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Abstrakt

U disertaciji se proučavaju prostor konvolutora i multiplikatora na prostorima
temperiranih ultradistributcija. Dokazane su teoreme koji karakterǐsu elemente
prostora konvolutora i multiplikatora. Date su strukturne teoreme za ultradis-
tribucione polugrupe i eksponenecijalne polugrupe. Furijeve huperfunkciske po-
lugrupe i hiperfunkciske polugrupe sa generatorima koji su negusto definisani su
analizirani, takodje su date strukturne teoreme i spektralne karakterizacije kao i
dovoljni uslovi za postojenje na takvih polugrupa za operator A koji ne mora biti
gust. Apstraktni Koshijev problem je proučavan za težinske Banahove prostore
kao i za odgovarujuće prostora ultradistribucija. Takodje su date i primene za
odredjene klase jednačina.
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Abstract

We are study the spaces of convolutors and multipliers in the spaces of tempered
ultradistributions. There given theorems which gives us the characterization of all
the elements which belongs to spaces of convolutors and multipliers. Structural
theorem for ultradistribution semigroups and exponential ultradistribution semi-
groups is given. Fourier hyperfunction semigroups and hyperfunction semigroups
with non-densely defined generators are analyzed and also structural theorems and
spectral characterizations give necessary and sufficient conditions for the existence
of such semigroups generated by a closed not necessarily densely defined operator
A. The abstract Cauchy problem is considered in the Banach valued weighted
Beurling ultradistribution setting and given some applications on particular equa-
tions.
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Preface

The first part of this work is devoted to the spaces of convolutors and multipliers
in the space of tempered ultradistributions. We give theorems describing their
structure in the Beurling and Roumieu case. All the proofs we give only for the
Roumieu case, using the definition of Roumieu ultradistributions given in [13].
The space of multipliers and the space of convolutors are topologically isomor-
phic.

The second part of this work is on the Generalized semigroups and abstract
Cauchy problem in weighted ultradistribution spaces in Beurling case. Genera-
lized semigroups firstly were introduced as distribution semigroups with densely
defined generators by J.L. Lions, and after that many authors showed scientific
interest in that area. After that, distribution semigroups with non-densely defi-
ned generators, ultradistribution semigroups and hyperfunction semigroups were
considered. The theory of the Generalized semigroups, makes more wide concept
that can be applied directly in many differential and integral equations, which can
be modeled as an abstract Cauchy problem on some Banach space.

Using tempered ultradistributions we define exponential ultradistribution se-
migroups. Furthermore, we give structural characterizations for ultradistribution
semigroups and exponential ultradistribution semigroups. Some of these results
are already known, but we give them for completeness.

In the definition of infinitesimal generators for distribution and ultradistri-
bution semigroups in the non-quasi-analytic case, all authors use test functions
supported by [0,∞). That approach cannot be used in the case of Fourier hyper-
function semigroups since in the quasi-analytic case only the zero function has
this property. Because of that, we define such semigroups on test spaces P∗ and
P∗,a (a > 0) and we give the axioms for such semigroups as well as the definition
of infinitesimal generator on subspaces of quoted spaces consisting of functions φ
with the property φ(0) = 0 and φ′(0) = 0. Following the ultradistribution case,
we give structural theorems for hyperfunction semigroups.

Following G.Da Prato and E.Sinestrari, [25], we consider the abstract Cauchy

problem in the space of Banach-valued ultradistributions D′(s)Lp (0, T ;E) and dif-
ferent type of solutions of the abstract Cauchy problem. The closed operator A
in the abstract Cauchy problem satisfy Hille-Yosida condition. In order to inves-
tigate the abstract Cauchy problem, previously we give the definitions and basic
properties on D′(s)Lp (0, T ;E). There are several cases on A and E which we consider
in the ultradistributional setting.

Novi Sad, 2014 Daniel Velinov
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Chapter 0

Introduction

Main goal in discourse is to study generalized semigroups, especially ultradist-
ribution semigroups and Fourier hyperfunction semigroups. Also the spaces of
convolutors and spaces of multipliers in the space of tempered ultradistributions
and their connection is given. This material is divided into five chapters.

The first chapter is devoted to the notation and some results which are already
known and used here to obtain new results. Here we recollect some basic facts
on the spaces of ultradistributions and tempered ultradistributions. In the next
section we consider more general spaces, the space of Fourier hyperfunctions and
the space of hyperfunctions. Some known results on distribution semigroups and
ultradistribution semigroups are mentioned, which ideas and proofs are used in the
next chapters. Results of G. Da Prato and E. Sinestrari, [25] are placed in section
devoted on the Cauchy problem. We extend these results in the last chapter.

In Chapter 2, the spaces of convolutors and multipliers in the space of tem-
pered ultradistributions are studied. We give structure theorems for the space

of convolutors in the Roumieu case, as well as the completeness of O
′(Mp)
C , resp.

O
′{Mp}
C . Also the space of multipliers O

(Mp)
M , resp. O

{Mp}
M is considered. Characte-

rization theorem for the space of multipliers in Roumieu case is given. The Fourier
transform gives a topological isomorphism between the space of multipliers and
the space of convolutors in Roumieu case.

In the next two chapters, we consider ultradistribution semigroups, exponential
ultradistribution semigroups and Fourier semigroups. The approach of J. L. Lions
to distribution semigroups [67] with the densely defined generators was the inspi-
ration for many mathematicians to investigate various classes of semigroups which
generalize C0−semigroups, see [3], [6], [15], [35], [44], [54], [61], [62], [76] and [107].
Ultradistribution semigroups with densely defined generators were considered by
J. Chazarain in [15] (see also [10], [20], [24], [29], [43], [107] and references therein)
while H. Komatsu [53] considered ultradistribution semigroups with non-densely
defined generators as well as Laplace hyperfunction semigroups. We also refer to
R. Beals [9]-[10] for the theory of ω-ultradistribution semigroups with the densely
defined generators, to P. C. Kunstmann [63] and to the monograph of I. Melni-
kova and A. Filinkov [70] for ultradistribution semigroups with the non-densely

1



2 Chapter 0. Introduction

defined generators. In [58], ultradistribution semigroups are analyzed, following
the approaches of P. C. Kunstmann [62] and S. Wang [104], where distributions
semigroups are considered.

On the other hand, S. Ōuchi [76] was the first who introduced the class of
hyperfunction semigroups, more general than distribution and ultradistribution
semigroups. Furthermore, generators of hyperfunction semigroups in the sense of
[76] are not necessarily densely defined. An analysis of R. Beals [9, Theorem
2’] gives an example of a densely defined operator A in the Hardy space H2(C+)
which generates a hyperfunction semigroup of [76] but this operator is not a gene-
rator of any ultradistribution semigroup, and any (local) integrated C-semigroups,
C ∈ L(H2(C+)).

Moreover, we analyze Fourier-hyperfunction semigroups with non-densely de-
fined generators continuing over the investigations of Roumieu type ultradistribu-
tion semigroups and construct examples of tempered ultradistribution semigroups
(see [58]) and Fourier-hyperfunction semigroups with non-densely defined genera-
tors. Here one cannot use the same approach as in the distribution and ultradist-
ribution semigroups with non-densely defined generators, since the test space of
Fourier hyperfunctions are rapidly decreasing real analytic functions. Also struc-
tural theorem for Fourier hyperfunction semigroups is given. The main interest is
the existence of fundamental solutions for the Cauchy problems with initial data
being hyperfunctions.

Da Prato and Sinestrari [25] have studied the Cauchy problem

u′(t) = Au(t) + f(t), u(0) = u0, (1)

where A is a closed operator in a Banach space E with not necessarily dense
domain in E but satisfying the Hille-Yosida condition. Here u0 ∈ E, f is the E-
valued continuous or Lp− function on [0, T ]. They have considered various classes
of equations and types of solutions illustrating their theory. Regularity properties
of solutions are extended much later in [93].

In the last chapter, the results of [25] for (1), mentioned above, are extended to
weighted Schwartz spaces of distributions and Beurling space of ultradistributions
[48]-[50]. Since the weighted Schwartz space D′Lp ([97]) can be involved in this
theory similarly as Beurling type spaces, and the second ones are more delicate,
the investigations are focused to the Beurling case, more precisely to the space of
ultradistributions D′(s)Lp ((0, T )×U)), U is a bounded domain in Rn, related to the
Gevrey sequence p!s, s > 1 (see [84] for U = Rn). In order to apply results of [25]
in this abstract setting, we study the topological structure of DsLp,h(U), p ∈ [1,∞]

(with special analysis for p =∞) as well as the closure of D(s)(U) in these spaces,
corresponding projective limits, tensor products, their duals as well as vector va-
lued versions of these spaces. As a special result, we obtain that D(s)

Lp (U) is nuclear

for bounded U . Also we have that all spaces D(s)
Lp (U) are isomorphic to Ḃ(s)(U)

for bounded U . Both assertions do not hold for U = Rn. The main results in this
section are related to the structure of quoted spaces. Such preparatory results are
needed for the formulation of the Cauchy problem in this abstract setting and for
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the application of results in [25].

I want to stress that already known results have citation next to them, in order
to distinguish them from the new results.





Chapter 1

Preliminaries

1.1 Spaces of Ultradistributions

Let (Mp) be a sequence of positive numbers. In sequel, some of the following
conditions will be assumed on (Mp):
(M.1) (Logarithmic convexity) M2

p ≤Mp−1Mp+1 for p ∈ N;
(M.2) (Stability under ultradifferential operators) For some A,H ≥ 0

Mp ≤ AHp min
0≤q≤p

Mp−qMq, p, q ∈ N;

(M.3) (Strong non-quasi-analyticity)

∞∑
p=q+1

Mp−1

Mp

≤ Aq
Mq

Mq+1

, q ∈ N,

and weaker conditions on (Mp):
(M.2)′ (Stability under differential operators) For some A,H > 1

Mp+1 ≤ AHp+1Mp, p ∈ N;

(M.3)′ (Non-quasi-analyticity)

∞∑
p=1

Mp−1

Mp

<∞.

The Gevrey sequence Mp = p!s, s > 1 satisfies all the above conditions. Here we
always assume that M0 = 1. For sequence (Mp), the associate function M(ρ) on
(0,+∞) is defined by

M(ρ) = sup
p∈N

log+

ρp

Mp

, ρ > 0.

In the sequel, whenever compactly supported ultradifferentiable functions are
considered, we assume that (Mp) satisfies (M.1), (M.2) and (M.3)′. Next, we give

the definition and several important properties of the spaces DMp,r
K ,D(Mp)

K ,D{Mp}
K ,

5



6 Chapter 1. Preliminaries

D(Mp)(Ω),D{Mp}(Ω), E (Mp)(Ω), E{Mp}(Ω), (see [48], [50], [13]). Let K be a regular
compact set in Rn and Ω an open set in Rn. Denote:

E{Mp},r(K) = {ϕ ∈ C∞(K) : ‖Dαϕ‖C(K) ≤ Cr|α|M|α|},

|α| = 0, 1, 2, . . . and for some constant C ≥ 0,

D{Mp},r
K = {ϕ ∈ C∞(Rn)with compact support : ‖Dαϕ‖C(K) ≤ Cr|α|M|α|},

|α| = 0, 1, 2, . . . and for some constant C ≥ 0. Both spaces are Banach spaces
with norm to be the infimum of the constant C in the upper estimate, i.e. ‖ϕ‖ =

sup
x∈K,α

|Dαϕ(x)|
r|α|M|α|

. Also define as a locally convex spaces,

E (Mp)(K) = lim←−−
r→0

E{Mp},r(K);

E (Mp)(Ω) = lim←−−−
KbΩ

E{Mp}(K);

E{Mp}(K) = lim−−−→r→∞
E{Mp},r(K);

E{Mp}(Ω) = lim←−−−
KbΩ

E{Mp}(K);

D(Mp)
K = lim←−−

r→0

D{Mp},r
K ;

D(Mp)(Ω) = lim−−−→
KbΩ

D(Mp)
K ;

D{Mp}
K = lim−−−→r→∞

D{Mp},r
K ;

D{Mp}(Ω) = lim−−−→
KbΩ

D{Mp}
K .

Theorem 1.1.1. [48] E (Mp)(K), E (Mp)(Ω) and D(Mp)
K are (FS)-spaces, E{Mp}(K),

D{Mp}
K and D{Mp}(Ω) are (DFS)-spaces and D(Mp)(Ω) is an (LFS)-space. In parti-

cular these spaces are separable complete bornologic Montel and Schwartz spaces.

Every bounded set in D{Mp}
K or D(Mp)(Ω) (E{Mp}(K)) is a bounded set in some

D{Mp},r
K (E{Mp},r(K)).
E{Mp}(Ω) is a complete Schwartz spaces. In particular, it is semi-reflexive.
If (Mp) satisfies (M.2)′, then all the spaces defined above are nuclear.

Theorem 1.1.2. [48] A sequence of a positive numbers (Mp), satisfies condition
(M.1) if and only if

Mp = M0 sup
ρ

ρp

eM(ρ)
.

Theorem 1.1.3. [48] The sequence (Mp) satisfies (M.2) if and only if for some
A,H > 0,

2M(ρ) ≤M(Hρ) + log(AM0).
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If f ∈ L1 then its Fourier transform is defined by

(Ff)(ξ) = f̂(ξ) =

∫
Rn
e−ixξf(x)dx, ξ ∈ Rn.

For f ∈ L1 its Laplace transform is defined by

(Lf)(ζ) =

∫
Rn
e−ixξf(x)dx, ζ ∈ Cn.

By < we denote the set of positive sequences which monotonically increases to

infinity. For rp ∈ < and K a compact set in Rn, we denote by D{Mp}
K,rp

the space of
smooth functions ϕ on Rn supported by K such that

‖ϕ‖K,rp = sup{| D
pϕ(x) |
Np

; p ∈ Nn, x ∈ K} <∞,

where Np = Mp

|p|∏
i=1

ri, p ∈ Nn. Clearly, this is a Banach space. It is proved in

[50] that

D{Mp}
K = proj lim

rp∈<
D{Mp}
K,rp

.

If Ω ⊂ Rn is a bounded open set and r > 0, resp. rp ∈ <, we put

D(Mp)
Ω,r = ind lim

K⊂⊂Ω
D{Mp}
K,r , D{Mp}

Ω,rp
= ind lim

K⊂⊂Ω
D{Mp}
K,rp

.

The associated function for the sequence Np is

Nrp(ρ) = sup{log+

ρp

Np

; p ∈ N}, ρ > 0.

Note, for given rp and every k > 0 there is ρ0 > 0 such that

Nrp(ρ) ≤M(kρ), ρ > ρ0. (1.1)

When (Mp) satisfies conditions (M.1), (M.2) and (M.3) one defines ultradiffe-
rential operators as follows:

It is said that P (ξ) =
∑
α∈Nn

0

aαξ
α, ξ ∈ Rn, is an ultrapolynomial of the class (Mp)

resp. {Mp}, whenever the coefficients aα satisfy the estimate

| aα |≤
CLα

Mα

, α ∈ Nn, (1.2)

for some L > 0 and C > 0 resp. for every L > 0 and some CL > 0. The
corresponding operator P (D) =

∑
α aαD

α is an ultradifferential operator of the
class (Mp), resp. {Mp}.

Assume now (M.1), (M.2) and (M.3) and put

Pr(ζ) = (1 + ζ2)
∏
p∈Nn

(
1 +

ζ2

r2m2
p

)
, resp.

Prp(ζ) = (1 + ζ2)
∏
p∈Nn

(
1 +

ζ2

r2
pm

2
p

)
, ζ ∈ Cn,

(1.3)
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where mp = Mp/Mp−1 and r > 0 resp. rp ∈ <. Conditions (M.1), (M.2) and
(M.3) imply that Pr resp. Prp is an ultradifferential operator of the class (Mp)
resp. of the class {Mp} (see [48]). The following estimates

| Pr(ξ) |≥ eM(r|ξ|), ξ ∈ Rn,
| Prp(ξ) |≥ eNrp (|ξ|), ξ ∈ Rn, (1.4)

hold.
Assume (M.1), (M.2) and (M.3). Denote by SMp,m

2 (Rn), m > 0, the space of
smooth functions ϕ which satisfy

σm,2(ϕ) :=
( ∑
p,q∈Nn

∫
Rn

∣∣∣mp+q〈x〉pϕ(q)(x)

MpMq

∣∣∣2dx)1/2

<∞, (1.5)

supplied with the topology induced by the norm σm,2. If instead of 2 put p ∈ [1,∞]
in (1.5) one obtains the equivalent sequence of norms σm,p, m > 0.

The spaces S ′(Mp) and S ′{Mp} of tempered ultradistributions of Beurling and
Roumieu type respectively, are defined as the strong duals of the spaces

S(Mp) = lim projm→∞S
Mp,m
2 (Rn) and S{Mp} = lim indm→0SMp,m

2 (Rn),

respectively. The common notation for symbols (Mp) and {Mp} will be ∗.
All the good properties of S∗ and its strong dual follow from the equivalence

of the sequence of norms σm,p, m > 0,, p ∈ [1,∞] with the each of the following
sequences of norms [60], [13] :

(a) σm,p, m > 0, p ∈ [1,∞] is fixed ;
(b) sm,p, m > 0, p ∈ [1,∞] is fixed, where

sm,p(ϕ) :=
∑

α,β∈Nn

mα+β‖xβϕ(α)‖p
MαMβ

;

(c) sm, m > 0, where sm(ϕ) := sup
α∈Nn

mα‖ϕ(α)eM(m·)‖L∞
Mα

;

In [13] it is proved that

S{Mp} = proj lim
ri,sj∈<

SMp
ri,sj

,

where SMp
ri,sj

= {ϕ ∈ C∞(Rn); γri,sj(ϕ) <∞},

and γri,sj(ϕ) :=
∑
p,q∈Nn

{ ‖〈x〉pϕ(q)‖L∞
(
∏p

i=1 ri)Mp(
∏q

j=1 sj)Mq

}.

Due to [82, Theorem 2], we have the following representation theorems for
tempered ultradistributions in the case when (M.1), (M.2) and (M.3) are valid.

Let T ∈ S ′∗+ (R, E). Then there exist an ultradifferential operator of (Mp)-class,
PL(d/dt) and L > 0, formally of the form

PL(d/dt) =
∞∏
p=1

(1 +
L2

m2
p

d2/dt2) =
∞∑
p=0

apd
p/dtp,
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resp., of {Mp}-class, PLp(d/dt), (Lp)p is a sequence tending to zero, formally of
the form

PLp(d/dt) =
∞∏
p=1

(1 +
L2
p

m2
p

d2/dt2) =
∞∑
p=0

apd
p/dtp

and a continuous function f : R → E with the properties suppf ⊂ (−a,∞), for
some a > 0, ||f(t)|| ≤ AeM(k|t|), t ∈ R, for some k > 0 and A > 0, resp., for every
k > 0 and a corresponding A > 0, and that T = PL(−id/dt)f in (Mp)-case on
S(Mp)(R), resp., T = PLp(−id/dt)f in {Mp}-case on S{Mp}(R).

Note that F : S∗ → S∗ is a topological isomorphism and that the Fourier
transformation on S ′∗ is defined as usual.

1.2 Spaces of Hyperfunctions

The basic facts about hyperfunctions and Fourier hyperfunctions of M. Sato can
be found on an elementary level in the monograph of A. Kaneko [40] (see also [72],
[32], [41]-[42]).
Let E be a Banach space, Ω be an open set in C containing an open set I ⊂ R
as a closed subset and let O(Ω) be the space of E−valued holomorphic func-
tions on Ω endowed with the topology of uniform convergence on compact sets
of Ω. The space of E−valued hyperfunctions on I is defined as B(I, E) :=
O(Ω \ I, E)/O(Ω, E). A representative of f = [f(z)] ∈ B(I, E), f ∈ O(Ω \ I, E)
is called a defining function of f . The space of hyperfunctions supported by a
compact set K ⊂ I with values in E is denoted by ΓK(I,B(E)) = B(K,E).
It is the space of continuous linear mapping from A(K) into E, where A(K) is
the inductive limit type space of analytic functions in neighborhoods of K en-
dowed with the appropriate topology [47]. Denote by A(R) the space of real
analytic functions on R: A(R) =proj limK⊂⊂RA(K). The space of continuous
linear mappings from A(R) into E, denoted by Bc(R, E), is consisted of com-
pactly supported elements of B(K,E), where K varies through the family of all
compact sets in R. We denote by B+(R, E) the space of E−valued hyperfunc-
tions whose supports are contained in [0,∞). As in the scalar case (E = C), if
f ∈ Bc(R, E) and suppf ⊂ {a}, then f =

∑∞
n=0 δ

(n)(· − a)xn, xn ∈ E, where
lim
n→∞

(n!||xn||)1/n = 0. Let D = {−∞,+∞} ∪ R be the radial compactification of

R. Put Iν = (−1/ν, 1/ν), ν > 0. For δ > 0, the space Õ−δ(D + iIν) is defined as
a subspace of O(R + iIν) with the property that for every K ⊂⊂ Iν and ε > 0
there exists a suitable C > 0 such that |F (z)| ≤ Ce−(δ−ε)|Rez|, z ∈ R + iK. Then
P∗(D) :=indlimn→∞ Õ−1/n(D+ iIn) is the space of all rapidly decreasing, real ana-
lytic functions (cf. [40, Definition 8.2.1]) and the space of Fourier hyperfunctions
Q(D, E) is the space of continuous linear mappings from P∗(D) into E endowed
with the strong topology. We point out that Fourier hyperfunctions were firstly
introduced by M. Sato in [88] who called them slowly increasing hyperfunctions.
Let us note that the sub-index ∗ in P∗(D) does not have the meaning as in the
case of ultradistributions. This is often used notation in the literature (cf. [40]).
Recall, the restriction mapping Q(D, E)→ B(R, E) is surjective.
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Theorem 1.2.1. [40] The space B∗(Rn) of hyperfunctions with compact support,
the space Q−δ of exponentially decreasing hyperfunctions of type −δ, and the space
Q of Fourier hyperfunctions are in the following subspace relationships via natural
embeddings.

B∗(Rn) ↪→ Q−δ ↪→ Q.

In addition, the definition of the Fourier transforms for these spaces is consistent
with embeddings.

Recall [40], an operator of the form P (d/dt) =
∑∞

k=0 bk(d/dt)
k is called a local

operator if lim
k→∞

(|bk|k!)1/k = 0. Note that the composition and the sum of two local

operators is again a local operator.
The main structural property of Q(D) says that every element f ∈ Q(D) is

of the form f = P (d/dt)F, where P is a local operator and F is a continuous
slowly increasing function (for every ε > 0 there exists Cε > 0 such that |F (t)| ≤
Cεe

ε|t|, t ∈ R). More precisely, we have the following global structural theorem
(cf. [40, Proposition 8.1.6, Lemma 8.1.7, Theorem 8.4.9]), reformulated here with
a sequence (Lp)p:

Let, formally,

PLp(d/dt) =
∞∏
p=1

(1 +
L2
p

p2
d2/dt2) =

∞∑
p=0

apd
p/dtp, (1.6)

where (Lp)p is a sequence decreasing to 0. This is a local operator and we call it
hyperfunction operator.

Let T ∈ Q(D, E). There is a local operator PLp(−id/dt) (with a corresponding
sequence (Lp)p) and a continuous slowly increasing function f : R → E (for
every ε > 0 there exists Cε > 0 such that ||f(x)|| ≤ Cεe

ε|x|, x ∈ R) such that
T = PLp(−id/dt)f .

If a hyperfunction is compactly supported, suppf ⊂ K, f ∈ B(K,E), then we
have the above representation with a corresponding local operator PLp(−id/dt)
and a continuous E−valued function in a neighborhood of K.

1.3 Some results from the theory of Generalized

semigroups

In this section we briefly give some definitions and theorems of the theory of
generalized semigroups. We will extensively use these results in the subsequent
chapters. The theory of generalized semigroups has started to develop after the
paper of J.L.Lions [67] on distribution semigroups. From now on, unless otherwise
stated, by E we denote a Banach space. In [67], the distribution semigroups are
defined by:

Definition 1.3.1. [67] A distribution G is a distribution semigroup if following
condition are satisfied:



1.3. Some known results from the theory of Generalized semigroups 11

(i) G ∈ D′+(L(E;E)), G = 0, for t < 0;

(ii) G(ϕ ∗ ψ) = G(ϕ)G(ψ) for all ϕ, ψ ∈ D0, where D0 is the space of all ϕ ∈ D
such that ϕ(t) = 0 for t < 0;

(iii) Let ϕ ∈ D0, x ∈ E and y = G(ϕ)x. The distribution Gy is equal to a
continuous function u on [0,+∞) and u(t) = 0 for t < 0 with range in E
and u(0) = y;

(iv) The range of the all elements G(ϕ)x, where ϕ ∈ D0, x ∈ E is dense in E;

(v) If for all ϕ ∈ D0, G(ϕ)x = 0, x ∈ E then x = 0.

The sequence ρn ∈ D0 is regularizing if ρn −→ δ in the space of measures with
compact support, equipped with the weak topology. Let T ∈ E ′ and T = 0 for
t < 0. Note that for ρ ∈ D0, T ∗ ρ ∈ D0. For such regularizing sequence ρn the
following two properties can be proven:

a) G(ρn)x −→ x , when ρn −→ δ,

b) G(T ∗ ρn)x converge to some y ∈ E, when T ∈ E ′.

We say that x is in the domain of G(T ), (x ∈ D(G(T ))), if there exists regularizing
sequence ρn such that G(ρn)x −→ x and G(T ∗ ρn)x converge in E. The limit of
G(T ∗ ρn)x is denoted by G(T )x. Then,

G(ρn)x −→ x

G(T ∗ ρn)x −→ G(T )x.

We deonte by G(T ) the closure of the operator G(T ). The following theorem
holds:

Theorem 1.3.1. [67] Let T ∈ E ′ is zero for t < 0. Define the closed operator
with dense domain G(T ) with

G(T )G(ϕ)x = G(T )G(ϕ)x = G(T ∗ ϕ)x, ϕ ∈ D0, x ∈ E.

The operator A = G(−δ′) is an infinitesimal generator for the distribution
semigroup G. Note that G(δ) = I.

The space D(A) is the domain of the infinitesimal generator A, with the norm
‖x‖+‖Ax‖. For U ∈ D′+(L(E;D(A))) and V ∈ D′+(L(D(A));E) the compositions
U ∗V and V ∗U are defined on D′+(L(D(A);D(A))) and D′+(L(E;E)), respectively.
The distribution −δ ⊗ A+ δ′ ⊗ I is an element of D′+(L(D(A);E)).

Theorem 1.3.2. [67] Let G be a distribution semigroup with infinitesimal gene-
rator A. Then:

i) G ∈ D′+(L(E;D(A)));

ii)
(
− A+ ∂

∂t

)
∗G = δ ⊗ IE;
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iii) G ∗
(
− A+ ∂

∂t

)
= δ ⊗ ID(A),

where IA and ID(A) are identity mapping on A and D(A), respectively.

This corollary is closely related to the solutions of abstract Cauchy problem,
having distribution as an initial value.

Corollary 1.3.1. [67] If G is a distribution semigroup with infinitesimal generator
A, then the equation

−Au+
∂

∂t
u = T, u ∈ D′+(D(A)),

where T ∈ D′+(E) has an unique solution u = G ∗ T . If suppT ⊂ [α,∞) then
suppu ⊂ [α,∞).

The opposite direction also holds:

Theorem 1.3.3. [67] Let A be a closed operator with dense domain in E. If the
solution

−Au+
∂

∂t
u = T,

where u ∈ D′+(D(A)) and T ∈ D′+(E), has an unique solution depending of conti-
nuity of T and suppose that T is zero for t < α then u is zero for t < α, then A
is infinitesimal generator of an unique distribution semigroup.

Following the idea on L. Schwartz on considering the space of all rapidly de-
creasing functions S and its dual, J.L. Lions, [67] introduced and studied the
exponential distribution semigroups.

A distribution G is an exponential distribution semigroup if G is a distribution
semigroup and the following additional condition is satisfied:

there exists ξ0, such that e−ξtG ∈ S ′(L(E;E)), for ξ > ξ0.
From the above definition it is clear that all the results on distribution se-

migroups hold for exponential distribution semigroups. Note that now, for the
definition of G(T ) there is no need T to be with compact support, but it is only
enough for T to have a suitable growth at infinity.

Theorem 1.3.4. [67] Necessary and sufficient condition for the closed linear ope-
rator A with dense domain in E to be infinitesimal generator of exponential dis-
tribution semigroup are:

i) there exists ξ0, such that −A + p, for p = ξ + iη, ξ > ξ0 is an isomorphism
from D(A) to E;

ii) If G(p) = (−A+ p)−1, ξ > ξ0 then ‖G(p)‖ ≤ pol(|p|).

P.C. Kunstmann [62], gave new definition of the distribution semigroups ex-
tending the previous theory of distribution semigroups, in direction that the gene-
rators of the distribution semigroups are not densely defined. Similarly like Lions,
he treated the abstract Cauchy problem as a convolution equation which showed
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to be very useful.
By ∗0 we denote the mapping ∗0 : D ×D −→ D,

f ∗ g(t) =

t∫
0

f(s)g(t− s) ds ,

which is bilinear, separately continuous, associative and coincides on D0 × D0

with the usual convolution. The definition of P.C. Kunstmann of distribution
semigroups is:

Definition 1.3.2. [62] An element G ∈ D′0(L(E)) is a pre-distribution semigroup
(shorty pre-DSG) if for all ϕ, ψ ∈ D

G(ϕ)G(ψ) = G(ϕ ∗0 ψ). (1.7)

A pre-DSG is non-degenerate or just distribution semigroup (shorty DSG) if

N (G) =
⋂
{KerG(ϕ) : ϕ ∈ D0} = {0}. (1.8)

A pre-DSG it is called dense if

R(G) =
⋃
{ImG(ϕ) : ϕ ∈ D0} (1.9)

is dense in E.

Let T ∈ E ′0. Then

G̃ = {(x, y) ∈ E × E : ∀ϕ ∈ D0 G(T ∗ ϕ)x = G(ϕ)y}.

G̃(T ) is a closed linear operator in E for all T in E ′0. The generator A of G is the
closed linear operator A := G(−δ′). If the DSG G is a dense, then its generator
is a dense operator.

In the definition of J.L.Lions, G is an element of D′0(L(E;E)) satisfying for all

ϕ, ψ ∈ D0, G(ϕ)G(ψ) = G(ϕ ∗ ψ) (1.10)

and in addition for all ϕ ∈ D0, ψD0, x ∈ E, there exists continuous function u on
[0,∞) such that for all ψ ∈ D G(ψ)G(ϕ)x =

∫∞
0
ψ(t)u(t) dt. The definition of Lions

requires u(0) = G(ϕ)x, but by (1.10), u(t) = G(τtϕ)x, where τtϕ(x) = ϕ(x−t), for
t > 0, this condition is automatically fulfilled by the continuity of u. In the sequel
by DSG-L, we mean the distribution semigroup in the sense of definition of Lions,
and when DSG is used it means that the previous definition (definition of P.C.
Kunstmann) is in consideration. Note that being DSG-L is equivalent to being
a dense DSG. In the case of dense DSG the definitions of the generators by J.L.
Lions and P.C. Kunstmann coincide. When the DSG is non-densely defined that
is not a case. In fact if A is a generator of a non-densely defined DSG, then the
generator in sense of J.L. Lions coincides with with the closure of the restriction
of A to D∞ = ∩∞n=1D(An). Also in [62] is given that the non-densely defined DSG
cannot be obtain simply by dropping condition of denseness of DSG-L.
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Example 1.3.1. [62] Let G be a non-dense DSG with generator A. Then D(A)
is not dense in E, so there are x ∈ E and x∗ ∈ (D(A))◦, such that 〈x∗, x〉 6= 0.
Then G̃ := G+ δ ⊗ 〈x∗, ·〉 doesn’t satisfy (1.7).

Let E and D be Banach spaces and P ∈ D′0(L(D,E)). A fundamental solution
for P is an element G of D′0(L(E,D)) which satisfies P ∗G = δ⊗IE and G∗P = δ⊗
ID, where IE and ID are identical mappings on E andD respectively. Furthermore,
a few important results from [62] are listed, which are generalized in subsequent
chapters to the case of ultradistributions and Fourier hyperfunctions.

Theorem 1.3.5. [62] Let A be a closed operator in E. Then A generates a
DSG G if and only if there is a fundamental solution for P = δ′ ⊗ I − δ ⊗ A ∈
D′0(L(D(A), E)) where D(A) is supplied with the graph norm and I denotes the
inclusion D(A) −→ E.

Theorem 1.3.6. [62] Let G be a DSG with generator A. Then the following
statements are equivalent:

a) G is a dense DSG;

b) G(·)∗ is a DSG in E∗;

c) A is densely defined.

Corollary 1.3.2. [62] Let A be a closed operator in E. A is the generator of a
DSG if and only if there are constants α, β, C > 0 and n ∈ N such that

Λ := {λ ∈ C : Reλ ≥ α log(1 + |λ|) + β} ⊂ ρ(A)

and

∀λ ∈ Λ : ‖R(λ,A)‖ ≤ C(1 + |λ|)n.

Theorem 1.3.7. [62] Let G be a pre-DSG in E, a > 0 and n ∈ N. Suppose G
has a strongly continuous representation F of order n on [0, a]. Then

a) For all s, t ∈ [0, a] with s+ t ∈ [0, a],

F (t)F (s) =

t+s∫
t

(s+ t− r)n−1

(n− 1)!
F (r) dr −

s∫
0

(s+ t− r)n−1

(n− 1)!
F (r) dr .

Furthermore

KerT =
⋃

t∈(0,a]

KerF (t) and KerS =
( ⋃
t∈(0,a]

ImF (t)
)◦
,

where T ∈ L(N (G)) denotes the kernel operator of G and S denotes the
kernel operator of G(·)∗.
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b) If G is a DSG with generator A, then

(x, y) ∈ A⇔ ∀t ∈ [0, a] : F (t)x− tn

n!
x =

t∫
0

F (s)y ds .

For the needs of Chapter 3 and Chapter 4, we give the definitions of (local)
K-convoluted C-semigroup and α times integrated C-semigroup:

Let A be a closed operator, K be a locally integrable function on [0, τ), 0 <

τ ≤ ∞, and let Θ(t) :=
t∫

0

K(s)ds, 0 ≤ t ≤ τ . If there exists a strongly continuous

operator family (SK(t))t∈[0,τ) such that, for t ∈ [0, τ), SK(t)C = CSK(t), SK(t)A ⊂

ASK(t),
t∫

0

SK(s)xds ∈ D(A), x ∈ E and

A

t∫
0

SK(s)xds = SK(t)x−Θ(t)Cx, x ∈ E,

then (SK(t))t∈[0,τ) is called a (local) K-convoluted C-semigroup having A as a
subgenerator.

For τ =∞, we say that (SK(t))t≥0 is an exponentially bounded K-convoluted
C−semigroup generated by A if, additionally, there exist M > 0 and ω ∈ R
such that ||SK(t)|| ≤ Meωt, t ≥ 0. (SK(t))t∈[0,τ) is called non-degenerate, if the
assumption SK(t)x = 0, for all t ∈ [0, τ), implies x = 0.

If K(t) = tα−1

Γ(α)
, α > 0, then we also say that (SK(t))t∈[0,τ) is an α-times in-

tegrated C-semigroup having A as a subgenerator. Then it is straightforward to
see that A is a subgenerator of an n-times integrated C-semigroup, for any n ∈ N
with n ≥ α. Usually, we will have C = I in the definitions of (local)K-convoluted
semigroups (see [57]).

In Chapter 3 it will be given a structural theorem through convoluted semi-
groups using [70]. Using the results of P.C. Kunstmann, M. Kostić and S. Pilipović
[58] considered ultradistribution semigroups with non-densely defined generators.
They mentioned also ultradistribution semigroups in sense of J.L. Lions, shortly
noted as UDSG-L. We recall from [58] the definitions of L-ultradistribution semi-
groups and ultradistribution semigroups (following [67] ,[62] and [104]).

Definition 1.3.3. [58] Let G ∈ D′∗+(R, L(E)). It is an L-ultradistribution semi-
group of ∗-class if:
(U.1) G(φ ∗ ψ) = G(φ)G(ψ), φ, ψ ∈ D∗0(R);
(U.2) N (G) :=

⋂
φ∈D∗0(R) N(G(φ)) = {0};

(U.3) R(G) :=
⋃
φ∈D∗0(R) R(G(φ)) is dense in E;

(U.4) For every x ∈ R(G) there exists a function u ∈ C([0,∞), E) satisfying

u(0) = x and G(φ)x =

∞∫
0

φ(t)u(t)dt, φ ∈ D∗(R).
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If G ∈ D′∗+(R, L(E)) satisfies

(U.5) G(φ∗0ψ) = G(φ)G(ψ), φ, ψ ∈ D∗(R) (f ∗0g(t) :=
t∫

0

f(t−s)g(s)ds, t ∈ R),

then it is a pre-(UDSG) of ∗-class. If (U.5) and (U.2) are fulfilled for G, then G is
an ultradistribution semigroup of ∗-class, in short, (UDSG). A pre-(UDSG) G is
dense if it additionally satisfies (U.3).

If G ∈ D′∗+(R, L(E)), then the condition:
(U.2)′ suppG(·)x * {0}, for every x ∈ E \ {0}, is equivalent to (U.2).

The next example shows the differences between L-ultradistribution semi-
groups and ultradistribution semigroups. In fact, the example 1.3.1 in context
of ultradistribution semigroups is paraphrased in next example.

Example 1.3.2. Let A and E be as in Example 3.1.1. Choose an element x ∈ E
and afterwards a functional x∗ ∈ (D(A))◦ with 〈x∗, x〉 = 1. Let G be as in Example
3.1.1 and G̃ := G+ δ⊗〈x∗, ·〉x. Then G̃ satisfies (U.1), (U.2), (U.4), but not (U.5).

In context of Lemma 2.2, Lemma 2.4, Lemma 2.6-2.7 and Lemma 3.6 in [62] in
sense of ultradistribution semigroups, in [58] the following two theorems are given:

Theorem 1.3.8. [58] Let G be a pre-(UDSG) of ∗-class, F := E/N (G) and q be
the corresponding canonical mapping q : E −→ F . Then:

a) Define H ∈ D∗′0 (L(F )) by qG(ϕ) := H(ϕ)q for all ϕ ∈ D∗. Then H is a
(UDSG) of ∗-class in F .

b) 〈R(G)〉 = R(G).

c) Assume that G is not dense. Put R := R(G) and H := G|R. Then H is a
dense pre-(UDSG) of ∗-class in R.

d) The adjoint G∗ of G satisfies N (G∗) = R(G)
◦
. (Herein R(G)

◦
denotes the

polar of R(G).)

e) If E is reflexive, then N (G) = R(G∗)
◦
.

f) G∗ is a (UDSG) of ∗-class on E∗ if and only if G is a dense pre-(UDSG) of
∗-class. If E is reflexive, then G∗ is a dense pre-(UDSG) of ∗-class on E∗

if and only if G is a (UDSG) of ∗-class.

g) G is a (UDSG) of ∗-class if and only if (U.1), (U.2) and G(ϕ+) = G(ϕ),
ϕ ∈ D∗ hold.

h) N (G) ∩ 〈R(G)〉 = {0}.

i) Assume that (U.3) holds. Then we have the following equivalence relation:

[(U.1) ∧ (U.2) ∧ (U.4)]⇐⇒ [(U.5) ∧ (U.2)].

Theorem 1.3.9. [58] Let G be a (UDSG) of ∗-class and let S, T ∈ E∗′0 , ϕ ∈ D∗0,
ψ ∈ D∗ and x ∈ E. Then the following holds:
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a) (G(ϕ)x,G(T ∗ T ∗ . . . ∗ T︸ ︷︷ ︸
m

∗ϕ) ∈ G(T )m, m ∈ N.

b) G(S)G(T ) ⊆ G(S ∗ T ) with G(S)G(T ) = D(G(S ∗ T )) ∩ D(G(T )) and
G(S) +G(T ) ⊆ G(S + T ).

c) (G(ψ)x,G(−ψ′)x− ψ(0)x) ∈ G(−δ′).

d) If G is dense, its generator is densely defined.

In the same way as in the case of distributions, the definition of ultradistribu-
tion fundamental solution is given by the following definition:

Definition 1.3.4. [58] Let D and E are Banach spaces and let P ∈ D∗′0 (L(D,E)).
Then G ∈ D∗′0 (L(E,D)) is said to be an ultradistribution fundamental solution
for P when P ∗G = δ ⊗ IE and G ∗ P = δ ⊗ ID.

Every (UDSG) is uniquely determined by its generator.

Theorem 1.3.10. [58] Let A be a closed operator. If A generates a (UDSG) G
of ∗-class, then G is an ultradistribution fundamental solution for

P := δ′ ⊗ ID(A) − δ ⊗ A ∈ D∗
′

0 (L([D(A)], E)).

In particular, if T ∈ D∗′0 (E), then u = G ∗ T is the unique solution of

−Au+
∂

∂t
u = T, u ∈ D∗′0 ([D(A)]),

and the supposition suppT ⊆ [α,∞) implies supp ⊆ [α,∞). Conversely, if
G ∈ D∗′0 (L(E, [D(A)])) is an ultradistribution fundamental solution for P , then
G is a pre-(UDSG) of ∗-class in E generated by the closure of the operator
A ≡ {(q(x), q(y)) : (x, y) ∈ A}.

Theorem 1.3.11. [58] Assume that (M.3) holds. Let T ∈ D∗′0 (E) and let A be a
closed, densely defined operator. Assume that the equation

−Au+
∂

∂t
u = T, u ∈ D∗′0 ([D(A)])

has a unique solution depending continuously on T , and that the assumption
suppT ⊆ [α,∞) implies suppu ⊆ [α,∞). Furthermore, assume that for T = δ
the corresponding solution u fulfills suppu(·, x) * {0}, x ∈ E\{0}. Then A is the
generator of an L-ultradistribution semigroup of ∗-class.

Theorem 1.3.12. [58] There exists an ultradistribution fundamental solution of
∗-class for a closed linear operator A if and only if there exist l > 0 and β > 0, in
the Beurling case, resp., for every l > 0 there exists βl > 0, in the Roumieu case,
such that:

Λ
(Mp)
l,β ⊆ ρ(A), resp., Λ

{Mp}
l,βl

= {λ ∈ C : Reλ ≥M(l|λ|) + βl} ⊆ ρ(A)

and

‖R(λ : A)‖ ≤ βeM(l|λ|), λ ∈ Λ
(Mp)
l,β , resp., ‖R(λ : A)‖ ≤ βle

M(l|λ|), λ ∈ Λ
{Mp}
l,βl

.
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In the same paper M. Kostić and S. Pilipović [58], considered exponential ult-
radistribution fundamental solutions.

Definition 1.3.5. [58] Suppose G is an ultradistribution fundamental solution of
∗-class for a closed linear operator A, resp., G is a (UDSG) of ∗-class generated by
A. Then it is said that G is an exponential ultradistribution fundamental solution
of ∗-class for A, resp., an exponential (UDSG) of ∗-class, (EUDSG) in short, if
(U.7) there exists ω ≥ 0 such that e−ω·G ∈ S∗′(L(E)) holds. Conditions (U.5) and
(U.7) define an exponential pre-(UDSG).

Theorem 1.3.13. [55] Suppose A is a closed linear operator. Then there exists
an exponential ultradistribution fundamental solution of ∗-class for A if and only
if there exist a ≥ 0, k > 0 and L > 0, in the Beurling case, resp., there exists
a ≥ 0 such that, for every k > 0 there exists Lk > 0, in the Roumieu case, such
that:

{λ ∈ C : Reλ > a} ⊆ ρ(A)and

‖R(λ : A)‖ ≤ LeM(k|λ|), λ ∈ C, Reλ > a, resp.,

‖R(λ : A)‖ ≤ Lke
M(k|λ|) for all k > 0 and λ ∈ C, Reλ > a.

In the case of hyperfunction semigroups, S.Ōuchi is the first who studied more
deeply, while using the approach of J.L. Lions, Y. Ito considered Fourier hyper-
function semigroups with densely defined generators. But, that kind of approach
can not be used because of the analyticity of the test functions. In Chapter 4 Fou-
rier hyperfunction semigroups will be defined using substantially new approach.

1.4 Some results connected to the Cauchy pro-

blem

The Cauchy problem has been extensively studied in past three decades, [5], [25],
[70]. We point out some references, for another approaches to the abstract Cauchy
problem with non-densely defined A through the theory of integrated, convoluted,
distribution or ultradistribution semigroups, [2]-[7], [34], [62]-[66], [74], [70].

Consider the homogeneous Cauchy problem

u′(t) = Au(t), t ≥ 0, u(0) = x

where A is a linear closed densely defined operator on a Banach space E, x ∈ E
By [D(A)] is denoted the Banach space with the norm ‖x‖An = ‖x‖ + ‖Ax‖ +
. . .+ ‖Anx‖.

Theorem 1.4.1. [70] Let A be a generator of n-times integrated semigroup {V (t) :
t ≥ 0}, n ∈ N. Then
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a) for x ∈ D(A), t ≥ 0

V (t)x ∈ D(A), AV (t)x = V (t)Ax,

and

V (t)x =
tn

n!
x+

t∫
0

V (s)Axds;

b) for x ∈ D(A), t ≥ 0
t∫

0

V (s)x ds ∈ D(A)

and

A

t∫
0

V (s)x ds = V (t)x− tn

n!
x;

c) for x ∈ D(An), n ∈ N

V (n)(t)x = V (t)Anx+
n−1∑
k=0

tk

k!
Akx;

d) for x ∈ D(An+1)

d

dt
V (n)(t)x = AV (n)(t)x = V (n)(t)Ax;

e) the homogeneous Cauchy problem is (n, ω)-well possed.

We recall from G. Da Prato and E. Sinestrari, [25] some results which in the
last chapter will be used to give more general theory on the spaces of weighted
ultradistributions. At the beginning, some definition and notation will be given
which will be used in the sequel. They considered different type of solutions of
the Cauchy problem,

u′(t) = Au(t) + f(t), u(0) = u0, t ∈ [0, T ]

where A is a closed operator A : D(A) ⊆ E −→ E and f : [0, T ] −→ E, u0 ∈ E
are given. Here A is not need to be densely defined. Some of the spaces which are
considered here are spaces with E-valued functions:

C(0, T ;E) = {u : [0, T ] −→ E, u is continuous}

with norm ‖u‖C(0,T ;E) = sup
0≤t≤T

‖u(t)‖ and

Cn = {u : [0, T ] −→ E, u(k) ∈ C(0, T ;E), k = 0, 1, . . . , n}
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where n ∈ N and u(k) denotes the Fréchet derivative. Further, the definitions of
Lp and Sobolev E valued spaces are given as follows:

Lp(0, T ;E) = {u : [0, T ] −→ E;u is strongly integrable and‖u(·)‖pis integrable}

for 1 ≤ p <∞ with norm ‖u‖Lp(0,T ;E) = (
∫ T

0
‖u(t)‖p dt)1/p.

The E-valued Sobolev spaces:

W 1,p(0, T ;E) = {u : [0, T ] −→ E;u(u) = u0 +

t∫
0

u′(s) ds, t ∈ [0, T ]

for some u0 ∈ E and u′ ∈ Lp(0, T ;E)} for 1 ≤ p <∞
and norm ‖u‖W 1,p(0,T ;E) = ‖u‖Lp(0,T ;E) + ‖u′‖Lp(0,T ;E).

Let A : E −→ E be a closed linear operator in the Banach space E and
f ∈ Lp(0, T ;E) for 1 ≤ p <∞, u0 ∈ E. A strict solution in Lp of

u′(t) = Au(t) + f(t), u(0) = u0, t ∈ [0, T ]a.e. (1.11)

is a function u ∈ W 1,p(0, T ;E) ∩ Lp(0, T ;D(A)) satisfying (1.11).
Let f ∈ C(0, T ;E) and u0 ∈ E. A strict solution in C of

u′(t) = Au(t) + f(t), u(0) = u0, t ∈ [0, T ] (1.12)

is a function u ∈ C1(0, T : E) ∩ C(0, T ;D(A)) verifying (1.12).
Note that a strict solution in C of (1.12) is a strict solution in Lp of (1.11). The
opposite direction is not true in general.

A function u ∈ Lp(0, T ;E) is called an F -solution in Lp of (1.11) if for each
k ∈ N, there is uk ∈ W 1,p(0, T ;E) ∩ Lp(0, T ;D(A)) such that by setting

u′k(t)− Auk(t) = fk(t), uk(0) = u0k, t ∈ [0, T ]a.e. (1.13)

follows

lim
k→∞

(‖uk − u‖Lp(0,T ;E) + ‖fk − f‖Lp(0,T ;E) + ‖u0k − u0‖E) = 0. (1.14)

Note that if u is a strict solution in Lp then u is an F -solution in Lp. The opposite
direction is not true in the general case.

Let f ∈ L1(0, T ;E) and u0 ∈ E. Then u : [0, T ] −→ E is an integral solution
of (1.11) if u ∈ C(0, T ;E),

∫ t
0
u(s) ds ∈ D(A) for t ∈ [0, T ] and

u(t) = u0 + A

t∫
0

u(s) ds+

t∫
0

f(s) ds , t ∈ [0, T ]. (1.15)

From the above definitions it is clear that u ∈ C(0, T ;E) is an integral solution of

(1.11) if and only if v(t) =
t∫

0

u(s) ds, t ∈ [0, T ] is a strict solution in C of

v′(t) = Av(t) + u0 +

t∫
0

f(s), , v(0) = 0, t ∈ [0, T ].



1.4. Some known results connected to the Cauchy problem 21

Rewriting u(t) as u(t) = lim
h→0

1
h

t+h∫
t

u(s) ds ∈ D(A) and by the definition of integral

solution, an integral solution has values in D(A). The integral solution of (1.11)
is unique.

Theorem 1.4.2. [25] Let f ∈ Lp(0, T ;E) and u0 ∈ E. If u is an integral solution
of (1.11) belonging to W 1,p(0, T ;E) or to Lp(0, T ;D(A)) then u is a strict solution
in Lp of (1.11).

Now, let B be the operator defined by Bu = −u′ with domain D(B) = {u ∈
W 1,p(0, T ;E) : u(0) = 0} and let Bn = n2R(n : B) − n = nBR(n : B), n ∈ N be
the Yoshida approximations of B.

Theorem 1.4.3. [25] Given f ∈ Lp(0, T ;E) and u0 ∈ E there exists for each
n ∈ N a unique vn ∈ Lp(0, T ;D(A)) verifying

Bn(vn − u0) + Avn + f = 0

and the following estimates hold

‖vn(t)‖ ≤M(‖u0‖+
‖f(t)‖
n

+

t∫
0

‖f(s)‖ ds), t ∈ [0, T ]a.e.

‖vn‖Lp(0,T ;E) ≤M(1 + T )(‖u0‖+ ‖f‖Lp(0,T ;E)).

The solutions in the previous theorem approximate in Lp(0, T ;E) each possible
F -solution in Lp.

Theorem 1.4.4. [25] Given f ∈ Lp(0, T ;E) and u0 ∈ E let vn be the solution of
the approximating problem in the previous theorem. If u is an F -solution in Lp of
(1.11) then

lim
n→∞

‖u− vn‖Lp(0,T ;E) = 0.

Theorem 1.4.5. [25] If u is an F -solution in Lp of (1.11) then u ∈ C(0, T ;E),
u(t) ∈ D(A) for each t ∈ [0, T ], u(0) = u0 and

‖u(t)‖ ≤M(‖u0‖+

t∫
0

‖f(s)‖ ds), t ∈ [0, T ];

so the F -solution in Lp is unique. In addition, if uk verify (1.13) and (1.14) then

lim
k→∞
‖uk − u‖C(0,T ;E) = 0 .

Lemma 1.4.1. [25] If f ∈ C3(0, T ;E), f(0) = f ′(0) = f ′′(0) = 0 and u0 = 0 then
the problem (1.12) has a strict solution in C.

Theorem 1.4.6. [25] Problem (1.11) has a unique F -solution in Lp for each
f ∈ Lp(0, T ;E) and u0 ∈ D(A).
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Theorem 1.4.7. [25] Let f ∈ W 1,p(0, T ;E), u0 ∈ D(A) and

Au0 + f(0) ∈ D(A). (1.16)

Then there exists a unique u ∈ C1(0, T ;E) ∩ C(0, T ;D(A)) verifying

u′(t) = Au(t) + f(t), u(0) = u0, t ∈ [0, T ].

Moreover v = u′ is an F -solution in Lp of the problem

v′(t) = Av(t) + f ′(t), v(0) = Au0 + f(0), t ∈ [0, T ]a.e.

Here the condition (1.16) is a compatibility condition between f and u0: if
there exists a strict solution in C of (1.12) then Au0 + f(0) ∈ D(A) since

Au0 + f(0) = u′(0) = lim
t→0

u(t)− u(0)

t
∈ D(A).

Theorem 1.4.8. [25] Let f ∈ Lp(0, T ;D(A)), u0 ∈ D(A), Au0 ∈ D(A). Then
there exists a unique u ∈ W 1,p(0, T ;E) ∩ C(0, T ;D(A)) such that

u′(t) = Au(t) + f(t), u(0) = u0, t ∈ [0, T ]a.e.

Moreover, v = Au is an F -solution in Lp of the problem

v′(t) = Av(t) + Af(t), v(0) = Au0, t ∈ [0, T ]a.e.



Chapter 2

Some Classes of Multipliers and
Convolutors
in the Spaces of Tempered
Ultradistributions

In [97] and [33] convolution operators and multipliers of the space S were studied
by L. Schwartz and J. Horvath. Later, G. Sampson, Z. Zielezny, [87], [108] charac-
terized convolution operators of the spaces K′p, p ≥ 1. D. H. Pahk, [78] considered
convolution operators in K′e. Topological structure of the spaces of multipliers and
convolutors in K′M was studied by S. Abdulah, [1]. The convolution in ultradistri-
buton spaces were considered in [38] by S. Pilipović, A. Kaminski, D. Kovačević,
while convolutors in the spaces of ultradistributions were investigated in [13], [38],
[39], [59], [82], [85], [86].

The main interest in this chapter are convolutors and multipliers in the space
of tempered ultradistributions of Beurling and Roumieu type and their characte-
rization. To motivate the research on convolutors, consider the following example:

Let P (D) =
∞∑
|α|=0

aαD
α (with suitable assumptions on coefficients), then the

equation P (D)u = v can be rewritten in the form P (δ) ∗ u = v. Hence, conside-
ring equations of the type S ∗u = v one generalizes the concept of ultradifferential
operators with constant coefficients. In order to consider such equations, S must
be an ultradistribution that has well-defined convolution with elements of S(Mp)

resp. S{Mp}.

2.1 The space of Convolutors

Assume that (M.1), (M.2) and (M.3) holds.

Definition 2.1.1. The space of the convolutors O′∗C , of S ′∗ is the space of all
S ∈ S ′∗ such that the convolution S ∗ ϕ is in S∗, for every ϕ ∈ S∗, and the

23
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mapping

ϕ −→ S ∗ ϕ , S∗ −→ S∗ is continuous.

Recall from [85] several results.

Proposition 2.1.1. [85] If ϕ ∈ S∗ and S ∈ S ′∗ then,

(S ∗ ϕ)(x) = 〈S(t), ϕ(x− t)〉, x ∈ Rn,

is a smooth function which satisfies the following condition:
There is k > 0, resp. there is kp ∈ <, such that for every operator P of class

∗ and ϕ ∈ S∗

P (D)(S ∗ ϕ)(x) = O(eM(k|x|)), | x |→ ∞, resp.

P (D)(S ∗ ϕ)(x) = O(eNkp (|x|)), | x |→ ∞. (2.1)

From the definition, for S ∈ O′∗C the mapping

T → S ∗ T, S ′∗ → S ′∗, is continuous.

Proposition 2.1.2. Let S ∈ S ′∗. The following statements are equivalent.

a) S is a convolutor.

b) For every ϕ ∈ D∗, S ∗ ϕ ∈ S∗.

c) For every r > 0, resp. there exist k > 0

{eM(r|x|)S(· − x); x ∈ R} resp. {eM(k|x|)S(· − x); x ∈ R},
is bounded in D′∗.

d) For every r > 0, resp. there exist k > 0, there is l > 0, resp. there is kp ∈ <,
and L∞ functions F1 and F2 such that

S = Pl(D)F1 + F2, resp. S = Pkp(D)F1 + F2,

and
‖eM(r|x|)(| F1(x) | + | F2(x) |)‖L∞ <∞

resp.
‖eM(k|x|)(| F1(x) | + | F2(x) |)‖L∞ <∞.

Proof. It will be proven only Roumieu case. Beurling case is similar.
a) ⇒ b) It’s obvious.
b) ⇒ c) Let ϕ ∈ D∗.

〈eM(k|x|)τxSt, ϕ(t)〉 = 〈eM(k|x|)St, ϕ(t+ x)〉 =

= eM(k|x|)(S ∗ ϕ̌)(−x) .

| eM(k|x|))(S ∗ ϕ̌)(−x) |≤ Csk(S ∗ ϕ̌) .

c) ⇒ d) For this part the following lemma of H. Komatsu [51] is needed.
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Lemma 2.1.1. Let K be a compact neighborhood of zero, r > 0, and rp ∈ <.

i) There are u ∈ D(Mp)

K,r/2 and ψ ∈ D(Mp)
K such that

Pr(D)u = δ + ψ , (2.2)

where Pr is of form (1.3).

ii) There are u ∈ C∞ and ψ ∈ D{Mp}
K such that

Prp(D)u = δ + ψ , (2.3)

suppu ⊂ K, sup
x∈K

{ |∂αu(x)|∏|α|
j=1 rjMα

}
−→ 0, |α| → ∞ , (2.4)

where Prp is of form (1.3).

Let Ω be a bounded open set in Rn which contains zero and K = Ω. Let B be

a bounded set in D{Mp}
K . For ϕ ∈ B

| 〈eM(k|x|)τxSt, ϕ(t)〉 |= eM(k|x|) | (S ∗ ϕ̌)(−x) |≤ C , (2.5)

for all x ∈ Rn where C > 0 does not depend on ϕ ∈ B. Denote by L1
exp(−M(k|·|))

the space of locally integrable functions f on Rn such that f(·)e−M(k|·|) ∈ L1(Rn)
supplied with the norm

‖f‖L1,exp(−M(k|·|)) = ‖f(·)e−M(k|·|)‖L1 .

Let B1 be the closed unit ball in the space L1
exp(−M(k|·|)), ψ ∈ B1 ∩ D{Mp} and

ϕ ∈ B. Then,
| 〈S ∗ ψ, ϕ〉 |=| 〈(S ∗ ϕ̌)(−x), ψ〉 |≤ (2.6)

≤ ‖S ∗ ϕ̌(−x) · eM(k|x|)‖L∞ · ‖ψ‖L1,exp(−M(k|·|)) ≤ C‖ψ‖L1,exp(−M(k|·|)) ≤ C .

Hence
| 〈S ∗ ψ, ϕ〉 |≤ C‖ψ‖L1,exp(−M(k|·|)) (2.7)

for all ϕ ∈ B and ψ ∈ D{Mp}. From (2.6) it follows that

{S ∗ ψ| ψ ∈ B1 ∩ D{Mp}}

is bounded set in D′{Mp}
K , and because D′{Mp}

K is barrelled, the set is equicontinuous.
There exist kp ∈ < and ε > 0 such that

| 〈S ∗ θ, ψ̌〉 |≤ 1 , ψ ∈ B1 ∩ D{Mp}, θ ∈ Vkp(ε),

where
Vkp(ε) = {χ ∈ D{Mp}

K | ‖χ‖K,kp ≤ ε} . (2.8)



26 Chapter 2. Some Classes of Multipliers and Convolutors

The same inequality holds for the closure Vkp(ε) of Vkp(ε) in D{Mp}
K,kp

. If θ ∈ D{Mp}
Ω,kp

,

then for some Lθ > 0, ‖θ/Lθ‖K,kp < ε. Hence θ/Lθ ∈ Vkp(ε) and | 〈S ∗θ, ψ̌〉 |≤ Lθ ,
for ψ ∈ B1 ∩ D{Mp}. It follows that for ψ ∈ D{Mp}

| 〈S ∗ θ, ψ̌〉 |≤ Lθ‖ψ‖L1,exp(−M(k|·|)) . (2.9)

Because D{Mp} is dense in L1
exp(−M(k|·|)) it follows that for every θ in D{Mp}

Ω,kp
, S ∗θ is

a continuous functional on L1
exp(−M(k|·|). Thus S ∗ θ belongs to L∞exp(M(k|·|)) = {f ∈

L1,loc | ‖f(·)eM(k|·|)‖L∞ < ∞}, since the space L∞exp(M(k|·|)) is the dual of the space

L1
exp(−M(k|·|). Hence,

‖S ∗ θ(x)‖L∞,exp(M(k|·|) ≤ Lθ ,

where Lθ > 0 is a constant which depends of θ. From Lemma 2.1.1 for the chosen

kp ∈ < and Ω there exist k̃p and u ∈ D{Mp}
Ω,kp

and ψ ∈ D{Mp}
Ω such that

S = Pk̃p(D)(u ∗ S) + (ψ ∗ S) .

Now it’s obvious that F1 = u ∗ S and F2 = ψ ∗ S satisfy the conditions in d).
d) ⇒ a) Assume that F2 = 0. The general case can be proved analogously. It is
enough to prove that ϕ −→ F ∗ ϕ is a continuous mapping from S{Mp} to S{Mp}.
Then, a) will hold because of the continuity of the operator Pkp(D) and the fact
that Pkp(D)(S ∗ ϕ) = Pkp(D)S ∗ ϕ. Observe that the continuity of the mapping
ϕ −→ F ∗ ϕ will follow if it is proved that for every r which is bigger than some
fixed r0, there exist l such that ϕ −→ F ∗ ϕ is a continuous mapping from SMp,r

∞
to SMp,l

∞ (because S{Mp} is a inductive limit of SMp,r
∞ ). For the k in the condition

d) we choose r0, small enough such that for all r ≤ r0 the integral∫
Rn

e−M(k|t|)eM(r|t|)dt

converge. Fix r such that r ≤ r0. Note that

rp | x |p

2pMp

≤ rp | x− t |p

Mp

+
rp | t |p

Mp

≤ (2.10)

≤ eM(r|x−t|) + eM(r|t|) ≤ 2eM(r|x−t|)eM(r|t|)

and the last inequality holds since the function M(ρ) is nonnegative. For the
associated function there exist ρ0 > 0 such that for ρ ≤ ρ0, M(ρ) = 0 and for
ρ > ρ0, M(ρ) > 0 (for the properties of the associated function we refer to [48]).

If | x |> 2ρ0

r
then from the inequality (2.10) it follows that

eM( r
2
|x|) ≤ 2eM(r|x−t|)eM(r|t|) .

If | x |≤ 2ρ0

r
, there exist c > 0 such that eM( r

2
|x|) ≤ c . Hence, it follows that for

all x ∈ Rn, the following inequality holds

eM( r
2
|x|) ≤ 2(c+ 1) eM(r|x−t|)eM(r|t|)
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and obtain that

e−M(r|x−t|) ≤ CeM(r|t|)e−M( r
2
|x|) ,

where C = 2(c+ 1). Let l < r/4. Then,

lα | F ∗Dαϕ(x) | eM(l|x|)

Mα

≤ lα

Mα

∫
Rn

| F (t) || Dαϕ(x− t) | dt eM(l|x|) =

=
( l
r

)α 1

Mα

∫
Rn

| F (t) | e
M(k|t|)

eM(k|t|) | D
αϕ(x− t) | rα e

M(r|x−t|)

eM(r|x−t|)dt e
M(l|x|) ≤

≤ C ′
( l
r

)α
sr(ϕ)

∫
Rn

e−M(k|t|)eM(r|t|)dt e−M( r
2
|x|) eM(l|x|).

Because of the way that l is chosen, it follows that

sl(F ∗ ϕ) = sup
α

lα‖ | F ∗Dαϕ(x) | eM(l|x|)‖L∞
Mα

≤ C ′′sr(ϕ) ,

where C ′′ is a constant which does not depend on ϕ. It is shown that ϕ −→ F ∗ϕ,
is continuous mapping from SMp,r

∞ to SMp,l
∞ . Hence, ϕ −→ F ∗ ϕ is continuous

mapping from S{Mp} to S{Mp}.

It is clear that the ultratempered convolution of S1, S2 ∈ O′∗C is in O′∗C (see
[38]). As well for any T ∈ S ′∗, and ψ ∈ S∗,

〈(S1 ∗ S2) ∗ T, ψ〉 = 〈S1 ∗ T, Š2 ∗ ψ〉 = (2.11)

= 〈T ∗ S2, Š1 ∗ ψ〉 = 〈T, (S1 ∗ S2) ∗ ψ〉 .

Supply O′∗C with the topology from Ls(S∗,S∗) and denote it by O′∗C,s. The same
topology on this space is induced by Ls(S ′∗,S ′∗).

Proposition 2.1.3. The strong topology on L(S ′∗,S ′∗) induces the same topology
on O′∗C .

Proof. Let U be a neighborhood of zero in S ′∗. Without loss of generality it can
be assumed that

U = U(V ′;B′) = {S ∈ O′∗C(S ′∗;S ′∗) |S ∗ T ∈ V ′ , for all T ∈ B′} ,

where B′ is bounded subset in S ′∗ and V ′ is a neighborhood of zero in S ′∗. Assume
that

V ′ = V ′(B, ε) = {T ∈ S ′∗ | | 〈T, ϕ〉 |< ε for all ϕ ∈ B} ,

where B is bounded in S∗, and ε > 0. Let

V = {ϕ ∈ S∗ | | 〈T, ϕ〉 |< ε for all T ∈ B′} .
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Since S∗ is barreled is follows that V is a neighborhood of zero in S∗. Without
loss of generality it can be assumed that B = B̌ = {ϕ̌ | ϕ ∈ B} and B′ = B̌′ =
{Ť | T ∈ B′}. Let

W = W (V,B) = {S ∈ O′∗C(S ′∗;S ′∗) |S ∗ ϕ ∈ V for all ϕ ∈ B} .

We will show that W (V,B) ⊂ U(V ′, B′). Let S ∈ W (V,B), T ∈ B′ and ϕ ∈ B.
Then

| 〈S ∗ T, ϕ〉 |=| 〈T, Š ∗ ϕ〉 |< ε .

Hence S ∗ T ∈ V ′ for all T ∈ B′. So it is shown that the topology induced
by Ls(S ′∗,S ′∗) is stronger than the topology induced by Ls(S∗,S∗). The other
direction is similar and it is omitted.

Proposition 2.1.4. O′∗C,s is complete.

Proof. Let {Sµ} be a Cauchy net in O′∗C,s. Then {S̃µ} is a Cauchy net in Ls(S∗,S∗),
where S̃µ : S∗ −→ S∗ are induced continuous linear operators by Sµ, S̃µ(ϕ) =
Sµ ∗ ϕ. Since S∗ is complete and bornological [102], Corollary 1 of Theorem 32.2,
Ls(S∗,S∗) is complete, there exists R ∈ Ls(S∗,S∗), such that S̃µ −→ R. Define
T ∈ S ′∗, by 〈T, ϕ〉 = R(ϕ)(0). For ϕ ∈ S∗, R(ϕ) = T ∗ ϕ, since for x ∈ Rn

R(ϕ)(x) = lim
µ

(Sµ ∗ ϕ)(x) = lim
µ

(Sµ ∗ (τxϕ))(0) =

= R(τxϕ)(0) = 〈T, τxϕ〉 = T ∗ ϕ(x) .

Thus for ϕ ∈ S∗, T ∗ ϕ ∈ S∗ and the map ϕ −→ T ∗ ϕ is continuous. It follows
that T ∈ O′∗C , and moreover Sµ −→ T in O′∗C since T̃ = R.

Proposition 2.1.5. A sequence Sn from O′∗C,s converges to zero in O′∗C,s if and only
if for every k > 0 resp. there exist k > 0, there exists r > 0, resp. there exists
kp ∈ < and sequences of L∞ functions F1n and F2n, such that

Sn = Pr(D)F1n + F2n, resp. Sn = Pkp(D)F1n + F2n, (2.12)

F1n, F2n ∈ O′∗C ,
‖eM(k|x|)(| F1n | + | F2n |)‖L∞ <∞

and
F1n −→ 0, F2n −→ 0 in O′∗C,s , (2.13)

Proof. The proof of the proposition is similar with the proof of the Proposition
2.1.2, but it will be given for the sake of completeness. Let Sn be a sequence in

O
′{Mp}
C which converges to zero in O

′{Mp}
C,s . Let Ω be a bounded open set in Rn

which contains zero and K = Ω. Let ϕ ∈ D{Mp}
K be fixed. Then Sn ∗ ϕ −→ 0 in

S{Mp}. Because S{Mp} is a (DFS) space, it follows that there exist k > 0 such that

Sn ∗ ϕ ∈ SMp,k
∞ , and is bounded there, i.e.

sup
α

kα‖eM(k|x|)Dα(Sn ∗ ϕ)(x)‖L∞
Mα

≤ Cϕ,∀n ∈ N ,
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where Cϕ is a constant which depends only on ϕ. So,

‖eM(k|x|)(Sn ∗ ϕ)(x)‖L∞ ≤ Cϕ ,∀n ∈ N .

Let ψ ∈ B1 ∩ D{Mp}, then

| 〈Sn ∗ ψ, ϕ̌〉 |=| 〈Sn ∗ ϕ, ψ̌〉 |≤ ‖Sn ∗ ϕ‖L∞
exp(M(k|·|))

≤ Cϕ , (2.14)

for all n ∈ N, where B1 is the closed unit ball in L1
exp(−M(k|·|)).

From (2.14) it follows that

{Sn ∗ ψ| ψ ∈ B1 ∩ D{Mp}, n ∈ N}

is weakly bounded set in D′{Mp}
K , and because D{Mp}

K is barreled, the set is equi-
continuous (see [91], Theorem 5.2) . There exist kp ∈ < and δ > 0 such that

| 〈Sn ∗ θ, ψ̌〉 |≤ 1 , θ ∈ Vkp(δ) , ψ ∈ B1 ∩ D{Mp} , n ∈ N,

where Vkp(δ) = {χ ∈ D{Mp}
K | ‖χ‖K,kp ≤ δ} . The same inequality holds for the

closure Vkp(δ) of Vkp(δ) inD{Mp}
K,kp

. If θ ∈ D{Mp}
Ω,kp

, then for some Lθ > 0, ‖θ/Lθ‖K,kp <
δ, hence θ/Lθ ∈ Vkp(δ) and

| 〈Sn ∗ θ, ψ̌〉 |≤ Lθ , ψ ∈ B1 ∩ D{Mp} , n ∈ N .

It follows that for ψ ∈ D{Mp}

| 〈Sn ∗ θ, ψ̌〉 |≤ Lθ‖ψ‖L1,exp(−M(k|·|)) . (2.15)

Because D{Mp} is dense in L1
exp(−M(k|·|)) it follows that for every θ in D{Mp}

Ω,kp
, Sn ∗ θ

are continuous functionals on L1
exp(−M(k|·|)) and uniformly bounded. Thus Sn ∗ θ

belong to L∞exp(M(k|·|)). Hence,

‖Sn ∗ θ(x)‖L∞,exp(M(k|·|)) ≤ Lθ ,∀n ∈ N ,

where Lθ > 0 is a constant which depends on θ. From Lemma 2.1.1, for the chosen

kp ∈ < and Ω, there exist k̃p and u ∈ D{Mp}
Ω,kp

and ψ ∈ D{Mp}
Ω such that

Sn = Pk̃p(D)(Sn ∗ u) + (Sn ∗ ψ) .

Let F1n = Sn ∗ u and F2n = Sn ∗ ψ . It’s obvious that u ∈ O
′{Mp}
C , hence

F1n, F2n ∈ O′{Mp}
C . F1n = Sn ∗ u −→ 0 and F2n = Sn ∗ ψ −→ 0 in O

′{Mp}
C .

Conversely, let Fn −→ 0 and F1n −→ 0 in O
′{Mp}
C , Sn = Pkp(D)Fn + F1n,

for some kp ∈ <. Assume that F1n = 0 for all n ∈ N. The general case is

proved similarly. Let M(B, V ) is a neighborhood of zero in O
′{Mp}
C , where B is

a bounded set in S{Mp}, and V is a open neighborhood of zero in S{Mp}. Since,
Pkp(D) : S{Mp} −→ S{Mp} is continuous , there exist open neighborhood V0 such

that Pkp(D)(V0) ⊂ V . Since Fn −→ 0 in O
′{Mp}
C , and M(B, V0) is a neighborhood

of zero, there exists n0, such that for all n ≥ n0, Fn ∈M(B, V0). Thus, Fn∗ϕ ∈ V0,
for all ϕ ∈ B and n ≥ n0, and it follows that

Pkp(D)(Fn ∗ ϕ) ⊂ Pkp(D)(V0) ⊂ V .
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Remark 2.1.1. The inclusion O′∗C,s ↪→ S ′∗ is continuous. Let V be a open neighbo-
rhood in S ′∗. Let us consider this neighborhood of O′∗C :

W = {S ∈ O′∗C |S ∗ δ ∈ V } .

Then it is obvious that from S ∈ W , it follows that S ∈ V .

From the convergence of F1n, F2n to zero in O′∗C , in the above proposition, it
follows convergence in S ′∗.

Denote by ES ′∗ the space of elements f from S ′∗ such that for every S ∈
O′∗C , S ∗ f ∈ E∗ and the mapping

S → S ∗ f, O′∗C,s → E∗ is continuous.

Proposition 2.1.6. (i) ES ′∗ ⊂ E∗ ∩ S ′∗.
(ii) If f ∈ ES ′∗ and S ∈ O′∗C then S ∗ f ∈ ES ′∗.

Proof. (i) It is clear from the definition of ES ′∗ that if f ∈ ES ′∗, f ∈ S ′∗ and

because δ is in O
′{Mp}
C , δ ∗ f = f is an element in E∗.

(ii) From (i) it follows that S ∗ f ∈ S ′∗. Let T ∈ O′∗C . So,

T ∗ (S ∗ f) = (T ∗ S) ∗ f

is in E∗. It is obvious that the mapping T −→ T ∗ (S ∗ f) is continuous, since
the mappings T −→ T ∗ S −→ (T ∗ S) ∗ f = T ∗ (S ∗ f) are continuous. Hence,
S ∗ f ∈ ES ′∗.

Note that S∗ is subset of ES ′∗.

2.2 The Space of Multipliers

Again we assume (M.1), (M.2) and (M.3) hold.
As in [59] and [82] , the definition of the space of multipliers is given in the

sequel.

Definition 2.2.1. Define O∗M as the space of functions ϕ from E∗ such that ϕ ∈
O∗M if and only if

for every ψ ∈ S∗, ϕψ ∈ S∗ and the mapping
ψ → ϕψ, S∗ −→ S∗ is continuous . (2.16)

From the definition, for ϕ ∈ O∗M the mapping

T → ϕT, S ′∗ → S ′∗, is continuous.

In the proof of the next proposition the following function will be needed:

ψ(x) =
∞∑
j=1

ρ(x− xj)
eM(k|xj |)

, (2.17)
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where the function ρ ∈ D{Mp}, has values in [0, 1], and supp ρ ⊂ {x : | x |≤ 1, x ∈
Rn}, ρ(x) = 1, for x ∈ {x | | x |≤ 1/2}. {xj} is a sequence of real numbers such
that | xj |> 2 and | xj+1 |≥| xj | +2, j ∈ N.

Since ρ ∈ D{Mp}, there exist h and C such that sup
x,α
| Dαρ |< ChαMα. It will

be shown that ψ ∈ S{Mp}. Choose r such that rh <
1

2
and r <

k

H4
√

2
. Using

that
| x |
| xj |

≤ 2, one obtains,

∑
α,β

∫
Rn

r2α+2β〈x〉2β | Dαψ(x) |2

M2
αM

2
β

dx ≤

≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2α+2β〈x〉2βC2h2αM2
α

M2
αM

2
βe

2M(k|xj |)
dx ≤

≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2α+2β〈x〉2βC2h2α

M2
βe

2M(k|xj |)
dx ≤

≤
∑
α,β

∞∑
j=1

∫
|x−xj |≤1

r2αr2β2β | x |2β C2h2α

M2
βe

2M(k|xj |)
dx ≤

≤ C1

∑
α,β

∞∑
j=1

(rh)2α(r
√

2)2β

M2
βe

2M(k|xj |)

∫
|x−xj |≤1

| x |2β dx ≤

≤ C2

∑
α,β

∞∑
j=1

(rh)2α(r
√

2)2β | xj |2β

M2
βe

2M(k|xj |)
≤

≤ C2

∑
α,β

∞∑
j=1

(rh)2α(r2
√

2)2β | xj |2β M2
β+1

M2
βk

2β+2 | xj |2β+2
≤

≤ C2A

k2

∑
α,β

∞∑
j=1

(rh)2α
(2r
√

2H

k

)2β 1

| xj |2
≤ C ′ .

The proof of the next proposition in (Mp)-case is given in [59] and [82].

Proposition 2.2.1. Let ϕ ∈ C∞. The following statements are equivalent:
(i) ϕ ∈ O∗M .
(ii) For every h > 0, resp. for every k > 0, there exist k > 0, resp. there exist

h > 0,

sup
α∈Nn0
{h

α‖e−M(k|·|)ϕ(α)‖L∞
Mα

} <∞.

(iii) For every ψ ∈ S∗ and every r > 0, resp. for some r > 0.

σm,ψ(ϕ) := σm,∞(ψϕ) <∞.
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(iv) In Roumieu case, for every ψ ∈ S{Mp} and for every ri, sj ∈ <

γri,sj ,ψ(ϕ) := γri,sj(ψϕ) <∞.

Proof. Only the proof for the Roumieu case will be given.
(iii)⇔ (iv) It is obvious. It will be proved (iii)⇒ (ii)⇒(i)⇒(iii).

(iii)⇒(ii) First ϕ is in E{Mp} it will be proven. Let K be a fixed compact set in
Rn and take χ ∈ D{Mp}, with values in [0, 1] and χ(x) = 1 on a neighborhood of
K. Then there exist r such that

sup
α

rα‖Dα(ϕ(x)χ(x))‖L∞(K)

Mα

≤

≤ sup
α

rα‖eM(r|x|)Dα(ϕ(x)χ(x))‖L∞(Rn)

Mα

= Csr(ϕχ) <∞ .

Then, Dα(ϕ(x)χ(x)) = Dαϕ(x) for x ∈ K. Thus ϕ ∈ E{Mp}.
Let (ii) does not hold. Then there exist k such that for all n ∈ N,

sup
α

‖e−M(k|x|)Dαϕ(x)‖L∞
nαMα

=∞ .

Since ϕ ∈ E{Mp} for every compact set K, there exist C and nK ∈ N such that for
n ≥ nK

sup
α

‖e−M(k|x|)Dα(ϕ(x))‖L∞(K)

nαMα

< C n ≥ nK .

Hence, it can be chosen αj and xj, where | xj+1 |>| xj | +2, such that

e−M(k|xj |) | Dαjϕ(xj) |
jαjMαj

≥ 1 .

Now take ψ as in (2.17), where k and the sequence {xj} are taken to be the ones
chosen here. Then ϕψ ∈ S{Mp}, i.e. there exist l such that

sup
α

lα‖eM(k|x|)Dα(ϕ(x)ψ(x))‖L∞
Mα

<∞ .

Then there exist j0 such that for all j ≥ j0, l > 1/j.

sup
α

lα‖eM(l|x|)Dα(ϕ(x)ψ(x))‖L∞
Mα

≥

≥ lαjeM(l|xj |) | Dαj(ϕ(xj)ψ(xj)) |
Mαj

≥

≥ 1

jαj
eM(l|xj |) | Dαjϕ(xj) |

eM(k|xj |)Mαj

≥ eM(l|xj |) .

This implies that ϕψ is not in SMp,l
∞ , which is a contradiction with the above

assumption.
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(ii)⇒(i) From the condition (ii) it is obvious that ϕ ∈ E{Mp}. It is enough to prove

that for every r > 0 there is l > 0 such that the mapping ψ −→ ϕψ for SMp,r
∞ to

SMp,l
∞ is continuous. Let r > 0 be fixed. Put k = r/4. By (ii), there exist h such

that

sup
α

hα‖e−M(k|x|)Dαϕ(x)‖L∞
Mα

<∞ .

If l < h/4 and l < r/4, then

lα‖eM(l|x|)Dα(ϕ(x)ψ(x))‖L∞
Mα

≤

≤
∑
β≤α

(
α

β

)
lα‖eM(l|x|)Dβϕ(x)Dα−βψ(x)‖L∞

Mα−βMβ

=

=
∑
β≤α

(
α

β

)
(2l)α‖eM(l|x|)Dβϕ(x)e−M(k|x|)eM(k|x|)hβ

2αhβ
·

·D
α−βψ(x)eM(r|x|)e−M(r|x|)rα−β‖L∞

rα−βMα−βMβ

≤

≤ Csr(ψ)‖e−M(r|x|)eM(k|x|)eM(l|x|)‖L∞
∑
β≤α

(
α

β

)
1

2α

(2l

h

)β(2l

r

)α−β
≤ C ′sr(ψ) ,

where the last inequality holds because of the way that l is chosen.
(i)⇒(iii) It is obvious.

Remark 2.2.1. It is obvious that if ϕ ∈ O∗M , then ϕ ∈ S ′∗.
Denote by L(S∗,S∗) the space of continuous linear mappings from S∗ into S∗;

O∗M is its subspace. With Ls(S∗,S∗), denote the space L(S∗,S∗) with the strong
topology. Also O∗M can be equipped with the topology induced by Ls(S ′∗,S ′∗).
Similarly as in proposition 2.1.3 it can be proven that the topologies induced
by Ls(S∗,S∗) and Ls(S ′∗,S ′∗) are the same. The space O∗M equipped with this
topology is denoted by O∗M,s.

Proposition 2.2.2. The Fourier transformation is a topological isomorphism of
O∗M,s onto O′∗C,s.

Proof. Only the Roumieu case will be shown. Using Proposition 2.1.2 d), there
exist k > 0 and there exist kp ∈ < such that S = Pkp(D)F + F1, where F and F1

satisfy the growth condition given in proposition 2.1.2. Without loss of generality
it may be assumed that F1 = 0. By (M.2), are the following estimates for the
derivatives of the Fourier transform of F can be obtained:

| DαF(F ) |=| F(xαF ) |=
∣∣∣ ∫

Rn
e−ixξxαF (x)dx

∣∣∣ ≤ (2.18)

≤
∫
Rn
| x |α | F (x) | dx ≤ C1

∫
Rn
| x |α e−M(k|x|)dx ≤
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≤ C2

∫
Rn

|x|α

〈x〉α+n+1
Mα+n+1

( c
k

)|α|+n+1

dx ≤ CMαMn+1

(Hc
k

)|α|+n+1

.

In ([48]), page 88, the following estimate of the analytic function Pkp(ζ) is given:
For every L, there is C such that

| Pkp(ζ) |≤ ACeM(
√
nLH|ζ|) , ζ ∈ Cn .

Using this and the Cauchy integral formula, it is obtained that for every L > 0
there exist C > 0 such that

| DαPkp(ξ) |≤ C
α!

dα
· eM(Lc′|ξ|) , (2.19)

where c′ > 0 is a constant that does not depend on L. It is also known that, for
every m > 0,

mkk!

Mk

−→ 0 as k −→∞ (2.20)

Let m > 0 be arbitrary. Let L be a constant such that

‖e−M(m|ξ|)eM(Lc′|ξ|)‖L∞ <∞ ,

and h is chosen such that 2h < 1 and 2hHc < k. From (2.18), (2.19), (2.20) and
(M.1) one obtains,

sup
α

hα‖e−M(m|ξ|)Dα(Prp(ξ)F̂ (ξ))‖L∞
Mα

≤

≤ sup
α

∑
β≤α

(
α

β

)
(2h)α‖e−M(m|ξ|)Dα−βPrp(ξ)D

βF̂ (ξ)‖L∞
2αMα−βMβ

≤

≤ C sup
α

1

2α
‖e−M(m|ξ|)eM(Lc′|ξ|)‖L∞

∑
β≤α

(
α

β

)
(α− β)!

Mα−βdα−β
Mn+1(2h)β

(Hc
k

)|β|+n+1

≤

≤ C1 sup
α
‖e−M(m|ξ|)eM(Lc′|ξ|)‖L∞

1

2α

∑
β≤α

(
α

β

)(2hHc

k

)|β|
≤

≤ C2‖e−M(m|ξ|)eM(Lc′|ξ|)‖L∞ ≤ C3 .

By proposition 2.2.1 (ii), it follows that Ŝ ∈ O
{Mp}
M and it is obvious that the

mapping S −→ Ŝ is injective.

Now, it will be proven that the Fourier transform from O
{Mp}
M to O

′{Mp}
C is an

injective mapping. Let ϕ ∈ O{Mp}
M and ψ ∈ S{Mp}. The mappings

ψ̂ −→ ψ −→ ϕψ −→ F(ϕψ) =
( 1

2π

)n
ϕ̂ ∗ ψ̂

are continuous from S{Mp} to S{Mp}. Hence, ϕ̂ ∈ O′{Mp}
C and the mapping ϕ −→ ϕ̂

is injective from O
{Mp}
M into O

′{Mp}
C . Now it is enough to see that the same things

hold for the F̄ = (2π)nF−1 and the fact that F is isomorphism on S{Mp} and
S ′{Mp} with an inverse F−1. Because F : S∗ −→ S∗ is a topological isomorphism
it is obvious that it is also a topological isomorphism from O∗M,s to O′∗C,s.
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Proposition 2.2.3. The bilinear mappings

O∗M,s × S∗ → S∗, (α, ψ)→ αψ,

O∗M,s × S ′
∗ → S ′∗, (α, f)→ αf,

are hypocontinuous.

Proof. It is obvious that the bilinear mappings are separately continuous. It will
be proved that only the mapping T : O∗M,s × S∗ −→ S∗, defined by T (ϕ, ψ) = ϕψ
is hypocontinuous. Since S∗ is barreled space, from [91] Theorem 5.2., it follows
that for every open set V in S∗, and every bounded set B in O∗M,s, then there is
an open set W in S∗ such that T (B ×W ) ⊂ V . Now, let V1 is arbitrary open
set in S∗ and let B1 be a bounded set in S∗. Then, for the open set W1 in O∗M,s,
where W1 = {ψ ∈ O∗M,s |ϕψ ∈ V, for all ψ ∈ B}, follows T (W1 ×B1) ⊂ V1.

Proposition 2.2.4. The space O∗M,s is nuclear.

Proof. Since the space S∗ is reflexive and the space S ′∗ is nuclear, from [91] it
follows that Ls(S∗,S∗) is nuclear space. Thus, the space O∗M,s is nuclear as a
subspace of a nuclear space.





Chapter 3

Structural Theorems for
Ultradistribution Semigroups

Researches on Generalized semigroups started after the paper of J.L. Lions, [67] on
distribution semigroups. The literature related to generalizations of C0−semigroups
is very reach especially the literature related to various classes of integrated se-
migroups of W. Arendt [2] and its generalizations and extensions, [5], [7], [70],
[26] and [106] (see also [3], [22], [34], [43], [64], [65], [68], [74], [100], [101]). In
first part of this chapter some preparatory results and results from [58] related to
ultradistribution semigroups will be given in order to continue the investigation on
exponential ultradistribution semigroups. Ultradifferentiable operators are used
in order to clarify relations between exponentially bounded and tempered ultra-
distribution semigroups and convoluted semigroups.

Then, in the second part of this chapter, a structural characterizations for ult-
radistribution semigroups and exponential ultradistribution semigroups are given.
Five conditions for ultradistribution semigroups and the corresponding five condi-
tions for exponential ultradistribution semigroups and relations between them are
given in Theorem 3.2.1.

3.1 Ultradistribution semigroups and Exponen-

tial ultradistribution semigroups

Now, ultradistribution semigroups in the framework of exponential distributions
will be considered, which will defined through tempered ultradistributions.

Definition 3.1.1. Let a ≥ 0. Then

SE∗a(R) := {φ ∈ C∞(R) : eatφ ∈ S∗(R)}.

Define the convergence in this space by

φn → 0 in SE∗a(R) iff ea·φn → 0 in S∗(R).

Denote by SE ′∗a (R, E) the space L(SE∗a(R), E) which is formed from all conti-
nuous linear mappings from SE∗a(R) into E equipped with the strong topology.

37
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It holds,

F ∈ SE ′∗a (R, E) if and only if e−a·F ∈ S ′∗(R, E). (3.1)

In the sequel the fact that the composition and the sum of ultradifferential
operators of the Beurling, resp., the Roumieu class, are ultradifferential operators
of the Beurling, resp., the Roumieu class will be used. The next proposition is
a structural type theorem for the space SE ′∗a (R, E), a ≥ 0 and can be viewed of
independent interest.

Proposition 3.1.1. Let G ∈ SE ′∗a (R, E). Then there exists an ultrapolynomial P
of ∗-class and a function g ∈ C(R, E) with the property that there exist k > 0 and
C > 0, resp., for every k > 0 there exists an appropriate Ck > 0 such that

e−ax||g(x)|| ≤ Cke
M(k|x|), x ∈ R and G = P (d/dt)g.

Proof. Assertion only in the Beurling case will be proved. Since
e−a·G ∈ S ′(Mp)(R, E), one can use the same arguments as in [82] in order to see
that there exist an ultrapolynomial P of (Mp)-class and a function g1 ∈ C(R, E)
with the property that there exist k > 0 and Ck > 0 such that

||g1(x)|| ≤ Cke
M(k|x|) and that G = eaxP (d/dt)g1(x).

Put g(x) = eaxg1(x), x ∈ R. By Leibnitz formula, we have

eaxP (d/dt)g1(x) =
∞∑
j=0

(
∞∑
k=0

(
j + k

j

)
(−1)kakak+j)(e

axg1(x))(j)

and we will prove the assertion if we show that bj ≤ C Lj

Mj
, j ∈ N0, for some

C, L > 0, where bj =
∑∞

k=0

(
k+j
j

)
akak+j, j ∈ N0.

We will use the following inequality,(
j + k

j

)
≤ 2k+1kkej, j, k ∈ N. (3.2)

This follows from(
j + k

j

)
≤ (j + k)k ≤ 2kjk + 2kkk ≤ 2k(kkej + kk) ≤ 2kkk(ej + 1), j, k ∈ N,

where we use jk ≤ kkej, j, k ∈ N. This is clear for k ≥ j. Let us prove this for
k < j. Put k = εj and note, if ε ∈ (0, 1), then ε ln ε ∈ (−1, 0) and

εj ln j ≤ εj ln j + εj ln ε+ j.

This implies jk ≤ kkej, k < j.
Now we will estimate bj using the estimate

|ak+j| ≤ C
hk+j

Mk+j

for some h > 0, C > 0
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and that for every ε > 0 there exists Cε > 0 such that

Mjk
k ≤ Cεε

k+jMk+j.

With this we have

Mj|bj| ≤ 2
∞∑
k=0

hk+jMj2
kkkejak

Mk+j

≤ 2C(he)j
∞∑
k=0

(2ha)kMjk
k

Mk+j

, j ∈ N

and choosing ε enough small, we obtain the convergence of the last series. This
implies that there exist L > 0 and C > 0 such that |bj| ≤ CLj/Mj, j ∈ N.

This ends the proof of the proposition.

In the sequel, we will use the phrase “G is an ultradistribution fundamental
solution for A” if G is an ultradistribution fundamental solution for P := δ′ ⊗
ID(A) − δ ⊗ A ∈ D′∗+(R, L([D(A)], E)).

Definition 3.1.2. An L-ultradistribution semigroup G of ∗-class is exponential,
EL-ultradistribution semigroup of ∗-class, if in addition to (U.1)−(U.4), G fulfills:

(U.7) (∃a ≥ 0)(e−a·G ∈ S ′∗(R, L(E))).

Conditions (U.7), (U.5), resp., (U.7), (U.5) and (U.2), define an exponential pre-
(UDSG) resp., exponential (UDSG) and they are denoted by pre-(EUDSG), resp.,
(EUDSG).

Remark 3.1.1. Let G be an (EUDSG). Then we have:

1. G has an extension on SE∗a(R) : G(φ) = 〈e−a·G, ea·φ〉.

2. Let ψ ∈ SE∗a(R) and ψ+ := ψ1[0,∞). Then ψ+ ∗ φ ∈ SE∗a(R) for every
φ ∈ D∗0(R) and it it can be checked that G(ψ) = G(ψ+).

3. Let w ∈ E∗(R) satisfy w(t) = 0, t ∈ (−∞,−r), for some r > 0, and
w(t) = 1, t ≥ 0. Then, we−λ· ∈ SE∗a(R), Reλ > a. Then the Laplace
transform of G, defined by

L(G)(λ) = Ĝ(λ) = G(e−λt) := G(w(t)e−λt), Reλ > a,

does not depend on w. Since ||G(w(t)e(a−λ)t)|| ≤ C||w(t)e−λt||Mp,k, for

some k, resp., for every k, by the usual procedure one obtains ||Ĝ(λ)|| ≤
C|P (λ)|, Reλ > a, where P is an appropriate ultrapolynomial of ∗-class.

4. Put E+
λ (t) = e−λt1[0,∞)(t), t ∈ R, Reλ > a. We define G(E+

λ )(x) = y iff

G(E+
λ ∗0 φ)(x) = G(φ)(y), for every φ ∈ SE∗a(R). Then Ĝ(λ) = G(E+

λ ), for
every Reλ > a.

In the next assertions, we will use ultrapolynomials with the following proper-
ties:
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The Beurling case: There exist constant L > 0 and an ultrapolynomial
P̃L(λ), Reλ > 0 of (Mp)−class such that for some constants C and L1 > 0,

eM(L|λ|) ≤ |P̃L(λ)| ≤ CeM(L1|λ|), Reλ > 0. (3.3)

The Roumieu case: There exist a strictly decreasing sequence (Lp) tending
to zero and an ultrapolynomial P̃Lp(λ), Reλ > 0, of {Mp}−class such that,
for every L > 0, there exists C > 0 such that

|P̃Lp(λ)| ≤ CeM(L|λ|), Reλ > 0 and (3.4)

eM(ε(|λ|)) ≤ |P̃Lp(λ)|, Reλ > 0,

for some subordinate function ε(ρ), ρ ≥ 0. Let us recall that ε(·) is a su-
bordinate function (cf. [48]) if it is an increasing continuous function which

fulfills ε(0) = 0 and lim
ρ→∞

ε(ρ)
ρ

= 0.

Theorem 3.1.1. Suppose that a ≥ 0 and that f : {λ ∈ C : Reλ > a} → E is
an analytic function satisfying ||f(λ)|| ≤ C|P (λ)|, Reλ > a, where C > 0 and P
is an ultradifferential operator of ∗-class with the property |P (λ)| > 0, Reλ > a.
Suppose that P̃ is an ultradifferential operator of ∗-class with the property (3.3),
resp., (3.4) (P̃ = P̃L or P̃ = P̃Lp). Then

(∃M > 0)(∃h ∈ C∞([0,∞), E))(∀n ∈ N0)(h(n)(0) = 0)

such that ||h(t)|| ≤Meat, t ≥ 0, and

f(λ) = P (λ)P̃ (λ)

∫ ∞
0

e−λth(t)dt, Reλ > a. (3.5)

Proof. Let ā > a and

h(t) =
1

2πi

∫ ā+i∞

ā−i∞

eµt

P (µ)P̃ (µ)
f(µ)dµ, t ≥ 0. (3.6)

Cauchy’s theorem implies that the definition of h is independent of ā > a. Applying
the standard arguments we conclude that h ∈ C([0,∞), E) fulfills h(0) = 0, (3.5)
and that there exists M > 0 such that ||h(t)|| ≤Meat, t ≥ 0 and that

||h(t)|| ≤Meāt
∫ ā+i∞

ā−i∞

dµ

P̃ (µ)
, t ≥ 0.

Polynomial P̃ is introduced in order to make possible the differentiation of (3.6)
under the integral sign and so we conclude that h ∈ C∞([0,∞), E). It remains to
be shown that h(n)(0) = 0, n ∈ N. Denote γ(r) = {ā + reiθ : −π/2 ≤ θ ≤ π/2}
and fix an n ∈ N. By the Cauchy formula

h(n)(0) =
1

2πi

∫ ā+i∞

ā−i∞

µnf(µ)dµ

P (µ)P̃ (µ)
=

1

2πi
lim
r→∞

∫
γ(r)

µnf(µ)

P (µ)P̃ (µ)
dµ = 0.

This completes the proof of the theorem.
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Theorem 3.1.2. Let A be closed and densely defined. Then A generates an EL-
ultradistribution semigroup of ∗-class iff the following conditions are true:

(i) There exists a ≥ 0 such that {λ ∈ C : Reλ > a} ⊂ ρ(A).

(ii) There exist an ultrapolynomial P of ∗-class with the property |P (λ)| >
0, Reλ > a and a positive constant C > 0 such that

||R(λ : A)|| ≤ C|P (λ)|, Reλ > a.

(iii) R(λ : A) is the Laplace transform of some G which satisfies (U.2)′.

Proof. (⇐) Let P̃ (λ) be an ultrapolynomial with the same properties as in Theo-
rem 3.1.1. According to Theorem 3.1.1, we know that there exist a constant
M > 0 and a function S ∈ C∞([0,∞), E) satisfying S(n)(0) = 0, n ∈ N0,
||S(t)|| ≤Meat, t ≥ 0 and

R(λ : A) = P (λ)P̃ (λ)

∫ ∞
0

e−λtS(t)dt, Reλ > a,

Note that P (λ)P̃ (λ) = L(P (−d/dt)P̃ (−d/dt)). This implies
R(λ : A) = L(G)(λ), Reλ > a, where

G = P (−d/dt)P̃ (−d/dt)S and e−a·G ∈ S ′∗+(R, L(E)).

Furthermore, it is straightforward to see that

(δ′ ⊗ ID(A) − δ ⊗ A) ∗G = δ ⊗ IE,

G ∗ (δ′ ⊗ ID(A) − δ ⊗ A) = δ ⊗ ID(A)

and, due to (iii), G is an EL-ultradistribution semigroup of ∗-class.
(⇒) Suppose e−ã·G ∈ S ′∗+(R, L(E, [D(A)])), for some ã ≥ 0. Let a ∈ (ã,∞)

and λ ∈ {z ∈ C : Rez > a} be fixed. Then we have (δ′ + λδ) ∗ E+
λ = δ. Suppose

φ ∈ S∗(R) and x ∈ E. Then

G((δ′ + λδ) ∗0 E
+
λ ∗0 φ)x = G(φ)x,

G(δ′ ∗0 E
+
λ ∗0 φ)x+ λG(E+

λ ∗0 φ)x = G(δ′)G(E+
λ ∗0 φ)x+ λĜ(λ)G(φ)x.

It follows
−A(Ĝ(λ)G(φ)x) + λĜ(λ)G(φ)x = G(φ)x.

Since (U.3) is assumed, one can prove by the usual procedure that (−A+λ)Ĝ(λ) =
I. As we have already noted, one obtains ||Ĝ(λ)|| ≤ C|P (λ)|, Reλ > a, where P
is an appropriate ultrapolynomial of ∗-class. This finishes the proof.

Remark 3.1.2. Since (M.2) holds, condition (ii) in the formulation of Theorem
3.1.2 is equivalent to say that there exist k > 0 and C > 0 in the Beurling case,
resp., for every k > 0 there exists a corresponding Ck > 0 in the Roumieu case, so
that ||R(λ : A)|| ≤ CeM(k|λ|), Reλ > a, resp., ||R(λ : A)|| ≤ Cke

M(k|λ|), Reλ > a.
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Concerning the proof of Theorem 3.1.2, we have the next corollary.

Corollary 3.1.1. Suppose A is a closed linear operator. If A fulfills (i) and (ii)
of Theorem 3.1.2, then there exists an exponential ultradistribution fundamental
solution for A. If, additionally, (iii) of Theorem 3.1.2 holds, then A generates an
(EUDSG).

In the sequel (Mp) satisfies (M.1), (M.2) and (M.3). The purpose of (M.3) is
again the use of [50, Theorem 4.8].

The following assertion is well known in the theory of ultradistributions (cf.
[30], [48] and [53, Theorem 4.7]). Note, we use d/dx instead of −id/dx which is
used in [48] and [53].

Let T ∈ D′∗+(R, E). Then for every a > 0 there exist an ultradifferential
operator of (Mp)-class, formally of the form

PL(d/dt) =
∞∏
p=1

(1 +
L2

m2
p

d2/dt2) =
∞∑
p=0

apd
p/dtp, (3.7)

where L > 0 is some constant, resp., of {Mp}-class, formally of the form

PLp(d/dt) =
∞∏
p=1

(1 +
L2
p

m2
p

d2/dt2) =
∞∑
p=0

apd
p/dtp, (3.8)

where (Lp)p is a sequence decreasing to 0, and a continuous function f : (−a, a)→
E such that T = PL(−id/dt)f, on D(Mp)((−a, a)), in (Mp)-case, resp.,
T = PLp(−id/dt)f, on D{Mp}((−a, a)), in {Mp}-case.

Note that in the above representation theorem, we do not have that f is sup-
ported by [0, a).

Remark 3.1.3. The previous assertions remain true for ultradifferential operators

P̃L(d/dt) =
∞∏
p=1

(1 +
L

mp

d/dt) =
∞∑
p=0

apd
p/dtp, L > 0, (3.9)

P̃Lp(d/dt) =
∞∏
p=1

(1 +
Lp
mp

d/dt) =
∞∑
p=0

apd
p/dtp, (3.10)

where (Lp) is a sequence decreasing to 0 (see [48, Theorem 10.3]). Define also
P̃L(ζ) =

∏∞
p=1(1 + Lζ

mp
), Reζ > 0 and, analogously, P̃Lp(ζ), Reζ > 0.

Example 3.1.1. [58]
Examples which are to follow are based on the estimates of ultrapolynomials

given in [48, Propositions 4.5, 4.6-Theorem 10.1, 10.2]. Let E = EMp := {f ∈
C∞[0, 1] : ‖f‖Mp := sup

p≥0

‖f (p)‖∞
Mp

< ∞} and A = AMp := −d/ds, D(AMp) := {f ∈

EMp : f ′ ∈ EMp , f(0) = 0} . Then

||R(λ : A)|| ≤ eM(r|λ|), Reλ > 0, for some r > 0.



3.1. Ultradistribution semigroups and Exponential ultradistribution semigroups43

Note that A generates an exponentially bounded K-convoluted semigroup
(S(t))t≥0 (cf. [57]).

Beurling case.
If (Mp) fulfills (M.1), (M.2) and (M.3), one obtains the following: there exist

C, C1 > 0, L1 > 0 such that

eM(L|ζ|) ≤ |P̃L(ζ)| ≤ CeM(L1|ζ|), Reζ > 0, |ap| ≤ C1L
p
1/Mp, p ∈ N0.

In the case of Mp = p!s, with suitable constants,

ecL|ζ|
1/s ≤ |P̃L,s(ζ)| ≤ CeL1|ζ|1/s , Reζ > 0,

holds and if 1 < s′ < s, with another constants,

ec̃L|ζ|
1/s′ ≤ |P̃L,s′(ζ)| ≤ C̃eL̃1|ζ|1/s

′

, Reζ > 0, holds.

Let s = 1/γ > s′ = 1/γ′, γ < 1 and u ∈ Ep!1/γ . Note that

L−1(
e−tζL(u1[0,1])(ζ)

P̃L,s′(ζ)
)(x) = L−1(

L(u1[0,1])(ζ)

P̃L,s′(ζ)
)(x− t), x, t ≥ 0.

This and the estimates of PL,s′ imply that

[0,∞) 3 t 7→ L−1(
e−tζL(u1[0,1])(ζ)

P̃L,s′(ζ)
)|[0,1] ∈ Ep!1/γ

is a continuous mapping.
Put K̃(ζ) = P̃−1

L,s′(ζ), Reζ > 0. We obtain the structural theorem for the
K-convoluted semigroup generated by A on Ep!1/γ as follows. Define

S(t)u(x) = 1[0,1](x)

∫ t

0

L−1(
eτζL(u1[0,1])(ζ)

P̃L,s′(ζ)
)(x)dτ,

x ∈ [0, 1], u ∈ Ep!1/γ , t ≥ 0 .

One can prove that S(t) ∈ L(Ep!1/γ ), t ≥ 0 and that S(0) = 0. Then, with(
G(φ)u

)
(x) = 1[0,1](x)〈P̃L,s′(−

d

dt
)
d

dt
S(t)u(x), φ(t)〉

= 〈(u1[0,1])(x− t), φ(t)〉|[0,1],

x ∈ [0, 1], u ∈ Ep!1/γ , φ ∈ D(p!s
′
)(R),

is given an exponentially bounded, non-dense ultradistribution semigroup of Beur-

ling class on D(p!s
′
)(R) generated by A; furthermore, G verifies (U.2) and H =

G|R(G) is a regular ultradistribution semigroup of (Mp)-class.
Note, the polynomial boundedness of ||R(· : A)|| is crucial in [9]-[10] and [20,

Proposition 2.6]. In this example, the polynomial boundedness of ||R(· : A)|| is
not satisfied (cf. [61]).
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Roumieu case.
Let (Lp)p be a sequence which strictly decrease to zero. Then for every L > 0

there exists C > 0 such that

|P̃Lp(λ)| ≤ CeM(L|λ|), Reλ > 0,

and that |ap| ≤ CLp/Mp, p ∈ N0. Moreover, there exists a subordinate function
ε(ρ), ρ ≥ 0 such that

eM(ε(|λ|)) ≤ |P̃Lp(λ)|, Reλ > 0.

Let E andA be as above; thenA generates an exponentially bounded, K-convoluted
semigroup (S(t))t≥0, where K̃(λ) = P̃−1

Lp,s′
(λ), Reλ > 0, for s > s′.

Then with

G(φ)u(x) = 1[0,1](x)〈P̃Lp,s′(−
d

dt
)
d

dt
S(t)u(x), φ(t)〉

= 〈(u1[0,1])(x− t), φ(t)〉|[0,1],

x ∈ [0, 1], u ∈ Ep!1/γ , φ ∈ D{p!
s′}(R),

is defined a non-dense ultradistribution semigroup of exponential growth, (EUDSG),

of Roumieu class on D′{p!s
′}(R) generated by A. As before, we obtain

S(t)u(x) = 1[0,1](x)

∫ t

0

L−1(
e−τξL(u1[0,1])(ξ)

P̃Lp,s′(ξ)
)(x)dτ,

x ∈ [0, 1], u ∈ Ep!1/γ , t ≥ 0.

3.2 Structural theorems for ultradistribution se-

migroups and exponential ultradistribution

semigroups

The use of ultradistribution semigroups is the main tool in the analysis of some
classes of pseudo-differential evolution systems with constant coefficients given in
[6]. We also refer to [75] for more examples of differential operators generating
ultradistribution semigroups.

Following the investigation of H. Komatsu [53], in the framework of Denjoy-
Carleman-Komatsu theory of ultradistributions and P. C. Kunstmann [63], in the
theory of ω-ultradistributions, we define the next regions:

Ω(Mp) := {λ ∈ C : Reλ ≥M(k|λ|) + C}, for some k > 0, C > 0, resp.,
Ω{Mp} := {λ ∈ C : Reλ ≥M(k|λ|)+Ck}, for every k > 0 and a corresponding

Ck > 0. By Ω∗ is denoted either Ω(Mp) or Ω{Mp}.
We need the following estimations of ultrapolynomials:
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Lemma 3.2.1. (a) Let PL be of the form (3.7). Then there exist C, C1 >
0, L1, L2 > 0 such that

e2M(L|ζ|) ≤ |PL(ζ)| ≤ CeM(L1|ζ|), if |Imζ| < |Reζ|
2

+
1

L

and |ap| ≤ C1L
p
2/Mp, p ∈ N0.

(b) Let (Lp)p be a sequence which strictly decreases to zero and PLp be defined
by (3.8). Then there exists C > 0 such that, for every k > 0, there exists
Ck > 0, such that

|PLp(ζ)| ≤ Cke
M(k|ζ|), if |Imζ| < |Reζ|

2
+

1

L1

,

and (with another Ck, for given k > 0) |ap| ≤ Ckk
p/Mp, p ∈ N0. Moreover,

there exists a subordinate function ε(ρ), ρ ≥ 0, such that

e2M(ε(|ζ|)) ≤ |PLp(ζ)|, if |Imζ| < |Reζ|
2

+
1

L
.

Proof. We will prove only the part in Beurling case

e2M(L|ζ|) ≤ |PL(ζ)|, if |Imζ| < |Reζ|
2

+
1

L
.

Note that for any c > 0, the inequality x2−y2 ≥ 0 (ζ = x+ iy) implies |1 + cζ2| ≥
c|ζ|2. Also, |1 + cζ2| > c|ζ|2, for all sufficiently small |ζ|. Thus, by the simple
calculation we have that

|1 +
L2ζ2

m2
p

| ≥ L2

m2
p

|ζ|2, if |Imζ| < |Reζ|
2

+
1

L
.

This implies

|PL(ζ)| = |
∞∏
p=1

(1 +
L2

m2
p

ζ2)| ≥
∞∏
p=1

(
L2

m2
p

|ζ|2) ≥ e2M(|ζ|), if |Imζ| < |Reζ|
2

+
1

L
.

Remark 3.2.1. In Theorem 3.2.1 which is to follow, in the case of tempered ultra-
distribution semigroups (and similarly in the case of exponentially bounded ultra-
distribution semigroups), we use Theorems 3.1.1, 3.1.2 and Corollary 3.1.1, where
the inverse Laplace transform is performed on the straight line connecting points
ā− i∞ and ā+ i∞, where ā > 0. With a suitable choice of L, resp., (Lp)p, we have

that this line lies in the domain |Im(iζ)| < |Re(iζ)|
2

+ 1
L
, resp., |Im(iζ)| < |Re(iζ)|

2
+ 1
L1
,

where we have the quoted estimates for PL(−iλ), resp., PLp(−iλ). Let us explain
this in the Beurling case with more details. Choose any L ∈ (0, 1

ā
) and put

K(t) = 1
2πi

ā+i∞∫
ā−i∞

eλt

PL(−iλ)
dλ, t ≥ 0. Then K is an exponentially bounded, continuous

function defined on [0,∞) and we shall simply write K = L−1( 1
PL(−iλ)

).
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Now, we give a structural characterizations for ultradistribution semigroups
and exponential ultradistribution semigroups. Some of these characterizations are
proved in [53], [55], [57], [63], and [70] in another contexts. We will indicate this
in Theorem 3.2.1. For the need of the proof of Theorem 3.2.1 we give following
Lemma:

Lemma 3.2.2. Let PL(d/dt) and PLp(d/dt) be of the form (3.7) and (3.8), res-
pectively. The mappings

PL(id/dt) : S(Mp)(R)→ S(Mp)(R), φ 7→ PL(id/dt)φ,

PLp(id/dt) : S{Mp}(R)→ S{Mp}(R), φ 7→ PLp(id/dt)φ,

are continuous linear bijections.

Proof. We will prove the lemma in the Beurling case. Let φ ∈ S(Mp)(R). Then

F(PL(id/dt)φ)(ξ) = PL(−ξ)φ̂(ξ) = PL(ξ)φ̂(ξ), ξ ∈ R.

One can prove by standard arguments that PL(ξ)φ̂ ∈ S(Mp)(R). We have to prove
that φ̂/PL(ξ) ∈ S(Mp)(R).

Notice that there exists r > 0 such that, for every ξ ∈ R, the circle kξ(r),
with the center ξ and the radius r, is contained in the domain |Imζ| < 1/C where
the estimates of Lemma 3.2.1 are satisfied. By Cauchy’s formula, with suitable
constants, it follows

|(P−1
L )(n)(ξ)| ≤ C

n!

rn
sup{|P−1

L (ξ + reiθ)| : θ ∈ [0, 2π]} ≤

≤ C
n!

rn
eM(L(|ξ|+r)) ≤ C1

n!

rn
eM((L+1)|ξ|), ξ ∈ R, n ∈ N0.

Now it is easy to prove that for every h > 0,

sup{h
n|(φ̂/PL)(n)(ξ)|eM(h|ξ|)

Mn

: ξ ∈ R, n ∈ N0} <∞

which is equivalent with φ̂/PL ∈ S(Mp)(R).

For the needs of the next theorem, we list the following statements:

(a) A generates a (UDSG) of ∗-class G.

(a)’ A generates a (EUDSG) of ∗-class G.

(b) A generates a (UDSG) of ∗-class G such that, for every a > 0, G is of
the form G = P a

L(−id/dt)SaK on D(Mp)((−∞, a)) in (Mp)-case, (resp., G =
P a
Lp

(−id/dt)SaK on D{Mp}((−∞, a)) in {Mp}-case), where SaK : (−∞, a) →
L(E, [D(A)]) is continuous, SaK(t) = 0, t ≤ 0.
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(b)’ A generates a (EUDSG) of ∗-class G so that G is of the form
G = PL(−id/dt)SK on SE (Mp)

a (R) in (Mp)-case, (resp., G = PLp(−id/dt)SK
in {Mp}-case), where SK : R→ L(E, [D(A)]) is continuous, SK(t) = 0, t ≤ 0
and e−at||Sk(t)|| ≤ AeM(k|t|), for some k > 0 and A > 0, resp., for every k > 0
and corresponding A > 0, t ∈ R.

(c) For every a > 0, A is the generator of a local non-degenerate Ka-convoluted
semigroup (SaKa(t))t∈[0,a), where Ka = L−1( 1

PaL(−iλ)
) in (Mp)-case, resp., Ka =

L−1( 1
PaLp (−iλ)

) in {Mp}-case and P a
L, resp., P a

Lp
, is an ultradifferential operator

of ∗-class such that for 0 < a < b the restriction of P b
LS

b
K , resp., P b

Lp
SbK , on

D∗((−∞, a)) is equal to P a
LS

a
K , resp., P a

Lp
SaK .

(c)’ A is the generator of a global, exponentially bounded non-degenerate K-
convoluted semigroup (SK(t))t≥0, where K = L−1( 1

PL(−iλ)
) in (Mp)-case,

resp., K = L−1( 1
PLp (−iλ)

) in {Mp}-case.

(d) There exists an ultradistribution fundamental solution of ∗-class for A, de-
noted by G, with the property N (G) = {0}.

(d)’ There exists an exponential ultradistribution fundamental solution of ∗-class
G for A, with the property N (G) = {0}.

(e) ρ(A) ⊃ Ω∗ and

||R(λ : A)|| ≤ CeM(k|λ|), λ ∈ Ω(Mp),

for some k > 0 and C > 0 in (Mp)-case, resp.,

||R(λ : A)|| ≤ Cke
M(k|λ|), λ ∈ Ω{Mp},

for every k > 0 and a corresponding Ck > 0 in {Mp}-case.

(e)’ ρ(A) ⊃ {λ ∈ C : Reλ > a} and

||R(λ : A)|| ≤ CeM(k|λ|), Reλ > a,

for some a, k > 0 and C > 0 in (Mp)-case, resp.,

||R(λ : A)|| ≤ Cke
M(k|λ|), Reλ > a,

for every k > 0 and a corresponding a, Ck > 0 in {Mp}-case.

Note that in statements (a)’, (b)’, (c)’, (d)’ and (e)’ we consider tempered ultra-
distribution semigroups, i.e., exponential ultradistribution semigroups (EUDSG)
with a = 0. In this way, we simplify the exposition.

Theorem 3.2.1. (a) ⇔ (d); (a)’ ⇔ (d)’; (c) ⇒ (d); (c)’ ⇒ (d)’; (d) ⇒ (e); (d)’
⇒ (e)’; if (Mp) additionally satisfies (M.3), then (a)′ ⇒ (c)’.
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Proof. (a) ⇔ (d): This equivalence is proved in [57], when N (G) 6= {0}. The
statement (a) ⇒ (d) is direct consequence of [58, Theorem 2 (c)]. We give here
the sketch of the proof of the opposite direction. Let G ∈ D∗′+(R, L(E, [D(A)]))
be an ultradistributional fundamental solution of ∗-class for A. By the direct
calculation we have that A is closable operator.

Let Ã generates G. If (x, y) belongs to the closure of A, then there exists a
sequence (xn, yn)n in A such that (xn, yn)→ (x, y), when n→∞, in E × E. Let
φ ∈ D∗0(R) be fixed. For ϕ ∈ D∗0(R) we have

‖G(ϕ)(G(−φ′)x−G(φ)y)‖ =

= ‖G(ϕ)[G(φ′)(xn − x)−G(φ′)xn +G(φ)(yn − y)−G(φ)yn]‖ =

= ‖G(ϕ)[G(φ′)(xn − x) +G(φ)(yn − y)]‖ ≤ (‖G(ϕ ∗0 φ
′)‖+ ‖G(ϕ ∗0 φ‖)/k ,

for k ∈ N. So it follows G(−φ′)x = G(φ)y for all φ ∈ D∗0(R). Since G is a
ultradistribution fundamental solution of ∗-class for A we have A ⊂ Ã. It implies
that D′∗+(R, [D(A)]) is an isomorphic to a subspace of D′∗+(R, [D(Ã)]). From the
first part of the theorem we have that G is a fundamental ultradistribution solution
for P := δ′ ⊗ IdD[Ã] − δ ⊗ Ã. So G∗ is an isomorphism from D′∗+(R, E) onto

D′∗+(R, [D(A)]) and onto D′∗+(R, [D(Ã)]) which implies that

D′∗+(R, [D(A)])=D′∗+(R, [D(Ã)]), so [D(A)] = [D(Ã)].
The statement (a)’ ⇔ (d)’ can be proved similarly using that G can be exten-

ded continuously on ES∗(R), [58].

(d) ⇒ (e)[70]: We will consider only Beurling case. Proof in Roumieu case is
similar. Let G be a ultradistribution solution of class (Mp) for A. For 0 < r < r′

we construct a function k(t) ∈ D(Mp)(R) such that k(t) = 0 for t < −1, k(t) = 1
for 0 ≤ t ≤ r and k(t) = 0 for t > r′. For λ ∈ C we define kλ := e−λtk(t) and
G̃(λ) := G(kλ). Since G is an ultradistribution fundamental solution of class (Mp)
for A it holds that G̃′(λ) − AG̃(λ) = IEkλ(0) = IE. From linearity of G(ϕ) we
have

G̃′(λ) = −G([kλ]
′) = −G(−λe−λtk(t) + e−λtk′(t)) = λG̃(λ)−G(e−λtk′(t)) .

So we get that
(λI − A)G̃(λ) = IE +G(e−λtk′(t)) .

In order to show existence of a resolvent, we estimate function e−λtϕ(t) for any
ϕ ∈ D(Mp)(R) and then we estimate G(e−λtk(t)) and G(e−λtk′(t)). Let suppϕ ∩
R+ ⊂ K = [a, b]. Hence,

[e−λtϕ(t))](n) = e−λt
n∑
j=0

(
n

j

)
(−λ)n−jϕ(j)(t) .

Using (M.1) we obtain:

sup
t∈K
|[e−λtϕ(t))](n)| ≤ e−aReλ

n∑
j=0

sup
t∈K

(
n

j

)
|ϕ(j)(t)|
MjLj

· |λ|
n−j

Ln−j
MjL

n ≤
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≤ ‖ϕ‖Mp,L,Ke
−aReλ

n∑
j=0

sup
n−j

|λ|n−j

Ln−jMn−j
Ln
(
n

j

)
MjMn−j ≤

≤ ‖ϕ‖Mp,L,Ke
M( λ

L
)−aReλLn

n∑
j=0

(
n

j

)
MjMn−j ≤

≤ ‖ϕ‖Mp,L,Ke
M( λ

L
)−aReλLn2nMn ,

for every ϕ ∈ D(Mp)(R). Now, we give estimate for G(e−λtk(t)). Using the struc-
ture theorem [48, Theorem 8.1] for G ∈ D+

(Mp)′(R, L(E, [D(A)])) and a relatively
compact set K1 ⊂ [0,∞) there exist fn ∈ C ′{K̄1, L(E, [D(A)])} and constants
s, C ′ > 0 such that:

G |K1=
∞∑
n=0

f (n)
n ,

where

‖fn‖{C′,L(E,[D(A)])} ≤ C ′
sp

Mp

, andK = K̄1 .

Now,

‖G(e−λtk(t))‖L(E,[D(A)]) = ‖
∞∑
n=0

〈f (n)
n , e−λtk(t)〉‖L(E,[D(A)]) ≤

≤
∞∑
n=0

‖fn‖C′{,L(E,[D(A)])}‖[e−λtk(t)](n)‖C(K) ≤ C ′
∞∑
n=0

sn‖[e−λtk(t)](n)‖C(K)L
n

MnLn
≤

≤ 2C ′‖e−λtk(t)‖Mp,L,K

∞∑
n=0

Lnsn .

Because K = [0, r] for k(t) and K = [r, r′] for k′(t), we have following estimates
for L = 1

2s
:

‖G(e−λtk′(t))‖ ≤ 2C ′eM(2sλ)−rReλ‖k′‖Mp,
1
4s
,K ,

‖G(e−λtk(t))‖ ≤ 2CeM(2sλ)‖k‖Mp,
1
4s
,K .

We put 2C ′eM(2sλ)−rReλ = δ < 1 and we obtain that the operator λI − A has
inverse on

Ω(Mp) = {λ ∈ C : Reλ ≥ 1

c
[M(2sλ)− ln(

δ

2C ′
)] := M(k(λ)) + C} .

The estimate of the resolvent in Ω(Mp) is

‖R(λ : A)‖ ≤ 2C ′

1− δ
eM(k|λ|)‖k‖Mp,

1
2s
,K .

Finally, for some constants k and C holds

‖R(λ : A)‖ ≤ CeM(k|λ|) λ ∈ Ω(Mp) .
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(d)’ ⇒ (e)’[55] : We will give a proof for Beurling case. The Roumeiu case
is quite similar. Let G be a exponential fundamental ultradistribution solu-
tion of (Mp)-class for A, i.e G is a fundamental ultradistribution solution and
G ∈ SE ′(Mp)

ω (R, L(E)) for ω ≥ 0. Let s > 0. We define a function g ∈ E (Mp)(R)
such that g(t) = 0 for t < −s and g(t) = 1 for t ≥ 0. The definition of
G̃(λ) := G(g(t)e−λt) := G(e−ωt(g(t)e(ω−λ)t)) have meaning since the function
t 7→ g(t)e(ω−λ)t, when t ∈ R and for all λ ∈ C such that Reλ > ω, is in S(Mp)(R).
BecauseG is a fundamental ultradistribution solution for A−ωI, for ϕ ∈ D(Mp)(R),
x ∈ E we have that,

(A− ωI)G(e−ωtϕ)x = G(−e−ωtϕ′)x− ϕ(0)x .

Using that D(Mp)(R) is dense in S(Mp)(R), we get that the previous equation holds
for all S(Mp)(R). Let we put ϕ(t) = g(t)e(ω−λ)t ∈ S(Mp)(R). Then suppG ⊆ [0,∞)
and we obtain:

AG̃(λ)x = AG(e−λtϕ)x = λG̃(λ)x− ϕ(0)x, Reλ > ω .

From this equation, (λI −A)G̃(λ)x = x, x ∈ E, Reλ > ω. G̃(λ)A ⊆ AG̃(λ) holds
for Reλ > ω we have G̃(λ)(λI − A)x = x, for x ∈ D(A) and Reλ > ω. We put
ω = a so we have proved the first part of the statement. From the discussion
above, it is clear that R(λ : A)x = G̃(λ)x, for x ∈ E, Reλ > a. Using (M.1) we
obtain that

‖R(λ : A)‖ = ‖G̃(λ)‖ = ‖G(e−ωt(g(t)e(ω−λ)t))‖ ≤

≤ C ′′ sup
t∈K

(g(t)e(ω−λ)t)(p)

Mphp
≤ C ′′ sup

t∈K

p∑
j=0

(
p

j

)
g(p−j)(t) · (e(ω−λ)t)(j)

Mphp
≤

≤ C ′′ sup
t∈K

p∑
j=0

(
p

j

)
g(p−j)(t)

Mp−jhp−j
· (ω − λ)je(ω−λ)t

Mjhj
≤

≤ C ′ sup
t∈K

p∑
j=0

(
p

j

)
(ω − λ)je(ω−λ)t

Mjhj
≤ CeM(k|λ|) .

(a)’ ⇒ (c)’:
We will prove this assertion in the Beurling case by the use of already mentioned

structural theorem for elements of SE ′(Mp)
a (L(E)) :

G(φ) = 〈φ, PL(−id/dt)S(t))〉, φ ∈ S(Mp)(R),

where, for an appropriate k > 0,

e−at||S(t)|| ≤ eM(k|t|), t ∈ R.

Fix an x ∈ E. By Theorem [58, Theorem 2 (c)],

AG(φ)x = −〈φ′, PL(−id/dt)S(t)x〉 − φ(0)x, for all φ ∈ S(Mp)(R).
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Since 1 = PL(−id/dt)L−1(1/PL(−i·)) in the sense of ultradistributions, we have,
for every φ ∈ S(Mp)(R),

0 = 〈φ′(t), (PL(−id/dt)A
t∫

0

S(s)x ds− PL(−id/dt)S(t)x

+PL(−id/dt)
t∫

0

L−1(1/PL(−i·))(s)x ds)〉

= 〈PL(id/dt)φ′(t), (A

t∫
0

S(s)x ds− S(t)x+

t∫
0

L−1(1/PL(−i·))(s)x ds)〉.

Assume that ψ ∈ D(R) and φ ∈ S(Mp)(R) so that ψ = PL(id/dt)φ (cf. Lemma
3.2.2). This implies

A

t∫
0

S(s)x ds− S(t)x+

t∫
0

L−1(1/PL(−i·))(s)x ds = const, (3.11)

in the sense of Beurling ultradistributions on (0,∞). We obtain that const = 0 by
putting x = 0 in (3.11). Since the left side of (3.11) is continuous on R, we have

A

∫ t

0

S(s)x ds = S(t)x−Θ(t)x = 0, where Θ(t) =

∫ t

0

L−1(1/PL(−i·))(s) ds,

for all t ≥ 0. This completes the proof of (a)’ ⇒ (c)’.
Let us show (c)⇒ (d) in the Beurling case. The proof of (c)’⇒ (d)’ is similar.

Define G on D(Mp)((−∞, a)), for all a > 0, by

G := P a
L(−id/dt)SaKa , where P a

L =
∞∑
p=0

ap(d/dt)
p.

Then G is a continuous linear mapping from D(Mp)(R) into L(E) which commutes
with A. Moreover, suppG ⊂ [0,∞). Let φ ∈ D(Mp)((−∞, a)) and x ∈ E. We have,

G(−φ′)x− AG(φ)x = −
∑
p≥0

ap(−i)p
a∫

0

φ(p+1)(s)SaKa(s)x ds

−
∑
p≥0

ap(−i)p
a∫

0

φ(p)(s)ASaKa(s)x ds = −
∑
p≥0

ap(−i)p
a∫

0

φ(p+1)(s)SaKa(s)x ds

+
∑
p≥0

ap(−i)p
a∫

0

φ(p+1)(s)(SaKa(s)x−Θa(s)x) ds =
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=
∑
p≥0

ap(−i)p
a∫

0

φ(p)(s)Ka(s)x ds = φ(0)x.

Hence, G ∈ D′(Mp)(R, L(E, [D(A)])) is an ultradistribution fundamental solution
for A. Clearly, N (G) = {0}.



Chapter 4

Hyperfunction Semigroups

S. Ōuchi [76] was the first who introduced the class of hyperfunction semigroups,
more general than that of distribution and ultradistribution semigroups and in
[77] he considered the abstract Cauchy problem in the space of hyperfunctions.
Furthermore, generators of hyperfunction semigroups in the sense of [76] are not
necessarily densely defined. A.N. Kochubei, [46] considered hyperfunction solu-
tions on abstract differential equations of higher order.
The definition of Fourier hyperfunction semigroups is intrinsically different than
that of ultradistribution semigroups because test functions with the support boun-
ded on the left cannot be used. Fourier hyperfunction semigroups with densely
defined infinitesimal generators were introduced by Y. Ito [36] related to the cor-
responding Cauchy problem [35]. There are given structural and spectral characte-
rizations of Fourier hyperfunction semigroups and exponentially bounded Fourier
hyperfunction semigroups with non-dense infinitesimal generators, their relations
with the convoluted semigroups and to the corresponding Cauchy problems. Spec-
tral properties of hyperfunction semigroups give a new insight to S. Ōuchi’s results.

4.1 Hyperfunction and Fourier hyperfunction

Type Spaces

The spaces of Fourier hyperfunctions were also analyzed by J. Chung, S.-Y. Chung
and D. Kim in [16]-[17]. Following this approach, we have that P∗(D) is (to-
pologically) equal to the space of C∞−functions φ defined on R with the pro-
perty: (∃h > 0)(||φ||n!,h < ∞), where the norms || · ||n!,h, h > 0, are defined by
||φ||n!,h := sup{||φ(n)(x)||e|x|/h/(hnn!) : n ∈ N, x ∈ R}, equipped with the corres-
ponding inductive limit topology when h→ +∞. The next lemma can be proved
by the standard arguments using the norms ||φ||n!,h.

Lemma 4.1.1. If φ, ψ ∈ P∗(D), then φ ∗0 ψ =
∫ t

0
φ(τ)ψ(t − τ) dτ , t > 0 is in

P∗(D) and the mapping ∗0 : P∗(D)× P∗(D)→ P∗(D) is continuous.

Proof. Suppose x ∈ R, n ∈ N and h1 > 0 fulfill ||φ||h1 <∞. Suppose that h > 2h1

satisfies ||ψ||h
2
<∞ and put h2 = hh1

h−h1 . We will use the next inequality which holds

53
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for every t,
|x|
h
≤ |x− t|

h
+
|t|
h
≤ |x− t|

h
+
|t|
h1

− |t|
h2

.

We have

sup
n∈N, x∈R

e|x|/h
∣∣(∫ x

0
φ(t)ψ(x− t) dt

)(n)∣∣
hnn!

≤

≤ sup
n∈N, x∈R

e|x|/h
∫ x

0
|φ(t)ψ(n)(x− t)| dt
hnn!

+
n−1∑
j=0

sup
n∈N, x∈R

e|x|/h|φ(j)(x)||ψ(n−1−j)(0)|
hnn!

=

= I + II.

We will estimate separately I and II.

I ≤ sup
t∈R

(
|φ(t)|e

|t|
h1

)(∫ x

0

e
− |t|
h2 dt

)
sup

n∈N, x,t∈R

|ψ(n)(x− t)|e|x−t|/h

hnn!
,

II ≤ 1

2n

n−1∑
j=0

sup
j∈N, x∈R

e|x|/h|φ(j)(x)|
(h/2)jj!

sup
n−j∈N

|ψ(n−1−j)(0)|
(h/2)n−j(n− j)!

This gives φ∗0ψ ∈ P∗(D) while the continuity of the mapping ∗0 : P∗(D)×P∗(D)→
P∗(D) follows similarly. This completes the proof of the lemma.

Now we will transfer the definitions and assertions for Roumieu tempered ult-
radistributions to Fourier hyperfunctions.

Definition 4.1.1. Let a ≥ 0. Then

P∗,a(D) := {φ ∈ C∞(R) : ea·φ ∈ P∗(D)}.

Define the convergence in this space by

φn → 0 in P∗,a(D) iff ea·φn → 0 in P∗(D).

We denote by Qa(D, E) the space of continuous linear mappings from P∗,a(D) into
E endowed with the strong topology.

We have:

F ∈ Qa(D, E) iff e−a·F ∈ Q(D, E). (4.1)

Proposition 4.1.1. Let G ∈ Qa(D, L(E)). Then there exists a local operator P
and a function g ∈ C(R, L(E)) with the property that for every ε > 0 there exists
Cε > 0 such that

e−ax||g(x)|| ≤ Cεe
ε|x|, x ∈ R and G = P (d/dt)g.
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Proof. From the structure theorem for the space Q(D, L(E)) and since e−a·G ∈
Q(D, L(E)), there exists a local operator P and a function g1 with the property
that for every ε > 0 there is corresponding Cε > 0 such that

‖g1(x)‖ ≤ Cεe
ε|x|, x ∈ R and G = eaxP (d/dt)g1 .

We put g(x) = eaxg1(x), x ∈ R. Using Leibnitz formula , we have

eaxP (d/dt)g1(x) =
∞∑
t=0

(
∞∑
k=0

(
t+ k

t

)
(−1)kakbk+t)(e

axg1(x))(t) .

The assertion will be proved if we show that lim
|t|→∞

(|ct|t!)
1
t = 0, where ct =

∞∑
k=0

(
k+t
k

)
akbk+t. To prove this, we use(
t+ k

k

)
≤ (t+ k)k ≤ 2kkk + 2ktk ≤ 2k(kk + kket) = 2kkk(1 + et) ,

where we used tk ≤ kket. The last inequality is clear for k ≥ t. For k < t, we put
k = νt. First let we note that ν ln ν ∈ (−1, 0). Then νt ln t ≤ νt ln t + νt ln ν + t.
Hence tk ≤ kket. Now,

ct =
∞∑
k=0

2kkk(1 + et)akbk+t =
∞∑
k=0

(2a)kkk(1 + et)bk+t .

The coefficients bk+t are coefficients of a local operator, so for every ε > 0 , there
exists M ∈ N such that for all t+ k > M , |bk+t|(t+ k)! < εt+k. With this we have

t!|ct| ≤ (1 + et)
∞∑
k=0

(2a)kkk(t+ k)!t!|bk+t|
(t+ k)!

≤
∞∑
k=0

(2a)k(1 + e)tekk!t!(t+ k)!|bt+k|
(t+ k)!

≤

≤
∞∑
k=0

(2a)kek(1 + et)k!t!(t+ k)!|bt+k|
t!k!

≤
∞∑
k=0

(2ae)k(1 + et)εt+k =

= (1 + et)εt
∞∑
k=0

(2aeε)k

and the assertion follows since we can choose ε arbitrary small.

Remark 4.1.1. By Lemma 4.1.1, one can easily prove that, if φ, ψ ∈ P∗,a(D), then
φ ∗0 ψ ∈ P∗,a(D) and the mapping ∗0 : P∗,a(D)×P∗,a(D)→ P∗,a(D) is continuous.

For the needs of the Laplace transform we define the space P∗([−r,∞]), r > 0.
Note that [−r,∞] is compact in D.
P∗([−r,∞], h) is defined as the space of smooth functions φ on (−r,∞) with

the property ||φ||∗,−r,h <∞, where

||φ||∗,−r,h := sup
{ ||φ(α)(x)||e|x|/h

hαα!
: α ∈ N0, x ∈ (−r,∞)

}
.

Then
P∗([−r,∞]) := ind lim

h→+∞
P∗([−r,∞], h).
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Lemma 4.1.2. P∗(D) is dense in P∗([−r,∞]).

Proof. This is a consequence of Lemma 8.6.4 in [40].

For a ≥ 0, we define the space

P∗,a([−r,∞]) := {φ : ea·φ ∈ P∗([−r,∞])}.

The topology of P∗,a([−r,∞]) is defined by:

lim
n→∞

φn = 0 in P∗,a([−r,∞]) iff lim
n→∞

ea·φn = 0 in P∗([−r,∞]).

If a ≥ 0 and e−a·G ∈ Q+(D, L(E)), then G can be extended to an element of the
space of continuous linear mappings from P∗,a([−r,∞]) into L(E) equipped with
the strong topology. This extension is unique because of Lemma 4.1.2. We will
use this for the definition of the Laplace transform of G.

4.2 Fourier hyperfunction semigroups

The definition of (exponential) Fourier hyperfunction semigroup with densely de-
fined infinitesimal generators of Y. Ito (see [36, Definition 2.1]) is given on the
basis of the space P0 whose structure is not clear to authors. Our definition is
different and related to non-densely defined infinitesimal generators.

In the sequel, we use the notation Q+(D, L(E)) for the space of vector-valued
Fourier hyperfunctions supported by [0,∞]. More precisely, if f ∈ Q+(D, L(E)) is
represented by f(t, ·) = F+(t+ i0, ·)−F−(t− i0, ·), where F+ and F− are defining
functions for f (see [40, Definition 1.3.6, Definition 8.3.1]) and γ+ and γ− are
piecewise smooth paths connecting points −a (a > 0) and∞ such that γ+ and γ−
lie respectively in the upper and the lower half planes as well as in a strip around
R depending on f, then for any ψ ∈ P∗(D),

∫
R

f(t)ψ(t) dt =

∞∫
0

f(t)ψ(t) dt :=

∫
γ+

F+(z)ψ(z) dz −
∫
γ−

F−(z)ψ(z) dz.

Since we will use the duality approach of Chong and Kim, we use the notation
〈f, ψ〉 for the above expression.

Let ϕ ∈ P∗ and f(t, ·) = F+(t+i0, ·)−F−(t−i0, ·) be an element inQ+(D, L(E)).
Then

ϕ(t)f(t, ·) := ϕ(t)F+(t+ i0, ·)− ϕ(t)F−(t− i0, ·).

We denote by P0
∗ the subspace of P∗ consisting of functions φ with the property

φ(0) = 0. Also, we consider P00
∗ , a subspace of P∗ consisting of functions ψ with

the properties ψ(0) = 0 and ψ′(0) = 0. Note, any ψ ∈ P∗ can be written in the
form

ψ(t) = ψ(0)φ0(t) + θ(t), t ∈ R, respectively , (4.2)

ψ(t) = ψ(0)φ0(t) + ψ′(0)φ1(t) + θ̃(t), t ∈ R, (4.3)
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where φ0 and φ1 are fixed elements of P∗ with the properties φ0(0) = 1, φ′0(0) = 0,
φ1(0) = 0, φ′1(0) = 1 and θ varies over P0

∗ respectively θ̃ varies over P00
∗ . We define

P0
∗a as a space of functions φ ∈ P∗,a with the property φ(0) = 0 and P00

∗,a, as a
space of functions φ ∈ P∗,a with the property φ(0) = 0, φ′(0) = 0 and note that
the similar decompositions as (4.2) and (4.3) hold for elements of P0

∗,a and P00
∗,a,

respectively.

Definition 4.2.1. An element G ∈ Q+(D, L(E)) is called a pre-Fourier hyper-
function semigroup, if the next condition is valid

(H.1) G(φ ∗0 ψ) = G(φ)G(ψ), φ, ψ ∈ P∗(D).
Further on, a pre-Fourier hyperfunction semigroup G is called a Fourier hy-

perfunction semigroup, (FHSG) in short, if in addition, the following holds
(H.2) N (G) :=

⋂
φ∈P00

∗ (D) N(G(φ)) = {0}.
If the next condition also holds:
(H.3) R(G) :=

⋃
φ∈P00

∗ (D) R(G(φ)) is dense in E, then G is called a dense

(FHSG).
If e−a·G ∈ Q+(D, L(E)), for some a > 0, and (H.1) holds with φ, ψ ∈ P∗,a(D)

then G is called exponentially bounded pre-Fourier hyperfunction semigroup. If
(H.2) and (H.3) hold with φ ∈ P00

∗,a(D), then G is called a dense exponential Fourier
hyperfunction semigroup, dense (EFHSG), in short.

Let A be a closed operator. We denote by [D(A)] the Banach space D(A)
endowed with the graph norm ‖x‖[D(A)] = ‖x‖ + ‖Ax‖, x ∈ D(A). Like in [35,
Definition 2.1, Definition 3.1], we give the following definitions:

Definition 4.2.2. Let A be a closed operator. Then G ∈ Q+(D, L(E, [D(A)])) is
a Fourier hyperfunction solution for A if P ∗G = δ ⊗ IE and G ∗ P = δ ⊗ I[D(A)],
where P := δ′ ⊗ ID(A) − δ ⊗ A ∈ Q+(D, L([D(A)], E)); G is called an exponential
Fourier hyperfunction solution for A if, additionally,

e−a·G ∈ Q+(D, L(E, [D(A)])), for some a > 0.

Similarly, if G is an exponential Fourier hyperfunction solution for A which fulfills
(H.3), then G is called a dense, exponential Fourier hyperfunction solution for A.

Let a ≥ 0 and α ∈ P∗a, be an even function such that
∫
α(t) dt = 1. Let

sgn (x) := 1, x > 0, sgn (x) := −1, x < 0 and sgn (0) := 0. A net of the form
δε = α(·/ε)/ε, ε ∈ (0, 1), is called delta net in P∗a. Changing α with the above
properties, one obtains a set of delta nets in P∗a. Clearly, every delta net converges
to δ as ε→ 0 in Q(D). We define, for x ∈ R,

δ ∗0 φ(x) := 2sgn (x) lim
ε→0

δε ∗0 φ(x) = φ(x), φ ∈ P0
∗,a,

δ′ ∗0 φ(x) := 2sgn (x) lim
ε→0

δ′ε ∗0 φ(x) = φ′(x), φ ∈ P00
∗,a.

Definition 4.2.3. Let a ≥ 0 and G be an (EFHSG). Then
1. G(δ)x := y iff G(δ ∗0 φ)x = G(φ)y for every φ ∈ P0

∗,a(D).
2. G(−δ′)x := y if G(−δ′ ∗0 φ)x = G(φ)y for every φ ∈ P00

∗,a(D).
A = G(−δ′) is called the infinitesimal generator of G.



58 Chapter 4. Hyperfunction Semigroups

Thus G(δ) is the identity operator. In order to prove that G(−δ′) is a single-
valued function, we have to prove that for every x ∈ E, G(−δ′)x = y1 and
G(−δ′)x = y2 imply y1 = y2. This means that we have to prove that

G(φ′)x = G(φ)y1, G(φ′)x = G(φ)y2, φ ∈ P00
∗ =⇒ y1 = y2.

Proposition 4.2.1. If G(φ′)x = 0 for every φ ∈ P00
∗,a, then x = 0.

Proof. We shall prove that the assumption G(φ)y = 0 for every φ ∈ P0
∗,a implies

that y = 0. By (4.2), we have that for any φ0 ∈ P∗,a such that φ0(0) = c 6= 0

G(ψ)y =
ψ(0)

c
G(φ0)y, ψ ∈ P∗,a.

Now let φ, ψ be arbitrary elements of P∗,a. Since G(φ ∗0 ψ)y = G(φ)G(ψ)y and
φ ∗0 ψ(0) = 0, it follows, with z = G(ψ)y,

G(φ ∗0 ψ)y = G(φ)z = 0, φ ∈ P∗,a =⇒ z = 0.

Thus, for any ψ ∈ P∗,a, we have G(ψ)y = 0 which finally implies y = 0.
Now, we will prove the assertion. By (4.3) we have that for every ψ ∈ P∗,a

G(ψ′)x = ψ(0)G(φ′0)x+ ψ′(0)G(φ′1)x = 0.

Denote by P10 the set of all φ0 ∈ P∗ with the properties φ1(0) = c 6= 0, φ′1(0) = 0
and by P01 the set of all φ1 ∈ P∗ with the properties φ0(0) = 0, φ′0(0) = c 6= 0.

We have the following cases:

(∀φ0 ∈ P10)(∀φ1 ∈ P01)(G(φ0)x = 0, G(φ1)x = 0);

(∀φ0 ∈ P10)(∃φ1 ∈ P01)(G(φ0)x = 0, G(φ1)x 6= 0);

(∃φ0 ∈ P10)(∀φ1 ∈ P01)(G(φ0)x 6= 0, G(φ1)x = 0);

(∃φ0 ∈ P10)(∃φ1 ∈ P01)(G(φ0)x 6= 0, G(φ1)x 6= 0).

In the first case we have, by (4.3), G(−ψ′)x = 0, ψ ∈ P∗,a. This implies, by the
standard arguments, that G(ψ)x = C

∫
R ψ(t) dt x = 0, ψ ∈ P∗,a and this holds for

C = 0. Consider the fourth case. In this case we have that

G(ψ′)x = C1〈δ, ψ〉x+ C2〈δ′, ψ〉x

and thus,

G(ψ′)x = C1〈δ, ψ〉x+ C2〈δ′, ψ〉x+ C3〈1, ψ〉x,

where 〈1, ψ〉x =
∫
R ψ(t) dt x. Now, by the semigroup property it follows C1 =

C2 = C3 = 0 and with this we conclude as above that x = 0. We can handle out
the second and the third case in a similar way. This completes the proof of the
assertion.
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4.2.1 Laplace transform and the characterizations of Fou-
rier hyperfunction semigroups

The assertions of this section related to the Laplace transform are new but some
of them are quite simple. They are based on the technics developed by Komatsu
[48]-[53].

Note, for every r > 0, Eλ = e−λ· ∈ P∗((−r,∞]), for every λ ∈ C with Reλ > 0.
So, we can define the Laplace transform of G ∈ Q+(D, L(E)) by

LG(λ) = Ĝ(λ) := G(Eλ), Reλ > 0.

Proposition 4.2.2. There exists a suitable local operator P such that

|Ĝ(λ)| ≤ |P (λ)|, Reλ > 0.

The proof of this assertion it is even simpler than the proof of the corresponding
assertion in the case of Roumieu ultradistributions.

If e−a·G ∈ Q+(D, L(E)), we define the Laplace transform of G by

L(G)(λ) = Ĝ(λ) := G(Eλ), Reλ > a.

It is an analytic function defined on {λ ∈ C : Reλ > a} and there exists a local
operator P such that |Ĝ(λ)| ≤ |P (λ)|, Reλ > a.

Remark 4.2.1. Similarly to the corresponding Roumieu case, one can prove the
next statement:
If G ∈ Q+(D, L(E, [D(A)])) is a Fourier hyperfunction solution for A, then G is a
pre-Fourier hyperfunction semigroup. It can be seen, as in the case of ultradistri-
butions, that we do not have that G must be an (FHSG).

Structural properties of the Fourier hyperfunction semigroups are similar to
that of ultradistribution semigroups of Roumieu class. For the essentially different
proofs of corresponding results we need the next lemma where we again use the
Fourier transform instead of Laplace transform.

Lemma 4.2.1. Let PLp be of the form (1.6). The mapping

PLp(id/dt) : P∗(D)→ P∗(D), φ 7→ PLp(id/dt)φ

is a continuous linear bijection.

Proof. Due to [40, Proposition 8.2.2], φ ∈ P∗(D) implies F(φ) ∈ P∗(D). Thus, for
some n ∈ N, every ε > 0 and a corresponding Cε > 0, |F(φ)(z)| ≤ Cεe

(−1/n−ε)|Rez|,
z ∈ R + In. By [40, Proposition 8.1.6, Lemma 8.1.7, Theorem 8.4.9], with some
simple modifications, we have

Ce
A|ζ|

r(|ζ|+1) ≤ |PLp(ζ)|, |η| ≤ |ξ|
2

+
1

L1

, ζ = ξ + iη, (4.4)

for some C, A > 0 and some monotone increasing function r with the properties
r(0) = 1, r(∞) =∞. This implies that there exists an integer n0 ∈ N such that

F(φ)/PLp ∈ Õ−1/n0(R + iIn0).

Thus, its inverse Fourier transform F−1(F(φ)/PLp) is an element of P∗(D).
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Using the properties of local operators as well as norms || · ||h,p!, as in the case
of Roumieu tempered ultradistributions, one obtains the following assertions.

Theorem 4.2.1. Suppose that f : {λ ∈ C : Reλ > a} → E is an analytic
function satisfying

||f(λ)|| ≤ C|P (λ)|, Reλ > a,

for some C > 0, some local operator P with the property |P (λ)| > 0, Reλ > a.
Suppose, further, that a local operator P̃ satisfies (4.4). Then

(∃M > 0)(∃h ∈ C∞([0,∞);E))(∀j ∈ N)(h(j)(0) = 0)

such that ||h(t)|| ≤Meat, t ≥ 0, and

f(λ) = P (λ)P̃ (λ)

∫ ∞
0

e−λth(t) dt, Reλ > a.

Theorem 4.2.2. Let A be closed and densely defined. Then A generates a dense
(EFHSG) if and only if the following conditions hold:

(i) {λ ∈ C : Reλ > a} ⊂ ρ(A).

(ii) There exists a local operator P with the property |P (λ)| > 0, Reλ > a, a
local operator P̃ with the properties as in the previous theorem and C > 0
such that

||R(λ : A)|| ≤ C|P (λ)P̃ (λ)|, Reλ > a.

(iii) R(λ : A) is the Laplace transform of some G which satisfies (H.2).

Proof. We will prove the theorem for a = 0.
(⇐): Theorem 4.2.1 implies that R(λ : A) is of the form

R(λ : A) = P (λ)P̃ (λ)

∫ ∞
0

e−λtS(t) dt, Reλ > 0,

where S ∈ C∞([0,∞)), S(j)(0) = 0, j ∈ N0 and for every ε > 0 there exists M > 0
such that ||S(t)|| ≤ M, t ≥ 0 This implies R(λ : A) = L(G)(λ), Reλ > 0, where
G = P (−d/dt)P̃ (−d/dt)S, and G ∈ Q+(D, E). Since

(δ′ ⊗ ID(A) − δ ⊗ A) ∗G = δ ⊗ IE,

G ∗ (δ′ ⊗ ID(A) − δ ⊗ A) = δ ⊗ ID(A),

and (iii) holds, we have that G is a Fourier hyperfunction semigroup.
(⇒): Put E+

λ = EλH,R
+
λ = RλH, where H is Heaviside’s function. Let

G ∈ Q+(D, L(E,D(A))) and λ ∈ {z ∈ C : Reλ > a} ⊂ ρ(A) be fixed. Then
(δ′ + λδ) ∗ E+

λ = δ. Now let φ ∈ P∗(D) and x ∈ E. Then

G((δ′ + λδ) ∗0 E
+
λ ∗0 φ) = G(φ)x,

and

G(δ′ ∗0 R
+
λ ∗0 φ)x+ λG(δ ∗0 E

+
λ ∗0 φ)x = G(δ′)G(E+

λ ∗0 φ)x+ λĜ(λ)G(φ)x .
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Hence,
−A(Ĝ(λ)G(φ)x) + λĜ(λ)G(φ)x = G(φ)x .

Since (H.3) is assumed (−A+λ)Ĝ(λ) = I, so ‖Ĝ(λ)‖ ≤ C|P (λ)|, Reλ > a, where
P is an appropriate local operator.

Corollary 4.2.1. Suppose A is a closed linear operator. If A generates an
(EFHSG), (i), (ii) and (iii) of Theorem 4.2.2 hold.

If (i) and (ii) of Theorem 4.2.2 hold, then G, defined in the same way as above,
is a Fourier hyperfunction fundamental solution for A. If (iii) is satisfied, then G
is an (EFHSG) generated by A.

We note that in Corollary 4.2.1 the operator A is non–densely defined.
Now we will prove a theorem related to Fourier hyperfunction semigroups. As

in the case of ultradistributions, the theorem can be proved for (EFHSG) but for
the sake of simplicity, we will assume that a = 0.

We need one more theorem.

Theorem 4.2.3. Let A be a closed operator in E. If A generates a (FHSG) G,
then G is an Fourier hyperfunction fundamental solution for

P := δ′ ⊗ ID(A) − δ ⊗ A ∈ Q+(D, L([D(A)], E)).

In particular, if T ∈ Q+(D, E), then u = G ∗ T is the unique solution of

−Au+
∂

∂t
u = T, u ∈ Q+(D, [D(A)]). (4.5)

If suppT ⊂ [α,∞), then suppu ⊂ [α,∞).
Conversely, if G ∈ Q+(D, L(E, [D(A)])) is a Fourier hyperfunction fundamen-

tal solution for P and N (G) = {0}, then G is an (FHSG) in E.

Proof. (⇒) One can simply check that (G(ψ)x,G(−ψ′)x − ψ(0)x) ∈ G(−δ′) and
G is a fundamental solution for P . The uniqueness of the solution u = G ∗ T of
(4.5) is clear as well as the support property for the solution u if suppT ⊂ [α,∞).

The part (⇐) can be proved in the same way as in the Theorem 3.2.1, part
(d)⇒ (a).

We give following statements in order to simplify the exposition of the next
theorem:

(1) A generates an (FHSG) G.

(2) A generates an (FHSG) of the form G = PLp(−id/dt)Sa,K , where SK : R→
L(E) is exponentially slowly increasing continuous function and SK(t) =
0, t ≤ 0.

(3) A is the generator of a global K-convoluted semigroup (SK(t))t≥0 , where
K = L−1( 1

PLp (−iλ)
).
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(4) The problem

(δ ⊗ (−A) + δ′ ⊗ IE) ∗G = δ ⊗ IE, G ∗ (δ ⊗ (−A) + δ′ ⊗ ID(A)) = δ ⊗ ID(A)

has a unique solution G ∈ Q+(D, L(E, [D(A)])) with N (G) = {0}.

(5) For every ε > 0 there exists Kε > 0 such that

ρ(A) ⊃ {λ ∈ C : Reλ > 0}

and
||R(λ : A)|| ≤ Kεe

ε|λ|, Reλ > 0.

Theorem 4.2.4. (1) ⇔ (4); (1) ⇒ (3); (3) ⇒ (4); (4) ⇒ (5);

Proof. The equivalence of (1) and (4) can be proved in the same way as in the
case of ultradistribution semigroups, Theorem 3.2.1. For the proof of (1) ⇒ (3)
we have to use Lemma 4.2.1 (see Theorem 3.2.1 (a)’ ⇒ (c)’). The implication (4)
⇒ (5) is a consequence of Theorem 4.2.2 and Corollary 4.2.1. In the case when
the infinitesimal generator is densely defined Y. Ito [35] proved the equivalence of
a slightly different assertion (4), without the assumption N (G) = {0}, and (5).
Our assertion is the stronger one since it is based on the strong structural result
of Theorem 4.2.2.

Operators which satisfy (5) may be given using the analysis of P.C. Kunstmann
[61, Example 1.6] with suitable chosen sequence (Mp)p∈N.

The definition of a hyperfunction fundamental solution G for a closed linear
operator A can be found in the paper [76] of S. Ōuchi. For the sake of simplicity,
we shall also say, in that case, that A generates a hyperfunction semigroup G. The
next assertion is proved in [76]:

A closed linear operator A generates a hyperfunction semigroup if and only if
for every ε > 0 there exist suitable Cε, Kε > 0 so that

ρ(A) ⊃ Ωε := {λ ∈ C : Reλ ≥ ε|λ|+ Cε}

and
||R(λ : A)|| ≤ Kεe

ε|λ|, λ ∈ Ωε.

We will give some results related to hyperfunction and convoluted semigroups in
terms of spectral conditions and the asymptotic behavior of K̃. We refer to [3]
for the similar results related to n-times integrated semigroups, n ∈ N, to [34] for
α-times integrated semigroups, α > 0 and to [70, Theorem 1.3.1] for convoluted
semigroups. Since we focus our attention on connections of convoluted semigroups
with hyperfunction semigroups, we use the next conditions for K :

(P1) K is exponentially bounded, i.e., there exist β ∈ R and M > 0 so that
|K(t)| ≤Meβt, for a.e. t ≥ 0.

(P2) K̃(λ) 6= 0, Reλ > β.
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In general, the second condition does not hold for exponentially bounded functions,
cf. [5, Theorem 1.11.1] and [57]. Following analysis in [22] and [55, Theorem
2.7.1, Theorem 2.7.2], in our context, we can give the following statements:

Theorem 4.2.5. Let K satisfy (P1) and (P2) and let (SK(t))t∈[0,τ), 0 < τ ≤ ∞,
be a K-convoluted semigroup generated by A. Suppose that for every ε > 0 there
exist ε0 ∈ (0, τε) and Tε > 0 such that

1

|K̃(λ)|
≤ Tεe

ε0|λ|, λ ∈ Ωε ∩ {λ ∈ C : Reλ > β}.

Then for every ε > 0 there exist Cε > 0 and Kε > 0 such that

Ω1
ε = {λ ∈ C : Reλ ≥ ε|λ|+ Cε} ⊂ ρ(A) and ||R(λ : A)|| ≤ Kεe

ε0|λ|, λ ∈ Ω1
ε.

Proof. Let M and β be as in (P1) and let ε > 0 be fixed. Define

R(λ : t) :=
1

K̃(λ)

t∫
0

e−λsSK(s)ds, Reλ > β, t ∈ [0, τ).

Fix an x ∈ E. Proceeding as in [70, Theorem 1.3.1], it follows

(λI − A)R(λ : t)x =
1

K̃(λ)

(
λ

∫ t

0

e−λsSK(s)xds− A
∫ t

0

e−λsSK(s)xds
)

=
1

K̃(λ)

(
λ

∫ t

0

e−λsΘ(s)xds− e−λtA
∫ t

0

SK(s)xds
)

=
1

K̃(λ)

(∫ t

0

e−λsK(s)xds− e−λtSK(t)x
)

= I − 1

K̃(λ)

(
e−λtSK(t)x+

∞∫
t

e−λsK(s)xds
)

:= I −Bt(λ)x, Reλ > β, t ∈ [0, τ).

Our goal is to find the domain Ω1
ε such that for λ ∈ Ω1

ε, Reλ > β, we can estimate
Bt(λ):

||Bt(λ)|| ≤ 1

|K̃(λ)|

(
e−Reλt||SK(t)||+M

∞∫
t

e(β−Reλ)sds
)

≤ 1

|K̃(λ)|

(
e−Reλt||SK(t)||+M

e(β−Reλ)t

Reλ− β

)
≤ Tεe

ε0|λ|e(β−Reλ)t(e−βt||SK(t)||+ M

Reλ− β
), t ∈ [0, τ).

Fix t ∈ (0, τ) and put ||SK(t)|| = C0. Let β1 ∈ (β,∞). Assume that Reλ > β1

and let us find an additional condition on Reλ such that

||Bt(λ)|| ≤ Tε(e
−βt||SK(t)||+ M

Reλ− β
)eε0|λ|+(β−Reλ)t
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≤ Tε(e
−βtC0 +

M

β1 − β
)eε0|λ|+(β1−Reλ)t ≤ δ < 1.

Now we see that with

Cε := β1 + Cε + |β − ln
δ

Tε(e−βtC0 + M
β1−β )

|,

Kε :=
tTε

1− δ
≥ |

t∫
0

e−λsSK(s)ds| Tε
1− δ

and Ω1
ε as in the theorem, we have

||Bt(λ)|| ≤ δ, λ ∈ Ω1
ε.

Since R(λ : t) and Bt(λ) commute with A, it follows Ω1
ε ⊂ ρ(A) and

||R(λ : A)|| = ||R(λ : t)(I −Bt(λ))−1|| ≤ 1

|K̃(λ)|
|

t∫
0

e−λsSK(s)ds| 1

1− δ

≤ Kεe
ε0|λ| ≤ Kεe

ετ |λ|, λ ∈ Ω1
ε.

This consideration also gives the following:

Proposition 4.2.3. Let K ∈ L1
loc([0, τ)) for some 0 < τ ≤ 1 and let A generate a

K-convoluted semigroup (SK(t))t∈[0,τ). If K can be extended to a function K1 in
L1
loc([0,∞)) which satisfies (P1) so that its Laplace transform has the same esti-

mates as in Theorem 4.2.5, then A generates S. Ōuchi’s hyperfunction semigroup.

We state now the assertion which naturally corresponds to Theorem 4.2.5. The
asymptotic properties of K̃ are slightly different now.

Theorem 4.2.6. Assume that for every ε > 0 there exist Cε > 0 and Mε > 0 so
that Ωε ⊂ ρ(A) and that ||R(λ : A)|| ≤Mεe

ε|λ|, λ ∈ Ωε.

(a) Assume that K is an exponentially bounded function with the following pro-
perty for its Laplace transform: There exists ε0 > 0 such that for every ε > 0
exists Tε > 0 with

|K̃(λ)| ≤ Tεe
−ε0|λ|, λ ∈ Ωε. (4.6)

If τ > 0 and K|[0,τ) 6= 0 (K|[0,τ) is the restriction of K on [0, τ)), then A
generates a local K-semigroup on [0, τ).

(b) Assume that K is an exponentially bounded function, τ > 0 and K|[0,τ) 6= 0.
Assume that for every ε > 0 there exist Tε > 0 and ε0 ∈ (ε(1 + τ), ∞) such
that (4.6) holds. Then A generates a local K-semigroup on [0, τ).
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Proof. (a) Suppose that τ > 0 and K|[0,τ) 6= 0. Choose a ε ∈ (0, 1) with ε0
ε
−1 > τ .

Let Γε = ∂(Ωε) be upwards oriented. Define, for t ∈ [0, ε0
ε
− 1),

SK(t) :=
1

2πi

∫
Γε

eλtK̃(λ)R(λ : A)dλ.

Then prescribed assumptions imply that (SK(t))t∈[0,
ε0
ε
−1) is a norm continuous

operator family which commutes with A. The proof of (a) (for t ∈ [0, ε0
ε
− 1)) is

almost completely contained in the proof of [70, Theorem 1.3.2]; note only that
Cauchy formula (applied to a contour ΓR = ∂({λ ∈ C : Re(λ) < R} ∩ Ωε) and
f(λ) = K̃(λ)R(λ : A)) implies∫

Γε

K̃(λ)R(λ : A)dλ = 0.

The assumption on K implies that (SK(t))t∈[0,τ) is a non-degenerate K-convoluted
semigroup with the generator A, which ends the proof of (a). The same arguments
work for (b).

Connections of hyperfunction and ultradistribution semigroups with (local in-
tegrated) regularized semigroups seems to be more complicated. In this context,
there is a example (essentially due to R. Beals [9]) which shows that there exists
a densely defined operator A on the Hardy space H2(C+) which has the following
properties:

1. A is the generator of S. Ōuchi’s hyperfunction semigroup.
2. A is not a subgenerator of a local α-times integrated C-semigroup, for any

injective C ∈ L(H2(C+)) and α > 0.
It is essentially due to R. Beals [9].

Example 4.2.1. [55] Let ψ(t) = t
ln(t+1)

, t > 0, ψ(0) = 1. Then ψ is nonnegative,

continuous, concave function on [0,∞) with lim
t→∞

ψ(t) =∞, lim
t→∞

ψ(t)
t

= 0 and

∞∫
1

ψ(t)

t2
dt =∞.

Note that for every ε > 0 there exists Cε > 0 such that εt+Cε ≥ ψ(t), t ≥ 0. Let
A be a closed, densely defined linear operator acting on E := H2(C+) such that:

Ω(ψ) := {λ ∈ C : Reλ ≥ ψ(|Imλ|)} ⊂ ρ(A),

||R(λ : A)|| ≤ M

1 +Reλ
, λ ∈ Ω(ψ),

and that, for every τ ∈ (0,∞), there does not exist a solution of
u ∈ C([0, τ), [D(A)]) ∩ C1([0, τ), E),
u′(t) = Au(t), t ∈ (0, τ),
u(0) = x,



66 Chapter 4. Hyperfunction Semigroups

unless x = 0. The existence of such an operator is proved in [9, Theorem 2’].
Since ρ(A) 6= ∅, it follows

⋂
n∈N

D(An) = E; see for instance [61]. Suppose that

A is a subgenerator of a local k-times integrated C-semigroup on [0, τ), for some
injective C ∈ L(E) and k ∈ N. Then the problem

u ∈ C([0, τ), [D(A)]) ∩ C1([0, τ), E),
u′(t) = Au(t), t ∈ [0, τ),
u(0) = x,

has a unique solution for all x ∈ C(D(Ak+1)) (cf. [65]). It follows C(D(Ak+1)) =
{0} and this is a contradiction. Hence, A is not a subgenerator of any α-times
integrated C-semigroup, for any injective C ∈ L(H2(C+)) and α > 0. Moreover,
A does not generate a C-distribution semigroup ([54]). On the other hand, it is
easy to see that Ωε ⊂ Ωψ ⊂ ρ(A) and the growth rate of resolvent shows that A
generates S. Ōuchi’s hyperfunction semigroup. It can be easily proved that A is
not the generator of any ultradistribution semigroup of ∗-class in the sense of [53]
and we refer to J. Kisyński [45] for similar results within the theory of (degenerate)
distribution semigroups.

It is clear that there exists an operatorA which generates an entire C-regularized
group but not a hyperfunction semigroup.



Chapter 5

On the Solution of the Cauchy
Problem
in the Weighted Spaces of
Beurling
Ultradistributions

In this chapter first we solve (1) in the space of Banach valued ultradistributions

D′(s)Lp (0, T ;E), i.e.

〈u′(t), ϕ(t)〉 = A〈u(t), ϕ(t)〉+ 〈f(t), ϕ(t)〉, ∀ϕ ∈ D(s)
Lq (0, T ),

where A : D(A) ⊆ E → E is closed operator which satisfies the Hille-Yosida
condition

‖(λ− ω)kR(λ : A)k‖ ≤ C, for λ > ω, k ∈ Z+.

Then, after extensive preparations we give the two most important results of this
chapter, Theorem 5.4.2 and Proposition 5.5.1.

This chapter is divided into five sections.

The Banach space D(s)
Lq ,h(U) and its dual D

′(s)
Lp,h(U) are explained in Section 5.1.

Section 5.2 is devoted to the Beurling type test spaces D(s)
Lp (U) and their correspon-

ding duals. In Section 5.3 we consider the vector valued ultradistribution spaces
D′(s)Lp (U ;E) and D′(s)Lp,h(U ;E), where U is a bounded open subset of Rn. The bound-

ness of U is important since it implies nuclearity of D(s)
Lp (U) and D

′(s)
Lp (U) which

in turn will imply a very important kernel theorem when E is equal to D′(s)Lp (U).

In the end of this section we are particulary interested in the spaces D′(s)Lp (U ;E)
when E is a Banach space. We start Section 5.4 by defining the Banach space
D̃′sLp,h(0, T ;E) consisting of sequences of Bochner Lp functions with certain growth
condition. In this abstract setting we define the Cauchy problem (1) and recall
from [25] two types of solutions of (1). Then, using the proof in [25] we prove
the existence of such solutions in D̃′sLp,h(0, T ;E) and use this to prove existence of

solution of (1) in the space of Banach-valued ultradistributions D′(s)Lp (0, T ;E). We

67
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apply in Section 5.5 results of Section 5.4 for several important instances of A and
E considered by Da Prato and Sinestrari in [25], but in our ultradistributional
setting.

5.1 Banach spaces of Weighted Ultradistributi-

ons

5.1.1 Basic Banach Spaces

Let U be an open subset of Rn and 1 ≤ p ≤ ∞. Let DsLp,h(U) be the space of

all ϕ ∈ C∞(U) such that the norm

(∑
α∈Nn

hp|α| ‖Dαϕ‖pLp(U)

α!ps

)1/p

is finite (with the

obvious meaning when p =∞). One can simply prove:

Lemma 5.1.1. DsLp,h(U) is a Banach space, when 1 ≤ p ≤ ∞.

Let1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ be such that
1

p
+

1

q
= 1. Let D(s)

Lp,h(U)

denotes the closure of D(s)(U) in DsLp,h(U). Denote by D′(s)Lp,h(U) the strong dual

of D(s)
Lq ,h(U). Then, D′(s)Lp,h(U) is continuously injected in D′(s)(U), for 1 ≤ p ≤ ∞.

Denote by C0(U) the space of all continuous functions f on U such that for every
ε > 0 there exists K ⊂⊂ U such that |f(x)| < ε when x ∈ U\K.

Lemma 5.1.2. Let ϕ ∈ D(s)
L∞,h(U). Then for every ε > 0 there exist K ⊂⊂ U and

k ∈ Z+ such that

sup
α∈Nd

sup
x∈U\K

h|α| |Dαϕ(x)|
α!s

≤ ε and sup
|α|≥k

h|α| ‖Dαϕ‖L∞(U)

α!s
≤ ε.

5.1.2 Duals of Banach spaces

The main goal in this subsection is to give a representation of the elements of
D′(s)Lp,h(U), 1 ≤ p ≤ ∞. In order to do that, first we will construct a Banach space

which will contain D(s)
Lp,h(U) as a closed subspace. It is worth to note that the

main idea of this constructions is due to Komatsu [48].
For 1 ≤ p <∞ define

Yh,Lp =
{

(ψα)α∈Nn
∣∣∣ψα ∈ Lp(U), ‖(ψα)α‖Yh,Lp =

=

(∑
α∈Nn

hp|α| ‖ψα‖pLp(U)

α!ps

)1/p

<∞
}
.
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Then one easily verifies that Yh,Lp is a Banach space, with the norm ‖ · ‖Yh,Lp , for
1 ≤ p <∞. Let p =∞. Define

Yh,L∞ =

{
(ψα)α∈Nn

∣∣∣ψα ∈ C0(U), lim
|α|→∞

h|α| ‖ψα‖L∞(U)

α!s
= 0

}
,

with the norm ‖(ψα)α‖Yh,L∞ = sup
α∈Nn

h|α|

α!s
‖ψα‖L∞(U). One easily verifies that it is a

Banach space.
Let Ũ be the disjoint union of countable number of copies of U , one for each

α ∈ Nn, i.e. Ũ =
⊔
α∈Nn

Uα, where Uα = U . Equip Ũ with the disjoint union

topology. Then Ũ is Hausdorff locally compact space. Moreover every open set
in Ũ is σ-compact. For each 1 ≤ p < ∞, one can define a Borel measure µp on

Ũ by µp(E) =
∑
α

h|α|p

α!ps
|E ∩ Uα|, for E a Borel subset of Ũ , where |E ∩ Uα| is the

Lebesgue measure of E ∩Uα. It is obviously locally finite, σ-finite and µ(K) <∞
for every compact subset K of Ũ . By the properties of Ũ described above, µp is
regular (both inner and outer regular). We obtained that µp is a Radon measure.
It follows that Yh,Lp is exactly Lp(Ũ , µp), for 1 ≤ p < ∞. In particular, Yh,Lp is
a reflexive (B)-space for 1 < p < ∞. For p = ∞, we will prove that Yh,L∞ is
isomorphic to C0(Ũ). For ψ ∈ C0(Ũ) denote by ψα the restriction of ψ to Uα. By
the definition of Ũ , K is compact subset of Ũ if and only if K ∩ Uα 6= ∅ for only
finitely many α ∈ Nn and for those α, K ∩ Uα is compact subset of Uα. Now, one
easily verifies that ψα ∈ C0(U) and lim

|α|→∞
‖ψα‖L∞(U) = 0. Moreover, if ψα ∈ C0(U),

α ∈ Nn, are such that lim
|α|→∞

‖ψα‖L∞(U) = 0 then the function ψ on Ũ , defined by

ψ(x) = ψα(x), when x ∈ Uα is an element of C0(Ũ). We obtain that

C0(Ũ) =

{
(ψα)α∈Nn

∣∣∣ψα ∈ C0(U), ∀α ∈ Nn, lim
|α|→∞

‖ψα‖L∞(U) = 0

}
.

Observe that the mapping (ψα)α∈Nn 7→ (ψ̃α)α∈Nn , where ψ̃α =
h|α|

α!s
ψα, is an isome-

try from Yh,L∞ onto C0(Ũ). For the purpose of the next proposition we will denote
by ι the inverse mapping of this isometry, i.e. ι : C0(Ũ)→ Yh,L∞ .

Note that D(s)
Lp,h(U) can be identified with a closed subspace of Yh,Lp by the

mapping ϕ 7→ ((−D)αϕ)α∈Nn . This is obvious for 1 ≤ p < ∞ and for p = ∞ it

follows from Lemma 5.1.2. Since Yh,Lp is reflexive for 1 < p < ∞ so is D(s)
Lp,h(U)

as a closed subspace of a reflexive Banach space.

Observe that spaces Lp(U), for 1 ≤ p ≤ ∞, resp, (C0(U))′, are continuously

injected into D′(s)Lp,h(U), resp. D′(s)L1,h(U). For α ∈ Nn and F ∈ Lp(U), resp. F ∈
(C0(U))′, we define DαF ∈ D′(s)Lp,h(U), resp. DαF ∈ D′(s)L1,h(U), by

〈DαF, ϕ〉 =

∫
U

F (x)(−D)αϕ(x)dx, ϕ ∈ D(s)
Lq ,h(U), resp.
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〈DαF, ϕ〉 =

∫
U

(−D)αϕ(x)dF, ϕ ∈ D(s)
L∞,h(U).

It is easy to verify that DαF is well defined element of D′(s)Lp,h(U), resp. D′(s)L1,h(U),
and in fact it is equal to its ultradistributional derivative when we regard F as an
element of D′(s)(U).

Proposition 5.1.1. Let 1 < p ≤ ∞. For every T ∈ D′(s)Lp,h(U), there exist C > 0
and Fα ∈ Lp(U), α ∈ Nn, such that(∑

α∈Nn

α!ps

h|α|p
‖Fα‖pLp(U)

)1/p

≤ C and T =
∞∑
|α|=0

DαFα. (5.1)

When p = 1, for every T ∈ D′(s)L1,h(U), there exist C > 0 and Radon measures

Fα ∈ (C0(U))′, α ∈ Nn, such that

∑
α∈Nn

α!s

h|α|
‖Fα‖(C0(U))′ ≤ C and T =

∞∑
|α|=0

DαFα. (5.2)

Moreover, if B is a bounded subset of D′(s)Lp,h(U), then there exists C > 0 inde-
pendent of T ∈ B and for each T ∈ B there exist Fα ∈ Lp(U), α ∈ Nn, for
1 < p ≤ ∞, resp. Fα ∈ (C0(U))′, α ∈ Nn, for p = 1, such that (5.1), resp. (5.2),
holds.

If Fα ∈ Lp(U), α ∈ Nn, for 1 < p ≤ ∞, resp. Fα ∈ (C0(U))′, α ∈ Nn,

for p = 1, are such that

(∑
α∈Nn

α!ps

h|α|p
‖Fα‖pLp(U)

)1/p

< ∞, for 1 < p ≤ ∞, resp.

∑
α∈Nn

α!s

h|α|
‖Fα‖(C0(U))′ < ∞, for p = 1, then the series

∞∑
|α|=0

DαFα converges absolu-

tely in D′(s)Lp,h(U), resp. D′(s)L1,h(U).

Proof. Let Yh,Lq be as in the above discussion. Extend T by the Hahn-Banach
theorem to a continuous functional on Yh,Lq and denote it again by T , for 1 ≤ q ≤
∞. For q = ∞, T̃ = T ◦ ι is a functional on C0(Ũ). Then, for 1 < p ≤ ∞, there

exists g ∈ Lp(Ũ , µq) such that T ((ψα)α∈Nn) =

∫
Ũ

(ψα)α∈Nngdµq, (ψα)α∈Nn ∈ Yh,Lq .

For p = 1, there exists g ∈
(
C0(Ũ)

)′
such that T̃ (ψ) =

∫
Ũ

ψdg, for ψ ∈ C0(Ũ).

Hence, for (ψα)α∈Nn ∈ Yh,L∞ , we have

T ((ψα)α∈Nn) = T̃
(

(ψ̃α)α∈Nn
)

=

∫
Ũ

(ψ̃α)α∈Nndg,

where (ψ̃α)α = ι−1 ((ψα)α) =

(
h|α|

α!s
ψα

)
α

. Put Fα =
h|α|q

α!qs
g|Uα , for 1 ≤ q < ∞.

For q = ∞, put Fα =
h|α|

α!s
g|Uα . Then Fα ∈ Lp(U), for 1 ≤ q < ∞, respectively
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Fα ∈ (C0(U))′ for q =∞. Moreover, for 1 < q <∞,∑
α∈Nn

α!ps

h|α|p
‖Fα‖pLp(U) =

∑
α∈Nn

h|α|q

α!qs
∥∥g|Uα∥∥pLp(U)

= ‖g‖p
Lp(Ũ ,µq)

<∞.

Also, it is easy to verify that, for q = 1, sup
α

α!s

h|α|
‖Fα‖L∞(U) = ‖g‖L∞(Ũ ,µ1) < ∞.

For q =∞ we have∑
α∈Nn

α!s

h|α|
‖Fα‖(C0(U))′ =

∑
α∈Nn

∥∥g|Uα∥∥(C0(U))′
= ‖g‖(C0(Ũ))

′ <∞,

where in the second equality we used that
∥∥g|Uα∥∥(C0(U))′

=
∣∣g|Uα∣∣ (Uα) = |g|(Uα)

(we denote by |g| the total variation of the measure g and similarly for g|Uα).
Moreover

T ((ψ)α∈Nn) =
∑
α∈Nn

∫
U

ψα(x)Fα(x)dx,

for 1 ≤ q <∞. For q =∞ we have

T ((ψα)α∈Nn) =

∫
Ũ

(ψ̃α)α∈Nndg =
∑
α∈Nn

α!s

h|α|

∫
U

ψ̃αdFα =
∑
α∈Nn

∫
U

ψαdFα.

So, for 1 ≤ q <∞, if ϕ ∈ D(s)
Lq ,h(U), we obtain

〈T, ϕ〉 =
∑
α∈Nn

∫
U

(−D)αϕ(x)Fα(x)dx =
∑
α∈Nn
〈DαFα, ϕ〉.

Similarly, 〈T, ϕ〉 =
∑

α〈DαFα, ϕ〉 when q = ∞. Moreover, by these calculations,
it follows that for 1 ≤ q <∞

∑
α∈Nn

|〈DαFα, ϕ〉| ≤

(∑
α∈Nn

α!ps

h|α|p
‖Fα‖pLp(U)

)1/p(∑
α∈Nn

h|α|q ‖Dαϕ‖qLq(U)

α!qs

)1/q

.

Hence the partial sums of
∑

αD
αFα converge absolutely in D′(s)Lp,h(U), when 1 <

p ≤ ∞. When p = 1, the proof that the partial sums of
∑

αD
αFα converge

absolutely in D′(s)L1,h(U) is similar and we omit it. If B is a bounded subset of

D′(s)Lp,h(U), by the Hahn-Banach theorem it can be extended to a bounded set B1

in Y ′h,Lq , for 1 ≤ q < ∞, resp. to a bounded set B1 in C0(Ũ) for q = ∞ (ι is an
isometry). Hence, there exists C > 0 independent of T ∈ B1 and for each T ∈ B1

there exists g ∈ Lp(Ũ , µq), for 1 < p ≤ ∞, resp. g ∈
(
C0(Ũ)

)′
, for p = 1, such

that ‖g‖Lp(Ũ) ≤ C, resp. ‖g‖(C0(Ũ))
′ ≤ C. Defining Fα as above, one obtains (5.1),

resp. (5.2), with the desired uniform estimate independent of T ∈ B.
The last part of the proposition is easy and it is omitted.
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5.2 Ultradistribution Spaces

5.2.1 Beurling type test spaces

For 1 ≤ p ≤ ∞, define locally convex spaces B(s)
Lp (U) = lim←−

h→∞
DsLp,h(U). Then

B(s)
Lp (U) is a Frechét space. Denote by D(s)

Lp (U) the closure of D(s)(U) in B(s)
Lp (U) for

1 ≤ p <∞ and Ḃ(s)(U) the closure of D(s)(U) in B(s)
L∞(U). Hence, when U = Rn,

these spaces coincide with the spaces D(s)
Lp (Rn), for 1 ≤ p <∞, resp. Ḃ(s) defined

in [84]. All of these spaces are Frechét spaces as well as XLp = lim←−
h→∞
D(s)
Lp,h(U)

1 ≤ p ≤ ∞.

Lemma 5.2.1. Let XLp be as above and 1 ≤ p ≤ ∞.

i) D(s)(U) is dense in XLp.

ii) XLp is a closed subspace of B(s)
Lp (U) and the topology of XLp is the same as

the induced one from B(s)
Lp (U). Hence XLp and D(s)

Lp (U), for 1 ≤ p <∞, resp.
XL∞ and Ḃ(s)(U) when p =∞, are isomorphic locally convex spaces.

Proof. Since D(s)(U) is dense in each D(s)
Lp,h(U) it follows that D(s)(U) ⊆ XLp and it

is dense in XLp . The proof of i) is complete. To prove ii) note that XLp ⊆ B(s)
Lp (U).

Let ϕj, j ∈ N, be a sequence in XLp which converges to ϕ ∈ B(s)
Lp (U) in the topology

of B(s)
Lp (U). Then ϕj converges to ϕ in DsLp,h(U) for each h. But ϕj ∈ D(s)

Lp,h(U),

j ∈ N and D(s)
Lp,h(U) is a closed subspace of DsLp,h(U) with the same topology. It

follows that ϕ ∈ D(s)
Lp,h(U) and ϕj converges to ϕ in D(s)

Lp,h(U) for each h. Hence

ϕ ∈ XLp . Moreover, since the inclusion XLp → B(s)
Lp (U) is obviously continuous

and XLp and B(s)
Lp (U) are Frechét spaces and the image of XLp under the inclusion

is closed subspace of B(s)
Lp (U) by the open mapping theorem it follows that XLp is

isomorphic with its image under this inclusion (isomorphic as l.c.s.).

By the above lemma we obtain that D(s)
Lp (U) = lim←−

h→∞
D(s)
Lp,h(U), for 1 ≤ p < ∞

and Ḃ(s)(U) = lim←−
h→∞
D(s)
L∞,h(U), for p = ∞ and the projective limits are reduced.

For 1 < p ≤ ∞, denote by D′(s)Lp (U) the strong dual of D(s)
Lq (U). Denote by D′(s)L1 (U)

the strong dual of Ḃ(s)(U). Since D(s)(U) is continuously and densely injected into

D(s)
Lq (U), for 1 ≤ q < ∞ and into Ḃ(s)(U), D′(s)Lp (U) are continuously injected into
D′(s)(U), for 1 ≤ p ≤ ∞. One easily verifies that ultradifferential operators of class

(s) act continuously on D(s)
Lp (U), for 1 ≤ p < ∞ and on Ḃ(s)(U). Hence they act

continuously on D′(s)Lp (U), for 1 ≤ p ≤ ∞. For 1 < p < ∞, since all D(s)
Lp,h(U) are

reflexive (B)-spaces, the inclusion D(s)
Lp,h2

(U) → D(s)
Lp,h1

(U), for h2 > h1 is weakly

compact mapping, hence D(s)
Lp (U) is a (FS∗)-space, in particular it is reflexive.

From now on we suppose that U is bounded open set in Rn.
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Proposition 5.2.1. Let 1 ≤ p < ∞ and h1 > h. We have the continuous
inclusions D(s)

L∞,h1
(U)→ D(s)

Lp,h(U) and D(s)
Lp,2sh(U)→ D(s)

L∞,h(U). In particular, the

spaces D(s)
Lp (U), 1 ≤ p <∞ and Ḃ(s)(U) are isomorphic among each other.

Proof. Let 1 ≤ p < ∞ and ϕ ∈ D(s)
Lp,h(U). It is obvious that for each α ∈ Nn,

Dαϕ ∈ Wm,p
0 (U), for any m ∈ Z+. Hence, by the Sobolev imbedding theorem it

follows that for each α ∈ Nn, Dαϕ extends to a uniformly continuous function on
U . Now, let ϕ ∈ DsL∞,h1(U). Then(∑

α∈Nn

hp|α| ‖Dαϕ‖pLp(U)

α!ps

)1/p

≤ |U |1/p
(∑
α∈Nn

hp|α|h
p|α|
1 ‖Dαϕ‖pL∞(U)

h
p|α|
1 α!ps

)1/p

≤ C|U |1/p sup
α∈Nn

h
|α|
1 ‖Dαϕ‖L∞(U)

α!s
.

Hence, the inclusion DsL∞,h1(U) → DsLp,h(U) is continuous. Moreover, if ϕ ∈
D(s)
L∞,h1

(U), then there exist ϕj ∈ D(s)(U), j ∈ Z+, such that ϕj → ϕ, as j → ∞,

in DsL∞,h1(U). But then ϕj → ϕ, as j → ∞, in DsLp,h(U). Hence, D(s)
L∞,h1

(U)

is continuously injected into D(s)
Lp,h(U). It follows that for each ϕ ∈ D(s)

L∞,h1
(U),

α ∈ Nn, Dαϕ can be extended to a uniformly continuous function on U . Let
ϕ ∈ D(s)

Lp,2sh(U). Fix m ∈ Z+, such that mp > n. Denote by C1 = max
|α|≤m

α!s/h|α|.

By the Sobolev imbedding theorem we have

h|β|‖Dβϕ‖L∞(U)

β!s
≤ C ′

h|β|

β!s

∑
|α|≤m

‖Dα+βϕ‖pLp(U)

1/p

≤ C ′

∑
|α|≤m

h(|α|+|β|)pα!ps

β!psα!psh|α|p
‖Dα+βϕ‖pLp(U)

1/p

≤ C ′C1

∑
|α|≤m

(2sh)(|α|+|β|)p

(α + β)!ps
‖Dα+βϕ‖pLp(U)

1/p

≤ C ′C1

(∑
γ∈Nn

(2sh)|γ|p

γ!ps
‖Dγϕ‖pLp(U)

)1/p

.

We obtain that D(s)
Lp,2sh(U) is continuously injected in DsL∞,h(U). Moreover, if

ϕj ∈ D(s)(U), j ∈ Z+, are such that ϕj → ϕ, when j → ∞, in D(s)
Lp,2sh(U), then

ϕj → ϕ, when j → ∞, in DsL∞,h(U). Hence, D(s)
Lp,2sh(U) is continuously injected

into D(s)
L∞,h(U).

Proposition 5.2.1 implies that, we no longer need to distinguish the spaces
D(s)
Lp (U) since they are all isomorphic to Ḃ(s)(U). Hence their duals are all isomor-

phic to D′(s)L1 (U).
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Proposition 5.2.2. Let U be bounded open subset of Rn.

i) Let h > 0 be fixed. Every element ϕ of D(s)
Lp,h(U) for 1 ≤ p ≤ ∞, can be

extended to C∞ function on Rn with support in U . Moreover D(s)
L∞,h(U) can

be identified with a closed subspace of Ds,h
U

;

ii) Ḃ(s)(U) can be identified with a closed subspace of D(s)

U
;

iii) Ḃ(s)(U) is a nuclear (FS)-spaces. Moreover, in the representation Ḃ(s)(U) =

lim←−
h→∞
D(s)
L∞,h(U), the linking inclusions in the projective limit D(s)

L∞,h1
(U) →

D(s)
L∞,h(U) are compact for h1 > h.

Proof. To prove the first part of i), note that by Proposition 5.2.1, D(s)
Lp,h(U)

is continuously injected into D(s)
L∞,h/2s(U). Hence it is enough to prove it for

D(s)
L∞,h(U). Let ϕ ∈ D(s)

L∞,h(U). Then there exist ϕj ∈ D(s)(U), j ∈ Z+, such

that ϕj → ϕ, as j →∞ in D(s)
L∞,h(U). So for ε > 0 there exists j0 ∈ Z+ such that

for j, k ≥ j0, j, k ∈ Z+, we have sup
α∈Nn

h|α| ‖Dαϕk −Dαϕj‖L∞(U)

α!s
≤ ε. Since all ϕj,

j ∈ Z+, have compact support in U and D(s)(U) ⊆ Ds,h
U

we obtain that

sup
α∈Nn

h|α| ‖Dαϕk −Dαϕj‖L∞(Rn)

α!s
≤ ε

for all j, k ≥ j0, j, k ∈ Z+. Hence, ϕj is a Cauchy sequence in the Banach space

Ds,h
U

so it must converge to an element ψ ∈ Ds,h
U

. Hence ψ(x) = ϕ(x), when
x ∈ U and obviously ψ(x) = 0 when x ∈ Rn\U (since all ϕj, j ∈ Z+, have
compact support in U). This proofs the first part of i). To prove the second part,

consider the mapping ϕ 7→ ϕ̃, D(s)
L∞,h(U)→ Ds,h

U
, where ϕ̃(x) = ϕ(x), when x ∈ U

and ϕ̃(x) = 0, when x ∈ Rn\U . By the above discussion, this is well defined
mapping. Moreover, one easily sees that it is an isometry, which completes the
proof of i). Observe that ii) follows from i) since Ḃ(s)(U) = lim←−

h→∞
D(s)
L∞,h(U) and

D(s)

U
= lim←−

h→∞
Ds,h
U

. The first part of iii) follows from ii) since Ḃ(s)(U) is a closed

subspace of the nuclear (FS)-space D(s)

U
(Komatsu in [48] proves the nuclearity

of D(s)

U
when U is regular compact set, but the proof is valid for general U ; the

regularity of U is used by Komatsu [48] for the definition and nuclearity of E (s)(U)).
For the second part, by Proposition 2.2 of [48] the inclusion Ds,h1

U
→ Ds,h

U
is

compact. Since D(s)
L∞,h1

(U), resp. D(s)
L∞,h(U), is closed subspace of Ds,h1

U
, resp.

Ds,h
U

, one obtains the compactness of the inclusion under consideration.
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5.2.2 Weighted Beurling spaces of ultradistributions

Proposition 5.2.3. Let T ∈ D′(s)L1 (U). For every 1 ≤ p ≤ ∞ there exist h,C > 0

and Fα ∈ C(U), α ∈ Nn, such that(∑
α∈Nn

α!ps

h|α|p
‖Fα‖pL∞(U)

)1/p

≤ C and T =
∑
α∈Nn

DαFα, (5.3)

where the last series converges absolutely in D′(s)L1 (U). Moreover, if B is a bounded

subset of D′(s)L1 (U) and 1 ≤ p ≤ ∞, then there exist h,C > 0 independent of T ∈ B
and for each T ∈ B there exist Fα ∈ C(U), α ∈ Nn, such that (5.3) holds.

Conversely, for 1 ≤ p ≤ ∞, if Fα ∈ Lp(U), α ∈ Nn, are such that(∑
α∈Nn

α!ps

h|α|p
‖Fα‖pLp

)1/p

<∞

for some h > 0 then the series
∞∑
|α|=0

DαFα converges absolutely in D′(s)Lp,h(U) and

hence also in D′(s)L1 (U).

Proof. First the second part of the proposition will be proved. If Fα ∈ Lp(U),

α ∈ Nn, are as above, the absolute convergence of
∞∑
|α|=0

DαFα in D′(s)Lp,h(U) follows

by Proposition 5.1.1 for 1 < p ≤ ∞ and can be easily verified for p = 1. By Pro-
position 5.2.1, Ḃ(s)(U) is continuously and densely injected into D(s)

Lq ,h(U), where
q is the conjugate of p, i.e. p−1 + q−1 = 1 (the part about the denseness follows

from the fact that D(s)(U) ⊆ Ḃ(s)(U) is dense in D(s)
Lq ,h(U)). Hence D′(s)Lp,h(U) is

continuously injected into D′(s)L1 (U) and one obtains that
∞∑
|α|=0

DαFα converges ab-

solutely in D′(s)L1 (U).
To prove the first part, fix 1 < p ≤ ∞ and let q to be the conjugate of p. Since

Ḃ(s)(U) = lim←−
h→∞
D(s)
L∞,h(U) and the projective limit is reduced with compact linking

mappings (cf. Proposition 5.2.2), D′(s)L1 (U) = lim−→
h→∞
D′(s)L1,h(U) as locally convex space,

where the inductive limit is injective with compact linking mappings. If B is boun-
ded subset of D′(s)L1 (U) there exists h1 > 0 such that B ⊆ D′(s)L1,h(U) and is bounded

there. By Proposition 5.2.1, if take h = 2sh1, D(s)
Lq ,h(U) is continuously injected

into D(s)
L∞,h1

(U). Obviously, D(s)
Lq ,h(U) is dense in D(s)

L∞,h1
(U) (since D(s)(U) is).

Hence, D′(s)L1,h1
(U) is continuously injected into D′(s)Lp,h(U), so B is a bounded subset

of D′(s)Lp,h(U). Now, by Proposition 5.1.1, for each T ∈ B there exist F̃α ∈ Lp(U),
α ∈ Nn, such that(∑

α∈Nn

α!ps

hp|α|
‖F̃α‖pLp(U)

)1/p

≤ C ′ and T =
∑
α∈Nn

DαF̃α
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and the constant C ′ is the same for all T ∈ B. Let L(x) ∈ C (Rn) be a fundamental

solution of ∆nL = δ (∆ is the Laplacian). Define Gα(x) =

∫
U

L(x − y)F̃α(y)dy,

α ∈ Nn. Obviously Gα ∈ C(U), α ∈ Nn and ‖Gα‖L∞(U) ≤ C1‖F̃α‖Lp(U), for

all α ∈ Nn. Hence

(∑
α∈Nn

α!ps

hp|α|
‖Gα‖pL∞(U)

)1/p

≤ C2 and C2 is independent of

T ∈ B. Let ∆n =
∑

β cβD
β and define Fα =

∑
β≤α

cβGα−β, α ∈ Nn. The obviously

Fα ∈ C(U) for all α ∈ Nn. Note that cβ 6= 0 only for finitely many β ∈ Nn. Put

C3 =
∑
β

β!s

h|β|
|cβ|. Then(∑

α∈Nn

α!ps

(2s+1h)|α|p
‖Fα‖pL∞(U)

)1/p

≤

(∑
α∈Nn

1

2|α|p

(∑
β≤α

(α− β)!sβ!s

h|α|−|β|h|β|
|cβ| ‖Gα−β‖L∞(U)

)p)1/p

≤ C2C3

(∑
α∈Nn

1

2|α|p

)1/p

and the last is independent of T ∈ B. Now one easily obtains that T =
∑

αD
αFα

which completes the first part of the proposition when 1 < p ≤ ∞. Note that the
case p = 1 follows from this for any h̃ > h.

5.3 Vector-valued Spaces of Ultradistributions

Let now E be a complete locally convex space. As we saw above, D′(s)L1 (U) and

D′(s)Lp,h(U), 1 ≤ p ≤ ∞, are continuously injected in D′(s)(U). Following Komatsu

[50], (see also [63]) we define the spaces D′(s)L1 (U ;E) and D′(s)Lp,h(U ;E), 1 ≤ p ≤ ∞,

of E-valued ultradistributions of type D′(s)L1 (U) and D′(s)Lp,h(U) respectively, as

D′(s)L1 (U ;E) = D′(s)L1 (U)εE = Lε

((
D′(s)L1 (U)

)′
c
, E

)
, resp. (5.4)

D′(s)Lp,h(U ;E) = D′(s)Lp,h(U)εE = Lε

((
D′(s)Lp,h(U)

)′
c
, E

)
. (5.5)

The subindex c stands for the topology of compact convex circled convergence on
the dual of D′(s)L1 (U), resp. D′(s)Lp,h(U), from the duality〈

D′(s)L1 (U),
(
D′(s)L1 (U)

)′〉
, resp.

〈
D′(s)Lp,h(U),

(
D′(s)Lp,h(U)

)′〉
.
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If denote by ι, resp. ιp, the inclusion D′(s)L1 (U) → D′(s)(U), resp. D′(s)Lp,h(U) →
D′(s)(U), then D′(s)L1 (U ;E), resp. D′(s)Lp,h(U ;E), is continuously injected into

D′(s)(U ;E) = D′(s)(U)εE = Lb
(
D(s)(U), E

)
by the mapping ι ε Id, resp. ιp ε Id (cf.

[50]). In [98] is proved that when both spaces are complete. The same holds for

their ε tensor product. Hence, D′(s)L1 (U ;E) and D′(s)Lp,h(U ;E) are complete. Since

D′(s)L1 (U) and D′(s)Lp,h(U) are barreled (the former is a (DFS)-space as the strong

dual of a (FS)-space, hence barreled), every bounded subset of
(
D′(s)L1 (U)

)′
c

or(
D′(s)Lp,h(U)

)′
c

is equicontinuous (and vice versa). Hence, the ε topology on the right

hand sides of (5.4) and (5.5) is the same as the topology of bounded convergence.

Moreover, since Ḃ(s)(U) is a (FS)-space and D′(s)L1 (U) is a (DFS)-space they are

both Montel spaces. Hence D′(s)L1 (U ;E) = Lb

(
Ḃ(s)(U), E

)
. For 1 < p < ∞,

D′(s)Lp,h(U ;E) = Lb

(
D(s)
Lq ,h(U)c, E

)
, since D(s)

Lq ,h(U) are reflexive, where D(s)
Lq ,h(U)c is

the space D(s)
Lq ,h(U) equipped with topology of compact convex circled convergence

from the duality
〈
D(s)
Lq ,h(U),D′(s)Lp,h(U)

〉
. Since Ḃ(s)(U) is a nuclear (FS)-space (by

Proposition 5.2.2) D′(s)L1 (U) is a nuclear (DFS)-space and hence it satisfies the
weak approximation property by Corollary 2 pg.110 of [91] (for the definition of
the weak approximation property see [98]). Hence Proposition 1.4 of [50] implies

D′(s)L1 (U ;E) = D′(s)L1 (U)εE ∼= D′(s)L1 (U)⊗̂E where the π and the ε topologies coincide

on D′(s)L1 (U)⊗̂E since D′(s)L1 (U) is nuclear. Later we will need the following kernel
theorem.

Theorem 5.3.1. Let U1 and U2 be bounded open sets in Rn1
x and Rn2

y respectively.
Then we have the following canonical isomorphisms of locally convex spaces

i) Ḃ(s)(U1)⊗̂Ḃ(s)(U2) ∼= Ḃ(s)(U1 × U2).

ii) D′(s)L1 (U1)⊗̂D′(s)L1 (U2) ∼= D′(s)L1 (U1 × U2) ∼= D′(s)L1 (U1)εD′(s)L1 (U2)

∼= Lb

(
Ḃ(s)(U1),D′(s)L1 (U2)

)
∼= D′(s)L1

(
U1;D′(s)L1 (U2)

)
∼= D′(s)L1

(
U2;D′(s)L1 (U1)

)
.

Proof. First we prove i). Since Ḃ(s)(U1) and Ḃ(s)(U2) are nuclear (Proposition
5.2.2) the π and the ε topologies coincide on Ḃ(s)(U1) ⊗ Ḃ(s)(U2). Moreover, one
easily verifies that Ḃ(s)(U1)⊗Ḃ(s)(U2) can be regarded as a subspace of Ḃ(s)(U1×U2)
by identifying ϕ ⊗ ψ with ϕ(x)ψ(y). Since D(s)(U1 × U2) is continuously and
densely injected in Ḃ(s)(U1 × U2) and D(s)(U1) ⊗ D(s)(U2) is a dense subspace of
D(s)(U1 × U2) (see Theorem 2.1 of [49]) we obtain that D(s)(U1) ⊗ D(s)(U2) and
hence Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is a dense subspace of Ḃ(s)(U1 × U2). Observe that
the bilinear mapping (ϕ, ψ) 7→ ϕ(x)ψ(y), Ḃ(s)(U1) × Ḃ(s)(U2) → Ḃ(s)(U1 × U2)
is continuous (it is separately continuous and hence continuous since all spaces
under consideration are Frechét spaces). One obtains that the π topology on
Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is stronger than the induced one by Ḃ(s)(U1 × U2). Hence, to
obtain Ḃ(s)(U1)⊗̂Ḃ(s)(U2) ∼= Ḃ(s)(U1×U2), it is enough to prove that the ε topology
on Ḃ(s)(U1) ⊗ Ḃ(s)(U2) is weaker than the induced one by Ḃ(s)(U1 × U2). Let A′
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and B′ be equicontinuous subsets of D′(s)L1 (U1) and D′(s)L1 (U2) respectively. Hence,
there exist h,C > 0 such that

sup
T∈A′
|〈T, ϕ〉| ≤ C sup

x,α

h|α| |Dαϕ(x)|
α!s

and sup
S∈B′
|〈S, ψ〉| ≤ C sup

y,β

h|β|
∣∣Dβψ(y)

∣∣
β!s

Then for χ ∈ Ḃ(s)(U1)⊗ Ḃ(s)(U2), T ∈ A′ and S ∈ B′,

|〈T (x)⊗ S(y), χ(x, y)〉|

= |〈T (x), 〈S(y), χ(x, y)〉〉| ≤ C sup
x,α

h|α| |〈S(y), Dα
xχ(x, y)〉|

α!s

≤ C2 sup
x,y,α,β

h|α|+|β|
∣∣Dα

xD
β
yχ(x, y)

∣∣
α!sβ!s

≤ C2 sup
x,y,α,β

(2sh)|α|+|β|
∣∣Dα

xD
β
yχ(x, y)

∣∣
(α + β)!s

.

Hence, we obtain that the ε topology is weaker than the topology induced by
Ḃ(s)(U1 × U2).

ii) Since Ḃ(s)(U1) and Ḃ(s)(U2) are nuclear (FS)-spaces (by Proposition 5.2.2),

D′(s)L1 (U1) andD′(s)L1 (U2) are nuclear (DFS)-spaces. Hence the π and the ε topologies

on the tensor product D′(s)L1 (U1) ⊗ D′(s)L1 (U2) coincide and by i) (using the fact

that D′(s)L1 (U1) and D′(s)L1 (U2) are nuclear (DFS)-spaces) we have D′(s)L1 (U1 × U2) ∼=(
Ḃ(s)(U1)⊗̂Ḃ(s)(U2)

)′ ∼= D′(s)L1 (U1)⊗̂D′(s)L1 (U2). Other isomorphisms in the assertion

on U follow by the discussion before the theorem.

5.3.1 Banach-valued ultradistributions

Let now E be a Banach space and denote by Lp(U ;E), 1 ≤ p ≤ ∞, the Bochner
Lp space. If ϕ ∈ CL∞(U) (the space of bounded continuous functions on U) and
F ∈ L1(U ;E) then one easily verifies that ϕF ∈ L1(U ;E). We will need the
following lemma.

Lemma 5.3.1. (variant of du Bois-Reymond lemma for Bochner integrable func-

tions) Let F ∈ L1(U ;E) is such that

∫
U

F(x)ϕ(x)dx = 0 for all ϕ ∈ D(s)(U).

Then F(x) = 0 a.e.

Proof. Observe first that for each e′ ∈ E ′ and ϕ ∈ D(s)(U), we have∫
U

e′ ◦ F(x)ϕ(x)dx = e′
(∫

U

F(x)ϕ(x)dx

)
= 0.

Since D(s)(U) is dense in D(U), by the du Bois-Reymond lemma it follows that
e′ ◦ F = 0 a.e. for each e′ ∈ E ′. Since F is strongly measurable F(U) is separable
subset of E. Let D be a countable dense subset of F(U). Denote by L the set of
all finite linear combinations of the elements of D with scalars from Q+ iQ. Then
L is countable. Denote by Ẽ the closure of L in E. Then Ẽ is a separable Banach
space and F(U) ⊆ Ẽ. Thus Ẽ ′σ is separable (by Theorem 1.7 of Chapter 4 of [91]; σ
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stands for the weak* topology). Let Ṽ = {ẽ′1, ẽ′2, ẽ′3, ...} be a countable dense subset
of Ẽ ′σ. Extend each ẽ′j, j ∈ Z+, by the Hahn-Banach theorem to a continuous
functional of E and denote this extension by e′j, j ∈ Z+. Arguments given above
imply that e′j ◦F = 0 a.e. for each j ∈ Z+ and in fact ẽ′j ◦F = 0 a.e., j ∈ Z+, since

e′j is extension of ẽ′j and F(U) ⊆ Ẽ. Hence Pj = {x ∈ U | ẽ′j ◦F(x) 6= 0} is a set of
measure 0, for each j ∈ Z+ and so is P =

⋃
j Pj. We will prove that F(x) = 0 for

every x ∈ U\P . Assume that there exists x0 ∈ U\P such that F(x0) 6= 0. Then
there exists ẽ′ ∈ Ẽ ′ such that ẽ′ ◦ F(x0) 6= 0 i.e. |ẽ′ ◦ F(x0)| = c > 0. Then there
exists ẽ′k ∈ Ṽ such that |ẽ′ ◦ F(x0)− ẽ′k ◦ F(x0)| ≤ c/2. Since ẽ′k ◦ F(x0) = 0, by
the definition of P , we have

c = |ẽ′ ◦ F(x0)| ≤ |ẽ′ ◦ F(x0)− ẽ′k ◦ F(x0)|+ |ẽ′k ◦ F(x0)| ≤ c/2,

which is a contradiction. Hence F(x) = 0 for all x ∈ U\P and the proof is
complete.

Denote by δx the delta ultradistribution concentrated at x. For α ∈ Nn and
x ∈ U one easily verifies that Dαδx ∈ D′(s)L1,h(U) for any h > 0 and hence, by

Proposition 5.2.1, Dαδx ∈ D′(s)Lp,h(U) for any h > 0 and 1 ≤ p ≤ ∞. For the next
proposition we need the following result.

Lemma 5.3.2. Let h > 0, α ∈ Nn and 1 ≤ p ≤ ∞. The set Gα = {Dαδx|x ∈
U} ⊆ D′(s)Lp,h(U) is precompact in D′(s)Lp,h(U).

Proof. Let 0 < h1 < h/2s. By Proposition 5.2.1 we have the continuous in-

clusion D(s)
Lq ,h(U) → D(s)

L∞,h/2s(U). Proposition 5.2.2 implies that the inclusion

D(s)
L∞,h/2s(U) → D(s)

L∞,h1
(U) is compact. Hence we have the compact dense inclu-

sion D(s)
Lq ,h(U) → D(s)

L∞,h1
(U) (the denseness follows from the fact that D(s)(U) ⊆

D(s)
Lq ,h(U) is dense in D(s)

L∞,h1
(U)). So, the dual mapping D′(s)L1,h1

(U) → D′(s)Lp,h(U) is

compact inclusion. Observe that, for ϕ ∈ D(s)
L∞,h1

(U),

|〈Dαδx, ϕ〉| ≤
α!s

h
|α|
1

‖Dαϕ‖D(s)
L∞,h1

(U)
, ∀x ∈ U . Hence Gα is bounded in the Banach

space D′(s)L1,h1
(U), thus precompact in D′(s)Lp,h(U).

Proposition 5.3.1. Each F ∈ Lp(U ;E) can be regarded as an E-valued ultradist-

ribution by F(ϕ) =

∫
U

F(x)ϕ(x)dx. In this way Lp(U ;E) is continuously injected

into D′(s)L1 (U ;E) for 1 ≤ p ≤ ∞ and in D′(s)Lp,h(U ;E) for 1 < p <∞.

Proof. Let F ∈ Lp(U ;E). First we will prove that Lp(U ;E) is continuously injec-

ted into D′(s)L1 (U ;E). If ϕ ∈ Ḃ(s)(U) then∥∥∥∥∫
U

F(x)ϕ(x)dx

∥∥∥∥
E

≤
∫
U

‖F(x)‖E|ϕ(x)|dx ≤ ‖F‖Lp(U ;E)‖ϕ‖Lq(U). (5.6)

Since U is bounded, ‖ϕ‖Lq(U) ≤ |U |1/q‖ϕ‖L∞(U). Hence F ∈ Lb

(
Ḃ(s)(U), E

)
=

D′(s)L1 (U ;E) and the mapping F 7→ F is continuous from Lp(U ;E) into D′(s)L1 (U ;E).
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To prove that it is injective let F = 0 i.e.

∫
U

F(x)ϕ(x)dx = 0 for all ϕ ∈ Ḃ(s)(U).

Since U is bounded Lp(U ;E) ⊆ L1(U ;E). Now, Lemma 5.3.1 implies that F = 0.

Next, we prove that Lp(U ;E) is continuously injected into D′(s)Lp,h(U ;E) for

1 < p < ∞. Consider the set G = {δx|x ∈ U} ⊆ D′(s)Lp,h(U). It is precompact in

D′(s)Lp,h(U) by Lemma 5.3.2. Fix F ∈ Lp(U ;E) and note that (5.6) still holds when

ϕ ∈ D(s)
Lq ,h(U). Let V = {e ∈ E| ‖e‖E ≤ ε} be a neighborhood of zero in E and

G̃ =
‖F‖Lp(U ;E)|U |1/q

ε
G. Since G is precompact so is G̃. But then, for ϕ ∈ G̃◦,

‖F‖Lp(U ;E)‖ϕ‖Lq(U) ≤ |U |1/q‖F‖Lp(U ;E) sup
x∈U
|〈δx, ϕ〉| ≤ ε.

Hence F(ϕ) ∈ V for all ϕ ∈ G̃◦. We obtain that F ∈ L
(
D(s)
Lq ,h(U)c, E

)
since the

topology of precompact convergence on D(s)
Lq ,h(U) coincides with the topology of

compact convex circled convergence (D′(s)Lp,h(U) is a Banach space). The continuity

of the mapping F 7→ F follows from (5.6) since the bounded sets of D(s)
Lq ,h(U)

are the same for the initial topology and the topology of compact convex circled
convergence. The proof of the injectivity is the same as above.

By Proposition 5.3.1, from now on we will use the same notation for F ∈
Lp(U ;E) and its image in D′(s)L1 (U ;E), resp. D′(s)Lp,h(U ;E) for 1 < p <∞.

For α ∈ Nn and F ∈ Lp(U ;E), 1 < p <∞, define DαF ∈ D′(s)Lp,h(U ;E) by

DαF(ϕ) =

∫
U

F(x)(−D)αϕ(x)dx, ϕ ∈ D(s)
Lq ,h(U).

As in Proposition 5.3.1, one can prove that this is well defined element of
D′(s)Lp,h(U ;E). One only has to use the set Gα from Lemma 5.3.2 instead G =
{δx|x ∈ U}. Observe that DαF coincides with the ultradistributional derivative

of F when we regard F as an element of D′(s)L1 (U ;E) or D′(s)(U ;E).

Theorem 5.3.2. Let 1 < p < ∞ and Fα ∈ Lp(U ;E), α ∈ Nn, are such that, for

some fixed h > 0,

(∑
α

α!ps

h|α|p
‖Fα‖pLp

)1/p

< ∞. Then the partial sums
n∑
|α|=0

DαFα

converge absolutely in D′(s)Lp (U ;E) and D′(s)Lp,h(U ;E).

The partial sums converge absolutely in D′(s)L1 (U ;E) also in the cases p = 1 and
p =∞.

Proof. Let 1 < p < ∞. To prove that the partial sums converge absolutely in

D′(s)Lp,h(U ;E) = Lb

(
D(s)
Lq ,h(U)c, E

)
let B be a bounded subset of D(s)

Lq ,h(U)c. Since

the bounded sets of D(s)
Lq ,h(U) are the same for the initial topology and the topo-

logy of compact convex circled convergence we may assume that B is the closed
unit ball in D(s)

Lq ,h(U). We obtain
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n∑
|α|=0

sup
ϕ∈B

∥∥∥∥∫
U

Fα(x)(−D)αϕ(x)dx

∥∥∥∥
E

≤ sup
ϕ∈B

∞∑
|α|=0

∫
U

‖Fα(x)‖E|Dαϕ(x)|dx ≤ sup
ϕ∈B

∞∑
|α|=0

‖Fα‖Lp(U ;E)‖Dαϕ‖Lq(U)

≤

 ∞∑
|α|=0

α!ps

h|α|p
‖Fα‖pLp(U ;E)

1/p

· sup
ϕ∈B

 ∞∑
|α|=0

h|α|q

α!qs
‖Dαϕ‖qLq(U)

1/q

,

for any n ∈ Z+. Since D′(s)Lp,h(U ;E) is complete it follows that the partial sums

converge absolutely in D′(s)Lp,h(U ;E) to an element of D′(s)Lp,h(U ;E). The proof for

D′(s)L1 (U ;E) is similar.

Observe that each F ∈ C(U ;E) is in Lp(U ;E) for any 1 ≤ p ≤ ∞. To see this,
note that F is separately valued since it is continuous and U is a subset of Rn.
Moreover it is easy to see that it is weakly measurable. Hence Pettis’ theorem
implies that F is strongly measurable. Now the claim follows since U is bounded
‖F(·)‖E is in Lp(U), for any 1 ≤ p ≤ ∞.

Theorem 5.3.3. Let f ∈ D′(s)L1 (U ;E) and 1 ≤ p ≤ ∞. Then there exists h > 0

and Fα ∈ C(U ;E), α ∈ Nn, such that(∑
α

α!ps

h|α|p
‖Fα‖pLp(U ;E)

)1/p

<∞ (5.7)

and f =
∞∑
|α|=0

DαFα, where the series converges absolutely in D′(s)L1 (U ;E).

Conversely, let Fα ∈ Lp(U ;E), α ∈ Nn, be such that (5.7) holds. Then there

exists f ∈ D′(s)L1 (U ;E) such that f =
∞∑
|α|=0

DαFα and the series converges absolutely

in D′(s)L1 (U ;E).

Proof. First, note that the second part of the theorem follows by Theorem 5.3.2.

To prove the first part, let f ∈ D′(s)L1 (U ;E) = Lb

(
Ḃ(s)(U), E

)
. Since Ḃ(s)(U) is

nuclear (by Proposition 5.2.2) and E is a Banach space f is nuclear. Hence there
exists a sequence ej, j ∈ N, in the closed unit ball of E, an equicontinuous sequence

fj, j ∈ N, of D′(s)L1 (U) and a complex sequence λj, j ∈ N, such that
∑

j |λj| <∞,
such that

f(ϕ) =
∞∑
j=0

λj〈fj, ϕ〉ej.
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Since {fj|j ∈ N} is equicontinuous subset of D′(s)L1 (U), it is bounded and by Pro-

position 5.2.3, there exist h,C > 0 and Fj,α ∈ C(U) such that

fj =
∞∑
|α|=0

DαFj,α and sup
j

(∑
α∈Nn

α!ps

h|α|p
‖Fj,α‖pL∞(U)

)1/p

≤ C.

Define Fα(x) =
∑

j λjFj,α(x)ej. To prove that Fα ∈ C(U ;E), observe that for each

j ∈ N, λjFj,α(x)ej ∈ C(U ;E) and the series
∑

j λjFj,α(x)ej converges absolutely

in the Banach space C(U ;E). Hence Fα ∈ C(U ;E). Moreover

α!s

h|α|
‖Fα(x)‖E ≤

∞∑
j=0

|λj|
α!s

h|α|
‖Fj,α‖L∞(U) ≤ C

∞∑
j=0

|λj|, for all x ∈ U.

We obtain sup
α

α!s

h|α|
‖Fα‖C(U ;E) <∞. Since U is bounded, (5.7) holds for any h1 >

h. One easily verifies that the series
∑

j,α λj〈DαFj,α, ϕ〉ej converges absolutely

in E for each fixed ϕ ∈ Ḃ(s)(U). Hence f(ϕ) =
∞∑
|α|=0

DαFα(ϕ), for each fixed

ϕ ∈ Ḃ(s)(U). By Theorem 5.3.2,
∞∑
|α|=0

DαFα converges absolutely in D′(s)L1 (U ;E),

hence f =
∞∑
|α|=0

DαFα.

5.4 On the Cauchy Problem in D̃′sLp,h(0, T ;E)
In this section E is the Banach space with the norm ‖ · ‖, and D(A) is the do-
main of a closed linear operator A, endowed with the graph norm ‖u‖D(A) =
‖u‖ + ‖Au‖. We use standard notation for the symbols R(λ : A), ρ(A). The
results obtained in previous sections will often be applied in the one dimensio-
nal case (i.e. n = 1) when a bounded open set U is equal to the interval (0, T ).
In this case we will use the more descriptive notations Lp(0, T ;E), DsLp,h(0, T ),

D(s)
Lp,h(0, T ), Ḃ(s)(0, T ), D′(s)Lp,h(0, T ), D′(s)L1 (0, T ), D′(s)Lp,h(0, T ;E) and D′(s)L1 (0, T ;E) for

the spaces Lp(U ;E), DsLp,h(U), D(s)
Lp,h(U), Ḃ(s)(U), D′(s)Lp,h(U), D′(s)L1 (U), D′(s)Lp,h(U ;E)

and D′(s)L1 (U ;E), respectively. Note that by Sobolev imbedding theorem, every
derivative of ϕ ∈ DsLp,h(0, T ) can be extended to uniformly continuous function on
[0, T ]. As in [25], we define the E-valued Sobolev space W 1,p(0, T ;E) as the space

of all F : [0, T ]→ E, such that F(t) = F0 +

∫ t

0

F′(s)ds, t ∈ [0, T ], for some F0 ∈ E

and F′(t) ∈ Lp(0, T ;E), with the norm ‖F‖W 1,p(0,T :E) = ‖F‖Lp(0,T ;E)+‖F′‖Lp(0,T ;E),
1 ≤ p <∞. Observe that if F ∈ W 1,p(0, T ;E) then F is continuous function with
values in E which is a.e. differentiable and its derivative is equal to F′ a.e.
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Let 1 ≤ p < ∞. Define D̃′sLp,h(0, T ;E) as a space of all sequences f = (Fα)α,
Fα ∈ Lp(0, T ;E), α ∈ N, such that

‖f‖D̃′s
Lp,h

(0,T ;E) =

(∑
α∈N

α!ps

hpα
‖Fα‖pLp(0,T ;E)

)1/p

<∞. (5.8)

One easily verifies that it is a Banach space with the norm (5.8). Each f ∈
D̃′sLp,h(0, T ;E) generates an element of L

(
DsLq ,h(0, T ), E

)
by

〈f , ϕ〉 = f(ϕ) =
∑
α∈N

(−1)α
∫ T

0

Fα(t)ϕ(α)(t) dt ∈ E.

Moreover, one easily verifies that the mapping f 7→ 〈f , ·〉,
D̃′sLp,h(0, T ;E)→ Lb

(
DsLq ,h(0, T ), E

)
is continuous.

Remark 5.4.1. It is worth to note that this mapping is not injective. To see this
let ψ ∈ D(s)(0, T ), ψ 6= 0. Take nonzero element e of E and define F(x) = ψ′(x)e
and G(x) = ψ(x)e, x ∈ (0, T ). Obviously F,G ∈ Lp(0, T ;E), for any 1 ≤ p ≤ ∞.
Define f ,g ∈ D̃′sLp,h(0, T ;E) by f = (F, 0, 0, ...) and g = (0,G, 0, ...). Observe that,
for ϕ ∈ DsLq ,h(0, T ),

〈f , ϕ〉 = e

∫ T

0

ψ′(x)ϕ(x)dx = −e
∫ T

0

ψ(x)ϕ′(x)dx = 〈g, ϕ〉.

Hence 〈f , ·〉 and 〈g, ·〉 are the same element of Lb
(
DsLq ,h(0, T ), E

)
.

Note that Lp(0, T ;E) can be continuously imbedded in D̃′sLp,h(0, T ;E) by F 7→
(F, 0, 0, . . .).

Let 1 ≤ p <∞. Define D̃′sW 1,p,h(0, T ;E) as the space of all sequences f = (Fα)α,

where Fα ∈ W 1,p(0, T ;E) and

‖f‖D̃′s
W1,p,h

(0,T ;E) =

(∑
α∈N

α!ps

hpα

(
‖Fα‖pLp(0,T ;E) + ‖F′α‖

p
Lp(0,T ;E)

))1/p

<∞.

Equipped with the norm ‖ · ‖D̃′s
W1,p,h

(0,T ;E), it becomes a Banach space.

D̃′sW 1,p,h(0, T ;E) is continuously injected into D̃′sLp,h(0, T ;E). For f = (Fα)α ∈
D̃′sW 1,p,h(0, T ;E), f ′ = f̃ = (F̃α)α ∈ D̃

′s
Lp,h(0, T ;E), where F̃α = F′α is the classical

derivative a.e. in (0, T ).
Moreover, the mapping f 7→ f ′, D̃′sW 1,p,h(0, T ;E)→ D̃′sLp,h(0, T ;E), is continuous.

Our main assumption is that the Hille-Yosida condition holds for the resolvent
of the operator A:

‖(λ− ω)kR(λ : A)k‖ ≤ C, for λ > ω, k ∈ Z+. (5.9)

From now on we will always denote these constants by ω and C.
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5.4.1 Various types of solutions

We need the following technical lemma.

Lemma 5.4.1. Let 1 ≤ p < ∞ and g = (Gα)α ∈ D̃
′s
Lp,h(0, T ;D(A)). Then for

every ϕ ∈ DsLq(0, T ), 〈g, ϕ〉 ∈ D(A) and

A

∞∑
α=0

(−1)α
∫ T

0

Gα(t)ϕ(α)(t)dt =
∞∑
α=0

(−1)α
∫ T

0

AGα(t)ϕ(α)(t)dt.

Proof. First observe that for each α ∈ N, Gαϕ
(α) ∈ L1(0, T ;D(A)) and AGαϕ

(α) ∈
L1(0, T ;E) since Gα(t) ∈ Lp(0, T ;D(A)) and ϕ ∈ DsLq(0, T ). Then

A

∫ T

0

Gα(t)ϕ(α)(t)dt =

∫ T

0

AGα(t)ϕ(α)(t)dt. (5.10)

Moreover, observe that

∞∑
α=0

∥∥∥∥∫ T

0

Gα(t)ϕ(α)(t)dt

∥∥∥∥
D(A)

≤ ‖(Gα)α‖D̃′s
Lp,h

(0,T ;D(A)) ‖ϕ‖DsLq (0,T ).

We obtain that
∞∑
α=0

(−1)α
∫ T

0

Gα(t)ϕ(α)(t)dt converges absolutely in D(A), i.e.

〈g, ϕ〉 ∈ D(A). Hence

A
∞∑
α=0

(−1)α
∫ T

0

Gα(t)ϕ(α)(t)dt =
∞∑
α=0

(−1)αA

∫ T

0

Gα(t)ϕ(α)(t)dt,

which, together with (5.10), completes the proof of the lemma.

Let u0,α ∈ E, α ∈ N, be such that(
∞∑
α=0

α!ps

hpα
‖u0,α‖pE

)1/p

<∞. (5.11)

Then the constant functions Ũα(t) = u0,α, t ∈ [0, T ], are such that Ũα ∈
Lp(0, T ;E) and (5.8) holds. Hence (Ũα)α ∈ D̃′sLp,h(0, T ;E). In the sequel, if
u0,α, α ∈ N, are such elements we will denote the corresponding constant func-
tions simply by u0,α and the element (u0,α)α of D̃′sLp,h(0, T ;E) that they generate
by u0. We also use the notation ‖u0‖D̃′s

Lp,h
(0,T ;E) for the norm of this element of

D̃′sLp,h(0, T ;E).
We recall from [25] the definition of two types of solutions of the Cauchy pro-

blem (1) (here they are restated to fit in our setting). We also define weak version
of them. Let A : D(A) ⊆ E → E be a closed linear operator in the Banach space
E, f ∈ D̃′sLp,h(0, T ;E) and u0,α ∈ E, α ∈ N.

1. We say that u = (Uα)α is a strict solution, respectively, strict weak solution,
in D̃′sLp,h(0, T ;E) of (1) if u ∈ D̃′sW 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A)) and

U′α(t) = AUα(t) + Fα(t), t ∈ [0, T ] a.e. and Uα(0) = u0,α, ∀α ∈ N,



5.4. On the Cauchy Problem in D̃′sLp,h(0, T ;E) 85

respectively, for each ϕ ∈ DsLq ,h(0, T ) it satisfies

〈u′(t), ϕ(t)〉 = A〈u(t), ϕ(t)〉+ 〈f(t), ϕ(t)〉 and Uα(0) = u0,α, ∀α ∈ N. (5.12)

We know by Lemma 5.4.1 that 〈u(t), ϕ(t)〉 ∈ D(A) for each ϕ ∈ DsLq ,h(0, T ).
Also, note that in both cases (of strict or of strict weak solution of (1)) we have

‖u0,α‖pE ≤ 2pT−1‖Uα‖Lp(0,T ;E) + 2pT p/q‖U′α‖Lp(0,T ;E).

Hence u0 = (u0,α)α satisfies (5.11).
2. We say that u ∈ D̃′sLp,h(0, T ;E) is an F -solution, respectively, F -weak

solution in D̃′sLp,h(0, T ;E) of (1), if for every k ∈ N there is uk = (Uk,α)α ∈
D̃′sW 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A)) such that from

U′k,α(t) = AUk,α(t) + Fk,α(t), t ∈ [0, T ] a.e. and Uk,α(0) = u0,k,α

we have

lim
k→∞

(
‖uk − u‖D̃′s

Lp,h
(0,T ;E) + ‖fk − f‖D̃′s

Lp,h
(0,T ;E)+

+‖u0,k − u0‖D̃′s
Lp,h

(0,T ;E)

)
= 0,

respectively, from

〈u′k(t), ϕ(t)〉 = A〈uk(t), ϕ(t)〉+ 〈fk(t), ϕ(t)〉, ∀ϕ ∈ DsLq ,h(0, T )

and Uk,α(0) = u0,k,α, ∀k, α ∈ N

we have that for every ϕ ∈ DsLq ,h(0, T ),

lim
k→∞

(‖〈uk − u, ϕ〉‖E + ‖〈fk − f , ϕ〉‖E + ‖〈u0,k − u0, ϕ〉‖E) = 0. (5.13)

From the above definitions it is clear that a strict, resp. a strict weak solution, in
D̃′sLp,h(0, T ;E) is an F -solution, resp. F -weak solution in D̃′sLp,h(0, T ;E).

Remark 5.4.2. If a strict weak solution of (1) in D̃′sLp,h(0, T ;E) exists then it is

not unique. To see this let ψ ∈ D(s)(0, T ) and e ∈ D(A) such that ψ 6= 0 and
e 6= 0. Define v = (Vα)α ∈ D̃

′s
Lp,h(0, T ;E) by V0(t) = ψ′(t)e, V1(t) = −ψ(t)e and

Vα(t) = 0, for α ≥ 2, α ∈ N. Obviously v ∈ D̃′sW 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A))
and Vα(0) = 0, ∀α ∈ N. Moreover, it is easy to verify that the operators
〈v, ·〉, 〈v′, ·〉 ∈ L

(
DsLq ,h(0, T ), E

)
are in fact the zero operator. Hence, if u is a

strict weak solution of (1) in D̃′sLp,h(0, T ;E) then so is u + v.
One can use the same construction to prove that the F -weak solution in

D̃′sLp,h(0, T ;E) of (1) is also not unique.

Now we consider the existence of such solutions of the Cauchy problem (1).

Proposition 5.4.1. If u is a strict, resp. a F -solution, of the Cauchy problem
(1), then it is also strict weak, resp. F -weak solution, of (1).
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Proof. The proof follows from Lemma 5.4.1 and the fact that the mapping g 7→
〈g, ·〉, D̃′sLp,h(0, T ;E)→ Lb

(
DsLq ,h(0, T ), E

)
is continuous.

The proof of the next theorem heavily relies on the results obtained in [25].
Parts in brackets are consequences of Proposition 5.4.1.

Theorem 5.4.1. i) The Cauchy problem (1) has an F -solution (resp. an F -
weak solution) in D̃′sLp,h(0, T ;E) for every f = (Fα)α ∈ D̃

′s
Lp,h(0, T ;E) and

u0 = (u0,α)α such that (u0,α)α satisfies (5.11) and u0,α ∈ D(A), ∀α ∈ N. In
the case of F -solution, it is unique.

ii) The Cauchy problem (1) has a strict solution (resp. strict weak solution)
in D̃′sLp,h(0, T ;E) for every f = (Fα)α ∈ D̃

′s
W 1,p,h(0, T ;E) and u0 = (u0,α)α

such that u0,α ∈ D(A) and Au0,α + Fα(0) ∈ D(A), ∀α ∈ N and (u0,α)α and
(Au0,α)α satisfies (5.11). In the case of strict solution, it is unique.

Proof. First we will prove i). By Theorem 1.4.6 (see also the Appendix of [25])
for each fixed α ∈ N, the problem U′α = AUα+Fα, Uα(0) = u0,α has a F -solution
in Lp(0, T ;E). In other words, there exist Uk,α ∈ W 1,p(0, T ;E) ∩ Lp(0, T ;D(A)),
Fk,α ∈ Lp(0, T ;E), u0,k,α ∈ E, k ∈ Z+, such that U′k,α = AUk,α + Fk,α, Uk,α(0) =
u0,k,α and

lim
k→∞

(
‖Uk,α −Uα‖Lp(0,T ;E) + ‖Fk,α − Fα‖Lp(0,T ;E)+ (5.14)

‖u0,k,α − u0,α‖E
)

= 0.

Moreover, by Theorem 1.4.5 (see also Theorem A.1 of the Appendix of [25]), each
Uα is in fact in C(0, T ;E), Uα(t) ∈ D(A), ∀t ∈ [0, T ], Uα(0) = u0,α and

‖Uα(t)‖ ≤ Ceωt
(
‖Uα(0)‖+

∫ t

0

e−ωs‖Fα(s)‖ds
)
, t ∈ [0, T ]. (5.15)

Using this estimate one easily verifies that u = (Uα)α ∈ D̃
′s
Lp,h(0, T ;E). We will

prove that this is an F -solution of (1).
Let k ∈ Z+. Take nk ∈ Z+ such that

∞∑
α=nk

α!ps

hpα
‖Fα‖pLp(0,T ;E) ≤

1

(2k)p
,
∞∑

α=nk

α!ps

hpα
‖Uα‖pLp(0,T ;E) ≤

1

(2k)p

and
∞∑

α=nk

α!ps

hpα
‖u0,α‖pE ≤

1

(2k)p
.

For each 0 ≤ α ≤ nk − 1, by (5.14) we can take Fkα,α, Ukα,α and u0,kα,α such that

nk−1∑
α=0

α!ps

hpα

(
‖Ukα,α −Uα‖pLp(0,T ;E) + ‖Fkα,α − Fα‖pLp(0,T ;E)



5.4. On the Cauchy Problem in D̃′sLp,h(0, T ;E) 87

+ ‖u0,kα,α − u0,α‖pE
)
≤ 1

(2k)p

and U′kα,α = AUkα,α+Fkα,α, Ukα,α(0) = u0,kα,α. For 0 ≤ α ≤ nk−1 define Vk,α =
Ukα,α, v0,k,α = u0,kα,α and Gk,α = Fkα,α. For α ≥ nk put Vk,α = 0, v0,k,α = 0
and Gk,α = 0. Then vk = (Vk,α)α ∈ D̃

′s
W 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A)), gk =

(Gk,α)α ∈ D̃
′s
Lp,h(0, T ;E) and v0,k = (v0,k,α)α is such that

∞∑
α=0

(α!)ps

hpα
‖v0,k,α‖pE <∞.

Also vk(0) = v0,k. By definition, we have V′k,α = AVk,α + Gk,α for all α ∈ N.

We will prove that vk → u, gk → f and v0,k → u0 in D̃′sLp,h(0, T ;E), hence u is
F -solution of (1). Let ε > 0. Take k0 ∈ Z+ such that 1/k0 ≤ ε. For k ≥ k0,
k ∈ Z+, we have

‖vk − u‖p
D̃′s
Lp,h

(0,T ;E)

=

nk−1∑
α=0

α!ps

hpα
‖Vk,α −Uα‖pLp(0,T ;E) +

∞∑
α=nk

α!ps

hpα
‖Uα‖pLp(0,T ;E)

≤
nk−1∑
α=0

α!ps

hpα
‖Ukα,α −Uα‖pLp(0,T ;E) +

εp

2p
≤ 2εp

2p
.

Hence ‖vk − u‖D̃′s
Lp,h

(0,T ;E) ≤ ε. Similarly, ‖gk − f‖D̃′s
Lp,h

(0,T ;E) ≤ ε and(
∞∑
α=0

α!ps

hpα
‖v0,k,α − u0,α‖pLp(0,T ;E)

)1/p

≤ ε, for k ≥ k0. It remains to prove the

uniqueness. If ũ = (Ũα)α ∈ D̃
′s
Lp,h(0, T ;E) is another F -solution of (1) then Ũα

is a F -solution to the problem Ũ′α(t) = AŨα(t) + Fα(t), Ũα(0) = u0,α, for each
α ∈ N. But, theorem 1.4.5 (see also Theorem A.1 of the Appendix of [25]) implies
that the F -solution to this problem must be unique, hence Ũα = Uα which proofs
the desired uniqueness.

To prove ii), observe that Theorem 1.4.7 (see also Theorem A.2 of the Appendix
of [25]) implies that for each α ∈ N there exists Uα ∈ C1(0, T ;E) ∩ C(0, T ;D(A))
such that

U′α(t) = AUα(t) + Fα(t), ∀t ∈ [0, T ] and Uα(0) = u0,α (5.16)

and it satisfy (5.15) and

‖U′α(t)‖ ≤ Ceωt
(
‖Au0,α + Fα(0)‖+

∫ t

0

e−ωs‖F′α(s)‖ds
)
, t ∈ [0, T ]. (5.17)

Moreover, by (5.16) and (5.17), we have

‖AUα(t)‖ ≤ Ce2|ω|T (‖Au0,α‖+ ‖Fα(0)‖+ T 1/q‖F′α‖Lp(0,T ;E)

)
+ ‖Fα(t)‖, t ∈ [0, T ].

Since f ∈ D̃′sW 1,p,h(0, T ;E) and (u0,α)α and (Au0,α)α satisfy (5.11), by the above
estimate and (5.15) and (5.17) we can conclude
u = (Uα)α ∈ D̃

′s
W 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A)). Hence u is a strict solution.

The uniqueness follows from Theorem 1.4.7 (see also Theorem A.2 of the Appendix
of [25]) by similar arguments as in i).
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5.4.2 Solutions in D′(s)L1 (0, T ;E)

Let g ∈ D′(s)L1 (0, T ;E). By Theorem 5.3.3 for 1 < p < ∞, there exists h1 > 0 and
Gα ∈ Lp(0, T ;E), α ∈ N, such that

∞∑
α=0

α!ps

hpα1
‖Gα‖pLp(0,T ;E) <∞ and g =

∞∑
α=0

G(α)
α . (5.18)

For the moment, for g ∈ D′(s)L1 (0, T ;E) = Lb

(
Ḃ(s)(0, T ), E

)
, denote by g(ϕ) the

action of g on ϕ ∈ Ḃ(s)(0, T ). On the other hand, put g̃ = (Gα)α ∈ D̃
′s
Lp,h(0, T ;E).

By the way we define the operator 〈g̃, ·〉 ∈ Lb
(
D(s)
Lq ,h(0, T ), E

)
, one easily verifies

that g(ϕ) = 〈g̃, ϕ〉 for all ϕ ∈ Ḃ(s)(0, T ) ⊆ D(s)
Lq ,h(0, T ). Hence, if g ∈ D′(s)L1 (0, T ;E)

has the representation (5.18) we will denote by 〈g, ·〉 the action g(·).
Let g ∈ D′(s)L1 (0, T ;E) has the representation (5.18). Define G̃0 = 0 and

G̃α(t) =

∫ t

0

Gα−1(s)ds, t ∈ [0, T ] for α ∈ Z+. Then, obviously, G̃α ∈ W 1,p(0, T ;E),

G̃α(0) = 0, G̃′α = Gα−1 a.e. for all α ∈ Z+, and if we put h > h1 we have

∞∑
α=0

α!ps

hpα

(
‖G̃α‖pLp(0,T ;E) + ‖G̃′α‖

p
Lp(0,T ;E)

)
<∞. (5.19)

By Theorem 5.3.3,
∑∞

α=1 G̃
(α)
α ∈ D′(s)L1 (0, T ;E). Also, for ϕ ∈ Ḃ(s)(0, T ),

∞∑
α=1

(−1)α
∫ T

0

G̃α(t)ϕ(α)(t)dt =
∞∑
α=0

(−1)α
∫ T

0

G̃′α+1(t)ϕ(α)(t)dt

=
∞∑
α=0

(−1)α
∫ T

0

Gα(t)ϕ(α)(t)dt = 〈g, ϕ〉,

i.e. g =
∑∞

α=1 G̃
(α)
α . In other words, for g ∈ D′(s)L1 (0, T ;E) and 1 < p < ∞

we can always find h > 0 such that g =
∑

α G̃
(α)
α , where G̃α ∈ W 1,p(0, T ;E),

G̃α(0) = 0, α ∈ N, such that (5.19) holds. Moreover, in this notation, if we
put f̃ = (G̃′α)α ∈ D̃

′s
Lp,h(0, T ;E), then 〈f̃ , ·〉 and the E-valued ultradistribution

g′ ∈ D′(s)L1 (0, T ;E) (where g′ is the ultradistributional derivative of g) generate the

same element in D′(s)L1 (0, T ;E) ∼= Lb

(
Ḃ(s)(0, T ), E

)
. To see this, for ϕ ∈ Ḃ(s)(0, T )

we calculate as follows

〈f̃ , ϕ〉 =
∞∑
α=0

(−1)α
∫ T

0

G̃′α(t)ϕ(α)(t)dt = −
∞∑
α=0

(−1)α
∫ T

0

G̃α(t)ϕ(α+1)(t)dt

which is exactly the value at ϕ of the ultradistributional derivative of
g ∈ D′(s)L1 (0, T ;E).

We consider the equation u′ = Au + f in D′(s)L1 (0, T ;E). In other words, f ∈
D′(s)L1 (0, T ;E) is given, we search for u ∈ D′(s)L1 (0, T ;E) such that, for every ϕ ∈
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Ḃ(s)(0, T ), 〈u, ϕ〉 ∈ D(A) and 〈u′, ϕ〉 = A〈u, ϕ〉+ 〈f , ϕ〉. By the above discussion,
for 1 < p <∞, there exists h > 0 and Fα ∈ W 1,p(0, T ;E), Fα(0) = 0, α ∈ N, such

that (5.19) holds (with Fα and F′α in place of G̃α and G̃′α) and f =
∑∞

α=0 F
(α)
α .

If we put f̃ = (Fα)α, then f̃ ∈ D̃′sW 1,p,h(0, T ;E). For u0,α = 0 ∈ D(A) put
u0 = (u0,α)α. Then the conditions of Theorem 5.4.1 ii) are satisfied, hence there
exists ũ = (Uα)α ∈ D̃

′s
W 1,p,h(0, T ;E) ∩ D̃′sLp,h(0, T ;D(A)) which is a strict weak

solution of ũ′ = Aũ+f̃ in D̃′sLp,h(0, T ;E). If we put u =
∑∞

α=0 U
(α)
α ∈ D′(s)L1 (0, T ;E),

by the above discussion, 〈u, ϕ〉 ∈ D(A), ∀ϕ ∈ Ḃ(s)(0, T ) (since this holds for ũ)

and u is a solution of u′ = Au + f in D′(s)L1 (0, T ;E). Moreover, by Theorem 5.3.2

this u as well as f are in fact elements of D′(s)Lp,h(0, T ;E). Thus, we proved the
following theorem.

Theorem 5.4.2. Let A : D(A) ⊆ E → E be a closed operator which satisfies

the Hille-Yosida condition and f ∈ D′(s)L1 (0, T ;E). Then the equation u′ = Au + f

always has a solution u ∈ D′(s)L1 (0, T ;E). Moreover, u ∈ D′(s)Lp,h(0, T ;E) where
1 < p <∞ and h > 0 are such that

∞∑
α=0

α!ps

hpα

(
‖Fα‖pLp(0,T ;E) + ‖F′α‖

p
Lp(0,T ;E)

)
<∞,

with f =
∑

α F
(α)
α , where Fα ∈ W 1,p(0, T ;E), Fα(0) = 0, α ∈ N.

5.5 Applications

Theorem 5.4.2 is applicable in variety of different situations. We collect some of
them in the next proposition. First we need the following definition given in [79].

Definition 5.5.1. Let Ω be bounded open domain with smooth boundary in Rn

and m ∈ Z+. We say that A(x, ∂x) =
∑
|α|≤2m aα(x)∂αx where aα ∈ C2m(Ω), is

strongly elliptic if there exists c > 0 such that

Re(−1)m
∑
|α|=2m

aα(x)ξα ≥ c|ξ|2m, ∀x ∈ U, ∀ξ ∈ Rn.

Proposition 5.5.1. The operator A : D(A) ⊆ E → E is closed operator which
satisfies the Hille-Yosida condition in each of the following situations:

i) ([25]) E = C([0, 1]), Av = −v′, D(A) = {v ∈ C1([0, 1])| v(0) = 0};

ii) ([25]) for κ ∈ (0, 1), E = Cκ0 ([0, 1]) = {v ∈ Cκ([0, 1])| v(0) = 0}, Av = −v′,
D(A) = {v ∈ C1+κ([0, 1])| v(0) = v′(0) = 0};

iii) ([25]) E = C([0, 1]), Av = v′′, D(A) = {v ∈ C2([0, 1])| v(0) = v(1) = 0};

iv) ([25]) for Ω bounded open set with regular boundary in Rn, E = C(Ω), Av =
∆v, D(A) = {v ∈ C(Ω)| v|∂Ω = 0, ∆v ∈ C(Ω)} (here ∆ is the Laplacian in
the sense of distributions in Ω);
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v) ([79]) let Ω be bounded open domain with smooth boundary in Rn and m ∈
Z+. Let A(x, ∂x) be strongly elliptic. Define E = Lp(Ω), Av = −A(x, ∂x)v,
D(A) = W 2m,p(Ω) ∩Wm,p

0 (Ω), for 1 < p < ∞ and for p = 1 define E =
L1(Ω), Av = −A(x, ∂x)v, D(A) = {v ∈ W 2m−1,1(Ω) ∩Wm,1

0 (Ω)|A(x, ∂x)v ∈
L1(Ω)}.

In particular, for f ∈ D′(s)L1 (0, T ;E), the equation u′t = Au + f always has solution

in D′(s)L1 (0, T ;E).

Proof. The facts that A : D(A) ⊆ E → E is closed operator which satisfies the
Hille-Yosida condition when A and E are defined as in i)−iv) are proven in Section
14 of [25]. When A and E are defined as in v) Theorem 7.3.5, pg. 214, of [79] for
the case 1 < p < ∞, resp. Theorem 7.3.10, pg. 218, of [79] for the case p = 1,
implies that A is closed operator which satisfies the Hille-Yosida condition (in fact
these theorems state that A is the infinitesimal generator of analytic semigroup
on Lp(Ω), 1 ≤ p <∞). Now, the fact that the equation u′t = Au + f has solution

in D′(s)L1 (0, T ;E) follows from Theorem 5.4.2.

5.5.1 Parabolic equation in D′(s)L1 (U)

In this subsection U is a bounded domain in Rn with smooth boundary. For the
brevity in notation, let D̃′sLp,h(U), resp. D̃′sW 1,p,h(U), be the space D̃′sLp,h(0, T ;E),

resp. D̃′sW 1,p,h(0, T ;E), when E = C. Also, for k ∈ Z+, by D̃′s
Wk,p,h

(U) we denote

the space of all sequences (Fα)α, Fα ∈ W k,p(U), ∀α ∈ Nn, for which

‖(Fα)α‖D̃′s
Wk,p,h

(U) =

(∑
α∈Nn

α!ps

hpα
‖Fα‖pWk,p(U)

)1/p

<∞.

It is easy to verify that it becomes a Banach space with the norm ‖ · ‖D̃′s
Wk,p,h

(U).

Let m ∈ Z+, A(x, ∂x) =
∑
|α|≤2m aα(x)∂αx , where aα ∈ E (s)(V ) for some open

set V ⊆ Rn and U ⊂⊂ V . We assume that A(x, ∂x) is a strongly elliptic operator.

Obviously, A(x, ∂x) is continuous operator on Ḃ(s)(U) and on D′(s)L1 (U). Denote by

Ã : D(Ã) ⊆ L2(U)→ L2(U) the following unbounded operator

D(Ã) = W 2m,2(U) ∩Wm,2
0 (U), Ã(ϕ) = A(x, ∂x)ϕ, ϕ ∈ D(Ã).

For such A(x, ∂x) the following a priori estimate holds (see Theorem 7.3.1, pg.
212, of [79]).

Proposition 5.5.2. [79] Let A(x, ∂x) be strongly elliptic operator of order 2m on
a bounded domain U with smooth boundary ∂U in Rn and let 1 < p < ∞. Then,
there exists a constant C̃ > 0 such that

‖ϕ‖W 2m,p(U) ≤ C̃
(
‖A(x, ∂x)ϕ‖Lp(U) + ‖ϕ‖Lp(U)

)
, ∀ϕ ∈ W 2m,p(U) ∩Wm,p

0 (U).
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Moreover, Theorem 7.3.5, pg. 214, of [79], yields that −Ã is the infinitesimal
generator of an analytic semigroup of operators on L2(U). In particular −Ã is
closed and it satisfies the Hille-Yosida condition (5.9) for some ω,C > 0.
Now we can prove the theorem announced in the introductions. Note that we need
to prove the theorem for D′(s)L1 ((0, T )× U), since D′(s)Lp ((0, T )× U) and

D′(s)L1 ((0, T )× U) are isomorphic locally convex spaces.

Theorem 5.5.1. Let U be a bounded domain in Rn with smooth boundary and
A(x, ∂x) strongly elliptic operator of order 2m on U . Then for each

f ∈ D′(s)L1 ((0, T )× U) there exists u ∈ D′(s)L1 ((0, T )× U) such that u′t+A(x, ∂x)u =

f in D′(s)L1 ((0, T )× U).

Proof. Denote by A the following unbounded operator:

Af̃ = (−A(x, ∂x)Fα)α

(
= (−ÃFα)α

)
,

D(A) =
{
f̃ = (Fα)α ∈ D̃

′s
W 2m,2,h(U)|Fα ∈ Wm,2

0 (U), ∀α ∈ Nn
}
.

Then, obviously, A : D(A) ⊆ D̃′sL2,h(U) → D̃′sL2,h(U) is a linear operator. Since Ã
is closed, by Proposition 5.5.2, it is easy to verify that A is closed. For λ > ω,
define Bλ : D̃′sL2,h(U) → D̃′sL2,h(U), by Bλ(f̃) = (R(λ : −Ã)Fα)α. For f̃ = (Fα)α ∈
D̃′sL2,h(U),

‖Bλf̃‖D̃′s
L2,h

(U) =

 ∞∑
|α|=0

α!2s

h2|α|‖R(λ : −Ã)Fα‖2
L2(U)

1/2

≤ C

λ− ω
‖f̃‖D̃′s

L2,h
(U).

Hence Bλ is well defined continuous operator. For (Fα)α ∈ D̃
′s
L2,h(U), by the

Hille-Yosida condition for −Ã, Proposition 5.5.2 and the fact that ÃR(λ : −Ã) =
Id− λR(λ : −Ã), we obtain∥∥∥R(λ : −Ã)Fα

∥∥∥
W 2m,2(U)

≤ C̃

(
1 +

C(λ+ 1)

λ− ω

)
‖Fα‖L2(U).

This implies that Bλ(Fα)α = (R(λ : −Ã)Fα)α ∈ D̃
′s
W 2m,2,h(U). Obviously R(λ :

−Ã)Fα ∈ Wm,2
0 (U), for each α ∈ Nn. Hence, the image of Bλ is contained in

D(A). Conversely, for (Fα)α ∈ D(A), let Gα = (λ + Ã)Fα, for each α ∈ Nn.
Then (Gα)α ∈ D̃

′s
L2,h(U) and Bλ(Gα)α = (Fα)α. Hence, the image of Bλ is

D(A). Also, (λ − A)Bλ = Id and Bλ(λ − A) = Id. We obtain that λ > ω is
in the resolvent of A, R(λ : A) = Bλ, and similarly as above one can prove that
‖(λ− ω)kR(λ : A)k‖L

(
D̃′s
L2,h

(U)
) ≤ C, i.e. A satisfies the Hille-Yosida condition.

We want to solve the equation u′t(t, x) + A(x, ∂x)u(t, x) = f(t, x) in

D′(s)L1 ((0, T )× U). For the simplicity of notation put U1 = (0, T ) × U . By Pro-

position 5.2.3, there exist h > 0 and Fα,β(t, x) ∈ C
(
U1

)
, α ∈ N, β ∈ Nn such

that

f =
∑
α,β

∂αt ∂
β
xFα,β and

∑
α,β

(α!β!)2s

h2(α+|β|)‖Fα,β‖
2
L∞(U1)

<∞. (5.20)
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Let E = D̃′sL2,h(U). Let C ′1 = 1 + sup
β∈Nn

h|β|/β!s and put C1 = (1 + T + |U |)C ′1.

Let Lf be the mapping ϕ 7→ Lf (ϕ), Ḃ(s)(0, T ) → E defined by Lf (ϕ) = (F̃ϕ,β)β,

where F̃ϕ,β(x) =
∑
α

(−1)α
∫ T

0

Fα,β(t, x)ϕ(α)(t)dt. We prove that it is well defined

and continuous mapping. First we prove that F̃ϕ,β is continuous function on U
for each β ∈ Nn and ϕ ∈ Ḃ(s)(0, T ). For ε > 0, by (5.20), we can find k0 ∈ Z+

such that
∑

α+|β|≥k0

(α!β!)2s

h2(α+|β|)‖Fα,β‖
2
L∞(U1)

<
ε2

(4C1)2
. For each α ∈ N, β ∈ Nn, Fα,β is

uniformly continuous (since U1 is compact in Rn+1), hence there exists δ > 0 such
that for every t, t′ ∈ [0, T ], x, x′ ∈ U such that |t− t′| ≤ δ and |x− x′| ≤ δ,

k0−1∑
α+|β|=0

(α!β!)2s

h2(α+|β|) |Fα,β(t, x)− Fα,β(t′, x′)|2 < ε2

(2C1)2
.

Hence∣∣∣F̃ϕ,β(x)− F̃ϕ,β(x′)
∣∣∣

≤ ‖ϕ‖D(s)

L2,h
(0,T )

(
∞∑
α=0

(α!)2s

h2α

∫ T

0

|Fα,β(t, x)− Fα,β(t, x′)|2 dt

)1/2

≤

≤ ε‖ϕ‖D(s)

L2,h
(0,T )

and the continuity of F̃ϕ,β follows. Also, one easily verifies that(∑
β

β!2s

h2|β|

∥∥∥F̃ϕ,β∥∥∥2

L∞(U)

)1/2

≤

≤ T 1/2‖ϕ‖D(s)

L2,h
(U)

(∑
α,β

(α!β!)2s

h2(α+|β|)‖Fα,β‖
2
L∞(U1)

)1/2

.

Since
∥∥∥F̃ϕ,β∥∥∥

L2(U)
≤ |U |1/2

∥∥∥F̃ϕ,β∥∥∥
L∞(U)

, we obtain that Lf is well defined and

Lf ∈ L
(
Ḃ(s)(0, T ), E

)
. Now, as Lb

(
Ḃ(s)(0, T ), E

)
∼= D′(s)L1 (0, T ;E) denote by

f ∈ D′(s)L1 (0, T ;E) the mapping Lf .

Now, Theorem 5.4.2 implies that there exists u ∈ D′(s)L1 (0, T ;E) such that

u′ = Au + f in D′(s)L1 (0, T ;E). Each element g = (Gα)α ∈ E = D̃′sLp,h(U) gene-

rates an element of Lb

(
Ḃ(s)(U),C

)
= D′(s)L1 (U) (see Section 5.4) by 〈S(g), ψ〉 =∑

β

(−1)|β|
∫
U

Gβ(x)∂βxψ(x)dx and one easily verifies that the mapping S : E →
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D′(s)L1 (U), g 7→ S(g), is continuous. Hence, we have the continuous mapping
ϕ 7→ S(〈u, ϕ〉), given by

Ḃ(s)(0, T )
〈u,·〉−−→ E

S−→ D′(s)L1 (U).

Since ϕ 7→ S(〈u, ϕ〉) ∈ Lb

(
Ḃ(s)(0, T ),D′(s)L1 (U)

)
∼= D′(s)L1 (U1) (where the isomor-

phism follows from Theorem 5.3.1), denote by u ∈ D′(s)L1 (U1) this ultradistribution.

Then, for ϕ ∈ Ḃ(s)(0, T ), ψ ∈ Ḃ(s)(U), 〈u(t, x), ϕ(t)ψ(x)〉 = 〈S(〈u, ϕ〉), ψ〉. Since
〈u′, ϕ〉 = −〈u, ϕ′〉, for all ϕ ∈ Ḃ(s)(0, T ) we have
〈u′t(t, x), ϕ(t)ψ(x)〉 = −〈u(t, x), ϕ′(t)ψ(x)〉 = 〈S(〈u′, ϕ〉), ψ〉, for all ϕ ∈ Ḃ(s)(0, T ),
ψ ∈ Ḃ(s)(U). Also, for ϕ ∈ Ḃ(s)(0, T ), since 〈u, ϕ〉 ∈ D(A), 〈u, ϕ〉 = (Gϕ,β)β ∈
D(A). Then, by the definition of A, A〈u, ϕ〉 = (−ÃGϕ,β)β ∈ E. Now, for
ψ ∈ Ḃ(s)(U),〈
S
(

(−ÃGϕ,β)β

)
, ψ
〉

= −
∑
β

(−1)|β|
∫
U

ÃGϕ,β(x)∂βxψ(x)dx

= −
∑
β

(−1)|β|
∫
U

Gϕ,β(x)tA(x, ∂x)∂
β
xψ(x)dx = −〈S(〈u, ϕ〉), tA(x, ∂x)ψ〉

= −〈u(t, x), ϕ(t)tA(x, ∂x)ψ(x)〉 = −〈A(x, ∂x)u(t, x), ϕ(t)ψ(x)〉,

i.e. 〈S (A〈u, ϕ〉) , ψ〉 = −〈A(x, ∂x)u(t, x), ϕ(t)ψ(x)〉 for all ϕ ∈ Ḃ(s)(0, T ),
ψ ∈ Ḃ(s)(U). Moreover, observe that for ϕ ∈ Ḃ(s)(0, T ), ψ ∈ Ḃ(s)(U), we have

〈S(〈f , ϕ〉), ψ〉 =
∑
β

(−1)|β|
∫
U

F̃ϕ,β(x)∂βxψ(x)dx

=
∑
α,β

(−1)α+|β|
∫
U1

Fα,β(t, x)ϕ(α)(t)∂βxψ(x)dtdx

= 〈f(t, x), ϕ(t)ψ(x)〉,

where, in the second equality, we used the definition of F̃ϕ,β and Fubini’s theorem

since
∑
α,β

∫
U1

|Fα,β(t, x)|
∣∣ϕ(α)(t)

∣∣ ∣∣ψ(β)(x)
∣∣ dtdx < ∞ by (5.20). Now, since u′ =

Au + f in D′(s)L1 (0, T ;E), for every ϕ ∈ Ḃ(s)(0, T ), 〈u′(t), ϕ(t)〉 = A〈u(t), ϕ(t)〉 +

〈f(t), ϕ(t)〉 in E. Then S (〈u′, ϕ〉) = S (A〈u, ϕ〉) + S (〈f , ϕ〉) in D′(s)L1 (U). Hence,

for ϕ ∈ Ḃ(s)(0, T ), ψ ∈ Ḃ(s)(U), we have

〈u′t(t, x), ϕ(t)ψ(x)〉 = 〈S(〈u′, ϕ〉), ψ〉 = 〈S (A〈u, ϕ〉) , ψ〉+ 〈S (〈f , ϕ〉) , ψ〉
= −〈A(x, ∂x)u(t, x), ϕ(t)ψ(x)〉+ 〈f(t, x), ϕ(t)ψ(x)〉.

Since Ḃ(s)(0, T )⊗̂Ḃ(s)(U) ∼= Ḃ(s)(U1) by Theorem 5.3.1, we obtain the claim in the
theorem.
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Example 5.5.1. An interesting application of this theorem is obtained by taking
A(x, ∂x) to be −∆x (∆x is the Laplacian ∂2

x1
+...+∂2

xn) and U to be arbitrary boun-
ded domain with smooth boundary in Rn. Then −∆x is strongly elliptic operator
of order 2 on U . The above theorem then asserts that for f ∈ D′(s)L1 ((0, T )× U)

the equation u′t −∆xu = f always has solution in D′(s)L1 ((0, T )× U).

Example 5.5.2. If U = (0, T1) ⊆ R and A is differentiation in x, arguing as

above, one can prove the following assertion: Let f ∈ D′(s)L1 ((0, T )× (0, T1)). The

equation u′t + u′x = f always has a solution in D′(s)L1 ((0, T )× (0, T1)).
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[84] S.Pilipović, Characterizations of ultradistributions spaces and bounded sets,
Proc. Amer. Math. Soc. , 120 (1994), 1191–1206.



100
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M. Kostić, S. Pilipović and D. Velinov, Hyperfunction semigroups, preprint; arXiv:
1306.1098 [math.FA]
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