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1. Introduction 

1.1. The basics of neurology 

The human brain is central part of the human nervous system. It is also the center of the 

control of the peripheral nervous system. Its function is to control the low level of 

unconsciousness activity such as the hart beet, breath rhythm and other metabolic functions, and 

to control higher level aware activity such as thought, reasoning, abstraction, etc. Consciousness 

is a mutual interaction of many systems in the brain. Final and detailed description of 

consciousness based on the biological ground has not been given jet. 

Neurophysiology is medical science which exploring the activity of the healthy brain. There 

are several methods to explore the activity of the human brain. These methods belong to the 

scientific discipline called Neuroimaging. Methods are divided in two categories. One of them 

tries to gives a structural description while the other one gives a functional description of the 

human brain. Functional description is very important not only in case of diagnosis of the 

metabolic disease, wound, lesion, but also in exploring of the cognitive functions of the human 

brain. Since the information processing processes are followed by increased metabolism of 

specific region of the brain, functional description makes it possible to directly visualize the 

activity of different brain center.  

1.2. Methods of  reading neural signals 

Computer tomography (CT) is a method used for quick examination of the brain. Computer 

algorithms processing the amount of x-rays absorbed in the relatively small volume of the brain, 

and visualize the results as cross section of the brain.     
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The method of magnetic resonance tomography (MRT) uses magnetic fields and radio waves 

to make a two or three dimensional image of the structure of the brain. The main advantage of 

this method that it dos not use any radioactive tracers to imaging. Because of the sophisticated 

mechanism of signal detection, the MRI is capable of depth and surface imaging with a high level 

of resolution, and tracking the temporal changes of the structure of the brain. 

Functional MRI (fMRI) is based on the feature of the hemoglobin. It imaging the changes in 

the bloodstream in the brain caused by the neural activity. This method is capable of visualizing 

in which way and which structure of the brain was activated during solving some specific task. 

Since the method is very sensible of bloodstream changes, fMRI is used in the early diagnosis of 

the stroke.       

Positron emission tomography (PET) uses radioactive tracers injected in the bloodstream to 

show the structure of the brain. The absorbed radioactive tracers in the different brain region are 

detected to get a two or three dimensional picture. Because of the fast decomposition of the 

radioactive tracers PET allows only a short time examination of the brain.      

Electroencephalography (EEG) is a method which turns the brain activity into electrical 

signals.  By placing electrodes on the skull it is possible to record collective activities of neurons 

in the near area of the electrodes. The main disadvantage of the method is its poor spatial 

resolution.  

Electrocorticography (ECoG) is an invasive measuring method. It uses electrodes implanted 

by chirurgical procedure directly into or near the neural cell of the cerebral cortex. There are 

depth and surface electrodes. The depth electrode could measure the neural activity of dipper 

structure of the brain.  

1.3. The neuron, the membrane potencial and the action 

potencial 

The rule of the nervous system of humans and animals is to harmonize and adjust organism to 

the outer environment depending on the stimulation coming from it. The nervous system of the 

vertebrates makes: 

• the central nervus system; it makes the brain and the spinal cord, 
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• the peripheral nervous system; it composes the nerves and ganglia. 

 
 

Figure 1 The diagram of the nervus system, Error! Reference source not found. 

 

The components of typical neuron are: 

• the body or soma of the neuron; it contains the nucleus which takes place the 

biggest part of the protein synthesis, 

• the dendrites or the tree of the neuron which provides with its many branches a one-

way supply of the stimuli to the body of the cell, 

• the axon; it supplies the transfer of the neural impulses from the body of the cell to 

other neurons, 

• the axon terminal; it contains synapses which excretes neurotransmitters doing 

communication with other neuron or neurons. 

 

Figure 2 The typical neuron, [2] 
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There are many aspects which could be used for neuron classification. The two most 

important are based on: 

• the effect or influence on other neurons: 

o еxcitatory neurons; they excite the targeted neurons, 

o inhibitory neurons; they suppress the neural impulses,  

o modulatory neurons. 

• the way of spiking: 

o tonic or regular spiking, 

o phasic or bursting, 

o fast spiking, 

o thin-spike. 

Neurons communicate by neural impulses. The neural impulse is a change of the 

membrane potential of the neuron which caused by the stimulation of the neuron. In the resting 

state, the membrane potential is called resting potential. Stimulating the neuron the resting 

potential rapidly changes. During this process a specific ion channels open and the 

concentration of the positive and negative charges change inside and outside of the cell. This 

phenomenon is called аction potential.  

 

Figure 3 The action potential, [3] 
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The parameters of the action potential are: 

• the time of the stimulus, 

• the resting potential, 

• the rising phase, 

• the falling phase, 

• the peek, 

• the overshoot and the undershoot, 

• the threshold level.   

The neurons generate neural impulses on all or nothing basis. The stimulus of the cell needs 

to be large enough to force the membrane potential above the threshold level. When it happens 

the action potential appears. It has been observed that in the central nervous system the peek of 

the action potential is always the same and it does not change with the strength of the stimulus, 

but the frequency of the appearance of the action potential does. Action potential or neural 

impulse occurs at the beginning of the axon, and it carries it to the targeted neurons. 

1.4. Measuring electrical impulses of neurons 

Electrophysiology as science deals with methods which could measure the changes of the 

membrane potential of the neural cells especially action potential. The electrical activity of the 

neural cell could be measured in its natural environment (in vivo) or in laboratory controlled 

condition (in vitro). Both methods imply invasive surgical operation. To measure the membrane 

potential very fine micropipettes is used. They are placed into the cell (intra cellular) or near the 

cell (extra cellular). Today’s application uses micropipettes made by glass. These are filled with 

solution with ion composition which is very similar to the composition of the interior of the cell. 

Appropriate conductor placed in the solution of the micropipette provides a closed electrical 

circuitry between the interior of the cell and the signal processing circuitry.    
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Voltage clamp 

The advantage of the method is that it allows to the experimenter the possibility to hold the 

membrane potential on predetermined level. Considering that most ion channels of the cell 

membrane works as a voltage controlled gateway, it is possible to measure the ion current trough 

the cell membrane for given membrane potential. These channels pass ion currents only if the 

membrane potential reaches specific level. The apparatus essentially makes a current source with 

electrodes. The membrane voltage is measured trough voltage electrodes and it applied to the 

amplifier. The amplified membrane voltage has been compared with a determined membrane 

potential level. By the negative feedback the error signal drives the current into the cell trying to 

reduce the error to zero. Recording the sign and the intensity of the feedback current it is possible 

to determine the ion current trough the membrane of the tested cell. 

 

Figure 4 The voltage clamp method, [4] 

Current clamp method 

With this method it is possible to track and record the changes of the membrane potential 

caused by the cell him self or by stimuli. It is a good method to test the influence of the ion 

current trough the membrane on the generation of the membrane potential. This method 

commonly used to examine and understand the influence of neurotransmitters on the opening and 

permeability of the ion channels of the membrane. The instrumentation is the same as in the 

voltage clamp method. The difference is that the control is made trough the current electrode. 

Patch clamp method 

Micropipette with a relatively large opening is placed as near as possible to the tested cell. 

With gentile sanction a small part of the membrane surface is drown into the opening of the patch 

pipette. The main advantage of the method is that allows direct examination of the activity of a 
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specific ion channel. If the sanction force is strong enough to remove a small part of the 

membrane surface, than it is possible to monitor the activity inside of he cell. The disadvantage of 

the removing process is that the solution of the pipette is mixed with the ion composition of the 

interior of the cell causing dilution of the essential ingredients in the cell. This could change the 

condition of the action potential generation process and lead to the measurement error. There are 

many variation of this method. 

 

Figure 5 The patch clamp method, [5] 

New methods 

The disadvantages of the aforementioned classical methods are that they measure neural 

activity only one cell. Significant problems occur due to artifacts caused by the subject 

movement. Parallel measurement of the neural activity of more than one cell requires more 

implanted micropipettes which lead to significant tissue damage and complicated surgical 

intervention. The precise technological procedures, knew signal processing methods and cluster 

algorithms create the possibility of parallel measurement of electrical activity of the interior or the 

exterior of multiple cells. The structure of the neural network shows uneven spatial distribution of 

the neural cells in the brain. They are divided in layers of different depths. With these knew 

methods is possible to measure neural activity of different layers. Figure 6 shows the shape of a 

glass micropipette with eight different measuring positions. Every position measures electrical 

activity of the environment over eight parallel measuring channels. This configuration gives sixty 

four parallel recorded signals. 
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Figure 6 The micropipette with eight measuring position, [6] 

 



 

 

 

 

 

 

 

2. The state of the art 

2.1. The basic deterministic model of the neural cell 

Integrate-and-fire neuron model 

Lapicuque was the first who managed to model the neural cell membrane 

characteristics using parallel connected resistor and capacity. This simplified electrical 

circuit could mimic the action potential if the membrane capacitor is charged to some 

initial potential. When the level of threshold potential is reached the action potential 

generated, the capacitor discharged resetting the membrane potential. Lapicque used his 

model to compute the firing frequency of a nerve fiber resistively coupled to a 

stimulating electrode held at fixed voltage. 

These types of neuron models do not describe the exact form of the action potential. 

The action potential is taken as an event which appears in some epoch. The integrate-and-

fire model describes the neuron dynamics by two components: 

• an equation to describe the form of action potential, 

• a mechanism to generate spikes. 

In the class of integrate-and-fire models the following elements are used:  

• a linear differential equation to describe the form of the membrane potential, 

• a threshold for spike firing.  
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This model is called the “leaky integrate-and-fire” model. Its basic electrical circuit consist a 

capacitor C  and a resistor R driven by an input current ( )I t , Figure  . The voltage on the 

capacitor is given by the equation  

 
( )

( ) ( )rest

dv t
RC v t v R I t

dt
 + − =   EQ 2-1 

This equation is a linear differential equation. It represents a leaky integrator or RC -

circuit with parallel connected resistor R  and capacitorC . From the point of view of the 

neuroscientist it is called the equation of a passive membrane. If the initial condition is 

( )0 restv t v v= +   the solution of the equation is  

 ( )
0

0,

t t

RC
restv t v v e t t

−
−

− =     EQ 2-2 

 

 

Figure 7 The leake integrate and fire model of the neuron 

 

The benefit of this model lies in the separation of time scales between the extremely 

rapid action potential and slower process that affect synaptic integration, bursting, and 

adaptation. It has been used in the studies ranging from analyzing synaptic integration by 

single neurons to simulations of networks containing relatively complex connected 
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neurons. This model found to be useful in understanding the properties of large neural 

networks and the implications of large numbers of synaptic connections. 

However, the leaky integrate-and-fire model is not capable to explain many aspects of 

neuronal dynamics: 

- the input is integrated linearly, independently of the state of the postsynaptic neuron, 

- after the action potential was generated the membrane potential is reset and the 

spikes before has been forgotten, no memory present and adaptation process, fast-spiking 

and bursting processes can not be captured, 

- nonlinear interactions between different presynaptic spikes are neglected. 

 

Hodgkin-Huxley model of neuron 

As it has been described earlier, the action potential is a result of the difference of the 

potential of the interior and exterior of the cell. This difference is caused by the flow of 

charged ions trough the ion channel of the cell membrane. Analyzing the giant axon of 

the squad, Hodgkin and Huxley succeeded to measure these currents and described their 

dynamics in terms of differential equations. Originally, the Hodgkin–Huxley model 

describes only three types of ion channel. It can be extended to include many other ion 

channel types. The cell membrane separates the interior of the cell from the extracellular 

liquid and acts as a capacitor. If an input current ( )I t  is injected into the cell, it may add 

further charge on the capacitor, or leak through the channels in the cell membrane. Each 

channel type is represented by a variable resistor. The unspecific channel has a leak 

resistance R , the sodium channel a resistance 
NaR  and the potassium channel a 

resistance
KR . The value of the resistance changes depending on whether the ion channel 

is open or closed. Because of the flow of the ions through the cell membrane, there is a 

different ion concentration between the inside and the outside of the cell. This difference 

of ion concentration generates the Nernst potential. Every specific difference of ion type 

is presented as a separate battery. There are voltage source for sodium, potassium, and 
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the unspecific third channel, labeled as
NaE , 

KE , and 
LE  respectively. The equation 

which describes the membrane potential is  

 ( )
( ) ( )m

k

k

dv t
C I t I t

dt
 = −  

 

 

where the sum ( )k

k

I t  is the sum of all currents trough the membrane ion channels. To 

model the open and closed uncertainty of the ion channels, Hodgkin and Huxley 

introduced additional variable m , n  and h . The combined action of m  and h  controls 

the aN +  channels while the K +  gates are controlled by n . Hodgkin and Huxley 

formulated the three ion currents on the right-hand side as 

 ( ) ( ) ( )3 4

k Na Na K K L L

k

I g m h v E g n v E g v E= − + − + −   

The three gating variables m , n  and h  change according to differential equations of the 

form 

 ( ) ( )

( )

( ) ( )

( )

( ) ( )

( )
0 0 0

, ,
m n h

dm t m m u dn t n n u dh t h h u

dt u dt u dt u  

− − −
= − = − = −  

 

The number of ion channels is finite, and the specific ion channels open and close 

stochastically. The ion current over the patch of membrane for every repeated experiment 

is never the same. The Hodgkin–Huxley equations describe the opening and closing of 

ion channels with deterministic equations correspond to the current density through an 

extremely large patch of membrane containing an infinite number of channels or, 

alternatively, to the current through a small patch of membrane but averaged over many 

repetitions of the same experiment. To model the stochastic characteristic appropriate 

noise could be added to the model.  

The Hodgkin–Huxley model describes the generation of action potentials on the level 

of ion channels. It could be used to analyze sophisticated biophysical neuron models with 

more than three types of ion currents. Electrophysiologists have described an 

overwhelming richness of different ion channels and the set of ion channels is different 
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from one neuron to the next. The precise channel configuration in each individual neuron 

determines a good deal of its overall electrical properties. 

Some of the disadvantages of the Hodgkin–Huxley model are:  

- adding new ion currents to model a specific membrane are makes the 

universality of the Hodgkin-Huxley equations questionable, 

- Hodgkin-Huxley equation is not derived based on the microscopic behavior of 

the opening and closing of ion channels, 

- the analysis of collective phenomena in neuronal networks often rely on much 

simpler and more tractable models of the single neuron than that used by Hodgkin and 

Huxley. 

 

Figure 8 Hodgkin–Huxley model of the neuron 

 

Dendrites and synapses. 

The Hodgkin–Huxley model disregards the spatial structure of the neuron and 

reduces it to a point-like spike generator. However, the spatial structure of a neuron could 
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potentially be important for signal processing in the brain. The electrical properties of 

neurons have been described as a capacitor that is charged by synaptic currents and other 

ion currents across the membrane. A non-uniform distribution of the membrane potential 

on the dendritic tree and the soma induces additional longitudinal current along the 

dendrite. To describe these phenomena cable equation has been derived. This model of 

neuron is known as the cable theory model. It describes the membrane potential along a 

dendrite as a function of time and space.  

 

Figure 9 cable theory model of the neuron 

The compartment model  

The cable theory model supposes that the dendritic tree is at most locally equivalent 

with a uniform cable. The different kind of diameter and electrical property along of the 

dendrite makes the solution of the cable equation not so easy. Discretization of the 

dendritic tree by dividing it in smaller element makes the solution of the cable equation 

easier. This model is known as the compartment model of the neuron. 
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Figure 10 The compartment model of the neuron 

2.2. The basic statistical assumption of neural activity 

The detailed analysis of the action potential generation process shows that the 

appearance of the action potential is irregular. This is also true for the laboratory 

conditions. The nature and the causing effect of this phenomenon is still a subject of 

many research works. The questions such as “Is there a neural noise in the neural system 

and what is its role in the system?”, “Can the neural noise causes a significant irregularity 

in the appearance of the neural impulses?” are still should be answered.   

As possible source of this neural noise two sources are usually mentioned. One of 

them is thermal noise which could be explained and analyzed by Hodgkin-Huxley model. 

The second one explains the source of the noise as a variable number of membrane 

channels dedicated to specific ions, [8]. However, theoretical researches on the field of 

neural systems modeling, where the neural connections made randomly, show that the 

irregularity in the timing of the neural impulses is not conditioned to the neural noise. 

The irregularity is the feature of the system as a whole and not of the element or elements 

of the system, [9].      

To explain and interpret the irregularity of the spike timings usually states two not so 

different kind of interpretation. These are also used to try to explain the information 

coding process in the brain, [10].   



 The state of the art 

 

16 

 

In the work of Adrian et. al. sensory neural cell were examined, [11]. They found that 

the strength of the stimulus is coded by the variable flow of the spikes and the irregular 

timing is due to neural noise. This type of information coding and irregularity is called 

rate coding. The rate of the neural impulses is determined by the number of generated 

impulses in a unit time interval. This parameter is the crucial datum in the information 

coding process. However, irregularity caused by the noise limits the amount of 

information proceeded by sensory neurons. In stabile physiology characteristics, the 

estimation of the rate parameter is possible even in the relatively low level of noise. But, 

high level of noise causes significant changes in the impulse timings and the accuracy of 

the estimated rate parameter decreases. 

It is interesting to ask, whether the rate of the generated neural impulses in unit time 

is the only parameter which describes the information coding processes in sensory and 

motor event? The search for the answer created the second interpretation of information 

coding known as temporal coding, [11]. By this interpretation, if the timing of neural 

impulses presents important factor in information coding process, than the irregular 

feature of these events is the crucial part of the signal sequences. In this case, the noise 

accompanied by the signal in form of irregular timing could amplify the sensibility to the 

relatively small signals. This type of phenomenon is known as stochastic resonance, [13].  

Regardless of the interpretation accepted, irregular feature of the neural spikes 

generation process comes to the statistical and stochastic analysis of the Interspike 

Interval (ISI) sequences of two consecutive neural impulses. One of the interesting 

observations shows, that the analysis made on the ISI time series dos not mentions the 

confirmed feature of statistical stationarity, randomness or independency. The second one 

is that most of the published research works based on the assumption that the neural 

spikes are generated by Poisson process, [14], [15], [16] . If this assumption would be 

true than the empirical probability density function of the log ISI values shows a straight 

line. In the recent years a lot of published research works have questioned this 

assumption, [17], [18], [19], [20]. The author of this doctoral thesis shows in his master 

thesis, that the Poisson process is not the appropriate model to describe the statistical 

characteristic of the ISI time series. The results show that many different kind of 
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probability density function can be fitted to the random, independent and unimodal ISI 

time series. But, the most frequent type of functions is the Generalized-Pareto, 

Generalized-Extreme Value and Log-Normal [27]. 

 



 

 

 

 

 

 

 

3. The theory of Markov processes 

3.1. Stochastic processes, [21] 

Suppose that ( )X t  is a random variable for every value of t T . The set of random 

variables for different value of t T  is a random function in time. This random function 

is a stochastic or random process. The value of stochastic process at every epoch t T  

changes randomly. Let denote the probability space of possible values of stochastic 

process as ( ), ,P A . At every epoch t T  the value of stochastic process is from the 

set R . So, ( ),R B  is a phase space of stochastic process at t .  

Definition 3-1.: Let ( ), ,P A  be a probability space and T  a set of parameters t . The 

real valued stochastic process on ( ), ,P A  with ( ),R B  phase space and index set T is a 

family of  

  ( ) ,X X t t T=      

measurable functions  

  ( ) ( ) ( ): , ,X t R →A B . 

For a given ( ) ,X X t t T=   stochastic process the value of ( )X t  for a given t  is 

a random variable. It has a one dimensional cumulative density function (cdf)  

 ( ) ( )( )1 ;F x t P X t x=    
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The set of t  with n  given elements ( )1 2, , , nt t t  defines a set of random variables 

( ) ( ) ( )( )1 2, , , nX t X t X t . The n -dimensional cdf of the set ( ) ( ) ( )( )1 2, , , nX t X t X t  is  

 ( ) ( ) ( ) ( )( )1 2 1 2 1 1 2 2, , , ; , , , , , ,n n n n nF x x x t t t P X t x X t x X t x=    .  

For a different set of t  we have a family of different n -dimensional cdf function. The 

family of all n -dimensional cdf  ( )1 2 1 2, , , ; , , , , 1, 2,n nF x x x t t t n =  is a family of 

n -dimensional cdf of the stochastic process X . These cdf underlies the symmetry and 

consistency condition.  

 The n -dimensional cdf is symmetric if it is invariant of the permutation of all n  

pairs of ( ),i ix t , that is for all permutation of ( )1 2, , , nt t t  stay  

 ( ) ( )
1 2 1 2 1 2 1 2, , , ; , , , , , , ; , , ,

n nn j j j j j j n n nF x x x t t t F x x x t t t=   

The n -dimensional cdf is consistent if  

 ( ) ( )1 2 1 1 2 1 1 1 2 1 1 2 1, , , , ; , , , , , , , ; , , ,n n n n n n nF x x x t t t t F x x x t t t− − − − −+ = .  

The definition of stochastic process says, that ( ),X t  is a function of two variables, 

  and t T . This function has following properties: 

1. for variable   and given t  it is a random variable, 

2. for given   and variable t  it is a real valued deterministic function, 

3. for given   and given t  it is a real number, 

4. for variable   and variable t  it is a real valued random function. 

Property 2 is a realization of the stochastic process. It is also called the trajectory of 

the stochastic process. If the experiment consists of recording the values at different time, 

than the outcome will be one of the possible realization or trajectory of the stochastic 

process. If the experiment repeated again, a different trajectory will be obtained.  
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Some examples of stochastic processes, [22]. 

1. Stochastic processes with independent values.  

The stochastic process is with independent values if for every n  and 

( )1 2, , , n

nt t t T  is true 

 ( ) ( ) ( ) ( )1 2 1 2 1 1 1 1 1

1

, , , ; , , , ; ; ;
n

n n n n n i i

i

F x x x t t t F x t F x t F x t
=

= =   

Stochastic processes with independent values are connected with the class of 

processes with uncorrelated values and the class of processes with orthogonal values. 

The stochastic process is with uncorrelated values if  

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )cov , 0,X t X s E X t E X t X s E X s t s = −  − =          
  

The stochastic process is with orthogonal values if  ( ) ( ) 0,E X t X s t s  =  
 

. 

2. Stochastic processes with independent increments. 

The stochastic process is with independent increments if for any given set of 

0 1 nt t t    the sequence of random variables  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 1 1, , , , n nX t X t X t X t X t X t X t −− − −  

are independent. To describe this process it is enough to know the functions  

  ( ) ( )( )1 ;F x t P X t x=  , and ( ) ( ) ( )( ); ,G x t s P X t X s x= −  . 

This implies that the knowledge of cdf of the second order is fully describes the 

characteristics of these processes.   

3.  Stochastic processes with finite moment of second order. 

These are the complex valued processes ( ) ( ) ( )X t a t i b t= +  , where ( )a t and ( )b t  

are real valued stochastic processes and for every t T   
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 ( ) ( ) ( ) ( ) ( )
2 2 2E X t E X t X t E a t E b t       = = +       

  

4. Stochastic processes with orthogonal increments. 

These stochastic processes satisfy the condition  

 ( ) ( )
2

, ,E X t X s t s T −   
 

  

5. Stationary stochastic processes. 

The stochastic process is strictly stationary if its all n -dimensional cdf are invariant 

of the time shift, i.e. 

 ( ) ( )1 2 1 2 1 2 1 2, , , ; , , , , , , ; , , ,n n n n n nF x x x t h t h t h F x x x t t t+ + + =   

If the strictly stationary stochastic process has mean and its moments of second order 

are finites, than i.e. 

 ( ) ( ) .E X t E X t h m const= + = =         

 

( ) ( )( ) ( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( )

,

0

k t s E X t m X s m E X t s m X s s m

E X t s m X m B t s

   = −  − = − −  − − =
   

 = − −  − = −
 

  

The stochastic process is weekly stationary (wide-sense stationary) if its all moments 

of up to second order are finites, its mean is constant and its correlation function is a 

function of the difference of its arguments.  

6. Gaussian stochastic processes. 

The Gaussian stochastic process has a family of n -dimensional Gaussian cdf. These 

stochastic processes have a characteristic function  

 ( )
( ) ,

1 1 , 1

1 2

1

2

, , , 1 2, , ,

n n n

j j j j j k j k

j j j k

n

i X t i m r

t t t nf E e e
   

   = = =

  −   
 = =
 
 

  

Where 



 The theory of Markov processes 

 

22 

 

 ( ) ( )( ) ( )( ),,j j j k j j k km E X t r E X t m X t m  = = − −
   

  

It follows, that the functions ( ) ( )m t E X t=     and ( ),K t s  are sufficient to describe 

the Gaussian stochastic process. 

7. Markov processes. 

The stochastic process is a Markov process if for every nondecreasing set 

1 2, , , nt t t T  if it satisfies  

 ( ) ( ) ( )( ) ( ) ( )( )1 1 1 1 1 1| , , |n n n n n n n nP X t x X t x X t x P X t x X t x− − − −   =     

This equation states that the future ( )nX t  of the Markov process depends only on the 

knowledge of the present and independent of the knowledge of the past.    

In the mathematical study of stochastic processes the concept of continuity is one of 

the most important properties.  

 Definition 3-2: Stochastic process ( ) ,X t t T  is stochastically continues at 

the point 
0t  if  

 ( ) ( )( )0 00,P X t X t t t−  → →   

This definition describes the local behavior of the stochastic process at the point 
0t . It 

could be extended on the interval  ,a b  if the above definition applies for any point in the 

given interval. Another form of definition of stochastic continuity states 

 Definition 3-3: Stochastic process ( ) ,X t t T  is almost sourly continues in 

the interval  ,a b T  if its almost all trajectory are continues in that interval.  

The stochastic continuity of the stochastic process is its local property, while the 

almost sourly continuity is its global characteristic.  
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3.2. Markov processes 

Let ( ), , P A  be the probability space of the stochastic process ( ) ,X t t T  with 

phase space ( ),R B . For s T denote 
sF  the  -field generated by the family of random 

variables ( ) , ,X u u s u T  .   

Denote ( ) ; , ,s X u u s u s T=  F  the  -field generated by the family of 

random variables ( ) , , ,X u u s u s T  . Denote ( ) ; , ,s X v v s v s T+ =  F  the 

 -field generated by the family of random variables ( ) , , ,X v v s v s T  . Denote 

( )( )|P A X s  the conditional probability of the event A  conditioned of the  -field 

generated by the random variable ( )X s .  

Definition 3-4: The stochastic process ( ) ,X t t T  has a Markov property if it 

satisfies the equation  

 ( )( ) ( ) ( )( )| |sP X t B P X t B X s = F   

In the study of Markov processes the parameter t  is interpreted as time. In this 

context, ( )X t  describes the time evolution of some stochastic system. The random 

variable ( )X s  is the present state of the system. If u s , than the family of ( )X u  

represents the evolution of the system in the past. If v s , than the family of ( )X v  

represents the future of the system.  In this context, the Markov property says that the 

evolution in the future depends only on the present state and independent of the past.  

The conditional probability ( ) ( )( ) ( )( )| , , ,P X t B X s f s X s t B =  is a measurable 

function of x  and it is a function of the parameters , ,s t B . This function is the 

transition probability of the Markov process. If the system in epoch s t  is in state 

( )X s  than the transition probability gives a probability that it will be in one of the state 

from set B  at epoch t . The transition probability has following properties: 
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1. as function of B it is a probability of ( ),R B  

 ( )( ) ( )( ), , , 0, , , , 1P s X s t B P s X s t R =   

2. as a function of x  it is B -measurable, 

3. ( ) ( )( )| 1,P X t B X t x x B = =   

4. Chapman-Kolmogorov equation 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( )| | |
R

P X t B X s P X t B X y P X dy X s  =  = =   

Suppose that Markov process has finite or denumerable set of states. To define the 

measure in ( ),R B  it is enough to give finite or denumerable number of transition 

probabilities ( ) ( )( ) ( )| ,k j jkP X t x X s x p s t= = = . The Chapman-Kolmogorov equation 

becomes  

 ( ) ( ) ( ), , , ,jk jv vk

v

p s t p s p t s t  =     

Using matrix notation ( ) ( ), , ,jks t p s t s t =  P , the matrix form of  Chapman-

Kolmogorov equation is 

 ( ) ( ) ( ), , , ,s t s t s t  =  P P P   

The transition matrix ( ),s tP  is a stochastic matrix with the following properties: 

 

- ( ), 0s t P , 

- ( ), 1jk

k

p s t = , 

- ( ),t t =P I  

 

To describe the n -dimensional cdf it is enough to know the initial probability 

( )( )0 0 0,P X t B B B  and the transition probabilities ( ) ( )( )|P X t B X s x = . This 

implies that the Markov process is fully characterized by its two-dimensional cdf. If the 
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transition probability ( ) ( )( )|P X t B X s x =  is only a function of the difference t s− for 

any x  and B , than the Markov process satisfy the homogeny condition. Than the 

Chapman-Kolmogorov equation describes the evolution of the process as 

( )( ) ( ) ( )( ) ( )( )| 0 0P X t B P X t B X x P X dx



−

 =  =  . 

In case of Markov process with finite states, the matrix equation has a form 

 ( ) ( ) ( )t s t s+ = P P P   

 

3.3. Markov chain [23] 

Let the parameter t  takes integer values and denote it with n . Let the phase space be a 

finite set of countable elements called states. We recall that, finite stochastic process is an 

independent process if the knowledge of any sequence of observations up to n -th 

observation does not affect the prediction of the next observation. In case of Markov 

processes, this condition is weakened to allow the immediate past to influence on the 

prediction of the next observation. The Markov property has a form 

 ( ) ( ) ( )( ) ( ) ( )( )| 1 , 2 , | 1j i k j iP X n s X n s X n s P X n s X n s= − = − = = = − =   

Definition 3-5: Denote with ( )ijp n  the conditional probabilities which corresponds to 

Markov property. The n -th step transition probabilities of the Markov process are 

 ( ) ( ) ( )( )| 1ij j ip n P X n s X n s= = − =   

Definition 3-6: A finite Markov chain is a finite Markov process such that the 

transition probabilities do not depend on n , i.e. ( )ij ijp n p= .  
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Definition 3-7: The transition matrix of the Markov chain is a matrix P  which 

elements are ijp . The vector of initial probability 
0p  is the vector which contains the 

probabilities of the set of states at initial or starting time.  

The initial probabilities and the transition matrix are enough to determine the Markov 

chain process, since they are sufficient to give a probability measure of any sequence of 

the process. Given any probability vector 
0p  and any probability matrix P , there is a 

unique Markov chain with  initial probability vector 
0p  and transition matrix P .  

Let js  denote the state of the process at time n . Denote F  the sequence of states 

after n  and P  the sequence of the states up to n . The Markov property could be 

expressed in a following form 

 

( )
( )

( )
( ) ( )

( )

( ) ( )
( )

( ) ( )

|
|

|
| |

j j j

j

j j

j j

j j

j

P F P s P F P s P P s
P F P s

P s P s

P F s P P s
P F s P P s

P s

    
 = = =

 
= = 

  

This form says that for the known present state the future and past are independent of 

each anther.   

For finite Markov process, the probability that the process at time n  will be in state 

js  is equal to the sum of all possible state sequences ending in state js , i.e for a given 

transition probabilities ( )ijp n   

 ( )( ) ( )( ) ( )1j k kj

k

P X n s P X n s p n= = − =    

Let denote 
( )n

p  the vector of the probabilities of the different states at time n . For a 

given initial probability vector 
0p  and transition matrix P , the matrix form of the above 

statement is 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 3

0

1 2 1

1 2 2 1

n n n n
p p n p n n p n n n

p n n n

− − −
=  =  −  =  −  −  =

=   −  − 

P P P P P P

P P P P P
  

 In case of Markov chain the transition matrix ( )nP  does not depend on n . The 

above expression takes the form 
( )

0

n np p= P . It shows, that the study of the 

probabilities of the different state of the Markov chain is reduced to the study of the 

power of the transition matrix P .  

State Classification  

The classification of the state of the Markov chain could be made by inspecting 

whether it is possible to go from a given state to another given state. In this context states 

can be divided into equivalence classes. Two states are elements of the same class if they 

communicate, i.e. it is possible to go from either state to another one in the class. The 

equivalence classes define equivalence relations. The basic property of the equivalence 

relation is that it partitions the set of states. It is reflexive, symmetric and transitive. The 

week ordering relation holds only the reflexive and transitive properties. By the week 

ordering relation it is possible to order the states. If the equivalence relation is the identity 

relation, than the week ordering relation is a partial ordering.  

Definition 3-8: A subset of states of the whole set of states is a minimal element of 

the partial ordering if its members cannot contact members of other classes. A subset of 

states of the whole set of states is a maximal element of the partial ordering if its 

members cannot be contacted by embers of any other class.  

Definition 3-9: The minimal elements of the partial ordering of equivalence classes 

are called ergodic sets. Its elements are called ergodic states. The remaining elements are 

called transient states and they make a transient sets. 

For every finite Markov chain there must be at least one ergodic set, however there 

need be no transient set. If the finite Markov chain has no transient set, than its states 

make one ergodic set or there are several ergodic sets which do not communicate with 

others. If the ergodic set contains one state, it is called absorbing state. If the state 
is  is 

absorbing state than its transition probabilities are  



 The theory of Markov processes 

 

28 

 

 
1, ,

0, .
ij

i j
p

i j

=
= 


  

 The equivalence classes can be divided into cyclic classes. If there is only one 

cyclic class it is called regular. Otherwise it is called cyclic. In case of regular classes 

after sufficient time the process can be in any state of the class independently of its 

starting state in class. It also means that the sufficiently high power of its transition 

matrix must be positive. If the class is cyclic, than no power of the transition matrix can 

be positive. 

Based on the above state classification it is possible to classify Markov chain.  

I. Chains without transient sets. 

If this chain has more than one ergodic set, than there is no connection between them, 

hence there is two or more unrelated Markov chains lumped together. They could be 

studied separately.  

a. If the ergodic set is regular it is called regular Markov chain. No matter where 

the process starts, after sufficient time passed it could be in any state.  

b. If the ergodic set is cyclic it is called cyclic Markov chain. This type of chain  

has period d . For a given starting state it move trough the cyclic sets in a definite 

order, and returning to the set of he starting state after d  steps.  

II. Chain with transient sets. 

 In this case if the process starts from the transient set it moves toward the ergodic 

sets. After the process enters in the ergodic set it cannot escape from it. So, the 

classification of the chains will be made by their ergodic sets. 

a. If all ergodic sets are unit sets, the Markov chain is called absorbing chain. 

b. All ergodic sets are regular, but not all are absorbing sets. 

c. All ergodic sets are cyclic. 

d. There are cyclic and regular sets simultaneously.      
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Let us focus our attention on ergodic chain. In case of ergodic chain, it is possible to 

go from any every state to every other state. This is true when the ergodic chain has a 

single ergodic class i.e. 1d = . If  1d  , this kind of transition is possible for special 

number of steps. The transition matrix has zero elements and their position change 

cyclically in the matrix with the power of the transition matrix. Hence n
P  does not 

converge.  

Theorem 3-1: For any ergodic chain the sequence of powers n
P  is Euler-summable to 

limiting matrix A , and this limiting matrix is of the form  = A , with   a positive 

probability vector.  

Theorem 3-2: If P  is an ergodic transition matrix,  

a) the sequence n
P  is Cesaro-summable to A , 

b) the series ( )
1

i

i



=

+ −I P A  is Ceasaro-summable to Z . 

Theorem 3-3: The transition matrix P  is regular if and only if for some N  the matrix 

N
P  is positive i.e. it has nonzero elements.  

Theorem 3-4: If P  is a regular matrix then 

a) the limit lim n

n→
=P A  exist, 

b) each row of the matrix A  is the some probability vector  1 2, , , na a a = , 

that is a= A  where   is a unit column vector, 

c) the elements of  is a positive vector. 

Theorem3-5: If P  is a regular matrix and A  and   are given as in Theorem 3-4, then 

a) for a probability vector   the product lim n

n
 

→
 =P , 

b) the vector  is a unique probability vector such that   =P , 

c)  =  =A P P A A . 
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The matrix A  and the vector   will be called as the limiting matrix and limiting 

probability vector for the Markov chain determined by P . It is also called stationary 

vector or stationary matrix of the Markov chain. The last theorem says that for the regular 

Markov chain the long range predictions are independent of the initial vector. The 

fundamental matrix Z  of the regular Markov chain plays basic quantity in determining 

the properties of the chain. 

Theorem 3-6: Let P  be the transition matrix and A  stationary matrix for a regular 

Markov chain. Then the matrix 

 ( ) ( )
1

1

n

k


−

=

= + − = − +Z I P A I P A   

exists and it is referred as the fundamental matrix of the regular Markov chain. It has 

the following properties  

a)  = P Z Z P , 

b)   =Z , 

c)   =Z , 

d) − = − I Z A P Z . 

Definition 3-10: For a regular Markov chain, the first passage time 
kn  is a function 

whose value is the number of steps before entering state 
ks  for the first time after the 

initial position.  

Definition 3-11: The mean first passage matrix, denoted by M , is the matrix with 

entries ij i jm E n =   . 

Let us collect all the properties of the matrix M in the following theorem. 

Theorem 3-7: Properties of the mean first passage matrix M  are 

a) it satisfy the equation ( )dg=  − +M P M M E , 
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b) for the stationary distribution   of the matrix P , then 
1

ij

i

m
a

= , 

c) it is given by ( )dg= − +  M I Z E Z D , 

d) dg  =  M Z D . 

Theorem 3-8: Let us define matrix = −M M D . Than, for any regular Markov chain 

a) the matrix M  has an inverse, 

b) ( ) ( )1
T

c = −  M , 

c) ( )
1−

= + − P I D E M . 

Theorem 3-9: The variance of the mean first passage time is vari j sqn  = −  W M  

where ( ) ( )( )2 2dg dg
=   − +   −  W M Z D I Z M E M . 

Reverse Markov chain 

Recall, that if the forward process is a Markov chain, the reverse process will be a 

Markov chain if ( )( )jP X n s=  does not dependent on n  regardless of the starting state. 

It is an obvious property if the process starts from the equilibrium.  

Definition 3-12: Let P  be the transition matrix for an ergodic Markov chain. Let   

be the fixed probability vector for P . Then the reverse Markov chain for P  is a Markov 

chain with transition matrix given by 1T −=  P D P D . 

Definition 3-13: A Markov chain is reversible if  =P P . 

Theorem 3-10: A Markov chain is reversible if and only if 
1− D P  is a symmetric 

matrix. 

Theorem 3-11: The fixed probability vector for P  and P  is the same. 
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Theorem 3-12: The fundamental matrix for the reverse Markov chain is 

1T −=  Z D Z D . 

Theorem 3-13: ( ) ( )
T

− =  − M M Z D Z D  

Theorem3-14: ( )( ) ( ) ( )( )2 22 3 2
TT

dg− =  −     −  +   − W W Z D Z D Z D I Z D Z D  



 

 

 

 

 

 

 

4. Data description and the statistical 
properties  

This chapter contains descriptions of the datasets which were used in the data analysis 

procedure. The chapter describes the experimental condition used in the process of the 

signal recording. All experimental protocols, such as care, surgery, and training of 

animals, were done according to the Public Health Service policy on the use of laboratory 

animals and complied with guidelines of the European Ethics Committee on Use and 

Care of Animals.  

The basic empirical statistical properties are given for both dataset. These includes 

the mean, median, mode, geometrical mean, harmonical mean, the kurtosis and skewness 

coefficients. The different coefficient of variation (CV) and local coefficient of variation 

(LV) are also given.  

The variability of the neural firing patterns in the cerebral cortex was analyzed by 

exemining statistical properties of the interspike interval ( ISI ) between two consecutive 

action potencial. In order to describe these random variabilities of the values of the ISI  

sequences, the probabilitie densitie function ( PDF ) given in Table 1 were used. The 

PDF s which were selected are the most common functions in the scientific and 

mathematical literature. In the fitting procedure robust statistical methods were used.  

To measure the time dependency of the adjacent ISI  values, the Poincare plots were 

used. Combining it with the theory of copula function, the results show that the adjacent 
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ISI  samples are highly dependent and these dependencies can not be described by PDF  

function.    

Table 1 The list of probabilitie densitie fuction 

CODE PDF TYPE DATA TYPE 

1 Log-Normal (LN) ISI 

2 Exponential (E) ISI 

3 Weibull (W) ISI 

4 Chi-square (C2) ISI 

5 Gamma (G) ISI 

6 Noncentral Chi-square (NcC2) ISI 

7 Rayleigh (R) ISI 

8 Uniform (U)  ln ISI 

9 Fisher (F) ISI 

10 Noncentral Fisher (NcF) ISI 

11 Noncentral Student (NcT) ln ISI 

12 Student (T) ln ISI 

13 Extreme Value (EV) ln ISI 

14 Generalized Extreme Value (GEV) ln ISI 

15 Generalized Pareto (GP) ISI 

16 Generalized Beta-2 ln ISI 

   

4.1. IM dataset, [24], [25] 

4.1.1.  Recording from ACC brain area 

EXPERIMENTAL PROCEDURES 

Housing, surgical, electrophysiological, and histological procedures were carried out 

according to the European Community Council Directive (1986) (Ministe `re de 

l’Agriculture et de la Fore ˆt, Commission nationale de l’expe ´rimentation animale) and 

Direction De´partementale des Services Ve´te ´rinaires (Lyon, France). Each animal was 

seated in a primate chair within arm’s reach of a tangent touch-screen (Microtouch 

System) coupled to a TV monitor. An arm-projection window was opened in the front 

panel of the chair, allowing 
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the monkey to touch the screen with one hand. A computer recorded the position and 

accuracy of each touch. It also controlled the presentation via the monitor of visual 

stimuli (color shapes), which served as light targets (CORTEX software, NIMH 

Laboratory of Neuropsychology, Bethesda, MD). Eye movements were monitored using 

an infrared system (Iscan Inc., USA). Four target items (disks of 5 mm in diameter) were 

used: upper left (UL), upper right (UR), lower right (LR), lower left (LL). A central white 

disk served as fixation point (FP). The lever was disposed just below the FP. 

Task 

Two male rhesus monkeys were trained in the problem solving task (PS). Monkeys 

had to find by trial and error which target, presented in a set of four, was rewarded. Each 

trial started by the onset of a starting target named ‘‘lever.’’ The animal had to start a trial 

by touching the lever and holding his touch. The FP appeared, and the animal had to 

fixate it with his gaze. A delay period (2 s) followed, and ended by the simultaneous 

onset of the four targets. At the FP offset, the animal made a saccade toward a target, 

fixated it (0.5 s), and then touched it following the GO signal. All targets switched off at 

the touch, and a 0.6 s delay followed before the feedback was given. A reward (fruit 

juice) was delivered for choosing the correct target (positive feedback; white arrowhead). 

If a choice in one trial was incorrect (no reward, negative feedback; black arrowhead), the 

monkey could select another target in the following trial and so on until the solution was 

discovered (search period). Each touch was followed by an interval of 2 s. The animal 

had to search for the correct target by trial and error. After discovery, the animal was 

allowed to repeat the response. In 90% of cases, after the third repetition, a red flashing 

signal (the four targets in red) indicated the start of a new problem, i.e., a search for a 

new correct target. In 10% of cases, the repetition lasted for 7 or 11 trials. A problem was 

composed of two periods: a ‘‘search’’ period that included all incorrect trials up to the 

first correct touch, and a ‘‘repetition’’ period wherein the animal was required to repeat 

the correct touch.  
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Recordings 

Monkeys were implanted with a head-restraining device, and an atlas-guided 

craniotomy was done to expose an aperture over the prefrontal cortex. Neuronal activity 

was recorded using epoxy-coated tungsten electrodes (1–4 MOhm at 1 kHz; FHC Inc, 

USA). One to four microelectrodes were placed in stainless-steel guide tubes and 

independently advanced into the cortex through a set of micromotors (Alpha-Omega 

Engineering, Israel). Neuronal activity was sampled at 13 kHz resolution and LFP at 900 

Hz. Recordings were referenced on the guide tubes in contact with the dura and 

containing the microelectrodes. Recording sites covered an area extending over about 6 

mm (anterior to posterior), in the dorsal bank of the anterior cingulate sulcus, at 

stereotaxic antero-posterior levels superior to A+30, and at depths superior to 4.5 mm 

from cortical surface. Locations were confirmed by anatomical MRI and histology. 

Unit Activity 

Single activity was identified using online spike sorting (MSD, AlphaOmega). The 

activity of single neurons was compared with respect to different events and outcomes 

resulting from different conditions by using averaged peristimulus histograms (PSTH) 

and trial-by-trial spike counts (NeuroExplorer, Nex Technology, USA, and MatLab—The 

MathWorks Inc.—home-made scripts). PSTHs had a binning of 0.01 s and were boxcar 

averaged. Neural activity was considered to be significantly different between conditions 

if it exceeded 5 standard deviations of the mean difference between trial types taken 

during the window -600/-200 ms preceding event alignment time and remained above 

this threshold for more than six 0.01 s bins.  

4.1.2.  Recording from dlPFC brain area 

Behavioral task 

Data from three monkeys (Macaca mulatta) are reported here. Two monkeys were 

trained in the two following tasks.  
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Delayed response task.  

The monkey sat in a primate chair in front of a vertical touch screen (Elo-Touch; 19 

inches, 48 cm) positioned at arm reach distance. Eye movements were monitored and 

digitized at 100 Hz using an Iscan (Burlington, MA) infrared system.  

The animal touched a central target (lever) to trigger the appearance of a fixation 

point (FP). An FP fixation of 700 ms triggered the appearance of a 500 ms light cue at 

one of the four possible locations (targets were positioned at the corners of a virtual 

square 10 cm from the FP. After an ensuing delay period of 2–2.5 s (during which the 

monkey was required to maintain fixation on the FP), all four possible targets were 

illuminated and, 100 ms later, the FP was extinguished. The monkey then had to make a 

saccade toward the remembered target. After the monkey fixated on the remembered 

target for 390 ms, all the targets turned white (go signal), indicating that the monkey was 

required to touch the target. A juice reward was delivered 600 ms after a correct touch. 

The trial aborted in case of an incorrect or a premature touch, or a break in eye fixation. 

For the first sessions of the experiment, cues were delivered by blocks of three 

consecutive trials. Thus, in the second and third trials of each block the animals could 

predict the location of the next cue. This design was then abandoned. It concerns five 

cells included in the pool of data. 

Problem-solving task.  

Task events were similar to the DR task, except that the correct target location was 

not specified by a cue. Monkeys had to find it via trial and error. A problem was 

composed of two periods: a “search period” that included all incorrect trials up to the first 

correct touch, and a “repetition period” wherein the animal was required to repeat the 

correct touch three times. 

In the case of an incorrect touch, all targets disappeared, and in the next trial the 

animal was required to continue his search for the correct target. A juice reward was 

delivered 600 ms after a correct touch. After the third repetition, a red flashing signal 

(circle of 8 cm in diameter centered on the FP position) indicated the start of a new 
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problem (i.e., a search for a new correct target). Two consecutive problems never had the 

same solution. 

A third monkey was trained in the PS task with a variation concerning reward size. 

For each problem, the size of the reward was randomly selected between two sizes 

(small, 0.25 ml; large, 0.5 ml). At the beginning of each trial, the color of the lever 

indicated whether the reward would be small (red lever) or large (green lever). 

Electrophysiological recordings. 

Monkeys were implanted with a head-restraining device, and a magnetic resonance 

imaging-guided craniotomy was done to expose a circular aperture over the prefrontal 

cortex. Neuronal activity was recorded using varnish-coated tungsten electrodes (1– 4 

Mohm at 1 kHz). One or two electrodes were placed in stainless-steel guide tubes and 

independently advanced into the cortex through a set of micromotors (Alpha-Omega, 

Nazareth, Israel). Neuronal activity was sampled with 30ms resolution and recorded 

waveforms were sorted into separate units using a template-matching algorithm (CED, 

Cambridge, UK). All animal training, surgeries, and experimental procedures were done 

in accordance with National Institutes of Health guidelines, and approved by the Yale 

Animal Care and Use Committee. The third animal was recorded using an AlphaLab 

system (Alpha-Omega). 

4.1.3.  Statistical properties of the IM dataset 

From data obtained 698  ISI  sequences is extracted for further analysis. Since the 

exact probability density function of the individual data has not been known, most of the 

tests used in the analysis are distribution free tests. At first the randomness of the data has 

been tested using Wald-Wolfowitz non-parametric test. The result shows that 

( )53.58% 374 / 698  of the data has random and independent, identically distributed 

characteristics. Using the dip test the percentage of the unimodal sequences 

is ( )70.91% 495 / 698 . The percentage of the data that are random and unimodal 

is ( )34.24% 239 / 698 , Table 2.    
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Table 2  The percentage of data with different kind of statistical properties 

Dataset 

Number of 

ISI 

sequences 

Data type 

random, 

independent 
unimodal 

random, 

independent, 

unimodal 

random, 

independent, 

unimodal, 

convergent ML 

estimation 

IM 698 374 (53.58%) 495 (70.91%) 252 (36.1%) 239 (34.24%) 
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Figure 11 The descriptive statistics of the IM dataset; 1-mean, 2-median, 3-mode, 

4-geometric mean, 5-harmonic mean, 6-trimmed mean  (10%), 7-square root 
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Figure 12 The kurtosis and skewness coefficient of the IM dataset 
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Figure 13 The different coefficients of the IM dataset 
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Figure 14  The results of the fitting procedure of the IM dataset. The number of 

data sequences with convergent fitting results is 239. Upper panel: a relative 

number of particular PDF types. Lower panel: box plot of the corresponding p-

values. PDF code numbers are listed in the right (from Table 1). Note that a small 

number of neural units with Weibull and Chi-squared distribution (code 3 and 4) 

cause a narrow box plot. Code numbers 6, 10, 12 and 13 dose not appeared as a 

winner PDF in the estimation process. 
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Figure 15 The results of the fitting procedure of the IM dataset within the different 

brain areas. Upper panel: the relative number of PDF-s in the ACC, dlPFC and PM 

brain area. Lower panel: the corresponding p-values. 

 

4.2. IP dataset, [26] 

4.2.1.  recording 

Behavioral task 

The core of the present study concerns two monkeys (Mk1 and Mk2) trained to 

perform a visually guided saccadic task during which the visual target could be 

accompanied by an auditory stimulus (V/VA active task). A trial was initiated by the 

appearance of a fixation point (FP) located at the center of the video screen and of a size 

of 0.2 degree. The monkey had to direct its gaze and to maintain fixation at this central 

point. The duration of presentation of the FP was randomized between trials and lasted 

between 1500 to 1800 ms. Simultaneously, with the extinction of the FP, a peripheral 

visual target was flashed for 50 ms. The monkey was required to perform a saccade in the 

direction to the locus of the visual target within 250 ms of its appearance. Responses 
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were considered as correct when the saccades were performed within a window of 4 × 4 

degrees centered on the visual target, and in these cases a few drops of fruit juice were 

delivered to the monkeys as a reward. In half of the trials, presented randomly, a 25 ms 

sound (a white noise) was delivered from a speaker located at the same eccentricity on 

the azimuth as the visual stimulus. In such visuo-auditory trials (VA), the visual and the 

auditory stimuli were presented at the exactly same time. In both conditions (V and VA) 

the monkey was required to perform a saccade directed toward the visual target and 

consequently, the auditory stimulus had no behavioral meaning for the animal. Note that 

we did not train the monkeys to perform a saccade toward the auditory stimulus alone. 

The first monkey engaged in the present study (Mk1) was first trained to perform two 

control tasks before the V/VA active task. In a first stage, the monkey was trained to 

perform a simple passive fixation task (V/VA passive task). Following the presentation of 

the FP (of variable duration from 1500 to 1800 ms), a visual or visuo-auditory stimulus 

was presented for 500 ms together with the FP. To get rewarded, the monkey had to 

maintain its fixation until the FP was extinguished. 

Further, Mk1 was trained in a visual control task (V-only control task), during which 

the color of the FP informed the animal whether he had to maintain a central fixation 

(blue FP) or to make a saccade toward a visual peripheral stimulus (Red FP). In this case 

the visual stimulus was never accompanied by an auditory stimulus. The timing of 

stimulus presentation was identical to that described for the active task (50 ms).  

The monkey Mk1 was engaged successively in each of these different protocols for 

several months, a period during which electrophysiological recordings were performed in 

the primary visual cortex (see below). Mk2 was trained from the beginning to do the VA 

active task. 

4.2.2.  Statistical properties of the IP datase 

From data obtained 1234  ISI  sequences is extracted for further analysis. The 

distribution-free results show that ( )86.22% 1064 /1234  of the data has random and 

independent, identically distributed characteristics. The percentage of the unimodal 
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sequences is ( )63.53% 784 /1234 . The percentage of the data that are random and 

unimodal is ( )16.61% 205 /1234 , Table 3. 

Table 3 The percentage of data with different kind of statistical properties 

Dataset 

Number of 

ISI 

sequences 

Data type 

random, 

independent 
unimodal 

random, 

independent, 

unimodal 

random, 

independent, 

unimodal, 

convergent ML 

estimation 

IP 1234 
1064 

(86.22%) 
784 (63.53%) 688 (55.75%) 205 (16.61%) 
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Figure 16 The descriptive statistics of the IP  dataset; 1-mean, 2-median, 3-mode, 

4-geometric mean, 5-harmonic mean, 6-trimmed mean (10%), 7-square root 
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Figure 17 The kurtosis and the skewness coefficients of the IP  dataset 
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Figure 18 The different coefficient of variation of the IP  dataset. 
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Figure 19 The results of the fitting procedure of the IP dataset consisting of 209 data 

sequences. Upper panel: a relative number of particular PDF types. Lower panel: 

box plot of the corresponding p-values. 
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Figure 20 The results of the fitting procedure of the IP dataset for different tasks. 

percentage of PDF-s corresponding to VA, VP and VA vs. VP tasks. Lower panel: 

box plot of the corresponding p-values. 
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5. The Markov model 

5.1. The three state Markov chain model 

Based on the observational study of the Interspike Interval ( ISI ) it is possible to 

generalize their characteristic behavior. In some time intervals there are ISI  values which 

successively increasing. In these intervals the differences of the successive ISI  values 

have positive sign. In some intervals there are ISI  values which successively decreasing. 

In these intervals the differences of the successive ISI  values have negative sign. There 

are some intervals where the successively appearing ISI  values have difference which 

change its sign.  

Let us define the following states of the neural cell. 

Definition 5-1: Let us take three successively appearing ISI  values
1 1, ,n n nISI ISI ISI− +

. 

The neural cell has following states:      

a) decreasing state ( D )  if   
1 1n n nISI ISI ISI− +    , 

b) alternating state ( x ) if  

1 1 1 1n n n n n nISI ISI ISI or ISI ISI ISI− + − +        , 

a) c)  increasing state ( I ) if  
1 1n n nISI ISI ISI− +    . 

Definition 5-2: The sequence of the states is determined by the sequence of the 

observed ISI  values. The first state is determined by ( )1 2 3, ,ISI ISI ISI , the second 
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by ( )2 3 4, ,ISI ISI ISI , the third by ( )3 4 5, ,ISI ISI ISI , and so on. In every step the new state is 

determined by the newly observed ISI  values and its two presiding.  

Notice that from the definition of the states, there is no possibility to go from state D  

to state I  directly or visa versa. The estimated sequence of the states does not have 

patterns like DI  or ID . Because of the finite representation of the ISI values, it 

is possible to observe two identical values 
1n nISI ISI− = called ties. In this case the 

weakened definition of the states could be 

Definition 5-3: Let us take three successively appearing ISI  values
1 1, ,n n nISI ISI ISI− +

. 

The neural cell has following states:      

a) decreasing state ( D ) if 
1 1n n nISI ISI ISI− +    , 

b) alternating state( x ) if 

1 1 1 1n n n n n nISI ISI ISI or ISI ISI ISI− + − +        , 

c) increasing state ( I ) if 
1 1n n nISI ISI ISI− +    . 

This definition allows patterns of states like DI  or ID . 

If we take the stronger definition than the transition matrix has a form  

    

11 12

21 22 23

32 33

0

, 0 1

0

ij

p p

p p p p

p p

 
 

=  
 
  

P . 

Definition 5-4: The percentage ISI  values of the specific state pattern are the 

normalized ISI  values with respect to the time duration of that state pattern. 

Definition 5-5: The state of alternation can be devided into two further states: 

a) state A  with propertie 
1 1n n nISI ISI ISI− +  , 

b) state a  with propertie 
1 1n n nISI ISI ISI− +  . 
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5.2. The empirical results 

Based on the definitions of the Paragraph 5.1, this chapter contains the empirical 

statistical results of the set of state sequencies. First, the results of the IM data set 

presented and than the results of the IP data set. For both data sets the results of the 

analysis comprise type subset of results and they are given in the same order. 

The first set of results contains descriptive statistics of the state sequences such as 

time duration of the increasing I , decreasing D  states and the alternation state x , the 

relative number of appearances of these states, two way tables to test independence with 

minimum discrimination information statistic, the distribution of the different length of 

I , D  and x .states.  

The second set of results contains the results of statistical comparison of the defined 

states by comparing ISI  values which defined them. The distribution free two samples 

Kolmogorov-Smirnov test was used, 2KS  test. The hypothesis is that the two samles are 

generated by identical probability function. The test was used to compare percentage ISI  

values and raw ISI  values too. The results are given in colored table format. The colored 

parts of the tables present the weigthed average of the number of those state sequences 

which KS2 test accepted the hypothesis of indentical probability function. The weigth 

was the observed pV  value of the KS2 test results. Formaly 

 
1, ,

,
0,

k k

k
k

I pV
accepted

R I
rejectednumber of state sequences




= = 



  

     

 

 



 The Markov model 

 

49 

 

5.2.1.    The empirical results of the IM data set 
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Figure 21 Boxplot diagrams of time durations of different state patterns of the 

whole data set; I -increasing state; D -decreasing state; x -aternation state 
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Figure 22 Boxplot diagrams of time duration of different state pattern; the panels 

show the most frequent range of time durations; I -increasing state; D -decreasing 

state; x -alternation state 
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Figure 23 Boxplot diagrams of time durations in different brain area; I -increasing 

state; D -decreasing state 
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Figure 24 Boxplot diagrams of time durations in different brain area; x -alternation 

state 
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Figure 25 The relative number of appearances of the I , D  and x  states in different 

brain area; I -increasing state; D -decreasing state; x -state of alternation; the 

lower panel shows the magnified range around 0.5 
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Figure 26 The 3-dimensional presentation of the set of state sequences by the 

relative number of they I , D  and x  state contents. Every single point presents a 

state sequences belonging to one of the three brain area 
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Table 4 The cross-table statistic to test the independency and homogeneity 

CrossTable 

results 

0.05 =  
degrees of freedom 

2

,df   test statistic Hypothesis 

ACC area ( ) ( )433 1 3 1 864df = −  − =  933.5  4564.5  Rejected 

dlPFC area ( ) ( )139 1 3 1 276df = −  − =  316  12686  Rejected 

PM area ( ) ( )70 1 3 1 138df = −  − =  166.42  558.64  Rejected 

 

CrossTable statistics to test the independency and homogeneity of  ACC, dlPFC and PM 

area, 47.037 9.488T =  . The hypothesis of the independence is rejected. 

( ) ( )3 1 3 1 4

0.05

df



= −  − =

=
 I state D state State of alternation 

ACC brain area 475294  488980  1868320 

dlPFC brain area 210914  214873  828079  

PM brain area 66559  68913  257409  

 

 

Figure 27 Bar plot of the number of state sequences which contain a specific state 

pattern; panels at the wrigth column show the relative numbers of these state 

sequences with the specific state pattern 
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Figure 28 Bar graphs of the state pattern length distribution in different brain area. 

 

Table 5 Cross Table analysis by the different I  state pattern length 

0.05 =  degrees of freedom 
2

,df   test statistic Hypothesis 

ACC area ( ) ( )433 1 8 1 3024df = −  − =  3160.2  2100  Accepted 

dlPFC area ( ) ( )139 1 8 1 966df = −  − =  1046.7  1055.6  Rejected 

PM area ( ) ( )70 1 7 1 414df = −  − =  468.78  538.02  Rejected 

 

Table 6 Cross Table analysis by the different D  pattern length 

0.05 =  degrees of freedom 
2

,df   
test 

statistic 
Hypothesis 

ACC area ( ) ( )433 1 10 1 3888df = −  − =  4043.3  2310.4  Accepted 

dlPFC area ( ) ( )139 1 8 1 966df = −  − =  1046.7  1402.9  Rejected 

PM area ( ) ( )70 1 8 1 483df = −  − =  542.6  656.66  Rejected 

 

Table 7 Cross Table analysis of the different I , D  pattern length and x  state 

0.05 =  degrees of freedom 
2

,df   
test 

statistic 
Hypothesis 

ACC area ( ) ( )433 1 19 1 7776df = −  − =  8000.5  5123  Accepted 

dlPFC area ( ) ( )139 1 17 1 2208df = −  − =  2334.8  2771.5  Rejected 

PM area ( ) ( )70 1 16 1 1035df = −  − =  1126.5  1397.9  Rejected 
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Figure 29 Boxplot diagrams of the number of steps between the same I  pattern 

length; the panel at the lower-wright corner shows the number of steps between any 

two I  state pattern 

Table 8 The crosstable test results of independency and homogeneity by the number 

of steps between different I  pattern lenght 

0.05 =   degrees of freedom 
2

,df   test statistic Hypothesis 

ACC area ( ) ( )431 1 8 1 3010df = −  − =  3138.75  896891.98  Rejected 

dlPFC area ( ) ( )137 1 7 1 816df = −  − =  883.56  349573.38  Rejected 

PM area ( ) ( )70 1 7 1 414df = −  − =  462.44  138113.66  Rejected 
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Figure 30 Boxplot diagrams of the number of steps between the same D  pattern 

length; the panel at the lower-wright corner shows the number of steps between any 

two D  state pattern 
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Table 9 The crosstable test results of independency and homogeneity by the number 

of steps between different D  pattern length 

0.05 =   degrees of freedom 
2

,df   test statistic Hypothesis 

ACC area ( ) ( )428 1 8 1 2989df = −  − =  3117.3  9339907.3  Rejected 

dlPFC area ( ) ( )137 1 8 1 952df = −  − =  1024.89  412893.55  Rejected 

PM area ( ) ( )70 1 7 1 414df = −  − =  462.44  110028.56  Rejected 

 

 

Table 10 Table of the median and the mean number of steps between different I and 

D  state pattern legth 

median D Dx2 Dx3 Dx4 Dx5 Dx6 Dx7 

I 4 5 6 7 7 6 6 

Ix2 5 11 19 21 24 20 23 

Ix3 6 18 47 79 89 89 105 

Ix4 6 21 77 213,5 326 392 307 

Ix5 6 22 78 320 808 1199 1157 

Ix6 7 23 76 459 1245 2690,5 0 

Ix7 7,5 23,5 32,5 592 1450 4770 0 

 

mean D Dx2 Dx3 Dx4 Dx5 Dx6 Dx7 

I 5,01 7,37 8,82 9,45 9,56 9,64 10,13 

Ix2 7,40 16,57 26,84 31,59 33,82 34,25 31,21 

Ix3 8,71 26,31 69,99 116,88 135,56 136,04 135,97 

Ix4 9,21 30,28 115,07 330,58 525,94 602,20 554,25 

Ix5 9,35 31,29 125,53 477,75 1383,57 2058,07 1600,77 

Ix6 10,00 33,55 118,64 623,35 2049,86 4212,93 0,00 

Ix7 11,00 37,60 97,37 751,07 1837,32 3969,09 0,00 
 

 

 

Table 11 The median of the number of steps between I  and D  pattern in different 

brain area 

ACC D Dx2 Dx3 Dx4 Dx5 Dx6 Dx7 

I 4 5 6 6 7 6 6 

Ix2 5 11 19 22 26 18 23,5 

Ix3 6 18 48,5 79 88 80 89 

Ix4 6 21 78 223 300 364,5 371 

Ix5 6 22 74 337,5 841 1556,5 1148,5 

Ix6 8 22 76 400 1260 2840,5 0 

Ix7 7 22 42 611 1521 4770 0 
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dlPFC D Dx2 Dx3 Dx4 Dx5 Dx6  

I 4 5 6 7 8 5,5  

Ix2 5 11 18 21 22 20  

Ix3 6 17 46 79 98 89  

Ix4 6 20 76 203 371 414  

Ix5 7 22 88 286 944 1312  

Ix6 6 27 77 530 1310 2917,5  

        

PM D Dx2 Dx3 Dx4 Dx5 Dx6  

I 4 5 6 7 6 6,5  

Ix2 5 11 17 20,5 22 28  

Ix3 6 18 45 77 83 110  

Ix4 6 22 73 185 336 456  

Ix5 6 23 97 303 678 447  

Ix6 10 24 94,5 409 912 0  
 

 

Table 12 The mean number of steps between I  and D  pattern in different brain 

area 

ACC D Dx2 Dx3 Dx4 Dx5 Dx6 Dx7 

I 4,98 7,35 8,78 9,29 9,37 9,35 9,96 

Ix2 7,35 16,62 27,17 32,04 34,99 31,89 30,14 

Ix3 8,75 26,60 70,27 117,58 132,82 129,72 147,88 

Ix4 9,30 30,82 116,93 342,32 513,22 618,97 627,29 

Ix5 9,11 31,72 121,53 492,17 1521,80 2190,73 1766,43 

Ix6 9,92 31,48 124,17 601,75 2189,27 4078,32 0,00 

Ix7 9,96 37,13 117,17 782,78 1869,35 3969,09 0,00 

        

dlPFC D Dx2 Dx3 Dx4 Dx5 Dx6  

I 5,07 7,37 8,81 9,86 9,98 9,84  

Ix2 7,47 16,59 26,55 30,95 31,94 39,09  

Ix3 8,69 25,74 70,00 116,32 140,04 125,83  

Ix4 8,88 29,51 113,87 322,71 558,46 494,40  

Ix5 10,17 29,65 138,42 458,86 1367,14 2034,93  

Ix6 9,65 36,23 116,51 712,81 2197,51 5266,31  

        

PM D Dx2 Dx3 Dx4 Dx5 Dx6  

I 5,05 7,42 8,94 9,34 9,67 8,90  

Ix2 7,56 16,02 26,17 30,79 32,52 38,13  

Ix3 8,44 26,17 68,79 111,79 137,32 174,27  

Ix4 9,65 29,94 111,24 278,72 553,60 597,52  

Ix5 8,91 32,06 121,32 442,49 803,34 1004,94  

Ix6 11,41 36,48 109,85 505,09 1178,11 0,00  
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Table 13 The median and the mean number of steps between D  and I  state pattern 

legth 

median I Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 

D 4 5 6 6 6 7 12,5 

Dx2 5 11 18 21 20 24 30 

Dx3 6 18 48 75 89 86 66,5 

Dx4 6 22 78 215 332 348 299,5 

Dx5 7 22 94,5 357 869 1265 1279 

Dx6 6 25 101 353 1135,5 3347,5 0 

Dx7 6 30 75 325 1060,5 0 0 

 

mean I Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 

D 5,00 7,40 8,73 9,30 9,37 9,50 13,43 

Dx2 7,41 16,68 26,56 30,42 29,96 29,52 34,97 

Dx3 8,76 26,74 72,11 112,90 127,34 133,14 105,10 

Dx4 9,35 31,81 120,62 328,27 507,88 515,21 399,50 

Dx5 9,91 33,00 135,37 523,76 1508,07 1959,59 1873,90 

Dx6 8,95 33,71 148,50 549,36 1828,38 3981,52 0,00 

Dx7 8,84 36,95 107,31 518,48 2543,29 0,00 0,00 
 

 

Table 14 The median of the number of steps between D  and I pattern in different 

brain area 

ACC I Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 

D 4 5 6 6 6 7 11 

Dx2 5 11 19 21 20 27,5 26,5 

Dx3 6 19 48 78 90 97 66,5 

Dx4 6 22 81 210,5 327 374 241 

Dx5 7 22,5 89 364 867 1187,5 1279 

Dx6 5 22 104,5 347 1136 2934 0 

Dx7 6 22 71 359 1024 0 0 

        

dlPFC I Ix2 Ix3 Ix4 Ix5 Ix6  

D 4 5 6 6 6 8  

Dx2 5 11 18 21 20 22  

Dx3 6 18 50 74 88 73  

Dx4 6 21 75 222 365 351,5  

Dx5 6 22 109 370 882,5 1266,5  

Dx6 6 25 85 390,5 1071 3398  

        

PM I Ix2 Ix3 Ix4 Ix5 Ix6  

D 4 5 6 7 4,5 7  

Dx2 5 12 17 20 25 13  

Dx3 6 18 45 67 105,5 93  

Dx4 7 21 75,5 204 291 257  

Dx5 8 22 91 319,5 795 944,5  

Dx6 6,5 29,5 142,5 448 1113 0  
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Table 15 The mean number of steps between D  and I pattern in different brain 

area 

ACC I Ix2 Ix3 Ix4 Ix5 Ix6 Ix7 

D 4,98 7,40 8,69 9,32 9,51 9,63 13,17 

Dx2 7,45 16,72 26,97 30,72 29,94 32,58 34,79 

Dx3 8,83 27,09 72,44 116,13 131,15 145,35 99,29 

Dx4 9,37 32,25 121,19 327,30 513,86 613,63 400,55 

Dx5 10,02 34,20 136,05 550,05 1482,09 1803,05 1987,93 

Dx6 8,74 33,29 160,51 550,58 1817,30 3828,26 0,00 

Dx7 8,07 35,30 113,62 451,96 2917,65 0,00 0,00 

        

dlPFC I Ix2 Ix3 Ix4 Ix5 Ix6  

D 5,03 7,43 8,75 9,11 9,35 9,58  

Dx2 7,40 16,55 25,90 29,46 30,33 27,23  

Dx3 8,64 26,15 73,55 109,22 118,75 117,98  

Dx4 8,97 31,49 120,96 330,74 538,64 419,07  

Dx5 9,43 30,60 138,51 479,82 1574,96 2417,61  

Dx6 8,81 35,37 127,18 538,92 1909,33 4189,47  

        

PM I Ix2 Ix3 Ix4 Ix5 Ix6  

D 4,95 7,36 9,02 9,58 7,94 8,85  

Dx2 7,20 16,65 26,18 30,40 31,88 20,85  

Dx3 8,67 26,31 67,64 104,67 128,09 123,89  

Dx4 9,78 30,24 114,89 311,53 415,50 363,00  

Dx5 9,86 31,48 128,93 491,97 1258,86 1716,06  

Dx6 9,63 33,73 138,63 584,71 1881,86 0,00  
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Figure 31 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

percentage of the ISI  values comparison 
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Figure 32 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

raw ISI  values comparison 
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Figure 33 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

percentage of the ISI  values comparison in different brain area 
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Figure 34 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

raw ISI  values comparison in different brain area 
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Figure 35 The KS2 test results of comparison between to different legth of I states; 

the y-axes represents the amount of shift of the shorter type state to compare the 

different percentage ISI  values. 
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Figure 36 The KS2 test results of comparision between to different legth of I states; 

the y-axes represents the amount of shift of the shorter type to compare the different 

raw ISI  values. 
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Figure 37 The KS2 test results of comparision between to different legth of D states; 

the y-axes represents the amount of shift of the shorter type to compare the different 

percentage ISI  values. 
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Figure 38 The KS2 test results of comparision between to different legth of D states; 

the y-axes represents the amount of shift of the shorter type to compare the different 

raw ISI  values. 

 

 

 

Figure 39 The KS2 test results of the self comparison of the alternate state pattern 

with odd number of length starting with alternation state a ; the coordinate of the 

colored patch presents the order numbers of the ISI  values wich were tested   
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Figure 40 The KS2 test results of the self comparison of the alternate state pattern 

with even number of length starting with alternation state a ; the coordinate of the 

colored patches present the order number of ISI values which were tested 

  

 

Figure 41 The KS2 test results of the self comparison of the alternation state pattern 

with odd number of length starting with alternation state A ; the coordinate of the 

colored patches present the order number of the ISI values which were tested  
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Figure 42 The KS2 test results of the self comparison of the alternation state pattern 

with even number of length starting with alternation state A ; the coordinate of the 

colored patches present the order number of the ISI values which were tested 

 

 

Figure 43 The KS2 test results of the cross comparison of the a  and A  alternate 

state pattern with odd number of length; the coordinate of the colored patches 

present the order number of the ISI values which were tested 
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Figure 44 The KS2 test results of the cross comparison of the a  and A  alternate 

state pattern with even number of length; the coordinate of the colored patches 

present the order number of the ISI values which were tested 
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Figure 45 Transition probabilities of the ACC brain area 
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Figure 46 Transition probabilities of the dlPFC brain area 
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Figure 47 Transition probabilities of the PM brain area 
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Figure 48 Transition probabilities of the ACC brain area 

 

 

 

Figure 49 Transition probabilities of the dlPFC brain area 
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Figure 50 Transition probabilities of the PM brain area 

 

5.2.2. The empirical results of the IP data set 
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Figure 51 Boxplot diagrams of the time durations of different state patterns of the 

whole data set; I -increasing state; D -decreasing state; x -aternation state 
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Figure 52 Boxplot diagrams of the time durations for different task; I -increasing 

state; D -decreasing state 
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Figure 53 The relative number of appearances of  I , D  and x  states in different 

taska; I -increasing state; D -decreasing state; x -state of alternation 
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Figure 54 The 3-dimensional presentation of the set of state sequences by the 

relative number of they I , D  and x  state contents. Every single point presents a 

state sequences belonging to one of the three tasks 

 

Table 16 The cross-table statistic to test the independency and homogeneity 

CrossTable 

results 

0.05 =  
degrees of freedom 

2

,df   test statistic Hypothesis 

Population ( ) ( )482 1 3 1 962df = −  − =  1035.3  1650.8  Rejected 

active task ( ) ( )225 1 3 1 448df = −  − =  498.35  867.61 Rejected 

passive task ( ) ( )138 1 3 1 274df = −  − =  313.61 405.82  Rejected 

VA vs. VP ( ) ( )119 1 3 1 236df = −  − =  272.84  307.68  Rejected 

 

Table 17 CrossTable between active, passive and VAvsVP tasks, 69.7 9.487T =   

( ) ( )3 1 3 1 4

0.05

df



= −  − =

=
 I state D state state of alternation 

active task 30987  30124  99776  

passive task 13846  14207  48348  

VA vs. VP 10922  10579  37212  
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Figure 55 Bar plot of the number of state sequences which contain a specific state 

pattern; panels at the wrigth column show the relative numbers of these state 

sequences with the specific state pattern 
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Figure 56 Bar graphs of the state pattern length distribution for different tasks. 
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Table 18 Cross Table analysis by the different I  pattern length 

0.05 =  degrees of freedom 
2

,df   test statistic Hypothesis 

Active task ( ) ( )225 1 9 1 1792df = −  − =  1891.6  36.6  Accepted 

Passive task ( ) ( )138 1 7 1 822df = −  − =  889.81 56.89  Accepted 

VA vs. VP ( ) ( )119 1 7 1 708df = −  − =  771.01  28.92  Accepted 

 

 

Table 19 Cross Table analysis by the different D  pattern length 

0.05 =  degrees of freedom 
2

,df   
test 

statistic 
Hypothesis 

Active task ( ) ( )225 1 8 1 1568df = −  − =  1661.2  202.4  Accepted 

Passive task ( ) ( )138 1 6 1 685df = −  − =  747  360.2  Accepted 

VA vs. VP ( ) ( )119 1 6 1 590df = −  − =  647.62  195.1 Accepted 

 

 

Table 20 Cross Table analysis by the different I , D  pattern length and x  state 

0.05 =  degrees of freedom 
2

,df   
test 

statistic 
Hypothesis 

Active task ( ) ( )225 1 17 1 3584df = −  − =  3724.4  348.3  Accepted 

Passive task ( ) ( )138 1 13 1 1644df = −  − =  1739.4  488.2  Accepted 

VA vs. VP ( ) ( )119 1 13 1 1416df = −  − =  1504.7  282.9  Accepted 

 

 

Table 21 The cross table test results of independency and homogeneity by the 

number of steps between different I  pattern length 

0.05 =   degrees of freedom 
2

,df   test statistic hypothesis 

Active task ( ) ( )225 1 5 1 896df = −  − =  966.75  33099.72  rejected 

Passive task ( ) ( )138 1 5 1 548df = −  − =  603.57  16483.07  rejected 

PM area ( ) ( )118 1 5 1 468df = −  − =  519.43  16607.68  rejected 
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Figure 57 Boxplot diagrams of the number of steps between the same I pattern 

length; the panel at the lower-wright corner shows the number of steps between any 

two I state pattern 
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Figure 58 Boxplot diagrams of the number of steps between the same D  pattern 

length; the panel at the lower-wright corner shows the number of steps between any 

two D  state pattern 

 

Table 22 The cross table test results of independency and homogeneity by the 

number of steps between different D  pattern length 

0.05 =   degrees of freedom 
2

,df   test statistic Hypothesis 

Active task ( ) ( )225 1 5 1 896df = −  − =  966.75  40724.19  Rejected 

Passive task ( ) ( )138 1 5 1 548df = −  − =  603.57  21372.62  Rejected 

PM area ( ) ( )119 1 5 1 472df = −  − =  523.65  17032.51 Rejected 
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Table 23 The median of the number of steps between I and D  pattern for different 

tasks 

active D Dx2 Dx3 Dx4 Dx5 Dx6 

I 2 4 6 6 6,5 7 

Ix2 4 9 16 18 15 12,5 

Ix3 6 17 32 55 56 65 

Ix4 6 17 49 111,5 110 103 

Ix5 5 18 55 80 216 0 

Ix6 8 26,5 30,5 0 0 0 

       

passive D Dx2 Dx3 Dx4 Dx5  

I 4 4 5 6 5  

Ix2 5 10 16 18 11  

Ix3 6 16 33 55,5 55  

Ix4 4 17,5 60 162 177  

Ix5 8 20 39 0 0  

       

VA vs. VP D Dx2 Dx3 Dx4 Dx5  

I 2 5 6 6 7  

Ix2 5 9 16 20 21  

Ix3 6 15,5 43 52 47  

Ix4 5 20 47,5 99 0  

Ix5 8,5 16 0 0 0  
 

 

Table 24 The mean of the number of steps between I  and D  pattern for different 

tasks 

active D Dx2 Dx3 Dx4 Dx5 Dx6 

I 4,91 6,94 8,65 9,23 9,93 9,56 

Ix2 7,03 14,06 22,01 25,16 23,27 26,22 

Ix3 8,36 22,97 48,42 80,46 73,90 91,80 

Ix4 9,53 24,75 72,21 160,26 171,09 184,93 

Ix5 8,23 26,64 82,68 155,94 232,50 0,00 

Ix6 12,67 28,79 65,75 0,00 0,00 0,00 

       

passive D Dx2 Dx3 Dx4 Dx5  

I 4,82 6,76 7,41 8,89 9,53  

Ix2 6,99 15,45 23,99 26,50 23,26  

Ix3 8,54 23,05 51,44 86,13 96,23  

Ix4 6,55 25,46 87,35 186,44 249,23  
Ix5 10,71 28,52 70,24 0,00 0,00  

       

VA vs. VP D Dx2 Dx3 Dx4 Dx5  

I 4,73 7,05 7,82 8,34 10,17  

Ix2 7,03 14,23 23,11 24,44 28,67  

Ix3 8,58 23,04 55,75 74,56 125,14  
Ix4 9,95 28,03 73,81 142,20 0,00  

Ix5 10,75 19,82 0,00 0,00 0,00  
 



 The Markov model 

 

75 

 

Table 25 The median of the number of steps between D  and I pattern for different 

tasks 

active I Ix2 Ix3 Ix4 Ix5 Ix6 

D 2 5 6 6 6 11,5 

Dx2 4 9 14 15 12 9 

Dx3 5 15 31,5 59 47 45,5 

Dx4 5 16 56,5 77 142 324 

Dx5 6 16 76,5 88,5 194 0 

Dx6 7 6 53 160 0 0 

       

passive I Ix2 Ix3 Ix4 Ix5  

D 2 4 6 7 4  

Dx2 4 10,5 16 17,5 22  

Dx3 6 15 35 66 20  

Dx4 4 13 55 87 0  

Dx5 4 20 67 242 0  

       

VA vs. VP I Ix2 Ix3 Ix4 Ix5  

D 2 4 5 6,5 7,5  

Dx2 4 10 14,5 15 20  

Dx3 5 14 34,5 76 0  

Dx4 5,5 16 48 133 0  

Dx5 9,5 19 66 0 0  
 

 

Table 26 The mean number of steps between D  and I  pattern for different tasks 

active I Ix2 Ix3 Ix4 Ix5 Ix6 

D 4,72 6,84 8,11 8,51 9,46 13,38 

Dx2 6,84 13,65 20,18 22,45 23,33 14,56 

Dx3 8,12 21,53 46,69 78,66 76,69 69,88 

Dx4 7,94 22,87 74,58 137,63 230,39 333,93 

Dx5 8,51 23,47 95,57 163,91 270,58 0,00 

Dx6 13,05 13,37 51,81 174,91 0,00 0,00 

       

passive I Ix2 Ix3 Ix4 Ix5  

D 4,61 6,86 7,91 9,41 5,00  

Dx2 6,61 14,57 23,98 22,88 27,09  

Dx3 8,38 22,84 49,09 77,39 61,94  

Dx4 6,87 26,33 74,80 167,38 0,00  

Dx5 7,36 35,18 101,85 347,14 0,00  

       

VA vs. VP I Ix2 Ix3 Ix4 Ix5  

D 4,77 6,82 7,84 8,43 14,08  

Dx2 6,90 14,14 21,92 22,06 32,83  

Dx3 7,81 19,98 53,57 89,51 0,00  

Dx4 7,34 27,30 65,46 210,15 0,00  
Dx5 11,17 27,39 104,38 0,00 0,00  
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Figure 59 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

percentage of the ISI  values and raw ISI  values comparison 
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Figure 60 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

percentage of the ISI  values comparison for different tasks 
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Figure 61 The results of the Kolmogorov-Smirnov twoo sample test (KS2 test) of the 

raw ISI  values comparison for different tasks 
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Figure 62 The KS2 test results of comparision between to different legth of I state; 

the y-axes represents the amount of shift of the shorter type state to compare the 

different percentage ISI  values. 
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Figure 63 The KS2 test results of comparision between to different legth of I state; 

the y-axes represents of the amount of shift of the shorter type to compare the 

different raw ISI  values 
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Figure 64 The KS2 test results of comparision between to different legth of D  state; 

the y-axes represents of the amount of shift of the shorter type to compare the 

different percentage ISI  values. 
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Figure 65 The KS2 test results of comparision between to different legth of D  state; 

the y-axes represents of the amount of shift of the shorter type to compare the 

different raw ISI  values. 
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Figure 66 The KS2 test results of the self comparison of the alternate state pattern 

with different length starting with alternation state a ; the coordinate of the colored 

patches present the order number of the ISI values which were tested 
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Figure 67 The KS2 test results of the self comparison of the alternate state pattern 

with different length starting with alternation state A ; the coordinate of the colored 

patches present the order number of the ISI values which were tested 
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Figure 68 The KS2 test results of the cross comparisons of a  and A  alternate state 

pattern; the coordinate of the colored patches present the order number of the 

ISI values which were tested 
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Figure 69 Transition probabilities of the active task 
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Figure 70 Transition probabilities of the passive task 
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Figure 71 Transition probabilities of the VA vs. VP task 
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Figure 72 Transition probabilities of the active task 

 

 

 



 The Markov model 

 

83 

 

 

D01 D02 D03 D04 D05 D06 I01 I02 I03 I04 I05 I06 I07

a006

a005

a004

a003

a002

a001

passive task  - transition probabilities P(D/a) and P(I/a)

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 

Figure 73 Transition probabilities of the passive task 
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Figure 74 Transition probabilities of the VA vs. VP task 
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Figure 75 Transition probabilities of the active task 

 

A001 A002 A003 A004 A005 A006 A007 A008 A009 A010 A011 A012 A013 A014 A015 A016 A017 A019 A020 A021 A023 D01 D02 D03 D04 D05

I03

I02

I01

passive task  - transition probabilities P(A/I) and P(D/I)

 

 

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

Figure 76 Transition probabilities of the passive task 
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Figure 77 Transition probabilities of the VA vs. VP task 
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Figure 78 Transition probabilities of the active task 
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Figure 79 Transition probabilities of the passive task 
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Figure 80 Transition probabilities of the VA vs. VP task 
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6. Discussion  

Conclusions obtained from the results of the analysis of the states: 

1. the time duration of the I  and D states patterns are below of 1  sec.; Figure 9 shows; that the 

I and D  pattern time durations in the same type the specific brain area are very similar; 

Figure 38 leads to the similar conclusion but for the different tasks; Figure 10 and Figure 37 

show a possible stabilization of the time duration of the alternation state as the length of the 

patern increasing;     

2. the distribution of the state of I , D  and alternation  states over the state sequence 

population are 25% , 25%  and 50%  respectively; this result was obtained by counting the 

appearances of the I , D  and x  states in state sequences; the length of the specific 

increasing, decreasing and alternating pattern was not included in the counting process, 

Figure 11, Figure 39; 

3. the three dimensional representations of the state sequences by they increasing, decreasing 

and alternataion state contents show different characteristics depending on the brain area, 

Figure 12, and on the different tasks, Figure 40; Figure 12 shows much more consistent 

distribution of the state sequences over a line; generally the different brain area can not be 

separated from each other; at Figure 40 the points are more scattered but they do not show 

any clasterisation to separate the different tasks; however, there are state sequences where the 

states I  and D  are missing, all the state sequences contain alternation  state, 

4. to test the independence and homogeneite of the the state sequences for the different brain 

area and tasks, the crosstable test was used with minimum discrimination information 

statistics; Table 1 and Table 13 show that the hypothesis of the independence shoud be 

rejected at the given significance level;  
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5. regardless of the brain area, the distribution of the length of the state patterns show the same 

properties; in most of the state sequences the pattern of length of one state is present; as the 

length of pattern grows, the number of state sequences which contain the specific pattern 

length decrease; in case of states I  and D  the length of the pattern does not reach seven or 

eight consecutively repeated state; this is true for every brain area and also for the task; the 

alternation  patterns are presented with longer length; Figure 13, Figure 14, Figure 41, 

Figure 42; notice that these figures show only the appearance of the specific state pattern in 

the sequence population, they do not give information about the number of the pattern in the 

sequences; 

6. the cross table analyses reject the hyphothesis of the independence of the state sequences 

considering they contents of the pattern length of the increasing, decreasing and alternation 

states, Table 2, Table 3 and Table 4; only ACC brain has different statistical characteristic;   

7. however, Table 18, Table 19 and Table 20 show the results of the hypothesis test of 

independence of the different task; the hypothesis of the independence has been accepted for 

all three task; the test results suggests that the appearance of the different pattern length of the 

I , D  and alternation state is neither sequences nor task dependent;  

8. the median and the average number of steps between two consecutive specific state pattern 

grows as the pattern length grows; this characteristic is valid for both of the I  and D  

patterns; in all brain area the pattern length one has a shorter waiting time; this conclusion 

also hold for the different tasks, Figure 15, Figure 16, Figure 43 and Figure 44; 

9. the cross table analyses considering the number of steps between the different increasing and 

decreasing state pattern length show a lack of independency, Table 5, Table 6, Table 18 and 

Table 19;  

 

Conclusions obtained from the results of the analysis of the ISI  statistics of the specific 

states: 

1. the test included only those pattern length, which appear more than ten times in the state 

sequence;  

2. the KS2 test reject the hypothesis of the identical distribution of the ISI  values which make 

states I  and D ; the same results were obtained for other pattern length too;  
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3. KS2 test procedure include the cross comparison of ISI  values of different pattern length of 

I state; taking into account the pV  values obtained by the test, the results show that the ISI  

values of two different length of successively repeted I  state follow different CDF  

function; the same results are obtained from the tests of different legth of D  state, Figure 35, 

Figure 36, Figure 37, Figure 38, Figure 62, Figure 63, Figure 64 and Figure 65; these results 

lead to conclusion that the longer patterns can not be described as a repetition of the I  or D  

state; because these pattern behave like a separate states, it would be suitable to define state 

spaces for the increasing and decreasing patterns and divide these spaces into parts depending 

of the number of different pattern length;  

4. the results of cross comparison analysis of ISI  values between I  and D  states with 

different pattern length reject the hypothesis of identical CDF  function; statistically these to 

type of states are generated by different CDF  function; 

5. in case of the cross comparison analysis of ISI  values between I and D  states with same 

pattern length, the KS2 test accepted the hypothesis of the identical CDF  function for those 

ISI  values which follows in reverse order in these states; for example let’s take the patterns 

II and DD  which contain ISI  values denoted as  1, 2, 3, 4II I I I I= and 

 1, 2, 3, 4D D D D D= ; the statistically identical CDF  are ( 1) ( 4)F I F D= , 

( 2) ( 3)F I F D= , ( 3) ( 2)F I F D= , ( 4) ( 1)F I F D= ; the results are presented at Figure 31, 

Figure 32, Figure 33, Figure 34, Figure 59, Figure 60 and Figure 61; in the context of 

description given in Paragraph 5, the panels show that at the side diagonals the probabilities 

that the KS2 tets would give the same result in the same experimental condition are high; it 

should be emphasize that these specific patterns do not follow each other but appear in a 

mixed order, so this phenomena requires a careful explanation; 

6. the results of the KS2 test analysis of the alternation state pattern have been devided into 

parts depending on the starting state a  or A ; these are further devided by the length of the 

pattern, odd or even number of states in the pattern; Figure 39, Figure 40, Figure 66 and 

Figure 67 show that the first and the last ISI values came from the same CDF ; as the length 

of the pattern increasing so increasing the number of accepted hypothesis by the KS2 test; 

Figure 41, Figure 42, Figure 66 and Figure 67 give the same results but for the alternating 

patterns which begin with state A ; it is observabile that for the longer pattern the middle part 
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of the pattern are independent from the parts with which the pattern begins and ends; from 

Figure 43, Figure 44 and Figure 68 it is also observabile that the that the twoo type of patterns 

are independent from the begin state; these observations lead to the conclusion that 

alternating patterns have short memory (possible one or twoo ISI  values); after the short 

memory time the alternation patterns alternately use twoo type of CDF  function to generate 

corresponding ISI  values; the return of the end part to the begin part could be the influence 

of the input signals of the neuron; 

7. Figure 45-50 and Figure 69-70 show that independently from the brain area or tasks, the 

transition from any length of any type of alternating pattern the most probable transition is to 

jump to the state 01I  or 01D ; Figure 75-80 show similar behaviour of the I  and D  state 

patterns; the most probabile transition from these states are to states 01a  and 01A ;  
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