7(iii) implies that the
sandwich element is stable in each of the examples, so in all of them holds J a = Da,
by Proposition 2.2.25 (and Proposition 3.1.2(vi)). We illustrate the ≤J a order by
connecting the pairs of related J a-classes by a line segment and placing each J a-
class above all the J a-classes it covers. If one is reading the electronic version of
this thesis, these connections and other details of the diagrams may be inspected by
zooming in. Note that the sharpness of the images allows zooming in a long way.

In the examples, we assume X = {1, 2, . . . ,m} and Y = {1, 2, . . . , n}, and write
P T mn for the set P T {1,2,...,m},{1,2,...,n}. The sandwich elements are denoted in a
form differing slightly from the one used above: we list all the elements {1, 2, . . . , n}
in a row, and below each element we place its map or the symbol −, in the case
when it does not have one (for example,

( 1 2 3 4 5
2 − − 1 3

)
∈ P T 54).
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Figure 3.4: Egg-box diagram of the sandwich semigroup P T a35, where a =( 1 2 3 4 5
1 1 2 2 −

)
∈ P T 53. Note that a is non-full, non-injective and non-surjective.

Figure 3.5: Egg-box diagram of the sandwich semigroup P T b35, where b =
( 1 2 3 4 5

1 1 2 2 2 ) ∈ P T 53. Note that b is full, non-injective and non-surjective.

Figure 3.6: Egg-box diagram of the sandwich semigroup P T c35, where c =( 1 2 3 4 5
1 2 − − −

)
∈ P T 53. Note that c is non-full, injective and non-surjective.
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Figure 3.7: Egg-box diagram of the sandwich semigroup P T d43, where d = ( 1 2 3
1 2 3 ) ∈

P T 34. Note that d is full, injective and non-surjective.

Figure 3.8: Left to right: egg-box diagrams of the sandwich semigroups P T e35, P T
f
35

and P T g35, where e =
( 1 2 3 4 5

1 2 3 3 −
)
, f = ( 1 2 3 4 5

1 1 2 2 3 ), and g =
( 1 2 3 4 5

1 2 3 − −
)
∈ P T 53. Note

that e is non-full, non-injective and surjective, f is full, non-injective and surjective
and g is non-full, injective and surjective.
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Figure 3.9: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(P T a35), Reg(P T b35), Reg(P T c35), Reg(P T d43), Reg(P T e35), Reg(P T f35) and
Reg(P T g35), where the sandwich elements a, b, c, d, e, f , and g are defined as in
Figures 3.4−3.8.

By the theory in Subsection 2.3.4, the first three semigroups in Figure 3.9 are
inflations of P T 2, and the other four are inflations of P T 3. Both P T 2 and P T 3
are shown below. Note also that Reg(P T g35) ∼= P T 3, since g is both injective and
surjective (see Remark 3.1.28).

Figure 3.10: Egg-box diagrams of the partial transformation semigroups P T 2 (left)
and P T 3 (right).
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3.2 The category T

Having conducted an in-depth investigation of the partial semigroup P T and the
sandwich semigroups it contains, we turn to the partial semigroup T and the sand-
wich semigroups in it. Again, we point out that the results presented in this chapter
are based on the investigation conducted in [34], and most of the results were ori-
ginally published in that article. In a few instances, when that is not the case, we
cite appropriately.

Since T = {(A, f,B) : A,B ∈ Set+, f ∈ TAB} is a regular and monoidal partial
subsemigroup of P T , we will be able to easily and efficiently prove the results
concerning it. We always consider the corresponding statement for the case P T
and its proof. In some cases, we simply adapt the proof, while in other cases the
result for T is a direct consequence of the statement for P T . If we are adapting
the proof, we do not always give the new one in full details (the comprehensiveness
depends on the number of changes made).

As mentioned at the beginning of this chapter, these results were first published
in article [34]. However, many of the results of [29] are special cases of the results
in this section, taking |X| = |Y | < ℵ0. Unless significant for our study, these results
for special cases will not be explicitly mentioned. For an extensive record of the
results preceding the ones presented, see Section 1.1.

Note that we are now dealing with full transformations, which means that for
any A,B ∈ Set+ and any f ∈ T AB, we have dom f = A. This simplifies the
statements. For example, the following lemma is the direct consequence of Lemma
3.1.1.

Lemma 3.2.1. Let A,B,C ∈ Set+, f ∈ TAB, and g ∈ TBC . Then

(i) im(fg) ⊆ im g, with equality if and only if im f saturates ker g,

(ii) ker(fg) ⊇ ker f , with equality if and only if ker g separates im f ,

(iii) Rank(fg) ≤ min(Rank f,Rank g).

Thus, we have

Proposition 3.2.2. Let (A, f,B), (C, g,D) ∈ T . Then

(i) (A, f,B) ≤R (C, g,D)⇔ A = C and ker f ⊇ ker g,

(ii) (A, f,B) ≤L (C, g,D)⇔ B = D and im f ⊆ im g,

(iii) (A, f,B) ≤J (C, g,D)⇔ Rank f ≤ Rank g,

(iv) (A, f,B) R(C, g,D)⇔ A = C and ker f = ker g,

(v) (A, f,B) L (C, g,D)⇔ B = D and im f = im g,

(vi) (A, f,B) J (C, g,D)⇔ (A, f,B) D(C, g,D)⇔ Rank f = Rank g.
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Proof. Parts (i)− (v) and the equivalence

(A, f,B) J (C, g,D)⇔ Rank f = Rank g

from (vi) are proved similarly as the corresponding parts of Proposition 3.1.2. For
the direct implications, we use Lemma 3.2.1 instead of Lemma 3.1.1. For the converse
implications, the key difference is the requirement for the maps to be full. However,
we need not change the proofs substantially. When defining the auxiliary maps
h ∈ T DB in (i) and q ∈ T DB in (iii), we simply choose any full map meeting the
requirements (note that h in (ii) and (iii) are already full, since f is). The proof for
J ⊆ D is literally unchanged.

As in the case of P T , we define

T AB = {(A, f,B) : f ∈ TAB}, for A,B ∈ Set+

and conclude that the J = D-classes of T AB are the sets

DAB
µ = Dµ ∩T AB = {(A, f,B) : f ∈ TAB, Rank f = µ},

for each cardinal 1 ≤ µ ≤ min(|A|, |B|). (Recall that A 6= ∅, so any map with
domain A has a non-zero rank.) These J -classes form a chain in T AB: DAB

µ ≤
DAB
ν ⇔ µ ≤ ν.
Furthermore, we may describe the combinatorial properties of DAB

µ , using Pro-
position 3.2.2. If |A| = α and |B| = β, we have

|DAB
µ /R | = S(α, µ) and |DAB

µ /L | =
Ç
β

µ

å
since, by fixing an R- and an L -class, we are partitioning A into µ-classes and
choosing a µ-element set from B, respectively. Having fixed a kernel and an image,
we may connect them in µ! ways, so each H -class contains that many elements.
Thus,

|DAB
µ /H | = S(α, µ)

Ç
β

µ

å
and |DAB

µ | = µ!S(α, µ)
Ç
β

µ

å
.

Summing the sizes of DAB
µ for each possible rank µ, we enumerate the elements of

T AB. Another way to do that is to calculate the number of ways to map each of
the |A| elements into any of |B| elements of B. So,

| T AB | = βα =
min(α,β)∑

µ=1
µ!S(α, µ)

Ç
β

µ

å
.

Following the outline of Section 3.1, we investigate stability in T . Note that the
semigroup Tfr

X = {f ∈ T X : Rank f < ℵ0} is periodic for each X ∈ Set+, the proof
being the same as the proof of Lemma 3.1.6. Thus, we may prove an analogue of
Proposition 3.1.7:
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Proposition 3.2.3. If (A, f,B) ∈ T , then

(i) (A, f,B) is R-stable ⇔ [Rank f < ℵ0 or f is injective],

(ii) (A, f,B) is L -stable ⇔ [Rank f < ℵ0 or f is surjective],

(iii) (A, f,B) is stable ⇔ [Rank f < ℵ0 or f is bijective].

Proof. The proof is conducted analogously as the proof of Proposition 3.1.7. The
"compulsory" fullness of elements requires that we choose a slightly different element
g in the proofs of the direct implications in (i) and (ii). It suffices to pick g =Ä
Fj Fi\{a} a
gj gi a

ä
j∈I

for (i). In the proof of (ii), we may choose any full transformation
g satisfying im g = {fi : i ∈ I} ∪ {a} and g�img

= idimg .

Again, we identify the transformation f ∈ TCD with the corresponding element
(C, f,D) of T , in cases when C,D ∈ Set+ are known or implied. As in Subsection
3.1.1, from now on we use T CD instead of TCD.

3.2.1 Green’s relations, regularity and stability in T aXY
As in Subsection 3.1.1, we fix two nonempty sets X,Y ∈ Set+ and a transformation
a ∈ T Y X , in order to investigate the sandwich semigroup T aXY . Since any domain-
related notation and discussion is redundant, we use only the following:

a =
(
Ai
ai

)
i∈I , σ = ker a, A = im a, α = Rank a, ξ = min(|X|, |Y |),

β = |X \ im a|, λi = |Ai| for i ∈ I, ΛJ =
∏

j∈J
λj for J ⊆ I.

Also, we fix an element bi ∈ Ai for each i ∈ I, and we choose a partition {Bi : i ∈ I}
of the set X such that ai ∈ Bi for each i ∈ I. Then, the map

b =
Ä
Bi
bi

ä
i∈I ∈ T XY

satisfies aba = a and bab = b, and we use it as a (partial) semigroup inverse.
From the definition of P-sets, Proposition 3.2.2 and Lemma 3.2.1, we have

(i) Pa1 = {f ∈ T XY : ker(fa) = ker f}
= {f ∈ T XY : ker a separates im f},

(ii) Pa2 = {f ∈ T XY : im(af) = im f}
= {f ∈ T XY : im a saturates ker f},

(iii) Pa = {f ∈ T XY : ker(fa) = ker f, im(af) = im f}
= {f ∈ T XY : ker a separates im f, im a saturates ker f},

(iv) Pa3 = {f ∈ T XY : Rank(afa) = Rank f}.
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We use this result, together with Theorem 2.2.3 to infer the description of Green’s
relations of T aXY . A characterisation of these relations was first obtained in [96].

Although the following result has the same form as Theorem 3.1.10, we state it
for the sake of completeness.

Theorem 3.2.4. If f ∈ T XY then in T aXY we have

(i) Ra
f =

®
Rf ∩Pa1, f ∈ Pa1;
{f}, f 6∈ Pa1.

(ii) Laf =
®

Lf ∩Pa2, f ∈ Pa2;
{f}, f 6∈ Pa2.

(iii) Ha
f =

®
Hf , f ∈ Pa;
{f}, f 6∈ Pa.

(iv) Da
f =





Df ∩Pa, f ∈ Pa;
Laf , f ∈ Pa2 \Pa1;
Ra
f , f ∈ Pa1 \Pa2;
{f}, f 6∈ (Pa1 ∪Pa2).

(v) Jaf =
®

Jf ∩Pa3 (= Df ∩Pa3), f ∈ Pa3;
Da
f , f 6∈ Pa3.

Further, if f 6∈ Pa, then Ha
f = {f} is a non-group H a-class in T aXY .

It is easily shown that Lemma 3.1.12 holds in the partial semigroup T as well.
The proof is analogous to the original one, using the map f =

(
Bk Bj
y bj

)
j∈J

for (i),

and f =
(
X\im a Bj
bk bj

)
j∈J

for (ii). Thus, the equivalence

J a = Da ⇔ a is stable

from Proposition 3.1.13 also holds in T aXY . Furthermore, an analogue of the proof
for Proposition 3.1.14 gives

Proposition 3.2.5. We have Reg(T aXY ) = Pa. Moreover,

(i) a is R-stable ⇔ Pa3 ⊆ Pa1,

(ii) a is L -stable ⇔ Pa3 ⊆ Pa2,

(iii) a is stable ⇔ Pa3 = Pa.

It is important to note here that the first statement of the previous proposition
may be deduced from Theorem 5.3 in [86].

Next, we state the parallels of Propositions 3.1.15 and 3.1.16. Recall that any
element of T has a left- and a right-identity, since T is monoidal. Therefore, from
Lemma 2.2.6 and Proposition 3.2.2, we may conclude that Jaf ≤ Jag holds in T aXY if
and only if one of the following is true:
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(a) f = g,

(b) Rank f ≤ Rank(aga),

(c) im f ⊆ im(ag),

(d) ker f ⊇ ker(ga).

Moreover, from Proposition 2.2.7, for f, g ∈ T XY we have

(i) if f ∈ Pa1, then

Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or ker f ⊇ ker(ga)];

(ii) if f ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or im f ⊆ im(ag)];

(iii) if f ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank(aga);

(iv) if g ∈ Pa1, then

Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ag) or ker f ⊇ ker g];

(v) if g ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ga) or im f ⊆ im g];

(vi) if g ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank g.

We close the subsection with two vital results, which prove further similarities
(and some differences) between P T aXY and T aXY .

Proposition 3.2.6. The regular Da-classes of T aXY are precisely the sets

Da
µ = {f ∈ Pa : Rank f = µ}, for each cardinal 1 ≤ µ ≤ α = Rank a.

Further, if f ∈ Pa, then Da
f = Jaf if and only if Rank f < ℵ0 or a is stable.

Proof. We use the same idea as in the proof of Proposition 3.1.18. In fact, the argu-
ment is virtually the same, the only differences being the use of the corresponding
results from Section 3.2 instead of the results of Section 3.1, and the use of maps
fJ =

(
Bj
bj

)
j∈J

instead of fJ =
Ä aj
bj

ä
j∈J .

Proposition 3.2.7.

(i) If α < ξ, then the maximal J a-classes of T aXY are precisely the singleton sets
{f}, for f ∈ T XY with Rank f > α. Hence, all the maximal J a-classes of
T aXY are trivial in this case.

(ii) If α = ξ, then we have a single maximum J a-class in T aXY , which is

Jab = {f ∈ Pa3 : Rank f = α}.

This maximal J a-class is clearly nontrivial.
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Proof. Again, the process will be analogous to the original one (see the proof of
Proposition 3.1.19). We only swap the auxiliary map h′2 with

h′2 =
(
Bj Bk
bj yk

)
j∈J, k∈I\J

,

for some set {yk : k ∈ I \ J} ⊆ Y \ im g, where yl 6= yt for l 6= t (such a set exists
because Rank g = |J | ≤ α < min(|X|, |Y |)).

Before we continue, we need to consider the minimal J a-class in T aXY . Let us
enumerate the elements of rank 1 in T XY , using their images: for each y ∈ Y , let

fy : X → Y : x 7→ y.

Fix an y ∈ Y . As Rank fy = 1 < ℵ0, from Proposition 3.2.6 we may deduce
Da
fy = Jafy . Since the equivalence ker a trivially separates im fy, and the set im a

trivially saturates ker fy = {(x, z) : x, z ∈ X}, we have

fy ∈ Pa1 ∩Pa2 = Pa .

Therefore, by Proposition 3.2.6 and by our characterisation of the relation ≤J a , we
have a minimal J a-class, which is not a singleton in general:

Da
1 = {f ∈ Pa : Rank f = 1} = {f ∈ T XY : Rank f = 1} = {fy : y ∈ Y }.

Thus, unlike in P T aXY , the minimum J a-class in T aXY it is not a singleton, unless
Y is.

3.2.2 A structure theorem for Reg(T aXY ) and connections to (non-
sandwich) semigroups of transformations

Following the outline of Section 3.1, in this subsection we describe the connections of
T aXY and Reg(T aXY ) to the corresponding non-sandwich semigroups. Note that all
elements of T are sandwich-regular, since T is a regular partial semigroup. Recall
from Subsection 2.3.1 that the regular monoid (a T XY a,~) is a subsemigroup of
T bY X , where the map ~ = ?b�a T XY a is independent of the choice of the inverse
b. Moreover, we know that T XY a = T X ba and a T XY = ab T Y , and we have an
isomorphism

η : (a T XY a,~)→ (ba T XY a, ·) : x 7→ bx,

so (a T XY a,~) ∼= (ba T X ba, ·) (the latter being the local monoid of T X with respect
to the idempotent ba). Since ba =

(
Bi
ai

)
i∈I ∈ T X , and ai ∈ Bi for each i ∈ I, any

element in ba T X ba corresponds to exactly one map in T A and vice versa. Hence,
the map

υ : ba T X ba→ T A : f 7→ f�A

is also an isomorphism. Consequently, here we use η′ = η ◦ υ just as we have used
η in the case of P T aXY .
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We also introduce some notation used in earlier papers (see [44,95,111]):

T (X,A) = {f ∈ T X : im f ⊆ A}
T (Y, σ) = {f ∈ T Y : every ker f -class is a union of σ-classes}

= {f ∈ T Y : ker f ⊇ σ}.

The same arguments as the ones used in Subsection 3.1.2 prove that

T XY a = T X ba = T (X,A) and
a T XY = ab T Y = T (Y, σ)

are subsemigroups of T X and T Y . More specifically, a principal left ideal of T X
and a principal right ideal of T Y , respectively.

Having examined these semigroups and their connections, we present the spe-
cialised forms of Diagrams 2.2 and 2.3 for the semigroup T aXY on Figure 3.11.

T aXY

T (Y, σ)

(a T XY a,~)

T (X,A)

TA

Ψ1 : f 7→ fa Ψ2 : f 7→ af

Φ1 : g 7→ ag Φ2 : g 7→ ga

η′ : h 7→ (bh)�A

Reg(T (X,A))

(a T XY a,~)

Reg(T aXY )

Reg(T (Y, σ))

TA

ψ1 : f 7→ fa ψ2 : f 7→ af

φ1 : g 7→ ag φ2 : g 7→ ga

η′ : h 7→ (bh)�A

Figure 3.11: Diagrams illustrating the connections between T aXY and (a T XY a,~)
(left) and between Reg(T aXY ) and (a T XY a,~) (right).

Of course, all the maps in the figure are surmorphisms. Moreover, the conclusions
of the Subsection 2.3.1 imply:

• ψ1 and Ψ1 are isomorphisms if and only if the implication (2.5) holds, which
is true if and only if a is injective (see Lemma 3.0.2(i));

• ψ2 and Ψ2 are isomorphisms if and only if (2.6) holds, which is true if and only
if a is surjective (by Lemma 3.0.2(ii)).

Thus, T (X,A) and T (Y, σ) arise as special cases of the T aXY construction, when
a is injective or surjective, respectively. If a is a bijection, we have A = X, so
T aXY ∼= T (X,A) = T X = T A, and hence Reg(T aXY ) ∼= Reg(T X) = T X .

Let us focus now on the semigroups on the right-hand side diagram. As the
following lemma shows, the characterisations of Reg(T (X,A)) and Reg(T (Y, σ))
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are a somewhat simplified version of the characterisations of Reg(P T (X,A)) and
Reg(P T (Y, σ)), given in Lemma 3.1.21. However, the former are older of the two.
The characterisation of Reg(T (X,A)) was first inferred in [111], while Reg(T (Y, σ))
was described in [95].

Lemma 3.2.8. We have

(i) Reg(T (X,A)) = {f ∈ T (X,A) : ker f is saturated by A},

(ii) Reg(T (Y, σ)) = {f ∈ T (Y, σ) : im f is separated by σ}.

Proof. One can verify that in both cases the regular elements have the defining
property of the right-hand side set - the argument is analogous to the one in the
proof of Lemma 3.1.21. The proof in question also offers a "recipe" for showing the
reverse containment. Keeping the same notation and assumptions, the only parts
that need adjustment are the maps g. For (i), we choose g =

Ä
Cj
cj

ä
j∈J ∈ T X , where

{Cj : j ∈ J} is any partition of the set X such that fj ∈ Cj ; for (ii), fix any k ∈ J
and let

g =
Ç
Alk ∪R Alj
wk wj

å
j∈J\{k}

∈ T Y ,

with R = X \ ⋃{Ai : i ∈ I \ J}. It is easily seen that f = fgf holds in both
cases.

As in Subsection 3.1.2, we state Theorem 2.3.8 in the form corresponding to the
currently investigated sandwich semigroup.

Theorem 3.2.9. The map

ψ : Reg(T aXY )→ Reg(T (X,A))× Reg(T (Y, σ)) : f 7→ (fa, af)

is injective, and

im(ψ) = {(g, h) ∈ Reg(T (X,A))× Reg(T (Y, σ)) : ag = ha}.

In particular, Reg(T aXY ) is a pullback product of the regular semigroups Reg(T (X,A))
and Reg(T (Y, σ)) with respect to T A.

3.2.3 The regular subsemigroup Pa = Reg(T aXY )
Continuing the analysis, here we provide the parallels of the results of Subsection
3.1.3 for the sandwich semigroup T aXY .

Of course, we have Pa = Reg(T aXY ) (by Proposition 2.3.2(i)), since all the
elements of T are sandwich-regular. Moreover, Lemma 2.3.3 implies that, for all
x ∈ Pa and all K ∈ {R,L,H,D}, holds KPa

x = Ka
x. As usual, for each K ∈

{R,L ,H ,D} we write K a for the corresponding Green’s relation of Pa. Further,
Lemma 2.3.4 gives J Pa = DPa . The same approach works for the Proposition
3.1.24, so for f ∈ Pa we have:
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(i) Ra
f = Rf ∩Pa = {g ∈ Pa : ker g = ker f},

(ii) Laf = Lf ∩Pa = {g ∈ Pa : im g = im f},

(iii) Ha
f = Hf ∩Pa = {g ∈ Pa : ker g = ker f, im g = im f},

(iv) Da
f = Df ∩Pa = {g ∈ Pa : Rank g = Rank f}.

Also, the J Pa = Da-classes of Pa are the sets

Da
µ = {g ∈ Pa : Rank g = µ} for each cardinal 1 ≤ µ ≤ α = rank a,

and these form a chain under the ≤J ordering of J Pa-classes:

Da
µ ≤ Da

ν ⇔ µ ≤ ν.

So, the minimum J Pa = Da-class here differs from the one in the P T -case, but
the maximum class has the same from:

Da
1 = {f ∈ T XY : Rank f = 1} and Da

α = {f ∈ Pa : Rank f = α}.

(Note that |Da
1 | = |Y |.) If α = ξ = max(X,Y ), the latter is the maximal J a-class

of T aXY , as well (by Proposition 3.2.7). In Figure 3.14, we display the structure of
the regular subsemigroups of several sandwich semigroups. The reader may check
the egg-box diagrams of the original sandwich semigroups on Figures 3.12−3.13 to
locate the maximal J a-classes.

Here, the role of the map φ (from the general theory) will be played by the map

ϕ = ψ1φ1η
′ = ψ2φ2η

′ : Pa → T A : f 7→ (bafa)�A = (fa)�A.

Again, we write f = fϕ = (fa)�A for all f ∈ Pa; furthermore, we define the relations‘K a for each K ∈ {R,L ,H ,D} in the same way as in the P T -case.
When examining the map f , in search for a suitable representation akin to that

used in Subsection 3.1.3, we may conclude that the discussion preceding Lemma
3.1.25 applies. Namely, if f =

(
Fj
fj

)
j∈J

with Fj ∩ A = {ai : i ∈ Ij}, and we
assume (without loss of generality) that J ⊆ I and fj ∈ Aj for each j ∈ J , we have
f = (fa)�A =

Ä
Fj∩A
aj

ä
j∈J . The main difference, as usual, concerns the domain: in

this case, ⋃{Fj : j ∈ J} = X and thus ⋃{Fj ∩A : j ∈ J} = A.
As in the case of sandwich semigroups of partial maps, we need some more

information on the semigroup T A in order to describe the inflation. From [45] we
know: in T A, for a map h with Rank h = µ, holds

(i) Rh = {g ∈ T A : ker g = kerh};

(ii) Lh = {g ∈ T A : im g = im h};

(iii) Hh = {g ∈ T A : ker g = kerh, im g = im h};
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(iv) |Hh | = µ!; furthermore, if Hh contains an idempotent, then Hh
∼= Sµ;

(v) Dh = Jh = {g ∈ T A : Rank g = Rank h = µ} = Dµ.

(vi) If α = |A| is finite, then Dα = HidA
∼= SA and T A \Dα is an ideal of the

semigroup T A.

Therefore, we may prove

Theorem 3.2.10. Let f =
(
Fj
fj

)
j∈J
∈ Pa with Rank f = µ. Then

(i) ”Ra
f is the union of µβ Ra-classes of Pa;

(ii) ”Laf is the union of ΛJ L a-classes of Pa;

(iii) ”Ha
f is the union of µβΛJ H a-classes of Pa, each of which has size µ!;

(iv) if Hf is a non-group H -class of T A, then each H a-class of Pa contained in”Ha
f is a non-group;

(v) if Hf is a group H -class of T A, then each H a-class of Pa contained in ”Ha
f is

a group isomorphic to Sµ; further, ”Ha
f is a µβ ×ΛJ rectangular group over Sµ,

and its idempotents Ea(”Ha
f ) form a µβ × ΛJ rectangular band;

(vi) ”Da
f = Da

f = Da
µ = {g ∈ Pa : Rank g = µ} is the union of:

(a) µβ S(α, µ) Ra-classes of Pa,
(b) ∑

K⊆I
|K|=µ

ΛK L a-classes of Pa,

(c) µβ S(α, µ) ∑
K⊆I
|K|=µ

ΛK H a-classes of Pa.

Proof. Unsurprisingly, the proof is very similar to the proof of Theorem 3.1.26. The
reasoning is the same, and the references to the results of Section 3.1 are replaced
with references to the corresponding results for T aXY . The only part that requires
additional commenting is (i). Of course, the main difference is the fact that all the
domains are full, so all the elements of X have to belong to the domain of g, which
gives µβ Ra-classes in ”Da

f .

Due to the form of Da-classes in Pa and the cardinalities calculated in the pre-
vious theorem, we have

|Da
µ | = µ!µβ S(α, µ)

∑

K⊆I
|K|=µ

ΛK and

|Pa | =
α∑

µ=1
|Da

µ | =
α∑

µ=1
µ!µβ S(α, µ)

∑

K⊆I
|K|=µ

ΛK .
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As in Subsection 3.1.3, we discuss the possible simplifications of the last formula
in special cases:

Proposition 3.2.11.

(i) If α ≥ 2 and |X| ≥ ℵ0 then

|Pa | = 2|X|ΛI = max(2|X|,ΛI).

(ii) If α ≥ 2 and |X| < ℵ0 and λi ≥ ℵ0 for some i ∈ I, then

|Pa | = ΛI = max
i∈I

λi.

(iii) |Pa | < ℵ0 ⇔ [α = 1 and |Y | < ℵ0]
or [α ≥ 2, |X| < ℵ0 and λi < ℵ0 for all i ∈ I].

(iv) |Pa | = ℵ0 ⇔ [α = 1 and |Y | = ℵ0]
or [α ≥ 2, |X| < ℵ0 and max

i∈I
λi = ℵ0].

(v) |Pa | > ℵ0 ⇔ [α = 1 and |Y | > ℵ0]

or
[
α ≥ 2 and [|X| ≥ ℵ0 or λi > ℵ0 for some i ∈ I]

]
.

Proof. For the first two parts, we slightly modify the proof of Proposition 3.1.30.
The changes are minor: the smallest possible rank is 1 (not 0), and instead of terms
(α + 1)β and S(α + 1, µ + 1), we use αβ and S(α, µ), respectively. These make
no difference in the argument, since the infinite values are not affected by a finite
increase or decrease.

Note that each of the statements (iii)− (v) has the form

A⇔ [α = 1 ∧B] ∨ [α ≥ 2 ∧ C].

Instead of proving the original statement, we will prove an equivalent one:
[
α = 1⇒ [A⇔ B]

]
∧
[
α ≥ 2⇒ [A⇔ C]

]

(it is indeed equivalent, since α ≥ 1). Recall that α = 1 implies Pa = Da
1 = {f ∈

T XY : rank f = 1}, so in this case we have

|Pa | = |Y |.

Thus, we may suppose α ≥ 2. In this case, we use reasoning analogous to the one
in the proof of Proposition 3.1.30.

Remark 3.2.12. Similarly as in the case of the semigroup P T aXY , if α ≥ ℵ0, we
may suppose without loss of generality that the sequence 〈λi : i ∈ I〉 is nondecreasing
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and then Lemma 5.9 in [62] gives

ΛI = (sup
i∈I

λi)α

After calculating the size of Pa, we tackle the problem of calculating its rank.
As in the previous section, the term MI-domination is crucial here.

Proposition 3.2.13.

(i) The semigroup Pa = Reg(T aXY ) is MI-dominated.

(ii) The semigroup Pa = Reg(T aXY ) is RP-dominated if and only if
Rank a < ℵ0.

Proof. (i) We apply the same argument as in the proof of Proposition 3.1.33, modi-
fying only the auxiliary maps:

g =
Ä
Fj,k
bk

ä
j∈J, k∈Ij

and h =
(
Bj Bm
fj bm

)
j∈J, m∈I\J

.

(ii) As in the proof of Proposition 3.1.33, Pa is RP-dominated if and only ifW is
factorisable. In other words, Pa is RP-dominated if and only if T A is a factorisable
semigroup, which occurs if and only if A is finite (by Lemma 3.1.32).

In the next theorem, we omit the case when a is a bijection, because then we
have T aXY ∼= T A = Reg(T A) (so rank(Pa) = rank(T A)).

Theorem 3.2.14. Suppose a is not a bijection.

(i) If |Pa | ≥ ℵ0, then rank(Pa) = |Pa |.

(ii) If |Pa | < ℵ0, then

rank(Pa) =
®
|Y |, if α = 1;
1 + max(αβ,ΛI), if α ≥ 2.

Proof. Recall that α = 1 implies Pa = Da
1 = {f ∈ T XY : Rank f = 1}. Since in this

case no subset of Pa can generate a map it does not contain, we have

rank(Pa) = |Pa | = |Y |.

For the case α ≥ 2 we use essentially the same proof as for Theorem 3.1.34, swap-
ping the references to the results of Section 3.1 for references to the corresponding
results of this section (and swapping P T A for T A). However, we need to discuss the
subcase |Pa | ≤ ℵ0 further. Since here |”Ha

b/R | = αβ, |”Ha
b/L | = ΛI , and W ∼= T A

(so GW ∼= Sα), we may conclude that

rank(Pa) = rank(T α : Sα) + max(αβ,ΛI , rank(Sα)). (3.11)
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This suffices if |Pa | = ℵ0. In the case when |Pa | < ℵ0, we have α < ℵ0, so Sα ≤ 2.
Since a is not a bijection, it is either non-surjective or non-injective. If the first is
true, then β = |X \ im a| > 1, so αβ ≥ rank(Sα). If the second is true, then ΛI ≥ 2,
so Λα ≥ rank(Sα). Therefore, (3.11) implies

rank(Pa) = rank(T α : Sα) + max(αβ,ΛI).

The final formula can now be deduced from the following two facts. Firstly, T α \Sα
is an ideal, and secondly, the set Sα, in union with any transformation of rank α−1,
generates the whole semigroup T α.

Until now, in this subsection, we skipped the analysis of the cases when a is
injective or surjective. Now we make up for that.

Remark 3.2.15.

• As we stated before, T aXY ∼= T (X,A) holds if and only if a is injective, which
holds if and only if each class of ker a is a singleton. Therefore, injectivity
implies ΛJ = 1 for all J ⊆ I. Hence, parts (ii) and (v) of Theorem 3.2.10
respectively imply that ‘L a= L a and that for each group H -class Hf , ”Ha

f

is an underlying set of a µβ × 1 rectangular group over Sµ. Furthermore,
Proposition 3.2.11 simplifies substantially, as the clauses featuring λi and ΛI
become redundant. Finally, from Theorem 3.2.14 we may deduce that, if
|X| < ℵ0, for each nontrivial subset A of X we have

rank(Reg(T (X,A))) =
®

1, if |A| = 1;
2 + |A||X|−|A|, if |A| ≥ 2.

• Now, we examine the case when a is surjective. This holds if and only if
im a = X, which is true if and only if T aXY ∼= T (Y, σ). Therefore, we have
β = |X \ im a| = 0, so µβ = 1. Furthermore, parts (i) and (v) of Theorem
3.2.10 respectively imply that R̂a= Ra and that for each group H -class Hf ,”Ha
f is an underlying set of an 1× ΛJ rectangular group over Sµ. Again, from

Theorem 3.2.14 we conclude that for any non-diagonal equivalence relation σ
with u(σ) ⊆ Y , we have

rank(Reg(T (Y, σ))) =
®
|Y |, if |πσ| = 1;
1 + ΛI , if |πσ| ≥ 2.

3.2.4 Idempotents and idempotent-generation

Using the same approach as in Subsection 3.1.4, here we investigate the set of idem-
potents and the idempotent-generated subsemigroup, respectively:

Ea(T aXY ) = {f ∈ T XY : f = f ?a f} (= Ea(Pa)), and
E a
XY = Ea(T aXY ) = 〈Ea(T aXY )〉a (= Ea(Pa)).
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Proposition 3.2.16.

(i) Ea(T aXY ) = {f ∈ T XY : (af)�im f = idim f}.

(ii) If |Pa | ≥ ℵ0, then |Ea(T aXY )| = |Pa |.

(iii) If |Pa | < ℵ0, then

|Ea(T aXY )| =
α∑

µ=1
µ|X|−µ

∑

J⊆I
|J |=µ

ΛJ . (3.12)

Proof. Part (i) is proved in a same manner as the corresponding part of Proposition
3.1.36. As for part (ii), the assumption |Pa | ≥ ℵ0 implies, by Proposition 3.2.11
(parts (iv) and (v)), that exactly one of the following is true

− α = 1 and |Y | ≥ ℵ0;

− α ≥ 2, |X| < ℵ0, and λi ≥ ℵ0 for some i ∈ I;

− α ≥ 2 and |X| ≥ ℵ0.

Recall that α = 1 guarantees Pa = {f ∈ T XY : Rank f = 1}. Furthermore, in this
case we have g ?a g = g for any g ∈ T XY with Rank g = 1, so Ea(T XY ) = Ea(Pa) =
Pa . The remaining cases are handled in the same way as in the proof of Proposition
3.1.36 (applying the corresponding statements from this section), the only difference
being the 2|X| idempotents presented in the third case (because we obviously cannot
use those). Here, since α ≥ 2, there exist i1, i2 ∈ I such that bi1 6= bi2 . Thus, for
each partition {Q,W} of the set X \ {a1, a2}, the mapsÄ

Q∪{a1} W∪{a2}
b1 b2

ä
and

Ä
W∪{a1} Q∪{a2}

b1 b2

ä
are idempotents. Since the number of such partitions is S(|X| − 2, 2) = S(|X|, 2) =
2|X|, we have presented 2 · 2|X| = 2|X| different idempotents.

(iii) Suppose |Pa | < ℵ0. Proposition 3.2.11(iii) implies that either α = 1 with
|Y | < ℵ0, or α ≥ 2, |X| < ℵ0, and λi < ℵ0 for all i ∈ I. In the first case, the sum
on the right-hand side of the equality (3.12) clearly equals to the size of ΛI , i.e. the
size of Y . As we showed above, this equals the number of idempotents if α = 1. In
the second case, we identify a set of properties which fully determine an idempotent,
and then simply calculate the number of valid combinations. Let f =

(
Fj
fj

)
j∈J

be
an idempotent. Since f ∈ Pa, we know that ker a separates im f and im a saturates
ker f . Moreover, we may assume without loss of generality that J ⊆ I and fj ∈ Aj
for all j ∈ J . The condition (af)�im f = idim f now implies that aj ∈ Fj for all j ∈ J .
Thus, the idempotent f is determined by

• the set J ⊆ I,

• its image im f (in other words, the choice of elements fj ∈ Aj for j ∈ J), and
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• its kernel ker f (the choice of the set Fj \ {aj} for j ∈ J).

Hence, we define an idempotent of rank 1 ≤ µ ≤ α by choosing the pair (J, im f) in∑
J⊆I
|J |=µ

ΛJ ways, and the kernel in µ|X|−µ ways.

Our next task is to give analogues of the statements of Theorem 3.1.39 and
Lemma 3.1.41. As in the case of P T aXY , in order to do that, we need some additional
notation and information. Let E(T A) and E(T A) denote the set of idempotents and
the idempotent-generated subsemigroup of T A, respectively. Also, for f ∈ T A let
sh f , codef f and coll f be defined in the same way as for the elements of P T A in
Subsection 3.1.4. Then, from articles [48,55,57] we know the following:

Proposition 3.2.17.

(i) If |A| < ℵ0, then E(T A) = {idA} ∪ (T A \ SA), and

rank(E(T A)) = idrank(E(T A)) =
® (α

2
)

+ 1, if α 6= 2;
3, if α = 2.

(ii) If |A| ≥ ℵ0, then

E(T A) = {idA} ∪ {f ∈ T A \ SA : sh f < ℵ0}
∪ {f ∈ T A : sh f = coll f = def f ≥ ℵ0}

and rank(E(T A)) = idrank(E(T A)) = | T A | = 2|A|.

Finally, we are ready to prove

Theorem 3.2.18.

(i) E a
XY = Ea(T aXY ) = (E(T A))ϕ−1,

(ii) rank(E a
XY ) =





|E a
XY | = |Pa |, |Pa | ≥ ℵ0;

(α
2
)

+ max(αβ,ΛI), |Pa | < ℵ0 and α 6= 2.

2 + max(2β,ΛI), |Pa | < ℵ0 and α = 2.

and rank(E a
XY ) = idrank(E a

XY ).

Proof. The proof is virtually the same as the proof of Theorem 3.1.39 (as always,
instead of the results from Section 3.1, we reference the parallels from Section 3.2),
but for (ii) we have to consider an additional case. Namely, if α = 1, we have

Pa = {f ∈ T XY : Rank f = 1} = E(T aXY ),

so Pa = E a
XY . Since all the idempotents are constant maps, none of them can

be generated by other idempotents, so rank(E a
XY ) = idrank(E a

XY ) = |E a
XY |. This

corroborates the provided formula both in the case |Pa | ≥ ℵ0 and in the case
|Pa | < ℵ0, because α = 1 implies ker a = Y × Y and ΛI = |Y |.
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As in the analysis of P T aXY , now we focus on the case where α < ℵ0. This
assumption guarantees that T A is a finite monoid with identity idA = b, so we
may use the proof of Lemma 3.1.41 to show that Jab = Da

α = ”Ha
b . Furthermore,

if α = max(|X|, |Y |), Jab is the maximum J a-class of T aXY . Therefore, we may
prove an analogue of Theorem 3.1.42 using the same proof, but referencing the
corresponding results for T aXY :
Theorem 3.2.19. If α = rank a < ℵ0, then E a

XY = Ea(T aXY ) = Ea(Da
α)∪(Pa \Da

α).
Remark 3.2.20. We close the subsection by describing the simplifications occurring
in the above results in the special cases.
• If a is injective, in the semigroup T aXY ∼= T (X,A) we have ΛJ = 1 for all
J ⊆ I, so Proposition 3.2.16 gives

|Ea(T (X,A))| =
α∑

µ=1
µ|X|−µ

∑

J⊆I
|J |=µ

1 =
|A|∑

µ=1
µ|X|−µ

Ç
|A|
µ

å
.

Note that α = 1 implies |Pa | = |Y | = 1, since a is injective. Hence, Proposi-
tion 3.2.11 and Theorem 3.2.18 together imply

rank(E(T (X,A))) = idrank(E(T (X,A)))

=





|E(T (X,A))| = |Pa | = 2|X|, |X| ≥ ℵ0;
(|A|

2
)

+ |A||X|−|A|, |X| < ℵ0 and |A| 6= 2;

2 + 2|X|−2, |X| < ℵ0 and |A| = 2.

• If a is surjective, in the semigroup T aXY ∼= T (Y, σ) we have im a = X, so
α = |πσ| = |X| and β = |X \ im a| = 0. Therefore, Proposition 3.2.16 yields

|Ea(T (Y, σ))| =
|πσ |∑

µ=1
µ|πσ |−µ

∑

J⊆I
|J |=µ

ΛJ ,

while Proposition 3.2.11 and Theorem 3.2.18 together give

rank(E(T (Y, σ))) = idrank(E(T (Y, σ)))

=





|E(T (Y, σ))| = |Y |, |πσ| = 1;

|E(T (Y, σ))| = max(2|πσ |,ΛI), |πσ| ≥ ℵ0;

|E(T (Y, σ))| = maxi∈I λi, 2 ≤ |πσ| < ℵ0 and |Y | ≥ ℵ0;
(|πσ |

2
)

+ ΛI , 3 ≤ |πσ| < ℵ0 and |Y | < ℵ0;

2 + ΛI , |Y | < ℵ0 and |πσ| = 2.
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3.2.5 The rank of a sandwich semigroup T aXY
As in Section 3.1, the last problem we consider for the sandwich semigroup T aXY is
that of calculating of its rank. Not surprisingly, we have a similar situation as in the
P T -case. Namely, after considering a few simple cases, we focus on the remaining
one, and we infer three formulas: the first one for the case where α < min(|X|, |Y |),
and the other two for the cases where α = |X| and α = |Y |, respectively.

• Suppose |X| = 1. Clearly, T aXY is a right-zero semigroup of size |Y | (the
number of possible maps of rank 1), so rank(T aXY ) = | T aXY | = |Y |.

• Suppose |Y| = 1. Since we have no choice, in any map of T XY all the ele-
ments of X map to the single element of Y , so rank(T aXY ) = | T aXY | = 1.

• Suppose that either |Y| ≥ 2 and |X| ≥ ℵ0, or |Y| > ℵ0. Obviously, this
holds if and only if | T aXY | = |Y ||X| > ℵ0; in such case rank(T aXY ) = | T aXY |.

• Suppose that |X|, |Y| ≥ 2, |X| < ℵ0, |Y| ≤ ℵ0, and that a is a bijection.
In fact, these hold if and only if 2 ≤ α = |X| = |Y | < ℵ0. Furthermore, a
being a bijection implies that T aXY ∼= T A = T X . Since the assumption is that
|X| < ℵ0, by Theorem 3.1.3 in [45] we have

rank(T aXY ) = rank(T |X|) =
®
|X|, if |X| = 1, 2;
3, if |X| ≥ 3. (3.13)

Thus, for the remainder of this subsection, we assume that 2 ≤ |X| < ℵ0,
2 ≤ |Y| ≤ ℵ0, and that a is either non-injective or non-surjective or both.
Again, these assumptions imply that α ≤ ξ = min(|X|, |Y |) < ℵ0, and that a is
stable (by Proposition 3.2.3), so we know that J a = Da (by Lemma 2.2.19).

Since the "setting" is similar as in Subsection 3.1.5, we use the same notation
and infer similar conclusions. Of course, we need to adapt the arguments slightly.
Instead of referencing the results of Section 3.1, we reference the corresponding
results of this section. Further, we disregard the cases which contain assumptions of
non-full maps, and we make sure the auxiliary maps in the proofs are full. Following
these instructions, one may easily prove the following results:

Lemma 3.2.21. In T aXY holds D0 ∪D1 ∪ · · · ∪Dα = 〈Dα〉a.

Proof. We may prove an analogue of Lemma 3.1.44(i). Hence, we need to show that
Dα−1 ⊆ 〈Dα〉a. If a is non-surjective, we duplicate the proof of Lemma 3.1.44(ii),
and if it is non-injective, we prove the parallel of Lemma 3.1.53(i).

Lemma 3.2.22. Suppose α < ξ and let f ∈ Dα. Then f ∈ Dα+1 ?a Dα+1.

Lemma 3.2.23.

(i) If α = |Y | < ℵ0, then Pa1 = T aXY , Pa2 = Pa, and Ra = R on T aXY .

(ii) If α = |X| < ℵ0, then Pa2 = T aXY , Pa1 = Pa, and L a = L on T aXY .
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Now, we may use these statements to calculate the rank of T aXY . We provide a
layout of our plan in the following table:

a injective? a surjective? Reference Egg-box diagram
N N Theorem 3.2.24 Figure 3.12
Y N Theorem 3.2.25 Figure 3.13
N Y Theorem 3.2.26 Figure 3.13
Y Y see (3.13) Figure 3.14

Suppose α < ξ. Recall that any generating set of T aXY has to include elements
from each maximal J a-class (see Section 2.6), and that the maximal J a-classes
are exactly the singletons {f}, such that Rank f > ℵ0 (by Proposition 3.2.7(i)).
Thus, from Lemmas 3.2.21 and 3.2.22 follows

Theorem 3.2.24. Suppose |X| < ℵ0, |Y | ≤ ℵ0, and that 1 ≤ α < ξ (hence, a is
non-surjective and non-injective). We have

rank(T aXY ) =
ξ∑

µ=α+1
|Dµ | =

ξ∑

µ=α+1
µ!
Ç
|Y |
µ

å
S(|X|, µ).

If α = |Y |, the process of calculating the rank is virtually identical to the proof
of Theorem 3.1.51. In it, we use Lemma 3.2.21. We obtain

Theorem 3.2.25. Suppose that 1 ≤ α = Rank a = |Y | < |X| < ℵ0 (hence, a is
injective and non-surjective). Then

rank(T aXY ) = S(|X|, α).

By a dual argument we may prove prove the following:

Theorem 3.2.26. Suppose that 1 ≤ α = Rank a = |X| < |Y | ≤ ℵ0 (hence, a is
surjective and non-injective). Then

rank(T aXY ) =
Ç
|Y |
α

å
.

In the proof, we use the assumption that a is surjective and non-injective, i.e.
that

β = |X \ im a| = 0 and ΛI ≥ 2 ≥ rank(Sα).

Remark 3.2.27. For the previous two results, we provide alternative formulations
concerning the non-sandwich semigroups T (X,A) and T (Y, σ).

• If a is injective and non-surjective, then T aXY ∼= T (X,A), so for any proper
subset A of X, we have

rank(T (X,A)) = S(|X|, |A|).
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This is a result from [44] (Theorem 2.3).

• If a is surjective and non-injective, then T aXY ∼= T (Y, σ), so for any non-
diagonal equivalence σ on Y , we have

rank(T (Y, σ)) =
Ç
|Y |
|πσ|

å
.

Unlike the previous one, this result was originally proved in [34].

3.2.6 Egg-box diagrams

As in the previous section, we provide several egg-box diagrams (they originally ap-
peared in [34], and all were generated by GAP [98]) to illustrate the structural results
for T aXY . For more information on the figures, see the introduction to Subsection
3.1.6.
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Figure 3.12: Egg-box diagram of the sandwich semigroup T a45, where a =
( 1 2 3 4 5

1 2 3 3 3 ) ∈ T 54. Note that a is non-injective and non-surjective.

Figure 3.13: Left to right: egg-box diagrams of the sandwich semigroups T b43, T c35
and T d35, where b = ( 1 2 3

1 2 3 ) ∈ T 34, c = ( 1 2 3 4 5
1 2 2 3 3 ) ∈ T 53, and d = ( 1 2 3 4 5

1 2 3 3 3 ) ∈ T 53.
Note that b is injective and non-surjective, while c and d are surjective and non-
injective.

Figure 3.14: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(T a45), Reg(T b43), Reg(T c35), Reg(T d35), and T 3, where the sandwich elements a,
b, c, and d are defined as in Figures 3.12 and 3.13. By the theory in Subsection
2.3.4, the first four semigroups are inflations of the fifth semigroup, T 3.
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3.3 The category I

At the beginning of this chapter, we introduced three partial semigroups: P T , T
and I. In the previous two sections, we have examined the first two and the sandwich
semigroups they contain, so we focus now on the third one. In Proposition 3.0.3, we
state that I can be expanded to an inverse partial semigroup. In other words, I is
an inverse category, as defined in Definition 2.5.1 (see [67] and [23]).

Recall that in an inverse category, every element is uniquely sandwich-regular
(see Proposition 3.0.3). Thus, the results of Section 2.5 apply in this case. Moreover,
I is a regular and monoidal partial subsemigroup of P T , so we may obtain some
results on I by analysing the corresponding results for P T (and T ). In most cases,
we skip the details and state only the major results, pointing out the differences in
the proofs, if necessary.

The results stated here were either explicitly stated in [34], or are implied by the
theory communicated in it. Thus, we cite this article as our source, if not stated
otherwise.

Since we are dealing with injective maps, for any A,B ∈ Set and any f ∈ IAB,
we have ker f = {{x} : x ∈ dom f}. Hence, from Lemma 3.1.1 directly follows

(i) dom(fg) ⊆ dom f , with equality if and only if im f ⊆ dom g,

(ii) im(fg) ⊆ im g, with equality if and only if dom g ⊆ im f ,

(iii) Rank(fg) ≤ min(Rank f,Rank g).

Now, we may show

Proposition 3.3.1. Let (A, f,B), (C, g,D) ∈ I. Then

(i) (A, f,B) ≤R (C, g,D)⇔ A = C and dom f ⊆ dom g,

(ii) (A, f,B) ≤L (C, g,D)⇔ B = D and im f ⊆ im g,

(iii) (A, f,B) ≤J (C, g,D)⇔ Rank f ≤ Rank g,

(iv) (A, f,B) R(C, g,D)⇔ A = C and dom f = dom g,

(v) (A, f,B) L (C, g,D)⇔ B = D and im f = im g,

(vi) (A, f,B) J (C, g,D)⇔ (A, f,B) D(C, g,D)⇔ Rank f = Rank g.

The proof is virtually identical to the proof of Proposition 3.1.2.
When restricted to the set IAB = {(A, f,B) : f ∈ IAB} for some A,B ∈ Set,

these relations are called Green’s relations of IAB. The J = D-classes of IAB are
the sets

DAB
µ = Dµ ∩IAB = {(A, f,B) : f ∈ IAB,Rank f = µ},
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for each cardinal 0 ≤ µ ≤ min(|A|, |B|). These J -classes form a chain in IAB:
DAB
µ ≤ DAB

ν ⇔ µ ≤ ν. Moreover, for a fixed cardinal µ, we may calculate the
combinatorial structure of DAB

µ (and IAB): if |A| = α and |B| = β, we have

|DAB
µ /R | =

Ç
α

µ

å
, |DAB

µ /L | =
Ç
β

µ

å
,

|DAB
µ /H | =

Ç
α

µ

åÇ
β

µ

å
, |DAB

µ | = µ!
Ç
α

µ

åÇ
β

µ

å
,

| IAB | =
min(α,β)∑

µ=0
µ!
Ç
α

µ

åÇ
β

µ

å
.

For the first two values, note that an R-class in I is determined by the domain
of its elements, and an L -class in I is determined by the image of its elements.
Since a fixed µ-element domain and a fixed µ-element image may be "connected"
in µ! ways, each H -class of DAB

µ contains µ! elements. Therefore, the last three
equalities follow. However, unlike in the cases of | P T AB | and | T AB |, there does
not exist a simpler formula for | IAB | (as far the author is aware).

Again, we recycle the ideas used in Section 3.1, and use the same arguments
(see the proofs of Lemma 3.1.6 and Proposition 3.1.7) to prove that the semigroup
Ifr
X = {f ∈ IX : Rank f < ℵ0} is periodic for each X ∈ Set, and to show that

Proposition 3.3.2. If (A, f,B) ∈ I, then

(i) (A, f,B) is R-stable ⇔ [Rank f < ℵ0 or f is full ],

(ii) (A, f,B) is L -stable ⇔ [Rank f < ℵ0 or f is surjective],

(iii) (A, f,B) is stable ⇔ [Rank f < ℵ0 or f is full and surjective].

For simplicity, for any C,D ∈ Set, we identify the transformation f ∈ ICD with
the corresponding element (C, f,D) ∈ I, and hence we use ICD instead of ICD.

3.3.1 Green’s relations, regularity and stability in IaXY
In this subsection, we aim to investigate sandwich semigroups in I, so we fix two
sets X,Y ∈ Set, and a map a ∈ IY X , and we focus on the sandwich semigroup
IaXY . In order to describe it, we need the following notation:

a =
Ä
bi
ai

ä
i∈I , B = dom a, A = im a, α = Rank a, β = |X \ im a|.

We also fix b = a−1 =
( ai
bi

)
i∈I ∈ IXY , noting that aba = a and bab = b.

Furthermore, due to unique invertibility of the elements of I, we have (fg)−1 =
g−1f−1 for any f, g ∈ I, so the map IaXY → IbY X : f 7→ f−1 is an anti-isomorphism.
This information will be vital in the following two subsections.

Now, we may characterise the P-sets of IaXY , using the definition of P-sets and
Proposition 3.3.1:
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(i) Pa1 = {f ∈ IXY : dom(fa) = dom f}
= {f ∈ IXY : im f ⊆ dom a},

(ii) Pa2 = {f ∈ IXY : im(af) = im f}
= {f ∈ IXY : dom f ⊆ im a},

(iii) Pa = {f ∈ IXY : dom(fa) = dom f, im(af) = im f}
= {f ∈ IXY : im f ⊆ dom a, dom f ⊆ im a},

(iv) Pa3 = {f ∈ IXY : Rank(afa) = Rank f}.

Thus, Theorem 2.2.3 yields a characterisation of Green’s relations. Again, the
result is virtually identical to Theorems 3.1.10 and 3.2.4, but we state it for the sake
of completeness.

Theorem 3.3.3. If f ∈ IXY , then in IaXY we have

(i) Ra
f =

®
Rf ∩Pa1, f ∈ Pa1;
{f}, f 6∈ Pa1.

(ii) Laf =
®

Lf ∩Pa2, f ∈ Pa2;
{f}, f 6∈ Pa2.

(iii) Ha
f =

®
Hf , f ∈ Pa;
{f}, f 6∈ Pa.

(iv) Da
f =





Df ∩Pa, f ∈ Pa;
Laf , f ∈ Pa2 \Pa1;
Ra
f , f ∈ Pa1 \Pa2;
{f}, f 6∈ (Pa1 ∪Pa2).

(v) Jaf =
®

Jf ∩Pa3 (= Df ∩Pa3), f ∈ Pa3;
Da
f , f 6∈ Pa3.

Further, if f 6∈ Pa, then Ha
f = {f} is a non-group H a-class in IaXY .

Repeating our steps from Subsection 3.1.1, we may prove parallels of Lemma
3.1.12, and Propositions 3.1.13 and 3.1.14 for IaXY . The argument is literally un-
altered, we just cut the parts concerning non-injective maps, and swap the references
for the ones corresponding the results of this section. Continuing in the same man-
ner, we may conclude that, for f, g ∈ IXY , we have Jaf ≤ Jag in IaXY (where ≤
denotes the relation ≤J ) if and only if one of the following holds:

(a) f = g,

(b) Rank f ≤ Rank(aga),

(c) im f ⊆ im(ag),

(d) dom f ⊆ dom(ga).
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This follows from Lemma 2.2.6 and the fact that for any f ∈ I there exists a
left- and right-identity (since I is monoidal). Furthermore, from Propositions 2.2.7
and 3.3.1, we immediately obtain

Proposition 3.3.4. Let f, g ∈ IXY .

(i) If f ∈ Pa1, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or dom f ⊆ dom(ga)].

(ii) If f ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(aga) or im f ⊆ im(ag)].

(iii) If f ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank(aga).

(iv) If g ∈ Pa1, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ag) or dom f ⊆ dom g].

(v) If g ∈ Pa2, then Jaf ≤ Jag ⇔ [Rank f ≤ Rank(ga) or im f ⊆ im g].

(vi) If g ∈ Pa3, then Jaf ≤ Jag ⇔ Rank f ≤ Rank g.

Of course, parts (iii) and (vi) apply to elements of Pa, as well, since Pa ⊆ Pa3,
by Proposition 2.2.2(i).

As in Subsection 3.1.1, we may prove that the regular Da-classes of IaXY are
precisely the sets

Da
µ = {f ∈ Pa : Rank f = µ}, for each cardinal 0 ≤ µ ≤ α = Rank a.

Moreover, if f ∈ Pa, then Da
f = Jaf if and only if Rank f < ℵ0 or a is stable. The

proof is virtually identical to that of Proposition 3.1.18.
Finally, copying the proof of Proposition 3.1.19, we may show the following

statements (where ξ = min(|X|, |Y |)):

(i) If α < ξ, then the maximal J a-classes of IaXY are precisely the singleton sets
{f}, for f ∈ IXY with Rank f > α. Hence, all the maximal J a-classes of
IaXY are trivial in this case.

(ii) If α = ξ, then we have a single maximum J a-class in IaXY , which is

Jab = {f ∈ Pa3 : Rank f = α}.

This maximal J a-class is clearly nontrivial.

3.3.2 The regular subsemigroup Reg(IaXY )
In this subsection, we focus on the semigroup

Reg(IaXY ) = Pa = {f ∈ IXY : dom f ⊆ im a, im a ⊆ dom a}.

The plan is to recreate the Diagrams 2.2 and 2.3 for the semigroup Saij ≡ IaXY . From
the discussion in Subsection 2.3.1 it follows that

− IXY a = IX(ba) = {f ∈ IX : im f ⊆ A},
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− a IXY = (ab) IY = {f ∈ IY : dom f ⊆ B}, and

− (a IXY a,~) ∼= (ba IY X ba, ·).

The first set is a principal left ideal (hence, an underlying set of a subsemigroup)
of IX , and the corresponding semigroup is usually denoted I(X,A). It has been
studied in [44]. Symmetrically, the second set is a principal right ideal and an
underlying set of a subsemigroup of IY . The corresponding semigroup is clearly anti-
isomorphic to I(Y,B) via the map f 7→ f−1. We will denote it I(Y,B)∗. Finally,
the semigroup in the third line is a subsemigroup of IbY X , and it is isomorphic to the
local submonoid of IX with respect to the idempotent ba = ( aiai )i∈I ∈ IX . Thus, it
easy to see that it is isomorphic to IA. Similarly as in Section 3.1, we will identify
the two semigroups. Thus, we have obtained

IaXY

I(Y,B)∗

(a IXY a,~)

I(X,A)

IA

Ψ1 : f 7→ fa Ψ2 : f 7→ af

Φ1 : g 7→ ag Φ2 : g 7→ ga

η : h 7→ bh

Reg(I(X,A))

(a IXY a,~)

Reg(IaXY )

Reg(I(Y,B)∗)

IA

ψ1 : f 7→ fa ψ2 : f 7→ af

φ1 : g 7→ ag φ2 : g 7→ ga

η : h 7→ bh

Figure 3.15: Diagrams illustrating the connections between IaXY and (a IXY a,~)
(left) and between Reg(IaXY ) and (a IXY a,~) (right).

This is where Proposition 2.5.2 comes in. Since the sandwich element a is
uniquely sandwich-regular, it guarantees that all maps in the right-hand side dia-
gram are isomorphisms and that all semigroups in it are inverse monoids. Thus,

Reg(IaXY ) ∼= Reg(I(X,A)) ∼= Reg(I(Y,B)∗) ∼= IA .

This means that the inflation described in Remark 2.3.13 is trivial. Moreover,
in Theorem 3.1 of [44] was shown that Reg(I(X,A)) = IA, which also implies
Reg(I(Y,B)∗) = IB ∼= IA.

Since the results concerning IA are well-known (see [45, 77, 81, 105]), we state
them without proof: in IA, for a map h with Rank h = µ, we have

(i) Rh = {g ∈ IA : dom g = dom h}.

(ii) Lh = {g ∈ IA : im g = im h}.
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(iii) Hh = {g ∈ IA : dom g = dom h, im g = im h}.

(iv) |Hh | = µ!; furthermore, if Hh contains an idempotent, then Hh
∼= Sµ.

(v) Dh = Jh = {g ∈ IA : Rank g = Rank h = µ} = Dµ.

(vi) If α = |A| is finite, then Dα = HidA
∼= SA and IA \Dα is an ideal of the

semigroup IA.

(vii) |E(IA)| = 2|A|.

(viii) We have E(IA) = E(IA). If α = |A| < ℵ0, then

rank(E(IA)) = idrank(E(IA)) = |E(Dα−1)|+ 1 = α+ 1.

If α ≥ ℵ0, then rank(E(IA)) = idrank(E(IA)) = |E(IA)| = 2|A|.

(ix) If α = |A| ≥ 1, then

rank(IA) = rank(SA) + 1 =





2, α = 1, 2;
3, 3 ≤ α < ℵ0;
2α, α ≥ ℵ0.

(3.14)

If |A| = 0, then rank(IA) = | IA | = 1.

Of course, these results apply to Reg(IaXY ), as well. From Remark 2.5.3 we may infer
some additional information. Namely, the map ψ = (ψ1, ψ2) : Pa → Reg(I(X,A))×
Reg(I(Y,B)∗) : f 7→ (fa, af) is trivially an embedding, with

im(ψ) = {(f, g) ∈ T1 × T2 : af = ga} = {(f, g) ∈ T1 × T2 : fφ1 = gφ2}.

Furthermore, Pa is always MI-dominated since it is a monoid.
Now, we fill in the gaps. Firstly, since

|Pa | = | IA | = | IAA | =
α∑

µ=0

Ç
α

µ

åÇ
α

µ

å
µ! =

α∑

µ=0

Ç
α

µ

å2
µ! ,

we may conclude that |Pa | > ℵ0 if and only if α ≥ ℵ0. In the other case, when
α < ℵ0, |Pa | is obviously finite. Therefore, |Pa | cannot be countable.

Secondly, since Pa is MI-dominated and MI(Pa) = V (a) = {b}, Proposition
2.4.8 implies that Pa is RP-dominated if and only if the local monoid b ?a Pa ?ab is
factorisable. Proposition 2.4.11 gives baPa ab ∼= W , so baPa ab ∼= IA. Therefore,
Lemma 3.1.32, implies that Pa is RP-dominated if and only if A is finite.

We also give some more information on the idempotents of Pa. From Propos-
ition 3.1.36(i) immediately follows that f ∈ Pa is an idempotent if and only if
(af)�im f = idim f . Multiplying this equality by f−1 on the right (a revertible oper-
ation), we obtain (aff−1)�im f = f−1, i.e. a�im f = f−1. In other words, f ∈ Pa is
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an idempotent if and only if f = a−1�dom f . Given the explicit form of a =
Ä
bi
ai

ä
i∈I ,

we may conclude that idempotents of Pa have the form
Ä aj
bj

ä
j∈J for each J ⊆ I.

Finally, we examine the cases when a is either full, or surjective, or both, in
order to get the full picture.

• If a is full, then Y = dom a, I(Y,B)∗ ≡ IY and Ψ1 is an isomorphism (because
ab = idY , so we have the implication 2.5). Thus, IaXY ∼= I(X,A), so the results
for IaXY and Reg(IaXY ) apply to I(X,A) and Reg(I(X,A)), respectively.

• Symmetrically, if a is surjective, then X = im a, I(X,A) ≡ IX , and Ψ2 is
an isomorphism (because ba = idX , so we have the implication 2.6). Thus,
IaXY ∼= I(Y,B)∗ in this case.

• Naturally, if a is both full and surjective, we have

IaXY ∼= I(X,A) = IA .

3.3.3 The rank of a sandwich semigroup IaXY
Due to the simplifications occurring in the sandwich semigroup of injective (partial)
transformations, we were able to fast-forward to the problem of calculating its rank
in just a few pages. Here, we follow the same "recipe" as in Sections 3.1 and 3.2.
First, we discuss the simple cases. Before that, we need to make a few remarks.
Write ξ = min(|X|, |Y |) and recall that

| IXY | =
ξ∑

µ=0
µ!
Ç
|X|
µ

åÇ
|Y |
µ

å
.

Since IaXY is anti-isomorphic to IbY X , we may suppose without loss of generality
that |Y | ≤ |X|.

• Suppose |Y| ≥ ℵ0. Then ξ ≥ ℵ0, so | IXY | ≥
(ℵ0
ℵ0

)
= 2ℵ0 . Thus, rank(IaXY ) =

| IXY |.

• Suppose |Y| = 0. Then ξ = 0, so rank(IaXY ) = | IXY | = 1.

• Suppose |X| > ℵ0 and |Y| 6= 0. In this case, | IXY | ≥
(|X|

1
)
> ℵ0, so again

rank(IaXY ) = | IXY |.

• Suppose that |X| ≤ ℵ0 , 0 < |Y| < ℵ0 and that a is a full bijection.
Thus, we have α = |Y | = |X| < ℵ0, and Reg(IaXY ) ∼= IA. Therefore, in this
case, the formula for rank(IaXY ) is given in (3.14).

Therefore, for the remainder of this subsection, we assume that |X| ≤ ℵ0,
0 < |Y| < ℵ0, and that a is not a bijection. Here, too, we have α ≤ ξ < ℵ0, so
a is stable, by Proposition 3.3.2(iii). Hence, Lemma 2.2.19 implies J a = Da.

As in Subsection 3.2.5, we will list the results that can be proved by copying
the proofs of the corresponding statements for P T . Of course, we disregard the



158 Chapter 3. Sandwich semigroups of transformations

non-injective cases in that process. Additionally, we reference the results concerning
IaXY , instead of those concerning P T aXY .

Recall that we have assumed |Y | ≤ |X| without loss of generality, so a is non-
surjective. Then

Lemma 3.3.5. In IaXY holds D0 ∪D1 ∪ · · · ∪Dα = 〈Dα〉a.

Lemma 3.3.6. Suppose α < |Y | < ℵ0 and let f ∈ Dα. Then f ∈ Dα+1 ?a Dα+1.

Lemma 3.3.7. If α = |Y | < ℵ0, then Pa1 = IaXY , Pa2 = Pa, and Ra = R on IaXY .

Of course, one could prove the corresponding, dual statements if the assumption
was |X| ≤ |Y |.

Suppose α < |Y | < ℵ0. Recall that any generating set of IaXY has to include
elements from each maximal J a-class (see Section 2.6), and that the maximal J a-
classes are exactly the singletons {f}, such that Rank f > ℵ0. Thus, from Lemmas
3.3.5 and 3.3.6 follows

Theorem 3.3.8. Suppose |X| ≤ ℵ0, |Y | < ℵ0, and that 1 ≤ α < |Y | ≤ |X| (hence,
a is non-surjective and non-full). We have

rank(IaXY ) =
|Y |∑

µ=α+1
|Dµ | =

|Y |∑

µ=α+1
µ!
Ç
|Y |
µ

åÇ
|X|
µ

å
.

On the other hand, if α = |Y | < ℵ0, then |Y | 6= |X| since a cannot be both full
and surjective. Now, we have

Theorem 3.3.9. Suppose that 1 ≤ α = Rank a = |Y | < |X| < ℵ0 (hence, a is full
and non-surjective). Then

rank(IaXY ) =
Ç
|X|
|Y |

å
+





0, if α ≤ 2;

1, if α ≥ 3;

Proof. We modify the proof of Theorem 3.1.51. Firstly, from Lemmas 3.3.5 and
3.3.6 we conclude that 〈Jb〉a = 〈Dα〉a = IXY . Furthermore, by the argument from
the proof of Theorem 3.1.51 we conclude that Proposition 2.6.3 applies and that
Jab = Da

b = ”Ha
b = Ha

b
∼= Sα . Now, since

| Jab /H a | = 1, and since rank(Sα) =
®

1, α = 1, 2;
2, α ≥ 3;

Proposition 2.6.3(ii) implies

rank(IXY ) = |X2|+ max(|X1|, rank(Ha
b ))

= |X2|+ max(1, rank(Ha
b ))

= |X2|+ |X1|+ rank(Ha
b )− 1.



Subsection 3.3.3 159

Thus, the statement follows from |X2|+ |X1| = | Jb /H | = |Dα /H |, and from the
fact that Dα is an L -class (by Proposition 2.2.37), so |Dα /H | = |Dα /R | =

(|X|
α

)

(the size of Dα /R is calculated at the beginning of this section).

In the proof, we use the assumption that a is non-surjective, so β = |X \ im a|.
Thus, if α ≥ 1 and that |Dα /R | =

(|X|
α

)

Remark 3.3.10. For the previous result, we provide an alternative formulation
concerning the non-sandwich semigroup I(X,A). If a is full and non-surjective,
then IaXY ∼= I(X,A), so for any proper subset A of X, we have

rank(I(X,A)) =
Ç
|X|
|A|

å
+





0, if |A| ≤ 2;

1, if |A| ≥ 3;

This is a result from [44].
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3.3.4 Egg-box diagrams

As in the previous two sections, we provide several egg-box diagrams (they originally
appeared in [34], and all were generated by GAP [98]) to illustrate the structural res-
ults for IaXY . For more information on the figures, see the introduction to Subsection
3.1.6.

Figure 3.16: Egg-box diagram of the sandwich semigroup Ia44, where a =
( 1 2 3 4

1 2 3 −
)
∈

P T 44. Note that a is non-full and non-surjective.

Figure 11: Left to right: egg-box diagrams of the sandwich semigroups Ib
43 and Ic

34, and the symmetric
inverse monoid I3, where b = ( 1 2 3

1 2 3 ) 2 I34 and c =
�

1 2 3 4
1 2 3 �

�
2 I43. Note that b is full but not surjective,

while c is surjective but not full. Note also that Reg(Ia
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Figure 3.17: Left to right: egg-box diagrams of the sandwich semigroups Ib43 and
Ic34 and I3, where b = ( 1 2 3

1 2 3 ) ∈ I34 and c =
( 1 2 3 4

1 2 3 −
)
∈ I43. Note that b is full and

non-surjective, while c is surjective and non-full. By the theory presented in this
section, the regular subsemigroups of the first two semigroups are isomorphic to the
third semigroup, I3.



Chapter 4

Sandwich semigroups of
matrices

In this chapter, we investigate the partial semigroupM(F) (as defined in Example
2.1.5) and the sandwich semigroups it contains. The reader will find that the results
resemble the ones for the sandwich semigroups of transformations. However, there
are significant differences and peculiarities which merit a detailed examination.

This investigation was originally conducted in [30]. However, the general results
used there constitute only a portion of the results presented in Chapter 2 (since
[30] preceded the article [34]). Thus, we refer to [30] as the source (unless stated
otherwise), but we frequently take a different approach in proving the results.

Following the layout of Section 3.1, first we study the partial semigroup M(F)
in terms of Green’s relations, cardinalities within a hom-set, regularity and invertib-
ility of its elements. Then, we focus on the linear sandwich semigroupMA

mn(F): we
describe its Green’s classes and the relation ≤JA , the links depicted in the commut-
ative diagrams 2.2 and 2.3, as well as the connection of the semigroups Reg(MA

mn(F))
andMRankA. Furthermore, we examine the semigroup PA = Reg(MA

mn(F)) in de-
tail, characterising its Green’s relations and idempotents, proving MI-domination,
describing the combinatorial structure and calculating its rank. Then, we classify
the isomorphism classes of finite linear sandwich semigroups, enumerate idempotents
and describe the idempotent-generated subsemigroup by characterising its elements
and calculating its rank and idempotent rank. Finally, we calculate the rank of
the linear sandwich semigroupMA

mn(F) and present a number of egg-box diagrams,
giving a visual presentation of the structural results presented in the chapter.

4.1 The category M(F)

We need to introduce some notions and notation specific to the topic of this chapter.
For m,n ∈ N = {1, 2, 3, . . .} and a field F, let Mmn(F) denote the set of all m × n
matrices over the field F. Since there are qmn ways to fill a m×n rectangular scheme
with elements of a q-element set (field), we have |Mmn(F)| = |F|mn. If m = n, then
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we write Mmm(F) = Mm(F). For convenience, we consider there to be a unique
m×0 and 0×n matrix for any m,n ≥ 0, which will be considered an empty matrix,
and denoted ∅. Thus, we have Mmn(F) = {∅} if and only if m = 0 or n = 0.
Furthermore, let

M(F) =
⋃

m,n∈N
Mmn(F)

be the set of all finite-dimensional matrices over F. Note that, we do not consider
∅ to be an element of M(F). If the field is either known or not essential for our
discussion, we shorten the notation toMmn,Mm andM, respectively.

Recall that there exists an alternative way to think about matrices. Namely,
the category of all finite-dimensional matrices over F, M(F), is equivalent (but
not isomorphic, see Section IV.4 in [83]) to the category of all finite-dimensional
vector spaces over F. To describe this connection, we need some more notation.
Firstly, for vector spaces V andW , let Hom(V,W ) denote the (hom-)set of all linear
transformations from V to W . If V = W , the set Hom(V,W ) is denoted EndV and
is an underlying set of the monoid of all endomorphisms of V . Secondly, for m ≥ 1
and a fixed field F, write Vm = Fm for the vector space of all 1×m row vectors over
the field F. Then, we identifyMmn with Hom(Vm, Vn) in the following manner: for
a matrix X ∈ Mmn, we define λX : Vm → Vn by (v)λX = vX for all v ∈ Vm. If
m = n, the map X → λX determines an isomorphism of monoidsMm → EndVm.
Thus, we may prove statements about Mmn by proving the equivalent statement
about Hom(Vm, Vn), and vice versa. Hence, it will be beneficial to consider vector
spaces and their properties.

Fix a field F, and let 1 and 0 denote its identity and zero element, respectively.
Let δ : M → N and ρ : M → N be the maps giving the number of rows and the
number of columns of a matrix, respectively. Clearly, the 5-tuple (M, ·,N, δ,ρ),
where · denotes the usual matrix multiplication, is a partial semigroup. Again, we
abbreviate the notation for this partial semigroup to M. Since for any m ∈ N,
the set M clearly contains the m ×m identity matrix Im (with 1’s on the leading
diagonal and 0’s elsewhere),M is a monoidal partial semigroup. Furthermore, the
i-th row of Im is denoted emi, and the set {em1, . . . , emm} is the standard basis of
Vm, in the sense that any element of Vm may be uniquely generated as a linear
combination of the vectors from the basis. Let

Wms = span{em1, . . . , ems}, for each 1 ≤ s ≤ m

denote the (vector) subspace of Vm consisting of all linear combinations of vectors
em1, . . . , ems. Naturally, we have span ∅ = {0}, where 0 denotes the zero vector.

Recall that Mm is the underlying set of a monoid with respect to the matrix
multiplication, namely the full linear monoid of degree m (for some background,
see [103]). In addition, the subset Gm = Gm(F) of Mm consisting of invertible
matrices is an underlying set of a group, namely the general linear group of degree
m. It corresponds to the group of all automorphisms of Vm, denoted by AutVm.
Indeed, the restriction of the above map X → λX determines an isomorphism of
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groups Gm → AutVm.
In order to characterise Green’s preorders and relations, we need the ’vocabulary’

to describe the properties of a single matrix X (linear transformation λX). For
X ∈ Mmn, and any 1 ≤ i ≤ m and 1 ≤ j ≤ n, let ri(X) and cj(X) denote the ith
row and jth column of X, respectively. These two intersect in coordinates (i, j),
the corresponding element of X being denoted Xij . Furthermore, let

RowX = span{r1(X), . . . , rm(X)}, ColX = span{c1(X), . . . , cn(X)},

RankX = dim(RowX) = dim(ColX)

denote the row space, column space and the rank of X, respectively. The notion
of rank of a matrix corresponds (in a way) to the notion of rank of a map, since
RankX = dim({(v)λX : v ∈ Vm}) = dim(imλX) (thus, the rank of a product is
not greater than the rank of any factor). In other words, RankX measures the
dimension (size) of a subspace of Vm defined by λX . For this reason, in this chapter,
we use the notation Rank λX to mean the (space) dimension of imλX , rather than
its cardinality. Furthermore, we will modify the notion for the kernel of a linear
transformation. Namely, for vector spaces V and W and α ∈ Hom(V,W ), we define

Kerα = {v ∈ V : (v)α = 0}.

Thus, in this chapter, the kernel of a transformation is a subset of the domain,
rather than a relation. However, Kerα corresponds to kerα in the following way:
for x, y ∈ V , we have

xα = yα ⇔ (x, y) ∈ kerα ⇔ y ∈ x+ Kerα.

Having introduced the necessary notions, we continue to investigate the partial
semigroup M. Recall that it has a dual partial semigroup (M, •,N,ρ, δ), where
A • B = B · A. Interestingly, the operation of transposition M → M : A → AT

(turning rows into columns and vice versa) is a bijection, and we have (AB)T =
BTAT for all A,B ∈ M. Thus, M is in anti-isomorphic to its own dual (i.e.
it is self-dual). This means that any result we prove about column spaces has a
corresponding dual result about row spaces and vice versa. For this reason, it will
occasionally be convenient to think of RowX and ColX as subspaces of Fn and Fm,
respectively.

Our next goal is to describe Green’s preorders and relations inM. Recall that
M being monoidal means that M(1) = M, so the definitions of relations ≤R , ≤L

and ≤J simplify slightly. For example, X ≤R Y means that there exists A ∈ M
such that X = Y A. Therefore, as in [30], we may prove

Proposition 4.1.1. Let X,Y ∈M. Then

(i) X ≤R Y ⇔ ColX ⊆ ColY ,

(ii) X ≤L Y ⇔ RowX ⊆ Row Y ,

(iii) X ≤J Y ⇔ RankX ≤ Rank Y ,

(iv) XR Y ⇔ ColX = ColY ,
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(v) XL Y ⇔ RowX = Row Y , (vi) XJ Y ⇔ RankX = Rank Y.

Further,M is stable, so J = D .

Proof. Note that (iv), (v) and (vi) follow immediately from (i), (ii) and (iii), re-
spectively. In addition, part (ii) follows from (i) by duality, so it suffices to prove
only (i) and (iii).

(i) We have

X ≤R Y ⇔ X = Y A, for some A ∈M

⇔ ci(X) =
Y ρ∑

j=1
cj(Y )Aji for each 1 ≤ i ≤ X ρ, (for some Aji ∈ F)

⇔ ColX ⊆ ColY.

(iii) Suppose that X ≤J Y . This means that X = AY B for some A,B ∈M, so
RankX ≤ Rank Y . Conversely, suppose that RankX ≤ Rank Y for X ∈ Mmn and
Y ∈ Mkl. We need to show that X = AY B for some A ∈ Mmk and B ∈ Mln. We
show an equivalent statement instead: λX = α ◦ λY ◦ β, for some α ∈ Hom(Vm, Vk)
and β ∈ Hom(Vl, Vn). We will define the maps α and β by fixing their actions on the
bases of Vm and Vl, respectively. Write r = RankX and s = Rank Y . In addition,
let Bm = {u1, . . . , um} and Bk = {v1, . . . , vk} be bases for Vm and Vk such that
{ur+1, . . . , um} and {vs+1, . . . , vk} are bases for KerλX and KerλY , respectively.
We extend the linearly independent sets {u1λX , . . . , urλX} and {v1λY , . . . , vsλY }
arbitrarily to bases

Bn = {u1λX , . . . , urλX , wr+1, . . . , wn} and

Bl = {v1λY , . . . , vsλY , xs+1, . . . , xl}

for Vn and Vl, respectively. Since r ≤ s, we may choose α ∈ Hom(Vm, Vk) and
β ∈ Hom(Vl, Vn) so that

uiα = vi, ujα ∈ span{vs+1, . . . , vk}

for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ m, and

(viλY )β = uiλX , (vtλY )β, xjβ ∈ span{wr+1, . . . , wm}

for all 1 ≤ i ≤ r, r+1 ≤ t ≤ s, and s+1 ≤ j ≤ l. It is easily seen that α◦λY ◦β = λX
(by examining the actions of both sides on Bm).

Recall from Lemma 2.2.19 that stability indeed implies J = D . To prove the
last statement of the proposition, we need to show that XJ XY ⇒ XRXY and
XJ Y X ⇒ XL Y X. We show the first implication, and the second follows by
duality. Suppose XJ XY . From (vi) we have that RankX = RankXY , i.e.
dim(ColX) = dim(Col(XY )). Since ColX ⊆ Col(XY ) (by (i)), we have ColX =
Col(XY ), so XRXY .
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For any 0 ≤ s < ℵ0, let Ds denote the J = D-class ofM containing all partial
maps of rank s.

Let m,n ∈ N. Green’s relations of M define partitions of the set Mmn, which
determine Green’s relations ofMmn. For K ∈ {R,L ,H ,D ,J } and any X ∈M,
let KX = {Y ∈Mmn : XK Y } denote the K -class of X inMmn, with an inherited
partial order KX ≤K KY ⇔ X ≤K Y for K ∈ {R,L ,D = J }. From the previous
proposition we may conclude that the J = D-classes ofMmn are the sets

Dmn
s = {X ∈Mmn : RankX = s},

for each 0 ≤ s ≤ min(|A|, |B|). These J -classes form a chain in Mmn: Dmn
s ≤J

Dmn
t ⇔ s ≤ t.
Furthermore, we may give an alternative description of Green’s classes of a spe-

cified element ofMmn, a result from [30].

Lemma 4.1.2. Let X ∈Mmn. Then

(i) RX = {Y ∈Mmn : ColX = ColY } = X Gn,

(ii) LX = {Y ∈Mmn : RowX = Row Y } = GmX,

(iii) DX = JX = {Y ∈Mmn : RankX = Rank Y } = GmX Gn,

Proof. It suffices to prove only (i), since (ii) is dual, and (iii) follows directly from
the previous two because

JX = DX =
⋃

Y ∈LX
RY =

⋃

Y ∈ LX
Y Gn =

⋃

Y ∈ GmX

Y Gn = GmX Gn

(the first equality following from Proposition 4.1.1).
Now, we focus on proving (i). The first equality follows from Proposition

4.1.1(iv). For the second, note that X Gn ⊆ RX , by the definition of the rela-
tion R. So, suppose that Y ∈ RX and let us prove that Y ∈ X Gn (i.e. that
λY = λXγ for some γ ∈ Aut(Vn)). From Proposition 4.1.1(iv) we may conclude
that Col(X) = Col(Y ) and ρX = ρY . Thus, by definition, we have λY = λXα for
some α ∈ End(Vn). Furthermore, since R ⊆ J , we infer that RankX = Rank Y
and denote this value by r. Note that dim(kerλX) = dim(kerλY ) = m− r. Hence,
we may choose a basis {v1, . . . , vm} for Vm so that {vr+1, . . . , vm} is a basis of
kerλY . Then, {v1λY , . . . , vrλY } = {(v1λX)α, . . . , (vrλX)α} is a basis for imλY ,
which may be extended to a basis {v1λY , . . . , vrλY , qr+1, . . . , qn} of Vn. In particular,
{(v1λX)α, . . . , (vrλX)α} is a linearly independent set. Thus, B = {v1λX , . . . , vrλX}
is a linearly independent set in Vn. Extend it arbitrarily to a basis of Vn:

{v1λX , . . . , vrλX , wr+1, . . . , wn}.

Now, let us define a map γ ∈ Aut(Vn) by

(viλX)γ = viλY , wjγ = qj , for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ n.
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Clearly, γ ∈ Aut(Vn), as it maps a basis of Vn into a basis of Vn. Moreover, it is
easily seen that λY = λXγ.

As in the previous chapter (and in [30]), we are going to examine the combinat-
orial structure of Dmn

s . To present these results, we need some additional notation
and results. Firstly, for any integer q ≥ 2, the q-factorials and q-binomial coefficients
are defined by

[s]q! = 1 · (1 + q) · · · (1 + q + · · ·+ qs−1) = (q − 1)(q2 − 1) · · · (qs − 1)
(q − 1)s

and ñ
m

s

ô
q

= (qm − 1)(qm − q) · · · (qm − qs−1)
(qs − 1)(qs − q) · · · (qs − qs−1)

= (qm − 1)(qm−1 − 1) · · · (qm−s+1 − 1)
(qs − 1)(qs−1 − 1) · · · (q − 1) ,

(4.1)

respectively. These are clearly well-defined if m, s ∈ N and m ≥ s. In the case
where s = 0 and m ∈ N, define [s]q! = 1 and

[m
s

]
q

= 1. Further, if q ≥ ℵ0, m ∈ N,
and s ∈ N0 with m ≥ s, we define

[s]q! =
®
q, s ≥ 2;
1, s = 1, 0; and

ñ
m

s

ô
q

=
®
q, m > s > 0;
1, m = s or s = 0.

Secondly, for 0 ≤ s ≤ min(m,n) let the matrix Jmns ∈Mmn be defined by

Jmns =
ñ

Is Os,n−s
Om−s,s Om−s,n−s,

ô
where Is is the s × s identity matrix, and Okl is the k × l zero matrix for all
k, l ∈ N (if the size of the matrix is clear from the context, we write O). Of course,
if s = min(m,n), then (at least) one of the values m − s and n − s is 0, so the
O-matrices in Jmns having a zero-valued dimension are empty. Similarly, if s = 0,
we have Jmns = Omn.

Lastly, we need the size of the group Gs ∼= Aut(Vs). Even though this is a
well-known result, we prove it for the sake of completeness.

Lemma 4.1.3. Suppose |F| = q and let s ∈ N. Then

| Gs | =
®
q(
s
2)(q − 1)s[s]q!, q < ℵ0;

q, q ≥ ℵ0.

Proof. First, suppose q = |F| ≥ ℵ0. We show that q is both an upper and a lower
bound for | Gs |. Note that the set Gs contains the matrix α Is for each α ∈ F. Hence
q ≤ |Gs | ≤ Ms = qs·s = q, so | Gs | = q. For a field with |F| = q < ℵ0, we calculate
the number of matrices in Gs by choosing the rows one by one, so that each row



Subsection 4.1.0 167

forms a linearly independent set with the previously chosen rows. Since there are qs
1× s vectors over F, and there are qi linear combinations of i vectors, we have

| Gs | = (qs − 1)(qs − q) · · · (qs − qs−1) = q(
s
2)(q − 1)s[s]q!.

For convenience, we assume Aut(V0) and G0 to be the groups containing only
the empty map and empty matrix, respectively, so | G0 | = 1.

Note that a similar argument shows that the q-binomial (4.1) is the number of
s-dimensional subspaces of anm-dimensional vector space over a q-dimensional field.
Let us elaborate on that. Clearly, an m-dimensional vector space over F has |F|m
elements. We want to calculate the number of s-dimensional subspaces. Let sms (q)
denote this number. Obviously, smm(q) = 1 and sm0 (q) = 1 (the subspace containing
only the zero vector [0, 0, . . . , 0]T). Next, suppose q ≥ ℵ0, m ≥ 2 and 1 ≤ s ≤ m−1.
Then, we have sms (q) ≥ q, because the s-dimensional subspaces of Fm generated by
the vectors

αem1 + em2, αem1 + em3, . . . , αem1 + em,s+1, for α ∈ F

are all different. Thus, we have

q =
Ç
|Mmn |

s

å
≥ sms (q) ≥ q,

so sms (q) = q. Now, let |F| = q < ℵ0, m ≥ 2 and 1 ≤ s ≤ m. To fix an s-dimensional
subspace of Fm, we choose its basis, which may be any of the

(qm − 1)(qm − q) · · · (qm − qs−1)

s-element linearly independent subsets of Fm. However, any such subspace has qs
elements, and therefore (qs − 1)(qs − q) · · · (qs − qs−1) different bases. Thus, by
dividing the two, we get the number of s-dimensional subspaces, q.e.d.

Now, as in [30], we may calculate the sizes of Green’s classes ofMmn. However,
note that this result includes the case q ≥ ℵ0, as well.

Proposition 4.1.4. Suppose |F| = q, and let 0 ≤ s ≤ min(m,n). Then
(i) Dmn

s contains
[m
s

]
q

R-classes,

(ii) Dmn
s contains

[n
s

]
q

L -classes,

(iii) Dmn
s contains

[m
s

]
q
·
[n
s

]
q

H -classes, each of which has size | Gs |,

(iv) |Dmn
s | =

[m
s

]
q
·
[n
s

]
q
· | Gs |.

(The value | Gs | is calculated in Lemma 4.1.3.)

Proof. The first two statements follow directly from parts (iv) and (v) of Proposition
4.1.1 and the previous discussion. Moreover, from these we may immediately infer
the number of H -classes in Dmn

s . Now, we need to calculate the size of these
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classes. By Lemma 2.1.9(iii), all of them have the same cardinality, so we may pick
a convenient one and enumerate its members. Let H = HJmns and X =

[
A B
C D

]
∈ H,

with A ∈ Ms, B ∈ Ms,n−s, C ∈ Mm−s,s and D ∈ Mm−s,n−s. By Proposition
4.1.1, we have Row Jmns = RowH and Col Jmns = ColH. From the first equality
we infer B = Os,n−s and D = Om−s,n−s (because the corresponding submatrices of
Jmns are zero-matrices), and from the second we have C = Om−s,s (for the same
reason). Thus, X =

[
A O
O O

]
with RankX = s, so A ∈ Gs. Since each element of

Gs corresponds to a single element of H, we have |H| = | Gs |, so we proved (iii).
Finally, part (iv) follows directly from (iii).

If q < ℵ0, we have the following as an immediate consequence of (iv):

qmn = |Mmn | =
min(m,n)∑

s=0

ñ
m

s

ô
q

·
ñ
n

s

ô
q

· q(
s
2)(q − 1)s[s]q!.

Our next goal is to investigate regularity inM from different aspects. We present
Propositions 4.1.5, 4.1.6, and 4.1.7 and Corollary 4.1.8, the first one being a result
from [30], and the other three being new, as far the author is aware.

Proposition 4.1.5. The linear partial semigroupM is regular.

Proof. Let X ∈ Mmn and put RankX = r. We want to show that X = XYX
for some Y ∈ Mnm. In other words, we will prove that λX = λXαλX for some
α ∈ Hom(Vn, Vm). Let {v1, . . . , vm} be a basis for Vm such that {vr+1, . . . , vm} is a
basis for kerλX . Then, {v1λX , . . . , vrλX} is a basis for imλX . In particular, it is a
linearly independent set that can be extended to a basis of Vn:

{v1λX , . . . , vrλX , wr+1, . . . , wn}.

If we choose α to be any linear transformation from Hom(Vn, Vm) satisfying (viλX)α =
vi for 1 ≤ i ≤ r, then it is easily shown that λX = λXαλX .

Proposition 4.1.6. The linear partial semigroup M can be expanded to a partial
∗-semigroup, but not to a regular partial ∗-semigroup.

Proof. As in Example 2.1.5, we define ∗ : M →M : A 7→ AT to be the operation
of transposition (turning rows into columns and vice versa). Then, it is easily seen
that (A∗) δ = Aρ, (A∗) ρ = A δ, (A∗)∗ = A and (AB)∗ = B∗A∗. In other words,
(M, ·,N, δ,ρ,∗ ) is a partial ∗-semigroup.

However, we will prove that there does not exist an operation ∗ :M→M such
that (M, ·,N, δ,ρ,∗ ) is a regular partial ∗-semigroup. Suppose that (M, ·,N, δ,ρ,∗ )
is a regular partial ∗-semigroup, for some ∗ :M→M. Suppose that F = (F,+,�),
and suppose that 0 and 1 denote the neutral elements for + and �, and −1 denotes
the inverse of 1 with respect to +. Since for all A ∈ M we have AA∗A = A, any
matrix A ∈ Mr having a group inverse A−1 ∈ Mr, satisfies A∗ = A−1. First, we
show that the involution ∗ fixes the matrix X = [ 1 0

0 0 ]. Let X∗ =
[
a b
c d

]
. Note that

from e21XX
∗X = e21X and e22X

∗XX∗ = e22X
∗ we have [ 1 0 ]

[
a b
c d

]
[ 1 0

0 0 ] = [ 1 0 ]
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and [ c d ] [ 1 0
0 0 ]

[
a b
c d

]
= [ c d ], so a = 1 and bc = d. Furthermore, from (XX)∗ = X∗X∗

we have (ñ
1 0
0 0

ô2)∗
=
ñ
1 b
c bc

ô2
,

so ñ
1 b
c bc

ô
=
Çñ

1 0
0 0

ôå∗
=
ñ

1 + bc b+ b2c
c+ bc2 bc+ b2c2

ô
.

Thus, bc = 0. Since F is a field, we have b = 0 or c = 0. Thus, at most one
of the elements b and c is non-zero. Suppose that c 6= 0 and b = 0. Then, from
(AB)∗ = B∗A∗ we haveÇñ

1 0
c 1

c

ô
·
ñ
1 0
0 0

ôå∗
=
ñ
1 0
c 0

ô
·
ñ
1 0
c 1

c

ô−1
,

so Çñ
1 0
c 0

ôå∗
=
ñ
1 0
c 0

ô
·
ñ

1 0
−c2 c

ô
=
ñ
1 0
c 0

ô
.

This contradicts X∗∗ = X. Similarly, the equalityÇñ
1 0
0 0

ô ñ
1 b
0 1

b

ôå∗
=
ñ
1 −b2
0 b

ô ñ
1 b
0 0

ô
proves that the assumption b 6= 0 (which implies c = 0) leads to a contradiction, as
well. Therefore, X∗ = X.

Next, consider the matrix Y = [ 1 1
0 0 ]. We will show that no matrix fromM2(F)

can be Y ∗. Let Y ∗ = [ p qr s ]. Note that from e21Y Y
∗Y = e21Y and e22Y

∗Y Y ∗ =
e22Y

∗ we have [ 1 1 ] [ p qr s ] [ 1 1
0 0 ] = [ 1 1 ] and [ r s ] [ 1 0

0 0 ] [ p qr s ] = [ r s ], so p + r = 1 and
qr = s− sr.

• First, suppose r = 1. Then p = 0 and q = 0, so Y ∗ = (Y Y )∗ = Y ∗Y ∗ impliesñ
0 0
1 s

ô
=
(ñ

1 1
0 0

ô2)∗
=
ñ
0 0
1 s

ô2
=
ñ
0 0
s s2

ô
.

Hence, s = 1 and Y ∗ = [ 0 0
1 1 ]. But then, by (AB)∗ = B∗A∗ we haveñ

1 0
0 0

ô∗
=
Çñ

1 1
0 0

ô
·
ñ
1 1
0 −1

ôå∗
=
ñ
1 1
0 −1

ô
·
ñ
0 0
1 1

ô
=
ñ

1 1
−1 −1

ô
,

which contradicts X∗ = X.

• Now, suppose r 6= 1. Then, p = 1 − r and s = qr
1−r . Again, the rule (AB)∗ =

B∗A∗ gives that [ 1 0
0 0 ]∗ equalsÇñ

1 1
0 0

ô
·
ñ
1 1
0 −1

ôå∗
=
ñ
1 1
0 −1

ô
·
ñ
1− r q
r qr

1−r

ô
=
ñ

1 q + qr
1−r

−r −qr
1−r

ô
,
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which implies r = 0 and q = 0. Thus, Y ∗ = [ 1 0
0 0 ] = X∗, so Y = (Y ∗)∗ =

(X∗)∗ = X. This is not true.

Therefore, neither case is possible and such a map ∗ :M→M does not exist.

Proposition 4.1.7. Let A ∈Mmn. Then,

(i) A is right-invertible inMnm if and only if the system of linear equations AxT
i =

eT
mi is solvable for each 1 ≤ i ≤ m. In that case, the matrix

ñ x1
...
xm

ôT

is a right-

inverse of A.

(ii) A is left-invertible inMnm if and only if the system of linear equations xiA =

eni is solvable for each 1 ≤ i ≤ n. In that case, the matrix
ñ x1

...
xm

ô
is a left-

inverse of A.

Proof. We prove only (i), as the second part is dual. Recall that, by definition, A is
right-invertible inM if and only if there exists B ∈ Mnm such that XAB = X for
all X ∈Mnm. In particular, if we fix some 1 ≤ j ≤ m and let X =

î emj
On−1,m

ó
(where

On−1,m is the empty matrix if n = 1), then XAB = X implies rj(AB) = emj . Thus,
if B = [bT1 · · · bTm], then

rj(A)bTi = Im(j, i), for all 1 ≤ i ≤ m.

Since this holds for any 1 ≤ j ≤ m, we obtain AbTi = eT
mi for each 1 ≤ i ≤ m. Hence,

we have proved the direct implication. For the converse, suppose that the systems
are solvable and choose a solution bTi for the system AxT

i = eT
mi, for each 1 ≤ i ≤ m.

Then, we have A
[
b1
...
bm

]T

= A[bT1 · · · bTm] = Im, so XAB = X for all X ∈Mnm.

Corollary 4.1.8. Let A ∈Mmn. Then,

(i) A is right-invertible inMnm if and only if Rank(A) = m.

(ii) A is right-invertible inMnm if and only if Rank(A) = n.

Proof. As in the previous lemma, we prove (i) and part (ii) is dual. Suppose that
A is right-invertible in Mnm. From the proof of Lemma 4.1.7, we conclude that
there exists B ∈ Mnm such that rj(AB) = emj for all 1 ≤ j ≤ m. In other words,
AB = Im. Conversely, if AB = Im for some B ∈ Mnm, then XAB = X for all
X ∈Mnm, so A is right-invertible. Thus, A is right-invertible inMnm if and only if
there exists B ∈Mnm such that AB = Im. Clearly, if AB = Im, then Rank(A) = m
(because Rank(AB) ≤ Rank(A) ≤ m). Conversely, if Rank(A) = m ≤ n, then the
equation AxT

i = eT
mi is solvable for each 1 ≤ i ≤ m by the Rouché–Capelli theorem

(because the coefficient matrix A ∈Mmn has Rank(A) = dim(Col(A)) = m, and so
the augmented matrix also has m independent columns).
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4.2 Linear sandwich semigroups
In the next step of our analysis, we use the gathered information onM to investigate
sandwich semigroups of form MA

mn. Let us fix m,n ∈ N and an n × m matrix
A ∈ Mnm. Then,MA

mn(F) =MA
mn = (Mmn, ?A) denotes the sandwich semigroup

of all m× n matrices over F, the sandwich operation ?A being defined in the usual
way:

X ?A Y = XAY, for all X,Y ∈Mmn .

If m = n, then the semigroup MA
mm = MA

m is the variant of Mm with respect to
the element A ∈Mm.

Our aim is to describeMA
mn in detail, in the same manner as we did with sand-

wich semigroups of transformations. As it turns out, in this case, our task simplifies
significantly, since sandwich elements of the same rank determine isomorphic semig-
roups overMmn. This is proved in the following Lemma, which is a result of [30].

Proposition 4.2.1.

(i) If A ∈Mnm, then the semigroupsMA
mn andMAT

nm are anti-isomorphic.

(ii) If A,B ∈Mnm are such that RankA = RankB, thenMA
mn
∼=MB

mn.

Proof. (i) From the properties of the operation of transposition T, it follows that
the mapMmn →Mnm : X 7→ XT is an anti-isomorphism of semigroupsMA

mn and
MAT

nm.
(ii) Suppose RankA = RankB. Then, by Lemma 4.1.2(iii), we have A = UBV ,

for some U ∈ Gn and V ∈ Gm. Thus, define a map θ :MA
mn →MB

mn : X 7→ V XU .
Since V and U are both invertible, this map is clearly a bijection. Furthermore, for
all X,Y ∈Mmn,

(X ?A Y )θ = (XAY )θ = V XAY U

= V X(UBV )Y U = (V XU)B(V Y U) = (X)θ ?B (Y )θ,

so θ is an isomorphism.

Put RankA = r. Instead of studyingMA
mn, we may choose to study any sand-

wich semigroup MJ
mn with J ∈ Mnm and Rank J = r. Naturally, we pick the

"simplest" matrix possible,

J = Jnmr =
ñ

Ir Or,m−r
On−r,r On−r,m−r

ô
.

So, from now on, we are investigating the sandwich semigroupMJ
mn with J = Jnmr.

Note that, if m = n = r, we have J = Im, soMJ
mn
∼=Mm, the full linear monoid of

degree m. Since the properties ofMJ
mn that we study are already known forMm,

we will sometimes assume that m = n = r does not hold. In these cases, we will
provide a corresponding result forMm and the reference for it. For background on
the full linear monoid, we refer the reader to [103].
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Due to the form of the matrix J , we introduce some new notation (in the same
manner as it was done in [30]), which will enable easier calculating of products.
Namely, if k, l ≥ r and if a matrix X ∈ Mkl is written in the 2 × 2 block form
X =

[
A B
C D

]
, we will be assuming that A ∈ Mr, B ∈ Mr,l−r, C ∈ Mk−r,r and D ∈

Mk−r,l−r. For instance, we may write J =
î
Ir O
O O

ó
. Thus, for X =

[
A B
C D

]
,
[
E F
G H

]
∈

Mmn, we haveñ
A B
C D

ô
?J

ñ
E F
G H

ô
=
Çñ
A B
C D

ô
·
ñ
I O
O O

ôå
·
ñ
E F
G H

ô
=
ñ
A O
C O

ô
·
ñ
E F
G H

ô
=
ñ
AE AF
CE CF

ô
.

(4.2)

Similarly, for the same matrix X =
[
A B
C D

]
∈ Mmn, we have XJ =

[
A O
C O

]
, JX =[

A B
O O

]
and JXJ =

[
A O
O O

]
. In addition, for any A ∈ Mr, M ∈ Mm−r,r and N ∈

Mr,n−r, we define

[M,A,N ] =
ñ
A AN
MA MAN

ô
∈Mmn .

Using the calculation above, it is easily seen that [M,A,N ]?J [K,B,L] = [M,AB,L].

Remark 4.2.2. In [121], Thrall presented an alternative way to deal with sandwich
semigroups. Let

M = {X ∈Mm+n−r : r1(X) = r2(X) = · · · = rn−r(X) = O,
cn+1(X) = cn+2(X) = · · · = cm+n−r(X) = O}

and consider the map ζ :Mmn → M :
[
A B
C D

]
7→
[ O O O
B A O
D C O

]
, where the first matrix is

in the above described 2× 2 form. It is easily seen that
[ O O O
B A O
D C O

]
·
[ O O O
F E O
H G O

]
=
[ O O O
AF AE O
CF CE O

]
.

(cf. (4.2)), so ζ is clearly an isomorphism of semigroups MJ
mn and (M, ·). Thus,

instead of MJ
mn, we may examine the (non-sandwich) semigroup (M, ·). However,

this approach does not seem to benefit or simplify our investigation in any way, so
we do not pursue it any further.

4.2.1 Green’s relations of linear sandwich semigroups

Finally, we are ready to describe the P-sets ofMJ
mn. The following Proposition is a

result from [30].

Proposition 4.2.3. InMJ
mn we have PJ = PJ3 = Reg(MJ

mn). Further,

(i) PJ1 = {X ∈Mmn : ColXJ = ColX}
= {X ∈Mmn : RankXJ = RankX},
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(ii) PJ2 = {X ∈Mmn : Row JX = RowX}
= {X ∈Mmn : Rank JX = RankX},

(iii) PJ3 = {X ∈Mmn : Rank JXJ = RankX}
= {[M,A,N ] : A ∈Mr, M ∈Mm−r,r, N ∈Mr,n−r}.

Proof. By Proposition 4.1.1, M is stable, so Proposition 2.2.23(iii) implies PJ3 =
PJ . Furthermore, sinceM is regular (by Proposition 4.1.5), Proposition 2.2.29(iv)
implies Reg(MJ

mn) = PJ .
Now, we prove (i), and (ii) follows by a dual argument. The first equality follows

from the definition of PJ1 and Proposition 4.1.1(iv). For the second one, note that
the stability of M implies that XJ RX ⇔ XJ J X. Then, Proposition 4.1.1(vi)
implies the statement.

Let us prove part (iii). Again, the first equality follows from the definition
of PJ3 and Proposition 4.1.1(vi). For the second one, recall that PJ3 = PJ . Let
X =

[
A B
C D

]
∈ PJ = PJ1 ∩PJ2 . Then, we have

X ∈ PJ1 ⇔ ColX = ColXJ = Col(
[
A O
C O

]
)

⇔ each column of
[
B
D

]
is in the span of the set of columns of

[
A
C

]

⇔
[
B
D

]
=
[
A
C

]
N =

[
AN
CN

]
for some N ∈Mr,n−r .

By a dual argument, we have

X ∈ PJ2 ⇔ [ C D ] = M [A B ] = [MA MB ] for some M ∈Mm−r,r .

Thus, we have X ∈ PJ if and only if X =
[
A AN
MA MAN

]
= [M,A,N ] for some A ∈Mr,

M ∈Mm−r,r and N ∈Mr,n−r.

Having described the P-sets, the next step is to characterise the Green’s relations
of MJ

mn. We give the Theorem from [30], but note that the result has originally
appeared (in a somewhat different form) in [20].

Theorem 4.2.4. If X ∈Mmn, then inMJ
mn we have

(i) RJ
X =

®
RX ∩PJ1 , X ∈ PJ1 ;
{X}, X 6∈ PJ1 .

(ii) LJX =
®

LX ∩PJ2 , X ∈ PJ2 ;
{X}, X 6∈ PJ2 .

(iii) HJ
X =

®
HX , X ∈ PJ ;
{X}, X 6∈ PJ .

(iv) DJ
X = JJX =





DX ∩PJ , X ∈ PJ ;
LJX , X ∈ PJ2 \PJ1 ;
RJ
X , X ∈ PJ1 \PJ2 ;
{X}, X 6∈ (PJ1 ∪PJ2 ).
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Further, if X 6∈ PJ , then HJ
X = {X} is a non-group H J -class inMJ

mn.

Proof. SinceM is a stable partial semigroup (by Proposition 4.1.1), Corollary 2.2.26
implies DJ = J J . Hence, the theorem follows directly from Theorem 2.2.3.

Note thatMJ
mn is stable by Lemma 2.2.20, sinceM is stable. Applying the gen-

eral theory from Chapter 2, we may describe the partial order ≤J J . The following
Proposition (from [30]) is the direct consequence of Lemma 2.2.6(iii) (recall thatM
is monoidal, so each element has a left- and right-identity in M) and Proposition
4.1.1.

Proposition 4.2.5. Let X,Y ∈ Mmn. Then JJX ≤J J JJY in MJ
mn if and only if

one of the following holds:

(i) X = Y ,

(ii) RankX ≤ Rank JY J ,

(iii) RowX ⊆ Row JY ,

(iv) ColX ⊆ ColY J .

Moreover, Propositions 2.2.7 and 4.1.1 give

Proposition 4.2.6. Let X,Y ∈Mmn.

(i) If X ∈ PJ1 , then

X ≤J J Y ⇔ RankX ≤ Rank JY J or ColX ⊆ ColY J.

(ii) If X ∈ PJ2 , then

X ≤J J Y ⇔ RankX ≤ Rank JY J or RowX ⊆ Row JY.

(iii) If X ∈ PJ , then X ≤J J Y ⇔ RankX ≤ Rank JY J .

(iv) If Y ∈ PJ1 , then X ≤J J Y ⇔ RankX ≤ Rank JY or ColX ⊆ ColY .

(v) If Y ∈ PJ2 , then X ≤J J Y ⇔ RankX ≤ Rank Y J or RowX ⊆ Row Y .

(vi) If Y ∈ PJ , then X ≤J J Y ⇔ RankX ≤ Rank Y .

The article [30] presents only parts (iii) and (vi), but the remaining ones are
easily deduced from the results of the said paper.

Recall that Reg(MJ
mn) = PJ (by Proposition 4.2.3). The elements of Reg(MJ

mn)
were originally characterised in [71]. Here, we give the result from [30] describing
the regular DJ -classes and their relations.

Proposition 4.2.7. The regular DJ -classes ofMJ
mn are precisely the sets

DJ
s = {X ∈ PJ : RankX = s}, for each 0 ≤ s ≤ r = Rank J.
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Proof. Firstly, recall from Theorem 4.2.4(iv) that for each X ∈ PJ we have DJ
X =

DX ∩PJ = DJ
RankX . Moreover, for any 0 ≤ s ≤ r = Rank J , the matrix Jmns =î

Jrrs O
O O

ó
∈Mmn is in PJ ∩Ds, since Jmns = [Jrrs,O,O] and Rank Jmns = s. There-

fore, the defined sets are all nonempty and describe regular DJ -classes.

Note that the class DJ
0 = {Omn} is a regular DJ -class, and it is the minimal

DJ = J J -class in MJ
mn, by Proposition 4.2.6(iii). In the following Proposition

(a result of [30]), we discuss the maximal DJ -classes. Here (and in the rest of this
chapter), we will need a semigroup inverse of J . We take K = JT = Jmnr ∈ Mmn,
where r = Rank J (one can easily check that it is indeed an inverse using the
discussion preceding Subsection 4.2.1).

Proposition 4.2.8.

(i) If r < min(m,n), then the maximal J J = DJ -classes of MJ
mn are precisely

the singleton sets {X}, for X ∈ Mmn with RankX > r. Hence, all the
maximal J J -classes ofMJ

mn are trivial in this case.

(ii) If r = min(m,n), then we have a single maximum J J = DJ -class in MJ
mn,

which is
JJK = DJ

r = {X ∈ PJ : RankX = r}.

This maximal J J -class is clearly nontrivial.

Proof. (i) Let r < min(m,n). The singletons described in the statement are indeed
maximal J J -classes (by Proposition 2.2.10) since for X ∈ Mmn with RankX > r
we have X 6≤J J (by Proposition 4.1.1(iii)). Thus, it suffices to prove that the
specified sets are the only maximal J J -classes. Suppose there exists Y ∈ Mmn

with Rank Y ≤ r such that JJY is a maximal J J -class. Now, let Z =
î

Ir O
O D

ó
∈Mmn

with D 6= O. By the previous discussion, JJZ = {Z} is a maximal J J -class with
Y ≤J J Z, different from JJY (because Y 6= Z), which contradicts the maximality of
JJY .

(ii) Note that J · JT · J = J , so Proposition 4.2.3(iii) implies K ∈ PJ3 = PJ .
Furthermore, from Theorem 4.2.4(iv) and Proposition 4.2.7, we have JJJT = DJ

JT =
DJ
r , and this J J -class is maximal (which follows from Proposition 4.2.5(vi)).

4.2.2 A structure theorem for Reg(MJ
mn) and connections to (non-

sandwich) matrix semigroups

Here, we present the results of Section 6 in [30], simplifying the arguments by ap-
plying the general theory from Chapter 2.

Keeping the previously introduced notation, we start by examining the diagrams
2.2 and 2.3 adjusted to the semigroupMJ

mn:
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(Mmn, ?J)

(JMmn, ·)

(JMmn J,~)

(Mmn J, ·)

Ψ1 : X 7→ XJ Ψ2 : X 7→ JX

Φ1 : Y 7→ JY Φ2 : Y 7→ Y J

Reg(Mmn J, ·)

(JMmn J,~)

Reg(Mmn, ?J)

Reg(JMmn, ·)

ψ1 : X 7→ XJ ψ2 : X 7→ JX

φ1 : Y 7→ JY φ2 : Y 7→ Y J

Figure 4.1: Diagrams illustrating the connections betweenMJ
mn and (JMmn J,~)

(left) and between Reg(MJ
mn) and (JMmn J,~) (right).

Of course, from general theory it follows that JMmn J is a regular subsemig-
roup of MK

nm. Moreover, Lemma 4.2.1(i) implies that MJ
mn and MK

nm are anti-
isomorphic. Thus, JMmn J is anti-isomorphic to the regular subsemigroupKMnmK
ofMJ

mn. In fact, as proved in [30],

Proposition 4.2.9. We have

(JMmn J, ?K) = Reg(JMmn J, ?K) ∼= (Mr, ·).

Proof. The first equality follows from Proposition 2.3.2(iv). For the isomorphism,
recall that for X =

[
A B
C D

]
∈ Mmn we have J

[
A B
C D

]
J =

[
A O
O O

]
. Now, consider the

map JMmn J → Mr :
[
A O
O O

]
7→ A. It is clearly an isomorphism of semigroups

(JMmn J, ?K) and (Mr, ·), since for
[
A O
O O

]
,
[
E O
O O

]
∈ JMmn J we haveñ

A O
O O

ô
· J ·

ñ
E O
O O

ô
=
ñ
AE O
O O

ô
.

Now, we describe the semigroups in the middle of the diagram 4.1. In order to
do that, we introduce a new type of matrix semigroups: for k ∈ N and l ∈ N ∪ {0},
let

Ck(l) = {X ∈Mk : cl+1(X) = · · · = ck(X) = O} and
Rk(l) = {X ∈Mk : rl+1(X) = · · · = rk(X) = O}.

Note that, for any X ∈ Mk, we have X ∈ Ck(l) ⇔ XT ∈ Rk(l). Thus, Ck(l) and
Rk(l) are anti-isomorphic. In previous articles, these semigroups have attracted
interest due to their properties (see [101] and [117]), but ours is raised because of
their connection to the sandwich semigroups, shown in [30]:

Proposition 4.2.10. We have Mmn J = Cm(r) and JMmn = Rn(r). Further-
more, Cm(r) ∼= MJ1

mr and Rn(r) ∼= MJ2
rn, for J1 = Jrmr ∈ Mrm and J2 = Jnrr ∈

Mnr.

Proof. Recall that, for X =
[
A B
C D

]
∈Mmn, we have XJ =

[
A O
C O

]
and JX =

[
A B
O O

]
.

Thus, the direct containment holds in both equalities of the first statement. The
reverse containment is easy to check.
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For the second statement, we prove only Cm(r) ∼= MJ1
mr, the other one being

dual. From (4.2) we have
[
A O
C O

]
?J
[
E O
G O

]
=
[
AE O
CE O

]
and

[
A
C

]
?J1

[
E
G

]
=
[
A
C

]
[ I O ]

[
E
G

]
=
[
AE
CE

]
.

So, the map Cm(r)→Mmr :
[
A O
C O

]
7→
[
A
C

]
is clearly an isomorphism.

Hence, we may adjust the left diagram on Figure 4.1:

MJ
mn

Rn(r)

(JMmn J,~)

Cm(r)

Mr

Ψ1 : [ A B
C D ] 7→

[
A O
C O

]
Ψ2 : [ A B

C D ] 7→ [ A B
O O ]

Φ1 :
[

A O
C O

]
7→
[

A O
O O

]
Φ2 : [ A B

O O ] 7→
[

A O
O O

]

η :
[

A O
O O

]
7→ A

Figure 4.2: Diagram illustrating the connections betweenMJ
mn andMr.

Moreover, we may characterise the regular elements of these semigroups, which
was originally done in [101]. However, we will use an alternative description, given
in [30].

Proposition 4.2.11. We have

Reg(Cm(r)) = Reg(Mmn J) = PJ J = {X ∈ Cm(r) : Rank JX = RankX},
Reg(Rm(r)) = Reg(JMmn) = J PJ = {X ∈ Rm(r) : RankXJ = RankX}.

Proof. The first two equalities in both cases follow from Propositions 4.2.10 and
2.3.2, respectively. We will show the third equality for Reg(Cm(r)), and the other
statement follows by a dual argument. Let X = Y J for some Y ∈ PJ . From
Proposition 4.2.3(iii), it follows that Y =

[
A AN
MA MAN

]
for some A ∈ Mr, M ∈

Mm−r,r and N ∈Mr,n−r, so

X = Y J =
[
A O
MA O

]
.

Thus, JX =
[
A O
O O

]
and RankX = Rank JX. Conversely, if X =

[
A O
C O

]
∈ Cm(r)

with Rank JX = RankX, then JXJ X, so JXL X (by the stability of M).
Therefore, Row(

[
A O
C O

]
) = Row(

[
A O
O O

]
), which implies that C = MA for some M ∈
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Mm−r,r (i.e. each row of C is a linear combination of the rows of A). Hence,
X = [M,A,O] · J ∈ PJ J .

Thus, we obtain the following diagram:

Reg(Cm(r))

(JMmn J,~)

Reg(MJ
mn)

Reg(Rn(r))

Mr

ψ1 : [ A B
C D ] 7→

[
A O
C O

]
ψ2 : [ A B

C D ] 7→ [ A B
O O ]

φ1 :
[

A O
C O

]
7→
[

A O
O O

]
φ2 : [ A B

O O ] 7→
[

A O
O O

]

η :
[

A O
O O

]
7→ A

Figure 4.3: Diagram illustrating the connections between Reg(MJ
mn) andMr.

Of course, as in Chapter 3, we have some special cases: as we proved in Propos-
ition 4.2.10,

• if J = Jnmm, thenMJ
mn
∼= Rn(m), and

• if J = Jnmn, thenMJ
mn
∼= Cn(m).

Hence, we will be able to apply the results we obtain for MJ
mn to get results for

Rn(m) and Cn(m), as well.
We close this subsection by stating Theorem 2.3.8 for the sandwich semigroup

MJ
mn. This result was originally proved in [30].

Theorem 4.2.12. The map

ψ = (ψ1, ψ2) : PJ → Reg(Cm(r))× Reg(Rn(r)) : X 7→ (XJ, JX)

is injective, and

im(ψ) = {(Y,Z) ∈ Reg(Cm(r))× Reg(Rn(r)) : JY = ZJ}
= {(Y,Z) ∈ Reg(Cm(r))× Reg(Rn(r)) : Y φ1 = Zφ2}.

In particular, PJ is a pullback product of Reg(Cm(r)) and Reg(Rn(r)) with respect
toMr.
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4.2.3 The regular subsemigroup PJ = Reg(MJ
mn)

We continue our study, following the same outline as in Section 3.1. This subsection
is dedicated to the regular subsemigroup ofMJ

mn.
Firstly, we examine the Green’s relations of PJ = Reg(MJ

mn). For K ∈
{R,L ,H ,D ,J } and X ∈ PJ , let K PJ and KPJ

X denote the K -relation of PJ
and its class containing the matrix X, respectively. Then, from Lemma 2.3.3, The-
orem 4.2.4, Proposition 4.1.1, and Proposition 2.3.4 we have

Proposition 4.2.13. Let X ∈ PJ = Reg(MJ
mn). Then

(i) RPJ
X = RX ∩PJ = {Y ∈ PJ : ColY = ColX},

(ii) LPJ
X = LX ∩PJ = {Y ∈ PJ : Row Y = RowX},

(iii) HPJ
X = HX ∩PJ = HX

= {Y ∈ PJ : ColY = ColX, Row Y = RowX},

(iv) JPJ
X = DPJ

X = DX ∩PJ = {Y ∈ PJ : Rank Y = RankX}.

The J PJ = DPJ -classes of PJ are the sets

DJ
s = {Y ∈ PJ : Rank Y = s} for each 0 ≤ s ≤ r = Rank J,

and these form a chain under the ordering ≤J on the J PJ -classes:

DJ
0 < DJ

1 < · · · < DJ
r .

Parts (i)−(iv) of this result were proved in [20], but we presented here Corollary
6.1 from [30].

Therefore, for X ∈ PJ and any K ∈ {R,L,H,D, J}, we have KPJ
X = KJ

X . Hence,
we will denote the Green’s relations and their classes of PJ the same way as we did
inMJ

mn. Furthermore, note that Proposition 2.2.42 implies the stability of PJ , since
it is a regular subsemigroup of a stable semigroupMJ

mn.
Our next task is to study the inflation described in Remark 2.3.13, in the semig-

roup PJ Reg(MJ
mn). First, consider the map

ϕ = ψ1φ1η = ψ2φ2η : PJ →Mr,

defined via the surmorphisms from Diagram 4.3. To shorten the notation, for X ∈
PJ , let X denote the map Xϕ of the element X. Furthermore, for S ⊆ PJ , let
S = {X : X ∈ S}. Clearly, if X =

[
A B
C D

]
∈ PJ , then X = A.

As in Chapter 2, for each K ∈ {R,L ,H ,D ,J }, we introduce the relation

X
‘
K JY ⇔ XK Y (in Mr)

on PJ . As usual, for X ∈ PJ , K̂J
X denotes the ‘K J -class of the element X. Further,

let EJ(Reg(MJ
mn)) = EJ(MJ

mn) denote the set consisting of all idempotents in
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Reg(MJ
mn) (naturally, these are all the idempotents of MJ

mn, as well). For any
subset S ⊆MJ

mn, let EJ(S) denote the set of all the idempotents contained in this
subset.

Here, we need some information on the full linear monoid Mr and the general
linear group Gr. In the following lemma, we state those. For the non-referenced
statements, we refer the reader to the monograph [103].

Lemma 4.2.14. Let X ∈Mr with RankX = s. InMr, we have

(i) RX = {Y ∈Mr : ColY = ColX};

(ii) LX = {Y ∈Mr : Row Y = RowX};

(iii) HX = {Y ∈Mr : ColY = ColX, Row Y = RowX};

(iv) |HX | = | Gs | (see Lemma 4.1.3); furthermore, if HX contains an idempotent,
then HX

∼= Gs;

(v) DX = JX = {Y ∈Mr : Rank Y = RankX};

(vi) we have DIr = HIr
∼= Gr, andMr \ Gr is an ideal of the semigroupMr.

(vii) (Erdos, [42]) Each matrix X ∈ Mr with RankX < r may be presented as a
product of idempotents.

(viii) (Waterhouse, [127]) If |F| < ℵ0, then

(a) rank(G1) = 1, and rank(Gr) = 2 if r ≥ 2.
(b) Mr = 〈Gr ∪{X}〉 for any X ∈ Dr−1(Mr)
(c) rank(M1) = 2, and rank(Mr) = 3 if r ≥ 2.

Note that parts (i)− (iii) and (v)− (vi) follow from Lemma 4.1.2 and the fact
that Rank(AB) ≤ min(Rank(A),Rank(B)).

Next, we aim to show the parallel of Theorem 3.1.26 for the semigroup MJ
mn.

In [30], this has been done for the case |F| = q < ℵ0. Here, we use a different
argument and prove the result for any field F. The results concerning the case
|F| ≥ ℵ0 are new, as far as the author is aware.

Theorem 4.2.15. Let X ∈ PJ with RankX = s. Then

(i) R̂J
X is the union of qs(m−r) RJ -classes of PJ ;

(ii) L̂JX is the union of qs(n−r) L J -classes of PJ ;

(iii) ĤJ
X is the union of qs(m+n−2r) H J -classes of PJ , each of which has size | Gs |;

(iv) if HX is a non-group H -class ofMr, then each H J -class of PJ contained in”HJ
J is a non-group;
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(v) if HX is a group H -class ofMr, then each H J -class of PJ contained in ĤJ
X is

a group isomorphic to Gs; further, ĤJ
X is a qs(m−r)× qs(n−r) rectangular group

over Gs, and its idempotents EJ(ĤJ
X) form a qs(m−r)×qs(n−r) rectangular band.

(vi) D̂J
X = DJ

X = DJ
s = {Y ∈ PJ : Rank Y = s} is the union of:

(a) qs(m−r)
[r
s

]
q

RJ -classes of PJ ,

(b) qs(n−r)
[r
s

]
q

L J -classes of PJ ,

(c) qs(m+n−2r)(
[r
s

]
q
)2 H J -classes of PJ .

Proof. (i) Firstly, note that

|ĤJ
Y /RJ | = |(R̂J

Y ∩
”LJY )/RJ | = |R̂J

Y /RJ |, (4.3)

for any Y ∈ PJ . Secondly, choose any Q =
î
Ac O
O O

ó
∈ Mmn, where Ac ∈ Mr with

cs+1(Ac) = · · · = cr(Ac) = O and Col(Ac) = Col(X). Note that Q ∈ R̂J
X (by Lemma

4.2.14(i)), so equality (4.3) and Theorem 2.3.12(i) imply that it suffices to calculate
the number of RJ -classes containing an element Z with Z = Q. Such an element is
of the form ñ

Ac AcN
MAc MAcN

ô
,

for some M ∈ Mm−r,r and N ∈ Mr,n−r. Since each column of
î
AcN
MAcN

ó
is a linear

combination of the columns of the matrix
î
Ac
MAc

ó
, the latter sub-matrix determines

the RJ -class of the whole matrix Z. Due to the properties of Ac, we have MAc ∈
Mm−r,r with cs+1(MAc) = · · · = cr(MAc) = O. Since the number of matrices
satisfying these conditions is q(m−r)s, this is an upper bound for the number of RJ -
classes in ĤJ

Q. Moreover, it turns out to be the exact value! We prove this in two
steps:

• First, we show that any matrix T ∈ Mm−r,r with cs+1(T ) = · · · = cr(T ) = O
may be generated as the product MAc, for some M ∈Mm−r,r.

• Then, we show that Col
Äî

Ac
M1Ac

óä
6= Col

Äî
Ac

M2Ac

óä
if and only if M1Ac 6=

M2Ac.

Recall that each row of MAc is a linear combination of the rows of Ac, and vice
versa, each matrix P ∈ Mm−r,r whose rows are linear combinations of the rows of
Ac, may be presented as a product MAc for some M ∈Mm−r,r. Since RankAc = s
and the last r − s columns are zero-columns, we have Row(Ac) = Wrs; hence, by
adjusting the auxiliary matrix M , any matrix P ∈ Mm−r,r, whose rows belong to
Wrs, may be obtained as a product MAc. This completes the proof for the first
step. Let us prove the second. Note that the direct implication is obvious. For the
reverse, assume that M1Ac 6= M2Ac. Then, the two matrices differ in at least one
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"coordinate", say (i, j). However, then cj(
î

Ac
M1Ac

ó
) 6∈ Col(

î
Ac

M2Ac

ó
). Let us elaborate:

we have cj(
î

Ac
M1Ac

ó
)−cj(

î
Ac

M2Ac

ó
) = w, where w ∈ Vm has 0’s in the first r coordinates

and a non-zero element in the r+i-th coordinate; since the columns of Ac are linearly
independent, the columns of

î
Ac

M2Ac

ó
cannot generate a non-zero vector having 0’s

in the first r positions.
Part (ii) is dual. Since ĤJ

Y = R̂J
Y ∩

”LJY , (iii) follows directly from (i), (ii),
Theorem 2.3.12(i) and Lemma 4.2.14(iv).

(iv) and (v). In the proofs of (i) and (ii), we showed that

r = |ĤJ
Y /RJ | = qs(m−r) and l = |ĤJ

Y /L J | = qs(n−r).

Moreover, by Lemma 4.2.14(iv), each group H -class of rank s inMr is isomorphic
to Gs. Thus, Theorem 2.3.12 implies the statements.

(vi). From Lemma 2.3.9(iv) it follows that D̂J
X = DJ

X , so the characterisation of
the D̂J -classes follows from Proposition 4.2.13. We need to prove the rest. It suffices
to show only (a), because (b) is dual, and (c) follows directly from (a) and (b). From
(i), it follows that each R̂J -class in D̂J

X contains qs(m−r) RJ -classes. Furthermore,
by Remark 2.3.13 and Proposition 4.1.4(i), we have

|D̂J
X/R̂

J | = |Ds(Mr)/R | =
ñ
r

s

ô
q

.

Thus, the product of the two values is the number of RJ -classes in D̂J
X .

Remark 4.2.16. As promised, Theorem 4.2.15 applies even when F is infinite. In
that case, we calculate the values using the laws of calculating with infinite cardinals
and the notions defined in Sections 3.1 and 4.1. For instance, since s, m and r are
finite, R̂J

X is the union of qs(m−r) = q RJ -classes of PJ .

Directly from Theorem 4.2.15, we may conclude the following:

|DJ
s | =





qs(m+n−2r)(
[r
s

]
q
)2 · q(

s
2)(q − 1)s[s]q!, q < ℵ0;

q, q ≥ ℵ0 and s ≥ 1;
1, q ≥ ℵ0 and s = 0.

and

|PJ | =
r∑

s=0
|DJ

s |

=





∑r
s=0 q

s(m+n−2r)(
[r
s

]
q
)2 · q(

s
2)(q − 1)s[s]q!, q < ℵ0;

q, q ≥ ℵ0 and r 6= 0.
1, q ≥ ℵ0 and r = 0.

Thus, |PJ | is infinite if and only if |F| = q ≥ ℵ0 and Rank J > 0. In that case, the
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two cardinalities are equal.
As in the previous chapter, now we turn to the problem of calculating the rank

of PJ . In order to apply Theorem 2.4.16, we need to show that PJ is MI-dominated.
Thus, we prove a lemma from [30] characterising the mid-identities, regularity pre-
serving elements, and the idempotents of PJ , and then we show that each idempotent
is �-below a mid-identity.

Lemma 4.2.17.

(i) EJ(MJ
mn) = EJ(PJ)

= {[M,A,N ] : A ∈ E(Mr),M ∈Mm−r,r, N ∈Mr,n−r}.

(ii) MI(Reg(MJ
mn)) = {[M, Ir, N ] : M ∈Mm−r,r, N ∈Mr,n−r}.

(iii) RP(Reg(MJ
mn)) = DJ

r .

Proof. For (i), note that Lemma 2.3.11 gives EJ(MJ
mn) = (E(Mr))ϕ−1, so the

statement follows.
SinceM is a stable and regular (by Propositions 4.1.1 and 4.1.5) partial semig-

roup, from Proposition 2.4.10 follows that MI(PJ) = EJ(JJK) and RP(PJ) = JJK .
Since JJK = DJ

K , we immediately obtain (iii). To show (ii), note that Rank[M,A,N ] =
RankA; hence, part (i) and Lemma 4.2.14(vi) imply

MI(PJ) = EJ(DJ
K) = {[M,A,N ] : A ∈ EJ(Dr),M ∈Mm−r,r, N ∈Mr,n−r}

= {[M, Ir, N ] : M ∈Mm−r,r, N ∈Mr,n−r}.

The following Proposition was not stated explicitly in [30]. However, one may
discern an implicit proof of MI-domination in the proof of Theorem 6.10.

Proposition 4.2.18.

(i) The semigroup PJ = Reg(MJ
mn) is MI-dominated.

(ii) The semigroup PJ = Reg(MJ
mn) is RP-dominated.

Proof. (i) By Proposition 2.4.5(iv), it suffices to prove that each element of PJ
belongs to

E ?J PJ ?JE = E · J PJ J · E, for some E ∈ MI(PJ).

Let X ∈ PJ be arbitrary. Proposition 4.2.3(iii) implies that X = [M,A,N ] =[
A AN
MA MAN

]
for some A ∈ Mr, M ∈ Mm−r,r and N ∈ Mr,n−r. Let E = [M, Ir, N ].

Clearly, E ∈ MI(PJ) by Lemma 4.2.17(i). Then,

EJXJE = [M, Ir, N ] ?J [M,A,N ] ?J [M, Ir, N ] = [M, Ir A Ir, N ] = [M,A,N ].

(ii) Having proved part (i), we may apply Proposition 2.4.8 for the second part.
First, we recall that for each E ∈ MI(PJ), the local monoid E?JPJ ?JE is isomorphic
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to the semigroup W ∼= Mr (see Proposition 2.4.11 and the discussion following
it). Thus, it suffices to prove that Mr = Gr ·E(Mr). Let X ∈ Mr and let B =
{u1, . . . , uk, uk+1, . . . , ur} be a basis for Vr such that {uk+1, . . . , ur} is a basis for
ker(λX). Then, extend the linearly independent set {u1λX , . . . , ukλX} arbitrarily to
a basis {u1λX , . . . , ukλX , vk+1, . . . , vr} for Vr. Now, define α ∈ Aut(Vr) as the linear
transformation satisfying

uiα = uiλX , and ujα = vj

for all 1 ≤ i ≤ k and r + 1 ≤ j ≤ r. Also, we define β ∈ End(Vr) as the linear
transformation satisfying

uiλXβ = uiλX , and vjβ = 0

for all 1 ≤ i ≤ k and r + 1 ≤ j ≤ r. Thus, the matrix corresponding α has rank r,
the matrix corresponding β is an idempotent, and we have αβ = λX .

Finally, we are ready to calculate the rank of PJ . This result was proved in [30]
as Theorem 6.10, under the assumption that q ≤ ℵ0. Here, we apply Theorem 2.4.16
and include the case q ≥ ℵ0, as well.

Theorem 4.2.19. Suppose r ≥ 1.

(i) If q > ℵ0, then rank(PJ) = |PJ | = q.

(ii) If q ≤ ℵ0, L = max(m,n), and m = n = r does not hold, then

rank(PJ) = qr(L−r) + 1.

Proof. If q > ℵ0 and r ≥ 1, then |PJ | = q (as discussed below Remark 4.2.16), so
PJ cannot be generated by a set of smaller cardinality. Now, suppose q ≤ ℵ0. Recall
thatM is regular (Proposition 4.1.5), PJ is MI-dominated (Proposition 4.2.18(i)),
andMr \ Gr is an ideal ofMr (Lemma 4.2.14(vi)); therefore, Theorem 2.4.16 gives

rank(PJ) = rank(Mr : Gr) + max(|ĤJ
Y /RJ |, |ĤJ

Y /L J |, rank(Gr)).

Here, we have |ĤJ
Y /RJ | = qs(m−r) and |ĤJ

Y /L J | = qs(n−r), as calculated in the
proof for parts (i) and (ii) of Theorem 4.2.15. Now, Lemma 4.2.14(viii) implies
rank(Mr : Gr) = 1 and rank(Gr) ≤ 2 ≤ q for all r ∈ N. Since m = n = r does not
hold, we have r < max(m,n) = L, so

rank(PJ) = rank(Mr : Gr) + max(qs(m−r), qs(n−r), rank(Gr)) = 1 + qr(L−r).

Remark 4.2.20. In the case m = n = r, we have MJ
mn
∼= Mr, and Proposition

4.2.3 gives PJ = PJ3 =Mr. Hence, rank(PJ) = rank(Mr), which is stated in Lemma
4.2.14 (viii). The only case remaining is r = 0. Then, we have PJ = {Omn}, so
rank(PJ) = 1.
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In Proposition 4.2.1(ii), we have given a sufficient condition for two sandwich
semigroups to be isomorphic. Now, we have gathered enough information to classify
the isomorphism classes of finite linear sandwich semigroups, as in [30].

Theorem 4.2.21. Let F1 and F2 be two finite fields with |F1| = q1 and |F2| = q2.
Further, let m,n, k, l ∈ N and let A ∈ Dr(Mmn) and B ∈ Ds(Mlk). Then, the
following are equivalent

(i) MA
mn(F1) ∼=MB

kl(F2),

(ii) one of the following holds

(a) r = s = 0 and qmn1 = qkl2 , or

(b) r = s ≥ 1, (m,n) = (k, l), and q1 = q2.

Further, if r ≥ 1, then MA
mn(F1) ∼= MB

kl(F2) if and only if Reg(MA
mn(F1)) ∼=

Reg(MB
kl(F2)).

Proof. Note that, in the case where r 6= s, we have MA
mn(F1) 6∼= MB

kl(F2), because
(by Proposition 4.2.7) the first semigroup has r+ 1 regular DA-classes, whereas the
second has s+1 regular DB-classes. Thus, in this case the two sandwich semigroups
cannot be isomorphic. So, suppose r = s. If r = s = 0, thenMA

mn(F1) andMB
kl(F2)

are both zero-semigroups (for any two elements, the product is always the zero-
matrix). Clearly, two such semigroups are isomorphic if and only if their sizes are
equal. Of course, we have |MA

mn(F1)| = qmn1 and |MB
kl(F2)| = qkl2 , so (a)⇒ (i).

Now, suppose r = s ≥ 1. We assume there exists an isomorphism, examine the
structure of the regular subsemigroups PA and PB and draw conclusions. Firstly,
from Theorem 4.2.15(v) follows that any group H A-class (H B-class) in PA (PB)
is isomorphic to the group G1(F1) ∼= F×1 (resp. G1(F2) ∼= F×2 ) of cardinality q1 − 1
(q2 − 1). Thus, the two sandwich semigroups can be isomorphic only if q1 = q2, so
we write q = q1 = q2. Secondly, part (vi) of the same Theorem implies that the class
DA

1 (DB
1 ) in PA (PB) contains qm−r

[r
1
]
q
(qk−r

[r
1
]
q
) RA-classes (RB-classes). Hence,

the equality m = k is necessary for the two sandwich semigroups to be isomorphic.
By a dual argument, so is n = l. Therefore, we have proved that (i)⇒ (a) ∨ (b).

Since (b)⇒ (i) follows from Proposition 4.2.1(ii), the equivalence of (i) and (ii)
is proved. In the last statement, it is obvious that MA

mn(F1) ∼= MB
kl(F2) implies

Reg(MA
mn(F1)) ∼= Reg(MB

kl(F2)). For the converse, we use the contrapositive: if
MA

mn(F1) 6∼=MB
kl(F2) and r ≥ 1, then the equivalence proved above gives ¬(b); if we

negate either of the two equalities, then we have Reg(MA
mn(F1)) 6∼= Reg(MB

kl(F2)),
by the discussion in the previous paragraph.

Remark 4.2.22. As expected, the infinite case is rather more complicated. The
reasoning above does not work since the fact that two fields have isomorphic mul-
tiplicative groups in this case does not imply their being isomorphic. Take, for
instance, the fields Q and Z3(x). They are clearly non-isomorphic, having different
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characteristics. However, we will show that their multiplicative groups are iso-
morphic. First, let P denote the set of all primes, and, for any q ∈ Q×, consider the
following (unique) decomposition

q = s ·
∏

p∈P
pnp ,

where s ∈ {−1,+1} and np ∈ Z (only a finite number of them being non-zero) for all
p ∈ P. Since the set of primes is countably infinite, this decomposition establishes
an isomorphism

Q× → Z2 ⊕
⊕

i∈N
Z (∼= Z2 ⊕ F ),

where F is a free abelian group of countably infinite rank. On the other hand, if A
is the set of all irreducible polynomials in Z3[x] with the leading coefficient 1, then
A is countably infinite and every element f ∈ Z3(x)× may be written in a unique
manner as

f(x) = w ·
∏

p∈A
p(x)np ,

where w ∈ Z2 and np ∈ Z (only a finite number of them being non-zero) for all
p ∈ A. Again, this establishes an isomorphism

Z3(x)× → Z2 ⊕
⊕

i∈N
Z (∼= Z2 ⊕ F ).

Therefore, Q× ∼= Z3(x)×.
Thus, the case q ≥ ℵ0 requires a different approach. Since the general theory

in Chapter 2 does not advance our knowledge on this front, we leave this problem
open, as did the authors of [30]. However, we present some conclusions made in that
article:

1. If m,n, k, l ∈ N, |F1| = |F2| and rank(A) = rank(B) = 0, then MA
mn(F1) ∼=

MB
kl(F2) since both are zero semigroups of size |F1| = |F2|.

2. If F×1 ∼= F×2 and rank(A) = rank(B) = 1, then J = Jnm1 =
[ 1 O

O O
]
, so



a11 a12 ··· a1n
a21 a22 ··· a2n
...

... . . . ...
am1 am2 ··· amn


 ?J



b11 b12 ··· b1n
b21 b22 ··· b2n
...

... . . . ...
bm1 bm2 ··· bmn


 =




a11b11 a12b12 ··· a1nb1n
a21b21 a22b22 ··· a2nb1n
...

... . . . ...
am1am1 am2bm2 ··· amnbmn




and henceMA
mn(F1) ∼=MB

mn(F2).

3. IfMA
mn(F1) ∼=MB

kl(F2) then Rank(A) = Rank(B) (as in the proof of Theorem
4.2.21).

4. If MA
mn(F1) ∼= MB

kl(F2) and Rank(A) = Rank(B) = r ≥ 2, then F1 ∼= F2.
Namely, Theorem 4.2.15(v) states that the maximal subgroups of MA

mn are
isomorphic to Gs(F1) for 0 ≤ s ≤ r, and in [27] it has been proved that
Gs(F1) ∼= Gs(F1) implies F1 ∼= F2 for s ≥ 2.
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Remark 4.2.23. Note that, regardless of the cardinality of the field F, the following
is true: for A,B ∈ Mnm, we have MA

mn
∼= MB

mn if and only if RankA = RankB.
This is an earlier result, proved in [66].

We close this subsection by discussing the simplifications occurring in the case
that r = min(m,n).

Remark 4.2.24.

• If J = Jnmm, then MJ
mn
∼= Rn(m). Since r = m, Theorem 4.2.15(i) gives

R̂J = RJ ; furthermore, part (v) of the same theorem implies that, ifX ∈Mmn

is a matrix with RankX = s and HX is a group H -class ofMr, then ĤJ
X is a

1×qs(n−m) rectangular group over Gs. Of course, the equality r = m simplifies
somewhat the rest of the formulas, as well. Most significantly, from Theorem
4.2.19, we conclude that

rank(Reg(Rn(m))) =
®
q, if q ≥ ℵ0;
qm(n−m) + 1, if q < ℵ0 and n 6= m.

• If J = Jnmn, thenMJ
mn
∼= Cm(n). Naturally, the results are dual to the ones

in the previous case.

4.2.4 Idempotents and idempotent-generation

In Lemma 4.2.17(i), we characterised the idempotents ofMJ
mn. Here, we enumerate

them, describe the idempotent-generated subsemigroup of MJ
mn and calculate its

rank.
In order to present these results, we will need some more information on the

idempotents and the idempotent-generated subsemigroup of Mr. The first state-
ment of the following proposition was proved in [30], and the second one may be
easily deduced from that proof. Similarly, part (iv) was proved in [25], and from
that proof (more specifically, from Lemma 2.4 of [25]) we may infer (v).

Let E(Mr) and EJ(MJ
mn) denote the idempotent-generated subsemigroups of

Mr andMJ
mn, respectively.

Proposition 4.2.25.

(i) If |F| = q < ℵ0, then

|E(Mr)| =
r∑

s=0
|E(Ds(Mr))| =

r∑

s=0
qs(r−s)

ñ
r

s

ô
q

. (4.4)

(ii) If |F| = q ≥ ℵ0, then |E(Mr)| =





q, if r ≥ 1;
2, if r = 1;
1, if r = 0.

(iii) (Erdos, [42]) E(Mr) = 〈E(Mr)〉 = (Mr \ Gr) ∪ {Ir}.
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(iv) (Dawlings, [25]) If |F| = q < ℵ0 and r ≥ 1, then

rank(Mr \ Gr) = idrank(Mr \ Gr) = qr − 1
q − 1 ,

so rank(E(Mr)) = idrank(E(Mr)) = qr−1
q−1 + 1.

(v) Suppose |F| = q ≥ ℵ0.

− If r = 1, then rank(E(Mr)) = idrank(E(Mr)) = 2.
− If r ≥ 2, then rank(Mr \ Gr) = q, so rank(E(Mr)) = idrank(E(Mr)) =
q + 1 = q.

Proof. We prove only parts (i), (ii) and (v) since the other two were stated together
with the corresponding references.

(i) and (ii). To calculate the number of idempotents inMr, we enumerate the
idempotent endomorphisms of Vr. From Proposition 3.2.16(i), (by fixing X = Y =
Vr and a = idX) we deduce that

E(Vr) = {α ∈ End(Vr) : α�imα = idimα}.

To fix an idempotent of rank s, first we specify its image of rank s, i.e. an s-
dimensional subspace W of Vr. By the discussion preceding Proposition 4.1.4,
this may be done in

[r
s

]
q
ways. Let B = {v1, . . . , vr} be a basis for Vr such that

B1 = {v1, . . . , vs} is a basis for W . Having fixed the image W , we know that the
idempotent must map B1 identically, and we need to define how it maps the elements
vs+1, . . . , vr. Of course, the images of these elements have to be in W . Thus, any
of the qs elements of the space W (i.e. linear combinations of the elements of B1) is
a possible image. Since the rank of an idempotent in End(Vr) may be any integer
from 0 to r, we have proved (4.4) regardless of |F| being finite or infinite, and both
statements follow directly.

(v) In the case r = 1, we clearly have E(Mr) = E(q) = {0, 1} (the only solutions
of the equation x2 − x = 0 in any field) so E(Mr) = E(Mr) and rank(E(Mr)) =
idrank(E(Mr)) = 2. Now, suppose r ≥ 2. In Lemma 2.4 of [25], Dawlings proved
that any generating set E′ ⊆ E(Mr) of Mr \ Gr necessarily covers the principal
factor PFr−1 of Mr containing the maps of rank r − 1. The semigroup PFr−1 =
(Dr−1 ∪{0}, ·) is defined in the following way: for all s, t ∈ Dr−1, let s · 0 = 0 · s = 0,
and

st =
®
st, st ∈ Dr−1;
0, st 6∈ Dr−1.

(for the background on principal factors, see [58]). The term "E′ covers PFr−1"
means that E′ has a non-empty intersection with each non-zero L -class and each
non-zero R-class of PFr−1. However, since the Green’s relations (of non-zero ele-
ments) of PFr−1 clearly hold inMr, as well, we have

rank(Mr \ Gr) ≥ |PFr−1 /R | − 1 ≥ |Dr−1 /R | = q,
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the last equality following from q ≥ ℵ0 and Proposition 4.1.4(i).

Recall that, in the case where r = Rank J = 0, we have J = Onm. Hence,
PJ = EJ(PJ) = {Omn}, rendering any further investigation of idempotents and
the idempotent-generated subsemigroup redundant. Similarly, if m = n = r, we
haveMJ

mn =MIr
mn
∼=Mr, so Proposition 4.2.25 describes the idempotents and the

idempotent-generated subsemigroup in this case. For these reasons, for the rest of
this subsection, we assume that m = n = r is not the case and that r > 0.

In the following result, we calculate the size of EJ(MJ
mn) using Proposition

4.2.25(i) and (ii). The first part of the proposition was proved in [30], and the
second part is a new addition.

Proposition 4.2.26.

(i) If |F| = q < ℵ0, then

|EJ(MJ
mn)| =

r∑

s=0
qs(m+n−r−s)

ñ
r

s

ô
q

. (4.5)

(ii) If |F| = q ≥ ℵ0, r ≥ 1, and m = n = r is not the case, then |EJ(MJ
mn)| = q.

Proof. First, we calculate the number of idempotents of rank s in PJ , and then we
sum over all the possible values of s (we have 0 ≤ s ≤ r). Recall that RankA =
RankA for any A ∈ PJ . Thus, each idempotent of rank s in PJ corresponds to some
idempotent of the same rank inMr. More precisely, Theorem 4.2.15(v) implies that
for each idempotent from the set E(Ds(Mr)) there exist qs(m−r) ·qs(n−r) idempotents
mapping to it. In the process of proving Proposition 4.2.25(i), we showed that (4.4)
holds regardless of q = |F| being finite or infinite. Hence, (4.5) holds regardless of
q = |F| being finite or infinite. Thus, we proved (i), and (ii) follows from the fact
that m+ n− 2r > 0 (which holds because m = n = r is not the case).

Next, we characterise the idempotent-generated subsemigroup and calculate its
rank and idempotent rank. Both results were proved in [30]. Here, we consider
the case q ≥ ℵ0, as well, and provide simplified proofs, applying the general theory
presented in Chapter 2.

Theorem 4.2.27. InMJ
mn, we have

EJ(MJ
mn) = 〈EJ(MJ

mn)〉J = (PJ \DJ
r ) ∪ EJ(DJ

r ).

Proof. From Theorem 2.3.15 and Proposition 4.2.25(iii) it follows that

EJ(MJ
mn) = (E(Mr))ϕ−1 =

Ä
(Mr \ Gr) ∪ {Ir}

ä
ϕ−1

= (Mr \ Gr)ϕ−1 ∪ (Ir)ϕ−1 = (PJ \DJ
r ) ∪ EJ(DJ

r ).



190 Chapter 4. Sandwich semigroups of matrices

Theorem 4.2.28. Suppose r ≥ 1.

(i) If |F| = q < ℵ0, and L = max(m,n), then

rank(EJ(MJ
mn)) = idrank(EJ(MJ

mn)) = qr(L−r) + qr − 1
q − 1 .

(ii) If |F| = q ≥ ℵ0 and m = n = r is not the case, then

rank(EJ(MJ
mn)) = idrank(EJ(MJ

mn)) = q.

Proof. Recall that PJ is MI-dominated (by Proposition 4.2.18(i)) and that Theorem
4.2.15 implies |ĤJ

K/RJ | = qr(m−r) and |ĤJ
K/L J | = qr(n−r). Hence, Theorem 2.4.17

gives

rank(EJ(PJ)) = rank(E(Mr)) + max(qr(m−r), qr(n−r))− 1 and
idrank(EJ(PJ)) = idrank(E(Mr)) + max(qr(m−r), qr(n−r))− 1.

Therefore, parts (i) and (ii) follow immediately from Proposition 4.2.25(iv) and
(v).

Naturally, we may apply the results of this subsection to obtain information on
the idempotents and the idempotent-generated subsemigroup of Rn(m) and Cm(n).

Remark 4.2.29.

• If J = Jnmm, thenMJ
mn
∼= Rn(m). Since r = m, Proposition 4.2.26 gives

|EJ(Rn(m))| =
® ∑m

s q
s(n−s)[m

s

]
q
, q < ℵ0;

q, q ≥ ℵ0 and m 6= n.

Moreover, Theorem 4.2.27 applies as well, and Theorem 4.2.28 gives

rank(EJ(Rn(m))) =
®
qm(n−m) + qm−1

q−1 , q < ℵ0;
q, q ≥ ℵ0 and m 6= n.

• If J = Jnmn, thenMJ
mn
∼= Cm(n), and the results are dual.

4.2.5 The rank of a sandwich semigroup MJ
mn

Finally, we turn to the problem of calculating the rank of the semigroupMJ
mn. Not

surprisingly, the results and techniques used here evoke those of Subsection 3.2.5.
As always, we start with the simpler cases.

• Suppose r = 0. Then, A ?J B = Omn for all A,B ∈Mmn, so

rank(MJ
mn) = |Mmn \{Omn}| =

®
qmn − 1, q < ℵ0;
q, q ≥ ℵ0.
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• Suppose r ≥ 1 and q > ℵ0. Clearly, |MJ
mn | = q, so rank(MJ

mn) = q (since
an uncountable set cannot be generated by a set of smaller cardinality).

• Suppose r ≥ 1, q < ℵ0, and m = n = r. In this case, MJ
mn
∼= Mr, so the

value rank(MJ
mn) is stated in Lemma 4.2.14(viii)(c).

• Suppose r ≥ 1, q = ℵ0, and m = n = r. Again,MJ
mn
∼=Mr. Since |Mr | =

qmn = ℵ0, we have rank(Mr) ≤ ℵ0. Let us show that the value cannot be finite.
Suppose thatMr(F) is finitely generated. Then, so is the multiplicative group
F× of the field F (consider the determinants of the generators forMr(F)). It is
well-known that any subgroup of a finitely generated Abelian group is finitely
generated (for instance, see Exercise 10.7.(ii) in [109]). We have the following
cases:

− Suppose F is a field of characteristic 0. Then, F× contains a copy of
Q×, which is not finitely generated. However, since any subgroup of a
finitely generated Abelian group is finitely generated, this contradicts the
conclusion that F× is finitely generated.

− Suppose F is a field of characteristic p. Thus, it is either an algebraic or a
transcendental field extension over Fp (the finite field of cardinality p). In
the first case, F is a finite field, which contradicts the assumption. In the
second case, there exists a transcendental elementX ∈ F over the field Fp.
Thus, F× contains a copy of the multiplicative group Fp(X)×, which is not
finitely generated (if it were, the extension would be algebraic). Again,
this contradicts the earlier conclusion that F× is finitely generated.

Since in both cases we arrive at a contradiction, Mr(F) cannot be finitely
generated.

Therefore, for the remainder of this subsection, we assume that r ≥ 1,
q ≤ ℵ0, and that m = n = r is not the case.

Recall the notation for D = J -classes of Mmn (note that these are not the
DJ = J J classes ofMJ

mn):

Dmn
s = {M ∈Mmn : RankM = s}.

First, we present a mechanism for generating the "lower" D-classes (a result
from [30]), which enables us to immediately calculate rank(MJ

mn) in the case when
r < min(m,n).

Lemma 4.2.30. Put l = min(m,n). If 0 ≤ s ≤ min(l − 1, r) and m = n = r is not
the case, then Dmn

s ⊆ Dmn
s+1 ?J Dmn

l .

Proof. Suppose m = n = r is not the case. Let X ∈ Ds(Mmn), where 0 ≤
s ≤ min(l − 1, r). Then, λX ∈ Hom(Vm, Vn) and we need to define maps α, β ∈
Hom(Vm, Vn) such that

α ◦ λJ ◦ β = λX . (4.6)
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Let B = {v1, . . . , vm} be a basis of Vm, where {vs+1, . . . , vm} is a basis of ker(λX).
We define the map α ∈ Hom(Vm, Vn) in the following way

(vi)α =





eni, if 1 ≤ i ≤ s;
0, if s < i < m.
enn, if i = m.

Clearly, Rank(α) = s + 1. Since (eni)λJ = emi for 1 ≤ i ≤ r, and ker(λJ) =
span{er+1, . . . , en}, our argument differs for the cases r < m and r = m.

Suppose r < m. It suffices to choose β ∈ Hom(Vm, Vn) to be any linear transform-
ation of rank l satisfying emi 7→ (vi)λX for all 1 ≤ i ≤ s (such a transformation
exists, since RankX = s < l = min(m,n)).

Suppose r = m. By our assumption, r = m = n is not the case, so we have
r = m < n. In this case, β may be any linear transformation from Hom(Vm, Vn)
of rank l satisfying emi 7→ (vi)λX for all 1 ≤ i ≤ s, and ern = emn 7→ 0 (this
condition is needed because (vm)αλJ = emn).

One may easily check that the equality (4.6) holds in both cases.

Applying a simple (reverse) induction, one may show the following:

Corollary 4.2.31.

(i) If r < min(m,n) = l, then 〈Dmn
r+1 ∪Dmn

r+2 ∪ · · · ∪Dmn
l 〉J =Mmn.

(ii) If r = min(m,n) = l, then 〈Dmn
l 〉J =Mmn.

We are now ready to calculate the rank ofMJ
mn in the case that r < min(m,n).

This result was proved in [30] for q < ℵ0, and we expand it to include the case
q = ℵ0.

Theorem 4.2.32. Suppose r < l = min(m,n). Then, MJ
mn = 〈Ω〉J , where Ω =

{X ∈ Mmn : RankX > r}. Further, any generating set for MJ
mn contains Ω, so it

follows that

rank(MJ
mn) = |Ω| =

{ ∑l
s=r+1

[m
s

]
q

[n
s

]
q
q(
s
2)(q − 1)s[s]q!, if q < ℵ0;

q, if q = ℵ0.

Proof. By the discussion in Section 2.6, any generating set of MJ
mn must include

elements from every maximal J J -class. Under the assumptions of the theorem, Pro-
position 4.2.8(i) guarantees that the maximal J J -classes are precisely the singletons
{X} such that RankX > r (hence, the possible value ranges from r+1 to min(m,n) =
l). Therefore, any generating set contains all such elements, and rank(MJ

mn) ≥∑l
i=r+1 |Ds

mn |. In fact, from Corollary 4.2.31(i) follows that this value is a lower
bound, as well. The size of Ds

mn is calculated in Proposition 4.1.4(iv), so the state-
ment follows.
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Next, we aim to calculate the rank in the case r = min(m,n). We include an
auxiliary results, which appeared in [30].

Lemma 4.2.33.

(i) If r = m < n, then PJ2 =MJ
mn, PJ1 = PJ , and L J = L onMJ

mn.

(ii) If r = n < m, then PJ1 =MJ
mn, PJ2 = PJ , and RJ = R onMJ

mn.

Proof. We prove only part (i), since (ii) follows by a dual argument. Since r =
m < n, J is left-invertible inMmn by Corollary 4.1.8(ii). Thus, the dual of Lemma
2.2.38 implies the statement.

Finally, we present a theorem stating the rank of MJ
mn with Rank J = r =

min(m,n) in the case q < ℵ0 [30], and in the case q = ℵ0, as well.

Theorem 4.2.34. Suppose r = min(m,n) and m 6= n. Then,

rank(MJ
mn) =

® [L
l

]
q
, if q < ℵ0;

q, if q = ℵ0;

where l = min(m,n) and L = max(m,n).

Proof. Without loss of generality, we may suppose that r = m < n (because
the case r = n < m is dual). Thus, Lemma 4.2.33(i) (and its proof) applies.
In particular, J is left-invertible. Recall that the partial semigroup M is stable
(by Proposition 4.1.1). In addition, Proposition 4.1.1 and Corollary 4.2.31(ii) give
〈JK〉J = 〈Dmn

m 〉J =MJ
mn . Thus, we may apply Proposition 2.6.4 in order to calcu-

late rank(MJ
mn). Firstly, note that n > m = r ≥ 1 and q ≥ 2, soñ

n

r

ô
q

= (qn − 1) · · · (qn−r+1 − 1)
(qr − 1) · · · (q − 1) ≥ qn−r+1 − 1

q − 1 = qn−r + qn−r−1 · · ·+ 1 ≥ 2.

Therefore, Theorem 4.2.15(v), Lemma 4.2.14(viii)(a) and Proposition 4.1.4(ii) im-
ply

rank(HJ
K) = rank(Gr) ≤ 2 ≤

ñ
n

r

ô
q

= |Db /L | = | Jb /H |,

the last equality following from Proposition 4.1.1 and the dual of Proposition 2.2.37(ii).
Finally, Proposition 2.6.4(iii) implies

rank(MJ
mn) = rank(T ) = | Jb /H | =

ñ
n

r

ô
q

=
ñ
L

l

ô
q

.

Corollary 4.2.35. From the previous theorem, the reader may readily conclude that

rank(Rn(m)) =
ñ
n

m

ô
q

and rank(Cm(n)) =
ñ
m

n

ô
q

.
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4.2.6 Egg-box diagrams

As in the previous chapter, we provide several egg-box diagrams (they originally
appeared in [30], and all were generated by GAP [98]) to illustrate the structural
results for MJ

mn. For more information on egg-box diagrams, see the introduction
to Subsection 3.1.6.
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Figure 4.4: Egg-box diagram of the linear sandwich semigroupMJ231
32 (Z2).

0

 

      

 

 

 

 

 

 

      

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

  

                        

          

            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

        

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

        

                        

    

                        

    

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

                

        

                

    

        

    

        

    

        

    

        

    

                

        

                

    

Figure 4.5: Egg-box diagram of the linear sandwich semigroupMJ332
33 (Z2).
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Figure 4.6: Egg-box diagrams of the linear sandwich semigroups MJ232
32 (Z2) and

MJ422
24 (Z2) (left and right, respectively).
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0

               

Figure 4.7: Egg-box diagram of the linear sandwich semigroupMO22
22 (Z2) or, equi-

valently,MO12
21 (F4).
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Figure 4.8: Egg-box diagrams (drawn sideways) of the regular linear sandwich semig-
roups Reg(MJ

43(Z2)) where Rank(J) = 0, 1, 2, 3 (top to bottom).
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Figure 4.9: Egg-box diagrams (drawn sideways) of the full linear semigroups
M0,M1,M2,M3, all over Z2 (top to bottom). By the theory in Subsection 2.3.4,
the regular semigroups in Figure 4.8 are inflations of these semigroups, top to bottom
respectively.



Chapter 5

Sandwich semigroups of
partitions

In this chapter, we embark on the task of investigating sandwich semigroups in
several types of diagram categories. Namely, we study the partition category P, the
planar partition category PP, the Brauer category B, the Temperley-Lieb category
T L, the partial Brauer category PB, and the Motzkin category M . First, we define
the corresponding partial semigroups and examine their properties, and then we
investigate the sandwich semigroups they contain. Unlike sandwich semigroups of
transformations, these have not been studied in the past. However, the idea is fully
justified, since diagram categories and diagram algebras play a significant role in
representation theory [52, 90], classical groups [10], knot theory [63, 64, 69, 70, 115],
invariant theory [78,79], statistical mechanics [65,68,89,119], theoretical physics [90]
et al. Furthermore, each category that we study attracted considerable scientific
interest in the past (for instance, P in [65, 89], PP in [52, 65], B in [10, 79], PB
in [91,92], T L in [115,119], M in [7]) and is therefore worth investigating.

This chapter is entirely based on [28], and here we cite this paper as the source
of the results unless otherwise stated.

Again, we follow the layout of Section 3.1. After introducing the necessary
definitions and notions, we formally define the partial semigroups we will be study-
ing. Then, we describe their Green’s relations, characterise and enumerate Green’s
classes, and investigate the topic of regularity. Next, we focus on the sandwich
semigroup Kσmn (where K is one of P, PP, B, PB, T L or M ). We conduct the
usual investigation up to a point; we investigate Green’s relations and classes, max-
imal J σ-classes, connections to other non-sandwich diagram semigroups, the regu-
lar subsemigroup Pσ and the inflation from Subsection 2.3.4, idempotents, and the
idempotent-generated subsemigroup. For most of the diagram categories, we are
not able to follow through with our further "program", because it turns out that P,
PP, PB, T L and M do not have the properties needed for the combinatorial part
of the investigation (i.e. MI-domination of the regular subsemigroup). However, the
category B turns out to be much more amenable to analysis via our techniques. So,
we are able to give necessary and sufficient conditions for two sandwich semigroups
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in B to be isomorphic, to describe the combinatorial structure of Pσ, apply the
formulae holding in the case of MI-domination and calculate the rank of Bσmn.

5.1 Partial semigroups of partitions
As in the previous cases, our first task is to define the partial semigroups corres-
ponding to our categories. We start with the category P since all of the others are
its subcategories. For any positive integer n ∈ N, we define [n] = {1, 2, . . . , n}. In
addition, we assume [0] = ∅. Furthermore, for any A ⊆ N0, let A′ = {a′ : a ∈ A}
and A′′ = {a′′ : a ∈ A}. Now, for m,n ∈ N0, let Pmn denote the set of all partitions
of the set [m] ∪ [n]′. Then,

P =
⋃

m,n∈N0

Pmn

is the set of all such set partitions. For a partition σ ∈ P, let εσ denote the
corresponding equivalence.

Let m,n ∈ N0 and fix any partition σ ∈ Pmn. We depict it in a specific manner:
we create a graph with m+n vertices in the plane R2, respecting the following rules

• each element a ∈ [m] is assigned to the vertex (a, 1);

• each element b′ ∈ [n]′ is assigned to the vertex (b, 0);

• for each equivalence class S of σ, the vertices corresponding to the elements
of S constitute a (connected) component of the graph;

• each edge of the graph is drawn inside the rectangle {(x, y) ∈ R2 : 0 ≤ x ≤
max(m,n), 0 ≤ y ≤ 1}.

In Figure 5.1, we present such a graph for the partition

{{1, 5, 6}, {2}, {3, 4, 2′}, {7, 8′}, {1′, 6′}, {3′, 4′}, {5′}, {7′}} ∈ P78 . (5.1)

α =

Figure 5.1: An example of a diagram corresponding the partition (5.1).

The reader will immediately realise that, in general, there exist multiple graphs
corresponding to the same partition. We identify the partition with any such dia-
gram. Therefore, the properties of diagram α ∈ Pmn we are interested in are its
components. Those containing both upper and lower vertices (i.e. elements of both
[m] and [n]′) are called transversals. The number of transversals is the rank of the
partition α. The components containing only upper vertices (elements of [m]) are
upper nontransversals. The lower nontransversals are defined dually.

Since the transversals, together with the upper and the lower nontransversals,
precisely determine the partition containing them, we may present that partition
via the following scheme
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A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
,

where Ai ∪ B′i (1 ≤ i ≤ r) are the transversals, Ci (1 ≤ i ≤ s) are the upper
nontransversals, and D′i (1 ≤ i ≤ t) are the lower nontransversals (if any of these
sets is a singleton, we omit the brackets). For instance, the partition (5.1) may be
presented as (

{3, 4} 7 {1, 5, 6} 2
2 8 {1, 6} {3, 4} 5

∣∣∣ 7

)
.

Note that any of the numbers r, s, t can be zero. Moreover, for the partition ∅ ∈ P00,
all three are simultaneously zero.

Having introduced the notion of a diagram, we may define a partial operation of
multiplication on P. For partitions α ∈ Pmn and β ∈ Pkl, the product αβ will be
defined if and only if n = k; in that case, we use any two diagrams representing α
and β to define the product diagram Π(α, β) in the following way:

• modifying the diagram representing α ∈ Pmn, we create the graph α↓, by
renaming each (lower) vertex x′ ∈ [n]′ to x′′ (hence obtaining a graph on the
vertex set [m] ∪ [n]′′);

• modifying the diagram representing β ∈ Pnl, we create the graph β↑, by
renaming each (upper) vertex x ∈ [n] to x′′ (hence obtaining a graph on the
vertex set [n]′′ ∪ [l]);

• by identifying the vertices of the set [n]′′ in α↓ with the corresponding vertices
of [n]′′ in β↑, we obtain the graph Π(α, β).

(In future, we will sometimes talk about the product diagram of more than two
diagrams, which is constructed accordingly.) Using the product diagram Π(α, β),
we define the product partition α · β = αβ on the set [m] ∪ [k]′, by

(r, s) ∈ αβ ⇔ r and s belong to the same component of Π(α, β),

for r, s ∈ [m]∪ [k]′. In other words, we obtain εαβ by taking the smallest equivalence
relation containing εα↓ ∪ εβ↑ , and removing any pair containing an element of [n]′′.
Via this approach, one may easily prove that

(αβ)γ = α(βγ)

for all α, β, γ ∈ P such that αβ and βγ are defined.
In Figure 5.2, we provide an example illustrating the process of multiplication

of partitions (diagrams).
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α =

β =
−→ −→ = αβ

Figure 5.2: Multiplication of partitions α and β via the product diagram Π(α, β).

In addition, we define a unary operation on P, which serves as a tool for "inver-
sion" of elements; namely, the involution ∗ : P → P, which mapsÇ

A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
to

Ç
B1 · · · Br D1 · · · Dt

A1 · · · Ar C1 · · · Cs

å
,

may be interpreted as reflecting the diagram (representing the partition) in a hori-
zontal axis. It is easily seen that, for any α ∈ P, (α∗)∗ = α and α∗ is an inverse of
α. Furthermore, by analysing the example in Figure 5.2, one may easily conclude
that

(αβ)∗ = β∗α∗,

for any α, β ∈ P such that the product αβ is defined (we just reflect all the diagrams
in the process in a horizontal axis). Thus, the map P → P : α 7→ α∗ is an anti-
isomorphism.

Finally, for m,n ∈ N0 and α ∈ Pmn, we define

α δ = m and αρ = n.

Thus, for any α, β ∈ P, the product αβ is defined if and only if αρ = β δ. Further-
more, α∗ ρ = α δ and α∗ δ = αρ. Therefore, we may conclude that (P, ·,N0, δ,ρ) is
a partial semigroup (as defined in [90]), and (P, ·,N0, δ,ρ,

∗ ) is a regular partial ∗-
semigroup. Moreover, P is monoidal, since, for m ∈ N0, the partition ιm = {{x, x′} :
0 ≤ x ≤ min(m)} is the left identity of Pnm and the left identity of Pmn, for any
n ∈ N0.

Now, we introduce the partial subsemigroups of P we are interested in. Firstly,
let

B = {α ∈ P : each block of α has exactly two elements},
PB = {α ∈ P : each block of α has at most two elements}.

Clearly, both subsets are closed for involution. Moreover, this holds for multiplica-
tion, as well. Let us elaborate on this conclusion. In the process of multiplication,
any merging of blocks happens in the middle row of the product diagram. Since the
(maximal) number of elements per block is 2, any new block is either a loop in the
middle row, or a path containing (at most) two transversals, one at each end. Thus,
the new block contains at most two elements in the resulting partition. Hence, we
may conclude that B and PB are subcategories of P (they are the Brauer and partial
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Brauer category, respectively), and that

(B, ·�B×B, δ �B, ρ �B,
∗�B) and (PB, ·�PB×PB, δ �PB, ρ �PB,

∗�PB)

are both regular partial ∗-semigroups.
Secondly, let

PP = {α ∈ P : α may be presented by a planar diagram},

(recall that diagrams are always drawn respecting the rules on page 198). As in
graph theory, a diagram is planar if it has no intersecting edges. In Figure 5.3, the
reader may inspect two diagrams representing the same partition, one of them non-
planar, and the other planar. Clearly, the partition itself is planar, because some
planar graph represents it.

Figure 5.3: A non-planar (on the left) and a planar (on the right) representation of
the same partition from PP67.

The set PP is by definition closed for the operation of involution, since reflecting
a planar diagram in a horizontal axis produces a planar diagram. Multiplication,
however, is a bit more complicated. In order to discuss it, we further explore the
problem of representing a partition. In [40], the authors introduced the canonical
graph of a planar partition. We apply the same construction, but generalise the
notion to include all partitions. In order to do that, we introduce additional notation.
Suppose m,n ∈ N (we discuss the case min(m,n) = 0 below). Let 1 ≤ k ≤ m and
1 ≤ l ≤ n, and let A = {a1, . . . , ak} and B = {b1, . . . , bl} be subsets of [m] and [n],
respectively, such that a1 < . . . < ak and b1 < . . . < bl. Then, we define graphs ΓA,
ΓB′ , and ΓA∪B′ , by V (ΓA) = V (ΓB′) = V (ΓA∪B′) = [m] ∪ [n]′, and

E(ΓA) = {{ai, ai+1} : 1 ≤ i ≤ k − 1}, E(ΓB′) = {{b′i, b′i+1} : 1 ≤ i ≤ l − 1}
E(ΓA∪B′) = E(ΓA) ∪ E(ΓB′) ∪ {{a1, b

′
1}, {ak, b′k}}.

(Here, V (G) and E(G) denote the vertex and edge set of a graph G.) Note that a
block of a partition is always a nonempty set, so there is no need to define Γ∅. Now,
the canonical diagram of a partition α ∈ Pmn is the graph Γα (drawn respecting
the "rules" for diagrams), with

V (Γα) = [m] ∪ [n]′ and E(Γα) =
⋃

X∈α
E(ΓX),

where the union is over all blocks X of α. The reader may easily check that
the right-hand side diagram in Figure 5.3 is the canonical graph of the partition
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{{1, 2, 3, 4}, {5, 6, 3′, 4′, 7′}, {1′, 2′}, {5′, 6′}}.
We claim: a partition α ∈ P may be presented by a planar diagram if and only

if its canonical diagram Γα may be drawn in planar fashion. In the following result
(Lemma 7.1 of [40]), we show the direct implication (the reverse being clear). For
the statement, we need some additional definitions from [40]. Again, let l, k ∈ N
and let A = {a1, . . . , ak} and B = {b1, . . . , bl} be nonempty subsets of N such that
a1 < . . . < ak and b1 < . . . < bl. We introduce the following terms.

• A and B are separated if ak < b1 or bl < a1; in these cases, we write A < B or
B < A, respectively.

• A is nested by B if there exists some 1 ≤ i < l such that bi < a1 and ak < bi+1.

• A and B are nested if A is nested by B or vice versa.

Now, we may prove

Lemma 5.1.1. Let α =
Ç
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
∈ PPmn, with min(A1) < · · · <

min(Ar). Then

(i) A1 < · · · < Ar and B1 < · · · < Br,

(ii) for all 1 ≤ i < j ≤ s, Ci and Cj are either nested or separated,

(iii) for all 1 ≤ i < j ≤ t, Di and Dj are either nested or separated,

(iv) for all 1 ≤ i ≤ r and 1 ≤ j ≤ s, either Ai and Cj are separated or else Cj is
nested by Ai,

(v) for all 1 ≤ i ≤ r and 1 ≤ j ≤ t, either Bi and Dj are separated or else Dj is
nested by Bi.

Consequently, the canonical diagram Γα may be drawn in planar fashion.

Proof. Note that the canonical diagram of a partition is constructed in such a way
that the edges of the same block do not intersect. Thus, the canonical diagram Γα
is planar if the edges of different blocks (components) do not intersect. That clearly
holds if the statements (i)− (v) are true.

Now, we need to prove that α being planar implies (i)− (v). Suppose min(A1) <
· · · < min(Ar). Note that, for all 1 ≤ i ≤ r, min(Ai) and min(Bi)′ are connected
by a path inside the rectangle {(x, y) ∈ R2 : 0 ≤ x ≤ max(m,n), 0 ≤ y ≤ 1} in
any graph representing α. Thus, if there existed j < k so that min(Bj) > min(Bk),
the above-mentioned paths for j and k would necessarily intersect. Therefore, we
have min(B1) < · · · < min(Br), and it suffices to show that A1 < · · · < Ar, (ii),
and (iv) hold, as the remaining parts follow by duality. For all three statements, we
prove the contrapositive. Suppose that A1 < · · · < Ar is not true. Then, there exist
1 ≤ i < j ≤ r such that x > y for some x ∈ Ai and y ∈ Aj . Hence,

min(Ai) < min(Aj) < y < x. (5.2)
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Since α ∈ PP, there exists a planar diagram D representing it. However, (5.2)
implies that the path connecting min(Aj) and min(Bj) intersects the path connecting
min(Ai) and x, which contradicts the planarity of D. Similarly, if we suppose that
(ii) is false, there exist 1 ≤ i < j ≤ s such that for some x ∈ Ci

min(Ci) < min(Cj) < x < max(Cj).

If (iv) is false, there exist 1 ≤ i ≤ r and 1 ≤ j ≤ s such that either

• min(Cj) < min(Ai) < x < max(Ai), for some x ∈ Cj , or

• min(Ai) < min(Cj) < y < max(Cj) for some y ∈ Ai.

In both cases, any diagram representing α has intersections of paths belonging to
two components, so it cannot be planar.

Now, we prove that PP is closed for multiplication. First, note that a product
diagram (see Figure 5.2) obtained by composing two planar diagrams is necessarily
planar. Now, suppose that α, β ∈ PP and αβ 6∈ PP. Thus, for the product
αβ =

Ç
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
, one of the statements (i) − (v) from Lemma 5.1.1 is

false. Then, by the proof of the same lemma, in αβ there exist two components X,Y
and vertices u, v ∈ V (X) and q, w ∈ V (Y ), such that, in any diagram representing
αβ, a path connecting u and v intersects a path connecting q and w. Note that
any product diagram Π(α, β) may be considered such a diagram, if we "forget" the
vertices in the middle row and keep the rest of the diagram intact. Thus, (for any
diagram representations of α and β,) the product diagram Π(α, β) is non-planar,
contradicting the first assertion.

At last, we may conclude that (PP, ·�PP ×PP , δ �PP , ρ �PP ,
∗�PP) is a

regular monoidal (ιm ∈PP, for m ∈ N) partial ∗-semigroup. Moreover, if we define

T L = B∩PP and M = PB∩PP,

the corresponding partial subsemigroups of P,

(T L, ·�T L×T L, δ �T L, ρ �T L,
∗�T L) and (M , ·�M ×M , δ �M , ρ �M , ∗�M ),

are clearly regular monoidal partial ∗-semigroups, as well. They are the Temperley-
Lieb and Motzkin category, respectively. Figure 5.4 (from [28]) illustrates the re-
lations among the categories P, PP, PB, B, M and T L, and gives a diagram
representative of an element of each of them.

Before continuing the investigation, we need to explore an interesting connection
between categories PP and T L. Let

T Leven =
⋃

m,n∈N0

T L2m,2n .

Clearly, this set is closed for involution and multiplication, so it defines a new sub-
category (partial subsemigroup) of T L (and P). As it turns out, the categories PP
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P

PB

B

PP

M

T L

Figure 5.4: Subcategories of P (left) and representative elements from each (right).

and T Leven are closely related! For α ∈PPmn, draw the canonical diagram of the
partition α, and then construct α̃ ∈ T L2m,2n by "tracing around" the blocks of α, as
in Figure 5.5 (from [28]). This is not a new idea; it was applied in Section 1 of [52]
to prove some relations between the planar partition (PPn, ·) and Temperley-Lieb
monoid (T L2n, ·).

Figure 5.5: A planar partition α from PP8,6 (black), with its corresponding
Temperley-Lieb partition α̃ from T L16,12 (grey).

Intuitively, it is clear that this map is an isomorphism. We leave it at that and
skip the proof of the previous statement, because the formal definition and proof
are rather technical and lengthy, but do not seem to benefit our investigation.

Having given a detailed introduction to each of the partial semigroups we are
interested in, we discuss the endomorphism monoids in each them. These are the
partition monoids Pm, planar partition monoids PPm, Brauer monoids Bm, partial
Brauer monoids PBm, Motzkin monoids Mm and Temperley-Lieb monoids T Lm
(also known as Jones monoids Jm), for m ∈ N. Note that the partition ιm is the
corresponding identity in each case. Furthermore, the invertible elements of Pm are
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the partitions
{{x, (xπ)′} : x ∈ [m]}, for π ∈ Sm .

Thus, the automorphism groups of PPm, Mm, and T Lm are trivial, and the auto-
morphism groups of Pm, Bm, and PBm may be identified with the symmetric group
Sm.

Our next task is to characterise Green’s relations in the partial semigroups P,
PP, B, PB, M and T L. In order to do that, we introduce some additional notation.
For α ∈ P,

dom(α) = {x ∈ [m] : x belongs to a transversal of α},
codom(α) = {x ∈ [n] : x′ belongs to a transversal of α},

ker(α) = {(x, y) ∈ [m]× [m] : (x, y) ∈ εα},
coker(α) = {(x, y) ∈ [n]× [n] : (x′, y′) ∈ εα},

NU(α) = {X ∈ α : X is an upper nontransversal of α},
NL(α) = {X ∈ α : X ′ is a lower nontransversal of α},

are the domain, codomain, kernel, cokernel, and the sets of upper and lower
nontransversals of α, respectively. Recall that Rank(α) is the number of transversals
of α. Hence, for α =

Ç
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
, we have Rank(α) = r, and

dom(α) =
r⋃

i=1
Ai, NU(α) = {Ci : 1 ≤ i ≤ s},

codom(α) =
r⋃

i=1
Bi, NL(α) = {Di : 1 ≤ i ≤ t},

[m]/ ker(α) = {Ai : 1 ≤ i ≤ r} ∪ {Ci : 1 ≤ i ≤ s},
[n]/ coker(α) = {Bi : 1 ≤ i ≤ r} ∪ {Di : 1 ≤ i ≤ t}.

Furthermore, it is easily seen that, for partitions α, β ∈ P with αρ = β δ the
following relations (and their duals) hold

dom(αβ) ⊆ dom(α), ker(αβ) ⊇ ker(α), NU(αβ) ⊇ NU(α),
dom(α) = codom(α∗), ker(α∗) = coker(α), NU(α∗) = NL(α),

Rank(α) = Rank(α∗), Rank(αβ) ≤ min(Rank(α),Rank(β)).
(5.3)

Before continuing, we need to point out that, due to the defining properties of
the categories B and T L, for all m,n ∈ N, we have

Bmn 6= ∅ ⇔ T Lmn 6= ∅ ⇔ m ≡ n (mod 2). (5.4)

Finally, we are ready to characterize Green’s relations of the partial semigroups
P, PP, B, PB, M and T L, as in [28].
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Proposition 5.1.2. Let K denote any of the categories P, PP, B, PB, M or T L.
If α, β ∈ K, then in the category K we have

(i) α ≤R β ⇔ α δ = β δ, ker(α) ⊇ ker(β), and NU(α) ⊇ NU(β);

(ii) α ≤L β ⇔ αρ = β ρ, coker(α) ⊇ coker(β), and NL(α) ⊇ NL(β);

(iii) α ≤J β ⇔
®

Rankα ≤ Rank β, if (a),
Rankα ≤ Rank β and Rankα ≡ Rank β (mod 2), if (b),

where (a) and (b) are the cases K ∈ {P,PP,M ,PB} and K ∈ {B, T L},
respectively;

(iv) αR β ⇔ ker(α) = ker(β) and NU(α) = NU(β)
⇔ dom(α) = dom(β) and ker(α) = ker(β);

(v) αL β ⇔ coker(α) = coker(β) and NL(α) = NL(β)
⇔ codom(α) = codom(β) and coker(α) = coker(β);

(vi) αJ β ⇔ Rankα = Rank β.

Furthermore, the categories P, PP, B, PB, M , and T L are all stable, so J = D
in each of these categories.

Proof. To keep the argument concise, we write α =
Ç
A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
∈ Pmn

and β =
Ç
E1 · · · Eq G1 · · · Gu
F1 · · · Fq H1 · · · Hv

å
∈ Pkl, and we assume min(A1) < . . . < min(Ar)

and min(E1) < . . . < min(Er).
(i) Suppose α ≤R β. Then, α = βγ for some γ ∈ K, so (5.3) implies α δ = β δ,

ker(α) ⊇ ker(β), and NU(α) ⊇ NU(β). Conversely, suppose that α δ = β δ, ker(α) ⊇
ker(β), and NU(α) ⊇ NU(β). From the third assumption, we have s ≥ u, and we may
suppose without loss of generality that Gi = Ci for all 1 ≤ i ≤ u. Then, the second
assumption implies that each of the remaining blocks of α may be presented in the
form ⋃

i∈J Ei, where ∅ 6= J ⊆ [q]. Thus, the equality ββ∗ =
Ç
E1 · · · Eq G1 · · · Gu
E1 · · · Eq G1 · · · Gu

å
gives α = ββ∗α ≤R β.

(iv) follows immediately from (i) (having ker(α), one may determine dom(α)
from NU(α), and vice versa). Furthermore, (ii) and (v) are duals of (i) and (iv),
respectively.

(iii) If α ≤J β, then α = γ1βγ2, for some γ1, γ2 ∈ K. Hence, Rankα ≤ Rank β
(the additional condition in the case (b) following from (5.4)). Conversely, suppose
Rankα ≤ Rank β (and Rankα ≡ Rank β (mod 2) if (b)). Then, r ≤ q. If

γ1 =
(
A1 · · · Ar C1 · · · Cs

E1 · · · Er Er+1 ∪ Er+2 · · ·
∣∣∣ Eq−1 ∪ Eq

∣∣∣ G1
∣∣∣ · · · Gu

)
,

and

γ2 =
(
F1 · · · Fr Fr+1 ∪ Fr+2 · · ·

∣∣∣ Fq−1 ∪ Fq
∣∣∣ H1

∣∣∣ · · · Hv

B1 · · · Br D1 · · · Dt

)
,
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we clearly have α = γ1βγ2. Moreover, γ1, γ2 ∈ K. Let us elaborate on this. Firstly,
if α and β are planar, so are γ1 and γ2, because their blocks satisfy (i) − (v) of
Lemma 5.1.1 (any two "union blocks" are separated, because Er+1, . . . , Eq are parts
of transversal blocks in ker(β) and Er+1 < . . . < Eq). Secondly, if α, β ∈ B (or PB),
then γ1, γ2 ∈ B (or PB), as the Ei’s and Fj ’s are singletons in this case.

Part (vi) follows directly from (iii). For the last statement, recall that, by
Lemma 2.2.19, stability implies J = D . Thus, it suffices to prove stability. For
any K ∈ {P,PP,B,PB,M , T L}, any i, j ∈ N0, and any α ∈ Kji, consider the
semigroups αKij and Kij α. Clearly, both are finite, and hence periodic. Then,
α is stable, by Lemma 2.2.27. Since α was chosen arbitrarily, the whole partial
semigroup K is stable.

Fix m,n ∈ N0. Recall that, for any K ∈ {P,PP,B,PB,M , T L} and any K ∈
{R,L ,H ,D ,J }, Green’s relation K of Kmn is the relation K ∩(Kmn ∩Kmn).
As in [28], we may immediately conclude the following:

Corollary 5.1.3. Let K ∈ {P,PP,B,PB,M , T L}, m,n ∈ N0, and suppose m ≡
n (mod 2) if K ∈ {B, T L}. Then the J = D-classes of Kmn are the sets

Dr(Kmn) = {α ∈ Kmn : Rankα = r} for each 0 ≤ r ≤ min(m,n),where
r ≡ m ≡ n (mod 2) if K ∈ {B, T L}.

These classes form a chain: Dr(Kmn) ≤J Ds(Kmn) ⇔ r ≤ s.

Now, we turn to the combinatorial side of the story. In order to present it, we
need to introduce some combinatorial notions we have not mentioned previously.
For n ∈ N0,

B(n) is the number of partitions of an n-element set (if n = 0, we define B(0) = 1),
known as the nth Bell number (see [1], A000110). It can be calculated via the
well-known formula B(n) = ∑n

k=1 S(n, k), where S(n, k) is the Stirling number
of the second kind (from Section 3.1).

n!! is known as the double factorial ( [1], A123023). We define it by

n!! =





n · (n− 2) · · · · · 1, if n ∈ N0 is odd;
0, if n ∈ N0 is even;
1, if n = −1.

Usually, if n is even, n!! is defined by n ·(n−2) · · · · ·2. However, it will be more
convenient to use our definition, because then, for n ∈ N0, the value (n− 1)!!
equals the number of partitions of an n-element set into blocks of size 2.

a(n) is defined by the recurrence

a(n) = a(n− 1) + (n− 1) a(n− 2) for n ≥ 2, and a(0) = a(1) = 1.
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(See [1], A000085). One may easily prove that a(n) is the number of partitions
of an n-element set into blocks of size at most 2 (choose an element and consider
the block containing it).

C(n) is the nth Catalan number ( [1], A000108), defined by C(n) = 1
n+1

(2n
n

)
for

n ∈ N0. It is well-known that Catalan numbers obey the following recurrence:

C(0) = 1, C(n) =
n∑

i=1
C(i− 1) C(n− i) for n ≥ 1. (5.5)

We will show that C(n) is the number of non-crossing partitions of the set [n].
Here, by a non-crossing partition of the set [n], we mean a partition having
the following property: if each element 1 ≤ i ≤ n is assigned to (1, 2πi

n ) (in
polar coordinates) and the elements of the same partition are connected by
an edge drawn within the circle ((0, 0), 1), then the edges connecting different
blocks do not intersect. We define f(n) to be the number of such partitions (of
[n]), and we want to show that f(n) = C(n). Firstly, note that ∅ has a single
non-crossing partition ∅, so f(0) = 1. Furthermore, if n ≥ 1, then consider the
block containing the element n, and suppose l is its minimal element. Clearly,
1 ≤ l ≤ n, and the sets [l − 1] and {l, l + 1, . . . , n − 1, n} both form a non-
crossing partition; also note that the partition of {l, l + 1, . . . , n − 1, n} may
be identified with one of the f(n − l) non-crossing partitions of [n − l] (since
elements n and l are connected, we identify the two). Thus, f(n) is described
by the recurrence 5.5, and hence f(n) = C(n).

Finally, note that any planar partition α ∈ PPmn corresponds to a non-
crossing partition of [m+ n], via the map

i 7→ m+ 1− i, j′ 7→ m+ j, for i ∈ [m] and j ∈ [n]

(see Figure 5.6). It is easily seen that this correspondence is a bijection, there-
fore |PPmn | = C(m+ n).

1 2 3 4 5 6 7

1’ 2’ 3’ 4’ 5’

←→ 2

5

2’

5’

7
6

3
4

4’
3’

1
1’

Figure 5.6: A planar partition α from PP7,5, with its corresponding non-crossing
partition of [12].

In addition, if x 6∈ N0, we define C(x) = 0.
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µ(n, k) is defined by the recurrence

µ(n, k) = µ(n− 1, k − 1) + µ(n− 1, k) + µ(n− 1, k + 1)
if n ≥ 1 and 0 ≤ k ≤ n,

µ(0, 0) = 1, µ(n, k) = 0 if n < k or k < 0.
(5.6)

These are the Motzkin triangle numbers (see [1], A064189).

µ(n) is the nth Motzkin number µ(n, 0) ( [1], A001006). It is well-known that the
Motzkin numbers satisfy the following recurrence

µ(0) = 1, µ(n) = µ(n− 1) +
n−1∑

i=1
µ(i− 1)µ(n− i− 1) for n ≥ 1 (5.7)

(e.g., see [2]). Let g(n) denote the number of non-crossing partitions of the
set [n] into blocks of size ≤ 2. We will prove that g(n) satisfies the recurrence
(5.7), so g(n) = µ(n). Clearly, the empty set can be partitioned in only one
way. Suppose n ≥ 1 and consider the block B containing the element n: it
can be a singleton, in which case there are g(n − 1) ways to partition n − 1;
otherwise, B = {n, i} for some 1 ≤ i ≤ n−1, so the elements of the sets [i−1]
and {i + 1, . . . , n − 1} can be partitioned in g(i − 1) and g(n − 1 − i) ways,
respectively. Thus, g(n) satisfies (5.7).

Recall from the discussion concerning Catalan numbers that each planar par-
tition from Pmn corresponds to a non-crossing partition of [m + n]. Thus, it
is easily seen that g(m+ n) = µ(m+ n) is the number of elements in Mmn.

p(n, k) is defined by the recurrence

p(n, k) = p(n− 1, k − 1) + p(n− 1, k + 1),
if 0 ≤ k ≤ n and n ≡ k (mod 2),

p(n, n) =1 for all n ≥ 0,
p(n, 0) =1 if n ≡ 0(mod 2) and n ≥ 0
p(n, k) =0, if n < k, or k < 0 or n 6≡ k (mod 2).

(5.8)

It is easily seen that the numbers

k + 1
n+ 1

Ç
n+ 1
n−k

2

å
satisfy the above recurrence. These numbers correspond to the number of
subdiagonal rectangular lattice paths from (0, 0) to (n+k

2 , n−k2 ) (see [13, page
303]).

For more information on these number sequences, we refer the reader to the Online
Encyclopedia of Integer Sequences [1].
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Now, we prove

Proposition 5.1.4. If m,n ∈ N0, then

(i) | Pmn | = B(m+ n),

(ii) | PBmn | = a(m+ n),

(iii) | Bmn | = (m+ n+ 1)!!,

(iv) |PPmn | = C(m+ n),

(v) |Mmn | = µ(m+ n),

(vi) | T Lmn | = C(m+n
2 ),

Proof. Parts (i)− (v) follow from the above discussion, so we prove only (vi) (note
that, for m,n even the statement follows from T Leven ∼= PP). For k ∈ N0, let
h(k) denote the number of non-crossing partitions of the set [2k] into blocks of
size 2. We may enumerate these partitions in the following way: if k ∈ N, the
block containing the element 2k is {2k, 2i − 1} for some 1 ≤ i ≤ k (2k cannot
be connected to an even vertex, because it would not be possible to create a non-
crossing matching); hence, the elements of the sets [2i − 2] and {2i, . . . , 2k − 1}
may be connected in h(2i−2

2 ) and h(2k−1−2i+1
2 ) ways. Since h(0) = 1, the sequence

h(i) : i ∈ N0 satisfies the recurrence (5.5). Thus, h(k) = C(k) for all k ∈ N0. From
the discussion concerning Catalan numbers and non-crossing partitions, we conclude
that | T Lmn | = h(m+n

2 ) = C(m+n
2 ).

Finally, we may calculate the combinatorial properties of the hom-set Kmn for
K = P, PP, PB, M , B, T L. Part (i) is crucial, and it is implied by earlier
results: for P, B, and T L, the formulae follow from Theorems 7.5, 8.4 and 9.5
in [38], respectively; for PB and M , the formulae follow from Propositions 2.7 and
2.8 in [32], respectively.

Proposition 5.1.5. Let K denote any of the categories P, PP, PB, M , B or T L.
Let m,n ∈ N0, fix some 0 ≤ r ≤ min(m,n), and suppose r ≡ m ≡ n(mod 2) if K is
B or T L.

(i) The number of R-classes contained in Dr(Kmn) is given by

|Dr(Kmn)/R | =





∑m
i=r

(i
r

)
S(m, i), if K = P,

2r+1
2m+1

(2m+1
m−r

)
, if K = PP,

(m
r

)
a(m− r), if K = PB,

µ(m, r), if K = M ,
(m
r

)
(m− r − 1)!!, if K = B,

r+1
m+1

( m+1
(m−r)/2

)
, if K = T L.
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(ii) The number of L -classes contained in Dr(Kmn) is given by

|Dr(Kmn)/L | =





∑n
i=r

(i
r

)
S(n, i), if K = P,

2r+1
2n+1

(2n+1
n−r

)
, if K = PP,

(n
r

)
a(n− r), if K = PB,

µ(n, r), if K = M ,
(n
r

)
(n− r − 1)!!, if K = B,

r+1
n+1

( n+1
(n−r)/2

)
, if K = T L.

(iii) |Dr(Kmn)/H | = |Dr(Kmn)/R | · |Dr(Kmn)/L |
(parts (i) and (ii) give |Dr(Kmn)/R | and |Dr(Kmn)/L |).

(iv) The size of any H -class H in Dr(Kmn) is given by

|H| =
®
r!, if K is one of P,PB,B;
1, if K is one of PP,M , T L.

(v) |Dr(Kmn)| =
®
|Dr(Kmn)/H | · r!, if K is one of P,PB,B;
|Dr(Kmn)/H |, if K is one of PP,M , T L.

Proof. (i) By Proposition 5.1.2, Dr(Kmn) = {α ∈ Kmn : Rank(α) = r} and the R-
class of a diagram is completely determined by its domain and kernel. Thus, in each
case, it suffices to calculate the number of all possible domain-kernel combinations
of rank r in Kmn.

• Suppose K = P. First, we choose the number of blocks of the kernel r ≤ i ≤ m
(the lower bound is the required rank, and the upper is the number of elements
of [m]). Such a kernel may be chosen in S(m, i) ways. In it, any r classes may
constitute the domain.

• Suppose K = PB. In this case, the blocks of the kernel containing the elements
of the domain are all singletons, so the domain may be chosen in

(m
r

)
ways.

Thus, we need to partition the rest of the set [m] into blocks of size ≤ 2. This
may be done in a(m− r) ways.

• Suppose K = M . For i, j ∈ N0, let q(i, j) denote the number of partitions
of the set [i] into blocks of size ≤ 2, with at least j classes that are both
singletons and unnested in the kernel (these will be the domain classes). Note
that |Dr(Mmn)/R | = q(m, r). Let us find a recurrence describing q(i, j). We
clearly have q(0, 0) = 1, and q(i, j) = 0 if i < j, j < 0 or i < 0. Suppose
i ≥ j ≥ 0. To calculate q(i, j), consider the block containing the element i.
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− It may be a domain block, which means that {i} is an unnested block of
the kernel. In this case, we need to partition the set [i − 1] (into blocks
of size ≤ 2) so that we have j − 1 domain (singleton) blocks; this can be
done in q(i− 1, j − 1) ways.

− It may be a non-domain singleton block. Then, we need to partition
the set [i − 1], and we still need j domain (singleton) blocks. There are
q(i− 1, j) such partitions.

− It may be a non-domain, non-singleton block. In this case, we need to
partition [i−1] (into blocks of size ≤ 2) so that we have j domain singleton
blocks and one more unnested singleton block which will contain i’s pair
in the kernel. Equivalently, we may choose any of q(i−1, j+1) partitions
of [i−1] into blocks of size ≤ 2 with j+1 domain classes (the domain class
containing the biggest domain element will be i-s pair since otherwise we
lose the planarity property).

Therefore, the numbers q(i, j) satisfy the recurrence (5.6), so q(m, r) = µ(m, r).

• Suppose K = B. As in the proof for PB, the elements of the domain belong
to singleton sets in the kernel, so the domain may be chosen in

(m
r

)
ways. The

remaining m − r elements of [m] need to be partitioned into blocks of size 2,
which may be done in (m− r − 1)!! ways.

• Suppose K = T L. For i, j ∈ N0 with i ≡ j (mod 2), let q(i, j) denote the
number of partitions of the set [i] into blocks of size ≤ 2, with exactly j
singleton classes and i−j

2 two-element classes, such that the singletons are
unnested in the kernel. Note that |Dr(T Lmn)/R | = q(m, r). Let us find a
recurrence describing q(i, j). We clearly have q(i, i) = 1 for all i ≥ 0, and
q(i, 0) = 1 for even i’s. Furthermore, q(i, j) = 0 if i < j, or j < 0, or
i 6≡ j(mod 2). Suppose i ≥ j ≥ 0 and i ≡ j(mod 2). To calculate q(i, j),
consider the block containing the element i.

− It may be a domain block, which means that {i} is an unnested block of
the kernel. In this case, we need to partition the set [i − 1] (into blocks
of size ≤ 2) so that we have j − 1 domain (singleton) blocks; this can be
done in q(i− 1, j − 1) ways.

− It may be a non-domain block. In this case, we need to partition [i − 1]
(into blocks of size ≤ 2) so that we have j domain singleton blocks and one
more unnested singleton block which will contain i’s pair in the kernel.
Equivalently, we may choose any of q(i−1, j+ 1) partitions of [i−1] into
blocks of size ≤ 2 with j+ 1 domain classes (the domain class containing
the biggest domain element will be i-s pair since otherwise we lose the
planarity property).

Therefore, the numbers q(i, j) satisfy the recurrence (5.8), so q(m, r) = p(m, r).
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• Suppose K = PP. We have concluded that the partial semigroup PP is
isomorphic to T Leven (see page 204). More precisely, each partition of rank r
in PPmn corresponds to a partition of rank 2r in T L2m,2n. Hence,

|Dr(PPmn)/R | = |D2r(T L2m,2n)/R | = 2r + 1
2m+ 1

Ç
2m+ 1

(2m− 2r)/2

å
.

Part (ii) follows by a dual argument, (iii) is a direct consequence of (i) and (ii),
and (v) follows immediately from (iii) and (iv) (proved below).

(iv) If we fix an R-class and an L -class of Dr(Kmn), the number of elements in
their intersection equals the number of ways to pair the r transversal classes of the
kernel with r transversal classes of the cokernel. If K ⊆PP, there is only one such
pairing, while non-planar partitions may be created in r! ways.

As in the previous chapters, here we answer the remaining questions concerning
different aspects of regularity in our partial semigroups. These results are new, as
far as the author is aware.

Proposition 5.1.6. Neither of the partial semigroups P, PP, PB, M , B, and T L
can be expanded to an inverse partial semigroup.

Proof. Consider the partition

α =
Ç

1 {2, 3}
1 {2, 3}

å
∈ P3 ∩PP3 ∩B3 ∩PB3 ∩T L3 ∩M 3 .

Clearly, α is an idempotent, and hence a self-inverse element. However, the partition

β =
Ç
{1, 2} 3
{1, 2} 3

å
∈ P3 ∩PP3 ∩B3 ∩PB3 ∩T L3 ∩M 3 .

is also a semigroup inverse of α. Therefore, α does not have a unique inverse in
either of the partial semigroups P, PP, B, PB, T L and M .

Proposition 5.1.7. Let K denote any of the categories P, PP, PB, M , B, or T L.
Let m,n ∈ N0 (and m ≡ n (mod 2) if K is B or T L), and let α ∈ Kmn. Then,

(i) α is right-invertible in Knm if and only if ker(α) = {{x} : x ∈ [m]} and
dom(α) = [m]. In that case, α∗ is a right inverse of α.

(ii) α is left-invertible in Knm if and only if coker(α) = {{x} : x ∈ [n]} and
codom(α) = [n]. In that case, α∗ is a left inverse of α.

Proof. We prove only the first part since the second is dual. Suppose ker(α) =
{{x} : x ∈ [m]} and dom(α) = [m]. Then, αα∗ = ιm, so βαα∗ = β for any β ∈ Knm.
Thus, α is right-invertible. Conversely, suppose α is right-invertible. In other words,
there exists β ∈ Knm such that ζαβ = ζ for each ζ ∈ Knm. Suppose the opposite:
either ker(α) has a non-singleton class C, or there exists an element 1 ≤ i ≤ m such
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that i 6∈ dom(α). In the first case, there exist a, b ∈ C with a 6= b. If we choose a
partition ζ ∈ Knm such that a′ and b′ belong to different transversal blocks, then
these blocks become connected in the product graph Π(ζ, α, β), for any β ∈ Knm.
Thus, ζαβ cannot equal ζ (for any β ∈ Knm), which contradicts the assumption of
right-invertibility. In the second case, we choose a partition ζ ∈ Knm such that i′
belongs to a transversal block. By the above discussion, we may assume that {i} is
a class of ker(α), so a similar argument leads to a contradiction.

Corollary 5.1.8.

(i) If Kmn contains a right-invertible element, then m ≤ n.

(ii) If Kmn contains a left-invertible element, then n ≤ m.

Proof. We prove only the first statement, as the second follows by a dual argument.
From Proposition 5.1.7(i), we have that a right-invertible element α ∈ Kmn has rank
m, and we know that Rank(α) ≤ min(m,n). Thus, m ≤ n.

5.2 Sandwich semigroups in diagram categories
Having studied the partial semigroups P, PP, B, T L, PB and M in detail, we may
now focus on the sandwich semigroups in them. Therefore, we consider a partition
σ ∈ Knm (where K denotes any of the categories P, PP, B, T L, PB and M ) with
m,n ∈ N0 (and m ≡ n (mod 2) if K is B or T L) and we let r = Rank σ. We aim to
investigate the sandwich semigroup

Kσmn = (Kmn, ?σ).

Recall that K → K : α 7→ α∗ maps Kmn to Knm and that it is an anti-
isomorphism for allK ∈ {P,PP,M ,PB,B, T L}, because (αβ)∗ = β∗α∗ and (α∗)∗ =
α (see the previous section), so it is easily seen that

Lemma 5.2.1. Let K be any of the categories P, PP, B, T L, PB and M . Let
m,n ∈ N0, σ ∈ Kmn and suppose m ≡ n (mod 2). Then, Kσmn is anti-isomorphic to
Kσ∗nm.

Thus, we may assume without loss of generality that n ≤ m, which implies
r = Rank σ ≤ n ≤ m. Hence, we write

σ =
Ç
X1 · · · Xr U1 · · · Us
Y1 · · · Yr V1 · · · Vt

å
.

Furthermore, if K is one of PP, T L or M , we assume minX1 < . . . < minXr.
These assumptions apply to our investigation for the rest of the chapter, unless
otherwise stated.

Again, we point out that the results presented in this chapter were published
in [28].
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5.2.1 Green’s relations and regularity in Kσmn
As in the previous chapters, we examine P-sets, Green’s relations and their classes,
as well as the maximal and minimal J σ-classes of Kσmn.

First, we describe P-sets in Kσmn. However, we do not give combinatorial criteria
for membership in these sets, because they are quite cumbersome, while not very
useful. For instance, a partition α ∈ Kmn belongs to Pσ1 if and only if the restriction
of coker(α)∨ker(σ) on codom(α) is the relation coker(α)∩ (codom(α)× codom(α)),
and each class of coker(α)∨ ker(σ) containing an element of codom(α) also contains
an element of dom(σ). Hence, we simply state the characterisation following from
the definition:

Proposition 5.2.2. We have Pσ = Reg(Kσmn) and

Pσ1 = {α ∈ Kmn : Rank(ασ) = Rank(α)},
Pσ2 = {α ∈ Kmn : Rank(σα) = Rank(α)},
Pσ3 = Pσ = {α ∈ Kmn : Rank(ασ) = Rank(σα) = Rank(α)}

= {α ∈ Kmn : Rank(σασ) = Rank(α)}.

Proof. By Proposition 5.1.2, K is a stable category, so Proposition 2.2.23(iii) implies
Pσ3 = Pσ. Moreover, since K is a regular partial ∗-semigroup, Proposition 2.2.29(iv)
gives Reg(Kσmn) = Pσ. Thus, the first two statements follow from the definition of
P-sets, Proposition 5.1.2(vi) and from ασR α ⇔ ασJ α and σαL α ⇔ σαJ α
(both hold by stability), respectively. The third statement follows directly from the
definition of Pσ3 and Proposition 5.1.2(vi).

Remark 5.2.3. Though complex in general, the combinatorial characterisations
simplify in some cases. For example, if K = B, Proposition 5.3.8 provides an elegant
and useful description of the P-sets in Bσmn.

Having introduced P-sets, we may describe Green’s relations of Kσmn. Recall
that K is a stable semigroup (Proposition 5.1.2). Thus, Corollary 2.2.26 implies
that Dσ = J σ in Kσmn. Therefore, Theorem 2.2.3 gives

Theorem 5.2.4. Let K denote any of the categories P, PP, PB, M , B, or T L.
Suppose α ∈ Kmn. Then, in Kσmn we have

(i) Rσ
α =

®
Rα ∩Pσ1 , α ∈ Pσ1 ;
{α}, α 6∈ Pσ1 .

(ii) Lσα =
®

Lα ∩Pσ2 , α ∈ Pσ2 ;
{α}, α 6∈ Pσ2 .

(iii) Hσ
α =

®
Hα, α ∈ Pσ;
{α}, α 6∈ Pσ.
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(iv) Dσ
α = Jσα =





Dα ∩Pσ, α ∈ Pσ;
Lσα, α ∈ Pσ2 \Pσ1 ;
Rσ
α, α ∈ Pσ1 \Pσ2 ;
{α}, α 6∈ (Pσ1 ∪Pσ2 ).

Further, if α 6∈ Pσ, then Hσ
α = {α} is a non-group H σ-class in Kσmn.

Moreover, since K is monoidal, σ has a left- and right-identity in K, so Lemma
2.2.6 and Proposition 2.2.7 apply as well. Furthermore, from Theorem 5.2.4 and
Propositions 2.2.7 and 5.1.2 we have

Corollary 5.2.5. The regular J σ = Dσ-classes of Kσmn are precisely the sets

Dσ
q = Dσ

q (Kσmn) = Dq ∩Pσ = {α ∈ Pσ : Rank(α) = q}

for each 0 ≤ q ≤ r, and where q ≡ r (mod 2) if K is B or T L. These form a chain
under the usual ordering of J σ-classes: Dσ

p ≤ Dσ
q ⇔ p ≤ q.

Of course, we are especially interested in the maximal and minimal J σ = Dσ-
classes of K σ

mn. They are described in the following two results from [28].

Proposition 5.2.6. Suppose K is one of P, PP, PB, M , B or T L. Further,
suppose m ≡ n (mod 2), if K = B or K = T L.

(i) If r < min(m,n), then the trivial maximal J σ-classes of Kσmn are the singleton
sets {α} for α ∈ Kmn with Rank(α) > r. If K is one of P, PB or B, then
Kσmn has no nontrivial maximal J σ-classes. If K is one of PP, M or T L,
the following are equivalent:

(a) Kσmn has a nontrivial maximal J σ-class,
(b) Pre(σ) ⊆ Dr(Kmn),
(c) Pre(σ) = V(σ),

in which case the nontrivial maximal J σ-class is the set Dσ
r = {α ∈ Pσ :

Rank(α) = r}.

(ii) If r = min(m,n), then the set Dσ
r = {α ∈ Pσ : Rank(α) = r} is the maximum

J σ-class of Kσmn. This maximal J σ-class is clearly nontrivial.

Proof. Recall that we assumed without loss of generality that m ≥ n.
(ii). If r = n, then ker(σ) = {{x} : x ∈ [n]} and dom(σ) = [n]. Thus, σ is

right-invertible by Proposition 5.1.7(i), so Proposition 2.2.35 implies that Kσmn has a
maximum J σ-class, and it contains α∗. Therefore, Jσα∗ = Dσ

α∗ is the maximum J σ-
class, and from Theorem 5.2.4(iv) and Corollary 5.2.5 follows Dσ

α∗ = Pσ ∩Dα∗ = Dσ
r

(since α∗ ∈ Pσ).
(i). Suppose α ∈ Kmn with r < Rank(α). By Proposition 5.1.2(iii), we have

α 6≤J σ, so Lemma 2.2.10 implies that {α} is a trivial maximal J σ-class.
Suppose that K is one of P, PB or B. It suffices to show that Kσmn does not

contain a nontrivial maximal J σ-class. By Proposition 2.2.13, this holds if and only
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if there exists an element α ∈ Kmn such that (α, σ) 6∈ J and (σ, σασ) ∈ J . We
analyse the following cases (and use Proposition 5.1.2(vi) throughout the proof):

s > 0 and t > 0. If K = P, put

α =
Ç

Y1 · · · Yr Vt V1 · · · Vt−1
X1 · · · Xr Us U1 · · · Us−1

å
(5.9)

Now, clearly σασ = σ, so σασJ σ. Furthermore, Rank(α) = r + 1 6= r =
Rank(α), so we have (α, σ) 6∈J , as required.

If K is one of PB or B, the partition (5.9) may not belong to K (depending on
the classes Vt and Us), so we may have to modify it.

• If |Us| = |Vt| = 1, then α ∈ K, so we need no changes.

• If |Us| = 2 and |Vt| = 1, we have Us = {u′1, u′2} and Vt = {v} for some
u1, u2 ∈ [n] and v ∈ [m]. Hence, we replace the transversal Vt ∪ Us of α
by the pair of blocks {v, u′1} and {u′2}. Again, σασ = σ and (σ, α) 6∈J .

• The case with |Us| = 2 and |Vt| = 1 is dual.

• If |Us| = 2 and |Vt| = 2, we have Us = {u′1, u′2} and Vt = {v1, v2} for some
u1, u2 ∈ [n] and v1, v2 ∈ [m]. In this case, we replace the transversal
Vt∪U ′s of α by the pair of blocks {v1, u

′
1} and {v2, u

′
2}. Similarly, we have

σασ = σ and (σ, α) 6∈J .

Since r < n ≤ m, if K is one of PB or B, then we have s, t > 0, so this is the
only case possible. Hence, in the remaining cases we will assume K = P.

s = 0 and t > 0. Since s = 0 and r < n ≤ m, we have [n] = ⋃r
i=1Xi and we may

assume (without loss of generality) that |Xr| ≥ 2. Fix some partition {Z,W}
of the set Xr, and put

α =
(

Y1 · · · Yr−1 Yr Vt V1
∣∣∣ · · ·

∣∣∣ Vt−1

X1 · · · Xr−1 Z W

)

It is easily seen that σασ = σ and (σ, α) 6∈J .

s > 0 and t = 0. This case follows by a dual argument.

s = t = 0. It follows that [n] = ⋃r
i=1Xi and [m] = ⋃r

i=1 Yi. Since r < n ≤ m, we
may assume without loss of generality that |Xr| ≥ 2. Fix some x ∈ Xr, and
let U = Xr \ {x}. We consider the following cases:

• |Yr| ≥ 2. In this case, we fix some y ∈ Yr and let V = Yr \ {y}. Then, the
partition α =

Ç
Y1 · · · Yr−1 y V
X1 · · · Xr−1 x U

å
∈ Kmn satisfies σ = σασ and (σ, α) 6∈

J .
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• |Yr| = 1, in which case we may assume |Yr−1| ≥ 2. We fix z ∈ Yr−1 and
W = Yr−1 \ {z}. If α =

Ç
Y1 · · · Yr−2 Yr z W
X1 · · · Xr−2 Xr−1 x U

å
∈ Kmn, then

σασ =
Ç
X1 · · · Xr−2 Xr−1 Xr

Y1 · · · Yr−2 Yr Yr−1

å
,

so σασJ α and (α, σ) 6∈J .

Now, suppose that K is one of PP, M or T L. Since K is stable (by Pro-
position 5.1.2), regular and H -trivial (which is easily deduced from parts (iv) and
(v) of Proposition 5.1.2 and Lemma 5.1.1(i)), Proposition 2.2.17 implies the state-
ment concerning the existence of a nontrivial maximal J σ-class (for (b), recall that
Pre(σ) ⊆ Kmn and D = J in K). Finally, from Lemma 2.2.12(ii) it follows that, if
the nontrivial maximal J σ-class exists, then it is the class containing σ∗, i.e.

Jσσ∗ = Dσ
σ∗ = Dσ

r .

Now, we consider the minimal J σ-classes. Note that they coincide with the
minimal ideals of the semigroup Kσmn. As in [28], we prove

Proposition 5.2.7. Let z be the smallest possible rank of partitions from Kmn.
Then, the minimal ideal of Kσmn is the set Dz = Dσ

z . Further, we have Dz /Rσ =
Dz /R and Dz /L σ = Dz /L .

Proof. Since z is the smallest possible rank of partitions from Kmn, for any α ∈
Dz = {ζ ∈ Kmn : Rank(ζ) = z} we have

z ≤ Rank(σασ) ≤ Rank(α) = z,

so Rank(σασ) = Rank(α). Thus, Proposition 5.2.2 implies Dz ⊆ Pσ, which gives

Dz = Dz ∩Pσ = Dσ
z ,

the last equality following from Proposition 5.2.5. Now, Propositions 2.2.7(iii) and
5.1.2(iii) imply that Dσ

z is the minimal J σ = Dσ-class in Kmn.
For the last statement, we prove only the first part, as the second is dual. Suppose

α ∈ Dz. From the discussion above we have α ∈ Pσ, so

Rα ⊆ Dα = Dz ⊆ Pσ ⊆ Pσ1 .

Hence, Theorem 5.2.4(i) gives Rσ
α = Rα ∩Pσ1 = Rα .

5.2.2 A structure theorem for Kσmn and connections to (non-sandwich)
partition semigroups

Following the outline of previous chapters, here we consider the diagrams in Figures
2.2 and 2.3, applying the results proved in this chapter, and infer further conclusions.



Subsection 5.2.3 219

Recall that σ∗ ∈ V(σ) and

σσ∗ =
Ç
X1 · · · Xr U1 · · · Us
X1 · · · Xr U1 · · · Us

å
∈ Kn and σ∗σ =

Ç
Y1 · · · Yr V1 · · · Vs
Y1 · · · Yr V1 · · · Vs

å
∈ Km .

Furthermore, we introduce an additional partition

τ =
(

1 · · · r

X1 · · · Xr U1
∣∣∣ · · ·

∣∣∣ Us

)
∈ Krn .

Recall that we assume min(X1) < · · · < min(Xr) if K is one of PP, M and T L.
Hence, τ is planar if σ is (by Lemma 5.1.1).

Now, consider the semigroups in Figures 2.2 and 2.3. Recall that

Kmn σ = Km σ∗σ, and σKmn = σσ∗Kn .

(see Subsection 2.3.1). For the sake of convenience, instead of examining the semig-
roup (σKmn σ,~), we will deal with the isomorphic semigroup (σKmn σσ∗, ·) (see
page 50). Let α ∈ σKmn σσ∗ = σσ∗Kn σσ∗. Then, the blocks of α have the follow-
ing form: for each 1 ≤ i ≤ s, the sets Ui and U ′i are nontransversals; any other block
(whether transversal or nontransversal) is of the form ⋃

i∈I Xi ∪
⋃
j∈J X

′
j for some

subsets I, J ⊆ [r], with at least one of I, J nonempty. Therefore, we may define a
map

σσ∗Kn σσ∗ → Kr : α 7→ α\ (5.10)

in the following way: for each block of α of the form B = ⋃
i∈I Xi ∪

⋃
j∈J X

′
j , in α\

we include the block I ∪ J ′. It is easily seen that the map is well-defined and that
α\ = τατ∗. Since τ∗τ = σσ∗, we may infer

τ∗α\τ = τ∗τατ∗τ = σσ∗ασσ∗ = α,

the last equality following from the fact that α = σβσσ∗ for some β ∈ Kmn. There-
fore, the map (5.10) is an isomorphism.

Thus, we may transform slightly the Diagrams 2.2 and 2.3, arriving at
We close the subsection by applying Theorem 2.3.8 to the sandwich semigroup

Kσmn.

Theorem 5.2.8. The map

ψ : Pσ → Reg(Km σ∗σ)× Reg(σσ∗Kn) : α 7→ (ασ, σα)

is injective, and

im(ψ) = {(β, γ) ∈ Reg(Km σ∗σ)× Reg(σσ∗Kn) : σβ = γσ}.

In particular, Pσ is a pullback product of the regular semigroups Reg(Km σ∗σ) and
Reg(σσ∗Kn) with respect to Kr.
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Kσmn

σσ∗Kn

σσ∗Kn σσ∗

Km σ∗σ

Kr

α 7→ ασ α 7→ σα

β 7→ σβσ∗ β 7→ βσσ∗

γ 7→ γ\

Reg(Km σ∗σ)

σσ∗Kn σσ∗

Reg(Kσmn)

Reg(σσ∗Kn)

Kr

α 7→ ασ α 7→ σα

β 7→ σβσ∗ β 7→ βσσ∗

γ 7→ γ\

Figure 5.7: Diagrams illustrating the connections between Kσmn and σσ∗Kn σσ∗
(left) and between Reg(Kσmn) and σσ∗Kn σσ∗ (right).

5.2.3 The regular subsemigroup Pσ = Reg(Kσmn)
As we are about to see, the situation in categories P, PP, PB, M and T L turns out
to be much more complex than in B or in the categories of transformations. In this
subsection, we present those properties of the subsemigroup Reg(Kσmn), which we are
able to prove in general. Namely, we explore some details concerning the inflation
described in Subsection 2.3.4 and characterise Green’s relations of Reg(Kσmn).

In order to do that, we define a surmorphism

ϕ : Reg(Kσmn)→ Kr : α→ (σασσ∗)\,

which corresponds to the map φ : Pa →W in the general theory. Thus, the proper-
ties of ϕ are similar to the properties of φ, and are shown by analogous arguments.
Here, we point out the most important ones. Firstly, suppose α ∈ Pσ. Since
τ∗τ = σσ∗, Proposition 5.2.2 gives

αJ σασ = (σσ∗σ)α(σσ∗σ) = τ∗τσατ∗τσ ≤J τσατ∗ ≤J α,

so αJ τσατ∗ = τσατ∗ττ∗ = τσασσ∗τ∗ = αϕ. Hence, we proved that

Rank(α) = Rank(αϕ) for all α ∈ Pσ .

Secondly, the proof for Theorem 2.3.12 may be adjusted to our case, so we have

Theorem 5.2.9. Let α ∈ Pσ and put k = |”Hσ
α/Rσ | and l = |”Hσ

α/L σ |. Then

(i) the restriction of the map ϕ to the set Hσ
α, ϕ�Hσα : Hσ

α → Hαϕ is a bijection,

(ii) Hσ
α is a group if and only if Hαϕ is a group, in which case these groups are

isomorphic,
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(iii) if Hσ
α is a group, then ”Hσ

α is a k × l rectangular group over Hαϕ,

(iv) if Hσ
α is a group, then Eσ(”Hσ

α) is a k × l rectangular band.

(Recall that ”Hσ
α = ⋃

x∈Hαϕ xϕ
−1 and that Eσ(S) denotes the set {x ∈ S : xσx = x},

for all S ⊆ Kmn.)

Moreover, part (iii) directly implies

Corollary 5.2.10. Suppose q ≤ Rank(σ), (and q ≡ Rank(σ) (mod 2) if K = B or
T L). Then, in the class Dσ

q of Kσmn, the group H σ-classes are

• isomorphic to the symmetric group Sq if K is one of P, PB or B,

• trivial if K is one of PP, M or T L.

Proof. As suggested above, by Theorem 5.2.9(ii), it suffices to consider the group
H -classes of the monoid Kr. Let θ = ιr. Then, Kθrr ∼= Kr and Proposition 5.2.2 gives
Pσ = Kr, so Theorem 5.2.4 implies that H σ = H . Hence, it suffices to consider
an H -class in K of an arbitrary idempotent of rank q, which is easily shown (see
Proposition 5.1.2(iii) and (iv)) to be isomorphic to Sq (if K is one of P, PB or B)
or the trivial group (if K is one of PP, M or T L).

Applying this result to the case when r = n, we may describe the maximal J σ-
class (Dσ

r ) from Proposition 5.2.6(ii) in more detail. We give the result for the case
m ≥ n, but its dual holds as well.

Proposition 5.2.11. Suppose that m ≥ n = r.

(i) If K is one of P, PB or B, the class Dσ
r is a left-group over Sr.

(ii) If K is one of PP, B or T L, the class Dσ
r is a left-zero semigroup.

Proof. Since σ ∈ Knm and Rank(σ) = r = n, the partition σ is right-invertible (by
Proposition 5.1.7(i)). Further, K is stable (see Proposition 5.1.2), so Proposition
2.2.35(ii) implies that the maximum J σ-class of Kσmn is an L σ-class, and a left-
group over Hσ

σ∗ . In Proposition 5.2.6(ii), we characterised the maximum J σ-class,
and in Corollary 5.2.10, we proved that Hσ

σ∗ is either isomorphic to Sr (if K is one of
P, PB or B) or trivial (if K is one of PP, M or T L), so the statement follows.

Our next step is to describe Green’s relations of the regular subsemigroup Pσ.
From Lemma 2.3.3, Theorem 5.2.4, and Proposition 5.1.2 we have

Proposition 5.2.12. Suppose K is one of P, PP, PB, M , B or T L, and let
α ∈ Pσ = Reg(Kσmn). Then

(i) RPσ
α = Rα ∩Pσ = {β ∈ Pσ : ker(β) = ker(α), NU(β) = NU(α)},

(ii) LPσ
α = Lα ∩Pσ = {β ∈ Pσ : coker(β) = coker(α), NL(β) = NL(α)},
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(iii) HPσ
α = Hα ∩Pσ = {β ∈ Pσ : ker(β) = ker(α), NU(β) = NU(α),

coker(β) = coker(α), NL(β) = NL(α)},

(iv) JPσ
α = DPσ

α = Dα ∩Pσ = {β ∈ Pσ : Rank(β) = Rank(α)}.

In general, sandwich semigroups of partitions have a far more complex struc-
ture than sandwich semigroups of transformations (because transformations are, by
definition, more restricted than partitions). In particular, difficulties arise in the
investigation of the combinatorial structure (for this reason, we did not give com-
binatorial criteria for membership in P-sets), so we do not pursue the investigation
in this direction (in the general case) any further. That means that we are unable
to infer results concerning cardinalities and ranks. Furthermore, it turns out that,
if K is one of P, PP, PB, M , or T L, then Pσ is not MI-dominated (see Remark
5.3.19). Note that in these cases Pσ is not even RP-dominated (see Proposition
2.4.4), since σ∗ ∈ V(σ) is a mid-identity. Thus, we are also unable to apply the
results of Subsection 2.4.3 in these cases.

Interestingly, in the case of the Brauer category, we have a much nicer situation.
The structure of Bσmn (and Reg(Bσmn)) is simpler, so we are able to give succinct
and elegant characterisations and combinatorial descriptions. Most importantly, we
have MI-domination. For this reason, the sandwich semigroup Bσmn and its regular
subsemigroup will be investigated separately in the Section 5.3.

5.2.4 Idempotents and idempotent-generation

Here, we give some general results concerning idempotents, with as much detail as
we were able to deduce in spite of the above-mentioned "irregular" properties of the
semigroup Kσmn in general. In particular, we will characterise the sets Eσ(Kσmn) =
Eσ(Pσ), MI(Pσ) and RP(Pσ), which contain the idempotents, mid-identities and
regularity-preserving elements of Pσ, respectively. Furthermore, we will describe
the idempotent-generated subsemigroup Eσ(Kσmn) = Eσ(Pσ).

Proposition 5.2.13.

(i) Eσ(Kσmn) = {α ∈ Kmn : ασα = α}.

(ii) MI(Pσ) = Eσ(Dσ
r ).

(iii) RP(Pσ) = Dσ
r .

Proof. The first statement is obvious, while the rest follow from Proposition 2.4.10(iv)
and Theorem 5.2.4(iv), as K is stable (Proposition 5.1.2) and regular in all cases.

Of course, it is possible to give a combinatorial criterion for an element to be
idempotent, but (as in the case with P-sets) it does not give a great deal of additional
insight. Instead, we state an alternative description of the set of idempotents proved
in Lemma 2.3.11,

Eσ(Kσmn) = (E(Kr))ϕ−1.
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We will also need its counterpart for the idempotent-generated subsemigroup (from
Theorem 2.3.15)

Eσ(Kσmn) = (E(Kr))ϕ−1. (5.11)

Evidently, in order to characterise the members of the idempotent-generated sub-
semigroup, we need some information on idempotent-generated subsemigroup E(Kr)
of the semigroup Kr. We give these in the following proposition. Note that the par-
titions from Kr of rank r are identified with the corresponding permutations from
Sr (e.g. ιr is identified with idr).

Proposition 5.2.14.

(i) (follows from Proposition 16 in [36]) E(Pr) = {ιr} ∪ (Pr \Sr);

(ii) (follows from Theorem 1.11(b) in [52]) E(PPr) = PPr

(iii) (follows from Proposition 2 in [88]) E(Br) = {ιr} ∪ (Br \ Sr);

(iv) (follows from Theorem 1.11(a) in [52]; also see [9]) E(T Lr) = T Lr;

(v) (Theorem 3.18 in [32])

E(PBr) = E ( Dr(PBr) ∪Dr−1(PBr)) ∪
r−2⋃

q=0
Dq(PBr);

(vi) (Theorem 4.17 in [32])

E(M r) ={ιA : A ⊆ [r] is cosparse} ∪
{α ∈Mr : dom(α) and codom(α) are non-cosparse},

where A ⊆ [r] is cosparse if the set B = [r] \ A satisfies the following: for all
i ∈ [r], i ∈ B ⇒ i+ 1 6∈ B.

Now, we may prove

Theorem 5.2.15.

(i) Eσ(Pσmn) = V(σ) ∪ (Pσ \Dσ
r );

(ii) Eσ(PPσmn) = Pσ = Reg(PPσmn);

(iii) Eσ(Bσmn) = V(σ) ∪ (Pσ \Dσ
r );

(iv) Eσ(T Lσmn) = Pσ = Reg(T Lσmn);

(v) Eσ(PBσmn) = Eσ(Dσ
r ∪Dσ

r−1) ∪⋃r−2
q=0 Dσ

q .

Proof. Parts (ii) and (iv) follow directly from (5.11), the corresponding parts of
Theorem 5.2.14 and the fact that ϕ is surjective. Similarly, parts (i) and (iii)
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may be inferred from (5.11) and the corresponding parts of Theorem 5.2.14 in the
following way

E(Kσmn) = (E(Kr))ϕ−1 = ({ιr} ∪ (Kr \ Sr))ϕ−1

= (ιr)ϕ−1 ∪ ((Kr)ϕ−1 \ (Sr)ϕ−1)
= (E(Dr(Kr)))ϕ−1 ∪ ((Kr)ϕ−1 \ (Sr)ϕ−1)
= Eσ(Dσ

r ) ∪ (Pσ \Dσ
r )

= Eσ(Jσσ∗) ∪ (Pσ \Dσ
r ) = V(σ) ∪ (Pσ \Dσ

r ),

the last three equalities following from the fact that ϕ preserves rank and idem-
potence, Corollary 5.2.5 and Proposition 2.4.10(ii), respectively. Finally, an analog-
ous argument shows part (v).

One immediately observes that the semigroup Eσ(M σ
mn) is missing in the previ-

ous theorem. This omission was made because the task of describing (E(M r))ϕ−1

requires additional investigation since the criterion for membership in E(M r) is far
more complex.

5.3 The category B
Now, we focus on the category B. As alluded in the previous section, its defining
properties make the sandwich semigroups in it more amenable to analysis via our
techniques:
• Note that, for any α ∈ B, all the diagrams representing it have the same

set of edges. Therefore, from now on, we will refer to the unique diagram
representing α.

• If sandwich elements have equal ranks, we may prove they are isomorphic (see
Lemma 5.3.1); with some additional analysis, we give a sufficient and necessary
condition for semigroups Bσmn and Bτkl to be isomorphic (Theorem 5.3.4).

• We are able to analyse the product of partitions (see the introduction of Subsec-
tion 5.2.3) and to infer succinct descriptions of the P-sets (Proposition 5.3.8).
Furthermore, in Subsection 5.3.2 we discuss the equivalences which correspond
to kernels and cokernels of Brauer diagrams, and using these results, we are
able to describe the combinatorial structure of Pσ (Theorem 5.3.11) and enu-
merate its elements and idempotents (Corollary 5.3.13 and Theorem 5.3.14).

• We prove that Pσ is MI-dominated (Proposition 5.3.17), and then we obtain
the formulae for the ranks of the regular subsemigroup Reg(Bσmn) = Pσ (The-
orem 5.3.20) and the idempotent-generated subsemigroup E(Bσmn) (Theorem
5.3.21).

• Finally, we are able to prove that in Bσmn, we may apply the "generating
downwards" technique (see Corollary 5.3.23). Then, we infer the formulae for
the rank (Theorems 5.3.24 and 5.3.25).
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Again, we remind the reader that the results presented in this chapter are based
on the investigation conducted in [34], and most of the results were originally pub-
lished in that article. In a few instances, when that is not the case, we cite appro-
priately.

5.3.1 Isomorphism of sandwich semigroups in B

Our first step in this part of the investigation will be answering the question: Under
which circumstances are two sandwich semigroups of Brauer partitions isomorphic?

Lemma 5.3.1. Let m,n ∈ N0 and σ, τ ∈ Bnm. If Rank(σ) = Rank(τ), then
Bσmn ∼= Bτmn.

Proof. By Proposition 5.1.2(iii), from Rank(σ) = Rank(τ) we have σ = γ1τγ2 for
some γ1, γ2 ∈ B. Moreover, since γ1 ∈ Bn and γ2 ∈ Bm, we may modify both by
breaking all the nontransversals and creating transversals instead. (For instance, by
breaking the n−Rank(γ1)

2 upper and n−Rank(γ1)
2 lower nontransversals of γ1, we obtain

n−Rank(γ1) upper and n−Rank(γ1) lower elements, to be paired in the modified
partition π1 so that the elements of the upper nontransversals of σ are connected
in the product diagram Π(π1, τ).) Hence, there exist π1 ∈ Sn and π2 ∈ Sm with
σ = π1τπ2. Therefore, the map Bmn → Bmn : α 7→ π2απ1 is a isomorphism (since
π1 and π2 are invertible with respect to ιn and ιm), so Bσmn ∼= Bτmn.

Remark 5.3.2. Lemma 5.3.1 does not hold in any of the categories T L, PP, M ,
PB or P.

For the first three, consider the partitions

α = and β = .

It is easily seen that ι4 ∈ Pre(α)\V(α), and it may be shown (via some calculation)
that Pre(β) = V(β) in T L, M and PP. By Proposition 5.2.6(i), if K is one of those
three, the semigroup Kβ4 has a nontrivial maximal J α-class, and Kα4 does not.

In P, we consider α = and β = . Then, it is easily seen that |Dα
1 (Pα2 )| = 4

and |Dβ
1 (Pβ2 )| = 9.

If K = PB, consider α = and β = . Then, it is easy to check that
|Reg(PBα13)| = 8 and |Reg(PBβ13)| = 6 (the difference being and ).

In addition, we have:

Lemma 5.3.3. If q ∈ N, then

(i) Bσ2q,0 is a left-zero semigroup of size (2q − 1)!! for any σ ∈ B0,2q,

(ii) Bσ2q−1,1 is a left-zero semigroup of size (2q − 1)!! for any σ ∈ B1,2q−1,

Proof. Let us prove (i). Let σ ∈ B0,2q. Then, for α, β ∈ B2q,0 we have ασβ = α.
Therefore, Bσ2q,0 is a left-zero semigroup, and | B2q,0 | = (2q+0−1)!!, by Proposition
5.1.4(iii). Part (ii) is proved analogously.
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Of course, the dual statement holds as well, but we do not state it.
It turns out that these two results cover nearly all the cases when isomorphism

occurs. We prove that in the following theorem.

Theorem 5.3.4. Let m,n, k, l ∈ N0 with m ≡ n (mod 2) and k ≡ l (mod 2).
Further, let σ ∈ Bnm and τ ∈ Blk with r = Rank(σ) and s = Rank(τ). Then
Bσmn ∼= Bτkl if and only if one of the following holds:

(a) (m,n, r) = (k, l, s),

(b) m+ n ≤ 2 and k + l ≤ 2,

(c) renaming if necessary, (m,n, r) = (2q, 0, 0) and (k, l, s) = (2q− 1, 1, 1) for some
q ∈ N,

(d) renaming if necessary, (m,n, r) = (0, 2q, 0) and (k, l, s) = (1, 2q− 1, 1) for some
q ∈ N.

Proof. First, we prove that any of (a) − (d) implies Bσmn ∼= Bτkl. By Lemma 5.3.1,
(a) ⇒ Bσmn ∼= Bτkl. Further, by Lemma 5.3.3 and its dual, (c) ∨ (d) ⇒ Bσmn ∼= Bτkl.
Finally, if m+n ≤ 2 and k+ l ≤ 2, then | Bmn | = | Bkl | = 1 (since (−1)!! = 1!! = 1),
so the two semigroups are isomorphic.

Now, we prove that Bσmn ∼= Bτkl implies that one of (a)− (d) holds. Suppose that
Bσmn ∼= Bτkl and (b) is not the case. Then, Proposition 5.1.4(iii) gives

(m+ n− 1)!! = | Bσmn | = | Bτkl | = (k + l − 1)!!.

Note that x!! is strictly increasing for odd x ≥ 1. Furthermore, from ¬(b) we know
that m+n and k+ l are not both ≤ 2, so m+n = k+ l. Thus, we have the following
cases

(m,n) = (k, l). Thus, r ≡ m ≡ k ≡ s (mod 2). Recall from Corollary 5.2.10 that
the group H -classes (more precisely, H σ-classes and H τ -classes) of maximal
rank in Bσmn and Bτkl are isomorphic to Sr and Ss, respectively (and their
sizes are r! and s!, respectively). Then, Bσmn ∼= Bτkl implies r! = s!. Since
r ≡ s (mod 2), and x! is strictly increasing for odd x ≥ 1 and also for even
x ≥ 0, we may conclude that r = s, so we have (a).

(m,n) 6= (k, l). Without loss of generality we may assume m > k. (Thus, from
m+ n = k+ l we have n < l.) Recall from Proposition 5.2.7 that the minimal
J σ = Dσ-class of Bσmn is Dz(Bmn), where z ∈ {0, 1} and z ≡ m (mod 2).
Furthermore, Propositions 5.2.7 and 5.1.5(i) give

|Dz(Bmn)/Rσ | = |Dz(Bmn)/R | = (m)f and
|Dz(Bmn)/L σ | = |Dz(Bmn)/L | = (n)f,

where f : N0 → N0 is defined by

(x)f =
® (x

1
)
· (x− 1− 1)!! = x!!, if x is odd,(x

0
)
· (x− 0− 1)!! = (x− 1)!!, if x is even.
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Similarly, the minimal J τ = Dτ -class of Bτkl is Dw(Bkl), where w ∈ {0, 1} and
w ≡ k (mod 2), and

|Dw(Bkl)/Rτ | = (k)f and |Dw(Bkl)/L τ | = (l)f.

Since Bσmn ∼= Bτkl, we have (m)f = (k)f and (n)f = (l)f . From the definition
of f it follows that, for x, y ∈ N0 with x < y,

(x)f = (y)f ⇔ (x, y) = (0, 1) or (x, y) = (2q − 1, 2q) for some q ∈ N.

Recall that m > k and n < l, so

• (m, k) = (1, 0) or (2q, 2q − 1) for some q ∈ N, and
• (n, l) = (0, 1) or (2p− 1, 2p) for some p ∈ N.

Moreover, from m ≡ n (mod 2) and k ≡ l (mod 2) follows that

• (m, k) = (1, 0) and (n, l) = (2p− 1, 2p) for some p ∈ N, and
• (m, k) = (2q, 2q − 1) or (n, l) = (0, 1) for some q ∈ N.

Note that, in both cases, the rank of the sandwich elements is determined
by their smaller coordinate. We proved that either (c) or (d) is true in this
case.

Remark 5.3.5. Since Bσmn and Bσ∗nm are anti-isomorphic (see page 200), from the
above, one may easily infer the classification up to anti-isomorphism, as well.

5.3.2 A combinatorial digression

In order to describe the regular subsemigroup Pσ = Reg(Bσmn), we need to investigate
kernels, cokernels, and the way they interact in the product of diagrams. Therefore,
we introduce new combinatorial notions and describe their properties.

Let ε be an equivalence relation on a set X, and πε the corresponding partition
of X. Then, ε is a

• 2-equivalence, if each class of πε has size 2.

• 1-2-equivalence, if each class of πε has size ≤ 2. In this case, the number of
singleton classes of πε is the rank of ε, denoted by Rank(ε).

Note that, in the case where ε is an 1-2-equivalence and |X| is finite, we have
Rank(ε) ≡ |X| (mod 2).

Clearly, 1-2-equivalences on [m] are the kernels of elements of Bmn. Moreover,
if α ∈ Bmn, then Rank(ker(α)) = Rank(coker(α)) = Rank(α) since all the singleton
classes of ker(α) are elements of transversal classes.

Firstly, we are interested in the number of these equivalences. If |X| = m is
finite, there are (m − 1)!! 2-equivalences on X (see the comments on n!!, on page
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207). For q ∈ N0 with q ≤ m and q ≡ m (mod 2), the number of 1-2-equivalences
on the set X with rank q is

κ(m, q) =
Ç
m

q

å
(m− q − 1)!!. (5.12)

(We may choose q elements for the q singleton classes in
(m
q

)
ways, and the remaining

m− q elements may be paired in (m− q − 1)!! ways.)
Secondly, we will investigate the join of 1-2-equivalences. Recall that, for par-

titions α, β ∈ P with β δ = αρ, the equivalence coker(α) ∨ ker(β) (that is, the
transitive closure of coker(α) ◦ ker(β)) describes the connections among the ele-
ments of the middle row in the product diagram Π(α, β). In particular, the classes
of coker(α)∨ker(β) of odd size determine the transversals in the product (diagram)
Π(α, β). Thus, we will be interested in the join of 1-2 equivalences which has a spe-
cified number of classes of odd size: suppose m, r, q ∈ N0 are such that q ≤ r ≤ m
and q ≡ r ≡ m (mod 2), and fix a set X with |X| = m and a 1-2-equivalence υ on
X with Rank(υ) = r; then, κ(m, r, q) denotes the number of 1-2-equivalences ε on
X such that

Rank(ε) = q and ε ∨ υ has precisely q classes of odd size.

Note that the value κ(m, r, q) does not depend on the choice of the set X or the
choice of equivalence υ (since we do not require planarity), as long as they have the
required properties.

We will visualise the join ε ∨ υ of 1-2-equivalences (on a set X) ε and υ as a
cut-out from the middle row of a product diagram: the vertices corresponding the
elements of X will be placed in a horizontal row, and the connections within the
non-singleton classes of ε and υ will be indicated by an edge drawn below and above
the row of vertices, respectively.

Now, we may prove

Lemma 5.3.6. If m, r ∈ N0 are such that r ≤ m and r ≡ m (mod 2), then
κ(m, r, r) = (m+r−1)!!

(2r−1)!! .

Proof. Firstly, we define the numbers λ(m, r) for m, r ∈ N0 with r ≤ m and r ≡
m (mod 2) in the following way:

(1) λ(m, r) = (m− 1)!! if r = 0,

(2) λ(m, r) = 1 if m = r,

(3) λ(m, r) = λ(m− 1, r − 1) + (m− r)λ(m− 2, r) if 0 < r < m.

It is easily shown that (m+r−1)!!
(2r−1)!! satisfies the above recurrence. Therefore, it suffices

to prove the same for κ(m, r, r). By the above discussion, we may assume, without
loss of generality, that X = {1, . . . ,m} and that

πυ =
{
{1}, . . . , {r}, {r + 1, r + 2}, . . . , {m− 1,m}

}
.
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Here, r = Rank(υ).
Consider κ(m, 0, 0). Since r = q = 0, all the classes of ε need to be non-

singleton, so any of (m − 1)!! 2-equivalences of [m] fits. Thus, (1) holds. Next,
consider κ(m,m,m). Since q = r = m, we have υ = ∆[m] and none of its classes are
joined in ε ∨ υ. The only 1-2-equivalence satisfying that is ε = υ, so (2) holds as
well. For (3), suppose 0 < r < m. To calculate the number of possible choices for
ε, we consider the possible forms of class A containing the element 1. We have two
cases:

A = {1}, or A = {1, a}, for some a ∈ {r + 1, . . . ,m}.

(Since {1} is a class of πυ, the element 1 cannot be connected to an element from
{2, . . . r}; otherwise, ε ∨ υ would contain at most r − 1 odd-sized components.) In
the first case, the class A remains intact in ε∨ υ, so we need to partition {2, . . . ,m}
so that we obtain r − 1 classes of odd size. If we recall the form of the partition υ,
it is easily seen that this may be done in κ(m− 1, r − 1, r − 1) ways. In the second
case, we may choose the element a in m − r ways. Then, the component of ε ∨ υ
containing 1 also contains a and b, where b ∈ {a − 1, a + 1}. Note that, in ε, the
element b cannot be connected to any of the elements of {2, . . . , r} because its ε∨υ-
class needs to be an odd-sized component. Thus, we may identify the newly created
group {1, a, b} with the element 1, and eliminate a and b (see Figure 5.8). Hence,
the number of ways to connect the remaining elements (including the "artificial" 1)
and obtain r odd-sized components in ε ∨ υ is κ(m− 2, r, r).

1
. . .

r
. . .

a b
. . .

1
. . .

r
. . . . . .

↓

Figure 5.8: A visual aid for the proof of Lemma 5.3.6.

Further, we show

Lemma 5.3.7. If m, r, q ∈ N0 are such that q ≤ r ≤ m and q ≡ r ≡ m (mod 2),
then

κ(m, r, q) =
Ç
r

q

å
(r − q − 1)!!(m+ q − 1)!!

(r + q − 1)!! .

Proof. We use a similar approach as in the proof of Lemma 5.3.6. We define the
numbers λ(m, r, q) for m, r, q ∈ N0 with q ≤ r ≤ m and q ≡ r ≡ m (mod 2) in the
following way:

(1) λ(m, r, q) = (m− 1)!! if q = 0,

(2) λ(m, r, q) =
(m
q

)
(m− q − 1)!! if m = r,
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(3) λ(m, r, q) = (m+r−1)!!
(2r−1)!! if r = q,

(4) λ(m, r, q) = λ(m− 1, r − 1, q − 1) + (r − 1)λ(m− 2, r − 2, q)
+ (m− r)λ(m− 2, r, q)

if 0 < q < r < m.

Again, it may be shown that
(r
q

) (r−q−1)!!(m+q−1)!!
(r+q−1)!! satisfies the above recurrence, so

it suffices to prove the same for κ(m, r, q). Here too we assume without loss of
generality that X = [m] and

πυ =
{
{1}, . . . , {r}, {r + 1, r + 2}, . . . , {m− 1,m}

}
.

(1) and (2). Note that in the case r = m we have υ = {(x, x) : x ∈ [m]}. Suppose
that either q = 0 or r = m. Then, for every 1-2-equivalence ε with Rank(ε) = q,
the relation ε∨κ has q odd-sized blocks. Thus, we may choose any of the κ(m, q) =(m
q

)
(m− q − 1)!! 1-2-equivalences of rank q (see (5.12)).
(3) was shown in Lemma 5.3.6.
(4). Suppose 0 < q < r < m. To calculate the number of possible choices for ε,

we consider the possible forms of class A containing the element 1. We have three
cases:

A = {1} or A = {1, a}, with 1 < a ≤ r or r < a ≤ m.

The second case is possible since q < r (cf. proof of Lemma 5.3.6). Now, the
partitions corresponding to the first and third case are enumerated in the same way
as in the proof of Lemma 5.3.6. Similarly, for the second case we may choose a in
r−1 ways and hence we create an even-sized component. Thus, we need to partition
the remaining m − 2 elements to create q odd-sized components in ε ∨ υ (and we
have "spent" 2 singleton components of υ), which may be done in κ(m− 2, r − 2, q)
ways.

5.3.3 The regular subsemigroup Pσ = Reg(Bσmn)

Now, we return to the topic of our investigation, the sandwich semigroup Bσmn. The
crucial step is to infer a concise characterisation for each of its P-sets. Then, applying
the results of the previous subsection, we describe the combinatorial structure of its
regular subsemigroup Pσ and enumerate its regular elements and idempotents.

Again, we fix m,n ∈ N0 such that m ≡ n (mod 2). Further, we continue to fix
some σ ∈ Bnm with Rank(σ) = r. By Lemma 5.3.1, we may assume without loss of
generality that

σ =
Ç

1 · · · r r + 1, r + 2 · · · n− 1, n
1 · · · r r + 1, r + 2 · · · m− 1,m

å
, (5.13)
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which gives τ (as defined in Subsection 5.2.2) of the form
(

1 · · · r

1 · · · r r + 1, r + 2
∣∣∣ · · ·

∣∣∣ n− 1, n

)
.

First, we aim to describe the elements of the set Pσ1 in Bσmn. Thus, let α ∈ Bmn
and consider the product diagram Π(α, σ). Note that each component is either a
path or a loop. More precisely, each component is of one of the following forms:

(C1) x α←−−→ z, for some x, z ∈ [m],

(C2) x′ σ←−−→ z′, for some x, z ∈ [m],

(C3) x α←−−→ y′′1
σ←−−→ y′′2

α←−−→ · · · σ←−−→ y′′2k
α←−−→ z, for some x, z ∈ [m], k ∈ N

and y1, y2, . . . , y2k ∈ [n],

(C4) x′ σ←−−→ y′′1
α←−−→ y′′2

σ←−−→ · · · α←−−→ y′′2k
σ←−−→ z′, for some x, z ∈ [m], k ∈ N

and y1, y2, . . . , y2k ∈ [n],

(C5) y′′1
α←−−→ y′′2

σ←−−→ · · · α←−−→ y′′2k
σ←−−→ y′′1 , for some k ∈ N and y1, y2, . . . , y2k ∈

[n],

(C6) x α←−−→ y′′1
σ←−−→ y′′2

α←−−→ · · · α←−−→ y′′2k−1
σ←−−→ z′, for some x, z ∈ [m], k ∈ N

and y1, y2, . . . , y2k−1 ∈ [n],

(where x α←−−→ z means that elements x and z are connected by an edge in the
diagram α). In ασ, these components result in upper nontransversals (in the cases
(C1) and (C3)), lower nontransversals (in the cases (C2) and (C4)) or transversals
(in the case (C6)). The components of the form (C5) have no effect since they
form loops contained in the middle row. Hence, the rank of ασ equals the number
of components of type (C6) in Π(α, σ). Moreover, we may conclude that every
equivalence class of coker(α)∨ker(σ) (describing the connections in the middle row)
is of the form

• {y1, . . . , y2k}, for some component of Π(α, σ) of type (C3), (C4) or (C5), or

• {y1, . . . , y2k−1} for some component of Π(α, σ) of type (C6).

Therefore, if q = Rank(α), from Proposition 5.2.2 we have

α ∈ Pσ1 ⇔ Rank(ασ) = q ⇔ Π(α, σ) has q components of type (C6)
⇔ coker(α) ∨ ker(σ) has q classes of odd size
⇔ coker(α) ∨ ker(σ) separates codom(α),

the last equivalence following from the fact that, in coker(α)∨ ker(σ) classes of odd
size contain exactly one element of codom(α).

From the duality of Pσ1 and Pσ2 and Proposition 5.2.2, we immediately obtain:
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Proposition 5.3.8. In Bσmn, we have

(i) Pσ1 = {α ∈ Bmn : coker(α) ∨ ker(σ) separates codom(α)},

(ii) Pσ2 = {α ∈ Bmn : ker(α) ∨ coker(σ) separates dom(α)},

(iii) Pσ = Pσ3 = {α ∈ Bmn : coker(α) ∨ ker(σ) separates codom(α) and
ker(α) ∨ coker(σ) separates dom(α)}.

Remark 5.3.9. Note that the previous proposition also follows from Proposition
2.2.43. Furthermore, the same proposition clearly holds in T L, as well. However,
in P, PP, PB or M , we do not have restrictions on the parity of classes, so we
cannot draw conclusions similar to the ones above. For a case in point, consider
α = and σ = , both from M2 ⊆ PB2 ∩PP2 ∩P2. Clearly, Rank(ασ) 6=
Rank(α) 6= Rank(σα), even though coker(α) ∨ ker(σ) = ker(α) ∨ coker(σ) separates
dom(α) = codom(α).

Finally, we are ready to continue where we left off in Subsection 5.2.3. We need
to describe the inflation from Theorem 5.2.9 in combinatorial terms. Recall the map

ϕ : Pσ → Br : α→ (σασσ∗)\ = τσατ∗,

and let α denote the partition αϕ for α ∈ Pσ. Furthermore, recall that, for K ∈
{R,L ,H ,D ,J } and α, β ∈ Pσ, we define α‘K σβ ⇔ αK β, and K̂σ

α denotes the‘K σ-class α.
Now, we give characterisations of Green’s classes in the Brauer monoid Br, which

were obtained in [92]. From these, it is easy to calculate the size of H -classes and
to prove that the group H -classes are isomorphic to Sq. Then, the statement (vi)
follows from the fact that Rank(αβ) ≤ min(Rank(α),Rank(β)).

Lemma 5.3.10. Let α ∈ Br with Rank(α) = q. In Br, we have

(i) Rα = {β ∈ Br : ker(β) = ker(α)},

(ii) Lα = {β ∈ Br : coker(β) = coker(α)},

(iii) Hα = {β ∈ Br : ker(β) = ker(α), coker(β) = coker(α)},

(iv) |Hα | = q!; furthermore, if Hα contains an idempotent, then Hα
∼= Sq;

(v) Dα = Jα = {β ∈ Br : Rank(β) = q};

(vi) we have Dιr = Hιr
∼= Sr and Br \ Sr is an ideal of the semigroup Br.

(vii) (Lemma 2.1 in [93])

Rank(Br) =





1, if r ∈ {0, 1},
2, if r = 2,
3, if r ≥ 3,

and Rank(Br : Sr) =
®

1, if r ≥ 2,
0, if r ≤ 1,
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(viii) (Proposition 2 in [88]) Rank(E(Br)) = idrank(E(Br)) = 1 +
(r
2
)
.

We use the information obtained above to describe the inflation.

Theorem 5.3.11. Let 0 ≤ q ≤ r with q ≡ r (mod 2).

(i) Dσ
q contains

(r
q

)
(r − q − 1)!! R̂σ-classes, each of which contains (m+q−1)!!

(r+q−1)!! Rσ-
classes.

(ii) Dσ
q contains

(r
q

)
(r − q − 1)!! ‘L σ-classes, each of which contains (n+q−1)!!

(r+q−1)!! L σ-
classes.

(iii) Dσ
q contains

(r
q

)2(r − q − 1)!!2 ‘H σ-classes, each of which contains exactly
(m+q−1)!!(n+q−1)!!

(r+q−1)!!2 H σ-classes.

(iv) Each H σ-class in Dσ
q has size q!, and group H σ-classes in Dσ

q are isomorphic
to the symmetric group Sq.

(v) An H σ-class Hσ
α ⊆ Dσ

q is a group if and only if Hα ⊆ Dq(Br) is a group H -
class of Br, in which case ”Hσ

α is a (m+q−1)!!
(r+q−1)!! ×

(n+q−1)!!
(r+q−1)!! rectangular group over

Sq.

Proof. Recall that ϕ maps the ‘K σ-classes of Pσ to K -classes of Br (preserving
the ranks of elements), and the correspondence is bijective. Thus, Dσ

q contains
|Dq(Br)/R | =

(r
q

)
(r− q − 1)!! R̂σ-classes (by Proposition 5.1.5). A dual statement

can be made for‘L σ-classes, and we immediately obtain the number of ‘H σ-classes,
as well.

(i). We prove the second assertion. First, we calculate the number of Rσ-classes
in Dσ

q . From Proposition 5.2.12(i) it follows that such an Rσ-class is uniquely
determined by its kernel (because the upper nontransversals are precisely the non-
singleton classes of the kernel). Thus, it suffices to calculate the number of 1-2-
equivalences which may be kernels of a regular element of rank q. By Proposition
5.3.8(iii), for any such equivalence α, α ∨ coker(σ) separates dom(α) (equivalently,
α∨coker(σ) has q classes of odd size). Hence, we need the number of 1-2 equivalences
on [m] of rank q, such that α∨coker(σ) has q odd-sized classes, which is κ(m, r, q) =(r
q

) (r−q−1)!!(m+q−1)!!
(r+q−1)!! (by Lemma 5.3.7).

Since Dσ
q contains

(r
q

)
(r − q − 1)!! R̂σ-classes, it suffices to prove that all R̂σ-

classes in Dσ
q contain the same number of Rσ-classes. Thus, suppose α, β ∈ Dσ

q and
consider ”Rσ

α and ”Rσ
β. Since all Rσ-classes in the same Dσ-class have the same size

(Lemma 1.3.4(iii)), it is enough to show that these R̂σ-classes have the same size.
From αDσ β it follows that αRσ γL σ β for some γ ∈ Dσ

q . Since α and γ are
Rσ-related, we have ”Rσ

α = ”Rσ
γ . Thus, we may assume without loss of generality that

αL σ β, which implies αL β. Then, coker(α) = coker(β) (by Lemma 5.3.10(ii))
and Rank(α) = Rank(β) = q. We claim that β = πα for some permutation π ∈ Sr:
suppose dom(β) = {c1, . . . , cq} and dom(α) = {d1, . . . , dq} with ci < cj and di < dj
for i < j, and fix a permutation π ∈ Sr such that
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• ciπ = di for each 1 ≤ i ≤ q, and

• for any two-element class G of dom(β) there exists a two element-class H of
dom(α) such that π maps G to H.

Let us define permutations

% =
Ç

1 · · · r r + 1 · · · m
1π · · · rπ r + 1 · · · m

å
∈ Sm and ς =

Ç
1 · · · r r + 1 · · · n

1π · · · rπ r + 1 · · · n

å
∈ Sn,

and note that τσ · % = π · τσ and σ% = ςσ (see (5.13)).
We will prove that

θ : ”Rσ
α → ”Rσ

β : γ 7→ %γ

is a well-defined map. Let γ ∈ ”Rσ
α. Then, γθ ∈ ”Rσ

β if the following two statements
are true:

(a) γθ ∈ Pσ, and (b) γθ R̂σ β (i.e. γθR β).

For the first one, note that from σ% = ςσ we have

Rank(σ(γθ)σ) = Rank(σ%γσ) = Rank(ςσγσ)
= Rank(σγσ) = Rank(γ) = Rank(%γ) = Rank(γθ)

since ς and % are permutations, and since γ ∈ Pσ. To prove (b), note that τσ · % =
π · τσ gives

γθ = %γ = τσ(%γ)τ∗ = π(τσγτ∗) = πγR πα = β,

where πγR πα follows from γ ∈ ”Rσ
α and the fact that R is a left congruence.

Thus, we proved that θ is well-defined. Since % is a permutation, θ is injective, so
|”Rσ

α| ≤ |”Rσ
β|. The reverse inequality follows by symmetry, and so |”Rσ

α| = |”Rσ
β|.

Part (ii) is dual to (i), and (iii) follows immediately from (i) and (ii). Finally,
parts (iv) and (v) follow from Theorem 5.2.9, Lemma 5.3.10 and parts (i) and (ii)
(because for any α ∈ Pσ we have |”Hσ

α/Rσ | = |(”Rσ
α ∩”Lσα)/Rσ | = |”Rσ

α/Rσ | and
similarly |”Hσ

α/L σ | = |”Lσα/L σ |).

Remark 5.3.12. In Figure 5.13 the reader may inspect egg-box diagrams for the
regular semigroups Reg(Bσ1

66) and Reg(Bσ2
64), and the Brauer monoid B4, where σ1 ∈

B66 with Rank(σ1) = 4, and σ2 ∈ B46 with Rank(σ2) = 4. By comparing the
diagrams, the reader may verify that all the “R-classes (L̂ -classes) in a common
Dσ-class have the same number of Rσ-classes (L σ-classes). However, in general,
this does not hold in other diagram categories (see Figure 5.12 ).

From Theorem 5.3.11(iii) and (iv) we may immediately infer the size of the
regular class Dσ

q . Summing over the possible ranks (see Corollary 5.2.5), we obtain
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Corollary 5.3.13. The size of the regular subsemigroup Pσ = Reg(Bσmn) is given
by

|Pσ | =
∑

0≤q≤r
q≡r (mod 2)

Ç
r

q

å2 (r − q − 1)!!2(m+ q − 1)!!(n+ q − 1)!!
(r + q − 1)!!2 · q!

Of course, we are also interested in the rank of this semigroup. We will be able
to obtain it from Theorem 2.4.16, if we prove that Pσ is MI-dominated. Since the
topic of MI-domination in B merits a separate subsection, we postpone this part of
the investigation. Instead, we enumerate the idempotents of Bσmn.

For this, we need to know more about the idempotents in the Brauer monoid
Br. In [31], the authors give several formulae for the number of idempotents of rank
0 ≤ q ≤ r in Br (denoted |E(Dq(Br))|). Here, we use the one from Theorem 30: for
r ∈ N0 and 0 ≤ q ≤ r with r ≡ q (mod 2),

|E(Dq(Br))| =
Ç
r

q

å
(r − q − 1)!! · arq, where arq is defined by the recurrence

arr = 1 for all r,
ar0 = (r − 1)!! if r is even,
arq = ar−1,q−1 + (r − q)ar−2,q if 0 < q ≤ r − 2.

Note that the recurrence for the numbers arq is the same as the recurrence for λ(r, q)
in the proof of Lemma 5.3.6. Thus, from the proof of Lemma 5.3.6 it follows that
arq = κ(r, q, q) = (r+q−1)!!

(2q−1)!! , so we have

|E(Dq(Br))| =
Ç
r

q

å
(r − q − 1)!!(r + q − 1)!!

(2q − 1)!! . (5.14)

Now, we may prove

Theorem 5.3.14. The number of idempotents of Bσmn is given by

|Eσ(Bσmn)| =
∑

0≤q≤r
q≡r (mod 2)

Ç
r

q

å
(r − q − 1)!!(m+ q − 1)!!(n+ q − 1)!!

(r + q − 1)!!(2q − 1)!! .

The qth term in the above sum gives the number of idempotents from Dσ
q .

Proof. First, we enumerate the idempotents in the regular class Dσ
q . Suppose 0 ≤

q ≤ r with q ≡ r (mod 2). By Theorem 5.3.11(v), for each group H -class (i.e for each
idempotent) in Dq(Br), the idempotents mapping to it form a (m+q−1)!!

(r+q−1)!! ×
(n+q−1)!!
(r+q−1)!!

rectangular band. Therefore, (5.14) implies

|Eσ(Dσ
q )| =

Ç
r

q

å
(r − q − 1)!!(m+ q − 1)!!(n+ q − 1)!!

(r + q − 1)!!(2q − 1)!! .

We obtain the number of idempotents of Bσmn by summing over appropriate q.
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Remark 5.3.15. From (5.14) we may conclude that

|E(Br)| =
∑

0≤q≤r
q≡r (mod 2)

Ç
r

q

å
(r − q − 1)!!(r + q − 1)!!

(2q − 1)!! ,

which simplifies the formula from [31] (an alternative formula may be found in
Proposition 4.10 in [76]).

5.3.4 MI-domination and the ranks of Reg(Bσmn) and E(Bσmn)

As promised, in this subsection we prove that the regular subsemigroup Pσ =
Reg(Bσmn) of the sandwich semigroup Bσmn is MI-dominated, and we apply The-
orems 2.4.16 and 2.4.17 in order to calculate the ranks of the semigroups Pσ and
E(Bσmn). We keep the assumptions from the previous subsections (in particular, we
assume that σ is of the form stated in (5.13)).

As in [28], first, we give a technical lemma, whose proof encompasses the core of
the argument proving MI-domination. Note that it has an obvious dual, but we do
not state it.

Lemma 5.3.16. If α ∈ Pσ2 , then α = λ ?σ α for some λ ∈ MI(Pσ).

Proof. First, we analyse α and σα under the stated assumptions. Write

α =
Ç
a1 · · · aq C1 · · · Cs
b1 · · · bq D1 · · · Dt

å
∈ Pσ2 .

By Proposition 5.2.2, α ∈ Pσ2 implies that codom(σα) = codom(α) = {b1, . . . , bq}.
Since dom(σα) ⊆ dom(σ) ⊆ [r], the q transversals of σα are {x1, b

′
1}, . . . , {xq, b′q}

for some x1, . . . , xq ∈ [r]. As for the nontransversals, we have three types:

• The lower nontransversals D′1, . . . , D′t of α are preserved in the product σα.
Since Rank(σα) = q, these are all the lower nontransversals of σα.

• The upper nontransversals {r+ 1, r+ 2}, . . . , {n−1, n} of σ are also preserved
in the product σα. If q = r, these are all the upper nontransversals of σα.

• If q < r, the remaining k = r−q
2 upper nontransversals of σα are contained in

[r]. Suppose these are {y1, z1}, . . . , {yk, zk}.

Putting these together, we have

σα =
(
x1 · · · xq y1, z1 · · ·

∣∣∣ yk, zk
∣∣∣ r + 1, r + 2

∣∣∣ · · · n− 1, n
b1 · · · bq D1 · · · · · · Dt

)
.

Next, we construct the corresponding λ in four stages. Since we want the result
of the product λσα to be α,

(1) {a1, x
′
1}, . . . , {aq, x′q} will all be transversals of λ.
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Further, by Proposition 2.4.9(i) MI(Pσ) = V(σ), so we want λ to be an inverse of σ.
Thus, we will define λ so that dom(λ) = codom(λ) = [r] (note that {a1, . . . , aq} ⊆ [r],
since Rank(σα) = Rank(α)), and

(2) {r + 1, r + 2}′, . . . , {n− 1, n}′ will be all the lower nontransversals of λ.

Now, we need to construct r− q = 2k further transversals and m−r
2 upper nontrans-

versals, so that in the product diagram Π(λ, σα) there exists a path giving rise to
the upper nontransversal Ci, for all 1 ≤ i ≤ s. In order to do this, we analyse the
nontransversals of σα. Consider some 1 ≤ j ≤ k. Since {yj , zj} is a nontransversal
of σα and since {yj , y′j} and {zj , z′j} are transversals of σ, the product graph Π(σ, α)
contains a path from y′′j to z′′j . The first edge in this path is clearly the upper non-
transversal of α containing the element yj . Write {yj , wj} for this nontransversal
(note that wj ∈ [r] \ {x1, . . . , xq}; further, if the above mentioned path has length
1, then wj = zj). Renaming if necessary, we may assume Cj = {yj , wj} (note that,
for l 6= p we have {yl, wl} 6= {yp, wp}, since they belong to different components of
Π(σ, α)). So, we want

(3) {y1, y
′
1}, . . . , {yk, y′k} and {w1, z

′
1}, . . . , {wk, z′k} to be transversals of λ, and

(4) Ck+1, . . . , Cs to be upper nontransversals of λ.

It is easily seen that the blocks listed in (1)−(4) are disjoint. Further,

{x1, . . . , xq} ∪ {y1, . . . , yk} ∪ {z1, . . . , zk} ∪ {r + 1, . . . , n} = [n], and
{a1, . . . , aq} ∪ {y1, . . . , yk} ∪ {w1, . . . , wk} ∪ Ck+1 ∪ . . . ∪ Cs = [m],

so the partition

λ=
Ç
a1 · · · aq y1 · · · yk w1 . . . wk Ck+1 . . . Cs
x1 · · · xq y1 · · · yk z1 . . . zk r + 1, r + 2 . . . n− 1, n

å
is well-defined.

Now, we show that λσα = α and that λ ∈ MI(Pσ) = V(σ). The first one is
easily verified. For the second, we need to prove that λσλ = λ and σλσ = σ. Since
Rank(λ) = Rank(σ) (so λJ σ), by Lemma 2.2.15 it suffices to prove the latter. For
this, it is enough to show that σλ contains the transversals

{x1, x
′
1}, . . . , {xq, x′q}, {y1, y

′
1}, . . . , {yk, y′k}, {z1, z

′
1}, . . . , {zk, z′k}.

Firstly, since y1, . . . , yk ∈ [r], the sets {y1, y
′
1}, . . . , {yk, y′k} are all transversals in

both σ and λ, and so in σλ as well.
Secondly, suppose 1 ≤ i ≤ q and consider the element xi. Since {xi, b′i} is a trans-

versal of σα and since {xi, x′i} and {ai, b′i} are transversals of σ and α respectively,
there is a path in the product graph Π(σ, α) of the form

xi
σ←−−→ x′′i

α←−−→ u′′1
σ←−−→ u′′2

α←−−→ · · · σ←−−→ u′′2l = a′′i
α←−−→ b′i (5.15)
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for some l ∈ N0 and some u1, . . . , u2l ∈ [m] (if l = 0, then x′′i = a′′i ). Clearly, all
the edges in this path coming from σ are edges in Π(σ, λ) as well. As for the edges
coming from α, note that they are upper nontransversals in α, except for the last
edge. Obviously, the only upper nontransversals of α that are not blocks of λ are
C1, . . . , Ck. However, from the construction of λ we know that these are all involved
in components of type (C3), as enumerated at the beginning of Subsection 5.3.3, so
they cannot belong to the path (5.15), it being a component of type (C6). Thus, all
the edges in (5.15) coming from α, apart from the last one, are also in the product
graph Π(σ, λ). Since {ai, x′i} is a transversal of λ, the product diagram Π(σ, λ)
contains the path

xi
σ←−−→ x′′i

λ←−−→ u′′1
σ←−−→ u′′2

λ←−−→ · · · σ←−−→ u′′2l = a′′i
λ←−−→ x′i.

Thus, {x1, x
′
1}, . . . , {xq, x′q} are all transversals of σλ.

Finally, we suppose 1 ≤ j ≤ k and consider the element zj . As in the previous
case, {zj , yj} is a nontransversal of σα. From the analysis below step (2), we know
that the product graph Π(σ, α) contains a path of the form

yj
σ←−−→ y′′j

α←−−→ w′′j
σ←−−→ v′′1

α←−−→ v′′2
σ←−−→ · · · α←−−→ v′′2l = z′′j

σ←−−→ zj (5.16)

for some l ∈ N0 and v1, . . . , v2l ∈ [m] (see Figure 5.9). Since this path contains
the edge {y′′j , w′′j } corresponding to the component Cj of α, it cannot contain the
edge coming from Cp, for any p ∈ [k] with p 6= j (because such an edge belongs to
the component connecting yp and zp). Thus, all the edges of the path (5.16), apart
from the second, belong to the product graph Π(σ, λ) as well. As λ contains the
transversal {wj , z′j}, the product diagram Π(σ, λ) contains the path

z′j
λ←−−→ w′′j

σ←−−→ v′′1
λ←−−→ v′′2

σ←−−→ · · · λ←−−→ v′′2l = z′′j
σ←−−→ zj ,

(see Figure 5.9) so {zj , z′j} is a transversal of σλ. As noted above, this completes
the proof.

yj zj

y′′j
w′′j

σ

α

yj zj

y′′j
w′′j

y′j z′j

σ

λ

Figure 5.9: (from [28]) Left: a component of type (5.16) in the product graph
Π(σ, α). Right: the corresponding two components of Π(σ, λ).

Now, we are ready now to prove that Pσ is MI-dominated.

Proposition 5.3.17. The semigroup Pσ = Reg(Bσmn) is MI-dominated.
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Proof. Suppose α ∈ Eσ(Pσ). We need to show that α is �-below a mididentity, i.e.
that α = ε ?σ α ?σ ε for some ε ∈ MI(Pα).

Note that Lemma 5.3.16 and its dual tell us that α = λ ?σ α ?σ % for some
λ, % ∈ MI(Pσ). Since MI(Pσ) is a subsemigroup, λ ?σ % ∈ MI(Pσ). Then, for
ε = λ ?σ % we have

ε ?σ α ?σ ε = λ ?σ % ?σ α ?σ λ ?σ % = λ ?σ α ?σ % = α,

the penultimate equality following from the fact that λ, % ∈ MI(Pσ).

In addition, we may prove
Proposition 5.3.18. The semigroup Pσ = Reg(Bσmn) is RP-dominated.
Proof. Propositions 2.4.8 and 5.3.17 imply that Pσ is RP-dominated if and only if
the local monoid ε ?σ Pσ ?σε is factorisable for each ε ∈ MI(Pσ). From Proposition
2.4.9(i), we have MI(Pσ) = V(σ), so Proposition 2.4.11 implies that ε ?σ Pσ ?σε ∼=
(σPσ σ,~) ∼= Br for each ε ∈ MI(Pσ). Thus, the semigroup Pσ is RP-dominated
if and only if Br is factorisable. It suffices to show that Br = Sr ·E(Br). Suppose
α =

Ç
a1 · · · aq c1, c2 · · · c2s−1, c2s
b1 · · · bq d1, d2 · · · d2s−1, d2s

å
∈ Br . Let

β =
Ç
a1 · · · aq c1 c2 · · · c2s−1 c2s
b1 · · · bq d1 d2 · · · d2s−1 d2s

å
and µ =

Ç
b1 · · · bq d1, d2 · · · d2s−1, d2s
b1 · · · bq d1, d2 · · · d2s−1, d2s

å
.

It is easily seen that β ∈ Sr, µ ∈ E(Br) and βµ = α. Therefore, Br ⊆ Sr ·E(Br). As
reverse containment is clear, the result follows.

Remark 5.3.19. As we already mentioned in the previous section, if K is any of
the categories P, PP, PB, M and T L, then the regular subsemigroup Reg(Kσmn)
is not MI-dominated in general.

If K = P or K = PP, consider σ = ∈ PP3 ⊆ P3. Then, applying
Proposition 2.4.9(i), one may calculate (via GAP [98] or by hand) that

MI(Reg(Pσ3 )) = MI(Reg(PPσ3 )) = V(σ)

=
{

, , , , , , , ,
}

Now, consider α = ∈PP3 ⊆ P3. It is easily seen that ασα = α, so α ∈ E(Pσ).
However, by Proposition 5.1.2(i), α is not ≤R-below any of the above mid-identities,
so it follows that α is not �-below any mid-identity in Pσ.

Similarly, if K = M or K = PB, consider σ = ∈ M 3 ⊆ PB3. Then,
it is easy to see that MI(Reg(M σ

3 )) = MI(Reg(PBσ3 )) = V(σ) =
{ }

. Note

that α = ∈ M 3 ⊆ PB3 satisfies ασα = α, but α is not ≤R-below the above
mid-identity.

Finally, if K = T L, consider σ = ∈ T L26. Then, it is easy to see that

MI(Reg(T Lσ6,2)) = V(σ) =
{

, , ,
}
.
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Note that α = ∈ T L6,2 satisfies ασα = α, but α is not ≤R-below any
mid-identity in Pσ.

Now, we may calculate Rank(Pσ). Recall that, if r = m = n, then σ = ιr, so
Bσmn = Pσ ∼= Br. Thus, we may suppose r = m = n is not the case. Furthermore,
since Bσmn and Bσ∗nm are anti-isomorphic (see page 200), we may suppose m ≥ n.

Theorem 5.3.20. If m ≥ n, and if r = m = n does not hold, then the rank of the
regular semigroup Pσ = Reg(Bσmn) is given by

Rank(Pσ) = (m+ r − 1)!!
(2r − 1)!! +

®
1, if r ≥ 2,
0, if r ≤ 1.

Proof. From Theorem 5.3.11(i) and (ii), it follows that |‘Hσ
σ∗/Rσ | = |‘Rσ

σ∗/Rσ | =
(m+r−1)!!

(2r−1)!! and |‘Hσ
σ∗/L σ | = |‘Lσσ∗/L σ | = (n+r−1)!!

(2r−1)!! . Since Br \ Sr is an ideal of Br
(by Lemma 5.3.10(vi)) and since Pσ is MI-dominated, Theorem 2.4.16 gives

Rank(Pσ) = Rank(Br : Sr) + max
Ç

(m+ r − 1)!!
(2r − 1)!! ,

(n+ r − 1)!!
(2r − 1)!! ,Rank(Sr)

å
,

= Rank(Br : Sr) + max
Ç

(m+ r − 1)!!
(2r − 1)!! ,Rank(Sr)

å
so the result follows from Lemma 5.3.10(vii) and the formula for Rank(Sr) from
page 110.

Next, we calculate the rank of the idempotent-generated subsemigroup. Again,
we assume that m ≥ n, but we do not need to exclude the case r = m = n.

Theorem 5.3.21. Ifm ≥ n, then the rank and the idempotent rank of the idempotent-
generated semigroup Eσ(Bσmn) are given by

Rank(Eσ(Bσmn)) = idrank(Eσ(Bσmn)) = (m+ r − 1)!!
(2r − 1)!! +

Ç
r

2

å
.

Proof. Keeping in mind the sizes calculated in the proof of Theorem 5.3.20 and the
fact that Pσ is MI-dominated, from Theorem 2.4.17 we deduce

Rank(Eσ(Pσ)) = Rank(E(Br)) + (m+ r − 1)!!
(2r − 1)!! − 1 and

idrank(Eσ(Pσ)) = idrank(E(Br)) + (m+ r − 1)!!
(2r − 1)!! − 1.

Thus, the result follows from Lemma 5.3.10(viii).

5.3.5 The rank of a sandwich semigroup Bσmn
In the penultimate subsection of the thesis, we calculate the rank of a sandwich
semigroup in the Brauer category. Again, we fix m,n ∈ N0 and σ ∈ Bnm, and we
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write r = Rank(σ). By Lemma 5.3.1, we may suppose without loss of generality
that σ is of form (5.13), and since Bσmn and Bσ∗nm are anti-isomorphic, we may assume
that m ≥ n. Furthermore, as r = n = m implies Bσmn ∼= Br (because σ = ιr) and
the rank of Br is well-known (see 5.3.10(vii)), we may exclude the case m = n = r.

Keeping in mind these assumptions, we prove a lemma which will be the base for
our technique of "downwards generating". For simplicity, we denote Dq = Dq(Bmn)
for each 0 ≤ q ≤ n with q ≡ n (mod 2).

Lemma 5.3.22. If α ∈ Dq, where q ≤ r and q < n, then α = β ?σ γ for some
β, γ ∈ Dq+2.

Proof. Write α =
Ç
a1 · · · aq c1, d1 · · · cs, ds
b1 · · · bq e1, f1 · · · et, ft

å
∈ Dq . From q < n, we may conclude

that s, t ≥ 1. Now, let

β =
Ç
a1 · · · aq cs ds c1, d1 · · · cs−1, ds−1
1 · · · q n− 1 n q + 1, q + 2 · · · n− 3, n− 2

å
and

γ =
Ç

1 · · · q m− 1 m q + 1, q + 2 · · · m− 3,m− 2
b1 · · · bq et ft e1, f1 · · · et−1, ft−1

å
.

It is easily seen that β, γ ∈ Dq+2 and that β ?σ γ = α (the cases r = n < m and
r < n ≤ m need to be considered separately).

Therefore, it may be proved by descending induction that Dq ⊆ 〈Dr〉σ for all
0 ≤ q ≤ r with q ≡ n (mod 2), and that Dr ⊆ 〈Dr+2〉σ if r < n. We may immediately
conclude that

Corollary 5.3.23.

(i) If r < n ≤ m, then 〈Dr+2 ∪ . . . ∪Dn〉σ = Bσmn, and

(ii) If r = n < m, then 〈Dr〉σ = Bσmn.

Observe that the cases r < n and r = n differ, because in the former Bσmn has
trivial maximal J σ-classes, while in the latter it has a unique maximal J σ-class,
which is nontrivial (Proposition 5.2.6). Thus, we treat them separately:

Theorem 5.3.24. If r < n ≤ m, then Bσmn = 〈Ω〉σ, where Ω = {α ∈ Bmn :
Rank(α) > r}. Furthermore, every generating set for Bσmn contains Ω, and so

Rank(Bσmn) = |Ω| =
∑

r<q≤n
r≡n (mod 2)

Ç
m

q

åÇ
n

q

å
(m− q − 1)!!(n− q − 1)!! · q!.

Proof. Since Ω = Dr+2 ∪Dr+4 ∪ . . .∪Dn, the formula for |Ω| follows from Proposition
5.1.5(iii) and (v). By Proposition 5.2.6(i), each element of Ω determines a trivial
maximal J σ-class. Then, by the discussion at the beginning of Section 2.6, every
generating set for Bσmn contains Ω. Since Corollary 5.3.23(i) implies that Ω generates
Bσmn and the size of Ω is given by Proposition 5.1.5, the result follows.

Theorem 5.3.25. If r = n < m, then Rank(Bσmn) =
(m
n

)
(m− n− 1)!!.
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Proof. By Corollary 5.3.23(ii), we have 〈Dr〉σ = Bσmn. Since Dr = Jσ∗ is the max-
imum J -class in the hom-set Bmn (by Proposition 5.1.2(iii)), and since σ is right-
invertible in (the stable partial semigroup) B with σ∗ ∈ RI(σ) (by Proposition
5.1.7(i)), we wish to apply Proposition 2.6.3(ii). By the discussion preceding that
proposition, we have Jσ∗ = Lσ∗ ; further, Dσ

σ∗ = Jσσ∗ = Lσσ∗ is the maximum J σ-class
of Bσr and is a left-group over Hσ

σ∗
∼= Sr (cf. Corollary 5.2.10). We need to prove

that Rank(Sr) ≤ |Dσ
σ∗ /H σ | = |Dσ

r /H σ |. Consider the partition

β =
(

1 · · · n− 1 m n, n+ 1
∣∣∣ · · ·

∣∣∣ m− 2,m− 1
1 · · · n− 1 n

)
∈ Bmn;

one may easily prove that σβ = ιn, so β ∈ Eσ(Dσ
r ). Thus, Dσ

r contains at least two
idempotents, and so |Dσ

r /H σ | ≥ 2 ≥ Rank(Sr). Keeping in mind that Jσ∗ = Lσ∗ ,
by Propositions 2.6.3(ii), 5.1.2 and 5.1.5(i), we have

Rank(Bσmn) = | Jσ∗ /H | = |Dσ∗ /H | = |Dσ∗ /R | =
Ç
m

n

å
(m− n− 1)!!.

Remark 5.3.26. If K is one of P, PP, PB, M or T L, we cannot prove similar
results since, in general, Lemma 5.3.22 does not have an analogue in these categories,
i.e.

• in the case r < n ≤ m, the semigroup Kσmn is not generated by its maximal
J σ-classes, and

• in the case r = n < m, the semigroup Kσmn is not generated by Dn.

All of this may be verified with GAP [98].

5.3.6 Egg-box diagrams

As in the previous chapters, we provide several egg-box diagrams (they originally
appeared in [28], and all were generated by GAP [98]) to illustrate the structural
results for Bσmn. For more information on egg-box diagrams, see the introduction to
Subsection 3.1.6.
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Figure 5.10: The variants T Lσ4 for each σ ∈ D2(T L4).
Note that only the rightmost and leftmost variants have nontrivial maximal J σ-

classes (also, the single trivial maximal class in all of these variants is {ι4}). These
two variants correspond to sandwich elements and .
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Figure 5.11: Egg-box diagrams of the Temperley-Lieb monoids T L4 (left) and T L2
(right). The regular subsemigroups of the variants in Figure 5.10 are inflations of
T L2.
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Figure 5.12: Egg-box diagrams of the partition monoids P3 (left) and P2 (right),
and the variant Pσ3 (see the comment below), whose regular subsemigroup is an
inflation of P2.
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In the previous figure, the sandwich element of the variant is σ = . Observe
that Pσ3 has only trivial maximal J σ-classes, but σ is J -related to each of its pre-
inverses (since none of the elements of S3 are its pre-inverses). This shows that the
converse of Corollary 2.2.14 is not true in general. Moreover, note that P is stable,
but not H -trivial (for instance, in the monoid P3 = Pι333 we have H ι3 = H , but
Hι3 = S3), so this example also shows that Proposition 2.2.17 need not hold if S is
not H -trivial.
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Figure 5.13: Left to right: egg-box diagrams of the regular sandwich semigroups
Reg(Bσ1

66), Reg(Bσ2
64) and B4, where σ1 ∈ B66 and σ2 ∈ B46 both have rank 4. The

first two are inflations of the last semigroup, B4.

The previous figure illustrates Theorem 5.3.11 (in particular, statements (i) and
(ii)). Note that in diagram categories other than B, R̂σ-classes in the same Dσ-class
do not necessarily contain the same number of R-classes.



Conclusion

In this thesis, we have investigated sandwich semigroups in a locally small cat-
egory. In this process, we introduced the notions of a partial semigroup, sandwich-
regularity and MI-domination. We studied structural and combinatorial proper-
ties of these semigroups and provided results under various assumptions such as
right-invertibility, (sandwich-)regularity, stability, or having a right-identity, for cer-
tain elements. The obtained results provide a solid framework for investigating a
sandwich semigroup, and (under certain assumptions) its regular subsemigroup and
idempotent-generated subsemigroup. In Chapters 3−5, we have applied these res-
ults and built on them, thereby thoroughly describing the sandwich semigroups in
P T , T , I,M(F), P, PP, PB, M , T L and B. By comparing the obtained results,
the reader will see the big picture. In particular, one should consider

� the relationships between the properties of the sandwich semigroups and the
whole category (for instance, consider Green’s relations and stability in the
category P T , along with the same properties in the sandwich semigroups
within),

� the way in which the choice of the sandwich element affects the features of the
sandwich semigroup (e.g. consider the formulae for the rank of the sandwich
semigroups in Subsections 3.1.5, 4.2.5, and 5.3.5), and

� the way in which the nature of the elements of the category shapes the spe-
cificities of the sandwich semigroups in it (for instance, compare the idempotent-
generated subsemigroups of the sandwich semigroups in the diagram categor-
ies, in Theorem 5.2.15).

Hopefully, the reader is well acquainted with sandwich semigroups by now. If
that is the case, the author has achieved one of her goals. If, in addition, the reader is
tempted to experiment with various sandwich semigroups or partial semigroups, we
could not wish for more. We list some directions of investigation and open problems
worth exploring.

• It would be interesting to import and "translate" further terms (and results)
related to category theory into our theory of partial semigroups. A good
starting point would be to incorporate the notions of functors and products
of categories. This merging of languages and techniques of two fields would
possibly lead to significant advancements in both of them.
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• Since our knowledge on sandwich semigroups advanced immensely each time
we considered a new "family" of categories, we are convinced that the subject
would benefit from consideration of sandwich categories in new (here unex-
plored) categories. Of course, such an investigation would also improve our
knowledge of those categories. This is especially true for the fields where sand-
wich operations arise naturally (see page 3). One might consider looking into
the category Rel (objects: sets, morphisms: binary relations) and the cat-
egories Grp (objects: groups, morphisms: group homomorphisms) and Ring
(objects: rings, morphisms: ring homomorphisms).

• Of course, there is still room for investigation, even in the categories studied
here. For instance, the following problems were not considered here and remain
open problems for now:

− Give a characterisation of the ideals in the regular subsemigroup Pa (of a
sandwich semigroup) in the categories P T , T and I. Of course, it would
also be interesting to try and obtain some results in the general case (i.e.
for Reg(Saij), where a is sandwich-regular). Here, we point out that the
ideals of the regular subsemigroups of sandwich semigroups inM and B
were described in [30] and [28], respectively.

− Give a complete classification of the isomorphism classes of linear sand-
wich semigroups over infinite fields.

− In P, PP, PB, M , and T L: classify the isomorphism classes of sand-
wich semigroups; calculate the ranks of sandwich semigroups; describe
the combinatorial structure of and enumerate the idempotents in the reg-
ular subsemigroup Reg(Kσmn); and calculate the (idempotent) ranks of
Reg(Kσmn) and the idempotent-generated subsemigroup E(Kσmn).

− Look at linear and diagram categories with infinite spaces or sets included.



Prošireni izvod

Dajemo skraćeni pregled rezulatata teze na srpskom. Pretpostavljamo da je čita-
lac upoznat sa osnovama teorije polugrupa (videti [58]) i osnovama teorije kategorija
(videti [83]). Sva tvrđenja, definicije i napomene su numerisane isto kao i njihove
verzije na engleskom.

U disertaciji izlažemo sadržaj radova [33], [34] i [28]. Autorka teze je koautor
na ovim radovima i oni su nastali u okviru istraživanja za ovu tezu. Uz to, u
četvrtoj glavi prikazujemo rezultate rada [30]. Na njemu autorka nije učestvovala,
no rezultati u njemu se mogu izvesti iz opštih rezulatata (kasnije) dokazanih u [33].

Tema našeg istraživanja su sendvič polugrupe u lokalno malim kategorijama.

Definicija 2.0.1. Neka je S lokalno mala kategorija sa klasom objekata I. Neka su
i, j ∈ I dva fiksirana objekta i neka je a fiksiran morfizam j → i. Ako Sij označava
skup svih morfizama i→ j, i na tom skupu definišemo operaciju

x ?a y = xay, za sve x, y ∈ Sij ,

onda je Saij = (Sij , ?a) polugrupa . Nazivamo je sendvič polugrupa nad Sij koja
odgovara a.

Da bismo bolje razumeli i lakše opisali ove polugrupe, definišemo pojam parci-
jalne polugrupe iz [30].

Definicija 2.1.1. Parcijalna polugrupa je uređena petorka (S, ·, I, δ,ρ) koja se sa-
stoji od klase S, parcijalnog binarnog preslikavanja (x, y) 7→ x · y (definisanog na
nekom podskupu S × S), klase "koordinata" I i funkcija δ,ρ : S → I, koje određuju
leve i desne koordinate elemenata iz S, redom. Pri tome, moraju biti zadovoljena
sledeća četiri uslova: za sve x, y, z ∈ S

(i) x · y je definisano ako i samo ako je xρ = y δ;

(ii) ako je x · y definisano, onda je (x · y) δ = x δ i (x · y) ρ = y ρ;

(iii) ako su x · y i y · z definisani, onda je x · (y · z) = (x · y) · z;

(iv) za sve i, j ∈ I, klasa Sij = {x ∈ S : x δ = i, xρ = j} je skup.

Štaviše, parcijalna polugrupa (S, ·, I, δ,ρ) je monoidalna ako zadovoljava sledeće
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(v) postoji preslikavanje I → S : i 7→ ei takvo da za sve x ∈ S imamo x · exρ =
x = ex δ · x

Da bismo pojednostavili i skratili zapis, parcijalnu polugrupu (S, ·, I, δ,ρ) po-
istovećujemo sa njenim nosačem S, ukoliko su ostale komponente poznate ili nisu
bitne za našu diskusiju. Takođe, umesto x · y skraćujemo na xy.

Lako se uviđa da se svaka monoidalna parcijalna polugrupa može interpretirati
kao lokalno mala kategorija, i obratno. Shodno tome, ispitivaćemo (monoidalne)
parcijalne polugrupe i sendvič polugrupe u njima.

Parcijalna polugrupa (S, ·, I, δ,ρ) je regularna, ako su svi njeni elementi (fon
Nojman) regularni (tj. za svako x ∈ S postoji y ∈ S tako da je xyx = x). Ukoliko,
pored toga, svaki element ima jedinstven inverz (tj. za svako x ∈ S postoji jedin-
stveno y ∈ S tako da je xyx = x i yxy = y), onda je ta parcijalna polugrupa inverzna.
Dalje, ukoliko se za parcijalnu polugrupu (S, ·, I, δ,ρ) može definisati preslikavanje
∗ : S → S : x 7→ x∗ tako da za sve x, y ∈ S važi

(a) (x∗) δ = xρ, (x∗) ρ = x δ, (x∗)∗ = x i

(b) ako je x · y definisano, onda je (x · y)∗ = y∗x∗,

onda je (S, ·, I, δ,ρ,∗ ) parcijalna ∗-polugrupa. Ukoliko u njoj važi i xx∗x = x za sve
x ∈ S, onda je u pitanju regularna parcijalna ∗-polugrupa.

Za parcijalnu polugrupu S definišemo monoidalnu parcijalnu polugrupu S(1) na
sledeći način: za svaku koordinatu i ∈ I u skup Sii dodajemo element eii (ukoliko
Sii već ne poseduje takav element) koji se ponaša kao neutralni element u svim
slučajevima kada može da se pomnoži sa nekim elementom.

Sada možemo definisati Grinove poretke i relacije u parcijalnoj polugrupi S. Za
x, y ∈ S definišemo

x ≤R y ⇔ postoji s ∈ S(1) tako da je x = ys,

x ≤L y ⇔ postoji s ∈ S(1) tako da je x = sy,
x ≤H y ⇔ x ≤L y i x ≤R y,

x ≤J y ⇔ postoji s, t ∈ S(1) tako da je x = syt.

Dalje, za sve K ∈ {R,L ,H ,J } uvodimo relaciju K =≤K ∩ ≥K . Peta relacija
je D = R ◦L . Može se pokazati da je D najmanja relacija ekvivalencije nad S koja
sadrži i R i L . Uz to, u glavnom tekstu dokazujemo direktnu paralelu Grinove
leme za parcijalne polugrupe (Lema 2.1.8, preuzeta iz [30]). Ovde ćemo navesti
verziju te leme koja se odnosi na hom-setove (takođe iz [30]). Ako je x ∈ Sij , za sve
K ∈ {R,L ,H ,J ,D} uvedimo oznaku Kx = {y ∈ Sij : xK y}.

Lema 2.1.9. Neka je (S, ·, I, δ,ρ) parcijalna polugrupa sa i, j ∈ I i neka su x, y
proizvoljni elementi skupa Sij = {z ∈ S : z δ = i, z ρ = j}.

(i) Ako je xR y i elementi s, t ∈ S(1) zadovoljavaju x = ys i y = xt, onda su
funkcije Lx → Ly : w → wt i Ly → Lx : w → ws uzajamno inverzne bijekcije.
Restrikcije ovih preslikavanja na Hx i Hy redom su takođe uzajamno inverzne
bijekcije.
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(ii) Ako je xL y i elementi s, t ∈ S(1) zadovoljavaju x = sy i y = tx, onda su
funkcije Rx → Ry : w → tw i Ry → Rx : w → sw uzajamno inverzne bijekcije.
Restrikcije ovih preslikavanja na Hx i Hy redom su takođe uzajamno inverzne
bijekcije.

(iii) Ako je xD y, onda važi |Rx | = |Ry |, |Lx | = |Ly | i |Hx | = |Hy |.

Struktura sendvič polugrupe

U nastavku ćemo koristiti do sada definisane pojmove da opišemo osobine sendvič
polugrupe. Pošto se malo šta može reći u opštem slučaju, u većini tvrđenja ćemo
postaviti određene (manje ili više stroge) pretpostavke za parcijalnu polugrupu ili
za sendvič element.

Grinove relacije sendvič polugrupe ćemo opisati preko takozvanih P-skupova.

Pa1 = {x ∈ Sij : xaR x}, Pa2 = {x ∈ Sij : axL x},
Pa3 = {x ∈ Sij : axaJ x}, Pa = Pa1 ∩Pa2,

Neka je (S, ·, I, δ,ρ) parcijalna polugrupa i Saij sendvič polugrupa sadržana u
njoj (gde i, j ∈ I i a ∈ Sji). Da bismo izbegli zabunu, Grinove relacije u parcijalnoj
polugrupi označavamo sa K , a u sendvič polugrupi sa K α. Dalje, za x ∈ Sij , klasa
Grinove relacije K a koja ga sadrži označava se sa Ka

x (za sve K ∈ {R,L,H,D, J}).
Prvo, navodimo teoremu iz [30].

Teorema 2.2.3. Neka je (S, ·, I, δ,ρ) parcijalna polugrupa gde i, j ∈ I i a ∈ Sji.
Ako je x ∈ Sij , onda

(i) Ra
x =
®

Rx ∩Pa1, ako x ∈ Pa1
{x}, ako x ∈ Sij \ Pa1,

(ii) Lax =
®

Lx ∩Pa2, ako x ∈ Pa2
{x}, ako x ∈ Sij \ Pa2,

(iii) Ha
x =
®

Hx, ako x ∈ Pa
{x}, ako x ∈ Sij \ Pa,

(iv) Da
x =





Dx ∩Pa, ako x ∈ Pa
Lax, ako x ∈ Pa2 \Pa1
Ra
x, ako x ∈ Pa1 \Pa2
{x}, ako x ∈ Sij \ (Pa1 ∪Pa2),

(v) Jax =
®

Jx ∩Pa3, ako x ∈ Pa3
Da
x, ako x ∈ Sij \ Pa3.

Ukoliko x ∈ Sij \ Pa, onda je Ha
x = {x} negrupna H a-klasa u Saij .
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Sledeći rezultat (iz [28]) nam daje informacije o parcijalnim uređenjima ≤Ra ,
≤L a i ≤J a u Saij . Podsećamo da element x ∈ S ima levu (desnu) jedinicu ako
postoji y ∈ S tako da je yx = x (xy = x).

Lema 2.2.6. Neka a ∈ Sji ima levu i desnu jedinicu u S. Ako x, y ∈ Sij , onda važi

(i) x ≤Ra y ⇔ x = y ili x ≤R ya,

(ii) x ≤L a y ⇔ x = y ili x ≤L ay,

(iii) x ≤J a y ⇔ x = y ili x ≤R ya ili x ≤L ay ili x ≤J aya.

Naravno, relacija ≤J a definiše poredak nad J a-klasama, a nama su posebno
značajne maksimalne klase u odnosu na taj poredak. Sledeća dva rezultata (iz [28])
se bave prirodom maksimalnih J a-klasa.

Lema 2.2.10. Ako je x ∈ Sij takav da u S važi x 6≤J a, onda je {x} maksimalna
J a-klasa u Saij ; pored toga, {x} je neregularna Da-klasa.

Maksimalne J a-klase ovog tipa ćemo nazivati trivijalnim, a sve ostale netrivi-
jalnim. U narednoj lemi otkrivamo više o drugoj vrsti.

Lema 2.2.12. Neka je a ∈ Sji regularan element.

(i) Polugrupa Saij sadrži najviše jednu J a-klasu.

(ii) Ako postoji netrivijalna maksimalna J a-klasa, onda ona sadrži Pre(a) = {x ∈
S : axa = a}.

(iii) Ako postoji netrivijalna maksimalna J a-klasa, i ako je ona istovremeno i Da-
klasa, onda je regularna.

U Propoziciji 2.2.17 (iz [28]) dajemo ekvivalentne uslove za postojanje netrivi-
jalne maksimalne J a-klase u Saij .

Osim Grinovih relacija i parcijalnih uređenja, zanima nas i stabilnost u parcijal-
noj polugrupi i u sendvič polugrupi. U oba slučaja koristimo standardnu definiciju
stabilnosti iz teorije polugrupa (videti npr. [108]): element a ∈ S je

• R-stabilan ako za sve x ∈ S važi xaJ x⇒ xaR x,

• L -stabilan ako za sve x ∈ S važi axJ x⇒ axL x,

• stabilan, ako je i R-stabilan i L -stabilan.

Prvi rezultat je lema iz [30] koja opisuje odnos stabilnosti u dve strukture.

Lema 2.2.20. Neka je (S, ·, I, δ,ρ) stabilna parcijalna polugrupa. Tada je Saij
stabilna za sve i, j ∈ I i sve a ∈ Sji.

Naravno, prirodno se postavlja pitanje značaja stabilnosti, tj. prednosti koju
donosi stabilnost u sendvič polugrupi. Na to pitanje odgovara naredna lema iz [33],
kao i Propozicija 2.2.25 i Posledica 2.2.26.
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Propozicija 2.2.23. Neka je (S, ·, I, δ,ρ) parcijalna polugrupa sa i, j ∈ I i a ∈ Sji.
Ako je

(i) a R-stabilan, onda važi Pa3 ⊆ Pa1,

(ii) a L -stabilan, onda važi Pa3 ⊆ Pa2,

(iii) a je stabilan, onda važi Pa3 = Pa.

U Lemi 2.2.27 navodimo neke dovoljne uslove za R- i L -stabilnost.
Naravno, zanima nas i regularnost elemenata u senvič polugrupi. U narednoj

propoziciji iz [33] navodimo zaključke koji se mogu izvesti u opštem slučaju.

Propozicija 2.2.29. Neka je (S, ·, I, δ,ρ) parcijalna polugrupa sa i, j ∈ I i a ∈ Sji.
Tada je

(i) Pa1 levi ideal polugrupe Saij ,

(ii) Pa2 desni ideal polugrupe Saij ,

(iii) Pa potpolugrupa u Saij ,

(iv) Reg(Saij) = Pa ∩Reg(S),

(v) Reg(Saij) = Pa ⇔ Pa ⊆ Reg(S).

Primetimo da delovi (iii) i (iv) impliciraju da je u regularnoj parcijalnoj polu-
grupi S regularni deo Reg(Saij) sendvič polugrupe Saij regularna potpolugrupa.

Za kraj ovog bloka tvrđenja o strukturi sendvič polugrupe, ispitujemo posledice
izbora desno-invertibilnog (i simetrično, levo-invertibilnog) sendvič elementa (a ∈
Sji je desno-invertibilan element ako postoji b ∈ Sij tako da je xab = x za sve
x ∈ Sij). Navodimo dva tvrđenja iz [28].

Propozicija 2.2.35. Neka je a ∈ Sji desno-invertibilan element.

(i) Sendvič polugrupa Saij ima jedinstvenu maksimalnu J a-klasu, i ona sadrži
skup svih desnih inverza elementa a, RI(a).

(ii) Ako je Saij stabilna, onda je ta maksimalna J a-klasa u stvari L a-klasa, i u
pitanju je leva grupa (tj. direktan proizvod grupe i polugrupe levih nula) sa
skupom idempotenata RI(a).

Bitno je naglasiti da analogno tvrđenje (Propozicija 2.2.37) važi i u hom-setu
Sij .

Lema 2.2.38. Neka je (S, ·, I, δ,ρ) parcijalna polugrupa sa i, j ∈ I i a ∈ Sji. Ako
je a desno-invertibilan u Sij , tada je Pa1 = Sij , Pa = Pa2 i Ra = R nad Saij .

U nastavku navodimo tri rezultata iz [33] vezana za osobine parcijalne polugrupe
koje se prenose na njene parcijalne potpolugrupe. Naravno, posebnu pažnju ćemo
posvetiti odnosu osobina sendvič polugrupa sadržanih u njima.

Propozicija 2.2.40. Neka je T parcijalna potpolugrupa parcijalne polugrupe S, i
neka x, y ∈ T . Tada za sve K ∈ {R,L ,H } važi
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(i) ako y ∈ Reg(T ), onda x ≤K S y ⇔ x ≤K T y;

(ii) ako x, y ∈ Reg(T ), onda xK S y ⇔ xK T y.

(Gde K S i K T označavaju relaciju K u S i T , redom.)

Slično, u Propoziciji 2.2.42 pokazujemo da se svojstvo stabilnosti elementa na-
sleđuje u regularnoj potpolugrupi.

Dalje, imamo

Propozicija 2.2.43. Neka je a element iz Tji u parcijalnoj polugrupi (T, ·, I, δ,ρ)
gde i, j ∈ I, i neka je T parcijalna potpolugrupa u S. Tada je

(i) Pa1(T ) ⊆ Pa1(S) ∩ T , gde važi jednakost ako je Tij ∪ Tija ⊆ Reg(T ),

(ii) Pa2(T ) ⊆ Pa2(S) ∩ T , gde važi jednakost ako je Tij ∪ aTij ⊆ Reg(T ),

(iii) Pa(T ) ⊆ Pa(S) ∩ T , gde važi jednakost ako je Tij ∪ Tija ∪ aTij ⊆ Reg(T ),

(iv) Pa3(T ) ⊆ Pa3(S)∩ T , gde važi jednakost ako je a stabilna u S i važi Tij ∪ Tija∪
aTij ⊆ Reg(T ).

(Ovde, Pal (S) i Pal (T ) označavaju skupove Pal u S i T , redom.)

Propozicija 2.2.44. Neka je a element iz Tji u parcijalnoj polugrupi (T, ·, I, δ,ρ)
gde i, j ∈ I, i neka je T parcijalna potpolugrupa u S. Tada je

(i) Ra(T ) ⊆ Ra(S) ∩ (T × T ), gde važi jednakost ako Tij ∪ Tija ⊆ Reg(T ),

(ii) L a(T ) ⊆ L a(S) ∩ (T × T ), gde važi jednakost ako Tij ∪ aTij ⊆ Reg(T ),

(iii) H a(T ) ⊆H a(S)∩ (T ×T ), gde važi jednakost ako Tij ∪Tija∪aTij ⊆ Reg(T ),

(Gde K a(S) i K a(T ) označavaju relaciju K a u Saij i T aij , redom.)

Struktura Reg(Sa
ij)

U nastavku, istražujemo strukturu regularnog dela sendvič polugrupe Saij . Pošto
regularni elementi u opštem slučaju ne moraju da čine potpolugrupu, uvešćemo
dodatnu pretpostavku: neka je a ∈ Sji sendvič-regularan, tj. element takav da je
{a}∪aSija ⊆ Reg(S) (gde je aSija = {asa : s ∈ Sij}). Pod ovom pretpostavkom, iz
teorije polugrupa znamo da je skup V(a) = {x ∈ S : axa = a, xax = x} neprazan,
pa možemo fiksirati nekog predstavnika b ∈ V(a). Tada su skupovi Sija i aSij nosači
podgrupa u (Sii, ·) i (Sjj , ·), redom. Dalje, (aSija, ?b) je potpolugrupa u Sbji, i ne
zavisi od izbora inverza b, tj. za ma koji element c ∈ V(a), imamo ?c�aSija = ?b�aSija.
Da bismo to istakli, operaciju u polugrupi (aSija, ?b) obeležavamo sa ~. Najzad,
primetimo da su operacije

(aSija,~)→ (baSija, ·) : x 7→ bx i (aSija,~)→ (aSijab, ·) : x 7→ xb

izomorfizmi.
Takođe, pokazujemo sledeći rezultat (iz [33]):
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Propozicija 2.3.2. Neka je a ∈ Sji sendvič-regularan element parcijalne polugrupe
S i neka je b ∈ V(a). Tada je

(i) Reg(Saij) = Pa regularna potpolugrupa u Saij ,

(ii) Reg(Sija, ·) = Pa a = Pa2 a regularna potpolugrupa u (Sija, ·),

(iii) Reg(aSij , ·) = aPa = aPa1 regularna potpolugrupa u (aSij , ·),

(iv) aSija = Reg(aSija,~) = aPa a = aPa1 a = aPa2 a regularna potpolugrupa u
Sbji.

Odnosi opisani ovde su slikovito prikazani na Slici 2.14 iz [33]. Primetimo da su
sva preslikavanja na slici sirjektivni homomorfizmi.

(Sij , ?a)

(aSij , ·)

(aSija,~)

(Sija, ·)

Ψ1 : f 7→ fa Ψ2 : f 7→ af

Φ1 : g 7→ ag Φ2 : g 7→ ga

Reg(Sija, ·)

(aSija,~)

Reg(Sij , ?a)

Reg(aSij , ·)

ψ1 : f 7→ fa ψ2 : f 7→ af

φ1 : g 7→ ag φ2 : g 7→ ga

Slika 2.14: Dijagrami koji prikazuju odnose između Saij i (aSija,~) (levo) i između
Reg(Saij) i (aSija,~) (desno).

Pošto ćemo strukture iz desnog dijagrama koristiti i u nastavku, pojednosta-
vićemo njihove oznake. Neka je Pa = Reg(Sij , ?a), T1 = Reg(Sija, ·) = Pa a,
T2 = Reg(aSij , ·) = aPa i W = (aSija,~) = aPa a.

Kao i u [33], definišemo funkciju ψ i pokazujemo njene osobine:

ψ = (ψ1, ψ2) : Pa → T1 × T2 : x 7→ (xa, ax).

Teorema 2.3.8. Ako je a ∈ Sji sendvič-regularan element parcijalne polugrupe S,
onda je

(i) ψ injektivna i

(ii) im(ψ) = {(s, t) ∈ T1 × T2 : as = ta} = {(s, t) ∈ T1 × T2 : sφ1 = tφ2}.

Pored toga, Pa je pullback proizvod T1 i T2 u odnosu na W i epimorfizme ψ1 i ψ2.

Za detalje vezane za pojam pullback proizvoda, videti [14] ili neki sličan izvor
na temu osnova Univerzalne algebre.

Dalje, primenjujući opštiji rezultat u [58] i prethodne rezultate u ovom radu,
dokazujemo sledeće (kombinacija Lema 2.3.3 i 2.3.4):



254

Lema 2.3.3. Neka je a ∈ Sji sendvič-regularan element parcijalne polugrupe S u
kojoj važi J = D . Ako je K Pa bilo koja Grinova relacija u Reg(Saij) = Pa, tada je
K Pa = K a ∩ (Pa×Pa). Štaviše, za sve x ∈ Pa važi KPa

x = Ka
x.

Da bismo bolje razumeli strukturu Reg(Saij), posmatramo preslikavanje φ : ψ1φ1 =
ψ2φ2 = Pa → W : x 7→ axa. Takođe, za svako K ∈ {R,L ,H ,D ,J } definišemo
relaciju na Pa na sledeći način: x‘K ay ako u W važi xK ~ y (gde x označava sliku
xφ elementa x). Lako se uviđa da su u pitanju relacije ekvivalencije. Za x ∈ Pa,
klasu relacije ‘K a koja ga sadrži označavamo sa ”Ka

x.
Nakon podrobnog ispitivanja, u [33] smo došli do ključnih rezultata vezanih za

Reg(Saij) koje izlažemo u naredna četiri tvrđenja.

Lema 2.3.11. Ako je a ∈ Sji sendvič-regularan element parcijalne polugrupe S,
važi

Ea(Pa) = Ea(Saij) = (Eb(W ))φ−1.

(Gde Ea(Pa) i Eb(W ) označavaju skupove svih idempotenata u Pa i W redom.)

Podsećamo da je r × l pravougaona traka polugrupa izomorfna sa (I × J, ·) gde
je |I| = r, |J | = l i operacija je definisana sa (i, j) · (k, l) = (i, l) za sve (i, j), (k, l) ∈
I × J . Dalje, r × l pravougaona grupa nad grupom G je direktan proizvod r × l
pravougaone trake i grupe G.

Teorema 2.3.12. Neka je a ∈ Sji sendvič-regularan element parcijalne polugrupe
S. Ako je x ∈ Pa tako da je r = |”Ha

x/Ra | i l = |”Ha
x/L a |, onda važi

(i) restrikcija preslikavanja φ : Pa →W na skup Ha
x, φ�Hax : Ha

x → H~x , je bijekcija;

(ii) Ha
x je grupa ako i samo ako je H~x grupa, u kom slučaju su te grupe izomorfne;

(iii) ako je Ha
x grupa, onda je ”Ha

x r × l pravougaona grupa nad H~x ;

(iv) ako je Ha
x grupa, onda je Ea(”Ha

x) r × l pravougaona traka.

Napomena 2.3.13. Kada posmatramo strukturu Grinovih klasa, polugrupa Pa =
Reg(Saij) je "proširenje" polugrupe W = (aSija,~). Naime,

• proizvoljna ‘J a-klasa Ĵax u Pa sadrži samo jednu J Pa-klasu, JPa
x , i ona od-

govara J ~-klasi J~x u W ; štaviše, parcijalna uređenja (Pa /J Pa ,≤J Pa ) i
(W/J ~,≤J ~) su izomorfna;

• proizvoljna D̂a-klasa ”Da
x u Pa sadrži samo jednu Da-klasu, Da

x, i ona odgovara
D~-klasi D~x u W ; ova korespondencija je "1-1" i "na", što znači da svaka
D~-klasa korespondira tačno jednoj D̂a-klasi;

• svaka ‘K a-klasa (gde je K ∈ {R,L ,H }) u Pa je unija K a-klasa;
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• struktura proizvoljne D~-klase D~x u odnosu na relacije R~, L ~ i H ~, je
ista kao struktura D̂a

x u odnosu na relacije R̂a,‘L a i ‘H a, redom, u smislu da
svaka K ~-klasa K~x odgovara tačno jednoj ‘K a-klasi, ”Ka

x;

• proizvoljna ‘H a-klasa”Ha
x je unija H a-klasa, i one su ili sve negrupne H a-klase

(ako je H~x = Hb
x negrupna H ~-klasa u W ) ili sve grupe (ako je H~x = Hb

x

grupa); u drugom slučaju, ”Ha
x je pravougaona grupa.

Poslednje tri obzervacije su ilustovane na Slici 2.4, u obliku egg-box dijagrama izdvo-
jene Da-klase u Pa i njene odgovarajuće D~-klase u W . Grupne H a- i H ~-klase
su osenčene, a deblje linije na levom egg-box dijagramu označavaju granice između
R̂a-klasa i između‘L a-klasa.

Teorema 2.3.15. Ako je a ∈ Sji sendvič-regularan element parcijalne polugrupe
S, važi

Ea(Saij) = Ea(Pa) = (Eb(W ))φ−1.

(Gde Ea(Pa) i Eb(W ) označavaju idempotentno-generisane potpolugrupe u Pa i W
redom.)

MI-dominacija u Reg(Sa
ij)

U narednoj fazi istraživanja uvodimo nove pojmove koji se odnose na regu-
larnu potpolugrupu Reg(Saij), a pomoći će nam u ispitivanju ranga te polugrupe
i idempotentno-generisane potpolugrupe.

Za početak, uvodimo neophodne definicije (primetimo da se one odnose na regu-
larne polugrupe uopšte, ne samo u sendvič polugrupama). U regularnoj polugrupi
T element u ∈ T je međujedinica ako je xuy = xy za sve x, y ∈ T . Sa druge strane,
element u očuvava regularnost ako je polugrupa (T, ?u) regularna. Skupove svih
međujedinica u T i svih elemenata iz T koji očuvavaju regularnost označavamo sa
MI(T ) i RP(T ), redom.

Iz teorije polugrupa nam je poznato da se regularne polugrupe mogu parcijalno
urediti: x � y ako i samo ako je x = ey = yf za neke idempotente e, f ∈ E(S).
Koristeći to uređenje, uvodimo:

Definicija 2.4.2. Regularna polugrupa T je

• RP-dominirana ako je svaki element u T ispod nekog elementa iz RP(T ) u
odnosu na relaciju �;

• MI-dominirana ako je svaki idempotent u T ispod nekog elementa iz MI(T ) u
odnosu na relaciju �.

U Poglavlju 2.4.1 detaljno razrađujemo teoriju razvijenu u [33], vezanu za ove
pojmove. Kao najznačajnije rezulatate izdvajamo Propozicije 2.4.4, 2.4.5 i 2.4.8.

Zahvaljujući ovim rezultatima, pokazujemo kombinovan rezultat iz [33] i [28]:
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Propozicija 2.4.10. Neka je a ∈ Sji sendvič-regularan i b ∈ V(a). Tada imamo
sledeće:

(i) MI(Pa) = Ea(”Ha
b ) = V(a) ⊆ Max�(Pa).

(ii) RP(Pa) = ”Ha
b .

(iii) Ako je S stabilna, onda je Jab = Da
b .

(iv) Ako je S i stabilna i regularna, onda je RP(Pa) = Jab i MI(Pa) = Ea(Jab ).

Uz to, u [33] smo dokazali i

Propozicija 2.4.11. Neka je a ∈ Sji sendvič-regularan element parcijalne polu-
grupe S. Za proizvoljan element e ∈ V(a), restrikcija preslikavanja φ na lokalni
monoid We = {e ?a x ?a e : x ∈ Pa} je izomorfizam φ�We

: We →W .

Koristeći ove rezultate dokazujemo ključan rezultat iz [33], Propoziciju 2.4.14.
Odatle izvodimo

Teorema 2.4.16. Neka je a ∈ Sji sendvič-regularan element parcijalne polugrupe
S. Dalje, neka je r = |”Ha

b/Ra | i l = |”Ha
b/L a |, i pretpostavimo da je W \GW ideal

polugrupe W . Tada je

rank(Pa) ≥ rank(W : GW ) + max(r, l, rank(GW )),

a jednakost važi ako je Pa MI-dominirana.

Teorema 2.4.17. Neka je a ∈ Sji sendvič-regularan element parcijalne polugrupe
S. Dalje, neka je r = |”Ha

b/Ra | i l = |”Ha
b/L a |. Tada je

rank(Ea(Pa)) ≥ rank(Eb(W )) + max(r, l)− 1

i
idrank(Ea(Pa)) ≥ idrank(Eb(W )) + max(r, l)− 1,

a u oba izraza važi jednakost ako je Pa MI-dominirana.

Pretposlednja sekcija u drugoj glavi je posvećena slučaju kada je kategorija sa
kojom radimo inverzna, što je opisano u narednoj definiciji.

Definicija 2.5.1. Kategorija X je inverzna kategorija ako za svaki morfizam f :
A→ B postoji jedinstveni morfizam g : B → A takav da je fgf = f i gfg = g.

U tom slučaju imamo pojednostavljenu situaciju koja je opisana u narednom
rezultatu iz [33] i njegovim posledicama:

Propozicija 2.5.2. Neka je S kategorija u kojoj a ∈ Sji i svi elementi iz aSija
imaju jedinstvene inverze i V(a) = {b}. Tada su sva preslikavanja na dijagramu
2.14 izomorfizmi (i stoga je preslikavanje φ : Pa →W izomorfizam), i sve polugrupe
na njemu su inverzni monoidi.



257

Propozicija 2.5.2 ima niz posledica, koje su značajno pojednostavljene verzije
tvrđenja koja se odnose na opšti slučaj. Dajemo kratak pregled najvažnijih:

• preslikavanje ψ = (ψ1, ψ2) iz Teoreme 2.3.8 je trivijalno injektivno;

• pošto je φ izomorfizam, relacije ‘K a su identične relacijama K a, pa su pravo-
ugaone grupe iz Teoreme 2.3.12 u stvari grupe;

• iz istog razloga, Teorema 2.3.15 je trivijalno tačna;

• Propozicija 2.4.10 kaže da se MI(Pa) = {b} i RP(Pa) = Ha
b sastoje samo od

jedinice i invertibilnih elemenata, redom, što važi u svakom monoidu;

• jasno, Pa je MI-dominirana, pa se Teorema 2.4.16 svodi na "rank(Pa) =
rank(W : GW ) + rank(GW ) ako je W \GW ideal u W ";

• iz istog razloga, Teorema 2.4.17 se svodi na
"rank(Ea(Pa)) = rank(Eb(W )) i idrank(Ea(Pa)) = idrank(Eb(W ))".

Najzad, u poslednjoj sekciji navodimo rezultate vezane za rang sendvič polu-
grupe. Ovde ćemo navesti njeno najznačajnije tvrđenje, koje je izmenjena verzija
Propozicije 3.26 iz [28].

Propozicija 2.6.3. Neka je S parcijalna polugrupa takva da je a ∈ Sji desno inver-
tibilan. Dalje, pretpostavimo da je svaki element iz Sij ∪ aSija stabilan i da je svaki
element iz aSij R-stabilan. Uvedimo oznake X1 = | Jab /H a |, X2 = |(Jb \ Jab )/H |
i T = 〈Jb〉a.

(i) Tada važi T = 〈Jab ∪X2〉a i

(ii) rank(T ) = |X2|+ max(|X1|, rank(Ha
b )).

(iii) Ako je rank(Ha
b ) ≤ | Jab /H a |, onda je rank(T ) = | Jb /H |.

Ovaj rezultat ima prirodan dual koji ćemo izostaviti.

Sendvič polugrupe transformacija

Nakon što smo ispitali sendvič polugrupe u opštem slučaju, primenjujemo dobi-
jene rezultate u konkretnim kategorijama. Glava 3 je u celosti posvećena rezultatima
rada [34] vezanim za sendvič polugrupe transformacija, od kojih ovde navodimo samo
odabrane.

Neka Set označava klasu svih skupova i neka je Set+ = Set \∅. Za A,B ∈ Set,
definišimo

TAB = {f : f je preslikavanje A→ B},
PTAB = {f : f je preslikavanje C → B, za neko C ⊆ A},

IAB = {f : f je injektivno preslikavanje C → B, za neko C ⊆ A}.
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Dalje, neka je
P T = {(A, f,B) : A,B ∈ Set, f ∈ PTAB},
T = {(A, f,B) : A,B ∈ Set+, f ∈ TAB},
I = {(A, f,B) : A,B ∈ Set, f ∈ IAB}.

Jasno, u P T možemo definisati parcijalnu binarnu operaciju

(A, f,B) · (C, g,D) =
®

(A, f ◦ g,D), ako je B = C;
nije definisano, inače,

a T i I su njene potklase zatvorene za tu operaciju. Neka je δ : P T → Set :
(A, f,B) 7→ A i ρ : P T → Set : (A, f,B) 7→ B. Tada se lako pokazuje da
su (P T , ·,Set, δ,ρ), (T , ·�T ,Set+, δ �T ,ρ �T ) i (I, ·�I ,Set, δ �I ,ρ �I) monoidalne
parcijalne polugrupe. U disertaciji smo pokazali da su sve tri regularne (rezultat
iz [34]), kao i :

Lema 3.0.2. Ako je Z jedna od parcijalnih polugrupa P T , T i I, tada je funkcija

(i) a ∈ ZXY desno invertibilna u ZY X ako i samo ako je puna i injektivna;

(ii) a ∈ ZXY levo invertibilna u ZY X ako i samo ako je sirjektivna.

Propozicija 3.0.3. Parcijalna polugrupa I može biti proširena do parcijalne regu-
larne ∗-polugrupe, koja je inverzna parcijalna polugrupa. Sa druge strane, ni P T ,
ni T ne mogu biti proširene do parcijalne ∗-polugrupe.

Takođe, u rezultatu iz [34], okarakterisali smo Grinove relacije u ovim parcijalnim
polugrupama. U tvrđenju, dom, im i ker označavaju redom domen, sliku i jezgro
preslikavanja, dok je njegov rang, Rank, kardinalnost njegove slike.

Propozicija 3.1.2. Neka je Z jedna od parcijalnih polugrupa P T , T i I, i neka
je (A, f,B), (C, g,D) ∈ Z. Tada važi

(i) (A, f,B) ≤R (C, g,D)⇔
A = C, dom f ⊆ dom g i ker f ⊇ (ker g)�dom f ,

(ii) (A, f,B) ≤L (C, g,D)⇔ B = D i im f ⊆ im g,

(iii) (A, f,B) ≤J (C, g,D)⇔ Rank f ≤ Rank g,

(iv) (A, f,B) R(C, g,D)⇔ A = C, dom f = dom g i ker f = ker g,

(v) (A, f,B) L (C, g,D)⇔ B = D i im f = im g,

(vi) (A, f,B) J (C, g,D)⇔ (A, f,B) D(C, g,D)⇔ Rank f = Rank g.

U slučaju T i I uslovi se mogu pojednostaviti, no te formulacije preskačemo.
Za proizvoljne skupove A i B uvedimo oznake P T AB = {(A, f,B) : f ∈ PTAB},

T AB = {(A, f,B) : f ∈ TAB} (ovde pretpostavljamo A,B 6= ∅) i IAB = {(A, f,B) :
f ∈ IAB}. Kao u [34], u disertaciji smo kombinatorno opisali strukturu skupova
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P T AB, T AB i IAB, i njegovih preseka sa D-klasama (preciznije, izračunali smo
kardinalnost tih skupova, kao i broj R-, L - i H -klasa). Uz to, ustanovili smo
ekvivalentne uslove za stabilnost elementa u svakoj od parcijalnih polugrupa.
Propozicija 3.1.7. Neka je Z jedna od parcijalnih polugrupa P T , T i I, i neka
je (A, f,B) ∈ Z. Tada važi
(i) (A, f,B) je R-stabilan ⇔ [Rank f < ℵ0 ili je f puna i injektivna],

(ii) (A, f,B) je L -stabilan ⇔ [Rank f < ℵ0 ili je f sirjektivna],

(iii) (A, f,B) je stabilan ⇔ [Rank f < ℵ0 ili je f puna i bijektivna].
Fiksirajmo skupove X,Y ∈ Set i preslikavanje a ∈ PTY X (za kategoriju T i

neprazne X,Y uzimamo a ∈ TY X , a za kategoriju I uzimamo a ∈ IY X), kao i
oznake

a =
(
Ai
ai

)
i∈I , B = dom a, σ = ker a, A = im a, α = Rank a.

β = |X \ im a|, λi = |Ai| za i ∈ I, ΛJ =
∏

j∈J
λj za J ⊆ I.

Ispitivaćemo sendvič polugrupu P T aXY (odnosno T aXY i IaXY ). U tezi (i u [34])
smo opisali P-skupove naše polugrupe (Propozicija 3.1.8), a direktno iz opšte teorije
dobijamo karakterizaciju Grinovih relacija, kao i tvrđenja vezana za poredak J a-
klasa. Uz to, dokazujemo i sledeća tvrđenja iz [34].
Propozicija 3.1.18. Regularne Da-klase u P T aXY su tačno skupovi

Da
µ = {f ∈ Pa : Rank f = µ}, za svaki kardinal 0 ≤ µ ≤ α = Rank a.

Dalje, ako je f ∈ Pa, onda Da
f = Jaf važi ako i samo ako je Rank f < ℵ0 ili je a

stabilna.
Prethodno tvrđenje je identično za IaXY , a u slučaju T aXY je jedina razlika što

nemamo preslikavanja ranga 0.
Propozicija 3.1.19.
(i) Ako je α < min(|X|, |Y |), onda su maksimalne J a-klase polugrupe P T aXY

(T aXY i IaXY ) tačno oni singltoni {f}, za f ∈ P T XY (T XY i IXY ) za koje je
Rank f > α. Dakle, sve maksimalne J a-klase u P T aXY (T aXY i IaXY ) su u
ovom slučaju trivijalne.

(ii) Ako je α = min(|X|, |Y |), onda imamo jedinstvenu maksimalnu J a-klasu u
P T aXY (T aXY i IaXY ), i to je Jab = {f ∈ Pa3 : Rank f = α}. Ova maksimalna
J a-klasa je netrivijalna.

U narednom poglavlju, uz pomoć Dijagrama 2.14 određujemo odnos između
Reg(P T aXY ) i (aP T XY a,~). Prvo, uvodimo oznake

P T (X,A) = {f ∈ P T X : im f ⊆ A}
P T (Y, σ) = {f ∈ P T Y : svaka ker f -klasa je unija σ-klasa}.



260

Dalje, dokazujemo da je funkcija η : (aP T XY a,~) → (baP T XY a, ·) : x 7→ bx
izomorfizam, pri čemu važi (baP T XY a, ·) = (baP T X ba, ·) ≡ P T A. Na isti način
kao u [34], naše analize su rezultovale dijagramima 3.2 i 3.3. Slično, u slučaju
Reg(T aXY ) i Reg(IaXY ) dobijamo redom Dijagrame 3.11 i 3.15, gde su polugrupe
T (X,A), I(X,A) i T (Y, σ) definisane analogno, a I(Y,B)∗ = {f−1 : f ∈ I(Y,B)}
(gde f−1 označava inverznu funkciju za injekciju f).

Dalje, navodimo verzije Teoreme 2.3.8 za Reg(P T aXY ), Reg(T aXY ) i Reg(IaXY )
i pokazujemo da se Grinove relacije na njima poklapaju sa Grinovim relacijama
na odgovarajućim sendvič polugrupama. Primenjujući Teoremu 2.3.12, opisujemo
strukturu polugrupe Pa u vidu prirode H a-klasa, broja K a-klasa u fiksiranoj ‘K a-
klasi, kao i u odgovarajućoj Da = D̂a-klasi. To nam omogućava da izračunamo
odgovarajuće kardinalnosti i da damo ekvivalentne uslove koji obezbeđuju da je Pa
konačan, prebrojivo beskonačan ili neprebrojiv.

Najzad, u sva tri slučaja pokazujemo da je polugrupa Pa MI-dominirana uvek,
a RP-dominirana ako i samo ako je a konačnog ranga. Štaviše, kao u [34], pokazali
smo da

Teorema 3.1.34.

(i) Ako je |Pa | ≥ ℵ0, onda je rank(Pa) = |Pa |.

(ii) Ako je |Pa | < ℵ0, onda je

rank(Pa) =





1, if α = 0;
1 + max(2β,ΛI), if α = 1;
2 + max(3β,ΛI), if α = 2;
2 + max((α+ 1)β,ΛI , 2), if α ≥ 3.

Uz to, opisali smo idempotente, izračunali njihov broj i pokazali

Teorema 3.1.39.

rank(EaXY ) = idrank(EaXY ) =




|EaXY | = |Pa |, |Pa | ≥ ℵ0;
(α+1

2
)

+ max((α+ 1)β,ΛI), |Pa | < ℵ0.

Naravno, dokazali smo i verzije prethodna dva rezultata za kategorije T i I,
ali ih ovde preskačemo. Za kraj, računamo rang sendvič polugrupe transformacija.
Ovde ćemo, radi uštede prostora, komentarisati rezultate samo za P T aXY , no bitno
je napomenuti da su rangovi izračunati i za T aXY i IaXY .

Prvo, analiziramo jednostavnije slučajeve. Tu spadaju slučajevi kada je neki
od skupova X ili Y prazan (polugrupa je jednoelementna), kada je rang sendvič
elementa 0 (tada množenjem ne možemo generisati nove elemente), kada je X pre-
brojivo beskonačan ili je |Y | neprebrojiv (tada polugrupa ima neprebrojivo mnogo
elemenata) i kada je a puna bijekcija (tada imamo polugrupu izomorfnu sa P T A). U
preostalim slučajevima smo, uz brojna pomoćna tvrđenja, dokazali i Teoreme 3.3.8,
3.1.51 i 3.1.57. Za kraj, u Poglavlju 3.1.6 dajemo egg-box dijagrame raznih sendvič
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polugrupa transformacija kao ilustraciju naših rezultata. Još jednom napominjemo
da su prikazani rezultati objavljeni u radu [34].

Sendvič polugrupe matrica

U narednoj glavi prezentujemo i nadograđujemo rezultate iz [30] u svetlu naših
opštih rezultata. Ovde ćemo spomenuti samo ona tvrđenja koja su prvi put obja-
vljena u ovoj tezi i ona tvrđenja koja su proširena u odnosu na originalna iz [30].

Za prirodne brojeve m,n ∈ N = {1, 2, 3, . . .} i polje F, neka Mmn(F) označava
skup svih matrica dimenzije m×n nad poljem F (ako je m = n, pišemoMmn(F) =
Mm(F)) i neka jeM(F) = ⋃

m,n∈NMmn(F). Ako je polje F poznato ili njegov izbor
ne pravi razliku u našoj diskusiji, koristićemo oznakeMmn,Mm iM.

Fiksirajmo polje F i definišimo preslikavanja δ :M→ N i ρ :M→ N. Tada je
petorka (M, ·,N, δ,ρ), gde je · uobičajeno množenje matrica, regularna monoidalna
parcijalna polugrupa. U ovoj glavi ispitujemo tu parcijalnu polugrupu i sendvič
polugrupe u njoj, i pri tom pratimo program istraživanja korišćen u prethodnoj
glavi.

Značajan doprinos disertacije u ovoj glavi je proširivanje rezultata iz [30] na bes-
konačna polja, omogućeno opštom teorijom izloženom u drugoj glavi. Konkretno, u
Lemi 4.1.3 računamo (opšte poznatu) veličinu grupe automorfizama nad Vs(F), što
nam uz proširenu definiciju q-binomnog koeficijenta (na strani 166) daje podlogu
za dokazivanje Propozicije 4.1.4 u kojoj prikazujemo kombinatornu strukturu hom-
setaMmn. Slično, Teorema 4.2.15 je unapređena verzija Teoreme 6.4 iz [30], jer se
odnosi i na matrice nad beskonačnim poljima. Dalje, u Teoremama 4.2.19, 4.2.27,
4.2.28 i 4.2.34 izračunavamo redom rang skupa Pa, opisujemo njegove idempotente,
i računamo rang idempotentno-generisane potpolugrupe i rang čitave sendvič polu-
grupe. U tim tvrđenjima je takođe uključen slučaj |F| ≥ ℵ0. Osim toga, dokazujemo
i naredne (originalne) rezulatate u ovoj glavi:

Propozicija 4.1.6. Parcijalna polugrupaM može da bude proširena do parcijalne
∗-polugrupe, ali ne i do regularne parcijalne ∗-polugrupe.

Posledica 4.1.8. Neka je A ∈Mmn. Tada važi

(i) A je desno invertibilnaMnm ako i samo ako je Rank(A) = m.

(ii) A je levo invertibilnaMnm ako i samo ako je Rank(A) = n.

Propozicija 4.2.18.

(i) Polugrupa PJ = Reg(MJ
mn) je MI-dominirana.

(ii) Polugrupa PJ = Reg(MJ
mn) je RP-dominirana.
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Sendvič polugrupe particija

U poslednjoj glavi sprovodimo analizu iz prethodnih glava za kategorije particija
koje definišemo u nastavku. Rezultati su objavljeni u radu [28] Za prirodan broj
n ∈ N, definišimo [n] = {1, 2, . . . , n}. Radi potpunosti, definišemo [0] = ∅. Dalje,
za svaki skup A ⊆ N0, definišemo A′ = {a′ : a ∈ A} i A′′ = {a′′ : a ∈ A}. Sada, za
proizvoljne nenegativne brojeve m,n ∈ N0, neka Pmn označava skup svih particija
skupa [m] ∪ [n]′. Dalje, neka je P = ⋃

m,n∈N0 Pmn skup svih takvih particija.
Fiksirajmo m,n ∈ N0 i odaberimo proizvoljnu particiju σ ∈ Pmn. Možemo

slikovito da je prikažemo na sledeći način: pravimo graf sa m+ n čvorova u R2, uz
poštovanje pravila u nastavku

• svaki element a ∈ [m] je pridružen čvoru (a, 1);

• svaki element b′ ∈ [n]′ je pridružen čvoru (b, 0);

• za svaki blok S particije σ, čvorovi koji odgovaraju elementima skupa S čine
(povezanu) komponentu grafa;

• svaka grana grafa je smeštena u unutrašnjosti pravougaonika
{(x, y) ∈ R2 : 0 ≤ x ≤ max(m,n), 0 ≤ y ≤ 1}.

Takav prikaz nazivamo dijagramom particije. Primer dijagrama se može videti na
Slici 5.1. Naravno, u opštem slučaju postoji više dijagrama koji odgovaraju istoj
particiji. Pošto nas zanimaju komponente grafa, particiju identifikujemo sa bilo
kojim takvim dijagramom. Neka je α ∈ Pmn. Blokove koji sadrže i gornje i donje
čvorove (tj. elemente iz skupa [m] i iz [n]′) nazivamo transverzale. Broj transverzala
je rang particije α. Blokovi koje sadrže samo gornje čvorove (elemente iz [m]) su
gornje netransverzale. Donje netransverzale definišemo dualno. Pošto transverzale,
zajedno sa gornjim i donjim netranverzalama, određuju particiju, možemo da je
prikažemo preko sledeće šemeÇ

A1 · · · Ar C1 · · · Cs
B1 · · · Br D1 · · · Dt

å
,

gde su Ai ∪ B′i (1 ≤ i ≤ r) transverzale, Ci (1 ≤ i ≤ s) gornje netransverzale,
i D′i (1 ≤ i ≤ t) donje netransverzale (ako je bilo koji od ovih skupova singlton,
izostavljamo zagrade).

Za particije α ∈ Pmn i β ∈ Pkl, proizvod αβ će biti definisan ako i samo ako je
n = k; u tom slučaju, koristimo dva proizvoljna dijagrama koji predstavljaju α i β
redom i definišemo produkt-dijagram Π(α, β) na sledeći način:

• modifikujemo dijagram koji predstavlja α ∈ Pmn i kreiramo graf α↓, tako što
svaki (donji) čvor x′ ∈ [n]′ preimenujemo u x′′;

• modifikujemo dijagram koji predstavlja β ∈ Pnl, i kreiramo graf β↑, tako što
svaki (gornji) čvor x ∈ [n] preimenujemo u x′′;
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• identifikujemo čvorove iz skupa [n]′′ u α↓ sa istoimenim čvorovima skupa [n]′′
u β↑, i dobijamo graf Π(α, β).

Koristeći taj dijagram Π(α, β), određujemo particiju koja odgovara proizvodu α·β =
αβ na skupu čvorova [m] ∪ [k]′, tako da

(r, s) ∈ αβ ⇔ r i s pripadaju istoj komponenti u Π(α, β),

za r, s ∈ [m] ∪ [k]′. Osim toga, definišemo i unarnu operaciju ∗ : P → P koja
"obrće"particiju po x-osi (samo posmatramo dijagram "u ogledalu").

Najzad, definišemo preslikavanja δ,ρ : P → N0 tako da za sve prirodne bro-
jeve m,n ∈ N0 i svaku particiju α ∈ Pmn važi α δ = m i αρ = n. Tada je
(P, ·,N0, δ,ρ) parcijalna polugrupa, a (P, ·,N0, δ,ρ,

∗ ) je regularna monoidalna par-
cijalna ∗-polugrupa.

Dalje, definišimo

B = {α ∈ P : svaki blok u α ima tačno dva elementa}, i
PB = {α ∈ P : svaki blok u α ima najviše dva elementa}.

B and PB su potkategorije u P (Brauerova i parcijalna Brauerova kategorija, redom),
a

(B, ·�B×B, δ �B, ρ �B,
∗�B) i (PB, ·�PB×PB, δ �PB, ρ �PB,

∗�PB)

su obe regularne monoidalne parcijalne ∗-polugrupe.

Sledeći skup particija koje posmatramo je

PP = {α ∈ P : α može da bude prikazan planarnim dijagramom},

(poštujući gore navedena pravila za dijagrame). Kao u teoriji grafova, dijagram je
planaran ako mu se nikoji par grana ne seče. Tada je podstruktura

(PP, ·�PP ×PP , δ �PP , ρ �PP ,
∗�PP)

regularna monoidalna parcijalna ∗-polugrupa. Štaviše, ako je T L = B∩PP i M =
PB∩PP, onda su

(T L, ·�T L×T L, δ �T L, ρ �T L,
∗�T L) i (M , ·�M ×M , δ �M , ρ �M , ∗�M ),

regularne monoidalne parcijalne ∗-polugrupe, takođe. U pitanju su Temperli-Lib
kategorija i Mockinova kategorija, redom.

U petoj glavi smo istraživali osobine P, B, PB, PP, T L i M , kao i sendvič
polugrupa koje one sadrže. Izloženi rezultati su objavljeni u [28]. Naš prvi cilj
je karakterizacija Grinovih relacija u tim parcijalnim polugrupama. U tu svrhu
uvodimo dodatnu notaciju. Za α ∈ Pmn, neka εα označava odgovarajuću relaciju
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ekvivalencije i definišimo

dom(α) = {x ∈ [m] : x pripada transverzali u α},
codom(α) = {x ∈ [n] : x′ pripada transverzali u α},

ker(α) = {(x, y) ∈ [m]× [m] : (x, y) ∈ εα},
coker(α) = {(x, y) ∈ [n]× [n] : (x′, y′) ∈ εα},

NU(α) = {X ∈ α : X je gornja netransverzala u α},
NL(α) = {X ∈ α : X ′ je donja netransverzala u α},

su domen, kodomen, jezgro, kojezgro,i skupovi gornjih i donjih netransverzala u α,
redom.

Propozicija 5.1.2. Neka K označava bilo koju od kategorija P, PP, B, PB, M i
T L. Ako je α, β ∈ K, onda u kategoriji K imamo

(i) α ≤R β ⇔ α δ = β δ, ker(α) ⊇ ker(β), i NU(α) ⊇ NU(β);

(ii) α ≤L β ⇔ αρ = β ρ, coker(α) ⊇ coker(β), i NL(α) ⊇ NL(β);

(iii) α ≤J β ⇔
®

Rankα ≤ Rank β, ako važi (a),
Rankα ≤ Rank β i Rankα ≡ Rank β (mod 2), ako važi (b),

gde su (a) i (b) slučajevi K ∈ {P,PP,M ,PB} i K ∈ {B, T L}, redom;

(iv) αR β ⇔ ker(α) = ker(β) i NU(α) = NU(β)
⇔ dom(α) = dom(β) i ker(α) = ker(β);

(v) αL β ⇔ coker(α) = coker(β) i NL(α) = NL(β)
⇔ codom(α) = codom(β) i coker(α) = coker(β);

(vi) αJ β ⇔ Rankα = Rank β.

Uz to, kategorije P, PP, B, PB, M i T L su sve stabilne, pa u svakoj od tih
kategorija važi J = D .

Nakon toga, za m,n ∈ N0 računamo kombinatornu strukturu hom-seta Kmn za
sve K ∈ {P,PP,B,PB,M , T L} (broj preseka sa R-, L - i H -klasama, veličinu
D-klasa i čitavog hom-seta). Dalje, u Propoziciji 5.1.6 pokazujemo da se nijedna
od navedenih šest parcijalnih polugrupa ne može proširiti do inverzne parcijalne
polugrupe i u Propoziciji 5.1.7 dajemo karakterizacije desno- i levo-invertibilnih
elemenata za svaku od navedenih parcijalnih polugrupa.

U nastavku ispitujemo sendvič polugrupe u navedenim kategorijama. U tu svrhu,
neka su m,n ∈ N0, neka je K ∈ {P,PP,B,PB,M , T L} i fiksirajmo σ ∈ Knm (ako
je K ∈ {B, T L}, pretpostavljamo m ≡ n(mod 2)). Prvo, koristeći opštu teoriju,
opisujemo Grinove relacije sendvič polugrupe Kσmn. Dalje, izvodimo opis regularnih
J σ = Dσ-klasa, i dajemo tvrđenje o maksimalnim klasama među njima:
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Propozicija 5.2.6. Neka je K bilo koja od P, PP, PB, M , B ili T L. Dalje, neka
je m ≡ n (mod 2), ako je K = B ili K = T L. Uz to, označimo Pre(σ) = {α ∈ Kmn :
σασ = σ}.

(i) Ako je r < min(m,n), onda su trivijalne maksimalne J σ-klase u Kσmn singltoni
{α} za α ∈ Kmn sa Rank(α) > r. Ako je K jedna od P, PB ili B, onda Kσmn
nema netrivijalnih maksimalnih J σ-klasa. Ako je K jedna od PP, M ili T L,
sledeći uslovi su ekvivalentni:

(a) Kσmn ima netrivijalnu maksimalnu J σ-klasu,
(b) Pre(σ) ⊆ Dr(Kmn),
(c) Pre(σ) = V(σ),

u kom slučaju je netrivijalna maksimalna J σ-klasa skup Dσ
r = {α ∈ Pσ :

Rank(α) = r}.

(ii) Ako je r = min(m,n), onda je skup Dσ
r = {α ∈ Pσ : Rank(α) = r} maksimalna

J σ-klasa u Kσmn. Ta maksimalna J σ-klasa je netrivijalna.

Kroz isti proces kao u prethodnim glavama, analiziramo dijagrame 2.2 i 2.3. Neka

je σ =
Ç
X1 · · · Xr U1 · · · Us
Y1 · · · Yr V1 · · · Vt

å
. Kao paralelu preslikavanju η iz Glava 3 i 4,

definišemo funkciju σσ∗Kn σσ∗ → Kr : α 7→ α\, gde je r = rank σ, na sledeći način:
za svaki blok u α oblika B = ⋃

i∈I Xi ∪
⋃
j∈J X

′
j , u α\ uvrštavamo blok I ∪J ′. Naša

analiza je rezultovala dijagramima sa Slike 5.7.
U nastavku ispitujemo regularnu potpolugrupu Pσ = Reg(Kσmn) naše sendvič

polugrupe. No, ispostavlja se da, u slučaju kada je K jedna od kategorija P, PP,
PB, M i T L, nismo u mogućnosti da na osnovu prethodnih rezultata izračunamo
kombinatorne aspekte odnosa Pσ i Kr (preciznije, odnose ‘K a-klasa u Pσ i K klasa
u Kr). Uz to, ispostavlja se da u tim regularnim potpolugrupama nemamo MI-
dominaciju. Stoga, pokazujemo naredni rezultat koji preciznije opisuje maksimalnu
regularnu Dσ-klasu, ispitujemo idempotente i opisujemo idempotentno-generisanu
potpolugrupu, i time završavamo diskusiju o opštem slučaju.

Propozicija 5.2.11. Pretpostavimo da je m ≥ n = r.

(i) Ako je K jedna od P, PB ili B, klasa Dσ
r je leva grupa nad Sr (tj. direktan

proizvod te grupe i neke polugrupe levih nula).

(ii) Ako je K jedna od PP, B ili T L, klasa Dσ
r je polugrupa levih nula.

Sendvič polugrupe u B

Od svih navedenih kategorija particija, najpogodnija za ispitivanje nam je ka-
tegorija B, pošto njene sendvič polugrupe imaju posebne osobine, od kojih je naj-
bitnija MI-dominirana regularna potpolugrupa. Stoga, ovde posmatramo sendvič
polugrupu Bσmn.

Prvo, izvodimo klasifikaciju sendvič polugrupa u B do na izomorfizam. Zatim,
nakon opširne kombinatorne analize, izvodimo kombinatorni opis P-skupova u Bσmn:
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Propozicija 5.3.8. U polugrupi Bσmn, važi
(i) Pσ1 = {α ∈ Bmn : coker(α) ∨ ker(σ) razdvaja codom(α)},

(ii) Pσ2 = {α ∈ Bmn : ker(α) ∨ coker(σ) razdvaja dom(α)},

(iii) Pσ = Pσ3 = {α ∈ Bmn : coker(α) ∨ ker(σ) razdvaja codom(α) i
ker(α) ∨ coker(σ) razdvaja dom(α)}.

(Ovde, relacija ekvivalencije razdvaja elemente skupa ako nikoja dva elementa
nisu u istoj klasi ekvivalencije.)

Zahvaljujući ovom rezultatu, uspevamo da izračunamo odnose ‘K a-klasa u Pσ i
K klasa u Br i da izvršimo enumeraciju idempotenata. Dalje, dokazujemo Lemu
5.3.16, koja je ključna za dokazivanje narednog tvrđenja:
Propozicija 5.3.17. Polugrupa Pσ = Reg(Bσmn) je MI-dominirana.

Pored toga, pokazujemo da je ona i RP-dominirana, a da MI-dominacija ne važi
u regularnim delovima sendvič polugrupa u P, PP, PB, M i T L.

Ovi rezultati omogućavaju izračunavanja ranga regularne potpolugrupe Pσ i
idempotentno-generisane potpolugrupe E(Bσmn). Najzad, značajno jednostavnija
struktura particija u B nam omogućava da izračunamo i rang čitave sendvič-polugrupe.

Na kraju svake glave dajemo egg-box dijagrame (koji su uobičajena tehnika za
prikazivanje polugrupa) raznih sendvič polugrupa iz date kategorije, kao ilustraciju
dobijenih rezultata.

Zaključak
Ova teza se bavi sendvič polugrupama u lokalno malim kategorijama. U pro-

cesu istraživanja smo uveli pojmove parcijalne polugrupe, sendvič-regularnosti i MI-
dominacije. To nam je omogućilo da ispitujemo strukturne i kombinatorne oso-
bine ovih polugrupa i da dokažemo rezultate pod različitim pretpostavkama, kao
što su desna invertibilnost, (sendvič-)regularnost, stabilnost ili postojanje desne je-
dinice za određene elemente. Dobijeni rezultati daju osnovu za istraživanje kon-
kretne sendvič polugrupe i (pod određenim uslovima) njene regularne potpolugrupe
i idempotentno-generisane potpolugrupe. U glavama 3-5 primenjujemo te rezultate
da detaljno ispitamo sendvič polugrupe u P T , T , I,M(F), P, PP, PB, M , T L i
B. Pri tome, pokazujemo dodatne rezultate gde je to moguće.

Naravno, u našoj temi ostaje prostora za dalja istraživanja.
• Bilo bi interesantno "prevesti" dodatne pojmove iz teorije kategorija u teoriju
parcijalnih polugrupa. To ukrštanje "jezika" i tehnika bi potencijalno dovelo
do napretka u obe oblasti.
• Pošto je naše znanje o sendvič polugrupama u opštem slučaju napredovalo
svaki put kada smo posmatrali novu "familiju" kategorija, smisleno je očekivati
da bi novo ispitivanje takve prirode takođe donelo napredak.
• Naravno, i u kategorijama koje smo ovde istraživali ostaje prostora za dalje
istraživanje.
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σ, page 137
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λX the linear transformation corresponding the matrix X, page 162
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Im the m×m identity matrix, page 162
{em1, . . . , emm} the standard basis of Vm, page 162
Wms the (vector) subspace of Vm consisting of all linear combinations

of vectors em1, . . . , ems, page 162
spanX the set of linear combinations of the elements of X, page 162
0 the zero vector, page 162
Gm(F) the set of all invertible matrices over F, page 162
ri(X) the ith row of a matrix X, page 163
ci(X) the ith column of a matrix X, page 163
RowX the row space of a matrix X, page 163
ColX the column space of a matrix X, page 163
RankX the rank of a matrix X, page 163
Kerα the kernel of a linear transformation α, page 163
AT the transposition of a matrix X, page 163
[s]q! q-factorial, page 166[m
s
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q
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elsewhere, page 166
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MA MAN

ô
, page 172

F× the multiplicative group of a field F, page 185

Partitions

[n] the set {1, 2, . . . , n}, page 198
P the set of all set partitions, page 198
εσ the equivalence corresponding the partition σ, page 198
A′ the set {a′ : a ∈ A}, page 198
A′′ the set {a′′ : a ∈ A}, page 198
Π(α, β) the product diagram of α and β, page 199
ιm the identity partition corresponding idm, page 200
B the set of all Brauer partitions, page 200
PB the set of all partial Brauer partitions, page 200
PP the set of all planar partitions, page 201
T L the set of all Temperley-Lieb partitions, page 203
M the set of all Motzkin partitions, page 203
dom(α) the domain of a partition α, page 205
codom(α) the codomain of a partition α, page 205
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ker(α) the kernel of a partition α, page 205
coker(α) the cokernel of a partition α, page 205
NU(α) the set of upper nontransversals of α, page 205
NL(α) the set of lower nontransversals of α, page 205
Rank(α) the number of transversals of a partition α, page 205
B(n) the nth Bell number; the number of partitions of an n-element

set, page 207
n!! the double factorial, page 207
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at most 2, page 208
C(n) the nth Catalan number, page 208
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µ(n) the nth Motzkin number µ(n, 0), page 209
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to (n+k
2 , n−k2 ) , page 209
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page 228

κ(m, r, q) the number of certain 1-2-equivalences on an m-element set, see
page 228
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Izvod: Neka je S lokalno mala kategorija. Fiksirajmo proizvoljne (ne nužno različite)
objekte i i j iz S. Neka Sij i Sji označavaju skupove svih morfizama i → j i j → i,
redom. Fiksirajmo morfizam a ∈ Sji i definišimo strukturu (Sij , ?a), gde je x ?a y = xay
za sve x, y ∈ Sij . Tada je (Sij , ?a) sendvič polugrupa, koju označavamo sa Sa

ij . U tezi
ćemo sprovesti detaljno ispitivanje sendvič polugrupa (u lokalno maloj kategoriji) u opštem
slučaju, a zatim ćemo primeniti dobijene rezultate u cilju opisivanja sendvič polugrupa u
konkretnim kategorijama.

Najpre uvodimo pojam parcijalne polugrupe i postavljamo osnovu koja nam omogu-
ćava da opišemo kategoriju na "jeziku polugrupa". Zatim slede brojni rezultati koji opisuju
Grinove relacije i poretke, kao i stabilnost i regularnost polugrupe (Sij , ?a). Tu posebno
ističemo veze između osobina sendvič polugrupe i parcijalne polugrupe koja je sadrži. Takođe,
posebnu pažnju posvećujemo uticaju sendvič elementa a na osobine sendvič polugrupe
(Sij , ?a). Kao najbitniji primer se izdvaja osobina sendvič-regularnosti; naime, dokazujemo
da, ako je a sendvič-regularan, onda regularni elementi iz Sa

ij formiraju podgrupu koja
je usko povezana sa određenim "ne-sendvič" polugrupama. U tezi detaljno ispitujemo te
veze i dobijamo važne rezultate o strukturi polugrupe Reg(Sij , ?a) i mehanizmima gener-
isanja u njoj. Za kraj, ispitujemo rangove i idempotentne rangove regularne potpolugrupe
Reg(Sij , ?a) i idempotentno-generisane potpolugrupe E(Sij , ?a). U opštem slučaju možemo
dati donja ograničenja za ove vrednosti. Međutim, u slučaju kada je regularna polugrupa
Reg(Sij , ?a) MI-dominirana (što znači da je određeni lokalni monoidi pokrivaju), ta donja
ograničenja su dostignuta.

U ostatku teze, primenjujemo opštu teoriju na sendvič polugrupe u brojnim kategorijama
transformacija (parcijalne funkcije P T , injektivne parcijalne funkcije I, potpuno definisane
funkcije T i matrice M(F), koje predstavljaju linearne transformacije vektorskih prostora
nad poljem F) i kategorijama dijagrama (particije P, planarne particije PP, Brauerove B,
parcijalne Brauerove PB, Mockinove M , i Temperli-Lib T L particije). U svakom od ovih
slučajeva, prvo istražujemo parcijalnu polugrupu iz aspekta Grinovih relacija i regularnosti,
a zatim se fokusiramo na (proizvoljnu) sendvič polugrupu u njoj. Pri tome, primenjujemo
opšte rezultate da bismo detaljno opisali njenu strukturu i kombinatorne osobine. Osim
toga, u svim slučajevima primenjujemo i teoriju vezanu za regularnu potpolugrupu, pošto
su svi elementi u našim kategorijama sendvič-regularni. To znači da je u svakoj kategor-
iji S koju razmatramo, Reg(Sij , ?a) usko povezana sa određenim monoidom, i preko te
veze možemo opisati polugrupe Reg(Sij , ?a) i E(Sij , ?a). Ipak, kombinatorni deo ispitivanja
sprovodimo samo za sendvič polugrupe u kategorijama transformacija (P T , I, T iM(F))
i sendvič polugrupe u Brauerovoj kategoriji B, pošto samo one imaju MI-dominirane reg-
ularne potpolugrupe (i još neke osobine koje ih čine pogodnijim za ispitivanje). U ovim



sendvič polugrupama računamo broj regularnih Grinovih klasa i idempotenata, i izračun-
avamo rangove (i idempotentne rangove, ako postoje) polugrupa Reg(Sij , ?a), E(Sij , ?a) i
Sa

ij .
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Овај Образац чини саставни део докторске дисертације, односно 

докторског уметничког пројекта који се брани на Универзитету у 

Новом Саду. Попуњен Образац укоричити иза текста докторске 

дисертације, односно докторског уметничког пројекта. 

 

План третмана података 

Назив пројекта/истраживања 

Сендвич полугрупе у локално малим категоријама 

 

Назив институције/институција у оквиру којих се спроводи истраживање 

a) Математички институт Српске академије наука и уметности 

б) Природно - математички факултет, Универзитет у Новом Саду 

в) 

Назив програма у оквиру ког се реализује истраживање 

- 

 

1. Опис података 

 

1.1 Врста студије 

 

Укратко описати тип студије у оквиру које се подаци прикупљају  

 

Пошто је истраживање искључиво теоријског карактера, није вршено никакво   

 

прикупљање података. Из тог разлога се остатак обрасца не односи на њега, те 

 

је подразумевани одговор у свакој рубрици: није вршено прикупљање података. 

 

 

1.2 Врсте података 

а) квантитативни  
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б) квалитативни 

 

1.3. Начин прикупљања података 

а) анкете, упитници, тестови 

б) клиничке процене, медицински записи, електронски здравствени записи 

в) генотипови: навести врсту ________________________________ 

г) административни подаци: навести врсту _______________________ 

д) узорци ткива: навести врсту_________________________________ 

ђ) снимци, фотографије: навести врсту_____________________________ 

е) текст, навести врсту _______________________________________  

ж) мапа, навести врсту ______________________________________ 

з) остало: описати ___________________________________________ 

 

1.3 Формат података, употребљене скале, количина података  

 

1.3.1 Употребљени софтвер и формат датотеке:  

a) Excel фајл, датотека __________________ 

b) SPSS фајл, датотека  __________________ 

c) PDF фајл, датотека ___________________ 

d) Текст фајл, датотека __________________ 

e) JPG фајл, датотека ___________________ 

f) Остало, датотека ____________________ 

 

1.3.2. Број записа (код квантитативних података) 

 

а) број варијабли ___________________________________________________ 

б) број мерења (испитаника, процена, снимака и сл.)  ______________________ 

 

1.3.3. Поновљена мерења  

а) да 

б) не 
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Уколико је одговор да, одговорити на следећа питања: 

а) временски размак измедју поновљених мера је ______________________________ 

б) варијабле које се више пута мере односе се на ________________________________ 

в) нове верзије фајлова који садрже поновљена мерења су именоване као ____________ 

 

Напомене:  ______________________________________________________________ 

 

Да ли формати и софтвер омогућавају дељење и дугорочну валидност података? 

а) Да 

б) Не 

Ако је одговор не, образложити ______________________________________________ 

 

2. Прикупљање података 

 

2.1 Методологија за прикупљање/генерисање података 

 

2.1.1. У оквиру ког истраживачког нацрта су подаци прикупљени?  

а) експеримент, навести тип _________________________________________________ 

б) корелационо истраживање, навести тип ________________________________________ 

ц) анализа текста, навести тип ________________________________________________ 

д) остало, навести шта ______________________________________________________  

 

2.1.2 Навести врсте мерних инструмената или стандарде података специфичних за одређену 

научну дисциплину (ако постоје). 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

2.2 Квалитет података и стандарди  

 

2.2.1. Третман недостајућих података 

а) Да ли матрица садржи недостајуће податке? Да Не 
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Ако је одговор да, одговорити на следећа питања: 

а) Колики је број недостајућих података? __________________________ 

б) Да ли се кориснику матрице препоручује замена недостајућих података? Да    Не 

в) Ако је одговор да, навести сугестије за третман замене недостајућих података 

______________________________________________________________________________ 

 

2.2.2. На који начин је контролисан квалитет података? Описати 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

2.2.3. На који начин је извршена контрола уноса података у матрицу? 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

3. Третман података и пратећа документација 

 

3.1. Третман и чување података 

 

3.1.1. Подаци ће бити депоновани у ___________________________________ репозиторијум. 

3.1.2. URL адреса  _______________________________________________________________ 

3.1.3. DOI ______________________________________________________________________ 

 

3.1.4. Да ли ће подаци бити у отвореном приступу? 

а) Да 

б) Да, али после ембарга који ће трајати до ___________________________________ 

в) Не 

 

Ако је одговор не, навести разлог ________________________________________ 
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3.1.5. Подаци неће бити депоновани у репозиторијум, али ће бити чувани.  

Образложење 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

3.2 Метаподаци и документација података 

3.2.1. Који стандард за метаподатке ће бити примењен? _________________________________ 

 

3.2.1. Навести метаподатке на основу којих су подаци депоновани у репозиторијум. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Ако је потребно, навести методе које се користе за преузимање података, аналитичке и 

процедуралне информације, њихово кодирање, детаљне описе варијабли, записа итд. 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

 

3.3 Стратегија и стандарди за чување података 

3.3.1. До ког периода ће подаци  бити чувани у репозиторијуму? _______________________ 

3.3.2. Да ли ће подаци бити депоновани под шифром? Да   Не 

3.3.3. Да ли ће шифра бити доступна одређеном кругу истраживача? Да   Не 

3.3.4. Да ли се подаци морају уклонити из отвореног приступа после извесног времена?  
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Да   Не 

Образложити 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

4. Безбедност података и заштита поверљивих информација 

 

Овај одељак МОРА бити попуњен ако ваши подаци  укључују личне податке који се односе на 

учеснике у истраживању. За друга истраживања треба такође размотрити заштиту и сигурност 

података.  

4.1 Формални стандарди за сигурност информација/података 

Истраживачи који спроводе испитивања с људима морају да се придржавају Закона о заштити 

података о личности (https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html) и 

одговарајућег институционалног кодекса о академском интегритету.   

 

 

4.1.2. Да ли је истраживање одобрено од стране етичке комисије? Да Не 

Ако је одговор Да, навести датум и назив етичке комисије која је одобрила истраживање 

______________________________________________________________________________ 

 

4.1.2. Да ли подаци укључују личне податке учесника у истраживању? Да Не 

Ако је одговор да, наведите на који начин сте осигурали поверљивост и сигурност информација 

везаних за испитанике: 

а) Подаци нису у отвореном приступу 

б) Подаци су анонимизирани 

ц) Остало, навести шта 

______________________________________________________________________________ 

______________________________________________________________________________ 

 

5. Доступност података 

 

5.1. Подаци ће бити  

а) јавно доступни 

б) доступни само уском кругу истраживача у одређеној научној области   

https://www.paragraf.rs/propisi/zakon_o_zastiti_podataka_o_licnosti.html
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ц) затворени 

 

Ако су подаци доступни само уском кругу истраживача, навести под којим условима могу да их 

користе: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

Ако су подаци доступни само уском кругу истраживача, навести на који начин могу 

приступити подацима: 

______________________________________________________________________________ 

 

______________________________________________________________________________ 

 

5.4. Навести лиценцу под којом ће прикупљени подаци бити архивирани. 

______________________________________________________________________________ 

 

6. Улоге и одговорност 

 

6.1. Навести име и презиме и мејл адресу власника (аутора) података 

 

______________________________________________________________________________ 

 

 

6.2. Навести име и презиме и мејл адресу особе која одржава матрицу с подацимa 

 

______________________________________________________________________________ 

 

 

6.3. Навести име и презиме и мејл адресу особе која омогућује приступ подацима другим 

истраживачима 

 

______________________________________________________________________________ 
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