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PI for all of these projects, for giving me the opportunity to actively participate and
scientifically contribute to these projects.
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Abstract

Interactions between particles play an important role in quantum degenerate gases.
In fact, the system’s behavior is usually largely determined by the strength, range, and
symmetry of the interactions, even if very weak. For more than two decades after the
first experimental realization of a Bose-Einstein condensate (BEC) in 1995, investiga-
tions of ultracold atomic gases have mainly considered contact-type interactions, which
model the short-range van der Waals interactions between the atoms in terms of a single
parameter, the s-wave scattering length. However, some atomic or molecules species
possess a magnetic or electric dipole moment and additionally interact among each
other via the dipole-dipole interaction (DDI), which is long-ranged and anisotropic.
Signatures of the DDI have been first observed in a BEC of chromium atoms in 2005.
In the last several years, a new class of atoms from the lanthanide series, e.g., dyspro-
sium and erbium, with stronger dipolar properties, have come into play. This permits
a more full-fledged study of dipolar effects in BECs. Furthermore, ultracold molecules
and highly excited Rydberg atoms are other promising examples for futures studies of
systems where dipolar interaction will be even more dominant, but they still need ex-
perimental efforts to achieve the desired quantum regime. Whereas the weak DDI in a
chromium BEC is well described with the Gross-Pitaevskii equation, stronger dipolar
interactions certainly necessitate a beyond-mean-field description within a Bogoliubov
theory.

In parallel to research on bosons, cold fermions also trigger great interest because
they are actually often found in nature, e.g., within the electron gas of metals, as
neutrons of heavy stars, or as quarks in plasmas as constituent elements of compos-
ite particles. Contrary to Bose systems, quantum degeneracy in experiments is much
more difficult to achieve in Fermi systems, since s-wave scattering is absent between
identical fermions, due to the Pauli exclusion principle. It was first achieved in 1999
for alkali atoms using a technique based on the sympathetic cooling with a second spin
state, another species, or a different isotope. For highly magnetic atoms, quantum de-
generacy was achieved for dysprosium in 2012 using the standard sympathetic cooling
technique, while in 2014 erbium was cooled deep into the degenerate regime using a
direct evaporative cooling mediated by dipolar collisions. This direct cooling scheme
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allows producing very dense Fermi gas down to 10% of the Fermi temperature.
Furthermore, a novel kind of strongly dipolar quantum gases became available in

the last several years. These are weakly bound polar molecules produced from atoms
with large magnetic dipole moments, such as erbium. Only very recently a quantum
degenerate dipolar Fermi gas of potassium-rubidium molecules has been experimen-
tally realized. Unlike previously considered magnetic systems, heteronuclear molecules
such as potassium-rubidium possess large electric dipole moments. The next natural
step is to polarize this system in a preferential direction by an external electric field,
such that the DDI dominates the behavior of the system, which would open up the
realm for experimental investigation of strong dipolar Fermi gases.

The research whose results are presented in this Thesis aims to describe influence of
many-body dipolar effects in Fermi gases, which are quite subtle as they energetically
compete with the large kinetic energy at and below the Fermi surface (FS). Recently it
was experimentally observed in a sample of erbium atoms that its FS is deformed from
a sphere to an ellipsoid due to the presence of the DDI. Moreover, it was suggested that,
when the dipoles’ orientation is varied by means of an external field, the FS follows
their orientation, thereby keeping the major axis of the momentum-space ellipsoid
parallel to the dipoles. In order to explain this from the theoretical side, we have
generalized a previous Hartree-Fock mean-field theory to systems confined in a triaxial
trap with an arbitrary orientation of the dipoles relative to the trap. Using this
newly developed approach, we have studied for the first time the effects of the dipoles’
arbitrary orientation on the ground-state properties of the system. In particular, we
have shown that the stability of trapped dipolar fermions is universal as it only depends
on the trap aspect ratios and the dipoles’ orientation.

Beside the ground-state properties of dipolar Fermi gases, we have also explored
the dynamics during the time-of-flight expansion by using the quantum kinetic Boltz-
mann formalism in the relaxation-time approximation for the collision integral. We
have studied the aspect ratios of the fermionic cloud in real and momentum space,
including the deformation of the FS. In particular, we have extended the existing
theoretical models such that we could describe all experimentally relevant regimes:
collisionless, collisional, and hydrodynamic. Furthermore, taking into account the
geometry of the system, we have shown how the ellipsoidal FS deformation can be
reconstructed, assuming ballistic expansion, from the experimentally measurable real-
space aspect ratio after a free expansion. We have compared our theoretical results
with experimental data measured with erbium Fermi gas for various trap parameters
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and dipole orientations. The observed remarkable agreement demonstrates the ability
of our theory to capture the full angular dependence of the FS deformation. More-
over, for systems with even larger dipole moments, our theory predicts an additional
unexpected effect: the FS does not simply follow rigidly the orientation of the dipoles,
but softens showing a change in the aspect ratio depending on the dipoles’ orientation
relative to the trap geometry, as well as on the trap anisotropy itself.

Keywords: Fermi gas, dipole-dipole interaction, Fermi surface, Hartree-Fock theory
Research field: Physics
Research subfield: Condensed matter physics
UDC number: 538.9
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Abstract in Serbian

Interakcije izme -du čestica igraju važnu ulogu u razumevanju ponašanja degeneri-
sanih kvantnih gasova, koje je u velikoj meri odre -deno jačinom, dometom i simetri-
jama interakcija, čak i ako su veoma slabe. Tokom vǐse od dve decenije nakon prve
eksperimentalne realizacije Boze-Ajnštajn kondenzatacije 1995. godine, istraživanje
ultrahladnih atomskih gasova je uglavnom bilo fokusirano na proučavanje kontakt-
nih interakcija izme -du atoma, što je jednoparametarski model za kratkodometne van
der Valsove interakcije, koji kao parametar uzima u obzir samo dužinu rasejanja u
simetričnom (s) kanalu. Me -dutim, neke vrste atoma ili molekula poseduju magnetni
ili elektični dipolni moment, pa moramo da uzmemo u obzir i dipol-dipol interakcije
(DDI) izme -du čestica. DDI su dugodometne i anizotropne, i njihov uticaj je prvi put
eksperimentalno izmeren u kondenzovanom gasu atoma hroma 2005. godine. Nova
klasa atoma iz grupe lantanoida, kao što su disprozijum i erbijum, sa jačim dipolnim
osobinama, postala je dostupna u poslednjih nekoliko godina. Ovo omogućava pot-
punije istraživanje dipolnih efekata u Boze-Ajnštajn-kondenzovanim sistemima. Dalje,
ultrahladni molekuli i visoko pobu -deni Ridbergovi atomi predstavljaju druge moguće
pravce za proučavanje sistema u kojima će dipolna interakcija biti još značajnija, ali
ovo zahteva dodatne eksperimentalne napore kako bi se dostigao željeni kvantni režim.
Dok se slaba DDI izme -du atoma hroma u kondenzovanim sistemima može dobro opisati
Gros-Pitaevski jednačinom, prisustvo jake DDI zahteva uračunavanje efekata koji nisu
prisutni u teoriji srednjeg polja u Bogoljubovljevoj teoriji.

Paralelno sa istraživanjima bozona, hladni fermioni su tako -de izazvali veliko in-
teresovanje jer se često sreću u prirodi, na primer u sistemima kao što je elektronski
gas u metalu, u sistemima neutrona u masivnim zvezdama, ili kao kvarkovi koji čine
kvark-gluonsku plazmu u kompozitnim česticama. Za razliku od bozonskih sistema,
postizanje kvantne degeneracije u eksperimentima je mnogo teže za fermionske sis-
teme, jer zbog Paulijevog principa isklučenja nema rasejanja u s-kanalu za identične
fermione. Kvantna degeneracija hladnih fermiona je ostvarena prvi put 1999. godine
za alkalne atome korǐsćenjem tehnike zasnovane na simpatetičnom hla -denju pomoću
atoma u drugom spinskom stanju, druge vrste atoma, ili različitog izotopa. Kod atoma
sa jakim magnetnim momentom, kvantna degeneracija je ostvarena tek 2012. godine
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za disprozijum, korǐsćenjem standardne tehnike simpatetičnog hla -denja, a 2014. go-
dine za erbijum, koji je ohla -den duboko u degenerisani režim korǐsćenjem direktnog
evaporativnog hla -denja pomoću dipolnog rasejanja. Ova direktna tehnika hla -denja je
omogućila stvaranje veoma gustog Fermi gasa na oko 10% Fermi temperature.

Pored toga, nova vrsta jako dipolnog kvantnog gasa je postala eksperimentalno
dostupna u poslednjih nekoliko godina. U pitanju su slabo vezani polarni molekuli
proizvedeni od atoma sa velikim magnetnim dipolnim momentima, kao što je erbijum.
Tek prošle godine je eksperimentalno realizovan i kvantno-degenerisani dipolni Fermi
gas molekula kalijum-rubidijuma. Za razliku od prethodno razmatranih magnetnih
sistema, heteronuklearni molekuli kao što je kalijum-rubidijum poseduju jak električni
dipolni moment. Sledecći prirodni korak je polarizacija takvog sistema u željenom
pravcu pomoću spoljašnjeg električnog polja, tako da DDI dominira u ponašanju sis-
tema. Ovo bi otvorilo novo polje za eksperimentalno istraživanje Fermi gasova sa
jakom DDI.

Cilj istraživanja čiji su rezultati predstavljeni u ovoj doktorskoj disertaciji je opis
uticaja mnogočestičnih dipolnih efekata na osobine hladnih Fermi gasova. Pošto ovi
efekti mogu da budu maskirani velikom kinetičkom energijom na i ispod Fermijeve
površine, njihov opis zahteva izuzetno pažljiv pristup. Nedavno je eksperimentalno
opaženo da je Fermi površina (FP) u gasu atoma erbijuma deformisana, odnosno
da umesto sfere ima oblik elipsoida usled prisustva DDI. Štavǐse, kada se orijentacija
dipola menja pomocću spoljašnjeg polja, eksperimentalni rezultati ukazuju da FP prati
njihovu orijentaciju, zadržavajući tako glavnu osu elipsoida u momentnom prostoru
paralelnu sa dipolima. U ovoj doktorskoj disertaciji je ovo opisano kroz uopštenje
postojeće Hartri-Fok teorije srednjeg polja za sisteme u asimetričnim potencijalnim
zamkama sa proizvoljnom orijentacijom dipola u odnosu na zamku. Razvoj ovog
novog pristupa nam je omogućio da po prvi put proučavamo efekte proizvoljne ori-
jentacije dipola na svojstva osnovnog stanja sistema. Od posebnog značaja je rezultat
o univerzalnosti stabilnosti zarobljenih dipolnih fermiona, za koju smo pokazali da
zavisi samo od odnosa frekvencija zamke i orijentacije dipola.

Pored svojstava osnovnog stanja dipolnog Fermi gasa, istraživali smo i dinamiku
sistema tokom ekspanzije gasa nakon osloba -danja iz zamke, koristeći kvantni kinetički
Bolcmanov formalizam u aproksimaciji relaksacionog vremena za kolizioni integral.
Proučavali smo asimetričnost fermionskog oblaka u realnom i momentnom prostoru,
uključujući i deformaciju FP usled prisustva DDI. Posebno, uopštili smo postojeće
teorijske modele tako da mogu da opǐsu sve eksperimentalno relevantne režime: bez su-

viii



dara, sa sudarima i hidrodinamički. Osim toga, uzimajući u obzir geometriju sistema,
pokazali smo kako se elipsoidna deformacija FP može rekonstruisati iz eksperimen-
talno merljivog odnosa asimtričnosti oblaka gasa u realnom prostoru, uz pretpostavku
balističke ekspanzije. Uporedili smo dobijene teorijske rezultate sa eksperimental-
nim podacima koji su izmereni za različite parametre zamke i orijentacije dipola u
atomskom gasu erbijuma. Dobijeno izvanredno slaganje ovih rezultata sa teorijom
koja je razvijena u okviru ove doktorske disertacije potvr -duje da ona pruža potpuno
razumevanje ponašanja FP i ugaone zavisnosti njene deformacije. Štavǐse, za sisteme
sa još jačim dipolnim momentom, teorija predvi -da dodatni neočekivani efekat: FP ne
samo da rigidno prati orijentaciju dipola, već menja i svoju zapreminu i dužine osa
elipsoida u zavisnosti od orijentacije dipola u odnosu na geometriju zamke, kao i same
anizotropije zamke.

Ključne reči: Fermi gas, dipol-dipol interakcija, Fermi površina, Hartri-Fok teorija
Naučna oblast: Fizika
Uža naučna oblast: Fizika kondenzovanog stanja
UDK broj: 538.9
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Introduction

Studies of atomic and molecular gases have greatly stimulated the development
of statistical mechanics and later on quantum statistical physics, by revealing that a
quantum mechanical treatment is necessary for a proper description of such systems,
even at moderate temperatures. Early theoretical studies have furthermore suggested
that exotic ultra-quantum behavior, dominated purely by quantum effects such as
Bose-Einstein condensation (BEC), can be expected in the regime of very low tem-
peratures. This has fueled the development of sophisticated cooling techniques and
eventually the Nobel-winning experimental discovery of Bose-Einstein condensation in
1995. Interactions between particles play an important role in quantum degenerate
gases. In fact, the system’s behavior is usually largely determined by the strength,
range, and symmetry of the interactions, even if very weak. These results have also
instigated research related to optical lattices, studies of fermionic ultracold systems, as
well as Fermi-Bose mixtures. By this constant exchange, progresses in both theoretical
and experimental studies of quantum physics have been permanently triggering and
enriching each other for almost a century. So it is not surprising that this field attracts
many generations of physicists, including some of the greatest world minds ever.

The world of low-temperature physics offers many advantages for studying quan-
tum phenomena, which leads to the novel states of matter with striking properties
– superconductors, superfluids, supersolids. All these phenomena can now be ob-
served in ultracold quantum gases with unprecedented control of system’s parameters.
Furthermore, they can be combined and used as elements in a toolbox for quantum
simulators in solid state physics, or even in general relativity and other fields, following
Richard Feynman’s visionary idea [1].
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Chapter 1 Introduction

1.1 Quantum gases: fermions vs. bosons

It is breathtaking how different the world looks at different scales. One of great
examples that illustrate this are gases at different temperatures. Let us consider
the air around us at the room temperature. The air is composed of specks of dust,
molecules, and atoms, all moving around randomly and colliding frequently. The
behavior of such high-temperature gases are very well described by the Boltzmann’s
kinetic theory. In contrast to that, the behavior of the gas which is cooled down
close to quantum degeneracy changes dramatically, so that the Boltzmann’s classical
approach fails, and must be replaced with an appropriate quantum description.

The main difference between classical and quantum gases is that the properties of
quantum gases strongly depend on the constituent atoms and their electronic struc-
ture. Namely, all classical gases exhibit the same behavior, which is reflected in the
Boltzmann approach, where quantum statistics of the atoms is irrelevant. However,
for quantum gases the statistics has a crucial role, since it is different for bosons and
fermions. This can be illustrated, e.g., by considering the collisions, which occur more
frequently in Bose quantum gases made of identical particles, than they do in a classical
gas. On the other hand, the situation is just the other way around for Fermi quantum
gases made of identical particles, where collisions are suppressed in comparison to a
classical gas.

As mentioned, all these differences emerge purely from the different statistics for
a classical, Bose, and Fermi gas. Namely, an ideal classical gas obeys the Maxwell-
Boltzmann distribution, which gives the probability that the system is in a state with
the given energy E, and reads

νMB(E) = 1
eβ(E−µ) . (1.1)

Here µ represents the grand-canonical chemical potential, and β is the standard ab-
breviation

β−1 = kBT , (1.2)

where kB is Boltzmann’s constant and T is the temperature.
In classical mechanics, particles are always distinguishable and, in principle, their

trajectories through phase space can be traced. In quantum mechanics, identical
particles are indistinguishable, such as electrons in an atom, or atoms in a sample
of a quantum gas. The indistinguishability of quantum particles, and the different
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occupancy rules for bosons and fermions, affect their statistical behavior. The Bose-
Einstein distribution function,

νBE(E) = 1
eβ(E−µ) − 1 , (1.3)

gives the probability that the system of ideal bosons is in a state with the energy E at
the temperature T . Bosons posses integer spin and many bosons can occupy a single-
particle quantum state, which allows them to behave coherently. As a consequence,
we have phenomena such as BEC, superfluids, superconductors, and lasers. Due to
this, bosons are usually termed as ”social“ particles, while quantum statistics causes
fermions to be ”anti-social“, i.e., to avoid each other [2]. Namely, fermions have
half-integer spin, and include electrons, protons and neutrons. They obey the Pauli
exclusion principle, which states that two identical fermions cannot occupy the same
single-particle quantum state, and is the origin of their ”anti-social“ behavior. For ideal
fermions, the energy distribution is given by the Fermi-Dirac distribution function,

νFD(E) = 1
eβ(E−µ) + 1 . (1.4)

Since bosons possess integer spin and spin is additive, composite bosons may be formed
from an even number of fermions. Therefore, when studying systems comprised of
fermions, it is essential to understand if they behave as fermions, or perhaps compos-
ite bosons appear, such as the Cooper pairs in the Bardeen-Cooper-Schrieffer (BCS)
theory.

If we compare the statistical distributions given by Equations (1.1), (1.3), and
(1.4), the difference is in the denominators, where additional terms +1 and −1 appear
for bosons and fermions, respectively. However, exactly this is the origin of profound
and enormous consequences for the behavior of quantum gases. Having in mind that
any probability distribution function must be non-negative, this implies that µ ≤ 0
for the Bose-Einstein distribution, while for the Fermi-Dirac and Maxwell-Boltzmann
distribution µ can take any value and sign. For β(E − µ) � 1, the Bose-Einstein
and Fermi-Dirac distributions approach the Boltzmann distribution, as illustrated in
Figure 1.1(a). In this regime, the average state occupancy is much smaller than 1,
and therefore the effects of particle indistinguishability become negligible. Note that µ
itself has a non-trivial temperature dependence and tends to the ground state energy as
T → 0, and that is why one cannot conclude that the low temperatures favor classical
behavior, as it would naively seem from the classical limit condition β(E−µ)� 1. For
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Figure 1.1: (a) Maxwell-Boltzmann (black), Bose-Einstein (red) and Fermi-Dirac
(blue) distributions as functions of energy E, for fixed value of chemical potential
µ. (b) Fermi-Dirac distribution for different temperatures as a function of energy E.
Lighter colors correspond to higher temperatures.

E � µ, the Fermi-Dirac distribution saturates to one particle per state, as required by
the Pauli exclusion principle. For decreasingly lower temperatures, the distributions
develop a sharper transition around E = µ, approaching the Heaviside step function
for T = 0 K, as depicted in Figure 1.1(b).

Different quantum statistics for bosons and fermions plays a major role at low
temperatures, making the study of the bosonic and fermionic systems complementary
in many respects. Namely, in the Bose case quantum statistical effects are associated
with the occurrence of a phase transition to the Bose-Einstein-condensed phase. On
the other hand, in a noninteracting Fermi gas the quantum degeneracy temperature
only corresponds to a smooth crossover between a classical and a quantum behavior.
In contrast to the Bose case, the occurrence of a superfluid phase in a Fermi gas can
only be due to the presence of interactions, which make possible the emergence of
Cooper pairs. From the many-body standpoint, the study of the Fermi superfluidity
opens up a different and richer class of questions [3].

A further important difference between Bose and Fermi gases concerns the colli-
sional processes. For example, in Bose gases the s-wave scattering represents the main
interaction channel, while in single-component Fermi gases it is inhibited due to the
Pauli exclusion principle. This effect has important consequences for the experimen-
tal cooling mechanisms based on evaporation, where the thermalization plays a crucial
role. The availability of Feshbach resonances, with the possibility of changing the value
and even the sign of the scattering length by simply tuning an external magnetic field,
has enabled the investigation of strongly interacting regimes of fermionic atoms when
working close to resonances, where the scattering length can take very large values.
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In contrast to Bose gases, in the case of fermions the three-body losses are inhibited
by the Pauli exclusion principle, leading to a greater stability of the system and to the
possibility of realizing the unitary regime of infinite scattering length. In this regime
the system exhibits a universal behavior, independent of the details of the interatomic
potential, such that the gas is at the same time dilute and strongly interacting [4].

1.2 Free ideal Fermi gas

Over the past few decades, an impressive amount of experimental and theoretical
developments in the realm of ultracold gases was achieved, resulting in a number of
physics Nobel prizes. These developments make possible to probe diverse quantum
phenomena, especially in the domain of many-body physics, both for interacting and
noninteracting systems. In ultracold systems the inter-atomic interactions can be
experimentally tuned to unprecedentedly high degree, and even effectively removed.
Therefore, we focus in this Section just on the free ideal Fermi gas model.

We consider a uniform system of ultracold quantum-degenerate Fermi gas at zero
temperature consisting of N identical fermions of mass M , occupying a box of volume
V = L3. The single-particle states are plane waves,

ψk(r) = 1
V

eik·r , (1.5)

with the energy of the eigenstates

Ek = ~2k2

2M . (1.6)

Here momentum k enumerates the eigenstates and is determined by the usual peri-
odic boundary conditions, k = 2πn/L, where n ∈ N3. In this case the Fermi-Dirac
distribution given by Equation (1.4) reduces to

ν(E) = H(E − µ), (1.7)

where H denotes the Heaviside step function. Here, the chemical potential µ defines
the value of the Fermi energy µ = EF, so that all states below that threshold are
occupied, and all others are empty. The total number of particles is given by

N =
∫ ∞

0
dE g(E)ν(E) , (1.8)
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where g(E) stands for the single-particle density of states, which reads [2–5]

g(E) = VM
3
2

√
2~3π2

E
1
2 . (1.9)

With this, it is straightforward to integrate Equation (1.8), which sets the Fermi energy
in terms of the particle density n = N/V as follows

EF = ~2

2M (6π2n) 2
3 . (1.10)

From this we define the Fermi wavenumber kF, which is given by

kF = (6π2n) 1
3 , (1.11)

as well as the Fermi momentum pF = ~kF.
The surface in momentum space that separates the occupied from the unoccupied

fermionic states is called the Fermi surface (FS). For free noninteracting Fermi gas at
zero temperature, all states in momentum space that satisfy |k| ≤ kF are occupied,
which follows from the condition E < EF. This corresponds to the FS defined by

k2
x + k2

y + k2
z = k2

F , (1.12)

from which we see that it is a sphere with the radius kF.
The total energy of the gas at zero temperature reads

U =
∫
dE Eg(E)ν(E) = 3

5NEF , (1.13)

which, together with the pressure relation for an ideal gas, PV = 2U/3, leads to

p = 2
5nEF . (1.14)

This represent the expression for the Pauli quantum pressure of the ideal Fermi gas.
In contrast to Bose and classical gases, this pressure is finite even at zero temperature,
meaning that it does not arise from thermal fluctuations. Instead, it is due to the
stacking up of particles at energy levels starting from the ground state, as constrained
by the quantum rules for fermions. Surprisingly, this effect can have important conse-
quences even in astrophysics, where the degeneracy pressure prevents very dense stars,
such as neutron stars, from collapsing under their own gravitational fields [2].

6



Chapter 1 Introduction

Figure 1.2: Energy level occupations for noninteracting Fermi gas. At T = 0, all
states are occupied up to the Fermi energy EF. At T = TF, some particles with
energies close to EF are excited, while for T � TF the system approaches the classical
limit, with particles occupying many high-energy states.

It is also useful to express the Fermi energy in terms of the Fermi temperature,

TF = EF

kB
, (1.15)

which is associated with the onset of degeneracy, i.e., when quantum effects start to
dominate the behavior of the system. As the temperature is increased from zero, the
step-like Fermi-Dirac distribution becomes broadened around E = EF, as illustrated
in Figure 1.1(b). This happens because at finite, but still low temperatures, T ∼ TF,
the particles that are close to the FS can use their thermal energy and get excited into
higher energy levels. However, in order for this to be possible, the difference between
the particle energy and EF has to be at most of the order of kBT . On the other hand, in
the high-temperature regime, T � TF, a significant number of particles is excited and
thermal effects dominate, so the system approaches the classical Maxwell-Boltzmann
distribution [2]. These regimes are schematically presented in Figure 1.2.

1.3 Trapped ideal Fermi gas

Although free quantum gases are much easier to study theoretically, from the exper-
imental point of view they have to be trapped, since otherwise the particles would
just disperse. This is accomplished by using a sophisticated setups with the specially
tailored magnetic fields and/or counter-propagating laser beams, which can confine
the particles and keep them thermally isolated. In such a way quantum-degenerate
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bosonic and fermionic quantum gases are trapped in magnetic, optical, or magneto-
optical traps at temperatures in the nanokelvin regime. In this Section we give a brief
summary of key properties of ideal Fermi gases confined in triaxial anisotropic har-
monic traps. Such systems represent an excellent model, which is relevant not only
for ultracold gases, but also for many diverse fields of physics, ranging from nuclear
physics to the more recent studies of quantum dots [3, 5].

We again consider an ultracold quantum-degenerate Fermi gas at zero temperature
consisting ofN identical fermions of massM , this time trapped by a triaxial anisotropic
harmonic potential defined by

Vtrap(r) = M

2
(
ω2
xr

2
x + ω2

yr
2
y + ω2

zr
2
z

)
, (1.16)

where ωi denote the trap frequencies, which characterize the strength of the trap in
each direction i ∈ {x, y, z}. Assuming that N is large, such that many single-particle
states are occupied and the semiclassical approach can safely be used, the simplest
semiclassical description of the Fermi-Dirac distribution function has the following
form [3, 5, 6]

νFD(r,k) = 1
eβ[ε(r,k)−µ] + 1 , (1.17)

where ε(r,k) = ~2k2

2M + Vtrap(r) and µ is fixed by the normalization condition,

N =
∫
d3r

∫ d3k

(2π)3νFD(r,k) =
∫ ∞

0

g(ε)dε
eβ(ε−µ) + 1 . (1.18)

Here g(ε) stands for the single-particle density of states, which is now given by

g(ε) = ε2

2~3ω̄3 , (1.19)

with ω̄ = (ωxωyωz)
1
3 being the geometric average1 of the trapping frequencies. Note

that the density of states (1.19) differs from the corresponding density for a uniform
system (1.9). Physical origin of this is the suppression of states in phase space due to
the spatial confinement by the trapping potential [5].

At zero temperature the chemical potential µ equate with the Fermi energy, thus
a straightforward integration of Equation (1.18) yields

µ = EF = kBTF = ~ω̄(6N) 1
3 . (1.20)

1In this Thesis the bar sign denotes the geometric average, i.e., Ō = (OxOyOz) 1
3 .

8



Chapter 1 Introduction

This expression is important for future calculations, because it fixes the characteristic
energy and temperature of the gas cloud. Furthermore, the Fermi energy (1.20) can
be also used to define typical length and momentum scales, characterizing the Fermi
distribution. The characteristic size of the gas cloud R0

i in the direction i is defined in
analogy to a classical particle with the total energy EF in the trap potential with the
frequency ωi,

R0
i =

√
2EF

Mω2
i

. (1.21)

Similarly, the characteristic size of the Fermi sphere is defined as the momentum of a
free particle with the energy EF,

K0
F =

√
2MEF

~2 . (1.22)

The quantities R0
i and K0

F represent the Thomas-Fermi (TF) radii and momenta,
respectively, and can be rewritten in the following form

R0
i = aho(48N) 1

6
ω̄

ωi
, K0

F = 1
aho

(48N) 1
6 , (1.23)

where aho =
√

~
Mω̄

denotes the harmonic oscillator length. The last two expressions
for R0

i and K0
F represent the widths of the density distributions at zero temperature,

which can be calculated by integrating the distribution function in momentum and
real space, respectively [4]

n(r) =
∫ d3k

(2π)3νFD(r,k) = 8
π2

N

R̄03

(
1−

∑
i

r2
i

R0
i

2

) 3
2

, (1.24)

n(k) =
∫
d3r νFD(r,k) = 8

π2
N

K0
F

3

(
1− k2

K0
F

2

) 3
2

. (1.25)

1.4 Trapped dipolar Fermi gas

1.4.1 Dipole-dipole interaction

The dipole-dipole interaction (DDI) can be often found in nature, and determines the
behavior of a broad range of systems. Furthermore, it is not important just from the
physical point of view, since the DDI accounts also for many biologically significant
phenomena. For instance, the biggest impact the DDI has on living organisms is its
crucial role in the protein folding.
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In this Thesis we consider the DDI between the fermions in ultracold polarized
Fermi gases. This is based on the assumption that the van der Waals forces between
the atoms can be approximated at low temperatures by an effective contact interaction
[7–10]. This approximation considers only the s-wave scattering of the particles, which
are suppressed due to the Pauli exclusion principle, and therefore the long-range DDI
between the polarized fermionic point dipoles is dominant.

In general case, the DDI potential of two interacting particles with the dipoles
oriented along directions determined by unit vectors e1 and e2, and with the relative
position r, as depicted in Figure 1.3(a), has the following form

Vdd(r) = Cdd

4π
(e1 · e2)r2 − 3(e1 · r)(e2 · r)

|r|5
. (1.26)

Here Cdd represents the dipolar interaction strength, which depends on the nature of
the dipoles. Namely, for particles with electric dipoles d it is defined as Ce

dd = d2/ε0,
where ε0 is the vacuum permittivity, while for particles with magnetic dipole m one
has Cm

dd = µ0m
2, where µ0 is the vacuum permeability. Magnetic dipolar moments are

usually measured in units of Bohr magneton (µB = 9.27401×10−24 JT−1), and electric
dipolar moments in units of Debye (D = 3.33564 × 10−30 Cm). The DDI of polar
molecules is much stronger than that of dipolar atoms, and the order of magnitude of
this difference can be easily estimated. Since the magnetic dipole moment for atoms
ranges from roughly 1µB for alkali atoms to 10µB for the lanthanoids, we can take
that the typical dipolar interaction strength is of the order

Cm
dd = µ0µ

2
B = µ0e

2~2

4M2
e

, (1.27)

where e and Me are the electron charge and mass, respectively. Similarly, the typical
electric dipole moment for molecules can be estimated by assuming a net electron
charge separated by a distance of the Bohr radius, a0, which yields

Ce
dd = e2a2

0
4ε0

= e2~2

4ε0M2
e c

2α2
S

, (1.28)

where c is the speed of light in vacuum and αS = 7.297 · 10−3 is the Sommerfeld fine-
structure constant. Comparing the respective typical dipolar interaction strengths for
magnetic and electric systems yields a ratio of

Ce
dd

Cm
dd

= α−2
S ∼ 104 . (1.29)
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Figure 1.3: Dipole-dipole interaction. (a) Non-polarized case: two particles with the
dipole moments oriented along the unit vectors e1 and e2 and with relative position
r. (b) Polarized dipole d oriented along unit vector e determined by spherical angles
(θ, ϕ). (c) Polarized case: two particles with the dipole moments oriented along the
unit vectors e and with relative position r. (d) Two polarized dipoles in the side-
by-side configuration (ϑ = 90◦) repel each other, as indicated by black arrows. (e)
Two polarized dipoles in the head-to-tail configuration (ϑ = 0◦) attract each other, as
indicated by black arrows.

We assume that all dipole moments are parallel in the polarized Fermi gas, and their
common orientation will be referred to as the polarization direction, determined by
the unit vector e, as illustrated in Figure 1.3(b). The DDI potential of two interacting
fermions with the dipoles oriented along the same direction, as shown in Figure 1.3(c),
is given by the reduced form of Equation (1.26), which reads

Vdd(r) = Cdd

4π
r2 − 3(e · r)2

|r|5
. (1.30)

In this context, an important role is played by the Fourier transform of the DDI
potential, whose original and detailed derivation is given in Appendix A. It has the
following form

Ṽdd(k) = Cdd

3

[
3(e · k)2

k2 − 1
]
. (1.31)

In order to explain the two defining characteristics of the DDI, its long range and
anisotropy, we consider an even more simple case, when the dipoles are oriented along
the z axis. The DDI potential now simplifies to

Vdd(r) = Cdd

4π |r|3
(
1− 3 cos2 ϑ

)
. (1.32)
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The fact that the DDI falls off with inter-particle distance according to the power law,
i.e., Vdd(r) ∼ 1/r3, indicates a long-range type of the interaction, while its natural
anisotropy can be understood through the ϑ-dependence. Namely, depending on the
angle ϑ, the DDI potential can be positive or negative, meaning that the dipolar
fermions can repel or attract each other. For example, for ϑ = 90◦ the dipoles are
located side by side and repel each other, as illustrated in Figure 1.3(d). On the other
hand, for ϑ = 0◦ the dipoles are in the head-to-tail configuration and attract each
other, as shown in Figure 1.3(e). Note that the DDI vanishes for the special value of
the angle ϑ = arccos(1/

√
3) = 54.7◦, which is called the magic angle.

These key features of the DDI make dipolar quantum gases extremely interesting,
in particular from a quantum simulation point of view, as a number of fascinating
interaction-driven effects emerge, which are not present in systems with purely short-
rang contact interaction [11].

1.4.2 Brief review of the field

Ultracold gases at quantum degeneracy offer a wide playground for studying quan-
tum phenomena, especially within the realm of many-body physics, with important
applications for the quantum simulation of a diverse range of systems and models, as
well as for quantum information and quantum computing [3, 4, 12–40]. While usually
the s-wave scattering is the main type of interaction in such systems, the presence
of the anisotropic and long-range DDI in gases consisting of atoms or molecules with
a permanent or induced magnetic or electric dipole moment leads to an even richer
phenomena landscape. In particular, this is enabled by competing interaction effects
and a high degree of their tunability. Furthermore, this remains true even for dipolar
Fermi gases where, although the s-wave scattering is absent due to the Pauli exclusion
principle, the anisotropic DDI competes with the large kinetic energy close to the FS,
yielding a complex-enough energy landscape. This leads to novel many-body phenom-
ena, including the deformation of the FS and a predicted fermionic pairing of one- and
two-component systems [41–51].

Since the first experimental realization of a dipolar BEC of chromium atoms [52]
and the subsequent demonstration of the presence of the anisotropic and long-range
DDI in the laboratory [53], dipolar quantum gases have developed into a vast and
fast-growing research field. Indeed, the interplay of the DDI and the isotropic and
short-range contact interaction between the particles in these systems makes them
particularly intriguing from both the experimental and the theoretical point of view
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[14, 15, 54]. More recently, BECs of even more magnetic species, i.e., dysprosium [55]
and erbium [56] have been created. Such species exhibit fascinating phenomena, such
as the Rosensweig instability [57], the emergence of quantum-stabilized droplets [58–
60] and roton quasiparticles [61]. Correspondingly, all these developments triggered
much theoretical work, including, but not limited to, the numerical effort to simulate
dipolar quantum gases in fully anisotropic traps, the roton instability in pancake-
shaped condensates, the investigation of beyond-mean-field effects in one-component
and two-component gases, the formation of the previously observed droplets, their
ground-state properties and elementary excitations, the role of three-body interactions,
and the self-bounded nature of the droplets [62–79]. Furthermore, the very recent
experiments [80–82] demonstrate an amazing phenomenon, namely that dipolar gases
of magnetic atoms can exhibit the supersolidity, a novel kind of behavior when the
system is crystallized, but can still flow without friction. One of the next natural steps
would be the exploration of the transition between the supersolids and the droplet
crystals.

In parallel, the first experimental realization of a quantum degenerate dipolar
Fermi gas of dysprosium 161Dy was in 2012 [83], and afterwards several more fermionic
species, such as erbium 167Er [84] and chromium 53Cr [85], were successfully cooled
down to quantum degeneracy. This enabled studies of the effects of weak to medium-
range DDI strength. Remarkably, identical fermions of dipolar character do interact
even in the low-energy limit because of the peculiar form of the dipolar scattering [86].
Few-body scattering experiments have indeed confirmed universal scaling in dipolar
scattering among fermions [84, 87, 88]. Furthermore, in the recent theoretical and
experimental research [89] a novel kind of strongly dipolar quantum gases was in-
troduced. These are weakly bound polar molecules produced from atoms with large
magnetic dipole moments, such as erbium and other lanthanides. These molecules can
have a very large magnetic moment, which amounts to twice that of its individual
atoms [11]. Many-body dipolar effects in Fermi gases are much more subtle to observe
because of the competition with the large kinetic energy stored within the FS, which
leads to the Fermi pressure. Recently, the key observation of the FS deformation was
made [48], confirming previous theoretical predictions [90–96].

Although experimental realization of magnetic dipolar gases at quantum degen-
eracy has enabled studies of the effects of weak to medium-range DDI strength, the
study of the strongly dipolar regime is still in its infancy, and awaits experimental
availability of ultracold heteronuclear polar molecules with large dipole moments. In

13



Chapter 1 Introduction

Table 1.1: Maximal values of dipole moments (m for species with a magnetic dipole
and d for species with an electric dipole) of currently available dipolar quantum gases.

species 87Rb 23Na6Li 53Cr 167Er 161Dy 167Er168Er

m 0.5µB 2.0µB 6.0µB 7.0µB 9.9µB 14.0µB

species 23Na6Li 40K87Rb 87Rb133Cs 23Na40K 23Na87Rb 7Li133Cs

d 0.20 D 0.57 D 1.2 D 2.7 D 3.3 D 5.5 D

the last decade, significant efforts to produce chemically stable cold polar molecules
[11, 31] were based on photoassociation or the stimulated Raman adiabatic passage
(STIRAP) [97]. As a result, samples of fermionic 40K87Rb [98], 23Na40K [99–102],
23Na6Li [103] and bosonic 7Li133Cs [104, 105], 87Rb133Cs [106, 107] and 23Na87Rb [108]
were obtained in deeply bound molecular states. However, the quantum degeneracy
was still not reached. Only very recently a quantum degenerate dipolar Fermi gas
of 40K87Rb has been realized at JILA [109]. This experimental protocol enabled to
produce tens of thousands of unpolarized molecules at a temperature as low as 50 nK,
which are well described by the Fermi-Dirac distribution. However, the molecules’
dipoles can be straightforwardly polarized in a preferential direction by an external
electric field [109], such that the DDI dominates the behavior of the system. This
would be a long-awaited significant step forward, which would open up the realm for
experimentally investigating strong dipolar Fermi gases.

The available dipolar Fermi gases in current ultracold experiments are listed in
Table 1.1, with their maximal possible values of dipole moments. Note that the electric
dipole moments d of molecular species can be tuned to smaller values by using an
external electric field.

1.5 Motivation

The Fermi surface is one of the fundamental pillars of modern condensed matter physics
[110]. It represents the surface in reciprocal space, which separates occupied from
unoccupied fermionic states at zero temperature, and is a direct consequence of the
Pauli exclusion principle. For instance, interacting electrons in a normal metal can
be described within the Landau Fermi-liquid theory [111] as noninteracting fermionic
quasi-particles with an effective mass, whose ground state forms such a FS. Due to the
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isotropy of the Coulomb repulsion between electrons in a uniform space, the FS turns
out to be a sphere, whose radius is given by the Fermi momentum. The concept of
the FS is crucial for understanding transport processes in metals [112] and the Cooper
pairing in superconductors [113, 114]. However, in case of complex interactions the FS
can get modified. For example, in strongly-correlated electron systems the Fermi-liquid
picture breaks down, giving rise to a spontaneous breaking of rotational invariance,
which manifests itself in a deformation of the FS [115].

Studying Fermi surfaces has now also become accessible within the realm of ul-
tracold quantum gases [3, 13, 15–17] due to their high degree of tunability. In Fermi
gases consisting of atoms or molecules with a permanent or induced magnetic or elec-
tric dipole moment the anisotropic and long-range DDI competes with the large kinetic
energy close to the FS [14]. As a consequence, many theoretical papers predicted an
anisotropic version of the Landau Fermi-liquid theory [54, 116, 117], which involves
a deformation of the Fermi sphere [91–94, 118, 119]. Furthermore, permanent dipole
moments follow the orientation of external fields, which has been explored recently
in both types of ultracold dipolar quantum gases, fermionic in the Innsbruck experi-
ment [48] and bosonic in the Stuttgart experiment [120]. However, a general theory
for fermions presented here, which takes the arbitrary orientation of the dipoles into
account, including the deformation of the Fermi surface at that moment was still lack-
ing. This has motivated us to aim our research in this direction, since this is expected
to lead to novel many-body phenomena, in particular in connection with fermionic su-
perfluidity [43–47, 51]. In a polarized one-component Fermi gas an intriguing interplay
between an anisotropic order parameter with odd partial waves and the FS deforma-
tion enhances superfluid pairing via modifying the density of states [46]. In contrast
to that the more conventional type of Cooper pairing is predicted in a two-component
dipolar Fermi gas, where the usual Bardeen-Cooper-Schrieffer (BCS) theory together
with the deformed FS leads to both spin-singlet even partial wave or spin-triplet odd
partial wave Cooper pairs [45]. And it is suggested to obtain and observe a topologi-
cal p-wave superfluid of microwave-dressed polar fermionic molecules in 2D lattices at
temperatures of the order of tens of nanokelvins [121].

Time-of-flight (TOF) expansion measurements are to this day the most significant
experimental technique to study properties of ultracold atoms, both fermionic and
bosonic. Detailed analytical and numerical understanding of the TOF dynamics is
necessary for the interpretation of the corresponding experimental data, and thus a
precise modeling of the expansion dynamics of ultracold dipolar Fermi gases signifi-
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cantly contributes to our ability to study their dynamical behavior, as well as their
equilibrium properties, such as the ground state density profile, the aspect ratios in
real and momentum space, and the Fermi surface deformation. The latter provides
direct means to experimentally tackle effects purely due to the DDI, and are therefore
of interest to a broader physics community. This has motivated us to include the
theoretical modeling of the TOF dynamics in this Thesis.

Recent experiments [48, 49] measured that for a fermionic gas of magnetic dipolar
erbium atoms an ellipsoidal deformation of the Fermi sphere occurs, which is of the
order of 2%. Very recently, a quantum degenerate dipolar Fermi gas of fermionic
40K87Rb polar molecules has been realized at JILA experiment [109]. Since these
molecules possess the permanent electric dipole moment as large as 0.57 D, the future
focus will be on the polarized systems, where the dipoles will be oriented along a
preferential direction using an external electric field, in order to achieve the strong
dipolar regime. This would be a long-awaited significant step forward, which would
open up the realm for experimentally investigating strong dipolar Fermi gases. Thus,
effects of the DDI in experiments will become more pronounced, and their accurate
theoretical modeling will be required. Furthermore, a strong dipolar nature of such
Fermi gases necessitates that they are treated in the collisional regime, i.e., one could
not assume anymore that they are in the collisionless regime. So, we aim to develop
here an approach precisely tailored to address this challenge, allowing us to take into
account effects of collisions and of the DDI, in both the global equilibrium and during
the TOF expansion.

This Thesis addresses an important open question of the full theoretical description
of strongly dipolar Fermi gases with tilted dipoles at quantum degeneracy in a triaxial
harmonic trap geometry. We believe that our theoretical research presented here
provides a very timely theoretical complement to recent breakthrough experiments
described above.

1.6 This Thesis

The present Thesis explores the physical properties of quantum-degenerate Fermi gases
at zero temperature interacting via the anisotropic and long-range dipole-dipole in-
teraction. Chapter 1 gives a brief introduction to the field, describing basic concepts
related to free and trapped ideal Fermi gases. It then discussed quantum-degenerate
dipolar Fermi gases and gives a brief overview and state-of-the-art in the field.
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In Chapter 2 we develop and derive a general Hartree-Fock mean-field theory for
trapped polarized Fermi gases with tilted dipoles. In particular, we introduce several
physically motivated ansätze for the form of the system’s Wigner function. Considering
the Hartree-Fock total energy of the system, we identify the optimal ansatz that yields
the minimal energy for the ground state.

Chapter 3 presents our main results for the stability of dipolar Fermi systems, the
FS deformation, as well as the gas cloud deformation. We also explore in detail how
the ground-state properties depend on parameters of the system, such as orientation
of the dipoles, the trap frequencies, the number of particles, and the DDI strength.

In Chapter 4 we introduce the quantum kinetic formalism based on the Wigner
distribution function and perform a systematic study of the TOF dynamics for trapped
dipolar Fermi gases from the collisionless to the hydrodynamic regime at zero tem-
perature. To this end we solve the underlying quantum kinetic Boltzmann equation
within the relaxation-time approximation in the vicinity of local equilibrium by us-
ing a suitable rescaling of the Wigner function. We consider experimentally realistic
parameters and relaxation times that correspond to the collisionless, collisional, and
hydrodynamic regime. The equations for the collisional regime are first solved in the
approximation of a fixed relaxation time, and then this approach is extended to include
a self-consistent determination of the relaxation time.

In Chapter 5 we directly compare our theoretical predictions with the novel exper-
imental data obtained for a quantum-degenerate gas of erbium. The excellent agree-
ment between the model and the measurements demonstrates the predictive power
of our theory and establishes a general theoretical framework, which can be equally
applied to ultracold polar molecules and highly magnetic atomic species.

Finally, Chapter 6 gathers our concluding remarks, emphasizing the role of the
obtained results presented in this Thesis for the ultracold gases community. The main
text of the Thesis is supplemented by four Appendices, which contain important and
detailed derivation steps.
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Ground state energy

The isotropic and short-range contact interaction is suppressed by the Pauli exclu-
sion principle in the case of a single-component Fermi gas. Also, as a consequence of
the symmetry of the Pauli pressure, the Fermi surface (FS) is a sphere. In contrats
to that, theoretical predictions that take the DDI into account have shown that this
anisotropic and long-ranged interaction leads to the deformation of the FS into an
ellipsoid [90]. Namely, the FS stretches from a sphere to an ellipsoid along the dipoles’
orientation direction, which represents the direction of the maximum attraction of the
DDI. The ground state [122, 123] and the dynamic properties of such systems have
been systematically investigated using theoretical and numerical approaches in the
collisionless regime [93, 95, 124], in the hydrodynamic regime [91, 92], as well as in the
collisional range, between these two limiting cases [125, 126]. The FS deformation was
also recently theoretically studied in mixtures of dipolar and non-dipolar fermions, as
well as in the presence of a weak lattice confinement [127].

Within the Hartree-Fock mean-field theory for a many-body system, first-order
contributions of the DDI to the total energy of the system include both the Hartree
direct interaction and the Fock exchange interaction term. In the case of a Fermi gas
with isotropic interaction, the Hartree and the Fock term cancel out [90], thus leading
to a spherically symmetric FS. But in the case of a Fermi gas with the anisotropic
DDI the Hartree term gives rise to a distortion in real space [118, 128], whereas the
Fock term gives rise to a distortion in momentum space, i.e., to an ellipsoidal de-
formation of the Fermi sphere. Note in this context that the Fock exchange term
in dipolar Fermi gases is the consequence of a combined effect of the DDI and the
Pauli exclusion principle. The Hartree-Fock mean-field approximation, which includes

18



Chapter 2 Ground state energy

energy terms up to first-order in the DDI, is sufficiently accurate to qualitatively ex-
plain and quantitatively describe results of ongoing experiments [48]. In the current
experimentally relevant range of dipolar interactions strengths the theory beyond the
Hartree-Fock, where the total energy is determined up to second-order in the DDI,
yields only small differences, which cannot be yet resolved experimentally. Thus, the
Hartree-Fock mean-field approach yields already gives results which are quantitatively
accurate enough for present-day experiments [129–131]. However, until now, existing
theories were limited to a fixed orientation of the dipoles, which has to coincide with
one of the trap axes [90, 118, 125, 126]. Such a restriction greatly simplified theoretical
considerations, but, on the other hand, limited their scope since the anisotropy of the
DDI is best controlled by the dipoles’ orientation with respect to the trap axes.

Motivated by this, we develop here a general theory to describe the ground state
of a dipolar Fermi gas for an arbitrary orientation of the dipoles and a triaxial trap
geometry. Our full theoretical description provides a substantial advance in under-
standing of dipolar phenomena and in describing experimental observations in a very
broad parameter range, see for example References [48–50]. In particular, our theory
is capable to accurately describe both the cloud shape in real space and the FS in
momentum space.

In this Chapter we present the derivation of our general theory, which is structured
as follows. In Section 2.1 we introduce the Wigner function, the phase-space distribu-
tion function that we use to describe the properties of dipolar Fermi systems. Next, we
present our theoretical model and several suitable ansätze for the form of the system’s
Wigner function, aiming to account for the effect of the DDI on both the shape of
the atomic or molecular cloud in real space and the shape of the corresponding Fermi
surface in momentum space. In Section 2.2 we give a detailed derivation of the total
ground state energy of the system, considering the Hartree-Fock mean-field approach,
which is precisely tailored to describe the polarized dipolar Fermi gas at zero tem-
perature. Having obtained the total energy for all suitable ansätze, in Section 2.3 we
first derive a set of equations that determines all considered variational parameters.
Later on, this enables us to determine that configuration minimizes the system’s total
energy for a fixed particle number. Such a configuration can be considered as the most
physically suitable ansatz for the description of the ground state of trapped dipolar
fermions with tilted dipoles. We use the ansatz selected here for all further calculations
in this Thesis.
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2.1 Wigner function in equilibrium

A classical many-body system can be fully defined in terms of the coordinate and
momentum space variables and phase-space distribution functions are often used to
describe the properties of such systems. Similarly, a quantum many-body system can
be described in terms of a quasidistribution function, the Wigner function, given by

ν0(r,k) =
∫
d3r′ e−ik·r

′
ρ
(
r + 1

2r′, r− 1
2r′
)
, (2.1)

where
ρ(r, r′) = 〈Ψ̂†(r)Ψ̂(r′)〉 , (2.2)

represents the one-body density matrix. Namely, the Wigner function represents
the Wigner-Weyl transform of the density matrix and is equivalent to a quantum-
mechanical wave function [132, 133]. Despite being a distribution function, it can be
negative within small areas of the phase space, which are shielded by the Heisenberg
uncertainty relation. Therefore, the Wigner function is a quasiprobability distribution
function, and integrating it over the space or the momentum variables leads to the
respective probability distribution functions

n(r) =
∫ d3k

(2π)3 ν
0(r,k) , (2.3)

n(k) =
∫
d3r ν0(r,k) . (2.4)

The quantum-mechanical expectation values of the system’s observables, which are
required for the calculation of the properties of nonrelativistic quantum systems, can
be obtained as their phase-space averages, weighted by the Wigner function [134–138].
For instance

〈O〉 =
∫∫
d3r d3k O(r,k) ν0(r,k)∫∫

d3r d3k ν0(r,k) , (2.5)

represents the expectation values of the obervable O(r,k).
Considering a trapped ultracold dipolar Fermi gas, the equilibrium distribution

function in phase space will rapidly decrease to zero outside a certain closed surface,
due to a combined effect of the Pauli exclusion principle, which is responsible for the
existence of the FS in momentum space, and the trapping in real space. Therefore, in
order to model the global equilibrium distribution of the dipolar Fermi gas we use an

20



Chapter 2 Ground state energy

ansatz for the semiclassical Wigner function, which resembles the form of the Wigner-
transformed Fermi-Dirac distribution of a noninteracting Fermi gas. Note that the
temperature of the dipolar Fermi gas in the experiment of Reference [48] is very low,
such that thermal fluctuations are expected to be of the order of (T/TF)2 ≈ 3% due to
the Sommerfeld expansion. This justifies to use here the Wigner-transformed Fermi-
Dirac distribution of a noninteracting Fermi gas at zero temperature approximation.
Therefore, , if the dipoles’ orientation axis lies along one of the trapping axes (usually
denoted as z axis), an accurate ansatz for the Wigner function takes the simple form
[90–93, 95, 96, 122–126],

ν0
z (r,k) = H

(
1−

∑
i

r2
i

R2
i

−
∑
i

k2
i

K2
i

)
, (i = x, y, z) . (2.6)

Here H represents the Heaviside step function, while the variational parameters Ri

and Ki stand for the Thomas-Fermi radii and the Fermi momenta for a trapped non-
interacting Fermi gas at zero temperature. The FS is a sphere with the radius K0

F

given by Equation (1.22), as depicted in Figure 2.1(a), while the ellipsoidal shape
of the gas cloud is determined by the trap potential and has semi-axes R0

i given by
Equation (1.21), as depicted in Figure 2.1(d).

A theory based on the above ansatz [90, 126] was successfully used to describe
trapped polarized dipolar Fermi gases, while its extension [125] enabled a detailed
analysis of the ground state and modeling of the time-of-flight (TOF) expansion dy-
namics of the system for different collisional regimes. Furthermore, numerical compar-
isons [124, 139] have confirmed that, even in the case of polar molecules with masses of
the order of 100 atomic units and an electric dipole moment as large as 1 D, the above
variational ansatz yields highly accurate results, within a fraction of per mille. This
indicates that the ansatz (2.6), first introduced in a slightly different manner in Refer-
ence [90], is indeed very well suited to describe polarized dipolar Fermi gases. One of
the main results of those previous findings were that both the FS and shape of the gas
cloud stretch along the polarization direction (z axis), as depicted in Figures 2.1(b)
and 2.1(e), respectively. However, the experiment of Reference [48] was performed for
an arbitrary angle θ, see Figure 1.3(b), and therefore the comparison with the theory
[125, 126] was only possible for the special case of dipoles oriented along the z axis,
i.e., for θ = 0◦. In order to model the global equilibrium distribution of the dipolar
Fermi gas for arbitrarily oriented dipoles and to provide an accurate description of the
experiment, it is necessary to generalize the ansatz (2.6). Therefore, we apply here an
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Figure 2.1: Schematic illustration of: (a)-(c) FS in momentum space; (d)-(f) gas
cloud in real space. Illustrations (a) and (d) correspond to noninteracting Fermi gas,
while (b) and (e) correspond to dipolar Fermi gas with FS and gas cloud stretched into
ellipsoids whose axes coincide with the trap axes. Illustrations (c) and (f) depict the
ellipsoidal FS and gas cloud of dipolar Fermi gas stretched in the direction determined
by spherical angles (θ′, ϕ′) and (θ′′, ϕ′′), respectively.

analogous reasoning and introduce the following ansatz for the Wigner distribution

ν0(r,k) = H
1−

∑
i,j

riAijrj −
∑
i,j

kiBijkj

 , (i = x, y, z) . (2.7)

Here Aij and Bij are matrix elements that account for the generalized geometry of the
system and determine the shape of the cloud in real space and of the FS in momentum
space, respectively. The particle density distribution in real space is determined by
both the trapping potential and the Hartree direct energy. On the other side, the mo-
mentum distribution is dominated by the interplay between the Pauli pressure, which
is isotropic, and the Fock exchange energy, which is responsible for the deformation of
the FS [90]. The experiment of Reference [48] suggest that the FS follows the orienta-
tion of the dipoles, which are parallel to the external field, keeping the major axis of
the FS always parallel to the direction of the maximum attraction of the DDI. Moti-
vated by this, we consider four possible scenarios for a detailed theoretical description
of the system, in order to verify the above hypothesis.

22



Chapter 2 Ground state energy

1. Spherical scenario
For the sake of completeness, we start with a simple spherical scenario, in which

the FS remains a sphere. This is depicted in Figures 1.3(b) and 1.3(e), where we
additionally assume that all Fermi momenta are equal (Ki = KF 6= K0

F) and the
matrix B is given by

B1 =


1/K2

F 0 0
0 1/K2

F 0
0 0 1/K2

F

 = I/K2
F , (2.8)

where I is the 3× 3 identity matrix. Similarly, matrix A1 is a diagonal matrix in the
coordinate system S, which is defined by the harmonic trap axes, and it reads

A1 =


1/R2

x 0 0
0 1/R2

y 0
0 0 1/R2

z

 . (2.9)

In this way, we neglect the off-diagonal elements, which may arise due to the dipoles’
arbitrary orientation, which is certainly justified for a weak DDI and elongated traps.

The normalization of the Wigner distribution (2.7) for this case is given by

N =
∫∫ d3r d3k

(2π)3 ν0(r,k) =
∫∫ d3r dk k2

2π2 H
(

1−
∑
i

r2
i

R2
i

− k2

K2
F

)
= R̄3KF

48 ≡ N (1) , (2.10)

and there are four variational parameters: Fermi momenta KF and three radii Ri.

2. On-on-axis scenario
We also consider a second, on-on-axis scenario, depicted in Figures 1.3(b) and 1.3(e)

which now includes the FS deformation. Here the FS is an ellipsoid with fixed major
axes coinciding with the trap axes, as shown in Figure 2.1(b). Therefore, the matrix
B is again diagonal in the coordinate system S

B2 =


1/K2

x 0 0
0 1/K2

y 0
0 0 1/K2

z

 , (2.11)

but is not proportional to the identity matrix anymore. The matrix A remains the same
as in previous case (A2 = A1), which recovers the old ansatz given by Equation (2.6).

The normalization of the Wigner distribution (2.7) in this case yields
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N =
∫∫ d3rd3k

(2π)3 ν
0(r,k) =

∫∫ d3rd3k

(2π)3 H
(

1−
∑
i

r2
i

R2
i

−
∑
i

k2
i

K2
i

)
= R̄3K̄3

48 ≡ N (2) ,

(2.12)
and here we have six variational parameters: three momenta Ki and three radii Ri.
We note that the first, spherical scenario is a special case of the second one, obtained
by restricting the Fermi momenta to be equal, i.e. by neglecting the FS deformation.

3. Off-on-axis scenario
As a third and more general possibility, we consider the off-on-axis hypothesis

motivated by experimental results of Reference [48]. Namely, we assume that the
matrix B has a diagonal form B′3 in a rotated coordinate system S ′, which is defined
by the axes qx, qy and qz, as depicted in Figure 2.1(c)

B′3 =


1/K ′2x 0 0

0 1/K ′2y 0
0 0 1/K ′2z

 . (2.13)

Here the parameters K ′i represent the Fermi momenta in the rotated coordinate system
S ′. Strictly speaking, from the underlying physical point of view it is expected here
that the qz axis remains parallel to the orientation of the dipole moments. However,
we will not assume this, because this can be derived within the theory and used later
on as an additional test of our ansatz.

In order to describe the rotation from S to S ′, we express the quantities B3 and k
from S as B′3 = R′TB3R′ and q = R′Tk, with R′ = R(θ′, ϕ′), where R stands for the
rotation matrix

R(θ, ϕ) =


cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ

 . (2.14)

In this scenario the cloud shape is considered to be on-axis, i.e. θ′′ = ϕ′′ = 0◦ in
Figure 1.3(f). Therefore, the matrix A again has a diagonal form in the coordinate
system S, such that A3 = A2 = A1.

The normalization of the Wigner distribution (2.7) now reads

N =
∫∫ d3r d3k

(2π)3 ν0(r,k) =
∫∫ d3r d3q

(2π)3 H
(

1−
∑
i

r2
i

R2
i

−
∑
i

q2
i

K ′2i

)
= R̄3K̄ ′3

48 ≡ N (3) .

(2.15)
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In this case, we have eight variational parameters: three momenta K ′i, three radii Ri,
and two angles θ′ and ϕ′.

We note that the on-on-axis scenario is a special case of the off-on-axis one when
we restrict the angles θ′ = ϕ′ = 0◦, which is justified when the dipoles are parallel to
one of the trap axes. In that case the matrix B3 is already diagonal and coincides with
B2, i.e., K ′i = Ki.

4. Off-off-axis scenario
Finally, as a fourth and the most general possibility, we consider off-axis hypothesis

for both the FS and the gas cloud ellipsoids, as depicted in Figures 2.1(c) and 2.1(f).
Therefore, the matrix B has the same form as in the off-on-axis scenario, B4 = B3,
while the matrix A is a diagonal only in the rotated coordinate system S ′′, which is
defined by the axes xx, xy and xz

A4 =


1/R′′2x 0 0

0 1/R′′2y 0
0 0 1/R′′2z

 . (2.16)

Here the parameters R′′i represent the TF radii in the rotated coordinate system S ′′.
In order to describe the rotation from S to S ′′, we have A′′4 = R′′TA4R′′ and x = R′′T r,
where R′′ = R(θ′′, ϕ′′).

The normalization of the Wigner distribution (2.7) in this case is

N =
∫∫ d3rd3k

(2π)3 ν
0(r,k) =

∫∫ d3xd3q

(2π)3 H
(

1−
∑
i

x2
i

R′′2i
−
∑
i

q2
i

K ′2i

)
= R̄′′3K̄ ′3

48 ≡ N (4) ,

(2.17)
and the total number of variational parameters here is ten: three momenta K ′i, three
radii R′′i , and four angles θ′, ϕ′, θ′′, ϕ′′. We again note that the off-off-axis scenario
can reproduce as a special case the off-on-axis, and all other scenarios as well. For
example, for θ′′ = ϕ′′ = 0◦ the matrix A4 is diagonal and coincides with A3, such that
R′′i = Ri.

In order to determine the values of the variational parameters for each scenario,
as usual, we require that they minimize the total Hartree-Fock energy of the system.
This leads, together with the corresponding particle number conservation, to algebraic
set of equations that determine the TF radii, momenta, as well as the angles that
determine the orientation of the FS and the gas cloud ellipsoids. Although algebraic,
these equations are nonlinear and contain special functions described in Appendix B.
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2.2 System energy in equilibrium

Now that we have identified several relevant ansätze for modeling the Wigner function
of a dipolar Fermi gas of tilted dipoles, we proceed to determine the optimal values
of the corresponding variational parameters. In order to do so, we have to minimize
the total energy of the many-body Fermi system Etot, which is in the Hartree-Fock
mean-field theory given by the sum of the kinetic energy Ekin, the trapping energy
Etrap, the Hartree direct energy ED

dd, and the Fock exchange energy EE
dd. Within a

semiclassical theory, they can be written in terms of the Wigner function [118] as

Ekin =
∫∫ d3r d3k

(2π)3
~2k2

2M ν0(r,k) , (2.18)

Etrap =
∫∫ d3r d3k

(2π)3 Vtrap(r)ν0(r,k) , (2.19)

ED
dd = 1

2

∫∫∫∫ d3r d3r′ d3k d3k′

(2π)6 Vdd(r− r′)ν0(r,k) ν0(r′,k′) , (2.20)

EE
dd = −1

2

∫∫∫∫ d3r d3r′ d3k d3k′

(2π)6 Vdd(r′)ei(k−k′)·r′
ν0(r,k) ν0(r,k′) . (2.21)

The total energy of the system was calculated previously with the ansatz (2.6) for
the case when the dipoles are parallel to one of the trap axes [90–92, 125, 126], our
on-on axis scenario 2. Also, Reference [49] presents a derivation of the total energy
for the system with tilted dipoles using ansatz described in the off-on-axis scenario
3. Therefore, we present here only the detailed derivation of all energy terms for the
most general ansatz considered in the off-off-axis scenario 4, from which one can easily
deduce the total energy of the system for any of the scenarios defined above [50].

2.2.1 Kinetic energy

We use the most general ansatz, which corresponds to the off-off-axis scenario, to
calculate all four energy terms. Inserting this ansatz into the expression for the kinetic
energy given by Equation (2.18) we get

Ekin =
∫∫ d3r d3k

(2π)3
~2k2

2M ν0(r,k) =
∫∫ d3x d3q

(2π)3
~2q2

2M H
1−

∑
j

x2
j

R′′2j
−
∑
j

q2
j

K ′2j

 . (2.22)

We first calculate the real space integral, where we can use spherical symmetry and
switch to spherical coordinates. After rescaling the space variables according to xi =
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uiR
′′
i , we obtain

Ekin =
∫ d3q

(2π)3
~2q2

2M R̄′′3
∫ ∞

0
du 4πu2 H

1−
∑
j

q2
j

K ′2j
− u2

 . (2.23)

Since the Heaviside step function has a value of 1 in the range |u| ≤ umax =
√

1−∑j q
2
j/K

′2
j ,

and vanishes otherwise, the boundary of the u-integral reduces to

Ekin =
∫ d3q

4π2
~2q2

M
R̄′′3H

1−
∑
j

q2
j

K ′2j

∫ umax

0
du u2. (2.24)

After solving the u-integral, we use rescaling ki = K ′ivi, which leads to

Ekin =
∫ d3v

12π2 R̄
′′3K̄ ′3

~2∑
jK

′2
j v

2
j

M
(1− v2

x − v2
y − v2

z)
3
2 H

1−
∑
j

v2
j

 . (2.25)

The three remaining integrals are computed one by one. We start with the vz-integral

Ekin = 1
6π2

~2R̄′′3K̄ ′3

M

∫
dvxdvy

×
∫ √1−v2

x−v2
y

0
dvz

∑
j

K ′2j v
2
j

1−
∑
j

v2
j

 3
2

H(1− v2
x − v2

y) , (2.26)

which, after another rescaling vz =
√

1− v2
x − v2

y cosϑ, simplifies to

Ekin = 1
6π2 R̄

′′3K̄ ′3
~2

M

∫
dvxdvy(1− v2

x − v2
y)2H(1− v2

x − v2
y)

×
∫ π

2

0
dϑ sin4 ϑ

[
K ′2x v

2
x +K ′2y v

2
y +K ′2z (1− v2

x − v2
y) cos2 ϑ

]
. (2.27)

The ϑ-integral can be performed using the standard integrals

∫ π
2

0
dϑ sin4 ϑ = 3π

16 , (2.28)∫ π
2

0
dϑ sin4 ϑ cos2 ϑ = π

32 . (2.29)

The other integrals over vx and vy can be solved in the same way, yielding the final
expression for the kinetic energy

Ekin = N

8
∑
j

~2K ′2j
2M . (2.30)
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2.2.2 Trapping energy

The trapping energy term can be calculated in a similar way as the kinetic energy term,
nevertheless we present here all steps. The expression for the trapping energy given
by Equation (2.19), together with the harmonic potential given by Equation (1.16),
and the most general ansatz gives

Etrap =
∫∫ d3r d3k

(2π)3
M

2

∑
j

ω2
j r

2
j

 ν0(r,k)

=
∫∫ d3x d3q

(2π)3
M

2

∑
j

ω2
j

(∑
i

R′′jixi
)2
H

1−
∑
j

x2
j

R′′2j
−
∑
j

q2
j

K ′2j


=
∫∫ d3x d3q

(2π)3
M

2

∑
j,i

ω2
jR′′2ji x2

i

H
1−

∑
j

x2
j

R′′2j
−
∑
j

q2
j

K ′2j

 . (2.31)

The q-integral can be calculated by switching to spherical coordinates and by rescaling
the momentum space variables according to qi = uiK

′
i, which yields

Etrap =
∫ d3x

(2π)3
M

2

∑
j,i

ω2
jR′′2ji x2

i

 K̄ ′′3 ∫ ∞
0

du 4πu2 H
1−

∑
j

x2
j

R′′2j
− u2

 . (2.32)

The Heaviside step function is non-zero in the range |u| ≤ umax =
√

1−∑j x
2
j/R

′′2
j , so

Etrap =
∫ d3x

4π2M

∑
j,i

ω2
jR′′2ji x2

i

 K̄ ′′3H
1−

∑
j

x2
j

R′′2j

∫ umax

0
du u2

=
∫ d3v

12π2 R̄
′′3K̄ ′3M

∑
j,i

ω2
jR′′2jiR′′2i v2

i

1−
∑
j

v2
j

 3
2

H
1−

∑
j

v2
j

 , (2.33)

where we have used the rescaling xi = R′′i vi in the last step. The three remaining
integrals are computed similarly as before, and we start with vz-integral,

Etrap = 1
6π2 R̄

′′3K̄ ′3M
∫
dvxdvy

×
∫ √1−v2

x−v2
y

0
dvz

∑
j,i

ω2
jR′′2jiR′′2i v2

i

1−
∑
j

v2
j

 3
2

H(1− v2
x − v2

y)

= 1
6π2 R̄

′′3K̄ ′3M
∫
dvxdvy(1− v2

x − v2
y)2H(1− v2

x − v2
y)

×
∫ π

2

0
dϑ sin4 ϑ

∑
j

ω2
j

(
R′′2jxR′′2x v2

x + R′′2jyR′′2y v2
y + R′′2jzR′′2z (1− v2

x − v2
y) cos2 ϑ

) , (2.34)
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where we have used another rescaling vz =
√

1− v2
x − v2

y cosϑ. The ϑ-integral is the
same as for the kinetic energy term and can be solved using Equations (2.28) and
(2.29). The other two integrals can be calculated analogously, which leads to the
trapping energy expression

Etr = N

8
M

2
∑
j,i

ω2
jR′′2jiR′′2i . (2.35)

2.2.3 Hartree energy

In order to reduce the number of integrals in the expression for the Hartree energy
term given by Equation (2.20), we first rewrite it by means of the Fourier transform
of the DDI potential according to

ED
dd = 1

2

∫∫∫∫∫ d3r d3r′ d3k d3k′ d3k′′

(2π)9 eik′′·(r−r′)Ṽdd(k′′)ν0(r,k)ν0(r′,k′)

= 1
2

∫ d3k′′

(2π)3 Ṽdd(k′′)
∫ d3k

(2π)3 ν̃
0(−k′′,k)

∫ d3k′

(2π)3 ν̃
0(k′′,k′) . (2.36)

This results in decoupling of the integrals of the Fourier transform of distiribution
functions ν̃0 and eliminates integrals over space variables. Next, we compute the
Fourier transform of the corresponding Wigner function, with respect to the first
argument

ν̃0(−k′′,k) =
∫
d3r eik′′·r H

1−
∑
i,j

riA4ijrj −
∑
i,j

kiB4ijkj


=
∫
d3x eik′′·R′′x H

h(k)−
∑
j

x2
j

R′′2j

 , (2.37)

where h(k) = 1−∑ij kiB4ijkj is a suitable abbreviation for the momentum part of the
argument of the Wigner function. The last equation can be rewritten straightforwardly

ν̃0(−k′′,k) =
∫
dxx dxy ei(c′′

xxx+c′′
yxy)

×
∫ ∞
−∞

dxz H
h(k)−

∑
j

x2
j

R′′2j

( cos c′′zxz + i sin c′′zxz
)
, (2.38)

where c′′ = R′′Tk′′. The second term containing sin c′′zxz vanishes due to symmetry
reasons. The first term can be simplified since the Heaviside step function is non-zero
only in the range |xz| ≤ xmax

z = R′′z
√
h(k)− x2

x/R
′′2
x − x2

y/R
′′2
y , which, together with
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the rescaling xz = xmax
z cosϑ, yields

ν̃0(−k′′,k) = 2R′′z
∫
dxx dxy ei(c′′

xxx+c′′
yxy)

(
h(k)− x2

x

R′′2x
−

x2
y

R′′2y

) 1
2

H
(
h(k)− x2

x

R′′2x
−

x2
y

R′′2y

)

×
∫ π

2

0
dϑ sinϑ cos

c′′zR′′z
(
h(k)− x2

x

R′′2x
−

x2
y

R′′2y

) 1
2

cosϑ
 . (2.39)

The last ϑ-integral can be evaluated using the following formula [140, (3.715.20)]

∫ π
2

0
dx cos(z cosx) sin2ν x =

√
π

2

(2
z

)ν
Γ
(
ν + 1

2

)
Jν(z) , for Re ν > −1

2 , (2.40)

where Jν(z) is a Bessel function of first kind. This leads to

ν̃0(−k′′,k) =
√

2πR′′z
c′′z

∫
dxx eic′′

xxx

∫ ∞
−∞

dxy
(

cos c′′yxy + i sin c′′yxy
)(

h(k)− x2
x

R′′2x
−

x2
y

R′′2y

) 1
4

× J 1
2

c′′zR′′z
(
h(k)− x2

x

R′′2x
−

x2
y

R′′2y

) 1
2
H

(
h(k)− x2

x

R′′2x
−

x2
y

R′′2y

)
. (2.41)

This can be further simplified using similar steps as before to calculate the xz-integral
by limiting the xy-integral due to the Heaviside function, and applying a similar sub-
stitution for the xy-variable, yielding

ν̃0(−k′′,k) =
√

8πR′′z
c′′z

R′′y

∫
dxx eic′′

xxx

∫ π
2

0
du sin 3

2 u

(
h(k)− x2

x

R′′2x

) 3
4

H
(
h(k)− x2

x

R′′2x

)

× J 1
2

c′′zR′′z
(
h(k)− x2

x

R′′2x

) 1
2

sin u
 cos

c′′yR′′y
(
h(k)− x2

x

R′′2x

) 1
2

cosu
 . (2.42)

The u-integral can now be evaluated using [140, (6.688.2)],

∫ π
2

0
dx sinν+1 x cos(β cosx)Jν(α sin x)

=
√
π

2α
ν
(
α2 + β2

)− 1
2ν−

1
4 Jν+ 1

2

[(
α2 + β2

) 1
2
]
, for Re ν > −1. (2.43)

After computing the u-integral, the xx-integral can be treated in a similar way. Hence,
the Fourier-transformed Wigner distribution function reads

ν̃0(−k′′,k) =
(2π) 3

2 R̄′′3 h(k) 3
4 H[h(k)] J 3

2

[
h(k) 1

2
(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]

(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 3
4

. (2.44)
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We note here that ν̃0(k′′,k) is an even function with respect to k′′. This simplifies next
steps of the calculation, because the k- and k′-integrals over the Fourier-transformed
Wigner function in Equation (2.36) turn out to be the same. Hence, it is only necessary
to compute one of them, e.g.,

∫ d3k

(2π)3 ν̃
0(k′′,k) =

∫ d3q

(2π)3 ν̃
0(k′′,R′q)

= R̄′′3

(2π) 3
2
(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 3
4

∫
d3q

1−
∑
j

q2
j

K ′2j

 3
4

× J 3
2


1−

∑
j

q2
j

K ′2j

 1
2 (
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2

H
1−

∑
j

q2
j

K ′2j

 . (2.45)

In order to evaluate this integral, we perform the substitution qi = K ′iui and use the
spherical symmetry of the integrand, which yields

∫ d3q

(2π)3 ν̃
0(k′′,R′q) = 4πR̄′′3K̄ ′3

(2π) 3
2
(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 3
4

∫ 1

0
du u2(1− u2) 3

4

× J 3
2

[
(1− u2) 1

2
(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]
. (2.46)

This integral can be computed after a substitution u = cosϑ and using [140, (6.683)],

∫ π
2

0
dϑJµ(a sinϑ) sinµ+1 ϑ cos2ρ+1 ϑ

= 2ρ Γ(ρ+ 1)a−ρ−1Jρ+µ+1(a) , for Re ρ,Re µ > −1 . (2.47)

Thus, the integral of the Fourier-transformed Wigner function reads

∫ d3q

(2π)3 ν̃
0(k′′,R′q) = ñ(k′′) =

R̄′′3K̄ ′3J3

[(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]

(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 3
2

. (2.48)

We are now able to solve the last integral in the Hartree energy term. With the
Fourier-transformed DDI potential given by Equation (1.31), we get

ED
dd = Cdd

6

∫ d3k′′

(2π)3

(
3(∑iRT

zik
′′
i )2

k′′2
− 1

)
ñ2(k′′) = Cdd

6

∫ d3c′′

(2π)3

(
3(∑i,j RT

ziR′′ijc′′j )2

c′′2
− 1

)

× R̄′′6K̄ ′6(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

)3J
2
3

[(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]
. (2.49)
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Due to the symmetry, all terms which are linear in c′′j vanish, yielding

ED
dd = Cdd

6

∫ d3c′′

(2π)3

3∑j

(∑
iRT

ziR′′ij
)2
c′′2j

c′′2
− 1


× R̄′′6K̄ ′6(

c′′2x R
′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

)3J
2
3

[(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]
. (2.50)

After a substitution c′′iR
′′
i = ui and a switch into spherical coordinates, the integral

leads to

ED
dd = CddR̄

′′3K̄ ′6

6(2π)3

∫ π

0
dϑ
∫ 2π

0
dφ sinϑ

∫ ∞
0

du
J2

3 (u)
u4

×

3
(∑

i

RT
ziR′′ix

)2 sin2ϑ cos2 φ

cos2φsin2ϑ+ (R′′x/R′′y)2sin2φsin2ϑ+ (R′′x/R′′z)2cos2ϑ

+3
(∑

i

RT
ziR′′iy

)2 sin2ϑ sin2 φ

(R′′y/R′′x)2cos2φsin2ϑ+ sin2φsin2ϑ+ (R′′y/R′′z)2cos2ϑ

+3
(∑

i

RT
ziR′′iz

)2 cos2ϑ

(R′′z/R′′x)2cos2φsin2ϑ+ (R′′z/R′′y)2sin2φsin2ϑ+ cos2ϑ
− 1

 . (2.51)

Subsequently, for the radial integral we apply the identity [140, (6.574.2)]

∫ ∞
0

dtJν(αt)Jµ(αt)t−λ =
αλ−1Γ(λ)Γ

(
ν+µ−λ+1

2

)
2λΓ

(
−ν+µ+λ+1

2

)
Γ
(
ν+µ+λ+1

2

)
Γ
(
ν−µ+λ+1

2

) ,
for Re (ν + µ+ 1) > Re (λ) > 0, α > 0 . (2.52)

Together with Equation (2.17) for the conserved number of particles and using auxil-
iary functions and the generalized anisotropy function FA, defined in Appendix B by
Equations (B.6)-(B.8) and (B.15), respectively, we obtain

ED
dd =− 6N2c0

R̄′′3

(∑
i

RizR′′ix

)2

f

(
R′′y
R′′x

,
R′′z
R′′x

)
+
(∑

i

RizR′′iy

)2

f

(
R′′x
R′′y

,
R′′z
R′′y

)

+
(∑

i

RizR′′iz

)2

f

(
R′′x
R′′z

,
R′′y
R′′z

) = −6N2c0

R̄′′3
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
. (2.53)

Here c0 is a constant related to the DDI strength, defined as

c0 = 210Cdd

34 · 5 · 7 · π3 . (2.54)
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2.2.4 Fock energy

The Fock energy term is the most complex of the four energy terms, but it is still
possible to analytically evaluate it by using the Fourier transformation. The idea is to
switch the space and momentum variables of the Wigner functions via the two Fourier
transformations, such that the Fock term can be rewritten in the following form

Eex = −1
2

∫
d3r

∫
d3r′

∫ d3k

(2π)3

∫ d3k′

(2π)3Vdd(r′)ei(k−k′)·r′
ν0(r,k)ν0(r,k′)

= −1
2

∫
d3r′

∫ d3k′

(2π)3

∫ d3k′′

(2π)3
¯̃ν0(k′′, r′)¯̃ν0(−k′′,−r′)Ṽdd(k′)eir′·k′

, (2.55)

where ν̃0(k′,k) denotes the Fourier transform of ν0(r,k) with respect to the first
variable and ν̄0(r, r′) the Fourier transformation with respect to the second variable.
The order of the calculation of the integrals is determined by the interaction potential.
Therefore, the first step is to calculate these two Fourier transforms of the Wigner
function. We calculated ν̃0 during calculation of the Hartree energy term, and result
is given by Equation (2.44). Using this, we have

¯̃ν0(−k′′, r) =
∫ d3k

(2π)3 eik·rν̃0(−k′′,k) =
∫ d3q

(2π)3 eiq·R′T rν̃0(−k′′,R′q)

=
∫ d3q

(2π) 3
2

eiq·c′
R̄′′3

(
1−∑l

q2
l

K′2
l

) 3
4

H
(

1−∑j

q2
j

K′2
j

)
g(k′′) 3

4
J 3

2

(1−
∑
m

q2
m

K ′2m

) 1
2

g(k′′) 1
2

 , (2.56)

where g(k′′) = c′′2x R
′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z , c′′ = R′′Tk′′ and c′ = R′T r. The three q-

integrals can be treated in the same way, so we compute here just the qz-integral, to
illustrate the procedure. This integral can be simplified, as before, since the Heaviside
step function is non-zero only in the range |qz| ≤ qmax

z = K ′z

√
1− q2

x

K′2
x
− q2

y

K′2
y

, which,
together with rescaling qz = qmax

z cosϑ, yields

¯̃ν0(−k′′, r) = R̄′′3

(2π) 3
2

1
g(k)′′34

∫
dqx dqy eic′

xqx+ic′
yqyH

(
1− q2

x

K ′2x
−

q2
y

K ′2y

)(
1− q2

x

K ′2x
−

q2
y

K ′2y

) 5
4

× 2
∫ π

2

0
dϑ sin 5

2 ϑ K ′z cos (c′zqmax
z cosϑ) J 3

2

g(k′′) 1
2 qmax
z

K ′z
sinϑ

 . (2.57)

After this substitution, the ϑ-integral can be calculated using Equation (2.43).
As already mentioned, qx- and qy-integral can be solved in the same way, so that
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the Fourier transform ¯̃ν0 reads

¯̃ν0(−k′′, r) =
R̄′′3K̄ ′3J3

[(
g(k′′) + c′2z K

′2
z + c′2yK

′2
y + c′2xK

′2
x

) 1
2
]

(
g(k′′) + c′2z K

′2
z + c′2yK

′2
y + c′2xK

′2
x

) 3
2

. (2.58)

It is clear that ¯̃ν0(k′′, r) is an even function in both arguments, which simplifies further
calculations. The next step is to calculate the r′-integral in Equation (2.55). To avoid
the appearance of a quadratic Bessel function, we use its integral representation [140,
(6.519.2.2)] ∫ π

2

0
dt J2ν(2z sin t) = π

2J
2
ν (z) , for Re ν > −1

2 , (2.59)

which leads to an integral of a Bessel function

J2
3

[(
c′2xK

′2
x + c′2yK

′2
y + c′2z K

′2
z + g(k′′)

) 1
2
]

= 2
π

∫ π
2

0
dtJ6

[
2 sin t

(
c′2xK

′2
x + c′2yK

′2
y + c′2z K

′2
z + g(k′′)

) 1
2
]
. (2.60)

Using this and a substitution κ′ = R′Tk′, the r′-integral becomes

∫
d3r′ ¯̃ν02(k′′, r′)eik′·r′ =

∫
d3r′′ ¯̃ν0(k′′,R′r′′)2eik′·(R′r′′) =

∫
d3r′′ ¯̃ν0(k′′,R′r′′)2ei(R′Tk′)T ·r′′

=
∫
d3r′

R̄′′6K̄ ′6 eiκ′
xr

′′
x+iκ′

yr
′′
y+iκ′

zr
′′
z(

r′′2x K
′2
x + r′′2y K

′2
y + r′′2z K

′2
z + g(k′′)

)3J
2
3

[(
r′′2x K

′2
x + r′′2y K

′2
y + r′′2z K

′2
z + g(k′′)

) 1
2
]

=
∫
dr′′x dr

′′
y dr

′′
z

R̄′′6K̄ ′6eiκ′
xr

′′
x+iκ′

yr
′′
y+iκ′

zr
′′
z(

r′′2x K
′2
x + r′′2y K

′2
y + r′′2z K

′2
z + g(k′′)

)3

× 2
π

∫ π
2

0
dtJ6

[
2 sin t

(
r′′2x K

′2
x + r′′2y K

′2
y + r′′2z K

′2
z + g(k′′)

) 1
2
]
, (2.61)

We again separately solve all three integrals, starting with the z′′-integral. In order to
evaluate it, we use the substitution uz = r′′zK

′
z, as well as identities [140, (6.726.2)]

∫ ∞
0

dx(x2 + b2)− 1
2νJν

(
a
√
x2 + b2

)
cos(cx) =

√
π

2
(a2 − c2) 1

2ν−
1
4

aνbν−
1
2

Jν− 1
2

(
b
√
a2 − c2

)
,

for 0 < c < a, b > 0,Re ν > −1
2 ,∫ ∞

0
dx(x2 + b2)− 1

2νJν
(
a
√
x2 + b2

)
cos(cx) = 0 ,

for 0 < a < c, b > 0,Re ν > −1
2 . (2.62)

After the integration over r′′z Equation (2.61) reads
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R̄′′6K̄ ′6
∫
dr′′x dr

′′
y eiκ′

xr
′′
x+iκ′

yr
′′
y

4
πK ′z

∫ π
2

0
dt

(
4 sin2 t− κ′2

z

K′2
z

) 11
4 H

(
2 sin t−

√
κ′2
z

K′2
z

)
(2 sin t)6

(
r′′2x K

′2
x + r′′2y K

′2
y + g(k′′)

) 11
4

×
√
π

2J
11
2

(4 sin2 t− κ′2z
K ′2z

) 1
2 (
r′′2x K

′2
x + r′′2y K

′2
y + g(k′′)

) 1
2

 . (2.63)

The Heaviside function in the last equation ensures that both possible solutions of
Equation (2.62) are included when needed. The other two integrals are calculated in
the same way, and therefore the solution of the r′-integral is

∫
d3r′ ¯̃ν02(k′′, r′)eik′·r′ =

(
π

27

) 1
2
R̄′′6K̄ ′3

∫ π
2

0

dt

sin6 t

(
4 sin2 t−∑j

κ′2
j

K′2
j

) 9
4

g(k′′) 9
4

× J 9
2

g(k′′) 1
2

4 sin2 t−
∑
j

κ′2j
K ′2j

 1
2
H

2 sin t−
√√√√∑

j

κ′2j
K ′2j

 . (2.64)

The next step is to compute the k′′-integral. Using substitution ui = κ′i/K
′
i and then

transforming these new integration variables into spherical coordinates, one can use
the identity [140, (6.561.17)]

∫ ∞
0

Jν(ax)
xν−q

dx =
Γ
(

1
2q + 1

2

)
2ν−q aν−q+1 Γ

(
ν − 1

2q + 1
2

) , for − 1 < Re q < Re ν − 1
2 , (2.65)

which leads to

I(k′) =
∫
d3k′′

∫
d3r′ ¯̃ν02(k′′, r′)eik′·r′

= π2R̄′′3K̄ ′3

192

∫ π
2

0

dt

sin6 t

4 sin2 t−
∑
j

κ′2j
K ′2j

3

H
2 sin t−

√√√√∑
j

κ′2j
K ′2j

 . (2.66)

The last step of the Fock energy term calculation is to solve the k′-integral, and
therefore we again switch to another coordinate system by k′ = R′q, such that

EE
dd =− 1

2(2π)6

∫
d3k′I(k′)Ṽdd(k′) = − 1

2(2π)6

∫
d3qI(R′q)Ṽdd(R′q)

=CddR̄
′′3K̄ ′3

73728π4

∫
d3q

∫ π
2

0

dt

sin6 t

(
4 sin2 t− q2

x

K ′2x
−

q2
y

K ′2y
− q2

z

K ′2z

)3

× H
2 sin t−

√√√√ q2
x

K ′2x
+

q2
y

K ′2y
+ q2

z

K ′2z

[3(∑i,j RT
ziR′ijqj)2

q2 − 1
]
, (2.67)
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where we also use the Fourier transform of the DDI potential given by Equation (1.31).
Due to the symmetry, such that all terms linear in qj vanish, the above expression
becomes

EE
dd =− CddR̄

′′3K̄ ′3

73728π4

∫
d3q

∫ π
2

0

dt

sin6 t

(
4 sin2 t− q2

x

K ′2x
−

q2
y

K ′2y
− q2

z

K ′2z

)3

× H
2 sin t−

√√√√ q2
x

K ′2x
+

q2
y

K ′2y
+ q2

z

K ′2z

[3∑j(
∑
iRT

ziR′ij)q2
j

q2 − 1
]
. (2.68)

Using a substitution ui = qi/K
′
i and afterwards switching to spherical coordinates, we

get

EE
dd = −CddR̄

′′3K̄ ′3

73728π4

∫ 2π

0
dφ
∫ π

0
dϑ sinϑ

∫ π
2

0

dt

sin6 t

∫ 2 sin t

0
duu2

(
4 sin2 t− u2

)3

×

3
(∑

i

RT
ziR′ix

)2 sin2ϑ cos2 φ

cos2 φ sin2 ϑ+ (K ′y/K ′x)2 sin2 φ sin2 ϑ+ (K ′z/K ′x)2 cos2 ϑ

+3
(∑

i

RT
ziR′iy

)2 sin2ϑ sin2 φ

(K ′x/K ′y)2 cos2 φ sin2 ϑ+ sin2 φ sin2 ϑ+ (K ′z/K ′y)2 cos2 ϑ

+3
(∑

i

RT
ziR′iz

)2 cos2 ϑ

(K ′x/K ′z)2 cos2 φ sin2 ϑ+ (K ′y/K ′z)2 sin2 φ sin2 ϑ+ cos2 ϑ
− 1

 . (2.69)

The ϑ- and φ-integrals lead to the auxiliary functions, which are defined by Equa-
tions (B.6)-(B.8) in Appendix B, and the u- and t-integral can be solved straightfor-
ward. By having in mind Equation (2.17) for the conserved number of particles, the
expression for the Fock energy term finally reads

EE
dd =6N2c0

R̄′′3

(∑
i

RizR′ix

)2

f

(
K ′x
K ′y

,
K ′x
K ′y

)
+
(∑

i

RizR′iy

)2

f

(
K ′y
K ′x

,
K ′y
K ′z

)

+
(∑

i

RizR′iz

)2

f

(
K ′z
K ′x

,
K ′z
K ′y

) = 6N2c0

R̄′′3
FA

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
, (2.70)

where c0 is constant given by Equation (2.54), and FA(x, y, θ, ϕ, θ′, ϕ′) generalized
anisotropy function given by Equation (B.15).

In both Hartree and Fock energy terms the features of the DDI are embodied into
the generalized anisotropy function FA(x, y, θ, ϕ, θ′′, ϕ′′) that includes explicitly the
angular dependence of the DDI.
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2.2.5 Total energy for all scenarios

The total energy of the many-body dipolar Fermi system has the following form

Etot = Ekin + Etrap + ED
dd + EE

dd , (2.71)

which, together with Equations (2.30), (2.35), (2.53), and (2.70), gives the total energy
of the system in the most general off-off-axis scenario we consider,

E
(4)
tot =N8

∑
i

~2K ′2i
2M +

∑
i,j

Mω2
iR′′2ij R′′2j

2

− 6N2c0

R′′xR
′′
yR
′′
z

×
[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− FA

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)]

. (2.72)

Now, knowing the total energy for the most general ansatz, we are able to reconstruct
expressions for the total energy of the system for any of the earlier mentioned scenarios.

In the case of the off-on-axis scenario 3, we allow for both the FS deformation
and its rotation, as depicted in Figure 2.1(c), while the axes of the gas cloud ellipsoid
remain parallel to the trap axes, as illustrated in Figure 2.1(e). In this case, the total
energy of the system reads as

E
(3)
tot =N8

∑
j

(
~2K ′2j
2M +

Mω2
jR

2
j

2

)
− 6N2c0

R′′xR
′′
yR
′′
z

×
[
fA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ

)
− FA

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′′, ϕ′′
)]

. (2.73)

Here fA (x, y, θ, ϕ) = FA (x, y, θ, ϕ, 0◦, 0◦) which can be expressed as

fA (x, y, θ, ϕ) = R2
xzf

(
y

x
,

1
x

)
+ R2

yzf

(
x

y
,

1
y

)
+ R2

zzf (x, y) , (2.74)

where f(x, y) stands for the well-known anisotropy function derived, at first, for dipolar
bosons[141]. Note that f(x, y) = fA(x, y, 0◦, 0◦) = FA(x, y, 0◦, 0◦, 0◦, 0◦). This func-
tion is encountered also in previous studies of fermionic dipolar systems [92] in the
hydrodynamic collisional regime, as well as in the transition from the collisionless to
the hydrodynamic regime in both the TOF expansion dynamics [125] and in collective
excitations [126]. More details on the anisotropy function f and its generalizations fA
and FA are given in Appendix B.

In the on-on-axis scenario 2, the FS is deformed to an ellipsoid whose axes are
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taken to be parallel to the trap axes, as depicted in Figure 2.1(b). This ansatz leads
to the total energy of the system given by

E
(2)
tot =N8

∑
j

(
~2K2

j

2M +
Mω2

jR
2
j

2

)
− 6N2c0

RxRyRz

×
[
fA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)
− fA

(
Kz

Kx

,
Kz

Ky

, θ, ϕ

)]
. (2.75)

Note that the energy (2.73) of the scenario 3 reduces, indeed, to expression (2.75) for
the special case θ′ = ϕ′ = 0.

In the spherical scenario, the total energy of the system can be calculated by setting
Ki = KF in the ansatz (2.7), where the Fock exchange energy term turns out to give
no contribution, yielding

E
(1)
tot = N

8

3~2K2
F

2M +
∑
j

Mω2
jR

2
j

2

− 6N2c0

R̄3
fA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)
. (2.76)

Note that the energy (2.75) of the sceanrio 2 reduces, indeed, to energy (2.76) of the
sperical scenario for the special case Kx = Ky = Kz = KF, since fA(1, 1, θ, ϕ) = 0, as
a consequence of f(1, 1) = 0.

2.3 Minimization of the total energy

Having obtained the total energy for all four scenarios, we now determine which con-
figuration minimizes best the system’s total energy for a fixed particle number and,
hence, can be considered as the most physically suitable ansatz for the ground state
of the system of dipolar fermions. Afterwards, we use it in Chapter 3 to numerically
calculate the FS and the gas cloud deformation due to the DDI.

We proceed by considering expressions (2.76), (2.75), (2.73), and (2.72), and by
minimizing the energy of the system for each scenario under the constraint that the
particle number N is fixed to a given value. Therefore, the corresponding equations
are obtained by extremizing the grand-canonical potential Ω(k) = E

(k)
tot − µN (k) for

k = 1, 2, 3, 4 with respect to the variational parameters, where µ is the chemical
potential of the system, and the particle number N (k) in the last term is replaced
by one of the corresponding expressions (2.10),(2.12),(2.15) or (2.17) when Ω(k) is
evaluated. In this way, the chemical potential acts as a Lagrange multiplier and fixes
the particle number through the condition N (k) = −∂Ω(k)/∂µ. Therefore, µ represents
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an additional variational parameter in this approach.
In the spherical scenario, there are five variational parameters, (KF , Ri, µ), where

i = x, y, z. The corresponding five equations are obtained by setting the first deriva-
tives of Ω(1) with respect to KF and Ri to zero, plus the particle-number fixing equa-
tion, i.e., N (1) = −∂Ω(1)/∂µ. The sets of equations for other scenarios are obtained
similarly as in the previous case, just the number of equations differ. Namely, in the
on-on-axis scenario we have seven variational parameters, (Ki, Ri, µ), in the off-on-
axis scenario nine (K ′i, Ri, θ′,ϕ′, µ), while in the off-off-axis scenario there are eleven
parameters, (K ′i, R′′i , θ′,ϕ′, θ′′,ϕ′′, µ). The complete sets of equations for the respective
variational parameters for all cases are given in Appendix C, while in the following
section we give the detailed derivation of these equations for the most general ansatz
considered in the off-off-axis scenario.

2.3.1 Variational parameters in momentum space

A minimization of the grand-canonical potential Ω(4) = E
(4)
tot − µN (4) with respect to

the Fermi momenta K ′i leads to following three equations,

N~2K ′x
8M − 6N2c0

R̄′′3
K ′z
K ′2x

FA,1

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
− µ

48R̄
′′3K ′yK

′
z = 0 , (2.77)

N~2K ′y
8M − 6N2c0

R̄′′3
K ′z
K ′2y

FA,2

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
− µ

48R̄
′′3K ′xK

′
z = 0 , (2.78)

N~2K ′z
8M + 6N2c0

R̄′′3
1
K ′x

FA,1

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
−. µ48R̄

′′3K ′xK
′
z= 0 ,

+6N2c0

R̄′′3
1
K ′y

FA,2

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
− µ

48R̄
′′3K ′xK

′
z = 0 , (2.79)

while additional two equations are obtained by minimizing Ω(4) with respect to the
momentum space angles θ′ and ϕ′, which yields to

FA,5

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)

= 0 , (2.80)

FA,6

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)

= 0 , (2.81)

where abbreviations FA,a denote the derivatives of FA with respect to its a-th argument,
where 1 ≤ a ≤ 6. Equations (2.77)–(2.79) depend explicitly on the Lagrange multiplier
µ. In order to determine it, we sum up those three equations, so that all terms
containing the anisotropy function cancel each other, which leads to the following
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expression for chemical potential,

µ = 1
12
∑
j

~2K ′j
2

2M . (2.82)

Inserting this into Equations (2.77)–(2.79) leads to the following equations for the
parameters K ′j in the global equilibrium, which do not include µ,

~2K ′2x
2M = 1

3
∑
j

~2K ′j
2

2M + 24N2c0

R̄′′3
K ′z
K ′x

FA,1

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
, (2.83)

~2K ′2y
2M = 1

3
∑
j

~2K ′j
2

2M + 24N2c0

R̄′′3
K ′z
K ′y

FA,2

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
, (2.84)

~2K ′2z
2M = 1

3
∑
j

~2K ′j
2

2M − 24N2c0

R̄′′3
K ′z
K ′x

FA,1

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
,

−24N2c0

R̄′′3
K ′z
K ′y

FA,2

(
K ′z
K ′x

,
K ′z
K ′y

, θ, ϕ, θ′, ϕ′
)
. (2.85)

Equations (2.80) and (2.81) can be solved analytically, independently of other
equations, yielding the physically expected result,

θ′ = θ and ϕ′ = ϕ . (2.86)

This means that the FS stretches along the dipoles’ orientation, as it was observed
experimentally and verified theoretically for the atomic erbium gas [49]. Here we
obtain this result self-consistently within our approach [50], which demonstrates that
ansatz (2.7) properly captures the ground-state properties of dipolar Fermi gases.

Note that Equations (2.83)-(2.85) are linearly dependent, but clearly show the
influence of the DDI on the momentum distribution in phase space. By considering
the symmetries of the total energy (2.72), one can obtain a simple relation between
the variational parameters K ′x and K ′y. As a consequence of Equation (2.86), the
generalized anisotropy function satisfies FA(x, y, θ, ϕ, θ, ϕ) = f(x, y), and due to the
symmetry of the anisotropy function f(x, y) = f(y, x), the total energy possesses the
same symmetry between the qx and qy direction in momentum space in the system
S ′. This implies that the momentum distribution of a dipolar Fermi gas in global
equilibrium remains cylindrically symmetric even in the case of a triaxial trap and an
arbitrary orientation of the dipoles,

K ′x = K ′y . (2.87)
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This represent the generalization of the same conclusion obtained for the case when
the dipoles are oriented along one of the trap axes [91, 92, 126]. Furthermore, Equa-
tion (2.87) enables us not only to estimate K ′y, but also simplify the equation for K ′z
by taking into account that

lim
y→x

x f1(x, y) = lim
y→x

y f2(x, y) = −1 + (2 + x2)fs(x)
2(1− x2) , (2.88)

where fs(x) = f(x, x) denotes the cylindrically-symmetric anisotropy function, given
by Equation (B.3). Subtracting Equation (2.83) from (2.85) and using the iden-
tity (2.88) we obtain

~2K ′2z
2m − ~2K ′2x

2m = 36N2c0

R̄′′3

1 +
(2K ′2x +K ′2z ) fs

(
K′
z

K′
x

)
2 (K ′2z −K ′2x )

 . (2.89)

This equation directly gives the stretching of the FS due to the DDI.

2.3.2 Variational parameters in real space

The derivation of the equations which determine the real-space variational parameters
that minimize the total energy is analogous to the calculation of the momentum-space
parameters. Namely, minimization of Ω(4) = E

(4)
tot −µN (4) with respect to the TF radii

R′′i leads to

N

8 M
∑
j

ω2
jR′′2jxR′′x + 6N2c0

R̄′′3
1
R′′x

[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− fs

(
K ′z
K ′x

)]

− 6N2c0

R̄′′3
1
R′′z

FA,1

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− µ

48R
′′
yR
′′
zK̄
′3 = 0 , (2.90)

N

8 M
∑
j

ω2
jR′′2jyR′′y + 6N2c0

R̄′′3
1
R′′y

[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− fs

(
K ′z
K ′x

)]

− 6N2c0

R̄′′3
1
R′′z

FA,2

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− µ

48R
′′
xR
′′
zK̄
′3 = 0 , (2.91)

N

8 M
∑
j

ω2
jR′′2jzR′′z + 6N2c0

R̄′′3
1
R′′z

[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− fs

(
K ′z
K ′x

)]

+ 6N2c0

R̄′′3
R′′x
R′′2z

FA,1

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)

+ 6N2c0

R̄′′3
R′′x
R′′2z

FA,2

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− µ

48R
′′
xR
′′
zK̄
′3 = 0 . (2.92)
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As before, the additional two equations are obtained by minimizing Ω(4) with respect
to the real-space angles θ′′ and ϕ′′, which yields

N

8 M
[
(ω2

x − ω2
z) cos2 ϕ′′ + (ω2

y − ω2
z) sin2 ϕ′′

]
(R′′2z −R′′2x ) sin θ′′ cos θ′′

−6Nc0

R̄′′3
FA,5

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)

= 0 , (2.93)

N

8 M(ω2
y − ω2

x)
[
(R′′2x −R′′2y ) cos2 θ′′ + (R′′2z −R′′2y ) sin2 θ′′

]
sinϕ′′ cosϕ′′

−6Nc0

R̄′′3
FA,6

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)

= 0 . (2.94)

If we sum up Equations (2.90)–(2.92) in order to determine the Lagrange multiplier
µ, we get

µ = 1
12
∑
i,j

M

2 ω2
jR′′2jiR′′2i + 6Nc0

R̄′′3

[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− fs

(
K ′z
K ′x

)]
. (2.95)

This formally differs from Equation (2.82) but represents a mathematically equivalent
expression for µ [118]. Inserting Equation (2.82) into Equations (2.90)–(2.92) yields

∑
j

ω2
jR′′2jxR′′x + 48N2c0

MR̄′′3
1
R′′x

[
FA

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− fs

(
K ′z
K ′x

)]

− 48N2c0

MR̄′′3
1
R′′z

FA,1

(
R′′x
R′′z

,
R′′y
R′′z

, θ, ϕ, θ′′, ϕ′′
)
− 1

3
∑
j

~2K ′j
2

M2 = 0 , (2.96)

∑
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ω2
jR′′2jyR′′y + 48N2c0
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∑
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M2 = 0 , (2.98)

Note that in the case of a spherically symmetric trap, Equations (2.93) and (2.94) can
be solved analytically, independently of other equations, yielding θ′′ = θ and ϕ′′ = ϕ.
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2.3.3 Comparing all scenarios

In order to compare the four ansätze, we solve the corresponding sets of equations
and calculate the total energy of the system in each case. As a model system, we first
consider the case of a dipolar Fermi gas of atomic 167Er using typical values from the
Innsbruck experiments (see below and also Reference [48]), N = 6.6× 104 atoms, (ωx,
ωy, ωz) = (579, 91, 611) ×2π Hz. The underlying geometry of the experimental setup
is depicted in Figure 2.2.

In Figure 2.3 we compare the total energy of the system as a function of angles θ
and ϕ for all four different scenarios. The comparison is done in terms of the relative
energy shift

δE = Etot

E0
− 1 , (2.99)

where E0 = 3
4NEF stands for the total energy of the ideal Fermi gas confined into

a harmonic trap (1.16), and EF denotes its Fermi energy given by Equation (1.20).
Figure 2.3(a) presents the relative energy shifts as functions of the angle θ for a fixed
value of the angle ϕ = 14◦, corresponding to the typical experimental configuration
(see Section 5.3). The three curves, from top to bottom, correspond to δE(1), δE(2),
and δE(3), respectively. As a cross-check, we note that the total energies E(2)

tot and E(3)
tot

coincide for θ = 0◦. This is expected, since the on-on-axis scenario is a special case

Figure 2.2: Schematic illustration of the most general arbitrary geometry of a dipolar
Fermi gas, which corresponds to the one used in the Innsbruck experiment with erbium
atoms, see later and also Reference [48]. Axes rx, ry, rz indicate the harmonic trap axes.
The external magnetic field B defines the orientation of the atomic dipoles, which is
given by the spherical coordinates θ and ϕ. Earth’s gravitational field is parallel to
the z axis. The imaging axis, denoted by r′y, lies in the rxry plane, and forms an angle
α with the ry axis.
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Chapter 2 Ground state energy

Figure 2.3: Relative energy shift δE given by Equation (2.99) for Er atoms for
experimental parameters of Reference [48] as a function of: (a) angle θ, for fixed
ϕ = 14◦; (b) angle ϕ for fixed θ = 10◦. The three curves correspond to δE(1) (green
line, spherical scenario), δE(2) (blue line, on-on-axis scenario), and δE(3) (red line,
off-on-axis scenario).

of the off-on-axis one for θ = 0◦. From this Figure we immediately see that there are
no intersections between the curves, and that it always holds E(1)

tot ≥ E
(2)
tot ≥ E

(3)
tot . As

a consequence, we conclude that the off-on-axis scenario, in which the FS is deformed
into an ellipsoid that follows the orientation of the dipoles, is favoured among the
considered cases as it has the minimal energy. The same conclusion is obtained if we
consider the ϕ-dependence of the relative total energy shifts, depicted in Figure 2.3(b)
for a fixed value of the angle θ = 10◦.

Comparing Figures 2.3(a) and 2.3(b) we see that the relative energy shift always
remains small, of the order of 0.4 − 0.7%, due to a relatively weak DDI between the
erbium atoms compared to the energy scale set by the Fermi energy. We also see
that the θ-dependence of the total energy is much stronger than the corresponding
ϕ-dependence. Furthermore, numerical calculations show that for these parameters
E

(4)
tot ≈ E

(3)
tot , and there is no significant difference between the off-on-axis and off-off-

axis scenarios. Actually, it turns out that off-on-axis scenario is certainly justified for
elongated traps and a weak-enough DDI, for which the cloud shape in the ground state
is well determined by the trap. More exhaustive numerical calculations show that this
remains to be true even for arbitrary values of the angles θ and ϕ, trap frequencies,
as well as number of fermions.

In order to emphasize the difference between the off-on-axis and off-off-axis scenar-
ios, we now consider molecular 40K87Rb gas with N = 7×104 fermions with the electric
dipoles of d = 0.25 D in the spherically symmetric trap with ωi = 500× 2πHz. In this
case the relative energy shifts as functions of the angle θ for a fixed value of the angle
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Figure 2.4: Relative total energy shift δE given by Equation (2.99) for N = 7× 104

KRb molecules with electric dipoles of d = 0.25 D trapped in spherical trap with
ωi = 500× 2π Hz as a function of: (a) angle θ, for fixed ϕ = 0◦; (b) angle ϕ for fixed
θ = 30◦. The two curves, correspond to δE(3) (red line, off-on-axis scenario), and δE(4)

(black line, off-off-axis scenario).

ϕ = 14◦ are shown in Figure 2.4(a). The two curves, from top to bottom, correspond
to δE(3), and δE(4), respectively. As a cross-check, we note that the total energies
E

(3)
tot and E(4)

tot coincide for θ = 0◦, which is expected, since the off-on-axis scenario is a
special case of the off-off-axis one for θ = 0◦. From this Figure we again see that there
are no intersections between the curves, and that it always holds E(3)

tot ≥ E
(4)
tot . As a

consequence, we conclude that the off-off-axis scenario, in which the FS, as well as,
the gas cloud are deformed into an ellipsoid that follows the orientation of the dipoles,
is favored among the considered cases as it has the minimal total energy. The same
conclusion is obtained if we consider the ϕ-dependence of the relative total energy
shift, depicted in Figure 2.4(b) for a fixed value of the angle θ = 30◦.

The above conclusion is valid not only for the parameters used in Figure 2.4, but,
in fact, we have numerically verified that the off-off-axis scenario for the ansatz (2.7)
for the Wigner function in global equilibrium always yields a minimal energy given
by expression (2.72) for arbitrary angles θ and ϕ, trap frequencies, as well as number
of fermions. Thus, we will use it throughout this Thesis as a realistic model for the
description of a dipolar Fermi gas at zero temperature.
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Ground state properties

Degenerate Fermi gases in the normal phase are well described by the Fermi liquid
theory, which was formulated by Landau in 1950s. Due to the Pauli exclusion principle,
the ground state of N fermions consists of N lowest fully occupied momentum states,
which is termed the Fermi sea. In the Fermi liquid picture, excitations can be matched
to quasiparticles populating any states in the Fermi sea with the same spin, charge
and momentum as the original particles, but with the mass and interaction that are
dressed by the interaction with the whole gas. Weak excitations then correspond to
quasiparticle states close to the Fermi surface, a surface in k-space that separates
occupied states in the Fermi sea from non-occupied ones. For isotropically interacting
fermions, which is the commonly encountered case, the Fermi surface is a sphere,
while it can get modified in the case of more complex interactions. For instance,
for dipolar Fermi gases it was predicted that the DDI leads in equilibrium to an
anisotropic deformation of the Fermi surface from a sphere to an ellipsoid [90]. A recent
time-of-flight expansion experiment has unambiguously detected such an ellipsoidal FS
deformation in a fermionic erbium gas, which turns out to be of the order of a few
percent [48]. It was shown that the FS deformation arises purely due to the dipolar
interactions and the quantum statistics of the particles.

In the previous Chapter we hvae presented the generalized Hartree-Fock mean-
field theory, while here we present our main results for the system’s stability, the FS
deformation, as well as for the gas cloud deformation. We discuss the DDI dependence
of the variational parameters and their impact on the Hartree-Fock total energy for
the considered system. We also study in detail the ground-state properties for an
arbitrary orientation of the dipoles, as well as for different parameters of the system,
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e.g., trap frequencies, number of particles, and dipolar species.
The stability of normal and quantum degenerate dipolar Fermi gases was previously

considered in cylindrically symmetric harmonic traps [91–94, 118, 119], as well as in
homogeneous systems [139]. Here, we study the ground state stability of ultracold
dipolar Fermi gases in triaxial harmonic traps and reveal a universal behavior of the
critical DDI strength using a variational phase-space approach based on the Wigner
function [49, 50, 125, 126]. In particular, we investigate the stability of a polarized
40K87Rb gas in an experimentally realistic parameter regime and calculate critical
values of the electric dipole moment and the corresponding deformation of the FS.
Furthermore, we obtain stability diagrams for an arbitrary orientation of the dipoles
and for an angular dependence of the FS deformation. We consider the system to be at
zero temperature, which is justified if we consider that T/TF ≈ 0.3 in the experiments
[109], and that the thermal corrections to the total energy are proportional to (T/TF )2

[142].
The approach presented here is very general and can be applied to both fermionic

atoms and molecules with electric [98, 99, 143, 144] or magnetic [89] dipole moments
arbitrary oriented, and any triaxial trap geometry. Our calculation provides a starting
point to address more complex dipolar phenomena. Indeed, many physical properties
depend on the shape of the FS and on its deformation, as the FS is directly connected
to the density distribution in momentum space. For instance, our theory can serve
as a solid basis for understanding and interpreting phenomena in future experiments
with dipolar fermionic gases, where the investigated physics depends on the underlying
structure of the FS, such as transport properties or fermionic pairing and superfluidity.
Namely, the possibility of Cooper pairing in a polarized one-component Fermi gas of
dipolar particles was already predicted a few years ago [41], but initial studies have
neglected the deformation of the FS [42–45]. The first work to combine these initial
theoretical approaches towards achieving dipolar fermionic superfluidity with ellip-
soidal deformation of the FS in a form of the self-consistent Hartree-Fock-Bogoliubov
theory of dipolar uniform Fermi gases is Reference [46]. The comprehensive mean-
field approach presented in this Referencecan be extended to the superfluid pairing in
a harmonic confinement with the most general trap and the dipoles’ geometry. Such
investigation would adress important questions on how the anisotropic order param-
eter of the emergent superfluidity and its critical temperature can be tuned by both
the trap geometry and the dipoles’ orientation.

Since the large DDI increases the critical temperatrue [43, 46], all our results pre-
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sented here are relevant for the realization of the dipolar fermionic superfluidity.

3.1 Dimensionless form of static equations

As it was shown in Section 2.3.1 and summarized in Appendix C, if we eliminate the
angles θ′, ϕ′ and set θ′ = θ, ϕ′ = ϕ in all equations, the system is described by the
9 variational parameters (R′′i , K ′i, θ′′, ϕ′′, µ), which are obtained by solving the set of
Equations (C.32)–(C.31). Our aim is to understand effects of the DDI on the system,
so it is natural to express the TF radii R′′i and momenta K ′i in units of noninteracting
quantities, R0

i and K0
F, illustrated in Figures 2.1(a) and 2.1(d), and given by Equations

(1.21) and (1.22), respectively. In this way all equations are transformed into a dimen-
sionless form, where the dimensionless radii and momenta are defined by R̃′′i = R′′i /R

0
i

and K̃ ′i = K ′i/K
0
F, and the set of Equations (C.32)–(C.31) can be written as

1− R̃′′x R̃′′y R̃′′zK̃ ′xK̃ ′yK̃ ′z = 0 , (3.1)

K̃ ′x − K̃ ′y = 0 , (3.2)

2K̃ ′2x − K̃ ′2y − K̃ ′2z + 3εddcd

R̃′′x R̃
′′
y R̃
′′
z

K̃ ′z
K̃ ′z

∂K̃′
x
f

(
K̃ ′z
K̃ ′x

,
K̃ ′z
K̃y

)
= 0 , (3.3)

∑
i

ω2
i

ω2
x

R′′2ix R̃′′2x −
1
3
∑
i

K̃ ′2i + εddcd

R̃′′x R̃
′′
y R̃
′′
z

FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)

+ εddcd

R̃′′x R̃
′′
y R̃
′′
z

[
−f

(
K̃ ′z
K̃ ′x

,
K̃ ′z
K̃ ′y

)
− R̃′′x∂R̃′′

x
FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)]
= 0 , (3.4)

∑
i

ω2
i

ω2
y

R′′2iy R̃′′2y −
1
3
∑
i

K̃ ′2i + εddcd

R̃′′x R̃
′′
y R̃
′′
z

FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)

+ εddcd

R̃′′x R̃
′′
y R̃
′′
z

[
−f

(
K̃ ′z
K̃ ′x

,
K̃ ′z
K̃ ′y

)
− R̃′′y∂R̃′′

y
FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)]
= 0 , (3.5)

∑
i

ω2
i

ω2
z

R′′2iz R̃′′2z −
1
3
∑
i

K̃ ′2i + εddcd

R̃′′x R̃
′′
y R̃
′′
z

FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)

+ εddcd

R̃′′x R̃
′′
y R̃
′′
z

[
−f

(
K̃ ′z
K̃ ′x

,
K̃ ′z
K̃ ′y

)
− R̃′′z∂R̃′′

z
FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)]
= 0 , (3.6)

∑
i,j

ω2
i

ω2
j

R′′ij∂θ′′R′′ijR̃′′2j −
εddcd

R̃′′x R̃
′′
y R̃
′′
z

∂θ′′FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)
= 0, (3.7)

∑
i,j

ω2
i

ω2
j

R′′ij∂ϕ′′R′′ijR̃′′2j −
εddcd

R̃′′x R̃
′′
y R̃
′′
z

∂ϕ′′FA

(
R̃′′x ωz

R̃′′z ωx
,
R̃′′y ωz

R̃′′z ωy
, θ, ϕ, θ′′, ϕ′′

)
= 0 , (3.8)

48



Chapter 3 Ground state properties

where cd = 2
38
3

3
23
6 ·5·7·π2

is a number and

εdd = d2

4πε0

√
M3

~5 (ωxωyωzN)1/6 , (3.9)

represents the dimensionless relative DDI strength, which gives a rough estimate of the
ratio between the mean dipolar interaction energy and the Fermi energy [11, 122]. We
use this quantity to characterize the strength of the DDI when comparing its effects
for different species.

The set of Equations (3.1)–(3.8) represents a remarkable result and reveals a univer-
sality governing the ground-state properties of dipolar Fermi gases. The universality is
reflected in the species-independent form of those equations: for a given orientation of
the dipoles, they only depend on three parameters, namely the two trap aspect ratios
ωz/ωx and ωz/ωy, and the relative DDI strength εdd. Furthermore, this allows us to
determine the universal stability diagram of the system, which is, for instance, crucial
for the design of new experiments with polar molecules, in particular in the strong
dipolar regime.

Before we analyze in detail the effects on the DDI on ground state properties, such
as stability of the system, and the FS and the gas cloud deformation, we present one
illustrative example. Namely, Figure 3.1 depicts the aspect ratios of corresponding TF
radii and momenta of stable solutions in global equilibrium for the dipolar Fermi gases
given in Table 3.1. These results are obtained for the dipoles oriented in the direction
of the z axis, i.e., for angles θ = ϕ = 0◦, see Figure 1.3(b). For the limiting case of a
noninteracting Fermi gas we know that the aspect ratios in real space become Rx/Rz →
R0
x/R

0
z = ωz/ωx and Ry/Rz → R0

y/R
0
z = ωz/ωy, while in momentum space the Fermi

surface becomes the Fermi sphere and therefore we have Kx/Kz → K0
F/K

0
F = 1.

Table 3.1: Dipole moments (m for species with a magnetic dipole and d for
species with an electric dipole) and the corresponding relative interaction strengths
of fermionic atoms and molecules to be used throughout the Thesis, calculated using
the parameters of the Innsbruck experiments [48], N = 6.6 × 104, (ωx, ωy, ωz) =
(579, 91, 611)× 2π Hz.

gas 53Cr [85] 167Er [84] 161Dy [83] 40K87Rb [98] 167Er168Er [89]

m/d 6µB 7µB 10µB 0.2 D 14µB

εdd 0.02 0.15 0.30 0.97 1.76
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Figure 3.1: Aspect ratios in real and momentum space as functions of relative dipo-
lar interaction strength εdd for Fermi gases in global equilibrium for considered trap
geometry with dipoles parallel to z axis: (a) Rx/Rz, (b) Ry/Rz, and (c) Kx/Kz. Black
up-pointing triangles represent aspect ratios for the limiting case of a noninteracting
Fermi gas: in real space Rx/Rz = ωz/ωx and Ry/Rz = ωz/ωy, while in momentum
space Kx/Kz = 1 (Fermi sphere). Other symbols represent aspect ratios for dipolar
atoms and molecules from Table 3.1: 53Cr (gray down-pointing triangles), 167Er (red
circles), 161Dy (blue diamonds), 40K87Rb (purple squares), 167Er168Er (green stars).
Red vertical line corresponds to a critical value of the relative dipolar interaction
strength εcrit

dd ≈ 2.52 for considered trap geometry; for εdd > εcrit
dd no stable stationary

solution exists for a system of Equations (3.1)–(3.8). (d) Critical value of relative
dipolar interaction strength εcrit

dd (red solid line) as function of trap frequency ωx for
fixed values (ωy, ωz) = (91, 611)× 2πHz and particle number N = 7× 104. Blue cross
corresponds to experimental value of frequency ωx = 579× 2πHz from the Innsbruck
experiment [48], for which εcrit

dd ≈ 2.52. Black dashed lines depict relative dipolar in-
teraction strength εdd for dipolar molecular species 23Na40K and 40K87Rb according
to Equation (3.9), for the same parameters and for maximal values of their electric
dipole moments given in Table 1.1.

Red vertical lines in Figures 3.1(a)-(c) represent a critical value of the relative
interaction strength εcrit

dd ≈ 2.52 for the considered trap geometry. Namely, for εdd >

εcrit
dd stable stationary solutions for Equations (3.1)–(3.8) do not exist [92, 119] for the

considered system parameters from the Innsbruck experiment [48]. Note that the value
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of εcrit
dd does not depend on the mass of the species and is universal for a given trap

geometry and a number of fermions, as stressed above.
It turns out that electric dipolar molecules 23Na40K and 40K87Rb with the largest

values of the relative DDI strength εdd are unstable for the considered system param-
eters if their maximal possible values of the permanent electric dipole moment (see
Table 1.1) are used, since in both cases εdd > εcrit

dd . However, by using an external
electric field, their dipole moments can be tuned to smaller values, and therefore we
will consider the case of 40K87Rb with the value of electric dipole moment tuned down
to d = 0.2 D [86], for which one obtains εdd = 0.97 < εcrit

dd . Table 3.1 gives the corre-
sponding parameters of the five atomic and molecular dipolar species we consider in
the rest of this Thesis.

In Figure 3.1 the aspect ratios in real and momentum space for the noninteracting
case are shown as black up-pointing triangles, together with the corresponding aspect
ratios for interacting Fermi gases listed in Table 3.1. For atomic gases of 53Cr, 167Er,
and 161Dy the DDI is not that strong, and their aspect ratios in momentum space
deviate less than 5% from unity, see Figure 3.1(c). Actually, for 53Cr (gray down-
pointing triangles) the aspect ratio in momentum space is just 1% smaller than 1,
which would be quite challenging to observe in an experiment. Nevertheless, for 167Er
(red circles) the aspect ratio in momentum space turns out to be about 3% less than
1 and has already been experimentally observed in Reference [48], which means that
the 5% deformation for 161Dy (blue diamonds) should clearly be observable. For the
considered parameters for 40K87Rb (purple squares) with εdd = 0.97 we obtain even
larger value of the FS deformation of about 15%. Furthermore, a molecule of 168Er167Er
(green stars) with εdd = 1.76 would yield the the aspect ratio in momentum space of
nearly 25% smaller than 1.

Note that the critical value εcrit
dd strongly depends on the trap geometry, as can be

seen in Figure 3.1(d), where we show its dependence on the frequency ωx for fixed
values of the trap frequencies (ωy, ωz) = (91, 611) × 2πHz, motivated by the Inns-
bruck experiment [48]. For the corresponding experimental value ωx = 579 × 2πHz
we obtain εcrit

dd ≈ 2.52 (blue cross), the same value that can be also deduced from
Figure 3.1(a)-(c). In Figure 3.1(d) we also show relative DDI strength εdd for molecu-
lar species 23Na40K and 40K87Rb for maximal values of their electric dipole moments
from Table 1.1. Note that the relative interaction strengths also depend on the trap
geometry according to Equation (3.9). As already pointed out, for the cigar-shaped
trap geometry of the Innsbruck experiment [48] both molecular species turn out to be
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unstable. However, for the pancake-shaped trap with the sufficiently small value of the
frequency ωx, i.e., ωx < 210 × 2πHz for 23Na40K and ωx < 155 × 2πHz for 40K87Rb,
both species can be made stable even if their maximal electric dipole moments are
used.

3.2 Stability of the system

The energy of the system given by Equation (2.72) is not bounded from below, due
to the fact that the DDI is partially attractive, meaning that the system cannot have
a global minimum for any εdd > 0. However, for interactions weak enough, a local
minimum might exist to which the system would return after a small perturbation.
The regions of system parameters satisfying this property are called stable and the
mathematical criterion used for this classification is given by positive eigenvalues of the
Hessian matrix of the energy functional [92]. Such analysis allows us to determine the
stability diagram of the system, shown in Figure 3.2(a) for the case when the dipoles
are parallel to z axis (θ = ϕ = 0◦), in terms of the maximal DDI strength εcrit

dd for which
the ground state exists. We see that large aspect ratios significantly increase the critical
DDI strength, for more than one order of magnitude, and thus stabilize the system
in a much broader parameter range. This reflects the fact that a pancake-shaped gas
cloud (ωx, ωy � ωz) tends to allow for a larger εdd because it favors the repelling part
of the interaction, in contrast to a cigar-shaped gas cloud (ωx, ωy � ωz), when the
attractive part of the interaction is dominant. We also note that εcrit

dd turns out to be
a symmetric function of its arguments ωz/ωx and ωz/ωy, which is a consequence of
symmetry of anisotropy function FA(x, y, 0, 0, 0, 0) = f(x, y) = f(y, x).

If we consider the experimentally available species 40K87Rb, the stability diagram
from Figure 3.2(a) can be used to obtain a species-specific stability diagram for a
particular value of one of the trap frequencies, as shown in Figures 3.2(b)-(d). Here
we see how the critical value of the dipole moment dcrit depends on ωx and ωy for a
fixed value of ωz. Taking into account that the permanent electric dipole moment of
40K87Rb has the value d = 0.57 D, denoted by black lines in Figures 3.2(b)-(d), we
see that, for the trap frequencies which lie in the region below black lines, the system
will be stable even for maximal values of electric dipole moments, while otherwise the
system can be stabilized only by tuning the values of the electric dipoles below the
calculated dcrit. For instance, we read off from Figure 3.2(b) that for ωz = 50× 2π Hz
the instability can kick in already for frequencies ωx, ωy of that order or larger. In the
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Figure 3.2: (a) A universal stability diagram for harmonically trapped ultracold
dipolar Fermi gases at quantum degeneracy: critical value of the relative dipole-dipole
interaction strength εcrit

dd as a function of the trap aspect ratios ωz/ωx and ωz/ωy, for
the dipoles parallel to z axis. The system has a stable ground state for εdd ≤ εcrit

dd .
(b), (c), (d) Critical value of the electric dipole moment dcrit, below which a stable
ground state of N = 3 × 104 ultracold molecules of 40K87Rb exists, as a function of
the trap frequencies ωx and ωy, for: (b) ωz = ×50 × 2π Hz; (c) ωz = 200 × 2π Hz;
(d) ωz = 500 × 2π Hz. The dipoles are oriented along z axis. The permanent dipole
moment of 40K87Rb molecules has a value of d = 0.57 D, and can be fine-tuned by
applying an external electric field. White dots on panels (a) and (c) correspond to the
system parameters from the JILA experiment [109].

experiment of Reference [109] the frequencies used are (ωx, ωy, ωz) = (63, 36, 200)×
2π Hz, and Figure 3.2(c) reveals that the system may easily become unstable for
slightly larger frequencies if the dipoles would be polarized along z axis. In contrast
to Figure 3.2(a), we now fix the frequencies to the values of the JILA experiment [109]
and vary the direction of the dipoles. The angulary-dependent stability diagram is
shown in Figure 3.3(a), from which we can see that the critical DDI strength strongly
depends on dipoles’ orientation, defined by the polar angles θ and ϕ. Furthermore,
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in Figure 3.3(b) we show the corresponding stability diagram for the critical value of
the dipole moment dcrit for 40K87Rb, where black lines again correspond to the value
of the permanent electric dipole moment. The angular dependence of dcrit suggests
that the system’s stability can be easily fine-tuned by changing the orientation of
the dipoles, i.e., by rotating the external electric field. We note here that, due to
the symmetry of the FS and gas cloud ellipsoids, to obtain angular dependence it
is enough to investigate only the range θ ∈ [0, 90◦] and ϕ ∈ [0, 90◦]. However, for
completeness we will always present results for angular dependencies in a full interval
range θ ∈ [0, 180◦] and ϕ ∈ [0, 360◦].

The orientation of the dipoles with respect to the harmonic trap affects not only the
shape of the molecular cloud in real space, but also its orientation, as it is considered
in the off-off-axis scenario. In order to illustrate this effect, in Figures 3.3(c) and 3.3(d)
we present the results analog to the ones shown in Figures 3.3(a) and 3.3(b), but for the
off-on-axis scenario, where we assume that the axes of the molecular cloud coincide
with the axes of the trap (θ′ = ϕ′ = 0). These angular distributions are markedly
different for both εcrit

dd and dcrit, although the extreme, minimal and maximal, values
are the same. As a consequence, the stability region is actually reduced when the
off-off-axis scenario is applied, instead of the simplified off-on-axis scenario, which can
be easily seen by comparing the areas between black lines in Figures 3.3(b) and 3.3(d).
This is of particular importance for experiments with strong dipolar fermions, where
the off-off-axis scenario is the only one that corresponds to the actual physics of the
system.

3.3 Fermi surface deformation

Since we have shown analytically that the FS is deformed by the DDI into an ellip-
soid, we study here this striking effect in more detail. Having in mind that the FS
follows the orientation of the dipoles, which is proven by deriving Equation (2.86),
and has a cylindrical symmetry in a plane perpendicular to the dipoles’ orientation,
see Figure 2.1(c) and Equation (2.87), we define the FS deformation as the difference
between the momentum-space aspect ratio for the dipolar and for the noninteracting
Fermi gas according to

∆ = K ′z
K ′x
− 1 . (3.10)

This quantity measures the degree of deformation, which emerges purely due to the
DDI. We investigate how the deformation ∆ depends on and can be tuned by the

54



Chapter 3 Ground state properties

(a)

 0  45  90  135  180

θ (°)

 0

 45

 90

 135

 180

 225

 270

 315

 360
ϕ

 (
°
)

1.77 

2.66 

3.55 

4.43 

5.32 

6.21 

ε
d

d
c
ri

t

(b)

 0  45  90  135  180

θ (°)

 0

 45

 90

 135

 180

 225

 270

 315

 360

ϕ
 (

°
)

0.41 

0.48 

0.56 

0.63 

0.70 

0.77 

d
 c

ri
t  (

D
)

(c)

 0  45  90  135  180

θ (°)

 0

 45

 90

 135

 180

 225

 270

 315

 360

ϕ
 (

°
)

1.77 

2.66 

3.55 

4.43 

5.32 

6.21 
ε

d
d

c
ri

t
(d)

 0  45  90  135  180

θ (°)

 0

 45

 90

 135

 180

 225

 270

 315

 360

ϕ
 (

°
)

0.41 

0.48 

0.56 

0.63 

0.70 

0.77 

d
 c

ri
t  (

D
)

Figure 3.3: Angular stability diagram for harmonically trapped ultracold dipolar
Fermi gases at quantum degeneracy: (a) and (c) critical value of the relative dipole-
dipole interaction strength εcrit

dd and (b) and (d) critical value of the electric dipole
moment dcrit of 40K87Rb as a function of the orientation of the dipoles, defined by
the polar angles θ and ϕ. Black lines correspond to the permanent electric dipole
moment d = 0.57 D of 40K87Rb. Panels (a) and (b) correspond to off-off-axis scenario,
while panels (c) and (d) correspond to off-on-axis-scenario. The system parameters
correspond to the JILA experiment [109]: N = 3 × 104 molecules, trap frequencies
(ωx, ωy, ωz) = (63, 36, 200)× 2π Hz.

the DDI strength, trap geometry, the orientation of the dipoles, and the number of
particles.

We first calculate the FS deformation of 167Er for the parameters of the Innsbruck
experiment [48], yielding the relative interaction strength εdd = 0.15. In Figure 3.4(a)
we present the angular dependence of ∆ on θ and ϕ, whose values turn out to be
around 2.6%, consistent with earlier experimental results [48]. We observe that there
is a maximum deformation of the FS at θ = ϕ = 90◦, which corresponds to the
direction of the smallest trapping frequency ωy (y axis). This can be understood
heuristically, if one recalls that the DDI is attractive for dipoles oriented head-to-tail.
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Figure 3.4: FS deformation ∆ for 167Er atoms with magnetic dipole momentm = 7µB
as a function of: (a) dipoles’ orientation angles θ and ϕ, for parameters of Refer-
ence [48]; (b) particle number N and angle θ, for ϕ = 90◦ and trap frequencies of
Reference [48]; (c) particle number N and trap anisotropy λ, for θ = ϕ = 90◦; (d)
angle θ and trap anisotropy λ, for ϕ = 90◦ and N = 6.6 × 104. Trap anisotropy λ in
(c) and (d) was varied by changing the frequencies ωx = ωz and ωy, while keeping the
mean frequency ω̄ = 300× 2π Hz constant.

Thus, a weaker trapping frequency favours the stretching of the gas in that direction
so that, in turn, this cigar-shaped configuration enhances the relative contribution of
the DDI to the total energy.

Another aspect relevant for experiments is the influence of the particle number N
and the trap geometry on the deformation of the FS. Tuning these parameters and
the direction of the dipoles might lead to an enhancement of the DDI effects, and
therefore to a stronger deformation of the FS. This is investigated in Figures 3.4(b)-
3.4(d), where the FS deformation is given as a function of parameters N , θ and the
trap anisotropy λ = √ωxωz/ωy for a fixed value of the angle ϕ = 90◦. Figures 3.4(c)
and 3.4(d) explore the FS deformation as a function of the trap anisotropy λ, which
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was varied by changing the frequencies ωx = ωz and ωy, while keeping the mean
frequency ω̄ = 300 × 2π Hz constant. From all these figures we conclude that the
increase in the particle number yields a dominant increase in ∆ compared to all other
parameters. We note that, in fact, ∆ also depends on ω̄, which we do not show
here, since it can be directly connected to the particle number dependence. Indeed,
the FS deformation depends on εdd [48], yielding a dependence of ∆ on N1/6ω̄1/2.
As the trap frequencies can be more easily tuned than the particle number, ω̄ can
be considered as a predominant control knob in the experiment. However, a precize
control of the angles and the anisotropy, which is experimentally easy to realize, may
help to achieve an even larger increase in the deformation of the FS. We also note that
the λ dependence is the weakest one, and therefore the formalism for calculating the
angular dependence presented here is important for a systematic study of the influence
of the relevant parameters.

Furthermore, we study the role of the DDI strength and explore whether qualitative
changes of the system’s behavior emerge by increasing the value of the dipole moment.
To this aim, we compare the erbium case with a molecular Fermi gas of 40K87Rb,
assuming that the same gas characteristics can be achieved in the same trap with this
species. The latter possesses an electric dipole moment of strength d = 0.57D, yielding
a much larger relative interaction strength εdd = 7.76 for the same parameters. Since
the critical value of εdd, for which the system is stable, amounts to εcrit

dd = 2.5 [125],
the molecular 40K87Rb gas in such a geometry and with the maximal strength of the
DDI would in fact not be stable and would collapse under the attractive action of the
DDI. For the sake of simplicity and comparison between the systems, we consider a
molecular sample of similar geometry and particles number but in which the electric
dipole moment has been tuned to d = 0.25 D by means of an external field [86]. This
leads to the relative DDI strength εdd = 1.51 < εcrit

dd , which is exactly 10 times larger
than corresponding εdd for atomic Er gas.

As we see, the FS deformation ∆ has a much stronger angular dependence in Fig-
ure 3.5(a) than in Figure 3.4(a) for the erbium case. Indeed, we have the competition
between two different anisotropic effects: the trapping frequencies and very strong
DDI. Therefore, the system turns out to have a strong dependence on the various
parameters involved, and it is not possible to draw general conclusions on the behav-
ior of the FS deformation. Only a detailed numerical study based on the formalism
developed here can provide a precise landscape of the FS deformation behavior for a
concrete experimental setup. In contrast to Figure 3.4(b), we see in Figure 3.5(b) that
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Figure 3.5: FS deformation ∆ for 40K87Rb molecules with electric dipole moment
m = 0.25 D as a function of: (a) dipoles’ orientation angles θ and ϕ, for parameters of
Reference [48]; (b) particle number N and angle θ, for ϕ = 90◦ and trap frequencies
of Reference [48]; (c) particle number N and trap anisotropy λ, for θ = ϕ = 90◦; (d)
angle θ and trap anisotropy λ, for ϕ = 90◦ and N = 6.6 × 104. Trap anisotropy λ in
(c) and (d) was varied by changing the frequencies ωx = ωz and ωy, while keeping the
mean frequency ω̄ = 300× 2π Hz constant.

the increase in the particle number yields an increase in ∆, however a precise control
of the angle θ, which is experimentally much easier to realize, may yield an even larger
increase in the deformation of the FS. This is particularly important for the currently
available fermionic dipolar heteronuclear molecules, since the Pauli exclusion principle
poses serious challenges on the cooling of the sample by suppressing collisions, hence
severely limiting the particle number N . From Figures 3.5(c) and 3.5(d) we conclude
that the λ dependence is practically flat in both cases, contrary to the particle number
N and angle θ, which have much larger impact on the FS deformation and can be
effectively used as tuning parameters.

Although the shapes of both angular dependencies in Figures 3.4(a) and 3.5(a) are
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Figure 3.6: Illustration of the angular dependence of the FS deformation in momen-
tum space for system in an anisotropic trap elongated along the horizontal y axis : (a)
for weak DDI, when the FS ellipsoid just rotates like a rigid object; (b) for strong DDI,
when the FS ellipsoid stretches in all directions and its deformation strongly depends
on the dipoles’ orientation.

quite similar, the main difference is that the deformation of the FS for polar molecules
is an order of magnitude larger than for erbium and has a value of around 30%.
However, we also observe that the variation in the values of ∆ for different angles θ
and ϕ is around 0.03% in the case of an atomic erbium gas, while for the molecules it
amounts to around 5%, i.e., the variations of ∆ are two orders of magnitude larger for
the molecular case. The reason for this increase in both the maximal FS deformation
and its angular variation is the same, namely the increase in the relative DDI strength
εdd, which is one order of magnitude larger for the considered molecules compared
to 167Er. While the FS deformation is proportional to εdd, as expected [125] and as
evidenced by our results above, our findings suggest that its maximal angular variation
is proportional to ε2

dd.
The calculated angular dependence of the FS deformation on the DDI strength has

the following important physical consequence. For erbium atoms, where εdd is small,
the angular variation of the FS deformation is even smaller, since it is proportional
to ε2

dd, and it would be difficult to observe in experiments. Therefore, one could say
that the FS behaves as a rigid ellipsoid, which just rotates following the orientation
of the dipoles, without changing its shape [48], as illustrated in Figure 3.6(a). This
also implies that the atomic cloud shape in real space is practically disentangled from
the FS, and is mainly determined by the trap shape. On the other hand, when εdd

is large enough, as in the case of 40K87Rb, the FS not only rotates, but also signifi-
cantly changes its shape, since the angular variation can be as high as 5%, which is
experimentally observable. This is schematically shown in Figure 3.6(b), where the FS
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Figure 3.7: The FS deformation ∆ as a function of the trap frequencies ωx and ωy, for
a system of N = 3× 104 ultracold molecules of 40K87Rb, with ωz = 200× 2π Hz. The
dipoles are oriented along z axis and have electric dipole moments: (a) d = 0.22 D and
(b) d = 0.26 D. White dots correspond to the parameters of the JILA experiment [109].

behaves as a soft ellipsoid, whose axes are stretched as it rotates. Although we know
that the phase-space volume is preserved, according to the particle number conserva-
tion (2.17), Figure 3.6(b) illustrates that the FS, i.e., the momentum-space volume
increases (K ′i increase), while in real space the volume of the cloud shape decreases
(R′′i decrease). From this we see that the real-space atomic cloud shape is indeed
coupled to the FS, and this effect can become measurable in future dipolar fermion
experiments, with sufficiently large values of εdd. Since the 40K87Rb molecules are
promising candidates in this context, we will continue with investigation of the FS
deformation in such systems.

Let us assume that the electric dipole moments of 40K87Rb molecules are aligned
along z axis and that their value is tuned down to d = 0.22 D, such that it is below the
critical value of dcrit = 0.24 D determined in Figure 3.2(c). For fixed ωz = 200×2π Hz
and realistic values of the trapping frequencies ωx and ωy we obtain that ∆ varies
between 5% and 30%, as shown in Figure 3.7(a). We also note that ∆ is a symmetric
function of arguments ωx and ωy, for the same reasons εcrit

dd is a symmetric function in
Figure 3.2(a).

Furthermore, the theory presented here makes it possible to calculate the stability
properties for experimentally relevant dipolar Fermi systems, where even relatively
small changes in the dipolar moment strength can significantly affect the system’s
stability. This is demonstrated in Figure 3.7(b), where for a slightly larger value of
d = 0.26 D we read off that the FS deformation becomes significantly larger than in
Figure 3.7(a). Namely, in this case the FS deformation goes up to 45%, and, even
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Figure 3.8: Angular dependence of FS deformation ∆ for ultracold Fermi gas of
N = 3 × 104 molecules of 40K87Rb with fixed value of the electric dipole moment
d = 0.25 D and the trap frequencies: (a) (ωx, ωy, ωz) = (63, 36, 200)×2π Hz, and (b)
(ωx, ωy, ωz) = (50, 500, 900)× 2π Hz.

more significantly, an unstable region appears for higher frequencies, which does not
support a stable ground state of the system.

Next, we discuss the angular dependence of the FS deformation shown in Fig-
ures 3.8(a) and 3.8(b) for two different trap configurations, which illustrate that the
trap geometry also strongly affects the system’s behavior. Namely, the FS deformation
and its angular distribution can be tuned by changing the trap frequencies. Not only
the range of the FS deformation values can be increased or decreased this way, but also
its minima and maxima and their position can be freely modified. In contrast to atomic
magnetic species, where the angular dependence of the FS deformation is of the order
of few per mill [49] and is, thus, quite weak, the strong DDI in the samples of polar
molecules leads to a much stronger angular dependence [50], as shown in Figures 3.8(a)
and 3.8(b). For stronger DDI we expect not only an increased critical temperature of
Cooper pairing, but also a higher degree of tunability as the deformation of the FS
depends on the dipoles’ orientation relative to the trap geometry.

One of the prominent tuning parameters in the realm of quantum gases is dimen-
sionality of the system. Namely, by tuning the frequencies of the trap potential one
can achieve a very thin pancake-shaped gas cloud, which is considered as a quasi-2D
system, or analogously a cigar-shaped gas cloud which is considered as a quasi-1D.
We will focus now on a polarized quantum degenerate Fermi gas of 40K87Rb with
N = 3× 104 molecules with electric dipole moment value of d = 0.35 D in the strong
2D confinement, which is of special interest if one wants to study the phase tran-
sition in the regime of strong interactions across the 2D BEC-BCS crossover. We
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(a) d = 0.35 D, θ= 0º, ωz = 2000 × 2π Hz
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(b) d = 0.35 D, θ= 60º, ωz = 2000 × 2π Hz
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Figure 3.9: FS deformation ∆ as a function of ωx and ωy for a 40K87Rb gas with
N = 3×104 molecules with electric dipole moment d = 0.35 D. Each panel corresponds
to a different orientation of the dipoles, defined by the angles θ, ϕ: (a) θ = ϕ = 0◦;
(b) θ = 60◦, ϕ = 0◦; (c) θ = 65◦, ϕ = 0◦; (d) θ = 70◦, ϕ = 0◦. Green/white dots
correspond to the target trap parameters (ωx, ωy, ωz) = (100, 100, 2000)× 2π Hz.

show that, depending on the electric dipole moment value d and the orientation of
the dipoles (θ, ϕ), the system can either have a stable ground state or exhibit an in-
stability in an experimentally interesting region around the target trap parameters
(ωx, ωy, ωz) = (100, 100, 2000)× 2π Hz.

The trap aspect ratios for the target configuration are ωz/ωx = ωz/ωy = 20. Per-
forming the numerical calculations for those parameters, similarly as it was done to
calculate results presented in Figure 3.2(a), we obtain the critical interaction strength
εcrit

dd = 123.4 for the dipoles oriented along θ = ϕ = 0◦. This εcrit
dd yields the critical

dipole moment of dcrit = 2.51 D, which is much larger than the actually considered
value of the electric dipole moment d = 0.35 D, and even much larger then the per-
manent dipole moment of 40K87Rb given in Table 1.1. Therefore, as we see from
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(b) d = 0.35 D
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Figure 3.10: Angular dependence of FS deformation ∆ for the target trap parameters
(ωx, ωy, ωz) = (100, 100, 2000) × 2π Hz, of 40K87Rb gas with N = 3 × 104 molecules
with a fixed value of electric dipole moment: (a) d = 0.25 D; (b) d = 0.35 D. Since
ωx = ωy, there is no ϕ dependence.

Figure 3.9(a), the system has a stable ground state in the region around the target
trap configuration, with the FS deformation ranging from 16% to 48%. For the dipoles
oriented in the direction θ = 60◦, ϕ = 0◦, shown in Figure 3.9(b), we obtain a much
smaller value εcrit

dd = 3.18 for the target trap parameters, but still dcrit = 0.40 D is
larger than the value of d used. In this case the FS deformation becomes significantly
larger than in Figure 3.9(a), namely up to 70%. Tilting the dipoles further to θ = 65◦,
ϕ = 0◦, we numerically calculate εcrit

dd = 2.585 for the target configuration, which leads
to critical electric dipole moment of dcrit = 0.36 D. Since it still holds d < dcrit, the
target trap configuration is stable, but we see in Figure 3.9(c) that the instability
region appears in its vicinity. The FS deformation range stays practically the same
as in the previous case, presented in Figure 3.9(b), but achieved for smaller frequen-
cies. Finally, for θ = 70◦, ϕ = 0◦ we numerically obtain εcrit

dd = 2.20 for the target
configuration, which corresponds to dcrit = 0.336 D < d. This explains larger unstable
region in Figure 3.9(d) in comparison to Figure 3.9(c), which now includes the target
configuration. However, the FS deformation still remains large and ranges from 19%
to 60%.

The angular dependence of the FS deformation for the target trap configuration
and for two values of the dipole moment is presented in Figure 3.10. For a smaller
value d = 0.25 D the system is always stable, as can be seen in Figure 3.10(a), while
for d = 0.35 D the system becomes unstable for 60◦ < θ < 120◦, as can be read off in
Figure 3.10(b). This can be expected if we take into account results from Figure 3.9.
Here we note that, due to the symmetry of the target trap configuration (ωx = ωy),
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Figure 3.11: Angular dependence of ∆ for a fixed value of d and trap parameters
(ωx, ωy, ωz) = 2π × (100, 36, 2000) Hz, with N = 3 × 104 molecules of 40K87Rb for:
(a) d = 0.25 D; (b) d = 0.32 D; c) d = 0.35 D. Now the ϕ dependence is clearly visible.
Depending on the dipole moment value d, the system can either have a stable ground
state or exhibit an instability.

there is no ϕ dependence in both panels of Figure 3.10.
However, if we consider a trap configuration with a slightly broken cylindrical

symmetry, such as (ωx, ωy, ωz) = (100, 36, 2000)×2π Hz, a ϕ-dependence will appear,
as can be seen in Figure 3.11. There we observe that, depending on the dipole moment
value, we can have a stable system for all orientations of the dipoles as in Figure 3.11(a),
a system with isolated instability regions as in Figure 3.11(b), or a system with a single
instability region, Figure 3.11(c), similar to the one from Figure 3.10(b).

All results presented in this Section, as well as the formalism used here, allow
for a systematic study of the influence of different parameters on the FS deformation
and strengthen the importance of tuning techniques, such as the one recently devel-
oped for polar molecules [145], based on a sophisticated electrode geometry system.
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Furthermore, the generalized Hartee-Fock mean-field theory presented here provides
the basis for understanding and interpreting phenomena in which the investigated
physics depends on the underlying structure of the FS, such as fermionic pairing and
superfluidity.

3.4 Gas cloud deformation

The presence of the DDI in both bosonic [146] and fermionic [118] quantum gases
has been predicted and evidenced in experiments by detailed TOF expansion mea-
surements [147] to induce magnetostriction in real space, i.e., a stretching of the gas
cloud along the direction of the dipoles, see Figure 2.1(d)-(f). Here we investigate the
dependence of this effect on the orientation of the dipoles for the fermionic case. To
this end, we first define the real-space aspect ratios

Aij = R′′i
R′′j

, (3.11)

of the corresponding TF radii, as well as their noninteracting counterparts

A0
ij = R0

i

R0
j

= ωj
ωi
. (3.12)

The gas cloud deformation can now be studied in terms of the relative cloud deforma-
tions

δzx = Azx
A0
zx

− 1 , (3.13)

δzy = Azy
A0
zy

− 1 . (3.14)

Here the anisotropies due to the harmonic trap are already taken into account and
eliminated from the consideration, such that only effects of the DDI contribute to the
nontrivial value of δzx and δzy. This is in close analogy to the definition of the relative
total energy shift of the system in Equation (2.99), or the FS deformation in Equation
(3.10). The situation would be identical if we consider a spherically symmetric trap
configuration, since in this case, as mention before, Equations (2.93) and (2.94) can
be solved analytically, independently of other equations, yielding

θ′′ = θ and ϕ′′ = ϕ . (3.15)
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This means that the gas cloud is stretched into anellipsoid along the orientation of
dipoles, just as the FS is. Additionally, from Equations (2.96) and (2.97) it follows
that

R′′x = R′′y , (3.16)

which means that the gas cloud ellipsoid has a cylindrical symmetry in a plane per-
pendicular to the dipoles’ orientation, and therefore δzx and δzy become equal. This
leads to

δzx = δzy ≡ δ = R′′z
R′′x
− 1 . (3.17)

Therefore, we start investigation of the DDI effects on the gas cloud shape with the
spherically symmetric trap, indicated as Case 1 in Table 3.2. From Figure 3.12(a) we
see that all TF radii are equal in the noninteracting case (εdd = 0), as expected. If
we increase εdd TF radius along dipoles’ orientation increases, while the other two TF
radii decreases. It is interesting that in this case the relative cloud deformation δ and
FS deformation ∆ increase linearly and are almost identical up to the εdd ≈ 1.3, when
δ starts to increase faster, as indicated in Figure 3.12(b).

In the following we consider a dipolar Fermi gas with the dipoles along z axis
confined in a pancake-shaped, as well as in a cigar-shaped traps, as listed in Table 3.2.
Namely, Case 2 corresponds to a pancake in xy plane, Case 3 to a pancake in xz plane,
while Case 4 represents a cigar along z axis, and Case 5 a cigar along x axis. in all
cases the dipoles are oriented along z axis, and therefore the coordinate systems S, S ′

and S ′′ coincide, see Figure 2.1.
In the inset of Figure 3.12(b) we show the FS deformation ∆ as a function of the

relative DDI strength εdd for all considered cases. We observe that for the relatively
weak DDI, i.e., εdd < 1, for any trap configuration, ∆ linearly increases with εdd.
Furthermore, it is clear that a linear part of this dependence extends further as the
critical value of the relative DDI strength εcrit

dd is larger, see Table 3.2.
Figures 3.12(c) and 3.12(d) show TF radii as functions of the relative DDI strength

εdd, for the pancake-shaped trap configurations, Case 2 with the solid lines, and Case
3 with the dashed lines. As a cross-check, we note that in the noninteracting case
all the corresponding TF radii are equal, since the gas cloud is fully determined by
the trap frequencies. Namely, by a simple cyclic permutation of the TF radii indices
x→ z → y → x one can switch from Case 2 to Case 3. the dipoles in Case 2 have the
side-by-side configuration, such that they repel each other.AS εdd increase this results
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Table 3.2: Trap configurations with corresponding critical value of the relative dipole-
dipole interaction strength εcrit

dd , obtained as in Figure 3.2(a), for ultracold Fermi gas
with dipoles oriented along z axis.

Case Trap shape Trap frequencies εcrit
dd

1 spherical ωx = ωy = ωz 2.10
2 pancake 10 ωx = 10 ωy = ωz 10.10
3 pancake 10 ωx = ωy = 10 ωz 1.73
4 cigar ωx = ωy = 10 ωz 1.65
5 cigar 10 ωx = ωy = ωz 2.48

in the increase of all the TF radii. Contrary to this, the dipoles in Case 3 have the
head-to-tail configuration and attract each other more as εdd increases, thus leading to
the decrease of all the TF radii. While in Case 2 all TF radii increase with the same
rate as εdd increases, in Case 3 the radii Rx and Ry decrease with the same rate, while
Rz decreases slower. This can be explained by the symmetry of the system. Namely,
in Case 2 the cylindrical symmetry of the pancake-shaped trap is preserved (Rx = Ry),
while in Case 3 this symmetry is broken by the DDI, such that always Rx ≤ Rz.

A similar analysis can be used for the cigar-shaped trap configurations, Cases 4
and 5 in Table 3.2. In Figures 3.12(e) and 3.12(f) we show the TF radii as functions
of the relative DDI strength εdd for these trap configurations, Case 4 with the solid
lines, and Case 5 with the dashed lines. Again, as a cross-check, we note that in the
noninteracting case all the corresponding TF radii are the same, which can be verified
by using a simple cyclic permutation of the TF radii indices x → y → z → x to
switch from Case 4 to Case 5. Due to the ”head to tail“ configuration of the dipoles
in Case 4, all the TF radii decrease with increasing εdd, since the attraction between
the dipoles dominates. In Case 5, it turns out that behavior of the TF radii cannot be
explained by such simple arguments. Namely, the TF radius Ry (Rz) monotonously
decreases (increases) with increasing εdd, while Rx is a non-monotonic function of εdd.
Concerning the symmetry reasoning, in Case 4 the cylindrical symmetry of the cigare-
shaped trap is preserved (Rx = Ry), while in Case 5 this symmetry is again broken by
the DDI and Ry ≤ Rz.

In what follows, we present angular dependence of the relative cloud deformations
δzx and δzy for the atomic, as well as for the molecular Fermi gas. First, in Figure 3.13
we present the angular dependence for the erbium case with the same parameters as
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Figure 3.12: TF radii as functions of relative dipolar interaction strength εdd for
Fermi gases in global equilibrium for considered trap geometries from Table 3.2, with
dipoles parallel to z axis: (a) Case 1, (c)-(d) Case 2 solid line, Case 3 dashed lines, and
(e)-(f) Case 4 solid line, Case 5 dashed lines. (b) Gas cloud δ and FS deformation ∆
as functions of εdd for Case 1. Inset gives to the FS deformation ∆ for all 5 considered
cases.

in Figure 3.4(a). We see that both deformations for a fixed angle θ = 90◦ possess
a minimum for ϕ = (0◦, 180◦, 360◦). Also, along the ϕ-direction the FS deformation
monotonously decreases up to θ = 90◦, after which it monotonously increases. If we
compare this to the behavior in momentum space, see Figure 3.4(b), we see that the
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Figure 3.13: Angular dependence of relative cloud deformations for 167Er, with
parameters as in Figure 3.4(a): (a) δzx; (b) δzy.

order of magnitude for both types of deformation is the same, around few percent.
However, along the ϕ-direction we have qualitatively different behavior: when ∆ in-
creases, δzx and δzy decrease, and vice versa. The same applies for the behavior along
the θ-direction, with the main difference that the relative cloud deformations possess
three minimal values along θ = 90◦ direction, while the FS deformation has only two
maxima.

Similarly, Figure 3.14 presents the angular dependence of δzx and δzy for the molec-
ular 40K87Rb Fermi gas for the same parameters as in Figure 3.8. In general, the
positions of minima in all plots occur for θ = 90◦, and along the ϕ-direction the FS
deformation monotonously decreases up to θ = 90◦, after which it monotonously in-
creases. By comparing this to the behavior in momentum space, see Figure 3.8, we can
conclude that the behavior of the corresponding deformations in real and momentum
space are quite different. This can be most clearly seen from Figure 3.8(a) and Fig-
ure 3.14(b), while by comparing other plots one can conclude that relative positions of
minima (maxima) of the gas cloud (FS) deformations can be shifted along ϕ-direction
for 90◦. Additionally, while ∆ is always a positive quantity, we see that δzx and δzy

can change the sign. In particular, in some plots their range is symmetric around
zero, which means that there are orientations of the dipoles for which the gas cloud
deformations vanish.

A related effect has been previously found, showing that the Bose gas momentum
becomes distorted in the opposite sense to that of the Fermi gas [123]. There, the
effect can be traced back to the differences in the quantum statistics nature of bosons
and fermions. Here, however, the different behavior is due to the anisotropic nature
of the DDI and its interplay with the arbitrary orientation of the dipoles and the trap
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Figure 3.14: Angular dependence of relative cloud deformations for 40K87Rb: (a) δzx
and (b) δzy for parameters as in Figure 3.8(a); (c) δzx and (d) δzy for parameters as in
Figure 3.8(b).

geometry.

3.5 Beyond Hartre-Fock mean-field theory

The variational approach for the Wigner function ν0(r,k) used in Chapter 2 relies
on the Hartree-Fock mean-field approximation. Here we estimate beyond-mean-field
effects in the calculation of the FS shape and the stability of the system for strong
DDI. We follow Reference [130], which derives beyond-mean-field corrections to both
the FS deformation and inverse compressibility of the system. Note that this reference
considers a homogeneous system, and that the estimates based on these results might
not be fully applicable to a trapped system. However, the corresponding results for a
trapped system are not available, and therefore Reference [130] is used as a baseline
to estimate beyond-mean-field corrections in our case.

The FS deformation up to first order in the interaction strength within the theory
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presented in Reference [130] is found to be

∆(1)
h = kF(0◦)

kF(90◦) − 1 =
1 + 1

6P2(1)u
1 + 1

6P2(0)u − 1 , (3.18)

while the second order of result [130, 131] reads

∆(2)
h = kF(0◦)

kF(90◦) − 1 =
1 + 1

6P2(1)u−
[

1
180 − 0.031P2(1)− 0.016P4(1)

]
u2

1 + 1
6P2(0)u−

[
1

180 − 0.031P2(0)− 0.016P4(0)
]
u2
. (3.19)

Here Pi is the Legendre polynomial of degree i and u is a dimensionless parameter
given by [130]

u = nCdd

EF
, (3.20)

where n is the particle density of homogeneous system. In order to properly compare
this with our case, we replace the noninteracting homogeneous Fermi energy with the
Fermi energy of a noninteracting harmonically trapped Fermi gas, given by Equa-
tion (1.20). Also, the homogeneous density is identified here with the average density
of the trapped system, calculated as N/V , where

V = 4π
3 R′′xR

′′
yR
′′
z , (3.21)

is a volume of the TF ellipsoid in real space for specific parameters in the experimental
setup. Using this, together with the definition of the relative interaction strength εdd

given by Equation (3.9), we get

u = 3 1
6 εdd

2 7
3 R̃xR̃yR̃z

, (3.22)

where R̃i = R′′i /R
0
i are earlier introduced dimensionless TF radii. We are now able

to estimate beyond-mean-field corrections to the FS deformation, which we define as
follows

δ∆(2)
h = ∆(2)

h

∆(1)
h

− 1 . (3.23)

This correction is illustrated in Figure 3.15(a) for the experimental system param-
eters [109] with d = 0.25 D, which are used to obtain Figure 3.8(a). It turns out
that corrections are just a fraction of one percent. In Figure 3.15(b) we show how
the beyond-mean-field correction depends on the dipole moment, for fixed values of
the tilt angles θ = ϕ ∈ {0◦, 30◦, 45◦, 60◦, 90◦}. We see that δ∆(2)

h amounts to a few
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Figure 3.15: Beyond-mean-field corrections to the FS deformation for the trap pa-
rameters (ωx, ωy, ωz) = (63, 36, 200) × 2π Hz of Reference [109], with N = 3 × 104

molecules 40K87Rb: (a) angular dependence for d = 0.25 D, which is used to obtain
Figure 3.8(a); (b) the corresponding dependence on the dipole moment d for fixed
values of tilt angles θ and ϕ.

percent even for the largest values of d that can be achieved in current experiments
with 40K87Rb [109].

However, the situation is more complex when we consider the bulk modulus, i.e.,
the inverse compressibility κ of the system, which is used to estimate the stability
border according to the Pomeranchuk criterion [111, 148], and whose beyond-mean-
field correction is [130]

δκ(2) = κ(2)

κ(1) − 1 ≈ 0.42u2 . (3.24)

For instance, for system parameters used to obtain Figure 3.8(a), the corresponding
correction is of the order of one percent, as can be seen in Figure 3.16(a), where we plot
its angular dependence. These corrections are calculated for the dipole moment value
d = 0.25 D. In Figure 3.16(b) we see how the beyond-mean-field correction for the
inverse compressibility depends on the strength of the dipole moment, for fixed values
of the tilt angles θ = ϕ ∈ {0◦, 30◦, 45◦, 60◦, 90◦}. In contrast to the FS deformation
correction, the inverse compressibility correction can be much higher for larger values
of d, and it strongly depends on the orientation of the dipoles. If we use a 10%
threshold for the inverse compressibility correction, we see that dipole moment value
can be as high as 0.35 D in the worst-case scenario, when the dipoles lie within the
pancake plane, while for other values of the angles one can use even larger values of d.
Taking into account that this coincides with the maximal achievable dipole moment in
the current experiment with 40K87Rb [109], for such trap configuration our mean-field
theory is applicable with reasonable accuracy, as shown in Figure 3.16. However, for
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Figure 3.16: Beyond-mean-field corrections to the system’s inverse compresibillity
for the trap parameters (ωx, ωy, ωz) = (63, 36, 200)× 2π Hz of Reference [109], with
N = 3 · 104 molecules of 40K87Rb: (a) angular dependence for d = 0.25 D, which is
used to obtain Figure 3.8(a); (b) the corresponding dependence on the dipole moment
d for fixed values of tilt angles θ and ϕ.

other trap configurations the mean-field theory could break down for smaller values of
d, as the inverse compressibility κ of the system can have a strong angular dependency.
One can use a similar calculation as the one presented here to make an appropriate
estimate for any given trap configuration.

In summary, we conclude that the second-order terms in the DDI in the theory
beyond Hartree-Fock [130, 131] yield a small correction even for polar molecules with
strong DDI, although the geometry may have an impact. Furthermore, this beyond-
mean-field correction turns out to destabilize the system [130, 131], so our results on
the stability represent proper upper boundaries. This is in stark contrast to bosonic
systems, where the quantum fluctuations are known to stabilize the system and lead,
for instance, to the formation of quantum droplets in Bose-Einstein condensates of
dysprosium and erbium as demonstrated recently in Stuttgart and in Innsbruck [57–
60, 71, 78, 80–82]. In the outlook we mention that possible fermionic analogues of the
already observed bosonic quantum droplets my exist. Although the leading beyond-
mean-field correction seems to destabilize fermionic system, further studies might re-
veal an alternative stabilization mechanism.
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Dynamics of dipolar Fermi gases

The deformation of the Fermi sphere was recently experimentally observed in
a dipolar gas of 167Er [48]. This measurement was based on the analysis of the
momentum-state populations at equilibrium. A complementary and even richer ap-
proach to studying dipolar quantum gases considers their dynamical properties and
investigates the excitation spectrum. Both of these approaches give access to FS
properties and reveal deviation from the Fermi liquid picture due to strong dipolar
features.

In this Chapter we present the theory which enables to describe the dynamics of
dipolar Fermi gases at zero temperature in all regimes: from collisionless, over the
collisional, to the hydrodynamic regime. First, we briefly present the derivation of
the quantum kinetic equation, or Boltzmann equation, which we use to model the
dynamics of the system.

In order to describe the time evolution of the system, we start with von Neumann
equation. Instead of using density matrix approach, we introduce a time-dependent
quasidistribution function which leads, due to a gradient expansion, to a semiclassical
description of the system. Namely, using the perturbation theory in the first order we
get mean-field description by the Hartree and Fock terms, while the second order term
accounts for two-particle interactions via the binary collision integral.

Afterwards we solve the derived Boltzmann equation within the relaxation-time
approximation in the vicinity of local equilibrium state by using a suitable rescaling
of the equilibrium distribution. The resulting ordinary differential equations for the
respective scaling parameters are then solved numerically for experimentally realistic
setups and relaxation times that correspond to the collisionless, collisional, and hy-
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drodynamic regime. The equations for the collisional regime are first solved in the
approximation of a fixed relaxation time, and then this we extend by developing new
approach, where the relaxation time is determined self-consistently. The presented
analytical and numerical results are relevant for a studies of the dynamics of dipolar
Fermi gases, and in particular for a detailed quantitative understanding of ongoing
experiments.

4.1 Boltzmann quantum kinetic equation

The dynamics of a trapped ultracold dipolar degenerate Fermi gas can be described in
terms of the quantum kinetic equation, also known as the Boltzmann equation, which
was previously prominently used in the realm of nuclear [149] and plasma [150, 151]
physics. It was already used to study the TOF dynamics of ultracold fermions with
the contact [152, 153] and dipolar interaction [90, 93, 125], as well as their collective
modes [126, 154, 155]. In this Section we present just a brief overview of the Boltzmann
equation derivation at zero temperature.

Let us consider a harmonically trapped ultracold Fermi gas, where the particles
can interact via a two-body interaction, in our case the DDI. If the system is described
by a time-dependent pure state |ψ(t)〉, then its time evolution is given by

i~
∂

∂t
|ψ(t)〉 = Ĥ|ψ(t)〉 , (4.1)

where Ĥ represents the Hamilton operator of the system. It can be decomposed
according to

Ĥ = Ĥ0 + Ĥint , (4.2)

and written in terms of the creation and annihilation operators ψ̂†(r) and ψ̂(r), which
satisfy the anticommutation relations

{ψ̂(r), ψ̂(r′)} = 0 ,

{ψ̂†(r), ψ̂†(r′)} = 0 ,

{ψ̂(r), ψ̂†(r′)} = δ(r− r′) . (4.3)

where the blue curly brackets denote the anticommutator

{Â, B̂} = ÂB̂ + B̂Â . (4.4)
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The one-particle Hamilton operator Ĥ0 contains the kinetic energy and the trapping
potential Vtrap(r) in the form

Ĥ0 =
∫
d3r ψ̂†(r)

[
−~2∇2

2M + Vtrap(r)
]
ψ̂(r) , (4.5)

while the interaction part of the Hamilton Ĥint describes two-body interactions via the
DDI potential Vdd(r− r′) according to

Ĥint = 1
2

∫
d3r d3r′ ψ̂†(r)ψ̂†(r′)Vdd(r− r′)ψ̂(r′)ψ̂(r) . (4.6)

As described in Chapter 2, we use here the Wigner function approach, which
relies on the time-dependent quasidistribution, defined as a Fourier transform of the
correlation function G(2)(x; x′; t) with respect to the relative coordinate s = x− x′,

ν(r,k, t) =
∫
d3s eik·s G(2)

(
r + s

2; r− s
2; t

)
. (4.7)

The correlation function is defined as the ensemble average

G(2)(x; x′; t) =
〈
ψ̂† (x) ψ̂ (x′)

〉
t

(4.8)

which is calculated as the trace over the field operators’ product with respect to the
underlying density matrix ρ̂(t)

〈
ψ̂† (x) ψ̂ (x′)

〉
t

= Tr
[
ρ̂(t)ψ̂† (x) ψ̂ (x′)

]
. (4.9)

Note that this approach enables also the study of systems in mixed states, not
only those that are in pure states.Here the density matrix ρ̂(t) contains the whole
time evolution of the system in the Schrödinger picture, which is governed by the von
Neumann equation

i~
∂ρ̂

∂t
(t) =

[
Ĥ, ρ̂(t)

]
, (4.10)

where the blue square brackets denote the commutator

[Â, B̂] = ÂB̂ − B̂Â . (4.11)

The resulting time evolution of the Wigner function can be computed with the help
of Equations (4.7)–(4.10) by using the cyclic permutation of the opearators under the
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trace and the explicit form of the Hamiltonian given by Equations (4.2), (4.5), and
(4.6), yielding

i~
∂ν(r,k, t)

∂t
=
∫∫

d3s d3r′ eik·s

× Tr
{
ρ̂(t)

{
ψ̂†
(
r + s

2

)
ψ̂
(
r− s

2

)
, ψ̂†(r′)

[
−~2∇2

r′

2m + Vtrap(r′)
]
ψ̂(r′)

}}

+ 1
2

∫∫∫
d3s d3r′ d3r′′ eik·s

× Tr
{
ρ̂(t)Vdd(r′ − r′′)

[
ψ̂†
(
r + s

2

)
ψ̂
(
r− s

2

)
, ψ̂†(r′)ψ̂†(r′′)ψ̂(r′′)ψ̂(r′)

]}
.

(4.12)

Namely, both the kinetic term Ikin and trapping term Itrap contain anticommutators
involving four field operators, which leads to ensemble averages of two field operators.
Together with Equations (4.7) and (4.8) this leads to the expressions containing the
gradient of the Wigner function,

Ikin = −i~2 k
M
· ∇rν(r,k, t) , (4.13)

Itrap = i∇rVtrap(r) · ∇kν(r,k, t) . (4.14)

In the above equation for the trapping term we use gradient expansions, which assume
that the Wigner function ν(r,k, t) is slowly varying in its spatial argument. In this
way the part of the quantum-mechanical information about the system is lost, which
yields a semiclassical Wigner function [156]. We also use this assumption in all further
calculations.

Using this and calculating the commutator of six operators in the interaction term
Equation (4.12) simplifies to

∂ν(r,k, t)
∂t

+ ~k
M
· ∇rν(r,k, t)− 1

~
∇rVtrap(r) · ∇kν(r,k, t) = 1

i~

∫
d3s

∫
d3xeik·s

×
[
Vdd

(
x− r + s

2

)
− Vdd

(
x− r− s

2

)]
Tr
[
ρ̂(t)ψ̂†

(
r + s

2

)
ψ̂† (x) ψ̂ (x) ψ̂

(
r− s

2

)]
.

(4.15)

The right-hand side of the above equation shows the main problem to derive a closed-
form equation that determines the time evolution of the Wigner function. Namely, its
time derivative, i.e., the time derivative of the average of two field operators, leads to
an average of four-field operators. In the next step, the time derivative of four-field
operator average would lead to a six-field operator average, and so on. With such a
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hierarchical structure it is not possible to get a closed set of equations without further
approximations. Thus, we have to cut hierarchy and approximate this term with the
help of the perturbation theory in the interaction. However, this can only be done in
the case of weak interparticle interactions, thereby limiting the validity of the resulting
quantum kinetic equation. If we apply the perturbation theory to the first order in
the interaction potential, we get the self-consistent Hartree-Fock dynamic mean-field
theory, where the direct and exchange interaction terms read

ID
dd = ∇r

[∫
d3xVdd(r− x)n(x, t)

]
· ∇kν(r,k, t) , (4.16)

IE
dd = ∇k

[∫ d3k′

(2π)3ν(r,k′, t)Ṽdd(k− k′)
]
· ∇rν(r,k, t)

−∇r

[∫ d3k′

(2π)3ν(r,k′, t)Ṽdd(k− k′)
]
· ∇kν(r,k, t) . (4.17)

The the second order perturbation theory in the interaction potential yields well known
collision integral Icoll[ν](r,k, t), which describes collisions between two particles, and
has the following form [157, p. 54]

Icoll[ν] =
∫ d3k2

(2π)3

∫ d3k3

(2π)3

∫ d3k4

(2π)3
1
2
[
Ṽdd(k− k3)− Ṽdd(k− k4)

]2
× 2πδ(Ek + Ek2 − Ek3 − Ek4)(2π)3δ(k + k2 − k3 − k4)

× [(1− ν)(1− ν2)ν3ν4 − νν2(1− ν3)(1− ν4)] , (4.18)

where ν = ν(r,k, t), νi = ν(r,ki, t), and

Ek = ~2k2

2M + Vtrap(r) . (4.19)

Delta functions in the above expression ensure the momentum and energy conservation
during the collision process. However, the energy conservation delta function shows
precisely the limit of this form of the collision integral. Although the total energy
of the system should be conserved, here just the kinetic and trapping energy sum is
conserved. Thus, the interaction energy is neglected, which can only be justified if we
assume weak two-body interactions. Note that the minus sign between the potentials
Ṽdd in Equation (4.18) reflects the fact that we consider fermions and, therefore, we
have to deal with anticommutators. In contrast to this, in the case of a bosonic gas,
when one has to deal with commutators, there would appear a plus sign instead of the
minus sign.
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Finally, if we combine the intermediate result (4.15) with Equations (4.16)-(4.18),
we obtain the quantum kinetic equation in the following form

∂ν(r,k, t)
∂t

+ ~k
M
∇rν(r,k, t) + 1

~
∇kV (r,k, t)∇rν(r,k, t)

− 1
~
∇rV (r,k, t)∇kν(r,k, t) = Icoll[ν](r,k, t) , (4.20)

where the mean-field potential V (r,k, t) is written in a condensed form, such that it
includes the external trap potential, as well as the respective mean-field terms,

V (r,k, t) = Vtrap(r) + Vmf(r,k, t)

= Vtrap(r) +
∫
d3r′ Vdd(r− r′)n(r′, t)−

∫ d3k′

(2π)3 Ṽdd(k− k′)ν(r,k′, t) . (4.21)

The first term in the mean-field potential represents the direct Hartree term, containing
the interaction potential Vdd and the spatial density n(r, t) given by Equation (2.3),
and is thus calculated purely in real psace. The second term corresponds to the Fock
exchange term and contains the Fourier transform of the interaction potential Ṽdd.
The Fock term is calculated purely in momentum space.

4.2 Scaling ansatz

The time evolution of the Wigner function ν(r,k, t) can be approximately calculated by
solving the derived Boltzmann equation, as suggested in Reference [126]. Numerically
this is tremendously difficult task due to substantial memory requirements, due to
the fact that the Wigner function is defined in 6D phase space. Also analytically
this equation cannnot be solved, and we have to resort to certain approximations in
order to obtain the solution. Therefore, we will assume that the functional form of the
Wigner distribution always corresponds to that of the system in local equilibrium, and
that the dynamics can be modeled by introducing only the appropriate scaling of the
coordinates and momenta in this functional form. Since, Equation (4.20) is a nonlinear
integro-partial differential equation, by a such rescaling, we get ordinary differential
equations for the scaling parameters, which can then be solved numerically. In this
way, we combine an analytic approximation with a numerical approach in order to be
able to solve the underlying quantum kinetic equation.

Another problem is how to deal with the complexities of the collision integral. In
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recent years, approximative approaches were developed such that, instead of using
full expression for the collision integral, which would require a detailed modeling of
scattering processes between atoms or molecules, one simply uses the relaxation-time
approximation [12, 158] in the form

Icoll[ν](r,k, t) = −ν(r,k, t)− ν le(r,k)
τ

. (4.22)

Here τ denotes the relaxation time, which is related to the average time between col-
lisions, and ν le stands for the distribution function corresponding to local equilibrium.
The physical idea is that the particles interact via collisions and exchange energy and
momentum, which eventually leads to a relaxation of the system into a local equi-
librium state in which the collisions will no longer change the distribution function.
In contrast to that, the local velocity field or the density can still be spatially de-
pendent. The local thermodynamical equilibrium of a dipolar Fermi gas is defined by
Icoll[ν le] = 0. If the time-dependent distribution function ν(r,k, t) is close to the global
equilibrium ν0(r,k), it can be approximately expressed by a suitable rescaling of the
equilibrium distribution [158]:

ν(r,k, t)→ Γ(t)ν0(R(r, t),K(r,k, t)) , (4.23)

with the rescaled variables defined by

Ri(r, t) = ri
bi(t)

, (4.24)

and
Ki(r,k, t) = 1√

Θi(t)

[
ki −

Mḃi(t)ri
~bi(t)

]
, (4.25)

where bi(t) and Θi(t) are time-dependent dimensionless scaling parameters. The nor-
malization factor Γ(t) is given by [158]

Γ(t)−1 = b(t)3 Θ(t) 3
2 . (4.26)

The second term in the brackets of Equation (4.25) is proportional to the local velocity.
Namely, taking the time derivative of Equation (4.24) we get

Ṙi(r, t) ∼ ki −
Mḃi(t)ri
~bi(t)

, (4.27)
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with ki = Mṙi/~ [122, 159]. Subtracting the drift velocity ḃi(t)ri/bi(t) in the ansatz
(4.25) it is ensured that the momentum K(r,k, t) is not affected by the time de-
pendence of the ansatz for R(r, t). The time dependence of the Wigner function is
governed by the scaling parameters bi(t) and Θi(t), which can be connected with the
time-dependent deformations of the spatial and momentum variables, respectively.
Inserting the ansatz (4.24)-(4.26) into Equation (4.21) yields

VbΘ(R,K) = Vtrap(b,R) + Vmf,bΘ(R,K) = Vtrap(bxRx, byRy, bzRz)

+
∫
d3R′n0(R′)Vdd(b,R−R′)− 1

b
3

∫ d3K′

(2π)3ν
0(R,K′)Ṽdd(Θ,K−K′) , (4.28)

where n0(r) denotes the spatial density in local equilibrium, the rescaled DDI potential
is

Vdd(b,R−R′) = Vdd
[
bx(Rx −R′x), by(Ry −R′y), bz(Rz −R′z)

]
, (4.29)

and the rescaled Fourier-transformed DDI potential is given by

Ṽdd(Θ,K−K′) = Ṽdd

[
Θ

1
2
x (Kx −K′x),Θ

1
2
y (Ky −K′y),Θ

1
2
z (Kz −K′z)

]
. (4.30)

It is important to note here that the Fourier transformation and rescaling do not
commute, so the correct order of performing these two operations is very important.

Substituting the scaling ansatz (4.24)-(4.26) into all terms of Equation (4.20) leads
to

∂ν(r,k, t)
∂t

= Γ̇ν0(R,K) + Γ∂ν
0(R,K)
∂t

= −Γ
∑
i

(
1
2

Θ̇i

Θi

+ ḃi
bi

)
+ Γ

∑
i

(
∂ν0(R,K)

∂Ri

∂Ri

∂t
+ ∂ν0(R,K)

∂Ki
∂Ki
∂t

)
, (4.31)

~k
M
∇rν(r,k, t) = ~

M

∑
i

ki
∂ν(r,k, t)

ri

= Γ~
M

∑
i

(
Θ

1
2
i Ki + MḃiRi

~

)(
∂ν0(R,K)

∂Ri

∂Ri

∂ri
+ ∂ν0(R,K)

∂Ki
∂Ki
∂ri

)
, (4.32)

1
~
∇kV (r,k, t)∇rν(r,k, t)− 1

~
∇rV (r,k, t)∇kν(r,k, t)

= Γ
~
∑
i

(
∂VbΘ(R,K)

∂Ki
∂ν0(R,K)

∂Ri

− ∂VbΘ(R,K)
∂Ri

∂ν0(R,K)
∂Ki

)
∂Ri

∂ri

∂Ki
∂ki

, (4.33)

Icoll[ν] = −Γν0(R,K)− Γleν le(R,K)
τ

, (4.34)
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which, together with

∂Ri

∂t
= − ḃiRi

bi
, (4.35)

∂Ki
∂t

= −Θ̇iKi
2Θi

− Mb̈iRi

~Θ
1
2
i

+ Mḃ2
iRi

~biΘ
1
2
i

, (4.36)

∂Ri

∂ri
= 1
bi
, (4.37)

∂Ri

∂ki
= 0 , (4.38)

∂Ki
∂ri

= Mḃi

~Θ
1
2
i bi

, (4.39)

∂Ki
∂ki

= 1
Θ

1
2
i

, (4.40)

yields the rescaled Boltzmann equation in the following form

Γ̇ν0 + Γ
∑
i

∂ν0

∂Ri

~KiΘ
1
2
i

Mbi
− Γ

∑
i

∂ν0

∂Ki

Ki
(

1
2

Θ̇i

Θi

+ ḃi
bi

)
+ RiMb̈i

~Θ
1
2
i

+ 1
~biΘ

1
2
i

∂Vtrap

∂Ri


− Γ

~
∑
i

1
biΘ

1
2
i

[
∂ν0

∂Ki
∂Vmf,bΘ

∂Ri

− ∂ν0

∂Ri

∂Vmf,bΘ

∂Ki

]
= Icoll[ν] . (4.41)

Multiplying Equation (4.41) by K2
i and integrating over the phase-space variables

leads to a differential equation for the scaling parameters Θi(t),

Θ̇i

Θi

+ 2 ḃi
bi

= 1
ΓN 〈K2

i 〉
0

∫∫ d3R d3K
(2π)3 K

2
i Icoll[ν] , (4.42)

where 〈K2
i 〉

0 denotes the phase-space average of variable K2
i with respect to the equi-

librium distribution function ν0, calculated in Appendix D.1. Note that a lot of terms
vanish due to the fact that integral of odd function on a symmetric interval is zero. To
assess this, we also use the fact that ν0(R,K) is even function in both coordinates and
momenta, and that the same applies to the DDI potential and its Fourier transform.
With this, inserting the relaxation-time approximation (4.34) into the right-hand side
of Equation (4.42) leads to

Θ̇i

Θi

+ 2 ḃi
bi

= −1
τ

(Θi −Θle
i ) . (4.43)

Similarly, multiplying Equation (4.41) instead by RiKi and integrating again over the
phase-space leads to an integro-differential equation for the scaling parameters bi(t),
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− Γ~Θ
1
2
i

Mbi
N
〈
K2
i

〉0
+ ΓMb̈i

~Θ
1
2
i

N
〈
R2
i

〉0
+ Γ

~biΘ
1
2
i

∫ d3R d3K
(2π)3 Ri

∂Vtrap

∂Ri

ν0

− Γ
~

∫∫ d3R d3K
(2π)3 RiKi

∑
j

1
bjΘ

1
2
j

(
∂ν0

∂Kj
∂Vmf,bΘ

∂Rj

− ∂ν0

∂Rj

∂Vmf,bΘ

∂Kj

)
= 0 . (4.44)

Here 〈R2
i 〉

0 denotes the phase-space average of variable R2
i with respect to the equi-

librium distribution function ν0, calculated also in Appendix D.1. Since RiKi is a
conserved quantity of the collision integral, the right-hand side of Equation (4.44) is
zero, as argued in Section 3.2 of Reference [160].

The trapping term can be evaluated as follows

∫∫ d3R d3K
(2π)3 Ri

∂Vtrap(b,R)
∂Ri

ν0(R,K)

=
∫∫ d3R d3K

(2π)3 Mω2
i b

2
iR2

i ν
0(R,K) = Mω2

i b
2
iN

〈
R2
i

〉0
. (4.45)

Using the Fourier transformation to rewrite both mean-field terms in a more compact
form, Equations (4.44) for the scaling parameters bi(t) can be further simplified to

b̈i + ω2
i bi −

~2Θi
∑
j R′2ijK ′2j

M2bi
∑
j R′′2ij R′′2j

+ 8B
D
i (b) +BE

i (b,Θ)
MNbi

∑
j R′′2ij R′′2j

= 0 , (4.46)

where BD
i (b) and BE

i (b,Θ) are the integrals corresponding to the Hartree direct (D)
and Fock exchange (E) term, given by

BD
i (b) = 1

2

∫ d3K
(2π)3 W̃i(b,K)ñ0(K)ñ0(−K) , (4.47)

BE
i (b,Θ) = − 1

2b3

∫∫∫ d3R d3K d3K′

(2π)6 ν0(R,K)ν0(R,K′)W̃i(Θ,K−K′) . (4.48)

Here ñ0(K) represents the Fourier transform of the density, while quantities W̃i(b,K)
and W̃i(Θ,K−K′) are defined as follows

W̃i(b,K) =
∫
d3R e−iK·R Ri

∂Vdd(bxRx, byRy, bzRz)
∂Ri

W̃i(b,K) = − 1
b

3
∂

∂Ki

[
KiṼdd

(
Kx
bx
,
Ky
by
,
Kz
bz

)]
. (4.49)

W̃i(Θ,K−K′) =
(∫

d3R e−iR·Q Ri
∂Vdd

∂Ri

) ∣∣∣∣
Qi=Θ

1
2
i (Ki−K′

i)

= − ∂

∂Ki

[
KiṼdd

(
Θ

1
2
x (Kx −K′x),Θ

1
2
y (Ky −K′y),Θ

1
2
z (Kz −K′z)

)]
. (4.50)
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Note that in the definitions of W̃i(b,K) and W̃i(Θ,K −K′) the order of performing
a Fourier transformation and rescaling is opposite. This is important since these two
operations do not commute, as mentioned before.

4.2.1 Hartree and Fock kinetic integrals

In this Section we study the Hartree direct kinetic integral BD
i (b), and the Fock ex-

change kinetic integral BE
i (b,Θ). Since both of them are similar to the energy integrals

calculated in Sections 2.2.3 and 2.2.4, some of the previous results can be reused. For
instance, the Fourier transform of the density ñ0(K) is calculated in Section 2.2.3, and
the explicit result is given by Equation (2.48), which has a symmetry

ñ0(K) = ñ0(−K) . (4.51)

Together with the particle number conservation, given by Equation (2.17), this leads
to the simplified expression for the Hartree integral (4.47),

BD
i (b) =− 1

2
482N2Cdd

3b3

∫ d3K
(2π)3

∂

∂Ki

Ki
3
(∑

nRT
zn
Kn
bn

)2

K2
x

b2
x

+ K2
y

b2
y

+ K2
z

b2
z

− 1




×
J2

3

[(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

) 1
2
]

(
c′′2x R

′′2
x + c′′2y R

′′2
y + c′′2z R

′′2
z

)3 , (4.52)

with c′′ = R′′TK. Using substitution of variables K = R′′q and the chain rule, the
derivative ∂/∂Ki transforms to

∂

∂Ki
=
∑
j

∂qj
∂Ki

∂

∂qj
=
∑
j

R′′Tji
∂

∂qj
, (4.53)

which leads to

BD
i (b) =− 48N2Cdd

π3b
3

∫
d3q

∑
j

R′′Tji
∂

∂qj



(∑

l

R′′ilql
)3

(∑
n,mRT

znR′′nm
qm
bn

)2

∑
n,r,sR′′nrR′′ns

qrqs
b2
n

− 1




×
J2

3

[(
q2
xR
′′2
x + q2

yR
′′2
y + q2

zR
′′2
z

) 1
2
]

(
q2
xR
′′2
x + q2

yR
′′2
y + q2

zR
′′2
z

)3 . (4.54)
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Now, performing a substitution ui = qiR
′′
i , we obtain

BD
i (b) =− 48N2Cdd

π3R
′′3
b

3

∫
d3u

J2
3 (u)
u61 +

∑
j,l

R′′Tji R′′il
ul
R′′l

∂

∂ uj
R′′
j


3
(∑

n,mRT
znR′′nm um

R′′
mbn

)2

∑
n,r,sR′′nrR′′ns urus

R′′
rR

′′
s b

2
n

− 1

 . (4.55)

Switching to spherical coordinates, ui = Riz(ϑ, φ)u, and using the identity given by
Equation (2.52), after integration over u the last expression simplifies to

BD
i (b) = −6N2c0

R
′′3
b

3
1

4π

∫
sinϑ dϑ dφ

1 +
∑
j,l

R′′Tji R′′il
Rlz(ϑ, φ)
R′′l

∂

∂ Rjz(ϑ,φ)
R′′
j



×


3
[∑

n,mRT
znR′′nm

Rmz(ϑ,φ)
R′′
mbn

]2
∑
n,r,sR′′nrR′′ns

Rrz(ϑ,φ)Rsz(ϑ,φ)
R′′
rR

′′
s b

2
n

− 1

 . (4.56)

Unfortunately, the above expression cannot be further simplified analytically.
Therefore, we switch now to the Fock integral (4.48), which can be treated in

a similar way. Namely, using the Fourier transformation, the Fock integral can be
rewritten in the following form

BE
i (b,Θ) = − 1

2b3

∫∫∫ d3K′′d3K′d3R′

(2π)6 W̃i(Θ,K′′)ν̃0(K′,R′)ν̃0(−K′,−R′)eiR′·K′′
, (4.57)

where ν̃0(K′,K) denotes the Fourier transform of ν0(R,K) with respect to the first
variable and ν̄0(R,R′) the Fourier transform with respect to the second variable, as
defined earlier in Section 2.2.4. The calculation of the R′ and K′ in Equation (4.57)
is already done in Section 2.2.4, and the explicit result is given by Equation (2.66).
Putting all this together leads to

BE
i (b,Θ) = NCdd

1536π4b
3

∫
d3K ∂

∂Ki

Ki


3
(∑

nRT
znΘ

1
2
nKn

)2

ΘxK2
x + ΘyK2

y + ΘzK2
z

− 1




×
∫ π

2

0

dt

sin6t

4 sin2t−
∑
j

κ2
j

K ′2j

3

H
2 sint−

√√√√∑
j

κ2
j

K ′2j

 . (4.58)

where κ = RTK. By substituting variables according to K = Rq and using Equa-
tion (4.53) together with the particle number conservation Equation (2.17), we get
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BE
i (b,Θ) = NCdd

1536π4b
3

∫
d3q

1 +
∑
j,l

RT
jiRilql

∂

∂qj




3
(∑

n,mRT
znRnmΘ

1
2
nqm

)2

∑
n,r,sRnrRnsΘnqrqs

− 1


×
∫ π

2

0

dt

sin6t

4 sin2t−
∑
j

q2
j

K ′2j

3

H
2 sint−

√√√√∑
j

q2
j

K ′2j

 . (4.59)

Using a new substitution qi = uiK
′
i, we obtain

BE
i (b,Θ) = NCddK̄ ′

3

1536π4b
3

∫
d3u

1 +
∑
j,l

RT
jiRilK

′
lul

∂

∂(K ′juj)



×


3
(∑

n,mRT
znRnmΘ

1
2
nK ′mum

)2

∑
n,r,sRnrRnsΘnK ′rK

′
surus

− 1


∫ π

2

0

dt

sin6t

(
4 sin2t− u2

)3
H (2 sint− u) . (4.60)

After again switching to spherical coordinates, ui = Riz(ϑ, φ)u, the evaluation of the
integral over variables u and t yields

BE
i (b,Θ) = 6N2c0

R
′′3
b

3
1

4π

∫
sinϑ dϑ dφ

1 +
∑
j,l

RT
jiRilK

′
lRlz(ϑ, φ) ∂

∂(K ′jRjz(ϑ, φ))



×


3
[∑

n,mRT
znRnmΘ

1
2
nK ′mRmz(ϑ, φ)

]2

∑
n,r,sRnrRnsΘnK ′rK

′
sRrz(ϑ, φ)Rsz(ϑ, φ) − 1

 . (4.61)

Expressions for BD
i (b) and BE

i (b,Θ) given by Equations (4.56) and (4.61), respectively,
cannot be further simplified analytically. Thus, Equation (4.46) for the scaling param-
eters bi(t) has to be solved numerically in the most general case. The expressions for
the integrals BD

i (b) and BE
i (b,Θ) derived here are prerequisites for such a numerical

calculation. However, before one embarks in this direction, which we plan to do in the
future, but not within the scope of this Thesis, there are special cases for which the
above integrals can be calculated analytically. In the following Section we consider
three such special cases.

4.2.2 Special cases

Although the Hartree direct kinetic integral BD
i (b), and the Fock exchange kinetic

integral BE
i (b,Θ) cannot be solved analytically for the general orientation of dipoles,

it is still possible to evaluate them in some special cases. For instance, when the dipoles
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are oriented along one of the trap axes, both integrals can be expressed in temrs of
the well-known dipolar anisotropy function, see Appendix B.1.

Let us assume that the dipoles are oriented along z axis. Note that in this case
θ = θ′ = θ′′ = 0 and ϕ = ϕ′ = ϕ′′ = 0, from which follows that R = R′ = R′′ = I3, and
thus K ′i = Ki and R′′i = Ri. Having this in mind the Hartree direct kinetic integral
BD
i (b) given by Equation (4.56) reduces to

BD
i (b) =− 6N2c0

R
3
b

3
1

4π

∫
sinϑ dϑ dφ

[
1 + Riz(ϑ, φ) ∂

∂Riz(ϑ, φ)

]  3R2
zz(ϑ,φ)
R2
zb

2
z∑

n
R2
nz(ϑ,φ)
R2
nb

2
n

− 1


=− 6N2c0

R
3
b

3

[
1− biRi

∂

∂biRi

]
1

4π

∫
sinϑ dϑ dφ

×

3 cos2 ϑ
b2
zR

2
z

b2
xR

2
x

cos2 φ sin2 ϑ+ b2
zR

2
z

b2
yR

2
y

sin2 φ sin2 ϑ+ cos2 ϑ
− 1


=6N2c0

R
3
b

3

[
f

(
bxRx

bzRz

,
byRy

bzRz

)
− biRi

∂

∂biRi

f

(
bxRx

bzRz

,
byRy

bzRz

)]
. (4.62)

Here we have used the anisotropy function definition given by Equation (B.1), as well
as the identity

a
∂

∂a
f
(
x

a

)
= −x ∂

∂x
f
(
x

a

)
. (4.63)

The Fock exchange kinetic integral BE
i (b,Θ) can be evaluated in a similar way

BE
i (b,Θ) =6N2c0

R
3
b

3
1

4π

∫
sinϑ dϑ dφ

[
1 + Riz(ϑ, φ) ∂

∂Riz(ϑ, φ)

] [
3ΘzK

2
zR2

zz(ϑ, φ)∑
n ΘnK2

nR2
nz(ϑ, φ) − 1

]

=6N2c0

R
3
b

3

1 + Θ
1
2
i Ki

∂

∂Θ
1
2
i Ki

 1
4π

∫
sinϑ dϑ dφ

×

3 cos2 ϑ
ΘxK2

x

ΘzK2
z

cos2 φ sin2 ϑ+ ΘxK2
x

ΘzK2
z

sin2 φ sin2 ϑ+ cos2 ϑ
− 1



=6N2c0

R
3
b

3
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1
2
zKz

Θ
1
2
xKx
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Θ

1
2
zKz

Θ
1
2
yKy

+ Θ
1
2
i Ki

∂

∂Θ
1
2
i Ki
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where we have again used the definition of the anisotropy function and another identity,

a
∂

∂a
f (ax) = x

∂

∂x
f (ax) . (4.65)

Inserting Equations (4.64) and (4.62) into Equation (4.46), together with Equation (4.43),
yields a system of coupled ordinary differential equations of motion for the respective
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scaling parameters [125, 126],
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Θ̇i + 2 ḃi
bi

Θi + 1
τ

(Θi −Θle
i ) = 0 . (4.67)

Note that in the global equilibrium the three Equations (4.66), with the initial condi-
tions bi(0) = Θi(0) = 1 and ḃi(0) = Θ̇i(0) = 0 at t = 0, reduce to Equations (2.96)–
(2.98), as expected. Also, we remark that these initial conditions correspond to
ν(r,k, t = 0) ≡ ν0(R,K).

Another special case worth considering is when the dipoles are oriented along the
x axis, i.e., θ = 90◦ and ϕ = 0◦. In order to obtain the corresponding equations
for the scaling parameters, we perform the analogous calculation as in the previous
case. However, we can also take advantage of the system’s symmetry and just use
simple cyclic permutation of the indices x → y → z → x in Equation (4.66). This
immediately leads to the set of equations for this special case,
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 = 0 , (4.68)

Θ̇i + 2 ḃi
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Θi + 1
τ

(Θi −Θle
i ) = 0 . (4.69)

Now, we can easily write down equations for the third specal case, when the dipoles
are oriented along y axis. Using a cyclic permutation of the indices x → z → y → x

in Equation (4.66) or x → y → z → x in Equation (4.68) the corresponding set of
equations for this special case reads
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Θ̇i + 2 ḃi
bi

Θi + 1
τ

(Θi −Θle
i ) = 0 . (4.71)
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The resulting ordinary differential equations for the respective scaling parameters
for all three special cases can be solved numerically for experimentally realistic param-
eters and relaxation times in order to describe the dynamics of dipolar Fermi gases.
The studies of collective oscillations and TOF dynamics of dipolar Fermi gases have
so far focused on either the collisionless regime [93, 95, 122], where collisions can be
neglected, or on the hydrodynamic regime [91, 92], where collisions occur so often that
local equilibrium can be assumed. The recent paper of Wächtler et al. [126] even
studied the behavior of collective oscillations when the system undergoes a crossover
from one regime to the other.

Motivated by the experimental observation of the ellipsoidal FS deformation in the
TOF experiment [48], we continue here the analytical analysis and investigate in detail
the expansion dynamics for the collisional regime, which represents the transition
zone between the limiting collisionless and hydrodynamic regimes. We also extend
previous approaches based on the relaxation-time approximation by introducing a
self-consistently determined relaxation time, and study how this quantitatively affects
the TOF dynamics.

4.3 Time-of-flight dynamics

The most ubiquitous method to study the physics of trapped ultracold gases is their
absorption imaging after the release of the atomic or molecular cloud from the trap.
Turning off the trap potential allows the ultracold gas cloud to expand for tens of
milliseconds, which is called time of flight, and then the gas is illuminated by a laser
beam with the frequency resonant to one of the allowed atomic or molecular transitions.
The absorption of light by the atoms or molecules casts a shadow, which is then imaged
by charge-coupled device (CCD) camera, and an absorpiton image is obtained. Note
that expansion is essential here, since it ensures that the atomic or molecular sample
is large enough so that it can be imaged by a camera. This technique, known as
the time-of-flight (TOF) imaging, is one of the most important probes of ultracold
quantum systems. The TOF expansion experiments serve as a key diagnostic tool to
study many of their properties. For example, they can provide information about the
various physical parameters of the system, such as the density distribution of atoms
or molecules, its number, frequencies of the collective modes, temperature, pressure,
chemical potential, entropy, system size, etc.

From the size of the expanded cloud and the known time of flight one can directly
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obtain, for instance, the Fermi energy of a noninteracting degenerate Fermi gas. In
the case of free ballistic expansion, which is usually applied to theoretically model
the TOF, the ellipsoidal FS deformation due to the DDI is taken into account before
expansion, while all interactions between the atoms during the TOF are neglected.
In contrast to that, a nonballistic expansion model takes into account interactions for
calculating both the global equilibrium before expansion and the subsequent expansion
dynamics. Here we show how the quantitative information about the ellipsoidal FS
deformation, in the parameter regime relevant for the current experiments, can be
determined by solving the kinetic Boltzmann equation for the TOF expansion of a
dipolar Fermi gas.

In this Section we focus on systems in triaxial trap geometries, whit the dipoles
oriented either along z direction (θ = ϕ = 0◦) or along x direction (θ = 90◦, ϕ = 0◦).
This reflects the situation in ongoing experiments and also corresponds to the special
cases for which the equations can be derived analytically and solved numerically. Bear-
ing in mind that the trap potential is turned off during the TOF, Equations (4.66) or
(4.68) can be used to describe the TOF dynamics of such systems geometry if we just
remove the terms ω2

i bi, which stem from the harmonic trap potential. The resulting
TOF equations are then solved numerically for relaxation times that correspond to
the collisionless, the collisional, and the hydrodynamic regime.

Within this formalism, the average size of the Fermi gas cloud in real space in the i-
th direction is described in terms of the root mean squares

√
〈r2
i (t)〉 (see Appendix D.2

for more details). For the considered system configuration it is given by

〈r2
i (t)〉 = 1

N

∫ d3k

(2π)3

∫
d3r r2

i ν(r,k, t) = 1
8R

2
i b

2
i (t) . (4.72)

The deformation of the cloud shape is described in terms of the time-dependent cloud
aspect ratio AR(t), which is defined by the ratio of the root mean square of the transver-
sal and longitudinal cloud radii, i.e., the average sizes of the cloud in the vertical√
〈r2

v(t)〉 and horizontal
√
〈r2

h(t)〉 direction with respect to the imaging plane. Since
the imaging axis in the Innsbruck experiment [48] has an angle of α = 28◦ with respect
to the y axis, according to Equation (D.14) from Appendix D.2 this leads to

AR(t) =
√√√√ 〈r2

z(t)〉
〈r2
x(t)〉 cos2 α + 〈r2

y(t)〉 sin2 α
= Rzbz(t)√

R2
xb

2
x(t) cos2 α +R2

yb
2
y(t) sin2 α

. (4.73)

This aspect ratio in real space represents a directly measurable quantity in the TOF
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dynamics experiments. In order to describe the DDI influence on the FS we also use
the corresponding aspect ratio in momentum space. In analogy to AR(t), the average
sizes of the Fermi gas cloud in momentum space read (see Appendix D for more details)

〈k2
i (t)〉 = 1

N

∫
d3r

∫ d3k

(2π)3 k
2
i ν(r,k, t) = 1

8

(
K2
i Θi(t) + M2R2

i ḃ
2
i (t)

~2

)
. (4.74)

The corresponding aspect ratio in momentum space, according to Equation (D.23)
from Appendix D.3, is given by
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. (4.75)

The relaxation time τ in Equation (4.67) determines the regime of the dipolar Fermi
gas with respect to the collisions frequency. Therefore, by solving the appropriate
equations for varying values of τ , we are able to describe the dynamic properties
of the Fermi gas all the way from the collisionless (ω̄τ � 1) to the hydrodynamic
(ω̄τ � 1) regime, which represent two limiting regimes. In Section 4.3.1 we study the
collisionless regime, in Section 4.3.2 the hydrodynamic regime, while in Sections 4.3.3
and 4.3.4 we investigate the system’s behavior in the intermediate, collisional regime.
At first, we treat the relaxation time as a phenomenological parameter, and later on
we improve the relaxation-time approximation in the collisional regime even further by
determining the relaxation time in a self-consistent way, without free fiting parameters.

4.3.1 Collisionless regime

The value of the relaxation time τ determines the regime of the Fermi gas during
the expansion. In the low-density or collisionless regime, which is determined by the
condition ω̄τ � 1, the relaxation time τ can be taken to be infinite. In the limit
τ → ∞ the differential Equations (4.67) for the scaling parameters Θi decouple and
the dynamic behavior in each direction is independent from the others. Due to this,
Equations (4.67) can be solved analytically. With the respective initial conditions
bi(0) = Θi(0) = 1 and ḃi(0) = Θ̇i(0) = 0 we obtain

Θi(t) = bi(t)−2 . (4.76)
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Inserting this solution to Equations (4.66) for the scaling parameters bi(t) yields the
equations of motion in the collisionless regime [93, 122, 125]. We numerically solve
them for a general system geometry, where the trap frequencies in the three spatial
directions are different and correspond to the values of the Innsbruck experiment [48].

Graphs in the left-hand side column of Figure 4.1 show aspect ratios
√
〈r2
x〉/〈r2

z〉,√
〈r2
y〉/〈r2

z〉, as well the cloud aspect ratio AR in real space during the TOF expansion
in the collisionless regime. The black dotted line in the middle corresponds to the
case of a noninteracting Fermi gas, when the differential equations for the scaling
parameters bi(t) can be solved analytically, yielding

bni
i (t) =

√√√√1 +
(
~K0

F
MR0

i

)2

t2 , (4.77)

with R0
i and K0

F denoting the global equilibrium radius and momentum in the i-th
direction, given by Equations (1.21) and (1.22), respectively. Furthermore, in the long
TOF limit all aspect ratios for a noninteracting Fermi gas in real space satisfy

lim
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2
t2
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2 + ~2K0
F

2
t2

= 1 . (4.78)

This shows that the cloud of noninteracting fermions becomes spherical after a long
enough expansion, reflecting its isotropic momentum distribution even in the triaxial
harmonic trap. As the DDI is absent here, the orientation of the magnetic or the elec-
tric field, i.e., orientationof the dipole moments of atoms or molecules, has no influence
on the FS deformation [158]. Graphs in the right-hand side column of Figure 4.1 show
the corresponding time-dependence of the aspect ratios in momentum space. As ex-
pected, the black dotted line is constant and equal to one, as for the noninteracting
fermions the FS is not deformed. Namely, as the expectation value of the momentum
root mean square reads

〈k2
i (t)〉ni = K0

F
2
, (4.79)

this further leads to the conclusion that the FS in noninteracting case remains of the
same size during the TOF.

Furthermore, Figure 4.1 also depicts the time dependence of the aspect ratios when
the DDI is taken into account. The dashed lines correspond to the ballistic expansion,
when the DDI is assumed to affect the initial ground state, but not later during the
expansion. Mathematically, this means that the ballistic expansion is also determined
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Figure 4.1: Aspect ratios in real and momentum space in the collisionless regime
during TOF expansion of ultracold gas of 167Er: (a)

√
〈r2
x〉/〈r2

z〉, (b)
√
〈r2
y〉/〈r2

z〉, (c)
AR, (d)

√
〈k2
x〉/〈k2

z〉, (e)
√
〈k2
y〉/〈k2

z〉, (f) AK . Black dotted lines represent aspect
ratios for noninteracting case, dashed lines represent ballistic expansion, and solid
lines represent nonballistic expansion. As indicated in the graphs (a)-(d), two lower
blue solid and dashed lines correspond to θ = 0◦, and two upper red solid and dashed
lines correspond to θ = 90◦, while in graphs (e) and (f) the position of lines is reversed:
two upper blue solid and dashed lines are for θ = 0◦, and two lower red solid and dashed
lines are for θ = 90◦.

by Equation (4.77), but now with the parameters Ri and Ki instead of R0
i and K0

F,
respectively

bbal
i (t) =

√√√√1 +
(
~Ki

MRi

)2

t2 . (4.80)
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The solid lines in Figure 4.1 represent results for the nonballistic expansion, when
we take the DDI into account for calculating both the initial ground state and the
subsequent expansion. To obtain these results, one has to solve numerically the coupled
differential Equations (4.66) together with Equation (4.76). In Figures 4.1(a) to 4.1(d),
top red solid and dashed lines correspond to the orientation of the dipoles in the x
direction, and bottom blue solid and dashed lines correspond to the dipoles’ orientation
in the z direction. In Figures 4.1(e) and 4.1(f) the position of lines turns out to be
reversed: top blue lines give results for the dipoles in the z direction, and bottom red
lines for the dipoles in the x direction.

From the graphs in the right-hand column of Figure 4.1 we read off that the aspect
ratios in momentum space are constant if ballistic expansion approximation is used
(all dashed lines). This is not surprising, since here the DDI is neglected during the
expansion. This can also be shown mathematically, since, similarly to Equation (4.79),
it follows that 〈k2

i (t)〉bal = K2
i , and thus the momentum-space aspect ratios leads to

√√√√〈k2
i (t)〉bal

〈k2
j (t)〉bal = Ki

Kj

. (4.81)

So, the momentum-space aspect ratios for the ballistic expansion are clearly time-
independent and are therefore determined by the initial ground state distribution.

From Figure 4.1 we see that the cloud aspect ratios in real space reach their corre-
sponding plateaus after several tens of milliseconds. The asymptotic value of AR for
θ = 0◦ for ballistic expansion is 1.025, whereas for nonballistic expansion it is 1.035,
thus resulting in a 1% difference due to the DDI. For θ = 90◦ the asymptotic value of
AR for ballistic expansion is 0.98, while for nonballistic expansion it is 0.97, represent-
ing again a 1% difference. We also note that for θ = 0◦ the usual inversion of the cloud
shape occurs, while for θ = 90◦ this is not the case. All these results are in excellent
quantitative agreement with the experimental values reported in Reference [48].

Aspect ratios in momentum space behave similarly, and again a difference of around
0.5− 1% between their asymptotic values in a ballistic and nonballistic expansion are
observed. But one important difference is that here they are reached much faster,
already after several milliseconds. A more detailed analysis reveals that the two terms
in Equation (4.74) compete with each other during the TOF expansion, but the sec-
ond term becomes dominant quite fast. Although the corresponding term in Equa-
tion (4.72) has the same asymptotic behavior, the initial value of AK is much closer
to its asymptotic value than in the case of AR and, as a consequence, all aspect ratios
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in momentum space converge faster.
Note that the aspect ratio in momentum space at the initial time t = 0 coincides

with the asymptotic aspect ratio in real space for ballistic expansion,

Abal
K (0) = lim

t→∞
Abal
R (t) . (4.82)

To prove this, we start by calculating the ballistic expansion aspect ratio in momentum
space at t = 0. It can be obtained from Equation (4.75) by using the initial conditions
for the scaling parameters, yielding

Abal
K (0) = Kz√

K2
x cos2 α +K2

y sin2 α
. (4.83)

On the other hand, long-time limit of the ballistic expansion aspect ratio in real space
can be obtained if we insert Equation (4.80) into Equation (4.73),

lim
t→∞

Abal
R (t) = lim

t→∞

√√√√ M2R2
z + ~2K2

z t
2(

M2R2
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(
M2R2

y + ~2K2
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2
)

sin2 α

= Kz√
K2
x cos2 α +K2

y sin2 α
, (4.84)

and is the same as the above obtained expression for Abal
K (0) in Equation (4.83). This

fact is systematically used in a variety of TOF experiments, and in particular it was
used in Reference [48] in order to observe the ellipsoidal deformation of the FS, as real-
space aspect ratios can be readily measured during the TOF expansion. However, this
is only correct within the ballistic approximation, as for the truly nonballistic expan-
sion, when interactions during the expansion cannot be neglected, such a relationship
is no longer valid.

However, from Figure 4.2 we read off that both for ballistic (dashed lines) and
nonballistic (solid lines) expansion another relationship seems to hold. Namely, the
aspect ratios in momentum space and the corresponding aspect ratios in real space
turn out to have the same asymptotic values

lim
t→∞

AK(t) = lim
t→∞

AR(t) . (4.85)

The above is true for both considered orientations of dipoles. A similar conclusion was
reached in Reference [90] for a dipolar Fermi gas that was initially in a cylindrically
symmetric harmonic trap, but we see here that this is true even for a fully anisotropic
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Figure 4.2: Aspect ratios in real and momentum space in the collisionless regime
converge to the same asymptotic values during TOF expansion of ultracold gas of 167Er:
(a) θ = 0◦, (b) θ = 90◦. Solid (dashed) lines represent aspect ratios for nonballistic
(ballistic) expansion of 167Er. The initially lower branch of blue lines corresponds to
real space aspect ratios AR, while the initially upper branch of red lines corresponds
to momentum space aspect ratios AK .

harmonic trapping potential. Note that this finding cannot be directly used to deter-
mine the aspect ratio in momentum space at t = 0 and the corresponding initial defor-
mation of the FS, as for the ballistic expansion according to Equation (4.82). But this
observation still allows to theoretically extract information on the momentum space
distribution from experimental data. However, this requires that the corresponding
equations are propagated backwards in time, so that the initial distribution in mo-
mentum space is calculated starting from the experimentally measured distribution in
real space. Here the numerical challenge is that this backward propagation has to be
calculated for an infinitely long expansion time.

4.3.2 Hydrodynamic regime

In contrast to the previously considered collisionless regime, where collisions are com-
pletely neglected, we now turn to the hydrodynamic regime, where the system is
supposed to have such a high density and, therefore, such a high collision rate, that
it is always in local equilibrium. Although realistic systems, even if initially in the
hydrodynamic regime, eventually become collisionless during the expansion, we follow
References [91, 92] and consider this theoretical limiting case for the sake of complete-
ness. It turns out that this limit is also necessary as a prerequisite for considering the
more complex collisional case.

In the hydrodynamic regime, the scaling parameters Θhd
i always coincide with the

local equilibrium values, i.e., we have Θhd
i = Θle

i . However, since the limit τ → 0 holds,
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the last term in the left-hand side of Equations (4.67) is undetermined. Therefore,
instead of Equations (4.67), the hydrodynamic regime is defined via the following
condition [158]

Γhd(t)−1 =
∏
i

bhd
i (t)

√
Θhd
i (t) = 1 . (4.86)

Using this condition, minimizing the Hartree-Fock energy (2.75) in the local equilib-
rium leads to [91, 92]

Θhd
x = Θhd

y , (4.87)
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Equations (4.66), with the identifications bi(t) = bhd
i (t) and Θi(t) = Θhd

i (t), together
with Equations (4.87) and (4.88), and the normalization condition (4.86) represent a
closed set of six equations for the six scaling parameters in the hydrodynamic regime.
We solve these equations numerically during the nonballistic TOF expansion. For
comparison, we have also solved the corresponding equations for the ballistic expan-
sion, although the hydrodynamic regime implies that the DDI cannot be neglected at
any point.

Figure 4.3 shows the corresponding aspect ratios in real and momentum space for
167Er. As expected, we see that there is a significant difference between the ballistic
and nonballistic expansion, in contrast to the collisionless regime in Figure 4.1. From
graphs in the left column of Figure 4.3 we observe that the real-space aspect ratios for
θ = 0◦ behave, in general, similarly to those in the collisionless regime, including the
cloud shape inversion, although the asymptotic values differ more from their initial
values for nonballistic expansion. On the other hand, for θ = 90◦ we see qualitatively
different behavior in Figure 4.3(a), where the aspect ratio

√
〈r2
x〉/〈r2

z〉 increases, while
in Figure 4.1(a) it decreases. In Figure 4.3(c) for θ = 90◦ we read off that the aspect
ratio AR even behaves nonmonotonously, with a local maximum at around 1 ms, while
in the collisionless regime it only increases monotonously until it reaches its asymptotic
value. However, again the inversion of the cloud shape is not present for θ = 90◦, unlike
for θ = 0◦. We also note that the positions of ballistic expansion curves are reversed in
all graphs compared to the collisionless regime, including those for momentum-space
aspect ratios.
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Figure 4.3: Aspect ratios in real and momentum space in the hydrodynamic regime
during TOF expansion of ultracold gas of 167Er: (a)

√
〈r2
x〉/〈r2

z〉, (b)
√
〈r2
y〉/〈r2

z〉, (c)
AR, (d)

√
〈k2
x〉/〈k2

z〉, (e)
√
〈k2
y〉/〈k2

z〉, (f) AK . Dashed lines represent ballistic expansion
and solid lines represent nonballistic expansion. As indicated in graphs (a)-(d), the
lower blue solid and the upper blue dashed line correspond to θ = 0◦, while the upper
red solid and the lower red dashed line correspond to θ = 90◦. In graphs (e) and (f)
the position of lines is reversed: the upper blue solid and the lower blue dashed line
are for θ = 0◦; the lower red solid and the upper red dashed line are for θ = 90◦.

The behavior of momentum-space aspect ratios in the right column of Figure 4.3
is generally the same as in Figure 4.1 for the collisionless regime, just with larger
differences between initial and asymptotic values, for both cases θ = 0◦ and θ = 90◦.

The final cloud aspect ratio in real space for nonballistic expansion is twice as large
as the corresponding collisionless value for θ = 0◦, while for θ = 90◦ the asymptotic

98



Chapter 4 Dynamics of dipolar Fermi gases

Figure 4.4: Aspect ratios in real and momentum space in the hydrodynamic regime
converge to the same asymptotic values during TOF expansion of ultracold gas of
167Er: (a) θ = 0◦, (b) θ = 90◦. Solid lines give aspect ratios for nonballistic expansion,
while dashed lines in the insets show the corresponding ballistic results. Blue lower
lines in (a) and blue upper lines in (b) correspond to AR, while red upper lines in (a)
and red lower lines in (b) correspond to AK .

value of the aspect ratio is around 0.65, which amounts to a decrease of around 35%
compared to the collisionless value. For ballistic expansion, which we know to be
unrealistic in the hydrodynamic regime, both the corresponding increase and decrease
amounts to around 12%. Similar numbers are also obtained for the momentum-space
aspect ratio AK , as can be seen from the graphs on the right-hand side in Figure 4.3.
Since the corresponding values in the collisionless regime are all close to one, the
above percentages also apply here, and directly represent the results for the ellipsoidal
deformation of the FS in the hydrodynamic regime.

The same conclusion can be also obtained from Figure 4.4, where we compare
aspect ratios in real and momentum space. Furthermore, these graphs confirm that the
asymptotic values of the aspect ratios AR and AK also coincide in the hydrodynamic
regime for both cases θ = 0◦ and θ = 90◦, as stated by Equation (4.85) for the
collisionless regime. If we compare the convergence of aspect ratios to their asymptotic
values in Figures 4.2 and 4.4, we see that in the hydrodynamic regime typical times
to reach the plateau are similar in real and in momentum-space, and have the value
of several tens of milliseconds. This coincides with the corresponding convergence
times for real-space aspect ratios in the collisionless regime, where also a significant
difference between the initial and the asymptotic value of aspect ratios occurs. Only
in the case of momentum space aspect ratios in the collisionless regime, where the
deformation of the FS is small during the whole expansion, the asymptotic values can
be reached faster, namely in just a few milliseconds.

However, as already emphasized, even if initially in the hydrodynamic regime,
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Chapter 4 Dynamics of dipolar Fermi gases

the dipolar Fermi gas becomes more and more dilute during the TOF expansion,
and the hydrodynamic regime continuously goes over into the collisional regime, and,
finally, into the collisionless regime. Therefore, we model the collisional regime in the
remainder of this section, since it is relevant for experiments where the density of the
Fermi gas is high enough so that we can assume it is initially in the collisional or in
the hydrodynamic regime.

4.3.3 Collisional regime with constant relaxation time

Here we start considering the collisional regime and assume that the relaxation-time
approximation given by Equation (4.22) can be applied. Furthermore, we presume
that the relaxation time τ remains constant during the TOF. The latter assumption is
only valid for short times of flight, before the density of the gas decreases significantly.
We will improve upon this approximation latter, when the relaxation time will be
determined self-consistently.

However, provided that the relaxation time is constant, the TOF dynamics can
be obtained by directly solving Equations (4.66) and (4.67) for a given value of τ .
Note that the values of the scaling parameters Θle

i in local equilibrium are obtained
according to Section 4.3.2, i.e., they represent the solutions of the equations for the
hydrodynamic regime Θhd

i .
The physical meaning of Equations (4.67) is that dissipation occurs when the sys-

tem is outside of a local equilibrium as long as there are collisions, i.e., as long as the
relaxation time τ remains finite. Effects of collisions are therefore described through
Equations (4.67), whereas Equations (4.66) for the scaling parameters bi do not directly
contain such terms. However, effects of collisions enter indirectly into Equations (4.66)
through the scaling parameters Θi.

Here we numerically solve the coupled system of Equations (4.66) and (4.67) during
the nonballistic expansion for a fixed value of the relaxation time τ . Varying the
value of the relaxation time we are able to describe all regimes, from the collisionless,
obtained in the limit τ → ∞, to the hydrodynamic, obtained in the limit τ → 0. In
particular, although the approximation of a fixed relaxation time is not realistic for
longer expansion times, it allows us to understand and describe in more detail different
collisional regimes, for finite values of τ , when the system undergoes a crossover from
one limiting regime to the other.

Figure 4.5 shows the obtained aspect ratios for 167Er in real and momentum space
for the two limiting cases considered previously, the collisionless and the hydrodynamic

100



Chapter 4 Dynamics of dipolar Fermi gases

Figure 4.5: Aspect ratios in real (solid lines) and momentum space (dashed lines)
in the collisional regime during TOF expansion of ultracold gas of 167Er: (a) θ = 0◦,
(b) θ = 90◦. The pairs of curves in (a) from top to bottom and in (b) from bottom
to top correspond to: hydrodynamic regime (HD, red), collisional regime (black) for
fixed relaxation times τ = 1/ω̄ and τ = 5/ω̄, and collisionless regime (CL, blue).

regime, as well as for the collisional regime with the fixed relaxation times τ = 1/ω̄
and τ = 5/ω̄. Depending on the respective geometry, asymptotic values of aspect
ratios either decrease with increasing relaxation time, see Figures 4.5(a) for θ = 0◦, or
vice versa, see Figure 4.5(b) for θ = 90◦. We also read off from these figures that the
corresponding asymptotic values of aspect ratios in real and momentum space in the
collisional regime are again equal according to the relation given by Equation (4.85).

Motivated by the experiment reported in Reference [48], in Figure 4.6 we plot
the aspect ratio in real space AR obtained after t = 10 ms TOF as a function of a
fixed relaxation time τ for two different orientations of the dipoles for the respective
ultracold Fermi gases given in Table 3.1. If the dipoles are oriented along the z axis,
i.e., Figure 4.6(a), the corresponding aspect ratios for any fixed value of the relaxation
time τ increase monotonously with the relative dipolar interaction strength εdd, while
for the dipoles along the x axis, i.e., Figure 4.6(b), the situation is just opposite, as
expected. Note that the corresponding curves for the noninteracting case εdd = 0 would
be quite close to those for 53Cr, as can already be expected according to Figure 3.1.

Plots like those in Figure 4.6 represent powerful diagnostic tools for estimating
the relaxation time τ from experimentally measured values of aspect ratios AR for
sufficiently short TOF, when the fixed relaxation-time approximation is still applicable.
Furthermore, these graphs can be used for estimating the time scale t to approach the
asymptotic values of the aspect ratios from experimentally available TOF expansion
data. Provided that it turns out for a TOF t that the corresponding relaxation time τ
satisfies the condition ω̄τ � 1, one has already reached the collisionless regime. This
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Figure 4.6: Aspect ratios in real space after t = 10 ms TOF as function of fixed
relaxation time τ for different ultracold Fermi gases: (a) θ = 0◦, (b) θ = 90◦. The
curves in (a) from bottom to top and in (b) from top to bottom correspond to: 53Cr
(gray), 167Er (red), 161Dy (blue), 40K87Rb (purple), and 167Er168Er (green).

means that for longer times t no further change of the aspect ratio is expected as one
is already quite close to its asymptotic value.

4.3.4 Collisional regime with self-consistent relaxation time

Whereas we assumed before that the relaxation time is constant, now we model the
TOF expansion of ultracold dipolar Fermi gases more realistically and take into ac-
count that the relaxation time changes and is also time dependent. Namely, during
TOF the gas rapidly expands, the distance between atoms grows, and as a consequence
the relaxation time increases, thus eventually leading the system into the collisionless
regime, even if initially it was in the hydrodynamic or in the collisional regime.

In order to quantify this physical notion, one would have to calculate the collision
integral on the right-hand side of Equation (4.20), which requires a detailed modeling
of scattering processes in the system, i.e., the elastic collisions of fermionic atoms or
molecules that arise purely from universal dipolar scattering. The standard approach
for the case of a system close to local equilibrium is to use the relaxation-time approx-
imation [12, 158], which is given by Equation (4.22). In Reference [161] it was derived
that the characteristic relaxation time for a classical gas can be expressed as follows

τ = αcoll

n̄σelv
, (4.89)

where the parameter αcoll denotes a geometry-dependent average number of collisions
which is necessary to rethermalize the system after a collision, n̄ represents the mean
number density, σel is the total elastic cross section, and v is the mean relative velocity.
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In Reference [87] it was heuristically argued and experimentally confirmed that for
quantum degenerate dipolar fermionic systems at low temperatures and parameter
regimes considered here, the relaxation time can be modeled by a modified expression

τSC = αcoll

ηn̄σelv
, (4.90)

which allows us to calculate it self-consistently, hence the subscript SC. In the above
equation, η stands for a Pauli suppression factor, which represents the reduction of the
rethermalization rate in a degenerate Fermi gas due to Pauli blocking, and amounts
to η = 1 for non-degenerate gases. The Pauli suppression factor depends on the de-
generation level of fermions and is usually expressed as a function of the dimensionless
temperature T/TF.

In the considered case, the mean number density is given by

n̄ = N

V (t) , (4.91)

where the volume V (t) of the Fermi gas cloud increases during the TOF expansion
according to

V (t) = 4π
3
∏
i

Ribi(t) . (4.92)

The total elastic cross section σel is universally related to the dipole moment of fermions
[86] according to

σel = 32π
15 a2

dd , (4.93)

where
add = CddM

8π~2 , (4.94)

represents a characteristic dipole length. The mean relative velocity v is given by

v =
√

16kBT

πM
. (4.95)

For the parameters of the experiment [48] with atomic 167Er used throughout this
paper, the universal dipolar scattering theory [87] predicts the total elastic cross section
value σel = 1.8 × 10−12 cm2, which agrees with the value measured in Reference [89].
The temperature of the system was set to T/TF = 0.18, with TF = 1.1µK, which
yields the Pauli suppression factor η = 0.3 [87], as well as the mean relative velocity
v according to Equation (4.95). To completely fix all parameters which are necessary
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Figure 4.7: Aspect ratios in real (solid lines) and momentum space (dashed lines) in
the collisional regime during TOF expansion for θ = 0◦: (a) 167Er, (b) 40K87Rb. Red
upper solid and dashed line correspond to expansion dynamics with self-consistently
determined relaxation time τSC. For comparison, blue lower solid and dashed line give
the corresponding aspect ratios for the collisionless regime (CL).

for a self-consistent determination of the relaxation time with Equation (4.90), we
still need to take the appropriate value of the number of collisions αcoll for the given
geometry, i.e., for the given angle θ from Reference [87].

Figure 4.7(a) shows the corresponding aspect ratios in real and momentum space for
167Er during the TOF expansion for θ = 0◦, for which the average number of collisions
to rethermalize is αcoll = 3.2 [87]. The red upper solid and dashed line in Figure 4.7(a)
are obtained by numerically solving Equations (4.66) and (4.67), with the relaxation
time determined self-consistently through Equation (4.90). In the same plot, we also
see for the sake of comparison the results for the collisionless regime in terms of the
blue lower solid and dashed line. The difference between the corresponding lines is
less than 0.1%, which is certainly within the experimental error bars, and confirms
that the system is indeed very close to the collisionless regime, as it was assumed in
Reference [48].

However, systems with a stronger DDI can easily reach the collisional regime,
where a finite value for the relaxation time has to be taken into account. In order to
demonstrate this, we analyze the TOF expansion of a 40K87Rb dipolar Fermi gas [98],
whose relative dipolar interaction strength is εdd = 0.97, compared to εdd = 0.15 for
167Er (see Table 3.1). Polar molecules have generically stronger electric dipole moments
in comparison with the magnetic dipole moments of atoms, which is expected to yield
a sensible difference in the respective aspect ratios.

In Figure 4.7(b) we show the TOF expansion dynamics for 40K87Rb for the same
number of fermions and trap frequencies as in Reference [48]. The temperature of
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Figure 4.8: Self-consistently determined relaxation time given by Equation (4.90) as
function of TOF t for ultracold Fermi gas of 167Er (red dashed line) and 40K87Rb (blue
solid line) for θ = 0◦. The collisionless regime is achieved for ω̄τSC � 1.

the system is assumed to be T = 350 nK = 0.3TF, as in Reference [98], which yields
the Pauli suppression factor η = 0.5 [87]. The total elastic cross section according to
Equation (4.93) in this case is σel = 9.6× 10−11 cm2, in agreement with the results of
Reference [86]. The average number of collisions to rethermalize is again taken to be
αcoll = 3.2 for θ = 0◦ [87]. The difference between the aspect ratios calculated using
the self-consistently determined relaxation time and those calculated assuming that
the system is in the collisionless regime are here around 10%, which could be clearly
observed in future experiments. Furthermore, for polar molecules with a stronger DDI
the differences are expected to be even more pronounced. Thus, in experiments with
such systems, the relaxation time must be taken into account, for instance through
the self-consistent approach presented here. We also note that the asymptotic values
of aspect ratios in real and momentum space turn out to be again the same, as was
already the case in both limiting regimes, the collisionless and the hydrodynamic.

Figure 4.8 shows the resulting time dependence of the self-consistently determined
relaxation time during the TOF expansion for both analyzed species, i.e., 167Er (red
dashed line) and 40K87Rb (blue solid line). As we can see, for an atomic gas of 167Er
the relaxation time satisfies the condition ω̄τSC � 1 right from the beginning, which
further justifies the previous conclusion that the system is always in the collisionless
regime [48]. For a molecular gas of 40K87Rb, however, this condition is satisfied only
after 1-2 ms, so initially the system is in the collisional regime. Furthermore, we rec-
ognize that the relaxation time increases quite fast, namely faster than exponential, as
we can see from the log-log plot of Figure 4.8. Thus, the approximation of Section 4.3.3
with a fixed relaxation time would clearly not be suitable, and a self-consistent ap-
proach as presented here is indispensable.

In order to summarize our results for the aspect ratios during the TOF expansion in
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Figure 4.9: Aspect ratios in real space during TOF expansion in the collisional
regime with self-consistently determined relaxation time for different ultracold Fermi
gases for θ = 0◦. The curves from bottom to top correspond to: 53Cr (gray), 167Er
(red), 161Dy (blue), 40K87Rb (purple), and 167Er168Er (green).

the collisional regime with self-consistently determined relaxation time, in Figure 4.9
we combine our results for the time dependence of aspect ratios in real space AR for
θ = 0◦ for 167Er from Figure 4.7(a) and 40K87Rb from Figure 4.7(b) with the results
for three other considered dipolar fermionic species 53Cr, 161Dy, and 167Er168Er (see
Table 3.1). We see that increasing the relative DDI strength leads to increasing aspect
ratios after a long TOF. While for 53Cr, 167Er, and 161Dy the asymptotic values of AR
are just few percent larger than 1, for 40K87Rb we obtain a value of about 1.26, and
for 167Er168Er about 1.48.

Effects of the DDI and their interplay with the geometry quite strongly influence the
dynamics of the system. As we already pointed out, this is of particular importance for
interpreting the TOF imaging data, which are commonly used for experimental mea-
surements of the properties of ultracold Fermi gases. It was previously shown that,
even for magnetic atomic species such as erbium, the DDI effects could be experimen-
tally observed in the TOF dynamics, and that a nonballistic expansion has to be used
in order to properly describe the system’s behavior [49, 50, 125]. For polar molecules
with a strong DDI we expect that nonballistic effects are more pronounced, as can be
read off from Figure 4.10. Even more significant are large variations of nonballistic
effects, which can be as small as 8% or as large as 60% for quite similar configurations,
as is illustrated for the two examples in Figure 4.10(a). Although the trap geometry
plays a role here, Figure 4.10(b) reveals that the ballistic behavior is roughly the same,
as is expected based on the system parameters, while the DDI strength gives a major
contribution. Furthermore, the inset in Figure 4.10(a) shows that even the qualitative
behavior of the system can be incorrectly predicted (monotonous vs. nonmonotonous
behavior) when nonballistic effects are neglected. This demonstrates that the DDI has
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Figure 4.10: (a) Real-space aspect ratio AR of the 40K87Rb molecular cloud as a
function of time t during the TOF expansion from the ground state, after the trap
is switched off. Top (red) solid and dashed lines are obtained for d = 0.5 D and
frequencies (63, 36, 500)× 2π Hz, bottom (blue) solid and dashed lines for d = 0.22 D
and (63, 36, 200) × 2π Hz, and inset for d = 0.35 D and (250, 150, 100) × 2π Hz.
(b) AR(30 ms) after the TOF expansion for t = 30 ms as a function of d. Trap
frequencies corresponding to all line types are the same as in (a). In both plots solid
lines correspond to a nonballistic expansion, where the DDI is taken into account,
while the dashed lines represent calculated results for a free (ballistic) expansion,
N = 3×104, θ = 0◦. AR is calculated using the imaging angle 22.5◦ of Reference [109],
in the geometry of Reference [49].

to be taken into account even during the TOF expansion, and that the interpretation
of experimental data is hugely affected by the model used. The generalized theory
presented in this Chapter enables an accurate modeling of the dynamics of strongly
interacting dipolar Fermi systems.

For future work, it would be of interest to go beyond References [87, 161] and derive
more accurate results for the relaxation time from first principles. This would amount
to linearizing the Boltzmann equation and treating the linearization with the rescaling
technique introduced in Reference [158]. Furthermore, the approach developed here,
based on the relaxation-time approximation for the Boltzmann equation, can also be
applied to other fields of physics. The examples include nuclear physics, such as a
study of viscosity of the quark-gluon plasma [162, 163] and ultra-relativistic heavy-
ion collisions [164], as well as plasma physics [165], where, e.g., transient regimes of
degenerate electrons can be studied using the relaxation-time approximation [166].
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Comparison with experiment

Having developed a general theoretical framework presented in Chapters 2 and 4,
and having numerically studied the ground state properties of dipolar Fermi gases
with arbitrary oriented dipoles in Chapter 3, we now compare those results with ex-
perimental data obtained in Innsbruck, with a degenerate Fermi gases of erbium [84].
As we have already emphasized, the FS deformation was first observed with this setup
and reported in Reference [48], but additional measurements are performed using
different trapping configurations to test our newly developed theoretical understand-
ing about the influence of the dipoles’ orientation on the FS deformation [49]. In
these experiments the FS deformation is probed by the TOF expansion measurements.
Starting from a degenerate Fermi gas confined into an elongated harmonic trap with
N ∼ 6− 7× 104 erbium atoms and at the temperature T/TF ∼ 0.2, the cloud geome-
try and dipole’s orientation are slowly set to the desired configuration. After that the
cloud equilibrate for several hundreds of milliseconds and then the trapping potential
is suddenly removed to initiate yhe TOF expansion. Finally, after a free expansion of
duration t, the standard absorption imaging along a fixed direction is performed, as
illustrated in Figure 2.2.

Before we compare theory and experiment, let us note again that our theoretical
results are only valid for at zero temperature. For finite temperatures the isotropic
thermal fluctuations have already been shown to work against any directional depen-
dence stemming from either the harmonic confinement or the DDI, thus they diminish
the FS deformation. The thermal corrections to the total energy are known to be pro-
portional to (T/TF)2 at low T [142]. The corresponding effect on the FS deformation
was also previously theoretically [123] and experimentally [48] investigated, showing
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similar scalings. However, for the low temperatures of experiments in Reference [49],
this would yield only a few percent correction to the zero-temperature results, which
lies within the experimental error bars. Therefore, we neglect the thermal corrections
here. Generally speaking, the value of (T/TF)2 can be used to estimate the relevance
of the finite-temperature effects for T/TF < 0.5, while (T/TF)− 5

2 should be considered
for larger temperatures [123].

5.1 Aspect ratios and FS deformation

The TOF images are taken in the plane perpendicular to the imaging axis and the
deformation of the atomic cloud can be investigated in terms of the time-dependent
cloud aspect ratio AR(t), which is given by Equation (4.73). Since this quantity
is directly measurable in the experiment, we use it to extract the value of the FS
deformation, which is connected to the aspect ratio in momentum space in the global
equilibrium. Using Equation (D.3), and having in mind that ν(r,k, t = 0) ≡ ν0(R,K),
R(t = 0) = r , and K(t = 0) = k, we get that the average size of the FS in a global
equilibrium in the i-th direction is described by

〈k2
i (t = 0)〉 =

〈
K2
i

〉0
= 1

8
∑
j

R′2ijK ′2j . (5.1)

This result, together with Equations (D.21) and (2.86), yields the following expression
for the aspect ratio in momentum space in global equilibrium in terms of the Fermi
momenta K ′i,

AK =

√√√√ ∑
j R′2zjK ′2j∑

j R′2xjK ′2j cos2 α +∑
j R′2yjK ′2j sin2 α

=

√√√√√ K ′2x sin2 θ +K ′2z cos2 θ

K ′2x +
(
K ′2z −K ′2x

)
sin2 θ (cos2 ϕ cos2 α + sin2 ϕ sin2 α)

. (5.2)

Please note that only for θ = 0◦, when the dipoles are parallel to the z axis, the above
momentum-space aspect ratio coincides with the ratio between the Fermi momenta,

AK = K ′z
K ′x

= 1 + ∆ , (5.3)

where ∆ denotes the deformation of the FS previously introduced in Equation (3.10).
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In general, however, the relation between AK and ∆ is nonlinear and can be ob-
tained from Equation (5.2), as follows

∆ =

√√√√A2
K [1− sin2 θ(cos2 ϕ cos2 α + sin2 ϕ sin2 α)]− sin2 θ

cos2 θ − A2
K sin2 θ(cos2 ϕ cos2 α + sin2 ϕ sin2 α) − 1 . (5.4)

5.2 Ballistic expansion

In order to extract the value of the FS deformation from the experimental data using
the above equation, we still need to calculate the momentum-space aspect ratio AK .
This is done by using the fact that the long-time expansion is mainly dominated by
the velocity distribution right after the release from the trap. Here we rely on the
ballistic approximation, which assumes that the TOF images, that show the shape of
the atomic cloud in real space, purely reflect the momentum distribution in the global
equilibrium. Namely, in Chapter 4 we have shown that ballistic expansion relation
given by Equation (4.82) is valid in the collisionless regime for the case when the
dipoles are oriented along one of the trap axis. Now we have to prove that this is also
valid for the general orientation of the dipoles, as it is varied in the experiment. Since
the experiment is done in the collisionless regime, Equation (4.76) is still applicable,
while equations for the scaling parameters bi can be obtain from Equation (4.46).
Actually, the terms BD

i (b) and BE
i (b,Θ) in Equation (4.46) represent contributions of

the DDI, which is neglected during the ballistic expansion, so removing these terms
and term corresponding to the trapping potential we obtain

b̈i(t)−
~2∑

j R′2ijK ′2j
M2R2

i

1
b3
i (t)

= 0 . (5.5)

Here we have used Equation (4.76), as well as the fact that the trap is elongated, such
that we can assume R′′ = I. This cooresponds to using the off-on-axis scenario (see
Section 2.1), which is justified for weak DDI in the erbium case and elongated traps.

Differential Equations (5.5) can be solved analytically, and we obtain for the scaling
parameters bi the following expression,

bi(t) =

√√√√1 +
~2∑

j R′2ijK ′2j
M2R2

i

t2 . (5.6)

Together with Equation (D.14) from Appendix D.2, this enables to calculate the bal-
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listic expansion aspect ratio in real space, with the asymptotic value

lim
t→∞

Abal
R (t) = lim

t→∞

√√√√√ M2R2
z + ~2∑

j R′2zjK ′2j t2(
M2R2

x + ~2∑
j R′2xjK ′2j t2

)
cos2 α +

(
M2R2

y + ~2∑
j R′2yjK ′2j t2

)
sin2 α

=

√√√√ ∑
j R′2zjK ′2j∑

j R′2xjK ′2j cos2 α +∑
j R′2yjK ′2j sin2 α

, (5.7)

which coincides with Equation (5.2) and proves that Equation (4.82) is valid not only
for the special case when the dipoles are oriented along one of the trap axes, but also
in general case, for arbitrary orientation of the dipoles.

We note that this is true just in the case of ballistic expansion, when the effects of
the DDI can safely be neglected during the TOF. However, since the DDI is long-range,
ideally it should be taken into account, rendering the TOF results always nonballistic.
A general theory that would allow such a treatment is not yet available and is beyond
the scope of this Thesis. Nevertheless, if the DDI is weak enough, as in the case
of erbium atomic gases, the difference between the ballistic (free) and nonballistic
expansion is small, as already shown in Reference [125]. Thus, Equation (4.82) can
approximately be used in our case and the value of AK in global equilibrium can be
extracted from the long-time limit of AR, which is available from the experimental
data. We highlight that in some limiting cases it is still possible to take into account
a nonballistic expansion by using the previously developed dynamical theory [125].
This is expected to yield a more precise value of the aspect ratio, as show in the next
section.

With those cautionary remarks in mind, we can complete the description of the
algorithm for analyzing experimentally obtained data. Now it only remains to calculate
the FS deformation from the extracted aspect ratio using Equation (5.4), which enables
its comparison with our numerical results.

5.3 Experimental and theoretical results

Here we consider three different datasets corresponding to the experimental parameters
listed in Table 5.1, where we also give the mean frequency of the trap ω̄ and the trap
anisotropy λ = √ωxωz/ωy for each case. While Cases 1 and 2 represent cigar-shaped
traps, Case 2 is selected so that it has the same value of ωy as Case 1, but a smaller
anisotropy λ. On the other hand, Case 3 is chosen so that its mean frequency ω̄ is
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Table 5.1: Number of atoms N , trap frequencies ωi, mean frequencies ω̄ and
anisotropies λ for three sets of experimental parameters used throughout this Chap-
ter. Case 1 corresponds to Reference [48], while Case 2 and Case 3 correspond to
Reference [49].

167Er N (×104) ωx (Hz) ωy (Hz) ωz (Hz) ω̄ (Hz) λ

Case 1 6.6 579×2π 91×2π 611×2π 318×2π 6.54
Case 2 6.3 428×2π 91×2π 459×2π 261×2π 4.87
Case 3 6.1 408×2π 212×2π 349×2π 311×2π 1.78

approximately the same as for Case 1, but its anisotropy λ is much reduced. For each
dataset, we probe the FS deformation for various angles θ and a fixed angle ϕ = 14◦.
The measurement for each experimental configuration was repeated a large number
of times, typically twenty, so that the mean value can be reliably estimated and the
statistical error is reduced below 0.2%.

Figure 5.1 shows a direct comparison between our theoretical and experimental
results without any free parameters. The experiments measured the mean value of
the aspect ratio AR in free expansion using the TOF t = 12 ms, which is taken to be
sufficiently long so that the ballistic approximation given by Equation (4.82) can be
used, and yet not too long so that the cloud does not get too dilute and a reliable fit
of the density distribution from the absorption images is possible. In Figure 5.1(a)
we show the θ dependence of the measured quantity AR(12 ms) for the parameters
of Case 1 (red circles), Case 2 (blue squares) and Case 3 (black triangles), as well
as the corresponding theoretical curves (solid red, dashed blue and dotted black line,
respectively) for AK at global equilibrium, calculated according to Equation (5.2). We
see that the agreement is generally very good, and that the experimental data are
closely matched by the shape predicted by our theory. At the same time, this figure
also presents an a posteriori justification for using the ballistic approximation in those
three cases.

The discrepancies observed in Figure 5.1(a) can be accredited to the effects of
the DDI, which are neglected during the TOF by using the ballistic approximation.
Even better agreement between the experiment and the theory can be expected if a
nonballistic expansion would be taken into account. Although a theory for this is
not yet available for an arbitrary orientation of the dipoles, Reference [125] allows
us to perform a nonballistic expansion calculation for the special case θ = 0◦ in the

112



Chapter 5 Comparison with experiment

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

0 10 20 30 40 50 60 70 80 90

0

1

2

3

4

0 10 20 30 40 50 60 70 80 90

Figure 5.1: Comparison of our results for θ dependence of: (a) theoretical value
of aspect ratio AK and its experimental estimate Aexp

R (t = 12 ms) according to Equa-
tion (4.82); (b) theoretical value of the FS deformation ∆ and its experimental estimate
(see main text). Red solid lines and circles correspond to Case 1, blue dashed lines
and squares correspond to Case 2, and black dotted lines and triangles correspond to
Case 3. Vertical bars for experimental results correspond to statistical errors. Angle
ϕ = 14◦ was kept constant during the experiment. Intersection point of three curves
in panel (a) corresponds to (θ∗, A∗K)=(49.16◦, 1), while shaded area in panel (b) is
excluded due to a pole in Equation (5.8); see main text for further details.

collisionless regime. The comparison of the results is given in Table 5.2, where we see
that accounting for the DDI during the TOF yields theoretical values of the TOF real-
space aspect ratio equal to the experimental ones, within the error bars of the order of
0.1%. Table 5.2 also shows that nonballistic effects amount to 0.7% for Case 1, which
has the largest anisotropy, and becomes smaller as the trap is closer to a spherical
shape, i.e., as the trap anisotropy approaches the value of 1. Therefore, we conclude
that the agreement of experimental data and our theoretical results in Figure 5.1(a)

Table 5.2: Comparison of theoretical values of aspect ratios in momentum space AK
in global equilibrium and TOF aspect ratios in real space: theoretical value of Anbal

R

and experimental value of Aexp
R , with corresponding statistical errors ∆Aexp

R . Real-
space aspect ratios correspond to TOF of t = 12 ms and θ = 0◦. Last two columns
give trap mean frequency ω̄ and anisotropy λ for each case.

167Er AK Anbal
R Aexp

R ∆Aexp
R ω̄ (Hz) λ

Case 1 1.0258 1.0324 1.0321 0.0012 318×2π 6.54
Case 2 1.0232 1.0282 1.0292 0.0015 261×2π 4.87
Case 3 1.0253 1.0270 1.0258 0.0020 311×2π 1.78
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Chapter 5 Comparison with experiment

can be further improved by using numerical solution of Equations (4.56) and (4.61),
together with Equation (4.46), which represents theory for nonballistic expansion in
case of the most general experiment geometry.

Figure 5.1(b) shows a comparison of our theoretical and experimental results for the
deformation ∆ of the FS for the three considered cases, where the experimental values
are calculated according to Equation (5.4), assuming ballistic expansion relation and
using the real-space aspect ratios shown in Figure 5.1(a). Although the statistical error
bars ∆Aexp

R for the experimentally measured values of the real-space aspect ratios are
small and almost constant, the corresponding errors for the FS deformation, calculated
as

∆Aexp
R

∣∣∣∣∣ ∂∆
∂AK

∣∣∣∣∣
AK=Aexp

R

, (5.8)

show a strong angular dependence, due to the presence of a pole in the function
∂∆/∂AK . For the parameters of Figure 5.1, the pole emerges at around θ = 50◦.
Therefore, the error bars appear significantly larger in the neighboring region, which
justifies to drop the data points around θ = 50◦ (shaded area in the graph).

As can be seen in Figure 5.1(b), for all three cases the deformation of the FS
is almost constant for all angles θ. Therefore, we have compared theoretical and
experimental values for the FS deformation ∆ averaged over the angle θ. In Table 5.3
we give the mean values for all measurements and compare them to our theory results,
with the corresponding errors. As can be seen the agreement between the theory and
experiment is very good. We conclude that, from the experimental point of view, in
this case it would be enough just to measure the aspect ratio for one value of θ, e.g.,
θ = 0◦ in order to determine the deformation of the FS. However, this is only true
for a weak enough DDI. Nevertheless, even if this is the case, the measurement of

Table 5.3: Comparison of theoretical and experimental values for the FS deformation
∆ averaged over θ: theoretical value of ∆th(%) and experimental value of ∆exp(%) with
corresponding errors ∆(∆th)(%) and ∆(∆exp)(%).

167Er ∆th(%) ∆(∆th)(%) ∆exp (%) ∆(∆exp)(%)

Case 1 2.59 0.02 2.9 0.3
Case 2 2.33 0.02 2.6 0.5
Case 3 2.52 0.01 2.5 0.6
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Chapter 5 Comparison with experiment

the angular dependence of AR is an indispensable tool for a full verification of the
developed theory, as demonstrated in Figures 5.1(a) and 5.1(b).

We now briefly comment on the beyond-Hartree-Fock corrections, which we cal-
culate for the FS deformation according to Section 3.5. The results are presented
in Table 5.4, where we see that these corrections are extremely small differences and
definitely cannot be resolved experimentally.

Table 5.4: Beyond-mean-field corrections to the FS deformation δ∆2
h(%) for θ = 0◦

for all three considered cases from Table 5.1. First two columns give relative DDI
strength εdd and parameter u, given by Equations (3.9) and (3.20), respectively.

167Er εdd u δ∆2
h(%)

Case 1 0.153 0.0359 0.007
Case 2 0.138 0.0323 0.006
Case 3 0.149 0.0355 0.007

5.4 Universal consequences of geometry

As already observed in Figure 5.1(a), the AK curves for all three considered cases
intersect at a special point (θ∗, A∗K = 1). Figure 5.2 reveals that this is not just a
coincidence. It shows the θ-dependence of the momentum-space aspect ratio AK for
several trapp geometries for erbium atomic gases, ranging from a cigar-shaped trap,
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Figure 5.2: Aspect ratio in momentum space AK as a function of θ for 167Er for
ϕ = 0◦, α = 28◦, N = 7×104 and ωx = ωz = 500×2π Hz. Different curves correspond
to varying ωy = n× 100× 2π Hz, n ∈ {1, 2, 3, 5, 7, 9}, bottom to top on the left-hand
side of the intersection, respectively. Intersection point is at (θ∗, A∗K)=(48.56◦, 1).
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through a spherical, to a pancake-shaped trap. The azimuthal angle is kept constant
at the value ϕ = 0◦, as well as the trapping frequencies ωx = ωz = 500× 2π Hz, while
the frequency ωy = n×100×2π Hz is varied by changing the value n ∈ {1, 2, 3, 5, 7, 9},
which corresponds to the trap anisotropy λ = 5/n. The number of particles was fixed
at N = 7× 104. We observe again that all curves intersect for A∗K = 1, which suggests
that this is a general rule. Indeed, if we take into account that K ′z ≥ K ′x > 0, for
A∗K = 1 we can show from Equation (5.2) that the following relation holds, which
connects the intersection angles θ∗ and ϕ∗,

sin2 θ∗ = 1
1 + cos2 ϕ∗ cos2 α + sin2 ϕ∗ sin2 α

. (5.9)

This result is universal, i.e., it is independent of other system parameters as the trap
geometry, the number of particles, and the DDI strength. In other words, this inter-
section point is purely a consequence of the geometry, and for any orientation of the
dipoles there exists an imaging angle such that the aspect ratio is given by AK = 1,
while the FS deformation ∆ can be nontrivial and even can have a significant value.
We note that for larger εdd values additional parameter-specific intersection points
may appear for some geometries, but the intersection point for AK = 1 is universal
and always present.

To further illustrate this, in Figure 5.3 we plot a diagram in the (θ∗, ϕ∗)-plane for
α = 28◦, where the regions with AK > 1 and AK < 1 are delineated by a solid line
defined by Equation (5.9). The two black dots correspond to intersection points from
Figure 5.2 for ϕ = 0◦ and from Figure 5.1(a) for ϕ = 14◦, respectively.
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Figure 5.3: Relation between intersection angles θ∗ and ϕ∗ for α = 28◦, determined
by Equation (5.9): red solid line corresponds to A∗K = 1, region below to AK > 1,
and region above to AK < 1. Black dots correspond to intersection points identified
in Figures 5.2 and 5.1(a) for ϕ = 0◦ and 14◦, respectively.
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Conclusions

This Thesis contributes to understanding of the behavior and properties of dipo-
lar Fermi gases in two different directions. First, it presents a generalization of the
Hartree-Fock mean-field theory based on a variational approach for the Wigner distri-
bution function, which is precisely tailored to describe the ground state of polarized,
harmonically trapped dipolar Fermi gases at zero temperature, with an arbitrary ori-
entation of the dipoles. Until now, there was no theory capable of describing such a
system in a general harmonic trap geometry with respect to the dipoles’ orientation.

To explore the ground-state properties of the system, we have used the newly
developed approach and studied the stability of strongly dipolar Fermi gases. We have
shown that it has universal features, i.e., that it can be expressed in terms of species-
independent parameters such as the trap aspect ratios and the orientation of the
dipoles. We have further investigated the stability of polarized 40K87Rb molecules, as
this is currently the most relevant experimental system, and demonstrated significant
effects due to presence of the DDI. This opens up a new avenue of research of dipolar
fermions and enables addressing the stability problem in general geometry, which is of
critical importance for the design of new experiments with polar molecules.

The new ansatz for the Wigner function that we have used takes into account
effects of the DDI on both the shape of the gas cloud in real space and the shape
of the FS in momentum space. By means of the developed Hartree-Fock mean-field
theory with this new ansatz, we have proven that, due to the DDI, the ground-state
FS is deformed from a sphere to an ellipsoid such that its main axis coincides with the
orientation of the dipoles. We have then studied effects of the dipoles’ orientation, the
particle number, the trap anisotropy and the DDI strength on the deformation of the
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Chapter 6 Conclusions

FS. We have found that the FS deformation is maximal when the dipoles point along
the axis with the smallest trapping frequency and demonstrated this for two systems
with different DDI strengths, values of which are achievable with atomic 167Er in one
case and with 40K87Rb molecules in the other case. Furthermore, for both species we
have observed that the angular dependence of the FS deformation is larger than the
corresponding dependence on the trap anisotropy, and that both are less pronounced
than the corresponding effect when the number of particles is varied. However, for
a fixed trap geometry and number of particles, the angular dependence of the FS
deformation is quite strong for the polar molecules with a strong DDI compared to
the atomic species with a weak DDI. This has an important consequence, namely, that
in the case of polar molecules the FS does not only follow the dipoles’ orientation, but
its shape gets modified as well, which is a qualitatively different behavior compared
to atomic magnetic species, where the FS just rigidly follows the dipoles’ orientation.

The gas cloud orientation obtained within the presented theory strongly depends on
both the DDI strength and the anisotropy of the trap. In the special case of a spherical
trap the cloud is elongated along the dipoles’ direction, as the FS, but in a general
case the cloud orientation can only be determined numerically. This demonstrates that
the theory developed here is important for an accurate qualitative and quantitative
description of dipolar Fermi systems with moderate to strong DDI.

The theory for the ground-state properties of trapped Fermi gases of tilted dipoles
presented in this Thesis is also important for the study of the interplay between the
FS deformation and superfluid pairing, in particular to address the open question
of how the anisotropic order parameter of the emergent superfluidity and its critical
temperature are tunable by both the trap geometry and the dipoles’ orientation. The
presented theory paves the way towards new methods for quantum engineering of
properties of dipolar Fermi gases that depend on the FS shape, such as the emergence
of superfluidity.

Second contribution of this Thesis is in extending of the existing theoretical models
for the dynamics of dipolar fermions, and in providing a unified framework for modeling
of all experimentally relevant regimes: collisionless, collisional, and hydrodynamic,
which was lacking before. In order to describe dynamics of dipolar Fermi gases during
the TOF expansion, we have used the quantum kinetic Boltzmann formalism within
the relaxation-time approximation for the collision integral. We have performed a
systematic study of the TOF dynamics of dipolar Fermi systems from the collisionless
to the hydrodynamic regime at zero temperature. We have studied the aspect ratios
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of the fermionic cloud in real and momentum space. The obtained theoretical results
for the TOF expansion aspect ratios in the collisionless regime are compared with
measurements on degenerate gases of atomic 167Er in different trap geometries. In order
to do so, we have first established a relationship between the FS deformation and the
momentum-space aspect ratio for a general system geometry, which is experimentally
accessible by measuring the real-space aspect ratio during the TOF, if we assume
ballistic expansion. Using this, we have found a very good agreement between the
theory and experiment, without any free fitting parameters.

In the collisional regime we have introduced an approach for self-consistently deter-
mining the relaxation time, which allows a detailed modeling of the global equilibrium
and the TOF expansion in cases when the collision integral cannot be neglected. We
have also shown that a strong DDI could place the system into the collisional regime,
which requires to use a self-consistent determination of the relaxation time presented
in this Thesis. Furthermore, we have found that in the collisional regime the TOF
dynamics can be accurately studied only if the nonballistic expansion is used, and the
DDI is properly taken into account, not only to calculate the ground state, but also
during the whole TOF. Therefore, the presented analytical and numerical results are
relevant for a detailed quantitative understanding of ongoing and future experiments.
In particular, the obtained results are relevant for systems with strong DDI, which
turn out to affect significantly the aspect ratios during the TOF expansion.
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Fourier transform of dipolar
interaction potential

In this Appendix, we calculate the Fourier transform of the DDI potential between
two polarized fermions, which is given by Equation (1.30) and reads

Vdd(r) = Cdd

4π
r2 − 3(e · r)2

|r|5
. (A.1)

In contrast to majority of literature, where this kind of calculation is presented for the
dipoles oriented along z axis, we consider the most general orientation of the dipoles
defined by the vector e = (cosα, cos β, cos γ), where α, β and γ denote the angles
between the dipole’s orientation and x, y and z axis, respectively, as illustrated in
Figure A.1(a). In the spherical coordinates, the DDI potential has the following form,

Vdd(r) = −Cdd

4π
1
r3 [3(sinϑ cosφ cosα + sinϑ sinφ cos β + cosϑ cos γ)2 − 1] . (A.2)

Figure A.1: (a) Schematic illustratation of the dipoles’ orientation and angles α, β, γ.
(b) Spherical coordinates r, ϑ, and φ.
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Chapter A Fourier transform of dipolar interaction potential

The Fourier transform of the last expression reads

Vdd(k) = −Cdd

4π

∫
d3r

e−ik·r

r3 [3(sinϑ cosφ cosα + sinϑ sinφ cos β + cosϑ cos γ)2 − 1]

= −Cdd

4π

∫ ∞
0

dr

r

∫ π

0
dϑ sinϑ [cos(rkz cosϑ)− i sin(rkz cosϑ)] Iφ(ϑ, r) , (A.3)

where Iφ(ϑ, r) is the following φ-integral

Iφ(ϑ, r) =
∫ 2π

0
dφ e−irK sin θ sin(φ+φ0)A(ϑ, φ) . (A.4)

The quantites K and φ0, used in the above expressions, are dfined by

kx = K sinφ0 (A.5)

ky = K cosφ0 (A.6)

A(ϑ, φ) = 3(sinϑ cosφ cosα + sinϑ sinφ cos β + cosϑ cos γ)2 − 1 . (A.7)

Using the identities

eix sinϕ =
∞∑

n=−∞
Jn(x)einϕ , (A.8)

Jn(x) = J−n(x) = (−1)nJn(x), (A.9)

where Jn(x) is a Bessel function of the first kind, the integral Iφ(ϑ, r) can be calculated
as

Iφ(ϑ, r) =
∫ 2π+φ0

φ0
dϕe−irK sinϑ sinϕA(ϑ, ϕ− φ0)

=
∫ 2π+φ0

φ0
dϕ

∞∑
n=−∞

(−1)nJn(rK sinϑ)einϕA(ϑ, ϕ− φ0)

= 2πJ0(rK sinϑ)
[
3 cos2 γ cos2 ϑ− 1 + 3

2
(
cos2 α + cos2 β

)
sin2 ϑ

]
− 12πiJ1(rK sinϑ) cos γ cosϑ sinϑ(cosα sinφ0 + cos β cosφ0)

+ 3πJ2(rK sinϑ) sin2 ϑ
[(

cos2 α− cos2 β
)

cos 2φ0 − 2 cosα cos β sin 2φ0
]
. (A.10)

Here we have also used the following identities,

∫ 2π+φ0

φ0
dϕe±inϕ cosm(ϕ− φ0) = δn,mπe

±inφ0 , n,m ∈ N , (A.11)∫ 2π+φ0

φ0
dϕe±inϕ sinm(ϕ− φ0) = ±δn,miπe±inφ0 , n,m ∈ N. (A.12)
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Chapter A Fourier transform of dipolar interaction potential

The next step is evaluation of the ϑ-integral in Equation (A.3), which yields

Iϑ(r) =
∫ π

0
dϑ sinϑ[cos(rkz cosϑ)− i sin(rkz cosϑ)]Iφ(ϑ, r)

= 4π
∫ π/2

0
dϑ cos(rkz cosϑ)J0(rK sinϑ)

(
sinϑ− 3

2 sin3 ϑ
) (

3 cos2 γ − 1
)

− 24π
∫ π/2

0
dϑ sin(rkz cosϑ)J1(rK sinϑ) cosϑ sin2 ϑ cos γ(cosα sinφ0 + cos β cosφ0)

+ 6π
∫ π/2

0
dϑ cos(rkz cosϑ)J2(rK sinϑ) sin3 ϑ

×
[(

cos2 α− cos2 β
)

cos 2φ0 − 2 cosα cos β sin 2φ0
]
. (A.13)

In the next step we use the following identites [140, (6.688.2)],

∫ π/2

0
dx cos(βcosx)Jν(αsinx)sinν+1x

=
√
π

2α
ν
(
α2 + β2

)− 1
2ν−

1
4 Jν+ 1

2

[(
α2 + β2

) 1
2
]
, for Re ν > −1, (A.14)

∫ π/2

0
dx sin(βcosx)Jν(αsinx)sinν+1xcosx

=
√
π

2α
νβ
(
α2 + β2

)− 1
2ν−

3
4 Jν+ 3

2

[(
α2 + β2

) 1
2
]
, for Re ν > −1, (A.15)

where the identity (A.15) is obtained by differentiating (A.14) with respect to β and
using the identity

d

dx
Js(x) = s

x
Js(x)− Js+1(x) . (A.16)

In addition, the term which contains J0(rK sinϑ) sin3 ϑ in Equation (A.13) is trans-
formed using the identity

2
x
J1(x) = J2(x) + J0(x) . (A.17)

Finally, the ϑ-integral can be solved to obtain

Iϑ(r) = (3 cos2 γ − 1)
[
4π
√
π

2
J1/2(rk)
(rk)1/2 − 12π

√
π

2
J3/2(rk)
(rk)3/2 + 6π

√
π

2
(rK)2J5/2(rk)

(rk)5/2

]

− 24π(cos γ cosα sinφ0 + cos γ cos β cosφ0)kzK
√
π

2
r2J5/2(rk)

(rk)5/2

+ 6π[(cos2 α− cos2 β) cos 2φ0 − 2 cosα cos β sin 2φ0)]K2
√
π

2
r2J5/2(rk)

(rk)5/2 . (A.18)
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Now, the expression for Vdd(k) becomes

Vdd(k) = −Cdd

4π

∫ ∞
0

dr

r
Iϑ(r)

= Cdd

∫ ∞
0

dr

r

{√
π

2

(
J1/2(rk)
(rk)1/2 −

3J3/2(rk)
(rk)3/2

)
(1− 3 cos2 γ)

+
√
π

2
r2J5/2(rk)

(rk)5/2

[3
2(1− 3 cos2 γ)(k2

x + k2
y)−

3
2(cos2 α− cos2 β)(k2

y − k2
x)

+ 6kzkx cos γ cosα + 6kzky cos γ cos β + 6kxky cosα cos β
]}

. (A.19)

The Bessel functions J1/2(x) and J3/2(x) are elementary functions

J1/2(x) =
√

2
πx

sin x , (A.20)

J3/2(x) =
√

2
π

sin x− x cosx
x3/2 , (A.21)

and therefore the r-integral which contains J1/2(rk) and J3/2(rk) can be calculated
with the help of partial integrations,

∫ ∞
0

dr

r

√
π

2

(
J1/2(rk)
(rk)1/2 −

3J3/2(rk)
(rk)3/2

)

= lim
a→0

∫ ∞
a

dr

r

[
3cos(rk)

(rk)2 − 3sin(rk)
(rk)3 + sin(rk)

rk

]

= lim
a→0

[
cos(ak)
(ak)2 −

sin(ak)
(ak)3

]
= −1

3 . (A.22)

The remainig r-integral can be evaluated using the identity [140, (6.561.14)]

∫ ∞
0

dx xµJν(αx) = 2µα−µ−1 Γ
(

1
2 + 1

2ν + 1
2µ
)

Γ
(

1
2 + 1

2ν −
1
2µ
)

for − Re ν − 1 < Re µ < 1
2 , (A.23)

which yields ∫ ∞
0

dr

r

√
π

2
r2J5/2(rk)

(rk)5/2 = 1
3k2 . (A.24)
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Combining Equations (A.19), (A.22) and (A.24) we get

Vdd(k) = Cdd

3k2

[
(1− 3 cos2 γ)

(1
2k

2
x + 1

2k
2
y − k2

z

)
+ (cos2 α− cos2 β)(k2

y − k2
x)

+ 6kxky cosα cos β + 6kxkz cosα cos γ + 6kykz cos β cos γ)
]

= Cdd

3k2

[
3(kx cosα + ky cos β + kz cos γ)2 − k2

x − k2
y − k2

z

]
(A.25)

This expression can be further simplified, and we finally obtain

Vdd(k) = Cdd

3

[
3(e · k)2

k2 − 1
]
. (A.26)
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Generalized anisotropy function

In theoretical descriptions of ultracold quantum gases, whether fermionic or bosonic,
the anisotropic character of the DDI is reflected through the appearance of an anisotropic
special function, which determines the dipolar energy of the system. Here we define
and summarize the properties of all forms of anisotropy functions that appear in dif-
ferent scenarios in Chapter 2.

B.1 Anisotropy function

Here we recall the definition of the standard anisotropy function [141]

f(x, y) = − 1
4π

∫ 2π

0
dφ
∫ π

0
dϑ sinϑ

[
3x2y2cos2ϑ

(y2cos2φ+ x2sin2φ) sin2ϑ+ x2y2cos2ϑ
− 1

]

= 1 + 3xy E(ϑx, κ)− F (ϑx, κ)
(1− y2)

√
1− x2

, (B.1)

where ϑx = ϑ(x) = arccosx and κ2 = (1 − y2)/(1 − x2). Furthermore, F (ϕ, k) is the
elliptic integral of the first kind and E(ϕ, k) is the elliptic integral of the second kind,
which are defined as follows

F (ϑx, κ) =
∫ sinϑx

0
du

1√
(1− u2)(1− κ2u2)

,

E(ϑx, κ) =
∫ sinϑx

0
du

√
1− k2u2
√

1− u2
. (B.2)
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Chapter B Generalized anisotropy function

One of the most important properties of the anisotropy function is its symmetry,

f(x, y) = f(y, x) , (B.3)

as well as the sum rule,

f(x, y) + f
(
y

x
,

1
x

)
+ f

(
1
y
,
x

y

)
= 0 . (B.4)

The physical origin of the symmetry (B.3) is related to the cylindrical symmetry
of the system in momentum space, after its spherical symmetry is broken due to the
preferential direction of the dipoles. On the other hand, the sum rule can be connected
to the fact that the average of the polarization over all directions gives zero contribution
to the dipolar energy [141].

In the special case, when the arguments of the anisotropy function are equal, it
reduces to a symmetric anisotropy function [29, 30, 146, 167]

fs(x) = f(x, x) = 3x2

1− x2

(
1− arctanh

√
1− x2

√
1− x2

)
+ 1 . (B.5)

B.2 Anisotropy function for off-on-axis scenario

When we consider the off-on-axis scenario, it is expected that the geometry of the
FS has impact on dipolar energy. In order to define the corresponding anisotropy
function, we first introduce some auxiliary functions,

4πfAx(x, y) =
∫ 2π

0
dφ
∫ π

0
dϑ

y2sin3ϑ cos2 φ

y2cos2φsin2ϑ+ x2sin2φsin2ϑ+ x2y2cos2ϑ

= 4π y2

y2 − x2

[
1− x

y

E(ϑx, κ)√
1− x2

]
, (B.6)

4πfAy(x, y) =
∫ 2π

0
dφ
∫ π

0
dϑ

x2sin3ϑ sin2 φ

y2cos2φsin2ϑ+ x2sin2φsin2ϑ+ x2y2cos2ϑ

= 4π x2

x2 − y2

[
1− y

x

E(ϑy, 1
κ
)√

1− y2

]
, (B.7)

4πfAz(x, y) =
∫ 2π

0
dφ
∫ π

0
dϑ

x2y2cos2ϑsinϑ
y2cos2φsin2ϑ+ x2sin2φsin2ϑ+ x2y2cos2ϑ

= −4πxyE(ϑx, κ)− F (ϑx, κ)
(1− y2)

√
1− x2

. (B.8)
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Using these definitions and Equations (B.3) and (B.4), the following identities can be
obtained

f(x, y) = 1− 3fAz(x, y) , (B.9)

fAx(x, y) = fAz

(
y

x
,

1
x

)
, (B.10)

fAy(x, y) = fAz

(
x

y
,

1
y

)
, (B.11)

∑
i=x,y,z

fAi(x, y) = 1 . (B.12)

The generalized anisotropy function fA(x, y, θ, ϕ), which includes the momentum-space
dependence on the general orientation of the dipoles reads

fA (x, y, θ, ϕ) = 1− 3
∑
i

R2
iz fAi(x, y)

= sin2 θ cos2 ϕf
(
y

x
,

1
x

)
+ sin2 θ sin2 ϕf

(
x

y
,

1
y

)
+ cos2 θ f (x, y) , (B.13)

where Rij are matrix elements of the rotation matrix R = R(θ, ϕ), defined by Equa-
tion (2.14). Note that in the special case θ = ϕ = 0◦ the generalized function fA

satisfies
fA(x, y, 0◦, 0◦) = f(x, y) . (B.14)

B.3 Anisotropy function for off-off-axis scenario

In the case of the off-off-axis scenario, the features of the DDI are embodied into the
generalized anisotropy function FA(x, y, θ, ϕ, θ̃, φ̃), which includes both the momentum-
and real-space dependence on the general orientation of the dipoles. This function is
defined as follows

FA(x, y, θ, ϕ, θ̃, φ̃) =
(∑

i

RizR̃ix

)2

f
(
y

x
,

1
x

)

+
(∑

i

RizR̃iy

)2

f

(
x

y
,

1
y

)

+
(∑

i

RizR̃iz

)2

f(x, y) . (B.15)
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Here Rij and R̃ij are matrix elements of the rotation matrix R = R(θ, ϕ) and R̃ =
R(θ̃, φ̃), respectively. Note that in the three relevant limiting cases the function FA

satisfies

FA(x, y, 0◦, 0◦, 0◦, 0◦) = f(x, y) , (B.16)

FA(x, y, α, β, α, β) = f(x, y) , (B.17)

FA(x, y, θ, ϕ, 0◦, 0◦) = fA (x, y, θ, ϕ) . (B.18)

Due to these identities and the fact that f(x, y) is a symmetric function, the obtained
distributions of εcrit

dd and dcrit in Figure 3.2, as well as the distributions of ∆ in Fig-
ure 3.7 are symmetric with respect to their arguments for θ = ϕ = 0◦. Note that the
definition (B.15) of the generalized anisotropy function FA enables symmetric treat-
ment of both the Hartree and the Fock term in the expression for the total energy
given by Equation (2.72).
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Equations for variational parameters

Here we present the respective equations for the variational parameters of the
Wigner function ansätze for all four considered scenarios in Section 2.1. The derivation
procedure of the following equations is presented in Sections 2.3.1 and 2.3.2 for the
most general off-off-axis scenario, but the same can be applied to any of the considered
scenarios. The resulting sets of equations are given in what follows.

C.1 Spherical scenario

The total energy of the system E
(1)
tot in the spherical scenario is given by Equa-

tion (2.76). The five variational parameters (KF, Ri, µ) are determined by mini-
mizing the grand-canonical potential Ω(1) = E

(1)
tot − µN (1), where N (1) is defined by

Equation (2.10). The minimization leads to the following set of equations:

µ− ~2K2
F

8M = 0 , (C.1)

ω2
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2
x + 48Nc0

MR̄3

[
fA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)
−Rx∂RxfA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)]
− 8µ
M

= 0 , (C.2)

ω2
yR

2
y + 48Nc0

MR̄3

[
fA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)
−Ry∂RyfA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)]
− 8µ
M

= 0 , (C.3)

ω2
zR

2
z + 48Nc0

MR̄3

[
fA

(
Rx

Rz

,
Ry

Rz

, θ, ϕ
)
−Rz∂RzfA

(
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Rz

,
Ry

Rz

, θ, ϕ
)]
− 8µ
M

= 0 , (C.4)

N − 1
48R̄

3K3
F = 0 . (C.5)

Note that Equation (C.5) represents the particle-number conservation constraint given
by Equation (2.10).
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C.2 On-on-axis scenario

The total energy of the system E
(2)
tot in this case is given by Equation (2.75). The

seven variational parameters (Ki, Ri, µ) are determined by minimizing the grand-
canonical potential Ω(2) = E

(2)
tot−µN (2), where N (2) is defined by Equation (2.12). The

minimization yields the following set of equations

~2K2
x

2M + 24Nc0

R̄3
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(
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,
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)
− 4µ = 0 , (C.6)
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y
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,
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= 0 , (C.9)
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MR̄3

[
fA

(
Rx

Rz

,
Ry

Rz
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)
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−48Nc0

MR̄3
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)
− 8µ
M
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N − 1
48R̄

3K̄3 = 0 . (C.12)

Similarly as in the spherical scenario, Equation (C.12) coincides with the particle-
number conservation Equation (2.12).

C.3 Off-on-axis scenario

The total energy E
(3)
tot of the system in the off-on-axis scenario is given by Equa-

tion (2.73). The nine variational parameters (K ′i, Ri, θ′, ϕ′, µ) are determined by
minimizing the grand-canonical potential Ω(3) = E

(3)
tot − µN (3), where N (3) is defined

by Equation (2.15). The minimization of Ω(3) with respect to θ′ and ϕ′ directly yields

θ′ = θ , ϕ′ = ϕ . (C.13)
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This simplifies the terms which come from the Fock exchange energy due to the iden-
tity (B.17). Taking this to account, the rest of the equations has the following form

~2K ′2x
2M + 24Nc0

R̄3
K ′x∂K′

x
f

(
K ′z
K ′x

,
K ′z
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− 4µ = 0 , (C.14)
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~2K ′2z
2M + 24Nc0

R̄3
K ′z∂K′

z
f

(
K ′z
K ′x

,
K ′z
K ′y

)
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− 8µ
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N − 1
48R̄

3K̄ ′3 = 0 . (C.20)

As before, Equation (C.20) coincides with the particle-number conservation equa-
tion (2.15). Due to the symmetry of the anisotropy function f(x, y) = f(y, x), from
Equations (C.14) and (C.16) that K ′x = K ′y, i.e., that the FS is cylindrically symmet-
ric with respect to the dipoles’ orientation. This is expected, since we have shown
that the orientation of the dipoles in the rotated coordinate system coincides with
the qz axis and singles this particular direction out, leaving the perpendicular plane
perfectly symmetric in momentum space. Additionally, in close analogy to the special
case when the dipoles are aligned with one of the trapping axes [91, 92, 125, 126], the
three equations (C.14)-(C.16) can be rewritten in the following form

K ′x −K ′y = 0 , (C.21)

K ′2z −K ′2x −
144MNc0

~2R̄3

1 +
(2K ′2x +K ′2z ) fs

(
K′
z

K′
x

)
2
(
K ′z

2 −K ′x2
)

 = 0 , (C.22)

µ− 1
12
∑
j

~2K ′2j
2M = 0 . (C.23)
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C.4 Off-off-axis scenario

The total energy E
(4)
tot of the system in the off-off-axis scenario is given by Equa-

tion (2.72). The eleven variational parameters (K ′i, R′′i , θ′, ϕ′, θ′′, ϕ′′, µ) are deter-
mined by minimizing the grand-canonical potential Ω(4) = E

(4)
tot −µN (4), where N (4) is

defined by Equation (2.17). The minimization of Ω(4) with respect to parameters (K ′i,
θ′, ϕ′) is completely the same as in the previous case. This allows to eliminate the an-
gles θ′ and ϕ′ and to rewrite the equations for K ′i as (C.21)-(C.23). The mimimization
with respect to the other parameters leads to the complete set of equations

K ′x −K ′y = 0 , (C.24)
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2
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2 −K ′x2
)

 = 0 , (C.25)
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2M = 0 , (C.26)
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Averages and aspect ratios in real and
in momentum space

D.1 Phase-space averages 〈K2
i 〉

0 and 〈R2
i 〉

0

The quantum-mechanical expectation values of the observable K2
i can be obtained as

its phase-space average with respect to the equilibrium distribution function ν0, see
Equation (2.5). This gives

〈
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 , (D.1)

where we switch coordinate systems from S to S ′ for momentum space and from S to
S ′′ for real space (see Figure 2.1). After that, we evaluate the real space integrals by
rescaling variables according to Xi = R′′i ui and switching to spherical coordinates. The
remaining Q-integral is simplified by eliminating all terms in the integrand which are
odd functions in Qi, since their integrals vanish. Furthermore, using the substitution
Qi = viK

′
i, we get

〈
K2
i

〉0
= 8
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 . (D.2)
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The v-integral is the same as the integral which appear in Equation (2.33), so we can
use that result to obtain

〈
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〉0
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8
∑
j

R′2ijK ′2j . (D.3)

Similarly, one can derive the quantum-mechanical expectation values of the system
observable Ri as follows

〈
R2
i

〉0
= 1
N

∫ d3Kd3R
(2π)3 R2

i ν
0
(
R(r, t),K(r,k, t)

)

= 1
N

∫ d3Qd3X
(2π)3

∑
j

R′′ijXj

2

H
1−

∑
i

X 2
i

R′′2i
−
∑
i

Q2
i

K ′2i


= K

′3

6π2N

∫
d3X

∑
j

R′′2ij X 2
j

1−
∑
i

X 2
i

R′′2i

 3
2

H
1−

∑
i

X 2
i

R′′2i

 , (D.4)

which with a full analogy with previous calculation leads to a final result

〈
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〉0
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8
∑
j

R′′2ij R′2j . (D.5)

D.2 Aspect ratio in real space

To calculate aspect ratios in real space, we use the same geometry as in Reference [48],
which is illustrated in Figure 2.2. The imaging plane is r′xrz, i.e., the imaging is
performed along the r′y axis, which is rotated counterclockwise for an angle α in rxry

plane with respect to the ry axis. The TOF absorption images correspond to density
profiles of the system, so we first calculate the particle density n(r, t) from the Wigner
quasiprobability distribution function,

n(r, t) =
∫ d3k

(2π)3 ν(r,k, t) =
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, (D.6)

where X = R′′R and Q = R′K. Substituting Qi = uiK
′
i and switching to spherical

coordinates yields

n(r, t) = K
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Since the expectation values of the coordinates vanish,

〈ri(t)〉 = 1
N

∫
d3r ri n(r, t) = 1

N
b

3(t)bi(t)
∑
j

R′′Tij
∫
d3XXj n(X (r, t)) = 0 , (D.8)

the width of an atomic or molecular cloud in the i-th direction in real space is described
in terms of the root mean square

√
〈r2
i (t)〉. Using the expression (D.7) for the particle

density, the corresponding expectation values are found to be
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which is equal to the as integral in Equation (D.4) and, therefore, reads

〈r2
i (t)〉 = 1

8
∑
j

R′′2ij R′′2j b2
i (t) . (D.10)

Since the imaging is performed in the r′xrz plane, the aspect ratio in real space is
defined by

AR(t) =

√√√√ 〈r2
z(t)〉
〈r′2x (t)〉 , (D.11)

and we also need to calculate the expectation value 〈r′2x (t)〉, where r′ = R(0◦, α)r.
After a simple and straightforward calculation we get

〈r′2x (t)〉 = 1
N

∫
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N
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and finally the aspect ratio (D.11) found to be

AR(t) =

√√√√√ ∑
j R′′2zj R′′2j b2

z(t)∑
j R
′′2
j

[
R′′2xj b2

x(t) cos2 α + R′′2yj b2
y(t) sin2 α

] . (D.13)

Note that in the special case when the dipoles are oriented along one of the trap axes,
the aspect ratio in real space further simplifies

AR(t) = Rzbz(t)√
R2
x b

2
x(t) cos2 α +R2

y b
2
y(t) sin2 α

. (D.14)

135



Chapter D Aspect ratios of the cloud and Fermi surface

D.3 Aspect ratio in momentum space

In order to quantify effects of the DDI on the Fermi surface, we use changes of the
aspect ratio in momentum space, which is defined similarly as the aspect ratio in real
space. However, in contrast to the aspect ratio in real space, the derivation of the
expression for the aspect ratio in momentum space is much longer and more complex.
Thus, we focus here on the special case when the dipoles’ orientation is along the
one of the trap axes, since we investigate dynamics of such systems in Section 4.3.
First, we calculate the particle density in momentum space n(k, t), from the Wigner
quasiprobability distribution function,

n(k, t) =
∫
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where expressions for Ri(r, t) and Ki(r,k, t) are given by Equations (4.24) and (4.25),
respectively. After a change of spatial variables ri according to

ui = Di(t)ri
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where Di(t) =
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i Θi(t) , we switch to spherical coordinates and obtain
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The expectation value 〈ki(t)〉 in momentum space also vanishes

〈ki(t)〉 = 1
N

∫ d3k

(2π)3 ki n(k, t) = 0 , (D.18)

so the cloud widts in momentum space are instead defined by the root mean squares√
〈k2
i (t)〉. The corresponding expectation values can be explicitly calculated and yield
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where we have used a substitution vi = ki/(KiΘ
1
2
i (t)Di(t)). The v-integral is the same

as the integral which appears in Equations (2.33) and (D.2), and therefore we obtain

〈k2
i (t)〉 = 1

8

(
K2
i Θi(t) + M2R2

i ḃ
2
i (t)

~2

)
. (D.20)

The aspect ratio in momentum space is defined as

AK(t) =

√√√√ 〈k2
z(t)〉
〈k′2x (t)〉 , (D.21)

where k′ = R(0◦, α)k. After a simple and straightforward calculation we get

〈k′2x (t)〉 = 1
N

∫
d3k k′2x n(k, t) = 1

N

∫
d3k (kx cosα + ky sinα)2 n(k, t)

= 〈k2
x(t)〉 cos2 α + 〈k2

y(t)〉 sin2 α = 1
8

[
D2
xK

2
xΘx(t) cos2 α +D2

yK
2
yΘy(t) sin2 α

]
,

(D.22)

and finally the momentum space aspect ratio (D.21) is found to be

AK(t) =

√√√√√ ~2K2
zΘz(t) +M2R2

z ḃ
2
z(t)[

~2K2
xΘx(t) +M2R2

xḃ
2
x(t)

]
cos2 α +

[
~2K2

yΘy(t) +M2R2
y ḃ

2
y(t)

]
sin2 α

.

(D.23)
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[152] K. Dusling and T. Schäfer, Elliptic flow of the dilute Fermi gas: From kinetics
to hydrodynamics, Physical Review A 84, 013622 (2011).

[153] P.-A. Pantel, D. Davesne, and M. Urban, Numerical solution of the Boltzmann
equation for trapped Fermi gases with in-medium effects, Physical Review A 91,
013627 (2015).

[154] S. Chiacchiera, T. Lepers, D. Davesne, and M. Urban, Collective modes of
trapped Fermi gases with in-medium interaction, Physical Review A 79, 033613
(2009).

[155] S. Chiacchiera, T. Lepers, D. Davesne, and M. Urban, Role of fourth-order phase-
space moments in collective modes of trapped Fermi gases, Physical Review A
84, 043634 (2011).

[156] E. Timmermans, P. Tommasini, and K. Huang, Variational Thomas-Fermi the-
ory of a nonuniform Bose condensate at zero temperature, Physical Review A
55, 3645–3657 (1997).

[157] L. P. Kadanoff and G. Baym, Quantum statistical mechanics, Cambridge:
Cambridge University Press 1st edn (1962).
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