Plazmonske strukture za poboljšanje poluprovodničkih infracrvenih detektora
Plasmonic structures for enhancement of semiconductor infrared detectors.
Author
Obradov, Marko M.
Mentor
Jakšić, Zoran
Committee members
Tadić, MilanRadovanović, Jelena

Radulović, Katarina

Arsoski, Vladimir

Metadata
Show full item recordAbstract
Plazmonika je jedna od oblasti nauke koje se u današnje vreme eksplozivno
razvijaju. Ona je posvecena elektromagnetici nanokompozitnih metamaterijala koji
podržavaju rezonanciju površinskih plazmona polaritona (surface plasmons polaritons,
SPP). SPP predstavljaju hibridne ekscitacije nastale sprezanjem elektromagnetnih talasa
sa oscilacijama slobodnih nosilaca naelektrisanja na razdvojnim površima izmeðu dva
materijala sa razlicitim znakovima relativne dielektricne permitivnosti, npr. provodnika
i dielektrika. Posledica ovakvog sprezanja je izmeðu ostalog lokalizacija
elektromagnetnog zracenja na podtalasnom nivou, osobina plazmonskih struktura koja
je našla veliku primenu u spektroskopiji, integrisanoj optici, senzorici itd. Jedna od
znacajnih primena plazmonske lokalizacije je u oblasti u fotodetekcije, pre svega za
poboljšanje performansi solarnih celija.
Najveci problem proširenja primene plazmonike u fotodetekciji na drugu oblast
od interesa, infracrvene (IC) detektore..., predstavlja cinjenica da je plazmonska
ucestanost vecine provodnika (metala) u ultraljubicastom ili vidljivom delu spektra.
Brojne tehnološki pogodne tehnike koje su dale izuzetne rezultate za poboljšanje
solarnih celija ostale su zbog toga bez primene u IC oblasti.
Ova disertacija se prevashodno bavi proširenjem primenljivosti plazmonike na
srednjetalasnu i dugotalasnu infracrvenu oblast i metodama prevazilaženja ogranicenja
koje postavljaju sami materijali. U tu svrhu razmatrana su dva pristupa. Jedan od njih
podrazumeva upotrebu submikrometarskih cestica od provodnog materijala.
Funkcionalnost u IC oblasti postiže se kombinacijom izbora pogodnijeg materijala
cestica (elektroprovodni opticki providni oksid umesto metala) i imerzije cestica u
dielektrik visokog indeksa prelamanja. Drugi pristup podrazumeva korišcenje tankih
metalnih slojeva sa ureðenom matricom apertura koji omogucuju pomeranje spektralne
zavisnosti prema crvenom delu spektra menjanjem iskljucivo geometrijskih parametara
matrice apertura. Oba pristupa nude mogucnost prakticno proizvoljnog podešavanja
frekvencije plazmonske rezonancije i time njenu upotrebu za IC detektore. Analiza ova
dva pristupa raðena je numerickim simulacijama, primenom metode konacnih
elemenata. Uticaj na performanse infracrvenih detektora odreðivan je kombinovanjem
rezultata numerickih modelovanja sa analitickim modelom IC detektora...
Plasmonics is one of the fastest growing fields in the contemporary science.
Plasmonics studies properties of nanocomposite metamaterials which support surface
plasmon polariton (SPP) resonance. SPP are formed by coupling electromagnetic waves
with free charge carrier oscillations at an interface between materials with different
signs of their relative permittivity i.e. conductor and dielectric. One of the results of this
coupling is localization of electromagnetic radiation on subwavelength scale, property
of plasmonic structures that has found practical use in the fields of spectroscopy,
integrated optics, sensors, etc. One of the principal applications of light localization is in
the field of photodetection, primarily for the enhancement of solar cells.
The main problem with any attempt to apply plasmonics for photodetector
enhancement at longer wavelengths, i.e. for infrared (IR) detectors, is that the plasmon
resonance frequency of most conductive materials (metals) is ...in the ultraviolet or visible
part of the spectrum. Because of this many convenient methods yielding excellent
results for plasmonic enhancement of solar cells have not been utilized in the infrared.
The main goal of this dissertation is bringing plasmonic enhancement of
semiconductor photodetectors to medium and long wavelength infrared parts of the
spectrum by overcoming limitations imposed by material properties. To achieve this
two approaches are considered and analyzed. The first approach implies the use of
submicrometer conductive particles. A sufficient shift of plasmonic resonance to the
infrared is achieved by both a suitable choice of the particle material (transparent
conductive oxides – TCO instead of metal) and by immersion of the particles in
dielectric with a large index of refraction. The second approach is based on using thin
metallic films with 2D array of holes drilled through them, where redshifting is
achieved by tuning the geometrical properties of the hole array. It is shown that both
approaches allow one to achieve practically arbitrary positioning of plasmonic
resonance in the infrared. The finite element method was used for numerical simulations
of the analyzed structures. A combination of the results of numerical modeling with the analytical results for the IR detectors was used to determine the effects of the plasmonic enhancement...
Faculty:
Универзитет у Београду, Електротехнички факултетDate:
29-09-2016Projects:
- Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection (RS-32008)