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Novi Sad) for helpful discussions and suggestions regarding the mathematical aspects
of the dissertation. My colleagues and Computer Science students from the Depart-
ment of Mathematics and Informatics at the University of Novi Sad are responsible for
providing a pleasant working environment, for which I am grateful. My gratitude also
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Chapter 1

Introduction

The information age we are living in brings numerous benefits to many aspects of hu-
man endeavor. Automation and computerization of tasks which were performed manu-
ally in the past is only one example of how the use of computers is changing peoples’
lives, both on professional and personal levels. With the benefits, however, come nu-
merous challenges. This dissertation studies problems which stem from the increasing
volume of information being generated, stored, and used on today’s computer systems.
The rate at which information is being generated typically outpaces the rate at which
it can be processed, structured, and effectively used as knowledge, giving rise to the
term information overload, whose impact can be observed, for example, on the World
Wide Web [112, 11, 161]. Besides large volumes and weak structure, information gath-
ered as data often contains noise, in the sense of being erroneous, irrelevant, or simply
superfluous with respect to a particular task.

The above-mentioned properties of data – large volumes, weak or inappropriate
structure, and noisiness – make it amenable to application of machine learning (ML),
data mining (DM), and information retrieval (IR) techniques. The fields of machine
learning and data mining provide many useful methods for discovering patterns and
inferring knowledge from raw or shallowly processed data, such as (hyper)text com-
monly found on the Web. Machine learning and data mining possess the means to
perform such tasks automatically (albeit after careful human analysis of the concrete
problem and preparation of data). Information retrieval, on the other hand, provides the
user with techniques for locating larger units of information (for example, documents)
that may satisfy a user’s information need expressed by a query.

The basic representation in which information is gathered and stored is a data table
(also referred to as a data set), where rows correspond to objects (or instances, exam-
ples, points) that are described by one or more features (or attributes, variables) that
form the columns of the table. Increasing volumes of available information can be
manifested in one or both of the following properties: (1) having a large number of
data instances in a table, and (2) having a large number of features. This dissertation
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focuses on the second property, typically called high dimensionality, which is known to
be able to cause problems in tasks related to many fields, including machine learning,
data mining, and information retrieval. These problems are commonly referred to as
the curse of dimensionality.

The curse of dimensionality, a term originally introduced by Bellman [10], can be
manifested in many different forms and contexts. Within the fields of machine learning
and data mining, the curse can affect Bayesian modeling [18] by making the estimation
of mutual dependencies between features (as random variables) infeasible. Nearest-
neighbor prediction is also affected [82], for example, by the exponential raise of the
number of required samples of data points to achieve a required sampling density. The
search for nearest neighbors may suffer from high dimensionality [111], since index-
ing methods tend to lose their effectiveness in high dimensions [105]. High dimen-
sionality is also known to reduce the performance of learning methods such as neural
networks [17].

An aspect of the dimensionality curse that has attracted recent attention refers to
the behavior of distance measures, which are used to express the proximity of data
points. The behavior in question is known as the phenomenon of distance concentra-

tion, which is manifested by the tendency of all pairwise distances between points in
high-dimensional data to become approximately equal. Distance concentration and the
meaningfulness of nearest-neighbor relations in high dimensions has been studied for
distance measures in general [16, 51], and specifically for Minkowski and fractional
distances [44, 85, 2, 61, 59, 87].

A common approach to tackling the curse of dimensionality is by applying some
form of dimensionality reduction to data, transforming it into a lower-dimensional rep-
resentation that aims to preserve important information contained in the original. There
exist numerous methods to achieve this goal, a selection of which is reviewed in Sec-
tion 2.8. One approach is through feature selection, which encompasses techniques for
choosing a subset of features appropriate for a given task, while feature extraction (of-
ten referred to by the term dimensionality reduction in its own right) includes methods
which combine the values contained in different features, forming a completely new
feature space.

The principal reason why dimensionality-reduction methods are expected to work
in practice is the observation that for the majority of available data, its intrinsic di-

mensionality is lower that the embedding dimensionality, that is, the total number of
features. The intrinsic dimensionality can be loosely defined as the minimal number of
features needed to express all information contained in the data [59]. Depending on the
exact notion of “information” that is considered relevant, different precise definitions of
intrinsic dimensionality can be formulated.1 A concept related to intrinsic dimension-
ality is the manifold assumption [33], which states that data instances usually lie on a
low-dimensional manifold (or, loosely speaking, subspace) of the original data space.

This dissertation will study the implications of the curse of dimensionality in high-
dimensional data representations from two angles:

1In Chapter 5 we will discuss the notion of intrinsic dimensionality relevant to this dissertation.
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1. the behavior of distance (and similarity) measures with increasing dimensionality
of data, and

2. feature-selection methods, primarily through their interaction with high-dimen-
sional document representation schemes for text data.

These two angles are manifested in the structure of this dissertation, outlined in the
following section.

1.1 Dissertation Outline

This dissertation is organized into three major parts. Part I: Preliminaries, which in-
cludes the first two chapters of the dissertation, introduces the motivation and problems
studied in the subsequently presented research, and provides an overview of techniques
for machine learning, data mining, and information retrieval to assist the reader in un-
derstanding the material which follows. The overview, presented in Chapter 2, includes
descriptions of data representations, distance and similarity metrics, classification, clus-
tering, semi-supervised learning, outlier detection, and dimensionality reduction.

Part II: Metrics, which encompasses Chapters 3–7, presents the angle of research
focused on the behavior of distance and similarity measures in data spaces of increas-
ing dimensionality. Chapter 3, the results of which are published in [141, 171], studies
the concentration phenomenon with respect to the cosine similarity measure. The re-
maining chapters of Part II explore a novel phenomenon of hubness, which refers to
the tendency of neighborhood graphs of high-dimensional data points to contain nodes
(called hubs) that are more frequently included in nearest-neighbor lists of other points.
Chapter 4 studies the phenomenon in isolation on synthetic data distributions, from
a theoretical and empirical perspective, with the results included in [169, 168]. Chap-
ter 5 places the hubness phenomenon in the context of real data from various application
domains, generalizing the conclusions from Chapter 4, and exploring the effects on ma-
chine learning and data-mining techniques for classification, semi-supervised learning,
clustering, and outlier detection, with the results published in [169, 168]. Chapter 6,
the results of which are presented in [172], studies the hubness phenomenon within the
time-series domain, and discusses its implications on time-series classification. Finally,
Chapter 7 examines hubness within the setting of information retrieval, where hubs
represent documents which persistently appear in search result lists of many different
queries, with the results published in [171].

Part III: Document Representation and Feature Selection, consisting of Chapters 8
and 9, turns its attention to the second angle of research into the implications of the
curse of dimensionality: feature-selection methods, and their interaction with high-
dimensional representation schemes for text data. Chapter 8, whose results are pre-
sented in [164, 166], describes an experimental study on the impact of high-dimensional
document representations on the performance of five major classifiers. Different trans-
formations of input data: stemming, normalization, logtf, and idf, together with dimen-
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sionality reduction, are found to have a statistically significant improving or degrading
effect on classification performance. Besides determining the best document repre-
sentation which corresponds to each classifier, the study describes the effects of ev-
ery individual transformation on classification, together with their mutual relationships.
Chapter 9, the results of which are published in [165, 167], examines the relationship
between text data transformations and several widely used feature-selection methods,
in the context of classification, showing that the idf transformation considerably effects
the distribution of classification performance over feature-selection reduction rates, and
offering an evaluation method which permits the discovery of relationships between
different document representations and feature-selection methods which is independent
of absolute differences in classification performance. The chapter also briefly discusses
hubness in the context of feature selection and generation [170].

Finally, Chapter 10 concludes the dissertation, summarizing the main results, and
discussing the possibilities for future work.

1.2 Contributions of the Dissertation

The scientific contributions of this dissertation can be viewed separately within the
research angles presented in Parts II and III.

In Part II, original contributions begin with the theoretical results concerning the
concentration behavior of the cosine similarity measure (Chapter 3). In the remaining
chapters of Part II, the attention of the ML, DM, and IR communities is drawn to the
phenomenon of hubness, which is a fundamental property of data distributions in high-
dimensional spaces that has received surprisingly little interest to date. Hubness and
its origins are explained from a theoretical and empirical perspective in artificial data
distributions (Chapter 4), and put into the context of real data from various domains
(Chapter 5), describing the connection between hubness, intrinsic dimensionality, and
the cluster structure of the data. Chapter 5 also studies the interaction of hubness with
the information provided by class labels, and shows that the phenomenon is relevant
to various distance-based classification schemes. Furthermore, the same chapter pro-
vides evidence which describes the effect of hubness on graph-based methods for semi-
supervised learning, as well as distance-based clustering and outlier-detection methods.
The importance of the phenomenon is demonstrated on time-series data as well (Chap-
ter 6) in the setting for time-series classification currently considered as the state-of-
the-art, providing a framework for categorizing time-series data sets based on hubness
properties and the distribution of class labels which facilitates time-series classification.
Finally, the importance of the phenomenon is demonstrated in the classical IR setting
involving vector space models, explaining its origins with respect to the behavior of co-
sine similarity in high dimensions, and generalizing the conclusions to more advanced
document representation and matching schemes.

In Part III, the principal contributions are contained in the experimental results and
methodologies for classification of high-dimensional text data, showing the impacts
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and relationships between various transformations of the bag-of-words document rep-
resentation in the context of classifiers commonly used on text data (Chapter 8), and
quantifying the interaction between transformations of the bag-of-words document rep-
resentation and feature selection (Chapter 9).





Chapter 2

Machine Learning, Data Mining,

and Information Retrieval

This chapter will review some of the tasks and data representations relevant to the fields
of machine learning, data mining, and information retrieval. The aim of the overview
is not to provide comprehensive coverage of the fields (which would be infeasible due
to the sheer amount of relevant material), but rather to aid the reader in understanding
the subsequent chapters by describing the main ideas and principles behind various
techniques, and offering references to work that provides additional details.

The field of machine learning (ML) is concerned with the question of how to con-
struct computer programs that automatically improve with experience [136]. On the
other hand, data mining (DM), also referred to as knowledge discovery from data
(KDD), deals with concepts and techniques for uncovering interesting data patterns
hidden in large data sets [81]. Despite the apparent difference in the central motivation,
the two fields share many tasks, techniques, and data representations. Another related
field is information retrieval (IR) which is concerned with finding material (usually doc-
uments) of an unstructured nature (usually text) that satisfies an information need from
within large collections (usually stored on computers) [38]. Many text representations
and distance measures commonly employed for ML and DM tasks were initially de-
veloped and explored within the IR domain. Generally, high-dimensional data domains
will be given somewhat greater emphasis in this survey due to their prominence in the
research presented in subsequent chapters of this dissertation, with particular attention
being given to text and time-series.

Regarding machine-learning techniques, this chapter will take a broader view of
the learning process, and consider supervised, unsupervised, and semi-supervised ap-
proaches. In supervised learning, computer programs capture structural information
and derive conclusions from examples (also called instances; in the textual domain
documents, or parts of text), previously annotated by labels denoting classes. This
enables supervised learning algorithms to process new examples and apply the con-
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clusions to them. Unsupervised learning deals more with the analysis of data, in the
sense of capturing relationships between examples without relying on outside informa-
tion. Semi-supervised learning in concerned with ways to combine the two paradigms,
predominantly by using unlabeled data to assist supervised learning.

ML tasks can roughly be divided into four distinct areas: classification, clustering,
association learning, and numeric prediction [224]. In the machine-learning approach,
classification algorithms (classifiers) are trained beforehand on previously sorted (la-
beled) data, before being applied to sorting unseen examples. Classification applied
to text is the subject of text categorization (TC – also known as text classification or
topic spotting), which is the task of automatically sorting a set of documents into cate-

gories (or classes, or topics) from a predefined set [191]. Straightforward classification
of documents is employed in document indexing for information-retrieval systems, text
filtering (including protection from e-mail spam), categorization of Web pages, routing
news articles, and many other applications. Classification can also be used on smaller
parts of text (paragraphs, sentences, words) depending on the concrete application, like
document segmentation, topic tracking, or word sense disambiguation. Classification
is also a useful task in the time-series domain, applied to labeling trajectories of ve-
hicles monitored by video surveillance systems, indexing ECG diagrams for medical
diagnosis, segmenting signals from robotic sensors, etc.

Clustering is a basic unsupervised-learning task concerned with finding groups of
examples based on some inherent notion of similarity between them. The use of clus-
tering techniques with text can be achieved on two levels. Analyzing collections of
documents by identifying clusters of similar ones can be achieved by straightforward
application of known clustering algorithms coupled with document similarity measures
(see Section 2.2). Within-document clustering can be somewhat more challenging since
it requires preprocessing text and isolating objects to cluster – sentences, words, or some
construct which requires derivation. In time-series analysis, clustering can be applied
to group similar stocks, analyze weather imagery, recognize motion, etc.

Association learning can be viewed as a generalization of classification which aims
to capture relationships between arbitrary features (also called attributes) of examples
in a data set. In this sense, classification captures only the relationships of all features to
the one feature specifying the class. Straightforward application of association learning
to text is not feasible because of the high dimensionality of document representations,
that is, the large number of features. Applying association learning to information
extracted from text (for example, using classification, clustering, or dimensionality re-
duction) is more feasible, and can yield useful insights, as can association learning from
information extracted from time-series data.

Numeric prediction (also called regression, in a wider sense of the word), may be
viewed as another generalization of classification, where the class feature is not dis-
crete, but continuous. This small shift in definition results in large differences in the
internal workings of classification and regression algorithms. However, by dividing the
predicted numeric feature into a finite number of intervals, regression algorithms can
generally also be used for classification, while the opposite is not generally possible.
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Another important task associated with data mining is outlier detection, which is
concerned with locating examples which are in some sense different from the major-
ity of others. Applications of outlier detection include detection of credit card fraud,
intrusion into computer systems, medical diagnosis, and many others.

It is widely acknowledged that a large number of features, that is, high dimension-
ality of a data set, can cause severe problems in many machine learning, data mining,
and information-retrieval applications. These problems are commonly referred to as
the curse of dimensionality (see Chapter 1). A solution that is often employed is to
reduce the dimensionality of the data space by selecting only a subset of the feature
set, or applying some transformation on data points, projecting them to a feature space
of lower dimensionality. Techniques for achieving this task are collectively known as
dimensionality-reduction methods.

The rest of this chapter will review in more detail the data representations, tech-
niques, and tasks from the fields of machine learning, data mining, and information re-
trieval, relevant to the results of the research presented in this dissertation. Section 2.1
introduces the most common tabular approach to data representation, and details various
methods for representation of textual and time-series data. Section 2.2 describes many
of the widely-used distance and similarity measures for data with numeric features.
The following three sections are devoted to the basic machine-learning tasks, starting
with Section 2.3 which discusses classification, including descriptions of several illus-
trative algorithms, possible difficulties, and means of evaluation. Approaches to semi-
supervised learning are reviewed in Section 2.4, and clustering techniques are discussed
in Section 2.5. Section 2.6 is devoted to outlier detection, while Section 2.7 summarizes
the main principles and techniques of textual information retrieval. Finally, Section 2.8
presents a taxonomy of dimensionality-reduction techniques, and Section 2.9 concludes
the survey.

2.1 Data Representation

General-purpose techniques, like classification and clustering, are usually designed for
examples which have a fixed set of nominal (symbolic), discrete (ordinal), or numeric
(integer or continuous) features. A data set is then represented by a table where columns
correspond to features, and rows are individual examples. One such data set is shown in
Table 2.1 (from [224]). The data set consists of 14 examples characterized by 5 features,
three of which are nominal (outlook, windy and play), and the other two discrete. Play
can be considered the class attribute, since it indicates whether one should engage in
his/her favorite sport depending on the weather conditions expressed by other attributes.

2.1.1 Text Data

When examining the described tabular form of representing data, it is evident that free-
flowing or semi-structured text (for example, HTML) needs to be transformed in order
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outlook temperature humidity windy play

sunny 85 85 FALSE no
sunny 80 90 TRUE no
overcast 83 86 FALSE yes
rainy 70 96 FALSE yes
rainy 68 80 FALSE yes
rainy 65 70 TRUE no
overcast 64 65 TRUE yes
sunny 72 95 FALSE no
sunny 69 70 FALSE yes
rainy 75 80 FALSE yes
sunny 75 70 TRUE yes
overcast 72 90 TRUE yes
overcast 81 75 FALSE yes
rainy 71 91 TRUE no

Table 2.1: The weather data set
Tabela 2.1: Skup podataka o vremenskim uslovima

to apply methods for machine learning, data mining, or information retrieval. The most
widely used approach is the bag-of-words representation.

The Bag-of-Words Representation

In the bag-of-words (BOW) representation, word order is discarded from a document
and single words are treated as features. Actually, other entities can be used as features
(for example, phrases), hence textual features are referred to as terms instead of words.
Let W be the dictionary – the set of all words (terms) that occur at least once in the set
of documents D. The BOW representation of document di is a vector of weights wi =
(wi1, . . . , wi|W |). There are many variations of the BOW representation, depending on
the weight values. For the simplest binary representation, wij ∈ {0, 1}; the weight
wij = 1 if the jth word is present in document di, otherwise wij = 0. In the term-

frequency representation (denoted tf), wij = tf ij , the frequency of appearance of the
jth term in the ith document. Figure 2.1 (from [137]) shows a short document together
with its tf representation.

Many transformations of term frequencies are used in practice. Normalization (de-
noted norm) can be employed to scale the term frequencies, accounting for differences
in the lengths of documents. The logtf transformation may also be applied to term
frequencies, resulting in the representation:

logtf(di) = (log(1 + wi1), . . . , log(1 + wi|W |)).

The inverse document frequency (idf) transformation yields the representation:

idf(di) = (wi1 log(|D|/docfreq(D, 1)), . . . , wi|W | log(|D|/docfreq(D, |W |))),
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Figure 2.1: The bag-of-words representation of a document, with term frequencies
Slika 2.1: Bag-of-words reprezentacija dokumenta, sa frekvencijama termova

where docfreq(D, j) is the number of documents from D the ith term occurs in. It
can be used by itself (with binary weights wij ), or with term frequencies to form the
popular tfidf representation. We refer to Appendix A for a comprehensive illustrative
example of term-frequency transformations.

There are many rationales behind different transformations of the bag-of-words rep-
resentation. Term frequencies supposedly stress the importance of the more frequent
terms for determining relationships between documents. Normalization stops the term
frequencies in longer documents from overriding the frequencies in shorter texts. The
logtf transformation scales down all frequencies, making differences less influential in
high ranges, but without bounding values from above. The issue of a term occurring in
many documents is addressed by the idf transformation – the more documents a term
appears in, the less it is considered important, and the weight is scaled down. It can be
said that the tfidf representation attempts to strike a balance between intra- and inter-
document frequencies of terms.

N-grams

Two very different notions have been referred to as “n-grams” in the literature. The first
are phrases, as sequences of n words; this meaning was adopted by the Statistical nat-
ural language processing community [132]. The other notion are n-grams as sequences
of characters.

N-grams as phrases can be viewed as a generalization of words, since 1-grams are

words, and therefore 2-grams up to 5-grams are usually used to enrich the BOW repre-
sentation, rather than on their own. The main problem is sheer magnitude – the num-
ber of n-grams grows exponentially with n – therefore many strategies for efficient
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generation of a useful set of n-grams have been developed. One such algorithm, pre-
sented by Mladenić [137], iterates over n, generating all possible n-grams from known
(n− 1)-grams, immediately discarding all n-grams which appear too infrequently in
the document set.

N-grams as sequences of characters, at first glance, are not very intuitive. For exam-
ple, the string “not very intuitive” could be represented by the following 3-grams: not
ot_ t_v _ve ver ery ry_ y_i _in int ntu tui uit iti tiv ive.1 In this
case, n-grams are commonly used instead of words in the BOW representation, so now
not only is the word order lost, but words themselves are not preserved. Neverthe-
less, character n-grams proved useful in situations with grammatical and typographi-
cal errors in documents, and are also an effective way to achieve language indepen-
dence [25, 130]. Besides the classical text-categorization task of sorting documents
into different topics or routing news articles, character n-grams are an effective doc-
ument representation for the task of language identification. This is because different
languages tend to exhibit different distributions of n-grams in documents, that is, some
n-grams are expected to appear more frequently in documents written in language A
than in language B (for example, th is much more frequent in English than in Serbian).

Hypertext Features

Hypertext documents in HTML or XML format offer many other features to be ex-
ploited by machine learning. Hyperlink information is arguably an obvious choice, and
there are many ways it can be employed: adding to a document all the words from
documents it links to, or representing a document only with names (or identifiers) of
documents it links to [228]; and, vice versa, using features from the contexts of links
referring to the document [8]. For classification, class labels of neighboring documents
can be added to the feature space of a document [29]. All these techniques were em-
ployed with variable degrees of reported success.

The tree structure of HTML/XML is another possible source of features. Terms can
be labeled with their paths in the tag hierarchy containing them, which was shown to
be an effective method. Even more successful was prefix labeling – a new feature is
constructed by labeling a term with every possible prefix of its path in the tag tree [28].
For example, consider the following XML marked-up text (from [28]):

<resume>

<publication>

<title>Statistical Models for Web-surfing</title>

</publication>

<hobbies>

<item>Wind-surfing</item>

</hobbies>

</resume>

1The underscore represents space, and is treated as a character.
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The term surfing may be labeled resume.publication.title.surfing and resume.hob-
bies.item.surfing, and, in addition, with all prefixes: resume.surfing, resume.publica-
tion.surfing, resume.hobbies.surfing.

Features can also be derived from the text found in TITLE and META tags of HTML
pages [228]. This can be achieved, for example, by including words from these tags into
the BOW representation of a document, possibly using a higher weight to signify the
increased significance of such words with respect to the semantics of the document.

The ILP Approach

Relations provide a completely different means for representing documents, compared
to the BOW model. They offer more expressive power, at the cost of a limited range
of learning algorithms that can be applied. These algorithms fall into the scope of
inductive logic programming (ILP), and deal with generating rules based on examples.
Although it is possible to use these algorithms for association learning, classification
is more commonly attempted on text. Typical representatives include Ross Quinlan’s
FOIL [160] and William Cohen’s RIPPER [39].

Extracting relations from documents of the form contains(document, term) or con-
tains(document, term, weight) is a straightforward way to represent the same informa-
tion that is captured by the BOW model. Furthermore, word order can be expressed by
a relation like after(term1, term2), or word context by near(term1, term2, k), where
k denotes term distance in text [39].

Relations are particularly suited for representing hypertext information. Consider
several examples (adapted from [28]):

contains-text(treeNode, term).
part-of(treeNode1, treeNode2).
tagged(treeNode, tagName).
links-to(srcTreeNode, dstTreeNode).
contains-anchor-text(srcTreeNode, dstTreeNode, term).
classified(treeNode, label).

Based on information represented in this form, a rule learner could generate output
of the following form:

classified(A, facultyPage) :-
contains-text(A, professor), contains-text(A, phd),
links-to(B, A), contains-text(B, faculty).

Even an enriched BOW representation like the one including hypertext features,
described in the previous section, would never have made such expressiveness (and
clarity) of learned classifiers possible. However, a crucial downside of ILP methods
is the inherent slowness in the face of high-dimensional, large-volume textual data.
Therefore, hybrid approaches may be considered, like a combination of a BOW repre-
sentation for text and a relational representation for hyperlinks [27].
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(a) (b)

Figure 2.2: Example time series
Slika 2.2: Primeri vremenskih serija

2.1.2 Time-Series Data

A time-series database consists of a series of values or events obtained over repeated
measurements of time [81]. The values are usually measured at equal time intervals.
Using the terminology from previous sections, every attribute corresponds to one point

in time when measurement is taken, with the dimensionality of data referred to as time-
series length.2

Time-series data is generated in many application areas, including the stock mar-
ket, study of natural astronomical, geological or biological phenomena, medicine, etc.
As examples, Figure 2.2(a) shows the water levels of Lake Huron measured from the
late 1800s to the late 1900s, while Figure 2.2(b) plots the amount of gas consumed in
the United Kingdom between 1960 and 1986 [239]. It is important to distinguish time
series from sequence data, which refers to measurements taken without regard to time,
with the only considered relationship between measurements being before/after. Exam-
ples of sequence data include Web-page access logs, customer shopping transactions,
command sequences issued by a user to a remote computer system, etc.

A wide range of tasks were identified to be applicable to time-series data, includ-
ing prediction, trend analysis, classification, clustering, outlier detection, indexing, etc.
Many of these tasks require the computation of similarity between two time series. In
Section 2.2 we give an overview of distance and similarity measures, many of which
are directly applicable to time-series data. Before application of a similarity measure
it may be necessary to normalize the time series in a particular data set, which is typi-
cally done for each time-series point by subtracting from its value the sample mean of
the whole time series, and dividing by the sample standard deviation. More precisely,
given time series x = (x1, x2, . . . , xd), its sample mean µx and standard deviation σx,
the normalized time series is x′ = (x′

1, x
′
2, . . . , x

′
d), where x′

i = (xi − µx)/σx, for all
i ∈ {1, 2, . . . , d}.

2Strictly speaking, it is not necessary for all time-series in a data set to be of the same length. In such
cases some form of scaling like uniform scaling [65] can be performed to reduce or extend all time series to
the same length.
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An often used approach to preprocessing time series involves transforming the data
set to a completely new representation where individual attributes do not necessarily
correspond to measurements in time. The best-known methods include discrete Fourier
transform (DFT) [56], discrete wavelet transform (DWT) [31], singular value decompo-
sition (SVD) [56], piecewise aggregate approximation (PAA) [102], piecewise constant
approximation (APCA) [26], and symbolic aggregate approximation (SAX) [127]. The
first three of the aforementioned methods will be reviewed in Section 2.8, which dis-
cusses dimensionality reduction.

2.2 Distance and Similarity Measures

Computing (dis)similarity of data instances represents a key operation in many machine-
learning, data-mining, and information-retrieval applications. A number of distance and
similarity measures have been developed for this task; in this section we will review the
measures that will be analyzed or mentioned later in this dissertation, applicable to
numerical data.

Distance measures express the degree of dissimilarity between two data instances,
with higher values signifying less similarity. With similarity measures, on the other
hand, higher values indicate more similarity. Depending on the type of measure, the
following equations can be used to perform conversion between distance and similarity.
Given data points x,y ∈ R

d,

dist(x,y) = 1− sim(x,y) ,

sim(x,y) =
1

1 + dist(x,y)
.

Distance measures that are used in practice often, but not necessarily, satisfy all of
the following properties for any given x,y, z ∈ R

d:

1. dist(x,y) ≥ 0 (non-negativity),

2. dist(x,y) = 0 if and only if x = y (identity of indiscernibles),

3. dist(x,y) = dist(y,x) (symmetry),

4. dist(x, z) ≤ dist(x,y) + dist(y, z) (triangle inequality).

If a distance measure satisfies all of the above properties it is said to be metric in the
strict mathematical sense. In this dissertation, unless explicitly stated, we will not dis-
tinguish between measures that are metric from those that are not, and will use the two
terms interchangeably.

In the remainder of this section we will review the commonly used Minkowski, frac-
tional, Bray-Curtis, normalized Euclidean, and Canberra distance measures, cosine and
Jaccard similarity measures, and the dynamic time warping (DTW) distance measure
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applicable to time-series data. For the interested reader, comprehensive overviews of
measures that express distance or similarity are given by Chapman [34], Kohonen [108],
Teknomo [206], and Gan et al. [69]; Egghe [53] analyzes the relationships between
several well-known similarity measures, while Cohen et al. [40] provide a thorough
experimental comparison of string metrics for name-matching tasks.

2.2.1 Minkowski Distances

For two vectors x,y ∈ R
d, and a given p ∈ {1, 2, . . .}, the Minkowski (lp) distance is

defined as the p-norm of the difference between the two vectors:

lp(x,y) = ‖x− y‖p =

( d∑

i=1

|xi − yi|p
) 1

p

. (2.1)

When p = 1, the metric is also referred to as Manhattan distance, while l2 is the well-
known and universally employed Euclidean distance.

2.2.2 Fractional Distances

By taking p from Equation 2.1 to be a positive rational number from the (0, 1) range,
fractional distance measures are obtained. A typically used value of p is 1/2. Fractonal
distances were advocated for handling high-dimensional data by Aggarwal et al. [2],
and shown to be robust to certain types of noise [2, 60].

2.2.3 Bray-Curtis and Normalized Euclidean Distance

To achieve meaningful distance measurements in some applications (like numerical
ecology [118]), it may be beneficial to normalize the distance values obtained by Min-
kowski metrics. Distance measures that perform normalization include Bray-Curtis
distance (which normalizes Manhattan distance) and the normalized Euclidean metric.
For x,y ∈ R

d, when x 6= 0 or y 6= 0:

bray-curtis(x,y) =
‖x− y‖1
‖x‖1 + ‖y‖1

=

d∑
i=1

|xi − yi|
d∑

i=1

|xi|+
d∑

i=1

|yi|
,

norm-euclidean(x,y) =
‖x− y‖2
‖x‖2 + ‖y‖2

=

√
d∑

i=1

(xi − yi)2

√
d∑

i=1

x2
i +

√
d∑

i=1

y2
i

.

In case x = y = 0, the values of both measures are 0. Properties of these measures are
discussed in [118, 231].
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2.2.4 Canberra Distance

Canberra distance focuses on the relative difference between coordinate values, as op-
posed to absolute differences expressed by Minkowski and fractional distances. For
x,y ∈ R

d, when x 6= 0 or y 6= 0, Canberra distance given by [206]:

canberra(x,y) =

d∑

i=1

|xi − yi|
|xi|+ |yi|

.

In case x = y = 0, the value of Canberra distance is 0.

2.2.5 Cosine Similarity

For two vectors x,y ∈ R
d, the cosine similarity is defined as

cos(x,y) =
〈x,y〉
‖x‖ · ‖y‖ =

d∑
i=1

xiyi

√
d∑

i=1

x2
i ·
√

d∑
i=1

y2
i

.

The measure expresses the cosine of the angle between the two vectors in d-dimensional
space. A smaller angle signifies greater similarity between two document vectors and,
presumably, greater similarity between the semantics of their contents.

2.2.6 Jaccard Similarity

Jaccard similarity (also referred to as Tanimoto similarity) between vectors x,y ∈ R
d

may be defined as

jaccard(x,x) =
〈x,y〉

‖x‖2 + ‖y‖2 − 〈x,y〉 =

d∑
i=1

xiyi

d∑
i=1

x2
i +

d∑
i=1

y2
i −

d∑
i=1

xiyi

,

which is reminiscent of the cosine measure. However, its origins in the comparison
of sets allow a different definition. Let N and M be sets containing designators of
coordinates with nonzero values of vectors x and y (for example, if x and y correspond
to document vectors in the BOW representation, N and M are the respective sets of
terms). Jaccard similarity then represents the ratio between the number of nonzero
attributes shared by x and y, and the number of all nonzero attributes appearing in
both vectors:3

jaccard(N, M) =
|N ∩M |
|N ∪M | =

|N ∩M |
|N |+ |M | − |N ∩M | .

3This definition is applicable to multisets as well.
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Jaccard similarity is often used in situations where a common dictionary is not avail-
able, or not necessary for solving the problem at hand. In the BOW setting, this would
mean that the dictionary is formed online only from the two documents being compared.

2.2.7 Dynamic Time Warping Distance

The dynamic time warping (DTW) distance can be viewed as a modification of Eu-
clidean distance which can meaningfully be applied to speech signals [183], time se-
ries [14], and similar types of data. It differs from Euclidean distance by allowing
the vector components that are compared to “drift” from exactly corresponding posi-
tions, in order to minimize the distance and compensate for possible “stretching” and
“shrinking” of parts of the series along the temporal axis. This is achieved by forming
a “warping” matrix representing every possible combination of components of the two
compared series of length d.4 The distance is determined by the “warping” path from
component tuple (1, 1) to (d, d) of the matrix, which minimizes the sum of squared
differences between the components on the path, where the allowed steps are (+1, 0),
(0, +1), and (+1, +1). The warping path can be computed in quadratic time using
dynamic programming.

In order to disable excessive “drift” of the warping path in any of the two directions
in the matrix, a constraint parameter may be introduced which limits the warping path
to a narrow “strip” between matrix entries (1, 1) and (d, d). The constraint parameter, c,
usually expresses the percentage of dimensionality d. The resulting distance measure is
referred to as the constrained dynamic time warping (CDTW) distance. Regarding the
extreme values of the constraint, for c = 0% CDTW becomes equivalent to Euclidean
distance, while c = 100% yields the unconstrained DTW. It has been observed in the
time-series domain that low values of c below 10% usually work well [174].

2.3 Classification

The process of automated construction of a classifier can be viewed as algorithmically
building a mathematical model for separating examples of different classes, from the
evidence given in a data set. The process of model building is referred to as classi-
fier training, with the employed data set called the training set. The computed model
can then be used to classify a previously unseen data instance (that is, an instance not
included in the training set).

There exist many different approaches to building a classifier model, which resulted
in the development of many kinds of classifiers with different properties. Some classi-
fication algorithms can only discern between two different classes, making them two-

class (or binary) classifiers, others are naturally multi-class. However, this restriction
may not be a great mishap, since there exist ways to use binary classifiers for classifi-
cation into more than two classes (see Section 2.3.2).

4The compared series do not necessarily have to be of the same length.
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Binary classification can also be viewed as a one-class problem, where instances
can be positive (belonging to the class) or negative. If a data set contains both positive
and negative instances, the view shift is a mere formality, but not if negative evidence
is missing from the data set – then the problem of separating the classes becomes a
problem of describing the positive class (albeit it can be solved by modifications of
standard classification techniques [225]).

There exist classifiers that are able to give a real-valued estimate of their conviction
about an instance belonging to a particular class (for example, naïve Bayes), which
may be valuable in particular applications. Some classifiers produce decisions which
can be interpreted by a human (like decision-tree learners), while others output answers
which may not be easy to trace (neural networks, support vector machines). The ability
to learn online is also an important property a classifier can possess, meaning that the
learned model may be incrementally updated with each new training instance.

This section attempts to present classification algorithms from the viewpoint of their
application to high-dimensional data. First, several key classification algorithms are
presented, illustrating the diversity of approaches to the task, followed by a description
of the ways to use binary classifiers for multi-class classification. Then, evaluation
of classifiers is discussed, introducing several ways to use data sets, and providing an
overview of evaluation measures and data collections. Overfitting, a problem which
is often encountered in high-dimensional domains, is explained next. The section is
concluded with a brief discussion of the similarities and differences between various
classification techniques.

2.3.1 Algorithms

Perceptrons

The perceptron, originally introduced by Rosenblatt [181], is a binary classifier which
uses the value of the inner product of vectors w·x to classify instance x according to the
previously learned vector of weights w. If the inner product, summed with some value b
(called the bias, or threshold), is greater than or equal to 0, the instance is assigned
to the positive class, and vice versa. More precisely, for binary class c ∈ {−1, 1},
c = sg(w · x + b), where sg(x) = 1 if x ≥ 0, and sg(x) = 0 otherwise. This
means that w and b define a hyperplane which linearly separates the vector space, as
exemplified in Figure 2.8(a) for the two-dimensional case.

Figure 2.3 (adapted from [133]) shows a schematic representation of the perceptron.
Every input xi represents a component of vector x, and has an associated weight wi

(i ∈ {1, 2, . . . , d}). The bias can be viewed as constant input +1, with the associated
weight b. To compute the output of the perceptron, every input is multiplied by its
corresponding weight, the sum is taken, and the classification decision made based on
its sign.5

5The sigmoid function 1/(1 + e−x) is often used instead of the sign.
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Figure 2.3: The perceptron
Slika 2.3: Perceptron

Learning the vector w starts by assigning it a 0 vector (or a vector of small positive
weights) and continues by examining each training instance x one at a time, classifying
it using the currently learned w. If the classification is incorrect, the vector is updated:
w ← w ± ηx, where addition (subtraction) is used when x belongs to the positive
(negative) class, and η is a small positive number – the learning rate. The effect of
the update is to shift the weights of w towards the correct classification of x, in pro-
portion to their “importance” signified by the values of weights in x. The algorithm
iterates multiple times over instances in the training set, until all examples are classified
correctly, or some other stopping criterion is met.

The perceptron was shown to exhibit solid performance on high-dimensional data
such as text [190], despite its simplicity. There exist numerous extensions, one of them
being the voted-perceptron by Freund and Schapire [63].

In the voted-perceptron algorithm, all vectors w calculated during training are re-
tained, together with the number of training instances they “survive” without being
modified. Then, for a list of such weighed perceptrons (w1, c1), . . . , (wk, ck), the clas-
sification is calculated as the sign of the weighed sum of the classifications given by
each saved perceptron:

c = sg

( k∑

i=1

cisg(wi · x)

)
,

assuming all thresholds are zero. The voted-perceptron was shown to be effective on
high-dimensional data, at the same time being simple to implement and having a low
training time [63]. Since multiple “simple” classifiers are explicitly combined when
making a classification decision using the voting mechanism, voted-perceptron can be
regarded as a classifier ensemble method.

Perceptrons are also the building blocks of one type of neural networks. Neural
networks have been applied to high-dimensional data such as text [221, 182], but their
use is not particularly widespread, since more complex nonlinear models did not show
significant performance improvement over the simpler linear ones [190], to compensate
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Figure 2.4: The maximum margin hyperplane determined by the SVM,
which separates the two classes, with highlighted support vectors
Slika 2.4: Maksimalno razdvajajuća hiperravan odred̄ena pomoću SVM,
koja razdvaja dve klase, sa naglašenim support vektorima

for the inherently long training times. Neural networks have also been used for time-
series classification [156].

Support Vector Machines

One of the most sophisticated classifiers, suitable for application to high-dimensional
data, is the support vector machine (SVM) classifier. It has been successfully used for
classification of both text [191], and time-series data [52]. SVM is a binary classifier,
and its main idea lies in using a predetermined kernel function, whose principal ef-
fect is the transformation of the feature vector space into another space, usually with
a higher number of dimensions, where the data is linearly separable. Quadratic pro-
gramming methods are then applied to find a maximum margin hyperplane, that is, the
optimal linear separation in the new space, whose inverse transformation should yield
a good classifier in the original vector space. Figure 2.4 (from [190]) shows a graphical
representation of the separating hyperplane for a two-dimensional space (after the trans-
formation), where the class feature is depicted with labels + and ◦. The hyperplane, in
this case a line, lies in the middle of the widest strip separating the two classes, and is
constructed using only the instances adjacent to the strip – the support vectors (outlined
by squares in the figure).

Although the theoretical foundations for SVMs were laid out by Vapnik in the
1970s [214, 213], the computational complexity of various solutions to the quadratic
programming problem restricted the use of SVMs in practice. Only relatively recently
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were approximate solutions derived which enabled feasible and, compared with some
other classifiers, superior training times. One solution was by Osuna et al. [151], im-
proved by Joachims [97] and implemented in his SVM light package. An alternative
is Platt’s sequential minimal optimization (SMO) algorithm [157, 101], available, for
instance, as part of the Weka machine-learning workbench [224].

Support vector machines can handle very high dimensionality, and are not partic-
ularly sensitive to overfitting (see Section 2.3.4), making them highly suitable for ap-
plication to text without dimensionality reduction [96]. Many practical studies have
confirmed this argument [119], and there is a wide consensus that SVMs are one of the
best performing text classifiers available today.

Bayesian Learners

The probabilistic approach to modeling data has resulted in several useful machine-
learning techniques which can be used on high-dimensional data. One of them is the
simple, but effective naïve Bayes classifier, and another, more expressive but also more
complex and still actively researched – Bayesian networks.

Naïve Bayes. The naïve Bayes classifier has been “around” for a long time, but was
initially more in the focus of information retrieval, rather than the machine-learning
community [122]. The main principles of its functioning are as follows. Let random
variable C denote the class feature, and A1, A2, . . . , Ad the d components of the at-
tribute vector. Then, the classification of a specific vector (a1, a2, . . . , ad) is

c = argmax
cj∈C

P(cj |a1, a2, . . . , ad) ,

providing that one class maximizes the expression. Application of the Bayes theorem
transforms the expression to

c = argmax
cj∈C

P(a1, a2, . . . , ad|cj) P(cj)

P(a1, a2, . . . , ad)

= argmax
cj∈C

P(a1, a2, . . . , ad|cj) P(cj)

= argmax
cj∈C

P(cj)
d∏

i=1

P(ai|cj) .

The last derivation uses the assumption that attributes are mutually independent, which
obviously does not hold in reality, hence the prefix “naïve.” Nevertheless, the assump-
tion has been shown to work in practice. Training involves approximating the values
P(cj) and P(ai|cj) from data. Several approaches exist, depending on the assumed data
distribution. The approach most often used on text involves the multinomial model, and
was recently subjected to several enhancements [176, 106]. In the classification phase,
if multiple classes maximize the expression P(cj)

∏d
i=1 P(ai|cj) different strategies
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Figure 2.5: The naïve Bayes classifier (a), and the Bayesian network that
captures inter-attribute dependencies (b)
Slika 2.5: „Naivni“ Bejesov klasifikator (a), i Bejesova mreža koja izra-
žava med̄uzavisnost atributa

may be employed to resolve the ambiguity, for example, by selecting the class with the
highest prior probability P(cj), or simply by choosing one of the classes randomly.

Bayesian networks. Note that without the independence assumption in naïve Bayes,
estimating the values of P(a1, a2, . . . , ad|cj) would have been infeasible. However,
data attributes usually are interrelated, and one way to capture such dependencies is by
means of Bayesian networks.

Generally speaking, Bayesian networks consist of nodes which are random vari-
ables, and vertices representing conditional probabilities between them. Their aim is
to offer a computationally feasible and graphically representable way to express and
calculate dependencies between events. The graphic in Figure 2.5(a) shows the naïve
Bayes classifier, with conditional probabilities P(Ai|C) depicted as arcs from C to Ai.
The dependencies between attributes, which are missing in naïve Bayes, are added to
the Bayesian network shown in Figure 2.5(b).

Again, it would be computationally infeasible (and not even allowed in a Bayesian
network) to calculate dependencies between all attributes, especially with high-dimen-
sional data, such as text. The trick with Bayesian networks is to express only the de-
pendencies which are necessary (or strong enough to have an impact on the solution to
a particular problem), under constraints which ensure the correctness and feasibility of
computation. This can be done manually, by supplying the structure of the network –
then training a Bayesian network resembles the training phase of the naïve Bayes classi-
fier, with conditionals being estimated from the data set. If estimation of dependencies
from data is not possible, training becomes more difficult, with several solutions being
available [136]. Learning the structure of the network presents a bigger challenge, and
is still an area of active research. Several books devoted to the subject of Bayesian
networks have recently appeared [94, 142].
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Figure 2.6: Voronoi tessellation of the data space, for the 1-NN classifier
Slika 2.6: Voronojeva teselacija prostora podataka, za 1-NN klasifikator

Nearest-Neighbor Classifiers

The training phase of nearest-neighbor (also known as instance-based, or memory-

based) classifiers is practically trivial, and consists of storing all examples in a data
structure suitable for their later retrieval. Unlike other classifiers, all computation con-
cerning the classification of an unseen example is deferred until the classification phase.
Then, k instances most similar to the example in question – its k nearest neighbors – are
retrieved, and the class is computed from the classes of the neighbors. The computation
of the class can consist of selecting the majority class of all the neighbors, or distance
weighing may be used to reduce the influence of faraway neighbors on the classification
decision. The choice of k depends on the concrete data and application – there is no uni-
versally best value. The similarity function is usually the cosine of the angle between
vectors (see Section 2.2); with richer representations of instances and more complex
similarity functions the issue moves into the field of case based reasoning [136, 114].

To illustrate the workings of the k-nearest neighbor (k-NN) classifier, for the simple
case of k = 1 and data dimensionality 2, Figure 2.6 shows the Voronoi tessellation
of the data space by training points [205], where the region surrounding every point
represents the area in which the point is the nearest one of all points in the training set.
At classification phase, the label of an unseen point is determined as the label of the
training point in the corresponding region. Therefore, depending on the labeling of
training points, the boundaries between classes for the 1-NN classifier model follow the
boundaries between regions.

A major problem with applying k-NN to text is the sheer volume of practical textual
data, which consumes memory and slows down retrieval. One of the first applications
of the k-NN classifier to text was by Yang [226], who addressed this problem by or-
ganizing data into a three-layer network of weights, with one layer for words, one for
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Figure 2.7: The decision tree generated from the weather data
Slika 2.7: Stablo odlučivanja generisano za podatke o vremenskim uslovima

documents and one for categories. The same problem can be tackled by storing only the
instances for which there is evidence during training that they would contribute signifi-
cantly to classification [4]. Other improvements to the k-NN algorithm include feature
weight adjusting [80] and document clustering [91].

On the other hand, the simple method combining the 1-NN classifier and some form
of dynamic time warping (DTW) distance (see Section 2.2) was shown to be one of the
best-performing time-series classification techniques [47, 103].

Decision Trees

A decision tree (DT) is a tree whose internal nodes represent features, where arcs are
labeled with outcomes of tests on the value of the feature from which they originate,
and leaves denote categories. The decision tree constructed from the weather data set
in Table 2.1 is shown in Figure 2.7. Classifying a new instance using a decision tree
involves starting from the root node and following the branches labeled with the test
outcomes which are true for the appropriate feature values of the instance, until a leaf
with a class value is reached.

Two of the most widely used decision-tree learning algorithms are classification
and regression trees (CART) by Breiman et al. [20], and Quinlan’s C4.5 [159] (an
improved commercialized version C5.0 exists, which focuses on better generation of
rules). Learning a decision tree with C4.5 involves selecting the most informative fea-
ture using a combination of the information-gain and gain-ratio criteria described in
Section 2.8, determining how best to split its values using tests, and repeating the pro-
cess recursively for each branch/test, without considering features which were already
assigned to nodes. Recursion stops when the tree perfectly fits the data, or when all fea-
tures have been used up. The tree in Figure 2.7 was generated using the C4.5 algorithm.
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To avoid overfitting (see Section 2.3.4), pruning can be performed on the learned
tree, which reduces its fit to the training data, at the same time attempting to improve its
accuracy in the general case. C4.5 performs this task by converting the tree to an equiv-
alent rule form (one for each path from root to leaf), estimating the general accuracy
of each, and improving it by removing some tests. Then, rules are sorted in decreasing
order of estimated accuracy and used in this form for classification.

Decision trees (and rules) are especially useful when the workings of the classifier
need to be interpreted by humans, offering insight into the structure of data. As for text
data, DTs may be unsuitable for many applications since they are known not to be able
to efficiently handle great numbers of features. Nevertheless, sometimes they do prove
superior, for instance with data sets in which a few highly discriminative features stand
out from the many [68].

AdaBoost

AdaBoost is one of the most well known ensemble methods for classification, using
voting to combine the classification decision of multiple “weak” learners, where “weak”
refers to simple, fast classifiers that do not tend to produce overly complex models. The
rationale behind AdaBoost, as well as other “boosting” methods, is to iteratively build
new weak classifier models that seek to perform well on examples that the models from
previous iterations found problematic.

In its original formulation [62, algorithm “AdaBoost.M1”], AdaBoost assumes a
“weak learner” that may be any classifier able to handle weighted instances in a data
set, where the weight of an instance is a positive number. In the presence of weights,
the training error of a weak learner is the sum of weights of misclassified instances
divided by the total sum of weights in the training set, as opposed to the proportion of
incorrectly classified instances. Through weights, the weak classifier can be directed
to give special attention to a particular set of instances, that is, those instances with
high associated weights. The decision-tree algorithms C4.5 [159] and CART [20] are
examples of classifiers that can naturally handle instance weights.6

The training phase in the AdaBoost algorithm commences by assigning equal weight
1/n to each training instance, where n is the size of the training set. Then, the weak
classifier is trained, and weights are updated based on its training error. The weight
associated to correctly classified instance i is changed to:

wi ← wi · error /(1− error) ,

where error denotes training error, while the weights of incorrectly classified instances
are left unchanged. After each update, instance weights are normalized to unit sum. The
procedure is iterated a specified number of times, or until error = 0, or error ≥ 0.5.

6If a classifier is unable to explicitly handle instance weights, the same effect can be achieved by resam-
pling points from the training set [224].
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In the classification phase of one data instance, a weighted vote is taken between all
weak classifiers. More precisely, zero weights are first assigned to each class. Then, the
class c predicted by each weak learner j has its weight incremented:

yc ← yc + log
1− error j

error j
,

where error j is the training error of classifier j.7 Finally, the class with the highest
weight is returned as the predicted class.

The original AdaBoost algorithm has witnessed numerous extensions, including
versions optimizing Hamming loss (AdaBoost.MH), and producing real-valued predic-
tions (“Real AdaBoost”) [188, 64].

Generally, AdaBoost is known to be able to generate excellent classifiers in a wide
variety of domains [82]. Its weaknesses, however, include the tendency to overfit the
training data [224], and sensitivity to outliers [175].

2.3.2 Using Binary Classifiers for Multi-Class Problems

There are several techniques to reduce multi-class classification problems to a set of
binary problems. The oldest and most commonly used is referred to as one-vs-all bi-

narization: the original data set consisting of m classes is split into m data sets, with
each class once declared as positive, and the negative class composed of the leftover
m − 1 original classes. During classification, m binary decisions are made, and in the
case of more than one positive outcome the most confident one is taken as the final
classification decision.

The one-vs-all scheme may be prone to errors emerging from inadequate confidence
values returned by the binary classifiers. One possible alternative is round robin bina-

rization [67], also known as all-vs-all. In this scheme,
(
m
2

)
classifiers are trained, one

for each pair of classes, and the “winning” class during classification is determined as
the outcome of a round robin tournament held between classes via the binary classifiers.

Another alternative to the one-vs-all method relies on the use of error-correcting

codes [224], applicable in cases when m > 3. Instead of training m binary classifiers,
a much larger number of 2m−1 − 1 is trained, with the difference that several original
classes may be combined into the positive class, instead of using only one. This results
in classification decisions that do not rely on one, but several positive binary outcomes,
with the series of expected positive (1) and negative (0) decisions forming the error
correcting code for each of the original m classes. This leads to a classification decision
which is less prone to errors – in the case of one, or even several incorrect binary
classifications, the true class may still be recognized from the remaining correct binary
decisions which match the appropriate code.

The above approach, referred to as the exhaustive error-correcting code method,
is infeasible for large values of m. Therefore, other schemes for constructing shorter

7This voting scheme explains the stopping criteria in the training phase: for error = 0 and error ≥ 0.5
the logarithm is undefined.
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Class Class vector
a 1000
b 0100
c 0010
d 0001

(a)

Class Class vector
a 1111111
b 0000111
c 0011001
d 0101010

(b)

Table 2.2: Using binary classifiers for multi-class problems: (a) standard method (one-
vs-all); (b) error-correcting code method
Tabela 2.2: Korišćenje binarnih klasifikatora za probleme sa više klasa: (a) standardna
metoda („sam protiv svih“), i (b) metoda kodova koji ispravljaju greške

error correcting codes are often used to reduce the number of trained classifiers without
significant loss of performance, resulting, for instance, in the randomly selected error-

correcting code method.
To illustrate the use of error-correcting codes, consider a multiclass problem with

four classes a, b, c, and d. Four binary classifiers, each of which is trained to recognize
one of the classes as positive (for example, using the one-vs-all method), can be viewed
as producing a 0/1 value in a four-digit code vector representing each class. Table 2.2(a)
shows the (row) vectors which represent each class, where columns constitute the ex-
pected output of every classifier for each class. In this scheme, if a classifier produces
erroneous output (a 1 instead of a 0, or vice versa), there does not exist a way to re-
cover from the error. However, each class can be represented by, for example, seven
binary digits instead of four, and the corresponding classifiers constructed to potentially
produce an output of 1 for more than one class, as shown in Table 2.2(b). At classifica-
tion time of a particular instance, which belongs to class a, the classifier output vector
1011111 can still be correctly interpreted as signifying class a, despite of the erroneous
output produced by the second classifier. This is because, of all class vectors in Ta-
ble 2.2(b), vector 1011111 is most similar to vector 1111111, since they contain only
one different binary digit [224].

2.3.3 Classifier Evaluation

There are three different aspects of classifier performance [191]:

• training efficiency,

• classification efficiency,

• correctness of classification.

Training and classification efficiency are measured in terms of execution speed and
memory consumption, and present very important factors in practical applications of
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classification. The end user will certainly be affected by low classification efficiency,
and if online classifiers are used, by low training (that is, “updating”) efficiency as well.
Nevertheless, the attention of the research community is dominated by the correctness
aspect, often giving the other two only a passing glance. This is also true for this text,
as “classification performance” mentioned in previous sections was mostly referring to
correctness, and will continue in the same manner.

The data set used for classification is usually divided into the training set, used to
train the classifier, and the test set for evaluating classifier performance. One widely
used measure for evaluating classifier performance in machine learning is accuracy –
the percentage of correctly classified examples from the test set. Sometimes, a third set
is extracted from the data set, called the validation set, which is used in the training
phase to evaluate the classifier and help tune its parameters to yield optimal perfor-
mance. It is important to separate the validation and test sets, because a classifier tuned
on the test set would exhibit excellent performance when evaluated on it, which would
in all probability be misleading.

The ratio between the sizes of the training and test set (the split) may depend on the
amount of available data, the particular application and many other factors – there are
no firm rules. The usual splits include 2/1, 3/1, 4/1, and 9/1, and there are cases when
test sets larger than the training sets are used.

Several problems plague the singular split scheme. The first one concerns the distri-
bution of classes in the original data set, which may not be preserved in the training and
test sets if they are generated randomly. Class distribution is an important property of
data sets, and practically all classifiers either implicitly or explicitly use it while learn-
ing the model. Therefore, a split which breaks the class distribution may also break
classifier performance. A cure for this is stratification, the notion of preserving the
class distribution in all data sets derived from the original.

The second, more serious problem lies in the arbitrariness of which examples end
up in which set after the split (even with stratification). There are no guarantees that a
particular split into a training and test set will yield a realistic evaluation of a classifier.
The problem is even more emphasized when the amount of available data is small.
Then, the exclusion of different test sets from training data may led to great variance in
classifier performance measurements.

A common solution to this problem is in cross-validation, a technique borrowed
from statistics: the data set is split into n subsets, one is declared the test set, the
others are merged into the training set, and the classifier is evaluated. The procedure is
repeated n times, every subset once being the test set, and the results are averaged. Each
iteration is called a fold, and the whole process n-fold cross-validation. Stratification is
also possible here, yielding stratified n-fold cross-validation. The whole procedure can
be repeated k times, making sure that in each run the n subsets of the original data set
are sufficiently different. This is known as k runs of n-fold cross-validation (with the
adjective “stratified” also applicable).

As with the split, there are no firm rules for choosing the values of n and k. In ma-
chine learning in general, there is some agreement that 10 as the value of both n and k is
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a satisfactory solution, but for applications to text these values may simply be too high
for feasible training efficiency. For the same reason leave-one-out cross-validation, the
extreme case of n-fold cross-validation where n equals the total number of examples,
is avoided on text. Many experiments in text categorization were performed on single
splits (see page 48), there are also examples of 5 runs of 4-fold cross-validation [57, 68].
In time-series classification, cross-validation splits with the number of folds dependent
on the data set have been used, with the sizes of the training and test sets reversed (one
of the n subsets of a data set is declared the training set, and the others merged into the
test set), making the classification problem somewhat more difficult [47].

Having multiple measurements means that a statistical test, like the t-test, can be
used to determine whether the performance of two classifiers is significantly different.
However, caution needs top be exercised when multiple runs are performed, since in
such cases the performance measures become interdependent [187]. In fact, increasing
the number of runs can eventually result in any difference being judged as statistically
significant, when in reality it is not [224]. Numerous methods have been proposed to
address this issue, including averaging over folds and runs [19], approaches involv-
ing 5 × 2-fold cross-validation [6], and a modification of the t-test referred to as the
corrected resampled t-test [139, 224].

Statistical tests may be used in a scenario where, for example, multiple classifiers
are being compared over multiple data sets. Then, the number of statistically significant
wins and losses can be counted for each classifier, and the subtracted value of wins–

losses used to rank the classifiers relative to one another.

Evaluation Measures

Accuracy – the percentage of correctly classified examples – is a good measure for
evaluating classifiers in a wide variety of applications. However, consider a binary
classification problem with imbalanced class distribution, where examples from the
negative class constitute 95% of the data set. Then, the trivial rejector (that is, the
classifier which assigns all examples to the negative class) has an accuracy of 95%, but
is totally unusable in practice if the positive class is of any importance. Class imbalance
not only dismisses accuracy as an evaluation measure, but creates the need to fine-tune
classifiers to assign an adequate importance to the minority class, in order to achieve
desired performance.

Several evaluation measures which originated in information retrieval (IR) are com-
monly used to evaluate classifiers, especially in the context of text categorization. IR
is concerned with the relevance of documents retrieved from a database as a response
to a user query, where “relevant” may now be considered as “belonging to the positive
class.” Then, precision is defined as the ratio of the number of relevant documents that
were retrieved (the number of documents correctly classified as positive), and the total
number of retrieved documents (the number of documents classified as positive). In
terms of outcomes of binary classification summarized in Table 2.3, it is calculated as

precision =
TP

TP + FP
.
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Predicted class
yes no

Actual yes True Positive (TP) False Negative (FN)
class no False Positive (FP) True Negative (TN)

Table 2.3: Outcomes of binary classification
Tabela 2.3: Rezultati binarne klasifikacije

Similarly, recall is the ratio between the number of relevant documents retrieved, and
the total number of relevant documents:

recall =
TP

TP+ FN
.

For comparison, accuracy is

accuracy =
TP+ TN

TP+ TN+ FP+ FN
.

Although they differ by only one term in the formula, precision and recall are really
on the opposite sides of the spectrum – while precision characterizes the mistakes made
in making the positive decision, recall expresses the coverage of the real positives by
the decision, regardless of mistakes. The trivial acceptor has 100% recall and very low
precision, while a classifier which makes only one positive classification, and it happens
to be correct, has 100% precision and very low recall. Therefore, these two measures
are seldom used by themselves, and may be combined to form the F-measure:

Fβ =
(β2 + 1) · precision · recall

β2 · precision + recall
.

When β = 1, F-measure represents the harmonic mean of precision and recall, taking
both of them equally into account. For β < 1 precision is given more importance,
ending with F0 = precision , while β > 1 means recall gets the upper hand, with the
other extreme at F∞ = recall . Besides β = 1, the usual values of β that are used
are β = 0.5 when precision is considered more important, and β = 2 when recall is
preferred [137].

Classifiers can generally be tuned to favor precision or recall during training. The
point where (averaged) precision and recall are equal for a particular test set is the break-

even point (BEP), and is also used as a measure of classifier performance, although it
has received some criticism [41].

In case of multi-class classification, all these measures can be considered for each
class separately. If we denote the classification outcomes with regards to class i ∈
{1, 2, . . . , n} by TPi, TNi, FPi, and FNi, then precision i and recall i calculated using
them refer to classification performance on the ith class. There are two ways to express
“global” precision and recall: microaveraging and macroaveraging.
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Microaveraged precision and recall are obtained by first summing up classification
outcomes by class:

precisionm =

∑n
i=1 TPi∑

i(TPi + FPi)
,

recall
m =

∑n
i=1 TPi∑

i(TPi + FNi)
,

while macroaveraging involves averaging of precision and recall calculated for each
individual class:

precisionM =

∑n
i=1 precision i

n
,

recallM =

∑n
i=1 recall i

n
.

Data Collections

Over the course of research into techniques for machine learning, data mining, and
information retrieval, a number of data repositories were set up to facilitate the usage
of standard evaluation benchmarks and reproducibility of results.

Regarding machine-learning and data-mining research, one of the most influential
data-set repositories is the University of California, Irvine (UCI) Machine Learning
Repository [7], which currently hosts around 200 data sets originating from numer-
ous application areas, suitable for evaluation of classification, clustering, regression,
and other ML tasks. Also, numerous repositories exist, that specialize on data from
particular application areas, for example the Kent Ridge Bio-Medical Data Set Reposi-
tory [124], which predominantly hosts gene expression data, and the University of Cal-
ifornia, Riverside (UCR) Time Series Repository [104], which focuses on time-series
data sets suitable for the tasks of classification and clustering. As for information re-
trieval, the series of Text Retrieval Conferences (TREC) continually provides corpora
for evaluation of various IR tasks.

Several freely available textual data sets have been repeatedly used for evaluating
the performance of classification, as well as information retrieval. They include:

• the Reuters corpus, assembled by Lewis [121] from Reuters news stories re-
lated to economics, and enduring several modifications afterwards. The Reuters-
22173 data set (where the number refers to the number of examples) was ex-
perimented on using several different subsets/splits which became almost stan-
dard – ModLewis, ModApté, and ModWiener, while the most recent version is
Reuters-21578 ModApté, with several different subsets used. A new version of
the Reuters corpus called Reuters Corpus Volume 1 (RCV1) was released more
recently [123], containing a much larger volume of data. It should eventually
replace Reuters-21578 as the standard Reuters data set for experimentation.
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• the 20-newsgroups data set, consisting of messages taken from 20 Usenet groups,
where the groups themselves represent categories [95, 136],

• the WebKB corpus of university Web pages, classified into seven categories by
type [42],

• the OHSUMED corpus (a subset of the Medline database), where documents are
titles and abstracts published in medical journals, initially used for evaluation of
information retrieval [83],

• the Cora data set, originating from a Web search engine focusing on the domain
of computer science research papers [57],

• the dmoz Open Directory collection, available for download in RDF format,
which contains tiles, hyperlinks, and short descriptions of a large number of Web
pages organized into a multi-level topic hierarchy. It is constantly evolving, but
nevertheless has been extensively experimented on [46, 30, 68],

• the collection made available by Han and Karypis [79], also used by Forman [57],
includes documents from TREC collections, the OHSUMED collection, Reuters
and Los Angeles Times news stories, etc.

Despite the commonality of data collections used to evaluate classifiers, exact com-
parison of classifiers is difficult due to different experimental setups – subsets of col-
lections, splits, evaluation measures, and versions and parameters of algorithms. Nev-
ertheless, some conclusions can be reached, and are discussed in Section 2.3.5.

2.3.4 Overfitting

Training a classifier “too much,” in the sense of maximizing its performance on the
training set, may in fact lead to suboptimal performance on a separate test set and real
life data. This phenomenon is referred to as overfitting, and may come as a conse-
quence of a large number of training instances, noisy data, and/or high dimensionality.
Some classifiers are more prone to overfitting than others, and many of them employ
complex strategies to avoid it. The philosophical equivalent of the problem lies in the
Occam’s razor principle, which in ML terms translates to preferring a simple model
which reasonably fits the data, to a complex one which does so more accurately.

To illustrate, consider one binary classification problem, in a two-dimensional fea-
ture space, of separating salmon and sea bass on evidence of their width and lightness
of scales, shown in Figure 2.8 (from [50]). The data is clearly not linearly separable,
therefore the linear classifier in Figure 2.8(a) leaves several misclassified examples on
both sides of the boundary. On the other hand, the complex model in Figure 2.8(b)
perfectly fits all examples, making great efforts to “pick up” every fish which strayed
deep into the waters occupied by instances of the other species. This leads to whole
regions being marked for one class on the evidence of a single example, when, consid-
ering all surrounding examples, they have a greater probability of belonging to the other
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(a) (b)

Figure 2.8: A simple and complex model for binary classification in a
two-feature space
Slika 2.8: Prost i složen model binarne klasifikacije u prostoru sa dva
atributa

class. In one such region a new example is marked by a question mark in the figure –
it will be classified as sea bass although it is more likely to be a salmon, considering
the surroundings. In all probability, the linear model will perform the same or better on
real-world data than the complex one, at the same time being much simpler to derive,
apply, and maintain.

2.3.5 Discussion

A natural question which arises when considering classifiers is: which one is best?
There seems to exist no universal answer, however some domain-dependent conclusions
have been reached in the literature.

Regarding text categorization, as far as accuracy is concerned, SVMs have consis-
tently dominated other classification algorithms in experimental benchmarks. Never-
theless, much may depend on the properties of a data set (as was effectively demon-
strated by Gabrilovich and Markovitch [68]), the evaluation measure that is considered
important, and the final application of the classifier. Too many times were sophisticated
techniques employed only to later discover that simple techniques performed as well,
or even better, at the same time being easier to manage [224].

In the time-series domain, somewhat counterintuitively, the straightforward com-
bination of the 1-NN classifier and some form of dynamic time warping (DTW) dis-
tance (Section 2.2) was shown to outperform almost all other classification techniques,
in the sense that 1-NN with DTW is the single best-performing out-of-the-box algo-
rithm [47, 103]. Chapter 6 will provide additional interpretation of this observation.

If the classifier needs to be trained online, perceptrons and nearest-neighbor meth-
ods are generally good choices, as is naïve Bayes which can be adjusted for that pur-
pose. SVMs are difficult to use in this way as new examples may alter the configuration
of support vectors and render the classification unstable. If interpretability of classifi-
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cation is a big concern, C4.5 may be a good choice. Nearest-neighbor classifiers have
very short training times, as does naïve Bayes; SVMs take a little longer, while C4.5
and Bayesian networks may be prohibitively slow in certain situations. Classification
time is longest for nearest neighbor, but takes very little for naïve Bayes, SVMs, and the
perceptron. All these properties of classifiers, together with the characteristics of data
and the nature of the particular problem being solved, need to be taken into account
when selecting the right tools for the task at hand.

2.4 Semi-Supervised Learning

In many situations, obtaining data sets with complete class information may be difficult
or infeasible, especially when dealing with large numbers of data instances. Semi-
supervised learning (SSL) is a family of techniques which makes use of both labeled
and unlabeled examples during learning.

Generally, in order for SSL to work, that is, for unlabeled data to be helpful in
the process of learning a model, certain conditions need to be met. One of the most
widely adopted conditions is the cluster assumption, which can informally be formu-
lated as follows [33].

Cluster assumption: If points are in the same cluster, they are likely to be of the
same class.

An equivalent formulation is referred to as low-density separation [33].

Low-density separation: The decision boundary should lie in a low-density region.

Both formulations of the cluster assumption deal with the relationship between the
cluster structure in the data and the information provided by class labels. If the cluster
assumption holds then there exists enough positive correspondence between class and
cluster structure in the data so that using unlabeled points, and the cluster information
carried by them, can help the learning process.

Semi-supervised learning algorithms can be viewed as belonging to one of three ma-
jor families: generative models, algorithms which directly implement the low-density
separation assumption, and graph-based methods [33]. The following three paragraphs
briefly summarize the main ideas behind these families of methods. For more compre-
hensive overviews of SSL, we refer the interested reader to the survey by Zhu [237], as
well as books by Chapelle et al. [33], Liu [128], and Sebe et al. [192].

Generative models. This family of algorithms attempts to model the conditional
probabilities P(X |C) for each class using some unsupervised learning procedure, where
random variable C denotes the class attribute, and X corresponds to (multiple) data at-
tributes. Then, the probabilities for prediction, P(C|X), are obtained by applying the
Bayes theorem [33]. The term “generative” originates from the explicit modeling of the
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structure of the problem by incorporating knowledge about P(X) and P(X |C) into pre-
diction. A classic example of the generative model approach is the combination of the
naïve Bayes classifier (Section 2.3.1) and the EM approach to probabilistic clustering
(see Section 2.5.1) [128].

Low-density separation. The most common approach to direct implementation of
the low-density separation assumption is through a maximum-margin algorithm like
support vector machines [33]. One way to use unlabeled data in SVM training is to
select the labels of the unlabeled data points in such a way that the margin of the trained
classifier is maximized [128]. This procedure requires that the unlabeled instances
which need to be classified are known beforehand, with the labels of all these instances
determined collectively. In other words, data points (but not the class labels) from the
test set are used in the process of building the maximal-margin model. This approach
is commonly referred to as transduction, giving rise to the term transductive support

vector machines [128, 33].

Graph-based methods. Algorithms that belong to this family of approaches to SSL
represent data (both labeled and unlabeled) as nodes of a graph, the edges of which are
weighted according to pairwise distances between incident nodes [33]. The graph, with
similar instances connected by larger weights, is used to assign classes to unlabeled
points in such a way that labels of nodes connected by edges with high weight tend
to agree with each other [128]. A representative algorithm by Zhu et al. [238] involves
computing a real-valued function f on graph nodes, and assigning labels to nodes based
on its values. Function f , which exhibits harmonic properties, is obtained by optimiz-
ing a quadratic energy function that involves graph edge weights, with the probability
distribution on the space of functions f formed using Gaussian fields. For data points
x,y ∈ R

d the edge weights may be assigned by the radial basis function (RBF) of the
following form:

W (x,y) = exp

(
−‖x− y‖2

σ2

)
,

where σ is a data-dependent constant. Therefore, large edge weights are assigned be-
tween nodes that are close to one another with respect to Euclidean distance.

2.5 Clustering

While classification is concerned with finding models by generalization of evidence
produced by a data set, clustering deals with the discovery of models which describe
patterns in data, with little or no external guidance. This section will overview cluster-
ing techniques in a manner similar to Section 2.3 – the principles behind several key
algorithms will be presented first, followed by a discussion of issues in clustering eval-
uation. The section will be concluded by a discussion of the similarities and differences
between various approaches to clustering.
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2.5.1 Algorithms

K-means Clustering

The basic K-means clustering algorithm is one of the oldest and simplest clustering
algorithms suitable for application to high-dimensional data, which may still produce
good results. It involves randomly choosing K points to be the centroids of clusters, and
grouping instances around centroids based on proximity. Then, centroids are iteratively
recomputed for each cluster, and instances regrouped until there is sufficiently little
change in centroid positions. This algorithm depends heavily on the choice of K (which
may not be obvious at all for a particular application), and the initial positioning of
centroids. Having K-means generate empty clusters is not a rare occurrence.

Instead of explicitly assigning examples to clusters (hard assignment), each cluster
can be represented by a vector of features and updated on witnessing an example (soft

or fuzzy assignment), based on proximity. That way, representations of clusters are not
limited to centroids and may fit some data distributions more naturally.

A close relative of the “soft” variant of the K-means algorithm are self-organizing

maps (SOMs), a technique with strong origins in neural networks. While K-means is
concerned with finding relations among examples in their own space, SOM projects
the examples down to a two dimensional grid of interconnected points. Each example
activates the point closest to its projection, and the activation is propagated through the
grid in a neural network-like manner. Kohonen et al. [109] used a triangular grid SOM
to organize a large collection of newsgroup documents.

Hierarchical Clustering

Hierarchical clustering techniques derive a nested hierarchy of clusters, with the ex-
treme of a single cluster containing all instances on one end, and a collection of one-
element clusters on the other. One such partition is shown by the dendrogram in Fig-
ure 2.9 (from [28]). The hierarchy can be constructed from the bottom up (the agglom-

erative approach), by starting with single-element clusters and merging two of the most
similar in each step, and from the top down (the divisive approach), by repeatedly di-
viding the cluster with least internal similarity. In both approaches, a concrete set of
clusters can be obtained simply by choosing a suitable degree of inter-cluster similarity
and “reading off” the clusters from the dendrogram using a horizontal cut-off.

Compared to the divisive approach, the agglomerative approach is relatively straight-
forward, with the main issues concerning the choice of the inter-cluster distance metric
and optimizing the search for most similar clusters. Methods for determining the dis-
tance between two clusters include: single link, where the distance between two clusters
is taken to be the minimum distance (maximum similarity) between two points from the
two different clusters, complete link, where cluster distance is defined as the maximum
distance (minimum similarity) between two points from the two different clusters, and
group average, where average distance between all pairs of points from the different
clusters is used [203]. The divisive approach, on the other hand, offers a wide variety
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Figure 2.9: A dendrogram representing a hierarchical clustering of a set of
examples
Slika 2.9: Dendrogram koji predstavlja hijerarhijski klastering skupa instanci

of ways to split the chosen cluster. One way is to use the basic K-means algorithm
multiple times with different choices of starting points, and select the split with the
highest overall similarity. This technique, referred to as bisecting K-means, exhibited
surprisingly good performance at clustering documents [201].

Divisive hierarchical clustering can also be achieved using singular value decompo-
sition, which produced the principal direction divisive partitioning (PDDP) algorithm
for clustering documents [13]. SVD-based techniques can also be very effective as
feature-extraction methods (see Section 2.8.2).

Probabilistic Clustering

In the probabilistic clustering approach, instances are considered to be generated from
a mixture model of k probability distributions, by first choosing model j with proba-
bility pj , and then drawing an example adhering to the distribution [13]. Each cluster
corresponds to a distribution, with instances gathering around its mean at distances de-
termined by variance. The likelihood that a particular data set is drawn from a particular
mixture model of k distributions is given by

L(X |R) =
∏

i

∑

j

pj P(xi|rj),
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for instances xi and clusters rj . One probabilistic method, the EM algorithm [136],
is based on alternatively estimating (the “E” step) and maximizing (the “M” step) the
expected value of the log-likelihood function log L(X |R).

To illustrate the functioning of the EM algorithm, Figure 2.10 (from [223]) shows
several steps of its execution on the “Old Faithful” data set, whose attributes indicate the
eruption and waiting times of the famous Yellowstone geyser. Figure 2.10(a) depicts the
initial configuration which consists of two Gaussian distributions that do not fit the data,
the plots in Figure 2.10(b, c) show two intermediate steps in adjusting the parameters
of the Gaussians, and Figure 2.10(d) represents the final state where the distributions
correspond with the data very well.

Benefits of probabilistic clustering include the ability to build clusters using dif-
ferent data sets (because clusters are represented independently from examples), itera-
tive examination of instances (the approach is online), and output of results which are
easy to interpret [13]. More details on the probabilistic approach to clustering can be
found in [28].

Spectral Clustering

Spectral clustering refers to a family of algorithms designed to work well in situations
where clusters in the data can have non-convex shapes [18]. Starting from a matrix
of pairwise similarities of points in a data set, an adjacency matrix is formed using,
for example, mutual k-nearest neighbors or ǫ-neighborhoods, resulting in an undirected
graph whose edges are weighted by similarities between nodes. Some notion of a graph
Laplacian matrix is then computed, and the eigenvectors corresponding to the smallest
eigenvalues are found.8 The final step usually involves using some standard clustering
algorithm like K-means to find the groups of points.

The most well-known spectral clustering algorithms include those by Shi and Ma-
lik [194], Ng et al. [145], and Meilă and Shi [135], with the principal differences being
in the type of graph Laplacian adopted [220].

The objective behind spectral clustering methods is to identify different groups of
data points by finding local neighborhoods within a graph. There exist several view-
points on how this objective should be achieved, resulting in different approaches to
spectral clustering, and explanations as to why spectral clustering methods work: the
graph cut point of view (partitioning the graph so that the edges between different
groups have a low weights, and the edges within a group have high weights), the ran-
dom walk point of view (through a stochastic process which jumps from node to node),
and the perturbation theory point of view (examining the behavior of eigenvalues and
eigenvectors with the introduction of small changes to the matrix, that is, perturba-
tions) [220].

8The set of eigenvalues of a matrix is refereed to as “the spectrum,” giving rise to the name of the clustering
method family.
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(a) (b)

(c) (d)

Figure 2.10: Steps of the EM algorithm on the Old Faithful data set:
(a) the initial configuration; (b, c) two intermediate steps; (d) the final state
Slika 2.10: Koraci EM algoritma na podacima o “Old Faithful” gejziru:
(a) početna konfiguracija; (b, c) dva med̄ukoraka; (d) završno stanje
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Co-Clustering

Simultaneous clustering of not only instances, but also attributes, has led to the idea of
co-clustering, which is especially useful for data with large numbers of both instances
and attributes. The principle of the approach is to iteratively improve the clustering
of examples by examining clusters of features, and vice versa. An advanced method
involving bi-partite graphs for text clustering was proposed in [45]. The K-means
algorithm can also be used in this context – in an algorithm which gradually co-clusters
examples and attributes which has industrial applications in Web analysis [13].

2.5.2 Clustering Evaluation

Evaluating clustering algorithms is a much vaguer notion than evaluating classifiers,
as there is no clear-cut definition of what constitutes “good” clusters. Nevertheless,
clustering quality can be evaluated from several viewpoints. If there already exists a
partition (a classification) of the data set, external quality measures can be used, which
express how well the clustering measures up to the prescribed labels. Internal quality

measures require no such labeling, because they try to assess inter-cluster difference
and intra-cluster similarity. Several other types of clustering evaluation measures exist,
described in the study by Zhao and Karypis [236], and books by Gan et al. [69] and Tan
et al. [203].

Comparing clustering algorithms is difficult not only because of the problems of
performance measurement, but also because of the lack of consensus on standard eval-
uation corpora. Document collections presented in Section 2.3.3 have all been used in
clustering experiments, together with multitudes of other data collections originating
from specific application domains.

Evaluation Measures

Evaluation measures typically used to assess the performance of clustering include
Rand, Jaccard, entropy, and the F-measure (external); as well as overall similarity and
silhouette coefficients (internal) [173, 69, 203, 201].

To define the Rand and Jaccard measures, we introduce the following definitions.
Let a be the number of pairs of points in a data set which are in different classes but in
the same cluster, b the number of pairs of points which are in the same class and cluster,
c the number of pairs of points which are in the same class but in different clusters,
and d the number of pairs of points in different classes and clusters. Then, the Rand
and Jaccard measures are expressed as

Rand =
b + d

a + b + c + d
,

Jaccard =
b

a + b + c
.
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In Section 2.8 we defined the entropy of a feature and used it to formulate the
information-gain criterion. Entropy can also be used as an external quality measure
of clustering. The probability that a document from cluster Rj belongs to class Ci,
denoted by pij , can be calculated from the clustered data set for every i and j, and then
the entropy of cluster j with regards to the class distribution expressed as

H(Rj) = −
∑

i

pij log(pij).

The entropy of the complete set of clusters is now the average of the entropies of all
clusters, normalized by cluster size:

H =
∑

j

|Rj |
n

H(Rj),

where |Rj | is the size of the jth cluster, and n the total number of examples.
The F-measure, presented in Section 2.3.3 and typically used for evaluating classi-

fiers, is another metric which can conveniently be utilized to express the external quality
of clustering. In information-retrieval terms, if cluster Rj is viewed as an answer to a
query with the correct answers constituting class Ci, precision and recall of cluster Rj ,
relative to class Ci, can be formulated as:

precision ij =
nij

|Rj |
recall ij =

nij

|Ci|
,

where nij is the number of instances shared by the cluster and the class. Then, Fij
1 is

calculated in the standard way, and the F-measure of the whole clustering is derived by
weight-averaging over all classes the maximal F1 values obtained for all clusters:

F =
∑

i

|Ci|
n

max
j

(Fij
1 ).

In case of hierarchical clustering (see page 53), the maximum is taken over all clusters
at all levels.

As an internal quality measure, overall similarity first calculates intra-cluster simi-
larity for cluster j as

1

|Rj |2
∑

x,y

sim(x,y),

where x and y are examples from the cluster, and then a sum weighed by |Rj | values is
taken to form the overall measure.

Silhouette coefficients (SC) combine the notions of intra-cluster (“within”) and inter-
cluster (“between”) distance, and are computed as follows. For the ith point, ai is its
average distance to all points in its cluster (ai corresponds to intra-cluster distance),
whereas bi is the minimum average distance to points of other clusters (bi corresponds
to inter-cluster distance). The SC of the ith point is (bi − ai)/ max(ai, bi), ranging
between −1 and 1 (higher values are preferred). The SC of a set of points is obtained
by averaging the silhouette coefficients of the individual points.
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(a) (b)

Figure 2.11: A challenging example for many data clustering algorithms
Slika 2.11: Izazovan primer za mnoge algoritme klasteringa podataka

2.5.3 Discussion

Most of the points that were discussed in Section 2.3.5 about classification, also apply
to clustering. Properties of the data set play an even more important role, since cluster-
ing techniques attempt to describe some of these properties, but often without external
guidance in the form of class labels. There is no “universal” clustering algorithm which
is able to discover the structure of every conceivable data set. Consider the simple
example shown in Figure 2.11 (from [92]), where data is shown on chart (a), and an
“ideal” clustering, with instances labeled by their corresponding cluster numbers, on
chart (b). Not all clustering techniques can uncover all the clusters presented here with
equal facility [92].

The problem with high-dimensional data is that it may not be easy to visualize
the results of clustering, for an expert to evaluate. Even methods like SOM, which
provide an explicit projection into a low-dimensional space, do not guarantee that the
visualization will depict anything useful. As for automatic evaluation measures, even
when they report good results there is a possibility that valuable structural information
was missed, unlike the evaluation of classifiers which gives pretty good ideas about
classifier performance. A further contrast to the classification community is the lack of
consensus on standard evaluation corpora, which makes the comparison of clustering
algorithms more difficult.
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Despite the problems with evaluation, most of the presented clustering techniques
are known to perform well on text. Bisecting K-means (a hierarchical method) outper-
formed basic K-means and agglomerative hierarchical clustering in one study [201].
Despite that, the basic K-means algorithm is attractive because of its runtime efficiency.
If clustering is to be performed in an online fashion, probabilistic methods are most eas-
ily employed, and K-means is simple to adapt as well.

Regarding time-series clustering, different variants of K-means and agglomera-
tive hierarchical clustering have been used with success, as well as various fuzzy ap-
proaches [126].

2.6 Outlier Detection

Outliers (also termed anomalies, deviations, exceptions) refer to data objects that are in
some sense different from the majority of other objects. In the often-quoted definition
by Hawkins [203]: “An outlier is an observation that differs so much from other ob-
servations as to arouse suspicion that it was generated by a different mechanism.” This
definition encompasses one possible cause for a data instance to become an outlier –
being of a different class (that is, nature) than the rest of the data.9 Other causes for the
appearance of outliers include natural variability in data (in this case an outlier is of the
same class as the rest of the data, but may nevertheless be interesting), and measure-
ment errors (in which case outliers may be considered as noise, and removed prior to
applying another data-analysis technique).

Detecting outliers can therefore be a useful task in many fields which employ data-
mining techniques. These include [203]: fraud detection (purchasing patterns of a
credit card thief are usually different from those of a regular user), intrusion detec-

tion (monitoring the behavior of computer system and network users to detect attacks
and unsolicited gathering of information), medicine (an outlying test result may signify
illness), etc.

To illustrate in an intuitive way the appearance of outliers in data, Figure 2.12 (orig-
inally from [21]) depicts two clusters of points, C1 and C2, and two outlying points,
o1 and o2. Point o1 is a clear outlier, since it is far away from both clusters of points.
On the other hand, in terms of average distances between points in cluster C1, it can be
said that point o2 is close to cluster C2 and therefore not an outlier. However, relative
to average distances between points in cluster C2, point o2 is an outlier, since it is much
farther away from all points in C2 than any other point from the cluster.

From the above discussion of causes and applications of outliers and their detection,
it is clear that there exist many different standpoints for judging the degree of “outlier-
ness” of a given data point. This, in turn, has resulted in a wide variety of approaches to
outlier detection. The rest of this section will briefly review the techniques for outlier
detection belonging to three major families: statistical, distance-based, and density-

9For example, a fraudulent credit card user is of a different class than a regular user.
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Figure 2.12: Outliers in two-dimensional data
Slika 2.12: Outlier-i u dvodimenzionalnim podacima

based. For a more detailed overview of outlier-detection techniques and applications,
we refer to the recent survey by Tan et al. [32].

Statistical model-based outlier detection. The statistical approach to outlier detec-
tion assumes a particular distribution or probabilistic model for a data set, and deter-
mines outliers using a discordancy test. For each data point, the working hypothesis
that the point is generated by the distribution model assumed for the entire data set,
is tested against the alternative hypothesis that the point originates from another dis-
tribution model. Depending of the assumed distribution model, there exist numerous
methods for performing discordancy testing [203, 81].

Although the statistical approach is theoretically sound, various issues may limit
its applicability in practice. One issue pertains to the selection of a correct particular
distribution for a data set, which in some situations can be difficult, or even impossible
to achieve. Another issue is that discordancy tests for multivariate data are not as well
developed as tests for the univariate case, impairing the use of statistical methods on
high-dimensional data sets. Furthermore, real data usually originates from a mixture of
distributions, making the statistical models more difficult to use and understand [203].

Distance-based outlier detection. The distance-based approach views an outlier as
a point which is distant from most other points according to a given distance measure.
Depending on distance measurements, every point in a data set is assigned an outlier

score, and a certain number of points with the highest score considered as outliers.
There are several ways by which distances can be used to assign outlier scores to

data points. One of the simplest is to take as the outlier score the distance of a point
to its kth nearest neighbor [203]. Another method is to determine the outlier score of a
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point as the percentage of other points from the data set which lie at a distance greater
than some threshold distance dmin from the point [81].

Generally, distance-based outlier-detection methods are simple, easy to implement,
and can produce good results. On the other hand, they may be computationally expen-
sive on large data sets, since they usually require the computation of all pairwise dis-
tances. Indexing methods can be used to mitigate this problem, however these tend to
work well only on low or moderately-dimensional data spaces. Furthermore, distance-
based methods cannot handle data sets with regions of highly differing densities, since
global thresholds like k and dmin cannot take into account density variations [203],
which may result in whole (low-density) clusters being considered as outliers, or in
failure to detect outliers in high-density regions.

Density-based outlier detection. In density-based outlier detection, the outlier score
of a given point is determined as the inverse of the density around the point. The
density-based approach is related to the distance-based approach, since densities are
generally computed through use of distance measurements.

As with the distance-based approach, there exist various ways to express the density
of a point (that is, density surrounding the point). One way is to compute density as the
inverse of the average distance from a point to its k nearest neighbors. Another way
is to take density to be the number of data points within a specified radius dmax from
the point.

Besides being sensitive to the choices of parameters k or dmax , both notions of
density given above suffer from the same drawbacks as distance-based approaches, par-
ticularly with regards to the inability to handle regions of varying density. For this
reason, the notion of relative density is useful, which may be computed by dividing the
density of a point with the average density of its surrounding points (for example, its k
nearest neighbors). By using relative instead of absolute densities, outliers from regions
of differing can be correctly identified. A well-known algorithm that uses a more elab-
orate notion of relative density, which is still consistent with the presented intuition, is
the local outlier factor (LOF) algorithm [21].

2.7 Information Retrieval

Information retrieval (IR) refers to a vast field of research and practice which may be
defined as “finding material (usually documents) of an unstructured nature (usually text)
that satisfies an information need from within large collections (usually stored on com-
puters)” [38]. Over the span of several decades, IR has moved from a somewhat arcane
activity performed by “specialist searchers” (for example, librarians), and studied by
a small community of dedicated researchers, to an everyday task performed by com-
puter users of all profiles and backgrounds by virtue of popular Web search engines like
Google and Yahoo.
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From the large body of tasks and techniques that form the field of IR, this section
will review the document weighting schemes and scoring (similarity) metrics pertaining
to the task of ad hoc retrieval [74, 38]. Ad hoc retrieval involves a (relatively) static
document collection, which is searched in order to find documents that are most relevant
to a user query, and presented to the user in a ranked order. Prior to search, documents
in the collection are indexed, that is, converted to a data structure which facilitates fast
retrieval of documents that exhibit high scores when compared with the query. For
details on indexing, as well as other IR tasks and methods not covered in this section,
the interested reader is referred to the recently published introductory textbooks by
Grossman and Frieder [74], and Manning et al. [38].

2.7.1 The Vector Space Model

In the vector space model (VSM), first introduced by Salton et al. [185], both documents
and queries are represented as vectors in a high-dimensional space, in the manner that
was already described in Section 2.1.1 as the bag-of-words representation. Section 2.1.1
also discusses many of the basic term-weighting schemes used in VSM [196, 38]. How-
ever, the vector space model allows the weighting schemes used for documents and
queries to be different, and chosen independently from one another.

The function used to assign scores and rank documents with respect to a query can
be the cosine similarity measure described in Section 2.2.5. A more general approach
is to use only the dot product to express similarity: for two vectors x,y ∈ R

d, the dot
product is defined as

dotprod(x,y) = 〈x,y〉 =

d∑

i=1

xiyi .

By allowing cosine normalization, that is, division of every vector component by the
norm of the vector, to be performed in the term-weighting phase, dot-product similar-
ity can be made equivalent to the cosine, providing that both documents and queries
are cosine-normalized prior to similarity computation. On the other hand, this sep-
aration allows other normalization schemes different from cosine normalization to be
performed, which are integrated, for example, into the advanced weighting schemes de-
scribed in Section 2.7.2. Some form of normalization needs to be introduced primarily
to prevent long documents from being retrieved too often [196, 38].

2.7.2 Advanced Representations

This section will briefly review two of the most prominent advanced term-weighting
schemes, Okapi BM25 and pivoted cosine, both of which take additional factors into
account when constructing term weights. Both schemes can be viewed as assigning sep-
arate weights to documents and queries, and then employing the dot product to measure
similarity between them.
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Okapi BM25

The Okapi information-retrieval system has exhibited good empirical performance over
the course of several Text Retrieval Conferences (TREC) [180, 179]. The BM25 weight-
ing scheme, first implemented in the Okapi system and developed through a probabilis-
tic theoretical framework, includes parameters that may be tuned to the specific retrieval
task and collection in order to maximize performance. Providing that n is the total
number of documents in the collection, df the term’s document frequency, tf the term
frequency, dl the document length (the total number of terms), and avdl the average
document length, in the basic version of the scheme, term weights of documents are
given by

log
n− df + 0.5

df + 0.5
· (k1 + 1)tf

k1((1 − b) + b dl
avdl

) + tf
,

while the term weights of queries are

(k3 + 1)tf

k3 + tf
,

where k1, b, and k3 are tunable parameters. The recommended values for the parameters
are k1 = 1.2, b = 0.75, and k3 = 7. For additional information on the BM25 weighting
scheme, including motivation and theoretical justification, see [200, 178].

Pivoted Cosine

Motivated by providing a better correspondence between the distribution of document
length and document relevance, Singhal et al. [197, 198, 196] introduced several vari-
ants of the pivoted cosine weighting scheme. Using the notation from the previous sub-
section, in the variant from [198], term weights of documents (the dtb weighting [198])
are given by

log1(tf ) · log
(

n+1
df

)

s + (1− s) dl
avdl

,

while the term weights of queries (the dtn weighting [198]) are

log1(tf ) · log

(
n + 1

df

)
,

where log1(tf ) = 1 + log(1 + log(tf )) if tf 6= 0, otherwise log1(tf ) = 0. The
recommended value for the tunable parameter s is 0.8.

2.7.3 Evaluation of IR Systems

In order to evaluate an information-retrieval system, a test collection is needed, consist-
ing of three main components [38]:
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Retrieved?
yes no

Relevant? yes True Positive (TP) False Negative (FN)
no False Positive (FP) True Negative (TN)

Table 2.4: Outcomes of information retrieval
Tabela 2.4: Rezultati information retrieval-a

1. A document collection,

2. A set of queries,

3. A set of relevance judgements, usually a binary assessment of relevant or non-

relevant for each document-query pair.

Alternatively, labeled corpora typically used for evaluation of classification (see Sec-
tion 2.3.3) can be employed in the context of IR, by making relevance judgements
through label match and mismatch.

Two of the most common evaluation measures for IR, already discussed in Sec-
tion 2.3.3 in the context of classification, are precision and recall. Precision is defined
as the ratio of the number of relevant documents that were retrieved, and the total num-
ber of retrieved documents, while recall is the ratio between the number of relevant
documents retrieved, and the total number of relevant documents. In terms of possi-
ble outcomes of retrieval with regards to one query, summarized in Table 2.4 (which is
analogous to Table 2.3), precision and recall are computed as:

precision =
TP

TP + FP
,

recall =
TP

TP+ FN
.

To obtain precision and recall values for a given set of queries, the measurements for
individual queries are averaged. For a fixed number of retrieved documents k, precision
is also referred to as precision at k. As in Section 2.3.3, precision and recall can be
combined to form the F-measure:

Fβ =
(β2 + 1) · precision · recall

β2 · precision + recall
.

The measures described above are essentially set-based measures, and may not be
entirely suitable for evaluation of ranked retrieval. In addition, they may depend on a
predetermined number of retrieved results k. For this reason, several aggregate eval-
uation measures have been proposed, including the precision-recall curve, point-wise
average precision, and mean average precision (MAP).

Plotting the precision of a set of queries at every recall level produces the basic
precision-recall curve. Because of its jagged shape, interpolation can be performed to
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obtain a smooth decreasing curve, referred to as the interpolated precision-recall curve.
The interpolated precision, pinterp , at a specified recall level r, is defined as the highest
precision for all recall levels r′ higher than r [38]:

pinterp(r) = max
r′≥r

precision(r′) .

Recall levels for the interpolated precision-recall curve can be taken only at specified
equidistant values between 0 and 1; typically 11 values are used: r ∈ {0, 0.1, 0.2 . . .1}.
Moreover, by taking the average of the precision values for the specified recall values
results in point-wise average precision. For the typical recall values given above, the
measure is referred to as 11-point average precision.

Finally, a common measure that provides a single aggregate value of precision
across all recall levels is mean average precision (MAP). For a given set of queries
Q, and query qj ∈ Q, let mj denote the number of retrieved documents, and Rjk the
set of first k ranked results. Then,

MAP(Q) =
1

|Q|

|Q|∑

j=1

1

mj

mj∑

k=1

precision(Rjk) .

The MAP measure roughly approximates the area under the uninterpolated precision-
recall curve [38].

2.8 Dimensionality Reduction

One of the principal approaches for tackling the problems caused by the curse of di-
mensionality (see Chapter 1) is by application of dimensionality-reduction techniques
to transform the data to a lower-dimensional representation.

Regarding text data in the bag-of-words representation, many preprocessing steps
can be considered a limited form of dimensionality reduction. Such steps include the
elimination of digits and special characters, and removal of words which appear too in-
frequently or too frequently in the document set with respect to some predefined thresh-
olds (for example, excluding all words which appear in less than three or more than half
of all documents). The removal of words which are too frequent (for example, “I,” “the,”
“with,” etc.) is also often done with regards to a predefined list of stop words. Such
words generally inhibit ML, DM, and IR algorithms because they do not add useful
information to the BOW model (for a majority of applications). A practically standard
stop-word list for English is the one that was used in the SMART document retrieval
system [184].

Stemming can be viewed as another technique for dimensionality reduction of text
data. It transforms all forms of a word to the same stem, like “computer,” “computing,”
and “computational” to “comput.” Therefore, not only does it reduce the number of
features, but it also captures correlations between some words by fusing them, that way
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possibly improving the performance of certain techniques. The problem of algorith-
mically determining the stem of an arbitrary English word is satisfactorily solved for
most applications, one of the widely used algorithms being the Porter stemmer [158].
However, for many languages in which words inflect more than in English, such so-
lutions are not possible, and this problem may itself be tackled by machine-learning
techniques.

Regarding time-series data, the preprocessing technique of scaling, such as uniform
scaling [65], can reduce (but also extend) the length (that is, the number of dimensions)
of a time series.

The above preprocessing methods are generally not expected to greatly reduce the
dimensionality of text or time-series data, or effectively capture the intrinsic dimension-
ality. Numerous techniques for dimensionality reduction, generally independent of the
type of data, have been proposed to date, and the following sections will review those
methods relevant to the research presented in later chapters of this dissertation.

The problem of how to reduce dimensionality can be approached from two distinct
angles: feature selection, where the resulting set of features is a subset of the original
one, and feature extraction, which derives a new set of features of smaller cardinality.

2.8.1 Feature Selection

The question which feature selection tries to answer is this: for a given set of d features
used to represent data, which of its 2d subsets to choose in order to achieve optimal
performance in a given task.

The Wrapper Approach

When class labels are present and the task in question is classification, a simple brute-
force method which imposes itself consists of testing a classifier with every possible
subset of the initial set of features, and selecting the one that performs best. Such an
approach where a classifier is used to evaluate feature subsets is called the wrapper

approach. Unfortunately, the method described above may be prohibitively slow even
on small data sets, therefore different strategies are employed to reduce the search space.
For example, starting with an empty (full) set of features, every possible feature may
be added (removed) one at a time, the classifier trained and tested (see Section 2.3.3),
and the best feature to add (remove) chosen. Even with this modification the wrapper
approach may be too costly for high-dimensional data such as text, thus computationally
less intensive methods, which do not rely on classifiers, are employed more often.

The Filter Approach

The filter approach attempts to determine the importance of a feature based on some
measure which is relatively simple to compute. In the supervised setting, a feature is
considered more “important” if it strongly correlates with the class feature (it is rele-
vant), at the same not correlating with other features (it is not redundant). There exist
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many ways to formalize this notion, including information gain, gain ratio, symmetrical

uncertainty, chi square, relief, and, for textual data, term frequency.

Information-theoretic measures. Several useful feature-ranking measures originate
from information theory, including information gain, gain ratio, and symmetrical un-

certainty. The number of bits needed to express event xi, which occurs with probability
P(xi), is called information, expressed as I(xi) = − log2 P(xi). The expected value
of I for a random variable containing events xi is entropy:

H(X) =
∑

i

P(xi) I(xi) = −
∑

i

P(xi) log2 P(xi),

and the conditional entropy of X after observing Y :

H(X |Y ) = −
∑

j

P(yj)
∑

i

P(xi|yj) log2 P(xi|yj).

The reduction in entropy of X before and after observing Y, that is, the average amount
of information about X contained in Y, is referred to as expected cross entropy [137]:

CH(X, Y ) = H(X)−H(X |Y ).

If we consider features as random variables, then the expected cross entropy of a fixed
class attribute C and attribute A is known as the information gain of A:

IGC(A) = CH(C, A) = H(C) −H(C|A).

The probabilities are calculated from a given data set, thus entropy can be viewed
as a measure of (im)purity of the data set relative to the classification we wish to
achieve [136] (p. 55). The usual approach is to rank every feature with regards to
the class using the IG criterion and choose the best features. Note that the IG measure
takes into account only the correlations of a feature with the class feature, ignoring its
dependencies with other features.

One possible problem of information gain is its bias towards features with more
values. This may be fixed by normalizing IG with the entropy of A, yielding gain ratio:

GRC(A) = IGC(A)/ H(A).

Another approach is used in the symmetrical-uncertainty measure:

SUC(A) = 2IGC(A)/(H(C) + H(A)).

The values of GR and SU lie between 0 and 1, with 0 meaning no correlation, and 1
denoting full. Since H(X)− H(X |Y ) = H(Y )− H(Y |X), IG and SU are considered
symmetrical, because it is irrelevant which variable is observed and which one is ranked
– the correlation works both ways. For GR this is clearly not the case. More details on
these measures can be found in [78] and [137] (p. 42).



2.8 Dimensionality Reduction 69

Chi-square. The χ2 measure from statistics can also be used for estimating the cor-
relation between features and the class feature. If n is the size of the data set, for the
simplest binary version of BOW, where attribute A ∈ {a0, a1}, and binary classification
(C ∈ {c0, c1}), the χ2 metric is

CHIC(A) =
n
[
P(a0, c0) P(a1, c1)− P(a0, c1) P(a1, c0)

]2

P(a0) P(a1) P(c0) P(c1)
.

Relief. A different approach to feature ranking is used by the relief measure first
introduced by Kira and Rendell [107]. Relief takes a random example from the data set
and locates two of its nearest neighbors (with regards to some vector distance metric),
one from the positive and one from the negative class, and uses the values of their
features to update the relevance of each feature. The procedure is repeated a specified
number of times, the more the better (sampling every example if possible). Relief
was later extended to ReliefF (RF), with added support for multi-class and noisy data
sets [110]. It handles noise by taking k nearest neighbors from the positive and negative
class and averaging them. More information on the RF algorithm can be found in [77].

Term frequency. When dealing with text data in the bag-of-words representation, the
number of documents a feature (term) occurs in, called term frequency (which we shall
denote TFDR to differentiate term frequency as a dimensionality-reduction method
from term frequency as a feature-weighing method in the BOW representation), may be
a surprisingly effective way to rank features for selection. A variation of this measure
is to count all occurrences of a term in the whole document set. Note that the removal
of stop words is an important preprocessing step to take before using TFDR, otherwise
many useless features will be retained (unless stop words are important in the particular
application of the classifier).

A graphical representation. In a comprehensive study of feature-selection methods
for text classification [57], Forman gives a graphical analysis of the methods’ decision
boundaries. The curves in Figure 2.13 are plotted with axes representing the numbers
of positive and negative documents containing a word. The words inside the areas en-
closed within the boundaries are to be eliminated for being shared by too many positive
and negative documents, meaning that they are determined to be least discriminative.
The graph includes IG and CHI metrics, as well as some others: document frequency

(DFreq), odds ratio (OR), bi-normal separation (BNS), and probability ratio (PR). All
metrics are set up to select exactly 100 features on the used Cora data set (see page 49),
with the graph showing just how different (or similar) their strategies are.

In the context of text categorization, using some of the described measures and sev-
eral similar ones, Yang and Pedersen have shown that feature selection can reduce the
number of features by 90% up to 99% without significant loss of performance [227].
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Figure 2.13: Decision boundary curves for various feature-selection methods
Slika 2.13: Granične krive različitih metoda za odabir atributa

Furthermore, some combinations of measures, reduction rates, and classifiers exhibited
a performance increase over full feature sets.

Many of the aforementioned methods can be used in an unsupervised setting, to se-
lect features for later application of clustering – not by correlating them with the class
feature, but only amongst themselves. However, high dimensionality of data gener-
ally makes such straightforward application infeasible. Several unsupervised feature-
selection methods for text clustering have been compared in the study presented in [129],
concluding that unsupervised methods perform worse than supervised ones, when the
latter are applicable. The study introduced an approach that iteratively combines clus-
tering and supervised feature selection (which considers generated clusters as classes).
Still, the main difficulties of feature selection for (text) clustering lie in the question of
how to assess feature relevance and relate it to clusters, and in the lack of a standard
evaluation methodology (see Section 2.5.2).

2.8.2 Feature Extraction

Unlike feature selection, feature extraction (often referred to as dimensionality reduc-
tion in its own right) is concerned with engineering a completely different set of features
based on the training data. The resulting features may seem completely counterintuitive
when observed directly, but what is important is that they accommodate the technique
that is to be applied to the transformed data set.

Generally, feature-extraction methods attempt to reduce the data to a space of lower
dimensionality, while preserving valuable “information.” What exactly is considered as
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“information” gives rise to a plethora of different approaches and techniques for feature
extraction – examples of “information” include variance in the data, pairwise distances,
separability of classes, etc.

An important distinction of methods for feature extraction is into linear and non-

linear techniques. Linear feature-extraction techniques seek to find a transformation
matrix G, which when multiplied with the data matrix X produces a matrix represent-
ing data points in a new space: Y = XG.10 The number of columns of G can be
significantly smaller than the number of columns of X , producing a data representation
in Y of much lower dimensionality. The transformation matrix G is derived from the
data matrix X , but may be applied in the same way to (matrices of row) vectors which
were not used in the derivation. Nonlinear techniques, on the other hand, produce data
transformations which cannot be expressed through multiplication with a single matrix.
For other categorizations of feature-extraction techniques, see [117, 211].

We will describe the following approaches to feature extraction: singular value de-

composition (SVD), principal component analysis (PCA), independent component anal-

ysis (ICA), multidimensional scaling (MDS), stochastic neighbor embedding (SNE),
Isomap, diffusion maps, the discrete Fourier transform (DFT), and the discrete wavelet

transform (DWT).

Singular value decomposition. Singular value decomposition (SVD) is a linear al-
gebra matrix decomposition technique which can be successfully applied for feature
extraction. The SVD of matrix X = UΣV T , where the columns of U are orthogonal
eigenvectors of XXT , the columns of V are orthogonal eigenvectors of XT X , and Σ
is a diagonal matrix of singular values – the square roots of eigenvalues of XXT . For
SVD reduction, matrix G can be obtained by taking the columns of V that correspond
to largest singular values from Σ [203].

Application of SVD to text data in the BOW representation has an intuitive inter-
pretation – the new features correspond to combinations of original terms and represent
semantic “concepts” (“topics”) that were derived from co-occurrence relations of terms
in different documents. In this context, the technique is generally referred to as la-

tent semantic indexing (LSI). The main strength of LSI is the ability to encapsulate the
small effects of many features which would have been considered redundant by feature-
selection methods, but whose cumulative effect may be really relevant for a given task,
like classification. The drawback lies in the opposite extreme – if there are only a few
highly relevant features, their importance may be lost in the transformation [190].

Principal component analysis. The main idea behind principal component analysis
(PCA) is that high information corresponds to high variance [15]. PCA is a linear tech-
nique, which relies on the observation that for a given data distribution, the direction of
maximum variance is parallel to the eigenvector corresponding to the largest eigenvalue

10We assume that in data matrices, for example, Xn×d, rows correspond to n data vectors, while columns
represent d features. For individual vectors, for example, x, we assume the column format d × 1.
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of the covariance matrix of the data distribution. Furthermore, of all directions orthog-
onal to the direction with the highest variance, the second highest variance is in the
direction of the eigenvector corresponding to the second largest eigenvalue, and so on.
In practice, sample covariance Cov(X) obtained from the data matrix X is used, since
the true data distribution is not known.

If the eigenvalues of Cov(X) are λ1 ≥ λ2 ≥ . . . ≥ λr ≥ 0, and their corresponding
eigenvectors are e1, e2, . . . , er, then the transformation matrix G used to obtain the
transformed data Y = XG, is given by G = [e1 e2 . . . er]. The eigenvectors are
referred to as principal axes, and are selected to be orthogonal and of length 1.

A useful property of the eigenvalues is that their diagonal matrix forms the sample
covariance of transformed data Y : Cov(Y ) = diag(λ1, λ2, . . . , λr). Therefore, the
number of columns of G used to transform X , that is, the dimensionality m of the
resulting data space, can be selected to account for a specified proportion of variance:

∑m
i=1 λi∑r
i=1 λi

.

For example, to account for 95% of variance, m should be selected to be the smallest
such number so that the above ratio is greater than or equal to 0.95.

Independent component analysis. Independent component analysis (ICA) was orig-
inally developed to deal with problems related to the cocktail-party problem: recon-
structing original speech signals from multiple speakers in a room from recordings
made by microphones positioned at different places throughout the room [88]. The
assumption is made that the speakers, that is, the true sources of the signals, are statisti-
cally independent. Using vector and matrix notation, if x denotes the multidimensional
vector random variable corresponding to the observed data (for example, the micro-
phone recordings), and s the random variable of the sources, the mixing model may be
written as x = As.

The main problem in ICA is recovering the mixing matrix A from the observations
provided by x. Assuming that x has been whitened to have its covariance matrix equal
to the identity matrix (which can be achieved using SVD), and that s has identity co-
variance matrix (since the sources are statistically independent), it follows that A is
orthogonal. Therefore, solving the ICA problem involves finding an orthogonal A such
that the components of the vector random variable s = ATx are independent (and non-
Gaussian) [82]. Once A and s have been recovered, the reduced representation of data
can be obtained by restricting the number of components of As.

Multidimensional scaling. The term multidimensional scaling (MDS) refers to a
family of nonlinear techniques which aim to preserve pairwise distances between points
in a data set. One categorization of MDS methods is into metric and nonmetric. Met-
ric MDS deals with quantitative distance measurements (for example, Euclidean dis-
tances), while nonmetric MDS operates with ordinal relations between data points. An-
other categorization differentiates classical MDS (CMDS), which deals with a single
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distance matrix, from more advanced variants like replicated MDS and weighted MDS,
which permit more than one distance matrix to be defined on the data [232].

For given data points x1,x2, . . . ,xn, classical MDS attempts to find their low-
dimensional representation y1,y2, . . . ,yn which minimizes a cost function that ex-
presses the degree of preservation of pairwise distances in the new representation.
A commonly used cost function is the raw stress function, defined as

∑
ij(dist(xi,xj)−

dist(yi,yj))
2, where dist usually denotes Euclidean distance.

Stochastic neighbor embedding. Similarly to MDS, stochastic neighbor embedding
(SNE) attempts to preserve pairwise distance between data points, putting more empha-
sis on distances between nearby points [86]. However, SNE uses a stochastic notion of
distance, and with it a different formulation of the cost function.

Let pij denote the probability that data points xi and xj originate from the same
Gaussian distribution. For every i, j, these probabilities are computed and stored in
matrix P . Conversely, let qij denote the probability that yi and yj originate from the
same Gaussian, stored in matrix Q. SNE minimizes the difference between distributions
P and Q, measured by Kullback-Leibler divergence:

∑
ij pij log

pij

qij
.

Isomap. If data points lie on a curved low-dimensional manifold like the “swiss roll”
data set, MDS may consider two points to be close when they are actually far away
within the underlying manifold. For this reason, Isomap [207] attempts to preserve
geodesic distances between data points. Geodesic distances are obtained by construct-
ing a k-nearest neighbor graph of the data with edges weighted by distances between
points, and taking the sum of edge weights along the shortest path between two points
in the graph. To obtain the low-dimensional representation, multidimensional scaling
is then applied to the pairwise geodesic distances.

Diffusion maps. Diffusion maps [115, 140], which originate from the field of dynam-
ical systems, are based on defining a Markov random walk on the graph derived from
the data. The edge weights of the graph are assigned using the RBF (Gaussian) kernel
function of Euclidean distances between data points:

wij = exp

(
−‖xi − xj‖2

2σ2

)
.

The random walk, repeated multiple times, produces a measure of distance between
data points which may capture manifold structure in the data. The main goal of the
diffusion-maps method is to preserve these diffusion distances in the low-dimensional
data representation.

Discrete Fourier transform. The discrete Fourier transform (DFT) is a technique
primarily used for representation and dimensionality reduction of signal-like data, such
as time series [56]. DFT transforms a series from the time domain to the frequency
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domain by expressing it with coefficients in a space of complex exponential functions
that represent sinusoidal functions in the real domain. For a given series vector x =
(x1, x2, . . . , xd), DFT produces complex vector z = (z1, z2, . . . , zd) that satisfies

zk =

d∑

j=1

xjω
(j−1)(k−1)
n ,

for every k ∈ {1, 2, . . . , d}, where ωn = exp(−2πi/n). To reduce dimensionality,
only a certain number of consecutive coefficients of z beginning with the first can be
kept, since they carry most of the information about x.

Discrete wavelet transform. The discrete wavelet transform (DWT) is another tech-
nique that can be used for dimensionality reduction of signal and time-series data [31].
DWT projects series x(t) into the time-frequency domain whose basis functions are
given by

Ψj,k(t) = 2j/2Ψ(2jt− k),

for integer numbers j and k, which are respectively referred to as indices of dilatation
and translation, while Ψ (on the right-hand side) is called the mother wavelet function.
Series x(t) can be represented using the basis as

x(t) =
∑

j,k∈Z

aj,kΨj,k(t),

where aj,k are referred to as DWT coefficients of x(t), expressed by

aj,k = 〈Ψj,k(t), x(t)〉 =

∫ ∞

−∞

Ψj,k(t)x(t)dt.

A commonly used wavelet is the Haar wavelet, with the following mother function:

Ψ(t) =





1, 0 ≤ t < 1/2,
−1, 1/2 ≤ t < 1,

0, otherwise.

2.9 Summary

The aim of the survey presented in this chapter was to describe the some of the im-
portant principles and techniques for machine learning, data mining, and information
retrieval, with the emphasis on applications to high-dimensional data such as text and
time series. Regarding text data, the survey was concerned with the “low-levels” of
application – the basic transformations of raw (hyper)text to a different representation,
and the algorithms applicable to such data. Nevertheless, multiple layers of applica-
tion of ML or DM algorithms, that is, employing ML/DM techniques on data derived
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using ML/DM techniques, may eventually be unavoidable in practice. For example,
in many languages stemming may need to be handled using ML methods, because it
is not feasible to solve the problem algorithmically (to a useful degree of accuracy)
as is for English. The wrapper methods of feature selection are further examples. As
for time-series data, common applications include both working with raw time series,
and time series transformed to a different representation my means of, for example,
dimensionality-reduction methods.

In writing this chapter, care was taken to present only the techniques, without delv-
ing too deep into descriptions of particular applications. Nevertheless, the key to under-
standing the behavior of techniques in practice is to examine how a concrete problem
was solved, and grasp the reasons why particular features, representations, and algo-
rithms were chosen. This chapter provided appropriate mention of various application
tasks for the described techniques, and references for further reading. Many of the ap-
plications, however, need to handle data spaces of high dimensionality and the problems
which arise in them. The following two parts of this dissertation will address two angles
relevant to the issues raised by high dimensionality: (1) the behavior of distance (sim-
ilarity) metrics, and the consequences on key techniques for machine learning, time-
series classification, and information retrieval, and (2) feature-selection methods in the
context of the text-categorization task.
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Chapter 3

The Concentration Phenomenon

The phenomenon of distance concentration refers to one aspect of the dimensionality
curse which is manifested by the tendency of distances between all pairs of points in
a high-dimensional data set to become almost equal. Distance concentration and the
meaningfulness of the notion of nearest neighbors in high dimensions has been thor-
oughly explored for general distance measures [16, 51], and specifically for Minkowski
and fractional distances [44, 85, 2, 61, 59, 87]. The effect of the phenomenon on ma-
chine learning was demonstrated, for example, in studies of the behavior of kernels in
the context of support vector machines, lazy learning, and radial basis function (RBF)
networks [55, 59].

After reviewing and illustrating some of the more important results concerning the
concentration of distances (that is, norms) in Section 3.1, we will show, in Sections 3.2
and 3.3, that the cosine similarity measure also concentrates for a wide class of data
distributions. Although this result may be interesting in its own right, in this dissertation
it will primarily serve as support for the explanation of the hubness phenomenon in the
context of cosine similarity and information-retrieval applications (Chapter 7).

3.1 Concentration of Distances

Concentration is typically measured by examining the ratio between some notion of
spread and some notion of magnitude of distances between points in a particular set-
ting. If this ratio converges to 0 as dimensionality increases, it is said that distances
concentrate. Assuming data set D ⊂ R consists of d-dimensional points drawn ac-
cording to some stochastic mechanism, a popular measure of concentration is relative

contrast, which is defined as

CD =
maxx∈D ‖x‖ −minx∈D ‖x‖

minx∈D ‖x‖
, (3.1)
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where ‖ · ‖ is an arbitrary norm.1 The numerator of Equation 3.1 will be referred to
as contrast [61]. We will assume that points are drawn from a random d-dimensional
vector Xd with iid components.

Another measure of concentration, proposed (that is, made explicit) in [61] is rela-

tive variance, which is defined for d-dimensional random vector Xd as

VXd
=

√
Var(‖Xd‖)
E(‖Xd‖)

. (3.2)

An early result which establishes a connection between the two measures of con-
centration is the following theorem by Beyer et al. [16].2

Theorem 1 [16, adapted] Let x(j) : 1 ≤ j ≤ n be n d-dimensional iid random vectors,

and let ‖ · ‖ denote an arbitrary norm. If

lim
d→∞

Var

( ‖x(j)‖
E(‖x(j)‖)

)
= 0, (3.3)

then, for any ǫ > 0,

lim
d→∞

P

[
maxj ‖x(j)‖ −minj ‖x(j)‖

minj ‖x(j)‖ ≤ ǫ

]
= 1. (3.4)

The theorem can be interpreted as stating that if, for a set of n d-dimensional points,
the condition given by Equation 3.3 is satisfied, then the relative contrast ratio from
Equation 3.4 becomes progressively smaller, that is, the difference between the maxi-
mal and minimal observed distance to the origin becomes negligible compared to the
minimal distance. (The origin can be regarded as a query point without loss of gener-
ality [61].) A converse result to this theorem, reversing the direction of implication, is
provided by Durrant and Kabán [51]. Based on Theorem 1, Beyer et al. question the
very meaningfulness of nearest-neighbor queries in high-dimensional spaces [16], and
explore settings which do and do not fulfill Equation 3.3. François et al. [61] prove that
this condition holds for iid random data and lp norms with p > 0 (see Theorem 5 at the
end of the current section).

Following the findings of Beyer et al. [16], which are relevant to arbitrary distances,
Hinneburg et al. [85] prove the following theorem for Minkowski norms.

1Most distance-concentration results that will be reviewed in this section (with the exception of [16])
examine only norms, possibly generalizing to pairwise distances by observing difference vectors x − y

instead of single vectors [61, 59].
2Besides examining pairwise distances, the original theorem is formulated in a more general setting that

involves an infinite sequence of m = 1, 2, . . . data distributions, where m can be interpreted as dimensional-
ity and distributions selected in such a way to comprise a sequence of multivariate d-dimensional distributions
with iid components.
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Theorem 2 [85, adapted] Let x(j) : 1 ≤ j ≤ n be n d-dimensional iid random vectors

distributed over [0, 1]d, and let ‖·‖p denote the Minkowski norm with exponent p. There

exists a constant Cp independent from the distribution of x(j) such that

Cp ≤ lim
d→∞

E

(
maxj ‖x(j)‖p −minj ‖x(j)‖p

d
1

p
− 1

2

)
≤ (n− 1)Cp . (3.5)

The theorem states that the contrast, contained in the numerator of the fraction in Equa-
tion 3.5, asymptotically behaves like d1/p−1/2 as d increases. This means that for p = 1
(Manhattan norm) the contrast grows like

√
d, for p = 2 (Euclidean norm) the contrast

remains constant, while for p ≥ 3 the contrast shrinks to 0. Based on this observa-
tion, Hinneburg et al. [85] conclude that nearest-neighbor search in high-dimensional
spaces is meaningless for lp norms with p ≥ 3, since it becomes increasingly difficult
to distinguish the nearest from the farthest neighbor.

Aggarwal et al. [2] provide additional results that consider fractional norms (that is,
lp norms with rational p ∈ (0, 1), see Section 2.2). Please note that the following
theorem requires the data to be uniformly distributed.

Theorem 3 [2, adapted] Let x(j) : 1 ≤ j ≤ n be n d-dimensional iid random vectors

uniformly distributed over [0, 1]d, and let ‖ ·‖p denote the fractional norm with rational

exponent p ∈ (0, 1). There exists a constant C independent from p and from d such that

C

√
1

2p + 1
≤ lim

d→∞
E

(
maxj ‖x(j)‖p −minj ‖x(j)‖p

minj ‖x(j)‖p

)√
d ≤ (n− 1)C

√
1

2p + 1
.

Based on this result, Aggarwal et al. [2] advocate the use of fractional distances due
to their apparently slower concentration than Minkowski distances, and empirically
demonstrated robustness to noise. However, this view can be challenged when non-
uniformly distributed data is considered, as well as different types of noise [59].

The following results analyze the elements found in the ratio of relative variance
(Equation 3.2). Let Xd = (X1, X2, . . . , Xd) be a random d-dimensional vector with
iid components: Xi ∼ F .

Theorem 4 [44, adapted]

E(‖Xd‖2) =
√

α · d− β + O(1/d), and

Var(‖Xd‖2) = β + O(1/
√

d),

where α and β are constants that depend on the distribution of Xd but do not depend

on its dimensionality.

The theorem states that the expected value of the Euclidean norm asymptotically be-
haves like

√
d, while the variance remains constant. François et al. [61] prove a more

general result, which holds for arbitrary p > 0, encompassing both Minkowski and
fractional norms.
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Theorem 5 [61, Theorem 5, adapted]

lim
d→∞

√
Var(‖Xd‖p)
E(‖Xd‖p)

= 0 .

The proof of Theorem 5 is based on proving the following two limits, which we will
formulate as lemmas. For random variables |Xi|p, p > 0, let µ|F|p and σ2

|F|p denote
their mean and variance, respectively.

Lemma 1 [61, Equation 17, adapted]

lim
d→∞

E(‖Xd‖p)
d1/p

= µ|F|p .

Lemma 2 [61, Equation 21, adapted]

lim
d→∞

Var(‖Xd‖p)
d2/p−1

=
σ2
|F|p(

p · µ(p−1)/p
|F|p

)2 .

From the two lemmas it can be observed that although the expected value of the norm
increases with d for any value of p (albeit at a different rate), the variances behave in
various ways: they diverge for p < 2, remain constant for p = 2, and shrink to 0 for
p > 2. In all cases, however, the ratio between variance and expectation, expressing the
relative variance in Theorem 5, converges to 0 as dimensionality increases.

To illustrate the behavior of lp norms discussed in this section, Figure 3.1 shows, for
various p values and dimensionalities 1–100, from top to bottom: the maximal observed
value, mean value plus one standard deviation, the mean value, mean value minus one
standard deviation, and minimal observed value of lp norms computed for n = 2000
iid uniformly distributed points.

3.2 Concentration of Cosine Similarity

Distance concentration, as explained in the previous section, refers to the tendency of
the ratio between some notion of spread (for example, standard deviation) and some
notion of magnitude (for example, the mean) of the distribution of all pairwise dis-
tances (or, equivalently, the norms) within a data set to converge to 0 as dimensionality
increases. Hereby, we examine concentration in the context of cosine similarity, and
provide a proof of this property by considering two random d-dimensional vectors p

and q with iid components. Let cos(p,q) denote the cosine similarity between p and q,
defined in Equation 3.6:3

cos(p,q) =
〈p,q〉
‖p‖‖q‖ . (3.6)

3Henceforth, ‖ · ‖ denotes the Euclidean (l2) norm.
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Figure 3.1: Concentration of lp norms for iid uniform random data: (a) fractional l0.5

norm, (b) Manhattan norm (p = 1), (c) Euclidean norm (p = 2), and (d) l10 norm
Slika 3.1: Koncentracija lp norme za iid uniforman skup slučajnih tačaka: (a) raz-
lomljena l0.5 norma, (b) Menhetn norma (p = 1), (c) euklidska norma (p = 2), i
(d) l10 norma

From the extension of Pythagoras’ theorem we obtain Equation 3.7, which relates
cos(p,q) with the Euclidean distance between p and q:

cos(p,q) =
‖p‖2 + ‖q‖2 − ‖p− q‖2

2‖p‖‖q‖ . (3.7)

Define the following random variables: X = ‖p‖, Y = ‖q‖, and Z = ‖p − q‖.
Since p and q have iid components, it follows that X and Y are independent of each
other, but not of Z . Let C be the random variable that denotes the value of cos(p,q).
From Equation 3.7, with simple algebraic manipulations and substitution of the norms
with the corresponding random variables, we obtain Equation 3.8:

C =
1

2

(
X

Y
+

Y

X
− Z2

XY

)
. (3.8)

Let E(C) and Var(C) denote the expectation and variance of C, respectively. An
established way to demonstrate concentration is by examining the asymptotic relation
between

√
Var(C) and E(C) when dimensionality d tends to infinity (relative variance,
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Equation 3.2). To express this asymptotic relation, we first need to express the asymp-
totic behavior of E(C) and Var(C) with regards to d. Since, from Equation 3.8, C is
related to functions of X , Y , and Z , we start by studying the expectations and variances
of these random variables. The following theorem adapts Lemmas 1 and 2 by taking
p = 2 and adjusting the notation.

Theorem 6 [61, adapted]
limd→∞

(
E(X)/

√
d
)

= const , and limd→∞ Var(X) = const . The same holds for Y .

Corollary 1

limd→∞

(
E(Z)/

√
d
)

= const , and limd→∞ Var(Z) = const .

Proof Follows directly from Theorem 6 and the fact that, since vectors p and q have
iid components, vector p− q also has iid components. 2

Corollary 2

limd→∞(E(X2)/d) = const , and limd→∞(Var(X2)/d) = const . The same holds for

random variables Y 2 and Z2.

Proof From Theorem 6 and the equation E(X2) = Var(X) + E(X)2 it follows that

lim
d→∞

(E(X2)/d) = const .

The same holds for E(Y 2) and, taking into account Corollary 1, for E(Z2). By using
the delta method to approximate the moments of a function of a random variable with
Taylor expansions [24], we have

Var(X2) ∼ (2 E(X))
2
Var(X) .

From Theorem 6 it now follows that

lim
d→∞

(Var(X2)/d) = const .

Analogous derivations hold for Var(Y 2) and Var(Z2). 2

Based on the above results, the following two theorems show that
√

Var(C) reduces
asymptotically to 0, while E(C) remains asymptotically constant (proofs are given in
the next section).

Theorem 7 lim
d→∞

√
Var(C) = 0.

Theorem 8 lim
d→∞

E(C) = const .
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Figure 3.2: Concentration of cosine similarity for iid uniform random data
that is (a) dense, (b) 20% sparse, and (c) 80% sparse
Slika 3.2: Koncentracija kosinusne mere sličnosti za iid uniforman skup
slučajnih tačaka koje su (a) guste, (b) 20% retke, i (c) 80% retke

Figure 3.2 illustrates the described findings for random data sets with n = 2000
d-dimensional points, whose components are independently drawn from the uniform
distribution in range [0, 1]. Figure 3.2(a) depicts unmodified (dense) data, while Fig-
ures 3.2(b) and (c) show random data which was made sparse by setting a certain per-
centage of randomly selected component values to 0. With respect to the distribution of
all pairwise similarities, the plots include, from top to bottom: maximal observed value,
mean value plus one standard deviation, the mean value, mean value minus one standard
deviation, and minimal observed value. The figures illustrate that, with increasing di-
mensionality, expectation becomes constant and variance shrinks. It is also evident that
the property holds regardless of the sparsity of data, suggesting that the phenomenon is
relevant to real sparse data such as text, where cosine similarity is often employed.

It is worth noting that the concentration of cosine similarity results from different
reasons than the concentration of Euclidean (l2) distance. For the latter, its standard de-
viation converges to a constant [61], whereas its expectation asymptotically increases
with d. Nevertheless, in both cases the relative relationship between the standard devi-
ation and the expectation is similar.

3.3 Proofs of Theorems 7 and 8

Theorem 7 lim
d→∞

√
Var(C) = 0.

Proof From Equation 3.8 we get:

4 Var(C) = Var

(
X

Y

)
+ Var

(
Y

X

)
+ Var

(
Z2

XY

)
+ (3.9)

2 Cov

(
X

Y
,
Y

X

)
− 2 Cov

(
X

Y
,

Z2

XY

)
− 2 Cov

(
Y

X
,

Z2

XY

)
.
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For the first term, using the delta method [24] and the fact that X and Y are independent:

Var

(
X

Y

)
∼ Var(X)

E2(Y )
+

E2(X)

E4(Y )
Var(Y ) ,

from which it follows, based on Theorem 6, that Var(X
Y ) is O(1/d) (for brevity, we

resort to oh notation in this proof). In the same way, Var( Y
X ) is also O(1/d).

For the third term of Equation 3.8, again from the delta method:

Var

(
Z2

XY

)
∼ Var(Z2)

E2(X) E2(Y )
− (3.10)

2 E(Z2)

E3(X) E3(Y )
Cov(Z2, XY ) +

E2(Z2)

E4(X) E4(Y )
Var(XY ) .

In Equation 3.10, based on Theorem 6 and Corollary 2, the first term is O(1/d). Since
variables X and Y are independent [73]:

Var(XY ) = E2(X)Var(Y ) + E2(Y )Var(X) + Var(X)Var(Y ) ,

from which it follows that Var(XY ) is O(d), thus the third term is O(1/d), too.
Cov(Z2, XY ) is O(d), because from the definition of the correlation coefficient,

|Cov(Z2, XY )| ≤ max(Var(Z2), Var(XY )) .

Thus, the second term of Equation 3.10 is O(1/d). Since all its terms are O(1/d),
Var( Z2

XY ) is O(1/d).

Returning to Equation 3.9 and its fourth term, from the definition of the correlation
coefficient it follows that

∣∣∣∣Cov

(
X

Y
,
Y

X

)∣∣∣∣ ≤ max

(
Var

(
X

Y

)
, Var

(
Y

X

))
,

thus Cov(X
Y , Y

X ) is O(1/d). For the fifth term, again from the definition of the correla-
tion coefficient we have

∣∣∣∣Cov

(
X

Y
,

Z2

XY

)∣∣∣∣ ≤ max

(
Var

(
X

Y

)
, Var

(
Z2

XY

))
.

Based on the previously expressed Var(X
Y ) and Var( Z2

XY ), we get that Cov(X
Y , Z2

XY ) is

O(1/d). Similarly, the sixth term, Cov( Y
X , Z2

XY ), is O(1/d). Having determined all 6

terms, 4 Var(C), and thus Var(C), is O(1/d). It follows that lim
d→∞

√
Var(C) = 0. 2

Theorem 8 lim
d→∞

E(C) = const .

Proof From Equation 3.8 we get:

2 E(C) = E

(
X

Y

)
+ E

(
Y

X

)
− E

(
Z2

XY

)
. (3.11)
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For the first term, using the delta method [24] and the fact that X and Y are independent:

E

(
X

Y

)
∼ E(X)

E(Y )
(1 + Var(Y )) .

Based on limits for E(X)/
√

d, E(Y )/
√

d, and Var(Y ) in Theorem 6, it follows that
limd→∞ E(X

Y ) = const . For the second term, analogously, limd→∞ E( Y
X ) = const .

For the third term in Equation 3.11, again from the delta method:

E

(
Z2

XY

)
∼ E(Z2)

E(X) E(Y )
− Cov(Z2, XY )

E2(X) E2(Y )
+

E(Z2)

E3(X) E3(Y )
Var(XY ) . (3.12)

In Equation 3.12, from the limits derived in Theorem 6 and Corollary 2 follows the
limit of the first term,

lim
d→∞

E(Z2)

E(X) E(Y )
= const .

The limit of the second term in Equation 3.12 can be obtained by multiplying and
dividing by d2, yielding

lim
d→∞

Cov(Z2, XY )

d2

(
lim

d→∞

E2(X) E2(Y )

d2

)−1

.

From the definition of the correlation coefficient we have:
∣∣∣∣ lim
d→∞

Cov(Z2, XY )

d2

∣∣∣∣ ≤
√

lim
d→∞

Var(Z2)

d2

√
lim

d→∞

Var(XY )

d2
.

From Var(XY ) = E2(X)Var(Y ) +E2(Y )Var(X)+Var(X)Var(Y ) [73], based on
Theorem 6 and Corollary 2, we find that both limits on the right side are equal to 0,
implying that

lim
d→∞

Cov(Z2, XY )

d2
= 0.

On the other hand, from Theorem 6 we have

lim
d→∞

E2(X) E2(Y )

d2
= const .

The preceding two limits provide us with the limit for the second term of Equation 3.12:

lim
d→∞

Cov(Z2, XY )

E2(X) E2(Y )
= 0.

Finally, for the third term of Equation 3.12, again based on the limits given in Theorem 6
and Corollary 2, and the previously derived limit for Var(XY )/d2, we obtain

lim
d→∞

E(Z2)

E3(X) E3(Y )
Var(XY ) = 0.

Summing up all partial limits, it follows that limd→∞ 2 E(C) = const , and thus
limd→∞ E(C) = const . 2





Chapter 4

The Hubness Phenomenon

The curse of dimensionality, a term originally introduced by Bellman [10], is nowa-
days commonly used in many fields to refer to challenges posed by high dimension-
ality of data space. In the fields of machine learning and data mining, affected meth-
ods and tasks include Bayesian modeling [18], nearest-neighbor prediction [82] and
search [111], neural networks [17], etc. (See Chapter 1.)

There exists an aspect of the curse of dimensionality that is related to nearest neigh-
bors (NNs), which we will refer to as hubness. Let D ⊂ R

d be a set of d-dimensional
points and Nk(x) the number of k-occurrences of each point x ∈ D, that is, the num-
ber of times x occurs among the k nearest neighbors of all other points in D, according
to some distance measure. Under widely applicable conditions, as dimensionality in-
creases, the distribution of Nk becomes considerably skewed to the right, resulting in
the emergence of hubs, that is, points which appear in many more k-NN lists than other
points, effectively making them “popular” nearest neighbors. Unlike distance concen-
tration, hubness and its influence on machine learning, data mining, and information
retrieval have not been explored in depth. In this chapter we will study the manifesta-
tions and causes of this aspect of the dimensionality curse. Subsequent chapters will
examine the implications of hubness on various tasks in machine learning (Chapter 5),
time-series analysis (Chapter 6), and information retrieval (Chapter 7).

As will be described in Section 4.3, the phenomena of distance concentration and
hubness are related, but distinct. Traditionally, distance concentration is studied through
asymptotic behavior of norms, that is, distances to the origin, with increasing dimen-
sionality. The obtained results trivially extend to reference points other than the origin,
and to pairwise distances between all points. However, the asymptotic tendencies of
distances of all points to different reference points do not necessarily occur at the same
speed, which will be shown for normally distributed data by our main theoretical result
outlined in Section 4.3.2, and given with full details in Section 4.4. The main con-
sequence of the analysis, which is further discussed in Section 4.5 and supported by
theoretical results from [144] and [143], is that the hubness phenomenon is an inherent
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property of data distributions in high-dimensional space under widely used assump-
tions, and not an artefact of a finite sample or specific properties of a particular data set.

The above result is relevant to machine learning because many families of ML al-
gorithms, regardless of whether they are supervised, semi-supervised, or unsupervised,
directly or indirectly make use of distances between data points (and, with them, k-NN
graphs) in the process of building a model. The same observation can be made with
regards to algorithms and models in data mining and information retrieval. Moreover,
the hubness phenomenon recently started to be observed in application fields like music
retrieval [9], speech recognition [49], and fingerprint identification [84], where it is de-
scribed as a problematic situation, but little or no insight is offered into the origins of the
phenomenon. This dissertation presents a unifying view of the hubness phenomenon.
In this regard, the current chapter will perform a through theoretical analysis of data
distributions, and empirical investigation including various synthetic data sets, explain-
ing the origins of the phenomenon and the mechanism through which hubs emerge.
Chapter 5 will extend the discussion to real data sets from numerous application fields,
analyze the role of antihubs (points which appear in very few, if any, k-NN lists of
other points) and the interaction of hubness with information provided by class labels,
and study the impact of the phenomenon on various machine-learning algorithms.

After discussing related work in the next section, we make the following contribu-
tions. First, we demonstrate the emergence of hubness on synthetic data in Section 4.2.
The following section provides a comprehensive explanation of the origins of the phe-
nomenon, through empirical and theoretical analysis of artificial data distributions,1

linking hubness with the dimensionality of data. Section 4.4 presents the details of our
main theoretical result which describes the mechanism through which hubs emerge as
dimensionality increases. Finally, Section 4.5 provides discussion and further illustra-
tion of the behavior of nearest-neighbor relations in high dimensions, connecting our
findings with existing theoretical results.

4.1 Related Work

The hubness phenomenon has been recently observed in several application areas in-
volving sound and image data [9, 49, 84], where it was perceived as a problematic
situation, but without establishing a connection with high dimensionality of data. One
recent work that established a connection between hubness and high dimensionality
is the dissertation by Berenzweig [12], who identified high dimensionality as a cause
of hubness, but did not provide practical or theoretical support that would explain the
mechanism through which hubness emerges in real high-dimensional data.

The distribution of N1 has been explicitly studied in the applied probability com-
munity [144, 131, 143, 229], and by mathematical psychologists [209, 208]. In the
vast majority of studied settings (for example, Poisson process, d-dimensional torus),
coupled with Euclidean distance, it was shown that the distribution of N1 converges

1Generalization of the explanation to real data sets will be given in Chapter 5.
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to the Poisson distribution with mean 1, as the number of points n and dimensional-
ity d go to infinity. Moreover, from the results in [229] it immediately follows that, in
the Poisson process case, the distribution of Nk converges to the Poisson distribution
with mean k, for any k ≥ 1. All these results imply that no hubness is to be expected
within the settings in question. On the other hand, in the case of continuous distri-
butions with iid components, for the following specific order of limits it was shown
that limn→∞ limd→∞ Var(N1) = ∞, while limn→∞ limd→∞ N1 = 0, in distribu-
tion [144, p. 730, Theorem 7], with a more general result given in [143]. According to
the interpretation in [209], this suggests that if the number of dimensions is large relative
to the number of points one may expect a small proportion of points to become hubs.
However, the importance of this finding was downplayed to a certain extent [209, 143],
citing empirically observed slow convergence [131], with the attention of the authors
shifting more towards similarity measurements obtained directly from psychological
and cognitive experiments [209, 208] that do not involve vector-space data. In Sec-
tion 4.5 we will discuss the above results in more detail, as well as their relations with
our theoretical and empirical findings.

It is worth noting that in ǫ-neighborhood graphs, that is, graphs where two points
are connected if the distance between them is less than a given limit ǫ, the hubness
phenomenon does not occur. Settings involving randomly generated points forming
ǫ-neighborhood graphs are typically referred to as random geometric graphs, and are
discussed in detail by Penrose [155].

4.2 Observing Hubness

At the beginning of the chapter we gave a simple set-based deterministic definition
of Nk. To complement this definition and introduce Nk into a probabilistic setting
that will also be considered in this dissertation, let x,x1, . . . ,xn, be n + 1 random
vectors drawn from the same continuous probability distribution with support S ⊆ R

d,
d ∈ {1, 2, . . .}, and let dist be a distance function defined on R

d (not necessarily
a metric). Let functions pi,k, where i, k ∈ {1, 2, . . . , n}, be defined as

pi,k(x) =

{
1, if x is among the k nearest neighbors of xi, according to dist ,
0, otherwise.

In this setting, we define Nk(x) =
∑n

i=1 pi,k(x), that is, Nk(x) is the random number
of vectors from R

d that have x included in their list of k nearest neighbors.
We start our investigation with an illustrative experiment which demonstrates the

changes in the distribution of Nk with varying dimensionality. Let us consider a ran-
dom data set consisting of 10000 d-dimensional points, whose components are inde-
pendently drawn from the uniform distribution in range [0, 1], and the following dis-
tance functions: Euclidean (l2), fractional l0.5 (proposed for high-dimensional data
in [2]), and cosine. Figure 4.1(a–c) shows the empirically observed distributions of Nk,
with k = 5, for dimensionalities (a) d = 3, (b) d = 20, and (c) d = 100. In the same
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Figure 4.1: Empirical distribution of N5 for Euclidean, l0.5, and cosine distances on
(a–c) iid uniform, and (d–f) iid normal random data sets with n = 10000 points and
dimensionality (a, d) d = 3, (b, e) d = 20, and (c, f) d = 100 (log-log plot)
Slika 4.1: Empirijska distribucija N5 za euklidsku, l0.5, i kosinusnu udaljenost na
(a–c) iid uniformnom, i (d–f) iid normalnom skupu n = 10000 slučajnih tačaka di-
menzionalnosti (a, d) d = 3, (b, e) d = 20, i (c, f) d = 100 (log-log grafikon)

way, Figure 4.1(d–f) depicts the empirically observed Nk for data points randomly
drawn from the iid normal distribution.

For d = 3 the empirical distributions of N5 for the three distance functions (Fig-
ure 4.1(a, d)) are consistent with the binomial distribution. This is expected by consider-
ing k-occurrences as node in-degrees in the k-nearest neighbor digraph. For uniformly
distributed points in low dimensions, the degree distributions of the digraphs closely
resemble the degree distribution of the Erdős-Rényi (ER) random graph model, which
is is binomial and Poisson in the limit [54].

As dimensionality increases, the observed distributions of N5 depart from the ran-
dom graph model and become more skewed to the right (Figure 4.1(b, c), and Fig-
ure 4.1(e, f) for l2 and l0.5 distances). We verified this by being able to fit major right
portions (that is, tails) of the observed distributions with the log-normal distribution,
which is highly skewed.2 We made similar observations with various k values (gener-
ally focusing on the common case k ≪ n, where n is the number of points in a data set),

2Fits were supported by the χ2 goodness-of-fit test at significance level 0.05, where bins represent the
number of observations of individual Nk values. These empirical distributions were compared with the
expected output of a (discretized) log-normal distribution, making sure that counts in the bins do not fall
below 5 by pooling the rightmost bins together.
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distance measures (lp-norm distances for both p ≥ 1 and 0 < p < 1, Bray-Curtis, nor-
malized Euclidean, and Canberra), and data distributions. In virtually all these cases,
skewness exists and produces hubs, that is, points with high k-occurrences. One excep-
tion visible in Figure 4.1 is the combination of cosine distance and normally distributed
data. In most practical settings, however, such situations are not expected, and a thor-
ough discussion of the necessary conditions for hubness to occur in high dimensions
will be given in Section 4.5.

4.3 Explaining Hubness

This section moves on to exploring the causes of hubness and the mechanisms through
which hubs emerge. Section 4.3.1 investigates the relationship between the position of
a point in data space and hubness. Then, Section 4.3.2 explains the mechanism through
which hubs emerge as points in high-dimensional space that become closer to all other
points than their low-dimensional counterparts, outlining our main theoretical result.

4.3.1 The Position of Hubs

Let us consider again the iid uniform and iid normal random data examined in the
previous section. We will demonstrate that the position of a point in data space has
a significant effect on its k-occurrences value, by observing the sample mean of the
data distribution as a point of reference. Figure 4.2 plots, for each point x, its N5(x)
against its Euclidean distance from the empirical data mean, for d = 3, 20, 100. As
dimensionality increases, stronger correlation emerges, implying that points closer to
the mean tend to become hubs. We made analogous observations with other values of k,
and combinations of data distributions and distance measures for which hubness occurs.
It is important to note that proximity to one global data-set mean correlates with hubness
in high dimensions when the underlying data distribution is unimodal. For multimodal
data distributions, for example those obtained through a mixture of unimodal distribu-
tions, hubs tend to appear close to the means of individual component distributions of
the mixture. In the discussion that follows in Section 4.3.2 we will assume a unimodal
data distribution, and defer the analysis of multimodal distributions until Section 5.3,
which studies real data.

4.3.2 Mechanisms Behind Hubness

Although one may expect that some random points are closer to the data-set mean than
others, in order to explain the mechanism behind hub formation we need to (1) under-
stand the geometrical and distributional setting in which some points tend to be closer
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Figure 4.2: Scatter plots and Spearman correlation of N5(x) against the Euclidean
distance of point x to the sample data-set mean for (a–c) iid uniform and (d–f) iid
normal random data sets with (a, d) d = 3, (b, e) d = 20, and (c, f) d = 100
Slika 4.2: Grafikon i Spermanova korelacija N5(x) sa euklidskom udaljenošću tačke x

od empirijskog centra skupa tačaka za (a–c) iid uniformne i (d–f) iid normalne skupove
slučajnih tačaka sa (a, d) d = 3, (b, e) d = 20, i (c, f) d = 100

to the mean than others, and then (2) understand why such points become hubs in higher
dimensions.3

Hubness appears to be related to the phenomenon of distance concentration. Based
on existing theoretical results discussed in Section 3.1 (Theorems 1–5), it can be said
that high-dimensional points are approximately lying on a hypersphere centered at the
data-set mean. Moreover, the results in [44] and [61] (Theorem 4 and Lemma 2 from
Section 3.1) specify that the distribution of distances to the data-set mean has a non-
negligible variance for any finite d.4 Hence, the existence of a non-negligible number
of points closer to the data-set mean is expected in high dimensions.

To illustrate the above discussion, Figure 4.3 depicts, for iid normal data, the distri-
bution of Euclidean distances of all points to the true data mean (the origin) for several
d values. By definition, the distribution of distances is actually the Chi distribution

3We will assume that random points originate from a unimodal data distribution. In the multimodal case,
it can be said that the observations which follow are applicable around one of the “peaks” in the pdf of the
data distribution.

4These results apply to lp-norm distances, but our numerical simulations suggest that other distance func-
tions mentioned in Section 4.2 behave similarly. Moreover, any point can be used as a reference instead of
the data mean, but we observe the data mean since it plays a special role with respect to hubness.
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Figure 4.3: Probability density function of observing a point at distance r from the
mean of a multivariate d-dimensional normal distribution, for d = 1, 3, 20, 100
Slika 4.3: Funkcija gustine verovatnoće da se uoči tačka na udaljenosti r od centra
d-dimenzionalne normalne distribucije, za d = 1, 3, 20, 100

with d degrees of freedom (as the square root of the sum of squares of iid normal vari-
ables [48, 98]).5 In this setting, distance concentration refers to the fact that the stan-
dard deviation of distance distributions is asymptotically constant with respect to in-
creasing d, while the means of the distance distributions asymptotically behave like

√
d

(a direct consequence of the results by François et al. [61] reviewed in Section 3.1, and
discussed further in Section 4.4). On the other hand, for lp-norm distances with p > 2,
the standard deviation would tend to 0 (Lemma 2). However, for any finite d, existing
variation in the values of random coordinates causes some points to become closer to
the distribution mean than others. This happens despite the fact that all distance values,
in general, may be increasing together with d.

To understand why points closer to the data mean become hubs in high dimensions,
let us consider the following example. We observe, within the iid normal setting, two
points drawn from the data, but at specific positions with respect to the origin: point bd

which is at the expected distance from the origin, and point ad which is two standard
deviations closer. In light of the above, the distances of ad and bd from the origin
change with increasing d, and it could be said that different ad-s (and bd-s) occupy
analogous positions in the data spaces, with respect to changing d. The distances of ad

(and bd) to all other points, again following directly from the definition [48, 149], are
distributed according to the noncentral Chi distributions with d degrees of freedom and
noncentrality parameter λ equaling the distance of ad (bd) to the origin. Figure 4.4(a)
plots the probability density functions of these distributions for several values of d. It
can be seen that, as d increases, the distance distributions for ad and bd move away
from each other. This tendency is depicted more clearly in Figure 4.4(b) which plots
the difference between the means of the two distributions with respect to d.

It is known, and expected, for points that are closer to the mean of the data distri-
bution to be closer, on average, to all other points, for any value of d. However, the

5For this reason, in Figure 4.3 we plot the known pdf, not the empirically obtained distribution.
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Figure 4.4: (a) Distribution of distances to other points from iid normal random data for
a point at the expected distance from the origin (dashed line), and a point two standard
deviations closer (full line). (b) Difference between the means of the two distributions,
with respect to increasing d
Slika 4.4: (a) Distribucija udaljenosti do ostalih tačaka iz iid normalnog skupa slučajnih
tačaka za tačku na očekivanoj udaljenosti od koordinatnog početka (isprekidana linija),
i za tačku koja je za dve standardne devijacije bliža (puna linija). (b) Razlika izned̄u
očekivanih vrednosti dve distribucije, u odnosu na rastuće d

above analysis indicates that this tendency is amplified by high dimensionality, making
points that reside in the proximity of the data mean become closer (in relative terms) to
all other points than their low-dimensional analogues are. This tendency causes high-
dimensional points that are closer to the mean to have increased inclusion probability
into k-NN lists of other points, even for small values of k. We will discuss this relation-
ship further in Section 4.5.

In terms of the notion of node centrality typically used in network analysis [189],
the above discussion indicates that high dimensionality amplifies what can be called
the spatial centrality of a point (by increasing its proximity to other points), which,
in turn, affects the degree centrality of the corresponding node in the k-NN graph (by
increasing its degree, that is, Nk). Other notions of node centrality, and the structure of
the k-NN graph in general, will be studied in more detail in Section 4.5.1. The rest of
this section will focus on describing the mechanism of the observed spatial centrality
amplification.

In the preceding discussion we selected two points from iid normal data with spe-
cific distances from the origin expressed in terms of expected distance and deviation
from it, and tracked the analogues of the two points for increasing values of dimension-
ality d. Generally, we can express the distances of the two points to the origin in terms of
“offsets” from the expected distance measured by standard deviation, which in the case
of iid normal random data would be λd,1 = µχ(d)+c1σχ(d) and λd,2 = µχ(d)+c2σχ(d),
where λd,1 and λd,2 are the distances of the first and second point to the origin, µχ(d)

and σχ(d) are the mean and standard deviation of the Chi distribution with d degrees of
freedom, and c1 and c2 are selected constants (the offsets). In the preceding example
involving points ad and bd, we set c1 = −2 and c2 = 0, respectively. However, anal-
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ogous behavior can be observed with arbitrary two points whose distance to the data
mean is below the expected distance, that is, for c1, c2 ≤ 0. We describe this behav-
ior by introducing the following notation: ∆µd(λd,1, λd,2) = |µχ(d,λd,2) − µχ(d,λd,1)|,
where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of free-
dom and noncentrality parameter λd,i (i ∈ {1, 2}). In the following theorem, proven in
Section 4.4, we show that ∆µd(λd,1, λd,2) increases with increasing values of d.

Theorem 9 Let λd,1 = µχ(d) + c1σχ(d) and λd,2 = µχ(d) + c2σχ(d), where d ∈ N
+,

c1, c2 ≤ 0, c1 < c2, and µχ(d) and σχ(d) are the mean and standard deviation of the

Chi distribution with d degrees of freedom, respectively. Define

∆µd(λd,1, λd,2) = µχ(d,λd,2) − µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom

and noncentrality parameter λd,i (i ∈ {1, 2}).
There exists d0 ∈ N such that for every d > d0,

∆µd(λd,1, λd,2) > 0 ,

and

∆µd+2(λd+2,1, λd+2,2) > ∆µd(λd,1, λd,2) . (4.1)

The main statement of the theorem is given by Equation 4.1, which expresses the
tendency of the difference between the means of the two distance distributions to in-
crease with increasing dimensionality d. It is important to note that this tendency is ob-
tained through analysis of distributions of data and distances, implying that the behavior
is an inherent property of data distributions in high-dimensional space, rather than an
artefact of other factors, such as finite sample size, etc. Through simulation involving
randomly generated points we verified the behavior for iid normal data by replicating
very closely the chart shown in Figure 4.4(b). Furthermore, simulations suggest that
the same behavior emerges in iid uniform data,6 as well as numerous other unimodal
random data distributions, producing charts of the same shape as in Figure 4.4(b). Real
data, on the other hand, tends to be clustered, and can be viewed as originating from
a mixture of distributions resulting in a multimodal distribution of data. In this case,
the behavior described by Theorem 9, and illustrated in Figure 4.4(b), is manifested
primarily on the individual component distributions of the mixture, that is, on clusters
of data points. The hubness phenomenon in real data sets is investigated more closely
in Chapter 5.

4.4 Proof of Theorem 9

In this section we analyze the behavior of distances that provides the mechanism for
the formation of hubs, introduced in Section 4.3.2, culminating with the proof of The-

6The uniform cube setting will be discussed in more detail in Section 4.5, in the context of results from
related work [143].
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orem 9. Section 4.4.1 reviews distance concentration results from [61], while Sec-
tion 4.4.2 discusses distance distributions in iid normal random data and extended in-
terpretations of the results from [61] in this setting. The notion of asymptotic equiva-
lence that will be used in the proof of Theorem 9 is the subject of Section 4.4.3. The
expectation of the noncentral Chi distribution, which is a key feature in the analysis of
distance distributions in iid normal random data, is defined in Section 4.4.4, together
with the generalized Laguerre function on which it relies. Properties of the general-
ized Laguerre function that will be used in the proof of Theorem 9 are presented in
Section 4.4.5. Finally, the proof of Theorem 9 is given in Section 4.4.6.

4.4.1 Distance Concentration Results

We begin by reviewing the main results of François et al. [61] regarding distance con-
centration. Let Xd = (X1, X2, . . . , Xd) be a random d-dimensional variable with iid
components: Xi ∼ F , and let ‖Xd‖ denote its Euclidean norm. For random variables
|Xi|2, let µ|F|2 and σ2

|F|2 signify their mean and variance, respectively. François et

al. [61] prove the following two lemmas.7

Lemma 3 [61, Equation 17, adapted]

lim
d→∞

E(‖Xd‖)√
d

= µ|F|2 .

Lemma 4 [61, Equation 21, adapted]

lim
d→∞

Var(‖Xd‖) =
σ2
|F|2

4µ|F|2
.

The above lemmas imply that, for iid random data, the expectation of the distri-
bution of Euclidean distances to the origin (Euclidean norms) asymptotically behaves
like
√

d, while the standard deviation is asymptotically constant. From now on, we
will denote the mean and variance of random variables that are distributed according to
some distribution F by µF and σ2

F , respectively.

4.4.2 Distances in iid Normal Data

We now observe more closely the behavior of distances in iid normal random data.
Let Zd = (Z1, Z2, . . . , Zd) be a random d-dimensional vector whose components in-
dependently follow the standard normal distribution: Zi ∼ N (0; 1), for every i ∈
{1, 2, . . . , d}. Then, by definition, random variable ‖Zd‖ is distributed according to the
Chi distribution with d degrees of freedom: ‖Zd‖ ∼ χ(d). In other words, χ(d) is the
distribution of Euclidean distances of vectors drawn from Zd to the origin. If one were

7François et al. [61] provide a more general result for lp norms with arbitrary p > 0, which is discussed
in Section 3.1 (Lemmas 1 and 2).



4.4 Proof of Theorem 9 99

to fix another reference vector xd instead of the origin, the distribution of distances of
vectors drawn from Zd to xd would be completely determined by ‖xd‖ since, again
by definition, random variable ‖Zd − xd‖ follows the noncentral Chi distribution with
d degrees of freedom and noncentrality parameter λ = ‖xd‖: ‖Zd−xd‖ ∼ χ(d, ‖xd‖).

In light of the above, let us observe two points, xd,1 and xd,2, drawn from Zd, and
express their distances from the origin in terms of offsets from the expected distance,
with the offsets described using standard deviations: ‖xd,1‖ = µχ(d) + c1σχ(d) and
‖xd,2‖ = µχ(d) + c2σχ(d), where c1, c2 ≤ 0. We will assume c1 < c2, that is, xd,1

is closer to the data distribution mean (the origin) than xd,2. By treating c1 and c2 as
constants, and varying d, we observe analogues of two points in spaces of different
dimensionalities (roughly speaking, points xd,1 have identical “probability” of occur-
rence at the specified distance from the origin for every d, and the same holds for xd,2).
Let λd,1 = ‖xd,1‖ and λd,2 = ‖xd,2‖. Then, the distributions of distances of points
xd,1 and xd,2 to all points from the data distribution Zd (that is, the distributions of ran-
dom variables ‖Zd−xd,1‖ and ‖Zd−xd,2‖) are noncentral Chi distributions χ(d, λd,1)
and χ(d, λd,2), respectively. We study the behavior of these two distributions with in-
creasing values of d.

Lemmas 3 and 4, takingF to be the standard normal distribution and translating the
space so that xd,1 or xd,2 become the origin, imply that both µχ(d,λd,1) and µχ(d,λd,2)

asymptotically behave like
√

d as d → ∞, while σ2
χ(d,λd,1) and σ2

χ(d,λd,2) are both

asymptotically constant.8 However, for xd,1 and xd,2 placed at different distances form
the origin (λd,1 6= λd,2, that is, c1 6= c2), these asymptotic tendencies do not occur at
the same speed. In particular, we will show that as d increases, the difference between
µχ(d,λd,1) and µχ(d,λd,2) actually increases. If we take xd,1 to be closer to the origin
than xd,2 (c1 < c2), this means that xd,1 becomes closer to all other points from the
data distribution Zd than xd,2, simply by virtue of increasing dimensionality, since for
different values of d we place the two points at analogous positions in the data space
with regards to the distance from the origin.

4.4.3 Asymptotic Equivalence

Before describing our main theoretical result, we present several definitions and lem-
mas, beginning with the notion of asymptotic equivalence that will be relied upon.

Definition 1 Two real-valued functions f(x) and g(x) are asymptotically equal,
f(x) ≈ g(x), iff for every ǫ > 0 there exists x0 ∈ R such that for every x > x0,

|f(x)− g(x)| < ǫ.

8More precisely, the lemmas can be applied only for points x
′

d,i
that have equal values of all components,

since after translation data components need to be iid. Because of the symmetry of the Gaussian distribution,
the same expectations and variances of distance distributions are obtained, for every d, with any xd,i that has
the same norm as x

′

d,i
, thereby producing identical asymptotic results.
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Equivalently, f(x) ≈ g(x) iff limx→∞ |f(x)− g(x)| = 0. Note that the ≈ relation
is different from the divisive notion of asymptotic equivalence, where f(x) ∼ g(x) iff
limx→∞ f(x)/g(x) = 1.

The following two lemmas describe approximations that will be used in the proof
of Theorem 9, based on the ≈ relation.

Lemma 5 For any constant c ∈ R, let f(d) =
√

d + c , and g(d) =
√

d . Then,

f(d) ≈ g(d) .

Proof

lim
d→∞

∣∣√d + c −
√

d
∣∣ = lim

d→∞

∣∣∣∣
(√

d + c −
√

d
) √d + c +

√
d

√
d + c +

√
d

∣∣∣∣ = lim
d→∞

∣∣∣∣
c

√
d + c +

√
d

∣∣∣∣ = 0 .

2

Lemma 6 µχ(d) ≈
√

d, and σχ(d) ≈ 1/
√

2 .

Proof Observe the expression for the mean of the χ(d) distribution,

µχ(d) =
√

2
Γ
(

d+1
2

)

Γ
(

d
2

) .

The equality xΓ(x) = Γ(x + 1) and the convexity of log Γ(x) yield [76, p. 237]:

Γ

(
d + 1

2

)2

≤ Γ

(
d

2

)
Γ

(
d + 2

2

)
=

d

2
Γ

(
d

2

)2

,

and

Γ

(
d + 1

2

)2

=
d− 1

2
Γ

(
d− 1

2

)
Γ

(
d + 1

2

)
≥ d− 1

2
Γ

(
d

2

)2

,

from which we have
√

d− 1 ≤
√

2
Γ
(

d+1
2

)

Γ
(

d
2

) ≤
√

d .

From Lemma 5 it now follows that µχ(d) ≈
√

d .

Regarding the standard deviation of the χ(d) distribution, from Lemma 4, taking F
to be the standard normal distribution, we obtain

lim
d→∞

σ2
χ(d) =

σ2
χ2(1)

4µχ2(1)
=

1

2
,

since the square of a standard normal random variable follows the chi-square dis-
tribution with one degree of freedom, χ2(1), whose mean and variance are known:
µχ2(1) = 1, σ2

χ2(1) = 2. It now directly follows that σχ(d) ≈ 1/
√

2 . 2
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4.4.4 Expectation of the Noncentral Chi Distribution

The central notion in Theorem 9 is the noncentral Chi distribution. To express the
expectation of the noncentral Chi distribution, the following two definitions are needed,
introducing the Kummer confluent hypergeometric function 1F1, and the generalized
Laguerre function.

Definition 2 [90, p. 1799, Appendix A, Table 19.I]
For a, b, z ∈ R, the Kummer confluent hypergeometric function 1F1(a; b; z) is given by

1F1(a; b; z) =
∞∑

k=0

(a)k

(b)k
· zk

Γ(k + 1)
,

where (·)k is the Pochhammer symbol, (x)k = Γ(x+k)
Γ(x) .

Definition 3 [90, p. 1811, Appendix A, Table 20.VI]
For ν, α, z ∈ R, the generalized Laguerre function L

(α)
ν (z) is given by

L(α)
ν (z) =

Γ(ν + α + 1)

Γ(ν + 1)
· 1F1(−ν; α + 1; z)

Γ(α + 1)
.

The expectation of the noncentral Chi distribution with d degrees of freedom and
noncentrality parameter λ, denoted by µχ(d,λ), can now be expressed via the general-
ized Laguerre function [48, 149]:

µχ(d,λ) =

√
π

2
L

(d/2−1)
1/2

(
−λ2

2

)
. (4.2)

4.4.5 Properties of the Generalized Laguerre Function

The proof of Theorem 9 will rely on several properties of the generalized Laguerre func-
tion. In this section we will review two known properties and prove several additional
ones as lemmas.

An important property of the generalized Laguerre function is its infinite differ-
entiability in z, with the result of differentiation again being a generalized Laguerre
function:

∂

∂z
L(α)

ν (z) = −L
(α+1)
ν−1 (z) . (4.3)

Another useful property is the following recurrence relation:

L(α)
ν (z) = L

(α)
ν−1(z) + L(α−1)

ν (z) . (4.4)

Lemma 7 For α > 0 and z < 0:

(a) L
(α)
−1/2(z) is a positive monotonically increasing function in z, while

(b) L
(α)
1/2(z) is a positive monotonically decreasing concave function in z.
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Proof (a) From Definition 3,

L
(α)
−1/2(z) =

Γ(α + 1/2)

Γ(1/2)
· 1F1(1/2; α + 1; z)

Γ(α + 1)
.

Since α > 0 all three terms involving the Gamma function are positive. We transform
the remaining term using the equality [90, p. 1799, Appendix A, Table 19.I]:

1F1(a; b; z) = ez
1F1(b− a; b;−z) , (4.5)

which holds arbitrary a, b, z ∈ R, obtaining

1F1(1/2; α + 1; z) = ez
1F1(α + 1/2; α + 1;−z) .

From Definition 2 it now directly follows that L
(α)
−1/2(z) is positive for α > 0 and z < 0.

To show that L(α)
−1/2(z) is monotonically increasing in z, from Equation 4.3 and Def-

inition 3 we have

∂

∂z
L

(α)
−1/2(z) = −L

(α+1)
−3/2 (z) = −Γ(α + 1/2)

Γ(−1/2)
· 1F1(3/2; α + 2; z)

Γ(α + 2)
.

For α > 0 and z < 0, from Equation 4.5 it follows that 1F1(3/2; α + 2; z) > 0. Since

Γ(−1/2) < 0 and all remaining terms are positive, it follows that −L
(α+1)
−3/2 (z) > 0.

Thus, L
(α)
−1/2(z) is monotonically increasing in z.

(b) Proofs that L
(α)
1/2(z) is positive and monotonically decreasing are very similar to

the proofs in part (a), and will be omitted. To address concavity, we observe the second
derivative of L

(α)
1/2(z):

∂2

∂z
L

(α)
1/2(z) = L

(α+2)
−3/2 (z) =

Γ(α + 3/2)

Γ(−1/2)
· 1F1(3/2; α + 3; z)

Γ(α + 3)
.

Similarly to part (a), from Equation 4.5, Definition 2, and basic properties of the gamma
function it follows that L

(α+2)
−3/2 (z) < 0 for α > 0 and z < 0. Therefore, L

(α)
1/2(z) is

concave in z. 2

Lemma 8 For α > 0 and z < 0, L
(α+1)
1/2 (z) ≈ L

(α)
1/2(z) .

Proof From the recurrence relation in Equation 4.4 we obtain

L
(α+1)
1/2 (z) = L

(α+1)
−1/2 (z) + L

(α)
1/2(z) .

Therefore, to prove the lemma it needs to be shown that for z < 0,

lim
α→∞

L
(α)
−1/2(z) = 0 . (4.6)
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From Definition 3 and Equation 4.5 we have

L
(α)
−1/2(z) =

e−z

Γ(1/2)
· Γ(α + 1/2)

Γ(α + 1)
· 1F1(α + 1/2; α + 1;−z) .

From the asymptotic expansion in [66, p. 16, adapted],

1F1

(
1

2
n;

1

2
(n + b); x

)
= ex

(
1 + O(n−1)

)
, (4.7)

where n is large and x ≥ 0, it follows that limα→∞ 1F1(α + 1/2; α + 1;−z) < ∞ .
Thus, to prove Equation 4.6 and the lemma it remains to be shown that

lim
α→∞

Γ(α + 1/2)

Γ(α + 1)
= 0 . (4.8)

As in the proof of Lemma 6, from the inequalities derived in [76] we have

√
β − 1 ≤

√
2

Γ
(

β+1
2

)

Γ
(

β
2

) ≤
√

β ,

where β > 1. Applying inversion and substituting β with 2α + 1 yields the limit in
Equation 4.8. 2

Lemma 9 For α > 1/2 and z < 0:

(a) limz→−∞ L
(α)
−3/2(z) = 0, and

(b) limα→∞ L
(α)
−3/2(z) = 0.

Proof (a) From Definition 3 we have

L
(α)
−3/2(z) =

Γ(α− 1/2)

Γ(−1/2)
· 1F1(3/2; α + 1; z)

Γ(α + 1)
. (4.9)

The following property [1, p. 504, Equation 13.1.5],

1F1 (a; b; z) =
Γ(b)

Γ(b − a)
(−z)a

(
1 + O(|z|−1)

)
(z < 0),

when substituted into Equation 4.9, taking a = 3/2 and b = α + 1, yields

L
(α)
−3/2(z) =

1

Γ(−1/2)
(−z)−3/2

(
1 + O(|z|−1)

)
. (4.10)

From Equation 4.10 the desired limit directly follows.
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(b) The proof of part (b) is analogous to the proof of Lemma 8, that is, Equation 4.6.
From Definition 3 and Equation 4.5, after applying the expansion from [66] given in
Equation 4.7, it remains to be shown that

lim
α→∞

Γ(α− 1/2)

Γ(α + 1)
= 0 . (4.11)

Since Γ(α − 1/2) < Γ(α + 1/2) for every α ≥ 2, the desired limit in Equation 4.11
follows directly from Equation 4.8. 2

4.4.6 The Main Result

This section restates and proves our main theoretical result.

Theorem 9 Let λd,1 = µχ(d) + c1σχ(d) and λd,2 = µχ(d) + c2σχ(d), where d ∈ N
+,

c1, c2 ≤ 0, c1 < c2, and µχ(d) and σχ(d) are the mean and standard deviation of the

Chi distribution with d degrees of freedom, respectively. Define

∆µd(λd,1, λd,2) = µχ(d,λd,2) − µχ(d,λd,1) ,

where µχ(d,λd,i) is the mean of the noncentral Chi distribution with d degrees of freedom

and noncentrality parameter λd,i (i ∈ {1, 2}).
There exists d0 ∈ N such that for every d > d0,

∆µd(λd,1, λd,2) > 0 , (4.12)

and

∆µd+2(λd+2,1, λd+2,2) > ∆µd(λd,1, λd,2) . (4.13)

Proof To prove Equation 4.12, we observe that for d > 2,

∆µd(λd,1, λd,2) = µχ(d,λd,2) − µχ(d,λd,1)

=

√
π

2
L

( d
2
−1)

1/2

(
−

λ2
d,2

2

)
−
√

π

2
L

( d
2
−1)

1/2

(
−

λ2
d,1

2

)

> 0 ,

where the last inequality holds for d > 2 because λd,1 < λd,2, and L
(d/2−1)
1/2 (z) is a

monotonically decreasing function in z < 0 for d/2− 1 > 0 (Lemma 7).

In order to prove Equation 4.13, we will use approximate values of noncentrality
parameters λd,1 and λd,2. Let λ̂d,1 =

√
d + c1/

√
2, and λ̂d,2 =

√
d + c2/

√
2. From

Lemma 6 it follows that λ̂d,1 ≈ λd,1 and λ̂d,2 ≈ λd,2. Thus, by proving that there exists
d2 ∈ N such that for every d > d2,

∆µd+2(λ̂d+2,1, λ̂d+2,2) > ∆µd(λ̂d,1, λ̂d,2) , (4.14)
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we prove that there exists d1 ∈ N such that for every d > d1 Equation 4.13 holds.
The existence of such d1, when approximations are used as function arguments, is
ensured by the fact that L

(α)
1/2(z) is a monotonically decreasing concave function in

z (Lemma 7), and by the transition from α to α + 1 having an insignificant impact on
the value of the Laguerre function for large enough α (Lemma 8). Once Equation 4.14
is proven, Equations 4.12 and 4.13 will hold for every d > d0, where d0 = max(2, d1).

To prove Equation 4.14, from Equation 4.2 it follows we need to show that

L
(d/2)
1/2

(
−1

2

(√
d + 2 + c2/

√
2
)2
)
− L

(d/2)
1/2

(
−1

2

(√
d + 2 + c1/

√
2
)2
)

(4.15)

> L
(d/2−1)
1/2

(
−1

2

(√
d + c2/

√
2
)2
)
− L

(d/2−1)
1/2

(
−1

2

(√
d + c1/

√
2
)2
)

.

We observe the second derivative of L
(α)
1/2(z):

∂2

∂z
L

(α)
1/2(z) = L

(α+2)
−3/2 (z) .

Since L
(α+2)
−3/2 (z) tends to 0 as z → −∞, and tends to 0 also as α → ∞ (Lemma 9),

it follows that the two Laguerre functions on the left side of Equation 4.15 can be ap-
proximated by a linear function with an arbitrary degree of accuracy for large enough d.
More precisely, since L

(α)
1/2(z) is monotonically decreasing in z (Lemma 7) there exist

a, b ∈ R, a > 0, such that the left side of Equation 4.15, for large enough d, can be
replaced by

−a

(
−1

2

(√
d + 2 + c2/

√
2
)2
)

+ b −
(
−a

(
−1

2

(√
d + 2 + c1/

√
2
)2
)

+ b

)

=
a

2

(√
d + 2 + c2/

√
2
)2

− a

2

(√
d + 2 + c1/

√
2
)2

. (4.16)

From Lemma 8 it follows that the same linear approximation can be used for the right
side of Equation 4.15, replacing it by

a

2

(√
d + c2/

√
2
)2

− a

2

(√
d + c1/

√
2
)2

. (4.17)

After substituting the left and right side of Equation 4.15 with Equations 4.16 and 4.17,
respectively, it remains to be shown that

a

2

(√
d + 2 + c2/

√
2
)2

− a

2

(√
d + 2 + c1/

√
2
)2

>
a

2

(√
d + c2/

√
2
)2

− a

2

(√
d + c1/

√
2
)2

. (4.18)
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Multiplying both sides by
√

2/a, moving the right side to the left, and applying alge-
braic simplification reduces Equation 4.18 to

(
c2 − c1

)(√
d + 2−

√
d
)

> 0,

which holds for c1 < c2, thus concluding the proof. 2

4.5 Discussion

This section will discuss several additional considerations and related work regarding
the geometry of high-dimensional spaces and the behavior of data distributions within
them. First, let us consider the geometric upper limit to the number of points that
point x can be a nearest neighbor of, in Euclidean space. In one dimension, this num-
ber is 2, in two dimensions it is 5, while in 3 dimensions it equals 11 [208]. Generally,
for Euclidean space of dimensionality d this number is equal to the kissing number,
which is the maximal number of hyperspheres that can be placed to touch a given hy-
persphere without overlapping, with all hyperspheres being of the same size.9 Exact
kissing numbers for arbitrary d are generally not known, however there exist bounds
which imply that they progress exponentially with d [150, 234]. Furthermore, when
considering k nearest neighbors for k > 1, the bounds become even larger. Therefore,
only for very low values of d geometrical constraints of vector space prevent hubness.
On the other hand, for higher values of d hubness may or may not occur, and the geo-
metric bounds, besides providing “room” for hubness (even for values of k as low as 1)
do not contribute much in fully characterizing the hubness phenomenon. Therefore, in
high dimensions the behavior of data distributions needed to be studied.

We focus the rest of the discussion around the following important result,10 drawing
parallels with our results and analysis, and extending existing interpretations.

Theorem 10 [143, p. 803, Theorem 3, adapted]
Let x(i) = (x

(i)
1 , . . . , x

(i)
d ), i = 0, . . . , n be a sample of n + 1 iid points from a dis-

tribution F(X), X = (X1, . . . , Xd) ∈ R
d. Assume that F is of the form F(X) =∏d

k=1 F(Xk), that is, the coordinates X1, . . . , Xd are iid. Let the distance measure be

of the form D(x(i),x(j)) =
∑d

k=1 g(x
(i)
k , x

(j)
k ). Let Nn,d

1 denote the number of points

among {x(1), . . . ,x(n)} whose nearest neighbor is x(0).

Suppose 0 < Var(g(X, Y )) <∞ and set

β = Correlation(g(X, Y ), g(X, Z)) , (4.19)

where X, Y, Z are iid with common distribution F (the marginal distribution of Xk).

9If ties are disallowed, it may be necessary to subtract 1 from the kissing number to obtain the maximum
of N1.

10A theorem that is effectively a special case of this result was proven previously [144, Theorem 7] for
continuous distributions with finite kurtosis and Euclidean distance.
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(a) If β = 0 then

lim
n→∞

lim
d→∞

Nn,d
1 = Poisson(λ = 1) in distribution (4.20)

and

lim
n→∞

lim
d→∞

Var(Nn,d
1 ) = 1 . (4.21)

(b) If β > 0 then

lim
n→∞

lim
d→∞

Nn,d
1 = 0 in distribution (4.22)

while

lim
n→∞

lim
d→∞

Var(Nn,d
1 ) =∞ . (4.23)

What is exceptional in this theorem are Equations 4.22 and 4.23. According to
the interpretation in [209], they suggest that if the number of dimensions is large rel-
ative to the number of points, one may expect to have a large proportion of points
with N1 equaling 0, and a small proportion of points with high N1 values, that is,
hubs.11 Trivially, Equation 4.23 also holds for Nk with k > 1, since for any point x,
Nk(x) ≥ N1(x).

The setting involving iid normal random data and Euclidean distance, used in our
Theorem 9 (and, generally, any iid random data distribution with Euclidean distance),
fulfills the conditions of Theorem 10 for Equations 4.22 and 4.23 to be applied, since
the correlation parameter β > 0. This correlation exists because, for example, if we
view vector component variable Xj (j ∈ {1, 2, . . . , d}) and the distribution of data
points within it, if a random point drawn from Xj is closer to the mean of Xj it is more
likely to be close to other random points drawn from Xj , and vice versa, producing
the case β > 0.12 Therefore, Equations 4.22 and 4.23 from Theorem 10 directly apply
to the setting studied in Theorem 9, providing asymptotic evidence for hubness. How-
ever, since the proof of Equations 4.22 and 4.23 in Theorem 10 relies on applying the
central limit theorem to the (normalized) distributions of pairwise distances between
vectors x(i) and x(j) (0 ≤ i 6= j ≤ n) as d → ∞ (obtaining limit distance distri-
butions which are Gaussian), the results of Theorem 10 are inherently asymptotic in
nature. Theorem 9, on the other hand, describes the behavior of distances in finite di-
mensionalities,13 providing the means to characterize the behavior of Nk in high, but
finite-dimensional space. What remains to be done is to formally connect Theorem 9
with the skewness of Nk in finite dimensionalities, for example by observing point x

11Reversing the order of limits, which corresponds to having a large number of points relative to the number
of dimensions, produces the same asymptotic behavior as in Equations 4.20 and 4.21, that is, no hubness, in
all studied settings.

12Similarly to Section 4.3.2, this argument holds for unimodal distributions of component variables; for
multimodal distributions the driving force behind nonzero β is the proximity to a peak in the probability
density function.

13Although the statement of Theorem 9 relies on dimensionality being greater than some d0 which is finite,
but can be arbitrarily high, empirical evidence suggests that actual d0 values are low, often equaling 0.
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with a fixed position relative to the data distribution mean (the origin) across dimen-
sionalities, in terms of being at distance µχ(d) + c σχ(d) from the origin, and expressing
how the probability of x to be the nearest neighbor (or among the k nearest neighbors)
of a randomly drawn point changes with increasing dimensionality.14 We address this
investigation as a point of future work.

Returning to Theorem 10 and the value of β from Equation 4.19, as previously dis-
cussed, β > 0 signifies that the position of a vector component value makes a difference
when computing distances between vectors, causing some component values to be more
“special” than others. Another contribution of Theorem 9 is that it illustrates how the
individual differences in component values combine to make positions of whole vec-
tors more special (by being closer to the data center). On the other hand, if β = 0 no
point can have a special position with respect to all others. In this case, Equations 4.20
and 4.21 hold, which imply there is no hubness. This setting is relevant, for example,
to points being generated by a Poisson process which spreads the vectors uniformly
over Rd, where all positions within the space (both at component-level and globally)
become basically equivalent. Although it does not directly fit into the framework of
Theorem 10, the same principle can be used to explain the absence of hubness for nor-
mally distributed data and cosine distance from Section 4.2: in this setting no vector is
more spatially central than any other. Equations 4.20 and 4.21, which imply no hub-
ness, hold for many more “centerless” settings, including random graphs, settings with
exchangeable distances, and d-dimensional toruses [143].

The following two subsections will address several additional issues concerning the
interpretation of Theorem 10.

4.5.1 Nearest-Neighbor Graph Structure

The interpretation of Theorem 10 from [209] may be understood in the sense that, with
increasing dimensionality, very few exceptional points become hubs, while all others are
relegated to antihubs. In this section we will empirically examine the structural change
of the k-NN graph as the number of dimensions increases. We will also discuss and
consolidate different notions node centrality in the k-NN graph, and their dependence
on the dimensionality of data.

First, as in Section 4.2, we consider n = 10000 iid uniform random data points of
different dimensionality. Let us observe hubs, that is, points with highest N5, collected
in groups of progressively increasing size: 5, 10, 15, . . . , 10000. In analogy with the
notion of network density from social network analysis [189], we define group out-

link density as the proportion of the number of arcs that originate and end in nodes
from the group, and the total number of arcs that originate from nodes in the group.
Conversely, we define group in-link density as the proportion of the number of arcs
that originate and end in nodes from the group, and the total number of arcs that end in
nodes from the group. Figure 4.5(a, b) shows the out-link and in-link densities of groups

14For c < 0 we expect this probability to increase since x is closer to the data distribution mean, and
becomes closer to other points as dimensionality increases.
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Figure 4.5: (a) Out-link, and (b) in-link densities of groups of hubs with increasing
size; (c) ratio of the number of in-links originating from points within the group and in-
links originating from outside points, for iid uniform random data with dimensionality
d = 3, 20, 100
Slika 4.5: Gustina (a) izlaznih i (b) ulaznih grana za grupe habova rastućih kardi-
naliteta; (c) odnos izmed̄u broja ulaznih grana koje polaze iz tačaka unutar grupe i
broja ulaznih grana koje polaze iz spoljašnjih tačaka, za iid uniforman skup slučajnih
tačaka dimenzionalnosti d = 3, 20, 100

of strongest hubs in iid uniform random data (similar tendencies can be observed with
other synthetic data distributions). It can be seen in Figure 4.5(a) that hubs are more
cohesive in high dimensions, with more of their out-links leading to other hubs. On the
other hand, Figure 4.5(b) suggests that hubs also receive more in-links from non-hub
points in high dimensions than in low dimensions. Moreover, Figure 4.5(c), which plots
the ratio of the number of in-links that originate within the group, and the number of
in-links which originate outside, shows that hubs receive a larger proportion of in-links
from non-hub points in high dimensions than in low dimensions. We have reported our
findings for k = 5, however similar results are obtained with other values of k.

Overall, it can be said that in high dimensions hubs receive more in-links than in
low dimensions from both hubs and non-hubs, and that the range of influence of hubs
gradually widens as dimensionality increases. We can therefore conclude that the tran-
sition of hubness from low to high dimensionalities is “smooth,” both in the sense of
the change in the overall distribution of Nk, and the change in the degree of influence
of data points, as expressed by the above analysis of links.

So far, we have viewed hubs primarily through their exhibited high values of Nk,
that is, high degree centrality in the k-NN directed graph. However, (scale-free) net-
work analysis literature often attributes other properties to hubs [5], viewing them as
nodes that are important for preserving network structure due to their central positions
within the graph, indicated, for example, by their betweenness centrality [189]. On
the other hand, as discussed in [125], in both synthetic and real-world networks high-
degree nodes do not necessarily need to correspond to nodes that are central in the
graph, that is, high-degree nodes can be concentrated at the periphery of the network
and bear little structural significance. For this reason, we computed the betweenness
centrality of nodes in k-NN graphs of synthetic data sets studied in this chapter, and
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calculated its Spearman correlation with node degree, denoting the measure by CNk

BC .
For iid uniform data (k = 5), when d = 3 the measured correlation is CN5

BC = 0.311,
when d = 20 the correlation is CN5

BC = 0.539, and finally when d = 100 the correlation
rises to CN5

BC = 0.647.15 This suggests that with increasing dimensionality the central-
ity of nodes increases not only in the sense of higher node degree or spatial centrality
of vectors (as discussed in Section 4.3.2), but also in the structural graph-based sense.
In Section 5.3 we will provide further support for this observation on real data.

4.5.2 Rate of Convergence and the Role of Boundaries

On several occasions, the authors of Theorem 10 have somewhat downplayed the signif-
icance of equations 4.22 and 4.23 [209, 143], citing empirically observed slow conver-
gence [131], even to the extent of not observing significant differences between hubness
in the Poisson process and iid uniform cube settings. However, results in the preceding
sections of this chapter suggest that this convergence is fast enough to produce notable
hubness in high-dimensional data. In order to directly illustrate the difference between
a setting which provides no possibility for spatial centrality of points, and one that does,
we will observe the Poisson process vs. the iid unit cube setting. We will be focusing
on the location of the nearest neighbor of a point from the cube, that is, on determining
whether it stays within the boundaries of the cube as dimensionality increases.

Lemma 10 Let points be spread in R
d according to a Poisson process with constant

intensity λ > 1. Observe a unit hypercube C ⊂ R
d, and an arbitrary point x =

(x1, x2, . . . , xd) ∈ C, generated by the Poisson process. Let pλ,d denote the proba-

bility that the nearest neighbor of x, with respect to Euclidean distance, is not situated

in C. Then,

lim
d→∞

pλ,d = 1 .

Proof Out of the 3d − 1 unit hypercubes that surround C, let us observe only the
2d hypercubes that differ from C only in one coordinate. We will restrict the set of
considered points to these 2d cubes, and prove that the probability that the nearest
neighbor of x comes from one of the 2d cubes, p̂λ,d, converges to 1 as d → ∞. From
this, the convergence of pλ,d directly follows, since pλ,d ≥ p̂λ,d.

Let p̂λ,d(i) denote the probability that the nearest neighbor of x comes from one of
the two hypercubes which differ from C only in the ith coordinate, i ∈ {1, 2, . . . , d}.
For a given coordinate i and point x, let the 1-dimensional nearest neighbor of xi denote
the closest yi value of all other points y from the Poisson process, observed when all
coordinates except i are disregarded. Conversely, for a given coordinate i and point x,
let the (d−1)-dimensional nearest neighbor of (x1, . . . , xi−1, xi+1, . . . , xd) denote the
closest point (y1, . . . , yi−1, yi+1, . . . , yd), obtained when coordinate i is disregarded.

15Betweenness centrality is computed on directed k-NN graphs. We obtained similar correlations when
undirected graphs were used.
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Figure 4.6: Probability that the nearest neighbor of a point from the unit hyper-
cube originates from one of the adjacent hypercubes, for Poisson processes with
λ = 100, 1000, and 10000 expected points per hypercube, obtained through simula-
tion and averaged over 10 runs
Slika 4.6: Verovatnoća da najbliži sused tačke iz jedinične hiperkocke pripada nekoj
od susednih hiperkocki, za Poasonove procese sa λ = 100, 1000 i 10000 očekivanih
tačaka po hiperkocki, dobijena kao prosek 10 simulacija

Observing the ith coordinate only, the probability for the 1-dimensional nearest
neighbor of xi to come from one of the surrounding unit intervals is p̂λ,1. Although
small, p̂λ,1 > 0. Assuming this event has occurred, let y ∈ R

d be the point whose
component yi is the 1-dimensional nearest neighbor of xi that is not within the unit
interval containing xi. Let rλ denote the probability that the remaining coordinates
of y, (y1, . . . , yi−1, yi+1, . . . , yd), constitute a (d− 1)-dimensional nearest neighbor of
(x1, . . . , xi−1, xi+1, . . . , xd), within the confines of C. It can be observed that rλ is
strictly greater than 0, inversely proportional to λ (roughly equaling 1/(λ − 1)), and
independent of d. Thus, p̂λ,d(i) ≥ p̂λ,1 · rλ > 0.

Let q̂λ,d = 1 − p̂λ,d, the probability that the nearest neighbor of x comes from C
(recall the restriction of the location of the nearest neighbor to C and its immediately
surrounding 2d hypercubes). In light of the above, q̂λ,d =

∏d
i=1 q̂λ,d(i) =

∏d
i=1(1 −

p̂λ,d(i)). Since each p̂λ,d(i) is bounded from below by a constant strictly greater than 0
(which depends only on λ), each q̂λ,d(i) is bounded from above by a constant strictly
smaller than 1. It follows that limd→∞ q̂λ,d = 0, and therefore limd→∞ p̂λ,d = 1. 2

To illustrate the rate of convergence in Lemma 10, Figure 4.6 plots the empirically
observed probabilities that the nearest neighbor of a point from a unit hypercube orig-
inates in one of the 2d immediately adjacent unit hypercubes (p̂λ,d). It can be seen
that the probability that the nearest neighbor comes from outside of the cube quickly
becomes close to 1 as dimensionality increases. Please note that due to feasibility of
simulation the plots in Figure 4.6 represent the empirical lower bounds (that is, the em-
pirical estimates of p̂λ,d) of the true probabilities from Lemma 10 (pλ,d) by considering
only the 2d immediately adjacent hypercubes.
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The above indicates that when boundaries are introduced in high dimensions, the
setting completely changes, in the sense that new nearest neighbors need to be located
inside the boundaries. Under such circumstances, points which are closer to the center
have a better chance of becoming nearest neighbors, with the mechanism described
in previous sections. Another implication of the above observations, stemming from
Figure 4.6, is that the number of dimensions does not need to be very large compared to
the number of points for the setting to change. As for boundaries, they can be viewed as
a dual notion to spatial centrality discussed earlier. With Poisson processes and cubes
this duality is rather straightforward, however for continuous distributions in general
there exist no boundaries in a strict mathematical sense. Nevertheless, since data sets
contain a finite number of points, it can be said that “practical” boundaries exist in this
case as well.



Chapter 5

Hubness and Machine Learning

This chapter will continue the analysis of the hubness phenomenon from Chapter 4 by
generalizing its conclusions to real data sets from various application areas, also consid-
ering points with low k-occurrences (the antihubs) and the interaction of hubness with
information provided by class labels, and discussing the impact of the phenomenon on
various machine-learning algorithms. After reviewing related work in the next section,
the hubness phenomenon is observed and measured on real data in Section 5.2, intro-
ducing the large collection of real-world data sets from well-known repositories that is
used in the subsequent experiments and demonstrations. Section 5.3 explains hubness
in real data sets, linking it with the intrinsic dimensionality of data, and supporting
the presented analysis with empirical evidence obtained from the data collection. Sec-
tion 5.4 discusses hubs and their opposites – antihubs – and the relationships between
hubs, antihubs, and different notions of outliers. Section 5.5 provides further support
for the link between intrinsic dimensionality and hubness, and demonstrates that di-
mensionality reduction may not constitute an easy mitigation of the phenomenon. Sec-
tion 5.6 explores the impact of hubness on common supervised, semi-supervised, and
unsupervised machine-learning algorithms, showing that the information provided by
hubness can be used to significantly affect the success of the generated models. Sec-
tion 5.7 summarizes the main points of the chapter, and the possibilities for future work.

5.1 Related Work

As was already mentioned in the previous chapter, the hubness phenomenon has been
recently observed in several application areas involving sound and image data [12,
9, 49, 84]. Regarding machine-learning and data-mining tasks, hubness was briefly
mentioned in the context of graph construction for semi-supervised learning [93]. In
addition, there have been attempts to explicitly avoid the influence of hubs in 1-NN
time-series classification, apparently without clear awareness about the existence of the
phenomenon [89], and to account for possible skewness of the distribution of N1 in re-
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Figure 5.1: Empirical distribution of N10 for three real data sets of different
dimensionalities
Slika 5.1: Empirijska distribucija N10 za tri skupa stvarnih podataka različite
dimenzionalnosti

verse nearest-neighbor search [195],1 where Nk(x) denotes the number of times point
x occurs among the k nearest neighbors of all other points in the data set. None of the
mentioned papers, however, successfully analyze the causes of hubness or generalize it
to other applications.

5.2 Observing Hubness in Real Data

To illustrate the hubness phenomenon on real data, let us consider the empirical distri-
bution of Nk (k = 10) for three real data sets, given in Figure 5.1. As in the previous
section, a considerable increase in the skewness of the distributions can be observed
with increasing dimensionality.

In all, we examined 50 real data sets from well known sources, belonging to three
categories: UCI multidimensional data, gene expression data, and textual data in the
bag-of-words representation,2 listed in Table 5.1. The table includes columns that de-
scribe data set sources (2nd column), basic statistics (data transformation (3rd column):
whether standardization was applied, or for textual data the used bag-of-words docu-
ment representation; the number of points (4th column, n); dimensionality (5th col-
umn, d); the number of classes (7th column)), and the distance metric used (Euclidean
or cosine, 8th column). We took care to ensure that the choice of distance measure

1Reverse nearest-neighbor queries retrieve data points that have the query point q as their nearest neighbor.
2Data sources are the University of California, Irvine (UCI) Machine Learning Repository, Kent

Ridge (KR) Bio-Medical Data Set Repository, dmoz Open Directory, and www.cs.cornell.edu/People/

pabo/movie-review-data/ (PaBo). We used the movie review polarity data set v2.0 initially introduced
in [152], while the computers and sports data sets are described in Chapter 8. Preprocessing of all text
data sets (except dexter, which is already preprocessed) involved stop-word removal and stemming using the
Porter stemmer [158]. Documents were transformed into the bag-of-words representation with word weights
being either term frequencies (tf), or term frequencies multiplied by inverse document frequencies (tfidf),
with the choice based on independent experiments involving several classifiers. All term-frequency vectors
were normalized to average document length.

www.cs.cornell.edu/People/pabo/movie-review-data/
www.cs.cornell.edu/People/pabo/movie-review-data/
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Name Src. Trans. n d dmle Cls.Dist. SN10
SS

N10
Clu. C

N10

dm
C

N10
cm B̃N 10C

N10

BN10
CAV

abalone UCI stan 4177 8 5.39 29 l2 0.277 0.235 62 −0.047−0.526 0.804 0.934 0.806
arcene UCI stan 100 10000 22.85 2 l2 0.634 2.639 2 −0.559−0.684 0.367 0.810 0.455
arrhythmia UCI stan 452 279 21.63 16 l2 1.984 6.769 8 −0.867−0.892 0.479 0.898 0.524
breast-w UCI stan 699 9 5.97 2 l2 1.020 0.667 7 −0.062−0.240 0.052 0.021 0.048
diabetes UCI stan 768 8 6.00 2 l2 0.555 0.486 15 −0.479−0.727 0.322 0.494 0.337
dorothea UCI none 800100000 201.11 2 cos 2.355 1.016 19 −0.632−0.672 0.108 0.236 0.092
echocardiogram UCI stan 131 7 4.92 2 l2 0.735 0.438 5 −0.722−0.811 0.372 0.623 0.337
ecoli UCI stan 336 7 4.13 8 l2 0.116 0.208 8 −0.396−0.792 0.223 0.245 0.193
gisette UCI none 6000 5000 149.35 2 cos 1.967 4.671 76 −0.667−0.854 0.045 0.367 0.241
glass UCI stan 214 9 4.37 7 l2 0.154 0.853 11 −0.430−0.622 0.414 0.542 0.462
haberman UCI stan 306 3 2.89 2 l2 0.087−0.316 11 −0.330−0.573 0.348 0.305 0.360
ionosphere UCI stan 351 34 13.57 2 l2 1.717 2.051 18 −0.639−0.832 0.185 0.464 0.259
iris UCI stan 150 4 2.96 3 l2 0.126−0.068 4 −0.275−0.681 0.087 0.127 0.147
isolet1 UCI stan 1560 617 13.72 26 l2 1.125 6.483 38 −0.306−0.760 0.283 0.463 0.352
mfeat-factors UCI stan 2000 216 8.47 10 l2 0.826 5.493 44 −0.113−0.688 0.063 0.001 0.145
mfeat-fourier UCI stan 2000 76 11.48 10 l2 1.277 4.001 44 −0.350−0.596 0.272 0.436 0.415
mfeat-karhunen UCI stan 2000 64 11.82 10 l2 1.250 8.671 40 −0.436−0.788 0.098 0.325 0.205
mfeat-morph UCI stan 2000 6 3.22 10 l2 −0.153 0.010 44 −0.039−0.424 0.324 0.306 0.397
mfeat-pixel UCI stan 2000 240 11.83 10 l2 1.035 3.125 44 −0.210−0.738 0.049 0.085 0.107
mfeat-zernike UCI stan 2000 47 7.66 10 l2 0.933 3.389 44 −0.185−0.657 0.235 0.252 0.400
musk1 UCI stan 476 166 6.74 2 l2 1.327 3.845 17 −0.376−0.752 0.237 0.621 0.474
optdigits UCI stan 5620 64 9.62 10 l2 1.095 3.789 74 −0.223−0.601 0.044 0.097 0.168
ozone-eighthr UCI stan 2534 72 12.92 2 l2 2.251 4.443 49 −0.216−0.655 0.086 0.300 0.138
ozone-onehr UCI stan 2536 72 12.92 2 l2 2.260 5.798 49 −0.215−0.651 0.046 0.238 0.070
page-blocks UCI stan 5473 10 3.73 5 l2 −0.014 0.470 72 −0.063−0.289 0.049−0.046 0.068
parkinsons UCI stan 195 22 4.36 2 l2 0.729 1.964 8 −0.414−0.649 0.166 0.321 0.256
pendigits UCI stan 10992 16 5.93 10 l2 0.435 0.982104 −0.062−0.513 0.014−0.030 0.156
segment UCI stan 2310 19 3.93 7 l2 0.313 1.111 48 −0.077−0.453 0.089 0.074 0.332
sonar UCI stan 208 60 9.67 2 l2 1.354 3.053 8 −0.550−0.771 0.286 0.632 0.461
spambase UCI stan 4601 57 11.45 2 l2 1.916 2.292 49 −0.376−0.448 0.139 0.401 0.271
spectf UCI stan 267 44 13.83 2 l2 1.895 2.098 11 −0.616−0.729 0.300 0.595 0.366
spectrometer UCI stan 531 100 8.04 10 l2 0.591 3.123 17 −0.269−0.670 0.200 0.225 0.242
vehicle UCI stan 846 18 5.61 4 l2 0.603 1.625 25 −0.162−0.643 0.358 0.435 0.586
vowel UCI stan 990 10 2.39 11 l2 0.766 0.935 27 −0.252−0.605 0.313 0.691 0.598
wdbc UCI stan 569 30 8.26 2 l2 0.815 3.101 16 −0.449−0.708 0.065 0.170 0.129
wine UCI stan 178 13 6.69 3 l2 0.630 1.319 3 −0.589−0.874 0.076 0.182 0.084
wpbc UCI stan 198 33 8.69 2 l2 0.863 2.603 6 −0.688−0.878 0.340 0.675 0.360
yeast UCI stan 1484 8 5.42 10 l2 0.228 0.105 34 −0.421−0.715 0.527 0.650 0.570
AMLALL KR none 72 7129 31.92 2 l2 1.166 1.578 2 −0.868−0.927 0.171 0.635 0.098
colonTumor KR none 62 2000 11.22 2 l2 1.055 1.869 3 −0.815−0.781 0.305 0.779 0.359
DLBCL KR none 47 4026 16.11 2 l2 1.007 1.531 2 −0.942−0.947 0.338 0.895 0.375
lungCancer KR none 181 12533 59.66 2 l2 1.248 3.073 6 −0.537−0.673 0.052 0.262 0.136
MLL KR none 72 12582 28.42 3 l2 0.697 1.802 2 −0.794−0.924 0.211 0.533 0.148
ovarian-61902 KR none 253 15154 9.58 2 l2 0.760 3.771 10 −0.559−0.773 0.164 0.467 0.399
computers dmoz tf 697 1168 190.33 2 cos 2.061 2.267 26 −0.566−0.731 0.312 0.699 0.415
dexter UCI none 300 20000 160.78 2 cos 3.977 4.639 13 −0.760−0.781 0.301 0.688 0.423
mini-newsgroups UCI tfidf 1999 78273226.43 20 cos 1.980 1.765 44 −0.422−0.704 0.524 0.701 0.526
movie-reviews PaBo tf 2000 11885 54.95 2 cos 8.796 7.247 44 −0.604−0.739 0.398 0.790 0.481
reuters-transcribed UCI tfidf 201 3029 234.68 10 cos 1.165 1.693 3 −0.781−0.763 0.642 0.871 0.595
sports dmoz tf 752 1185 250.24 2 cos 1.629 2.543 27 −0.584−0.736 0.260 0.604 0.373

Table 5.1: Real data sets
Tabela 5.1: Skupovi stvarnih podataka
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and preprocessing (transformation) corresponds to a realistic scenario for the particular
data set.

To characterize the asymmetry of Nk we use the standardized third moment of the
distribution of k-occurrences,

SNk
=

E(Nk − µNk
)3

σ3
Nk

,

where µNk
and σNk

are the mean and standard deviation of Nk, respectively. The
corresponding (9th) column of Table 5.1, which shows the empirical SN10

values for
the real data sets, indicates that the distributions of N10 for most examined data sets are
skewed to the right.3 The value of k is fixed at 10, but analogous observations can be
made with other values of k.

It can be observed that some SNk
values in Table 5.1 are quite high, indicating

strong hubness in the corresponding data sets.4 Moreover, computing the Spearman
correlation between d and SNk

over all 50 data sets reveals it to be strong (0.62), signi-
fying that the relationship between dimensionality and hubness extends from synthetic
to real data in general. On the other hand, careful scrutiny of the charts in Figure 5.1
and SNk

values in Table 5.1 reveals that for real data the impact of dimensionality on
hubness may not be as strong as could be expected after viewing hubness on synthetic
data in Figure 4.1. Explanations for this observation will be given in the next section.

5.3 Explaining Hubness in Real Data

Results describing the origins of hubness given in the previous chapter were obtained by
examining data sets that follow specific distributions and generated as iid samples from
these distributions. To extend these results to real data, we need to take into account two
additional factors: (1) real data sets usually contain dependent attributes, and (2) real
data sets are usually clustered, that is, points are organized into groups produced by a
mixture of distributions instead of originating from a single (unimodal) distribution.

To examine the first factor (dependent attributes), we adopt the approach from [61]
used in the context of distance concentration. For each data set we randomly permute
the elements within every attribute. This way, attributes preserve their individual dis-
tributions, but the dependencies between them are lost and the intrinsic dimensionality

of data sets increases, becoming equal to their embedding dimensionality d [61]. In Ta-
ble 5.1 (10th column) we give the empirical skewness, denoted as SS

Nk
, of the shuffled

data. For the vast majority of high-dimensional data sets, SS
Nk

is considerably higher
than SNk

, indicating that hubness actually depends on the intrinsic rather than embed-
ding dimensionality. This provides an explanation for the apparent weaker influence
of d on hubness in real data than in synthetic data sets, observed in Section 5.2.

3If SNk
= 0 there is no skewness, positive (negative) values signify skewness to the right (left).

4For comparison, sample skewness values for iid uniform random data and Euclidean distance, shown in
Figure 4.1(a–c), are 0.121, 1.541, and 5.445 for dimensionalities 3, 20, and 100, respectively. The values for
iid normal data from Figure 4.1(d–f) are 0.118, 2.055, and 19.210.
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d dmle SN10
CN10

dm
CN10

cm B̃N 10 CN10

BN10

dmle 0.87

SN10
0.62 0.80

CN10

dm
−0.52 −0.60 −0.42

CN10
cm −0.43 −0.48 −0.31 0.82

B̃N 10 −0.05 0.03 −0.08 −0.32 −0.18

CN10

BN10
0.32 0.39 0.29 −0.61 −0.46 0.82

CAV 0.03 0.03 0.03 −0.14 −0.05 0.85 0.76

Table 5.2: Spearman correlations over 50 real data sets
Tabela 5.2: Spermanove korelacije nad 50 skupova stvarnih podataka

To examine the second factor (many groups), for every data set we measured: (i) the
Spearman correlation, denoted as CN10

dm (12th column), of the observed Nk and distance
from the data-set mean, and (ii) the correlation, denoted as CN10

cm (13th column), of the
observed Nk and distance to the closest group mean. Groups are determined with K-
means clustering, where the number of clusters for each data set, given in column 11 of
Table 5.1, was determined by exhaustive search of values between 2 and ⌊√n⌋, to max-
imize CN10

cm .5 In most cases, CN10

cm is considerably stronger than CN10

dm . Consequently,
in real data, hubs tend to be closer than other points to their respective cluster centers
(which we verified by examining the individual scatter plots).

To further support the above findings, we include the 6th column (dmle) to Table 5.1,
corresponding to intrinsic dimensionality measured by the maximum likelihood esti-
mator [120]. Next, we compute Spearman correlations between various measurements
from Table 5.1 over all 50 examined data sets, given in Table 5.2. The observed skew-
ness of Nk, besides being strongly correlated with d, is even more strongly correlated
with the intrinsic dimensionality dmle. Moreover, intrinsic dimensionality positively
affects the correlations between Nk and the distance to the data-set mean / closest clus-
ter mean, implying that in higher (intrinsic) dimensions the positions of hubs become
increasingly localized to the proximity of centers.

Section 5.5, which discusses the interaction of hubness with dimensionality reduc-
tion, will provide even more support to the observation that hubness depends on intrin-
sic, rather than embedding dimensionality.

Recalling the discussion about the relationships between different notions of cen-
trality in Section 4.5.1, we provide further support to the observation that the correlation
between the Nk value and betweenness centrality of a point, CN10

BC , increases with in-
creasing (intrinsic) dimensionality by computing, over the 50 real data sets listed in

5We report averages of CN10
cm over 10 runs of K-means clustering with different random seeding, in order

to reduce the effects of chance.
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Figure 5.2: Correlation between low Nk and outlier score (k = 20)
Slika 5.2: Korelacija izned̄u niskih vrednosti Nk i outlier koeficijenta (k = 20)

Table 5.1, the correlation between CN10

BC and SN10
, finding it to be significant: 0.548.6

This indicates that real data sets that exhibit strong skewness in the distribution of N10

also tend to have strong correlation between N10 and betweenness centrality of nodes,
giving hubs a broader significance for the structure of the k-NN graphs constructed
from the data.

5.4 Hubs and Outliers

The non-negligible variance of the distribution of distances to the data mean described
in Section 4.3.2 has an additional “side”: we also expect points farther from the mean
and, therefore, with much lower observed Nk than the rest.7 Such points correspond to
the bottom-right parts of Figure 4.2(b, c, e, f), and will be referred to as antihubs. Since
antihubs are far away from all other points, in high dimensions they can be regarded as
distance-based outliers [203].

To further support the connection between antihubs and distance-based outliers,
let us consider a common outlier score of a point as the distance from its kth nearest
neighbor [203]. Low Nk values and high outlier scores are correlated as exemplified in
Figure 5.2(a, b) (in their lower-right parts) for two data sets from Table 5.1.

Next, let us recall the iid normal random data setting, and the probability density
function corresponding to observing a point at a specified distance from the mean, plot-
ted in Figure 4.3. An analogous chart for real data is given in Figure 5.3, which shows
the empirical distributions of distances from the closest cluster mean for three real data
sets, as described in Section 5.3. In both figures it can be seen that in low dimensions

6This value is computed on directed k-NN graphs; when betweenness centrality is computed on undirected
graphs, the correlation is even stronger: 0.585.

7Assuming the presence of hubs, the existence of points with low Nk is implied by the constant-sum
property of Nk: for any data set D,

∑
x∈D

Nk(x) = k|D| [9].
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Figure 5.3: Probability density function of observing a point at distance r from the
closest cluster mean for three real data sets
Slika 5.3: Funkcija gustine verovatnoće da se uoči tačka na udaljenosti r od najbližeg
centra klastera, za tri skupa stvarnih podataka

the probability of observing a point near a center is quite high, while as dimension-
ality increases it becomes close to zero. If we now consider a probabilistic definition
of an outlier as a point with a low probability of occurrence [203], in high dimensions
hubs actually are outliers, as points closer to the distribution (or cluster) mean than the
majority of other points. Therefore, somewhat counterintuitively, it can be said that
hubs are points that reside in low-density regions of the high-dimensional data space
and are at the same time close to many other points. On the other hand, distance-based
outliers correspond to probabilistic outliers that are farther away from the center(s). It
follows that the definitions of distance-based and probabilistic outliers significantly di-
verge from one another in high dimensions, with distance-based outliers only partially
corresponding to probabilistic outliers. To prevent confusion in the rest of the disser-
tation, we shall continue to refer to “hubs” and “outliers” in the distance-based sense.
Outliers will be analyzed further in Section 5.6.3.

5.5 Hubness and Dimensionality Reduction

In this section we elaborate further on the interplay of skewness of Nk and intrinsic
dimensionality by considering dimensionality reduction (DR) techniques. The main
question motivating the discussion in this section is whether dimensionality reduction
can alleviate the issue of the skewness of k-occurrences altogether. We leave a more de-
tailed and general investigation of the interaction between hubness and dimensionality
reduction as a point of future work.

We examined the following methods: principal component analysis – PCA [99], in-
dependent component analysis – ICA [88], stochastic neighbor embedding – SNE [86],
isomap [207], and diffusion maps [115, 140]. Figure 5.4 depicts the relationship be-
tween the percentage of the original number of features maintained by the DR methods
and SNk

, for several high-dimensional real data sets (musk1, mfeat-factors, and spec-
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trometer; see Table 5.1) and iid uniform random data (with Euclidean distance, k = 10,
and the same number of neighbors used for isomap and diffusion maps). For PCA, ICA,
SNE, and the real data sets, looking from right to left, SNk

stays relatively constant until
a small percentage of features is left, after which it suddenly drops (Figure 5.4(a–c)).
It can be said that this is the point where the intrinsic dimensionality of data sets is
reached, and further reduction of dimensionality may incur loss of valuable informa-
tion. Such behavior is in contrast with the case of iid uniform random data (full black
line in Figure 5.4(a–c)), where SNk

steadily and steeply reduces with the decreasing
number of randomly selected features (dimensionality reduction is not meaningful in
this case), because intrinsic and embedded dimensionalities are equal. Since PCA is
equivalent to metric multidimensional scaling (MDS) when Euclidean distances are
used [207], and SNE is a variant of MDS which favors the preservation of distances be-
tween nearby points, we can roughly regard the notion of intrinsic dimensionality used
in this dissertation as the minimal number of features needed to account for all pair-

wise distances within a data set. Although ICA does not attempt to explicitly preserve
pairwise distances, combinations of independent components produce skewness of Nk

which behaves in a way that is similar to the skewness observed with PCA and SNE.
On the other hand, isomap and diffusion maps replace the original distances with

distances derived from a neighborhood graph. It can be observed in Figure 5.4(d, e)
that such replacement generally reduces SNk

, but in most cases does not alleviate it
completely. With the decreasing number of features, however, SNk

of real data sets
in Figure 5.4(d, e) still behaves in a manner more similar to SNk

of real data sets for
PCA, ICA, and SNE (Figure 5.4(a–c)) than iid random data (dash-dot black line in
Figure 5.4(d, e)).

The above observations signify that, if distances are not explicitly altered (as with
isomap and diffusion maps DR methods), that is, if one cares about preserving the orig-
inal distances, dimensionality reduction may not have a significant effect on hubness
when the number of features is above the intrinsic dimensionality. This observation
is useful in most practical cases because if dimensionality is reduced below intrinsic
dimensionality, loss of information can occur. If one still chooses to apply aggressive
dimensionality reduction and let the resulting number of features fall below intrinsic
dimensionality, it can be expected of pairwise distances and nearest-neighbor relations
between points in the data set to be altered, and hubness to be reduced or even lost.
Whether these effects should be actively avoided or sought really depends on the appli-
cation domain and task at hand, that is, whether and to what degree the original pair-
wise distances represent valuable information, and how useful are the new distances
and neighborhoods after dimensionality reduction.

5.6 Impact of Hubness on Machine Learning

The impact of hubness on machine-learning applications has not been thoroughly in-
vestigated so far. In this section we examine a wide range of commonly used machine-
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Figure 5.4: Skewness of N10 in relation to the percentage of the original number of
features maintained by dimensionality reduction, for real and iid uniform random data
and (a) principal component analysis – PCA, (b) independent component analysis –
ICA, (c) stochastic neighbor embedding – SNE, (d) isomap, and (e) diffusion maps
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zadržanog pri redukciji dimenzionalnosti, za prave i iid uniformne slučajne skupove
tačaka i (a) principal component analysis – PCA, (b) independent component analysis

– ICA, (c) stochastic neighbor embedding – SNE, (d) isomap, i (e) diffusion maps

learning methods for supervised (Section 5.6.1), semi-supervised (Section 5.6.2), and
unsupervised learning (Section 5.6.3), that either directly or indirectly use distances in
the process of building a model. Our main objective is to demonstrate that hubs (as
well as their opposites, anitihubs) can have a significant effect on these methods. The
presented results highlight the need to take hubs into account in a way equivalent to
other factors, such as the existence of outliers, the role of which has been well studied.

5.6.1 Supervised Learning

To investigate possible implications of hubness on supervised learning, we first study
the interaction of k-occurrences with information provided by labels. We then move on
to examine the effects of hubness on several well-known classification algorithms.

“Good” and “Bad” k-Occurrences

When labels are present, k-occurrences can be distinguished based on whether labels
of neighbors match. We define the number of “bad” k-occurrences of x, BN k(x), as
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the number of points from data set D for which x is among the first k NNs, and the
labels of x and the points in question do not match. Conversely, GN k(x), the number
of “good” k-occurrences of x, is the number of such points where labels do match.
Naturally, for every x ∈ D, Nk(x) = BN k(x) + GN k(x).

To account for labels, Table 5.1 includes B̃N 10 (14th column), the sum of all ob-
served “bad” k-occurrences of a data set normalized by

∑
x N10(x) = 10n. This mea-

sure is intended to express the total amount of “bad” k-occurrences within a data set.
Also, to express the amount of information that “regular” k-occurrences contain about
“bad” k-occurrences in a particular data set, CN10

BN 10
(15th column) denotes the Spear-

man correlation between BN 10 and N10 vectors. The motivation behind this measure
is to express the degree to which BN k and Nk follow a similar distribution.

“Bad” hubs, that is, points with high BN k, are of particular interest to supervised
learning because they carry more information about the location of the decision bound-
aries than other points, and affect classification algorithms in different ways. To un-
derstand the origins of “bad” hubs in real data, we rely on the notion of the cluster

assumption from semi-supervised learning [33], which roughly states that most pairs of
points in a high density region (cluster) should be of the same class. To measure the
degree to which the cluster assumption is violated in a particular data set, we simply
define the cluster assumption violation (CAV) coefficient as follows. Let a be the num-
ber of pairs of points which are in different classes but in the same cluster, and b the
number of pairs of points which are in the same class and cluster. Then, we define

CAV =
a

a + b
,

which gives a number in the [0, 1] range, higher if there is more violation. To reduce the
sensitivity of CAV to the number of clusters (too low and it will be overly pessimistic,
too high and it will be overly optimistic), we choose the number of clusters to be 3 times
the number of classes of a particular data set. Clustering is performed with K-means.

For all examined real data sets, we computed the Spearman correlation between
the total amount of “bad” k-occurrences, B̃N 10, and CAV (16th column of Table 5.1),
and found it strong (0.85, see Table 5.2). Another significant correlation (0.39) is ob-
served between CN10

BN 10
and intrinsic dimensionality. In contrast, B̃N 10 and CAV are

not correlated with intrinsic dimensionality nor with the skewness of N10. The latter
fact indicates that high dimensionality and skewness of Nk are not sufficient to in-
duce “bad” hubs. Instead, based on the former fact, we can argue that there are two,
mostly independent, forces at work: violation of the cluster assumption on one hand,
and high intrinsic dimensionality on the other. “Bad” hubs originate from putting the
two together; that is, the consequences of violating the cluster assumption can be more
severe in high dimensions than in low dimensions, not in terms of the total amount of
“bad” k-occurrences, but in terms of their distribution, since strong regular hubs are
now more prone to “pick up” bad k-occurrences than non-hub points. This is supported
by the positive correlation between CN10

BN 10
and dmle, meaning that in high dimensions

BN k tends to follow a more similar distribution to Nk than in low dimensions.
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Influence on Classification Algorithms

We now examine how skewness of Nk and the existence of (“bad”) hubs affects well-
known classification techniques, focusing on the k-nearest neighbor classifier (k-NN),
support vector machines (SVM), and AdaBoost. We demonstrate our findings on a
selection of data sets from Table 5.1 which have relatively high (intrinsic) dimensional-
ity, and a non-negligible amount of “badness” (B̃N k) and cluster assumption violation
(CAV). Generally, the examined classification algorithms (including semi-supervised
learning from Section 5.6.2) exhibit similar behavior on other data sets from Table 5.1
with the aforementioned properties, and also with various different values of k (in the
general range 1–50, as we focused on values of k which are significantly smaller than
the number of points in a data set).

k-nearest neighbor classifier. The k-nearest neighbor classifier is negatively affected
by the presence of “bad” hubs, because they provide erroneous class information to
many other points. To validate this assumption, we devised a simple weighting scheme.
For each point x, we compute its standardized “bad” hubness score:

hB(x, k) =
BN k(x)− µBNk

σBNk

,

where µBNk
and σBNk

are the mean and standard deviation of BN k, respectively.
During majority voting in the k-NN classification phase, when point x participates in
the k-NN list of the point being classified, the vote of x is weighted by

wk(x) = exp(−hB(x, k)),

thus lowering the influence of “bad” hubs on the classification decision. Figure 5.5
compares the resulting accuracy of k-NN classifier with and without this weighting
scheme for six data sets from Table 5.1. Leave-one-out cross-validation is performed,
with Euclidean distance being used for determining nearest neighbors. The k value
for Nk is naturally set to the k value used by the k-NN classifier, and hB(x, k) is
recomputed for the training set of each fold. The reduced accuracy of the unweighted
scheme signifies the negative influence of “bad” hubs.

Although “bad” hubs tend to carry more information about the location of class
boundaries than other points, the “model” created by the k-NN classifier places the
emphasis on describing non-borderline regions of the space occupied by each class.
For this reason, it can be said that “bad” hubs are truly bad for k-NN classification,
creating the need to penalize their influence on the classification decision. On the other
hand, for classifiers that explicitly model the borders between classes, such as support
vector machines, “bad” hubs can represent points which contribute information to the
model in a positive way, as will be discussed next.
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Figure 5.5: Accuracy of k-NN classifier with and without the weighting scheme
Slika 5.5: Tačnost k-NN klasifikatora sa i bez upotrebe težina

Support vector machines. We consider SVMs with the RBF (Gaussian) kernel of
the form:

K(x,y) = exp
(
−γ‖x− y‖2

)
,

where γ is a data-dependent constant. K(x,y) is a smooth monotone function of Eu-
clidean distance between points. Therefore, Nk values in the kernel space are exactly
the same as in the original space.8 To examine the influence of “bad” hubs on SVMs,
Figure 5.6 illustrates 10-fold cross-validation accuracy results of SVM trained using se-
quential minimal optimization [157, 101], when points are progressively removed from
the training sets: (i) by decreasing BN k (k = 5), and (ii) at random. Accuracy drops
with removal by BN k, indicating that bad hubs are important for SVMs. The difference
in SVM accuracy between random removal and removal by BN k becomes consistently
significant at some stage of progressive removal, as denoted by the dashed vertical lines
in the plots, according to the paired t-test at significance level 0.05.9

The reason behind the above observation is that for high-dimensional data, points
with high BN k can comprise good support vectors. Table 5.3 exemplifies this point by
listing the normalized average ranks of support vectors in the 10-fold cross-validation
models with regards to decreasing BN k. The ranks are in the range [0, 1], with the

8Centering the kernel matrix changes the Nk of points in the kernel space, but we observed that the overall
distribution (that is, its skewness) does not become radically different. Therefore, the following arguments
still hold for centered kernels, providing Nk is computed in the kernel space.

9Since random removal was performed in 20 runs, fold-wise accuracies for statistical testing were obtained
in this case by averaging over the runs.
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Figure 5.6: Accuracy of SVM with RBF kernel and points being removed from the
training sets by decreasing BN 5, and at random (averaged over 20 runs)
Slika 5.6: Tačnost SVM-a sa RBF kernelom i tačkama koje se uklanjaju iz skupova
obučavanja po opadajućem BN 5, i u slučajnom redosledu (prosek 20 eksperimenata)

Data set γ SV rank Data set γ SV rank
mfeat-factors 0.005 0.218 segment 0.3 0.272
mfeat-fourier 0.02 0.381 spectrometer 0.005 0.383
optdigits 0.02 0.189 vehicle 0.07 0.464

Table 5.3: Normalized average support vector ranks with regards to decreasing BN 5

Tabela 5.3: Normalizovani srednji rangovi support vektora u odnosu na opadajući BN 5

value 0.5 expected from a random set of points. Lower values of the ranks indicate
that the support vectors, on average, tend to have high BN k. The table also lists the
values of the γ parameter of the RBF kernel, as determined by independent experiments
involving 9-fold cross-validation.

AdaBoost. Boosting algorithms take into account the “importance” of points in the
training set for classification by weak learners, usually by assigning weights to indi-
vidual points – the higher the weight, the more attention is to be paid to the point by
subsequently trained weak learners. We consider the AdaBoost.MH algorithm [188] in
conjunction with CART trees [20] with the maximal depth of three. (More precisely, we
use the binary “Real AdaBoost” algorithm and the one-vs-all scheme to handle multi-
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class problems, which is equivalent to the original AdaBoost.MH [64].) We define for
each point x its standardized hubness score:

h(x, k) =
Nk(x) − µNk

σNk

, (5.1)

where µNk
, σNk

are the mean and standard deviation of Nk, respectively. We set the
initial weight of each point x in the training set to

wk(x) =
1

1 + |h(x, k)| ,

normalized by the sum over all points, for an empirically determined value of k. The mo-
tivation behind the weighting scheme is to assign less importance to both hubs and
outliers than other points (this is why we take the absolute value of h(x, k)).

Figure 5.7 illustrates on six classification problems from Table 5.1 how the weight-
ing scheme helps AdaBoost achieve better generalization in fewer iterations. Data sets
were split into training, validation, and test sets with size ratio 2:1:1, parameter k was
chosen based on classification accuracy on the validation sets, and accuracies on the
test sets are reported. While it is known that AdaBoost is sensitive to outliers [175],
improved accuracy suggests that hubs should be regarded in an analogous manner,
that is, both hubs and antihubs are intrinsically more difficult to classify correctly,
and the attention of the weak learners should initially be focused on “regular” points.
The discussion from Section 5.4, about hubs corresponding to probabilistic outliers in
high-dimensional data, offers an explanation for the observed good performance of the
weighting scheme, as both hubs and antihubs can be regarded as (probabilistic) outliers.

To provide further support, Figure 5.8 depicts binned accuracies of unweighted Ad-
aBoost trained in one fifth of the iterations shown in Figure 5.7, for points sorted by
decreasing Nk. It illustrates how in earlier phases of ensemble training the generaliza-
tion power with hubs and/or antihubs is worse than with regular points. Moreover, for
the considered data sets it is actually the hubs that appear to cause more problems for
AdaBoost than antihubs (that is, distance-based outliers).

5.6.2 Semi-Supervised Learning

Semi-supervised learning algorithms make use of data distribution information pro-
vided by unlabeled examples during the process of building a classifier model. An im-
portant family of approaches are graph-based methods, which represent data as nodes of
a graph, the edges of which are weighted by pairwise distances of incident nodes [33].

We consider the well-known algorithm by Zhu et al. [238], whose strategy involves
computing a real-valued function f on graph nodes, and assign labels to nodes based
on its values (see Section 2.4). Taking into account the properties of hubs and anti-
hubs discussed previously, for high-dimensional data sets it can be expected of hubs
to be closer to many other points than “regular” points are, and thus carry larger edge
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Figure 5.7: Accuracy of AdaBoost with and without the weighting scheme: (a) k = 20,
(b) k = 15, (c) k = 10, (d) k = 20, (e) k = 20, (f) k = 40
Slika 5.7: Tačnost AdaBoost-a sa i bez upotrebe težina: (a) k = 20, (b) k = 15,
(c) k = 10, (d) k = 20, (e) k = 20, (f) k = 40
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Figure 5.8: Binned accuracy of AdaBoost by decreasing Nk, at one fifth of the itera-
tions shown in Figure 5.7
Slika 5.8: Binovana tačnost AdaBoost-a u odnosu na opadajuće Nk, pri jednoj petini
broja iteracija prikazanog u Slici 5.7
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weights and be more influential in the process of determining the optimal function f .
Conversely, antihubs are positioned farther away from other points, and are expected to
bear less influence on the computation of f . Therefore, following an approach that re-
sembles active learning, selecting the initial labeled point set from hubs could be more
beneficial in terms of classification accuracy than arbitrarily selecting the initial points
to be labeled. On the other extreme, picking the initial labeled point set from the ranks
of antihubs could be expected to have a detrimental effect on accuracy.

To validate the above hypothesis, we evaluated the accuracy of the harmonic func-
tion algorithm [238] on multiple high-dimensional data sets from Table 5.1, for labeled
set sizes ranging from 1% to 10% of the original data set size, with the test set con-
sisting of all remaining unlabeled points. Because the setting is semi-supervised, we
compute the Nk scores of points based on complete data sets, instead of only training
sets which was the case in Section 5.6.1. Based on the Nk scores (k = 5), Figure 5.9
plots classification accuracies for labeled points selected in the order of decreasing N5

(we choose to take hub labels first), in the order of increasing N5 (antihub labels are
taken first), and in random order (where we report accuracies averaged over 10 runs).10

It can be seen that when the number of labeled points is low in comparison to the size
of the data sets, taking hub labels first generally produces better classification accuracy.
On the other hand, when assigning initial labels to antihubs, accuracy becomes signifi-
cantly worse, with a much larger labeled set size required for the accuracy to reach that
of randomly selected labeled points.

5.6.3 Unsupervised Learning

This section will discuss the interaction of the hubness phenomenon with unsupervised
learning, specifically the tasks of clustering and outlier detection.

Clustering

The main objectives of (distance-based) clustering algorithms are to minimize intra-
cluster distance and maximize inter-cluster distance. The skewness of k-occurrences in
high-dimensional data influences both objectives.

Intra-cluster distance may be increased due to points with low k-occurrences. As
discussed in Section 5.4, such points are far from all the rest, acting as distance-based
outliers. Distance-based outliers and their influence on clustering are well-studied sub-
jects [203]: outliers do not cluster well because they have high intra-cluster distance,
thus they are often discovered and eliminated beforehand. The existence of outliers is
attributed to various reasons (for example, erroneous measurements). Nevertheless, the
skewness of Nk suggests that in high-dimensional data outliers are also expected due
to inherent properties of vector space. The next section will provide further discussion
on this point.

10We determined the σ values of the RBF function in a separate experiment involving 10 runs of random
selection of points for the labeled set, the size of which is 10% of the original data set.
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Figure 5.9: Accuracy of the semi-supervised algorithm from [238] with respect to the
initial labeled set size as a percentage of the original data set size. Labeled points are
selected in the order of decreasing N5 (hubs first), increasing N5 (antihubs first), and
in random order. Sigma values of the RBF are: (a) σ = 2.9, (b) σ = 2, (c) σ = 2.1,
(d) σ = 0.9, (e) σ = 1.8, (f) σ = 0.7
Slika 5.9: Tačnost semi-superviziranog algoritma iz [238] u odnosu na kardinalitet
skupa tačaka sa poznatom klasom, izraženim kao procenat kardinaliteta originalnog
skupa podataka. Tačke za poznatom klasom su birane po opadajućem redosledu N5

(prvo habovi), po rastućem N5 (prvo antihabovi), i po slučajnom redosledu. Vrednosti
sigma parametra RBF-a su: (a) σ = 2.9, (b) σ = 2, (c) σ = 2.1, (d) σ = 0.9,
(e) σ = 1.8, (f) σ = 0.7

Inter-cluster distance, on the other hand, may be reduced due to points with high
k-occurrences, that is, hubs. Like outliers, hubs do not cluster well, but for a different
reason: they have low inter-cluster distance, because they are close to many points,
thus also to points from other clusters. In contrast to outliers, the influence of hubs on
clustering has not attracted significant attention.

To examine the influence of both outliers and hubs, we used the popular silhou-
ette coefficients (SC, see Section 2.5.2). We examined several clustering algorithms,
and report results for the spectral algorithm from [135] and Euclidean distance, with
similar results obtained for classical K-means, as well as the spectral clustering algo-
rithm from [145] in conjunction with K-means and the algorithm from [135]. For a
given data set, we set the number of clusters, K , to the number of classes (specified in
Table 5.1). We select as hubs those points x with h(x, k) > 2, that is, Nk(x) more
than two standard deviations higher than the mean (note that h(x, k), defined by Equa-
tion 5.1, ignores labels). Let nh be the number of hubs selected. Next, we select as
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Figure 5.10: Relative silhouette coefficients for hubs (gray filled bars) and outliers
(empty bars). Relative values for a and b coefficients are also plotted (referring to the
right vertical axes)
Slika 5.10: Relativni koeficijenti siluete za habove (sivi stubovi) i outlier-e (beli
stubovi). Relativne vrednosti koeficijenata a i b takod̄e su date (u odnosu na desnu
vertikalnu osu)

outliers the nh points with the lowest k-occurrences. Finally, we randomly select nh

points from the remaining points (we report averages for 100 different selections). To
compare hubs and antihubs against random points, we measure the relative SC of hubs
(antihubs): the mean SC of hubs (antihubs) divided by the mean SC of random points.
For several data sets from Table 5.1, Figure 5.10 depicts with bars the relative silhouette
coefficients.11 As expected, outliers have relative SC lower than one, meaning that they
cluster worse than random points. Notably, the same holds for hubs, too.12

To gain further insight, Figure 5.10 plots with lines (referring to the right vertical
axes) the relative mean values of ai and bi for hubs and outliers (dividing with those of
randomly selected points). Outliers have high relative ai values, indicating higher intra-
cluster distance. Hubs, in contrast, have low relative bi values, indicating reduced inter-
cluster distance. In conclusion, when clustering high-dimensional data, hubs should
receive analogous attention as outliers.

11Data sets were selected due to their high (intrinsic) dimensionality – similar observations can be made
with other high-dimensional data sets from Table 5.1.

12The statistical significance of differences between the SC of hubs and randomly selected points has been
verified with the paired t-test at significance level 0.05.
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Figure 5.11: (a) Highest and lowest distance to the 5th nearest neighbor in iid uniform
random data, with respect to increasing d. (b) The difference between the two distances
Slika 5.11: (a) Najveća i najmanja udaljenost do petog najbližeg suseda u iid uniform-
nom skupu slučajnih tačaka, u odnosu na rastuće d. (b) Razlika izmed̄u dve udaljenosti

Outlier Detection

This section will discuss possible implications of high dimensionality on distance-based
outlier detection, in light of the findings concerning the hubness phenomenon presented
in previous sections. Section 5.4 already discussed the correspondence of antihubs with
distance-based outliers in high dimensions, and demonstrated on real data the negative
correlation between Nk and a commonly used outlier score – distance to the kth nearest
neighbor. On the other hand, a prevailing view of the effect of high dimensionality on
distance-based outlier detection is that, due to distance concentration, every point seems
to be an equally good outlier, thus hindering outlier-detection algorithms [3]. Based on
the observations regarding hubness and the behavior of distances discussed earlier, we
believe that the true problem actually lies in the opposite extreme: high dimensionality
induces antihubs that can represent “artificial” outliers. This is because, from the point
of view of common distance-based outlier scoring schemes, antihubs may appear to be
stronger outliers in high dimensions than in low dimensions, only due to the effects of
increasing dimensionality of data.

To illustrate the above discussion, Figure 5.11(a) plots for iid uniform random data
the highest and lowest outlier score (distance to the kth NN, k = 5) with respect to
increasing d (n = 10000 points, averages over 10 runs are reported). In accordance
with the asymptotic behavior of all pairwise distances discussed in previous sections,
both scores increase with d. However, as Figure 5.11(b) shows, the difference between
the two scores also increases. This implies that a point could be considered a distance-
based outlier only because of high dimensionality, since outliers are not expected for
any other reason in iid uniform data (we already demonstrated that such a point would
most likely be an antihub). As a consequence, outlier-detection methods based on mea-
suring distances between points may need to be adjusted to account for the (intrinsic)
dimensionality of data, in order to prevent dimensionality-induced false positives.
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5.7 Summary and Future Work

In this chapter, together with Chapter 4, we explored an aspect of the curse of di-
mensionality that is manifested through the phenomenon of hubness – the tendency
of high-dimensional data sets to contain hubs, in the sense of popular nearest neigh-
bors of other points. To the best of our knowledge, hubs and the effects they have on
machine-learning techniques have not been thoroughly studied subjects. Through theo-
retical and empirical analysis involving synthetic and real data sets we demonstrated the
emergence of the phenomenon and explained its origins, showing that it is an inherent
property of data distributions in high-dimensional vector space that depends on the in-
trinsic, rather than embedding dimensionality of data. We also discussed the interaction
of hubness with dimensionality reduction. Moreover, we explored the impact of hub-
ness on a wide range of machine-learning tasks that directly or indirectly make use of
distances between points, belonging to supervised, semi-supervised, and unsupervised
learning families, demonstrating the need to take hubness into account in an equivalent
degree to other factors, like the existence of outliers.

Besides application areas that involve audio and image data [9, 49, 12, 84], identify-
ing hubness within data and methods from other fields can be considered an important
aspect of future work, as well as designing application-specific methods to mitigate or
take advantage of the phenomenon. We already established the existence of hubness
in collaborative-filtering data with commonly used variants of cosine distance [141],
time-series data sets in the context of k-NN classification involving dynamic time warp-
ing (DTW) distance (Chapter 6), text data within several variations of the classical
vector space model for information retrieval (Chapter 7), and audio data for music in-
formation retrieval using spectral similarity measures [100]. In the immediate future we
plan to perform a more detailed investigation of hubness in the field of outlier detection
and image mining. Another application area that could directly benefit from an inves-
tigation into hubness are reverse k-NN queries, which retrieve data points that have the
query point q as one of their k nearest neighbors [204].

One concern we elected not to include into the scope of this dissertation is the
efficiency of computing Nk. It would be interesting to explore the interaction between
approximate k-NN graphs [35] and hubness, in both directions: to what degree do
approximate k-NN graphs preserve hubness information, and can hubness information
be used to enhance the computation of approximate k-NN graphs for high-dimensional
data (in terms of both speed and accuracy).

Possible directions for future work within different aspects of machine learning in-
clude a more formal and theoretical study of the interplay between hubness and various
distance-based machine-learning models, possibly leading to approaches that account
for the phenomenon at a deeper level. Supervised learning methods may deserve spe-
cial attention, as it was also observed in another study [23] that the k-NN classifier
and boosted decision trees can experience problems in high dimensions. Further di-
rections of research may involve determining whether the phenomenon is applicable
to probabilistic models, (unboosted) decision trees, and other techniques not explic-
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itly based on distances between points; and also to algorithms that operate within
general metric spaces. Since we determined that for K-means clustering of high-
dimensional data hubs tend to be close to cluster centers, it would be interesting to ex-
plore whether this can be used to improve iterative clustering algorithms, like K-means
or self-organizing maps [108]. Nearest-neighbor clustering [22] of high-dimensional
data may also directly benefit from hubness information. Topics that could also be
worth further study are the interplay of hubness with learned metrics [222] and dimen-
sionality reduction, including supervised [219, 71], semi-supervised [235], and unsu-
pervised approaches [211, 113]. Finally, as we determined high correlation between
intrinsic dimensionality and the skewness of Nk, it would be interesting to see whether
some measure of skewness of the distribution of Nk can be used for estimation of the
intrinsic dimensionality of a data set.





Chapter 6

Hubness and Time Series

This chapter will study the hubness aspect of the dimensionality curse in the domain of
time-series analysis. Although it has been suggested that, due to autocorrelation, time
series typically have lower intrinsic dimensionality compared to their length [102], there
exist problems where the effects of intrinsic dimensionality may not be negligible, for
instance in time-series prediction [215]. In this chapter we study the impact hubness on
the problem of time-series classification.

Time-series classification has been studied extensively by machine-learning and
data-mining communities, resulting in a plethora of different approaches ranging from
neural [156] and Bayesian networks [153] to genetic algorithms and support vector
machines [52]. Somewhat surprisingly, the simple approach involving the 1-nearest
neighbor (1-NN) classifier and some form of dynamic time warping (DTW) distance
was shown to be competitive, if not superior, to many state-of-the art classification
methods [47, 103].

In the preceding chapters we analyzed a new aspect of the dimensionality curse for
general vector spaces and distance measures (for example, Euclidean and cosine) by
observing the phenomenon of hubness: intrinsically high-dimensional data sets tend
to contain hubs, that is, points that appear unexpectedly many times in the k-nearest
neighbor lists of all other points. More precisely, let D ⊂ R

d be a set of points and
Nk(x) the number of k-occurrences of each point x ∈ D, that is, the number of times x

occurs among the k nearest neighbors of all other points in D. With increasing intrinsic
dimensionality of D, the distribution of Nk becomes considerably skewed to the right,
resulting in the emergence of hubs.

In Chapter 5 we have shown that the hubness phenomenon affects the task of classi-
fication of general vector-space data, notably the k-nearest neighbor (k-NN) classifier,
support vector machines (SVM), and AdaBoost. Hubness affects the k-NN classifier
by making some points (the hubs) substantially more influential on the classification
decision than other points, thereby enabling certain points to misclassify others more
frequently. This implies that in such situations the classification error may not be dis-



136 6. Hubness and Time Series

tributed uniformly but in a skewed way, with the responsibility for most of the classifi-
cation error laying on a small part of the data set.

The phenomenon of hubness is relevant to the problem of time-series classification
because, as will be shown, it impacts the performance of nearest-neighbor methods
which were proven to be very effective for this task. In this chapter, we provide a de-
tailed examination of how hubness influences classification of time series. We focus on
the widely used k-NN classifier coupled with DTW distance, hoping that our findings
will motivate a more general investigation of the impact of hubness on other classifiers
for time series as a direction of future research. We use a collection of 35 data sets from
the UCR repository [104] and from [47], which together comprise a large portion of the
labeled time-series data sets publicly available for research purposes today.

To express the degree of hubness within data sets, we use the skewness measure (the
standardized 3rd moment) of the distribution of Nk. We establish a link between hub-
ness and classification by measuring the amount of class label variation in local neigh-
borhoods. Based on these measurements we develop a framework to categorize differ-
ent data sets. The framework allows identifying different degrees of hubness among
the time-series data sets, determining for a significant number of them that classifica-
tion can be improved by taking into account the hubness phenomenon. The latter fact
is demonstrated through a simple, yet effective weighting scheme for the k-NN classi-
fier, suggesting that consideration of hubness, in cases where it emerges, can allow the
k-NN classifier (in general, with k > 1) to attain significantly better accuracy than the
currently considered top-performing 1-NN classifier, which is not aware of hubness.

The rest of the chapter is organized as follows. The next section provides an
overview of related work. Section 6.2 explores the hubness phenomenon, relating it
with the intrinsic dimensionality of time-series data, and showing that there exist data
sets with non-negligible amounts of hubness and relatively high intrinsic dimension-
ality. After illustrating the correspondence of hubness and intrinsic dimensionality in
Section 6.2, a more thorough investigation into the causes of hubness in a large collec-
tion of time-series data sets is presented in Section 6.3. Then, the interplay between
hubness and dimensionality reduction of time-series data is studied in Section 6.4. Sec-
tion 6.5 discusses the impact of hubness on time-series classification, introducing the
framework for relating hubness with k-NN performance. Section 6.6 provides experi-
mental evidence demonstrating that strong hubness can be taken into account to improve
the accuracy of k-NN classification, and Section 6.7 summarizes the chapter, providing
guidelines for future work.

6.1 Related Work

Time-series classification is a well-studied topic of research, with successful state-of-
the-art approaches including neural networks [156], Bayesian networks [153], genetic
algorithms [52], and support vector machines [52]. Nevertheless, the simple method
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combining the 1-NN classifier and some form of DTW distance was shown to be one
of the best-performing time-series classification techniques [47, 103].

DTW is a classical distance measure well suited to the task of comparing time se-
ries [14]. It differs from Euclidean distance by allowing the vector components that are
compared to “drift” from exactly corresponding positions, in order to minimize the dis-
tance and compensate for possible “stretching” and “shrinking” of parts of time series
along the temporal axis (see Section 2.2.7).

One downside of DTW distance is that finding the center of a group of time series is
difficult [146, 147]. Several approaches have been proposed to date [75, 147], all based
on averaging two time series along the same path in the matrix used to compute DTW
distance by dynamic programming, with the differences in the order in which the time
series are considered. The approach of sequential averaging of time series [75] will be
used in later sections of this chapter to locate centers of different sets of time series.
This is performed by taking the time series in some predetermined sequence, averaging
the first two, then averaging the result with the third time series, and so on. After each
averaging, uniform scaling [65, 147] will be applied to reduce the length of the average
to the length of other time series in the set.

Hubness, as discussed in Chapter 4, was initially observed within different appli-
cation areas, where it was perceived as a problematic situation, but without connecting
it with intrinsic dimensionality of data. This connection was explored in Chapters 4
and 5, where hubness was also related to the phenomenon of distance concentration.
Besides k-NN, it was shown that hubness affects other classifiers (SVM, AdaBoost),
clustering, and outlier detection. Nevertheless, to our knowledge, no thorough investi-
gation has been conducted so far concerning hubness and its consequences in the field
of time-series classification.

An observation that some time series can misclassify others in 1-NN classifica-
tion more frequently than expected was recently stated in [89], suggesting a heuristical
method to consider the second and third neighbor in case the first neighbor misclassifies
at least one instance from the training set. However, no study of the general hubness
property was made, nor was the relation to intrinsic dimensionality established. In Sec-
tion 6.5 we discuss correcting erroneous class information in k-NN classification with
a more general approach than the heuristic scheme of [89].

6.2 Observing Hubness in Time Series

This section will first establish the relation between hubness and time series, and then
explain the origins of hubness in this field in Section 6.3. For clarity of presentation,
we initially focus our investigation on the unconstrained DTW distance, due to the
simplicity of evaluation resulting from the lack of parameters that need to be tuned.
Another reason is that the unconstrained DTW distance is among the best-performing
distance measures for 1-NN classification [47]. However, analogous observations can
be made for constrained DTW distance (CDTW) with varying tightness of the constraint
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Figure 6.1: Distribution of N10 for DTW distance on time-series data sets with increas-
ing estimates of intrinsic dimensionality (dmle)
Slika 6.1: Distribucija N10 za DTW udaljenosti na skupovima vremenskih serija sa
rastućim ocenama latentne dimenzionalnosti (dmle)

parameter, and ultimately for Euclidean distance. We defer a more detailed discussion
about these distance measures until Section 6.6.3.

The notation introduced in Chapter 4 will also be used in this chapter: let D ⊂ R
d

be a set of points1 and Nk(x) the number of k-occurrences of each point x ∈ D, that
is, the number of times x occurs among the k nearest neighbors of all other points in D,
with respect to some distance measure. Nk(x) can also be viewed as the in-degree of
node x in the k-nearest neighbor digraph made up of points from D.

We begin with an illustrative example demonstrating how hubness emerges with in-
creasing intrinsic dimensionality of time-series data sets. The intrinsic dimensionality,
denoted dmle, has been approximated using the maximum likelihood estimator [120].
Figure 6.1 plots the distribution of Nk for the DTW distance on three time-series data
sets (selected from the collection given in Table 6.1) with characteristic dmle values that
are low, medium, and high, respectively. In this example, Nk is measured for k = 10,
but analogous results are obtained with other values of k. It can be seen that the in-
crease of the value of dmle in Figure 6.1(a) to Figure 6.1(c) corresponds to an increase
of the right tail of the distribution of k-occurrences, causing some time series from the
data set in Figure 6.1(b), and especially Figure 6.1(c), to have a significantly higher
value of Nk than the expected value, which is equal to k. Therefore, for the considered
three time-series data sets we observe that the increase of hubness closely follows the
increase of intrinsic dimensionality.

6.3 Explaining Hubness in Time Series

In this section we will move on from illustrating to more rigorously establishing the
positive correlation between hubness and intrinsic dimensionality in time-series data,
through empirical measurements over a large collection of time-series data sets, using

1For convenience of using vector-space terminology, we shall refer to “time series” and “points” inter-
changeably.
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the methodology established in the previous chapter. Through additional measurements
it will be shown that, for intrinsically high-dimensional data sets, hubs tend to be located
in the proximity of centers of high-density regions, that is, groups of points which can
be determined by clustering. The reasons behind this tendency will be discussed in the
exposition that follows.

First, as in Chapter 5, we express the degree of hubness in a data set by a single
number – the skewness of the distribution of k-occurrences measured by its standard-
ized 3rd moment: SNk

= E(Nk − µNk
)3/σ3

Nk
, where µNk

, σNk
are the mean and

standard deviation of Nk, respectively. We examine 35 time-series data sets from the
UCR repository [104] and from [47], listed in Table 6.1.2 First five columns specify
the data set name, number of time series (n), time-series length, that is, embedding
dimensionality (d), estimated intrinsic dimensionality (dmle), and number of classes.
Column 6 gives the skewness, SNk

, in the data sets. We fix k = 10 for skewness and
subsequent measurements given in Table 6.1. Results analogous to those presented in
the following sections are obtained with other values of k.

The SN10
column of Table 6.1 shows that the distributions of N10 for all examined

data sets are skewed to the right, with notable variations in the degrees of skewness.3

The correspondence between hubness and intrinsic dimensionality is demonstrated by
computing Spearman correlation between SN10

and dmle over all 35 data sets, revealing
it to be strong: 0.68. On the other hand, there is practically no correlation between
SN10

and d: 0.05. This verifies the previously mentioned point that hubness emerges
only with increasing intrinsic dimensionality, and that high dimensionality in itself is
not sufficient since the intrinsic dimensionality can be significantly lower.

Although it is now evident that high intrinsic dimensionality creates hubs in time-
series data sets, it is relevant to understand how exactly this happens. Explanation is
provided by examining the location of hubs inside the data sets. In particular, for data
sets with strong hubness it will be shown that hubs tend to be close to the centers of
high density regions, that is, groups of similar points. In order to explain the mecha-
nism through which hubness, intrinsic dimensionality, and groups of points interact, we
introduce column 8 in Table 6.1.

CN10

cm (column 8) is the correlation between the distance of a point to the center of
its own cluster, and N10, over all points in a data set. Clusters were determined using
agglomerative hierarchical clustering with complete linkage [203], with the number of
clusters, determined by the refined L method [186], given in column 7 of Table 6.1.
Since the arithmetic mean is not necessarily the best center of a group of points with
respect to dynamic time warping distance, whenever a center was needed we performed
10 runs of sequential DTW averaging [75] (see Section 6.1) with different random per-
mutations of points, considered in addition the arithmetic mean, and adopted as the
center the point which was, on average, closest to all points from the group.4

2We omit three data sets (Beef, Coffee, OliveOil) from consideration due to their small size (60 time series
or less), which renders the estimates of SNk

(and other measures introduced later) unstable.
3If SNk

= 0 there is no skewness, positive (negative) values signify skewness to the right (left).
4In the vast majority of cases, DTW averages were adopted as centers.
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Name n d dmle Cls. SN10
Clu. CN10

cm B̃N 10 CAV

Car 120 577 5.99 4 1.628 9 −0.454 0.454 0.599
MALLAT 2400 1024 9.22 8 1.517 8 −0.280 0.026 0.087
Lighting7 143 319 9.03 7 1.313 9 −0.393 0.403 0.432
SyntheticControl 600 60 20.06 6 1.056 8 −0.412 0.017 0.070
Lighting2 121 637 7.57 2 0.962 10 −0.465 0.244 0.465
SwedishLeaf 1125 128 11.27 15 0.905 10 −0.255 0.271 0.769
Haptics 463 1092 9.77 5 0.901 6 −0.538 0.620 0.728
SonyAIBORobotSurface 621 70 12.57 2 0.899 9 −0.471 0.054 0.166
StarLightCurves 9236 1024 13.43 3 0.879 8 −0.312 0.080 0.223
Symbols 1020 398 6.22 6 0.843 6 −0.372 0.027 0.347
Fish 350 463 6.61 7 0.838 2 −0.426 0.356 0.604
ItalyPowerDemand 1096 24 9.01 2 0.833 10 −0.274 0.061 0.486
SonyAIBORobotSurfaceII 980 65 10.50 2 0.817 9 −0.436 0.069 0.316
FaceAll 2250 131 9.33 14 0.740 9 −0.286 0.073 0.371
50Words 905 270 7.26 50 0.670 6 −0.267 0.437 0.313
WordsSynonyms 905 270 7.26 25 0.670 6 −0.228 0.419 0.422
Yoga 3300 426 5.51 2 0.624 5 −0.091 0.128 0.478
OSULeaf 442 427 8.73 6 0.598 3 −0.368 0.457 0.623
Motes 1272 84 8.81 2 0.523 4 −0.270 0.101 0.373
ChlorineConcentration 4307 166 1.73 3 0.501 6 −0.012 0.316 0.600
Adiac 781 176 6.10 37 0.383 9 −0.307 0.520 0.644
GunPoint 200 150 3.75 2 0.373 5 −0.390 0.162 0.419
FaceFour 112 350 5.66 4 0.367 9 −0.467 0.151 0.154
InlineSkate 650 1882 5.89 7 0.350 8 −0.276 0.609 0.771
MedicalImages 1141 99 6.18 10 0.322 8 −0.272 0.312 0.460
DiatomSizeReduction 322 345 4.82 4 0.299 5 −0.135 0.013 0
Wafer 7164 152 3.54 2 0.269 8 −0.041 0.014 0.182
ECG200 200 96 9.03 2 0.234 5 −0.488 0.236 0.333
CinC 1420 1639 5.43 4 0.145 8 −0.238 0.079 0.677
ECGFiveDays 884 136 7.07 2 −0.027 5 −0.185 0.038 0.370
CBF 930 128 23.75 3 2.393 5 −0.387 0.001 0
TwoPatterns 5000 128 14.52 4 2.104 10 −0.488 0 0.002
Trace 200 275 11.05 4 0.680 6 −0.396 0.009 0.003
TwoLeadECG 1162 82 6.49 2 0.320 3 −0.188 0.002 0.468
Plane 210 144 4.01 7 −0.040 9 −0.593 0.003 0

Table 6.1: Time-series data sets from the UCR repository [104] and from [47]
Tabela 6.1: Skupovi vremenskih serija iz UCR repozitorijuma [104] i iz [47]
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In the 8th column of Table 6.1, negative correlation can be observed for every data
set. A stronger negative correlation indicates that time series closer to their respective
cluster center tend to have higher N10. Overall, the correlations in column 8 indicate
that hubs tend to be close to the centers of high-density groups that are reflected by
the clusters (the average value of CN10

cm is equal to −0.339). Moreover, the Spearman
correlation over all 35 data sets between SN10

and CN10

cm is −0.38. This suggests that
data sets with stronger hubness tend to have the hubs more localized to the proximity
of cluster centers (which we verified by examining the individual scatter plots).

The reason why for intrinsically high-dimensional data sets hubs emerge in the
proximity of group centers is related to the phenomenon of distance concentration [61,
85], and explained in detail for Euclidean distance in previous chapters. Since DTW can
be viewed as a generalization of Euclidean distance which aims to reduce the distance
between two time-series compared to Euclidean distance, the evidence from this chap-
ter suggests that the same mechanisms of hub creation are also relevant to time-series
data sets in the context of DTW.

6.4 Hubness and Dimensionality Reduction

In the preceding section it was shown that the skewness of Nk is strongly correlated with
intrinsic dimensionality (dmle) of time-series data. We elaborate further on the interplay
of hubness and intrinsic dimensionality by considering dimensionality reduction (DR)
techniques. The main question is whether DR can alleviate the issue of the skewness of
k-occurrences altogether.

We examined three classic dimensionality-reduction techniques widely used on
time-series data: discrete Fourier transform (DFT) [56], discrete wavelet transform
(DWT) [31], and singular value decomposition (SVD) [56]. Figure 6.2 depicts for sev-
eral real data sets the relationship between the percentage of features maintained by the
DR methods, and SNk

, for k = 10 and Euclidean distance. In addition, the plots show
the behavior of skewness on synthetic vector-space data, where every vector compo-
nent was drawn from an iid uniform distribution in the [0, 1] range (2000 vectors were
generated, and the average SNk

over 20 runs with different random seeds reported).
For real data, observing the plots right to left (from high dimensionality to low)

reveals that SNk
remains relatively constant until a small percentage of features is

reached, after which there is a sudden drop. This means that the distribution of k-
occurrences remains considerably skewed for a wide range of dimensionalities, for
which there exist time series with much higher Nk than the expected value (10). The
point of the sudden drop in the value of SNk

is where the intrinsic dimensionality is
reached, and further dimensionality reduction may incur loss of information. The ob-
served behavior for real data is in contrast with the case of iid uniform random data,
where SNk

steadily reduces with the decreasing number of (randomly) selected features
(DR is not meaningful in this case), because intrinsic and embedding dimensionalities
are equal. These findings indicate that dimensionality reduction may not have a signif-
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Figure 6.2: Skewness of N10 in relation to the percentage of the original number of
features maintained by dimensionality reduction
Slika 6.2: Koeficijent asimetrije N10 u odnosu na procenat originalnog broja atributa
zadržanog pri redukciji dimenzionalnosti

icant effect on the skewness of Nk when the number of features is above the intrinsic
dimensionality, a result that is useful in most practical cases since otherwise loss of
valuable information may occur.

6.5 Impact of Hubness on Time-Series Classification

In this section we move on to determining how the information provided by labels inter-
acts with hubness and intrinsic dimensionality, with the primary motivation of making
the findings useful in the context of nearest-neighbor classification of time series. Sec-
tion 6.5.1 defines the notions of “good” and “bad” k-occurrences based on whether the
labels of neighbors match or not, and explains the mechanisms behind the emergence
of “bad” hubs, that is, points with an unexpectedly high number of nearest-neighbor
relationships with mismatched labels. Section 6.5.2 describes a framework to catego-
rize time-series data sets based on measures of hubness and the distribution of label
mismatches within a data set, allowing one to assess the merits of applying a simple
weighting scheme for the k-NN classifier based on hubness, which is introduced in
Section 6.5.3.

6.5.1 “Good” and “Bad” k-Occurrences

As in Chapter 5, when labels are present we distinguish k-occurrences based on whether
labels of neighbors match. We define the number of “bad” k-occurrences of point x,
BN k(x), as the number of points from D for which x is among the first k nearest
neighbors, and the labels of x and the points in question do not match. Conversely,
GN k(x), the number of “good” k-occurrences of x, is the number of such points
where labels do match. Naturally, for every x ∈ D, Nk(x) = BN k(x) + GN k(x).

To account for labels, we introduce B̃N k, the sum of all “bad” k-occurrences of a
data set normalized by dividing it with

∑
x Nk(x) = kn. Henceforth, we shall also
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refer to this measure as the BN k ratio. The motivation behind the measure is to ex-
press the total amount of “bad” k-occurrences within a data set. Table 6.1 includes
B̃N 10 (9th column).

“Bad” hubs, that is, points with high BN k, are of particular interest to supervised
learning since they affect k-NN classification more severely than other points. To un-
derstand the origins of “bad” hubs in real data, we rely on the notion of the cluster

assumption from semi-supervised learning [33], which roughly states that most pairs of
points in a high density region (cluster) should be of the same class.

To measure the degree to which the cluster assumption is violated in a particular
data set, we refer to the definition of the cluster assumption violation (CAV) coefficient
from Chapter 5. If a is the number of pairs of points which are in different classes but
in the same cluster, and b the number of pairs of points which are in the same class and
cluster, then CAV = a/(a + b), which gives a number in range [0, 1], higher if there
is more violation. To reduce the sensitivity of CAV to the number of clusters (too low
and it will be overly pessimistic, too high and it will be overly optimistic), we select
the number of clusters to be 5 times the number of classes of a particular time-series
data set. As in Section 6.3, we use hierarchical agglomerative clustering with complete
linkage [203].

For all 35 examined time-series data sets, we computed the Spearman correlation
between B̃N 10 and CAV (10th column of Table 6.1), and found it strong (0.74). In
contrast, both B̃N 10 and CAV are not correlated with the skewness of N10 (measured
correlations are 0.01 and −0.07, respectively). The latter fact indicates that high intrin-
sic dimensionality and hubness are not sufficient to induce “bad” hubs. Instead, we can
argue that there are two, mostly independent, factors at work: violation of the cluster
assumption on one hand, and hubness induced by high intrinsic dimensionality on the
other. “Bad” hubs originate from putting the two together; that is, the consequences of
violating the cluster assumption can be more severe in high dimensions than in low di-
mensions, not in terms of the total amount of “bad” k-occurrences, but in terms of their
distribution, since strong hubs are now more prone to “pick up” bad k-occurrences than
non-hub points.

6.5.2 A Framework for Categorizing Time-Series Data Sets

Based on the conclusions of the previous subsection, we will now formulate a frame-
work to categorize time-series data sets into 3 different cases. The examination of the
3 cases will divide the considered 35 time-series data sets into three zones, separated by
horizontal lines in Table 6.1.5 The motivation for using this framework is to help assess
when hubness can play an important role in time-series classification.

A first observation regarding the collection of the data sets in Table 6.1 is that those
contained in Zone 3 (at the bottom of Table 6.1) have extremely low B̃N k (and thus, in

5Zone 1 contains data sets from Car to SonyAIBORobotSurfaceII, Zone 2 from FaceAll to ECGFiveDays,
and Zone 3 from CBF to Plane.
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most cases, the measured CAV) values, which are about one or two orders of magnitude
smaller than the B̃N k values of data sets in other zones. For Zone 3 data sets, the cluster
assumption is hardly violated, that is, they contain an insignificant number of label
mismatches between neighbors.6 Please note that the data sets in Zone 3 have varying
skewness (SNk

) values, some of them being relatively high compared to those in other
zones. This is in agreement with the discussion from Section 6.5.1 because when there
is no violation of the cluster assumption, skewness cannot create “bad” hubs. Therefore,
for data sets in Zone 3, which are practically trivial since the expected error rate will be
close to 0, hubness cannot play a significant role.

The remaining data sets, that is, those with non-negligible B̃N k (and therefore, in
most cases, the measured CAV), can be separated according to their skewness into two
zones. In Zone 1 (at the top of Table 6.1) we placed data sets with relatively higher SNk

values than those in Zone 2 (in the middle of Table 6.1). The separation between the
two zones was made at approximately the middle value of SNk

, because there exists a
noticeable gap between the values of SNk

that in a sense creates two natural clusters
that correspond to the two zones.7 From the discussion in Section 6.5.1 it follows that
the data sets in Zone 1 have the potential to contain “bad” hubs, because they combine
high skewness with cluster assumption violation, that is, the two factors that lead to
the creation of “bad” hubs. Hubness can play a significant role in this case by having
the “bad” hubs bear responsibility for most of the error, because the classification error
is not distributed uniformly. As will be shown in Section 6.6, for data sets in Zone 1,
hubness can be successfully taken into account in order to improve the performance
of k-NN classification. This fact will be demonstrated in Section 6.5.3 by applying a
simple weighting scheme that attempts to reduce the influence of “bad” hubs on the
classification decision.

For the data sets in Zone 2, cluster assumption violation exists. However, the skew-
ness of k-occurrences for these data sets is relatively low. Thus, according to Sec-
tion 6.5.1, the data sets in Zone 2 are not expected to contain “bad” hubs that are strong
enough to be responsible for most of the error that is created by cluster assumption vi-
olation. In this case, the error distributes more uniformly than in the case of Zone 1.
Consequently, hubness is expected to have a less important role in Zone 2.

It is worth understanding further the case of Zone 2, in order to explain the cause
of the non-negligible “badness” (BN k), since it cannot be attributed to hubs. The class
labels of data sets from Zone 2 are distributed in a mixed way that can be visualized as
a checkerboard-like pattern. For example, Figure 6.3 plots two time-series data sets re-
duced down to two dimensions using classical multidimensional scaling (CMDS) [193]:

6We found the CAV measure to be somewhat unstable with respect to the choice of clustering algorithm

and number of clusters. For this reason, we will rely mostly on the B̃N k measure which is strongly correlated
with CAV, but at the same time more stable and more clearly defined.

7In particular, within the two zones, the differences between consecutive values of SNk
are mostly in the

order of the second decimal digit, whereas this difference between SonyAIBORobotSurfaceII and 50Words
is in the order of the first decimal digit. FaceAll is a boundary case that was assigned to the second zone
because its SNk

value is closer to that of 50Words than to that of SonyAIBORobotSurfaceII.
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Figure 6.3: Two time-series data sets reduced by classical MDS
Slika 6.3: Dva skupa vremenskih serija redukovana klasičnim MDS-om

SonyAIBORobotSurface (Figure 6.3(a)), which belongs to Zone 1, and Yoga (Fig-
ure 6.3(b)), which belongs to Zone 2 (for clarity of presentation, both cases contain
2 class labels). It can be seen that class labels in Figure 6.3(b) are considerably more
mixed than in Figure 6.3(a). For a given point in the Yoga data set, this causes the neigh-
bors other than the first to be much more likely to carry different class labels. At the
same time, such behavior is not expected from the majority of points in the SonyAIBO-
RobotSurface data set. In the case that the mixture of class labels is intense among
neighbors, lower values of k for k-NN classification are expected to perform better, and
when the mixture is very high, setting k = 1 can be viewed as the best option.8

To obtain a more quantitative evaluation supporting the aforementioned discussion,
let us define a simple measure based on entropy, as follows. Assuming class labels
in a data set take the values 1, 2, . . . , K , and c ∈ {1, 2, . . . , K}, let pc,k(x) be the
probability of observing class c among the k nearest neighbors of point x, measured
from the data set. We define the k-entropy of point x as

Hk(x) = −
K∑

c=1

pc,k(x) log pc,k(x) ,

where, by standard definition, we assume 0 log 0 = 0. A higher value of k-entropy
for point x indicates a higher degree of mixture of class labels among the k nearest
neighbors of x. We define the k-entropy of a data set, Hk, as the average k-entropy
of all its points. Figure 6.4 plots for increasing k the median values of Hk computed
separately for the 3 examined zones. For data sets in Zone 2 it is evident that Hk steadily
increases with increasing values of k. Thus, for these data sets the k-NN classifier is
expected to deteriorate with increasing k. This suggests that the 1-NN classifier will be

8A more comprehensive explanation of this case is illustrated in [82] (p. 468) through an example of an
“easy” and a “difficult” problem for the k-NN classifier. The difficult data set was synthetically generated
with labels being assigned to points according to regions that form a 3-dimensional checkerboard pattern.



146 6. Hubness and Time Series

Median k -entropy of data sets by zones 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

k

M
e

d
ia

n
 k

-e
n

tr
o

p
y

Zone 1
Zone 2
Zone 3

Figure 6.4: Median k-entropy for increasing values of k, computed over data sets in
Zone 1, Zone 2, and Zone 3
Slika 6.4: Medijan k-entropije za rastuće vrednosti k, izračunate za skupove podataka
u Zoni 1, Zoni 2, i Zoni 3

very competitive in this case and that it will be difficult for a weighting scheme similar
to the one presented in the following section (which examines k > 1) to attain any
improvement.

In summary, this section focused on the categorization of data sets according to the
factors described in Section 6.5.1. The resulting framework allows one to identify a
number of data sets – those in Zone 1 – for which hubness can play an important role
in k-NN classification. This result motivates the development of the weighting scheme
that will be presented in the following section and demonstrate the role of hubness.

6.5.3 Weighting Scheme for k-NN Classification

As explained above, for several data sets the k-NN classifier can be negatively affected
by the presence of “bad” hubs, because they provide erroneous class information to
many other points. To validate this assumption, we will evaluate a simple weighting
scheme. For each point x, we calculate its standardized “bad” hubness score:

hB(x, k) =
BN k(x)− µBNk

σBNk

,

where µBNk
and σBNk

are the mean and standard deviation of BN k, respectively.
During majority voting, when point x participates a k-NN list, its vote is weighted by

wk(x) = exp(−hB(x, k)).
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The effect of the weighting is that it decreases the influence of “bad” hubs on the clas-
sification decision. The k value for wk(x) is naturally set to the k value used by the
k-NN classifier.

Note that the primary motivation for introducing this modification of the k-NN clas-
sifier is not to compete with the state-of-the-art time-series classifiers, but rather to il-
lustrate the significance of the hubness phenomenon for time-series classification, and
describe the circumstances in which hubness can be made useful. A more detailed
examination and comparison of several different weighting schemes is addressed as a
direction for future work.

6.6 Experimental Evaluation

The potential usefulness of hubness for k-NN time-series classification will be demon-
strated in this section through an experimental comparison of weighted k-NN (k-WNN)
described in Section 6.5.3 with regular 1-NN and k-NN classifiers.

6.6.1 The Experimental Setup

All 35 data sets from Table 6.1 are included in the experiments. For data sets of size
200 and larger, we performed 10 runs of 10-fold cross-validation, recording average
error rates of 1-NN, k-WNN, and k-NN (for the later two we examined 2 ≤ k ≤ 10).
On data sets containing less than 200 time series, the classifiers were evaluated through
leave-one-out cross-validation, which is a commonly followed practice for small data
sets. As in previous sections, we consider the DTW distance.

6.6.2 k-NN Classification Results

The rightmost three columns of Table 6.2 show the average error rates of 1-NN, k-WNN,
and k-NN, respectively. Since our primary goal is to provide a simple demonstration
of possible merits of using hubness to improve k-NN time-series classification, we re-
port weighted and unweighted k-NN error rates for the value of k for which k-WNN
exhibited the smallest error. As in Table 6.1, separation between zones 1–3 described
in Section 6.5.2 is signified by horizontal lines.

It can be observed that, as expected from the discussion in Section 6.5.2, in Zone 1
weighted k-NN outperforms 1-NN in the vast majority of cases, while the opposite
is true in Zone 2. The smallest error rates of the three classifiers are highlighted in
boldface.9 Over both zones, weighted k-NN predominantly exhibits smaller error rates
than the regular k-NN, but only in Zone 1 was the benefit of considering hubness large
enough to yield improvement over 1-NN.

9In cases where 10×10-fold cross-validation was used, symbols •/◦ denote statistically significant im-
provement/degradation of error for k-WNN and k-NN with respect to 1-NN, according to the corrected
resampled t-test [139] at significance level 0.1.
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Name n SN10
B̃N 10 Evaluation k 1-NN k-WNN k-NN

Car 120 1.628 0.454 Leave-1-out 2 0.2333 0.1750 0.3083
MALLAT 2400 1.517 0.026 10×10-fold 4 0.0133 0.0113 0.0130
Lighting7 143 1.313 0.403 Leave-1-out 2 0.2797 0.1748 0.2378
SyntheticControl 600 1.056 0.017 10×10-fold 4 0.0080 0.0018 • 0.0018 •
Lighting2 121 0.962 0.244 Leave-1-out 4 0.0992 0.0826 0.1818
SwedishLeaf 1125 0.905 0.271 10×10-fold 5 0.1833 0.1662 0.1802
Haptics 463 0.901 0.620 10×10-fold 10 0.5783 0.5107 • 0.5323 •
SonyAIBORobotSurface 621 0.899 0.054 10×10-fold 2 0.0245 0.0151 • 0.0151 •
StarLightCurves 9236 0.879 0.080 10×10-fold 9 0.0657 0.0478 • 0.0646
Symbols 1020 0.843 0.027 10×10-fold 3 0.0183 0.0177 0.0187
Fish 350 0.838 0.356 10×10-fold 4 0.2014 0.2094 0.1926

ItalyPowerDemand 1096 0.833 0.061 10×10-fold 9 0.0474 0.0355 • 0.0390
SonyAIBORobotSurfaceII 980 0.817 0.069 10×10-fold 2 0.0270 0.0168 • 0.0170 •
FaceAll 2250 0.740 0.073 10×10-fold 2 0.0225 0.0302 ◦ 0.0314 ◦
50Words 905 0.670 0.437 10×10-fold 5 0.2793 0.2959 0.2991 ◦
WordsSynonyms 905 0.670 0.419 10×10-fold 3 0.2656 0.2838 0.2810
Yoga 3300 0.624 0.128 10×10-fold 2 0.0592 0.0651 ◦ 0.0702 ◦
OSULeaf 442 0.598 0.457 10×10-fold 3 0.2923 0.3044 0.3178
Motes 1272 0.523 0.101 10×10-fold 2 0.0448 0.0588 ◦ 0.0645 ◦
ChlorineConcentration 4307 0.501 0.316 10×10-fold 2 0.0030 0.0263 ◦ 0.0241 ◦
Adiac 781 0.383 0.520 10×10-fold 2 0.3343 0.3600 ◦ 0.3599 ◦
GunPoint 200 0.373 0.162 10×10-fold 2 0.0835 0.0865 0.0925
FaceFour 112 0.367 0.151 Leave-1-out 2 0.0536 0.0446 0.0893 ◦
InlineSkate 650 0.350 0.609 10×10-fold 2 0.4508 0.4836 ◦ 0.5282 ◦
MedicalImages 1141 0.322 0.312 10×10-fold 5 0.1959 0.1989 0.2003
DiatomSizeReduction 322 0.299 0.013 10×10-fold 2 0.0037 0.0037 0.0037
Wafer 7164 0.269 0.014 10×10-fold 3 0.0059 0.0073 ◦ 0.0078 ◦
ECG200 200 0.234 0.236 10×10-fold 2 0.1646 0.1622 0.2064 ◦
CinC 1420 0.145 0.079 10×10-fold 3 0.0147 0.0218 ◦ 0.0225 ◦
ECGFiveDays 884 −0.027 0.038 10×10-fold 2 0.0090 0.0077 0.0082
CBF 930 2.393 0.001 10×10-fold 3 0 0 0
TwoPatterns 5000 2.104 0 10×10-fold 2 0 0 0
Trace 200 0.680 0.009 10×10-fold 2 0 0 0
TwoLeadECG 1162 0.320 0.002 10×10-fold 3 0.0009 0.0010 0.0010
Plane 210 −0.040 0.003 10×10-fold 2 0 0 0

Table 6.2: Error rates of 1-NN, weighted k-NN (k-WNN), and k-NN classifiers. Sym-
bols •/◦ denote statistically significant improvement/degradation of error for k-WNN
and k-NN with respect to 1-NN
Tabela 6.2: Srednje greške 1-NN, težinskog k-NN (k-WNN), i k-NN klasifikatora.
Simboli •/◦ označavaju statistički značajno poboljšanje/pogoršanje greške k-WNN i
k-NN u pored̄enju sa 1-NN
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The above observations reinforce the categorization of data sets introduced in Sec-
tion 6.5.2. On one hand, data sets from Zone 2 do not exhibit strong hubness, therefore
the weighting scheme is not particularly successful at reducing the influence of “bad”
hubs since there exist no significant hubs to begin with. On the other hand, as indicated
in Figure 6.4, for data sets in Zone 2 there is a much stronger increase of k-entropy
with successive values of k than for data sets in Zone 1, which suggests that consider-
ing additional neighbors in Zone 2 data sets does not provide correct and useful label
information to the k-NN classifier. For these two reasons, with Zone 2 data sets 1-NN is
expected to be the superior classifier in the majority of cases, which is confirmed by the
results given in Table 6.2. In Zone 1, however, the combination of strong hubness and
mild increase of k-entropy provides the weighted k-NN classifier with enough leverage
to outperform 1-NN.

In addition, we believe that the described categorization offers an interesting byprod-
uct. It helps to better understand why the 1-NN classifier has proven to be effective in
so many cases in the context of time-series classification. For the data sets in Zone 3,
the 1-NN classifier is effective because there is hardly room for improvement by any
other classifier on those data sets. For the data sets in Zone 2, the 1-NN classifier is ef-
fective since the mixture of class labels in a checkerboard-like fashion deteriorates the
performance of classifiers that consider more points beyond the immediate neighbor.

6.6.3 Other Distance Measures and Methods

The findings described in the preceding sections focused primarily on the unconstrained
DTW distance. However, the phenomenon of hubness, which we showed to be a poten-
tially significant factor for time-series classification, is also present when constrained
versions of DTW distance are used, including Euclidean distance. To verify this, Fig-
ure 6.5(a) shows the average value of skewness of k-occurrences (for k = 10) over real
data sets for constrained DTW distance with varying values of the constraint parame-
ter: r = 0% (Euclidean distance), r = 3%, 5%, 10%, and r = 100% (unconstrained
DTW). It can be seen that the average skewness stays relatively constant.10 From this,
and also from observing the SNk

values for individual data sets, we conclude that no
single variant of the (C)DTW distance can be considered, in general terms, particularly
prone to hubness.

On the other hand, over the 35 data sets we did detect a significant difference in the
total amount of “badness” between different distance measures. Figure 6.5(b) plots the
mean BN k ratio (B̃N k) for k = 10 and (C)DTW distance with the same range of the
constraint parameter r as in Figure 6.5(a). It can be seen that Euclidean distance ex-
hibits considerably higher values of the BN k ratio than CDTW distances with r > 0%.
Regarding the preceding discussions in this chapter, this means that the cluster structure
imposed by Euclidean distance tends to correspond with the class labeling more weakly

10We removed from this measurement the 3 highest skewness values from data sets in Zone 3, since as
previously explained these data sets are practically trivial for classification, and their skewness is not of
particular relevance as it does not generate “bad” hubs.
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Figure 6.5: (a) Mean skewness of k-occurrences (k = 10), and (b) mean BN k ratio,
that is, B̃N k (k = 10) over all considered time-series data sets, for varying values of
the CDTW constraint parameter
Slika 6.5: (a) Srednji koeficijent asimetrije k-pojava (k = 10), i (b) srednji BN k odnos,
tj. B̃N k (k = 10) za sve posmatrane skupove vremenskih serija, za različite vrednosti
CDTW parametra ograničenja

than the cluster structures of CDTW with r > 0%. In other words, for time-series data
Euclidean distance tends to imply a higher degree of cluster assumption violation in a
data set. This observation may represent an additional factor for the explanation of the
superiority of DTW over Euclidean distance for time-series classification.

Finally, we implemented the modification of the 1-NN classifier from [89], which
heuristically considers the labels of the second and third neighbor in the case that the
first neighbor misclassifies at least one point from the training set. For the data sets
of interest, that is, in Zone 1, this method tends to improve the performance of 1-NN.
This is expected because the method also aims to correct the classification decisions of
points which frequently misclassify others, despite the fact that the role of hubness was
not recognized in [89]. For these data sets, our method produced significantly smaller
error (at significance level 0.1) than the heuristic method from [89].

6.7 Summary and Future Work

Although time-series data sets tend not to have excessively high intrinsic dimensional-
ity, in this chapter we demonstrated that it can be sufficient to induce hubness: a phe-
nomenon where some points in a data set participate in unexpectedly many k-nearest
neighbor lists of other points. After explaining the origins of hubness and its interaction
with the information provided by labels, we formulated a framework which, based on
hubness and the distribution of label mismatches within a data set, categorizes time-
series data sets in a way that allows one to assess whether hubness can be used to
improve the performance of the k-NN classifier.
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In future work we plan to expand the set of considered distance measures be-
yond dynamic time warping with different values of the constraint parameter, and
explore other state-of-the-art distances such as those which exhibited good perfor-
mance in recent experiments with the 1-NN classifier [47]: longest common subse-
quence (LCSS) [218], edit distance on real sequence (EDR) [37], and edit distance with
real penalty (ERP) [36]. It will be interesting to see whether the hubness phenomenon
appears when these string-based measures are used, as opposed to vector-based ones
like Euclidean and (C)DTW. An additional direction of future work is an examina-
tion of different weighting schemes for k-NN, in order to determine the most suitable
scheme for incorporating hubness information into k-NN classification. Furthermore,
time-series classification by methods other than k-NN may benefit from an investigation
into the influence of hubness.

Another possible direction for future work is a more detailed exploration of hub-
ness in the context of different time-series representation techniques. In this chapter we
briefly considered DFT, DWT, and SVD. Besides these, a more detailed study could
include, for example, piecewise aggregate approximation (PAA) [102], piecewise con-
stant approximation (APCA) [26], and symbolic aggregate approximation (SAX) [127].

Finally, in the time-series domain hubness may be relevant to tasks other than clas-
sification. Interesting avenues for future research include assessing the influence of
hubness on time-series clustering, indexing, and prediction.





Chapter 7

Hubness and Information

Retrieval

The vector space model (VSM) [185] is a popular and widely applied information-
retrieval (IR) model that represents each document as a vector of weighted term counts.
A similarity measure is used to retrieve a list of documents relevant to a query doc-
ument. VSM allows for many variations in the choice of term weights and similar-
ity measure used, with prominent representatives including tfidf weighting and cosine
similarity, as well as more recently proposed schemes Okapi BM25 [178] and pivoted
cosine [196, 198].

Typically, the number of terms used in VSM is large, producing a high-dimensional
vector space (with, for example, tens of thousands of dimensions). This high dimen-
sionality has been identified as the source of several problems, such as susceptibility to
noise and difficulty in capturing the underlying semantic structure. Such problems are
commonly recognized as different aspects of the “curse of dimensionality” and their
amelioration has attracted significant research effort, mainly based on dimensionality-
reduction approaches.

In this chapter, we investigate the hubness aspect of the dimensionality curse, in the
context of the vector space model in information retrieval. To our knowledge, hubness
has not been thoroughly examined in connection to VSM and IR.

Hubness is worth studying in the context of information retrieval because it con-
siderably impacts vector space models by causing hub documents to become obstinate
results, that is, documents included in the search results of a large number of queries
to which they are possibly irrelevant. This problem affects the performance of an IR
system and the experience of its users, who may consistently observe the appearance of
the same irrelevant results even for very different queries.

We commence our investigation in Section 7.1 by demonstrating the emergence of
hubness in the context of IR. Section 7.2 continues with one of our main contributions,
which is the explanation of the origins of the phenomenon, describing that it is mainly
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a consequence of high intrinsic dimensionality of vector-space data and not of other
factors, such as sparsity and skewness of the distribution of term frequencies (caused,
for example, by differences in document lengths [196]). We link hubness with the
behavior of similarity/distance measures in high-dimensional vector spaces and their
concentration, that is, the tendency of all pair-wise similarity/distance values to become
almost equal (see Chapter 3). To ease the presentation of hubness, our discussion first
considers the classical VSM based on tfidf term weighting and cosine similarity, and
then continues by demonstrating its generality on the more advanced variation Okapi
BM25 [178], since hubness is an inherent characteristic of high-dimensional vector
spaces that form the basis of various IR models. Moreover, Section 7.3 explains why
hubness is not easily mitigated by dimensionality-reduction techniques.

Next, in Section 7.4 we proceed to examine how hubness affects IR applications by
causing hubs to become frequently occurring but possibly irrelevant results to a large
number of queries. For this purpose, we investigate the interaction between hubness
and the notion of the cluster hypothesis [212], and propose a similarity adjustment
scheme that takes into account the existence of hubs. The experimental evaluation of the
proposed scheme on real data, in Section 7.4.2, indicates that significant performance
improvements can be obtained through consideration of hubness. Finally, we provide
the conclusions and directions for future work in Section 7.5.

7.1 Observing Hubness in Text Data

This section will demonstrate the existence of the hubness phenomenon, initially on
dense and sparse synthetic data, and then on real text data, focusing on the classical tfidf
weighting scheme and cosine similarity. A more advanced document representation,
Okapi BM25, is discussed in Section 7.4.3.

To measure the existence of hubness, as in previous chapters, let D ⊂ R
d de-

note a set of vectors in a multidimensional vector space, and Nk(x) the number of
k-occurrences of each vector x ∈ D, that is, the number of times x occurs among the
k nearest neighbors of all other vectors in D, with respect to some similarity measure.
Nk(x) can also be viewed as the in-degree of node x in the k-nearest neighbor directed
graph of vectors from D.

In a manner similar to Chapter 4, we begin by considering an illustrative example,
the purpose of which is to demonstrate the existence of hubness in vector-space data,
both dense and sparse, and its dependence on dimensionality. Let us consider a ran-
dom data set of 2000 d-dimensional vectors (that is, points), whose components are
independently drawn from the uniform distribution in range [0, 1], and cosine similarity
between them. Figure 7.1(a–c) shows the observed distribution of Nk (k = 10) with
increasing dimensionality. For d = 3, the distribution of Nk in Figure 7.1(a) is con-
sistent with the binomial distribution. Such behavior of Nk would also be expected if
the graph was generated following a directed version of the Erdős-Rényi (ER) random
graph model [54], where neighbors are randomly chosen instead of coordinates.
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Figure 7.1: Distribution of N10 for cosine similarity on (a–c) iid uniform, and
(d–f) skewed sparse random data with varying dimensionality (in c and f the vertical
axis is in log scale)
Slika 7.1: Distribucija N10 za kosinusnu meru sličnosti na (a–c) iid uniformnim i
(d–f) asimetričnim retkim skupovima slučajnih tačaka različitih dimenzionalnosti (kod
c i f vertikalna osa je u logaritamskoj skali)

With increasing dimensionality, however, Figures 7.1(b) and (c) illustrate that the
distribution of Nk departs for the random graph model and becomes more skewed to the
right, producing vectors (called hubs) with Nk values much higher than the expected
value k. The same behavior can be observed with other values of k and data distri-
butions, and was explored in detail in Chapter 4 for Euclidean distance. The simple
example with dense and uniformly distributed data is helpful to illustrate the connec-
tion between high dimensionality and hubness, since uniformity may not be intuitively
expected to generate hubness for reasons other than high dimensionality. To illustrate
hubness in a setting more reminiscent of text data that have sparsity and skewed dis-
tribution of term frequencies, we randomly generate 2000 vectors with the number of
nonzero values for each coordinate (“term”) being drawn from the Lognormal(5; 1)
distribution (rounded to the nearest integer), and random numbers (drawn uniformly
from [0, 1]) spread accordingly throughout the data matrix. Figures 7.1(d–f) demon-
strate the increase of hubness with increasing dimensionality in this setting.

A commonly applied practice in IR research is to reduce the influence of long docu-
ments (having many nonzero term frequencies and/or high values of term frequencies),
by using various normalization schemes [196] to prevent them from being similar to
many other documents. However, as observed above and as will be analyzed in Sec-
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Figure 7.2: Distribution of N10 for cosine similarity on text data sets with increasing
dimensionality (c has log-scale vertical axis)
Slika 7.2: Distribucija N10 za kosinusnu sličnost, na tekstualnim skupovima podataka
rastuće dimenzionalnosti (c sadrži vertikalnu osu u logaritamskoj skali)

tion 7.2, the high dimensionality that is an inherent characteristic of VSM is the main
cause of hubness, as opposed to other data characteristics, since it emerges even when
such normalization (cosine) is applied to sparse-skewed data, and also in the case of
dense-uniform data where “long documents” are not expected.

Before elaborating on the mechanisms through which hubs form in the context of
cosine similarity, we verify the existence of the phenomenon on real text data sets.
Figure 7.2 shows the distribution of Nk (k = 10) for tfidf term weighting and cosine
similarity on three text data sets selected with the criterion of having large difference
in their dimensionality. Similarly to the synthetic data sets, it can be seen that hubness
tends to become stronger as dimensionality increases, as observed in the longer “tails”
of these distributions.

Table 7.1 summarizes the text data sets examined in this study.1 As in previous
chapters, besides basic statistics such as the number of points (n), dimensionality (d),
and number of classes, the table also includes the skewness of the distribution of N10

(SN10
). The SN10

values in Table 7.1 indicate a high degree of hubness in all data sets.

7.2 Explaining Hubness in Text Data

This section will discuss the reasons behind the emergence of hubness in text data,
by first explaining the mechanisms of hub formation on synthetic data, including data
reminiscent of real text data distributions (Section 7.2.1), and then exploring hubness
in real text data sets (Section 7.2.2).

1The top 19 data sets [79], used in form released by Forman [58], include documents from TREC col-
lections, the OHSUMED collection, Reuters and Los Angeles Times news stories, etc. The dmoz data set
consists of a selection of short Web-page descriptions from 11 top-level categories from the dmoz Open Di-
rectory. The remaining reuters-transcribed and newsgroup data sets are available, for example, from the UCI
Machine Learning Repository (for feasibility of analyzing pairwise distances, we split the 20-newsgroups
data set into two parts). For all data sets, stop words were removed, and stemming was performed using the
Porter stemmer [158]. As will be explained, we focus on data sets containing category labels.
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Data set n d Cls. SN10
SS

N10
CN10

dm
CN10

cm CN10

len1
CN10

lenw B̃N 10 CAV

fbis 2463 2000 17 1.884 2.391 0.083 0.440 0.188 0.219 0.323 0.400
oh0 1003 3182 10 1.933 2.243 0.468 0.626 0.210 0.212 0.295 0.322
oh10 1050 3238 10 1.485 1.868 0.515 0.650 0.185 0.124 0.415 0.552
oh15 913 3100 10 1.337 2.337 0.477 0.624 0.180 0.146 0.410 0.588
oh5 918 3012 10 1.683 2.458 0.473 0.662 0.154 0.124 0.345 0.587
re0 1504 2886 13 1.421 2.048 0.310 0.493 −0.016 −0.021 0.332 0.512
re1 1657 3758 25 1.334 1.940 0.339 0.587 0.075 0.071 0.305 0.385
tr11 414 6429 9 2.957 0.593 0.348 0.658 0.193 0.157 0.257 0.199
tr12 313 5804 8 2.577 0.841 0.364 0.620 0.199 0.180 0.323 0.326
tr21 336 7902 6 5.016 2.852 0.213 0.572 0.369 0.352 0.172 0.176
tr23 204 5832 6 1.184 0.392 0.052 0.503 −0.057 −0.034 0.239 0.281
tr31 927 10128 7 1.843 2.988 0.218 0.448 0.118 0.109 0.132 0.117
tr41 878 7454 10 1.257 1.413 0.377 0.586 0.110 0.092 0.133 0.288
tr45 690 8261 10 1.490 1.060 0.304 0.638 0.077 0.089 0.175 0.203
wap 1560 8460 20 1.998 1.753 0.479 0.598 0.209 0.203 0.364 0.304
la1s 3204 13195 6 1.837 2.277 0.398 0.498 0.161 0.165 0.296 0.570
la2s 3075 12432 6 1.462 1.876 0.419 0.496 0.203 0.207 0.268 0.531
ohscal 11162 11465 10 3.016 5.150 0.223 0.315 0.052 0.077 0.521 0.793
new3s 9558 26832 44 2.795 2.920 0.146 0.424 0.120 0.129 0.338 0.640
reuters-transcribed 201 3029 11 1.165 1.187 0.671 0.537 0.185 0.140 0.642 0.627
dmoz 3918 10690 11 2.212 2.853 0.443 0.433 −0.100 −0.249 0.613 0.866
mini-newsgroups 1999 7827 20 1.980 1.243 0.388 0.603 0.168 0.152 0.524 0.832
20-newsgroups1 9996 19718 20 2.930 3.571 0.187 0.411 0.125 0.133 0.378 0.850
20-newsgroups2 9995 19644 20 2.716 3.424 0.204 0.405 0.127 0.133 0.375 0.868

Table 7.1: Text data sets
Tabela 7.1: Tekstualni skupovi podataka

7.2.1 The Mechanism of Hub Formation

To describe the mechanisms through which hubness emerges, we begin the discussion
by considering again the random data introduced in Section 7.1, that is, the dense data
matrix with iid uniform coordinates, and the sparse data set that simulates skewed term
frequencies. For the same data sets and dimensionalities, Figure 7.3 shows the scatter
plots of N10 against the similarity of each vector to the data-set mean, that is, its center.
In the chart titles, we also give the corresponding Spearman correlations. It can be seen
that, as dimensionality increases, this correlation becomes significantly stronger, to the
point of almost perfect correlation of hubness with the proximity to the data center.

The existence of the described correlation provides the main reason for the forma-
tion of hubs: owing to the well-known property of vector spaces, vectors closer to the
center tend to be closer, on average, to all other vectors. However, this tendency be-
comes amplified as dimensionality increases, making vectors in the proximity to the
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Figure 7.3: Scatter plots of N10(x) (and its Spearman correlation denoted in the chart
titles by CN10

dm ) against the cosine similarity of each vector to the data-set center for
(a–c) iid uniform and (d–f) sparse random data, and various dimensionalities (denoted
as d in chart titles)
Slika 7.3: Grafikoni N10(x) (i Spermanove korelacije označene u naslovima grafikona
sa CN10

dm ) u odnosu na kosinusnu sličnost svakog vektora sa centrom skupa tačaka za
(a–c) iid uniformne i (d–f) retke skupove slučajnih tačaka, i različite dimenzionalnosti
(označene sa d u naslovima grafikona)

data center become closer, in relative terms, to all other vectors, thus substantially rais-
ing their chances of being included in nearest-neighbor lists of other vectors.

To examine further the amplification caused by dimensionality, we compute sepa-
rately for each of the two examined random data settings (dense-uniform and sparse-
random) the distribution, S, of similarities between all vectors in the data set to the
center of the data set. From each data set we select two vectors: x0 is selected to
have similarity value to the data-set center exactly equal to the expected value E(S)
of the computed distribution S (that is, at 0 standard deviations from E(S)), whereas
x2 is selected to have higher similarity to the data-set center, being equal to 2 standard
deviations added to E(S) (we were able to select such vectors with negligible error
compared to the similarities sought). Next, we compute the distributions of similari-
ties of x0 and x2 to all other vectors, and the denote the means of these distributions
µx0

and µx2
, respectively. Figure 7.4 plots separately for the two examined cases of

random data sets, the difference between the two similarity means, normalized (as ex-
plained in next paragraph) by dividing with the standard deviation, denoted σall, of all
pairwise similarities, that is: (µx2

−µx0
)/σall. These figures show that, with increasing
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Figure 7.4: Difference between the normalized means of two distributions of similarity
with a point which has: (1) the expected similarity with the data center, and (2) similar-
ity two standard deviations greater, for (a) uniform, and (b) sparse random data (right)
Slika 7.4: Razlika izmed̄u normalizovanih očekivanih vrednosti dve distribucije
sličnosti, sa tačkama koje imaju: (1) očekivanu sličnost sa centrom skupa podataka i
(2) sličnost dve standardne devijacije veću, za (a) uniformne, i (b) retke skupove slu-
čajnih tačaka

dimensionality, x2, which is more similar to the data center than x0, becomes progres-
sively more similar (in relative terms) to all other vectors, a fact that demonstrates the
aforementioned amplification, providing an empirical analogue to Theorem 9 and the
discussion from Chapter 4, in the context of cosine similarity.

One question that remains is: in high-dimensional spaces, why is it expected to have
some vectors closer to the center and thus become hubs? In Section 3.2 we analyzed
the property of the cosine similarity measure, referred to as concentration, which in this
case states that, as dimensionality tends to infinity, the expectation of pairwise simi-
larities between all vectors tends to become constant, whereas their standard deviation
(denoted above as σall) shrinks to zero. This means that the majority of vectors become
about equally similar to each other, thus to the data center as well. However, high but
finite dimensionalities, typical in IR, will result in a small but non-negligible standard
deviation, which causes the existence of some vectors, that is, the hubs, that are closer
to the center than other vectors. These facts also clarify the aforementioned normaliza-
tion by σall, which comprises a way to account for concentration (shrinkage of σall) and
meaningfully compare µx0

and µx2
across dimensionalities. In the case of cosine sim-

ilarity, this normalization was necessary, as opposed to Euclidean distance discussed
in Chapter 4, where the standard deviation of the distribution of all pairwise distances
(σall) remains asymptotically constant across dimensionalities, making the differences
µx2
− µx0

directly comparable.
Figure 7.5 illustrates the concentration phenomenon on the uniform and sparse ran-

dom data used in this chapter. With respect to the distribution of all pairwise simi-
larities, the plots include, from top to bottom: maximal observed value, mean value
plus one standard deviation, the mean value, mean value minus one standard deviation,
and minimal observed value. The figures illustrate that, with increasing dimensionality,
expectation becomes constant and variance shrinks.
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Figure 7.5: Concentration of cosine for (a) uniform, and (b) sparse random data
Slika 7.5: Koncentracija kosinusa za (a) uniformne, i (b) retke skupove slučajnih tačaka

Finally, we need to examine the relation between hubness and additional character-
istics of text data sets, such sparsity and the skewed distribution of term frequencies in
“long” documents (see Section 7.1). Since Figures 7.1 and 7.3 demonstrate hubness for
both dense and sparse random data sets, sparsity on its own should not be considered
as a key factor. Regarding the skewness in the distribution of term frequencies, we can
consider two cases [196]: (a) more (in number) distinct terms, and (b) higher (in value)
term frequencies. For the sparse data set with d = 2000 dimensions (Figure 7.3(f)) we
measured the correlations of N10 with the number of nonzero simulated “terms” of a
vector and with the total sum of term weights of a vector, and found both to be weak,
0.142 for case (a) and 0.19 for case (b), in comparison with correlation 0.927 (see ti-
tle of Figure 7.3(f)) between N10 and the similarity with the data-set mean, which has
been described as the main factor behind hubness. The weak correlations in cases (a)
and (b), which will also be verified with real data (Section 7.2.2), are expected because
normalization schemes (cosine in this example) are able to reduce the impact of long
documents. What is, thus, important to note is that, even if the correlations of cases
(a) and (b) are completely eliminated with another normalization scheme, the hubness
phenomenon will still be present, since it is primarily caused by the inherent properties
of high-dimensional vector space.

7.2.2 Hub Formation in Real Data

In the previous discussion we have used synthetic data that allow the control of impor-
tant parameters. To verify the findings with real text data, analogously to Chapters 5
and 6, we need to take into account two additional factors: (1) real data sets usually con-
tain dependent attributes, and (2) real data sets are usually clustered, that is, documents
are organized into groups produced by a mixture of distributions instead of originating
from one single distribution.

To examine the first factor (dependent attributes), as in Chapter 5 we adopt the
approach of François et al. [61], used in the context of lp-norm concentration. For
each data set we randomly permute the elements within every attribute. This way,
attributes preserve their individual distributions, but the dependencies between them
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are lost and the intrinsic dimensionality of data sets increases [61]. In Table 7.1 we give
the skewness, denoted SS

N10
, of the modified data. In most cases SS

N10
is considerably

higher than SN10
, implying that hubness depends on the intrinsic rather than embedding

(full) dimensionality of text data.
To examine the second factor (many groups), for every data set we measured:

(i) Spearman correlation, denoted by CN10

dm , of Nk and the similarity with the data-set
center, and (ii) correlation, denoted by CN10

cm , of Nk and the similarity with the closest
group center. Groups are determined using K-means clustering, where the number of
clusters was set to the number of document categories of the data set.2 In most cases,
CN10

cm is much stronger than CN10

dm . Thus, generalizing the conclusion of Section 7.2.1
to the case of real data, hubs are more similar, compared with other vectors, to their
respective cluster centers.

Regarding long documents (see Section 7.2.1), for each data set we computed the
correlation between Nk and the number of nonzero term weights for a document, de-
noted by CN10

len1, and also the correlation of Nk with the sum of term weights of a doc-
ument, denoted by CN10

lenw. The corresponding columns of Table 7.1 signify that these
correlations are weaker or nonexistent (on occasion even negative) compared to the cor-
relation with the proximity to the closest cluster mean (CN10

cm ). The above observations
are in accordance with the conclusions from the end of Section 7.2.1.

7.3 Hubness and Dimensionality Reduction

The attribute-shuffling experiment in Section 7.2.2 suggested that hubness is actually
related more to the intrinsic dimensionality of data. We elaborate further on the inter-
play of hubness and intrinsic dimensionality by considering dimensionality reduction
(DR) techniques. The main question is whether DR can alleviate the issue of hubness
altogether in the text domain.

We examined the singular value decomposition (SVD) dimensionality-reduction
method, which is widely used in IR through latent semantic indexing. Figure 7.6 de-
picts for several real data sets from Table 7.1 the relationship between the percentage
of features (dimensions) maintained by SVD, and the skewness SNk

(k = 10). All
cases exhibit the same behavior: SNk

stays relatively constant until a small percentage
of features is left, after which it suddenly drops. This is the point where the intrinsic
dimensionality is reached, and further reduction may incur loss of information. This ob-
servation indicates that, when the number of maintained features is above the intrinsic
dimensionality, dimensionality reduction cannot significantly alleviate the skewness of
k-occurrences, and thus hubness. This result is useful in most practical cases, because
moving below the intrinsic dimensionality may cause loss of valuable information from
the data.

2We report averages of CN10
cm over 10 runs of K-means clustering with different random seeding, in order

to reduce the effects of chance.
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Figure 7.6: Skewness of N10 against the percentage of features kept by SVD
Slika 7.6: Koeficijent asimetrije N10 u odnosu na procenat broja atributa zadržanih od
strane SVD-a

7.4 Impact of Hubness on Information Retrieval

This section examines the ways that hubness affects VSM with respect to the main
objective of IR, which is to return relevant results for a query document. Section 7.4.1
explores the interaction of hubness with the notion of the cluster hypothesis. Based on
this interaction, Section 7.4.2 proposes a similarity adjustment scheme whose aim is
to show how consideration of hubness can be used to improve the precision of a VSM-
based IR system, considering the classical tfidf weighting scheme and cosine similarity.
Section 7.4.3 discusses how the findings can be generalized to more advanced VSM
weighting schemes.

7.4.1 Hubness and the Cluster Hypothesis

In order to explore the interaction between hubness and the cluster hypothesis, we con-
sider the commonly examined case of documents that belong to categories (for example,
news categories, like sport or finance). However, a similar approach can be followed
for other sources of information about documents, such as indication of their relevance
to a set of predefined queries. In the presence of information about documents in the
form of categories, k-occurrences can be distinguished based on whether category la-
bels of neighbors match. As in previous chapters, we define the number of “bad”

k-occurrences of document vector x ∈ D, denoted BN k(x), as the number of vec-
tors from D for which x is among the first k nearest neighbors and the labels of x and
the vectors in question do not match. Conversely, GN k(x), the number of “good”

k-occurrences of x, is the number of such vectors where labels do match. For every
x ∈ D, Nk(x) = BN k(x) + GN k(x).

We define B̃N k as the sum of all “bad” k-occurrences of a data set normalized by
dividing it with

∑
x Nk(x) = kn. The motivation behind the measure is to express the

total amount of “bad” k-occurrences within a data set. Table 7.1 includes B̃N 10. “Bad”
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hubs, that is, documents with high BN k, are of particular interest to IR, since they affect
the precision of retrieval more severely than other documents by being among the k
nearest neighbors (that is, in the result list) of many other documents with mismatching
categories. To understand the origins of “bad” hubs in real data, we rely on the notion
of the cluster hypothesis [212]. This hypothesis will be approximated by the cluster

assumption from semi-supervised learning [33], which roughly states that most pairs of
vectors in a high density region (cluster) should belong to the same category.

To measure the degree to which the cluster assumption is violated in a particular data
set, we use the definition of the cluster assumption violation (CAV) coefficient from
previous chapters. Let a be the number of pairs of documents which are in different
category but in the same cluster, and b the number of pairs of documents which are
in the same category and cluster. Then, we define CAV = a/(a + b), which gives
a number in range [0, 1], higher if there is more violation. To reduce the sensitivity
of CAV to the number of clusters, we select the number of clusters to be 3 times the
number of categories of a particular data set. As in Section 7.2.2, we use the K-means
clustering algorithm.

For all examined text data sets, we computed the Spearman correlation between
B̃N 10 and CAV, and found it strong (0.844). In contrast, B̃N 10 is not correlated with d
nor with the skewness of N10 (measured correlations are −0.03 and 0.109, respec-
tively). The latter indicates that high intrinsic dimensionality and hubness are not suf-
ficient to induce “bad” hubs. Instead, we can argue that there are two, mostly inde-
pendent, factors at work: violation of the cluster assumption on one hand, and hub-
ness induced by high intrinsic dimensionality on the other. “Bad” hubs originate from
putting the two together; that is, the consequences of violating the cluster assumption
can be more severe in high dimensions than in low dimensions, not in terms of the total
amount of “bad” k-occurrences, but in terms of their distribution, since strong hubs are
now more prone to “pick up” bad k-occurrences than non-hubs.

7.4.2 A Similarity Adjustment Scheme

Based on the aforementioned conclusions about “bad” hubness, in this section we pro-
pose and evaluate a similarity adjustment scheme with the objective to show how its
consideration can be used successfully for improving the precision of a VSM-based IR
system. Our main goal is not to compete with the state-of-the-art methods for improv-
ing the precision and relevance of results obtained using baseline methods, but rather to
demonstrate the practical significance of our findings in IR applications, and the need
to account for hubness. Thus, the elaborate examination of more sophisticated methods
is addressed as a point of future work.

Let D denote a set of documents, and Q a set of queries independent of D. We will
also refer to D as the “training” set, and to Q as the “test” set, and by default compute
Nk, BN k and GN k on D. We adjust the similarity measure used to compare document
vector x ∈ D with query vector q ∈ Q by increasing the similarity in proportion with
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Figure 7.7: Precision at the number of retrieved results m, measured by 10-fold cross-
validation
Slika 7.7: Preciznost po broju vraćenih rezultata m, izmerena 10-fold kros-validacijom

the “goodness” of x (GN k(x)), and reducing it in proportion with the “badness” of x

(BN k(x)), both relative to the total hubness of x (Nk(x)), for a given k:

sima(x,q) = sim(x,q) + sim(x,q)(GN k(x) − BN k(x))/Nk(x) .

The net effect of the adjustment is that strong “bad” hub documents become less similar
to queries, reducing the chances of the document to be included in a list of retrieved
results. To prevent documents from being excluded from retrieval too rigorously, the
adjustment scheme also considers their “good” side and awards the presence of “good”
k-occurrences in an analogous manner.

We experimentally evaluated the improvement gained by the proposed scheme com-
pared to the standard tfidf representation and cosine similarity (all computations involv-
ing hubness use k = 10), through 10-fold cross-validation on data sets from Table 7.1.
First, we focus on the impact of the adjustment scheme on the error introduced to the
retrieval system by the strongest “bad” hubs. Let W p% be the set of the top p% of
documents with highest BN k, as determined from the training set, and let BN test

k (x)
and N test

k (x) be the (“bad”) k-occurrences of document x from the training set, as
determined from similarities with documents from the test set. We define the total
“badness” of the strongest p% of “bad” hubs as

Bp% =

∑
x∈W p% BN test

k (x)∑
x∈W p% N test

k (x)
,
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Data set B
5%
a B

5%
P@10a P@10

fbis 47.73 68.58 72.10 67.59
oh0 49.47 55.93 71.85 70.03
oh10 64.17 70.58 61.97 58.58
oh15 56.21 68.71 62.96 59.19
oh5 51.63 56.68 67.85 64.84
re0 54.77 67.78 69.58 66.41
re1 59.47 69.37 72.04 68.98
tr11 44.86 43.38 74.70 74.06
tr12 65.60 64.15 69.23 67.11
tr21 23.89 27.65 83.70 82.90
tr23 45.03 52.50 75.94 75.60
tr31 44.36 55.50 88.43 86.33
tr41 35.34 49.04 87.81 86.31
tr45 37.40 52.05 84.08 81.88
wap 54.57 60.44 65.18 63.42
la1s 49.01 57.86 72.94 69.89
la2s 52.17 61.67 75.54 72.69
ohscal 66.17 72.38 51.01 47.80
new3s 50.54 65.77 69.00 65.66
reuters-transcribed 68.10 72.34 38.55 36.81
dmoz 69.92 75.37 40.68 38.24
mini-newsgroups 66.22 70.86 49.39 47.16
20-newsgroups1 55.18 63.59 63.89 61.27
20-newsgroups2 57.48 65.09 64.22 61.50

Table 7.2: Retrieval “badness” of 5% of the strongest “bad” hubs (B5%) and precision
at 10 (P@10), with (columns labeled by a) and without similarity adjustment (in %)
Tabela 7.2: “Badness” rezultata ograničen na 5% najjačih “loših” habova (B5%) i pre-

ciznost za 10 (P@10), sa (kolone obeležene znakom a) i bez podešavanja sličnosti (u %)

where normalization with N test
k is done to keep the measure in the [0, 1] range. The Bp%

measure focuses on the contribution of “bad” hubs to erroneous retrieval of documents
which represent false positives.

Table 7.2 shows Bp% on the same p = 5% of “bad” hubs before and after applying
similarity adjustment. It can be seen that for the majority of data sets, the adjustment
scheme greatly reduces the amount of erroneous retrieval caused by “bad” hubs.

To illustrate the improving effect of the adjustment scheme on the precision of re-
trieval, Figure 7.7 plots, for several data sets from Table 7.1, the precision of 10-fold
cross-validation against the varying number (m) of documents retrieved as results.

Moreover, Table 7.2 also shows 10-fold cross-validation precision at 10 retrieved re-
sults, demonstrating the improvement of precision introduced by similarity adjustment
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on all data sets. We verified the statistical significance of improvement of precision
using the t-test at significance level 0.05, on all data sets (except tr11 and tr23). The
motivation for selecting m = 10 results for reporting precision is the common use
of this number by information-retrieval systems. We obtained analogous results with
various other values of m.

7.4.3 Advanced Representations

The issues examined in previous sections relate to characteristics of VSM that are exist-
ing in most of its variations, particularly the high dimensionality. To examine the gen-
erality of our findings, we consider the Okapi BM25 weighting scheme [178], which
consists of separate weightings for terms in documents and terms in queries. The com-
parison between document and query can then be viewed as taking the (unnormalized)
dot-product of the two vectors. We examine the following basic variant of the BM25
weighting. Providing that n is the total number of documents in the collection, df the
term’s document frequency, tf the term frequency, dl the document length (the total
number of terms), and avdl the average document length, term weights of documents
are given by

log
n− df + 0.5

df + 0.5
· (k1 + 1)tf

k1((1 − b) + b dl
avdl

) + tf
,

while the term weights of queries are

(k3 + 1)tf /(k3 + tf ) ,

where k1, b, and k3 are parameters for which we take the default values k1 = 1.2,
b = 0.75, and k3 = 7 [178].

The existence of hubness within the BM25 scheme is illustrated in Figure 7.8, which
plots the distribution of Nk (k = 10) for several real text data sets from Table 7.1 rep-
resented with BM25. Figure 7.9 demonstrates the improvement of precision obtained
through the similarity adjustment scheme described in Section 7.4.2, when BM25 rep-
resentation is considered.

7.5 Summary and Future Work

We have described the tendency, called hubness, of VSM-based models to produce
some documents that are retrieved surprisingly more often than other documents in
a collection. We have shown that the major factor for hubness is the high (intrinsic)
dimensionality of vector spaces used by such models. We described the mechanisms
from which the phenomenon originates, investigated its interaction with dimensionality
reduction, and demonstrated its impact on IR by exploring its relationship with the
cluster hypothesis.

In order to simplify analysis by allowing quantification of the degree of violation of
the cluster hypothesis, in this research we focused on data containing category labels.
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Figure 7.8: Distribution of N10 for real text data sets in the BM25 representation
Slika 7.8: Distribucija N10 za stvarne tekstualne skupove podataka u BM25
reprezentaciji
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Figure 7.9: Precision at the number of retrieved results m, measured by 10-fold cross-
validation, for the BM25 representation
Slika 7.9: Preciznost po broju vraćenih rezultata m, izmerena 10-fold kros-validacijom,
za BM25 reprezentaciju
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In future work we plan to extend our evaluation to larger data collections where rele-
vance judgements are provided in a non-categorical fashion. Also, we will consider in
more detail advanced models like BM25 [178] and pivoted cosine [196]. Finally, the
similarity adjustment scheme described in this chapter was proposed primarily with the
intent of demonstrating that hubness should be considered for the purposes of IR. In
future research we intend to explore other strategies for assessing and mitigating the
influence of (“bad”) hubness in IR.
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Document Representation

and Feature Selection





Chapter 8

Term Weighting for Text

Categorization

The initial motivation for the work presented in this chapter lays in the development a
meta-search engine which uses text categorization (TC) to enhance the presentation of
search results [162, 163]. From the context of this system, we intended to answer the
three questions posed in [138]: (1) what representation to use in documents, (2) how to
deal with the high number of features, and (3) which learning algorithm to use. This
chapter focuses on question one and its interaction with question three, trying (but not
completely succeeding) to avoid question two.

To provide answers to the questions above, we present an extensive experimental
study of bag-of-words document representations, and their impact on the performance
on five classifiers commonly used for text categorization: naïve Bayes, support vec-
tor machines, voted perceptron, k-nearest neighbor, and the C4.5 decision-tree learner.
An unorthodox evaluation methodology is used to measure and compare the effects of
different transformations of input data on each classifier, and to determine their mu-
tual relationships with regards to classification performance. Our initial aim was to use
the results as a guideline for the implementation of the meta-search system described
in [163, 161, 167]. However, many of them ought to be applicable to the general case,
revealing hidden relationships between transformations with respect to each other, and
with respect to feature selection.

Following the discussion of related work in the next section, Section 8.2 outlines
the experimental setup – how data sets were collected, which document representations
were considered, and which classifiers. Section 8.3 presents the results – the repre-
sentations that were found best, and the effects of, and relationships between different
transformations: stemming, normalization, logtf, and idf, together with a discussion on
the observed robustness of some classifiers, as well as data sets, with regards to trans-
forming document representations. The final section summarizes the results presented
in the chapter, and gives guidelines for future work.
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8.1 Related Work

Although the absolute majority of works in TC employ the simple bag-of-words ap-
proach to document representation [68], studies of the impact of its variations on clas-
sification started appearing relatively recently. Leopold and Kindermann [119] experi-
mented with the support vector machine (SVM) classifier with different kernels, term-
frequency transformations, and lemmatization of German. They found that lemmatiza-
tion usually degraded classification performance, and had the additional downside of
great computational complexity, making SVMs capable of avoiding it altogether. Sim-
ilar results were reported for neural networks on French [202]. Another study on the
impact of document representation on one-class SVM [225] showed that, with a careful
choice of representation, classification performance can reach 95% of the performance
of SVM trained on both positive and negative examples. Kibriya et al. [106] compared
the performance of SVM and a variant of the naïve Bayes classifier [176], empha-
sizing the importance of term-frequency and inverse-document-frequency transforma-
tions (see Section 2.1.1) for naïve Bayes. A comprehensive experimental study of term
weighing schemes for text categorization with SVMs was outlined in [116], proposing a
new transformation based on relevance frequencies. Debole and Sebastiani [43] inves-
tigated supervised learning of feature weights, and found that their replacement of the
idf transformation can in some cases lead to significant improvement of classification
performance. Another approach based on statistical confidence intervals is presented
in [199], providing empirical evidence of superiority over the classical tfidf represen-
tation, and the method by Debole and Sebastiani. A bidimensional representation of
documents which uses supervised term weighing was explored in [148]. The impact of
word n-grams on text categorization was studied in [154] and [230]. Fuzzy approaches
to document representation have also been explored, for example, in [177] and [233].

8.2 The Experimental Setup

The Weka machine-learning environment [224] was used to perform all experiments
described in this chapter. The classical measures – accuracy, precision, recall, F1, and
F2 (see Section 2.3.3) – were chosen to evaluate the performance of classifiers on many
variants of the bag-of-words representation of documents (that is, short Web-page de-
scriptions) taken from the dmoz Open Directory. The F2 measure, which gives empha-
sis to recall over precision, is included for reasons similar to those in [137], where false
positives are preferred to false negatives. What this means for categorization of search
results is that it is preferred to overpopulate categories to a certain extent, over leaving
results unclassified. Classification time and training time are also important factors,
since the system needs to be running on a Web server classifying hundreds, possibly
thousands of documents in real-time, and needs to be trained beforehand with as many
examples as possible from the huge dmoz taxonomy.
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Data set / Features Examples

Category Not stem. Stemmed Total Pos. Neg.
Arts 3811 3142 626 300 326
Business 4248 3444 655 317 338
Computers 4293 3479 700 336 364
Games 4276 3551 764 382 382
Health 4460 3617 766 380 386
Home 4425 3583 765 374 391
Recreation 4389 3564 735 365 370
Science 4695 3792 754 379 375
Shopping 4470 3633 729 361 368
Society 4164 3402 675 344 331
Sports 4094 3391 753 380 373

Table 8.1: Extracted dmoz data sets
Tabela 8.1: Skupovi podataka izdvojeni iz dmoz-a

8.2.1 Data Sets

A total of eleven data sets, one for each chosen top-level category, were extracted from
the dmoz collection dated July 2, 2005. The examples are either positive – taken from
the corresponding category, or negative – distributed over all other categories, making
this a binary classification problem. As initial tests showed that many classifiers im-
plemented in Weka had difficulties dealing with imbalanced class distributions, we kept
the positive-negative ratio around 50–50. This is also justified by our preference of false
positives to false negatives.

Since the dmoz hierarchy is large (the content occupies over two gigabytes of RDF
data), we wrote a custom tool dmoz2arff which extracts examples from the dmoz RDF
data in one pass, and offers basic facilities for selection of categories and examples,
moving examples to higher levels, stop-word elimination (with the standard stop-word
list from [184]), and stemming [158]. Table 8.1 summarizes the extracted data sets,
showing the number of features (including the class feature) before and after stemming,
the total number of examples, and the number of positive and negative ones.

When constructing the data sets and choosing the number of examples, care was
taken to keep the number of features below 5000, for two reasons. The first reason
was to give all classifiers an equal chance, because some of them are known not to be
able to handle more than several thousand features, and to do this without using some
explicit form of feature selection (basically, to avoid question two from the beginning
of the chapter). The second reason was the feasibility of running the experiments with
the C4.5 classifier, due to its long training time. However, results from Section 8.3.4 (re-
garding the idf transformation) prompted us to use the simple dimensionality-reduction
method based on term frequencies (TFDR), eliminating features representing the least
frequent terms, at the same time keeping the number of features at around 1000. There-
fore, two bundles of data sets were generated, one with and one without TFDR.
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Not stemmed Stemmed

Not normalized Normalized Not normalized Normalized
01 m-01
idf m-idf
tf norm-tf m-tf m-norm-tf
logtf norm-logtf m-logtf m-norm-logtf
tfidf norm-tfidf m-tfidf m-norm-tfidf
logtfidf norm-logtfidf m-logtfidf m-norm-logtfidf

Table 8.2: Document representations
Tabela 8.2: Reprezentacije dokumenata

8.2.2 Document Representations

The bag-of-words representation, together with all its transformations described in Sec-
tion 2.1.1, was used in the experiments. For notational convenience, the abbrevia-
tions denoting each transformation were appended to the names of data sets, for ex-
ample, Arts-norm-tf refers to the normalized term-frequency representation of the Arts
data set.

All meaningful combinations of the transformations, along with stemming (m),
add up to 20 different variations of document representations, summarized in Table 8.2.
This accounts for a total of 11 · 20 · 2 = 440 different data sets for the experiments.

8.2.3 Classifiers

Five classifiers implemented in Weka are used in this study: ComplementNaiveBayes
(CNB), SMO, VotedPerceptron (VP), IBk, and J48.

CNB [176, 106] (page 38) is an improved version of the NaiveBayesMultinomial
classifier [134], optimized for application to text. Initial tests showed that CNB con-
sistently outperforms its predecessor on our data sets, although not at a statistically
significant level (0.05). SMO [157, 101] (page 37) is an implementation of Platt’s Se-
quential Minimal Optimization algorithm for training SVMs. VP was first introduced
by Freund and Schapire [63] (page 35), and shown to be a simple, yet effective clas-
sifier for high-dimensional data. IBk is a variation of the classical k-nearest neigh-
bor algorithm [4] (page 40), and J48 is based on revision 8 of the C4.5 decision-tree
learner [159] (page 41).

All classifiers were run using their default parameters, with the exception of SMO,
where the option not to normalize training data was chosen. IBk performed rather
erratically during initial testing, with performance varying greatly with different data
sets, choices of k and distance weighing, so in the end we kept k = 1 as it proved
most stable. We were unable to reproduce the state-of-the-art performance achieved
elsewhere [191], but report the results anyway, as some of them may still prove valu-
able. Only in the late phases of experimentation we realized that the Euclidean distance
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measure is generally not suitable to high-dimensional text data sets, like the ones used in
this chapter. Therefore, the bad performance of IBk may be treated as an experimental
verification of this fact in the context of classification.

Although SVMs are generally considered the best classifier for text (especially
when accuracy is concerned), much may depend on the properties of the data set (as was
effectively demonstrated by Gabrilovich and Markovitch [68]), the evaluation mea-
sure that is considered important (we are placing an emphasis on the less commonly
used F2), and the final application of the classifier. For these reasons, all mentioned
classifiers were included and equally treated in the experiments.

8.3 Results

A separate Weka experiment was run for every classifier with the 20 document rep-
resentation data sets, for each of the 11 major categories. Results of all evaluation
measures were averaged over five runs of 4-fold cross-validation, following [57, 68].
Measures were compared between data sets using the corrected resampled t-test [139],
at significance level 0.05, and the number of statistically significant wins and losses of
each document representation added up for every classifier over the 11 categories.

For the sake of future experiments and the implementation of the meta-search sys-
tem, best representations for each classifier were chosen, based on wins–losses values
summed-up over all data sets. The declared best representations were not winners for
all 11 categories, but showed best performance overall. For VP and J48 the choice
was simple: m-logtf appeared among the winners both without and with TFDR. Since
TFDR broke the performance of IBk, m-norm-logtf was declared best in that depart-
ment, since it was the winner without TFDR. As for CNB, m-norm-tf was best without
TFDR, while idf was best with, but by a much smaller margin, therefore m-norm-tf
was chosen. For SMO, the situation was opposite with regards to the idf transforma-
tion: m-norm-tfidf was the winner without TFDR, and m-norm-logtf with, by a bigger
margin, so m-norm-logtf was considered best. Section 8.3.4 explains in more detail the
reasons we decided to stay away from the idf transformation, and Chapter 9 presents a
thorough study on its impact on feature selection and classification.

Table 8.3 shows the wins–losses values of the declared best document representa-
tions for each classifier, without and with TFDR. Binary representations were practi-
cally never among the best, for all data sets, confirming the widespread agreement on
the need for tf-based document representations.

For illustrating the impact of document representations on classification, Tables 8.4
and 8.5 summarize the performance of classifiers on the best representations, and the
improvements over the worst ones, on the Home data set, without and with TFDR,
respectively. Note that the emphasis of the work described in this chapter is not on fine-
tuning the performance of classifiers, even using document representations, as much
as it is on determining the impacts and relationships between different transformations
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CNB SMO VP IBk J48

m-norm-tf m-norm-logtf m-logtf m-norm-logtf m-logtf

Accuracy 41 1 1 37 15 2 119 40 40
Precision 45 1 20 6 29 12 11 −6 −5

Recall 4 1 −4 68 0 0 67 56 57
F1 28 1 0 47 7 0 120 59 52
F2 9 0 −3 71 0 0 78 63 57

Total 127 4 14 229 51 14 395 212 201

Table 8.3: Wins–losses values of best document representations for each classifier, on
data sets without (left columns) and with dimensionality reduction
Tabela 8.3: Pobede–porazi najboljih reprezentacija dokumenata za svaki klasifikator,
na podacima bez (leve kolone) i sa redukcijom broja dimenzija

CNB SMO VP IBk J48

Accuracy 82.56 (5.26) 83.19 (1.67) 78.38 (5.12) 74.93 (21.96) 71.77 (3.64)
Precision 81.24 (8.66) 85.67 (3.86) 80.45 (7.85) 71.32 (14.32) 90.24 (1.60)

Recall 83.91 (1.81) 78.93 (3.80) 74.06 (0.96) 81.66 (45.20) 47.59 (10.59)
F1 82.48 (3.64) 82.07 (2.17) 77.02 (4.23) 76.07 (33.90) 62.12 (9.09)
F2 83.31 (2.19) 80.14 (3.30) 75.20 (2.16) 79.31 (39.72) 52.48 (10.41)

Table 8.4: Performance of classification (in %) using the best document
representations on the Home data set, without dimensionality reduction,
together with improvements over the worst representations (statistically
significant ones are in boldface)
Tabela 8.4: Performanse klasifikacije (u procentima) za najbolje reprezen-
tacije dokumenata na skupu podataka Home, bez redukcije broja dimenzi-
ja, zajedno sa poboljšanjima u odnosu na najgore reprezentacije (statistički
značajna poboljšanja označena su boldom)

(stemming, normalization, logtf, idf) and dimensionality reduction, with regards to each
classifier. This is the prevailing subject of the remainder of this section.

8.3.1 Effects of Stemming

The effects of stemming on classification performance were measured by adding-up
the wins–losses values for stemmed and nonstemmed data sets, and examining their
difference, depicted graphically in Figure 8.1. It can be seen that stemming improves
almost all evaluation measures, both without and with TFDR. With TFDR, the effect
of stemming is generally not as strong, which is understandable because its impact
as a dimensionality-reduction method is reduced. CNB is then practically unaffected,
only SMO exhibits an increased tendency towards being improved. Overall, J48 is
especially sensitive to stemming, which can be explained by its merging of words into
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CNB SMO VP J48

Accuracy 85.86 (1.12) 82.80 (4.60) 79.29 (4.18) 71.49 (3.15)
Precision 86.48 (1.78) 83.77 (4.79) 81.10 (6.40) 90.21 (1.48)

Recall 84.39 (1.07) 80.64 (5.72) 75.45 (2.24) 47.43 (9.84)
F1 85.35 (1.04) 82.07 (4.88) 78.08 (3.57) 61.98 (8.40)
F2 84.75 (0.67) 81.19 (4.96) 76.46 (2.24) 52.33 (9.66)

Table 8.5: Performance of classification (in %) using the best document
representations on the Home data set, with dimensionality reduction, to-
gether with improvements over the worst representations (statistically sig-
nificant ones are in boldface)
Tabela 8.5: Performanse klasifikacije (u procentima) za najbolje reprezen-
tacije dokumenatana skupu podataka Home, sa redukcijom broja dimenzi-
ja, zajedno sa poboljšanjima u odnosu na najgore reprezentacije (statistički
značajna poboljšanja označena su boldom)
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Figure 8.1: Effects of stemming without (a) and with dimensionality reduction (b)
Slika 8.1: Efekti stemming-a bez (a) i sa redukcijom broja dimenzija (b)

more discriminative features, suiting the algorithm’s feature-selection method when
constructing the decision tree.

To investigate the relationships between stemming and other transformations, a
chart was generated for each transformation, measuring the effect of stemming on rep-
resentations with and without the transformation applied. Figure 8.2 shows the effect
of stemming on non-normalized and normalized data, without TFDR. It can be noted
that normalized representations are affected by stemming more strongly (for the better).
The same holds with TFDR applied (charts not shown).

The logtf transformation exhibited no influence on the impact of stemming, regard-
less of TFDR. The corresponding charts are only scaled-down versions of Figure 8.1,
and are not shown.

Applying the idf transformation to tf, without TFDR, made no difference in stem-
ming performance, except for greater improvements on IBk. With TFDR the situation
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Figure 8.2: Effects of stemming on non-normalized (a) and normalized
data (b), without dimensionality reduction
Slika 8.2: Efekti stemming-a na ne-normalizovanim (a) i normalizovanim
podacima (b), bez redukcije broja dimenzija

was a little different: application of idf led to a drop in the effect on accuracy and pre-
cision of ComplementNaiveBayes, and to a rise of the accuracy of the SMO classifier,
as can be seen in Figure 8.3.

The above analysis confirms the common view of stemming as a method for im-
proving classification performance for English. However, this may not be the case for
other languages, for instance German [119] and French [202].

8.3.2 Effects of Normalization

The chart in Figure 8.4 shows that normalization tends to improve classification perfor-
mance in a majority of cases. Without TFDR, VP was virtually unaffected, CNB and
SMO were improved on all counts but recall (and consequently F2), while the biggest
improvement was on IBk, which was anticipated since normalization assisted the com-
parison of document vectors. J48 was the only classifier whose performance worsened
with normalization. Apparently, J48 found it tougher to find appropriate numeric inter-
vals within the normalized weights, for branching the decision tree. With TFDR, CNB
joined VP in its insensitivity, while SMO witnessed a big boost in performance when
data was normalized.

No significant interaction between normalization and stemming was revealed, only
that stemmed J48 was more strongly worsened by normalization. It appears that nor-
malization misleads J48 from the discriminative features introduced by stemming.

Normalization and the logtf transformation exhibited no notable relationship, while
with idf transformed data, normalization had stronger influence on classification. After
dimensionality reduction, this tendency was especially noticeable with the improvement
of the precision of SMO (Figure 8.5). This can be explained by the fact that idf severely
worsens the performance of SMO after TFDR (see Section 8.3.4), and normalization
compensated somewhat for this. This compensating effect of one transformation on
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Figure 8.3: Effects of stemming on data without (a) and with the idf trans-
formation applied to tf (b), with dimensionality reduction
Slika 8.3: Efekti stemming-a na podacima bez (a) i sa idf transformacijom
primenjenom na tf (b), sa redukcijom broja dimenzija
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Figure 8.4: Effects of normalization without (a) and with dimensionality
reduction (b)
Slika 8.4: Efekti normalizacije bez (a) i sa redukcijom broja dimenzija (b)

the performance-degrading influences of another was found to be quite common in all
experiments conducted in this chapter.

It is important to emphasize that the data sets used in these experiments consist of
short documents, and therefore normalization does not have as strong an impact as it
would have if the differences in document lengths were more drastic. For this reason,
the conclusions above may not hold for the general case, for which a further, more
comprehensive study is needed.

8.3.3 Effects of the logtf Transformation

As can be seen in Figure 8.6, the logtf transformation causes mostly mild improvements
of classification. With TFDR, improvements are greater on SMO, while the impact on
other classifiers is weaker.
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Figure 8.5: Effects of normalization on data without (a) and with the idf
transformation applied to tf (b), with dimensionality reduction
Slika 8.5: Efekti normalizacije na podacima bez (a) i sa idf transformaci-
jom primenjenom na tf (b), sa redukcijom broja dimenzija
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Figure 8.6: Effects of the logtf transformation without (a) and with dimensionality
reduction (b)
Slika 8.6: Efekti logtf transformacije bez (a) i sa redukcijom broja dimenzija (b)

Figure 8.7 shows that logtf has a much better impact on CNB when idf is also ap-
plied, without TFDR. This is similar to the compensating effect of normalization on idf
with the SMO classifier from the previous section. Relations change quite dramatically
when TFDR is applied (Figure 8.8), but the effect on SMO is again analogous to the
previous section. The improvements on CNB are especially significant, meaning that
logtf and idf work together on improving classification performance.

Without TFDR, the interaction of logtf and normalization varied across classifiers:
logtf improved CNB and IBk on normalized data, while the others were improved with-
out normalization. With TFDR, the chart looks very much like the left-right reverse of
Figure 8.8 – with logtf having a weaker positive effect on normalized data, especially
for CNB and SMO, which were already improved by normalization.

Understandably, the logtf transformation has a stronger positive impact on non-
stemmed data, regardless of dimensionality reduction, with the exception of VP which
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Figure 8.7: Effects of the logtf transformation on data without (a) and with
the idf transformation applied to tf (b), without dimensionality reduction
Slika 8.7: Efekti logtf transformacije na podacima bez (a) i sa idf transforma-
cijom primenjenom na tf (b), bez redukcije broja dimenzija

exhibited no variations. This is in line with the witnessed improvements that stemming
introduces on its own, and the already noted compensation phenomenon.

8.3.4 Effects of the idf Transformation

Applying the idf transformation to data turned out to have the richest repertoire of
effects, from significant improvement, to severe degradation of classification perfor-
mance. Figure 8.9(a) illustrates how idf drags down the performance of all classifiers
except SMO, without TFDR. It was for this reason we introduced TFDR in the first
place, being aware that our data had many features which were present in only a few
documents. We expected idf to improve, or at least degrade to a lesser extent the per-
formance of classification. That did happen, as Figure 8.9(b) shows, for all classifiers
except SMO, whose performance was drastically degraded! The simple idf document
representation rose from being one of the worst, to one of the best representations of
documents, for all classifiers but SMO.

No significant correlation was detected by applying idf to stemmed and nonstem-
med data, however plenty of different effects were noticeable with regards to normal-
ization. Without TFDR (Figure 8.10), a stronger worsening effect on non-normalized
data was exhibited with CNB, VP, and IBk, while for SMO normalization dampened
idf’s improvement of recall, but overturned the degradation of accuracy and precision.
With TFDR, the picture is quite different (Figure 8.11): normalization improved the ef-
fects on CNB and VP, with SMO witnessing a partial improvement on precision, while
J48 remained virtually intact.

The impact of idf on (non-)logtfed data sets showed no big differences – trends
remained the same as in Figure 8.9, perhaps a little stronger with logtf applied.

The above analysis shows that one needs to be careful when including the idf trans-
formation in the representation of documents. Removing infrequent features is an im-



182 8. Term Weighting for Text Categorization

CNB               SMO               VP                                     J48
-40

-20

0

20

40

60

80

100

120

Accuracy Precision Recall F1 F2

CNB               SMO               VP                                     J48
-40

-20

0

20

40

60

80

100

120

Accuracy Precision Recall F1 F2

(a) (b)

Figure 8.8: Effects of the logtf transformation on data without (a) and with
the idf transformation applied to tf (b), with dimensionality reduction
Slika 8.8: Efekti logtf transformacije na podacima bez (a) i sa idf transfor-
macijom primenjenom na tf (b), sa redukcijom broja dimenzija
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Figure 8.9: Effects of idf applied to tf without (a) and with dimensionality reduction (b)
Slika 8.9: Efekti idf-a primenjenog na tf bez (a) i sa redukcijom broja dimenzija (b)

portant prerequisite to its application, since idf assigns them often unrealistic impor-
tance, but that may not be enough, as was proved by the severe degradation of SMO’s
performance.

8.3.5 Robustness

An interesting phenomenon observed in the experiments is the apparent insensitivity
of some classifiers to document representations, which we will refer to as robustness.
The “Total” row of Table 8.3 provides a hint, with the winning representation for VP
showing the lowest number of wins–losses overall, especially with regards to recall
and F2, as did CNB with, and SMO without TFDR (although the representations were
not exactly optimal for those cases). A better indicator is the summed-up number of
wins (the number of losses is the same) for each classifier, over all data sets, document
representations and evaluation measures, shown in the Total row of Table 8.6, which
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Figure 8.10: Effects of idf applied to tf on non-normalized (a) and nor-
malized data (b), without dimensionality reduction
Slika 8.10: Efekti idf-a primenjenog na tf, na ne-normalizovanim (a) i
normalizovanim podacima (b), bez redukcije broja dimenzija
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Figure 8.11: Effects of idf applied to tf on non-normalized (a) and nor-
malized data (b), with dimensionality reduction
Slika 8.11: Efekti idf-a primenjenog na tf, na ne-normalizovanim (a) i
normalizovanim podacima (b), sa redukcijom broja dimenzija
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CNB SMO VP IBk J48 Total

Accuracy 265 23 46 277 67 9 1155 336 321 1869 1785
Precision 355 79 262 465 124 34 494 64 56 1299 1128

Recall 121 5 234 626 0 0 929 468 486 1752 2046
F1 178 14 35 297 21 2 1140 477 437 1851 1890
F2 83 2 152 535 2 0 837 568 489 1642 1863

Total 1002 123 729 2200 214 45 4555 1913 1789 8413 8712

Table 8.6: Total number of wins (=losses) of all document representa-
tions, for each classifier and evaluation measure, on data sets without (left
columns) and with TFDR. The right Total column includes the left IBk
column in the sum, to enable comparison of the number of wins without
and with TFDR
Tabela 8.6: Ukupan broj pobeda (=poraza) svih reprezentacija dokume-
nata, za svaki klasifikator i meru, na skupovima podataka bez (leve kolone)
i sa TFDR. Desna kolona „Total“ uključuje levu kolonu „IBk“ u sumi, da
bi se omogućilo pored̄enje broja pobeda bez i sa TFDR

confirms the above observation. When examining the partial sums for each evaluation
measure (the Total column), precision shows the lowest variation with regards to docu-
ment representation. However, every classifier exhibits its lowest sensitivity at different
measures: CNB and VP at recall and F2, SMO at accuracy and F1, IBk and J48 at preci-
sion. This correlates with the lowest improvement rates exemplified on the Home data
set in Tables 8.4 and 8.5.

Robustness regarding document representations was also observed on data sets. For
example, the total number of wins for all document representations, over all classifiers
and measures, for the Computers data set is 167, while for Games the number is 1101
(without TFDR; with TFDR the numbers are almost the same). This may be due to a
presence of more discriminating features in the Computers data set (that is, features that
are better correlated with the class feature), or a combination of that and other factors,
and calls for a further investigation towards developing a simple, theoretical criteria
for determining the robustness and, going further, a best document representation for a
particular data set.

8.3.6 Training and Classification Speed

Since the experiments were performed on different computers and under different cir-
cumstances within one computer (that is, processes running in the background), no
exact empirical quantification of the speed of different classifiers can be given. Nev-
ertheless, our general impressions of both training and classification speeds agree with
wide-spread opinions. In the following characterization the operator > will be used to
denote the relation “faster than,” and≫ for “an order of magnitude faster than.”
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For training speed, the observed relations are:

CNB, IBk≫ VP > SMO≫ J48 .

Classification speed yields somewhat different relations:

CNB, J48≫ SMO > VP≫ IBk .

It can be seen that CNB is among the best at both speeds, while IBk and J48 occupy op-
posite extremes, which is understandable considering the principles of their functioning
described in Section 2.3.1.

8.4 Summary and Future Work

By using transformations in bag-of-words document representations there is, essen-
tially, no new information added to a data set which is not already there (except for the
transition from 01 to tf representations). The general-purpose classification algorithms,
however, are unable to derive such information without assistance, which is understand-
able because they are not aware of the exact nature of the data being processed. It is
therefore expected of transformations to have a significant effect on classification per-
formance, which was experimentally demonstrated at the beginning of Section 8.3. The
fact that this issue is simply ignored by many studies and applications of text classifica-
tion is somewhat striking.

Besides helping to determine a best representation for each classifier, the experi-
ments revealed the individual effects of transformations on different evaluation mea-
sures of classification performance, and some of their relationships. Stemming gen-
erally improved classification, partly because of its role as a dimensionality-reduction
method. It had an exceptionally strong improving impact on J48, which can be ex-
plained by its merging of words into more discriminative features, suiting the algo-
rithm’s feature-selection method when constructing the decision tree. Normalization
enhanced CNB, SMO, and especially IBk, leaving VP practically unaffected and wors-
ening the performance of J48. Although dmoz data consists of short documents, nor-
malization did have a significant impact, but no definite conclusions can be drawn for
the general case. The logtf transformation had mostly a mild improving impact, ex-
cept on SMO with TFDR, which exhibited stronger improvement. SMO is known to
work well with small numeric values, which explains its sensitivity to normalization and
logtf. The situation with idf was trickier, with the effects depending strongly on dimen-
sionality reduction for CNB and SMO, but in opposite directions: CNB was degraded
by idf without TFDR, and improved with TFDR; for SMO it was vice versa.

The most common form of relationship between transformations that was noticed
were the compensating effects of one transformation on the performance degrading im-
pact of another (for example, normalization with idf on SMO, logtf with idf on CNB
and SMO). The logtf and idf transformations seemed to work together on improving
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CNB after TFDR. The impact of idf on normalization was most complex, with great
variation in the effects on different evaluation measures. Note that the method for
determining relations between transformations appeared not to be commutative – for
instance, the effects of normalization on idf transformed data and of idf on normalized
data are not the same. Some relationships can be missed when looking only one way.

The comments above refer to the general case of performance measuring. Some
transformations (especially idf) may improve one measure, at the same time degrading
another. Often, the preferred evaluation measure, chosen with the application of the
classifier in mind, will need to be monitored when applying the presented results. In
our case, for applying classification to search results, the F2 measure is most important.

Robustness regarding document representations, which applies both to classifiers
and data sets, is an interesting area for further theoretical investigations – exploring
possibilities for developing simple tests for determining the robustness, interactions
with particular transformations and, ultimately, a best document representation for a
particular classifier and/or data set, without extensive experimentation. Such tests may
be useful in situations where detailed fine-tuning of term weights is not feasible.

The main difficulty with comprehensive text-categorization experiments is sheer
size. Roughly speaking, factors such as data sets, document representations, dimen-
sionality-reduction methods, reduction rates, classifiers, and evaluation measures, all
have their counts multiplied, leading to a combinatorial explosion which is hard to
handle. We tackled this problem by excluding detailed experimentation with dimen-
sionality reduction, and using dmoz as the only source of data. Therefore, no definite
truths, but only pointers can be derived from the described experience. A more compre-
hensive experiment, featuring other common corpora (see page 48), longer documents,
and dimensionality-reduction methods is called for to shed more light on the impacts
and relationships of all the above mentioned factors.

In the next phase, however, we have conducted experiments with feature-selection
methods on dmoz data, with the document representations that were determined best
for each classifier, before applying the winning combination to categorization of search
results. Experiences with this batch of experiments are the subject of the next chapter.



Chapter 9

Term Weighting and Feature

Selection

Many studies in text categorization (TC) analyzed the interactions between feature-
selection (FS) methods, reduction rates, and classifiers, on a great variety of corpora.
However, many of them completely neglected the issue of document representation,
fixing one particular representation and deriving general conclusions from performed
experiments. In this study, different document representations will be used – each clas-
sifier will be trained and tested employing the document representation that was found
most suitable in the previous chapter.

Chapter 8 demonstrated that there can be statistically significant differences be-
tween document representations for every considered classifier with at least one of the
standard performance measures, and that feature selection can alter those differences,
sometimes beyond recognition. The emphasis of that study, however, was on deter-
mining the relationships between different transformations of the bag-of-words repre-
sentation, including stemming, normalization of weights, tf, idf, and logtf, that is, on
determining their behavior when used in meaningful combinations.

Figure 9.1 (reproducing Figure 8.9 for convenience) depicts the experimentally
measured effect of the idf transformation, when included in the document represen-
tation. The charts show the difference between the added up wins–losses values of
representations including and not including idf. Figure 9.1(a) depicts the wins–losses
differences without any kind of dimensionality reduction, while Figure 9.1(b) shows
the values when only around 1000 most frequent terms are retained. There is a clear
discrepancy between the effects of idf on CNB and SMO: while it degrades the perfor-
mance of CNB and improves SMO without dimensionality reduction, with dimension-
ality reduction the result was completely opposite! This struck us as counterintuitive
– discarding least frequent terms meant discarding terms with a high idf score, which
should either have improved or degraded classification performance, but not both. Im-
provement would have happened in case the less frequent terms were not discriminative
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Figure 9.1: Effects of idf applied to tf without (a) and with dimensionality reduction (b)
Slika 9.1: Efekti idf-a primenjenog na tf bez (a) i sa redukcijom broja dimenzija (b)

(correlated with the class feature) and idf was giving them unrealistically high weight,
while degradation would have taken place if such terms were highly discriminative (this
depending on the actual data sets). Thus an interesting question was raised: do CNB
and SMO function at such different levels that they were able to capture completely
different notions of term frequencies and weights?

The initial motivation for the work that will be presented in this chapter was to de-
termine the best feature-selection method, reduction rate, and classifier, in the context
of dmoz Open Directory Web-page descriptions. The winning combination was used
for classification of search results by the system presented in [163, 161, 167]. For this
reason, Section 9.2.1 describes experimentally obtained rankings of feature-selection
methods and reduction rates. Section 9.2.2 then presents a study motivated by the ques-
tions raised above, concentrating on the effects that transformations of the bag-of-words
representation produce on several commonly used feature-selection methods. Besides
considering more methods, both studies will take into account a much wider array of
reduction rates than the study described in the previous chapter. Since the data sets used
in that study were rather small in order to avoid issues of dimensionality reduction, this
study will use bigger, more realistic data sets also extracted from the dmoz taxonomy.

The next section introduces the experimental setup: used data sets, document rep-
resentations, feature-selection methods and classifiers. Section 9.2 describes the most
interesting findings about the rankings of FS methods, and the interactions between
the idf transformation, feature-selection methods, and reduction rates. The last section
gives some concluding remarks and guidelines for possible future work.

9.1 The Experimental Setup

As in Chapter 8, the Weka machine-learning environment [224] was used as the plat-
form for performing all experiments in this chapter. Classification performance was
measured by the same standard metrics: accuracy, precision, recall, F1, and F2.
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Data set Features Examples

Total Pos. Neg.
Arts 14144 6261 3002 3259
Computers 15152 7064 3390 3674
Sports 14784 7694 3881 3813
Arts/Music 13968 8038 4069 3969
Games/Roleplaying 12530 8948 4574 4374
Science/Physics 10558 4973 2519 2454

Table 9.1: Extracted dmoz data sets
Tabela 9.1: Skupovi podataka izdvojeni iz dmoz-a

9.1.1 Data Sets

Initially in Chapter 8, we restricted the domain of experimentation to 11 top-level cat-
egories of dmoz which were considered suitable for the task of sorting search results,
namely Arts, Business, Computers, Games, Health, Home, Recreation, Science, Shop-
ping, Society, and Sports. For the purposes of this study, six two-class data sets, sum-
marized in Table 9.1, were extracted from the dmoz data. The table shows the number of
features (not including the class feature) of each data set, the total number of examples
(documents), and the number of positive and negative ones. Every data set corresponds
to one dmoz topic from which positive examples are taken, while the negative ones are
chosen in a stratified fashion from all other topics at the same level of the hierarchy,
within a common parent topic. Thus, for each of the chosen first-level categories (Arts,
Computers, Sports) the negative examples are extracted from all leftover dmoz data,
while for the second-level topics (Music, Roleplaying, Physics), negative examples are
restricted to their first-level parents (Arts, Games, and Science, respectively). As before,
all texts were preprocessed by eliminating stop words using the standard stop-word list
from [184]. Since best document representations that were determined in Chapter 8 all
included stemming, the Porter Stemmer [158] was applied to every data set.

9.1.2 Document Representations

For each data set, the variations of the bag-of-words representation which were con-
sidered best for at least one classifier were generated – m-norm-tf, m-norm-logtf, and
m-logtf. Also, in order to study the interaction between the idf transformation and
feature selection (Section 9.2.2), m-norm-tfidf was also computed.

9.1.3 Feature Selection

The examined feature-selection methods are more-less well known and widely used in
TC: chi-square (CHI), information gain (IG), gain ratio (GR), ReliefF (RF) and sym-
metrical uncertainty (SU), and were all described in Section 2.8.
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In the experiments, the performance of classification was measured on data sets
consisting of the top 100, 500, 1000, 3000, 5000, 7000, and 10000 features selected by
each method, and on data sets with all features. The simple feature-selection method
from our previous study in Chapter 8, TFDR, which discards least frequent features, was
not used. The reason was the difficulty to follow the same reduction rates on different
data sets without randomly discarding features with same frequencies of appearance,
which would have compromised the validity of observations.

9.1.4 Classifiers

The same classifiers implemented in Weka that were used in Chapter 8 were employed
in this study: ComplementNaiveBayes (CNB), SMO, VotedPerceptron (VP), IBk, and
J48 (see Section 8.2.3).

As in Chapter 8, experiments were carried out on each data set with a particular docu-
ment representation, FS method and number of features, and classifier, in five runs of
4-fold cross-validation. Due to the slow training time of J48, its results were generated
only for data sets consisting of 100, 500, and 1000 features. Values of evaluation mea-
sures were again compared using the corrected resampled t-test [139] implemented in
Weka, at significance level 0.05, and averaged over runs and folds for reporting.

9.2 Results

9.2.1 Rankings of Feature-Selection Methods and Reduction Rates

Table 9.2 shows the top five combinations of feature-selection methods and reduction
rates measured by accuracy, precision, recall, F1, and F2, respectively. The wins–losses
(WL) values are summed-up over all data sets, while the actual values of performance
measures are averaged. Note that the tables are sorted in order of wins–losses, which
does not necessarily correspond to the averaged measure values. We chose wins–losses
as the primary indicator of performance because it already dominates all discussion of
the experimental results presented in this part of the dissertation.

It can be seen from the tables that different classifiers are best performers when
different measures are considered. CNB and SMO are best at accuracy and the F1

measure, VP and IBk are ahead of the field in precision, and CNB alone is the clear
winner at F2, and especially recall, with 98.2% for GR at 100 selected features.

Also, it is evident that some measures produce rankings that are not very different
from one another. Tables for F1 and F2 give quite similar rankings, which may have
been expected, but so do accuracy and F1, suggesting that these measures have some
common properties.

Considering feature-selection methods, the tables indicate that CHI, IG, and SU
tend to “stick together,” with similar performance at same reduction rates, while GR
sometimes “breaks away” from the pack, although it is based on the same theoretical
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CNB SMO VP IBk J48

m-norm-tf m-norm-logtf m-logtf m-norm-logtf m-logtf

FS WL acc. FS WL acc. FS WL acc. FS WL acc. FS WL acc.
all 133 89.4 chi1000 169 90.1 chi1000 144 88.6 gr500 203 84.4 chi500 34 83.3
chi10000 113 89.2 ig1000 168 90.1 su1000 140 88.6 su100 172 80.5 su500 33 83.4
ig10000 113 89.1 su1000 167 90.1 ig1000 134 88.5 gr100 171 81.2 ig500 33 83.3
gr10000 112 89.1 gr1000 161 90.0 su500 117 88.2 ig100 166 79.8 ig1000 31 83.3
ig3000 93 88.9 gr3000 129 89.6 su3000 116 88.2 chi100 153 79.1 su1000 31 83.3

FS WL pr. FS WL pr. FS WL pr. FS WL pr. FS WL pr.
ig7000 158 88.9 ig1000 122 92.2 gr500 203 93.6 ig7000 146 94.2 gr500 50 87.7
su7000 158 88.9 su1000 120 92.2 gr1000 179 91.1 su7000 146 94.2 gr1000 48 89.0
chi7000 158 88.9 gr1000 120 92.2 gr100 130 89.9 gr7000 146 94.2 gr100 47 87.8
gr7000 157 88.9 chi1000 118 92.2 chi1000 70 89.4 chi7000 146 94.2 su100 7 87.1
ig5000 148 88.7 gr500 90 90.4 ig1000 68 89.4 gr100 93 89.4 ig100 2 86.9

FS WL re. FS WL re. FS WL re. FS WL re. FS WL re.
gr100 209 98.2 all 167 88.0 su1000 98 87.4 gr500 191 80.9 su500 33 78.8
gr500 187 95.9 chi1000 133 87.3 chi1000 97 87.4 su100 155 74.4 ig1000 32 78.8
all 134 92.7 ig1000 131 87.3 ig1000 92 87.3 ig100 153 74.1 su1000 32 78.8
gr1000 117 92.6 gr1000 131 87.2 su3000 86 87.0 chi100 138 73.6 chi500 32 78.8
su1000 117 92.6 su1000 130 87.3 ig3000 86 86.9 su500 126 72.9 ig500 31 78.8

FS WL F1 FS WL F1 FS WL F1 FS WL F1 FS WL F1

all 162 89.6 chi1000 169 89.7 su1000 145 88.4 gr500 204 83.6 su500 38 82.4
chi10000 121 89.2 gr1000 166 89.6 chi1000 144 88.4 su100 175 79.1 ig500 37 82.4
gr10000 121 89.2 ig1000 164 89.7 ig1000 135 88.3 ig100 168 78.7 chi500 35 82.4
ig10000 120 89.2 su1000 163 89.7 su500 117 88.0 gr100 163 79.0 su1000 35 82.3
su10000 120 89.2 gr3000 129 89.2 su3000 114 88.0 chi100 156 78.3 ig1000 34 82.3

FS WL F2 FS WL F2 FS WL F2 FS WL F2 FS WL F2

all 171 91.4 chi1000 153 88.2 chi1000 138 87.8 gr500 194 81.9 su500 35 80.2
gr1000 157 91.2 all 147 88.2 su1000 122 87.8 su100 162 76.2 ig500 34 80.2
su1000 148 91.1 ig1000 143 88.2 ig1000 120 87.7 ig100 154 75.9 chi500 34 80.2
ig1000 148 91.1 su1000 143 88.2 su500 95 87.3 chi100 140 75.4 ig1000 33 80.2
chi1000 148 91.1 gr1000 141 88.2 su3000 93 87.4 su500 131 74.6 su1000 33 80.2

Table 9.2: Top five feature-selection methods and reduction rates, by accu-
racy, precision, recall, F1, and F2 wins–losses (WL), for each classifier with
its “best” document representation
Tabela 9.2: Pet najboljih metoda za odabir atributa, i stepeni redukcije, za
pobede–poraze (WL) pri merama tačnost, preciznost, pokrivenost, F1 i F2,
za svaki klasifikator sa njegovom „najboljom“ reprezentacijom dokumenata
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grounds as IG and SU. RF proved to be a complete failure, in all probability not because
of any shortcoming as a feature-selection algorithm, or unsuitability for use in textual
domains. It was a consequence of Weka’s implementation using the Euclidean measure
when calculating document vector distances for determining nearest neighbors. There-
fore, the bad performance of RF may again be treated as an experimental verification of
the fact that the Euclidean distance measure is generally not suitable for application to
high-dimensional text data sets, this time in the context of feature selection.

It is interesting to note that CNB performs exceptionally well with no feature selec-
tion at F1 and F2, although the performance with “all” features was not near the best at
precision, and was also trailing slightly at recall. This verifies that the F-measures do
indeed reward balanced performance.

The high recall for CNB at only 100 features can be explained by our later observa-
tion that CNB tends to classify very sparse (and empty) vectors into the positive class.
However, the fact that recall with all features is ranked very high signifies that sparsity is
not the primary cause for CNB’s good recall scores, because if it were the performance
with all features would not have been among the best.

In summary, considering its good all-round performance, dominance at recall and F2,
the lack of need for feature selection, and superior speed (see Section 8.3.6), we can
safely conclude that the CNB classifier, out of those considered, is best suited for the
task of classifying search results [163, 161, 167]. SMO can be regarded a close second,
because of its inferior performance at F2, and longer training times.

9.2.2 Interaction Between Bag-of-Words Transformations

and Feature Selection

This section will investigate how does the addition of normalization, logtf, and idf
transformations to a baseline BOW document representation affect classification per-
formance, from the viewpoint of several feature-selection methods. We will concen-
trate on two best-performing classifiers determined in the previous section: CNB and
SMO. The baseline representation for normalization will be m-tf since stemming was
beneficial to classification in all our previous experiments, while the baseline for logtf
and idf will be the m-norm-tf representation because normalization is included in the
determined best representations for the two classifiers. Since idf provided the motiva-
tion for this investigation, transformations will be presented in reverse order compared
to Chapter 8: idf, logtf, and then norm.

The idf transformation. Standard-style charts which show the performance of CNB,
measured by F1, for various feature-selection algorithms and reduction rates, are given
in Figure 9.2. The measurements are averaged over the six data sets, and the used
representations are m-norm-tf in Figure 9.2(a), and m-norm-tfidf in Figure 9.2(b). It
can be seen, more clearly than in Section 9.2.1, that CHI, IG, and SU feature-selection
methods exhibit almost identical behavior. GR follows the three down to the smaller
numbers of features (500 and 100), where its performance decays. Since the described
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Figure 9.2: Performance of CNB measured by F1, with tf (a) and tfidf
representation (b)
Slika 9.2: Performanse CNB-a izražene merom F1, sa tf (a) i tfidf repre-
zentacijom (b)

trends in the performance of FS methods were consistent over all evaluation measures
with both classifiers, the following comments will generally refer to the CHI–IG–SU
trio, unless otherwise stated.

Noticeable differences in the behavior of CNB in the two charts of Figure 9.2 are
the more obvious dent between 3000 and 10000 features for tfidf, and the fact that CNB
performance with tfidf is scaled down several percent from tf. But, when instead look-
ing at the summed-up statistically significant wins–losses values, shown in Figure 9.3,
the differences between reduction rates become more pronounced.1 What these charts
depict is independent of absolute classifier performance at given reduction rates, but
rather express how FS methods and reduction rates fare against one another within the
realms of a particular classifier and document representation. Peaks at 1000 selected
features and no feature selection are more clearly pronounced than in Figure 9.2, as
well as the dents between 3000 and 10000.

Subtracting the wins–losses of the baseline m-norm-tf representation (Figure 9.3(a))
from the wins–losses of m-norm-tfidf (Figure 9.3(b)), we obtained the chart in Fig-
ure 9.4(a). Effectively, it expresses the impact of the idf transformation on the per-
formance of the CNB classifier (as measured by F1) throughout the range of feature-
selection methods and reduction rates. According to the chart, idf improves CNB
between 100 and 3000 chosen features, while degrading it for higher feature counts.
It should be made clear that the indicated improvement or degradation is relative in
nature, since using wins–losses limited the comparisons to the boundaries of the same
document representation and classifier. Using wins–losses instead of actual perfor-

1The wins–losses axes ranges from −210 to 210: this is six data sets times 35 – the maximum num-
ber of wins (and losses) for a FS method at a particular number of features, out of a total of 5 methods ·
7 reduction rates + 1 = 36.
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Figure 9.3: Wins–losses for F1 and CNB, with tf (a) and tfidf representation (b)
Slika 9.3: Pobede–porazi za F1 i CNB, sa tf (a) i tfidf reprezentacijom (b)
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Figure 9.4: Effect of idf on F1 wins–losses for CNB (a) and SMO (b)
Slika 9.4: Efekat idf-a na pobede–poraze u meri F1, za CNB (a) i SMO (b)

mance measurements permitted the subtraction of values by avoiding the issue of scale
when comparing the measurements on different document representations. Information
about absolute performance was sacrificed in order to express the relationship between
the idf transformation and feature selection. Therefore, the 100–3000 range in Fig-
ure 9.4(a) can only be viewed as the place to expect improvement when introducing
the idf transformation to the document representation. Whether there will be actual
improvement is determined by the properties of classifiers and data. Our experience
showed that tfidf representations are usually inferior for text categorization, which is
certainly not a general rule [106, 119].

Figure 9.4(b) shows the corresponding graph of wins–losses differences introduced
by idf for the SMO classifier. Contrary to the chart for CNB, this chart points to two

possible areas of idf performance improvement: one at higher numbers of features,
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Figure 9.5: Effect of idf on precision wins–losses for CNB (a) and SMO (b)
Slika 9.5: Efekat idf-a na pobede–poraze u preciznosti, za CNB (a) i SMO (b)

approximately above the 8000 mark, and one in the lower feature counts below 800.
This shows that the idf transformation affects the two classifiers differently regarding
FS reduction rates, and explains the discrepancy noticed at the beginning of the chapter.
With no feature selection idf degrades CNB and improves SMO, while at 2000–3000
selected features2 the effect is opposite. What makes the correspondence with our pre-
vious study from Chapter 8 even more remarkable is the fact that different data sets,
and even feature-selection methods were used.

The general shape of the graphs for CNB and SMO in Figure 9.4 (regarding the
CHI–IG–SU trio) is quite similar, except for the drop of the CNB graph below 500 fea-
tures. A corresponding drop for SMO may exist at a lower number of features which
was not measured. This indicates that the CNB and SMO do not behave in such oppos-
ing fashion with regards to the idf transformation as was suggested, since the graphs
are not totally contrary to one another.

However, observing the charts of wins–losses differences introduced by the idf
transformation with CNB (Figure 9.5(a)) and SMO (Figure 9.5(b)) using precision as
the evaluation measure reveals quite different effects of idf on the two classifiers.

Since precision is one of the building blocks of the F1 measure together with recall,
this may suggest that the above correspondence may have been accidental, especially
when additionally taking into consideration the charts for recall (Figure 9.6). But, we
argue that the correspondence is not accidental, since the wins–losses differences charts
for accuracy, shown in Figure 9.7, are almost identical to those of F1 (Figure 9.4).

The logtf transformation. The effects of the logtf transformation when measured
by F1, shown in Figure 9.8, are almost a complete contrast to those of idf. Generally,
in the ranges where idf caused improvement of performance, logtf causes degradation,

2This roughly corresponds to 1000 features from the previous batch of experiments since those data sets
had a considerably lower number of features.



196 9. Term Weighting and Feature Selection

-150

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
e

c
a

ll
 w

in
s

-l
o

s
s

e
s

 i
d

f 
d

if
f.

CHI GR IG RF SU

-100

-50

0

50

100

150

100 500 1000 3000 5000 7000 10000 ALL

Number of features

R
e

c
a

ll
 w

in
s

-l
o

s
s

e
s

 i
d

f 
d

if
f.

CHI GR IG RF SU

(a) (b)

Figure 9.6: Effect of idf on recall wins–losses for CNB (a) and SMO (b)
Slika 9.6: Efekat idf-a na pobede–poraze u pokrivenosti, za CNB (a) i SMO (b)
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Figure 9.7: Effect of idf on accuracy wins–losses for CNB (a) and SMO (b)
Slika 9.7: Efekat idf-a na pobede–poraze u tačnosti, za CNB (a) i SMO (b)

and vice versa. However, judging by the scale, logtf has a much milder impact than idf,
especially on the CNB classifier. Again as with idf, the graphs for the two classifiers
exhibit a certain degree of similarity.

Looking at the charts showing the wins–losses differences with the precision mea-
sure it can be seen that logtf has a more clearly pronounced degrading effect on SMO in
the feature range below 1000, which accounts for the sharper drop in the same area on
the F1 chart. The scale in Figure 9.9 indicates that the effect of the logtf transformation
on CNB is quite weak.

When observing recall in Figure 9.10, no notable differences between the effects
of logtf on CNB and SMO are visible, except the generally weaker impact on CNB.
Unlike idf, the logtf transformation provided no surprises and differences between its
effects on different classifiers. The stronger impact on SMO, similar to the one already
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Figure 9.8: Effect of logtf on F1 wins–losses for CNB (a) and SMO (b)
Slika 9.8: Efekat logtf-a na pobede–poraze u meri F1, za CNB (a) i SMO (b)
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Figure 9.9: Effect of logtf on precision wins–losses for CNB (a) and SMO (b)
Slika 9.9: Efekat logtf-a na pobede–poraze u preciznosti, za CNB (a) i SMO (b)

observed in Chapter 8, can be interpreted by the logarithm’s smoothing effect on feature
weights, and the scaling down to small numeric values. We find the logtf transformation
more predictable and safer to use in the text-categorization setting.

The norm transformation. Figure 9.11 depicts the impact of normalization in the
context of CNB and SMO classifiers. Somewhat counterintuitively, the shapes of the
graphs are more similar to those of idf (Figure 9.4) than logtf (Figure 9.8). Compared
to idf, the effects of normalization are much milder. Also, the behavior of the graphs for
CNB and SMO classifiers in Figure 9.11 is quite similar. What is especially notable in
the charts is the radical departure of the GR feature-selection method from the behavior
of CHI, IG, and SU on feature counts below 3000, in a similar fashion for both clas-
sifiers. However, the charts in Figures 9.12 and 9.13 reveal that the improving effect
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Figure 9.10: Effect of logtf on recall wins–losses for CNB (a) and SMO (b)
Slika 9.10: Efekat logtf-a na pobede–poraze u pokrivenosti, za CNB (a) i
SMO (b)

of GR measured by F1 with the CNB classifier is caused by improvement of precision,
while with SMO the main cause is recall. Overall, gain-ratio feature selection exhibited
erratic behavior at lower feature counts with all investigated transformations.

9.3 Summary and Future Work

The round of experiments described in this chapter concentrated its first part on deter-
mining the best combinations of feature-selection methods, reduction rates, and classi-
fiers on the chosen data sets. Results from Section 9.2.1 made it clear that CNB and
SMO are the best performing classifiers, with CNB eventually being selected for the
task of classifying search results in the CatS meta-search engine [163, 167] because of
its speed, good performance with the F2 measure, and no need for feature selection.

The intuition introduced at the beginning of the chapter, that there may be signif-
icant interactions between the idf transformation in the bag-of-words document repre-
sentation, and feature selection, has been verified by the subsequent study presented
in Section 9.2.2. This interaction was quantified in the context of two best-performing
classifiers, CNB and SMO, using charts of wins–losses values and their differences.
The study concluded that the two examined classifiers behaved in different, but not
entirely opposing ways with respect to the interaction between idf and feature selec-
tion. Similar treatment was given to two other transformations, logtf and norm, also
revealing interesting effects, but less radical and erratic than those of idf.

Another possibility opened by the quantification of interaction between document
representation and feature selection is the comparison of the behavior of data sets. One
interesting direction of future work would certainly be to extend the experiments to
corpora more commonly used in TC research, such as Reuters, OHSUMED, WebKB,
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Figure 9.11: Effect of norm on F1 wins–losses for CNB (a) and SMO (b)
Slika 9.11: Efekat norm-a na pobede–poraze u meri F1, za CNB (a) i SMO (b)
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Figure 9.12: Effect of norm on precision wins–losses for CNB (a) and SMO (b)
Slika 9.12: Efekat norm-a na pobede–poraze u preciznosti, za CNB (a) i SMO (b)
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Figure 9.13: Effect of norm on recall wins–losses for CNB (a) and SMO (b)
Slika 9.13: Efekat norm-a na pobede–poraze u pokrivenosti, za CNB (a) i SMO (b)
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or 20-newsgroups, which would enable drawing some additional parallels with existing
experimental and theoretical results.

Besides the basic BOW transformations studied in this chapter, it would be inter-
esting to examine the behavior of supervised feature-weighing schemes such as those
introduced by Debole and Sebastiani [43], which, unlike idf, do attempt to weigh text
features in correspondence to the class feature. Intuitively, such transformations should
generate wins–losses difference charts that are much more placid and closer to 0 than
the ones in Figure 9.4. Finally, the proposed method for quantification of interaction
between document representation and feature selection can be used in the context of
more advanced document representation schemes, which may include n-grams [137],
information derived from hyperlinks, and elements of document structure [28].

With the rapid expanse of research and application of classification algorithms in the
1990s, the field of document representations was left somewhat under-studied. Recent
papers focusing on issues of document representation [119, 202, 225, 106, 43] showed
that some of the “old truths” (like, “tfidf is the best variant of the bag-of-words repre-
sentation”) may not always hold for new and improved algorithms. Further understand-
ing of the relationships between document representation, feature-selection methods,
and classification algorithms can provide useful insights to both researchers and practi-
tioners, assisting them in choosing the right tools and methods for their classification-
related tasks.

9.4 A Note on Hubness in the Context of Feature

Selection and Generation

In the research described in Part III of this dissertation, when examining methods for
feature selection, we have primarily focused on their direct impact on classification
performance and the interaction with term-weighting schemes in the bag-of-words rep-
resentation of textual documents, without consideration of the hubness phenomenon,
which was the predominant topic of Part II. To place hubness into the perspective of
feature-selection methods, as well as issues regarding feature generation (that is, possi-
ble concerns behind the process of adding new features into the data representation), in
this section we will briefly discuss their relationships.

We have concentrated our research efforts so far on explaining the origins of hub-
ness and its effects on different tasks, assuming a given set of features defined for a
particular data set. Although our work considers the interaction of hubness with dimen-
sionality reduction in the sense of feature extraction (Sections 5.5, 6.4, and 7.3), the
implications of hubness on feature selection, and especially generation, are still open
research questions.

As in Part II, besides hubness, our discussion will consider the notion of the cluster

assumption which, assuming that data contains labels, roughly states that two points
in the same cluster should in most cases be of the same class. This assumption is one
of the pillars of semi-supervised machine-learning methods [33], and is also known in
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Figure 9.14: Skewness (a) and “badness” ratio (b) with respect to the percent-
age of the original number of features selected by information gain
Slika 9.14: Koeficijent asimetrije (a) i „odnos neslaganja“ (b) u odnosu na
procenat originalnog broja atributa odabranih information gain-om

information-retrieval circles as the cluster hypothesis [212], which is formulated in an
analogous manner using the notion of relevance. The cluster assumption, that is, the
degree of its violation, effectively represents the degree to which the featural repre-
sentation of the data fails to correspond with some notion of “ground truth” about the
data given, for example, by class labels. A high degree of cluster assumption viola-
tion indicates that models will be difficult to build from the data, and may suggest a
reconsideration of the featural representation.

For a given data set and distance measure, let Nk(x) denote the number of times
point x occurs in the k-NN lists of other points in the data set. We express hubness using
the skewness of the distribution of Nk(x), as its standardized third moment, denoted
SNk

(see Section 5.2). Also, let BN k(x) be the number of times x occurs in the k-NN
lists of other points, where the labels of x and the points in question do not match
(making BN k(x) a measure of “badness” of x). The normalized sum of BN k(x) for a
given data set, BN k ratio, represents one way to express the degree of violation of the
cluster assumption, which was demonstrated in Section 5.6.1.

Figure 9.14 illustrates how SNk
and BN k ratio change when features are selected

using the classical information-gain method (see Section 2.8.1), on three data sets from
the UCI repository (Table 5.1). Regarding Figure 9.14(a), looking from right to left,
skewness of Nk stays relatively constant until a small percentage of the original num-
ber of features is left, when it abruptly drops. This is the point where the intrinsic
dimensionality is reached, with further selection incurring loss of information. This
loss is also visible in Figure 9.14(b), where at similar points there is an increase in
BN k ratio, suggesting that the reduced representation ceases to reflect the information
provided by labels very well.

Observing the two charts in the opposite direction, from left to right, offers a glimpse
into the benefits and drawbacks of feature generation. Adding features that bring
new information to the data representation will ultimately increase SNk

and produce
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hubs. Furthermore, for the chosen examples, the reduction of BN k ratio “flattens out”
fairly quickly, limiting the usefulness of adding new features in the sense of being able
to express the “ground truth.” Depending on the application, instead of BN k ratio
some other criterion could have been used in Figure 9.14(b), like classifier error rate,
producing similarly shaped curves. While the majority of research in feature selec-
tion/generation, including our own work described in Part III of this dissertation, has
focused on optimizing criteria reminiscent to those in Figure 9.14(b), little attention has
been paid to the fact that in intrinsically high-dimensional data hubness will result in an
uneven distribution of the cluster assumption violation (in our case, hubs will generally
attract more label mismatches with neighboring points), and with it an uneven distribu-
tion of responsibility for classification or retrieval error among data points. We believe
that investigating the interaction between hubness and different notions and analogues
of cluster assumption violation can result in important new insights relevant to the tasks
of feature selection and generation. We plan to address this investigation as a point of
future work.



Chapter 10

Conclusion

The research presented in this dissertation studied the properties and effects of high di-
mensionality in data representations from two angles: (1) the behavior of distance (and
similarity) measures with increasing dimensionality of data, and (2) feature-selection
methods, primarily through their interaction with high-dimensional document repre-
sentation schemes for text data. The main results of the dissertation can therefore be
summarized as follows.

Regarding the first angle, addressed in Part II of the dissertation, Chapter 3 began
the study of the behavior of (dis)similarity measures by exploring the concentration
property of cosine similarity, providing theoretical results applicable to a wide range
of data distributions. The following chapters discussed the novel phenomenon of hub-
ness, manifested in the tendency of some points in a high-dimensional data set to be
included in unexpectedly many k-NN lists of other points. Chapter 4 provided a com-
prehensive characterization of the phenomenon predominantly for Euclidean distance,
explained the mechanisms of hub formation, their location in the data space, and pre-
sented theoretical results which provided insight into the behavior of distance measures
in high-dimensional data spaces that lead to the emergence of hubness. Next, Chapter 5
generalized the explanations to real data from various application domains, establish-
ing the connection between hubness and the intrinsic dimensionality of data, provid-
ing thorough empirical evidence for the proposed observations, linking hubness with
various notions of outliers, discussing the interaction of hubness with dimensionality
reduction, and demonstrating the impact of the phenomenon on key (distance-based)
algorithms belonging to major families of ML techniques: supervised, semi-supervised,
and unsupervised.

Chapters 6 and 7 focused their attention on the role of the previously established
phenomenon of hubness in the tasks of time-series classification and information re-
trieval, respectively. Considering the state-of-the-art dynamic time warping (DTW)
distance, Chapter 6 confirmed the existence of hubness in time-series data, examined
its influence on time-series classification with the k-NN classifier, and presented a
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framework for categorizing time-series data sets based on properties of hubness and
the distribution of class labels among nearest neighbors, which allows one to assess
whether hubness can be used to improve the performance of the k-NN classifier, and
provides insight into the mechanisms underlying nearest-neighbor classification of time
series. Chapter 7 investigated hubness in the context of the popular vector space model
(VSM) of information retrieval, explaining the origins of the phenomenon, with respect
to cosine similarity, as a consequence of high intrinsic dimensionality of text data, as
opposed to other factors, such as sparsity and skewness of the distribution of term fre-
quencies (caused, for example, by differences in document lengths). Hubness was first
considered within the classical VSM based on tfidf term weighting and cosine similar-
ity, and the conclusions generalized to the more advanced variation Okapi BM25 [178].
Results of experiments, involving a similarity adjustment scheme that considers hub-
ness, indicated that the phenomenon can considerably affect the performance of IR by
including persistent irrelevant documents in the search result lists.

Regarding the second angle of research into high dimensionality within data repre-
sentations, addressed in Part III of the dissertation, Chapter 8 experimentally demon-
strated that there may be statistically significant differences in classification perfor-
mance of five major classifiers when using different transformations of the bag-of-
words document representation. The chapter also gave a detailed description of the
effects of individual transformations on five commonly used performance evaluation
measures (accuracy, precision, recall, F1, and F2), indicating that the effects on different
measures can be quite opposite. Also, relationships between different transformations,
when used together in the document representation, were captured, showing some inter-
esting correlations. This was achieved by using wins–losses instead of absolute perfor-
mance measure values, permitting manipulation such as addition and subtraction which
would not otherwise have been possible. Furthermore, it was demonstrated that the sim-
ple dimensionality-reduction method that was used can significantly alter these effects
and relationships. A feature of both data sets and classifiers, named “robustness,” was
observed, meaning that some data sets and classifiers showed less sensitivity to changes
in document representations than others. Chapter 9 built on the conclusions of Chap-
ter 8 by considering a wider array of feature-selection methods and reduction rates, but
using only the document representations that were found most suitable to each classi-
fier. Also, the chapter focused its attention on idf – the transformation that exhibited
greatest variation of behavior with regards to feature selection (and not just feature se-
lection) in the previous chapter – in the context of two best performing classifiers. The
intuition that there may be significant interactions between the idf transformation and
feature selection has been verified, and this interaction was quantified using charts of
wins–losses and their differences. Stemming and normalization transformations were
also examined using the same methodology, revealing lower degrees of interaction with
feature selection than was observed with idf.

Since the evidence presented in this dissertation suggests that hubness is a ubiqui-
tous phenomenon, an important aspect of future work will be identifying hubness within
data and methods from various application fields, as well as designing application-
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specific methods to mitigate or take advantage of the phenomenon. We already estab-
lished the existence of hubness in collaborative filtering data with commonly used vari-
ants of cosine distance [141], time-series data sets in the context of k-NN classification
involving dynamic time warping (DTW) distance (Chapter 6), text data within several
variations of the classical vector space model for information retrieval (Chapter 7), and
audio data for music information retrieval using spectral similarity measures [100]. In
the immediate future we plan to perform a more detailed investigation of hubness in
the fields of outlier detection and image mining. Another application area that could
directly benefit from an investigation into hubness are reverse k-NN queries.

Possible directions for future work within different aspects of machine learning in-
clude a more formal and theoretical study of the interplay between hubness and various
distance-based machine-learning models, possibly leading to approaches that account
for the phenomenon at a deeper level. Further directions of research may involve de-
termining whether the phenomenon is applicable to probabilistic models, (unboosted)
decision trees, and other techniques not explicitly based on distances between points;
and also to algorithms that operate within general metric spaces. Since we determined
that for K-means clustering of high-dimensional data hubs tend to be close to cluster
centers, it would be interesting to explore whether this can be used to improve iterative
clustering algorithms, like K-means or self-organizing maps [108]. Nearest-neighbor
clustering [22] of high-dimensional data may also directly benefit from hubness infor-
mation. Topics that could also be worth further study are the interplay of hubness with
learned metrics [222] and dimensionality reduction. Finally, it would be interesting
to see whether some measure of hubness can be used for estimation of the intrinsic
dimensionality of a data set.

In the domain of time-series classification, we plan to expand the set of considered
distance measures beyond dynamic time warping, and explore other state-of-the-art
distances such as those which exhibited good performance in recent experiments with
the 1-NN classifier [47]: longest common subsequence (LCSS) [218], edit distance on
real sequence (EDR) [37], and edit distance with real penalty (ERP) [36]. Furthermore,
time-series classification by methods other than k-NN may benefit from an investigation
into the influence of hubness. Another possible direction for future work on time series
is a more detailed exploration of hubness in the context of different representation tech-
niques. Besides the briefly considered DFT, DWT, and SVD methods, a more detailed
study could include, for example, piecewise aggregate approximation (PAA) [102],
piecewise constant approximation (APCA) [26], and symbolic aggregate approxima-
tion (SAX) [127]. Finally, in the time-series domain hubness may be relevant to tasks
other than classification. Interesting avenues for future research include assessing the
influence of hubness on time-series clustering, indexing, and prediction.

For practical reasons, the research on the impact of hubness on IR focused on data
containing category labels. In future work we plan to extend the evaluation to larger
data collections where relevance judgements are provided in a non-categorical fashion.
Also, we will consider in more detail advanced models like BM25 [178] and pivoted
cosine [196]. Finally, in future research we intend to explore other strategies for as-
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sessing and mitigating the influence of hubness in IR, besides the proposed similarity
adjustment scheme.

Finally, future experiments concerning the interactions between document represen-
tations and feature selection can be performed on other corpora, in order to draw more
accurate parallels with existing research, and verify that the conclusions are not relevant
only for data sets used in the presented research. Robustness regarding document repre-
sentations, which applies both to classifiers and data sets, is also an interesting area for
further theoretical investigations. Giving transformations other than idf the treatment
of Chapter 9 may also reveal insightful relationships, especially for transformations
derived with supervised learning which have emerged recently.



Appendix A

Term Weighting in the BOW

Representation

This appendix will illustrate the bag-of-words (BOW) representation and some of the
commonly used term-weighting schemes (also referred to as transformations in this
dissertation). We will consider a short hypothetical text data set consisting of five one-
sentence documents, as follows.

Document 1: “I do not like apples, and I do not like peaches.”
Document 2: “I like clocks, and I like parking meters.”
Document 3: “Smurfs are blue, I hate Smurfs!”
Document 4: “Parks are not blue, I like parks.”
Document 5: “Peaches are likely not like apples.”

First, we will discuss the simple BOW representation where words are taken as
terms, without any modification (Section A.1). Then, we will show the representation
with stemming applied (Section A.2).

A.1 Term Weighting Without Stemming

After removal of punctuation marks, 16 distinct words can be identified in the document
set, making up the dictionary W (all words are given in lowercase): and, apples, are,
blue, clocks, do, hate, i, like, likely, meters, not, parking, parks, peaches, smurfs.

Table A.1 shows the basic binary representation of the text data set (denoted 01),
where rows represent documents, and columns correspond to the words from the dic-
tionary. For document i (denoted di), element wij from the table (i ∈ {1, 2, . . . , 5},
j ∈ {1, 2, . . . , 16}) signifies whether the jth word from the dictionary is present in
the ith document (value 1), or not (value 0).
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In the term-frequency representation (denoted tf), wij = tf ij , the frequency of
appearance of the jth word in the ith document. This representation of the example
data set is shown in Table A.2.

A common transformation of term weights is normalization (denoted norm), which
is typically performed by dividing the weights with the Euclidean norm of the appropri-
ate document vector, producing document vectors of unit length in the multidimensional
vector space. If we denote the vector of term weights corresponding to document di by
wi, the normalized representation of di is given by

norm(di) = (wi1/‖wi‖, . . . , wi|W |/‖wi‖).

This particular normalization scheme is often referred to as cosine normalization, since
computing the cosine of the angle between two vectors normalized in this manner in-
volves only the computation of the dot product. Table A.3 gives the norm representation
of the example document set. A variant of this normalization scheme involves addition-
ally multiplying every weight by the average of all document vector norms, that is, the
average document length. In our example, the average document length is 3.22.

Taking the logarithm of every term weight (after adding 1 to avoid log(0)) results
in the logtf transformation, which produces:

logtf(di) = (log(1 + wi1), . . . , log(1 + wi|W |)).

Table A.4 shows the logtf representation of the example text data set.
The inverse document frequency (idf) transformation yields the representation of

document di:

idf(di) = (wi1 log(|D|/docfreq(D, 1)), . . . , wi|W | log(|D|/docfreq(D, |W |))),

where docfreq(D, j) is the number of documents from D the ith term occurs in. It can
be used by itself (multiplied by binary weights wij ), or multiplied with term frequencies
to form the popular tfidf representation, illustrated in Table A.5.

A.2 Term Weighting With Stemming

Applying stemming (using the Porter stemmer [158]) transforms the dictionary W ob-
tained from the example document set into: and, appl, ar, blue, clock, do, hate, i, like,
meter, not, park, peach, smurf. The new dictionary contains 14 words (that is, word
stems) in contrast to the original 16, since words “like” and “likely” were fused to the
stem “like,” and “parking” and “parks” to the stem “park.”

Tables A.6–A.10 show all term-weighting schemes demonstrated in Section A.1 in
the word space obtained by stemming.
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and apples are blue clocks do hate i like likely meters not parking parks peaches smurfs
1 1 0 0 0 1 0 1 1 0 0 1 0 0 1 0
1 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 1 1 0 0 1 0 1 0 0
0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0

Table A.1: Example text data set in the binary (01) representation
Tabela A.1: Primer tekstualnog skupa podataka u binarnoj (01) reprezentaciji

and apples are blue clocks do hate i like likely meters not parking parks peaches smurfs
1 1 0 0 0 2 0 2 2 0 0 2 0 0 1 0
1 0 0 0 1 0 0 2 2 0 1 0 1 0 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 2
0 0 1 1 0 0 0 1 1 0 0 1 0 2 0 0
0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 0

Table A.2: Example text data set in the term-frequency (tf) representation
Tabela A.2: Primer tekstualnog skupa podataka reprezentovanog preko frekvencija
termova (tf)

and apples are blue clocks do hate i like likely meters not parking parks peaches smurfs
0.23 0.23 0 0 0 0.46 0 0.46 0.46 0 0 0.46 0 0 0.23 0
0.29 0 0 0 0.29 0 0 0.58 0.58 0 0.29 0 0.29 0 0 0

0 0 0.35 0.35 0 0 0.35 0.35 0 0 0 0 0 0 0 0.71
0 0 0.33 0.33 0 0 0 0.33 0.33 0 0 0.33 0 0.67 0 0
0 0.41 0.41 0 0 0 0 0 0.41 0.41 0 0.41 0 0 0.41 0

Table A.3: Example text data set in the normalized term-frequency (norm)
representation
Tabela A.3: Primer tekstualnog skupa podataka reprezentovanog preko nor-
malizovanih frekvencija termova (norm)

and apples are blue clocks do hate i like likely meters not parking parks peaches smurfs
0.69 0.69 0 0 0 1.1 0 1.1 1.1 0 0 1.1 0 0 0.69 0
0.69 0 0 0 0.69 0 0 1.1 1.1 0 0.69 0 0.69 0 0 0

0 0 0.69 0.69 0 0 0.69 0.69 0 0 0 0 0 0 0 1.1
0 0 0.69 0.69 0 0 0 0.69 0.69 0 0 0.69 0 1.1 0 0
0 0.69 0.69 0 0 0 0 0 0.69 0.69 0 0.69 0 0 0.69 0

Table A.4: Example text data set in the log term-frequency (logtf) representation
Tabela A.4: Primer tekstualnog skupa podataka reprezentovanog preko logaritma frek-
vencija termova (logtf)
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and apples are blue clocks do hate i like likely meters not parking parks peaches smurfs
0.92 0.92 0 0 0 3.22 0 0.45 0.45 0 0 1.02 0 0 0.92 0
0.92 0 0 0 1.6 0 0 0.45 0.45 0 1.6 0 1.6 0 0 0

0 0 0.51 0.92 0 0 1.6 0.22 0 0 0 0 0 0 0 3.22
0 0 0.51 0.92 0 0 0 0.22 0.22 0 0 0.51 0 3.22 0 0
0 0.92 0.51 0 0 0 0 0 0.22 1.6 0 0.51 0 0 0.92 0

Table A.5: Example text data set in the term frequency – inverse document frequency
(tfidf) representation
Tabela A.5: Primer tekstualnog skupa podataka reprezentovanog preko proizvoda frek-
vencija termova i inverznih frekvencija u dokumentima (tfidf)

and appl ar blue clock do hate i like meter not park peach smurf
1 1 0 0 0 1 0 1 1 0 1 0 1 0
1 0 0 0 1 0 0 1 1 1 0 1 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 1
0 0 1 1 0 0 0 1 1 0 1 1 0 0
0 1 1 0 0 0 0 0 1 0 1 0 1 0

Table A.6: Example text data set in the stemmed binary representation (m-01)
Tabela A.6: Primer tekstualnog skupa podataka u stemovanoj binarnoj
reprezentaciji (m-01)

and appl ar blue clock do hate i like meter not park peach smurf
1 1 0 0 0 2 0 2 2 0 2 0 1 0
1 0 0 0 1 0 0 2 2 1 0 1 0 0
0 0 1 1 0 0 1 1 0 0 0 0 0 2
0 0 1 1 0 0 0 1 1 0 1 2 0 0
0 1 1 0 0 0 0 0 2 0 1 0 1 0

Table A.7: Example text data set in the stemmed term-frequency representation (m-tf)
Tabela A.7: Primer tekstualnog skupa podataka reprezentovanog preko frekvencija
stemovanih termova (m-tf)

and appl ar blue clock do hate i like meter not park peach smurf
0.23 0.23 0 0 0 0.46 0 0.46 0.46 0 0.46 0 0.23 0
0.29 0 0 0 0.29 0 0 0.58 0.58 0.29 0 0.29 0 0

0 0 0.35 0.35 0 0 0.35 0.35 0 0 0 0 0 0.71
0 0 0.33 0.33 0 0 0 0.33 0.33 0 0.33 0.67 0 0
0 0.35 0.35 0 0 0 0 0 0.71 0 0.35 0 0.35 0

Table A.8: Example text data set in the stemmed normalized term-frequency
representation (m-norm)
Tabela A.8: Primer tekstualnog skupa podataka reprezentovanog preko nor-
malizovanih frekvencija stemovanih termova (m-norm)
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and appl ar blue clock do hate i like meter not park peach smurf
0.69 0.69 0 0 0 1.1 0 1.1 1.1 0 1.1 0 0.69 0
0.69 0 0 0 0.69 0 0 1.1 1.1 0.69 0 0.69 0 0

0 0 0.69 0.69 0 0 0.69 0.69 0 0 0 0 0 1.1
0 0 0.69 0.69 0 0 0 0.69 0.69 0 0.69 1.1 0 0
0 0.69 0.69 0 0 0 0 0 1.1 0 0.69 0 0.69 0

Table A.9: Example text data set in the stemmed log term-frequency represen-
tation (m-logtf)
Tabela A.9: Primer tekstualnog skupa podataka reprezentovanog preko loga-
ritma frekvencija stemovanih termova (m-logtf)

and appl ar blue clock do hate i like meter not park peach smurf
0.92 0.92 0 0 0 3.22 0 0.45 0.45 0 1.02 0 0.92 0
0.92 0 0 0 1.61 0 0 0.45 0.45 1.61 0 0.92 0 0

0 0 0.51 0.92 0 0 1.61 0.22 0 0 0 0 0 3.22
0 0 0.51 0.92 0 0 0 0.22 0.22 0 0.51 1.83 0 0
0 0.92 0.51 0 0 0 0 0 0.45 0 0.51 0 0.92 0

Table A.10: Example text data set in the stemmed term frequency – inverse document
frequency representation (m-tfidf)
Tabela A.10: Primer tekstualnog skupa podataka reprezentovanog preko proizvoda
frekvencija stemovanih termova i inverznih frekvencija u dokumentima (m-tfidf)
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[54] P. Erdős and A. Rényi. On random graphs. Publicationes Mathematicae Debre-

cen, 6:290–297, 1959.

[55] P. F. Evangelista, M. J. Embrechts, and B. K. Szymanski. Taming the curse
of dimensionality in kernels and novelty detection. In A. Abraham, B. Baets,
M. Koppen, and B. Nickolay, editors, Applied Soft Computing Technologies:

The Challenge of Complexity, volume 34 of Advances in Soft Computing, pages
425–438. Springer, 2006.

[56] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence match-
ing in time-series databases. In Proceedings of the 20th ACM SIGMOD Interna-

tional Conference on Management of Data, pages 419–429, 1994.

[57] G. Forman. An extensive empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research, 3:1289–1305, 2003.

[58] G. Forman. BNS feature scaling: An improved representation over TF-IDF for
SVM text classification. In Proceedings of the 17th ACM Conference on Infor-

mation and Knowledge Management (CIKM), pages 263–270, 2008.

[59] D. François. High-dimensional Data Analysis: Optimal Metrics and Feature Se-

lection. PhD thesis, Université catholique de Louvain, Louvain, Belgium, 2007.

[60] D. François, V. Wertz, and M. Verleysen. Non-euclidean metrics for similarity
search in noisy datasets. In Proceedings of the 13th European Symposium on

Artificial Neural Networks (ESANN), pages 339–344, 2005.

[61] D. François, V. Wertz, and M. Verleysen. The concentration of fractional dis-
tances. IEEE Transactions on Knowledge and Data Engineering, 19(7):873–886,
2007.



218 BIBLIOGRAPHY

[62] Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In
Proceedings of the 13th International Conference on Machine Learning (ICML),
pages 148–156, 1996.

[63] Y. Freund and R. E. Schapire. Large margin classification using the perceptron
algorithm. Machine Learning, 37(3):277–296, 1999.

[64] J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statis-
tical view of boosting. The Annals of Statistics, 28(2):337–374, 2000.

[65] A. W.-C. Fu, E. J. Keogh, L. Y. H. Lau, C. A. Ratanamahatana, and R. C.-
W. Wong. Scaling and time warping in time series querying. VLDB Journal,
17(4):899–921, 2008.

[66] Y. Fujikoshi. Computable error bounds for asymptotic expansions of the hyper-
geometric function 1F1 of matrix argument and their applications. Hiroshima

Mathematical Journal, 37(1):13–23, 2007.

[67] J. Fürnkranz. Round robin classification. Journal of Machine Learning Research,
2:721–747, 2002.

[68] E. Gabrilovich and S. Markovitch. Text categorization with many redundant
features: Using aggressive feature selection to make SVMs competitive with
C4.5. In Proceedings of the 21st International Conference on Machine Learning

(ICML), pages 321–328, 2004.

[69] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms, and Appli-

cations. ASA-SIAM Series on Statistics and Applied Probability. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Sta-
tistical Association (ASA), Alexandria, VA, USA, 2007.

[70] H. Gävert, J. Hurri, J. Särelä, and A. Hyvärinen. The FastICA package for Mat-
lab. http://www.cis.hut.fi/projects/ica/fastica/, 2005.

[71] X. Geng, D.-C. Zhan, and Z.-H. Zhou. Supervised nonlinear dimensionality
reduction for visualization and classification. IEEE Transactions on Systems,

Man, and Cybernetics, Part B: Cybernetics, 35(6):1098–1107, 2005.

[72] D. Gleich. MatlabBGL: A Matlab graph library.
http://www.stanford.edu/~dgleich/programs/matlab_bgl/, 2008.

[73] L. A. Goodman. On the exact variance of products. J. Am. Stat. Assoc.,
55(292):708–713, 1960.

[74] D. A. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuris-

tics. Springer, 2nd edition, 2004.

http://www.cis.hut.fi/projects/ica/fastica/
http://www.stanford.edu/~dgleich/programs/matlab_bgl/


BIBLIOGRAPHY 219

[75] L. Gupta, D. L. Molfese, R. Tammana, and P. Simos. Nonlinear alignment and
averaging for estimating the evoked potential. IEEE Transactions on Biomedical

Engineering, 43(4):348–356, 1996.

[76] U. Haagerup. The best constants in the Khintchine inequality. Studia Mathemat-

ica, 70:231–283, 1982.

[77] M. A. Hall and G. Holmes. Benchmarking attribute selection techniques for
discrete class data mining. IEEE Transactions on Knowledge and Data Engi-

neering, 15(3):1437–1447, 2003.

[78] M. A. Hall and L. A. Smith. Practical feature subset selection for machine learn-
ing. In Proceedings of the 21st Australasian Computer Science Conference,
pages 181–191, 1998.

[79] E.-H. Han and G. Karypis. Centroid-based document classification: Analysis
and experimental results. In Proceedings of the 4th European Conference on

Principles and Practice of Knowledge Discovery in Databases (PKDD), volume
1910 of Lecture Notes in Artificial Intelligence, pages 424–431. Springer, 2000.

[80] E.-H. Han, G. Karypis, and V. Kumar. Text categorization using weight-adjusted
k-nearest neighbor classification. In Proceedings of the 5th Pacific-Asia Con-

ferenece on Knowledge Discovery and Data Mining (PAKDD), volume 2035 of
Lecture Notes in Artificial Intelligence, pages 53–65. Springer, 2001.

[81] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann Publishers, 2006.

[82] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning:

Data Mining, Inference, and Prediction. Springer, 2nd edition, 2009.

[83] W. Hersh, C. Buckley, T. J. Leone, and D. Hickam. OHSUMED: An interactive
retrieval evaluation and new large test collection for research. In Proceedings of

the 17th Annual International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval, pages 192–201, 1994.

[84] A. Hicklin, C. Watson, and B. Ulery. The myth of goats: How many people have
fingerprints that are hard to match? Internal Report 7271, National Institute of
Standards and Technology (NIST), USA, 2005.

[85] A. Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the nearest neighbor in
high dimensional spaces? In Proceedings of the 26th International Conference

on Very Large Data Bases (VLDB), pages 506–515, 2000.

[86] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Advances in Neural

Information Processing Systems 15, pages 833–840, 2003.



220 BIBLIOGRAPHY

[87] C.-M. Hsu and M.-S. Chen. On the design and applicability of distance functions
in high-dimensional data space. IEEE Transactions on Knowledge and Data

Engineering, 21(4):523–536, 2009.

[88] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and
applications. Neural Networks, 13(4–5):411–430, 2000.

[89] K. T.-U. Islam, K. Hasan, Y.-K. Lee, and S. Lee. Enhanced 1-NN time series
classification using badness of records. In Proceedings of the 2nd International

Conference on Ubiquitous Information Management and Communication, pages
108–113, 2008.

[90] K. Itô, editor. Encyclopedic Dictionary of Mathematics. MIT Press, 2nd edition,
1993.

[91] M. Iwayama and T. Tokunaga. Hierarchical Bayesian clustering for automatic
text classification. In Proceedings of the 14th International Joint Conference on

Artificial Intelligence (IJCAI), pages 1322–1327, 1995.

[92] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM

Computing Surveys, 31(3):264–323, 1999.

[93] T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for
semi-supervised learning. In Proceedings of the 26th International Conference

on Machine Learning (ICML), pages 441–448, 2009.

[94] F. V. Jensen. Bayesian Networks and Decision Graphs. Springer, 2nd edition,
2007.

[95] T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for
text categorization. In Proceedings of the 14th International Conference on Ma-

chine Learning (ICML), pages 143–151, 1997.

[96] T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the 10th European Conference on Ma-

chine Learning (ECML), volume 1398 of Lecture Notes in Artificial Intelligence,
pages 137–142. Springer, 1998.

[97] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods – Support

Vector Learning, pages 169–184. MIT Press, 1999.

[98] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distribu-

tions, volume 1. Wiley, 2nd edition, 1994.

[99] I. T. Jolliffe. Principal Component Analysis. Springer, 2nd edition, 2002.



BIBLIOGRAPHY 221

[100] I. Karydis, M. Radovanović, A. Nanopoulos, and M. Ivanović. Looking through
the “glass ceiling”: A conceptual framework for the problems of spectral sim-
ilarity. In Proceedings of the 11th International Society for Music Information

Retrieval Conference (ISMIR), 2010.

[101] S. S. Keerthi, S. K. Shevade, C. Bhattacharyya, and K. R. K. Murthy. Improve-
ments to Platt’s SMO algorithm for SVM classifier design. Neural Computation,
13(3):637–649, 2001.

[102] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehrotra. Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowledge and

Information Systems, 3(3):263–286, 2001.

[103] E. Keogh, C. Shelton, and F. Moerchen. Workshop and challenge on time series
classification. International Conference on Knowledge Discovery and Data Min-
ing (KDD), 2007.
http://www.cs.ucr.edu/~eamonn/SIGKDD2007TimeSeries.html.

[104] E. Keogh, X. Xi, L. Wei, and C. A. Ratanamahatana. The UCR time series
classification/clustering homepage, 2006.
http://www.cs.ucr.edu/~eamonn/time_series_data/.

[105] A. M. Kibriya and E. Frank. An empirical comparison of exact nearest neigh-
bour algorithms. In Proceedings of the 11th European Conference on Principles

and Practice of Knowledge Discovery in Databases (PKDD), volume 4702 of
Lecture Notes in Artificial Intelligence, pages 140–151. Springer, 2007.

[106] A. M. Kibriya, E. Frank, B. Pfahringer, and G. Holmes. Multinomial naive
Bayes for text categorization revisited. In Proceedings of the 17th Australian

Joint Conference on Artificial Intelligence (AI), volume 3339 of Lecture Notes in

Artificial Intelligence, pages 488–499. Springer, 2004.

[107] K. Kira and L. Rendell. A practical approach to feature selection. In Proceedings

of the 9th International Conference on Machine Learning (ICML), pages 249–
256, 1992.

[108] T. Kohonen. Self-Organizing Maps. Springer, 3rd edition, 2001.

[109] T. Kohonen, S. Kaski, K. Lagus, J. Salojärvi, V. Paatero, and A. Saarela. Self
organization of a massive document collection. IEEE Transactions on Neural

Networks, 11(3):574–585, 2000.

[110] I. Kononenko. Estimating attributes: Analysis and extensions of RELIEF. In Pro-

ceedings of the 7th European Conference on Machine Learning (ECML), volume
1224 of Lecture Notes in Artificial Intelligence, pages 412–420. Springer, 1997.

http://www.cs.ucr.edu/~eamonn/SIGKDD2007TimeSeries.html
http://www.cs.ucr.edu/~eamonn/time_series_data/


222 BIBLIOGRAPHY

[111] F. Korn, B.-U. Pagel, and C. Faloutsos. On the “dimensionality curse” and the
“self-similariy blessing”. IEEE Transactions on Knowledge and Data Engineer-

ing, 13(1):96–111, 2001.

[112] R. Kosala and H. Blockeel. Web mining research: A survey. SIGKDD Explo-

rations Newsletter, 2(1):1–15, 2000.

[113] C. A. Kumar. Analysis of unsupervised dimensionality reduction techniques.
Computer Science and Information Systems, 6(2):217–227, 2009.
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Sažetak

„Informatičko doba“ u kom živimo donosi brojne pogodnosti u mnogim aspektima ljud-
skog delovanja. Automatizacija i kompjuterizacija aktivnosti koje su se u prošlosti
obavljale manuelno samo je jedan primer uticaja računara na živote ljudi, kako na pro-
fesionalnom, tako i na privatnom planu. Med̄utim, uz pogodnosti dolaze i mnogi iza-
zovi. Ova disertacija izučava probleme koji proizilaze iz rastuće količine informacija
generisanih, čuvanih, i korišćenih na današnjim računarskim sistemima. Brzina kojom
informacije nastaju obično premašuje brzinu kojom one mogu biti obrad̄ene, strukturi-
rane, i efektivno korišćene kao znanje, što je dovelo do pojave fenomena zasićenja in-

formacijama, čiji je uticaj može osetiti, na primer, na World Wide Web-u [112, 11, 161].
Pored velikih količina i slabe strukture, informacije prikupljene u formi podataka često
sadrže šum, u smislu pogrešnih ili irelevantnih podataka, ili prosto podataka koji su
suvišni u kontekstu odred̄ene aktivnosti.

Gore pomenute osobine podataka – velika količina, slaba ili neodgovarajuća struk-
tura, i šum – čine ih pogodnim za primenu tehnika mašinskog učenja (machine learn-

ing, ML), data mining-a (DM) i information retrieval-a (IR). Oblasti mašinskog učenja
i data mining-a pružaju mnoge korisne metode za otkrivanje pravilnosti i izvod̄enje
znanja iz sirovih ili slabo obrad̄enih podataka, npr. iz (hiper)teksta tipičnog za Web.
Mašinsko učenje i data mining imaju sposobnost da obavljaju pomenute zadatke au-

tomatski. Information retrieval, s druge strane, pruža korisniku mogućnost da pronad̄e
jedinice informacija (npr. dokumente) koji mogu zadovoljiti njegovu protrebu za infor-
macijom izraženu u formi upita.

Osnovna reprezentacija u kojoj se informacije sakupljaju i čuvaju jeste tabela (često
nazivana data set, skup podataka), gde vrste odgovaraju objektima (instancama, prime-
rima, tačkama) opisanim pomoću jednog ili više atributa (osobina, promenljivih) koji
formiraju kolone tabele. Povećanje količine dostupnih informacija može se manifesto-
vati u jednoj ili obe sledeće osobine: (1) velikom broju objekata u tabeli, i (2) velikom
broju atributa. Fokus ove disertacije je na drugoj osobini, često nazivanoj velika dimen-

zionalnost, za koju je poznato da može da prouzrokuje probleme u mnogim oblastima,
uključujući mašinsko učenje, data mining i information retrieval. Ovi problemi su poz-
nati pod nazivom „prokletstvo dimenzionalnosti“.

Disertacija izučava implikacije „prokletstva dimenzionalnosti“ u višedimenzional-
nim reprezentacijama podataka, u dva pravca:
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1. ponašanje mera udaljenosti (i sličnosti) u uslovima povećanja dimenzionalnosti
podataka, i

2. metode odabira atributa, prvenstveno kroz njihovu interakciju sa višedimenzio-
nalnim reprezentacijama tekstualnih dokumenata.

Disertacija je organizovana u tri dela. Deo I posvećen uvodu, koji uključuje prva
dva poglavlja disertacije, daje uvid u motivaciju i probleme proučavane u prikazanom
istraživanju, i pruža pregled tehnika mašinskog učenja, data mining-a i information

retrieval-a, kao ispomoć razumevanju materijala koji sledi. Pregled, dat u poglavlju 2,
uključuje reprezentacije podataka, mere udaljenosti i sličnosti, klasifikaciju, klastering,
semi-supervizirano učenje (semi-supervised learning), detekciju outlier-a, i redukciju
dimenzionalnosti.

Deo II posvećen metrikama, koji uključuje poglavlja 3–7, predstavlja pravac is-
traživanja posvećen ponašanju mera udaljenosti i sličnosti u prostoru podataka rastuće
dimenzionalnosti. Poglavlje 3 proučava fenomen koncentracije u okviru kosinusne
mere sličnosti. Preostala poglavlja dela II istražuju nov fenomen habovitosti (posto-
janja habova), koji označava tendenciju grafova suseda u višedimenzionalnim skupovi-
ma podataka da sadrže čvorove (habove) koji su češće uključeni u liste najbližih suseda
drugih tačaka. Poglavlje 4 proučava fenomen sam po sebi na sintetičkim distribuci-
jama tačaka, iz teorijske i empirijske perspektive. Poglavlje 5 stavlja fenomen habova
u kontekst stvarnih podataka iz različitih domena primene, generalizuje zaključke iz
poglavlja 4, i istražuje efekte fenomena na tehnike mašinskog učenja i data mining-a
za klasifikaciju, semi-supervizirano učenje, klastering i detekciju outlier-a. Poglavlje 6
proučava habovitost u domenu vremenskih serija i predstavlja implikacije fenomena
na klasifikaciju vremenskih serija. Na kraju, poglavlje 7 izučava fenomen habova u
kontekstu information retrieval-a, gde habovi predstavljaju dokumente koji se uporno
pojavljuju u rezultatima pretraživanja za mnoge različite upite.

Deo III posvećen reprezentacijama dokumenata i odabiru atibuta, koji se sastoji
iz poglavlja 8 i 9, okreće se drugom pravcu istraživanja implikacija „prokletstva di-
menzionalnosti“: metodama odabira atributa, i njihovom interakcijom sa višedimen-
zionalnim reprezentacijama tekstualnih podataka. Poglavlje 8 opisuje eksperimentalnu
studiju o uticaju višedimenzionalnih reprezentacija dokumenata na performanse pet
klasifikatora. Utvrd̄eno je da različite transformacije ulaznih podataka: stemovanje,
normalizacija, logtf i idf, zajedno sa redukcijom dimenzionalnosti, imaju statistički
značajan efekat na performanse klasifikacije, u smislu i poboljšanja i pogoršanja. Pored
utvrd̄ivanja najbolje reprezentacije dokumenata za svaki klasifikator, studija opisuje
efekte svake transformacije na klasifikaciju, kao i njihove uzajamne odnose. Poglavlje 9
proučava odnos izmed̄u različitih transformacija reprezentacija tekstualnih podataka i
nekoliko široko korišćenih metoda odabira atributa, u kontekstu klasifikacije, pokazu-
jući da idf transformacija značajno utiče na distribuciju performansi klasifikacije u
odnosu na stepen redukcije dimenzionalnosti, i predstavljajući metodu evaluacije koja
dozvoljava otkrivanje odnosa izmed̄u različitih reprezentacija dokumenata i metoda
odabira atributa nezavisno od apsolutnih razlika u performansama klasifikacije.
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Na kraju, poglavlje 10 zaključuje disertaciju, sumirajući glavne rezultate i pred-
stavljajući mogućnosti za dalji rad.

Naučni doprinosi disertacije mogu se sagledati u okvirima pravaca istraživanja da-
tim u delovima II i III.

U delu II, originalni doprinosi počinju sa teorijskim rezultatima koji se tiču koncen-
tracije kosinusne mere sličnosti (poglavlje 3). U preostalim poglavljima dela II pažnja
ML, DM i IR istraživača se skreće ka fenomenu habova, koji predstavlja fundamen-
talnu osobinu distribucija podataka u višedimenzionalnim prostorima, a privukao je iz-
nenad̄ujuće malo ili čak nimalo pažnje do sad. Habovitost i njeni uzroci objašnjeni su sa
teorijskog i empirijskog stanovišta na veštačkim distribucijama podataka (poglavlje 4),
i stavljeni u kontekst stvarnih podataka iz različitih domena (poglavlje 5), opisujući
veze izmed̄u habovitosti, latentne dimenzionalnosti, i strukture klastera u podacima.
Poglavlje 5 takod̄e proučava interakciju izmed̄u habovitosti i informacija koje nose
oznake klasa, i pokazuje da je fenomen relevantan za različite metode klasifikacije
zasnovane na udaljenostima. Poglavlje pruža empirijske rezultate koji opisuju efekat
habovitosti na grafovske metode semi-superviziranog učenja, kao i metode za klaste-
ring i detekciju outlier-a zasnovane na udaljenostima. Značaj fenomena demonstriran je
i na podacima iz domena vremenskih serija (poglavlje 6), u kontekstu metoda za klasi-
fikaciju vremenskih serija koje se trenutno smatraju vodećim, pružajući okvir za ka-
tegorizaciju skupova podataka zasnovan na osobinama habovitosti i distribucije klasa,
a radi razumevanja procesa klasifikacije vremenskih serija. Na kraju, značaj fenomena
habovitosti demonstriran je na klasičnim metodama IR-a koje uključuju modele vek-
torskih prostora. Objašnjen je uzrok fenomena u odnosu na ponašanje kosinusne mere
sličnosti na podacima velikih dimenzija, a zaključci su generalizovani na naprednije
tehnike reprezentacije i pored̄enja dokumenata.

U delu III, glavni doprinosi sadržani su u eksperimentlnim rezultatima i metodologi-
jama za klasifikaciju višedimenzionalnih tekstualnih podataka. Opisani su uticaji i od-
nosi izmed̄u različitih transformacija bag-of-words reprezentacije dokumenata u kon-
tekstu klasifikatora često korišćenih na tekstu (poglavlje 8), i kvantifikovana interakcija
izmed̄u transformacija bag-of-words reprezentacije dokumenata i metoda za selekciju
atributa (poglavlje 9).
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ND
Predmetna odrednica/
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Član: dr Branimir Todoroović, docent, Prirodno-
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