National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Београду
  • Физички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Београду
  • Физички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Особине класичне и квантне теорије поља на закривљеном некомутативном простору

Properties of classical and quantum field theory on a curved noncommutative space

Thumbnail
2017
Disertacija.pdf (2.766Mb)
IzvestajKomisije16879.pdf (73.00Kb)
Author
Nenadović, Luka V.
Mentor
Burić, Maja
Committee members
Radovanović, Voja
Cvetković, Branislav
Metadata
Show full item record
Abstract
Posle kratakog istorijskog prikaza razvoja nekomutativne geometrije i upoznavaa sa osnovnim osobinama i proble- mima kvantnih teorija po a formulisanih na nekomutativ- nim prostorima dat je uvod u tetradni formalizam u ne- komutativnoj diferencijalnoj geometriji. Razmotrili smo osnovne osobine ranije definisane modifikovane Hajzenber- gove algebre i opisali konstrukciju diferencijalne geome- trije na ovom nekomutativnom prostoru. Ovo je uraeno ko- rixeem tetradnog formalizma. Uvodna razmatraa za- vrxavamo navoeem prethodnog rezultata, gde je pokazana ekvivalencija Grose-Vulkenharovog modela i skalarne teo- rije na zakriv enom nekomutativnom prostoru. U nastavku predstav amo formulaciju i analizu Dirako- vog dejstva na modifikovanoj Hajzenbergovoj algebri. Kon- kretno, razmotrena je neminimalna interakcija sa pozadin- skim gravitacionim po em. Renormalizabilni model je do- bijen dimenzionom redukcijom na Hajzenbergovu algebru. Us- postav ena je ekvivalencija sa Vi-Turnerovim modelom koj...i je nekomutativna ekstenzija Gros-Nevoovog modela. Ovaj re- zultat je indikacija da je interakcija sa torzijom i kri- vinom neophodan (i dovo an) uslov za renormalizabilnost skalarnih i spinorskih teorija na zakriv enom nekomuta- tivnom prostoru. U posledem delu, predstavili smo rezultate raquna di- vergentnih kvantnih korekcija propagatora na nivou jedne pet e, za gradijentno U(1) po e na modifikovanom Hajzen- bergovom prostoru. Ova teorija je ranije formulisana i predstav a jednu ekstenziju Grose-Vulkenharovog modela za gradijentno po e. Model je qisto geometrijski, zasnovan na Jang-Milsovom dejstvu i BRST invarijantan. Nakon per- turbativne kvantizacije oko trivijalnog vakuuma, nalazimo divergentne nelokalne qlanove oblika 1 i 2 . Napo- sletku analiziramo znaqee ovih qlanova i mogunosti za popravku modela

In the first part we shortly review the historical development of the noncommutative geometry. After presenting some of the main features and problems of the wide class of quantum field theories on noncommutative spaces, we give a brief introduction of the frame formalism in the noncommutative differential geometry. Introducing the earlier defined truncated Heisenbera algebra, we review the construction of differential geometric objects on it using the frame formalism. We complete the introduction by citing the previously shown equivalence of the Grosse-Wulkenhaar model with the scalar theory coupled to the curvature of the truncated Heisenberg space. Further, we present our construction and analysis of the Dirac action on the truncated Heisenberg algebra. In particular, the nonminimal couplings to the background gravitational field via torsion was considered. By the dimensional reduction to the Heisenberg algebra we obtained the renormalizable Vignes-Tourneret model which is an extens...ion of the noncommutative Gross-Neveu model. This result indicates that, as on the commutative curved backgrounds, nonminimal couplings with torsion and curvature are necessary (and sufficient) for renormalisability of scalar and spinor theories on the curved noncommutative spaces. In the last part, we present our calculation of the divergent one-loop corrections to the propagators of the U(1) gauge theory on the truncated Heisenberg space, which is one of the gauge extensions of the Grosse-Wulkenhaar model. The model is purely geometric, based on the Yang-Mills action; the corresponding gauge-fixed theory is BRST invariant and has trivial classical vacuum. We quantize perturbatively around this vacuum and, along with the usual wave-function and mass renormalizations, we find divergent nonlocal terms of the and type. We discuss the meaning of these terms and possible improvements of the model.

Faculty:
Универзитет у Београду, Физички факултет
Date:
13-07-2017
Projects:
  • Physical Implications of Modified Spacetime (RS-171031)
Keywords:
nekomutativna geometrija / noncommutative geometry / quantum field theory / gauge theory / renormalization / curved space / kvantna teorija po a / gradijentna teorija / renormalizacija / zakriv en pro- stor
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_9453
URI
http://eteze.bg.ac.rs/application/showtheses?thesesId=5781
https://nardus.mpn.gov.rs/handle/123456789/9453
https://fedorabg.bg.ac.rs/fedora/get/o:17648/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=50057999

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS