Jednodimenzione mape kompleksnih i haotičnih oscilacija reakcije Bray-Liebhafsky
Оne-dimensional maps of the complex and chaotic oscillations of Bray-Liebhafsky reaction
Author
Blagojević, Stevan N.Mentor
Kolar-Anić, Ljiljana
Committee members
Vukelić, Nikola
Stanisavljev, Dragomir

Čupić, Željko

Ivanović-Šašić, Ana
Metadata
Show full item recordAbstract
Cilj disertacije je razvijanje novih metoda obrade i korišćenja 1D mapa u analizi vremenskih serija dinamičkih sistema i njihova primena za razlikovanje različitih tipova dinamike u oscilatornoj reakciji Bray-Liebhafsky.
U literaturi se navodi da se uspešnost modeliranja na bazi predloženog modela mehanizma posmatrane reakcije procenjuje na osnovu stepena usaglašenosti simuliranih rezultata sa eksperimentalnim rezultatima. Modeliranje oscilatornih reakcija koje se odigravaju u uslovima udaljenim od termodinamičke ravnoteže je dodatno otežano kompleksnošću ovih reakcija, odnosno činjenicom, da model mehanizma oscilatorne reakcije mora da opiše i brojne dinamičke fenomene karakteristične za nelinerane sisteme: pojavu predoscilatornog perioda, oscilacija, determinističkog haosa, bifurkacija, pobudljivosti oscilatornog sistema i ostale moguće oblike nelinearnosti.
U literaturi postoje eksperimentalna i teorijska ispitivanja dinamičkih stanja oscilatorne BL rekacije. Teorijska ispitivanja s...u zasnovana na numeričkim simulacijama procesa, a na bazi pretpostavljenog modela BL reakcije. To je upravo urađeno u ovoj disertaciji za slučaj procesa u otvorenom-protočnom reaktoru. Rezultati su saglasni sa već postojećima da su dinamička stanja veoma osetljiva na promenu brzine protoka supstanci kroz reaktor, odnosno da se složena dinamička stanja nalaze u veoma uzanom opsegu vrednosti kontrolnog prametra j0, odnosno u uzanom delu koncentracionog faznog prostora.
Dinamika složenih reakcionih sistema se može ispitivati na više načina. U literaruti i u disertaciji su opisani postupci: analiza vremenskih serija, analiza atraktora, bifurkaciona analiza, Poenkareovi preseci i jednodimenzione (1D) povratne (iteracione) mape. 1D povratne mape prikazuju dinamičku struktura Poenkareovog preseka preko zavisnost n+1-ve vrednosti posmatrane veličine u tački preseka atraktora od njene n-te vrednosti u prethodnoj tački preseka istog atraktora. Ove mape se relativno retko koriste u literaturi kao metoda za ispitivanje dinamičkih stanja reakcionih sistema, iako je kvalitativno ponašanje 1D mapa veoma korisno da objasni i čak i predvidi različite bifurkacije.
U disertaciji se posebno razmatra prednost 1D mapa nad drugim metodama kada je potrebno utvrditi pri kojim protocima se javljaju periodična, a pri kojim...
The aim of this Doctoral Dissertation is development of new methods 1D maps using in analysis of time series of dynamical systems and the application thereof to distinguish among different types of dynamics in oscillatory Bray-Liebhafsky reaction.
The literature states that the success of the modeling based on the proposed model of the mechanism of the observed reactions, is estimated based on the degree of conformity of simulated results with experimental results. Modeling of oscillatory reactions, taking place under conditions far from thermodynamic equilibrium is further hampered by the complexity of these reactions, and the fact that model oscillatory reaction mechanism must describe a number of dynamic phenomena characteristic of nonlinear systems: the pressence of preoscillatory period, oscillations, deterministic chaos, bifurcation, excitability, oscillatory systems and other possible forms of nonlinearity.
The literature records experimental and theoretical study of dynamics of... oscillatory BL reactions. Theoretical studies are based on numerical simulations of the reaction process, based on the assumed model of BL reaction. This was exactly done in this dissertation, for the reaction in an open-flow reactor. The results are consistent with the existing ones, confirming dynamic states to be highly sensitive to changes in the flow rate of substances through the reactor, i.e the complex dynamic states range within narrow set of values of the control parameter j0, or in a narrow range of the concentration in phase space.
The dynamics of complex reaction systems can be examined in several ways. The reference sources and Dissertation describes procedures: the analysis of time series, attractors analysis, bifurcation analysis, Poincare sections and one-dimensional (1D) (iteration) map. 1D return maps show the dynamic structure of the Poincare-section dependence through n + 1- values of the observed parameter in the attractor cut-point of its n-th value in the preceding cut-point of the same attractor section. These maps are relatively rarely used in the reference sources as a method for testing the dynamic state of the reaction system, although the qualitative behavior of 1D map is very useful in provding explanation, even predicting different bifurcations.
The dissertation, ponders especially the advantage of 1D maps over other methods when it is necessary to determine periodical, i.e chaotic dynamic situation, i.e...