Show simple item record

Distributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbols

dc.contributor.advisorPilipović, Stevan
dc.contributor.advisorPrangoski, Bojan
dc.contributor.otherTeofanov, Nenad
dc.contributor.otherPilipović, Stevan
dc.contributor.otherPrangoski, Bojan
dc.contributor.otherSeleši, Dora
dc.contributor.otherMitrović, Slobodanka
dc.creatorJakšić, Smiljana
dc.date.accessioned2016-12-30T15:33:49Z
dc.date.available2016-12-30T15:33:49Z
dc.date.available2020-07-03T13:39:12Z
dc.date.issued2016-09-28
dc.identifier.urihttp://nardus.mpn.gov.rs/handle/123456789/7186
dc.identifier.urihttp://www.cris.uns.ac.rs/DownloadFileServlet/Disertacija146796682108167.pdf?controlNumber=(BISIS)101443&fileName=146796682108167.pdf&id=6331&source=NaRDuS&language=srsr
dc.identifier.urihttp://www.cris.uns.ac.rs/record.jsf?recordId=101443&source=NaRDuS&language=srsr
dc.identifier.urihttp://www.cris.uns.ac.rs/DownloadFileServlet/IzvestajKomisije146796683260865.pdf?controlNumber=(BISIS)101443&fileName=146796683260865.pdf&id=6332&source=NaRDuS&language=srsr
dc.description.abstractWe study the expansions of the elements in S(ℝ+d) and S'(ℝ+d) with respect to the Laguerre orthonormal basis. As a consequence, we obtain the Schwartz kernel theorem for S(ℝ+d) and S'(ℝ+d). Also we give the extension theorem of Whitney type for S(ℝ+d). Next, we consider the G-type spaces i.e. the spaces Gαα(ℝ+d), α≥1  and their dual spaces which can be described as analogous to the Gelfand-Shilov spaces and their dual spaces. Actually, we show the exist-ence of the topological isomorphism between the G-type spaces and the subspaces of the Gelfand-Shilov spaces Sα/2α/2(ℝd), α≥1 consisting of "even" functions. Next, we show that the Fourier Laguerre coecients of the elements in the G-type spaces and their dual spaces characterize these spaces through the exponential and sub-exponentia l growth of the coecients. We provide the full topological description and the kernel theorem is proved. Also two structural theorems for the dual spaces of G-type spaces are obtained. Furthemore, we dene the new class of the Weyl pseudo-dierential operators with radial symbols belonging to the G-type spaces and their dual spaces. The continuity properties of this class of pseudo-dierential operators over the Gelfand-Shilov type spaces and their duals are proved. In this way the class of the Weyl pseudo-dierential operators is extended to the one with the radial symbols with the exponential and sub-exponential growth rate.en
dc.description.abstractProučavamo razvoje elemenata iz S(ℝ+d) i S'(ℝ+d) preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za preko Lagerove ortonormirane baze. Kao posledicu dobijamo Švarcovu teoremu o jezgru za S(ℝ+d) i S'(ℝ+d). Takođe, pokazujemo i Teoremu Vitnijevog tipa za S(ℝ+d) . Zatim, posmatramo prostore G-tipa i.e. prostore Gαα(ℝd), α ≥ 1 i njihove duale koji su analogni sa Geljfand-Šilovim prostorima i njihovim dualima. Zapravo, pokazujemo da postoji topološki izomorfizam između prostora G-tipa i potprostora Geljfand-Šilovih prostora Sα/2α/2(ℝd), α ≥ 1 koji sadrže "parne" funkcije. Dalje, dokazujemo da Furije Lagerovi koeficijenti elemenata iz prostora G-tipa i njihovih duala karakterišu ove prostore kroz eksponencijalni i sub-eksponencijalni rast tih koeficijenata. Opisujemo topološku strukturu ovih prostora i dajemo Švarcovu teoremu o jezgru. Takođe, dve strukturalne teoreme za duale prostora G-tipa su dobijene. Dalje, definišemo novu klasu Vejlovih pseudo-diferencijalnih operatora sa radijalnim simbolima koji se nalaze u prostorima G-tipa i njihovim dualima. Pokazana je neprekidnost ove klase Vejlovih pseudo-diferencijalnih operatora na prostorima Geljfand-Šilova i na njihovim dualima. Na ovaj način klasa Vejlovih pseudo-diferencijalnih operatora je proširena na radijalne simbole koji imaju eksponencijalni i sub-eksponencijalni rast.sr
dc.languageen
dc.publisherУниверзитет у Новом Саду, Природно-математички факултетsr
dc.rightsopenAccessen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceУниверзитет у Новом Садуsr
dc.subjectLaguerre Expansionsen
dc.subjectLagerov razvojsr
dc.subjectErmiteov razvojsr
dc.subjectUltradistribucije na R+dsr
dc.subjectGefand-Šilovi prostorisr
dc.subjectPseudo-diferencijalni operatori sa radijalnim simbolimasr
dc.subjectHermite expansionsen
dc.subjectUltradistributions over R+den
dc.subjectGelfand-Shilov spacesen
dc.subjectPseudo-dierential operators with Radial Symbolsen
dc.titleDistributions and ultradistributions on R+d through Laguerre expansions with applications to pseudo-diferential operators with radial symbolsen
dc.title.alternativeDistributions and ultradistributions on R+d through Laguerre expansionswith applications to pseudo-dierential operators with radial symbolsen
dc.typedoctoralThesisen
dc.rights.licenseBY-NC-ND
dcterms.abstractПилиповић, Стеван; Прангоски, Бојан; Митровић, Слободанка; Селеши, Дора; Прангоски, Бојан; Пилиповић, Стеван; Теофанов, Ненад; Јакшић, Смиљана;
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/37066/Disertacija6882.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/37067/IzvestajKomisije6882.pdf
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_nardus_7186


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

openAccess
Except where otherwise noted, this item's license is described as openAccess