Identifikacija parametara ekvivalentnog dinamičko - torzionog sistema kolenastog vratila dizel motora na osnovu promenljivog toka ugaone brzine
Identification of parameters of diesel engine crankshaft equivalent dynamic-torsion system based on crankshaft variable angular velocity
Author
Bulatović, Željko M.Mentor
Tomić, MiroljubCommittee members
Obradović, Aleksandar
Milašinović, Aleksandar
Miljić, Nenad

Popović, Slobodan
Metadata
Show full item recordAbstract
Trenutna ugaona brzina motora SUS se najčešće koristi za analizu radnih procesa u
cilindrima motora, pošto takve informacije u njoj dominiraju. Kod većih motora
elastične deformacije kolenastog vratila usled torzionih oscilacija ostavljaju mnogo
dublji trag na trenutnu ugaonu brzinu nego što je to slučaj kod manjih, ne mnogo
opterećenih motora. Sa stanovištva torzionih oscilacije, dve najvažnije informacije
procenjene sa velikom tačnošću, mogu se dobiti jednostavnom harmonijskom analizom
trenutne ugaone brzine kolenastog vratila. To su informacije o vrednostima sopstvenih
frekvencija oscilovanja i potencijalno kritičnim brojevima obrtaja. Dalji proračuni
vezani za probleme torzionog oscilovanja dinamičkog sistema sa motorom kao
njegovim delom, zasnivaju se na idealizaciji i uvođenju ekvivalentnog dinamičkotorzionog
sistema (EDTS). Parametri EDTS koje je potrebno definisati su inercijalne
mase, torzione krutosti i koeficijenti unutrašnjeg i spoljašnjeg prigušenja. Pored toga,
potrebno j...e poznavati momente koji pobuđuju kretanja (uključujući i torzione oscilacije)
pojedinih inercijalnih masa dinamičkog sistemu. Za ovakav sistem se mogu postaviti
diferencijalne jednačine sa ciljem da opišu kretanja svake inercijalne mase. Ni za jedan
od nabrojanih parametara EDTS se ne može tvrditi da je prethodno relativno tačno
procenjen, pošto postoje metode koje obezbeđuju samo njihovu orijentacionu procenu.
U ovom radu je prikazan postupak identifikacije parametara EDTS na primeru dizelmotora
sa dvanaest cilindara u V gradnji, primenom optimizacione metode Markvarta
(Marquardt) baziranoj na minimizaciji sume kvadrata razlika izmerene i modelirane
trenutne ugaone brzine kolenasatog vratila. Koeficijenti unutrašnjeg prigušenja su
poslužili da se proceni ukupni srednji moment trenja u motoru. Momenti gasnih sila su
procenjeni na osnovu izmerenih pritisaka u dva cilindra na suprotnim stranama
ispitivanog motora. Na ovom primeru se jasno pokazalo da je pretpostavka o
ujednačenosti radnih procesa po cilindrima ključni faktor koji utiče na odstupanja
izmerene i modelirane trenutne ugaone brzine kolenastog vratila. Procenom pobudnih
momenata inercijalnih sila na osnovu razvijene procedure određivanja promenljivog
momenta inercije složenog krivajnog mehanizma ispitivanog motora, isključena je
mogućnost da se sa te strane unese greška u proračun. Dodatno, momenti koji se od
kolenastog vratila oduzimaju za pogon značajnijih podsistema motora su kombinacijom
matematičkog modeliranja i neposrednog merenja procenjeni u ugaonom domenu
kolenastog vratila i direktno ugrađeni u matematički model. Razvijeni modeli i postupci
su iskorišćeni za procenu nivoa torzionih oscilacija u ispitivanom dinamičkom sistemu i
mehničkog stepena korisnosti motora.
The current angular velocity of IC engines is most commonly used to analyze the work
processes in engine cylinders, since such information dominate in it. In larger engines,
the crankshaft elastic deformations, due to torsional vibrations, leave a much deeper
mark on the current angular velocity than in the case of smaller engines which are not
heavily stressed. From the viewpoint of torsional oscillations, the two most important
information, estimated with high accuracy, can be obtained by simple harmonic analysis
of the crankshaft current angular velocity. Those are information about the values of
natural oscillation frequencies and potentially critical rpm. Further calculations related
to the problems of torsional oscillation of a dynamical system with an engine as its part,
are based on idealization and introduction of an equivalent dynamic-torsional system
(EDTS). The EDTS parameters which must be defined are the inertial masses, the
torsion stiffnesses and the coefficients of int...ernal and external damping. In addition, it is
necessary to know the moments that cause motions (including torsional oscillations) of
individual inertial masses of the dynamic system. Differential equations can be set up
for such a system in order to describe the motion of each inertial mass. For none of the
EDTS parameters mentioned above can be said that it was previously estimated with
relative accuracy, since there are only methods that provide their approximate
estimation. This paper presents a procedure to identify the parameters of the EDTS, on
the example of diesel engine with twelve cylinders in V layout, by applying the
Marquardt optimization method based on the minimization of the squares sum of the
differences between the measured and modeled current angular velocity of the
crankshaft. Internal damping coefficients were used to estimate the total mean friction
moment in the engine. Moments of gas forces are estimated based on the measured
pressures in two cylinders on opposite sides of the tested engine. This example clearly
shows that the assumption of work processes uniformity per cylinders is the key factor
that affects the deviations of the measured and modeled current angular velocity of the
crankshaft. By evaluating the excitation moments of inertial forces on the basis of
developed procedure for determining the variable moment of inertia of the complex
crank mechanism of the tested engine, any possibility of introducing an error in the
calculus from this side was excluded. In addition, by combining the mathematical
modeling and direct measurements, the moments taken from the crankshaft to drive the
engine major subsystems are estimated in the crankshaft angular domain and
incorporated directly into the mathematical model. The developed models and
procedures were used to estimate the level of torsional oscillations in the tested dynamic
system and engine mechanical efficiency.