Национални Репозиторијум Дисертација у Србији
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед дисертације 
  •   НаРДуС - почетна
  • Универзитет у Београду
  • Математички факултет
  • Преглед дисертације
  •   НаРДуС - почетна
  • Универзитет у Београду
  • Математички факултет
  • Преглед дисертације
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prostori harmonijskih funkcija i harmonijska kvazikonformna preslikavanja

Spaces of harmonic functions and harmonic quasiconformal mappings

Thumbnail
2013
Disertacija4622.pdf (635.5Kb)
Докторанд
Shkheam, Abejela
Ментор
Arsenović, Miloš
Чланови комисије
Božin, Vladimir
Mateljević, Miodrag
Manojlović, Vesna
Mihić, Olivera
Метаподаци
Приказ свих података о дисертацији
Сажетак
This thesis has been written under the supervision of my mentor, Prof. dr. Miloš Arsenović at the University of Belgrade academic, and my co-mentor dr. Vladimir Božin in year 2013. The thesis consists of three chapters. In the first chapter we start from defnition of harmonic functions (by mean value property) and give some of their properties. This leads to a brief discussion of homogeneous harmonic polynomials, and we also introduce subharmonic functions and subharmonic behaviour, which we need later. In the second chapter we present a simple derivation of the explicit formula for the harmonic Bergman reproducing kernel on the ball in euclidean space and give a proof that the harmonic Bergman projection is Lp bounded, for 1 < p < 1, we furthermore discuss duality results. We then extend some of our previous discussion to the weighted Bergman spaces. In the last chapter, we investigate the Bergman space for harmonic functions bp, 0 < p < 1 on RnnZn. In the planar case we prove that bp... 6= f0g for all 0 < p < 1. Finally we prove the main result of this thesis bq c bp for n=(k + 1) < q < p < n=k, (k = 1; 2; :::). This chapter is based mainly on the published paper [44]. M. Arsenović, D. Kečkić,[5] gave analogous results for analytic functions in the planar case. In the plane the logarithmic function log jxj, plays a central role because it makes a diference between analytic and harmonic case, but in the space the function /x/2-n; n > 2 hints at the contrast between harmonic function in the plane and in higher dimensions.

Факултет:
Универзитет у Београду, Математички факултет
Датум одбране:
09-10-2013
Кључне речи:
Bergman space / Bergmanovi prostori / harmonic functions / subharmonic functions / analytic functions / harmonijske funkcije / subharmonijske funkcije / analitičke funkcije
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_6563
Остали линкови:
https://nardus.mpn.gov.rs/handle/123456789/6563
http://eteze.bg.ac.rs/application/showtheses?thesesId=3910
https://fedorabg.bg.ac.rs/fedora/get/o:13119/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=44729615

DSpace software copyright © 2002-2015  DuraSpace
О НаРДуС порталу | Пошаљите запажања

OpenAIRERCUBRODOSTEMPUS
 

 

Преглед

Све дисертацијеУниверзитети и факултетиДокторандиМенториЧланови комисијаТемеФакултетДокторандиМенториЧланови комисијаТеме

DSpace software copyright © 2002-2015  DuraSpace
О НаРДуС порталу | Пошаљите запажања

OpenAIRERCUBRODOSTEMPUS