National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
  •   NaRDuS home
  • Универзитет у Новом Саду
  • Факултет техничких наука
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Specijalizovani algoritmi za detekciju, identifikaciju i estimaciju loših podataka u elektrodistributivnim mrežama

Specialized algorithms for detection, identification and estimation of bad data inpower distribution networks

Thumbnail
2017
Disertacija11107.pdf (4.063Mb)
IzvestajKomisije11107.pdf (274.5Kb)
Author
Krsman, Vladan
Mentor
Sarić, Andrija
Committee members
Strezoski, Vladimir
Švenda, Goran
Popović, Dragan
Ranković, Aleksandar
Sarić, Andrija
Metadata
Show full item record
Abstract
Doktorskom disertacijom je dokazano da postojeće metode detekcije i identifikacije loših podataka nisu primenjive na distributivne mreže usled njihovih specifičnosti u stepenu redundanse merenja i broja pseudo merenja. Dodatno, razvijeni su algoritmi detekcije loših oblasti primenom dekuplovanog Hi-kvadrat testa, identifikacije loših merenja primenom novo definisanih izbeljenih reziduala, estimacije fazne konektivnosti primenom uslovnih ograničenja u estimatoru stanja, i korekcije pseudo merenja primenom informacija sa pametnih brojila. Navedeni algoritmi su specijalizovani za distributivne mreže i verifikovani primenom na dva test sistema.
The doctoral dissertation has demonstrated that conventional bad data detection and identification methods cannot be efficiently applied in distribution networks, due to their characteristics such as low measurement redundancy, number of pseudo measurements and level of measurements correlation. In addition, the doctoral dissertation described newly developed algorithms for bad area detection based on decoupled Chi-squares test, bad data identification using newly defined whitened residuals, estimation of phase connectivity by extension of state estimation with conditional constraints and correction of pseudo measurements using AMI data. The mentioned algorithms are specialized for distribution networks and verified through simulation on two test systems.
Faculty:
University of Novi Sad, Faculty of Technical Science
Date:
30-06-2017
Keywords:
Analiza loših podataka / Bad Data Analysis / Distribution networks / Network model / State estimation / Phaseestimation / Power distribution utilities / Distributivne mreže / Model mreže / Estimacija stanja / Estimacija faza / Distributivna preduzeća
[ Google Scholar ]
URI
http://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija149190382230761.pdf?controlNumber=(BISIS)104436&fileName=149190382230761.pdf&id=7369&source=NaRDuS&language=sr
http://nardus.mpn.gov.rs/handle/123456789/8404
http://www.cris.uns.ac.rs/record.jsf?recordId=104436&source=NaRDuS&language=sr
http://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije149190383539753.pdf?controlNumber=(BISIS)104436&fileName=149190383539753.pdf&id=7370&source=NaRDuS&language=sr

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS