Show simple item record

Computation of subsurface flow using finite volume method

dc.contributor.advisorJovanović, Boško
dc.contributor.otherVidović, Dragan
dc.contributor.otherJovanović, Boško
dc.contributor.otherRadunović, Desanka
dc.creatorDotlić, Milan D.
dc.date.accessioned2016-07-16T12:54:26Z
dc.date.available2016-07-16T12:54:26Z
dc.date.available2020-07-03T08:39:22Z
dc.date.issued2015-06-09
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=3162
dc.identifier.urihttps://nardus.mpn.gov.rs/handle/123456789/5797
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:11489/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=47547407
dc.description.abstractU disertaciji su razmatrane numerićke metode za rešavanje problema podzemnog strujanja, transporta mase i energije u anizotropnoj i deo po deo neprekidnoj sredini. Ovakvi problemi sreću se u hidrologiji, naftnoj industriji, ekologiji i drugim oblastima. Podzemno strujanje u zasićenoj sredini opisano je linearnom parcijalnom diferencijalnom jednačinom, dok je u nezasićenoj sredini opisano Ričardsovom nelinearnom parcijalnom diferencijalnom jednačinom. Transport mase i energije opisan je advektivno-difuznim jednačinama...sr
dc.description.abstractThe thesis considers numerical methods for the computation of subsurface flow and transport of mass and energy in an anisotropic piecewise continuous medium. This kind of problems arises in hidrology, petroleum engineering, ecology and other fields. Subsurface flow in a saturated medium is described by a linear partial differential equation, while in an unsaturated medium it is described by the Richards nonlinear partial differential equation. Transport of mass and energy is described by advectiondiffusion equations. The thesis considers several finite volume methods for the discretization of diffusive and advective terms. An interpolation method for discretization of diffusion through discontinuous media is presented. This method is applicable to several nonlinear finite volume schemes. The presence of a well in the reservoir determines the subsurface flow to a large extent. Standard numerical methods produce a completely wrong flux and an inaccurate hydraulic head distribution in the well viscinity. Two methods for the well flux correction are introduced in this thesis. One of these methods gives second-order accuracy for the hydraulic head and first-order accuracy for the flux. Explicit and implicit time discretizations are presented. Preservation of the maximum and minimum principles in all considered schemes is analyzed. All considered schemes are tested using numerical examples that confirm teoretical results.en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Математички факултетsr
dc.relationinfo:eu-repo/grantAgreement/MESTD/Technological Development (TD or TR)/37014/RS//
dc.rightsopenAccessen
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceУниверзитет у Београдуsr
dc.subjectmetoda konačnih zapreminasr
dc.subjectfinite volume methodsen
dc.subjectparcijalne diferencijalne jednačinesr
dc.subjectRičardsova jednačinasr
dc.subjecttransport masesr
dc.subjecttransport energijesr
dc.subjectprincip minimuma i maksimumasr
dc.subjectnestrukturna mrežasr
dc.subjectpartial differential equationsen
dc.subjectRichards equationen
dc.subjectmass transporten
dc.subjectenergy transporten
dc.subjectmaximum and minimum principleen
dc.subjectunstructured mesh.en
dc.titleProračun podzemnog toka metodom konačnih zapreminasr
dc.titleComputation of subsurface flow using finite volume methoden
dc.typedoctoralThesisen
dc.rights.licenseBY
dcterms.abstractЈовановић, Бошко; Јовановић, Бошко; Радуновић, Десанка; Видовић, Драган; Дотлић, Милан Д.; Прорачун подземног тока методом коначних запремина; Прорачун подземног тока методом коначних запремина;
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6771/Disertacija3723.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6772/Dotlic_Milan.pdf
dc.identifier.fulltexthttps://nardus.mpn.gov.rs/bitstream/id/6771/Disertacija3723.pdf
dc.identifier.fulltexthttps://nardus.mpn.gov.rs/bitstream/id/6772/Dotlic_Milan.pdf
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_nardus_5797


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record