

UNIVERSITY OF NOVI SAD

FACULTY OF TECHNICAL
SCIENCES
NOVI SAD

Nikola Luburić

Integration of Software
Security Design Analysis to

the Agile Development
Process

- Ph. D. Thesis -

Supervisor

Goran Sladić, PhD, associate professor

Novi Sad, 2019.

Nikola Luburić: Integration of Software Security Design Analysis
to the Agile Development Process

SERBIAN TITLE:
Integracija bezbednosne analize dizajna softvera u proces agilnog
razvoja

SUPERVISOR:
Goran Sladić, PhD, associate professor

LOCATION:
Novi Sad, Serbia

DATE:
September 2019

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA
21000 NOVI SAD, Trg Dosi teja Obradoviće 6

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Redni broj, RBR:

Identifikacioni broj, IBR:

Tip dokumentacije, TD: Monografska dokumentacija

Tip zapisa, TZ: Tekstualni štampani materijal

Vrsta rada, VR: Doktorska disertacija

Autor, AU: Nikola Luburić

Mentor, MH: dr Goran Sladić, vanredni profesor

Naslov rada, NR: Integracija bezbednosne analize dizajna softvera
u proces agilnog razvoja

Jezik publikacije, JP: engleski

Jezik izvoda, JI: srpski

Zemlja publikacije, ZP: Srbija

Uže geografsko područije, UGP: Vojvodina

Godina, GO: 2019

Izdavač, IZ: Fakultet tehničkih nauka

Mesto i adresa, MA: Trg Dositeja Obradovića 6, 21000 Novi Sad

Fizički opis rada, FO:
(poglavlja/strana /citata/tabela/slika/grafika/priloga)

6/159/154/13/13/0/0

Naučna oblast, NO: Elektrotehničko i računarsko inženjerstvo

Naučna disciplina, ND: Bezbednost softvera

Predmetna odrednica/Ključne reči, PO: bezbednosna analiza dizajna, modelovanje pretnji,
razvoj bezbednog softvera, životni ciklus razvoja
bezbednosti, bezbednosna ekspertiza,
bezbednost softvera

UDK

Čuva se, ČU: Biblioteka Fakulteta tehničkih nauka, Trg Dositeraj
Obradovića 6, 21000 Novi Sad

Važna napomena, VN:

UNIVERZITET U NOVOM SADU FAKULTET TEHNIČKIH NAUKA
21000 NOVI SAD, Trg Dosi teja Obradoviće 6

KLJUČNA DOKUMENTACIJSKA INFORMACIJA

Izvod, IZ: U sklopu disertacije izvršeno je istraživanje u
oblasti razvoja bezbednog softvera. Razvijene su
dve metode koje zajedno omogućuju integraciju
bezbednosne analize dizajna softvera u proces
agilnog razvoja. Prvi metod predstavlja radni okvir
za konstruisanje radionica čija svrha je obuka
inženjera softvera kako da sprovode bezbednosnu
analizu dizajna. Drugi metod je proces koji
proširuje metod bezbednosne analize dizajna
kako bi podržao bolju integraciju spram potreba
organizacije. Prvi metod je evaluiran kroz
kontrolisan eksperiment, dok je drugi metod
evaluiran upotrebom komparativne analize i
analize studija slučaja, gde je proces
implementiran u kontekstu dve organizacije koje
se bave razvojem softvera.

Datum prihvatanja teme, DP: 11.07.2019.

Datum odbrane, DO:

Članovi komisije, KO: Predsednik:
dr Branko Milosavljević,
redovni profesor,
FTN, Novi Sad

 Član:
dr Silvia Gilezan,
redovni profesor,
FTN, Novi Sad

 Član:
dr Gordana Milosavljević,
vanredni profesor,
FTN, Novi Sad

Potpis mentora

 Član:
dr Žarko Stanisavljević,
docent,
ETF, Beograd

 Član, mentor:
dr Goran Sladić,
vanredni profesor,
FTN, Novi Sad

Obrazac Q2.НА.06-05- Izdanje 1

UNIVERSITY OF NOVI SAD FACULTY OF TECHNICAL SCIENCES
21000 NOVI SAD, Trg Dos i te ja Obradovića 6

KEY WORDS DOCUMENTATION

Accession number, ANO:

Identification number, INO:

Document type, DT: Monograph documentation

Type of record, TR: Textual printed material

Contents code, CC: Ph.D. thesis

Author, AU: Nikola Luburić

Mentor, MN: Goran Sladić, Ph.D., Associate Professor

Title, TI: Integration of Software Security Design Analysis
to the Agile Development Process

Language of text, LT: English

Language of abstract, LA: Serbian

Country of publication, CP: Serbia

Locality of publication, LP: Vojvodina

Publication year, PY: 2019

Publisher, PB: Faculty of Technical Sciences

Publication place, PP: Trg Dositeja Obradovića 6, 21000 Novi Sad

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendixes)

6/159/154/13/13/0/0

Scientific field, SF: Electrical engineering and computing

Scientific discipline, SD: Software security

Subject/Key words, S/KW: security design analysis, threat modeling, secure
software engineering, security development
lifecycle, security expertise, software security

UC

Holding data, HD: Library of Faculty of Technical Sciences, Trg
Dositeja Obradovića 6, 21000

Note, N:

UNIVERSITY OF NOVI SAD FACULTY OF TECHNICAL SCIENCES
21000 NOVI SAD, Trg Dos i te ja Obradovića 6

KEY WORDS DOCUMENTATION

Abstract, AB: This thesis presents research in the field of secure
software engineering. Two methods are
developed that, when combined, facilitate the
integration of software security design analysis
into the agile development workflow. The first
method is a training framework for creating
workshops aimed at teaching software engineers
on how to perform security design analysis. The
second method is a process that expands on the
security design analysis method to facilitate better
integration with the needs of the organization. The
first method is evaluated through a controlled
experiment, while the second method is evaluated
through comparative analysis and case study
analysis, where the process is tailored and
implemented for two different software vendors.

Accepted by the Scientific Board on, ASB: 11.07.2019.

Defended on, DE:

Defended Board, DB: President:
Branko Milosavljević, PhD,
Full Professor,
FTN, Novi Sad

 Member:
Silvia Gilezan, PhD,
Full Professor,
FTN, Novi Sad

 Member:
Gordana Milosavljević, PhD,
Associate Professor,
FTN, Novi Sad

Menthor's
signature

 Member:
Žarko Stanisavljević, PhD,
Assistant Professor,
ETF, Belgrade

 Member, Mentor:
Goran Sladić, PhD,
Associate Professor,
FTN, Novi Sad

Obrazac Q2.НА.06-05- Izdanje 1

vii

Abstract
With the rise of attacks on digital systems, organizations have started
demanding security from the software they use. To comply with these
requirements, software vendors have adopted various secure software
engineering practices that enhance the regular development activities. There
is a specific class of practices, called security design analysis, that is
particularly challenging to integrate into agile development. Security design
analysis examines the design of software or its component to assess its
security posture and recommends changes and additional work to enhance it.

While cost-efficient, as it resolves vulnerabilities before they are introduced
into the software, practitioners and researchers highlight low adoption rates
and inefficient execution of these methods. Part of the problem lies in the
specific set of expertise required to practice them efficiently, which differs
from regular software engineering. Additionally, several applicability issues
arise when introducing traditional security design analysis into the agile
workflow, including complexity, unaccountability of work, and lack of
guidance. Through this research, we address these issues.

We examine different teaching techniques to determine which support better
learning outcomes for security design analysis. We find the case study
analysis and the hybrid flipped classroom teaching methods suitable for our
context and combine them to construct a framework for generating training
workshops dedicated to teaching security design analysis. Through a
controlled experiment, we evaluate our approach and demonstrate that threat
models of higher quality are produced by trainees that attended the
framework-formulated workshops, as opposed to the traditional workshops
covering the same topics.

To address the applicability issues of complexity, unaccountability, and lack
of guidance, we create a process around the security design analysis method.
This process enables the incremental development of threat models as the
software changes, where organizations can tailor the process according to
their needs, to define and prioritize security work accordingly. We evaluate
our approach through a comparative analysis with similar methods found in
literature, as well as through two case study implementations of the process
where we demonstrate the tailoring of the process and its execution on real-
world user stories.

Finally, we combine both methods into a process for integrating software
security design analysis to the agile development process, to construct the
baseline threat models and set up the foundation for the continuous
improvement of the security design analysis.

viii

Keywords: security design analysis, threat modeling, secure software
engineering, security development lifecycle, security expertise, software
security

ix

Rezime
Digitalna revolucija je u proteklim decenijama rezultovala širokom
primenom računara i softvera u rešavanju raznih problema u raznim
oblastima. Vlade, organizacije i pojedinci sve više zavise od softverskih
rešenja koja rade sa osetljivim podacima i funkcijama (Gandhi i drugi, 2011).
Dodatno, kriminal i terorizam pronalaze svoje mesto u digitalnom svetu.
Krađa podataka, sabotaža softvera i ugrožavanje njegovih korisnika je
postala stvar svakodnevnice. Zbog ovoga, vlade i organizacije sve više ulažu
u bezbednost svojih sistema, što uključuje i bezbednost softvera koji kupuju
(Salini i Kanmani, 2012). Naime, organizacije zahtevaju od proizvođača
softvera da razviju bezbedan softver.

Razvoj bezbednog softvera se postiže primenom niza bezbednosnih
aktivnosti kroz čitav životni ciklus razvoja softvera, od njegovog
koncipiranja, preko dizajna i implementacije, pa sve do verifikacije i
postavke u produkciju (Howard i Lipner, 2006). Jedan podskup ovih
aktivnosti se bavi inženjeringom bezbednosnih zahteva, što podrazumeva
prikupljanje i analizu bezbednosnih zahteva i definisanje načina za njihovo
ispunjavanje. Bezbednosni zahtevi, za razliku od funkcionalnih, se bave
aktivnostima koje korisnik ne bi smeo da vrši kroz softver. Na visokom
nivou apstrakcije, bave se zaštitom bezbednosnih svojstava (poput
poverljivosti, integriteta i dostupnosti) resursa sistema. Inženjering
bezbednosnih zahteva podrazumeva analizu poslovnih zahteva,
bezbednosnih standarda i pravnih regulativa koje treba softver da ispuni, kao
i razmatranje motivacije i mogućnosti napadača koji bi hteli da ugroze
softver. Ova analiza napadača i njihovog uticaja na softver se sprovodi kroz
aktivnost koja se naziva modelovanje pretnji.

Modelovanje pretnji uključuje skup tehnika za bezbednosnu analizu dizajna
softvera (Shostack, 2014b). Ove tehnike sistematski ispituju dizajn softvera i
njegovih celina, razmatrajući načine kako napadači mogu da ga
kompromituju. Iako koraci bezbednosne analize dizajna zavise od konkretne
tehnike koja se koristi, grubo se mogu grupisati u tri veće celine:

 Analiza modula – gde se ispituje modul kako bi se razumeo njegov
način rada, koji su tokovi podataka, i način na koji komunicira sa
spoljnim entitetima.

 Analiza pretnji – gde se određuju pretnje za modul i resurse kojima
manipuliše, poput bitnih podataka i servisa. Pretnje se dekomponuju
na napade putem kojih se mogu ostvariti, ranjivosti koje dozvoljavaju
da napad uspe i bezbednosne kontrole koje regulišu date ranjivosti.

x

 Analiza rizika – gde se razmatraju negativne posledice realizacije
pretnje i verovatnoće da se to desi, kako bi se zaključile protivmere i
odredila pogodna strategija za regulisanje rizika.

Rezultat ove aktivnosti su zahtevi za izmenu dizajna softvera ili zahtevi za
njegovo dodatno obezbeđivanje, na primer kroz dodatan razvoj ili integraciju
bezbednosnih alata. Bezbednosna analiza dizajna je aktivnost koja pronalazi
ranjivosti u sistemu u ranim fazama razvoja, pre nego što se program napiše i
kada je najjeftinije regulisati bezbednosne probleme. Međutim, efikasna
primena ove aktivnosti u kontekstu savremenih metodologija razvoja
softvera je relativno retka, uprkos sve većoj potražnji za bezbednim
softverom (Baca i Carlsson, 2011; Oyetoyan i drugi, 2016; Türpe i Poller,
2017).

Ključni problemi koji su identifikovani za uspešnu primenu bezbednosne
analize dizajna u proces agilnog razvoja softvera uključuju:

1. Nedostatak znanja da se efikasno sprovodi. Veština koje je potrebna
da se izvrši bezbednosna analiza dizajna se teško prenosi i stiče i ne
odgovara mentalitetu koji je potreban za standardan razvoj softvera
(Shostack, 2014b; Schoenfield, 2015). Zbog ovoga, timovi koji se
bave razvojem softvera uglavnom ne poseduju dovoljno veštine da
praktikuju bezbednosnu analizu dizajna (Morrison i drugi, 2017).

2. Neslaganje paradigmi između agilnog razvoja i tradicionalnih tehnika
za bezbednosnu analizu dizajna, koje su krojene za vodopad
metodologije razvoja softvera. U agilnom razvoju, prvobitni dizajn se
brzo menja kako se novi zahtevi za softver definišu. Tradicionalne
tehnike bezbednosne analize dizajna podrazumevaju temeljnu analizu
prvobitnog dizajna, što rezultuje zastarelim modelima pretnji i
rezultatima analize upitne vrednosti. Zbog svoje kompleksnosti,
skupo je sprovesti kompletnu bezbednosnu analizu dizajna za svaki
novi razvoj. Dodatna problematika se ispoljava i kroz nedostatak
opipljivih rezultata analize i jasno definisanog kraja analize, što
dovodi do nejasno definisanog posla i njegovog trajanja. Najzad,
značajan deo tehnika za bezbednosnu analizu dizajna ne pruža
dovoljno smernica kako izvršavati analizu niti kako je integrisati u
razvoj softvera (Poller i drugi, 2017; Luburić i drugi, 2018a).

U sklopu ovog istraživanja, fokus se stavlja na razvoj podržan Scrum radnim
okvirom, kao najrasprostranjenijim pristupom agilnog razvoja (CollabNet
VersionOne, 2019). Iz prethodno navedenih problema identifikovana su
istraživačka pitanja koje teza obrađuje:

xi

1. Kako efikasno naučiti Scrum timove da vrše bezbednosnu analizu
dizajna?

2. Kako integrisati bezbednosnu analizu dizajna u proces agilnog
razvoja softvera baziranog na Scrum-u?

Spram istraživačkih pitanja, formirana je centralna hipoteza disertacije koja
glasi:

 Timovi koji razvijaju softver po Scrum agilnoj metodologiji mogu
praktikovati bezbednosnu analizu dizajna softvera tokom čitavog
njegovog razvoja, čime dokazuju da je bezbednost adekvatno
razmotrena tokom dizajna, pod uslovom da:

o Dobiju prikladnu obuku kako bi efikasno praktikovali
bezbednosnu analizu dizajna.

o Tehnika bezbednosne analize dizajna je kompatabilna sa
načinom rada u Scrum procesu, i ne zahteva uvođenje novih
uloga u razvojni tim, niti konstrukciju kompleksne
dokumentacije.

o Posao je opipljiv, merljiv, konačan, te mu se može odrediti
prioritet i formulisati plan realizacije kao i za standardan
razvoj.

o Postoji dovoljno uputstva kako usvojiti, koristiti, i adaptirati
tehniku bezbednosne analize dizajna za različite
organizacione kontekste.

Polazna hipoteza je razložena na tri očekivana doprinosa disertacije:

1) Konstrukcija radnog okvira za pomoć pri kreiranju radionica, kroz
koje inženjeri softvera efikasno uče kako da sprovode bezbednosnu
analizu softvera.

2) Definisanje procesa bezbednosne analize dizajna koji rešava
probleme koji postoje u interakciji procesa agilnog razvoja i
tradicionalnih tehnika za bezbednosnu analizu dizajna.

3) Definisanje procesa za integraciju bezbednosne analize dizajna u
agilan razvoj putem upotrebe radnog okvira za konstrukciju radionica
kako bi se uspostavilo znanje za integraciju, upotrebu i kontinualno
unapređenje procesa bezbednosne analize dizajna, opisan pod tačkom
dva. Kombinacija ove dve tehnike treba da podrži agilan razvoj
softvera i da odgovori na zahteve za bezbednosnu analizu dizajna
koje definišu standardi na temu razvoja bezbednog softvera.

U cilju razmatranja prvog dela hipoteze i prvog istraživačkog pitanja,
istražuju se metode obuke namenjene učenju tehnika razvoja bezbednog
softvera, što je tema sekcije 2.1. Sa rastom interesovanja za razvoj

xii

bezbednog softvera, formirana je istraživačka grana koja se bavi ispitivanjem
tehnika obuke inženjera softvera da razvijaju bezbedniji softver.
Tradicionalna učionica, gde predavač izlaže znanje dok polaznici pasivno
slušaju, se u literaturi i praksi ističe kao neadekvatna za obuku na temu
razvoja bezbednog softvera. Zbog ovoga, alternativne tehnike za obuku se
ispituju.

Varma i Garg (2005) su razmatrali upotrebu različitih tehnika učenja u polju
softverskog inženjerstva. Zaključili su da je analiza studija slučajeva (engl.
Case study analysis) efikasna tehnika za obuku inženjera softvera,
postavljajući pogodan teren na kom se može ispoljiti kompleksnost i
zamršenost koja postoji u softverskim proizvodima. Meneely i Lucidi (2013)
su primenili ovu tehniku u sklopu univerzitetskog kursa čija tema je razvoj
bezbednog softvera. Na početku svakog predavanja, autori analiziraju
„ranjivost dana“, gde ispituju primere bezbednosnih problema iz stvarnog
sveta i analiziraju posledice ranjivosti, način na koji bi se mogla
eksploatisati, programski kod njene implementacije, kao i način na koji bi se
ranjivost rešila. Tokom ove aktivnosti, autori zapažaju visok nivo
interesovanja među studentima. Analiza studija slučajeva postavlja polaznike
u realistične situacije, gde je potrebno da se izbore sa nepotpunim
informacijama, ciljevima koji su u koliziji i ograničenjima poput novca i
vremena (Andersen i Schiano, 2014) i stimuliše kritičko razmišljanje (Dunne
i Brooks, 2004).

Gamifikacija (engl. Gamification) predstavlja moderan metod učenja, gde se
kroz igru u kojoj učestvuju polaznici formiraju pozitivni ishodi učenja
povećanjem angažmana i interaktivnosti među polaznicima. Denning i drugi
(2013) su definisali kartašku igru Control-Alt-Hack, kao alat za učenje
računarske bezbednosti kroz igru. Još jednu kartašku igru, Elevation of
Privilege, je definisao Shostack (2014a) sa ciljem da nauči inženjere softvera
kako da vrše bezbednosnu analizu dizajna softvera. Kroz ovu igru, učesnici
diskutuju ranjivosti u sistemu, mesta odakle napadač može da sprovede
napad i resurse koje bi želeo da ugrozi. U kontekstu agilnog razvoja softvera,
Williams i drugi (2010) su definisali Protection Poker, igru koja pomaže
razvojnim timovima da odrede i rangiraju bezbednosne rizike koji postoje u
softveru i koje novi korisnički zahtevi mogu doneti.

Kassicieh i drugi (2015) ispituju korporativne radionice iz domena
računarske bezbednosti i ističu njihovu neefikasnost. Autori ističu da je deo
problema to što tradicionalna tehnika učenja ne podržava razvoj
„mentaliteta“ koji je potreban za bezbednost. Nekoliko autora ističe da je za
aktivnosti poput bezbednosne analize dizajna neophodan „napadački pogled“
na problem (Shostack, 2014a; Schoenfield, 2015; Carranza i DeCusatis,
2015). Carranza i DeCusatis (2015) ispituju hibridnu invertovanu učionicu

xiii

(engl. Hybrid flipped classroom) kao pogodniju tehniku za razvoj
napadačkog pogleda u odnosu na tradicionalnu učionicu. Kod hibridne
invertovane učionice polaznici dobijaju materijale, poput video predavanja,
članaka ili poglavlja u knjizi, koje treba samostalno da prođu pre radionice.
Tokom radionice, polaznici diskutuju materijale sa predavačem kako bi
dodatno razumeli gradivo i stekli novi pogled na izneseno znanje. Potom
rade na zadacima i sprovode aktivnosti koje zahtevaju znanje iz pripremnih
materijala. Invertovanu učionicu ističu i Kassicieh i drugi (2015), kao jedan
način da se unaprede radionice iz domena računarske bezbednosti.

Elektronski-podržano učenje (engl. E-learning) je pronašlo specifičnu
primenu kod učenja tehnika razvoja bezbednog softvera. Nekoliko autora je
formiralo platforme za učenje o softverskoj bezbednosti kroz ranjive
softverske pakete. Pohl i drugi (2015) ističu BREW, ranjiv softver koji
studenti koriste kao metu za napada. Walden (2008) razvija OWASP
WebGoat projekat, što predstavlja kolekciju malih aplikacija, gde svaka ima
jednu ili više ranjivosti u vidu izazova koje treba rešiti. Ovi softverski paketi
donose visok nivo angažmana među polaznicima zbog svoje interaktivnosti i
sistema izazova (Pohl i drugi, 2015; Kimminich, 2019). Putem njih,
polaznici savladavaju ranjivosti, napade i bezbednosne kontrole.

Prethodno navedene tehnike su ispitivane u sklopu predmeta na zavšrnoj
godini osnovnih akademskih studija na Fakultetu tehničkih nauka u Novom
Sadu, koji pokriva temu razvoja bezbednog softvera. Spram preporuka
istaknutih u literaturi, kombinuju se tehnike hibridne invertovane učionice
(NSF, 2008; Andersen i Schiano, 2014) sa analizom studija slučaja (Carranza
i DeCusatis, 2015) kako bi se formirao radni okvir spram kog se kreiraju
laboratorijske vežbe. Efikasnost radnog okvira se evaluira i utvrđuju se bolji
rezultati učenja u odnosu na tradicionalnu učionicu. Kako bi se rešio problem
kompleksnosti radnog okvira, formira se proširenje koje se zasniva na
upotrebi gamifikacije i ranjivih softverskih paketa (Kimminich, 2019).
Rezultujući radni okvir je tema poglavlja 3.

Kako bi se odgovorilo na drugo istraživačko pitanje i drugi deo hipoteze, u
sekciji 2.2 se razmatraju postojeće tehnike za bezbednosnu analizu dizajna i
njihovi problemi, kao i zahtevi koje standardi propisuju za ove tehnike.
Pogodan izvor ovih tehnika predstavlja skorašnja sistematična studija
mapiranja koja izlaže tehnike za inženjering bezbednosnih zahteva u agilnom
razvoju (Villamizar i drugi, 2018). Ovo uključuje Abuser Story (Peeters,
2005), SEAP (Baca i drugi, 2015), Secure Scrum (Pohl i Hof, 2015), Security
Backlog (Azham i drugi, 2011), S-Scrum (Mougouei i drugi, 2013), Agile
Security Framework (Singhal, 2011), Security assurance case (Othmane i
drugi, 2014a), i VAHTI-Scrum (Rindell i drugi, 2015). Navedene tehnike se
analiziraju kako bi se utvrdilo kako odgovaraju na probleme kompleksnosti,

xiv

neopipljivosti posla i nedostatka uputstva za upotrebu i adaptaciju. Iz ove
analize proizilaze sledeći zaključci:

1. Nedostatak uputstva za rad, izvršavanje i prilagođavanje tehnike
predstavlja čest problem.

2. Posao je opipljiv i merljiv kada se u proces uključi ekspert iz domena
softverske bezbednosti, no to ugrožava zahtev za jednostavnost
tehnike jer je za svaku analizu potrebno njegovo angažovanje.

3. Tehnike koje ispunjuju zahtev za jednostavnost ne objašnjavaju kada
je analiza gotova, te nije moguće izmeriti posao i ispuniti zahtev
jasno definisanog posla.

U sklopu iste sekcije se ispituje i sistematičan pregled literature na temu
tehnika bezbednosne analize dizajna koju sprovode Tuma i drugi (2018).
Autori ispituju 26 tehnika i razmatraju njihovo usvajanje i primenu u
industriji savremenog razvoja softvera. Istaknuto je nekoliko problema koji
ograničavaju usvajanje ovih tehnika, uključujući nedovoljnu upotrebu
automatizacije, nedostatak definicije kada je posao završen i nedostatak
smernica kako da se metoda praktikuje.

Galvez i Gurses (2018) ispituju izazove koji postoje prilikom modelovanja
pretnji u agilnom razvoju. Uočeni su problemi u održavanju i ažuriranju
kompleksnih modela pretnji, u određivanju pogodne apstrakcije za
modelovanje pretnji, kao i u nedostatku znanja i smernica za vršenje ove
aktivnosti. Sličnu studiju sprovode Cruzes i drugi (2018) koji ispituju
upotrebu bezbednosne analize dizajna u kontekstu određenog proizvođača
softvera. Autori su ustanovili da razvojni timovi ne žele da proizvode modele
pretnji jer oduzimaju previše vremena u odnosu na vrednost koju donose,
kao i da postoji nedostatak ekspertize, znanja i smernica kako da efikasno
izvršavaju ovu aktivnost.

Nakon pregleda predloženih tehnika za bezbednosnu analizu dizajna iz
literature, analizirani su industrijski standardi koji propisuju zahteve za
proces razvoja bezbednog softvera, stavljajući fokus na aktivnosti koje se
tiču bezbednosne analize dizajna. IEC 62443-4-1:2018 standard definiše
zahteve za razvoj bezbednih softverskih i hardverskih proizvoda (IEC,
2018a). Odavde se dodatno ispituju prakse vezane za inženjering
bezbednosnih zahteva i konstrukciju bezbednog dizajna. Po sličnom
pristupu, analizira se NIST SP 800-160v1, standard koji definiše proces za
inženjering bezbednih sistema (Ross i drugi, 2016).

Iz navedenog istraživanja se izdvajaju principi koji vode formulisanje
procesa za bezbednosnu analizu dizajna, sa ciljem definisanja procesa koji
ispunjava zahteve industrijskih standarda (IEC, 2018; Ross i drugi, 2016) i

xv

rešava neke od problema u postojećim tehnikama (Luburić i drugi, 2018a;
Tuma i drugi, 2018; Cruzes i drugi, 2018; Galvez i Gurses, 2018):

 Visok stepen složenosti procesa je u kontradikciji za zahtevom
agilnosti u razvoju softvera.

 Neophodan je određen nivo bezbednosne ekspertize kako bi se posao
mogao definisati i rangirati. Potrebno je obučiti razvojni tim ili uvesti
domenskog eksperta. Najzad, usled nemogućnosti dokazivanja da su
sve bitne pretnje pronađene i razložene, potrebno je vremenski
ograničiti izvršavanje procesa bezbednosne analize dizajna.

 Organizacijama su potrebna uputstva i usmeravanja kako bi usvojili i
prilagodili metod za bezbednosnu analizu dizajna. Ovo podrazumeva
opis samog metoda, primere njegove upotrebe i uputstvo kako ga
prilagoditi različitim potrebama organizacije.

Poglavlje 3 prikazuje detalje radnog okvira za konstrukciju laboratorijskih
vežbi (Luburić i drugi, 2019a) čija svrha je obuka na temu bezbednosne
analize dizajna. Kroz sekciju 3.1 se opisuju komponente radnog okvira i
proces njegove upotrebe. Radni okvir se sastoji iz četiri komponente:

1. Odabrane tehnike za bezbednosnu analizu dizajna, što predstavlja
glavni cilj učenja i glavni ulaz za korišćenje radnog okvira,

2. Pripremni materijali koji sadrže potrebno znanje koje polaznici treba
da usvoje kako bi učestvovali u laboratorijskoj vežbi,

3. Jedna ili više studija slučaja koje će biti meta bezbednosne analize
dizajna,

4. Laboratorijske vežbe kao glavni rezultat radnog okvira, što
podrazumeva skup pripremnih materijala, opis studija slučaja, skup
zadataka za polaznike i tok vežbi u vidu uputstva za predavača.

Radni okvir definiše sledeće korake potrebne za definisanje laboratorijskih
vežbi ili radionica:

1. Odabir tehnike za bezbednosnu analizu dizajna;

2. Dekomponovanje tehnike na segmente sa idejom da jedan segment
bude tema jedne radionice, odnosno laboratorijske vežbe;

3. Ispitivanje svakog segmenta, tako da se:

a. Odrede relevantni bezbednosni koncepti (napadi, ranjivosti i
protivmere);

b. Konstruišu pripremni materijali (npr. u vidu prezentacija,
video materijala, tekstualnih dokumenata);

xvi

c. Definišu zahtevi koje studija slučaja treba da ispuni kako bi se
mogao uspešno sprovesti segment bezbednosne analize
dizajna i primeniti prateći pripremni materijali;

d. Odredi tok laboratorijske vežbe, uključujući i zadatke;

e. Proceni da li je laboratorijska vežba previše kompleksna
uzimajući u obzir vremensko ograničenje i izdeli u više vežbi
ukoliko jeste.

4. Nakon ispitivanja svih segmenata, formuliše se jedna ili više studija
slučaja spram skupa svih zahteva, gde kreator vežbi treba da se trudi
da stvori realistične studije koje će biti dovoljno bliske polaznicima.

5. Uzimajući u obzir definisane studije slučaja, formulišu se konačni
tokovi laboratorijskih vežbi, gde se u ovom koraku mogu spajati i
razdvajati vežbe spram organizacionih ograničenja i procene kreatora
vežbi.

Sekcija 3.2 ističe primere izvršavanja radnog okvira i njegova unapređenja,
sa ciljem pružanja dodatnih smernica za upotrebu radnog okvira. Ovde se
opisuje upotreba radnog okvira za stvaranje šest laboratorijskih vežbi za
potrebe predmeta na osnovnim akademskim studijama koji pokriva temu
razvoja bezbednog softvera. Za metod bezbednosne analize dizajna odabran
je STRIDE (Shostack, 2014b), gde se prvobitnim razlaganjem formira skup
od šest segmenata, jedan za svaku klasu pretnji koje definiše STRIDE. Za
svaku od metoda definišu se bezbednosni koncepti koji se tiču date klase
pretnji, stavljajući fokus na napade i odbrane koji su relevantni za domen.
Spram segmenata se formira šest vežbi koje se opisuju srednjim nivoom
detalja. Ovde je u grubim crtama istaknuto koje su teme koje pripremni
materijali pokrivaju, šta su zahtevi za studije slučajeva i kako izgledaju sami
tokovi vežbi. Najzad, za studiju slučajeva koja se koristi u svim vežbama je
opisan informacioni sistem moderne bolnice kao sistem koji sadrži značajnu
količinu vrednih podataka i resursa i otvara dovoljno prostora gde se mogu
primeniti tehnologije poznate studentima.

U sklopu iste sekcije se detaljnije opisuje jedna laboratorijska vežba koja se
tiče analiziranja pretnji neporecivosti i dizajniranja mehanizma za beleženje
događaja koji ispunjava kako bezbednosne tako i funkcionalne zahteve.
Ovde su opisani pripremni materijali koji se koriste. Potom se razrađuje
studija slučaja informacionog sistema bolnice, stavljajući fokus na osetljive
podatke i operacije u sistemu. Najzad, ističe se struktura zadataka i aktivnosti
koje se sprovode tokom date vežbe koje predavač i polaznici izvršavaju.

Na kraju sekcije se definiše proširenje za radni okvir, gde se primenjuju
tehnike gamifikacije i elektronski-podržanog učenja kroz uvođenje javno
dostupnog ranjivog softverskog paketa. Uvođenje ovakvog alata značajno

xvii

smanjuje kompleksnost konstrukcije laboratorijskih vežbi i napor koji je
potreban da se one naprave. Proces konstrukcije vežbi se menja tako što
kreator vežbi sakuplja zahteve za studiju slučaja, nakon čega pretražuje javno
dostupne repozitorijume (Siles i Bennets, 2019) kako bi pronašao pogodnog
kandidata da ispuni date zahteve. Ranjivi softverski paketi nude pripremne
materijale kako bi se izazovi savladali, te se oni mogu iskoristiti u sklopu
izrade pripremnih materijala za laboratorijske vežbe. Bitno ograničenje
predstavlja relativno mali broj kvalitetnih ranjivih softverskih paketa što
značajno ograničava kreatora vežbi u izboru i integraciji ovih alata u
laboratorije. U sklopu ovog dela disertacije opisana je konstrukcija nove
laboratorijske vežbe za pretnje koje Injection napadi donose, a odabrani su
zbog rasprostranjenosti i ozbiljnih negativnih posledica koje mogu
prouzrokovati. Nakon definisanja zahteva za studiju slučaja, odabran je
OWASP Juice Shop alat (Kimminich, 2019), koji ispunjava sve navedene
zahteve. Ovaj alat predstavlja realističnu veb-prodavnicu koja sadrži
mnoštvo ranjivosti i koja je u značajnoj meri slična aplikacijama koje
studenti razvijaju u sklopu predmeta koje ranije slušaju. Najzad, ovde je dat
detaljan opis aktivnosti koje se sprovode tokom vežbi i način na koji je alat
iskorišćen da doprinese pozitivnim ishodima učenja.

Sekcija 3.3 ističe detalje kontrolisanog eksperimenta, ankete i opservacija
predavača koje su sprovedene kako bi se pokazalo da laboratorijske vežbe
kreirane uz pomoć radnog okvira stvaraju bolje ishode učenja u odnosu na
tradicionalan pristup. Ovde je opisan kurs u okviru kog je primenjen radni
okvir kako bi se istakle bitne informacije vezane za same polaznike. U
sklopu kursa, studenti konstruišu model pretnji za određen informacioni
sistem kao deo projektnog zadatka koji je neophodno uraditi kako bi studenti
uspešno završili kurs.

Kroz kontrolisani eksperiment se poredi prosečan kvalitet modela pretnji koji
sastavljaju timovi studenata dve generacije, gde jedna generacija prolazi kroz
tradicionalne vežbe, a druga kroz vežbe stvorene koristeći radni okvir. Obe
generacije formiraju model pretnji za isti informacioni sistem. Za ocenjivanje
kvaliteta modela pretnji se koriste formule koje definišu Scandariato i drugi
(2015), što podrazumeva:

 Kvalitet dijagrama toka podataka na osnovu kog se vrši identifikacija
pretnji, gde se kvalitet meri u tome koliko precizno oslikava tokove
podataka u sistemu i u kojoj meri je nivo detalja pogođen.

 Kvalitet identifikacije pretnji, gde se meri broj ispravno navedenih
pretnji (true positive), neispravno navedenih pretnji (false positive) i
neidentifikovanih pretnji (false negative).

xviii

Fokus se stavlja na korak identifikacije pretnji, gde se računaju i porede
prosečna preciznost i odziv za identifikovane pretnje na nivou generacije.
Četrnaest modela pretnji je razmatrano iz generacije koja je slušala
tradicionalne vežbe i sedamnaest iz one koja je slušala vežbe kreirane uz
pomoć radnog okvira.

Efikasnost proširenja radnog okvira sa ranjivim softverskim paketom se
ispituje anketiranjem polaznika i razmatranjem opservacija predavača.
Tokom vežbi, predavači su posmatrali nivo angažovanja polaznika, prirodu
njihove interakcije sa ranjivim softverskim paketom, efekat koji je alat imao
na vežbe i probleme koji su nastajali zbog njegove upotrebe. Anketa upućena
polaznicima je sadržala tvrdnje koje su se ocenjivale po Likertovoj skali sa 5
tačaka (Albaum, 1997), kao i nekoliko otvorenih pitanja, koja su navedena u
sekciji 3.3.4.

Rezultati evaluacija su opisani u sekciji 3.4. Sa aspekta kontrolisanog
eksperimenta, primećeno je značajno povećanje u preciznosti (87% u odnosu
na 68%) i opozivu (81% u odnosu na 54%) kod generacije studenata koja je
slušala vežbe konstruisane uz pomoć radnog okvira, u odnosu na studente
koji su slušali tradicionalne vežbe. Ovi rezultati su statistički značajni, što se
proverava uz pomoć Mann-Whitney testa. Dodatno, Scandariato i drugi
(2015) ističu da rezultati preko 80% u preciznosti i opozivu predstavljaju
povoljan rezultat i uspešnu analizu.

Povodom evaluacije proširenja, predavači su primetili povećan stepen
angažmana studenata. Deo zasluge se pripisuje realističnosti ranjive
aplikacije koja izgleda kao prosečna veb-prodavnica koja se može pronaći na
internetu. Drugi razlog je familijarnost koju studenti imaju sa ovakvom
aplikacijom, koja je izgrađena njima poznatim tehnologijama i principima.
Najzad, sistem izazova koji OWASP Juice Shop pruža je stimulisao
atmosferu takmičenja što je dodatno podiglo nivo zabave i angažmana.
Anketa koja je usledila je potvrdila opservacije gde su vežbe koje su koristile
ranjivi softverski paket bile najbolje ocenjene od svih ostalih.

U sklopu ove sekcije razmatraju se i ograničenja studije i samog radnog
okvira. Deo unapređenja kvaliteta modela pretnji generacije koja je slušala
vežbe konstruisane putem radnog okvira dolazi i iz unapređenja kvaliteta
samih predavača koji su imali jednu godinu više da unaprede svoje znanje.
Schoenfield (2015) ističe da je za bezbednosnu analizu dizajna iskustvo bitan
faktor, te je ovo sigurno imalo efekta na kvalitet vežbi. Dodatno, nije moguće
isključiti unapređenje kvaliteta kurseva koje su studenti ranije slušali tokom
svog školovanja. Iako značajnijih promena (npr. u vidu izmena studijskog
programa) nije bilo, nije ispraćeno da li postoje sitnije izmene u okviru
predmeta koje bi mogle da utiču na ove rezultate. Što se tiče radnog okvira,

xix

bitno ograničenje u njegovoj upotrebi je kompleksnost. Kreator
laboratorijskih vežbi ili radionica treba da formira pripremne materijale,
konstruiše studiju slučaja i formuliše tok vežbi koji sve to sinhronizuje.
Ranjivi softverski paketi mogu u značajnoj meri da redukuju ovaj problem,
no ograničenje koje postoji jeste relativno mala količina kvalitetnih alata.

Bitno je istaći da radni okvir za kreiranje materijala za radionice je moguće
primeniti u korporativnom okruženju gde će proizvođači softvera moći da
konstruišu radionice za učenje bezbednosne analize dizajna koristeći
tehnologije i pretnje koje su relevantne za kontekst softvera koji proizvode.
Studije slučaja u ovom kontekstu treba da budu softverski proizvodi koje
organizacija razvija. Isto tako, univerziteti i fakulteti koji nude kurseve na
temu razvoja bezbednog softvera mogu da iskoriste radni okvir da konstruišu
sadržaj laboratorijskih vežbi za potrebe učenja bezbednosne analize dizajna.
Iako je radni okvir evaluiran na studentima završne godine osnovnih
akademskih studija, ne postoje prepreke da se na sličan način radni okvir
primeni i u softverskim kompanijama za obuku inženjera. Prema tome, radni
okvir se može smatrati pogodnim načinom da se inženjeri softvera efikasno
obučavaju kako da sprovode bezbednosnu analizu dizajna.

Poglavlje 4 definiše SATMUS (engl. Security Analysis and Threat Modeling
of User Stories) proces za bezbednosnu analizu dizajna koji je prikladan
agilnom načinu razvoja softvera, pruža opipljive i merljive rezultate, sadrži
dovoljno instrukcija za njegovu upotrebu i adaptaciju i proizvodi praktično
primenljiv model pretnji koji prati inkrementalan razvoj softvera. Kroz
sekciju 4.1 je opisan SATMUS proces, što uključuje aktivnosti od kojih je
sastavljen, kao i njegove ulaze i izlaze. U sklopu te sekcije su istaknuti detalji
aktivnosti procesa i smernice za njihovo izvršavanje. Cilj SATMUS procesa
jeste da otkrije ranjivosti i slabosti u dizajnu razvijenog softvera kako bi
definisao korektivne mere.

Da bi podržao inkrementalan razvoj, SATMUS se primenjuje sa svakom
korisničkom pričom (engl. User story), kratkom izjavom koja definiše šta je
to što softver treba da radi i podrži. Kroz korisničke priče, Scrum
metodologija inkrementalno razrađuje i proširuje softver (Cohn, 2004). U
sklopu SATMUS analize, korisnička priča se ispituje kako bi se procenilo
kako utiče na bezbednost softvera i da li je potrebno uložiti dodatne resurse
kako bi se proizvod sa novim programskim kodom adekvatno zaštitio.
Rezultat izvršavanja SATMUS procesa obuhvata:

 Nove korisničke priče koje opisuju dodatan razvoj koji je potreban,

 Dodatne bezbednosne kriterijume prihvatanja ispunjenosti
analizirane korisničke priče (Leffingwell, 2010),

xx

 Zahtev za dodatno istraživanje (engl. Research spike), kada se otkrije
potencijalan bezbednosni problem, ali ne postoji dovoljno znanja
kako da se razreši (Knaster i Leffingwell, 2018).

Prvi skup aktivnosti SATMUS procesa se tiče proračuna kritičnosti
analizirane korisničke priče sa aspekta bezbednosti. Ovde se određuje da li
će razvoj potreban za ispunjenje korisničke priče raditi sa osetljivim
resursima i kontekst u kom će se novi programski kod dodati (npr. da li
komunicira sa čovekom, da li je blizu izložene površine za napad), na osnovu
čega se sprovodi formula za računanje kritičnosti. Spram ovih faktora se
definiše nivo kritičnosti korisničke priče sa aspekta bezbednosti.

U slučaju da korisnička priča nije interesantna sa aspekta bezbednosti,
odnosno ima nizak nivo kritičnosti, proces se završava uz eventualnu
napomenu da je analiza sprovedena.

Za korisničke priče srednje kritičnosti, analizira se model pretnji kroz skup
aktivnosti koje predstavljaju bezbednosnu analizu dizajna. Modul se analizira
kako bi se proverilo da li postoje značajne promene, poput novih komponenti
ili tokova podataka i da li se novi resursi uključuju u postojeći modul.
Ukoliko se značajna promena identifikuje, sledeći korak predstavlja analiza
pretnji za datu novinu, gde se ističu ranjivosti i scenariji napada koji bi mogli
da eksploatišu novi kod. Najzad, definišu se protivmere i zadaci koji treba da
reše identifikovani problem i koji se dodaju u spisak zahteva za softver.
Rezultati analize se dokumentuju uz pomoć odgovarajućeg alata (npr.
Microsoft Threat Modeling Tool (Microsoft, 2019)).

Najzad, za korisničke priče visoke kritičnosti, razvojni tim zahteva dodatnu
podršku u bezbednosnoj analizi. Ova podrška može doći van organizacije,
dovođenjem konsultanta, a može doći i interno, angažovanjem iskusnih
inženjera ili domenskih eksperata.

Sekcija 4.2 razmatra šest segmenata SATMUS procesa koji su skloni
modifikaciji i adaptaciji za različite organizacije i nivoe bezbednosti koji su
zahtevani od softvera koji se proizvodi. Organizacija treba da donese odluke
na koji način će konfigurisati svaki od navedenih segmenata prilikom
usvajanja SATMUS procesa. Prvi segment se tiče inventara i načina
reprezentacije resursa sa kojim razvojni timovi rade i njihovog mapiranja na
funkcionalne i bezbednosne zahteve koji diktiraju prioritet zaštite samih
resursa. Drugi segment se tiče same formule za računanje kritičnosti
korisničke priče koja treba da uvaži resurse koji novi razvoj dotiče,
okruženje u kom se nalazi novi kod, kritičnost same funkcionalnosti koju
programski kod pruža i druge potencijalne faktore. Pošto formula diktira
učestalost bezbednosne analize dizajna, organizacija definiše prioritet ove
analize samom konfiguracijom formule. Putem formule, moguće je

xxi

konfigurisati da timovi koji rade na osetljivim komponentama moraju za
svaki razvoj da analiziraju model pretnji, dok će ostali timovi to raditi dosta
ređe. Treći segment predstavlja odluku o angažovanju internog formalnog ili
neformalnog tima za ekspertizu iz softverske bezbednosti, koji može da
pomogne sa analizom korisničkih priča visoke kritičnosti. Povodom
bezbednosne analize dizajna, potrebno je da se odabere pogodni metod, kao i
da se razmotri upotreba alata i potreba za obukom razvojnih timova kako bi
se metod bezbednosne analize dizajna efikasno sprovodio. Ovo predstavlja
četvrti i peti segment procesa. Najzad, u sklopu šestog segmenta je
neophodno definisati strukture rezultata analize, u vidu šablona za modele
pretnji i njihove rezultate, kako bi se ispunili zahtevi koje organizacija ima
po ovom pitanju (npr. definisane od strane IEC 62443-4-1 standarda).

U istoj sekciji se prikazuju i dve relevantne studije slučaja implementacije i
adaptacije SATMUS procesa u okviru dva različita okruženja kako bi se
istakle dodatne smernice za upotrebu procesa i njegovo prilagođavanje. Prva
studija slučaja predstavlja implementaciju procesa u velikoj organizaciji koja
razvija softver za industrijski sistem kontrole, gde postoji visok stepen
bezbednosnih zahteva. Takođe, istaknuta je implementacija SATMUS
procesa za organizaciju koja razvija softver sa relativno niskim
bezbednosnim zahtevima. Ova organizacija razvija informacione sisteme za
podršku rukovodstvu koji sadrže nešto manji broj osetljivih resursa. Kroz
ove studije slučajeva se ističu načini na koje SATMUS proces može da se
izmeni i adaptira.

Za evaluaciju SATMUS procesa se koriste dve najčešće tehnike za
evaluaciju metoda za bezbednosnu analizu – komparativna analiza i analiza
studija slučaja. Sekcija 4.3 razmatra kako SATMUS odgovara na probleme
kompleksnosti, nedefinisanog posla i nedostatka smernica u odnosu na druge
razmotrene metode bezbednosne analize dizajna. Nakon toga, prikazuje se
nekoliko ilustrativnih primera izvršavanja SATMUS procesa, na korisničkim
pričama koje dolaze iz konteksta studija slučajeva implementacije SATMUS
procesa koje su opisane u sekciji 4.2.

Zahvaljujući svojoj fleksibilnosti, kako u odabiru samog metoda
bezbednosne analize dizajna, tako i u konfiguraciji formule za računanje
kritičnosti korisničke priče, SATMUS je moguće prilagoditi različitim
organizacionim kontekstima. Ova fleksibilnost omogućuje da se definiše
tačno onoliko posla oko bezbednosne analize dizajna koliko je potrebno da
organizacija ispuni svoje poslovne zahteve i ciljeve. Time što se vremenski
ograniči analiza pretnji sav posao je jasno merljiv i opipljiv, te nema
poteškoća zbog nedefinisanog posla. Smernice za izvršavanje SATMUS
procesa su definisane kroz sekcije 4.1, 4.3.2 i 4.3.3, dok su uputstva za
njegovo prilagođavanje istaknuta kroz sekciju 4.2. Deo ograničenja

xxii

SATMUS procesa predstavlja njegova delimična složenost, gde je
neophodno obučiti razvojne timove, angažovati domenske eksperte, ili
iskoristiti alate. Sa druge strane, rezultujuća dokumentacija je onoliko
kompleksna koliko se zahteva zbog čega je problem kompleksnosti
parcijalno ispunjen.

Najzad, SATMUS se evaluira sprovođenjem analize na pet odabranih
korisničkih priča, gde dve dolaze iz konteksta prve organizacije koja razvija
industrijski sistem, a tri iz konteksta druge organizacije koja razvija
informacione sisteme za podršku rukovodstvu. Kroz ovu evaluaciju se ističe
način izvršavanja procesa, gde se za svaku aktivnost opisuje njeno
sprovođenje i rezultati.

Villamizar i drugi (2018) u sklopu sistematične studije mapiranja tehnika za
inženjering bezbednosnih zahteva u agilnom razvoju ističu nekoliko
segmenata ograničenja za ove tehnike. U sklopu sekcije 4.4 se razmatra na
koji način SATMUS odgovara na ova ograničenja.

Poglavlje 5 ove disertacije kombinuje radni okvir za konstrukciju radionica
sa SATMUS procesom i ističe način na koji ove metode zajedno mogu da
omoguće integraciju bezbednosne analize dizajna softvera u proces agilnog
razvoja.

U sklopu sekcije 5.1 se opisuju koraci koje organizacija treba da sprovede da
integriše tehnike izložene kroz ovu disertaciju u svoje poslovanje i uspostavi
njihovo kontinualno unapređenje. Na početku se određuju eksperti koji će
uspostaviti ovu novinu, a koji mogu biti eksterno angažovani ili mogu doći i
iz organizacije u slučaju kada postoje zaposleni sa adekvatnim poznavanjem
softverske bezbednosti. Ovi eksperti biraju studije slučajeva među
softverskim projektima organizacije, kako bi našli realistične i relevantne
studije slučajeva za obuku zaposlenih. Eksperti potom biraju metod za
bezbednosnu analizu dizajna koji se ugrađuje u radni okvir i u SATMUS
proces, i vrše dodatne adaptacije SATMUS procesa spram želja vlasnika
organizacije i proizvoda. U sklopu radnog okvira za konstrukciju radionica,
ekspert formira pripremne materijale i koristeći ranije odabranu studiju
slučaja formuliše radionice i njihove tokove.

Nakon konstrukcije radionica neophodno je sprovesti ih, gde će članovi
razvojnih timova doći da nauče kako da sprovode bezbednosnu analizu
dizajna i SATMUS proces. Kroz ovu aktivnost, eksperti treba da usmere
razvojne timove da formiraju modele pretnji za svoje komponente, koje
potom mogu koristiti kao polaznu tačku za kasnije izvršavanje SATMUS
procesa u svom standardnom razvoju.

xxiii

Sa ovakvom osnovom, ekspert može da radi na kontinualnom razvoju time
što će unapređivati radionice kako bude njihova ekspertiza iz bezbednosti
softvera rasla i kako se nove pretnje budu otkrivale. U sklopu ove sekcije su
navedene različite strategije za kontinualno unapređenje upotrebe SATMUS
procesa i radnog okvira za konstrukciju radionica.

Sekcija 5.2 ističe način na koji SATMUS proces i radni okvir za konstrukciju
radionica direktno odgovaraju na zahteve za proces razvoja bezbednog
softvera, kao i način na koji su povezani sa ostalim praksama ovog procesa,
što uključuje upravljanje, programiranje i testiranje bezbednosti u razvijenom
softveru.

Poglavlje 6 zaključuje istraživanje koje je sprovedeno kroz ovu disertaciju.
Navedeni su glavni doprinosi koji su proizišli iz disertacije:

 Definisanje radnog okvira za konstrukciju radionica sa ciljem
obučavanja inženjera softvera kako da sprovode bezbednosnu analizu
dizajna. Ovaj doprinos podrazumeva i same smernice upotrebe
radnog okvira, uz primere njegovog izvršavanja.

 Definisanje SATMUS procesa koji proširuje bezbednosnu analizu
dizajna da je učini kompatabilnom sa pristupom agilnog razvoja
softvera. U sklopu ovog doprinosa ulaze i smernice za izvršavanje
procesa i njegovo prilagođavanje različitim kontekstima.

 Definisanje procesa za integraciju bezbednosne analize dizajna u
proces agilnog razvoja kroz upotrebu radnog okvira za konstrukciju
radionica i SATMUS procesa. Ovo uključuje smernice za inicijalnu
postavku bezbednosne analize dizajna i uputstva za kontinualno
unapređenje.

Ključne reči: bezbednosna analiza dizajna, modelovanje pretnji, razvoj
bezbednog softvera, životni ciklus razvoja bezbednosti, bezbednosna
ekspertiza, bezbednost softvera

xxiv

xxv

Dedication

This thesis is dedicated to
My loving partner, without whom life would be a lot
less fun and a lot more difficult,
My supervisor, without whose continued support and
lessons I would not be where I am today,
My family, for their unconditional love and
understanding,
My cat Beljko, for being Beljko.

xxvi

xxvii

Table of Contents
1 INTRODUCTION .. 1

1.1 PROBLEM AREA ... 1

1.2 AGILE SOFTWARE DEVELOPMENT .. 3

1.2.1 Scrum Roles .. 4

1.2.2 Workflow ... 5

1.3 SECURE SOFTWARE ENGINEERING ... 7

1.3.1 Security Development Lifecycle .. 7

1.3.2 Threat Modeling .. 10

1.3.3 Security Design Analysis ... 13

1.4 PROBLEM STATEMENT AND HYPOTHESIS ... 16

1.5 THESIS STRUCTURE ... 19

2 RESEARCH REVIEW ... 21

2.1 TRAINING APPROACHES FOR SECURE SOFTWARE ENGINEERING ... 21

2.1.1 Case Study Analysis .. 21

2.1.2 Gamification .. 23

2.1.3 Hybrid Flipped Classroom .. 24

2.1.4 E-Learning .. 25

2.1.5 Literature Review Results ... 25

2.2 AGILE-BASED SECURITY DESIGN ANALYSIS METHODS .. 26

2.2.1 Applicability Issues in Agile Security Requirements Engineering 27

2.2.2 Additional Issues with Agile Security Design Analysis 31

2.2.3 Relevant Industry Standards .. 34

2.2.4 Literature Review Results ... 35

3 SDA TRAINING FRAMEWORK .. 37

3.1 FRAMEWORK STRUCTURE .. 37

3.1.1 Framework Overview ... 37

3.1.2 Framework Usage .. 39

3.2 FRAMEWORK APPLICATION .. 41

3.2.1 Generation of Multiple Lab Exercises ... 42

3.2.2 Detailed Lab Construction .. 46

xxviii

3.2.3 Introducing Vulnerable Software to the SDA Training Framework 50

3.3 FRAMEWORK EVALUATION ... 53

3.3.1 Course Context ... 53

3.3.2 Course Structure .. 54

3.3.3 Experiment Design ... 54

3.3.4 Empirical Evaluation of Enhancement ... 57

3.4 RESULTS AND ANALYSIS ... 58

3.4.1 Results of Comparative Analysis Experiment ... 58

3.4.2 Results of Empirical Evaluation of Enhancement ... 60

3.4.3 Limitations ... 61

3.4.4 Implications .. 63

4 SATMUS PROCESS ... 65

4.1 PROCESS STRUCTURE .. 65

4.1.1 Overview .. 66

4.1.2 Internals ... 68

4.2 PROCESS TAILORING ... 76

4.2.1 Tailoring Areas ... 77

4.2.2 Case Study – Industrial Control System Software Development 81

4.2.3 Case Study – Management Information System Software Development 84

4.3 PROCESS EVALUATION ... 86

4.3.1 Comparative Analysis ... 86

4.3.2 Vendor A Case Study Analysis .. 88

4.3.3 Vendor B Case Study Analysis .. 92

4.4 PROCESS ANALYSIS ... 95

4.4.1 Limitations ... 95

4.4.2 Implications .. 97

5 DISCUSSION .. 99

5.1 SDA TRAINING FRAMEWORK AND SATMUS IN AGILE .. 99

5.1.1 Initial Adoption .. 100

5.1.2 Continuous Improvement... 102

5.2 SDA TRAINING FRAMEWORK AND SATMUS IN THE SDL .. 104

5.2.1 Security Requirements ... 105

xxix

5.2.2 Secure Design ... 106

5.2.3 Secure Implementation and Security Verification .. 107

5.2.4 Security Management .. 107

6 CONCLUSION .. 109

6.1 CONTRIBUTIONS OF THE THESIS ... 110

6.2 FUTURE WORK .. 112

LITERATURE ... 115

xxx

xxxi

Table of Figures
FIGURE 1 ROLES IN SCRUM DEVELOPMENT .. 4

FIGURE 2 SCRUM FRAMEWORK WORKFLOW... 7

FIGURE 3 SECURITY DESIGN ANALYSIS STEPS ... 13

FIGURE 4 USAGE OF THE TRAINING FRAMEWORK TO CONSTRUCT LABORATORY EXERCISES 39

FIGURE 5 FLOW OF LABORATORY EXERCISE DEDICATED TO SDA FOR REPUDIATION THREATS 48

FIGURE 6 FLOW OF LABORATORY EXERCISE EXAMINING INJECTION ATTACKS WITH THE AID OF A VSP 52

FIGURE 7 SATMUS PROCESS OVERVIEW ... 66

FIGURE 8 SATMUS PROCESS INTERNALS .. 69

FIGURE 9 TAILORING AREAS IN THE SATMUS PROCESS .. 77

FIGURE 10 DATA FLOWS OF MAINTENANCE TEAM MEMBER PII.. 89

FIGURE 11 DATA FLOWS OF SERVICE PASSWORDS ... 91

FIGURE 12 DATA FLOWS REGARDING EMPLOYEE REPORTING ... 93

FIGURE 13 ADOPTION OF THE SATMUS PROCESS AND SDA TRAINING FRAMEWORK 100

xxxii

xxxiii

Table of Tables
TABLE 1 SUMMARY OF MICROSOFT'S SDL PRACTICES .. 7

TABLE 2 SUMMARY OF THE IEC 62443-4-1:2018 SECURE PRODUCT DEVELOPMENT PRACTICES 9

TABLE 3 APPLICABILITY OF STRIDE THREATS TO DIFFERENT DATA FLOW DIAGRAM ELEMENTS 16

TABLE 4 AGILE SRE METHODS IN RELATION TO SIMPLICITY, ACCOUNTABILITY, AND GUIDANCE 30

TABLE 5 DEFINED SUBACTIVITIES OF THE CHOSEN SDA METHOD ... 43

TABLE 6 PREPARATORY MATERIALS RELATED TO SDA SUBACTIVITIES LISTED IN TABLE 5 43

TABLE 7 CASE STUDY REQUIREMENTS RELATED TO SDA SUBACTIVITIES LISTED IN TABLE 5 44

TABLE 8 QUALITY OF THE DFDS .. 58

TABLE 9 NUMBER OF IDENTIFIED RELEVANT ASSETS ... 59

TABLE 10 NUMBER OF IDENTIFIED THREATS ... 59

TABLE 11 RESULTS OF THE SURVEY GRADING THE QUALITY OF THE VSP INJECTION LAB 61

TABLE 12 SAMPLE USER STORY IMPACT CALCULATION FORMULA .. 71

TABLE 13 SATMUS COMPARED TO DIFFERENT SCRUM SDA TECHNIQUES IN RELATION TO SIMPLICITY,
ACCOUNTABILITY, AND GUIDANCE .. 87

xxxiv

1

1 Introduction
In an age when data is more valuable than oil and everything from the
physical world has found its digital counterpart, software systems have
become the new battlefield. Digital warfare and crime are on the rise,
harming individuals, business, and nations. To secure ourselves, we must
secure our software, and that is where we come in.

This thesis examines secure software engineering practices and focus on
security design analysis, a practice that discovers and mitigates
vulnerabilities early in the software’s development. While cost-efficient and
praised by industry leaders and researchers alike, there exist several issues
that limit the adoption of this practice in contemporary agile software
development. Throughout this work, we identify and address these issues.
We start by describing the general problem area that our work addresses in
Section 1.1. Sections 1.2 and 1.3 describe the theoretical background behind
the problem, where we examine agile software development methodologies
and secure software engineering practices, focusing on security design
analysis. In Section 1.4, we specify the exact problem that our work
addresses and describe our hypothesis and research goals.

1.1 Problem Area
With the emergence of the Digital Age, malicious groups and individuals
have focused their efforts on attacking the cyberspace to further their agenda.
These threat agents use sophisticated tooling and know-how to hack
computer systems of individuals, organizations, and governments (Gandhi et
al., 2011). The impact of cyberattacks has not been negligible. A decade ago,
Kshetri (2009) examined the economic impact of cybercrime and concluded
that cybercrime was costing businesses and individuals billions of dollars a
year. Notable cyberattacks were conducted as part of cyberwarfare,
destroying industrial control system equipment (Langner, 2011) and causing
power grid blackouts for hundreds of thousands (Case, 2016). More common
attacks are conducted by cybercriminals trying to steal personally identifiable
information, where major websites such as LinkedIn, Facebook, Twitter, and
other have suffered from data breaches (Parwani et al., 2013).

Cyberattackers realize their agendas by issuing attacks that exploit
vulnerabilities that a system might have. Organizations have started securing
their operations by adopting cybersecurity standards (e.g., the ISO/IEC 27k
series (Disterer, 2013), the NIST Cybersecurity Framework (Sedgewick,
2014)) to protect their business and customers from cyberattacks. As
computer systems present a broad and often-targeted attack surface through

2

the software they run (ENISA, 2019; Positive Technologies, 2019),
organizations are requiring vendors of software used by their system to be
constructed with security built-in to avoid the introduction of vulnerabilities
to the organization through those products (Salini and Kanmani, 2012).

Software security has traditionally been considered through non-functional
or quality requirements, less valuable than functional requirements (Salini
and Kanmani, 2012; Türpe and Poller, 2017). However, recent years have
seen a rise in security requirements, mandated by security standards and
regulations, as well as directly by the customer. These sources often specify
security requirements at a high level of abstraction (e.g., “protect sensitive
data throughout its lifecycle”), requiring software engineers to derive lower
level requirements through security requirements engineering techniques
such as threat modeling and misuse cases (Lamsweerde, 2004; Myagmar et
al., 2005; Sindre and Opdahl, 2005).

Security requirements engineering is one of several categories of security
practices that produce more secure software. Many software vendors have
modified their software development lifecycle during the past decade by
integrating various security-related practices into the development process.
The result is the security development lifecycle (SDL), the most famous of
which was published by Microsoft (Howard and Lipner, 2006) at the start of
the millennia. It represents a development process that creates demonstrably
more secure software. Since then, many software vendors have adopted and
adapted the SDL to fit their workflow and organizational needs, as well as
the needs of their customers (Geer, 2010; Baca and Carlsson, 2011;
Mohamed et al., 2016; Oyetoyan et al., 2016; Weir et al., 2017; Morrison et
al., 2017). Furthermore, in the past few years, several standards were issued,
that specify process requirements for the secure development of hardware
and software products (Ross et al., 2016; IEC, 2018a).

Despite a significant number of SDL initiatives found in literature, as well as
the explicit requirement for secure products, adoption rates of the security
development lifecycle are still low. A survey conducted by Errata Security in
2010 shows that, out of 46 organizations, only 30% use a formal SDL
methodology in their workflow, while 43% do not use any SDL
methodology, formal or otherwise (Geer, 2010). More recently, a study was
conducted in Malaysia that interviewed software development practitioners
about security (Mohamed et al., 2016). The study concluded that, while
practitioners are becoming more aware of the importance of security, the
SDL practices are immature, and a notable percent of practitioners (19.4%)
never receive any security-related training. As software presents a significant
and often targeted attack surface, the lack of adoption of the SDL, and the
low maturity of existing SDLs is troubling.

3

The lack of SDL adoption can be explained, in part, due to the nature of
state-of-the-art software development practices. Specifically, agile software
development (Cockburn, 2002) defines the development workflow of many
software vendors today. This set of development methodologies has been
criticized for neglecting security requirements (Beznosov and Kruchten,
2004; Ramesh et al., 2010). The first instances of the SDL (Howard and
Lipner, 2006; Ayalew et al., 2013) were initially designed for the waterfall
development model, though since then several adaptations of this process
have been created for agile development methodologies (Baca and Carlsson,
2011; Oyetoyan et al., 2016; Poller et al., 2017). However, the traditional
practices that compose the SDL are challenging to integrate into agile
development and are often inefficiently practiced (Baca and Carlsson, 2011;
Oyetoyan et al., 2016; Türpe and Poller, 2017).

1.2 Agile Software Development
Since its inception, the practice of developing software has proven to be
unpredictable. Software developers, while experts in the technology used to
build computer systems, often do not correctly understand customer
requirements. On the other hand, parties interested in procuring software
often have a vague, inaccurate idea of what exactly is the problem that they
wish to solve (Wysocki, 2011). This lack of foresight, coupled with
miscommunication between the vendor and the buyer, has resulted in a
significant percentile of projects developed using traditional software
methods to fail to meet customer requirements (Othmane, 2014a).

A new class of development methodologies has been defined during the past
two decades to deal with the identified issues. Agile software development
has emerged as a practice that emphasizes adaption to changing software
requirements. Instead of relying on long-term plans constructed during
project inception, developers produce frequent increments of running, tested
software features and continuously collaborate with the customer, to make
sure the correct requirements are met (Leffingwell, 2010).

Out of all agile development approaches, the Scrum framework is by far the
most widespread. According to the 2019 State of Agile survey (CollabNet
VersionOne, 2019), pure Scrum is applied by 54% of software vendors that
practice agile development. When considering hybrid methods that rely on
Scrum (e.g., Scrum with Kanban), this number goes up to 72%.

Scrum is a lightweight framework for team collaboration on complex
product development. It introduces roles, events, artifacts, and rules that bind
them together while leaving plenty of room for self-organizing to deal with
unpredictable and challenging problems (Sutherland and Schwaber, 2011).

4

We examine the different scrum roles and their responsibilities in Section
1.2.1. We then describe how these roles interact and what the general Scrum
workflow looks like in Section 1.2.2.

1.2.1 Scrum Roles
The Scrum team consists of several roles, including the product owner, the
Scrum master, and members of the development team. These roles interface
with several roles external to the Scrum team, which include the business
owner, the stakeholders that benefit from the developed product, and the
subject matter experts that assist the Scrum team. Figure 1 illustrates the
Scrum team, outlining the core roles of the team and their interaction with
roles external to the team.

Figure 1 Roles in Scrum development

The goal of the product owner is to optimize the value that the developed
product brings to the stakeholders. They are responsible for determining and
prioritizing user requirements, by communicating and defining them with the
relevant stakeholders (e.g., end-users of the software, IT administrators
responsible for maintaining and configuring the software). The product
owner documents and prioritizes requirements in the product backlog. While
not mandatory, the most common way to express these requirements is
through user stories (Cohn, 2004). A user story is a brief statement of intent
that describes what the software needs to do for the user. The product owner
monitors the development team’s progress to ensure that the correct vision of
the product is being implemented and that the requirements are understood
correctly. Multiple product owners can coordinate to specify and deliver a

5

sophisticated product, where each product owner is part of one or more
Scrum teams (Knaster and Leffingwell, 2018).

The Scrum master assists the team in practicing Scrum by facilitating a
dynamic that optimizes the performance of the team. They are responsible
for organizing the Scrum workflow, helping with user story analysis and
workload management. For sophisticated products that are built by multiple
Scrum teams, the Scrum masters meet periodically, to discuss the progress,
issues, and any cross-team coordination that is required to successfully build
the product. This meeting is known as Scrum of Scrums (Knaster and
Leffingwell, 2018).

The development team includes architects, coders, and testers that design,
implement, and test the software described through the user stories. Scrum
recognizes no titles for the development team members, regardless of the
work being performed. While the size of the team varies, it usually spans
from four to seven members. Optimal team size is small enough to remain
nimble and large enough to complete significant work (Sutherland and
Schwaber, 2011).

The business owner monitors the work results of the Scrum team and
provides resources and assistance when necessary. The product owner works
with the business owner to determine the priority of up-coming backlog
items, process conflicting needs of stakeholders, determine release schedules,
and provide resources for the team. Likewise, the business owner
consolidates with the Scrum master, to resolve organizational constraints and
difficulties, so that the team can work more efficiently (Knaster and
Leffingwell, 2018).

The stakeholders present a group of people that have a legitimate interest in
the developed product and are the primary driver for developing the product.
The goal of the product is to satisfy the needs and desires of the stakeholders
(Knaster and Leffingwell, 2018).

Domain experts or subject matter experts contain specialized knowledge or
skills that the Scrum team needs to develop their product. Domain experts
can have knowledge related to the business, offering insight into the needs of
the stakeholders. Furthermore, domain experts can have technical knowledge
(e.g., databases, cloud technologies, cybersecurity) that the team requires to
fulfill the stakeholder’s desires efficiently (Rawsthorne and Shimp, 2011).

1.2.2 Workflow
The Scrum team constructs software iteratively, by producing sets of
functionalities in short intervals (usually two to four weeks), called sprints.
At the beginning of the sprint is the sprint planning event, where the team

6

selects the user stories that they will implement from the product backlog
during this sprint. The result of this activity is the construction of the sprint
backlog that defines the goal for this sprint (Sutherland and Schwaber, 2011).

From the sprint backlog, members of the development team complete user
stories until there are no more stories or the sprint ends. During this time,
user stories are decomposed, understood, implemented, and tested.
Throughout the sprint, the team refines the acceptance criteria for each user
story, which determine when a user story is finished (Leffingwell, 2010).
While the acceptance criteria are story-specific, the definition of done is an
artifact that lists additional acceptance criteria for all user stories. This
artifact lists tasks that need to be completed to maintain the quality of the
product (e.g., regression testing completed, user documentation updated to
reflect the new story, and the performance testing benchmark achieved). The
definition of done contains business-facing tests that provide quality control
(Rawsthorne and Trainer, 2010).

Through daily Scrum meetings, the development team discusses their
progress, highlighting work that they completed since the last meeting, their
plans until the next meeting, and any potential blockers or issues that are
hampering their progress. The goal of these meetings is to increase the
productivity of the development team, bring to attention any issues as soon
as they appear and continuously monitoring the remaining work to
reorganize and plan accordingly (Rawsthorne and Shimp, 2011).

At the end of the sprint is the review. At this stage, the Scrum team and
stakeholders discuss the results of the sprint. The development team holds a
demo, presenting the implementation of each story. The product owner
accepts stories they deem finished while returning incomplete ones to the
backlog (Knaster and Leffingwell, 2018).

The last activity is the retrospective, where the team takes the time to reflect
on and assess the results of the sprint. During this time, the team determines
what went well in the sprint, what could be improved, and what they will
improve in the next sprint.

Figure 2 illustrates the general flow of the Scrum framework (Sutherland and
Schwaber, 2012).

7

Figure 2 Scrum framework workflow

1.3 Secure Software Engineering
Secure software engineering is the broad domain that covers various
practices that serve to enhance the security of the developed software
(Devanbu and Stubblebine, 2000). We first examine the modern view of
secure software engineering, called the security development lifecycle, in
Section 1.3.1. Next, in Section 1.3.2, we place our focus on threat modeling,
a high-value practice that is difficult to integrate into agile development. We
then explore a particular type of threat modeling, called security design
analysis, in Section 1.3.3.

1.3.1 Security Development Lifecycle
The security development lifecycle (SDL) is a business process that defines a
set of practices that augment the software development lifecycle (SDLC) to
produce demonstrably more secure software. It permeates the whole SDLC,
expanding each phase of software development with one or more practices.
Microsoft defined an often-cited catalog of practices that make up their SDL
(Howard and Lipner, 2006). We summarize the current Microsoft’s SDL
practices in Table 1. Notably, Microsoft’s SDL practices span a wide range
of SDLC phases, from requirements engineering, through design and
implementation, down to the testing and deployment activities.

Table 1 Summary of Microsoft's SDL practices

Name Description

Provide Training
Ensure that everyone has basic security awareness and is trained
to perform the security activities related to their job role.

Define Security
Requirements

Update security requirements to align with the changes in the
developed software, regulatory compliance, and the threat
landscape.

8

Define Metrics and
Compliance
Reporting

Define the acceptable levels of security quality (e.g., through bug
bars) and hold development teams accountable to meeting that
criteria.

Perform Threat
Modeling

Discuss the security of designs in the context of their planned
operational environment to more effectively identify security
vulnerabilities and prioritize appropriate mitigations.

Establish Design
Requirements

Define standard security features that all development teams
should use to avoid design flaws.

Define and Use
Cryptographic
Standards

Ensure vetted and properly configured cryptography is used to
protect data.

Manage the Security
Risk of Using Third-
Party Components

Manage the inventory of third-party components used by the
software, monitor disclosures of their vulnerabilities, and create a
plan to evaluate and mitigate the reported vulnerabilities.

Use Approved Tools Maintain a list of approved tools that developers can use.

Perform Static
Security Testing

Analyze source code before compiling to validate adherence to
the secure coding standard.

Perform Dynamic
Security Testing

Perform run-time security verification and validation of the
compiled software to test the security of the fully integrated and
running code.

Perform Penetration
Testing

Uncover vulnerabilities resulting from coding errors, system
configuration faults, or other deployment weaknesses.

Establish a
Standard Incident
Response Process

Prepare to address new threats and vulnerabilities in the deployed
software that emerge over time.

The traditional SDLs followed the waterfall development model. Since then,
software vendors have, for the most part, reorganized their development
business processes to follow various agile development methodologies
(Kapitsaki and Christou, 2014). As the SDL is a set of security practices,
applying the waterfall-based SDLs to the agile development environment
calls for the redistribution of security practices, with or without modification,
to the agile workflow. Microsoft has adapted its original SDL for the agile
context (Microsoft, 2018). Their agile SDL contains the same security
practices as in the waterfall SDL model, distributed in three categories:

 One-Time practices – security practices conducted at the start of a
new project;

 Every-Sprint practices – security practices performed in every sprint;

 Bucket practices – security practices that are completed periodically,
spread across multiple sprints during the project lifetime.

9

While Microsoft’s SDL is comprehensive, it does not contain all the notable
secure development practices found in the literature. Several papers explored
and compared different processes for constructing secure software. De Win
et al. (2009) compared the OWASP CLASP (which has since evolved into
the OWASP Software Assurance Maturity Model Project (OWASP, 2019)),
Cigital’s Touchpoints (which has since evolved into the Building Security-In
Maturity Model (McGraw et al., 2018)), and Microsoft’s SDL. They break
down the three major secure development processes of the time into
practices, providing an extensive catalog of 45 security practices. A similar
study was conducted by Baca and Carlsson (2011), who cataloged and
compared practices found in Microsoft’s SDL, Cigital’s Touchpoints, and
the Common Criteria (Keblawi and Sullivan, 2006) security engineering
processes. After applying the practices to a real-world agile development
process, they conducted interviews to determine which practices were cost-
efficient. Informed by the discussions, they constructed a hybrid SDL
process that contained all the practices from the different source that were
deemed to be cost-efficient.

The SDL has become the topic of industry standards, where organizations
such as the National Institute of Standards and Technology (NIST) and the
International Electrotechnical Commission (IEC) have issued standards that
define requirements for a secure product development lifecycle (Ross et al.,
2016; IEC, 2018a). Table 2 outlines the different security practices defined in
the IEC 62443-4-1:2018 standard (IEC, 2018a). Compared to Microsoft’s
SDL, the standard puts great emphasis on security management activities and
includes the construction of security guidelines for the end-users of the
developed product.

Table 2 Summary of the IEC 62443-4-1:2018 secure product development practices

Name Description

Security management
Build a secure development environment where roles and
responsibilities are clearly defined, and security work is
appropriately managed.

Specification of
security requirements

Prioritized needs that bring value and are focused through the
lens of risks, considering regulatory compliance, the threat
model, and best practices.

Secure by design
Design layers of reliable defenses, protecting a minimized
attack surface of a high-quality product.

Secure implementation
Write a resilient code design with secure constructs that
adhere to the secure coding standard.

Security verification
and validation testing

Verify adherence to security requirements and validate the
quality of the layered protective controls.

Management of
security-related issues

Detect, assess, prioritize, and address security-related issues in
running products.

10

Security update
management

Construct tested and proven mitigations for new
vulnerabilities and deliver them promptly.

Security guidelines Aid all parties that interact with the product in staying secure.

Regardless of the source, all security development lifecycles span a
significant portion of the SDLC, if not the complete process. They entail
many significantly different activities. For example, while security
management is concerned with monitoring other activities and providing
proper education to employees, security testing activities entail the use of
specialized tools. Notably, the modern SDL approaches require that all
personnel involved in software development perform some security
activities, based on their role in the process.

1.3.2 Threat Modeling
A significant pillar of the SDL is threat modeling, which represents the
systematic assessment of a software or system design regarding its ability to
withstand attacks from adversaries (Shostack, 2014b; Synopsys, 2017). At a
high level, threat modeling takes as input the design of a module1, considers
its functional and security requirements, and outputs the necessary changes
to the design and additional requirements (e.g., new development effort,
requirements for third-party tool integration). Therefore, it is considered both
a technique for security requirements engineering and secure design
construction (Türpe, 2017). On the one hand, the result of threat modeling is
a more secure design, while on the other, this analysis translates one set of
requirements (i.e., high-level business requirements and security
requirements) into low-level security requirements that developers can
understand and fulfill.

We use the term explicit security requirement to denote concrete security-
related requests for the software, that come from industry standards,
regulations, and best practices. Examples of explicit requirements include
securing the confidentiality of payment card information, as defined by PCI
DSS (PCI, 2018), and the privacy of personal data defined under GDPR
(GDPR, 2016). The other type of security requirements we call quality
requirements. These requirements come from stakeholders and are often
more ambiguous. For example, a stakeholder might define that he wants to
maintain the integrity of their public website. Threat modeling can then be

1 We use the term module for the target of threat modeling or security design analysis. A
module represents a software segment of any size. It can be an enterprise system, a single
application, a single component in an application, or a set of functions provided by the
software.

11

employed to decompose this request into actionable work items, such as
building controls for anti-Injection and ensuring proper access control for the
website files and the application-level functions (Stock et al., 2017). Finally,
development teams can identify quality security requirements for technical
assets, even when there are no explicit security requirements. Examples of
this include the confidentiality of user credentials and cryptographic keys
and the availability of infrastructure components and functions. Explicit
security requirements are often easily mapped and threat modeling aids in
identifying the areas of the software that a requirement addresses. On the
other hand, quality security requirements must be threat modeled to
determine actionable work items (Türpe and Poller, 2017).

This practice finds design flaws and security issues before they enter the
code, making them uncostly to fix (Security Innovation Europe, 2016). An
interview of fourteen secure software engineering experts aimed to identify
security practices that bring the most value to the organization, where threat
modeling was among the top five practices (Weir et al., 2017).

There is some confusion regarding what constitutes threat modeling in
software development, that stems from the two often-used interpretations of
the term threat (Synopsys, 2017).

The first interpretation is that the threat is an individual or organization from
which an attack originates. Threat modeling of these threats entails the
analysis of these threat agents to determine their motivation and general
ways in which they can accomplish their goals. This analysis includes
assessing the attacker’s risk tolerance, their capabilities and opportunities,
and the resources they might invest in targeting the module under analysis.
The analyst can then identify high-risk areas of the developed module with a
general idea of where to invest in security and to what extent.

The second interpretation sees threats as potential events with unwelcome
consequences. While such events can be broad in scope (e.g., destruction of
the system, disclosure of information stored in the datacenter), they support
lower levels of detail, where examples of specific threats include:

 Pretending to be a different human when communicating with an
application (and obtaining that human’s data and privileges);

 Changing the data as it flows from one software service to another;

 Performing a sensitive action and refuting doing so.

By looking at threats as events in the module, it is possible to perform a fine-
grain analysis that finds security design flaws and sensitive areas of the
module that require more attention. In turn, this form of threat modeling

12

enables the construction of a layered defense in depth for the developed
software.

Türpe (2017) examines three dimensions of security requirements and the
security requirements engineering methods that combine them. The three
dimensions are:

 The security goal, an asset-centric view of security requirements
concerned with protecting security properties (i.e., confidentiality,
integrity, availability) of assets in the module. This view is common
for regulatory compliance, as standards and regulations usually define
security requirements through assets, as well as stakeholders, who
might not understand security but do know which assets are
important to them.

 The threat, an attacker-centric view that defines security requirements
as a means of preventing an individual or organization from attacking
the module and accomplishing their malicious goals. Stakeholders
usually do not understand threats, and the effectiveness of the design
against threats is difficult to assess. However, threats can guide and
prioritize secure design construction and can be a useful tool for
verification tasks.

 The security design, a software-centric view of security requirements,
which defines technical security controls that can be traced to
business-level requirements. This view of requirements is suitable for
developers that are familiar with technical concepts, although
eliciting such requirements from stakeholders can be challenging.

Türpe (2017) notes that examining a single dimension is insufficient to
define adequate security requirements. However, examining all dimensions
is a three-variable problem, where any change in one dimension may entail
changes or new questions in the remaining two. The author suggests
temporarily fixating a single dimension and focusing on the other two, noting
that this is the approach used by security requirements engineering
techniques to reduce the complexity. The techniques that arise by combining
two dimensions are:

 Risk analysis (security goal and threat), where goal-threat
combinations can be ranked by goal importance, expected damage,
and the likelihood of an incident to determine the risk and prioritize
further investments.

 Design process (security goal and security design), where the security
goals are translated into design decisions, by selecting, placing, and
configuring security controls around assets.

13

 Security design analysis (threat and security design), where the
threat’s behavior in the presence of the module is examined, to
identify events which attackers might provoke to bypass existing
controls and achieve their goals.

1.3.3 Security Design Analysis
Security design analysis, as defined by Türpe (2017), aligns with the second
interpretation of the threat, as a potential event with unwelcome
consequences. We base our work around security design analysis (SDA), the
second interpretation for threat modeling.

Throughout the rest of this thesis, SDA and threat modeling are used
interchangeably to mean the analysis of a module’s design to identify events
with unwelcome consequences (i.e., threats), their decomposition into attack
scenarios that realize them, and the definition of mitigations that resolve
them.

Several prominent SDA methodologies are often cited in both scientific and
grey literature. These include the STRIDE methodology (Hernan et al.,
2006), LINDDUN (Wuyts and Joosen, 2015), PASTA (UcedaVelez and
Morana, 2015), and Trike (Saitta et al., 2005). Additionally, both the
scientific and grey literature boasts a plethora of other threat modeling
techniques, and several surveys were conducted on the topic (Hussain et al.,
2014; Ramesh and Reddy, 2016; Tuma et al., 2018). Furthermore, several
books were written about threat modeling, offering a practitioner’s insight
into the intricacies of applying different threat modeling techniques to the
real world (Ransome and Misra, 2013; Shostack, 2014b; Schoenfield, 2015).
Regardless of the exact methodology, all SDA methods share a common set
of high-level steps, as Figure 3 illustrates.

Figure 3 Security design analysis steps

The primary inputs for SDA include a module’s design artifacts, which are
analyzed against the set of relevant functional and security requirements to
assess the security posture of the current design.

14

The goal of module decomposition is to define the scope and understand the
target of analysis (Synopsys, 2017). This part of SDA examines the module’s
entry points, from which an attacker might deploy an attack, as well as the
internal data and control flows to understand how attackers might progress
through the module to achieve their goal. With an understanding of the
module’s flows, assets can be mapped to determine the location of the
attacker’s target in the module.

The next step is threat analysis, whose purpose is to identify threats or
events that an attacker might cause to work towards their goal. Identified
threats are decomposed into specific attacks that can realize the threat.
Furthermore, threat analysis entails defining mitigations (either existing or
ones that should be introduced) that prevent the attacks and, consequently,
the related threats from occurring.

Finally, risk analysis examines the identified threats and existing mitigation
to determine the risk. Based on the risk and the proposed mitigations, a
suitable risk mitigation strategy is selected, which can require design
changes, additional development work, or other forms of effort.

The outputs of SDA include a prioritized list of work items that aid product
management and development teams to secure the examined module.
Additionally, security assurance is produced by performing and documenting
SDA, providing evidence that security was addressed during the design of
the module.

Different SDA methods vary in how they address each of the three steps
described above. For module decomposition, a common approach is to use
data flow diagrams to represent the system (Shostack, 2014b; Wuyts and
Joosen, 2015). Other methods use UML diagrams to examine potential
security issues (Jürjens, 2002; Lodderstedt et al., 2002). The highest
variability between methods is found in the threat analysis method. Each
approach offers a unique take on how to identify and decompose threats,
relying on taxonomies like STRIDE (Hernan et al., 2006) and LINDDUN
(Wuyts and Joosen, 2015), utilizing misuse cases (Alexander, 2003; Sindre
and Opdahl, 2005), attack trees (Schneier, 1999) or attack pattern libraries
(Martin, 2007; Barnum, 2008). Risk analysis can be supported by external
risk management methodologies (Ross, 2011) or more straightforward
calculations that do not require significant overhead (Shostack, 2014b).
Importantly, the core distinction of an SDA method is in the way threat
analysis is conducted, while both module decomposition and risk analysis
can be swapped between alternatives.

While the work presented in this thesis can support and utilize most SDA
methods, we focus our examples and evaluations around the STRIDE SDA

15

method, for several reasons. First, STRIDE is extensively described through
a series of articles published by Microsoft (Hernan et al., 2006; Shostack,
2008), as well as a complete book on threat modeling (Shostack, 2014b).
Next, the scientific literature is full of papers related to the application of
STRIDE to different technologies (e.g., IPv6 (Georgescu et al., 2016), web
browser APIs (Dev and Jevitha, 2017), cyber-physical systems (Khan et al.,
2017)) and domains (e.g., online banking (Xin and Xiaofang, 2014),
telehealth (Abomhara et al., 2015), smart grid (Jelacic et al., 2017)). Finally,
the method has been studied and tested for usability and effectiveness
(Scandariato et al., 2015), where the authors experimented with 57 students
and concluded that STRIDE was not challenging to learn or execute, but it
did produce many false negatives and was time-consuming. We describe
STRIDE-based threat analysis in more detail to provide the reader with the
necessary background for understanding our work.

STRIDE is a tool for threat identification, a mnemonic where each letter
represents a threat, specifically:

 Spoofing – The impersonification of identity and subversion of
authentication. In the context of software systems, anything from a
user to a service, message, file, or machine can be spoofed;

 Tampering – Unauthorized modification of data and loss of integrity.
In our context, data can be tampered with at rest (e.g., in a file or
database), in transit (e.g., while traveling over a network channel), or
during use (e.g., while in active memory or during processing);

 Repudiation – Lack of action accountability and subversion of non-
repudiation controls, allowing for denial and hiding of performed
actions;

 Information Disclosure – Unauthorized access to data and loss of
confidentiality. As with tampering, data can be accessed at rest, in
transit, or during use;

 Denial of Service – Partial or complete denial of authorized access to
data or systems and loss of availability;

 Elevation of Privilege – The gain of privileged access and subversion
of authorization, to gain unauthorized access to information or
compromise the system.

The astute reader might notice that spoofing and elevation of privilege lead
to threats to confidentiality (information disclosure), integrity (tampering),
and possibly availability (denial of service). The reason for this separation
lies in non-linear attacks (Gantenbein, 2016), where the attacker performs

16

spoofing and elevation of privilege attacks to “open the door” and gain
access to the system components for further attacks.

By expanding the threat view, STRIDE allows for a software-centric
approach to threat modeling, where the focus is placed on the software
components and their interaction. This approach is more in line with the
practice of software development, avoids some of the problems of asset-
centric threat modeling, like the ambiguity of assets, and allows for the
identification of actionable steps to mitigate threats (Shostack, 2017).

The idea is to map STRIDE threats to elements of a data flow diagram (that
were produced as part of module decomposition) following the applicability
matrix presented in Table 3.

Table 3 Applicability of STRIDE threats to different data flow diagram elements

Threat
DFD el.

Spoofing Tampering Repudiation
Information
Disclosure

Denial of
Service

Elevation
of Privilege

Process X X X X X X

Data store X X X

Data flow X X X

External
Entity

X X

For each identified threat, the appropriate decomposition is required, which
includes the identification of attacks that can realize the threat, vulnerabilities
that enable them, and security controls that mitigate them. While threat
identification can be completed without any expert knowledge, threat
decomposition requires an interdisciplinary skillset. For this, the threat
modeling team needs to be aware of both general and technology-specific
security concepts (i.e., attacks, vulnerabilities, controls) to complete this
exercise effectively. Finally, the identified threats and mitigations serve as
input for risk analysis, which can prioritize further work items, as described
above.

1.4 Problem Statement and Hypothesis
Baca et al. (2011) applied practices from Microsoft’s SDL to an agile
development process practiced in Ericsson AB. They conducted interviews
with personnel involved in software development to assess the applicability
and effectiveness of the different security practices. The discussions
concluded that Microsoft’s SDL had a significant adverse effect on the agile
development process, criticizing practices such as threat modeling for being
too costly to conduct. Similar conclusions were presented by Oyetoyan et al.
(2016), where Microsoft’s Agile SDL was criticized for being too unwieldy

17

for the agile context. Traditional SDA is conducted during the early design
phase. Incremental development approaches, such as Scrum, can drastically
change the software’s design throughout its development, making the results
of the initial security design analysis obsolete. Therefore, some form of
incremental threat modeling is required to compensate for this, but this is not
possible if threat modeling is too costly to conduct.

Security design analysis is challenging to integrate into contemporary
software development methodologies. One issue arises from the inherent
complexity of SDA. As it is both difficult to learn and teach (Shostack,
2014b; Schoenfield, 2015), Scrum teams often do not possess enough
security knowledge to perform it effectively (Morrison et al., 2017).
Schoenfield (2015) points out that apprenticeship programs, where an
experienced security analyst teaches interns the art of SDA, are a viable way
to train someone in performing quality SDA. However, this is a slow process
that is hard to scale, which is why a more efficient solution is required for
training Scrum teams on how to perform SDA.

Poller et al. (2017) identified a different set of problems with security
engineering processes such as Microsoft’s SDL and Cigital’s Touchpoints,
concerning agile development. The authors conducted a long-term empirical
study in which they examined the organizational impact that a security
consultation had on a large, multinational software vendors’ development
process. While the security assessment and workshops conducted by the
consultants resulted in an initial rise of awareness and enthusiasm for
developing secure software, after two months most of the initiative has
faded, and no lasting consequences of the security consultation were
observed. The authors identified several key factors that influenced the
outcome. A major issue is unaccountability of work, where security work is
intangible and not part of the binding agreement between the managers and
development teams. Finally, security engineering processes, such as
Microsoft’s SDL and Citigtal’s Touchpoints, do not offer appropriate
guidance for organizations and developers on how to adapt the different
practices to their workflow.

As presented in (Luburić et al., 2018a), there exist several applicability
issues that hamper the efficient practice of security requirements
engineering, including SDA, in Scrum development:

 Complexity – If the security analysis technique introduces new types
of documentation, additional job roles, or requires much training to
practice effectively, it works against agility and therefore cannot
complement agile development;

18

 Unaccountability – If security is intangible and not part of the
binding agreement between the managers and development teams, it
will not be done as it cannot be accounted for;

 Lack of Guidance – If the security analysis technique does not offer
appropriate guidance, which includes examples of usage and tailoring
considerations, it will require significant effort to introduce to an
organization.

Based on this, we define the problem through the following research
questions:

RQ 1. How to efficiently train Scrum teams to perform security design
analysis?

RQ 2. How to efficiently integrate security design analysis into Scrum
development, providing the appropriate security assurance and
visibility of security work?

Based on these questions, we define the hypothesis around which the thesis
is based. It can be summarized as follows:

 It is possible for a Scrum team to practice security design analysis
throughout a software’s development lifecycle, assuring that
sufficient security is built into the software solution, provided that:

o Adequate training is provided to the Scrum team to perform
security design analysis efficiently.

o The security design analysis is compatible with the Scrum
development process, does not require the introduction of new
roles to the team, and does not mandate the construction of
heavyweight documentation.

o Security work is tangible and can be planned and prioritized
like any other work item.

o Enough guidance and knowledge exist to adopt, use, and
adapt the method to a specific organization’s context.

From this hypothesis, we derive the primary goals of the proposed research,
where the expected results include:

1) The construction of a framework for developing training laboratories
for software engineers to effectively learn SDA. The SDA Training
Framework addresses the first research question and is the topic of
Chapter 3.

2) The definition of a process around SDA that sufficiently addresses
the applicability issues defined in (Luburić et al., 2018a) and provides
assurance that enough security is built into the developed software.

19

This method addresses the second research question and is the topic
of Chapter 4.

3) The utilization of the SDA Training Framework to integrate, support,
and continuously improve the SDA process, defined under the second
goal. When combined, these two methods support agile software
development and comply with the requirements for SDA established
by standard-defined security development lifecycles.

To fulfill the Guidance requirement, the results of the proposed research will
include:

 Demonstrations of the SDA Training Framework execution, to
develop labs for training different aspects of SDA and instructions on
how best to utilize the framework.

 Guidelines for tailoring the SDA method to organizations with
varying security requirements for their software.

 Instructions on how to utilize the SDA Training Framework to first
introduce the SDA method to an organization and then to
continuously improve its execution.

 Explanations about how both the SDA method and training
framework integrate with other SDL practices, and how they answer
the requirements imposed by SDL industry standards, such as IEC
62443-4-1: Secure product development lifecycle (IEC, 2018a).

1.5 Thesis Structure
Throughout this introductory Chapter, we defined the problems that this
thesis addresses and presented the necessary background to anchor our work.
Here we outline the rest of the thesis.

Chapter 2 presents the literature review, where we examine methods for
integrating SDA into agile development. We analyze teaching methods
suitable for training software engineers SDA to address our first research
question. We further examine existing SDA techniques and requirements for
such techniques coming from both industry standards and the agile workflow
to address the second research question.

Chapter 3 details our SDA Training Framework, used for teaching software
engineers on how to conduct SDA. The framework constructs educational
materials and assignments for training workshops. Here we also demonstrate
the use of the framework and its evaluation in an undergraduate university
course setting.

20

Chapter 4 describes our Security Analysis and Threat Modeling of User
Stories (SATMUS) process. SATMUS is a method for SDA that is
compatible with agile software development practices and provides
accountability of work. Here we provide guidance for method execution and
tailoring and present two case study implementations of SATMUS.

Chapter 5 combines the work presented in Chapters 3 and 4 and
demonstrates how to integrate SDA into agile development by using the
SDA Training Framework and the SATMUS process. Here we also examine
how our work interacts with practices from well-established security
development lifecycle approaches.

Chapter 6 concludes our work and presents opportunities for further research
and development.

21

2 Research Review
In this Chapter, we present the results of our research reviews aimed at
understanding how to effectively train software engineers the practice of
SDA, as well as how to adapt the SDA to make it suitable for the agile
development process, addressing the applicability issues discussed earlier.

To answer the first part of the hypothesis defined in Section 1.4 and the
research question related to defining adequate training for SDA, we surveyed
the literature for methods used to teach secure software engineering in
general, and SDA in particular. Section 2.1 presents the results of our
literature review. To address the remainder of the hypothesis and the second
research question, we examined the literature for security design analysis
methods that were specifically designed for agile development
methodologies, as well as a few industry standards which address this topic.
The results of this research review are presented in Section 2.2.

2.1 Training Approaches for Secure Software
Engineering

As the traditional classroom is considered to train engineers the practice of
security design analysis inefficiently, we examine the literature to find
alternative teaching methods that could be used to achieve this learning
objective. This research was initially published in (Luburić et al., 2019a) and
is expanded here.

Section 2.1.1 describes case study analysis, a teaching method that fosters
critical thinking and is suitable for inductive reasoning. Next, we examine
the use of games in education in Section 2.1.2, where several publications
address security design analysis through gamification. In Section 2.1.3, we
explore the hybrid flipped classroom, a combination of the traditional and
flipped classroom that promises to develop the security skills and expertise
required for SDA. Section 2.1.4 presents teaching approaches that benefit
from e-learning. Here we select parts of the literature reviews published in
our previous work (Luburić et al., 2016, 2019b) and discuss the use of
specialized tools for teaching different secure software engineering concepts.
Finally, in Section 2.1.5, we summarize the results of our literature review
and highlight the primary influences for the work presented in Chapter 3.

2.1.1 Case Study Analysis
Research was conducted under the National Science Foundation project
“Developing case studies for information assurance education” (NSF, 2008).
As a result of the project, 12 case studies were created to be used in

22

information assurance and risk management courses. Several publications
were released that present the use of these case studies in different courses,
where the impact on student learning was assessed. In general, the results
showed that the use of the case study method was effective and that it
enhanced learning.

Varma and Garg (2005) discuss how different conventional and non-
conventional teaching methods do not achieve quality learning outcomes in
the field of software engineering. They declare case study analysis as an
effective teaching technique for software engineering, where complexity and
intricacies related to the field of software engineering can only fully be
experienced by examining a realistic case study.

Meneely and Lucidi (2013) examine real-world vulnerabilities as case
studies. They introduce the Vulnerability of the Day, where during the first
10 minutes of each class, the teaching staff demonstrates a vulnerability
through live code examples. The class discusses implications of the
vulnerability, how to exploit it, the negative impact it can have on the
system, and what are the appropriate mitigations. While no formal evaluation
of the effectiveness of the teaching method was performed, the authors note
the overwhelming interest of the students for this activity, measured through
questionnaires.

Case study analysis immerses students in realistic situations, where they
must deal with incomplete information, conflicting goals, and time
(Andersen and Schiano, 2014). The class discussion that emerges during case
study analysis stimulates the development of students’ critical thinking skill.
As many students are more inductive than deductive reasoners, they learn
better from examples than from logical assertions that build upon basic
principles (Dunne and Brooks, 2004). The use of case studies can, therefore,
be a very effective classroom technique. According to (Dunne and Brooks,
2004), the case study should fulfill the following requirements:

 It represents a general issue beyond the case itself, tells an engaging
story, and focuses on an interest-arousing, controversial issue, where
it poses a problem that has no obvious right answer;

 It requires the reader to use both the presented information in the case
study, as well as critical and analytical thinking, to address the
problem, and

 It has just enough information for proper analysis and is relevant to
the students.

23

2.1.2 Gamification
Gamification has gained some traction when it comes to teaching
cybersecurity. Over the years, several card games were produced to facilitate
cybersecurity education, with many focusing on SDA. A group of
researchers constructed a card game called Control-Alt-Hack, which acts as a
light-weight learning tool that raises awareness about cybersecurity and
offers teaching staff a light-hearted way to talk about threats, attacks, and
countermeasures (Denning et al., 2013). They evaluate their approach by
distributing copies of the game to a dozen information security courses,
along with a survey to be filled by the teaching staff. The results of the
questionnaire show that the game is well received and accomplishes the goal
of facilitating interactive cybersecurity education.

Williams et al. (2010) invented a security risk assessment game for agile
development called Protection Poker. The agile team plays Protection Poker
for every product development iteration, as part of a dedicated planning
meeting. They identify and rank the security risks of each feature that is
planned for development in the upcoming iteration. Through this activity, it
is possible to identify additional security mechanisms that must be
implemented to maintain an acceptable risk level across the product. The
authors conducted a feasibility study with undergraduate students to
determine the method’s practicality. Tøndel et al. (2018) observe the use of
Protection Poker in Norwegian companies and determine the benefits and
challenges of adopting it. They praise Protection Poker for raising security
awareness and facilitating a discussion around the subject. However, the
authors note that the discussion must be guided and that the time it takes to
play can be significant. Furthermore, the game does not provide a
mechanism for validating the quality of the output.

Taking a similar approach, Shostack produced the Elevation of Privilege card
game intended to teach developers at Microsoft the craft of SDA (Shostack,
2014a). Through his research, Shostack identified that the primary challenge
to efficient SDA is the lack of intuition when it comes to determining threats,
attack vectors, and security controls on a real system. Shostack notes that
implementing security features is usually only slightly more challenging than
implementing any software feature. However, understanding where an
attacker might strike or how an asset might be compromised is something
that alludes many software developers. Elevation of Privilege was explicitly
designed to teach cybersecurity in an enticing, supportive, and non-
threatening way. No experimental evaluation is performed to test the
efficiency of Elevation of Privilege.

24

One novel approach to developing the intuition that Shostack mentions was
proposed by Kohno and Johnson (2011). In their work, the authors concur
that the students need to attain a mindset focused on the broader societal and
contextual issues surrounding information security. They use science fiction
prototyping to stimulate such thinking, where students are asked to research
about cutting-edge technologies, extrapolate their development to the near
future, and imagine threats, vulnerabilities, attacks, and controls related to
these future systems. While the authors note the usefulness of science fiction
prototyping, no experiment nor evaluation is presented.

Krutz et al. (2015) utilize a role-playing game in the classroom. Students
have to design a secure system, where one student acts as a malicious insider
whose goal is to produce a flawed design, which can allow an attacker to
infiltrate the system once it is created. This activity pins the students against
each other without knowing who the insider is, stimulating a fun
environment in which the students learn about threat analysis by identifying
attacks and countermeasures. No experiment was conducted to test the
effectiveness of this method, but student satisfaction was rated using a
questionnaire based on a Likert scale.

2.1.3 Hybrid Flipped Classroom
Recently, Carranza and DeCusatis (2015) critiqued the conventional
approaches employed in cybersecurity education, both at universities and in
industry-certified programs. The authors recognized a tendency to emphasize
memorization of facts over a more in-depth cognitive understanding of the
subject. They propose the use of the flipped classroom model to teach
cybersecurity, where students are expected to complete weekly reading
assignments, after which they discuss the subject matter with the teaching
staff through consultations. Furthermore, the authors examine a variant of the
flipped classroom, called the hybrid flipped classroom. Here, students
additionally attend group lectures to gain a different view from the textbook
on complex topics like encryption and public key infrastructure. Once again,
no formal evaluation was conducted to test the efficiency of the hybrid
flipped classroom.

Researchers from the Anderson School of Management examined
cybersecurity training initiatives and awareness campaigns held in
corporations (Kassicieh et al., 2015). The article examines different types of
cybersecurity training and awareness methodologies and tools. The authors
conclude that the current cybersecurity training and awareness programs are
limited in their efficacy and list several ways in which this can be improved,
including the use of the flipped classroom.

25

2.1.4 E-Learning
E-learning is concerned with effective multimedia learning using information
and communication technology (Mayer and Moreno, 1998). At its purest
form, e-learning can be supported with the use of a PowerPoint presentation
or a video describing a specific subject matter.

More elaborate uses of e-learning entail the use of software created for the
sole purpose of teaching a specific subject matter. The papers (Dios et al.,
2008; Lovejoy and Wickert, 2015) point out the importance of using
software tailored for a course in laboratory exercises. By using the Moodle
learning management system and Maple software, which is a heavyweight
toolset for supporting mathematical and technical courses, a cryptography
course held in the Salamanca University, Spain, was presented by Dios et al.
(2008). Lovejoy and Wickert (2015) show how a signals and systems course
greatly benefited from using Python and, specifically, the IPython notebook,
which is a computational notebook that combines images, formulas, text and
interactive code snippets. Both papers noted improvements in the educational
experience of their students, owing to the use of specialized software.

A specialized set of e-learning tools, called vulnerable software packages
(VSP), are used for learning about attacks, vulnerabilities, and defenses
related to software systems. Pohl et al., (2015) present BREW, a VSP
designed to teach students how to find and exploit vulnerabilities as an
attacker and to subsequently identify the issues in the code and resolve them
as a defender. The authors define different educational usage scenarios,
offering guidance on how to integrate BREW into different classrooms.
Furthermore, they list settings where BREW has been successfully integrated
into lectures and lab exercise.

Walden (2008) utilizes the OWASP WebGoat VSP to teach web security
attacks and vulnerabilities, focusing on SQL injection attacks. He created
several labs, where they attacked WebGoat manually and with the aid of
security testing tools. The OWASP WebGoat is a maintained VSP, currently
standing as a medium-level project in the OWASP organization. It provides
an impressive array of challenges, presented as a collection of exercises.

2.1.5 Literature Review Results
During our experience with teaching students the security design analysis,
we found that even students who did not attend laboratory exercises had little
trouble learning how to use and implement security controls once they knew
which specific controls to implement. However, the question of when a
security control is needed, when to use a specific security control, and how it
could be bypassed had alluded many students, even the ones that attended

26

every class, signifying the lack of critical thinking and the in-depth
understanding of the subject. These findings fall in line with the conclusions
made by Carranza and DeCusatis (2015), as well as Shostack (2014a). Based
on this, we decided that the hybrid flipped classroom, as described in Section
2.1.3, would be suitable for our context. We gave reading materials for
students to learn on their own what specific security controls exist and how
to use them while using the laboratory exercise to put more emphasis on
recognizing when to use them. To facilitate the development of critical
thinking, we utilized the case study analysis technique, as described in
Section 2.1.1.

The most notable research that inspired our new course design and initial
version of the training framework includes (Carranza and DeCusatis, 2015)
and (Kassicieh et al., 2015) for the hybrid flipped classroom, as well as the
articles related to the use of case studies in the classroom, especially those
developed under the NSF project (NSF, 2008; Andersen i Schiano, 2014).
Other examined literature did affect our overall design, and we have
expanded our framework to utilize both gamification, as described in Section
2.1.2, and an e-learning platform in the form of a vulnerable software
package, as presented in Section 2.1.4. By utilizing these methods, we
created an SDA Training Framework, which is described in Chapter 3.

2.2 Agile-based Security Design Analysis
Methods

In this Section, we examine the scientific literature of the past decade for
security analysis techniques designed to identify security requirements and
increase the security posture of software products developed following the
agile development methodologies.

First, we present a review of security requirements engineering (SRE)
methods based on security design analysis. We examine how the proposed
methods address the applicability issues of Complexity, Accountability, and
Lack of Guidance, as defined in the problem statement in Section 1.4. The
results, initially published in (Luburić et al., 2018a), are presented in Section
2.2.1. Next, we examine several papers that, through literature review or case
study analysis, identify additional issues when introducing SDA to agile
development. We present these conclusions in Section 2.2.2. In Section
2.2.3, we analyze several industry standards that define requirements for the
secure software development lifecycle, paying particular attention to the
requirements that directly address security design analysis. Finally, in
Section 2.2.4, we compile the results of our literature review and draw
conclusions which guide the construction of our SDA method.

27

2.2.1 Applicability Issues in Agile Security Requirements
Engineering

We analyze a recent systematic mapping study on the topic of security in
agile requirements engineering (Villamizar et al., 2018), from which we
extract methods applicable to the Scrum framework, excluding other agile
development techniques. We further examine the literature for any additional
relevant methodologies.

We analyze each method to determine the extent to which it has issues of
Complexity, Unaccountability, and Lack of Guidance. We do this by rating
each technique on how well it fulfills the following requirements:

1. Simplicity – The security analysis technique should not mandate the
introduction of additional types of documentation or job roles.
Additionally, the method should require as little training as possible
to practice effectively. This requirement answers the Complexity
issue.

2. Accountability – The security analysis technique should be integrated
into the standard agile development workflow and produce visible
and quantifiable action items. This requirement answers the
Unaccountability issue.

3. Guidance – The security analysis technique should be fully
documented, offering illustrative examples of its use, as well as
advice for integration into different real-world contexts. This
requirement addresses the Lack of Guidance issue and partially
Unaccountability, as the execution of ambiguous methods cannot be
sufficiently accounted for.

Peeters (2005) introduces the concept of abuser stories – a user story that
describes how a threat agent can achieve a goal that compromises the system
or its assets. Abuser stories represent a skeleton for the threat model, but lack
adequate requirement traceability to provide security assurance. Regarding
Simplicity, abuser stories introduce a simple and intuitive artifact, while not
requiring any new roles. Training needs are not discussed. Accountability is
not addressed, as it is both unclear when sufficient abuser stories have been
defined and what development work needs to be done to resolve the abuser
story. While the original paper is concise and does not offer much regarding
Guidance, abuser stories have been around for over a decade, and several
papers have utilized this concept and offered some illustrative examples
(Tondel et al., 2008; Mellado et al., 2010).

Baca et al. (2015) present an extended Security-Enhanced Agile Software
Development Process (SEAP), which was practiced in Ericsson AB. The

28

method introduces four roles in the agile development process, including the
security manager, security architect, security master, and penetration tester.
Activities conducted by the penetration tester are out of the scope of our
context. Regarding Simplicity, SEAP mandates the introduction of several
new roles to the organization, most prominently the security master who
expands the Scrum team. As a result, the development team does not require
any training, as the security master performs the security assessment. The
paper does not discuss the documentation resulting from the analysis.
Regarding Accountability, the process outlines the activities that need to be
conducted by the development team. Finally, regarding Guidance, the only
resources provided by the authors is the paper that documents the SEAP
flow, practiced in Ericsson AB, which lists roles and their responsibilities in
the process. No examples of use or tailoring guidelines are presented.

Pohl and Hof (2015) describe Secure Scrum, where they expand user stories
with S-Tags – descriptions of security concerns related to one or more
backlog items. S-Tags represent security-related effort (e.g., in the form of
new user stories, specialized testing, research). During the implementation of
a user story, all related S-Tags need to be present in the sprint backlog,
where the definition of done states that verification needs to make sure that
all present S-Tags are resolved. Regarding Simplicity, Secure Scrum defines
an additional, although simple, documentation type and no new roles.
Training requirements are not discussed. Defining security-related effort in
the backlog in the form of an S-Tag helps achieve Accountability. Regarding
Guidance, it is unclear how to implement Secure Scrum in an organization
efficiently. For example, the generalized nature of S-Tags as “anything
security-related” is susceptible to threat explosion (Tuma et al., 2017), where
developers can virtually indefinitely populate the backlog with new S-Tags.
This raises an issue with Accountability, as it is unclear how to identify S-
Tags, and therefore determine when this activity is complete. Finally, there is
no guidance on how to tailor the process for different contexts, as well as no
illustrative examples to show the process in action.

Azham et al. (2011) introduce a security analysis process for agile
development based around a new document, the security backlog. The
security backlog is managed by a new role, the security master, who
processes the product backlog to identify security concerns with user stories,
which are then entered into the security backlog. Regarding Simplicity, the
security backlog approach introduces a new document structure, a new role,
as well as a process which is disjoint from the development process. As the
security master manages the security backlog, the development team does
not require additional training. Accountability is achieved as the security
master processes security-related concerns into user stories, where the

29

developers are required to perform only development tasks. Regarding
Guidance, while the general flow of the security backlog management
process is present, the details are not documented. In a later paper (Ghani et
al., 2014), the authors showcase an illustrative example of the method used
in an industry-based case study. There is no process tailoring guidance.

Mougouei et al. (2013) present S-Scrum, an expansion to the Scrum
framework that introduces three types of security-related research spikes.
The first type of the research spike is conducted after release planning, where
a security analysis is performed on the backlog, potentially introducing new
items into the backlog. Then, the next spike is issued for security modeling,
to incorporate the results of the security analysis into the software design.
The final type of research spike entails a detailed security analysis for each
sprint. Regarding Simplicity, the method does not introduce new documents
or roles, while training needs are not discussed. However, S-Scrum offers
little regarding Accountability, as it is unclear when the proposed research
spikes are considered done. Furthermore, there is very little Guidance
provided by the paper, as the research spikes are vague in their purpose and
offer no detailed description of how to efficiently conduct them.
Additionally, the article provides no illustrative examples and no tailoring
guidance.

Singhal (2011) describes the Agile Security Framework. This framework is
presented as an end-to-end security development lifecycle for agile
development, covering SRE and other activities (e.g., penetration testing).
We focus on the SRE activities of the framework, where abuser stories,
attack trees, and threat modeling is utilized to discover threats and attacks,
and form requirements which mitigate them. Regarding Simplicity, the
method introduces several artifacts (e.g., abuser stories, attack trees) and
mentions a new role (i.e., security expert). The author recommends dedicated
security training. Accountability is achieved through a method that
decomposes abuser stories to make sure that relevant threats are identified,
and appropriate mitigations are planned, which results in the construction of
acceptance tests. Guidance is partially achieved, as the paper presents an
extensive description of the method, coupled with illustrative examples of
use, but no guidance is provided for tailoring the technique to different
contexts.

In (Othmane et al., 2014a, 2014b), the authors examine how to construct
secure software incrementally. They introduce security assurance cases and
present an expansion to the agile development process that entails the
construction of these documents. Security assurance cases are structures that
provide evidence that the developed software is acceptably secure and
constructing such a body of evidence requires appropriate threat modeling

30

and security requirement analysis. It should be noted that the papers place
greater emphasis on the end product of SRE (i.e., the security assurance case)
and not the SRE method itself. Regarding Simplicity, the paper introduces a
new document type that needs to be constructed, reviewed, and maintained.
Furthermore, the article mentions the security expert role during the process
of creating the security assurance case and notes that security training is
required for developers. Concerning Accountability, the security assurance
case is a well-structured body of evidence that can be directly mapped to
work that needs to be realized. Finally, enough Guidance is given for
executing all the tasks related to security assurance case construction, and
two illustrative examples are presented in the papers. No tailoring guidance
is offered.

Rindell et al. (2015) present an expanded Scrum framework (called VAHTI-
Scrum) that is meant to be compliant with the Finnish security standard
collection (VAHTI). As such, it is concerned with security throughout the
whole software development lifecycle, where we once again focus on the
SRE activities. Regarding Simplicity, VAHTI-Scrum introduces a new role
to each Scrum team, the security developer, responsible for security reviews,
security test cases, and other security-relevant work. The Scrum master is
required to have substantial security knowledge. The method introduces
threat modeling and application risk analysis, although it is unclear when
these activities should be conducted. The process is further expanded by
adding “sprint zero” for security analysis and periodic hardening sprints to
enhance the security of the software. The method addresses Accountability
by relying on the expertise of the security developer when completing well-
known tasks such as threat modeling. While the paper explains the roles and
responsibilities, it offers only minor tailoring Guidance and does not present
any illustrative examples.

Table 4 summarizes the extent to which each SRE method has achieved the
goals of Simplicity, Accountability, and Guidance.

Table 4 Agile SRE methods in relation to Simplicity, Accountability, and Guidance

Method Simplicity Accountability Guidance
Abuser Stories
(Peeters, 2005)

Full Partial Partial

SEAP
(Baca et al., 2015)

Partial Full Insufficient

Secure Scrum
(Pohl and Hof, 2015)

Full Partial Insufficient

Security Backlog
(Azham et al., 2011)

Partial Full Partial

S-Scrum
(Mougouei et al., 2013)

Full Insufficient Insufficient

31

Agile Sec. Framework
(Singhal, 2011)

Insufficient Full Partial

Sec. assurance case
(Othmane et al., 2014a)

Insufficient Full Partial

VAHTI-Scrum
(Rindell et al., 2015)

Insufficient Full Partial

From these results, we draw several conclusions:

1. Guidance is insufficiently addressed. Three out of eight methods are
presented in a single paper and offer little more than basic illustrative
examples. No paper provides sufficient guidelines for tailoring the
technique to different organizational contexts.

2. Full Accountability is only achieved when a dedicated security expert
exists in the process. However, most such methods are too
complicated and fail to address the Simplicity requirement.

3. Methods that fulfill the Simplicity requirement do not explain when
the security analysis is done, which is why they can only partially
satisfy the Accountability requirement. Furthermore, simple methods
often lack proper Guidance, hinting at their lack of maturity.

2.2.2 Additional Issues with Agile Security Design
Analysis

In (Tuma et al., 2018), the authors conducted a systematic literature review
for security design analysis techniques, where they examined 26
methodologies to determine their inputs, outputs, and internal workings.
Furthermore, they analyze the current state of their adoption in contemporary
software engineering trends, such as agile and DevOps, and discuss obstacles
for their adoption. The authors present several applicability issues that
impede the adoption of SDA in agile development and list recommendations
to solve them, which include:

1. Insufficient use of automatization

a. There is little support for traceability between the discovered
threats and the implemented code that can ensure that any
change to the code that introduces a vulnerability does not go
unnoticed.

b. There is little support for composition of SDA results, where
in practice the software systems are too large to be analyzed
all at once, which is why SDA is performed on subsystems or
components of the complete software.

c. Time-consuming steps of the SDA activity, such as impact
analysis, are not offloaded to tools.

32

2. Lack of Definition of Done

a. It is up to the analyst to determine which part of the analyzed
software should be decomposed to discover critical threats.

b. It is up to the analyst to determine which threats are relevant
and when all the critical threats have been discovered.

c. It is up to the analyst to determine the abstraction level and
what constitutes a unit of analysis.

3. Lack of guidance

a. Most of the methods do not precisely define all the steps of
execution.

b. Most of the tools that support an SDA method do not have a
proper manual.

Galvez and Gurses (2018) explore the challenges and opportunities of
introducing privacy threat modeling to agile development of service-oriented
architectures. Privacy threat modeling entails discovering, addressing, and
validating threats that affect the realization of privacy goals. The authors
conclude that agile development enables effective, iterative analysis and
resolution of complicated problems, at the expense of comprehensive end-to-
end design analysis. They identify 21 challenges, some of which arise from
agile development and others from service-oriented architectures. The
challenges related to agile development can roughly be grouped into the
following categories:

1. Changing environment

a. Maintaining an up-to-date threat model is difficult in an
environment that emphasizes working software over
documentation.

b. High-level threat models lack important details and can lead
to vague privacy threats and requirements, while low-level
threat models focus on a single component and can miss
critical privacy threats and requirements that affect multiple
components.

c. Frequent changes in the software can introduce, change, or
remove threats and keeping the relevant threat list up-to-date
is difficult in an environment where both threats and software
evolve.

2. Lack of expertise and guidance

a. Deriving threats and requirements from threat modeling and
prioritizing them can be time-consuming.

33

b. Customers may not possess enough domain knowledge to
elaborate on the impact of low-level privacy requirements.

c. Threat catalogs are limited, and developers may focus on
unrealistic threats and attack scenarios, where analyzing
realistic attack scenarios requires much creativity.

Finally, Cruzes et al. (2018) elaborate on the challenges and experiences of
performing security design analysis in the agile development process of a
specific software vendor. They perform action research (Davison et al.,
2004) by facilitating the adoption of STRIDE-based security design analysis
(Shostack, 2014b) to the software vendor’s development process. The
authors observe SDA sessions conducted by the development teams and
conducting interviews with members of the teams to discover the main
challenges and ways in which the SDA method can be adapted to suit the
agile workflow better. The result is a list of 21 challenges, from which we
derive the following conclusions and list the challenges that support them:

1. Development teams shy away from producing SDA documentation,
especially when they do not perceive it as valuable.

a. Teams did not document the list of assets relevant to the
components they were developing as they did not see the
value in this activity.

b. It was challenging to motivate the teams to document the data
flow diagrams required for threat analysis, as this was
perceived as a time-consuming activity.

c. Teams did not want to update the data flow diagrams
frequently, as they could not determine a suitable moment for
this activity.

d. Teams did not want to follow up on threats and document
them in more detail after the initial threat modeling meeting.

2. Development teams lack the expertise and guidance necessary for
efficient SDA.

a. Many discussions around threats and mitigation strategies got
lost, signaling a lack of structure and guidance.

b. It was hard to decide the right level of abstraction for the
DFDs, as high-level diagrams lacked essential details, while
low-level diagrams lead to less effective meetings.

c. It was hard to determine when enough analysis was done, and
when all the critical threats were identified and decomposed.

34

d. The threat modeling meetings were not productive, causing
frustration among team members.

e. There was a need for a security expert to run the meeting,
which was a resource that most teams did not have.

f. The outputs of the threat modeling sessions were a list of
concerns and threats which were not actual work items.

2.2.3 Relevant Industry Standards
We explore the “IEC 62443, Security for industrial automation and control
systems - Part 4-1: Secure product development lifecycle requirements”
standard (IEC, 2018a). As SDA is concerned with security requirements
engineering and constructing a secure design, we examine the parts of the
standard that address security requirements and secure design.

The purpose of the security requirements specification practice, as defined by
IEC (2018a), is to document the security capabilities that are required for a
product along with the security capabilities expected of its production
environment. The first part of this practice entails the definition of the
product security context, a set of security-related assumptions about the
environment in which the product will operate, which guide the definition
and prioritization of threats and security requirements for the product. The
second part of this practice requires the construction and maintenance of a
threat model of the product, detailing its data flows, stores, and processes, as
well as threats and mitigations. The rest of the practice is concerned with
specifying and documenting explicit security requirements, which can affect
SDA but are not an integral part of it.

The secure by design practice (IEC, 2018a) entails the construction of a
secure software design with multiple layers of defenses following the
defense in depth principle. This applies to both conceptual and detailed
design for the developed product. This practice is directly concerned with
security design analysis, where the goal is to develop and document a secure
design that identifies and protects all external and internal interfaces that
cross a trust boundary. The SDA is further guided by the defense in depth
principle, as well as secure design best practices like attack surface
reduction, least privilege, and economy of mechanisms.

Next, we examine the “NIST SP 800-160 vol. 1, Systems Security
Engineering: Considerations for a Multidisciplinary Approach in the
Engineering of Trustworthy Secure Systems” (Ross et al., 2016). This
publication provides a basis for secure system engineering, describing the
various security activities, principles, and concepts that integrate into the
system development lifecycle. Here we are concerned with the technical

35

processes that address the construction of a secure architecture and its
translation into a secure design.

The architecture definition process described by Ross et al. (2016) defines a
set of security viewpoints of the system’s architecture based on the
stakeholders’ security concerns. Through threat modeling, candidate
architectures are constructed, each addressing the security concerns in
different ways to inform risk assessment and management, where the goal is
to select a candidate architecture that optimizes security against other
requirements. The architecture is then mapped to the design definition
process, where security design analysis is employed at the subsystem and
component level to ensure the construction and maintenance of a secure
design.

2.2.4 Literature Review Results
From the conclusions listed in Sections 2.2.1 and 2.2.2, we derive several
guiding principles for developing an SDA method that is compatible with
agile development:

 High complexity contradicts agile development principles.
Organizations that favor agility will not adopt complicated SDA
methods.

 Some security expertise is required to achieve Accountability of
security analysis work. Dedicated personnel or training for the Scrum
team is mandated. Furthermore, security analysis must be time-
slotted to provide a stopping condition when the analysis is
considered done.

 Organizations need Guidance to adopt an SDA method, which
includes a detailed explanation of the technique, illustrative examples
of its use, and tailoring guidance for adapting the SDA to their
context.

We follow these principles to define a security design analysis method.
Furthermore, we consider requirements for security requirements
engineering and secure design construction practices, as presented in Section
2.2.3, to construct a method that can be used to address this regulatory
compliance. The resulting SDA method is presented in Chapter 4.

36

37

3 SDA Training Framework
This Chapter details our solution for the first research question and the first
segment of the hypothesis listed in Section 1.4, related to providing adequate
training to software engineers on the topic of security design analysis. The
proposed solution is the SDA Training Framework, which guides the
construction of educational materials and their composition into laboratory
exercises. The framework’s core revolves around two teaching methods:

(1) the hybrid flipped classroom (Carranza and DeCusatis, 2015), and

(2) case study analysis (NSF, 2008).

The resulting lab exercises address some of the issues described in Section
2.1. The framework and its evaluation are published in (Luburić et al.,
2019a) and expanded through two additional papers (Luburić et al., 2019b,
2019c).

Section 3.1 outlines the main components of the framework, highlighting its
inputs, outputs, and internal workings. Here we describe the process of using
the framework to compose the laboratory exercises. Section 3.2 demonstrates
the application of the framework, where we formulate the laboratory
exercises using the framework, to provide guidance on how to use it. Here
we also illustrate how different tools, such as industry standards and
vulnerable software packages, can be utilized with the framework. Section
3.3 explains the comparative analysis which we have conducted, to evaluate
if the exercises conceptualized using the framework achieve better learning
outcomes than lab exercises which utilize the traditional teaching method.
Finally, Section 3.4 discusses the results of our analysis, as well as the
limitations and implications of the work presented in this Chapter.

3.1 Framework Structure
This Section starts with an overview of the training framework, presenting its
main components in Section 3.1.1. Next, in Section 3.1.2, we discuss the
framework usage process to describe its internal workings that, when
executed, formulate laboratory exercises for teaching SDA.

3.1.1 Framework Overview
As described in (Luburić et al., 2019a), the proposed framework consists of
four parts:

(1) the applied security design analysis method,

38

(2) the preparatory materials containing enough information, as
determined by the lab constructor, for the lab participants to actively
participate in the analysis,

(3) one or more case studies which are targets of SDA, and

(4) the laboratory exercises constructed by using the framework.

The input for the framework is the SDA method, which is the primary
learning goal. The selected SDA method guides the design of the laboratory
exercises. A single workshop might cover a specific SDA method, while
methods targeting a broad domain may span several courses. Sophisticated
methods need to be decomposed into subactivities to fit the format of a
workshop or lab exercise.

The preparatory materials are the materials that lab participants need to
examine before the lab exercise, the core pillar of the hybrid flipped
classroom technique (Carranza and DeCusatis, 2015). This can be anything
from reading materials (e.g., book chapters, scientific articles, blog posts) to
videos (e.g., conference presentations, online course segments). In the
context of security design analysis, these materials should detail
vulnerabilities, attacks, and security controls relevant for the examined SDA
or its subactivity.

Following the case study analysis technique (NSF, 2008), the case study is
the target of the SDA and represents a module2. The size and complexity of
the case study dictate the effort required for a complete analysis. A single
case study might be enough to cover all subactivities of an SDA, while
multiple case studies may be examined to cover the SDA in-depth or
reinforce the learning goals. The selection and presentation of the case study
must be carefully considered to maximize trainee engagement.

Finally, laboratory exercises are the main output of the framework. Each lab
exercise contains:

(1) a set of preparatory materials, to facilitate the hybrid flipped
classroom,

(2) a description of one or more case studies (which might be reused in
multiple lab exercises), to support case study analysis,

(3) an outline of the expected flow for that training session, and

2 As mentioned earlier, the term module is a generic term which can represent software of
any size. A module can be an enterprise system, a single application, a single component in
an application, or a set of functions provided by the software.

39

(4) guidelines for the trainers on how to apply the SDA on the case
study, using the information described in the preparatory materials, to
support them in their job.

Following the method of the hybrid flipped classroom, trainees go over the
preparatory materials before the lab exercise. At the start of the exercise, the
trainer facilitates a discussion around the preparatory materials, to ensure the
group has understood its content. Next, the trainer presents the case study,
providing sufficient information for the group to perform SDA. During the
exercise, the trainer guides the trainees in performing SDA on the relevant
segments of the case study by utilizing what they have learned from the
preparatory materials and expanding upon that base. The session concludes
when the trainer summarizes the performed work and highlights the most
significant learning outcomes of the exercise.

3.1.2 Framework Usage
The usage of the framework is a process that takes as input the components
listed in the previous Section, as well as the constraints regarding the number
of slots for laboratory exercises and the length of each slot and outputs a set
of laboratory exercises. Figure 4 illustrates the process.

Figure 4 Usage of the training framework to construct laboratory exercises

The first step of this process is to choose the SDA method and set it as the
learning goal of the lab exercises. Examples of SDA methods are discussed
in Section 1.3.3 and include STRIDE (Shostack, 2014b), LINDDUN (Wuyts

40

and Joosen, 2015), PASTA (UcedaVelez and Morana, 2015), Trike (Saitta et
al., 2005). The next step entails decomposing the SDA activity into
subactivities. The decomposition of the SDA method should consider the
complexity of the method, and the time limitations (i.e., the number of
available lab exercises, the duration of each exercise). As described in
Section 1.3.3, most SDA methods have three general steps – module
decomposition, threat analysis, and risk analysis, where the primary focus of
the method is on the threat analysis step. Therefore, most subactivities
should be related to threat analysis (where each subactivity is concerned with
a subset of relevant threats, attacks, and mitigations), while module
decomposition and risk analysis might entail a single subactivity each. While
the resulting set of the SDA subactivities does not require a one-to-one
mapping on the final set of constructed lab exercises, the trainer should strive
towards this goal at the start, to simplify the following framework activities.

Each subactivity is analyzed (Examine next subactivity) to determine the
related security concepts (i.e., attacks, vulnerabilities, security controls). The
trainer creates the set of preparatory materials which cover the identified
security concepts. These should contain information that is easy to consume
while being relevant for the assignments and discussions of the lab exercise.
The construction of preparatory materials can be a vast undertaking if the
subject matter is complicated and if there are no readily available materials
(e.g., publicly available lectures, articles, tools).

Next, the trainer elicits requirements which the case study must fulfill to be
relevant for the SDA subactivity and identified security concepts (Define
case study requirements). For example, if a subactivity of an SDA examines
threats of loss of confidential data, then the case study needs to work with
sensitive data. Requirements for such a case study might be that:

(1) it processes sensitive data,

(2) it transports sensitive data over internal networks,

(3) it provides (a subset of) sensitive data through Internet-facing
services, and

(4) it stores sensitive data in several different types of data stores.

The breadth of the case study requirements is limited only by the time limit
of the lab exercise. At this point, the case study is not conceptualized, as
requirements from multiple SDA subactivities (and lab exercises which
address them) might be grouped to form a single case study when all case
study requirements are known.

At this stage, the trainer formulates the general flow of the lab exercise
(Determine lab flow). By focusing on the SDA subactivity, while keeping the

41

known aspects of the case study and preparatory materials in mind, the
trainer decomposes the learning goal into assignments and tasks which need
to be completed during the lab exercise. Tasks might include presenting the
case study (conducted by the trainer), performing security design analysis on
the case study (conducted by the trainees) or discussing the content of the
preparatory materials (conducted by both the trainer and the trainees). By
mapping these tasks to a timeline, the trainer constructs the general flow of
the lab exercise. At this point, the lab exercise might be too complicated for
the given time frame, in which case it could be split into multiple labs (if
there is room to accommodate this).

This loop repeats until the trainer creates preparatory materials, case study
requirements, and general lab exercise flows for each subactivity of the SDA
method. At this stage, the trainer compiles the list of requirements for the
case studies to define the actual case studies for the lab exercises (Construct
case studies that fulfill all requirements). The number of case studies can
range from one to many, where one case study can be examined during one
or multiple lab exercises, while one or multiple case studies can be examined
during a single lab exercise. Apart from the elicited requirements, each case
study should fulfill several global requirements, including:

(1) being a believable representation of a real system, as this increases
trainee engagement (Luburić et al., 2019b), and

(2) being understandable to the trainees, so that they can quickly grasp
the scope of the case study and focus their mental effort on the
learning objective.

Furthermore, each case study needs to be documented so that lab participants
can familiarize themselves with it, either through preparatory materials or
during the lab exercise. This documentation can take many forms (e.g.,
video, white paper, presentation) and the trainer should select the medium
which maximizes usability and trainee engagement.

Finally, once the case study set is defined, the trainer formulates the final
flow for all lab exercises. During this step, lab exercises can be merged,
further divided, or omitted based on the constraints of the working
environment (e.g., equipment, time).

3.2 Framework Application
We utilized the framework to formulate laboratory exercises for a university
course concerned with secure software engineering. We construct six
laboratory exercises (Luburić et al., 2019a) and integrated them into our
course, some of which were reworked and expanded during the next two
school years (Luburić et al., 2019b, 2019c).

42

This Section illustrates the application of the training framework, where we
create a set of laboratory exercises to provide guidance for the framework’s
use. First, in Section 3.2.1, we present the application published in (Luburić
et al., 2019a), where we select an SDA method, decompose it into
subactivities, present the case study and an outline of the content of the
preparatory materials. Next, in Section 3.2.2, we illustrate a single lab
exercise in detail and demonstrate how an industry standard can be used as
preparatory material, as published in (Luburić et al., 2019c), to offer further
guidance for the framework’s use. Finally, in Section 3.2.3, we describe how
the framework can utilize vulnerable software packages to quickly construct
lab exercises, as published in (Luburić et al., 2019b), both reducing the
complexity of the lab construction, and increasing the engagement of the
trainees.

3.2.1 Generation of Multiple Lab Exercises
Following the process depicted in Figure 4, we first chose the SDA method3.
From the methods examined in Section 1.3.3, we selected the traditional
STRIDE-based SDA method (Shostack, 2014b), as it is popularly used and is
suitable for web-based enterprise information systems with which our
trainees (i.e., students) are already familiar.

The next step entails the decomposition of the SDA into subactivities. We
initially divided the selected SDA into six subactivities, which are listed in
Table 5. Here we also identified some of the relevant security concepts which
served as input for the construction of preparatory materials. Initially, we
decomposed this SDA method into eight subactivities (module
decomposition, one subactivity for each letter of STRIDE, and risk analysis).
As module decomposition is a software engineering activity (and does not
require security knowledge) we concluded that a single lab was enough to
introduce concepts such as data flow diagrams, so we did not further
decompose this subactivity. When examining the threat analysis
subactivities, we decided to focus on cryptography as a means of mitigating
Information disclosure and Tampering, so we merged these subactivities.
Likewise, we assessed that Spoofing and Repudiation could be grouped due
to their relation to authentication. Finally, while risk analysis can be
sophisticated, making it suitable for further decomposition, we focused on
the basic variant of this activity recommended by the STRIDE SDA method
(Shostack, 2014b).

3 The use of italic in this Section signals that this is an activity illustrated in Figure 4.

43

Table 5 Defined Subactivities of the Chosen SDA Method

Subactivity Description
Decomposing the module The case study is introduced. Subsystems, actors, assets,

entry points, and data flows are identified. The goal is to
define relevant threat agents and construct data flow
diagrams of the module under analysis.

Threat analysis:
Information disclosure,
Tampering

Threats related to information disclosure and tampering are
identified and decomposed for the target module. Focus is
placed on attacks and vulnerabilities mitigated by
cryptographic controls.

Threat analysis:
Denial of service

Threats related to denial of service are identified and
decomposed for the target module. Focus is placed on
attacks and vulnerabilities mitigated by network
segmentation, high availability design, and DDoS
protection controls.

Threat analysis:
Spoofing,
Repudiation

Threats related to spoofing and repudiation are identified
and decomposed for the target module. Focus is placed on
attacks and vulnerabilities mitigated by authentication and
logging controls.

Threat analysis:
Elevation of privilege

Threats related to the elevation of privilege are identified
and decomposed for the target module. Focus is placed on
attacks and vulnerabilities mitigated by access control and
input validation controls.

Risk analysis Security requirements for the selected case study are
examined to determine the impact of each threat. Basic risk
calculation is performed to determine a prioritized list of
security controls.

We created preparatory materials which cover cybersecurity concepts (i.e.,
attacks, vulnerabilities, countermeasures) concerning web-based information
systems. The concepts covered in the materials are grouped based on the
related subactivity, as demonstrated in Table 6.

Table 6 Preparatory Materials Related to SDA Subactivities Listed in Table 5

Subactivity Description
Decomposing the module Presentation describing the case study and white paper

detailing data flow diagrams and their graphical elements.
Threat analysis:
Information disclosure,
Tampering

White paper and lecture covering applied cryptography -
symmetric ciphers, asymmetric ciphers, hash functions
PKI, digital signatures, TLS, and select attacks against
these mechanisms.

Threat analysis:
Denial of service

White paper covering high availability design, performance
counters, denial of service attacks and mitigations.

Threat analysis:
Spoofing, Repudiation

White paper covering authentication controls, session
management, logging, and spoofing attacks.

Threat analysis:
Elevation of privilege

White paper covering role-based access control, access
control lists, input validation, and injection attacks.

Risk analysis Summary of risk management from (Ross, 2011).

44

Based on the subactivities listed in Table 5, and the security concepts
identified in Table 6, we constructed a set of requirements for the case study,
which are presented in Table 7.

Table 7 Case Study Requirements Related to SDA Subactivities Listed in Table 5

Subactivity Description
Decomposing the module The system needs to be web-based, consist of multiple

applications which (to some extent) interact, contain
several data stores (e.g., file system, databases) and service
several different user categories (e.g., insiders, outsiders).

Threat analysis:
Information disclosure,
Tampering

The system needs to process, transmit, and store sensitive
data, such as PII and user passwords.

Threat analysis:
Denial of service

Some part of the system should require high availability.
The system should communicate over the Internet.

Threat analysis:
Spoofing, Repudiation

The system should require multi-factor authentication for
some group of users. The system should require service-to-
service authentication. The system should offer sensitive
functions that demand accountability.

Threat analysis:
Elevation of privilege

The system needs to have some form of shared user
interface to demonstrate access control. The system needs
to have OS-level assets (i.e. files) that require access
control. The system needs to have some forms of data
parsers or interpreters (e.g., SQL database, XML parser).

Risk analysis The system needs to have some form of security
requirements derived from standards and regulations.

At this stage, we conceptualized a set of laboratory exercises and determined
their flow. During this, we divide the second subactivity (Threat analysis:
Information disclosure, Tampering) into two lab exercises, as we assessed
that the topics covered by this subactivity (cryptographic primitives and
applied cryptography) required more time to go through based on our prior
experience with the traditional classroom. Furthermore, we did not construct
a separate lab exercise for the third subactivity (Threat analysis: Denial of
service), as we considered it, for the most part, out of the scope of our lecture
plan.

With most of the work done, we started constructing the case study. We
formed a description of a hospital information system (HIS) by examining
scientific articles and grey literature related to applications of technology to
the healthcare domain. The HIS was chosen as a suitable and highly relevant
case study for the security assessment. First, it can be quite sophisticated,
servicing a wide array of different actors, which makes choosing a
representative subset of functionality that much easier. There have been
several papers and articles that call for, examine, and present technological
innovation in the field of healthcare (Hamine et al., 2015; Spanakis et al.,

45

2016). As people live longer, more attention is directed at Smart Health
systems that optimize the healthcare industry and reduce costs. The second
reason the security analysis of such a system is suitable for our needs is the
fact that hospitals deal with sensitive data. Health records have been a major
target of cybercriminals, but there is also a wide array of sensitive data
common to most business systems, like personally identifiable information,
financial records, and system user credentials. There are a few articles in the
literature calling for and proposing different security measures to protect
these systems (Appari and Johnson, 2010).

Our HIS case study is imagined to be deployed on a set of machines inside
the hospital’s data center. The system interacts with several different actors,
each chosen to present a set of attacks. This includes:

 Hospital management, which consists of many staff members who
handle human resources, finances, hospital equipment, and operating
room schedules. This part of the system falls in the domain of
business informatics. Managers interact with the system through a
web application, from their workstations, which are located inside the
hospital.

 Medical staff, including physicians, technicians, and other relevant
subjects concerned with patient management. Physicians use the
system to examine their schedule, follow their patient’s treatments
and health records, communicate with their patients as well as with
the management, and so on. Like hospital management, the medical
staff interacts with the system inside the corporate network, using a
web application;

 Patients, who use the system to follow their hospital appointments,
recommended diet and therapy, and treatment history. They interact
with the system over the internet, using a mobile or web application.
Following the current trends in technological development, a patient
can have several wearables or implanted devices, which monitor the
patient’s physiological parameters and send them to the HIS;

 The government, which periodically contacts the hospital to get
statistical data. The government service sends a request over the
internet and uses the retrieved data to monitor the health of its
citizens, detect early signs of epidemics or high volumes of a
particular type of illness.

Finally, we constructed the final lab flow, the outline of which is as follows:

(1) Decomposing the module: The HIS is introduced and examined as a
real-world system that supports healthcare institutions. The system’s
purpose is discussed, as well as its actors, functions, data flows,

46

subsystems, and entry points. Initial security requirements are
discussed, and attackers are determined.

(2) Threat analysis (Information disclosure, Tampering) 1: Threats
related to the loss of confidentiality and integrity of the data
processed by the HIS are examined. Sensitive data assets, such as
financial information, patient information, and user credentials, are
discovered, and protective mechanisms are proposed using
cryptographic primitives. Cryptographic keys are identified as
sensitive assets that require further protection.

(3) Threat analysis (Information disclosure, Tampering) 2: Controls
proposed in the previous lab exercise are enhanced using mechanisms
such as PKI and TLS. Certificate verification is examined, and
attacks related to these technologies, such as certificate pinning and
attacks against TLS, are discussed.

(4) Threat analysis (Spoofing, Repudiation): Authentication and logging
controls and attacks are examined in the context of the HIS. User
interfaces and services that require authentication are determined, and
appropriate controls are selected. Sensitive actions of the HIS are
determined, and logging controls that achieve non-repudiation are
designed.

(5) Threat analysis (Elevation of privilege): Access control and injection
attacks are examined in the context of the HIS. Entry points that
accept external input are identified, and the optimal input validation
controls are selected. An access control matrix that defines all user
groups, roles, and permissions for the HIS is constructed.

(6) Risk analysis: The final lab is spent discussing security requirements
and risk analysis. Regulations such as HIPAA (United States, 2004)
are examined in the context of the HIS, and a basic risk analysis
method is presented and performed to determine the critical
vulnerabilities that need to be patched and the security controls that
need to be applied to the HIS.

We utilized these laboratory exercises during the 2016/2017 iteration of the
secure software engineering course.

3.2.2 Detailed Lab Construction
To provide further guidance and resolve remaining ambiguity, this Section
analyzes one of the labs in detail and present all the artifacts selected and
created through the training framework. The lab in question is an evolution
of the fifth lab (Threat analysis: Spoofing, Repudiation), which we split into
two labs for the subsequent year. This Section focuses on the SDA

47

subactivity that addresses repudiation threats, as described in (Luburić et al.,
2019c).

The main vulnerability that enables repudiation threats in software systems is
missing or poorly designed logging mechanisms (Shostack, 2014b). Log files
contain entries that track the events of a system. On the one hand, they offer
insight into a system’s (mis)behavior, aiding software engineers in
debugging issues. On the other hand, they offer non-repudiation by recording
user actions. While the concept of an event logger is simple, correctly
implementing logging controls throughout the system to achieve non-
repudiation can be challenging (IEC, 2018b).

Preparatory materials

Recently, the IEC has released a standard describing technical security
requirements for industrial automation and control systems (IEC, 2018b),
detailing many security controls and component requirements (CR),
including a logging mechanism for non-repudiation. We use this document
as a basis for our preparatory materials and from it derive the following
requirements for the logging mechanism (the related requirements from the
standard are noted in the braces):

(1) Completeness – Each log entry needs to contain enough data to prove
non-repudiation of an action (CR 2.8) and each event for which non-
repudiation is required needs to be logged (CR 2.12).

(2) Reliability – Logging needs to be reliable, which is achieved by
ensuring the availability of the mechanism (CR 2.9, CR 2.10) and the
integrity of the log files (CR 3.9, CR 6.1).

(3) Accuracy – Log entries across the system need to state their creation
time precisely (CR 2.11).

Apart from the requirements derived directly from the standard, we add two
requirements that improve the efficiency of the logging mechanism:

(4) Usability – The logging mechanism needs to be designed so that
security-relevant events (e.g., those that provide non-repudiation) can
be easily extracted from the log files.

(5) Minimalism – The logging mechanism should create a minimal
amount of log entries needed to serve its purpose, to avoid cluttering
the log files.

As log files contain system events that are used primarily for debugging, we
need to make sure that security events are not buried and lost due to a large
amount of non-security events. Based on these requirements, we construct a
three-page white paper to serve as preparatory materials for the lab exercise.

48

The document explains the danger of repudiation, illustrates it through real-
world examples, and describes the motivation behind it. The paper concludes
by explaining event logging and details the requirements for an efficient and
secure logging mechanism.

Case Study

Audit records need to be generated for access control, request errors, critical
system events, backup and restore events, configuration changes, and audit
log events, as noted in IEC (2018b), CR 2.8. Furthermore, CR 2.10 defines
additional activities that require logging, including performing system
actions, creating or changing information, and sending messages.

Based on this list, we conclude that any software system that interacts with
human users and has some sensitive assets can be used as a case study. As
the SDA subactivity and relevant security concepts do not impose significant
limitations for our case study selection, we can utilize the hospital
information system (HIS) described earlier. The HIS contains a wide array of
sensitive assets, including health data and PII.

Lab Flow

Figure 5 illustrates the flow of the lab exercise, where the arrows originating
from the trainees and trainer signify who drives the activity.

Figure 5 Flow of laboratory exercise dedicated to SDA for repudiation threats

The trainees are required to go over the white paper describing repudiation
and logging before attending the lab exercise. At the start of the lab exercise,
the trainer conducts a brief discussion with the trainees to summarize the
main points of the preparatory materials.

49

After the initial recap, the trainer presents use case diagrams for the HIS case
study, focusing on the user’s interaction with the system. The trainer takes
care to introduce the main points of the system that need to be protected,
without making them obvious. This information is masked with irrelevant
information and low priority assets. However, care is taken not to bloat the
presentation too much, to avoid loss of interest from the trainees. The
presentation concludes with data flow and deployment diagrams of the HIS,
which were developed during earlier labs.

Next, the trainees perform SDA to discover repudiation threats and try to
find actions that a user might have reason to rebut. They identify interfaces
between the human users and the software and discuss where and how the
actions need to be logged. The goal of this discussion is to fulfill the
Completeness requirement of the logging mechanisms, as well as obtain an
understanding that logs can be generated at different levels of the software
system (e.g., operating system, web server, application software).

Once most of the system events requiring non-repudiation have been
mapped, the trainees expand the data flow diagrams with log data stores. At
this point, the trainer directs the discussion towards the Reliability
requirement, examining how the logging mechanism can be protected from
tampering and denial of service. Scenarios that detail attacks are discussed,
and the trainees determine appropriate security controls and design changes
to protect the logging mechanisms.

The trainer addresses the final security requirement, Accuracy, by explaining
how the network time protocol and GPS time synchronization protocols
(Mills, 2016) can be used to create system-wide time synchronization. The
design of ACME’s system is expanded with these controls, and their security
is discussed.

Finally, the software engineering requirements of Usability and Minimalism
are addressed. The trainer divides the trainees into teams and asks them to
design an application logging mechanism that can answer the following user
stories:

“As a data protection officer, I want to quickly examine all access
requests to GDPR (GDPR, 2016) related data, so that I can examine
if there is an anomaly in the system’s behavior.”

“As a reliability engineer, I want to quickly examine all mission-
critical function calls, so that I can monitor performance to prevent a
denial of service.”

“As a software engineer, I want to examine log entries when an error
occurs in a system, so that I can triage the bug and resolve the issue.”

50

At the end of this exercise, each team presents their design and argues how it
can fulfill the listed user stories. All trainees take this opportunity to discuss
the pros and cons of each approach. At the end of the lab, the trainer
summarizes the main learning points of the lab and offers additional
exercises and reading materials.

3.2.3 Introducing Vulnerable Software to the SDA
Training Framework

A significant limitation of the training framework is its complexity. The
trainer prepares the labs by constructing preparatory materials, the case
study, assignments for the trainees, and then putting it all together. To
address this issue, we created an enhancement to the training framework,
published in (Luburić et al., 2019b).

We utilize publicly available vulnerable software packages (VSPs) to offload
some of the work required from the lab constructor. Vulnerable software
packages offer software engineers, security auditors, and penetration testers a
playground to practice software security skills, both from the attacker’s and
defender’s perspective and for this reason, are often used in training
programs (Yuan et al., 2016; Siles and Bennets, 2019). Additionally, these
packages are used to test the efficiency of hacking tools, such as
vulnerability scanners (Esposito et al., 2018) as well as security controls
which mitigate the vulnerabilities of the software package (Pupo et al.,
2018).

We propose that the vulnerable software package can be used as a case study
and the target of security design analysis. Once requirements for the case
study are gathered, the lab constructor searches for a suitable VSP instead of
manually constructing a case study. Furthermore, when determining the lab
flow, assignments for the lab trainees can be derived directly from the
features of the VSP.

To illustrate the enhancement to the framework and provide low-level
guidance, we demonstrate its usage by constructing a lab with the learning
objective of examining, understanding the impact of, and mitigating
elevation of privilege threats through injection attacks and vulnerabilities
(Stock et al., 2017).

Preparatory materials

The preparatory materials for this lab are created by utilizing the latest
OWASP Top Ten list (Stock et al., 2017). This list is an authoritative
document that presents a broad consensus regarding the most common and

51

most critical security risks for web applications. It is updated and published
every several years to keep up with the shifting threat landscape.

The OWASP Top Ten list provides a thorough overview of each class of
security risks, offering insight into the risks impact, examples of attacks,
pointers for vulnerability discovery, and mitigation planning. For the lab in
question, trainees examine the entries which cover elevation of privilege
threats realized through some form of injection attacks. They examine the
following categories before attending the lab:

 A1 – Injection, as the primary subject matter of the lab.

 A4 – XML External Entity, due to its similarities with XML injection
attacks from A1.

 A7 – Cross-Site Scripting, which can be seen as an injection attack
aimed at the browser’s command interpreter.

Furthermore, trainees are required to find and examine at least one example
of each of the listed attacks (e.g., SQL injection, LDAP injection, Stored
XSS) to get a sense of what the attack vectors look like and how they might
be deployed.

Case Study

Guided by the learning objective and preparatory materials, we go over the
list of different attacks and vulnerabilities and define the following
requirements for a suitable case study:

 It should provide a web user interface to demonstrate cross-site
scripting issues.

 It should have an SQL database where at least one command sent
from the application is dependent on user-supplied input, to explain
SQL injection issues.

 It should process XML documents supplied by external entities, to
demonstrate XML injection issues.

 (Optional) It should provide functionality suitable for showing
additional injection issues (e.g., OS command injection, LDAP query
injection).

 (Optional) It should be built using modern technologies and ideally
those directly utilized by the trainees, to increase the perceived
relevance and their engagement.

We selected the OWASP Juice Shop (Kimminich, 2019) VSP as a suitable
case study that fulfills both the mandatory and optional requirements listed

52

above. The OWASP Juice Shop has several benefits when compared to other
VSPs:

 It is mature, categorized as a Flagship project by the OWASP
organization, signifying its value to the field of application security.
Furthermore, it has previously been utilized in the classroom (Yuan et
al., 2016; Kimminich, 2019), as a tool for testing the efficiency of a
hacking tool (Esposito et al., 2018) and a security defense (Pupo et
al., 2018).

 It is rich with content, covering a wide array of attacks and defenses
and containing 74 challenges as of version 8.3, released in January
2019.

 It is easy to use, offering detailed documentation, presentation, and
video material to aid with its use and a companion guide which
details each challenge and its solution (Kimminich, 2019).

 It is built on a technological stack (Angular, Node.js, SQLite)
familiar to our trainees.

 It is a fully functioning, realistic web shop, offering browsing and
shopping functionalities similar to applications which the trainees
built on earlier courses.

Lab Flow

The lab constructor utilizes the OWASP Juice Shop companion guide to
select challenges related to the learning objective and marks them as
assignments for the lab. With these assignments, the final lab flow can be
created, as Figure 6 illustrates.

Figure 6 Flow of laboratory exercise examining injection attacks with the aid of a VSP

53

At the start of the lab, the trainer goes over the different injection attacks and
answers any questions which the trainees might have.

Next, the trainer introduces the OWASP Juice Shop and demonstrates the
basic functionality of the application, after which the architecture and data
flow diagrams of the module are presented (available at (Kimminich, 2019)).

The first assignment for the trainees is to identify the attack surface where
injection attacks might be deployed, as part of a group discussion.

Once most of the attack surface is discovered, the trainees are given a list of
challenges from the companion guide to complete on the laboratory
computers.

At the end of the lab, the trainer highlights the learning objective,
summarizes the activities conducted during the lab, and notes the important
takeaways. During this discussion, the participants:

 Define the impact of the attacks they performed;

 Determine which vulnerabilities exist in the software to allow those
attacks to succeed;

 Specify mitigations which resolve the vulnerabilities and discuss
ways in which the mitigations can be circumvented.

3.3 Framework Evaluation
In this Section, we describe the evaluation of the proposed framework.
Section 3.3.1 describes our course, the context in which it resides, and the
knowledge trainees gain before attending our course. Next, in Section 3.3.2,
we described the structure of the two instances of the course, which we
compare as part of the evaluation. We then detail the design of the controlled
experiment and comparative analysis used to evaluate the framework in
Section 3.3.3. The evaluation described here concerns only the basic
structure of the framework (described in Section 3.1 and illustrated in
Section 3.2.1) and is not concerned with the enhancements described in
Section 3.2.3. Finally, in Section 3.3.4, we detail the empirical evaluation,
conducted through interviews and questionnaires, which assess the quality of
the enhancements described in Section 3.2.3.

3.3.1 Course Context
Our course on secure software engineering is an elective course for fourth-
year undergraduate students of computer science studies. Around 50 students
enroll in this course each year. Before attending the course, the students
complete several mandatory courses covering the topics of data modeling,
software engineering, network-based systems, distributed software systems,

54

and information systems. They have no prior knowledge related to the
domain of information security or any of its subdomains.

Based on the student’s prior knowledge, we focus the course on topics
related to the application and system security. As most of the students find
employment as software engineers, we focus on topics that offer the most
value to future software designers and developers. Topics include applied
cryptography, data security (protecting data in transit, storage, and in use),
authentication and access control mechanisms, and secure software
development, with a focus on security design analysis.

3.3.2 Course Structure
Two instances of the course are relevant for this research. The 2015/2016
instance (referred to as the traditional course) uses the traditional classroom
approach, where the professor holds lectures every week for all trainees (i.e.,
students), while the trainer (i.e., the teaching assistant) runs laboratory
exercises for groups of 10 to 16 trainees. The laboratory exercises focus on
the topic from the previous week’s lecture, where trainees complete
assignments that require them to implement or use a specific security control
or stop a common attack.

The 2016/2017 instance (referred to as the framework course) contains one
significant difference, where the laboratory exercises are constructed using
the training framework. The lecture materials used in both instances of the
course are mostly identical. However, to accommodate the hybrid flipped
classroom, the materials for the laboratory exercises are restructured for the
new course. In both instances of the course, there are six laboratory
exercises, each lasting 2 hours, as described in Section 4.2.1.

The main difference between the old and new course design, relevant to our
experiment, is the structure of the teaching materials. In the new course, the
lab time is dedicated to the discussion and learning the intricate craft of
security design analysis. In our experience, security concepts, such as
common controls, attacks, and vulnerabilities, when presented in a vacuum,
is something that the trainees can learn on their own, which is why we leave
this to the trainees, as part of their preparation for the lab.

3.3.3 Experiment Design
To complete the traditional instance of the course, trainees had to secure a
part of a banking information system implemented as part of another course.
They did this by producing a security design analysis of the system before
implementing it, after which they implemented the identified security
controls in their code and configurations.

55

To complete the framework instance of the course, trainees had to complete
the same project as their predecessors, the traditional group. They performed
a security design analysis of the banking information system and then
implemented the identified security controls during the system development.
It should be noted that a full banking information system can have hundreds
of critical assets, each of which can have several accompanying threats. The
trainees examine a subset of the system to reduce the workload.

Another thing to note is that during project development of both instances of
the course, teams of trainees had a series of checkpoints for which they had
to produce specific deliverables. We did this to track the progress of trainees
more efficiently.

By providing both groups of trainees with an identical project and roughly
the same amount of time to complete it, we were able to do a comparative
study of the effectiveness of the training framework, as opposed to the
conventional teaching approach.

The trainees were divided into teams of three or four members. By
comparing the quality of threat models produced by teams from both groups
of trainees, we evaluated the new design. We have adopted the approach
from (Scandariato et al., 2015) to define the quality of a threat model as a set
of metrics, which include the following:

 The quality of the produced data flow diagrams (DFDs);

 The quality of the threat identification step.

The quality of the DFDs is measured by examining:

 The number of produced DFDs;

 The average number of elements in each diagram.

We compare DFD sets produced by teams from both groups to a baseline
DFD set produced by the professor and the trainer. The quality of the threat
identification step is evaluated by looking at the following metrics:

 The number of correctly identified threats (TP, true positives);

 The number of incorrectly identified threats (FP, false positives);

 The number of unidentified relevant threats (FN, false negatives).

The maximum number of relevant threats a team of trainees can identify (Trel
= TP + FN) is closely tied to assets, as relevant threats are defined as losses
of security objectives. We define relevant assets as assets for which true
positive threats have been identified. This excludes abstract assets such as
company reputation and user satisfaction. We also aggregate similar assets
into a single asset. For example, all log files located on the corporate bank

56

network are considered a single asset. The list of relevant assets includes but
is not limited to:

 Data assets, including user credentials, credit card information,
invoices, reports;

 System assets, including important subsystems and services, log and
configuration files, the website;

 Infrastructure assets, such as workstations, the network, ATMs.

The maximum number of relevant threats that each team can identify is
directly linked to the relevant assets identified by each team Nassets. For each
team, the professor and trainer have analyzed the assets obtained by that
team to determine their Trel.

We summarize the obtained results by calculating the average correctness
(precision) and average completeness (recall) of the individual teams of both
class instances. The correctness of an individual team is calculated by
dividing the number of correctly identified threats to the total number of
threats identified by a particular team:

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

The completeness of an individual team is calculated by dividing the number
of correctly identified threats with the estimated maximum number of threats
(for that individual team):

𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 =
𝑇𝑃

𝑇
 (2)

We aimed to determine whether the teams of the framework instance had on
average achieved significantly higher correctness and completeness
compared to the traditional instance teams. Thus, we analyze the obtained
results by applying an unpaired test as we had different subjects in the two
test groups. We used the Mann–Whitney test, a non-parametric analog of the
unpaired t-test that does not require the assumption of normal distributions.
We validated the null hypothesis H0: “There is no difference between teams
of the traditional instance and teams of the framework instance in terms of
achieved correctness/completeness.” For statistical tests, we set the
significance level of α = 0.05.

We did not measure the quality of the threat decomposition step, nor the risk
analysis step. Regarding threat decomposition, we could not find a suitable
way to measure the quality of this step, as no evaluation metrics are proposed
in the literature. We decided to avoid comparing the quality of the risk

57

analysis, as the framework trainee group had one whole laboratory dedicated
to this activity, while the traditional group only briefly examined this step.

To measure the effectiveness of our new approach, we only considered threat
model documents produced by teams where the document owner was present
during the six laboratory exercises. Twenty-eight trainees were present
during the six lab sessions of the traditional instance, while thirty-six trainees
attended the six lab sessions during the framework instance. Not all of these
trainees were threat model document owners as some of them belonged to
the same team. Overall, fourteen threat models were examined from the
traditional instance of the course, while seventeen threat models were looked
at from the framework instance.

The results of this evaluation are described in Section 3.4.1.

3.3.4 Empirical Evaluation of Enhancement
We conducted an informal evaluation of the enhancement described in
Section 3.2.3 by analyzing observations of the trainer and supplying a
questionnaire to the trainees (i.e., the students).

Through participant observation (Taylor and Bogdan, 1984), the trainers
observed how the trainees interacted with the VSP during the exercise. The
trainers noted and payed special attention to:

 The levels of trainee engagement;

 The nature of the interaction with the VSP;

 The way the VSP influenced the lab;

 Any difficulties that occurred.

At the end of the semester, the trainers conducted a survey, following the
approach described by Punter et al. (2003). Trainees were provided with a
questionnaire for evaluating the quality of each of the labs. The questionnaire
had the following structure:

 A brief description of the lab and its goal;

 A set of statements to be graded through a 5-point Likert scale
(Albaum, 1997) (1 – strongly disagree, 3 – undecided, 5 – strongly
agree), including:

o The goal of the exercise is clear and meaningful;

o During the lab we have achieved the specified goal;

o The lab was interesting.

 The question What was the best part of the lab, to be answered using
a free text field;

58

 The question What would you improve, to be answered using a free
text field.

The results of this evaluation are described in Section 3.4.2.

3.4 Results and Analysis
In this Section, we present the results of our evaluations and discuss their
meaning. In Section 3.4.1, we present the results of the experiment described
in Section 3.3.3, where we show that our SDA Training Framework achieves
better learning outcomes when compared to the traditional teaching
approach. Next, in Section 3.4.2, we examine the findings of our
observations and surveys described in Section 3.3.4, regarding the quality of
the enchantment to our framework. In Section 3.4.3, we discuss the
limitations of our experimental evaluation and the training framework,
including its enhancement. Finally, in Section 3.4.4, we discuss the
implications of all the work presented in Chapter 3 and how the training
framework can be applied in different contexts.

3.4.1 Results of Comparative Analysis Experiment
We first analyze the quality of the DFDs produced by the two groups of
trainees and compare them with the quality of the DFDs produced by the
teaching staff. Each group produced 1 level 1 DFD and multiple lower-level
DFDs. We measure the average number of elements on the level 1 DFD, the
number of level 2 DFDs, the average number of elements on level 2 DFDs,
and the number of level 3 DFDs. When counting the number of elements, we
take into account data stores, process nodes, and external entities. The results
are presented in Table 8.

Table 8 Quality of the DFDs

Group
Traditional
trainees

Framework
trainees

Teaching
staff

Avg. # of level 1 DFD elements 9.64 10.71 10
of level 2 DFDs 2.29 2.24 3
Avg. # of level 2 DFD elements
per diagram

6.09 8.56 9.33

of level 3 DFDs 6.36 0.24 0

While both groups showed similar results when analyzing the high-level
view of the system through a level 1 DFD, the framework trainee group
showed significant improvement when it came to more detailed analysis. In
general, the framework trainees showed a better understanding of their
system from the perspective of data flows.

59

The main improvement was related to the significantly lower amount of level
3 DFDs. In general, level 3 DFDs signal a too-detailed model, which rarely
adds value to the threat modeling activity. Indeed, of all level 3 diagrams
produced by the traditional trainee group, not one was produced that
introduced a new threat to the system, making the diagram useless.

We believe that this improvement is a direct consequence of previous
experience, where we warned the trainees about excessive level 3 diagrams.
Therefore, the new teaching approach had little impact on the positive
results.

Next, we analyze the number of identified relevant assets Nassets, which
determines the maximum number of threats that each team can identify. The
average number of identified relevant assets for each course instance is
presented in Table 9. These results show that the framework trainee group
identified more assets. We attribute this to our own increased experience, as
we recognized that the traditional trainees completely missed infrastructure
assets, and we put more emphasis on this topic in the next instance of the
course.

Table 9 Number of identified relevant assets

Group
Traditional
trainees

Framework
trainees

Teaching
staff

of identified assets 9.57 12.18 16

Finally, the results of the threat identification step are presented in Table 10.

Table 10 Number of identified threats

Group
Traditional
trainees

Framework
trainees

Avg. # of correctly identified threats (TP) 11.36 22.82
Avg. # of incorrectly identified threats (TN) 5.36 3.18
Avg. # of missed threats (FN) 9.64 4.82
Correctness (precision) 68% 87%
Completeness (recall) 54% 81%

These results show a significant increase in the quality of the threat
identification step between the two class instances. The differences in
correctness/completeness between the traditional and framework instances
were found to be statistically significant (the null hypothesis H0 was rejected
for completeness with the p-value of 1.78 × 10−5 < 0.05; for correctness, the
null hypothesis was rejected with the p-value of 2.76 × 10−5 < 0.05). Thus,
we may conclude that the teams of the framework instance have achieved
significantly better correctness/completeness compared to the teams of the
traditional instance.

60

Moreover, the Scandariato et al. (2015) measure the correctness and
completeness of the threat identification performed by their students when
compared to their own threat identification. They choose the 80% threshold
for both precision and recall as a good reference point for student success.
According to this, we conclude that the framework trainee group has
achieved good precision and recall when it comes to threat identification.

It is our opinion that these results are a direct consequence of our SDA
Training Framework. By supplying trainees with attacks and security
controls beforehand, trainees were able to discuss and reason about threats
and focus on the cognitive aspect of security design analysis during the lab
exercises.

3.4.2 Results of Empirical Evaluation of Enhancement
During the execution of the lab exercise created using our framework and a
vulnerable software package, the trainers noted a higher than expected level
of engagement from all trainees. Concretely, the VSP with its challenge
system facilitated a competitive atmosphere, where trainees were rushing to
complete the next challenge before their colleagues. For more difficult
challenges, the trainees gathered in smaller groups to brainstorm solutions,
maintaining the competitive spirit by contesting other groups.

Problems would occur when trainees got stuck with a challenge, causing
frustration. Additionally, more successful trainees or groups gave answers to
other groups when left unchecked, subverting the learning goal for the other
groups. Both cases were resolved by the trainer intervening, to give advice to
stuck trainees and help them solve the challenge, as well as to foster a fair
playground, where more successful groups would not ruin the game for the
rest.

Near the end of the lab, the participants summarized the learning outcomes,
where the trainer noted that the trainees clearly understood the impact
injection attacks could have on the software, why they occur and how to
conduct them. Finally, the trainer facilitated a discussion around the quality
of the lab and the use of the VSP. The consensus was that the lab was fun
and engaging and that the case study was both realistic and relatable. The
trainees made requests for similar labs in the future.

Fifteen trainees filled the optional questionnaire at the end of the semester.
Table 11 presents the average grade for each statement, given by the trainees
using a 5-point Likert scale.

61

Table 11 Results of the survey grading the quality of the VSP Injection lab

Statement Grade

The goal of the exercise is clear and meaningful 4.67

During the lab we have achieved the specified goal 4.73

The lab was interesting 4.6

Notably, not a single trainee disagreed (strongly or otherwise), with any of
the statements. The first statement had two undecided votes, while the
second and third had one undecided vote each. Most of the trainees strongly
agreed with the statements. Importantly, this lab had the highest grade for all
three statements, when compared to all our other labs.

Six responders answered the free-form question “What was the best part of
the lab”. All six answers praised the use of the vulnerable software package
and the opportunity to conduct real attacks.

Two responders answered the free-form question “What would you
improve”. The first responder asked for more guidance when performing the
attacks, while the second responder proposed that different groups of trainees
tackle different sets of challenges provided by the VSP and present the
results to each other near the end of the lab. The first answer is aligned with
the observations made by the trainers, where some trainees got frustrated
when not being able to solve a challenge. To address this, we developed Hint
cards which we can distribute to trainees that need more assistance with the
challenges. The second answer gave us an idea to bundle the challenges of
different levels of difficulty (e.g., 3 level 1 challenges, 2 level 2 challenges,
and a single level 3 challenge) and to distribute a bundle to each trainee
group and have them compete for points against the time limit of the lab.
This setup is typical in capture the flag events and different gamification
approaches discussed in Section 2.1, so we feel confident that this approach
can further enhance the quality of the learning outcomes.

3.4.3 Limitations
Several limitations influence the results of the study. First and foremost, both
the professor and the trainer (i.e., the teaching assistant) have gained
experience in both teaching and the domain of information security. We
cannot accurately determine the quality of the gained knowledge and skill
between the old and new course. However, we can safely say that our
understanding of both information security and teaching information security
has increased in general. As Schoenfield (2015) points out, threat modeling
is an art form, where experience plays a vital role in the quality of the
produced models. If we were to apply our old class design to the next

62

generation, then we are confident that we would get better overall results
compared to the 2015/2016 instance of the course, if only marginally better.

The next limitation to consider is the fact that we have not adequately
measured the change in the quality of courses the students attended before
our course. This is especially important for the software engineering and
network-based systems courses, as we rely on the knowledge students
receive here to reason about security. According to the official study
program document, no significant changes have occurred in the curriculum
of these courses. To the best of our knowledge, no minor changes in the
teaching technique or the subject matter of the relevant courses have taken
place. However, it is difficult to assess if this is the case.

The final limitation related to the study is the lack of a larger dataset to
analyze. Fourteen threat models were examined from the 2015/2016 instance
of the course, and seventeen from the 2016/2017 instance, which is a
relatively small scale.

A limitation of our framework is its inherent complexity, which requires
additional effort to prepare the course. For the traditional classroom, the
teacher prepares course materials that can then be used in the classroom. Our
approach involves the construction of preparatory materials, in addition to
the case studies that are examined in the classroom. Furthermore, an effort is
required to align the preparatory materials, the case studies, and the security
analysis method. As with regular course materials, the preparatory materials
need to be periodically updated to stay relevant.

To address the complexity limitation, we have utilized vulnerable software
packages (VSPs), as described in Section 3.2.3. By enhancing our framework
and integrating a VSP into the formulated labs, we drastically reduced the
amount of time it takes to prepare a lab using our framework. Initially, before
enhancing our framework, the lab constructor needed to invest significant
time (approximately a week) to build the case study, the assignments and
related code samples for the lab covering the topics of injection attacks. With
the Juice Shop application, the build time was reduced to a single day, which
included the time it took to find and explore the VSP. Additionally, the
preparatory materials were constructed by combining resources from the
Juice Shop website and the OWASP Top 10 list (Stock et al., 2017).

A significant limitation of this enhancement is the relative shortage of VSPs.
While web technologies and common web security issues (Stock et al., 2017)
are covered by several high-quality VSPs (Siles and Bennetts, 2019),
domains such as mobile or embedded application are scarcely covered.
While elementary code samples and toy projects can be found, sophisticated

63

solutions reaching the quality of the OWASP Juice Shop project are few and
far between.

3.4.4 Implications
The goal of our SDA framework is to contribute to the development of a
security-aware workforce of software engineers. As part of our secure
software engineering course, we designed a novel framework based on the
hybrid flipped classroom and case study analysis to teach students the
practice of security design analysis. We evaluated our new approach by
comparing the quality of the threat model documents produced by the
2015/2016 student group (who attended traditional labs) with the threat
model documents produced by the 2016/2017 student group (who attended
labs created using our proposed framework). Our results show that the
student teams of the framework instance of the course have achieved better
overall correctness and completeness on the threat identification task
compared to the student teams of the traditional instance of the course. The
applied statistical test shows that the obtained differences are statistically
significant. Therefore, labs created through the SDA Training Framework are
the preferred alternative, as opposed to the traditional classroom, when it
comes to teaching SDA.

A significant limitation of the framework is its complexity, which we tried to
address by enhancing the framework using vulnerable software packages.
Vulnerable software packages enable trainers to demonstrate security issues
in a real-world context and allow trainees to apply their security knowledge
to both perform attacks on and build defenses in a real-world software
system. Thus, vulnerable software packages serve the first principles of
instruction (Merrill, 2002) to increase trainee learning. By utilizing these
tools, we have reduced the effort it takes to develop a laboratory exercise
through our framework. Additionally, we have increased the overall quality
of the lab by replacing a case study description and vulnerable code samples
with a fully functioning application that contains vulnerable code.

The framework proved useful for the fourth-year undergraduate students of a
software engineering university program. However, we argue that the
framework is also useful for employed software engineers, as most of the
fourth-year students find employment right after finishing our course on
software security. Therefore, the framework presented in this Section can be
used to formulate a one-day workshop for a conference, a set of training
exercises for software developers, as part of a corporate training program, or,
as we have demonstrated, a set of labs for a university course. While the
framework is designed for teaching security design analysis, the target of the
SDA can be anything from a web-based system to a hardware chipset.

64

65

4 SATMUS Process
This Chapter details our solution for the second research question and the
second segment of the hypothesis listed in Section 1.4. Our goal is to define
a security design analysis method which:

 is compatible with agile software development practices,

 provides accountability of work,

 is accompanied with adequate guidance for method execution and
adaptation to different contexts, and

 offers security assurance for the developed software and an
incrementally updated threat model.

We conceptualize an SDA method called SATMUS, which stands for the
Security Analysis and Threat Modeling of User Stories. SATMUS represents
an adaptation of the traditional threat modeling method (Shostack, 2014b) to
the context of software development following the Scrum framework
(Rawsthorne and Shimp, 2011). SATMUS examines each user story to
derive actionable low-level design decisions and implementation tasks from
ambiguous and generalized high-level security requirements. Furthermore,
SATMUS aims to address the applicability issues which hamper the adoption
of SDA in agile development, identified in (Luburić et al., 2018a).

Section 4.1 defines the SATMUS process, where we examine the methods
inputs, outputs, and composing activities. Here we explain how the process
integrates with Scrum development and what part the different organizational
roles play in SATMUS. Section 4.2 discusses how to tailor SATMUS to
contexts with different levels of security requirements for the developed
software. Here we illustrate two case studies of SATMUS adaptation to the
workflow of two different software vendors. In Section 4.3, we demonstrate
the execution of the tailored SATMUS processes on real-world user stories
supplied by the two case study vendors, as well as the comparative analysis
which examines how SATMUS addresses the applicability issues in (Luburić
et al., 2018a), compared to similar methods proposed in the literature.
Finally, Section 4.4 discusses the outcome, as well as the limitations and
implications of the presented work.

4.1 Process Structure
This Section starts with an overview of the SATMUS process, presenting its
purpose, inputs, and outputs in Section 4.1.1. Next, in Section 4.1.2, we
describe the process in detail, analyzing each of its activities.

66

4.1.1 Overview
The goal of the SATMUS is to identify weaknesses and vulnerabilities in the
developed software system that an attacker might exploit. SATMUS
analyzes user stories to identify security-related issues concerning either the
feature represented by the examined user story or an asset with which the
feature interacts. Consequently, SATMUS translates high-level security
requirements (e.g., protecting the confidentiality of personal data and user
credentials) into actionable, low-level design decisions and tasks.

To integrate SATMUS into the Scrum development process, we utilize the
Definition of Ready (Power, 2014). The Definition of Ready is a set of rules
that help agile teams remember all the things that need to be done before the
development team can start implementing a user story. We expand the
Definition of Ready with a single task that states that SATMUS analysis
must be conducted for each user story. Therefore, SATMUS executes for
each user story that is in the product backlog, before adding the user story to
a sprint backlog and before any code is written. To minimize wasted work,
SATMUS should be among the final tasks conducted as part of user story
preparation, to analyze a mature user story that is unlikely to change
significantly. We also utilize the Definition of Done, which contains a list of
tasks that must be completed for each user story before it is considered
finished (Rawsthorne, 2010). As it is possible for a user story to be
misinterpreted before developing the code, we add a task to the Definition of
Done that requires each story to be reevaluated for security considerations, to
ensure that the implemented code is aligned with the initial security
assessment.

Figure 7 presents the SATMUS process overview, noting the inputs and
outputs of the process.

Figure 7 SATMUS process overview

67

Inputs

The primary input to the SATMUS process is the user story. User stories are
a mechanism for describing features provided by the software system, which
bring value to the user of the software and the business running it (Cohn,
2004). The elements of a user story are:

 The software user role, for which the feature is being developed;

 The goal, which describes what the user wants to achieve;

 The value, which explains why the user wants to achieve the goal;

 The acceptance criteria, a list of conditions and requirements under
which the user story is considered complete.

Based on these elements, the user story is often described through the
template which has the following structure: As a <role> I want <goal> so
that <benefit>, where the acceptance criteria follow as a list of items that
need to be met. An example user story might be:

“As a system administrator, I can block user accounts from accessing the
system, so that I can stop suspicious activity.

Acceptance criteria:

1) I can block any user with lower privilege than me;

2) I can ban multiple users at once;

3) Blocking users should be quickly achieved (e.g., with one click).”

In the previous example, the acceptance criteria contain a mixture of
functional requirements (the first and the second acceptance criteria) and
non-functional requirements, such as usability (the third acceptance criteria).
In general, acceptance criteria can consist of anything the product owner and
development team deem necessary to specify explicitly. Apart from the
distinct functional requirements, this can include the need for specialized
analysis, testing, or documentation. Standard unit and integration testing
might be part of the Definition of Done (Rawsthorne, 2010). However,
performance testing or security testing might be reserved for high priority
features and listed in the acceptance criteria for the appropriate user stories
(Leffingwell, 2010).

It should be noted that assets that the new code will manipulate, and its
environment are important for SATMUS, as from these we derive security
requirements for the examined user story. They are not presented as an input
here, as they are an integral part of the SATMUS process, determined during
process tailoring, as discussed in Section 4.2.

68

Outputs

One possible outcome of applying SATMUS to a user story is the
introduction of additional, security-relevant, acceptance criteria. These might
include requirements for the software (e.g., Arriving XML documents must
be validated against an XML Schema; The maximum image upload size can
be 20 megabytes) or for the organization developing the software (e.g., The
feature code needs to undergo a team-wide security code review; The feature
endpoints need to be tested against fuzz testing tools).

Another output of SATMUS can be a spike (Knaster and Leffingwell, 2018).
A spike represents activities such as research, design, and prototyping. The
goal is to gain the necessary knowledge to sufficiently understand a
requirement, increase the reliability of a story estimate, or understand the risk
of a technical approach. As a result of SATMUS, the Scrum team might
realize that a vulnerability exists, but may not know how to mitigate it.
Likewise, the team might understand that a specific security control needs to
be integrated into their solution but might not possess the knowledge about
which provider of the security control is tried and tested, and which
configuration offers the most security. For these situations, a research spike
is issued. For example, when a need for an anonymization function for
personal data is discovered, the team conducts a research spike to find out
how to develop and use such a feature.

Finally, during the security analysis, the team might discover that additional
work needs to be done to introduce or modify a security control, change the
infrastructure, or perform any significant development to increase the
security posture of their solution. Therefore, SATMUS can output new user
stories directly focused on improving the security of the system. An example
of this might be the development of an infrastructure component for input
validation of data specific to the application domain.

4.1.2 Internals
The SATMUS process flow, including its composing activities, is illustrated
in Figure 8. The first set of activities, Estimate Impact4, is concerned with
calculating the security impact of the user story (which can be high, medium,
or low), to justify the investment of effort for further security analysis. Low
impact user stories are not analyzed further, as they do not introduce a
significant security risk. User stories of medium and high impact undergo the
Threat Model set of activities. Furthermore, external experts assist the Scrum
team for high impact stories, as these usually map to critical security

4 The use of italic in this Section signals that this is an activity illustrated in Figure 8.

69

requirements. The goal of this set of activities is to identify any potential
security issues concerning the user story, incrementally update the threat
model for the component which the user story expands, and define
requirements for mitigations. Finally, the evidence is documented to:

 Ensure that the SATMUS process was conducted;

 Fulfill any potential regulatory compliance;

 Issue new tasks (e.g., user stories, research spikes) to resolve any
identified security issues.

Figure 8 SATMUS process internals

Determine Affected Assets

The process starts by determining assets that will be affected by the code that
will implement the user story. The term asset is often ambiguous and
generic, most often defined following the ISO definition as “anything that
has value to an organization” (Disterer, 2013). In the context of our method,
we describe an asset as follows:

 An asset is a software object (e.g., data, function, UI component,
service, an application server) manipulated by the software system
under development, which has a security requirement.

This definition, which is a subset of the ISO definition, is suitable for our
context because:

 It is only concerned with concepts related to software engineering
and the system under development, which makes it more
understandable to the people practicing the process;

70

 It focuses only on objects that have security requirements, enabling
reasoning about security throughout the rest of the process.

Organizations that develop software that has regulatory compliance
requirements should consider constructing an asset inventory that notes the
security requirements for each asset. In (Luburić et al., 2018b), we have
proposed a conceptual model for an asset inventory, that maps assets to
security goals (i.e., confidentiality, integrity, availability). When an asset has
a security goal, the owner of the asset needs to determine the security goal
value (on a scale of 1 to 3) and provide the reasoning behind this value (e.g.,
references to standards or best practice documentation).

With the aid of such resources, software engineers can perform checklist
verification to make sure that vital assets were not forgotten during this step.
Organizations that have little or no explicit security requirements can rely on
the expertise and agility of their Scrum team and their stakeholders to
understand and identify which assets have quality security requirements.

Examine Environment

Another significant aspect to consider is the environment in which the
developed feature will reside.

For example, a piece of code that realizes a user story might manipulate user
passwords, cryptographic keys, or personal data, making it highly sensitive
code. However, if this code is accessible only to internal services, sheltered
by layers of security controls where no user input arrives unvalidated, then
the user story might have fewer security implications than first assumed.
Likewise, while code accessing a database might not work with sensitive
data, it can raise a significant security issue if, for example, there exists an
SQL injection vulnerability. Therefore, it is essential to examine the context
in which the code that realizes a user story will operate.

The primary goal of this activity is to determine if the data supplied to or
resulting from the new code crosses a trust boundary and what the nature of
that boundary is (Myagmar et al., 2005). For example, publicly available
APIs that accept user input have more significant security implications than
code that interacts with a service running under the same privilege on the
same machine. Likewise, code that accesses a database or offers a critical
system function has higher security requirements than code that does not
handle sensitive data and provides a low priority service.

Finally, it is vital to examine how the new user story changes the
environment, as the introduction of new data flows or entry points can
increase the attack surface and produce new threats to the environment.

71

Calculate User Story Impact

The purpose of the following step is to funnel the security-related
development effort to the most sensitive parts of the system. Threat modeling
requires effort and thoroughly performing it might entail more effort and
expertise than the Scrum team possesses. Therefore, we propose an activity
that determines whether a user story requires such an investment.

Each organization must define the calculation algorithm for its context, based
on their internal resources and the security requirements for their product.
This calculation should consider:

 The assets affected by the user story;

 The environment in which the new code will run.

An example of such a calculation formula utilizes the asset inventory
presented in (Luburić et al., 2018b). The Scrum team determines the highest
security goal value from the list of affected assets (on a scale of 1 to 3). Next,
the team examines the environment and grades it on a scale of 1 to 3, based
on the following criteria:

1) When the new code does not interact with a human user and it does
not introduce new data flows.

2) When the new code interacts with an internal human user.

3) When the new code represents a security feature (e.g., cryptographic
module, access control module), or interacts with an entity external to
the software solution (e.g., Internet users, integrated external
systems).

For this example, the user story impact is calculated based on the formula
presented in Table 12.

Table 12 Sample user story impact calculation formula

Asset security
goal

Environment
1 2 3

1

Low Low Medium

2

Low Medium High

3

Medium High High

72

Regardless of the exact calculation algorithm, the output of this step
determines the amount of effort invested for further security analysis, where
the three general outcomes are:

 A user story has a low security impact, where no additional security
analysis is required;

 A user story has a medium security impact, requiring further security
analysis;

 A user story has a high security impact, requiring a detailed security
analysis, with a possible investment of resources from other parts of
the organization or experts from a different organization.

It should be noted that the Estimate Impact set of activities (Determine
Affected Assets, Examine Environment, and Calculate User Story Impact)
should introduce only a minor overhead to the development process. A
glance at the asset inventory and a brief discussion of the environment can
quickly determine what the impact of the user story is. As this is the part of
SATMUS that must be conducted for each user story, it must be quickly
finished.

Obtain Expertise

When a user story has high impact, additional resources need to be invested
to ensure that no significant security issues get introduced with the upcoming
code implementation. Ideally, this activity should be triggered rarely, as
security expertise in software development is hard to come by and is
expensive (Whyte and Harrison, 2010; Assante and Tobey, 2011).

Organizations building software with plenty of explicit security requirements
should consider obtaining a dedicated security team to support software
developers for high impact user story assessment (McGraw et al., 2018). A
less expensive alternative might be to hire security consultants (Poller et al.,
2017) to perform the threat modeling and train the Scrum team on how to
mitigate any issues that might arise from it. One caveat regarding this
approach is that external consultants might understand the security of a
technological stack or problem domain, but they cannot fully grasp the inner
workings and intricacies of the specific software developed by the
organization. Alternatively, the Scrum team should contact senior developers
and architects within the organization to aid with the threat modeling.

As part of this activity and before expending significant resources, a research
spike might be called for to gain a better understanding of the problem and
the best solutions for it.

73

Analyze Module

When a user story becomes the Scrum team’s focus, software code and
design level details are discussed so that the whole team can get an
understanding on what tasks need to be executed to fulfill the user story.
During this discussion, software components, functions, and control flows
are examined in an informal and unstructured manner. When a user story has
a high or medium impact, our approach expands this discussion by analyzing
the module from a security perspective. The purpose of this step is to define
the entire attack surface and ensure that no threats go unnoticed and that a
suitable defense in depth can be planned.

Analyzing the module usually entails examining design artefacts such as
UML activity and sequence diagrams or data flow diagrams. Depending on
which SDA method is used, a suitable representation can be selected to
support the next step, which is threat analysis. For STRIDE-based SDA, a
common approach is to utilize data flow diagrams (Shostack, 2014b). Here,
the team needs to identify all data stores, flows, and processing nodes
affected by the proposed design and code changes. Flows which interact with
entities external to the jurisdiction of the Scrum team (e.g., outside users,
third-party services, components developed by other Scrum teams) are
especially important, as they cross significant trust boundaries.

An issue arises during this step if a data flow (especially one which contains
assets of high security goal values) leaves the components of the system with
which the Scrum team is familiar (Cruzes et al., 2018; Tuma et al., 2018). If
this is the case, a Scrum team member (e.g., Scrum master) or a security
team member, if available, need to consult with other teams and expand the
data flow diagram to include their components. This is especially important
when new assets are introduced to the system, as this can affect the threat
models of the other teams. As Scrum favors face-to-face communication, the
organization should encourage and facilitate such knowledge transfer.

The team builds the initial threat model at the start of development and
incrementally updates it with each impactful user story. Therefore, data flow
analysis for a specific story might entail a small tweak to the existing data
flow diagrams (DFDs), or it might not even require modification to these
artifacts (when the new story does not change the current flows).
Importantly, data flow diagrams need to be concise and accurate, focusing on
trust boundaries (e.g., between the application and the OS, between internal
and external services, between human users and the software). Data flow
minimization, as described by Tuma et al. (2017), aids developers in
constructing more concise diagrams that are less prone to the threat
explosion problem. For example, two communicating processes where there

74

is no trust boundary between them can be merged into a single process.
Likewise, when two nodes have multiple data flows between them, they can
be merged into a single flow, which gains the criticality of the most critical
initial flow.

Analyze Threats

Threat analysis, as the core activity of SDA, largely depends on the selected
SDA method. For the example above, we utilize STRIDE threat discovery on
the constructed DFDs. We choose STRIDE as the basis for this step due to
the method’s relative maturity and prevalence, as described in Section 1.3.3.
Once applicable threats are determined, threat decomposition takes place.
The goal of threat decomposition is to identify attacks that realize a threat
and the vulnerabilities that enable attacks so that mitigations can be planned
during the next step.

Threat analysis, and especially threat decomposition, is the most challenging
activity for Scrum teams, as it requires security expertise, which developers
usually lack (Dhillon, 2011; Morrison et al., 2017). Looking at SATMUS,
most of the activities discussed so far can be performed with no or simple
training, as Estimate Impact activities and Analyze Module requires expertise
in software engineering, while threat discovery can be achieved following a
simple algorithm. While threat decomposition can be performed by
identifying misuse cases (Alexander, 2003; Sindre and Opdahl, 2005) and
creating control flows to stop them, this can be practiced successfully only
when aided by a security mindset and software security knowledge
(Shostack, 2014a; Schoenfield, 2015). For example, a software developer
lacking security expertise might realize that an authentication mechanism can
be bypassed because of poorly-designed control flow in the existing code but
might not understand what cross-site scripting is.

To combat this issue, organizations need to invest in dedicated training.
While this is in contrast with our Simplicity requirement, some security
training is unavoidable. As pointed out by Poller et al. (2017), organizations
rely on developers to produce quality software, fulfilling quality security
requirements alongside other “ilities” (e.g., maintainability, usability)
without dedicated training, leading ultimately to the production of insecure
software. Therefore, organizations should invest research spikes conducted
by their senior developers (with the aid of a security team if one is available)
or hire external security experts to produce and administer dedicated
software security training. The training needs to be related to the product’s
context, considering the technologies used to create the product and any
explicit security requirements (e.g., derived from standards and regulations).

75

Here the SDA Training Framework described in Chapter 3 can be utilized to
optimize the training program and achieve better learning outcomes.

An alternative or supplemental approach is to employ attack pattern catalogs,
which aids threat decomposition by providing example attacks and
vulnerabilities that can be mapped to the context of the developed product.
Several public catalogs exist, such as the Common Attack Pattern
Enumeration and Classification – CAPEC (Barnum, 2008), the Common
Weakness Enumeration – CWE (Martin, 2007), and resources provided by
OWASP (Stock et al., 2017). However, such catalogs can be unwieldy as
they contain many entries that might not be relevant to the Scrum team’s
context.

For the construction and maintenance of the threat models, the Scrum team
might benefit from a tool like the freely available Microsoft Threat Modeling
Tool (Microsoft, 2019). Apart from the diagramming functionality, the tool
offers a knowledge base that generates threats for the given diagrams.
However, the tool is susceptible to the threat explosion problem, where
dozens of (possibly vague) threats can be generated for even a basic diagram,
especially when relying on the knowledge base offered by the default
templates (Sion et al., 2018). Organizations should consider constructing
their own knowledge base for the given technological stack, even if it is less
comprehensive, as it is better to generate a few relevant threats than many
vague threats (Cruzes et al., 2018).

When not aided by an attack pattern catalog or tool, the threat decomposition
step is usually conducted during one or more brainstorming sessions
(Ransome and Misra, 2013; Shostack, 2014b; Schoenfield, 2015). Given the
exploratory nature of the problem, threat decomposition can be time-
consuming, where unlikely attacks can be discovered indefinitely, and there
is no clear way to determine when all the critical threats have been
discovered. Therefore, organizations need to determine the amount of effort
and time dedicated to threat decomposition, based on the user story impact,
to introduce a stopping condition (Schoenfield, 2015; Luburić et al., 2018a).

Specify Mitigations

Once threats are decomposed, and attacks are identified, mitigations can be
analyzed to resolve potential security issues. At this point, new user stories
can be created, a research spike can be planned, or additional acceptance
criteria can be issued for the examined user story. For each identified attack
there should be explicit mitigation (either already in place, for example, an
infrastructure component, or planned). If it is not possible to identify
mitigation for an attack, a research spike is expected.

76

If misuse cases were utilized, additional acceptance criteria could be defined
to test if a misuse scenario was prevented. Likewise, acceptance criteria can
be expanded to include specialized testing and code review (manual or aided
by security tooling).

New user stories arise when a need for a new component (usually in the
infrastructure of the system) is discovered. The implementation of a new
access control model, the use of a cryptographic module, or a need for an
enhanced event logger are all examples of features that can be described by a
new user story.

The goal of research spikes can be to obtain a better understanding of threats
and attacks or a prerequisite for the successful implementation and testing of
a new user story or acceptance criteria.

It should be noted that mitigation analysis does not entail risk analysis, so the
mitigations are not prioritized. While the Scrum team takes part in the whole
SATMUS process, prioritization of user stories and tasks, in general, is left
to the product owner and the management of the organization, rather than the
developers.

Document Evidence

The final step of the SATMUS process is the documentation of evidence.
The purpose of this step is to provide evidence that SATMUS took place, as
well as list any results of the analysis relevant for the organization.

Depending on the agility, relevant security requirements, the impact of the
user story, and general context of the organization, this step can have
significantly different outcomes. For example, an organization aiming to
comply with the IEC 62443-4-1:2018 standard (IEC, 2018a) can construct
templates for documenting the execution of the SATMUS process. Another
organization with less stringent security requirements can tag medium or
high impact user stories with the “security” tag to note which stories required
threat modeling.

4.2 Process Tailoring
The SATMUS process can have significantly different implementations for
different software vendors, for different software products constructed by the
same software vendor, or even for different sets of teams working on the
same software product. Software products require different levels of security,
determined by the purpose of the software, the functions and assets it works
with, and the context in which it operates (Schoenfield, 2015). While one
vendor might produce software with strict security requirements and a strong
requirement for security assurance, another vendor might have basic security

77

requirements for the developed software and no need for documented
evidence of security assurance.

In Section 4.2.1, we analyze the activities of the SATMUS process that are
most prone to change based on the security context of the developed
software. We then present two software vendors with significantly different
case study implementations of SATMUS and describe how the process is
adapted to their context. The differences between the software vendors
include organizational structure, the level of security requirements for their
software, and the domain in which their software operates. In Section 4.2.2,
we describe SATMUS tailored for a software vendor (“Vendor A”) that
produces software for industrial control systems for utility companies around
the world and has strict security requirements (both explicit and quality). In
Section 4.2.3, we present a SATMUS implementation used by a software
vendor (“Vendor B”) that produces management information systems for
businesses and has few security requirements that need to be fulfilled. For
each case study, we describe the context of the organization using SATMUS,
providing a brief description of the organization’s capabilities, their business
model, the goals of the software they produce and the security requirements
for that software. Next, we examine the specific SATMUS implementation,
where we describe how SATMUS is tailored for the given organization.

4.2.1 Tailoring Areas
When tailoring SATMUS to a specific organization’s context, there are
several areas of the process that can vary based on the required level of
security for the developed software, as illustrated in Figure 9.

Figure 9 Tailoring areas in the SATMUS process

78

Asset Inventory

Explicit security requirements are arguably more important than quality
security requirements, as they are required for regulatory compliance.
Furthermore, explicit security requirements are often concerned with easily
identifiable assets (e.g., user passwords, cryptographic keys, personal data).
Therefore, an organization with regulatory requirements for their software
can benefit from an asset inventory that Scrum teams can reference during
the Determine Affected Assets5 step of SATMUS. However, this inventory
can contain lightweight entries (e.g., the name of asset and asset owner) for
organizations that do not wish to complicate their implementation of
SATMUS and can even be a lightweight list of items (e.g., on a sticky note)
that each team defines for themselves in organizations that value flexibility
and speed of development over security.

While assets with explicit security requirements are easy to map to an asset
inventory, the asset inventory can and should contain assets with quality
security requirements, deemed of high value to the organization. Essential
services and business functions, trade secrets, and confidential documents
can all be listed in the inventory.

Finally, it should be noted that a sophisticated asset inventory needs an
inventory management process to maintain its contents and would benefit
from a tool dedicated for asset management.

Calculation Formula

The calculation formula is arguably the most important decision an
organization needs to make when implementing SATMUS, as the calculation
algorithm directly determines the amount of security-related effort that will
be invested during software development. Organizations that want to spend
less on security will aim to classify most user stories as low impact, while
organizations that wish to invest in security will classify most stories as
medium or high impact. Conducting threat modeling for each user story is
inefficient and does not bring value to the organization (Türpe and Poller,
2017).

The calculation formula can consider the importance of adequately
implementing the user story itself (e.g., important business function,
essential infrastructure component). This can be achieved by estimating the
loss value of a user story, as suggested by Pohl and Hof (2015). Loss value

5 The use of italic in this Section signals that this is an activity illustrated in Figure 8 and
described in Section 4.1.2.

79

represents the cost to the organization, should the user story functions or the
data involved in the user story get attacked.

An essential requirement for the calculation formula is simplicity, as Scrum
teams need to quickly and effectively measure the impact of each user story.
Ideally, the whole Estimate Impact set of activities should introduce a
negligible overhead to the development process, once teams are familiar with
the algorithm.

One example of the formula is presented in Section 4.1.2. An example of a
lightweight formula, suitable for a development team only concerned with
GDPR (GDPR, 2016) would be to rate user stories as having a medium
impact only if the new code manipulates PII or expands the attack surface
towards the Internet.

Internal Security Team

Organizations, especially those with regulatory requirements for their
software, need to consider investing in an internal security team. The internal
security team, in this context, is a team dedicated to the practice of secure
software engineering, examining arising threats, attacks, vulnerabilities, and
mitigations applicable to the software being developed. Importantly, this is
different from the security team that organizations usually have, which is
focused on corporate security measures (e.g., IT security of the internal
network, physical security) and general security management. As pointed out
by Poller et al. (2017), a security management team that is not familiar with
agile development practices can hurt security practices in development by
imposing inappropriate activities and documentation.

A team dedicated to secure software engineering practices can assist Scrum
teams for high impact user stories and can also take part in training
construction and administration, conduct or aid research spikes, and improve
the overall maturity of SATMUS, making it more valuable, usable, and
efficient.

Importantly, security experts are inherently less connected to the low-level
software components and their everyday evolution, when compared to
development teams that are designing and implementing them. Therefore, an
internal security team cannot continually manage and conduct SATMUS,
especially for large software products, which is why this duty must fall onto
the development teams that can do this efficiently and comprehensively.

Finally, organizations should consider constructing an informal security
advisory team. This team consists of developers, architects, and any
employees interested in software security. Members dedicate a portion of

80

their time (e.g., 6 hours a week) to learn about the latest security trends and
assist in the threat modeling of high impact user stories.

Underlying SDA Method

The security design analysis method defines the views of the system that
should be constructed and maintained as part of the Analyze Module step, as
well as the practices conducted on those artifacts during the Analyze Threats
step. Section 1.3.3 lists some of the various SDA methods that can be
integrated as the underlying SDA method for SATMUS.

Tools and Training

Efficient conducting of any process, SATMUS included, requires some
training to understand the steps and expected outputs of each activity.
However, dedicated training is necessary for the threat analysis activity,
especially the threat decomposition step. This type of training requires
security expertise to construct and conduct and needs to be updated regularly
with new attacks and mitigations as threats arise. Furthermore, it is not
enough to obtain general training on secure software engineering, as it brings
less value for developers than training relevant to their context (Bartsch et
al., 2011; Oyetoyan et al., 2016; Poller et al., 2017). Therefore, the training
should focus on the technology used by the Scrum teams, as well as the
context into which the developed software is delivered.

Dedicated training is crucial for the success of SATMUS, both for the whole
process and especially for security analysis. Oyetoyan et al. (2016) analyzed
two software vendors on the use of security-related activities in their agile
workflow. By interviewing different roles in the organization, they
concluded that proper training is essential for any security-related activity, as
skill determines whether it will be conducted. While security bulletins, blogs
and e-learning can be a cost-efficient way to distribute security knowledge,
especially to introduce new threats, more involved training is required to
achieve a mastery of the basics (Kassicieh et al., 2015). Dedicated training
should take the form of interactive workshops, especially when starting with
SATMUS. As examined in our previous work, published in (Luburić et al.
2019a) and described in Chapter 3, the hybrid flipped classroom and case
study analysis produces good results for this type of training.

If the organization chooses to utilize attack pattern catalogs dedicated
training can be replaced in part with a process for constructing and
maintaining the knowledge base that will aid threat decomposition. Tools for
threat modeling and security design analysis, such as (Goodwin, 2018;
Microsoft, 2019), can support the use and maintenance of this knowledge

81

base. The use of threat libraries and attack pattern catalogues can increase the
value of the generated threat models (Dhillon, 2011).

Evidence Structure

The final consideration regarding the adaptation of SATMUS is related to the
structure of the evidence produced by the security analysis.

Evidence for a user story of low impact might be in the form of an oral
statement from the product owner or the most senior developer, stating that
the Estimate Impact activities were conducted and that the impact was
deemed as low. Organizations with explicit security requirements might
supplement this statement with a list of identified assets and notes regarding
the environment of the user story.

Evidence for user stories of high impact in organizations with lax security
requirements might contain a list of planned mitigations, while organizations
with regulatory compliance needs might document every part of the threat
model in detail, to be used as a form of security assurance, as examined in
our previous work (Luburić et al., 2018b).

The bottom line is that the evidence documented at the end of SATMUS
should be synced with the needs of the organization, be it to fulfill regulatory
compliance, or the needs of its customers. Furthermore, it should facilitate
accountability of work so that security work is visible both for planning and
auditing needs.

4.2.2 Case Study – Industrial Control System Software
Development

With the rise of Industry 4.0, industrial control systems are increasingly
benefiting from software solutions that automate their operations. As these
solutions often play a critical role in the functioning of factories and parts of
a society’s critical infrastructure, they have become a target of the most
sophisticated cyberattacks that threaten businesses, governments, and human
lives (Kobara, 2016).

Here we describe SATMUS tailored for Vendor A, a company that produces
software for industrial control system for utility companies around the world.

Organization Context

Vendor A has a workforce of about 500 software engineers (including
architects, coders, and testers), organized into 50 Scrum teams. Additionally,
Vendor A has a dedicated internal security team that covers a broad spectrum
of security-related activities. The vendor’s customers are spread across the
globe.

82

Vendor A produces a set of software products for the utility companies.
Starting from the baseline product, the software is customized for each
customer of Vendor A and is deployed on the premises of the utility
company, where the customer’s personnel operates it. The software is not
directly accessible from the Internet. It is configured and maintained by
system administrators, used by utility controllers, and integrated with several
other systems (e.g., remote terminal units in the field, customer’s internal
information systems, geographic information systems).

Utility companies are a priority target for sophisticated attackers like
cyberterrorists. To combat this, organizations for standardizations and
governments have issued various standards and regulations with which the
utility company must be compliant with, some of which directly address the
software used by the utility company, such as NIST SP 800-53 (Force and
Initiative, 2013), NERC CIP (NERC, 2019), IEC 62443-4-2 (IEC, 2018b).
Therefore, the software produced by Vendor A must adhere to a broad set of
explicit and quality security requirements. Furthermore, the fulfillment of
these requirements needs to be adequately documented, to enable the
customer to prove their regulatory compliance concerning the purchased
software.

Tailoring Decisions

Asset Inventory: Vendor A utilizes an asset inventory which details the name
and type of the asset, as well as its security goals (i.e., confidentiality,
integrity, availability) and the priority of each security goal (on a scale of 1
to 3), as presented in (Luburić et al., 2018b). Vendor A expands the model
by including references toward the sources of these security requirements
(e.g., entries in an industry standard, regulation, or best practice document).
Furthermore, the asset inventory contains entries related to critical functions
and services, whose protection is paramount to ensure the reliability of the
core system.

The entries in the asset inventory are split into several groups, where each
Scrum team is made aware of which parts of the inventory are relevant for
them. The product owner manages the inventory for each team and
immediately communicates any updates of the inventory to the development
teams.

Calculation Formula: Once affected assets are determined, and the
environment is examined, the calculation formula takes as input two
numbers, following the example given in Section 4.1.2, Calculate User Story
Impact. The first number is the highest security goal value in the list of
affected assets (on a scale of 1 to 3). The second number is related to the
environment and can have the following values:

83

1) When the new code does not interact with a human user, does not
introduce new data flows, and the user story does not represent an
essential feature (as determined by the product owner).

2) When the new code interacts with an internal human user or the user
story represents an essential feature.

3) When the new code represents a security feature (e.g., cryptographic
module, access control module), or interacts with an entity external to
the software solution (e.g., remote terminal units, remote users
accessing the system, integrated external systems).

Based on these two numbers, the impact of the user story is calculated by
using Table 12.

Internal Security Team: Vendor A maintains an internal security team, with
members dedicated to assisting Scrum teams with high impact user stories.
Additionally, the security team aids product owners in managing their asset
inventories.

Furthermore, the internal security team constructs and administers dedicated
security training for threat analysis utilizing the SDA Training Framework
presented in Chapter 3, as well as the whole SATMUS process, driving its
continuous improvement.

Finally, the security team organizes the security advisory forum, a quarterly
event where representatives from every team join in on the discussion about
software security. The security team presents new threats, attacks, and
mitigations, and highlights security problems and solutions identified and
implemented by the different teams in the organization, facilitating the
knowledge transfer between participants.

Underlying SDA Method: Vendor A relies on STRIDE-based SDA that
examines data flow diagrams, as described in Section 4.1.2.

Tools and Training: Dedicated training is constructed and updated by the
internal security team using the SDA Training Framework from Chapter 3.
The primary security design analysis methods include STRIDE-based threat
analysis (Shostack, 2014b) and misuse case identification and analysis
(Sindre and Opdahl, 2005). The developed software acts as the primary case
study for analysis, to present relevant threats, attacks, and mitigations. The
internal security team constructs and distributes preparatory materials
through an e-learning platform and holds periodic workshops to apply the
knowledge from the preparatory materials to the case study. Training is
readministered if the Scrum team detects a need, vulnerabilities are
discovered in production, or if there is a significant update in the training
materials. The security team utilizes attack and vulnerability catalogs, such

84

as CAPEC (Barnum, 2008) and CWE (Martin, 2007), to hand pick relevant
entries and construct easy-to-consume training materials from them. They
integrate this knowledge into a template for the Microsoft Threat Modeling
Tool (Microsoft, 2019), which the development teams utilize to construct
their threat models and receive feedback about the most critical threats.

Evidence Structure: Finally, templates are provided for documenting the
execution of the SATMUS process, which is done by the product owner. The
templates are constructed to fulfill the requirement of the IEC 62443-4-
1:2018 standard, namely SR-2: Threat modeling and SD-1: Secure design
principles. For low impact user stories this entails a note that SATMUS was
conducted, while medium and high impact stories include data flow diagrams
and lists of decomposed threats and mapped mitigations, as well as
references to SATMUS outputs.

4.2.3 Case Study – Management Information System
Software Development

Management information systems aid organizations in coordinating,
controlling, and analyzing information in an organization, to provide support
for decision-making. Their use is wide-spread, and they present a core pillar
for all modern organizations (O'Brien and Marakas, 2006). From the security
perspective, they are less critical than industrial control systems, but due to
the sensitivity of the data they handle (e.g., trade secrets, PII) they can be a
viable target for cybercriminals.

Here we present the SATMUS implementation used by Vendor B, a
company that produces management information systems for businesses.

Organization Context

Vendor B has a workforce of about 50 software engineers (including
architects, coders, and testers), organized into 8 Scrum teams. The vendor’s
customers are always from the European Union.

Vendor B produces software solutions to support management information
systems. Each solution is built from the ground up and is deployed on the
premises of the customer. The solutions are usually developed by three to
five Scrum teams at a time, where teams need to be agile and move from
project to project quickly. Most solutions have at least one set of endpoints
that are accessible from the Internet, while most of the code is dedicated to
internal data and process support.

Customers of Vendor B are small and medium business with medium-scale
databases. They are low to medium priority targets for cyberattackers, as
often the only target worth their engagement is PII. The primary regulation

85

that affects these businesses is GDPR. Therefore, the software produced by
Vendor B must explicitly protect personal information. Furthermore, as the
Internet presents an attack surface with practically infinite attackers, some
quality security requirements are needed to protect the customer from chaotic
attackers, as well as corporate sabotage.

Tailoring Decisions

Asset Inventory: For each product, Vendor B maintains a simple list of
GDPR-relevant data assets, including a name and a brief description of each
asset. The list is printed next to each whiteboard where sprint planning
occurs.

Calculation Formula: The impact of the user story is calculated based on the
following three questions:

1) Will the new code manipulate assets from the inventory?

2) Will the new code directly interact with users?

3) Is the new code a security control?

If the answer to 1 and 2 is yes, the user story impact is Medium. If the
answer to 3 is yes, the user story impact is also Medium. In all other cases,
the user story impact is Low. High impact user stories do not exist in the
current context of Vendor B. The product owner maintains the asset
inventory.

Internal Security Team: Vendor B does not maintain an internal security
team. The most senior developers are tasked with identifying and prescribing
security practices for design and development.

Underlying SDA Method: Like Vendor A, Vendor B utilizes STRIDE-based
SDA that examines data flow diagrams, as described in Section 4.1.2.

Tools and Training: Vendor B does not maintain an internal security team
and instead annually sends members of the development teams to application
security-related workshops and conferences. Employees who attended are
then tasked to construct training materials that present the most relevant
knowledge from the conference for the context of the organization. Time is
set aside every sprint for team members to spend on improving their software
engineering skill, which must be focused on security at least once per
quarter.

Evidence Structure: User stories with medium impact are tagged as
“security”. After SATMUS completes for these stories the outputs of
SATMUS are referenced in a note tied to the examined story (if the output is
a research spike or a new user story).

86

4.3 Process Evaluation
In this section, we present our evaluation of the SATMUS process.
Following the results of the systematic literature review on security threat
analysis methods (Tuma et al., 2018), we utilize the two most common
evaluation methods for security analysis techniques - comparative analysis
and case study analysis.

In Section 4.3.1, we refer to our previous work (Luburić et al., 2018a), and
we examine how SATMUS compares to the Scrum security requirements
engineering techniques found in literature, concerning the Simplicity,
Accountability, and Guidance requirements (examined in Section 2.2). In
Section 4.3.2, we present a set of user stories from Vendor A (described in
Section 4.2.2) and detail how their version of SATMUS executes and what
are the outcomes of this analysis. We perform a similar exercise in Section
4.3.3, where we detail the process of applying SATMUS to a set of user
stories from Vendor B. These case study analyses both evaluate our process
as well as offer guidance for the utilization of SATMUS.

4.3.1 Comparative Analysis
In (Luburić, 2018a), we analyzed the literature to extract requirements for
our process to maximize its real-world applicability. To reiterate, the
requirements are:

1) Simplicity – The security analysis technique should not mandate the
introduction of additional types of documentation or job roles.
Additionally, the method should require as little training as possible
to practice effectively;

2) Accountability – The security analysis technique should be integrated
into the standard agile development workflow and should produce
visible and quantifiable action items;

3) Guidance – The security analysis technique should be fully
documented, offering illustrative examples of its use, as well as
advice for integration into different real-world contexts.

Furthermore, we examined how different Scrum SDA methods fulfilled these
requirements, as described in Section 2.2. Table 13 presents our previous
results and adds SATMUS to provide a comparative analysis. Here we
summarize the extent to which each method has achieved the goals of
Simplicity, Accountability, and Guidance.

87

Table 13 SATMUS compared to different Scrum SDA techniques in relation to
Simplicity, Accountability, and Guidance

Method Simplicity Accountability Guidance

SATMUS Partial Full Full

Abuser Stories
(Peeters, 2005)

Full Partial Partial

SEAP
(Baca et al., 2015)

Partial Full Insufficient

Secure Scrum
(Pohl and Hof, 2015)

Full Partial Insufficient

Security Backlog
(Azham et al., 2011)

Partial Full Partial

S-Scrum
(Mougouei et al., 2013)

Full Insufficient Insufficient

Agile Sec. Framework
(Singhal, 2011)

Insufficient Full Partial

Sec. assurance case
(Othmane et al., 2014a)

Insufficient Full Partial

VAHTI-Scrum
(Rindell et al., 2015)

Insufficient Full Partial

Regarding Simplicity, we believe we have partially fulfilled this requirement.
While our method is flexible regarding new roles (the internal security team
is optional) and documentation structure (evidence can be lightweight, as
well as the asset inventory), we cannot avoid the need for some dedicated
security training or the integration of tools to supply the security knowledge.
A checklist approach that replaces the need for the training is feasible if
attack pattern catalogs are selected and prepared. However, this introduces a
new document and a process for maintaining and updating it. Therefore, our
recommendation is to invest in dedicated security training, especially that
which is constructed through the SDA Framework described in Section 3.

Regarding Accountability, we believe we have fulfilled this requirement
entirely. Our process has actionable outputs and clear steps that are
conducted by the Scrum team. The only caveat is the threat decomposition
step of the threat analysis activity, which lacks a concrete stopping condition.
Therefore, it is our recommendation to timeslot this activity, where time is
invested into threat decomposition depending on the impact of the examined
user story.

Regarding Guidance, we believe we have fulfilled this requirement entirely.
Section 4.1 documents our process, offering descriptions of the inputs and
outputs to the process, as well as details regarding each activity.
Furthermore, we describe how to tailor the process to different real-world
contexts, and two case study implementations in Section 4.2, noting

88

significant decisions that need to be made when implementing SATMUS in
the organization. Finally, in Section 4.3.2 and 4.3.3, we present examples of
SATMUS execution on several real-world user stories.

Comparing SATMUS to other SDA techniques, our method stands out
concerning the Guidance requirement. Furthermore, SATMUS is the only
technique apart from SEAP that achieves full Accountability while being
able to address the Simplicity requirement partially.

4.3.2 Vendor A Case Study Analysis
This Section illustrates the execution of SATMUS, as defined in Section 4.1
and augmented in Section 4.2.2. Here we execute SATMUS for the user
stories Introduction of Personally Identifiable Information and Service-to-
Service Password-Based Authentication.

Introduction of Personally Identifiable Information

The examined user story has the following text:

“As a utility controller, I want to manage maintenance teams so that I can
track and assign available teams to handle and fix utility outage incidents.

Acceptance criteria:

 CRUD operations for maintenance teams and team members,
following the agreed upon data model;

 Ability to examine and search for all available maintenance teams;

 Ability to assign available teams to utility outage incidents.”

Determine Affected Assets: The Scrum team goes over the part of the asset
inventory relevant for them and notes that maintenance team member data,
which is personal data and therefore protected under GDPR (GDPR, 2016),
has the highest security goal value (a 3 for the security goal of
confidentiality). The Scrum team notes other assets affected by the user
story, as they will be mapped to the data flow diagrams.

Examine Environment: The new code will communicate with a database
over an object-relational mapper, where the code will be accessible to
internal non-administrative users (the utility controller). Based on this
information, and the calculation formula used by the organization, the Scrum
team grades the sensitivity of the environment as 2.

Calculate User Story Impact: The user story has a High impact, based on the
formula described in Table 12.

Obtain Expertise: The product owner contacts the internal security team to
confirm the impact of the user story. The security team confirms the result of

89

the calculation and representatives from both teams schedule a meeting
where most of the threat modeling shall be conducted.

Analyze Module: During the meeting, the team draws data flows on a
whiteboard, as presented in Figure 10. They discuss the use cases and map
the affected assets to the elements of the diagram.

Figure 10 Data flows of maintenance team member PII

As the product the Scrum team is working on is complex and developed by
dozens of other Scrum teams, system components and data flows exist with
which the analysis team is unfamiliar. In this case, the Replication Service
copies some of the content of the Operations Database to other parts of the
system. The problem is that the analysis team is unsure if it will copy the
new team member personal data. Therefore, the first output of this SATMUS
execution is defined, even before threat modeling completes – a research
spike which states that the data flow needs to be completed by consulting
with colleagues from other teams, after which a threat and mitigation
analysis needs to be conducted for any potential additions to the original
DFD.

Analyze Threats: The first step of threat analysis, threat identification, is
conducted following STRIDE (Shostack, 2014b). The team places focus on
the trust boundary between the system and the users (in this case, the utility
controller and database administrator) and the boundary between
components under the Scrum team’s jurisdiction and components which fall
under the jurisdiction of other teams (in this case, the replication service).
Each identified threat is decomposed through misuse cases and aided by the
security knowledge of both the Scrum team (obtained through dedicated
training) and the security expert. For each identified attack, the team notes
mitigations which exist in the system. Each unmitigated attack vector is

90

listed for mitigation analysis. In the context of the analyzed user story, two
threats are identified with unmitigated attacks. These include:

 Elevation of privilege, where a non-controller user that uses the same
UI as the utility controller can read team member data;

 Repudiation, where a database administrator can read the content of
the database without the system logging this action.

Specify Mitigations: As a result of the two discovered vulnerabilities, the
team plans mitigations. They issue two more outputs of the SATMUS
analysis – an additional acceptance criterion “CRUD operations of team
member data require access control checks for permissions tied to the utility
controller role”, as well as a new user story, which requires that logging of
database administrator actions, especially database reads of team member
data, needs to be carefully tracked.

Document Evidence: The team selects a member to fill the regulatory
compliance templates. The member notes the impact of the user story, draws
the examined data flow diagrams, lists identified threats and their
mitigations, and provides references to each output of SATMUS (the
research spike defined during data flow analysis and the new user story and
acceptance criteria outlined during mitigation analysis). Finally, the member
adds a note to the initially examined user story that references the new
document.

Service-to-Service Password-Based Authentication

The examined user story has the following text:

“As a utility company, I want to authenticate the utility management software
to relevant internal systems, so that I can protect my systems from rogue
services.

Acceptance criteria:

 The utility management system provides a username and password to
authenticate to the customer’s internal systems before every request;

 The password needs to be protected.”

Determine Affected Assets: The Scrum team goes over the part of the asset
inventory relevant for them and notes that passwords, a sensitive asset in any
system, has the highest security goal value (a 3 for the security goal of
confidentiality).

Examine Environment: The new code is a security control (i.e.,
authentication) and communicates with entities external to the software. The
Scrum team grades the sensitivity of the environment as 3.

91

Calculate User Story Impact: The user story has a High impact, based on the
formula described in Table 12.

Obtain Expertise: The product owner contacts the internal security team to
confirm the impact of the user story. The security team confirms the result of
the calculation and representatives from both teams schedule a meeting
where most of the threat modeling shall be conducted.

Analyze Module: During the meeting, the team draws data flows on a
whiteboard, as presented in Figure 11. They discuss the control flow and
map the affected assets to the elements of the diagram.

Figure 11 Data flows of service passwords

The main discussion is about protecting the passwords throughout their
lifecycle. The data flows need to be precisely mapped and understood to
identify all threats.

Analyze Threats: The team conducts threat identification following the
STRIDE method. They place focus on the trust boundary between the system
and the users (in this case, the integration administrator) and the boundary
between the developed software and other systems (to which the solution
authenticates). The Scrum team and the security expert perform threat
decomposition. For each identified attack, mitigations which exist in the
system are noted. Each unmitigated attack vector is listed for mitigation
analysis. In the context of the analyzed user story, two threats are identified
with unmitigated attacks. These include:

 Information disclosure, where any user with access to the machine
can read the password storage (passwords cannot be hashed, as they
need to be read by the integration service and supplied to the
customer’s systems);

92

 Repudiation, where all actions related to password manipulation need
to be logged for security monitoring purposes.

Specify Mitigations: The team issues two sets of outputs of the SATMUS
analysis. The first is two additional acceptance criteria (“Log all access and
changes to the password storage, including the identity of the action
executor” and “Establish access control on the password storage”). The
second is a research spike to determine how to best utilize cryptography for
protecting passwords at rest (without the option of using hash functions).

Document Evidence: The team selects a member to fill the regulatory
compliance templates. The member notes the impact of the user story, draws
the examined data flow diagrams, lists identified threats and their
mitigations, and provides references to each output of SATMUS (the
additional acceptance criteria and the research spike). Finally, the member
adds a note to the initially examined user story that references the new
document.

4.3.3 Vendor B Case Study Analysis
This Section illustrates the execution of SATMUS, as defined in Section 4.1
and augmented in Section 4.2.3. Here we execute SATMUS for the user
stories Calendar National and Religious Holidays, Employee Vacation
Monthly Report, and Support for Electronic Payment.

Calendar National and Religious Holidays

The examined user story has the following text:

“As an HR worker, I want to examine and enter national and religious
holidays in the corporate work calendar so that I can manage employee
vacation days.

Acceptance criteria:

 Introduce two types of events to the corporate work calendar
(national holiday and religious holidays);

 Expand event creation forms to include these types and automatically
set them to repeat each year.”

Determine Affected Assets: The Scrum team determines that no assets are
affected by the user story.

Examine Environment: The new code interacts with HR workers and is
contained in the calendar app. It does not generate flows which cross a
significant trust boundary.

93

Calculate User Story Impact: The user story does not introduce a security
control and, based on the previous two activities, it is deemed as having Low
impact. No further security analysis is conducted.

Document Evidence: The product owner confirms orally that the user story
does not require additional security considerations.

Employee Vacation Monthly Report

The examined user story has the following text:

“As an HR worker, I want to generate monthly reports that show which
employees have taken vacation days so that I can examine trends and aid
planning management.

Acceptance criteria:

 A new report type can be selected from the generate reports menu;

 The system creates a report according to the agreed-upon template.”

Determine Affected Assets: The Scrum team notes that the new code will
manipulate personal information of employees.

Examine Environment: The new code will be called by an HR worker where
the result of the code execution is a file which will be placed in the file
system.

Calculate User Story Impact: The Scrum team grades the user story as
having Medium impact, as it works with user-supplied input and handles
personal data.

Analyze Module: The team draws data flows on a whiteboard, as presented
in Figure 12. They discuss the control flow and map the personal data to the
elements of the diagram.

Figure 12 Data flows regarding employee reporting

94

Analyze Threats: The team conducts threat identification following the
STRIDE-per-interaction method. They place particular focus on the trust
boundary between the system and the users (in this case, the HR worker) and
the boundary between the software and the file system. In the context of the
analyzed user story, two threats are identified with unmitigated attacks.
These include:

 Information disclosure, where any user with access to the file system
can read the reports;

 Repudiation, where the system does not log report generation events.

Specify Mitigations: The team issues a single output of the SATMUS
analysis. Two additional acceptance criteria (“Log report generation events,
including the identity of the action executor” and “Establish access control
lists on the report storage system”).

Document Evidence: The user story is tagged as security.

Support for Electronic Payment

The following user story can be considered a feature, due to the scale of the
work which goes beyond the traditional user story scope. It has the following
text:

“As a buyer, I want to pay for my shipped goods through the mobile shipping
app, so that I can quickly pay for the goods upon successful shipping.

Acceptance criteria:

 The in-app wallet should support Master Card and Visa wallet top-
ups;

 The app scans QR code from shipped container to verify it is the
correct item.

 Upon success, the app automatically subtracts the appropriate
amount from the wallet.”

Determine Affected Assets: The Scrum team notes that the new code will
manipulate payment card information and cardholder data. Although this is
not an asset in their list, the product owner is aware that this data is sensitive
and quickly learns about the PCI DSS (PCI, 2018).

Examine Environment: Due to the sensitive nature of the financial functions,
the new code will require some form of security controls, notably
cryptography, careful auditing, and excellent access control.

Calculate User Story Impact: The Scrum team realizes that their standard
calculation formula does not hold for this unique feature. Due to the security

95

implications of the feature, the team sees the new development as having a
High security impact.

Obtain Expertise: The product owner consults with product management to
determine the best strategy for securing the new feature. Due to the risk
introduced by the new feature and insufficient expertise in the organization,
the product management decides to outsource development to a third-party
organization specialized in PCI DSS-compliant development.

Threat Model: The team requires an up-to-date threat model of the
externally-developed component as one of the deliverables at the start and
end of the project. Furthermore, they request guidance for securing parts of
their component, which interface with the externally-developed component.
With the aid of the third-party vendor, they define new user stories.

Document Evidence: The team archives the threat model from the third-party
vendor and tags the user stories derived from the threat model as security.

4.4 Process Analysis
In this Section, we discuss the results of our work, examining the limitations
of the SATMUS process and the implications of all the work presented in
Chapter 4. In Section 4.4.1, we discuss the limitations of our method by
consulting with the list of limitations that affect agile security requirements
engineering methods as defined by Villamizar et al. (2018). In Section 4.4.2,
we discuss the implications of the SATMUS process and how it addresses
agile secure software engineering.

4.4.1 Limitations
To assess the limitations of our process, we examine the list of constraints
determined in the systematic mapping study of agile security requirement
engineering methods (Villamizar et al., 2018). The authors identified several
areas of limitations, including the environment, people, effort, and resource
investment. To this list, we add completeness, as a metric that assesses the
degree to which a method achieves the security of a product.

Environment limitations arise from the Scrum framework, as release cycles
are short, making addressing of all security requirements difficult. Indeed,
SATMUS can produce new user stories and research spikes, tasks which
might not be included in the current sprint or even the current release cycle.
However, while having a completely secure product might be something to
strive towards, security is one of many sources of requirements which bring
value to an organization. The bottom line is that if security is given sufficient
attention, it will get implemented, but this is entirely up to the product
management and their risk assessment. Therefore, we believe that the Scrum

96

environment does not impose limitations on security, but instead prioritizes it
accordingly, so long as the product management is aware of the need for
security. For this assumption to hold, it is the responsibility of every Scrum
team member to champion security awareness and fight for higher-quality
development.

People limitations are related to the lack of security-related skill in the Scrum
team. As we pointed out earlier, dedicated training is required to practice
SATMUS efficiently. This is a limitation of our approach (because of which
SATMUS only partially fulfills the Simplicity requirement), which can
somewhat be mitigated by a knowledge base and tool support.

Effort and resource limitations are concerned with the introduction of new
roles and the overhead introduced by security requirement engineering
methods. Furthermore, lack of guidance is listed under this category. The
nature of SATMUS allows it to be tailored to organizations of varying
degrees of security and agility requirements. A SATMUS implementation
can be a lightweight process that rarely triggers significant investment of
effort, and it can be a rigorous process that ensures that a product is secure
by design. For example, an organization with little security requirements can
use the calculation formula presented in Section 4.1.2, while reconfiguring
Table 12 to produce a Medium impact output only when both axes have a
value of 3 and a Low impact output in all other cases. Therefore, we believe
that SATMUS introduces just enough overhead, according to the
organization’s needs. Furthermore, no new roles are mandated by SATMUS.
Finally, we offer significant guidance to tailor and execute SATMUS
through this document.

Regarding completeness, the question is can SATMUS be used as standalone
to ensure that a product is secure. The answer is no, and this can be
considered a limitation of our approach. SATMUS is concerned with
translating high-level security requirements to low-level design decisions and
implementation tasks revolving around user stories. Importantly, the quality
of the Analyze Threats activity can significantly vary based on the expertise
of the analysts and, depending on the investment in education, and some time
may pass before the team can adequately identify and decompose threats.
Importantly, SATMUS achieves a reasonably secure design only if it is
applied to every story, through both the Definition of Ready and the
Definition of Done, as described in Section 4.1.1. As discussed by Othmane
and Ali (2016), frequent changes to the code and the initial design found in
Scrum can quickly make the initial threat model obsolete. Therefore, it is
necessary to frequently reevaluate the threat model and ensure that new
threats are discovered and addressed.

97

Additionally, SATMUS fails to address code-level vulnerabilities, and it is
not concerned with verifying that enough security is present in the product
(e.g., through security and penetration testing). SATMUS is applied between
determining high-level security requirements and implementing the code. To
combat this limitation, we recommend that organizations utilize tools that aid
in code-level vulnerability discovery, such as static code analysis and fuzz
testing. Following recent trends, DevSecOps (Myrbakken and Colomo-
Palacios, 2017) should be explored to complement SATMUS. Tools
integrated into the DevSecOps cycle help prevent code-level vulnerabilities
and can enhance the maturity of SATMUS by supplying it with information
on what categories of threats and attacks are not sufficiently addressed by the
Scrum teams. Finally, penetration testing can be conducted to ensure that a
product is resistant to attacks, though this entails hiring third-party auditors.

4.4.2 Implications
Throughout Chapter 4, we presented the SATMUS process, starting from the
high-level overview and discussion about its internal activities, and moving
on to specific adaptations of SATMUS and examples of its execution. By
focusing SATMUS around existing development artifacts and activities (e.g.,
user stories, research spikes), we were able to design a method that is
harmonized with Scrum development practices. Firstly, the outputs of
SATMUS are requirements defined just like any other requirement in Scrum
development, which can, therefore, be prioritized, verified, and validated
following regular development practices. Secondly, the requirement for new
knowledge and expertise in the Scrum team is limited to the Analyze Threats
activity. However, this is not an insignificant requirement, as the quality of
Analyze Threats activity significantly affects the security of the product. The
investment in security education and tools directly correlates to the
efficiency and value of threat identification and decomposition, as well as
appropriate mitigation planning. Based on the experience with Vendor A and
B (described in Sections 4.3.2 and 4.3.3), a good strategy is to start with the
basic threat analysis (e.g., STRIDE threat discovery with no additional
decomposition) and build on that over time.

Another benefit of tying the SATMUS process to the user story’s definition
of ready is that it guarantees that the threat model will be incrementally
updated, reflecting the design changes that can be frequent in agile
development. On the one hand, this avoids the common problem with design
documentation in agile development, where the initial design is created and
then quickly becomes deprecated and forgotten (Prause and Durdik, 2012).
As teams define the structure of their threat model (e.g., a series of photos of
the whiteboard, a sophisticated model using a tool), they can maintain agility

98

while incrementally updating the security view of their components. On the
other hand, this allows the team to quickly produce a body of evidence for
security assurance, requiring negligible effort to compile the report when the
client or third-party requires it.

The SATMUS process enables the security analysis and threat modeling of
the developed software in the Scrum development workflow. It requires
some investment to understand, integrate into the environment, adapt it to
maximize efficiency, usability, and value, and finally roll out on the whole
organization, providing training and aid where necessary. For this initial
investment, SATMUS requires a champion which will drive its adoption and
continuously improve its quality. Once installed, SATMUS produces just
enough overhead to the development teams to make sure they adequately
address the security of the product, while maintaining both their agility and
efficiency.

99

5 Discussion
In this Chapter, we combine the work presented in Chapters 3 and 4 and
discuss how to integrate it into the agile development workflow to build
teams that can efficiently perform security design analysis. Supported by the
SDA Training Framework and the SATMUS process, development teams
incrementally construct a secure software design, from the high-level system
architecture to the low-level code design. While the SATMUS process
provides the basic structure for the analysis, the SDA Training Framework
enhances its quality and supports its continuous improvement.

In Section 5.1, we examine the integration and use of both the SDA Training
Framework and the SATMUS process into the agile development process.
Here we explain how organizations can adopt these two methods to introduce
efficient SDA into their workflow. We examine how our work expands the
responsibilities of the traditional Scrum roles, how it interacts with the key
Scrum events, and how the application of our methods in individual Scrum
teams can achieve the security of the product developed across multiple
teams. Section 5.2 demonstrates how our work compares to well-established
security development lifecycle approaches. Here we map our methods to the
different phases and practices of these SDLs and discuss how our methods,
that focus on security requirements and design, interact with the rest of the
SDL.

5.1 SDA Training Framework and SATMUS in
Agile

The SATMUS process enables incremental security design analysis by
examining new user stories and building upon the existing threat model of
the developed product. When the Scrum team is adept in SATMUS and is
starting a new project, the continuous application of SATMUS builds a
product that is secure by design. The issue is introducing SATMUS to a
Scrum team that lacks knowledge in SDA and is in the middle of developing
a product. Introducing SATMUS to such a context requires both training the
Scrum team members how to perform SDA and constructing a baseline
threat model for the existing product, which SATMUS can then build upon.

The SDA Training Framework is used to accomplish both goals and to
continuously improve the SATMUS process by enhancing the SDA
knowledge of the Scrum team. In Section 5.1.1, we describe the process of
the initial adoption of the SDA Training Framework and SATMUS process,
noting how the different Scrum roles participate in the adoption process. In
Section 5.1.2, we describe areas for continuous improvement. Here we

100

examine how the SDA Training Framework aids in the continual
development of knowledge and expertise, how the SATMUS process can be
optimized in individual teams, and how the SATMUS process should be
supplemented in larger organizations, to achieve adequate security across the
developed product.

5.1.1 Initial Adoption
Organizations can integrate efficient SDA into their workflow by combining
the SDA Training Framework with the SATMUS process. Figure 13
illustrates the process of integrating SDA to an organization’s agile
development workflow by using our methods. For each activity, we note the
role that drives the activity (on the left-hand side of the activity), as well as
any other roles that require significant involvement (on the right-hand side of
the activity).

Figure 13 Adoption of the SATMUS process and SDA Training Framework

To start the process, the business owner must assign security champions to
drive the adoption and development of the SDA Training Framework and
SATMUS process. The security champion is an informal role that must
possess a certain level of security knowledge that they can distribute onto the
organization through the SDA Training Framework. They can be internally
built, for example by using senior developers that have performed security
work during their career and are knowledgeable about the subject, or they
can be externally hired, as domain experts.

The security champions utilize the SDA Training Framework described in
Chapter 3 with one crucial difference – they do not build the case studies and
instead select them from the products in development. With the aid of the
business owner, they select a suitable product for the case study and note the

101

Scrum teams involved in its development. The security champions select the
SDA method that they wish to use as part of the SATMUS process, based on
both the selected case study and the needs of the organization. While the
SDA method is the most complicated aspect of the SATMUS process,
champions need to consider the whole process when constructing the
workshops. Importantly, SATMUS tailoring must be completed to include
the final process in the training workshops. Champions should consult with
the product owners of the selected Scrum teams and the business owners to
determine:

 Inventories of affected assets for each Scrum team, based on the
security requirements for the product;

 The rigor of the calculation formula, based on the risk tolerance of
the organization;

 The suitable evidence structure, based on the security assurance
requirements of the organization;

 Investments for tools to support SDA and strategies related to
obtaining expertise for high impact development.

Next, the security champions determine the relevant security concepts and
create preparatory materials in the form suitable for the organization. For
example, if an organization uses an internal e-learning platform, the
champions can record lectures detailing the security concepts for easy
distribution and reuse.

With a defined SATMUS process, the constructed preparatory materials, and
a realistic and relevant case study, the security champions can construct the
training workshops. At this stage, champions should consider the different
roles in the Scrum team, as each role has a different part to play in
SATMUS. The product owner must be aware of the purpose of the process,
how to manage the related asset inventory, and how to handle and prioritize
the outputs of SATMUS. The Scrum master must be aware of the general
flow of the process. Their goal is to facilitate the efficient execution of
SATMUS by recognizing when development team members require better
SDA training and tools and communicating these issues with the business
owner. Furthermore, Scrum masters can utilize the Scrum of Scrums to
coordinate SDA across multiple teams when the need arises, as discussed in
Section 4.1.2, Analyze Module. Finally, the development team requires a
deep understanding of SATMUS and the underlying SDA method. On the
one hand, it enables them to define a secure design, and on the other, it
guides their security code review and testing activities, as described in
Section 5.2.3. Therefore, most of the workshops should be directed towards
the development team.

102

Additionally, the security champions should structure the workshops for
specific Scrum teams, focusing on the part of the case study relevant for that
team. Depending on the product, one team might be focused on web
application development, while another might produce code that solely
works with databases and data stores, which is why effort is required to
increase relevance for the Scrum team members.

Importantly, the workshops should be designed with two goals in mind. The
first goal is to train the Scrum teams on how to conduct SATMUS, focusing
on the SDA activities conducted by the development team. The second goal
is to kickstart the creation of the baseline threat model that the team can use
and expand as the product expands. Once the workshops are prepared, the
champions can administer them to the Scrum teams. Through these
workshops, the baseline threat model for the Scrum team can be started or
even completed. While it might contain only the first elementary set of
threats (e.g., high-level STRIDE threats), constructing the baseline is a
necessary first step (Tarandach, 2019) which can then be expanded as the
Scrum team becomes more knowledgeable about the subject.

As with most security-related initiatives, several crucial prerequisites that
must be addressed to ensure the successful integration of SDA into the
development workflow. First, the top-level management needs to clearly
state their support for SDA and the implementation project surrounding it.
Secondly, everyone taking part in SDA, from the product owner to the
Scrum master, must be aware of their responsibilities. Finally, care and
patience must be practiced, and steps need to be carefully considered to gain
buy-in from the development teams and minimize the risk of their aversion
to SDA.

5.1.2 Continuous Improvement
Once the Scrum teams are familiar with the SATMUS process, they can look
for areas where they can optimize the process and adapt it to better suit their
workflow and bring higher value to the organization. The primary candidates
for continuous improvement include:

 The SDA knowledge and expertise of the development teams;

 The details of the SATMUS process;

 The security of the developed product.

The quality of the SDA, and in turn, the security of the product, rely heavily
on the expertise of the analysts performing the security design analysis.
Therefore, an ongoing cost for the organization practicing SDA is the
construction of new workshops through the SDA Training Framework.
Introducing new workshops can be the responsibility of the internal security

103

team (if one is available) or the informal team of security champions. They
need to research the changing threat landscape and distribute the new
relevant knowledge to the development teams.

Following the example of the case study organization presented in Section
4.3.3, team members can attend external security workshops or conferences
and use the knowledge they obtained to construct internal workshops through
the SDA Training Framework. Likewise, Scrum teams might obtain security
knowledge through their regular work, where the organization can benefit if
this knowledge is distributed. The Scrum masters need to communicate and
share this information with other Scrum masters and collaborate with the
business owner to facilitate the investment in new workshops.

Finally, the organization can hire external domain experts to perform security
audits, where the vulnerabilities and design flaws discovered during the audit
serve as valuable input for new educational workshops. Furthermore, the
domain experts can help prepare the workshops by providing knowledge,
preparatory materials, and advice.

Regardless of the source of new knowledge and workshops, Scrum teams
need to reevaluate their threat models every time they obtain new knowledge
through the workshop. When aided by threat analysis tools, Scrum teams
should examine their threat models with each major update of the attack
pattern library, to ensure that the model is in line with the actual threat
landscape.

The next area for improvement is related to the details of the SATMUS
process. The teams might wish to modify SATMUS and tailor it to the way
they practice Scrum development. Importantly, any team-level changes to the
SATMUS process should not harm the general strategy of the organization
regarding SATMUS, and reasonable justification must be provided for each
such change. The internal security team or the security champions that
introduced SATMUS can assess the justification provided by the team for
the change and consult the business owner. While teams might wish to
modify the SATMUS process itself, they also might wish to modify how it
interacts with their Scrum development. For example, the team might collect
all user stories with medium or high impact and collectively analyze them
when grooming the sprint backlog.

Notably, when teams develop a more efficient version of SATMUS, they
should push for changes across the organization through the business owner
or Scrum of Scrums event. Additionally, the organization should consider
developing internal tools to support their version of SATMUS, automating
whatever is possible and integrating it into their build cycles where
appropriate.

104

The final area for improvement is tied to the goal of SDA, which is the
construction of a secure software product. While a single Scrum team that is
trained using the SDA Training Framework and following the SATMUS
process might hope to secure their part of the product, additional effort is
required to coordinate the security of the complete product. This
responsibility might be delegated to the internal security team, but for
organizations that lack such resources, the Scrum teams need to coordinate to
implement security efficiently and achieve product-wide security assurance.

Baca et al. (2015) point out that the underlying issue with integrating agile
methods and security is that individual teams are not familiar with the details
of the complete product. As security is often a cross-cutting concern, the
efficient way to introduce security controls into the software is to build them
into its infrastructure components. The less efficient alternative is to
introduce the same security controls to multiple higher-level components,
increasing maintenance cost and the possibility of developer error. However,
for individual Scrum teams, it might not be obvious when integrating a
security control is their responsibility, and when it might be offloaded to
other teams. To remedy this, the Scrum master should communicate these
issues during the Scrum of Scrums event. Another issue is that a security
control might not fit into the infrastructure initially, but over time as the
system evolves, this might become the preferred option. Rindell and Holvitie
(2019) mark this type of issue as technical debt, where the software needs to
be redesigned, and the code refactored to increase its quality.

5.2 SDA Training Framework and SATMUS in the
SDL

The security of a software product requires the application of various
security activities throughout the product’s development lifecycle. Secure
software engineering entails far more than SDA, from secure coding and
testing to security management of both regular development and issues found
in production.

While the SDA Training Framework and SATMUS aid with security
requirements engineering and secure design construction, they also interact
with other practices of the security development lifecycle. Here we examine
how our work integrates into the SDL defined by Microsoft (Howard and
Lipner, 2006) and the IEC organization (IEC, 2018a). Notably, the SATMUS
process directly maps to segments of both SDLs concerned with threat
modeling and security design analysis, as discussed in Sections 1.3.1 and
2.2.3. Likewise, the SDA Training Framework maps to the provide training
practice, described by Microsoft, and the security expertise required by the

105

IEC 62443-4-1:2018 standard. Both practices require that personnel receive
adequate security-related training for their job role, which aligns with the
goal of the SDA Training Framework.

We further explore these SDLs to determine practices with which our work
interacts and discuss the nature of that interaction. In Section 5.2.1, we
examine how security requirements serve as valuable input for the SATMUS
process and the SDA Training Framework. In Section 5.2.2, we discuss how
secure design concepts, such as security design patterns and secure design
principles, can be built into our work. Section 5.2.3 describes how our work
guides secure implementation and testing activities. Finally, in Section 5.2.4,
we detail how our work answers the requirements related to security
management.

5.2.1 Security Requirements
Microsoft’s define security requirements practice entails the specification of
both explicit and quality security requirements (as defined in Section 1.3.2)
that arise from regulatory compliance, internal quality standards, reviews of
previous incidents, and known threats. The IEC 62443-4-1:2018 (IEC,
2018a) specifies a similar set of security requirements sources in its
specification of security requirements practice. In addition to these sources,
we add stakeholders (possibly aided by security consultants), internal Scrum
teams, and threat intelligence services as a source for quality security
requirements.

Security requirements are a crucial input for the SATMUS process. One goal
of SDA is to map explicit security requirements onto the developed software,
and another is to decompose quality security requirements into actionable
work items. For SATMUS, both types of security requirements are mapped
to assets, either explicitly or implicitly. Depending on the tailoring decisions,
the asset inventory can include traceability between the assets and the
security requirements (Luburić et al., 2018b).

Security requirements are likewise an essential input for the SDA Training
Framework. When a software vendor acquires a project that entails
compliance with a new security standard, the workshop constructors must
examine the standard to determine the relevant security concepts and the
appropriate SDA method. From this information, they can construct
preparatory materials and the set of workshops to train the development
teams.

106

5.2.2 Secure Design
Regarding secure design, Microsoft proposes a practice to establish design
requirements, where the goal is to determine organization-wide
implementations of security design patterns (Yoshioka et al., 2008; Uzunov
et al., 2012). Developers can then use these implementations instead of
building their security controls.

Security design patterns present mature solutions for a class of problems,
much like software design patterns. Security design patterns, like
authorization and secure communication, mitigate a class of vulnerabilities
and attacks. A security design pattern can be more abstract (e.g.,
authorization) or more concrete (e.g., role-based access control), forming a
hierarchy, where an abstract pattern can have multiple children in the form of
concrete designs that can be translated into code (Uzunov et al., 2012). For
example, input validation is a pattern that has specific implementations for
preventing SQL Injection (i.e., prepared statements), XSS (i.e., input
validation paired with output encoding), and buffer overflows.

The IEC 62443-4-1:2018 standard requires that all development teams
conduct design activities following security design principles (Saltzer and
Schroeder, 1975; Ross et al., 2016). While security design patterns present
solutions for a class of problems, security design principles do not address a
specific set of problems and are instead applicable for most problems and
solutions. They serve as guidelines for all design activities. For example, the
principle of least privilege states that each entity should have privileges to
accomplish its specified functions and no more. While conceptually simple,
adherence to this principle can require significant additional development.
The apparent restriction is to reduce active permissions of user roles to the
functions that are required by such roles, but additional consideration can
reveal that the time-frame when a function should be available to the user
can also be defined. When paired with the principle of complete mediation,
this type of access restriction should be applied across the whole system,
including application-level access, OS-level access, and potentially physical
access.

Both security design patterns and principles serve as valuable input for the
SDA Training Framework and the SATMUS process. The patterns and
principles are essential security concepts that must be addressed by the
workshops created using the SDA Training Framework. They can be covered
indirectly, as part of a workshop that examines some aspect of SDA, or even
directly, where the workshop’s focus is on a set of patterns or principles. By
examining least privilege, a workshop can be constructed to explore the
different areas of the case study and define how privileges can be restricted

107

to enable the standard business functionality and nothing else. SATMUS
directly employs both patterns and principles, as the goal of SDA is to
produce a secure design that fulfills the security requirements, which can
only be accomplished by utilizing security design patterns and adhering to
security design principles (Ross et al., 2016).

5.2.3 Secure Implementation and Security Verification
Secure implementation practices, as defined by the examined SDLs, include
the application of static code analysis tools and security-focused code
reviews to ensure compliance with the secure coding standard and that no
code-level vulnerabilities are introduced to the developed software. These
practices look for flawed code design and use of insecure constructs that an
attacker might exploit.

While code-level security is a requirement for secure software in general, it
is especially important in the sensitive areas of the code, which includes code
exposed to a large attack surface and code that manipulates critical assets. As
SATMUS examines both the assets and the environment for all new
development, it identifies sensitive code as medium or high impact user
stories. Therefore, SATMUS can guide security code reviews and define
areas of the code that require more effort to examine. For example,
SATMUS can generate an acceptance criterion, where a team-wide code
review must be conducted for the code implementing a particular user story.
Regarding the SDA Training Framework, vulnerable code constructs, not
aligned with the secure coding standard, should be included in the
preparatory materials and utilized during the workshop assignments, to
enrich the learning experience and include both secure design and secure
implementation learning objectives.

Security testing is a broad area that includes practices related to the
functional testing of security controls, the security testing of functional
controls, and penetration testing. While the SDA Training Framework has no
significant interaction with the security testing practices, the SATMUS
process can guide security testing activities, in a similar way to the security
code reviews. For example, SATMUS can define an acceptance criterion for
a user story which states that fuzz testing should be conducted on a specific
set of endpoints and that all significant vulnerabilities are resolved.

5.2.4 Security Management
Security management is concerned with, among other things, ensuring that
security is sufficiently addressed across the product development lifecycle.
As the goal of the SDL is to produce demonstrably more secure software,
security management is concerned with achieving and maintaining this

108

security assurance. As pointed out by Vivas et al. (2011), the security
assurance case is built by using mature SDL procedures and extracting from
their execution the evidence and argumentation needed to support the
assurance case and to reasonably prove the software is secure. Importantly, if
any part of the product proves insecure even with a well-developed case, it is
crucial to understand why this happened and how these issues can be avoided
in the future (Goodenough et al., 2007). The IEC 62443-4-1:2018 standard
(IEC, 2018a) requires continuous improvement as part of the security
management practice to address these issues.

The SATMUS process is flexible enough to support rigorous security
analysis, depending on the context. By using the user story as the input for
SATMUS, we ensure that all new development undergoes security
examination. A vital prerequisite for satisfactory SDA is adequate training on
the subject, and the SDA Training Framework is built to support that. The
SDA Training Framework and the SATMUS process interact with each other
to enhance the security work and provide continuous improvement. As the
threat landscape changes, new workshops can be constructed and any
significant changes to this landscape should trigger a reevaluation of the
existing threat models.

109

6 Conclusion
Vulnerabilities in wide-spread hardware, operating systems, and
applications, are making headlines daily and news about massive data
breaches and successful hacks are only slightly less frequent. Software
security is becoming a leading concern in the developed world, and much
effort is put into building security into software during its development.

Throughout this work, we have focused on security design analysis, a cost-
efficient practice concerned with security requirements engineering and
secure design construction for the developed software. SDA examines a
software’s design and contrasts it with its functional and security
requirements to determine enhancements required to make a more secure
software product. This analysis is applied from the macro-level of the
complete software architecture to the micro-level of software features and
code design to achieve defense in depth of the developed product.

Specifically, we examined how the leading SDA methods interacted with
modern agile software development practices and discovered issues that
hamper the adoption of SDA to the agile workflow. Notably, we discovered
that SDA is both difficult to teach and learn, resulting in its inefficient
practice and abandonment by development teams. Furthermore, we found
incompatibility issues between traditional SDA methods and the
contemporary software development processes, specifically those following
the Scrum framework. Based on this research, we defined the following
research questions:

RQ 1. How to efficiently train Scrum teams to perform security design
analysis?

RQ 2. How to efficiently integrate security design analysis into Scrum
development, providing the appropriate security assurance and
visibility of security work?

From these, we formulated a hypothesis that guided our work:

 It is possible for a Scrum team to practice security design analysis
throughout a software’s development lifecycle, assuring that
sufficient security is built into the software solution, provided that:

o Adequate training is provided to the Scrum team to perform
security design analysis efficiently.

o The security design analysis is compatible with the Scrum
development process, does not require the introduction of new
roles to the team, and does not mandate the construction of
heavyweight documentation.

110

o Security work is tangible and can be planned and prioritized
like any other work item.

o Enough guidance and knowledge exist to adopt, use, and
adapt the method to a specific organization’s context.

Section 6.1 highlights the contributions of this thesis, which can be grouped
around the SDA Training Framework and the SATMUS process, as well as
their interconnection. In Section 6.2, we examine further research and
development opportunities.

6.1 Contributions of the Thesis
To address the first question, we inspected various approaches that have
found success in teaching secure software engineering. While our primary
goal was not to make a comprehensive catalog, Section 2.1 does provide a
useful map of different teaching approaches for this domain, grouped around
gamification, case study analysis, e-learning, and the hybrid flipped
classroom.

From this analysis, we constructed the SDA Training Framework, as a
structure for constructing educational workshops that have the learning goal
of training developers on how to perform SDA. We combined the case study
analysis and hybrid flipped classroom teaching methods and enhanced them
with gamification and e-learning techniques, to construct labs that produce
better learning outcomes when compared to the traditional classroom.
Chapter 3 described the framework in detail, from its structure to the process
of its use. To guide the use of the framework, we demonstrated the
generation of six labs at a medium level of detail and examined the
construction of a single lab in great detail. A minor contribution is the
resulting set of labs, grouped around the STRIDE SDA method and hospital
information system case study, described in the same Chapter. Near the end
of the Chapter, we presented the controlled experiment and observational
evaluations that proved that the labs formulated through the SDA Training
Framework achieve better learning outcomes than traditional labs.

Throughout Section 2.2, we examined SDA methods used in the industry, as
well as those proposed by the scientific community and contrasted these with
process requirements issued by contemporary standards for security
development lifecycles. Albeit incomplete, this knowledge base can help
practitioners examine other SDA approaches to find a suitable candidate for
their organization as well as highlight issues that might arise with these
methods and SDA in general.

111

We defined the SATMUS process to address the second question. By
examining applicability issues with proposed SDA approaches and SDA
process requirements imposed by agile development and well-established
SDLs, we have conceptualized a process that offers the security assurance
provided by SDA, while being compatible with agile development practices.
Throughout Chapter 4, we demonstrated the internals of our process,
provided guidance for its use and tailoring. We evaluated SATMUS on two
case study implementations, describing the tailoring decisions for both
contexts, and illustrating the execution of the two instances of SATMUS on
several user stories, offering further guidance.

With both research questions answered, we described how to combine our
methods to integrate software security design analysis into the agile
development process throughout Chapter 5. Here we also discussed how to
integrate our methods into the well-established SDL processes and how our
methods help answer some of the requirements imposed by SDL standards.

To summarize, the primary contributions of this thesis include:

 The definition of the SDA Training Framework and its enhancement,
including guidance for its execution. The SDA Training Framework
enables the generation of laboratory exercises for teaching SDA that
achieve better learning outcomes than traditional labs.

 The definition of the SATMUS process, including guidance for its
execution and tailoring. SATMUS enables the incremental
development of threat models as the software changes, where
organizations can tailor the process according to their needs, to define
and prioritize security work accordingly.

 Instructions for integrating both the SDA Training Framework and
SATMUS process to introduce SDA into the agile development
workflow, construct the baseline threat models, and set up the
foundation for the continuous improvement of SDA.

Minor contributions, which arose as a byproduct of the research, include:

 A catalog of approaches for teaching secure software engineering
practices.

 A knowledge base of SDA techniques, requirements for these
techniques, and their related issues.

 A set of laboratory exercises with the accompanying case study that
can be used as part of a university course or a corporate training
workshop.

112

Considering these contributions, we confirm the central hypothesis and meet
all the introduced goals and expected results of this research.

6.2 Future Work
Importantly, SDA is not a standalone method that achieves complete
software security. It plays a significant role in an array of security practices
and interacts with other security requirements engineering techniques and
secure coding practices. The threat models constructed and addressed by
SDA need to undergo security verification and validation to ensure the
implementation adheres to the model, and all these activities require
management and continuous improvement. For genuinely comprehensive
defense in depth, many more practices need to be implemented and
integrated to produce an agile security development lifecycle.

With this integration in mind, a natural expansion for the work presented
here is the development of a supporting tool which can automate parts of the
SDA Training Framework and SATMUS process. Such a tool must offer
forms and graphical editors for assisting development teams in performing
SDA. For full integration and traceability, the tool needs to integrate with
commonly used software development management tools, such as
requirements and user story repositories, code review assistants, and bug
tracking tools.

Traceability between different practices of secure software engineering
remains an open issue, and this presents several avenues for further research.
On the one hand, research and development can be aimed at defining
methods and tools that examine the threat model and ensure that the code
implements the mitigations defined by it. On the other hand, mapping the
security requirements from standards and regulations to threat models can
aid with formal security assurance. The issue here arises from the distributed
nature of threat models produced through SATMUS. A structure that
integrates threat models produced by the development teams into a product-
level threat model is required to demonstrate security assurance formally.

Another related open issue is assessing the quality of threat models, where
contemporary methods do not provide a comprehensive way to determine if
all the critical threats were identified, let alone decomposed sufficiently.
Methods for risk analysis that consider the completeness of the model, along
with the likelihood and impact of threats can be examined to address these
issues.

Security design analysis is a cost-efficient method for discovering
vulnerabilities and design flaws early in the software’s development and
before they are introduced to the code. It is one of the core pillars of secure

113

software engineering, which is why organizations must integrate it correctly
into their workflow. This integration is not easy and requires dedicated
security champions to build the security awareness and starting expertise
required to perform it effectively. Unlike secure coding, that can be
significantly aided by mature static code analysis tools, SDA is a more
sophisticated practice that lacks adequate tool support. This thesis aids
practitioners and security champions in introducing SDA into their
organization and offers researchers a baseline on which they can build tools
and methods for enhancing secure software engineering practices.

114

115

Literature
Abomhara, M., Gerdes, M. and Køien, G.M., 2015. A stride-based threat model for
telehealth systems. Norsk informasjonssikkerhetskonferanse (NISK), 8(1), pp.82-96.

Albaum, G., 1997. The Likert scale revisited. Market Research Society. Journal., 39(2),
pp.1-21.

Alexander, I., 2003. Misuse cases: Use cases with hostile intent. IEEE software, 20(1),
pp.58-66.

Andersen, E., and Schiano, B., 2014. Teaching with Cases: A Practical Guide. Harvard
Business Review Press.

Appari, A. and Johnson, M.E., 2010. Information security and privacy in healthcare: current
state of research. International journal of Internet and enterprise management, 6(4), pp.279-
314.

Assante, M.J. and Tobey, D.H., 2011. Enhancing the cybersecurity workforce. IT
professional, 13(1), pp.12-15.

Ayalew, T., Kidane, T. and Carlsson, B., 2013, October. Identification and evaluation of
security activities in agile projects. In Nordic Conference on Secure IT Systems (pp. 139-
153). Springer, Berlin, Heidelberg.

Azham, Z., Ghani, I. and Ithnin, N., 2011, December. Security backlog in Scrum security
practices. In Software Engineering (MySEC), 2011 5th Malaysian Conference in (pp. 414-
417). IEEE.

Baca, D. and Carlsson, B., 2011, May. Agile development with security engineering
activities. In Proceedings of the 2011 International Conference on Software and Systems
Process (pp. 149-158). ACM.

Baca, D., Boldt, M., Carlsson, B. and Jacobsson, A., 2015, August. A novel security-
enhanced agile software development process applied in an industrial setting. In
Availability, Reliability and Security (ARES), 2015 10th International Conference on (pp.
11-19). IEEE.

Barnum, S., 2008. Common attack pattern enumeration and classification (capec) schema
description. Cigital Inc.

Bartsch, S., 2011, August. Practitioners' perspectives on security in agile development. In
Availability, Reliability and Security (ARES), 2011 Sixth International Conference on (pp.
479-484). IEEE.

Beznosov, K. and Kruchten, P., 2004, September. Towards agile security assurance. In
Proceedings of the 2004 workshop on New security paradigms (pp. 47-54). ACM.

Carranza, A. and DeCusatis, C., 2015. Hybrid implementation of flipped classroom
approach to cybersecurity education. NATIONAL CYBERSECURITY INSTITUTE
JOURNAL, p.45.

Case, D.U., 2016. Analysis of the cyber attack on the Ukrainian power grid. Electricity
Information Sharing and Analysis Center (E-ISAC).

Cockburn, A., 2002. Agile software development (Vol. 177). Boston: Addison-Wesley.

116

Cohn, M., 2004. User stories applied: For agile software development. Addison-Wesley
Professional.

CollabNet VersionOne, 2019. 13th annual state of agile survey. In Technical Report.

Cruzes, D.S., Jaatun, M.G., Bernsmed, K. and Tøndel, I.A., 2018, November. Challenges
and experiences with applying Microsoft threat modeling in agile development projects. In
2018 25th Australasian Software Engineering Conference (ASWEC) (pp. 111-120). IEEE.

Davison, R.M., Martinsons, M.G., and Kock, N. (2004) Principles of canonical action
research, Information Systems Journal, 14(1), 65–86.

De Win, B., Scandariato, R., Buyens, K., Grégoire, J. and Joosen, W., 2009. On the secure
software development process: CLASP, SDL and Touchpoints compared. Information and
software technology, 51(7), pp.1152-1171.

Denning, T., Lerner, A., Shostack, A. and Kohno, T., 2013, November. Control-Alt-Hack:
the design and evaluation of a card game for computer security awareness and education. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security (pp. 915-928). ACM.

Dev, P.A. and Jevitha, K.P., 2017. STRIDE based analysis of the chrome browser
extensions API. In Proceedings of the 5th International Conference on Frontiers in
Intelligent Computing: Theory and Applications (pp. 169-178). Springer, Singapore.

Devanbu, P.T. and Stubblebine, S., 2000, May. Software engineering for security: a
roadmap. In Proceedings of the Conference on the Future of Software Engineering (pp. 227-
239). ACM.

Dhillon, D., 2011. Developer-driven threat modeling: Lessons learned in the trenches. IEEE
Security & Privacy, 9(4), pp.41-47.

Disterer, G., 2013. ISO/IEC 27000, 27001 and 27002 for information security management.
Journal of Information Security, 4(02), p.92.

Dios, A.Q., Encinas, L.H. and Queiruga, D., 2008. Cryptography adapted to the new
european area of higher education. In Computational Science–ICCS 2008 (pp. 706-714).
Springer Berlin Heidelberg.

Dunne, D., and Brooks, K. (2004) Teaching with cases. Halifax, NS: Society for Teaching
and Learning in Higher Education.

ENISA, European Union Agency for Network and Information Security, 2019. ENISA
Threat Landscape Report 2018. www.enisa.europa.eu/publications/enisa-threat-landscape-
report-2018, retrieved: 12.8.2019.

Esposito, D., Rennhard, M., Ruf, L. and Wagner, A., 2018. Exploiting the potential of web
application vulnerability scanning. In ICIMP 2018, Spain, July 22-26, 2018 (pp. 22-29).
IARIA.

Force, J.T. and Initiative, T., 2013. Security and privacy controls for federal information
systems and organizations. NIST Special Publication, 800(53), pp.8-13.

Galvez, R. and Gurses, S., 2018, April. The Odyssey: modeling privacy threats in a brave
new world. In 2018 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW) (pp. 87-94). IEEE.

117

Gandhi, R., Sharma, A., Mahoney, W., Sousan, W., Zhu, Q. and Laplante, P., 2011.
Dimensions of cyber-attacks: Cultural, social, economic, and political. IEEE Technology
and Society Magazine, 30(1), pp.28-38.

Gantenbein, H., 2016., STRIDE, CIA and the Modern Adversary,
blogs.msdn.microsoft.com/heinrichg/2016/06/07/stride-cia-and-the-modern-adversary/,
retrieved: 19.6.2019.

GDPR, General Data Protection Regulation, 2016. Regulation (EU) 2016/679 of the
European Parliament and of the Council of 27 April 2016 on the protection of natural
persons with regard to the processing of personal data and on the free movement of such
data, and repealing Directive 95/46. Official Journal of the European Union (OJ), 59(1-88),
p.294.

Geer, D., 2010. Are companies actually using secure development life cycles?. Computer,
43(6), pp.12-16.

Georgescu, M., Hazeyama, H., Okuda, T., Kadobayashi, Y. and Yamaguchi, S., 2016,
February. The STRIDE Towards IPv6: A Comprehensive Threat Model for IPv6 Transition
Technologies. In ICISSP (pp. 243-254).

Ghani, I., Azham, Z. and Jeong, S.R., 2014. Integrating Software Security into Agile-Scrum
Method. KSII Transactions on Internet & Information Systems, 8(2).

Goodenough, J., Lipson, H. and Weinstock, C., 2007. Arguing security-creating security
assurance cases. rapport en ligne (initiative build security-in du US CERT), Université
Carnegie Mellon.

Goodwin, M., 2018. OWASP Threat Dragon Project, github.com/mike-goodwin/owasp-
threat-dragon, retrieved: 20.6.2019.

Hamine, S., Gerth-Guyette, E., Faulx, D., Green, B.B. and Ginsburg, A.S., 2015. Impact of
mHealth chronic disease management on treatment adherence and patient outcomes: a
systematic review. Journal of medical Internet research, 17(2), p.e52.

Hernan, S., Lambert, S., Ostwald, T. and Shostack, A., 2006. Threat modeling-uncover
security design flaws using the stride approach. MSDN Magazine-Louisville, pp.68-75.

Howard, M. and Lipner, S., 2006. The security development lifecycle (Vol. 8). Redmond:
Microsoft Press.

Hussain, S., Kamal, A., Ahmad, S., Rasool, G. and Iqbal, S., 2014. Threat modelling
methodologies: a survey. Sci. Int.(Lahore), 26(4), pp.1607-1609.

IEC, International Electrotechnical Commission, 2018. 62443-4-1: Security for industrial
automation and control systems, part 4-1: Product security development life-cycle
requirements. USA.

IEC, International Electrotechnical Commission, 2018. 62443-4-2: Security for industrial
automation and control systems, part 4-2: Technical security requirements for IACS
components. USA.

Tøndel, I.A., Jaatun, M.G., Cruzes, D. and Oyetoyan, T.D., 2018. Understanding challenges
to adoption of the Protection Poker software security game. In Computer Security (pp. 153-
172). Springer, Cham.

Jelacic, B., Rosic, D., Lendak, I., Stanojevic, M. and Stoja, S., 2017. STRIDE to a Secure
Smart Grid in a Hybrid Cloud. In Computer Security (pp. 77-90). Springer, Cham.

118

Jürjens, J., 2002, September. UMLsec: Extending UML for secure systems development. In
International Conference on The Unified Modeling Language (pp. 412-425). Springer,
Berlin, Heidelberg.

Kapitsaki, G.M. and Christou, M., 2014, April. Learning from the Current Status of Agile
Adoption. In International Conference on Evaluation of Novel Approaches to Software
Engineering (pp. 18-32). Springer, Cham.

Kassicieh, S., Lipinski, V. and Seazzu, A.F., 2015, August. Human centric cyber security:
What are the new trends in data protection?. In Management of Engineering and Technology
(PICMET), 2015 Portland International Conference on (pp. 1321-1338). IEEE.

Keblawi, F. and Sullivan, D., 2006. Applying the common criteria in systems engineering.
IEEE security & privacy, 4(2), pp.50-55.

Khan, R., McLaughlin, K., Laverty, D. and Sezer, S., 2017, September. STRIDE-based
threat modeling for cyber-physical systems. In Innovative Smart Grid Technologies
Conference Europe (ISGT-Europe), 2017 IEEE PES (pp. 1-6). IEEE.

Kimminich, B., OWASP Juice Shop Project,
www.owasp.org/index.php/OWASP_Juice_Shop_Project, retrieved: 19.1.2019.

Knaster, R. and Leffingwell, D., 2018. SAFe 4.5 Distilled: Applying the Scaled Agile
Framework for Lean Software and Systems Engineering. Addison-Wesley Professional.

Kobara, K., 2016. Cyber physical security for industrial control systems and iot. IEICE
TRANSACTIONS on Information and Systems, 99(4), pp.787-795.

Kohno, T. and Johnson, B.D., 2011, March. Science fiction prototyping and security
education: cultivating contextual and societal thinking in computer security education and
beyond. In Proceedings of the 42nd ACM technical symposium on Computer science
education (pp. 9-14). ACM.

Krutz, D.E., Meneely, A. and Malachowsky, S.A., 2015, October. An insider threat activity
in a software security course. In 2015 IEEE Frontiers in Education Conference (FIE) (pp. 1-
6). IEEE.

Kshetri, N., 2009. Positive externality, increasing returns, and the rise in cybercrimes.
Communications of the ACM, 52(12), pp.141-144.

Lamsweerde, A.V., 2004, May. Elaborating security requirements by construction of
intentional anti-models. In Proceedings of the 26th International Conference on Software
Engineering (pp. 148-157). IEEE Computer Society.

Langner, R., 2011. Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security & Privacy,
9(3), pp.49-51.

Leffingwell, D., 2010. Agile software requirements: lean requirements practices for teams,
programs, and the enterprise. Addison-Wesley Professional.

Lodderstedt, T., Basin, D. and Doser, J., 2002, September. SecureUML: A UML-based
modeling language for model-driven security. In International Conference on the Unified
Modeling Language (pp. 426-441). Springer, Berlin, Heidelberg.

Lovejoy, M.R. and Wickert, M.A., 2015, August. Using the IPython notebook as the
computing platform for signals and systems courses. In Signal Processing and Signal
Processing Education Workshop (SP/SPE), 2015 IEEE (pp. 289-294). IEEE.

119

Luburić, N., Stojkov, M., Savić, G., Sladić, G. and Milosavljević, B., 2016, August. Crypto-
Tutor: An educational tool for learning modern cryptography. In 2016 IEEE 14th
International Symposium on Intelligent Systems and Informatics (SISY) (pp. 205-210).
IEEE.

Luburić, N., Sladić, G. and Milosavljević, B., 2018, October. Applicability Issues in
Security Requirements Engineering for Agile Development. In Proceedings/8 th
International conference on applied internet and information technologies (Vol. 8, No. 1, pp.
II-VII). “St Kliment Ohridski” University-Bitola, Faculty of Information and
Communication Technologies-Bitola, Republic of Macedonia.

Luburić, N., Sladić, G., Milosavljević, B., and Kaplar, A., 2018. Demonstrating Enterprise
System Security Using an Asset-Centric Security Assurance Framework. In: Trajanović, M.,
Zdravković, M., Konjović, Z. (Eds.) ICIST 2018 Proceedings Vol.1, pp.16-20, 2018.

Luburić, N., Sladić, G., Slivka, J., and Milosavljević, B., 2019. A Framework for Teaching
Security Design Analysis Using Case Studies and the Hybrid Flipped Classroom. ACM
Transactions on Computing Education (TOCE), 19(3), p.21.

Luburić, N., Sladić, G., and Milosavljević, B., 2019. Utilizing a Vulnerable Software
Package to Teach Software Security Design Analysis, Proceedings of the 42'th International
ICT Convention on Information and Communication Technology, MIPRO, Opatia, Croatia,
21. - 25. may, 2019.

Luburić, N., Sladić, G., and Milosavljević, B., 2019. Examining Repudiation Threats Using
a Framework for Teaching Security Design Analysis. 9th International Conference on
Information Society and Technology ICIST 2019, Society for Information Systems and
Computer Networks, Kopaonik, Serbia.

Martin, R.A., 2007. Common weakness enumeration. Mitre Corporation.

Mayer, R.E. and Moreno, R., 1998. A cognitive theory of multimedia learning: Implications
for design principles. Journal of Educational Psychology, 91(2), pp.358-368.

McGraw, G., Migues, S. and West, J., 2018. Building Security In Maturity Model (BSIMM
8).

Mellado, D., Blanco, C., Sánchez, L.E. and Fernández-Medina, E., 2010. A systematic
review of security requirements engineering. Computer Standards & Interfaces, 32(4),
pp.153-165.

Meneely, A. and Lucidi, S., 2013, May. Vulnerability of the day: Concrete demonstrations
for software engineering undergraduates. In Proceedings of the 2013 international
conference on software engineering (pp. 1154-1157). IEEE Press.

Merrill, M.D., 2002. First principles of instruction. Educational technology research and
development, 50(3), pp.43-59.

Microsoft, 2018. Agile Development Using Microsoft Security Development Lifecycle,
www.microsoft.com/en-us/SDL/Discover/sdlagile.aspx, retrieved: 7.12.2018.

Microsoft, 2019. Microsoft Threat Modeling Tool, docs.microsoft.com/en-
us/azure/security/azure-security-threat-modeling-tool, retrieved: 20.6.2019.

Mills, D.L., 2016. Computer network time synchronization: the network time protocol on
earth and in space. CRC Press.

120

Mohamed, S.F.P., Baharom, F., Deraman, A., Yahya, J. and Mohd, H., 2016. An
Exploratory Study on Secure Software Practices Among Software Practitioners in Malaysia.
Journal of Telecommunication, Electronic and Computer Engineering (JTEC), 8(8), pp.39-
45.

Morrison, P., Smith, B.H. and Williams, L., 2017, May. Measuring security practice use: a
case study at IBM. In Proceedings of the 5th International Workshop on Conducting
Empirical Studies in Industry (pp. 16-22). IEEE Press.

Mougouei, D., Sani, N.F.M. and Almasi, M.M., 2013. S-scrum: a secure methodology for
agile development of web services. World of Computer Science and Information
Technology Journal, 3(1), pp.15-19.

Myagmar, S., Lee, A.J. and Yurcik, W., 2005, August. Threat modeling as a basis for
security requirements. In Symposium on requirements engineering for information security
(SREIS) (Vol. 2005, pp. 1-8).

Myrbakken, H. and Colomo-Palacios, R., 2017, October. DevSecOps: A Multivocal
Literature Review. In International Conference on Software Process Improvement and
Capability Determination (pp. 17-29). Springer, Cham.

NERC, North American Electric Reliability Corporation, 2019. Critical Infrastructure
Protection Standards, www.nerc.com/pa/Stand/pages/cipstandards.aspx, retrieved:
21.6.2019.

NSF, National Science Foundation. 2008. Developing case studies for information security
education, www.nsf.gov/awardsearch/showAward?AWD_ID=0737304, retrieved:
14.1.2019.

Othmane, L.B., Angin, P., Weffers, H. and Bhargava, B., 2014. Extending the agile
development process to develop acceptably secure software. IEEE Transactions on
dependable and secure computing, 11(6), pp.497-509.

Othmane, L.B., Angin, P. and Bhargava, B., 2014, September. Using assurance cases to
develop iteratively security features using scrum. In Availability, Reliability and Security
(ARES), 2014 Ninth International Conference on (pp. 490-497). IEEE.

Othmane, L.B. and Ali, A., 2016, August. Towards effective security assurance for
incremental software development the case of zen cart application. In 2016 11th
International Conference on Availability, Reliability and Security (ARES) (pp. 564-571).
IEEE.

O'Brien, J.A. and Marakas, G.M., 2006. Management information systems (Vol. 6).
McGraw-Hill Irwin.

Oyetoyan, T.D., Cruzes, D.S. and Jaatun, M.G., 2016, August. An empirical study on the
relationship between software security skills, usage and training needs in agile settings. In
Availability, Reliability and Security (ARES), 2016 11th International Conference on (pp.
548-555). IEEE.

OWASP, Open Web Application Security Project, 2019. Software Assurance Maturity
Model (SAMM) Project, www.owasp.org/index.php/OWASP_SAMM_Project, retrieved:
8.8.2019.

Parwani, T., Kholoussi, R. and Karras, P., 2013, May. How to Hack into Facebook without
being a Hacker. In Proceedings of the 22nd International Conference on World Wide Web
(pp. 751-754). ACM.

121

PCI, Payment Card Industry, 2018. Data Security Standard,
www.pcisecuritystandards.org/document_library, retrieved: 21.6.2019.

Peeters, J., 2005, August. Agile security requirements engineering. In Symposium on
Requirements Engineering for Information Security.

Pohl, C. and Hof, H.J., 2015. Secure scrum: Development of secure software with scrum.
arXiv preprint arXiv:1507.02992.

Pohl, C., Schlierkamp, K. and Hof, H.J., 2015. BREW: A Breakable Web Application for
IT-Security Classroom Use. arXiv preprint arXiv:1506.03325.

Poller, A., Kocksch, L., Türpe, S., Epp, F.A. and Kinder-Kurlanda, K., 2017, February. Can
Security Become a Routine?: A Study of Organizational Change in an Agile Software
Development Group. In CSCW (pp. 2489-2503).

Positive Technologies, 2019. Web Application Attack Trends 2018.
www.ptsecurity.com/ww-en/analytics/web-application-attacks-2019/, retrieved: 12.8.2019.

Power, K., 2014, May. Definition of ready: An experience report from teams at cisco. In
International Conference on Agile Software Development (pp. 312-319). Springer, Cham.

Prause, C.R. and Durdik, Z., 2012, June. Architectural design and documentation: Waste in
agile development?. In 2012 International Conference on Software and System Process
(ICSSP) (pp. 130-134). IEEE.

Punter, T., Ciolkowski, M., Freimut, B. and John, I., 2003, September. Conducting on-line
surveys in software engineering. In 2003 International Symposium on Empirical Software
Engineering, 2003. ISESE 2003. Proceedings. (pp. 80-88). IEEE.

Pupo, A.L.S., Nicolay, J. and Boix, E.G., 2018, September. GUARDIA: specification and
enforcement of javascript security policies without VM modifications. In Proceedings of the
15th International Conference on Managed Languages & Runtimes (p. 17). ACM.

Ramesh, B., Cao, L. and Baskerville, R., 2010. Agile requirements engineering practices and
challenges: an empirical study. Information Systems Journal, 20(5), pp.449-480.

Ramesh, M.R. and Reddy, C.S., 2016. A survey on security requirement elicitation methods:
classification, merits and demerits. Int. J. Appl. Eng. Res, 11(1), pp.64-70.

Ransome, J., Misra, A., 2013., Core Software Security, CRC Press.

Rawsthorne, D. and Trainer, C.S., 2010. Definition of Done. CollabNet,
www.open.collab.net/media/pdfs/SBU_DRDefinitionOfDone.pdf, retrieved:1.7.2019.

Rawsthorne, D. and Shimp, D., 2011. Exploring Scrum: The Fundamentals. CreateSpace.

Rindell, K., Hyrynsalmi, S. and Leppänen, V., 2015. Securing Scrum for VAHTI. In SPLST
(pp. 236-250).

Ross, R.S., 2011. Managing Information Security Risk: Organization, Mission, and
Information System View| NIST (No. Special Publication (NIST SP)-800-39).

Ross, R., McEvilley, M. and Oren, J., 2016. Nist special publication 800-160: Systems
security engineering considerations for a multidisciplinary approach in the engineering of
trustworthy secure systems. Gaithersburg: National Institute of Standards and Technology.

Saitta, P., Larcom, B. and Eddington, M., 2005. Trike v. 1 methodology document
dymaxion.org/trike/Trike_v1_Methodology_Documentdraft.pdf, retrieved: 9.8.2019.

122

Salini, P. and Kanmani, S., 2012. Survey and analysis on security requirements engineering.
Computers & Electrical Engineering, 38(6), pp.1785-1797.

Saltzer, J.H. and Schroeder, M.D., 1975. The protection of information in computer systems.
Proceedings of the IEEE, 63(9), pp.1278-1308.

Scandariato, R., Wuyts, K. and Joosen, W., 2015. A descriptive study of Microsoft’s threat
modeling technique. Requirements Engineering, 20(2), pp.163-180.

Schneier, B., 1999. Attack trees. Dr. Dobb’s journal, 24(12), pp.21-29.

Schoenfield, B.S., 2015. Securing systems: Applied security architecture and threat models.
CRC Press.

Sedgewick, A., 2014. Framework for improving critical infrastructure cybersecurity, version
1.0 (No. NIST-Cybersecurity Framework).

Shostack, A., 2008, September. Experiences threat modeling at microsoft. In Modeling
Security Workshop. Dept. of Computing, Lancaster University, UK.

Shostack, A., 2014. Elevation of privilege: Drawing developers into threat modeling. In
2014 {USENIX} Summit on Gaming, Games, and Gamification in Security Education
(3GSE 14).

Shostack, A., 2014. Threat modeling: Designing for security. John Wiley & Sons.

Shostack, A., 2017., Answer to “Granularity for data assets when determining risk during
software development”, security.stackexchange.com/questions/176099/granularity-for-data-
assets-when-determining-risk-during-software-development, retrieved: 8.6.2018.

Security Innovation Europe, 2016. The Business Case for Security in the Software
Development Lifecycle, cdn2.hubspot.net/hub/355303/file-559719186-
pdf/whitepapers/business-case-appsec.pdf, retrieved: 9.8.2019.

Siles, R., Bennetts, S., OWASP Vulnerable Web Application Directory Project,
www.owasp.org/index.php/OWASP_Vulnerable_Web_Applications_Directory_Project,
retrieved: 24.1.2019.

Sindre, G. and Opdahl, A.L., 2005. Eliciting security requirements with misuse cases.
Requirements engineering, 10(1), pp.34-44.

Singhal, A., 2011. Development of agile security framework using a hybrid technique for
requirements elicitation. In Advances in Computing, Communication and Control (pp. 178-
188). Springer, Berlin, Heidelberg.

Sion, L., Yskout, K., Van Landuyt, D. and Joosen, W., 2018, April. Solution-aware data
flow diagrams for security threat modeling. In Proceedings of the 33rd Annual ACM
Symposium on Applied Computing (pp. 1425-1432). ACM.

Spanakis, E.G., Santana, S., Tsiknakis, M., Marias, K., Sakkalis, V., Teixeira, A., Janssen,
J.H., de Jong, H. and Tziraki, C., 2016. Technology-based innovations to foster personalized
healthy lifestyles and well-being: a targeted review. Journal of medical Internet research,
18(6), p.e128.

Stock, A.V.D., Glas, B., Smithline, N. and Gigler, T., 2017. OWASP Top 10 2017. The Ten
Most Critical Web Application Security Risks.

Sutherland, J. and Schwaber, K., 2011. The scrum guide: the definitive guide to scrum.

123

Sutherland, J. and Schwaber, K., 2012. Software in 30 days - How Agile managers beat the
odds, delight their customers, and leave competitors in the dust. Wiley, Hoboken (NJ).

Synopsys, 2017. Overcoming the 6 Most Common Threat Modeling Misconceptions.
www.synopsys.com/software-integrity/resources/ebooks/security-threat-modeling-
misconceptions.html, retrieved: 9.8.2019.

Tarandach, I., 2019. Threat Model Every Story: Practical Continuous Threat Modeling
Work for Your Team. OWASP AppSec California, 2019.
www.youtube.com/watch?v=W83hwtcEOjk, retrieved: 8.3.2019.

Taylor, S.J. and Bogdan, R., 1984. Introduction to qualitative research methods: The search
for meaning.

Tondel, I.A., Jaatun, M.G. and Meland, P.H., 2008. Security requirements for the rest of us:
A survey. IEEE software, 25(1).

Tuma, K., Scandariato, R., Widman, M. and Sandberg, C., 2017. Towards security threats
that matter. In Computer Security (pp. 47-62). Springer, Cham.

Tuma, K., Calikli, G. and Scandariato, R., 2018. Threat Analysis of Software Systems: A
Systematic Literature Review. Journal of Systems and Software.

Türpe, S. and Poller, A., 2017. Managing Security Work in Scrum: Tensions and
Challenges. In SecSE@ ESORICS (pp. 34-49).

Türpe, S., 2017, September. The trouble with security requirements. In Requirements
Engineering Conference (RE), 2017 IEEE 25th International (pp. 122-133). IEEE.

UcedaVelez, T. and Morana, M.M., 2015. Risk Centric Threat Modeling: Process for Attack
Simulation and Threat Analysis. John Wiley & Sons.

United States, 2004. The Health Insurance Portability and Accountability Act (HIPAA).
[Washington, D.C.], U.S. Dept. of Labor, Employee Benefits Security Administration.
purl.fdlp.gov/GPO/gpo10291, retrieved: 16.6.2019.

Uzunov, A.V., Fernandez, E.B. and Falkner, K., 2012. Securing distributed systems using
patterns: A survey. Computers & Security, 31(5), pp.681-703.

Varma, V. and Garg, K., 2005, September. Case studies: the potential teaching instruments
for software engineering education. In Fifth International Conference on Quality Software
(QSIC'05) (pp. 279-284). IEEE.

Villamizar, H., Kalinowski, M., Viana, M. and Fernández, D.M., 2018, August. A
Systematic Mapping Study on Security in Agile Requirements Engineering. In 2018 44th
Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp.
454-461). IEEE.

Vivas, J.L., Agudo, I. and López, J., 2011. A methodology for security assurance-driven
system development. Requirements Engineering, 16(1), pp.55-73.

Walden, J., 2008, October. Integrating web application security into the IT curriculum. In
Proceedings of the 9th ACM SIGITE conference on Information technology education (pp.
187-192). ACM.

Weir, C., Rashid, A. and Noble, J., 2017. Developer Essentials: Top Five Interventions to
Support Secure Software Development.

124

Whyte, B. and Harrison, J., 2010. State of practice in secure software: experts’ views on best
ways ahead. Software Engineering for Secure Systems: Industrial and Research
Perspectives: Industrial and Research Perspectives, p.1.

Williams, L., Meneely, A. and Shipley, G., 2010. Protection poker: The new software
security" game". IEEE Security & Privacy, 8(3), pp.14-20.

Wuyts, K. and Joosen, W., 2015. LINDDUN privacy threat modeling: a tutorial. CW
Reports.

Wysocki, R.K., 2011. Effective project management: traditional, agile, extreme. John Wiley
& Sons.

Xin, T. and Xiaofang, B., 2014. Online Banking Security Analysis based on STRIDE Threat
Model. International Journal of Security and Its Applications, 8(2), pp.271-282.

Yoshioka, N., Washizaki, H. and Maruyama, K., 2008. A survey on security patterns.
Progress in informatics, 5(5), pp.35-47.

Yuan, X., Yang, L., Jones, B., Yu, H. and Chu, B.T., 2016. Secure software engineering
education: Knowledge area, curriculum and resources. Journal of Cybersecurity Education,
Research and Practice, 2016(1), p.3.

125

Biography
My work is the synthesis of a three-pronged background, which includes:

1) The experience I’ve acquired teaching a university course on secure
software engineering,

2) The research I’ve conducted as part of my Ph.D. studies, covering the
security development lifecycle,

3) The work I’ve done as a security advisor for a prominent software
vendor.

I started my career as a teaching assistant at the Faculty of Technical
Sciences in Novi Sad in 2014. From the start, I held to the principle that how
something is taught is equally important as what is taught. Over the years, I
have experimented with different teaching approaches, examining
gamification, e-learning, case study analysis, and the hybrid flipped
classroom. My primary course covers secure software engineering, where I
have developed a set of mature and relevant learning objectives as a result of
my experience in the industry and as a scientific researcher.

As part of my Ph.D., I have studied the different secure software engineering
methodologies and practices, covering both standard-defined processes and
industry-proven methods. My narrow research focus includes security
requirements engineering, particularly threat modeling and security design
analysis. Up to this point, I have published six papers in this field, most
notably a methodology for training software engineers the practice of
security design analysis.

Through my work at Schneider Electric, I have performed threat modeling
and security design analysis on several modules of a complex software
system for energy management and have taken part in dozens of security
analysis activities, examining tools, APIs, and 3rd-party components. My
primary focus is on introducing the security development lifecycle, as
defined by the IEC 62443-4-1:2018, to the organization.

By combining the different skillsets developed through my background, I
have focused my expertise towards performing and teaching others to
conduct various software security practices, dedicated to enhancing the
security posture of a software system efficiently and measurably.

