Numerička aproksimacija dvodimenzionih paraboličkih problema sa delta funkcijom
Author
Sredojević, Bratislav
Mentor
Bojović, DejanCommittee members
Spalević, Miodrag
Popović, Branislav
Stanić, Marija
Metadata
Show full item recordAbstract
Granični problemi za parcijalne diferencijalne jednačine predsta-
vljaju matematičke modele najraznovrsnijih pojava, kao na primer pro-
voea toplote, mehanike fluida, procesa atomske fizike itd. Samo u
retkim slučajevima ovi zadaci se mogu rexiti klasiqnim metodama ma-
tematičke analize, dok se u svim ostalim mora pribegavati priblinim
metodama. Metoda konaqnih razlika je jedan od najčešće primeiva-
nih metoda za numeričko rešavanje graničnih problema za parcijalne
diferencijalne jednačine. U okviru metode konačnih razlika, jedan od
glavnih problema je dokazivanje konvergencije diferencijskih shema koje
aproksimiraju granične probleme. Od posebnog interesa su ocene brzine
konvergencije saglasne sa glatkošću koeficijenata i rešenja početnog
problema.
Prilikom numeričke aproksimacije poqetno-graničnih paraboliqkih
problema sa generalisanim rešenjima javljaju se i neki dodatni pro-
blemi: koeficijenti nisu neprekidne funkcije, promenljivi koefici-
jenti mogu biti i vremenski zavisni, koef...icijenti i rešenje pripadaju
nestandardnim anizotropnim prostorima Soboljeva itd. Ova disertacija
se upravo bavi tim problemima.
Boundary problems for partial differential equations represent mathema-
tical models of the most diverse phenomena, such as heat transfer,
uid me-
chanics, atomic physics, etc. Only in rare cases, these tasks can be solved by
classical methods of mathematical analysis, while in all other must be resort
to approximate methods. Finite-difference method is one of the most commo-
nly used methods for the numerical solution of boundary value problems for
partial differential equations. In the context of nite-difference method, one of
the main problems is proving convergence of difference schemes which appro-
ximating boundary problems. Of particular interest are the estimates of the
rate of convergence compatible with the smoothness of the coefficients and
solution.
When numerical approximations parabolic initial-boundary problems with
generalized solutions, there are also some additional problems: the coefficients
are not continuous functions, variable coefficients can be time-dependent c...oe-
fficients and the solution belong to nonstandard anisotropic Sobolev spaces,
etc. This dissertation is concerned with precisely these problems.
The dissertation is considered a two-dimensional parabolic initial-boundary
problem with concentrated capacity, that problem contains Dirac delta functi-
on as the coefficient of the derivative by time. A further problem, in the case
boundary problems with delta function as the coefficient, is that solution not
in standard Sobolev spaces. The paper demonstrated a priori estimates of the
corresponding non-standard norms. Assuming that the coefficients belong to
anisotropic Sobolev spaces have been constructed the difference schemes with
averaged right-hand side. The estimates of the rate of convergence in the spe-
cial discrete fW2; 1
2 and fW1; 1=2
2 norms, is proved. The estimates of the rate of
convergence compatible with the smoothness of the coefficients and solution,
are obtained.