Show simple item record

Analysis of commutative rings by associating simplical complexes.

dc.contributor.advisorPetrović, Zoran
dc.contributor.otherLipkovski, Aleksandar
dc.contributor.otherPetrić, Zoran
dc.contributor.otherPucanović, Zoran
dc.creatorMilošević, Nela.
dc.date.accessioned2016-07-10T17:12:46Z
dc.date.available2016-07-10T17:12:46Z
dc.date.available2020-07-03T08:39:15Z
dc.date.issued2015-10-06
dc.identifier.urihttps://nardus.mpn.gov.rs/handle/123456789/5723
dc.identifier.urihttp://eteze.bg.ac.rs/application/showtheses?thesesId=3067
dc.identifier.urihttps://fedorabg.bg.ac.rs/fedora/get/o:11329/bdef:Content/download
dc.identifier.urihttp://vbs.rs/scripts/cobiss?command=DISPLAY&base=70036&RID=47520527
dc.description.abstractPredmet izuqavaa doktorske disertacije su simplicijalni kompleksi pridrueni komutativnim prstenima sa jedinicom. Generalno, kombi- natorni objekti mogu biti pridrueni prstenima na razliqite naqine, i u ovoj disertaciji izuqavamo vixe simplicijalnih kompleksa koji daju interesantne rezultate. Fokus rada je odreivae homotopskog tipa geometrijske realizacije takvih simplicijalnih kompleksa u slu- qajevima kada je to mogue. Za djelimiqno ureen skup netrivijalnih ideala u komutativnom prstenu, definixe se ureajni kompleks i odreuje egov homotopski tip u generalnom sluqaju. Simplicijalni kompleks moe biti i indirektno pridruen prstenu, kao kompleks nezavisnosti nekog grafa ili hipergrafa koji je pridru- en prstenu. Za komaksimalan graf definixemo egov kompleks neza- visnosti i odreujemo homotopski tip za generalne komutativne prstene sa jedinicom. Da e, ova teza se bavi i izuqavaem nula djelite a tako xto se po- smatraju ideali koji su nula djelite i i definixe se kompleks ideala nula djelite a. Homotopski tip ovog simplicijalnog kompleksa odre- uje se za konaqne prstene kao i za prstene sa beskonaqno mnogo mak- simalnih ideala. U ovom dijelu koristi se diskretna teorija Morsa za simplicijalne komplekse. Teoreme dokazane u disertaciji primje- ujemo na neke klase komutativnih prstena qime dolazimo do intere- santnih kombinatornih rezultata.sr
dc.description.abstractThis dissertation examines simplicial complexes associated with commutative rings with unity. In general, a combinatorial object can be attached to a ring in many dierent ways, and in this dissertation we examine several simplicial complexes attached to rings which give interesting results. Focus of this thesis is determining the homotopy type of geometric realization of these simplicial complexes, when it is possible. For a partially ordered set of nontrivial ideals in a commutative ring with identity, we investigate order complex and determine its homotopy type for the general case. Simplicial complex can also be associated to a ring indirectly, as an independence complex of some graph or hypergraph which is associated to that ring. For the comaximal graph of commutative ring with identity we dene its independence complex and determine its homotopy type for general commutative rings with identity. This thesis also focuses on the study of zero-divisors, by investigating ideals which are zero-divisors and dening zero-divisor ideal complex. The homotopy type of geometric realization of this simplicial complex is determined for rings that are nite and for rings that have innitely many maximal ideals. In this part of the thesis, we use the discrete Morse theory for simplicial complexes. The theorems proven in this dissertation are then applied to certain classes of commutative rings, which gives us some interesting combinatorial results.en
dc.formatapplication/pdf
dc.languagesr
dc.publisherУниверзитет у Београду, Математички факултетsr
dc.rightsopenAccessen
dc.rights.urihttps://creativecommons.org/licenses/by-sa/4.0/
dc.sourceУниверзитет у Београдуsr
dc.subjectsimplicijalni kompleksisr
dc.subjectsimplicial complexen
dc.subjecthomotopski tipsr
dc.subjectkomuta- tivni prstenisr
dc.subjectureajni komplekssr
dc.subjectdiskretna teorija Morsasr
dc.subjectdjelite i nulesr
dc.subjectkomaksimalan grafsr
dc.subjecthomotopy typeen
dc.subjectcommutative ringsen
dc.subjectorder complexen
dc.subjectdiscrete Morse theoryen
dc.subjectzero divisorsen
dc.subjectcomaximal graphen
dc.titleАнализа компутативних прстена придруживањем симплицијалних комплексаsr
dc.titleAnalysis of commutative rings by associating simplical complexes.en
dc.typedoctoralThesisen
dc.rights.licenseBY-SA
dcterms.abstractПетровић, Зоран; Пуцановић, Зоран; Липковски, Aлександар; Петрић, Зоран; Милошевић, Нела.; Analiza komputativnih prstena pridruživanjem simplicijalnih kompleksa;
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6722/Disertacija3607.pdf
dc.identifier.fulltexthttp://nardus.mpn.gov.rs/bitstream/id/6723/Milosevic_Nela.pdf
dc.identifier.fulltexthttps://nardus.mpn.gov.rs/bitstream/id/6722/Disertacija3607.pdf
dc.identifier.fulltexthttps://nardus.mpn.gov.rs/bitstream/id/6723/Milosevic_Nela.pdf
dc.identifier.rcubhttps://hdl.handle.net/21.15107/rcub_nardus_5723


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record