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Chapter 1

Introduction

In the thesis we introduce and investigate the spaces which are natural gen-
eralizations of the space §’, of Schwartz’s tempered distributions [56], in
Denjoy-Carleman-Komatsu’s theory of ultradistributions. Our aim was to
obtain spaces which are ”lager” then &’ and preserve all its good properties.
Among others, a remarkable one, that the Fourier transform does not take
us outside of that space, which allows us to employ in the theory of ultra-
distributions the most effective way of solving problems in mathematical

physics, the Fourier transform method.

What does ”a ultradistribution theory” means? We accepted the concept
of Ciordnescu and Zsido ([14]). Let G be a family of parameters. Assume
that every o € G is associated with a locally convex topological vector space
D, of infinitely differentiable functions ¢ : R — C, with a compact support
such that,

1. D, is inductive limit of a sequence of Frécet spaces;

2. The topology of D, is stronger than the topology of pointwise conver-

gence;
3. D, is algebra under pointwise multiplication;

4. For every compact set ' C R and open set D C K, there exists ¢ €

D,, such that 0 < ¢ < 1, (s) =1, for s € K, and suppyp C D.
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5. The vector space &, of all functions ¥ : R — C, such that ¢ € D,
for each ¢ € D,, which is equipped with the projective limit topology
defined by the linear mappings,

s — Dy, 11“—'90% (PGDU,

has as a dense subspace, the linear space A of all complex functions on

R, which can be extended analytically on some complex neighborhood

of R.

If the above assumptions hold we say that (D,),ec is a theory of ultradis-

tributions.

Theories of ultradistributions can be compared. The ultradistribution theory
(D,)rer is larger than (D, )seg if and only if for every o € G there exists
7 € T such that one of the equivalent inclusions D, C D, and &; C &6 hold,
which imply that the inclusions are continuous and have dense ranges. So
in that case D/, C D', and £, C &/, where the inclusions are continuous and
have dense ranges. If (D;)re7 is larger than (D;)seg and conversely, then
we say that (D;)rer and (Do )seg are equivalent ultradistribution theories.

Several theories of ultradistributions are developed.

Denjoy-Carleman-Komatsu’s theory (see [53], [41], [12], [33], [34], [35],
[36]): Let M denotes the set of all positive sequences (Mp),eN Which

satisfy:
(M].) M;? S Mp—l Mp+1’ p € Nv
(M.3) Z;il A—lﬁ;—] < Q.

For each (Mp),eN from M,

(@) (2)
DM} = {f € D(R), there exists h > 0 such that sup M < o0},

peN, he M,
zER
(o)
DMp) — {f € D(R), for each h > 0 such that sup M < 00}.

aeN, he M,
xER
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Beurling-Bjorck’s theory (see (3], [6]) Let A denotes the set of all func-

tions w : [0,00) — [0,00) which have the following properties:

w(0) = 0; w(t+s) Sw(t)+w(s), Vt,s>0;

®  w(t) 2 _
/_w 2t < 00 logt = 0(w(1))

For w € A,

D, = {f € D(R),/ |f(t)|e*Mdt < oo for all A > o} :

Cioranescu-Zsidé’s theory (see [14]) Let (¢,,) be a sequence of positive

numbers such that 3, 1/t, < co. The function
winy(Q) = I+ 32), (€C,
m=1 i

is an entire function of exponential type zero. §2 denotes the set of all
these functions. For w € Q,

D, = {f c ’D(R),/OO | F()w(Lt)"|dt < oo for all L > 0 and n € N}.

—00

Braun-Meise-Taylor’s theory (see [4]) This an modification of Beurl-
ing’s approach. A function w : [0,00) — [0,00) belongs to the set of
weighted functions W if it is continuous and satisfies:

(a) there exists C > 1 such that w(2t) < (1 +w(t)),t > 0;
' oo w(t) i
(8) 22 2l dt < oo
() log(1+t) = o(w(t)), t — oo;
(6) t — w(et) is a convex function.
For w € W,
D) = {f € D(R),/‘ 1f(t)|e*dt < oo for all A > 0} ‘

o0

Dparic= {f = D(R),/ 1f()]e*(dt < oo for some ) > 0}4

— 00

The theories {DM}J,EQ, {D(A[p)}(]\{p)e/\/h {'D{A[”}}(Mp)ew, {'D(w)}weyy and
{D{.}}wew are equivalent and strictly larger than {D,}wexa (see [14] and

[4])
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Following Denjoy-Carleman-Komatsu’s approach to the theory of ultradis-
tributions we introduce the spaces S'(Mp) and S'{Mr} of tempered ultradis-

(Mp) and

tributions, which are subspaces of the ultradistribution spaces D’
D{Mp} of Beurling and Roumieu type, study the elementary operations and
the various integral transforms on them, the convolution and the ultratem-
pered convolution of ultradistributions and determine a necessary and suf-
ficient conditions for a convolutor of a space of tempered ultradistributions
to be hypoelliptic in a space of integrable ultradistributions. In the special
case when (M,) is a Gevrey’s sequence (p°?)peN, @ > 1, the space S"(Mp) s
the space £, which was investigated by Pilipovi¢ ([45]), and the test space
S{Mz} of the space S"{M?} is Gelfand-Shilov space S5([20] [18] (7], (32], (17)).
We generalized results known in the case when (M) is a Gevrey’s sequence
for a wider class of sequences. The proofs which are trivial generalizations
of the proofs of known results are omitted. The proof of the theorem which
determines explicitly the space of multipliers of the space S'(M?) is simpler
then the proof of analogous assertion for ¥/ . Moreover, results which were
not known even in the case of Gevrey’s sequences were given. We deter-
mined explicitly the space of multipliers, characterized the test spaces by the
Fourier transformation, Wigner distribution and Bargmann transformation,
gave the boundary value representation of the space S"{Mp} investigated the
Fourier and Laplace transformations on S'Mp} and the Hermit expansion
of its elements, the Hilbert transformation on S"Mp) and S"{Mr} proved the
equivalence of definitions of convolution and of ultratempered convolution
of ultradistributions of Beurling type and determined a necessary and suffi-
cient conditions for a convolutor to be hypoelliptic in a space of integrable
ultradistributions. The definitions and obtained results are given in one di-
mensional case (with exception of the fifth chapter) but they can be easily

generalized for more dimensional case.

In the second chapter we define spaces of ultrarapidly decreasing ultradiffer-
entiable functions and their duals, spaces of tempered ultradistributions of
Beurling and Roumieu type. We investigate their topological properties, re-
lations with the known distribution and ultradistribution spaces, structural

properties and Hermite expansion and the boundary value representation



CHAPTER 1. INTRODUCTION

()]

of their elements. Elementary operations (translation, differentiation, ultra-
differentiation and multiplication) on §* and §’* are investigated in third
chapter. The space Ol(\‘y”) of multipliers of the spaces $* and S’ is deter-
mined explicitly. The fourth chapter, which results are obtained in coopera-
tion with prof. Pilipovi¢, is devoted to the investigations of various integral
transforms on the spaces S* and §’*. We use results about Hermite expan-
sion to obtain results for the Fourier and Laplace transform, characterize S*
by the Fourier transform, Wigner distribution and Bargmann transform. In
the last section of the chapter we study the Hilbert transform on S’*, which
is a generalization of the corresponding one on the space of tempered distri-
butions, defined by Ishikawa ([26]). In the fifth chapter, which results are
obtained in cooperation with prof. Pilipovi¢ and prof. Kaminski, we inves-
tigate in details the equivalence of several definitions of the convolution of
Beurling type ultradistributions. Also, we introduce several definitions of ul-
tratempered convolutions of Beurling type ultradistributions and prove their
equivalence. In the last chapter we study hypoelliptic convolution equations

in the Beurling and Roumieu ultradistribution spaces D, ¢ € [1,00].

We remark that Bjork ([6]) and Gruzdinski ([22]) studied the spaces &,
of "w-tempered distributions”, which are generalizations of the space of
Schwartz’s tempered distributions, Beurling-Bjork’s theory of ultradistri-
butions, and did not studied the problems which we consider. Relations
between the spaces S/, and S'(M?) and S"{M?} are discussed in the second

chapter.

Jenssen and van Eijndhoven ([27]) studied Gelfand-Shilov type spaces W4t*
([21]), where M is the Young conjugate of a suitable function M. In their
approach M tends to infinity faster than z and slower than z2. In the special
case: M(z) = az'/* £ >0,1/2<a < 1, WM is the space Se. WM™ is
characterized in [27] by the Hermite expansion, Fourier transform, Wigner
distribution and Bargmann transform. We obtained analogous characteri-
zations of the spaces S(Mp) and ST} but in our approach the role of M
has the function associated to the sequence (M), which is increasing and

tends to infinity slower than z. For example if M, = p!*, @ > 1, then
) p p P

M(z) ~ Cz'/* and the Young’s conjugate for such a function does not exist
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at all. It is easy to see that the natures of the spaces wM* SMp) and

S{Mp} are different, because of that our methods are quite different.

Notation and Notions

The sets of nonnegative integers, natural, real, complex and complex num-
bers with positive imaginary part are denoted by Np, N, R, C and C,.
Throughout the thesis the letter C (without super- or subscript) will denote

a positive constant, not necessarily the same at each occurrence;
(x)? = (1+z)"?, BeNo z€R,

D = T, l =V —1,
The sequence of Hermite functions h, is

_ (__1)77. z2/2 ( ,—z%\(n)
hn(I) = \‘/7?\/2"—11—'6 (6 )

and the sequence of the Hermite functions of the second kind h, ([64]) is

) n € Np, z € R.

Cmzn hn(ORRNORL(O((m +1)/2)72, (€ C, Im( #0,
hn((:) =
L(hn(€ 4 i0) + hn(€ = i0)), (=& +1in€ C, Im( =0,

see [64]. The norm in the space L™ = L"(R), r € [1,00], is denoted by || - ||

The Fourier transform, Wigner distribution and Bargmann transform are

defined respectively by

(Fe)(€) = /Re‘”%(r)dm EER, pe LT,
W(z,9; f) = 7% [ exp(-ivt)f(z + /9= 1/Ddt, fel® zyeR,

(AF)(C) = 7r‘1/‘*/Rexp(—1/2(c2 +2%) +V2(z)f(z)dz, felL? (€eC,

(see (7], [28] and [29]).
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A locally convex topological vector space is (FS)-space (resp. (LS)-space)
if it is a projective limit of countable, compact specter of spaces. If the
mentioned specter is also nuclear the space is (FN)-space (resp. (LN)-space),

see [19].

(Mp) is a sequence of positive numbers which satisfies some of the following
conditions, see [33]:

(M.1) (logarithmic convexity)
M} < M,y Myi1, pEN;
(M.2)" (stability under differential operators)
Mpy1 < AHPM,, p € Ny, for some A, H > 0;
(M.2) (stability under ultradifferential operators)

M, < AH? min M,_,M

0<g<p p,q € Ng, for some A, H > 0;

q»

(M.3)" (non-quasi-analyticity )

— M,_
DR
M,

p=1

(M.3) (strong non-quasi-analyticity)

® M, M

<Ag-——-, qeN.
p:Z]-{vl J\fp A{q—{-l

Throughout the thesis we will assume (M.1), (M.3)’ and My = 1. In some
assertions we will suppose (M.2)’, (M.2) and (M.3), as well. The letter H

will always denote the constant mentioned in (M.2)’ or (M.2).
The so-called associated functions for the sequence (M,) are defined by

(p) = sup log 2=, 1f(p) = sup log 27
M(p) = sup log —, M(p) = sup log ——, p > 0.
PE€No M, peNy M,
We denote by R a family of positive sequences which increases to infinity.
This set is partially ordered and directed by the relation (r,) < (s,) defined

by r, < sp, p > po, for some pg € N. The associated functions for the

sequence N, = Mp( i:l ak), (ap) € R, are denoted by JVQP and A'{/'ap.
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Let us recall the definitions of Beurling and Roumieau spaces of ultradiffer-
entiable functions ([33]). If K is a regular compact subset of R and h >0,

the space E?\,J’,’l is the space of functions ¢ from C'* such that

! | (<) |
H(b”h,h - aseupo haA[a < o0, (11)
€K

and D}]‘?‘;1 is the space of all ¢ from C* with support in K which satisfy
(1.1). The basic spaces of functions of class (M;) and of class {M,} are
defined by

5}(\1’\!;,) = proj 1imh—.05£'f,i» g}{\:’\fp} = indlimh_*oof}gi,
EMr) = proj lichcRE}(\M”), EMp} = projlimKCCRDﬁ\{w"}.
Dﬁ:}fp) - projlimh_.op}t'[,i» D;\i‘[”} - indlimh—oooD?\;{}})ia
D) = indlimgccr PP, DM} = indlimg g D

The notation K CC R means that K is compact and "grows” up to R.

Let (ap) € R and K be a compact set in R. D%"% is the space of smooth

functions ¢ on R supported by K such that

| 9%p(z) | ,
llollx,e, = sup ———:— < o0, (1.2)
a Cotals )
IGGI\’O

where N, = M R, and R, = []%_; ai,p € Np. It is shown in [36] that
Ma} v M
Dﬁ— =KkNTo] hm(rp)enDK‘f_p.

The common notation for the symbols (M;) and {M,} will be *.

The strong duals of D(?) and D{Ms} denoted by D' M) and ”D’{M”}, are
called Beurling and Roumieu spaces of ultradistributions. It is said that
a locally convex space F is a space of ultradistributions if and only if F is
algebraic subspace of D™, the inclusion mapping F' — D’* is continuous and

D* is dense in the space F.
If s € [1,00] , as in [48] we define

’Dgr[?’) = proj }llj—rf})'Dz’{th ,Dél}jp} = ind lim ’Dgf’jh’

h—oo
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M, . . o) :
where D} 7, is the space of functions ¢ from C* for which.

"L HOQF’H: ‘
HPllLs,h = sSUp TFanr <09, (1.3)
~eN, h*M,

equipped with the norm || - [|zs 4. The corresponding strong duals of Dj,
D'le ,t = s/(s — 1), are subspaces of Beurling and Roumieau spaces of

ultradistribution. We denote by B* the completion of D* in D} .. The strong

dual of B* is denoted by D'7:1. Let
' = projlim, e]"DLr 0

Y

! , w1y i ; . e - .
where D;.”, , £, € R, is the space of functions ¢ from C. for which
4~ 5%p

e 10% 9]l

|@llLr e, = sup 2 eak (1.4)
:rENr\
[T hs| M.
1<4<a
M}

and let us denote the completion of D{Mr} i D{Mp} by B . The strong
M =
dual ()fD{, P} are denoted by D’{ 2 ¢ =r1/(r—1), and the strong dual of
M5} ] ) ) )
b is denoted by 'D’;Jx p). From [50, Lemma 3.(i),(ii)] it rollov.s that in
. ~{Mp} ~{M 5 Mp} 54 )
the set theoretical sense D{, Pl — Di,["}, r € (1,00), and b = BiMp}

{Mp}

M) ~{M : 5 ) 5
D[{Jr Pl — D{Lr P} and i B{Mp} 3

and that the inclusion mappings

are continuous. Hence, 'D/Lq Is a topological subspace of D'},.

Let a > 0, (ap) ER

R (2 0\
B =0+ ] <1+ > ) cec
peEN

and

P =(1+¢H I <1+ . ) ced,

peN

If (M.1), (M.2) and (M.3) hold, an ultradistribution 7 is in DL\{” (resp.

Dy, \V })‘ q € [1,00], if and only if there are b > 0 (resp. (bp) € R) such that
, L2 10
f = Py(D)F, + F, (resp. f =Py (D)F; + F3> e,
U

where Fy, F; € L7 ([50, Theorem 1]).
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By £%(by), where by = (b1 k,b2k,...) is a sequence of real numbers, we denote
a Kothe space of sequences z = (zy,z,,...) of complex numbers with the
norm,

1/2
=l = (Z Ixnlz(bn,kf) :

rLEN
It is said that a formal series
P(£) = ) @€ EE€ER,
OENQ

defines an ultrapolynomial of class (M,) (resp. {M,}) whenever the coeffi-

cients a, satisfy the estimate
lag| < CL*M,, a € Ny,

for some L > 0 and C (resp. for every L > 0 and some C). The corresponding
operator P(D) = ), asD* is an ultradifferential operator of class (M))
(resp. {M,}). Conditions (M.1), (M.2) and (M.3) imply that P, (resp. P,,)
is an ultradifferential operator of the class (M,) (resp. {M,}) ([33]). We say
that function f is of ultrapolynomial growth of class *, if and only if there

is ultrapolynomial P of class %, such that
|f(z)| < P(|z]), z €R.

Note, if (M.2)’ is fulfilled function f is of ultrapolynomial growth of class
(My) (resp. {My}) if and only if for some m > 0 and some C (resp. for
every m > 0 there exists C such that),

|f(z)| £ Cexp M(m|z]), z € R.




Chapter 2
Spaces S* and S§’*

In the chapter we define spaces of ultrarapidly decreasing ultradifferentiable
functions and their duals, spaces of tempered ultradistributions of Beurling
and Roumieu type. We investigate their topological properties, relations
with the known distribution and ultradistribution spaces, structural proper-
ties and Hermite expansion and the boundary value representation of their

elements.

2.1 Topological properties
Let m > 0 and r € [1,00) be given.

.. M, ~Mp, .
Definition 2.1 S, 7™ and Seo®'™ are the spaces of all the smooth functions

@ on R which satisfy that

m+P B (a) i e
T (L) = _{_;V 1 [m(ﬂ 0\ *Nz) | dz < 00
«,0E€N,
and e
Omoo(P) = sup o [{2)P0®) ||y < o0,

afeN, MaMp
respectively, equipped with the topologies induced by the norms o,,, and

Om.co, TESPeEctively.

10|
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By SMz) and S1Mr} we denote the projective (m — o) and the inductive

m — 0) limits of the spaces SMpm e spectively.
2 D y

The space 8™ 1is the strong dual of §* .

Note, SM™ is a special case of the space £ (m, F) (see [66]). Using the
analogous idea as in [66] one can prove that the space S;V”’m is a a Banach
space, and especially, that S;w"’m is a Hilbert space where the scalar product
of v € S;Mp'm is defined by

mor+/3

2
AR 7128 4(o) el .
CXOERDY /R (MaMﬁ> (2)26(®) (2) P (z) dz.

a,feNo

-

Under the assumptions (M.1) and (M.3)’ the space S* is non-trivial, since
the space D* is non-trivial ([33]) and D* C §*. Moreover, D" is a proper
subset of S*. If p € D*, p > 0, suppp C [-1,1], p(z) = 1 for |z| < 1/2, and
(z;) is a sequence of elements of R such that | z; | +2 < [zj41 ], j € N,

the function

$(z)= ) &fﬁ z€R (2.1)

jeN (2]
is an example of a function which belongs to §* and does not belong to D*.
It will be proved that if (M.2)" holds, S(M?) (resp. S{Mr}) can be represented
as the projective (resp. inductive) limit of the spaces SMem™ 1 ¢ (1, 0], when

m — oo (resp. m — 0). In [50] Pilipovi¢ proved the next theorem.

Theorem 2.2 ([50]) If (a,), (by,) € R, and if SMe s the space of smooth
P P ap,bp
functions ¢ on R which satisfy,
su H<x>ﬁ¢(a)”oo
R = B
a5eNo M, (TT52; ay) Mg (T15=, b4)

Sgap,bp(qs) =

< 00,

equipped with the topology induced by the norm p(, )y ,). Then

ap
» . M,
5{ p} = PIoj llm(ap),(bp)eRSa:bp'

A non-trivial example of an element of the space S’ is

(f,p) = /waix, @ € ST,
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where f is a locally integrable function of ultrapolynomial growth of class
*. It will be shown that if (M.1), (M.2) and (M.3) are fulfilled each element
of §” can be represented as an ultraderivative of the class * of a continuous

function of ultrapolynomial growth of class .

Theorem 2.3 I. {Om,c0,m > 0} (resp. {gg, boyoos (@p), (by) € TC}) and
{sm,c0,m > 0} (resp. {‘51;»,');).:&‘

lies of norms on the space SM») (resp. S{‘\[F’}), where

’Ij\"(&)’ R
(re.sp' Szp,bp,;.;,(‘;): sup 12" 'l oo

o8N, (ngzlap)}[a(ﬂgzlb;,)J[;g)‘

2. If (M.2)’ holds then the families of norms {o, ,; m > 0}, r € [1, 0],
{s$m,r;m > 0}, r € [1,00], and {s;m; m > 0} (resp. {pa, s, (ap), (bp)
R}, {Sapbprs (@), (bp) € RY, 7 € [1,00], and {A(a),(6,),rs (p), (bp) €

R}) are mutually equivalent on the space S\M») (resp. SIMe}) where

m

meth

w8
Sm ,J Z '\/[C,AIJ ||I : )Hpv
BeN
A y
sm(p) = sup - #(®) exp[M(m] - |)]lloo,
ac€lNg o
|I<f> o H
(7‘?51)' P(ay),(bp),r(P) = Z , )
p):(0p ey ( p \[G(H \[3

“ [ES s
1,.b r(‘r: =
9 prZprt A ) Z (Hp 1aP) ” (H b )‘IJ

’XJENO
1
/ )= S s O B ( ) a1 e I R
Am(®) 2 o) ll¢'*) exp[Ns, (| - Dlloo) -

3. If (M.2) holds, {s;m2, m > 0} (resp. {Sa, 4,2, (ap),(by) € R}) is
equivalent to any of the families of norms {05,6 > 0} and {5,,2,m >
0} (resp. {Oa,,(ap) € R} and {S.,,(ap) € R}) on the space S(Mp)
(resp. SIMe}) where

s5(p) = Z | an | exp[2M (820 + 1)], ¢ e N anhn,
nENQ n;No
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) ="  (e7)®

o,BeN

(resp. ©5,(#) = 3 | an [ expl2N,, (VERF T, 2

nENo

i 2P o)(@)
Sn()= 3 I(z%0)

a,feN (ngl ap)]wa(ngﬂ P

14

> anhy,

4. Let (M.2) hold and let ¢ be a smooth function on R. If for each (resp.

some) £ > 0 and each § € Ny

Sup HIﬁ I|2 < 0
«€Np > M,

and for each (resp. some) £ > 0 and each a € Ny

[P
SN Aeameees & B
SENO [ﬁ A[g

then for each (resp. some) £ > 0
T [Eaa P
e e — RO
a+B M M,
= £ M, Mg

Note,

o If (M.2)" is fulfilled, in the definition of S* the space Séw”'m

replaced by S;‘,Vp'm, p € [1,00].

(2.2)

can be

o The last part of the theorem is an analog of Kashpirovski’s result:

Sg = 8N Sp ([32] see also [17]).

In order to prove the assertion we need the following estimations, which are

proved in [32] (see also [2]).

For every m,n € N we have

Imhn(r) — 2—m/2 Z a}(:r)n hn_m+gk(lt), z €R,
k=0

0< |O‘£nr)nl < <7:> ((‘Zn 4 1)’"/'2 + mm/z) .
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If n —m+ 2k < 0, we take by definition h,_,, 9t = 0.
0 : . i 2 i 2 k 2 N :
Let R° be the identity operator and R* = (2% — d?/dz?)k, k € N. R is
formally a self-adjoint operator and h, = (2n+1)h,. If ¢ € S and k € N,
then
k - 1(k) | A i s -
RYfo= Y  Ciila?eld, |CH)| < 10F kF-5 (2.7)
P)q hYd =
0<n<k
p+q=2n

Proof of Theorem 2.3: 1. Obviously, for each smooth function ¢ and m > 0,

>

Sm.co(®) < Om.0o(®). Since for each L > 0 from (M.3)’,

n,

L*k! ,
— — 0 as k — o0, (2.8)

M,
see (33, (4.5)], and since

<r>J < 25 mag (l,}rij) , T € R, B € N,

for each m > 0, there exists C, such that for each smooth function ¢, and

a,f € Ny,

mth 3 (o mot+P 3 o) 3
———[[(z)’ ¢ @0 < T2 max ([|¢{los, [12°0()|oo)
M. M; M. Mg
me (EmRtF.- o
~ P el N X ) \ y g, (a)
sEmaxAlC=== (7 oy ———— ||z [ oo
—_ A\],—,‘ 7 l o A\[O A\[‘} .‘ T | .
, (2m)etP 5 ,
< C sup |2 O (FR=(Z ST ()X

|
seN, MaMg '

Therefore for each m > 0 there exists C such that for each smooth function

'r:\ﬁ Um,):r(‘rj) <_\ Csn;,t-a(‘y:)-

2. Lett € (1,00) and v = [1/t] + 1. Applying (M.2)’ we get that for each

m > 0 there exists C such that for each smooth function ¢,

me+h

: (8 o) ! (9 Q)
up (" « z \ &2 )
‘/‘\J -\{a‘(~\[3 Sup | ) i \ )iT
X JE&iNg

jz|<1
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a+p

m HYP
< § ||z ﬁ ”oo +'C E Hxﬁ‘H‘P(a)”oo
49 M Mg o peNG Af \[ﬁ+.,

< Csm14H),00(#)-

The inequality
@) <8 [ 1 e)lde + J 1@, 2 € R,

which holds for each smooth function ¢ and a, 8 € Ny and condition (M.2)

imply that for each m > 0 there exists C, such that for each smooth function

s metB 5
-~ o)< f dt 2.1
man() < swp e (B [ 0+ (210)
+ [ o))
R
me+B (Hm o+l a+f+1
<C t )|dt tP ol (1) dt
- O,Z‘éﬁ’%(mm /' e M1 M, /I 2l )

< Csom1+H),1(9)-

Let ¢ € (1,00), ¢ = t/(t — 1) and 7 = [1/q] + 1. The Hélder inequality,
(2.8) and (M.2)’ imply that for each m > 0 there exists C such that for each

smooth function ¢,

moz+l3 < ,
sma(p) = —_ / I @) (z)|dz + (2.11)
a,ﬁze:No M, Mg lz]<1

+ |2 (= )ldr) |

lz|>1

ma+ﬁ : 1/t :
< O’) t
P C(/mgw (2) dr) ¥

a,B€No

e T
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‘ 1/( 1/7
+ </ |IJ+7Q(&)(I)]tdI> (/ |I!—-'rqu
|z|>1 \/|z|>1

e le + (2770l

mo+B8 B8

Nl
<C Ne + ——— "7\ ||e
(Z M, ‘ JZN M Mg,

< Csma4+H™)(P)-

The equivalence of {s;m,, m > 0} and {8, m > 0}, 7,p € [1, 0], follows
from (2.9), (2.10) and (2.11). The proof of the equivalence of {om ,m > 0}
and {o,,m > 0}, where r,p € [1, 0], is analogous.

The condition (M.2)’ implies that for each ¢ € SM?) and each m > 0 there
exists C such that for each a,3 € Ng and for |z| > k > 1

meth m®(mH )P+!
VM, M =% (a)] <C \; \f)
IV IVL 3 VL 4 B+1

270l ()|

C m*(mH)P*H | -
¢ I oz <

&
;WQ,AWQ+1 il k

Therefore for each m > 0 and ¢ € S(Mp) (ma+’3/(\ﬂ’[aﬂ’[ﬁ))[IBQ(Q)(I)l
converges uniformly in a,3 € Ng to zero as |z| tends to infinity. The
definition of the space S(M?) implies that (m®+F /(M,Mp)) N |28 ()], m >
0, converges to zero uniformly in z € R as (a + 3) tends to infinity. Hence,
for given element ¢ of SMp) and each m > 0 there are ag,Bp € No and
zg € R such that

a+p ao +0o

»%’( ) m Bo (OO)
1 oo —
~? %Q \{ ‘[ I‘ ¥ 1{ ;\rp i\[ |I0 "2 (IO)[

T 2@ = | ( 3 “!L \)H
= 8SuUp —IIT° P 0o — sup SUP w77 : 00
a,B€No \[0 \[ BeNo \aeNyp [J
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ma+ﬁ mo,+ﬁ '
= [ sup (sup ’Iﬁ(p(a)l> Hoo = SHUp (H sup |Iﬁs‘9(a)’”oo>
l «€No \BeN, MaMp weNo \ ' geNo MaMp

(o4

= sup (2l exp{M(m] - |)]lloo).

ey Afa
3. Let us prove the equivalence of the systems {sm 2, m > 0} and {65, 6 >
0}, which together with the fact that

1
Sm2(p) = ﬁsm,z(f@) and 05(Fp) = 05(¢), w€S7,

imply the equivalence of {5, 2, m > 0} and {65, § > 0}. It is enough to
prove that if (2.4) holds then the estimation

> lanl? exp[2M (6v2n + 1)] < o0, (2.12)

TLGNQ

holds for § = (v/20e (1 + H)*)~', and conversely that if (2.12) holds then
(2.4) holds for £ = H./8/6.

Suppose that (2.4) holds. In the estimations which are to follow we shall
use (2.7), (M.1), Stirling’s formula, (M.2) and the fact that for each n € Ny
and L > 0,

k! M,
n—k¥"n e 9 1
Lrh e =0 ko, (2.13)
which follows from (M.3)’ since
k! My k k-1 n+1
3 o — e o e o 'Y k —_—
X M, - Imp Imo T B 2% &,

where m, = M, /M,,_;, n = 1,2,... (see [33, (4.5)]).

There exists C such that for each k € Ny,

1/2
(Z !an12(2n+1)2k> = [[R*¢lla < Y CH |22,

n€No 0<n<k
P+q=2n

<C Y 10FEE et a M,
0<n<k
p+9=2n
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k¥ k'ek10F . M,
<C Y 10F —— M, <C Y] 0" " My
Oszn:sk (v&gr )%1 0<n<k n! Moy
p+q=2n - ML
_ b 1 &! M, M,
<CeF20f H¥* e S — : Mo

on ! (HI2=n)M M

0<n<k

1<

<O e NVEHRPRE M,

Moreover, from above and (M.2)’ we have that for some C,
2

1/2
( S laal*(2n + 1)“'—‘> < Ce* 20" HY 2% My 1

uENo

It follows that there exists C such that for each a,n € Ny,

lan|?(2n + 1) < C(vV20e (1 + H)?£)** M2.

By putting a + 2 instead of a in the above inequality and by using (M.2)’
we get that for each a,n € N and § = (v/20e (1 + H)* )~ there exists C,

such that oy
la,|*6°%(2n + 1) C

M? (2n 4+ 1)?’

which implies

520 9 1)« C
s RS LAY
«eN, M2 (2n +1)°

2

an|? exp[2M (6v/2n + 1)] = |an
Pl

Therefore,
Z lan|? exp[2M(6v/2n 4+ 1)] < . p
n€Nog
Suppose that for some § > 0 inequality (2.12) holds. Applying (2.5) and the
Cauchy-Schwartz inequality we get that there exists C such that for each
m € Np,

m

lz™

5 < .2—771/'.’ “ Z an (Z QL’T'Lhn-m+gk> Hz

n€Njp k<m
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:‘)/ k;/
) ?*_ 1/ Kk /
e RN (E <T> (2n+1)m/2 4 m”‘“)) ,‘/,zw",'_;i W
n€lNyp k<m (L Y‘/\ v
<2™? Y an] exp[M(6(2n + 1)) - M(es'(*.‘fzn +1))] ((2n + 1)™/2 4 mm/2)
nENo
— \1/2
Z 2 ( Z Ian|gexp[21\f(_é¢n + 1))}) »
néNo
/ 1/2
{ 9 9\ 2
. ( Z exp[—?M(éb?_n +1))] <(2n + 1)™/? 4 mm/‘> )
nENo
1/2
- —— oy 2
o o ( Z exp[—?z\[(’é(ﬁ?n + 1))] ((‘Zn iy mm/2> )
T‘LENO
! P
<C2™? sup <<(2n +1)™/? ¢ mm/2> exp[—f;\[(6q72n, - 1))]) :
nENo 2
1/2
: ( >~ exp[-M(8@2n + 1))])
nENQ '
9\ m/2 m/2 _larish ' m/2, m/2
<c (2> ™ o (5772 sup Rt D expl=3 M(5n + 1) y SRl
) n A/[m x‘[m
Since
(Sm/me/’J m!emém/'z
< - — O
M, - M, s A
and
§™/2(2n 4 1)m/2 exp[‘TlA[(éﬁn + ) 1 < §™(2n + 1)4’” ]>1/2
e M, My nen, \exp[M(6(2n T 1))
M.,

= — 0, asm — o0
M,, :
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which follow from [33, (3.3)], we have that

HI”‘L‘;

[, <C ( ‘2/6) M,,. (2.14)
By the Fourier transform we obtain that for each n € Ny,

1 11 n 1 | n \
'™ |l2 = 71!f(9( N2 = \/ﬁi'l F(o)ll2

/g n
noll, <C (/2] M,. 2.16)
;WIII YHA-—.(”(V5> ( ]

€Ny \

(2.15)
1 1
e = HIH Z flk—h»:H? =
Ver ' V2r

If «,8 € Ng and v = min(a,208) by using (2.14), (2.15), (M.1), (M.3)’ and

(M.2) we get

<y (") (f)m 122~ ]l2 [|9** )|l

{ 9 L M2
O‘) (2'“> k! (2/6)(etP—x) My My Mag_x
K 1

o r2(a48) A 2 ar2 = (a) (28 y a+p
<CH MEME S LT ) (2/9)

=0

(o o]

< C 8otP gUa+h) s—(a+B) pr2 pg2
which imply that (2.4) holds for £ = H./8/8.

Applying the analogous reason as in (2.17) one can prove the last part of

the theorem. O
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Theorem 2.4 1. The spaces SM?) and S"M»} are (FS)-spaces S{Mr}
and S'M») are (LS)-spaces.

2. If (M.2) is fulfilled SM?) and S"M»} are (FN)-spaces S1Mr} and S"(M»)
are (LN)-spaces respectively.

3. If (M.2)’ is fulfilled then
D* — 8§ — £, §* = S.
Elt P Sln s D/., S/ o S/',

where 7A — B” means that the inclusion mapping of the space A into

the space B is continuous and that A is dense in B.

Proof: 1. We will prove that SM») and SMr} are (FS) and (LS) spaces
respectively. Since the dual an (FS)-space is an (LS)-space and vice versa,
the rest of the assertion will follow. In order to prove 1., we will prove that

the inclusion mapping

B ¥ M, _
1:8, 7T — §PT m< m,

. : My, M, o
is compact. Since S; 7" and S, 7" are Banach spaces, it is enough to prove
; My, . : T
that the unit ball B of the space S, »™ is a relatively compact set in S, T
Using the analogous idea as in the proof of [66, p.29, Satz 1] one can prove

the next assertion.

A set B 1s relatively compact in Sé‘[”'m if and only if

(i) for each a , B € No the set B = {{z)P¢(®), o € B} is a relatively

compact set in L?, and

(z)|2dr converges uniformly for all

(ii) the sum Z /‘MQM

p € B.

motB
B

Let us prove that B fulfills (i) by checking whether Bf, a,8 € Ny, fulfills
the assumptions of Kolmogoroff’s Theorem ([19]). It is obvious that for each
a,B € Np the set B = {(z)%¢(®), ©» € B} is bounded in the space L.
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Applying the Holder inequality and the Fubini-Tonelli theorem we get that

for p € B and «,8 € Ny

/R (z + 8’ (z + h) = (2)P0(*)(2)|da

2

1 4 ) :
f/ (/ I(,—('<I+th)”‘,:(“}(ijrh)‘);dt) dr
R \Jo at ’
1 4 , N
g/ < [(—(<r+th>‘j‘;(q)(r f-t/c,));“dt) dz
R \Jo dt

1
< :'32}12/ (/ (z + th)Ppl®)(z + th))}%lz) dt
0 \VR

1
+f{2/ (/ (z + th)P ) (z + th))|*dz) dt
0 R

< 3K (/ !<£>%“"(£m'~‘df> e (/ |<€>3¢"“)<£>)I2d5>
R R

2 (s MoaMs Moy Mp
= h <J mo+B ,}La+ﬁ+l>

B

Hexme,/ |<I+h)"3@(“)(q:+h)—(1) ¢*)(z)|*dz converges to zero uniformly
R

for ¢ € B as h tends to zero.
For each ¢y € B and k£ > 0
X X ) : ) , M,Mp,
(k)? (2P e@Pds < [ ()T (e) P < oA
R\[-k,k] R\(~k,k] mato+
Therefore,

M, Mz,

B, .(x) 2 e R T
z)" '\ (z)|*dz < (k —_—
,/R\[_l;,k]|< ) )| <A > math+l

m
oy ]

According to the theorem of Kolmogoroff, it follows that the set B, o, €

- . . . |
Ny, is relative compact in L*.
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Let us prove that B fulfills condition (ii). For each £ > 0 there exists Qe No
such that m® < emn® for all a > 4. Hence, for each ¢ € B,

a+ﬂ | iy

() (z)|2d
Z / 'M M ()i
/seN

2 aw ) \|2 2

(o < .
Z / Mo, P (@) < e
5EN

2. If (M.2) is fulfilled S$(M>) (resp. S{MP}) is isomorphic to the space of
projective (resp. inductive) limit of Kothe space £%(by) (resp. £%(ck)) (see
[19]), where

bk = (b1, b2k, -.),  bnk = exp[M(kv/2n + 1)),
(resp. ck = (€1 k,Coky--.);, Cng = exp[M((1/k)V2n + 1)]), n,k € N,

respectively. The isomorphism is given by

@+ (a,) where ¢ = Z anhn ( see Theorem 2.3 3.).

n=0

In order to prove the assertion it is enough to prove that for some £ > k,

Z bak/bne < 00 (resp. Z Cnk/Cne < 00) (see [19, p.112, 4.3.]).
n€Np n€Nj

The inequalities
M(kp)+ M(p) <2M((k+1)p), p>0

2M(p) < M(Hp) +1log A, p>0, ([33, Proposition 3.6.]),

imply that for £ > H(k + 1),

5

TLENO b ¢

< Z exp(-M(v2n + 1)] < .
neNy

3. Since the proofs of the assertion in the cases * = (My) and = = {M,} are

analogous we will prove the assertion in the first case. Let ¢ € DMp) and
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suppy C [—k,k], k > 1. The condition (M.3)’ implies that for each m > 0

there exists C, such that

mo P 3 (mk)JmQ
S ———|{zYP | = ()
sup ”(I> H — sup ——— ||¢ HCQ
o feNo MaMoq ARl L A v ll¢
m
< C sup’ —[l¢p!?|oo:
aeNy, Ma
It follows that the inclusion mapping i : D(Mp) — S(M2) is continuous.

The sequence (p;);, where p;(z) = p(z/7)p(z) and p is a function defined
by (2.1) converges to ¢ in the space SMp) since for fixed ¢ € SMr) and

ma+[3

0,
M. Mg
infinity (see the proof of Theorem 2.3.). It follows that DMp) is dense in
504, 0

|z°(®)(z)| converges uniformly in @, 8 € Ny as |z| tends to

It follows from the above that the space $* and its dual space §™ are com-

M,)

plete, bornologic Montel spaces, that St and S'{Mr} are Freche spaces

and if (M.2) is fulfilled S* and S’ are nuclear and separable. (see [19] and
(52)).

Let us compare spaces S"Mp} (M, )pem, of tempered distributions of Roumieu
type, which are defined in the thesis, and the spaces S/, of w-tempered dis-
tributions, which are investigated by Bjork and Gruzdinski. Applying [14,
Theorem 1.8] one can easily conclude that foe each w € A there exists a
sequence (M,) € M, such that its associated function satisfy w(p) < M(p),
p > 0. This implies that S, C SM»} and by the closed graph theorem
the inclusion is continuous. If we suppose that w is weighted function in
Braun-Meise-Taylor sense not only that there exists a sequence (M,) € M,
such that S, C S{™»} and that the inclusion is continuous, but also that

for sequence (M,) € M which satisfy (M.2), and there exists £ € N, such

that lim inf; ,oomjx/m; > 1, its associated function M is equivalent to an

element of W, hence S{Mp} — SMm.
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2.2 Structural Properties
Theorem 2.5 Letr € (1,00] and f € D'(Mz) (resp. f € D/{M,,}) '

{. (FIRST STRUCTURAL THEOREM) f € S'M?) (resp. f € S"{M»}) if and
only if f 1s of the form

f= ¥ ((z)PFy )@, (2.18)

a,BeNg

in the sense of convergence in S"M») (resp. S"Mp} ) where (Fya8)a0eNo

is a sequence of elements from L", such that for some (resp. each)

m > 0,

oM Hr
M1

< ma+gﬁpaﬁ )‘) < o0, r1E€(1,0:0),

GSENO R
(2.19)
M, Mg

SHD < g IFap( )|> < o0, = el

a,8eNj

::ER

Do

(SECOND STRUCTURAL THEOREM (50]) Let (M.2) and (M.3) be ful-
filled. f € 8’ if and only if f is of the form

f=P(D)F, (2.20)
where P is an ultradifferentiable operator of class *, and F 1s a con-
tinuous function on R of ultrapolynomial growth of class *.

3. (HERMIT EXPANSION) Let (M.2) be fulfilled. f € S' M) (resp. f €

S"Mz}) if and only if in S'M») (resp. S'{Mp})

f(z)= Y asha(z), zER, (2.21)
nENo
and for some (resp. each) § >0

Z | an |* exp[-2M(6v/2n + 1)] < oo. (2.22)

TLENO
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Q%]
~

Note, the second structural theorem is proved by Pilipovi¢ in [50].

Proof: 1. (case (M,)) The proof of the assertion 1 in the case (M,) is

analogous to the proof of [45, Theorem 5.2.]. It follows easily that (2.18)

M,)

determines an element of the space Sf let us prove the converse. Let

q=r/(r—1). Note, ¢ € [1,00). Since S'M5) is a strict (FS)-space, we have

/
X e M,
S'™») — indlim,,_ o (S,, P m) .

. . ,\{ 'Yn . ~ .
in the sense of strong topologies, where Sg ' is the closure of SMp) in the

oMy, - ’ ~Mp,m
space S; »™, with the topology induced by the space S5 7"".

If fe S'M») there exists m > 0, such that f has a continuous linear exten-

: M, . — ;
sion on S; »""". The Hahn-Banach theorem implies that f has a continuous,

m . y .
with the same dual norm. We denote this ex-

. . ~Mp,
linear extension on &g °
tension again by f. Let T,(m) be the space of sequences (94,8)s geN, from

L™(R) equipped with the norm

1/q

meté
H(U"J-J)‘t,iﬁH = Z / ]er"mdl?dl‘ £ 00,
CI,JGNO‘R vl iV o

The mapping
I._SA\[pm —'T(TTL) e 1 T ((‘1>a<$>3,ﬁ(a))
AT q\ - P \ A a,B

. . M - [ oM y r
is an isometry of S; *" onto Gp(m) = 1(&,1, pm> C Ty(m). We define a
y

continuous linear functional f on G4(m) b

i = | v

(fy(Ya,8)a,8) = {17 ((Ya,8)a,8))s (Ya,8)a8 € Go(m).
Again by the Hahn-Banach theorem we extended f linearly and continuously
on Ty(m) with the same dual norm, and denote this extension by F'.

[t is known (see [66, p.29, Hilfsatz 2.]) that the fact F' € (T,(m))’ implies

the existence of a sequence (F, 3), geN. from L™ such that F has a form
q B J,,jEI\Q

<1;“U~"J,,‘)')a.d> = Z / RJ,Q(;I)UQ,;?(’I)dfa ((Ua,‘.})a,q) = T;(Nl).
a,B€Ny
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and the norm of F is given by
My Nfﬁ T
/ m"“’ i)
86Ny

M. M
sup IFaﬁ( )| < o0, r
a,8eN,

.téR

1/r
) < o0, rE(l,0),
I FI| =

I
8

Thus ||F|| = || f|]| < oo and for each ¢ € S(M?) we have,

(fr0) = ([ (D20 )ag) = (F (=126 )a 5)

/ Fap(2)(2)’0@(z)dz = 57 (((2)* Fap)®, ),

05€No a,BEN,
which implies 1. in the case (M,).

1. (case {M,}) It follows easily that (2.18) determines an element of S{M»}
To prove the converse we will use the dual Mittag-Leffler lemma ([33, Lemma

1.4]) similarly as in the proof of [33, Proposition 8.6].

Let X, = S;u”‘m and let Yo, = {(¥a,8)aeN,» |¢lly,, < o0}, where ¢ =

r/(r — 1), and
a+p

m

The space Y, is reflexive Banach space. According to Banach-Alaoglu’s
theorem ([54]), bounded set in Y,, is weakly compact Y,,. Therefore the
inclusion mapping ¢ : Yo — Y, m’ > m is weakly compact. We will
identify X, with a closed subspace of Y;, in which is X, is mapped by the
mapping

Xm = Y, (2)°D%: 0~ ((2)P0(@), 5.

Clearly (X,,) and (Y, ) are injective sequences of Banach spaces and if m’ >
m than X,,» NY,, = Xp. It follows that the quotient space Z,, = Y, o Xon
(with the quotient topology) is also an injective weakly compact sequence

of Banach spaces. It follows from the dual Mittag-Leffler lemma that

—1)eDa(z\B
O Pr hm projm——-O‘X—:n Z( «Z—- < > hmpro_]m__,o}/.,;




CHAPTER 2. SPACES §* AND §" 29

is topologically exact (see [33]). The above and the facts: lim proj,, o X,
=(limind,,oXm,)" and limproj,,_ Y, =(limind,,_.oY;,)" imply that the
space limind,,—0X,, has the same strong dual as limind,,_0X,,, which is
a closed subspace of limind,,oY;,. Since Y, is the Banach space of all

F =(F,g3), Fxp € L™, such that

, 1/,.
— M, Mgz :
( > f e Fes@l | re(00)
\),,FEN) R &

1£llvs, =

m

MsMg, "
sup e ’:,,,3(13)[>~ =00
a,eN, \ TP /
reR

The assertion is proved.

3. Note h,, € §*. Clearly, if f is of the form (2.21) and (2.22) holds, then

it belongs to $*, and a, = (f, hn), n € Np.

~ L
Assume that f € §™. Let a, = (f,hn), n € No. For each ¢ = }_, bphn,

p il Lin

which is element of §* we have,

From the theory of Kothe space and the fact that for some § > 0 (resp. for
every § > 0), 3 |bn|? exp[2M (6/(2n + 1)] < o0, it follows that (2.22) holds

for the sequence (a,).

Put fn = Y k<narhk. One can easily prove that for every ¢ € S’ the

sequence ((f — fn,¢)) tends to zero when n — co. O

2.3 Boundary value representation

Theorem 2.6 Let (M.2) and (M.3) be fulfilled and let f be a continuous
ultradifferentiable function of class * of ultrapolynomial growth of class *
with Hermite series expansion Y . aphy.

I. The sum Y, (ia,/(27))ha(C) (see 2.) converges uniformly in compact

subsets of eider the upper or lower open half plane.
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2. The sum 3, (ian/(27))(ha(¢) — hna({)) converges in the upper half

plane to a real harmonic function u(().

3. The function u(€ + in) converges to f(§) as n — 0F uniformly on

compact subsets of R.

Proof: 0. Let us first prove next assertion. If (M.2)’ is fulfilled, K C R 1s
a compact set, such that K C (—00,0) or (0,00) and ¢ € R + ¢K, then the

function
2
M (2.23)

e :R—=C, t— = - ,

is an element of S*, and the family {¢¢,( € R + 1K} is uniformly bounded
in §*.
In [47] is proved that
PP (@) < CHPal S Inl= 7, (=€ +in€ R +iK.
¥=0

Applying the Stirling formula, the fact that

0<vy<L

o =oy=—1
su —at1-l1 ] < (a4 1) su <inf > 1
& (;}lnl ) <(a+1) sup | inf |n

and the conditions (M.2)’ and (M.3)’ we get that there is C which depends
on K, such that

m B2 (o + 1) mPePB! MaMy _  MaMp

oM (t) < C .
[ (D] < My41Mjp memP —  memb

This implies the assertion.

1. Let K be a compact subset of (0,00) or (—=o0,0) and let B be bounded
subset of R. Since

Bn(()hm(C) =i /R }—L%t—)_hrg& dt, Im¢ # 0, m < n,

we have for ( € B + 1K

ha(t) exp(~£2/2) |

T t = (pc(t), ha(t)),

A exp(=C/2)ha(6) = [
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where ¢, denotes the function defined by (2.23). Therefore,

> [2Ra(0)] < lexp(@/2)] 3 lanl e, o)

T EN‘)

< |exp(¢?/2)| Z lan|? exp[2M (6+/2n + 1))-

HEN]

Y Ueer ha)|? exp[-2M(6v/2n + 1)) < 00, ( € B +iK.
nENo

)

2. The convergence of the given series follows from 1.. The limit function is
harmonic, since for ( € Cy,

S~ (ica/(27))(Ra(C) = ha(C))

nENo

- (2 /9) (729
g P Z Z.)an/ ho(t) exp(—12/2) (e-\P(Q /2) _ exp(§ /~)> dt.
T JR

it [ £t

the expression in the brackets is purely imaginary and }_, (¢ /'(‘27))(}.1, (¢)—
/—1,1(()) is real.

3. For ( € C4 and n € Ny

nENg
1Cn hn(t)e™? /2
- <L\p(—g‘ ‘2)—(‘\p(g‘/?_)> Z = (:—t dt—
nENo = R 5
-, ¥es 1 1 D
—exp((°/2) Z . ha(t) exp(—t2/2) <— - —) dt.
neNo 2T =1 {(—1

e

Using the assertion proved in part 0. of this proof, the fact that fis a regular

lement of 8™ and that f = 3 c,h, in the weak sense in §™, we get

nENo =

Lot e

> Sha(tyexa(-2/2) (0 - 7 ) d

= 3 =hat) (e(t) - (1))

nENo =
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Ve 1 .
= Z _Tr'<hn7(r9(*(ro(>“§;<f)(tof (P()

= %/R f(t)exp(—t%/2) <C 1—t - ?i—t-) dt.

Therefore for ( = £ + in,

nl_i,I& (_ exp(¢?/2) Z lCn/ ha(t) exp(—t%/2) (—-— - $> dt)
neN

) exp(—t%/2) (th - C—iz> dt.

Since the right-hand side of the above equality is the Poisson integral rep-

1 exp(f Z’rz n—0t

resentation of the function fexp(—t2/2) at £ € R, it follows that

lim (—exP(<2/-z) S ;C“/ ha(t) exp(—t2/2) <_-7 - Q—i—t> dt) = £(¢)

=0T
& 0 nENo

and the convergence is uniform on K.

Since f is a regular element of S’*, we have

/f —t/2 ch/h —e/2

The integral on the left-hand side is convergent for almost all £ as n — 0F
(see [60, Theorem 105]) and thus for almost all £, we have

exp t2/2)dt -

nliréi(exp((_?/?)—exp(Cz/Q)HEZ w”/

Since exp(inf) — exp(—inf) — 0, as n — 0T, uniformly on K. In order
to prove that the above convergence is uniform on K it is enough to prove
that the integral [ f(t)e~t/2(t — ()~ dt is uniformly bounded for ¢ € K,
n € (0,6). Let F = fexp(—z?/2) and H = hexp(—z2/2), where A is a
smooth function such that in the case * = (M,) for some L > 0 and C and

in the case *+ = {M,} for each L there exists C, such that

|£(2)l < A(z) < sup(Jh(z)], [F'(z)]) < Cexp[M(L|z|)], z € R.
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The function A = (w#*h), where w € D* is such that w > 0, suppw C [-1, 1],
f[_1,1]'~“)’“ = 1 and MI) = SUP|y|<|z|42 | f(u)| fulfills the above condition.

Let us prove that. For almost all z € R

.1 » _ _ .
M) = / h(z — t)w(t)dt > max <h(fr§ - 1).M}I\)) > WA
1

L, =40L. Since f is of ultrapolynomial growth of class *

h(z) < h(|lz|+1) LC

Since

|R'(z)| < h(|z| + 1,)/ |W'(t)|dt, z €
R

by the same argument we finish the proof of the assertion.

From the estimation

' F(t) | k tE(t + ’ 1t
./ =dt| < ‘/ S)dil+sup§F([i|r;/ ——(-)——)
Rt — [ | t* + n? 1 teR R(t—-&)+1n°

it follows that we have to prove only that the first integral on the right-hand

IA

side of the above inequality is uniformly bounded for £ € K and n € (0,¢).
For each £ € K, we have

£) tH(t+ €)
/ ? dt g/ PP S) 4
R t?+179° R t*+7n°

- /"*“ t(H(E+1t)— H(E—-1))
= 0 t‘3_+_772

00 1 0
< / / — H (€ + tu)du
Jo |J-10u /

One can analogously as in [47] deduce a boundary value representation of

dt

dt < 2/ H'(t)dt < .0
R

LS/-

Let us recall the following assertion.

Lemma 2.7 [64, Lemma 1] Ift > 0 and n € Ny,

I. hn(it)/hn(0) is real, positive and monotonically decreasing;
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2. izn(O)/an_l(O) is bounded.

Theorem 2.8 Let f = (T, anh,) € ™ and let

h )hn
u(f,n) Z an ( )7 ‘U(f 77 =1 Z apn ( ) ( ) €+1UEC+
n€Ny "(O) n€No hn— 1(0)
Than u and v are real valued smooth functions for (€,n) in the open upper

half plane; -u(-,n) converges to f in 8™ and v(-,n) converyges to

= h
Zl ©) ,

n 1(0)

inS™ as n— 0,

Proof: Let ¢ = 3 d,h, € §* and n > 0 than

HuCm @) = (fr ol = fanda(1 - Bu(inDAZ'0))|  (2.20)
and
[{v(-, ), ) — =| > camrd, ”(”7) . (2.25)
nelNy Ay I(O)

The fact that the series (X cnd,) and (3" cn-1dy) converge and the prop-
erties of the hermit functions of the second kind, which are given in the
previous lemma, imply that the right-hand side of (2. 24) and (2.25) con-
verge uniformly for all > 0. We can therefore take the limit n — 0t

termwiese and conclude the desired result. O




e T G

Ll (el

Chapter 3

Elementary Operations

Elementary operations (translation, differentiation, ultradifferentiation and
s R e 0¥ % £ A 4 3 R e m
multiplication) on §* and &' are investigated in this chapter. The space

LM e . ~ . ‘ .
Oxs P) of multipliers of the spaces §* and &’ is determined explicitly.
Let

1)(””)(-7?‘ D)= ZLL,L‘ENO aQyv ( —1)*D¥z#,

\

(resp. PMY(2,D) =T, en, @uw (-1)"D*z#), z€R,

/

where a, , are complex numbers such that there exist L > 0 and C (resp.
every L > 0 there exists C) and
Lu+u

la, | <

C——— k.ue Ny 3.2)
="MM, U ET \3-2)

The formal adjoint operator (3_, , a,,z"D¥) of P*(z, D) will be denoted
by @*(z,D). Note, for each fixed z € R, P*(z, D) is an ultradifferencial

operator of class *.

Theorem 3.1 1. Let hg > 0. The family of translation operators

1

is uniformly continuous.

:S8* — S, Thip(:) = @(- = h), |h| < ho,

-
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2. If (M.2)’ is fulfilled the mappings
(-1)"D":8" — 8%, ¢ (-1)"D"¢p, v €N, (3.3)
P*(z,D):8* — S, ¢ P*(z,D)p, (3.4)
and their adjoint mappings
D*: 8" — 8™, veN, (3.5)

Q" (z,D): §' — &, (3.6)
are continuous. For each f € S' (tempered distribution) we have
Q*(z,D)f = > au,z*D"f, (3.7)
n,v€Ng .

where the series on the right hand side converge absolutely in S§'.
3. If (M.2) is fulfilled the mapping
P*(z,D): & — S*, ¢ P*(z,D)ep, (3.8)
and its adjoint
Q*(z,D): 8" — S, (3.9)

1s continuous and for each f € S’ and (3. 7) holds.

Proof: We will prove the theorem only in the case * = (M), using the defini-
tion of the space S(M?) and Theorem 2.3. Analogously applying Theorem 2.2

and Theorem 2.3 the assertion can be proved in the case % = {M,}.

1. If m >0, ¢ € §* and |h| < hg, we have

matB

Jé] () <
su z) (T £
S0 3 ) ()l <

meth8 (2<ho)m)°’+‘6
= sup sup |(z — h)Pp(®(z)| < sup U g Bl ..
N MaMp LR (z — h)Pe ) R I(z)P (@)

2. We will prove only the continuity of the mappings (3.4) and (3.6) since
the proof of coﬁtinuity of (3.3) and (3.5) is similar and simpler. Let us



CHAPTER 3. ELEMENTARY OPERATIONS 37
prove that (3.4) is a continuous mapping. Applying (3.2), (M.2)’, (M.1),
and (M.3)’, we get that for ¢ € §* and a, € Ny,

12°(P(z, D)) *leo <

min(a+v,3) Py Lu+u ) Ly
t : (x+v—k)|] <
DI D v ), I =) i

© wvENo k=0

w min(a+v,3) ol L j
<c Y ( > ( ' >(;\_)/\-!.

;;.'./6:\9 k= \

HOVHO L pvpk swbamk))
R (e e € e

<C ), Z k k| 4utv My

u,v€No

- <a + u> <3> 1 ((1+4L)(1+ H*)(1 + HP)* k!

(L +4L)(1 + Ho)(1 + HP)ptvketf2k ok \(vta-R)
H(I r)

[loo

Myyoak Muyp_k

o ((L+4D)(1+ H)(1 + HP))P+n
< Csup

n, .\ (V) ™
9 Mg M, 1(z"0)™ oo

This implies the continuity of (3.4).

Taking into account that the image of a bounded set under a continuous
linear mapping is a bounded set, the continuity of 3. Let us prove that (3.8)
is a continuous mapping. Applying respectively (M.2), (M:1) and (M.3)" we
get that for each m > 0 there exists C such that for each ¢ € S(Me)

m3+3
<

o0

|22 (P*(z, D)) )|

sup
a,BeNp “'[a ‘\[ﬁ

<C sup 7 Y k k My+aMuss
Mytaityt

min(a+v,3) <Q + l/) <3>k[}[u+a}1u+ﬁ”lﬁ+a Lu+u.
L),,iENo“ €N, k=0

“ I;L+.3~»‘C‘YT)(L’+;‘1-.LC) Hk <
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min(c+v,0)

1 +v\ (B
<C sup Z Z W(akz/)(k).

a,f€No u,v€Ny k=0

KI(8mL(1+ H))* (8mL(1 + H))et+B+utv—2k

I#+ﬁ—k (v+a—k) »
MM, Moras Mo I ) I
<c s ST 1 (6mI( gy
>~ L Sup p » .
O("BGNO u,v€N, k=0 8 +otut A/[U-i'a—kA[u{»-ﬁ—k

(@ =Eg)lte=hy | <

(16mL(1 + H))P+e o
<
B Ca,fatélr)\lo MM, 1(z”0)'|,

which imply the continuity of (3.8).

Suppose (M.2)’ (resp. (M.2)). Let f e & (resp. f € §). Since for each
pEeS”
(25 aun(=1)"D*s*) =( 3 a,,2*D"f, )

u,v<n uw<n

converges to

(£, P(z,D)p) = ( Y a,,2*D"f, o),

u,v<n

as n — 00, (3.7) is a continuous mapping.
Applying similar arguments as in the proof of the continuity of (3.6), one

can prove the continuity of (3.9). O

3.1 The spaces of multipliers

Definition 3.2 Ojr is the space of all @ € & such that for all ¥ € S*
the pointwiese product -1 belongs to S*. The topology on O}, is coarsest
topology such that for each ¢ € S* the mapping Oy — S* defined by 1 — ¢

1S continuous.

The inclusion mappinegs S* — O3 — S’ are continuous. Moreover, S*
p M 3

is dense in OR,.
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Theorem 3.3 Let p € £7.

1. The condition

S“”’”"/’. the pointwiese product @i

(a) for all Y € S(Mp) (resp. ¥
G

fy)

belongs to SM#) (resp. S
implies the nezt one

(b) for every m > 0 there ezist £ > 0 and C (resp. for some m > 0
and every £ > 0 there is C) such that
%

m* ‘ £ 3 .
sup s lp'¥(z)| < C Z 7(1‘, z € R. (3.10)
,;.EI\O <¥4 oy JEN‘) ivi [y

2. If (M.2) 1s fulfilled the above conditions are equivalent.

Mp) (resp. @ € 5{“&’}), that (la) is and

Proof: Let us assume that ¢ € &
(1b) is not fulfilled. For some (resp. for each) m > 0 there exists a sequence

(z;); such that |z;| tends to infinity as 7 — oo, and

m< y i ol
sup - 1o\ (z;)| > M; L Vi
QENO il A?ENO Vg

(z;)°. (3.11)
Without the loss of generality we may suppose that |z;|+2 < |z;4+1], 7 € N.
Consider the function ¢ € S(M?) (resp. ¢ € S{Mr}) defined by (2.1). The
conditions (M.1) and (M.3)’ imply that for some (resp. for each) m > 0

mon m* X [a),p®(0) (.. ‘
sup ——|(¢) ) (z;)| = sup — eyl e €|
weNe Mo~ " P eNo, Ma Z::U k' (z;) ;

m<

0) (o, 1 -
= sup To1 £0a)] > M 3 31 (o)

@
aety Mo (z;))

1 1
> M Z —_— <I]>‘3_J = y (r]>*3 > 1.

J = .
£ My M; = M

Hence, for some (resp. for each) m > 0, (sup,(m®/M,)|(¢¢)*(z;)|) does

not converge to zero as |z;| — oo, which is a contradiction (see the proof of

Theorem 2.3, p. 17).
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Let (1b) and (M.2) be fulfilled and let Y € SMp) (resp. 1 € §M» »}). We
will prove that ¢ € SM») (resp. ¢ € SIMp}). The conditions (M.1), (1b)
and (M.2) imply that for each m > 0 there exist ¢ > 1 and C (resp. for some
m > 0 and every £ > 0 there is C), such that

( )ﬁw(k)go(a—k) ”oo

motB 3
su & (WP)(O{)H«: < sup ( )
apexie Mo Mg I{=) o peN k}; M, Mj

k+p -k
a\ m 4m)~
< g B,( k)( (a—k)
- Sup ‘ <k> Ix[k]t[’@ ”( ) A[a_k (19 ”OO

a\ 1 (4m)k+P 2y
< su e + (k)
S a,BEII)\Io /CSZC, <k> 4o A[kMg ”Z ‘[ [ ”oo

(4 k+ﬁ ﬁ+'y a) 1
< sup sup I Z M Blow ol

O,BENO kENo k[kl‘[ﬁ 0 keNo

(4m)a+ﬁ[¥ A
< AR Tole) ok
S, EZN MM, 16

1 (4m)>+B(2¢)r B+

<C sup
a,f€N, 72{} 2 MoMg,,

{22 7(®)]|o

(4mé(1 + H))>+s
3N, M, Mg

= ¢ (=)’ ¢ loo < c0.0

Theorem 3.4 1. The mapping
OR[ . Sl.* P f‘ro7 f = S/‘v

1S continuous.
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2. Suppose (M.2). The pointwiese multiplication

S*x Oy — S7, (Y,p) = Yo, (3.12)
S x Oy — 8", (f,p)— feo, (3.13)

are separately continuous mappings.

Proof: 1. The assertion follows immediately the following facts: by the

definition of O3, the mapping
Oy — 57, @ - P, € ST,

is continuous {fp, @) = (f, p¢), for each ¢ € S™.

2. From the first part of the theorem and the proof of Theorem 3.1, it fol-
lows that (3.12) is separately continuous. Since, for each ¥ € S7, (fo, ) =
(f,p¢), and since (3.12) is separately continuous, (3.13) has the same prop-

erty.

Theorem 3.5 If ¢ € £ and for all f € S, the product ¢f belongs to S,

then ¢ belongs to O}y.
Proof: Our assumption implies that for every ¢ € 5™ the mapping

fr(of,9)

is continuous linear functional on S™. Since §’* is a reflexive space (since it

is Montel), there is ¥ € S* such that for each feds"™,
(of ) = (f, %)

In particular, for each p € D*, we have

which implies that

Hence for all ¢ € S* we have ¢ = ¢ € S*. It follows ¢ € Oj- O




Chapter 4

Integral transforms

This chapter, which results are obtained in cooperation with prof. Pilipovié,
is devoted to the investigations of various integral transforms on the spaces
§* and §™. One of such integral transform is already studied in Chapter 3..
Namely, the Hermite expansion of elements of the basic spaces and their
duals, can be regarded as a generalized integral transform in Zemanian’s
sense ([68, Chapter I1X]). We use results about Hermite expansion to obtain
results for the Fourier and Laplace transform, following an analogous idea
to the Pilipovi¢’s one, for the space L’,. Moreover, we characterize S* by
the Fourier transform, Wigner distribution and Bargmann transform, and
obtain analogous results to Jenssen and von Eijndhoven’s for Gelfand-Shilov
space WM™ ([27]). Let us remark once again, that the natures of the spaces
Wﬁx and S* are different, and therefore our methods are different. In the
last section of the chapter we study the Hilbert transform on S, which is a
generalization of the corresponding one on the space of tempered distribu-
tions, defined by Ishikawa ([26]). Structural properties of the basic spaces
imply that the Hilbert transform of a tempered ultradistribution is defined

uniquely up to an entire function of ultrapolynomial growth.

42
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CHAPTER 4. INTEGRAL TRANSFORMS

4.1 Fourier Transform and Integral Characteri-

zations

In this section we suppose that the conditions (M.1), (M.2) and (M.3)" are

From Theorem 2.3, Parseval’s formula and the property

X

F(D*p)(€) = EX(Fp)(&), F(z%p)(&) = (=D)*(Fe)&), ¢

m

(4.1)
it follows easily that the Fourier transform is an isomorphism of §* onto

itself. As usual, we define the Fourier transform of f € §™ by
/T N\ !/ .\ 2
’\ff.r/~l\f‘j‘r). rth\

If P*(z, D)is an operator defined by (3.1), then from (4.1) and the continuity

of P*(z, D), it follows that for each f € 8’

F(P (-, DYf())(€) = P (=D, &)(Ff)E), E€R.

In the next theorem we give characterizations of the space §7, by the Fourier
transform, Wigner distribution and Bargmann transform.

Theorem 4.1 1. [CHARACTERIZATION BASED ON THE FOURIER TRANS-

L

3 . - ~ \ ; e
FORM] A function ¢ belongs to SM») (resp. S{Mp}) if and only if it is

square integrable and for each (resp. some) h >0,
o) = O(exp(-M(h|-])]) and (Fp)(-) = O (exp[-M(h |- ])])-

). [CHARACTERIZATION BASED ON THE WIGNER DISTRIBUTION| A func-
tion o € SMe) (resp. ¢ € S{Mz} ) if and only if for each (resp. some)
A>0

Wi(z,y;p) = O(exp{—)[(/\(:cj + vy

3. [CHARACTERIZATION BASED ON BARGMANN TRANSFORM] A function
- v _ of . 5
@ € SMp) (resp. p € S{M»} ) if and only if for each (resp. some) A>0

there ezxists C, such that

. ) i e e .
(:\;‘ngS(,&\’ptgigi'—‘\f\/\ig}\)l, ( e C.
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Proof: Parts 1. and 3. of Theorem 2.3 imply that 1. holds. From this and
parts 2. and 4. of Theorem 2.3 and the calculation based on the properties

of a function M parts 2. and 3. follow. O

4.2 Laplace transform

In this section we will assume that the conditions (M.1), (M.2) and (M.3)
are fulfilled. By S we denote the subspace of S', consisting of elements

supported by [0, c0).

Let g € S§. For fixed n > 0 we define “gexp(—n-)“, as an element of S’ by

(9exp(=y), @) = (9, Oexp(~y-)p), @€ S,

where 6 is an element of £* such that for some ¢ > 0,0(z) =1,z € (~¢,),
6(z) =0,z € (—o0, —2¢). It is easy to see that the definition does not
depend on the choice of §. As usual (see for example [62]) we define the

Laplace transform of g € S by

(L9)(C) = F(gexp(—n))(&), (=E+ine C,.

Clearly, for fixed 7 > 0 it is an element of S'*.

Let
G(¢) = (g,0exp(i¢-)), (=¢+ine Cy, (4.2)

where 6 is as above. The function G is holomorphic on C, and does not

depend on 4.

Following an analogous idea as in [47] (see also (64]) one can prove the next

assertion.
Theorem 4.2 Let g € Si and G be defined by (4.2).
1. For every ¢ > 0 there are C and k > 0 such that
IG(O)] < Cexp[en+ (M(klel) + 47 (kln™))], ¢=€+inecy.

2. For fized n > 0, (Lg)(€ +in) = G(€ +1in), £ € R.
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3. There is G(- + 10) € S'* such that in the sense of convergence in 8™

G(£+1in) — G(£+10), asn — 0t and G(£+1i0) = (Fg)(€), £ € R.

4. If Go(C) = (Lgk)(C), ¢ € Cy, k=1,2, and G1(£ +i0) = G2(£ +10),
EER, then g1 = g2.

4.3 Hilbert transform

In order to define the Hilbert transform on S we follow [shikawa’s ideas
- . " Fan ~(M / c{ My} .
for tempered distributions ([26]), and represent S(Mz) (resp. St fp}) as the
. : M M, JEp—
projective limit of appropriate spaces Do ”, a > 0 (resp. Da,”, ap € R). But

P

in the contrary to the case of tempered distributions we do not have that
. ~{ T . . 1 ~Mp .
SMp) (resp. SMpl) is dense in the space DMa (resp. Da,”). We overcome

this difficulty by parts 4. and 5. of Theorem 4.8.

Let b > 0 (resp. b, € R) be given and let P, (resp. Py,) be an entire function

such that for some constants L > 0 and C,
|P,(C)| < Cexp[M(L|C])] <resp. | P, (C) <C e‘\:pﬂ\}p(]/lg'\‘ﬂ), (e C, (43)

exp(M(IC)] < B(€) (resp. exp[No,(ICD] < Poyl0)),
(=€+ine C, £2 > n2.

(4.4)

In the case when (M.1), (M.2) and (M.3) hold an example of such an entire

function is

DG ~2 (o]

: 5 3 ! .
P,(C) = : iy g £
0 (C) ,EI(I + bzmi) (resp Py, (¢) Ql;[l( s v )> ¢

(&)

From (33, p.91] it follows that this entire function fulfills conditions (4.3)
and (4.4) since for ( = £ +1in € C and £2 > n?,

J¢]

> sup H 1+
‘EENQ:I

2
5

22
bama

[T+ )

2m2
a=1 bama

> $x = exp[2Ns, (|¢])]-

It follows from (4.3) that Py(D) (resp. P, (D)) is an ultradifferential operator
of class (M,) (resp. {M,}) (see 33, Proposition 4.5.]).

Let us now give the structural characterization of basic spaces adopted for

the investigations of the Hilbert transform.
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Definition 4.3 Leta, b > 0 and (ap), (by) € R. Dﬁpx D;’V!p.a) D

D;‘{”’a” are respectively the spaces of smooth functions v on R such that
p

M,

i and

Pas(®) = sup ill(l’up)("’!]m < 00,

a€Ny A{a

(o 4

a
ab(®) = sup —||Pp(¥]|,, < 0,
60s(#) = sup LBl

1P, 0) ]|
Papby () = sup 2T 12 o
o aelNy (Hp:l aP)A[a

Qap by (P) = sup ——IIP‘JP(?’(O)HOO
e C!ENQ (Hg:l aP)AIG

equipped respectively with the topologies induced by the norms p, 4, q4 5, Pay b,

< 00,

and q,, 5, respectively.

. M e Moy,
DC}I\{ — PTOJ hnlb)O'Daybpy D.\fpya f— prOJ hmb)OD; P a,
T £ 1\'[P Mpap _ nd. My.,a
'D(‘l}7 = prOJllm(bp)ERDap‘bp» DErtn = proj l]In(b,,,)ER’Db;,P :

In the sequel we need some estimates of derivatives of Py (resp. Py,) and
1/ Py (resp. 1/P,).

Lemma 4.4 If Py (resp. By,) fulfills (4.3) and (4.4) then

1. For every r > 0 there is C, such that
() v!
(2(@) "I <CLIPLpO), C€CveNe  (45)

2. There ezxist r > 0 and C such that

()

1 7!
P

The corresponding inequalities hold for Py.

Proof 1. Applying Cauchy’s formula and (4.3) one can easily obtain (4.5).
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2. Since Py (0) # 0, there exist 7 > 0 and C such that |P,,(¢)| 2 C, for

|C| < 2r. By the Cauchy formula for £ € R and [{| < 7,

| ( 1 { ‘ l Y- / d\ - */,' A7)
— 150 ~( = oy e (2.1
‘ \[’5;,(\[) ‘27\'1_],"_“:, Pbp((ﬁ)l\g _\f)v*{'l r

Let £ € R, |£| > r and K be a circle with the radius |€]/+/2 and the center in

£. By applying Cauchy’s formula and (4.4) we obtain that for every v € No,

(7)
; ( 1 B | — \_A"_/ 4 d(|
\B.©)) ' '2wiJk P (O(C-ENT
< ‘,!27‘/3 ' e\p[_ \;M(lf n l\_!_ G):l)]
€17 oe(o,2n] V2
o €Ly < o 12"
€ 127 oot (el - L) € € L2 expl- s (6

This and (4.7) imply (4.6).
Theorem 4.5 If (M.2)’ holds then,
SMp) = proj limDO'D‘q”P = proj‘linlD,)P”P'l.

~(M.Y o “qs Ly
SiMp} = proﬂnn(gp)enp,‘;;" = projlim, ,)er D" fpap,

Proof: We shall prove the assertion in the case * = {M,} since it is more

complicated than the other one and the ideas for both cases are similar.

I

First we prove that there exists C such that for each ¢ € C*, Pa,bp(¥)

qu_{,,b,,/«/?(‘fﬂ)' Condition (M.3) imply

kg 1{z)° ¢!*lloo
Sr)ap,bp(‘r’) = Ssup :

a,8€N, (H§:1 a,,) M, (Hle bp) M;

2 max(, |2 s
E bu?\l o ) g A
apeNo ([122, ap) Mo (-, by) M

2,3/21 23/?.

@]
‘fg !\_O + Sup

\

2 |I’3Yﬂ(g)“)@
= \aseNo (021 8p) Mo (TToz1 bp) Mg a8€Ns (%) u,(nj:lbpw.;)
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(2) exp(Vy, /310 |co
cof o MM, Nexplls
aeNo ([T501 ap) Mo  aeNo  ([15es ap) M.

P, /7 |oo
i | b,;/ﬁ |
a€No (Hp:l ap) Ma
Estimate (4.3) implies that there exists C such that for each ¢ € C*,
Qap.bp(@) < Cpap,bp/L(Lp)v pE C, since

Ny (L|z]) ™| oo
Ga,pb,() < C sup [[ Vb, (LIz])# il
C!GNO < p 1(1 )

B ()
z ( o0

2€No peNo ([1521 05) Ma (TT5=, b,/ L) M <

= anp’bp/ﬁ(@)

CPa,b,/L(P)-

Let us now prove the equivalence of the families {pa,s,; (ap),(b,) € R} and
{qa,p,:(ap), (by) € R}. From (4.6) it follows

o 1(R9) e
Pap,b,(¥) = OSEuI\pI)O ———————<H::1 ap) Y3

1 o d,
= sp e ) (7)1s1¢;b(“ Vs

€Ny (ngl ap> Mo A<a

p= 1 &

Lk o L]
< P .
- QS;IEO’;Q < > (HP 1 ap> M ( v ) l\f,yr’YH bp/2¥ H

/!
< su

: A 1 Z( ) 1Py, 122l
" veNo ([)ey a5/2) M, e S \1/ a- e (M327 ep/2) Macsy
< Cap/25p/2(9)-

Let (ap), (¢cp) € R and let (by) € R be such that 2b, > ¢,/L, n € N, where
L is the constant from (4.3). This implies

exp[Ne,(L|z]) = Nas,(|2])] <1, z €R.

The above inequality, (4.7) and (M.1) imply that there exist C and 7 > 0
such that for each ¢ € C*,

Gapc, () < sup 1P., (%) |co

«€No (H::l ap) M,
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o >#__1_
= ;,5;‘\?,%(7 ( ;:lap) M,

(ax — 7)! ) : -4
_'Tf_) exp[—Naw, (| z |))(Ps, ) ||

b ] «— (n) ! (o —)!
<C sup = ) 5 , e —
2eNo 2% 22\ ([Tp=1ap/2) M, (ITo=1 ap/2)Ma—nre™"

| exp[Ne, (L |z ) = Nas, (I £ DI(Ps, )" Il

, 1
< C sup

NP5, )l = Papy2.,(9).0
weNo (121 ap/2) Ma oe Bl

Remark From the preceding proof it follows that for given a > 0 (resp.
(a,) € R) there exists b > 0 (resp. (b,) € R) such that a < b (resp.

M M A A : .
(ap) <X (bp)), such that 'Db[” @l 'Dq[p (resp. 'D‘):p C Dgp[p) and the inclusion

mapping is continuous.

Definition 4.6 The Hilbert transform H, (resp. Ha,), on the space 'D'a\[”
(resp. ’DQ:*’) is defined by

: 1 ® Pa(z —t)p(z —1) M
Hap = PV dt, p € D,P
(a?)@) = 33 BV | : ¢ € D)
- , 7 1 [® P, (z—t)p(z—1) ) M
(rup. (Ha,0)(z) = Pi(2) PV /_00 z : dt, p€Dr|.
(4.8)
Proposition 4.7 1. H, (resp. Ha,) is a linear continuous mapping from

DM? (resp. DA ) onto itself.

/ poug. | . ; i
HoHop = -, @ED? (resp, Hoy,Ha,0 = =, $E D1PP> :
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Proof: The proof is given only in the case x = {M,}, since the case * = (M)
is analogous. The linearity and continuity of Ha, follows immediately from
the fact that it is defined as the composition of the following linear and

continuous mappings

M, M,
Tap : 'Dapp i ,D[{‘2 P}7 RS PupQ’

DS — e soH(Hf;)(-):Pv/ t(_)

= M M
T 1D DM o /P,

where H denotes the Hilbert transform defined on Di’;”’}. Note that in [46]

(Mp)

the Hilbert transform is considered only on D;,*’ i. e. in the Beurling case

but in can be examined in a similar way in the Roumieu case.

From the definition H,, and the properties of the Hilbert transform on

D\V ) (HH¢ = —¢, ¢ € D{ p}) it follows that for each a, € R and each
M,

P E D“P
Ma,(Ha, @) = T, (HTu, (T (H(Ta,9))) = T (H(H(Ts,9)))

This completes the proof. O

The generalized Hilbert transform H, (resp. H,, ) on the dual space D;MP
(resp. D:{:’P) is defined by

(Haf,¢) = —(f,Hayp), € DM

<resp. <Hapf, ) = —<f7Hap(r9>v Y E Dc}\:p>'

Theorem 4.8 1. H, (resp. Ha,) is a linear continuous mapping ofD;Mp
(resp. D, ”) onto 1itself.

2. Ho(Haf) = = f (resp. Hoy,(Ha,f) = —f), for each f € D;M” (resp.
M,
f€Dg,”).
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n
—

, M n
3. Let f € DM (resp. f € Da !"). Then

—i(Ff,0), @€ DM supp o C (0,00);
(F(H.f), @) =
i(F f, ), 0 € DMp)  supp ¢ C (—0,0).

= D{-V;’}’ supp ¢ C (‘O‘ o );

e
|
—~
~
RS
~
<
N

resp. (f(quf)-’r',\/ =
= 'D{-\!P}‘ supp ¢ C (—00,0).

,_/
W\
SH
aY
n

J. Let (M.2) and (M.3) be fulﬁlled, Assume that f € /\[’

f € D/\I ), 0< a<b(resp.(ap) X ( )} and that b (resp. by) 1is chosen
so that f\ My €D / ol (resp. f| 'fp = D p) (see the remark after The-

orem 4.5). lhr (lzjf(rémc (Hof - H,)j My (resp. (Ha, f—Ha, f)\ up

(resp.

is an ultrapolynomial of class (Mp) (u,sp. {M,}).

5. 1f f.9 € DM and floou = glpue (resp. £,9 € Day” and flp () =
9lpimp)) then the difference Hyf — Hog (resp. Ho, f — Ha,g) 15 an
ultrapolynomial of class (M) (resp. {M,}).

Proof: We will prove the assertion only in the case * = {M,}. Parts 1. and
2. follows immediately from the previous theorem. Let us prove part 3. Let
o € DIMp} be such that suppy C (0,00). From the property of the Fourier

and Hilbert transforms of an f € L?
F(Hf)(z)=-1sgn (z)(Ff)(z), z€ER,
it follows
(F(Ha, f), ¢) = (Ha, f, Fo) = (£, To, HTa, F )
= (f, T2 HF(P.,(D)¢)) = (f,To,' F(=i(Pa,(D)9))
—i(f, T To, Fp) = —i(f, Fp) = —«(F f, )

M

In a similar way we can prove part 3. in the case ¢ € D{Mr} and suppy C

(=00,0).

Let us prove part 4.. For any ¢ € DMp) with suppp C (0,00),

F(Ha,f - Hy, f),¢) = (F(Ha, f), ) — (F(Hs, /), ¢)




CHAPTER 4. INTEGRAL TRANSFORMS 52

= =i(Ff,0) = (=i)(Ff,) = 0.
Analogously, we have
(F(Hap f = Hy, f),0) = 0, 9 € DM} suppy € (~c0,0).

Therefore, suppF(Ha, f — Hs, f) C {0}. [34, Theorem 3.1] implies the exis-
tence of an ultradifferential operator P(D), such that

F(Ha, f — Hy, f) = P(D)6. (4.9)
Applying the inverse Fourier transform on (4.9) we get
(Ha, f — Hy, f) = P(z), z € R,

1.e. 4. holds.

Assertion 5. follows from the fact that
suppF(H,, f - H,,g) C {0},

which can be proved analogously as part 4.. O

Using the fact that for each f € §'(M») (resp. S'\"”P}) there is @ > 0 (resp.

. . . . i M
ap € R) such that f has a linear and continuous extension F on D) S (TesD,

'D;\P]p)‘ we define the Hilbert transform H(Ma) f (resp. H{Ma} f) of f by

HM) f — H, F <msp_ H{A\fp}f = H,, F) -

It is determined uniquely up to entire function of ultrapolynomial growth.



Chapter 5

Convolution of

Ultradistributions

There are several definitions of convolutions in the space of Schwartz’s dis-
tributions and in its proper subspaces. They are analyzed in many books
and papers ([56), [62], (12], [59], (1], [16], (23], (24], [70], [63], [30], [65],
(61]). In the theory of ultradistributions mainly the convolution of two ul-
tradistributions one of which has a compact support was considered. On the
base of such consideration, Braun, Meise, Taylor, Voigt and their collabo-
rators (see [42] and references there) deeply studied convolution equations
in ultradistribution spaces. A convolution of two arbitrary Beurling type
ultradistributions was investigated in [49] where it was proved the equiva-
lence of so-called Schwartz’s and Vladimirov’s definitions of convolution for
ultradistributions. In the chapter, which results are obtained in cooperation
with prof. Pilipovi¢ and prof. Kaminski, we investigate in details the equiva-
lence of several definitions of the convolution of Beurling type ultradistribu-
tions. Also. we introduce several definitions of ultratempered convolutions
of Beurling type ultradistributions and prove their equivalence. The fact
that ultradistributions are infinite sums of derivatives of appropriate contin-
wous functions on bounded open sets makes the problem of equivalence of

various definitions of convolutions non-trivial. As in the distribution theory

the space of integrable ultradistributions is crucial for definitions of convolu-
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tions. Since in the Roumieu case the structure of such space is difficult and
not-known enough, in the Roumieu case we have only some partial results
concerning the convolution. Therefore, in the chapter we will consider only

the Beurling case.

Let us first introduce the notations which will be used only in this chapter.
All the spaces and functions which are mentioned in the chapter are defined
on R?, with the exception of those with specially denoted domain The letter
d denotes a fixed element of N. The constant function equal to 1 on R4
(resp. R?%) is denoted by 1. (resp. 1;,). If ¥ is a function, 92 denotes
Yz +y), Let

PO =0+C+...+D Tl (1 + ﬁ—ﬁ) ' L= (G0, G e

SN\ rim?
(5.1)
where 7 is a positive constant. Conditions (M.1), (M.2) and (M.3) imply

that P. is an ultradifferential operator of the class (Mp) (see (33]).

We introduce the classes of sequences (see [16], [30] and [49]) as follows. A
sequence (n;) of elements of DMp) is an approzimate unit if it converges to

1, in £EM?) and if there exist m and C, such that for each € N

lal
m _(a) =
s - <,
C,Eul\yl)i (A['/_y' H T]J H‘ )

where |a| = a; + a2+ ...+ ag for a = (a,@2,...,04) € N9, If moreover,

for every compact set K C R? there exists jo € N, such that
ni(z,y) =1, (z,y) € K, 52 Jo.

(n;) will be called a strong approzimate unit A sequence n; of elements of
DMp)(R?) is a special unit sequence if it 1s of the form n;(z1,...,2d) =
f:]- n(z1/3,...z4/7), € No, where n € DMe) and n = 1 in some neigh-

borhood of zero in RY.

Following [23] we say that the space of ultradistributions of class (Mp) 1s
permitted if for any f € F, (px - f) * 6 and pi - (f * 8x) converge to f as
k — oo, where pi is an approzimate unit and 6; belongs to DWMp) §,. >0,

Jr 6k = 1 and supp 6 C (—ak,ak), where ax — 0 as k — oco. A space
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(@)1
o

F of ultradistributions has the property (Car,) (see [49]) if and only if for
each barrelled space E and each linear mapping L : E — F holds that L 1s
continuous mapping if it is continuous as a mapping E — D'Mp) . Ezamples

: . HMLY 7
of the spaces which posses the property (Cpr,) are L' and 'P,[‘X{"/ /4’1)]},

5.1 On the Definition of Convolution

In this section we show the equivalence of various definitions of convolutions
of elements of D'(Mp) . The form of the main theorem 1s similar to the
corresponding one given by Shiraishi ([59]) for distributions. But in the
proof of it some nontrivial problems appear, for example the Leibniz formula
could not be used since ultradistributions are infinite sums of derivatives (.
e. ultraderivatives) of corresponding continuous functions on a bounded open
set.

Following the approach of Schwartz ([57]), Vladimirov ([62]) and Chevalley
([12]) we have the next definitions of convolutions of §,T € D'M»).

Definition 5.1 ([49]) The convolution S 1T € D'Mp) is defined by
(SH3IT, 9) = ((Sz:®Ty)d(z +79), 1zy)y VE pMp)  if

for each 9 € DMP) | (S, @ T,)02 € DI P(R™M). (:

(@)}
[§™)

Definition 5.2 ([49]) The convolution S «>2 T 1is defined by

(S+52T, ) = lim (S: ® Ty, nj(z,9)9(z +y)), V€ DMe)  if

j—00

for every V € DWMp) and every strong approzimate unit (7;)
the sequence ((Sz ® Ty, nj(z,y)d(z +¥))); (5.3)

converges to a constant.

Definition 5.3 The convolution § *33 T is defined by

(S 53T, ) = lim (S; @ Ty, nj(z,y)d(z + y)), VE DMe) - if

j—o0
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for every ¥ € D(M»)
the sequence ((Sz ® Ty, n;(z,y)d(z + ), (5.4)

converges to a constant.

and every special unit sequence (7;),

Definition 5.4 The convolution S +>4 T is defined by

(S+54T, 9) = (S(T+9), 1), # € DM, if

for each ¥ € DMp) S(T *9) € Dgi\fp). (

()]
i
—

Definition 5.5 The convolution S +°° T is defined by
(S+°3T, 9) = (S +9)T, 1), 9 e DMP) 7
for each V € DM (S« T € /1:1- (5.6)
Definition 5.6 The convolution S +°6 T is defined by
(S T)+9,¥) = (S* T *¥),1;), if

fOl‘ each V,v¢ € /p(”p) (S * 7))(T ¥ k) € LI. (57)

Note, similarly as in the distribution theory one can prove that the mapping

p(,\fp)ﬁpxr.\fp)‘ 9 — Ay, where
(Ag, ) = / (§ « 9)(z)(T % ¥)(z)dz, v € DM,
Rd

is a continuous linear and translation invariant mapping from DM») into
EWM») . This implies that there exist a unique ultradistribution G such that
G =Ag, 0 DMe) So §458T = G.

Definition 5.7 The convolutions S«>7T, S+57' T, S37"T are defined by

lim (n;5) * T, (5.8)
]—00
lim S(7; *T), (5.9)
]—00

Jim (7,5)(7%, + T), (5.10)

respectively, if the limits (5.8), (5.9) and (5.10) respectively ezist in D'(M#)

for any strong approzimate units (n;), (7;).
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w

Definition 5.8 The convolutions S*38T, S*58' T, S 458" T are defined by

lim (;S5) * T, (5.11)
]—00
lim S(7; «T), (5.12)
]—00
lim (n;S5)(7; * T), (5:13)
j—oc

respectively, if the limits (5.11), (5.12) and (5.13) ezist in D'Me) | respec-

tively, for any special unit sequences (1;), (1;).

In [49] is proved that the definitions 5.1 and 5.2 are equivalent and that they
imply definitions 5.4 and 5.5, and question whether all these definitions
are equivalent was left as an open problem. In the distribution theory the
equivalence of definitions which are analogous to definitions 5.1, 5.4, 5.5 and
5.6 was proved by Shiraishi ([59]), Dierolf and Voigt ([16]) proved that the
definitions given by Schwartz and Vladimirov are equivalent, and Kaminski
[31] made an analysis of all the definitions of convolution in relation to

various sequences which approzimate the unit (see also [65]).

We will need the following assertions

Lemma 5.9 ([33], [13]) Let K be a compact neighborhood of zero, and

r > 0. There is u € 'D‘}\\.["’r/,2 and £ € 'D(};-\{P) such that

P.(D)u=6+¢. (5.14)

Lemma 5.10 ([49]) If f,g eD'Mp) are convolvable in the sense of one
of the equivalent definitions 5.1 and 5.2 and P(D) 1s an ultradifferential

operator of class (M,) then

P(D)(g* f)=g*P(D)f.
The main assertion of the section the following.

Theorem 5.11 All above definitions of convolutions of ultradistributions

are equivalent, i. e. they define the same ultradistribution.
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Proof: We will first prove that conditions (5.2), (5.5), (5.6) and (5.7) are
equivalent.
(5.7) = (5.2). Let9 € DM») be fired. The mapping DM?) — D'M) defined
by,

¥ (S 0)(T + ), (5.15)

is continuous. Since L' has property (Cyr,) and (S*9)(T %) belongs to L*,
it follows that the mapping DWMp) . L1 defined by (5.15) is continuous.
This implies the continuity of the mapping

B £y y— (S«N)T*yY(-—y)),
where 1,9 € DWM») are fized. Because of that, for fized ¢ € D(Mp)
y /Rd 16(y)(S * D)()T *¥)(- — y)|dy, y € R?,

belongs to L. The Fubini theorem implies that for each ¥,v%,¢ € DMp) | the
function

(z,y) — (5 * ) )(T*r;")(r-y).(x.y)ER:.
is from LY(R2%). By the change of variables it follows that for each ¥,9,¢ €
DMp) (S % 9) (T « ,"),JL‘A is from L'(R**). Assume that Q and K are
compact neighborhoods of zero in R? and that Q is a subset of the interior
of K. The mapping

DM 5 DMP) 5 DY) . YR, (9,1,0) — (S *9): ® (T * $),)67,

is separately continuous. Since D;\- f2) is a Fréchet space, the above mapping

is continuous. Thus, for somer > 0 and C,
(S *9): @ (T * ¥)y0° || (2 (5.16)

M
<C (H 9 |y + 1l % ll o + 11 ¢ IID(M,,>> , 9,6, € DE®).
K,rp K,rp K,rp

Let 9,0, € ’Dg‘; and let (9,), (¥n) and (¢r) be sequences of elements of
DM such that (9,) — 9, () — ¥, (8s) — & in Dg7; since DM is

permitted such sequences ezist. (5.16) implies

(S *0n)s ® (T % ¥n)y)65 llL1(r2e)
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/

< € (I19n s + 1 0 oy + 1 80l )
<o <r K,r/

The sequence (((S * Vn)z @ (T * Un)y )95 )n, converges in LY(R?4). Also it

converges to ((S *V)z @ ( T * r,")y)«:/\‘ in D'(Mp) ([33]). Therefore

h ((5 * 1)’)z(T * ?j’)y)OA ;lLl(R“) (5.17)

< (91l + 19l + 11 I )
= (1910 + 19 llpp +11 ¥ o ) < oo
Lemma 5.9 implies that there ezist u € Dg)[‘; and £ € "Dg!”) such that
§ =Py (Du+€. (5.18)
Thus, for each ¢ € 'D%Ip)y
(S. 8 T,)¢° = ((S * Par(D)u+ S * €)z ® (T * Por(D)u+ T #£),) ¢°
= ((S * Ppy(D)u): ® (T + Par(D)u)y) 6™+ (5.19)
+((S*8)z ® (T * Prr(D)u)y) ¢+
+((S % Por(D)u)s ® (T +£),) 6> + (S + €)= ® (T x£)y) 67

From (5.17) it follows that ((S * w): @ (T * u)y)c')a, ((S*&): @ (T + u\)y')oA,
(S * u) @ (T % £)y)¢> and ((S * &) @ (T * £),6%) belong to L. Let us
prove that ((S * Py, (D)u)z ® (T * Pg,(‘D)u)y)(;ﬁA belongs to /D/L(;”’“), which
imply that all the terms in (5.19) are from 'DIIE;””) This imply (5.7) = (5.2).

Applying Lemma 5.10 we obtain
((S % Por(D)u): ® (T * Por(D)u)y) 6 (5.20)

= (Por(D2)Par(Dy)(S *u)z ® (T + u)y) 6°

-zpeagzor()l)

i<a ;<P J
85=987 (5 *w)= ® (T + w),)(64+)%) .

Therefore, for each w € D(Mp) (R2),

(S * Por(D)u): ® (1'% Pzr(‘D)U.)V)O&‘ w(z,y))
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sxeagger ()

1<or]<13 J

{((S * u)g @ (T * u)y) ()8, wla=HA=2)y,
Since the mapping
’D(A\fp) . LI(R2«1) &' (S = 0)1: ® (T * u'r,)yo'A’

where 1,9 € DM?) are fized, is continuous and {o'(“’)/‘\fw;*/ € N¢} is a

bounded set in DM») | the set
{((S*U)IJ(T*U)) /\[ll /E\I}

is bounded in LY(R2*?). The inequality MyM, < Mpiq, p,q € No, which
follows from (M.1), implies that there exist C and h > 0 such that for each
i,j € N¢,

(pli+)A

(S * w)s @ (T * u)y) 2, v(z,y)| SC —H V) || oo (r24)-
MM
ARS [ol 22 ) weN2d w

Put w = (wy,ws), wy,w2 € N&. From (M.1), (M.2) and (5.20) it follows

(S * Par(D)u)s ® (T % Por(D)u),) ¢, v))|

<c > > ZZ()(">aa3\1H\f

"lEVdJENd 1< <p

2

wy eNd Mw, | +|wa|
w,eNd

3\ rlel+ls]
g‘\mgd ; ]<Za ,%U ( > <J> Mo M)
wpeNd

Jwi |+ w2 |
h (a—itwr f-j+w2)

|Leo(R24)

|ws [+] .
h* bl U(a—t+uJ1 B—314uwn)

Mg M ———— .
CEes v | |00 (R24)

<C oD g < >< >1|a|+m|h|m+1w1

aeNd geNd i<a j<B w;eNd
wpeNd

HleblabtBllal i)

~ | oo (R24)
M|~ lif+|ws | +181- 131+ ]w2| :
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ey =25 % (5){6) mmmme

aeN4 geNd i<a ;<8 wyelNd
wpeNd

(1+ L)(1+h)(1+ 4h))hl
M,

> 1V [ (R24) -

,,ENZJ

This implies that ((S * Pr(D)u): ® (T * P,(D)u)y)oﬁ‘ belongs to 'Dgl\[")‘

Implications (5.2) = (5.5) and (5.2) = (5.6) were proved in [49, Proposition
6.].
Let us prove (5.5) = (5.7). The implication (5.6) = (5.7) can be proved

analogously. The mappings

M | o
pMs) —, DIV g s S(T « ),

(Mp) \!p

RYx D7 — D} (v, U) = U(- - ),

are continuous. This implies that for every ¥ € DMe) the mapping

(M)

R — Dy (S = y))T +9)
is continuous. Therefore (see [8]),
/ A(y)(S(- — )T * $)()dy € Dpa '), for each 9 € DM,

where the above integral is defined by

([ S = )T+ $)()dy,e)
= [O)(SC = D) + )@y, w €D,
For any ¢ € DM?) there holds
([ 9w)(S(a = )T + B)(=)dy, 6(2))
= [ 9SG = (T * ¥)(=), 6(=)dy

= ((y)(S(z - v), (T * ¥)d(z))dy = ( /1) (z — y)dy, (T + ¥)(z)d(z))

= ((S % 7), (T %)) = {(S = )T + ), 8).
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This yields that (S + 9)(T + ) € D™, for each 9,9 € DM?) and [50,
Theorem 3.] implies that (S +9)(T %)) * ¢ € LY, for each ¢,9,9 € DMp),

According to Lemma 5.9,
(S )T *¥) = ((S*9)(T ) * Po(D)u+ ((S*9)(T *)) * €.

The similar arguments as in the proof of the implication (5.7) = (5.2) imply
(5 0)(T x ) € LY, for each V9,9 € D(Mz)

(5.3)=(5.10) & (5.4)= (5.13). Since for an arbitrary ¥ € DMs),
((7715) * (ﬁ]T),l)> = <(T7j5)r ® (’.7]'T)y,7)a>

= ((S: ® Ty)I(z + y), n;(z)7;(v)),
it follows from (5.3) that the limit (5.10) exists for all strong approzimate
units (n;), (9;) C DMs) e, condition (5.10) is fulfilled and S +>1° T =
S 52 T. Similarly (5.4) implies (5.13) and S +%8" T = S 53 T.
(5.10)=(5.8) & (5.13) =(5.11). Note that (5.10) implies that for any strong
approzimate units (n;), (7;) C DMs) and 9 € DMe),

im ((m:8) = (7;T),9) = (S «>7" T,49). (5.21)

t,]—00

In fact, if (5.8) were not true, there would ezist ¥ € DMp) ¢ > 0 and

increasing sequences (i) and (Jx) of positive integers such that
(i) * (733, T), 9) — (S «>T" T,9)| > e.

But since (n;,) and (7;,) are again strong approzimate units, the above in-

equality would contradict (5.10). Now (5.21) yields

/

(§ %7 T, 9) = lim lim ((n;S) * (77T),9) = lim ((n;) * T, 9),

1—00 ] —00 1— 00

which implies (5.8) and the identity S *57" T = §+>7 T. In the same way
one proves that (5.13) implies (5.11) and S +°%" T = S +°8 T

The implications (5.10)=(5.9) and (5.13)=(5.12) follows from the preced-

ing ones by symmetry.
(5.8)=(5.5) & (5.11)=(5.5). Since

(1;S) * T,9) = (n; S, 9+ T) = (S(T * 9),m;),
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we infer from (5.8) (resp. (5.11)) that S(T *9) € D/L(;”p) for 9 € DIM?) 50
(5.5) holds and S +*" T =S 54T (resp. §+58T =S§+>T).
(5.9)=(5.6) and (5.12)= (5.6) follows from the preceding ones by symmetry.

One can prove by standard arguments that

ST = §452T = §453T = §+%4T = §+°°T = §+°°T.0

5.2 Ultratempered Convolution

In this section we introduce the notion of ultratempered convolution of ultra-
distribution of Beurling type, S"(M3)_convolution, by giving several equivalent
definitions of it. In the theory of distributions the equivalence of various defi-
nitions of S’'-convolution and of K'{ M, }-convolution was proved by Shiraishi
([59]), Dierolf, Vogt ([16]) and Uryga ([61]).

IfT € 8Mr) and S € £'(Mp)  then the convolution T + S (in the sense of

previous section) belongs to S"(Mp) and
(T+8,0) = (T,§+0), veSM.
This implies that for every ultradifferential operator P(D) of class (M)
(P(D)(T % S),9) = (P(D)T) + §,9) = (T « (P(D)S5),9), V€ SMe),

(5.22)

. ) A : A(Mp)
In the proof of the main theorem of this section we will use that OA(\!!‘) 1S

nuclear. which is proved in [51].
Theorem 5.12 Let S.T € D'Mz). The following conditions are equivalent

1. 95(8; ® T,) € DA (R?) for every 9 € SPM);

2. For every ¥ € S™M») and a strong approzimate unit (n;) defined on

R24 the sequence ({(Sz ® Ty), T]]‘L)A>)J converges to a constant.

“ (C» « )T 'DIL(;\IP) for every U € S(Mp) .

m

o

e (T *17)S € /DII?;\I”) for every ¥ € SMp) .
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5. (S*9)(T ) € L* for every ¥ € DIM?) and ¢ € SMr);
6. (S *9)(T x 1) € L' for every ¥ € SM») and ¢ € DMs);

7. (S« 0)(T %) € L* for every 9,4 € SMp),

Proof: The proof of 1<=2 follows directly from [49, Proposition §].

1 = 3 Itis easy to check that ((;®1,)92 € SMp)(R?), for every ( € DM)
and ¥ € SM?). Thus, for an arbitrary strong approzimate unit (n,) and
b€ DMp)

<(5 * 17)T, 77,,‘4:)>

= lim (Tz,(Sy, (7:9)z @ (Nm)y92))

= n}ngo<Tr ® Sys((nno)r ® (Um)y)’)A>
= np_g})g(I)A(yTr ® Sy) (nno)r ® (Um)y>

- <0A(TI 3 Sy)w (Undh @ 1'J>
Since the limit

lim (92(T: ® S,), (1¢) ® 1)

ezists, it follows that (5 x )T € DlL(i\[p)»

4=5 The proof is carried out in a similar manner as in the proof of (5.5)=(5.7)

in Theorem 5.11, so it will be omaitted.

5=1 For each a,3 € DM»)
((S*9):®@9%,)T2, az08,) = (S*9)(z)¥(y)T(z +y)a(z)B(y), 1z,y) (5.23)
= {(5 * l))r(T * (fvY))zaz,1).

The mapping ¥ — (S*9)(T*¥) from SMe) into D'Mp) is continuous. Since
(S*9)(T*1) belongs to L', and L' has the property (Ch,) 1t is continuous as
the mapping from SM?) into L'. This implies that the composition mapping
o0 — SMp) L L g s ga s (S % 9)(T  Ya)
- - M,
is continuous as well. Therefore ((S*9)®%)T® can be extended on B(MP)‘EKOA(\} »)

‘ . : M,) .
as a continuous mapping. Since the space Of\, ») is nuclear we have

B(,\fp)(;),rokyp) = B(M,,)®COI((}IP) 5 B(Mp)(.Rd)é(g(.\rp)(Rd) 5 B(Mp)(de).
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where the corresponding inclusion mappings are continuous.

Let ¢ € BM)(R24), and let

Mn
| g . (M) (1 2d

Pn = L(Cn,q): ® (Yin)y—¢ as inB )(R*), n— .
g=1

Clearly (¢,) — ¢ in the sense of topology of BM:) (R4 @, BMP)(RY) and

thus
<a (5 *9)z @ Py )']"“,,pn) — ([(’5 ¥17); ® 1,,',1,)7@..;,)‘ n — 00.

L . & . XA My)
This implies that ((S * V) @ ¥)T= € DIL[l R

The implications 1=>3=6 =1 can be proved in a similar way as 5= 1.

The implication 7= 5 is clear.

m

(5)=(7). Let (5) holds. In the same way as in [59] we get that (S*1)( T+)
(M
Ll

in Theorem 5.11, using continuity of the mapping

) for each 9,1 € SMe). Analogously as in the proof of (5.5)=(5.7)

DWMe) , LV s (S 0)T )@

one can prove that (S * INT * ) € LY, for each ¥,¢ € SMp) O




Chapter 6
Hypoellipticity in D7

The results of Malgrange, Ehrenpreis and Hormander on the solvability and
hypoellipticity of convolution equations in Schwartz’s spaces stimulated many
mathematicians to study such problems in various subspaces of distributions.
We cite here only results of Zielezny ([68], [69]) and Pahk ([46]), since they
are connected with our results. In the spaces of ultradistributions convolution
equations were studied by Braun, Meise, Taylor, Voigt and their cooperators
(see [5], [43] and references there) and by Pilipovi¢ ([51]), who started in-
vestigations of hypoelliptic convolution equations in ultradistribution spaces
similarly as it was done for distribution spaces by Zielezny. In the chap-
ter we study hypoelliptic convolution equations in the Beurling and Roumieu
ultradistribution spaces ’D/L(;,\[”) and DIL{;\{”}, q € [1,00]. The spaces were in-
vestigated by Pilipovié, Cordnesku, Charamichael, Pathak (see [48], [15], [9],
[10]). They are generalizations of the space D,. An analogous problem but
in the distribution spaces D74, q € [1,00], was investigated by Phak ([46]).
Some Phak’s considerations are easily transferred to the problem which we
consider, but many problems appeared to be specific for ultradistributions and

they have been solved.
In this chapter we suppose that the conditions (M.1), (M.2) and (M.3) hold,
and that the Fourier transform of ¢ € L' is given by

Feol€) = $(8) = jz— [ ela)e e da.

66
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By O we denote the space of convolution operators-convolutors of S,
which ezplicit characterization is given in [50, Proposition 9]. In this chap-
ter we will use only one of the properties of this space, name ly, the fact that
the Fourier transform is isomorphism of O}, onto or,

We define hypoelliptic convolution operators in D« as follows: An ultra-
distribution S € D, s hypoe lliptic in Dfw if every solution U in Dfw of
the convolution equation

oy 1 (6.1)

]
1

belonas to Do, when V is in Diw. In that case equation (6.1) is also called
g L 5 1 (

hypoelliptic in D .

The space of convolution operators in DY is Dy, therefore hypoelliptic

convolution operators in Dfw has to be characterized as a subspace of DT:.

Because of lack of differentiability of their Fourier transforms, in this pa-

o/ 4
per we consider only the subclasses of D', containing O, whose Fourier
L! c
transforms are C*°-functions of ultrapolynomial growth.

In this classes we characterize hypoelliptic convolution operators in D

But we have an ezample of hypoelliptic convolution operator in D which

is not in this class.

We will now establish a necessary and sufficient condition for a convolution
operator to be hypoelliptic in Dfw. The result is proved only for subclasses
of convolution operators Dfw and the proof is based on an idea similar to
the one for distribution spaces used in [46], [68] and [69], however some
problems appeared to be specific for ultradistributions and they have been
solved.

& ut . ; - . . - ~/(Mp) ’ /{,\!p}. : -
Definition 6.1 An ultradistribution S € Dy, (resp. Dy 77 ) 18 said to
be of class Ha, a > 0, (resp. Ha,, (a;) ER) if the Fourier transform S 1is
C-function such that there ezists £ > 0 (resp. (£p) € R ) such that

1

"‘f\l a* M, A

~

§(@)(z) = O(exp[M(¢|z])]),

1

S = O(exp[M(£z])]) | , |z]| — oo.
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The above defined class of ultradistributions will be used for our studJ of
hypoellipticity in DIOO (re s D My })

Lemma 6.2 Let S be an ultradistribution whose Fourier transform s of the

form

§=5"ajb,, (6.3)

JEN

where £; is a sequence of real numbers, such that
27 < 2|61l < 1651, T €N, (6.4)
and a; are complex numbers such that for some (resp. each) m > 0
la;| = O(exp[M(m]&;])]). (6.5)
1. S belongs to "DLDV (resp. DL{,Q,P})

2. § belongs to D(Lw (resp. D{ {”}) if and only if for each (resp. some)
k>0, :
laj| = o(exp[—M(k|&;])]). (6.6)

Note, according to [35, Lemma 3.4] in the Roumieu case condition (6.5) (1.

for each m > 0 (6.5) holds”) is equivalent to
|aj| = O(exp[Nm, (1§ 1)]), (6.7)
for some (m,) € R, and condition (6.6) is equivalent to
|aj| = o(exp[— Nk, (I¢;1)]) (6.8)

for each (k,) € R.

Proof: 1. Let us first prove that the sum § = ) N a]eisz converges in
D/L(;\o[”) (resp. D/L{;:[”}}. Suppose that ¢ € DEY") (resp. Dg}["}). Using the
fact that for each ultrapolynomial P of class (Mp) (resp. {My})

|P(&)F (&)l < IP(D)ell,
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we conclude that for each b > 0, some £ > 0 and C (resp. for each (b,) €R,

some (£,) € R and C)

C — 1 :
i) S I, Alx)
| F~ p(€)]l < P.(£) oM"Y 1
o\S flEN\; X
resp. |F1p(€)] < e Z ———1—— |, €€R.
il N ()My
P\S/ 4eNg \ 0 ) X
1<6< y
(6.9)
Hence for b > 0, such that b < 2m and some £ >0 (resp. (by) € R, such
that b, < 2m,, p € N, and some (£,) € R)
(S, 00 < Y laj(e™,0) < D lasllF (&)
jeN jEN
A 1€;1)— M (2b]&;1)] L io@, | <[ 5 —|¢
< C Y exp[M(m|&;|)—M(2bl¢;])] a1 i) S C T
jeN aeN g yeNo ¢

B P C
S CII o) Mo

which imply that S converge in 'DIIEX (resp DLN ’”) In the Roumieu case

: . ~{My)
the convergence in 'D/L{mp imply that S converge in Dp

DM}

/{\! }

y Q v (M - :
2. Suppose that S belongs to D(Lip) (resp. Do’ ). For every ultraderivative

\1},

>(D) of class (M) (resp. {M,}) and every ¢ € D (resp. D}J‘?!‘”}y/.

(e**(P(D)S(z)),¢(z)) = 0 as |lu| — o0, u € R.

A\

This follows from the nezt calculation,

|(e!™*(P(D)S(z)), ¢(z))| = Z/R(P(Dm:)‘»;(I)De“‘dr‘i

1 C
gf/wwwmﬂmwmg—.
lul JR |ul
Note, D}, C D;a, € L?. Passing to the Fourier transform we get

(e'**(P(D)S(z)),¢(z)) = (F( ¥ (P(D)S(z)))(€), F(e)(£))




CHAPTER 6. HYPOELLIPTICITY IN D, 70

= (P(§ +w)S(€ + w), $(6)) = (5(6), PE)@(€ - w)).
Therefore, for each ultraderivative P(D) of class (M,) (resp. {M,})
Y a;P(&)p(&—u) =0  as |ul > o0, u€R (6.10)
JEN
Let us fir o € D33P (resp. DIEMPY) so that
|£(0)] > 1 (6.11)
and
¢(€) =0 for €] >1. (6.12)
Suppose that condition (6.6) is not satisfied. There isc € N (resp. (cp) ER)
and A > 0, such that

exp[M(c|¢;])]la;| > A (resp. exp[NV. (1€ D)]laj] > A) (6.13)

for a subsequence of (a;), which we may take as the whole sequence without
loss of generality. Let u; = €;, j € N. Making use of (6.4) and (6.12) we
obtain

> a;P(&)p(& — ur) = 0.

jeN
1#k

On the other hand conditions (6.11) and (6.13) imply that if P = P. (resp.
]) — IJCP)

|ak|Po(6k)3(0) > A (re:

e (€k)2(0) 2 A ).
This contradicts the convergence (6.10).

Conversely, if (6.6) hold then

Moo < sup 3 lla;(i€;)% e oo < o0,

w aeNa 5

which zmleSED[w (resp. 9ED{W }) O

Theorem 6.3 Let S be an ultradistribution in D ( esp D/{M”}) which
1s of class H, (resp. H,,) then S is hypoelliptic in D (r‘e M }) if
and only if there ezist k > 0 and & > 0 (resp. for every k > 0 there ezists
€o > 0), such that

1S(€)] > exp[M(k|E])], E€R, [£]>&. (6.14)
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Proof: 1. Suppose that condition (6.14) is not fulfilled then there ezxists a

sequence &; defined as in Lemma 6.2 and such that
1S5(&)| < exp[M(jl&])], 7 €N.

The series U = ) ;eN e'=% converges in Dfw but it does not in Dj. On
the other hand,

Sl =3 58
jeN

Applying the Lemma 6.2 we conclude that S*U is in Dje. Thus S 1s not

hypoelliptic in D .
9. Let ¢ be an element of DWMp) (resp. 'D{MP},), such that

w 1, €] < [&ol,
0, &>l +1.

G

We define the Fourier transform R of R by the formula

. Oa |SC| < l‘f[)l
R(&) =4 1-19(¢)
S(¢)

The above definition of R has sense since S is of class H, (resp. Hy,).

)

There ezxists b > 0 (resp. (bp) € R) such that

- R(§)
SD. £)i=
Pb(g) (resp Q(€) P‘);)(f)

) R(E
O(e) = &)

)

and all its derivatives belong to L*. We will prove it only in the Roumieu
case, since the proof in the Beurling case is analogous. By the iterated ”"chain
rule”

(8:$)(8°25) ... (8°75)

9° <£> B Z Z Carar...ay 571‘_1. - , a€N

b 1§’y§g« a1 +...fay=a

Applying the estimates of derivatives of 1/P, (resp. 1/Py,), which is men-
tioned in the fourth chapter, we obtain that for each fired @« € Ng and
(by) € R such that 2b, > Ho"1¢,, p € N, where ({;) € R is the same as in
(6.2) there ezist v > 0, C and Co = C(a) such that

(=)
aa (¢ . —_1—
0°QE) < > <3> (Pb,,(f)>

0<f<a

(’1 )>(»3)
1 =&
1\5(‘,
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< > <Z> (ar*a__gl exp[—Ns, ([€]))-

0<f<La

. Z Z C7Cp. , mﬁﬁ/fﬁl Mg, ... Mm exp[yng([g[)}
“P1P2...p~ . )
1<7<B P14t Bry=p exp((y + )M (k[¢])]

< Caexp(-M(kl)],  €€R.

Therefore the following integration by parts

[ e=aee]

1
(1+ |z]2)=/2’

1

1
I c
o7 (14 |22)°/ <

<

/ (1 — A)I2()(€)de
R

where C depends on the choice of a, has sense. It follows that Q is an L1
function and so the ultradistribution R = Py(D)Q (resp. R = P'op(D)Q) is
" D/[fiwp) (resp. DIL{{UP}), Furthermore,

S(E)R(E) =1 - ¥(&).
By the inverse Fourier transform, we see that R a parametriz for S, that is:
S«xR=6-W,

where W = 1.
Now assume that S*xU =V, where V € Diw, S € Dfw and U € D}. We

have
U=Uxé=U*x(S*«R)+U«W=(UxS)*R+UxW=V+«R+UxW.

It 1s easy to check that V x R and U x W belongs to D}« and so U is in
Diw. O

The fact that the Fourier transform is topological isomorphism from O’ onto
O3 tmplies that every ultradistribution in Oﬁ‘””) (resp. O/C{M"}) is of class
H, (resp. H,,). Therefore:

Corollary 6.4 Let S be an ultradistribution in OQ(M") (resp. (’)é{Mp}) then
S is hypoelliptic in D/L‘;{p) (resp. D/L{i{”}) if and only if there exist k > 0 and
§o > 0 (resp. for every k > 0 there exists £, > 0) such that (6.14) holds.
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Corollary 6.5 The same assumptions as in the Theorem 1 imply that every
solution U in Df,, q € [1,00], of the equation (6.1) is in D}, whenever 14

is in Di,.
Proof: Analogously as in the proof of the sufficiency of the theorem R € DT
and U =V« R+ U *W. Since DxD[1 CDpq we have that U is in Diq. O

If the give convolution operator S is in DT, then we have the following weak

version of the regularity theorem.

Theorem 6.6 If an ultradistribution S € 71 satisfies condition (6.14)

every solution U in D of the equation (6.1) with V € D7, 15 in D] .

Proof: Applying the same argument as in Theorem 6.3, we construct the

continuous function R(€) and b > 0 (resp. (bp) € R ) so that

R (3 R(€)
Q)= B0 P, (€)

is in L?. By Plancherel’s theorem Q is in L? and R = Py(D)Q (resp.
R = P, (D)Q) 15 1n DT>, also

(resp. Q(f) — ) £ €eR,

U=Ux6=VxR+Ux*V.

Since V is in Di,, V * R and U * W belong to D}ee, U 15 in Dpw. O
We give now two examples of hypoelliptic operators, one of which is not of

class H, (resp. Hap).

Example 6.7 Let S = e=ltl. Since S(€) =1/(1+ £2) is in O and satisfies
the condition of the theorem § 1s hypoelliptic in D .

Example 6.8 Let S = 1/(‘1+x2)+6. Its Fourier transform S(€) = e~ Kl 41
is not a Cl-function but it satisfies condition (6.14). From the fact that

1/(1 + z?) € D}, which follows from the estimation
NG .
(Va+8)) | <3PB+1,  BEN EER,

and the fact that D}, * Dfw C D} it follows that S 1is hypoelliptic convo-

lution operator in D}
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