National Repository of Dissertations in Serbia
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
  •   NaRDuS home
  • Универзитет у Београду
  • Математички факултет
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Асиметрични правилни типови

Asymmetric regular types

Thumbnail
2015
Disertacija3775.pdf (2.150Mb)
Moconja_Slavko_M.pdf (174.6Kb)
Author
Moconja, Slavko M.
Mentor
Tanović, Predrag
Committee members
Božić, Milan
Ikodinović, Nebojša
Krupinski, Krzysztof
Petrović, Zoran
Metadata
Show full item record
Abstract
У овом раду изучавамо асиметричне глобалне правилне типове. Ако је p правилан и асиметричан над А, тада постоји уређење такво да су Морлијеви низови у p над А строго растући. Испоставља се да за сваки мали модел...
In this thesis we study asymmetric regular types. If p is regular and asymmetric over A, then there exists an order such that Morley sequences in p over A are strictly increasing. It turns out that for every small model M A, the order type of a maximal Morley sequence in p over A whose elements are from M does not depend on the choice of the sequence, i.e. it is an invariant of the model M denoted by Invp;A(M). In the countable case we can determine all possibilities for Invp;A(M): either Invp;A(M) is an arbitrary countable linear order or, provided that it contains at least two elements, it is a countable dense linear order (possibly with one or both endpoints). Also, we study the connection between Invp;A(M) and Invq;A(M), where p and q are two regular and asymmetric over A types such that pA 6?w qA. We distinguish two kinds of non-orthogonality: bounded and unbounded. Under the assumption that p and q are convex, in the bounded case we get that Invp;A(M) and Invq;A(M) are either is...omorphic or anti-isomorphic, while under the assumption of strong regularity, in the unbounded case we get that Dedekind completions of Invp;A(M) and Invq;A(M) are either isomorphic or anti-isomorphic. In particular we study the following class of structures: expansions of linear orderings with countably many unary predicates and countably many equivalence relations with convex classes. We provide new examples of regular types. Namely, it turns out that every global invariant type in this context is regular, and every non-algebraic type over A has precisely two global extensions which are invariant over A. We also study the connection between the question of existence of a quasi- minimal model of a complete rst-order theory and the question of existence of a global strongly regular type. We also deal with the problem whether every quasi- minimal group must be abelian. It turns out that this question has the positive answer provided that the global extension of the generic type of a quasi-minimal group is asymmetric over...

Faculty:
Универзитет у Београду, Математички факултет
Date:
08-10-2015
Projects:
  • Algebraic, logical and combinatorial methods with applications in theoretical computer science (RS-174018)
Keywords:
глобалан тип / global type / invariant type / regular type / Morley sequence / invariant / quasi-minimal structure / linear ordering / algebraic closure operator / инваријантан тип / правилан тип / Морлијев низ / инваријанта / квазиминимална структура / линеарно уређење / оператор алге- барског затворења
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_nardus_5801
URI
https://nardus.mpn.gov.rs/handle/123456789/5801
http://eteze.bg.ac.rs/application/showtheses?thesesId=3220
https://fedorabg.bg.ac.rs/fedora/get/o:11595/bdef:Content/download
http://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=47517455

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS
 

 

Browse

All of DSpaceUniversities & FacultiesAuthorsMentorCommittee membersSubjectsThis CollectionAuthorsMentorCommittee membersSubjects

DSpace software copyright © 2002-2015  DuraSpace
About NaRDus | Contact us

OpenAIRERCUBRODOSTEMPUS