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Preface 

The main subject of this dissertation is a comprehensive examination of the role of similarity 
measures in time-series analysis through studying the influence of the Sakoe-Chiba band on 
accuracy of classification.  

A time series represents a series of numerical data points in successive order, usually with 
uniform intervals between them. Time series are used for storage, analysis and visualization 
of data collected in many different domains, including science, medicine, economics and 
others. The increasing demand to work with large amounts of data has led to a growing 
interest in researching different tasks of time-series data mining. In recent years, there is an 
increasing interest in studying various aspects of time-series classification. 

One of the most important issues of time-series classification is a thoughtful and adequate 
choice of the similarity measure. They enable comparison of time series by describing their 
similarity (or dissimilarity) with numerical values. In the field of time-series data mining a 
great number of different similarity measures has been proposed and used.  

Many of these measures are implemented using dynamic programming. Unfortunately, the 
time requirements of this technique may adversely affect the possibilities of its application 
in practice. One way of dealing with this issue is to limit the search area by applying global 
constraints. However, these restrictions may affect the accuracy of classification, and 
therefore understanding their impact is of great importance.  

The main task of this thesis is to discover and explain the role of these constrained similarity 
measures in the field of time-series analysis and data mining with a focus on classification 
accuracy. 

This dissertation is divided into the following six chapters: 

1. Introduction 

2. Time Series and Similarity Measures 

3. Time-Series Classification 

4. Methods, Tools and Data Sets 

5. Techniques for Improving Classification Accuracy 

6. Framework for Time Series Analysis (FAP) 

7. Conclusion 

 

In the first chapter a concise overview of the related topics is given in conjunction with the 
objects of the dissertation.  
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The necessary basic concepts of time-series data mining, including the formal definition of 
time series, descriptions of the analyzed similarity measures and global constraints are given 
in chapter two. 

Chapter three is devoted to time-series classification. A detailed overview of the nearest 
neighbor rule and its extensions along with several different weighting schemes are 
discussed in this chapter.  

Chapter four describes the methods, tools and datasets used in our research.  

A detailed description of the extensive experiments performed and discussion of results are 
presented in chapter five.  

All experiments within this thesis were performed using our free Java library for time-series 
analysis and data mining (Framework for Analysis and Prediction developed at Department 
of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad). The details of 
its structure and implementation are given in chapter six.  

Chapter seven concludes the dissertation and lists some possible directions for future 
research. 

The appendices of this dissertation contain detailed results of the experiments described in 
chapter five. 

In the end, for an introduction to the extremely interesting field of time-series data mining, 
for valuable help, unreserved support and patient guidance through my research I am 
especially indebted to my supervisor Mirjana Ivanović. This thesis would not have been 
possible without her, and without encouragement she has given me over the last years. 

I would also like to thank warmly all the members of the committee for their patience and 
valuable suggestions regarding this thesis. My special thanks and gratitude are addressed to 
Vladimir Kurbalija and Miloš Radovanović for their stimulating suggestions and advice during 
my research. 

My special thanks are also goes to other colleagues and professors at the Department of 
Mathematics and Informatics, Faculty of Sciences and the Department of Media Studies, 
Faculty of Philosophy for a nice and pleasant studying and working environment. 

I would like to thank Eamonn Keogh for collecting and making available the UCR time series 
datasets, as well as everyone who contributed data to the collection, without whom the 
experiments would not have been possible. 

Finally, I thank my parents and brother for their endless support and patience during my 
studies. 

Novi Sad, 2015 Zoltan Geler
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Introduction 

Data mining can be defined as the process of discovering and extracting interesting and 
useful information from large databases [39, 63, 113, 126]. Temporal data mining is 
concerned with knowledge discovery from large datasets of temporal data [63, 77, 113]. 
This form of data represents sequential data ordered with respect to time [63, 117]. Time 
series are the most popular type of temporal data: they consist of real values usually 
sampled at regular time intervals [63, 77]. We can distinguish between labeled and 
unlabeled time series on the basis of whether or not there is a class label associated with 
them. 

Each element of a time series describes the phenomenon under examination at a specific 
point in time. Depending on whether the observations were carried out continuously or at 
regular intervals we can differentiate continuous and discrete time series [13]. In this 
dissertation, we consider the specific form of discrete time series whose elements are 
uniformly spaced real numbers. 

Time series are used for storage, display and analysis of data across a wide range of 
different domains, including various areas of science, medicine, economics, ecology, 
telecommunications and meteorology [25, 40, 63]. Esling and Agon [25] emphasize that in 
almost every scientific field, measurements are performed over time and that the collected 
data can be organized in the form of time series with the aim of extracting meaningful 
knowledge. For finding new and useful information from the sets of collected data we can 
rely on methods from statistical analysis and modeling, data mining and machine learning 
[63]. 

While research in statistical modeling techniques has a long history [63], the need to 
process increasing volumes of data has heightened the interest for studying different task 
types of temporal data mining: indexing, classification, clustering, prediction, segmentation, 
anomaly detection and others [21, 39]. The area of interest of this dissertation is primarily 
related to time-series classification. 

In recent years, there is a growing interest for research in different aspects of time-series 
classification [34, 37, 45, 93, 111, 130, 131] - see Chapter 3. The possibility of applying many 
well-known machine learning techniques was investigated in the field of time-series 
classification. These techniques include: decision trees [102], neural networks [81], support 
vector machines [128], first order logic rules [101], Bayesian classifiers [85] and others. 
However, it was shown that the simple nearest-neighbor (1NN) approach often produces 
better results than the mentioned more complex classifiers for the time-series data [130]. 
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The nearest neighbor algorithm (1NN) is probably one of the most esteemed algorithms in 
data mining [127]. It is based on the following very simple idea: unknown samples are 
placed into the class of their nearest neighbors [18]. The majority voting k-nearest neighbor 
(kNN) rule generalizes this concept by finding the k nearest neighbors and choosing the class 
that is most frequent among them [28]. The distance-weighted k-nearest neighbor rule 
proposed by Dudani [22] assigns weights to the neighbors according to their distance from 
the unclassified sample: greater significance is given to closer neighbors. This rule selects 
the class which produces the largest sum of the weights among the k nearest neighbors of 
the unclassified sample. 

Since finding the nearest neighbors constitutes the core idea behind the kNN rule, one of 
the most essential questions of its implementation is related to the selection of an 
appropriate distance measure. In the domain of time series, several different similarity-
based distance measures are applied for comparing data sequences [31, 68, 108]. The most 
commonly used and most frequently investigated time-series similarity measures are 
Euclidean distance [26], Dynamic Time Warping (DTW) [10], Longest Common Subsequence 
(LCS) [121], Edit Distance with Real Penalty (ERP) [16], and Edit Distance on Real sequence 
(EDR) [17]. 

Dynamic programming represents the basic technique of implementation for the vast 
majority of similarity measures, but because of its quadratic computational complexity it is 
often not suitable for larger real-world problems. To address this shortage, one can restrict 
the search area using global constraints such as the Sakoe-Chiba band [105] and the Itakura 
parallelogram [44]. In Section 5.2 we will show that this can significantly speed up the 
calculation (a part of these results is published in [59]). 

Apart from speeding up the computation it was also suggested that the usage of global 
constraints can actually improve the accuracy of classification compared to unconstrained 
similarity measures [98, 130]. The accuracy of classification is commonly used as a 
qualitative assessment of a similarity measure [98]. Given all these positive effects of global 
constraints, it is important to carefully investigate their impact on various similarity 
measures. 

The 1-nearest-neighbor graph (1NN) is a directed graph where each time series is connected 
with its nearest neighbor. Since the 1NN classifier assigns the class of the nearest neighbor 
to a yet unclassified time series, the changes in the 1NN graph directly affect classification 
accuracy. In Section 5.3, the results of which are published in [59] and [60], we will explore 
the change of the 1NN graph (with respect to the change of the constraint size) in order to 
better understand the influence of global constraints and to provide deeper insight into 
their advantages and limitations. Also, we will examine how these changes reflect on the 
nearest-neighbors’ classes and investigate their impact on the accuracy of the 1NN 
classifier.  

The choice of 1NN classifier was motivated by reports of its superiority [21, 93, 119, 130]. 
This method achieved among the best results compared to many other sophisticated 
classifiers for time-series data. In addition, the accuracy of 1NN directly reflects the quality 
of the underlying similarity measure [116], the investigation of which is one of our goals. 
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We expect that our results will aid researchers and practitioners in selecting and tuning 
appropriate time-series similarity measures for their respective tasks since, as we will show, 
constraints introduce qualitative differences in all considered measures. Furthermore, the 
insight into the behavior of similarity measures with respect to changing constraints can be 
beneficial to the design of efficient indexing strategies for fast computation of 
(approximate) nearest neighbors. This statement is supported by the report [98] that 
measures with the values of constraints around 5% produce the same or almost the same 
classification accuracies as unconstrained measures. In addition, as we will show in 
Section 5.2, the difference of computation times between an unconstrained measure and a 
measure with such a small constraints is two and somewhere three orders of magnitude. 

All mentioned experiments for distance-measure assessment were conducted with the 1NN 
classifier as it was shown that it gives among the best results (compared to many classifiers, 
not only distance-based) with time-series data [21, 130]. This fact strongly indicates that the 
nearest neighbor has a particularly important meaning in time-series classification. In [93], 
the reasons and origins of this special behavior of the nearest neighbor are investigated, and 
related with the observed diversity of class labels in k-neighborhoods.  

In Section 5.4, we will compare the accuracies of 1NN and kNN classifiers when using the 
two most representative time-series distance/similarity measures based on dynamic 
programming (DTW and LCS), in order to understand the special meaning of the first 
neighbor. Furthermore, we will attempt to improve the accuracy of kNN by favoring the first 
(few) neighbors. 

Several different methods for assigning weights to nearest neighbors are proposed in the 
literature [22, 35, 36, 62, 69, 74, 84, 133] - all of these weighting schemes are presented in 
detail in Section 3.1. Generally, each paper that presents a new way of computing weights 
reports the superiority of the new method compared to some previous solutions. Several of 
these papers ([35, 36, 133]) compare various weighting schemes using a relatively small 
number of datasets (commonly 12) from the UCI machine learning repository [7]. The 
conclusions are usually based on comparing classification results using Euclidean distance. 

The aim of the study in Section 5.5 is to compare different weighting schemes from the 
above mentioned papers in the domain of time series. Our research is motivated by the 
view that the simple 1NN rule gives better results than the majority voting kNN rule [21]. 
We will investigate whether the proposed weighting schemes can produce higher 
classification accuracies than the 1NN classifier. In order to achieve this objective our 
research encompasses the majority of all publicly available, labeled time-series datasets in 
the world which are provided by the UCR Time Series Repository [50]. Moreover, our 
examinations embrace the three most commonly used time-series similarity measures 
(Euclidean distance and the unconstrained DTW and LCS) and provide statistical support to 
the results obtained. 

Usefulness of time series in the analysis of social, economic and natural phenomena has 
increased the importance of studying different fields of time-series data mining, which has 
led to the development of many new solutions. All these solutions are typically 
implemented separately and described in different publications. Development of a publicly 
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available free and open source library that contains the implementation of the most 
important algorithms for analysis and mining time series can support and facilitate 
researching new and comparing existing techniques in this domain. All of the experiments 
whose results are presented in this dissertation were carried out using our freely available 
Framework for Analysis and Prediction (FAP) which is presented in [58]. The basic features of 
this library are described in Section 4.1, and a detailed overview of its capabilities is given 
Chapter 6. 
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Time Series and Similarity Measures 

A time series represents the simplest form of temporal data: a series of numbers that 
describes the change of the observed phenomenon over time. Each number in a time series 
describes the phenomenon at one point in time [19]. Time series are suitable for 
representing social, economic and natural phenomena, medical observations, and results of 
scientific and engineering experiments.  

They are used for prediction, anomaly detection, clustering and classification, which 
increased the importance of different research areas of temporal data mining and resulted 
in a large amount of work introducing new methodologies [19, 21, 39]. 

A d-dimensional time series Q can be defined as a sequence of ordered pairs as follows [6]: 

                              

 

where      represents the time component, and       denotes the measured value of 
the observed phenomenon at time   . It is assumed that the time series is sorted by the time 
component, i.e. that 

       ,              . 
 

In this dissertation, we consider one-dimensional time series (    ) assuming that the time 
distance between the ordered pairs is constant, i.e.          ,             , where c 
is a constant positive value. In this manner, the time components of Q can be omitted and it 
can be viewed as a sequence of real numbers:               . As an example, Figure 2.1 
(a) presents one possible graphical representation of time series 
                                                which describes coffee production 
in Bolivia1 for the period from April to December 2008. Figure 2.1 (b) depicts another 
example - the retained earnings (in millions of dollars) of the movie "Valkyrie" in cinemas2 at 
the beginning of January 2009. Figure 2.1 (c) contains time series that illustrates Euro 
exchange rate changes3 from January 2008 to April 2009 at the National Bank of Serbia 

                                                           
1
 http://www.ico.org 

2
 http://www.movieweb.com 

3
 www.nbs.rs 

http://www.ico.org/
http://www.movieweb.com/
http://www.nbs.rs/
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(NBS). In Figure 2.1 (d) we can see an ECG recording4 that exemplifies the application of 
time series in the field of medicine. 

  

(a) Coffee production in Bolivia (b) Valkyrie movie gross 
  

  

(c) Euro exchange rate changes (d) ECG 

Figure 2.1. Examples of time series 

Slika 2.1. Primeri vremenskih serija 

Time-series data arise from and are used in many different application fields including 
finance, medicine, and various domains of science. The increasing need for applying time 
series in order to solve miscellaneous problems led to an explosive growth of interest in 
researching different task types of time-series analysis. These tasks include [95]: 

 Indexing: finding time series in a database that is most similar to a given time series 
Q based on some similarity/distance measure d. 

 Clustering: finding a natural way of grouping the time series of a database based on 
some similarity/distance measure d. 

 Classification: assigning unlabeled time series to one or more predefined classes. 

 Predicting: predicting future values and behavior of time series - given a time series 
Q containing n values, predict the value at time    . 

                                                           
4
 http://www.owlnet.rice.edu/~elec301/Projects02/empiricalMode/app.html 

http://www.owlnet.rice.edu/~elec301/Projects02/empiricalMode/app.html
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 Summarization: for a given time series Q which contains an extremely large number 
of points, create an approximation (reducing the number of points) that will keep the 
essential characteristics of Q. 

 Anomaly detection: on the basis of a given time series Q which is considered to be 
normal, find all the parts of a non-interpreted time series S which represent 
anomalies or unexpected, interesting, surprising occurrences. 

 Segmentation: we can distinguish between two sub-areas: 

o Given a time series Q containing n data points, on the basis of K piecewise 
segments (   ) create a model    which is a close approximation of Q. 

o Given a time series Q, partition it into K internally homogeneous sections. 

2.1. Similarity Measures 

One of the most important aspects of time-series analysis is the choice of appropriate 
similarity/distance measure – the measure which tells to what extent two time series are 
similar. However, unlike data types in traditional databases where the similarity/distance 
definition is straightforward, the distance between time series needs to be carefully defined 
in order to reflect the underlying (dis)similarity of these specific data, which is usually based 
on shapes and patterns. 

The distance between two time series                and                is defined 

using a proximity measure - a function that returns the nonnegative distance        
between them [25]. A distance metric is a proximity measure that for every time series Q, S 
and X satisfies the following conditions: 

1. Reflexivity:          if and only if    , 

2. Symmetry:              , 

3. Triangle inequality:                     , 

The distance between two time series specifies their degree of (dis)similarity: greater 
distance denotes less similarity. On the other hand, higher values of a similarity measure 
between two time series indicates smaller distances between them. The similarity is usually 
taken between 0 and 1, where 0 indicates that the objects are unalike, and 1 denotes that 
they are identical. A distance function operates the opposite way: it returns 0 if the objects 
are the same [39]. Converting distance into similarity, and vice versa is possible by means of 
the following formula [54, 91]: 
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As expected, there exists a large number of measures for expressing (dis)similarity of time-
series data proposed in the literature. Overviews of different (dis)similarity measures can be 
found in [20], [25], [31] and [108]. In the rest of this section we will outline the measures 
which are the subject of this dissertation. In this dissertation, unless explicitly stated, we will 
not distinguish between similarity and distance measures, and will use the two terms 
interchangeably. 

2.1.1. Euclidean Distance 

The most common similarity measure in time-series data mining is probably the Euclidean 
distance [4, 26, 129]. Assuming that two time series,                and  

              , are of the same length n, we can think of them as points in n-dimensional 
space. In this manner we will be able to calculate their distance relying on the differences 
between the corresponding elements of the sequences as it is shown in Eq. (2.1). 

                
 

 

   

  (2.1) 

 

The advantage of Euclidean distance is that it is very easy to compute and to understand. 
Furthermore, it fulfills the above mentioned conditions to be a distance metric and 
therefore it can be used for indexing time series in databases [26]. There are, however, 
some disadvantages, too: the sequences must have the same number of points (can be 
avoided by interpolation to equal length [98]), it is sensitive to shifting and scaling along the 
y-axis (can be precluded by normalizing the series [19, 32]), and it is also sensitive to 
distortions and shifting along the time axis [49]. 

Euclidean distance is a special case of the Minkowski distance (   norm), defined by 

Eq. (2.2): 

                 
 

 

   

 

  (2.2) 

 

The most commonly used    norms are Euclidean distance (   ), Manhattan distance 

(   ) and Chebyshev distance (   ) which is defined as follows: 
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2.1.2. Dynamic Time Warping (DTW) 

Euclidean distance is based on linear aligning of related points of time series (Figure 2.2 (a)): 
the i-th point of the first series is paired with the i-th point of the second one. The 
assessment of the similarity can be improved by warping the time axis of one or both 
sequences (Figure 2.2 (b)). One of the most popular similarity measures based on non-linear 
aligning is the Dynamic Time Warping (DTW) [10, 49, 130]. 

  
(a) (b) 

Figure 2.2. Linear (a) and non-linear (b) aligning of points 

Slika 2.2. Linearno (a) i nelinearno (b) uparivanje tačaka 

Let                and                be two time series of lengths n and m. To align 

these two time series using DTW, we construct an n-by-m warping matrix           
 

(Figure 2.3), where     represents the squared distance between    and   , i.e.     

       
 
. 

 

Figure 2.3. Optimal warping path inside the warping matrix 

Slika 2.3. Optimalan put iskrivljenja unutar matrice iskrivljenja 

DTW searches for the optimal warping path (the one that minimizes the total cumulative 
distance between Q and S) in the warping matrix D (shown with solid squares in Figure 2.3). 
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A warping path                (where                 ) represents a 
sequence of adjacent cells from the matrix. Each element of a warping path is of the form 
           (where    denotes a row of the matrix and    denotes a column of the matrix) 
and the warping path must satisfy the following constraints: 

 Boundary condition - the first and the last element of the warping path are in 
diagonally opposite corners of the matrix:         ,         . 

 Continuity condition - cells of the matrix denoted by adjacent elements of the 
warping path must be neighbors:          ,          . 

 Monotonity condition - the warping path must be monotonically non-decreasing 
along the time axis:          ,          . 

 

From the set of all possible warping paths we are seeking for the optimal one, which 
minimizes the warping cost (the sum of the cells that constitute the warping path). This can 
be found using dynamic programming, as recursively defined by Eq. (2.3). 

       

 
 
 

 
 

       
         or         

             

          

        

        

       

   (2.3) 

 

where          is the distance between    and   . The distance between Q and S is then 

defined as                . Euclidean distance can be seen as a special warping path 
which contains only the diagonal elements on the distance matrix, and which is defined for 

time series of the same length as          . 

DTW is used in a wide variety of different domains including: satellite image time series 
analysis [87], human action recognition [89], fault diagnosis of motor drives [139], detecting 
melodic motifs from audio [103], exploring dynamic mobility patterns of urban areas from 
mobile phone data [132] and voice command recognition [9]. 

2.1.3. Longest Common Subsequence (LCS) 

The Longest Common Subsequence (LCS) approach calculates the distance between two 
sequences relying on a variation of the edit distance technique - a well known method in the 
field of string processing. The basic idea is to express the similarity of the time series based 
on the length of their longest common subsequence [121]. The length of the LCS can be 
computed using dynamic programming based on the recursive definition in Eq. (2.4). The 
condition       is usually too strong for time series and it is often replaced with a 

parameterized condition          , where      . The dissimilarity          between 
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two time series                and                of length n and m is calculated 

according to Eq. (2.5) as presented in [95] and [19]. 

        

     or     

                  and       

                            and       

   (2.4) 

 

         
            

   
  (2.5) 

 

A framework based on LCS for action representation and recognition is presented in [122]. 
In [41] another framework based on LCS is proposed to solve the similarity search problem 
given user-defined instance-level constraints for tropical cyclone events, represented by 
arbitrary-length multidimensional spatiotemporal data sequences. The suitability of LCS for 
history-based travel-time predictions for vehicles traveling on known routes is explored in 
[118]. 

2.1.4. Edit Distance with Real Penalty (ERP) 

Ding et al. [21] refer to distance measures that utilize linear aligning between the points of 
time series as lock-step measures (Euclidean distance and other forms of the    norm for 

   ). One of their main advantages is that they represent distance metrics and thus they 
can be easily applied for indexing in databases. However, the fixed mapping between the 
points makes them sensitive to noise (random error that occurs in the data mining process 
[77]) and time shifting. Elastic measures like DTW and LCS address these issues by allowing 
one-to-many (DTW) and one-to-many/one-to-none (LCS) mappings [21]. Since neither DTW 
nor LCS satisfy the triangle inequality [110], they are non-metric distance measures. 

In [16] Chen and Ng propose the ERP distance function as a combination of the    norm and 
elastic similarity measures. To handle local time shifting it calculates the real penalty 
between non-gap elements using    distance. The distance for gaps is computed based on a 
constant value denoted by g (the default value is 0) in the definition of this measure 
(Eq. (2.6)). The distance between two time series                and                of 

length n and m is then defined as                . ERP is a distance metric, but it is 
sensitive to noise [17]. 

       

 
 
 
 
 

 
 
 
 
       

 

   

    

       

 

   

    

    

                  

               

               

          

   (2.6) 
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ERP was successfully used in solving various problems including classification of pulse 
waveforms [134], clustering trajectories of moving objects [86], querying time-series 
streams [33] and creating driving behavior for artificial agents [107]. 

2.1.5. Edit Distance on Real sequence (EDR) 

EDR [17] is an elastic similarity measure based on edit distance which has been developed 
with the aim to improve the accuracy of LCS in the case when the time series contains 
similar sub-sequences with gaps of different sizes between them. EDR is robust to noise, 
outliers (instances that are in some sense different from the majority of others [91]) and 
local time shifting. In contrast to LCS, EDR assigns penalties according to the lengths of the 
gaps, but EDR also does not represent a distance metric.  

Let                and                be two time series of length n and m. The Edit 

Distance on Real Sequence (EDR) between Q and S is the number of insert, delete, or replace 
operations that are needed to change Q into S. The distance between Q and S is defined as 
                where the elements of matrix E are calculated recursively as follows: 

       

 
 
 

 
 
     
     

    

                       

          

          

          

   (2.7) 

 

The subcost in Eq. (2.7) represents the cost of a replace, insert, or delete operation and it is 
calculated by the following formula: 

              
           

           
  

where      . 

A novel clustering method of trajectories based on EDR is presented in [2]. In [64] EDR is 
used for subtrajectory-based video indexing and retrieval. An adaptation of EDR and LCS for 
the shape similarity of fibers is presented in [70]. 

2.2. Global Constraints of Time-Series Similarity Measures 

Each of the above-mentioned elastic similarity measures (DTW, LCS, ERP and EDR) relies on 
dynamic programming for finding the optimal path within the search matrix. Dynamic 
programming requires comparing each element of one time series with each element of the 
other one. This makes the calculation of the similarity measures quite slow and has some 
limitations when dealing with large datasets.  
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To improve the performance of these algorithms a number of techniques have been 
developed. The Sakoe-Chiba band [105] narrows the warping window around the diagonal 
of the matrix using a constant range r. The Itakura parallelogram [44] uses a similar 
approach: the range of the restriction is a function of i and j coordinates in the matrix. These 
restrictions of the search path are illustrated in Figure 2.4. Global constraints were originally 
introduced to prevent some bad alignments, where a relatively small part of one time series 
maps onto a large section of another time series. 

Apart from speeding up the computation it was also suggested that the use of global 
constraints can actually improve the accuracy of classification compared to unconstrained 
similarity measures [98, 130]. In Chapter 5, we will explore a wide variety of r values and 
examine their effect on DTW, LCS, ERP and EDR distance measures constrained by the 
Sakoe-Chiba band. In Section 5.2 we will show that global constraints can significantly 
reduce the computation time of the elastic similarity measures. In Section 5.3 we will 
demonstrate that the constrained measures are qualitatively different from their 
unconstrained counterparts and explain how they can produce better classification 
accuracies compared to the unconstrained ones. 

 

           (a) 

 

           (b) 

Figure 2.4. Sakoe-Chiba band (a) and Itakura parallelogram (b) 

Slika 2.4. Sakoe-Chiba pojas (a) i Itakura paralelogram (b) 

To illustrate the effects of constraining the warping window using the Sakoe-Chiba band, in 
Figure 2.5 we give a visual review of the warping windows and the associated optimal 
warping paths for different values of parameter r. These images were made by applying the 
DTW similarity measure (Section 2.1.2) on the following two time series (they are listed here 
with rounding to 3 decimal places) from the ItalyPowerDemand dataset: 
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The ItalyPowerDemand dataset contains 1096 time series composed of 24 real numbers 
(see Table 4.1 in Section 4.2). Each time series of this dataset belongs to one of two classes. 
The above listed time series Q and S belong to different classes. Their graphical display is 
given in Figure 2.6. 

Table 2.1 shows the examined different values of parameter r along with the corresponding 
warping window widths and the obtained distances between Q and S. 

   

                 

   

                   

Figure 2.5. Warping windows and optimal warping paths for different values of parameter r 

Slika 2.5. Prozori iskrivljenja i optimalni putevi iskrivljenja za različite vrednosti parametra r 
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Figure 2.6. A graphical display of two time series from the ItalyPowerDemand dataset 

Slika 2.6. Grafički prikaz dve vremenske serije iz skupa ItalyPowerDemand 

r (%) Length Distance 

0 0 10.829 
10 2 6.649 
20 4 5.798 
25 6 4.937 
50 12 4.814 

100 23 4.814 

Table 2.1. Different values of parameter r with the corresponding warping window widths 
and the obtained distances 

Tabela 2.1. Različite vrednosti parametra r sa pripadajućim širinama prozora iskrivljenja i 
dobijena rastojanja 
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Time-Series Classification 

Classification is the process of grouping objects into predefined categories, classes. It is 
always done on the basis of a selected attribute (class label), which can have a finite number 
of different values. This way we always know the total number of different classes in 
advance. This is a key difference between classification and clustering - in case of clustering 
we do not know the number of groups in advance, groups are revealed during the process 
of clustering. Thus, classification can be considered as supervised learning and clustering as 
unsupervised learning. The purpose of a supervised learning algorithm is to create a 
prediction function that will make predictions for unseen objects based on a set of labeled 
examples of training data [46, 78]. On the other hand, an unsupervised learning algorithm is 
used to learn patterns exclusively from unlabeled objects [46, 78]. 

A typical task in data mining is to train a classifier based on available data. The aim of 
classification is to find rules that will ensure accurate mapping of objects (in our case, time 
series) into predefined classes. In general, the classification process consists of the following 
three main steps [1, 53]: 

1. Training the classifier: we train the classifier based on a predetermined set of 
objects (the training set) using a learning algorithm. The class label must be known 
for each object of the training set. The training set is used for forming the 
classification rules, i.e. a function that will map every object of the set into a 
predefined class. 

2. Testing the classifier: after training, the obtained classifier must be verified using a 
test set. The class label must be known also for each object form the test set. The 
accuracy of the classifier is checked by applying it to the objects of the test set and 
comparing the obtained class labels with the real labels of the objects. If the 
accuracy of the classifier is not at a satisfying level, we need to repeat the training 
process. In order to improve the accuracy of the classifier we must take into account 
several possibilities: maybe we need a larger training set, perhaps some important 
characteristics of the problem have not taken into consideration, maybe the selected 
algorithm needs parameter tuning, or maybe it is not appropriate for the current 
problem. 

3. Applying the classifier: If the resulting classifier has an acceptable accuracy on the 
testing set, we can use it for classifying unclassified objects. 
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Time-series classification has attracted much attention recently in the time-series 
community [34, 37, 45, 93, 111, 130, 131]. Górecki and Luczak [34] introduced a new 
distance function for the nearest neighbor rule based on the general shape of time series 
rather than point-to-point comparison. In [37] after reducing the dimensionality of long time 
series using matrix factorization, Support Vector Machines are applied to classify them. As 
an attempt to improve classification accuracy, Jeong et al. [45] presented a novel 
generalization of the Euclidean distance and Dynamic Time Warping (DTW) by applying a 
modified logistic weight function. Radovanović et al. [93] investigated an aspect of the 
dimensionality curse5 called hubness (the tendency of some elements of a dataset to appear 
among the k nearest neighbors of unexpectedly many other elements of the dataset) on 
time-series classification. To speed up the classification of time series, Spiegel et al. [111] 
proposed a variation of the DTW distance using a greedy approach that only evaluates 
matrix elements which most likely contribute to the actual warping path (see Section 2.1.2). 
In order to produce compact classifiers and preserve good classification accuracy Xi et al. 
[130] combined constraining the warping window (see Section 2.2) of DTW with numerosity 
reduction (discarding part of the training set to improve performance). Ye and Keogh [131] 
introduced a new time series primitive called time series shapelets6 to address some 
limitations of the simple nearest neighbor algorithm. 

Approaches to classification vary from purely statistical methods such as exponential 
smoothing [15] or ARIMA models [12], to those based on different data-mining techniques 
like neural networks [81], genetic algorithms [23], support vector machines [128] and fuzzy 
systems [88]. 

Statistical methods usually use autoregressive (AR) models where the current value of time 
series is generated as a linear combination of the previous values. These methods are more 
appropriate for forecasting, but some interesting works can be found in the area of 
classification. Kini and Sekhar [52] present the large margin autoregressive (LMAR) method 
that uses an AR model for each class and the large margin method for estimation of 
parameters of AR models. A system which builds groups of time series that share the same 
forecasting model applied to supply chains is presented by Turrado García et al. [120]. The 
similarity between two time series is defined in the following manner: two series will have 
the same associated ARIMA model if and only if the autocorrelation and partial 
autocorrelation functions give similar results in their N first positions. In the paper [43] by 
Huan and Palaniappan the neural-network classification of autoregressive features is 
applied on time series of electroencephalogram signals extracted during mental tasks. 

An interesting approach for time-series classification is to transform the time series into 
standard feature vectors with a fixed dimensionality. In this case, many well-studied data-
mining techniques can then be adopted for classification or clustering. Zhang et al. proposed 
an algorithm based on the orthogonal wavelet transform [136], in which the coefficients of 
the Haar wavelet were extracted as a feature vector for subsequent time-series clustering. 
Eruhimov et al. use DTW to transform the time axis of each signal in order to decrease the 
Euclidean distance between signals from the same class [24]. Afterwards, a range of 

                                                           
5
 The curse of dimensionality refers to problems associated with high dimensionality (large number of 

features) of data being processed [91]. 
6
 Time series subsequences which are in some sense maximally representative of a class [131]. 
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attributes of both transformed time series and original time series are extracted to form a 
high-dimensional feature vector. Another interesting approach is the adaptation of 
segment-based representations to extract features from time series [30, 65, 73]. Recent 
activities in transformation of time series into feature vectors include utilization of segment-
base features [138] and the extraction of meaningful patterns from original data [137]. 

The most widely used approach to time-series classification is to define a distance function 
between two time series and use some of the existing distance-based classifiers. In this 
approach, the key problem is how to define a robust distance or similarity measure that can 
reflect the overall shape of the time series. The most standard distance measures are 
described in the previous section. Recently, an alignment-based distance metric called Time 
Warp Edit Distance (TWED) was proposed by Marteau [71]. It has been proven that this 
metric satisfies the triangle inequality. In [34], Górecki and Luczak emphasize the 
importance of using derivatives in time-series distance functions. This approach considers 
the overall shape of a time series rather than individual point-to-point function comparison. 
A generalization of the DTW measure is proposed by Jeong et al. [45] as a novel distance 
measure, called Weighted DTW (WDTW). This measure penalizes the points according to the 
phase difference between a reference point of the first time series and test point of the 
second time series. The proposed approach can prevent some bad alignments where one 
point of the first time series maps onto a large part of the second time series. 

In this dissertation we adopt the aforementioned widely used approach to time-series 
classification of using distance measures between time series in conjunction with two 
existing distance-based classifiers – 1NN and kNN. As was mentioned in the introduction, 
this choice was motivated by reports of the efficiencies of different classification techniques 
where the simple nearest-neighbor classifier achieving among the best results [21, 49, 93, 
119, 130]. The additional upside of 1NN is that its accuracy directly reflects the quality of the 
underlying distance measure [116], which provides a basis for our qualitative analysis of the 
impact of constraints, and also provides a practical demonstration of our observations. 

3.1. The Nearest Neighbor Rule 

A time series Q of length n can be viewed as a sequence              of real numbers which 
describes the change of the observed phenomenon at equidistant points of time [16, 25, 
135]. The task of classification is to determine the class (label) of an unclassified time series 
Q based on a given training set of pre-classified time series 
         

         
           

    [25, 39, 63]. In the remainder of this section we denote 
the set of different classes assigned to the elements of the training set T with C, i.e. 

     
    

      
   

 

where   
  denotes the class of time series   . 

According to Ratanamahatana et al. [95] the simple nearest neighbor rule (1NN) [18] is one 
of the most popular time-series classification methods. The class of a new sequence is 
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determined by the closest (most similar) member of the training set. In [130], Xi et al. have 
shown that the combination of the 1NN rule and the DTW similarity measure is a very 
competitive classifier compared to other more complex methods. Cover and Hart [18] 
proved that the asymptotic misclassification rate R of the 1NN rule satisfies the following 
condition: 

              
   

     
  

 

where R* is the Bayesian probability of error. 

One of the first formulations and analyses of the k-nearest neighbor rule originates from Fix 
and Hodges [28]. Let C denote a set of two classes, i.e.          , and let the training set T 
contain    representatives of class    (     ). A new time series Q is labeled with class    if 
           , where    denotes the number of training examples of class    which are 
among the         nearest neighbors of Q. The intuition behind such a formulation of 
the k-nearest neighbor rule is that the dominance of the selected class among the nearest 
neighbors of Q must be consistent with the total number of its representatives in the 
training set T. 

The majority-voting k-nearest neighbor rule (kNN) algorithm is a natural extension of the 
1NN rule: a new series Q is labeled with the class that is most frequent among the k nearest 
neighbors of Q inside the training set T. The choice of the class can be formally written as 
follows: 

          
   

        
  

 

   

   (3.1) 

 

where   
  denotes the class of the i-th nearest neighbor, and E(∙) is an indicator function that 

returns 1 if its argument is true and 0 otherwise. Ties are broken arbitrarily. 

Wu et al. [127] highlight a number of issues related to the choice of k in the kNN classifier. If 
k is too small, the kNN rule can be sensitive to noise points. If k is too large, the closest 
neighbors can include many different classes. Another issue may arise from the equality of 
the neighbors in the process of majority voting regardless of their distance from the query 
object. This can be addressed by weighting the votes of the neighbors in accordance to their 
distance. If we denote the weight of the i-th nearest neighbor with   , Eq. (3.1) can be 
adjusted in the following way: 

          
   

           
  

 

   

  

 

In the remainder of this section we will review several different ways of calculating weights 
that are analyzed in the experiments whose results are presented in Sections 5.4 and 5.5. 
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The pseudocode of the algorithm that implements a distance-weighted kNN classifier is 
given in Section 5.1. 

3.1.1. Dudani's weighting functions 

The first distance-weighted voting method for kNN rule was proposed by Dudani in [22] 
(henceforth denoted Dudani). In this approach weights are taken from the interval [0, 1]. 
The closest neighbor is weighted with 1, the farthest with 0 and the others are scaled 
between by the linear mapping defined in Eq. (3.2), where    denotes the distance between 
the query sequence Q and the i-th of the nearest neighbors. 

    

     
     

      

       

    (3.2) 

 

Dudani has shown that for at least one arbitrarily chosen example of a small training set 
(considering a three-class problem with equal a priori class probabilities) the distance-
weighted kNN rule produced lower probability of error than the majority voting kNN rule 
[22]. The probability of error was estimated using a Monte Carlo analysis and the distance 
between neighbors was calculated using Euclidean metric. The obtained results are shown 
in Figure 3.1 (from [22]). We can see that the probability of error for Dudani's weighting 
scheme is lower than that for the majority voting rule. According to Dudani, the high value 
of probability of error in case of the majority rule for k=2 is a consequence of many ties [22]. 

 

Figure 3.1. Plots of probability of error with respect to k for the distance-weighted and 
majority voting kNN rules 

Slika 3.1. Verovatnoća greške u odnosu na parametar k u slučaju kNN klasifikatora sa i bez 
upotrebe težina 
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Dudani's belief is that the distance-weighted kNN rule is acceptable for small and moderate-
sized training sets [22]. In his opinion, one of the reasons why the distance-weighted kNN 
rule achieves better results than the majority-voting k-nearest neighbor rule is that the 
probability of ties is lower in the first case. 

Dudani [22] has also suggested two additional alternative weighting schemes: the inverse 
distance weight (Inverse, Eq. (3.3)) and the rank weight (Rank, Eq. (3.4)).  

   
 

  
  (3.3) 

          (3.4) 
 

Instead of the inverse distance we may rely on the inverse of the squared distance [62, 74, 
127] (ISquared). In both of these cases there is a possibility of division by zero. This is usually 
solved by adding a small constant ε (we have used 0.001 in our experiments, see Sections 
5.4 and 5.5) to the denominator as in Eq. (3.5). 

   
 

  
   

  (3.5) 

3.1.2. Macleod's weighting function 

The weighting function in Eq. (3.2) excludes the k-th neighbor from the voting process in the 
situation when       since         for    . Macleod et al. in [69] provide a 
generalization of Dudani's weighting function by introducing two new parameters:     
and     (Macleod, Eq. (3.6)). Through them we can overcome this shortcoming. When 
    and    , Eq. (3.6) becomes the original weighting scheme proposed by Dudani. 
From the several combinations of these parameters, which have been investigated in [69], 
we will use     with     (see Section 5.5). 

    

                 

             
      

       

   (3.6) 

3.1.3. The Fibonacci weighting function 

In [84], Pao et al. have used the Fibonacci sequence as the weighting function (Fibonacci, 
Eq. (3.7)). They have compared this scheme with the three weighting methods defined by 
Dudani (linear mapping - Eq. (3.2), inverse distance - Eq. (3.3), and the rank weight - 
Eq. (3.4)) in the field of recognizing emotions from Mandarin speech. Beside the majority 
voting (kNN) and the distance-weighted k-nearest neighbor (WKNN) rule their study has also 
included two other variations of the weighted kNN classifier: Categorical Average Patterns 
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(WCAP) [115] and Weighted Discrete kNN (WDKNN) [83]. They have found that the 
Fibonacci weighting function outperforms the others in all of the examined classifiers. 

            

         
  (3.7) 

 

Pao et al. invited 18 males and 16 females to portray five different emotions (angry, bored, 
happy, neutral and sad). The obtained data were independently tagged by 10 human 
listeners and only those that had above 80% agreement of the taggers were chosen for the 
experiments. The resulting dataset included 151 angry, 83 bored, 96 happy, 116 neutral, and 
124 sad recordings.  

For the purposes of the experiments three acoustic features were extracted from the 
utterances: mel-frequency cepstral coefficients (MFCC), linear predictive coefficients (LPC) 
and linear predictive cepstral coefficients (LPCC). In the preprocessing stage, the data were 
normalized using min-max normalization [39, 62, 114]. 

In the first step of the experiments the best value of parameter k was selected in range from 
1 to 15 using the Leave-One-Out (LOO) evaluation method (see Section 3.2) and the majority 
voting kNN classifier. The best accuracy (72.5%) was obtained for     . Using this value of 
k, in the second phase of the examinations, the discussed weighting schemes in various 
classifiers were compared based on the results of the LOO evaluation method. According to 
the obtained accuracies in Table 3.1 (from [84]), the best results are achieved using the 
Fibonacci weighting function. 

 Dudani Inverse Rank Fibonacci 

WKNN 75.6% 74.2% 73.8% 76.1% 

WCAP 74.2% 73.6% 73.1% 74.5% 

WDKNN 78.7% 79.5% 81.2% 81.4% 

Table 3.1. Experimental results of different weighting functions in WKNN, WCAP, and 
WDKNN 

Tabela 3.1. Rezultati eksperimenata sa različitim težinskim funkcijama za WKNN, WCAP i 
WDKNN 

3.1.4. The uniform and dual-uniform weighting functions 

Gou at al. [36] have introduced a weighting scheme calculated as the reciprocal value of the 
neighbors' rank (Uniform, Eq. (3.8)), and a weighting function (DualU, Eq. (3.9)) based on 
Dudani's linear mapping (Eq. (3.2)). They denote the weighted kNN classifiers that use these 
weighting schemes respectively with UWKNN, DWKNN and WKNN. In this paper they have 
compared the classification accuracies of the majority voting kNN classifier and these three 
weighted forms of the kNN classifier. Their conclusion is that the combined weighting 
(DualU) in Eq. (3.9) surpasses the other examined classifiers. 
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  (3.8) 

 

    

     
     

 
 

 
      

       

   (3.9) 

 

The experiments were conducted using artificially generated data and real data selected 
from the UCI machine learning repository [7] with numeric attributes only. The distances 
between the elements of the datasets were calculated using Euclidean distance. The 
optimal value of the neighborhood size k (which minimizes the error rate) was selected in 
range from 1 to 50 based on the Leave-One-Out (LOO) method (see Section 3.2).  

In the first part of the examinations the experiments were conducted on artificial data. In 
the first step a dataset with 600 elements was used and the neighborhood size k was varied 
in range from 1 to 50. The influence of the neighborhood size k on the classification 
accuracies are presented in Figure 3.2 (from [36]).  

In the second step the value of the parameter k was set to 15 and the size of the dataset 
was varied in range from 100 to 2000 in steps of 100. The influence of the sample size on 
the classification accuracies are depicted in Figure 3.3 (from [36]).  

These results suggest that the DualU weighting function (DWKNN classifier) is better than 
the other discussed weighting schemes in both cases. The majority voting kNN classifier is 
inferior to the other examined classifiers within both experiments. 

 

Figure 3.2. The influence of the neighborhood size k on the classification accuracies 

Slika 3.2. Uticaj broja suseda k na tačnost klasifikacije 
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Figure 3.3. The influence of the sample size on the classification accuracies 

Slika 3.3. Uticaj veličine skupa podataka na tačnost klasifikacije 

In the second part of the examinations Gou et al. have compared the classification 
performance of the discussed classifiers on 12 real datasets from the UCI machine learning 
repository [7]. The basic characteristics of these datasets are presented in Table 3.2 (from 
[36]).  

Dataset Attributes Instances Classes 

Pendigits 16 10992 10 

Oppdigits 64 5620 10 

Ionosphere 34 351 2 

Glass 10 214 7 

Landsat Satellite 36 6435 7 

Libras Movement 90 360 15 

Wine Quality-Red 11 1599 11 

Zoo 17 101 7 

Vehicle 18 946 4 

Wine Quality-White 11 4898 11 

Letter 16 20000 26 

Image Segmentation 19 2310 7 

Table 3.2. Some characteristics of the UCI datasets: the number of instances, attributes, and 
classes 

Tabela 3.2. Neke osobine UCI skupova podataka: broj elemenata, atributa i klasa 
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The obtained lowest error rates with the corresponding optimal values of the parameter k 
are shown in Table 3.3 (from [36]). Of the 12 datasets in case of 7 datasets the smallest 
error rate was achieved by the DualU weighting function (i.e. the DWKNN classifier). 
Furthermore, the average error rate of DWKNN is the lowest among the examined 
classifiers. 

Another important observation is that the optimal value of parameter k is low (less than 10) 
for every dataset in case of the kNN, WKNN and UWKNN classifiers (for the majority of the 
datasets this value is 1). On the other hand, the optimal value of k is much larger in case of 
the DWKNN classifier (larger than 5 - except for the Zoo dataset). Additionally, Gou at al. 
have shown that while the classification accuracy for kNN, WKNN and UWKNN drops quickly 
as the value of k grows, it remains stable for DWKNN or even increases for some datasets. In 
Sections 5.4 and 5.5 we have noticed some similar traits in the domain of time series. 

Datasets kNN WKNN UWKNN DWKNN 

Pendigits 0.58 (3) 0.53 (6) 0.55 (4) 0.55 (22) 

Oppdigits 1.00 (4) 0.96 (7) 1.01 (8) 1.03 (32) 

Ionosphere 13.39 (1) 13.39 (1) 13.39 (1) 12.54 (14) 

Glass 26.64 (1) 26.64 (1) 26.64 (1) 25.23 (8) 

Landsat Satellite 8.44 (4) 8.45 (7) 8.34 (6) 8.34 (6) 

Libras Movement 12.78 (1) 12.78 (1) 12.78 (1) 12.50 (6) 

Wine Quality-Red 38.46 (1) 38.15 (6) 38.46 (1) 36.52 (44) 

Zoo 1.98 (1) 1.98 (1) 1.98 (1) 1.98 (1) 

Vehicle 33.45 (5) 32.74 (6) 33.45 (7) 33.92 (30) 

Wine Quality-White 38.38 (1) 38.36 (4) 38.38 (1) 38.10 (17) 

Letter 3.64 (4) 3.29 (8) 3.39 (7) 3.32 (50) 

Image Segmentation 3.33 (1) 3.12 (6) 3.33 (1) 3.29 (9) 

Average Error 15.17 15.03 15.14 14.78 

Table 3.3. The lowest error (%) of each method with the corresponding k in the parenthesis 
for all datasets 

Tabela 3.3. Najmanje greške klasifikacije (%) zajedno sa odgovarajućim vrednostima 
parametra k u zagradi, za sve skupove podataka 

3.1.5. Zavrel's weighting function 

In [133] Zavrel has matched another weighting scheme against the linear mapping (Eq. (3.2)) 
and the inverse distance (Eq. (3.3)) weighting functions proposed by Dudani, as well as 
against the 1NN classifier and the majority voting rule. This scheme (Zavrel) is based on the 
exponential function as shown in Eq. (3.10) where α and β are constants determining the 
slope and the power of the exponential decay function respectively. In our inquiry in 
Section 5.5 we have selected       as proposed in the Zavrel's paper. 

        
 

  (3.10) 
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The survey covered 12 datasets from the UCI machine learning repository [7] and one 
additional linguistic dataset (PP-attachment) collected by Ratnaparkhi et al. [100]. The 
properties of the observed datasets are shown in Table 3.4 (from [133]). All the selected 
datasets have only numeric attributes.  

In his experiments Zavrel relied on cosine distance [20]. Each experiment was repeated 10 
times (10CV), unless a specific partition or separate dataset was used for testing in earlier 
work on the same dataset [133]. In case of the repeated experiments the datasets were 
randomly shuffled and the first 90% of the instances were used for training and the rest for 
testing. The optimal number of neighbors k was searched in the interval from 1 to 100. 

 

Dataset Attributes Instances Classes Error estimation 

PP-attachment 100 20801 2 test set, 3097 inst. 
Glass 9 214 6 10CV 
Wine 13 178 3 10CV 
Sonar 60 208 2 10CV 
Letter 16 16000 train 26 test set. 4000 inst. 
Isolet 617 6238 train 26 test set, 1559 inst. 
Vowel 10 517 train 11 test set, 473 inst. 
Segmentation 19 210 train 7 test set, 2100 inst. 
Ionosphere 34 351 2 10CV 
Diabetes (pima) 8 768 2 10CV 
Breast cancer (wpbc) 32 198 2 10CV 
Breast cancer (wdbc) 30 569 2 10CV 
Cleveland heart 13 303 5 10CV 

Table 3.4. Characteristics of the UCI datasets used in Zavrel's experiments 

Tabela 3.4. Osobine UCI skupova podataka korišćenim u Zavrelovim eksperimentima 

Zavrel has found that the weighted voting can improve the kNN's accuracy and that Dudani's 
linear mapping (Eq. (3.2)) is superior to the other classifiers examined in his study. The 
detailed results are presented in Table 3.5. The optimal values of the parameter k are listed 
within the brackets. The dashes indicate that there is no improvement over 1NN classifier's 
accuracy. 

Based on these results, we can see that the 1NN classifier is superior to the other classifiers 
only in case of one dataset (Segmentation). Furthermore, Zavrel has found that after 
reaching the optimal value of k, accuracy decreases almost monotonically with the increase 
of k. His conclusion is that a weighting function for the kNN classifier has the potential to 
make it more robust to the choice of k, and to improve its accuracy [133]. Based on the 
results of our extensive experiments, which are presented in Sections 5.4 and 5.5, we have 
discovered similar findings in the field of time-series data mining. 
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Dataset 1NN kNN Inverse Dudani Zavrel 

PP-attachment 80.1 83.4 (13) 83.7 (13) 84.2 (30) 84.0 (35) 
Glass 76.4 77.3 (2) - 77.3 (5) 76.8 (3) 
Wine 96.7 97.8 (3) 97.8 (3) 97.8 (7) 97.8 (3) 
Sonar 82.5 - 83.1 (7) 85.0 (9) - 
Letter 95.6 - - 96.0 (5) - 
Isolet 88.6 91.9 (13) 92.4 (13) 92.9 (15) 92.4 (3) 
Vowel 52.6 - 55.6 (7) 55.8 (15) 55.0 (7) 
Segmentation 90.9 - - - - 
Ionosphere 90.0 - - 90.6 (5) - 
Diabetes (pima) 66.1 70.1 (3) 69.7 (80) 70.3 (100) 70.1 (3) 
Breast cancer (wpbc) 69.0 79.5 (11) 81.0 (9) 79.5 (21) 79.5 (11) 
Breast cancer (wdbc) 89.1 93.3 (5) 93.2 (5) 92.8 (30) 93.3 (5) 
Cleveland heart 57.0 62.7 (2) 58.7 (11) 58.7 (9) 59.3 (100) 

Table 3.5. Results of Zavrel's experiments 

Tabela 3.5. Rezultati eksperimenata Zavrel-a 

3.1.6. The dual distance-weighted function 

The dual distance-weighted function (DualD) depicted with Eq. (3.11) was presented by Gou 
et al. in [35]. This novel weighted kNN rule extends Dudani's linear mapping (Eq. (3.2)): it 
weights the closest and the farthest neighbors the same way as the linear mapping, but 
assigns smaller values to those between them. This extension of the Dudani's scheme was 
proposed as an attempt to improve the performance of the distance-weighted kNN rule in 
case when outliers are present among the data and in case of datasets with imbalanced 
class distribution (when the number of representatives of some classes is significantly higher 
than the number of instances of other classes). 

    

     
     

 
     
     

      

       

   (3.11) 

 

The authors have compared the classification accuracy of the newly proposed weighting 
scheme with the accuracies of the 1NN, the kNN and Dudani's linear-mapping based 
weighted kNN rule. The dual distance-weighted function has performed better with each of 
the 12 sets from the UCI machine learning repository [7] which were used in the 
experiments. The analyzed datasets are described in Table 3.6. Table 3.7 shows the results 
(average accuracies with the standard deviations) of the comparison. The optimal values of 
parameter k are given in parentheses. Both of these tables are taken from [35]. 
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Dataset Attributes Instances Classes Training samples Testing samples 

Glass 10 214 7 140 74 

Wine 13 178 3 100 78 

Sonar 60 208 2 120 88 

Parkin 22 195 2 120 75 

Iono 34 351 2 200 151 

Musk 166 476 2 276 200 

Vehicle 18 846 4 500 346 

Image 19 2310 7 1310 1000 

Cardio 21 2126 10 1126 1000 

Opt 64 5620 10 3000 2620 

Landsat 36 6435 7 3435 3000 

Letter 16 20000 26 10000 10000 

Table 3.6. Characteristics of the UCI datasets used in the experiments with the DualD 
weighting scheme 

Tabela 3.6. Osobine UCI skupova podataka korišćenih u eksperimentima sa DualD šemom 
težina 

Dataset 1NN kNN Dudani DualD 

Glass 69.86 ±1.35 69.86 ±1.35(1) 69.86 ±1.56 (1) 70.14 ±1.35 (5) 

Wine 71.15 ±1.81 71.15 ±1.81(1) 71.47 ±1.54 (4) 71.99 ±1.38 (4) 

Sonar 80.62 ±1.62 80.62 ±1.62 (1) 81.59 ±1.81 (4) 82.05 ±1.81 (5) 

Parkin 82.67 ±2.05 83.00 ±1.80 (4) 83.53 ±1.65 (8) 83.93 ±1.86 (8) 

Iono 84.01 ±1.36 84.01 ±1.36 (1) 84.27 ±1.24 (7) 84.44 ±1.24 (8) 

Musk 83.98 ±0.94 83.98 ±1.06 (1) 84.77 ±0.87 (6) 85.10 ±0.94 (7) 

Vehicle 63.16 ±0.79 63.76 ±1.24 (3) 63.96 ±1.02 (8) 64.34 ±1.17 (9) 

Image 95.19 ±0.31 95.19 ±0.31 (1) 95.19 ±0.33 (1) 95.21 ±0.31 (4) 

Cardio 69.84 ±0.49 69.84 ±0.49 (1) 70.12 ±0.48 (5) 70.30 ±0.45 (6) 

Opt 98.43 ±0.12 98.52 ±0.12 (4) 98.64 ±0.13 (7) 98.65 ±0.14 (7) 

Landsat 89.89 ±0.21 90.35 ±0.27 (4) 90.63 ±0.25 (10) 90.65 ±0.26 (11) 

Letter 94.34 ±0.086 94.38 ±0.10 (4) 94.89 ±0.092 (9) 94.93 ±0.088 (9) 

Table 3.7. Results of the experiments with the DualD weighting scheme 

Tabela 3.7. Rezultati eksperimenata sa DualD šemom težina 

The experiments were conducted using 20-fold cross. The elements of the datasets were 
compared using Euclidean distance and the neighbors number (k) varied from 1 to 15. 

Based on the obtained results Gou et al. concluded that the DualD weighting scheme is 
superior to 1NN, kNN and to Dudani's weighting function on all the examined datasets. In 
addition it can be seen that their novel weighting method needs more nearest neighbors to 
achieve the best classification performance compared to the other studied methods 
(Table 3.7). The results of our examinations in Section 5.5 showed that the DualD is one of 
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the best-performing weighting schemes when it comes to working with time series too, but 
it isn't absolutely superior (especially not in relation to Dudani's weighting scheme and the 
DualU weighting function). 

Based on a detailed analysis of the results obtained for individual datasets Gou et al. 
showed that their weighting scheme along with Dudani's weighting function mostly 
outperforms kNN with the different values of k. This can be clearly seen in Figure 3.4 (from 
[35]) which depicts the average accuracies for different values of parameter k in case of 
three of the 12 examined datasets. In Section 5.4 we will show through extensive 
experiments that this applies to the field of time-series data mining, too: the introduction of 
weights improves classification accuracy of the kNN classifier over the 1NN and the majority 
voting kNN classifiers. Furthermore, we will demonstrate that the use of weights moderates 
the growth of the classification's error rate and the warping window's width as we increase 
the value of k. 

   

Glass Vehicle Wine 

Figure 3.4. Average accuracies for different neighborhood size k 

Slika 3.4. Prosečne tačnosti klasifikacije za različite vrednosti parametra k 

3.2. Classifier Evaluation Methods 

The performance of a classifier can be measured by counting the number of correctly and 
incorrectly classified test objects. The accuracy of a classifier is defined as the ratio of test 
objects that are correctly classified (Eq. (3.12)), and the error rate is defined as the ratio of 
misclassified test objects (Eq. (3.13)). The relationship between these two performance 
metrics is very simple:                      . More detailed descriptions of these and 
other performance metrics are given in [1], [5], [39], and [116]. 

          
                              

          
  (3.12) 

 

            
                       

          
  (3.13) 
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In the remainder of this section we provide an overview of the most popular partitioning 
techniques used to divide the initial set of labeled objects into training and test sets. These 
methods were used in the experiments whose results are presented in Chapter 5 of this 
dissertation. Additional information about these techniques can be found in [1], [5], [39], 
and [116]. 

Holdout [1, 39, 116]. The idea behind the holdout method is to randomly partition the 
original set of labeled data into two disjoint subsets. One of the subsets is used for training 
and the other one for testing. The size of the training set and the test set is selected by the 
analysts (for example, 50%-50%, or two-thirds for training and one-third for testing). In 
order to improve the evaluation of the classifier's accuracy, the holdout method can be 
repeated several times. This expansion of the holdout method is called random 
subsampling. The accuracy is calculated as the average value of the iterations' accuracies. 

Cross-Validation [1, 5, 39, 74, 78, 116]. In the first step of this approach, the original set of 
labeled objects is randomly divided into k disjoint sets of approximately equal size. Next, the 
testing is performed through k iterations: within each iteration, we choose one (not yet 
selected) subset for testing, and the union of all other subsets for training. In this way, each 
object is tested exactly once and is used     times for training. The classification error is 
calculated as the average of the errors obtained from each iteration.  

This evaluation method is called k-fold cross-validation. A technique called n runs of k-fold 
cross-validation is obtained by repeating the whole process n times. 10 runs of 10-fold cross-
validation (SCV10x10) is commonly used in data-mining software - there are indications that 
this configuration gives a good estimate of the actual accuracy of the classifier [1, 39]. Other 
typical forms of cross-validation include: 5 runs of 2-fold cross-validation (SCV5x2) [5] and 9-
fold cross-validation (SCV1x9) [91]. 

Depending on how is the initial dataset partitioned into disjoint subsets, we can distinguish 
between two types of cross-validation. If we do not take care of the equal distribution of 
different classes in the individual subsets, we get random-split cross-validation. On the other 
hand, if the different classes are more or less equally distributed in the subsets, 
approximately in the same way as in the original dataset, we get stratified cross-validation. 

Ding et al. [21] applied the following variant of cross-validation: from the k disjoint subsets 
one is selected for training and the union of the other subsets is used for testing. We have 
used the same approach In the process of validating our implementation of similarity 
measures (Section 4.3). 

Leave-One-Out [1, 5, 39, 78, 116]. The leave-one-out (LOO) method represents an extreme 
case of k-fold cross validation where the number of folds is equal to the number of objects 
in the initial dataset, i.e.      , where D denotes the original set. In this approach, each 
test set contains only one object. The advantage of this approach is that it utilizes as much 
data as possible for training. However, there are some drawbacks, too: it is computationally 
expensive and the testing sets are not representative (since each test set contains only one 
object) [1, 116]. 
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Methods, Tools and Datasets 

The fourth chapter is devoted to the review of methods, tools and datasets used in the 
experiments whose results are described in Chapter 5. All of the examinations within this 
dissertation were performed by relying solely on our Framework for Analysis and Prediction 
(FAP). The basic features of this free and open source library are presented in Section 4.1, 
while the details of its structure and implementation are described in Chapter 6. 

The characteristics of the datasets used in our studies are the subject of Section 4.2. This 
section provides also an explanation of how are the values of the matching threshold ε 
selected for the elastic similarity measures LCS (Section 2.1.3) and EDR (Section 2.1.5). 
Details on the validation of implemented similarity measures are given in Section 4.3. 

The experiments within our studies were rather long-lasting and computationally 
demanding. To speed up their execution we have calculated the distances between time 
series in advance and saved the obtained values in form of distance matrices. This 
procedure is described in Section 4.4. 

4.1. Framework for Analysis and Prediction (FAP) 

Time-series data are generated and utilized in many domains of science, economics and 
medicine, and the amount of data from which we need to extract valuable information is 
continuously increasing. This has led to a growing interest of studying different fields of 
temporal data analysis [13, 19, 21, 25, 39, 95]. We can distinguish between two distinct 
fields of time series research [19, 63]: statistical analysis and modeling on one side, and the 
data mining and machine learning approach on the other side. 

According to Das and Gunopulos [19] the statistical approach is mainly interested in 
identifying patterns, trend analysis, seasonality and forecasting. On the other hand, 
temporal data mining is focused on database management and on research tasks like 
indexing, classification, clustering, prediction, data representation and similarity 
measurement [21, 25, 63]. Laxman and Sastry [63] highlight two major differences between 
statistical analysis and data mining: data mining methods must be capable for efficient 
processing of a much larger quantity of temporal data, and their scope extends beyond 
standard time series analysis. 

Ratanamahatana et al. [95] and Das and Gunopulos [19] emphasize that the methods 
studied by statisticians are of little furtherance for researchers in the field of time-series 
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data mining. As a consequence, it has become increasingly important to develop new 
methodologies for different task types of temporal data mining and to investigate and 
enhance the existing ones. However, the new solutions are usually separately implemented 
and described in different publications. In addition, as we have seen in Section 3.1, for many 
newly-introduced techniques dominance was claimed over some previous methods - often 
based only on a very limited number of case studies. This trend can be noticed in other 
areas of temporal data mining, too [21]. 

Motivated by these considerations we have developed a free and open source, 
multipurpose and multifunctional library for researchers and practitioners interested in 
time-series data mining. Our Framework for Analysis and Prediction is written in Java and it 
is designed to be a free and extensible software package which will cover all of the main 
tasks of temporal data mining and analysis. The intention behind our framework is to 
support and alleviate the investigation and comparison of different techniques utilized in 
this domain. 

In its current version, beside the implementation of the most commonly used similarity 
measures described in Section 2.1, FAP contains several others including different forms of 
the    norm, Time Warp Edit Distance (TWED) [71], Spline [57], Swale [79] and the Canberra 

distance [53]. The elastic similarity measures (DTW, LCS, ERP, EDR, TWED) are implemented 
in three ways: without constraining the warping window, using the Sakoe-Chiba band [105], 
and employing the Itakura parallelogram [44]. Along with the nearest neighbor rule (1NN) 
and the majority voting NN rule (kNN), our library incorporates all of the different weighting 
schemes outlined in Section 3.1. Among the methods for testing the accuracy of classifiers, 
FAP currently supports stratified k-fold cross validation (SCV), leave-one-out (LOO) and the 
holdout method. There are also several classes implementing pre-processing 
transformations including scaling, shifting, min-max normalization [39, 62, 114], z-score 
normalization [39, 114], decimal scaling [39, 114], and linear equiscaling. Various time-series 
representations are also supported: Piecewise Linear Approximation (PLA) [51], Piecewise 
Aggregate Approximation (PAA) [47], Adaptive Piecewise Constant Approximation (APCA) 
[48], Symbolic Aggregate Approximation (SAX) [67] and Spline [57]. 

The Framework for Analysis and Prediction has already been successfully employed within 
various research domains including: developing a distributed distance matrix generator 
based on agents [75, 76], mining time series in the psychological domain [55, 56] and time-
series analysis in the neurology domain [61]. FAP might be applied in other domains too, for 
example, signal processing [112] or image processing [109]. 

Details of the implementation and the general structure of the Framework for Analysis and 
Prediction are given in Chapter 6. 

4.2. Datasets used in the Experimental Evaluation 

The experiments performed within the research of this dissertation are executed on 46 
datasets from University of California, Riverside (UCR) Time Series Repository [50] 
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(Table 4.1), which includes the majority of all publicly available, labeled time-series datasets 
in the world. This collection of datasets is most commonly used for validation of different 
time-series mining concepts. They originate from a plethora of different domains, including 
medicine, robotics, astronomy, biology, face recognition, handwriting recognition, etc. The 
length of time series varies from 24 to 1882 (column L in Table 4.1), depending of the 
dataset. The number of time series per dataset varies from 56 to 9236 (column S in 

Table 4.1) and the number of classes varies from 2 to 50 (column     in Table 4.1). Column 
ID in Table 4.1 contains the labels assigned to datasets. These labels are used for dataset 
identification in tables with detailed results in appendices of this dissertation. In these 
tables there is not enough space for the names of the datasets and they are represented by 
these identification numbers. 

ID Dataset S L |C| LCS ε EDR ε ID Dataset S L |C| LCS ε EDR ε 

1 50words 905 270 50 0.379296 0.299444 24 mallat 2400 1024 8 0.419795 0.419795 

2 adiac 781 176 37 0.039886 0.039886 25 medicalimages 1141 99 10 0.15919 0.099494 

3 beef 60 470 5 0.013361 0.018077 26 motes 1272 84 2 0.417493 0.298209 

4 car 120 577 4 0.079931 0.079931 27 noninvasivefatalecg_thorax1 3765 750 42 0.23984 0.23984 

5 cbf 930 128 3 0.099609 0.358591 28 noninvasivefatalecg_thorax2 3765 750 42 0.17988 0.17988 

6 chlorineconcentration 4307 166 3 0.119638 0.099698 29 oliveoil 60 570 4 0.006686 0.006686 

7 cinc_ecg_torso 1420 1639 4 0.779762 0.799756 30 osuleaf 442 427 6 0.099991 0.119989 

8 coffee 56 286 2 2.292314 2.292314 31 plane 210 144 7 0.061007 0.040671 

9 cricket_x 780 300 12 0.446341 0.492515 32 sonyaiborobotsurface 621 70 2 0.814122 0.456702 

10 cricket_y 780 300 12 0.469044 0.549914 33 sonyaiborobotsurfaceii 980 65 2 0.853359 0.853359 

11 cricket_z 780 300 12 0.430912 0.415522 34 starlightcurves 9236 1024 3 0.03998 0.159922 

12 diatomsizereduction 322 345 4 0.039942 0.039942 35 swedishleaf 1125 128 15 0.239061 0.199217 

13 ecg200 200 96 2 0.318091 0.377733 36 symbols 1020 398 6 0.03995 0.818969 

14 ecgfivedays 884 136 2 0.876759 0.617716 37 synthetic_control 600 60 6 0.634644 0.932134 

15 faceall 2250 131 14 0.597706 0.458241 38 trace 200 275 4 0.159709 0.179672 

16 facefour 112 350 4 0.179743 0.059914 39 twoleadecg 1162 82 2 0.178899 0.159021 

17 fish 350 463 7 0.060073 0.060073 40 twopatterns 5000 128 4 0.159374 0.219139 

18 gun_point 200 150 2 0.119599 0.119599 41 uwavegesturelibrary_x 4478 315 8 0.619015 0.539142 

19 haptics 463 1092 5 0.159927 0.159927 42 uwavegesturelibrary_y 4478 315 8 0.698888 0.299523 

20 inlineskate 650 1882 7 0.219942 0.039989 43 uwavegesturelibrary_z 4478 315 8 0.359428 0.139778 

21 italypowerdemand 1096 24 2 0.332841 0.35242 44 wafer 7164 152 2 0.259143 0.219275 

22 lighting2 121 637 2 0.239812 0.439654 45 wordssynonyms 905 270 25 0.379296 0.618851 

23 lighting7 143 319 7 0.299529 0.339467 46 yoga 3300 426 2 0.039953 0.05993 

Table 4.1. Characteristics of the UCR datasets used in the experiments 

Tabela 4.1. Osobine UCR skupova podataka korišćenih u eksperimentima 

In the case of LCS and EDR the similarity also depends on the matching threshold ε (see 
Sections 2.1.3 and 2.1.5). Let StDev denote the standard deviation of a particular dataset as 
in [21]. The value of parameter ε was determined by calculating the classification error of 
the 1NN classifier using the LOO evaluation method and the unconstrained similarity 
measures. We have selected the smallest value in range from            to StDev (with 
steps of           ) which gave the best classification accuracy. For smaller datasets this 
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search was carried out on the entire dataset. In case of larger sets (which contain more than 
1400 time series) it was performed on a stratified subset of the size not less than 400 
elements. The obtained values of ε are presented in the corresponding columns of Table 4.1. 

To illustrate the diversity of the datasets presented in Table 4.1 and used in this dissertation, 
in the remainder of this section we will give a brief overview of a representative selection. 

50words. This is a subset of the Word Spotting dataset created by Rath and Manmatha [99] 
for word image matching. This dataset was extracted from the collections of handwritten 
manuscripts written by George Washington. The original dataset contains 2381 word images 
from 10 handwritten pages. From each word image four features are extracted and 
combined into a four-dimensional time series which describes the profile of the image [99]: 

 Projection Profile - capture the distribution of ink along one of the two dimensions 
in a word image (feature 1). 

 Word Profiles - the upper and lower word profiles capture part of the outlining 
shape of a word (features 2 and 3). A time series created based on the upper profile 
of the word "Alexandria" is shown in Figure 4.1 (from [124]). 

 Background/Ink Transitions - capture the number of background to ink transitions 
(feature 4). 

The 50words dataset contains images of 50 common words from the original dataset (such 
as "the", "and", etc.) and is limited to the first dimension of each image [124]. 

 
 

(a) A sample of text written by George 
Washington. 

(b) The word "Alexandria" and a time series 
created based on the upper profile of the word. 

Figure 4.1. A sample of text written by George Washington and the upper profile of the 
word "Alexandria" 

Slika 4.1. Uzorak teksta napisanog od strane Džordža Vašingtona i gornji profil reči 
"Alexandria" 

Facefour. The face (four) dataset was introduced by Ratanamahatana and Keogh [96] within 
the context of a face classification problem based using head profiles. Four different persons 
(one female and three males) were photographed while they were making different 
expressions on their faces (talking, smiling, frowning, laughing, etc.). Starting from the neck 
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area, each head profile was converted into a time series by measuring the local angle of a 
trace of its perimeter. This procedure is depicted in Figure 4.2 (from [96]). 

 

Figure 4.2. Converting a head profile into time series 

Slika 4.2. Pretvaranje profila glave u vremensku seriju 

Gun_Point. This dataset which originates from the video surveillance domain was presented 
by Ratanamahatana and Keogh in [96] and [97]. The time series of the Gun_Point dataset 
were created with the aid of one female and one male actor. It includes 100 instances of the 
following two classes: 

 Gun-Draw - The hands of the actors are by their sides. They draw a gun from a 
holster mounted to their hips and point it at a target for about one second. After 
that, they return the gun to the holster, and their hands to their sides. 

 Point - The hands of the actors are by their sides. After pointing at a target for about 
one second with their index finger, they return their hands to their sides. 

The process of converting the above described movements into time series is illustrated in 
Figure 4.3 (from [96]). 

 

Figure 4.3. Representing a movement with a time series 

Slika 4.3. Predstavljanje pokreta pomoću vremenske serije 

Trace. The trace dataset is a simplified subset of the Transient Classification Benchmark 
presented by Davide Roverso [104]. This is an artificial dataset intended to simulate 
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instrumentation failures in a nuclear power plant. The original dataset contains 800 
instances with 4 features (16 classes, 50 instances in each class). The trace dataset uses only 
the second feature of classes 2 and 6, and the third feature of classes 3 and 7 [96, 97]. 

Wafer. The wafer dataset was introduced by Robert T. Olszewski in his doctoral dissertation 
[82]. It represents a collection of measurements recorded from various sensors during the 
processing of silicon wafers for semiconductor fabrication. The wafers are grouped into two 
classes: normal and abnormal. The abnormal wafers embody different problems commonly 
encountered during semiconductor manufacturing [124]. 

4.3. FAP Validation 

In the first stage of the development of our framework we have focused on implementing 
the most commonly used time-series similarity measures (Euclidean distance, DTW, LCS, 
ERP, EDR and others). Similarity measures embody a substantial element of many data 
mining tasks, including: classification, clustering, prediction, anomaly detection, and others. 
For this reason they constitute one of the most crucial components of our library. All 
measures are very carefully implemented with respect to efficiency and memory 
consumption. 

In order to validate the correctness of the implementation of similarity measures within our 
Framework for Analysis and Prediction (FAP), we have measured the classification accuracy 
of 1NN for a number of datasets and we have compared the obtained results with the 
results presented in [21]. To evaluate the correctness of our implementation, we have 
conducted the cross-validation algorithm proposed in [21]: the one nearest neighbor (1NN) 
classifier is used on labeled data to evaluate the efficiency of the similarity/distance 
measures. Each time series in a dataset has a correct class label and the classifier tries to 
predict that label as the label of its nearest neighbor in the training set. There are several 
advantages with this approach: 

 The underlying distance metric is crucial to the performance of the 1NN classifier; 
therefore, the accuracy of the 1NN classifier directly reflects the effectiveness of the 
similarity measure [116]. 

 1NN is a very simple and parameter-free classifier. This reduces the possibility of 
appearance of errors in its implementation. 

 Among many other classification techniques, such as decision trees, neural net-
works, Bayesian networks, support vector machines, etc., some of the best results in 
time-series classification are obtained using simple nearest neighbor methods [130]. 

 

For the sake of evaluating the effectiveness of each similarity measure, the following cross-
validation algorithm has been applied [21]. First, a stratified split has been used to divide 
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the input dataset into k subsets (folds). The number of folds in the cross-validation 
algorithm, k, is shown in Table 4.2. These values are taken from [21]. 

The cross validation algorithm is applied as follows: using one subset at a time for the 
training set of the 1NN classifier, and the other     subsets as the test set. If the similarity 
measure requires parameter tuning, the training set is divided into two equal-sized stratified 
subsets and one of them is used for parameter tuning. Finally, the average error rate of 1NN 
classification over the k-folds is reported in Table 4.2. 

The experiments were conducted using the described methodology, on 20 diverse time 
series datasets. The data is provided by the UCR Time Series Repository [50], which includes 
the majority of all publicly available, labeled time series datasets in the world. The average 
error rates of the similarity measures on each dataset are shown in Table 4.2. We have 
compared our results with the results presented in [21] in order to verify the correctness of 
our implementation of similarity measures. The only differences appear at the second or 
third decimal place which is the consequence of randomization in the stratified random split 
of the cross-validation algorithm. These facts strongly support the correctness of our 
implementation, which has been our main goal. 

Dataset 
Number of 

folds 
L1 L2 L∞ L1/2 DTW CDTW ERP EDR LCS CLCS Swale 

50words 5 0,387 0,421 0,558 0,377 0,367 0,302 0,399 0,260 0,270 0,286 0,270 

Adiac 5 0,486 0,462 0,429 0,510 0,457 0,438 0,439 0,437 0,435 0,431 0,435 

Beef 2 0,550 0,517 0,517 0,533 0,550 0,517 0,550 0,600 0,500 0,600 0,500 

CBF 16 0,046 0,070 0,535 0,046 0,002 0,005 0,003 0,032 0,030 0,034 0,030 

Coffee 2 0,161 0,161 0,107 0,250 0,125 0,143 0,161 0,196 0,304 0,286 0,304 

ECG200 5 0,154 0,151 0,184 0,151 0,221 0,175 0,214 0,173 0,206 0,166 0,206 

FaceAll 11 0,185 0,221 0,399 0,177 0,090 0,071 0,078 0,032 0,037 0,040 0,037 

FaceFour 5 0,116 0,190 0,448 0,083 0,145 0,109 0,060 0,027 0,054 0,056 0,054 

fish 5 0,302 0,283 0,304 0,328 0,309 0,270 0,190 0,155 0,169 0,184 0,169 

Gun_Point 5 0,089 0,116 0,173 0,095 0,129 0,041 0,057 0,049 0,056 0,067 0,056 

Lighting2 5 0,217 0,300 0,388 0,219 0,180 0,199 0,360 0,260 0,294 0,267 0,294 

Lighting7 2 0,412 0,406 0,595 0,413 0,287 0,308 0,776 0,447 0,405 0,441 0,405 

OliveOil 2 0,150 0,117 0,183 0,200 0,133 0,117 0,150 0,167 0,183 0,200 0,183 

OSULeaf 5 0,452 0,464 0,518 0,456 0,427 0,422 0,391 0,260 0,242 0,252 0,242 

SwedishLeaf 5 0,289 0,296 0,358 0,282 0,249 0,205 0,164 0,136 0,151 0,146 0,151 

synthetic_control 5 0,145 0,132 0,223 0,166 0,012 0,015 0,035 0,058 0,044 0,048 0,044 

Trace 5 0,286 0,341 0,459 0,249 0,014 0,018 0,160 0,133 0,049 0,090 0,049 

Two_Patterns 5 0,038 0,102 0,796 0,049 0,000 0,000 0,000 0,001 0,001 0,001 0,001 

wafer 7 0,004 0,005 0,020 0,005 0,016 0,005 0,008 0,004 0,005 0,005 0,005 

yoga 11 0,162 0,159 0,181 0,167 0,151 0,140 0,129 0,113 0,124 0,119 0,124 

Table 4.2. Error rates of similarity measures 

Tabela 4.2. Greške mera sličnosti 

For the purpose of testing similarity measures a Graphical User Interface (SCVGUI) has been 
developed in Java at the Department of Mathematics and Informatics, Faculty of Sciences, 
University of Novi Sad. The input for this application is a specification of one or more cross-
validation experiments. FAP will perform the cross-validations based on this specification.  
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4.4. Distance Matrices 

One of the main goals of this dissertation is to reveal and clarify the influence of elastic 
similarity measures constrained with the Sakoe-Chiba band and the different weighting 
schemes on classification accuracy of the nearest neighbor classifier. In order to determine 
the class of an unclassified time series, the kNN classifier first must calculate the distances 
between that series and all other series in the training set. 

In case of long time-series and/or complex similarity measures, it is very helpful to save the 
similarity values between time series, and thus speed up the experiments. Similarities 
between the time series of a dataset are kept in the form of a distance matrix where 
element       contains the distance between i-th and j-th time series from the dataset. 

Table 4.3 shows part of the distance matrix obtained using the DTW similarity measure 
(Section 2.1.2) on the first 10 elements of the beef dataset (see Table 4.1 in Section 4.2). 
Since DTW is a symmetric distance (i.e. it satisfies the condition               for every 
two time series Q and S) it is sufficient to compute a lower triangular matrix. 

 1 2 3 4 5 6 7 8 9 10 

1 0 
        

 

2 0.25158 0 
       

 

3 1.060174 1.374043 0 
      

 

4 0.666656 0.090452 1.026273 0 
     

 

5 0.073874 0.178184 0.319278 0.39273 0 
    

 

6 0.008442 0.226699 1.504747 0.634164 0.161802 0 
   

 

7 10.38343 11.51138 2.272932 10.42762 7.426631 11.79298 0 
  

 

8 2.950115 3.657049 0.406857 3.269754 1.251925 3.687409 0.988539 0 
 

 

9 0.984133 1.633875 0.209702 1.528592 0.236096 1.5402 3.707063 0.240569 0  

10 6.611101 7.693609 0.926652 6.936514 4.414624 7.760327 0.243946 0.342136 1.538323 0 

Table 4.3. Part of the distance matrix obtained using DTW on the beef dataset 

Tabela 4.3. Deo matrice rastojanja dobijene primenom DTW mere sličnosti na elemente 
skupa podataka beef 

For the purposes of our experiments, we have developed a special Graphical User Interface 
(DMGUI) for generating distance matrices relying on the services of our FAP library 
(Section 4.1 and Chapter 6). DMGUI has been implemented in Java at the Department of 
Mathematics and Informatics, Faculty of Sciences, University of Novi Sad. Similarly as in the 
case of Graphical User Interface for validating FAP, the input for this application is a 
specification of one or more commands for generating distance matrices.  

The process of generating distance matrices can be interrupted and resumed similarly as in 
the case of Graphical User Interface for validating FAP. Optionally, the serialized Java objects 
can even be migrated to another computer where the computation can be continued. 
Furthermore, based on the obtained distance matrices, this application provides another 
feature: it can produce matrices of nearest neighbors that are required for the experiments 
in Chapter 5. The matrix of nearest neighbors for one dataset is the matrix where element 
      contains the index of the j-th nearest neighbor of the i-th time series from the dataset. 
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Techniques for Improving Classification 
Accuracy 

A time series is composed of a series of numbers that describes the change of the observed 
phenomenon over time. Each element of a time series characterizes the phenomenon under 
investigation at one point in time [19]. Time series are used for storage, display and analysis 
of data across a wide range of different domains, including various areas of science, 
medicine, economics, ecology, telecommunications and meteorology [25, 40, 63].  

The suitability of time series in a broad spectrum of different areas of research and 
application, and the need to process an ever-growing quantity of data, have intensified the 
study of different time-series data mining tasks: indexing, classification, clustering, 
prediction, segmentation, anomaly detection and others [21, 39].  

In recent years, there is a growing interest for research in different aspects of time-series 
classification [34, 37, 45, 93, 111, 130, 131]. The possibility of applying many well-known 
machine learning techniques was investigated in this field. These techniques include: 
decision trees [102], neural networks [81], support vector machines [128], first order logic 
rules [101], Bayesian classifiers [85] and others.  

In several significant research contributions in this domain [21, 93, 119, 130], the simple 
1NN classifier (see Section 3.1) is selected as one of the most accurate classifiers for time-
series data, demonstrating comparable and even superior performance than many more 
complex classification approaches. 

The basic idea behind the 1NN and kNN classifiers is to find the nearest neighbors of a given 
unclassified time series among the time series of the training set (see Section 3.1). Finding 
the nearest neighbors requires comparing time series and calculating the distances between 
them (see Section 2.1). In the domain of time series, several different similarity-based 
distance measures are applied for comparing data sequences [31, 68, 108]. The most 
commonly used and most frequently investigated time-series similarity measures are 
Euclidean distance [26], Dynamic Time Warping (DTW) [10], Longest Common Subsequence 
(LCS) [121], Edit Distance with Real Penalty (ERP) [16], and Edit Distance on Real sequence 
(EDR) [17]. 

Most of these similarity measures are based on dynamic programming. It is well known that 
the computational complexity of these dynamic programming algorithms is quadratic, which 
is often not suitable for larger real-world problems. However, the usage of global 
constraints such as Sakoe-Chiba band [105] and Itakura parallelogram [44] can speed up the 
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calculation of similarities and it can prevent some bad alignments, where a relatively small 
part of one time series maps onto a large section of another time series (see Sections 2.2 
and 5.1). 

As an attempt to improve classification accuracy, several different methods for assigning 
weights to the nearest neighbors are proposed in the literature [22, 35, 36, 62, 69, 74, 84, 
133] (see Section 3.1). Generally, each paper that presents a new way of computing weights 
reports the superiority of the newly introduced method compared to some previous 
solutions. Several of these papers [35, 36, 133] compare various weighting schemes using a 
relatively small number of datasets (commonly 12) from the UCI machine learning 
repository [7]. The conclusions are usually based on comparing classification results using 
only Euclidean distance and they are not investigated in the field of time-series data mining. 

Based on the results of a series of extensive experiments, in this chapter we will investigate 
how the classification accuracy of 1NN and kNN classifiers can be further improved by 
constraining the similarity measures and assigning weights to the nearest neighbors. 
Furthermore, using these techniques we will verify the view that the simple 1NN is very 
hard to beat [130]. 

In the first step of our investigations, we will explore to what extent does the application of 
different sized Sakoe-Chiba bands speed up the calculation of similarities between time 
series (Section 5.2). We will report the calculation times for different sizes of Sakoe-Chiba 
bands in order to explore the speed-up gained from applying them on the two most 
representative similarity measures for time series based on dynamic programming: DTW 
and LCS. 

In Section 5.3 we will present the results of examination of the influence of the Sakoe-Chiba 
band on classification accuracy of the simple nearest neighbor (1NN) classifier analyzing it 
through three stages. In the first stage we will explore the change of the 1NN graph with 
respect to the change of the constraint size (Section 5.3.1). In the second stage we will 
investigate how these changes impact on the 1NN classifier regarding the nearest-
neighbors’ classes (Section 5.3.2). Finally, in the third stage we will examine the constraint’s 
impact on classification accuracy (Section 5.3.3).  

We will show that there are notable differences in the effects of the constraints on different 
distance measures. DTW was found to be the most sensitive to the introduction of global 
constraints, while EDR is the least sensitive. The behavior of ERP and LCS measures was 
determined to be somewhere in between. Comparison of 1NN classifier performance 
showed that DTW generally has a slight edge over other distance measures, but is more 
sensitive to the choice of the constraint's size. 

Section 5.4 is devoted to the analysis of the impact of the Sakoe-Chiba band on kNN 
classifier's accuracy. In this section we will observe the relationship between the parameter 
k (the number of neighbors used by the kNN classifier) and the average smallest error rate 
obtained for different values of parameter r (the size of the warping window expressed as 
the percentage of the time-series length). For each of the datasets and for each value of 
parameter k (in the range of 1 to 30) we will search for the value of parameter r which will 
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produce the smallest classification error. These examinations will be done for both the 
majority voting kNN and for the distance-weighted kNN classifier. 

We will show that, on average, the kNN classifier gives the best results for     without a 
weighting scheme. On the other hand, when a weighting scheme is introduced, the situation 
is changed. The best results are obtained for the values around    . When observing the 
value of the constraint parameter r, the introduction of the weighting scheme has an 
important impact. For unweighted kNN, the value of the constraint grows as k grows: we 
need wider and wider warping windows to get the best accuracy. On the other hand, using a 
weighting scheme the value of the constraint remains approximately the same for all values 
of k.  

In Section 5.5 we will compare a large number of different weighting schemes in relation to 
the majority-voting kNN and the simple 1NN classifier in case of the three most commonly 
used time-series similarity measures (Euclidean distance, unconstrained DTW and 
unconstrained LCS). We will examine whether these weighting schemes can improve the 
classification accuracy. We will demonstrate that, among the discussed weighting schemes, 
the DualD (Eq. (3.11))  and the Dudani (Eq. (3.2)) give the best results with the considered 
similarity measures. 

5.1. Constraining the Similarity Measures and Applying 
Weights 

The choice of the similarity measure is one of the most significant aspects of time-series 
analysis - it should correctly reflect the resemblance between the data presented in the 
form of time series. Similarity measures represent a critical component of many tasks of 
mining time series, including: classification, clustering, prediction, anomaly detection, and 
others. 

The advantages of Euclidean distance (it is easily implementable, fast to compute and it 
represents a distance metric - see Section 2.1.1) have made it one of the most commonly 
used similarity measure for time series research and applications [4, 14, 47, 48]. However, 
due to the linear aligning of the points of the time series it is sensitive to distortions and 
shifting along the time axis [49, 98]. To address this shortcoming, many different elastic 
similarity measures were proposed. Among them, some of the most widely used and 
studied are Dynamic Time Warping (DTW) [10], Longest Common Subsequence (LCS) [121] 
and their extensions, Edit Distance with Real Penalty (ERP) [16] and Edit Distance on Real 
sequence (EDR) [17]. 

The implementations of these elastic similarity measures are based on dynamic 
programming: in order to determine the similarity between two time series we need to 
compare each element of one time series with each element of the other one. This can lead 
to pathological non-linear aligning of the points (where a relatively small part of one time 
series maps onto a large section of the other time series) and slow down the computations. 



Chapter 5. Techniques for Improving Classification Accuracy 

 

50 
 

One way to avoid these adverse effects is to constrain the warping path using the Sakoe-
Chiba band [105] (see Section 2.2). 

Algorithm 1 shows the application of the Sakoe-Chiba band in case of the DTW similarity 
measure (see Section 2.1.2). The input of the algorithm consists of two time series Q and S 
of the same length n, and the warping window width r specified as a percentage of n. In 
accordance with Eq. (2.3), we first initialize the warping matrix D (lines 3-5) and then 
calculate its elements constraining the warping window around its diagonal using the given 
value of parameter r (lines 6-16). The Sakoe-Chiba band is applied analogously also to the 
other examined elastic similarity measures (LCS, ERP and EDR), based on their recursive 
definitions given in Section 2.1. 

Algorithm 1: Constraining DTW with the Sakoe-Chiba band 

Input:  two time series Q and S of the same length n, warping window width r in percentage of n 

Output: distance between Q and S computed using DTW constrained by the Sakoe-Chiba band 

1.  Let D be an             matrix of real numbers 
2.                     

3.           

4.  FOR i = 1 to len DO 
5.           

6.  FOR i = 1 TO n DO 
7.                     
8.                   
9.                 
10.  IF (       ) 
11.                
12.  FOR j = start TO end DO 
13.                   

14.                                                        
15.  END 
16.  END 

17.  RETURN        

 

The other technique that we will examine in order to improve the accuracy of the kNN 
classifier in the domain of time-series data mining refers to assigning weights to the 
neighbors of the unclassified time series according to their distance from it. We will show 
that using weighting schemes with kNN produces higher classification accuracy than the 
simple 1NN classifier for several data sets. 

The process of applying weights with the kNN classifier is presented in Algorithm 2. The 
input of the algorithm consists of an unclassified time series Q, a training set T, the number 
of neighbors k, a distance measure d and the value of ε. As the result, the algorithm returns 
the label (from the set of labels of the k nearest neighbors of Q in the training set T) selected 
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for Q. In this example, weights are calculated as defined by Eq. (3.5). ε is an auxiliary 
constant which is necessary to avoid division by zero when the distance between the time 
series is zero (we have used 0.001 in our experiments in Sections 5.4 and 5.5). 

Algorithm 2: Applying weights with the kNN classifier 

Input:  unclassified time series Q, training set T, number of neighbors k, distance measure d, 
constant ε 

Output: the label selected for Q 

1.  Sort the elements of T in ascending order according to their distance from Q using 
 distance measure d. 

2.  Let m denotes the number of different class labels among the first k elements of T 
3.  Initialize array             with the different class labels among the first k elements of T 

4.  Initialize array              with zeros 
5.  FOR i = 1 TO k DO 
6.  Find j so that           = the label of      
7.                               
8.  END 
9.  Find j so that            is the largest value among              

10.  RETURN           

5.2. Performance of Constrained Similarity Measures 

In this section we will investigate the influence of global constraints on the efficiency of the 
two most illustrative similarity measures based on dynamic programming: DTW and LCS. In 
order to verify to what extent will applying global constraints speed up the calculation of the 
similarities between time series we measured the time required to generate distance 
matrices of several datasets. The distance matrix for one dataset is the matrix where 
element       contains the distance between i-th and j-th time series from dataset. The 
calculation of the distance matrix is a time-consuming operation, which makes it suitable for 
measuring the efficiency of global constraints. 

For every similarity measure, the experiments are performed with the unconstrained 
measure (100%) and a measure with the following constraints: 75%, 50%, 25%, 20%, 15%, 
10%, 5%, 1% and 0% of the size of the time series. This distribution was chosen because it is 
expected that measures with larger constraints behave similarly to the unconstrained 
measure, while smaller constraints have more interesting behavior [98, 130]. 

A comprehensive set of experiments was conducted on 38 datasets from UCR Time Series 
Repository [50]. All experiments are performed on AMD Phenom II X4 945 with 3GB RAM. 
The calculation times for individual datasets (in milliseconds) are shown in Appendix A. The 
average calculation times for the observed warping window widths are presented in 
Table 5.1 and they are graphically displayed in Figure 5.1. 
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It is evident that the introduction of global constraints in both measures significantly speeds 
up the process of distance matrix computation. The difference of computation times 
between an unconstrained measure and a measure with a small constraint is two and 
somewhere three orders of magnitude.  

Furthermore, it is known for DTW that smaller values of constraints can give more accurate 
classification [98]. The authors also reported that the average constraint size, which gives 
the best accuracy, for all datasets is 4% of the time-series length. In addition, the usage of 
lower bounding (such as LB_Keogh [49]) for constrained DTW can further speed up the 
process of indexing time-series data.  

 
100% 75% 50% 25% 20% 15% 10% 5% 1% 0% 

DTW 45466332 41027080 32841382 19235818 15831060 12379785 8456105 4432871 1081910 202421.1 

LCS 30807630 28694236 22935060 13408023 11049745 8609224 5909023 3138488 793754.3 254794.2 

Table 5.1. Average calculation times of distance matrices in milliseconds 

Tabela 5.1. Prosečna vremena izračunavanja matrica rastojanja u milisekundama 

 

Figure 5.1. Graphical display of average calculation times of distance matrices for different 
warping window widths 

Slika 5.1. Grafički prikaz prosečnih vremena izračunavanja matrica rastojanja za različite 
širine pojasa iskrivljenja 

5.3. Improving the Accuracy of the 1NN Classifier Using 
Constrained Similarity Measures 

In this section we will present the results of our expanded study of the influence of the 
Sakoe-Chiba band on the most widely used elastic similarity measures: DTW, LCS, ERP and 
EDR. To better understand the influence of global constraints we will explore the efficiency 
and behavior of the 1NN classifier for different values of constraints and investigate its 
accuracy.  
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Further, we will report the change of the 1NN graph with regard to the change of the global 
constraints. Our choice of 1NN was mainly motivated by reports that it achieves among the 
best results compared to many other sophisticated classifiers for time-series data [19, 85, 
107, 117]. In addition, the accuracy of 1NN directly reflects the quality of the underlying 
similarity measure [116]. 

In the first phase of the experiments we will explore the change of the 1NN graph with 
respect to the change of the constraint size (Section 5.3.1).  

In the second phase we will investigate how these changes impact on the 1NN classifier 
regarding nearest-neighbors’ classes (Section 5.3.2).  

The examination of the constraint’s impact on classification accuracy is discussed in the 
third part of our study (Section 5.3.3).  

For all four considered similarity measures (DTW, LCS, ERP and EDR) we have limited the 
warping window with the following constraint values for r: 90%, 80%, 70%, 60%, 50%, 45%, 
40%, 35%, 30%, and all values from 25% to 0% in steps of 1% of time-series length. These 
values were chosen because it is expected that the measures with larger constraints behave 
similarly to the unconstrained measure, while smaller constraints have more interesting 
behavior [98, 130]. 

5.3.1. Change of the 1NN Graph with Narrowing Constraints 

The 1-nearest-neighbor graph (1NN) is a directed graph where each time series is connected 
with its nearest neighbor. Since the 1NN classifier assigns the class of the nearest neighbor 
to a yet unclassified time series, the changes in the 1NN graph directly affect classification 
accuracy.  

We calculated this graph for unconstrained measures and for measures with the following 
constraints: 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%, 30%, and all values from 25% to 0% 
in steps of 1% of time-series length. After that, we observed the change of the nearest 
neighbor graphs as the percentage of time series (nodes in the graph) that changed their 
nearest neighbor compared to the nearest neighbor in the unconstrained measure.  

The graphical representation of results can be seen in Figures 5.2 through 5.6 for DTW, LCS, 
ERP and EDR, respectively. Each figure is represented by two charts for the sake of 
readability. The first chart (A) contains the behavior of 10 most representative datasets, 
illustrating the behavior of the majority of datasets. The second chart (B) shows the general 
statistics over all datasets: minimum values, maximum values, average values and the 
deviations from the average values. Appendix B contains detailed plots of the change of 
1NN graph for all four examined elastic similarity measures. 

Dynamic Time Warping (DTW). The 1NN graphs of the DTW measure (Figure 5.2) remain 
the same until the size of the constraint is narrowed to approximately 60%–50%, and after 
that the graphs start to change. As the width of the warping window becomes smaller, an 
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increasing number of datasets exhibit bigger changes. When the size of the Sakoe-Chiba 
band falls below 5% of the time-series length, changes are present in all of the datasets. For 
    , changes higher than 50% have been registered for the majority of the datasets (the 
only exceptions are beef, chlorineconcentration, coffee, italypowerdemand, mallat and 
oliveoil) and for some of them the alteration levels even reach values above 90% (50words, 
cbf, starlightcurves, synthetic_control, twopatterns, uwavegesturelibrary_x, 
wordssynonyms). 

 

 

 

Figure 5.2. Change of 1NN graph for DTW 

Slika 5.2. Promena 1NN grafa za DTW 

A 

B 
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Longest Common Subsequence (LCS). The situation with LCS (Figure 5.3) is even more 
drastic: the 1NN graphs remain the same to approximately 30%–25%, while for smaller 
constraints they change more quickly for most of the datasets. When r reaches 0%, changes 
greater than 90% occur in a much larger number of datasets than in the case of DTW (17, 
opposed to 7). However, there are some exceptions. A number of datasets (beef, 
ecgfivedays, mallat, oliveoil, trace) exhibits changes only for very small values of the 
constraint (less than 2%) and in the case of chlorineconcentration there are some 
oscillations. 

 

 

Figure 5.3. Change of 1NN graph for LCS 

Slika 5.3. Promena 1NN grafa za LCS 

A 

B 
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The dataset chlorineconcentration produces exactly the same percentage of changed 
neighbors (34.873%) for several values of the constraint (50%, 25%, 10%, 1%), but in all 
other cases there are no changes at all - except for 0% (Figure 5.4). We have investigated 
the structure of this dataset and found that the time series are periodical, where all time 
series have approximately the same period. Since the LCS measure searches for the longest 
common subsequence, it turns out that for most constraint values the LCS algorithm finds 
the same sequence as the unconstrained LCS. Some values of the constraint break that 
sequence, which is then no more the longest, and as a consequence some other time series 
are found as nearest neighbors. This behavior is a consequence of the strict periodicity of 
this dataset. 

 

Figure 5.4. Change of 1NN graph for chlorineconcentration in case of LCS 

Slika 5.4. Promena 1NN grafa za chlorineconcentration u slučaju LCS-a 
 

 

Edit Distance with Real Penalty (ERP). The 1NN graph of the ERP measure (Figure 5.5) 
remains the same until the size of the constraint is narrowed to approximately 60%–50%, 
similarly as in the case of DTW. After that the graph starts to change more noticeably. For 
small values of the constraint (5%–0%) this change becomes significant for most of the 
datasets and in some cases even reaches values above 70%–90%. It is also evident that the 
use of the Sakoe-Chiba band does not affect the 1NN graph in the same way for each 
dataset: in case of a small number of datasets the changes are subtle or there are no 
changes at all (adiac, chlorineconcentration, coffee, gun_point, mallat, oliveoil, trace). 
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Figure 5.5. Change of 1NN graph for ERP 

Slika 5.5. Promena 1NN grafa za ERP 

  

A 

B 
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Edit Distance on Real sequence (EDR). EDR (Figure 5.6) behaves in a similar manner to LCS, 
but there are three noticeable differences. The changes begin later, only when the value of 
the constraint drops below 20%. The changes do not reach such high values as in the case of 
LCS – the maximum values are between 60%–80%. Again, there is a small number of 
datasets where the changes are subtle (beef, chlorineconcentration, ecgfivedays, mallat, 
oliveoil, trace). 

 

 

Figure 5.6. Change of 1NN graph for EDR 

Slika 5.6. Promena 1NN grafa za EDR 

 

A 

B 
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From the obtained results we can clearly see that for low values of the constraint the 
change of the 1NN graph becomes significant for most datasets in the case of all four 
similarity measures. The results suggest that the constrained measures represent 
qualitatively and as well quantitatively different measures than the unconstrained ones.  

It is also clear that the application of the Sakoe-Chiba band does not have the same effect 
on all datasets, and there are noticeable differences in the behavior of the similarity 
measures. By studying the results we can immediately see two quite conspicuous 
characteristics of the Sakoe-Chiba band. First, warping window width of 0% most drastically 
affects LCS: for a significant number of datasets there is a sudden increase in the percentage 
of changed neighbors compared to      (some examples are: cinc_ecg_torso, coffee, 
diatomsizereduction, noninvasivefatalecg_thorax1, noninvasivefatalecg_thorax2 and wafer). 
Secondly, LCS, ERP and EDR for some datasets (for example, chlorineconcentration, mallat, 
oliveoil, trace) show only tenuous changes (or no changes at all except for the values of 
constraint     ), with appreciably larger changes in the case of DTW. 

The general traits of differences between the similarity measures can easily be seen on the 
charts in Figure 5.7 and Figure 5.8. Figure 5.7 presents the average values of the changes in 
the 1NN graphs across all datasets, and Figure 5.8 shows the percentages of those datasets 
for which there are changes in the 1-nearest neighbor graph produced by the constrained 
similarity measures, compared to the 1NN graph of the unconstrained ones. It is obvious 
that the use of the Sakoe-Chiba band exhibits the greatest influence on DTW: changes in the 
1NN graph arise as soon as the size of the constraint is narrowed to 60% and for very 
narrow warping windows they reach (on average) the highest values among the observed 
similarity measures.  

The smallest influence occurs in the case of EDR: the 1NN graph begins to change only when 
the size of the warping window drops below 20% of the length of time series, and the 
average change for      is lowest here. For most datasets LCS and ERP behave very 
similarly: they are situated "between" DTW and EDR.  

This relationship between the similarity measures can also be seen in Figure 5.9 which 
shows the highest width of the warping window required to change at least 10% of the 
nodes in the 1NN graph (the first chart again contains 10 most representative datasets for 
the sake of readability, while the second chart shows general statistics for all datasets - the 
detailed plots are presented in Appendix C). Changes of this magnitude appear earliest for 
DTW (with average warping window width about 10.18%), followed by ERP (6.33%), then by 
LCS (4.78%), and at the end by EDR (2.54%). Comparisons using the Wilcoxon sign-rank test 
[29] reveal statistical significance of pairwise differences, with p-values shown in Table 5.2 
(where the difference between ERP and LCS may be considered the one borderline case). 
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Figure 5.7. The average changes in the 1NN graph 

Slika 5.7. Prosečne promene u 1NN grafu 

 

Figure 5.8. The percentage of the datasets with changed 1NN graphs 

Slika 5.8. Procenat skupova podataka sa promenjenim 1NN grafovima 

  



Role of Similarity Measures in Time Series Analysis 

61 
 

 

 

Figure 5.9. The highest warping windows needed to change at least 10% of the 1NN graph 

Slika 5.9. Najveći pojasi iskrivljenja potrebni da se promeni najmanje 10% 1NN grafa 

 
LCS ERP EDR 

DTW 4.63E-07 3.63E-06 9.25E-09 

LCS  0.018192 0.001279 

ERP   2.16E-05 

Table 5.2. p values for the pairwise Wilcoxon sign-rank test of the differences in the highest 
width of the warping window required to change at least 10% of the nodes in the 1NN graph 

Tabela 5.2. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad 
razlikama najvećih širina pojasa iskrivljenja potrebnih da se promeni najmanje 10% čvorova 

u 1NN grafu  

A 

B 
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5.3.2. Change of Classes with Narrowing Constraints 

The results described in Section 5.3.1 clearly indicate that the application of the Sakoe-Chiba 
band can significantly change the structure of the 1-nearest neighbor graph, especially for 
small warping-window widths. We have also seen that this influence is not manifested in the 
same way for different similarity measures. In this section we explore how these changes in 
the 1-nearest neighbor graph may affect the behavior of the 1NN classifier. 

Classification denotes the process of grouping time series into predefined classes. The 1NN 
classifier represents a very simple form of classification: the class of the unclassified time 
series is determined as the class of its most similar time series. Despite its simplicity, the 
1NN classifier often produces better results than other more complex classifiers [19, 85, 
117]. 

Since the results of 1NN classification depend entirely on the class of the nearest neighbor, 
changes in the nearest-neighbor graph directly affect the classification. In this section we 
will examine the extent to which nearest neighbors change their classes under the influence 
of the Sakoe-Chiba band. Similarly to the first part of the experiments, we record the 
percentage of those nearest neighbors which have under the influence of global constraints 
changed their classes compared to the nearest neighbors in the unconstrained measure.  

The graphical representation of results can be seen in Figures 5.10 through 5.13 for DTW, 
LCS, ERP and EDR, respectively. Each figure is represented by two charts for the sake of 
readability. The first chart (A) contains the behavior of 10 most representative datasets 
while the second chart (B) shows the general statistics over all datasets: minimum values, 
maximum values, average values and the deviation from the average values. Appendix C 
contains detailed plots of the change of classes for all four examined elastic similarity 
measures. 

In Section 5.3.1 we have seen that major changes to the 1NN graph occur for     . In this 
section we will examine that particular area in more detail. For easier description of the 
obtained results we rely on the following notation. Let N denote the set of nodes in the 1NN 
graph that changed their nearest neighbor compared to the nearest neighbor in the 
unconstrained measure, and let    denote the set of nodes in the 1NN graph whose nearest 
neighbor changed its class compared to the class of the nearest neighbor in the 
unconstrained measure. Obviously,    is a subset of N. Let δ denote the fraction of those 
modified nodes that have also changed their class: 

  
    

   
 

The values of δ for      are given in Tables 5.3, 5.5, 5.7 and 5.9 for DTW, LCS, ERP and 
EDR. Within these tables, datasets with the highest δ values (greater than or equal to 50%) 
are marked with symbol ●, and those with the lowest values (smaller than or equal to 10%) 
with symbol ○. The dash sign among the results in these tables indicates that there are no 
changes in the nearest neighbor graph compared to the unconstrained similarity measure. 
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These datasets were excluded from consideration when we calculated the p values for the 
pairwise Wilcoxon sign-rank test of the differences in δ values across the datasets 

Dynamic Time Warping (DTW). In case of DTW (Figure 5.10), nearest neighbors with 
changed classes are beginning to appear immediately with the first changes in the structure 
of the 1NN graph: when the width of the warping window drops to about 60% of the length 
of time series. The percentage of neighbors with changed class increases as the width of the 
Sakoe-Chiba band narrows, and for some datasets reaches values higher than 40% of the 
number of time series in the dataset (haptics, inlineskate).  

Looking at Table 5.3 we can see that for      on average only about 22% of the changed 
nodes have modified their classes compared to the unconstrained measure. Changes 
greater than 50% are only present for three datasets: adiac, haptics and inlineskate. On the 
other hand, for one fourth of the observed datasets, δ is less than 10%. This is somewhat 
surprising since in the first part of the experiments we have found significant changes in the 
structure of the 1NN graph for      (about 25%–98%) for all datasets (except 
chlorineconcentration and beef). 

Observing the p values obtained with the Wilcoxon sign-rank test (Table 5.4), we can notice 
statistically significant differences between the δ values computed for            and 
    . 
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 Dataset 4% 3% 2% 1% 0%  Dataset 4% 3% 2% 1% 0% 

 50words 39.57 38.75 38.88 41.11 43.49 ○ mallat 3.64 3.66 3.68 3.34 3.09 

● adiac 60.00 74.07 58.06 54.85 50.44  medicalimages 31.71 31.91 34.72 34.35 34.35 

 beef 16.67 16.67 25.00 33.33 50.00  motes 15.52 15.51 13.87 13.77 13.77 

 car 50.00 42.00 27.54 28.21 34.12  noninvasivefatalecg_thorax1 37.11 31.88 29.34 27.16 25.26 

○ cbf 0.00 0.13 0.00 0.11 1.02  noninvasivefatalecg_thorax2 28.73 24.56 23.47 20.58 15.87 

○ chlorineconcentration 0.00 0.00 0.00 0.00 0.00  oliveoil 0.00 33.33 28.57 25.00 11.76 

○ cinc_ecg_torso 9.85 7.58 4.68 2.66 1.62  osuleaf 50.00 47.54 46.28 47.06 50.45 

 coffee 25.00 42.86 41.67 46.15 42.86  plane 33.33 20.00 10.00 7.41 4.17 

 cricket_x 32.45 31.62 30.80 31.43 41.69 ○ sonyaiborobotsurface 5.70 5.70 4.05 2.61 2.61 

 cricket_y 31.02 31.02 31.93 34.89 42.66  sonyaiborobotsurfaceii 11.06 8.01 8.01 5.96 5.96 

 cricket_z 31.88 30.82 32.76 32.59 42.60  starlightcurves 9.22 9.19 10.13 11.10 12.49 

 diatomsizereduction 33.33 25.00 8.33 1.52 0.40  swedishleaf 30.24 27.52 28.65 29.00 32.02 

 ecg200 25.00 21.84 21.70 18.52 18.52 ○ symbols 1.45 1.50 1.59 2.56 3.33 

○ ecgfivedays 2.04 1.27 0.90 1.28 1.36 ○ synthetic_control 2.07 2.09 2.09 8.24 8.24 

 faceall 13.53 6.81 5.12 4.88 5.90  trace 0.00 0.00 2.54 5.22 14.77 

 facefour 27.27 16.67 12.90 10.00 8.33 ○ twoleadecg 0.00 0.29 0.35 0.45 0.45 

 fish 41.67 36.75 29.95 28.03 29.62 ○ twopatterns 0.00 0.04 0.10 0.35 1.06 

 gun_point 22.54 17.65 16.00 12.95 12.00  uwavegesturelibrary_x 27.15 27.08 27.14 27.23 27.59 

● haptics 69.06 65.75 67.11 67.33 68.93  uwavegesturelibrary_y 37.83 37.21 36.86 37.06 37.38 

● inlineskate 62.73 64.21 64.53 66.23 64.23  uwavegesturelibrary_z 32.77 32.57 32.55 33.63 34.45 

○ italypowerdemand 5.45 5.45 5.45 5.45 5.45 ○ wafer 3.10 2.57 2.23 1.13 0.70 

 lighting2 12.16 17.95 22.58 23.23 29.13  wordssynonyms 37.71 36.99 36.59 38.89 41.33 

 lighting7 32.94 38.89 36.89 39.29 43.80  yoga 20.44 17.62 13.53 10.79 9.60 

 4% 3% 2% 1% 0% 

Average 23.11% 22.84% 21.29% 21.24% 22.37% 
 

Table 5.3. δ values for DTW 

Tabela 5.3. δ vrednosti za DTW 

 

 
3% 2% 1% 0% 

4% 0.02497 0.03726 0.18922 0.86563 

3%  0.02521 0.26009 0.90867 

2%   0.84731 0.27520 

1%    0.14337 

Table 5.4. p values for the pairwise Wilcoxon sign-rank test of the differences in δ values 
across the datasets for DTW 

Tabela 5.4. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad δ 
vrednostima na svim skupovima podataka za DTW 
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Figure 5.10. Change of classes for DTW 

Slika 5.10. Promena klasa za DTW 

  

A 

B 
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Longest Common Subsequence (LCS). In accordance with the structure of the nearest 
neighbor graph for LCS, neighbors with altered classes begin to occur when the width of the 
warping window reaches 25%, but their number starts to grow significantly only when it 
drops below 10% (Figure 5.11).  

For      the changes are more noticeable than with DTW, for a number of datasets they 
even reach values above 70% (cricket_x, cricket_y, cricket_z). For lighting2, starlightcurves, 
symbols, synthetic_control, and yoga major changes in the 1NN graph at      (greater 
than 90%) are accompanied by significantly smaller changes in terms of classes (smaller than 
40%). This indicates that only a smaller part of the changed nodes also changed their class.  

Comparing the results in Table 5.5 and Table 5.3 we can see that the average δ values for 
LCS are noticeably higher than for DTW, especially for     , where it is almost twice as 
high (the Wilcoxon sign-rank test indicates significance for      and     , with p values 
of 0.025467 and 3.34E-08, respectively). This means that changes in the structure of the LCS 
1NN graph induced by applying the Sakoe-Chiba band more significantly alter the classes of 
nodes than for DTW.  

Another noticeable difference between these two similarity measures refers to the 
presence of greater fluctuations of δ values for some datasets using LCS (cbf, coffee, 
diatomsizereduction, faceall, facefour, synthetic_control, and yoga). There is also some 
resemblance between LCS and DTW: adiac, haptics and inlineskate are again among the 
datasets with the highest δ values, and some of the datasets with the lowest δ values are 
common for these two measures. 

According to the Wilcoxon sign-rank test (the corresponding p values are presented in 
Table 5.6), in case of LCS, the differences between the δ values across the datasets for 
     are significant. The only exception is between      and     . 
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 Dataset 4% 3% 2% 1% 0%  Dataset 4% 3% 2% 1% 0% 

 50words 43.55 39.66 37.74 35.83 58.88 ○ mallat - - - 0.00 3.33 

● adiac 69.23 76.47 78.26 64.00 60.36  medicalimages 41.44 38.07 37.50 55.18 55.18 

 beef - - - 66.67 84.38  motes 14.29 10.91 7.17 20.05 20.05 

 car 42.86 28.57 23.81 21.25 74.11  noninvasivefatalecg_thorax1 87.50 100.00 72.00 50.50 39.83 

 cbf 0.46 0.52 1.34 2.53 62.66  noninvasivefatalecg_thorax2 85.71 90.00 83.33 54.95 29.94 

 chlorineconcentration - - - 16.78 9.58  oliveoil - - - 100.00 64.29 

○ cinc_ecg_torso - - 0.00 2.94 4.81  osuleaf 35.71 36.11 35.13 39.64 64.72 

 coffee - - 50.00 100.00 25.00  plane 11.11 15.38 4.55 2.50 8.64 

 cricket_x 58.82 52.87 42.49 39.52 79.01  sonyaiborobotsurface 0.00 0.00 3.85 14.55 14.55 

 cricket_y 41.96 35.85 31.43 31.99 81.42  sonyaiborobotsurfaceii 23.53 27.12 27.12 17.47 17.47 

 cricket_z 55.08 50.00 45.56 39.83 79.42  starlightcurves 11.34 11.34 11.44 11.34 18.19 

 diatomsizereduction 100.00 66.67 40.00 7.69 9.43  swedishleaf 12.32 11.74 14.16 17.11 35.84 

 ecg200 30.30 26.67 19.74 22.29 22.29  symbols 3.55 3.80 4.24 4.86 39.46 

 ecgfivedays - - - - 23.53  synthetic_control 8.47 7.05 7.05 31.32 31.32 

 faceall 18.31 5.65 4.28 4.05 28.50  trace - - 50.00 45.16 15.38 

 facefour 40.00 12.50 7.41 2.78 51.43 ○ twoleadecg 0.00 0.00 0.00 3.82 3.82 

 fish 46.94 32.58 28.67 27.35 63.16  twopatterns 0.12 0.13 0.26 0.78 70.22 

○ gun_point 0.00 0.00 4.55 3.85 8.40  uwavegesturelibrary_x 44.40 42.21 38.28 34.20 43.11 

● haptics 77.31 66.50 65.53 65.09 71.37  uwavegesturelibrary_y 42.24 37.26 35.55 34.16 53.97 

● inlineskate 51.39 59.50 64.13 63.16 64.94  uwavegesturelibrary_z 38.26 35.57 33.51 34.22 60.30 

○ italypowerdemand 10.00 10.00 10.00 10.00 10.00  wafer 50.00 22.22 12.82 1.34 1.01 

 lighting2 30.00 36.00 22.58 22.22 40.00  wordssynonyms 40.63 36.93 34.48 33.27 61.74 

 lighting7 60.71 60.61 46.34 44.90 66.41  yoga 19.73 10.11 9.97 8.74 31.07 

 4% 3% 2% 1% 0% 

Average 35.46% 31.49% 27.96% 29.11% 40.49% 
 

Table 5.5. δ values for LCS 

Tabela 5.5 δ vrednosti za LCS 

 

 
3% 2% 1% 0% 

4% 0.02197 0.00023 0.00255 0.00692 

3%  0.00076 0.02272 0.00377 

2%   0.14337 0.00058 

1%    0.00004 

Table 5.6. p values for the pairwise Wilcoxon sign-rank test of the differences in δ values 
across the datasets for LCS 

Tabela 5.6. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad δ 
vrednostima na svim skupovima podataka za LCS 
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Figure 5.11. Change of classes for LCS 

Slika 5.11. Promena klasa za LCS 

  

A 
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Edit Distance with Real Penalty (ERP). Changes in the case of ERP (Figure 5.12) start from 
around       and are most visible for cricket_y in the same manner as for the 1NN graph 
(Figure 5.5).  

Percentage of nodes in the nearest neighbor graph whose neighbors changed their classes 
compared to the unconstrained ERP reaches values higher than 50% for a smaller number of 
datasets (cricket_x, cricket_y, cricket_z, and lighting7).  

There are datasets (cbf, cinc_ecg_torso, ecgfivedays, facefour, starlightcurves, twoleadecg, 
twopatterns, yoga) for which we noticed significant changes in the nearest neighbor graph 
(higher than 60% for     ) but that produce only minor changes of classes (less than 8%).  

The average value of δ decreases as the warping window becomes smaller (Table 5.7). 
Adiac, haptics and inlineskate are still within the group of datasets which have the highest 
percentage of nodes with altered classes among the nodes changed by the Sakoe-Chiba 
band. We can see that several datasets with the lowest δ values reappear also with ERP. 

In case of ERP, the differences in δ values are not statistically significant only between 
           and     . The corresponding p values of the Wilcoxon sign-rank test are 
shown in Table 5.8. 
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 Dataset 4% 3% 2% 1% 0%  Dataset 4% 3% 2% 1% 0% 

 50words 52.96 48.21 44.95 42.12 43.88 ○ mallat - - - 0.00 2.51 

● adiac - 100.00 100.00 80.00 59.54  medicalimages 37.93 37.90 33.67 35.94 35.94 

● beef 57.14 62.50 62.50 60.00 60.00  motes 13.33 13.25 12.37 12.96 12.96 

 car 100.00 33.33 22.22 27.59 29.17  noninvasivefatalecg_thorax1 75.00 64.00 49.15 36.90 22.87 

○ cbf 0.00 0.00 0.00 0.00 2.60  noninvasivefatalecg_thorax2 87.50 87.50 68.75 31.36 15.21 

○ chlorineconcentration - - - - 0.00 ○ oliveoil - - - - - 

 cinc_ecg_torso 28.26 28.00 9.20 4.18 7.58  osuleaf 58.23 53.20 51.00 45.64 48.88 

○ coffee - - - - -  plane 0.00 50.00 8.33 5.88 4.50 

● cricket_x 72.92 69.85 68.64 66.80 74.34 ○ sonyaiborobotsurface 4.88 4.88 3.55 3.31 3.31 

● cricket_y 89.89 88.43 87.96 88.39 91.02 ○ sonyaiborobotsurfaceii 5.80 4.23 4.23 3.47 3.47 

● cricket_z 68.99 63.83 61.21 61.31 70.30  starlightcurves 13.14 14.01 13.77 12.76 10.56 

 diatomsizereduction 0.00 50.00 33.33 50.00 1.15  swedishleaf 16.28 13.37 13.56 20.60 25.33 

 ecg200 59.26 45.95 29.85 17.65 17.65  symbols 10.89 8.57 5.63 5.01 5.43 

○ ecgfivedays 0.00 0.00 0.98 0.88 0.73  synthetic_control 5.47 5.02 5.02 19.19 19.19 

 faceall 8.59 5.13 3.64 5.62 19.87  trace - - 0.00 8.70 14.75 

 facefour 50.00 20.00 5.88 4.17 4.23 ○ twoleadecg 1.33 1.37 0.30 0.93 0.93 

 fish 50.00 14.29 28.57 28.38 28.65 ○ twopatterns 0.00 0.00 0.16 0.49 2.72 

 gun_point - - 50.00 11.11 7.46  uwavegesturelibrary_x 33.42 30.96 29.41 28.93 29.25 

● haptics 63.64 66.94 63.64 62.71 62.85  uwavegesturelibrary_y 40.48 39.08 38.34 37.82 38.82 

● inlineskate 57.36 54.40 53.79 55.65 59.77  uwavegesturelibrary_z 36.51 36.36 34.44 33.93 34.35 

○ italypowerdemand 8.70 8.70 8.70 8.70 8.70  wafer 63.16 40.48 26.09 4.97 1.60 

 lighting2 50.65 51.76 48.89 45.54 41.03  wordssynonyms 45.29 42.06 37.65 36.02 37.93 

● lighting7 90.63 90.00 88.35 90.16 91.91  yoga 22.73 22.12 16.81 11.03 8.13 

 4% 3% 2% 1% 0% 

Average 37.96% 36.74% 31.54% 28.07% 26.39% 
 

Table 5.7. δ values for ERP 

Tabela 5.7. δ vrednosti za ERP 

 

 
3% 2% 1% 0% 

4% 0.00697 0.00013 0.00069 0.01955 

3%  0.00001 0.00053 0.04694 

2%   0.10648 0.67407 

1%    0.22493 

Table 5.8. p values for the pairwise Wilcoxon sign-rank test of the differences in δ values 
across the datasets for ERP 

Tabela 5.8. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad δ 
vrednostima na svim skupovima podataka za ERP 
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Figure 5.12. Change of classes for ERP 

Slika 5.12. Promena klasa za ERP 
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Edit Distance on Real sequence (EDR). In compliance with the results for the EDR measure 
from Section 5.3.1, nodes with changed classes begin to appear when the width of the 
warping window is reduced below 20% of the length of the time series (Figure 5.13). 
Changes greater than one percent arise only for      .  

For constraint values close to zero, the highest number of nodes with changed classes 
emerges in case of haptics and inlineskate. They are the only two datasets that achieve 
changes larger than 40%.  

In terms of results obtained for δ (Table 5.9), EDR most closely resembles ERP: they have 
very similar values and for both of them δ decreases as we reduce the width of the global 
constraint (the Wilcoxon sign-rank test reveals no significant difference).  

Adiac, haptics and inlineskate retain their place among the datasets with the highest δ 
values, and a larger number of datasets with very small changes among the classes are 
repeated for EDR, too.  

Interestingly, only EDR generates large δ values for the symbols dataset, all the other 
similarity measures yield values less than 11% (the only exception is LCS with     , which 
gives almost 40%). 

Based on the p values of the Wilcoxon sign-rank test (shown in Table 5.10), we can see, that 
statistically not significant differences in values are present between the following pairs of 
the constraint value:      and     ,      and      and      and     . 
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 Dataset 4% 3% 2% 1% 0%  Dataset 4% 3% 2% 1% 0% 

 50words 40.95 37.99 34.26 31.91 34.00 ○ mallat - - - - 0.00 

● adiac 75.00 62.50 85.71 66.67 53.26  medicalimages 29.41 32.54 37.43 42.83 42.83 

● beef - 100.00 100.00 66.67 83.33 ○ motes 9.84 9.62 7.77 7.38 7.38 

 car 71.43 31.58 20.51 19.74 31.18  noninvasivefatalecg_thorax1 80.00 85.71 76.92 65.75 28.11 

○ cbf 0.98 0.68 0.71 1.15 3.17  noninvasivefatalecg_thorax2 50.00 66.67 80.00 54.76 17.63 

○ chlorineconcentration - - - - 0.00  oliveoil - - - - 66.67 

○ cinc_ecg_torso - - 0.00 0.00 0.20  osuleaf 31.61 31.36 33.08 37.92 48.69 

 coffee - 0.00 0.00 100.00 28.57 ○ plane 0.00 0.00 0.00 0.00 0.93 

 cricket_x 55.56 55.07 44.52 40.96 42.90  sonyaiborobotsurface 25.00 25.00 4.76 5.94 5.94 

 cricket_y 44.83 50.00 41.09 39.22 38.70 ○ sonyaiborobotsurfaceii 0.00 7.14 7.14 7.64 7.64 

 cricket_z 57.50 53.57 44.79 40.82 41.33  starlightcurves 12.80 14.57 14.33 13.17 12.33 

 diatomsizereduction 100.00 50.00 50.00 5.00 1.01  swedishleaf 8.75 9.55 13.25 17.25 26.04 

 ecg200 33.33 37.50 25.00 10.87 10.87  symbols 66.67 42.86 42.86 32.00 28.33 

○ ecgfivedays - - - - 0.00  synthetic_control 13.51 18.10 18.10 20.12 20.12 

○ faceall 7.84 5.97 3.60 4.24 5.02  trace - - 0.00 47.83 33.90 

 facefour 50.00 11.11 4.17 2.08 5.00 ○ twoleadecg - 0.00 0.00 1.31 1.31 

 fish 47.62 28.21 27.84 24.88 35.07 ○ twopatterns 0.08 0.21 0.27 0.72 1.71 

○ gun_point 0.00 0.00 10.00 4.92 5.05  uwavegesturelibrary_x 46.82 40.94 34.79 30.56 29.22 

● haptics 70.79 66.43 61.99 65.13 65.14  uwavegesturelibrary_y 37.24 36.27 35.58 33.70 35.52 

● inlineskate 59.76 58.36 56.74 58.89 66.16  uwavegesturelibrary_z 33.84 32.56 30.84 32.08 35.34 

○ italypowerdemand 5.56 5.56 5.56 5.56 5.56  wafer 50.00 50.00 28.57 4.85 0.88 

 lighting2 - 100.00 66.67 50.00 27.03  wordssynonyms 48.05 48.25 45.29 43.28 41.31 

 lighting7 - 50.00 50.00 30.43 40.00  yoga 18.95 17.55 12.27 9.85 9.75 

 4% 3% 2% 1% 0% 

Average 36.68% 34.33% 29.91% 28.05% 24.44% 
 

Table 5.9. δ values for EDR 

Tabela 5.9. δ values for EDR 

 

 
3% 2% 1% 0% 

4% 0.14993 0.01437 0.00239 0.00430 

3%  0.02741 0.00188 0.02742 

2%   0.02019 0.40218 

1%    0.53117 

Table 5.10. p values for the pairwise Wilcoxon sign-rank test of the differences in δ values 
across the datasets for EDR 

Tabela 5.10. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad δ 
vrednostima na svim skupovima podataka za EDR 
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Figure 5.13. Change of classes for EDR 

Slika 5.13. Promena klasa za EDR 
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In the second part of the experiments we have seen that the properties identified by 
analyzing the structure of the nearest neighbor graphs are, in general, replicated among the 
data describing the change of classes. The average numbers of changed classes in 1NN 
graphs are presented in Figure 5.14. We can notice resemblance to the graphs in Figure 5.7 
which shows the average number of changed nodes in the nearest neighbor graphs: the 
biggest changes are induced for DTW, the least ones for EDR, while LCS and ERP are in 
between. However, there are some differences, too. LCS and ERP provide similar average 
number of changed neighbors, but the average number of altered classes is higher for ERP. 
In terms of classes, ERP is closer to DTW and LCS is closer to EDR. The other significant 
difference is found for small values of r (   ). In this area the number of nodes for LCS 
that have changed their classes rapidly grows, and for      LCS overtakes DTW. This 
confirms that warping window of width      has a special impact on LCS. 

Looking at the percentage of datasets for which there are nodes in the 1NN graph with 
changed classes, as shown in Figure 5.15, we can conclude that in case of all four measures 
the altered classes are beginning to appear immediately with the first changes in the 
structure of the nearest-neighbor graph. These graphs differ from the graphs shown in 
Figure 5.8 only slightly. This confirms that the Sakoe-Chiba band affects DTW the most, and 
that among the discussed similarity measures EDR is least affected. 

 

Figure 5.14. The average changes of classes 

Slika 5.14. Prosečne promene klasa 
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Figure 5.15. The percentage of the datasets with changed classes 

Slika 5.15. Procenat skupova podataka sa promenjenim klasama 

By analyzing the percentage of those nodes in the 1NN graph which have altered their 
classes compared to the unconstrained measures, in relation to the total number of 
changed nodes (regardless of the class), we have seen that (for     ) there are groups of 
datasets whose members exhibit similar characteristics under the influence of the Sakoe-
Chiba band independent of the similarity measure. The first such group consists of the 
adiac, haptics and inlineskate datasets. Global constraints change their 1NN graphs in such 
way that a large part (over 50%) of the new neighbors has altered classes. The second group 
includes cbf, italypowerdemand, twoleadecg and twopatterns. These datasets give the 
lowest δ values (up to 10%) for each of the four measures (the only exception occurs in cbf 
and twopatterns with LCS for     ). 

In Section 5.3.1 we have seen that there is a group of datasets (including 
chlorineconcentration, mallat, oliveoil and trace) for which LCS, ERP and EDR show only 
slight changes in the structure of the 1NN graph (or no changes at all) but DTW 
demonstrates more significant ones. For most of these datasets DTW has very low delta 
values, this could be the explanation why it has smaller average δ values than the other 
measures despite the fact that DTW produces the biggest changes in the nearest neighbor 
graph and among the classes, too. 
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5.3.3. Impact on Classification Accuracy 

The results of Section 5.3.1 and Section 5.3.2 clearly confirmed that the use of the Sakoe-
Chiba global constraint causes recognizable changes in the behavior of the four popular 
elastic similarity measures, especially for small values of the warping window width.  

The last phase of our experiments is devoted to analyzing how these changes affect the 
accuracy of the 1NN classifier.  

In the first step we will use stratified 9-fold cross-validation (SCV1x9) to find the smallest 
values of parameter r for which 1NN produces the smallest classification errors.  

In the second step, we will discuss to what extent the 1NN graphs that correspond to the 
values of parameter r selected in the first step differ from the 1NN graphs of the 
unconstrained similarity measures.  

In the third step, we will give a comparative review of the observed similarity measures 
based on the classification accuracies obtained by 10 runs of stratified 10-fold cross-
validation (SCV10x10) using the values of parameter r from the first step.  

We will conclude our analysis in the fourth step by observing some general differences 
between the studied similarity measures. 

The lowest widths of the warping window for which SCV1x9 gives the smallest classification 
error are presented in Table 5.11 (the same set of r values was searched as in Section 5.3.1 
and Section 5.3.2; in case of ties we report the lowest values of r).  

On average, this value is lowest in the case of DTW (about 4% of the length of time series) 
and highest for ERP (almost 10% of the length of time series). Values greater than 10% were 
observed only for some of the 46 investigated datasets (they are highlighted in boldface in 
Table 5.11). We have found only two such datasets for DTW (lighting2 and motes), six for 
EDR, nine for ERP, and ten for LCS – whereas in case of ERP several datasets have values 
greater than 30% (cinc_ecg_torso, cricket_x, cricket_y, cricket_z, lighting2, lighting7, motes).  

Overall, in most cases the results obtained for different similarity measures are close to each 
other, but there are also datasets for which certain similarity measures differ substantially 
from the others in this respect (cinc_ecg_torso, cricket_z, lighting2, lighting7, osuleaf). 
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 Dataset DTW LCS ERP EDR  Dataset DTW LCS ERP EDR 

 50words 6 8 4 15  mallat 4 1 1 0 

 adiac 1 1 1 1  medicalimages 5 10 7 6 

 beef 2 2 10 4  motes 21 12 35 14 

 car 1 8 5 7  noninvasivefatalecg_thorax1 0 1 2 6 

 cbf 2 8 1 5  noninvasivefatalecg_thorax2 0 1 3 0 

 chlorineconcentration 0 0 0 0  oliveoil 0 2 0 1 

 cinc_ecg_torso 2 2 35 1  osuleaf 5 23 11 14 

 coffee 3 3 0 2  plane 5 5 4 1 

 cricket_x 7 12 40 9  sonyaiborobotsurface 0 3 5 5 

 cricket_y 10 14 70 12  sonyaiborobotsurfaceii 2 2 2 2 

 cricket_z 7 15 35 9  starlightcurves 10 14 2 6 

 diatomsizereduction 0 1 0 1  swedishleaf 3 5 3 8 

 ecg200 0 2 0 4  symbols 7 6 5 6 

 ecgfivedays 1 1 0 0  synthetic_control 9 17 7 7 

 faceall 3 7 6 4  trace 4 4 2 2 

 facefour 3 1 9 4  twoleadecg 3 2 11 2 

 fish 1 5 3 6  twopatterns 4 5 3 5 

 gun_point 4 6 3 5  uwavegesturelibrary_x 6 9 7 12 

 haptics 5 6 4 6  uwavegesturelibrary_y 6 3 3 8 

 inlineskate 6 10 5 9  uwavegesturelibrary_z 3 16 4 15 

 italypowerdemand 0 5 0 0  wafer 0 4 3 0 

 lighting2 13 15 45 1  wordssynonyms 6 12 5 7 

 lighting7 5 5 40 4  yoga 2 7 5 7 

 DTW LCS ERP EDR 

Average 4.07 6.54 9.70 5.28 
 

Table 5.11. The values of parameter r for which SCV1x9 give the smallest error rate 

Tabela 5.11. Vrednosti parametra r za koje SCV1x9 daje najmanju grešku 

In Section 5.3.1 and Section 5.3.2 we have shown that application of the Sakoe-Chiba band 
exerts the greatest influence on DTW and the lowest influence on EDR, while the magnitude 
of its effect on LCS and ERP is somewhere between these two boundary cases. This 
difference can be perceived among the data in Table 5.12, too. Table 5.12 contains the 
percentages of those nodes of 1NN graphs which have changed their classes under the 
influence of the constraint parameter r (whose values are taken from Table 5.11), compared 
to the nodes of the 1NN graphs of the unconstrained measures. The number of datasets for 
which SCV1x9 gives lowest classification error without changes in the 1NN graph (regarding 
the classes of the nodes) is smallest for DTW (4) and highest for EDR (25). For LCS and ERP 
there are 16 such datasets. In order to achieve the best classification accuracy, changes over 
10% are most frequently required for DTW (20 datasets), followed by ERP (7 datasets). In 
case of LCS and EDR, changes of this magnitude are needed only for the adiac dataset. 
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 Dataset DTW LCS ERP EDR  Dataset DTW LCS ERP EDR 

 50words 27.96 5.75 19.78 0.00  mallat 0.67 0.00 0.00 0.00 

 adiac 14.47 16.39 3.07 13.06  medicalimages 10.60 2.10 3.59 1.49 

 beef 3.33 0.00 1.67 0.00  motes 1.89 0.08 0.00 0.00 

 car 18.33 0.00 0.00 0.00  noninvasivefatalecg_thorax1 21.70 1.35 0.77 0.03 

 cbf 0.00 0.00 0.00 0.00  noninvasivefatalecg_thorax2 13.25 1.33 0.19 7.92 

 chlorineconcentration 0.00 0.37 0.00 0.00  oliveoil 3.33 0.00 0.00 0.00 

 cinc_ecg_torso 1.41 0.00 0.00 0.00  osuleaf 24.21 0.45 5.20 0.23 

 coffee 5.36 0.00 0.00 0.00  plane 0.00 0.00 0.00 0.00 

 cricket_x 13.21 0.51 0.38 0.00  sonyaiborobotsurface 1.93 0.00 0.81 0.00 

 cricket_y 10.26 0.13 0.00 0.00  sonyaiborobotsurfaceii 2.76 1.63 1.43 0.10 

 cricket_z 13.08 0.13 0.26 0.00  starlightcurves 1.93 0.17 2.45 0.10 

 diatomsizereduction 0.31 0.62 0.31 0.31  swedishleaf 15.29 0.98 2.22 0.00 

 ecg200 12.50 7.50 10.50 1.50  symbols 0.29 0.78 0.39 0.00 

 ecgfivedays 0.68 0.00 0.57 0.00  synthetic_control 0.83 0.00 2.17 0.00 

 faceall 1.73 0.04 0.49 0.18  trace 0.00 0.00 0.00 0.00 

 facefour 2.68 1.79 0.89 0.89  twoleadecg 0.09 0.00 0.00 0.00 

 fish 21.14 3.43 0.29 0.29  twopatterns 0.00 0.00 0.00 0.00 

 gun_point 8.00 0.00 0.00 0.00  uwavegesturelibrary_x 20.12 0.96 10.92 0.00 

 haptics 30.89 8.86 10.58 5.83  uwavegesturelibrary_y 26.66 3.04 16.66 1.25 

 inlineskate 22.46 0.46 8.77 2.62  uwavegesturelibrary_z 26.51 0.76 14.96 0.18 

 italypowerdemand 2.65 0.18 1.09 0.09  wafer 0.57 0.06 0.24 0.11 

 lighting2 4.13 0.00 0.00 7.44  wordssynonyms 26.30 1.33 14.48 0.55 

 lighting7 17.48 6.29 0.00 0.00  yoga 5.06 0.39 0.21 0.03 

 DTW LCS ERP EDR 

Average 9.48% 1.48% 2.94% 0.96% 
 

Table 5.12. Percentage of nodes in 1NN graph with changed classes for the values of 
parameter r from Table 5.11, compared to unconstrained measures 

Tabela 5.12. Procenat čvorova 1NN grafa sa promenjenim klasama za vrednosti parametra r 
iz tabele 5.11, u poređenju sa neograničenim merama 

In order to compare the classification performance of the studied similarity measures we 
computed 1NN classification errors with the SCV10x10 evaluation method using the results 
from Table 5.11 as values for the global constraint parameter r. The lowest average error is 
produced by LCS (11.43%), the largest one by ERP (12.44%), and DTW (11.52%) and EDR 
(11.86%) are in between (Table 5.13). Looking at individual datasets the lowest classification 
error most often occurs with DTW (21 datasets), then with EDR (12 datasets) followed by 
LCS (11 datasets) and ERP (7 datasets). The mean value of the differences between the 
minimum and maximum errors is about 3.82. The biggest differences are with the following 
datasets: symbols (18.65), osuleaf (13.55), car (10.83), lighting2 (8.79) and trace (8.35). 

 

 



Chapter 5. Techniques for Improving Classification Accuracy 

 

80 
 

 Dataset DTW  LCS  ERP  EDR   Dataset DTW  LCS  ERP  EDR  

 50words 18.63  16.03 ● 21.27 ○ 15.51 ●  mallat 1.20  7.02 ○ 0.63 ● 7.03 ○ 

 adiac 31.42  33.18 ○ 32.24  32.24   medicalimages 18.71  22.76 ○ 18.72  21.81 ○ 

 beef 47.67  43.00  51.17 ○ 43.33   motes 4.51  1.45 ● 2.95 ● 1.71 ● 

 car 18.17  11.42 ● 20.17  9.33 ●  noninvasivefatalecg_thorax1 15.65  18.27 ○ 16.49 ○ 18.14 ○ 

 cbf 0.02  0.02  0.00  0.05   noninvasivefatalecg_thorax2 9.48  11.37 ○ 9.61  10.87 ○ 

 chlorineconcentration 0.27  0.81 ○ 0.60 ○ 0.80 ○  oliveoil 11.17  12.00  12.00  13.00  

 cinc_ecg_torso 0.01  0.01  0.23 ○ 0.07   osuleaf 26.49  12.94 ● 24.89  12.97 ● 

 coffee 4.83  4.47  11.93 ○ 4.57   plane 0.00  0.05  0.10  0.05  

 cricket_x 15.68  18.91 ○ 20.29 ○ 18.92 ○  sonyaiborobotsurface 1.29  1.55  0.90  1.66  

 cricket_y 13.73  15.72 ○ 17.36 ○ 16.88 ○  sonyaiborobotsurfaceii 1.19  1.82 ○ 1.10  1.10  

 cricket_z 14.95  18.01 ○ 20.55 ○ 19.38 ○  starlightcurves 6.28  9.23 ○ 10.03 ○ 9.06 ○ 

 diatomsizereduction 0.06  0.06  0.06  0.06   swedishleaf 11.32  8.54 ● 9.88 ● 7.99 ● 

 ecg200 10.00  9.10  7.35 ● 9.40   symbols 1.62  1.36  1.71  20.01 ○ 

 ecgfivedays 0.17  0.10  0.25  0.15   synthetic_control 0.45  2.18 ○ 1.02 ○ 3.02 ○ 

 faceall 1.45  0.87 ● 0.90 ● 0.71 ●  trace 0.10  0.25  8.45 ○ 1.80 ○ 

 facefour 3.66  1.08 ● 0.98 ● 0.89 ●  twoleadecg 0.03  0.12  0.19 ○ 0.11  

 fish 13.46  9.97 ● 12.77  7.77 ●  twopatterns 0.00  0.01  0.01  0.01  

 gun_point 1.90  0.60 ● 1.75  0.60 ●  uwavegesturelibrary_x 19.16  21.40 ○ 20.68 ○ 21.34 ○ 

 haptics 53.50  51.34  54.14  51.31   uwavegesturelibrary_y 25.66  30.14 ○ 27.97 ○ 26.36 ○ 

 inlineskate 44.18  40.80 ● 36.45 ● 40.31 ●  uwavegesturelibrary_z 25.46  24.72 ● 26.97 ○ 26.63 ○ 

 italypowerdemand 3.41  3.50  3.70  2.79 ●  wafer 0.11  0.13  0.19 ○ 0.12  

 lighting2 9.50  14.54 ○ 12.57  18.29 ○  wordssynonyms 17.43  15.51 ● 19.05 ○ 18.51  

 lighting7 21.17  26.68 ○ 28.37 ○ 26.22 ○  yoga 4.66  2.88 ● 3.60 ● 2.58 ● 

  

 DTW LCS ERP EDR 

Average 11.52% 11.43% 12.44% 11.86% 
 

 

Table 5.13. Classification errors obtained for SCV10x10 
 with the values of parameter r from Table 5.11 

Tabela 5.13. Greške klasifikacije dobijene za SCV10x10  
sa vrednostima parametra r iz tabele 5.11 

Statistically significant differences in error rates are denoted by symbols ● and ○ in 
Table 5.13, with the former signifying improvement, and the latter degradation of classifier 
performance when comparing LCS, ERP and EDR measures with DTW.  

For this we employed the corrected resampled t-test [80] which adjusts to the loss in 
degrees of freedom due to repeated runs of cross-validation, at significance level 0.001. We 
report DTW as the baseline method in Table 5.13 since it is the recommended best choice of 
distance measure [21]. 

In order to assess whether some distance measure can be said to be better than others in 
the average case, we counted the statistically significant wins and losses according to the 
corrected resampled t-test, for each distance measure, with the results summarized in 
Table 5.14. The counts suggest that DTW is generally better (despite having slightly higher 
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average error rate than LCS), with LCS and EDR tied second, and ERP exhibiting the worst 
performance. 

 Wins Losses W–L 

DTW 52 33 19 
LCS 41 37 4 

ERP 31 58 –27 

EDR 40 36 4 

Table 5.14. Statistically significant wins and losses counts for the 1NN classifier with 
different distance measures, across all datasets 

Tabela 5.14. Broj statističko značajnih pobeda i poraza za 1NN klasifikator sa različitim 
merama rastojanja, na svim skupovima podataka 

On the other hand, when we compare the average error rates across all datasets using the 
Wilcoxon sign-rank test (as in previous sections), the differences are not particularly strong, 
as shown in Table 5.15 which contains the corresponding p values. The one possibly 
significant difference when using this test is between DTW and ERP. 

 
LCS ERP EDR 

DTW 0.79738 0.018043 0.4597 

LCS  0.09515 0.93264 

ERP   0.12063 

Table 5.15. p values for the pairwise Wilcoxon sign-rank test of the differences in average 
error rates across the datasets 

Tabela 5.15. p vrednosti dobijene uparenim Vilkoksonovim testom rangova sa znakom nad 
razlikama prosečnih grešaka na svim skupovima podataka 

Overall, based on the statistical tests, we can conclude that there is some evidence to 
consider DTW as the generally best distance measure, and ERP as the generally worst, but 
the evidence is not overwhelming. Furthermore, when observing the statistical differences 
on individual datasets (corrected resampled t-test, 0.001 significance level), for every 
distance measure there are at least a couple of datasets where the measure is significantly 
superior to all others. Therefore, the choice of the best distance measure for a particular 
problem may be different from the generally best case. 

Observing the graphs of average classification errors across different values of r 
(Figure 5.16), the most evident common characteristic of the four discussed similarity 
measures is that for small widths of the warping window (   ) the average classification 
error steeply increases, and in all four cases reaches its maximum for      (DTW: 15.97%, 
LCS: 33.56%, ERP: 20.67%, EDR: 17.20%).  

The largest increase occurs for LCS and the lowest one for DTW. Within the area from 
       to      the similarity measures exhibit different behaviors. While in case of 
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DTW the average classification error almost monotonously decreases from 14.04% to 
12.38%, for ERP it almost monotonously increases from 13.03% to 14.63%. While a 
tendency of growth can also be noticed for LCS and EDR, the changes are very subtle: in case 
of LCS the average error ranges between 11.62% and 11.98%, and in case of EDR it ranges 
between 11.87% and 12.10%. This suggests that although DTW can be considered the best 
general choice according the previous analysis, LCS and EDR could be safer choices because 
of the less pronounced need for tuning the r parameter. 

 

Figure 5.16. Average classification errors for SCV10x10 
Slika 5.16. Prosečne greške klasifikacije za SCV10x10 

5.4. Improving the Accuracy of the kNN Classifier Using 
Constrained Similarity Measures 

Through extensive experiments in this section we will investigate the suggestions and 
findings regarding the influence of the Sakoe-Chiba band on the two most widely used 
elastic similarity measures (DTW and LCS) in combination with the 1NN and kNN classifiers. 
We will observe the following widths of the warping window: 100% (the unconstrained 
similarity measure), 90%, 80%, 70%, 60%, 50%, 45%, 40%, 35%, 30%, and all values from 
25% to 0% in steps of 1%. These values were chosen based on our findings in Section 5.3 
and on other reports that the measures with larger constraints behave similarly to the 
unconstrained ones, while the smaller constraints show more apparent discrepancies [21, 
98, 130]. 

We are going to report the minimal value of the warping window that maximizes the 
classification accuracy of the k-nearest neighbor classifier for a large number of datasets. 
This classifier is chosen taking into account that among many classification methods 
(decision trees, neural networks, Bayesian networks, support vector machines, etc.) simple 
nearest-neighbor methods often give the best results when working with time series [21, 
130]. In addition to that, the quality of distance/similarity measure directly influences the 
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accuracy of the kNN classifier, which makes it appropriate for distance/similarity measure 
assessment. 

To obtain a better insight into the impact of constraining the warping window our 
experiments encompass five different evaluation methods of classification accuracy: leave-
one-out (LOO), stratified 9-fold cross-validation (SCV1x9), 5 times repeated stratified 2-fold 
cross-validation (SCV5x2), 10 times repeated stratified 10-fold cross validation (SCV10x10) 
and 10 times repeated stratified holdout method (SHO10x) using two-thirds of available 
time series for training and one third for testing. The datasets are randomly shuffled in each 
run. Furthermore, we observe the unweighted and the weighted kNN classifier with the 
values of parameter k in range from 1 to 30. Weights are calculated by the formula in 
Eq. (3.5). 

5.4.1. Preparing the Experiments 

Finding the smallest warping window that provides the lowest error-rate for the kNN 
classifier for each individual value of parameter k by evaluating the accuracy in five different 
ways requires computing the similarity between the same time series many times. 
Calculating these similarities in advance and storing them in the form of distance matrices 
can significantly speed up the experiments. The distance matrix for one dataset is a matrix 
where element       contains the distance between the  -th and the  -th time series from 
the set. 

As the kNN classifier is based on finding k series that are the most similar to a given time 
series, we can further speed up the experiments by preparing this information in advance. 
Using a distance matrix we can easily sort the time series in order to get the matrix of 
nearest neighbors. The  -th row of such a matrix contains all the time series of the given 
dataset (except the  -th series) sorted by their similarity with the  -th series: the first 
element of the row is the most similar and the last one is the least similar. 

After the above preparatory computations we have calculated the classification errors using 
the above mentioned evaluation methods and the two considered similarity measures (DTW 
and LCS) relying on the kNN classifier with and without weights for each of the datasets. To 
get a general picture of the impact of the Sakoe-Chiba band we have searched for the 
smallest warping window that gives the best error rate and calculated the average values of 
these warping window widths and the corresponding error-rates for each value of the 
parameter k of the kNN classifier.  

Table 5.16 shows the lowest error rates for the first and last few datasets and a subset of 
the observed values of parameter k obtained evaluating DTW by LOO and the unweighted 
kNN classifier (by varying the width of the warping window, i.e. parameter r). The average 
values of the error rates are given in the last row of the table. The widths of the smallest 
warping windows given as the percentage of time series length that provide these error 
rates are presented in Table 5.17. 
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k 1 2 3 4 … 27 28 29 30 

50words 19.01% 19.01% 19.01% 19.78% 
 

35.58% 36.69% 37.02% 37.46% 

adiac 31.75% 31.75% 32.52% 32.65% 
 

45.07% 45.84% 46.86% 47.12% 

beef 48.33% 48.33% 48.33% 51.67% … 56.67% 53.33% 55.00% 56.67% 

car 17.50% 17.50% 20.00% 20.00% 
 

35.83% 36.67% 36.67% 36.67% 

cbf 0.00% 0.00% 0.00% 0.00% 
 

0.00% 0.00% 0.00% 0.00% 

…
 

  

…
 

   
…

 
  

uwavegesturelibrary_y 24.94% 24.94% 23.36% 22.78% 
 

25.77% 25.61% 25.86% 25.82% 

uwavegesturelibrary_z 25.08% 25.08% 24.43% 24.30% 
 

28.07% 28.36% 28.45% 28.45% 

wafer 0.10% 0.10% 0.13% 0.13% … 0.46% 0.46% 0.52% 0.52% 

wordssynonyms 17.35% 17.35% 17.46% 18.34% 
 

34.25% 35.03% 35.58% 36.46% 

yoga 4.33% 4.33% 5.33% 5.33% 
 

11.67% 11.67% 12.18% 12.18% 

AVERAGE 11.23% 11.23% 11.53% 11.73% … 18.64% 18.75% 19.07% 19.32% 

Table 5.16. Lowest error rates for DTW obtained by LOO 

Tabela 5.16. Najmanje greške klasifikacije za DTW dobijene sa LOO 

k 1 2 3 4 … 27 28 29 30 

50words 6 6 6 6 
 

8 11 11 10 

adiac 1 1 0 1 
 

1 1 2 2 

beef 2 2 0 0 … 0 2 0 8 

car 1 1 1 1 
 

6 6 6 6 

cbf 2 2 1 1 
 

3 3 4 4 

…
 

  

…
 

   

…
 

  

uwavegesturelibrary_y 3 3 9 9 
 

5 7 5 5 

uwavegesturelibrary_z 4 4 5 5 
 

5 5 5 7 

wafer 0 0 3 3 … 0 0 1 1 

wordssynonyms 6 6 6 6 
 

8 9 9 9 

yoga 2 2 2 2 
 

2 2 2 2 

AVERAGE 3.78 3.78 4.59 4.52 … 7.33 7.54 7.48 7.65 

Table 5.17. Smallest warping window widths for DTW obtained by LOO in percentage of the 
length of time series 

Tabela 5.17. Najmanje širine pojasa iskrivljenja za DTW dobijene pomoću LOO, u procentima 
u odnosu na dužine vremenskih serija 

In the rest of this section we will provide an overview of the obtained results. Section 5.4.2 
is devoted to the unweighted kNN classifier and Section 5.4.3 describes the behavior of the 
weighted kNN classifier. Within both sections both elastic similarity measures (DTW and 
LCS) will be described with the following characteristics: 

 The relation between the average value of the lowest classification errors and the 
different values of parameter k, 
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 The minimum and maximum average classification errors of the investigated 
evaluation methods. 

 The change of the corresponding average smallest warping window width for the 
five observed evaluation methods with respect to the parameter k. 

 The minimum and maximum average warping window widths along with the values 
of the parameter k for which these results have been obtained. 

5.4.2. The Unweighted kNN Classifier 

In this section we analyze the impact of the number of neighbors (parameter k) and the 
width of the warping window (parameter r) on the accuracy of the unweighted kNN 
classifier in the case of the constrained DTW and LCS similarity measures. We will show that 
with the increase of the value of k, the classification accuracy decreases. In addition, the 
width of the warping window must be constantly widened in order to achieve the best 
accuracy (as the value of k grows, we need wider and wider warping windows to get the 
best result). 

Dynamic Time Warping (DTW). In Figure 5.17 we can clearly notice that the relationship 
between the parameter k and the average smallest error rate is almost linear – the growth 
of parameter k leads to the decline of classification accuracy. The highest average 
classification accuracy (88.772%) was achieved with the 1NN classifier and the LOO 
evaluation method and the lowest one (74.536%) with the 30NN classifier and the SCV5x2 
evaluation method (Table 5.18). 

 

Figure 5.17. Average lowest error rates for DTW with the unweighted kNN classifier 

Slika 5.17. Prosečne najmanje greške za DTW sa kNN klasifikatorom bez upotrebe težina 

In case of the unweighted kNN classifier the average width of the smallest warping window 
which gives the lowest error rate for DTW varies in the range from 3.783% to 10.087%. We 
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can see that the increase of the parameter k implies the growth of the average warping 
window widths (Figure 5.18): we need wider and wider windows to get the best accuracy. 
The smallest average warping window (3.783%) was obtained using the LOO evaluation 
method and the 1NN classifier and the largest one (10.087%) with the SHO10x evaluation 
method and the 24NN classifier (Table 5.19). 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 11.228% 1 19.317% 30 8.089 

SCV1x9 11.494% 1 19.636% 30 8.142 

SCV5x2 13.628% 1 25.464% 30 11.836 

SCV10x10 11.410% 1 19.701% 30 8.291 

SHO10x 12.471% 1 22.223% 30 9.752 

Table 5.18. Minimum and maximum of the average lowest error rates for DTW with the 
unweighted kNN classifier 

Tabela 5.18. Minimalne i maksimalne vrednosti proseka najmanjih grešaka klasifikacije za 
DTW sa kNN klasifikatorom bez upotrebe težina 

 

Figure 5.18. Average smallest warping window widths (r) for DTW with the unweighted kNN 
classifier 

Slika 5.18. Prosečne vrednosti najmanjih širina pojasa iskrivljenja (r) za DTW sa kNN 
klasifikatorom bez upotrebe težina 
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MIN MAX MAX-MIN 

 
r (%) k r (%) k 

 LOO 3.783 1 7.652 30 3.870 

SCV1x9 4.065 1 8.587 30 4.522 

SCV5x2 4.913 1 9.935 24 5.022 

SCV10x10 4.261 1 8.565 21 4.304 

SHO10x 4.000 1 10.087 24 6.087 

Table 5.19. Minimum and maximum of the average smallest warping window widths for 
DTW with the unweighted kNN classifier 

Tabela 5.19. Minimalne i maksimalne vrednosti proseka najmanjih širina pojasa iskrivljenja 
za DTW sa kNN klasifikatorom bez upotrebe težina 

Longest Common Subsequence (LCS). The relationship between the parameter k and the 
average classification accuracy is almost linear in the case of LCS, too. The average 
classification error grows as we increase the value of k (Figure 5.19). All five discussed 
methods for testing classification accuracy give the smallest average errors with 1NN (they 
are very close to the results of DTW) and the biggest ones with 30NN (Table 5.20) as in the 
case of DTW. Again, the best result was obtained by combining LOO with the 1NN classifier 
and the worst one by combining SCV5x2 with 30NN. 

 

Figure 5.19. Average lowest error rates for LCS with the unweighted kNN classifier 

Slika 5.19. Prosečne najmanje greške za LCS sa kNN klasifikatorom bez upotrebe težina 

The minimum values of the averages of the smallest warping window widths are greater for 
LCS than for DTW by 2 or 3 (Table 5.21) and they are achieved for higher values of 
parameter k (by 3 to 7 — except for SCV10x10). The maximums of the r values are also 
greater than for DTW but they are achieved for smaller values of k (especially for SCV1x9). 
This means that while increasing the parameter k we need wider warping windows to get 
the best classification accuracy (Figure 5.20), the growth tendency is not as clear as in case 
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of DTW (Figure 5.18). The smallest average r value (5.761%) is produced again by the 
combination of LOO and 1NN, and the largest one (12.348%) is obtained using SCV5x2 and 
21NN (Table 5.21). 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 11.180% 1 18.622% 30 7.442 

SCV1x9 11.425% 1 18.970% 30 7.546 

SCV5x2 13.601% 1 24.972% 30 11.372 

SCV10x10 11.396% 1 19.094% 30 7.698 

SHO10x 12.369% 1 21.476% 30 9.106 

Table 5.20. Minimum and maximum of the average lowest error rates for LCS with the 
unweighted kNN classifier 

Tabela 5.20. Minimalne i maksimalne vrednosti proseka najmanjih grešaka klasifikacije za 
LCS sa kNN klasifikatorom bez upotrebe težina 

 

Figure 5.20. Average smallest warping window widths for LCS with the unweighted kNN 
classifier 

Slika 5.20. Prosečne vrednosti najmanjih širina pojasa iskrivljenja za LCS sa kNN 
klasifikatorom bez upotrebe težina 
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MIN MAX MAX-MIN 

 
r (%) k r (%) k 

 LOO 5.761 5 8.739 25 2.978 

SCV1x9 6.022 4 8.848 8 2.826 

SCV5x2 7.913 4 12.348 21 4.435 

SCV10x10 6.739 1 11.370 29 4.630 

SHO10x 7.739 8 10.696 20 2.957 

Table 5.21. Minimum and maximum of the average smallest warping window widths for LCS 
with the unweighted kNN classifier 

Tabela 5.21. Minimalne i maksimalne vrednosti proseka najmanjih širina pojasa iskrivljenja 
za LCS sa kNN klasifikatorom bez upotrebe težina 

5.4.3. The Weighted kNN Classifier 

The aim of this section is to show that, by applying weights in combination with global 
constraints, the kNN classifier can be made more accurate than the 1NN classifier. In these 
experiments weights are calculated by the formula in Eq. (3.5). 

In case of both considered elastic similarity measures (DTW and LCS) the best accuracy is 
obtained with values of parameter k around 4. Furthermore, the value of the constraint r 
remains approximately the same for all values of k. In the remainder of this section we give a 
detailed overview of the obtained results. 

Dynamic Time Warping (DTW). Looking at the chart in Figure 5.21 we can see that in the 
case of DTW the use of weights changes the influence of the parameter k on the accuracy of 
classification: instead of 1NN the smallest average error rates were achieved with 3NN (or 
4NN in the case of SCV5x2 and SHO10x). After a brief decline and reaching the minimum 
value, the error rates begin to grow again, similarly as in the case of the unweighted kNN 
classifier but visibly slower. The attained maximum values of the classification errors are 
more than 1.5 times less than without weights (Table 5.22). The highest average 
classification accuracy was achieved by LOO and the lowest one by SCV5x2. 

Figure 5.22 shows that the introduction of weights into the kNN classifier noticeably 
alleviates the growth of the average warping window widths. In this case the largest average 
warping window (6.848%) was achieved by the combination of the 8NN classifier and the 
SCV5x2 evaluation method (Table 5.23). The smallest average warping window (3.783%) 
was obtained using the 1NN classifier and the LOO evaluation method. The differences 
between the minimum and maximum average r values are about two times smaller than in 
the case of the unweighted kNN classifier. 
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Figure 5.21. Average lowest error rates for DTW with the weighted kNN classifier 

Slika 5.21. Prosečne najmanje greške za DTW sa kNN klasifikatorom sa upotrebom težina 

 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 10.923% 3 12.256% 30 1.333 

SCV1x9 11.072% 3 12.426% 30 1.354 

SCV5x2 13.468% 4 14.970% 30 1.502 

SCV10x10 11.134% 3 12.412% 30 1.278 

SHO10x 12.177% 4 13.527% 30 1.350 

Table 5.22. Minimum and maximum of the average lowest error rates for DTW with the 
weighted kNN classifier 

Tabela 5.22. Minimalne i maksimalne vrednosti proseka najmanjih grešaka klasifikacije za 
DTW sa KNN klasifikatorom sa upotrebom težina 
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Figure 5.22. Average smallest warping window widths for DTW with the weighted kNN 
classifier 

Slika 5.22. Prosečne vrednosti najmanjih širina pojasa iskrivljenja za DTW sa kNN 
klasifikatorom sa upotrebom težina 

 
MIN MAX MAX-MIN 

 
r (%) k r (%) k 

 LOO 3.783 1 6.087 19 2.304 

SCV1x9 3.935 6 6.370 23 2.435 

SCV5x2 4.913 1 6.848 8 1.935 

SCV10x10 4.109 6 6.043 7 1.935 

SHO10x 4.000 1 6.304 25 2.304 

Table 5.23. Minimum and maximum of the average smallest warping window widths for 
DTW with the weighted kNN classifier 

Tabela 5.23. Minimalne i maksimalne vrednosti proseka najmanjih širina pojasa iskrivljenja 
za DTW sa kNN klasifikatorom sa upotrebom težina 

Longest Common Subsequence (LCS). In working with LCS, applying the weighted voting 
approach to the kNN classifier shifts the best average accuracy from     to around     
(Figure 5.23). Upon reaching the minimum value, the average error rates elevate nearly 
linearly like in the case of the unweighted classifier. However, as with DTW, the differences 
between the smallest and largest average error rates are much slighter compared to the 
results obtained by the simple voting method. The minimum average classification errors 
are slightly lower than without the weights (Table 5.24). LOO gives the best average 
accuracy and SCV5x2 the lowest one. 

Interestingly, in the case of LCS there is no apparent trend of increasing the average warping 
window width which is needed to achieve the best accuracy as we increase the value of k 
(Figure 5.24). We can even spot a minor narrowing period between approximately      
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and     . The smallest average r value (5.761%) was generated by the combination of 
SCV1x9 and 27NN and the largest one (9.565%) by the combination SCV5x2 and 26NN 
(Table 5.25). The differences between the minimum and maximum average r values are 
smaller when using weights compared to the unweighted case. 

 

Figure 5.23. Average lowest error rates for LCS with the weighted kNN classifier 

Slika 5.23. Prosečne najmanje greške za LCS sa kNN klasifikatorom sa upotrebom težina 

 
MIN MAX MAX-MIN 

 
error k error k 

 LOO 11.145% 5 13.866% 30 2.721 

SCV1x9 11.327% 4 13.953% 30 2.626 

SCV5x2 13.423% 4 16.461% 30 3.038 

SCV10x10 11.335% 5 13.900% 30 2.565 

SHO10x 12.261% 4 15.125% 30 2.864 

Table 5.24. Minimum and maximum of the average lowest error rates for LCS with the 
weighted kNN classifier 

Tabela 5.24. Minimalne i maksimalne vrednosti proseka najmanjih grešaka klasifikacije za 
LCS sa kNN klasifikatorom sa upotrebom težina 
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Figure 5.24. Average smallest warping window widths for LCS with the weighted kNN 
classifier 

Slika 5.24. Prosečne vrednosti najmanjih širina pojasa iskrivljenja za LCS sa kNN 
klasifikatorom sa upotrebom težina 

 
MIN MAX MAX-MIN 

 
r (%) k r (%) k 

 LOO 5.826 18 7.000 24 1.174 

SCV1x9 5.761 27 7.239 10 1.478 

SCV5x2 7.478 16 9.565 26 2.087 

SCV10x10 6.739 1 8.087 3 1.348 

SHO10x 6.804 18 8.913 25 2.109 

Table 5.25. Minimum and maximum of the average smallest warping window widths for LCS 
with the weighted kNN classifier 

Tabela 5.25. Minimalne i maksimalne vrednosti proseka najmanjih širina pojasa iskrivljenja 
za LCS sa kNN klasifikatorom sa upotrebom težina 

5.5. Improving the Accuracy of the kNN Classifier Using 
Weights 

In Section 3.1 we have seen that a number of different extensions of the nearest-neighbor 
rule is proposed in the literature in order to improve the accuracy of classification. 
Assertions about the superiority of a new weighting scheme are often founded on 
comparing classification errors considering a small number of datasets (commonly from the 
UCI machine learning repository [7]). Moreover, in all of these experiments the distance 
between objects is determined solely by Euclidean distance. In the domain of time series, 
however, besides this lock-step measure several other elastic measures are also in use (the 
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most widely used are briefly outlined in Section 2.1). In this section we will report the results 
of our investigation of various NN classifiers on a large number of datasets from the UCR 
Time Series Repository [50] considering both the Euclidean and the unconstrained elastic 
similarity measures (DTW and LCS). These datasets encompass various different domains, 
including biology, astronomy, robotics, medicine, etc (see Section 4.2). In addition to 
classification accuracies, we will also provide statistical support to our findings. 

In these experiments, the accuracy of classification is obtained by 10 runs of stratified 10-
fold cross-validation (SCV10x10) using the best value of parameter k obtained in the range 
from 1 to 30 by stratified 9-fold cross-validation (SCV1x9) on the training set. Detailed 
results are shown in Appendix  of the dissertation. 

The average classification errors of the examined NN classifiers and the average values of 
the parameter k are presented in Table 5.26. The best results are marked with symbol ●, 
and the weakest ones with symbol ○. Column Win denotes the number of datasets for 
which the corresponding NN classifier gave the smallest classification error in comparison to 
the other classifiers. With respect to this category the biggest ones are constantly achieved 
by the dual distance-weighted kNN rule defined by Eq. (3.11) in Section 3.1 (DTW and LCS) 
and the DualU weighting scheme defined by Eq. (3.9) (L2 and LCS). 

 
Euclidean distance DTW LCS 

 
 Win  Error k  Win  Error k  Win  Error k 

1NN  9  0.1595 
 

 9 ○ 0.1404 
 

 18 ○ 0.1159 
 

kNN  6 ○ 0.1605 2.99  8  0.1394 2.80  6  0.1140 3.26 

Inverse ○ 5  0.1593 3.55  9  0.1373 3.97  4  0.1125 4.19 

ISquared  6  0.1586 4.11  10  0.1372 4.88  5  0.1122 4.27 

Rank  6  0.1601 4.11  8  0.1399 3.97  8  0.1135 4.41 

Fibonacci  6  0.1585 3.94  8  0.1378 4.27  10  0.1126 4.27 

Dudani  11  0.1571 6.58  9  0.1369 5.90  13  0.1112 6.62 

Macleod  6  0.1601 3.44 ○ 7  0.1397 3.37  6  0.1130 3.85 

DualD  10 ● 0.1567 6.87 ● 19 ● 0.1359 6.56 ● 21 ● 0.1103 7.18 

Zavrel  10  0.1587 5.16  10  0.1380 5.10 ○ 3  0.1133 3.56 

Uniform  8  0.1570 6.25  13  0.1362 7.43  9  0.1124 7.22 

DualU ● 13  0.1571 13.22  10  0.1369 13.98 ● 21  0.1115 12.92 

Table 5.26. Comparison of average accuracies of different NN classifiers for the three most 
commonly used time-series similarity measures 

Tabela 5.26. Upoređivanje prosečnih tačnosti različitih NN klasifikatora za tri najčešće 
korišćenih mera sličnosti vremenskih serija 

From Table 5.26 we can notice that in terms of average classification accuracy the simple 
nearest-neighbor classifier underperforms most of the other forms of the kNN classifier in 
case of all considered similarity measures. On the other hand, the best result is always 
obtained using the DualD distance-weighting scheme. It is also worth to notice that the 
differences between the best and worst average results are not particularly big: 0.0038 
(Euclidean distance), 0.0045 (DTW), 0.0056 (LCS). 
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By comparing the average values of parameter k, it is evident that (in order to achieve the 
best accuracy) the largest number of neighbors is required by the DualU weighting scheme 
(Eq. (3.9)): the average value is greater than 12 for all investigated similarity measures. The 
required set of the closest objects is smallest in case of the majority voting NN rule - the 
mean value is less than 4 for all of the three measures.  

In the rest of this section we will describe the results obtained for each similarity measure in 
more detail. We will provide a summary of comparison of the simple nearest-neighbor rule 
and the other versions of the kNN classifier in terms of the number of datasets for which 
they have achieved better and worse classification accuracies (Tables 5.27, 5.30 and 5.33). 
The average differences of the classification accuracies between the simple nearest-
neighbor rule and the other considered classifiers are also listed in these tables. 

In order to see whether there is a statistically significant difference between the analyzed 
classifiers, we counted the statistically significant wins and losses according to the corrected 
resampled t-test [11] at significance level 0.001, for each classifier. These results are 
presented in Tables 5.28, 5.31 and 5.34. In addition, we compared the average error rates 
across all datasets using the Wilcoxon sign-rank test [29]. The obtained p values are shown 
in Tables 5.29, 27.32 and 5.35. The rows and columns of these tables are sorted by overall 
average error rates (cf. Table 5.26), with the upper triangle of the symmetrical matrix of p 
values shown, thus enabling the reader to easily inspect the p values for methods to which a 
given method is supposedly superior to (reading by rows) or inferior to (reading by 
columns). 

5.5.1. Euclidean distance 

From Table 5.27 we can see that, compared to the simple nearest neighbor rule, among all 
of the observed classifiers, the Dudani, the DualD and the DualU weighting schemes gave 
better accuracies for the largest number of datasets (28, 28 and 25, respectively) and that 
the kNN classifier and the Rank weighting scheme gave the largest number of datasets with 
higher classification error than 1NN (26 and 25). The largest number of statistically 
significant wins (Table 5.28) and the smallest number of losses were produced by the 
Dudani weighting scheme. The DualD and the DualU schemes provide the second and the 
third best results in this comparison too. We can also notice that the 1NN rule has the 
smallest number of statistically significant wins and that the majority voting k-nearest 
neighbor rule gave the second worst result. 

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 11 13 16 11 18 28 14 28 19 19 25 

Average diff. 0.0092 0.0102 0.0100 0.0118 0.0063 0.0083 0.0094 0.0084 0.0078 0.0096 0.0054 

Worse than 1NN 26 24 24 25 22 15 24 15 19 22 12 

Average diff. 0.0056 0.0050 0.0049 0.0061 0.0030 0.0082 0.0067 0.0072 0.0056 0.0030 0.0017 

Table 5.27. Comparison of kNN with 1NN in case of Euclidean distance 

Tabela 5.27. Upoređivanje kNN-a i 1NN-a u slučaju Euklidskog rastojanja 
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It can be seen in Table 5.29 that according to the sign-rank test the DualD scheme exhibits 
significant superiority to all schemes except DualU and Dudani. On the other hand, the error 
rates of Dudani are judged to be significantly better than all other schemes (except DualD 
and DualU). The DualU scheme also performed strongly according to this test, exhibiting 
very low p values against most methods with lower average error rates, with the exceptions 
being Dudani and Zavrel. In all, it can be said that both statistical testing methodologies 
agree that DualD, Dudani and DualU are the best weighting schemes to use in combination 
with Euclidean distance, and that Uniform is the fourth best behind the mentioned three. 

 
Wins Losses W-L 

NN 17 88 -71 

kNN 10 80 -70 

Rank 21 57 -36 

Macleod 20 47 -27 

Inverse 20 41 -21 

Fibonacci 35 50 -15 

Zavrel 45 51 -6 

ISquared 36 33 3 

Uniform 53 26 27 

DualU 72 30 42 

DualD 98 12 86 

Dudani 97 9 88 

Table 5.28. Statistically significant wins and losses counts for different NN classifiers, across 
all datasets, in case of Euclidean distance 

Tabela 5.28. Brojevi statističko značajnih pobeda i poraza različitih NN klasifikatora, na svim 
skupovima podataka, u slučaju Euklidskog rastojanja 

 
ERROR 0.1567 0.1570 0.1571 0.1571 0.1585 0.1586 0.1587 0.1593 0.1595 0.1601 0.1601 0.1605 

ERROR 
 

DualD Uniform DualU Dudani Fibonacci Isquared Zavrel Inverse NN Rank Macleod kNN 

0.1567 DualD 
 

0.06381 0.48380 0.38596 0.00413 0.00119 0.01538 1.00E-03 0.014 0.00188 0.00021 0.00054 

0.1570 Uniform 
  

0.18211 0.04543 0.06766 0.02760 0.91229 0.03147 0.35082 0.04191 0.02948 0.00794 

0.1571 DualU 
   

0.77659 0.00292 0.00558 0.29989 0.000349 0.004685 0.00026 0.00120 0.00018 

0.1571 Dudani 
    

0.00202 0.00298 0.05564 0.00054 0.02184 0.00269 0.00039 0.00036 

0.1585 Fibonacci 
     

0.13395 0.25889 0.052102 0.82448 0.03542 0.05326 0.11066 

0.1586 Isquared 
      

0.33566 0.567827 0.73618 0.36425 0.71153 0.11971 

0.1587 Zavrel 
       

0.16829 0.20967 0.17674 0.11121 0.02042 

0.1593 Inverse 
        

0.47733 0.283346 0.18803 1.07E-02 

0.1595 NN 
         

0.19973 0.40027 0.04322 

0.1601 Rank 
          

0.81227 0.21201 

0.1601 Macleod 
           

0.16094 

0.1605 kNN 
            

Table 5.29. p values for the pairwise Wilcoxon sign-rank test of the differences in average 
error rates across the datasets, in case of Euclidean distance 

Tabela 5.29. p vrednosti dobijene uparenim Vilkoksonovim testom nad razlikama prosečnih 
grešaka na svim skupovima podataka, u slučaju Euklidskog rastojanja 
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5.5.2. Dynamic Time Warping (DTW) 

The situation in the case of DTW is similar as in the case of Euclidean distance. From 
Table 5.30 we can see, that the Macleod weighting scheme has generated the smallest 
number of datasets (20) with better results than the 1NN classifier, and the DualU classifier 
the largest number (29). The second best result was obtained by the DualD method (28 
datasets with better accuracies than the simple nearest-neighbor rule). This is reflected also 
in the number of statistically significant wins and losses (Table 5.31): after 1NN (which has 
the lowest number of statistically significant wins as in the case of Euclidean distance), kNN 
has the worst ratio of wins and losses (-60). The largest number of wins (108) was produced 
by the DualD scheme followed by the Dudani method (88 wins). Interestingly, according to 
the corrected resampled t-test the DualU weighting scheme did not rank among the best 
ones. 

According to the results of the sign-rank test (Table 5.32), the DualD scheme outperforms all 
other classifiers (except DualU). Similarly as in the case of Euclidean distance, the Dudani 
method produced low p values against all of the weighting schemes with lower average 
error rates (except Zavrel and to a lesser extent 1NN). The Wilcoxon sign-rank test does not 
seems to confirm the wins-losses result of the Inverse scheme from Table 5.31: it exhibited 
higher p values against all other classifiers (among the ones with lower average error rates). 
Again, both of the statistical tests affirm that in combination with the DTW similarity 
measure the DualD and the Dudani weighting schemes are the best choices.  

 
kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 21 24 24 22 22 26 20 28 26 24 29 

Average diff. 0.0106 0.0132 0.0123 0.0106 0.0105 0.0126 0.0126 0.0128 0.0092 0.0123 0.0073 

Worse than 1NN 22 19 19 21 21 17 23 15 17 19 13 

Average diff. 0.0081 0.0092 0.0079 0.0101 0.0052 0.0098 0.0096 0.0102 0.0078 0.0055 0.0038 

Table 5.30. Comparison of kNN with 1NN in case of DTW 

Tabela 5.30. Upoređivanje kNN-a i 1NN-a u slučaju DTW-a 

 
Wins Losses W-L 

NN 27 135 -108 

kNN 23 83 -60 

Rank 29 58 -29 

Fibonacci 30 57 -27 

Macleod 29 52 -23 

ISquared 51 51 0 

DualU 54 46 8 

Uniform 60 40 20 

Zavrel 73 50 23 

Inverse 60 31 29 

Dudani 88 15 73 

DualD 108 14 94 

Table 5.31. Statistically significant wins and losses counts for different NN classifiers, across 
all datasets, in case of DTW 

Tabela 5.31. Brojevi statističko značajnih pobeda i poraza različitih NN klasifikatora, na svim 
skupovima podataka, u slučaju DTW-a 
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ERROR 0.1359 0.1362 0.1369 0.1369 0.1372 0.1373 0.1378 0.1380 0.1394 0.1397 0.1399 0.1404 

ERROR 
 

DualD Uniform DualU Dudani Isquared Inverse Fibonacci Zavrel kNN Macleod Rank NN 

0.1359 DualD 
 

0.00316 0.13357 0.00042 0.02279 0.00291 0.00133 0.06053 0.000418 0.00001 0.00002 0.03108 

0.1362 Uniform 
  

5.25E-01 0.05157 0.40636 0.28572 0.37473 0.87716 0.14700 0.01955 0.03737 0.25786 

0.1369 DualU 
   

0.711526 0.48098 0.463833 0.02698 0.92218 1.22E-02 0.00859 0.00537 0.021118 

0.1369 Dudani 
    

0.06649 0.01065 0.03450 0.28526 0.01364 0.00005 0.00006 0.12307 

0.1372 Isquared 
     

0.59155 0.80707 0.51640 0.46378 0.28572 0.47234 0.15261 

0.1373 Inverse 
      

0.68058 0.91970 0.10434 0.31838 0.83965 0.29850 

0.1378 Fibonacci 
       

0.31019 0.19182 0.05198 0.04985 0.42395 

0.1380 Zavrel 
        

0.21874 0.17809 0.13747 0.01579 

0.1394 kNN 
         

0.92787 0.86989 0.72472 

0.1397 Macleod 
          

0.18214 0.81651 

0.1399 Rank 
           

0.71198 

0.1404 NN 
            

Table 5.32. p values for the pairwise Wilcoxon sign-rank test of the differences in average 
error rates across the datasets, in case of DTW 

Tabela 5.32. p vrednosti dobijene uparenim Wilkoksonovim testom nad razlikama prosečnih 
grešaka na svim skupovima podataka, u slučaju DTW-a 

5.5.3. Longest Common Subsequence (LCS) 

In comparison with the nearest neighbor rule (Table 5.33), by the number of datasets with 
smaller classification error, the best ranked classifier is DualU (27). The second best result 
was produced by the DualD scheme (22) and the third one by the Dudani method (20). The 
largest number of datasets with larger classification error was found in the case of the 
Zavrel (28) and the Inverse schemes (27). The largest number of statistically significant wins 
(Table 5.34) and the smallest number of losses were produced by the DualD weighting 
scheme. Like in the case of DTW, it is followed by the Dudani method. Third place was taken 
by the DualU scheme. Again, the smallest number of statistically significant wins was 
produced by the simple one nearest neighbor classifier and the majority voting k-nearest 
neighbor rule. 

The results of the Wilcoxon sign-rank test (Table 5.35) support the findings of the corrected 
resampled t-test (Table 5.34): the DualD weighting scheme surpasses all of the other 
analyzed methods (except DualU). Analogous to the results of the previous two similarity 
measures, in terms of the obtained p values, the Dudani method outmatched all of the 
weighting schemes with lower average error rates (except DualU and to a lesser extent 
Fibonacci and 1NN). As in the case of the Euclidean distance, the DualU method achieved 
low p values against the methods with lower average error rates. Based on the findings of 
the statistical tests we come to a similar conclusion as in the case of the Euclidean distance 
and the DTW similarity measure: the DualD and the Dudani are the best weighting schemes 
to use in combination with LCS. The DualU is the third best behind these two methods. 
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kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

Better than 1NN 13 16 16 14 16 20 14 22 14 16 27 

Average diff. 0.0151 0.0185 0.0180 0.0180 0.0129 0.0169 0.0188 0.0159 0.0180 0.0153 0.0086 

Worse than 1NN 26 27 25 24 21 17 26 14 28 20 7 

Average diff. 0.0041 0.0052 0.0047 0.0058 0.0026 0.0072 0.0050 0.0065 0.0047 0.0042 0.0038 

Table 5.33. Comparison of kNN with 1NN in case of LCS 

Tabela 5.33. Upoređivanje kNN-a i 1NN-a u slučaju LCS-a 

 
Wins Losses W-L 

NN 27 141 -114 

kNN 15 73 -58 

Fibonacci 34 62 -28 

Zavrel 25 40 -15 

Macleod 31 42 -11 

Rank 27 38 -11 

ISquared 39 39 0 

Uniform 41 37 4 

Inverse 55 42 13 

DualU 97 53 44 

Dudani 91 9 82 

DualD 100 6 94 

Table 5.34. Statistically significant wins and losses counts for different NN classifiers, across 
all datasets, in case of LCS 

Tabela 5.34. Brojevi statističko značajnih pobeda i poraza različitih NN klasifikatora, na svim 
skupovima podataka, u slučaju LCS-a 

 
ERROR 0.1103 0.1112 0.1115 0.1122 0.1124 0.1125 0.1126 0.1130 0.1133 0.1135 0.1140 0.1159 

ERROR 
 

DualD Dudani DualU Isquared Uniform Inverse Fibonacci Macleod Zavrel Rank kNN NN 

0.1103 DualD 
 
0.03735 0.81980 0.00009 0.00610 6.93E-05 0.02251 0.00030 0.00068 0.00080 0.00070 0.04812 

0.1112 Dudani 
  

0.97686 0.00018 0.02900 0.00185 0.10809 0.00333 0.00210 0.00269 0.00960 0.17364 

0.1115 DualU 
   

0.06025 0.07024 0.037258 0.01483 0.03783 0.00748 0.03147 0.00258 0.000719 

0.1122 Isquared 
    

0.35755 0.353404 0.50042 0.64363 0.66024 0.70707 0.21375 0.62242 

0.1124 Uniform 
     

0.41637 0.98574 0.35719 0.28526 0.30504 0.00551 0.27488 

0.1125 Inverse 
      

0.35482 0.76735 0.78553 0.640857 4.55E-01 0.88956 

0.1126 Fibonacci 
       

0.77259 0.63516 0.55212 0.23008 0.29790 

0.1130 Macleod 
        

0.98966 0.40844 0.19060 0.74192 

0.1133 Zavrel 
         

0.88008 0.07204 0.90049 

0.1135 Rank 
          

0.14431 0.70613 

0.1140 kNN 
           

0.92773 

0.1159 NN 
            

Table 5.35. p values for the pairwise Wilcoxon sign-rank test of the differences in average 
error rates across the datasets, in case of LCS 

Tabela 5.35. p vrednosti dobijene uparenim Wilkoksonovim testom nad razlikama prosečnih 
grešaka na svim skupovima podataka, u slučaju LCS-a 
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5.6. Summary 

In this chapter we have given an in-depth empirical investigation of the impact of the Sakoe-
Chiba band (see Section 2.2) and various weighting schemes (see Section 3.1) on 
classification accuracy in the field of time-series data mining. Our analysis encompassed 46 
datasets from the UCR Time Series Repository [50] and the most commonly used time-series 
similarity measures (Euclidean distance, DTW and LCS and their extensions ERP and EDR - 
see Section 2.1). Furthermore, we have provided statistical support to the results obtained. 
The pseudocodes of the studied algorithms are given in Section 5.1. In the rest of this 
section we will summarize our findings and give some directions about the use of the 
algorithms and their parameters. 

In Section 5.3 we have, through extensive experiments, shown how can be the accuracy of 
the 1NN classifier improved by constraining the similarity measures using the Sakoe-Chiba 
band. The analysis of the changes in the 1NN graph induced by narrowing the warping 
window has revealed that the constrained similarity measures represent qualitatively and 
quantitatively different measures than the unconstrained ones.  

On average, the smallest error rates were achieved with the values of parameter r (width of 
the warping window) smaller than 10% of the length of time series. On the other hand, 
when the value of r drops below 6%, the average classification errors begin to increase and 
reach their maximums for      (see Figure 5.16 in Section 5.3.3). It should also be noted 
that there are notable differences in the effects of the constraints on different similarity 
measures: the biggest changes were observed for DTW, the least ones for EDR, while LCS 
and ERP are in between. 

The impact of constraining the warping window on the accuracy of both the unweighted 
and the weighted kNN classifier has been examined in Section 5.4. Weights were calculated 
by the formula in Eq. (3.5). With these experiments we have covered the two most 
representative time-series similarity measures: DTW and LCS.  

In case of the unweighted kNN classifier the best results were obtained for    . In 
addition, we have concluded that, as the value of parameter k (number of neighbors) grows, 
the classification accuracy decreases almost linearly and we need wider and wider warping 
windows to get the best result. For DTW the average value of parameter r ranges from 
about 4% to about 10% and for LCS from about 6% to about 13%.  

The introduction of weights significantly improved the classification accuracy for all values 
of k and the lowest error rates were obtained for around    . It is important to notice, 
that in this case the differences between the smallest and largest average error rates are 
much slighter. Furthermore, the average value of parameter r remains approximately the 
same for all values of k: for DTW it ranges from about 4% to about 7% and for LCS from 
about 6% to about 10%. All these findings indicate that the introduction of weights improves 
the quality and stability of kNN. 
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Based on the findings in Section 5.4, we have expanded our examinations on several other 
weighting schemes, too. Beside Euclidean distance these experiments have encompassed 
the unconstrained DTW and LCS. In Section 5.5 we have seen, that in the terms of average 
classification accuracy the simple 1NN classifiers has been outperformed by all the other 
variants of the kNN classifier (except for the Euclidean distance). However, the differences 
are not particularly big. We have also shown that both the corrected resampled t-test and 
the Wilcoxon sing-rank test support the DualD (see Section 3.1.6) and the Dudani (see 
Section 3.1.1) weighting functions as the best choices in combination with all three 
discussed similarity measures. 
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Framework for Analysis and Prediction 
(FAP) 

As a consequence of importance and usefulness of time series, there is a large number of 
applications which deal with time series, based on different approaches. 

The most popular collection of data mining algorithms is implemented within the WEKA 
(Waikato Environment for Knowledge Analysis) tool [38]. WEKA supports a great number of 
data-mining and machine-learning techniques, including data pre-processing, classification, 
regression and visualization. However, WEKA is a general-purpose data-mining library, and it 
is not specialized for time series.  

A similar system, RapidMiner Studio, is a product of company RapidMiner [94]. It is a 
collection of data-mining and machine-learning techniques. RapidMiner has a very 
sophisticated graphical user interface, and it is also extensible with the user’s 
implementations. It supports some aspects of statistical time-series analysis, prediction and 
visualization. The Starter Edition, which is available free of charge, is limited to 1 GB of RAM, 
supports working only with CSV and XLS files and does not support databases. 

ELKI (Environment for DeveLoping KDD-Applications Supported by Index Structures) [3] is an 
open source data mining software written in Java at Ludwig Maximilian University of 
Munich, Germany. This framework is free for scientific usage. ELKI incorporates several 
algorithms for clustering, outlier detection, classification, benchmarking and dataset 
statistics. It is designed to work with high dimensional real-valued feature-vectors - a special 
case of which are time series. As a support to work with time series, ELKI implements the 
four main similarity measures (DTW, LCS, ERP and EDR). 

Also, there are several tools specialized for summarization and visualization of time series: 
TimeSearcher [42], Calendar-Based Visualisation [125], Spiral [123] and VizTree [66], but 
they are not specialized for real-world time-series analysis. 

The above systems, which partially support time-series analysis, are mainly based on data 
mining methods. On the other hand, there is a large number of systems which are based on 
statistical and econometric modelling. Probably the most famous business system is SAS 
[106]. Among many business solutions including: Business Analytics, Business Intelligence, 
Data Integration, Fraud Prevention & Detection, Risk Management etc., SAS has an 
integrated subsystem for time series. This subsystem provides modelling of trend, cycles 
and seasonality of time series as well as time series-forecasting, financial and econometric 
analysis. However, SAS is a complex commercial system which is not freely available. 
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MATLAB [72] represents another well-known commercial software package for numerical 
computing which supports data analysis and visualization, programming and algorithm 
implementation and application development and deployment. Several MATLAB toolboxes 
support different aspects of time-series analysis including: Econometrics Toolbox, Financial 
Toolbox, Neural Network Toolbox, Signal Processing Toolbox and Wavelet Toolbox Toolbox. 

R [90] is a programming language and a free software environment for statistical computing 
and graphics. It can be used on a wide vriety of platforms, including UNIX, Windows and 
MacOS. R supports statistical modeling, classical statistical tests, classification, clustering, 
regression, time series analysis and others. R supports several concepts of time-series 
analysis: linear filtering, decomposition, regression analysis, exponential smoothing, ARIMA 
models and others. 

GRETL (GNU Regression, Econometrics and Time-series Library) is an open source, platform-
independent library for econometric analysis [8]. It supports several least-square based 
statistical estimators, time-series models and several maximum-likelihood methods. GRETL 
also encloses a graphical user interface for the X-12-ARIMA environment. X-12-ARIMA is the 
Census Bureau's new seasonal adjustment program [27]. It supports several interesting 
concepts such as: alternative seasonal, trading-day and holiday effect adjustment; an 
alternative seasonal-trend-irregular decomposition; extensive time-series modeling and 
model-selection capabilities for linear regression models with ARIMA errors. 

Clearly, two kinds of software applications can be distinguished: general purpose data-
mining software packages which in some extent support time series, and software 
applications specialized for time series based on statistical and econometric models. So, it is 
evident that there is a huge gap between these two types of applications. There is no 
available system specialized for time-series mining (time-series analysis based on data-
mining techniques) with the exception of the library presented in [21] which can be 
obtained on demand. This was our main motive for designing our system. Framework for 
Analysis and Prediction (FAP) will contain all main features and functionalities needed for 
time-series analysis (pre-processing tasks, similarity measures, time-series representations) 
and necessary for different data-mining tasks (indexing, classification, prediction, etc). We 
believe that such a system will significantly help researchers in comparing their own newly 
introduced and proposed concepts with the existing ones. 

6.1. FAP Overall Structure 

In the current state of development, all main similarity measures are implemented, as well 
as several parameter-tuning algorithms, classifiers, classifier evaluation methods, 
representations and pre-processing techniques. FAP is designed to incorporate all main 
aspects of time-series mining in one place and to combine easily some or all of them. Upon 
completion, the system will contain all important realizations of proposed concepts up to 
that point, as well as the possibility to add newly introduced ones with ease. 
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The overall structure of the framework is presented in Figure 6.1 (a). The essential part of 
the library is implemented in package fap.core (Figure 6.1 (b)). Its sub-packages contain the 
implementation of the basic structures, definitions of mutual interfaces and abstract classes 
that describe the fundamental functionality of the system and the common properties of 
objects. All the core classes support object serialization, have a default constructor and 
public getter and setter methods - thereby JavaBeans technology is also supported by FAP. 
Almost every package from the fap.core package has its outside counterpart, where the 
concrete implementations of desired concepts are stored.  

In the rest of this section we will give a brief overview of the sub-packages which constitute 
the fap.core package. Details necessary to understand the functioning of the entire library 
are outlined in the following sections. A practical application of the FAP library is presented 
and explained in Section 6.8. 

 
 

(a) FAP library (b) fap.core package 

Figure 6.1. Architecture of the FAP library 

Slika 6.1. Arhitektura biblioteke FAP 

The auxiliary packages are fap.core.exceptions, fap.core.input, fap.core.math and fap.core.util.  

The first contains the interface and basic classes which describe the exceptions thrown by 
FAP.  

The fap.core.input package includes interfaces and classes which describe what classes 
responsible for loading data points and series of them should satisfy.  
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The third supporting package contains implementations of additional mathematical 
concepts needed in FAP (for example, the implementation of polynomials, needed for the 
Spline representation).  

The interfaces in the fap.core.util package define common methods which must be 
implemented by classes that support resumable long-running operations and maintain 
monitoring of these operations through a callback mechanism. 

Package fap.core.data contains basic implementations of data points and series of them. The 
raw representation of time series (as series of data points) and basic implementation of 
time-series datasets are given in package fap.core.series. This package also contains an 
interface which describes what properties other representations should satisfy.  

One time series may have several representations. The interface that declares common 
methods for similarity computors is provided in the fap.core.similarities sub-package.  

Some similarity measures have one or more parameters which need to be tuned based on a 
training dataset. The interface for tuning classes is stored in fap.core.tuners package.  

Similarly, packages fap.core.prediction, fap.core.classifier and fap.core.preprocessing contain 
the interfaces which describe prediction techniques, classification algorithms and pre-
processing tasks, respectively. The interface which needs to be implemented by the classes 
that are intended for evaluating the performance of classifiers is located in fap.core.test. 

6.2. Basic Components 

The basic components of FAP include time series consisting of data points, datasets of time 
series and structures which enable continuation of interrupted long-running operations and 
maintain tracking using a callback mechanism. In this section we will give an overview of the 
corresponding interfaces and classes. 

6.2.1. Data Points and Time Series 

A time series is defined as a sequence of ordered pairs of values (see Chapter 2). The first 
element of these pairs represents the time component and the second one the measured 
value of the observed phenomenon. This section provides an overview of the 
implementation of these core structures within the FAP library. 

Time series objects (instances of the TimeSeries class - the corresponding UML diagram is 
shown in Figure 6.3) are implemented as series of data point objects (instances of the 
DataPoint class - Figure 6.2). Each data point has two coordinates of type double: 
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 X (the time component) and 

 Y (the measured value).  

 

Data points are serializable and comparable with regard to the time component. 

Basic methods of data-point series are implemented through the abstract class 
DataPointSeries, including finding the  

 minimum (getMinY),  

 maximum (getMaxY) and  

 the mean (getMeanY) value of the data points' Y coordinates (Figure 6.2).  

 

Analogous methods exist for the X coordinate, but they are omitted from the diagram for 
clarity reasons. The fap.data package contains two particular serializable implementations: 
the first is based on array list (DataPointSeriesArrayList) and the second one is based on 
linked list (DataPointSeriesLinkedList). 

 

Figure 6.2. Data points and series of data points 

Slika 6.2. Tačke podataka i niz tačaka podataka 

Every TimeSeries object (Figure 6.3) contains: 

 a series of data points,  

 a double-typed field label (which represents the class of the time series),  

 an int-typed supplementary property called index and  

 may have several representations.  
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Most of the methods defined in class DataPointSeries are directly accessible through the 
TimeSeries class (they are not shown on the UML diagram for the sake of readability). 
TimeSeries objects can be serialized, too. 

Time-series datasets are realized as objects of type TimeSeriesArrayList (Figure 6.3) which 
extends the generic ArrayList class. There are several auxiliary methods defined in this class, 
including: 

 getLabels - retrieves the list of labels of the dataset's time series; 

 getDistribution - retrieves the distribution of labels: for every label, the number of 
time series with that label; 

 getSeriesByClasses - retrieves a list of datasets where each dataset contains time 
series with the same label; 

 groupList - retrieves a list (dataset) of the time series grouped by their labels; 

 getRandomSplit - randomly divides the dataset into k subsets of roughly equal size; 

 getPercentageSplit - randomly divides the dataset into two subsets. Parameter 
percentage determines the percentage of time series that are placed in the first 
dataset; 

 getStratifiedSplit - randomly divides the dataset into k stratified subsets of roughly 
equal size; 

 getStratifiedPercentageSplit - randomly divides the dataset into two stratified 
subsets. 

 

Figure 6.3. Time series and datasets 

Slika 6.3. Vremenske serije i skupovi podataka 
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6.2.2. Resuming and Tracking 

Preparing and performing the experiments whose results are described and analysed in 
Chapter 5 are both very time consuming processes. Department of Mathematics and 
Informatics, Faculty of Sciences, University of Novi Sad is equipped with several computer 
centers which can be used to perform these operations. However, they are often used for 
practical exercises within several computer science courses and also for carrying out 
experiments of other researches. Taking into account these restrictions, our FAP library is 
specifically designed to enable monitoring of long-time calculations through a callback 
mechanism, along with the possibility of their interruption without the loss of already 
obtained results. The incomplete computations can be resumed later. This section is 
devoted to the description of the components that enable these capabilities. 

The callback mechanism and the Resumable interface (Figure 6.4) facilitate tracking the 
execution of long-running processes (for example, classification, evaluation of classifiers, 
tuning the parameters of similarity measures, etc.). Together with object serialization they 
represent the key elements in enabling the storage of partial results of time-consuming 
operations and the continuation of interrupted tasks. 

Classes that perform long-running operations and should support interrupting and resuming 
their execution, need to implement the Resumable interface. The reset method should reset 
the state of the object and prepare it for reuse. In addition, these objects should indicate 
whether they have finished performing their task (isDone) and whether is the execution still 
in progress (isInProgress). 

Methods that are necessary for the implementation of the callback mechanism are defined 
by the Callback interface. Classes that provide tracking of their activities should implement 
the CallbackEnabled interface (Figure 6.4) and should regularly call the callback method of 
the appropriate Callback object in accordance with the configuration set through the 
getCallbackCount and setCallbackCount methods. The first of these two methods indicates 
how many times it is expected that they call the callback method. However, they do not 
have to comply with this expectation. Instead, using the setCallbackCount method they can 
themselves determine the number of callbacks based on their own needs and capabilities. 

 

Figure 6.4. Interfaces for resuming and tracking long-running operations 

Slika 6.4. Interfejsi za nastavljanje i praćenje dugotrajnih procesa 
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6.3. Similarity Measures and Tuners 

Similarity measures represent essential ingredients of many time-series data mining tasks. 
Their role is to describe the similarity (or dissimilarity) between time series using numerical 
values (see Section 2.1). Many of them are dependent on various parameters. For achieving 
the best results, the values of these parameters have to be set prior to the use of the 
similarity measures. This is accomplished by relying on appropriate parameter tuners.  

In this section we will show what needs to be satisfied by the classes that represent 
similarity measures and tuners in order to be in accordance with the FAP system. 
Furthermore, relying on the example of DTW we will explain how are the elastic similarity 
measures implemented within the FAP framework. 

Classes that represent similarity measures need to implement the SimilarityComputor 
interface. This interface defines only one method that returns the similarity (distance) 
between the two time series submitted via its parameters (Figure 6.5). The 
AbstractSimilarityComputor abstract class defines only a default serial version ID value and 
provides a simple string representation of similarity measures through the toString method. 

 

Figure 6.5. The SimilarityComputor interface and the AbstractSimilarityComputor class 

Slika 6.5. SimilarityComputor interfejs i klasa AbstractSimilarityComputor 

The fap.similarities package contains implementation of the following similarity measures: 
Minkowski distance (   norm), Euclidean distance (  ), Manhattan distance (  ), Chebyshev 

distance (  ), Canberra distance, and the Swale and Spline similarity measures.  

FAP contains several elastic similarity measures, too: DTW, LCS, ERP, EDR and TWED. Their 
unconstrained versions are in the fap.similarities.unconstrained sub-package. Their 
constrained versions are implemented in two ways: applying the Sakoe-Chiba band and the 
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Itakura parallelogram - the corresponding classes are contained in the 
fap.similarities.constrained sub-package. 

We will demonstrate the implementation of the elastic measures on the example of DTW. 
Suppose that we need to calculate the similarity between two time series of length n and m: 
               and               . We can get the required result based on the 

recursive definition of DTW (defined by Eq. (2.3) in Section 2.1.2) by relying on an auxiliary 
matrix D of format             as shown in Figure 6.6. The similarity between Q and S 
will appear in cell      , i.e.:                . 

 

Figure 6.6. Computing DTW using dynamic programming 

Slika 6.6. Računanje DTW-a pomoću dinamičkog programiranja 
 

Memory and time requirements of the above algorithm can be significantly improved if we 
realize that it is not necessary to keep the whole matrix D in memory and to perform 
computations on the whole matrix. In each step, in fact, we use only two rows of D. To 
compute the value of cell      , we need only the values of the neighboring cells         
and        . In this way, the matrix of format             can be reduced7 to a matrix 
of format            where               as shown in Figure 6.7. 

 

Figure 6.7. Improved implementation of dynamic programming 

Slika 6.7. Poboljšana implementacija dinamičkog programiranja 

                                                           
7
 The assumption is that the similarity measure is symmetrical. 
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Classes intended for tuning the parameters of similarity measures need to implement the 
SimilarityTuner interface (or to inherit the AbstractSimilarityTuner class). It declares three 
methods: one for tuning the parameters (tune) using the given dataset, and two others for 
setting and getting the similarity measure object whose parameters need to be adjusted 
(Figure 6.8). The inheritance of the Serializable, Resumable and CallbackEnabled interfaces 
enables developing serializable and resumable tuners which activities can be traced. The 
AbstractSimilarityTuner is a convenience class that implements basic functionalities. 
Package fap.tuners.Keogh contains several tuners that are implemented based on the 
algorithms described in [21].  

 

Figure 6.8. SimilarityTuner interface and AbstractSimilarityTuner class 

Slika 6.8. SimilarityTuner interfejs i klasa AbstractSimilarityTuner 

6.4. Classifiers 

Classification denotes the process of grouping time series into predefined classes (see 
Chapter 3). This section will briefly introduce the interface of the FAP system that declares 
common methods for classifier classes. 

The methods required for implementing classifiers are declared within the Classifier 
interface (Figure 6.9).  

The build method conducts training the classifier based on the given dataset and similarity 
measure. Training can be a rather long-lasting process whose execution we may want to 
monitor and/or to pause at some moment. This can be ensured by an appropriate 
implementation of the methods declared within the Resumable and CallbackEnabled 
interfaces.  

The classify method is responsible for classifying the given time series. It should return the 
label selected by the classifying algorithm.  
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Figure 6.9. Classifier interface and AbstractClassifier class 

Slika 6.9. Classifier interfejs i klasa AbstractClassifier 

The AbstractClassifier is a convenience class that implements basic functionalities. The 
fap.classifier.NN package contains several classifiers: the simple nearest-neighbor classifier 
(1NN), the majority voting k-nearest neighbor classifier (kNN) and the distance-weighted k-
nearest neighbor classifier in combination with every weighting scheme described in Section 
3.1. 

6.5. Classifier Evaluation 

The aim of this section is to present the interface of the FAP system which specifies the 
common behavior of the classes intended for evaluating the performances of classifiers. 
Additionally, we will briefly explain the main properties of the implementations of the three 
most popular evaluation techniques described in Section 3.2. 

The basic methods for evaluating the performance of classifiers are declared within the Test 
interface (Figure 6.10). The test method starts (or continues) the evaluation process using 
the given dataset and the classifier set by the setClassifier method.  

The getErrorRatio method should return the average error ratio. The number of 
misclassified time series should be returned by the getMisclassified method.  

Time-consuming evaluation techniques can be supported by implementing the inherited 
Resumable, CallbackEnabled and Serializable interfaces. The AbstractTest is a convenience 
class that implements basic functionalities.  
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Figure 6.10. Test interface and AbstractTest class 

Slika 6.10. Test interfejs i klasa AbstractTest 

The fap.test package contains implementation of all three main evaluation algorithms 
presented in Section 3.2. In the rest of this section we will briefly overview the main 
characteristics of their implementations. 

Holdout. The way of functioning of the Holdout class is determined through three 
parameters. The percentage of the dataset used for training is controlled by the percentage 
parameter (default value is 0.5). The rnd parameter is used to randomize the division of the 
initial dataset into training and test set (default value is null). The stratified property 
indicates whether we need stratified or random splitting (default value is true). 

CrossValidation. The operating mode of the cross-validation algorithm implemented by the 
CrossValidation class is determined by the values of the following properties: 

 foldsNumber - the number of folds. Default value is 10. 

 stratified - indicates whether we want stratified or random splitting. Default value is 
true. 

 rnd - random number generator used for splitting the initial dataset. Default value is 
null. 

 special - indicates whether we want to use a variant of cross-validation defined by 
Ding et al. in [21]. Default value is false. 

 

LeaveOneOut. This class does not define additional parameters. 
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6.6. Preprocessing 

Often it is necessary to prepare and clean the available data from datasets prior to their use 
in different data mining tasks. This is achieved by applying different techniques of data 
preprocessing. The major steps in data preprocessing include: data cleaning, handling 
missing data, data integration, data reduction, data transformation and data discretization. 
A detailed overview of these techniques can be found in [39], [62], [114] and [116]. 

The PreprocessingTransformation interface (its UML diagram is shown in Figure 6.11) defines 
only one overloaded method. The task of the transform method is to transform the given 
time series (or an entire dataset).  

The AbstractPreprocessingTransformation is a convenience class that implements basic 
functionalities.  

 

Figure 6.11. PreprocessingTransformation and AbstractPreprocessingTransformation 

Slika 6.11. PreprocessingTransformation i AbstractPreprocessingTransformation 

Suppose we have a time series                              . Package fap.preprocessing 
contains implementation of several preprocessing algorithms: 

 Scaling the X and/or the Y coordinates of а time series by multiplying them with the 
given scaling factors scaleX and scaleY, e.g.              and             , 
          . 

 Shifting the X and/or the Y coordinates of а time series by adding to them the given 
shifting factors shiftX and shiftY, e.g.              and             , 
          . 

 Z-score normalization. Let µ denotes the mean value and δ the standard deviation of 
the Y coordinates of a given time series. This algorithm normalizes the 
time series by using the following formula [39, 114]: 
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 Min-max normalization. This algorithm maps the value of the Y coordinates into the 
interval                 using the following formula [39, 62, 114]: 

   
       

         
                                   

 Decimal scaling. Let k denotes the smallest integer such that  
                    . This algorithm transforms Q using the following formula [39, 
114]: 

   
  
   

 

 Linear equiscaling. Scales an equidistant time series to the desired length using 
linear interpolation. 

6.7. Representations 

Storing time series usually requires large amounts of space which makes performing 
different tasks of data mining more difficult. Furthermore, often we are not interested in 
the exact values of each time-series data point [95]. For these reasons, time-series 
databases generally contains only simplified representations of the series [25]. A formal 
definition of time-series representations is given by Esling and Agon in [25] as follows: 

Given a time series             of length n, a representation of T is a model    
of reduced dimnsionality    (    ) such that    closely approximates T. 

This section describes how the representations of time series are realized within the FAP 
framework and provides an overview of the implemented representations. 

Classes that constitute representations of time series need to implement the 
TimeSeriesRepresentation interface which UML diagram is depicted in Figure 6.12. The 
getValue method should retrieve the value of the corresponding time series at the given 
value of the time component. The getOutboundValue method should return the value of 
time series outside the range which is covered by current representation.  

The following time-series representations are implemented inside the fap.representations 
package:  

 Piecewise Linear Approximation (PLA). In this representation, a time series Q of 
length n is approximated with K straight lines (K is typically much smaller than n) 
[51]. The segments (the straight lines of the approximation) can be calculated either 
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using linear interpolation or linear regression. Their length can be determined using 
one of the following three approaches: 

o Sliding Windows - A segment is grown until the error of the approximation 
exceeds some predetermined threshold. 

o Top-Down - The time series is recursively partitioned until some stopping 
criteria is not satisfied. 

o Bottom-Up - Starting from the finest possible approximation, the segments 
are merged until some stopping criteria is not satisfied. 

 Piecewise Aggregate Approximation (PAA). A time series Q of length n is 
approximated by dividing it into     segments of equal length. The mean values of 
the Y coordinates of Q within these segments constitute the PAA representation of Q. 
In this way, we reduce the data from n dimensions to N dimensions [47]. 

 Adaptive Piecewise Constant Approximation (APCA). APCA is an extension of the 
PAA representation that allows arbitrary length segments [48]. 

 Symbolic Aggregate Approximation (SAX). The idea behind this representation is to 
reduce a time series Q of length n into a string of length N, where N is typically much 
smaller than n. The elements of the resulting string are taken from a predefined 
alphabet that contains k symbols. First, the initial time series is normalized and then 
it is approximated by the PAA representation using N segments. After that, the 
normal (Gaussian) distribution is divided into k intervals; so that each part has the 
same probability. Next, a symbol of the alphabet is assigned to each of the intervals. 
In the last step, the segments of the PAA representation are mapped into the 
symbols of the alphabet relying on these intervals [67]. 

 Spline. In this approach, time series are approximated by cubic splines through the 
set of their points [57]. 

 

Figure 6.12. TimeSeriesRepresentation interface 

Slika 6.12. TimeSeriesRepresentation interfejs 
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6.8. Using FAP 

In this section we will demonstrate the usage of our FAP framework on the algorithm that 
we used to find the values of the parameter ε for the LCS (see Section 2.1.3) and EDR (see 
Section 2.1.5) similarity measures. In the process of comparing the elements of two time 
series, these two similarity measures rely on the value of this matching threshold. 

Let StDev denote the standard deviation of a particular dataset. The value of parameter ε 
was determined by calculating the classification error of the 1NN classifier using the LOO 
evaluation method. We have selected the value in range from             to StDev (with 
steps of            ) which gave the best classification accuracy. 

For smaller datasets this search was carried out on the entire dataset. In case of larger sets 
(which contain more than 1400 time series) it was performed on a stratified subset of the 
size not less than 400 elements. The obtained values of ε are presented in Table 4.1 in 
Section 4.2. 

The procedure of calculating the value of parameter ε is presented in Algorithm 3.  

As input, we need to specify the name of the dataset and a boolean value that indicates 
whether we want to compute with LCS or with EDR.  

After the dataset is loaded (line 1), we check its number of time series: if it is greater than 
1400 (line 2), we take a stratified subset of the dataset (line 3). For the sake of readability, 
this procedure is omitted from the algorithm. 

In the next step, we instantiate the key objects: 

 the similarity computor (line 4), 

 the classifier (line 5) and 

 the leave-one-out (LOO) evaluation method (line 6). 

 

In the following five lines we initialize the auxiliary variables (lines 7-11). 

The first step in each iteration of the while loop is to update the value of parameter ε of the 
similarity measure object (line 12).  

Before performing the LOO evaluation we need to reset the inner state of the test object by 
calling its reset method (line 13). This is necessary because the implementations of the 
classifier evaluation methods support interrupting and resuming of their execution (see 
Section 6.2.2). 
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After the LOO evaluation process (line 14) is completed, we obtain the average error ratio 
(line 15) and if necessary, the core auxiliary variables are updated (lines 16-20). If the error 
is equal to zero further tests are not needed and we can get out of the loop (lines 19-20). 

Increasing the value of parameter ε (line 19) closes the while loop. 

The value of parameter ε that gave the best classification accuracy (smallest error ratio) is 
returned in the last line of the algorithm (line 22). 

Algorithm 3: Calculating the value of the matching threshold for LCS and EDR 

Input:  the name of the dataset and boolean value which indicates whether we want to work with 
LCS or with EDR 

Output: the value of parameter ε 

 
 
1. 
2. 
3. 
 
4. 
 
 
5. 
 
6. 
 
7. 
8. 
 
9. 
10. 
 

private static double getEpsilon(String dsname, boolean lcs) throws Exception { 
  
 TimeSeriesArrayList<TimeSeries> dataset = DatasetUtils.loadDataSet(dsname); 
 if (dataset.size()>1400) 
  dataset = getStratifiedSample(dataset,dsname); 
  
 AbstractEpsilonSimilarityComputor similarityComputor = 
   lcs ? new LCSSimilarityComputor() : new EDRSimilarityComputor(); 
  
 Classifier classifier = new NNClassifier(similarityComputor); 
  
 Test test = new LeaveOneOut(classifier); 
  
 double stdev = dataset.getStdDev(); 
 double step = 0.02 * stdev; 
  
 double minError = Double.POSITIVE_INFINITY; 
 double bestEpsilon = 0; 
 

11. 
 
 
12. 
 
13. 
14. 
 
15. 
16. 
17. 
18. 
19. 
20. 
 
 

 double epsilon = step; 
 while (epsilon<=stdev) { 
   
  similarityComputor.setEpsilon(epsilon); 
 
  test.reset(); 
  test.test(dataset); 
   
  double error = test.getErrorRatio(); 
  if (error<minError) { 
   minError = error; 
   bestEpsilon = epsilon; 
   if (minError==0) 
    break; 
 
  } 
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21. 
 
 
22. 

   
  epsilon += step; 
 } 
  
 return bestEpsilon; 
} 
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Conclusion 

The subject of this dissertation encompasses a detailed overview and empirical analysis of 
the impact of Sakoe-Chiba global constraint [105] on the most commonly used elastic 
similarity measures in the field of time-series data mining with a focus on classification 
accuracy. The choice of similarity measure is one of the most significant aspects of time-
series analysis - it should correctly reflect the resemblance between the data presented in 
the form of time series. Similarity measures represent a critical component of many tasks of 
mining time series, including: classification, clustering, prediction, anomaly detection, and 
others. 

The research covered by this dissertation is oriented on several issues:  

1. review of the effects of global constraints on the performance of computing 
similarity measures (Section 5.2),  

2. a detailed analysis of the influence of constraining the elastic similarity measures 
on the accuracy of classical classification techniques (Sections 5.3 and 5.4),  

3. an extensive study of the impact of different weighting schemes on the 
classification of time series (Section 5.5),  

4. development of an open source library that integrates the main techniques and 
methods required for analysis and mining time series, and which is used for the 
realization of these experiments (Chapter 6). 

 

A suitable choice of similarity measure between time series is an important part of 
similarity-based retrieval, and is in some form included in many tasks of time-series analysis. 
Since Euclidean distance [26] is a very simple measure which is calculated quickly and 
represents a distance metric, it has become one of the most commonly used measures of 
similarity between time series [4, 14, 47, 48]. However, it has two major disadvantages: it 
can only work with time series of the same length and is sensitive to distortions and shifting 
along the time axis [49, 98]. To overcome these weaknesses many elastic measures are 
proposed in the literature (DTW [10], LCS [121], ERP [16], EDR [17] etc.). These measures 
have better classification accuracy than Euclidean distance [21], but they are all based on 
dynamic programming, which means that their computation complexity is quadratic. To 
decrease the computation time of the elastic measures global constraints are introduced, 
narrowing the search path in the matrix. 
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In Section 5.2, we examined the influence of the Sakoe-Chiba global constraint on the 
performance of the two most representative elastic similarity measures for time series: 
DTW and LCS. Through an extensive set of experiments, we showed that the usage of global 
constraints can significantly reduce the computation time of these measures, which is their 
main weakness. Based on obtained results, we can conclude that the difference of 
computation times between an unconstrained measure and a measure with a small 
constraint is two and somewhere three orders of magnitude. In future work, it would be 
interesting to examine the impact of the Sakoe-Chiba band on the performance of other 
elastic similarity measures, too. Other possible directions for future work include expanding 
these examinations on the Itakura parallelogram. 

It was suggested that, in the case of DTW, the use of global constraints can actually improve 
the accuracy of classification compared to unconstrained similarity measures [98, 130]. In 
Section 5.3, through an extensive set of experiments we have described in detail the impact 
of the Sakoe-Chiba band on the nearest-neighbor graph. We showed that the constrained 
measures are qualitatively different than the unconstrained ones. From the obtained results 
we can clearly see that for low values of the constraint (less than 15%–10%) the change of 
the 1NN graph becomes significant for all of the considered similarity measures. In addition 
to this, the results reveal that there are notable differences in the effects of the constraints 
on different distance measures. DTW was found to be the most sensitive to the introduction 
of global constraints regarding the 1NN graph, while EDR is the least sensitive. The behavior 
of ERP and LCS measures was determined to be somewhere in between.  

Comparison of 1NN classifier performance showed that DTW generally has a slight edge 
over other distance measures (especially ERP), but is more sensitive to the choice of the r 
parameter. Statistical tests are somewhat confirmed that DTW can be considered as the 
commonly best distance measure, but the evidence is not particularly strong. For every 
distance measure there are at least a couple of datasets where the measure is significantly 
superior to all others. Therefore, the choice of the best distance measure for a particular 
problem may be different for the generally best case. Considering the average classification 
errors across different values of r, we can conclude that they grow conspicuously for small 
values (    ) and in all four cases reaches their maximums for     . The largest 
increase occurs for LCS and the lowest one for DTW. In the interval from        to 
     the similarity measures behave differently: in case of DTW the average classification 
error almost monotonously decreases, while for ERP it almost monotonously increases. In 
case of LCS and EDR a slight tendency of growth can be spotted, but the changes are very 
subtle. This suggests that although DTW can be considered the best general choice, LCS and 
EDR could be safer choices because of the less pronounced need for tuning the r parameter. 

The findings of our studies have clearly shown that all of the main elastic similarity measures 
(DTW, LCS, ERP and EDR) significantly change their behavior for small values of the global 
constraint. Thus, we expect our results to aid researchers and practitioners in selecting and 
tuning appropriate time-series similarity measures for their respective tasks, making the 
selection/tuning process simpler and faster, at the same time producing more accurate 
results. In addition, the insight into the behavior of similarity measures with respect to 
changing constraints can be beneficial to the design of efficient indexing strategies for fast 
computation of (approximate) nearest neighbors. In future work, we plan to expand the 
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investigation of the effects of these changes on the accuracy of a wider range of distance-
based classifiers. It would also be interesting to explore the influence of the Itakura 
parallelogram compared to the influence of the Sakoe-Chiba band. 

The results of experiments in Section 5.4 evidently confirmed the special importance of the 
first neighbor in time-series data. In the case of both studied elastic similarity measures 
(DTW and LCS), the error rate of the unweighted kNN classifier almost linearly grows as the 
number of neighbors k grows (Section 5.4.2). The kNN classifier actually gives the best 
results for the value     when consider k neighbors without a weighting scheme. On the 
other hand, when the weighting scheme defined by Eq. (3.5) is introduced (Section 5.4.3), 
the situation is changed to some extent. The best results are obtained for the value around 
   . Overall, we can conclude that, the weighting scheme (which favors the first neighbor) 
significantly improved the classification accuracy for all values ok k. 

When observing the value of constraint parameter r, the introduction of the weighting 
scheme has an important impact. For unweighted kNN, the value of the constraint grows as 
k grows. On the other hand, with the weighting scheme the value of the constraint remains 
approximately the same for all values of k. In addition, the difference between minimum 
and maximum values of constraints is about two times smaller with the weighting scheme. 

All these observations indicate that favoring the first neighbor with a weighting scheme 
improves the quality and stability of kNN. The first neighbor has a special meaning in time-
series data and taking this fact into consideration can significantly improve the quality of 
kNN for all values of k, by making it even more accurate than 1NN for some small values of 
k. In future work, it would be interesting to investigate the influence of other weighting 
schemes [22, 35, 36, 69] and to widen these studies to other similarity measures. 

In the last decade classification has been intensively investigated in the field of time-series 
data mining [34, 45, 93, 130, 131]. Among the considerable number of proposed techniques, 
the simple nearest neighbor classifier (1NN) and the Dynamic Time Warping distance 
measure were shown to be one of the best combinations [130]. To improve the accuracy of 
classification, the majority voting k-nearest neighbor rule generalizes the idea of the 1NN 
rule by taking into account not one but k nearest neighbors. The next step in investigating 
the nearest neighbor rule is assigning different weights to the neighbors. 

Several different weighting schemes are proposed in the literature [22, 35, 36, 62, 69, 74, 
84, 133]. They have been examined exclusively in combination with Euclidean distance and 
they were either not tested in the domain of time series, or tested only in a very limited 
extent. Furthermore, the results were not supported by statistical tests. In Section 5.5, we 
have, through a detailed analysis, compared a wide variety of nearest-neighbor weighting 
schemes in combination with the three most commonly used time-series similarity 
measures based on the largest set of freely available labeled time-series datasets [50]. 

Observing the average classification accuracy, in the case of all of the considered similarity 
measures, the best results are obtained with the dual distance-weighting scheme defined by 
Gou at al. [35] (Eq. (3.11)). The worst average classification accuracy is produced by the 
simple nearest neighbor rule (except for Eucledean distance). It is worth noting that the 
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differences between the best and worst average results are not particularly big (     ). 
With these detailed experiments we have confirmed the view that the simple 1NN is very 
hard to beat [130]. When observing the number of statistically significant wins and losses, 
the best results are achieved by the distance-weighted scheme defined by Dudani [22] 
(Eq. (3.2)) in case of Euclidean distance, and the dual distance-weighting scheme defined by 
Gou at al. [35] (Eq. (3.11)) in case of DTW and LCS. Both the corrected resampled t-test and 
the Wilcoxon sign-rank test results support the Dudani and the DualD weighting methods as 
the best choices in combination with the three discussed time-series similarity measures. 
The DualU (Eq. (3.9)) is the third best choice behind these two methods. 

Since the elastic measures (DTW, LCS, ERP and EDR) generally provide better classification 
accuracies compared to non-elastic measures, it would be interesting to check the influence 
of different weighting schemes also on ERP and EDR (besides DTW and LCS) and on the 
constrained versions of all these measures. The major drawback of these measures is 
performance, since they are all based on quadratic complexity algorithms. In Chapter 5 we 
showed that the introduction of global constraints significantly speeds-up the computation 
process and in some cases even improves the classification accuracies. Furthermore, due to 
the high dimensionality of time-series data, it would be interesting to investigate the 
interaction of the hubness phenomenon [93] with different kNN weighting methods and the 
behavior of the hubs-based weighting scheme [92]. 

Time-series analysis and mining has been a very popular research area in the past decade. 
This resulted in a huge amount of proposed techniques and algorithms. A great majority of 
techniques and algorithms were sporadically introduced and sometimes not correctly 
compared with their counterparts. This is the consequence of a lack of a quality open-source 
system which supports different aspects of time-series mining. For all these reasons, we 
created a universal framework (Framework for Analysis and Prediction (FAP)) where all main 
concepts, like similarity measures, representation and pre-processing, will be incorporated. 
Such a framework would greatly help researchers in testing and comparing newly 
introduced concepts with the existing ones. 

In the current state of development, all main similarity measures are implemented, as well 
as several classifiers, classifier evaluation methods, representations and pre-processing 
techniques. The implemented similarity measures include   , Swale, unconstrained and 

constrained DTW, LCS, ERP and EDR. The constrained measures are implemented using the 
Sakoe-Chiba band and the Itakura parallelogram. The system contains the implementation 
of the 1NN and kNN classifiers (including a great number of different weighting schemes), 
the Holdout, Cross-Validation and Leave-One-Out testing methods, the following time-series 
representations: PLA [51], PAA [47], APCA [48], SAX [67] and Spline [57] and several pre-
processing transformations including scaling, shifting, min-max normalization, z-score 
normalization, decimal scaling and linear equiscaling. The details of its structure and 
implementation are described in Chapter 6. All of the examinations within this dissertation 
were performed by relying solely on this framework. Furthermore, it has been already 
successfully employed within various research domains including: developing a distributed 
distance matrix generator based on agents [75, 76], mining time series in the psychological 
domain [55, 56] and time-series analysis in the neurology domain [61]. 
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We believe that the FAP system could be intensively used in future researches due to its 
numerous advantages. First, all important up to date concepts needed for time-series 
mining are integrated in one place. Second, modifications of existing concepts, as well as 
additions of newly proposed concepts could be obtained very easily (FAP is written in Java). 
Finally, FAP is free and open source, and everyone will be invited to contribute with newly 
proposed concepts. This will ensure that the system is always up to date and that all major 
techniques in time-series mining are supported. 

The contributions of the results presented within this dissertation are manifold: 

1. We have explicated the impact of the Sakoe-Chiba band on the performance of 
the constrained elastic similarity measures: for small constraint values, the 
difference of computation times between the unconstrained and constrained 
measures is two and somewhere three orders of magnitude. 

2. Analyzing the 1-nearest neighbor graph with respect to the change of the 
constraint size, we have shown that for low values of the constraint (less than 
15%–10%) the constrained measures become substantially different from the 
unconstrained ones. Furthermore, we have demonstrated that these changes are 
not the same for different similarity measures - DTW was found to be the most 
sensitive to the introduction of global constraints, while EDR is the least 
sensitive. 

3. Through exhaustive experiments we have shown that, on average, the best 
classification accuracy is achieved for small values of parameter r. This value is 
lowest for DTW (about 4% of the length of time series) and highest for ERP 
(almost 10%). Changes in the 1-nearest neighbor graph generated by these 
values of r are the highest in case of DTW (on average, about 10% of the nodes), 
while the lowest in case of EDR (on average, about 1% of the nodes). Comparison 
of 1NN classifier performance showed that DTW generally has a slight edge over 
other distance measures, but the evidences are not particularly strong - the best 
choice depends on the particular problem. 

4. Comparing the average classification errors of the four considered elastic 
similarity measures (DTW, LCS, ERP and EDR) we have pointed out their mutual 
property: the average classification error grows for small values of r (   ) and it 
reaches its maximum at      in all four cases. We have seen that, although 
DTW can be considered the best general choice, LCS and EDR could be safer 
choices because of the less pronounced need for tuning the r parameter. 

5. The detailed analysis of the kNN classifier (for DTW and LCS) has showed that, 
without a weighting scheme it gives the best results for    . On the other 
hand, in case of the weighted kNN classifier, the best results are obtained round 
   . 

6. Observing the average classification accuracy we have found that the majority 
voting system and all of the examined weighting schemes produced better 
classification accuracies than the 1NN rule for a significant number of the 
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datasets. Both the corrected resampled t-test and the Wilcoxon sing-rank test 
results support the Dudani and the DualD weighting methods as the best choices. 

7. To support these and future researches, we have developed a free and open-
sourced library (FAP) that implements many of the most important algorithms in 
the field of time-series data mining and analysis. 

 

As part of future research it would be interesting to extend all these studies also on other 
commonly used similarity measures, including ERP, EDR and TWED. Furthermore, it would 
be worthwhile to compare the impact of the Itakura parallelogram with the influence of the 
Sakoe-Chiba band. 



 

 Appendix A 

ID 
DTW 

unconstrained 
75% 50% 25% 20% 15% 10% 5% 1% 0% 

1 980156 897266 723485 429750 360391 281656 201703 112766 38672 20422 

2 317047 292344 236593 144719 121578 96906 70125 41937 18172 13157 

3 13672 12610 10031 5937 4968 3828 2688 1469 422 188 

4 79844 73391 58656 34500 28562 22047 15141 8016 2016 672 

5 258375 242703 198969 124719 105375 86031 62672 41766 23047 17203 

6 8923375 8235500 6713578 4102078 3459047 2707140 1980485 1243328 557265 442625 

7 88609875 79638047 63711094 36991468 30533875 23531718 16107266 8290062 1814203 146672 

8 4766 4375 3547 2156 1843 1438 1031 641 266 140 

12 203375 183782 147219 88172 73688 57172 40343 22625 7234 3172 

13 7015 6500 5391 3562 3109 2578 1985 1422 953 875 

14 256343 235609 191359 120281 102047 82000 60141 38203 21203 17032 

15 1569844 1443265 1170437 728641 630266 502500 382782 245391 138532 108906 

16 26594 23969 19328 11390 9562 7438 5265 2875 953 422 

17 434297 392656 317093 185672 154672 119906 83672 45390 12031 3969 

18 15922 14297 11859 7219 6234 4922 3719 2328 1234 906 

19 4257391 3789922 3052828 1774359 1468031 1135609 781547 404907 88234 10844 

20 25407250 22014203 17571907 10359203 8563921 6618313 4534843 2341546 491640 32109 

21 32328 31719 29344 26891 24921 24578 23469 22062 20734 19797 

22 101641 90781 72750 42828 35171 27391 19890 9875 2594 719 

23 36156 32391 25968 15485 12765 10016 7141 3843 1360 625 

24 97847485 88454641 70498062 41180453 34403500 26572297 18149719 9492531 2189141 284188 

25 238094 216266 178250 115343 98062 81782 62672 43766 26516 24172 

26 220938 202250 168765 114234 96188 82532 66093 51125 32015 28875 

29 19828 17906 14391 8500 6969 5469 3844 2078 578 203 

30 592328 536562 431062 254844 210047 164515 113000 61312 17672 5906 

31 16344 14859 12172 7593 6375 5156 3828 2515 1281 953 

32 39391 36516 30750 21172 18891 16187 13593 10343 7484 6953 

33 87375 80937 68266 48547 43094 36687 30609 24828 18297 16672 

34 1433139834 1293488860 1035132077 605505932 497113666 389422687 265040114 137944867 32319219 4230860 

35 367797 338375 276969 175109 147719 121063 87922 60141 32735 24672 

36 2708297 2462547 1984625 1174797 975469 754594 521344 278235 74953 29609 

37 28734 27266 23047 16657 14938 12984 11141 9172 6891 6562 

38 51828 47156 37625 22500 18906 14671 10406 5766 1969 1156 

39 175250 164063 136407 91015 79610 67031 54750 41562 26765 24500 

40 7317188 6744641 5514797 3489312 2929907 2405765 1736594 1169078 666938 580750 

44 20128188 18483156 15043656 9417906 7821062 6203250 4657500 2884859 1442281 1208547 

45 989203 910219 729062 435344 363875 281407 203390 112734 37422 19547 

46 32217266 29147485 23421094 13682812 11531969 8860547 6179563 3373750 969672 357422 

Table A.1. Calculation times of distance matrices for DTW 

Tabela A.1. Vremena izracunavanja matrica rastojanja za DTW 
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ID 
LCS 

unconstrained 
75% 50% 25% 20% 15% 10% 5% 1% 0% 

1 679921 646828 519922 312703 261859 204813 149641 85422 32203 21359 

2 214640 203141 164703 102359 85969 68922 51141 32094 16047 13531 

3 8875 8625 6859 4016 3360 2593 1859 1031 344 172 

4 52282 48844 39187 23078 18984 14875 10281 5516 1531 609 

5 170016 161250 134297 85671 72359 60656 45797 32406 20204 17547 

6 5996172 5688891 4676984 2917032 2464000 1974609 1504000 978219 502875 449078 

7 62996109 59056579 46699297 27158750 22369187 17262734 11882062 6155704 1402765 161766 

8 3578 3438 2859 1672 1406 1109 828 484 235 109 

12 136484 127375 102657 61296 51203 39781 28313 16110 5625 3062 

13 4984 4671 3969 2719 2328 2000 1671 1234 860 828 

14 184375 171718 139906 89625 76375 62219 47187 31281 18922 18219 

15 1116625 1034640 845797 534875 463344 377438 294235 196766 119422 117875 

16 17890 16766 13469 8015 6703 5204 3813 2125 781 469 

17 285922 268282 214875 127484 105765 82329 58000 31906 9390 4156 

18 10703 9969 8188 5188 4531 3719 2907 1984 1094 938 

19 2793547 2593672 2074313 1218812 1008203 777266 539672 280437 64437 12359 

20 16524687 15507859 12291281 7163172 5895296 4556593 3139500 1633141 351640 37016 

21 27640 27438 26265 23718 24406 22953 21547 21532 20484 20016 

22 71000 66578 53329 31531 26422 20484 14188 7547 2250 750 

23 24219 22453 18125 10890 9015 7079 5031 2843 1093 641 

24 67029406 62582938 50095359 29302062 24642968 18588750 12998219 6910859 1670969 307656 

25 163812 154640 128781 85063 75265 63750 50578 36812 25422 25187 

26 156000 147610 123953 86046 78313 66109 54578 43016 30641 30344 

29 13313 12375 10016 5796 4781 3735 2656 1485 438 203 

30 388375 371156 295813 174734 144938 114547 79140 43750 13984 6375 

31 10907 10266 8484 5375 4484 3750 2922 2000 1203 1015 

32 28796 27110 23140 16328 15047 13172 11469 9078 7172 7094 

33 64734 60828 52547 37922 35125 30219 26265 22140 17703 17343 

34 968111646 900357668 719464374 419590179 344832973 269150209 183543819 96485667 22870071 6240336 

35 251297 236156 193234 124703 106187 89875 67359 47828 29672 25750 

36 1779625 1707250 1362750 810141 667969 521125 366922 200188 61031 32125 

37 21657 20875 17953 13250 12313 11000 9578 8188 6672 6578 

38 35000 32406 26156 15672 13219 10422 7485 4297 1703 1125 

39 124359 117235 99203 68094 61422 53375 44625 35610 25859 25235 

40 5046594 4803813 3970578 2544031 2182422 1833125 1383812 1000500 662015 549859 

44 14056203 13290391 10899766 6874594 5817140 4688906 3612797 2394250 1346766 1151922 

45 679250 645062 518079 310281 260718 204047 148078 84640 31766 21172 

46 21409297 20134156 16205828 9558015 7984328 6157015 4330890 2414438 787375 352359 

Table A.2. Calculation times of distance matrices for LCS 

Tabela A.2. Vremena izracunavanja matrica rastojanja za LCS 
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Figure B.1. Detailed plots of the change of 1NN graph for DTW 

Slika B.1. Detaljni grafikoni promena 1NN grafa za DTW 
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Figure B.2. Detailed plots of the change of 1NN graph for LCS 

Slika B.2. Detaljni grafikoni promena 1NN grafa za LCS 
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Figure B.3. Detailed plots of the change of 1NN graph for ERP 

Slika B.3. Detaljni grafikoni promena 1NN grafa za ERP 
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Figure B.4. Detailed plots of the change of 1NN graph for EDR 

Slika B.4. Detaljni grafikoni promena 1NN grafa za EDR 
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Figure C.1. Detailed plots of the highest warping windows needed to change at least 10% of 
the 1NN graph 

Slika C.1. Detaljni grafikoni najvećih pojasa iskrivljenja potrebni da se promeni najmanje 
10% 1NN grafa 
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Figure D.1. Detailed plots of the change of classes for DTW 

Slika D.1. Detaljni grafikoni promena klasa za DTW 
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Figure D.2. Detailed plots of the change of classes for LCS 

Slika D.2. Detaljni grafikoni promena klasa za LCS 
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Figure D.3. Detailed plots of the change of classes for ERP 

Slika D.3. Detaljni grafikoni promena klasa za ERP 
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Figure D.4. Detailed plots of the change of classes for EDR 

Slika D.4. Detaljni grafikoni promena klasa za EDR 
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ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.298 0.301 1.40 0.301 1.66 0.300 2.93 0.302 1.87 0.298 4.84 0.293 6.71 0.302 1.63 0.292 7.24 0.299 4.76 0.299 3.68 0.299 10.36 

2 0.315 0.320 1.52 0.323 1.80 0.326 2.43 0.322 2.11 0.321 5.17 0.317 5.73 0.320 1.56 0.316 6.40 0.322 1.66 0.320 6.29 0.317 14.79 

3 0.487 0.540 8.06 0.522 9.94 0.495 7.71 0.542 8.49 0.485 4.48 0.558 9.54 0.557 7.16 0.543 9.36 0.555 7.25 0.483 10.38 0.492 12.43 

4 0.222 0.229 3.07 0.225 3.25 0.222 3.48 0.228 4.00 0.216 4.76 0.204 6.13 0.225 3.43 0.205 6.16 0.205 4.08 0.215 7.07 0.212 11.18 

5 0.011 0.008 11.44 0.007 11.71 0.007 12.90 0.006 16.29 0.012 4.93 0.006 15.79 0.007 12.12 0.006 15.89 0.006 13.54 0.010 13.32 0.010 17.21 

6 0.002 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 1.00 0.002 2.11 

7 0.001 0.001 1.02 0.001 1.07 0.002 1.18 0.001 1.23 0.001 1.06 0.002 2.73 0.002 1.22 0.002 2.75 0.001 1.04 0.001 1.29 0.001 1.98 

8 0.100 0.108 1.12 0.115 1.52 0.127 2.01 0.114 1.24 0.113 1.81 0.114 2.11 0.119 1.40 0.114 2.52 0.102 2.44 0.105 3.91 0.099 6.41 

9 0.331 0.331 1.00 0.331 1.00 0.332 1.08 0.331 1.00 0.331 1.12 0.330 3.51 0.331 1.00 0.332 3.97 0.331 1.12 0.331 1.12 0.328 13.32 

10 0.344 0.347 2.00 0.346 3.08 0.343 3.93 0.350 3.20 0.341 7.10 0.344 6.31 0.350 2.66 0.343 7.18 0.344 1.20 0.338 8.10 0.338 18.17 

11 0.331 0.331 1.00 0.331 1.00 0.332 1.06 0.331 1.00 0.331 1.06 0.331 3.38 0.331 1.00 0.332 3.44 0.331 1.38 0.331 1.10 0.328 14.61 

12 0.001 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 0.001 1.00 

13 0.100 0.103 2.78 0.096 4.08 0.089 4.11 0.105 3.85 0.096 3.91 0.092 5.51 0.099 3.89 0.089 5.63 0.085 4.18 0.092 5.57 0.093 13.94 

14 0.005 0.006 1.02 0.006 1.08 0.006 2.03 0.006 1.07 0.006 1.06 0.005 2.92 0.006 1.05 0.005 3.01 0.007 2.90 0.006 3.42 0.006 5.79 

15 0.040 0.040 1.00 0.040 1.00 0.040 1.00 0.040 1.00 0.040 1.00 0.041 2.37 0.040 1.00 0.041 2.53 0.041 1.19 0.040 1.00 0.040 7.88 

16 0.057 0.066 1.33 0.066 1.38 0.071 2.13 0.065 1.45 0.064 1.85 0.071 3.32 0.068 1.38 0.070 3.32 0.055 3.33 0.065 4.31 0.059 6.41 

17 0.168 0.173 3.01 0.167 3.86 0.165 4.28 0.167 5.24 0.153 6.35 0.162 8.83 0.167 3.96 0.162 9.35 0.170 4.35 0.156 6.71 0.160 17.80 

18 0.053 0.058 1.42 0.058 2.27 0.062 2.91 0.057 2.44 0.057 2.77 0.052 4.48 0.058 2.29 0.050 4.50 0.058 2.19 0.058 4.33 0.054 4.01 

19 0.590 0.531 17.25 0.527 17.58 0.522 18.73 0.523 21.18 0.558 9.05 0.529 24.92 0.523 17.94 0.528 24.61 0.544 17.84 0.529 24.40 0.565 26.52 

20 0.478 0.478 1.06 0.481 1.47 0.482 2.06 0.478 1.09 0.482 2.25 0.476 4.36 0.478 1.18 0.475 4.56 0.474 6.62 0.482 2.58 0.479 9.94 

21 0.033 0.031 8.36 0.029 8.34 0.029 9.85 0.028 10.29 0.032 6.55 0.029 11.85 0.029 8.55 0.029 12.42 0.030 8.49 0.029 13.93 0.031 21.48 

22 0.258 0.273 2.18 0.269 2.66 0.273 2.96 0.273 3.05 0.260 3.73 0.241 5.84 0.268 2.98 0.249 6.36 0.255 7.38 0.259 5.24 0.258 13.14 

23 0.354 0.362 2.75 0.356 3.10 0.354 3.28 0.360 3.63 0.365 4.96 0.361 5.46 0.352 3.06 0.363 5.36 0.365 1.81 0.368 3.76 0.354 10.63 

24 0.016 0.016 1.10 0.016 1.39 0.016 1.64 0.016 1.32 0.016 1.57 0.015 5.04 0.016 1.38 0.015 5.73 0.017 2.40 0.016 2.84 0.015 14.71 

25 0.228 0.228 2.78 0.222 3.70 0.223 4.84 0.225 4.78 0.225 7.93 0.211 8.50 0.224 3.78 0.212 9.32 0.222 6.80 0.224 15.34 0.225 22.67 

26 0.079 0.064 13.90 0.058 14.60 0.057 16.80 0.058 20.23 0.074 9.16 0.058 27.90 0.059 15.22 0.057 28.47 0.061 24.58 0.060 27.09 0.077 21.68 

27 0.157 0.156 4.28 0.153 5.52 0.149 6.61 0.152 7.06 0.150 9.52 0.147 10.30 0.152 5.67 0.147 10.80 0.145 15.87 0.147 15.25 0.148 27.47 

28 0.095 0.092 4.36 0.089 4.69 0.086 6.35 0.089 6.28 0.088 9.29 0.086 9.86 0.088 4.79 0.086 10.89 0.089 11.73 0.086 15.83 0.088 25.87 

29 0.117 0.112 2.02 0.117 2.44 0.118 2.64 0.117 2.91 0.117 2.73 0.115 3.76 0.118 2.36 0.115 3.89 0.115 2.24 0.112 5.84 0.115 10.95 

30 0.342 0.347 1.29 0.350 1.51 0.352 2.38 0.350 1.71 0.349 2.59 0.345 4.74 0.350 1.59 0.339 5.11 0.344 8.57 0.349 5.02 0.340 14.13 

31 0.028 0.032 4.28 0.031 7.45 0.026 9.39 0.031 5.84 0.029 1.39 0.031 12.00 0.030 5.12 0.032 11.74 0.029 8.98 0.032 5.48 0.028 5.14 

32 0.014 0.015 1.38 0.016 1.76 0.015 1.93 0.015 1.88 0.015 1.69 0.014 3.84 0.016 1.86 0.014 3.96 0.015 2.59 0.015 2.02 0.014 4.07 

33 0.014 0.015 1.20 0.016 1.30 0.016 1.66 0.015 1.39 0.015 1.39 0.016 3.67 0.016 1.30 0.015 3.73 0.014 2.35 0.016 1.57 0.014 11.42 

34 0.111 0.112 1.60 0.110 3.48 0.110 3.41 0.112 3.66 0.110 4.39 0.108 5.54 0.110 3.48 0.109 5.95 0.110 3.47 0.108 5.02 0.109 22.38 

35 0.177 0.177 1.00 0.177 1.00 0.177 1.00 0.177 1.00 0.177 1.09 0.174 4.08 0.177 1.00 0.174 4.41 0.177 1.00 0.177 1.00 0.179 13.13 

36 0.035 0.039 2.14 0.038 3.76 0.037 4.00 0.038 3.52 0.038 2.39 0.034 6.47 0.038 3.47 0.034 7.03 0.035 2.70 0.039 4.87 0.031 18.27 

37 0.077 0.079 1.34 0.079 1.34 0.079 1.34 0.079 1.57 0.079 1.58 0.081 2.83 0.079 1.34 0.082 2.99 0.079 1.40 0.079 1.71 0.080 10.88 

38 0.119 0.119 1.00 0.119 1.00 0.119 1.00 0.119 1.00 0.119 1.00 0.120 1.24 0.119 1.00 0.119 1.39 0.119 1.00 0.119 1.00 0.119 1.15 

39 0.004 0.005 3.02 0.005 4.30 0.005 5.61 0.005 5.61 0.004 3.76 0.005 7.33 0.005 4.16 0.005 7.80 0.005 4.08 0.004 4.47 0.004 9.01 

40 0.013 0.013 1.08 0.013 1.08 0.013 1.13 0.013 1.12 0.012 3.29 0.011 6.12 0.013 1.08 0.011 6.33 0.011 4.05 0.012 3.41 0.012 18.30 

41 0.228 0.222 3.02 0.221 3.40 0.222 3.74 0.222 4.72 0.220 9.35 0.218 6.39 0.222 3.49 0.219 6.92 0.227 5.75 0.222 6.01 0.219 19.32 

42 0.275 0.270 4.17 0.266 6.11 0.263 8.74 0.266 7.00 0.263 8.35 0.261 9.81 0.268 5.07 0.261 10.79 0.273 12.95 0.258 16.08 0.257 28.98 

43 0.288 0.286 3.24 0.285 4.89 0.283 5.99 0.285 5.78 0.281 10.61 0.278 8.44 0.285 4.95 0.277 8.74 0.286 7.84 0.281 8.66 0.279 24.49 

44 0.001 0.001 1.00 0.001 1.00 0.001 1.08 0.001 1.00 0.001 1.00 0.001 1.19 0.001 1.00 0.001 1.19 0.001 1.12 0.001 1.24 0.001 1.21 

45 0.284 0.288 1.46 0.288 1.56 0.289 2.35 0.289 1.78 0.286 4.07 0.279 5.96 0.289 1.60 0.278 6.19 0.286 3.69 0.286 3.03 0.287 10.01 

46 0.057 0.057 1.00 0.057 1.06 0.058 1.20 0.057 1.00 0.057 1.09 0.057 3.64 0.057 1.06 0.057 4.08 0.058 1.53 0.058 1.20 0.056 11.92 

Table E.1. Classification errors and the values of parameter k obtained for Euclidean 
distance 

Tabela E.1. Greške klasifikacije i vrednosti parametra k dobijenih za Euklidsko rastojanje 
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ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.279 0.266 3.00 0.261 3.95 0.264 5.18 0.267 4.31 0.263 8.74 0.262 6.13 0.267 3.27 0.260 7.34 0.268 6.17 0.266 6.92 0.265 21.77 

2 0.336 0.337 1.33 0.343 2.12 0.343 2.20 0.342 2.47 0.337 4.30 0.338 6.31 0.341 1.81 0.336 6.82 0.339 1.53 0.341 5.39 0.335 14.88 

3 0.477 0.542 5.42 0.513 7.90 0.512 4.58 0.542 5.78 0.485 3.13 0.543 6.44 0.542 5.34 0.540 7.18 0.545 5.46 0.470 10.08 0.475 11.59 

4 0.240 0.253 1.27 0.269 3.01 0.261 5.53 0.263 1.93 0.259 2.98 0.258 4.29 0.265 2.06 0.256 5.02 0.264 2.48 0.260 4.09 0.251 9.62 

5 0.000 0.000 1.14 0.000 1.14 0.000 1.14 0.000 1.21 0.000 1.21 0.000 1.21 0.000 1.14 0.000 1.21 0.000 1.14 0.000 1.21 0.000 1.57 

6 0.003 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.00 0.003 1.48 

7 0.015 0.015 1.00 0.015 1.00 0.015 1.34 0.015 1.00 0.015 1.00 0.016 1.89 0.015 1.00 0.015 2.43 0.015 2.56 0.015 1.00 0.015 2.73 

8 0.066 0.076 1.02 0.087 1.24 0.088 1.68 0.085 1.15 0.085 1.24 0.082 1.16 0.083 1.11 0.087 1.35 0.074 1.00 0.087 1.89 0.076 1.70 

9 0.176 0.181 1.55 0.181 1.76 0.181 2.65 0.180 1.80 0.179 4.05 0.177 4.12 0.181 1.66 0.174 4.49 0.173 3.87 0.178 6.91 0.175 15.99 

10 0.168 0.172 1.43 0.164 3.08 0.167 6.59 0.171 2.43 0.170 4.98 0.163 6.05 0.172 2.06 0.162 6.98 0.168 5.94 0.174 10.08 0.169 16.77 

11 0.172 0.175 1.28 0.176 1.60 0.179 3.28 0.176 1.65 0.177 2.77 0.175 4.05 0.177 1.40 0.173 4.97 0.173 4.84 0.180 4.59 0.176 7.70 

12 0.004 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 0.004 1.00 

13 0.168 0.183 3.04 0.165 4.02 0.157 4.99 0.183 4.07 0.176 3.37 0.156 5.30 0.182 3.86 0.155 5.93 0.164 4.80 0.174 3.86 0.168 12.70 

14 0.008 0.009 1.28 0.010 2.01 0.010 2.20 0.009 1.61 0.009 1.87 0.009 2.81 0.009 1.68 0.009 2.82 0.008 1.24 0.009 2.23 0.009 7.02 

15 0.022 0.022 1.00 0.023 1.19 0.024 1.85 0.022 1.04 0.022 1.37 0.021 4.07 0.022 1.06 0.021 4.60 0.020 4.48 0.022 1.47 0.021 15.33 

16 0.054 0.073 3.05 0.072 3.62 0.071 3.65 0.070 4.28 0.064 1.91 0.070 5.85 0.070 3.58 0.071 7.18 0.055 1.00 0.050 11.08 0.057 12.51 

17 0.204 0.205 3.01 0.188 3.82 0.185 4.28 0.204 4.82 0.202 4.48 0.193 6.07 0.191 3.54 0.190 6.98 0.189 3.59 0.201 9.58 0.196 13.46 

18 0.085 0.092 2.30 0.092 4.67 0.080 5.89 0.090 4.67 0.091 2.41 0.084 6.43 0.091 3.91 0.085 7.01 0.094 3.92 0.091 7.75 0.088 9.96 

19 0.579 0.534 16.72 0.532 16.63 0.535 16.18 0.530 18.61 0.552 9.88 0.526 17.92 0.533 16.64 0.524 19.29 0.538 20.64 0.531 22.63 0.561 26.71 

20 0.456 0.455 2.46 0.419 13.60 0.428 15.81 0.466 6.60 0.459 5.72 0.460 10.29 0.469 4.92 0.449 12.35 0.447 9.16 0.457 11.23 0.455 20.14 

21 0.046 0.040 5.58 0.039 6.17 0.036 7.11 0.037 8.28 0.038 6.28 0.039 12.15 0.038 6.68 0.038 12.54 0.040 6.27 0.039 13.28 0.039 23.92 

22 0.104 0.110 1.20 0.116 1.65 0.115 1.59 0.111 1.43 0.113 1.78 0.114 2.68 0.118 1.63 0.111 2.76 0.106 1.90 0.116 2.66 0.106 6.98 

23 0.276 0.243 4.58 0.239 5.61 0.257 7.56 0.250 6.59 0.238 6.80 0.232 9.19 0.242 5.55 0.226 10.44 0.267 4.10 0.228 13.57 0.253 21.96 

24 0.014 0.013 2.66 0.011 3.80 0.011 4.66 0.012 4.75 0.012 5.53 0.011 7.79 0.011 3.94 0.011 8.39 0.011 4.04 0.012 8.09 0.010 23.15 

25 0.197 0.207 2.72 0.190 8.33 0.187 12.48 0.199 6.04 0.195 7.68 0.195 9.30 0.199 5.08 0.193 11.98 0.187 18.02 0.186 20.70 0.192 25.97 

26 0.046 0.046 1.02 0.047 1.70 0.049 4.91 0.046 1.20 0.047 1.87 0.047 2.23 0.046 1.22 0.047 3.02 0.047 3.55 0.048 3.29 0.047 9.07 

27 0.192 0.179 5.32 0.177 5.93 0.177 6.85 0.176 8.83 0.177 10.49 0.171 12.35 0.175 6.67 0.170 14.18 0.175 6.34 0.175 18.21 0.182 28.84 

28 0.121 0.123 4.37 0.119 6.75 0.116 10.03 0.117 8.55 0.115 8.67 0.113 11.52 0.117 7.02 0.113 12.84 0.118 6.20 0.114 21.28 0.116 25.95 

29 0.112 0.118 1.94 0.118 2.17 0.120 1.99 0.122 2.56 0.105 3.28 0.123 3.60 0.120 2.16 0.123 3.60 0.120 1.99 0.103 4.27 0.118 10.11 

30 0.290 0.293 1.13 0.307 4.32 0.293 6.58 0.303 2.52 0.296 3.54 0.301 6.46 0.303 2.22 0.297 7.21 0.288 5.96 0.297 7.08 0.294 13.61 

31 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

32 0.023 0.026 1.08 0.026 1.11 0.026 1.11 0.026 1.16 0.026 1.15 0.027 2.79 0.026 1.22 0.027 2.77 0.027 1.38 0.026 1.30 0.025 3.23 

33 0.027 0.029 1.28 0.029 2.01 0.029 2.16 0.029 1.61 0.029 1.87 0.028 3.68 0.029 1.74 0.028 3.76 0.025 3.49 0.029 2.49 0.028 10.43 

34 0.065 0.061 4.01 0.059 4.81 0.060 4.63 0.060 5.77 0.060 8.16 0.057 8.06 0.059 4.81 0.057 8.52 0.061 4.69 0.059 11.90 0.059 27.50 

35 0.184 0.183 2.96 0.184 3.11 0.184 3.03 0.183 4.23 0.179 7.75 0.175 6.40 0.183 3.29 0.175 6.45 0.185 3.17 0.182 5.84 0.179 19.08 

36 0.018 0.019 1.36 0.016 2.65 0.017 3.01 0.019 1.54 0.019 1.81 0.017 4.71 0.019 1.70 0.017 5.26 0.018 1.32 0.019 2.08 0.017 11.01 

37 0.008 0.005 4.06 0.005 4.20 0.005 4.46 0.005 5.30 0.004 3.99 0.006 7.92 0.005 4.33 0.006 7.74 0.007 4.44 0.004 4.47 0.006 24.52 

38 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

39 0.001 0.002 2.46 0.001 3.96 0.001 4.48 0.001 1.90 0.001 1.06 0.001 2.32 0.001 2.90 0.001 1.91 0.002 2.56 0.001 1.41 0.001 1.00 

40 0.000 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 0.000 1.00 

41 0.248 0.224 6.55 0.225 7.19 0.228 8.68 0.223 9.05 0.231 9.96 0.221 12.86 0.223 7.14 0.222 14.25 0.230 16.77 0.227 18.86 0.232 28.85 

42 0.340 0.293 6.78 0.294 11.48 0.298 15.75 0.291 11.73 0.304 13.36 0.289 15.40 0.292 8.41 0.289 17.82 0.301 17.64 0.291 24.84 0.302 29.65 

43 0.301 0.283 6.50 0.279 7.45 0.279 10.57 0.279 8.88 0.281 10.48 0.276 11.68 0.281 6.98 0.274 13.04 0.278 22.99 0.276 18.74 0.280 28.99 

44 0.006 0.006 1.00 0.006 1.02 0.006 1.13 0.006 1.00 0.006 1.00 0.006 2.55 0.006 1.00 0.006 2.53 0.006 1.33 0.006 1.00 0.006 6.69 

45 0.267 0.255 2.83 0.251 3.84 0.252 4.92 0.257 4.24 0.249 8.41 0.250 6.16 0.257 3.13 0.247 7.24 0.253 6.11 0.254 7.70 0.250 22.71 

46 0.060 0.060 1.00 0.061 2.15 0.060 2.82 0.060 1.00 0.061 1.24 0.059 4.02 0.060 1.09 0.059 4.39 0.060 1.38 0.061 1.53 0.059 12.30 

Table E.2. Classification errors and the values of the parameter k obtained for DTW 

Tabela E.2. Greške klasifikacije i vrednosti parametra k dobijenih za DTW 
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ID 1NN kNN Inverse ISquared Rank Fibonacci Dudani Macleod DualD Zavrel Uniform DualU 

 
error error k error k error k error k error k error k error k error k error k error k error k 

1 0.163 0.165 1.25 0.167 1.98 0.168 2.95 0.167 2.41 0.166 3.13 0.167 5.54 0.168 1.71 0.166 5.68 0.166 1.53 0.167 3.90 0.161 16.99 

2 0.363 0.350 3.34 0.337 4.29 0.345 4.09 0.348 5.10 0.347 8.00 0.336 7.07 0.346 4.04 0.332 8.21 0.349 3.77 0.350 10.51 0.344 19.13 

3 0.423 0.458 2.53 0.463 3.19 0.428 1.12 0.473 4.12 0.430 4.32 0.472 3.66 0.460 3.25 0.450 4.07 0.473 3.49 0.440 7.06 0.428 8.27 

4 0.107 0.107 1.00 0.108 1.03 0.111 1.25 0.107 1.04 0.107 1.18 0.108 1.70 0.109 1.05 0.107 1.59 0.108 1.03 0.107 1.38 0.107 2.99 

5 0.000 0.000 1.82 0.000 1.82 0.000 1.82 0.000 2.19 0.000 2.14 0.000 3.37 0.000 2.00 0.000 3.37 0.000 1.82 0.000 2.46 0.000 6.07 

6 0.011 0.011 1.00 0.009 2.52 0.011 1.00 0.011 1.00 0.011 1.00 0.007 3.00 0.011 1.00 0.007 3.00 0.011 1.00 0.011 1.00 0.008 3.70 

7 0.000 0.000 1.06 0.000 1.06 0.000 1.06 0.000 1.09 0.000 1.00 0.000 1.03 0.000 1.06 0.000 1.03 0.000 1.06 0.000 1.00 0.000 1.00 

8 0.061 0.063 1.02 0.068 2.01 0.066 1.08 0.063 1.03 0.064 1.09 0.062 1.09 0.063 1.02 0.064 1.18 0.063 1.02 0.061 1.74 0.061 1.04 

9 0.187 0.192 2.33 0.187 2.70 0.187 3.31 0.191 3.25 0.183 6.25 0.184 5.68 0.190 2.57 0.184 6.49 0.189 2.56 0.184 7.51 0.182 19.18 

10 0.158 0.161 1.23 0.162 1.64 0.168 3.26 0.163 2.01 0.162 3.09 0.164 5.66 0.162 1.65 0.161 6.52 0.160 1.40 0.162 8.71 0.150 19.53 

11 0.181 0.184 1.34 0.186 1.69 0.190 2.45 0.185 1.77 0.185 4.26 0.186 5.69 0.187 1.68 0.187 6.74 0.185 1.47 0.184 4.96 0.181 16.61 

12 0.007 0.007 1.42 0.007 1.42 0.007 1.42 0.007 1.63 0.007 1.60 0.007 1.76 0.007 1.52 0.007 1.77 0.007 1.42 0.007 1.60 0.007 1.00 

13 0.098 0.098 1.00 0.101 1.26 0.102 1.37 0.098 1.04 0.102 1.48 0.098 2.43 0.100 1.21 0.099 2.85 0.100 1.24 0.103 1.97 0.101 6.25 

14 0.001 0.001 1.00 0.001 1.26 0.001 1.03 0.001 1.00 0.001 1.03 0.001 1.66 0.001 1.16 0.001 1.66 0.001 1.03 0.001 1.03 0.001 1.97 

15 0.009 0.010 1.70 0.010 2.55 0.010 2.78 0.010 2.40 0.009 4.45 0.009 5.23 0.010 2.36 0.009 5.24 0.010 2.01 0.009 5.17 0.009 7.94 

16 0.009 0.022 4.90 0.022 5.65 0.016 8.44 0.027 5.77 0.009 1.00 0.010 1.27 0.024 5.13 0.009 1.00 0.023 5.30 0.009 1.09 0.009 1.11 

17 0.098 0.092 5.46 0.076 6.14 0.077 7.67 0.083 8.59 0.094 6.39 0.073 14.71 0.082 6.84 0.073 15.85 0.083 5.62 0.081 12.83 0.100 15.15 

18 0.008 0.010 1.30 0.010 1.57 0.007 2.49 0.010 1.59 0.010 1.54 0.007 3.17 0.011 1.43 0.006 3.47 0.010 1.33 0.010 1.97 0.007 6.61 

19 0.531 0.514 10.32 0.496 9.91 0.497 11.23 0.502 12.47 0.510 7.91 0.492 17.94 0.501 10.08 0.488 19.90 0.499 9.45 0.507 18.87 0.521 21.68 

20 0.401 0.398 3.76 0.372 9.42 0.376 7.65 0.392 6.00 0.391 7.67 0.369 7.87 0.386 4.35 0.371 10.28 0.390 4.26 0.394 10.22 0.390 23.95 

21 0.036 0.033 3.88 0.031 4.17 0.031 5.50 0.032 5.53 0.033 5.02 0.032 8.58 0.031 5.12 0.032 8.48 0.032 4.47 0.033 5.89 0.033 6.50 

22 0.146 0.152 1.42 0.166 2.01 0.179 3.45 0.163 2.17 0.154 1.48 0.173 4.35 0.169 2.32 0.173 4.56 0.167 1.92 0.173 4.71 0.161 8.53 

23 0.269 0.278 4.98 0.273 5.52 0.272 6.22 0.277 7.34 0.272 6.58 0.285 9.25 0.273 5.44 0.280 9.52 0.274 5.24 0.273 11.73 0.270 17.42 

24 0.069 0.032 22.92 0.031 25.64 0.031 23.29 0.032 27.36 0.053 8.35 0.031 25.27 0.031 25.40 0.030 25.46 0.032 23.38 0.041 27.94 0.031 24.64 

25 0.229 0.232 3.37 0.225 5.51 0.217 6.92 0.222 6.08 0.211 10.89 0.212 12.59 0.224 5.92 0.212 14.22 0.222 4.36 0.215 14.76 0.221 26.15 

26 0.015 0.016 1.36 0.017 2.70 0.017 4.12 0.017 2.45 0.016 3.07 0.016 4.28 0.017 2.45 0.017 5.49 0.017 2.32 0.016 7.74 0.014 12.51 

27 0.184 0.155 6.33 0.150 8.05 0.153 6.70 0.154 9.24 0.157 10.06 0.151 13.48 0.152 7.60 0.151 17.26 0.153 6.50 0.153 21.12 0.157 28.57 

28 0.114 0.096 7.75 0.092 14.90 0.095 8.45 0.094 12.54 0.097 10.60 0.092 23.00 0.095 9.50 0.090 24.14 0.095 8.10 0.094 22.78 0.100 28.98 

29 0.115 0.117 2.36 0.123 3.31 0.117 3.11 0.120 3.46 0.115 3.26 0.120 4.15 0.118 2.81 0.120 4.37 0.117 2.75 0.115 3.88 0.115 2.81 

30 0.131 0.138 1.94 0.138 2.94 0.141 3.23 0.137 2.84 0.136 4.92 0.132 7.27 0.137 3.16 0.130 7.95 0.137 2.80 0.134 7.63 0.126 17.03 

31 0.000 0.001 1.14 0.001 1.24 0.001 1.24 0.000 1.24 0.000 1.06 0.000 1.18 0.000 1.20 0.000 1.18 0.001 1.24 0.000 1.19 0.000 1.27 

32 0.016 0.019 1.92 0.020 2.84 0.019 2.95 0.018 2.51 0.017 2.41 0.018 4.81 0.017 2.78 0.018 5.15 0.019 2.46 0.018 4.67 0.016 10.60 

33 0.023 0.024 1.16 0.025 1.50 0.025 1.81 0.024 1.29 0.024 1.45 0.025 3.53 0.025 1.49 0.025 3.49 0.024 1.34 0.024 1.68 0.024 9.00 

34 0.092 0.087 3.20 0.086 4.32 0.086 4.38 0.085 5.61 0.086 6.58 0.085 9.07 0.086 4.43 0.085 9.06 0.086 4.31 0.086 6.80 0.086 28.28 

35 0.090 0.093 1.59 0.093 1.94 0.093 2.09 0.093 2.11 0.093 3.10 0.084 4.85 0.092 2.31 0.086 5.00 0.093 1.91 0.092 5.28 0.087 14.42 

36 0.012 0.014 1.92 0.014 3.91 0.014 4.24 0.013 1.80 0.013 1.51 0.012 4.86 0.014 2.92 0.012 5.00 0.015 3.18 0.014 5.86 0.012 9.76 

37 0.022 0.020 7.63 0.018 7.97 0.018 8.18 0.019 9.33 0.022 5.59 0.021 11.99 0.017 8.40 0.021 12.25 0.018 7.91 0.019 10.01 0.021 15.64 

38 0.001 0.003 1.12 0.002 1.29 0.002 1.13 0.003 1.30 0.002 1.18 0.001 1.41 0.004 1.27 0.001 1.55 0.003 1.26 0.002 1.32 0.001 1.38 

39 0.001 0.002 3.22 0.002 3.40 0.001 2.40 0.002 3.39 0.001 2.11 0.001 2.92 0.001 2.68 0.001 2.92 0.002 3.16 0.001 2.32 0.001 2.56 

40 0.000 0.000 1.02 0.000 1.02 0.000 1.02 0.000 1.03 0.000 1.03 0.000 1.02 0.000 1.02 0.000 1.02 0.000 1.02 0.000 1.03 0.000 1.02 

41 0.213 0.193 5.55 0.193 6.15 0.193 6.29 0.190 7.57 0.193 10.57 0.189 10.33 0.191 5.77 0.189 11.62 0.191 5.59 0.189 14.33 0.192 27.14 

42 0.299 0.267 8.24 0.263 10.14 0.260 10.12 0.262 11.26 0.271 12.00 0.260 13.76 0.261 8.83 0.259 15.44 0.262 8.36 0.263 24.65 0.270 27.94 

43 0.251 0.240 3.74 0.240 4.66 0.239 5.05 0.237 5.96 0.237 9.16 0.238 9.81 0.238 4.57 0.237 11.02 0.239 4.31 0.238 11.96 0.239 27.44 

44 0.002 0.002 1.10 0.002 1.38 0.002 2.62 0.002 1.16 0.002 1.21 0.002 3.29 0.002 1.52 0.002 3.66 0.002 1.14 0.002 1.69 0.002 8.28 

45 0.154 0.156 1.29 0.157 1.88 0.159 2.52 0.157 1.82 0.156 3.23 0.156 4.84 0.157 1.80 0.153 5.20 0.156 1.56 0.157 4.15 0.150 19.07 

46 0.030 0.031 1.02 0.031 1.23 0.032 1.70 0.031 1.03 0.031 1.69 0.030 5.13 0.031 1.32 0.029 5.40 0.031 1.29 0.032 2.07 0.030 17.39 

Table E.3. Classification errors and the values of the parameter k obtained for LCS 

Tabela E.3. Greške klasifikacije i vrednosti parametra k dobijenih za LCS 
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Vremenska serija predstavlјa najjednostavniji oblik temporalnih podataka - niz brojeva koji 
opisuje promenu posmatrane pojave u toku vremena. Svaki broj vremenske serije opisuje 
dati fenomen u jednoj tački vremena [19]. Vremenske serije se koriste za skladištenje, prikaz 
i analizu podataka u širokom spektru različitih domena, uklјučujući razne oblasti nauke, 
medicine, ekonomije, ekologije, telekomunikacija i meteorologije [25, 40, 63]. U mnogim 
naučnim oblastima, merenja se vrše tokom vremena a prikuplјeni podaci se mogu 
organizovati u obliku vremenskih serija radi pronalaženja korisnih informacija [25]. U 
pronalaženju novih i korisnih informacija iz prikuplјenih podataka možemo se osloniti na 
metode statističke analize i modeliranja, odnosno na data mining i mašinsko učenje [63]. 

Istraživanje i analiza tehnika statističkog modeliranja ima dugu istoriju i upotrebu u raznim 
oblastima [63], ali rastuća potreba za obradom sve većih količina podataka doprinela je 
značajnijem proučavanju različitih zadataka mining-a vremenskih serija [21, 39, 95]: 

 Indeksiranje (eng. indexing) - nalaženje vremenske serije u bazi podataka koja je 
najsličnija datoj vremenskoj seriji Q na osnovu date mere sličnosti/različitosti d. 

 Klasifikacija (eng. classification) - svrstavanje date vremenske serije u jednu ili više 
predifinisanih klasa. 

 Grupisanje (eng. clustering) - nalaženje prirodnog načina grupisanja vremenskih 
serija neke baze podataka na osnovu date mere sličnosti/različitosti d. 

 Predviđanje (eng. predicting) - predviđanje budućih vrednosti vremenskih serija: na 
osnovu date vremenske serije Q koja sadrži n tačaka predvideti vrednost za      -
tu tačku. 

 Sumiranje (eng. summarization) - za datu vremensku seriju Q koja sadrži ekstremno 
veliki broj tačaka napraviti aproksimaciju (smanjenjem broja tačaka) koja će da zadrži 
suštinske osobine te serije. 

 Otkrivanje anomalija (eng. anomaly detection) - na osnovu date vremenske serije Q 
za koju se smatra da je pravilna (normalna) naći sve delove još neprotumačene 
vremenske serije S koji predstavljaju anomalije ili neočekivane, interesantne pojave. 

 Segmentacija (eng. segmentation) - razlikujemo dve podoblasti: 

o Za datu vremensku seriju Q koja sadrži n tačaka napraviti model    na osnovu 
K pojedinačnih segmenata (   ) tako da    bude bliska aproksimaciju serije 
Q. 

o Datu vremensku seriju Q podeliti na K interno homogenih delova. 
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Među ovim zadacima, u poslednje vreme, sve više pažnje se posvećuje istraživanju različitih 
aspekata klasifikacije vremenskih serija [34, 37, 45, 93, 111, 130]. Klasifikacija predstavlja 
proces grupisanja vremenskih serija u unapred definisane kategorije, klase a vrši se na 
osnovu jednog izabranog atributa (oznake klase - eng. class label) koji može imati konačan 
broj različitih vrednosti - broj klasa je na ovaj način unapred poznat. To je ključna razlika 
između klasifikacije i grupisanja: u slučaju grupisanja ne znamo unapred koliko ćemo imati 
grupa - one se otkrivaju u toku samog procesa grupisanja. Na ovaj način, klasifikaciju 
možemo posmatrati kao nadgledano učenje (eng. supervised learning) a grupisanje kao 
nenadgledano učenje (eng. unsupervised learning). Zadatak algoritma nadgledanog učenja 
je da nađe funkciju koja će dati predviđanja za nove, nepoznate objekte na osnovu 
označenih, poznatih primera iz skupa obuka [46, 78]. S druge strane, zadatak algoritma 
nenadgledanog učenja je da nauči prepoznavanje obrasce isključivo pomoću neoznačenih 
objekata [46, 78]. 

Veliki broj radova je posvećen mogućnostima primene mnogih dobro poznatih tehnika 
mašinskog učenja kao što su: stabla odlučivanja [102], neuronske mreže [81], metoda 
potpornih vektora (eng. support vector machines) [128], pravila logike prvog reda (eng. first 
order logic rules) [101], Bejzov klasifikator [85]. Međutim, pokazano je da, u slučaju 
vremenskih serija, jedan od najjednostavnijih metoda tj. metoda najbližih suseda (eng. 
nearest-neighbor rule) često daje bolјe rezultate od ovih složenijih metoda [130]. 

Metoda najbližeg suseda (skraćeno 1NN) je verovatno jedan od najcenjenijih data mining 
algoritama [127]. Ona se zasniva na veoma jednostavnoj ideji: nepoznati, još neklasifikovani 
uzorci stavlјaju se u klasu njihovih najbližih suseda [18]. Metoda k najbližih suseda (eng. k-
nearest neighbor) predstavlјa uopštenje 1NN klasifikatora [28]: tražimo k najbližih suseda i, 
za još neklasifikovani uzorak, biramo onu klasu kojoj pripada najveći broj njegovih suseda. 
Jedan od mogućih nedostataka ovog pristupa jeste da su pri izboru klase svi susedi 
ravnopravni. Ovaj nedostatak možemo pokušati popraviti dodelјivanjem težina susedima u 
skladu sa njihovim rastojanjem od uzorka koji želimo da klasifikujemo [22]. U literaturi 
predložen je veći broj različitih načina računanja težina najbližih suseda [22, 35, 36, 62, 69, 
74, 84, 133]. Svaki od ovih radova koji opisuje novi način računanja težina izveštava o 
superiornosti te nove metode u odnosu na neka prethodna rešenja, zaklјučci su obično 
zasnovani na upoređivanju tačnosti klasifikacije oslanjajući se isklјučivo na Euklidsko 
rastojanje, i na osnovu relativno malog broja skupova podataka koji nisu iz domena 
vremenskih serija. Metoda najbližih suseda i različiti načini računanja težina koji 
predstavljaju predmet istraživanja ove disertacije opisani su u odeljku 3.1. 

Pošto nalaženje najbližeg suseda predstavlјa osnovnu ideju 1NN metode, jedan od 
najbitnijih pitanja implementacije odnosi se na izbor odgovarajuće mere rastojanja - ona 
opisuje koliko su dve vremenske serije slične odnosno različite. Međutim, za razliku od 
tradicionalnih baza podataka kod kojih je definicija sličnosti/različitosti između podataka 
jednostavan, rastojanje između vremenskih serija treba pažljivo definisati tako da verno 
opisuje sličnost/različitost između pojava/objekata predstavljenih u obliku vremenskih 
serija. Rastojanje između dve vremenske serije definišemo pomoću nenegativne funkcije 
rastojanja koja opisuje stepen različitosti između njih [25]. Veće rastojanje označava manju 
sličnost između vremenskih serija i obrnuto. 
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U domenu vremenskih serija koristi se nekoliko različitih mera zasnovanih na sličnost serija 
[31, 68, 108]: Euklidsko rastojanje [26], dinamičko iskrivlјenje vremena (eng. Dynamic Time 
Warping - DTW) [10], najduži zajednički podniz (eng. Longest Common Subsequence - LCS) 
[121], rastojanje uređivanja sa realnom kaznom (eng. Edit Distance with Real Penalty - ERP) 
[16], rastojanje uređivanja nad realnim serijama (eng. Edit Distance on Real sequence - EDR) 
[17] i druge. Pregled najčešće korišćenih mera sličnosti dat je u odeljku 2.1. 

Euklidsko rastojanje se zasniva na linearno uparivanje tačaka vremenskih serija: i-ta tačka 
prve serije upoređuje se sa i-tom tačkom druge serije. Da bi poboljšali procenu sličnosti, 
elastične mere kao što su DTW, LCS, ERP I EDR omogućavaju  i nelinearno uparivanje tačaka: 
jedna tačka prve serije može biti uparena sa nizom susednih tačaka druge serije i obrnuto. 

Osnovnu tehniku implementacije većine navedenih mera sličnosti predstavlјa dinamičko 
programiranje koja zbog složenosti izračunavanja često nije pogodna za primenu u većim 
problemima iz realnog sveta. Za razrešenje ovog problema možemo pokušati sa 
ograničavanjem oblasti pretrage uvođenjem globalnih ograničenja kao što su Sakoe-Chiba 
pojas [105] i Itakura paralelogram [44] - način primene ovih ograničenja prikazan je u 
odeljku 2.2. Pored ubrzanja računanja, sugerisano je i da upotreba globalnih ograničenja 
može pobolјšati tačnost klasifikacije [98, 130]. 

Predmet istraživanja ove disertacije obuhvata detaljan pregled i analizu uticaja Sakoe-Chiba 
globalnog ograničenja [105] na najčešće korišćene elastične mere sličnosti u oblasti data 
mining-a vremenskih serija sa naglaskom na tačnost klasifikacije. Izbor mere sličnosti jedan 
je od najvažnijih aspekata analize vremenskih serija - ona treba verno reflektovati sličnost 
između podataka prikazanih u obliku vremenskih serija. Mera sličnosti predstavlјa kritičnu 
komponentu mnogih zadataka mining-a vremenskih serija, uklјučujući klasifikaciju, 
grupisanje (eng. clustering), predviđanje, otkrivanje anomalija i drugih. 

Istraživanje obuhvaćeno ovom disertacijom usmereno je na nekoliko pravaca:  

1. pregled efekata globalnih ograničenja na performanse računanja mera sličnosti 
(odeljak 5.2),  

2. detalјna analiza posledice ograničenja elastičnih mera sličnosti na tačnost 
klasifikacije klasičnih tehnika klasifikacije (odeljci 5.3 i 5.4),  

3. opsežna studija uticaja različitih načina računanja težina (eng. weighting scheme) 
na klasifikaciju vremenskih serija (odeljak 5.5),  

4. razvoj biblioteke otvorenog koda (Framework for Analysis and Prediction - FAP) 
koja će integrisati glavne tehnike i metode potrebne za analizu i mining 
vremenskih serija i koja je korišćena za realizaciju ovih eksperimenata 
(poglavlje 6). 

 

Svi eksperimenti u okviru ove disertacije rađeni su sa skupovima podataka UCR (University 
of California, Riverside) repozitorijuma vremenskih serija [50], koji obuhvata većinu svih 



Sažetak 

146 
 

javno dostupnih skupova označenih vremenskih serija u svetu. Ova kolekcija se najčešće 
koristi za validaciju različitih koncepata mining-a vremenskih serija. Obuhvaćeni skupovi 
podataka potiču iz obilja različitih domena, uključujući medicinu, robotiku, astronomiju, 
biologiju, prepoznavanje lica i rukopisa, itd. Pregled osobina korišćenih skupova dat je u 
odeljku 4.2. 

Sva ispitivanja u okviru ove disertacije izvedena su oslanjajući se isključivo na FAP biblioteku 
(videti pogavlja 4 i 6) razvijenu na Departmanu za matematiku i informatiku Prirodno-
matematičkog fakulteta u Novom Sadu. Za potrebe naših istraživanja razvili smo i dva 
posebna programa: SCVGUI za proveru tačnosti implementacije različitih mera sličnosti u 
okviru FAP biblioteke (odeljak 4.3) odnosno DMGUI za generisanje matrica rastojanja i 
susedstva radi ubrzavanja eksperimenata (odeljak 4.4). Oba ova programa podržavaju 
prekidanje započetih izračunavanja i njihovo nastavljanje od tačke prekida. Ova osobina je 
direkto podržana i od strane FAP biblioteke. Serijalizovani Java objekti koji opisuju računanja 
mogu se preneti i na druge računare na kojima se njihovo izvršavanje može biti nastavljeno. 
Mogućnost serijalizacije Java objekata iskoristili smo i za razvoj posebnog agentskog sistema 
za distribuirano generisanje matrice rastojanja [75, 76]. 

Na osnovu rezultata niza opsežnih eksperimenata prikazanih i tumačenih u poglavlju 5, 
ispitali smo mogućnosti poboljšanja tačnosti klasifikacije 1NN i kNN klasifikatora oslanjajući 
se na ograničavanje prozora iskrivljenja elastičnih mera sličnosti koristeći Sakoe-Chiba pojas, 
odnosno na dodeljivanje različitih težina najbližim susedima. Pored toga, koristeći ove 
tehnike proverili smo i stav da je tačnost klasifikacije jednostavanog 1NN klasifikatora teško 
nadmašiti [130]. Pseudokodovi korišćenih algoritama prikazani su i opisani u odeljku 5.1. 

U odeljku 5.2 ispitali smo uticaj Sakoe-Chiba globalnog ograničenja na performanse dve 
najreprezentativnije elastične mere sličnosti vremenskih serija: DTW i LCS. Da bismo odredili 
u kojoj meri ubrzava primena globalnih ograničenja izračuvanje sličnosti između vremenskih 
serija, izmerili smo vreme potrebno za generisanje matrica rastojanja za veći broj skupova 
podataka - uz različitih vrednosti parametra r ograničenja: 100% (neograničena mera), 75%, 
50%, 25%, 20%, 15%, 5%, 1% i 0%. Ove vrednosti označavaju širine Sako-Chiba pojasa 
izražene u procentima u odnosu na dužine vremenskih serija. Ovakva distribucija je izabrana 
na osnovu očekivanja da se mere sa većim pojasom ograničenja ponašaju slično kao i 
neograničene mere, dok manje vrednosti parametra r daju interesantnija odstupanja [98, 
130]. 

Matrica rastojanja nekog skupa podataka je matrica u kojoj elemenat na poziciji       
predstavlja rastojanje između i-te i j-te vremenske serije tog skupa. Izračunavanje matrice 
rastojanja je dugotrajan proces što ga čini pogodnim za merenje efikasnosti globalnih 
ograničenja. Preko opsežnih eksperimenata opisanih u odeljku 5.2 pokazali smo da upotreba 
globalnih ograničenja može značajno smanjiti vreme izračunavanja mera sličnosti. Na 
osnovu dobijenih rezultata možemo zaključiti da je razlika u dužini trajanja računanja 
između neograničenih i ograničenih verzija mera sličnosti (sa malim vrednostima parametra 
r) veličine reda dva a negde i tri. U okviru budućih istraživanja bilo bi interesantno ispitati 
uticaj Sakoe-Chiba ograničenja i na druge elastične mere sličnosti. Druge moguće teme 
budućih radova uključuju proširenje ovih ispitivanja i na Itakura paralelogramu. 
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U literaturi ([98, 130]) je sugerisano da, u slučaju DTW-a, upotreba globalnih ograničenja 
može poboljšati tačnost klasifikacije u odnosu na neograničenu meru sličnosti. Da bismo 
bolje razumeli uticaj Sakoe-Chiba ograničenja, u odeljku 5.3 istražili smo efikasnost i 
ponašanje 1NN klasifikatora pod različitim vrednostima parametra r i ispitali smo njegovu 
tačnost. Naši eksperimenti su pored DTW-a obuhvatili i ostale tri elastične mere sličnosti 
(LCS, ERP i EDR). U prvoj fazi eksperimenata (odeljak 5.3.1) analizirali smo promene u grafu 
susedstva u odnosu na smanjivanje veličine parametra r. U drugoj fazi eksperimenata 
(odeljak 5.3.2) istražili smo kako ove promene utiču na 1NN klasifikator u pogledu na oznake 
(klase) najbližih suseda. Ispitivanja smo zaokružili u trećoj fazi razmatranjem uticaja 
globalnih ograničenja na tačnost klasifikacije (odeljak 5.3.3). 

Na osnovu opsežnih ispitivanja opisanih u odeljku 5.3 možemo zaključiti da se ograničene 
mere kvalitativno razlikuju od neograničenih. Iz dobijenih rezultata jasno možemo videti da 
za male vrednosti parametra r (manjih od 15%-10%) promene u 1NN grafu postaju značajne 
za sve razmatrane mere sličnosti. Pored toga, uočili smo i to da postoje značajne razlike u 
efektima ograničenja među različitim merama sličnosti. Posmatrajući 1NN graf utvrdili smo 
da je na primenu globalnih ograničenja najosetljivija DTW a najmanje osetljiva EDR. 
Promene u slučaju ERP i LCS mera su negde između prethodna dva granična slučaja. 
Posmatrajući najveće vrednosti parametra r potrebnih da najmanje 10% vremenskih serija 
promeni svoj najbliži sused (u odnosu na neograničene verzije) možemo zaključiti da 
promene ovog obima najranije se javljaju u slučaju DTW-a (oko      ), zatim u slučaju 
ERP-a (oko     ) i LCS-a (oko     ) i na kraju u slučaju EDR-a (oko     ). Uočene 
razlike potvrđene su i rezultatima uparenim Vilkoksonovim testom rangova sa znakom (eng. 
pairwise Wilcoxon sign-rank test). 

Pošto rezultati klasifikacije u slučaju 1NN klasifikatora u potpunosti zavise od klase najbližeg 
suseda, promene u grafu susedstva direktno utiču na proces klasifikacije. U drugoj fazi 
eksperimenata istražili smo u kojoj meri menjaju najbliži susedi svoje klase pod uticajem 
Sakoe-Chiba ograničenja. Dobijeni rezultati potvrdili su saznanja do kojih smo došli u prvom 
koraku ispitivanja: najveće promene smo zabeležili za DTW, najmanje za EDR a LCS i ERP se 
nalaze između ove dve mere. Pored toga, analizirajući procenat onih vremenskih serija čiji su 
najbliži susedi promenili svoje klase (posmatrajući samo one serije koje su promenile svoje 
najbliže susede) u oblasti      utvrdili smo i to da između posmatranih elastičnih mera 
sličnosti postoji uočljiva razlika: rezultati uparenog Vilkoksonovog testa rangova sa znakom 
su različita za svaku ispitivanu meru (videti odeljak 5.3.2).  

Upoređivanjem tačnosti klasifikacije došli smo do zaključka da DTW (u opštem slučaju) 
pokazuje blagu prednost u odnosu na ostale mere rastojanja (naročito u odnosu na ERP), ali 
je i najosetljivija na izbor vrednosti parametra r. Statistički testovi su donekle potvrdili da se 
DTW može smatrati kao generalno najbolja mera rastojanja, ali dokazi nisu naročito jaki. Za 
svaku meru sličnosti možemo naći barem nekoliko skupova podataka za koje je data mera 
superiornija u odnosu na ostale. Zbog toga, izbor najbolje mere rastojanja može varirati od 
problema do problema, bez obzira na ovaj opšti rezultat. Posmatrajući prosečne greške 
klasifikacije za različite vrednosti parametra r, nalazimo uočljiv rast za male vrednosti 
parametra r (    ). Maksimalne vrednosti se kod sve četiri mere dostižu za     . 
Najveće povećanje je primećeno u slučaju LCS-a, a najmanje kod DTW-a. U intervalu od 
       do     , razmatrane mere sličnosti se ponašaju različito: u slučaju DTW-a, 
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prosečna greška klasifikacije skoro monotono opada a kod ERP-a skoro monotono raste. U 
slučaju LCS-a i EDR-a možemo uočiti blagu tendenciju rasta, ali promene nisu velike. To 
sugeriše da, iako možda u opštem slučaju DTW izgleda kao najbolji izbor, ipak LCS i EDR 
mogu predstavljati sigurnije izbore zbog manje izražene potrebe za pažljivo podešavanje 
parametra r.  

Nalazi naših istraživanja jasno su pokazali da sve glavne eleastične mere sličnosti (DTW, LCS, 
ERP i EDR) značajno menjaju svoje ponašanje za male vrednosti globalnog ograničenja. 
Očekujemo da će naši rezultati pomoći istraživačima i praktičarima u odabiru i podešavanju 
odgovarajuće mere sličnosti u skladu sa njihovim zadacima, što će ubrzati i olakšati i izbor i 
proces podešavanja, i obezbediti i tačnije rezultate. Pored toga, uvid u ponašanje mera 
sličnosti u odnosu na menjanje ograničenja može biti od koristi i za kreiranje efikasnih 
strategija indeksiranja radi nalaženja (približno) najbližih suseda. U okviru budućih 
istraživanja planiramo da proširimo eksperimente i na druge mere sličnosti, a takođe bi bilo 
interesantno uporediti uticaj Itakura paralelograme sa Sakoe-Chiba ograničenjem. 

U odeljku 5.4 proširili smo naša ispitivanja i na kNN klasifikator (sa vrednostima parametra k 
u rasponu od 1 do 30). Da bismo dobili dublji uvid u uticaj ograničenja pojasa iskrivljenja, 
naši eksperimenti obuhvatili su pet različitih metoda evaluacije tačnosti klasifikacije (one su 
opisane u pogavlju 3.2): leave-one-out (LOO), ukrštena validacija sa slojevitom podelom na 9 
podskupova (stratified 9-fold cross-validation - SCV1x9), 5 puta ponovljena ukrštena 
validacija sa slojevitom podelom na 2 podskupa (5 times repeated stratified 2-fold cross-
validation - SCV5x2), 10 puta ponovljena ukrštena validacija sa slojevitom podelom na 10 
podskupova (10 times repeated stratified 10-fold cross validation - SCV10x10) i 10 puta 
ponovljena slojevita holdout metoda (SHO10x). Pored toga, analizirali smo kNN klasifikator 
bez težina i sa primenom težina (težine su računate po formuli (3.5)): posmatrali smo uticaj 
parametra k na tačnost klasifikacije nalaženjem najmanjeg Sakoe-Chiba pojasa koji će dati 
najmanju grešku za kNN. 

Rezultati eksperimenata odeljka 5.4 jasno su potvrdili poseban značaj prvog suseda kada je 
reč o vremenskim serijama. Bez primena težina najbolje rezultate dobili smo sa    . U 
slučaju obe mere sličnosti (DTW i LCS), greška klasifikacije kNN klasifikatora bez težina raste 
skoro linearno kako povećavamo vrednost parametra k. S druge strane, sa uvođenjem težina 
situacija se menja u izvesnoj meri. Najbolje rezultate dobili smo za vrednosti oko    . 
Generalno, možemo zaključiti da težinska šema (koja daje prednost najbližem susedu) 
značajno poboljšava tačnost klasifikacije za sve posmatrane vrednosti parametra k. 

Rezultati su ukazali i na to da primena težina značajno utiče na parametar ograničenja r. U 
slučaju kNN klasifikatora bez težina, vrednost parametra r raste zajedno sa povećavanjem 
parametra k. S druge strane, primenom težinske šeme vrednost parametra r ostaje približno 
ista za sve vrednosti parametra k. Pored toga, razlika imeđu najmanjih i najvećih vrednosti 
parametra r je oko dva puta manja u odnosu na kNN klasifikator bez težina. 

Sva ova zapažanja upućuju na to da primena težinske šeme sa favorizovanjem najbližeg 
suseda može poboljšati kvalitet i stabilnost kNN klasifikatora. Kada je reč o vremenskim 
serijama, najbliži sused ima posebno značenje. Uzimajući tu činjenicu u obzir možemo 
značajno poboljšati kvalitet kNN klasifikatora za sve vrednosti parametra k - za neke male 
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vrednosti može dati tačnije rezultate od 1NN. U budućim studijama bilo bi interesantno 
ispitati i uticaj drugih težinskih šema [22, 35, 36, 69] odnosno proširiti ispitivanja i na druge 
mere sličnosti, uključujući i verzije sa Itakura ograničenjem. 

U poslednjoj deceniji klasifikacija je intenzivno ispitivana u oblasti mining-a vremenskih 
serija [34, 45, 93, 130, 131]. Između značajnog broja predloženih tehnika, metoda najbližeg 
suseda i dinamičko iskrivljenje vremena (DTW) pokazali su se kao jedna od najboljih 
kombinacija [130]. U pokušaju da se poboljša tačnost klasifikacije 1NN klasifikatora, prilikom 
izbora klase, kNN klasifikator uzima u obzir ne jedan, već k najbližih suseda. Sledeći korak u 
istraživanju mogućnosti poboljšanja jednostavne metode najbližih suseda jeste dodeljivanje 
različitih težina susedima. Kroz detaljnu analizu u okviru odeljka 5.5 uporedili smo širok 
spektar različitih težinskih funkcija u kombinaciji sa tri najčešće korišćenih mera sličnosti na 
osnovu najvećeg repozitorijuma besplatno dostupnih skupova označenih vremenskih serija 
[50]. 

U ovim eksperimentima posmatrali smo Euklidsko rastojanje i dve najreprezentativnije 
elastične mere sličnosti vremenskih serija (DTW i LCS) u neograničenom obliku. Tačnost 
klasifikacije računali smo pomoću 10 puta ponovljene ukrštene validacije sa slojevitom 
podelom na 10 podskupova (SCV10x10) koristeći najbolju vrednost parametra k iz oblasti od 
1 do 30 dobijenu pomoću ukrštene validacije sa slojevitom podelom na 9 podskupova 
(SCV1x9) računate na skupu obuke. 

Posmatrajući prosečnu tačnost klasifikacije, u slučaju svih razmatranih mera sličnosti, 
najbolji rezultati postignuti su pomoću funkcije težina definisane formulom (3.11) u radu 
[35]. Najlošiji rezultati dobijeni su sa metodom najbližeg suseda (1NN klasifikator) - osim u 
slučaju Euklidskog rastojanja. Važno je napomenuti da razlike između najboljih i najlošijih 
rezultata nisu naročito velike (     ). Rezultati naših detaljnih ispitivanja potvrdili su 
mišljenje da je jednostavnu metodu najbližih suseda teško nadmašiti [130]. Posmatrajući 
broj statističko značajnih pobeda i poraza, u slučaju Euklidskog rastojanja najbolji rezultat 
postignut je pomoću funkcije težina definisane od strane Dudani-ja [22] (jednačina (3.2)), a u 
slučaju DTW i LCS mera pomoću težinske šeme definisane jednačinom (3.11) u radu [35]. 
Rezultati oba statistička testa (corrected resampled t-test i Wilcoxon sing-rank test) podržali 
su Dudani i DualD šeme težina kao najbolje izbore u kombinaciji sa svim analiziranim 
merama sličnosti. DualU funkcija težina definisana jednačinom (3.9) predstavlja treći najbolji 
izbor. 

Pošto elastične mere (DTW, LCS, ERP i EDR) generalno daju precizniju tačnost klasifikacije u 
odnosu na ne-elastične mere, bilo bi interesantno proveriti uticaj različitih šema računanja 
težina i na ERP odnosno EDR (pored DTW i LCS) kao i na ograničene verzije svih ovih mera 
sličnosti. Glavni nedostatak ovih mera je brzina izračunavanja, pošto se zasnivaju na 
algoritmima kvadratne složenosti. U poglavlju 5 pokazali smo da primena globalnih 
ograničenja značajno ubrzava proces računanja, a u nekim slučajevima čak i poboljšava 
tačnost klasifikacije. Pored toga, zbog velike dimenzionalnosti podataka u obliku vremenskih 
serija, bilo bi zanimljivo istražiti interakciju fenomena habovitosti (eng. hubness) [93] sa 
različitim funkcijama računanja težina, odnosno ponašanje težinskih šema zasnovanih na 
habovima (eng. hub) [92]. 
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Analiza i mining vremenskih serija predstavljali su veoma popularne oblasti istraživanja u 
protekloj deceniji. To je dovelo do pojave velikih količina predloženih tehnika i algoritama. 
Većina tih tehnika i algoritama predstavljene su sporadično a ponekad nisu pravilno 
upoređeni sa drugim, konkurentnim rešenjima iz datih oblasti. To je posledica nedostatka 
kvalitetnog sistema otvorenog koda koji podržava različite aspekte mining-a vremenskih 
serija. Motivisani svim ovim razlozima, razvili smo jednu univerzalnu biblioteku (Framework 
for Analysis and Prediction - FAP) u koju će biti uključeni svi glavni koncepti kao što su mere 
sličnosti, klasifikatori, reprezentacije i tehnike pretprocesiranja vremenskih serija. Takva 
biblioteka može u velikoj meri pomoći istraživačima u testiranju i upoređivanju novih 
koncepata sa već postojećima. 

Postojeće softverske sisteme za analizu vremenskih serija možemo grupisati u dve velike 
kategorije: opšti sistemi mining-a podataka i mašinskog učenja (kao što su, na primer, WEKA 
i RapidMiner Studio) i statistički sistemi koji podržavaju statističke i ekonometričke modele 
vremenskih serija (na primer, SAS, MATLAB i R). Pored ove dve velike grupe aplikacija 
postoje i usko specijalizovani programi kao što su, na primer, Spiral i VizzTree koji se koriste 
za vizualizaciju vremenskih serija. FAP biblioteka je zamišljena kao besplatan, proširiv 
softverski paket otvorenog koda specijalizovan za potrebe analize i mining-a vremenskih 
serija. Razvija se u programskom jeziku Java što obezbeđuje platformsku nezavisnost, lakše 
održavanje i nadogradnju. 

U trenutnom stanju razvoja implementirane su sve najvažnije mere sličnosti, nekoliko 
algoritama za podešavanje parametara mera sličnosti, tehnika klasifikacije, metoda 
evaluacije klasifikatora, reprezentacija vremenskih serija i tehnika pretprocesiranja. 
Implementirane mere sličnosti uključuju:   , Swale, neograničene i ograničene verzije 

elastičnih mera (DTW, LCS, ERP i EDR). Ograničene mere su implementirane pomoću Sakoe-
Chiba i Itakura ograničenja. FAP sistem sadrži implementaciju 1NN i kNN klasifikatora 
(uključujući i sve težinske šeme opisane u odeljku 3.1 i korišćene u eksperimentima poglavlja 
5) zajedno sa nekoliko metoda evaluacije tačnosti klasifikatora: Holdout, Cross-Validation i 
Leave-One-Out. Od reprezentacija biblioteka sadrži Piecewise Linear Approximation (PLA) 
[51], Piecewise Aggregate Approximation (PAA) [47], Adaptive Piecewise Constant 
Approximation (APCA) [48], Symbolic Aggregate Approximation (SAX) [67] i Spline [57], a od 
tehnika pretprocesiranja skaliranje (eng. scaling), pomeranje (eng. shifting), min-max i z-
score normalizaciju, decimalno skaliranje (eng. decimal scaling) i linear equiscaling.  

Važna osobina FAP biblioteke je postojanje mehanizama za praćenje, prekidanje i 
nastavljanje izvršavanja vremenski zahtevnih operacija kao što su klasifikacija, evaluacija 
klasifikatora, podešavanje parametara i druge (opisani su u odeljku 6.2.2). Ova rešenja 
zajedno sa serijalizacijom Java objekata omogućavaju čuvanje delimičnih rezultata i 
nastavljanje eksperimenata od tačke prekida. 

Detalji strukture biblioteke i implementacije opisani su u poglavlju 6 a jedan primer 
korišćenja u odeljku 6.8. Sva ispitivanja u okviru ove disertacije realizovana su oslanjajući se 
isključivo na FAP biblioteku. Pored toga ona je već uspešno primenjena u okviru drugih 
istraživanja različitih naučnih domena, uključujući: razvoj distribuiranih generatora matrica 
rastojanja zasnovanih na agentima [75, 76], mining vremenskih serija u domenu psihologije 
[55, 56] i analiza vremenskih serija u domenu neurologije [61]. 
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Ubeđeni smo da će se zbog svojih brojnih prednosti FAP moći uspešno koristiti i u okviru 
budućih istraživanja: svi važni koncepti koji su potrebni za mining vremenskih serija 
integrisani su u jednu celinu, modifikovanje postojećih i dodavanje novih rešenja može se 
lako realizovati (FAP je pisan u Javi). Pored toga, za zajednicu istraživača i praktičara može 
biti od važnosti i to da je FAP biblioteka besplatna i otvorenog koda, što će omogućiti da je 
svi zainteresovani proširuju i dopunjuju sa novim rešenjima odnosno da je prilagođavaju 
svojim potrebama. Sve ove osobine mogu doprineti da bude uvek ažurirana i da sve glavne 
tehnike mining-a vremenskih serija budu podržane. 

Doprinosi i rezultati ostvareni i prikazani u ovoj disertaciji su višestruki: 

1. Objasnili smo uticaj Sakoe-Chiba pojasa na performanse ograničenih elastičnih 
mera sličnosti: za male veličine ograničenja, razlika u dužini trajanja računanja 
između neograničenih i ograničenih verzija mera sličnosti je veličine reda dva a 
negde i tri. 

2. Analiziranjem grafa susedstva u odnosu na promenu veličine ograničenja pokazali 
smo da za male vrednosti ograničenja (manje od 15%–10%) ograničene mere 
postaju značajno drugačiji od neograničenih. Pored toga, pokazali smo da ove 
promene nisu iste kod različitih mera sličnosti - DTW je najosetljivija na primenu 
globalnih ograničenja, a EDR je najmanje osetljiva. 

3. Kroz niz iscrpnih eksperimenata pokazali smo da se, u proseku, najbolja tačnost 
klasifikacije postiže za male vrednosti parametra r. Ova vrednost je najmanja za 
DTW (oko 4% od dužine vremenskih serija) a najveća za ERP (skoro 10%). 
Promene u grafu susedstva generisane sa ovim vrednostima parametra r su 
najveće u slučaju DTW-a (promenjen je u proseku oko 10% čvorova) a najmanji u 
slučaju EDR-a (u proseku, oko 1% čvorova). Upoređivanje tačnosti klasifikacije 
1NN klasifikatora pokazalo se da DTW generalno ima blagu prednost u odnosu na 
ostale mere sličnosti, ali dokazi nisu posebno jaki - najbolji izbor zavisi od 
konkretnog problema. 

4. Upoređujući prosečne greške klasifikacije razmatranih elastičnih mera sličnosti 
(DTW, LCS, ERP i EDR) istakli smo njihovu zajedničku osobinu: prosečna greška 
klasifikacije raste za male vrednosti parametra r (   ) i dostiže svoj maksimum 
za     . Videli smo da, ioako se u opštem slučaju DTW može smatrati 
najboljim izborom, LCS i EDR mogu predstavljati sigurnije izbore zbog manje 
izražene potrebe za pažljivo podešavanje parametra r. 

5. Detaljna analiza kNN klasifikatora (za DTW i LCS) je pokazala da se najbolji 
rezultati, bez korišćenja težina, dobijaju za    . S druge strane, u slučaju 
težinske verzije kNN klasifikatora, najbolji rezultati se javljaju za vrednosti blizu 
   . 

6. Posmatrajući prosečnu tačnost klasifikacije otkrili smo da metoda k najbližih 
suseda (kNN klasifikator) - i verzija bez težina, i verzije sa težinama - daje bolje 
rezultate od 1NN klasifikatora u slučaju značajnog broja skupova. Rezultati 
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statističkih testova podržavaju Dudani i DualD šeme računanja težina kao najbolje 
izbore. 

7. Za podršku ovih i budućih istraživanja razvili smo besplatnu biblioteku otvorenog 
koda (FAP) koja implementira mnoge od najvažnijih algoritama u oblasti mining-a 
i analize vremenskih serija. 

 

U okviru budućih istraživanja bilo bi zanimljivo proširite sva ova ispitivanja i na druge često 
korišćene mere sličnosti, uključujući ERP, EDR i TWED. Pored toga, bilo bi poželjno i 
uporediti uticaj Itakura paralelograma sa uticajem Sakoe-Chiba pojasa. 
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