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Rezime

U okviru teze predstavljen je razvoj, formulacija i verifikacija matematickog modela
jednodimenzionalnog neustaljenog te¢enja sa transportom nanosa u prirodnim vodotocima
primenom latis Bolecman metode (engl. lattice Boltzmann). Najveé¢i broj istrazivaca koji
se bave modeliranjem jednodimenzionalnog neustaljenog te¢enja modele koji se zasnivaju
na Prajsmanovoj (engl. Preismann) Semi kona¢nih razlika i na Holi-Prajsmanovoj (engl.
Holly Preismann) Semi. Navedene numericke Seme su robusne i bezuslovno stabilne. U
oblasti modeliranja transporta nanosa ne postoji dominantan pristup. Deljenje nanosa na
suspendovani i nanos na i pri dnu omogucava da se kod modeliranja suspendovanog nanosa
prihvati pretpostavka da se njegove Cestice kre¢u brzinom koja je priblizno jednakoj brzini
kretanja fluida.

Lattice Bolcmanova (engl. lattice Bolzmann) metoda (LBM) predstavlja hiperstilizo-
vanu verziju Bolcmanovih jednac¢ina, koja je prilagodena resavanju problema iz oblasti di-
namike fluida i gire. Ovaj, relativno novi i obetavajuci pristup numerickog resavanja nelin-
earnih parcijalnih diferencijalnih jednacina je efikasan i fleksibilan pri primeni za kompleksnu
ili promenljivu geometriju. Srz LBM jednacina je specijalna diskretna forma Boltzmann-ove
jednacine, koja opisuje kretanje grupe Cestica na jednostavan nacin, a na makroskopskom
nivou daje sliku o kretanju fluida. Prosec¢ne brzine ¢estica se, u prostoru i vremenu, pon-
asaju kao fizicke brzine fluida, sto daje direktnu vezu izmedu diskretnog mezoskopskog
i makroskopskog nivoa. Za razliku od klasi¢cne numericke hidraulike, koja daje direktna
reSenja jednacina kretanja fluida, lattice Boltzmann metod je na¢in da se jednacine rese
indirektno. Metod podrazumeva jednostavne prora¢une, paralelne procese programiranja i
laku implementaciju grani¢nih uslova. Preteca latis Bolcmanove metode su latis gas celular
automata (lattice gas cellular automata) modeli (LGCA) i Bolcmanova transportna jed-
nacina. U tezi je dat teorijski uvod u latis Bolcman metodu. Opisano je kako je metoda
nastala i kako se razvijala i uraden je detaljan prikaz postojetih modela koji ¢e se koristiti

kao baza za novi model.
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Kako bi se razvio funkcionalan model jednodimenzionalnog neustaljenog te¢enja u otvorenim
tokovima sa transportom nanosa, neophodno je definisati jednacine koje opisuju navedene
fizicke procese. Jednodimenzionalno neustaljeno te¢enje u otvorenim tokovima opisano je
posebnim oblikom Sen-Venanovih jednacina, gde kao promenljive figurisu kota slobodne

povrsine i proticaj u obliku:

0A  0Q
ot o
Q 0 Q*\ oz
o + 7 <wA> = —gTA% —grASy,

gde je A(x,t) povr§ina poprecnog preseka; Q(x,t) je proticaj; Z(z,t) je kota slobodne
povrsine, ¢(z,t) je lateralni doticaj po jedinici duzine, g, je gravitaciono ubrzanje; t je
vreme, x je prostorna koordinata; a w je koeficijent neunifornosti brzina. S; je nagib trenja

definisan izrazom:

292
gde je n is Maningov koeficijent trenja a R = A/O je hidraulicki radijus, gde je O okvageni
obim. Ovaj oblik jednac¢ina eliminige ¢lan nagiba dna korita, $to je prilagodeno modeliranju
tokova sa prirodnom geometrijom. Za model transporta nanosa, koriséen je princip aktivnog
sloja, tj. suspendovani nanos je odvojen od nanosa na i pri dnu. Megavina nanosa je
predstavljena preko odgovarajucih frakcija ks = 1,....., KS, gde je K.S ukupan broj frakcija.

Transport frakcije ks suspendovanog nanosa, predstavljen je jednaCinom odrzanja mase

suspendovanog nanosa u obliku:

8(CksA) + 8(C’ksAu) _ 0 <556(Oks)14) + E (Ezid _ ngd) ,
oz P

ot Ox Oz

gde je p gustina mesavine vode i nanosa, C} je koncentracija frakcije ks, €5 maseni

koeficijent difuzije, B je Sirina slobodnog ogledala, E,‘zzd je ¢lan ¢lan erozije, a Dzid je ¢lan

deponovanja. Transport nanosa u aktivnom sloju dat je jednac¢inom odrzanja mase aktivnog

sloja frakcije ks:

0 /8 sEm 8¢ s se se
ps(l_pb) (%t )+ a; :Dksd_Ek3d+(Sf)ks’

gde je (., udeo frakcije ks, ¢, fluks nanosa na dnu frakcije ks, E,, je debljina aktivnog

sloja, py je poroznost, p, je gustina sedimenta, a (Sy), . je ¢lan razmene izmedu aktivnog
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sloja i aktivnog stratuma frakcije ks. Globalna jednacina odrzanja mase aktivnog sloja i

stratuma je:

8 KS
pa(1=p1) =5 <Z¢ks> =3 (it - Ee)

ks=1
gde je Z; kota dna.

Uniformnost strukture racunske mreze je glavno ogranic¢enje latis Boleman modela, koje
znacajno smanjuje efikasnost i primenljivost LB modela, narocito kada je u pitanju modeli-
iranje prirodne, nepravilne geometrije. Da bi se ovo ogranicenje eliminisalo i istovremeno
ispostovale osnovne karakteristike latis Bolcman modela, uvedena je geometrijska trans-
formacija zasnovana na metrickom mapiranju izmedu fizickog i racunskog domena. Ova
tehnika se ¢esto koristi u tradicionalnom metodama racunske dinamike fluida, a omogucava
da se veli¢ine definisane u neekvidistantnom fizickom prostoru prenesu u ekvidistantan
racunski okvir. Na taj nac¢in prostornu neuniformnost eliminigu transformisane jednacine,
umesto samog numerickog modela.Transformisane jednacine, gde je Y = 9z /9¢ (£ je nova

koordinata), imaju sledeé¢i oblik:

e Transformisane Sen-Venanove jednacine tecenja:

0 oQ

En (YA)+ o =qY,

aQ Q2 g AdZ Q*a(y )

e Transformisane jednacine odrzanja mase suspendovanog nanosa:

O(CiuAY)  0(Cisdu) _ P(Chff) 000§, () BY

sed sed
o R TR T o€? (pix - piz?)

e Transformisane jednacine odzanja mase aktivnog sloja:

a(ps(l _pb)ﬁksEmY) 8¢ks _ sed sed
ot * e = (Di¢ +(57)) -

e Transformisana globalna jednacina odrzanja mase aktivnog sloja i stratuma:

0 [ps(l - pb)ZbY] 0 2 se Ese
o +a§<ksz:1¢ks> YZ(D d_ d>'

ks=1




Na osnovu transformisanih jedna¢ina formirani su adekvatni latis Bolcman modeli.

Izabrana je D1Q3 dispozicija mreze, za koju su karakteristi¢ne ¢vorne brzine:

0 ,a=0,
€a = e ,a=1,
—e ,a=2,

Predlozeni oblici latis Bolecmanovih jedna¢ina sa odgovaraju¢im ravnoteznim distrib-

utivnim funkcijama su:

e Za jednacine neustaljenog tecenje u otvorenim tokovima:

1

fa(§+ eaAt, t + At) = foa(gvt) - E(foz - gq)

At
+27626a(Fa + ean)

IA 1206 + ealit,t) — Z(6, )]

9V e2
+% (%) [Y7HE+ eaAt) = YH(E)],
YA- 1458 a=0
=1 f+m¥h a=1
_%4_#% ,a=2

e Za jednacinu odrzanja mase suspendovanog nanosa frakcije ks:

1
ga(€ + ea At t + At) = go(§,t) — 7(ga )
g

s A A A
_ﬁcks [Y(ﬁ +ealdt,t) = 25(6,8) + (6 — eaAt,t)]
S A A
i [Cunl€ + ) = Cun(©)] | € + eadtet) = (610

+AtG,,

BY
Ga = — (Ejs! = Dig?),
p
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Ol AY
eq __ GA
gOé - Ck2e U
_ CrsAu

2e

A

—)\CkSA ,OJZO
+%Ck:sA ,Oézl )

+5CksA ,a=2.

€s

T AtY(r, — 0.5)¢2’

e Za jednacinu odrzanja mase aktivnog sloja frakcije ks:

1
(ha — REY) + AtH,,

Th

ha(€ + eaAt,t + AL) = ho (&, 1)

Ho =Y (Dt = Bz + (Sp)y,)

ps(l - pb)ﬁksEmY ya=0
hzq - 351;52 ,Oé = ]. 9
- =2

e Za globalnu jednacinu odrzanja mase aktivnog sloja i stratumas:

(€ + b, E+ AL) = ma(€,t) — ——(ma — m) + AtM,.
Tm

KS
Mo=YY (D' - EY).
ks=1

ps(L—pp)ZY =0
| Ks
mel = 3¢ 2. Prs sa=1
ks=1
| KS
_%Z¢k ,Oé:2
\ k=1

Kako bi predlozeni model mogao da se primeni na otvorene tokove sa prirodnom geometri-
jom, izvedeni su grani¢ni uslovi za pritoke i grananje toka. Dat je kratak opis kompjuterskog
koda sa algoritmom koji ¢e se koristiti za testiranje modela, sa posebno objasnjenim de-
taljima koji se ticu implementacije prirodne geometrije i optimizacije samog modela.

Predlozeni model neustaljenog tecenja je testiran na tri slucaja: ustaljeno tecenje u
prizmati¢nom kanalu, neustaljeno tecenje u neprizmati¢cnom kanalu i neustaljeno tec¢enje u

prirodnom vodotoku. Ustaljeno tecenje testirano je na prizmati¢nom kanalu pravougaonog
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popre¢nog preseka duzine L = 1000 m, 8irine B = 100 m, konstantnog nagiba dna Sy =
0.001. i Maningovog koeficijenta n = 0.025 m~1/3s. Kota nivoa Z; = 1.20 m je postavljena
kao nizvodni, a konstantan proticaj @, = 100.0 m3 /s kao uzvodni granicni uslov. Posma-
trane su dve dispozicije racunske mreze, ekvidistantna i neekvidistanta.Rezultati latis Bol-
cmanovog modela su poredeni sa rezultatima odgovaraju¢eg modela u softverskom paketu
HEC-RAS. Duzina simulacije je 50 min, sa vremenskim korakom At = 10 s za ekvidistantnu
i At =7 s za neekvidistantnu mrezu.Za obe ra¢unske mreze su prikazana poredenja nivoa
slobodne povrsine za ¢t = 50 min, nivogrami i hidrogrami. Dobijena su odli¢na poklapanja
za obe dispozicije mreze.

Neustaljeno te¢enje u neprizmatiénom kanalu je testirano na kanalu duzine L = 24000 m,
konstantnog nagiba dna Sy = 0.0005 i Maningovog koeficijenta n = 0.0667 m~1/3s . Si-
rina kanala je odredena izrazom B = 8.0 + 12.0(xz/L), gde je x odgovarajuca stacionaza
popre¢nog preseka merena od uzvodne granice modela. Formirane su dve racunske mreze,
ekvidistantna i neekvidistantna. U slucaju ekvidistantne fizicke mreze rastojanje izmedu 25
rac¢unskih tacaka je po Az = 1000.0 m, dok je u slu¢aju neekvidistantne mreze 25 racunskih
tacaka formirano tako $to su uvedena proizvoljna, nejednaka rastojanja izmedu poprecnih
preseka koja se kre¢u u rasponu od Az = 500.0 = 1700.0 m. Rastojanje tacaka u trans-
formisanoj rac¢unskoj mrezi je A = 1.0 za oba sluc¢aja. Uzvodni grani¢ni uslov je ulazni
hidrogram u obliku poplavnog talasa, dok je nizvodni grani¢ni uslov normalna dubina dobi-
jena iz Sezi-Maningove (engl. Chezy-Manning) jednacine. Stabilnost modela je postignuta
za 7 = 0.501 i At = 2.0 s oba slu¢aja. Ukupno 12600 rac¢unskih koraka je izvrgeno za simu-
laciju dugu 420.0 min. Validacija rezultata je izvrsena poredenjem sa rezultatima HEC-RAS
modela. Uporedeni su nivogrami i hidrogrami za po ¢éetiri proizvoljna popre¢na preseka za
obe racunske mreze. Rezultati se jako dobro poklapaju.

Poslednji korak je primena latis Bolecman modela na neustaljeno tecenje u vodotoku sa
prirodnom geometrijom. Modelirana je deonica reke Dunav od Smedereva do HE Perdap 1,
duzine 145.88 km, koja sadrzi ¢etiri pritoke: Velika Morava, Nera, Pek i Porecka i dva re¢na
ostrva. Za kreiranje modela koris¢ena su morfoloska merenja geometrije reke Dunav (podaci

Republickog Hidrometeoroloskog zavoda Srbije). Na datoj deonici, postoje merenja za 160
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poprecnih preseka na medusobnom rastojanju u rasponu od 800=-1300m. Kompletna deonica
je podeljena na devet sekcija, koje su razdvojene pritokama i ra¢vanjima. Ulazni hidrogram
za mesec august 2006 godine na mernoj stanici Smederevo je uzvodni grani¢ni uslov, dok
je nivogram za isti vremeski period na mernoj stanici HE Perdap I postavljen kao nizvodni
grani¢ni uslov (podaci RHMZ). Pritoke Nera, Pek i Porecka nemaju znacajan uticaj na tok
reke Dunav, zbog malih proticaja, dok je za pritoku Velika Morava proticaj Q; = 90 m3/s
uveden kao unutrasnji graniéni uslov. Maningov koeficijent je n = 0.0318 m~/3s, trans-
formisano rastojanje A = 1.0, a vreme relaksacije 7 = 0.57. Stabilnost modela je postignuta
za vremenski korak At = 10.0 s. Pre simulacije neustaljenog tecenja, model je stabilizovan
za ustaljeni rezim, tako $to su nametnuti konstantni graniéni uslovi Q = 2570.0 m?/s i
Z = 69.44 m u trajanju od cetiri dana. Iste te vrednosti su koris¢ene i kao pocetni uslovi
za ceo model. Nakon stabilizacije modela, konstantni grani¢ni uslovi su zamenjeni ulaznim
hidrogramom i izlaznim nivogramom. Simulacija neustaljenog tecenja u trajanju od 31
dana je postignuta sa 267840 koraka za 12.34 min. Za poredenje rezultata koris¢ena su
¢asovna merenja nivoa slobodne povrsine za merne stanice Golubac (rkm 1042.00) i Donji
Milanovac (rkm 995.00) i proticaja na mernoj stanici HE Perdap I tokom augusta 2006. go-
dine. Uporedeni rezultati pokazuju dobra poklapanja. Prose¢na odstupanja nivoa slobodne
povrsine su oko 10.0 cm, §to je zadovoljavajuce za izrazito neustaljen rezim tecenja. Najvecte
odstupanje je 18 ¢m u periodu od 16. do 21. augusta na mernom mestu Golubac. Kod
poredenja proticaja, prosecna odstupanja su u okviru 200.0 m?/s, a maksimalno odstupanje
od 840.0 m3/s je primeéeno samo jednom, 10. augusta.

U drugoj fazi istrazivanja testiran je model transporta nanosa. Prvo je testirana jed-
nacina advekcije i difuzije, a zatim kompletan model neustaljenog tecenja sa transportom
suspendovanog nanosa u vodotoku sa prirodnom geometrijom.

Latis Bolcman model advekcije i difuzije je testiran na prizmati¢cnom kanalu duzine
L = 5000.0 m, konstantne povrsine poprec¢nog preseka A = 1.0 m?. Broj frakcija je KS =
1. Kao pocetni grani¢ni uslov postavljen je raspored koncentracije duz kanala sa naglim

promenama po jednagini:

CU _(T'_QCO)2

e destq
VeEsTto

Cry'(x,0) =



gde je Cy = 3308.75, t9 = 3484.8 s, xop = 1400.00 m, €5 = 3.0 m/s, a = je prostorna
koordinata. Uzvodni grani¢ni uslov je odreden jednacinom:

C —(—ut—xq)?
G (0.1 = ——S__o
Esﬂ'(to + t)

gde je t vreme, a brzina u = 0.5 m/s. Opet su formirane dve ra¢unske mreze, ekvidistantna
sa rastojanjima Az = 50.0 mi neekvidistantna sa rastojanjima od 40.0 = 90.0 m. Formirana
je 101 prostorna tacka. Vreme simulacije je T" = 2520.0 s, rac¢unsko rastojanje poprecnih
preseka A¢ = 1.0, vreme relaksacije 7 = 0.76, a vremenski korak At = 1.0 s. Rezultati su

uporedeni sa analitickim resenjem jednac¢ine u obliku:

—(z—u~t—zo)2
C:p(1'7 t) = CO e des (t+t0)
857T(t0 + t)

Postignuta su odliéna poklapanja za obe prostorne mreze.

U poslednjem primeru testiran je latis Bolcman model neustaljenog tecenja sa trans-
portom suspendovanog nanosa u prirodnom vodotoku. Modelirana je deonica Dunava
duzine 176.29 km, od merne stanice Bezdan (rkm 1430.44) to merne stanice Novi Sad
(rkm 1254.15). Na osnovu dostupnih morfologkih podataka (RHMZ), formirana je pros-
torna mreza od 73 racunske tacke, koje odgovaraju izmerenim popre¢nim presecima na
medusobnim rastojanjima od. 850.00 + 5460.00 m. Kao uzvodni grani¢ni uslovi korisc¢eni
su izmerene prosectne dnevne vrednosti proticaja i koncentracije suspendovanog nanosa
na mernoj stanici Bezdan u toku maja 2006. godine. Za nizvodni grani¢ni uslov ko-
ritena su dnevna merenja nivoa u istom vremenskom periodu na mernoj stanici Novi
Sad. U principu, model neustaljenog tec¢enja radi nezavisno, dok model suspendovanog
nanosi koristi vrednosti fizickih veli¢ina koje su izracunate u prethodnom koraku modela
tecenja. Vreme relaksacije za latis Boleman model neustaljenog tecenja je 75 = 0.58. Usvo-
jeno vreme relaksacije za model nanosa je 7, = 0.82, broj frakcija je KS = 1, maseni
koeficijent difuzije e5 = 20.0 m/s. Stabilnost modela je postignuta za vremenski korak
At = 10.0 s. Transformisano rastojanje je A¢ = 1.0. Prvo je postignut ustaljen rezim
tecenja za Z = 85.77 m i Q = 4550.0 m?/s. Nakon stabilizacije modela tecenja, zadrzava-
juéi isti rezim tecenja, model je stabilizovan i za ustaljeno stanje transporta suspendovanog

nanosa sa Cj, = 0.0259 kg/m>. Nakon toga je usledila simulacija neustaljenog tecenja sa



transportom nanosa u trajanju od 31 dana. Rezultati su uporedeni sa merenjima RHMZ-a.
Poredeni su nivoi slobodne povrsine za merno mesto Backa Palanka (rkm 1298.66). Dobijeni
rezultati su zadovoljavajuci. Srednja odstupanja su oko 10.0 ¢m, dok je maksimalno odstu-
panje 25 ¢m. Merenja suspendovanog nanosa su dostupna samo za mernu stanicu Bezdan
i ta merenja su iskoris¢ena kao uzvodni grani¢ni uslov. Kako bi se nadoknadio nedostatak
podataka koji bi se mogli koristiti za validaciju modela, formirana je zavisnost izmedu proti-
caja i koncentacije suspendovanog nanosa na osnovu dostupih podataka. Dobijena zavisnost

je aproksimirana jednacinom:
C(Q)=4.0-107.Q?+5.0-1075Q — 0.0029.

Rezultati latis Bolcman modela suspendovanog nanosa uporedeni su sa vrednostima koje su
dobijene dobijene zavisnosti na izmerene proticaje na mernom mestu Ledinci (rkm 1260.00)
u toku maja 2006. Dobijeni rezulati su zadovoljavajuéi. Srednja odstupanja su reda veli¢ine
0.002 kg/m?, a maksimalna su 0.004 kg/m3. U okviru daljeg istrazivanja planirano je da se
postojetem modelu Dunava doda model nanosa na i pri dnu i da se dobija celokupna slika

neustaljenog tecenja sa transportom nanosa u prirodnim vodotocima.

X1
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CHAPTER I

INTRODUCTION

The main goal of this research is to create a robust mathematical tool that simulates an open
channel unsteady flow with sediment transport in complex network of natural watercourses
which can efficiently manage variety of hydraulic states using the recently developed lattice
Boltzmann method. The accent is given to development of the unsteady flow model that
can menage the irregularities as a consequence of natural geometry. Natural watercourses
imply complex longitudinal and transverse geometry. Cross-sections are of irregular shape
and each differs from another, which means there is no mathematical dependence (or it is
very complicated to obtain) between geometrical properties like cross-sectional area, depth,
wetted perimeter etc.. This implies a challenging task to create an optimal model, struggling
between high accuracy and short computational time. Longitudinal geometry of natural
watercourses includes tributary inflows and branching, when a single water flow is separated
into two or more separate streams, and then merges back together. This changes amplify
unsteadiness of the flow. Natural watercourses go through variety of complex hydraulic
states, like shock waves and changes between regimes, which are imposed by the geometry
of the watercourse and hydrometeorological conditions. Sediment transport is in a tight
correlation with flow regime, the velocity of the water flow moves the sediment particles.
Suspended mixture consists of different sediment particle sizes that react to current flow
conditions, resulting in local aggradation or degradation of the river bed.

During past years researchers have been using several methods to study unsteady water
flow with sediment transport in an open-channel network. These methods include physical
model based experimental methods, field measurements and numerical models. It has been
shown that the combination of these methods gives the best results. Numerical models
are used to solve the governing system of equation that describes the phenomena, field

measurements are used to calibrate and verify the results, and the results of laboratory



experiments can be used for further development of individual parts of the model. Numerical
models take the lead compared to other methods, by virtue of the ability to anticipate the
consequences that some events might have and the fact that one numerical model can be used
for a variety of different problems. These advantages are the basic reason of existence of a
large number of linear, plane and spatial numerical models. Dimension of the model depends
on the problem. Planar and spatial models give a detail image of the observed phenomena
in two or three dimensions, respectively, but demand complex data input (in terms of
initial and boundary conditions) and a long time is necessary for the computer to perform
simulations. Linear models are less demanding in terms of input data and computational
time, which is why many researchers choose this kind of model, especially for long-term
simulations. Some available unsteady flow models in open-channel network and sediment
transport models are given in Chapter I1. Along with these models, an overview of the lattice
Boltzmann models is presented. Lattice Boltzmann method (LBM) is a recently developed
powerful numerical tool, developed with purpose to solve ordinary and partial differential
equations. Its strength lies in the ability to easily embody complex physical phenomena,
spanning from multiphase flows to interactions between the fluid and it’s surroundings. The
LBM is an explicit method, where fluid flow is described as particles that stream along the
lattice links and collide with its neighbors. The fact that collision and streaming processes
are local leads to the possibility of parallel programing, resulting with significantly shorter
computational time. Chapter III introduces the basis of the lattice Boltzmann method and
the general overview of the method.

In Chapter IV one-dimensional unsteady open-channel flow model and one-dimensional
sediment transport model are formulated using the lattice Boltzmann method. One-dimensional
unsteady open-channel flow is described by the appropriate form of the Saint-Venant equa-
tions (SVE), which eliminates the bed slope term from the system of equations, leading
to a more flexible and practical form of the SVE. For the sediment transport the active
layer concept is used, where sediment transport domain is divided into three subdomains:
suspended-sediment, near-bed sediment (active layer) and bed sediment (stratum). Sedi-

ment mixture is modeled as a collection of appropriate sediment-fraction sizes. In order to



overcome one of the major limitations of the LBM, uniformity of the lattice structure, geo-
metric transformation based on metric mapping between the physical and computational
domain is introduced. In this way, terms defined in a non-equidistant physical domain can
be calculated in a equidistant computational grid. Spatial non-uniformity is managed by
the transformed equations rather than with the numerical model itself. Corresponding LBM
models are formed based on the transformed equations. A LBM model for the Saint-Venant
equations (LABSVE) is autonomous, while the LBM model for sediment transport can be
attached to a flow model. Corresponding computer code in the programming language
FORTRAN is created with the purpose to solve the governing equations. The implemented
algorithm needs to be simple in order to achieve short computational time. Complex geom-
etry is accompanied with great amount of data, therefore, an extra effort has been given
to optimize the code, in order to unburden it of any unnecessary calculations. The main
features of the algorithm are explained in Chapter V of the thesis.

In order to test and validate the proposed one-dimensional LBM, five case studies have
been performed in the Chapter VI. First, water flow model has been tested on three exam-
ples: a steady non-uniform flow in a prismatic channel, an unsteady flow in a non-prismatic
channel, and an unsteady flow in a natural watercourse - Danube River case study. Verifica-
tion of the results obtained from the first two LBM models is conducted by comparison with
corresponding HEC-RAS models, while in the Danube River case study LBM model results
are compared with the measured data obtained by standard geodetic survey by the Repub-
lic Hydro-meteorological service of Serbia (RHMZ). Test-example of suspended-sediment
advection-diffusion equation lattice Boltzmann model has been performed, and the results
are compared with the analytical solution of the governing equation. In order to verify the
proposed unsteady open-channel flow with sediment transport on a realistic physical model
with natural geometry another Danube River case study is performed,and the results of the
LBM model are compared with the available field measurements obtained by the RHMZ.
To compensate insufficient suspended-sediment empirical data, additional statistical data

processing has been performed, based on the available measured values.



CHAPTER 11

LITERATURE OVERVIEW

Open channel hydraulics has been, and still is very popular topic among the researchers. All
of them share the tendency to develop more and more powerful mathematical models that
solve robust physical domains and make long-term simulations in short computational time.
In this Chapter currently available mathematical models from the domain of computational
fluid dynamics (CFD) are presented. Furthermore, this Chapter describes the evolution of
the lattice Boltzmann method, from basic to the most recent models in the area of river

hydraulics..

2.1 One-dimensional flow models

In order to develop mathematical model that simulates the hydrodynamic processes of
open channel unsteady flow in natural watercourses, several computational fluid dynamics
numerical methods have been used in the past. The majority or authors choose the finite
differences method, which is popular due to its simplicity and exact physical meaning of vari-
ables in equations. According to this method differential equations are approximated with
finite difference equations, in which finite differences approximate the derivatives. Examples
of such models are the scheme proposed by Lax and Wendroff (1960) for linear advection,
and the scheme that Lax originally proposed for non-linear advection, which can also be
applied for linear advection (Lax, 1954). In order to reduce the effect of dispersion on the
results, the authors Appadu et al. (2008) combined MacCormack and Lax-Friedrich’s two-
stage scheme. Authors Ewing and Wang (2001) gave a historical overview of the schematic
methods of final differences for advection modeling. From the shown models, the finite
difference method was used by Yang and Simoes (2008), Bhallamudi and Chaudhry (1991)
used the finite difference method, Bhallamudi and Chaudhry (1991) applied the McCormack

scheme with the explanation that the scheme is explicit and easy to use and automatically



eliminates the iterative calculations and the need for inversion of large matrices. Huang
et al. (2008) and Kuiry and Bates (2010) used the finite volume method, while Yeh et al.
(1995) used the method of characteristics. The four-point implicit finite-difference Preiss-
man scheme (1961) and the method known as Holly-Preissmann method (1977) are the
most widely used methods in free-surface one-dimensional subcritical numerical modelling
((Holly and Rahuel (1990a,b), Wu et al., (2004); Fang et al. (2008), Islam et al. (2008), Sart
et al. (2010)). In order to find a particular cell face value, Leonard (1979) has introduced
Quadratic Upstream Interpolation for Convective Kinematics (QUICK). Furthermore, Ab-
bott (1979) solved characteristic form of the Saint-Venant equations by applying the Method
of characteristics (MC) and the Hartree method.

One of the main advantages of one-dimensional models is their ability to simulate long-
term events in complex water flow systems. Starting point of a long-term open-channel flow
simulation models were quasi-steady models (Yang et. al. (1985), Karim et al., (1987)).
Model presented by Karim et al. (1987) was originally proposed to simulate the flow in
just one section, but it was later upgraded to also allow tributary flows. Unsteady flow
model CHARIMA (Yang, 1986) is used for shorter simulations. This model includes two
approaches to solve the given problem. In the case of a steady flow simulation, it uses
the energy equation obtained by neglecting the increase of the momentum over time in a
momentum conservation equation, while for an unsteady flow simulation, the program uses
a complete Saint-Venant equations. Similar to the CHARIMA, the popular commercial
HEC-RAS software (Brunner, 2010), also uses the energy equation for steady situations,
and Saint-Venant equations the unsteady flow simulations. Today, existing models can
simulate unsteady flow in the open-channel network (models allow an arbitrary number
of tributaries connected to the main stream), such as Channel Network Model (Husain
and Eqnaibli, 1988). Authors Nguyen and Kawano (1995), Fang et al. (2008), Vieira and
Wu (2002a), Wu et al. (2004) and DHI (2009) introduced models that simulate flow in
the open-channel network, where models Vieira and Wu (2002a) and Wu et al. (2004) also
included the possibility to model hydraulic structures. Models that also allow the branching

of the network (separating the stream around an island into two or more smaller flows, and



then merging back together) are BRALLUVIAL (Holly and Spasojevic, 1985), CHARIMA
(Yang, 1986), CARIMA (Holly and Parrish, 1993), DUFLOW (Clemmens and Holly, 1993),
CanalMod by Islam et al. (2008) and MIKE 11 (DHI, 2009). In recent years attempts are

made to combine linear and plane models (Chen and Zhu, 2012).

2.2 Sediment transport models

Sediment transport followed with river bed deformations consist of variety of complicated
processes, for which there is no generally adopted mathematical formulation. By separating
suspended-sediment from the bedload sediment, allows us to assume that the suspended
particles move at the approximately same speed as the fluid particle, and that their move-
ment is continuous.

The first difference in modeling approaches refers to the way in which the sediment
mixture is described. A large number of existing sediment transport models are based on
the assumption that the mixture is uniform, or the mixture is represented with a char-
acteristic particle size (model SUTERNCH-2D by van Rijn et al. (1990) or FAST2D by
Rodi (2000)). The first big progress in this area are the models that describe the sediment
mixture as a mixture of different size-classes. Model BRALLUVIAL (Holly and Spasojevic
(1985)) is based on a quasi-steady model of water flow and sediment transport and uses
this approach where a sediment mixture is represented as a mixture of different size-classes.
Model SEDICOUP (Holly and Rahuel (1990)) solves the Saint-Venant equations with the
suspended-sediment and global active-layer and stratum mass-conservation equations of the
mixture.

The formulation of the bedload sediment equations and exchange mechanisms are not
uniquely defined. There are three basic ways of modeling the process at bed and near-
bed domain. According to the first approach the active-layer is homogeneous (Karim and
Kennedy (1982), Karim et al. (1987)). Some models that rely on this concept are BRAL-
LUVIAL model by Holly and Spasojevic (1985), CHARIMA by Holly et al. (1990), models
by Armanini and Giampaolo (1988), Rahuel et al. (1989), NMMOC model by Yeh et al.

(1995) and many others. In the second approach sediment particle moves as a bedload,



and the thickness of the active-layer is equal to the jump height of these particles. Such
models are FAST2D by Bui et al. (1998) or Rodi (2000), FAST3D by Wu et al. (2000),
or the later version presented by Bui and Rutschmann (2006,2010). The third approach
is the active-layer and active-stratum approach (Spasojevic and Holly (1990)), where it
is considered that the active-layer is consisted of sediment grains potentially exposed to
movement, as well as grains that are already moving as a bedload sediment. Models that
rely on this approach are MOBED2 from the founders of the concept and author Spaso-
jevic and Holly (1990), SEDICOUP by Holly and Rahuel (1990), model CH3D-SED by
Gessler et al. (1999), models by Yang and Simoes (2008) and Hung et al. (2009), model
2DVONASK of author Budinski (2011), and others. Continuous interaction of the mixture
of water and sediment causes a constant change in the distribution of sediment fractions in
space and time, which also determines the availability of a certain fraction to participate
in the exchange processes between suspended and bedload sediment. Model by Struksima
et al. (1985) does not include suspended-sediment, it exclusively simulates bedload sedi-
ment. Model BRALLUVIAL (based on the concept of homogenous layer) determines the
change of the bed elevation from the mass-conservation equation of the mass written for
each fraction. The thickness of the homogeneous layer changes during every time interval
and the thickness of the active-layer is raised or lowered. The CHARIMA model (Holly
et al. (1990)) is a linear model that solves the system of the suspended-sediment, active
layer and active-stratum mass-conservation equations for an arbitrary number of fractions,
where the governing equations are defined for each fraction separately. Similar models are

from the authors Holly and Rahuel (1990) and Wu et al. (2004).

2.3 Lattice Boltzmann models

The lattice Boltzmann method (LBM) is relatively new (developed about two decades ago)
numerical technique defined in mesoscopic level. It was derived from the lattice gas au-
tomata. Statistical noise of the newly introduced model was by eliminated by McNamara
and Zanetti (1988) and Shan and Chen (1993). Still, complicated collision operator made

the method challenging for wider application. That problem was solved by introduction



of the single relaxation time Bhatnager, Gross, and Krook (LBGK) (1954) scheme (Mar-
tys and Chen (1996), Chen and Doolen (1998)). Now it could recover the Navier-Stokes
equations. By introducing the two-relaxation time (TRT) and the multiple-relaxation time
(MRT) schemes, anisotropy in advection and anisotropic-dispersion equations (AADE) is
by solved (Ginzburg (2005) and Yoshida and Nagaoka (2010)). The single-phase transient
flow in pipes by using adaptive grid approach is analyzed by Budinski (2016). Furthermore,
LBM is an ideal candidate for parallel processing on high performance computers (Shan and
Chen (1993); Martys and Chen (1996)). The lattice Boltzmann method is studied by many
authors and applied on variety of problems from the domain of the river hydraulics. A multi-
component LBM was introduced by Gunstensen and Rotman (1991). Ladd (1994) analyzed
particulate suspension using the LBM. Application of the LBM on isotropic groundwater
flows was examined by Zhou (2007) and Budinski et al. (2015).

The LBM of depth averaged flow equations (LABSWE) was initially introduced by
Salmon (1999). One-dimensional shallow water equations LBM was introduced by Frand-
sen (2008). Introducing centred scheme for the force term (2004) and deriving a lattice
Boltzmann model for the shallow water equations with turbulence modelling (LABSWE??)
(2011) Zhou improved the LABSWE. Zhou (2010) also developed the rectangular lattice
Boltzmann model applicable to complex geometry models. Budinski (2014) introduced the
MRT-LBM for shallow water equations (SWE) transformed in curvilinear coordinates. The
first application of the LBM on open-channel using the simpler form of the Saint-Venant
equations has been preformed by van Thang et al. (2010). LBM model of one-dimensional
shallow water equations was also done by Frandsen (2010), and Liu et al. (2015) introduced
the non-prismatic terms into the model.

Advection—diffusion problems have been an important area of research for many years,
and the LBM found its use in modelling such processes. O’Brien et al. (2002) compared ex-
perimental data to a 2D lattice Boltzmann method for advection—diffusion model in porous
media flow. Furthermore, Ginzburg (2006) utilized a LBM and advection and anisotropic

dispersion equations (AADE). Zhou improved the LBM for solute transport (2009) and Li



and Huang (2008) combined a hydrodynamic model with advection and anisotropic disper-
sion using the LBMSWE. Servan-Camas and Tsai (2009) analyzed the stability constraints
for the LBM for the ADE. Peng et al. (2011) showed that for two-dimensional LBM solute
transport model in shallow water the MRT terms have better stability than the BGK terms.
Ginzburg (2013) showed that numerical diffusion can be eliminated by various anisotropic
schemes. Patel et al. (2016) introduced a discontinuous Galerkin lattice Boltzmann scheme,
and Markl and Korner (2015) presented a new no-flux free surface boundary condition for

the ADE problems.



CHAPTER III

THE LATTICE BOLTZMANN METHOD

Fluid motion can be described on three scale-levels: microscopic, mesoscopic and macro-
scopic (Fig.1). In the macroscopic approach (the mechanics of continuum) regular or partial
differential equations are obtained by applying the conservation laws of mass, momentum
and energy on a infinitesimal control volume. These equations are solved using various
numerical methods defined in the conventional computational fluid dynamics (CFD). In the
microscopic scale, studied by the molecular dynamics (MD), the medium is considered to
be made of small particles, atoms or molecules, and these particles collide. Newton’s second
law equation (the momentum conservation equation) is applied in order to obtain the solu-
tion. In between, is an approach at mesoscopic level, the lattice Boltzmann method (LBM)
that studies the microdynamics of particles by using simplified kinetic models, representing
properties of a collection of particles by a distribution function. LBM combines other two
scales, resulting with simple algorithm structure, possibility of parallel programing, easy
application for complex domains, possibility to handle multi-phase and multi-scale models,
simple implementation of boundary conditions and many more benefits. These appealing

features make LBM a powerful numerical tool for simulating complex fluid systems.

3.1 The basic lattice Boltzmann method

The lattice Boltzmann method can be considered to be a special numerical method of
solving the Boltzmann equation. Others consider that the lattice Boltzmann equation

(LBE) evolved from the lattice gas cellular automata (LGCA).

3.1.1 Lattice Gas Cellular Automata (LGCA)

According to the lattice gas cellular automata the fluid is treated as a set of particles on a
regular lattice with certain symmetry properties. Every particle interacts with its neighbor

following some described rules, through collision and streaming steps. Every lattice particle
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Figure 1: Microscopic, mesoscopic and macrosopis scale.

examines its own state and the states of some of its neighbors at every time step and then
resets its own state. The prescribed rules with initial and boundary conditions, determine
the evolution of particles in time. The behavior of the fluid at macroscopic scale is obtained
as statistical collective result of the micro-dynamics of fluid molecules.

The first LGCA model, the HPP model, was developed by Hardy, Pomeau, and de
Pazzis (1976). A two-dimensional square lattice is used, where from any lattice position
gas particles can move in the directions of the four nearest neighboring positions along the
lattice lines, as shown in Fig.2.The collision of the HPP model follows the head-on rule:
when two particles move to the same position with opposite velocities, after the collision
their velocities will turn around for 90° after the collision, and in any other case the particle
velocities remain unchanged.

The discrete kinetic equation describes the motion of the particles:

ni(x + ¢;0t, t + 0t) = ni(x,t) + C; (ni(x,t)), (1)

where n;(x,t) represent the number of particles moving with discrete velocity ¢; at node
x and time ¢, Ot is the time step, C; (n;(x,t)) is the collision operator, that represents the

influence of particle collisions. The discrete velocity set is given by

c; = ce;, (2)

11



Figure 2: Lattice and discrete velocities of the HPP model.

where e; = (1,0), e3 = (0,1), e3 = (—1,0), e4 = (0,—1). The lattice speed is ¢ = §,/d¢,

where d, is the lattice spacing. The collision operator is given by the expression:
Ci = nig1nig3(1 — ni)(1 — nigz2) — (1 — nig1) (1 — nies)ninies, (3)

where “@” represents the modulo 4 addition. In this way C; conserves mass, momentum

and energy:

Z}z:q (4)
ZeiCZ’ = 0,
7 e?

The evolution of the can be decomposed into two steps: collision and streaming. The
collision step is:

ni(x,,t) = ni(x,t) + C; (ni(x,t)), (5)

while the streaming step can be expressed as:
ni(x + ¢;0t, t + 0t) = nj(x,1). (6)

The macroscopic physical variables are the ensemble average of the distribution function of

12
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Figure 3: Lattice and discrete velocities of the FHP model.

the Boolean number f; (n;) :

> meifi = pw,

@2l e T
i

where m is the molecular mass of the gas, p is velocity and T is temperature. The HPP

model satisfies the basic conservation laws, but the macroscopic variables do not satisfy the

continuum equations due to the insufficient symmetry of the square lattice.

Frisch, Hasslacher, and Pomeau (1986) proposed their hexagonal LGCA model called
the FHP model after the authors. Every node of the lattice, shown in Fig.3, has six
nearest neighbors. The discrete velocities are ¢; = c¢(cos 0;,sin cos6;), where 0; = w,
for i = 1 + 6. The state of FHP model can be described by six Boolean numbers n; that

represent the number of particles moving with velocity c;. Five different collision outcomes

are shown in Fig.4. In cases when one input state corresponds to two possible output states

13
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the output is chosen randomly. The collision operator can be expressed as:
Ci = nig1Nig3niesNiNie2Nies — Niel NiesMiesNiNie2ie (8)
+rnie1NieaNiNieeMiesTies + (1 — 1)nig2niesNilie1 NiesNisd
—NiNi@3Nig1 Nig2NigaNis5,
where “@” represents the modulo 6 addition, and 7 is the random number chosen from

the interval [0,1]. At the equilibrium state the collision operator evolves to Fermi-Dirac

distribution function:

eq_ P c;-u Q;: uu
fz‘ - 6 C2 (p) 20;1 i (9)

where ¢2 = ¢?/2 is the sound speed, G(p) = (6 — 2p)/(6 — p), and Q; = c;c; — c2I. After

some transformations fluid density and velocity satisfy the equations:

V-u=0, (10)

g—? +u-Vu=-VP +vVu (11)

Egs. (11) and (10) resemble the incompressible Navier-Stokes equations.
With the tendency to develop a 3D LGCA model, the idea was to project the 4D
Face-Centered Hyper-Cube (FCHC) lattice (d’'Humiéres et al. (1986)), back onto three-

dimensional space. This approach is quite complicated, due to a very large number of

14



possible states in the collision rule (224). Regardless, many simulations of the multiphase
and complex flows have been made base on this principle.

The main advantages of the LGCA models are easy algorithm implementation, no round-
off errors, unconditional stability of the numerical model and algorithm suitable for parallel
programing. The main disadvantages of the LGCA models are statistical noise from the
Boolean variables, the dependence of velocity of the pressure, and the violation of the

Galilean invariance.
3.1.2 From LGCA to the lattice Boltzmann equation

The lattice Boltzmann equation was originally introduced by Frisch et al. (1987), but
McNamara and Zanetti first proposed LBE as a computation method (1988). Their idea
was to replace the Boolean variable n; by the real-valued distribution function f;, while the
collision rule for f; remained is the same as for n;. The evolution equation of the McNamara

and Zanetti method (MZM) yields to:
fi(x 4+ ¢;0t, t + 0t) — fi(x,t) = Qi (f(x,1)), (12)

where §; (f(x,t)) is the collision operator, that remained rather complicated. Soon after,
Higuera and Jimenez proposed an improved version of the model (1989) by assuming that

distribution function f; is close to its equilibrium state f;? :

fi= 1+ 1 (13)

where f"“? is the non-equilibrium part or the distribution function. This form of the

distribution function leads to linearized collision operator:
Qi(f) = Kij(fi = £{), (14)

where K;; = 0€;/0f; is the collision matrix. Higuera et al. (1989) introduced the HSB
model, with collision matrix independent of LGCA. The equilibrium distribution function

can be written as:

¢ _ g |- 4 pE™ do)Q; :
[ 0 bd0+ 2 + G(dp)Q; : uul,

7

(15)
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Figure 5: The influence of the external force.

where D is the spatial dimension, b is the number of the discrete velocities, bdy = p, is the

mean density. Function G(dp) and tensor Q; are:

_ D*(1 - 2dy)
= S o
62
Qi = Cici_BL (17)

The collision matrix is further simplified by several groups of authors independently
(Chen et al. (1991), Koelman, (1991), Qian et al. (1992)). They introduces the model

using the simplified BGK collision operator in form:

NP =~ (= 1), (13)

where 7 is the relaxation time. Models that use this form of the collision operator are

called LBGK at single-relaxation time (SRT) models, end the evolution LBE is as follows:
1

filx + ¢;0t, t + 0t) — fi(x,t) = —;(fi - f9). (19)

3.1.3 From the Boltzmann transport equation to lattice-Boltzmann equation

The lattice Boltzmann equation can also be derived from the Boltzmann equation. If

the system is described by distribution function f(r,c,t),which represents the number of

16



molecules at time ¢ positioned between r and r + dr, that have velocities between ¢ and
¢ + dc. Under the influence of an external force F, the gas molecule of unit mass will, in
time dt, change its position from r to r + cdt, and its velocity from c to ¢ + Fdt, as shown
in Fig.5. If collisions between molecules take place after applying the external force, the

difference between the numbers of molecules in the interval drdc, will be:
f(r+cdt,c+Fdt,t+dt) — f(r,c,t) = Q(f)drdedt. (20)

The rate of change between final and initial status of the distribution function is called
collision operator 2. Dividing the above equation by dtdrdc and as the limit is set to

dt — 0, the above equation yields to:

a _

= =), 21)

The LHS of the Eq.(21) can be written as:

a _of of | of

where a = dc/dt is the acceleration, which can be expressed from the Newton’s second law

as a = F'/m. Now, the Boltzmann transport equation can be written as:

of of  Fof
o T o T mae = U 2

Without an external force, the Boltzmann equation yields to:

of B
Sohe V=), (24)

The relation between the above equation and macroscopic quantities is as follows:
prt) = [milecitde, (25)
plr.tulet) = [ mefir.e i (26)

p(r,t)e(r,t) = ;/mugf(r,c,t)dc, (27)

where m is the molecular mass, p(r, t) is density, u(r, ¢) is fluid velocity, e(r, t) is the internal

energy, and u, = ¢ — u is the relative velocity.
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The essential problem when solving the Boltzmann equation is complicated nature of
the collision term. Bhatnagar, Gross and Krook (1954) introduced a simplified model for

collision operator, changing the collision matrix with:

Af) = (f - f), (28)

where f{? is the equilibrium distribution function, parametrized by local conserved quan-
tities, while 7 is typical time-scale associated with collisional relaxation to the local equi-
librium. After introducing the BGK approximation, the Boltzmann equation (28) yields
to:

of

1
Lo Vf=(f1- ). (29)

In the lattice Boltzmann method, Eq. (29) is discredited and valid along the specific

direction ¢:

Afi
ot

1
+ C; - Vfl = ;(fz — fieq). (30)
After discretization, the above equation yields to the lattice Boltzmann equation:

il + @ L+ AL = filr0)+ (1) — il ). (31)

3.2 The equilibrium distribution function

When applying the LBM for different problems, the crucial element is to find the proper
equilibrium distribution function (EDF). For particles moving in a medium with macro-

scopic velocity u, the normalized Maxwell distribution function can be written as:

3 (e—)2
- gyt o
Which can further be written as:
—302 c-u—u2
= glge e, (33)

Applying the Taylor series expansion for the exponential term the above equation yields to:

P — 32 . _§ 2
27r/3e 2“ 114+ 3(c-u) ut 4. (34)

F= 2
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Figure 6: 1-D lattice arrangements.

The general form of the equilibrium function along the link ¢ can be written as:
£ = [A+Bci-u+0(ci-u)2+D}, (35)

where u is is the macroscopic flow velocity vector; A, B, C, and D are constants, determined
from the conservation principle (mass, momentum, and energy), w; is weight factor based
on the lattice arrangement, where the condition ) w; = 1 must be fulfilled. & is scalar

)

parameter which needs to be equal to:

©=>"f. (36)
Defining Eq. (35) is the key element when defining LBE for a specific model.

3.3 LBM lattice arrangements

The LBGK model is the most widely used LBM model. The common notation of the lattice
arrangements, introduced by Qian et al. (1991), is Dn@b, where n represents the dimension
and b is the number of lattice velocities. Lattice velocities of the Dn@Qb models form lattice

tensors of certain rank. The n!" rank can be defined as:
Lil,i27---7in = Zchciz“'cm (37)
i
Some popular lattice arrangements are show: one-dimensional in Fig.6, two dimensional

in Fig.7, and three-dimensional in Fig.8. In Table 1 characteristic lattice velocities, belong-

ing weight w; and sound speed c? are given.
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Figure 7: 2-D lattice arrangements.

Figure 8: 3-D lattice arrangement.
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MODEL Lattice vector ¢; Weight w; cg
0 2/3

D1Qs3 1 1/6 1/3
0 6/12

D1Q5 +1 2/12 1
+2 1/12
(0,0) 1/2

D207 (£1/2,+£v3/2) 1/12 1/4
(0,0) 4/9

D2Q9 (+£1,0),(0,£1) 1/9 1/3
(+1,+1) 1/36
(0,0,0) 2/9

D3Q15 (+1,0,0),(0,+£1,0),(0,0,+1) 1/9 1/3
(+1,£1,+£1) 1/72
(0,0,0) 1/3

D3Q19 (+1,0,0),(0,£1,0),(0,0,+1) 1/18 1/3
(0,£1,+1),(£1,0,+1), (£1,+£1,0) 1/36

Table 1: Some lattice arrangements

A tensor of n”* rank is called isotropic if it is invariant with respect to arbitrary orthog-
onal transformations. (rotations and reflections). Isotropic tensors up to rank 4 are defined

as follows:

e 15 rank: There are no isotropic tensors;

e 2" rank: Isotropic tensors are proportional to the second Kronecker’s delta tensor
dag -
1 00
[basl=10 1 0 (38)

0 01

e 3"% rank: Isotropic tensors are proportional to the permutational symbol tensor EiBy

according to the following rules:

1 ,when a, 8 and v form an even permutation of 1, 2 and 3
€afy =4 —1 ,when «, § and 7 form an odd permutation of 1, 2 and 3

0 ,when «, 8 and v form do not form an permutation of 1, 2 and 3
(39)
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e 4th rank: There are three linearly independent isotropic tensors. The general form
can be written as:

Lapgyn = adapdyy + bday0py + candpy, (40)

where a, b and ¢ are arbitrary constants.

It is easy to find several statical moments of the discrete EDF:

S FET=p) ciffT=pu,> ciciff? = puutpl, (41)

Zciaciﬁcivfieq = 2P (Uadpy + Usdary + Uy0ag) (42)
i

3.4 The Chapman - Enskog expansion

The Navier-Stokes equations (NSE) describe behavior of the fluid particles in the system.
The Chapman-Enskog expansion is a multi-scale analysis developed by authors Chapman
and Enskog in order to derive the macroscopic NSE from the LBE. As an example, an
analysis of D2Q9 model have been performed, with the LBGK evolution equation, derived
earlier:

Fi(% + ci0t, t+ 0t) — fi(x,1) = —%(fi _ feay, (43)

and using Eq. (25):
p= Zfz', pu = Z ¢ fi, puu+pl :Z cicifi. (44)
First, multiscale expansions are introduced:
fi= 10+ e+ 212+ 0, (45)

Oy = 68t0 + 628t1, Oo = €00a (46)

where ¢ is a small number proportional to the Knudsen number K,, d; and 0, are short
notations for 9/0t and 0/0x,, respectively, ty is the fast convective scale, and ¢; is the slow
diffusive scale. Applying the second order Taylor series expansion to the LBGK Eq. (43)

yields:
Ot

VD2 = (S~ 1) + O(@) (47)

D;fi + 5

22



where D; = 0y + ¢jq0q, according to the Einstein summation rule. Substituting Eq. (46)

into Eq. (47), and collecting the elements of each order of e, yields:

Order €9 :
fi(O) = fo1, (48)
Order ! :
1
pO;O _ L0 19
7 f’L 7_5t (A ) ( )
Order €2 :
) L\ 50 ) )
( 1— — DO — = g
From Eq.(48), using Eqs.(44) and (41) it follows:
Zfi(k) = 0; Zcifi(k) =0 for k£ > 0. (51)

Minding Eq. (44), and taking summation over i, Eq. (49) yields to mass conservation
equation of order ¢ :

Oop + Vo(pu) = 0. (52)
Multiplying Eq. (49) with ¢;, and taking summation over i, Eq. (49), momentum conser-
vation equation of order ¢ is obtained:

Ay (pu) + Vorr (@ = 0, (53)

where 70 = pUuqug+pdog, where p = c2p.The following properties of D2Q9 model have

been used:

Zwicm = Zwiciaciﬂcw =0, (54)
i i
Zwicmcw = 28,5, (55)
i

Zwiciaciﬁcmcin = CgAaﬁ’yna (56)

(2

where Aggyy = 00804y + 0ar08y + dandsy. In the similar way, zeroth and first statical
moment leads to equations of the order &2 :

atlp == Oa (57)

1

Iy, (pu) + (1 - 2T> Vo =0, (58)
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where the term Tr((llﬂ) = Zcmcwfi(l) needs to be evaluated. Multiplying Eq. (49) by ciacig
i

and taking the sum over 7 yields to:

1
—T—(Stcmcwfi(l) = cgp [Ooaug + Ooptia] + O(M3), (59)

where M is the Mash number. From Eq. (59) yields w&lg = 7S¢ [Ooaup + Ooplia) , after
neglecting terms of O(M?3). Combining the mass and momentum conservation equations

for both scales the NS equations are obtained:

Op+ V- (pu) =0, (60)

9(pu)
ot

+V(puu) = ~Vp+ V- [pr(Vu+Vu?)], (61)

where kinematic viscosity is v = ¢2 (1 — %) &;. For the small Mach number, the density

variations are negligible, and incompressible NSE are obtained:

V-u=0, (62)

1
88;1 +uVu= —;Vp +vViu. (63)

3.5 Improved lattice Boltzmann models

Generally, fluid flows are under the influence of internal and external forces, such as gravity
or intermolecular interactions. Such forces need to be implemented into the basic LBE
defined by Eq. (19). Numerous methods have been proposed depending on the physics of

the model, and selected few will be introduced.

3.5.1 LBM Scheme with modified equilibrium distribution function

Force term can be included into LBE by modifying the EDF. Convenient form of the EDF
as function of density and fluid velocity will be used:

2
[{T=wu 1+ci-u+(ci-u) —u—2
’ ‘ 2 2¢4 2¢2

Cs

(64)
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In the case when the force is induced by a potential ® and the density variation is small,

Buick and Greated (2000) proposed the following EDF:

—Z€q p(?) u?

fO P |: ( w[)) Cgp wo 20% ’ (65)
—e p(®) c¢i-u ci-u)?r Wt
fiq=wm[ 5, T2 +< 204) T 52 170, (66)

where p(®) = (¢2 + ®)p, and pu = > ¢; fi.For the EDF in this form, zeroth, first and third
i
statical moment are the same as those for the standard Dn@Qb models (Eq. (41)). The

second statical moment yields to:
Z c'mcwffq = p(P)dap + puaug. (67)
Now, the momentum flux at the order ¢ in the Chapman-Enskog expansion is:
7} = ~701 [p(oaus + Fogtia) + O1y00a(p®) — D5(uados(p®) + usdoa(p®))] ,  (68)

and momentum equation yields to:

9(pu)
ot

+V(puu) = —=V(c2p) + V- [pv(Vu+Vu’)] + F + R, (69)
where the residual term is:
R =16 [—8tFa + 8ﬁ(uaF@ + UBFQ)] . (70)

In general, this term does not vanish and bring additional error, but most often the error

is negligible.
3.5.2 Introduction of the forcing term

Another popular way to imply the body force is to add a forcing term to the LBE as follows:
1
fi(x + c;0t, t 4 0t) — fi(x,1) = —;(fi — f{1) + 0,F;. (71)

where the forcing term F; depends on the body force F. A variety of expressions for F;
have been proposed. In nature of this research, a centered-scheme forcing term proposed
by Zhou (2004), proposed in order do derive the lattice Boltzmann model for the shallow

water equations (LBMSWE), will be presented.
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The force term is evaluated at the mid-point between the lattice point and its neighboring
lattice point as:
1 1
A Chapman-Enskog expansion will be applied on D2Q9 LBGK model with LBE in form:

falz + eq At t + At) = fo(x,t) — %(fa — feé + %eaiFi (73)

,where following notation is used: « denotes the lattice link, At is time step, e, is lattice

velocity along the link a defines as

(0,0) ,a=0

€a =1 e [cos (azl)ﬂ,sin (0“41)”} ,ao=1,3,57 - (74)

V2e [cos (a_41)7r,sin (a—41)71'] ,ao=24,6,9

The EDF is defined as:

5grh® _ 2h
h — (9322 T 3e2 Ui U y 0= 0
eq — h h
f&' = gT P + 362 €ailli T 5.7 CailiCajlUj — gozUilli ,a=1,3,5,7 - (75)

h h _
3262 + 1282 Cailli + o1 CailliCajlj — gz Willi 0 = 2,4,6,9

Taylor series expansion of the LHS of Eq. (71) yields:

2
fa(x+eaAt,t+At>—fa<x,t>=e(§t+ea >fa e (Sﬁ aaa) [+ O(E). (76)

The distribution function f, is expanded as
fa= 0 + e+ 13 + 0@, (77)
while the centered-scheme force term is expressed as
1 1 1 /0 0
F, Zen At t+ —At ) = N F.; 2.
<:C—|—26 it ) Fi(z,t) + s(atJreJa > + O(e%) (78)
Substituting Egs. (76), (77), (78) into Eq. (73) the evaluating to order £° yields

fO = fea, (79)
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to order ¢ is obtained:

0 0 1 Covi
0) — _ 2 p(1) 4 Zv
(8t+ ‘”8 )f Tfa + eF“ (80)

and to the order £? yields to:
d d 9\’ 1 1 (9 0
1) 4 0 - ¢4 - (=2 2 F
<at+ea]a )f (at+eaja ) fa Tfa +12€2 <at+eaj(9.%'j>em 1y
(81)

Substituting Eq. (80) into Eq. (81) leads to

_ L) (9 O\ _ Lo
(1 )(at @Jaxj>fo¢1 - Tfa . (82)

Taking ) [(80) + £(82)], and enforcing conditions ), fc(,n) =0,and ), eafo([n) =0, for
n > 1 gives
0 S 2 (S @) =0 (83)
8t Ij o Wl

Evaluation of the terms in the above equation results in the second-order accurate continuity

equation. Now, taking »"  eq [(80) + £(82)] provides

gt (Z eaifo(p)) + 8(; <Z €ai€aj fé@) (1 - ) (Z eqiajfit ) C(84)

Using
> O =n, (85)
> eaifl) = hu, (86)
3 Caicas fO = 9o’ 85 + huguj, (87)

where h is the averaged depth, Eqs. (83) and (84) yield to:

(?9? + 68 (hu;) =0, (88)
a(‘)t (hui) + (;i] (huiuj) = —gr (‘3((; <h2> - ;Cinj + 5 (89)

where
Nij=¢ <1 - 217) ;emeajfg). (90)
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Using Eqgs. (74), (75) and (80), following expression is obtained:

Q

Aij ~ —v (aij (hu) + aii (huj)> . (91)

Substituting Eq. (91) into (89) yields to:

0 0 o (h? 02 (huy;)
— (hu;) + — (huuj) = —gr— | — F;. 92
g (1) + g (i) gai<2>+”axjaxj+ (92)
The forcing term is defined as:
Z wi %
Fe g% _Twi _Th g (93)
oxi p P

where 7,,; and 7y, are wind shear stress and bed shear stress, respectively, Z; is the bed

elevation, and E; is the Coriolis term. Eq. (92) yields:

0 0 d [ h? 0? (huy)
. . . uj) = —gp— | — 4
ot (huz) + 833]' (hUZUJ) g 8.% ( 2 ) v 8a:jaatj <9 )
_gn 0% Twi _Tei g
oxi p P

Eq. (88) into (94) are the shallow water equations.
3.5.3 Enhanced LBMSWE model

In the LABSWE, the centred scheme force term includes the evaluation of the first derivative
a bed slope, term which is inconsistent with the spirit of the lattice Boltzmann hydrody-
namics. Therefore, Zhou (2011) proposed a novel incorporation of that term into the lattice
Boltzmann equation, and eliminated the calculation of the derivative. The proposed D2Q9

lattice Boltzmann equation, with lattice velocities defined with Eq. (74), is:

a4 caAt £+ A = ful(,t) — %( Fo— f20) (95)

_grh
6e2

A
2@ + a AL, 1) — Zy(w, 1)] + 6%%1«1-.
e

The EDF is given by Egs. (75) and the force term is:

F=_Twi Th.p (96)

The second term from the RHS of Eq. (95) is new in comparison with the LBMSWE (Eq.

(73)). The CE expansion will be conducted. Taking the Taylor expansion of the second
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term of the RHS of Eq. (95) leads to:

Jr e (0 0 0z, &2 0%Z, 3
6e? [h+ 2 (61& e Jaasj) h] (86 ! 0z * g Cai€ ! 0w;0x; b) +OE) (97)

The term of order ¢ is:

9 pe. 9%
Ge2 o oxj’ (98)
and terms of order £? are:
grh 82Zb 9reaj oh Oh 6Zb
1262 pon; 12 \ot | “og, ) oz, (99)
Adding this terms to Eqgs. (80) and (81) leads to:
0 d 0Zy  eqi
1 _ b Caip 1
<8t -+ ea]a ) f f a]a + 6e2 b ( OO)
0 0 0 0 grh 0?7
9 e (1) 0 — 5@ _ — (101
(8t+eaj8m]>f T3 (aﬁ 3 > A i giom; OV
greaj [ Oh Oh \ 07y 1 0 0
- e [ R Y el N9 0 102
12 (at“Jaxj 0z, " 1222 \at o) ° (102)

Substituting Eq. (100) into Eq. (101) leads to the unchanged Eq. (82).Taking )", [(100) + £(82)],

and enforcing conditions ), fén) =0,and ) eq fén) =0, for n > 1 gives

0 0
E (0) r(0) | =
o ( £ ) 9z, ( Ea eajfa ) =0. (103)
Evaluation of the terms in the above equation gives the continuity equation, which is second-

order accurate. Now, taking > eq [(80) + £(82)] provides

% (Z €aifé0)> + % (Z Eaieajf(go)> (1 - ) — (Z emea]f ) (104)
« J a

07,
ox;

= —gh=L+F, (105)

After the terms are evaluated and some algebra, the above equation becomes the second-

order accurate momentum conservation equation.
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CHAPTER IV

MATHEMATICAL FORMULATION OF THE LBM
MODEL

In this chapter, the goal is to develop a functional lattice Boltzmann model for one-
dimensional unsteady open-channel flow with sediment transport for natural watercourses.
One-dimensional unsteady flow is described by the shallow water equations, also known as
the Saint-Venant equations. For the sediment transport model, suspended-sediment is de-
tached from the bed and near-bed sediment. Sediment mixture is represented as a collection
of a suitable number of sediment size-classes. Mass-conservation equations are defined for
suspended-sediment and the active-layer for each sediment size-class separately, followed
with the global active-layer and stratum mass-conservation equation. Governing equations
include the exchange mechanisms between the sub-domains.

Uniformity of the lattice structure results with a decrease of the efficiency and the
applicability of the lattice models when especially when natural, arbitrary geometry are
modelled. In order to eliminate this restriction and maintain the basic features of the
lattice Boltzmann model, geometric transformation between the physical and computational
domain is introduced, and in this way the limitations of the LBM are spanned. This
technique is often used in traditional CFD for managing complex geometries — it enables
calculation of terms defined in the non-equidistant physical space in the equidistant grid
computational frame. In this way utilization of the standard uniform lattice based models
is not restricted on the physical domains with uniform computational grid.

Corresponding LBM models are developed, deriving new forms of the equilibrium distri-
bution functions based on the transformed unsteady flow and sediment equations. A LBM
model for unsteady flow is autonomous, while the LBM model for sediment transport can
be attached to a flow model. A LBGK model Eq. (19) is used with the centered-sheme

forcing term Eq.72. Some additional terms are added to the LBM model, based on the
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enhanced LBMSWE proposed by Zhou, in order to obtain governing equations after the
CE expansion.

To derive a fully operational mathematical model which can be applied on natural
watercourses characterized by arbitrary cross-section geometry and variable longitudinal
profile (river bifurcation, meandering, contraction and expansion), set of appropriate inner

and outer boundary conditions are defined.

4.1 Omne-dimensional unsteady open-channel flow lattice Boltz-
mann model

The motion of incompressible Newtonian viscous fluid is described by the well known Navier-
Stokes equations (NSE), written herein in tensor notation (Lai, (1991)). The first equation

is the continuity equation:
8Uj N

vl (106)

and the following equation are the equations of motion

Bui U . 8]9 aQUi
1% <8t + Uj 833]> = pBZ (‘37@ + Nax]@xj’ (107)

where p is mass density, u; is i-direction component of flow velocity, z; is i-coordinate
direction, B; is body force for unit mass, and p is hydrostatic pressure.

The one-dimensional Saint-Venant equations (SVE) are a set of partial differential equa-
tions that describe the incompressible flow below the pressure surface in a open channel
flow of an arbitrary cross section. The SVE are derived from the NSE under following

assumptions:

Flow is one-dimensional. The horizontal length scale is much greater then the vertical

length scale;

The river bed is gradually sloped;

The pressure inside the water flow obeys the hydrostatic law;

The cross section of the water surface is horizontal;
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e The flow is smoothly varying;

e The water discharge Q(z,t) and the free surface elevation Z(x,t) are averaged over

the cross section.

There are four basic formulations of the SVE depending on the dependent variables
involved. Which form is used is determined by practical limitations like geometry or com-
plexity of the examined flow cases. When flow systems with simple cross sectional geometry
and straightforward presentation of bed slope are considered, discharge-sectional area form
of the SVE is used. However, when natural watercourses with complex cross sectional
and longitudinal geometry are modelled, like in this thesis, this form becomes inadequate.

Hence, the hybrid discharge-water surface elevation form of the SVE is adopted, as follows

0A  0Q

T = ¢ (108)
oQ 0 Q*\ 07z
8t+6:u<wA> N _gTA%_gTASf’ (109)

where A(z,t) is cross-sectional area; Q(z,t) is discharge; Z(x,t) is free surface elevation,
q(z,t) is lateral inflow per unit length, g, is the gravitational acceleration; ¢ is time; z is the
Cartesian coordinate; and and w is the coefficient of velocity non-uniformity. S; represents

the friction slope defined as
n2Q2

Sy = A2 R4/3

(110)

where n is Manning’s roughness coefficient and R is hydraulic radius formulated as R =
A/O, where O is wetted perimeter. The first equation, Eq. (108) is the continuity equation
(CE), derived from the mass conservation law, while the second equation Eq. (109) is the
momentum equation (ME), derived from the conservation of linear momentum law. The
main reason this form of SVE is chosen is completely eliminated bed slope term from the
system of equations, leading to a more flexible and practical form of the SVE, and therefore
this form is suitable when applied to natural watercourses with complex and non-uniform

geometry.
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4.1.1 Transformation of the SVE using the adaptive grid technique

By applying the basic rules of coordinate transformation between two systems (Simmonds
(1994)), Egs. (108) and (109) will be transformed to the alternative coordinate system.
The goal is to eliminate the a% term, and transform it into a%, where £ represents the
new coordinate, which forms the equidistant grid, without changing the other dependant

variables. We apply the transformation on the one-dimensional CE, Eq. (108), in form:

0A  0Q 9¢
el E M. R 111
then we multiply it with transformation term Y = dx/J¢, so the Eq. (111) becomes
0 0Q
YA+ Y. 112
5O+ 52 —gy, (12)
which is the desired form. We apply the same transformation on the ME, Eq. (109):
0Q Q*\ o¢ 07 0¢
—F = v | = =—9gA—— — g ASy, 11
+ag< P T M ] (113)

then, again we introduce the replacement Y = dx/0¢ in the equation above, and apply the

derivative of product rule:

9 Q2 _ 0 QN y, @00
so the ME equation finally becomes
aQ Q2 g AdZ Q*a(¥Y )

To summaries, the final, transformed form of the SVE, which will be used in the LB model

is the following set of equations:

) 0Q
o YA+ 57 = qY, (116)

Q Q?\  gAdZ Q2o (v1)

+ag< >__Y8§_9Asf+wAa§‘ (117)
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4.1.2 The lattice Boltzmann model for the transformed SVE

In this thesis a D1Q3 lattice LBGK model is used, as shown in Fig. (6). The evolution

equation is defined as:

S (118)

Ty

fa(€+eaAt,t+ At) = fa(é-at)

At

+ 2762 (A
gA

2Y 2

(Fa + ean)

[Z(f + eocAt7 t) - Z(éa t)]

+“(QZ)) [V 1€ + ealdt) — Y (9],

2e2\ A

where f, is the particle distribution function (DF) along the « link, f5? is the local equi-
librium distribution function; £ is the position vector in the 1D domain; At is time step;
F, is the force term; 7 is relaxation time; e, is the particle velocity vector along the o
link; e = A§/At and AE are the lattice sizes. To make the model fully consistent with the
nature of the LBM, procedure proposed by Zhou (2011) is adopted for the first and third

term on the RHS of Eq. (118). Terms noted % are evaluated using the centered-sheme as

follows:

A = A (g + %eaAt,t + ;At) (119)

_ 1 1
Y = Y <§ + Sealtt+ 2At>

QQ 2 1 1
(5) = (%) (e ganrs o)

It should be noted that Eq. (118) is defined using the new ¢-domain, therefore the required
symmetry for the discrete particle velocities e, is ensured. For the three-velocity lattice

particle velocities are defined as

0 ,a=0,
€a =9 e ,a=1, (120)
—e ,a =2,
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The equilibrium distribution function (EDF) must satisfy following relations :

e = Ay (121)
Zeaféew = Q
%:eaeaf(ﬁf” = ngl,

so, the proposed equilibrium distribution function is

€
©

YA- 5% ,a=0
fo=3 Q4 oe@t (122)
—Q 4 Led a=2
The force term is simulated as
F, = —%Si (123)

to ensure second-order accuracy to the method, the force term is evaluated using the
centered-sheme. Its values are calculated halfway between the lattice points and its neigh-

boring lattice points as

1 1
F,=F, (g T Jealdt b+ 2At> . (124)

The physical variables of cross-section area A and discharge ) can be calculated as the

zeroth and first statical moment as follows

AGD) = Y fulet) (125)
Q(fat) = Zeafa(&t)- (126)

4.1.3 Derivation of the transformed Saint-Venant equations from the lattice
Boltzmann equation

The goal is to develop Eqgs. (116) and (117) from the lattice Boltzmann equation (118), and
the relations (120)-(125). The Chapman-Enskog analysis will be applied. The first step is

applying Taylors expansion to the each term of the Eq. (118) in time and space. The first
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term on the LHS of the Eq. (118), assuming At = ¢, becomes

fa(§+eaAt,t + At) — fo(§,1) =€ (gt + ea§§> fa (127)
() o
The distribution function f, is expanded as
fo= [0 +efV +2 2 + O, (128)
while the centered-sheme force term is expressed as
F, <§ + %eaAt,t + ;At) =F,+ %s ( 0 + %55) F, + O(£%). (129)

Taylor series expansion can also be applied to the last two terms on the RHS of Eq. (118),

resulting
gA g JA e(d 9\ A
ettt -2l = o g+ 5 (e )y 00
d o e2 (9 d\? 5
5<8t+ea8§)z+<8t+ea5’£> A +O(6 ),
702\
2% (i) [VHE+ eadt) =Y 1)) = (131)
1 [ Q2 B 0\ Q2 o\ . 279 ON? .
s (o545 (G oo )« ] [ (oo 5 (Gt o) ¥
+0(&%).

Substituting Eqgs. (127), (128), (129), (130) and (131) into Eq. (118) the evaluation to
order £° is

O = fea, (132)

to order ¢ it is

0 0 1 e A [0 0
0 _ _ * p1) . Ca _ 9 v v
(075 + eaa£> 1y L + . (Fo + €aqY) ( + eq > Z (133)
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and to the order 2 it is

B B, 1/0 0\ 2 1 eo [ O )
My - (= il 0) — _ = (2 4 Z [ Z Z\F 134
<at+€aa§>f +2<6t+eaa§) fo Tff“ + < + eq ) w (134)

_gA (0 0N, g (0 ONA(D D

ng <at +eaag) 242 \o T e ) v +6aag Z
wQ2 O\, 1 a El Q2 AN

Substituting Eq. (133) into Eq. (134) leads to

Ly (2 I\ ;) _ Lo
(1-55) (5 +eoge) 280 = =778 (135)

Taking > [(133) 4+ £(135)], and enforcing conditions ), #5 =0, and da eaf =0, for

n > 1 gives

0 0
5 2 f0+ B D et =qv. (136)

Evaluating of terms in the Eq. (136) using Egs. (122), (125) and (132), neglecting the

gA 8z

term 53~ %7, due to a small time scale imposed by the LBM, the continuity equation of

second-order accuracy Eq. (108) is obtained:

0 0Q
57 (YA) + 2~ (137)

Now, taking > eq [(133) 4+ (135)] provides

% > et + 55 S eacafl +e <1

[0}

1) (‘;9«5 (Z eaeafg)) (138)

2
gA0z Q*9(V')
F—78—5+ iz

Following the terms evaluated with Egs. (121), (123) and (132), using 7 = 0.5, the above

equation becomes the momentum conservation equation:

0Q Q?\  gAdZ Q*0 (Y1)
_|_a§<>_—Ya§—gASf+wA S (139)

It should be noted that the fourth term on the RHS actually denotes the second-order veloc-
ity derivative (diffusion), therefore 7, parameter acts like an artificial viscosity parameter

which can be used for dispersion (oscillations) control in the vicinity of the shocks.
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active layer
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Figure 9: The active-layer concept.

4.2  One-dimensional open-channel sediment transport LB model

The concept of the active layer is considered, which accounts for sediment-flow interaction
in natural watercourses, such as: suspended-sediment transport, bedload transport, bed
deformations and interaction between the flow and sediment mixture. Traditionally single
domain of sediment-processes is divided into three subdomains: suspended-sediment, active-
layer and stratum (Fig.9). Sediment mixture is represented through a suitable number of
sediment size-classes ks = 1, ....., K.S, where K S represents the total number of size-classes.
The governing equations are defined for each subdomain, including exchange mechanisms
between them, and solved simultaneously, so the behavior of a non-uniform sediment is

described. The governing equations will be defined in this section.
4.2.1 Suspended sediment mass-conservation equation

Assuming that the suspended-sediment particles are advected by the local flow velocity,
except for the downward gravitational settling, the mass-conservation equation for a size-
class ks of suspended-sediment domain in the elemental volume in Cartesian coordinates

is

a(CkSA) 8(Ck9Au) _ g a(CkS) E sed _ mysed
ot + O =~ €s Oz A+ P (Eks Dy )7 (140)

where p is density of mixture of water and suspended sediment (including the whole
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mixture, all size-classes), C}, is dimensionless concentration of the size-class ks particles, €4
is sediment mass-diffusivity coefficient, B is water surface width, Eg;d is the bed-material
erosion into suspension, and Dzid is suspended-sediment deposition onto the bed. There

will be K.S equations, one for each sediment size-class.
4.2.1.1  Suspended-sediment source terms

Suspended-sediment source terms represent interaction between suspended-sediment and
bedload sediment, i.e. erosion and deposition. The upward active-layer sediment entrain-
ment flux E,‘z‘;d and the downward suspended-sediment deposition flux D;;’idof the size-class

ks, are modeled as a near-bed upward turbulent mass-diffusion flux, and a near-bed down-

ward fall-velocity flux (Spasojevi¢ and Holly, 1993) as

C s)a a C s)a
B = By, ey - LG = (C) (141)
Dlscid = Ps Wy, (CkS)d’ (142)

One-dimensional models give the averaged concentration values, which can be used for

calculation of the suspended-sediment deposition flux (Cj)¢ = Cys ,therefore, it follows:
Dyt = py - wy, - Cis (143)

In the Egs. (141) and (143) [(Cks)at+aa — (Cks)a) /Aa is near-bed non-equilibrium con-
centration gradient, subscript a denotes that the mass-diffusion flux is evaluated at some
distance a above the bed, and it is a calibration parameter. (Cis), is near-bed active-layer
sediment concentration, (Cks)atAq is near-bed non-equilibrium concentration at distance
a + Aa above the bed-surface, extrapolated from the suspended-sediment calculations and
wy, . is particle fall velocity for the size-class ks.

The near-bed active-layer concentration (Cys), is empirical value, and can be calculated

by the equation proposed by van Rijn (van Rijn, 1984):

Dis T (144)
a

s)a — 5‘17 5
(Cis)a = Pys0.015 (D.)03

where, Dy, is is the representative particle diameter, Ty, is transport stage parameter,

(Dy), is dimensionless particle parameter, ;. is active-layer fraction of the size-class ks,
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and a is near-bed distance. The dimensionless particle parameter (D), is given by the

S

expression:

(D= i (225 08Y 2t
In the Eq.(145) p, is sediment density, p is water-sediment mixture density, g, is gravita-
tional acceleration, and v denotes kinematic viscosity coefficient.

The transport stage parameter Tys in Eq. (144) is evaluated by the expression:

w2 ()

Tks = (’Uzir)2 )

(146)

where u, denotes the bed-shear velocity, while u{" stands for the critical bed-shear velocity,

given by the following relation:

v (147)

u*:ucch’
where
12- R
Cop, =181 148
h 0g <3_D90> (148)

is the Chezy coefficient, where R is hydraulic radius, and Dy is particle diameter repre-
senting the 90% cumulative percentile value. The critical bed-shear velocity is given by

Shields:

(4 s = \/(Oc) 9+ (ps/p — 1) - Dis (149)
(

024-D;' 1< D,<4

0.14-D;%%% 4 < D, <10
©.=1¢ 0.04-D;%1 10<D,<20 - (150)

0.013- D%2? 20 < D, < 150

0.056 ,D, > 150

The near-bed non-equilibrium concentration at distance a + Aa above the bed-surface

can be calculated by the expression given by Rouse:

*

(h—a— Aa) (hazhe )™

(Cks)aJrAa = Ck (151)

h )

| ot

a+Aa
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where h is the averaged depth, z is the vertical coordinate, and 2z, is the Rouse number.
It is a ratio between the sediment fall velocity wy, = and the upwards velocity on the grain,

as a product of the von Kdrmén constant s and the shear velocity wu,, defined in Eq. (147):

opy = L (152)

K+ Uy

The particle fall velocity for the size-class ks, wy, , is given by expression given by van

Rijn::
—1).q..D2
%.M Dy < 1-10~4m
. 1y .3 0.5
wp, =4 10 g [(1 4 001 (ﬂs/pygl) gr Dks) B 1] 1 10~4m < Dy, < 1-10-3m .
0.5 B
L1 [(ps/p—1) - 9r - D] , D > 1-1073m

(153)

4.2.2 Transformation of the suspended-sediment mass-conservation equation
using the adaptive grid technique

Like in the section before, when the SVE were transformed, the suspended-sediment mass-

conservation equation needs to be transformed in respect to the new basis. The transfor-

mation is applied on the Eq. (140):

0(CrsA) | O(CrsAu) 08 _ 0 ( 0(Crs) O€ , > o8 | (Esed Dsed).

ot o6 oz o€ o Ox 9z

(154)

The next step is to multiply the above equation with Y = 0x/0¢, so the Eq. (154) becomes

8(Ck$AY) 8(CkSAu) _ 2 8(Ck$) é BY sed sed
o T o T \" e v)T T, (B!~ D).

(155)

or, when the derivative of product rule is applied

0(CisAY) | O(CioAu) _ 0 [ (a(cks;l) o a(A)> BY

== (Esed Dsed). (156)

ot o o€ o€ ¢

Further, applying the derivative of summation rule, and the derivative of product rule again,

it follows
A(Chs AY) N O(ChsAu) _ _ 02(Crs ) Gk a(4)
ot oc 7 fe? T oE O
62( ) BY sed sed
e += - (Bt - D)

which is the final form of the transformed Eq. (140).

(157)

_gscks
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4.2.3 The lattice Boltzmann model for the transformed suspended-sediment
mass-conservation equation

Again, a D1Q3 lattice Boltzmann LBGK model is used. The evolution equation corre-

sponding to Eq. (157) of a size-class ks is defined as:

Gal€ + calMtyt+ Af) = galE1) — (g0 — 68 (158)
g
s — |4 A A
_7626At0k5 ?(5 + eqAt,t) — 2?(5,15) + ?(f — eaAt’t)]
s A A
s [Cus €+ €aldt) = Ciy(©)] |5 (€ + ealdts ) = (€, t)}

+AtG,.

where g, is the particle distribution function along the « link, gg! is the local equilibrium
distribution function; £ is the position vector in the 1D domain; At is time step; G, is
the force term; 7, is relaxation time; e, is the particle velocity vector along the «a link;
e = A¢/At and AE are the lattice sizes. The finite difference procedure is proposed for
the second and third term on RHS of Eq. (157).Term noted Cj, is evaluated using the

centered-sheme as follows:

_ 1 1
Chos = Chs (5 + 3ealdt,t + 2At> . (159)

Three-velocity lattice particle velocities are defined in the same way as for the water flow
model, therefore Eq. (120) will be used.

The equilibrium distribution function in this case must satisfy following relations :
D g = CreAY, (160)

a
Zeaggq = CksAu>

o
Zeaeaggq = ACi A,
o

where
€s

A= .
AtY (14 —0.5)e?

(161)
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The proposed equilibrium distribution function is

ChsAY — ACpsA  ,a =0

9e! = Cedu 4 A0 A a=1 (162)

CrsA A —
~CiAu | 20 A a=2.

The force term is simulated as

e :BY(

Esed Dsed> , (163)

where B3 and D;¢? are defined by Eqs. (141 ) and (143). To ensure second-order accuracy

to the method, the force term is evaluated using the centered-sheme:
Go =G, <§ + —e At t+ At> (164)

The physical variables of concentration Cjs can be calculated as the zeroth statical moment

as follows

Cra(6,1) AYZga £t) (165)

4.2.4 Derivation of the transformed suspended-sediment mass-conservation
equation from the lattice Boltzmann evolution equation

The goal is to develop Eq. (157) from the lattice Boltzmann equation (158), and the
relations (159)-(165). The Chapman-Enskog analysis will be applied again. The first step
is applying Taylors expansion to the each term of the Eq. (158) in time and space. The

first term on the LHS of the Eq. (158), assuming At = ¢, becomes
(E+ eq At t+ At) — go(&,t) = ¢ g+e2 (166)
gOé « b gOt Y - at Oéaé\ g()[
1, (0 d\° )
« « O .
t5¢ <8t+e 85) ga + O(e”)
The distribution function g, is expanded as
go = 93 + 29 + %9 + O(?), (167)

while the centered-sheme force term is expressed as

1 1 1 (/0 ) )
a<§+26aAt,t+2At> Go + €<8t+eaa§>Ga+O(€ )- (168)
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Taylor series expansion can also be applied to the second and third term on the RHS of Eq.
(158), resulting

eQEZtC[ (€ + eart, t)—2 (&1 + A(f—eaAt,t)} = (169)

emt [Ches (€ + eaAt) — Cs(€)] :;1(5 +eaAt,t) — é(g,t)] = (170)
G GeR)or s o) o
(et S (o) 8] o

Substituting Eqs. (167) - (170) into Eq. (166) the evaluation to order &° is

g0 = g, (171)

to order € it is

o 0 1 e (00 o 9\ A
0 — _~ @) _ s =2 - = 172
(at O‘ag) Joo = 7 90" T la = 5 <8t+ea8£> Cr <8t+ aag) y U™
€s d o\* A
~a2C <8t+> v

and to the order 2 it is

0 B 1/0 0 \? 1 0 B
W, (9 9y o__1 o _1(9 9 1
< +eaa€> +2<8t+ea6§> 9o, Tga (8t+eaag>Ga (173)

Substituting Eq. (172) into Eq. (173) leads to

1 ) ) 1 € 0 o\> A
_ L _ _ 1 (@ _ Es a4
(1 279)< +eaa€> —Ga QGZCkS <at+eo‘ag) v (174)

g

where the last term in the above equation will be neglected due to an effect of the third

derivative is not significant in comparison to the other terms, therefore, we obtain

1 0 0 1
1— 1 - _=,@ 1
< 279) (8t i €a8§) go nga (17)
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Adding Eq. (172) into (175)

B B 1 B B
9 LRI () _ Y (e I\ o _ 2)
<at+e“ag> Ja +5<1 2Tg> <at+6aag> 9o g< +e9a )*G“ (176)
_&s g—i—e 2 C g—&- 0 0 +e " A
e2 \ot ' “oc) M \or " Yo 20k (5 Teage) v

Substituting Eq. (172) in the above expression and then taking the sum, Eq. (176) takes

the form:
0 0 1\ 92
o5, 0 9 0 _ _ 1y o )
3tza:ga + agza:eag =¢ <Tg 2) 52 (eaeaga ) (177)
es (O ) ) O\ A e ) o\* A
ez <8t ’ ag) Chs (875 * ag) v 22% <8t * ag) Y
€s 0 acks a
_ga‘(ZTg -1) o€ (;eaea 5 (")f C'ks 62 Zeaea >
©)
te (Tg > ot aé- Z €adn s

Evaluating Eq. (177) using Eq. (171), (160) and (163), and neglecting the last two terms on

the RHS in the equation above, the transformed sediment continuity equation is obtained

as follows:

8(CkAY)+6(CkAu)_ *(Crg)  9C,I(3)
ot oc o o o

828(52) + BpY (E;:ed B Dzed) ‘

(178)
—ESCk;

4.2.5 Active-layer mass-conservation equations

The active-layer is assumed to be composed of sediment moving as bedload, and as bed-
surface and immediate subsurface sediment, that is already agitated and ready to be set
into motion. Since it is difficult to account for the exact position and size of each sediment
particle being entrained from the bed or ending its trajectory at a certain spot on the
bed surface, a the active-layer is assumed to have a uniform size-class distribution over its
thickness F,,. Furthermore, it is assumed that the sediment particles of the same size-
class are equally exposed to the flow, wherever to the position in the layer. Therefore, the

bedload flux represents bedload exchange between two neighboring elemental areas. The
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mass-conservation equation for size-class ks of sediment in active-layer control volume AV

is:

8 ﬂ sEm a(b S se se
ps(l_pb) (%t )+ aalj :Dksd_Ek3d+(Sf)ks’ (179)

where 3, is active-layer fraction of the size-class ks , ¢y is bedload flux component of size-
class ks, Ey, is active-layer thickness, p; is bed-material porosity, p, is sediment density,
Eg‘;d and Dzid are erosion and deposition source terms, defined by Eqgs. (141 ) and (143),
and (Sy),, is the active-layer floor source for the class-size ks.

As a result of dominant erosion, some particles move upwards from the active-layer into
the suspension, bringing the floor of the active-layer floor to descend, and enter the active
stratum, and the active layer thickness is given by equation (Spasojevi¢,1990., Budinski,

2011):
DA

B —
" 1-py

— Cpq (2] = 27, (180)

where D4 presents the diameter of the smallest non-mobile sediment size-class, and Cg,, is
a calibration parameter. The bed-load flux ¢, is calculated using the empirical equation

proposed by van Rijn:

p . —o.
¢ks = (1 - ’Yks)gksﬁksps\/(ps - 1) gTDkSDkSO'O‘SBTI?sl (D*)k303’ (181)

where 7, is the allocation parameter, reflecting the fact that some fraction of the par-
ticular size-class is expected to be transported only as suspended load, (. is hiding factor
accounting for the reduction or increase in a particular size-class transport rate when it is
part of a mixture.

The active-layer floor source (Sy),, for the class-size ks represents the exchange of
sediment particles between the active-layer and the active-stratum control volumes from
active-layer floor movement. The active-layer wall is at the same time the active-stratum
ceiling, and it descends or rises whenever the bed elevation changes, because of erosion
or deposition occurring in the active-layer control volume. The active-layer floor source

(Spasojevi¢ and Holly, 1990), when the active-layer floor descends is:

(s = 2oL~ 26) o [Broa(Zo ~ B (182)
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where [ ; is the active-stratum class-size fraction, and when the active-layer floor rises:

0
(Sf)ks = 7/)5(1 - pb)a {ﬁks(zb - Em)] ) (183)
here (3}, is the active-stratum class-size fraction.

4.2.6 Transformation of the active-layer mass-conservation equations using the
adaptive grid technique

The transformation is applied on Eq. (179) in form

O(BroEm) Oy, O
pu(1 =) ) o St 28

= D! = B+ (Sp)ys (184)

and then multiplied with Y = 0z/0¢, which yields to transformed active-layer sediment

equations

a(ps(l — pb)/BksEmY) + 8¢k5
ot 0&

—y (D,igd — Eged 4 (Sf)ks) . (185)
The governing equation will be used to form a LB model.

4.2.7 The lattice Boltzmann model for the transformed active-layer mass-
conservation equations

For every sediment size-class ks a LB model will be formed separately. There will be K.S of
the these equations. The evolution equation in D1Q3 LBGK model corresponding to Eq.

(185) of class ks is defined as

1

Th

ha(€ + ealAt,t + AL) = ha(€,8) — — (ha — he9) + AtH,, (186)

where h,, is the particle distribution function (DF) along the « link, hg! is the local equi-
librium distribution function; £ is the position vector in the 1D domain; At is time step;
H, is the force term; 7 is relaxation time; e, is the particle velocity vector along the «
link; e = A¢/At and A are the lattice sizes. Three-velocity lattice particle velocities are
defined in Eq. (120) .The equilibrium distribution function (EDF) in this case must satisfy

following relations :

D het = py(1 = pb) By EmY, (187)

Z eahgzq = ¢ks'
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The proposed equilibrium distribution function is

ps(l - pb)BkSEmY , = 0

hel =4 Suy a=1 . (188)
—5% =2

The force term is simulated as
Hy =Y (D' = B+ (Sp),,) - (189)

where D;¢, Ef® and (Sy),, are defined in Eqs. (143) - (141) and (182). To ensure second-

order accuracy to the method, the force term is evaluated using the centered-sheme:
1 1

The physical variables the active-layer depth can be calculated as the zeroth statical moment

as follows

1
Brsl&1) = s Eajha@, D), (191)

where active-layer thickness is defined in Eq. (180).

4.2.8 Derivation of the transformed active-layer mass-conservation equations
from the lattice Boltzmann evolution equation

To develop Eq. (185) from the lattice Boltzmann equation (186), and the relations (187)-
(191) the Chapman-Enskog analysis will be used. Applying Taylors expansion to the each

term of the Eq. (186) in time and space, the first term on the LHS, assuming At = ¢,

becomes
ho(§ + eaAt,t + At) — ho(E,t) =€ Q—i—eg h (192)
(6% (0% ) (6% ) - 8t Oéaé- (63
1,/8 d\° 5

The distribution function h,, is expanded as usual
ho = b + ehll) + £2h2 + O(%), (194)

and the centered-sheme force term is expressed as

1 A 1 (0 0 )
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Substituting Eqs. (192) - (195) into Eq. (166) the evaluating to order ¢° is

hY = hgg, (196)
to order ¢ it is
0 0 1
Zdey— O = pM) 4 g 1
<8t+6 ag) o =T el T (197)

and to the order 2 it is

) B 9 0\? 1 1/0 B
(1) 0 -~ p@ _Z (=2 “\VH 1
<8t+€°‘8§>h + = <8t+eaa§> he, hy; ( +eq ) a (198)

Substituting Eq. (197) into Eq. (198) leads to

1 0 0 1
_ 1 __ 17
<1 27’h> <8t a@f) ha Thha (199)

Taking > [(197) 4+ £(199)], and enforcing conditions ), # =0, and da eaf =0, for

n > 1 gives
0
o Z Zea = H,. (200)

In this way the active-layer sediment equation for the sediment class ks is obtained, minding

Eq. (189):
a(ps(l — pb)ﬁksEmY) a¢ks
ot o0&

=Y (DIt = B+ (Sp),) - (201)
4.2.9 Global active-layer and stratum mass-conservation equation

Taking the sum of the active-layer mass-conservation equations Eq. (179) for every sediment
size-class ks it follows

KS
ps(L—pp) o ( mZﬂks) +* <Z¢ks> => ( D’ — B + (Sp),, ) (202)

ks=1 ks=1

The sum of the size-class fractions over the whole mixture is, by definition:

KS
> B =1 (203)

ks=1

Inserting Eq. (203) into Eq. (202), the global active-layer mass-conservation equation is

obtained:
KS
oo (B - sy,
ks=1 ks=1



The active-layer thickness is defined as the difference between the bed elevation Zyand the
active-layer floor elevation E,,, = Z,— Z;;.The change of the active-layer thickness will occur
due to the particle exchange between the active-layer and suspended-sediment mixture by
erosion and deposition, and due to the active-layer and active-stratum particle exchange.

The active-stratum [ mass-conservation equation of the particle class-size ks is:

0
ps(1— Pb)& (Es,lﬁks,l) =- (Sf)ks,l ) (205)

minding that the active-stratum has no contact with the sediment-suspension, therefore
there will be no erosion and deposition source terms. Also, in this layer there is no bedload
flux, since there is no bedload movement. The only source term is due to particle exchange
between the active-layer and the active-stratum. Taking the sum over all class-sizes ks, and

KS
applying that > 3 ks = 1, the global active-stratum equation is:
k=1

OF., KS
ps(1—pp) a; = > (ks (206)
ks=1

Going further down, for every stratum there will no longer be particle exchange between
the given stratum and the active-layer, therefore the mass-conservation equation for the

stratum k, where k = 1,2,...,1 — 1,is
0
ps(L =) (BopBsi) = 0. (207)

KS
Applying that ) By, = 1, the global stratum & mass-conservation equation is
ks=1

OB,
ps(1=pp)—5 = =0. (208)

Adding the given global active-layer mass-conservation equations for active-layer (204),
active-stratum (206), and all other stratums from 1 to [ — 1 (208), if the stratum 1 has

floor elevation Zy; = 0, the global active-layer and stratum mass-conservation equation is

obtained:
KS KS
a(Zb) 0 _ sed sed
ps(l _pb) ot + O <I€SZ:1¢ks> - kSZ:l (Dks - ks ) (209)
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4.2.10 Transformation of the global active-layer and stratum mass-conservation
equation using the adaptive grid technique
The transformation is applied on Eq. (209) in form
KS

o2z 0 &2 B)
plt =5 4 2 (Z%) o> (ot B, (210
ks=1 k

S=

and then multiplied with Y = 9z/9¢, which yields to transformed global active-layer and

stratum mass-conservation:

0 s 1- b Y 0 EKS: KES : se se
ks=1 ks=1

4.2.11 The lattice Boltzmann model for the transformed global active-layer
and stratum mass-conservation equation

The evolution equation corresponding to Eq. (211) is defined as:

(€ + eaDt,E+ AL) = ma(E8) — ——(ma — mE) + ALM,. (212)

Tm
where m,, is the particle distribution function (DF) along the « link, mg! is the local
equilibrium distribution function; £ is the position vector in the 1D domain; At is time step;
M, is the force term; 7, is relaxation time; e, is the particle velocity vector along the «
link; e = 9¢/0t and O are the lattice sizes. Three-velocity lattice particle velocities are
defined in Eq. (120) .The equilibrium distribution function (EDF) in this case must satisfy

following relations:

> mi = p(1 =) ZY (213)
(63
KS
> camil =Y b
« ks=1
The proposed equilibrium distribution function is
(
ps(l _pb)ZbY , = 0
1 KS
me = 3¢ 2. Pks ,a=1 (214)
ks=1
" KS
2 Z ¢k y X = 2
k=1

o1



The force term is evaluated as

KS
My =YY (Dt - Biet). (215)
ks=1

to ensure second-order accuracy to the method, the force term is evaluated using the

centered-sheme:

M, = M, (g + %eaAt,t + ;At> . (216)

The bed-load elevation can be calculated as the zeroth statical moment as follows
Zy(&,t) S > “ma(é,t) (217)
p(&, 1) = mea(&,1).
(1 —ppy &=

4.2.12 Derivation of the transformed global active-layer and stratum mass-
conservation equation from the lattice Boltzmann equation

The goal is to develop Eq. (211) from the lattice Boltzmann equation (212), and the
relations (213)-(217) using the Chapman-Enskog analysis. Applying Taylors expansion to
the each term of the Eq. (212) in time and space, the first term on the LHS, assuming

At = ¢, becomes

0 0
Mo (§ + eaAt, t + At) —my(E,t) = ¢ (6t + ea(%) Mey (218)

1,(0 d\? 5
+§€ <8t+eaa§> ma—|—0(5 )

The distribution function m,, is expanded as:
me = m® +emP + 2mP + 0(%), (219)
and the centered-sheme force term is expressed as

1 1 B 1 /0 %) 2
M, <£ + 5eaAt, t+ 2At> = Mo + 3¢ <at + eaag) M, + O(e%). (220)

Substituting Eqs. (218) - (220) into Eq. (212) the evaluating to order &° is

m®) = me. (221)
Collecting the terms of order ¢ it is
0 0 1
) m® = —— ) 4 222
(8t+ea8§> my, i + M, (222)
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and to the order 2 it is

0 0 1/0 9\ 1
= B PN QO B (e = 0 __ -2
(8t+ea8§> my, +2 <8t+ea8§> Mgy Tmma (223)
1/0 0
3 <8t+8§> Ma

Substituting Eq. (222) into Eq. (223) leads to

1 0 d 1
B Y B [P ) e )
<1 27_m> (815 + eaa€> me 7_mma (224)

Taking ) [(222) + £(224)], and enforcing conditions ), m® = 0, and ), eam™ =0 ,
for n > 1 gives

0 0
(0) § 0) —
T Ea mey’ + 9 2 eamy,’ = M. (225)

Using relations (213) and (215), the transformed global active-layer and stratum equation

is obtained:

KS KS
0lps(1 —pp)ZpY 0 se e
[ ( ot b) b ] + 875 (Z¢ks> — YZ (Dk.sd - Ek;sd) . (226)
ks=1 ks=1

4.3 Boundary conditions

In order to develop a fully operational one-dimensional flow-sediment mathematical model,
set of outer and inner boundary conditions must be defined. The flow-sediment model
consists of four sets of LB equations, defined in the previous section, therefore, appropriate

boundary conditions must be defined for every set.

4.3.1 Boundary conditions for one-dimensional unsteady flow lattice Boltz-
mann model

4.8.1.1  QOuter boundary conditions

Unsteady flow model demands upstream and downstream boundary conditions. For the
upstream boundary condition discharge, represented by hydrograph, is prescribed, and the
downstream boundary condition is water level, represented by stage hydrograph. This
is a common practice in river modeling when specification of outer boundary conditions is
considered. This conditions need to be customized for the LB unsteady flow model presented

by Eq. (118).
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The macroscopic variable upstream discharge ), is related to the distribution function

at upstream boundary as (minding Eqgs. (126) and (120)) :

Qup = €1 [;=15) + €2 fa=1,) (227)

where index i = 1,2,..., N denotes computational node (cross-section) along the section
j=1,2,..., M.For the standard LB D1Q3 lattice arrangement, using that e; = —ey = e the

unknown distribution function is:

* QU
Hli=15) = fati=19) + Tp' (228)

The downstream boundary condition is, from Eq. (125):
AdownY(i=N.j) = foii=Nj) + f1i=Nj) + foi=n j) (229)

where downstream cross-sectional area A,y 1S obtained from the water level - cross-section

area curve for a specific downstream water level value. The unknown distribution function
is:

fati=n ) = AdownY(i=n.j) — foii=Nj) = f1i=Nj)- (230)

Another commonly used boundary condition for unsteady flow, which will be used in

one of the unsteady flow in a non-prismatic channel, is normal depth boudary condition

according to the Chezy-Manning equation:

1
Q= EAR2/3\/SO. (231)

In this model, cross-section is rectangular, therefore A = Bh can be applied, and from the

zeroth and first statical moment defined in Eqgs. (125) and (126), Eq. (231) yields to:

L\ 2/3
er-fiterfi = (fot it f3) (2 .fﬁoif{igf3> Vi (23
B

As one can see, Eq. (232) has an implicit form, and it is solved by iterative method where
the value of the unknown distribution function f3 is first speculated, and then corrected

until LHS and RHS of the Eq. (232) are equal.
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Figure 10: Tributary flow.

4.3.1.2  Inner boundary conditions

Natural watercourses are characterized by complex geometry, and represent a challenge in
numerical modeling. Besides arbitrary cross-sections, there is variable longitudinal geometry
which needs to be modeled as inner boudary conditions. In this section, solutions for

tributary flow and bifurcations will be presented.

Tributary flow Formulation of the inner boundary condition, which incorporates tribu-
tary flow into one-dimensional LB model, is based on the lattice disposition shown in Fig.10.
The unknown distribution functions f;(i: N.j) and ff(i:l,j +1) corresponding to the end and
the beginning of the sections j and j + 1, respectively, are derived using the continuity

equation and water level equality between cross sections:
Qi=1,j+1) = Q=n.j) T @1, (233)

Z((i:l,j+1))=Z(i:N,j)’ (234)

where @), stands for tributary flow. For simplicity, cross-sections (i = 1,j+1) and (i = N, j)
are chosen to be the same, since the distance between the two is small, and tributary flow
is modeled as nodal inflow, resulting that the water level equality can be replaced with
the cross-section area equality, which is more suitable with the used one-dimensional LB

unsteady flow model. Now, Eq. (234) can be written as:

Ai=1j+1)=A3=n), (235)
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Figure 11: Flow separation.

and with Eq. (233) represent two necessary equations for solving two unknown distribution

functions using the zeroth and first statical moment, defined in Eq. (125):

f1(1 1,j+1) " €1 + f2(z 1,j+1) €2 = fl ce1+ fz =N,j) " €2 + Q1 (236)
Foi=14+1) + Fim1j41) + 26141 _ fow:zv,j) + fri=ng) T Fi=ny) (237)
Yii=1,5+1) Yii=n.j)
After some elementary algebra, Egs. (236 ) and (237) yield to:
Y. -1
(i=N.,j)
Fiie ( + 1) 238
20 Y= 1,g+1) (238)
Q1 N.j)
Joi=1,j+1) + 2 fagi=141) T J10= )t Yi — fou=nj) — fig=nj | (239)
(i=1,j+1)
x = * Q@ 240
fl(i:17j+1) - fl(i:N,j) - fz(i:NJ') —+ f2(i:1,j+1) + ? ( )

which determines the unknown functions Hiz1jen and fy_n i)
Bifurcation

Flow separation River bifurcation occurs when one stream separates into two or
more streams. If they merge downstream, one or more river islands are created, and the
closed system consisting of two or more river branches is created in hydraulic sense, requiring
additional inner boundary conditions in the separation and merging locations. To derive

three unknown distribution functions at the separation locations, using the disposition
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shown in Fig.11, three equations are necessary: the continuity equation and two water level

equalities:
Q=N ) = Q=111+ Qu=1,4+2), (241)
Zi=ng) = Za=15+1) = Zi=1j+2)- (242)

Using the first statical moment, Eq. (241) yields to:

fg(i:N,j) + ff(z‘zl,jﬂ) + ff(z’:l,j+2) = fl(izN,j) + f2(¢:1,j+1) + f2(@':17]'+2). (243a)

Equality equation Z;—y j) = Z(i=1,j41) 1S expressed using the linear interpolation of Z — A
curve in form

Z=wLm 4 80m . (A — ARM™), (244)

where WL™ and AR are water level and area at point m, respectively, and S(m)

denotes the slope between two points m and m + 1 of the Z — A curve:

W Lm+l) —y rm)

Sm) — D — AR (245)
Now, using the given correspondence equality equation can be written as :
WL+ SE - (Ao — ARSY, ) (246a)
= WLEQLJ'H) + S((in:l)l,jJrl) (Ag=1,441) — ARgi)l,jJrl))'

Applying the zeroth statical moment, Eq. (246a) yields to

(i=N.j) (i=N.j)

fO(i:N,j) + fl(i:N,j) + f2*(i=N,j)
. (Z:Ny])

— AR™ (247)
Y(i=n.j) )

= WL, L+ S

Jo(i=1,j+1) + ff(i:l,j+1) + fa(i=1,j+1) AR
(i=1,j+1) i=1,j+1) - i :

Y(z‘:l,j—}—l) (1==1,j+1)

Similarly, the second equality equation Z;_y ;) = Z(j—1,j4+2) is obtained in form:

WL JrS(m) '(fo(iZN:j)+f1(i=N:j)+f2*(iN,j)

— AR™ ) (248)

(Z:ij) (i:ij) }/(’L'ZN,]') (Z:ij)
_ (m) (m) fO(i=1,j+2) + ff(i:1,j+2) + f2(i:1,j+2) (m)
=WLiZ )t S(izl,j+2) ’ ( Yio112) - AR(2'=1J+2) . (249)
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Finally, if matrix notation is used in form AX = B, where, from Eqgs. (243a), (247) and

(248):
1 1 1
A= | S S0y 0 (250)
V=) - V=141 - ’
(i=N.j) 0 _ Sli=14+42)
Y(i=N.) Yii=1,j+2)
Fai=n.j)
X = f1*(1'=1,j+1) ’ (251)
Fi=1j+2)
and
J16=N,5) T fa@i=1,j41) + fo@i=1,j+2).
— (m) (m)
B= S(i:l,j+1)B(i=N,j) - S(i:N,j)B(i=1,j+1) ’ (252)
m) (m)
Stiz1j+2)Bla=15+2) = Sii=n 5 Bli=n.)
where
Joii=n4) + f1i=N.j) (m)
By ) = ’ D) ARM 253
( N?]) }/(’L:N,j) (l_NJ) ( )
Joi=1,j+1) + f2(i=1,j+1) (m)
Blie1 1) = ’ I Apm 254
(i=1,j+1) Yv(iil,j-i-l) (i=1,5+1) ( )
Joi=1,j+2) + J2(i=1,j+2) (m)
Blic1 o) = ’ 012 pgm 255
(i=1,7+2) Yv(izl,j-i—?) (i=1,7+2) ( )
Solution can be obtained by solving the matrix equation in form:
X =A"'B. (256a)

Flow merger Similarly, for the flow merger inner boundary conditions, three equa-

tions are needed to solve three unknown distribution functions, fl*(i:1 i12); f;(i: and

N.j)

f;(i: Nj+1) shown if Fig.12, the continuity equation, and two water level equality equations:
Qu=14+2) = Qu=nj) T Q=N+1), (257)
Zim1jv2) = Z(i=Nj) = Z(i=N,j+1)- (258)

Using the same procedure as for the flow separation boundary condition, the matrix equation

can be formed as CY = D, where
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Figure 12: Flow merger.

1 1 1

(m) (m)

C= | Si=~gp _ St=1+n 0
Y Vi1, ’
(i=N.j) (i=1,j+1)
sm s,
(i=N,j) 0 _ T(=1,5+2)
Y(i=N,j) Y(i=1,j+2)

Fiz1j12)
Y= fai=n.j) ’

fz*(i:N,jH)

and
J1ii=nj) T fii=Nj+1) T fagi=1,+2).
_ (m) (m)
D=1 SZvDPu=nj) — Sz jroPi=tjr2 |
(m) (m)
S(i:N,jH)D(i:l,jJrl) - S(i:l,j+2)D(i:Lj+2)
where
Joti=n5) + fai=N.j) (m)
Diion.j) = : D) AR
( ij) Y(i:N,j) (1_N7.7)
Jo(i=1,j+1) + fo(i=1,j+1) (m)
Diioyiin) = ’ AR YN
(i=1,j+1) Yiim1541) (i=1,j+1)
fo(i=1,4+2) + f1@i=1,j+2) (m)
Di=1,j12) = : - AR(i:l,j—l—Z)'

Yiiz1,j+2)

Solution can be obtained, again, by solving the matrix equation in form

Y =C'D.
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4.3.2 Boundary conditions for the sediment transport lattice Boltzmann model

The suspended-sediment transport LB model demands upstream and downstream boundary
condition. For the upstream boundary, D,,, the non-dimensional concentration for the size-

class ks is used. Using the zeroth statical moment given in Eq. (165), it follows:
CupA(i=15)Y(i=15) = 9o(i=1.j) T 1(i=1,5) T 92(i=1.j)- (266)
Now, the unknown distribution function is
91(i=1.j) = CupA(i=1,)Y(i=1,j) — Jo(i=1,) — 92(i=1.j)- (267)

For the downstream boudary, the conventional bounce-back boundary scheme is used,
which reads that an incoming particle is bounced back into fluid. For the proposed D1Q3
lattice arrangement the unknown distribution function, after bouncing back from the wall

after streaming can be calculated as:

9§(¢:N,j) = 92(>i=N—1,5) (268)
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CHAPTER V

PROGRAMMING CODE

In the previous chapter the lattice-Boltzmann models are formed, which evolve the one-
dimensional transformed Saint-Venant equations and transformed suspended-sediment mass
conservation equations after the Chapman-Enskog expansion. Also, the corresponding
boundary conditions have been defined, suitable with longitudinal changes at the water-
course, and derived in the way to satisfy the requirements of the LBM. Corresponding
programming code in the programming language FORTRAN has been written, with the
purpose to solve the governing equations. Natural watercourses are characterized with
complex geometry accompanied with great amount of data. Therefore, an extra effort has
been given to the optimization of the code, in order to unburden the of any unnecessary
calculations. In the Fig.13 the schematic representation of the used algorithm is given, and
in further text, every part of the algorithm is explained.

With purpose to unburden the code with unnecessary operations, which implies repeti-
tive execution of numerous operations in order to calculate the geometrical characteristics
of cross-sections (cross-section area, water surface level, wetted perimeter, and water sur-
face width) depending on water surface level, a separate program CURVES is written.
Every cross-section is divided into equal, smaller, intervals over depth, and for every prede-
termined depth-step geometrical characteristics are calculated and written in external files.
The depth-step is chosen to be Az = 30 ¢m, as optimal value between the accuracy and
the tendency to form the dependence curves with the minimal amount of data. Resulting
curves are later used in the main program. If the water surface level is between the assigned
depth-steps, linear interpolation between those values is used to trace the desired value.

Program WS-LBM is the main program that solves lattice Boltzmann model for
the transformed Saint-Venant equations and for the suspended-sediment mass-conservation

equation, simultaneously. It consists of 10 chronologically placed subroutines, that form
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Figure 13: Code algorithm.

the algorithm. After loading the general parameters (number of sections, number of lattice
nodes for each section, time step, relaxation times, iteration number, etc.), from assigned
external files, first subroutine GEOMETRY is summoned, that consists of three sub-

subroutines, which are executed one after another:

e READ GEOM - reads the cross-section characteristics: stationery and cross-section

geometry;

e READ CURVES - reads the cross-section area-water surface level curve, wetted
perimeter - water surface level curve and water surface width - water surface level for

each cross-section, previously calculated using the program CURVES;
e T PARAM - calculates the transformation parameter for every computational point
(cross-section), using the discrete form of the first derivative:

.. Zji4+1) — L(j,i—1
v = =R

(269)

where x is the cross-section stationary, A is the lattice size, j = 1, ..., N is the section
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number, and ¢ = 1,..., M (j) is the computational point number.

Within the subroutine INIT COND, the initial conditions are assigned. Subroutine

COMPUTE _EQ is summoned, to calculate the initial equilibrium distribution functions

values. Within the subroutine SETUP, all distribution functions values take over the values

of the initial equilibrium distribution function. Prior entering the main loop, variable time

is set to zero, to indicate initial state. Within the main loop, at each iteration, the value of

time is increased by 1. The main loop consists of six subroutines:

COLLISION - calculates the values of the distribution functions after the collision
step. The force terms are calculated within the separate sub-subroutines FORCE

(for the water) and FORCE _S (for the sediment transport);

STREAMING - calculates the values of the distribution functions after the stream-

ing step;

B _COND - calculates the unknown boudary distribution functions at the model

boundaries;

TRIB FLOW - calculates the unknown distribution functions at the boundary

points between the sections where tributary flow is foreseen;

BIFURCATION - calculates the unknown distribution functions at the boudary

points between the sections where flow merges or separates;

SOLUTION - calculates new physical variables (discharge, water surface level, cross-

section area, depth, velocity, water surface width, concentration);

COMPUTE _EQ - calculates new equilibrium distribution functions.

After every iteration, results are written in external files, within
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CHAPTER VI

MODEL TESTING AND VALIDATION

Model testing and validations has two phases. First, the unsteady open-channel flow lattice
Boltzmann model has been tested in three steps, each imposing more complex conditions.
Within the second phase, sediment transport is attached on the fully functional water flow
model, in order to develop a multiphase water - sediment unsteady open-channel flow LBM

model.

6.1 One-dimensional unsteady open-channel flow

In order to test and validate the proposed one-dimensional lattice Boltzmann model for the
transformed Saint-Venant equations, three case are studied: a steady flow in a prismatic
channel with rectangular cross-section, an unsteady flow in a non-prismatic channel and
unsteady flow in a natural watercourse. Steady non-uniform flow in a prismatic channel is
modeled for two lattice grid dispositions, uniform and non-uniform. For the same physical
model, equidistant and non-equidistant grid is formed, and the results are compared with
the corresponding model obtained by commercial HEC-RAS software. Within the second
test model, unsteadiness is introduced by applying a shock wave as upstream boundary
condition and using a non-prismatic channel. Again, physical model is tested for both
equidistant and non-equidistant lattice grid. Validation is obtained by the corresponding
HEC-RAS models. In the last step, unsteady flow in natural conditions is tested, in order to
prove that the developed LBM model is comparable to the standard modelling software. A
31 day long unsteady flow simulation on a chosen section of the Danube River is performed.
Besides arbitrary cross-sectional geometry, the chosen section contains four tributaries and
two river islands. The verification of the LBM model is obtained by comparison with the
measured flow and water level data obtained by standard geodetic survey by the Republic

Hydrometeorological service of Serbia (RHMZ).
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Figure 14: Comparison of water surface elevation along the channel at t = 50 min -
equidistant lattice grid

6.1.1 A steady non-uniform flow in prismatic channel

Previously derived D1Q3 LBM for the transformed Saint-Venant equations, defined by Eq.
(118), using the relations (120), (122), (123), (125) and (126), is first tested on a prismatic
channel of rectangular cross-section having total length L = 1000 m, width B = 100 m, and
constant slope Sy = 0.001 is selected. Manning’s roughness coefficient is n = 0.025 m~1/3s.
Water surface elevation Zg = 1.20 m is set as downstream, and discharge @), = 100.0 m3/s
as upstream boundary condition, where the unknown distribution functions at the model
boundaries are determined using the Eqgs. (228) and (230). Initial conditions are set to
Qinit = 100.0 m? /s and hinir = 1.20 m for the entire model. Two cases are observed,
one with uniform spatial grid, and one with non-uniform grid, under the same physical
conditions. For the uniform grid case, computational lattice size A = 1.0 and physical
distance between cross sections Az = 50.0 m is used. For the non-equidistant physical
grid, the minimal cross-section distance is Azxpin, = 20.0 m and the maximal distance is

Axmax = 81.72 m. The computational lattice size is left to be A{ = 1.0. In both cases grid
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Figure 15: Comparison of water surface elevation along the channel at t = 50 min - non-
equidistant lattice grid

has total of 21 computational points, and relaxation time is set to 7 = 0.505. The stability
for the equidistant grid model is obtained for At = 1.0 s, while for the non-equidistant
grid lower value of At = 0.7 s was necessary. Comparison of the water surface elevation
for t = 50 min with corresponding HEC-RAS model is shown in Fig.(14) and Fig.(15), for
the equidistant and non-equidistant model, respectively. Comparison of historical record of
water surface elevation for equidistant and non-equidistant lattice grid is shown in Fig.16
and Fig.17, respectively. Comparison of historical record of discharge is shown in Fig.18
and Fig.19, for uniform and non-uniform grid, respectively. Three arbitrary cross-sections
are chosen to manifest the results, where cross-section stations shown are measured from
the upstream boundary. As one can see from the shown comparisons, very good agreement

is achieved for both equidistant and non-equidistant physical grid models.
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Figure 16: Comparison of historical record of water surface elevation in prismatic channel
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Figure 17: Comparison of historical record of water surface elevation in prismatic channel
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Figure 18: Comparison of historical record of discharge in prismatic channel - equidistant
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Figure 19: Comparison of historical record of discharge in prismatic channel - non-
equidistant lattice grid
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6.1.2 An unsteady flow in non-prismatic channel

The same LBM as used in the previous example is now tested for unsteady conditions.
A non-prismatic channel of length L = 24000 m, constant bed slope Sy = 0.0005 and
Manning’s roughness coefficient n = 0.0667 m~'/3s has been modeled. Channel width is
determined by expression B = 8.0 + 12.0(xz/L), where = represents the corresponding cross
section stationary, measured from the upstream boudary. As shown in Fig.20, channel
width linearly changes from 8.0m at upstream do 20.0m at downstream boundary. Using
the same approach as in the previous example, two cases are observed to test uniform and
non-uniform physical grid for unsteady flow conditions. In case of the equidistant physical
grid constant distance between the cross sections of Az = 1000.0 m is used, forming 25 com-
putational points. In case of non-equidistant grid random, unequal cross-section distances
shown in Fig.20 are applied, resulting with, also, 25 computational points. The minimal
cross-section distance is Az min = 500.0 m and the maximal distance is Azpax = 1700.0 m.
Computational lattice size A¢ = 1.0 is used for both cases. Hydrograph shown in Fig.21 is
set as upstream boundary condition, to ensure the unsteadiness of the flow, while for the
downstream boundary condition normal depth obtained from the Chezy-Manning equation
is applied. To determine the unknown distribution functions at boundaries, Eq.(228) and
the iterative solution of the Eq. (232) are used. Stability is obtained by setting 7 = 0.501
and At = 2.0 s for the both cases. Total of 12600 computational steps are performed to
do a 420.0 min simulation. Validation is obtained again by the HEC-RAS software that
uses bidiagonal four-point implicit finite-difference Preissman scheme [21] . Four cross sec-
tions equally distributed along the channel are used as comparison check points, where
cross sections stationaries for the non-equidistant grid are marked in Fig.20. The historical
record of water surface elevation for the equidistant grid is shown in Fig.22, left, and for
the non-equidistant grid is in Fig.23, right. The comparison of the LBM and HEC-RAS
model for equidistant and non-equidistant grid shown in Fig.24 and Fig.25, respectively.

All compared results are in a very good agreement.
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6.1.3 Unsteady flow in a natural watercourse - Danube River case study

The final step when testing newly developed non-uniform grid based LBM for the Saint-
Venant equations is to apply the model on a watercourse with arbitrary cross-sectional and
longitudinal geometry, as it is shown that the model functions very well when simple geom-
etry is modeled. The goal is to perform a long-lasting simulation under natural conditions.

One section of the Danube River is chosen to form a model.

Tr.z'm:'s
Y GS Smederevo G ro— : Iron Gate I
rkm 1116.23 NeraC rkm 970.35

Miava

G5 Golubac
rkm 1042.00

[

Donji Milanovac % viom 99599

Figure 26: The Danube River experimental reach

The Danube River has the total length of 2860 km. It originates in Germany, passes
through Austria, Slovakia, Hungary, Croatia, Serbia, Romania, Bulgaria, Moldova and
Ukraine and discharges into the Black Sea. Its drainage basin extends into nine more
countries. It has 31 tributaries and many closed bifurcation systems (river islands). Ap-
proximately 10.2% of the Danube’s length crosses through Serbia. To test the proposed
model, the Serbian section of the Danube River stretching between the Iron Gate I Hy-
droelectric Power Station (rkm 970.35) and the Smederevo gauging station in Serbia (rkm
1116.23) is used, as shown in Fig.26. This section has total length of 145.88 km, has four
tributaries: Velika Morava, Nera, Pek and Porecka, and two closed bifurcation systems.
Measured morphological data is used to form a model. Along the observed section of the

river total of 160 cross-sections are available. The distance between them varies between
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Figure 27: Shematic model.

800 + 1300m. One cross-section is shown in Fig.28. The total length of the experimental
reach is divided into nine sections, each of them separated by a tributary or river islands,
as shown in Fig.27. The characteristics of the sections are given Table 2. Sections S51, S52,
S71 and S72 represent river islands. The measured cross-section geometry of sections S5
and S7 is separated at the highest points of the river island into two separate river branches.
If the river island floods, two river branches merge into one and form sections S5 and S7.
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Figure 28: Cross-section of the river bed

Lattice Boltzmann D1Q3 model, defined by Eq.(118) is used. Equilibrium distribution
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Section Station Length Number of cross-sections

rkm km
S1 970.35+993.00 22.65 23
S2 993.00+-1057.40 64.40 62
S3 1057.40+1075.00  17.60 19
S4 1075.00=-1078.00 3.00 7
S51 1078.00+1082.00 4.00 6
S52 1078.00=-1082.00 4.00 6
S6 1082.00+-1087.50 5.50 8
S71 1087.50=-1091.00 3.50 )
S72 1087.50-+-1091.00 3.50 5
S8 1091.00+-1104.35 13.35 20
S9 1104.35+1116.23  11.88 10

Table 2: Properties of the computational sections

functions defined by Eq. (122), and force term is calculated from the Eq. (123).Physical vari-
ables Q and Z are calculated based on the obtained distribution functions by Eqs.(125),(126)
and from the cross-section area - water surface level curves obtained by the program
CURVES. Boundary conditions for this experimental reach, upstream hydrograph at gaug-
ing station Smederevo (Fig.29) and downstream water level at GS Iron Gate I during August
2006 are obtained by the Republic Hydro-meteorological Service of Serbia (Fig.30). Dis-
tinct unsteady flow can be observed. At the beginnings and ends of sections S5 and S7,
inner boundary conditions defined by Egs.(256a) and (265). Tributary rivers Nera, Pek and
Porecka have insignificantly small flows, but for tributary Velika Morava River Q; = 90 m3/s
is applied with boundary conditions defined by Eqs. (238) and (240) between the sections
S8 and S9. Manning’s roughness coefficient is n = 0.0318 m /35 for the whole experimental
reach, lattice size is A{ = 1.0 and the relaxation time is 7 = 0.57. The stability is obtained
for the time step At = 10.0 s.

Before the unsteady flow simulation steady flow is achieved by imposing constant flow
Q = 2570.0 m3/s and constant water level Z = 69.44 m in duration of four days. The same
values discharge and water level are assigned as initial conditions for the whole domain of
the model. After stabilization of the model, for the next 31 days boundary conditions shown
in Fig.29 and Fig.30 are applied. The unknown distribution functions at the upstream and

downstream boundary are determined from Eqs. (228) and (230). The 31 day simulation
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Figure 30: Downstream boundary condition at Iron Gate I.
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Figure 31: Comparison of the historical record of water surface elevation at GS Golubac.

is obtained with 267840 steps in 12.34 min. For the comparison of the results, measured
historical discharge for August 2006 at Iron Gate I, and historical water levels at gauging
stations Golubac (rkm 1042.00) and Donji Milanovac (rkm 995.00), based on the RHMZ
data, are used. Comparison of the LBM with RHMZ measurements of historical water level
for GS Golubac and GS Donji Milanovac are given in Fig.31 and Fig.32, respectively, and
the comparison for the historical discharge at Iron Gate I is shown in Fig.33. Obtained
results are in a very good agreement for both data sets. Deviations between calculated
and measured values of water levels are in range of 10.0 ¢m, which is very satisfactory for
this kind of significantly unsteady flow regime. Significant difference of 18 ¢m is observed
only between August 16" to 21 at GS Golubac. When analyzing the historical discharge,
deviations between the compared results are in the range of 200.0 m3/s, and the most

significant difference of 840.0 m?3/s is observed only once, on August 10",
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Figure 33: Comparison of the historical record of discharge at GS Iron Gate I.
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6.2 One-dimensional open-channel sediment transport

Under the second phase of this research, the unsteady open-channel flow model is upgraded
with the suspended-sediment transport model. First, the LBM model for the transformed
suspended-sediment mass-conservation equation was tested on a basic advection-diffusion
in a prismatic channel, independently of the flow model, and the comparison is made with
the analytical solution of the advection-diffusion equation for both equidistant and non-
equidistant lattice grid disposition. In the last case study, the combined one-dimensional
unsteady flow with suspended-sediment transport LBM model was tested on the chosen
section of the Danube River, and the comparison of the LBM results is made with the
measured data obtained from the RHMZ. To compensate insufficient suspended-sediment
empirical data, statistical data processing have been performed, based on the available
measured values. As this part of the research is still in a early stage, only suspended-
sediment transport is analyzed. In further research (that is ongoing), the focus is to test
and validate the complete sediment transport lattice Boltzmann model developed in Chapter

1V.
6.2.1 Advection-diffusion in a prismatic channel

In order to test the derived suspended-sediment LBM defined by Egs. (158)-(162), prismatic
channel of length L = 5000.0 m, with constant cross-section area A = 1.0 m? is used. The
number of sediment size-classes is KS = 1. As the initial condition suspended-sediment
concentration distribution along the channel length C{""(z), characterized with a high
peak, shown in Fig.34, which is challenging for the LBM, because of the sudden changes
and steep slopes of the curve. The initial suspended-sediment concentration is obtained

from the following equation:

Co ==

VE 7rtoe T (270)

where Cy = 3308.75, tp = 3484.8 s, x9p = 1400.00 m, s = 3.0 m/s, and z is spatial

iy (x,0) =

coordinate along the channel length. Upstream boundary condition is suspended-sediment
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Figure 34: Initial suspended-sediment concentration distribution.

concentration value obtained from the equation:

C —(—ut—zg)?
C};f(o, t) _ 0 e des(t+tg) 7 (271)
esm(to + 1)

where ¢ is time, and u = 0.5 m/s. Using this concentration values, for every time-step,
unknown distribution function at the upstream boundary is calculated from Eq. (267).
The last term of the Eq. (158), the force term, is set to zero, because only advection
and diffusion terms have been tested in this case. Again, two grid disposition cases have
been formed (equidistant and non-equidistant), and tested for the same conditions. For the
equidistant grid case, spatial step Az = 50.0 m is used, with lattice distance of A¢ = 1.0,
forming 101 computational points. For the non-equidistant spatial grid, arbitrary cross-
section distance is scattered along the channel length varying from 40.0 = 90.0 m, so that
the number of 101 computational points is preserved. Simulation time is 7" = 2520.0 s.
Lattice size is again set to be A¢ = 1.0.For the both cases, stability is achieved for 7 = 0.76,
and time step At = 1.0 s, therefore, both simulations are performed with 252 computational

steps. Results of the LBM for both cases are compared with analytical solution given by
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the following equation:

—(z—u-t—xq)>
CO ( t—xg)
e

C¥P(3,4) = —— 0~ =) (272)
F RED)

Comparison between the LBM and the analytical solution (AS) for the equidistant and
non-equidistant grid are given in Fig.(36) and (35), respectively. Compared results are in

excellent agreement for the both grid cases.
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Figure 35: Comparison of suspended-sediment concentation distribution along the pris-
matic channel for the non-equidistant grid.

6.2.2 Unsteady flow with sediment transport in a natural watercourse - Danube
River case study

Finally, the one-dimensional multiphase unsteady water flow with suspended-sediment trans-
port in a natural watercourse has been tested. Section of the Danube River of length 176.29
km, from GS Bezdan (rkm 1430.44) to GS Novi Sad (rkm 1254.15), have been used to
form a model (Fig.37). This section of the Danube has no tributaries nor river islands,
therefore, one the whole experimental reach can be modeled as one section with 73 com-

putational points (cross-sections). Distance between cross-sections is in the range between
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Figure 36: Comparison of suspended-sediment concentation distribution along the pris-
matic channel for the equidistant grid.
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Figure 37: The location of the experimental reach.
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Figure 38: Upstream boundary condition at GS Bezdan - dicharge.

850.00 + 5460.00 m. Combined LBM has been used: lattice Boltzmann model for the
transformed Saint-Venant equations with LBM for transformed suspended-sediment mass-
conservation equation. A 31 day simulations has been performed. Discharge (Fig.38) and
suspended-sediment concentration measurements (Fig.40) at gauging stations Bezdan dur-
ing May 2006 have been used as upstream boundary conditions, while water level (Fig.39)
measurements and GS Novi Sad have been used as downstream boudary condition. LBE
for the transformed SVE (118), with the equilibrium distribution function (122), and force
term (123) is modeled with the relaxation time 75 = 0.58. Physical variables Q) and Z are
calculated based on the obtained distribution functions by Egs.(125), (126) and from the
cross-section area - water surface level curves obtained by the program CURVES. Relax-
ation time used for the LBM for the transformed suspended-sediment mass-conservation
equation (Egs. (158)-(162)) is 74 = 0.82, number of sediment size-classes is K.S = 1,.and
sediment mass-diffusivity coefficient is €, = 20.0 m/s. Lattice size is set to be A¢ = 1.0.
Stability of the model is obtained for time step At = 10.0 s.

First, steady water flow is achieved by imposing constant water level Z = 85.77 m

and constant flow Q = 4550.0 m3/s.After stabilization of the model, keeping the obtained

83



88

87 -

Z(m)
T

85 -

R I
0 10000 20000
t(min)

T T -
30000 40000

Figure 39: Downstream boundary condition at GS Novi Sad - water surface level.

0.045

=1
o o
=] o o =
51 @ &
S -

o Glkgm3)
&

o
o
=
o

o
o
=

R R P I
10000 20000 30000 40000
t(min)

0.005
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Figure 41: Comparison of historical record of water level - GS Backa Palanka

steady flow state, steady suspended-sediment transport is accomplished by forcing con-
stant suspended-sediment concentration Cj, = 0.0259 kg/m3. Following the stabilization
of the combined model, 31 day long simulation of unsteady flow with suspended-sediment
transport has been performed. Discharge and water level measurements shown in Fig. 38
and Fig.39, respectively, are set as upstream and downstream boundary condition for the
flow model. Taking this values, the unknown distribution functions at the upstream and
downstream boundary are calculated from Eqgs. (228) and (230), respectively. The un-
known distribution function of the sediment transport LBM at the upstream boundary is
determined from Eq. (267), using the values of the concentration obtained from measure-
ments shown in Fig.40. At the downstream boundary, bounce-back condition is imposed,
calculating the unknown distribution function from Eq. (268).

To validate the water flow model adequate comparison of obtained results with the
corresponding daily based stage hygrograph is made. The comparison of water surface
level for the gauging station Backa Palanka (rkm 1298.66) is shown in Fig.41. Obtained
results are in a acceptable agreement. Deviations between calculated and measured values
of water levels are in range of 10.0 c¢m, which is very satisfactory. Maximal observed

difference is 25 ecm. Measured data for suspended-sediment concentration is available only
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Figure 42: Comparison of suspended-sediment concentartions - GS Ledinci

for GS Bezdan. This data was already used to form the upstream boundary condition.
In the absence of additional measurements, which would be used to verify the results,
discharge - suspended-sediment concentration dependence (C(Q)) curve is formed, based
on the available measurements during May 2006 for GS Bezdan. This dependence curve is

best fitted with order 2 polynomial trendline in form:
C(Q)=4.0-10""-Q* +5.0-107°Q — 0.0029. (273)

This polynomial trendline equation has been applied on the discharge measurements during
May 2006, and the obtained concentration values have been used to verify the results.
Obtained results are in a acceptable agreement. Average deviations between compared
values of concentration are in range of 0.002 kg/m3, which is acceptable, minding that only
suspended-sediment transport is modeled. The maximal observed difference is 0.004 kg/m?,
which is satisfactory, minding the unsteady flow condition and the fact that only suspended
sediment is modeled. In the forecoming segment of this research, the complete sediment

transport model, derived in the Chapter IV will be modeled.
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CHAPTER VII

CONCLUSION

In this thesis, first, the one-dimensional unsteady open-channel flow lattice Boltzmann
model is developed, tested and verified. In addition, water flow model is upgraded with the
sediment transport model, which, based on the physical problem, can be used independently
or simultaneously. The goal was to develop a robust numerical model that solves complex
physical processes in natural open-channel watercourses.

The one-dimensional open-channel unsteady water flow lattice Boltzmann model of-
fers two aspects of the contributions. First, lattice Boltzmann method is a relatively new
approach in modeling unsteady flow. A review of the literature in Chapter II shows the
existing models and commonly accepted directions in modeling the considered processes.
The finite-difference Preissman scheme and Holly-Preissmann method are the most widely
used methods in free-surface one-dimensional subcritical numerical modelling. LBM, be-
ing a mesoscale numerical method, does not fall behind from the existing methods when
it comes to accuracy, and has its advantage when long-term simulations of spatially large
physical domains are modeled due to its suitability for parallel programming. Using this
method partial differential equations are locally discretized on the lattice nodes. Collision
and streaming processes are independent, which allows parallel execution of the compu-
tational operations. The result is significantly shorter computational time, which allows
spatial and temporal expansion of the model. At the other hand a novel form of the lattice
Boltzmann method for solving the Saint-Venant equations is presented. In order to estab-
lish the LBM as tool for solving practical problems when one dimensional modeling of flow
in natural watercourses is considered, two major improvements of the standard LBM have
been successfully introduced and validated. First improvement is the formulation of the
water surface that eliminates the bed slope term (since for natural geometry the bed slope

term is difficult to define). The second is the non-uniformity of the physical computational
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grid, which opens opportunity for optional arrangement of computational points along the
modeled reach. Instead of disturbing the numerical model itself, governing equations are
transformed from the physical to the computational domain, and calculation of terms de-
fined in the non-equidistant physical space in the equidistant computational grid is enabled.
Furthermore, the concept of arbitrary cross-section geometry is introduced. With a special
attention, all the elements that would unnecessarily burden the model and thus extend the
computational time are eliminated, and, as a result, a relatively simple algorithm that solves
very complicated physical processes of unsteady flow in natural watercourses is obtained.
Besides the cross-sectional geometry, tributary flow and bifurcation boundary conditions
are derived and successfully implemented in the model. In order to validate the model
three cases are analyzed: a steady non-uniform flow in prismatic channel, an unsteady flow
in non-prismatic channel, and unsteady flow in a natural watercourse - Danube River case
study. The results for the channels with simple geometry are compared with corresponding
HEC-RAS models. For the Danube River case study the chosen 145.88 km long section or
the river includes four tributaries and two closed bifurcation systems. Results are verified
by comparison with the field measurements. Excellent agreement between the all com-
pared results is obtained confirming the capacity of the proposed model to serve as a fully
competitive practical tool comparable to the standard modelling software.

Furthermore, the one-dimensional sediment transport lattice Boltzmann model is de-
veloped in addition to the existing unsteady flow model. Sediment is characterized by a
different behavior with regard to its location; suspended-sediment is considered to move
with the water flow, while bed and near-bed sediment particles do not follow the same pat-
terns. Therefore, the domain of sediment transport is divided into three unities: suspended-
sediment, active layer bed sediment and bed sediment (stratum). The governing equations
describe the behavior of each sub-domain and the exchange mechanisms between them.
Using the same approach as for the unsteady flow model, equations are transformed from
non-uniform physical domain to uniform computational grid, maintaining required unifor-
mity of the lattice structure imposed by the symmetry of the predefined lattice velocities.

The existing solution algorithm is upgraded in the way that it is now able to solve sediment
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transport equations using the resulting physical variables from the unsteady flow model as
input data. Prior to creating the model that solves unsteady flow with sediment transport
in natural watercourses, a test model for the advection-diffusion equation is made, and the
results are in an excellent agreement with the analytical solution of the equation. The
multiphase water-sediment unsteady flow is tested on another Danube River case study,
on a 176.29 km long section. In the absence of measured data that could be used for the
verification, the statistical data processing have been performed and used for the compar-
ison. Considering the early phase of this part of the research, obtained results are in an
acceptable agreement. Further course of the research is implied; to develop a fully functional
one-dimensional unsteady flow with sediment transport lattice Boltzmann model, where the
sediment mixture is represented with more than one sediment size-classes. Forthcoming re-
search will also be directed to computational optimization, especially in terms of computer

code parallelization.
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