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Apstrakt

Jedna od najzna£ajnijih i najprimenljivijih oblasti matri£ne analize je prou£a-
vanje karakteristi£nih korena. Na osnovu njihovog poloºaja u kompleksnoj ravni,
moºemo da dobijemo korisne informacije o mnogim svojstvima matrice.

Termine ,,karakteristi£ni koren�, ,,karakteristi£ni vektor� i ,,spektralna teorija�
uveo je Hilbert (u knjizi sa Kuranom publikovanoj 1924. godine). Re£ ,,karakteri-
sti£ni� vodi poreklo od nema£ke re£i ,,eigen� ²to zna£i ,,odgovaraju¢i�, ,,speci�£ni�,
,,sopstveni�. Iako dati termini postaju standardni u literaturi po£etkom dvade-
setog veka, upotreba karakteristi£nih korena datira jo² iz osamnaestog veka,
prilikom re²avanja sistema diferencijalnih jedna£ina oblika y′ = Ay. Potom su
kori²¢eni i u radu Furijea kod re²avanja parcijalnih diferencijalnih jedna£ina i
kasnije u radu mnogih drugih nau£nika kao ²to su: Poason, Veber, Hilbert, �mit,
Nejman i mnogi drugi.

Karakteristi£ni koreni imaju zna£ajnu primenu u mnogim nau£nim oblastima,
a neke od njih su: akustika, ekologija, mehanika �uida, hemija, ekonomija, ana-
liza vibracija, kvantna mehanika, obrada slika, lanci Markova, parcijalne dife-
rencijalne jedna£ine, funkcionalna analiza, itd ([24], [30], [32], [52], [58], [61]).

Spektralna analiza se moºe koristiti u algoritamske i �zi£ke svrhe. U algo-
ritmima, kori²¢enje karakteristi£nih korena moºe da pojednostavi i ubrza re²a-
vanje problema na taj na£in ²to ih redukuje na skup skalarnih problema. �to se
ti£e upotrebe u �zi£ke svrhe, karakteristi£ni koreni mogu da opi²u oblike pona-
²anja evolucionih sistema odre�enih matricama, kao ²to su rezonanca, stabilnost
i asimptotsko pona²anje.

Neki nau£nici isti£u i psiholo²ki efekat koji daju karakterist£ni koreni. Po-
mo¢u njih moºemo da dobijemo vizuelizaciju matrice kao sliku u kompleksnoj
ravni. ,,Karakteristi£ni koreni daju osobenost matrici� ([60]).
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Postoje brojni na£ini za lokalizaciju karakteristi£nih korena. Jedan od naj-
£uvenijih rezultata je da se spektar date matrice A ∈ Cn,n nalazi u skupu koji
predstavlja uniju krugova sa centrima u dijagonalnim elementima matrice i polu-
pre£nicima koji su jednaki sumi modula vandijagonalnih elemenata odgovaraju¢e
vrste u matrici. Ovaj rezultat (Ger²gorinova teorema, 1931.), smatra se jednim
od najzna£ajnih i najelegantnijih na£ina za lokalizaciju karakteristi£nih korena
([63]). Me�u svim lokalizacijama Ger²gorinovog tipa, minimalni Ger²gorinov
skup daje najprecizniju lokalizaciju spektra ([39]). U ovoj disertaciji, prikazani
su novi algoritmi za odre�ivanje precizne i pouzdane aproksimacije minimalnog
Ger²gorinovog skupa. Teza se sastoji iz £etiri poglavlja.

U prvom poglavlju, prikazan je pregled poznatih rezultata u literaturi i mo-
tivacija za istraºivanjem. Najpre su detaljno obja²njeni karakteristi£ni koreni i
njihove osobine. Potom sledi deo posve¢en nenegativnim matricama i Peron-
Frobenijusovoj teoriji. Zatim, opisane su neke klase matrica koje ¢e biti kasnije
kori²¢ene u tezi. Tako�e, predstavljeni su i rezultati o vezama izme�u lokalizacija
Ger²gorinovog tipa sa odgovaraju¢im klasama matrica. Poseban akcenat je stav-
ljen na minimalni Ger²gorinov skup, njegove osobine i karakterizaciju. Na kraju
poglavlja je deo posve¢en numeri£kom rasponu, njegovim osobinama i poloºaju
u kompleksnoj ravni.

Glavni rezultati disertacije prikazani su u drugom poglavlju - novi algoritmi
za ra£unanje minimalnog Ger²gorinovog skupa. Prvo je dat pregled do sada ko-
ri²¢enih algoritama i njihove karakteristike (gMGS, bMGS i eMGSs). Potom,
prikazane su dve karakterizacije minimalnog Ger²gorinovog skupa i tri pristupa
obilaºenja njegovog ruba. Prvi algoritam u disertaciji koji je novi rezultat je
implicitni algoritam za ra£unanje minimalnog Ger²gorinovog skupa (iMGSs).
On predstavlja pobolj²anje eksplicitnog algoritma (eMGSs) koji je davao naj-
bolje rezultate od svih poznatih algoritama ([40]). Brºa konvergencija je dobijena
kori²¢enjem re²avanja sistema linearnih jedna£ina umesto ra£unanja karakteri-
sti£nih korena. Tako�e, prikazani su algoritmi koji koriste predictor-corrector
metod (eMGSp i iMGSp) i algoritmi bazirani na kori²¢enju trougaone mreºe
(eMGSt i iMGSt). Navedeni algoritmi tako�e predstavljaju originalne rezul-
tate i dodatno su ubrzali izra£unavanje i smanjili ra£unsku sloºenost, posebno
za matrice velikih formata.

U tre¢em poglavlju, govori se o odnosu izme�u minimalnog Ger²gorinovog
skupa i numeri£kog raspona. Predstavljeni su originalni rezultati za ra£unanje
apscise minimalnog Ger²gorinovog skupa i konstrukciju konveksnog poligona koji
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ga sadrºi. Numeri£ki postupak za odre�ivanje konveksnog poligona je znatno brºi
i prakti£niji nego algoritmi za ra£unanje minimalnog Ger²gorinovog skupa. U
nekim slu£ajevima, aproksimacija konveksnim poligonom je veoma blizu granice
minimalnog Ger²gorinovog skupa, ²to je prikazano kroz primere.

Kona£no, u poslednjem poglavlju teze, predstavljeni su numeri£ki eksperi-
menti i implementacija. Novi algoritmi su testirani na brojnim primerima i rezul-
tati su upore�eni sa do sada poznatim algoritmima. Sve prednosti i pobolj²anja
novih algoritama su na kraju sumirane u vidu kratkog zaklju£ka.
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Abstract

Research of eigenvalues is one of the most important and applicable areas of
matrix analysis. If we know the position of eigenvalues of a given matrix in the
complex plane, we can obtain useful information about many properties of that
matrix.

The terms "eigenvalue", "eigenvector" and "spectral theory" were introduced
by Hilbert (book by Hilbert and Courant published in 1924). The pre�x "eigen"
comes from the same German word which means "proper", "speci�c" or "cha-
racteristic". Although the words "eigenvalue" and "eigenvector" became stan-
dard in literature at the beginning of the 20th century, their �rst known usage
was in the 18th century in solving di�erential equations of the form y′ = Ay. Fur-
thermore, they appeared in Fourier's work on partial di�erential equations and
later, in the works of other mathematicians: Poisson, Weber, Hulbert, Schmidt,
Neumann and many others.

Some of the �elds where eigenvalues have very important roles are: acous-
tics, ecology, �uid mechanics, chemistry, economics, vibration analysis, quantum
mechanics, image processing, Markov chains, partial di�erential equations, func-
tional analysis, etc ([24], [30], [32], [52], [58], [61]).

Eigenvalues analysis can be used for algorithmic and physical purposes. In
algorithms, the usage of eigenvalues can simplify solutions of some problems by
reducing them to a collection of scalar problems. On the other hand, in physics,
eigenvalues can be used to describe behavior of evolving system given by a system
of linear equations. Some examples are studies of resonance, asymptotics and
stability.

Also, some mathematicians emphasize a psychological usage of eigenvalues.
They help us to perceive an abstraction of a matrix as a picture in the complex
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plane. "Eigenvalues give a personality to a matrix" ([60]).

There are numerous ways to localize eigenvalues. One of the best known
results is that the spectrum of a given matrix A ∈ Cn,n is a subset of a union of
discs centered at diagonal elements whose radii equal to the sum of the absolute
values of the o�-diagonal elements of a corresponding row in the matrix. This
result (Ger²gorin's theorem, 1931) is one of the most important and elegant ways
of eigenvalues localization ([63]). Among all Ger²gorin-type sets, the minimal
Ger²gorin set gives the sharpest and the most precise localization of the spectrum
([39]). In this thesis, new algorithms for computing an e�cient and accurate
approximation of the minimal Ger²gorin set are presented. The thesis consists
of four chapters.

The introductory chapter presents an overview of the relevant results in the
literature and the motivation for research. Firstly, eigenvalues and their proper-
ties are explained thoroughly. Then, a part dedicated to non-negative matrices
and Perron-Frobenius theory follows. Moreover, classes of matrices that will be
used later in the thesis are described. In addition, the results about localiza-
tions of Ger²gorin-type sets and their relations with proper classes of matrices
are given. Special emphasis is put on the minimal Ger²gorin set, its properties
and its characterizations. At the end of the chapter, there is a section about the
numerical range, its properties and position in the complex plane.

The main results of the thesis - new algorithms for computing the minimal
Ger²gorin set are presented in the second chapter. First of all, a review of existing
algorithms and their properties is given (gMGS, bMGS and eMGSs). Then,
two characterizations of the minimal Ger²gorin set and three approaches of curve
tracing are presented. The �rst algorithm in the thesis which is a new result is
an implicit algorithm for computing the minimal Ger²gorin set (iMGSs). It rep-
resents an improvement of an explicit algorithm (eMGSs) which provided the
best results among all previously known algorithms ([40]). A faster convergence
is obtained by solving a system of linear equations instead of computing eigen-
values. In addition, algorithms which use predictor-corrector method (eMGSp
and iMGSp) and algorithms based on triangular grid (eMGSt and iMGSt)
are given. These algorithms also present new results and additionally accelera-
te computing and decrease computational complexity, especially for matrices of
large size.

In the third chapter, the topic is a relation between the minimal Ger²gorin set
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and the numerical range. The original results for computing the abscissa of the
minimal Ger²gorin set and the construction of a convex polygon which contains
the minimal Ger²gorin set are given. Numerical algorithm for determination of
the convex polygon is signi�cantly faster and more practical than algorithms for
computing the minimal Ger²gorin set. In some cases, an approximation by the
convex polygon is very close to the boundary of the minimal Ger²gorin set which
will be shown through various examples.

Finally, in the last part of thesis, some numerical experiments and imple-
mentations are shown. New algorithms are tested in several examples and the
results are compared with the results of well-known algorithms. All advantages
and improvements are summarized in a brief conclusion.
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Notation

N - the set of positive integers

N0 - the set of non-negative integers (N0 = N ∪ {0})

R - the set of real numbers

C - the set of complex numbers

i - the imaginary unit

N := {1, 2, ..., n} - the set of integers from 1 to n, n ∈ N

dist(x, S) = min
s∈S
|x− s| - the distance from the point x to the set S

card(S) - the cardinality of the set S

co(S) - the convex hull of the set S

int(S) - the interior of the set S

∂S - the boundary of the set S

v = [v1, v2, ..., vn]T ∈ Cn,1 - a column vector, n ∈ N

^(~u,~v) - the angle between the vectors ~u and ~v

For a square matrix A ∈ Cn,n, n ∈ N :

A = [aij], aij - entries of A, i, j ∈ N

diag(A) - a vector of diagonal elements of A

AT - the transpose of A
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A∗ - the conjugate transpose of A

A−1 - the inverse of A

A+ - the Moore-Penrose inverse (pseudoinverse) of A

det(A) - the determinant of A

tr(A) - the trace of A

|| · ||p - the p-norm, 1 ≤ p ≤ ∞

σ(A) - the spectrum of A

ρ(A) - the spectral radius of A

α(A) - the spectral abscissa of A

Γi(A) - the ith-Ger²gorin disk of A, i ∈ N

Γ(A) - the Ger²gorin set of A

K(A) - the Brauer set of A

ΓR(A) - the minimal Ger²gorin set of A

γ(A) - the abscissa of the Ger²gorin set of A

µ(A) - the abscissa of the minimal Ger²gorin set of A

W (A) - the numerical range of A

ω(A) - the abscissa of the numerical range of A

gMGS(A) - the griding algorithm for computing the minimal Ger²gorin set of
A

bMGS(A) - the bisection algorithm for computing the minimal Ger²gorin set of
A

eMGSs(A) - the explicit star-shaped algorithm for computing the minimal Ger²-
gorin set of A

iMGSs(A) - the implicit star-shaped algorithm for computing the minimal Ger²-
gorin set of A
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eMGSp(A) - the explicit predictor-corrector algorithm for computing the mini-
mal Ger²gorin set of A

iMGSp(A) - the implicit predictor-corrector algorithm for computing the mini-
mal Ger²gorin set of A

eMGSt(A) - the explicit triangular algorithm for computing the minimal Ger²-
gorin set of A

iMGSt(A) - the implicit triangular algorithm for computing the minimal Ger²-
gorin set of A

For f = f ξ,θ(t) = f(ξ + teiθ), ξ ∈ C, θ ∈ [0, 2π), t ∈ R :

∂

∂t
f ξ,θ(t) - the �rst order derivative of f

∂2

∂t2
f ξ,θ(t) - the second order derivative of f

For f = f(x, y) = f(x+ iy), x, y ∈ R :

fx =
∂

∂x
f(x, y), fy =

∂

∂y
f(x, y) - the �rst order derivatives of f

fxx =
∂2

∂x2
f(x, y), fxy =

∂2

∂x∂y
f(x, y), fyy =

∂2

∂y2
f(x, y) - the second order

derivatives of f
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Chapter 1

Introduction and preliminaries

"Eigenvalues are among the most
successful tools of applied mathematics."

Lloyd Trefethen1

In this chapter, we summarize well-known theoretical results that represent
the bases of this thesis. First, in Section 1.1, a motivation for research is given.
Next, in Sections 1.2 and 1.3, the basic terms in the theory of eigenvalues, norms
and non-negative matrices are introduced. Then, in Sections 1.4 and 1.5, the
results about Ger²gorin sets are given with a special emphasis on the minimal
Ger²gorin set. Finally, Section 1.5 discuses the relationships between nonsingu-
larity of a given matrix and localization of its spectrum while in Section 1.6, the
results about the numerical range are given.

1.1 Main motivations

Since matrices occur in problem-solving processes in engineering and many
scienti�c disciplines, localization of their eigenvalues represents a powerful tool
in solving those problems. Therefore, approaches to localizations of eigenvalues

1Lloyd Nicholas Trefethen (1955) is an American mathematician, professor of numerical
analysis and head of the Numerical Analysis Group at the Mathematical Institute, University
of Oxford.
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occupy a central place in numerical linear algebra, and numerous such results
can be applied successfully in many branches of science.

For a given square matrix A = [aij] ∈ Cn,n, n ∈ N, one of the best known
results for localization of its spectrum is Ger²gorin's2 circle theorem. This re-
sult, published in 1931, presents how to simply localize eigenvalues of a given
matrix by the Ger²gorin set which represents the union of n discs in the complex

plane whose centers are aii and radii
n∑
i 6=j

|aij|, i ∈ N := {1, 2, ..., n}. Among

many eigenvalue localizations that were developed since then, the minimal Ger²-
gorin set (MGS) plays permanent role. It gives, in a certain sense, the sharpest
inclusion set for eigenvalues of A, with respect to all positive diagonal simila-
rity transformations ([39]). So, it represents a kind of "optimal" localization for
the spectrum of a given matrix. Although modern computers can successfully
compute eigenvalues, this still presents a challenge for matrices of large size.
Therefore, the computation of MGS can provide useful information about the
position of the spectrum of large matrices in the complex plane.

Next, we elaborate more on "optimality" of the minimal Ger²gorin set. First,
as it was shown in [63], every point of the minimal Ger²gorin set of an arbitrary
matrix A is, in fact, an eigenvalue of some matrix that has the same diagonal
entries as the given one, while its o�-diagonal entries are bounded in moduli by
the corresponding o�-diagonal entries of A. So, the minimal Ger²gorin set is the
union of all the spectra of all matrices bounded by the given one in the sense
explained above.

On the other hand, the minimal Ger²gorin set is also "optimal" in terms
of diagonally dominant matrices. Namely, as it is well established, there is an
equivalence between the eigenvalue localization results and the matrix nonsin-
gularity results, see [63]. In that sense, the minimal Ger²gorin set corresponds
to the class of H-matrices, while the Ger²gorin set corresponds to the strictly
diagonally dominant matrices. Inspired by this, the concept of Ger²gorin-type
sets was developed in [39], where it was shown that the minimal Ger²gorin set is
the minimal element among all Ger²gorin-type sets.

The research on the minimal Ger²gorin set provided many interesting theoreti-
cal results, while the algorithms for its computation remained less well developed

2Semen Aranovich Ger²gorin (1901-1933) was a Soviet mathematician, who researched in
partial di�erential equations and localizations of eigenvalues.
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in the literature. Unlike the Ger²gorin set, it is not easy to numerically deter-
mine MGS. The main setback often lies in the complexity of its computation
([63], [67]) because MGS is de�ned as an intersection of in�nitely many sets.
Luckily, as we will see shortly, it can be characterized via appropriate eigenvalue
problems.

In [40], to decrease numerical cost of previous known algorithms (gMGS,
bMGS of [69]), the authors developed the algorithm eMGSs. Although eMGSs
performed well on tests, its application was limited to matrices of small and
medium size.

The main results of this thesis are new algorithms for computing the minimal
Ger²gorin set that can successfully be applied to large matrices. We combine
two approaches for the characterization of MGS (explicit and implicit) and three
methods for curve tracing (star-shaped, predictor-corrector and triangular). In
that way, six e�cient procedures are developed: eMGSs, iMGSs, eMGSp,
iMGSp, eMGSt and iMGSt.

First new algorithm presented in this thesis is iMGSs. It represents an
extension and improvement of eMGSs. It is developed by using solving of
the system of linear equations instead of computation of eigenvalues, the idea
adopted from [25]. Next, we constructed the algorithms eMGSp and iMGSp.
These algorithms are based on two steps: predictor (�nd approximate point in
the direction of tracing) and corrector (�nd point on curve using predicted point
and numerical methods). The motivation for the predictor-corrector method is
found in [2]. Then, the algorithms eMGSt and iMGSt are constructed. These
algorithms are based on path following approach via triangular grid and in that
way, they reduce numerical computations and can be adapted for matrices of
large size. This method is originally developed in [47], for the computations of
the pseudospectra.

Bene�ts of MGS are not only based on the fact that it represents optimal lo-
calization of eigenvalues. Beside theoretical, MGS also has practical importance.

Let us consider time-dependent linear dynamical system which appears in
models which describe oscillatory systems:

ẋ(t) = A(t)x(t), t ≥ 0, (1.1)
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where matrix A(t) has time invariant diagonal elements, i.e., aii(t) = αii ∈
C, i ∈ N, while other elements aij(t) are complex analytical functions bounded
by αij > 0, i, j ∈ N, i 6= j. Using the in�nity norm of matrix and Coppel
inequality ([60]), we obtain that system (1.1) is exponentially asymptotically
stable if there exists µ > 0 such that

max
i∈N

{
Re(αii) +

n∑
j 6=i

αij

}
< −µ,

i.e., the Ger²gorin set of [αij]n×n lies in the open left half-plane of the complex
plane.
Analogously, if we use a vector norm ||X(·)||∞, where X is any diagonal matrix
with positive diagonal entries, we have that system (1.1) is exponentially asymp-
totically stable if the minimal Ger²gorin set is situated in the open left half-plane
of the complex plane, which represents a stronger result.

One more interesting item for determining the minimal Ger²gorin set is its
relation with the numerical range. For a given matrix A ∈ Cn,n, its numerical
range W (A) is a subset of the convex envelope of union of the Ger²gorin set of A
and the Ger²gorin set of AT (Theorem 3.2.2). Moreover, it is easy to show that
set ⋂

X∈Dn

W (X−1AX)

is a subset of the the convex envelope of the minimal Ger²gorin set of A, where Dn

is the set of all diagonal matrices whose diagonal entries are positive (Corollary
3.2.3). Therefore, using the position of the convex envelope of the minimal
Ger²gorin set in the complex plane, we can get useful information about the
numerical range after a proper scaling.

As we can see, the research of the minimal Ger²gorin set provided many useful
results. They served as a motivation for the construction of new algorithms for
its computing.

1.2 Eigenvalues and norms

Let A ∈ Cn,n, n ∈ N, be a square matrix. A vector x ∈ Cn, x 6= 0, is an
eigenvector of A and λ ∈ C is its corresponding eigenvalue if

Ax = λx. (1.2)

20



The equation (1.2) can be equivalently written as

(λI − A)x = 0, (1.3)

where I is the n× n identity matrix. The equation (1.3) has a non-zero solution
x if and only if a determinant of matrix λI − A is equal to zero, i.e.,

det(λI − A) = 0. (1.4)

The left side of (1.4) is a polynomial function of λ denoted by pA(λ). It is called
the characteristic polynomial of A and the equation (1.4) is the characteristic
equation of A.

Point λ ∈ C is an eigenvalue of A ∈ Cn,n if and only if pA(λ) = 0. We can notice
that even if A is a real matrix, its eigenvalues can be complex numbers.

The set of all eigenvalues of a matrix A is the spectrum of A, denoted by σ(A),
i.e.,

σ(A) := {λ ∈ C : det(λI − A) = 0}. (1.5)

An equivalent de�nition for the spectrum is that it is the set of points z ∈ C for
which a resolvent matrix (zI − A)−1 does not exist.

The spectral radius ρ(A) of A ∈ Cn,n is de�ned by

ρ(A) := {max |λ| : λ ∈ σ(A)}. (1.6)

The spectral abscissa α(A) of A ∈ Cn,n is de�ned by

α(A) := {max(Re(λ)) : λ ∈ σ(A)}. (1.7)

Let λ be an eigenvalue of A ∈ Cn,n. The algebraic multiplicity of λ is its multipli-
city as a root of the characteristic polynomial of A. If the algebraic multiplicity
of λ is equal to 1, λ is called a simple eigenvalue.

The geometric multiplicity of λ is a dimension of its corresponding eigenspace
Eλ = {v ∈ Cn : (λI − A)v = 0}.
The algebraic multiplicity of eigenvalue is at least as great as its geometric mul-
tiplicity. If λ is an eigenvalue of A ∈ Cn,n whose algebraic multiplicity is greater

21



than its geometric multiplicity, then λ is a defective eigenvalue. A matrix with
at least one defective eigenvalue is a defective matrix. Otherwise, it is a non-
defective matrix.

In the following, we review well-known properties of eigenvalues that will be
used in this thesis.

• Matrix A ∈ Cn,n has n eigenvalues, counted with multiplicity.

• Matrix A ∈ Cn,n is nonsingular if and only if its every eigenvalue is non-
zero.

• The trace tr(A) of matrix A ∈ Cn,n (the sum of its diagonal elements) is

equal to the sum of its all eigenvalues, i.e., tr(A) =
n∑
i=1

aii =
n∑
i=1

λi.

• The determinant of A ∈ Cn,n is equal to the product of its eigenvalues, i.e.,

det(A) =
n∏
i=1

λi = λ1λ2 · · · λn.

• Eigenvalues of a diagonal matrix are its diagonal elements.

• Matrix A ∈ Cn,n and its transpose AT ∈ Cn,n have the same spectrum.

• Matrices A ∈ Cn,n and XAX−1 ∈ Cn,n, X ∈ Cn,n, det(X) 6= 0 (XAX−1 is
a similar matrix to A), have the same spectrum.

• If λ1, λ2, ..., λn are the eigenvalues of the matrix A ∈ Cn,n, then λk1, λ
k
2, ...,

λkn are the eigenvalues of the matrix Ak, k ∈ N.

• If λ1, λ2, ..., λn are the eigenvalues of the nonsingular matrix A ∈ Cn,n, then
1
λ1
, 1
λ2
, ..., 1

λn
are the eigenvalues of its inverse matrix A−1 ∈ Cn,n and each

algebraic and geometric multiplicity of the corresponding eigenvalues are
identical.

• If A ∈ Cn,n is a Hermitian matrix (i.e., A = A∗), then each its eigenvalue is
real. So, in a special case, if A is a symmetric real matrix (i.e., A = AT ∈
Rn,n), its eigenvalues must be real.

• If A ∈ Rn,n and n is odd, then A has at least one real eigenvalue.
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• If λ1, λ2, ..., λn are the eigenvalues of a unitary matrix A ∈ Cn,n (i.e.,
AA∗ = A∗A = I), then |λj| = 1, j ∈ N.

Term "eigenvector" is typically used for "right eigenvector". It is a vector
column that satis�es the equation (1.2). However, we can also observe the prob-
lem

uTA = λ̃uT , (1.8)

where A ∈ Cn,n, λ̃ ∈ C is scalar and u ∈ Cn,1. Any non-zero vector u satisfying
(1.8) is a left eigenvector of matrix A and λ̃ is its corresponding eigenvalue.
Taking the transpose of the equation (1.8), we get ATu = λ̃u. Therefore, any left
eigenvector of A is the right eigenvector of AT .

Using eigenvalues, we can write some matrices in the form of a factorization.
An eigenvalue decomposition of matrix A ∈ Cn,n is the factorization

A = XΛX−1, (1.9)

where X ∈ Cn,n is nonsingular and Λ ∈ Cn,n is a diagonal matrix. As we see, the
eigenvalue decomposition is a similarity transformation. If A has the eigenvalue
decomposition, we can say that it is a diagonalizable matrix. From the de�nition
of the eigenvalue decomposition, we get AX = XΛ, i.e.,

A
[
x1|x2| · · · |xn

]
=
[
x1|x2| · · · |xn

]

λ1

λ2

. . .
λn

 .
So, Axj = λjxj, j ∈ N, where xj is jth column of X and the eigenvector of A
and λj is jth diagonal entry of Λ and the eigenvalue of A corresponding to the
eigenvector xj.

Matrix A ∈ Cn,n has a complete set of eigenvectors X = {x1, x2, ..., xn} if the
vectors x1, x2, ..., xn are linearly independent and Axj = λjxj, j ∈ N. So, each
matrix with a complete set of eigenvectors has the eigenvalue decomposition
(i.e., A is a diagonalizable matrix). If this decomposition can be performed in
such a way that diagonalization is orthonormal one, i.e., A = QΛQ∗, where Q is
unitary, the matrix is called normal matrix. It is well-known that matrix A is
normal if and only if A∗A = AA∗. It can be shown that a matrix A ∈ Cn,n is a
non-defective matrix if and only if it has the eigenvalue decomposition.
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In applications, eigenvalues are often used for computing powers Ak, k ∈ N,
or exponential etA = I + tA+ 1

2!
(tA)2 + ..., of a given matrix A ∈ Cn,n. If A is a

diagonalizable matrix, then we can compute Ak and etA as: Ak = (V ΛV −1)k =
V ΛkV −1 and etA = V etΛV −1.

If A ∈ Cn,n is singular, we can use Moore3-Penrose4 inverse of it, denoted by
A+. It is the unique matrix X ∈ Cn,n satisfying the following Penrose equations:

(i) AXA = A, (ii) XAX = X, (iii) (AX)∗ = AX, (iv) (XA)∗ = XA.

A purpose of the next theorem is to provide explicit formulas for the deriva-
tives of eigenvalues and eigenvectors. These formulas are useful in the analysis
of systems of dynamic equations and have many other applications.

Theorem 1.2.1 (Theorem 2, [45]) Let λ0 be a simple eigenvalue of a matrix
A0 ∈ Cn,n, and let v0 be an associated eigenvector, so that A0v0 = λ0v0. Then a
(complex) function λ and a (complex) vector function v are de�ned for all A in
some neighborhood O(A0) ∈ Cn,n of A0, such that

λ(A0) = λ0, v(A0) = v0

and
Av = λv, v∗0v = 1, A ∈ O(A0).

Moreover, the functions λ and v are smooth on O(A0) and the di�erentials at
A0 are

dλ = u∗0(dA)v0/u
∗
0v0 (1.10)

and
dv = (λ0I − A0)+(I − v0u

∗
0/u

∗
0v0)(dA)v0, (1.11)

where u0 is the left eigenvector of A0 associated with the eigenvalue λ0.

3Eliakim Hastings Moore (1862-1932) was an American mathematician, who researched in
abstract algebra, geometry, number theory and integral equations.

4Sir Roger Penrose (1931) is an English mathematical physicist, mathematician and
philosopher of science, Emeritus Rouse Ball Professor of Mathematics in the University of
Oxford.
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Since we will repeatedly work on construction of mappings with a complex
argument f : C→ Cm,n, where m,n ∈ N, without possible confusion to simplify
notations, we will use abbreviations:

f = f(z), for z ∈ C;

f ξ,θ(t) = f(ξ + teiθ), for ξ ∈ C, θ ∈ [0, 2π), t ∈ R;

f(x, y) = f(x+ iy), for x, y ∈ R.

In that context, derivatives in the corresponding arguments are denoted as:

∂

∂t
f ξ,θ(t), fx =

∂

∂x
f(x, y), fy =

∂

∂y
f(x, y);

∂2

∂t2
f ξ,θ(t), fxx =

∂2

∂x2
f(x, y), fxy =

∂2

∂x∂y
f(x, y), fyy =

∂2

∂y2
f(x, y).

Next, some preliminaries about norms will be presented. A standard inner
product of vectors x = [x1, x2, ..., xn]T ∈ Cn and y = [y1, y2, ..., yn]T ∈ Cn is

y∗x :=
n∑
i=1

xiyi.

A norm is a function || · || : Cn → R, n ∈ N, which satis�es the following
conditions:

1) ||x|| ≥ 0,

2) ||x|| = 0 if and only if x = 0,

3) ||x+ y|| ≤ ||x||+ ||y||,

4) ||αx|| = |α|||x||,

for all vectors x, y ∈ Cn and scalars α ∈ C.
Some of the most important norms are the p-norms:

||x||1 =
n∑
i=1

|xi|,
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||x||2 =
( n∑
i=1

|xi|2
) 1

2
=
√
x∗x,

||x||∞ = max
i∈N
|xi|,

||x||p =
( n∑
i=1

|xi|p
) 1
p
, 1 ≤ p <∞,

for x = [x1, x2, ..., xn]T ∈ Cn.

Beside p-norms, widely used are the weighted norms. For any norm || · || and
nonsingular matrix W ∈ Cn,n, the weighted norm of vector x ∈ Cn is:

||x||W = ||Wx||,

where W ∈ Cn,n is a nonsingular matrix.

For a given norm || · || on Cn, the induced matrix norm of A is de�ned by:

||A|| := sup
x∈Cn\{0}

||Ax||
||x||

= sup
||x||=1,x∈Cn

||Ax||, A ∈ Cn,n.

The associated induced matrix norms of a given matrix A ∈ Cn,n for norms
|| · ||1, || · ||2 and || · ||∞ are:

||A||1 = max
j∈N

n∑
i=1

|aij|,

||A||2 =
√
ρ(AA∗),

||A||∞ = max
i∈N

n∑
j=1

|aij|.

The associated induced matrix norm of a given matrix A ∈ Cn,n for the weighted
norm || · ||W is

||A||W = ||WAW−1||,
where W ∈ Cn,n is a nonsingular matrix.

For any A ∈ Cn,n and any norm || · || on Cn,n, holds:

ρ(A) ≤ ||A||.
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Vectors x = [x1, x2, ..., xn]T ∈ Cn and y = [y1, y2, ..., yn]T ∈ Cn are orthogonal
if x∗y = 0. Additionally, x and y are orthonormal if they are orthogonal and
||x||2 = ||y||2 = 1.

1.3 Perron-Frobenious theory

In linear algebra, the Perron5-Frobenius6 theorem asserts that the largest,
by moduli, eigenvalue of a real non-negative square matrix is real and its corre-
sponding eigenvector can be chosen to have all non-negative components. Also,
this theorem has important applications to probability theory, to the theory of
dynamical systems, to economics, to demography, etc.

In the following, we will use the next de�nitions.

• A matrix A = [aij] ∈ Rn.n is positive if aij > 0, i, j ∈ N, and we write it
as A > 0.

• A matrix A = [aij] ∈ Rn.n is non-negative if aij ≥ 0, i, j ∈ N, and we write
it as A ≥ 0.

• A matrix A = [aij] ∈ Rn.n is essentially non-negative if aij ≥ 0, i, j ∈
N, i 6= j.

• A matrix A = [aij] ∈ Rn.n is a Z-matrix if aij ≤ 0, i, j ∈ N, i 6= j.

First, Perron formulated theorem for non-negative matrices in 1905. Inspired
by his work, Frobenius proved extended version of the theorem (introduced irre-
ducibility) in 1912.

Theorem 1.3.1 (Perron-Frobenius) If A = [aij] ∈ Rn.n and A ≥ 0, then:

1. A has a non-negative real eigenvalue equal to its spectral radius ρ(A);

2. there corresponds an eigenvector x = [x1, x2, ..., xn]T ≥ 0, x 6= 0, to ρ(A);

5Oscar Perron (1880-1975) was a German mathematician, professor at the University of
Heidelberg and University of Munich.

6Ferdinand Georg Frobenius (1849-1917) was a German mathematician, best known for
his contributions to di�erential equations, number theory and group theory.
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3. ρ(A) may be a multiple eigenvalue of A;

4. ρ(A) does not decrease when any entry of A increases;

5. the eigenvalue ρ(A) satis�es

ρ(A) = inf
x>0, x∈Rn,n

{
max
i∈N

[ n∑
j=1

aijxj

xi

]}
.

A matrix P ∈ Rn,n is a permutation matrix if there is a permutation π : N → N
such that P = [pij] = [δi,π(j)], where

δk,l :=

{
1, k = l
0, k 6= l

,

(Kronecker delta function), k, l ∈ N.

De�nition 1.3.2 If A ∈ Cn,n, n ≥ 2, it is reducible if there exists a permutation
matrix P ∈ Rn,n and r ∈ N, 1 ≤ r < n, for which

PAP T =

[
A11 A12

0 A22

]
,

where A11 ∈ Cr,r and A22 ∈ C(n−r),(n−r).
A matrix A ∈ C1,1 is reducible if it is zero matrix.

If a matrix is not reducible, it is irreducible.

For a given matrix A ∈ Cn,n and set of vertices {v1, v2, ..., vn}, de�ne directed
arc −−→vivj from vertex vi to vertex vj if aij 6= 0, i, j ∈ N. The collection of all such
directed arcs is the direct graph G(A) of A. A directed path in G(A) from vertex
vi to vertex vj is a collection of directed arcs connecting vi as an initial and vj
as a terminal vertex.

The directed graph G(A) of a given matrix A ∈ Cn,n is strongly connected if for
each ordered pair vi and vj of vertices there exists a direct path in G(A) with an
initial vertex vi and a terminal vertex vj, i, j ∈ N.

Theorem 1.3.3 ([63], Theorem 1.9.) A matrix A ∈ Cn,n is irreducible if and
only if its direct graph G(A) is strongly connected.
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For a given arbitrary matrix A ∈ Cn,n, n ≥ 2, its normal reduced form is

PAP T =


A11 A12 . . . A1m

A22 . . . A2m

. . . ...
Amm

 , (1.12)

where P is a permutation matrix and diagonal blocks Aii ∈ Cni,ni are either 1×1
or irreducible ni × ni matrices, ni ≥ 2, i ∈ {1, 2, ...,m}.

Theorem 1.3.4 (Perron-Frobenius, irreducible matrix) If A = [aij] ∈ Rn.n is
irreducible and essentially non-negative, then:

1. A has a real eigenvalue equal to its spectral abscissa α(A) with the corre-
sponding right x = [x1, x2, ..., xn]T > 0 and left eigenvector y = [y1, y2, ..., yn]
> 0;

2. the only right (left) eigenvectors whose components are all positive are mul-
tiples of x (y);

3. α(A) is a simple eigenvalue of A;

4. α(A) increases when any entry of A increases;

5. min
i∈N

n∑
j=1

aij ≤ α(A) ≤ max
i∈N

n∑
j=1

aij;

6. (Collatz7-Wielandt8 formula) the eigenvalue α(A) satis�es

α(A) = sup
x>0, x∈Rn,n

{
min
i∈N

[ n∑
j=1

aijxj

xi

]}
= inf

x>0, x∈Rn,n

{
max
i∈N

[ n∑
j=1

aijxj

xi

]}
.

7Lothar Collatz (1910-1990) was a German mathematician, founder of spectral graph theo-
ry.

8Helmut Wielandt (1910-2001) was a German mathematician who worked on permutation
groups.
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Originally, this theorem is given in the literature for irreducible non-negative
matrices.

The spectral abscissa α(A) of an irreducible and essentially non-negative
matrix A ∈ Rn,n is called the Perron root or the Perron-Frobenius root. Its corre-
sponding right eigenvector x is the Perron eigenvector or the Perron-Frobenius
eigenvector and the pair (α(A), x) is the Perron pair or the Perron-Frobenius
pair.

The algorithm Noda iteration for computing the spectral radius of non-
negative irreducible matrices is presented in [50]. We use it to formulate an
algorithm for computing the spectral abscissa of essentially non-negative matrix.

Input parameters of the algorithm are: an irreducible and essentially non-
negative matrix A ∈ Rn,n, a scalar λ0 ≥ α(A) and positive normalized vector
x0 ∈ Rn (i.e., x0 > 0, ||x0||2 = 1). For example, for parameter λ0, we can choose

the value max
i∈N

n∑
j=1

aij (Theorem 1.3.4, item 5.).

Algorithm Noda iteration

Input: A, λ0, x
0, ε > 0

1: for k = 0, 1, 2, ...
2: Solve (λkI − A)yk+1 = xk;

3: Normalize xk+1 =
yk+1

||yk+1||2
;

4: Compute λk+1 = λk −min
i∈N

xki
yk+1
i

;

5: until ||λk+1x
k+1 − Axk+1||2 < ε;

Output: α(A)← λk+1, x← xk+1

As we see, the presented algorithm is similar to the Rayleigh quotient iteration
([61]), but with di�erent shifts. By analyzing the step 4 in the algorithm, we
obtain:

λk+1 = λk −min
i∈N

xki
yk+1
i

= max
i∈N

(λky
k+1 − xk)i
yk+1
i

= max
i∈N

(Ayk+1)i

yk+1
i

= max
i∈N

(Axk+1)i

xk+1
i

,
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i.e.,

λk+1 = max
i∈N

(Axk+1)i

xk+1
i

. (1.13)

As λ0 > α(A), λ0I − A is nonsingular and (λ0I − A)−1 > 0 (Proposition 1.6.4).
Then, from the steps 2 and 3 in the algorithm, we have y1 = (λ0I −A)−1x0 > 0

and x1 =
y1

||y1||2
> 0. Consequently, from the step 4, we obtain λ1 < λ0. In

addition, from the (1.13) and Theorem 1.3.4 (item 6), it follows λ1 > α(A).

Analogously, by induction, it can be shown that given algorithm generates a
decreasing sequence {λk} bounded below by α(A) and a sequence of positive
vectors {xk}, k ∈ N0.

Theorem 1.3.5 ([50], Theorem 4.1) Let A ∈ Rn,n be essentially non-negative
irreducible matrix. Then, the pair of sequences {{λk}, {xk}}, k ∈ N0, generated
by the algorithm Noda iteration, converges to the Perron-Frobenius pair of A.

1.4 Ger²gorin circles

The sum

ri(A) :=
n∑
j 6=i

|aij|

is called the ith deleted absolute row sum of A ∈ Cn,n, i ∈ N, where ri(A) := 0
for n = 1. Denote sets in the complex plane:

Γi(A) :=
{
z ∈ C : |z − aii| ≤ ri(A)

}
, i ∈ N.

The set Γi(A) is called ith Ger²gorin disk and the set Γ(A) :=
n⋃
i=1

Γi(A) is called

the Ger²gorin set. It is a well-known result (Ger²gorin's theorem) that the Ger²-
gorin set of a given matrix contains its spectrum.

Theorem 1.4.1 (A. S. Ger²gorin, 1931) For any A ∈ Cn,n and any λ ∈ σ(A),
there exists k ∈ N such that

|λ− akk| ≤ rk(A).
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Consequently, λ ∈ Γk(A) ⊆ Γ(A). As this is true for each λ ∈ σ(A), then

σ(A) ⊆ Γ(A).

Proof: Let λ ∈ σ(A). There exists x = [x1, x2, ..., xn]T ∈ Cn, x 6= 0, such that

Ax = λx, i.e.,
n∑
j=1

aijxj = λxi, i ∈ N. Let |xk| = max{|x1|, |x2|, ..., |xn|}. Thus,

|xk| > 0 and (λ− akk)xk =
n∑
j 6=k

akjxj. Using the absolute values and the triangle

inequality, we have:

|λ− akk||xk| ≤
n∑
j 6=k

|akj||xj| ≤
n∑
j 6=k

|akj||xk| ≤ |xk|rk(A).

Dividing the above expression by |xk| > 0, it follows λ ∈ Γk(A), i.e., λ ∈ Γ(A).
As it is true for each eigenvalue, we obtain σ(A) ⊆ Γ(A). 2

While the Ger²gorin's theorem guaranties that all eigenvalues lie in the union
of the Ger²gorin circles, it does not reveal how many eigenvalues, if any, are
located in every circle. For that purpose, we have the following statement usually
known as The second Ger²gorin's theorem.
Let S be a proper non-empty subset of N and n ≥ 2. The cardinality of S is
denoted by card(S) and the complement of S with respect to N is denoted by
S̄, i.e. S̄ := N\S. Also, we denote:

ΓS(A) :=
⋃
i∈S

Γi(A) and ΓS̄(A) :=
⋃
i∈S̄

Γi(A).

Theorem 1.4.2 (A. S. Ger²gorin, 1931) For any A ∈ Cn,n, n ≥ 2, for which

ΓS(A)
⋂

ΓS̄(A) = ∅, for some proper non-empty set S of N, the set ΓS(A)

contains exactly card(S) eigenvalues of A.

An other important theorem is due to O. Taussky9, which states that for an
irreducible matrix an eigenvalue can be located on the boundary of the Ger²gorin
set only if all Ger²gorin circles pass through it. More precisely, the following
holds.

9Olga Taussky-Todd (1906-1995) was a Czech-American mathematician who researched in
number theory, integral matrices and matrices in algebra and analysis.

32



Theorem 1.4.3 (O. Taussky, 1948) Let A = [aij] ∈ Cn.n be irreducible. If
λ ∈ σ(A) is such that λ /∈ int(Γi(A)), then for all i ∈ N,

|λ− aii| = ri(A). (1.14)

While the Ger²gorin set is an elegant way to localize eigenvalues, sometimes
it may be crude. In the years that followed Ger²gorin's original publications,
many improved localization sets were obtain ([11], [14], [18], [19], [35], [39], [63],
[64], [67]). Arguable, the most famous one is due to Brauer10. Namely, for a
given matrix A, de�ne the set

Ki,j(A) :=
{
z ∈ C : |z − aii||z − ajj| ≤ ri(A)rj(A)

}
and the set K(A) :=

n⋃
i,j=1

Ki,j(A). The following theorem holds.

Theorem 1.4.4 ([63], Theorem 2.2.) For any A ∈ Cn,n, n ≥ 2, and any λ ∈
σ(A), there exist k, l ∈ N such that

|λ− akk||λ− all| ≤ rk(A)rl(A).

Consequently, λ ∈ Kk,l(A) ⊆ K(A). As this is true for each λ ∈ σ(A), then

σ(A) ⊆ K(A).

The set K(A) is called the Brauer set, and for i, j ∈ N, i 6= j, Ki,j(A) is called
(i, j) − th Brauer-Cassini11 oval. This set is in fact an improvement of the
the Ger²gorin set, i.e., we have the following.

Theorem 1.4.5 ([63], Theorem 2.3.) For any A ∈ Cn,n, n ≥ 2, holds

K(A) ⊆ Γ(A).

The relationship between individual ovals and the Ger²gorin's circles is given
in the following.

10Alfred Theodor Brauer (1894-1985) was a German-American mathematician who worked
in number theory.

11Giovanni Domenico Cassini (1625-1712) was an Italian mathematician, astronomer and
engineer.
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Theorem 1.4.6 (R.Varga12, 1999) For any A ∈ Cn,n, n ≥ 2 holds:
Ki,j(A) = Γi(A) ∪ Γj(A) if and only if ri(A) = rj(A) = 0 or ri(A) = rj(A) >
0, aii = ajj, i, j ∈ N, i 6= j.

If all the o�-diagonal row sums and diagonal entries of the matrix are �xed, the
best eigenvalue localization we can obtain is the Brauer set. This optimality
result was obtained in [63]. More precisely, de�ne the families of matrices:

ω̃(A) := {B = [bij] ∈ Cn,n : bii = aii and ri(B) = ri(A), i ∈ N}

and

ω̂(A) := {B = [bij] ∈ Cn,n : bii = aii and ri(B) ≤ ri(A), i ∈ N}.

Using the notation:

σ(ω̃(A)) =
⋃

B∈ω̃(A)

σ(B) and σ(ω̂(A)) =
⋃

B∈ω̂(A)

σ(B),

we have the following result.

Theorem 1.4.7 ([63], Theorem 2.4.) For any A ∈ Cn,n, n ≥ 2 holds:

σ(ω̃(A)) =

{
∂K(A) = ∂K1,2(A), n = 2
K(A), n ≥ 3

and
σ(ω̂(A)) = K(A).

While many improvements of the Ger²gorin set were obtained and used in the
applications of linear algebra, the central role is de�netely played by the minimal
Ger²gorin set. In the following, we provide all its important properties before we
continue to the analysis of its computations.

12Richard Varga (1928) is an American mathematician who specialized in numerical analy-
sis and linear algebra, emeritus professor at Kent State University and adjunct professor at
Case Western Reserve University.
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1.5 Minimal Ger²gorin set

Given a positive vector x = [x1, x2, . . . , xn]T > 0 and a diagonal matrix
X := diag(x) ∈ Rn,n, the Ger²gorin disks for the matrix X−1AX are given by:

Γr
x

i (A) :=
{
z ∈ C : |z − aii| ≤ rxi (A) :=

n∑
j 6=i

|aij|xj
xi

}
, for i ∈ N. (1.15)

Moreover, the associated Ger²gorin set is de�ned as:

Γr
x

(A) :=
n⋃
i=1

Γr
x

i (A). (1.16)

The set
ΓR(A) :=

⋂
x∈Rn, x>0

Γr
x

(A) (1.17)

is called the minimal Ger²gorin set and it gives the sharpest inclusion set for
σ(A), with a respect to all positive diagonal similarity transformations X−1AX
of A, i.e.,

σ(A) ⊆ ΓR(A) ⊆ Γ(A). (1.18)

Note that, generally, when X ∈ Cn,n is not necessarily diagonal, the intersection
of sets Γ(X−1AX), over the family of all nonsingular X, is σ(A).

To state the optimality of this set, given any matrix A = [aij] ∈ Cn,n and the
complex number z ∈ C, de�ne the matrix QA(z) = [qij(z)], QA : C→ Rn,n by:

qii(z) := −|z − aii| and qij(z) := |aij|, for i 6= j, i, j ∈ N. (1.19)

The right-most eigenvalue νA(z) of the essentially non-negative matrix QA(z) =
[qij(z)] is real (Theorem 1.3.1) and it can be characterized by:

νA(z) = inf
x>0

max
i∈N

((QA(z)x)i/xi). (1.20)

i.e.,
νA(z) = inf

x>0
max
i∈N

(rxi (A)− |z − aii|). (1.21)

The corresponding eigenvector to νA(z) is non-negative. In case when A (and
thus QA(z)) is irreducible, the corresponding eigenvector is positive (Theorem
1.3.4).

Using this notation, we obtain the following characterization of the minimal
Ger²gorin set in the complex plane.
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Theorem 1.5.1 ([63], Preposition 4.3.) For any A ∈ Cn.n, n ≥ 2 :

z ∈ ΓR(A) if and only if νA(z) ≥ 0. (1.22)

Proof: (=⇒) Assume z ∈ ΓR(A). By the de�nition of the minimal Ger²gorin set,
z ∈ Γr

x
(A) for all x ∈ Rn, x > 0. Equivalently, for each x > 0 there exists k ∈ N,

such that |z−akk| ≤ rxk(A), i.e., rxk(A)−|z−akk| ≥ 0. Hence, (QA(z)x)k/xk ≥ 0,
i.e., max

i∈N
((QA(z)x)i/xi) ≥ 0, for each x > 0. So, νA(z) ≥ 0.

(⇐=) Assume νA(z) ≥ 0. Then, for each x ∈ Rn, x > 0, there exists k ∈ N such
that 0 ≤ νA(z) ≤ (QA(z)x)k/xk = rxk(A)− |z− akk|. It implies |z− akk| ≤ rxk(A),
i.e., z ∈ Γr

x
(A), for each x > 0, and therefore, z ∈ ΓR(A). 2

From the previous theorem and the continuity of νA(z), as a function of z, the
following characterization of the boundary of the minimal Ger²gorin set theorem
holds.

Theorem 1.5.2 For any A ∈ Cn.n, n ≥ 2 :
z ∈ ∂ΓR(A) if and only if νA(z) = 0 and there is a sequence of complex numbers
{zj}∞j=1 with lim

j→∞
zj = z, for which νA(zj) < 0, for all j ∈ N.

Next, we review the optimality of the minimal Ger²gorin set. For a given
matrix A ∈ Cn,n, the family of matrices

Ω(A) := {B = [bij] ∈ Cn,n : bii = aii and |bij| = |aij|, i, j ∈ N, i 6= j}

is called the equimodular family of A and the family of matrices

Ω̂(A) := {B = [bij] ∈ Cn,n : bii = aii and |bij| ≤ |aij|, i, j ∈ N, i 6= j}

is called the extended equimodular family of A.
We will use notation:

σ(Ω(A)) :=
⋃

B∈Ω(A)

σ(B) and σ(Ω̂(A)) :=
⋃

B∈Ω̂(A)

σ(B).

So, it is obvious that

σ(Ω(A)) ⊆ σ(Ω̂(A)) ⊆ ΓR(A). (1.23)

The next theorem gives the sharpness of the inclusion in (1.23), i.e., it shows
that the minimal Ger²gorin set is optimal spectral localization for the extended
equimodular family of matrices.
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Theorem 1.5.3 ([63], Theorem 4.4.) For any A = [aij] ∈ Cn,n, n ≥ 2 :

∂ΓR(A) ⊆ σ(Ω(A)) ⊆ σ(Ω̂(A)) = ΓR(A). (1.24)

Proof: Because of (1.23), it is enough to show that ∂ΓR(A) ⊆ σ(Ω(A)) and
ΓR(A) ⊆ σ(Ω̂(A)).

First we show that ∂ΓR(A) ⊆ σ(Ω(A)). To that end, we prove that for any
A = [aij] ∈ Cn,n, n ≥ 2, and z ∈ C with νA(z) = 0, there exists a matrix
B = [bij] ∈ Ω(A) for which z is an eigenvalue of B.
Let z ∈ ∂ΓR(A). So, νA(z) = 0 and there exists y ∈ Rn, y ≥ 0, y 6= 0, such

that QA(z)y = νA(z)y = 0. It follows that |z − aii|yi =
n∑
j 6=i

|aij|yj, i ∈ N. Let

ψi be the numbers such that z − aii = |z − aii|eiψi , i ∈ N, and de�ne the matrix
B = [bij] ∈ Cn,n by:

bii := aii and bij := |aij|eiψi , i 6= j, i, j ∈ N.

Now, it is easy to see that B ∈ Ω(A). Namely, by computing (By)i, we �nd:

(By)i =
n∑
j=1

bijyj = aiiyi +
n∑
j 6=i

|aij|eiψiyj = (z − |z − aii|eiψi)yi +
n∑
j 6=i

|aij|eiψiyj =

zyi + eiψi(
n∑
j 6=i

|aij|yj − |z − aii|yi) = zyi, for all i ∈ N. It follows By = zy, i.e.,

z ∈ σ(B). So, each point of ∂ΓR(A) is in σ(Ω(A)), i.e., ∂ΓR(A) ⊆ σ(Ω(A)).

Next, we show that ΓR(A) ⊆ σ(Ω̂(A)). Let z ∈ ΓR(A). So, νA(z) ≥ 0 and
there exists y ∈ Rn, y ≥ 0, y 6= 0, such that QA(z)y = νA(z)y. It follows that

|z − aii|yi =
n∑
j 6=i

|aij|yj − νA(z)yi, i ∈ N. De�ne the matrix C = [bij] ∈ Cn,n by:

cii := aii and cij := µiaij, i 6= j, i, j ∈ N,

where µi is de�ned by:
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µi =



n∑
j 6=i

|aij|yj − νA(z)yi

n∑
j 6=i

|aij|yj
,

n∑
j 6=i

|aij|yj > 0

1,
n∑
j 6=i

|aij|yj = 0

.

It is easy to see that 0 ≤ µi ≤ 1 and, consequently, C ∈ Ω̂(A). But since for all

i ∈ N, |z − cii|yi = |z − aii|yi =
n∑
j 6=i

|aij|yj − νA(z)yi = µi

n∑
j 6=i

|aij|yj =
n∑
j 6=i

|cij|yj,

i.e., |z − cii|yi =
n∑
j 6=i

|cij|yj, we have that z ∈ ∂ΓR(C).

Finally, according to the the �rst part of the proof of this theorem, we have that
there exists D ∈ Ω(C) ⊆ Ω̂(A) such that z ∈ σ(D). It follows z ∈ σ(Ω̂(A)) and
consequently, σ(Ω̂(A)) = ΓR(A). 2

Therefore, σ(Ω̂(A)) completely �lls out ΓR(A), i.e., the minimal Ger²gorin set is
"optimal" because it exactly determines the spectrum of the family of matrices
σ(Ω̂(A)).

To conclude this section, we give some useful properties of the minimal Ger²-
gorin set.

Theorem 1.5.4 For any A ∈ Cn,n and c ∈ C holds:

1) ΓR(A) is a compact set in C;

2) ΓR(A) = ΓR(AT );

3) ΓR(cA) = cΓR(A);

4) ΓR(A+ cI) = ΓR(A) + c.

Proof: 1) As the Ger²gorin set is a compact set (the union of n bounded and
closed sets) in C, it follows that ΓR(A) is also compact.
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2) For n = 1, the statement holds trivially. For a given z ∈ C, n ≥ 2, matrices
QA(z) and QAT (z) have the same eigenvalues. It follows νA(z) = νAT (z),
i.e., z ∈ ΓR(A) if and only if z ∈ ΓR(AT ).

3) For c = 0 the statement holds trivially. For c 6= 0, we have: z ∈ ΓR(cA)⇐⇒
inf
x>0

max
i∈N

(|c|rxi (A)− |z − caii|) ≥ 0⇐⇒ inf
x>0

max
i∈N

(rxi (A)− |z
c
− aii|) ≥ 0⇐⇒

z

c
∈ ΓR(A)⇐⇒ z ∈ cΓR(A).

4) z ∈ ΓR(A+cI)⇐⇒ inf
x>0

max
i∈N

(rxi (A)−|z−(aii+c)|) ≥ 0⇐⇒ inf
x>0

max
i∈N

(rxi (A)−

|(z − c)− aii|)⇐⇒ z − c ∈ ΓR(A)⇐⇒ z ∈ ΓR(A) + c.

2

Theorem 1.5.5 Given an arbitrary matrix A = [aij] ∈ Cn,n, ni ≥ 1, i ∈
{1, 2, ...,m} and its normal reduced form de�ned by (1.12). Then,

ΓR(A) =
m⋃
i=1

ΓR(Aii).

Proof: Firstly, we can notice that diagonal elements and their corresponding
deleted absolute row and column sums are the same for a matrix and its normal
reduced form, i.e., the minimal Ger²gorin set is invariant under simultaneous
permutations of rows and columns. Let's de�ne positive diagonal matrices Xk =
diag(x

(k)
1 , x

(k)
2 , ..., x

(k)
n ), where k ∈ N and x

(k)
j := 1

ik
, for all j from the set of

indices corresponding to the block Aii, i ∈ {1, 2, ...,m}. From

lim
k→∞

X−1
k AXk =


A11

A22

. . .
Amm

 ,

it follows ΓR(A) ⊆
⋂
k∈N

Γ(X−1
k AXk) =

m⋃
i=1

Γ(Aii) ⊆ ΓR(A). So, ΓR(A) =
m⋃
i=1

ΓR(Aii).

2
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In some cases, a component of ΓR(A), A ∈ Cn,n, can be isolated point (for
example when all o�-diagonal entries in one row of A are zero). To avoid such
situations in the algorithms, we can use the previous lemma and consider only
irreducible matrices.

1.6 Nonsingularity of matrices vs. localization of

eigenvalues

In this section, a brief review of few classes of matrices is given and to be
used in the rest of the thesis. Also, a relation between these classes of matrices
and the corresponding results on localization of eigenvalues is presented.

A matrix A = [aij] ∈ Cn.n is diagonally dominant (DD) if

|aii| ≥ ri(A), i ∈ N.

A matrix A = [aij] ∈ Cn.n is strictly diagonally dominant (SDD) if

|aii| > ri(A), i ∈ N.

Theorem 1.6.1 ([63], Theorem 1.4.) If A ∈ Cn.n is strictly diagonally domi-
nant, then A is nonsingular matrix.

Amatrix A ∈ Cn,n is an irreducibly diagonally dominant matrix if it is irreducible
and diagonally dominant (|aii| ≥ ri(A), i ∈ N) and if strict inequality (|akk| >
rk(A)) holds for at least one k ∈ N.

Theorem 1.6.2 (O. Taussky, 1949) If A = [aij] ∈ Cn,n is an irreducibly diago-
nally dominant, then A is a nonsingular matrix.

A matrix A = [aij] ∈ Cn.n is an Ostrowski13 matrix if |aii||ajj| > ri(A)rj(A),
i, j ∈ N, i 6= j, n ≥ 2.

Theorem 1.6.3 ([63], Theorem 2.1.) If A ∈ Cn.n is an Ostrowski matrix, then
A is a nonsingular matrix.

13Alexander Ostrowski (1893-1986) was a Ukrainian mathematician, professor at University
of Basel.
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A given Z-matrix A = [aij] ∈ Rn,n is an M-matrix if there exist µ ∈ R and
B ∈ Rn,n such that A = µI −B, B ≥ 0 and ρ(B) ≤ µ.

Proposition 1.6.4 ([5]) For a Z-matrix A = [aij] ∈ Rn,n, the following state-
ments are equivalent:

• A is a nonsingular M-matrix;

• A−1 ≥ 0;

• there exists vector x ∈ Rn, x > 0, such that Ax > 0;

• the real part of each eigenvalue of A is positive.

For a given matrix A ∈ Cn,n, de�ne its comparison matrix 〈A〉 := [αij] ∈ Rn,n

such that:

αij :=

{
|aii|, i = j
−|aij|, i 6= j

,

where i, j ∈ N. We can notice that 〈A〉 is a Z-matrix.

A given matrix A ∈ Cn,n is an H-matrix if 〈A〉 is an M-matrix. If A ∈ Cn,n and
〈A〉 is a nonsingular M-matrix, then A is a nonsingular H-matrix. The class of

H-matrices plays a special role in the theory of the localization of eigenvalues
since it is superclass of many classes of nonsingular matrices used to construct
localizations. Among many such classes we mentioned just a few of them.

Theorem 1.6.5 Classes of strictly diagonally dominant matrices, irreducible
diagonally dominant matrices and Ostrowski matrices are subclasses of nonsin-
gular H-matrices.

While the relationship between nonsingularity results and eigenvalue localization
sets has been implicitly present since the early years of the matrix theory, their
equivalence was explicitly formulated for the �rst time in [63] and formalized in
[39]. Here, we state it in the form of the following theorem.

Theorem 1.6.6 (Varga's principle of equivalence) Let K be a class of matrices
from Cn,n and for any A ∈ Cn,n, the set ΘK(A) is de�ned by:

ΘK(A) := {z ∈ C : A− zI /∈ K}.

The following statements are equivalent:
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• all matrices from K are nonsingular;

• σ(A) ⊆ ΘK(A), for any A ∈ Cn,n.

Proof: (=⇒) Assume that all matrices from K are nonsingular. Let A ∈ Cn,n

and let λ ∈ σ(A) be its arbitrary eigenvalue. Then, A − λI is singular and
because of that A− λI /∈ K. It follows λ ∈ ΘK(A), i.e, σ(A) ⊆ ΘK(A).
(⇐=) Assume σ(A) ⊆ ΘK(A), for all A ∈ Cn,n. Suppose there exists a matrix
Ã ∈ K which is singular. So, λ = 0 is its eigenvalue and 0 ∈ ΘK(Ã), i.e.,
Ã − 0 · I = Ã /∈ K, which gives a contradiction. Thus, all matrices from K are
nonsingular. 2

As expected, wider classes produce better localization sets. Namely, we have the
following.

Theorem 1.6.7 (Monotonicity principle, [39]) Let K1 and K2 be classes of ma-
trices from Cn,n and A ∈ Cn,n. If K1 ⊆ K2, then ΘK2(A) ⊆ ΘK1(A).

Due to many scienti�c papers on the localization of eigenvalues similar to the
Ger²gorin set, the term "Ger²gorin-type" was vaguely used. We will adapt the
formalization of [39] from where one can conclude that the set ΘK(A) is a set of
Ger²gorin-type if the class K is a subset of the set of nonsingular H-matrices.

One can easily verify the following statements.

• If K is a class of SDD matrices and A ∈ Cn,n, then ΘK(A) = Γ(A).

• If K is a class of Ostrowski matrices and A ∈ Cn,n, then ΘK(A) = K(A).

• If K is a class of a nonsingular H-matrices and A ∈ Cn,n, then ΘK(A) =
ΓR(A).

Therefore, for a given A ∈ Cn,n, if z ∈ ΓR(A), then A− zI is not a nonsingular
H-matrix, i.e, 〈A− zI〉 is not a nonsingular M-matrix. Also, using monotonicity
pinciple (Theorem 1.6.7), it follows that the minimal Ger²gorin set is the smallest
of all here mentioned sets of Ger²gorin-type, i.e., the following result holds.

Corollary 1.6.8 For any matrix A ∈ Cn,n, n ≥ 2, holds:

ΓR(A) ⊆ K(A) ⊆ Γ(A).
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In a special case for n = 2, the minimal Ger²gorin set is equal to the Brauer set,
i.e., ΓR(A) = K(A).

This property holds for many other localization sets. For details on the other
subclasses of H-matrices and their corresponding eigenvalue localization sets see
[63].

1.7 Numerical range

Beside the Ger²gorin's circles, there exist many other localization sets of the
spectrum. One of them is a numerical range or a �eld of values.

The numerical range W (A) of a given matrix A ∈ Cn,n is a set de�ned by:

W (A) :=
{x∗Ax
x∗x

: x ∈ Cn, x 6= 0
}

= {y∗Ay : y ∈ Cn, ||y||2 = 1}. (1.25)

In another words, the numerical range is the range of the Rayleigh quotients
x∗Ax

x∗x
, for all x 6= 0. In the following, we mention some well-known properties of

the numerical range.

Theorem 1.7.1 W (A) is a non-empty, compact and connected set in C.

Theorem 1.7.2 (Toeplitz14-Hausdor�15) W (A) is a convex subset of C .

Theorem 1.7.3 For matrices A,B ∈ Cn,n, an identity matrix I ∈ Rn,n, an
unitary matrix U ∈ Cn,n and scalar c ∈ C, the following properties hold:

1) W (cA) = cW (A),

2) W (cI + A) = c+W (A),

3) W (A+B) ⊆ W (A) +W (B),

4) W (U∗AU) = W (A).

14Otto Toeplitz (1881-1940) was a German mathematician working in functional analysis.
15Felix Hausdor� (1868-1942) was a German mathematician who is considered to be one of

the founders of modern topology.
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Proof: 1) If c = 0, the statement holds trivially. Let z ∈ W (cA), c 6= 0.

There exists x ∈ Cn such that z = x∗(cA)x, x∗x = 1, i.e.,
z

c
= x∗Ax ⇐⇒

z

c
∈ W (A)⇐⇒ z ∈ cW (A).

2) Let z ∈ W (cI+A). There exists x ∈ Cn such that z = x∗(cI+A)x, x∗x = 1,
i.e., z = c+ x∗Ax⇐⇒ z − c ∈ W (A)⇐⇒ z ∈ c+W (A).

3) Let z ∈ W (A+B). There exists x ∈ Cn such that z = x∗(A+B)x, x∗x = 1,
i.e., z = x∗(A+B)x = x∗Ax+ x∗Bx =⇒ z ∈ W (A) +W (B).

4) Let z ∈ W (U∗AU). There exists x ∈ Cn such that z = x∗(U∗AU)x, x∗x =
1⇐⇒ z = y∗Ay, y∗y = 1⇐⇒ z ∈ W (A), where y = Ux.

2

Theorem 1.7.4 For an arbitrary matrix A ∈ Cn,n, it holds that

σ(A) ⊆ W (A). (1.26)

Proof: Let λ ∈ C be an arbitrary eigenvalue of A and x ∈ Cn, x 6= 0, is its
associated eigenvector. Without loss of generality, assume that x is normalized,
i.e., ||x||2 = 1. Then, λ = λ(x∗x) = x∗λx = x∗Ax, i.e., λ ∈ W (A). As this holds
for each eigenvalue of A, it follows that σ(A) ⊆ W (A). 2

Theorem 1.7.5 ([71], Theorem 2) W (A) is a real line segment [a, b] if and only
if A ∈ Cn,n is a Hermitian matrix with its the smallest eigenvalue a and the
largest eigenvalue b.

The abscissa of the numerical range W (A) of matrix A ∈ Cn,n is

ω(A) := max{Re(z) : z ∈ W (A)}. (1.27)

So, W (A) lies in a closed half-plane, i.e.,

W (A) ⊆ {z ∈ C : Re(z) ≤ ω(A)}.

For a given set S in the complex plane, its convex hull co(S) is

co(S) =
⋂
T

{T : T is convex and S ⊆ T}.
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Theorem 1.7.6 ([71], Theorem 3) If A ∈ Cn,n is a normal matrix, the setW (A)
is the convex hull of its eigenvalues, i.e.,

W (A) = co(σ(A)) = {tλ1 + (1− t)λ2 : λ1, λ2 ∈ σ(A), t ∈ [0, 1]}.

A Hermitian part of a given matrix A ∈ Cn,n is:

H(A) :=
A+ A∗

2
.

It is obvious that H(A) is a Hermitian matrix, implying that all its eigenvalues
are real numbers. Also, because of Theorem 1.7.5, the numerical range ofH(A) is
closed interval [λmin, λmax], where λmin and λmax are its the smallest and largest
eigenvalue, respectively.

Lemma 1.7.7 ([63], Lemma 3.8.) For a given matrix A ∈ Cn,n holds:

W (H(A)) = Re(W (A)) := {Re(z) : z ∈ W (A)}.

First connection between Ger²gorin's localizations and numerical range was es-
tablished by C. R. Johnson16 in [36]. Here, we state the result with its proof.

Theorem 1.7.8 ([63], Theorem 3.9.) For a given matrix A ∈ Cn,n holds:

W (A) ⊆ J(A) := co
( n⋃
i=1

{
z ∈ C : |z − aii| ≤

ri(A) + ri(A
T )

2

})
.

Proof: First, we will prove the statement "If J(A) ⊆ {z ∈ C : Re(z) > 0}, then
W (A) ⊆ {z ∈ C : Re(z) > 0}".

From J(A) ⊆ {z ∈ C : Re(z) > 0}, it is obvious that Re(aii) >
ri(A) + ri(A

T )

2
,

i ∈ N. For H(A) =
A+ A∗

2
, we obtain:

ri(H(A)) =
n∑
j 6=i

|aij + a∗ij|
2

≤

n∑
j 6=i
|aij|+

n∑
j 6=i
|a∗ij|

2
=
ri(A) + ri(A

T )

2
,

16Charles Royal Johnson (1948) is an American mathematician specializing in linear algebra.
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i ∈ N. Thus, the whole Ger²gorin set of H(A) lies in the open right half-plane.
As H(A) is Hermitian, it has only positive real eigenvalues and W (H(A)) is a
real line segment (Theorem 1.7.5). So, W (A) ⊆ {z ∈ C : Re(z) > 0} (Theorem
1.7.7).
Next, we prove the second statement: "If 0 /∈ J(A), then 0 /∈ W (A)".
Assume that 0 /∈ J(A). As J(A) is a convex set by de�nition, there exists
θ ∈ [0, 2π) such that J(eiθA) ⊆ {z ∈ C : Re(z) > 0} (Separating hyperplane
theorem, Horn17 and Johnson, 1985). Using the �rst statement, this implies that
W (eiθA) ⊆ {z ∈ C : Re(z) > 0}. As W (A) = e−iθW (eiθA) (Theorem 1.7.3), it
follows that 0 /∈ W (A).
Finally, we prove the third statement: "If z /∈ J(A), then z /∈ W (A)".
If z /∈ J(A), then 0 /∈ J(A − zI). From the second statement, we obtain
0 /∈ W (A− zI) = W (A)− z, which gives that z /∈ W (A).
Therefore, if z ∈ W (A), then z ∈ J(A), i.e., W (A) ⊆ J(A). 2

Motivated by this, in the following, we will consider the relationship between the
numerical range and the minimal Ger²gorin set.

17Roger Alan Horn (1942) is an American mathematician specializing in matrix analysis.
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Chapter 2

Algorithms for computing the

minimal Ger²gorin set

"The beauty and simplicity of Ger²gorin's
theorem has undoubtedly inspired further
research, resulting in hundreds of papers
in which the name Ger²gorin appears."

Richard Varga

In this chapter, in Sections 2.1 and 2.2, we review existing algorithms for
computing the minimal Ger²gorin set. In Section 2.3, we present two di�e-
rent characterizations - explicit and implicit. The implicit characterization is a
new result published in [49]. Then, in Section 2.4, we introduce three di�erent
approaches for tracing of the boundary of the minimal Ger²gorin set (star-shaped,
predictor-corrector, triangular), that are combined with two characterizations
resulting in six algorithms.

2.1 Grid based algorithm

The griding MGS algorithm (gMGS) is the simplest algorithm for computing
the minimal Ger²gorin set. It is constructed by computing values of the function
νA(z), for all z in a given rectangular grid.

47



As the minimal Ger²gorin set is a subset of the Ger²gorin set of a given matrix
A = [aij] ∈ Cn,n, we can easily construct the rectangular grid [lre, ure]× [lim, uim],
where:

lre = min
i∈N

(Re(aii)− ri(A)), ure = max
i∈N

(Re(aii) + ri(A)), (2.1)

lim = min
i∈N

(Im(aii)− ri(A)), uim = max
i∈N

(Im(aii) + ri(A)). (2.2)

The approximation of ∂ΓR(A) is obtained as a zero-level curve on that grid.

Therefore, the algorithm gMGS is simple for implementation. For input
parameters, it uses a given matrix A and a parameter ng, which determines
the number of points in the grid. However, in cases when we use a �ne grid
in order to get a better localization, this algorithm requires a large number of
eigenvalue computations. So, the algorithm gMGS is numerically expensive,
even for matrices of small sizes.

Algorithm gMGS
Input: A, ng

1: Compute lre, ure, lim and uim using (2.1) and (2.2);
2: Set δx = ure−lre

ng
and δy = uim−lim

ng
;

3: for kx = 0 : ng do
4: for ky = 0 : ng do
5: Set z := (lre + kxδx) + i(lim + kyδy);
6: Compute G(kx, ky) := νA(z) as the rightmost eigenvalue (r.m.e) of

QA(z);
7: end for
8: end for
9: Compute the zero level curve C of G;
Output: C

2.2 Bisection based approximation

An improvement to the straight-forward gMGS algorithm was introduced by
R. Varga, Lj. Cvetkovi¢ and V. Kosti¢ in [69]. Here we call it the bisection MGS
algorithm (bMGS), The approximation of ΓR(A) is obtained by computing
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several points on the boundary and through them constructing the desired set
using Theorem 1.4.3. In order to obtain the points on the boundary, the proposed
approach was to use the fact that the minimal Ger²gorin set is star shaped.

De�nition 2.2.1 A set S ∈ C is called star-shaped (or star-convex or star-
domain) if there exists an x0 ∈ S such that for all x ∈ S the line segment from
x0 to x is in S.

Theorem 2.2.2 ( [63], Theorem 4.6.) If A = [aij] ∈ Cn,n, n ≥ 2, is an arbitrary
irreducible matrix, then νA(aii) > 0 for each i ∈ N . Moreover, for each i ∈ N
and each real θ ∈ [0, 2π), there exists the largest number ρ̂i(θ) > 0 such that

νA(aii + ρ̂i(θ)e
iθ) = 0 and νA(aii + teiθ) ≥ 0, for all 0 ≤ t < ρ̂i(θ), (2.3)

i.e., the entire complex interval [aii + teiθ]
ρ̂i(θ)
t=0 is contained in ΓR(A). Conse-

quently, for each i ∈ N, the set

2π⋃
θ=0

[aii + teiθ]
ρ̂i(θ)
t=0 (2.4)

is a star-shaped subset of the miminal Ger²gorin set with respect to aii and

aii + ρ̂i(θ)e
iθ ∈ ∂ΓR(A). (2.5)

Proof: Irreducibility of A implies that QA(z) is also an irreducible matrix, for
any choice of z ∈ C. Hence, for any z ∈ C there exists y = [y1, y2, ..., yn]T > 0,
such that νA(z) = (QA(z)y)j/yj (Theorem 1.3.4), for all j ∈ N. If aii is an
arbitrary diagonal element of A, i ∈ N, and x = [x1, x2, ..., xn]T > 0, is an
associated vector for which νA(aii) = (QA(aii)x)i/xi, we obtain:

νA(aii) = rxi (A)− |aii − aii| = rxi (A).

So, νA(aii) > 0 (rxi (A) > 0 because A is irreducible).

Now, we consider a semi-in�nite complex line aii + teiθ which begins in aii,
for t ≥ 0 and �xed θ ∈ [0, 2π). For t = 0, νA(aii) > 0 and νA(z) < 0 for
z /∈ ΓR(A). Because of a continuity of the function νA, there is the smallest
number ρ̂i(θ) > 0 such that aii+ ρ̂i(θ)e

iθ ∈ ∂ΓR(A). Therefore, each line segment
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that joins a diagonal element of aii and point aii + ρ̂i(θ)e
iθ ∈ ∂ΓR(A) is a subset

of ΓR(A). As it is true for each θ ∈ [0, 2π), we have

2π⋃
θ=0

[aii + teiθ]
ρ̂i(θ)
t=0 ⊆ ΓR(A),

i.e., the set
2π⋃
θ=0

[aii + teiθ]
ρ̂i(θ)
t=0 is a star-shaped subset of the minimal Ger²gorin set

with a respect to aii, i ∈ N. 2

According to the previous theorem, we can start with an arbitrary diagonal
entry aii, choose an arbitrary angle θ and search for the boundary point of the
form aii + teiθ for t ≥ 0. The use of the bisection method is grounded due to the
following property of νA.

Theorem 2.2.3 For any A ∈ Cn,n, the function νA is uniformly continuous on
C, i.e.,

|νA(z)− νA(z′)| ≤ |z − z′|,

for all z and z′ in C.

Proof: For given z, z′ ∈ C, without loss of generality, let assume νA(z) ≥ νA(z′).
From (1.21), it follows that there exist positive vectors xz, xz′ ∈ Rn and j, k ∈ N
such that:
|νA(z)− νA(z′)| = νA(z)− νA(z′) =
max
i∈N

(rxzi (A)− |z − aii|)−max
i∈N

(r
xz′
i (A)− |z′ − aii|) ≤

max
i∈N

(r
xz′
i (A)− |z − aii|)−max

i∈N
(r
xz′
i (A)− |z′ − aii|) =

(r
xz′
j (A)− |z − ajj|)− (r

xz′
k (A)− |z′ − akk|) ≤

(r
xz′
j (A)− |z − ajj|)− (r

xz′
j (A)− |z′ − ajj|) =

|z′ − ajj| − |z − ajj| ≤ |z′ − ajj − z + ajj| = |z − z′|. 2

Given an irreducible matrix A ∈ Cn,n and its diagonal element aii, i ∈ N.
From the uniform continuity of νA, we have:

|νA(z)− νA(z′)| ≤ |z − z′|.
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Replacing z and z′ with aii + ρ̂i(θ)e
iθ ∈ ∂ΓR(A) and aii, respectively, and using

the fact that νA(aii) > 0 (Theorem 2.2.2), we obtain:

|νA(aii + ρ̂i(θ)e
iθ)− νA(aii)| ≤ |aii + ρ̂i(θ)e

iθ − aii|,

i.e.,
0 < νA(aii) ≤ ρ̂i(θ).

Therefore, it is possible to �nd numbers δ > 0 and lik ∈ N, k ∈ {1, 2, ...,m}, m ∈
N such that

ρ̂i(θ) ∈ [νA(aii) + (lik − 1)δ, νA(aii) + likδ],

where m is a given number of di�erent angular directions. Using the bisec-
tion method and the fact that νA(z) is a uniformly continuous function, we can
construct the procedure bSearch that produces points {ωj,k} which lie on the
boundary of the minimal Ger²gorin set, j ∈ N, k ∈ {1, 2, ...,m}.

As it is numerically expensive to compute boundary points of ΓR(A) using
the bisection method, we construct an approximation of the minimal Ger²gorin
set. Namely, consider the sets:

Γωj,k(A) :=
n⋃
i=1

{z ∈ C : |z − aii| ≤ |ωj,k − aii|}

and

Γ̂R(A) := Γ(A) ∩
m⋂
k=1

n⋂
j=1

Γωj,k(A).

Using Olga Taussky's boundary result (Theorem 1.4.3), for a given ωj,k ∈ ∂ΓR(A),
there is x = [x1, x2, ..., xn]T > 0 such that QA(ωj,k)x = 0. Equivalently, for all
i ∈ N,

|ωj,k − aii| =
n∑
k 6=i

|aik|xk
xi

.

It is interesting that knowing the boundary point ωj,k, all discs in Γωj,k(A) with
centers in aii can be directly drawn, without knowing the components of x. So,
their intersection gives the approximation of ΓR(A), i.e.,

ΓR(A) ⊆ Γ̂R(A) ⊆ Γ(A).

51



bSearch
Input: A, ξ, θ, tol

1: Set z := ξ and compute f := νA(z) as the rightmost eigenvalue of QA(z);
2: Set δ := f and l := 0;
3: while f > 0 do
4: l := l + 1;
5: Set z := ξ + lδeiθ and compute f := νA(z) as the rightmost eigenvalue of

QA(z);
6: end while
7: Set a := (l − 1)δ and b := lδ;
8: while b− a > tol do
9: Set z := ξ + a+b

2
eiθ and compute f := νA(z) as the rightmost eigenvalue of

QA(z);
10: if f > 0 then
11: a := a+b

2
;

12: else
13: b := a+b

2
;

14: end if
15: end while
16: Set ω = ξ + a+b

2
eiθ;

Output: ω

Now, we construct the procedure gerApprox in order to obtain boundary
of the set Γ̂R(A). Apart from the sequence of points {ωj,k}, the procedure ger-
Approx uses also parameter ng ∈ N as an input. In that way, the approximation
of ∂ΓR(A) is constructed on an equally spaced rectangular grid.

Furthermore, we present the algorithm bMGS. For parameters A ∈ Cn,n, m,
ng ∈ N and a given tolerance tol > 0, this algorithm computes m · n points on
the boundary of ∂ΓR(A).

The algorithm bMGS has several drawbacks. The main drawback is a usage
of the bisection method on m · n points, resulting with a large number of eigen-
values computations even for matrices of medium sizes. In addition, it needs
pre-computations in order to �nd a proper starting bisection interval. In some
cases, if the parameter δ is not chosen in a proper way, the �rst zero of νA can
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gerApprox

Input: A, ng, {ωj,k}j∈N, k∈{1,2,...,m}
1: Compute lre, ure, lim and uim using (2.1) and (2.2);
2: Set δx = ure−lre

ng
and δy = uim−lim

ng
;

3: for kx = 0 : ng do
4: for ky = 0 : ng do
5: Set z := (lre + kxδx) + i(lim + kyδy);
6: Compute G(kx, ky) := min

i∈N
{|z − aii| − ri(A)};

7: for j = 1 : n and k = 1 : m do
8: Set Gjk(kx, ky) = |z − a11| − |ωj,k − a11|;
9: for i = 2 : n do
10: Update Gjk(kx, ky) = min{Gjk(kx, ky), |z − aii| − |ωj,k − aii|};
11: end for
12: Update G(kx, ky) = max{G(kx, ky), Gjk(kx, ky)};
13: end for
14: end for
15: end for
16: Compute the zero level curve C of G;
Output: C

Algorithm bMGS

Input: A, ng,m, tol

1: for j = 1 : n do
2: for k = 1 : m do
3: Set θk = k 2π

m
;

4: Run the procedure bSearch(A, ajj, θk, tol) to compute
{ωj,k}j∈N, k∈{1,2,...,m};

5: end for
6: end for
7: Run the procedure gerApprox(A, ng, {ωj,k}j∈N, k∈{1,2,...,m});
Output: C

be skipped on the ray {aii + teiθ}, t > 0, i ∈ N.
Finally, notice that the original version of this algorithm ([69]) was used only

for irreducible matrices although it can be adaptable for reducible matrices, too
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(Lemma 1.5.5). Also, note that the approximation can be improved, at the
expense of more computations, if we use the Brauer set instead of the Ger²gorin
set for boundary points.

2.3 Explicit vs. implicit characterization of the

minimal Ger²gorin set

In this section, two characterizations of the minimal Ger²gorin set are pre-
sented: explicit and implicit. The explicit characterization is given in [40], while
the implicit characterization is a new result which is the basis for the algorithms
applicable to large sparse matrices ([49]).

2.3.1 Explicit characterization

According to Theorems 1.5.1 and 1.5.2, the minimal Ger²gorin set of a given
matrix A ∈ Cn,n is completely characterized by:

z ∈ ΓR(A)⇐⇒ νA(z) ≥ 0,

while its boundary is characterized by:

z ∈ ∂ΓR(A)⇐⇒

{
νA(z) = 0 and there exists a sequence {zj} such that
lim
j→∞

zj = z and νA(zj) < 0, j ∈ N.

Using the fact that the boundary points of ΓR(A) are of the form aii + ρ̂i(θ)e
iθ,

here, for a given A ∈ Cn,n, ξ ∈ C and θ ∈ [0, 2π), we de�ne a function
f ξ,θA : [0,∞)→ R by:

f ξ,θA (t) := νA(ξ + teiθ). (2.6)

Using this function, we have the following theorem whose proof follows directly
from Theorems 1.5.1 and 1.5.2.

Theorem 2.3.1 Given an arbitrary irreducible matrix A = [aij] ∈ Cn,n, a com-

plex number ξ, a real number θ ∈ [0, 2π) and the function f ξ,θA de�ned by (2.6).
Then,

1. ξ + teiθ ∈ ΓR(A) if and only if f ξ,θA (t) ≥ 0;
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2. ξ + teiθ ∈ ∂ΓR(A) if and only if f ξ,θA (t) = 0 and for ε > 0 there exists

θε ∈ [0, 2π) such that f ξ+te
iθ,θε

A (ε) < 0.

The statement of the previous theorem we will call the explicit characterization.

The usefulness of the function f ξ,θA lies in the fact that it is di�erentiable
everywhere except at the most n points. Moreover, one can obtain its �rst order
derivative, as it is expressed in the following theorem.

Theorem 2.3.2 Given an arbitrary irreducible matrix A = [aij] ∈ Cn,n, a com-

plex number ξ, a real number θ ∈ [0, 2π) and the function f ξ,θA de�ned by (2.6).
Then, f ξ,θA is ∞−di�erentiable in t /∈ {(ξ − aii)e

i(π−θ) : i ∈ N} and its �rst
derivative is given as:

∂

∂t
f ξ,θA (t) = −u(t)TDξ,θ

A (t)v(t)

u(t)Tv(t)
, (2.7)

where v(t) and u(t) are right and left eigenvectors of QA(ξ+teiθ) corresponding to
the eigenvalue f ξ,θA (t), respectively, where diagonal matrix Dξ,θ

A (t) := diag([d1(t),
d2(t), . . . , dn(t)]) is given by:

di(t) :=
Re[(ξ − aii) e−iθ] + t

|(ξ − aii) e−iθ + t|
, i ∈ N. (2.8)

Proof: As A is irreducible, it follows that QA(ξ + teiθ) is also an irreducible
matrix. Then, f ξ,θA (t) is a simple eigenvalue of QA(ξ + teiθ) and denote its
corresponding right and left eigenvectors by v(t) and u(t), respectively. Using a
well-known result on di�erentiability of simple eigenvalues (Theorem 1.2.1), we
obtain:

∂

∂t
f ξ,θA (t) =

u(t)T ∂
∂t
QA(ξ + teiθ)v(t)

u(t)Tv(t)
, (2.9)

i.e., f ξ,θA is a ∞-di�erentiable in t, for t 6= (ξ − aii)ei(π−θ), i ∈ N.
From qii(ξ+ teiθ) = −|ξ+ teiθ−aii| = −|eiθ||(ξ−aii)e−iθ + t| = −|(ξ−aii)e−iθ + t|
and qij(ξ + teiθ) = |aij|, we have:

∂

∂t
qii(ξ + teiθ) = −Re[(ξ − aii) e

−iθ] + t

|(ξ − aii) e−iθ + t|
and
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∂

∂t
qij(ξ + teiθ) = 0,

for t 6= (ξ − aii)ei(π−θ), i, j ∈ N, i 6= j.
Therefore, ∂

∂t
QA(ξ + teiθ) = −Dξ,θ

A (t) and from (2.9) it follows:

∂

∂t
f ξ,θA (t) = −u(t)TDξ,θ

A (t)v(t)

u(t)Tv(t)
.

2

2.3.2 Implicit characterization

Now, we present a novel characterization of ΓR(A) that is the result of this
thesis, published in [49]. First, we de�ne functions gξ,θA and hξ,θA that will play
role of f ξ,θA .

Given an arbitrary irreducible matrix A ∈ Cn,n, a complex number ξ and a
real number θ ∈ [0, 2π), let us �x a vector c ∈ Rn, c > 0, and for every t ≥ 0
construct a system of linear equations[

−QA(ξ + t eiθ) −c
−cT 0

]
︸ ︷︷ ︸

Mξ,θ
A (t)

[
wξ,θA (t)

gξ,θA (t)

]
=

[
0
−1

]
. (2.10)

Assuming that M ξ,θ
A (t) is nonsingular, (2.10) can be uniquely solved, and the

Cramer's rule provides that

gξ,θA (t) := −det(−QA(ξ + t eiθ))

det(M ξ,θ
A (t))

. (2.11)

The de�ned function becomes zero whenever matrix QA(z) becomes singular in
the point z = ξ + t eiθ. In the following, we see how gξ,θA can be used instead of
a νA to characterize the boundary of the minimal Ger²gorin set.

Next, we will use well-known properties of the Schur complement. Namely, if

a matrix M is partitioned into four blocks, i.e., M =

[
A B
C D

]
, where matrices
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A and D are square and A and E := D − CA−1B are nonsingular, using the
Schur complement, we have:

M−1 =

[
A B
C D

]−1

=

[
A−1 + A−1BE−1CA−1 −A−1BE−1

−E−1CA−1 E−1

]
, (2.12)

and
det(M) = det(A)det (E) . (2.13)

Theorem 2.3.3 Given an arbitrary irreducible matrix A ∈ Cn,n, a complex
number ξ, a real 0 ≤ θ < 2π and c ∈ Rn arbitrary positive vector, let t̂ > 0
be maximal such that ξ+ t eiθ ∈ ΓR(A), for all t ∈ [0, t̂]. Then, there exists ε > 0
such that M ξ,θ

A (t) is a nonsingular matrix for all t ∈ [t̂− ε, t̂+ ε]. Consequently,
(2.10) de�nes an ∞-di�erentiable functions gξ,θA and wξ,θA on [t̂− ε, t̂+ ε].

Proof: First let us show that the matrix M ξ,θ
A (t̂) is nonsingular. Assume that

M ξ,θ
A (t̂) is singular. As the o�-diagonal zero pattern is the same for A and

QA(ξ + t̂ eiθ) and c > 0, the irreducibility of A implies the irreducibility of
matrices QA(ξ + t̂ eiθ) and M ξ,θ

A (t̂). Let [w α]T be the right eigenvector of the
matrix M ξ,θ

A (t̂) corresponding to the zero eigenvalue, i.e.,[
−QA(ξ + t̂ eiθ) −c

−cT 0

] [
w
α

]
= 0

[
w
α

]
=

[
0
0

]
. (2.14)

Hence, we obtain
QA(ξ + t̂ eiθ)w + cα = 0 (2.15)

and
cTw = 0. (2.16)

Using the Perron-Frobenius theorem for essentially non-negative irreducible ma-
trices (Theorem 1.3.4), an eigenvalue νA(ξ+ t̂ eiθ) = 0 of the matrix QA(ξ+ t̂ eiθ)
has a positive right and left eigenvector x̂ and ŷ, respectively. Moreover, eve-
ry right (left) eigenvector corresponding to the eigenvalue zero will be a scalar
multiple of x̂ (ŷ). Multiplying equation (2.15) by ŷT , we obtain

ŷTQA(ξ + t̂ eiθ)w + ŷT cα = 0 =⇒ ŷT cα = 0 =⇒ α = 0, (2.17)

57



which together with (2.15) implies that QA(ξ + t̂ eiθ)w = 0, i.e., w 6= 0 is the
right eigenvector corresponding to the eigenvalue zero. Hence, there exists β 6= 0
that w = βx̂. Then, from (2.16), we obtain

βcT x̂ = 0 =⇒ cT x̂ = 0, (2.18)

which is a contradiction. Therefore, M ξ,θ
A (t̂) has to be a nonsingular matrix.

Moreover, using the continuity of M ξ,θ
A (t) in parameter t, we conclude that there

exists a su�ciently small ε > 0 such that for all t ∈ [t̂ − ε, t̂ + ε], M ξ,θ
A (t)

is nonsingular and gξ,θA (t) and wξ,θA are ∞-di�erentiable functions for all t ∈
[t̂− ε, t̂+ ε]. 2

Theorem 2.3.4 Given an arbitrary irreducible matrix A ∈ Cn,n, a complex
number ξ, a real 0 ≤ θ < 2π and c ∈ Rn arbitrary positive vector, let t̂ > 0
be maximal such that ξ+ t eiθ ∈ ΓR(A), for all t ∈ [0, t̂]. Then, there exists ε > 0
such that:

1. for every z = ξ + t eiθ 6∈ ΓR(A), gξ,θA (t) and wξ,θA (t) are well de�ned and
positive;

2. gξ,θA (t) > 0 for all t ∈ (t̂, t̂+ ε];

3. gξ,θA (t̂) = 0;

4. gξ,θA (t) < 0 for all t ∈ [t̂− ε, t̂);

5. the �rst and the second derivatives ∂
∂t
gξ,θA , ∂

∂t
wξ,θA and ∂2

∂t2
gξ,θA , ∂2

∂t2
wξ,θA are

de�ned via the linear systems:[
−QA(ξ + t eiθ) −c

−cT 0

] [
∂
∂t
wξ,θA (t)

∂
∂t
gξ,θA (t)

]
=

[
−Dξ,θ

A (t)wξ,θA (t)
0

]
, (2.19)

[
−QA(ξ + t eiθ) −c

−cT 0

] [
∂2

∂t2
wξ,θA (t)

∂2

∂t2
gξ,θA (t)

]
=

[
−Sξ,θA (t)wξ,θA (t)− 2Dξ,θ

A (t) ∂
∂t
wξ,θA (t)

0

]
,

(2.20)
where the vector function wξ,θA (t) is de�ned as the solution of the linear sys-
tem (2.10), Dξ,θ

A (t) := diag([d1(t), d2(t), . . . , dn(t)]) and Sξ,θA (t) := diag([s1(t), s2(t),
. . . , sn(t)]), where:

di(t) :=
Re[(ξ − aii) e−iθ] + t

|(ξ − aii) e−iθ + t|
, (2.21)
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and

si(t) :=
(Im[(ξ − aii) e−iθ + t])2

|(ξ − aii) e−iθ + t|3
, (2.22)

for t 6= (ξ − aii)ei(π−θ), i ∈ N .

Proof: 1. Let z = ξ + t eiθ 6∈ ΓR(A), then −QA(ξ + t eiθ) is a nonsingular M-
matrix, implying (−QA(ξ + t eiθ))−1 ≥ 0 and det(−QA(ξ + t eiθ)) > 0. So, from
(2.13),

det(M ξ,θ
A (t)) = − det(−QA(ξ + t eiθ))cT (−QA(ξ + t eiθ))−1c < 0 (2.23)

and we obtain that M ξ,θ
A (t) is nonsingular. Therefore, using a formula for the

inversion of a block matrix (2.12), we have that

(M ξ,θ
A (t))−1

[
0
−1

]
=

[
(−QA(ξ + t eiθ))−1c(cT (−QA(ξ + t eiθ))−1c)−1

(cT (−QA(ξ + t eiθ))−1c)−1

]
> 0,

implying that gξ,θA (t) and wξ,θA (t) are well-de�ned and positive.

Items 2., 3. and 4. follow from the continuity of det(M ξ,θ
A (t)) and the fact that

det(−QA(ξ + t̂ eiθ)) = 0.

5. Finally, we get the expressions for the derivatives. If t 6= (ξ − aii)ei(π−θ) for
i ∈ N , the entries of QA(ξ + t eiθ) are ∞-di�erentiable functions in t and their
�rst and second derivatives are given as:

∂

∂t
qii(ξ + t eiθ) =

Re[(ξ − aii) e−iθ] + t

|(ξ − aii) e−iθ + t|
,

∂

∂t
qij(ξ + t eiθ) = 0, for j 6= i, (2.24)

and

∂2

∂t2
qii(ξ + t eiθ) =

(Im[(ξ − aii) e−iθ + t])2

|(ξ − aii) e−iθ + t|3
,

∂2

∂t2
qij(ξ + t eiθ) = 0, for j 6= i,

(2.25)
for all i, j ∈ N. By di�erentiating (2.10) and using (2.24) and (2.25), we obtain
(2.19) and (2.20). 2

De�nition 2.3.5 For a �xed ξ ∈ C and 0 ≤ θ < 2π, for t ≥ 0, de�ne the func-
tions:

χξ,θA (t) := min
{

(wξ,θA (t))i : 1 ≤ i ≤ n
}
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and
hξ,θA (t) := min

{
gξ,θA (t), χξ,θA (t)

}
. (2.26)

Then, the following characterization of the minimal Ger²gorin set holds.

Theorem 2.3.6 Let be given an arbitrary irreducible matrix A ∈ Cn,n and its
arbitrary diagonal entry ξ = akk, k ∈ N and z = ξ + t eiθ, where t ≥ 0 and
0 ≤ θ < 2π. Then,

• z /∈ ΓR(A) if and only if hξ,θA (t) > 0;

• z ∈ ∂ΓR(A) such that t = ρ̂k(θ) if and only if

i) hξ,θA (t) = gξ,θA (t) = 0,

ii) hξ,θA (s1) ≤ 0 holds for all 0 ≤ s1 ≤ t, and

iii) for every ε > 0 there exists s2 ≥ t such that s2−t < ε and hξ,θA (s2) > 0;

• if c is chosen to be a positive normalized (‖c‖2 = 1) eigenvector of the
Perron eigenvalue νA(ξ) > 0 of QA(ξ) andM ξ,θ

A (0) is a nonsingular matrix,
then gξ,θA (0) < 0 and wξ,θA (0) > 0.

Proof: For the �rst item, we prove the equivalence. Assume that z /∈ ΓR(A),
then, as it is shown in the item 1. of Theorem 2.3.4, hξ,θA (t) > 0. On the
other hand, assume that hξ,θA (t) > 0, then from the system (2.10), we get
−QA(z)wξ,θA (t) = gξ,θA (t)c > 0, while wξ,θA (t) > 0. However, this implies that
−QA(z) is a nonsingular M-matrix. So, z /∈ ΓR(A).

For the second item, �rst observe that i) − iii) imply that t = ρ̂k(θ) as de�ned
in Theorem 2.2.2. So, assume z ∈ ∂ΓR(A) such that t = ρ̂k(θ) and let ε > 0 and
0 ≤ s1 ≤ t ≤ s2 and s2 − t < ε. Then Theorem 2.3.4, item 3. gives gξ,θA (t) = 0.
Item 1. states that wξ,θA (s2) > 0, which with continuity implies wξ,θA (t) ≥ 0. So,
we conclude hξ,θA (t) = 0. Obviously, ii) follows from the previous item and iii)
from the de�nition of ρ̂k(θ).

For the third item, if c is a positive normalized eigenvector of the Perron eigen-
value νA(ξ) > 0 of QA(ξ), then QA(ξ)c = νA(ξ)c and cT c = 1. From the system
(2.10) for t = 0, we obtain −QA(ξ)wξ,θA (0) = gξ,θA (0)c and −cTwξ,θA (0) = −1.
Finally, we get gξ,θA (0) = −νA(ξ) < 0 and wξ,θA (0) = c > 0 because of the nonsin-
gularity of M ξ,θ

A (0). 2
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The statement of the previous theorem we will call the implicit characterization
of the minimal Ger²gorin set.

2.4 Curve tracing approaches

In this section, three di�erent curve tracing approaches are presented. Com-
bining them with explicit and implicit characterization of the minimal Ger²gorin
set, six algorithms are developed: eMGSs, iMGSs, eMGSp, iMGSp, eMGSt
and iMGSt (Figure 2.1).

Figure 2.1: Algorithms for computing MGS.

All presented algorithms are performed for irreducible matrices. However,
this is not a setback (theoretically) for their application to reducible matrices
(Lemma 1.5.5).

2.4.1 Star-shaped curve tracing

In this subsection, two algorithms for computing the minimal Ger²gorin set
are presented- eMGSs and iMGSs. They are based on the computation of
points that lie on the boundary of the minimal Ger²gorin set using Newton-like
method with a given accuracy, function f ξ,θA (2.6) for eMGSs and functions gξ,θA
(2.11) and hξ,θA (2.26) for iMGSs.
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First, we describe construction of the explicit algorithm (eMGSs). It is
developed in [40] and is based on the modi�ed Newton's method.

Using the previous results (Theorem 2.2.2 and Lemma 1.5.5), we can con-
struct the minimal Ger²gorin set starting from each diagonal entry of a given ma-
trix A and computing points on its boundary for m angles θ, m ∈ N, θ ∈ [0, 2π).

Now, we formulate the modi�ed Newton's method for computing zero of the
function f ξ,θA de�ned as (2.6). De�ne t0 := f ξ,θA (0) = νA(ξ) > 0 and the sequence
{tk}, k ∈ N0, with

tk+1 := tk + γk∆k, (2.27)

where ∆k is de�ned as

∆k :=


− f ξ,θA (tk)

∂
∂t
f ξ,θA (tk)

, if ∂
∂t
f ξ,θA (tk) < 0

f ξ,θA (tk), otherwise

, (2.28)

and

γk :=

 1, if f ξ,θA (tk+1) ≥ 0

τ qk , otherwise
,

with τ ∈ (0, 1) and the smallest qk ∈ N such that

f ξ,θA (tk + τ qk ∆k) > 0 and f ξ,θA (tk + τ qk−1 ∆k) < 0. (2.29)

Lemma 2.4.1 Given an arbitrary irreducible matrix A ∈ Cn,n, a complex num-
ber ξ and a real 0 ≤ θ < 2π. The sequence {tk}, k ∈ N0, is well de�ned by
(2.27), and it converges to t̂ > 0 such that f ξ,θA ( t̂ ) = 0.

Proof: Firstly, observe that the uniform continuity of νA (2.2.3) implies that for
every t > 0 and ε > 0

|f ξ,θA (t+ ε)− f ξ,θA (t)| ≤ ε, (2.30)

and consequently, whenever f ξ,θA is di�erentiable such that∣∣∣∣ ∂∂tf ξ,θA (t)

∣∣∣∣ ≤ 1. (2.31)
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Therefore, for all k ∈ N0, ∆k ≥ f ξ,θA (tk).
Now, we show that the sequence {tk} is well-de�ned. Since f ξ,θA (t0) = νA(ξ +
νA(ξ) eiθ),

|f ξ,θA (t0)− f ξ,θA (0)| = |νA(ξ + νA(ξ) eiθ)− νA(ξ)| ≤ |eiθνA(ξ)| = νA(ξ),

i.e.,
−νA(ξ) ≤ f ξ,θA (t0)− f ξ,θA (0) ≤ νA(ξ),

it follows that f ξ,θA (t0) ≥ 0 and consequently, ∆0 ≥ 0. Thus, t0 + ∆0 ≥ t0 > 0,
and f ξ,θA (t0 + ∆0) is well-de�ned. If f ξ,θA (t0 + ∆0) < 0, the continuity of f ξ,θA , im-
plies that there exists q0 ∈ N, such that γ0 = τ q0 . Otherwise, if f ξ,θA (t0 +∆0) ≥ 0,
then γ0 = 1. By this, we obtain t1 := t0 + γ0∆0 ≥ t0 > 0, such that f ξ,θA (t1) ≥ 0.
Continuing in the same way, we obtain that the sequence {tk} is well-de�ned,
monotonically nondecreasing and f ξ,θA (tk) ≥ 0, for all k ∈ N0.
Let's assume that {tk} is unbounded. Then, for some ` ∈ N, there exists a sub-
sequence {tk`}, such that lim

`→∞
tk` = ∞. From the construction of the sequence,

we have that f ξ,θA (tk`) ≥ 0. It follows that z` := ξ + tk` e
iθ ∈ ΓR(A), for all ` ∈ N,

(Theorem 2.2.2). However, since |z`| → ∞, it is a contradiction because the
minimal Ger²gorin set is a compact set in C. As a result, the sequence {tk} is
convergent and we denote its limit as t̂ = lim

k→∞
tk.

Now, we distinguish two cases.
First, assume that lim

k→∞
infγk > 0, k ∈ N. Then,

0 ≤ f ξ,θA (tk) ≤ ∆k =
tk+1 − tk

γk
.

Taking the limit for k →∞, it follows f ξ,θA ( t̂ ) = 0.

Second, assume lim
`→∞

γk` = 0. Then, obviously, γk` = τ qk` < 1, for ` ∈ N, and

lim
`→∞

qk` =∞. It implies that 0 ≤ f ξ,θA ( t̂ ) ≤ 0, which completes the proof.

2

Using the previous lemma, we construct the procedure eSearch.

Theorem 2.4.2 Given an arbitrary irreducible matrix A ∈ Cn,n, a complex
number ξ and real numbers 0 ≤ θ < 2π and τ ∈ (0, 1), the procedure eSearch
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eSearch
Input: A, ξ, θ, tol
1: Set z = ξ and compute r.m.e. (the rightmost eigenpair) (f, x, y) of QA(z);
2: Set t := f, ∆ = 2 tol and β = 0.9;
3: while ∆ > tol do

4: Compute df := −y(t)T ∂
∂t
QA(ξ+teiθ)x(t)

y(t)T x(t)
;

5: if df > 0 then
6: Set df := −1;
7: end if
8: Set ∆ := −f/df and γ := 1;
9: Set z = ξ + (t+ γ∆)eiθ and compute r.m.e. (f, x, y) of QA(z);
10: while f < 0 do
11: γ := γ · β;
12: Set z = ξ + (t+ γ∆)eiθ and compute r.m.e. (f, x, y) of QA(z);
13: end while
14: t := t+ γ∆;
15: end while
16: Set z = ξ + (t+ γ∆)eiθ and compute r.m.e. (f, x, y) of QA(z);
17: if f > 0 then
18: Set t := t+ 2 tol and ∆ := 2 tol;
19: go to 3
20: end if
21: Set ω = ξ + t eiθ;
Output: ω

produces ω = ξ+ t̂ eiθ ∈ C such that ω ∈ ∂ΓR(A). Furthermore, if
∂2

∂t2
f ξ,θA (t̂) > 0,

the convergence is locally quadratic and otherwise, the convergence is linear with
the convergence rate lim

k→∞
sup(1− τ qk).

Proof: The lines (1−15) of the procedure eSearch, generate a sequence {tk}, k ∈
N, such that lim

t→∞
tk = t̂ and f(t̂) = 0. However, the obtained point ξ + t̂eiθ does

not have to lie on the boundary of the minimal Ger²gorin set. In order to �nd
a proper point, the lines (16 − 20) are added in the procedure to check if f ξ,θA
changes the sign in t̂. A repeated restart will occur until this condition is satis-
�ed. In that way, we obtain the point ω = ξ + t̂eiθ ∈ ∂ΓR(A). So, there exists
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ε > 0 such that
∂

∂t
f ξ,θA (t) < 0, for t ∈ (t̂ − ε, t̂). Consequently, there is k0 ∈ N,

such that ∆k = − f ξ,θA (tk)
∂
∂t
f ξ,θA (tk)

, for all k ≥ k0.

Now, we prove the rate of local convergence. There are two cases.

If
∂2

∂t2
f ξ,θA (t) > 0 for t ∈ (t̂− ε, t̂) and k ≥ k0, then f

ξ,θ
A is locally convex function

and γk = 1. It implies the quadratic convergence of modi�ed Newton's method.

If
∂2

∂t2
f ξ,θA (t) ≤ 0 for t ∈ (t̂− ε, t̂) and k ≥ k0, from (2.27) and (2.28), we obtain:

t̂− tk+1 = t̂− tk − γk∆k = t̂− tk + γk
f ξ,θA (tk)
∂
∂t
f ξ,θA (tk)

.

Using quadratic Taylor polynomial for f ξ,θA , there exists t∗ ∈ (t̂− tk, t̂) such that

0 = f ξ,θA (t̂) = f ξ,θA (tk) +
∂

∂t
f ξ,θA (tk)(t̂− tk) +

1

2

∂2

∂t2
f ξ,θA (t∗)(t̂− tk)2.

So,

t̂− tk+1 = t̂− tk − γk
∂
∂t
f ξ,θA (tk)(t̂− tk) + 1

2
∂2

∂t2
f ξ,θA (t∗)(t̂− tk)2

∂
∂t
f ξ,θA (tk)

=

(t̂− tk)(1− γk −
1
2
γk

∂2

∂t2
f ξ,θA (t∗)(t̂− tk)
∂
∂t
f ξ,θA (tk)

).

an consequently,

lim
k→∞

sup
t̂− tk+1

t̂− tk
= lim

k→∞
sup(1− τ qk).

2

Now, we present the original results that are used for a construction of new
algorithm for the numerical approximation of the minimal Ger²gorin set. This
new algorithm will be called an implicit one, abbreviated as iMGSs ([49]), since
the main idea is to avoid explicit computation of the Perron eigentriplets within
the algorithm eMGSs, by replacing the function f ξ,θA with a new function hξ,θA
that reveals the Perron eigenvalue implicitly through the solution of a structured
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system of linear equations. The motivation for this approach to signi�cantly
reduce the overall number of expensive eigenvalue computations can be found in
the idea of the implicit determinant method for pseudospectra given in [25].

Results of Theorems 2.3.4 and 2.3.6 are the basis for the procedure iSearch
which is the core of the implicit algorithm for computing the minimal Ger²gorin
set.

We formulate the new modi�ed Newton's method for the computing zeros of
the function hA. First, it will be de�ned the sequence {tk}, with

tk+1 := tk + γk∆k, k ∈ N0, (2.32)

where t0 := 0 and ∆k is given as

∆k :=


− gξ,θA (tk)

∂
∂t
gξ,θA (tk)

, if ∂
∂t
gξ,θA (tk) > 0

∆, otherwise

, (2.33)

where ∆ > 0 is given parameter and

γk :=

 1, if hξ,θA (tk+1) ≤ 0

τ qk , otherwise
, (2.34)

with parameter τ ∈ (0, 1) arbitrarily �xed and qk ∈ N being the smallest number
such that

hξ,θA (tk + τ qk ∆k) < 0 and hξ,θA (tk + τ qk−1 ∆k) > 0. (2.35)

For c, we choose vector de�ned in the third item in Theorem 2.3.6. Additionally,
if the convergence is achieved in t̃, then we check if hξ,θA (t̃ + ε) > 0 for a small
tolerance ε > 0 and if not, we restart the sequence taking t0 := t̃+ ε.

Theorem 2.4.3 Given an arbitrary irreducible matrix A ∈ Cn,n, a complex
number ξ and a real 0 ≤ θ < 2π, a sequence {tk}k∈N0 de�ned by (2.32) is mono-
tonically non-decreasing and it converges to t̂ > 0, such that ξ + t̂eiθ ∈ ∂ΓR(A).

Furthermore, if
∂2

∂t2
gξ,θA (t̂) > 0, the convergence is locally quadratic and otherwise,

the convergence is linear with the convergence rate lim
k→∞

sup(1− τ qk).

66



Proof: First we show that the sequence {tk}, k ∈ N0, is well-de�ned. From
Theorem 2.3.6 follows hξ,θA (0) < 0. From the de�nition of ∆k, we have ∆0 > 0.
Thus t0+∆0 > 0, and the continuity of hξ,θA together with (2.35) implies that there
exists 0 < γ0 ≤ 1 such that hξ,θA (t0+γ0∆0) < 0. So, we obtain t1 := t0+γ0∆0 > t0,
such that hξ,θA (t1) < 0. By induction, we obtain that the sequence {tk}k∈N is well-
de�ned and that hξ,θA (tk) < 0 with tk > tk−1, for all k ∈ N.
To prove the convergence of monotonically increasing sequence {tk}, it is enough
to show that it is bounded above. Let's assume that {tk} is unbounded. Then for
some m ∈ N, there exists a subsequence {tkm}, such that lim

m→∞
tkm = ∞. Also,

the fact hξ,θA (tkm) < 0 implies that zm := ξ + tkm e
iθ ∈ ΓR(A), for all m ∈ N and

lim
m→∞

|zm| = ∞. However, this is a contradiction because the minimal Ger²gorin
set is a compact set in C. Therefore, the sequence is convergent and we denote
its limit by t̂ = lim

k→∞
tk.

From the construction of the sequence we have that gξ,θA (t̂) = 0, when ∂
∂t
gξ,θA (t̂)

exists and it is positive, or that hξ,θA (t̂) = 0, otherwise. Finally, due to restarts we
obtain that z = ξ + t̂eiθ ful�lls the second item of Theorem 2.3.6, and, therefore
z = ξ + t̂eiθ ∈ ∂ΓR(A).
Now, we prove the rate of local convergence. There are two cases.

If
∂2

∂t2
gξ,θA (t̂) > 0, then gξ,θA is a locally convex function, and for su�ciently large

k ∈ N, γk = 1. This implies the quadratic convergence of modi�ed Newton's
method.

If
∂2

∂t2
gξ,θA (t̂) ≤ 0, then for su�ciently large k ∈ N,

∂

∂t
gξ,θA (tk) > 0, and, thus, from

(2.32) and (2.33), we obtain:

t̂− tk+1 = t̂− tk − γk∆k = t̂− tk + γk
gξ,θA (tk)
∂
∂t
gξ,θA (tk)

.

Using quadratic Taylor expansion for gξ,θA , there exists t∗ ∈ (t̂− tk, t̂) such that

0 = gξ,θA (t̂) = gξ,θA (tk) +
∂

∂t
gξ,θA (tk)(t̂− tk) +

1

2

∂2

∂t2
gξ,θA (t∗)(t̂− tk)2.

So,

t̂− tk+1 = t̂− tk − γk
∂
∂t
gξ,θA (tk)(t̂− tk) + 1

2
∂2

∂t2
gξ,θA (t∗)(t̂− tk)2

∂
∂t
gξ,θA (tk)

=
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(t̂− tk)(1− γk −
1
2
γk

∂2

∂t2
gξ,θA (t∗)(t̂− tk)
∂
∂t
gξ,θA (tk)

),

and consequently,

lim
k→∞

sup
t̂− tk+1

t̂− tk
= lim

k→∞
sup(1− τ qk).

2

iSearch
Input: A, ξ, θ, tol
1: Set z := ξ and compute the rightmost eigenpair (νA(z), c) of QA(z);
2: Set t := 0, ∆ := 2 tol and β = 0.9;
3: while ∆ > tol do
4: Compute g = gξ,θA (t) by solving (2.10);
5: Compute dg = ∂

∂t
gξ,θA (t) by solving (2.19);

6: if dg < 0 then
7: Set dg := −g/∆;
8: end if
9: Set ∆ := −g/dg and γ := 1;
10: Compute h = hξ,θA (t+ γ∆) using (2.10);
11: while h > 0 do
12: γ := γ · β;
13: Compute h = hξ,θA (t+ γ∆) using (2.10);
14: end while
15: Set t := t+ γ∆;
16: end while
17: Compute h = hξ,θA (t+ γ∆) using (2.10);
18: if h < 0 then
19: Set t := t+ 2 tol and ∆ := 2 tol;
20: go to 3
21: end if
22: Set ω = ξ + teiθ;
Output: ω

Finally, we present the algorithms *MGSs, where ∗ ∈ {e,i}, here and in the
following in the thesis. For a given irreducible matrix A of a size n ∈ N, denote its
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set of di�erent diagonal elements as D = {ai1i1 , ai2i2 , ..., aiñiñ}, where elements of
D are sorted from the leftmost to the rightmost (i.e., Re(ai1i1) ≤ Re(ai2i2) ≤ ... ≤
Re(aiñiñ)), ñ ∈ N. Also, we denote the points that represent the approximation
of the points of the boundary of the minimal Ger²gorin set with {ωi,j}mij=1, i ≤
s, mi ∈ N. The allowed maximal distance between that nodes and the boundary
of the minimal Ger²gorin set is less than ε1 and the distance between successive
points has to be less than ε2, i.e., dist(ωi,j, ∂ΓR(A)) := min

z∈∂ΓR(A)
|ωi,j − z| < ε1,

and |ωi,j − ωi,j+1| < ε2, where ωi,mi+1 := ωi,1.

Starting with values ξ := ai1i1 , ϕ1 = −π and using the procedure *Search,
we obtain the point ω1,1 := ξ + t1e

iϕ1 , where t1 := *Search(A, ξ, ϕ1, ε1). Then,
we change the angle ϕ1 to ϕ2 := ϕ1 + arctan l

t1
, where l := τ̃ ε2 and τ̃ > 0 is a

given parameter. In that way, we get the new point ω1,2 := ξ + t2e
iϕ2 , where

t2 := *Search(A, ξ, ϕ2, ε1). Analogously, as long as the angle ϕj ≤ π, we con-
struct a sequence of points {ω1,j}, j ∈ {1, 2, ...,m1}, such that |ω1,j−ω1,j+1| < ε2.
The obtained polygon {ω1,j}m1

j=1 approximates the boundary of one component
of the set ΓR(A).

In some steps of the algorithm *MGSs, because of the geometry of the
minimal Ger²gorin set, it can be impossible to �nd the next point. We use the
following lemma to overcome that di�culty and change the center point ξ.

Lemma 2.4.4 Given an arbitrary irreducible matrix A = [aij] ∈ Cn,n, for every
point ω ∈ ∂ΓR(A), su�ciently small ε > 0 and z ∈ ∂ΓR(A) satisfying |z−ω| < ε
and arg(z − aii) > arg(ω − aii), there exists an index i ∈ N such that for all
α ∈ [0, 1] holds αz + (1− α)aii ∈ ΓR(A),

Proof: If A = D−B, where D = diag(a11, a22, ..., ann), let's consider the family
of matrices A(t) := D − tB, for t ∈ [0, 1]. Clearly, A(0) = D and A(1) = A.
Without loss of generality, let's assume that diagonal elements of A are distinct.
As t → νA(t)(z), z ∈ C, is a continuous function in t ([40]), ΓR(A(t)) grows
continuously from the set of n points {aii, i ∈ N} to ΓR(A). For the su�ciently
small t > 0, ΓR(A(t)) consists of n disjoint sets around points aii, i ∈ N, and the
statement of lemma holds trivially. Also, because of continuity, that property is
preserved when disjointed components merge. 2

Therefore, for each point z ∈ ∂ΓR(A), there is diagonal entry aii, i ∈ N, such
that aii + tearg(z−aii) ∈ ΓR(A), t ∈ [0, ρ̂i(arg(z − aii))].
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After the construction of the �rst component of the minimal Ger²gorin set,
we check which entries from D are in that component and denote the set of that
entries with S1. If S1 6= D, we construct a new polygon {ω2,j}m2

j=1 which represents
the approximation of the next disjoint component of the minimal Ger²gorin set.
Then, we test which entries from the set D\S1 are in that component and denote
the set of those entries with S2. We stop with that procedure when all elements
of D are included in some component, i.e., D = S1∪̇S2∪̇...∪̇Sk, where k is the
number of disjoint components of ΓR(A). Therefore, we have the following result
on eMGSs and iMGSs.

Theorem 2.4.5 The algorithm *MGSs produces the numerical approximation
of the minimal Ger²gorin set.
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*MGSs
Input: A, Ns, τ̃ , tol

Set S̄ = {ai1i1 , ai2i2 , ..., aiñiñ} and initialize i = 1;

Set ε2 =
max{ure − lre, uim − lim}

Ns

;

while S̄ 6= ∅ do
Set ξ0 = S̄(1), Si = {ξ0}, ξ = ξ0, ϕ = θ0 = θ1 = −π, l =

ε2

τ̃
, j = 1;

Run *Search(A, ξ, ϕ, tol) to compute tj and ωi,j;
while |θj − θj−1| < π do
Update ϕ← ϕ+ arctan( l

tj
) and j ← j + 1;

Run *Search(A, ξ, ϕ, tol) to compute tj and ωi,j and set θj =

arg(
ωi,j−ξ
|ωi,j−ξ|);

while |ωi,j − ωi,j−1| < ε2 and |θj − θj−1| < π do
Update ϕ← ϕ+ arctan( l

tj
) and j ← j + 1;

Run *Search(A, ξ, ϕ, tol) to compute tj and ωi,j and set θj =

arg(
ωi,j−ξ
|ωi,j−ξ|);

end while
if |θj − θj−1| < π then
Set k = 1 and S̃ to S̄ ordered with respect to the distance ωi,j+ωi,j−1

2
;

repeat
if S̃(k) 6= ξ then

Run *Search(A, S̃(k), arg(
ωi,j−1−S̃(k)

|ωi,j−1−S̃(k)|), tol) to compute told and
ωold;
if |ωold − ωi,j−1| < ε2 then

Run *Search(A, S̃(k), arg(
ωi,j−S̃(k)

|ωi,j−S̃(k)|), tol) to compute tnew and
ωnew;

end if
end if
Update k ← k + 1;
until (|ωold − ωi,j−1| < ε2 and |ωold − ωnew| < ε2) or k > card(S̃);
if (|ωold − ωi,j−1| < ε2 and |ωold − ωnew| < ε2) then
Set ξ = S̃(k) and update Si ← Si ∪ {ξ};
Set tj = tnew, ωi,j = ωnew and set ϕ = arg(

ωi,j−ξ
|ωi,j−ξ|);

else
Update l← lτ̃ and j ← j − 1 and set ϕ = arg(

ωi,j−ξ
|ωi,j−ξ|);

end if
end if

end while
Update S̄ ← S̄\Si, i ← i+ 1;
Update S̄ to exclude all elements inside of the polygon {ωi,j}1≤j≤mi ;

end while
Output: {{ω1,j}1≤j≤m1 , {ω2,j}1≤j≤m2 , ..., {ωs,j}1≤j≤ms}



2.4.2 Predictor-corrector curve tracing

One of the typical path following methods to numerically trace the curve C in
the complex plane is a generic predictor-corrector method. It uses a combination
of two di�erent steps.

Let C be a solution curve of the equation H(ω) = 0, where H : C → R is a
smooth map and 0 ∈ range(H).

In the �rst step (predictor step), an approximation along the curve is used,
usually in the direction of the tangent of the curve.

In the second step (corrector step), iterations for solving H(ω) = 0 are used.
Typically corrections are of Newton or gradient type. In that way, the predicted
point "brings back" to the curve.

Generic predictor-corrector method

Input: ω0 ∈ C, H(ω0) ≈ 0 (initial point), h > 0 (initial step length)
1: for k = 1 : m do
2: (Predictor step) Predict zi ∈ C such that ||zi−ωi−1|| ≈ h in the direction

of tracing;
3: (Corrector step) Let ωi ∈ C approximately solve

min
ω
{||zi − ω|| : H(ω) = 0} and choose a new step-length h > 0;

4: end for
Output: ωi ∈ C, i ∈ {0, 1, 2, ...,m}

First, we consider the explicit characterization of the minimal Ger²gorin set.
In the following theorem, we present derivatives of the �rst and second order of
fA, with respect to x and y.

Theorem 2.4.6 For a given an irreducible matrix A ∈ Cn,n and z = x + iy ∈
C, let's v(x + iy) and u(x + iy) be right and left eigenvector of QA(x + iy),
corresponding to fA(x + iy), where QA(x + iy) and fA(x + iy) are de�ned by
(1.19) and (2.6), respectively. Then, the �rst and second derivatives of fA are
de�ned by:

fx = −u
TDxv

uTv
, (2.36)
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Figure 2.2: Predictor-corrector step.

fy = −u
TDyv

uTv
, (2.37)

fxx = −u
TDxxv + 2uTDxvx + 2fxu

Tvx
uTv

, (2.38)

fxy = −u
TDxyv + uTDxvy + uTDyvx + fxu

Tvy + fyu
Tvx

uTv
(2.39)

and

fyy = −u
TDyyv + 2uTDyvy + 2fyu

Tvy
uTv

, (2.40)

where: Dx = diag
(
Re(x+iy−a11)
|x+iy−a11| ,

Re(x+iy−a22)
|x+iy−a22| , ...,

Re(x+iy−ann)
|x+iy−ann|

)
,

Dy = diag
(
Im(x+iy−a11)
|x+iy−a11| ,

Im(x+iy−a22)
|x+iy−a22| , ...,

Im(x+iy−ann)
|x+iy−ann|

)
,

Dxx = diag
(

(Im(x+iy−a11))2

|x+iy−a11|3 , (Im(x+iy−a22))2

|x+iy−a22|3 , ..., (Im(x+iy−ann))2

|x+iy−ann|3

)
,

Dxy = diag
(
−Re(x+iy−a11)Im(x+iy−a11)

|x+iy−a11|3 , −Re(x+iy−a22)Im(x+iy−a22)
|x+iy−a22|3 , ..., −Re(x+iy−ann)Im(x+iy−ann)

|x+iy−ann|3

)
and Dyy = diag

(
(Re(x+iy−a11))2

|x+iy−a11|3 , (Re(x+iy−a22))2

|x+iy−a22|3 , ..., (Re(x+iy−ann))2

|x+iy−ann|3

)
,

for z = x+ iy 6= aii, i ∈ N.

Proof: From the de�nition of fA, we have:

QA(x+ iy)v(x, y) = fA(x+ iy)v(x, y) (2.41)
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and
(u(x, y))TQA(x+ iy) = fA(x+ iy)(u(x, y))T . (2.42)

Di�erentiating the equation (2.41) with respect to x and y, we obtain

−Dxv +QAvx = fxv + fvx (2.43)

and
−Dyv +QAvy = fyv + fvy. (2.44)

Multiplying the equations (2.43) and (2.44) by uT and using (2.41) and (2.42),
we obtain (2.36) and (2.37).

Using Theorem 1.2.1, we have

vx = −(fI −QA)+(I − vuT

uTv
)Dxv (2.45)

and

vy = −(fI −QA)+(I − vuT

uTv
)Dyv. (2.46)

Di�erentiating the equation (2.43) with respect to x and y, and the equation
(2.44) with respect to y, we obtain equations:

−Dxxv − 2Dxvx +QAvxx = fxxv + 2fxvx + fvxx, (2.47)

−Dxyv −Dxvy −Dyvx +QAvxy = fxyv + fxvy + fyvx + fvxy, (2.48)

and
−Dyyv − 2Dyvy +QAvyy = fyyv + 2fyvy + fvyy, (2.49)

respectively.

Multiplying the equations (2.47), (2.48) and (2.49) by uT and using (2.41) and
(2.42), we obtain expressions (2.38), (2.39) and (2.40). 2

Now, let's consider the implicit characterization of the minimal Ger²gorin set
given by the system:[

−QA(x+ iy) −c
−cT 0

] [
wA(x, y)
gA(x, y)

]
=

[
0
−1

]
. (2.50)
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Theorem 2.4.7 Given an irreducible matrix A ∈ Cn,n, a vector c > 0, c ∈
Rn and wA and gA de�ned by the system (2.50). Then, the �rst and second
derivatives of gA are given by systems:[

−QA −c
−cT 0

] [
wx wy
gx gy

]
=

[
−Dxw −Dyw

0 0

]
(2.51)

and [
−QA −c
−cT 0

] wxx wxy wyy
gxx gxy gyy
0 0 0

 =

[
D1 D2 D3

0 0 0

]
, (2.52)

where D1 = −2Dxwx −Dxxw, D2 = −Dxwy −Dywx −Dxyw and
D3 = −2Dywy −Dyyw.

Proof: Di�erentiating the system of equations

−QAw − cg = 0

−cTw = −1 (2.53)

with respect to x and y, we obtain systems:

−QAwx − cgx = −Dxw

−cTwx = 0 (2.54)

and
−QAwy − cgy = −Dyw

−cTwy = 0, (2.55)

respectively.
Writing (2.54) and (2.55) in a matrix form, we obtain (2.51).

Di�erentiating the system (2.54) with respect to x and y, and the system (2.55)
with respect to y, we obtain systems:

−QAwxx − cgxx = −2Dxwx −Dxxw

−cTwxx = 0, (2.56)

−QAwxy − cgxy = −Dxwy −Dywx −Dxyw
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−cTwxy = 0 (2.57)

and
−QAwyy − cgyy = −2Dywy −Dyyw

−cTwyy = 0, (2.58)

respectively. Finally, using (2.56), (2.57) and (2.58), it follows (2.52). 2

Now, we construct the algorithm eMGSp. The boundary of the minimal
Ger²gorin set is given by ∂ΓR(A) = {z = x + iy ∈ C : fA(x + iy) = 0}. Starting
with the point ω0 ∈ ∂ΓR, which we can obtain by the procedure eSearch, we
want to �nd the next point on the boundary of ΓR(A), named ω1.

Firstly, in the predictor step, we obtain the point

z1 := ω0 + hdl, (2.59)

where h is a given length of a step and dl := ± −fy + ifx
| − fy + ifx|

(we choose the sign

in the direction of curve tracing), where fx and fy are computed in ω0.
Then, in the corrector step, we want to �nd the point ω1 ∈ ∂ΓR, which is the
nearest to z1. To that end, we solve the problem:

||ω − z1||22 → min, fA(ω) = 0.

Forming a function

L(x, y, λ) := (x− Re(z1))2 + (y − Im(z1))2 + λfA(x, y)

and di�erentiating it with respect to x and y, we obtain the following iterations: x
(k)
1

y
(k)
1

λ(k)

 =

 Re(ω(k)
1 )

Im(ω
(k)
1 )

1

−
 2 + λfxx λfxy fx

λfxy 2 + λfyy fy
fx fy 0

−1  2Re(ω(k)
1 − z1) + λfx

2Im(ω
(k)
1 − z1) + λfy

f

 ,
(2.60)

where ω(0)
1 := z1, ω

(k)
1 := x

(k−1)
1 + iy

(k−1)
1 , k ∈ N, and f, fx, fy, fxx, fxy and fyy

are computed in ω(k)
1 .

Computation of these iterations will stop when |f | ≤ tol, for some l ∈ N and
a given accuracy tol > 0. In practice, as z1 is near to border of ΓR(A), it is
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su�cient to compute just a few iterations. In that way, we get ω1 := ω
(l)
1 .

Analogously, we �nd a sequence of points {ωj}mj=0, which approximate the boun-
dary of the one component of minimal Ger²gorin set. In the same way, we can
�nd approximation of all other components of ΓR(A).

Finally, using function gA(x, y) instead of fA(x, y) for the characterization of
the boundary of the minimal Ger²gorin set, we construct the implicit predictor-
corrector method for computing the minimal Ger²gorin set- iMGSp. In that
case, we use the characterizations of derivatives of gA given in Theorem 2.4.7.

eMGSp

Input: A, h, tol

1: Set D = {ai1i1 , ai2i2 , ..., aiñiñ} and initialize i = 1;
2: while D 6= ∅ do
3: Initialize ξ = D(1), θ = −π, θ1 = −3π and j = 0;
4: Set ω =eSearch (A, ξ,−π, tol), and ωi,0 := ω;
5: while θ − θ1 > −π do
6: Compute fx and fy in ωi,j by (2.36) and (2.37);
7: Compute zi,j+1 using (2.59)
8: Set w = zi,j+1 and compute f = f(w) as the Perron-Frobenius eigenvalue

of QA(w);
9: while |f | > tol do
10: Compute fxx, fxy and fyy in w by (2.38), (2.39) and (2.40);
11: Compute w by solving the system (2.60);
12: Compute f = f(w) as the Perron-Frobenius eigenvalue of QA(w);
13: end while
14: Update j ← j + 1 and ωi,j ← w;

15: Set θ1 := θ, θ := −i ln ωi,j−ξ
|ωi,j−ξ| ;

16: end while
17: Update i← i+ 1;
18: Update D to exclude all elements inside of the polygon {ωi,j}0≤j≤mi ;
19: end while
Output: {{ω1,j}0≤j≤m1 , {ω2,j}0≤j≤m2 , ..., {ωs,j}0≤j≤ms}
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iMGSp

Input: A, h, tol

1: Set D = {ai1i1 , ai2i2 , ..., aiñiñ} and initialize i = 1;
2: while D 6= ∅ do
3: Initialize ξ = D(1), θ = −π, θ1 = −3π and j = 0;
4: Set ω =iSearch (A, ξ,−π, tol), ωi,0 := ω;
5: while θ − θ1 > −π do
6: Compute gx and gy in ωi,j by solving the system (2.51);
7: Compute zi,j+1 using (2.59);
8: Set w = zi,j+1 and compute g = g(w) by solving the system (2.50);
9: while |g| > tol do
10: Compute gxx, gxy and gyy in w by solving the system (2.52);
11: Compute w by solving the system (2.60);
12: Compute g = g(w) by solving the system (2.50);
13: end while
14: Update j ← j + 1 and ωi,j ← w;

15: Set θ1 := θ, θ := −i ln ωi,j−ξ
|ωi,j−ξ| ;

16: end while
17: Update i← i+ 1;
18: Update D to exclude all elements inside of the polygon {ωi,j}0≤j≤mi ;
19: end while
Output: {{ω1,j}0≤j≤m1 , {ω2,j}0≤j≤m2 , ..., {ωs,j}0≤j≤ms}
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2.4.3 Triangular curve tracing

In this subsection, two new algorithms for computing the minimal Ger²gorin
set are constructed. For a given matrix A ∈ Cn,n, we combine the triangular grid
approach presented in [47] with characterizations of ΓR(A) by functions fA and
hA to develop algorithms eMGSt and iMGSt, respectively.

Given any (zi, ze) ∈ C2 such that zi 6= ze, for k 6= l, de�ne the following
points:

Lk,l = zi + k(ze − zi) + l(ze − zi)e
iπ
3 ,

to obtain a uniform lattice of vertices

L(zi, ze) = {Lk,l : (k, l) ∈ Z2},

satisfying
|Lk,l+1 − Lk,l| = |Lk+1,l − Lk,l| = |zi − ze|.

Next, we de�ne a triangular mesh, see Figure 2.3, as:

Ω(zi, ze) = Ψ(zi, ze) ∪ Ψ̃(zi, ze),

where
Ψ(zi, ze) = {Tkl = {Lk,l,Lk+1,l,Lk,l+1} : (k, l) ∈ Z2},

and
Ψ̃(zi, ze) = {T̃kl = {Lk,l,Lk+1,l,Lk+1,l−1} : (k, l) ∈ Z2}.

For a given matrix A ∈ Cn,n, let us denote by T the subset of Ω(zi, ze), where
T ∈ T if and only if T has at least one vertex in ΓR(A) and at least one outside
of ΓR(A).
Let the pivot p(T ) be the vertex of a triangle T ∈ T which is situated on the
opposite side of the border of ΓR(A) to other two vertices, e.g., vertex z̃i,0 in the
triangle {z̃i,0, z̃i,1, z̃i,2} in Figure 2.4. De�ne a transformation:

F (T ) = ρ(p(T ), sgn(νA(p(T ))) · π
3

)(T ),

where sgn(x) =

{
1, x ≥ 0
−1, x < 0

and ρ(z, θ)(ω) denotes the rotation of ω ∈ C

centered at z ∈ C with angle θ, i.e.,

ρ(z, θ)(ω) := z + (ω − z)eiθ.
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,

Figure 2.3: Triangular grid.

Now, we state some useful properties of triangular grids and mapping F
de�ned on them.

Proposition 2.4.8 For zi 6= ze, T is a �nite set.

Proof: As ΓR(A) is bounded, then ΓR(A) ∩ Ω(zi, ze) is a �nite set. From
card(T ) ≤ card(ΓR(A) ∩ Ω(zi, ze)), it follows that T is a �nite set. 2

Proposition 2.4.9 For a given triangle T ∈ T , the following statements hold:

1. F (T ) 6= T ;

2. p(T ) is a vertex of F (T );

3. T and F (T ) are adjacent;

4. F (T ) ∈ T ;

5. p(F (T )) is a vertex of T ;

6. F 2(T ) 6= T ;

7. if T ∈ Ψ(zi, ze), then F (T ) ∈ Ψ̃(zi, ze) and if T ∈ Ψ̃(zi, ze), then F (T ) ∈
Ψ(zi, ze).
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Proof: 1. The statement follows directly from the de�nition of F.

2. As p(T ) is a center of the rotation of T, it is a common vertex of T and
F (T ).

3. Since T is an equilateral triangle and F (T ) is also an equilateral triangle
obtained by a rotation of T centered at a vertex of T with the angle θ = ±π

3
,

T and F (T ) are adjacent.

4. F (T ) ∈ T because T and F (T ) have a common edge whose one vertex is
in ΓR(A) and the other vertex is outside of ΓR(A).

5. The vertex p(F (T )) lies on the common edge of T and F (T ).

6. Triangles T and F (T ) are adjacent and p(T ) ∈ T ∩ F (T ) and p(F (T )) ∈
T ∩ F (T ). There are two cases.

If p(T ) = p(F (T )), then F 2(T ) = ρ(p(T ),±2π

3
)(T ) 6= T.

If p(T ) 6= p(F (T )), then F 2(T ) = ρ(p(F (T )),−θ)(ρ(p(T ), θ)(T ))
So, F 2(T ) = p(F (T )) + ((p(T ) + (T − p(T ))eiθ) − p(F (T )))e−iθ, implying
that F 2(T ) = (p(F (T ))− p(T ))(1− e−iθ) + T 6= T.

7. It immediately follows.

2

Proposition 2.4.10 F is a bijection from T onto T .

Proof: It is enough to show that F is a one-to-one mapping. Assume that
there exist two triangles T and T ′, such that F (T ) = F (T ′). From the previous
proposition, we know that p(F (T )) ∈ T, p(F (T )) ∈ F (T ), p(F (T )) ∈ F 2(T ) and
p(F (T )) ∈ T ′, i.e., p(F (T )) ∈ T ∩ F (T ) ∩ F 2(T ) ∩ T ′.
Furthermore, as T, F 2(T ) and T ′ are adjacent to F (T ), it has to be T ′ = F 2(T ).
Therefore, F (T ′) = F (F 2(T )) = F 2(F (T )). Using the previous proposition (item
6.), we obtain F (T ) 6= F (T ′), which is a contradiction with starting assumption.
Hence, F : T → T is one-to-one mapping, and, thus, bijection onto T . 2

For any given T ∈ T de�ne Tk := F k(T ), k ∈ N, and set O(T ) := {Tk, k ∈ N},
where T0 := T.
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Proposition 2.4.11 For a given triangle T ∈ T , the following statements hold:

1. the set O(T ) is �nite;

2. if n = card(O(T )), then n is even and the smallest positive integer such
that Tn = T ;

3.
n−1∑
i=0

θi = 2πm, m ∈ N0, where θi is the rotation angle of F for the triangle

Ti;

4. for a given triangle T ′, either O(T ) = O(T ′) or O(T ) ∩O(T ′) = ∅.

Proof: 1. As T is a �nite set and O(T ) ⊆ T , it follows that O(T ) is a �nite
set, too.

2. Assume that exists an integer k, 0 < k < n, such that Tn = Tk = T.
But, then, F n(T ) = F k(T ) and, consequently, F n−k(T ) = T, implying that
card(O(T )) < n, which is a contradiction.
Since T and F (T ) belong to disjoint sets (Ψ(zi, ze) and Ψ̃(zi, ze)), n has to
be even.

3. So, O(T ) = {T0, T1, ..., Tn−1}, T0 := T and let {Pi, S1,i, S2,i} be the vertices
of the triangle Ti for i ∈ {0, 1, ..., n − 1} such that Pi is the pivot of Ti,
^(
−−−→
PiS1,i,

−−−→
PiS2,i) = θi, and Ti+1 = F (Ti) = ρ(Pi, θi)(Ti). Using the previous

results, we have:

Ti ∩ Ti+1 = [Pi, S2,i] = [Pi+1, S1,i+1].

We consider two cases:

• if Pi+1 = Pi and S1,i+1 = S2,i, then

−−−−−−→
Pi+1S1,i+1 =

−−−→
PiS2,i;

• if Pi+1 = S2,i and Pi = S1,i+1, then

−−−−−−→
Pi+1S1,i+1 = −

−−−→
PiS2,i. (2.61)
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Therefore,

n−1∑
i=0

θi =
n−1∑
i=0

^(
−−−→
PiS1,i,

−−−→
PiS2,i) = ^(

−−−→
P0S1,0,

−−−→
P0S1,0) + lπ,

where l ∈ N is a number of triangles that satisfy (2.61).

As Fn(T ) = T0, l is even. Finally, we obtain
n−1∑
i=0

θi = 2πm, m ∈ N0.

4. Let assume that O(T ) ∩ O(T ′) 6= ∅ and n ∈ N is a cardinality of O(T ).
Then, there exist a triangle T ′′ and i, j ∈ N, such that T ′′ ∈ O(T )∩O(T ′)
and T ′′ = F i(T ) = F n+i(T ) = F j(T ′). It follows that F n+i−j(T ) = T ′,
leading to O(T ′) ⊆ O(T ).
Analogously, we can prove O(T ) ⊆ O(T ′), i.e., O(T ) = O(T ′).

2

Using the prepositions above and the function fA(z), we present the algorithm
eMGSt.

As before, given irreducible matrix A ∈ Cn,n, the set of its di�erent diago-
nal elements is D = {ai1i1 , ai2i2 , ..., aiñiñ}, where Re(ai1i1) ≤ Re(ai2i2) ≤ ... ≤
Re(aiñiñ), ñ ∈ N, and let s be the number of disjoint components of ΓR(A). We
denote mi points representing the approximation of the boundary of the ith com-
ponent of the minimal Ger²gorin set by {zi,j}mij=1, i ∈ {1, 2, ..., s}. Starting with
ξ = ai1i1 , ϕ = −π and given accuracy ε > 0 (e.g., ε = 10−12), we use the proce-
dure eSearch from [40] to obtain ω1 := ξ+ t1e

iϕ, with t1 := eSearch(A, ξ, ϕ, ε).

Then, we get the points z̃1,0 := ω1 − τ
2
and z̃1,1 := ω1 + τ

2
, where τ is a given

length of edge of equilateral triangles which form triangular grid and z1,1 := z̃1,1.

Furthermore, we obtain the point z̃1,2 := z̃1,0 + (z̃1,1 − z̃1,0)e
iπ
3 . As a result,

the triangle T1 = {z̃1,0, z̃1,1, z̃1,2} is an element of T which generates the set
O(T1). If fA(z̃1,2) < 0, we de�ne z1,2 := z̃1,2 and choose as pivot z̃piv the point
z̃1,0 to get z̃1,3 := z̃piv + (z̃1,2 − z̃piv)e

iπ
3 . Otherwise, we choose z̃piv := z̃1,1 and

z̃1,3 := z̃piv + (z̃1,2 − z̃piv)e
− iπ

3 . Analogously, we construct a sequence of points
{z̃1,l}, l ∈ N0, as long as z̃1,l = z̃1,0. From that set of points, we choose a
subset {z1,j}m1

j=1, such that fA(z1,j) < 0. The obtained polygon {z1,j}m1
j=1 contains
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one component of the set minimal Ger²gorin set ΓR(A), see Figure 2.4, and
dist(zi,j, ∂ΓR(A)) ≤ τ. Notice, that we could give also an inner approximation
of the boundary ∂ΓR(A) simply by taking a subset of points with non-negative
values of fA.

After completing the construction of the �rst component of the minimal Ger²-
gorin set, we check which entries from D are in that component and denote the
set of these diagonal entries by S1. If S1 6= D, choosing for ξ the leftmost element
of D\S1, we construct a new polygon {z2,j}m2

j=1 that represents the approximation
of next disjoint component of the minimal Ger²gorin set. Then, we again test
which entries from the set D\S1 are in that component and denote the set of
these entries by S2. We stop with that procedure when all elements of D are
included in some component of the minimal Ger²gorin set.

zi,4 = zi,3

zi,1 = zi,1
~

zi,2 = zi,2
~

~

zi,0
~

zi,3
~

ωi

Figure 2.4: Construction of the polygon {zi,j}mij=1.

Finally, we present iMGSt algorithm. In fact, we improve algorithm eMGSt
by replacing the function fA with the function hA. So, using the idea of the im-
plicit determinant method [25], we achieve to reduce signi�cantly the overall
number of expensive eigenvalue computations. This algorithm gives excellent re-
sults, especially for matrices of large sizes, which will be shown through examples
in the last chapter.
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eMGSt
Input: A, Nt, tol

1: Set τ =
2d(A)

√
3

3Nt

, where d(A) = max{ure − lre, uim − lim};
2: Set D = {ai1i1 , ai2i2 , ..., aiñiñ} and initialize i = 1;
3: while D 6= ∅ do
4: Set ξ = D(1) and θ = −π;
5: Run eSearch(A, ξ, θ, tol) to compute ωi ∈ C;
6: Compute z̃i,0 = ωi − τ

2
and z̃i,1 = ωi + τ

2
;

7: Compute z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

8: Set zi,start = z̃i,0 and zi,1 = z̃i,1;
9: Initialize j = 2;
10: while z̃i,2 6= zi,start do
11: if fA(z̃i,2) < 0 then
12: zi,j = z̃i,2;
13: z̃i,0 = z̃i,0;
14: z̃i,1 = z̃i,2;

15: z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

16: Update j ← j + 1;
17: else
18: z̃i,0 = z̃i,2;
19: z̃i,1 = z̃i,1;

20: z̃i,2 = z̃i,1 + (z̃i,0 − z̃i,1)e−
iπ
3 ;

21: end if
22: end while
23: Update i← i+ 1;
24: Update D to exclude all elements inside of the polygon {zi,j}1≤j≤mi ;
25: end while
Output: {{z1,j}1≤j≤m1 , {z2,j}1≤j≤m2 , ..., {zs,j}1≤j≤ms}
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iMGSt
Input: A, Nt, tol

1: Set τ =
2d(A)

√
3

3Nt

, where where d(A) = max{ure − lre, uim − lim};
2: Set D = {ai1i1 , ai2i2 , ..., aiñiñ} and initialize i = 1;
3: while D 6= ∅ do
4: Set ξ = D(1) and θ = −π;
5: Run iSearch(A, ξ, θ, tol) to compute ωi ∈ C;
6: Compute z̃i,0 = ωi − τ

2
and z̃i,1 = ωi + τ

2
;

7: Compute z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

8: Set zi,start = z̃i,0 and zi,1 = z̃i,1;
9: Initialize j = 2;
10: while z̃i,2 6= zi,start do
11: if hA(z̃i,2) < 0 then
12: zi,j = z̃i,2;
13: z̃i,0 = z̃i,0;
14: z̃i,1 = z̃i,2;

15: z̃i,2 = z̃i,0 + (z̃i,1 − z̃i,0)e
iπ
3 ;

16: Update j ← j + 1;
17: else
18: z̃i,0 = z̃i,2;
19: z̃i,1 = z̃i,1;

20: z̃i,2 = z̃i,1 + (z̃i,0 − z̃i,1)e−
iπ
3 ;

21: end if
22: end while
23: Update i← i+ 1;
24: Update D to exclude all elements inside of the polygon {zi,j}1≤j≤mi ;
25: end while
Output: {{z1,j}1≤j≤m1 , {z2,j}1≤j≤m2 , ..., {zs,j}1≤j≤ms}
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Chapter 3

Algorithms for approximating

convex hull of the minimal

Ger²gorin set

"More data beats clever algorithms,
but better data beats more data."

Peter Norving18

In this chapter, in Section 3.1, results about the abscissa of the minimal Ger²-
gorin set are given. Then, in Section 3.2, we compare two eigenvalue localization
sets, the minimal Ger²gorin set and the numerical range. Next, in Section 3.3, a
well-known result about computing the numerical range of a given matrix is pre-
sented and �nally, in Section 3.4, new algorithms for a construction of a convex
polygon that contains the minimal Ger²gorin set are developed.

3.1 Characterization of the abscissa of the mini-

mal Ger²gorin set

The abscissa of the Ger²gorin set Γ(A) of a matrix A ∈ Cn,n is

γ(A) := max
{
Re(z) : z ∈ Γ(A)

}
. (3.1)

16Peter Norvig (1956) is an American computer scientist and director of research at Google
Inc.
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In the same way, we have the abscissa of the minimal Ger²gorin set ΓR(A) :

µ(A) := max{Re(z) : z ∈ ΓR(A)}. (3.2)

For a given matrix A ∈ Cn,n, let's de�ne an essentially non-negative matrix
Mre(A) = [mij] ∈ Rn,n such that

mij :=

{
Re(aii), i = j
|aij|, i 6= j

,

where i, j ∈ N, that allows us to characterize µ(A). We start with the following
lemma.

Lemma 3.1.1 Given an arbitrary irreducible matrix A ∈ Cn,n. If µ̂ is the Perron-
Frobenius eigenvalue of a matrix Mre(A), then µ̂ ≥ Re(aii), i ∈ N.

Proof: If Mre(A) = D + B, where D = diag(Mre(A)), consider the family
of matrices Mre(A)(t) := D + tB, t ∈ [0, 1]. For t = 0, we get a diagonal
matrix Mre(A)(0) = D and α(Mre(A)(0)) ≥ Re(aii) holds trivially, i ∈ N.
As t increases, at least one o�-diagonal entry of Mre(A)(t) increase because of
irreducibility. Using Theorem 1.3.4, item 4., it follows that α(Mre(A)(t)) ≥
Re(aii), t ∈ [0, 1], i ∈ N. Therefore, µ̂ = α(Mre(A)(1)) ≥ Re(aii), i ∈ N. 2

Theorem 3.1.2 Given an arbitrary irreducible matrix A ∈ Cn,n. If µ is the
Perron-Frobenius eigenvalue of a matrix Mre(A), then µ(A) ≤ µ̂. Moreover, the
set Γ(W−1AW ) intersects with the line {z ∈ C : Re(z) = µ̂}, where w is the
Perron-Frobenius eigenvector of Mre(A) and W = diag(w).

Proof: Let (µ̂, w) be the Perron-Frobenius pair of essentially non-negative ma-
trix Mre(A). Then, µ̂ is the right-most eigenvalue of matrix Mre(A) and w =
[w1, w2, ..., wn] > 0. Since |µ̂ + it − aii| ≥ |Re(µ̂ − aii)| = µ̂ − Re(aii), for i ∈ N
and t ∈ R, we obtain QA(µ̂ + it) ≤ −µ̂I + Mre(A). Therefore, the right-most
eigenvalue of matrix QA(µ̂+it) is non-positive, i.e., νA(µ̂+it) ≤ 0. This, however,
implies that points on the line µ̂+it are either on the boundary or outside of the
minimal Ger²gorin set ΓR(A). Using the previous lemma, it follows µ(A) ≤ µ̂.

From Mre(A)w = µ̂w, we obtain µ̂ = Re(aii) +
n∑
j 6=i

|aij|wj
wi

, i ∈ N. Hence, the set

Γ(W−1AW ) intersects with the line {z ∈ C : Re(z) = µ̂}. 2
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Theorem 3.1.3 Given an arbitrary irreducible matrix A ∈ Cn,n and aii ∈ R,
i ∈ N, µ̂ = µ(A) if and only if µ̂ is the Perron-Frobenius eigenvalue of a matrix
Mre(A). Moreover, all Ger²gorin discs of the matrix W−1AW pass through µ̂,
where w is the Perron-Frobenius eigenvector of Mre(A) and W = diag(w).

Proof: (⇒) Assume that µ̂ = µ(A). Hence, νA(µ̂) = 0 is the right-most eigen-
value of matrix QA(µ̂). Using the Perron-Frobenius theorem for essentially
non-negative irreducible matrices, there exists a positive eigenvector w̃ asso-
ciated with the eigenvalue νA(µ̂). Since µ̂ ≥ aii, i ∈ N, it follows QA(µ̂) =
−µ̂I+Mre(A). Therefore, QA(µ̂)w̃ = (−µ̂I+Mre(A))w̃ = 0, i.e.,Mre(A)w̃ = µ̂w̃.
Hence, µ is the Perron-Frobenius eigenvalue of matrix Mre(A).

(⇐) Let (µ̂, w) be the Perron-Frobenius eigenpair of essentially non-negative
matrix Mre(A). Then, µ̂ is the right-most eigenvalue of matrix Mre(A) and
w = [w1, w2, . . . , wn] > 0. Since for α ≥ aii, |α − aii| = α − aii, i ∈ N, then
QA(α) = −αI + Mre(A) and νA(α) = µ̂− α is the right-most eigenvalue of ma-
trix QA(α). Therefore, if α > µ̂, then νA(α) < 0 and α is not in the minimal
Ger²gorin set of matrix A. However, if α = µ̂ then νA(α) = 0 and consequently,
µ̂ = µ(A).

Now, from Mre(A)w = µ(A)w, we obtain µ(A) = aii +
n∑
j 6=i

|aij|wj
wi

, i ∈ N.

Therefore, all Ger²gorin discs of matrix W−1AW pass through µ̂, i.e., µ̂ ∈
∂Γi(W

−1AW ), i ∈ N . 2

Beside theoretical importance, the abscissa of the minimal Ger²gorin set has
an important role in practice. For example, it can be used in the theory of
dynamical systems.

First order time varying dynamical systems can be represented by the system
of ordinary di�erential equations:

d

dt
x(t) = F (t, x(t)), x(t0) = x0, (3.3)

where variable x(t) ∈ Rn represents a state of the system in time t ≥ 0.
If F (t, x(t)) = F (x(t)), the system is autonomous. A point x∗ ∈ Rn is the equi-
librium point if F (x∗) = 0.

If dynamical system is linear, system (3.3) can be written as:

ẋ(t) = Ax(t), x(t0) = x0, (3.4)
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where A ∈ Rn,n is a constant matrix. While dynamical systems in general do
not have closed-form solutions, linear dynamical systems can be solved exactly
and its solution is given by:

x(t) = eAtx0. (3.5)

If A is a nonsingular matrix, equilibrium point x∗ = 0 is unique and its dyna-
mical properties are determined by evolution function φA(t) = ||eAt||, t ≥ 0,
where || · || is induced matrix norm.

Reactivity of the observed linear dynamical system represents initial growth
rate of ||eAt||, i.e.,

d+

dt

[
φA(t)

]∣∣∣∣∣
t=0

= lim
t→0

||eAt|| − ||e0||
t

= lim
t→0

||I + tA|| − 1

t
. (3.6)

In addition, if the reactivity is less than zero, then dynamical system is expo-
nentially stable. If || · || = || · ||∞, we obtain:

lim
t→0

||I + tA||∞ − 1

t
= lim

t→0

max
k∈N

{
|1 + takk| − 1 + t

n∑
j 6=k

|akj|
}

t
(3.7)

i.e., the reactivity is:

max
k∈N

{
Re(akk) +

n∑
j 6=k

|akj|
}

= γ(A). (3.8)

Therefore, the reactivity is equal to the abscissa of the Ger²gorin set. From [60],
we have ||eAt||∞ ≤ eγ(A)t.

Using the induced a weighted norms || · ||X , where X ∈ Rn,n is diagonal
matrix whose diagonal elements are positive and the fact µ(A) = inf

X
γ(X−1AX),

we obtain:
inf
X
||eAt||X ≤ eµ(A)t.

Therefore, if the abscissa of the minimal Gers²gorin set of A is negative, there

exists a weighted norm || · ||X such that the system (3.4) is exponentially stable.
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For example, if A =

−12 2 5
1 −10 2
0 −4 −2

 , then γ(A) = 2 and we do not have

proper information whether the system determined by A is exponentially stable
or not. However, µ(A) = −1.7574 and it implies that the system is exponentially
stable (Figure 3.1).

-20 -15 -10 -5 0

-6

-4

-2

0

2

4

6 MGS
GS
Eigenvalues

Figure 3.1: The Ger²gorin (GS) vs. the minimal Ger²gorin set (MGS).

3.2 Minimal Ger²gorin set vs. numerical range

Given a matrix A ∈ Cn,n, n ∈ N. Analogies between the minimal Ger²gorin
set ΓR(A) and the numerical range W (A) of A are:

1) non-empty and localization sets for σ(A) (it follows from (1.18) and The-
orem 1.7.4);

2) compact sets (bounded and closed) in C (Theorems 1.5.4 and 1.7.1);

3) both are homogeneous, i.e., ΓR(cA) = cΓR(A) andW (cA) = cW (A), c ∈ C
(Theorems 1.5.4 and 1.7.3);

4) ΓR(cI+A) = c+ ΓR(A) and W (cI+A) = c+W (A), c ∈ C, I is the n×n
identity matrix (Theorems 1.5.4 and 1.7.3).
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Di�erences between the minimal Ger²gorin set and the numerical range are:

i) W (A) is a connect set for all A ∈ Cn,n (Theorem 1.7.1), but in general,
ΓR(A) may not be (Example 3.2.1, Figure 3.2);

ii) W (A) is a convex set for all A ∈ Cn,n (Theorem 1.7.2), but in general,
ΓR(A) may not be (Example 3.2.1, Figure 3.2);

iii) W (A + B) ⊆ W (A) + W (B) for all A, B ∈ Cn,n (Theorem 1.7.3), but

in general, ΓR(A + B) * ΓR(A) + ΓR(B) (e.g., for A =

[
2 0
0 0

]
and B =[

0 0
0 1

]
, ΓR(A+B) = {1, 2}, but ΓR(A) + ΓR(B) = {3});

iv) W (A) is invariant under unitary transformation (i.e.,W (A) = W (UAU∗)),
where U ∈ Cn,n is arbitrary unitary matrix (Theorem 1.7.3), but in general,
ΓR(A) may not be (Example 3.2.1, Figure 3.4);

v) ΓR(A) is invariant under similarity transformation by nonsingular and non-
negative diagonal matrices (i.e., ΓR(A) = ΓR(XAX−1), where X ∈ Rn,n is
an arbitrary diagonal matrix such that det(X) 6= 0, and X ≥ 0), but in
general, W (A) may not be (Example 3.2.1, Figure 3.3);

vi) ΓR(A) and W (A) are in general relation, i.e., ΓR(A) * W (A) and W (A) *
ΓR(A) (Example 3.2.1, Figure 3.2).

Example 3.2.1 There are given matrices:

A =

1 1 0
2 5 1
0 1 10

 , X =

1 0 0
0 2 0
0 0 3

 and U =


√

2
2

√
2

2
0√

2
2
−
√

2
2

0
0 0 1

 .
The minimal Ger²gorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of A are presented in Figure 3.2.
The minimal Ger²gorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of XAX−1 are presented in Figure 3.3.
The minimal Ger²gorin set (blue line), the numerical range (green line) and
eigenvalues (red dots) of UAU∗ are presented in Figure 3.4.

The minimal Ger²gorin set and the numerical range are both localization sets
for the spectrum of a given matrix. As it is presented, they are incomparable
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Figure 3.2: Comparison of ΓR(A) and W (A).

sets, but we can compare them after diagonal scaling by nonsingular non-negative
diagonal matrices. Namely, from Theorem 1.7.8, we have the following.

Theorem 3.2.2 For a given matrix A ∈ Cn,n holds:

W (A) ⊆ co(Γ(A) ∪ Γ(AT )).

Proof: Using an inequality
ri(A) + ri(A

T )

2
≤ max{ri(A), ri(A

T )} and Theorem
1.7.8, it follows:{

z ∈ C : |z − aii| ≤
ri(A) + ri(A

T )

2

}
⊆ Γi(A) ∪ Γi(A

T ), i ∈ N.

So, W (A) ⊆ co(Γ(A) ∪ Γ(AT )). 2

Although it is simple to prove, up to the author's knowledge, the following
result is not well-known in a literature.
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Figure 3.3: Comparison of
ΓR(XAX−1) and W (XAX−1).
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Figure 3.4: Comparison of
ΓR(UAU∗) and W (UAU∗).

Corollary 3.2.3 For a given matrix A ∈ Cn,n holds:⋂
X∈Dn

W (X−1AX) ⊆ co(ΓR(A)),

where Dn is the family of nonsingular and non-negative diagonal n×n matrices.

Proof: Using the previous theorem and the fact ΓR(A) = ΓR(AT ), (Theorem
1.5.4), the statement holds trivially. 2

While the computation of W (A) can be performed e�ciently using the al-
gorithm presented in the next section, the computation of scaled W (A) is more
complex task. So, the previous corollary represents also an interesting motiva-
tion for drawing a set that contains a convex envelope of the minimal Ger²gorin
set whose position in the complex plane gives an information of the impact of
proper diagonal scaling on the numerical range of a given matrix.

Finally, as it is presented in the previous section, the reactivity of a dynamical
system is equal to the abscissa of the minimal Ger²gorin set in optimal weighten-
ed in�nity norm. Analogously, by using norm || · ||2, it can be shown that the
reactivity is equal to the abscissa of numerical range, i.e., ω(A), ([31], Corollary
5.5.26).
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3.3 Algorithm for computing the numerical range

As W (A) is a compact and connected set in C (Theorem 1.7.1), the set
Re(W (A)) is closed real interval [a, b], where a and b are the smallest and largest

eigenvalue of a Hermitian matrix H(A) =
A+ A∗

2
, respectively (Theorem 1.7.5).

If y ∈ Cn is a normalized eigenvector (i.e., y∗y = 1) corresponding to the maximal
eigenvalue b of H(A), then by the de�nition, the point ω := y∗Ay is in W (A).
Moreover, ω lies on the boundary of W (A) because Re(ω) = b.

Let consider Hermitian matrices

H(eiθjA) =
eiθjA+ e−iθjA∗

2
,

where {θ0, θ1, ..., θm−1} is the set of distinct angles, m ∈ N. Now, for each ma-
trix H(eiθjA), we can �nd the largest eigenvalue λ(θj) and its corresponding
normalized eigenvector yj, i.e.,

y∗jH(eiθjA)yj = λ(θj), y
∗
j yj = 1, j ∈ {0, 1, ...,m− 1}. (3.9)

Again, it is obvious that a complex number y∗jAyj belongs toW (A), but as λ(θj)
is the largest eigenvalue of H(eiθjA), it follows that

ωj := y∗jAyj ∈ ∂W (A), j ∈ {0, 1, ...,m− 1}. (3.10)

So, using the set of points {ω0, ω1, ..., ωm−1}, we obtain a discrete approximation
of the boundary ofW (A). Notice that the associated tangent lines through points
ωj, j ∈ {0, 1, ...,m− 1}, make angles

π

2
− θj with the real axis. It is a corollary

of the fact that

W (H(eiθjA)) = Re(W (eiθjA)) = Re(eiθjW (A)).

3.4 Algorithms for computing a convex approxi-

mation of MGS

In this section, we present two algorithms for computing an approximation
of a convex hull of the minimal Ger²gorin set. We will use the similar technique
as it was used for computing the numerical range.
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Algorithm for calculating the numerical range W (A)

Input: A, m
1: for j = 0 : (m− 1) do
2: Set θj = 2πj

m
;

3: Compute λ(θj) and yj as (3.9);
4: Compute ωj as (3.10);
5: end for
Output: {ω0, ω1, ..., ωm−1}

Let an irreducible matrix A ∈ Cn,n and m ∈ N, m ≥ 3, be given. Following
Theorem 3.1.2, we can �nd upper limit for the abscissa of the minimal Ger²gorin
set as the Perron-Frobenius eigenvalue of Mre(A). Furthermore, we can �nd

the Perron-Frobenius eigenvalues of all matrices Mre(Ae
−iθk), where θk =

2kπ

m
,

k ∈ {0, 1, ...,m− 1}. In that way, we get points zk as:

zk := α(Mre(Ae
−iθk))eiθk . (3.11)

Let the line nk orthogonal to vector ~zk, zk ∈ C, k ∈ {0, 1, ...,m− 1}, be given as

nk :


y = Im(zk), if Re(zk) = 0,

x = Re(zk), if Im(zk) = 0,

y − Im(zk) = − 1
tan(θk)

(x− Re(zk)), otherwise.

(3.12)

We obtain points ωk as intersections of lines nk and nk+1, for
k ∈ {0, 1, ...,m− 1}, with θm := 0, zm := z0 and nm := n0, i.e.,

ωk :=


Re(zk+1)− tan(θk+1)Im(zk − zk+1) + iIm(zk), if Re(zk) = 0,

Re(zk)− tan(θk)Im(zk+1 − zk) + iIm(zk+1), if Re(zk+1) = 0,

Re(zk)− tan(θk)(yk − Im(zk)) + iyk, otherwise,
(3.13)

where

yk =
Re(zk+1 − zk) + tan(θk+1)Im(zk+1)− tan(θk)Im(zk)

tan(θk+1)− tan(θk)
, k ∈ {0, 1, ...,m− 1}.

96



A polygon P (m)(A) with vertices ω0, ω1, ..., ωm−1 is convex and contains the mini-
mal Ger²gorin set.

If we use Noda iteration for computing the spectral abscissa, we obtain
an additionally a sequence of polygons, P (m)

(l) (A), where l is a given number of
iterations, that monotonically improve. Clearly, the following theorem holds.

Theorem 3.4.1 Given an irreducible matrix A ∈ Cn,n and m, l ∈ N, m ≥ 3,
then:

σ(A) ⊆ ΓR(A) ⊆ P (m)(A) ⊆ P
(m)
(l+1)(A) ⊆ P

(m)
(l) (A).

We notice that P (m)
(l) (A)→ P (m)(A), l→∞.

Algorithm for calculating vertices of the polygon P (m)(A)

Input: A, m
1: Set θ0 = 0;
2: Compute z0 = α(Mre(A)) and set ω0 = z0;
3: for k = 1 : m do
4: Set θk = 2kπ

m
;

5: Compute zk as in (3.11);
6: Compute ωk−1 as in (3.13);
7: end for
Output: {ω0, ω1, ..., ωm−1}

Algorithm for calculating vertices of the polygon P
(m)
(l) (A)

Input: A, m, l
1: Set θ0 = 0;
2: Compute z0 = α(Mre(A)) using l Noda iterations and set ω0 = z0;
3: for k = 1 : m do
4: Set θk = 2kπ

m
;

5: Compute zk as in (3.11) using l Noda iterations;
6: Compute ωk−1 as in (3.13);
7: end for
Output: {ω0, ω1, ..., ωm−1}

Applications of the results from this section will be given in Chapter 4.
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Chapter 4

Numerical results and conclusion

"In theory, theory and practice are the
same. In practice, they are not."

Albert Einstein19

This chapter is organized as follows. In Section 4.1, algorithms for computing
the minimal Ger²gorin set are compared through several examples. Then, in Sec-
tion 4.2, the numerical results about convex polygon that contains the minimal
Ger²gorin set are presented. Finally, in Section 4.3, bene�ts and improvements
of new results are given in a short conclusion. All algorithms are implemented
in MATLAB version R2018b and tested on 2.7 GHz Intel

R©
Core

TM
i7 machine.

4.1 Curve tracing algorithms

In this section, we test all algorithms ({e,i}MGS{s,p,t}) on six examples and
compare the performances of the novel ones with the performance of eMGSs
algorithm that was the state of art. We notice that the performances of new
approaches signi�cantly accelerate convergence.

Example 4.1.1 In the �rst example we test algorithms on the cyclic matrix of

17Albert Einstein (1879-1955) was a German-born theoretical physicist who developed the
theory of relativity, received the Nobel Prize in 1921.
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a size n = 4:

A =


1 1 0 0
0 −1 1 0
0 0 i 1
1 0 0 −i

 ,
setting the parameters of the algorithms to be: tol = 10−12, τ̃ = 2, h =
0.0254, Ns = 40 and Nt = 500. CPU times for all algorithms are presented
in Table 4.1. The number of computed points for eMGSs and iMGSs is 430,
for eMGSp and iMGSp 436 and for eMGSt and iMGSt it is 2086. Figure 4.1
shows the minimal Ger²gorin set of A using all three approaches. Also, their cor-
responding zoomed versions around the orgin are presented. Comparing them, we
notice that the algorithms eMGSt and iMGSt give more reliable approximation
(zero belongs to the minimal Ger²gorin set of A).

MGS s p t

e 1.4667s 0.2728s 0.1102s
i 0.3721s 0.1203s 0.0282s

Table 4.1: CPU times for Example 4.1.1.

Example 4.1.2 In the second example we consider a parameter dependent triangu-
lar matrix Tµ of a size n = 20 de�ned as follows:

Tµ =


µ 1 0 . . . 0

1 2µ 1
. . .

...

0 1 3µ
. . . 0

...
. . . . . . . . . 1

0 . . . 0 1 20µ

 .

For µ = 2, the results obtained by the algorithms with the parameters tol =
10−12, τ̃ = 2, h = 0.0362, Ns = 600 and Nt = 2500 are presented in Table 4.2.
Figure 4.2 shows the approximation of the minimal Ger²gorin set of the matrix T2

obtained by (a) eMGSs/iMGSs algorithm (2211 points), (b) eMGSp algorithm
(2202 points) and (c) eMGSt/iMGSt algorithm (4716 points). The algorithm
iMGSp does not give any results in the observed period.
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MGS s p t

e 1.5552s 3.6399s 0.1091s
i 3.3026s / 0.3738s

Table 4.2: CPU times for Example 4.1.2.

Example 4.1.3 In this example we test the algorithms on the matrix twisted_de-
mo(n) of a size n = 50 from the Matrix Market repository ([6]). The results of
the algorithms with parameters tol = 10−12, τ̃ = 2, h = 0.0431, Ns = 100 and
Nt = 500 are presented in Table 4.3. Figure 4.3 shows the results obtained by
(a) eMGSs algorithm (462 points), (b) eMGSp algorithm (464 points) and (c)
eMGSt/iMGSt algorithm (1200 points).

MGS s p t

e 2.9748s 1.0106s 0.1705s
i / / 0.2055s

Table 4.3: CPU times for Example 4.1.3.

Example 4.1.4 In this example we implement the algorithms on the Leslie ma-
trix: L = diag(b·(1 : n−1).�(−1),−1)+a·[ξ.�(1 : n); zeros(n−1, n)], L(1, 1) = 0,
for values a = 0.1, b = 0.2, ξ = 0.95 and n = 70. The results obtained with
parameters tol = 10−12, τ̃ = 2, h = 0.0036, Ns = 100 and Nt = 200 are pre-
sented in Table 4.4. Figure 4.4 represents the approximation of the minimal Ger²-
gorin set of the Leslie matrix obtained by (a) eMGSs/iMGSs algorithm (315
points), (b) iMGSp algorithm (315 points) and (c) eMGSt/iMGSt algorithm
(602 points).

MGS s p t

e 38.9456s / 2.3955s
i 1.0306s 0.2796s 0.2576s

Table 4.4: CPU times for Example 4.1.4.
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Example 4.1.5 In this example we use the Tolosa matrix of a size n = 340 from
the Matrix Market repository ([6]). This matrix is sparse, highly non-normal of a
medium size. The parameters are set as: tol = 10−12, τ̃ = 2, h = 9.381, Ns = 50
and Nt = 300, which produces 295 points for eMGSs/iMGSs algorithm, 302 for
iMGSp and 866 points for eMGSt/iMGSt. The results of testing are presented
in Figure 4.5 and corresponding CPU times are given in Table 4.5.

MGS s p t

e 86.6712s / 11.5196s
i 19.9532s 2.7571s 2.4453s

Table 4.5: CPU times for Example 4.1.5.

Example 4.1.6 Finally, in the last example, we test all algorithms on two ma-
trices of a large size. For the Orr-Sommerfeld matrix of a size n = 1000 ([6]) with
Nt = 400, the CPU time for iMGSt is 51.41335s (546 points, see F igure 4.6).
For the Poisson matrix of a size n = 2500 (MATLAB gallery) with Nt = 300,
CPU for iMGSt is 240.1962s (902 points, see F igure 4.7). Other algorithms do
not give results in the observed period.
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Figure 4.1: The results of the algorithms for the the cyclic matrix A from Exa-
mple 4.1.1: complete plot and plot zoomed around the origin.

103



0 5 10 15 20 25 30 35 40

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
MGS
Eigenvalues

37 38 39 40 41 42 43 44
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
MGS
Eigenvalues

(a) *MGSs

0 5 10 15 20 25 30 35 40

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
MGS
Eigenvalues

37 38 39 40 41 42 43 44
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
MGS
Eigenvalues

(b) eMGSp

0 5 10 15 20 25 30 35 40

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
MGS
Eigenvalues

37 38 39 40 41 42 43 44
-0.6

-0.4

-0.2

0

0.2

0.4

0.6
MGS
Eigenvalues

(c) *MGSt

Figure 4.2: The results of the algorithms for the tridiagonal matrix T2: complete
plot and plot zoomed around the rightmost eigenvalue.
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Figure 4.3: The results of the algorithms for the twisted matrix of a size n = 50:
complete plot and plot zoomed around the point z = 2 + 2i.
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Figure 4.4: The results of the algorithms for the Leslie matrix of a size n = 70:
complete plot and plot zoomed around the rightmost eigenvalue.
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Figure 4.5: The results of the algorithms for the Tolosa matrix of a size n = 340:
complete plot and plot zoomed around the point z = −130 + 430i.
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Figure 4.6: The result of the algorithm iMGSt for the Orr-Sommerfeld matrix
of a size n = 1000.
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Figure 4.7: The result of the algorithm iMGSt for the Poisson matrix of a size
n = 2500.
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4.2 Convex polygon

In this section, we illustrate an interesting and practical result, specially for
matrices of large sizes: localization of eigenvalues of a given matrix by the convex
polygon that contains MGS. This approach is signi�cantly numerically cheaper
than computing the minimal Ger²gorin set itself. Here, we compare it to the
algorithm eMGSs.

Example 4.2.1 For the Tolosa matrix A of a dimension n = 1090, the algorithm
eMGSs ([40]) with the parameters tol = 10−12, τ̃ = 2 and Ns = 5, gives the
approximation of the minimal Ger²gorin set ΓR(A) by 30 points in 114.7494s.

For m = 4, the polygons P (m)(A) and P
(m)
(3) (A) are rectangles, see Figure 4.8(a),

and they can be found in 0.7643s and 0.3696s, respectively. For m = 32, the
approximations by the convex polygons P (m)(A) and P

(m)
(3) (A) are very close to

the minimal Ger²gorin set ΓR(A), see Figure 4.8(b), and require only 4.3261s
and 1.5987s, respectively.
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Figure 4.8: Polygon P (m)(A), the minimal Ger²gorin set and eigenvalues of the
Tolosa matrix of a size n = 1090.

Example 4.2.2 In this example, we test the algorithms P (m)(A) and P
(m)
(3) (A)

on the Orr-Sommerfeld matrix of a dimension n = 1000 ([6]) and the Poisson
matrix of a dimension n = 2500 (MATLAB gallery). CPU times for the Orr-
Somerfeld matrix are: 1.5185s and 0.2668s (m = 4, Figure 4.9(a)) and 8.6671s
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and 1.9416s (m = 32, Figure 4.9(b)). For the Poisson matrix, CPU times are:
0.5906s and 0.0564s (m = 4, Figure 4.10(a)) and 3.4579s and 0.2074s (m = 32,
Figure 4.10(b)). The algorithm eMGSs does not give results for both matrices
in the observed period of 10 minutes.
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Figure 4.9: Polygon P (m)(A) and eigenvalues of the Orr-Sommerfeld matrix of a
size n = 1000.
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Figure 4.10: Polygon P (m)(A) and eigenvalues of the Poisson matrix of a size
n = 2500.
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4.3 Conclusion

In this paper, new algorithms for computing the minimal Ger²gorin set are
presented, together with convex polygon that contains it. Improvements of new
results are illustrated through numerical examples.

New algorithms for computing the minimal Ger²gorin set have several impor-
tant adventages. First, new methods are signi�cantly faster. As it is presented
in the examples, the run time of new algorithms outperforms the existing al-
gorithms. We can see that for all tested matrices, the overall best results were
obtained by using the algorithms eMGSt and iMGSt. Furthermore, for some
test matrices of large sizes, eMGSs did not produce any result in the observed
period of time (Example 4.1.6).

Second, new algorithms are simpler for an implementation. For example, the
algorithms which use triangular approach for curve tracing are straightforward
since they do not depend on many parameters (the only required information is
accuracy and the number of triangular grid points). All other necessary infor-
mation is computed automatically.

Third, new approaches are more reliable. The algorithms eMGSt and iMGSt
produce the polygons that always contain a desired localization set. In Example
4.1.1, belonging of the origin to the minimal Ger²gorin set of the observed cyclic
matrix A is not correctly detected by eMGSs. Furthermore, the fact that in
this example ΓR(A) consists of only one connected component (which can be an
important information for counting the number of eigenvalues in the localization
set) is not satis�ed.

Finally, in addition to the algorithms for computing the minimal Ger²gorin
set, the algorithms for construction of its convex hull are developed. They are
easy and very practical for usage, specially for matrices of large sizes and can
provide useful information in applications. Also, in some cases, the convex poly-
gon can be a very precise approximation of the minimal Ger²gorin set (Example
4.2.1 (b)).
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[1] T. Akenine-Möller, E. Haines and N. Ho�man, Real-Time Renering 3rd
Edition, A. K. Peters, Ltd, Natick, MA, USA, 2008.

[2] E. L. Allgower and K. Georg, Continuation and path following, Acta nume-
rica, 1− 64, 1993.

[3] E. L. Allgower and K. Georg, Numerical path following, Colorado State
University, 1994.

[4] C. Bekes and E. Gallopoulos, COBRA: A hybrid method for computing the
matrix pseudo spectrum, In Copper Mountain Conference on Iterative Me-
thods, 1998.

[5] A. Berman and R. Plemmons, Non-negative Matrices in the Mathematical
Sciences, Volume 9 of Classics in Applied Mathematics, Society of Industrial
and Applied Mathematics (SIAM), Philadelphia, 1994.

[6] B. Boisvert, R. Pozzo, K. Remington, B. Miller and R. Lipman, Matrix
Market repository. http://math.nist.gov/MatrixMarket/.

[7] F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed
Spaces and of Elements of Normed Algebras, Cambridge University Press,
ISBN 978− 0− 521− 07988− 4, 1971.

[8] F. F. Bonsall and J. Duncan, Numerical Ranges II, Cambridge University
Press, ISBN 978− 0− 521− 20227− 5, 1971.

[9] R. Brualdi, Matrices, eigenvalues and directed graphs, Linear and Multi-
linear Algebra, 11 : 143− 165, 1982.

113



[10] X. S. Chen, S. W. Vong, W. Li and H. Xu, Noda iterations for gene-
ralized eigenproblems following Perron-Frobenius theory, Numerical Algo-
rithms, 2018.

[11] Lj. Cvetkovi¢, H-matrix theory vs. eigenvalue localization, Numerical Algo-
rithms, 42(3− 4) : 229− 245, 2006.

[12] Lj. Cvetkovi¢, NUMELA I, Department of mathematics and Informatics,
Faculty of science at the University of Novi Sad, 2014.

[13] Lj. Cvetkovi¢ and V. Kosti¢, Between Ger²gorin and the minimal Ger²gorin
set, Journal of Computational and Applied Mathematics, 196(2) : 452 −
458, 2006.

[14] Lj. Cvetkovi¢ and V. Kosti¢, New criteria for identifying H-matrices, Jour-
nal of Computational and Applied Mathematics, 465− 478, 2005.

[15] Lj. Cvetkovi¢ and V. Kosti¢, New subclasses of block H-matrices with appli-
cations to parallel decomposition-type relaxation methods, Numerical Algo-
rithms, 42(3− 4) : 325− 334, 2006.

[16] Lj. Cvetkovi¢, V. Kosti¢, R. Bru and F. Pedorche, A simple generalization
of Ger²gorin's theorem, Advances in Computational Mathematics, 2011.

[17] Lj. Cvetkovi¢, V. Kosti¢ and D. Cvetkovi¢, Pseudospectra localizations and
their applications, Numerical Linear Algebra with Applications, Vol. 23, No
2 : 356− 372, 2016.

[18] Lj. Cvetkovi¢, V. Kosti¢ and R. S. Varga, A new Ger²gorin type eigenvalue
inclusion set, ETNA (Electronic Transactions on Numerical Analysis), 18 :
73− 80, 2004.

[19] Lj. Cvetkovi¢ and J. Pena, Minimal sets alternative to minimal Ger²gorin
set, Applied Numerical Mathematics, 60 : 442− 451, 2010.

[20] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pa-
ci�c Grove, CA, 1995.

[21] J. W. Demmel, Applied linear algebra, SIAM, 1997.

[22] C. Desoer, Feedback System: Input-output Properties, Elsevier Science, 2012.

114



[23] L. Elsner, Inverse iteration for calculating the spectral radius of a non-
negative irreducible matrix, Linear Algebra and Its Applications, 15 :
235− 242, 1976.

[24] R. A. Frazer, W. J. Duncan and A. R. Collar, Elementary Matrices and some
applications to dynamics and di�erential equations, Cambridge University
Press, 1938.

[25] M. A. Freitag and A. Spence, A Newton-based method for the calculation
of the distance to instability, Linear Algebra and Its Applications, 435(12) :
3189− 3205, 2011.
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