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Apstrakt

Problemi linearne komplementarnosti su savremena tema koja privlači
naročitu pažnju značajnog dela naučne zajednice. Ovo nije neobično,
budući da ovi problemi nastaju kao matematički odgovor tokom reša-
vanja realnih problema iz raznovrsnih primena, koji najčešće uključuju
optimizacioni problem, poput linearnog ili kvadratnog programiranja,
ali i kao instanca u rešavanju konkretnog problema iz ostalih interesant-
nih sfera primena, kao što su, na primer, problemi sa graničnim slojem iz
mehanike fluida, problemi mrežnog ekvilibrijuma, kontaktni problemi,
modeli tržišne ravnoteže, optimalna alokacija kapitala, optimalno zaus-
tavljanje, odred̄ivanje Nešovog ekvilibrijuma u teoriji bimatričnih igara
kao i mnogi drugi.

Uopšteno govoreći, rešavanju problema linearne komplementarnosti
moguće je pristupiti dvojako. Prvi pristup podrazumeva upotrebu takoz-
vanih direktnih metoda, koje su poznate i pod nazivom metode pivota.
Drugoj kategoriji, koja je i sa stanovišta ove teze interesantna, pripadaju
iterativni postupci. S obzirom da je ova kategorija izuzetno bogata, mi
smo se opredelili za jednu od najznačajnijih varijanti, a to je modulski it-
erativni postupak. Med̄utim, ni ova odrednica nije dovoljno adekvatna,
budući da modulski postupci obuhvataju nekolicinu različitih pravaca.
Zato smo se odlučili da posmatramo postupke koji se zasnivaju na ra-
zlaganjima, ali i višestrukim razlaganjima matrice.

Ovu ideju o primeni najpre splitinga [8], a nekoliko godina kasnije



i multisplitinga [9], kada je reč o modulskim iterativnim postupcima
prvi je uveo Bai, a postupke nazvao modulskim metodama zasnovanim
na (multi)splitinzima matrice. Ideja primene multisplitinga javila se sa
jasnim ciljem da se iskoriste mogućnosti paralelnog izračunavanja na
višeprocesorskim računarskim jedinicama. Pored formulacije pomenu-
tih postupaka, Bai je u svojim radovima analizirao i konvergenciju istih.
Nakon toga, usledile su brojne generalizacije i novi rezultati o konver-
genciji. Med̄u njima, ističu se oni sa novim tehnikama, koje se mogu
iskoristiti za dalju analizu konvergencije, [70]. To je jedan od osnovnih
razloga zbog kojeg smo se opredelili za upotrebu teorije H-matrica u
dokazu konvergencije pomenutih metoda, kao i dodatnih analiza, kao
što je analiza greške, [26].

Uzevši sve navedeno u obzir, glavni cilj ove doktorske disertacije
jeste upotreba teorije H-matrica u teoremama o konvergenciji modul-
skih metoda zasnovanih na multisplitinzima matrice i korišćenje ove
nove tehnike, sa ciljem analize bitnih osobina, nakon što je konvergen-
cija postupka zagarantovana. Za kraj, spomenimo i to da je rad na ovoj
savremenoj temi izrodio nove i originalne rezultate [26], koji su prezen-
tovani kao sastavni deo ove disertacije.



Abstract

Linear complementarity problems are a contemporary scientific research
field which attract a lot of attention. This is not a surprise, since they
arise from the need to solve a problem from real life applications, which
usually includes an optimization, such as linear or quadratic program-
ming. Then, a variety of other interesting applications appear, for ex-
ample free boundary problems from fluid mechanics, network equilib-
rium problems, contact problems, market equilibria problems, optimal
capital invariant stock, optimal stopping problems, determining Nash
equilibrium in bimatrix games and many more.

Generally speaking, solving the linear complementarity problem can
be approached from two essentially different perspectives. One of them
includes the use of so-called direct methods, in the literature also known
under the name pivoting methods. The other, and from our perspective
- more interesting one, which we will actually focus on in this thesis, is
the iterative approach. Among the vast collection of iterative solvers,
our choice was one particular class of modulus based iterative methods.
Since the subclass of modulus based-methods is again diverse in some
sense, it can be specialized even further, by the introduction and the use
of matrix splittings.

The idea to use splittings [8], and later multisplittings [9] in the
modulus-based methods, was first proposed by Bai who named these
methods as the modulus-based matrix (multi)splitting iteration meth-



ods for solving LC P(q, A) . The multisplitiing idea was incorporated only
a couple of years later, in order to take full advantage of parallel com-
putations on multiprocessor systems. In addition to the introduction of
these methods, the first results of their convergence have been analysed
by the same author. After his pioneer work, many generalizations and
new convergence results have been published. Among them, there are
several novel approaches, with a great potential to enable further con-
vergence analysis, [70]. This is the main reason because of which we
chose to use the theory of H-matrices for proving convergence of such
methods, and to make more benefits of this kind of proof, for example,
in the error analysis of proposed methods, [26].

With all this in mind, the main goal of this thesis is to use the theory
of H-matrices for proving convergence of the modulus-based multisplit-
ting methods, and to use this new technique to analyze some important
properties of iterative methods once the convergence has been guaran-
teed. Finally, working on this conteporary topic has created new and
original results [26], which are presented in this thesis.
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1. Introduction

1.1 History

The history of linear complementarity problem can be traced back to

the 40s of the twentieth century, when Du Val [32] formulated the prob-

lem of finding the smallest element (in the vector sense). The problem

aimed to solve the system of linear inequations of the form

z ≥ 0,

q+ Az ≥ 0.

But this problem has not always been known under this name. Its ini-

tial name was the composite problem, until it was changed to the fun-

damental problem and lastly - the complementarity pivoting problem.

The name that is used in the contemporary science was proposed by

Cottle in 1995. It is exaclty around that time that the problem attracted

much more attention, especially through the work done by Lemke [47],
Cottle [17] and Cottle and Dantzig [18].
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1.2 Motivation

Linear complementarity problems are a contemporary scientific research

field which attract a lot of attention. This is not a surprise, since they

arise from the need to solve a problem from real life applications, which

usually includes an optimization, such as linear or quadratic program-

ming. Then, a variety of other interesting applications appear as well

- for further reference see [19]. For example, some of these possible

applications include free boundary problems from fluid mechanics, net-

work equilibrium problems, contact problems, market equilibria prob-

lems [54, 55, 56, 57], optimal capital invariant stock [45, 46, 40, 33],
optimal stopping problems [15, 16], determining Nash equilibrium in

bimatrix games [59, 60] and many more.

The thesis consists of the following chapters: after some historical

references, motivation and preliminaries from numerical linear algebra

background, Chapter 2 is related to the LCP formulation, as well as some

selected possible applications, discussed in detail. Chapter 3 represents

an overview of methods for solving systems of linear equations, since

it is a good starting point for understanding the formulation of itera-

tive methods for LCP. Chapter 4 presents iterative methods for LCP, with

an emphasis on modulus based splitting and multisplitting methods.

Chapter 5 is related to the convergence analysis, while Chapter 6 deals

with the error control, both of which contain original results from [26].
Finally, Chapter 7 gives some numerical examples, which illustrate the-

oretical results, their usefullness and efficiency. Thesis ends with a list

of relevant literature.
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1.3 Notations

• N − the set of natural numbers

• N0 − the set of natural numbers including 0

• Z − the set of integers

• R − the set of real numbers

• C − the set of complex numbers

• Nn := {1, 2, ..., n} − the index set

• Rn − the n-dimensional real vector space

• Rn
+ − the n-dimensional real vector space of positive vectors

• Cn − the n-dimensional complex vector space

• x = [x i] ∈ Rn − n-dimensional vector with coordinates x i ∈ R

• x = [x i] ∈ Cn − n-dimensional vector with coordinates x i ∈ C

• x i − the ith coordinate of x

• |x | := [|x i|] ∈ Cn

• x T − the transpose of x

• xH − the conjugate transpose of x
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• x ≥ y, x , y ∈ Rn − for all i ∈ Nn, x i ≥ yi

• x > y, x , y ∈ Rn − for all i ∈ Nn, x i > yi

• x ≤ y, x , y ∈ Rn − for all i ∈ Nn, x i ≤ yi

• x < y, x , y ∈ Rn − for all i ∈ Nn, x i < yi

• x = y − x is equal to y

• x ≥ 0, x ∈ Rn − x is a nonnegative vector

• x > 0, x ∈ Rn − x is a (strictly) positive vector

• x ≤ 0, x ∈ Rn − x is a nonpositive vector

• x < 0, x ∈ Rn − x is a (strictly) negative vector

• x = 0, x ∈ Rn − x is a zero vector

• e − vector with all coordinates equal to 1

• ei − zero vector with the ith coordinate equal to 1

• ‖x‖∞ :=max
i∈Nn

|x i| − infinity norm of vector x

• ‖x‖1 :=
∑

i∈Nn

|x i| − 1-norm of vector x

• ‖x‖2 :=

 

∑

i∈Nn

|x i|2
!1/2

− 2-norm of vector x

• Rn,n − the set of all n by n real matrices
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• Cn,n − the set of all n by n complex matrices

• A= [ai j] ∈ Rn,n − a matrix with entries ai j ∈ R

• A= [ai j] ∈ Cn,n − a matrix with entries ai j ∈ C

• ai j − the matrix entry in the ith row and the jth column

• a j − the jth column of matrix A

• |A| := [|ai j|] ∈ Cn,n

• AT − the transpose of matrix A

• AH − the conjugate transpose of matrix A

• A≥ B, A, B ∈ Rn,n − for all i, j ∈ Nn, ai j ≥ bi j

• A> B, A, B ∈ Rn,n − for all i, j ∈ Nn, ai j > bi j

• A≤ B, A, B ∈ Rn,n − for all i, j ∈ Nn, ai j ≤ bi j

• A< B, A, B ∈ Rn,n − for all i, j ∈ Nn, ai j < bi j

• A≥ O, A∈ Rn,n − A is a nonnegative matrix

• A> O, A∈ Rn,n − A is a (strictly) positive matrix

• A≤ O, A∈ Rn,n − A is a nonpositive matrix

• A< O, A∈ Rn,n − A is a (strictly) negative matrix

• O − zero matrix

6



• 〈A〉 − the comparison matrix of A

• det(A) − the determinant of A

• A−1 − the inverse of a nonsingular matrix A

• E − the identity matrix

• diag(x1, ..., xn) − the diagonal matrix with diagonal entries x1, ..., xn

• λ(A) − the eigenvalue of A

• σ(A) − the spectrum of A

• ρ(A) − the spectral radius of A

• ri(A) :=
∑

j∈Nn
j 6=i

|ai j| − the ith deleted row sum of A

• r(A) = [ri(A)] − the column vector of deleted row sums of A

• ‖A‖∞ =max
i∈Nn

∑

j∈Nn

|ai j| − infinity norm of matrix A

• ‖A‖1 =max
j∈Nn

∑

i∈Nn

|ai j| − 1-norm of matrix A

• ‖A‖2 =
Æ

ρ(AHA) − 2-norm of matrix A

• LC P(q, A) − linear complementarity problem with vector q and

matrix A

7



1.4 Preliminaries

We begin this section of preliminaries with some basic overview of fun-

damental definitions and theorems, which we will use throughout this

thesis.

In addition to vector norms included in the list of notations, there is

one important, which is frequently used. For an arbitrary vector z ∈ Rn

with the property z > 0, the weighted vector norm is defined in the

following way

‖x‖(z) = max
1≤i≤n

|x i|
zi

, x ∈ Rn.

Matrix norm induced by this vector norm is given by

‖A‖(z) = max
1≤i≤n

n
∑

j=1

|ai j|z j

zi
, A∈ Rn,n.

The relationship between these vector and matrix norms is established

in the following theorem.

Theorem 1.4.1. Let z ∈ Rn, z > 0 and A∈ Rn,n. It is always true that

‖A‖(z) ≥ ‖Az‖(z).

However, if A≥ O, then

‖A‖(z) = ‖Az‖(z).

The following theorems establish some properties of the spectral ra-

dius of a matrix, ρ(A), which is the largest eigenvalue of A taken by the

moduli, but also its relationship with the matrix norm.

8



Theorem 1.4.2. For an arbitrary matrix norm ‖ · ‖ on Cn,n and every

square matrix A∈ Cn,n, it holds that ρ(A)≤ ‖A‖.

Theorem 1.4.3. For any square matrix A ∈ Cn,n and every ε > 0 there

exists an induced matrix norm ‖ · ‖, so that ρ(A)≤ ‖A‖< ρ(A) + ε.

Lemma 1.4.1. Suppose that A∈ Rn,n is nonnegative, A≥ O. If there exists

a positive vector x ∈ Rn and a positive scalar α, so that Ax < αx , then

ρ(A)< α.

Obviously, choosing α = 1, based on Lemma 1.4.1, we have the

following immediate result.

Lemma 1.4.2. Suppose that A ∈ Rn,n is nonnegative. If there exist a

positive vector x ∈ Rn satisfying Ax < x , then ρ(A)< 1.

Since a substantial part of this thesis is in connection with the iter-

ative methods for solving linear systems, we recall some key results in

connection with the convergence of matrix sequences, as well as their

norms.

Theorem 1.4.4. Let
¦

A(k)
©

k∈N
be an arbitrary matrix sequence and ‖ · ‖

an arbitrary matrix norm. Then, the following equivalence is true

lim
k→∞

A(k) = O ⇐⇒ lim
k→∞

‖A(k)‖= 0.

Theorem 1.4.5. For any square matrix A it is true that

lim
k→∞

Ak = O ⇐⇒ ρ(A)< 1.

9



1.5 Special classes of matrices

In this section we will introduce some special types of matrices that

appear in problems dealing with linear complementarity.

Definition 1.5.1. Given A ∈ Rn,n, we say that it is a Z-matrix provided

that all of its off-diagonal entries are nonpositive. Additionally, if all the

diagonal entries are strictly positive, then we say that A is a Z+ matrix.

Definition 1.5.2. Matrix A ∈ Rn,n is an M-matrix if it is a nonsingular

Z-matrix, with a nonnegative inverse, i.e. A−1 ≥ O.

It is well-known that if A is an M -matrix, then it is a Z+ matrix, too.

Let us remark that, throughout this dissertation, the name ”M -matrix”

always means nonsingular M -matrix.

Lemma 1.5.1 ([11]). A matrix of the form A= sE − B, where B ≥ O, is

an M-matrix if and only if ρ(B)< s.

Lemma 1.5.2. Every triangular Z+ matrix is an M-matrix.

The theory of nonnegative matrices contains about 50 different and

equivalent definitions of nonsingular M -matrices (for details, we sug-

gest [11]). Here we recall one of them, in form of a theorem, which is

important for this thesis.

Theorem 1.5.1. A Z-matrix A∈ Rn,n is an M-matrix if and only if there

exists a positive vector z, for which vector Az is also positive.

10



Lemma 1.5.3. Let A, B ∈ Rn,n be M-matrices, D ∈ Rn,n a positive diagonal

matrix and C ∈ Rn,n an arbitrary matrix. Then, the following implications

are true:

1. A≤ B =⇒ B−1 ≤ A−1,

2. A≤ C ≤ D =⇒ C is an M-matrix.

Definition 1.5.3. Let A= [ai j] ∈ Cn,n. We say that A is strictly diagonally

dominant (SDD) if for all i ∈ {1,2, . . . , n}

|aii|> ri(A) :=
n
∑

j=1
j 6=i

|ai j|.

One very important class of matrices, especially for the topic and

results of this thesis, is the class of nonsingular H-matrices.

Definition 1.5.4. Let A = [ai j] ∈ Cn,n be an arbitrary matrix. Then, its

comparison matrix, 〈A〉 := [αi j] ∈ Rn,n, is defined entrywise as

αi j :=

¨

|aii|, i = j,

−|ai j|, i 6= j.

Now, we define the class of H-matrices.

Definition 1.5.5. Matrix A ∈ Cn,n is an H-matrix if and only if its com-

parison matrix, 〈A〉 is an M-matrix, that is if and only if 〈A〉 is nonsingular

and 〈A〉−1 ≥ O.

11



The class of nonsingular H-matrices can also be characterized as a

generalization of SDD matrices, also known under the name generalized

diagonally dominant (GDD) matrices.

Definition 1.5.6. Matrix A = [ai j] ∈ Cn,n is an H-matrix if and only if

there exists a positive diagonal matrix X = diag(x1, x2, . . . , xn) ∈ Cn,n,

such that AX is SDD.

The following properties of H-matrices are well-known and we give

them without proof.

Theorem 1.5.2. Let A∈ Cn,n be an H-matrix, D = diag(a11, a22, . . . , ann)
and A= D− B. Then:

a) A is nonsingular,

b) |A−1| ≤ 〈A〉−1,

c) |D| is nonsingular and ρ(|D|−1|B|)< 1.

Additionally, if all diagonal entries of an H-matrix are strictly posi-

tive, then the matrix is an H+-matrix.

Lemma 1.5.4 ([66]). If e = [1, 1, . . . , 1]T and P is a strictly diagonal

dominant (SDD) matrix, then for any matrix Q the inequality

‖P−1Q‖∞ ≤max
i

(|Q|e)i
(〈P〉e)i

,

holds.

12



The following lemma is an original result from [26], so we present

it here along with its proof.

Lemma 1.5.5 ([26]). Let P be an H-matrix and w> 0 such that 〈P〉w>
0. Then, for any matrix Q we have

‖P−1Q‖(w) ≤ ‖〈P〉−1|Q|‖(w) ≤max
i

(|Q|w)i
(〈P〉w)i

.

Proof: Since P is an H-matrix, it follows that there exists w > 0

such that 〈P〉w > 0. Also, according to Theorem 1.5.2 |P−1| ≤ 〈P〉−1.

Therefore, the following is straightforward

‖P−1Q‖(w) = ‖|P−1Q|‖(w) ≤ ‖|P−1||Q|‖(w) ≤ ‖〈P〉−1|Q|‖(w).

The nonnegativity of 〈P〉−1|Q| implies that

‖〈P〉−1|Q|‖(w) = ‖〈P〉−1|Q|w‖(w) = ‖z‖(w) = ‖W−1z‖∞ =max
i

zi

wi
,

where W = diag(w1, . . . , wn) and z := 〈P〉−1|Q|w ≥ 0, or equivalently

〈P〉z = |Q|w. Componentwise, this is the same as

|pii|zi −
∑

j 6=i

|pi j|z j =
∑

j

|qi j|w j.

Now, let us observe the row index k with the property that

‖z‖(w) =
zk

wk
≥

z j

w j
, ∀ j ∈ Nn,

for which

|pkk|zk −
∑

j 6=k

|pk j|
zkw j

wk
≤ |pkk|zk −

∑

j 6=k

|pk j|z j =
∑

j

|qk j|w j,

13



i.e.
zk

wk

(

|pkk|wk −
∑

j 6=k

|pk j|w j

)

≤
∑

j

|qk j|w j,

i.e.
zk

wk
(〈P〉w)k ≤ (|Q|w)k .

Finally,

‖z‖(w) =
zk

wk
≤
(|Q|w)k
(〈P〉w)k

≤max
i

(|Q|w)i
(〈P〉w)i

,

which completes the proof. �
For an arbitrary A∈ Rn,n we say that it is symmetric if A= AT .

Definition 1.5.7. A symmetric matrix A∈ Rn,n is positive definite if x T Ax >

0 for every x 6= 0. If x T Ax ≥ 0 for every x , then A is positive semi-definite.

1.6 Matrix splittings

Definition 1.6.1. Let A∈ Cn,n. If there exist matrices M , N ∈ Cn,n, where

M is nonsingular and

A= M − N , (1.1)

then (1.1) is called a splitting of A.

There are many kinds of splitting of a matrix. Some of them, used

in this dissertation, we present now. For details, see [5, 11].

Definition 1.6.2. [30] Let A= M −N be a splitting of A. The splitting is:

a) convergent if ρ(M−1N)< 1,

14



b) H-splitting if 〈M〉 − |N | is an M-matrix,

c) H-compatible if 〈A〉= 〈M〉 − |N |.

Lemma 1.6.1. [35] Let A = M − N be an H-splitting. Then, matrices A

and M are both H-matrices and ρ(M−1N)≤ ρ(〈M〉−1|N |)< 1, i.e. every

H-splitting is convergent.

Lemma 1.6.2. [35] Every H-compatible splitting of an H-matrix is also

an H-splitting.

Definition 1.6.3. Let A∈ Cn,n. The splitting of the form

A= D− L − U , (1.2)

where D = diag(a11, a22, . . . , ann) and

(L)i j :=

¨

−ai j for i > j,

0 for i ≤ j,
(U)i j :=

¨

−ai j for i < j,

0 for i ≥ j,

is called the standard splitting of A.

Definition 1.6.4. Let ` ∈ N be such that ` ≤ n, let A = Mp − Np, p =
1,2, . . . ,` be splittings of the system matrix A∈ Rn,n, and let Ep ∈ Rn,n be

nonnegative diagonal matrices satisfying
∑̀

p=1

Ep = E (called the weighting

matrices). Then the collection of triples (Mp, Np, Ep)(p = 1,2, . . . ,`) is

called a multisplitting of A.

Definition 1.6.5. Let D = diag(a11, a22, . . . , ann), and let for p = 1, 2, . . . ,`,

matrices Lp and Up = D − Lp − A be strictly lower triangular and zero-

diagonal matrices, respectively. Let nonnegative diagonal matrices Ep ∈
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Rn,n, p = 1, 2, . . . ,`, satisfy
∑̀

p=1

Ep = E. Then the collection of triples

(D− Lp, Up, Ep)(p = 1, 2, . . . ,`) is called a triangular multisplitting of A.

Definition 1.6.6. Let (Mp, Np, Ep)(p = 1,2, . . . ,`) be a multisplitting of

A. Let us observe the splittings of matrices Mp of the following form:

Mp = Fp − Gp, for p = 1, 2, . . . ,`. Then, the collection of triples (Mp :

Fp, Gp; Np; Ep)(p = 1,2, . . . ,`) is called a two-stage multisplitting of A.

Definition 1.6.7. Let (Mp, Np, Ep)(p = 1, 2, . . . ,`) be a multisplitting of A,

and let D = diag(a11, a22, . . . , ann). For each p = 1,2, . . . ,`, let us define

the following parts of Mp: diagonal, Dp, strictly lower triangular, Lp and

zero-diagonal, Up, so that Mp = Dp−Lp−Up. Then, the collection of triples

(Mp : Dp − Lp, Up; Np; Ep)(p = 1, 2, . . . ,`) is called a two-stage triangular

multisplitting of A.
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2. Linear complementarity
problem

2.1 Problem formulation

For an arbitrary finite positive integer n, let A ∈ Rn,n be an arbitrary

real-valued, square matrix of order n. In addition, let q ∈ Rn be a real-

valued vector of dimension n. Then, we may try to solve the following

problem: find a nonnegative vector z ∈ Rn for which the vector q + Az

is also nonnegative. Mathematically, we can formulate this task in the

following way, as a system of linear inequations

z ≥ 0, (2.1)

q+ Az ≥ 0. (2.2)

For every z satisfying both inequations (2.1) and (2.2), we say that it

is a feasible vector. Therefore, the set of all feasible vectors, that is -

the set of all solutions of (2.1)-(2.2) is called the feasible set, denoted

byF (q, A). As a special case, the inequalities in (2.1)-(2.2) can become

strict. Then, if there still exists a vector z satisfying both of them, we
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say that z is a strictly feasible vector. The corresponding set of all such

vectors is called strictly feasible set.

From the geometrical point of view, the setF (q, A) is the intersection

of the first orthant (hyperoctant) - condition (2.1), and the cone given

by (2.2). Clearly, this set may be empty when there is no intersection,

which means that the cone defined by (2.2) lies entirely outside the first

orthant. We illustrate and comment on the cases of the existence of so-

lutions to (2.1) and (2.2) for n= 2, since these can be easily represented

geometrically.

Example 2.1.1. Consider the following matrix-vector pair for our prob-

lem,

A=

�

1 2

2 −1

�

and q =

�

2

−2

�

.

From now on, we will write z = [z1, z2]T , which means that (2.2) becomes:

z1 + 2z2 ≥ −2, 2z1 − z2 ≥ 2. (2.3)

Solving this system of linear inequations can be done graphically, and

since part of this region belongs to the first quadrant, there existsF (q, A).
This is illustrated in Figure 2.1.

The feasible set may not always exist. The following example shows

this fact.

Example 2.1.2. Consider the following matrix-vector pair for our prob-

lem,

A=

�

−1 −2

2 −1

�

and q =

�

−2

−2

�

.
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2z
1
−

z 2
=

2

Figure 2.1: Inequality constraint cone defined by (2.3) (left) and its
intersection with the first quadrant, producing the feasible set, F (q, A)
(right).

In this case, (2.2) becomes

−z1 − 2z2 ≥ 2, 2z1 − z2 ≥ 2. (2.4)

Since the cone described by this system does not intersect with the first

quadrant, there is no feasible set,F (q, A). This is illustrated in Figure 2.2.

The challenge of the problem becomes obvious if we introduce an

additional requirement:

zT (q+ Az) = 0, (2.5)

where zT denotes the transpose of vector z.

Condition (2.5) is known as the complementarity condition. What

this condition algebraically represents is the orthogonality condition of

vectors z and q+ Az.
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1
−

z 2
=

2

Figure 2.2: Inequality constraint (2.4) which has no intersection with
the first quadrant, so there is no feasible set.

Obviously, the linear complementarity problem is about finding a

vector in a finite-dimensional real-valued vector space that satisfies a

certain set of constraints. Since we have analyzed its parts from differ-

ent angles, we may now define the problem formally.

Definition 2.1.1. Let A ∈ Rn,n be an arbitrary matrix and q ∈ Rn an

arbitrary vector. The Linear Complementarity Problem (LCP), for the given

pair of vector and matrix, in the notation LC P(q, A) , is defined as follows:

z ≥ 0,

q+ Az ≥ 0,

zT (q+ Az) = 0.

(2.6)

Therefore, the process of finding a solution of LC P(q, A) can be di-

vided in two stages. First, identify the feasible region,F (q, A), and then
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choose all the vectors for which the complementarity condition (2.5) is

satisfied. This means that if the feasible region is empty, as in Exam-

ple 2.1.2, then LC P(q, A) has no solution. Even if the feasible region is

nonempty, which means that there are candidates for vector z to be cho-

sen from, this does not guarantee that any of them will satisfy condition

(2.5), in which case LC P(q, A) , again, has no solution.

In the literature dealing with the linear complementarity problems

the usual practice is to define an auxiliary vector

r = q+ Az,

which leads to a simpler notation of LC P(q, A) . We say that z belonging

to F (q, A) solves LC P(q, A) if and only if

zi ri = 0 for every i = 1,2, . . . , n. (2.7)

Note that zi and ri are the corresponding components of vectors z and

r, respectively. Since z belongs to F (q, A), this implies that both z and

r are nonnegative. Therefore, in order the condition (2.7) to hold, it

needs to be true that whenever there exists a nonzero component of

one vector, the corresponding component in the other one must be equal

to zero. This complementarity nature of the condition justifies the at-

tribute in the name of the problem.

2.2 LCP in applications

Linear complementarity problems can be observed as a unifying frame-

work for the problems of linear and quadratic programming, as well
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as bimatrix games and, not to be forgotten, market equilibrium models

from numerical optimization. The wide range of practical applications

makes them very important. Since many problems from practice either

reduce or can be written in the form of a linear complementarity prob-

lem, this motivates methods for their solution.

2.2.1 Quadratic programming

A lot of problems from practice, when expressed in the language of

mathematics, become problems of numerical optimization. One impor-

tant class of such problems is the quadratic programming problem (QP),

minimize cT x +
1
2

x TQx (objective function)

subject to Ax ≥ b (main constraint)

x ≥ 0 (nonnegativity constraint)

(2.8)

The representation (2.8) is known as the standard minimum problem

and the goal is to find vector x ∈ Rn as a solution of (2.8). The name

quadratic programming comes from the quadratic term x TQx appearing

in the objective function. The main assumption is that the real square

matrix Q of order n is symmetric, where A ∈ Rm,n, b ∈ Rm and c ∈ Rn.

It is interesting here to see that in the case when matrix Q is equal to

zero matrix, the quadratic term disappears, and the quadratic program

becomes a linear one. For that reason, since quadratic programming

represents a generalization of linear programming, we will talk about it

first, and then analyze linear programming, as its special case, in detail.

Both of these programs are interesting from the point of view of this
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thesis, since at the equilibrium point, the optimality conditions are, in

fact, in form of a linear complementarity problem.

In addition to the standard minimum problem, there also exists the

standard maximum problem, which aims to find vector y ∈ Rm which

solves

maximize bT y −
1
2

uTQu (objective function)

subject to AT y −Qu≤ c (main constraint)

y ≥ 0 (nonnegativity constraint)

(2.9)

where u ∈ Rn. The constraints, main and nonnegativity, together make

the feasible set, or the domain of the problem. The procedure of solving

a general QP can be described as follows. First, if the domain is empty,

meaning that there is no vector with the property that all inequalities

hold true at the same time, the problem is infeasible and has no solution.

However, if the set is feasible, then the problem is feasible. Now we try

to find the extreme value of the objective within the domain. This cre-

ates two possibilities. If the objective function is unbounded on domain,

then QP has no solution and it is unbounded feasible. Otherwise, it is

bounded feasible. The feasible vector from domain, for which the ob-

jective function becomes maximal/minimal is called the optimal vector.

From the theory of numerical optimization, it is well-known that the

necessary optimality condition for x to minimize the quadratic objective

function is that there exists y, such that the vector pair (x , y) satisfies
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the Karush-Kuhn-Tucker (KKT) conditions:

u=c +Qx − AT y ≥ 0, x ≥ 0, x T u= 0,

v =− b+ Ax ≥ 0, y ≥ 0, y T v = 0.
(2.10)

These conditions can be written in a compact form
�

u

v

�

=

�

c

−b

�

+

�

Q −AT

A O

�

·

�

x

y

�

,

�

u

v

�

≥ 0,

�

x

y

�

≥ 0,

�

u

v

�T �
x

y

�

= 0.

If we denote by r = [u v]T and z = [x y]T , (2.10) is exactly a linear

complementarity problem for the vector-matrix pair
�

c

−b

�

∈ Rn+m and

�

Q −AT

A O

�

∈ R(n+m)×(n+m).

The symmetry of Q does not imply the symmetry of the block matrix

for the linear complementarity problem. However, the symmetry is true

only if A is a zero matrix, which means that the inequations from QP

disappear. This simplifies the problem.

2.2.2 Linear programming

In case when matrix Q from QP is a zero matrix, quadratic program-

ming becomes simplified, that is - linear. A linear programming problem

(LP) represents a problem of finding the maximum or minimum of a
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linear function. This function is called the objective function. Addition-

ally, as in the case of QP, the problem includes constraints, which are

linear functions of the variables. These constraints can be equalities or

inequalities.

All linear programs can be divided in two main types of standard prob-

lems:

• standard minimum problem, which is to find x ∈ Rn that solves

minimize cT x (objective function)

subject to Ax ≥ b (main constraint)

x ≥ 0 (nonnegativity constraint)

• standard maximum problem, which is to find y ∈ Rm that solves

maximize bT y (objective function)

subject to AT y ≤ c (main constraint)

y ≥ 0 (nonnegativity constraint)

where c is from Rn, vector b belongs to Rm and A∈ Rm,n.

One of the key concepts in numerical optimization in connection

with linear and quadratic programming is the concept of duality. There

is always more than one aspect to every problem which we need to

solve. It is a tool which enables us to look at the same thing but from

two different angles. So, the principle of duality makes life much easier,

and is a very important concept in numerical optimization.

So far, we have seen the definitions of the standard minimum and

maximum problem. Each of them can be considered as a primal prob-

lem. We define the concept of its dual as follows.
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Definition 2.2.1. The dual of the standard minimum problem is defined

to be the standard maximum problem, and vice versa.

Therefore, the usual practice is to be aware that along with the pri-

mal, the dual is also available. This is important, since we will choose

the one which is more suitable for the situation we are dealing with. In

case of linear programming, let us pronounce for the primal (P) the

standard minimum problem, and consequently, for the dual (D) the

standard maximum problem. Taken together as ”two sides”, the way

to solve them can be described as follows. We are obviously interested

to find a pair of vectors, x ∈ Rn and y ∈ Rm, that solve (P) and (D),

respectively.

As in the case of QP, it is well known that the optimality conditions

for the primal-dual pair are

u=c − AT y ≥ 0, x ≥ 0, x T u= 0,

v =− b+ Ax ≥ 0, y ≥ 0, y T v = 0.
(2.11)

where x ∈ Rn is the optimal feasible solution of the primal, y ∈ Rm is

the optimal feasible solution of the dual, u ∈ Rn and v ∈ Rm. But, if we

take a closer look, (2.11) is equivalent to
�

u

v

�

=

�

c

−b

�

+

�

O −AT

A O

�

·

�

x

y

�

,

�

u

v

�

≥ 0,

�

x

y

�

≥ 0,

�

u

v

�T �
x

y

�

= 0.
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Finally, if we denote r = [u v]T , z = [x y]T , (2.11) is exactly a

linear complementarity problem for the vector-matrix pair
�

c

−b

�

∈ Rn+m and

�

O −AT

A O

�

∈ R(n+m)×(n+m).

2.2.3 Market equilibrium

Now we will consider another possible practical application of LCP that

comes from linear programming model of market equilibrium, as it has

been done in [19]. Imagine a company which produces goods for the

consumers (for simplicity we consider only one firm, although the model

can be extended to a more general case). If we take c to be the cost

vector of raw goods for the supply activities, containing information

of the unit production costs of all the goods that are necessary for the

production, and if we denote by x the unknown vector of production

activity levels, then the total cost of production can be represented as

the scalar product of these two vectors, cT x . Obviously, vector x is, by

nature, nonnegative. The objective of the firm is

minimize cT x . (2.12)

The constraints are as follows. First, it is known that the technological

constraints on production can be expressed in form

Ax ≥ b, (2.13)

where A is a known matrix and b a known vector. Also, the demand

requirement constraint is

Bx ≥ r?, (2.14)
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where r? is the threshold for demand of products at equilibrium. On

the other side, observe the demand, represented by consumers. The de-

mand vector r∗ at equilibrium is given as a linear function of the vector

of prices of produced goods p∗

r? =Q(p?) = Dp? + d. (2.15)

Market equilibrium is defined to be the state of an economy at which

the supplies of producers and demands of consumers are balanced. The

goal is to find vectors r? and p? so that conditions (2.12)-(2.15) are

satisfied. The last condition providing equilibrium is

p? = π? (2.16)

where π? denotes the (dual) vector of shadow prices (i.e., the market

supply prices) corresponding to (2.14).

Next step is to convert the introduced model to a form of LCP. From

the theory of numerical optimization and the duality, it is known that

vector x∗ solves (2.12)-(2.14) optimally if and only if there exists a vec-

tor v? such that

y? = c − AT v? − BTπ? ≥ 0, x? ≥ 0, (y?)T x? = 0,

u? = −b+ Ax? ≥ 0, v? ≥ 0, (u?)T v? = 0,

δ? = −r? + Bx? ≥ 0, π? ≥ 0, (δ?)Tπ? = 0.

(2.17)

Finally, it only remains to substitute (2.15) and (2.16) into (2.17) to

obtain the LCP with
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q =







c

−b

−d






and M =







0 −AT −BT

A 0 0

B 0 −D






.

2.2.4 Bimatrix games

Another possible application of LCP comes from the game theory, [51].
Imagine a game with two players, which we will denote P1 and P2.

Suppose that P1 has m and P2 has n choices and they act independently.

Next, we introduce two matrices, A′ = [a′i j] ∈ R
m,n and B′ = [b′i j] ∈ R

m,n

in the following way. If P1 decides to choose choice i and P2 choice j,

then the loss of P1 is a′i j and the loss of P2 is b′i j. For that reason, matrices

A′ and B′ are called the loss matrices. If A′ + B′ = O, then the game is

a zero sum game. Otherwise, it is a nonzero sum game or a bimatrix

game.

Bimatrix games can be transformed into a LCP form by the concept of

equilibrium pair of strategies. Suppose that P1 decides for choice i with

probability x i, for every i = 1,2, . . . , m. Then x = [x i] ∈ Rm completely

defines the strategy of P1. Similarly, we can introduce vector y = [y j] ∈
Rn which determines the strategy of P2. Then, the expected loss of P1

is x T A′ y and of P2 is x T B′ y. The equilibrium pair is the strategy pair

(x?, y?) such that

(x?)T A′ y? ≤ x T A′ y?, ∀x ∈ Rm

(x?)T B′ y? ≤ (x?)T B′ y, ∀y ∈ Rn.
(2.18)
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Next, we can always choose α ≥ 0 and β ≥ 0 such that for every

i and j ai j := a′i j + α > 0 and bi j := b′i j + β > 0, defining two strictly

positive matrices A and B. Since, for every x and y

x T A′ y ≤ x T Ay −α

x T B′ y ≤ x T B y − β ,

it is clear that (x?, y?) is the equilibrium pair for the game with loss

matrices A′ and B′ if and only if it is the equilibrium pair for the game

with loss matrices A and B.

Recalling that x and y are probability vectors, meaning that 0 ≤
x , y ≤ e, using condition (2.18) and denoting by er the vector e from

Rr , we have
((x?)T Ay?)em ≤ Ay?,

((x?)T B y?)en ≤ BT x?.
(2.19)

But, A, B > O implies that (x?)T Ay? > 0 and (x?)T B y? > 0. Intro-

ducing

ξ? :=
x?

(x?)T B y?
and η? :=

y?

(x?)T Ay?

and substituting these vectors in (2.19), we obtain

em ≤ Aη?,

en ≤ BTξ?.
(2.20)

Introducing slack variables u? and v?, (2.20) becomes equivalent to

�

u∗

v∗

�

−

�

O A

BT O

�

·

�

ξ∗

η∗

�

=

�

−em

−en

�

,
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�

u∗

v∗

�

≥ 0,

�

ξ∗

η∗

�

≥ 0,

�

u∗

v∗

�T �
ξ∗

η∗

�

= 0,

which is in form of a LCP for a vector-matrix pair
�

−em

−en

�

∈ Rm+n and

�

O A

BT O

�

∈ R(m+n)×(m+n).
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3. Overview of methods for
solving systems of linear
equations

One of the key tasks of numerical linear algebra is to solve systems of

linear equations, which come from many models of physical and social

phenomena. By an equation we understand a mathematical statement

made of unknowns, x i, i = 1,2, . . . , n, which need to be found. If all the

unknowns are arguments of linear functions, then the equation is said

to be linear, for example

a1 x1 + a2 x2 + a3 x3 + ...+ an xn = b. (3.1)

Once we find a solution and plug it in, the equation becomes a valid

equality. Combining two or more equations containing mutual unknowns

creates a system of (linear) equations (SLE),

S :



















a11 x1 + a12 x2 + . . . + a1n xn = b1

a21 x1 + a22 x2 + . . . + a2n xn = b2
...

...
...

...

am1 x1 + am2 x2 + . . . + amn xn = bm

. (3.2)
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The usual practice is to write the system (3.2) in a matrix-vector form

Ax = b, where

A=











a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...

am1 am2 . . . amn











, x =











x1

x2
...

xn











and b =











b1

b2
...

bm











. (3.3)

As far as the solvability of (3.2) is concerned, it is well known that if

the number of unknowns and number of equations coincide, menaning

that the system is square, then the nonsingularity of A is a necessary and

sufficient condition for the existence of a unique solution of (3.2), which

we will mark as x?. However, if the system matrix is singular, then the

existence and number of solutions depends on vector b.

3.1 Direct methods

By direct methods we understand all methods that compute the exact

solution in a finite number of steps. Under the condition that A is non-

singular, the direct method would suggest that

x? = A−1 b.

This approach is acceptable for elementary calculations. However, from

the practical point of view, working with matrices of large and super

high dimensions, it is clear that the calculation of the inverse is com-

putationally expensive and inefficient. Also, the rounding errors may

affect the final solution in a way that it may become far away from the

exact solution. Therefore, we will focus on the iterative methods.
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3.2 Iterative methods

Iterative methods abandon the idea to find the exact solution, but are,

instead, based on the idea to construct an iterative sequence of approx-

imations which will, under certain conditions, converge to the solution

of the system. The advantage of iterative methods is that they allow the

restart of the iterative process at any iteration, since the convergence

does not depend on the choice of the starting vector.

3.2.1 Splitting iterative methods for SLE

Solving systems of linear equations is very often treated by using split-

ting methods. Because of that, in this section and the next to come, we

present the splitting idea and its application. Then, in the next chap-

ter, we will use the same idea for solving the linear complementarity

problem.

We consider a system of linear equations

Ax = b, (3.4)

where we assume that A∈ Cn,n is a nonsingular matrix with all diagonal

entries nonzero, x and b are n-dimensional vectors. If we consider the

splitting of A, that is

A= M − N ,

system (3.4) can be rewritten as

M x = N x + b (3.5)
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and the nonsingularity of M implies

x = M−1N x +M−1 b, (3.6)

which is known as the fixed point equation. This representation natu-

rally implies an iterative rule for solving system (3.4),

x (k+1) = M−1N x (k) +M−1 b, k ≥ 0. (3.7)

The idea is to start with an initial approximation x (0) of the solution x?

and then generate a sequence {x (k)}∞k=0 that converges to x?, if certain

conditions are satisfied. Denoting by T := M−1N and d = M−1 b, (3.7)

becomes

x (k+1) = T x (k) + d, k ≥ 0, (3.8)

which is known as the general iterative method. Its convergence is char-

acterized by the following theorem.

Theorem 3.2.1. The iterative sequence {x (k)}∞k=0, generated by (3.8), con-

verges to the exact solution x? of (3.4) for every starting iterate x (0) if and

only if ρ(T )< 1.

Jacobi method

The Jacobi method is the simplest iterative method for solving a square

linear system Ax = b. It is a splitting iterative method (3.7) for the

choice M = D and N = L + U . By assumption, D is nonsingular, so the

Jacobi iterative rule says

x (k+1) = D−1(L + U)x (0) + D−1 b, k ≥ 0. (3.9)
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Theorem 3.2.2. The iterative sequence {x (k)}∞k=0, generated by (3.9), con-

verges to the exact solution x? of (3.4) for every starting vector x (0) if and

only if ρ(D−1(L + U))< 1.

Theorem 3.2.3. Provided that the coefficient matrix A of (3.4) is SDD

or H matrix, the sequence {x (k)}∞k=0, generated by (3.9), converges to the

unique solution of that system, for every starting vector x (0).

Gauss-Seidel method

The choice M = D − L and N = U in (3.7) defines the Gauss-Seidel

iterative method:

x (k+1) = (D− L)−1U x (k) + (D− L)−1 b, k ≥ 0. (3.10)

Theorem 3.2.4. The iterative sequence {x (k)}∞k=0, generated by (3.10),

converges to the exact solution x? of (3.4) for every starting vector x (0) if

and only if ρ((D− L)−1U)< 1.

Theorem 3.2.5. Provided that the coefficient matrix A of (3.4) is SDD or

H matrix, the sequence {x (k)}∞k=0, generated by (3.10), converges to the

unique solution of that system, for every starting vector x (0).

3.2.2 Relaxation iterative methods

If we allow that the iteration matrix depends on one or possibly more

parameters, then the convergence will obviously depend on their choice,

too. These parameters are called relaxation parameters and the corre-

sponding iterative methods are known as relaxation iterative methods.
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First, we will recall one-parameter generalizations of the Jacobi and

Gauss-Seidel methods, JOR and SOR respectively, and, then, the two-

parameter AOR iterative method.

JOR method

The next iteration by the Jacobi method can be written as

x (k+1) = x (k) + (x (k+1) − x (k)),

where

Dx (k+1) = (L + U)x (k) + b. (3.11)

Jacobi Over-Relaxation Method (JOR) is extrapolated Jacobi method,

meaning that the current iterate, x (k), is corrected by the nonzero mul-

tiple of the update, where ω 6= 0 is the relaxation parameter,

x (k+1) = x (k) +ω(x (k+1) − x (k)). (3.12)

Obviously, we see that JOR method reduces to Jacobi method if ω= 1.

Substituting (3.11) into (3.12), we can derive the iterative method

x (k+1) =LJOR(A,ω)x (k) + dJOR(A, b,ω), k ≥ 0, (3.13)

where the iterative matrix is

LJOR(A,ω) := (1−ω)E +ωD−1(L + U),

and

dJOR(A, b,ω) =ωD−1 b.
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Theorem 3.2.6. The iterative sequence {x (k)}∞k=0, generated by (3.13),

converges to the exact solution x? of (3.4) for every starting vector x (0) if

and only if ρ(LJOR(A,ω))< 1.

Theorem 3.2.7 ([11]). Let A ∈ Cn,n be an SDD (H) matrix and let the

relaxation parameter ω satisfy

0<ω<
2

1+ρ(J)
,

where J := D−1(L + U) is the Jacobi iterative matrix. Then, the iterative

sequence {x (k)}∞k=0, generated by (3.13), converges to the exact solution x?

of (3.4) for every starting vector x (0).

SOR method

Analogously to JOR, the SOR iterative method can be treated as an

extrapolation of Gauss-Seidel method. The next iterate for the Gauss-

Seidel iteration is obtained as

x (k+1) = x (k) + (x (k+1) − x (k)),

where

Dx (k+1) = Lx (k+1) + U x (k) + b. (3.14)

In Successive Over-Relaxation (SOR) method, the current iterate, x (k),

is obtained by

x (k+1) = x (k) +ω(x (k+1) − x (k)), (3.15)

where ω 6= 0 is the relaxation parameter. Obviously, SOR method re-

duces to Gauss-Seidel if ω = 1. Substituting (3.14) into (3.15), we are
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able to derive the iterative method

x (k+1) =LSOR(A,ω)x (k) + dSOR(A, b,ω), k ≥ 0, (3.16)

where the iterative matrix is

LSOR(A,ω) := (D−ωL)−1 ((1−ωD) +ωU) ,

and

dSOR(A, b,ω) =ω(D−ωL)−1 b.

Theorem 3.2.8. The iterative sequence {x (k)}∞k=0, generated by (3.16),

converges to the exact solution x? of (3.4) for every starting vector x (0) if

and only if ρ(LSOR(A,ω))< 1.

Theorem 3.2.9 ([11]). Let A ∈ Cn,n be an SDD (H) matrix and let the

relaxation parameter ω satisfy

0<ω<
2

1+ρ(|J |)
,

where J := D−1(L + U) is the Jacobi iterative matrix. Then, the iterative

sequence {x (k)}∞k=0, generated by (3.16), converges to the exact solution x?

of (3.4) for every starting vector x (0).
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AOR method

The concept of Accelerated Over-Relaxation has been introduced by

Hadjidimos, [37]. Essentially, this method represents a two-parameter

generalization of SOR iterative method, where there is one additional

parameter, σ, known as the acceleration parameter. The AOR method

is formulated as

x (k+1) =LAOR(A,σ,ω)x (k) + dAOR(A, b,σ,ω), k ≥ 0, (3.17)

where the iterative matrix is

LAOR(A,σ,ω) := (D−σL)−1 ((1−ωD) + (ω−σ)L +ωU) ,

and

dAOR(A, b,σ,ω) =ω(D−σL)−1 b.

Remark that if σ = 0 then the AOR method reduces to the JOR

method, where if σ =ω the AOR method becomes the SOR method.

Theorem 3.2.10. The iterative sequence {x (k)}∞k=0, generated by (3.17),

converges to the exact solution x? of (3.4) for every starting vector x (0) if

and only if ρ(LAOR(A,σ,ω))< 1.

The spectral radius of the AOR iterative matrix can be bounded from

above, as stated in the following theorem from [20].

Theorem 3.2.11 ([20]). Let A= D− L−U be the standard splitting of A

with all the diagonal entries nonzero. For every i = 1, 2, . . . , n define the

following quantities

li = ri(D
−1 L) and ui = ri(D

−1U).

40



If 1− |σ|li > 0, i = 1,2, . . . , n, then

ρ(LAOR(A,σ,ω))≤max
i

|1−ω|+ |ω−σ|li + |ω|ui

1− |σ|li
.

Theorem 3.2.12 ([20]). Let A = D − L − U be a standard splitting of

the system matrix which is an SDD matrix, LAOR(A,σ,σ) be the iterative

matrix of SOR method with parameter σ and

li = ri(D
−1 L), ui = ri(D

−1U),

p =
2σ

1+ρ(LAOR(A,σ,σ))
, s =

2
1+ρ (|D|−1(|L|+ |U |))

,

t =
2

1+max
i
(li + ui)

.

Then, the iteration sequence {x (k)}∞k=0, generated by (3.17), converges for

every starting vector x (0), provided that parameters σ and ω satisfy

0≤ σ < s, 0<ω<max{p, t}

or

0<ω< t, max
i

−ω(1− li − ui) + 2 max{0,ω− 1}
2li

< σ < 0

or

0<ω< t, t ≤ σ <min
i

2min{0,1−ω}+ω(1+ li − ui)
2li

.
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4. Iterative methods for LCP

As we have seen in the previous chapters, the linear complementarity

problem has a long tradition and great practical significance. Therefore,

the question of its solvability is very important. This includes a couple

of questions. First question is obviously is the problem solvable. If the

answer is positive, we are interested in the number of possible solutions

and, finally, in a way how to determine them. One of the key theo-

rems in connection with the existence and uniqueness of the solution

of LC P(q, A) is the famous result of Bai and Evans, [4]. All the results

that we mention in this thesis, both known and new, revolve around the

following lemma.

Lemma 4.0.1 ([4]). Let A ∈ Rn,n be an H-matrix with positive diagonal

elements. Then, the LC P(q, A) has a unique solution, z? ∈ Rn.

The condition upon A being an H-matrix with a positive diagonal

is not over-restrictive, since in many applications the problem matrix

satisfies this condition.

The next step in the process is to determine the solution. The prob-

lem of solving LC P(q, A) can be approached in more than one way. Just
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as in the case of systems of linear equations, numerical methods for

the solution of LCP can be divided in two major categories - direct and

iterative. In this thesis, we will focus on iterative methods only.

As in the case of systems of linear equations, the idea behind the

iterative process is to generate a sequence of solution approximations,

also known as trial solutions, which converge to the exact solution, [2].
Iterative methods have been widely studied, see [41, 14, 27, 53, 1, 50].

Being fully aware that there are many possible directions of ap-

proach, most of which we will not be able to fully cover in this thesis,

we will primarily focus on modulus based iterative methods, [8] and

their numerous variations.

4.1 Modulus-based methods

Iterative methods for solving LCP are diverse and very well studied.

Among them, the special place belongs to modulus-based methods, which

have been introduced by Murty, [51]. The idea of these methods is that

vectors |x |+ x and |x | − x are simultaneously nonnegative and orthog-

onal. More precisely,

|x |+ x =







2x , x ≥ 0,

0, x < 0,
and |x | − x =







0, x ≥ 0,

−2x , x < 0,

which means that (|x |+ x)i(|x | − x)i = 0, for all i ∈ Nn, since at least

one component in the above product is equal to zero.
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4.1.1 Splitting idea

The modulus-based methods have been developed even further, using

the tool of matrix splitting, by Zhong-Zhi Bai, [8]. These methods pro-

vide an equivalent reformulation of LC P(q, A) , which led to the estab-

lishment of some well-known modulus-based matrix splitting iteration

methods.

Theorem 4.1.1 ([8]). Let A = M − N be a splitting of the matrix A ∈
Rn,n,Ω1 and Ω2 be nonnegative diagonal matrices, and Ω and Γ be positive

diagonal matrices such that Ω= Ω1+Ω2. For the LCP(q, A), the following

statements hold true:

i) if (z, r) is a solution of LC P(q, A) , then x =
1
2
(Γ−1z−Ω−1r) satisfies

the implicit fixed-point equation (IFPE)

(MΓ +Ω1)x = (NΓ −Ω2)x + (Ω− AΓ )|x | − q, (4.1)

ii) if x satisfies the implicit fixed-point equation (4.1), then

z = Γ (|x |+ x) and r = Ω(|x | − x) (4.2)

is a solution of LC P(q, A) .

Obviously, Theorem 4.1.1 requires a choice of certain parameters. In

the remaining part of this thesis, we will work with the following choice:

Ω1 = Ω,Ω2 = O and Γ = γ−1E. Then, we may formulate a special variant

of the previous theorem.
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Proposition 4.1.2. Given A∈ Rn,n, let A= M −N be a splitting of A, Ω a

positive diagonal matrix, and γ a positive constant. By setting

z =
1
γ
(|x |+ x) and r =

1
γ
Ω(|x | − x),

the linear complementarity problem can be equivalently transformed into

an implicit fixed-point equation

(Ω+M)x = N x + (Ω− A)|x | − γq. (4.3)

Note that if (4.3) has a solution, its form is x =
1
2
γ(z −Ω−1r).

The importance of the previous proposition is that (4.3) enables an

introduction of an iterative method, based on the splitting of the matrix.

Method 1. THE MODULUS-BASED MATRIX SPLITTING ITERATION METHOD

Let A= M −N be a splitting of the matrix A∈ Rn,n, Ω a positive diagonal

matrix and γ a positive constant. Given an initial vector x (0) ∈ Rn, for

k = 0, 1,2, ... until the iteration sequence {z(k)}+∞k=0 ⊂ R
n is convergent,

compute x (k+1) ∈ Rn by solving the linear system

(M +Ω)x (k+1) = N x (k) + (Ω− A)|x (k)| − γq, (4.4)

and set

z(k+1) =
1
2
(|x (k+1)|+ x (k+1)). (4.5)
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This method was introduced by Bai in 2010, and it provides a general

framework of modulus-based matrix splitting iteration methods for solv-

ing LC P(q, A) . Previously considered methods, modulus and the mod-

ified modulus iteration methods, which were studied by Murty in 1988

[51] and Dong in 2009 [29], can be considered as its special cases, too.

However, this method can also yield a series of other modulus-based

methods, such as modulus-based Jacobi, modulus-based Gauss-Seidel

and their relaxed variants. The overview of these methods is given in

Table 4.1.

Now, since we have defined the modulus-based method, based on

the splitting of matrix, the question is, under which conditions does the

iterative sequence, generated by the method, converge to the solution

x?, for every starting vector x (0)? Analogously as for the systems of lin-

ear equations, these conditions will be connected to the matrix A itself,

but also to the possible choice of relaxation parameters, if the method

includes any.

Let us assume that z? ∈ Rn
+ solves LC P(q, A) . Then, according to

Proposition 4.1.2 and (4.4), we deduce that x? =
1
2
γ(z?−Ω−1r?) satisfies

(M +Ω)x? = N x? + (Ω− A)|x?| − γq, (4.6)

where A= M −N is the splitting of A, Ω> O a positive diagonal matrix

and γ a positive constant. Subtracting (4.6) from (4.4) we get

(M +Ω)(x (k+1) − x?) = N(x (k) − x?) + (Ω− A)(|x (k)| − |x?|),

that is,

x (k+1)−x? = (M+Ω)−1N(x (k)−x?)+(M+Ω)−1(Ω−A)(|x (k)|−|x?|). (4.7)
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The expression (4.7) is known as the approximation error and is a

key part for the results in connection with the convergence of modulus-

based methods, based on the splittings of matrix. Note that, in order to

prove the convergence of {z(k)}∞k=0, that is lim
k→∞

z(k) = z?, it is sufficient

to prove the convergence of {x (k)}∞k=0 instead.

Finally, from now on, we will only focus on a special case, which

assume that the system matrix A is an H+-matrix. As we have seen, this

is a sufficient condition for the existence and uniqueness of the solution

of LC P(q, A) .

Theorem 4.1.3 ([8]). Let A ∈ Rn,n be an H+-matrix, and A= M − N be

an H-compatible splitting of the matrix A, i.e., 〈A〉 = 〈M〉 − |N |. Assume

that Ω is a positive diagonal matrix and γ is a positive constant. If the

parameter matrix Ω satisfies Ω ≥ diag(M), then the iteration sequence

{z(k)}∞k=0, generated by Method 1, converges to the unique solution z? ∈ Rn
+

of the LC P(q, A) for any initial vector x (0) ∈ Rn.

4.1.2 Multisplitting idea

In order to take full advantage of the high-speed multiprocessor envi-

ronment and parallel computing, Bai and Zhang proposed synchronous

variant of the modulus-based method, [9]. There also exist asynchronous

versions, but we will focus here on the first one. The idea behind the

synchronous method is to distribute the tasks among all processor units

at disposal, each of them solving a separate modulus-based iterative

method at every iteration step k, which is then used to determine an

48



outer approximation of the solution as a kind of matrix convex combi-

nation of the calculated results.

MSM iterative method

This method was introduced by Bai and Zhang in 2013, [9].
Given a positive diagonal matrix Ω and a positive constant γ, from

Theorem 4.1.1, we straightforwardly conclude that if x satisfies each of

the implicit fixed-point equations

(Ω+Mp)x = Np x + (Ω− A)|x | − γq, p = 1,2, ...`, (4.8)

then the solution of LC P(q, A) is given by

z =
1
γ
(|x |+ x) and r =

1
γ
Ω(|x | − x). (4.9)

Therefore, using the equivalent reformulations (4.8) and (4.9) for

LC P(q, A) , Bai and Zhang were able to establish the modulus-based

synchronous multisplitting (MSM) iterative method.

Method 2. THE MODULUS-BASED SYNCHRONOUS MULTISPLITTING METHOD

Let (Mp, Np, Ep)(p = 1, 2, . . . ,`) be a multisplitting of the matrix A.Given

an initial vector x (0) ∈ Rn and provided that x (k) has been obtained, com-

pute x (k+1,p) by solving the linear subsystem

(Ω+Mp)x
(k+1,p) = Np x (k) + (Ω− A)|x (k)| − γq, p = 1,2, . . . ,`, (4.10)

then set

x (k+1) =
∑̀

p=1

Ep x (k+1,p),
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and

z(k+1) =
1
γ
(|x (k+1)|+ x (k+1)),

for k = 0,1, 2, . . . until the iteration sequence
�

z(k)
	∞

k=0
is convergent.

The multisplitting idea is to solve each of the ` subsystems (4.10)

at every iteration k on separate processors, and obtain a local update

x (k+1,p), which is then recombined in order to produce a new iteration

of MSM with the aid of weighting matrices. Finally, the approximation

of the solution of LC P(q, A) at step k is then generated by plugging the

x (k+1) in (4.5). The sufficient conditions for the convergence of Method

2 are given in the following theorem.

Theorem 4.1.4 ([9]). Let A∈ Rn,n be an H+-matrix with D = diag(a11, a22,

. . . , ann) and (Mp, Np, Ep) (p = 1,2, . . . ,`) be a multisplitting of the matrix

A. Assume that A = Mp − Np, p = 1, 2, ...,` are H-compatible splittings,

γ > 0 and Ω is a positive diagonal matrix satisfying Ω≥ D. Then, for any

initial vector x (0) ∈ Rn, the iteration sequence {z(k)}∞k=0 ⊂ R
n
+, generated

by Method 2, converges to the unique solution z? of LC P(q, A) .

4.1.3 Triangular multisplitting idea

At every iteration step and on every processor, in the MSM iterative

method, the system (4.10) needs to be solved. The system matrix does

not have any special structure. However, by the use of triangular mul-

tisplittings, it is achieved that the system matrix for (4.10) becomes a

lower triangular one, so the solutions can be obtained more efficiently.
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There are many possibilities to choose triangular multisplittings. We

will present here the ”AOR-approach”, i.e. the ”AOR-idea”, which we

have described in the section about systems of linear equations.

MSMAOR iterative method

The modulus-based synchronous multisplitting accelerated overrelax-

ation (MSMAOR) iterative method for solving LC P(q, A) has been in-

troduced by Bai and Zhang, [9]. Let (D− Lp, Up, Ep) (p = 1, 2, . . . ,`) be

a triangular multisplitting of the matrix A. Taking

Mp =
1
α
(D− β Lp) and Np =

1
α

�

(1−α)D+ (α− β)Lp +αUp

�

,

in MSM we obtain MSMAOR method.

Method 3. THE MODULUS-BASED SYNCHRONOUS MULTISPLITTING AOR

Let (D − Lp, Up, Ep)(p = 1, 2, . . . ,`) be a triangular multisplitting of A ∈
Rn,n. Given z(0) ∈ Rn

+ and iterations k ≥ 0, until the iteration sequence is

convergent {z(k)}∞k=0 ⊂ R
n
+, calculate z(k+1) ∈ Rn

+ as

z(k+1) =
1
γ
(|x (k+1)|+ x (k+1)),

and x (k+1) ∈ Rn as

x (k+1) =
∑̀

p=1

Ep x (k,p),

where each of the vectors x (k,p) p = 1, 2, . . . ,` we find as solutions of

(αΩ+D−β Lp)x
(k,p) =

�

(1−α)D+(α−β)Lp+αUp

�

x (k)+α
�

(Ω−A)|x (k)|−γq
�

,

with x (0) =
1
2
γΩ−1((Ω− A)z(0) − q).
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In a similar way that AOR has generalized the Jacobi and Gauss-

Seidel iterative methods, MSMAOR method can be looked at as a gen-

eralization of MSM variants of mentioned methods. This is illustrated

in Table 4.2.

Method Description (α,β)
MSMJ Modulus-based synchronous multisplitting Jacobi

method
(1, 0)

MSMGS modulus-based synchronous multisplitting Gauss
Seidel method

(1, 1)

MSMSOR Modulus-based synchronous multisplitting succes-
sive overrelaxation method

(α,α)

Table 4.2: The modulus-based synchronous multisplitting relaxation
methods which are special cases of MSMAOR.

The convergence of MSMAOR iterative method has been a subject

of study in [9].

Theorem 4.1.5 ([9]). Let A∈ Rn,n be an H+-matrix with D = diag(a11, a22,

. . . , ann) and B = D − A. Further, let (D − Lp,Up,Ep) (p = 1, 2, . . . ,`) be

triangular multisplittings of matrix A. Assume that A= D − Lp − Up sat-

isfies 〈A〉 = D − |Lp| − |Up|, for p = 1,2, . . . ,`, γ > 0 and the positive

diagonal matrix Ω satisfies Ω ≥ D. Then, for any initial vector x (0) ∈ Rn,

the iteration sequence {z(k)}∞k=0 ⊂ R
n
+, generated by Method 3, converges

to the unique solution z? of LC P(q, A) , provided that

0< β ≤ α <
1

ρ(D−1|B|)
. (4.11)
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In 2014, this convergence area has been extended by Cvetković and

Kostić, [24]. The corresponding theorem will be part of the next chapter,

so we will ommit it here.

4.1.4 Two-stage multisplitting idea

The numerical benefits and computational power of the multisplitting

idea has been confirmed in the work of Bai and Zhang. However, the

idea of multisplitting - that is - the distribution of computational tasks

among available processor units, can be advanced further, with the idea

that at every iteration step k and on every processor p - for which we

already have an initial splitting A= Mp − Np, matrix Mp can splitted as

well, thus assuming Mp = Fp−Gp. This naturally induced the modulus-

based synchronous two-stage multisplitting (MSTM) iterative method.

MSTM iterative method

The modulus-based synchronous two-stage multisplitting (MSTM) iter-

ative method has been developed by Bai and Zhang in 2013, [10]. The

method they formulated is given as follows.

Method 4. THE MODULUS-BASED SYNCHRONOUS TWO-STAGE MULTISPLIT-

TING

Let (Mp : Fp, Gp; Np; Ep)(p = 1, 2, . . . ,`) be a two-stage multisplitting

of A ∈ Rn,n and νp for p = 1,2, . . . ,`, positive integers. Given an arbi-

trary starting vector z(0) ∈ Rn
+, for iterations k ≥ 0, until the sequence
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{z(k)}∞k=0 ⊂ R
n
+ is convergent, calculate z(k+1) ∈ Rn

+ as

z(k+1) =
1
γ
(|x (k+1)|+ x (k+1)),

and x (k+1) ∈ Rn as

x (k+1) =
∑̀

p=1

Ep x (k,p,νp),

where vectors x (k,p,νp) p = 1, 2, . . . ,` are the solutions of systems of linear

equations










(Ω+ Fp)x (k,p, j+1) = Gp x (k,p, j) + b(k,p)

p = 1,2, . . . ,`

j = 0, 1, . . . ,νp − 1

(4.12)

with b(k,p) = Np x (k)+(Ω−A)|x (k)|−γq, x (k,p,0) = x (k) and x (0) =
1
2
γΩ−1((Ω−

A)z(0) − q).

The idea of the MSTM method is that initially, we assign the corre-

sponding two-stage multisplitting of A, that is A= Fp − Gp −Np and the

weight Ep to each of the ` available processors , as well as an arbitrary

positive integer, νp. This integer defines the finite number of inner itera-

tions of (4.12) which are necessary to find the local update x (k,p,νp) after

which the next iterate x (k+1) is processed and consequently we obtain

z(k+1). Sufficient conditions for the convergence of MSTM method are

given in the following theorem.

Theorem 4.1.6 ([10]). Let A∈ Rn,n be an H+-matrix, where D = diag(a11,

a22, . . . , ann), B = D−Aand suppose that (Mp : Fp, Gp; Np; Ep)(p = 1, 2, . . . ,`)
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is a two-stage multisplitting of A. Finally, assume that γ > 0 and that Ω is

a positive diagonal matrix with the property Ω≥ D. Then, if A= Mp −Np

and Mp = Fp−Gp, for p = 1, 2, . . . ,`, are H-compatible splittings, the iter-

ation sequence {z(k)}∞k=0, generated by Method 4, converges to the unique

solution z? of LC P(q, A) for every initial vector z(0) ∈ Rn
+ and arbitrary

positive integers νp, p = 1, 2, . . . ,`.

4.1.5 Two-stage triangular multisplitting idea

It is obvious that the load on the processing units in MSTM method

is higher than the one in MSM method. Depending on the number of

processor units and the choice of numbers νp at start, the number of

systems of the form (4.12), which need to be solved, can become high

and this can slow down the calculations. However, if these systems

have a special structure, for example, if they are lower triangular, then

signifficant improvement in speed can be achieved, [10]. Therefore, the

idea is to use triangular splittings on the second level. Again, we will

present it in the form of the ”AOR-approach”.

MSTMAOR iterative method

The modulus-based synchronous two-stage multisplitting accelerated

overrelaxation (MSTMAOR) iterative method was introduced by Bai

and Zhang in 2013, [10]. This additional level of triangular splitting

has been chosen in order to compensate for the uneven distribution of

tasks among the processors, which may reduce the computational ad-

vantage that the multiprocessor system has to offer.
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Method 5. THE MODULUS-BASED SYNCHRONOUS TWO-STAGE MULTISPLIT-

TING AOR

Let (Mp : Dp − Lp, Up; Np; Ep) (p = 1, 2, . . . ,`) be a two-stage triangu-

lar multisplitting of the system matrix A∈ Rn,n and νp, for p = 1,2, . . . ,`,

be prescribed positive integers. Given an initial vector x (0) ∈ Rn for k =
0, 1,2, . . . , until the iteration sequence {z(k)}∞k=0 ⊂ R

n
+ is convergent, com-

pute z(k+1) ∈ Rn
+ by

z(k+1) =
1
γ
(|x (k+1)|+ x (k+1))

and x (k+1) ∈ Rn according to

x (k+1) =
∑̀

p=1

Ep x (k,p,νp),

where x (k,p,νp), p = 1, 2, . . . ,`, are obtained by

(αΩ+ Dp − β Lp)x
(k,p, j+1)

= ((1−α)Dp + (α− β)Lp +αUp)x
(k,p, j) +αb(k,p)

p = 1,2, . . . ,`, j = 0,1, . . . ,νp − 1,

respectively, with

b(k,p) = Np x (k) + (Ω− A)|x (k)| − γq

and x (k,p,0) = x (k).

The convergence of this method was studied in [10].
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Theorem 4.1.7 ([10]). Let A∈ Rn,n be an H+-matrix with D = diag(a11,

a22, . . . , ann) and B = D−Aand let (Mp : Dp−Lp, Up; Np; Ep)(p = 1,2, . . . ,`)
be a two-stage triangular multisplitting of the matrix A. Assume that γ > 0

and the positive diagonal matrix Ω satisfies Ω ≥ D. If, for p = 1,2, . . . ,`,

A= Mp−Np are H-compatible splittings and Mp = D− L(M)p −U (M)p satisfy

〈Mp〉 = D − |Lp| − |Up| with diag(Mp) = D, then the iteration sequence

{z(k)}∞k=0, generated by Method 5, converges to the unique solution z? of

LC P(q, A) for any initial vector x (0) ∈ Rn and any positive integers νp,

p = 1, 2, . . . ,`, provided that the relaxation parameters α and β satisfy

the relation

0< β ≤ α <
1

ρ(D−1|B|)
. (4.13)

The condition on the relaxation parameters in the previous theorem

is very specific, requiring that one relaxation parameter is greater than

the other. This assumption is restrictive in nature, and can be weakened.

This was done by Cvetković, Kostić and Šanca in 2016, [25].
According to these authors, due to the form of the splittings, for

every p = 1,2, . . . ,`, we can write Lp = Ξp ◦ (−Mp), where ◦ denotes

Hadamard product and Ξp = [ξ
p
i j] are such that

0≤ ξp
i j ≤ 1, for 1≤ j < i ≤ n, and ξ

p
i j = 0, otherwise.

Also, for every p = 1,2, . . . ,`, we can write Mp = Θp◦A, whereΘp = [θ
p
i j]

are chosen to be such that

0≤ θ p
i j ≤ 1 for 1≤ i, j ≤ n.
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Further, denote the values

ξ= max
1≤p≤`

max
1≤ j<i≤n

ξ
p
i j, θ = max

1≤p≤`
max

1≤ j<i≤n
θ

p
i j. (4.14)

Then, the following extension of the convergence area for the choice of

relaxation parameters is possible.

Theorem 4.1.8. [25] Theorem 4.1.7 is still valid if we replace condition

(4.13) with the following one

β ≥ 0 and (θmax{α,ξβ}+ (1− θ )α)ρ(D−1|B|)< min{1,α} (4.15)

which is equivalent to

0< α <
1

ρ(D−1|B|)
, 0≤ β <

min{1,α} − (1− θ )αρ(D−1|B|)
ξθρ(D−1|B|)

. (4.16)

TMSM iterative method

The two-step modulus-based synchronous multisplitting (TMSM) itera-

tion method was interduced by Li Li Zhang in 2015, [69]. The goal was

to reduce the interaction among processors and improve the computing

time.

The idea is to use two multisplittings, one for each phase of the pro-

cess.

Method 6. THE TWO-STEP MODULUS-BASED SYNCHRONOUS MULTISPLIT-

TING

Let (M
′

p, N
′

p, Ep) and (M
′′

p , N
′′

p , Ep) (p = 1, 2, . . . ,`) be two multisplit-

tings of the matrix A. Given an initial vector x (0) ∈ Rn and provided that
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x (k) has been obtained, compute x (k+1,p) by solving the linear subsystems






(Ω+M
′

p)x
(k+ 1

2 ,p) = N
′

p x (k) + (Ω− A)|x (k)| − γq,

(Ω+M
′′

p )x
(k+1,p) = N

′′

p x (k+
1
2 ,p) + (Ω− A)|x (k+

1
2 ,p)| − γq,

(4.17)

on the pth processor, then set

x (k+1) =
∑̀

p=1

Ep x (k+1,p)

and

z(k+1) =
1
γ
(|x (k+1)|+ x (k+1)),

for k = 0,1, 2, . . . , until the iteration sequence {z(k)}+∞k=0 is convergent.

Theorem 4.1.9. [69] Let A∈ Rn,n be an H+-matrix with D = diag(a11, a22,

. . . , ann), (M
′

p, N
′

p, Ep) and (M
′′

p , N
′′

p , Ep) (p = 1, 2, . . . ,`) be two multisplit-

tings of the matrix A. Assume that A = M
′

p − N
′

p and A = M
′′

p − N
′′

p are

H-compatible splittings, for (p = 1, 2, . . . ,`), γ > 0 and Ω a positive di-

agonal matrix satisfying Ω ≥ D. Then, for any initial vector x (0) ∈ Rn,

the iteration sequence {z(k)}∞k=0 ⊂ R
n
+, generated by Method 6, converges

to the unique solution z? of LC P(q, A) .
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5. Convergence Analysis

In this chapter we will present two different approaches in the conver-

gence analysis of modulus-based splitting and multisplitting methods,

which both lead to the same conclusion, but one of them is more suitable

for error analysis, which is discussed in detail in the next chapter. The

same techniques work for all mentioned methods, so we restrict our-

selves to one of them – MSMAOR. The main reason is that our original

results are related to this method, [26].
The convergence of the modulus-based synchronous multisplitting

accelerated overrelaxation (MSMAOR) iterative method (Method 3) was

extensively studied in [9]. The sufficient condition for the convergence

of MSMAOR in Theorem 4.1.5 includes a very particular choice of re-

laxation parameters, (4.11). The authors in [24] have shown that this

assumption is restrictive and can be avoided, which enables the exten-

sion of the area for the choice of relaxation parameters. This extension

is meaningful, since it contains the choice of parameters for which the

rate of convergence can be accelerated.

If we assume that A is an H+-matrix, then |D|= D, for D = diag(a11,

a22, . . . , ann). Moreover, if B := D − A, then ρ(D−1|B|) < 1. If the trian-
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gular multisplittings of A additionally satisfy 〈A〉 = D − |Lp| − |Up|, for

p = 1, 2, . . . ,`, the authors in [24] have used the fact that Lp = Ξp◦(−A),
where ◦ denotes the Hadamard product of matrices and matrix Ξp =
[ξp

i j] is defined entrywise as

0≤ ξp
i j ≤ 1 for 1≤ j < i ≤ n and ξ

p
i j = 0 otherwise.

Besides, let A = D − L? − U? be the standard splitting of A into the

diagonal D, strictly lower triangular L? and strictly upper triangular U?

parts. Then, for all p = 1,2, . . . ,`, Lp matrices have the form Lp = Ξp◦L?

and the following inequality holds

|Lp| ≤ ξ|L?|,

where

ξ=max{ξp
i j : p = 1,2, . . . ,`, i, j ∈ Nn}.

We now state the extension of the area of relaxation parameters, for

which the convergence is guaranteed, as presented in [24].

Theorem 5.0.1 ([24]). Let A∈ Rn,n be an H+-matrix with D = diag(A),
B = D− A and let (D− Lp, Up, Ep), p = 1, 2, . . . ,`, be a triangular multi-

splitting of matrix A. Assume that γ > 0 and Ω is a positive diagonal ma-

trix such that Ω≥ D. If A= D− Lp−Up satisfies 〈A〉= D−|Lp|− |Up|, for

p = 1, 2, . . . ,`, then the iteration sequence {z(k)}∞k=0, generated by Method

3, converges to the unique solution z? of the LCP(q, A) for any initial vector

x (0) ∈ Rn, provided that the relaxation parameters α and β satisfy

max{α,ξβ}ρ(D−1|B|)<min{1,α}. (5.1)
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Old proof

Let (D − Lp, Up, Ep)(p = 1,2, . . . ,`) be a triangular multisplitting of A.

Since A is an H+-matrix, the LC P(q, A) has a unique solution, z?. Then,

according to Theorem 4.1.1, vector x? =
1
2
γ(z? −Ω−1r?) satisfies each

of the ` implicit fixed point equations (4.8) for the choice

Mp =
1
α
(D− β Lp) and Np =

1
α

�

(1−α)D+ (α− β)Lp +αUp

�

.

On the other hand, based on research in [9], it is known that if the

iteration sequence {x (k)}∞k=0 generated by Method 3 is convergent, then

its limit is exactly x∗. Since

x (k,p) − x? = (αΩ+ D− β Lp)
−1[((1−α)D+ (α− β)Lp +αUp)(x

(k) − x?)

+α(Ω− A)(|x (k)| − |x?|)], p = 1, 2, . . . ,`,

(5.2)

and from Method 3 we know that

x (k+1) =
∑̀

p=1

Ep x (k,p),

the approximation error is

x (k+1) − x? =
∑̀

p=1

Ep(αΩ+ D− β Lp)
−1
�

(1−α)D+ (α− β)Lp +αUp

�

·

· (x (k) − x?) +α
∑̀

p=1

Ep(αΩ+ D− β Lp)
−1(Ω− A)(|x (k)| − |x?|).

(5.3)
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Making use of the estimate ||x (k)| − |x?|| ≤ |x (k) − x?|, and arranging

similar terms together, we obtain

|x (k+1) − x?| ≤ LMSMAOR(α,β)|x (k) − x?|,

where

LMSMAOR(α,β) :=
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1
�

|1−α|D+ (α− β)|Lp|

+α|Up|+α|Ω− A|
�

.

Also note that

|(1−α)D+ (α− β)Lp +αUp|= |(1−α)D|+ |(α− β)Lp +αUp|

= |1−α|D+ |α(Lp + Up)− β Lp|

= |1−α|D+ |αB − β Lp|

and

α|Ω− A|= α|Ω− D+ B|= α(Ω− D) +α|B|= αΩ−αD+α|B|.

Therefore, the estimate of the iterative matrix becomes

LMSMAOR(α,β) =
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1
�

|1−α|D+ |αB − β Lp|+αΩ

= E −
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1
��

1+α− |1−α|
�

D

− |αB − β Lp| −α|B| − β |Lp|
�

.
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Observe that

1+α− |1−α|= 1+α−

¨

1−α for α≤ 1

α− 1 for α > 1

=

¨

2α for α≤ 1

2 for α > 1

= 2min{1,α},

and

�

|αB − β Lp|+α|B|+ β |Lp|
�

i j
=



















0 for i = j

|α(−ai j)− βξ
p
i j(−ai j)|

+α| − ai j|+ βξ
p
i j| − (ai j)|

for i > j

2α|ai j| for i < j

,

where

|α(−ai j)− βξ
p
i j(−ai j)|+α| − ai j|+ βξ

p
i j| − (ai j)|=

=

¨

(α− βξp
i j +α+ βξ

p
i j)|ai j| for α≥ βξp

i j

(−α+ βξp
i j +α+ βξ

p
i j)|ai j| for α < βξ

p
i j

=

¨

2α|ai j| for α≥ βξp
i j

2βξp
i j|ai j| for α < βξ

p
i j

= 2max{α,βξp
i j}|ai j|

≤ 2max{α,βξ}|ai j|, ∀i, j ∈ N .

From all of the above, it is true that
�

|αB − β Lp| + α|B| + β |Lp|
�

i j
≤

2max{α,βξ}|ai j|, ∀i, j ∈ N .
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Hence, we can conclude that

|x (k+1) − x?| ≤ fLMSMAOR(α,β)|x (k) − x?|,

where fLMSMAOR(α,β) is defined as

E − 2
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1
�

min{1,α}D−max{α,βξ}|B|
�

= E − 2
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1D
�

min{1,α}E −max{α,βξ}D−1|B|
�

.

In order to complete the proof, it suffices to show that

ρ(fLMSMAOR(α,β))< 1.

Due to the fact that ρ(D−1|B|) < 1, we can choose ε > 0 sufficiently

small so that ρε := ρ(Jε) < 1, where Jε := D−1|B| + εeeT . Then, ac-

cording to Perron-Frobenius theorem for positive matrices, there exists

a strictly positive vector, vε > 0, such that Jεvε = ρεvε. Thus,

fLMSMAOR(α,β)vε <

< vε − 2
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1D
�

min{1,α}E −max{α,βξ}Jε
�

vε

= vε − 2
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1D
�

min{1,α} −max{α,βξ}ρε
�

vε

= vε − 2θε
∑̀

p=1

Ep(αΩ+ D− β |Lp|)−1Dvε,
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where term θε is defined in the following way

θε :=min{1,α} −max{α,βξ}ρε.

Due to the following relationship of M -matrices (see Lemma 1.5.2),

αΩ+ D− β |Lp| ≤ αΩ+ D,

Lemma 1.5.3 implies that

(αΩ+ D− β |Lp|)−1 ≥ (αΩ+ D)−1 ≥ 0,

and, hence,

fLMSMAOR(α,β)vε < vε − 2θε
∑̀

p=1

Ep(αΩ+ D)−1Dvε

= vε − 2θε(αΩ+ D)−1Dvε

= (αΩ+ D)−1
�

αΩ+ (1− 2θε)D
�

vε.

Finally, using the fact that, for ε sufficiently small, ρε approaches ρ,

condition (5.1) guarantees that θε > 0. This accumulates to

fLMSMAOR(α,β)vε < vε,

implying ρ(fLMSMAOR(α,β))< 1.
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New proof

In contrast to the old proof, using a different approach, as it has been

done in [70], based on the theory of M -matrices, we were able to offer

a more elegant proof of the same theorem, [26]. But this new technique

did not only have an influence to perform a simpler proof. It has also of-

fered an adequate tool for further analysis of the convergence, in terms

of the error analysis and its control. This is the topic which is covered

in the next chapter of this thesis.

We have seen that the error formula for Method 3 is

|x (k+1) − x?| ≤ LMSMAOR|x (k) − x?|,

where

LMSMAOR :=
∑̀

p=1

EpL (Lp, Up,Ω)

and

L (Lp, Up,Ω) = (αΩ+D−β |Lp|)−1
�

|(1−α)D+(α−β)Lp+αUp|+α|Ω−A|
�

.

Using the ideas of [24], which are presented in this dissertation in the

previous subsection Old proof, one can show that the norm of the matrix

LMSMAOR can be bounded above by

fLMSMAOR := E − 2(αΩ+ D− ξβ |L?|)−1DC ,

where

C :=min{1,α}E −max{α,ξβ}D−1|B|.
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More precisely, since αΩ+D−β |Lp| and αΩ+D−ξβ |L?|, p = 1, 2, . . . ,`

are triangular M -matrices with a positive diagonal (see Lemma 1.5.2)

satisfying the inequality

αΩ+ D− β |Lp| ≥ αΩ+ D− ξβ |L?|,

it implies that

O ≤ (αΩ+ D− β |Lp|)−1 ≤ (αΩ+ D− ξβ |L?|)−1.

On the other hand,

|(1−α)D+(α−β)Lp+αUp|+α|Ω−A|= |(1−α)D|+|αB−β Lp|+α(Ω−D)+α|B|,

hence

L (Lp, Up,Ω)≤ (αΩ+D−ξβ |L?|)−1
�

|(1−α)D|+|αB−β Lp|+α(Ω−D)+α|B|
�

,

and

L (Lp, Up,Ω)≤

≤ E −
�

αΩ+ D− ξβ |L?|
�−1�
(1+α− |1−α|)D− |αB − β Lp| −α|B| − ξβ |L?|

�

.

Since

1+α− |1−α|= 2min{1,α}

and

(|αB − β Lp|+α|B|+ ξβ |L?|)i, j ≤ 2max{α,ξβ}|ai j|,

we obtain

L (Lp, Up,Ω)≤ E − 2(αΩ+ D− ξβ |L?|)−1DC .
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Finally, using the equality
∑̀

p=1

Ep = 1 we infer that

O ≤LMSMAOR ≤ fLMSMAOR.

In order to prove the convergence, we need to show that ρ(fLMSMAOR)<
1. Let us now consider matrix C . It has the form C = µI − F with

µ = min{1,α} and F = max{α,ξβ}D−1|B| ≥ 0, so it is a Z-matrix.

Moreover, the condition (5.1) is equivalent to the inequality ρ(F) < µ
which, according to Lemma 1.4.1, implies that C is an M -matrix. But

then, Theorem 1.5.1 guarantees that there exists a positive vector u such

that Cu> 0, and since (αΩ+ D− ξβ |L?|)−1DCu> 0, we obtain

fLMSMAORu=
�

I − 2(αΩ+ D− ξβ |L?|)−1DC
�

u

= u− 2(αΩ+ D− ξβ |L?|)−1DCu< u.

Recalling Lemma 1.4.2, we conclude that ρ(fLMSMAOR)< 1, which com-

pletes the proof.
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6. Error control

The previous two chapters provided a series of sufficient conditions

upon which the convergence of iterative methods is guaranteed, with

a special attention to MSMAOR. But, once the iteration sequence is

convergent, some other interesting questions usually appear. For in-

stance, is it possible to say something in the sense of the error control?

More precisely, given a norm ‖ · ‖, denoting the error at iteration k by

δk := ‖x∗ − x (k)‖, one may be interested in a stopping criteria which

means that the error is controlled by a given tolerance tol, i.e., δk < tol.

Typically two kinds of error bounds are used to that end: a priori

(Ak) and a posteriori (Pk) error estimates, which in our case provide

δk = ‖x? − x (k)‖∞ ≤
‖fLMSMAOR‖k

∞

1− ‖fLMSMAOR‖∞
‖x (1) − x (0)‖∞ =:Ak

and

δk = ‖x? − x (k)‖∞ ≤
‖fLMSMAOR‖∞

1− ‖fLMSMAOR‖∞
‖x (k) − x (k−1)‖∞ =:Pk.

Therefore, one can not neglect the fact that it is very useful to have

a fairly good and computationally inexpensive norm estimation of the
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iteration matrix. Understanding the need of that kind, here we present

how this can be done in the case of H+-matrices, starting from its sig-

nificant subcase of SDD matrices.

6.1 SDD-matrix case

We will work with the errors estimated in the infinity norm, which is

well suited to SDD matrices. To that end, let

`i := ri(L
?), ui := ri(U

?), i ∈ Nn.

Theorem 6.1.1. Let Ω≥ D and A be a strictly diagonal dominant (SDD)

matrix with positive diagonal entries and with the triangular multisplitting

as in Theorem 4.1.5. If the relaxation parameters α and β satisfy the

inequality

max{α,ξβ}‖D−1|B|‖∞ <min{1,α}, (6.1)

then

‖LMSMAOR‖∞ ≤ ‖fLMSMAOR‖∞ ≤ E1(A)< 1, (6.2)

where

E1(A) :=max
i

(α+ 1− 2min{1,α}) aii +αθi + 2 max{α,ξβ}ri(B)− ξβ li

(α+ 1)aii +αθi − ξβ li
.

Proof. SinceΩ≥ D, we can writeΩ= D+Θ, whereΘ = diag(θ1,θ2, . . . ,θn)
is a diagonal matrix with non-negative entries θi, i ∈ Nn. Since the in-

finity norm is monotone for non-negative matrices, O ≤ LMSMAOR ≤
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fLMSMAOR implies ‖LMSMAOR‖∞ ≤ ‖fLMSMAOR‖∞. Recalling that

fLMSMAOR = M−1N ,

with matrices

M = (α+ 1)D+αΘ− ξβ |L?|,

N = (α+ 1− 2min{1,α})D+αΘ− ξβ |L?|+ 2max{α,ξβ}|B|,

and the condition (6.1), we get

ξβ
`i

aii
≤ ξβ

`i + ui

aii
≤max{α,ξβ}‖D−1|B|‖∞ <min{1,α} ≤ α+ 1.

Thus (α+1)D−ξβ |L?| is an SDD matrix and so is the matrix M . There-

fore, Lemma 1.5.4 yields the estimate (6.2).

It only remains to show that E1(A)< 1. To do this, we observe that

max{α,ξβ}‖D−1|B|‖∞ <min{1,α},

max{α,ξβ}ri(B)<min{1,α}aii, i ∈ Nn,

−min{1,α}aii +max{α,ξβ}ri(B)< 0, i ∈ Nn,

(α+ 1)aii +αθi − 2 min{1,α}aii + 2 max{α,ξβ}ri(B)− ξβ`i

< (α+ 1)aii +αθi − ξβ`i, i ∈ Nn, (6.3)

and note that M being an SDD matrix implies that (α + 1)aii + αθi −
ξβ`i > 0 and the inequality (6.3) is equivalent to E1(A)< 1.

The condition (6.1) is sufficient for M to be an SDD matrix and is

also equivalent to the inequality E1(A)< 1.
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α

β

(0,0) 1/N 1/ρ1

1/ρ

1/(ξρ)

1/(ξN )
β = α

β = α/ξ
β = α/(ξρ) β = α/(ξN )

Figure 6.1: Parameter choice. Bold: the area with guarantied con-
vergence. Dashed: Convergence area suggested by Theorem 6.1.1,
ρ(D−1|B|) := ρ, ‖D−1|B|‖∞ :=N .

If A is not an SDD matrix, then there are no (α,β) which satisfy the

condition (6.1), therefore the convergence area is empty and the norm

‖fLMSMAOR‖∞ cannot be estimated from above, using (6.2).

Provided that A is an SDD matrix with positive diagonal entries and

condition (6.1) is satisfied, then the parameters (α,β) lie within the area

of convergence of the MSMAOR method from [24]. This is illustrated

in Fig. 6.1.

Finally, Theorem 6.1.1 provides the following a priori and a posteri-
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ori stopping criteria:

cAk :=
E1(A)k

1−E1(A)
‖x (1) − x (0)‖∞ < tol,

cPk :=
E1(A)

1−E1(A)
‖x (k) − x (k−1)‖∞ < tol.

6.2 H-matrix case

Switching to the weighted infinity norm,

‖x‖(w) := ‖W−1 x‖∞ =max
i

|x i|
wi

,

where W = diag(w1, . . . , wn) and w = [w1 . . . wn]T > 0 is a vector

of weights, as the following proposition shows, Theorem 6.1.1 can be

generalized from SDD to the H-matrix case.

Theorem 6.2.1. Let Ω ≥ D, A be an H+-matrix with triangular multi-

splitting as in Theorem 4.1.5, and w > 0 be a weight vector such that

〈A〉w> 0. If the relaxation parameters α and β satisfy the condition

max{α,ξβ}‖D−1|B|‖(w) <min{1,α}, (6.4)

then

‖LMSMAOR‖(w) ≤ ‖fLMSMAOR‖(w) ≤ E2(A)< 1, (6.5)

where

E2(A) :=max
i

�

(α+ 1− 2min{1,α}) aii +αθi

�

wi + 2 max{α,ξβ}eri(B)− ξβ e`i
�

(α+ 1)aii +αθi

�

wi − ξβ e`i
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and
e`i :=

∑

j<i

w j|ai j|, eri(B) :=
∑

j 6=i

w j|ai j|, ∀i ∈ Nn.

Proof: Obviously, for W = diag(w1, . . . , wn), the condition 〈A〉w> 0

means that AW is an SDD matrix with positive diagonal entries. Now,

the proof is a direct consequence of Theorem 6.1.1 coupled with the

following facts:

• ‖D−1|B|‖(w) = ‖W−1D−1|B|W‖∞ = ‖(DW )−1|BW |‖∞,

• ‖LMSMAOR‖(w) = ‖W−1LMSMAORW‖∞ = ‖
∑`

p=1 EpL (LpW, UpW,ΩW )‖∞

• ‖fLMSMAOR‖(w) = ‖W−1
fLMSMAORW‖∞ = ‖(MW )−1(NW )‖∞, and

• E2(A) = E1(AW ),

which can be readily checked. �
The proof of this theorem is a natural generalization of Theorem

6.1.1, applied to matrix AW. It is obvious that this theorem offers a more

general view, since it reduces to Theorem 6.1.1 for W = E, implying that

A is an SDD matrix with a positive diagonal. The apparent benefit of this

theorem is the fact that the scaling matrix can be cheaply acquired for

a fair amount of well-known subclasses of H-matrices.

Finally, knowing the appropriate vector of weights w> 0, as before,

we obtain a priori

cA w
k :=

E2(A)k

1−E2(A)
‖x (1) − x (0)‖(w) < tol
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and a posteriori stoping criteria

cP w
k :=

E2(A)
1−E2(A)

‖x (k) − x (k−1)‖(w) < tol,

that control the error in such weighted infinity norm δw
k = ‖x

∗−x (k)‖(w).
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7. Numerical examples

In the final chapter of this thesis we turn to numerical examples, which

illustrate the theoretical results presented in Chapters 5 and 6. These

results include the extension of the area of convergence for MSMAOR,

which has been presented in forms of two proofs, with the second one

using the new technique. Then, using this new technique, we were

able to go one step further and provide a priori and a posteriori error

estimates for the MSMAOR iteration method.

7.1 Convergence area extension

First, we begin with the extension of the area. This has been presented

as Theorem 5.0.1 in Chapter 5. Not only does the convergence area

become wider, but also the optimal choice of relaxation parameters, for

which a significant acceleration, measured by the spectral radius of the

approximation of the MSMAOR iteration matrix, can be achieved. In

what follows, we observe two cases for each matrix, ξ= 0.4 and ξ= 1.

BZ val presents the spectral radius of the of the approximation of the

MSMAOR iteration matrix, for the choice of parameters BZ alpha and

BZ beta. Similar reasoning applies to terms with prefix CK.
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Generating matrix A1.

function A = l cp1 (n)
E = eye (n ) ; E = f l i p l r (E ) ;
E(1 ,1) = 1; E(end , end) = 1;
S = t r i l ( ones (n ) ) ;
A = S ; F = E ;
for j=1:n−1

A = blkd iag (A , S ) ;
F = blkd iag (F , E ) ;

end
M = F ( : , 1 : n ) ;
F ( : , 1 : n) = [ ] ; F = [F M] ;
A = A+F ;
A = A+8∗eye (n∗n ) ;

A1=lcp1(10)

rows/columns: 100/100
nonzero entries: 670
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nz = 670

Figure 7.1: Nonzero sparsity pattern of matrix A1
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Figure 7.2: Level curves for ρ(LMSMAOR(α,β)) and matrix A1 in the
(α,β)-plane and numerical comparisons of parameter choice and cor-
responding ρ(LMSMAOR(α,β)) (BZ val and CK val) for matrix A1.
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Generating matrix A2.

function A = l cp2 ( s , mi , a , b)
S = (4+mi)∗eye ( s )
−a∗diag ( ones ( s −1 ,1) ,1)
−b∗diag ( ones ( s−1 ,1) ,−1);

A = S ;
for j=1:s−1

A = blkd iag (A , S ) ;
end
A = A
−a∗diag ( ones ( s 2̂−s , 1 ) , s )
−b∗diag ( ones ( s 2̂−s ,1) ,− s ) ;

A2=lcp2(10,4,0.5,3.5)

rows/columns: 100/100
nonzero entries: 460
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Figure 7.3: Nonzero sparsity pattern of matrix A2

80



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

0.5

0
.5

0
.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.9

0
.9

0
.9

0
.7

0
.7

0
.7

1
1

1

0
.9

0
.9

0
.9

(a) ξ= 0.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
0.4

0.5 0
.5

0.6

0
.6

0
.6

0
.6

0
.7

0
.7

0
.7

0
.9

0
.9

0
.9

0
.7

0
.7

0
.7

1
1

1

0
.9

0
.9

0
.9

(b) ξ= 1

A2 BZ val CK val BZ alpha BZ beta CK alpha CK beta

ξ= 0.4 0.6093 0.4937 1 1 1 3.9

ξ= 1 0.5606 0.5025 1 1 1 1.5

Figure 7.4: Level curves for ρ(LMSMAOR(α,β)) and matrix A2 in the
(α,β)-plane and numerical comparisons of parameter choice and cor-
responding ρ(LMSMAOR(α,β)) (BZ val and CK val) for matrix A2.
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Generating matrix A3.

function A = l cp3 (n)
T = zeros (n)
−0.5∗diag ( ones (n−1 ,1) ,1)
+0.5∗diag ( ones (n−2 ,1) ,−2);

E = eye (n ) ; E(1 ,end) = −1;
E(end ,1)=−1; S=10∗eye (n)+T ;
A = S ; P = E ; Q = E ;
for j=1:(n−1)

A = blkd iag (A , S ) ;
P = blkd iag (P , E ) ;
Q = blkd iag (Q, E ) ;

end
P ( : , ( n 2̂−n+1):end )=[] ;
P=[zeros (n^2,n ) , P ] ;
Q( : , 1 : n)=[] ;
Q = [Q, zeros (n^2,n ) ] ;
A = A+P+Q;

A3=lcp3(10)

rows/columns: 100/100
nonzero entries: 486
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Figure 7.5: Nonzero sparsity pattern of matrix A3
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Figure 7.6: Level curves for ρ(LMSMAOR(α,β)) and matrix A3 in the
(α,β)-plane and numerical comparisons of parameter choice and cor-
responding ρ(LMSMAOR(α,β)) (BZ val and CK val) for matrix A3.
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Below is the Matlab function for plotting the level curves forρ(LMSMAOR(α,β))
and calculating the optimal parameter choices.

function rho_min=srMSMAOR(A , k s i )

D=diag ( diag (A ) ) ;

B=D−A;

rho=abs ( e i g s (D\abs (B ) , 1 ) ) ;

a lpha_bai=1:0.01:1/ rho ;

t o l =0.1;

c l f ;

hold on ;

rho_min . BZ_val=NaN;

rho_min . CK_val=NaN;

[x , y]=meshgrid (0 : t o l :1/ rho+0.5 ,0: t o l :1/( k s i ∗ rho )

+0.5);

rho_sur f=zeros ( s ize (x , 1 ) , s ize (x , 2 ) ) ;

for k=1: s ize (x ,1 )

for j=1: s ize (x ,2 )

alpha=x (k , j ) ; beta=y (k , j ) ;

L=(( alpha+1)∗D−beta∗ k s i ∗abs(−( t r i l (A,−1))))

\( abs(1−alpha )∗D+(alpha−beta )∗ k s i ∗
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abs(−( t r i l (A,−1)))+ alpha∗abs (D−k s i ∗
(−( t r i l (A,−1)))−A)+alpha∗abs (D−A ) ) ;

rho_sur f (k , j )=max( abs ( eig (L ) ) ) ;

i f beta <= alpha && beta > 0

i f rho_sur f (k , j )==min( rho_min . BZ_val ,

rho_sur f (k , j ) )

rho_min . BZ_val=min( rho_min . BZ_val ,

rho_sur f (k , j ) ) ;

rho_min . BZ_alpha=alpha ;

rho_min . BZ_beta=beta ;

end

end

i f max( alpha , k s i ∗beta )∗ rho<min(1 , alpha )

&& beta >0

i f rho_sur f (k , j )==min( rho_min . CK_val ,

rho_sur f (k , j ) )

rho_min . CK_val=min( rho_min . CK_val ,

rho_sur f (k , j ) ) ;

rho_min . CK_alpha=alpha ;

rho_min . CK_beta=beta ;

end

end
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end

end

axis equal ;

[C , h]=contour f (x , y , rho_surf , [0 : 0 . 1 : 0 . 4 0.6 0.8 1 ] ) ;

colormap ( [0 . 2 : 0 . 0 0 8 : 1 ; 0 .2 :0 .008 :1 ; 0 . 2 : 0 . 0 0 8 : 1 ] ’ ) ;

set (h , ’ ShowText ’ , ’ on ’ ) ;

tex t_handle = c label (C , h ) ;

set ( text_handle , ’ BackgroundColor ’ , [0 .9 0.9 . 9 ] ,

’ Edgecolor ’ , [ . 7 .7 . 7 ] , ’ FontSize ’ , 8 ) ;

box on ;

plot ( [0 :0 .01 :1 alpha_bai 1/ rho ] ,

[ (0 :0 .01 :1 )/ ( k s i ∗ rho ) 1/( k s i ∗ rho)+0∗ alpha_bai 0] ,

’ k ’ , ’ LineWidth ’ , 2 ) ;

plot ( [0 :0 .01 :1 alpha_bai 1/ rho ] , [0 : 0 . 01 : 1 a lpha_bai

0] , ’ k− ’ , ’ LineWidth ’ , 2 ) ;

end
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7.2 Error control

The second part of the numerical examples is dedicated to the error

control and its analysis. In order to perform numerical experiments

and present them accordingly, we consider a slight modification of the

example of the LCP that can be found in [8]. As it has been done before

in Chapter 6, we will treat the cases of SDD and H-matrices separately.

7.2.1 SDD-matrix case

Let m be a given positive integer and n= m2. Let us look at the LC P(q, A),
with matrix A∈ Rn×n given in its block-tridiagonal form

A= Tridiag(−E, S,−E) =





















S −E

−E S −E

−E S
. . .

S −E

−E S





















∈ Rn×n,

(7.1)

where S = tridiag (−1,5,−1) ∈ Rm×m is also tridiagonal matrix.

It is not difficult to confirm that A is an SDD matrix. We set q := r?−
Az? with the vectors z? = [1,0, 1,0, . . . , 1, 0]T and r? = [0, 1,0, 1, . . . , 0, 1]T

providing the unique solution of LCP(q, A) - i.e. x? = z? − D−1r? being

the exact solution of (4.3). We consider two cases. In the first one, the

initial approximation z(0) is z(0) = 0.05z? + r?, while in the second case
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z(0) = 5z? + 3r?. Moreover,

x (0) =
1
2
γΩ−1

�

(Ω− A)z(0) − q
�

= D−1
�

(D− A)z(0) − q
�

.

Working in a single processor setting, which means that ` = 1, we

choose the relaxation parameters α = 1 and β = 1/ξ = 1/0.4. For

simplicity, we also assume that Ω = D and γ = 2. For a priori and a

posteriori error estimations we use Theorem 6.1.1 and compute a pri-

ori (Ak), ( cAk) and a posteriori (Pk) , (cPk) error estimations and E1(A)
bound. In Table 7.1 we present CPU times (in seconds) required for

finding the norm ‖fLMSMAOR‖∞ and E1(A). Tables 7.2 and 7.3, for a pre-

scribed tolerance tol, contain the number of iterations k and CPU times

(CPU) for the MSMAOR which are needed to satisfy the stopping criteria

for the error δk, a priori error estimationsAk, cAk, and a posteriori error

estimations Pk and cPk, with the preliminary calculated ‖fLMSMAOR‖∞
and E1(A). Note that the number of iterations required when using

n ‖fLMSMAOR‖∞ E1(A)
102 0.0029s 0.0045s
104 4.3538s 0.4168s

4 · 104 338.4741s 2.7620s

Table 7.1: CPU times for computing ‖fLMSMAOR‖∞ and E1(A).

a priori and a posteriori error estimations is greater than the one with

the stopping criteria, but the latter assumes that the exact solution is

known. Therefore, from the practical point of view, the use of a priori

or a posteriori error estimations as stopping criteria is more suitable and
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ek Ak Pk
cAk

cPk tol
k 12 48 13 57 13

10−6

CPU 0.0183s 0.0873s 0.0197s 0.0784s 0.0198s
k 24 96 26 114 26

10−12

CPU 0.0414s 0.1466s 0.0460s 0.1658s 0.0415s

Table 7.2: Number of iterations k and CPU for (7.1) with the initial
approximation z(0) = 0.05z? + r? and m= 100.

ek Ak Pk
cAk

cPk tol
k 16 54 18 64 18

10−6

CPU 0.0270s 0.0866s 0.0294s 0.0925s 0.0313s
k 29 102 31 120 31

10−12

CPU 0.0439s 0.1706s 0.0469s 0.1671s 0.0481s

Table 7.3: Number of iterations k and CPU for (7.1) with the initial
approximation z(0) = 5z? + 3r? and m= 100.
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convenient. Moreover, the computation time for ‖fLMSMAOR‖∞ is about

100 times larger than for E1. ComparingAk to cAk andPk to cPk, we can

conclude that the number of iterations and CPU time remain relatively

close to each other, even though the terms required for their calculation

exhibit significant discrepancies in terms of CPU times.

7.2.2 H-matrix case

For the results connected to the H-matrix case, we will consider the

following matrix

A=































F O

−E F

−E −E eF

−E −E eF
. . . . . . . . .

−E −E eF

−E −E eF

O −E −E eF































∈ Rn×n, (7.2)

where F = tridiag (−1,4,−1) ∈ Rm×m and eF = tridiag (−1,5,−1) ∈
Rm×m. Even though A is not an SDD, it is an H-matrix, more precisely

an S-SDD for the choice of the index set S = {1, 2, . . . , 2m}. For more

information on this subclass of nonsingular H-matrices, see [21, 23]. In

this case, the matrix W scaling A to an SDD matrix is known, [21]. More-

over, the diagonal of this matrix represents a possible positive vector w.

We take the n-dimensional vector w= [0.5, 0.5, . . . , 0.5, 1, 1 . . . , 1]T with
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n ‖fLMSMAOR‖w E2(A)
102 0.0063s 0.0101s
104 4.6139s 0.2896s

4 · 104 1078.1s 1.5s

Table 7.4: CPU times for computing ‖fLMSMAOR‖w and E2(A).

ew
k A w

k P w
k

cA w
k

cP w
k tol

k 10 46 12 61 12
10−6

CPU 0.0183s 0.0730s 0.0216s 0.0948s 0.0220s
k 20 87 22 115 22

10−12

CPU 0.0357s 0.1563s 0.0396s 0.1763s 0.0400s

Table 7.5: The number of iterations k and CPU time for (7.2) with the
initial approximation z(0) = 0.05z? + r? and m= 100.

ew
k A w

k P w
k

cA w
k

cP w
k tol

k 14 49 15 64 15
10−6

CPU 0.0275s 0.0783s 0.0306s 0.1124s 0.0313s
k 24 90 25 118 25

10−12

CPU 0.0473s 0.1495s 0.0480s 0.1979s 0.0478

Table 7.6: The number of iterations k and CPU time for (7.2) with the
initial approximation z(0) = 5z? + 3r? and m= 100.

the first 2m entries to be 0.5. An analysis similar to the previous exam-

ple shows the advantage of the norm estimation E2(A) from Theorem

6.2.1. The results are summarised in Tables 7.4, 7.5 and 7.6.
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MA
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Predmetna odrednica/Ključne reči: Problem linearne komplementarnosti,

iterativni postupak, relaksacioni postupak, modulski postupak, konver-

gencija, spliting matrice, multispliting, H+ matrice, kontrola greške.

109



PO

UDK
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