O nekim transmisionim problemima u disjunktnim oblastima
About some transmission problems in disjoint domains
Author
Milovanović, Zorica .Mentor
Jovanović, BoškoCommittee members
Milovanović, Gradimir
Radunović, Desanka
Metadata
Show full item recordAbstract
U primenama, naročito u inženjerstvu, često se sreću kompozitne ili slojevite
strukture, pri čemu se osobine pojedinih slojeva mogu značajno razlikovati od osobina
okolnog materijala. Slojevi mogu imati strukturnu, termičku, elektromagnetsku
ili optičku ulogu itd. Matematičkim modelovanjem prenosa energije i mase u
oblastima sa slojevima dobijaju se tzv. transmisioni problemi.
Na samom početku, u disertaciji se razmatra transmisioni spektralni problem
u oblasti koja se sastoji od dva disjunktna intervala. Na svakom intervalu zadat
je problem sopstvenih vrednosti, dok se interakcija između njihovih rešenja opisuje
nelokalnim uslovima saglasnosti. Dokazana je egzistencija prebrojivog niza generalisanih
rešenja, pri čemu uređeni parovi sopstvenih funkcija pripadaju odgovarajućim
prostorima Soboljeva. Opisana je struktura spektra i asimptotsko ponašanje sopstvenih
vrednosti. Konstruisana je diferencijska shema za njihovo rešavanje.
Pored transmisionog spektralnog problema, u disertaciji se... razmatraju klase nestandardnih
eliptičkih i paraboličkih transmisionih problema u disjunktnim oblastima.
Kao modelni primer uzeta je oblast koja se sastoji iz dva nesusedna pravougaonika.
U svakoj podoblasti zadat je granični problem eliptičkog tipa, odnosno početno-granični problem paraboličkog tipa. Interakcija između rešenja opisuje se pomoću
nelokalnih uslova saglasnosti na granicama posmatranih podoblasti. Razmotreno je
više primera žičkih i inženjerskih zadataka koji se svode na transmisione probleme
sličnog tipa. Za modelne probleme dokazana je egzistencija i jedinstvenost rešenja
u odgovarajućim prostorima Soboljeva. Takođe su konstruisane diferencijske sheme
za njihovo rešavanje i dokazana njihova konvergencija.
In applications, especially in engineering, often are encountered composite or
layered structures, where the properties of individual layers can vary considerably
from the properties of the surrounding material. Layers can be structural, thermal,
electromagnetic or optical, etc. Mathematical models of energy and mass transfer
in domains with layers lead to so called transmission problems.
At the beginning, in this dissertation we consider a transmission spectral problem
in the area, which consists of two disjoint intervals. At each interval was given a
eigenvalue problem, while the interaction between their solutions is described by
means of the nonlocal integral conjugation conditions. The existence of countable
series of generalized solutions is proved, whereby ordered pairs of eigenfunctions
belong to the corresponding Sobolev spaces. The structure of the spectrum and
asymptotic behavior of eigenvalues is described. A diference scheme for solving
them is constructed.
In addition to ...the spectral transmission problems, in this dissertation we consider
a class of non-standard elliptic and parabolic transmission problems in disjoint
domains. As a model example it is taken an area consisting of two non-adjacent
rectangles. In each subarea was given a boundary problem of elliptic type, as well
as initial-boundary problem of the parabolic type. The interaction between their
solutions is described by means of the nonlocal integral conjugation conditions. It
was considered more examples of physical and engineering tasks which are reduced
to transmission problems of similar type. For the model problems the existence and
uniqueness of its weak solution in appropriate Sobolev-like space is proved. They
are also constructed a finite diference schemes for solving them and proved their
convergence.