National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prostori harmonijskih funkcija i harmonijska kvazikonformna preslikavanja

Spaces of harmonic functions and harmonic quasiconformal mappings

Thumbnail
2013
Disertacija4622.pdf (635.5Kb)
Author
Shkheam, Abejela
Mentor
Arsenović, Miloš
Committee members
Božin, Vladimir
Mateljević, Miodrag
Manojlović, Vesna
Mihić, Olivera
Metadata
Show full item record
Abstract
This thesis has been written under the supervision of my mentor, Prof. dr. Miloš Arsenović at the University of Belgrade academic, and my co-mentor dr. Vladimir Božin in year 2013. The thesis consists of three chapters. In the first chapter we start from defnition of harmonic functions (by mean value property) and give some of their properties. This leads to a brief discussion of homogeneous harmonic polynomials, and we also introduce subharmonic functions and subharmonic behaviour, which we need later. In the second chapter we present a simple derivation of the explicit formula for the harmonic Bergman reproducing kernel on the ball in euclidean space and give a proof that the harmonic Bergman projection is Lp bounded, for 1 < p < 1, we furthermore discuss duality results. We then extend some of our previous discussion to the weighted Bergman spaces. In the last chapter, we investigate the Bergman space for harmonic functions bp, 0 < p < 1 on RnnZn. In the planar case we prove that bp... 6= f0g for all 0 < p < 1. Finally we prove the main result of this thesis bq c bp for n=(k + 1) < q < p < n=k, (k = 1; 2; :::). This chapter is based mainly on the published paper [44]. M. Arsenović, D. Kečkić,[5] gave analogous results for analytic functions in the planar case. In the plane the logarithmic function log jxj, plays a central role because it makes a diference between analytic and harmonic case, but in the space the function /x/2-n; n > 2 hints at the contrast between harmonic function in the plane and in higher dimensions.

Faculty:
University of Belgrade, Faculty of Mathematics
Date:
09-10-2013
Keywords:
Bergman space / Bergmanovi prostori / harmonic functions / subharmonic functions / analytic functions / harmonijske funkcije / subharmonijske funkcije / analitičke funkcije
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_6563
URI
https://nardus.mpn.gov.rs/handle/123456789/6563
http://eteze.bg.ac.rs/application/showtheses?thesesId=3910
https://fedorabg.bg.ac.rs/fedora/get/o:13119/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=44729615

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS