National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Нишу
  • Машински факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Нишу
  • Машински факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Eksperimentalno i numeričko istraživanje termo-strujnih procesa u spiralnom naboranom toplotnom apsorberu koncentrisanog zračenja

Thumbnail
2016
Disertacija.pdf (11.19Mb)
Dordevic_Milan_Lj.pdf (6.863Mb)
Author
Đorđević, Milan LJ.
Mentor
Stefanović, Velimir
Committee members
Lukić, Nebojša
Vukić, Mića
Kalaba, Dragan
Metadata
Show full item record
Abstract
The utilization of modern paraboloidal concentrators for conversion of solar radiation into heat energy requires the development and implementation of compact and efficient heat absorbers. This research is directed toward innovative design solution that involves the development of heat absorber made of spirally coiled tubes with transverse circular corrugations. The main advantage of the considered design solution is a coupling effect of the two passive methods for heat transfer enhancement - coiling of the flow channel and changes in surface roughness. Investigation of the influence of hydraulic, physical and thermal conditions, as well as the geometry of the spirally coiled corrugated heat absorber, on the local intensity of heat transfer and pressure drop was conducted using modern experimental and numerical methods. Laboratory model of heat absorber was instrumented and mounted in the radiation field. Test section instrumentation included inlet fluid flow rate, pressure drop, inlet... and exit fluid temperature and 35 type K thermocouples welded to the surface of the coil. The thermal analysis of experimentally obtained data included consideration of the externally applied radiation field, convective and radiative heat losses, conduction through the tube wall and convection to the internal fluid. The experimental results showed significant enhancement of the heat transfer compared to spirally coilled smooth tubes, up to 240% in the turbulent flow regime. The influence of radiant field intensity and geometrical parameters of corrugations outside the experimental range were investigated using computational fluid dynamics techniques in terms of heat transfer and pressure drop. Finally, the reliable correlations for determining the intensity of convective heat transfer coefficient and pressure drop were obtained for different flow regimes, which are applicable in engineering practice.

Faculty:
Универзитет у Нишу, Машински факултет
Date:
23-11-2016
Projects:
  • Research and development of energy efficient and environment friendly polygeneration systems based on renewable energy sources utilization (RS-42006)
Keywords:
toplotni apsorber / Heat Absorber / spiralna cev sa poprečnim naborima / termo-strujni procesi / Spirally Coiled Tubes with Transverse Corrugations / Thermal-hydraulic Processes
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_7776
URI
http://eteze.ni.ac.rs/application/showtheses?thesesId=4691
https://nardus.mpn.gov.rs/handle/123456789/7776
https://fedorani.ni.ac.rs/fedora/get/o:1283/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70052&RID=533872790

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS