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Rezime

Ova teza sadrži neke od rezultata autora dobijenih tokom njegovog
postdiplomskog istraživanja u oblastima modelovanja komunikacionih
sistema i teorije informacija i zaštitnog kodovanja. Rezultati su pred-
stavljeni u matematičkom formatu i verifikovani su numeričkim simula-
cijama. Većina njih je motivisana problemima koji se pojavljuju prili-
kom razvoja i standradizacije 5G komunikacionih sistema i imaju veliki
naučni i praktični značaj.

Ova disertacija je podeljena u dva dela. Prvi deo uvodi novi kva-
zianalitički postupak za estimaciju verovatnoće greške dekodera zaštit-
nih kodova. Matematički je pokazano i eksperimentalno potvrđeno da
je novi simulacioni postupak značajno brzi od postojećih simulacionih
postpupaka koji se koriste u praksi. U drugom delu teze predstavljen
je problem konstrukcije višedimenzionalne trelis kodovane modulacije
(eng. Trellis Coded Modulation - TCM) pomoću sferičnih kodova. Ra-
zvijen je novi algoritam za konstrukciju sferičnih kodova koji su prila-
gođeni strukturi TCM koda i pokazano je da takvi TCM kodovi imaju
znatno bolje performanse od postojećih. Verovatnoća greške ovih novih
TCM kodova je estimirana primenom simulacionog postupka koji je dat
u prvom delu disertacije.

U nastavku navodimo najbitnije teorijske rezultate ove disertacije.
Dokazi teorema i analize predstavljenih rezultata su detaljno opisani u
samoj tezi.

vii



Novi kvazianalitički simulacioni postupak

Prilikom dizajna, performansa komunikacionih sistema obično se iz-
ražava kao verovatnoća greške koja može biti definisana na nivou bita
(eng. Bit Error Rate - BER) ili na nivou bloka (eng. Block Error Rate -
BLER). U ovoj disertaciji razmatramo samo BLER. Verovatnoća greške
se obično izražava kao funkcija odnosa-signal-šum (eng. signal-to-noise
ratio - SNR) ili normalizovanog SNR (Eb/N0). U praksi, verovatnoća
greške ne može da se odredi analitički već mora da se estimira po-
moću nekog simulacionog postupka. Osnovni postupak za estimaciju
verovatnoće greške komunikacionog sistema jeste Monte Karlo metod
(eng. Monte Carlo - MC). Velika mana MC metoda jeste veliki broj po-
trebnih uzoraka za estimaciju verovatnoće greške, posebno pri velikim
SNR vrednostima. Klasičan postupak za ubrzavanje MC metoda jeste
uzorkovanje po značajnosti (eng. Importance Sampling - IS). MC i IS
metod koriste indikatorsku funkciju da sakriju rad dekodra, što daje
veliku fleksibilnost ovih postupaka. Uvođenjem nekih pretpostavki o
samom dekoderu, moguće je značajno ubrzati simulacioni postupak.

Da bismo razvili novi kvazianalitički simulacioni postupak, prvo
uvodimo novi formalni model komunikacionog kanala - geodezijski
kanal, koji objedinjuje veliki broj postojećih modela koji se često sreću
u praksi i omogućava njihov zajednički tretman. Ovde spadaju binarni
kanal sa brisanjem (eng. Binary Erasure Channel - BEC), binarni sime-
trični kanal (eng. Binary Symmetric Channel - BSC) i kanal sa belim
aditivnim Gausovim šumom (eng. Additive White Gaussian Noise -
AWGN).

Neka skup Y predstavlja prostor kanala (eng. channel space), a
C ⊆ Y predstavlja kod koji se koristi za prenos informacija kroz proi-
zvoljni kanal. Kanal Ω ∶ C → Y jeste matematički model smetnje prili-
kom prenosa i obično je prikazan kao slučajno preslikavanje definisano
uslovnom verovatnoćom P [Y ∣X], gde X ∈ C predstavlja sučajno oda-
branu kodnu reč, a Y = Ω(X) ∈ Y predstavlja izlaz iz kanala. Dekoder
je bilo koja funkcija D ∶ Y → C, koja zadovoljava D(x) = x,∀x ∈ C.



Neka je data funkcija d ∶ Y × Y → R, koja za bilo koje vrednosti
x,y,z ∈ Y zadovoljava sledeće osobine:

1. d(x,y) = d(y,x)

2. d(x,y) ≥ 0, sa jednakošću akko x = y.

3. d(x,y) + d(y,z) ≥ d(x,z) (nejednakost trougla).

Tada kažemo da je d(⋅) metrika, a (Y, d) metrički prostor. Ukoliko je za
dati kanal Ω odlučivanje po maksimalnoj verodostojnosti ekvivalentno
odlučivanju po minimalnom rastojanju, u odnosu na metriku d(⋅), tj.

arg max
x∈C

P [Y = y∣x] = arg min
x∈C

d(x,Y = y), ∀x ∈ C,∀y ∈ Y, (1)

kažemo da su Ω i d(⋅) "upareni".
Geodezijski segment γ[x,y] jeste lokalno minimizujuća kriva, defini-

sana kao preslikavanje γ ∶ [0,1] → Y, koja spaja tačke x ∈ Y i y ∈ Y.
Ako između bilo koje dve tačke u metričkom prostoru postoji geodezij-
ski segment, kazemo da je (Y, d) geodezijski prostor.

Prirodna parametrizacija geodezijskog segmenta, definisana kao

d(γ(t1), γ(t2)) = α∣t1 − t2∣, t1, t2 ∈ [0,1], α ∈ R, (2)

omogućava razvoj brzih algoritama pretrage zasnovanih na metodu po-
lovljenja.

Sa ciljem razvoja brzih algoritama za simulaciju i zbog potrebe za
zajedničkim tretmanom diskretnih i kontinualnih kanala, uvodimo novi
formalni model komunikacionog kanala koji nazivamo geodezijski ka-
nal.

Definicija 1. Geodezijski kanal jeste bilo koji kanal Ω ∶ C ⊆ Y → Y,
koji sadrži uparenu metriku d, takvu da (Y, d) čini geodezijski prostor.

Oblast odlučivanja dekodera Dm ⊆ Y koja pripada kodnoj reči xm
dat je izrazom

Dm = {y ∈ Y ∶D(y) = xm} . (3)



Bitno je primetiti da Dm zavisi od koda C, kanala Ω i algoritma za
dekodovanje i može se promeniti ako se bilo koji od njih promeni.

Za dati kod C ⊆ Y i odgovoarajući geodezijski kanal Ω, neka zvezda
domen dekoder D ∶ Y → C bude algoritam za dekodovanje, takav da
svaki njegov region odlučivanja bude Dm predstavlja metrički zvezda
domen.

Definicija 2. Region odlučivanja Dm koji pripada kodnoj reči xm ∈
C ⊆ Y jeste metrički zvezda domen ako i samo ako za svaki geodezijski
segment γ[xm,y], γ(0) = xm i γ(1) = y ∈ Dm važi

∀k ∈ [0,1] ⇒ γ(k) ∈ Dm. (4)

Odlučivanje po minimalnom rastojanju (eng. minimum distance
decoder) i odlučivanje na osnovu poređenja sa pragom (eng bounded
distance decoder) po definiciji su zvezda domen dekoderi. Mnogi deko-
deri koji se danas koriste u praksi spadaju u ovu kategoriju. U drugom
poglavlju je pokazano da su OSD (eng. Ordered Statistics Decoder) i
PSCD (eng Polar Successive Cancellation Decoder) takođe zvezda do-
men dekoderi.

Za xm ∈ C i odgovarajući region odlučivanja Dm, verovatnoća greške
je data izrazom

P (m)
e = P [Y ∉ Dm ∣ xm]. (5)

Verovatnoća greške koda C tada je definisana kao

Pe = E[P (m)
e ]. (6)

Ukoliko su sve kodne reči jednako verovatne i ako je kod geometrijski
uniforman (svi regioni odlučivanja su jednaki), važi

Pe =
1

M

M

∑
m=1

P (M)
e = P (M)

e . (7)

Sledi da se verovatnoća greške može definisati sa aspekta bilo koje
kodne reči xm = x, sa odgovarajućim regionom odlučivanja xm = x i
Dm = D, kao



x

x

x

x

xx
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v
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x

Slika 1: Region odlučivanja D koji pripada kodnoj reči x. Izlaz iz kanala Y

nalazi se izvan regiona D što dovodi do greške dekodovanja. rp je poluprečnik
upisane sfere, a rc poluprečnik opisane sfere. v - rastojanje između x i granice
regiona D.

Pe = P [Y ∉ D ∣ x]. (8)

Greška nastaje kada izlaz iz kanala Y = Ω(x) ispadne izvan regi-
ona odlučivanja koji pripada kodnoj reči x. Uprošćeni izgled regiona
odlučivanja prikazan je na slici 1. Slučajna promenljiva R = d(x,Y )
predstavlja rastojanje između kodne reči i izlaza iz kanala, dok rp i rc
predstavljaju poluprečnike upisane, odnosno opisane sfere. Za bilo koje
y ∈ Y, uvek važi

d(x,y) ≤ rp ⇒ y ∈ D
d(x,y) > rc ⇒ y ∉ D.

(9)

Za svaki geodezijski segment γ[x,y], γ(0) = x i γ(1) = y ∉ D, postoji



najdalja tačka (eng. distance point) z = γ(k∗) ∈ D koja je najdalja od
x (u odnosu na rastojanje d), sa osobinom

z = arg max
d(x,γ(k))

{k ∈ [0,1] ∶ γ(k) ∈ D}. (10)

Neka je Z slučajna najdalja tačka. Tada se verovatnoća greške u
odnosu na realizaciju Z = z može definisati kao

Pe(z) = P [R > d(x,Z)∣Z = z]. (11)

Sledi da je verovatnoća greške koda data izrazom

Pe = EZ[Pe(Z)] = P [R > V ], (12)

gde je V = d(x,Z) pomoćna slučajna promenljiva koja predstavlja ra-
stojanje između kodne reči i slučajne najdalje tačke.

Teorema 3. Verovatnoća greške zvezda domen dekodera definisana je
izrazom

Pe = EV [FR(V )] = ER[FV (R)]. (13)

Sledi da se verovatnoća greške može estimirati pomoću izraza

P̂ QA
e = 1

J

J

∑
j=1

FR (vj), (14)

gde J predstavlja unapred definisani broj potrebnih merenja. Ovo je
kvazianalitički (eng. Quasi-Analytical - QA) postupak za estimaciju
verovatnoće greške zato što se šum ne simulira već se računa analitički
preko funkcije FR(⋅). Procena verovatnoće greške ne zavisi od varijanse
šuma, već samo od izmerenog rastojanja v, i može da se preračuna za
različite vrednosti SNRa.

Teorema 4. Varijansa QA estimatora ograničena je sa gornje strane
izrazom

Var[P̂ QA
e ] ≤ 1

J
PeFR(rp) (15)



Slika 2: Ubrzanje kao funkcija SNRa za slučaj BSC kanala i dužinu koda
N = 512.

Ubrzanje našeg QA postupka u odnosu na MC metod (pri estimaciji
verovatnoće greške Pe uz odstupanje δ) data je izrazom

τ = TMC(δ,Pe)
TQA(δ,Pe)

= O( 1

FR(rp) log2N
) . (16)

Slike 2. i 3. prikazuju ubrzanje QA postupka u odnosu na MC
metod za slučaj BSC kanala i dužinu koda N = 512. Slika 2. prikazuje
ubrzanje kao funkciju SNRa, dok je rp fiksan, dok Slika 3. prikazuje
ubrzanje kao funkciju rp za razne vrednosti SNRa.

Ukoliko se koristi dekoder sa grubim odlučivanjem za prenos poda-
taka kroz diskretni kanal, verovatnoća greške 13 može da se napiše u
obliku sume

Pe =
rc

∑
v=rp

pV (v)FR (v), (17)

gde pV (⋅) predstavlja funkciju raspodele slučajne promenljive V . U



Slika 3: Ubrzanje kao funkcija rp za slučaj BSC kanala i dužinu koda
N = 512.

ovom slučaju QA estimator (14) može da se napiše kao

P̂QA
e = ∑

v

FR(v)p̂V (v), (18)

gde p̂V (⋅) predstavlja funkciju raspodele nepoznatu slučajne promen-
ljive V koju je potrebno estimirati.

Teorema 5. Za diskretni kanal i dekoder sa grubim odlučivanjem, va-
rijansa estimatora je deinisana izrazom

Var[P̂QA
e ] = ∑

v

F
2

R (v) pV (v)(1 − pV (v))
J

. (19)

Teorema 6. Za diskretni kanal i dekoder sa grubim odlučivanjem, broj
simulacija J potrebnih za dostizanje tačnosti δ ograničen je sa gornje
strane izrazom

J ≤ 1

δ2
∑
v

1 − pV (v)
pV (v) . (20)



Slika 4: QA estimirana i analitički izračunata verovatnoća greške
RM(1, 5) koda za prenos kroz BSC kanal.

Slika 4. prikazuje QA estimiranu i analitički izračunatu verovatnoću
greške za primer BSC kanala i RM(1, 5) koda.

U poglavlju pet dati su numerički rezultati. Naš QA postupak po-
ređen je sa MC i IS metodima po pitanju tačnosti i brzine za slučaj
AWGN i BSC kanala. Rezultati jasno pokazuju da je novi QA postu-
pak za istu tačnost bar 103 puta brži od MC metoda, a bar 10 puta
brži od IS metoda.

TCM dizajn pomoću sferičnih kodova
prirpemljenih za podelu skupa

Trelis kodovana modulacija (eng. Trellis Coded Modulation - TCM),
kao što i samo ime kaže, kombinuje zaštitno kodovanje i modulaciju i
time značajno povećava spektralnu efikasnost digitalnog prenosa. Glavna
ideja TCMa jeste da se maksimizuje kvadratno Euklidsko rastojanje iz-
među sekvenci modulacionih simbola, umesto Hemingovog rastojanja,



sto je bio slučaj kod klasičnog zaštitnog kodovanja.
Obično se za TCM koriste 1D i 2D modulacije, ali napredak u MIMO

i optičkim komunikacijama omogućava korišćenje 3D i 4D modulacija
(i njihovih umnožaka). TCM zasnovan na ovim modulacijama naziva
se višedimenzionalni TCM.

Konstelacija je algebarska reprezentacija skupa modulacionih sig-
nala (eng. modulation signal space). Konstelacija N -dimenzionalne
modulacije predstavlja konačan skup (C ⊂ RN ) N -dimenzionalnih ve-
kora (modulacioni simboli ili tačke konstelacije), a veličina konstelacije,
M = ∣C∣, predstavlja broj tačaka u skupu. Rastojanje između dve tačke
xi, xj ∈ C (i ≠ j) definisano je kao

di,j = ∥xi −xj∥, (21)

dok je minimalno rastojanje u konstelaciji

dmin = min
i≠j

di,j . (22)

Konstelacija C(M,N), gde svi N -dimenzionalni vektori imaju jedi-
ničnu normu (tačke leže na površini sfere) naziva se sferični kod. Pro-
blem konstrukcije sferičnih kodova ekvivalentan je problemu raspoređi-
vanja tačaka na površini sfere i najčešće se koristi Metod promenljive
odbojne sile (eng. Variable Repulsion Force Method), gde se tačke
na sferi modeluju generalizovanim elektronima koji se odbijaju. Sledi
klasičan optimizacioni problem za konstrukciju sferičnih kodova

Optimizacioni problem 1 Minimizacija ukupnog potencijala

minimizuj V = ∑
i<j

V β−2
ij

tako da ∥xi∥ = 1; i = 1, . . . ,M.

(23)

Vij predstavlja potencijal između tačaka xi i xj i definisan je kao

Vij =
γ

∥xj −xi∥
. (24)



V predstavlja ukupan potencijal generalizovanih elektrona koji se od-
bijaju pod dejstvom centralne sile. Konstanta γ služi da bi se izbegli
problemi prilikom numeričkog izračunavanja, i obično se bira da bude

γ = min
i∈{1,...,M}/{j}

∥xj −xi∥. (25)

Centralna ideja TCMa jeste tzv. podela skupa (eng. set partiti-
oning), gde se tačke u konstelaciji dele u podskupove sa ciljem pove-
ćavanja minimalnog rastojanja unutar podskupa. Obično se polazi od
postojećeg koda koji ima dobro minimalno rastojanje i zatim se pravi
podela skupa. Ovi skupovi se zatim dodeljuju granama u TCM trelisu.

U poglavlju 7 predložen je optimizacioni problem za generisanje
sferičnih kodova, sa ciljem raspoređivanja tačaka na površini sfere tako
da se

1. maksimizuje minimalno euklidsko rastojanje između tačaka unu-
tar jednog podskupa,

2. maksimizuje minimalno euklidsko rastojanje između podskupova.

Optimizacioni problem 2 Optimizovana podela skupa

minimizuj V = (1 − λ)∑
i<j

(Vij(α1)1Xi(xj))
β

+λ∑
i<j

(Vij(α2)1Xi(xj))
β

tako da ∥xi∥ = 1; i = 1, . . . ,M.

(26)

Vij(α) =
γ

α∥xj −xi∥
, α =

⎧⎪⎪⎨⎪⎪⎩

α1, 1Xi(xj) = 1

α2, otherwise
. (27)

Indikatorska funkcija 1 (i njen komplement 1) proverava da li tačke
pripadaju istom podskupu, a α1, α2 (α2 > α1) i λ predstavljaju opti-
mizacione konstante.



Slika 5: QA estimacija BLERa za dva (24, 3) sferična koda

Ovaj problem je rešen primenom metoda promenljive odbojne sile,
a sam postupak nazivamo optimizovana podela skupa (eng. Optimized
Set Partitioning - OSP).

Pomoću OSP algoritma, konstruisani su novi 3D sferični kodovi sa
M = 12,16 i 24. Primećeno je da novi sferični kodovi, iako slabiji
od najboljih klasičnih sferičnih kodova (kodovi sa dobrim minimalnim
rastojanjem), u kombinaciji sa TCMom postižu bolje performanse, čak
i do 1dB (Slika 5).



Abstract

This thesis contains some of the results obtained by the author in the
course of his postgraduate research in the fields of Communication sys-
tem modeling and Information and coding theory. The results are pre-
sented in mathematical form and are verified by numerical simulations.
Most of them are motivated by challenges arising in the design and
standardization of 5G communication systems and are of practical and
scientific relevance.

Evaluating the error rate of a digital communication system is usu-
ally done using the Monte Carlo simulation method. The Monte Carlo
method is an unbiased estimator that is independent of the channel
model or the decoding algorithm. The main drawback of the Monte
Carlo method is the need of a huge sample size for estimating low er-
ror rates. Other methods commonly used are the importance sampling
technique and the quasi-analytical method. Both Monte Carlo and
importance sampling methods use the indicator function to hide the
details of the decoding algorithm used. It is possible to achieve signifi-
cant improvements by taking into account the structure of the decoder
and the decoding region.

In the first part of this thesis we first introduce the geodesic channel
model (a generalization of a vast number of commonly used channels,
including BSC, BEC and AWGN channel) and the metric star domain
decoder. We show that many practical decoders like the ordered statis-

xix



tics decoder and the polar successive cancellation decoder have a star
domain decision region. Finally, we introduce a novel SNR-invariant
quasi-analytical technique for estimating the error rate of a communica-
tion link over the geodesic channel. We compared this technique to the
Monte Carlo and Importance Sampling methods and it has been found
out that it outperforms other methods in both accuracy and speed. It
is shown that our quasi-analytical method is at least 103 times faster
than MC and 10 times faster than IS for the same accuracy.

Trellis coded modulation (TCM) is a modulation technique that uses
ideas from channel coding theory (specifically from convolutional/trellis
codes) in order to improve the reliability of a digital transmission system
without compromising bandwidth efficiency. The key idea of TCM is
set partitioning in which an existing modulation (e.g. a spherical code
with a good minimum distance) is partitioned into sets that are then
mapped onto a trellis. This approach is not necessarily optimal.

In the second part of the thesis we introduce an optimization pro-
cedure, based on the variable force repulsion method, for the design
of spherical codes that are tailored to the TCM and achieve lower er-
ror rates at high SNR, then their counterparts that are optimized for
minimum distance. We call this approach TCM design by optimized
set partitioning. The performance of these codes is verified using the
method developed in part I of this thesis which is suitable for simulating
error rates at high SNR.
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Chapter 1

Introduction and Motivation

This chapter provides an overview of the thesis structure and the sum-
mary of its contributions. The current state of the art of 5G communi-
cation systems is given and main design problems are presented. The
thesis is divided into two parts. In the first part we introduce a novel
quasi-analytical technique for estimating the error rate performance of
a communication link over the geodesic channel (a generalization of a
vast number of commonly used channels, including BSC, BEC and the
AWGN channel). The second part describes a new algorithm for de-
signing spherical codes optimized for set partitioning. The error rate
performance of these codes is estimated using the algorithm described
in the first part of the thesis. The mathematical notation is provided
at the end of this chapter.

Novel Quasi-Analytical Simulation Method

The third generation partnership project (3GPP) has defined three
main service categories in 5G – enhanced mobile broadband (eMBB),
massive machine-type communication (mMTC) and ultra reliable low
latency communication (URLLC) [1–3]. The eMBB category is de-
signed for services with high bandwidth requirements (e.g. virtual re-
ality, augmented reality, high-resolution video streaming, etc). The
mMTC category supports a massive number of Internet of Things (IoT)
devices, which are only sporadically active and send small data payloads
[4, 5]. The most innovative feature brought in 5G is the URLLC cate-
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gory [3,6,7], which focuses on delay sensitive services and applications
(see Fig. 1.1) like factory automation, tele-surgery, smart grid, tactile
internet and many others, some of which are yet unknown [1,2, 6, 8].
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Figure 1.1: Latency reliability requirement for different URLLC services [1].

It is clear that URLLC should satisfy two conflicting requirements:
ultra-low latency and ultra-high reliability. The most promissing ap-
proach is to use short packets to reduce latency which in turn causes
a severe loss in coding gain. It is possible to enhance reliability by
using different retransmission techniques [9–11] and feedback [12–14],
but this will significantly increassy lattency. Alternatively, the sys-
tem bandwidth should be widened, which is not always possible. The
second part of this thesis will present a technique for better spectrum
utilization. It has been clearly specified that channel coding for URLLC
should be further studied, especially for information blocks of less than
1000 bits [1, 15]. This has reopened the interest in short and medium
blocklength code design [1, 16–18] and the corresponding decoding al-
gorithms. Due to short-block length regime, maximum likelihood (ML)
and near maximum likelihood decoders like ordered statistics decoder
(OSD) [19,20] are also being considered for future applications [1,16,17].
It is well known that feedback does not improve the capacity of a
discrete memoryless channel [21], but it can improve its error expo-
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nent [22, 23]. Variable-length codes with a short average blocklength,
that rely on incremental redundancy (controlled using feedback) have
been shown to achieve a rate near capacity [14, 24]. Variable-length
codes with incremental redundancy without feedback, introduced in [25],
show good error performance with low latency.

Machine-type communication systems require the use of low cost
and power efficient hardware to connect many devices and sensors and
provide URLLC between them [26] in order to support future appli-
cations like reliable remote links, production automation, autonomous
driving and many others. With these applications in mind, different
coding schemes are being investigated and compared in terms of error
performance and encoding/decoding complexity [1, 16–18]. Error per-
formance is usually mesaured as bit error rate (BER) or block error
rate (BLER) and is usually presented as a function of signal-to-noise
ratio (SNR), or more commonly of bit SNR: energy per bit to noise
power spectral density ratio (Eb/N0) [27].

In general, error rate is hard to calculate analytically but it can
be estimated. It is of paramount importance to find a fast and accu-
rate simulation method which will allow the comparison of coding and
decoding algorithms (in terms of error performance) for these future
applications. It can be seen in Fig. 1.1 that tele-surgery and factory
automation have the strictest requirements of 1ms end-to-end latency
and BLER as low as 10−9. Other services such as smart grids and
process automation have more relaxed requirements (latency of 10ms
and more, and BLER between 10−3 and 10−6). As 3GPP defines a
minimal success probability of 1 − 10−5 of transmitting a layer 2 pro-
tocol data unit [28, 29] for mission critical URLLC demands, in this
thesis we concentrate only on the BLER, where generalization to BER
is straightforward.

The basic method for simulating the error performance of commu-
nication systems is the Monte Carlo (MC) method. Monte Carlo refers
to a broad class of computational algorithms that rely on repeated
random sampling to obtain numerical results. The MC method is an



4 1. Introduction and Motivation

unbiased estimator, but it requires a huge sample size to achieve certain
efficiency [30–34].

One of the most efficient ways to speed up the MC method is to use
the Importance Sampling (IS) technique. The IS technique is a general
variance reduction technique for estimating properties of the original
distribution while samples are being generated from some other biased
distribution. IS techniques have attracted a lot of attention over the
years. A number of sub-optimal solutions have been proposed [32, 35,
36]. A minimum variance IS technique for linear codes over the Binary
Symmetric Channel (BSC) is presented in [37]. An SNR invariant IS
technique was first presented in [38, 39] and later in [40]. It is possible
to achieve significant improvements over [38,40] by introducing the so-
called dummy simulations so that the total variance of the estimator
becomes much lower in the high SNR region [39]. A detailed theoretical
background of various IS techniques is given in [30–34].

Simulations in which only some input processes are simulated ex-
plicitly, while the effects of other processes are handled using analytical
techniques, are called quasi-analytical (QA) or semi-analytical (SA).
QA methods usually assume existence of some a priori knowledge that
can be evaluated analytically and this allows for simulation speedup.
There is no unique QA method [31], and the best combination of sim-
ulation and analysis is generally problem dependent, [30, 41–44].

Other methods used for simulating communication systems include
tail extrapolation [30, 31] and extreme-value theory [30, 45]. These
methods provide a good indicator of the error rate trend but are less
accurate at high SNR and therefore are not applicable for our use case.

Our main result in this part of the thesis is the establishment of a
novel QA method which is shown to outperform the MC and IS method
in both run time and accuracy. The main contributions are as follows:

• introduction and definition of the geodesic channel model and the
metric star domain decoder,

• proof that the OSD and the polar successive decoder (PSCD) are
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metric star domain decoders,

• establishment of a novel QA method for estimating the error rate
of a communication system with a star domain decoder and a
general algorithm for performing the simulation.

Furthermore we also give a detailed theoretical analysis of the pro-
posed QA method and provide illustrative numerical examples of the
given algorithm.

We show that two most frequently used channels, additive white
Gaussian noise (AWGN) and binary symmetric channel (BSC) are geodesic,
and compare the results of our QA method with the MC and IS simu-
lation methods over them.

In Chapter 2 we introduce the geodesic channel model and show
that the binary erasure channel (BEC) [46] falls into this category.
Given a geodesic channel model we define a metric star domain decoder
and show that many popular decoders fall into this category. Ordered
statistics decoder (OSD) is considered for future URLLC applications as
it allows for complexity/reliability trade off [1]. Polar codes [47,48] are
the first codes with explicit construction to provably achieve the channel
capacity for the symmetric binary-input, discrete, memoryless channels.
PSCD is a low complexity decoder with good error performances at
long blocklengths and with no error-floor [48–51]. Several modifications
of the PSCD were proposed to improve the short and medium length
performance of polar codes [52,53], which makes them suitable for many
mMTC applications [54–59]. We give explicit proof that both the OSD
and the PSCD are star domain. Finally we give the formula for the
error probability of a metric star domain decoder that will be used
throughout the thesis.

In Chapter 3 we will give a general simulation framework for esti-
mating the error rate of a communication link. We will also introduce
the accuracy of the estimator and give two metrics for calculating the
accuracy, namely the estimated relative precision and the average rela-
tive error. We finish this chapter with a detailed description of the MC
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and IS techniques and give some notes on their implementation.
Our main results are presented in Chapter 4. We first introduce

a QA procedure for the general geodesic channel model. Unlike the
MC and IS method, where we estimate the error probability for one
SNR value, our QA method is SNR invariant. We will give a more
specific mathematical interpretation of the error probability with re-
spect to a metric star domain decoder and comment on it. We will also
derive the upper bound on the variance of our QA method using the
Edmundson-Madansky inequality, which will allow us to express the
time complexity of the proposed method. We show that both AWGN
and BSC are a special case of the geodesic channel model, and give de-
tails on implementing the QA method for the discrete and continuous
case. We conclude this chapter with an analysis of the proposed QA
method.

Chapter 5 concludes Part I of the thesis. We will demonstrate our
QA method for the case of the AWGN and the BSC and compare it
to the MC and IS methods in terms of accuracy and speed. Some
comments about future work is given at the end of this chapter.

The results presented in Part I of the thesis are based on the fol-
lowing works:

• M. Shirvanimoghaddam, M. Sadegh Mohamadi, R. Abbas, A.
Minja, C. Yue, B. Matuz, G. Han, Z. Lin,Y. Li, S. Johnson,
B. Vucetic, “Short Block-length Codes for Ultra-Reliable Low-
Latency Communications,” IEEE Commun. Magazine accepted
for publication.

• A. Minja and V. Šenk, “Quasi-Analytical Simulation Method for
estimating the Error Probability of Star Domain Decoders,”,
submitted for publication.

• A. Minja, I. Stanojevic and V. Šenk, “Novel quasi-analytical sim-
ulation method for estimating the error probability in AWGN
channel,” 37th Conference on TSP., pp. 1–5 , Jul. 2014.
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• A. Minja, I. Stanojevic and V. Šenk, “Novel quasi-analytical sim-
ulation method for estimating the error probability over the BSC”
38th Conference on TSP., pp. 309–313, Jul. 2015.

TCM Design by Optimized Set Partitioning

As was descirbed in the previous section, emerging technologies, such
as 5G cellular networks and millimeter wave communications, internet
of things [8, 60], and visible light communications [61], and the ever
increasing data transfer require better spectrum utilization and higher
user throughput for short length communications.

In fiber-optic communication systems a coherent receiver maps the
optical signal to the electrical domain and in so enables the detection
of all four quadratures of the optical signal (in-phase and quadrature-
phase components of the two orthogonal polarizations) [62, 63]. In or-
der to achieve better spectral efficiency (to fully utilize the available
spectrum) a four dimensional (4D) modulation is used [63–65]. Recent
advances in orbital angular momentum (OAM) for free-space optical
and radio-wave communications demonstrated that OAM can benefit
the transmission with very high spectrum efficiency [66–68]. It was
shown in [69,70] that in a wireless communication system with circular
phased arrays OAM mode can be considered as an additional dimen-
sion of the modulation constellation, which results in a 3D multilevel
modulation. It is possible to further expand the number of dimensions
by using multiple transmitters coupled with a single-point detector,
multiple time slots or even multiple wavelengths in the case of optical
communications.

Trellis coded modulation (TCM) [64,65,69–75] combines coding and
modulation techniques for digital transmission, so as to achieve sig-
nificant coding gains over conventional uncoded modulations without
compromising bandwidth efficiency. The main idea of TCM is to parti-
tion the modulation signal set into subsets in such a way as to increase
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the Euclidean distance inside a subset (set partitioning), rather then to
increase the Hamming distance between the codewords, as was accom-
plished with conventional coding alone. At high signal-to-noise ratio
(SNR) the error probability is completely characterized by the min-
imum Euclidean distance between members of a subset. We will call
this distance intra-partition distance. Classical TCM design uses an ex-
isting constellation which is partitioned into subsets. This approach is
not necessarily optimal. TCM design based on combining 2D constella-
tions into higher-dimensional constellations was presented in [64,65,70]
and a heuristic approach based on small 3D spherical codes was inves-
tigated in [75]

The main contribution of this part of the thesis is the development
of an optimization method for designing a spherical code [76] opti-
mized for set partitioning by optimizing the intra-partition distance
(rather then the minimum distance) of the modulation constellation.
This method is tailored to the TCM and achieves lower error rate at
high SNR, compared to the classical modulation schemes. An itera-
tive algorithm, based on the variable repulsive force method [77, 78]
is presented and evaluated. Recent advances in spherical code design
allow for fast implementation of the proposed algorithm on dedicated
hardware [78].

In Chapter 6 we introduce multidimensional modulations and spher-
ical codes - a multidimensional generalization of the phase shift keying
(PSK) modulation. We present the problem of finding good spherical
codes and give an overview of existing procedures for designing them.
We conclude this chapter with a short overview of the TCM technique
with emphasis on encoding and decoding algorithms.

In Chapter 7 we develop the Optimized Set Partitioning algorithm
for designing spherical codes that are tailored to the TCM. We com-
pare codes that are generated using our algorithm to classical spherical
codes that correspond to densest packings, and show that it is possible
to achieve a modest but crucial coding gain over best known codes.
We conclude this chapter with numerical results, followed by a short
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discussion and an overview of future work.
The results presented in Part II of the thesis are based on the fol-

lowing works:

• A. Minja and V. Šenk, “Coded Modulation Design by Optimized
Set Partitioning,”,
in preparation

• A. Minja, I. Stanojevic and V. Šenk, “TCM Design Optimizing
set partitioning of 3-dimensional spherical codes,” 21st TELFOR,
pp. 373–376 , Nov. 2013.

Notation

Throughout the thesis, uppercase letters represent random variables,
lowercase letters represent realizations of the corresponding random
variables, uppercase bold letters represent random points in a metric
space and lowercase bold letters represent their realization. In the case
of a normed vector space, the i-th component of a vector x is denoted xi
and ∥x∥ represents the 2 - norm of x. pX(⋅) represents both the prob-
ability density function and the probability mass function of a random
variable X and FX(⋅) and FX(⋅) = 1 − FX(⋅) are used to denote the
corresponding cumulative distribution function and the tail distribu-
tion function respectively. P [⋅] represents the probability of an event,
E[⋅] represents the mean of a random variable and Var[⋅] represents the
variance of a random variable. Cursive uppercase letters represent sets
(or their subsets), and AN represents the set of all N -tuples of a set A.
Sometimes a set will be defined only by its elements, i.e {a1, a2, . . . aN}.
Given a set C and xi ∈ C, let Xi be a subset of C, such that xi ∈ Xi
(xi ∈ Xi ⊂ C). For convenience, 1A(a) = 1−1A(a) represents the inverse
indicator function and 1A(a) = 0 if a ∈ A and 1A(a) = 1 if a /∈ A.





Part I

Novel Quasi-Analytical
Simulation Method





Chapter 2

System Model

In this chapter we introduce the geodesic channel model and argue
that many important models like the BEC are a special case of the
geodesic channel. We define the metric star domain decoder and show
that many common decoders like the Berlekamp-Massey algorithm, the
OSD and the PSCD fall into this category. Finally we give a formula
for calculating the error probability of a star domain decoder that will
be used throughout this thesis.

2.1 Geodesic Channel Model

Given the channel space Y, and some code C ⊆ Y, an arbitrary channel
Ω ∶ C → Y is a random mapping defined by a conditional probability
P [Y ∣X], where X ∈ C is a random codeword and Y = Ω(X) ∈ Y is the
channel output. We define the decoder as any mapping D ∶ Y → C, that
satisfies D(x) = x,∀x ∈ C.

Let (Y, d) be a metric space with a metric (distance function) d ∶
Y × Y → R, such that for any x,y,z ∈ Y:

1. d(x,y) = d(y,x)

2. d(x,y) ≥ 0, with equality if and only if x = y.

3. d(x,y) + d(y,z) ≥ d(x,z) (triangle inequality).
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If the maximum likelihood (ML) 1 decoding on Ω coincides with the
minimum distance (MD) decoding with respect to d, Ω and d are said
to be matched [79], or more precisely

arg max
x∈C

P [Y = y∣x] = arg min
x∈C

d(x,Y = y), ∀x ∈ C,∀y ∈ Y. (2.1)

A curve ξ in a metric space (Y, d) is a continuous mapping ξ ∶
[0,1] → Y, from the interval [0,1] into Y. The length L(ξ) ∈ [0,∞] of
ξ is defined by [80]

L(ξ) = sup
n

∑
i=1

d (ξ(ti), ξ(ti−1)) , n ∈ N, t0 = 0, tn = 1, (2.2)

where the supremum is taken over all n ∈ N and all partitions {t0, t1, ..., tn}
of [0,1].

Metric space (Y, d) is called a length space if for any curve ξ ∶
[0,1] → Y, with ξ(0) = x, ξ(1) = y ∈ Y, the following holds true

d(x,y) = inf L(ξ). (2.3)

Given a length space (Y, d), a geodesic segment γ[x,y], from x ∈ Y to
y ∈ Y is locally the shortest metric curve (γ ∶ [0,1] → Y, with γ(0) = x
and γ(1) = y) between x and y. If any two points of Y are joined by a
geodesic segment, (Y, d) is called a geodesic metric space [80,81]. Note
that a geodesic segment γ[x,y] need not be unique, as will be shown
in Example 2.2.4. If the geodesic segment is unique (as in the case of
the AWGN channel - Section 4.1.2), (Y, d) is called a uniquely geodesic
metric space.

A geodesic segment γ is usually equipped with a natural parametriza-
tion given by

d(γ(t1), γ(t2)) = α∣t1 − t2∣, t1, t2 ∈ [0,1], α ∈ R, (2.4)
1Note that a similar claim can be made for the maximum a posteriori probability

decoder [79]
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which allows for designing of fast search algorithms based on the bisec-
tion method.

In order to have a fast algorithm and a unified model and analysis
for both discrete and continuous channels (that are not necessarily ad-
ditive) we hereby introduce the notion of a geodesic channel as a special
case of the matched channel:

Definition 2.1.1. Geodesic channel is any channel Ω ∶ C ⊆ Y → Y, with
a matched metrics d, such that (Y, d) is a geodesic metric space.

Example 2.1.2. Binary erasure channel with erasure probability p,

BEC(p) ∶ C ⊆ {0,1}N → Y = {0,1,∞}N , (2.5)

together with a matched Hamming metric, defined as

dH(x,y) =
N

∑
n=1

1{xn}(yn), (2.6)

forms a geodesic channel. Similarly as in [79], we considerBEC(p) to be
a channel operating on the set {0,1}N , rather than N uses of a channel
defined on {0,1}. Channel output can be defined as Y =X+W , where
W ∈ {0,∞}N is a random erasure vector such that each component of
W is either "∞" with some erasure probability p or "0" with probability
1 − p.

A geodesic segment γ[x,y] is defined by a discrete line x+W, where
W = {w0,w1 . . .wK} is a set of erasure patterns such that w0 is the
all zero vector, y = x +wK and dH(wk,wk+1) = 1, k = 1 . . .K − 1.

2.2 Metric Star Domain Decoders

The decoding region Dm ⊆ Y associated with a codeword xm is defined
as

Dm = {y ∈ Y ∶D(y) = xm} . (2.7)
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Figure 2.1: Examples of star domain sets in R2. Set D1 is convex and also a
star domain. Set D2 is not convex, but it is a star domain. Set D3 is neither
convex nor a star domain, as there is not a line segment between x and y1.

Note that Dm is dependent on the code C, channel Ω, and the decoding
algorithm and can change if any of these are changed.

Given a code C ⊆ Y and the coresponding geodesic channel Ω, let the
star domain decoder D ∶ Y → C be a decoding algorithm for which every
decoding region Dm is a metric star domain (named as an analogy to
the star domain in Euclidean space Fig. 2.1, [82]) defined as:

Definition 2.2.1. Decoding region Dm associated to codeword xm ∈
C ⊆ Y is said to be a metric star domain if and only if for every geodesic
segment γ[xm,y], with γ(0) = xm and γ(1) = y ∈ Dm the following holds
true:

∀k ∈ [0,1] ⇒ γ(k) ∈ Dm. (2.8)

Example 2.2.2. A set D ⊆ RN is called a star domain (or star convex)
if there exists a point x ∈ D, such that there is a straight line between
x and any other y ∈ D that is also in D. It can be said that D is convex
with respect to x. The set D1 in Fig. 2.1a is convex, so it is also a
star domain with respect to every y ∈ D1. The set D2 in Fig 2.1b is a
star domain with respect to x but it is not convex as there is no line
segment from y1 to y2 that is also in D2. The set D3 in Fig 2.1c is
neither convex nor star convex.
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(a) Octahedron inscribed in a unit sphere (b) Decoding region

Figure 2.2: Octahedron code and its decoding region.

Example 2.2.3. Consider a simple spherical code C6 ⊂ R3 correspond-
ing to an octahedron (Fig. 2.2a) coupled with an MD decoder. Each
one of the six points of the octahedron represent a codeword (Table
2.2.3) and the MD decoder is defined as

D(y) = arg min
x∈C6

d(x,y). (2.9)

x1 [1, 0, 0]
x2 [−1, 0, 0]
x3 [0, 1, 0]
x4 [0,−1, 0]
x5 [0, 0, 1]
x6 [0, 0,−1]

Table 2.1: Codewords of the octahedron code

The decoding region corresponding to any codeword xm, (m =
1,2, ...,6), has the shape of an open pyramid, which is shown in Fig.
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2.2b. The octahedron code is a very important example that will be
used throughout the thesis.

Example 2.2.4. Consider a binary erasure channel BEC(p)

BEC(p) ∶ C = {[0,0,0], [1,1,1]} → {0,1,∞}3. (2.10)

If a codeword x = [0,0,0] is sent over the BEC(p) channel and a
channel output y = [0,∞,∞] is received, there are two possible geodesic
segments between x and y. γ(1)

[x,y]
= {[0,0,0], [0,0,∞], [0,∞,∞]} and

γ
(2)

[x,y]
= {[0,0,0], [0,∞,0], [0,∞,∞]}. If the output of the decoder is

D([0,∞,∞]) = [0,0,0] it must also be D([0,0,∞]) = D([0,∞,0]) =
[0,0,0] in order for D(⋅) to be a metric star domain decoder.

MD decoders and bounded distance (BD) decoders such as spherical
decoder [83,84] and Berlekamp-Massey algorithm [85] are by definition
star domain decoders. It can be shown that many popular near-ML
decoders, such as OSD and the PSCD, are also star domain. In Section
2.2.1 we show that the OSD also falls in this category. The metric
star domain property of the PSCD decoder follows directly from the
definition of the channel polarization [47], which is shown in Section
2.2.2. For completeness, a description of the PSCD algorithm is also
given.

2.2.1 Ordered Statistics Decoder

Ordered statistics decoder [19] is a soft decision decoding algorithm
for a binary linear (N,K) code with a known generator matrix G.
Bose–Chaudhuri–Hocquenghem (BCH) codes are known to have good
performance at short blocklength. Coupled with a flexible near-ML
decoder like the OSD, they are strong contenders for use in the future
URLLC applications.

Recent advances in OSD have shown significant complexity reduc-
tion [20,86–93] while maintaining rate efficiency. By reducing complex-
ity, we also reduce processing latency. It is possible to achieve a trade
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off between error performance and complexity (latency) by using OSD
with bounded complexity, which means that the same coding scheme
can be used for multiple applications with different reliability-latency
requirements [1]. Compleixty-performance tradeoff of different coding
schemes is shown in Fig 2.3. The algorithmic complexity is given as the
number of binary operations per information bit and is taken from [18].
The performance is given as a gap to the Polyanskiy-Poor-Verdu (PPV)
bound [94], which is applicable for finite blocklengths. For more detail
see [1].

0 0.5 1 1.5 2 2.5 3

102

105

108

Polar Code, SC
Polar Code, SCL, L = 4

Polar Code, SCL, L = 32

TB-CC m = 8

TB-CC m = 11

TB-CC m = 14

F256 LDPC Code (log-BP)
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Figure 2.3: Algorithmic complexity versus performance for different rate-
1/2 channel codes with block length N = 128 at BLER= 10−4 [1]. The algo-
rithmic complexity for different decoders are obtained from [18].

Without loss of generality, we assume an all-zero codeword c is
mapped into a BPSK symbol sequence x = 2c − 1 (xi = −1,1 ≤ i ≤ N)
and is transmitted over the AWGN channel. Channel output is an N -
dimensional vector of real values, y = [y1, y2, ..., yN ] where yi represents
the i-th component of channel output y associated with the i-th column
of matrix G. If a hard decision decoder is used, estimate ĉ is generated
as
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ĉi =
⎧⎪⎪⎨⎪⎪⎩

0, yi ≤ 0

1, yi > 0

Note that hard decision decoder is star convex. This follows from

yi = xi +wi ≤ 0⇒ xi + αwi ≤ 0, 1 ≤ i ≤ N,
wi ∈ R, α ∈ [0,1], xi = −1.

(2.11)

The inverse is also true

yi = xi +wi > 0⇒ xi + αwi > 0, 1 ≤ i ≤ N,

wi ∈ R, α ∈ ( 1

wi
,∞) , xi = −1.

(2.12)

The idea of OSD is to use the reliability of the received vector y
to get a better estimate. The first step is to sort the channel output
y in the decreasing order of reliability value ∣yi∣ for 1 ≤ i ≤ N , and
apply the corresponding permutation π1(⋅) to the columns of matrix G.
The reordered generator matrix is transformed into a systematic form
via Gaussian elimination. An additional permutation π2(⋅) may be
needed in order to get the most reliable basis. This gives the generator
matrix G̃, and the reorderd channel output ỹ = π2(π1(y)). Now we
perform hard decision decoding of the first K most reliable symbols of
the vector ỹ to get the binary vector ã of length K. Decoded sequence
ĉ is obtained by re-encoding vector ã via the matrix G̃ and applying
the inverse permutations π−11 and π−12

ĉ = π−11 (π−12 (ãG̃)) . (2.13)

This solution corresponds to the hard decision decoding based on the
reliability of information and can be reprocessed and improved pro-
gressively in stages. Reprocessing step consists of generating test error
patterns ej of increasing weight, finding the codeword cj = (ã + ej)G̃
and determining its corresponding BPSK sequence xj . We compare
the squared Euclidean distance between xj and the ordered received
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sequence ỹ and choose x∗ (and the corresponding c∗) which is closest
to ỹ. The refactoring algorithm is terminated after a predefined number
of generated test error patterns or when a desired error performance is
achieved.

In order to show that the hard decision decoding based on reliability
of information preserves star convexity we must prove that it is impos-
sible for an incorrect symbol to become more reliable than a correct
symbol after noise reduction, i.e.

∣xi +wi∣ > ∣xj +wj ∣ ⇒ ∣xi + αwi∣ > ∣xj + αwj ∣
xi = xj = −1, α ∈ [0,1], wi ∈ (−∞,1], wj ∈ (1,∞).

(2.14)

By using the definition of absolute value it can easily be verified that

−(wi − 1) > (wj − 1) ⇔
wi +wj < 2⇒ α(wj +wi) < 2,

α ∈ [0,1], wi ∈ (−∞,1], wj ∈ (1,∞).
(2.15)

Refactoring step also preserves star convexity. This follows from the
fact that after the noise reduction, the Euclidean distance between the
received vector and the correct codeword will be reduced and a correct
estimate will remain correct.

2.2.2 Polar Successive Cancellation Decoder

The polar transform G
⊗ log2N
2 converts N copies of some binary memo-

ryless symmetric channel (BMSC), Ω ∶ {0,1} → Y (defined by P [Y ∣X]),
into a mixture of N polarized channels, ΩN ∶ {0,1}N → YN , that ideally
polarize to either a noiseless or completely noisy channel, in a way that
preserves the symmetric capacity of the channel Ω, as best as possi-
ble [47].

Given a binary random data vector of length N , U ∈ FN2 , containing
K information bits and N−K frozen bits (usually set to zero), encoding
is realized as

C = UG⊗ log2N
2 (2.16)
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The mixed channel (ΩN ) is then defined by a conditional probability

PN [Y ∣U] =
N

∏
n=1

P [Yn∣Cn]. (2.17)

The i-th subchannel, Ω
(i)
N ∶ {0,1} → RN , associated with the bit Ui,

is defined by [47,95]

P
(i)
N [Y ;U1, . . . Ui−1∣Ui] =

1

2N−1 ∑
Ui+1,...,UN

PN [Y ∣U]. (2.18)

In order to achieve the symmetric capacity with low complexity, a SCD
algorithm is introduced in [47], where the information bits are decoded
sequentially in the ascending order of their indices using the following
rule [95]

Ûi(y; û1, . . . , ûi−1) = arg max
ui∈{0,1}

P
(i)
N [y; û1, . . . , ûi−1∣ui]. (2.19)

It has been shown in [95,96] that Ω
(i)
N is a tree channel [97] and that

SCD corresponds to a belief propagation decoding on a tree graph,
which is equivalent to an ML estimation [97] of the bit Ui, given the
channel output y. We asume that every free bit Ui has been correctly
estimated using a different bit-ML decoder (which is by definition a
metric star domain decoder). After noise reduction every free bit will
remain correct so it follows that SCD is also a metric star domain
decoder.

Consider a binary input AWGN channel with noise variance σ2,
Ω(σ) ∶ {−1,1}N → RN . Let x be a BPSK modulated polar codeword,
and Y = x +W be a corresponding channel output. Then multiplying
the noise vector by α ∈ [0,1], (Y α = x+αW ), is equivalent to replacing
the channel Ω(σ) with a "better" channel Ω(ασ) (i.e Ω(σ) is degraded
with respect to Ω(ασ)). As the performance of a belief propagation de-
coding on a tree graph improves if the channel improves (monotonicity
of the decoder with respect to channel) [97], it follows that the SCD is
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Figure 2.4: Tree representation of an (8, 4) polar code. Black circles repre-
sent frozen bits.

a metric star domain decoder:

SCD(y) = x⇒ SCD(yα) = x,∀α ∈ [0,1]. (2.20)

This holds true for any BMSC [97].
Because of its recursive construction, the structure of an (N,K)

polar code is usually represented using a full binary tree (Fig. 2.4) of
height M = log2N and with N leaf nodes [56,98].

Successive cancellation decoding algorithm can be implemented as
a depth-first traversal [99] of the polar tree. At each node of height m
a vector λm ∈ RNm of soft logarithmic likelihood ratio (LLR) values is
passed from the parent to the child nodes, while a vector of hard bit
estimates, βm ∈ FNm2 , follows the opposite direction [56].

At each node of height m, 1 ≤m ≤M , a vector λm, of size Nm = 2m,
is recursively divided into λm−1,l and λm−1,r, of size Nm−1 = 2m−1,
which are passed to the left and right child node, respectively.

λm−1,l
i = 2 arctanh(tanh(λ

m
i

2
) tanh(

λmi+Nm−1

2
)) , (2.21)

λm−1,r
i = λmi+Nm−1 + (1 − 2βm−1,l

i )λmi . (2.22)

In most practical systems the following approximation of Equation
(2.21) is usually used [56,100]

λm−1,l
i = sign(λmi ) sign(λmi+Nm−1)min(∣λmi ∣, ∣λmi+Nm−1 ∣). (2.23)
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This is repeated until the leaf node is reached where the appropriate
bit, û, is estimated as

û =
⎧⎪⎪⎨⎪⎪⎩

0, λ0 ≥ 0

1, otherwise.
(2.24)

At each node of height m, 1 ≤m ≤M , a vector βm, of size Nm = 2m,
is calculated using the vectors βm−1,l and βm−1,r, received from the
child nodes.

βmi =
⎧⎪⎪⎨⎪⎪⎩

βm−1,l
i + βm−1,r

i , i ≤ Nm−1

βm−1,r
i−Nm−1 , otherwise,

(2.25)

with β0 equal to the corresponding û.
The procedure is terminated once all leaf nodes are visited. Different

decoding algorithms correspond to different tree search algorithms.

2.3 Error Probability
of Star Domain Decoders

Given a codeword xm ∈ C and its associated decoding region Dm, error
probability is correspondingly defined as

Pe = E[P (m)
e ], (2.26)

where
P (m)

e = P [Y ∉ Dm ∣ xm]. (2.27)

For simplicity of notation (and without the loss of generality) we
assume that all codewords are equally likely and that their associated
decoding regions are isomorphic. This allows for the error probability
to be to be considered from aspect of any single codeword xm = x
(i.e. P (m)

e = Pe). Although such a choice may seem restrictive, many
codes used in practice satisfy this property (e.g. coset and linear block
codes, trellis codes with binary or M-ary phase shift keying symbols
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Figure 2.5: Side (a) and top (b) view of the octahedron code.

and a more general class of geometrically uniform codes [101]). If the
decoding region associated with the codeword xm = x is Dm = D, the
error probability can be defined as

Pe = P [Y ∉ D ∣ x]. (2.28)

For convenience, let P [Y = y∣X = x] = pY (y).

Example 2.3.1. We will derive the error probability of the C6 octa-
hedron code in the case of the AWGN channel. Following (2.28), an
error occurs if the output of the channel falls in the decoding region
of another codeword. Side and top view of the octahedron code, and
the decoding region corresponding to the codeword x are shown in Fig.
2.5a. and Fig. 2.5b. respectively.

To calculate the error probability of the octahedron code we decom-
pose the AWGN noise into three components, Nx, Ny and Nz, acting
in the directions x, y and z respectively (Fig. 2.5a. and Fig. 2.5b).
The Nz component of the AWGN noise is point noise with probability
density function
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pNz (nz) =
1√
2πσ

e−
nz

2

2σ2 , (2.29)

If nz ∈ (−∞,−1] an error certainly occurs, otherwise that depends
on Nx and Ny components.

The probability that no error occurs in case of a fixed Nz = nz is

Pcxy = (1 − 2Q(1 − nz
σ

))
2

, (2.30)

where
Q(x) = 1√

2π
∫

∞

x
e−

u2

2 du (2.31)

represents the tail probability of the standard normal distribution.
Probability that no error occurs is thus

Pc = ∫
∞

−1
PcxypNz (nz)dnz, (2.32)

and the error probability is then

Pe = 1 − Pc = 1 − ∫
∞

−1
pNz (nz) (1 − 2Q(1 − nz

σ
))

2

dnz. (2.33)

This function is evaluated using numerical integration.
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Simulation of a Communication Link

In this chapter we introduce a general simulation framework for esti-
mating the error probability of a communication system. We define
the accuracy of the estimator and give two metrics for evaluating its
performance. We show that both the MC and IS methods fit into this
framework and give some details about their implementation that will
be used in future chapters.

3.1 General Simulation Framework

The problem of simulating the error probability of a communication
system is usually stated as an expectation of some random variable T
(i.e. Pe = E[T ]). The simplest method for estimating this expectation
is to generate a set of J independent observations {t1, t2,⋯tJ} according
to the distribution pT (⋅) and calculate the sample mean as

P̂e =
1

J

j

∑
j=1

tj . (3.1)

Relative precission (aka normalized standard error) of the estimator
is usally used as a measure of accuracy and it is defined as [30]

δ =

√
Var [P̂e]
Pe

, (3.2)
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where the variance of the estimator [30,31,36,37,102] is given by

Var [P̂e] =
Var[T ]
J

= 1

J
(E [T 2] − P 2

e ) . (3.3)

It follows that the variance can be made arbitrarily small as J grows.
The smaller the variance, the better the estimator, but there is a trade-
off between the accuracy of the estimator and the simulation run-time
(the number of generated samples J).

The true variance of the estimator cannot generally be calculated
as it depends on Pe (which is the true value of the parameter being
estimated), so sample variance is used instead [30,31]

S2 [P̂e] =
1

J − 1

J

∑
j=1

(tj − P̂e)
2
. (3.4)

The estimated relative precision [30] is usually used as a simulation
stopping rule and it is defined as

δ̂ =

√
S2 [P̂e]
P̂e

. (3.5)

In rare cases when Pe is known, the average relative error [103] may
be used as a measure of estimator accuracy

ρ = 1

I

I

∑
i=1

∣Pe − P̂ei∣
Pe

, (3.6)

where I is the total number of estimates.
The time complexity T (δ,Pe) of the estimator is usually given as

the number of simulation runs (decoder calls) needed to estimate Pe

with some accuracy δ, and may differ from J .

3.2 Monte Carlo Simulation Method

Given the channel output Y the error probability in (2.28) can be ex-
pressed in terms of the indicator function (or more precisely its inverse)
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as [30]

Pe = EY [1D(Y )] = ∫ 1D(y)pY (y)dy, (3.7)

which corresponds to T = 1D(Y ).
The variance of the MC estimator [30,31,36,37,102] is given by

Var [P̂ MC
e ] = Pe (1 − Pe)

J
. (3.8)

Relative precision of the MC estimator is then equal to

δ =
√

1 − Pe

PeJ
. (3.9)

For small Pe (Pe ≪ 1) the relative error is approximated as

δ ≈ 1√
PeJ

. (3.10)

The time complexity of the MC estimator is given by [30]

TMC(δ,Pe) = O(J) = O ( 1

δ2Pe
) . (3.11)

Algorithm 1 represents a generic implementation of the MC simu-
lation method for estimation of the error probability. CONDITION
represents some terminating condition which is chosen so as to provide
a predefined confidence interval [30].

3.3 Importance Sampling Simulation Method

If pY ∗(y) is a distribution function, called the biased distribution, the
error probability in (3.7) is equivalent to

Pe = ∫ 1D(y)pY ∗(y) pY (y)
pY ∗(y)dy = EY ∗ [1D(Y ∗)W (Y ∗)] , (3.12)
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Algorithm 1 Generic MC Simulation method

x←X {Initialize codeword}
j ← 0 {Total number of simulations}
e← 0 {Total number of detected errors}
P̂e ← 0 {Estimated error probability}
while CONDITION do
j ← j + 1

y ← Y = Ω(x) {Generate the channel output}
x̂←D(y)
if x ≠ x̂ then
e← e + 1

end if
P̂e ←

e

j
{Update P̂e}

end while

where y is now a realization of Y ∗ and the ratio

W (y) = pY (y)
pY ∗(y) (3.13)

is called the likelihood ratio or weighing function [30, 31]. IS method
can be stated as the estimation of the expectation of a random variable
T = 1D(Y ∗)W (Y ∗). As the variance of the IS estimator depends on
the choice of the biased distribution, it cannot be expressed in closed
form.

The optimal biased distribution is theoretically known, but since
it depends on the parameter that is to be estimated, it cannot be ef-
fectively used. There are many methods of choosing a good biased
distribution but in this thesis we limit ourselves to the adaptive IS
with variance scaling [30, 34] for the AWGN channel and the state of
the art minimum variance IS estimator [36] for BSC.
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Likelihood ratio (3.13) is usually defined as a function of some pa-
rameter θ (usually mean or variance of the biased distribution)

W (y; θ) = pY (y)
pY ∗(y; θ) , (3.14)

chosen so as to minimize the cost function [30,34]

C(θ) = ∫ W 2(y; θ)pY ∗(y; θ)dy. (3.15)

In the case of the variance scaling IS simulation method, the biased
distribution is defined as

pY ∗(y; θ) = pY (y/θ)
θ

. (3.16)

3.3.1 IS techniques for AWGN Channel

The adaptive IS method uses iterative Newton’s method (or the gradi-
ent descent method) to find parameter θ for each value of the signal-
to-noise ratio

θc+1 = θc − η
d
dθ
Ĉ(θc)

d2

dθ2
Ĉ(θc)

, (3.17)

where η represents the step size and

d

dθ
Ĉ(θ) = 1

J

J

∑
j=1

1D(yj)W (yj ; θ)
d

dθ
W (yj ; θ), (3.18)

d2

dθ2
Ĉ(θ) = 1

J

J

∑
j=1

1D(yj)W (yj ; θ)
d2

dθ2
W (yj ; θ). (3.19)

In the case of variance scaling, the biased distribution is defined as

pY ∗(y; θ) =
pY (y

θ
)

θ
= ( 1√

2πσθ
)
N

e−
∥y∥2

2σ2θ2 . (3.20)
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3.3.2 Minimum Variance IS for BSC

In the case of minimum variance IS Bernoulli estimator [37] the noise
vector Y ∗ is drawn as a multivariate Bernoulli distribution with pa-
rameter q, (q ≥ p, where p is the crossover probability of BSC), chosen
so as to minimize the variance of the IS estimator.

q = arg min
q

Var [P̂ IS
e ] . (3.21)

The likelihood ratio is defined as

W (y;p, q) = pY (y;p)
pY ∗(y; q) = p

wH(y)(1 − p)N−wH(y)

qwH(y)(1 − q)N−wH(y)
, (3.22)

where wH(⋅) represents the Hamming weight and is defined as

wH(y) = dH(0,y). (3.23)

Parameter q̂ is estimated iteratively using the following rule

q̂c+1 =
1

N

∑J
′
j=1 1D(yj)wH(yj)W 2(yj ;p, q̂c)
∑J

′
j=1 1D(yj)W 2(yj ;p, q̂c)

, (3.24)

where J ′ represents the total number of iterations needed to estimate
q̂. A more detailed analysis of this method is given in [37].



Chapter 4

Quasi-Analytical Simulation Method

In this chapter we develop the quasi-analytical simulation method for
estimating the error probability of a metric star domain decoder. We
derive the upper bound on the estimation variance and use it to find the
time complexity of the QA estimator. We show that our QA method is
significantly (several orders of magnitude) faster than the MC method,
especially at high SNR regime. We show that both AWGN and BSC
are a special case of the geodesic channel model, and give details on
implementing the QA method for them. These guidelines can then
be applied to any continuous or discrete channel model, as long as
it satisfies the geodesic property. We conclude this chapter with an
analysis of the performance of our QA method.

4.1 General QA Simulation Method

Both MC and IS methods simulate the noise according to the real or
biased distribution, and simultaneously check whether the correspond-
ing channel output belongs to the decoding region of x. Hereby, we
introduce a QA procedure which is based on estimating the distance
distribution of all vectors in D to the codeword x. We then recalculate
Pe using pdf of the noise from it. In the case of the BSC and other
discrete channels with an MD decoder this procedure amounts to esti-
mation of the distance distribution of coset leaders, and recalculation
of Pe according to it [104].

If the channel output Y = Ω(x) falls outside of the decoding region
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R=d(x,Y)
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D

x

Figure 4.1: Decoding region D of the codeword x. The channel output Y

falls outside of D resulting in a decoding error. rp is the radius of the packing
sphere and rc is the radius of the covering sphere. v - distance from x to the
boundary of D.

associated to x, an error occurs (2.28). A simplified illustration of the
decoding region is shown in Fig. 4.1. Random variable R = d(x,Y ) in
Fig. 4.1 represents the distance between the codeword and the channel
output, and rp and rc represent the packing and covering radii. The
following holds true for any y ∈ Y

d(x,y) ≤ rp ⇒ y ∈ D
d(x,y) > rc ⇒ y ∉ D

(4.1)

Given a geodesic segment γ[x,y] with γ(0) = x and γ(1) = y ∉ D,
there is a distance point z = γ(k∗) ∈ D that is farthest from x (with
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respect to d), that is

z = arg max
d(x,γ(k))

{k ∈ [0,1] ∶ γ(k) ∈ D}. (4.2)

Let Z be a random distance point. Error probability with respect
to Z = z is by definition

Pe(z) = P [R > d(x,Z)∣Z = z]. (4.3)

It follows that the error probability can be defined as

Pe = EZ[Pe(Z)] = P [R > V ], (4.4)

where V = d(x,Z) is an auxiliary random variable that represents the
distance between the codeword and a random distance point. The
domain of V is [rp, rc], and since the tail distribution function is mono-
tonically decreasing, the domain of FR(V ) is [FR(rc), FR(rp)].

Theorem 4.1.1. Error probability of a star domain decoder is defined
as

Pe = EV [FR(V )] = ER[FV (R)]. (4.5)

Proof. We assume R and V are continuous random variables. The proof
for discrete case is the same, with the usual conversion of ∫ f(x)dx →
∑x f(x).

Equation (4.50) can be written as

Pe = P [R − V > 0]. (4.6)

We introduce a new auxiliary random variable A = R − V .

Pe = P [A > 0] = ∫
∞

0
pA(a)da, (4.7)

where pA(⋅) represents the pdf of random variable A. Since the prob-
ability density function of the difference of two independent random
variables is equal to the correlation of their density functions,
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pA(a) = ∫
∞

−∞
pR(v + a)pV (v)dv, (4.8)

the error probability can be redefined as

Pe = ∫
∞

0
[∫

∞

−∞
pR(v + a)pV (v)dv]da. (4.9)

Since
∫

∞

0
pR(v + a)da = FR(v). (4.10)

After changing the order of integration the error probability in (4.9)
can be written as

Pe = ∫
∞

−∞
FR(v)pV (v)dv = EV [FR(V )]. (4.11)

It can similarly be shown that

Pe = P [0 > V −R] = ER[FV (R)]. (4.12)

In fig. 4.2 we show the PDF of the Reed-Muller (1, 5) code and the
tail of the Bernoulli distribution with parameter p = 0.1, 0.3 and 0.5.
We see that this integral falls to zero as p is reduced.

∎

This corresponds to the general simulation framework, presented
in Chapter 3, with T = FR(V ) or T = FV (R). Following (3.1), the
probability of error is correspondingly estimated as

P̂ QA
e = 1

J

J

∑
j=1

FR (vj), (4.13)

where J represents a predefined number of measured distances. Unlike
the MC and the IS method, where we estimate the error probability for
one SNR value, our QA method is SNR invariant, since SNR is used to
deterministically calculate FR(v), ∀v, and the only random parameter
vj is independent of SNR. The main steps of the QA method are given
in Algorithm 2.
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Figure 4.2: Calculation of error probability of the RM(1, 5) code.

Algorithm 2 Generic QA Simulation method

x←X {Initialize codeword}
j ← 0 {Total number of simulations}
P̂QA

e ← 0 {Estimated error probability}
while CONDITION do
j ← j + 1

Find vj
Update P̂QA

e {Using equation (4.13)}
end while

Theorem 4.1.2. The variance of the QA estimator is upper bounded
by

Var[P̂ QA
e ] ≤ 1

J
PeFR(rp) (4.14)
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Proof. The variance of the QA estimator (3.3) is given by

Var [P̂QA
e ] = 1

J
(E [F 2

R (V )] − P 2
e ) (4.15)

Given a random variable T with domain [Ta, Tb] and a function f(⋅),
that is convex over the domain of T , the upper bound on the expectation
of f(T ) is given by the Edmundson-Madansky inequality [105]

E[f(T )] ≤ Tb −E[T ]
Tb − Ta

f(Ta) +
E[T ] − Ta
Tb − Ta

f(Tb). (4.16)

By applying the Edmundson-Madansky inequality to E [F 2

R (V )]
we get

E [F 2

R (V )] ≤ FR(rp) − Pe

FR(rp) − FR(rc)
F

2

R (rc)+

Pe − FR(rc)
FR(rp) − FR(rc)

F
2

R (rp)
, (4.17)

which can be simplified to

E [F 2

R (V )] ≤ Pe (FR(rp) + FR(rc)) . (4.18)

It follows that the variance of the QA estimator is upper bounded
by

Var [P̂QA
e ] ≤ Pe

J
(FR(rp) + FR(rc) − Pe) . (4.19)

Since FR(rp) >> PeFR(rc) and FR(rp) ≥ Pe ≥ FR(rc), it follows
that

Var[P̂ QA
e ] ≤ 1

J
PeFR(rp). (4.20)

∎

It follows that the number of measured distances needed to achieve
a relative precision δ is upper bounded by

J ≤ FR(rp)
δ2Pe

. (4.21)
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The distance vj is estimated using a bisection method (which will
be given later on for the examples of the BSC and the AWGN channel)
with a complexity of O(log2N), where N is the code length. The time
complexity of the proposed QA method is then given by

TQA(δ,Pe) = O(J log2N) = O(FR(rp)
δ2Pe

log2N) . (4.22)

We define the simulation gain of our QA method over the MC sim-
ulation method as

τ = TMC(δ,Pe)
TQA(δ,Pe)

= O( 1

FR(rp) log2N
) . (4.23)

Fig. 4.3 shows the speedup of the QA simulation method over the
MC method in the case of the BSC. Results are presented for N = 512

and different values of rp and SNR.
In the case of a discrete channel and decoder equation (4.5) can be

rewritten as

Pe =
rc

∑
v=rp

pV (v)FR (v), (4.24)

where pV (⋅) represents the probability mass function of V . The QA
estimator in (4.13) is then equivalent to

P̂QA
e = ∑

v

FR(v)p̂V (v), (4.25)

where p̂V (⋅) represents the probability mass function of V that needs
to be estimated.

Theorem 4.1.3. Given a discrete channel and hard-decision decoder,
the variance of the QA estimator is equal to

Var[P̂QA
e ] = ∑

v

F
2

R (v) pV (v)(1 − pV (v))
J

(4.26)
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(a) Speedup as a function of SNR

(b) Speedup as a function of rp

Figure 4.3: Speedup of the QA method over the MC in the case of the BSC,
with N = 512.
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Proof. The variance of the QA estimator is given by

Var[P̂QA
e ] = Var [∑

v

FR(v)p̂V (v)] . (4.27)

Under the assumption that each generated sample of V is indepen-
dent from each other and that FR(v) is constant for specific value of
v, variance of the QA estimator can be extended as

Var[P̂QA
e ] = ∑

v

Var[FR(v)p̂V (v)] = ∑
v

(FR(v))
2
Var[p̂V (v)]. (4.28)

Since
pV (v) = P [V = v] = EV [1{v}(V )], (4.29)

the probability function of V can be estimated using

p̂V (v) = 1

J

J

∑
j=1

1{v}(vj), (4.30)

Estimator in (4.30) has a Binomial distribution with a known vari-
ance [106]

V ar[p̂V (v)] = pV (v)(1 − pV (v))
J

. (4.31)

By substituting (4.31) in (4.28) the variance of the QA estimator
becomes

V ar[P̂QAe ] = ∑
v

FR
2 (v) pV (v)(1 − pV (v))

J
. (4.32)

∎

Theorem 4.1.4. Given a discrete channel and a hard-decision decoder,
the number of simulation runs J needed to achieve a given accuracy δ
is upper bounded by

J ≤ 1

δ2
∑
v

1 − pV (v)
pV (v) (4.33)
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Proof. Squaring both sides of (3.2) and replacing (4.26) and (4.24) in
it gives

δ2 = V ar[P̂
QA
e ]

P 2
e

= 1

J

∑v FR
2(v)pV (v) (1 − pV (v))

(∑v pV (v)FR (v))2
. (4.34)

Using the Schwartz inequality

(∑
i

ai)
2

≥ ∑
i

(ai)2 , (4.35)

under the assumption that both sums converge and ai ≥ 0 for every i,
the previous expression becomes

δ2 ≤ 1

J

∑v FR
2(v)pV (v)(1 − pV (v))
∑v p2V (v)FR

2 (v)
. (4.36)

This expression can further be simplified by using the inequality

∑i ai
∑i bi

≤ ∑
i

ai
bi
, (4.37)

which holds under assumption that all sums in (4.36) converge and
ai ≥ 0 and bi > 0 for all i.

δ2 ≤ 1

J
∑
v

FR
2(v)pV (v)(1 − pV (v))
p2V (v)FR

2 (v)
, (4.38)

which reduces to
δ2 ≤ 1

J
∑
v

1 − pV (v)
pV (v) . (4.39)

It follows that the number of needed simulations to achieve accuracy
δ is

J ≤ 1

δ2
∑
v

1 − pV (v)
pV (v) . (4.40)

∎
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Figure 4.4: Decoding region D of the codeword x. rp is the radius of the
packing sphere and vj is the distance from x to the distance point zj .

We will give a simple example of using the proposed QA method
to estimate the error probability of some arbitrary bounded distance
decoder. This will be useful to point some additional facts about the
practical implementation of our algorithm.

Example 4.1.5. Estimating the error probability of a general BD de-
coder (with respect to x) shown in Fig. 4.4, defined as

D(y) =
⎧⎪⎪⎨⎪⎪⎩

x, d(x,y) ≤ rp
error, otherwise

. (4.41)

The function FR(⋅) is defined by the channel model and we assume
it is known analytically or it can be numerically evaluated (which is
usually the case). Numerical evaluation of FR(⋅) is computationally
more expensive so it is recommended to use the maximum number of
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measured distances (J) as a stopping rule (as opposed to formula (3.5)),
and if a grater accuracy is needed to generate more distances (which is
very fast). In this case we set J = 3 and the iterator j = 0.

We generate a random point Y = y1 ∉ D and increase the iterator to
j = 1. When choosing a random point, it is important that the geodesic
segment from x to Y is chosen uniformly at random. As there is at
least one geodesic segment γ[x,y1]

(which is guaranteed by the system
model) we can use the bisection method to find the distance point z1
and calculate v1 = d(x,z1). We repeat this procedure until J = 3 and
then after calculating the relative precision we decide if we need to
generate more points or if we can calculate the error probability using
the formula (4.13).

Note that we only assume that the decoding region is a metric
star domain. By using additional information about the decoder (e.g.
bounded distance property) it is possible to additionally reduce the
number of iterations needed (in this case to J = 1). If we know that the
decoder used is a BD decoder with a known rp our algorithm reduces
to analytical evaluation of the error probability (J = 0).

If there is a point y such that d(x,y) = ∞ (as in the case of the
octahedron code in Example 2.2.3) we say that the decoding region is
"open". It is important to detect open regions or the simulation may
halt. When an open region is found, the counter is incremented but the
point is not taken into account when calculating the error probability
(i.e. FR(∞) = 0).

4.1.1 QA Simulation for the BSC

Given a BSC Y = x +W , with Y = FN2 , and a matched Hamming
metric dH , a geodesic segment γ[x,Y ] corresponds to a Hamming line
(aka cube dominating path or Boolean line), defined as a sequence of
points {a1,a2, . . .aK}, K = dH(x,Y ) + 1, with a1 = x, aK = Y and
dH(ak,ak+1) = 1, k = 1, . . .K − 1 [107]. Each component of the noise
vectorW ∈ FN2 is generated according to a Bernoulli distribution B(p).
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Sufficient condition for a decoder D to be star domain is given by

D(x +w) = x⇒D(x +wΛ) = x, (4.42)

where Λ ∈ FN×N
2 is a diagonal matrix.

Let A be a set of all lines {a1, . . .aN+1}, with a1 = 0 (all-zero vector)
and aN+1 = 1 (all-one vector). Given a line A ∈ A there is a unique
distance point zA = x + a∗ where

a∗ = arg max
dH(x,x+a)

{a ∈ A ∶ x + a ∈ D}. (4.43)

Error probability can be defined as

Pe =
1

∣A∣ ∑A ∈A

P [R > dH(x,zA )] = P [R > V ], (4.44)

where ∣A∣ is the cardinality of set A, and V is an auxiliary random vari-
able that represents the distance between the codeword and a random
distance point. The tail distribution function of a Binomial random
variable R is given by

FR (v) = (1 − p)N
N

∑
n=v+1

(N
n
)( p

1 − p)
n

. (4.45)

In case of the BSC, distance v is found using a modified bisection
algorithm for the discrete case, presented in Algorithm 3.
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Algorithm 3 Bisection method for the discrete case (e.g. BSC)

A ← {a1⋯aN+1} {select a random line}
a← a1 = 0 {all zero vector}
b← aN+1 = 1 {all one vector}
k ← ⌈N+1

2
⌉

repeat
c← ak
if D(x + c) = x then
a← c
k = k + ⌊dH(a,b)

2
⌋

else
b← c
k = k − ⌊dH(a,b)

2
⌋

end if
until dH(a,b) = 1 {Distance point found}
vi = dH(x,a)

4.1.2 QA Simulation for the AWGN Channel

Given an AWGN channel Y = x +W , with Y = RN and a matched
Euclidean metric, a geodesic segment γ[x,Y ] corresponds to a straight
line segment (in RN ) between the codeword x and the channel output
Y . Each component of the noise vectorW ∈ RN is generated according
to a zero mean Normal distribution N(0, σ2) with variance σ2.

Sufficient condition for a decoder D to be star domain is given by

D(x +w) = x⇒D(x + αw) = x, ∀α ∈ [0,1], (4.46)

Let E be a set of feasible directions at codeword x [108] with e ∈ E ,
and d(x,e) = 1. Random noise vector can be written as W = RE,
where random variable R represents the magnitude of the noise vector
in some random direction E ∈ E . Error probability can then be defined
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as
Pe =

1

area(E) ∫e∈E [∫
∞

0
pR(r)1D(x + re)dr]de, (4.47)

Under the assumption that D is a star domain, for each e ∈ E there
is a unique distance point ze = x + vee, where

ve = d(x,ze) = arg max
r

{r ≥ 0 ∶ x + re ∈ D}. (4.48)

Error probability can now be defined as

Pe =
1

area(E) ∫e∈E [∫
∞

ve
pR(r)dr]de, (4.49)

or more precisely

Pe =
1

area(E) ∫e∈E P [R > ve]de = P [R > V ], (4.50)

where V is an auxiliary random variable that represents the distance
between the codeword and a distance point in some random direction
E. In the case of the AWGN, random variable R has a χN distribution
with a tail distribution function

FR(v) = Γ(N
2
,
v2

2σ2
) . (4.51)

Function Γ(s, x) is the regularized upper incomplete gamma function

Γ(s, x) = Γ(s, x)
Γ(s) (4.52)

where
Γ(s, x) = ∫

∞

x
ts−1e−tdt, (4.53)

is the upper incomplete gamma function and

Γ(s) = ∫
∞

0
ts−1e−tdt (4.54)
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is the gamma function.
The steps for finding the distance v are given in Algorithm 4. This

procedure can be used for any continuous noise vector distribution.

Algorithm 4 Bisection method for the continuous case (e.g. AWGN)

w ←W {Generate a random error sequence}
e = w

∥w∥
{unit energy noise specifying its direction only}

a← 0 , b← 1

while D(b ∗ e) = 0 {Until the error occurs for the first time} do
a← b, b← b ∗ 2

end while
repeat
c← (a + b)/2
if D(x + c ∗ e) = x then
a← c

else
b← c

end if
until b − a < ε (predefined precision)
vj ← c

4.2 Analysis of the QA Simulation Method

For the purpose of analyzing the performance of the QA estimator,
we use small codes coupled with an MD decoder because they have
analytically known error probability. In the case of the AWGN channel,
we use the octahedron code [109], and in the case of the BSC we use
the Reed–Muller RM(1, 5) code of length N = 32 and dimension K = 6.
[110,111].

P̂QAe such that J takes values from a set of logarithmically spaced
points in the interval of [102,106], was calculated for Eb/N0 ranging
from −1.6dB to 10dB with a step of 0.1dB, and compared to the ana-
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lytically known Pe. Average relative error (3.6) with I = 100 was used
as a measure of accuracy.

Fig. 4.5 shows the accuracy of the QA estimator as a function of
generated samples, for fixed values of Eb/N0. The average relative error
decreases linearly in log scale as the number of samples (J) grows.

Fig. 4.6 shows the accuracy of the QA estimator as a function
of Eb/N0, for fixed values of J . As it can be seen the accuracy of the
estimator slowly decreases with Eb/N0, and as J grows it becomes more
stable.

Fig. 4.7 shows the comparison of the QA estimated error proba-
bility (P̂QAe ), with J = 10000 measured distances, and the analytically
calculated error probability (Pa). By increasing J the difference would
become even smaller.
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(a) Octahedron code

(b) RM(1, 5) code

Figure 4.5: QA Estimator accuracy as a function of measured distances.
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(a) Octahedron code

(b) RM(1, 5) code

Figure 4.6: QA Estimator accuracy as a function of Eb/N0.
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(a) Octahedron code, with J = 10000

(b) RM(1, 5) code, with J = 10000

Figure 4.7: Comparison of analytically calculated and QA estimated error
probability for different values of Eb/N0.



Chapter 5

Numerical Results

This chapter concludes part I of the thesis. A comparison of our QA
method and MC and IS methods is first given. We show that our QA
method is at least 103 times faster then the MC method and at least 10

times faster then the current state of the art IS method, for the same
accuracy. Some comments about future work are given at the end of
this chapter.

5.1 Comparison of Different
Simulation Methods

We will now demonstrate our QA method for the case of AWGN and
BSC, and we will compare it to the MC and IS methods, described in
Chapter 3, in terms of accuracy and speed.

In the case of the BSC, we used low rate BCH codes [85] of length
63, 127 and 255, couppled with an MD decoder. For the purpose of
comparing different simulation methods in the case of the AWGN, we
used binary polar codes [47] of length 128, 256, 512 and 1024 with rate
1/2. At the receiver we used a SCD, as described in [47]. We also
give results for the Reed-Muller RM(1, 5) code coupled with the OSD.
The generator matrix of an (N,K) polar code, where N = 2M , can be
generated by taking Arikan’s kernel G2, building its Kronecker product
M times (building G⊗M

2 ) and selecting K rows corresponding to the
highest mutual information. Bits of the remaining N −K channels are
frozen (usually set to 0) [17,47]. The generator matrix of an (N,K) RM
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code is generated by taking K rows with the highest Hamming weight
from G⊗M

2 [17, 112]. OSD and the successive cancellation decoding of
binary polar codes are described in Chapter 2.2.1 and Chapter 2.2.2,
respectively. For the transmission over the AWGN channel we use a
simple binary phase shift keying (BPSK) modulation scheme.

For these codes error probability was first estimated using the MC
and IS simulation methods for different values of Eb/N0. The perfor-
mance of polar codes was estimated for Eb/N0 ranging from −1.6dB

to 3.3dB, with a step of 0.1dB (a total of 50 SNR values), while the
performance of BCH codes and RM(1, 5) code was estimated for Eb/N0

ranging from −1.6dB to 5.8dB, with a step of 0.1dB (a total of 75 SNR
values). Each SNR value was run with a sequential stopping rule of
δ̂ = 0.05. An additional sequential stopping rule of 231 simulation runs
per SNR point was used. The QA method was used to estimate the
error probability at the same SNR values as both MC and IS meth-
ods. As our QA method is SNR-invariant simulation was run until an
average relative error of δ̂ = 0.05 was reached (global stopping rule).

All three simulation methods are compared in terms of the total
number of simulation runs needed, and the results for the polar codes
with sequential decoding are given in Table 5.1, the results for the
RM(1, 5) code with OSD are given in Table 5.2 and the results for the
BCH codes with MD decoding are given in Table 5.3. Fig. 5.1 shows
the error probability curves of different polar codes obtained by the
QA simulation method. The difference between the MC, IS and QA
simulation methods for the example of (256, 128) polar code is shown
in Fig. 5.3(a) and a detailed view is shown in Fig. 5.3(b). Fig. 5.2
presents the error probability of the RM(1, 5) code under OSD decoding
with 1, 3 and 6 (maximum likelihood) refactoring steps. The difference
between the MC, IS and QA simulation methods for the example of
BCH (127, 8, 31) is shown in Fig. 5.4(a) and a detailed view is shown
in Fig. 5.4(b).
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Table 5.1: Run time comparison of different simulation methods for (N,K)
Polar Codes with PSCD

Polar codes MC method IS method QA method

K = 64, N = 128 2 ⋅ 107 1.3 ⋅ 105 3.5 ⋅ 104

K = 128, N = 256 3.7 ⋅ 107 3.7 ⋅ 105 4.7 ⋅ 104

K = 256, N = 512 2.5 ⋅ 107 2.9 ⋅ 105 6 ⋅ 104

K = 512, N = 1024 1.8 ⋅ 106 7.3 ⋅ 105 9.5 ⋅ 104

Table 5.2: Run time comparison of different simulation methods for the
RM(1, 5) code with OSD

OSD order MC method IS method QA method

Refactoring steps: 1 8.1 ⋅ 106 4.1 ⋅ 106 7.1 ⋅ 104

Refactoring steps: 3 3.7 ⋅ 107 7.8 ⋅ 106 7.1 ⋅ 104

Refactoring steps: 6 3.7 ⋅ 107 8.7 ⋅ 106 7.3 ⋅ 104

Table 5.3: Run time comparison of different simulation methods for (N,K,T)
BCH codes with MD decoder

BCH codes MC method IS method QA method

K = 7, N = 63, T = 15 1.8 ⋅ 109 1.2 ⋅ 106 2.8 ⋅ 104

K = 8, N = 127, T = 31 9.2 ⋅ 109 5.6 ⋅ 106 2.6 ⋅ 105

K = 9, N = 255, T = 63 1.8 ⋅ 1010 2.26 ⋅ 107 3.7 ⋅ 105
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Figure 5.1: Quasi-analytical error probability of Polar Codes, using QA
simulation method.

Figure 5.2: Quasi-analytical error probability of RM(1, 5) code with ordered
statistics decoding and 1 refactoring step (– –), 3 refactoring steps (∗) and 6
refactoring steps (—).
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(a) Error probability of (256,128) polar code

(b) Detailed view

Figure 5.3: Error Probability of (256,128) polar code using QA (—), MC
(○) and IS (∗) simulation methods.
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(a) Error probability of BCH (127, 8, 31) code

(b) Detailed view

Figure 5.4: Error Probability of BCH (127, 8, 31) code using QA (—), MC
(○) and IS (∗) simulation methods.
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5.2 Conclusion

This part introduced a novel Quasi-Analytical (QA) method for es-
timating the error probability of a communication system. The QA
method was compared to the classical Monte Carlo and Importance
Sampling methods and it was shown that it outperforms them in both
accuracy and speed, especially at high SNR regime.

Although this method can be used to accurately predict the waterfall
region of the message passing decoders, a modification of the algorithm
is needed to estimate the error floor. This goes beyond this thesis and
will be addressed in a sequel.

Future work will also address applications of our QA method to
estimate the error probability of more complex communication systems.
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Chapter 6

Multidimensional Coded Modulation

This chapter sets the mathematical foundation for the development
of our algorithm (for designing spherical codes that are optimized for
set partitioning) in the next chapter. We first give an overview of
multidimensional modulation schemes with an emphasis on spherical
codes. We introduce the problem of spherical code design and discuss
how they can be used to design a multidimensional coded modulation.
Trellis coded modulation technique is presented with an emphasis on
encoder and decoder implementation.

6.1 Multidimensional Modulation

Claude E. Shannon was the first to show that a real signal (of finite
bandwidth) can mathematically be represented as a point in Euclidean
space [76, 113]. This was very important for the development of digi-
tal communications and especially digital modulations. In the case of
quadrature modulations, bits are mapped to real signals of the following
form

s(t) = I(t) cos(2πfct) +Q(t) sin(2πfct), (6.1)

where t represents time, fc represents the carrier frequency and I(t)
and Q(t) represent the in-phase and quadrature components of the
signal. It follows that every digital signal of this form can be represented
as a point [I(t),Q(t)] ∈ R2, which is called a modulation symbol (or
constellation point).
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Recent advances in MIMO, and optical and visible-light communi-
cation systems allow the use of additional "dimensions" [63–65,69,70],
which can result in a modest coding gain and better energy savings
[114]. It is also possible to combine T N -dimensional symbols (without
coding) into an NT -dimensional symbol, but implementation of such
a system also involves added complexity and latency, which may out-
weigh the performance gains [114]. Significant performance gain can
be achieved by coding sequences of symbols in such a way that not all
sequences are possible [114]. This approach is called coded modula-
tion [85].

Constellation is an algebraic representation of the modulation signal
space. The constellation of an N -dimensional modulation is a finite set
C ⊂ RN of N -dimensional real vectors (constellation points), and the
size, M = ∣C∣, of a constellation is the number of its points [115, 116].
The distance between points xi, xj ∈ C (i ≠ j) is defined as

di,j = ∥xi −xj∥. (6.2)

Performance of C is characterized by the minimum distance, defined as

dmin = min
i≠j

di,j , (6.3)

and the average constellation energy, defined as [117]

P (C) = 1

MN
∑
x∈C

∥x∥2. (6.4)

By increasing the energy, dmin is also increased and error rate is im-
proved, but this will also increase the cost of the system, and in many
cases is impractical. When designing a constellation we usually assume
P (C) = 1, and try to maximize the minimum distance. It is well known
that the problem of designing a good multidimensional constellation for
the bandwidth-limited AWGN channel is equivalent to packing points
within a unit sphere in RN [113]. This is known as the sphere pack-
ing problem [76, 117, 118]. Two practical approaches for solving the
sphere packing problem include lattice constellations [76, 117, 118] and
spherical codes [76,119–121].
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6.1.1 Lattice Constellations

Given a plane lattice Λ [76, 117, 118, 122], a lattice constellation (aka
lattice code) is defined as a set of lattice points (translated by a vector
c, i.e. a coset) that lie inside a compact bounding region R ⊂ RN

[76, 117,118]

C(Λ,R) = (Λ + c) ∩R. (6.5)

Lattice codes have good minimum distance and algebraic properties
(i.e. geometrically uniform), which is useful for designing low complex-
ity encoding and decoding algorithms [117,118,123–126].

6.1.2 Spherical Codes

A constellation, C(M,N), where every N -dimensional vector is a point
on the surface of a unit sphere (every signal in the signal space has the
same unit energy), is called a spherical code [75–78]. The equi-energy
property of spherical codes makes them very useful for fading channels.
In higher dimensions all lattice constellations approach spherical codes.
This is a consequence of the sphere hardening phenomenon [113,127].

Sphere hardening claims that by the law of large numbers, all points
will (almost surely) lie in a small shell around the surface of the sphere,
or more formally: for any ε > 0 and any Gaussian iid vector X ∈ RN ,
with components generated according to the N(0, σ2) distribution, the
following holds true

N →∞⇒ P [N(σ − ε) ≤ ∥X∥2 ≤ N(σ + ε)] → 1. (6.6)

The configuration of points with the largest dmin for a given N and
M is called the densest packing and the corresponding spherical code is
often called the best (N,M) spherical code. For N = 3 and M = 12 the
best spherical code is given by a regular icosahedron [76] (Fig. 6.1a).

A list of densest packings and best lattices is available at [76,128].
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(a) Icoashedron (b) Stereographic projection

Figure 6.1: Icosahedron code and its stereographic projection.

6.2 Visualization of 3D Spherical Codes

Stereographic projection [129] is a mapping that projects a sphere onto
a plane, and, as such, it is a useful tool for visualizing 3D spherical
codes. The result of the stereographic projection of a 3D spherical
code is a planar graph, often called the Schlegel diagram [130, 131].
The procedure for generating the Schlegel diagram of a spherical code,
used in this thesis, is given in Algorithm 5. For simplicity we assume
that the center of projection is the point [0,0,1]. If a different point
p is chosen as the center of projection, the constellation is first rotated
so that p = [0,0,1].

If a point corresponding to one of the codewords is chosen as the
center of projection, that point will be mapped to infinity. This is
visualized as a straight line going from points that are at a minimum
distance from the center of projection (Fig 6.1b).

Besides Schlegel diagrams, spherical codes are often represented as
polar plots. This is useful if constellation points are represented using
spherical coordinates [132].
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Algorithm 5 Stereographic projection

Input:
constellation C ⊂ R3,
distance dmin,

for i ∈ {1,2, ...,M} do
x∗i ← [ xi,1

1−xi,3
,
xi,2

1−xi,3
] {[0,0,1] is the center of projection}

end for
for i ∈ {1,2, ...,M} do
for j ∈ {1,2, ...M} do
if i ≠ j then
di,j ← ∥xi −xj∥ {Find the distance between distinct points.}
if di,j = dmin then
Connect points x∗i and x∗j

end if
end if

end for
end for

6.3 Design of Spherical Codes

Problem of designing an (M,N) spherical code is usually stated as an
optimization problem of distributing M points on an N -dimensional
unit sphere so that the minimum distance between any pair of points
is maximized (packing problem),

Optimization problem 6 Packing problem

minimize −min
i/=j

∥xj −xi∥

subject to ∥xi∥ = 1; i = 1, . . . ,M.
(6.7)
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As the cost function in (6.7) locally depends only on the distance
between two points, it is common to model the constellation points as
repealing particles (repealing by the conservative central force). The
packing problem can then be restated as the minimization of the total
potential energy (V ) of the constellation (generalized Thomson prob-
lem). The new optimization problem is

Optimization problem 7 Total potential energy minimization

minimize V = ∑
i<j

V β−2
ij

subject to ∥xi∥ = 1; i = 1, . . . ,M,

(6.8)

where
Vij =

γ

∥xj −xi∥
(6.9)

represents the interaction energy occurring between the two particles,
β is the exponent of the inverse power law and

γ = min
i∈{1,...,M}/{j}

∥xj −xi∥ (6.10)

is a constant used to prevent overflow (or underflow).
As β → ∞, the cost function in (6.8) is dominated by the small-

est distance and the force equilibrium (the stationary point of V ) is
attained. As V is a differentiable function, this optimization problem
is usually solved using a gradient descent or Newton’s method. In or-
der to satisfy the constraint, vectors are either normalized after every
iteration [78] or represented using spherical coordinates (distance max-
imization is equivalent to angle maximization) [77]. Both approaches
have been shown to converge to a local optimum. There is however no
guarantee that the local optimum is also a global optima, so in order to
obtain results as good as possible, optimization procedure is repeated
multiple times with a different initial configuration.
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6.4 Trellis Coded Modulation

TCM is a combined coding and modulation technique for digital trans-
mission over a bandwidth-limited channel, which allows the achieve-
ment of significant coding gains over conventional uncoded modulation
schemes, without compromising bandwidth efficiency.

TCM was first proposed by Gottfried Ungerboeck in his 1976 paper
[71], followed by a more detailed description in [72] and [73, 74]. TCM
with multidimensional constellations (aka multidimensional TCM) was
introduced in [133]. TCM became very popular in the early nineties and
was adopted in satellite, modem and mobile communication standards
[134–136]. Today it is mostly used in space and optical communication
systems [63,64].

The main idea of TCM, proposed by Ungerboeck, was to maxi-
mize the Euclidean distance between sequences of modulation symbols.
This was accomplished by coding on subsets of constellations using
techniques and principles from channel coding theory (e.g. convolu-
tional codes, trellis diagrams, Viterbi algorithm). TCM codes coupled
with a sequential decoder are known to achieve up to a 5.8 dB coding
gain (reaching the cut-off rate of a bandwidth-limited AWGN chan-
nel) [137, 138]. Theoretically, an NT -dimensional lattice constellation
can achieve the same coding gain as an N -dimensional TCM of length
T , but at a higher decoding complexity. In order to approach the Shan-
non capacity more closely, a powerful extension of the TCM, known as
multilevel coding [85,139,140] is often used. Multilevel codes are often
coupled with some powerful multistage decoding technique that has a
much better performance/complexity trade-off then classical ML and
near-ML decoders [141–143].

6.4.1 Set Partitioning

The main idea of TCM is to separate codewords in such a way as
to maximize the squared Euclidean distance between codewords in the
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same subset. This is called set partitioning. Set partitioning of classical
1D and 2D modulation schemes is straightforward and is demonstrated
in Example 6.4.1 for the case of an 8-PSK modulation.

Example 6.4.1. Set partitioning of an 8-PSK constellation is shown
in Fig. 6.4.1. We first label all points with labels "A" and "B" in such
a way that no two adjacent points have the same label. After that, we
partition the constellation C into subset CA, which contains only points
with label "A", and subset CB , which contains only points with label
"B". We repeat this to get subsets CAA, CAB , CBA and CBB .

B
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AB

AA

AB

A

BA BB

BB BA

A
B

A

A

A

B

B
B

A B A B
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AA

AB AB

BA

BA

BB
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Figure 6.2: Set Partitioning of an 8-PSK modulation.
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Lattice constellations can be effectively partitioned into subsets by
exploiting group-theoretic properties of lattices [138]. Set partitioning
of spherical codes is more complicated, as there is generally no nice
geometric structure that can be exploited. Example 6.4.2 shows set
partitioning of the icosahedron code.

Example 6.4.2. Set partitioning of the icosahedron code is shown in
Fig. 6.4.2. All five ∎ symbols represent the same point at infinity (the
center of projection).
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Figure 6.3: Set Partitioning of the icosahedron code.

We start by selecting two points that are at dmin from each other,
and give them labels "A" and "B". In a greedy manner, we select one
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point that is furthest from all points with label "A" and give it the
same label. We do the same for "B". We repeat this until all points are
labeled. This will divide the constellation C into subsets CA and CB .
We repeat the labeling step in order to get partitions CAA, CAB , CBA
and CBB . Set partitioning improves dmin from 1.0514 to 1,7013.

A simple procedure for set partitioning of spherical codes is pre-
sented in Algorithm 8. This procedure is computationally expensive,
but as it is done only once per code, during the design phase, it does
not affect the TCM encoding or decoding complexity.

Algorithm 8 Set partitioning of spherical codes

Input:
constellation C, distance dmin, CONDITION

{CONDITION represents a stopping criterion (e.g num. of subsets)}
SetPartitionProcedure(C, dmin):
if CONDITION then
Return C

end if
CA ← {}, CB ← {}
Find xi,xj ∈ C such that di,j = dmin

CA ← xi, CB ← xj ,C → xi,xj {Remove xi,xj from C}
repeat
Find x ∈ C, farthest from CA
CA ← x, C → x
Find x ∈ C, farthest from CB
CB ← x, C → x

until C = {}
Find dAmin and dBmin.
Call SetPartitionProcedure(CA, dAmin)
Call SetPartitionProcedure(CB , dBmin)
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6.4.2 TCM Encoding

Figure 6.4 shows a TCM encoder. Some of the input bits are encoded
using a convolutional encoder (usually of rate K

K+1
). Encoded bits are

used to select a subset (or more precisely a sequence of subsets), while
uncoded bits are used to select a point from a subset.

Convolutional 

encoder
Select subset

Select 

consetllation 

point

Coded 

data

Info. bits

Uncoded bits Constellation 

points

Figure 6.4: TCM encoder.

TCM code is usually represented using a trellis diagram [85]. Each
point x ∈ C is assigned to a transition in the trellis. Points belonging
to the same subset are assigned to parallel transitions (Fig. 6.5a).

Encoded bits are used to select a path (Fig. 6.5b) in the trellis,
while uncoded bits are used to select one of the parallel transitions
(point from a subset) for each trellis segment.

x1
x2
x3

(a) Subset with 3 points

Si
Sj

(b) Trellis segment with 2 paths (se-
quences of subsets): Si and Sj

Figure 6.5: Trellis representation of a TCM code.
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Any two paths Si and Sj (i ≠ j) from a trellis that diverge in one
state and merge in another, after more than one transition, have path
distance dp(Si, Sj) (Fig. 6.5b). Let the minimum path distance in a
trellis be dp. The free Euclidean distance of a TCM code is defined as

d2free = min(dp, dip), (6.11)

where dip represents the intra-partition distance. Given an AWGN
channel with noise variance σ2, error probability of a TCM code, at
high SNR, can be approximated as

Pe ≈ exp{−d
2
free

2σ2
} . (6.12)

6.4.3 Viterbi Decoding

The Viterbi decoding algorithm is a dynamic programming algorithm
for finding the "shortest" (the most likely) path in a trellis with respect
to a given metric. The choice of metric depends on the problem, for
example the squared Euclidean distance is used in case of the TCM.

An N -dimensional TCM codeword of length T , x = [x1, ...,xT ] ∈
RNT , is sent over the bandwidth-limited AWGN channel. At the re-
ceiver a channel output Y = x +W is detected and decoded using the
Viterbi decoding algorithm [85].

Viterbi algorithm keeps track of several possible paths with the best
accumulated metric. At every stage t ∈ {1,2, ...T}, the Viterbi algo-
rithm merges all the surviving paths that arrive in each state, and keeps
only the ones with the smallest metric. The paths are then updated by
finding the closest point xt to the channel output yt and adding the
distance ∥xt−yt∥ to the accumulated metric path for every state in the
trellis. Once the end of the trellis has been reached, the best surviving
path is chosen as the correct codeword.



Chapter 7
Optimized Set Partitioning

In this chapter we introduce the problem of TCM design by optimized
set partitioning. We present an optimization problem and develop an
algorithm, based on the repulsive force method, for solving it. The
algorithm is then used to design several 3D TCM codes, which are
compared to the best known spherical codes with the same number
of points. We show that it is possible to achieve a coding gain over
conventional spherical codes - especially at high SNR. Some comments
about future work are given at the end of this chapter.

7.1 Problem Formulation and Algorithm

Instead of designing a "good" spherical code (a code with a good min-
imum distance) which is to be partitioned into subsets, we propose to
a-priori divide randomly generated constellation points into subsets and
then:

1. maximize the minimum distance between the points belonging to
the same subset (intra-partition distance),

2. maximize the minimum distance between subsets, given the mem-
ory of the underlying trellis code.

The number of subsets and points in each subset is defined by the TCM.
We will refer to this approach as optimized set partitioning (OSP).

The initial configuration of points is generated by choosing M vec-
tors with components drawn according to the Normal N(0,1) distri-



76 7. Optimized Set Partitioning

bution. This guarantees that all vectors have a uniformly random ori-
entation in space. The vectors are then normalized to the surface of
the unit sphere. The initial set of points is divided into D (D divides
M) subsets, with M/D points in each subset. The choice of subsets is
arbitrary.

The optimized set partitioning is a multi-objective optimization
problem. In order to maximize the free distance over the minimum
distance we first modify the formula for the interaction energy between
the two particles (equation (6.9)) to

Vml(α) =
γ

α∥xl −xm∥ , α =
⎧⎪⎪⎨⎪⎪⎩

α1, 1Xm(xl) = 1

α2, otherwise
, (7.1)

with α1 +α2 = 1 and α2 > α1. This ensures that the particles belonging
to the same subset will exert greater force than the other particles.

Linear scalarization is the simplest method to convert a multi-objective
optimization problem into a single objective optimization problem.

Optimization problem 9 Optimized set partitioning

minimize V = (1 − λ) ∑
m<l

(Vml(α1)1Xm(xl)) β

+λ∑
m<l

(Vml(α2)1Xm(xl))
β

subject to ∥xm∥ = 1; m = 1, . . . ,M,

(7.2)

We solve this optimization problem using the conjugate gradient
method, because of its simplicity. As in [78] the constraint is satisfied by
normalizing the vectors after every iteration. The conservative central
force from point xm to point xl is defined as

Fm→l =
⎧⎪⎪⎨⎪⎪⎩

−∇xlV
β−2
ml (α1), 1Xm(xl)

−∇xlV
β−2
ml (α2), otherwise

. (7.3)
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Fm→l ∝
⎧⎪⎪⎪⎨⎪⎪⎪⎩

( γ
α1∥xl−xm∥

)
β
α1(xl −xm), 1Xm(xl)

( γ
α2∥xl−xm∥

)
β
α2(xl −xm), otherwise

. (7.4)

The total resulting force other particles exert on particle xl is given
by

F→l = −∇xlV = ∑
m∈{1,...,M}/{l}

Fm→l. (7.5)

In order to avoid numerical problems, we first calculate the direction
of the force and then move the point in that direction. The direction
of the force is calculated as

F ∗
→l =

F→l
∥F→l∥

. (7.6)

New value of xl can be calculated using a simple update rule

xk+1l = xkl +
γ

2β
F ∗
→l. (7.7)

Let C′ = {x′1, ...x′M} be a constellation generated by applying the
proposed algorithm to the original constellation C = {x1, ...xM}. Then,
the total move norm LMOV is defined as

LMOV(C,C′) =
M

∑
m=1

∥xm −x′m∥. (7.8)

Whenever β is increased too rapidly, the vectors are forced into a
state of a numerical deadlock. To avoid this we use the same strategy
(Algorithm 10) as presented in [78].
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Algorithm 10 β update rule

Input:
constellation C

Initialization:
a = 1, b = 2

Update procedure:
Set β = 2b

Calculate C′, and LMOV(C,C′)
Set β = 2b(1+1/a)

Calculate C′′, and LMOV(C,C′′)
if LMOV(C,C′) > LMOV(C,C′′) then
C = C′

else
C = C′′
b = b(1 + 1

a
)

end if

7.2 Simulation Results

We used optimized set partitioning to generate three 3D spherical codes
with M = 12, 16 and 24. This codes are used to design a TCM code
with memory 3, length 36 (trellis was terminated after 36 segments) and
generator polynomials, given in the standard left-alligned octal nota-
tion, (74,64). This codes are compared to TCM codes designed using
classical 3D spherical codes that correspond to the densest packings
with the same number of points. Set partitioning of classical codes was
done using Algorithm 8. Viterbi decoding algorithm was used at the
receiver side.

All codes are compared in terms of the first error probability [27,
85] (which is equivalent to the block error probability in the case of
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(a) Icoashedron (b) Cuboctahedron

Figure 7.1: Set partitions of icosahedron and cuboctahedron cdoes

convolutional codes), for the case of the AWGN channel with Eb/N0

ranging from −1.6db to 14dB. Error probability was estimated using
the QA simulation method described in part I of this thesis, with 107

measured distances. We show, that even compared to the best known
codes, it is still possible to get a coding gain using weaker codes that
are optimized for the specific TCM.

Table 7.1 shows a comparison of the minimum and intra-partition
distances and the distance gain achieved using our method.

Table 7.1: Comparison of the minimum and intra-partition distance for
different (M,N) spherical codews

Code Classical OSP Distance gain

M = 12, N = 3
dmin 1.051462 1.0 −0.051462

dip 1.7013 1.73205 +0.03075

M = 16, N = 3
dmin 0.88057 0.7966 −0.08397

dip 1.5390 1.5926 +0.0536

M = 24, N = 3
dmin 0.744206 0.71483 −0.029376

dip 1.254 1.3208 +0.0668
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(a) Classical (16,3) (b) OSP (16,3)

Figure 7.2: Set partitions of two (16,3) spherical codes.

Figure 7.1a shows the stereographic projection and set partitions of
the icosahedron code. Using optimized set partitioning we got a spheri-
cal code corresponding to the cuboctahedron, with set partitions shown
in Fig. 7.1b. Figures 7.2a and 7.2b show stereographic projections cor-
responding to the two (16,3) codes and their set partitions. Figures
7.3a and 7.3b show the stereographic projections corresponding to the
two (24,3) codes and their set partitions.

Figure 7.4 shows error rate probability comparison of the icosa-
hedron and the cuboctahedron (which was obtained using the OSP
method) code. Cuboctahedron has a small coding gain at high SNR.
This is expected as the dip of the two codes is very similar. Figure
7.5 shows error rates for the classical and OSP generated (16,3) code.
Comparison of the classical and OSP generated (24,3) code is given in
Fig. 7.6. We see that a crucial coding gain is achieved over the clas-
sical spherical code. As was expected, achieved coding gain is directly
proportional to the achieved intra-partition distance gain.
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(a) Classical (24,3) (b) OSP (24,3)

Figure 7.3: Set partitions of two (24,3) spherical codes.

Figure 7.4: QA estimated BLER comparison of two (12, 3) spherical codes.

7.3 Conclusion

In this chapter we presented a novel approach to constructing TCM
from spherical codes, optimized for set partitioning. It was shown that



82 7. Optimized Set Partitioning

Figure 7.5: QA estimated BLER comparison of two (16, 3) spherical codes.

Figure 7.6: QA estimated BLER comparison of two (24, 3) spherical codes.
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this approach allows for construction of new multidimensional modula-
tion schemes that achieve better performance to classical schemes when
combined with TCM.

Different coded modulation schemes might benefit from different
partitioning strategies. By introducing additional restrictions it is pos-
sible to reduce the encoding complexity but probably at the result of
coding gain. This needs to be investigated further.
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