National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ubrzanje metoda za rešavanje problema prenosa polarizovanog zračenje u više dimenzija i njihova primena

Acceleration of methods for multidimensional polarized radiative transfer and their application

Thumbnail
2014
Disertacija3968.pdf (1.743Mb)
Milic_Ivan_referat_MTF.pdf (33.40Kb)
Author
Milić, Ivan
Mentor
Atanacković, Olga
Committee members
Faurobert, Marianne
Štěpán, Jiří
Urošević, Dejan
Metadata
Show full item record
Abstract
Multidimensional radiative transfer is an essential ingredient of modern approach to modeling of astrophysical objects. Realistic modeling calls for the assumption of non-local thermodynamic equilibrium (NLTE), which, in turn requires self-consistent solution of coupled equations of radiative transfer statistical equilibrium. This approach allows us to compute emergent spectrum from a given model of the object, which is, in principle, a necessary step in interpretation of observational results. Thanks to the high-resolution and high signal to noise observations, it is often possible to measure not only intensity of the light but also its state of polarization. For interpretation of such observations it is necessary to solve radiative transfer problem for polarized radiation. This thesis deals with non-LTE transfer of (generally polarized) radiation in twodimensional media. Thesis can be divided in two parts. In the first part, we present a numerical method for the formal solution of th...e radiative transfer equation in 2D Cartesian coordinate system. This method allows us to explicitly account for the contribution of non-local source functions to the local specific intensity, and, hence, to the local scattering integral. The knowledge of these contributions is necessary for an iterative solution of coupled equations of radiative transfer and statistical equilibrium. Based on this formal solution we introduce two novel schemes for multidimensional NLTE radiative transfer which have so far been used only in 1D geometry: symmetric Gauss-Seidel iteration and “Sweep-by-sweep” implicit lambda iteration, latter one being based on “Forth-and-back” implicit lambda iteration. Both methods utilize implicit use of the local source function and the source function corrections each sweep of the computational grid (four times per iteration). “Sweep-by-sweep” implicit lambda iteration also uses the idea of iteration factors and achieves acceleration of about factor of seven with respect to the referent ...

Faculty:
Универзитет у Београду, Математички факултет
Date:
24-10-2014
Projects:
  • Stellar physics (RS-176004)
Keywords:
formiranje spektralnih linija / spectral line formation / numerical radiative transfer / scattering polarization / numerički prenos zračenja / polarizacija rasejanjem
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_5975
URI
http://eteze.bg.ac.rs/application/showtheses?thesesId=3376
https://nardus.mpn.gov.rs/handle/123456789/5975
https://fedorabg.bg.ac.rs/fedora/get/o:11877/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=46335503

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS