National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Нишу
  • Електронски факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Нишу
  • Електронски факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Doprinos projektovanju i primeni pseudoslučajnih i entropijskih kodova u digitalnim mernim sistemima

Thumbnail
2017
Disertacija.pdf (10.58Mb)
Dincic_Milan.pdf (4.466Mb)
Author
Dinčić, Milan D.
Mentor
Denić, Dragan
Committee members
Radenković, Dragan
Mitrović, Zoran
Perić, Zoran
Živanović, Dragan
Metadata
Show full item record
Abstract
This dissertation considers the design and implementation of pseudorandom and entropy codes in digital measuring systems. Using those codes, performances of measurement systems can be significantly improved. Pseudorandom binary codes (based on pseudorandom binary sequences) are widely used in many measurement systems; and one of the most important application lies in the realization of pseudorandom position encoders. Application of pseudorandom codes allows the increase of resolution of the position encoder without increasing of complexity and cost; also, it allows implementation of methods for the fault detection and direct setting of the zero position. The dissertation mainly discusses the design of the converters of the pseudorandom code into natural binary code; some of the most important contributions of the dissertation are derivation of a generalized formula for the design of the initial logic of Galois code converter for any resolution, as well as the improvement o...f the realization of serial code converters by modification of the way how bits are written into flip flops of the shift register, which reduces the conversion time and increases the efficiency of the converter. Another type of codes considered in the dissertation are entropy codes (also known as codes with variable length codewords), which are used in order to achieve compression of measurement signals. Compression of measurement signal is particularly important in modern wireless measurement systems (telemetry and telemedicine systems, wireless sensor networks); in these systems, due to limited resources (limited energy of nodes, limited capacity of the wireless channel and limited memory), it is necessary to reduce the amount of measurement data for wireless transmission by applying a compression algorithm. There are the large number of existing compression algorithms, but they are not developed for measurement signals (but for other types of signals, primarily for multimedia signals) and are not adapted to them; also, due to the high complexity of existing compression algorithms, they cannot be implemented on the sensor nodes with very limited hardware resources and processing capability. Hence, the most of existing compression algorithms cannot be directly applied in wireless measurement systems. Therefore, it is necessary to develop new compression algorithms, which will take into account the specificities of measurement signals and hardware limitations of sensor nodes in measurement systems. Several algorithms for compression of measurement signals, based on quantization and entropy coding, are proposed in the dissertation. The proposed algorithms will be firstly described in general form so that it can be applied to a broad class of measurement signals; after that, they will be specifically adjusted and applied for compression of vibration and ECG signals. These signals were chosen due to importance they have and due to the growing number of wireless measurement systems dedicated to these types of signals, where signal compression is a necessity. It is shown that the proposed compression algorithms, although with small complexity, can achieve very good performances, similar or even better than other models in the literature. All results in the dissertation are validated by simulations; also, an experimental measurement system for measurement, compression and wireless transmission of vibration signals are realized, implementing compression algorithms previously described in the dissertation.

Faculty:
Универзитет у Нишу, Електронски факултет
Date:
15-05-2017
Keywords:
kodovanje / coding / pseudoslučajni kod / konvertori pseudoslučajnog koda u prirodni binarni kod / entropijski kodovi / kompresija signala / kvantizacija / bežične senzorske mreže / merenje vibracija / kompresija signala vibracija / kompresija EKG signala / pseudorandom code / converters of pseudorandom code into natural binary code / entropy codes / signal compression / quantization / wireless sensor networks / vibration measurement / compression of vibration signals / compression of ECG signals
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_8428
URI
https://nardus.mpn.gov.rs/handle/123456789/8428
http://eteze.ni.ac.rs/application/showtheses?thesesId=5124
https://fedorani.ni.ac.rs/fedora/get/o:1370/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70052&RID=533894294

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS