

УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У
НОВОМ САДУ

Aleksandar Pejović

Parallel software system for counting
finite models

DOCTORAL DISSERTATION

Александар Пејовић

Паралелни програмски систем за
пребројавање коначних структура

ДОКТОРСКА ДИСЕРТАЦИЈА

Нови Сад, 2019.

УНИВЕРЗИТЕТ У НОВОМ САДУ  ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

21000 НОВИ САД, Трг Доситеја Обрадовића 6

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:

Тип документације, ТД: монографска документација

Тип записа, ТЗ: текстуални штампани запис

Врста рада, ВР: докторска дисертација

Аутор, АУ: Александар Пејовић

Ментор, МН: др Силвиа Гилезан, редовни професор

Наслов рада, НР: Паралелни програмски систем за пребројавање коначних структура

 Језик публикације, ЈП: енглески

Језик извода, ЈИ: енглески, српски

Земља публиковања, ЗП: Република Србија

Уже географско подручје, УГП:

Година, ГО: 2019

Издавач, ИЗ: Факултет техничких наука

Место и адреса, МА: Нови Сад, Трг Доситеја Обрадовића 6

Физички опис рада, ФО:
(поглавља/страна/ цитата/табела/слика/графика/прилога)

6/130/42/2/4/0/1

Научна област, НО: математичке науке

Научна дисциплина, НД: логика у рачунарству

Предметна одредница/Кqучне речи, ПО: теорија модела, слободне алгебре, коначна комбинаторика,
декларативно програмирање, паралелно програмирање

УДК

Чува се, ЧУ: Библиотека Факултета техничких наука у Новом Саду

Важна напомена, ВН:

Извод, ИЗ: Ова дисертација се бави развојем паралелног софтверског система за
представљање и решавање проблема теорије коначних модела и
његовом применом. Износи се теоријска основа система, као и детаљно
објашњење имплементације у Пајтону. Конкретно, развијен је
паралелан метод за рачунање Булових израза заснован на особинама
коначних слободних Булових алгебри. Такође се показује како се
различити коначни комбинаторни објекти могу кодирати у формализму
Булових алгебри и избројати применом овог поступка. Конкретно,
користећи транслацију предикатских формула првог реда на исказне
формуле развили смо технику за конструисање и бројање коначних
модела теорија првог реда. На крају, развили смо неке опште технике
које омогућавају ефективније коришћење нашег система. Ове технике
приказујемо на два примера. Први се бави парцијалним уређењима, а
други се односи на случајне графове.

Датум прихватања теме, ДП: 13.04.2017.

Датум одбране, ДО:

Чланови комисије, КО: Председник: др Татјана Давидовић, научни саветник

 Члан: др Милош Стојаковић, редовни професор

 Члан: др Мирослав Поповић, редовни професор Потпис ментора

 Члан: др Јелена Иветић, доцент

 Члан, ментор: др Силвиа Гилезан, редовни професор

Образац Q2.НА.06-05- Издање 1

UNIVERSITY OF NOVI SAD  FACULTY OF TECHNICAL SCIENCES

21000 NOVI SAD, Trg Dositeja Obradovića 6

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: monographic publication

Type of record, TR: textual printed material

Contents code, CC: PhD thesis

Author, AU: Aleksandar Pejović

Mentor, MN: Dr Silvia Gilezan, full professor

Title, TI: Parallel software system for counting finite models

 Language of text, LT: English

Language of abstract, LA: English, Serbian

Country of publication, CP: Republic of Serbia

Locality of publication, LP:

Publication year, PY: 2019

Publisher, PB: Faculty of Technical Sciences

Publication place, PP: Novi Sad, Trg Dositeja Obradovića 6

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

6/130/42/2/4/0/1

Scientific field, SF: mathematical sciences

Scientific discipline, SD: logic in computer science

Subject/Key words, S/KW: model theory, free algebras, finite combinatorics, declarative programming,
parallel programming

UC

Holding data, HD: Library of the Faculty of Technical Sciences in Novi Sad

Note, N:

Abstract, AB: This dissertation is about the development of a parallel software system for
representing and solving problems of finite model theory and its application.
The theoretical foundation of the system is presented, as well as an in-depth
explanation of the implementation in Python. In particular, a parallel method
for computing Boolean expressions based on the properties of finite free
Boolean algebras is developed. It is also shown how various finite
combinatorial objects can be coded in the formalism of Boolean algebras and
counted by this procedure. Specifically, using a translation of first order
predicate formulas to propositional formulas, we developed a technique for
constructing and counting finite models of first order theories. Finally, we
have developed some general techniques that enable more effective use of
our system. We illustrate these techniques on two examples. The first one
deals with partial orders, while the other one is about random graphs.

Accepted by the Scientific Board on, ASB: 13.04.2017.

Defended on, DE:

Defended Board, DB: President: Dr Tatjana Davidović, research professor

 Member: Dr Miloš Stojaković, full professor

 Member: Dr Miroslav Popović, full professor Menthor's sign

 Member: Dr Jelena Ivetić, assistant professor

 Member, Mentor: Dr Silvia Gilezan, full professor

Obrazac Q2.НА.06-05- Izdanje 1

To Mima.

Acknowledgements

I wish to express my deepest gratitude to my supervisor Dr Žarko Mijajlović, Professor at the
Faculty of Mathematics in Belgrade for his valuable advice, insightful suggestions and constant
encouragement and support throughout the entire period of my doctoral studies.

I am also very grateful to Dr Silvia Gilezan, Professor at the Faculty of Technical Sciences
in Novi Sad, who assumed the supervision of this dissertation after Professor Mijajlović’s
retirement. Professor Gilezan provided further guidance and offered helpful comments and
advice in the final stages of this work.

Abstract

This dissertation is about the development of a parallel software system for representing and
solving problems of finite model theory and its application.

We begin by introducing the necessary theory, and then proceed to the description of our
system. We give the theoretical foundation of the system, as well as an in-depth explanation
of the implementation in Python. In particular, a parallel method for computing Boolean
expressions based on the properties of finite free Boolean algebras is developed. Furthermore,
it is shown how various finite combinatorial objects can be codded in the formalism of Boolean
algebras and counted by this procedure. In other words, using the translation of first order
predicate formulas to propositional formulas, we developed a technique for constructing and
counting finite models of first order theories.

Finally, we also developed some general techniques that enable more effective use of our
system. We illustrate these techniques by two examples. The first one deals with partial orders,
while the other one is about random graphs.

Rezime

Ova disertacija se bavi razvojem paralelnog softverskog sistema za predstavljanje i rešavanje
problema teorije konačnih modela i njegovom primenom. Iznosi se teorijska osnova sistema,
kao i detaljno objašnjenje implementacije u Pajtonu. Konkretno, razvijen je paralelan metod za
računanje Bulovih izraza zasnovan na osobinama konačnih slobodnih Bulovih algebri. Takođe
se pokazuje kako se različiti konačni kombinatorni objekti mogu kodirati u formalizmu Bulovih
algebri i izbrojati primenom ovog postupka. Konkretno, koristeći translaciju predikatskih
formula prvog reda na iskazne formule razvili smo tehniku za konstruisanje i brojanje konačnih
modela teorija prvog reda. Na kraju, razvili smo neke opšte tehnike koje omogućavaju efektivnije
korišćenje našeg sistema. Ove tehnike prikazujemo na dva primera. Prvi se bavi parcijalnim
uređenjima, a drugi se odnosi na slučajne grafove.

Teza sadrži uvod i pet poglavlja: Teorija modela, Algebarske i kombinatorne konstrukcije,
Paralelno brojanje modela, Primene i Zaključak. Bibliografija ima 42 referencu. Na kraju teze
nalazi se jedan dodatak koji sadrži listinge (izvorni kod) koji se odnose na glavne primere.

Uvod daje jedan pregled tema teorijskog računarstva, teorije konačnih modela i apstraktne
algebre koje su u vezi teze. Deluje da je ta veza dvostruka i uzajamna. Jedan aspekt ove veze
je u primenama rezultata i metoda pomenutih matematičkih teorija u razvijanju algoritama i
programskih principa na kojima se zasniva naš softverski sistem. Uloga slobodnih algebri je
naročito naglašena, konkretno slobodnih Bulovih algebri. S druge strane, objašnjava se da bi
naš sistem mogao biti efikasno sredstvo u rešavanju kombinatornih problema i zapravo velikog
broja matematičkih problema konačnog karaktera koji se mogu izraziti pomoću logike prvog
reda. Primena ide od rešavanja problema iz teorije grafova i parcijalno uređenih skupova do
određivanja broja konačnih modela proizvoljnih teorija prvog reda. Sa te tačke gledišta naš
sistem je uporediv i konkurentan sa sličnim generatorima konačnih modela kao što je Mace4
(razvio ga Bill McCune).

Teorija modela

Svrha ovog poglavlja je samo da utvrdi označavanje, pojmove, terminologiju i navede neke
teoreme koje se koriste u tezi. Prema tome, ovo poglavlje ne sadrži originalne ili nove rezultate.

| viii

U uvodnom odeljku objašnjava se šta je predmet ove discipline matematičke logike.
Neformalno govoreći uzima se da je teorija modela = univerzalna algebra + logika.

U odeljcima Jezici prvog reda i Termi i formule uvode se osnovne sintaksne konstrukcije
za predikatski račun prvog reda: data je formalna definicija jezika prvog reda, promenljivih i
induktivne definicije terma i formula.

U odeljku Teorije prvog reda daju se logičke aksiome, zatim definicija aksioma teorija
prvog reda, pravila dedukcije i precizna definicija teorema teorija prvog reda. Takođe se navode
neka osnovna tvrđenja sintaksnog karaktera o teorijama prvog reda, kao što su lema o novoj
konstanti i teorema dedukcije. Ukratko je raspravljeno i pitanje odlučivosti aksiomatskih teorija
prvog reda, u sklopu čega je dat jedan dokaz teoreme koja kaže da ako je teorija sa rekurzivnim
skupom aksioma kompletna, onda je i odlučiva.

Naveli smo sledeće primere:

1. Čist predikatski račun prvog reda (algebarsko-relacijski jezik je prazan skup).

2. Razne vrste uređenja.

3. Bulove algebre.

U odeljku Modeli data je stroga definicija modela, tj. relacijsko-operacijske strukture,
podmodela, homomorfizama, izomorfizama i automorfizama, dok je u odeljku Relacija
zadovoljenja opisana induktivna definicija relacije zadovoljenja.

Mada na prvi pogled odeljak Metoda novih konstanti nema direktne veze sa kasnijim
istraživanjem u tezi, metodološki je ipak povezana sa postupkom kodiranja predikatskih formula
indeksiranim iskaznim promenljivama. Naime, daje se jedna zanimljiva konstrukcija kojom se
pokazuje da se relacija zadovoljena može uvesti, uz uvođenje novih simbola konstanti, samo za
rečenice, umesto na širem skupu, tj. skupu svih formula datog jezika prvog reda. U našem
slučaju, prilikom svođenja predikatskih aksioma na iskazne formule, simboli konstanata su
zapravo imena elemenata konačnog domena tražene strukture.

Na kraju, istaknimo da su uvedeni formalizmi neophodni u delu teze koji se odnosi na
implementaciju softvera. To je posledica činjenice da se teza odnosi upravo na generisanje
modela nad konačnim domenima teorija prvog reda.

Algebarske i kombinatorne konstrukcije

U ovom poglavlju se obrađuju dve teme algebarske i kombinatorne prirode.

Grupovno dejstvo na model U našem radu važnu ulogu će imati pojam grupovnog dejstva na
model. Više koncepata se dovode u vezu sa grupovnim dejstvom, kao što su orbite, stabilizatori,

| ix

klasovna jednakost, itd. Na primer, mi možemo da merimo simetriju neke strukture brojem
orbita. U ekstremnom slučaju imamo strukturu visokog stepena simetrije sa samo jednom
orbitom. Takve strukture imaju tranzitivno grupovno dejstvo. Videćemo da je na neki način
simetrija strukture inverzna mogućnosti definisanja u strukturi.

Od važnijih teorema iz ove oblasti predstavljena je i dokazana klasovna jednakost za
grupovno dejstvo.

Formule inverzije Druga tema se odnosi na tzv. formule inverzije, što je važna grana
kombinatorike. Ovu teoriju koristimo za pronalaženje naročitih tipova automorfizama modela
i permutacija njihovih domena, na primer sa određenim brojem fiksnih tačaka. Ovaj odeljak
sadrži originalan doprinos, a to je jedno proširenje Guldovih formula inverzije [16], [17].

Najpre se pokazuje na primeru za m = 2, korišćenjem Hophovih algebri i svojstava
Čebiševljevih polinoma, da važi dobro poznata formula inverzije

gn =
∑

k

(
n
k

)
fn−2k ⇔ fn =

∑
2k⩽n

(−1)k n
n − k

(
n − k

k

)
gn−2k, f , g ∈ F .

Zatim se izvodi Guldovo uopštenje

gn =
∑

k

(
n
k

)
fn−mk ⇔ fn =

∑
0⩽k⩽ n

m

(−1)k n
n − rk

(
n − rk

k

)
gn−mk,

ali i naša dalja generalizacija koja predstavlja originalan prilog za rekurentnu formulu

gn =
∑

k

(
n
k

)
fn−mk+l, 0 ⩽ l < m.

Verujemo da je naš pristup nov pošto se zasniva na Hophovim algebrama i linearnom
funkcionalu θ = π + π−r na prostoru CZ , π je funkcija projekcije, C je skup kompleksnih
brojeva, a Z je skup celih brojeva. Većina rezultata iz ovog odeljka je objavljena u radu [31].

Paralelno brojanje modela

Ovo je najveće i ujedno centralno poglavlje u disertaciji. Verujemo da je većina rezultata i
programskih rešenja ovde originalna. Sastoji se od četiri odeljka.

Uvod U prvom odeljku se detaljno obrađuje problem nalaženja spektra (broja modela)
konačnih modela teorija prvog reda i na koji način je to povezano sa rešavanjem drugih
kombinatornih problema na primer u teoriji grafova ili teoriji particija. Objašnjeno je da je

| x

osnovna ideja sadržana u zapažanju da je

f (b1, b2, . . . , bn) bulovski vektor koji kodira punu DNF za f ,

gde je f (x1, x2, . . . , xn) bulovski term po promenljivama x1, x2, . . . , xn, dok su b1, b2, . . . , bn

slobodni bulovski vektori (generatori) slobodne Bulove algebre Ωn koju generišu. Ovo
omogućava proveru logičke validnosti za f (x1, x2, . . . , xn), tretirajući je sada kao iskaznu
formulu. Opštije rečeno, za f mogu da se izračunaju modeli µ, tj. valuacije takve da je f [µ] = 1.
Pošto je Ωn � 22n , sledi da se vrednost f Ωn (b1, b2, . . . , bn) može izračunati koristeći paralelne
mogućnosti logičkih operacija nad bitovima u savremenim računarskim uređajima kao što
su CPU i GPU. Ova ideja se javila još 1998. u Mijajlović [30], ali je u potpunosti ispitana i
sprovedena u delo kao softverski sistem u ovoj tezi.

Promenljive Drugi odeljak daje detaljnu algebarsku pozadinu u vezi sa konačnim slobodnim
Bulovim algebrama, ali i slobodnim algebrama uopšte.

Interpretacija promenljivih Smatramo da je skup promenljivih bilo kakav neprazan
skup V tako da nijedno v ∈ V nije konačan niz drugih elemenata iz V . Ova pretpostavka
obezbeđuje jedinstvenu čitljivost terma i formula. Dalje, usvojimo da je I skup valuacija
domena A, tj. I = {µ | µ : V → A}.

Definicija (Interpretacija promenljivih). Neka je v promenljiva iz V . Interpretacija promenljive
v u domenu A je preslikavanje v̂ : I → A definisano kao v̂(µ) = µ(v), µ ∈ I.

Pojam interpretacije promenljivih će igrati fundamentalnu ulogu u našoj analizi i imple-
mentaciji programa, ali može biti od koristi i u drugim slučajevima. Na primer, koristeći ovaj
pojam lako se dokazuje čuvena Birkhofova teorema o postojanju slobodnih algebri i druge
teoreme u vezi sa njom, kao što je Bikhofova HSP teorema.

Novina ovog dokaza u odnosu na standardni dokaz je da se ne koristi pojam term algebre
(apsolutno slobodne algebre) i da ima modelsko-teoretsku prirodu.

Slobodni bulovski vektori Dobro je poznato da su algebre 22n konačne slobodne Bulove
algebre sa n slobodnih generatora. Struktura i osobine slobodnih bulovskih vektora Ωn = 22n

se detaljno razmatraju u [30].
Bavićemo se naročito slobodnim generatorima Ωn sledećeg oblika. Neka su ai, i =

0, 1, . . . , 2n−1, binarni razvoji celih brojeva dopunjeni vodećim nulama do dužine n. Neka je M
matrica čije su kolone vektori ai. Kao što se konstatuje u [30], binarni vektori bi, i = 1, 2, . . . , n,

| xi

koji obrazuju vrste M su slobodni vektori Ωn. U slučaju n = 3 matrica M i vektori bi su

M =



0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



,

b1 = 00001111, b2 = 00110011, b3 = 01010101.

Računanje bulovskih izraza Opisujemo ukratko paralelni algoritam za računanje d =
tΩn (b1, . . . , bn). Pretpostavimo da raspolažemo sa 2k-bitnim procesorom, k < n. Svaki od
vektora bi se deli na 2n−k uzastopnih sekvenci. Sledi da se bi sastoji od 2n−k blokova bi j veličine
2k . Da bi se našlo d, računaju se blokovi d j = t(b1 j, . . . , bn j) veličine 2k koristeći operacije
nad bitovima za j = 1, 2, . . . , 2n−k . Tada je kombinovani vektor d1d2 . . . d2n−k upravo izlazni
vektor d. Ukupno vreme da se izračuna d približno iznosi T = 2l+n−kδ, gde je 2l ukupan broj
čvorova u binarnom stablu izraza koji odgovara termu t, a δ je vremenski interval za računanje
jedne logičke operacije nad bitovima1.

Računanje konačnih modela Treći odeljak se uglavnom bavi sintaksnim transformacijama
i algoritmima za prevođenje predikatskih formula prvog reda φ u iskazne formule φ∗ na
konačnom domenu A.

Koristeći prevođenje iz predikatske logike prvog reda Lωω u iskaznu logiku Lω možemo da
formulišemo i računski rešimo različite probleme na konačnim strukturama.

Prevođenje iz Lωω u Lω Metoda za kodiranje nekih pojmova, uglavnom kombinatorne
prirode koji se odnose na prebrojive strukture prvog reda, pomoću teorija iskaznog računa Lω1

predstavljena je u [33]. Tamošnji glavni cilj bio je da se prouči kompleksnost ovih pojmova u
Borelovoj hijerarhiji. Kodiranje je tamo dato preslikavanjem ∗ koje smo ovde prilagodili za
naše potrebe.

Neka je L konačan jezik prvog reda, a LA jezik L proširen simbolima konstanti – imenima
elemenata konačnog domena A. Skup iskaznih slova P definišemo na sledeći način

P = {pFa1...akb | a1, . . . , ak, b ∈ A, F je k-arni funkcijski simbol L} ∪
{qRa1...ak | a1, . . . , ak ∈ A, R je k-arni relacijski simbol L}. (1)

Zatim rekurzivno definišemo preslikavanje prevođenja ∗ iz skupa SentLA svih Lωω-rečenica
LA u skup LPω iskaznih formula nad P. U osnovi, preslikavanje ∗ prevodi univerzalne i

1Kod savremenih računara δ ≈ 10−9 sekundi

| xii

egzistencijalne kvantifikatore redom u konačne konjunkcije i disjunkcije parametrizovanih
formula bez kvantifikatora.

Na primer, ako je φ rečenica kojom se iskazuje asocijativnost binarnog funkcijskog simbola ·,
biće da je rezultat primene ∗ na i · j = u upravo pi ju i da je φ∗ na domenu In = {0, 1, . . . , n − 1}
ekvivalentno sa ∧

i, j,k,u,v,l<n

((pi ju ∧ p j kv ∧ pukl) ⇒ pivl)

Korespondencija između modela T i T∗ Koristeći prevođenje ∗ dajemo metodu za
konstruisanje i brojanje konačnih modela teorija prvog reda konačnog jezika L.

Sa LT,n obeležićemo skup svih označenih modela T veličine n. Pretpostavimo da je T
konačna teorija. Neka je P skup iskaznih slova definisanih sa (1) za A = In i jezik L, i neka je
T∗ = {φ∗ | φ ∈ T }. Dalje, nekaM(T∗) ⊆ 2P označava skup svih modela T∗, tj. valuacija koje
zadovoljavaju sve iskazne formule u T∗. Sledeća konstrukcija opisuje korespondenciju između
označenih modela T i modela T∗.

Funkcija h koja dodeljuje svakoj µ ∈ M(T∗) jedan označen model h(µ) = A teorije T
definiše se na sledeći način. Neka a1, . . . , ak, b ∈ In.

Ako je F ∈ L k-mesni funkcijski simbol, tada

FA(a1, . . . , ak) = b iff µ(pFa1...akb) = 1.

Ako je R ∈ L k-mesni relacijski simbol, tada

A |= R[a1, . . . , ak] iff µ(qRa1...ak) = 1. (2)

Indukcijom po kompleksnosti formule φ dokazali smo:

Teorema. Preslikavanje h kodira modele iz LT,n modelima T∗.

Ova teorema je naša polazna tačka u određivanju konačnih modela T veličine n. Naime,
pošto je T∗ konačna, aksiome T možemo zameniti s jednom iskaznom formulom θ =

∧
ψ∈T∗ ψ.

Softverska implementacija U četvrtom odeljku se detaljno objašnjavaju implementacija
našeg sistema i njegove glavne komponente.

Kada smo započeli razvoj sistema, naša glavna motivacija bio je algoritam opisan u
pododeljku Računanje bulovskih izraza. Stoga ne treba da iznenadi da je upravo paralelno
brojanje modela njegova glavna karakteristika. Međutim, to je tek samo jedan aspekt sveukupnog
sistema. Pored toga, razvili smo i funkcionalnosti kao što su: domensko-specifični jezik (DSL)

| xiii

∨

∧

p q

¬

r

Sl. 1 AST za p ∧ q ∨ ¬r

za formulisanje teorija prvog reda, njihovo prevođenje u iskazni račun i parcijalna evaluacija
iskaznih formula da pomenemo nekoliko istaknutih.

Celokupni sistem je implementiran u programskom jeziku Pajton sa izuzetkom hardverski
ubrzanih primitiva, poput primitive koja se koristi za paralelno brojanje modela, a koje su
implementirane korišćenjem OpenCL-a, platforme za paralelno računanje.

Sistem smo osmislili kao svojevrsni set alata za kreiranje brojača modela koji su prilagođeni
datom problemu, ili drugim rečima, kao biblioteku za Pajton koja obezbeđuje sve neophodne
gradivne blokove za njihovu konstrukciju. Ideja je da se omogući da se namenski brojači
modela razvijaju na isti način kao i bilo koji drugi program u Pajtonu. Stoga je važan cilj
implementacije bio da se osigura da funkcionalnost koju pruža sistem bude dobro integrisana
sa Pajtonom.

U ostatku odeljka proći ćemo kroz detalje implementacije svake važne funkcionalnosti
sistema.

Reprezentacija teorija prvog reda Iskazne formule zauzimaju centralno mesto unutar
sistema. Ima više razloga za to. Najvažniji je taj da se OpenCL C kod za hardversko ubrzanje
generiše na osnovu iskaznih formula. Zbog toga nam je bila potrebna struktura podataka
za reprezentaciju iskaznih formula koja podržava neposredno generisanje koda. Jedna takva
struktura naziva se apstraktno sintaksno stablo ili AST. U svojstvu primera, Sl. 1 prikazuje AST
sledeće iskazne formule

p ∧ q ∨ ¬r . (3)

Da bismo gradili AST-ove terma jezika L, potreban nam je poseban tip AST čvora za
svaki funkcijski simbol F, kao i jedan za konstante i jedan za promenljive. Svaki tip čvora
implementiran je kao zasebna podklasa apstraktne klase Term koja predstavlja terme jezika.

Koristeći uvedene klase moguće je napraviti AST bilo kojeg terma jezika L. Na primer,
AST formule (3) može da se napravi pomoću sledećeg Pajtonovog izraza

Or(And(Var(’p’), Var(’q’)), Not(Var(’r’))).

| xiv

Međutim, pravljenje AST-ova na ovakav način je prilično zamorno (naročito za složenije
formule). Štaviše, rezultujući Pajtonovi izrazi nisu lako razumljivi, tj. teško je reći kojoj
iskaznoj formuli dati Pajtonov izraz odgovara. Zato smo u cilju pojednostavljenja unosa formula
u sistem razvili DSL za pravljenje njihovih AST-ova.

Osnovna ideja koja stoji iza implementacije našeg DSL-a je jednostavna: hoćemo da pišemo
iskazne formule kao Pajtonove izraze i da dobijemo odgovarajuće AST-ove kao rezultat njihove
evaluacije. Stoga smo naš DSL implementirali kao unutrašnji DSL [14] Pajtona.

Prednost ovog dizajna je što ne zahteva razvoj dodatnog parsera i dobro se integriše sa
ostatkom sistema. Na primer, možemo koristiti AST čvorove direktno u Pajtonovim izrazima.

Kao rezultat toga, da bismo napravili AST iskazne formule, dovoljno je da je prepišemo
kao ekvivalentan Pajtonov izraz nad bitovima po AST promenljivama (Var čvorovi). Drugim
rečima, AST formule (3) se pravi na sledeći način

p & q | ~r,

gde su p, q i r redom Var(’p’), Var(’q’) i Var(’r’).

Parcijalna evaluacija iskaznih formula Prilikom generisanja OpenCL C koda, broj
promenljivih generisane funkcije odgovara broju slobodnih promenljivih početne iskazne
formule. Stoga, ako neke slobodne promenljive imaju konstantne vrednosti, generisani kod
neće biti optimalan. Obratno, ako znamo da su vrednosti nekih promenljivih konstantne ili
ako smo ih namerno fiksirali, možemo da upotrebimo to znanje za generisanje optimizovanog
OpenCL C koda.

Optimizacija funkcija putem specijalizacije kada su neki njihovi ulazi fiksirani na konstantne
vrednosti poznata je kao parcijalna evaluacija. Osnovna teorija i metode parcijalne evaluacije u
teorijskom računarstvu su dobro objašnjeni u [22]. U našem slučaju, hoćemo da specijalizujemo
AST početne iskazne formule. Tačnije, hoćemo da dobijemo novi AST koji odgovara početnoj
iskaznoj formuli u kojoj su neke slobodne promenljive zamenjene njihovim konstantnim
vrednostima. Štaviše, hoćemo da napravimo redukovani AST, bez logičkih konstanti true i
false, izuzev kada je i sam AST konstanta.

Na primer, pretpostavimo da već imamo izraz e koji odgovara formuli (3), to jest
e = Expression(p & q | ~r). A sada pretpostavimo da znamo da je q uvek netačno.
Tada bismo mogli upotrebiti parcijalnu evaluaciju da specijalizujemo e za poznate činjenice.
Konkretno, izvršavajući

s = e.eval({q: false}),

dobijamo novi izraz s u kojem su sve pojave q zamenjene sa false. Drugim rečima, izraz s je
kao da je dobijen na sledeći način

| xv

s = Expression(p & false | ~r).

Ako detaljnije pogledamo formulu koja odgovara specijalizovanom izrazu s, očigledno je
da se može dodatno pojednostaviti. Naime,

p ∧ ⊥ ∨ ¬r ⇔ ¬r .

To jest, možemo da eliminišemo još jednu iskaznu promenljivu: p. Ali da bi se ovo postiglo,
neophodno je koristiti simboličko računanje, što je, neiznenađujuće, jedna od tehnika koje se
obično koriste za parcijalnu evaluaciju [22].

Simboličko računanje smo realizovali tako što zamenjujemo AST čvorove njihovim pojed-
nostavljenjima kad god je to moguće. Kao rezultat toga, sledeće poređenje je tačno

Expression(p & q | ~r).eval({q: false}) == Expression(~r).

Hardversko ubrzanje OpenCL platforma modeluje račun kao višedimenzionalni niz niti,
gde svaka nit izvršava isti računski kernel2, ali sa različitim podacima. Naš model podataka se
već sasvim lepo uklapa u OpenCL platformu s obzirom da radimo sa segmentima slobodnih
Bulovih vektora, tj. segmentima nizova bitova. Svaki računski kernel treba da implementira
obradu jednog segmenta.

Sistem koristi više računskih kernela. Po jedan za svaku ubrzanu primitivu koju obezbeđuje.
Međutim, svi kerneli dele zajedničku funkciju f koja implementira evaluaciju iskazne formule t.
Ova funkcija predstavlja suštinu naših računskih kernela.

Implementacija f se zasniva na svojstvu aranžiranja slobodnih Bulovih vektoraω0, . . . , ωn−1

koje sledi iz sledećeg izomorfizma algebarskih struktura:

Ωn ≃ Ω2n−k
k .

Ubrzane primitive Sistem obezbeđuje brojne hardverski ubrzane Pajtonove primitive
koje mogu da se koriste pri razvoju namenskih brojača modela. Dostupne su kao metode
sledeće klase:

class ClRunner(device)

Predstavlja jedinicu za izvršavanje koja koristi hardversko ubrzanje za računanje rezultata
dostupnih primitiva.

Svaka jedinica (instanca klase ClRunner) ima device, stvarni OpenCL računski
uređaj koji se koristi za izvršavanje.

2U OpenCL platformi računski kernel je funkcija deklarisana u OpenCL programu koja se izvršava na
računskom uređaju kao što je CPU ili GPU.

| xvi

eval(expression)

Izračunava sve modele datog izraza expression koristeći paralelnu evaluaciju.

count(expression)

Izračunava broj modela datog izraza expression koristeći paralelno brojanje.

findmodel(expression)

Izračunava model datog izraza expression koristeći paralelnu pretragu.

exist(expression)

Vraća True ako dati izraz expression ima model, u protivnom False.

Kao pogodnost, sistem nudi sledeće predefinisane jedinice za izvršavanje:

class GPURunner

Podklasa klase ClRunner koja koristi GPU sa najvećim brojem jezgara za izvršavanje.

class CPURunner

Podklasa klase ClRunner koja koristi CPU za izvršavanje.

Prema tome, da bismo pronašli broj modela formule (3) koristeći GPU, izvršili bismo sledeće

GPURunner().count(Expression(p & q | ~r)).

Primer Ovaj odeljak zaključujemo jednim ilustrativnim primerom. Klasični 9x9 sudoku
je dobro poznat problem, nije težak za razumevanje, a ipak zahteva namenski rešavač da bi se
rešio pomoću našeg sistema. Zbog toga je pogodan da se na njemu pokaže kako se različiti
delovi sistema međusobno uklapaju i kako celokupna integracija sa Pajtonom radi.

Poređenje sa sličnim softverom Na kraju ovog poglavlja naš sistem se poredi sa drugim
softverskim paketima sposobnim za nalaženje konačnih modela kao što su Mace4, Paradox i
PSATO.

Primene

Ovo poglavlje sadrži dva netrivijalna primera upotrebe našeg sistema.

Mreže U narednim pododeljcima razvijamo jednu opštu tehniku za smanjenje broja iskaznih
promenljivih korišćenjem simetrija svojstvenih problemu koji se razmatra. Formalno govoreći,
svodimo je na problem određivanja orbita pod dejstvom grupe automorfizama konačne strukture
na svom domenu. Ove tehnike i algoritme ilustrujemo pisanjem programa u našem sistemu za
jedan prilično opšti problem brojanja posebnih vrsta parcijalnih uređenja i mreža.

| xvii

Uklanjanje promenljivih Pretpostavimo da neka teorija T opisuje klasu konačnih modela.
Skup iskaznih slova P definisan sa (1) i koji se pojavljuje u prevodu iz T u T∗ velik je čak i za
malo n za domene A = In iz kojih se P generiše. Stoga, nama je potreban način da eliminišemo
neke iskazne promenljive koje se pojavljuju u T∗. Bilo kakav postupak eliminacije promenljivih
iz P zvaćemo uklanjanje promenljivih.

Neka je T konačna teorija jezika L i pretpostavimo da su φ0(x), . . . , φk−1(x) formule L za
koje T dokazuje da su međusobno razdvojene, tj. za i , j, T ⊢ ¬∃x(φi (x) ∧ φ j (x)). Dalje,
pretpostavimo da one definišu konstante u T , drugim rečima za svako i

T ⊢ ∃x(φi (x) ∧ ∀y(φi (y) ⇒ φi (x))).

Naše korišćenje definabilnih konstanti za uklanjanje promenljivih zasniva se na zapažanju
da u mnogim slučajevima teorija T određuje vrednosti atomičnih formula gde figurišu neke
od definabilnih konstanti. Kao posledica, odgovarajuća iskazna slova iz P imaju definitivnu
vrednost. Na primer, pretpostavimo da je R dvomesni relacijski simbol i da T dokazuje
∀xR(c0, x). Tada možemo uzeti p0i = 1, i = 0, . . . , n − 1. Odnosno, ako je P generisan po In,
n iskaznih promenljivih je ubijeno u P. Broj preostalih promenljivih je n2 − n.

Definabilne particije Izložena ideja sa definabilnim konstantama može da se proširi i
na definabilne podskupove. Radi jednostavnosti usvojićemo da je L = {R}, gde je R simbol
binarne relacije.

Niz formula ∆ = θ1(x), . . . , θm(x) jezika L zvaćemo definabilnom particijom za Tn ako Tn

dokazuje:

1. ∀x(θ1(x) ∨ . . . ∨ θm(x)).

2. ¬∃x(θi (x) ∧ θ j (x)), 1 ⩽ i ⩽ j ⩽ m.

Reći ćemo da je ∆ dobra definabilna particija ako postoje formule Si j (x, y), 1 ⩽ i, j ⩽ m,
takve da je svaka Si j (x, y) jedna od R(x, y), R(y, x), ¬R(x, y), ¬R(y, x) i Tn dokazuje:

∀xy((θi (x) ∧ θ j (y)) ⇒ Si j (x, y)), 1 ⩽ i ⩽ j ⩽ m.

U svakom označenom modelu A od Tn, ∆ određuje niz X definabilnih podskupova
X1, . . . , Xm. Niz X sa ovim svojstvom nazivaćemo c-particijom.

Naša ideja za upotrebu dobre definabilne particije ∆ za generisanje označenih modela A od
Tn sastoji se u sledećem. Usvajamo da iskazno slovo pi j predstavlja RA(i, j) kao što je opisano
sa (2). Generišemo sve c-particije X = (X1, . . . , Xm) od In, uzimajući da Xi odgovara θi. Za
svaku X dodeljujemo vrednosti konkretnom pi j na sledeći način. Ako S(x, y) jeste R(x, y),

| xviii

tada stavljamo pi j = 1 za i ∈ Xk i j ∈ Xl , k ⩽ l , a ako S(x, y) jeste ¬R(x, y), stavljamo pi j = 0.
Na sličan način dodeljujemo vrednosti p ji u zavisnosti da li S(x, y) jeste R(y, x) ili ¬R(y, x).
Čineći to, dobijamo iskaznu teoriju TX ⊆ T∗n sa smanjenim brojem nepoznatih iz P.

Nesvodljive komponente Pretpostavimo da je A neki model teorije Tn. Tada svaka
nesvodljiva formula θ definiše neki podskup Xθ u A. Ako Xθ nije prazan, onda se ne može
razdvojiti na dva neprazna definabilna podskupa bez zajedničkih elemenata, tj. Xθ ne sadrži
pravi neprazan definabilan podskup. Za bilo koji neprazan podskup u A koji je definabilan
pomoću neke nesvodljive formule kaže se da je nesvodljiva komponenta A. Međutim, postoji
jedan korisniji način za opisivanje nesvodljivih formula i komponenti kao što ćemo pokazati u
nastavku.

Neka je A model teorije Tn za A = In i neka je G = Aut(A) i H : G → Sym(A) definisano
sa H (g)(x) = g(x), g ∈ G, x ∈ A. Tada je H grupovno dejstvo G na A i orbite ovog dejstva su
xG = {g(x) : g ∈ G}, x ∈ A.

Tvrđenje. Neka je T konačna teorĳa jezika L. Tada su nesvodljive komponente u nekom
modelu A od Tn tačno orbite pod dejstvom H .

Naša opšta ideja za generisanje označenih modela konačnih teorija nekog jezika sa jednim
binarnim relacijskim simbolom je da koristimo sledeće tvrđenje, koje smo u tezi dokazali, za
uklanjanje promenljivih.

Tvrđenje. Neka je T konačna teorĳa L = {R}, R simbol binarne relacĳe, a S(x, y) jedna od
R(x, y), R(y, x), ¬R(x, y), ¬R(y, x). Usvojimo da je θ(x) nesvodljiva formula Tn, a φ(x) neka
formula L. Pretpostavimo

Tn ⊢ ∃x(θ(x) ∧ ∀y(φ(y) ⇒ S(x, y))).

Neka je A model Tn, Xθ komponenta A pridružena θ, a Xφ podskup definabilan u A preko φ.
Tada A |= S[a, b] za svako a ∈ Xθ i svako b ∈ Xφ.

Brojanje mreža: implementacija programa Ovde opisujemo opštu strukturu programa
za brojanje mreža i drugih vrsta parcijalnih uređenja zasnovanog na teoriji razvijenoj u
prethodnim pododeljcima.

Turnirski grafovi Drugi primer se odnosi na posebnu vrstu turnira, takozvane Kauerove
grafove, i pokazuje kako se 0–1 zakon za konačne modele i slučajne grafove može koristiti u
kombinaciji sa našim sistemom da se dokaže da ti grafovi sa n čvorova postoje za svako n ⩾ 7.

| xix

Kauerovi grafovi su strukture (T, <) koje zadovoljavaju sledeće aksiome:

1. ∀x∃y(x < y).

2. ∀x∀y(x < y ⇒ ¬(y < x)).

3. ∀x∀y(x < y ⇒ (∃z(x < z ∧ z < y))).

Najpre se dokazuje da Kauerov graf sa najmanjim brojem elemenata ima 7 čvorova.
Ispostavlja se da je taj graf turnir, tj. zadovoljava aksiomu: x < y ∨ y < x. Stoga se u nastavku
izučavanja ovog problema ograničavamo na turnire.

Zatim se uz pomoć sistema generišu svi (do na izomorfizam) Kauerovi grafovi od 8 i 9
elemenata. Dalje se dokazuje metodom slučajnih grafova koju je uveo P. Erdös da za svako
n > 21 postoji Kauerov graf (turnir) sa n čvorova. Najzad, na osnovu ovog rezultata i 0–1 zakona
za konačne modele, dokazuje se da verovatnoća da slučajno izabrani turnir bude Kauerov graf
teži jedinici kada broj čvorova raste prema beskonačnosti. Drugim rečima za dovoljno veliko
n potreban je mali broj pokušaja da se slučajnim generisanjem turnira dobije baš Kauerov
graf sa n čvorova. Ispostavlja se da je n = 10 taj dovoljno veliki broj. Upravo koristeći ovu
činjenicu, lako se generišu Kauerovi turniri čiji je broj čvorova n = 10, 11, 12, . . . , 21. Otuda
sledi teorema, da za svako n ⩾ 7 postoji Kauerov turnir sa n čvorova.

Zaključak

U poslednjem poglavlju dat je objedinjeni pregled svih originalnih rezultata dobijenih u ovoj
tezi. Svakako, najbitniji rezultat teze je razvijeni paralelni softverski sistem za prebrojavanje
konačnih struktura. Pored toga, u poglavlju je dat i kratak osvrt na druge softvere sličnog tipa.
Na kraju poglavlja predložene su neke mogućnosti daljeg razvoja našeg softvera, a može se
raditi i na poboljšanju njegovih performansi.

Table of contents

List of figures xxiii

List of tables xxiv

List of listings xxv

Nomenclature xxvi

1 Introduction 1

2 Model theory 3
2.1 Introduction to model theory . 4
2.2 First-order languages . 4
2.3 Terms and formulas . 5
2.4 First-order theories . 9
2.5 Examples of theories . 12
2.6 Models . 15
2.7 Satisfaction relation . 19
2.8 Method of new constants . 24

3 Algebraic and combinatorial constructions 27
3.1 Group action on a model . 27
3.2 Inversion formulas . 29

3.2.1 Hopf algebra of projection functions 30
3.2.2 Linear functional θ = π + π−r . 31
3.2.3 Gould inversion formula . 36
3.2.4 Example . 39

Table of contents | xxi

4 Parallel model counting 43
4.1 Introduction to model counting . 43
4.2 Variables . 45

4.2.1 Interpretation of variables . 45
4.2.2 Free Boolean vectors . 47
4.2.3 Computing Boolean expressions . 49

4.3 Computing finite models . 49
4.3.1 Translation from Lωω to Lω . 50
4.3.2 Correspondence between models of T and T∗ 51

4.4 Software implementation . 53
4.4.1 Representation of first-order theories 54
4.4.2 Partial evaluation of propositional formulas 58
4.4.3 Hardware acceleration . 61
4.4.4 Accelerated primitives . 64
4.4.5 Example . 69

4.5 Comparison against similar software . 71

5 Applications 73
5.1 Lattices . 73

5.1.1 Removing variables . 73
5.1.2 Definable partitions . 76
5.1.3 Irreducible components . 79
5.1.4 Lattice counting: program implementation 82

5.2 Tournament graphs . 83
5.2.1 Graphs and tournament . 83
5.2.2 Kauer’s graph . 84
5.2.3 Random graphs with n vertices . 85
5.2.4 Random tournaments . 85
5.2.5 Example 1: Erdös, [1963] . 85
5.2.6 Example 2: Kauer’s tournament . 86
5.2.7 Supplement A: 0–1 Law . 87
5.2.8 Supplement B: Further problems . 89

6 Conclusion 90
6.1 Summary of results . 90
6.2 Related work . 92
6.3 Future work . 93

Table of contents | xxii

References 94

Appendix A Source code listings 97

List of figures

2.1 Terms of a first-order language L . 7
2.2 Proof theoretical hierarchy of first-order formulas 13
2.3 Homomorphism theorem for terms . 20

4.1 AST for p ∧ q ∨ ¬r . 55

List of tables

4.1 Bitwise operations over ASTs . 58
4.2 A partitioning of free Boolean vectors of Ω5 64

List of listings

3.1 Permutations(n, 3) . 41
4.1 Partial evaluation visitor . 59
4.2 Evaluation function template . 63
4.3 Template of the eval kernel . 67
4.4 Template of the count kernel . 68
4.5 Template of the findmodel kernel . 69
4.6 Latin square properties . 70
4.7 Sudoku property . 70

Nomenclature

Acronyms / Abbreviations

AST abstract syntax tree

CNF conjunctive normal form

DNF disjunctive normal form

DSL domain-specific language

GPU graphics processing unit

PR1 first-order predicate calculus

Chapter 1

Introduction

The theme of the dissertation is related to certain theoretical aspects of computer science and
practical and effective use of computers. More precisely, the theme is in the field of Finite
Model Theory (FMT) and its main contribution is a development of a parallel software system
for solving problems of generating and counting finite structures of first order theories.

FMT is a subfield of model theory, one of the key disciplines of modern mathematical
logic. In contrast to the classical model theory, FMT besides contributions to the theory of
finite structures (e.g., well-known 0–1 theorem) has become a very important instrument in
computing and applications. Examples of applications include solving various problems of
finite combinatorics, artificial intelligence, databases, formal languages and analysis of logic
circuits. Development of appropriate software platforms is particularly important in these
activities since they allow us to represent and solve problems of finite model theory. In most
cases this type of software uses the formalism of first-order predicate calculus (PR1). Research
in the dissertation exactly refers to the development of such a system, which is largely based on
parallel programs that are designed to run on graphics cards with a large number of processor
cores.

Theoretical background of this research lies in the following fields:

Model theory with emphasis on finite model theory. A short introduction to this subject will
be given: first order languages and theories, models, satisfaction relation, and method of
new constants. In addition, some proofs will be outlined.

Algebraic and combinatorial constructions It will appear that the use of some combinatorial
constructs will have fundamental role in this research. Therefore, in this context we shall
introduce and discuss group actions on models and the so called inversion formulas.

Free algebras and equational logic Implementation of our software system is heavily based
on free Boolean algebras and their free generators. Therefore, we give a concise

| 2

introduction to free algebras, with emphasis on examples and constructions of free
Boolean algebras. As an illustration of this method we gave a novel proof of a Birkhoff
HSP theorem and Completeness theorem for Equational logic.

The main goal of the thesis is to develop a programming system based on the above
principles and to give some applications of it.

Programming systems As a part of the thesis we developed a software system for finding
finite models of theories in first-order predicate logic and some of its extensions. It is
implemented as a parallel software that can run both on CPUs as well as GPUs. We gave
a comparative analysis of our software to other similar softwares, particularly to Mace4.
The framing language of our system is Python, while its parallel core is implemented
in OpenCL. The main idea was to implement an abstract processor with 2n bits. The
theoretical background of this abstract processor are free Boolean vectors. Besides that,
we also implemented:

• Translation of formulas of predicate logic to formulas of proposition calculus.

• Reduction of very large propositional expressions limited only by hardware resources.

• The programming system that is embedded in Python environment. In other words,
commands of the system can by used in Python programs as any other native
construct.

Applications We have two main examples of applications. The first one concerns partial
orders and in particular lattices. We were especially interested in the so called counting
problem—finding the number of labeled and unlabeled structures. The second example
deals with the random graphs, an area mostly developed by Erdös and Rénei. Of the
particular importance in the study of these graphs is the so called 0–1 Low (Glebski,
Kogan, Liagonki, Talanov[1969], rediscovered by Fagin[1976]). We proved certain
properties of special tournaments (oriented complete graph). For example, we proved the
existence of a Kauer tournament for n ⩾ 7.

Chapter 2

Model theory

This chapter is designed as an overview of the main concepts and definitions of classical model
theory. Of course, we could not cover all the topics in model theory, but the most important
constructions and theorems of model theory and their proofs are outlined. To large extent, we
relied on several monographs in this field, such as [7] and [29].

Boolean algebras will play an important role in this dissertation. The use of Boolean
algebras in model theory is prolific. They are applied in many model-theoretic constructions,
but we have also used them here in the design of our software system.

Basic constructions of models are presented such as the method of constants, elementary
equivalence of models and types. A few words are devoted to extensions of first-order logic.

We presuppose some parts of the naive set theory. This includes the basic properties of
ordinal and cardinal numbers and partially, their arithmetic. The cardinal number of a set X is
denoted by |X |, and the set of all subsets of X by P(X).

We have adopted Von Neuman representation of ordinals, so we have taken that every
ordinal is the set of all the smaller ordinals. Therefore

0 = ∅, 1 = {0}, 2 = {0, 1}, . . . , ω0 = {0, 1, 2, . . .},

Here ∅ denotes the empty set. The set of all natural numbers is denoted by ω0, i.e. ω = ω0 =

{0, 1, 2, . . .}. We do not distinguish ordinal numbers ωα and cardinal numbers ℵα.
If f : A→ B is a mapping from a set A into a set B and X ⊆ A, then

• f |X denotes the restriction of f to the set X ,

• f [X] = { f (x) : x ∈ X }, but sometimes we write f (X) for f [X] as well,

• f x or f (x) stands for the sequence f x1, f x2, . . . , f xn, where x denotes the sequence
x1, x2, . . . , xn.

2.1 Introduction to model theory | 4

Our metatheory is based on the ZFC set theory, and we shall not point out explicitly when
we use, for example, the Axiom of Choice or its equivalents. However, all exceptions will be
indicated, as the use of the Continuum Hypothesis or some weaker variants of the Axiom of
Choice.

Final remarks are on usage and signs. The word “iff” is often used instead of the phrase “if
and only if”. The end of a proof is indicated by □.

2.1 Introduction to model theory

Model theory is often defined as a formal logic and universal algebra. More detailed analysis
shows that model theory is the study of the relationship between syntactical objects on the one
hand and the structures of a set-theoretical nature on the other hand, or in other words, between
formal languages and their interpretations.

Therefore, two areas of logic, syntax and semantics, both have a role to play in this
subject. While syntax is concerned mainly with the formation rules of formulas, sentences
and other syntactical objects, semantics bears on the meaning of these notions. One of the
most important concepts of model theory is the satisfaction relation, denoted by |=, a relation
between mathematical structures and sentences.

Model theory was recognized as a separate subject during the thirties of the XX century in the
works of Thoralf Skolem (1887-1963, Norwegian), Alfred Tarski (1901-1983, Polish), Kurt Gödel
(1906–1978, Austrian), Anatoly Malcev (1909–1967, Russian) and their followers. Since then,
this field has developed vigorously, and was applied in many other branches of mathematics:
algebra, set-theory, nonstandard analysis, computer science and even mathematical economy.

We can speak of model theory of any kind of logic, but we shall study model theory of
first-order predicate calculus.

2.2 First-order languages

A first order language is any set L of constant symbols, function symbols and relation symbols.
Each of the relation and function symbols has some definite, finite number of argument places.
Sometimes it is convenient to consider constant symbols as function symbols with zero argument
places.

According to our classification, we have

L = FncL ∪ RelL ∪ ConstL,

2.3 Terms and formulas | 5

where:

• FncL = {s ∈ L : s is a function symbol of L},
• RelL = {s ∈ L : s is a relation symbol of L},
• ConstL = {s ∈ L : s is a constant symbol of L}.

All these three sets are pairwise disjoint, and each of them may be an empty set. Namely, we
shall deal only with logic with equality.

If L and L′ are first order languages, and L ⊆ L′, then L′ is called an expansion of the
language L, while L is called a reduct of L′. If L′ ∖ L is a set of constant symbols, then we say
that L′ is a simple expansion of L.

The arity–function ar : L → ω assigns to each s ∈ L its length, i.e., the number of argument
places. By the remark above, if s ∈ ConstL, we define ar(s) = 0, while for s ∈ FncL ∪ RelL,
we have ar(s) ⩾ 1.

In most cases it will be clear from the context what the lengths of the symbols of L
are, so in such cases the arity function will not be mentioned explicitly. However, we take
Fnck

L = {F ∈ FncL : ar(F) = k}. A similar meaning has Relk
L for relation symbols of L.

Example 2.2.1. The language of ordered fields is L = {+,−, ·, ⩽, 0, 1}. Here FncL = {+,−, ·},
RelL = {⩽}, ConstL = {0, 1}.

2.3 Terms and formulas

Terms and formulas of a first-order language L are special finite sequences of the symbols of L
and the logical symbols of the first-order predicate calculus (which shall be abbreviated PR1).

Logical symbols of PR1 are logical connectives and quantifiers:

• ∧ – and, ∨ – or, ⇒ – implication, ⇔ – equivalence,

• ¬ – negation and the equality sign ≡,

• ∀ – universal quantifier and ∃ – existential quantifier.

Finally, we have an infinite sequence of variables v1, v2,
The unique readability of terms and formulas must be provided, so some auxiliary symbols

are used, the left and right parenthesis and the comma sign: () ,.
Metavariables are x, y, z, x0, y0, z0, . . ., and they may denote any variable vi, i ∈ ω, i.e. the

domain of metavariables is the set Var = {v1, v2, . . .}. Metaequality is another important such
sign and it will be denoted by =.

Terms, or algebraic expressions of a language L can be described inductively:

2.3 Terms and formulas | 6

• Variables and constant symbols of L are terms.

• If F ∈ FncL is of the length n, and t1, . . . , tn are terms of L, then F (t1, . . . , tn) is a term
of L.

• Every term of L is obtained by a finite number of applications of the previous two rules.

A somewhat more formal (recursive) definition of this notion is:

Definition 2.3.1. A term of a language L is any element t of TermL, where TermL is defined in
the following way:

T0 = Var ∪ ConstL,

Tn+1 = Tn ∪ {F (t1, . . . , tk) : t1, . . . , tk ∈ Tn, F ∈ Fnck
L, k ∈ ω},

TermL =
⋃
n∈ω

Tn.

Standard rules are applied on terms: rules about deleting parenthesis, special notation for
binary function symbols, possible priority of function symbols, etc.

The complexity function co: TermL → ω is a measure of the complexity of terms. It is
defined in the following way:

co(t) =



0 if t ∈ T0,

n, n ∈ ω if t ∈ Tn ∖ Tn−1.

The complexity of terms, for example, of the language L = {F,G}, where F and G are the
binary function symbols, can be visualized as in Fig. 2.1.

Formulas of the first-order language L are defined in a similar manner. First, the atomic
formulas are defined:

Definition 2.3.2. A string φ is an atomic formula of a language L, if and only if φ has one of
the following forms:

(i) u ≡ v, u, v are terms of L,

(ii) R(t1, . . . , tn), R ∈ RelnL and t1, . . . , tn are terms of L.

Let AtL denote the set of the atomic formulas of L. Then by the previous definition we have

AtL = {u ≡ v : u, v ∈ TermL} ∪
{R(t1, . . . , tn) : n ∈ ω, R ∈ RelnL, t1, . . . , tn ∈ TermL}.

2.3 Terms and formulas | 7

Fig. 2.1 Terms of a first-order language L

Formulas of a language L are also defined inductively by the use of an auxiliary sequence
Fn, n ∈ ω, of sets of strings of L:

F0 = AtL,

Fn+1 = Fn ∪ {(φ ∧ ψ) : φ, ψ ∈ Fn}
∪ {(φ ∨ ψ) : φ, ψ ∈ Fn}
∪ {(¬φ) : φ ∈ Fn}
∪ {(φ⇒ ψ) : φ, ψ ∈ Fn}
∪ {(φ⇔ ψ) : φ, ψ ∈ Fn}
∪ {(∀xφ) : x ∈ Var, φ ∈ Fn}
∪ {(∃xφ) : x ∈ Var, φ ∈ Fn}, n ∈ ω,

ForL =
⋃
n∈ω
Fn.

Definition 2.3.3. Then the elements of the set ForL are defined as formulas of the language L.

It is not difficult to see that the formulas satisfy the following conditions:

• Atomic formulas are formulas.

• If φ and ψ are formulas of L, and x is a variable, then

(φ ∧ ψ), (φ ∨ ψ), (¬φ), (φ⇒ ψ), (φ⇔ ψ), (∃xφ), (∀xφ)

are also formulas of L.

2.3 Terms and formulas | 8

• Every formula of L is obtained by a finite number of use of the previous two rules.

In order to measure the complexity of formulas, we shall extend the complexity function co
to formulas as well. Therefore, co : ForL → ω is defined inductively in the following way:

co(φ) =



0 if φ ∈ AtL,

n if φ ∈ Forn ∖ Forn−1, n ∈ ω ∖ {0}.

As in the case of terms, we suppose that the reader is familiar with the basic conventions
about formulas: the use of rules on deleting parenthesis, priority of logical connectives, etc. In
addition, we shall shrink blocks of quantifiers, for example instead of ∀x0∀x1 . . .∀xnφ we shall
write ∀x0x1 . . . xnφ whenever appropriate.

The notion of a free occurrence of variables allows us to describe precisely the variables of
a formula φ which are not in the scope of the quantifiers.

Definition 2.3.4. The set Fv(φ) of variables which have free occurrences in a formula φ of L
is introduced inductively by the complexity of φ in the following way:

• If φ ∈ AtL, then Fv(φ) is the set of variables which occur in φ.

• Fv(¬φ) = Fv(φ).

• Fv(φ ∧ ψ) = Fv(φ ∨ ψ) = Fv(φ⇒ ψ) = Fv(φ⇔ ψ) = Fv(φ) ∪ Fv(ψ).

• Fv(∃xφ) = Fv(∀xφ) = Fv(φ) ∖ {x}.
The elements of the set Fv(φ) are called free variables of the formula φ, while the other

variables which occur in φ are called bounded. Ifφ ∈ ForL, then the notation φ(x0, . . . , xn), or
φx0 . . . xn is used to denote that free variables of φ are among the variables x0, . . . , xn.

Example 2.3.1. If φ = (¬x ≡ 0⇒ ∃y(x · y ≡ 1)) then Fv(φ) = {x}, so x is a free variable of
φ and y is a bounded variable of φ.

Formulas φ which do not contain free variables, i.e. Fv(φ) = ∅, are called sentences. The
formulas

0 ≡ 1 and ∀x(¬x ≡ 0⇒ ∃y(x · y ≡ 1))

are examples of sentences of the language L = {·, 0, 1}, where · is a binary function symbol.
The set of all sentences of L is denoted by SentL. The cardinal number of ForL is denoted

by ∥L∥, therefore ∥L∥ = |ForL |. It is not difficult to see that for every first-order language L
we have

∥L∥ = max{|L |,ℵ0}.

2.4 First-order theories | 9

2.4 First-order theories

The definition of the notion of a first-order theory is simple:

Definition 2.4.1. A theory of a first order language L is any set of sentences of L.

Therefore, a set T is a theory of L iff T ⊆ SentL. In this case elements of T are called
axioms of T .

The main notion connected to the concept of a theory is the notion of a proof in the
first-order logic. There are several approaches to the formalization of the notion of a proof. For
example, Gentzen’s systems are very useful for the analysis of the proof-theoretical strength of
mathematical theories. The emphasis in Gentzen’s approach is on deduction rules, as distinct
from Hilbert-oriented systems, where the stress is on the axioms.

Hilbert style formal systems are more convenient in model theory, so we shall confine our
attention to them. They consist of logic axioms, inference rules and special axioms. Now we
shall see how they look like for a first-order language L.

The logic axioms are:

Sentential axioms. These axioms are derived from propositional tautologies by the
simultaneous substitution of propositional letters by formulas of L.

Identity axioms. If φ ∈ ForL, t ∈ TermL, x ∈ Var, then φ(t/x) denotes the formula
obtained from φ by substituting the term t for each free occurrence of x in φ. Sometimes,
we shall use the abridged form φ(t) or φt, instead of φ(t/x). Now we shall list the identity
axioms:

x ≡ x,

and for n ∈ ω, we also have the following scheme axioms

x1 ≡ y1 ∧ x2 ≡ y2 ∧ . . . ∧ xn ≡ yn ⇒ t x1x2 . . . xn ≡ ty1y2 . . . yn,

x1 ≡ y1 ∧ x2 ≡ y2 ∧ . . . ∧ xn ≡ yn ⇒ φx1x2 . . . xn ⇔ φy1y2 . . . yn.

Quantifier axioms. If φ ∈ ForL, t ∈ TermL, x ∈ Var then

∀xφx ⇒ φt, φt ⇒ ∃xφx,

where φt is obtained from φx by freely substituting each free occurrence of x in φx by
the term t.

In addition, let φ and ψ be formulas of L, then the rules of inference are:

2.4 First-order theories | 10

Modus Ponens:
φ, φ⇒ ψ

ψ
.

Generalization rules. Provided x does not occur free in φ:

φ⇒ ψ

φ⇒ ∀xψ
,

ψ ⇒ φ

∃xψ ⇒ φ
.

And finally, the special axioms are axioms of a theory T .
A proof of a sentence φ in a theory T of a language L is every sequence ψ1, ψ2, . . . , ψn of

formulas of the language L such that φ = ψn and each formula ψi, i = 1, . . . , n, is a logical
axiom, or an axiom of T , or it is derived by inference rules from the preceding members of the
sequence.

If there exists a proof of φ in T , then φ is called a theorem of T , and in this case we use the
notation T ⊢ φ. The relation ⊢ between theories and formulas of a language L is the provability
relation. If T = ∅, then we simply write ⊢ φ instead of ∅ ⊢ φ, and φ is called a theorem of the
first-order predicate calculus. If φ is not a theorem of T , then we shall write ∼ T ⊢ φ or T ⊬ φ
for short.

Formulas of the form φ ∧ ¬φ are called contradictions. A theory T is consistent if there is
no contradiction ψ such that T ⊢ ψ.

Another important property which theories may have is completeness. A theory T of a
language L is complete if for each sentence φ of L either T ⊢ φ or T ⊢ ¬φ.

Finally, T is deductively closed if T contains all of its theorems.
There is a group of first-order notions which are related to the effective computability. We

shall suppose that the reader has some basic ideas of the effective computability and arithmetical
coding. So, for this purpose, if φ ∈ ForL, then ⌈φ⌉ denotes the code of formula φ. We remind
that the code ⌈φ⌉ is a unique positive integer assigned to φ. A similar notation is applied to
other syntactical objects (terms, elements of L, etc.).

A first order language L is recursive, if the set ⌈L⌉ = {⌈s⌉ : s ∈ L} is recursive. Similarly, L
is recursively enumerable if ⌈L⌉ is a recursively enumerable set.

A theory T of the language L is finitely axiomatizable, if T has a finite set of axioms. A
generalization of this notion is the concept of an axiomatic theory.

Definition 2.4.2. A theory T is axiomatic or recursive if T i.e. {⌈φ⌉ : φ ∈ T } is a recursive set
of sentences.

2.4 First-order theories | 11

The definitions of notions introduced in this way can be broadened. Namely, two theories T
and S of the same language L are equivalent, if they have the same theorems. Then a theory T
is considered to be also finitely axiomatizable (axiomatic), if there is a theory S equivalent to T
which has a finite set of axioms.

A first-order theory T is decidable, if the set of all theorems of T is decidable (i.e. recursive)
set, otherwise T is undecidable. The most interesting mathematical theories are undecidable.
However, the following proposition gives a test of decidability for certain theories.

Theorem 2.4.1. Suppose T is an axiomatic and complete theory of a recursive language L.
Then T is decidable.

Proof. Let T ′ be the set of all the theorems of T . Since T is complete, for each φ ∈ SentL we
have φ ∈ T ′ or ¬φ ∈ T ′. If for some sentence φ it holds that φ,¬φ ∈ T ′, then T ′ = SentL, and
since SentL is a recursive set, it follows T ′ is recursive as well.

Suppose the second, more interesting case holds, i.e., that T is a consistent theory. Since T
is recursive, the set (of all the codes) of proofs may be effectively listed. By the completeness
of T , for each sentence φ of L either φ or ¬φ should occur as the last member of a proof in the
list. In the first case, φ is a theorem of T , while in the second case, φ is not a theorem of T by
the consistency of T .

The just described property of T defines an algorithm for decidability of T ⊢ φ, where
φ ∈ SentL:

Generate all the proofs of T , and look at the end of each proof until one of the formulas
φ, ¬φ appears. If φ occurs then T ⊢ φ, otherwise T ⊢ ¬φ.

This search will stop since either T ⊢ φ, or T ⊢ ¬φ. □

Here are several elementary, but important, theorems from logic without proofs.

Theorem 2.4.2 (Deduction Theorem). Suppose T is a theory of a language L and T ⊢ φ where
φ ∈ ForL. Then, there are sentences θ0, θ1, . . . , θn ∈ T such that

⊢ θ0 ∧ θ1 ∧ . . . ∧ θn ⇒ φ.

As a consequence of this theorem we have that a first order theory T is consistent iff every
finite subset of T is consistent.

Lemma 2.4.1 (Lemma on the new constant). Let T be a theory of a language L, and assume c
is a constant symbol not occurring in L. Then for every formula φ(x) of L we have:

if T ⊢ φ(c), then T ⊢ ∀xφ(x).

2.5 Examples of theories | 12

Proof. The proof of this lemma is very easy. If in the proof of φ(c) from T , the constant symbol
c is replaced by a variable y, which does not occur in that proof, then we shall obtain a proof of
φ(y) from T . By the inference rule of generalization, the lemma then follows at once. □

A formula φ of a first-order language L is in a prenex normal form (PNF), if φ is of the
form Q1y1Q2y2 . . .Qnynψ, where ψ is a formula without quantifiers, and Q1,Q2, . . . ,Qn are
some of the quantifiers ∀, ∃. In this case the formula ψ is called a matrix.

Theorem 2.4.3 (PNF Theorem). For every formula φ of a first order language L, there exists
a formula ψ of L in a prenex normal form, such that T ⊢ φ⇔ ψ.

Another important notion is related to this theorem. This is the so-called proof-theoretical
hierarchy of formulas of a language L.

Definition 2.4.3. Let L be a first order language. Then:

∑0
0 =

∏0
0 =

{
φ ∈ ForL : φ does not contain quantifiers

}
,∑0

n+1 =
{
∃x1 . . . xkφ : k ∈ ω, φ ∈ ∏0

n

}
,∏0

n+1 =
{
∀x1 . . . xkφ : k ∈ ω, φ ∈ ∑0

n

}
.

If φ ∈ ∑0
n then φ is called a

∑0
n-formula, and if φ ∈ ∏0

n, then φ is a
∏0

n-formula. If φ is a∑0
1-formula, then φ is also called an existential formula, while if φ is a

∏0
1-formula, then φ is

called a universal formula.
The sequences

∑0
n and

∏0
n of formulas of L define a proof-theoretical hierarchy of formulas

of L. By PNF Theorem every formula φ of L is equivalent to a formula ψ such that either
ψ ∈ ∑0

n or ψ ∈ ∏0
n. Then φ is called a

∑0
n-formula and respectively

∏0
n-formula. If φ is a

formula of L and for some n ∈ ω there is a ψ ∈ ∑0
n and a θ ∈ ∏0

n both equivalent to φ then φ is
called a ∆0

n-formula.
The main properties of the proof-theoretical hierarchy are described in the Fig. 2.2.

2.5 Examples of theories

We shall give several examples of first-order theories. Most examples are from working
mathematics, and we shall consider some cases in greater detail. For every example, we shall
exhibit explicitly the corresponding language L in which the axioms of the theory are written
down.

2.5 Examples of theories | 13

Fig. 2.2 Proof theoretical hierarchy of first-order formulas

Example 2.5.1. Pure predicate calculus with identity, J0. For this theory we have:

L = ∅, T = ∅.

Theorems of J0 are exactly the theorems of PR1 which contain only logical symbols. Here are
several interesting examples of sentences which can be written in L:

σ1 = ∃x1∀x(x ≡ x1),

σ2 = ∃x1x2(¬x1 ≡ x2 ∧ ∀x(x ≡ x1 ∨ x ≡ x2)),
...

σn = ∃x1 . . . xn(
∧

1⩽i< j⩽n

(¬xi ≡ x j) ∧ ∀x(
∨

1⩽i⩽n

(x ≡ xi))).

τ1 = ∃x1(x1 ≡ x1),

τ2 = ∃x1x2(¬x1 ≡ x2),
...

τn = ∃x1 . . . xn(
∧
i< j

(¬xi ≡ x j)).

σn − “There are exactly n elements”.

τn − “There are at least n elements”.

Example 2.5.2. The theory of linear ordering, LO. In this case we have: LLO = {⩽}, ⩽ is a
binary relation symbol. Axioms of T are:

LO.1 x ⩽ x, reflexivity,

LO.2 x ⩽ y ∧ y ⩽ z ⇒ x ⩽ z, transitivity,

LO.3 x ⩽ y ∧ y ⩽ x ⇒ x ≡ y, antisymmetry,

LO.4 x ⩽ y ∨ y ⩽ x, linearity.

A theory PO whose axioms are LO.1–3 is called a theory of partial ordering. The binary relation
symbol < is introduced by the definition axiom: x < y ⇔ x ⩽ y ∧ x . y.

2.5 Examples of theories | 14

Example 2.5.3. The theory of dense linear ordering without endpoints, DLO. The language of
this theory is the same as in the case of LO, while the axioms DLO are the axioms of LO plus
the following sentences:

∃x∃y x . y, ∀x∃y x < y, ∀x∃y y < x,

∀x∀y∃z(x < y ⇒ x < z ∧ z < y).

It is not difficult to see that for each n ∈ ω ∖ {0}, DLO ⊢ τn, where τn is the sentence from
Example 2.5.1.

Example 2.5.4. The theory of Boolean algebras, BA. The language of this theory is LBA =

{+, ·, ′, ⩽, 0, 1}, where + and · are binary function symbols, ′ is a unary function symbol, ⩽ is a
binary relation symbol, while 0, 1 are constant symbols. The axioms of BA are:

1. (x + y) + z ≡ x + (y + z), 1′. (x · y) · z ≡ x · (y · z),

2. x + y ≡ y + x, 2′. x · y ≡ y · x,
3. x + 0 ≡ x, 3′. x · 1 ≡ x,

4. x + x′ ≡ 1, 4′. x · x′ ≡ 0,

5. 0 . 1,

6. x ⩽ y ⇔ x ≡ x · y.

The following notation is also used for Boolean operations. Namely, the symbols ∨ and ∧ are
often used for + and · respectively. The sign ′ is used unchanged, but x̄ can be used instead as
well. For example, the term (x′ · y) + z in the new notation may be written as (x̄ ∧ y) ∨ z.

It is easy to infer in BA the axioms of partial order in respect to the relation symbol ⩽. We
have the following important theorems of the theory BA:

Theorem 2.5.1. Let sup and inf denote the order supremum and infimum in respect to ⩽. Then
the next identities are theorems of BA:

sup{x1, x2, . . . , xn} ≡
∑
i⩽n

xi, inf{x1, x2, . . . , xn} ≡
∏
i⩽n

xi .

Theorem 2.5.2. For each t ∈ TermLBA ,

BA ⊢ t(x1, x2, . . . , xn) ≡
∑
α∈2n

t(α1, α2, . . . , αn)xα1
1 . . . xαn

n

where 2n = {α | α : n → 2}, and x0 = x′, x1 = x.

2.6 Models | 15

This property of Boolean terms is proved by induction on the complexity of terms.

All the examples we have listed are axiomatic theories, i.e., with recursive sets of axioms.
Also, all except the last example, are finitely axiomatizable theories.

Theories J0, LO, DLO, and BA are decidable. An example of a theory that is not decidable
would be the Peano arithmetic, PA. This is certainly the most famous example of an undecidable
theory.

Interestingly, the Presburger arithmetic, a subtheory of PA, is also a decidable and complete
theory. The first example of a program not dealing with numbers but only with symbols was
the implementation of the decision procedure for Presburger arithmetic (Martin Davis, 1954).

2.6 Models

We have dealt in the previous sections mainly with syntactical notions. On the other hand, the
most important concept in model theory is the idea of an operational-relational structure, or
simply a model of a first-order language L.

Customary mathematical structures such as groups, fields, ordered fields, and the structure
of natural numbers are examples of models. When studying the properties of models, a
distinctively important role is played by the concept of formal language used to make precise
the set of symbols and rules used to build formulas and sentences.

The main reason for introducing formulas is to describe properties of models. Therefore,
it is not astonishing that some properties of models are often consequences of the structure
of sentences or classes of sentences. The proofs of such features of models are often called
model-theoretical proofs.

Using the methods of model theory many open mathematical problems have been solved.
One such famous problem is the consistent foundation of Leibnitz Analysis, a problem which
stood open for 300 years. Abraham Robinson gave a simple but ingenious solution, and thanks
to him there is now a whole new methodology which is equally well applied to topology, algebra,
probability theory, and practically to all mathematical fields where infinite objects appear.

Definition 2.6.1. A model is every structure A = (A,R, F , C) where A is a nonempty set (the
domain of A), R is a set of relations over A, F is a family of operations over A, and C is a set
of constants of A.

By this definition of a model we have:

If R ∈ R, then there is n ∈ ω, such that R ⊆ An, i.e., R is a relation over A of a length n.
The length of R is denoted by ar(R).

2.6 Models | 16

If F ∈ F , then there is an n ∈ ω such that F : An → A, i.e., F is an n-ary operation over
A. The length of F is denoted by ar(F).

Finally, C ⊆ A.

If R, F , and C are finite sets, for example

R = {R1, R2, . . . , Rm}, F = {F1, F2, . . . , Fn}, C = {a1, a2, . . . , ak },

then A may be denoted as

A = (A, F1, F2, . . . , Fn, R1, R2, . . . , Rm, a1, a2, . . . , ak).

If these sets are indexed, i.e., R = ⟨R j : j ∈ J⟩, F = ⟨Fi : i ∈ I⟩, C = ⟨ak : k ∈ K⟩, we can also
use the notation: A = (A, Fi, R j, ak)i∈I, j∈J,k∈K .

Example 2.6.1. Some example models:

1. The ordered field of real numbers: R = (R,+, ·,−, ⩽, 0, 1). Here, F = {+, ·,−}, R = {⩽},
ar(⩽) = 2, ar(+) = ar (·) = 2, ar(−) = 1 and C = {0, 1}.

2. The structure of natural numbers: N = (N,+, ·,′ , ⩽, 0).

3. The field of all subsets of a set X : P(X) = (P(X),∪,∩, c, ⊆, X), where P(X) = {Y : Y ⊆
X }, and for Y ∈ P(X), Y c = X ∖ Y .

Models are interpretations of first-order languages. To see that, let L be a first-order language
and A a non-empty set. An interpretation of L into the domain A is every mapping I with the
domain L, and values determined as follows:

If R ∈ RelL, then I (R) is a relation of A of a length ar(R).

If F ∈ FncL, then I (F) is an operation of A of a length ar(F).

If c ∈ ConstL then I (c) ∈ A.

Therefore, every interpretation I of a language L into a domain A determines a unique model
A = (A, I (RelL), I (FncL), I (ConstL)). So introduced model is written simply as

A = (A, I), or A = (A, sA)s∈L,

where for s ∈ L, sA = I (s).

2.6 Models | 17

We see in Example 2.6.1 that R is a model of the language of ordered fields, while N is a
model of the language of Peano arithmetic and finally P(X) is a model of the language of the
theory of Boolean algebras.

From now on letters A,B,C, . . . will be reserved for models and letters A, B,C, . . . for their
domains.

If L is a language and A is a model of L, then s ∈ L and sA denote objects of a different
nature. However, if the context allows, we shall use the same sign to denote a symbol of L
and its interpretation in A. Therefor the superscript A will be often omitted from sA. The
circumstance under which s appears will determine if s ∈ L or s is in fact an interpretation of a
symbol of L.

Very often a structure A is introduced without explicit mention of the related language. But,
from the definition of the structure A it will be clear what is the corresponding language and in
that case we shall denote the language in question by LA and it will be called the language of
the model A.

A similar situation may appear for a theory T ; the corresponding language will be denoted
by LT and it will be called the language of the theory T .

Assume L ⊆ L′ are first-order languages, and let A be a model of L′. Omitting sA for
s ∈ L′ ∖ L from the model A, we obtain a new model B of L with the domain B = A. In this
case, A is called an expansion of the model B, while B is called a reduct of the model A. If I
and I′ are interpretations which determine B and A, respectively, we see that I = I′|L.

Definition 2.6.2. Let A and B be models of a language L. Then B is a submodel of A, if and
only if:

• if B ⊆ A and R ∈ Relk
L then RB = RA ∩ Bk ,

• if F ∈ Fnck
L then FB = FA |Bk ,

• if c ∈ ConstL then cB = cA.

The fact that B is a submodel of A, we shall denote by B ⊆ A. For example (N,+, ·, ⩽
, 0, 1) ⊆ (R,+, ·, ⩽, 0, 1), but for Y ⊂ X , Y , X , it is not true that

(P(Y),∪,∩, c, ∅,Y) ⊆ (P(X),∪,∩, c, ∅, X).

Algebras are special types of models; they are models of a languages L with RelL = ∅. As in
the case of algebras, it is possible to introduce notions of a homomorphism and an isomorphism
for models, too.

2.6 Models | 18

Definition 2.6.3. Let A and B be models of a language L, and f : A → B. The map f is a
homomorphism from A into B, denoted by f : A→ B, if and only if:

• For R ∈ Relk
L, and all a1, a2, . . . , ak ∈ A,

RA(a1, a2, . . . , ak) implies RB(f a1, f a2, . . . , f ak).

In this case we say that f is concurrent with relations RA and RB.

• For F ∈ Fnck
L, and all a1, a2, . . . , ak ∈ A,

f (FA(a1, a2, . . . , ak)) = FB(f a1, f a2, . . . , f ak).

In this case we say that f is concurrent with operations FA and FB.

• For c ∈ ConstL, f (cA) = cB.

Similarly to the case of algebraic structures, we have the following classification of
homomorphisms:

• f is an embedding, if f is 1–1.

• f is an onto-homomorphism (or epimorphism), if f is onto.

• f is a strong homomorphism, if for every R ∈ Relk
L, and a1, a2, . . . , ak ∈ A,

RA(a1, a2, . . . , ak) holds iff RB(f a1, f a2, . . . , f ak) holds.

• f is an isomorphism, if f is 1-1 and a strong epimorphism.

• f is an automorphism, if f is an isomorphism and A = B.

The set of all the automorphisms of a model A is denoted by AutA. It is not difficult to see
that AutA is a group under function multiplication; this group will be denoted by AutA.

Suppose f : A→ B is a homomorphism. Then we shall use the following conventions:

• If f is an embedding, we shall say that A is embedded into B.

• If f is an onto map, we shall say that B is a homomorphic image of A, and we shall
occasionally denote this fact by B = f (A).

• If f is an isomorphism between models A and B, then we shall write f : A ≈ B. The
notation A ≈ B is used to indicate that there is an isomorphism f : A ≈ B, and in this
case we shall say that A and B are isomorphic.

2.7 Satisfaction relation | 19

2.7 Satisfaction relation

When introducing syntactical objects of PR1, as the terms, formulas and sentences are, we had
in mind certain meanings related to these notions. Alfred Tarski’s definition of the satisfaction
relation |= determines these ideas precisely.

The introduction of this relation also solves the problem of mathematical truth. Namely, a
sentence φwill be true in a structure A, if A |= φ. Finally, this formalization of the mathematical
truth enables a mathematical analysis of metamathematical notions.

We shall first define the values of the terms in models. Let A be a model of a first-order
language L. A valuation or an assignment of the domain A is every map µ : Var→ A. Hence,
valuations assign values to variables. The value of a term u(x0, . . . , xn) ∈ TermL in a model A,
denoted by uA[µ], is defined by induction on the complexity of terms, assuming that µ(vi) = ai,
i ∈ ω.

Let u ∈ TermL. If co(u) = 0, we distinguish two cases:

• If u is a variable vi, then uA[µ] = ai.

• If u is a constant symbol c, then uA[µ] = cA.

Suppose now co(u) = n + 1, and assume that the values of the terms of the complexity ⩽ n
are determined. Then there is F ∈ Fnck

L such that u = F (u1, u2, . . . , uk) where u1, u2, . . . , uk

are terms of complexity ⩽ n. Then, by definition,

uA[µ] = FA(uA
1 [µ], uA

2 [µ], . . . , uA
k [µ]).

It is also common to write uA[a1, a2, . . . , ar] or u[a1, a2, . . . , ar], or u(a1, a2, . . . , ar), instead
of uA[µ], if it is clear which model is in question. Here, r is the number of distinct variables
appearing in u.

If A is a model of a language L, an operation F of domain A is derived if there is
t(x1, x2, . . . , xn) ∈ TermL such that

F (a1, a2, . . . , an) = tA(a1, a2, . . . , an), a1, a2, . . . , an ∈ A.

The following proposition says that homomorphisms of a model remain concurrent with respect
to the derived operations.

Theorem 2.7.1. Let A and B be models of a language L, and h : A → B a homomorphism.
Then for every term u(x1, x2, . . . , xn) of L and all a1, a2, . . . , an ∈ A the following holds:

h(uA[a1, a2, . . . , an]) = uB[ha1, ha2, . . . , han].

2.7 Satisfaction relation | 20

Var A

B

µ

hµ
h

Fig. 2.3 Homomorphism theorem for terms

Proof. The proof is done by induction on the complexity of terms. So, let u ∈ TermL, and
suppose that the variables v0, v1, . . . have the values a0, a1, . . . under valuation µ. First, assume
co(u) = 0, we have two cases:

• u ∈ ConstL, then: h(uA[µ]) = h(uA) = uB = uB[µ].

• u is a variable xi, then: h(uA[µ]) = h(ai) = uB[ha1, ha2, . . . , han].

Now suppose the statement is true for some fixed n ∈ ω, and let co(u) = n + 1. Then there
is an F ∈ Fnck

L and there are some terms u1, u2, . . . , uk such that u = F (u1, u2, . . . , uk). The
terms ui are of complexity ⩽ n and hence, by the inductive hypothesis, we have

h(uA[µ]) = h(FA(uA
1 [µ], . . . , uA

k [µ])

= FB(huA
1 [µ], . . . , huA

k [µ])

= FB(uB
1 [hµ], . . . , uB

k [hµ]). □

Note 2.7.1. This theorem can be obviously restated as follows: For every valuation µ : Var→ A
the diagram in Fig. 2.3 commutes, i.e.,

huA[µ] = uB[hµ].

An algebraic identity of a language L is every formula u ≡ v, where u, v ∈ TermL. We
say that an algebra of L satisfies the identity u ≡ v, if and only if for all a1, a2, . . . , an ∈ A,
uA[a1, a2, . . . , an] = vA[a1, a2, . . . , an].

Corollary 2.7.1. Let A and B be algebras of a language L, and assume that B is a homomorphic
image of A. Then every identity true in A also holds in B.

2.7 Satisfaction relation | 21

Proof. Let h : A→ B be onto, and suppose an identity u ≡ v holds in A. Then, for arbitrary
b1, b2, . . . , bn ∈ B, there are a1, a2, . . . , an ∈ A such that ha1 = b1, . . . , han = bn, So

uB[b1, b2, . . . , bn] = uB[ha1, ha2, . . . , han] = huA[a1, a2, . . . , an]

= hvA[a1, a2, . . . , an] = vB[ha1, ha2, . . . , han]

= vB[b1, b2, . . . , bn]. □

This corollary is an example of a preservation theorem. Namely, it says that some properties
are preserved under homomorphisms and in this case these properties are those which can be
described by identities. Some examples are the associativity and the commutativity of algebraic
operations. This is probably one of the places where one can see the algebraic nature of model
theory.

Now we shall turn to the most important concept of model theory. This is the notion of the
satisfaction relation, or the definition of mathematical truth.

Definition 2.7.1. Let A be a model of a language L. We define the relation A |= φ[µ] for
all formulas φ of L and all valuations µ = ⟨ai : i ∈ ω⟩ of the domain A by induction on the
complexity of formulas φ:

• If φ is u ≡ v, u, v ∈ TermL, then

A |= φ[µ] iff uA[µ] = vA[µ].

• If φ is R(u1, u2, . . . , un), R ∈ RelnL, u1, u2, . . . , un ∈ TermL, then

A |= φ[µ] iff (uA
1 [µ], uA

2 [µ], . . . , uA
n [µ]) ∈ RA, i.e.,

RA(uA
1 [µ], uA

2 [µ], . . . , uA
n [µ]).

• If φ is ¬ψ, then
A |= φ[µ] iff not A |= ψ[µ].

• If φ is ψ ∧ θ, then
A |= φ[µ] iff A |= ψ[µ] and A |= θ[µ].

• If φ is ψ ∨ θ, then
A |= φ[µ] iff A |= ψ[µ] or A |= θ[µ].

2.7 Satisfaction relation | 22

• If φ is ψ ⇒ θ, then

A |= φ[µ] iff not A |= ψ[µ] or A |= θ[µ].

• If φ is ψ ⇔ θ, then

A |= φ[µ] iff A |= ψ[µ] if and only if A |= θ[µ].

• If φ is ∃vkψ(v1, v2, . . . , vn), k ⩽ n, then

A |= φ[µ] iff exists a ∈ A so that A |= ψ[µ(k/a)].

• If φ is ∀vkψ(v1, v2, . . . , vn), k ⩽ n, then

A |= φ[µ] iff for all a ∈ A it is valid A |= ψ[µ(k/a)].

By the definition of the satisfaction relation, we see that the value of A |= φ[µ] depends
only on the free variables which occur in φ. A rigorous proof of this fact can be derived by
induction on the complexity of formulas.

This property enables us to introduce the following conventions: if φ = φ(v0, . . . , vn) and
µ = ⟨ai : i ∈ ω⟩, then we shall simply write A |= φ[a0, . . . , an] instead of A |= φ[µ].

Sentences do not have free variables, so their values do not depend on the choice of a
valuation, i.e., if φ ∈ SentL and A |= φ[µ], then for all valuations σ we have A |= φ[σ]. Thus,
we shall use the abbreviated form A |= φ instead of A |= φ[µ]

The theory of a model A of L is another useful model-theoretic concept:

ThA = {φ ∈ SentL : A |= φ}

It is easy to see that for each formula φ of L and every valuation µ either A |= φ[µ] or
A |= ¬φ[µ], thus, ThA is a complete theory.

For example, the theory of the structure of natural numbers, ThN, is complete, and so it is
called a complete arithmetic. As N is a model of the theory PA, it follows that PA⊆ ThN. On
the other hand, the Gödel’s Second Incompleteness Theorem states that the set of theorems of
PA is a proper subset of ThN. Moreover, ThN is not an axiomatic theory, i.e., it does not have a
recursive set of axioms.

One of the tasks of model theory is to solve the problem of whether a given theory is
axiomatic.

2.7 Satisfaction relation | 23

Let T be a theory of a language L. A model A of L is a model of the theory T , if every
axiom of T holds in A, i.e., T ⊆ ThA. In such case, we write A |= T .

For example, every ordered field, like an ordered field of rational numbers or real numbers,
is a model of theory of ordered fields. Similarly, every Boolean algebra is a model of theory BA.

Every model A of a language L satisfies all the axioms of the first-order logic (predicate
calculus) for L. Rules of inferences (Modus Ponens and Generalization rules) are preserved by
the satisfaction relation, i.e., if µ is a valuation of domain A and A |= φ1[µ], . . . , φn[µ], where
φ1, φ2, . . . , φn ∈ ForL and ψ is derived by applications of these rules, then A |= ψ[µ].

Therefore, the following theorem is easily proved by induction on the length of proofs in T.

Theorem 2.7.2 (Soundness theorem). Assume A is a model of a language L and T is a theory
of L. If A |= T and T ⊢ φ, where φ ∈ SentL, then A |= φ.

Two models A and B of a language L are elementary equivalent if A and B satisfy the same
sentences of L, i.e., ThA = ThB. This relation between models is denoted by A ≡ B. It is also
said that A and B have the same first-order properties.

By induction on the complexity of formulas it is easy to show:

Theorem 2.7.3. Let g : A ≈ B be an isomorphism of models A and B of a language L. Then,
for every formula φv0 . . . vn of L and every valuation µ = ⟨ai : i ∈ ω⟩ of the domain A, the
following holds:

A |= φ[a0, . . . , an] if and only if B |= φ[ga0, . . . , gan].

Since the value of a sentence in a model does not depend on the choice of a valuation, we
have the following consequence.

Corollary 2.7.2. If A and B are isomorphic models of a language L, then A ≡ B.

Therefore isomorphisms preserve first-order properties.
Elementary embeddings of models are embeddings which preserve first-order properties.

Hence, an elementary embedding between models A and B of a language L is every map
g : A→ B, such that for all φ ∈ ForL and all valuations of domain A, it satisfies

A |= φ[a0, . . . , an] if and only if B |= φ[ga0, . . . , gan].

In this case we use the notation g : A
≺−→ B.

If A ⊆ B and the inclusion map iA : A→ B, iA : x 7→ x, x ∈ A, is elementary, then we write
A ≺ B. Observe that A ≺ B implies A ≡ B.

2.8 Method of new constants | 24

A class M of models of a language L is axiomatic if there is a theory T of L such that
M = {A : A |= T }. For example, the class of all ordered fields is axiomatic and so is the class
of all Boolean algebras.

The class of all cyclic groups is not an axiomatic class. Also, if a theory T has infinitely
many non-isomorphic finite models, then the class of all finite models of T is not an axiomatic
class.

The class of all models of a theory T is denoted byM(T). The central theorem of model
theory says:

Theorem 2.7.4. For every consistent theory T ,M(T) , ∅.

2.8 Method of new constants

Introduction of new linguistic constants is a dual procedure to the process of interpretations.
Namely, to every nonempty set A there corresponds a certain language LA:

• If R is a k-ary relation over A, then let R be a relation symbol of length k which belongs
to LA.

• If g is an n-ary operation over domain A, we can introduce a function symbol g ∈ LA of
arity k.

• If a ∈ A then a ∈ ConstLA.

The symbols R, g, a are called names of R, g, a, respectively. We have a natural
interpretation of the language LA so defined:

If s ∈ LA, then sA = s.

In this way we have built a model A = (A,R, F , C), where R is the set of all relations over
A, F is the set of all operations with domain A, and C = A.

It is not always necessary to consider the full expansion of set A. For example, if A is any
model of a language L, and a1, a2, . . . , an ∈ A, then A′ = (A, a1, . . . , an) is a simple expansion
of A, and A′ is a model of the language L′ = L ∪ {a1, . . . , an}. Note that φa1a2 . . . an is a
sentence of L ∪ {a1, a2, . . . , an}.

The following proposition is interesting for two reasons. The first one relates to the inductive
nature of the satisfaction class. Secondly, this proposition shows that the satisfaction relation
can be defined only for sentences if the starting model is modified.

2.8 Method of new constants | 25

Theorem 2.8.1 (Satisfaction relation theorem on sentences). Let A be a model of a language L
and φv0v1v2 . . . vn ∈ ForL. Then, for all a0, a1, a2, . . . , an ∈ A, we have

A |= φ[a0, a1, a2, . . . , an] iff (A, a0, a1, a2, . . . , an) |= φ[a0, a1, a2, . . . , an]. (2.8.1)

Proof of this theorem is simple, but long and tedious:

Step 1 If t(v0, v1, v2, . . . , vn) ∈ TermL, A′ = (A, a0, a1, a2, . . . , an), by induction on the com-
plexity of the terms one proves:

tA′ (a0, a1, a2, . . . , an) = tA[a0, a1, a2, . . . , an].

Step 2 By induction on the complexity of formulas one proves (2.8.1).

For example we prove the induction step φ = ∃viφ. We take i = 0, φ = φv1v2 . . . vn and
ψ = ψ(v0, v1, v2, . . . , vn). Then

A |= φ[a1, a2, . . . , an] iff for some b ∈ A, A |= ψ[b, a1, a2, . . . , an]
using inductive hypothesis

iff for some b ∈ A, (A′, b) |= ψba1a2 . . . an

iff for some b ∈ A, A′ |= θ[b]
where θx = ψxa1a2 . . . an, so

iff A′ |= ∃xθx
iff A′ |= φa1a2 . . . an

We shall apply the previous proposition in the following theorem which says that there
is no quite satisfactory model theory for finite structures. The reason is that the relation of
elementary equivalence and the isomorphisms of models coincide for finite structures.

Theorem 2.8.2. Let A and B be models of a language L. If A is finite and A ≡ B, then A ≈ B.

Proof. Assume |A| = n. Then A |= σn, where σn = “There are exactly n elements”. But A
and B are elementary equivalent, so B |= σn. Therefore, A and B have the same number of
elements.

Now we prove the following fact:

Claim 2.8.1. If A and B are finite models and A ≡ B, then for each a ∈ A there is a b ∈ B
such that (A, a) ≡ (B, b).

Proof of Claim. Suppose a ∈ A and let B = {b1, b2, . . . , bn}. Assume there is no b ∈ B such
that (A, a) ≡ (B, b), and choose a constant symbol c < L, the so-called new constant symbol.

2.8 Method of new constants | 26

Then, for all i ⩽ n there is a formula φi x of the language L and there is bi ∈ B such that
(A, a) |= φic and (B, bi) |= ¬φic, where c is interpreted by a in (A, a) and by bi in (B, bi).
Hence,

(A, a) |=
∧
j⩽n

φ jc, so A |= ∃x
∧
j⩽n

φ j x.

Since A ≡ B, we have B |= ∃x
∧

j⩽n φ j x. Thus for some k ⩽ n, B |= ∧
j⩽n φ j[bk]. By

previous theorem it follows that (B, bk) |= ∧
j⩽n φ j bk , hence, (B, bk) |= ∧

j⩽n φ jc if c is
interpreted by bk . This is a contradiction to the choice of the formula φk . □

By repeated use of Claim, we can find an enumeration a1, a2, . . . , an of domain A, so
that (A, a1, a2, . . . , an) ≡ (B, b1, b2, . . . , bn), where (A, a1, a2, . . . , an) and (B, b1, b2, . . . , bn)
are models of a language L ∪ {c1, c2, . . . , cn}. Then the map f : A→ B defined by f : ai 7→ bi,
i ⩽ n, is an isomorphism of models A and B.

For example, if ∗ is a binary operation symbol of a language L, then for some ai, a j, ak ∈ A
that satisfy ak = ai ∗A a j we have that

(A, a1, a2, . . . , an) |= ak = ai ∗ a j, so (B, b1, b2, . . . , bn) |= bk = bi ∗ b j .

Hence bk = bi ∗B b j .
Therefore we proved f (ai ∗A a j) = f (ai) ∗B f (a j), i.e., f is concurrent in respect to the

operations ∗A and ∗B.
In a similar way one can show that f is concurrent with relations of models A and B.

Obviously, f is onto. This map is also 1–1, since

(A, a1, a2, . . . , an) |= ai ≡ a j iff (B, b1, b2, . . . , bn) |= bi ≡ b j .

Thus f : A ≈ B. □

The idea of constructing an isomorphism as in the previous theorem is often used in model
theory. It is summarized as follows.

Theorem 2.8.3. Let A and B be models of a language L, A = {ai : i ∈ I}, B = {bi : i ∈ I}, and
let A′ = (A, ai)i∈I , B′ = (B, bi)i∈I be models of a language L ∪ {ci : i ∈ I} with ci interpreted in
A′ by ai and in B′ by bi. Then,

(A, ai)i∈I ≡ (B, bi)i∈I implies A ≈ B.

As expected, f : A ≈ B where f : ai 7→ bi, i ∈ I.

Chapter 3

Algebraic and combinatorial
constructions

In this chapter we discuss two topics of algebraic and combinatorial nature. The first one
concerns group actions on models and related notions, such as orbits and class equations. We
will use this constructs in counting special types of partial orders and lattices.

The second topic is related to the so called inversion formulas, an important branch of
combinatorics. We use this theory in finding particular types of automorphisms of models and
permutations of their domains, such as having a certain number of fixed points. This section
contains an original contributions such as extensions of Gould inversion formulas. Also, we
believe that our approach is novel as it is based on Hopf algebras. Most results in this section
are published in the paper [31].

3.1 Group action on a model

In our work an important role will have the notion of group action on a model. Several concepts
are related to group action, such as orbits, stabilizers, class equation, etc. For example, we can
measure symmetry of a structure by the number of orbits. In the extreme case we have a highly
symmetric structure with only one orbit. Such structures have transitive group action. We shall
see that in some way symmetry of a structure is inverse to the definability in a structure.

Let A be a model of L and G = Aut(A), i.e., G is a group of automorphisms of a model A.
We define a natural action θ : G → Sym(A), by θ(g) = g, or in other words (θ(g))(a) = g(a).
Obviously θ is an embedding of G into Sym(A).

3.1 Group action on a model | 28

We define in respect to θ the following relation on a domain A:

a ∼ b iff
∨
g∈G

ga = b

It is easy to see that this relation is an equivalence relation on a domain A. Very often we write
ag instead of ga for g ∈ G, a ∈ A.

The equivalence class [a] = {x ∈ A : x ∼ a} of an element a ∈ A is called an orbit and it is
denoted by Oa. Observe that

Oa = {ag : g ∈ G} = aG .

We can choose a transversal T ⊆ A, such that T meets each orbit in exactly one element.
Then P = {Oa : a ∈ T } is a partition of A and we have the so called class equation

|A| =
∑
a∈T
|Oa |.

The notion of a stabilizer Ga of an element a ∈ A will have an important role in further
discussion. It is defined in the following way

Ga = {g ∈ G : ag = a}.

Obviously Ga is a subgroup of G.

Theorem 3.1.1. |Oa | = |G : Ga |

Proof. Let G/Ga = {gGa : g ∈ G}. Then for g, h ∈ G we have

ag = ah ⇔ g(a) = h(a)

⇔ g−1h(a) = a

⇔ g−1h ∈ Ga

⇔ g−1hGa = Ga

⇔ hGa = gGa

Hence λ : Oa → G/Ga, defined by λ : ag → gGa, g ∈ G, is a well-defined, 1–1 and onto
map. □

Corollary 3.1.1 (Class equation 2nd form). From the 1st form of class equation we have

|A| =
∑
a∈T
|G/Ga |.

3.2 Inversion formulas | 29

Example 3.1.1. Let B = 2n be a Boolean algebra. It is well-known that automorphisms
of B are generated by permutations of atoms. Hence Aut(B) = Sn. B is partitioned into
n + 1 levels Lk . Each level Lk consists of elements having exactly k atoms below them
eventually including themselves. For example, L0 = {0}, L1 = {a ∈ B : a is an atom},
L2 = {a ∈ B : there is exactly 2 atoms below a}, etc. If a ∈ Li, b ∈ L j and i , j, then there
is no automorphism that sends a to b, since any automorphism must preserve the number of
atoms below a. On the other hand, suppose a, b ∈ Lk and let c1, ..., cp be the common atoms
below both a and b, further a1, ..., aq atoms that are below a but not b, and b1, ..., bq atoms that
are below b but not a. Observe that p + q = k. Let g be an automorphism generated by the
permutation of atoms which fixes ci and sends ai to bi. Then ga = b and so a and b belong to
the same orbit. Therefore we proved that orbits under natural action of B are exactly the levels
Lk .

Example 3.1.2. Let G be a complete graph over a domain with n elements. Then Aut(G) = Sn

and there is only one orbit under the natural action, the whole G.

Example 3.1.3. Let Ln be the linear order of a set with n elements. Then Aut(Ln) = I, where
I is identical mapping. Hence, orbits are exactly one element subsets of Ln.

3.2 Inversion formulas

The main idea of this section is explained by the following example. Let C be the set of complex
numbers, Z the set of integers, N the set of nonnegative integers and CZ the complex vector
space. We remind that a function πn : CZ → C, n ∈ Z , is a projection if πn(f) = f (n), f ∈ CZ .
Let A be the subspace of the vector space of linear functionals of CZ where A is generated
by projections πn, n ∈ Z . We introduce an associative and commutative algebra A = (A, ·)
over A defining multiplication of projections by πm · πn = πm+n. Obviously, the power (π1)n

is equal to πn. Hence, if π denotes π1, then πn = πn. By projection calculus we shall mean
calculation in the algebra A. It appears that the algebra A is very appropriate for computing
various inversion formulas from discrete mathematics.

Now we proceed to our example. Let F = { f ∈ CZ :
∧

n<0 f (n) = 0}. Obviously F is
a subspace of CZ and we may identify F and CN . Also, f ∈ F if and only if for all n < 0,
πn(f) = πn(f) = 0. We shall prove by projection calculus the following well known inversion
formula

gn =
∑

k

(
n
k

)
fn−2k ⇔ fn =

∑
2k⩽n

(−1)k n
n − k

(
n − k

k

)
gn−2k, f , g ∈ F . (3.2.1)

3.2 Inversion formulas | 30

For this purpose let us introduce the following functional θ = π + π−1. Then

θn =
∑

k

(
n
k

)
πn−2k . (3.2.2)

If f ∈ F and g ∈ F is defined by gn = g(n) = θn(f), n ∈ N , then by (3.2.2) we have
gn =

∑
k

(
n
k

)
fn−2k . For the proof of the equivalence (3.2.1), we express πn by a polynomial of

θ using Tchebychev polynomials. Let Tn(x) be Tchebychev polynomial of the first kind and
Cn(x) = 1

2Tn(2x). Then Cn(x) is also called Tchebychev polynomial of the first kind and it is
well known Cn(x) satisfies the following identities (see for example [1] or [26]):

Cn(x + x−1) = xn + x−n, n ⩾ 0, (3.2.3)

Cn(x) =
∑
2k⩽n

(−1)k n
n − k

(
n − k

k

)
xn−2k, n > 0. (3.2.4)

Hence, we have
πn = Cn(θ) − π−n, n ∈ Z . (3.2.5)

Therefore, if f ∈ F and n > 0 then, as π−n(f) = 0, we have fn = π
n(f) = Cn(θ)(f)−πn(f) =

Cn(θ)(f). Hence

fn =
∑
2k⩽n

(−1)k n
n − k

(
n − k

k

)
θn−2k (f) =

∑
2k⩽n

(−1)k n
n − k

(
n − k

k

)
gn−2k .

Thus we proved direction (⇒) of equivalence (3.2.1). The other direction follows from the
following observation. The equalities gm =

∑
k

(
m
k

)
fm−2k , m = 0, 1, . . . , n, can be written as

P · F = G, where P is a regular triangular matrix, G = [g0, g1, . . . , gn] and F = [f0, f1, . . . , fn].
Then the righthand side of the equivalence (3.2.1) is written as F = Q · G where Q = P−1 and
entries of Q are exactly coefficients appearing in expansion of fn by gn−2k . As from F = Q · G
follows P · F = G, it also follows the direction (⇐) in (3.2.1).

3.2.1 Hopf algebra of projection functions

We show that the algebra A discussed in the previous section and similar algebras naturally
bear the structure of Hopf algebra. Even if the next definitions and analysis can be applied to an
arbitrary field K, we shall assume K = C. Let I ⊆ C, I , ∅ and A the subspace of the vector
space of linear functionals of the complex space CI , generated by projection functions πi, i ∈ I.
Suppose that I is a subgroup of the additive group of C or of the multiplicative part C∗ of C.

3.2 Inversion formulas | 31

Assuming the usual notation for Hopf algebras and related notions (see for example [11] or
[39]), it is easy to see that in both of the following two cases we obtain a Hopf algebra.

Additive case, I is a subgroup of (C,+, 0). Hopf algebra HI = (A,▽, 1,△, ε) over the complex
field C is defined as follows: ▽(πi ⊗ π j) = πi+ j , in multiplicative notation πi · π j = πi+ j ,
1(z) = π0, z ∈ C, △(πi) = πi ⊗ πi and ε(πi) = 0, i, j ∈ I. The map a : πi 7→ π−i, i ∈ I, is the
antipod.

Multiplicative case, I is a subgroup of (C∗, ·, 1). Hopf algebra HI = (A,▽, 1,△, ε) over the
complex field C is defined taking: ▽(πi ⊗ π j) = πi j , in multiplicative notation πi · π j = πi j ,
1(z) = π1, z ∈ C, △ (πi) = πi ⊗ πi and ε(πi) = 1, i, j ∈ I. The map a : πi 7→ πi−1 , i ∈ I, is the
antipod.

Obviously, in both cases HI is commutative and in fact HI is a Hopf subalgebra of the dual
Hopf algebra of the group Hopf algebra C[I]. If I = (Z,+, 0) we obtain algebraA presented in
the previous section.

Even if the additive and the multiplicative cases are similarly defined, they may produce
examples of quite different nature. In additive case if we take π = π1, we may write πi instead
of πi and if I is the set of real numbers, then the ring AI = (A,+, ·, 0, 1) is an integral domain
and it is isomorphic to the ring of posynomials over C in the variable π, see [12] and [32]. If
I is the additive group of integers, then AI = Z[π, π−1] is the ring of Laurent polynomials in
the indeterminate π. On the other hand, in the multiplicative case if I = ⟨ε⟩, εn = 1, then
AI has divisors of zero. For example, if ε is a primitive root of x3 − 1 and a = 1 + πε + πε2 ,
b = 1 + ε2πε + επε2 , then ab = 0.

Let S ⊆ I and S′ = I ∖ S. Then we can identify the space CS with the subspace
FS = { f ∈ CZ :

∧
x∈S′ f (x) = 0} of CI . In the example from the previous section, obviously S

is the set of nonnegative integers. For deriving inversion formulas for functions f : S → C,
we shall use their replicas in FS. This derivation is related but not the same as that one in
the umbral calculus, see for example [9]. We also note that Tchebychev polynomial and their
variants have been already the subject of investigation in context of Hopf algebras and from the
purely algebraic point of view, see for example [5] and [13].

3.2.2 Linear functional θ = π + π−r

Let us suppose notation and definitions as previously introduced. Here we shall consider linear
functionals of CZ of the form

θ = π + π−r, r is a nonnegative integer. (3.2.6)

3.2 Inversion formulas | 32

in the ring AI = Z[π, π−1]. Then for m = r + 1

θn =
∑

k

(
n
k

)
πn−mk, n = 1, 2, (3.2.7)

We shall prove that πn can be expressed as stated in the following theorem.

Theorem 3.2.1. There are polynomials Sn(x) and Qn(x) with integer coefficients such that

πn = Sn(θ) −Qn(π−1), Qn(0) = 0. (3.2.8)

Our main aim is to find explicitly polynomials Sn(x) and Qn(x). For this purpose, we shall
need some properties of symmetric functions related to the following polynomial

p(x) = xm + axm−1 + b, a, b ∈ C. (3.2.9)

Let λ1, λ2, . . . , λm be the roots of the polynomial p(x) and sn(a, b) the nth power sum of the
roots

sn(a, b) = λn
1 + λ

n
2 + · · · + λn

m. (3.2.10)

Using Girard-Waring formula for symmetric functions, Gould (see [18] or [25]) derived the
following formula

sn(a, b) =
∑

0⩽k⩽ n
m

(−1)n−rk n
n − rk

(
n − rk

k

)
an−mk bk, m = r + 1. (3.2.11)

Using this formula, the following proposition is easily deduced.

Proposition 3.2.1. Let m = r + 1 and un = sn(−a, b), where sn(a, b) is defined by (3.2.11).
Then for all positive integers n

un =
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
an−mk bk . (3.2.12)

If 1 ⩽ n ⩽ r then un = an and also um = am −mb. The sequence un with these initial conditions
is the unique solution of the difference equation

vn+1 − avn + bvn−r = 0. (3.2.13)

3.2 Inversion formulas | 33

Proof. The identity (3.2.12) immediately follows from (3.2.11). For the second part of the
proposition, we can write (3.2.12) as

un = an +
∑

1⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
an−mk bk . (3.2.14)

If n ⩽ r then the sum in (3.2.14) is empty, hence un = an. Similarly,

um = am − mb +
∑

2⩽k⩽m
m

(−1)k m
m − rk

(
m − rk

k

)
am−mk bk = am − mb. (3.2.15)

The sequence un satisfies the recurrence (3.2.13) since un is a linear combination of the roots
of the characteristic equation of (3.2.13). The order of this recurrence is m and values for
u1, u2, . . . , um are determined, hence the uniqueness follows. □

Now we proceed to the proof of the identity (3.2.8). For this purpose, we shall deliver
recurrence relations for the polynomials Sn(θ) and Qn(π).

Lemma 3.2.1. Let r be a nonnegative integer, m = r + 1, θ = π + π−r and 1 ⩽ l ⩽ r . Then for
the polynomials in (3.2.8) we can take:

(i) Sl (θ) = θl and Sm = θ
m − m.

(ii) Ql (t) = trl ((1 + t−m)l − t−ml), Qm(t) = trm((1 + t−m)m − t−m2 − mtm−m2
).

Proof. By identity (3.2.7), after short calculation we have

πl = θl −
∑
k⩾1

(
l
k

)
πl−mk = θl − π−rl ((1 + πm)l − πml). (3.2.16)

Hence, Sl (θ) = θl and Ql (π−1) = π−rl ((1 + πm)l − πml) for 1 ⩽ l ⩽ r. Taking t = π−1, we
have Ql (t) = trl ((1 + t−m)l − t−ml).

By identity (3.2.7) we also have

πm = θm − m −
∑
k⩾2

(
m
k

)
πm−mk, (3.2.17)

hence
πm = (θm − m) − π−rm((1 + πm)m − πm2 − mπm2−m). (3.2.18)

Therefore Sm = θ
n − m and Qm(π−1) = π−rm((1 + πm)m − πm2 − mπm2−m). Taking t = π−1 we

have Qm(t) = trm((1 + t−m)m − t−m2 − mt−m2+m). □

3.2 Inversion formulas | 34

Now we shall deliver the recursive relations for polynomials Sn(t) and Qn(t) appearing in
(3.2.8). In the following we shall take m = r + 1.

Assuming the identity (3.2.8), we have θπn = θSn(θ) − θQn(π−1), hence

(π + π−r)πn = θSn(θ) − (π + π−r)Qn(π−1),

πn+1 = θSn(θ) − πn−r − (π + π−r)Qn(π−1).
(3.2.19)

Assuming the recurrence (3.2.8) for n − r , i.e., πn−r = Sn−r (θ) −Qn−r (π−1), we obtain

πn+1 = θSn(θ) − Sn−r (θ) − ((π + π−r)Qn(π−1) −Qn−r (π−1)). (3.2.20)

By (3.2.8) we have πn+1 = Sn+1(θ) −Qn+1(π−1) and comparing with (3.2.20), we have

Sn+1(θ) = θSn(θ) − Sn−r (θ),

Qn+1(π−1) = (π + π−r)Qn(π−1) −Qn−r (π−1).
(3.2.21)

Taking the substitution t = π−1 and using (3.2.21) it is easy to deduce that Qn(t) satisfies
the recurrence

tQn+1(t) = (1 + tr+1)Qn(t) − tQn−r (t). (3.2.22)

Lemma 3.2.2. Qn(0) = 0 for all n > 0.

Proof. Let m = r + 1. First assume 1 ⩽ n ⩽ r . By Lema 3.2.1 we have

Qn(t) = trn((1 + t−m)n − t−mn)

= trn
(
1 +

(
n
1

)
t−m + · · · +

(
n

n − 1

)
t−m(n−1)

)
.

As rn − m(n − 1) = m − n > 0, it follows that t | Qn(t). Further,

Qm(t) = trm((1 + t−m)m − t−m2 − mt−m2+m)

= trm
(
1 +

(
m
1

)
t−m + · · · +

(
m

m − 2

)
t−m(m−2)

)
.

As −m2 + 2m + rm = m > 0, it follows that t | Qn(t).
Therefore, we proved that t | Qn(t) for n ⩽ m, i.e., Qn(0) = 0. For n > m we use the

recurrence (3.2.22). We see immediately that t | Qn(t). □

Corollary 3.2.1. The constant term of Qn(t) is equal to 0.

Proof of Theorem 3.2.1. The proof immediately follows by induction from the recurrence
relations (3.2.21), derivations (3.2.19), (3.2.20) and the previous corollary. □

3.2 Inversion formulas | 35

Now we deliver the explicit forms of the polynomials Sn(x) and Qn(t).

Proposition 3.2.2. Let r be a positive integer, m = r +1 and assume a sequence of polynomials
Sn(x) ∈ Z[x] satisfies:

(i) Sn+1(x) = xSn(x) − Sn−r (x),

(ii) Sl (x) = xl , 1 ⩽ l ⩽ r , and Sm(x) = xm − m.

Then for all positive integers n

Sn(x) =
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
xn−mk . (3.2.23)

Proof. The characteristic equation of the recurrence (i) is:

λm − xλm−1 + 1 = 0. (3.2.24)

It is easy to see that the equation (3.2.24) has no multiple roots, hence if λ1, λ2, . . . , λm are
roots of (3.2.24) then

Sn(x) = c1λ
n
1 + c2λ

n
2 + · · · + cmλ

n
m, (3.2.25)

for some unique constants c1, c2, . . . , cm. As any linear combination of the n-th powers
of λ1, λ2, . . . , λm satisfies the recurrence (3.2.23), due to the initial conditions (ii) and the
uniqueness of the constants c1, c2, . . . , cm, by Proposition 3.2.1 we have ci = 1, i ⩽ m, and

Sn(x) = sn(−x, 1) =
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
xn−mk . (3.2.26)

□

We note that for the most applications the explicit form (3.2.26) of the polynomials Sn(t) and
the recurrence (3.2.8) are sufficient. However, if one wants to find the polynomials Qn(t), it is
possible and convenient to introduce new polynomials Rn(t) and hn(t) with integer coefficients
related to Qn(t) in the following way:

Qn(t−1) = t−rnRn(t), n ∈ N,

Rn(t) = hn(tm), n ∈ N .
(3.2.27)

We also note that the polynomials Sn(x) are related to the so called incomplete polynomials,
see [36], and to the orthogonal polynomials on the radial rays in the complex plane which were
introduced by G. Milovanović in [34] and studied in details in [35].

It is easy to prove the following proposition.

3.2 Inversion formulas | 36

Proposition 3.2.3. Let r be a nonnegative integer, m = r + 1, θ = π+ π−r and 1 ⩽ l ⩽ r . Then:

(i) Rl (π) = (1 + πm)l − πml , Rm(π) = (1 + πm)m − πm2 − mπm2−m.

(ii) deg(Rn(π)) < rn, n ∈ N .

(iii) hn+1(t) = (1 + t)hn(x) − tr hn−r (x).

(iv) hl (x) = (1 + t)l − t l , 1 ⩽ l ⩽ r , and hm(x) = (1 + t)m − tm − mtm−1.

From the next theorem and relations (3.2.27) immediately follows the explicit form of the
polynomial Qn(t).

Theorem 3.2.2. Assume a sequence of polynomials hn(t) ∈ Z[t] satisfies conditions (iii) and
(iv) in the previous proposition. Then for all positive integers n

hn(t) = fn(t) + gn(t), (3.2.28)

where

fn(t) = (t + 1)n − tn, gn(t) =
∑

1⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
(1 + t)n−mktrk . (3.2.29)

Proof. The characteristic equation of the recurrence (i) is

λm − (1 + t)λm−1 + tr = 0. (3.2.30)

The roots λ1, λ2, . . . , λm of this equation are distinct and it’s one root is t, so we can take
λr+1 = λm = t. Let un = λ

n
1 + λ

n
2 + · · ·+ λn

r and sn = un+ λ
n
m = un+ tn. From Proposition 3.2.1,

sn = (1 + t)n for 1 ⩽ n ⩽ r and sm = (1 + t)m − mtm−1. Hence, un = (1 + t)n − tn for
1 ⩽ n ⩽ r and um = (1 + t)m − tm − mtm−1. Also, un obviously satisfies the recurrence
un+1(t) = (1 + t)un(t) − trun−r (t). Therefore, due to the same initial conditions for un and hn,
by induction we have immediately un = hn for all n, i.e., hn(t) = sn − tn. By Proposition 3.2.1,
we have

sn =
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
(1 + t)n−mktrk . (3.2.31)

wherefrom we immediately deliver (3.2.28). □

3.2.3 Gould inversion formula

As an application of the projection calculus and the operator θ introduced in the previous section
we prove Gould inversion formula, see [16] or [17]. This formula is a generalization of inversion

3.2 Inversion formulas | 37

formula (3.2.1) and it states

gn =
∑

k

(
n
k

)
fn−mk ⇔ fn =

∑
0⩽k⩽ n

m

(−1)k n
n − rk

(
n − rk

k

)
gn−mk, (3.2.32)

where f , g ∈ F , r is a nonnegative integer and m = r + 1. For the proof we use the same
technique as in the case r = 1 where we used projection calculus, Tchebychev polynomials and
their crucial properties (3.2.3) and (3.2.4). By use of this technique, the proof of Gould formula
directly follows from Theorem 3.2.1 and the explicit form (3.2.26) of the polynomial Sn(x).

Using linear functional identities (3.2.7) and (3.2.1) and explicit forms of the polynomials
Sn(θ) and Qn(π−1), we can generalize Gould inversion formula. Namely, we can find new
inversion formulas for

gn =
∑

k

(
n
k

)
fn−mk+l, 0 ⩽ l < m. (3.2.33)

It is particularly simple to deliver the inversion formula for the case m = 2. To see this, assume
m = 2 and let us introduce the new linear functional σn = πθ

n. Then σn =
∑

k

(
n
k

)
πn−2k+1.

By (3.2.5), i.e., inversion formula πn = Cn(θ) − π−n, we have πn+1 = πCn(θ) − π1−n and so

πn+1 =
∑

k

(−1)k n
n − k

(
n − k

k

)
σn−2k+1 − π1−n. (3.2.34)

Hence we obtain the following inversion formula for (3.2.33), case m = 2, l = 1:

fn+1 =
∑

(−1)k n
n − k

(
n − k

k

)
gn−2k+1 − f1−n. (3.2.35)

We note that for a given sequence g ∈ F , the sequence f is not uniquely determined by (3.2.35)
as indices in gi are shifted by one:

g0 = f1, g1 = f2 + f0, g2 = f3 + 2 f1, . . . (3.2.36)

while
f1 = g0, f2 = g1 − f0, f3 = g2 − 2g0, . . . (3.2.37)

where f0 is arbitrary. Also note that f1−n vanishes for n > 1. In a similar manner we can obtain
the inversion formula for (3.2.33) in the general case. So assume (3.2.33) and let us introduce

3.2 Inversion formulas | 38

the linear functional σn = π
lθn. By Theorem 3.2.1 and Proposition 3.2.2 we have

πn+l = πl Sn(θ) − πlQn(π−1)

=
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
σn−mk+l − πlQn(π−1). (3.2.38)

By (3.2.27), Lemma 3.2.2 and as Qn(0) = 0

Qn(t−1) = t−rnhn(tm) = cnt−λn + c′nt−λn−m + c′′n t−λn−2m + · · · (3.2.39)

where 1 ⩽ λn ⩽ m. Hence

πlQn(π−1) = cnπ
l−λn + Hn(π−1) (3.2.40)

for some polynomial Hn(t) with integer coefficients. Therefore we obtain the inversion formula
for (3.2.33), 0 ⩽ l < m:

fn+l =
∑

0⩽k⩽ n
m

(−1)k n
n − rk

(
n − rk

k

)
gn−mk+l − cn f l−λn . (3.2.41)

We see that f0, f1, . . . , f l can be chosen arbitrarily. The coefficient cn can be obtained from the
representation of the polynomial hn given by Theorem 3.2.2. Here we shall find the power λn:

Proposition 3.2.4.
λn = m − ρm(n) (3.2.42)

where ρm(n) is the remainder of division of n by m (remainder function).

Proof. Note that m = r + 1. As Qn(t) = trnhn(t−m) and Qn(0) = 0, for powers trn−lm of terms
in Qn(t) we have rn − lm > 0, so l < rn/m. First assume m | n. Then for the smallest power
tλn = trn−l̄n in Qn(t) we have l̄ = rn/m− 1, so λn = rn− l̄m = m = m− ρm(n). Assume m ∤ n.
Then for l̄ = [rn/m] we have l̄ = [n− n/m] = n−1− [n/m], so λn = rn− l̄m = m− ρm(n). □

In the similar way we can deliver various inversion formulas such as appearing in [23] by
studying associated functionals in the Hopf algebra A. For example, for delivering the inverse
formula for gn = fn + fn−1 + fn−2, see [19], one may use the functional θ = π + π−1 + π−2.

3.2 Inversion formulas | 39

3.2.4 Example

We infer a formula for the number σn,m of permutations with exactly m fixed points over a set
having n elements. For this we use the following inversion formula:

un =

n∑
k=0

(
n
k

)
vn−k ⇔ vn =

n∑
k=0

(−1)k
(
n
k

)
un−k . (3.2.43)

Derivation. Let Sn denote the set of all permutations over {1, 2, . . . , n}. Further, let un = n! =
|Sn | and

vn = the number of permutations over {1, 2, . . . , n} not having a fixed point.

Let Pm = {p ∈ Sn : p has exactly m fixed points}. If p ∈ Pm and a1, . . . , am are fixed points of
p, then the restriction p ↾ {1, 2, . . . , n} ∖ {a1, . . . , am} is a permutation over a set with n − m
elements without fixed points. Hence σn,m = |Pm | =

(
n
m

)
vn−m.

P0,P1, . . . ,Pn is a partition of Sn, hence as Sn =
⋃n

k=0 Pk ,

|Sn | =
n∑

k=0
|Pk |, i.e.,

n! =
n∑

k=0

(
n
k

)
vn−k, so by (3.2.43)

vn =

n∑
k=0

(−1)k
(
n
k

)
(n − k)! = n!

n∑
k=0

(−1)k

k!
.

Therefore,

σn,m =

(
n
m

)
vn−m =

n!
m!(n − m)!

(n − m)!
n−m∑
k=0

(−1)k

k!
,

σn,m =
n!
m!

n−m∑
k=0

(−1)k

k!
. (3.2.44)

Remark 3.2.1. For large n, e−1 ≈ ∑ (−1)k
k! , so vn ≈ n!e−1.

Let us consider this example for some specific values, e.g., n = 7 and m = 3. Then:

3.2 Inversion formulas | 40

(i) According to the remark the approximate value of σ7,3 is

σ7,3 ≈ 7!
3!e
≈ 5040

6e
≈ 309.

(ii) Using the summation formula (3.2.44) we can obtain the exact value

σ7,3 = 315.

(iii) The self explanatory code in Listing 3.1 uses our system to explicitly compute the number
of permutations with exactly three fixed points over the domain having seven elements.
As we see the result agrees with the result of computation in (ii).

Here is a brief explanation of this code:

• Lines 7–10 are preamble that imports necessary building blocks for use of the system
from Python.

• Line 15 defines the computation domain S.

• Lines 21, 24, 27, and 34 describe in first-order logic permutations g having exactly
three fixed points. In the predicate calculus they are:

∀ i ∈ S ∃ j ∈ S g(i) = j

∀ i ∈ S ∀ k, l ∈ D g(i) = k ⇒ g(i) , l

∀ k ∈ S ∀ i, j ∈ D g(i) = k ⇒ g(j) , k

∃ i, j, k ∈ S (i , j ∧ i , k ∧ j , k ∧ g(i) = i ∧ g(j) = j ∧ g(k) = k∧
∀ l ∈ S (g(l) = l ⇒ l = i ∨ l = j ∨ l = k))

(3.2.45)

In the program we used a suitable set V of quadruplets of distinct elements of S in
order to reduce the size of formula (3.2.45).

• As can be seen on line 37, we chose to count models on the GPU. For counting
models on the CPU, a CPURunner should be used instead.

Note 3.2.1. We could omit formula f2 since f1 and f3 imply f2. However, in this case, the
program will execute more slowly. The reason is that additional constraints help to speed up
reductions.

Note 3.2.2. The quantifiers in f4 are not ordinary bounded first-order quantifiers, but a kind
of “differential” quantifiers. In other words they are a kind of branching or Henkin quantifiers.

3.2 Inversion formulas | 41

1 ’’’
2 This program counts the number of permutations g over S = {0,...,n-1}
3 with exactly 3 fixed points. Permutations are encoded by propositional
4 variables p(i,j) in the following way:
5 g(i) = j iff p(i,j) = 1.
6 ’’’
7 from logic import bool
8 from logic.abc import p, i, j, k, l
9 from logic.fo.quantifiers import *
10 from logic.cl.runner2 import GPURunner
11

12 n = 7
13

14 # Definition of set S
15 S = range(n)
16

17 # Definition of set D of ordered pairs (a,b) in SxS so that a < b
18 D = comb(S,2)
19

20 # Statement: domain of g is S
21 f1 = A[i:S].E[j:S] (p(i,j))
22

23 # Statement: g is a function
24 f2 = A[i:S].A[k,l:D] (~p(i,k) | ~p(i,l))
25

26 # Statement: g is 1-1
27 f3 = A[k:S].A[i,j:D] (~p(i,k) | ~p(j,k))
28

29 # Definition of set V of ordered quadruplets (a,b,c,d) in S^4
30 # where a, b, c, and d are mutually distinct elements
31 V = perm(S,4)
32

33 # Statement: g has exactly three fixed points
34 f4 = E[i,j,k:V].A[l] (p(i,i) & p(j,j) & p(k,k) & ~p(l,l))
35

36 # Result
37 print(GPURunner().count(bool.Expression(f1 & f2 & f3 & f4)))

Listing 3.1 Permutations(n, 3)

3.2 Inversion formulas | 42

Namely, the choice of values of variables under the scope of quantifiers, like ∃i, j, k ∈ D are
triplets of elements which are mutually distinct. This follows from the structure of set D, which
consists of quartets Q = (q1, q2, q3, q4) of mutually distinct elements. In the above bounded
quantifier, i takes the first coordinate q1, j takes the second coordinate q2, and k takes the third
coordinate q3. Therefore, i, j, k are mutually distinct. Further, in quantifier part ∀l ∈ D, the
choice of value for l depends on previously selected values for i, j, k like in Henkin quantifiers,
since l takes the coordinate q4. This implementation of quantifiers in our system enables us to
write much simpler formulas than it would be possible in ordinary first-order predicate calculus.
It should be noted that the branching property of quantifiers was obtained by choice of the
domain set D. This allows us further enhancements in solution of the stated example. By the
nature of the problem we could take that D consists of quartets where q1 < q2 < q3, while q4 is
an arbitrary element in the complement S ∖ {q1, q2, q3}. These enhancements retain the simple
structure of the formulas f1, . . . , f4 that describe the problem, but significantly reduce the
execution time.

Chapter 4

Parallel model counting

4.1 Introduction to model counting

Finite model counting is the classical counting counterpart (in the sense of algorithmic
complexity) of the Boolean satisfiability problem or SAT. It generalizes SAT and is in fact the
canonical #P-complete problem1, which makes it highly useful and extremely difficult to solve
in practice.

Effective model counting procedures would open up a range of new applications. For
example, various probabilistic inference problems, such as Bayesian net reasoning, can be
effectively translated into model counting problems. Another application is in the study of hard
combinatorial problems, such as combinatorial designs, the number of automorphisms of finite
structures, some problems in graph theory and various partition problems over finite sets.

In general, there are two main approaches to exact model counting [4]. The first one is
based on DPLL2-style exhaustive search. Model counters of this type are essentially modified
SAT solvers like Relsat [3] and Cachet [37]. By contrast, the second approach is based on
“knowledge compilation”, i.e., conversion of the formula into a special normal form with certain
desirable properties. An example of this kind of compiler is c2d [10], which converts the given
CNF formula into deterministic, decomposable negation normal form or d-DNNF. Although
the resulting normal form allows us to count models very efficiently, the compiler still uses a
SAT solver under the hood. So we can say that the model counters are, in a way, based on SAT
solvers. And given that the parallelization of SAT solvers was met with the limited success
[20][24], it is not surprising that the model counters are basically sequential in nature as well.

1The complexity class #P (pronounced “number P” or “sharp P”) consists of all counting problems associated
with the decision problems in the set NP. Unlike the most well-known complexity classes, it is not a class of
decision problems but a class of function problems. It was first defined in [41].

2Davis-Putnam-Logemann-Loveland

4.1 Introduction to model counting | 44

On the other hand, the amount of computational resources in modern hardware has progressed
tremendously over the past decade. Therefore, we thought that it would be a good idea to
develop a model counter capable of utilizing all of the available hardware resources. Particularly,
we had in mind easily accessible GPUs, which can nowadays have thousands of computing
cores. And that is the primary contribution of this research: design and implementation of a
software system for model counting on modern GPUs.

The whole system is envisioned as a library for Python programming language, which will
provide GPU accelerated primitives and other basic blocks for building model counters tailored
to specific problems. This customizability of the system will prove to be one of its greatest
strengths.

In the second section we provide the mathematical background of the parallelized algorithm
for the evaluation of Boolean expressions on which we based the system. The basic idea is that
if we let f (x1, x2, . . . , xn) be a Boolean expression in n variables x1, x2, . . . , xn, then we can
construct n Boolean vectors b1, b2, . . . , bn of size 2n with the following property:

(P) f (b1, b2, . . . , bn) is a Boolean vector that codes the full DNF of f .

We show that the vectors b1, b2, . . . , bn are exactly the free generators of a free Boolean algebra
with n free generators. Furthermore, we explain how to use them to parallelize the computation
of f . The idea of parallelization of computing logical operations in this way is indicated in [30].

In the third section we give a formal description of a translation procedure from first-order
predicate formulas to propositional formulas, which we implement in the system. This idea
is formally developed in [33], but it was used in the study of problems in the infinitary
combinatorics, particularly in finding their complexity in the Borel hierarchy.

Finally, in the fourth section we provide the implementation details such as specific
algorithms and data structures used to realise the essential functionality of the system.

Standard notation and terminology from model theory is assumed as in [7] and [29]. Also,
for notions from universal algebras we shall refer to [6]. Models of a first order language L are
denoted by bold capital letters A, B, etc, while their domains are represented respectively by A,
B and so on. By a domain we mean any nonempty set. The letter L will be used to denote a
first-order language. The first order logic is denoted by Lωω and the propositional calculus with
a set P of propositional variables by LPω , or simply Lω. The set of natural numbers {0, 1, 2, . . .}
is denoted by N . We also take 2 = {0, 1}. By 2 we denote the two-element Boolean algebra and
then 2I is the power of 2, while 0 and 1 are respectively the smallest and the greatest element of
2I . Occasionally elements of 2I are called Boolean vectors. Whenever is needed to distinguish
the formal equality sign from identity, for the first one we shall keep =, while ≡ will denote
identity.

4.2 Variables | 45

4.2 Variables

In this section we explain the logical and algebraic background of our computing method. The
power of a model A, the product

∏
i∈I A, is denoted by AI .

4.2.1 Interpretation of variables

By a set of variables we mean any nonempty set V so that no v ∈ V is a finite sequence of
other elements from V . This assumption secures the unique readability of terms and formulas.
Particularly we shall consider finite and countable sets of variables V , e.g. V = {v0, v1, . . .}. A
valuation of a domain A is any map from V to A. Let I denote the set of all valuations from
domain A, i.e., I = AV . In this section, the letter I will be reserved for the set of valuation of a
domain A. Sometimes we shall assume that elements from I will have finite supports.

Definition 4.2.1. (Interpretation of variables). Let v be a variable from V . The interpretation
of the variable v in the domain A is the map v̂ : I → A defined by v̂(µ) = µ(v), µ ∈ I.

The set of interpretations of variables from V into domain A is denoted by V̂A. Therefore,
V̂A = {v̂ : v ∈ V }.

Let φ(v1, . . . , vn) be a formula of a language L having free variables v1, . . . , vn and let A be
a model of L. The map φ̂A(v̂1, . . . , v̂n), abbreviated by φ̂A, is φ̂A : I → 2 defined by φ̂A(µ) = 1
if A |= φ[µ], otherwise φ̂A(µ) = 0, µ ∈ I. Hence φ̂A ∈ 2I .

Proposition 4.2.1. Let φ be an identity s = t, where s and t are terms of L. Then the following
are equivalent:

1◦AI |= φ[v̂1, . . . , v̂n], 2◦ φ̂A(v̂1, . . . , v̂n) = 1, 3◦A |= φ[µ], µ ∈ I . (4.2.1)

Proof. The equivalence of 2◦ and 3◦ follows immediately by definition 4.2.1. From 3◦ follows
1◦ since identities are preserved under products of models. Finally, assume 1◦. Then

sAI

(v̂1, . . . , v̂n) = tAI

(v̂1, . . . , v̂n). (4.2.2)

Let πµ : AI → A be a projection, µ ∈ I. Since πµ is a homomorphism we have

πµ(sAI
(v̂1, . . . , v̂n)) = sA(πµv̂1, . . . , πµv̂n)

= sA(v̂1(µ), . . . , v̂n(µ))
= sA(µ(v1), . . . , µ(vn)) = sA[µ].

(4.2.3)

Hence, 3◦ follows by 4.2.2. □

4.2 Variables | 46

For an algebra A of L let J (A) be the set of all identities that are true in A. Similarly,
J (K) denotes the set of all identities that are true in all algebras of a class K of algebras of L.
If J (A) = J (B), A and B are algebras of L, we shall also write A ≡J B.

The notion of interpretation of variables will play the fundamental role in our analysis and
program implementation. They can be useful in other cases, too. For example, using this notion
it is easy to prove the famous Birkhoff theorem on the existence of free algebras and other
related theorems such as Birkhoff HSP theorem.

Theorem 4.2.1. (G. Birkhoff) Let K be a nontrivial abstract3 class of algebras of L, closed
under subalgebras and products. Then K has a free algebra over every nonempty set.

Proof. It easy to see, for example by use of downward Skolem-Löwenheim theorem, that for
each algebra A ∈ K there is at most countable subalgebra A′ of A so that A′ ≡J A. The
algebra A′ is obviously isomorphic to an algebra which domain is a subset of N . Hence, there is
a set K ′ = {As : s ∈ S} of at most countable algebras such that K ′ ⊆ K and J (K) = J (K ′).

Let A =
∏

s As be the product of all algebras fromK ′. SinceK is closed under products, it
follows A ∈ K , hence J (K) ⊆ K (A). On the other hand, for each s ∈ S, As is a homomorphic
image of A, as As = πsB. Hence each identity φ of L which holds on A is also true in all
algebras from K ′ and therefore in all algebras from K . So we proved

J (K) = J (A). (4.2.4)

Since K is nontrivial, it must be |A| ⩾ 2. Let X be any nonempty set. For our purpose we
may identify X with V̂A for some set of variables V . Let Ω be subalgebra of AI generated by V̂A.
Now we prove that Ω is the free algebra over V̂A for classK . Let B ∈ K be an arbitrary algebra
and g : V̂A → B. Each element a ∈ Ω is of the form a = sΩ(v̂1, . . . , v̂n) for some L-term s and
some (different) variables v1, . . . , vn ∈ V . We extend g to f : : Ω→ B taking

f (a) = sB(gv̂1, . . . , gv̂n). (4.2.5)

The map f is well defined. Indeed, suppose that for some other term t of L, a = tΩ(v̂1, . . . , v̂n).
Let φ denote the identity s(v1, . . . , vn) = t(v1, . . . , vn). Then sΩ(v̂1, . . . , v̂n) = tΩ(v̂1, . . . , v̂n)
and as Ω ⊆ AI it follows AI |= φ[v̂1, . . . , v̂n]. By Proposition 4.2.1 it follows that the identity φ
holds on A. By (4.2.4) then φ is true in all algebras from K . Hence

sB(gv̂1, . . . , gv̂n) = tB(gv̂1, . . . , gv̂n), (4.2.6)

and thus we proved that the f is well-defined.

3closed for isomorphic images

4.2 Variables | 47

In a similar manner we prove that f is a homomorphism. For simplicity, suppose ∗ is a
binary operation of L. We denote the interpretations of ∗ in Ω and B by ·. Take a, b ∈ Ω and let
s and t be terms of L so that

a = sΩ(gv̂1, . . . , gv̂n), b = tΩ(gv̂1, . . . , gv̂n) (4.2.7)

and let w be the combined term w = s ∗ t. Then

f (a · b) = f (wΩ(v̂1, . . . , v̂n)) = wB(gv̂1, . . . , gv̂n) = g(a) · g(b). (4.2.8)

Thus, f is a homomorphism from Ω to B which extends g. □

The novelty of this proof in respect to the standard proof is that it does not use the notion of
a term algebra (absolutely free algebra) and that it has the model-theoretic nature.

Suppose K is the class of algebras to which the previous theorem refers. We note the
following.

Note 4.2.1.1 Assume A ∈ K is an arbitrary algebra which satisfies condition

J (K) = J (A).

Such an algebra A will be called the characteristic algebra for the class K . By close inspection
of our proof of Theorem 4.2.1, we noted that this condition suffices to construct the free algebra
for K from A. This idea is indicated to some extent in [6], (Part II, chapter 11, particularly see
problem 11.5, p. 77) but under stronger and amended assumptions (it is assumed that K is a
variety generated by A) and without referring to variable interpretations.

4.2.2 Free Boolean vectors

It is well known that finite free Boolean algebras with n free generators are the algebras 22n .
We remark that this immediately follows by note 4.2.1.1, since 2 is the characteristic algebra
for the class of all Boolean algebras. The structure and properties of free Boolean vectors of
Ωn = 22n is discussed in [30] in details.

We remind that a collection {b1, . . . , bn} of elements of a Boolean algebra B is independent
if bα1

1 ∧ . . . ∧ bαn
n , 0, where b1 = b and b0 = b′ (b′ denotes the complement of b). A similar

definition of independence is for families of subsets of a given set. A collection {b1, . . . , bn}
generates the free subalgebra of B if and only if it is independent, cf. [38]. In fact, the following
holds.

Theorem 4.2.2. Let S = {1, 2, . . . , 2n} and an, bn, cn be the sequences defined as follows.

4.2 Variables | 48

(i) an = number of labeled Boolean algebras with domain S (number of different Boolean
algebras with domain S).

(ii) bn = number of independent collections {P1, . . . , Pn} of subsets of S.

(iii) cn = number of free generating sets {b1, . . . , bn} of Ωn.

Then an = bn = cn = (2n)!/n!.

Proof. The number of labelings of a finite model A of size m is equal to m!/|Aut(A) |. As
Aut(2n) is isomorphic to the permutation group Sn, it follows an = (2n)!/n!.

Let B = 2n and Bl a labeled algebra obtained from B. Algebra B has exactly n ultrafilters
and so has Bl . Let U (B) be the set of all ultrafilters of B. By Theorem 2.2.7 in [30], U (B)
is an independent collection of subsets of S. The map U which assigns U (Bl) to Bl is 1 − 1.
Indeed, let us for S1, . . . , Sn ⊆ S and α ∈ 2n define

Sα = Sα1 ∩ . . . ∩ Sαn . (4.2.9)

For a ∈ S let P1, . . . , Pk, Pk+1, . . . , Pn ∈ U (Bl) so that a ∈ P1, . . . , Pk and a < Pk+1, . . . , Pn.
Then P1 ∩ . . . ,∩Pk ∩ Pc

k+1 . . . ∩ Pc
n = {a}.

Therefore, we proved that for each a ∈ Bl there is a unique α ∈ 2n so that Pα = {a},
P1, . . . , Pn ∈ U (Bl). Let ∧l and ′l be Boolean operations of Bl . Then for a, b ∈ Bl and
corresponding α, β ∈ 2n we have

Pα′ = {a′l }, Pα∧β = {a ∧l b} (4.2.10)

where α′, α∧ β are computed in 2n. Thus, we proved that U (Bl) uniquely determines Bl , hence
an ⩽ bn.

Suppose P = {P1, . . . , Pn} is an independent collection of subsets of S. Then P can serve
as U (Bl) for certain labeled Boolean algebra Bl . To prove it, note that each Pα has at least one
element and that

⋃
α∈2n Pα has at most 2n elements. This shows that Pα is one-element set.

Therefore, by 4.2.10, a Boolean algebra Bl with domain S is defined and it is easy to see that
P = U (Bl). Hence an = bn.

Finally, as noted, a collection X = {X1, . . . , Xn} of subsets of S freely generates the power
set algebra P(S) if and only if X is independent. Hence, cn = bn. □

We will be dealing particularly with free generators of Ωn of the following form. Let ai,
i = 0, 1, . . . , 2n − 1, be binary expansions of integers i with zeros padded to the left up to the
length n. Let M be the matrix whose columns are vectors ai. As noted in [30], binary vectors

4.3 Computing finite models | 49

bi, i = 1, 2 . . . n, formed by rows of M are free vectors of Ωn. In case n = 3, the matrix M and
vectors bi are

M =



0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1



, (4.2.11)

b1 = 00001111, b2 = 00110011, b3 = 01010101.

4.2.3 Computing Boolean expressions

Let t = t(v1, . . . , vn) be a Boolean expression in variables v1, . . . , vn and b1, . . . , bn free
generators of Ωn.

Proposition 4.2.2. tΩn (b1, . . . , bn) codes the full DNF of t.

Proof. By our previous discussion, we may take bi = v̂i and I = {v̂1, . . . , v̂n}. Let πµ be a
projection from Ωn to 2, µ ∈ I, and d = tΩn (b1, . . . , bn). Then

πµd = πµtΩn (v̂1, . . . , v̂n) = t2(µ(v1), . . . , µ(vn)), (4.2.12)

hence t =
∑
πµd=1

v
µ1
1 · · · v

µn
n , so d codes the full DNF of t. □

We describe shortly the parallel algorithm for computing d = tΩn (b1, . . . , bn). Suppose
we have a 2k-bit processor at our disposal, k < n. Each vector bi is divided into 2n−k

consecutive sequences. Hence, bi consists of 2n−k blocks bi j , each of size 2k . To find d, blocks
d j = t(b1 j, . . . , bn j) of size 2k are computed bitwise for j = 1, 2, . . . , 2n−k . Then the combined
vector d1d2 . . . d2n−k is the output vector d. The total time for computing d approximately is
T = 2l+n−kδ, where 2l is the total number of nodes in the binary expression tree of the term t
and δ is the time interval for computing bitwise one logical operation4.

Suppose now that we have 2r 2k-bit processors. Computations of d j is distributed among
them and they compute t(b1 j, . . . , bn j) in parallel. Actually, they are acting as a single 2k+r-bit
processor. Hence, the total time for computing d in this case is T = 2l+n−k−rδ.

4.3 Computing finite models

Using a translation from Lωω to Lω, we are able to state and computationally solve various
problems on finite structures.

4For modern computers, δ ≈ 10−9 seconds

4.3 Computing finite models | 50

4.3.1 Translation from Lωω to Lω

A method for coding some notions, mostly of the combinatorial nature and related to countable
first-order structures, by theories of propositional calculus Lω1 is presented in [33]. The primary
goal there was to study the complexity of these notions in Borel hierarchy. The coding is given
there by a map ∗. We adapted this map for our needs.

Let L be a finite first-order language and LA = L ∪ {a | a ∈ A}, where A is a finite nonempty
set. Here a is a new constant symbol, the name of the element a. We define the set P of
propositional letters as follows

P = {pFa1...akb | a1, . . . , ak, b ∈ A, F is a k-ary function symbol of L} ∪
{qRa1...ak | a1, . . . , ak ∈ A, R is a k-ary relation symbol of L} (4.3.1)

Then we define recursively a translation map ∗ from the set SentLA of all Lωω-sentences of
LA into the set of propositional formulas of LPω . Basically, the map ∗ translates universal and
existential quantifiers respectively into finite conjunctions and disjunctions of parameterized
quantifier-free formulas.

(F (a1, . . . , ak) = b)∗ ≡ pFa1...akb, (R(a1, . . . , ak))∗ ≡ qRa1...ak,

(F (a1, . . . , ak) = F′(a′1, . . . , a
′
k))∗ ≡∧

b∈A(F (a1, . . . , ak) = b)∗ ⇒ (F′(a′1, . . . , a
′
k) = b)∗),

(F (t1(a11, . . . , a1m), . . . , tk (ak1, . . . , akm)) = b)∗ ≡∧
(b1,...,bk)∈Ak

(∧k
i=1(ti (ai1, . . . , aim) = bi)

∗ ⇒ pFb1...bkb
)
,

(R(t1(a11, . . . , a1m), . . . , tk (ak1, . . . , akm)))∗ ≡∧
(b1,...,bk)∈Ak

(∧k
i=1(ti (ai1, . . . , aim) = bi)

∗ ⇒ qRb1...bkb
)
,

(¬φ)∗ ≡ ¬φ∗, (φ ∧ ψ)∗ ≡ φ∗ ∧ ψ∗, (φ ∨ ψ)∗ ≡ φ∗ ∨ ψ∗,
(∀xφ(x))∗ ≡ ∧

a∈A φ(a)∗, (∃xφ(x))∗ ≡ ∨
a∈A φ(a)∗.

(4.3.2)

If L has only one function symbol F, then we shall write pa1...akb instead of pFa1...akb. The
similar convention is assumed for a relation symbol R. For example, if φ is the sentence which
states the associativity of the binary function symbol ·, it appears that the ∗-transform of i · j = u
is pi ju and that φ∗ over domain In = {0, 1, . . . , n − 1} is equivalent to∧

i, j,k,u,v,l<n

((pi ju ∧ p j kv ∧ pukl) ⇒ pivl) (4.3.3)

We assume that the domain of a finite model A having n elements is In = {0, 1, . . . , n − 1}.
If A is a model of L, note that the simple expansion (A, a)a∈A is a model of LA.

4.3 Computing finite models | 51

4.3.2 Correspondence between models of T and T∗

Using translation ∗, we give a method for constructing and counting finite models of first order
theories for a finite language L. In this, the notion of a labeled model will have the important
role. Therefore we fix this and related concepts.

Let A be a finite model of L, |A| = n. Any one-to-one and onto map α : In → A will be
called the labeling of A. We can transfer the structure of A to a model Aα with the domain In

in the usual way:

1. If R ∈ L is a k-placed relation symbol then we take
RAα (i1, . . . , ik) iff RA(α(i1), . . . , α(ik)), i1 . . . , ik ∈ In.

2. If F ∈ L is a k-placed function symbol then we take
FAα (i1, . . . , ik) = α−1(F (α(i1), . . . , α(ik)), i1 . . . , ik ∈ In.

3. If c ∈ L is a constant symbol then cAα = α−1(cA).

We see that α : Aα � A. We shall call Aα a labeled model of A. Let c0, . . . , cn−1 be new
constant symbols to L and L′ = L ∪ {c0, . . . , cn−1}. The simple expansion (A, α0, . . . , αn−1) is
a model of L′ such that ci is interpreted by αi = α(i), 0 ⩽ i < n. Instead of (A, α0, . . . , αn−1)
we shall write shortly (A, α).

Theorem 4.3.1. Assume A is a finite model of L, |A| = n and α, β are labelings of A. Then
the following are equivalent

(i) (A, α) ≡ (A, β), i.e., (A, α) and (A, β) are elementary equivalent models,

(ii) (A, α) � (A, β),

(iii) Aα = Aβ,

(iv) α ◦ β−1 ∈ Aut(A).

Proof. It is well known that finite elementary equivalent models are isomorphic. Hence (i) is
equivalent to (ii).

Suppose (A, α0, . . . , αn−1) � (A, β0, . . . , βn−1). So there is f ∈ Aut(A) such that f (βi) =
αi, 0 ⩽ i < n. Hence f ◦ β = α, so α ◦ β−1 ∈ Aut(A). Therefore (ii) implies (iv). Reversing
this proof, it also follows that (iv) implies (ii).

Suppose (A, α) ≡ (A, β) and let F ∈ L be a k-placed function symbol. Then for
any choice of constant symbols ci1, . . . , cik+1 , (A, α) |= F (ci1, . . . , cik) = cik+1 if and only if
(A, β) |= F (ci1, . . . , cik) = cik+1 . Hence

FA(α(i1), . . . , α(ik)) = α(ik+1) iff FA(β(i1), . . . , β(ik)) = β(ik+1), (4.3.4)

4.3 Computing finite models | 52

therefore α−1(F (α(i1), . . . , α(ik)) = β−1(F (β(i1), . . . , β(ik)) for all i1, . . . , ik ∈ In. Thus we
proved that F (A,α) = F (A, β). Similarly we can prove that R(A,α) = R(A, β) for each relation
symbol R ∈ L. Hence we proved that Aα = Aβ and so (i) implies (iii). Similarly one can prove
that (iii) implies (i). □

Finite models of a first order theory T which have for domains the sets In are called labeled
models of T . By LT,n we shall denote the set of all labeled models of T of size n. By Tn we
denote the theory T ∪ {σn}, where σn denotes the sentence “there are exactly n elements”.
Therefore, LT,n is the set of all labeled models of Tn.

By a finite theory we mean a first order theory T with finitely many axioms, i.e., T is a finite
set of sentences of a finite language L. We can replace T with a single sentence, but in some
cases we need to add or remove a sentence from T . In these cases, it is technically easier to
work with a set of sentences then with a single sentence which replaces T .

Suppose T is a finite theory. Let P be the set of propositional letters defined by (4.3.1) over
A = In and the language L, and let T∗ = {φ∗ | φ ∈ T }. Further, let M(T∗) ⊆ 2P denote the
set of all models of T∗, i.e., valuations satisfying all propositional formulas in T∗. The next
construction describes the correspondence between labeled models of T and models of T∗.

The function h which assigns to each µ ∈ M(T∗) a labeled model h(µ) = A of T is defined
as follows. Let a1, . . . , ak, b ∈ In. Then

If F ∈ L is a k-placed function symbol, then

FA(a1, . . . , ak) = b iff µ(pFa1...akb) = 1. (4.3.5)

If R ∈ L is a k-placed relation symbol, then

A |= R[a1, . . . , ak] iff µ(qRa1...ak) = 1. (4.3.6)

By induction on the complexity of the formula φ, we proved:

Theorem 4.3.2. The map h codes the models in LT,n by models of T∗.

This theorem is our starting point in determining finite models of T of size n. Since T∗

is finite, we can replace it with a single propositional formula θ =
∧
ψ∈T∗ ψ. Obviously, we

may consider θ as a Boolean term t(v1, . . . , vm). Computing tΩm (b1, . . . , bm) in free Boolean
algebra Ωm for free generators b1, . . . , bm, we obtain the vector b which by Proposition 4.2.2
codes the full DNF of θ, hence all models of T∗. This gives us all labeled models of T of size n
via the map h.

Let lT,n denote the cardinality of LT,n. Obviously, lT,n is equal to the number of bits in the
vector b that are equal to 1.

4.4 Software implementation | 53

The major target in finite model theory is to count or to determine non-isomorphic models
of T of size n. ByM(T)n we denote a maximal set of non-isomorphic models of T with the
domain In. Elements of this set are also called unlabeled models of T . By κT,n = |M(T)n |
we denote the number of non-isomorphic (unlabeled) models of T of size n. If a theory T is
fixed in our discussion, we often omit the subscript T in these symbols. In other words, we
shall simply write Ln, ln,Mn and κn. In our examples, the following theorem will be useful in
finding numbers ln and κn.

Theorem 4.3.3. (Frobenius - Burnside counting lemma) Let A be a finite model, |A| = n. Then
the number of models isomorphic to A which have the same domain A is equal to n!/|Aut(A) |.

If T is a theory of a finite language L with finite number of axioms, then

ln =
∑

A∈Mn

n!
|Aut(A) | . (4.3.7)

Note that this theorem immediately follows from Theorem 4.3.1 and direct application of
Langrange’s subgroup theorem on the symmetric group Sn of In.

It is said that a set of models K is adequate for n-models of T if Mn ⊆ K ⊆ Ln. Even
for small n the set Ln can be very large. On the other hand, it is possible in some cases to
generate easily all labeled models, or to determine ln from |K | for an adequate family K of the
reasonable size. Also, it is commonly hard to generate directly non-isomorphic models of T , or
to compute κn. But for a well chosen adequate set of models these tasks can be done. Adequate
families are usually generated by filtering Ln, fixing some constants or definable subsets in
models of T , or imposing extra properties, for example by adding new sentences to T . In our
examples we will give some instances of adequate families.

4.4 Software implementation

When we started the development of the system, our main motivation was the algorithm
described in §4.2.3. So it should come as no surprise that the parallel model counting is its main
feature. However, that is just one aspect of the overall system. In addition, we also developed
features such as: a DSL for stating first-order theories, their translation into propositional
calculus, and partial evaluation of propositional formulas to name a few prominent ones.

The entire system is implemented in Python programming language, with the exception of
hardware accelerated primitives such as the one used for parallel model counting. They are
implemented using OpenCL, which is a framework for parallel computing. But first, before we
get into the details, let us start with some high-level implementation considerations.

4.4 Software implementation | 54

Ideally, the system would be used in the following way:

(i) We specify a first-order theory that we are interested in.

(ii) The system finds the number of models of the given theory.

And while this out-of-the-box approach works for small examples, that is, for first-order theories
on small domains, in principle that will not be the case. The reason is that the general model
counting algorithms do not scale well with an increase in the domain size. On the contrary,
a model counting algorithm that is tailored for the first-order theory at hand can scale much
better. However, implementing such an algorithm is non-trivial to say the least.

That is why we devised the system as a sort of a toolkit for creating problem specific model
counters, or in other words, as a Python library that provides all the necessary building blocks
for their construction. The idea is to allow for custom model counters to be developed in the
same way as any other Python program. Hence, the important goal of the implementation was
to ensure that the functionality provided by the system is well integrated with Python.

In the rest of the section we will go through the implementation details of each important
feature of the system. Specifically, in the first subsection we will explain how first-order theories
are specified and how they are translated into the propositional form. Also, we will show how
propositional formulas are represented within the system.

In the second subsection we will introduce the built-in support for the development of
propositional formula manipulations. Most importantly, we will show how the partial evaluation
of propositional formulas works.

In the third subsection we will go over the inner-workings of hardware acceleration, and
in the fourth subsection we will present hardware accelerated primitives that can be used to
develop custom model counters.

Finally, in the fifth subsection we will give an example that demonstrates how different
features of the system fit together.

4.4.1 Representation of first-order theories

Propositional formulas occupy a central place within the system. There are several reasons for
this. The most important one is that the OpenCL C code for hardware acceleration is generated
on the basis of propositional formulas. Therefore, we needed a data structure for representing
propositional formulas that supports a straightforward code generation. One such data structure
is called an abstract syntax tree or AST.

ASTs are commonly used in compilers to represent the syntactic structure of the source
programs [2]. They are considered abstract in the sense that they do not represent every detail

4.4 Software implementation | 55

∨

∧

p q

¬

r

Fig. 4.1 AST for p ∧ q ∨ ¬r

appearing in the real syntax, such as inessential punctuation and delimiters. As a result, ASTs
are also very suitable for programmatic manipulation and processing.

Example 4.4.1. Let us consider the following propositional formula

p ∧ q ∨ ¬r . (4.4.1)

As can be seen in Fig. 4.1, the appearance of AST is fairly uniform. That is, each interior node
represents an operator, and consequently the children of the node represent the operands of the
operator. This also means that the operator precedence rules and the grouping of operands are
naturally embodied within the structure of an AST. In other words, ASTs are unambiguous, i.e.,
if we reconstruct the formula from the AST we will get

((p ∧ q) ∨ (¬r)),

which is exactly the fully parenthesized version of (4.4.1).

The formal language of propositional logic (in the sense of §2.2) that we are interested in is
L = {∧,∨, ⊻,¬,⊤,⊥}, where Fnc2

L = {∧,∨, ⊻} are binary operation symbols, Fnc1
L = {¬} is an

unary operation symbol, and ConstL = {⊤,⊥} are constant symbols. Based on §2.3, we can say
that each function symbol F ∈ Fnck

L has associated F-terms, that is, terms F (t1, . . . , tk), where
t1, . . . , tk ∈ TermL. So, in order to build ASTs of terms of the language L, we need a distinct
AST node type corresponding to each function symbol F, as well as one for constants and one
for variables.

Each node type is implemented as a separate subclass of an abstract Term class that
represents terms of the language. Hence we have the following Python classes:

class Not(t)

Represents ¬-terms of the language.
Each ¬-term represents the result of application of operation denoted by ¬ symbol to

its input term t.

4.4 Software implementation | 56

class And(t1, t2)

Represents ∧-terms of the language.
Each ∧-term represents the result of application of operation denoted by ∧ symbol to

its input terms t1 and t2.

class Or(t1, t2)

Represents ∨-terms of the language.
Each ∨-term represents the result of application of operation denoted by ∨ symbol to

its input terms t1 and t2.

class Xor(t1, t2)

Represents ⊻-terms of the language.
Each ⊻-term represents the result of application of operation denoted by ⊻ symbol to

its input terms t1 and t2.

class Var(name, *indices)

Represents variables.
Each variable has a name and zero or more indices. For example, Var(’p’) can be

used to represent p, and similarly Var(’p’, 1, 2) for p12.

__call__(self, *indices)

Shorthand for creating new indexed variables out of the existing one, which in case
p is Var(’p’), or formally in Python p = Var(’p’), allows the use of p(1, 2)

instead of Var(’p’, 1, 2).

class Const(value)

Represents constants of the language.
Each constant has a value, i.e., the interpretation.

false = Const(0)

Represents ⊥ constant of the language.

true = Const(-1)

Represents ⊤ constant of the language.
We used −1 in the definition of true because Python has arbitrary precision

integers represented in 2’s complement. Hence, −1 is an integer with all bits set,
i.e., it corresponds to a bit vector with all ones.

Using the introduced classes, it is possible to create an AST of any term of the language L.
For example, the AST of the formula (4.4.1) can be created by the following Python expression

4.4 Software implementation | 57

Or(And(Var(’p’), Var(’q’)), Not(Var(’r’))).

However, creating ASTs in such a way is quite tedious (especially for more complex formulas).
Moreover, the resulting Python expressions are not easily understood, i.e., it is hard to say to
which propositional formula a given Python expression corresponds. So, in order to simplify
the input of formulas into the system, we developed a domain-specific language (DSL) for
creating their ASTs.

DSLs are small computer languages of limited expressiveness, and unlike the general-
purpose ones, they are focused on a particular kind of problem or domain. Their value stems
from the fact that a well-designed DSL can be much easier to program with than a traditional
software library. Hence, the obvious goal for the design of our DSL was to resemble the
language of propositional logic as much as possible. In particular, we wanted to emulate the
declarative style that is present when formulas are stated mathematically.

Propositional variables and connectives

The basic idea behind the implementation of our DSL is simple: we want to write propositional
formulas as Python expressions and to get the corresponding ASTs as a result of their evaluation.
Therefore, we implemented our DSL in Python as an internal DSL [14].

This design has the advantage of not requiring the development of a custom parser, and
it integrates well with the rest of the system. For example, we can use AST nodes directly in
Python expressions. However, Python clearly does not have operators that exactly correspond
to logical connectives. Since our DSL syntax is limited by the Python syntax, we need to reuse
some of the existing Python operators to implement logical connectives.

Considering the domain of our DSL, out of all Python operators, bitwise operators are
especially suitable for our needs. Namely, they are semantically very close to the corresponding
logical connectives, and, more importantly, they behave the same in terms of parsing. In
particular, the grouping of operands and the precedence rules are the same.

Thanks to the fact that Python supports operator overloading, the implementation of logical
connectives is straightforward. We simply customized the bitwise operators for the Term class
to behave as shown in Table 4.1.

As a result, to create an AST of a propositional formula, it is sufficient to rewrite it as an
equivalent Python bitwise expression over AST variables (Var nodes). In other words, the AST
of the formula (4.4.1) is created in the following way

p & q | ~r,

where p, q, and r are Var(’p’), Var(’q’), and Var(’r’), respectively.

4.4 Software implementation | 58

Expression Resulting AST

~t Not(t)
t1 & t2 And(t1, t2)
t1 | t2 Or(t1, t2)
t1 ^ t2 Xor(t1, t2)

Table 4.1 Bitwise operations over ASTs

4.4.2 Partial evaluation of propositional formulas

When generating OpenCL C code, the number of variables of the generated function corresponds
to the number of free variables of the initial propositional formula. Therefore, if some free
variables are constant, the generated code will not be optimal. Conversely, if we know that
some variables are constant or if we have intentionally fixed the values of some variables, we
can use this knowledge to generate optimized OpenCL C code.

Optimization of functions through specialization when some of their inputs are fixed to
constant values is known as partial evaluation. The basic theory and methods of partial
evaluation in computer science are well explained in [22]. In our case, we want to specialize the
AST of the initial propositional formula. That is, we want to get a new AST that corresponds
to the initial propositional formula with some free variables replaced by their constant values.
Moreover, we want to produce a reduced AST, without logical constants true and false,
except when the AST itself is a constant.

AST manipulations are usually based on the Visitor design pattern [15], as it allows the
addition of new functionality to the AST class hierarchy without requiring modification of the
existing AST classes. In order to facilitate the development of new visitors, the system provides
the following basis:

class Visitor

Base class for AST visitors.
It provides a default AST traversal, and dispatching to the appropriate handling

method for a node based on the node’s class.

__call__(self, node, *args, **kwargs)

Shorthand for invoking the visit() method by calling the visitor object itself, thus
allowing visitors to be used as properties.

4.4 Software implementation | 59

visit(self, node, *args, **kwargs)

Dispatches the call to a method suitable for handling the given node.
The selection is done by searching the visitor object for methods with names of

the form ’visit_’ + cls.__name__, where cls is the class (or superclass) of
the given node. If nothing is found, the default_visit method is selected.

default_visit(self, node, *args, **kwargs)

Continues the traversal of the AST by visiting the children of the given node.

New visitors are implemented by subclassing as seen in Listing 4.1, which shows the
implementation of the partial evaluation visitor.

1 class TEval(Identity):
2 """Partially evaluates an AST."""
3

4 def visit_Var(self, var, values):
5 val = values.get(var)
6 if val in {true, 1, ’T’, ’1’}:
7 return true
8 elif val in {false, 0, ’F’, ’0’}:
9 return false
10 return var

Listing 4.1 Partial evaluation visitor

The TEval extends the Identity visitor (line 1), a utility visitor provided by the system,
which is used to duplicate the AST during a visit. In order to have the variables replaced with
the corresponding constants in the newly created AST, we customized the handling of Var nodes
by implementing the visit_Var method (line 4). The method by itself is straightforward. It
simply looks up the given values dictionary (line 5) to find out whether the given variable has
a constant value and returns the appropriate constant if so (lines 7 and 9).

The partial evaluation visitor is not intended to be used directly. Instead, it is used as shown
in Example 4.4.2, that is, its functionality is exposed as a method of the following class:

class Expression(ast)

Represents an AST that can be evaluated.

eval(values)

Returns a partially evaluated AST using the given values.

Example 4.4.2. Suppose that we already have an expression e that corresponds to (4.4.1), i.e.,
e = Expression(p & q | ~r). Now suppose that we know that q is always false. Then we
could use partial evaluation to specialize e for known facts. Specifically, by executing

4.4 Software implementation | 60

s = e.eval({q: false}),

we get a new expression s in which all occurrences of q are replaced by false. In other words,
the expression s is as if it was created as follows

s = Expression(p & false | ~r).

If we take a closer look at the formula that corresponds to the specialized expression s from
Example 4.4.2, it is obvious that it can be further simplified. Namely,

p ∧ ⊥ ∨ ¬r ⇔ ¬r .

That is, we can eliminate another propositional variable: p. But to achieve this, it is necessary
to use symbolic computations, which is, unsurprisingly, one of the techniques commonly used
for partial evaluation [22].

To carry out symbolic computations at the AST level, we use the following facts:

(i) Our DSL is itself valid Python.

(ii) During object instantiation, Python allows for changing the type of the resulting object.

The idea is that while creating an AST, we perform symbolic computations by replacing nodes
with their simplifications whenever possible. We accomplished this goal by customizing
instantiation of the following AST classes:

Not.__new__(cls, *terms, **kwargs)

Creates a new Not node or its simplification.
Simplification is done if any of the following identities of propositional logic can be

applied to the given terms:

¬⊤ ⇔ ⊥, ¬⊥ ⇔ ⊤, ¬¬x ⇔ x.

And.__new__(cls, *terms, **kwargs)

Creates a new And node or its simplification.
Simplification is done if any of the following identities of propositional logic can be

applied to the given terms:

x ∧ ⊥ ⇔ ⊥, x ∧ ⊤ ⇔ x, x ∧ x ⇔ x, x ∧ ¬x ⇔ ⊥.

4.4 Software implementation | 61

Or.__new__(cls, *terms, **kwargs)

Creates a new Or node or its simplification.
Simplification is done if any of the following identities of propositional logic can be

applied to the given terms:

x ∨ ⊤ ⇔ ⊤, x ∨ ⊥ ⇔ x, x ∨ x ⇔ x, x ∨ ¬x ⇔ ⊤.

Xor.__new__(cls, *terms, **kwargs)

Creates a new Xor node or its simplification.
Simplification is done if any of the following identities of propositional logic can be

applied to the given terms:

x ⊻ ⊤ ⇔ ¬x, x ⊻ ⊥ ⇔ x, x ⊻ x ⇔ ⊥, x ⊻ ¬x ⇔ ⊤.

It is worth noting that the way in which symbolic computations are implemented works
equally well for both DSL and partial evaluation. For example, as a result of symbolic
computations, the following comparison is true

p & false | ~r == ~r,

and so is its equivalent expressed using partial evaluation

Expression(p & q | ~r).eval({q: false}) == Expression(~r).

4.4.3 Hardware acceleration

As already stated, the primary goal of this thesis is to implement model counting utilizing all
available hardware resources. We have shown that this task is equivalent to computing an
appropriate Boolean term t with n Boolean variables. More precisely, in §4.2 we have shown
that this is equivalent to evaluating t in n free Boolean vectors of Ωn.

In §4.2.3 we have outlined the parallel evaluation algorithm, where we suggested the use of
bitwise instructions on all cores of available CPUs or GPUs. In the rest of this subsection we
present the details of the OpenCL implementation of this algorithm.

The OpenCL framework models a computation as a multidimensional array of threads,
where each thread executes the same compute kernel5, but on different data. Not surprisingly, a
compute device itself is modeled as an array of cores. So, in order to achieve parallelization,
our task is to model the data with the suitable array, and the framework will do the heavy lifting.

5In the OpenCL framework, a compute kernel is a function declared in an OpenCL program and executed on a
compute device such as a CPU or GPU.

4.4 Software implementation | 62

In other words, we specify the shape of the data array, as well as the shape and number of its
pieces, and let the framework allocate a thread for each piece of the data array and schedule it on
an appropriate core for execution. During execution, the connection between threads and data
is maintained by common indices of the corresponding thread and data arrays. This mechanism
allows kernels to find out which piece of the data array they should work with.

Our data model already fits quite nicely with the OpenCL framework as we are working
with segments of free Boolean vectors, i.e., segments of bit arrays. For example, let t be a
propositional formula with n free variables, and let the size of segments that we can work with
be 2k . Now suppose that we want to evaluate t on a processor with 64-bit registers. This would
mean that k = 6, and that we need to evaluate 2n−6 segments in order to evaluate the whole
formula. Therefore, we have the following statement.

Proposition 4.4.1. OpenCL data model for the evaluation of a propositional formula t with n
free variables on a 2k-bit processor is a one-dimensional array of the size 2n−k .

It should be noted that, as a consequence of the corollary, the computation in OpenCL is
also modeled as a one-dimensional array of threads.

The size of the thread array depends on the size of the piece of the data array that each
thread needs to process. In our case, this means that the number of threads depends on the
number of segments of free Boolean vectors that are processed by each thread. We use a thread
per segment, but other partitions are also possible. As a result, we have a 1-1 mapping between
threads and segments. Or in other words, a compute kernel needs to implement the processing
of a single segment.

The source code of compute kernels is generated from the corresponding templates by
replacing placeholders (demarcated with single or double curly braces) with the appropriate
content. There are two types of placeholders: hardware-dependent and formula-dependent.
Therefore, as a first step, the template is adapted to the actual hardware by replacing only
hardware-dependent placeholders. Then, in the second step, the source code adapted to
the actual propositional formula is generated by replacing the remaining formula-dependent
placeholders.

As we shall see in the next subsection, the system uses multiple compute kernels. One for
each accelerated primitive it provides. However, all kernels share a common function f that
implements the evaluation of a propositional formula t. Hence, this function represents the
essence of our compute kernels.

4.4 Software implementation | 63

Evaluation function

The template in Listing 4.2 contains an incomplete set of OpenCL C instructions. Our system
uses this template and the AST of a propositional formula t to generate the OpenCL function
f (line 1) that evaluates t.

1 {cl_type} f(uint gid, __local {cl_type} *c, __local {cl_type} *p) {{{{
2 bool v[{{1}}];
3 uint m = 1;
4 for (uint j=0; j < {{1}}; j++) {{{{
5 v[j] = gid & m;
6 m <<= 1;
7 }}}}
8

9 return {{2}};
10 }}}}

Listing 4.2 Evaluation function template

Specifically, {cl_type} (line 1) is replaced with the proper OpenCL data type that best
suites the size of the actual registers. For example, on some hardware that could be a scalar data
type like 64-bit long, while on other a vector6 data type like int4 would be more appropriate.
Similarly, {{1}} (lines 2 and 4) and {{2}} (line 9) are replaced with the values that are specific
to the formula t. In particular, {{1}} is a value derived from the number of variables, while
{{2}} is a bitwise expression in OpenCL C that is generated from the AST of t.

In order to explain the implementation of f, we need a context that is best illustrated by
the following example. Suppose that we have a 4-bit processor and that we want to evaluate a
formula with five propositional variables. According to Proposition 4.4.1, the partitioning of
free Boolean vectors into segments is shown in Table 4.2.

The implementation of f is based on the observation that the segments of some vectors
are constant, and that the segments of the remaining vectors can take only two values. In our
example, segments ofω0,ω1 andω2 take only two values, either a0 = 0000 or a1 = 1111, while
segments of ω3 and ω4 have constant values b0 = 0011 and b1 = 0101. Observe that a0 and
a1 are 0 and 1 vectors, and that b0 and b1 are free vectors of Ω2. In general, this arrangement
property of free Boolean vectors ω0, . . . , ωn−1 follows from the next isomorphism of algebraic
structures:

Ωn ≃ Ω2n−k
k .

6The OpenCL vector data types are composed of scalar components, thus int4 has four 32-bit int elements,
which effectively makes it 128-bit.

4.4 Software implementation | 64

Free
vectors

Segments

s0 s1 s2 s3 s4 s5 s6 s7

ω0 0000 0000 0000 0000 1111 1111 1111 1111
ω1 0000 0000 1111 1111 0000 0000 1111 1111
ω2 0000 1111 0000 1111 0000 1111 0000 1111
ω3 0011 0011 0011 0011 0011 0011 0011 0011
ω4 0101 0101 0101 0101 0101 0101 0101 0101

Table 4.2 A partitioning of free Boolean vectors of Ω5

Therefore, f is invoked with the following arguments:

(i) gid, a segment index.

(ii) c, an array of free vectors of Ωk .

(iii) p, an array containing the vectors 0 and 1 of Ωk .

The evaluation of t for the given gid is performed using the bitwise expression generated from
the AST of t. The segments of free vectors of Ωn that correspond to gid are looked up using
arrays c, p, and v, where v contains the binary expansion of gid. The generated expression
uses these segments to compute the corresponding segment of the resulting vector, which is also
the return value of f. In our example, the segments of ω0, ω1, ω2, ω3, and ω4 are contained in
p[v[0]], p[v[1]], p[v[2]], c[0], and c[1], respectively.

4.4.4 Accelerated primitives

The system provides a number of hardware accelerated Python primitives that can be used when
developing custom model counters. They are exposed as methods of the following class:

class ClRunner(device)

Represents an execution engine that utilizes hardware acceleration to compute the results
of provided primitives.

Each runner (an instance of ClRunner) has a device, the actual OpenCL compute
device used for execution.

eval(expression)

Computes all models of the given expression using parallel evaluation.

count(expression)

Computes the number of models of the given expression using parallel counting.

4.4 Software implementation | 65

findmodel(expression)

Computes a model of the given expression using parallel search.

exist(expression)

Returns True if the given expression has a model, False otherwise.

As a convenience, the system provides the following predefined runners:

class GPURunner

A ClRunner subclass that uses the GPU with the largest number of cores for execution.

class CPURunner

A ClRunner subclass that uses the CPU for execution.

For example, to find the number of models of the formula (4.4.1) using a GPU, we would
execute the following

GPURunner().count(Expression(p & q | ~r)).

We note that although CPUs do not have as many cores as GPUs, the difference in
performance is not proportional to the difference in the core count. In fact, the performance
of CPUs is better than one could conclude from the core count alone. The reason is that
CPUs usually have three times higher operating frequency than GPUs. Moreover, the OpenCL
framework is actually using advanced CPU instructions such as SSE or AVX, which in turn
utilize wider registers (128-bit or even 256-bit). Therefore, high-end CPUs are more like
low-to-mid-range GPUs in terms of performance of our algorithms.

In the rest of this subsection we will explain the implementation of the provided primitives
in more details.

eval

Suppose we are given a Boolean expression t with n variables. We remind that

tΩn (ω1, . . . , ωn) = ω (4.4.2)

represents the value of the expression t in free Boolean algebra Ωn, where ω1, . . . , ωn are free
Boolean vectors.

When evaluating expression t, the number of variables m is constrained by the size of the
available memory M (in bytes) of a compute device that is used for evaluation. Namely, m is
the largest integer such that 2m bits is less than or equal to 8M , i.e.,

m = ⌊log2(8M)⌋ . (4.4.3)

4.4 Software implementation | 66

This size limit is a natural consequence of the need to store the resulting vector ω for further
processing. Therefore, the eval primitive implements parallel evaluation of Boolean expressions
with at most m variables.

The computation itself is implemented in OpenCL using a dedicated kernel. However,
OpenCL kernels cannot be invoked directly from Python. Hence, the major part of the
implementation of a primitive deals with the preparations for executing the corresponding
kernel. These preparations are specific to the OpenCL framework. Basically the implementation
of a primitive must perform the following:

(i) Prepare an OpenCL context and a command queue for interacting with the compute
device.

(ii) Generate the source code of an OpenCL program using the template of the corresponding
kernel and the given expression t.

(iii) Build (compile & link) an executable from the program source.

(iv) Allocate a memory buffer on the compute device for storing the resulting vector ω.

(v) Enqueue the corresponding kernel for execution on the compute device.

(vi) Retrieve the result from the compute device.

The template of the eval kernel is shown in Listing 4.3. The kernel itself is essentially
a thin wrapper around the evaluation function f, and accordingly its main task is to prepare
the arguments necessary for calling f. As explained in §4.4.3, f is called with the appropriate
constants from Ωk , where k is determined by the size of registers of the used compute device
(see Proposition 4.4.1).

Therefore, during hardware specialization of the template, the declaration of array c is
completed by replacing {const_vars} (line 3) with k as this is the number of free vectors in
Ωk . The initialization of array p is completed by replacing {cl_false} (line 5) and {cl_true}
(line 6) with 0 and 1 vectors of Ωk . Finally, c is initialized to contain free vectors of Ωk by
replacing {const_init} (line 8) with appropriate instructions. As before, {cl_type} is
replaced with the OpenCL data type that is most suitable for the used compute device.

The rest of the kernel is straightforward. It simply retrieves the index of the segment7 to
be evaluated (line 10), and calls the evaluation function f to do the actual work (line 11). The
computed value is stored in the memory buffer result, allocated for the resulting vector ω.

7Technically, get_global_id returns the thread index, but due to 1-1 mapping between threads and segments,
it is also a segment index.

4.4 Software implementation | 67

1 __kernel void eval(__global {cl_type} *result) {{{{
2 __local {cl_type} p[2];
3 __local {cl_type} c[{const_vars}];
4

5 p[0] = {cl_false};
6 p[1] = {cl_true};
7

8 {const_init}
9

10 uint gid = get_global_id(0);
11 result[gid] = f(gid, c, p);
12 }}}}

Listing 4.3 Template of the eval kernel

count

Suppose t is a Boolean expression with n variables. In order to compute κ(t), the number of
models of t, the count primitive implements parallel counting of models in the vector ω, which
is the result of evaluating t in free Boolean algebra Ωn as in (4.4.2). We remind that

ω =
(
ω(1), ω(2), . . . , ω(2n)

)
is a bit vector of the size 2n. As explained in Proposition 4.2.2, and according to (4.2.12),
if ω(k) = 1, then (ω1(k), ω2(k), . . . , ω2n (k)) is the corresponding model of t. Hence, the
computation of κ(t) is reduced to counting the number of bits in ω that are set to 1.

In general, the implementation of the count primitive closely resembles the implementation
of the eval primitive. The biggest difference is that, unlike the eval primitive, the count

primitive does not limit the number of variables in Boolean expressions. Therefore, in case that
n is greater than m defined by (4.4.3), it performs a partitioning of the problem by reducing t
across all valuations µ from 2n−m. Reduction is performed in Python by partially evaluating t
(as explained in §4.4.2) under the assumption that µ is assigned to the first n − m variables of
t. This effectively replaces the starting problem over Ωn with 2n−m instances over Ωm. Let tµ
denote the reduction of t corresponding to the valuation µ ∈ 2n−m. Then, the total number of
models of t is

κ(t) =
∑

µ∈2n−m
κ(tµ). (4.4.4)

While we could have implemented the count primitive by evaluating the reduced expressions
tµ using the eval primitive and processing the resulting vectors ωµ in Python, we did not.
Instead, we use the count kernel given in Listing 4.4 to perform the entire counting on the

4.4 Software implementation | 68

compute device itself. This completely eliminates the transfer and processing of vectors ωµ,
thus improving performance.

1 __kernel void count(__global {cl_type} *result) {{{{
2 __local {cl_type} p[2];
3 __local {cl_type} c[{const_vars}];
4

5 p[0] = {cl_false};
6 p[1] = {cl_true};
7

8 {const_init}
9

10 uint gid = get_global_id(0);
11 result[gid] += ({cl_type}) ({{3}}) * popcount(f(gid, c, p));
12 }}}}

Listing 4.4 Template of the count kernel

findmodel

Suppose t is a Boolean expression with n variables. In order to find a model of t, the findmodel
primitive implements parallel search for a model in the vectorω, which is the result of evaluating
t in free Boolean algebra Ωn as in (4.4.2). We remind that ω is a bit vector, and that each bit set
to 1 corresponds to a model of t as explained in Proposition 4.2.2. Therefore, the search for a
model of t is reduced to finding a bit in ω that is set to 1.

As with the count primitive, the findmodel primitive also does not limit the number of
variables in Boolean expressions. In fact, their implementations are essentially equivalent, and
the only difference is in the used kernel. The findmodel primitive uses the findmodel kernel
shown in Listing 4.5.

The evaluation of the expression t is performed using the evaluation function f, hence
for the most part the findmodel kernel is the same as the eval kernel in Listing 4.3. What
is specific to the findmodel kernel is {cl_condition} (line 12), which is replaced during
hardware specialization of the template by the condition appropriate for the actual {cl_type}.
Depending on whether it is a scalar or vector OpenCL data type, the possible conditions are:

• popcount(f(gid, c, p)) for scalar data types, and

• any(popcount(f(gid, c, p)) != 0) for vector data types.

However, in both cases the condition works the same, i.e., it checks whether the computed
segment contains any models.

4.4 Software implementation | 69

1 __kernel void findmodel(__global uint *result) {{{{
2 __local {cl_type} p[2];
3 __local {cl_type} c[{const_vars}];
4

5 p[0] = {cl_false};
6 p[1] = {cl_true};
7

8 {const_init}
9

10 if (!result[0]) {{{{
11 uint gid = get_global_id(0);
12 if ({cl_condition}) {{{{
13 result[0] = gid;
14 }}}}
15 }}}}
16 }}}}

Listing 4.5 Template of the findmodel kernel

In other words, the findmodel kernel keeps computing segments of the resulting vector ω
until it finds a segment that contains a model. Once the segment is found, its index is returned
in the memory buffer result (line 13), and the actual model is then reconstructed in Python.

As an interesting remark, notice that the kernel itself is not thread-safe (line 10). We used
the fact that all models are adequate to avoid the use of synchronization. As a result, we do not
know which index will be returned in case that multiple threads find a segment with a model at
the same time.

exist

The exist primitive is a convenience primitive that accomplishes its task by delegating the
work to the findmodel primitive. It returns True if the findmodel primitive finds a model,
False otherwise.

4.4.5 Example

Classic 9x9 Sudoku is a well-known problem, not hard to comprehend, and yet it requires a
custom solver for solving it with our system. Therefore, it is a convenient example to show how
various features of the system fit together, and how overall integration with Python works.

The Sudoku problem is stated as follows. Suppose we have a partial quasigroup Q = (Q, ∗),
Q = {1, 2, . . . , 9}, that is, we have i ∗ j = k for certain triplets (i, j, k) ∈ Q3, which satisfy the

4.4 Software implementation | 70

following axioms
i ∗ j = i ∗ j′ ⇒ j = j′, i ∗ j = i′ ∗ j ⇒ i = i′.

In addition, Q is a special quasigroup, i.e., it has the property that when its table is divided into
nine 3x3 squares, each square contains all the elements of Q. So, the Sudoku problem is to
complete the table of Q while respecting the stated rules.

In our approach the quasigroup operation ∗ is represented by ternary relation p(i, j, k),
meaning i ∗ j = k. In our system p(i, j, k) is read as a propositional variable p with 3 indices i,
j, and k. Therefore the statement of the Sudoku problem is as given in the Listing 4.6.

1 # there is a value in every cell
2 f1 = A[i : S].A[j : S].E[k : V](p(i, j, k))
3

4 # each value appears in each row
5 f2 = A[i : S].A[k : V].E[j : S](p(i, j, k))
6

7 # each value appears in each column
8 f3 = A[j : S].A[k : V].E[i : S](p(i, j, k))
9

10 # in one cell there can be only one value
11 f4 = A[i : S].A[j : S].A[k, l : Dkl](~(p(i, j, k) & p(i, j, l)))

Listing 4.6 Latin square properties

The specification is straightforward, we state that there is a value in every cell (line 2), that
each value appears in each row (line 5) and each column (line 8), and that there cannot be
multiple values in any cell (line 11). This declarative style of specification was the primary
motive for the development of our DSL for first-order logic.

To complete the Sudoku specification, we need an additional property that is given in
Listing 4.7. It states that each value appears in each subsquare.

1 # each value appears in each subsquare
2 f5 = bool.true
3 for sx, sy in prod(range(0, n**2, n), repeat=2):
4 f5 &= A[k : V].E[i, j : subsquare(sx, sy)](p(i, j, k))

Listing 4.7 Sudoku property

As can be seen we use the integration with Python to construct the propositional formula f5
(line 2) in an imperative manner. We loop through all subsquares (line 3) and build the final
conjunction by adding formulas for each subsquare one by one (line 4).

The complete source of the program is given in §A.1.

4.5 Comparison against similar software | 71

4.5 Comparison against similar software

There are several software systems that are used for model generating and counting. They range
from general finite model finders like Mace4 [27] and Paradox [8], to more specialized ones
like PSATO [42] which was developed for computing specific quasigroups. Also, it is worth
noting that there is a rich literature on applications of these systems and algorithms in solving
problems in finite combinatorics, models, as well as in games, puzzles and design of particular
patterns. Similarities and differences between our system and other systems are almost the
same, or at least very similar, so we shall discuss in more details only distinctions to Mace4.

Mace4 is developed by William McCune (1953–2011), a former professor of the University
of New Mexico. According to the author, Mace4 is a program that searches for finite models of
first-order theories. For a given domain size, all instances of the axioms over the domain are
constructed. The result is a set of ground clauses with equality. Then, a decision procedure
based on ground equational rewriting is applied. If satisfiability is detected, one or more models
are printed. Mace4 is a useful complement to first-order theorem provers, with the prover
searching for proofs and Mace4 looking for countermodels, and it is useful for work on finite
algebras.

While Mace4 is developed for finding counterexamples (just one model), our system is
designed for finding all models of a given theory. Hence, there are examples of first-order theories
for which Mace4 cannot find number of all models, while our system can. Particularly, this is
true for theories with axioms having several alternations of quantifiers. The reason is that Mace4
eliminates quantifiers by skolemization procedure, and thereby produces Herbrand universe.
If there are several alternations, the original language is expanded and the corresponding
Herbrand universe is very large. Mace4 produces models in this richer theory, i.e., original
theory expanded by Skolem functions, which can be a very demanding task. Our system does
not use expansions of the original theory, that is, it remains in the same language. Hence, our
system directly produces models of the original theory.

The most important distinction between our system and Mace4 is the programming
environment provided by the system. Mace4 is bounded to the first-order predicate logic. It
means that only solutions of problems which can be stated in this logic can be evaluated. For
example, it is not possible to change values of input variables. Secondly, it is also not possible
to control execution of the search algorithm. This follows mostly from the fact that Mace4 is
based on the backtracking algorithm. Finally, it is not easy to use it with other systems.

On the other hand, we have the full control of all mentioned aspects in our system. It is
possible to change the values of variables. Actually, in our system it is possible to represent,
virtually any algorithm concerning counting of finite models. We designed the system so that it
is possible to use full power of programming in Python.

4.5 Comparison against similar software | 72

For example, it is possible to produce the numbers of models of the prime cardinality of any
first-order theory. This is not possible in Mace4, at least not in the easy way.

The final disadvantage is that Mace4 is counting models sequentially, while our system is
parallelized, which accelerates the model counting significantly. We confirmed this fact on
several counting problems, as we achieved limits of some well known sequences described in
the On-Line Encyclopedia of Integer Sequences [21].

Chapter 5

Applications

5.1 Lattices

In the following subsections we develop a general technique for reducing number of propositional
variables by using symmetries inherent to the problem under consideration. More formally,
we reduce it to the problem of determination of orbits under the action of the group of
automorphisms of a finite structure on its domain. We illustrate these techniques and algorithms
by writing a program in our system for a rather general problem of counting special types of
partial orders and lattices.

5.1.1 Removing variables

Suppose a theory T describes a class of finite models. The set of propositional letters P defined
by (4.3.1) and which appears in translation from T to T∗ is large even for small n for domains
A = In from which P is generated. For example, if the language L consists of k unary relations,
then |P | = kn. If L has only one binary relation R, then |P | = n2. If L has only one binary
operation F, then |P | = n3. Hence, even for small n, P can be enormously large. It can have
hundreds, or even thousands of propositional variables. Therefore, we need a way to eliminate
some propositional variables appearing in T∗. Any procedure of elimination of variables from
P we shall call removing variables. As we have seen, the size of P which appears in T∗ and
is feasible for computing on small computers is bellow 50 and on supercomputers below 70.
Let us denote by K that feasible number of variables1. The main goal of removing variables is
to reduce T∗ to a propositional theory T ′ having at most K variables. We note that removing
variables generally results in generating an adequate set of structures, not the whole Ln.

1Hence 50 ⩽ K ⩽ 70 for today’s computers

5.1 Lattices | 74

Removing variables is realized in most cases by fixing the values of certain variables. For
example, if pi j k represents a binary operation i · j = k, i, j, k ∈ A, and if it is known that for some
a, b, c ∈ A, pabc = 1, then for all d ∈ A, d , c, we may take pabd = 0. The next consideration
explains in many cases this kind of removing variables. It is related to the definability theory
and for notions and terminology we shall refer to [7].

Suppose A is a model of L and X ⊆ A. We say that X is absolutely invariant in A if for all
f ∈ Aut(A), f (X) ⊆ X . As usual, X is definable in A if there is a formula φ(x) of L so that
X = {a ∈ A : A |= φ[a]}. The proof of the next theorem is based on the Svenonius definability
theorem, cf. [40], or Theorem 5.3.3 in [7].

Theorem 5.1.1. Let A be a finite model of L and X ⊆ A. Then X is absolutely invariant in A if
and only if X is definable in A.

Proof. Obviously, if X is definable then it is absolutely invariant. So we proceed to the proof
of the other direction. In order to save on notation, we shall take L = {R}, R is a binary relation
symbol. Suppose X is invariant under all automorphisms of A. Let ψ1(U) be the following
sentence of L ∪ {U }, U is a new unary predicate:

∀x1 . . . xn∀y1 . . . yn((
∧
i< j

xi , x j ∧
∧
i< j

yi , y j ∧
∧
i, j

(R(xi, x j) ⇔ R(yi, y j)))

⇒
∧

i

(U (xi) ⇒ U (yi))).
(5.1.1)

The sentence ψ1(U) states that U is absolutely invariant in any model B of L which has n
elements, i.e., if (B,Y) |= ψ1(U) then Y is absolutely invariant in B.

Let ψ2 be the following sentence of L:

∃x1 . . . xn(
∧
i< j

xi , x j ∧ ∀x
∨

i

x = xi ∧
∧

RA(i, j)

R(xi, x j) ∧
∧
¬RA(i, j)

¬R(xi, x j)). (5.1.2)

We see that the sentence ψ2 codes the model A, i.e., if B is a model of L and B |= ψ2 then
B � A.

Let ψ(U) = ψ1(U) ∧ ψ2. Suppose B is any model of L, (B,Y) and (B,Y ′) are expansion
of B to models of ψ and assume (B,Y) � (B,Y ′). Then we see that Y = Y ′. Therefore, by
Svenonius theorem it follows that ψ defines U explicitly up to disjunction. In other words there
are formulas φ1(x), . . . , φm(x) of L such that

ψ(U) |=
∨

i

∀x(U (x) ⇔ φi (x)) (5.1.3)

5.1 Lattices | 75

As (A, X) |= ψ(U), there exists i so that (A, X) |= ∀x(U (x) ⇔ φi (x)). Hence X is
definable by φi (x). □

The next corollaries follow by direct application of the last theorem to one-element absolutely
invariant subsets.

Corollary 5.1.1. Let A be a finite model of finite L and a ∈ A. If a is fixed by all automorphisms
of A then a is definable in A by a formula φ(x) of L.

Corollary 5.1.2. Let A be a finite model of finite L. Then Aut(A) = {iA} if and only if every
element of A is definable in A.

Here are some examples of absolutely invariant, and hence definable subsets X in various
types of finite structures A. If ∼ is a relation of equivalence over A, k ∈ N , then X = "the union
of all classes of equivalences of size k" is absolutely invariant. Let A = (A, ⩽) be a partial
order. Then the set S of all minimal elements and the set T of all maximal elements of A are
absolutely invariant. The same holds for the set of all minimal elements of A\S.

Our usage of definable constants for removing variables is based on the following argument.
Let T be a finite theory of L and assume φ0(x), . . . , φk−1(x) are formulas of L for which T
proves they are mutually disjoint, i.e., for i , j, T ⊢ ¬∃x(φi (x) ∧ φ j (x)). Assume they define
constants in T , in other words, for each i

T ⊢ ∃x(φi (x) ∧ ∀y(φi (y) ⇒ φi (x))). (5.1.4)

Let B be a model of T with the domain B = In. Then B has a unique expansion to
(B, b0, . . . , bk−1) that is a model of T ′ = T ∪ {φ0(c0), . . . , φk (ck−1)}; c0, . . . , ck−1 are new
symbols of constants to L. Since bi , b j for i , j we can define

f : Ik → {b0, . . . , bk−1}, f (i) = bi, i = 0, . . . , k − 1. (5.1.5)

It is easy to see that we can define labeled model A of L and that f extends to h : (A, 0, . . . , k−
1) � (B, b0, . . . , bk−1). Hence, for an adequate set of n-models of T we can choose a set K of
labeled models A of T such that (A, 0, . . . , k − 1) is a model of T ′. Therefore, models in K
have the fixed labeling 0, . . . , k − 1 of constants definable in T .

Obviously, we can take in (5.1.5) any S ⊆ In, |S | = k instead of Ik . There are
(

n
k

)
such

choices of S. Let s denote a permutation s0 . . . sk−1 of S and Ks the corresponding adequate
set of n-models of T : for models A in Ks, (A, s0, . . . , sk−1) is a model of T ′. In other words,
definable elements formerly labeled by 0, . . . , k − 1 in K are now labeled by s0, . . . , sk−1 in

5.1 Lattices | 76

Ks. Suppose S and S′ are k-subsets of In and s, s′ permutations either of S or S′, s , s′. Then
Ks ∩ Ks′ = ∅ and |Ks | = |Ks′ |, and given that Ln =

⋃
sKs we get

ln =

(
n
k

)
k!|K | = n(n − 1) · · · (n − k + 1) |K |. (5.1.6)

In many cases theory T determines the values of atomic formulas which contains some of
the definable constants. Consequently, the corresponding propositional letters from P have
a definite value. For example, suppose R is a 2-placed relation symbol and that T proves
∀xR(c0, x). Then we can take p0i = 1, i = 0, . . . , n − 1. Hence, if P is generated over In, n
propositional variables are killed in P. The remaining number of variables is n2 − n.

5.1.2 Definable partitions

The presented idea with definable constants can be extended to definable subsets as well. For
simplicity, we shall assume that L = {R}, where R is a binary relation symbol.

A sequence ∆ = θ1(x), . . . , θm(x) of formulas of L is called a definable partition for Tn if
Tn proves:

(i) ∀x(θ1(x) ∨ . . . ∨ θm(x)).

(ii) ¬∃x(θi (x) ∧ θ j (x)), 1 ⩽ i ⩽ j ⩽ m.

We shall say that ∆ is a good definable partition if there are formulas Si j (x, y), 1 ⩽ i, j ⩽ m,
such that each Si j (x, y) is one of R(x, y), R(y, x), ¬R(x, y), ¬R(y, x), and Tn proves:

∀xy((θi (x) ∧ θ j (y)) ⇒ Si j (x, y)), 1 ⩽ i ⩽ j ⩽ m. (5.1.7)

In any labeled model A of Tn, ∆ determines a sequence X of definable subsets X1, . . . , Xm.
By a component we shall mean elements of X. It may happen that some components are empty.
The sequence of nonempty sets from X = (X1, . . . , Xm) forms an ordered partition of A. A
sequence X with this property will be called a c-partition.

Proposition 5.1.1. Assume |A| = n. Then there are

cnm =

m∑
k=1

(
m
k

) (
n − 1
k − 1

)
(5.1.8)

c-partitions X = (X1, . . . , Xm) of A.

5.1 Lattices | 77

Proof. Let |Xi | = αi. Therefore α1, . . . , αm is an integer solution of

n = x1 + . . . + xm, x1, . . . , xm ⩾ 0. (5.1.9)

Since the integer solutions of

n = x1 + . . . + xk, x1, . . . , xk ⩾ 1. (5.1.10)

are obtained from 5.1.9 by choosing k variables xi , 0, k ⩾ 1, and 5.1.10 has
(

n−1
k−1

)
solutions,

there are
(

m
k

) (
n−1
k−1

)
solutions of 5.1.9. Hence, there are

(
m
k

) (
n−1
k−1

)
c-partitions X with exactly k

nonempty sets Xi. Summing up for k = 1, . . . ,m, we obtain expression 5.1.8 for cnm. □

Our idea for using a good definable partition ∆ in generating labeled models A of Tn is as
follows. We assume that the propositional letter pi j represents RA(i, j) as described by (4.3.6).
We generate all c-partitions X = (X1, . . . , Xm) of In, taking that Xi corresponds to θi. For each
X we assign values to particular pi j in the following way. If S(x, y) is R(x, y) then we set
pi j = 1 for i ∈ Xk and j ∈ Xl , k ⩽ l, and if S(x, y) is ¬R(x, y), then we set pi j = 0. Similarly,
we assign values to p ji depending on whether S(x, y) is R(y, x) or ¬R(y, x). By doing so, we
obtain a propositional theory TX ⊆ T∗n with the reduced number of unknowns from P.

Now, for an adequate set of models of TX we can choose a set KX of labeled models A of
TX that have the following canonical labeling of components of X

X1 = {0, 1, . . . , α1 − 1}, X2 = {α1, α1 + 1, . . . , α1 + α2 − 1}, . . . ,
Xm = {

∑
i<m

αi,
∑
i<m

αi + 1, . . . ,
∑
i⩽m

αi − 1}. (5.1.11)

Then every model B ∈ LX , where LX is the set of all labeled models of TX , is obtained from a
model A ∈ KX by choosing component X1 from In, X2 from In\X1, X3 from In\{X1 ∪ X2} and
so on, until all Xi from X are exhausted. Therefore

lX =
(
β1
α1

)
. . .

(
βk

αk

)
|KX | (5.1.12)

for X = (X1, . . . , Xk), |Xi |= αi and

β1 = n, β2 = β1 − α1, . . . , βk = βk−1 − αk−1. (5.1.13)

5.1 Lattices | 78

Let P be the set of all c-partitions of In. Note that if X , Y, X,Y ∈ P , and if A ∈ KX
and B ∈ KY , then A and B are non-isomorphic. Thus, we have

ln =
∑
X∈P

lX, (5.1.14)

and
κn =

∑
X∈P

κX (5.1.15)

where κX is the number of non-isomorphic models in KX .
So, for the adequate set of models of Tn we can take the set K = ⋃

X∈P KX of labeled
models A of Tn. Hence, our method for counting models of Tn is as follows. As usual, the
propositional letter pi j stands for R(i, j).

(i) Find a good definable partition θ1(x), . . . , θm(x) which satisfies condition (5.1.7).

(ii) Generate all c-partitions X = (X1, . . . , Xm) of In with canonical labeling (5.1.11).

(iii) Removing variables: For all 1 ⩽ k ⩽ l ⩽ m we fix the values of certain pi j as follows.
Take pi j = 1 for i ∈ Xk and j ∈ Xl if S(x, y) is R(x, y). If S(x, y) is ¬R(x, y) then we
take pi j = 0. If S(x, y) is R(y, x), then p ji = 1. If S(x, y) is ¬R(y, x), then set p ji = 0.

(iv) Reduce T∗n to TX with the reduced number of variables using assigned values to variables
pi j in the previous step.

(v) Generate and count models of KX using TX and free Boolean vectors by the procedure
described in Subsection 4.3.2.

(vi) Compute lX by formula (5.1.12).

(vii) Find κX by enumerating elements of KX .

(viii) Repeat steps 3 through 7 until P is exhausted.

(ix) Compute ln by formula (5.1.14).

(x) Compute κn by formula (5.1.15).

5.1 Lattices | 79

5.1.3 Irreducible components

Assume T is a finite theory. Let F be the set of all formulas of L having at most x as a free
variable. The relation of equivalence over F defined by

φ ∼ ψ iff Tn ⊢ ∀x(φ⇔ ψ), φ, ψ ∈ F , (5.1.16)

naturally defines the Lindenbaum algebra BT,n(F). Elements of BT,n(F) are classes of
equivalence [φ], φ ∈ F .

Proposition 5.1.2. BT,n(F) is finite.

Proof. Suppose BT,n(F) is infinite. Hence there is an infinite subset S = {φ0, φ1, . . .} of F of
nonequivalent formulas. Let S(2) be the set of all unordered pairs of different formulas from S,
A1, . . . ,Am all unlabeled models of Tn and P the set of all nonempty subsets of {1, 2, . . . ,m}.
We define coloring h : S(2) → P in the following way. Suppose s ∈ S(2), s = {φ, ψ}. Then

h(s) = {t : At |= ¬∀x(φ⇔ ψ), 1 ⩽ t ⩽ 2m}. (5.1.17)

We see that h(s) , ∅ since ¬∀x(φ⇔ ψ) is consistent with Tn, hence there is Ai which satisfies
this sentence. By Ramsey’s theorem there is an infinite Y = {ψ0, ψ1, . . .}, subset of S, which
is homogeneous for coloring h. Let t ∈ h({ψ0, ψ1}) and Xi ⊆ At , i = 0, 1, . . ., definable in At

by ψi. Then Xi , X j if i , j, so At would be a finite set with an infinite number of different
subsets, a contradiction. □

Since BT,n(F) is finite, it has the finite number of atoms, say [θ1], . . . , [θm]. We see that θi

cannot be split into two disjoint consistent formulas of F . In other words, there are no ψ ∈ F
such that Tn ⊢ ∀x(ψ ⇒ θi) and each of ∃xψ and ∃x(θi ∧ ¬ψ) is consistent with Tn. Such θi

will be called an irreducible formula of Tn. Suppose A is a model of Tn. Then every irreducible
formula θ defines a subset Xθ in A. If Xθ is nonempty, then it cannot be split into two disjoint
nonempty definable subsets, i.e., Xθ does not contain a proper nonempty definable subset. A
nonempty subset of A definable by an irreducible formula is called an irreducible component
of A.

Proposition 5.1.3. Suppose A is a model of Tn and X is the set of all irreducible components
of A. Then X is a partition of A.

Proof. Atoms of BT,n(F) make a partition of 1, so the statement follows. □

We can estimate the number of such partitions by (5.1.8), given that X is also a c-partition,
albeit an irreducible one.

5.1 Lattices | 80

Furthermore, ultrafilters of BT,n(F) are determined by types of Tn. Hence, an atom of
BT,n(F) is [θ] where θ is the conjunction of formulas from a type t(x) of Tn. In this way one
can obtain all irreducible formulas of Tn. However, there is a more useful way of describing
irreducible formulas and components as we will show in the following.

Let A be a model of Tn with A = In and G = Aut(A) and H : G → Sym(A) defined by
H (g)(x) = g(x), g ∈ G, x ∈ A. Then H is a group action of G on A and orbits of this action
are xG = {g(x) : g ∈ G}, x ∈ A.

Proposition 5.1.4. Let T be a finite theory of L. Then the irreducible components in a model
A of Tn are exactly the orbits under the action H .

Proof. Let θ(x, y) denote the following formula:

∃x1 . . . xn∃y1 . . . yn(
∧
i< j

xi , x j ∧
∧
i< j

yi , y j∧∧
i, j

(R(xi, x j) ⇔ R(yi, y j)) ∧
∨

i

(x = xi ∧ y = xi)).
(5.1.18)

Then θ(x, y) expresses that x and y have the same orbits under action H , while U (x) defined
by ∀y(U (y) ⇔ θ(x, y)) says that x belongs to an orbit. Hence, the sentence σ(U) of L ∪ {U }

∀x∀y(U (y) ⇔ θ(x, y)) (5.1.19)

implicitly defines the notion of orbit. Suppose (A, X) and (A,Y) are models of Tn + σ(U)
and f : (A, X) → (A,Y). Hence f ∈ Aut(A) and for some a ∈ A, X = {g(a) : g ∈ G} and so
Y = { f (g(a)) : g ∈ G} = {g(a) : g ∈ G} = X . Therefore, conditions of Svenonius theorem are
fulfilled, so Tn + σ(U) defines U explicitly up to the disjunctions. Hence, the orbit of each
element of A is definable in A.

Let X ⊆ A be the orbit of an element of A an suppose that X contains a proper nonempty
definable subset Y . Then there are a ∈ Y and b ∈ X . Since a and b belong to the same orbit,
there is g ∈ Aut(A) such that g(a) = b. On the other hand g(Y) ⊆ Y since Y is definable, a
contradiction. Therefore, X is an irreducible component. □

Note 5.1.4.1 When we started working on the graph isomorphism problem, we were not fully
aware of this group theoretical nature of our approach. It was only after we researched some
of the state-of-the-art algorithms [28] that we realized the existence of this correspondence
between types and orbits.

Our general idea for generating labeled models of a finite theory of a language with one
binary relation symbol is to use the following proposition for removing variables.

5.1 Lattices | 81

Proposition 5.1.5. Let T be a finite theory of L = {R}, R is a binary relation symbol, and
let S(x, y) be one of R(x, y), R(y, x), ¬R(x, y), ¬R(y, x). Assume that θ(x) is an irreducible
formula of Tn and φ(x) is a formula of L. Suppose

Tn ⊢ ∃x(θ(x) ∧ ∀y(φ(y) ⇒ S(x, y))). (5.1.20)

Let A be a model of Tn, Xθ the component of A associated to θ and Xφ the subset definable in A
by φ. Then A |= S[a, b] for every a ∈ Xθ and every b ∈ Xφ.

Proof. Let ψ(x) denote the formula θ(x) ∧ ∀y(φ(y) ⇒ S(x, y)). By condition 5.1.20, in
BTn (F) we have [ψ] ⩽ [θ] and [ψ] , 0. But [θ] is atom in BTn (F), hence [θ] = [ψ]. Therefore,
Tn ⊢ θ(x) ⇒ ∀y(φ(y) ⇒ S(x, y)), hence a ∈ Xθ implies SA(a, b) for all b ∈ Xφ. □

We note that there are several variations on how this can be done, but the main ones are as
follows. We assume that the propositional letter pi j represents RA(i, j) as described by (4.3.6).
Suppose θ1(x), . . . , θm(x) is the sequence of all irreducible formulas. We generate all partitions
X = (X1, . . . , Xm) of In, which are potentially orbits of A that we want to generate, taking that
Xi corresponds to θi. This assumption is consistent with Proposition 5.1.4. Now suppose we
found θl and φ(x) for which condition (5.1.20) holds. Since [θi] are atoms, φ is a disjunction
of some irreducible formulas, thus Xφ = Xi1 ∪ . . . ∪ Xik for some choice of elements of the
partition X. If S(x, y) is R(x, y) then we set pi j = 1 for i ∈ Xl and j ∈ Xφ and if S(x, y) is
¬R(x, y), then we set pi j = 0. Similarly, we assign values to p ji depending on whether S(x, y)
is R(y, x) or ¬R(y, x). Therefore, we reduced the number of unknowns from P, and now we
can generate the adequate set of labeled models in a way similar as before.

On the other hand, if the condition (5.1.20) is not fulfilled, we can refine the procedure in
the following way. Let us call a pair (i, j) an arrow if A |= S[i, j], i, j ∈ In. For an arrow (i, j)
we say it is an arrow from θl to φ if i ∈ Xl and j ∈ Xφ. Similarly to the proof of Proposition
5.1.5, one can prove the following: if A is a model of Tn, and if for some i ∈ Xl there are exactly
s arrows from θl to φ, then for every i ∈ Xl there are exactly s arrows from θl to φ. This is
in fact obvious since the elements of an orbit are indiscernible. Therefore, for every model A
of Tn there is s ∈ In such that for every i ∈ Xl there are exactly s arrows (i, j) from θl to φ.
Hence, we can set the appropriate values to pi j . For instance, if S(x, y) is R(x, y), then we take
pi j1, . . . , pi js = 1 where i ∈ Xl and j1, . . . , js are different elements from Xφ. For the rest of
j ∈ Xφ we take pi j = 0. And again, we can proceed in a similar manner as we did earlier.

Example 5.1.1. Let T be the theory of partial orders of L = {⩽} having at least 2 elements with
extra axioms that state: there are the least and the greatest element. Instead of T we can take
the theory T ′ of partially ordered sets which are upward and downward directed. Theories T

5.1 Lattices | 82

and T ′ are not equivalent, as T ′ has an infinite model which is not a model of T . But T and T ′

have the same finite models.
We see that lT,n = n(n−1) |K |, n ⩾ 2, whereK is the set of all partial orders A = (A, ⩽, 0, 1),

A = In; 0 is the least and 1 is the greatest element in A. Since pi j states i ⩽ j and ⩽ is reflexive,
we can also take

p0i = 1, p j0 = 0, pi1 = 1, p1k = 0, pii = 1,
i = 0, . . . , n − 1, j = 1, . . . , n − 1, k = 0, . . . , n − 2.

(5.1.21)

Hence, 5n − 6 variables are killed and T∗ is reduced to T ′ which has v = n2 − 5n + 6 variables.
If n = 8 then v = 30 and all partial orders having 8 elements are generated at one go on our
hardware configuration. By adding to T some new axioms, we can generate models of a new
theory in the same way and for the same time. For example, we can compute all lattices of
order 8 by adding just one axiom to T .

With small adjustments, this algorithm works in real time for n ⩽ 10. Namely, for larger
n, the feasibility constant K , see the footnote 1 (page 73), is exceeded. So we have to use the
previously described procedure based on components. Therefore, let us define recursively the
following sequence of length n of the following formulas

θ0(x) ≡ ∀y(x ⩽ y), θk+1(x) ≡ ∀y(
∨
i⩽k

θi (y) ∨ ¬ y < x) ∧
∧
i⩽k

¬ θi (x). (5.1.22)

Theorem 5.1.2. Formulas θk (x) make a good definable partition in Tn.

Proof. If A = (A, ⩽) is a partial order, we see that the associated components are: X0 = {0}, 0
is the least element of A, X1 is the set of minimal elements of A\{0}, X2 is the set of minimal
elements of A\(X0 ∪ X1), and so on. Let us call an element of Xk , a k-minimal element. Since
Xi+1 , ∅ implies Xi , ∅, we see that Xk = ∅ for k > n.

Since for every k ⩽ n − 2 there is a model of T which has Xk , ∅, we see that [θk] , 0 in
the Lindenbaum algebra BTn (F). Note that the formulas θk make partition of 1 in BTn (F). Let
[φ] be an atom of BTn (F). □

5.1.4 Lattice counting: program implementation

The problem of exact counting of special types of lattices took attention of many authors. For
example, at OEIS there are several hundreds articles related to various counting problems on
lattices. Here we describe a general structure of the program for counting lattices and other
types of partial orderings based on the theory developed in the previous subsections:

5.2 Tournament graphs | 83

Preamble Contains the required imports, which can be either the usual Python imports, or the
ones related to our system (e.g., GPURunner).

Domains Definition of domains. In order to reduce the size of formulas and the number of
computational steps we introduce special domains. For example, instead of using the set
of all functions f : n → n we use the set of permutations Sn.

Axioms In this part we write the axioms in first-order logic for the class of structures that we
are interested in. Depending on the axiom, we can write it using our DSL, construct
it in an imperative manner, or simply make the equivalent assumptions as we did for
reflexivity.

Main In this part we implement the counting of the structures. Therefore, the crucial role in
this part is played by hardware accelerated primitives from our system. For example, we
used the count primitive to accelerate counting using a GPU.

The full listing of the program with the explanations is included in §A.2.

5.2 Tournament graphs

Theory of random graphs lies on the border of combinatorics, probability theory and mathe-
matical logic. This theory was created in the sixties of the last century in the works of Erdös –
Rényi. For the subsequent development of this theory are also credited Béla Bolobás, Noga
Alon and Joel Spencer.

The goal of this section is to introduce the main ideas of this theory, to give some
constructions and to present some applications of our system on these graphs. We shall also
give applications of the famous 0–1 law for finite structures (Glebski, Kogan, Liagonki i Talanov
[1969], Fagin [1976]) in this area.

Theorem 5.2.1 (0–1 Law). If φ is a first order property in the language of graphs, then one of
the statements φ, ¬φ is true on almost all finite graphs.

5.2.1 Graphs and tournament

Simple oriented graph is a structure G = (G, R), where R is a binary relation which satisfies

R(x, y) ⇒ ¬R(y, x), x, y ∈ G

Simple undirected graph is a graph G = (G, R) in which the binary relation R is symmetric.
In graph theory, by graphs usually are assumed undirected graphs.

5.2 Tournament graphs | 84

An element of the domain G is called vertex or node. An edge is associated with two
vertices, and the association takes the form of the ordered pair of the vertices. Hence, an edge is
a pair (x, y) ∈ R. In undirected graphs, instead of the binary relation R the set of two-element
subsets of G is taken. In this case the relation R is called adjacency relation.

In a complete graph for every different x, y ∈ G, x and y are adjacent. We see that in
an n-element G there are n(n − 1)/2 edges. Also every two n-elements complete graphs are
isomorphic.

A tournament is a complete oriented graph. On a set S with n elements there are 2
n(n−1)

2

different tournaments.
Hence, tournaments are described by the following axioms:

(i) x < y ∨ y < x, (completeness).

(ii) x < y ⇒ ¬(y < x), (directedness).

5.2.2 Kauer’s graph

A binary relation < on a finite domain A is a Kauer’s graph if it is asymmetric, dense and
without upper bound. Axioms for these graphs are:

(i) x < y ⇒ ¬(y < x), asymmetric.

(ii) ∀xy∃z(x < y ⇒ x < z < y), dense.

(iii) ∀x∃y(x < y), without upper bound.

Hence, Kauer’s relation is anti-reflexive, ∀x¬(x < x). Kauer’s tournament is a finite Kauer’s
graph which is also a tournament. Unbounded Kauer’s tournament is a Kauers’s tournament
without a minimal element.

We encountered this type of graphs while studying a software for finding finite models
Mace4 [27]. There was asked a following question:

(i) Is there a finite Kauer’s graph? If there is one, what is the the least possible order (the
number of vertices) of an Kauer’s graph? (n=7)

This question is very easily answered by both Mace4 and our system, even though it is not as
easy for human to do so. We also posed the following questions:

(ii) For which positive integers n there is a Kauer’s tournaments of order n. (All n ⩾ 7).

(iii) What is the number kn of nonisomorphic unbounded tournaments of order n.
(limn→∞ kn = ∞)

In answering these questions we needed a notion of a random graph.

5.2 Tournament graphs | 85

5.2.3 Random graphs with n vertices

Random graphs with vertices 1, 2, . . . , n are generated in the following way:

For every pair of elements i, j, i < j, a coin is tossed. If the head turned up, then we take
i ∼ j. Otherwise, i.e., the tail was up, the vertices i and j are not adjacent.

In this way a discrete probability space is determined with the binomial distribution having
the parameters n and p = 1/2. In general, for arbitrary but fixed 0 < p < 1 we have a discrete
probability space with the binomial distribution having the parameters n and p. For creation
of this probability space it suffices to arrange the tossing of the coin so that it falls with the
probability p. In this way a random graph G(n, p) is obtained. We see that:

The probability of i ∼ j is Pr[i ∼ j] = p. (5.2.1)

Using the above formula, we see that if H is a randomly generated graph with k vertices,
then

Pr[{H }] = pk (1 − p)(n2)−k . (5.2.2)

Therefore, the elementary event for an n-element graph H is:

“The graph H has exactly k vertices”.

5.2.4 Random tournaments

Random tournaments are generated in a similar way as random graphs: a coin is tossed, then
if the head turned up we take i ≺ j, otherwise we take i ≻ j. The probability space has the
binomial distribution with parameters n, 1/2. Since we assumed the binomial distribution, the
elementary events i ∼ j, respectively i ≺ j are independent.

More general case for random graphs G(n, p), when p is not constant, is also considered.
For example, it is taken p = p(n) where n is the order of the graph. It is also assumed that
limn→∞ p(n) = 0.

5.2.5 Example 1: Erdös, [1963]

For historical reasons, as a first example, we give one of the first problems on random graphs
which was solved by P. Erdös. This example also illustrates techniques used for solving problems
on randomly generated graphs.

Let G be a tournament with n players (vertices). We say that G has the property Sk iff for
any choice of k players there is a player on the tournament who won all the players from this

5.2 Tournament graphs | 86

choice. In other words, for any a1, a2, . . . , ak ∈ G there is a b ∈ G such that:

a1 ≺ b, a2 ≺ b, . . . , ak ≺ b.

For example:

S1, (n = 3) : a ≺ b ≺ c ≺ a.

S2, (n = 7) : Kauer’s graph with 7 vertices.

Problem (Schütte). Is it true that for every k there is a tournament with the property Sk .

Theorem 5.2.2 (Erdös). If (
n
k

) (
1 − 1

2k

)n−k

< 1, (5.2.3)

then there is a tournament with n players and the property Sk .

Proof. Suppose (5.2.3) and let G = G(n, 1
2) be a random tournament. Further, let K ⊆ G be

with k elements and v ∈ G ∖ K . Then

AK = “There is no player in G ∖ K who won all the players from K”,

Pr[“v won all players from K”] = 1/2k,

Pr[“v did not win all players from K”] = 1 − 1/2k,

Pr[“There is no player in G ∖ K who won all the players from K”]

= Pr[AK] = (1 − 2−k)n−k,

Pr[“There is K such that AK”] = Pr
[∨

K⊆G AK
]
= Pr

[⋃
K⊆G AK

]
⩽

∑
K⊆G

Pr[AK] ⩽
(
n
k

) (
1 − 1

2k

)n−k

< 1,

Pr
[∧

K⊆G ¬AK
]
> 0.

That is, there is a tournament with n vertices and the property Sk . □

5.2.6 Example 2: Kauer’s tournament

Theorem 5.2.3 (Mijajlović–Pejović). For all n ⩾ 7 there is an unbounded Kauer’s tournament.

Proof. Let n ⩾ 20 and G(n, 1
2) be a random tournament. Let for a two-element subset

K = {i, j} ⊆ G the event

AK = “There is no k ∈ G ∖ K , i < k < j”.

5.2 Tournament graphs | 87

Similarly as in the previous example we find

Pr[Ak] =
1
2

(
1 − 1

22

)n−2
, Pr

[∨
K⊆G AK

]
⩽

1
2

(
n
2

) (
1 − 1

22

)n−2
.

Also, Pr[¬∀i∃ j i < j] = n/2n−1.
For n = 7, 8, . . . , 19 Kauer’s graphs are directly generated by use of a computer. Whereas,

for n ⩾ 20 it is true that
1
2

(
n
2

) (
1 − 1

22

)n−2
+

n
2n−2 < 1,

so as in the previous example we find an unbounded Kauer’s graph with n vertices. □

5.2.7 Supplement A: 0–1 Law

We used essentially 0–1 law in proving some properties of Kauer’s graphs and answering
questions (ii) and (iii). So we decided to include a subsection on 0–1 law, probably the most
important theorem in finite model theory, for the completeness reasons, and for the comfortness
of a reader of this thesis. Presented proofs are often only outlined.

Rado graph

For a sentence θ of graph theory let Prn(θ) denote the probability of the event:

“θ is true in a randomly generated graph of order n”.

Let k and l be natural numbers and consider the following sentence on graphs:

ψkl = “For every choice of different edges x1, . . . , xk and y1, . . . , yl there is a different
vertex z which is connected with all vertices xi and it is not connected with any of the
vertices y j”.

Then for m = k + l the following holds

cn = Pr
n

[¬ψkl] ⩽
(
n
k

) (
n − k

l

) (
1 − 1

2m

)n−m

.

For fixed k and l, the term
(

n
k

) (
n−k

l

)
is a polynomial in the indeterminate n of the degree

m = k + l. On the other hand the term (1 − 1
2m)n−m is an exponential function in the variable n

having the base 0 < 1 − 1
2m < 1. Hence, limn→∞ cn = 0 and therefore every finite subset of the

theory
T = {ψkl : k, l ∈ N }

5.2 Tournament graphs | 88

is consistent and all models of T are infinite.

Definition 5.2.1. Rado graph is every countable model of the theory T .

Example 5.2.1 (Ackermann, Rado).

(i) (Vω,∼), x ∼ y iff xϵ y or yϵ x. Here, Vω = ∪nVn, where

V0 = ∅, Vn+1 = Vn ∪ P(Vn), n = 0, 1,

If x1, x2, . . . , xk , y1, y2, . . . , yl are different elements of Vω then
z = {x1, x2, . . . , xk, {y1, y2, . . . , yl }} is adjacent to all xi but not to any yi.

(ii) Let the domain of the graph be the set of natural numbers N . The graph relation ∼ for
i, j ∈ N is defined by:

i ∼ j iff i occurs in the binary expansion of j or vice versa.

Properties of Rado graph

Theorem 5.2.4. The theory T is ω-categorical, i.e., every two Rado graphs are isomorphic.

Proof. Back–and–forth (zig–zag) argument. □

An immediate consequence of the preceding theorem is the following corollary.

Corollary 5.2.1. The theory T is complete.

One more corollary is:

Corollary 5.2.2. Rado graph is a saturated model.

Theorem 5.2.5. Rado graph is universal, i.e., every at most countable graph can be embedded
in a Rado graph.

Proof. This property follows from the saturation of the Rado graph, or it can be proved directly
by one half of the zig–zag argument. □

0–1 Law

Theorem 5.2.6 (Fagin – GKLT). Let R be a Rado graph and φ a sentence of graph theory.
Then:

R |= φ iff φ is true in almost all finite graphs.

5.2 Tournament graphs | 89

Proof.

(⇒) Th(R) = T since T is a complete theory. Therefore, if R |= φ then T |= φ, i.e.,

T ⊢ φ, so for some θ1, . . . , θm ∈ T,

⊢ ∧
i⩽m

θi ⇒ φ, that is ⊢ ¬φ⇒ ∨
i⩽m
¬θi .

Since for all indices i it holds limn→∞ Prn[¬θi] = 0, it follows

Prn[¬φ]→ 0, as n → 0.

(⇐) This direction follows from Compactness theorem and the categoricity of T . □

Corollary 5.2.3. 0–1 Law.

5.2.8 Supplement B: Further problems

There are also problems widely considered in the literature on finite graphs similar to the
problems (i), (ii), and (iii) stated for Kauer’s graphs. Therefore, we are also interested in
studying problems from the following list, some of which we have already considered and
partially solved:

Problem (Existence of Graph Isomorphism) Given two graphs G and G′ with n vertices each,
decide whether they are isomorphic.

Problem (Existence of Isomorphism of Labeled Graphs) Given two labeled graphs (G, a) and
(G′, a′), decide whether they are isomorphic.

Problem (Graph Isomorphism) Given two graphs G and G′, decide whether they are isomorphic,
and if so, construct an isomorphism from G to G′.

Problem (Graph Automorphism) Given a graph G, determine a generating set for Aut(G).

Problem (Order of the Automorphism Group) Given a graph G, determine the order of Aut(G).

Problem (Number of Isomorphisms) Given two graphs G and G′with n vertices each, determine
the number of isomorphisms from G to G′.

Chapter 6

Conclusion

The most results of the dissertation have been stated immediately after their presentation in
the relevant section, so here we give only a brief overview of all the results obtained. Finally,
we briefly discuss possible extensions of the developed software from both a theoretical and a
practical standpoint.

6.1 Summary of results

The main and original results of this doctoral dissertation are presented in Chapters 3, 4 and 5.
In Chapter 3, an original application of Hopf algebras in the derivation of Gould inversion

formulas [16] [17] is presented. We point out an interesting case for n = 2, where we used a
nice symmetry property of Tchebychev polynomials. In addition, an original generalisation of
the mentioned inversion formulas is given. These results are published in [31].

In Chapter 4, a new proof of Birkhoff HSP theorem from the field of universal algebras is
presented. This proof is based on the newly introduced concept of interpretation of variables.
Namely, the concept of a variable assumes a domain D in which this variable takes values.
These assignments enable us to compute the values of formulas in a given operational-relational
structure having D as a domain. Our idea was to interpret a variable v as a map v̂ having
valuations µ over D as arguments, while the values are the elements of D computed by applying
the evaluation operator, v̂(µ) = µ(v). In this way, we can naturally define a notion of free
generators of algebras, what enabled us to find an elegant proof of the HSP theorem.

In the continuation of this chapter, following the ideas of Mijajlović et al. [30] [33], we
developed a method for computing the number of finite models of first-order theories using
finite free Boolean algebras. The method itself consists of several precisely defined procedures
that were later fully implemented. The first step of the method is the translation of formulas of
the first-order predicate calculus into the propositional formulas. As the method refers to finite

6.1 Summary of results | 91

structures, a set of axioms for a model is translated into a finite set of propositional formulas.
The procedure itself consists of indexing propositional variables with domain elements, which
corresponds to naming, i.e., denotation of domain elements by symbols of constants. The next
procedure that is elaborated in the thesis is to compute the values of logical formulas based
on the valuations of propositional variables. It turns out that the valuations of propositional
variables are cross-sections of free vectors. This naturally led to the next step, the generation of
free vectors of finite Boolean algebras. This step, as well as computing the logical values of
propositional formulas, were implemented by parallel programming in OpenCL and Python.
With this procedure, we can determine all the valuations that make a given set of propositional
formulas true, that is, all models. Each propositional model corresponds to exactly one model
of the initial first-order theory whose translation we made in the first step.

On these bases, the main result of the thesis was developed, which is a parallel software
system for generating and counting models (operational-relational structures) of first-order
theories. The system was implemented in Python programming language using hardware
accelerated primitives implemented in OpenCL. This enables the system to use all available
hardware resources of both the GPU and the CPU when computing the logical values of
propositional formulas. The system itself consists of several separate but related features. First
of all, there are four hardware accelerated primitives:

(i) eval(expression)

Computes all models of the given expression using parallel evaluation.

(ii) count(expression)

Computes the number of models of the given expression using parallel counting.

(iii) findmodel(expression)

Computes a model of the given expression using parallel search.

(iv) exist(expression)

Returns True if the given expression has a model, False otherwise. In other words, it
answers whether the given theory is consistent.

These primitives are integrated into the Python environment and can be used to examine theories
from a model-theoretical point of view. In addition to hardware accelerated primitives, which
are the main feature of the system, we also developed features such as:

• A domain-specific language (DSL) for formulating axioms of first-order theories; which
facilitates the input of theories into the system,

6.2 Related work | 92

• Their translation into propositional calculus; which is the implementation of the first step
of our method for computing the number of finite models of first-order theories, and

• Partial evaluation of propositional formulas; which is necessary in the process of
elimination of propositional variables.

It should be pointed out that all the described functionalities are integrated into the Python
environment in a similar way to the functionalities of other Python libraries, which enables
very convenient use of the system.

In Chapter 5, a procedure is developed for the computer counting of finite partially ordered
sets, especially lattices, of given cardinality. It is also proved that for every n ⩾ 7 there exists a
Kauer’s graph with n vertices. This proof relies on the theory of random graphs and the 0–1 law
for finite models, while the generation of several computationally difficult cases necessary
for the proof was done using our system. Both examples have common features such as the
elimination of variables, the computation of definable partitions, and the computation of orbits
under group action which in some way is a measure of the symmetry of a structure.

6.2 Related work

There are several software systems that are used for model generating and counting. They range
from general finite model finders like Mace4 [27] and Paradox [8], to more specialized ones
like PSATO [42] which was developed for computing specific quasigroups. Our system belongs
to the group of general systems.

It is shown in the thesis how our software can be used to solve elementary problems in
combinatorics. On the other hand, using the system to solve more difficult problems, as
is the case with the examples in Chapter 5, involves a solid knowledge of the theoretical
background of the problem. The main theoretical aspect relates primarily to the representation
of a computational problem in the first-order predicate calculus. Another important aspect is the
reduction of the number of propositional variables. This problem can be solved, for example,
using definability theory and parts of classical model theory.

A similar requirement, of knowing the theoretical background of the problem, is also
encountered in the other mentioned systems. What sets our system apart from others is the
way it is implemented, as well as the principles on which that implementation is based. Our
system is based on a method developed using finite free Boolean algebras, whereas, for instance,
Mace4 is based on skolemization of first-order theories. Therefore, Mace4 generates models
with redundant objects (Skolem functions), which interferes with and complicates the counting
of models of a theory. In addition, most of these systems are standalone programs, so it is not

6.3 Future work | 93

straightforward to use them from a programming environment. On the other hand, our system
was designed from the ground up to be used as a Python library.

There is a rich literature on applications of these systems and algorithms in solving problems
in finite combinatorics, finite models, as well as in games, puzzles and design of particular
patterns. Many of these problems can also be solved in our system. For example, we first
became acquainted in Mace4 with the problem of the existence of Kauer’s graphs for the case
n = 7. We solved this problem in the thesis for an arbitrary natural number n.

6.3 Future work

There are several directions for further development of our system. One of the most interesting
options is the introduction of arithmetic operations on indices of propositional variables. For
example,

pi ∧ p j ⇒ pi+ j .

This new expressiveness would allow some combinatorial problems to be expressed and solved
more naturally.

A similar innovation would be the introduction of quantifier restrictions using binary
relations on their domains such as, say, some partial ordering ⩽:∧

i⩽ j

pi j

It would also be interesting to add full support for the use of branching or Henkin quantifiers,
which are currently only partially supported.

It is expected that further performance improvement of the system is possible. This is
primarily related to the acceleration of parallel computation of propositional formulas. Better
integration of the system into the Python environment is also expected, as well as the ability to
use multiple GPUs.

References

[1] M. Abramowitz and I. A. Stegun. Handbook of mathematical functions. U.S. Dept. of
Standards, National Bureau of Standards, 10th printing edition, 1972.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley, 2nd edition, 2007.

[3] R. J. Bayardo Jr. and J. D. Pehoushek. Counting models using connected components.
In Proceedings of AAAI-00: 17th National Conference on Artificial Intelligence, pages
157–162, 2000.

[4] A. Biere, M. Heule, H. van Maaren, and T. Walsh. Handbook of Satisfiability. IOS Press,
2009.

[5] J. Blasiak. Nonstandard braid relations and chebyshev polynomials. arXiv:1010.0421v1
[math.RT], 2010.

[6] S. Burris and H. P. Sankappanavar. A course in Universal algebra. Springer, 2012 update
edition, 1981.

[7] C. C. Chang and J. H. Keisler. Model theory. North Holland, 1990.

[8] K. Claessen and N. Sörensson. Paradox. URL http://www.cs.chalmers.se/~koen/paradox/.

[9] F. A. Costabile and E. Longo. An algebraic exposition of umbral calculus with application
to general linear interpolation problem – a survey. Publ. Inst. Math. (Belgrade), 96(110):
67–83, 2014.

[10] A. Darwiche. New advances in compiling cnf into decomposable negation normal form.
In Proceedings of ECAI-04: 16th European Conference on Artificial Intelligence, pages
328–332, 2004.

[11] S. Dascalescu, C. Nastasescu, and S. Raianu. Hopf Algebra: An Introduction. CRC Press,
2000.

[12] R. J. Duffin, E. L. Peterson, and C. Zener. Geometric Programming. J. Wiley and Sons,
1967.

[13] M. Filaseta, F. Luca, P. Stãnicã, and R. G. Underwood. Galois groups of polynomials
arising from circulant matrices. Jour. Number Theory, 128(1):59–70, 2008.

[14] M. Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

http://www.cs.chalmers.se/~koen/paradox/

References | 95

[15] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[16] H. W. Gould. A new convolution formula and some new orthogonal relations for inversion
of series. Duke Mathematical Journal, 29(3):393–404, 1962.

[17] H. W. Gould. New inverse series relations for finite and infinite series with applications.
Jour. Math. Research and Exposition, 4(2):119–130, 1984.

[18] H. W. Gould. The girard-waring power sum formulas for symmetric functions and
fibonacci sequences. Fibonacci Quart., 37(2):135–140, 1999.

[19] H. W. Gould. The inverse of a finite series and a third-order recurrent sequence. Fibonacci
Quart., 44(4):302–315, 2006.

[20] Y. Hamadi and C. M. Wintersteiger. Seven challenges in parallel sat solving. In Proceedings
of AAAI-12: 26th AAAI Conference on Artificial Intelligence, pages 2120–2125, 2012.

[21] OEIS Foundation Inc. The on-line encyclopedia of integer sequences. URL http://oeis.org/.

[22] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[23] C. Jordan. Calculus of finite difference. Chelsea Publ. Comp., N.Y., 1950.

[24] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon. Resolution and parallelizability:
barriers to the efficient parallelization of sat solvers. In Proceedings of AAAI-13: 27th
AAAI Conference on Artificial Intelligence, pages 481–488, 2013.

[25] W. Lang. On sums of powers of zeros of polynomials. Jour. of Comput. and Appl. Math.,
89(2):237–256, 1998.

[26] G. Mastroianni and G. V. Milovanović. Interpolation Processes: Basic Theory and
Applications. Springer, 2008.

[27] W. McCune. Mace4. URL http://www.cs.unm.edu/~mccune/mace4/.

[28] B. D. McKay and A. Piperno. Practical graph isomorphism, II. J. Symbolic Computation,
60:94–112, 2014.

[29] Ž. Mijajlović. Model Theory. Novi Sad, 1985.

[30] Ž. Mijajlović. On free boolean vectors. Publ. Inst. Math, 64(78):2–8, 1998.

[31] Ž. Mijajlović and A. Pejović. Hopf algebra of projection functions. Publ. Inst. Math,
97(111):23–31, 2015.

[32] Ž. Mijajlović, M. Milošević, and A. Perović. Ideal membership in signomial rings. Univ.
Beograd. Publ. Elektrotehn. Fak., Ser. Mat., 18:64–67, 2007.

[33] Ž. Mijajlović, D. Doder, and A. Ilić-Stepić. Borel sets and countable models. Publ. Inst.
Math, 90(104):1–11, 2011.

http://oeis.org/
http://www.cs.unm.edu/~mccune/mace4/

References | 96

[34] G. V. Milovanović. A class of orthogonal polynomials on the radial rays in the complex
plane. J. Math. Anal. Appl., 206:121–139, 1997.

[35] G. V. Milovanović. Orthogonal polynomials on the radial rays and an electrostatic
interpretation of zeros. Publ. Inst. Math. (Belgrade), 64(78):53–68, 1998.

[36] E. B. Saff and R. S. Varga. On incomplete polynomials. In Numerische Methoden der
Approximationstheorie, Band 4, pages 281–298. Springer, 1978.

[37] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combining component
caching and clause learning for effective model counting. In Proceedings of SAT-04: 7th
International Conference on Theory and Applications of Satisfiability Testing, 2004.

[38] R. Sikorski. Boolean Algebras. Springer-Verlag, Berlin, 1969.

[39] T. B. Stojadinović. Kombinatorne Hopfove algebre. PhD thesis, Faculty of Mathematics,
Belgrade University, 2013.

[40] L. Svenonius. A theorem on permutations in models. Theoria, 25:173–178, 1959.

[41] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[42] H. Zhang, M. P. Bonacina, and J. Hsiang. Psato: a distributed propositional prover and its
application to quasigroup problems. Jour. of Symbolic Computation, 21(4-6):543–560,
1996.

Appendix A

Source code listings

A.1 Sudoku solver

’’’
Sudoku Solver

Usage: sudoku.py <input_file>

@author: Aleksandar
’’’
from logic import bool
from logic.core import ast
from logic.abc import p, i, j, k, l
from logic.fo.quantifiers import *

Sudoku size
n = 3

cell indices
S = range(n**2)

cell values
V = {v + 1 for v in S}
Dkl = comb(V, 2)

we model a Sudoku puzzle in the following way:
cell(i,j)=k iff p(i,j,k)=1

there is a value in every cell
f1 = A[i : S].A[j : S].E[k : V](p(i, j, k))
each value appears in each row
f2 = A[i : S].A[k : V].E[j : S](p(i, j, k))

A.1 Sudoku solver | 98

each value appears in each column
f3 = A[j : S].A[k : V].E[i : S](p(i, j, k))

in one cell there can be only one value
f4 = A[i : S].A[j : S].A[k, l : Dkl](~(p(i, j, k) & p(i, j, l)))

def subsquare(i, j):
a, b = i // n, j // n
x = [a * n + c for c in range(n)]
y = [b * n + c for c in range(n)]
return prod(x, y)

each value appears in each subsquare
f5 = bool.true
for sx, sy in prod(range(0, n**2, n), repeat=2):

f5 &= A[k : V].E[i, j : subsquare(sx, sy)](p(i, j, k))

def set_assumption(i, j, k, assumptions):
’’’
Fills in a cell(i,j) with k.
’’’
for ii in S:

assumptions[p(ii, j, k)] = 0
for jj in S:

assumptions[p(i, jj, k)] = 0
for kk in V:

assumptions[p(i, j, kk)] = 0
for ii, jj in subsquare(i, j):

assumptions[p(ii, jj, k)] = 0
assumptions[p(i, j, k)] = 1

def load(assumptions):
’’’
Loads a Sudoku puzzle from an input file into assumptions.
’’’
import sys
with open(sys.argv[1]) as f:
for i, row in enumerate(f):
for j, k in enumerate(’’.join(row.split())):
if k != ’-’:

set_assumption(i, j, int(k), assumptions)

A.1 Sudoku solver | 99

def pprint(assumptions):
’’’
Pretty prints a Sudoku puzzle.
’’’
sudoku = [[’-’] * n**2 for i in range(n**2)]
for i, j, k in [k.indices for k, v in assumptions.items() if v]:

sudoku[i][j] = k

row_sep = ’+-{}-+’.format(’-+-’.join([’-’.join([’-’] * n)] * n))
row_tl = ’|␣{}␣|’.format(’␣|␣’.join([’␣’.join([’{}’] * n)] * n))
for i, row in enumerate(sudoku):
if i % n == 0:
print(row_sep)

print(row_tl.format(*row))
print(row_sep)
print()

Since we don’t have negative literals in sudoku, we only search for
positive ones.
#
Negative literal ~p(i, j, k) would mean that we can’t put k at (i, j).
That is only possible if we have already put k somewhere else in i-th
row, j-th column or (i, j)-th subsquare. But if we had put k somewhere
else, we have already eliminated all negative literals containing k,
hence we can’t have negative literals.
class Literals(ast.Visitor):

def __call__(self, term):
literals = set()
self.visit((term,), literals)
return literals

def default_visit(self, term, literals):
for t in term:
if isinstance(t, (bool.algebra.And, bool.algebra.Var)):

self.visit(t, literals)

def visit_Var(self, term, literals):
literals.add(term)

literals = Literals()

A.1 Sudoku solver | 100

def best_guess(variables):
’’’
Simple strategy for choosing a cell with least options.
’’’
sudoku = [[[] for i in range(n**2)] for j in range(n**2)]
for i, j, k in [var.indices for var in variables]:

sudoku[i][j].append(k)
min_i, min_j, unused = min(

[(i, j, len(vals)) for i, row in enumerate(sudoku)
for j, vals in enumerate(row) if vals],

key=itemgetter(2))
return [(min_i, min_j, k) for k in sudoku[min_i][min_j]]

def ssolve(f, assumptions):
’’’
Simple backtracking Sudoku solver.
’’’
f = f.eval(assumptions)
while literals(f.terms):
for i, j, k in [literal.indices for literal in literals(f.terms)]:

set_assumption(i, j, k, assumptions)
f = f.eval(assumptions)

if f == bool.Expression(bool.false):
return None

elif f == bool.Expression(bool.true):
return assumptions

else:
for i, j, k in best_guess(f.variables):

assumptions_copy = assumptions.copy()
set_assumption(i, j, k, assumptions_copy)
solution = ssolve(f, assumptions_copy)
if solution:
return solution

def main():
assumptions = {}
load(assumptions)
pprint(assumptions)

f = bool.Expression(f1 & f2 & f3 & f4 & f5)
solution = ssolve(f, assumptions)
pprint(solution)

if __name__ == ’__main__’:
main()

A.2 Lattice counter | 101

A.2 Lattice counter

’’’
Demonstrates advanced techniques for counting models.

The idea is to decompose a lattice into levels. By going through all
compositions we will create a partitioning of a problem space, as
it can be shown that each lattice can belong to only one composition.

The structure of each composition will allow us to introduce additional
constraints. As a result we will be able to kill more variables, and by
doing so to count lattices on larger domains.

@author: Aleksandar
’’’
from logic import bool
from logic.abc import p, i, j, k, l
from logic.fo.quantifiers import *
from logic.cl.runner2 import GPURunner, CPURunner

increase recursion limit, which is 1000 by default
import sys
sys.setrecursionlimit(5000)

def decompose(s):
’’’Generates all compositions of a given sequence s.’’’
s = tuple(s)
yield (s,)
for i in range(1, len(s)):
for c in decompose(s[i:]):
yield (s[:i],) + c

def binomial(n, k):
’’’Compute binomial nCk by direct multiplicative method.’’’
if k > n:
return 0

if k > n - k: # Take advantage of symmetry of Pascal’s triangle
k = n - k

acc = 1
for i in range(1, k + 1):

acc *= (n - (k - i))
acc //= i

return acc

A.2 Lattice counter | 102

def assume_reflexive(s, assumptions):
for i in s:

assumptions[p(i, i)] = 1

def assume_min_max(s, assumptions):
’’’Fix min and max element.’’’
min_i, *rest, max_i = s
for i in rest + [max_i]:

assumptions[p(i, min_i)] = 0
assumptions[p(min_i, i)] = 1

for i in [min_i] + rest:
assumptions[p(max_i, i)] = 0
assumptions[p(i, max_i)] = 1

return rest

def assume_unrelated(s, assumptions):
’’’Elements at the same level are unrelated.’’’
for i, j in perm(s, 2):

assumptions[p(i, j)] = 0

def assume_not_in_relation(s, r, assumptions):
’’’Elements at s level are not smaller than elements at lower levels.’’’
for i, j in prod(s, r):

assumptions[p(i, j)] = 0

def handle_unary_components(composition, assumptions):
’’’Handles levels with one element.’’’
for c_i, c in enumerate(composition):
if len(c) == 1:

i = c[0]
for next_c in composition[(c_i + 1):]:
for j in next_c:

assumptions[p(i, j)] = 1

i < j iff p(i,j)=1

n = 9

S = range(n)

assumptions = {}

assume_reflexive(S, assumptions)

A.2 Lattice counter | 103

Sr = assume_min_max(S, assumptions)

Dij = comb(Sr, 2)
Dijk= perm(Sr, 3)

Statement: p is reflexive
#f1 = A[i : S](p(i, i)) # Not needed since we have assumed reflexivity

Statement: p is antisymmetric
f2 = A[i, j : Dij](~p(i, j) | ~p(j, i))

Statement: p is transitive
f3 = A[i, j, k : Dijk](~(p(i, j) & p(j, k)) | p(i, k))

Every two elements have a meet.
f4 = A[i, j : Dij].E[k : S].A[l : S](p(k, i) & p(k, j)

& (~(p(l, i) & p(l, j)) | p(l, k)))

f = bool.Expression(f2 & f3 & f4).eval(assumptions).terms

runner = GPURunner()

n_models = 0
n_c_models = 0

for composition in decompose(Sr):
c_assumptions = assumptions.copy()
prev_elements = ()
coeff = 1
f_c = bool.true
for c_i, component in enumerate(composition):

assume_unrelated(component, c_assumptions)
assume_not_in_relation(component, prev_elements, c_assumptions)
coeff *= binomial(len(Sr) - len(prev_elements), len(component))
prev_elements += component
if c_i:
Each element must be greater than an element at the level below
f_c &= A[j : component].E[i : composition[c_i - 1]](p(i, j))

handle_unary_components(composition, c_assumptions)
expression = bool.Expression(f & f_c).eval(c_assumptions)
if expression == bool.Expression(bool.true):
Reduced to tautology ~ 1
c_models = 1

else:
c_models = runner.count(expression)

A.2 Lattice counter | 104

n_models += coeff * c_models
n_c_models += c_models

print(composition)
print(’vars:␣{}’.format(len(expression.variables)))
print(’models:␣{}’.format(c_models))
print()

print(n * (n - 1) * n_models)
print(n_c_models)

	Table of contents
	List of figures
	List of tables
	List of listings
	Nomenclature
	1 Introduction
	2 Model theory
	2.1 Introduction to model theory
	2.2 First-order languages
	2.3 Terms and formulas
	2.4 First-order theories
	2.5 Examples of theories
	2.6 Models
	2.7 Satisfaction relation
	2.8 Method of new constants

	3 Algebraic and combinatorial constructions
	3.1 Group action on a model
	3.2 Inversion formulas
	3.2.1 Hopf algebra of projection functions
	3.2.2 Linear functional theta = pi + pi-r
	3.2.3 Gould inversion formula
	3.2.4 Example

	4 Parallel model counting
	4.1 Introduction to model counting
	4.2 Variables
	4.2.1 Interpretation of variables
	4.2.2 Free Boolean vectors
	4.2.3 Computing Boolean expressions

	4.3 Computing finite models
	4.3.1 Translation from Lomegaomega to Lomega
	4.3.2 Correspondence between models of T and T*

	4.4 Software implementation
	4.4.1 Representation of first-order theories
	4.4.2 Partial evaluation of propositional formulas
	4.4.3 Hardware acceleration
	4.4.4 Accelerated primitives
	4.4.5 Example

	4.5 Comparison against similar software

	5 Applications
	5.1 Lattices
	5.1.1 Removing variables
	5.1.2 Definable partitions
	5.1.3 Irreducible components
	5.1.4 Lattice counting: program implementation

	5.2 Tournament graphs
	5.2.1 Graphs and tournament
	5.2.2 Kauer's graph
	5.2.3 Random graphs with n vertices
	5.2.4 Random tournaments
	5.2.5 Example 1: Erdös, [1963]
	5.2.6 Example 2: Kauer's tournament
	5.2.7 Supplement A: 0–1 Law
	5.2.8 Supplement B: Further problems

	6 Conclusion
	6.1 Summary of results
	6.2 Related work
	6.3 Future work

	References
	Appendix A Source code listings

