National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Inteligentni softverski sistem za dijagnostiku metaboličkog sindroma

Inteligent software system for metabolic syndrome diagnostics

Thumbnail
2018
Disertacija.pdf (3.635Mb)
IzvestajKomisije.pdf (207.0Kb)
Author
Ivanović, Darko
Mentor
Kupusinac, Aleksandar
Doroslovački, Rade
Committee members
Ivetić, Dragan
Malbaški, Dušan
Stokić, Edita
Ćulibrk, Dubravko
Doroslovački, Rade
Kupusinac, Aleksandar
Metadata
Show full item record
Abstract
Doktorska disertacija razmatra problem algoritamske dijagnostike metaboličkog sindroma na osnovu lako merljivih parametara: pol, starosna dob, indeks telesne mase, odnos obima struka i visine, sistolni i dijastolni krvni pritisak. U istraživanju su primenjene i eksperimentalno ispitane tri različite metode mašinskog učenja: stabla odluke, linearna regresija i veštačke neuronske mreže. Pokazano je da veštačke neuronske mreže daju visok nivo prediktivnih vrednosti dovoljan za primenu u praksi. Korišćenjem dobijenog rezultata definisan je i implementiran inteligentni softverski sistem za dijagnostiku metaboličkog sindroma.
The doctoral dissertation examines the problem of algorithmic diagnostics of the metabolic syndrome based on easily measurable parameters: sex, age, body mass index, waist and height ratio, systolic and diastolic blood pressure. In the study, three different methods of machine learning were applied and experimentally examined: decision trees, linear regression and artificial neural networks. It has been shown that artificial neural networks give a high level of predictive value sufficient to be applied in practice. Using the obtained result, an intelligent software system for the diagnosis of metabolic syndrome has been defined and implemented.
Faculty:
University of Novi Sad, Faculty of Technical Science
Date:
16-04-2018
Keywords:
Mašinsko učenje / Machine Learning / Metabolički sindrom / Dijagnostika / Veštačkeneuronske mreže / Stabla odlučivanja / Linearna regresija / Metabolic Syndrome / Diagnostics / Artificial NeuralNetworks / Decision Trees / Linear Regression
[ Google Scholar ]
URI
http://nardus.mpn.gov.rs/handle/123456789/9340
https://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija151670035989419.pdf?controlNumber=(BISIS)107048&fileName=151670035989419.pdf&id=10889&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/record.jsf?recordId=107048&source=NaRDuS&language=sr
https://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije151670038559881.pdf?controlNumber=(BISIS)107048&fileName=151670038559881.pdf&id=10890&source=NaRDuS&language=sr

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS