Show simple item record

Fractional diffusion-wave equation with concentrated capacity and its finite difference approximation

dc.contributor.advisorJovanović, Boško
dc.contributor.otherMilovanović, Gradimir
dc.contributor.otherDražić, Milan
dc.creatorDelić, Aleksandra M.
dc.date.accessioned2016-08-06T09:51:11Z
dc.date.available2016-08-06T09:51:11Z
dc.date.available2020-07-03T08:37:43Z
dc.date.issued2016-03-18
dc.identifier.urihttp://nardus.mpn.gov.rs/handle/123456789/6159
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=3521
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=48115727
dc.description.abstractДифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузионе или таласне једначине заменом првог, односно другог извода по временској променљивој изводом разломљеног реда...sr
dc.description.abstractThe time fractional diusion-wave equation can be obtained from the classical diffusion or wave equation by replacing the rst or second order time derivative, respectively, by a fractional derivative of order 0 < 2. In particular, depending on the value of the parameter , we distinguish subdiusion (0 < < 1), normal diusion ( = 1), superdiusion (1 < < 2) and ballistic motion ( = 2). Fractional derivatives are non-local operators, which makes it dicult to construct ecient numerical method. The subject of this dissertation is the time fractional diusion-wave equation with coecient which contains a singular distribution, primarily Dirac distribution, and its approximation by nite dierences. Initial-boundary value problems of this type are usually called interface problems. Solutions of such problems have discontinuities or non-smoothness across the interface, i.e. on support of Dirac distribution, making it dicult to establish convergence of the nite dierence schemes using the classical Taylor's expansion. The existence of generalized solutions of this initial-boundary value problem has been proved. Some nite dierence schemes approximating the problem are proposed and their stability and estimates for the rate of convergence compatible with the smoothness of the solution are obtained. The theoretical results are conrmed by numerical examples.en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Математички факултетsr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/174015/RS//
dc.rightsopenAccessen
dc.sourceУниверзитет у Београдуsr
dc.subjectизводи разломљеног редаsr
dc.subjectfractional derivativesen
dc.subjectсубдифузијаsr
dc.subjectсупердифузијаsr
dc.subjectпроблем с интерфејсомsr
dc.subjectпростори Собољеваsr
dc.subjectслаба решењаsr
dc.subjectаприорна оценаsr
dc.subjectконачне резликеsr
dc.subjectбрзина конвергенцијеsr
dc.subjectsubdiusionen
dc.subjectsuperdiusionen
dc.subjectinterface problemsen
dc.subjectSobolev spacesen
dc.subjectweak solutionsen
dc.subjecta priori estimateen
dc.subjectnite dierenceen
dc.subjectrate of converganceen
dc.titleДифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разликаsr
dc.titleFractional diffusion-wave equation with concentrated capacity and its finite difference approximationen
dc.typedoctoralThesis
dc.rights.licenseBY-SA
dcterms.abstractЈовановић, Бошко; Миловановић, Градимир; Дражић, Милан; Делић, Aлександра М.; Difuziono-talasna jednačina razlomljenog reda sa koncentrisanim kapacitetom i njena aproksimacija metodom konačnih razlika;
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6248/Delic_Aleksandra.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6247/Disertacija4154.pdf


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record