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Rezime
U okviru teze predstavljen je razvoj, formulacija i veri�kacija matematiµckog modela

jednodimenzionalnog neustaljenog teµcenja sa transportom nanosa u prirodnim vodotocima

primenom latis Bolcman metode (engl. lattice Boltzmann). Najvéci broj istraµzivaµca koji

se bave modeliranjem jednodimenzionalnog neustaljenog teµcenja modele koji se zasnivaju

na Prajsmanovoj (engl. Preismann) �emi konaµcnih razlika i na Holi-Prajsmanovoj (engl.

Holly Preismann) �emi. Navedene numeriµcke �eme su robusne i bezuslovno stabilne. U

oblasti modeliranja transporta nanosa ne postoji dominantan pristup. Deljenje nanosa na

suspendovani i nanos na i pri dnu omogúcava da se kod modeliranja suspendovanog nanosa

prihvati pretpostavka da se njegove µcestice krécu brzinom koja je pribliµzno jednakoj brzini

kretanja �uida.

Lattice Bolcmanova (engl. lattice Bolzmann) metoda (LBM) predstavlja hiperstilizo-

vanu verziju Bolcmanovih jednaµcina, koja je prilago�ena re�avanju problema iz oblasti di-

namike �uida i �ire. Ovaj, relativno novi i obécavajúci pristup numeriµckog re�avanja nelin-

earnih parcijalnih diferencijalnih jednaµcina je e�kasan i �eksibilan pri primeni za kompleksnu

ili promenljivu geometriju. Srµz LBM jednaµcina je specijalna diskretna forma Boltzmann-ove

jednaµcine, koja opisuje kretanje grupe µcestica na jednostavan naµcin, a na makroskopskom

nivou daje sliku o kretanju �uida. Proseµcne brzine µcestica se, u prostoru i vremenu, pon-

a�aju kao �ziµcke brzine �uida, �to daje direktnu vezu izme�u diskretnog mezoskopskog

i makroskopskog nivoa. Za razliku od klasiµcne numeriµcke hidraulike, koja daje direktna

re�enja jednaµcina kretanja �uida, lattice Boltzmann metod je naµcin da se jednaµcine re�e

indirektno. Metod podrazumeva jednostavne proraµcune, paralelne procese programiranja i

laku implementaciju graniµcnih uslova. Preteµca latis Bolcmanove metode su latis gas celular

automata (lattice gas cellular automata) modeli (LGCA) i Bolcmanova transportna jed-

naµcina. U tezi je dat teorijski uvod u latis Bolcman metodu. Opisano je kako je metoda

nastala i kako se razvijala i ura�en je detaljan prikaz postojécih modela koji će se koristiti

kao baza za novi model.
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Kako bi se razvio funkcionalan model jednodimenzionalnog neustaljenog teµcenja u otvorenim

tokovima sa transportom nanosa, neophodno je de�nisati jednaµcine koje opisuju navedene

�ziµcke procese. Jednodimenzionalno neustaljeno teµcenje u otvorenim tokovima opisano je

posebnim oblikom Sen-Venanovih jednaµcina, gde kao promenljive �guri�u kota slobodne

povr�ine i proticaj u obliku:

@A

@t
+
@Q

@x
= q

@Q

@t
+
@

@x

�

!
Q2

A

�

= �grA
@Z

@x
� grASf ;

gde je A(x; t) povr�ina popreµcnog preseka; Q(x; t) je proticaj; Z(x; t) je kota slobodne

povr�ine, q(x; t) je lateralni doticaj po jedinici duµzine, gr je gravitaciono ubrzanje; t je

vreme, x je prostorna koordinata; a ! je koe�cijent neunifornosti brzina. Sf je nagib trenja

de�nisan izrazom:

Sf =
n2Q2

A2R4=3

gde je n is Maningov koe�cijent trenja a R = A=O je hidrauliµcki radijus, gde je O okva�eni

obim. Ovaj oblik jednaµcina elimini�e µclan nagiba dna korita, �to je prilago�eno modeliranju

tokova sa prirodnom geometrijom. Za model transporta nanosa, kori�́cen je princip aktivnog

sloja, tj. suspendovani nanos je odvojen od nanosa na i pri dnu. Me�avina nanosa je

predstavljena preko odgovarajúcih frakcija ks = 1; :::::;KS, gde je KS ukupan broj frakcija.

Transport frakcije ks suspendovanog nanosa, predstavljen je jednaµcinom odrµzanja mase

suspendovanog nanosa u obliku:

@(CksA)

@t
+
@(CksAu)

@x
=
@

@x

�

"s
@(Cks)

@x
A

�

+
B

�

�

Esedks �Dsedks
�

;

gde je � gustina me�avine vode i nanosa, Ck je koncentracija frakcije ks, "s maseni

koe�cijent difuzije, B je �irina slobodnog ogledala, Esedks je µclan µclan erozije, a Dsedks je µclan

deponovanja. Transport nanosa u aktivnom sloju dat je jednaµcinom odrµzanja mase aktivnog

sloja frakcije ks:

�s(1� pb)
@(�ksEm)

@t
+
@�ks
@x

= Dsedks � Esedks + (Sf )ks ;

gde je �ks udeo frakcije ks, �ks �uks nanosa na dnu frakcije ks, Em je debljina aktivnog

sloja, pb je poroznost, �s je gustina sedimenta, a (Sf )ks je µclan razmene izme�u aktivnog
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sloja i aktivnog stratuma frakcije ks. Globalna jednaµcina odrµzanja mase aktivnog sloja i

stratuma je:

�s(1� pb)
@(Zb)

@t
+
@

@x

 

KS
X

ks=1

�ks

!

=
KS
X

ks=1

�

Dsedks � Esedks
�

;

gde je Zb kota dna.

Uniformnost strukture raµcunske mreµze je glavno ograniµcenje latis Bolcman modela, koje

znaµcajno smanjuje e�kasnost i primenljivost LB modela, naroµcito kada je u pitanju modeli-

iranje prirodne, nepravilne geometrije. Da bi se ovo ograniµcenje eliminisalo i istovremeno

ispo�tovale osnovne karakteristike latis Bolcman modela, uvedena je geometrijska trans-

formacija zasnovana na metriµckom mapiranju izme�u �ziµckog i raµcunskog domena. Ova

tehnika se µcesto koristi u tradicionalnom metodama raµcunske dinamike �uida, a omogúcava

da se veliµcine de�nisane u neekvidistantnom �ziµckom prostoru prenesu u ekvidistantan

raµcunski okvir. Na taj naµcin prostornu neuniformnost elimini�u transformisane jednaµcine,

umesto samog numeriµckog modela.Transformisane jednaµcine, gde je Y = @x=@� (� je nova

koordinata), imaju sledéci oblik:

� Transformisane Sen-Venanove jednaµcine teµcenja:

@

@t
(Y A) +

@Q

@�
= qY;

@Q

@t
+
@

@�

�

!
Q2

Y A

�

= �grA
Y

@Z

@�
� gASf + !

Q2

A

@
�

Y �1
�

@�
:

� Transformisane jednaµcine odrµzanja mase suspendovanog nanosa:

@(CksAY )

@t
+
@(CksAu)

@�
= "s

@2(Cks
A
Y )

@�2
�"s

@Cks
@�

@(AY )

@�
�"sCks

@2(AY )

@�2
+
BY

�

�

Esedks �Dsedks
�

� Transformisane jednaµcine odµzanja mase aktivnog sloja:

@(�s(1� pb)�ksEmY )
@t

+
@�ks
@�

= Y
�

Dsedks � Esedks + (Sf )ks
�

:

� Transformisana globalna jednaµcina odrµzanja mase aktivnog sloja i stratuma:

@ [�s(1� pb)ZbY ]
@t

+
@

@�

 

KS
X

ks=1

�ks

!

=
KS

Y
X

ks=1

�

Dsedks � Esedks
�

:
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Na osnovu transformisanih jednaµcina formirani su adekvatni latis Bolcman modeli.

Izabrana je D1Q3 dispozicija mreµze, za koju su karakteristiµcne µcvorne brzine:

e� =

8

>

>

>

>

<

>

>

>

>

:

0

e

�e

; � = 0;

; � = 1;

; � = 2;

:

Predloµzeni oblici latis Bolcmanovih jednaµcina sa odgovarajúcim ravnoteµznim distrib-

utivnim funkcijama su:

� Za jednaµcine neustaljenog teµcenje u otvorenim tokovima:

f�(� + e��t; t+�t) = f�(�; t)�
1

� f
(f� � feq� )

+
�t

2e2
e�(F� + e�qY )

� gA

2Y e2
[Z(� + e��t; t)� Z(�; t)]

+
!

2e2

�

Q2

A

�

�

Y �1(� + e��t)� Y �1(�)
�

;

F� = �
gn2Q2

AR4=3
;

feq� =

8

>

>

>

>

<

>

>

>

>

:

Y A� 1
e2
!Q2

Y A

Q
2e +

1
2e2

!Q2

Y A

�Q
2e +

1
2e2

!Q2

Y A

; � = 0

; � = 1

; � = 2:

;

� Za jednaµcinu odrµzanja mase suspendovanog nanosa frakcije ks:

g�(� + e��t; t+�t) = g�(�; t)�
1

� g
(g� � geq� )

� "s
e2�t

Cks

�

A

Y
(� + e��t; t)� 2

A

Y
(�; t) +

A

Y
(� � e��t; t)

�

� "s
e2�t

[Cks(� + e��t)� Cks(�)]
�

A

Y
(� + e��t; t)�

A

Y
(�; t)

�

+�tG�;

G� =
BY

�

�

Esedks �Dsedks
�

;
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>

>

>

:
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CksAu
2e + �

2CksA

�CksAu
2e + �

2CksA

;� = 0

; � = 1

; � = 2:

;

� =
"s

�tY (� g � 0:5)e2
:

� Za jednaµcinu odrµzanja mase aktivnog sloja frakcije ks:

h�(� + e��t; t+�t) = h�(�; t)�
1

�h
(h� � heq� ) + �tH�;

H� = Y
�

Dsedks � Esedks + (Sf )ks
�

;

heq� =

8

>

>

>

>

<

>

>

>

>

:

�s(1� pb)�ksEmY ; � = 0

�ks
2�e2

; � = 1

� �ks
2�e2

; � = 2

;

� Za globalnu jednaµcinu odrµzanja mase aktivnog sloja i stratuma:

m�(� + e��t; t+�t) = m�(�; t)�
1

�m
(m� �meq

� ) + �tM�:

M� =
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Y
X
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�
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�
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>

>
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1
2e
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P

ks=1

�ks ; � = 1

� 1
2e

KS
P

k=1

�k ; � = 2

:

Kako bi predloµzeni model mogao da se primeni na otvorene tokove sa prirodnom geometri-

jom, izvedeni su graniµcni uslovi za pritoke i grananje toka. Dat je kratak opis kompjuterskog

koda sa algoritmom koji će se koristiti za testiranje modela, sa posebno obja�njenim de-

taljima koji se tiµcu implementacije prirodne geometrije i optimizacije samog modela.

Predloµzeni model neustaljenog teµcenja je testiran na tri sluµcaja: ustaljeno teµcenje u

prizmatiµcnom kanalu, neustaljeno teµcenje u neprizmatiµcnom kanalu i neustaljeno teµcenje u

prirodnom vodotoku. Ustaljeno teµcenje testirano je na prizmatiµcnom kanalu pravougaonog
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popreµcnog preseka duµzine L = 1000 m, �irine B = 100 m, konstantnog nagiba dna S0 =

0:001. i Maningovog koe�cijenta n = 0:025 m�1=3s: Kota nivoa Zd = 1:20 m je postavljena

kao nizvodni, a konstantan proticaj Qup = 100:0 m3=s kao uzvodni graniµcni uslov. Posma-

trane su dve dispozicije raµcunske mreµze, ekvidistantna i neekvidistanta.Rezultati latis Bol-

cmanovog modela su pore�eni sa rezultatima odgovarajúceg modela u softverskom paketu

HEC-RAS. Duµzina simulacije je 50 min, sa vremenskim korakom �t = 10 s za ekvidistantnu

i �t = 7 s za neekvidistantnu mreµzu.Za obe raµcunske mreµze su prikazana pore�enja nivoa

slobodne povr�ine za t = 50 min, nivogrami i hidrogrami. Dobijena su odliµcna poklapanja

za obe dispozicije mreµze.

Neustaljeno teµcenje u neprizmatiµcnom kanalu je testirano na kanalu duµzine L = 24000m,

konstantnog nagiba dna S0 = 0:0005 i Maningovog koe�cijenta n = 0:0667 m�1=3s . �i-

rina kanala je odre�ena izrazom B = 8:0 + 12:0(x=L), gde je x odgovarajúca stacionaµza

popreµcnog preseka merena od uzvodne granice modela. Formirane su dve raµcunske mreµze,

ekvidistantna i neekvidistantna. U sluµcaju ekvidistantne �ziµcke mreµze rastojanje izme�u 25

raµcunskih taµcaka je po �x = 1000:0 m, dok je u sluµcaju neekvidistantne mreµze 25 raµcunskih

taµcaka formirano tako �to su uvedena proizvoljna, nejednaka rastojanja izme�u popreµcnih

preseka koja se krécu u rasponu od �x = 500:0 � 1700:0 m. Rastojanje taµcaka u trans-

formisanoj raµcunskoj mreµzi je �� = 1:0 za oba sluµcaja. Uzvodni graniµcni uslov je ulazni

hidrogram u obliku poplavnog talasa, dok je nizvodni graniµcni uslov normalna dubina dobi-

jena iz �ezi-Maningove (engl. Chezy-Manning) jednaµcine. Stabilnost modela je postignuta

za � = 0:501 i �t = 2:0 s oba sluµcaja. Ukupno 12600 raµcunskih koraka je izvr�eno za simu-

laciju dugu 420:0min. Validacija rezultata je izvr�ena pore�enjem sa rezultatima HEC-RAS

modela. Upore�eni su nivogrami i hidrogrami za po µcetiri proizvoljna popreµcna preseka za

obe raµcunske mreµze. Rezultati se jako dobro poklapaju.

Poslednji korak je primena latis Bolcman modela na neustaljeno teµcenje u vodotoku sa

prirodnom geometrijom. Modelirana je deonica reke Dunav od Smedereva do HE Ðerdap I,

duµzine 145.88 km, koja sadrµzi µcetiri pritoke: Velika Morava, Nera, Pek i Poreµcka i dva reµcna

ostrva. Za kreiranje modela kori�́cena su morfolo�ka merenja geometrije reke Dunav (podaci

Republiµckog Hidrometeorolo�kog zavoda Srbije). Na datoj deonici, postoje merenja za 160
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popreµcnih preseka na me�usobnom rastojanju u rasponu od 800�1300m:Kompletna deonica

je podeljena na devet sekcija, koje su razdvojene pritokama i raµcvanjima. Ulazni hidrogram

za mesec august 2006 godine na mernoj stanici Smederevo je uzvodni graniµcni uslov, dok

je nivogram za isti vremeski period na mernoj stanici HE Ðerdap I postavljen kao nizvodni

graniµcni uslov (podaci RHMZ). Pritoke Nera, Pek i Poreµcka nemaju znaµcajan uticaj na tok

reke Dunav, zbog malih proticaja, dok je za pritoku Velika Morava proticaj Qt = 90 m3=s

uveden kao unutra�nji graniµcni uslov. Maningov koe�cijent je n = 0:0318 m�1=3s; trans-

formisano rastojanje�� = 1:0, a vreme relaksacije � = 0:57: Stabilnost modela je postignuta

za vremenski korak �t = 10:0 s. Pre simulacije neustaljenog teµcenja, model je stabilizovan

za ustaljeni reµzim, tako �to su nametnuti konstantni graniµcni uslovi Q = 2570:0 m3=s i

Z = 69:44 m u trajanju od µcetiri dana. Iste te vrednosti su kori�́cene i kao poµcetni uslovi

za ceo model. Nakon stabilizacije modela, konstantni graniµcni uslovi su zamenjeni ulaznim

hidrogramom i izlaznim nivogramom. Simulacija neustaljenog teµcenja u trajanju od 31

dana je postignuta sa 267840 koraka za 12.34 min. Za pore�enje rezultata kori�́cena su

µcasovna merenja nivoa slobodne povr�ine za merne stanice Golubac (rkm 1042:00) i Donji

Milanovac (rkm 995:00) i proticaja na mernoj stanici HE Ðerdap I tokom augusta 2006. go-

dine. Upore�eni rezultati pokazuju dobra poklapanja. Proseµcna odstupanja nivoa slobodne

povr�ine su oko 10:0 cm, �to je zadovoljavajúce za izrazito neustaljen reµzim teµcenja. Najvéce

odstupanje je 18 cm u periodu od 16. do 21. augusta na mernom mestu Golubac. Kod

pore�enja proticaja, proseµcna odstupanja su u okviru 200:0m3=s, a maksimalno odstupanje

od 840:0 m3=s je priméceno samo jednom, 10. augusta.

U drugoj fazi istraµzivanja testiran je model transporta nanosa. Prvo je testirana jed-

naµcina advekcije i difuzije, a zatim kompletan model neustaljenog teµcenja sa transportom

suspendovanog nanosa u vodotoku sa prirodnom geometrijom.

Latis Bolcman model advekcije i difuzije je testiran na prizmatiµcnom kanalu duµzine

L = 5000:0 m, konstantne povr�ine popreµcnog preseka A = 1:0 m2. Broj frakcija je KS =

1. Kao poµcetni graniµcni uslov postavljen je raspored koncentracije duµz kanala sa naglim

promenama po jednaµcini:

Cinitks (x; 0) =
C0p
"s�t0

e
�(x�x0)

2

4"st0 ;
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gde je C0 = 3308:75, t0 = 3484:8 s; x0 = 1400:00 m; "s = 3:0 m=s, a x je prostorna

koordinata. Uzvodni graniµcni uslov je odre�en jednaµcinom:

Cupks (0; t) =
C0

p

"s�(t0 + t)
e
�(�u�t�x0)

2

4"s(t+t0) ;

gde je t vreme, a brzina u = 0:5 m=s. Opet su formirane dve raµcunske mreµze, ekvidistantna

sa rastojanjima �x = 50:0 mi neekvidistantna sa rastojanjima od 40:0�90:0 m: Formirana

je 101 prostorna taµcka. Vreme simulacije je T = 2520:0 s, raµcunsko rastojanje popreµcnih

preseka �� = 1:0; vreme relaksacije � = 0:76, a vremenski korak �t = 1:0 s: Rezultati su

upore�eni sa analitiµckim re�enjem jednaµcine u obliku:

Cupk (x; t) =
C0

p

"s�(t0 + t)
e
�(x�u�t�x0)

2

4"s(t+t0) :

Postignuta su odliµcna poklapanja za obe prostorne mreµze.

U poslednjem primeru testiran je latis Bolcman model neustaljenog teµcenja sa trans-

portom suspendovanog nanosa u prirodnom vodotoku. Modelirana je deonica Dunava

duµzine 176.29 km, od merne stanice Bezdan (rkm 1430.44) to merne stanice Novi Sad

(rkm 1254.15). Na osnovu dostupnih morfolo�kih podataka (RHMZ), formirana je pros-

torna mreµza od 73 raµcunske taµcke, koje odgovaraju izmerenim popreµcnim presecima na

me�usobnim rastojanjima od. 850:00 � 5460:00 m. Kao uzvodni graniµcni uslovi kori�́ceni

su izmerene proseµcne dnevne vrednosti proticaja i koncentracije suspendovanog nanosa

na mernoj stanici Bezdan u toku maja 2006. godine. Za nizvodni graniµcni uslov ko-

rícena su dnevna merenja nivoa u istom vremenskom periodu na mernoj stanici Novi

Sad. U principu, model neustaljenog teµcenja radi nezavisno, dok model suspendovanog

nanosi koristi vrednosti �ziµckih veliµcina koje su izraµcunate u prethodnom koraku modela

teµcenja. Vreme relaksacije za latis Bolcman model neustaljenog teµcenja je � f = 0:58: Usvo-

jeno vreme relaksacije za model nanosa je � g = 0:82; broj frakcija je KS = 1; maseni

koe�cijent difuzije "s = 20:0 m=s: Stabilnost modela je postignuta za vremenski korak

�t = 10:0 s: Transformisano rastojanje je �� = 1:0: Prvo je postignut ustaljen reµzim

teµcenja za Z = 85:77 m i Q = 4550:0 m3=s: Nakon stabilizacije modela teµcenja, zadrµzava-

júci isti reµzim teµcenja, model je stabilizovan i za ustaljeno stanje transporta suspendovanog

nanosa sa Cks = 0:0259 kg=m3. Nakon toga je usledila simulacija neustaljenog teµcenja sa
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transportom nanosa u trajanju od 31 dana. Rezultati su upore�eni sa merenjima RHMZ-a.

Pore�eni su nivoi slobodne povr�ine za merno mesto Baµcka Palanka (rkm 1298.66). Dobijeni

rezultati su zadovoljavajúci. Srednja odstupanja su oko 10:0 cm, dok je maksimalno odstu-

panje 25 cm. Merenja suspendovanog nanosa su dostupna samo za mernu stanicu Bezdan

i ta merenja su iskori�́cena kao uzvodni graniµcni uslov. Kako bi se nadoknadio nedostatak

podataka koji bi se mogli koristiti za validaciju modela, formirana je zavisnost izme�u proti-

caja i koncentacije suspendovanog nanosa na osnovu dostupih podataka. Dobijena zavisnost

je aproksimirana jednaµcinom:

C(Q) = 4:0 � 10�10 �Q2 + 5:0 � 10�6Q� 0:0029:

Rezultati latis Bolcman modela suspendovanog nanosa upore�eni su sa vrednostima koje su

dobijene dobijene zavisnosti na izmerene proticaje na mernom mestu Ledinci (rkm 1260.00)

u toku maja 2006. Dobijeni rezulati su zadovoljavajúci. Srednja odstupanja su reda veliµcine

0:002 kg=m3, a maksimalna su 0:004 kg=m3. U okviru daljeg istraµzivanja planirano je da se

postojécem modelu Dunava doda model nanosa na i pri dnu i da se dobija celokupna slika

neustaljenog teµcenja sa transportom nanosa u prirodnim vodotocima.
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CHAPTER I

INTRODUCTION

The main goal of this research is to create a robust mathematical tool that simulates an open

channel unsteady �ow with sediment transport in complex network of natural watercourses

which can e¢ciently manage variety of hydraulic states using the recently developed lattice

Boltzmann method. The accent is given to development of the unsteady �ow model that

can menage the irregularities as a consequence of natural geometry. Natural watercourses

imply complex longitudinal and transverse geometry. Cross-sections are of irregular shape

and each di¤ers from another, which means there is no mathematical dependence (or it is

very complicated to obtain) between geometrical properties like cross-sectional area, depth,

wetted perimeter etc.. This implies a challenging task to create an optimal model, struggling

between high accuracy and short computational time. Longitudinal geometry of natural

watercourses includes tributary in�ows and branching, when a single water �ow is separated

into two or more separate streams, and then merges back together. This changes amplify

unsteadiness of the �ow. Natural watercourses go through variety of complex hydraulic

states, like shock waves and changes between regimes, which are imposed by the geometry

of the watercourse and hydrometeorological conditions. Sediment transport is in a tight

correlation with �ow regime, the velocity of the water �ow moves the sediment particles.

Suspended mixture consists of di¤erent sediment particle sizes that react to current �ow

conditions, resulting in local aggradation or degradation of the river bed.

During past years researchers have been using several methods to study unsteady water

�ow with sediment transport in an open-channel network. These methods include physical

model based experimental methods, �eld measurements and numerical models. It has been

shown that the combination of these methods gives the best results. Numerical models

are used to solve the governing system of equation that describes the phenomena, �eld

measurements are used to calibrate and verify the results, and the results of laboratory
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experiments can be used for further development of individual parts of the model. Numerical

models take the lead compared to other methods, by virtue of the ability to anticipate the

consequences that some events might have and the fact that one numerical model can be used

for a variety of di¤erent problems. These advantages are the basic reason of existence of a

large number of linear, plane and spatial numerical models. Dimension of the model depends

on the problem. Planar and spatial models give a detail image of the observed phenomena

in two or three dimensions, respectively, but demand complex data input (in terms of

initial and boundary conditions) and a long time is necessary for the computer to perform

simulations. Linear models are less demanding in terms of input data and computational

time, which is why many researchers choose this kind of model, especially for long-term

simulations. Some available unsteady �ow models in open-channel network and sediment

transport models are given in Chapter II. Along with these models, an overview of the lattice

Boltzmann models is presented. Lattice Boltzmann method (LBM) is a recently developed

powerful numerical tool, developed with purpose to solve ordinary and partial di¤erential

equations. Its strength lies in the ability to easily embody complex physical phenomena,

spanning from multiphase �ows to interactions between the �uid and it�s surroundings. The

LBM is an explicit method, where �uid �ow is described as particles that stream along the

lattice links and collide with its neighbors. The fact that collision and streaming processes

are local leads to the possibility of parallel programing, resulting with signi�cantly shorter

computational time. Chapter III introduces the basis of the lattice Boltzmann method and

the general overview of the method.

In Chapter IV one-dimensional unsteady open-channel �ow model and one-dimensional

sediment transport model are formulated using the lattice Boltzmann method. One-dimensional

unsteady open-channel �ow is described by the appropriate form of the Saint-Venant equa-

tions (SVE), which eliminates the bed slope term from the system of equations, leading

to a more �exible and practical form of the SVE. For the sediment transport the active

layer concept is used, where sediment transport domain is divided into three subdomains:

suspended-sediment, near-bed sediment (active layer) and bed sediment (stratum). Sedi-

ment mixture is modeled as a collection of appropriate sediment-fraction sizes. In order to
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overcome one of the major limitations of the LBM, uniformity of the lattice structure, geo-

metric transformation based on metric mapping between the physical and computational

domain is introduced. In this way, terms de�ned in a non-equidistant physical domain can

be calculated in a equidistant computational grid. Spatial non-uniformity is managed by

the transformed equations rather than with the numerical model itself. Corresponding LBM

models are formed based on the transformed equations. A LBM model for the Saint-Venant

equations (LABSVE) is autonomous, while the LBM model for sediment transport can be

attached to a �ow model. Corresponding computer code in the programming language

FORTRAN is created with the purpose to solve the governing equations. The implemented

algorithm needs to be simple in order to achieve short computational time. Complex geom-

etry is accompanied with great amount of data, therefore, an extra e¤ort has been given

to optimize the code, in order to unburden it of any unnecessary calculations. The main

features of the algorithm are explained in Chapter V of the thesis.

In order to test and validate the proposed one-dimensional LBM, �ve case studies have

been performed in the Chapter VI. First, water �ow model has been tested on three exam-

ples: a steady non-uniform �ow in a prismatic channel, an unsteady �ow in a non-prismatic

channel, and an unsteady �ow in a natural watercourse - Danube River case study. Veri�ca-

tion of the results obtained from the �rst two LBM models is conducted by comparison with

corresponding HEC-RAS models, while in the Danube River case study LBM model results

are compared with the measured data obtained by standard geodetic survey by the Repub-

lic Hydro-meteorological service of Serbia (RHMZ). Test-example of suspended-sediment

advection-di¤usion equation lattice Boltzmann model has been performed, and the results

are compared with the analytical solution of the governing equation. In order to verify the

proposed unsteady open-channel �ow with sediment transport on a realistic physical model

with natural geometry another Danube River case study is performed,and the results of the

LBM model are compared with the available �eld measurements obtained by the RHMZ.

To compensate insu¢cient suspended-sediment empirical data, additional statistical data

processing has been performed, based on the available measured values.
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CHAPTER II

LITERATURE OVERVIEW

Open channel hydraulics has been, and still is very popular topic among the researchers. All

of them share the tendency to develop more and more powerful mathematical models that

solve robust physical domains and make long-term simulations in short computational time.

In this Chapter currently available mathematical models from the domain of computational

�uid dynamics (CFD) are presented. Furthermore, this Chapter describes the evolution of

the lattice Boltzmann method, from basic to the most recent models in the area of river

hydraulics..

2.1 One-dimensional �ow models

In order to develop mathematical model that simulates the hydrodynamic processes of

open channel unsteady �ow in natural watercourses, several computational �uid dynamics

numerical methods have been used in the past. The majority or authors choose the �nite

di¤erences method, which is popular due to its simplicity and exact physical meaning of vari-

ables in equations. According to this method di¤erential equations are approximated with

�nite di¤erence equations, in which �nite di¤erences approximate the derivatives. Examples

of such models are the scheme proposed by Lax and Wendro¤ (1960) for linear advection,

and the scheme that Lax originally proposed for non-linear advection, which can also be

applied for linear advection (Lax, 1954). In order to reduce the e¤ect of dispersion on the

results, the authors Appadu et al. (2008) combined MacCormack and Lax-Friedrich�s two-

stage scheme. Authors Ewing and Wang (2001) gave a historical overview of the schematic

methods of �nal di¤erences for advection modeling. From the shown models, the �nite

di¤erence method was used by Yang and Simoes (2008), Bhallamudi and Chaudhry (1991)

used the �nite di¤erence method, Bhallamudi and Chaudhry (1991) applied the McCormack

scheme with the explanation that the scheme is explicit and easy to use and automatically
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eliminates the iterative calculations and the need for inversion of large matrices. Huang

et al. (2008) and Kuiry and Bates (2010) used the �nite volume method, while Yeh et al.

(1995) used the method of characteristics. The four-point implicit �nite-di¤erence Preiss-

man scheme (1961) and the method known as Holly-Preissmann method (1977) are the

most widely used methods in free-surface one-dimensional subcritical numerical modelling

((Holly and Rahuel (1990a,b), Wu et al., (2004); Fang et al. (2008), Islam et al. (2008), Sart

et al. (2010)). In order to �nd a particular cell face value, Leonard (1979) has introduced

Quadratic Upstream Interpolation for Convective Kinematics (QUICK). Furthermore, Ab-

bott (1979) solved characteristic form of the Saint-Venant equations by applying the Method

of characteristics (MC) and the Hartree method.

One of the main advantages of one-dimensional models is their ability to simulate long-

term events in complex water �ow systems. Starting point of a long-term open-channel �ow

simulation models were quasi-steady models (Yang et. al. (1985), Karim et al., (1987)).

Model presented by Karim et al. (1987) was originally proposed to simulate the �ow in

just one section, but it was later upgraded to also allow tributary �ows. Unsteady �ow

model CHARIMA (Yang, 1986) is used for shorter simulations. This model includes two

approaches to solve the given problem. In the case of a steady �ow simulation, it uses

the energy equation obtained by neglecting the increase of the momentum over time in a

momentum conservation equation, while for an unsteady �ow simulation, the program uses

a complete Saint-Venant equations. Similar to the CHARIMA, the popular commercial

HEC-RAS software (Brunner, 2010), also uses the energy equation for steady situations,

and Saint-Venant equations the unsteady �ow simulations. Today, existing models can

simulate unsteady �ow in the open-channel network (models allow an arbitrary number

of tributaries connected to the main stream), such as Channel Network Model (Husain

and Eqnaibli, 1988). Authors Nguyen and Kawano (1995), Fang et al. (2008), Vieira and

Wu (2002a), Wu et al. (2004) and DHI (2009) introduced models that simulate �ow in

the open-channel network, where models Vieira and Wu (2002a) and Wu et al. (2004) also

included the possibility to model hydraulic structures. Models that also allow the branching

of the network (separating the stream around an island into two or more smaller �ows, and
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then merging back together) are BRALLUVIAL (Holly and Spasojevic, 1985), CHARIMA

(Yang, 1986), CARIMA (Holly and Parrish, 1993), DUFLOW (Clemmens and Holly, 1993),

CanalMod by Islam et al. (2008) and MIKE 11 (DHI, 2009). In recent years attempts are

made to combine linear and plane models (Chen and Zhu, 2012).

2.2 Sediment transport models

Sediment transport followed with river bed deformations consist of variety of complicated

processes, for which there is no generally adopted mathematical formulation. By separating

suspended-sediment from the bedload sediment, allows us to assume that the suspended

particles move at the approximately same speed as the �uid particle, and that their move-

ment is continuous.

The �rst di¤erence in modeling approaches refers to the way in which the sediment

mixture is described. A large number of existing sediment transport models are based on

the assumption that the mixture is uniform, or the mixture is represented with a char-

acteristic particle size (model SUTERNCH-2D by van Rijn et al. (1990) or FAST2D by

Rodi (2000)). The �rst big progress in this area are the models that describe the sediment

mixture as a mixture of di¤erent size-classes. Model BRALLUVIAL (Holly and Spasojevic

(1985)) is based on a quasi-steady model of water �ow and sediment transport and uses

this approach where a sediment mixture is represented as a mixture of di¤erent size-classes.

Model SEDICOUP (Holly and Rahuel (1990)) solves the Saint-Venant equations with the

suspended-sediment and global active-layer and stratum mass-conservation equations of the

mixture.

The formulation of the bedload sediment equations and exchange mechanisms are not

uniquely de�ned. There are three basic ways of modeling the process at bed and near-

bed domain. According to the �rst approach the active-layer is homogeneous (Karim and

Kennedy (1982), Karim et al. (1987)). Some models that rely on this concept are BRAL-

LUVIAL model by Holly and Spasojevic (1985), CHARIMA by Holly et al. (1990), models

by Armanini and Giampaolo (1988), Rahuel et al. (1989), NMMOC model by Yeh et al.

(1995) and many others. In the second approach sediment particle moves as a bedload,
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and the thickness of the active-layer is equal to the jump height of these particles. Such

models are FAST2D by Bui et al. (1998) or Rodi (2000), FAST3D by Wu et al. (2000),

or the later version presented by Bui and Rutschmann (2006,2010). The third approach

is the active-layer and active-stratum approach (Spasojevic and Holly (1990)), where it

is considered that the active-layer is consisted of sediment grains potentially exposed to

movement, as well as grains that are already moving as a bedload sediment. Models that

rely on this approach are MOBED2 from the founders of the concept and author Spaso-

jevic and Holly (1990), SEDICOUP by Holly and Rahuel (1990), model CH3D-SED by

Gessler et al. (1999), models by Yang and Simoes (2008) and Hung et al. (2009), model

2DVONASK of author Budinski (2011), and others. Continuous interaction of the mixture

of water and sediment causes a constant change in the distribution of sediment fractions in

space and time, which also determines the availability of a certain fraction to participate

in the exchange processes between suspended and bedload sediment. Model by Struksima

et al. (1985) does not include suspended-sediment, it exclusively simulates bedload sedi-

ment. Model BRALLUVIAL (based on the concept of homogenous layer) determines the

change of the bed elevation from the mass-conservation equation of the mass written for

each fraction. The thickness of the homogeneous layer changes during every time interval

and the thickness of the active-layer is raised or lowered. The CHARIMA model (Holly

et al. (1990)) is a linear model that solves the system of the suspended-sediment, active

layer and active-stratum mass-conservation equations for an arbitrary number of fractions,

where the governing equations are de�ned for each fraction separately. Similar models are

from the authors Holly and Rahuel (1990) and Wu et al. (2004).

2.3 Lattice Boltzmann models

The lattice Boltzmann method (LBM) is relatively new (developed about two decades ago)

numerical technique de�ned in mesoscopic level. It was derived from the lattice gas au-

tomata. Statistical noise of the newly introduced model was by eliminated by McNamara

and Zanetti (1988) and Shan and Chen (1993). Still, complicated collision operator made

the method challenging for wider application. That problem was solved by introduction
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of the single relaxation time Bhatnager, Gross, and Krook (LBGK) (1954) scheme (Mar-

tys and Chen (1996), Chen and Doolen (1998)). Now it could recover the Navier-Stokes

equations. By introducing the two-relaxation time (TRT) and the multiple-relaxation time

(MRT) schemes, anisotropy in advection and anisotropic-dispersion equations (AADE) is

by solved (Ginzburg (2005) and Yoshida and Nagaoka (2010)). The single-phase transient

�ow in pipes by using adaptive grid approach is analyzed by Budinski (2016). Furthermore,

LBM is an ideal candidate for parallel processing on high performance computers (Shan and

Chen (1993); Martys and Chen (1996)). The lattice Boltzmann method is studied by many

authors and applied on variety of problems from the domain of the river hydraulics. A multi-

component LBM was introduced by Gunstensen and Rotman (1991). Ladd (1994) analyzed

particulate suspension using the LBM. Application of the LBM on isotropic groundwater

�ows was examined by Zhou (2007) and Budinski et al. (2015).

The LBM of depth averaged �ow equations (LABSWE) was initially introduced by

Salmon (1999). One-dimensional shallow water equations LBM was introduced by Frand-

sen (2008). Introducing centred scheme for the force term (2004) and deriving a lattice

Boltzmann model for the shallow water equations with turbulence modelling (LABSWETM )

(2011) Zhou improved the LABSWE. Zhou (2010) also developed the rectangular lattice

Boltzmann model applicable to complex geometry models. Budinski (2014) introduced the

MRT-LBM for shallow water equations (SWE) transformed in curvilinear coordinates. The

�rst application of the LBM on open-channel using the simpler form of the Saint-Venant

equations has been preformed by van Thang et al. (2010). LBM model of one-dimensional

shallow water equations was also done by Frandsen (2010), and Liu et al. (2015) introduced

the non-prismatic terms into the model.

Advection�di¤usion problems have been an important area of research for many years,

and the LBM found its use in modelling such processes. O�Brien et al. (2002) compared ex-

perimental data to a 2D lattice Boltzmann method for advection�di¤usion model in porous

media �ow. Furthermore, Ginzburg (2006) utilized a LBM and advection and anisotropic

dispersion equations (AADE). Zhou improved the LBM for solute transport (2009) and Li
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and Huang (2008) combined a hydrodynamic model with advection and anisotropic disper-

sion using the LBMSWE. Servan-Camas and Tsai (2009) analyzed the stability constraints

for the LBM for the ADE. Peng et al. (2011) showed that for two-dimensional LBM solute

transport model in shallow water the MRT terms have better stability than the BGK terms.

Ginzburg (2013) showed that numerical di¤usion can be eliminated by various anisotropic

schemes. Patel et al. (2016) introduced a discontinuous Galerkin lattice Boltzmann scheme,

and Markl and Korner (2015) presented a new no-�ux free surface boundary condition for

the ADE problems.

9



CHAPTER III

THE LATTICE BOLTZMANN METHOD

Fluid motion can be described on three scale-levels: microscopic, mesoscopic and macro-

scopic (Fig.1). In the macroscopic approach (the mechanics of continuum) regular or partial

di¤erential equations are obtained by applying the conservation laws of mass, momentum

and energy on a in�nitesimal control volume. These equations are solved using various

numerical methods de�ned in the conventional computational �uid dynamics (CFD). In the

microscopic scale, studied by the molecular dynamics (MD), the medium is considered to

be made of small particles, atoms or molecules, and these particles collide. Newton�s second

law equation (the momentum conservation equation) is applied in order to obtain the solu-

tion. In between, is an approach at mesoscopic level, the lattice Boltzmann method (LBM)

that studies the microdynamics of particles by using simpli�ed kinetic models, representing

properties of a collection of particles by a distribution function. LBM combines other two

scales, resulting with simple algorithm structure, possibility of parallel programing, easy

application for complex domains, possibility to handle multi-phase and multi-scale models,

simple implementation of boundary conditions and many more bene�ts. These appealing

features make LBM a powerful numerical tool for simulating complex �uid systems.

3.1 The basic lattice Boltzmann method

The lattice Boltzmann method can be considered to be a special numerical method of

solving the Boltzmann equation. Others consider that the lattice Boltzmann equation

(LBE) evolved from the lattice gas cellular automata (LGCA).

3.1.1 Lattice Gas Cellular Automata (LGCA)

According to the lattice gas cellular automata the �uid is treated as a set of particles on a

regular lattice with certain symmetry properties. Every particle interacts with its neighbor

following some described rules, through collision and streaming steps. Every lattice particle
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Figure 1: Microscopic, mesoscopic and macrosopis scale.

examines its own state and the states of some of its neighbors at every time step and then

resets its own state. The prescribed rules with initial and boundary conditions, determine

the evolution of particles in time. The behavior of the �uid at macroscopic scale is obtained

as statistical collective result of the micro-dynamics of �uid molecules.

The �rst LGCA model, the HPP model, was developed by Hardy, Pomeau, and de

Pazzis (1976). A two-dimensional square lattice is used, where from any lattice position

gas particles can move in the directions of the four nearest neighboring positions along the

lattice lines, as shown in Fig.2.The collision of the HPP model follows the head-on rule:

when two particles move to the same position with opposite velocities, after the collision

their velocities will turn around for 90� after the collision, and in any other case the particle

velocities remain unchanged.

The discrete kinetic equation describes the motion of the particles:

ni(x+ ci@t; t+ @t) = ni(x; t) + Ci (ni(x; t)) ; (1)

where ni(x; t) represent the number of particles moving with discrete velocity ci at node

x and time t, @t is the time step, Ci (ni(x; t)) is the collision operator, that represents the

in�uence of particle collisions. The discrete velocity set is given by

ci = cei; (2)
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Figure 2: Lattice and discrete velocities of the HPP model.

where e1 = (1; 0), e2 = (0; 1); e3 = (�1; 0); e4 = (0;�1). The lattice speed is c = �x=�t,

where �x is the lattice spacing. The collision operator is given by the expression:

Ci = ni�1ni�3(1� ni)(1� ni�2)� (1� ni�1)(1� ni�3)nini�2; (3)

where ��� represents the modulo 4 addition. In this way Ci conserves mass, momentum

and energy:

X

i

Ci = 0; (4)

X

i

eiCi = 0;

X

i

e2i
2
Ci = 0:

The evolution of the can be decomposed into two steps: collision and streaming. The

collision step is:

n0i(x; ; t) = ni(x; t) + Ci (ni(x; t)) ; (5)

while the streaming step can be expressed as:

ni(x+ ci@t; t+ @t) = n
0

i(x; t): (6)

The macroscopic physical variables are the ensemble average of the distribution function of
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Figure 3: Lattice and discrete velocities of the FHP model.

the Boolean number fi hnii :

X

i

mfi = �; (7)

X

i

meifi = �ui;

X

i

m
(ci � ui)2

2
fi = �e = �RT:

where m is the molecular mass of the gas, � is velocity and T is temperature. The HPP

model satis�es the basic conservation laws, but the macroscopic variables do not satisfy the

continuum equations due to the insu¢cient symmetry of the square lattice.

Frisch, Hasslacher, and Pomeau (1986) proposed their hexagonal LGCA model called

the FHP model after the authors. Every node of the lattice, shown in Fig.3, has six

nearest neighbors. The discrete velocities are ci = c(cos �i; sin cos �i), where �i =
(i�1)�
3 ,

for i = 1 � 6: The state of FHP model can be described by six Boolean numbers ni that

represent the number of particles moving with velocity ci. Five di¤erent collision outcomes

are shown in Fig.4. In cases when one input state corresponds to two possible output states
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Figure 4: Collision possibilities of the FHP model.

the output is chosen randomly. The collision operator can be expressed as:

Ci = ni�1ni�3ni�5nini�2ni�4 � ni�1ni�3ni�5nini�2ni�4 (8)

+rni�1ni�4nini�2ni�3ni�5 + (1� r)ni�2ni�5nini�1ni�3ni�4

�nini�3ni�1ni�2ni�4ni�5;

where ��� represents the modulo 6 addition, and r is the random number chosen from

the interval [0; 1] : At the equilibrium state the collision operator evolves to Fermi-Dirac

distribution function:

feqi =
�

6

�

1 +
ci�u
c2s

+G(�)
Qi : u u

2c4s

�

; (9)

where c2s = c
2=2 is the sound speed, G(�) = (6 � 2�)=(6 � �), and Qi = cici � c2sI. After

some transformations �uid density and velocity satisfy the equations:

r � u = 0; (10)

@u

@t
+ u � ru = �rP + �r2u: (11)

Eqs. (11) and (10) resemble the incompressible Navier-Stokes equations.

With the tendency to develop a 3D LGCA model, the idea was to project the 4D

Face-Centered Hyper-Cube (FCHC) lattice (d�Humières et al. (1986)), back onto three-

dimensional space. This approach is quite complicated, due to a very large number of
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possible states in the collision rule (224). Regardless, many simulations of the multiphase

and complex �ows have been made base on this principle.

The main advantages of the LGCAmodels are easy algorithm implementation, no round-

o¤ errors, unconditional stability of the numerical model and algorithm suitable for parallel

programing. The main disadvantages of the LGCA models are statistical noise from the

Boolean variables, the dependence of velocity of the pressure, and the violation of the

Galilean invariance.

3.1.2 From LGCA to the lattice Boltzmann equation

The lattice Boltzmann equation was originally introduced by Frisch et al. (1987), but

McNamara and Zanetti �rst proposed LBE as a computation method (1988). Their idea

was to replace the Boolean variable ni by the real-valued distribution function fi, while the

collision rule for fi remained is the same as for ni. The evolution equation of the McNamara

and Zanetti method (MZM) yields to:

fi(x+ ci@t; t+ @t)� fi(x; t) = 
i (f(x; t)) ; (12)

where 
i (f(x; t)) is the collision operator, that remained rather complicated. Soon after,

Higuera and Jimenez proposed an improved version of the model (1989) by assuming that

distribution function fi is close to its equilibrium state feqi :

fi = f
eq
i + fneqi ; (13)

where fneqi is the non-equilibrium part or the distribution function. This form of the

distribution function leads to linearized collision operator:


i(f) = Kij(fi � feqi ); (14)

where Kij = @
i=@fj is the collision matrix. Higuera et al. (1989) introduced the HSB

model, with collision matrix independent of LGCA. The equilibrium distribution function

can be written as:

feqi = d0

�

�

bd0
+D

ci�u
c2i

+G(d0)Qi : u u

�

; (15)
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Figure 5: The in�uence of the external force.

where D is the spatial dimension, b is the number of the discrete velocities, bd0 = �0 is the

mean density. Function G(d0) and tensor Qi are:

G(d0) =
D2(1� 2d0)
2c4i (1� d0)

; (16)

Qi = cici �
c2

D
I: (17)

The collision matrix is further simpli�ed by several groups of authors independently

(Chen et al. (1991), Koelman, (1991), Qian et al. (1992)). They introduces the model

using the simpli�ed BGK collision operator in form:


i(f) = �
1

�
(fi � feqi ); (18)

where � is the relaxation time. Models that use this form of the collision operator are

called LBGK at single-relaxation time (SRT) models, end the evolution LBE is as follows:

fi(x+ ci@t; t+ @t)� fi(x; t) = �
1

�
(fi � feqi ): (19)

3.1.3 From the Boltzmann transport equation to lattice-Boltzmann equation

The lattice Boltzmann equation can also be derived from the Boltzmann equation. If

the system is described by distribution function f(r; c; t);which represents the number of
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molecules at time t positioned between r and r + dr, that have velocities between c and

c + dc: Under the in�uence of an external force F, the gas molecule of unit mass will, in

time dt, change its position from r to r+ cdt, and its velocity from c to c+Fdt; as shown

in Fig.5. If collisions between molecules take place after applying the external force, the

di¤erence between the numbers of molecules in the interval drdc; will be:

f(r+ cdt; c+ Fdt; t+ dt)� f(r; c; t) = 
(f)drdcdt: (20)

The rate of change between �nal and initial status of the distribution function is called

collision operator 
. Dividing the above equation by dtdrdc and as the limit is set to

dt! 0, the above equation yields to:

df

dt
= 
(f): (21)

The LHS of the Eq.(21) can be written as:

df

dt
=
@f

@r
c+

@f

@c
a+

@f

@t
; (22)

where a = dc=dt is the acceleration, which can be expressed from the Newton�s second law

as a = F=m: Now, the Boltzmann transport equation can be written as:

@f

@t
+
@f

@r
c+

F

m

@f

@c
= 
(f): (23)

Without an external force, the Boltzmann equation yields to:

@f

@t
+ c � rf = 
(f): (24)

The relation between the above equation and macroscopic quantities is as follows:

�(r; t) =

Z

mf(r; c; t)dc; (25)

�(r; t)u(r; t) =

Z

mcf(r; c; t)dc; (26)

�(r; t)e(r; t) =
1

2

Z

mu2af(r; c; t)dc; (27)

wherem is the molecular mass, �(r; t) is density, u(r; t) is �uid velocity, e(r; t) is the internal

energy, and ua = c� u is the relative velocity.

17



The essential problem when solving the Boltzmann equation is complicated nature of

the collision term. Bhatnagar, Gross and Krook (1954) introduced a simpli�ed model for

collision operator, changing the collision matrix with:


(f) =
1

�
(feq � f); (28)

where feqi is the equilibrium distribution function, parametrized by local conserved quan-

tities, while � is typical time-scale associated with collisional relaxation to the local equi-

librium. After introducing the BGK approximation, the Boltzmann equation (28) yields

to:

@f

@t
+ c � rf = 1

�
(feq � f): (29)

In the lattice Boltzmann method, Eq. (29) is discredited and valid along the speci�c

direction i:

@fi
@t
+ ci � rfi =

1

�
(fi � feqi ): (30)

After discretization, the above equation yields to the lattice Boltzmann equation:

fi(r + ci�t; t+�t) = fi(r; t) +
�t

�
(feqi (r; t)� fi(r; t)): (31)

3.2 The equilibrium distribution function

When applying the LBM for di¤erent problems, the crucial element is to �nd the proper

equilibrium distribution function (EDF). For particles moving in a medium with macro-

scopic velocity u, the normalized Maxwell distribution function can be written as:

f =
�

2�=3
e�

3
2
(c�u)2 : (32)

Which can further be written as:

f =
�

2�=3
e�

3
2
c2e3(c�u�u

2)=2: (33)

Applying the Taylor series expansion for the exponential term the above equation yields to:

f =
�

2�=3
e�

3
2
c2
�

1 + 3 (c � u)� 3
2
u2 + :::

�

: (34)
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Figure 6: 1-D lattice arrangements.

The general form of the equilibrium function along the link i can be written as:

feqi = �!i

h

A+Bci � u+ C (ci � u)2 +D
i

; (35)

where u is is the macroscopic �ow velocity vector; A;B;C, and D are constants, determined

from the conservation principle (mass, momentum, and energy), !i is weight factor based

on the lattice arrangement, where the condition
P

i
!i = 1 must be ful�lled. � is scalar

parameter which needs to be equal to:

� =
X

i

feqi : (36)

De�ning Eq. (35) is the key element when de�ning LBE for a speci�c model.

3.3 LBM lattice arrangements

The LBGK model is the most widely used LBM model. The common notation of the lattice

arrangements, introduced by Qian et al. (1991), is DnQb, where n represents the dimension

and b is the number of lattice velocities. Lattice velocities of the DnQb models form lattice

tensors of certain rank. The nth rank can be de�ned as:

Li1;i2;:::;in =
X

i

ci1ci2 :::cin (37)

Some popular lattice arrangements are show: one-dimensional in Fig.6, two dimensional

in Fig.7, and three-dimensional in Fig.8. In Table 1 characteristic lattice velocities, belong-

ing weight !i and sound speed c2s are given.
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Figure 7: 2-D lattice arrangements.

Figure 8: 3-D lattice arrangement.
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MODEL Lattice vector ci Weight !i c2s

D1Q3
0
�1

2=3
1=6

1=3

D1Q5
0
�1
�2

6=12
2=12
1=12

1

D2Q7
(0; 0)

�

�1=2;�
p
3=2
�

1=2
1=12

1=4

D2Q9
(0; 0)

(�1; 0) ; (0;�1)
(�1;�1)

4=9
1=9
1=36

1=3

D3Q15
(0; 0; 0)

(�1; 0; 0) ; (0;�1; 0) ; (0; 0;�1)
(�1;�1;�1)

2=9
1=9
1=72

1=3

D3Q19
(0; 0; 0)

(�1; 0; 0) ; (0;�1; 0) ; (0; 0;�1)
(0;�1;�1) ; (�1; 0;�1) ; (�1;�1; 0)

1=3
1=18
1=36

1=3

Table 1: Some lattice arrangements

A tensor of nth rank is called isotropic if it is invariant with respect to arbitrary orthog-

onal transformations. (rotations and re�ections). Isotropic tensors up to rank 4 are de�ned

as follows:

� 1st rank: There are no isotropic tensors;

� 2nd rank: Isotropic tensors are proportional to the second Kronecker�s delta tensor

��� :

[��� ] =

2

6

6

6

6

4

1 0 0

0 1 0

0 0 1

3

7

7

7

7

5

(38)

� 3rd rank: Isotropic tensors are proportional to the permutational symbol tensor "i�


according to the following rules:

"��
 =

8

>

>

>

>

<

>

>

>

>

:

1

�1

0

;when �; � and 
 form an even permutation of 1, 2 and 3

;when �; � and 
 form an odd permutation of 1, 2 and 3

;when �; � and 
 form do not form an permutation of 1, 2 and 3

(39)
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� 4th rank: There are three linearly independent isotropic tensors. The general form

can be written as:

L��
� = a����
� + b��
��� + c�����
 ; (40)

where a, b and c are arbitrary constants.

It is easy to �nd several statical moments of the discrete EDF:

X

i

feqi = �;
X

ci
i

feqi = �u;
X

cici
i

feqi = �uu+pI; (41)

X

i

ci�ci�ci
f
eq
i = c2s� (u���
 + u���
 + u
���) : (42)

3.4 The Chapman - Enskog expansion

The Navier-Stokes equations (NSE) describe behavior of the �uid particles in the system.

The Chapman-Enskog expansion is a multi-scale analysis developed by authors Chapman

and Enskog in order to derive the macroscopic NSE from the LBE. As an example, an

analysis of D2Q9 model have been performed, with the LBGK evolution equation, derived

earlier:

fi(x+ ci@t; t+ @t)� fi(x; t) = �
1

�
(fi � feqi ): (43)

and using Eq. (25):

� =
X

i

fi; �u =
X

ci
i

fi; �uu+pI =
X

cici
i

fi: (44)

First, multiscale expansions are introduced:

fi = f
(0)
i + "f

(1)
i + "2f

(2)
i +O("3); (45)

@t = "@t0 + "
2@t1 ; @� = "@0� (46)

where " is a small number proportional to the Knudsen number Kn; @t and @� are short

notations for @=@t and @=@x�, respectively, t0 is the fast convective scale, and t1 is the slow

di¤usive scale. Applying the second order Taylor series expansion to the LBGK Eq. (43)

yields:

Difi +
�t
2
D2i fi = �

1

��t
(fi � feqi ) +O(@2t ); (47)
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where Di = @t + ci�@�, according to the Einstein summation rule. Substituting Eq. (46)

into Eq. (47), and collecting the elements of each order of ", yields:

Order "0 :

f
(0)
i = feqi ; (48)

Order "1 :

D
(0)
i f

(0)
i = � 1

��t
f
(1)
i ; (49)

Order "2 :

@t1f
(0)
i +

�

1� 1

2�

�

D
(0)
i f

(1)
i = � 1

��t
f
(2)
i (50)

From Eq.(48), using Eqs.(44) and (41) it follows:

X

i

f
(k)
i = 0;

X

ci
i

f
(k)
i = 0 for k > 0: (51)

Minding Eq. (44), and taking summation over i, Eq. (49) yields to mass conservation

equation of order " :

@t0�+r0(�u) = 0: (52)

Multiplying Eq. (49) with ci, and taking summation over i, Eq. (49), momentum conser-

vation equation of order " is obtained:

@t0(�u) +r0�(0) = 0; (53)

where �(0) = �u�u�+p��� , where p = c2s�:The following properties of D2Q9 model have

been used:

X

i

!ici� =
X

i

!ici�ci�ci
 = 0; (54)

X

i

!ici�ci� = c
2
s��� ; (55)

X

i

!ici�ci�ci
ci� = c
4
s���
�; (56)

where ���
� = ����
� + ��
��� + �����
 . In the similar way, zeroth and �rst statical

moment leads to equations of the order "2 :

@t1� = 0; (57)

@t1(�u) +

�

1� 1

2�

�

r0�(1) = 0; (58)
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where the term �
(1)
�� =

P

i
ci�ci�f

(1)
i needs to be evaluated. Multiplying Eq. (49) by ci�ci�

and taking the sum over i yields to:

� 1

��t
ci�ci�f

(1)
i = c2s� [@0�u� + @0�u�] +O(M

3); (59)

where M is the Mash number. From Eq. (59) yields �(1)�� = �p�t [@0�u� + @0�u�] ; after

neglecting terms of O(M3): Combining the mass and momentum conservation equations

for both scales the NS equations are obtained:

@t�+r � (�u) = 0; (60)

@(�u)

@t
+r(�uu) = �rp+r �

�

��(ru+ruT )
�

; (61)

where kinematic viscosity is � = c2s
�

1� �
2

�

�t: For the small Mach number, the density

variations are negligible, and incompressible NSE are obtained:

r � u = 0; (62)

@u

@t
+ u�ru = �1

�
rp+ �r2u: (63)

3.5 Improved lattice Boltzmann models

Generally, �uid �ows are under the in�uence of internal and external forces, such as gravity

or intermolecular interactions. Such forces need to be implemented into the basic LBE

de�ned by Eq. (19). Numerous methods have been proposed depending on the physics of

the model, and selected few will be introduced.

3.5.1 LBM Scheme with modi�ed equilibrium distribution function

Force term can be included into LBE by modifying the EDF. Convenient form of the EDF

as function of density and �uid velocity will be used:

feqi = !iu

"

1 +
ci � u
c2s

+
(ci � u)2
2c4s

� u2

2c2s

#

: (64)
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In the case when the force is induced by a potential � and the density variation is small,

Buick and Greated (2000) proposed the following EDF:

f
eq
0 = �

�

1� (1� !0)
p(�)

c2s�
� !0

u2

2c2s

�

; (65)

f
eq
i = !i�

"

p(�)

c2s�
+
ci � u
c2s

+
(ci � u)2
2c4s

� u2

2c2s

#

; i 6= 0; (66)

where p(�) = (c2s + �)�, and �u =
P

i
cifi:For the EDF in this form, zeroth, �rst and third

statical moment are the same as those for the standard DnQb models (Eq. (41)). The

second statical moment yields to:

X

ci�ci�
i

f
eq
i = p(�)��� + �u�u� : (67)

Now, the momentum �ux at the order " in the Chapman-Enskog expansion is:

�
(1)
�� = ���t

�

c2s�(@0�u� + @0�u�) + @t0@0�(��)� @�(u�@0�(��) + u�@0�(��))
�

; (68)

and momentum equation yields to:

@(�u)

@t
+r(�uu) = �r(c2s�) +r �

�

��(ru+ruT )
�

+ F+R; (69)

where the residual term is:

R = ��t [�@tF� + @�(u�F� + u�F�)] : (70)

In general, this term does not vanish and bring additional error, but most often the error

is negligible.

3.5.2 Introduction of the forcing term

Another popular way to imply the body force is to add a forcing term to the LBE as follows:

fi(x+ ci@t; t+ @t)� fi(x; t) = �
1

�
(fi � feqi ) + �tFi: (71)

where the forcing term Fi depends on the body force F. A variety of expressions for Fi

have been proposed. In nature of this research, a centered-scheme forcing term proposed

by Zhou (2004), proposed in order do derive the lattice Boltzmann model for the shallow

water equations (LBMSWE), will be presented.
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The force term is evaluated at the mid-point between the lattice point and its neighboring

lattice point as:

Fi = Fi

�

x+
1

2
c��t; t+

1

2
�t

�

: (72)

A Chapman-Enskog expansion will be applied on D2Q9 LBGK model with LBE in form:

f�(x+ e��t; t+�t) = f�(x; t)�
1

�
(f� � feq� ) +

�t

6e2
e�iFi (73)

,where following notation is used: � denotes the lattice link, �t is time step, e� is lattice

velocity along the link � de�nes as

e� =

8

>

>

>

>

<

>

>

>

>

:

(0; 0)

e
h

cos (��1)�4 ; sin (��1)�4

i

p
2e
h

cos (��1)�4 ; sin (��1)�4

i

; � = 0

; � = 1; 3; 5; 7

; � = 2; 4; 6; 9

: (74)

The EDF is de�ned as:

feq� =

8

>

>

>

>

<

>

>

>

>

:

h� 5grh2

6e2
� 2h

3e2
uiui

grh2

6e2
+ h

3e2
e�iui +

h
2e4
e�iuie�juj � h

6e2
uiui

grh2

24e2
+ h

12e2
e�iui +

h
8e4
e�iuie�juj � h

24e2
uiui

; � = 0

; � = 1; 3; 5; 7

; � = 2; 4; 6; 9

: (75)

Taylor series expansion of the LHS of Eq. (71) yields:

f�(x+e��t; t+�t)�f�(x; t) = "
�

@

@t
+ e�

@

@x

�

f�+
1

2
"2
�

@

@t
+ e�

@

@x

�2

f�+O("
3): (76)

The distribution function f� is expanded as

f� = f
(0)
� + "f (1)� + "2f (2)� +O("3); (77)

while the centered-scheme force term is expressed as

Fi

�

x+
1

2
e��t; t+

1

2
�t

�

= Fi(x; t) +
1

2
"

�

@

@t
+ e�j

@

@xj

�

F�i +O("
2): (78)

Substituting Eqs. (76), (77), (78) into Eq. (73) the evaluating to order "0 yields

f (0)� = feq� ; (79)

26



to order " is obtained:

�

@

@t
+ e�j

@

@xj

�

f (0)� = �1
�
f (1)� +

e�i
6e2

Fi; (80)

and to the order "2 yields to:

�

@

@t
+ e�j

@

@xj

�

f (1)� +
1

2

�

@

@t
+ e�j

@

@xj

�2

f (0)� = �1
�
f (2)� +

1

12e2

�

@

@t
+ e�j

@

@xj

�

e�iFi;

(81)

Substituting Eq. (80) into Eq. (81) leads to

�

1� 1

2�

��

@

@t
+ e�j

@

@xj

�

f (1)� = �1
�
f (2)� : (82)

Taking
P

� [(80) + "(82)], and enforcing conditions
P

� f
(n)
� = 0, and

P

� e�f
(n)
� = 0 , for

n � 1 gives
@

@t

 

X

�

f (0)�

!

+
@

@xj

 

X

�

e�jf
(0)
�

!

= 0: (83)

Evaluation of the terms in the above equation results in the second-order accurate continuity

equation. Now, taking
P

� e� [(80) + "(82)] provides

@

@t

 

X

�

e�if
(0)
�

!

+
@

@xj

 

X

�

e�ie�jf
(0)
�

!

+ "

�

1� 1

2�

�

@

@xj

 

X

�

e�ie�jf
(1)
�

!

= Fi: (84)

Using

X

�

f (0)� = h; (85)

X

�

e�if
(0)
� = hui; (86)

X

�

e�ie�jf
(0)
� =

grh
2

2
�ij + huiuj; (87)

where h is the averaged depth, Eqs. (83) and (84) yield to:

@h

@t
+

@

@xj
(huj) = 0; (88)

@

@t
(hui) +

@

@xj
(huiuj) = �gr

@

@xi

�

h2

2

�

� @

@xj
�ij + Fi: (89)

where

�ij = "

�

1� 1

2�

�

X

�

e�ie�jf
(1)
� : (90)
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Using Eqs. (74), (75) and (80), following expression is obtained:

�ij � ��
�

@

@xj
(hui) +

@

@xi
(huj)

�

: (91)

Substituting Eq. (91) into (89) yields to:

@

@t
(hui) +

@

@xj
(huiuj) = �gr

@

@xi

�

h2

2

�

+ �
@2 (hui)

@xj@xj
+ Fi: (92)

The forcing term is de�ned as:

Fi = �grh
@Zb
@xi

� �wi
�
� � bi
�
+ Ei; (93)

where �wi and � bi, are wind shear stress and bed shear stress, respectively, Zb is the bed

elevation, and Ei is the Coriolis term. Eq. (92) yields:

@

@t
(hui) +

@

@xj
(huiuj) = �gr

@

@xi

�

h2

2

�

+ �
@2 (hui)

@xj@xj
(94)

�gh@Zb
@xi

� �wi
�
� � bi
�
+ Ei:

Eq. (88) into (94) are the shallow water equations.

3.5.3 Enhanced LBMSWE model

In the LABSWE, the centred scheme force term includes the evaluation of the �rst derivative

a bed slope, term which is inconsistent with the spirit of the lattice Boltzmann hydrody-

namics. Therefore, Zhou (2011) proposed a novel incorporation of that term into the lattice

Boltzmann equation, and eliminated the calculation of the derivative. The proposed D2Q9

lattice Boltzmann equation, with lattice velocities de�ned with Eq. (74), is:

f�(x+ e��t; t+�t) = f�(x; t)�
1

�
(f� � feq� ) (95)

�grh
6e2

[Zb(x+ e��t; t)� Zb(x; t)] +
�t

6e2
e�iFi:

The EDF is given by Eqs. (75) and the force term is:

Fi = �
�wi
�
� � bi
�
+ Ei: (96)

The second term from the RHS of Eq. (95) is new in comparison with the LBMSWE (Eq.

(73)). The CE expansion will be conducted. Taking the Taylor expansion of the second
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term of the RHS of Eq. (95) leads to:

� gr
6e2

�

h+
"

2

�

@

@t
+ e�j

@

@xj

�

h

��

"e�j
@Zb
@xj

+
"2

2
e�ie�j

@2Zb
@xi@xj

Zb

�

+O("3): (97)

The term of order " is:

� gr
6e2

he�j
@Zb
@xj

; (98)

and terms of order "2 are:

� grh
12e2

e�ie�j
@2Zb
@xi@xj

� gre�j
12

�

@h

@t
+ e�j

@h

@xj

�

@Zb
@xj

: (99)

Adding this terms to Eqs. (80) and (81) leads to:

�

@

@t
+ e�j

@

@xj

�

f (0)� = �1
�
f (1)� � gr

6e2
he�j

@Zb
@xj

+
e�i
6e2

Fi; (100)

�

@

@t
+ e�j

@

@xj

�

f (1)� +
1

2

�

@

@t
+ e�j

@

@xj

�2

f (0)� = �1
�
f (2)� � grh

12e2
e�ie�j

@2Zb
@xi@xj

(101)

�gre�j
12

�

@h

@t
+ e�j

@h

@xj

�

@Zb
@xj

+
1

12e2

�

@

@t
+ e�j

@

@xj

�

e�iFi: (102)

Substituting Eq. (100) into Eq. (101) leads to the unchanged Eq. (82).Taking
P

� [(100) + "(82)],

and enforcing conditions
P

� f
(n)
� = 0, and

P

� e�f
(n)
� = 0 , for n � 1 gives

@

@t

 

X

�

f (0)�

!

+
@

@xj

 

X

�

e�jf
(0)
�

!

= 0: (103)

Evaluation of the terms in the above equation gives the continuity equation, which is second-

order accurate. Now, taking
P

� e� [(80) + "(82)] provides

@

@t

 

X

�

e�if
(0)
�

!

+
@

@xj

 

X

�

e�ie�jf
(0)
�

!

+ "

�

1� 1

2�

�

@

@xj

 

X

�

e�ie�jf
(1)
�

!

(104)

= �grh
@Zb
@xi

+ Fi: (105)

After the terms are evaluated and some algebra, the above equation becomes the second-

order accurate momentum conservation equation.
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CHAPTER IV

MATHEMATICAL FORMULATION OF THE LBM

MODEL

In this chapter, the goal is to develop a functional lattice Boltzmann model for one-

dimensional unsteady open-channel �ow with sediment transport for natural watercourses.

One-dimensional unsteady �ow is described by the shallow water equations, also known as

the Saint-Venant equations. For the sediment transport model, suspended-sediment is de-

tached from the bed and near-bed sediment. Sediment mixture is represented as a collection

of a suitable number of sediment size-classes. Mass-conservation equations are de�ned for

suspended-sediment and the active-layer for each sediment size-class separately, followed

with the global active-layer and stratum mass-conservation equation. Governing equations

include the exchange mechanisms between the sub-domains.

Uniformity of the lattice structure results with a decrease of the e¢ciency and the

applicability of the lattice models when especially when natural, arbitrary geometry are

modelled. In order to eliminate this restriction and maintain the basic features of the

lattice Boltzmann model, geometric transformation between the physical and computational

domain is introduced, and in this way the limitations of the LBM are spanned. This

technique is often used in traditional CFD for managing complex geometries � it enables

calculation of terms de�ned in the non-equidistant physical space in the equidistant grid

computational frame. In this way utilization of the standard uniform lattice based models

is not restricted on the physical domains with uniform computational grid.

Corresponding LBM models are developed, deriving new forms of the equilibrium distri-

bution functions based on the transformed unsteady �ow and sediment equations. A LBM

model for unsteady �ow is autonomous, while the LBM model for sediment transport can

be attached to a �ow model. A LBGK model Eq. (19) is used with the centered-sheme

forcing term Eq.72. Some additional terms are added to the LBM model, based on the
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enhanced LBMSWE proposed by Zhou, in order to obtain governing equations after the

CE expansion.

To derive a fully operational mathematical model which can be applied on natural

watercourses characterized by arbitrary cross-section geometry and variable longitudinal

pro�le (river bifurcation, meandering, contraction and expansion), set of appropriate inner

and outer boundary conditions are de�ned.

4.1 One-dimensional unsteady open-channel �ow lattice Boltz-

mann model

The motion of incompressible Newtonian viscous �uid is described by the well known Navier-

Stokes equations (NSE), written herein in tensor notation (Lai, (1991)). The �rst equation

is the continuity equation:
@uj
@xj

= 0; (106)

and the following equation are the equations of motion

�

�

@ui
@t

+ uj
ui
@xj

�

= �Bi �
@p

@xi
+ �

@2ui
@xj@xj

; (107)

where � is mass density, ui is i-direction component of �ow velocity, xi is i-coordinate

direction, Bi is body force for unit mass, and p is hydrostatic pressure.

The one-dimensional Saint-Venant equations (SVE) are a set of partial di¤erential equa-

tions that describe the incompressible �ow below the pressure surface in a open channel

�ow of an arbitrary cross section. The SVE are derived from the NSE under following

assumptions:

� Flow is one-dimensional. The horizontal length scale is much greater then the vertical

length scale;

� The river bed is gradually sloped;

� The pressure inside the water �ow obeys the hydrostatic law;

� The cross section of the water surface is horizontal;
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� The �ow is smoothly varying;

� The water discharge Q(x; t) and the free surface elevation Z(x; t) are averaged over

the cross section.

There are four basic formulations of the SVE depending on the dependent variables

involved. Which form is used is determined by practical limitations like geometry or com-

plexity of the examined �ow cases. When �ow systems with simple cross sectional geometry

and straightforward presentation of bed slope are considered, discharge-sectional area form

of the SVE is used. However, when natural watercourses with complex cross sectional

and longitudinal geometry are modelled, like in this thesis, this form becomes inadequate.

Hence, the hybrid discharge-water surface elevation form of the SVE is adopted, as follows

@A

@t
+
@Q

@x
= q (108)

@Q

@t
+
@

@x

�

!
Q2

A

�

= �grA
@Z

@x
� grASf ; (109)

where A(x; t) is cross-sectional area; Q(x; t) is discharge; Z(x; t) is free surface elevation,

q(x; t) is lateral in�ow per unit length, gr is the gravitational acceleration; t is time; x is the

Cartesian coordinate; and and ! is the coe¢cient of velocity non-uniformity. Sf represents

the friction slope de�ned as

Sf =
n2Q2

A2R4=3
(110)

where n is Manning�s roughness coe¢cient and R is hydraulic radius formulated as R =

A=O, where O is wetted perimeter. The �rst equation, Eq. (108) is the continuity equation

(CE), derived from the mass conservation law, while the second equation Eq. (109) is the

momentum equation (ME), derived from the conservation of linear momentum law. The

main reason this form of SVE is chosen is completely eliminated bed slope term from the

system of equations, leading to a more �exible and practical form of the SVE, and therefore

this form is suitable when applied to natural watercourses with complex and non-uniform

geometry.
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4.1.1 Transformation of the SVE using the adaptive grid technique

By applying the basic rules of coordinate transformation between two systems (Simmonds

(1994)), Eqs. (108) and (109) will be transformed to the alternative coordinate system.

The goal is to eliminate the @
@x term, and transform it into @

@� , where � represents the

new coordinate, which forms the equidistant grid, without changing the other dependant

variables. We apply the transformation on the one-dimensional CE, Eq. (108), in form:

@A

@t
+
@Q

@�

@�

@x
= q; (111)

then we multiply it with transformation term Y = @x=@�, so the Eq. (111) becomes

@

@t
(Y A) +

@Q

@�
= qY; (112)

which is the desired form. We apply the same transformation on the ME, Eq. (109):

@Q

@t
+
@

@�

�

!
Q2

A

�

@�

@x
= �gA@Z

@�

@�

@x
� grASf ; (113)

then, again we introduce the replacement Y = @x=@� in the equation above, and apply the

derivative of product rule:

@

@�

�

!
Q2

Y A

�

=
@

@�

�

!
Q2

A

�

Y �1 + !
Q2

A

@
�

Y �1
�

@�
; (114)

so the ME equation �nally becomes

@Q

@t
+
@

@�

�

!
Q2

Y A

�

= �grA
Y

@Z

@�
� gASf + !

Q2

A

@
�

Y �1
�

@�
: (115)

To summaries, the �nal, transformed form of the SVE, which will be used in the LB model

is the following set of equations:

@

@t
(Y A) +

@Q

@�
= qY; (116)

@Q

@t
+
@

@�

�

!
Q2

Y A

�

= �grA
Y

@Z

@�
� gASf + !

Q2

A

@
�

Y �1
�

@�
: (117)
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4.1.2 The lattice Boltzmann model for the transformed SVE

In this thesis a D1Q3 lattice LBGK model is used, as shown in Fig. (6). The evolution

equation is de�ned as:

f�(� + e��t; t+�t) = f�(�; t)�
1

� f
(f� � feq� ) (118)

+
�t

2e2
e�(F� + e�qY )

� gA

2Y e2
[Z(� + e��t; t)� Z(�; t)]

+
!

2e2

�

Q2

A

�

�

Y �1(� + e��t)� Y �1(�)
�

;

where f� is the particle distribution function (DF) along the � link, f
eq
� is the local equi-

librium distribution function; � is the position vector in the 1D domain; �t is time step;

F� is the force term; � f is relaxation time; e� is the particle velocity vector along the �

link; e = ��=�t and �� are the lattice sizes. To make the model fully consistent with the

nature of the LBM, procedure proposed by Zhou (2011) is adopted for the �rst and third

term on the RHS of Eq. (118). Terms noted � are evaluated using the centered-sheme as

follows:

A = A

�

� +
1

2
e��t; t+

1

2
�t

�

(119)

Y = Y

�

� +
1

2
e��t; t+

1

2
�t

�

�

Q2

A

�

=

�

Q2

A

��

� +
1

2
e��t; t+

1

2
�t

�

It should be noted that Eq. (118) is de�ned using the new �-domain, therefore the required

symmetry for the discrete particle velocities e� is ensured. For the three-velocity lattice

particle velocities are de�ned as

e� =

8

>

>

>

>

<

>

>

>

>

:

0

e

�e

; � = 0;

; � = 1;

; � = 2;

(120)
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The equilibrium distribution function (EDF) must satisfy following relations :

X

�

feq� = AY (121)

X

�

e�f
(eq)
� = Q

X

�

e�e�f
(eq)
� = !

Q2

Y A
;

so, the proposed equilibrium distribution function is

feq� =

8

>

>

>

>

<

>

>

>

>

:

Y A� 1
e2
!Q2

Y A

Q
2e +

1
2e2

!Q2

Y A

�Q
2e +

1
2e2

!Q2

Y A

; � = 0

; � = 1

; � = 2:

(122)

The force term is simulated as

F� = �
gn2Q2

AR4=3
(123)

to ensure second-order accuracy to the method, the force term is evaluated using the

centered-sheme. Its values are calculated halfway between the lattice points and its neigh-

boring lattice points as

F� = F�

�

� +
1

2
e��t; t+

1

2
�t

�

: (124)

The physical variables of cross-section area A and discharge Q can be calculated as the

zeroth and �rst statical moment as follows

A(�; t) =
1

Y

X

�

f�(�; t) (125)

Q(�; t) =
X

e�
�

f�(�; t): (126)

4.1.3 Derivation of the transformed Saint-Venant equations from the lattice
Boltzmann equation

The goal is to develop Eqs. (116) and (117) from the lattice Boltzmann equation (118), and

the relations (120)-(125). The Chapman-Enskog analysis will be applied. The �rst step is

applying Taylors expansion to the each term of the Eq. (118) in time and space. The �rst
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term on the LHS of the Eq. (118), assuming �t = ", becomes

f�(� + e��t; t+�t)� f�(�; t) = "
�

@

@t
+ e�

@

@�

�

f� (127)

+
1

2
"2
�

@

@t
+ e�

@

@�

�2

f� +O("
3):

The distribution function f� is expanded as

f� = f
(0)
� + "f (1)� + "2f (2)� +O("3); (128)

while the centered-sheme force term is expressed as

F�

�

� +
1

2
e��t; t+

1

2
�t

�

= F� +
1

2
"

�

@

@t
+ e�

@

@�

�

F� +O("
2): (129)

Taylor series expansion can also be applied to the last two terms on the RHS of Eq. (118),

resulting

gA

2Ge2
[Z(� + e��t; t)� Z(�; t)] =

g

2e2

�

A

Y
+
"

2

�
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+ e�
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�
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Y

�

(130)
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Substituting Eqs. (127), (128), (129), (130) and (131) into Eq. (118) the evaluation to

order "0 is

f (0)� = feq� ; (132)

to order " it is

�

@

@t
+ e�

@

@�

�

f (0)� = � 1

� f
f (1)� +

e�
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@
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�
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@

@�

�

Y �1;
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and to the order "2 it is

�

@

@t
+ e�

@

@�

�

f (1)� +
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Substituting Eq. (133) into Eq. (134) leads to

�

1� 1

2� f

��

@

@t
+ e�

@

@�

�

f (1)� = �1
�
f (2)� : (135)

Taking
P

� [(133) + "(135)], and enforcing conditions
P

� f
(n)
� = 0, and

P

� e�f
(n)
� = 0 , for

n � 1 gives
@

@t

X

�

f (0)� +
@

@�

X

�

e�f
(0)
� = qY: (136)

Evaluating of terms in the Eq. (136) using Eqs. (122), (125) and (132), neglecting the

term gA
2Y e2

@Z
@t , due to a small time scale imposed by the LBM, the continuity equation of

second-order accuracy Eq. (108) is obtained:

@

@t
(Y A) +

@Q

@�
= qY: (137)

Now, taking
P

� e� [(133) + "(135)] provides
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= F � gA
Y

@Z

@�
+ !

Q2

A

@
�

Y �1
�

@�
:

Following the terms evaluated with Eqs. (121), (123) and (132), using � = 0:5, the above

equation becomes the momentum conservation equation:

@Q

@t
+
@

@�

�

!
Q2

Y A

�

= �gA
Y

@Z

@�
� gASf + !

Q2

A

@
�

Y �1
�

@�
: (139)

It should be noted that the fourth term on the RHS actually denotes the second-order veloc-

ity derivative (di¤usion), therefore � f parameter acts like an arti�cial viscosity parameter

which can be used for dispersion (oscillations) control in the vicinity of the shocks.
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Figure 9: The active-layer concept.

4.2 One-dimensional open-channel sediment transport LB model

The concept of the active layer is considered, which accounts for sediment-�ow interaction

in natural watercourses, such as: suspended-sediment transport, bedload transport, bed

deformations and interaction between the �ow and sediment mixture. Traditionally single

domain of sediment-processes is divided into three subdomains: suspended-sediment, active-

layer and stratum (Fig.9). Sediment mixture is represented through a suitable number of

sediment size-classes ks = 1; :::::;KS, where KS represents the total number of size-classes.

The governing equations are de�ned for each subdomain, including exchange mechanisms

between them, and solved simultaneously, so the behavior of a non-uniform sediment is

described. The governing equations will be de�ned in this section.

4.2.1 Suspended sediment mass-conservation equation

Assuming that the suspended-sediment particles are advected by the local �ow velocity,

except for the downward gravitational settling, the mass-conservation equation for a size-

class ks of suspended-sediment domain in the elemental volume in Cartesian coordinates

is

@(CksA)

@t
+
@(CksAu)

@x
=
@

@x

�

"s
@(Cks)

@x
A

�

+
B

�

�

Esedks �Dsedks
�

; (140)

where � is density of mixture of water and suspended sediment (including the whole
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mixture, all size-classes), Ck is dimensionless concentration of the size-class ks particles, "s

is sediment mass-di¤usivity coe¢cient, B is water surface width, Esedks is the bed-material

erosion into suspension, and Dsedks is suspended-sediment deposition onto the bed. There

will be KS equations, one for each sediment size-class.

4.2.1.1 Suspended-sediment source terms

Suspended-sediment source terms represent interaction between suspended-sediment and

bedload sediment, i.e. erosion and deposition. The upward active-layer sediment entrain-

ment �ux Esedks and the downward suspended-sediment deposition �ux Dsedks of the size-class

ks, are modeled as a near-bed upward turbulent mass-di¤usion �ux, and a near-bed down-

ward fall-velocity �ux (Spasojevíc and Holly, 1993) as

Esedks = �ks � "vs �
(Cks)a+�a � (Cks)a

�a
(141)

Dsedks = �s � wfks � (Cks)d; (142)

One-dimensional models give the averaged concentration values, which can be used for

calculation of the suspended-sediment deposition �ux (Cks)d = Cks ,therefore, it follows:

Dsedks = �s � wfks � Cks (143)

In the Eqs. (141) and (143) [(Cks)a+�a � (Cks)a] =�a is near-bed non-equilibrium con-

centration gradient, subscript a denotes that the mass-di¤usion �ux is evaluated at some

distance a above the bed, and it is a calibration parameter. (Cks)a is near-bed active-layer

sediment concentration, (Cks)a+�a is near-bed non-equilibrium concentration at distance

a+�a above the bed-surface, extrapolated from the suspended-sediment calculations and

wfks is particle fall velocity for the size-class ks.

The near-bed active-layer concentration (Cks)a is empirical value, and can be calculated

by the equation proposed by van Rijn (van Rijn, 1984):

(Cks)a = �ks0:015
Dks
a

T 1:5ks
(D�)0:3ks

; (144)

where, Dks is is the representative particle diameter, Tks is transport stage parameter,

(D�)ks is dimensionless particle parameter, �ks is active-layer fraction of the size-class ks,
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and a is near-bed distance. The dimensionless particle parameter (D�)ks is given by the

expression:

(D�)ks = Dks

�

(�s=�� 1) gr
�2

�1=3

: (145)

In the Eq.(145) �s is sediment density, � is water-sediment mixture density, gr is gravita-

tional acceleration, and � denotes kinematic viscosity coe¢cient.

The transport stage parameter Tks in Eq. (144) is evaluated by the expression:

Tks =
u2� � (ucr� )2
(ucr� )

2
; (146)

where u� denotes the bed-shear velocity, while ucr� stands for the critical bed-shear velocity,

given by the following relation:

u� = u

p
gr

Cch
; (147)

where

Cch = 18 � log
�

12 �R
3 �D90

�

(148)

is the Chezy coe¢cient, where R is hydraulic radius, and D90 is particle diameter repre-

senting the 90% cumulative percentile value. The critical bed-shear velocity is given by

Shields:

(ucr� )ks =
q

(�c)ck � gr � (�s=�� 1) �Dks (149)

�c =

8
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>

>

>
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>
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>

>

>

>

>

>

>

>

>

>

>

:

0:24 �D�1� ; 1 < D� � 4

0:14 �D�0:64� ; 4 < D� � 10

0:04 �D�0:1� ; 10 < D� � 20

0:013 �D0:29� ; 20 < D� � 150

0:056 ; D� > 150

: (150)

The near-bed non-equilibrium concentration at distance a+�a above the bed-surface

can be calculated by the expression given by Rouse:

(Cks)a+�a = Ck
(h� a��a)

�

h�a��a
a+�a

�z�
ks

h
Z

a+�a

�

h
z � 1

�z�
ks dz

; (151)
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where h is the averaged depth, z is the vertical coordinate, and z�ks is the Rouse number.

It is a ratio between the sediment fall velocity wfks and the upwards velocity on the grain,

as a product of the von Kármán constant � and the shear velocity u�, de�ned in Eq. (147):

z�ks =
wfks
� � u�

: (152)

The particle fall velocity for the size-class ks, wfks is given by expression given by van

Rijn::

wfks =

8
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>

>

>
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10 � �
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�
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�
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0:01�(�s=��1)�gr�D

3
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�2

�0:5
� 1
�

; 1 � 10�4m � Dks < 1 � 10�3m

1:1 �
�

(�s=�� 1) � gr �D2ks
�0:5

; Dks � 1 � 10�3m

:

(153)

4.2.2 Transformation of the suspended-sediment mass-conservation equation
using the adaptive grid technique

Like in the section before, when the SVE were transformed, the suspended-sediment mass-

conservation equation needs to be transformed in respect to the new basis. The transfor-

mation is applied on the Eq. (140):
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B

�

�

Esedks �Dsedks
�

: (154)

The next step is to multiply the above equation with Y = @x=@�, so the Eq. (154) becomes
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; (155)

or, when the derivative of product rule is applied

@(CksAY )
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: (156)

Further, applying the derivative of summation rule, and the derivative of product rule again,

it follows

@(CksAY )

@t
+
@(CksAu)

@�
= "s

@2(Cks
A
Y )

@�2
� "s

@Cks
@�

@(AY )
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(157)

�"sCks
@2(AY )

@�2
+
BY

�

�

Esedks �Dsedks
�

which is the �nal form of the transformed Eq. (140).
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4.2.3 The lattice Boltzmann model for the transformed suspended-sediment
mass-conservation equation

Again, a D1Q3 lattice Boltzmann LBGK model is used. The evolution equation corre-

sponding to Eq. (157) of a size-class ks is de�ned as:

g�(� + e��t; t+�t) = g�(�; t)�
1

� g
(g� � geq� ) (158)

� "s
e2�t
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�

A

Y
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A

Y
(�; t) +

A

Y
(� � e��t; t)
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e2�t

[Cks(� + e��t)� Cks(�)]
�

A

Y
(� + e��t; t)�

A

Y
(�; t)

�

+�tG�:

where g� is the particle distribution function along the � link, g
eq
� is the local equilibrium

distribution function; � is the position vector in the 1D domain; �t is time step; G� is

the force term; � g is relaxation time; e� is the particle velocity vector along the � link;

e = ��=�t and �� are the lattice sizes. The �nite di¤erence procedure is proposed for

the second and third term on RHS of Eq. (157).Term noted Cks is evaluated using the

centered-sheme as follows:

Cks = Cks

�

� +
1

2
e��t; t+

1

2
�t

�

: (159)

Three-velocity lattice particle velocities are de�ned in the same way as for the water �ow

model, therefore Eq. (120) will be used.

The equilibrium distribution function in this case must satisfy following relations :

X

�

geq� = CksAY; (160)

X

�

e�g
eq
� = CksAu;

X

�

e�e�g
eq
� = �CksA;

where

� =
"s

�tY (� g � 0:5)e2
: (161)
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The proposed equilibrium distribution function is

geq� =

8

>

>

>

>

<

>

>

>

>

:

CksAY � �CksA
CksAu
2e + �

2CksA

�CksAu
2e + �

2CksA

;� = 0

; � = 1

; � = 2:

(162)

The force term is simulated as

G� =
BY

�

�

Esedks �Dsedks
�

; (163)

where Esedks and D
sed
ks are de�ned by Eqs. (141 ) and (143). To ensure second-order accuracy

to the method, the force term is evaluated using the centered-sheme:

G� = G�

�

� +
1

2
e��t; t+

1

2
�t

�

: (164)

The physical variables of concentration Cks can be calculated as the zeroth statical moment

as follows

Cks(�; t) =
1

AY

X

�

g�(�; t) (165)

4.2.4 Derivation of the transformed suspended-sediment mass-conservation
equation from the lattice Boltzmann evolution equation

The goal is to develop Eq. (157) from the lattice Boltzmann equation (158), and the

relations (159)-(165). The Chapman-Enskog analysis will be applied again. The �rst step

is applying Taylors expansion to the each term of the Eq. (158) in time and space. The

�rst term on the LHS of the Eq. (158), assuming �t = ", becomes

g�(� + e��t; t+�t)� g�(�; t) = "
�

@

@t
+ e�

@

@�

�

g� (166)

+
1

2
"2
�

@

@t
+ e�

@

@�

�2

g� +O("
3):

The distribution function g� is expanded as

g� = g
(0)
� + "g(1)� + "2g(2)� +O("3); (167)

while the centered-sheme force term is expressed as

G�

�

� +
1

2
e��t; t+

1

2
�t

�

= G� +
1

2
"

�

@

@t
+ e�

@

@�

�

G� +O("
2): (168)
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Taylor series expansion can also be applied to the second and third term on the RHS of Eq.

(158), resulting

"s
e2�t

Cks

�

A

Y
(� + e��t; t)� 2

A

Y
(�; t) +

A

Y
(� � e��t; t)

�

= (169)

"s
e2"

�

Cks +
"

2

�

@

@t
+ e�

@

@�

�

Cks

�

"

"2
�

@

@t
+ e�

@

@�

�2 A

Y

#

+O("3);

"s
e2�t

[Cks(� + e��t)� Cks(�)]
�

A

Y
(� + e��t; t)�

A

Y
(�; t)

�

= (170)

"s
e2"

"

"

�

@

@t
+ e�

@

@�

�

Cks +
"2

2

�

@

@t
+ e�

@

@�

�2

Cks

#

"

"

�

@

@t
+ e�

@

@�

�

A

Y
+
"2

2

�

@

@t
+ e�

@

@�

�2 A

Y

#

+O("3):

Substituting Eqs. (167) - (170) into Eq. (166) the evaluation to order "0 is

g(0)� = geq� ; (171)

to order " it is

�

@

@t
+ e�

@

@�

�

g(0)� = � 1

� g
g(1)� +G� �

"s
e2

�

@

@t
+ e�

@

@�

�

Ck

�

@

@t
+ e�

@

@�

�

A

Y
(172)

�"s
e2
Ck

�

@

@t
+ e�

@

@�

�2 A

Y
;

and to the order "2 it is

�

@

@t
+ e�

@

@�

�

g(1)� +
1

2

�

@

@t
+ e�

@

@�

�2

g(0)� = � 1

� g
g(2)� � 1

2

�

@

@t
+ e�

@

@�

�

G� (173)

� "s
2e2

�

@

@t
+ e�

@

@�

�

Cks

�

@

@t
+ e�

@

@�

�2 A

Y

�"s
e2

�

@

@t
+ e�

@

@�

�2

Cks

�

@

@t
+ e�

@

@�

�

A

Y
:

Substituting Eq. (172) into Eq. (173) leads to

�

1� 1

2� g

��

@

@t
+ e�

@

@�

�

g(1)� = � 1

� g
g(2)� � "s

2e2
Cks

�

@

@t
+ e�

@

@�

�3 A

Y
; (174)

where the last term in the above equation will be neglected due to an e¤ect of the third

derivative is not signi�cant in comparison to the other terms, therefore, we obtain

�

1� 1

2� g

��

@

@t
+ e�

@

@�

�

g(1)� = � 1

� g
g(2)� (175)
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Adding Eq. (172) into (175)

�

@

@t
+ e�

@

@�

�

g(0)� + "

�

1� 1

2� g

��

@

@t
+ e�

@

@�

�

g(1)� = � 1

� g

�

g(1)� + "g(2)�

�

+G� (176)

�"s
e2

�

@

@t
+ e�

@

@�

�

Cks

�

@

@t
+ e�

@

@�

�

A

Y
� "s
e2
Cks

�

@

@t
+ e�

@

@�

�2 A

Y
;

Substituting Eq. (172) in the above expression and then taking the sum, Eq. (176) takes

the form:

@

@t

X

�

g(0)� +
@

@�

X

�

e�g
(0)
� = "

�

� g �
1

2

�

@2

@�2

X

�

�

e�e�g
(0)
�

�

(177)

+G� �
"s
e2

�

@

@t
+ e�

@

@�

�

Cks

�

@

@t
+ e�

@

@�

�

A

Y
� "s
e2
Cks

�

@

@t
+ e�

@

@�

�2 A

Y

�"s
e2
" (2� g � 1)

@

@�

 

X

�

e�e�
@Cks
@t

@ AY
@�

+ Cks
@2

@�2

X

�

e�e�
A

Y

!

+"

�

� g �
1

2

�

@

@t

@

@�

X

�

e�g
(0)
� ;

Evaluating Eq. (177) using Eq. (171), (160) and (163), and neglecting the last two terms on

the RHS in the equation above, the transformed sediment continuity equation is obtained

as follows:

@(CkAY )

@t
+
@(CkAu)

@�
= "s

@2(Ck
A
Y )

@�2
� "s

@Ck
@�

@(AY )

@�
(178)

�"sCk
@2(AY )

@�2
+
BY

�

�

Esedk �Dsedk
�

:

4.2.5 Active-layer mass-conservation equations

The active-layer is assumed to be composed of sediment moving as bedload, and as bed-

surface and immediate subsurface sediment, that is already agitated and ready to be set

into motion. Since it is di¢cult to account for the exact position and size of each sediment

particle being entrained from the bed or ending its trajectory at a certain spot on the

bed surface, a the active-layer is assumed to have a uniform size-class distribution over its

thickness Em. Furthermore, it is assumed that the sediment particles of the same size-

class are equally exposed to the �ow, wherever to the position in the layer. Therefore, the

bedload �ux represents bedload exchange between two neighboring elemental areas. The
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mass-conservation equation for size-class ks of sediment in active-layer control volume �V

is:

�s(1� pb)
@(�ksEm)

@t
+
@�ks
@x

= Dsedks � Esedks + (Sf )ks ; (179)

where �ks is active-layer fraction of the size-class ks , �ks is bedload �ux component of size-

class ks, Em is active-layer thickness, pb is bed-material porosity, �s is sediment density,

Esedks and Dsedks are erosion and deposition source terms, de�ned by Eqs. (141 ) and (143),

and (Sf )ks is the active-layer �oor source for the class-size ks.

As a result of dominant erosion, some particles move upwards from the active-layer into

the suspension, bringing the �oor of the active-layer �oor to descend, and enter the active

stratum, and the active layer thickness is given by equation (Spasojevíc,1990., Budinski,

2011):

Em =
DA
1� pb

� CEa
�

Zn+1b � Znb
�

; (180)

where DA presents the diameter of the smallest non-mobile sediment size-class, and CEa is

a calibration parameter. The bed-load �ux �ks is calculated using the empirical equation

proposed by van Rijn:

�ks = (1� 
ks)�ks�ks�s

s

�

�s
�
� 1
�

grDksDks0:053T
2:1
ks (D�)

�0:3
ks ; (181)

where 
ks is the allocation parameter, re�ecting the fact that some fraction of the par-

ticular size-class is expected to be transported only as suspended load, �ks is hiding factor

accounting for the reduction or increase in a particular size-class transport rate when it is

part of a mixture.

The active-layer �oor source (Sf )ks for the class-size ks represents the exchange of

sediment particles between the active-layer and the active-stratum control volumes from

active-layer �oor movement. The active-layer wall is at the same time the active-stratum

ceiling, and it descends or rises whenever the bed elevation changes, because of erosion

or deposition occurring in the active-layer control volume. The active-layer �oor source

(Spasojevíc and Holly, 1990), when the active-layer �oor descends is:

(Sf )ks = ��s(1� pb)
@

@t

�

�ks;l(Zb � Em)
�

; (182)
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where �ks;l is the active-stratum class-size fraction, and when the active-layer �oor rises:

(Sf )ks = ��s(1� pb)
@

@t
[�ks(Zb � Em)] ; (183)

here �ks is the active-stratum class-size fraction.

4.2.6 Transformation of the active-layer mass-conservation equations using the
adaptive grid technique

The transformation is applied on Eq. (179) in form

�s(1� pb)
@(�ksEm)

@t
+
@�ks
@�

@�

@x
= Dsedks � Esedks + (Sf )ks ; (184)

and then multiplied with Y = @x=@�, which yields to transformed active-layer sediment

equations

@(�s(1� pb)�ksEmY )
@t

+
@�ks
@�

= Y
�

Dsedks � Esedks + (Sf )ks
�

: (185)

The governing equation will be used to form a LB model.

4.2.7 The lattice Boltzmann model for the transformed active-layer mass-
conservation equations

For every sediment size-class ks a LB model will be formed separately. There will be KS of

the these equations. The evolution equation in D1Q3 LBGK model corresponding to Eq.

(185) of class ks is de�ned as

h�(� + e��t; t+�t) = h�(�; t)�
1

�h
(h� � heq� ) + �tH�; (186)

where h� is the particle distribution function (DF) along the � link, h
eq
� is the local equi-

librium distribution function; � is the position vector in the 1D domain; �t is time step;

H� is the force term; �h is relaxation time; e� is the particle velocity vector along the �

link; e = ��=�t and �� are the lattice sizes. Three-velocity lattice particle velocities are

de�ned in Eq. (120) .The equilibrium distribution function (EDF) in this case must satisfy

following relations :
X

�

heq� = �s(1� pb)�ksEmY; (187)

X

�

e�h
eq
� = �ks:

47



The proposed equilibrium distribution function is

heq� =

8

>

>

>

>

<

>

>

>

>

:

�s(1� pb)�ksEmY ; � = 0

�ks
2�e2

; � = 1

� �ks
2�e2

; � = 2

: (188)

The force term is simulated as

H� = Y
�

Dsedks � Esedks + (Sf )ks
�

; (189)

where Dsedks ; E
sed
ks and (Sf )ks are de�ned in Eqs. (143) - (141) and (182). To ensure second-

order accuracy to the method, the force term is evaluated using the centered-sheme:

H� = H�

�

� +
1

2
e��t; t+

1

2
�t

�

: (190)

The physical variables the active-layer depth can be calculated as the zeroth statical moment

as follows

�ks(�; t) =
1

�s(1� pb)Y Em
X

�

h�(�; t); (191)

where active-layer thickness is de�ned in Eq. (180).

4.2.8 Derivation of the transformed active-layer mass-conservation equations
from the lattice Boltzmann evolution equation

To develop Eq. (185) from the lattice Boltzmann equation (186), and the relations (187)-

(191) the Chapman-Enskog analysis will be used. Applying Taylors expansion to the each

term of the Eq. (186) in time and space, the �rst term on the LHS, assuming �t = ",

becomes

h�(� + e��t; t+�t)� h�(�; t) = "
�

@

@t
+ e�

@

@�

�

h� (192)

+
1

2
"2
�

@

@t
+ e�

@

@�

�2

h� +O("
3): (193)

The distribution function h� is expanded as usual

h� = h
(0)
� + "h(1)� + "2h(2)� +O("3); (194)

and the centered-sheme force term is expressed as

H�

�

� +
1

2
e��t; t+

1

2
�t

�

= H� +
1

2
"

�

@

@t
+ e�

@

@�

�

H� +O("
2): (195)
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Substituting Eqs. (192) - (195) into Eq. (166) the evaluating to order "0 is

h(0)� = heq� ; (196)

to order " it is
�

@

@t
+ e�

@

@�

�

h(0)� = � 1

�h
h(1)� +H� (197)

and to the order "2 it is

�

@

@t
+ e�

@

@�

�

h(1)� +
1

2

�

@

@t
+ e�

@

@�

�2

h(0)� = � 1

�h
h(2)� � 1

2

�

@

@t
+ e�

@

@�

�

H� (198)

Substituting Eq. (197) into Eq. (198) leads to

�

1� 1

2�h

��

@

@t
+ e�

@

@�

�

h(1)� = � 1

�h
h(2)� (199)

Taking
P

� [(197) + "(199)], and enforcing conditions
P

� f
(n)
� = 0, and

P

� e�f
(n)
� = 0 , for

n � 1 gives
@

@t

X

�

h(0)� +
@

@�

X

�

e�h
(0)
� = H�: (200)

In this way the active-layer sediment equation for the sediment class ks is obtained, minding

Eq. (189):

@(�s(1� pb)�ksEmY )
@t

+
@�ks
@�

= Y
�

Dsedks � Esedks + (Sf )ks
�

: (201)

4.2.9 Global active-layer and stratum mass-conservation equation

Taking the sum of the active-layer mass-conservation equations Eq. (179) for every sediment

size-class ks it follows

�s(1� pb)
@

@t

 

Em

KS
X

ks=1

�ks

!

+
@

@x

 

KS
X

ks=1

�ks

!

=

KS
X

ks=1

�

Dsedks � Esedks + (Sf )ks
�

: (202)

The sum of the size-class fractions over the whole mixture is, by de�nition:

KS
X

ks=1

�ks = 1: (203)

Inserting Eq. (203) into Eq. (202), the global active-layer mass-conservation equation is

obtained:

�s(1� pb)
@Em
@t

+
@

@x

 

KS
X

ks=1

�ks

!

=
KS
X

ks=1

�

Dsedks � Esedks + (Sf )ks
�

: (204)
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The active-layer thickness is de�ned as the di¤erence between the bed elevation Zband the

active-layer �oor elevation Em = Zb�Zbf :The change of the active-layer thickness will occur

due to the particle exchange between the active-layer and suspended-sediment mixture by

erosion and deposition, and due to the active-layer and active-stratum particle exchange.

The active-stratum l mass-conservation equation of the particle class-size ks is:

�s(1� pb)
@

@t

�

Es;l�ks;l
�

= � (Sf )ks;l ; (205)

minding that the active-stratum has no contact with the sediment-suspension, therefore

there will be no erosion and deposition source terms. Also, in this layer there is no bedload

�ux, since there is no bedload movement. The only source term is due to particle exchange

between the active-layer and the active-stratum. Taking the sum over all class-sizes ks, and

applying that
KS
P

k=1

�ks;l = 1, the global active-stratum equation is:

�s(1� pb)
@Es;l
@t

=

KS
X

ks=1

(Sf )ks : (206)

Going further down, for every stratum there will no longer be particle exchange between

the given stratum and the active-layer, therefore the mass-conservation equation for the

stratum k, where k = 1; 2; :::; l � 1,is

�s(1� pb)
@

@t

�

Es;k�ks;k
�

= 0: (207)

Applying that
KS
P

ks=1

�ks;k = 1, the global stratum k mass-conservation equation is

�s(1� pb)
@Es;k
@t

= 0: (208)

Adding the given global active-layer mass-conservation equations for active-layer (204),

active-stratum (206), and all other stratums from 1 to l � 1 (208), if the stratum 1 has

�oor elevation Zbf = 0, the global active-layer and stratum mass-conservation equation is

obtained:

�s(1� pb)
@(Zb)

@t
+
@

@x

 

KS
X

ks=1

�ks

!

=
KS
X

ks=1

�

Dsedks � Esedks
�

: (209)
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4.2.10 Transformation of the global active-layer and stratummass-conservation
equation using the adaptive grid technique

The transformation is applied on Eq. (209) in form

�s(1� pb)
@(Zb)

@t
+
@

@�

 

KS
X

ks=1

�ks

!

@�

@x
=

KS
X

ks=1

�

Dsedks � Esedks
�

; (210)

and then multiplied with Y = @x=@�, which yields to transformed global active-layer and

stratum mass-conservation:

@ [�s(1� pb)ZbY ]
@t

+
@

@�

 

KS
X

ks=1

�ks

!

=
KS

Y
X

ks=1

�

Dsedks � Esedks
�

: (211)

4.2.11 The lattice Boltzmann model for the transformed global active-layer
and stratum mass-conservation equation

The evolution equation corresponding to Eq. (211) is de�ned as:

m�(� + e��t; t+�t) = m�(�; t)�
1

�m
(m� �meq

� ) + �tM�: (212)

where m� is the particle distribution function (DF) along the � link, m
eq
� is the local

equilibrium distribution function; � is the position vector in the 1D domain; �t is time step;

M� is the force term; �m is relaxation time; e� is the particle velocity vector along the �

link; e = @�=@t and @� are the lattice sizes. Three-velocity lattice particle velocities are

de�ned in Eq. (120) .The equilibrium distribution function (EDF) in this case must satisfy

following relations:

X

�

meq
� = �s(1� pb)ZbY (213)

X

�

e�m
eq
� =

KS
X

ks=1

�ks

The proposed equilibrium distribution function is

meq
� =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�s(1� pb)ZbY ; � = 0

1
2e

KS
P

ks=1

�ks ; � = 1

� 1
2e

KS
P

k=1

�k ; � = 2

: (214)
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The force term is evaluated as

M� =
KS

Y
X

ks=1

�

Dsedks � Esedks
�

; (215)

to ensure second-order accuracy to the method, the force term is evaluated using the

centered-sheme:

M� =M�

�

� +
1

2
e��t; t+

1

2
�t

�

: (216)

The bed-load elevation can be calculated as the zeroth statical moment as follows

Zb(�; t) =
1

�s(1� pb)Y
X

�

m�(�; t): (217)

4.2.12 Derivation of the transformed global active-layer and stratum mass-
conservation equation from the lattice Boltzmann equation

The goal is to develop Eq. (211) from the lattice Boltzmann equation (212), and the

relations (213)-(217) using the Chapman-Enskog analysis. Applying Taylors expansion to

the each term of the Eq. (212) in time and space, the �rst term on the LHS, assuming

�t = ", becomes

m�(� + e��t; t+�t)�m�(�; t) = "

�

@

@t
+ e�

@

@�

�

m� (218)

+
1

2
"2
�

@

@t
+ e�

@

@�

�2

m� +O("
3):

The distribution function m� is expanded as:

m� = m
(0)
� + "m(1)

� + "2m(2)
� +O("3); (219)

and the centered-sheme force term is expressed as

M�

�

� +
1

2
e��t; t+

1

2
�t

�

=M� +
1

2
"

�

@

@t
+ e�

@

@�

�

M� +O("
2): (220)

Substituting Eqs. (218) - (220) into Eq. (212) the evaluating to order "0 is

m(0)
� = meq

� : (221)

Collecting the terms of order " it is

�

@

@t
+ e�

@

@�

�

m(0)
� = � 1

�m
m(1)
� +M� (222)
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and to the order "2 it is

�

@

@t
+ e�

@

@�

�

m(1)
� +

1

2
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@
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�2
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� = � 1

�m
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� (223)
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Substituting Eq. (222) into Eq. (223) leads to

�

1� 1

2�m

��

@

@t
+ e�

@

@�

�

m(1)
� = � 1

�m
m(2)
� (224)

Taking
P

� [(222) + "(224)], and enforcing conditions
P

�m
(n)
� = 0, and

P

� e�m
(n)
� = 0 ,

for n � 1 gives
@

@t

X

�

m(0)
� +

@

@�

X

�

e�m
(0)
� =M�: (225)

Using relations (213) and (215), the transformed global active-layer and stratum equation

is obtained:

@ [�s(1� pb)ZbY ]
@t

+
@

@�

 

KS
X

ks=1

�ks

!

=
KS

Y
X

ks=1

�

Dsedks � Esedks
�

: (226)

4.3 Boundary conditions

In order to develop a fully operational one-dimensional �ow-sediment mathematical model,

set of outer and inner boundary conditions must be de�ned. The �ow-sediment model

consists of four sets of LB equations, de�ned in the previous section, therefore, appropriate

boundary conditions must be de�ned for every set.

4.3.1 Boundary conditions for one-dimensional unsteady �ow lattice Boltz-
mann model

4.3.1.1 Outer boundary conditions

Unsteady �ow model demands upstream and downstream boundary conditions. For the

upstream boundary condition discharge, represented by hydrograph, is prescribed, and the

downstream boundary condition is water level, represented by stage hydrograph. This

is a common practice in river modeling when speci�cation of outer boundary conditions is

considered. This conditions need to be customized for the LB unsteady �ow model presented

by Eq. (118).
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The macroscopic variable upstream discharge Qup is related to the distribution function

at upstream boundary as (minding Eqs. (126) and (120)) :

Qup = e1 � f�1(i=1;j) + e2 � f2(i=1;j); (227)

where index i = 1; 2; :::; N denotes computational node (cross-section) along the section

j = 1; 2; :::;M:For the standard LB D1Q3 lattice arrangement, using that e1 = �e2 = e the

unknown distribution function is:

f�1(i=1;j) = f2(i=1;j) +
Qup
e
: (228)

The downstream boundary condition is, from Eq. (125):

AdownY(i=N;j) = f0(i=N;j) + f1(i=N;j) + f
�

2(i=N;j); (229)

where downstream cross-sectional area Adown is obtained from the water level - cross-section

area curve for a speci�c downstream water level value. The unknown distribution function

is:

f�2(i=N;j) = AdownY(i=N;j) � f0(i=N;j) � f1(i=N;j): (230)

Another commonly used boundary condition for unsteady �ow, which will be used in

one of the unsteady �ow in a non-prismatic channel, is normal depth boudary condition

according to the Chezy-Manning equation:

Q =
1

n
AR2=3

p

S0: (231)

In this model, cross-section is rectangular, therefore A = Bh can be applied, and from the

zeroth and �rst statical moment de�ned in Eqs. (125) and (126), Eq. (231) yields to:

e1 � f1 + e2 � f�2 =
1

n
(f0 + f1 + f

�

2 )

 

f0 + f1 + f
�
2

2 � f0+f1+f
�

2
B +B

!2=3
p

S0: (232)

As one can see, Eq. (232) has an implicit form, and it is solved by iterative method where

the value of the unknown distribution function f�2 is �rst speculated, and then corrected

until LHS and RHS of the Eq. (232) are equal.
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Figure 10: Tributary �ow.

4.3.1.2 Inner boundary conditions

Natural watercourses are characterized by complex geometry, and represent a challenge in

numerical modeling. Besides arbitrary cross-sections, there is variable longitudinal geometry

which needs to be modeled as inner boudary conditions. In this section, solutions for

tributary �ow and bifurcations will be presented.

Tributary �ow Formulation of the inner boundary condition, which incorporates tribu-

tary �ow into one-dimensional LB model, is based on the lattice disposition shown in Fig.10.

The unknown distribution functions f�2(i=N;j) and f
�

1(i=1;j+1) corresponding to the end and

the beginning of the sections j and j + 1, respectively, are derived using the continuity

equation and water level equality between cross sections:

Q(i=1;j+1) = Q(i=N;j) +Qt; (233)

Z((i=1;j+1))=Z(i=N;j); (234)

where Qt stands for tributary �ow. For simplicity, cross-sections (i = 1; j+1) and (i = N; j)

are chosen to be the same, since the distance between the two is small, and tributary �ow

is modeled as nodal in�ow, resulting that the water level equality can be replaced with

the cross-section area equality, which is more suitable with the used one-dimensional LB

unsteady �ow model. Now, Eq. (234) can be written as:

A(i=1;j+1)=A(i=N;j); (235)
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Figure 11: Flow separation.

and with Eq. (233) represent two necessary equations for solving two unknown distribution

functions using the zeroth and �rst statical moment, de�ned in Eq. (125):

f�1(i=1;j+1) � e1 + f2(i=1;j+1) � e2 = f1(i=N;j) � e1 + f�2(i=N;j) � e2 +Qt; (236)

f0(i=1;j+1) + f
�

1(i=1;j+1) + f2(i=1;j+1)

Y(i=1;j+1)
=
f0(i=N;j) + f1(i=N;j) + f

�

2(i=N;j)

Y(i=N;j)
(237)

After some elementary algebra, Eqs. (236 ) and (237) yield to:

f�2(i=N;j) =

�

Y(i=N;j)

Y(i=1;j+1)
+ 1

��1

(238)

��

f0(i=1;j+1) + 2 � f2(i=1;j+1) + f1(i=N;j) +
Qt
e

�

Y(i=N;j)

Y(i=1;j+1)
� f0(i=N;j) � f1(i=N;j)

�

(239)

f�1(i=1;j+1) = f1(i=N;j) � f�2(i=N;j) + f2(i=1;j+1) +
Qt
e

(240)

which determines the unknown functions f�1(i=1;j+1) and f
�

2(i=N;j).

Bifurcation

Flow separation River bifurcation occurs when one stream separates into two or

more streams. If they merge downstream, one or more river islands are created, and the

closed system consisting of two or more river branches is created in hydraulic sense, requiring

additional inner boundary conditions in the separation and merging locations. To derive

three unknown distribution functions at the separation locations, using the disposition

56



shown in Fig.11, three equations are necessary: the continuity equation and two water level

equalities:

Q(i=N;j) = Q(i=1;j+1) +Q(i=1;j+2); (241)

Z(i=N;j) = Z(i=1;j+1) = Z(i=1;j+2): (242)

Using the �rst statical moment, Eq. (241) yields to:

f�2(i=N;j) + f
�

1(i=1;j+1) + f
�

1(i=1;j+2) = f1(i=N;j) + f2(i=1;j+1) + f2(i=1;j+2): (243a)

Equality equation Z(i=N;j) = Z(i=1;j+1) is expressed using the linear interpolation of Z �A

curve in form

Z =WL(m) + S(m) � (A�AR(m)); (244)

where WL(m) and AR(m), are water level and area at point m, respectively, and S(m)

denotes the slope between two points m and m+ 1 of the Z �A curve:

S(m) =
WL(m+1) �WL(m)
AR(m+1) �AR(m) : (245)

Now, using the given correspondence equality equation can be written as :

WL
(m)
(i=N;j) + S

(m)
(i=N;j) � (A(i=N;j) �AR

(m)
(i=N;j)) (246a)

=WL
(m)
(i=1;j+1) + S

(m)
(i=1;j+1) � (A(i=1;j+1) �AR

(m)
(i=1;j+1)):

Applying the zeroth statical moment, Eq. (246a) yields to

WL
(m)
(i=N;j) + S

(m)
(i=N;j) �

 

f0(i=N;j) + f1(i=N;j) + f
�

2(i=N;j)

Y(i=N;j)
�AR(m)(i=N;j)

!

(247)

=WL
(m)
(i=1;j+1) + S

(m)
(i=1;j+1) �

 

f0(i=1;j+1) + f
�

1(i=1;j+1) + f2(i=1;j+1)

Y(i=1;j+1)
�AR(m)(i=1;j+1)

!

:

Similarly, the second equality equation Z(i=N;j) = Z(i=1;j+2) is obtained in form:

WL
(m)
(i=N;j) + S

(m)
(i=N;j) �

 

f0(i=N;j) + f1(i=N;j) + f
�

2(i=N;j)

Y(i=N;j)
�AR(m)(i=N;j)

!

(248)

=WL
(m)
(i=1;j+2) + S

(m)
(i=1;j+2) �

 

f0(i=1;j+2) + f
�

1(i=1;j+2) + f2(i=1;j+2)

Y(i=1;j+2)
�AR(m)(i=1;j+2)

!

: (249)
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Finally, if matrix notation is used in form AX = B, where, from Eqs. (243a), (247) and

(248):

A =

2

6

6

6

6

4

1 1 1

S
(m)
(i=N;j)

Y(i=N;j)
�S

(m)
(i=1;j+1)

Y(i=1;j+1)
0

S
(m)
(i=N;j)

Y(i=N;j)
0 �S

(m)
(i=1;j+2)

Y(i=1;j+2)

3

7

7

7

7

5

; (250)

X =

2

6

6

6

6

4

f�2(i=N;j)

f�1(i=1;j+1)

f�1(i=1;j+2)

3

7

7

7

7

5

; (251)

and

B =

2

6

6

6

6

4

f1(i=N;j) + f2(i=1;j+1) + f2(i=1;j+2):

S
(m)
(i=1;j+1)B(i=N;j) � S

(m)
(i=N;j)B(i=1;j+1)

S
(m)
(i=1;j+2)B(i=1;j+2) � S

(m)
(i=N;j)B(i=N;j)

3

7

7

7

7

5

; (252)

where

B(i=N;j) =
f0(i=N;j) + f1(i=N;j)

Y(i=N;j)
�AR(m)(i=N;j); (253)

B(i=1;j+1) =
f0(i=1;j+1) + f2(i=1;j+1)

Y(i=1;j+1)
�AR(m)(i=1;j+1); (254)

B(i=1;j+2) =
f0(i=1;j+2) + f2(i=1;j+2)

Y(i=1;j+2)
�AR(m)(i=1;j+2): (255)

Solution can be obtained by solving the matrix equation in form:

X = A�1B: (256a)

Flow merger Similarly, for the �ow merger inner boundary conditions, three equa-

tions are needed to solve three unknown distribution functions, f�1(i=1;j+2), f
�

2(i=N;j) and

f�2(i=N;j+1) shown if Fig.12, the continuity equation, and two water level equality equations:

Q(i=1;j+2) = Q(i=N;j) +Q(i=N;j+1); (257)

Z(i=1;j+2) = Z(i=N;j) = Z(i=N;j+1): (258)

Using the same procedure as for the �ow separation boundary condition, the matrix equation

can be formed as CY = D; where
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Figure 12: Flow merger.

C =

2

6

6

6

6

4

1 1 1

S
(m)
(i=N;j)

Y(i=N;j)
�S

(m)
(i=1;j+1)

Y(i=1;j+1)
0

S
(m)
(i=N;j)

Y(i=N;j)
0 �S

(m)
(i=1;j+2)

Y(i=1;j+2)

3

7

7

7

7

5

; (259)

Y =

2

6

6

6

6

4

f�1(i=1;j+2)

f�2(i=N;j)

f�2(i=N;j+1)

3

7

7

7

7

5

; (260)

and

D =

2

6

6

6

6

4

f1(i=N;j) + f1(i=N;j+1) + f2(i=1;j+2):

S
(m)
(i=N;j)D(i=N;j) � S

(m)
(i=1;j+2)D(i=1;j+2)

S
(m)
(i=N;j+1)D(i=1;j+1) � S

(m)
(i=1;j+2)D(i=1;j+2)

3

7

7

7

7

5

; (261)

where

D(i=N;j) =
f0(i=N;j) + f2(i=N;j)

Y(i=N;j)
�AR(m)(i=N;j); (262)

D(i=1;j+1) =
f0(i=1;j+1) + f2(i=1;j+1)

Y(i=1;j+1)
�AR(m)(i=1;j+1); (263)

D(i=1;j+2) =
f0(i=1;j+2) + f1(i=1;j+2)

Y(i=1;j+2)
�AR(m)(i=1;j+2): (264)

Solution can be obtained, again, by solving the matrix equation in form

Y = C�1D: (265)
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4.3.2 Boundary conditions for the sediment transport lattice Boltzmann model

The suspended-sediment transport LB model demands upstream and downstream boundary

condition. For the upstream boundary, Dup, the non-dimensional concentration for the size-

class ks is used. Using the zeroth statical moment given in Eq. (165), it follows:

CupA(i=1;j)Y(i=1;j) = g0(i=1;j) + g
�

1(i=1;j) + g2(i=1;j): (266)

Now, the unknown distribution function is

g�1(i=1;j) = CupA(i=1;j)Y(i=1;j) � g0(i=1;j) � g2(i=1;j): (267)

For the downstream boudary, the conventional bounce-back boundary scheme is used,

which reads that an incoming particle is bounced back into �uid. For the proposed D1Q3

lattice arrangement the unknown distribution function, after bouncing back from the wall

after streaming can be calculated as:

g�2(i=N;j) = g2(i=N�1;j): (268)
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CHAPTER V

PROGRAMMING CODE

In the previous chapter the lattice-Boltzmann models are formed, which evolve the one-

dimensional transformed Saint-Venant equations and transformed suspended-sediment mass

conservation equations after the Chapman-Enskog expansion. Also, the corresponding

boundary conditions have been de�ned, suitable with longitudinal changes at the water-

course, and derived in the way to satisfy the requirements of the LBM. Corresponding

programming code in the programming language FORTRAN has been written, with the

purpose to solve the governing equations. Natural watercourses are characterized with

complex geometry accompanied with great amount of data. Therefore, an extra e¤ort has

been given to the optimization of the code, in order to unburden the of any unnecessary

calculations. In the Fig.13 the schematic representation of the used algorithm is given, and

in further text, every part of the algorithm is explained.

With purpose to unburden the code with unnecessary operations, which implies repeti-

tive execution of numerous operations in order to calculate the geometrical characteristics

of cross-sections (cross-section area, water surface level, wetted perimeter, and water sur-

face width) depending on water surface level, a separate program CURVES is written.

Every cross-section is divided into equal, smaller, intervals over depth, and for every prede-

termined depth-step geometrical characteristics are calculated and written in external �les.

The depth-step is chosen to be �z = 30 cm, as optimal value between the accuracy and

the tendency to form the dependence curves with the minimal amount of data. Resulting

curves are later used in the main program. If the water surface level is between the assigned

depth-steps, linear interpolation between those values is used to trace the desired value.

Program WS-LBM is the main program that solves lattice Boltzmann model for

the transformed Saint-Venant equations and for the suspended-sediment mass-conservation

equation, simultaneously. It consists of 10 chronologically placed subroutines, that form
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Figure 13: Code algorithm.

the algorithm. After loading the general parameters (number of sections, number of lattice

nodes for each section, time step, relaxation times, iteration number, etc.), from assigned

external �les, �rst subroutine GEOMETRY is summoned, that consists of three sub-

subroutines, which are executed one after another:

� READ_GEOM - reads the cross-section characteristics: stationery and cross-section

geometry;

� READ_CURVES - reads the cross-section area-water surface level curve, wetted

perimeter - water surface level curve and water surface width - water surface level for

each cross-section, previously calculated using the program CURVES;

� T_PARAM - calculates the transformation parameter for every computational point

(cross-section), using the discrete form of the �rst derivative:

Y (j; i) =
x(j;i+1) � x(j;i�1)

2 ��� ; (269)

where x is the cross-section stationary, �� is the lattice size, j = 1; :::; N is the section
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number, and i = 1; :::;M(j) is the computational point number.

Within the subroutine INIT_COND, the initial conditions are assigned. Subroutine

COMPUTE_EQ is summoned, to calculate the initial equilibrium distribution functions

values. Within the subroutine SETUP, all distribution functions values take over the values

of the initial equilibrium distribution function. Prior entering the main loop, variable time

is set to zero, to indicate initial state. Within the main loop, at each iteration, the value of

time is increased by 1. The main loop consists of six subroutines:

� COLLISION - calculates the values of the distribution functions after the collision

step. The force terms are calculated within the separate sub-subroutines FORCE

(for the water) and FORCE_S (for the sediment transport);

� STREAMING - calculates the values of the distribution functions after the stream-

ing step;

� B_COND - calculates the unknown boudary distribution functions at the model

boundaries;

� TRIB_FLOW - calculates the unknown distribution functions at the boundary

points between the sections where tributary �ow is foreseen;

� BIFURCATION - calculates the unknown distribution functions at the boudary

points between the sections where �ow merges or separates;

� SOLUTION - calculates new physical variables (discharge, water surface level, cross-

section area, depth, velocity, water surface width, concentration);

� COMPUTE _EQ - calculates new equilibrium distribution functions.

After every iteration, results are written in external �les, within
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CHAPTER VI

MODEL TESTING AND VALIDATION

Model testing and validations has two phases. First, the unsteady open-channel �ow lattice

Boltzmann model has been tested in three steps, each imposing more complex conditions.

Within the second phase, sediment transport is attached on the fully functional water �ow

model, in order to develop a multiphase water - sediment unsteady open-channel �ow LBM

model.

6.1 One-dimensional unsteady open-channel �ow

In order to test and validate the proposed one-dimensional lattice Boltzmann model for the

transformed Saint-Venant equations, three case are studied: a steady �ow in a prismatic

channel with rectangular cross-section, an unsteady �ow in a non-prismatic channel and

unsteady �ow in a natural watercourse. Steady non-uniform �ow in a prismatic channel is

modeled for two lattice grid dispositions, uniform and non-uniform. For the same physical

model, equidistant and non-equidistant grid is formed, and the results are compared with

the corresponding model obtained by commercial HEC-RAS software. Within the second

test model, unsteadiness is introduced by applying a shock wave as upstream boundary

condition and using a non-prismatic channel. Again, physical model is tested for both

equidistant and non-equidistant lattice grid. Validation is obtained by the corresponding

HEC-RAS models. In the last step, unsteady �ow in natural conditions is tested, in order to

prove that the developed LBM model is comparable to the standard modelling software. A

31 day long unsteady �ow simulation on a chosen section of the Danube River is performed.

Besides arbitrary cross-sectional geometry, the chosen section contains four tributaries and

two river islands. The veri�cation of the LBM model is obtained by comparison with the

measured �ow and water level data obtained by standard geodetic survey by the Republic

Hydrometeorological service of Serbia (RHMZ).
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Figure 14: Comparison of water surface elevation along the channel at t = 50 min -
equidistant lattice grid

6.1.1 A steady non-uniform �ow in prismatic channel

Previously derived D1Q3 LBM for the transformed Saint-Venant equations, de�ned by Eq.

(118), using the relations (120), (122), (123), (125) and (126), is �rst tested on a prismatic

channel of rectangular cross-section having total length L = 1000 m, width B = 100 m, and

constant slope S0 = 0:001 is selected. Manning�s roughness coe¢cient is n = 0:025 m�1=3s:

Water surface elevation Zd = 1:20 m is set as downstream, and discharge Qup = 100:0 m3=s

as upstream boundary condition, where the unknown distribution functions at the model

boundaries are determined using the Eqs. (228) and (230). Initial conditions are set to

Qinit = 100:0 m3=s and hinit = 1:20 m for the entire model: Two cases are observed,

one with uniform spatial grid, and one with non-uniform grid, under the same physical

conditions. For the uniform grid case, computational lattice size �� = 1:0 and physical

distance between cross sections �x = 50:0 m is used. For the non-equidistant physical

grid, the minimal cross-section distance is �xmin = 20:0 m and the maximal distance is

�xmax = 81:72 m. The computational lattice size is left to be �� = 1:0: In both cases grid
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Figure 15: Comparison of water surface elevation along the channel at t = 50 min - non-
equidistant lattice grid

has total of 21 computational points, and relaxation time is set to � = 0:505. The stability

for the equidistant grid model is obtained for �t = 1:0 s, while for the non-equidistant

grid lower value of �t = 0:7 s was necessary. Comparison of the water surface elevation

for t = 50 min with corresponding HEC-RAS model is shown in Fig.(14) and Fig.(15), for

the equidistant and non-equidistant model, respectively. Comparison of historical record of

water surface elevation for equidistant and non-equidistant lattice grid is shown in Fig.16

and Fig.17, respectively. Comparison of historical record of discharge is shown in Fig.18

and Fig.19, for uniform and non-uniform grid, respectively. Three arbitrary cross-sections

are chosen to manifest the results, where cross-section stations shown are measured from

the upstream boundary. As one can see from the shown comparisons, very good agreement

is achieved for both equidistant and non-equidistant physical grid models.
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Figure 16: Comparison of historical record of water surface elevation in prismatic channel
- equidistant lattice grid

Figure 17: Comparison of historical record of water surface elevation in prismatic channel
- non-equidistant lattice grid
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Figure 18: Comparison of historical record of discharge in prismatic channel - equidistant
lattice grid

Figure 19: Comparison of historical record of discharge in prismatic channel - non-
equidistant lattice grid
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Figure 20: Geometry of non-prismatic channel.

Figure 21: Hydrograph - upstream boundary condition.
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6.1.2 An unsteady �ow in non-prismatic channel

The same LBM as used in the previous example is now tested for unsteady conditions.

A non-prismatic channel of length L = 24000 m, constant bed slope S0 = 0:0005 and

Manning�s roughness coe¢cient n = 0:0667 m�1=3s has been modeled. Channel width is

determined by expression B = 8:0 + 12:0(x=L), where x represents the corresponding cross

section stationary, measured from the upstream boudary. As shown in Fig.20, channel

width linearly changes from 8:0m at upstream do 20:0m at downstream boundary. Using

the same approach as in the previous example, two cases are observed to test uniform and

non-uniform physical grid for unsteady �ow conditions. In case of the equidistant physical

grid constant distance between the cross sections of �x = 1000:0m is used, forming 25 com-

putational points. In case of non-equidistant grid random, unequal cross-section distances

shown in Fig.20 are applied, resulting with, also, 25 computational points. The minimal

cross-section distance is �xmin = 500:0 m and the maximal distance is �xmax = 1700:0 m.

Computational lattice size �� = 1:0 is used for both cases. Hydrograph shown in Fig.21 is

set as upstream boundary condition, to ensure the unsteadiness of the �ow, while for the

downstream boundary condition normal depth obtained from the Chezy-Manning equation

is applied. To determine the unknown distribution functions at boundaries, Eq.(228) and

the iterative solution of the Eq. (232) are used. Stability is obtained by setting � = 0:501

and �t = 2:0 s for the both cases. Total of 12600 computational steps are performed to

do a 420:0 min simulation. Validation is obtained again by the HEC-RAS software that

uses bidiagonal four-point implicit �nite-di¤erence Preissman scheme [21] . Four cross sec-

tions equally distributed along the channel are used as comparison check points, where

cross sections stationaries for the non-equidistant grid are marked in Fig.20. The historical

record of water surface elevation for the equidistant grid is shown in Fig.22, left, and for

the non-equidistant grid is in Fig.23, right. The comparison of the LBM and HEC-RAS

model for equidistant and non-equidistant grid shown in Fig.24 and Fig.25, respectively.

All compared results are in a very good agreement.
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Figure 22: Comparison of historical record of water surface elevation in prismatic channel
- equidistant grid

Figure 23: Comparison of historical record of water surface elevation in prismatic channel
- non-equidistant grid
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Figure 24: Comparison of historical record of discharge in prismatic channel - equidistant
grid

Figure 25: Comparison of historical record of discharge in prismatic channel - non-
equidistant grid
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6.1.3 Unsteady �ow in a natural watercourse - Danube River case study

The �nal step when testing newly developed non-uniform grid based LBM for the Saint-

Venant equations is to apply the model on a watercourse with arbitrary cross-sectional and

longitudinal geometry, as it is shown that the model functions very well when simple geom-

etry is modeled. The goal is to perform a long-lasting simulation under natural conditions.

One section of the Danube River is chosen to form a model.

Figure 26: The Danube River experimental reach

The Danube River has the total length of 2860 km. It originates in Germany, passes

through Austria, Slovakia, Hungary, Croatia, Serbia, Romania, Bulgaria, Moldova and

Ukraine and discharges into the Black Sea. Its drainage basin extends into nine more

countries. It has 31 tributaries and many closed bifurcation systems (river islands). Ap-

proximately 10.2% of the Danube�s length crosses through Serbia. To test the proposed

model, the Serbian section of the Danube River stretching between the Iron Gate I Hy-

droelectric Power Station (rkm 970.35) and the Smederevo gauging station in Serbia (rkm

1116:23) is used, as shown in Fig.26. This section has total length of 145.88 km, has four

tributaries: Velika Morava, Nera, Pek and Poreµcka, and two closed bifurcation systems.

Measured morphological data is used to form a model. Along the observed section of the

river total of 160 cross-sections are available. The distance between them varies between
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Figure 27: Shematic model.

800 � 1300m: One cross-section is shown in Fig.28. The total length of the experimental

reach is divided into nine sections, each of them separated by a tributary or river islands,

as shown in Fig.27. The characteristics of the sections are given Table 2. Sections S51, S52,

S71 and S72 represent river islands. The measured cross-section geometry of sections S5

and S7 is separated at the highest points of the river island into two separate river branches.

If the river island �oods, two river branches merge into one and form sections S5 and S7.

Figure 28: Cross-section of the river bed

Lattice Boltzmann D1Q3 model, de�ned by Eq.(118) is used. Equilibrium distribution
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Section Station Length Number of cross-sections
rkm km

S1 970.35�993:00 22.65 23
S2 993.00�1057.40 64.40 62
S3 1057.40�1075:00 17.60 19
S4 1075.00�1078:00 3.00 7
S51 1078.00�1082:00 4.00 6
S52 1078.00�1082:00 4.00 6
S6 1082.00�1087:50 5.50 8
S71 1087.50�1091:00 3.50 5
S72 1087.50�1091:00 3.50 5
S8 1091.00�1104:35 13.35 20
S9 1104.35�1116:23 11.88 10

Table 2: Properties of the computational sections

functions de�ned by Eq. (122), and force term is calculated from the Eq. (123).Physical vari-

ablesQ and Z are calculated based on the obtained distribution functions by Eqs.(125),(126)

and from the cross-section area - water surface level curves obtained by the program

CURVES. Boundary conditions for this experimental reach, upstream hydrograph at gaug-

ing station Smederevo (Fig.29) and downstream water level at GS Iron Gate I during August

2006 are obtained by the Republic Hydro-meteorological Service of Serbia (Fig.30). Dis-

tinct unsteady �ow can be observed. At the beginnings and ends of sections S5 and S7,

inner boundary conditions de�ned by Eqs.(256a) and (265). Tributary rivers Nera, Pek and

Poreµcka have insigni�cantly small �ows, but for tributary Velika Morava RiverQt = 90m3=s

is applied with boundary conditions de�ned by Eqs. (238) and (240) between the sections

S8 and S9. Manning�s roughness coe¢cient is n = 0:0318m�1=3s for the whole experimental

reach, lattice size is �� = 1:0 and the relaxation time is � = 0:57: The stability is obtained

for the time step �t = 10:0 s.

Before the unsteady �ow simulation steady �ow is achieved by imposing constant �ow

Q = 2570:0 m3=s and constant water level Z = 69:44 m in duration of four days. The same

values discharge and water level are assigned as initial conditions for the whole domain of

the model. After stabilization of the model, for the next 31 days boundary conditions shown

in Fig.29 and Fig.30 are applied. The unknown distribution functions at the upstream and

downstream boundary are determined from Eqs. (228) and (230). The 31 day simulation
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Figure 29: Upstream boundary condition at GS Smederevo.

Figure 30: Downstream boundary condition at Iron Gate I.
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Figure 31: Comparison of the historical record of water surface elevation at GS Golubac.

is obtained with 267840 steps in 12.34 min. For the comparison of the results, measured

historical discharge for August 2006 at Iron Gate I, and historical water levels at gauging

stations Golubac (rkm 1042:00) and Donji Milanovac (rkm 995:00), based on the RHMZ

data, are used. Comparison of the LBM with RHMZ measurements of historical water level

for GS Golubac and GS Donji Milanovac are given in Fig.31 and Fig.32, respectively, and

the comparison for the historical discharge at Iron Gate I is shown in Fig.33. Obtained

results are in a very good agreement for both data sets. Deviations between calculated

and measured values of water levels are in range of 10:0 cm, which is very satisfactory for

this kind of signi�cantly unsteady �ow regime. Signi�cant di¤erence of 18 cm is observed

only between August 16th to 21st at GS Golubac. When analyzing the historical discharge,

deviations between the compared results are in the range of 200:0 m3=s, and the most

signi�cant di¤erence of 840:0 m3=s is observed only once, on August 10th.

77



Figure 32: Comparison of the historical record of water surface elevation at GS Donji
Milanovac.

Figure 33: Comparison of the historical record of discharge at GS Iron Gate I.
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6.2 One-dimensional open-channel sediment transport

Under the second phase of this research, the unsteady open-channel �ow model is upgraded

with the suspended-sediment transport model. First, the LBM model for the transformed

suspended-sediment mass-conservation equation was tested on a basic advection-di¤usion

in a prismatic channel, independently of the �ow model, and the comparison is made with

the analytical solution of the advection-di¤usion equation for both equidistant and non-

equidistant lattice grid disposition. In the last case study, the combined one-dimensional

unsteady �ow with suspended-sediment transport LBM model was tested on the chosen

section of the Danube River, and the comparison of the LBM results is made with the

measured data obtained from the RHMZ. To compensate insu¢cient suspended-sediment

empirical data, statistical data processing have been performed, based on the available

measured values. As this part of the research is still in a early stage, only suspended-

sediment transport is analyzed. In further research (that is ongoing), the focus is to test

and validate the complete sediment transport lattice Boltzmann model developed in Chapter

IV.

6.2.1 Advection-di¤usion in a prismatic channel

In order to test the derived suspended-sediment LBM de�ned by Eqs. (158)-(162), prismatic

channel of length L = 5000:0 m, with constant cross-section area A = 1:0 m2 is used. The

number of sediment size-classes is KS = 1. As the initial condition suspended-sediment

concentration distribution along the channel length Cinitk (x), characterized with a high

peak, shown in Fig.34, which is challenging for the LBM, because of the sudden changes

and steep slopes of the curve. The initial suspended-sediment concentration is obtained

from the following equation:

Cinitks (x; 0) =
C0p
"s�t0

e
�(x�x0)

2

4"st0 ; (270)

where C0 = 3308:75, t0 = 3484:8 s; x0 = 1400:00 m; "s = 3:0 m=s, and x is spatial

coordinate along the channel length. Upstream boundary condition is suspended-sediment
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Figure 34: Initial suspended-sediment concentration distribution.

concentration value obtained from the equation:

Cupks (0; t) =
C0

p

"s�(t0 + t)
e
�(�u�t�x0)

2

4"s(t+t0) ; (271)

where t is time, and u = 0:5 m=s. Using this concentration values, for every time-step,

unknown distribution function at the upstream boundary is calculated from Eq. (267).

The last term of the Eq. (158), the force term, is set to zero, because only advection

and di¤usion terms have been tested in this case. Again, two grid disposition cases have

been formed (equidistant and non-equidistant), and tested for the same conditions. For the

equidistant grid case, spatial step �x = 50:0 m is used, with lattice distance of �� = 1:0,

forming 101 computational points. For the non-equidistant spatial grid, arbitrary cross-

section distance is scattered along the channel length varying from 40:0 � 90:0 m, so that

the number of 101 computational points is preserved: Simulation time is T = 2520:0 s:

Lattice size is again set to be �� = 1:0:For the both cases, stability is achieved for � = 0:76,

and time step �t = 1:0 s; therefore, both simulations are performed with 252 computational

steps. Results of the LBM for both cases are compared with analytical solution given by
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the following equation:

Cupk (x; t) =
C0

p

"s�(t0 + t)
e
�(x�u�t�x0)

2

4"s(t+t0) : (272)

Comparison between the LBM and the analytical solution (AS) for the equidistant and

non-equidistant grid are given in Fig.(36) and (35), respectively. Compared results are in

excellent agreement for the both grid cases.

Figure 35: Comparison of suspended-sediment concentation distribution along the pris-
matic channel for the non-equidistant grid.

6.2.2 Unsteady �ow with sediment transport in a natural watercourse - Danube
River case study

Finally, the one-dimensional multiphase unsteady water �ow with suspended-sediment trans-

port in a natural watercourse has been tested. Section of the Danube River of length 176.29

km, from GS Bezdan (rkm 1430.44) to GS Novi Sad (rkm 1254.15), have been used to

form a model (Fig.37). This section of the Danube has no tributaries nor river islands,

therefore, one the whole experimental reach can be modeled as one section with 73 com-

putational points (cross-sections). Distance between cross-sections is in the range between
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Figure 36: Comparison of suspended-sediment concentation distribution along the pris-
matic channel for the equidistant grid.

Figure 37: The location of the experimental reach.
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Figure 38: Upstream boundary condition at GS Bezdan - dicharge.

850:00 � 5460:00 m. Combined LBM has been used: lattice Boltzmann model for the

transformed Saint-Venant equations with LBM for transformed suspended-sediment mass-

conservation equation. A 31 day simulations has been performed. Discharge (Fig.38) and

suspended-sediment concentration measurements (Fig.40) at gauging stations Bezdan dur-

ing May 2006 have been used as upstream boundary conditions, while water level (Fig.39)

measurements and GS Novi Sad have been used as downstream boudary condition. LBE

for the transformed SVE (118), with the equilibrium distribution function (122), and force

term (123) is modeled with the relaxation time � f = 0:58: Physical variables Q and Z are

calculated based on the obtained distribution functions by Eqs.(125), (126) and from the

cross-section area - water surface level curves obtained by the program CURVES. Relax-

ation time used for the LBM for the transformed suspended-sediment mass-conservation

equation (Eqs. (158)-(162)) is � g = 0:82; number of sediment size-classes is KS = 1; :and

sediment mass-di¤usivity coe¢cient is "s = 20:0 m=s: Lattice size is set to be �� = 1:0.

Stability of the model is obtained for time step �t = 10:0 s:

First, steady water �ow is achieved by imposing constant water level Z = 85:77 m

and constant �ow Q = 4550:0 m3=s:After stabilization of the model, keeping the obtained
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Figure 39: Downstream boundary condition at GS Novi Sad - water surface level.

Figure 40: Upstream boundary condition at GS Bezdan - suspended-sediment concentra-
tion.
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Figure 41: Comparison of historical record of water level - GS Baµcka Palanka

steady �ow state, steady suspended-sediment transport is accomplished by forcing con-

stant suspended-sediment concentration Cks = 0:0259 kg=m3. Following the stabilization

of the combined model, 31 day long simulation of unsteady �ow with suspended-sediment

transport has been performed. Discharge and water level measurements shown in Fig. 38

and Fig.39, respectively, are set as upstream and downstream boundary condition for the

�ow model. Taking this values, the unknown distribution functions at the upstream and

downstream boundary are calculated from Eqs. (228) and (230), respectively. The un-

known distribution function of the sediment transport LBM at the upstream boundary is

determined from Eq. (267), using the values of the concentration obtained from measure-

ments shown in Fig.40. At the downstream boundary, bounce-back condition is imposed,

calculating the unknown distribution function from Eq. (268).

To validate the water �ow model adequate comparison of obtained results with the

corresponding daily based stage hygrograph is made. The comparison of water surface

level for the gauging station Baµcka Palanka (rkm 1298.66) is shown in Fig.41. Obtained

results are in a acceptable agreement. Deviations between calculated and measured values

of water levels are in range of 10:0 cm, which is very satisfactory. Maximal observed

di¤erence is 25 cm. Measured data for suspended-sediment concentration is available only
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Figure 42: Comparison of suspended-sediment concentartions - GS Ledinci

for GS Bezdan. This data was already used to form the upstream boundary condition.

In the absence of additional measurements, which would be used to verify the results,

discharge - suspended-sediment concentration dependence (C(Q)) curve is formed, based

on the available measurements during May 2006 for GS Bezdan. This dependence curve is

best �tted with order 2 polynomial trendline in form:

C(Q) = 4:0 � 10�10 �Q2 + 5:0 � 10�6Q� 0:0029: (273)

This polynomial trendline equation has been applied on the discharge measurements during

May 2006, and the obtained concentration values have been used to verify the results.

Obtained results are in a acceptable agreement. Average deviations between compared

values of concentration are in range of 0:002 kg=m3, which is acceptable, minding that only

suspended-sediment transport is modeled. The maximal observed di¤erence is 0:004 kg=m3,

which is satisfactory, minding the unsteady �ow condition and the fact that only suspended

sediment is modeled. In the forecoming segment of this research, the complete sediment

transport model, derived in the Chapter IV will be modeled.
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CHAPTER VII

CONCLUSION

In this thesis, �rst, the one-dimensional unsteady open-channel �ow lattice Boltzmann

model is developed, tested and veri�ed. In addition, water �ow model is upgraded with the

sediment transport model, which, based on the physical problem, can be used independently

or simultaneously. The goal was to develop a robust numerical model that solves complex

physical processes in natural open-channel watercourses.

The one-dimensional open-channel unsteady water �ow lattice Boltzmann model of-

fers two aspects of the contributions. First, lattice Boltzmann method is a relatively new

approach in modeling unsteady �ow. A review of the literature in Chapter II shows the

existing models and commonly accepted directions in modeling the considered processes.

The �nite-di¤erence Preissman scheme and Holly-Preissmann method are the most widely

used methods in free-surface one-dimensional subcritical numerical modelling. LBM, be-

ing a mesoscale numerical method, does not fall behind from the existing methods when

it comes to accuracy, and has its advantage when long-term simulations of spatially large

physical domains are modeled due to its suitability for parallel programming. Using this

method partial di¤erential equations are locally discretized on the lattice nodes. Collision

and streaming processes are independent, which allows parallel execution of the compu-

tational operations. The result is signi�cantly shorter computational time, which allows

spatial and temporal expansion of the model. At the other hand a novel form of the lattice

Boltzmann method for solving the Saint-Venant equations is presented. In order to estab-

lish the LBM as tool for solving practical problems when one dimensional modeling of �ow

in natural watercourses is considered, two major improvements of the standard LBM have

been successfully introduced and validated. First improvement is the formulation of the

water surface that eliminates the bed slope term (since for natural geometry the bed slope

term is di¢cult to de�ne). The second is the non-uniformity of the physical computational
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grid, which opens opportunity for optional arrangement of computational points along the

modeled reach. Instead of disturbing the numerical model itself, governing equations are

transformed from the physical to the computational domain, and calculation of terms de-

�ned in the non-equidistant physical space in the equidistant computational grid is enabled.

Furthermore, the concept of arbitrary cross-section geometry is introduced. With a special

attention, all the elements that would unnecessarily burden the model and thus extend the

computational time are eliminated, and, as a result, a relatively simple algorithm that solves

very complicated physical processes of unsteady �ow in natural watercourses is obtained.

Besides the cross-sectional geometry, tributary �ow and bifurcation boundary conditions

are derived and successfully implemented in the model. In order to validate the model

three cases are analyzed: a steady non-uniform �ow in prismatic channel, an unsteady �ow

in non-prismatic channel, and unsteady �ow in a natural watercourse - Danube River case

study. The results for the channels with simple geometry are compared with corresponding

HEC-RAS models. For the Danube River case study the chosen 145:88 km long section or

the river includes four tributaries and two closed bifurcation systems. Results are veri�ed

by comparison with the �eld measurements. Excellent agreement between the all com-

pared results is obtained con�rming the capacity of the proposed model to serve as a fully

competitive practical tool comparable to the standard modelling software.

Furthermore, the one-dimensional sediment transport lattice Boltzmann model is de-

veloped in addition to the existing unsteady �ow model. Sediment is characterized by a

di¤erent behavior with regard to its location; suspended-sediment is considered to move

with the water �ow, while bed and near-bed sediment particles do not follow the same pat-

terns. Therefore, the domain of sediment transport is divided into three unities: suspended-

sediment, active layer bed sediment and bed sediment (stratum). The governing equations

describe the behavior of each sub-domain and the exchange mechanisms between them.

Using the same approach as for the unsteady �ow model, equations are transformed from

non-uniform physical domain to uniform computational grid, maintaining required unifor-

mity of the lattice structure imposed by the symmetry of the prede�ned lattice velocities.

The existing solution algorithm is upgraded in the way that it is now able to solve sediment
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transport equations using the resulting physical variables from the unsteady �ow model as

input data. Prior to creating the model that solves unsteady �ow with sediment transport

in natural watercourses, a test model for the advection-di¤usion equation is made, and the

results are in an excellent agreement with the analytical solution of the equation. The

multiphase water-sediment unsteady �ow is tested on another Danube River case study,

on a 176:29 km long section. In the absence of measured data that could be used for the

veri�cation, the statistical data processing have been performed and used for the compar-

ison. Considering the early phase of this part of the research, obtained results are in an

acceptable agreement. Further course of the research is implied; to develop a fully functional

one-dimensional unsteady �ow with sediment transport lattice Boltzmann model, where the

sediment mixture is represented with more than one sediment size-classes. Forthcoming re-

search will also be directed to computational optimization, especially in terms of computer

code parallelization.
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