National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Дифузионо-таласна једначина разломљеног реда са концентрисаним капацитетом и њена апроксимација методом коначних разлика

Fractional diffusion-wave equation with concentrated capacity and its finite difference approximation

Thumbnail
2016
Disertacija4154.pdf (1.294Mb)
Delic_Aleksandra.pdf (453.0Kb)
Author
Delić, Aleksandra M.
Mentor
Jovanović, Boško
Committee members
Milovanović, Gradimir
Dražić, Milan
Metadata
Show full item record
Abstract
Дифузионо-таласна једначина разломљеног реда по веременској променљивој добија се из класичне дифузионе или таласне једначине заменом првог, односно другог извода по временској променљивој изводом разломљеног реда...
The time fractional diusion-wave equation can be obtained from the classical diffusion or wave equation by replacing the rst or second order time derivative, respectively, by a fractional derivative of order 0 < 2. In particular, depending on the value of the parameter , we distinguish subdiusion (0 < < 1), normal diusion ( = 1), superdiusion (1 < < 2) and ballistic motion ( = 2). Fractional derivatives are non-local operators, which makes it dicult to construct ecient numerical method. The subject of this dissertation is the time fractional diusion-wave equation with coecient which contains a singular distribution, primarily Dirac distribution, and its approximation by nite dierences. Initial-boundary value problems of this type are usually called interface problems. Solutions of such problems have discontinuities or non-smoothness across the interface, i.e. on support of Dirac distribution, making it dicult to establish convergence of the nite dierence schemes using the classical... Taylor's expansion. The existence of generalized solutions of this initial-boundary value problem has been proved. Some nite dierence schemes approximating the problem are proposed and their stability and estimates for the rate of convergence compatible with the smoothness of the solution are obtained. The theoretical results are conrmed by numerical examples.

Faculty:
University of Belgrade, Faculty of Mathematics
Date:
18-03-2016
Projects:
  • Approximation of integral and differential operators and applications (RS-174015)
Keywords:
изводи разломљеног реда / fractional derivatives / субдифузија / супердифузија / проблем с интерфејсом / простори Собољева / слаба решења / априорна оцена / коначне резлике / брзина конвергенције / subdiusion / superdiusion / interface problems / Sobolev spaces / weak solutions / a priori estimate / nite dierence / rate of convergance
[ Google Scholar ]
URI
http://nardus.mpn.gov.rs/handle/123456789/6159
http://eteze.bg.ac.rs/application/showtheses?thesesId=3521
https://fedorabg.bg.ac.rs/fedora/get/o:12220/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=48115727

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS