Uticaj različitih postupaka modifikacije površine ugljeničnih nanomaterijala na njihova svojstva i mogućnosti primene
Effect of carbon nanomaterials surface modification procedures on their properties and application
Author
Brković, Danijela V.Mentor
Marinković, AleksandarCommittee members
Uskoković, Petar
Radojević, Vesna

Šašić, Rajko
Pavlović, Vera

Metadata
Show full item recordAbstract
U okviru ove doktorske disertacije je izvršena kovalentna funkcionalizacija
površine ugljeničnih nanomaterijala primenom dva različita postupka modifikacije. Prvi
postupak se zasniva na uvođenju 1,3–dikarbonilnih jedinjenja Bingelovom reakcijom na
površinu višeslojnih ugljeničnih nanocevi (MWCNT), dok su u drugom postupku na
površinu MWCNT i grafena uvedene kiseonične funkcionalne grupe plazmom
dobijenom pomoću dielektričnog barijernog pražnjenja (DBD) na atmosferskom
pritisku. U daljem toku istraživanja su pripremljeni nanokompoziti funkcionalizovanih
MWCNT sa amorfnim polimerom poli(metil metakrilatom) (PMMA) i
elektroprovodnim polianilinom (PANI).
Na grafensku površinu MWCNT su preko ciklopropanskog prstena uvedna 1,3–
dikarbonilna jedinjenja primenom dve metode funkcionalizacije koje se zasnivaju na
Bingelovoj reakciji. Prva metoda podrazumeva direktno uvođenje dietil malonata,
barbiturne kiseline, dimedona i 2,2–dimetil–1,3–dioksan–4,6-diona na površinu
nanocevi Bingelovom reakcij...om. U drugom postupku, površina MWCNT–a najpre je
modifikovana dietil malonatom, a potom su izvedene reakcije sinteze (zatvaranja
prstena) barbiturne i tiobarbiturne kiseline sa ureom, odnosno tioureom. Ciklopropanski
prsten na površini nanocevi ne narušava inherentnu grafensku strukturu nanomaterijala
što se ispoljava u značajnom poboljšanju električnih svojstava i malim vrednostima
poluprovodničke površinske otpornosti funkcionalizovanih MWCNT, naročito nakon
dejstva električnog polja na disperziju nanomaterijala u rastvarču uz zagrevanje do
80°C. Funkcionalizovane MWCNT su pokazale bolja disperzibilna svojstva i prisustvo
1,3–dikarbonilnih jedinjenja je učinilo površinu nanocevi hidrofilnijom i pristupačnijom
za prilaz elektrolita što je rezultovalo povećanom kapacitivnošću Au/MWCNT
elektroda. Optimizovana je geometrija 1,3–dikarbonilnih jedinjenja na površini
MWCNT semi–empirijskim proračunima (PM6) i određen je molekulski elektrostatički
potencijal (MEP) ...
Covalent sidewall functionalization of carbonaceous nanomaterials was
performed using two modification procedures. The first procedure was functionalization
of multiwalled carbon nanotubes (MWCNTs) based on the Bingel reaction, while in the
second procedure, MWCNT and graphene nanoplatelets (GNPs) were functionalized by
dielectric barrier discharge (DBD) in air.
Sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) by
Bingel reaction was performed using two approaches. In the first approach, a 1,3-
dicarbonyl compound (barbituric acid, dimedone, diethyl malonate and 2,2-dimethyl-
1,3-dioxane-4,6-dione) was directly attached to the surface of carbon nanotubes under
the Bingel reaction conditions. In the second approach, the surface of MWCNTs was
firstly modified by diethyl malonate as a precursor and its subsequent cyclization to
barbituric and thiobarbituric acid was accomplished with urea and thiourea,
respectively. The results revealed that functionalized MWCNTs demonst...rated enhanced
electrical properties and significantly lower sheet resistance, especially after electric
field thermal assisted annealing at 80°C. The presence of 1,3-dicarbonyl compounds
caused the surface of MWCNTs to be more hydrophilic, approachable to the electrolyte
solution and improved the capacitance performance of Au/MWCNTs electrodes. The
geometry optimization of 1,3-dicarbonyl compounds on the MWCNTs surfaces was
performed using semi–empirical calculation (PM6).
The second part of the thesis was focused on MWCNTs and graphene
nanoplatelets functionalization by dielectric barrier discharge (DBD) in air. The extent
of functionalization of MWCNTs and GNPs reaches a maximum at the delivered
discharge energy of 720 and 240 J mg–1, respectively. Further exposure to plasma leads
to reduction of functional groups from the surface of the treated nanomaterials. It was
also demonstrated that introduction of oxygen functionalities by DBD plasma treatment
does not produce dramatic structural changes in MWCNTs and GNPs structure..